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Abstract

The influence of random vibrations on a dynamic phase shifting speckle

pattern interferometer, in which phase difference evaluation is performed using

temporal phase shifting and temporal phase unwrapping, is investigated by means of

experiments and numerical simulations. A well-defined velocity spectral density

function, typical of the spectra found under non-vibration-isolated conditions, is used

throughout. Five phase-shifting formulae are studied, with camera framing rates (1,2

and 4 kHz) typical of current dynamic speckle pattern interferometers. Two main

aspects were evaluated: firstly the unwrapping reliability, and secondly the noise

induced in the phase maps by the vibration. The former was found to be a significant

constraint, even for peak velocities well below the Nyquist velocity limit of the

interferometer, and is therefore likely to be more important than the latter in many

applications. Three analytical criteria for determining the expected unwrapping

success rate are proposed and their predictions compared with the measured values.

It is demonstrated that shorter sampling windows and higher framing rates are

preferred in order to increase the unwrapping success rate, but that longer windows

reduce the root mean square error in the phase change maps due to the vibration.

OCIS codes:  120.6160, 120.5050, 120.2650, 120.7280, 120.4290.
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1.  Introduction

Dynamic electronic speckle pattern interferometry (ESPI) constitutes a recent

trend among coherent optical techniques for measuring dynamic deformation fields

in solid mechanics.1–4 The most powerful dynamic speckle interferometers are those

based on a high-speed image sensor which incorporate a phase modulator in the

object or reference beam. Temporal phase shifting at the framing rate of the camera

allows wrapped phase maps to be calculated at the time of each frame of the image

sequence. These phase maps can then be unwrapped as a function of time to provide

the end user with a movie of the absolute object deformation state, even in the

presence of global discontinuities such as specimen boundaries and cracks.5 The

main strengths of this technique, common to the vast majority of speckle

interferometry methods, are its non-contacting nature, high sensitivity, and minimum

surface preparation requirements.6

Unfortunately, all PS algorithms are susceptible to some extent to systematic

errors such as the presence of higher harmonics in the temporal intensity signal,

phase shifter miscalibration or nonlinear response of the photodetectors.7 Vibration

is also a significant source of phase error when a PS interferometer is employed

away from a vibration-isolated table. The effect of vibration on the unwrapped phase

depends mainly on the spectral content of the vibration, its amplitude, the particular

PS algorithm used and the object phase itself. The object phase dependence is the

most damaging, since the phase error appears as a ripple with twice the spatial

frequency of the original fringe pattern (in smooth wavefront interferometers) or as a

spatially distributed random noise (in speckle interferometers).

 Useful insight into the sensitivity of different PS algorithms to vibration was

given by de Groot and Deck,8,9 who calculated the rms ripple phase error by
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evaluating the propagation of intensity errors through the PS algorithm. They

worked with standard smooth-wavefront interferometry rather than dynamic speckle

interferometry and studied the case of single frequency vibration. It was found that

the largest ripple phase error is produced at a vibration frequency equal to twice the

intensity-modulation frequency produced by the phase shifting device. More

recently, the sensitivity of a dynamic PS interferometry system to single frequency

vibration was numerically analyzed by the present authors.10  It was shown that the

rms phase error frequency response depends mainly on the length and shape of the

sampling window from which the PS algorithm coefficients are evaluated, and also

on the framing rate of the camera.

In the light of these works, a further step is the evaluation of the sensitivity of

the dynamic ESPI system to random vibration, which is a common noise source in

real environments. A particular case occurs when the random vibration can be

considered as a rigid body motion added to the test object. Such a situation arises

when carrying out relatively low strain-rate tests on different materials, using for

example, loading by vacuum or by tensile test machine. In these cases, piston-like

random vibration can lead to spatial dispersion of the phase change values and even

to severe phase evaluation failure. Therefore, it is important to know in which

circumstances the system will be able to track the phase when a random vibration is

present and to measure the phase dispersion between pixels.

In order to evaluate the dynamic high-speed speckle interferometer under

these conditions, we designed an experiment in which the target was driven with

synthesized random displacements. At the same time, numerical simulations were

carried out to gain insight into the effects of the random vibration. Advantages of the

numerical simulation are that it allows the isolation of certain noise sources that are
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added in the experiment, and that the parameters of interest (vibration rms amplitude

and spectral content, and camera framing rate) can be studied over a wider range

than that allowed by the experimental equipment. Furthermore, statistical averages

such as the unwrapping success rate require large numbers of datasets which would

take prohibitive amounts of time if carried out experimentally.

