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Abstract—A new normalized constant modulus algorithm is
proposed that has a more desirable error performance surface
(EPS) than the existing constant modulus blind equalization
algorithms. We show that for an autoregressive channel, a well-
known class of undesirable local solutions (ULS’s) does not
exist. EPS’s and convergence of the parameters are shown for a
number of channels for which well-known algorithms are known
to possess ULS’s.

Index Terms—Adaptive equalizers, blind algorithms, station-
ary points.

I. INTRODUCTION

CONSIDER the baseband representation for digital data
transmission in Fig. 1, where is the transmitted sym-

bols, is the channel noise, is the equalizer input, is the
equalizer output and is the output of the decision device
[1]. The objective of a blind equalization (BE) algorithm is
to achieve without using a training signal
available at the receiver. The equalizer weight vector and
the input vector to the equalizer are respectively defined as

and .
The existing algorithms that are based on minimizing a

nonlinear function of the equalizer output, , possess un-
desirable local solutions (ULS’s) for which the “eye” is left
“closed” after convergence. The normalized constant modulus
algorithm (NCMA) was introduced in [2] in order to maximize
the convergence speed of the Godard algorithm [with
in (2)], and was developed further in [3]–[5] as a link between
blind equalization and classical adaptive filtering where a
training (desired) signal, , is available. In [5], the NCMA
is formally derived from theexact solution of the orthodox
formulation below

(1)
for the stepsize and where

, and the corresponding update equation is

sgn (2)

Sliding window NCMA algorithms based on constant mod-
ulus and decision-directed updates are also provided in [5].
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Fig. 1. Blind equalization in the baseband.

The merit of the NCMA is fast convergence speed and the
increased likelihood of escaping ULS’s for large stepsizes.
However, the nature of the error performance surface (EPS)
of this algorithm is not vastly different from that of the Sato
algorithm which, in many instances, contains a large number
of ULS’s. An illustrative example is given in the simulations
section.

The contribution in this paper is the development of mod-
ified NCMA updates [6]–[8] that alleviate the problem of
convergence to ULS’s. The EPS’s of the proposed algorithms
are shown to possess much improved characteristics compared
to the existing algorithms, including the CMA [1], which
is commonly accepted as the most promising adaptive blind
equalization algorithm for real-time implementation.

II. PROPOSEDALGORITHM

We assume a complex, multilevel source signal and formu-
late the following deterministic optimization problem

(3)

where is the Lagrange multiplier and is a dispersion
constant defined in the sequel. We also define

(4)

By differentiating (3) with respect to the real and imaginary
parts of , one can obtain

(5)

If (5) is premultiplied by , the optimum Lagrange multi-
plier, , can be obtained as

(6)

and the corresponding update equation becomes

(7)

The constraint in (3) enforces for ar-
bitrary . Furthermore, after premultiplying (7) by
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Fig. 2. ZNL of the SCS algorithm.

, we see that sgn , where sgn ,
is the choice corresponding to the exact solution of (3) where
the constraint is imposed as ahard constraint. Therefore, the
optimal Lagrange multiplier in (6) is

(8)

At this point, we deviate from the initial optimization statement
in (3), since the continued use of sgn will
inevitably lead to the NCMA update in (2) that possesses
ULS’s. The nature of the deviation comes after recognizing
that once a stepsize is introduced for relaxing the control over
the convergence speed, the constraint onis retained as asoft
constraintunless . By using (8) in (7), and introducing

, we have

(9)

By premultiplying (9) with , we obtain

(10)

Therefore, instead of using sgn which is
dictated by the criterion in (3), we use (10) in (9) and obtain
the update equation of the soft constraint satisfaction (SCS)
algorithm as

(11)

(12)

Note that, for in (11), the SCS algorithm reduces to the
NCMA algorithm. Unlike the NCMA, for each ,
the zero-memory nonlinearity (ZNL) in the SCS algorithm,

, is different and no hard-limiting is performed at the
equalizer output as illustrated in Fig. 2.

The dispersion constant can be obtained by considering
the unnormalized algorithm and an independent identically
distributed (i.i.d.) . Around a desirable local solution
(DLS), and following the derivation
in [1], it is easy to show that

(13)

(a) (b)

Fig. 3. EPS’s (a) with and (b) without the normalization in (14) forC1(z).

