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Abstract—A new normalized constant modulus algorithm is Wy
proposed that has a more desirable error performance surface a ¥ x A A
(EPS) than the existing constant modulus blind equalization __*, | CHANNEL ) EQ‘(;?Z';'SER : _,_ -t
algorithms. We show that for an autoregressive channel, a well- Clz) .
known class of undesirable local solutions (ULS's) does not ﬁ Decision
exist. EPS’s and convergence of the parameters are shown for a
number of channels for which well-known algorithms are known BLIND
to possess ULS's. ALGORITHM

Index Terms—Adaptive equalizers, blind algorithms, station- Fig. 1. Blind equalization in the baseband.

ints. . .
ary points The merit of the NCMA is fast convergence speed and the

increased likelihood of escaping ULS’s for large stepsizes.
|. INTRODUCTION However, the nature of the error performance surface (EPS)
ONSIDER the baseband representation for digital da®f this algorithm is not vastly different from that of the Sato
Ctransmission in Fig. 1, where, is the transmitted sym- @/gorithm which, in many instances, contains a large number
bols,wy, is the channel noise, is the equalizer inpuy is the of U'LS’s. An illustrative example is given in the simulations
equalizer output and;, is the output of the decision deviceSection.

[1]. The objective of a blind equalization (BE) algorithm is _ The contribution in this paper is the _development of mod-
to achieved, = c/%aj;_, without using a training signal ified NCMA updates [6]—-[8] that alleviate the problem of

available at the receiver. The equalizer weight vector af@nvergence to ULS's. The EPS's of the proposed algorithms

the input vector to the equalizer are respectively defined @& Shown to possess much improved characteristics compared

6r = [Bop Ouji -+ - emlk]T and X2 = [z 25—y Trem)- 'to the existing algorithms, including the' QMA [1], .WhICI’.I
The existing algorithms that are based on minimizing & commonly accepted as the most promising adaptive blind

nonlinear function of the equalizer outpuj, possess un- equalization algorithm for real-time implementation.

desirable local solutions (ULS’s) for which the “eye” is left

“closed” after convergence. The normalized constant modulus Il. PROPOSEDALGORITHM

algorithm (NCMA) was introduced in [2] in order to maximize \We assume a complex, multilevel source signal and formu-

the convergence speed of the Godard algorithm [wite: 1 late the following deterministic optimization problem

in (2)], and was developed further in [3]—-[5] as a link between

blind equalization and classical adaptive filtering where a

. 2 H H 2
training (desired) signaldy, is available. In [5], the NCMA  &1% 10041 = Oxll3 + A (Xg Ohp1 gy Xie — B (3)

is formally derived from theexactsolution of the orthodox constraint
formulation below where )\ is the Lagrange multiplier and? is a dispersion
. 1 constant defined in the sequel. We also define
in {165 = X0l + (5 = 1)1 Bl - 05 | in the sequel, We 2
e a ) yr = X O, sp = Xj Orqa. (4)
for the stepsizex € (0, 1) and dj, € D where D 2 { e By differentiating (3) with respect to the real and imaginary
C: |z| = 1}, and the corresponding update equation is parts of 6,1, one can obtain
H —
Orq1 = O + _XN 5159N(yx) — yr] Xi.- 2) Okr = O + AN Xy by = 0. )
o ) I ’“”2. If (5) is premultiplied by X /7, the optimum Lagrange multi-
Sliding window NCMA algorithms based on constant modyjier, )., can be obtained as
ulus and decision-directed updates are also provided in [5].
A= — 12<1—%) (6)
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p=1.0
W) = sgnb) -
of NCMALGORITHM .

o5t NG \ =0 1
/" > \Nowrpnmon
r L

(M)

; DS a9, 8,
T (@ (b
135 = o8 3 o5 1 15 Fig. 3. EPS's (a) with and (b) without the normalization in (14) €(z).
Yi
Fig. 2. ZNL of the SCS algorithm. lll. STATIONARY POINTS
A If 1 is sufficiently small so that — |1 — |yx|/R| = 1, then