In Section 3 we describe the simulation and introduce two parameters to

assess firstly the probability of successful phase evaluation and secondly  the

average rms phase error due to the vibration alone. The performance of several PS

algorithms was studied when random vibration of known spectral content and rms

amplitude are present. Discussion and conclusions on the best choice of PS

algorithm and framing rate under given circumstances are finally given in Sections 4

and 5, respectively.

2. Experimental

2.1 Dynamic phase-shifting interferometer

Figure 1 shows a schematic view of the out-of-plane high-speed ESPI

system. In the optical setup, the beam of a frequency-doubled continuous-wave

Nd:YAG laser (wavelength λ = 532nm) is divided into object and reference arms by

a 90:10 beam splitter. The reference beam is passed through a Pockels cell and

recombined with the speckle pattern formed by the scattered object beam using a

second 90:10 beam splitter in front of the camera objective. The Pockels cell is

driven by a staircase waveform generator which produces one out of a set of four

equally-spaced voltage levels, which are clocked cyclically in response to the rising

edges of a TTL 1 kHz square wave input signal. A function generator is used to

produce the square wave, which also drives the high-speed video camera, and
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therefore acts as the master clock for the whole experiment. A detailed description of

the speckle interferometry system and of the calibration procedure can be found in

Ref. 2.

The test object consisted of an aluminum disk attached to a piezo-electric

translator (PZT), which was submitted to a high voltage random signal to move it

rigidly back and forth. The method of generating  the signal is described in Section

2.2. The gain of the high voltage amplifier was set to produce random displacements

of the disk with the following rms amplitudes: λ/32, λ/16, λ/8, λ/4 and λ/2. Higher

rms displacement amplitudes were outside the voltage range of the PZT. The PZT

was tightly clamped to a heavy steel block, which was in turn screwed to the optical

table in order to reduce the excitation of structural resonant frequencies in the

support. A trigger signal was used to start the digital data transfer and also the phase

stepping and the frame recording by the Pockels cell and the camera, respectively.

Approximately 1.6 seconds of signal can be recorded at full frame resolution. The

recorded frames were then downloaded to the Sun SPARCstation through a GPIB

interface. After that, the phase change values were evaluated and unwrapped using

the modified algorithm presented in Ref. 2 (Eqs. (15) – (17)), which allowed spatial

speckle averaging to be carried out over clusters of 3 × 3 pixels.

2.2 Generation of pseudo-random vibrations

The method used to generate the pseudo-random vibrations signal was

common to both the experimental and the numerical simulation sections of this

paper.  In both cases, the required signal is for target displacement, whereas

normally the spectral content of vibration is specified in terms of target velocity.

Design criteria for metrology  laboratories are often based on either peak velocity

spectra or probability density spectra for velocity. These are typically specified to be
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flat from dc up to a corner frequency, f0, with a high frequency roll-off.11,12 This

approach was adopted in the present study by specifying a spectral density function

for velocity, S(f) as follows:

S ( f ) =
S0       0 < f ≤ f0

S0 f0
f

          f0 < f   

 
 
 

(1)

where S0 is the spectral density for the flat portion of the spectrum (with units of µm2

s-1). This function has a 20 dB per decade roll-off above the corner frequency f0, the

value of which was fixed at 50 Hz. The severity of the vibration was controlled by

varying the single parameter S0.

The desired spectral content was achieved by frequency-domain filtering a

one-dimensional array of independent random numbers from a normal distribution

N(0,1), i.e. with zero mean and unit variance. A 20dB/dec rolloff filter was applied

to its amplitude spectrum from DC to the corner frequency f0, and another 20dB/dec

rolloff above f0. The real part of the inverse Fourier transform of the filtered

spectrum, after suitable scaling, then specified the sample displacement time history

uz(τ). Figure 2 is an example of an average of 100 independent velocity spectra

created  in this way with a scaling chosen such that the rms displacement amplitude

was σz= λ/2. The spectrum is seen to follow the form specified by Eqn. (1), with a

mean spectral density at the plateau S0 = 0.51. The particular S0 value of the velocity

signal used in the experiments was 0.49 for σz= λ/2.