III. STATIONARY POINTS

If is sufficiently small so that , then
a first-order approximation of the error function in (12) yields
the adaptive algorithm

(14)

which we denote as the SCS-1 algorithm [9]. The main
difference between the SCS and the SCS-1 algorithms has
been found to be the speed of convergence rather than the
nature and the number of solutions on the EPS. Therefore,
for the sake of a tractable analysis, we focus on the SCS-1
algorithm, which is also easier to implement in real time.

Let us use an AR() channel of the form [10]

(15)

and an FIR equalizer

(16)

We start by hypothesizing that ULS of the type
( ) exists, which commonly occurs in most

BE algorithms [10]. As a stationary point must satisfy

(17)

where . In other words

(18)

for . Due to (15), are sta-
tistically independent for i.i.d. channel input [10]. If the
normalization is not used, using this independence, the
system of equations in (18) would reduce to a single equation
(for statistically stationary ), which yields

(19)

However, in SCS-1, due to the correlation between the terms
in the normalization and , we have the following

equations:

(20)
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(a) (b)

(c) (d)

Fig. 4. EPS’s of (a) Godard, (b) SCS-1, (c) Sato, and (d) NCMA forC2(z).

In general, are not equal and, hence, the SCS-1 does not
have ULS of the type [8] as demonstrated
in the next section.

IV. SIMULATIONS

The following channels are used to demonstrate the proper-
ties of the SCS-1 algorithm with :

(21)

In Fig. 3, for , there are no ULS’s for the SCS-1.
However, if normalization of the gradient vector is omitted
in (14), two ULS’s appear around as given by
(19). The EPS’s corresponding to , which is a maximum-
phase channel, are shown in Fig. 4. All algorithms except the
SCS-1 have ULS’s. Finally, the signal-to-noise ratio (SNR) at
the channel output is chosen to be 20 dB, and the results are
shown Fig. 5. Depending upon the initialization, the NCMA,
Godard and Sato algorithms converge to ULS’s, but the SCS-1
algorithm converges to DLS’s consistently.

V. CONCLUSIONS

New normalized constant modulus algorithms are presented
that demonstrate more favorable EPS characteristics than the
well-known algorithms in the same class. The absence of a
class of ULS’s is shown for an all-pole channel. Research
is underway to generalize the properties of the proposed
algorithm for moving average channels and to extend this
algorithm to the fractionally spaced and decision-feedback

(a) (b)

(c) (d)

Fig. 5. Convergence trajectories of (a) Godard, (b) SCS-1, (c) Sato, and (d)
NCMA for C2(z).

configurations. Other areas that are currently being explored
are the stability region for and improving the convergence
speed and the tracking performance by imposing multiple
constraints and further modifications to the algorithm.
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des Télécommunications, May 1995.

[5] C. B. Papadias and D. T. M. Slock, “Normalized sliding window
constant modulus and decision-directed algorithms: A link between
blind equalization and classical adaptive filtering,”IEEE Trans. Signal
Processing,vol. 45, pp. 231–235, Jan. 1997.

[6] O. Tanrıkulu, B. Baykal, A. G. Constantinides, and J. A. Chambers,
“Constant modulus blind equalization algorithms under soft constraint
satisfaction,” inICASSP’97,Munich, Germany, vol. 3, pp. 2517–2520.

[7] B. Baykal, O. Tanrıkulu, and J. A. Chambers, “Adaptive soft-constraint
satisfaction (SCS) algorithms for fractionally-spaced blind equalizers,”
in ICASSP’97, Munich, Germany, vol. 3, pp. 853–856.

[8] O. Tanrıkulu, B. Baykal, A. G. Constantinides, and J. A. Chambers,
“Soft constraint satisfaction (SCS) blind channel equalization algo-
rithms,” Int. J. Adapt. Contr. Signal Process.,Dec. 1997, to be published.

[9] O. Tanrıkulu, A. G. Constantinides, and J. A. Chambers, “A normalized
constant modulus blind equalization algorithm via constrained optimiza-
tion,” in Proc. Int. Conf. Telecomm.,Istanbul, Turkey, Apr. 1996, vol.
2, pp. 836–839.

[10] Z. Ding, C. R. Johnson, Jr., and R. A. Kennedy, “Global convergence
issues with linear blind adaptive equalisers,” inBlind Deconvolution,S.
Haykin, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1994, pp. 60–120.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 26, 2010 at 07:36 from IEEE Xplore.  Restrictions apply. 


