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ABSTRACT 

A new blind equalization structure that is well suited 
for communication channels whose zeros are close to 
the unit circle is proposed. Most blind equalizers 
which operate a t  the baud rate perform poorly for 
channels whose maximum phase zeros are close to the 
unit circle. This limitation is mainly due to the inabil- 
ity to model the inverse of such maximum phase zeros 
with a finite length filter. Our pi-oposed structure 
adaptively models the inverse channel, completely, 
without the need to transmit a training sequence. 
Therefore Inter Symbol Interference (ISI) is removed 
even if the channel has deep spectral nulls. Another 
attractive feature of this structure is that it estimates 
the channel parameters directly, and as such may be 
used with “indirect” equalization techniques. Simu- 
lation studies are included to  demonstrate the perfor- 
mance of the scheme. 

1. IN T RO DUCT ION 

Digital transmission over a band limited channel in- 
troduces IS1 that can be eliminated by employing an 
adaptive equalizer. However, a training sequence is 
generally required. Equalizers which operate with- 
out such a training sequence are termed “blind”, and 
potentially offer improved bandwidth efficiency. 

A communication channel (wired/wireless) can be 
modelled as an FIR filter. An equalizer is a device 
that when cascaded with the channel ideally gives an 
overall impulse response of the following form 

where * denotes discrete convolution, b and c are 
respectively the impulse responses of the channel and 
the equalizer, A is a non zero positive constant, and 
d is the overall delay. Taking the z-transform on both 
sides of eqn. (l), and rearranging, yields 

The equalizer, C(z- l ) ,  is therefore the inverse 
of the channel, B(2-l) .  Even though B(2-l)  is a 
finite length polynomial , C(2-l) is generally infi- 
nite length and can only be approximated by a finite 
length polynomial in z-’. As the zeros of B(2-l)  a p  
proach the unit circle, the length ad C(z-’) required 
to approximate the inverse increases. In addition to 
the difficulty of modelling an inverse channel with a 
finite length filter, a blind equalizer also has to be 
designed automatically without a ,training sequence. 
The CMA algorithm [l], a self recovering algorithm, 
that i s  widely used in practice, performs poorly when 
the zeros of the channel are close to the unit circle. 
This limitation is also due to the difficulty of mod- 
elling the inverse channel with an FIR filter. We ex- 
amine this problem, and propose at new equalization 
structure that models the inverse channel completely 
and removes ISI. Other advantages of using this struc- 
ture will be demonstrated later in this paper. 

2. THE BLIND EQUALIZER BASED 
UPON AN IIR FILTER AND AN ALL 

PASS FILTER 

- -  
Figure 1: The base band model of the channel and 
the equalizer 

If the FIR channel has all of its zeros inside the unit 
circle (i.e. a minimum phase channel), then the in- 
verse can be completely modelled by an IIR filter, 
where the zeros of the channel are exactly cancelled 
by the poles of the IIR filter. If the channel, however, 
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has a t  least one zero which lies outside the unit circle, 
then the poles of the IIR filter can no longer cancel 
this maximum phase zero, as a pole which lies outside 
the unit circle leads to an unstable causal predictor. 
In [2], a blind equalizer was proposed for a non min- 
imum phase channel as in figure (1). The IIR filter 
coefficients are adapted to minimise E { p 2 ( k ) }  while 
the all pass filter coefficients are adapted to minimise 
E { q 4 ( k ) } .  Let the transfer function of the channel be 

d S 

B(2-l)  = ffJJ(1 - t f z - l )  JJ((r,")-' - 2 - 1 ) )  (3) 
i=l j=1 

where n,  = d+s is the order of the channel, a is a 
scalar constant, IEfI < 1, i = 1, ..., dcorrespond to the 
minimum phase zeros, and &'I > 1, j = 1, ..., s are 
the maximum phase zeros. No zeros are assumed to 
lie on the unit circle. After adaptation, the transfer 
function of the IIR filter is the Spectrally Equivalent 
Minimum Phase (SEMP) of the channel [2],[5], that 
is given as 