In order to drive the PZT, the data were scaled from 0 to 10 V. They were

written to a Digital-to-Analogue  converter by a second computer, which had a real-

time operating system (LynxOS) in order to guarantee a constant read-out rate. The

chosen rate was 1220 samples per second, giving a total of 2.5 seconds of analog
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random noise. A signal conditioner was used to filter out high frequencies due to the

stepped digital signal and finally a high voltage amplifier was used to drive the PZT.

2.3 Example of phase dispersion

Figure 3 shows a short sample of the complete time history of the unwrapped

phase for seven different 3×3 pixel clusters, evaluated with the Carré algorithm from

experimental data with a rms displacement vibration amplitude of λ/4. The bold line

corresponds to the average phase of the different clusters. The dispersion of the

phase from the different clusters can be clearly appreciated. This dispersion

manifests itself in the phase images as spatial fluctuations and therefore introduces

unwanted noise into the final displacement maps. It is likely that these phase errors

result from a combination of several sources: intensity errors, quantization errors,

speckle decorrelation, nonlinearities of the image sensor and the phase stepping

device, as well as the vibration itself.13,14

3.  Numerical Simulation

Simulations were carried out using the model from Ref. 2, but with the

sinusoidal vibration replaced by the random vibration signals generated as described

in Section 2.2. In brief, τj =jδτ defines a discrete time axis with j = 0, 1, 2,..., J – 1,

where δτ is a time increment (in units of s) and J is the total number of points along

the time axis. In the presence of a vibration, the light intensity at a given camera

pixel and time τj is given by the usual phase-shifting interferometry equation:

[ ]{ } )()()( cos1  )( 0 jjvjj VII τφτττ +Φ+Φ+= , (2)

where I0 is the local average intensity; V is the speckle visibility; Φ is the object

phase that is related to the displacement field to be measured and which includes a

speckle random phase; Φv is the optical phase introduced by the random vibration;
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and φ(τj) is the phase shift for time τj. In this simulation Φ contains only the speckle

phase, as the disk is not submitted to a deformation.

The pseudo-random vibration phase Φv is taken from the same data file

which was used to generate the experimental random vibrations described in Section

2. After matching the sampling points of the data file to those of the simulation by

means of a spline interpolation, the phase amplitude of the signal is set to a particular

rms value σφ . For an out-of-plane interferometer,σφ  is related to the rms normal

displacement σz  of the sample by:

σφ =
4 π
λ

σz . (3)

The phase-stepping function φ(τj) is as specified in Ref. 2, and is designed to

give phase steps of ∆φ = π/2 every p time steps. The time-integration effect of the

image sensor is accomplished by adding the resulting calculated intensity values

within each frame integrating period Tf = pδτ. The result is a sequence of intensity

values, I (t),  t = 0,  1,  2,  ...,  N t − 1 where Nt is the total number of simulated frames.

3. 1 Phase evaluation

A wrapped estimator ˆ Φ w  of the addition of the object phase Φ and the

vibration phase Φv can be obtained as:

ˆ Φ w (t) = tan
−1 N (t)

D(t)

 
 
  

 
, (4)

where

N (t) = Im z(t)[ ] ,         D (t) = Re z(t)[ ] (5)

and

z( t) = a(t' )I (t + t' )
t ' =0

M −1
∑ + i b(t ' ) I (t + t' )

t ' =0

M −1
∑

 

  
 

  exp −i∆φt( ), (6)
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where the coefficients a(t) and b(t) depend on the particular PS algorithm used.

Defining:

a( t) + ib(t) = w(t)e−i∆φt ,                 t = 0, 1, 2, ..., M-1 (7)

it can be seen that the term between the square brackets in Eq. (6) is equivalent to the

Fourier transform of a windowed intensity signal evaluated at the modulation

frequency kt = 1:15,16

˜ I ( kt , t ) =   I (t + t' )
t ' = 0

M −1
∑ w(t' ) exp( −2 πik tt' / N ) .       (8)

The window coefficients w(t) can be easily calculated from the specified

sampling coefficients a(t) and b(t) (or vice versa) using Eq. (7). In this paper, the

following PS algorithms were evaluated:

a) Carré algorithm

This algorithm uses the phase shift as another unknown variable. If it is

assumed that the phase shifts are identical, then there are four unknowns: I0, V, Φv

and ∆φ, and therefore four frames are enough to evaluate Φv. This algorithm cannot

be expressed in terms of Eqn. (7) since the numerator is a non-linear combination of

measured intensities:

ˆ Φ w (t + 3 / 2) =

tan −1
S I (t ) − I (t + 3) + I (t + 1) − I ( t + 2)[ ]  3 I (t + 1) − I (t + 2)[ ]− I (t) + I (t + 3){ }

I (t +1) + I ( t + 2) − I (t ) − I (t + 3)

 
 
 

  

 
 
 

  

(9)

where S = sign I (t +1) − I (t + 2)[ ] and where sign(x) = 1 for x > 0 and -1 otherwise.