XH we see thaty, = Rsgn(yx), where sgrfre/«r) = e/«k, . - S :
is the choice corresponding to the exact solution of (3) whe first-order approximation of the error function in (12) yields

it ive algorithm
the constraint is imposed ashard constraint Therefore, the tfe adaptive algorit

optimal Lagrange multiplier in (6) is Orq1 = 05 + IIXLZIIQ <1 - |%|>ka (14)
1 . c 112
As = “T%E <1— %') (8) which we denote as the SCS-1 algorithm [9]. The main
c 112

rﬁif‘ference between the SCS and the SCS-1 algorithms has
een found to be the speed of convergence rather than the

in (3), since the continued use of = Esgn(y,) will nature and the number of solutions on the EPS. Therefore,

|neV|,t ably lead to the NCMA_update in (2) that POSSESSES, 1he sake of a tractable analysis, we focus on the SCS-1
ULS’s. The nature of the deviation comes after recogmzmegrqorithm which is also easier to implement in real time.

that once a stepsize is introduced fqr re!axmg_the control ove Let us use an AR channel of the form [10]
the convergence speed, the constraingis retained as aoft

At this point, we deviate from the initial optimization stateme

constraintunlessy, = 1. By using (8) in (7), and introducing O(z) = ;7 0<|a] <1 (15)
n, we have I+az7?
] and an FIR equalizer
Ory1 = Or + HXI:HQ < - |y—}§|>XkX;€I9k+1- ) m
g 2 —
2) = 27, > p. 1

By premultiplying (9) with X, we obtain 6(2) ; biz m=r (16)

X041 = Y N (10) We start by hypothesizing that ULS of the type =

1- < - y—é) [00 --- 8] (8 # 0) exists, which commonly occurs in most

BE algorithms [10]. As a stationary poidt must satisfy
Therefore, instead of using 6,41 = Rsgn(yx) which is ¢

dictated by the criterion in (3), we use (10) in (9) and obtain 1 1— 7S VX b =0 17)
the update equation of the soft constraint satisfaction (SCS) R b

|1 Xk]13

algorithm as
1 wherey,” = z_,/J. In other words
Ort1 =0k + 7o [Pk, 1) — ] X (1)
||‘X;€||2 E{ ||X1 7 <1 - |$k_§”ﬁ|>xk_ma:z_i}/3 =0 (18)
k ‘
z/}(ykv N) = | | . (12) Fll2
1— < _ y_k> for i € {0, ---, m}. Due to (15),zx, ---, Tx—pt1 are sta-
R tistically independent for i.i.d. channel input [10]. If the

Note that, foru = 1 in (11), the SCS algorithm reduces to thexormalization|| X ||3 is not used, using this independence, the
NCMA algorithm. Unlike the NCMA, for each: € (0, 1), system of equations in (18) would reduce to a single equation
the zero-memory nonlinearity (ZNL) in the SCS algorithmfor statistically stationary:), which yields

¥(yk, 1), is different and no hard-limiting is performed at the E{|zx[2}
equalizer output as illustrated in Fig. 2. 18] = REikg. (29)
The dispersion constar can be obtained by considering Ul

the unnormalized algorithm and an independent identicakjowever, in SCS-1, due to the correlation between the terms
distributed (i.i.d.) {ax}. Around a desirable local solutionin the normalization and:;_,z;_;, we have the following
(DLS), 1 — (1 — |yx|/R) ~ 1 and following the derivation m + 1 equations:

in [1], it is easy to show that . Bl =R E{(I1X%13) termal_;}
oo B’ 13) BB ek m ke mai )
Eflax]?} i€ {0, -, m}. (20)
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Fig. 4. EPS's of (a) Godard, (b) SCS-1, (c) Sato, and (d) NCMA®efz). Fig. 5. Convergence trajectories of (a) Godard, (b) SCS-1, (c) Sato, and (d)
NCMA for Ca(z).

In general,|3|; are not equal and, hence, the SCS-1 does not ] .

have ULS of the type, = [00 --- 8|7 [8] as demonstrated configurations. Other areas that are currently being explored

in the next section. are the stability region fop, and improving the convergence
speed and the tracking performance by imposing multiple

IV. SIMULATIONS constraints and further modifications to the algorithm.
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