1 
q z - 1 )  = - 

R(z-1) 
1 

(4) 

The cascade of the channel and predictor, there- 
fore, has an all pass z-domain transfer function that 
is written as 

The all pass filter in figure (1) linearises the phase 
response of the all pass filter, H ( 2 - l ) .  Again the 
length of the all pass filter required, increases dra- 
matically as the maximum phase zeros of the channel 
approach the unit circle. In [5], we showed that by 
employing two time reversers, one before and one af- 
ter the all pass filter, the phase distortion caused by 
the combination of the channel and the IIR filter can 
be removed with only a finite length all pass filter, as 
given in the theorem of [5]. 

Theorem 1: If { p ( k ) }  is the output, assumed 
for convenience to be deterministic, of an all pass fil- 
ter, whose transfer function is H ( z - ' ) ,  to the input 
{ ~ ( l c ) } ,  then the time reversed sequence of { ~ ( k ) }  
can be reconstructed exactly by sending the time re- 
versed sequence of { p ( l c ) }  through an all pass filter 
whose transfer function is H ( 2 - l ) .  

I3 

The length of the all pass filter required in this 
case is same as that of the maximum phase compo- 
nent of the channel. 

3. THE IIR2 FIR EQUALIZATION 
STRUCTURE 

/ f 

Figure 2: The blind equalizer structure based on two 
IIR filters and an FIR filter 

The new equalizer structure is shown in figure (2) in 
which we decompose the all pass filter into an IIR 
filter whose transfer function is identical to that of 
the previous IIR filter and an FIR filter [6]. The first 
IIR filter is adapted with a prediction algorithm to 
minimise E { p 2 ( k ) } .  The FIR filter is adapted using 
a normalised CMA algorithm to minimise E{ ( q 2 ( k )  - 

transfer function of the FIR filter is the same as that 
of the channel as given in the corollary of [6]. 

r ) 2 } ,  r = w, E u 4 k }  [6]. At its optimal settings, the 

The following results capture the characteristics 
of the proposed structure, 

i) This equalizer removes the magnitude and 
phase distortion of the channel and reconstructs the 
transmitted sequence. 

The length of the IIR filters and the FIR 
filter tha t  models completely the inverse channel are 
finite, hence the equalizer has reduced computational 
complexity. 

The order of the channel can also be esti- 
mated directly from this structure. 

This equalizer not only reconstructs the trans- 
mitted sequence, but also estimates the channel pa- 
rameters directly. At the optimum, the impulse re- 
sponse of the FIR filter and the channel are identical. 

ii) 

iii) 

iv) 

The most beautiful feature of this structure is the 
ability to estimate the channel parameters directly 
while reconstructing the transmitted sequence. This 
property was used in [7], to initialise a Radial Ba- 
sis Function (RBF) equalizer and to reconstruct the 
transmitted binary sequence for a rapidly time vary- 
ing channel. 

Let us present a simulation to show the ability of 
this structure to estimate a deep null communication 
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channel, and then establish correspondence between 
this structure and a decision feedback equalizer. 

Frequency 

The input and the output relationships of figure 
(4) are written as 

P ( z - 1 )  = H(z -1 )U(z -1 )  (7) 

v ( z - 1 )  = P ( z )  (8) 

Denoting T ( z )  = U ( z - ' ) ,  and applying eqn.(7) 
and eqn.(8), V ( z - ' )  is written as 

Figure 3: The estimate of the magnitude and the 
phase of the channel ( dotted: estimation after 1500 
samples; dashed: estimation after 3000 samples) 

A fourth order maximum phase channel is em- 
ployed 0.9413 + 0 . 0 0 9 7 ~ - ~  + 0 . 9 7 0 3 ~ - ~  - O.O~OOZ-~ 
+ ~.OOOOZ-~ that has complex zeros at  (1/0.99) ezp(fj7r/3) 
and (1/0.98) ezp(fj27r/3). The IIR filter and the 
FIR filter are respectively adapted with a prediction 
algorithm and a normalised CMA algorithm as in [6]. 
The magnitude and the phase response of the chan- 
nel and its estimate (FIR filter) are depicted in figure 
(3).  The estimates were averaged over 25 indepen- 
dent trials. 

4. ERROR ACCUMULATION ANALYSIS 

After adaptation, the positions of the IIR filter and 
the FIR filter can be reversed to produce an improved 
equalization structure by introducing a non linearity 
in the feedback loop of the IIR filter. A similar tech- 
nique has been independently developed in [4] where 
the required all pass filter is approximated by an FIR 
filter and the positions of the IIR filter and the FIR 
filter is reversed. In order to analyse our new struc- 
ture, let the transfer function of the combined channel 
and the IIR filter, that is an all pass filter, be 

in which ho = 1 and n, is the order of the all pass 
filter. 

Figure 4: The structure of the proposed equalizer 

Substituting eqn.(6), eqn.(lO) can be rewritten as 

T(2- l )  = C h i z '  V ( z - ' )  (11) 
i = O  i = O  

Combination of eqn.(6) and eqn.(9) yields 

i = O  i = O  

The last two equations can be combined to form 
the following equation 

where q ( k )  and t ( k )  are respectively the inverse 
z transforms of &(z- ' )  and T(z - ' ) .  Now the error 
sequence { e ( k ) }  can be written as the difference be- 
tween { t ( k ) }  and {q(k)} as follows 

where the vectors h, t k - 1 ,  q k - 1  and e k - 1  are Clear 
from the equation. If t k - 1  = qk.' then q ( k )  = t ( k )  
and hence 
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given by 

and therefore a perfect reconstruction is achieved. 

When the all pass filter is initialised by a new set 
of data,  t k - 1  will no longer be equal to q k - 1 ,  and e ( k )  
will be a function of its past. The error is therefore 
an exponentially decaying function. However, from 
eqn.(l4), if we set the vector q k - 1  = t k - 1 ,  we can 
force the error e ( k )  to zero, and it continues at  that 
value (i.e., zero), regardless of the weight vector of the 
all pass filter. Fortunately, we can do this, because, 
we know a priori that the transmitted sequence can 
have only certain discrete levels. Therefore a non lin- 
earity, the dec(.) function, which is a sgn(.)  function 
for a binary sequence, is placed in the feedback loop 
of the all pass filter after a number of iterations. Due 
to this non linearity, the vector q k - 1  will be equal to 
t k - 1 ,  and any error accumulation is stopped. A soft 
transition [3] can be made in the feedback loop of the 
all pass filter as shown in figure (5), in which the mix- 
ing parameter X is gradually increased from zero to 
unity, as the iterations progress. The X is again set 
to zero and increased to one whenever the block is 
initialised with a new set of data. 

LZP APF k d  

Figure 5: The modified model of the block based time 
reversal equalizer 

Another interesting property of this structure is 
the all pass filtering effect of the equalizer (at full 

(17) 

5. CONCLUSION 

A new blind equalization structure was proposed for 
communication channels whose zeros are close to the 
unit circle (i.e. deep spectral nulls). Apart from 
equalizing the channel without the need for a train- 
ing sequence, this structure also exhibits many useful 
properties such as identifying the channel parame- 
ters directly, channel order estimation and modelling 
the inverse channel completely with only finite length 
filters, hence reduced computational complexity. In 
addition, we showed how this structure can be mod- 
ified to form a decision feedback equalizer. As far as 
the noise present at the channel output is concerned, 
this structure behaves as an all pass filter, and hence 
there is effectively no noise amplification due to fil- 
tering except a scalar multiplication l / ~ . .  
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