The sign function gives the correct sign to the numerator, allowing a full four-

quadrant phase value to be obtained by means of the atan2 function.
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b) Hanning window algorithms

In this case, the sampling coefficients were evaluated through Eq. (7) using

the well known raised cosine or Hanning window:

w (t) =
1

2
+

1

2
cos

2 π
M

t −
M − 1

2

 
 

 
 

 
  

 
  

 
 
 

 
 
 

                   t = 0, 1, ..., M – 2. (10)

Note that in this definition, the window width is M while M-1 frames are

used.15

3. 2. Temporal phase unwrapping

Temporal phase unwrapping refers to the process of adding integral multiples

of 2π to the wrapped phase estimator ˆ Φ w (t)  such that the magnitude of the phase

change between two successive unwrapped phase values ˆ Φ u(t)  lies in the range [-π,

π). Temporal unwrapping is performed by determining the number d(t) of 2π phase

jumps between two successive wrapped phase values by means of:

[ ]{ }π2/ )1(ˆ)(ˆ NINT)( −Φ−Φ= tttd ww ,       t = 1, 2, …, s    (11)

where s = Nt – M and NINT denotes round to the nearest integer.

The total number of phase jumps ν(t) is calculated as:

ν(t) = d(t' )
t'=1

t
∑ ,     t = 1, 2, …, s     (12)

and the unwrapped phase change value is obtained as:

∆ ˆ Φ u(t,  0) = ˆ Φ w (t) − ˆ Φ w (0) − 2πν(t),  t = 1, 2, …, s     (13)

with ∆ ˆ Φ u(0, 0) = 0 . The wrapped phase subtraction evaluated in Eq. (13) eliminates

the random speckle phase, which is present in the wrapped phase values ˆ Φ w (t) .
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3. 3. Unwrapping success rate and average rms phase error

It is useful to assess the unwrapping success rate of a given PS algorithm

when the phase of a vibrating surface is determined. This parameter is defined as the

ratio of the successfully unwrapped signals to the total number of unwrapped ones.17

The unwrapping of a wrapped phase time sequence of given length is assumed to be

correct if the unwrapped phase agrees with the corresponding input phase to within

±π for the last frame of the sequence. Even though this condition may be fulfilled for

the last frame, large phase gradients can cause the unwrapped and the input phases to

split out and to match again by chance during some time within the sequence.

Though this case should not be considered strictly as a successful unwrapping, it is

quite rare, at least for the cases of interest where the probability of a successful

unwrapping is close to 1. The unwrapping success rate does not refer to the

unwrapping process alone, but mainly to the phase evaluation procedure. The

numerical simulation allows us to evaluate this parameter for several conditions that

cannot be carried out experimentally and also to associate the cause of failure to the

vibration itself and not to other sources of error.

In a speckle interferometer, the phase change estimator uΦ∆ ˆ  depends on a

reference speckle phase 
wΦ̂ that varies from point to point in space and that is

uniformly distributed over the range [-π, π). This spatial variation makes the phase

change values vary from one pixel to another. In the simulations, therefore, L object

phase values Φl have been chosen equally spaced over the range [-π, π) and the

index l was used to designate them. Moreover, any frame tj can be considered as the

reference frame for the remaining ones. Therefore, the rms phase change error σ(t, tj)



13

for a given time t and reference frame tj, has to be averaged over all possible object

phase values Φl. This can be written as:

σ(t, t j ) =
1

L
∆ ˆ Φ u (t , t j ,   l) − ∆ ˆ Φ u (t , t j )[

=0

L −1
∑

2 
 
 

 
 
 

1
2

, (14)

with

∆ ˆ Φ u (t , t j ) =
1

L
∆ ˆ Φ u (t , t j , l )

l =0

L −1
∑ . (15)

An example of ∆ ˆ Φ u (t , t j )  from one of the experiments is shown in Fig. 3 as

a bold line, whilst σ (t, tj) measures the dispersion of the phase change obtained for

different pixels. σ (t, tj)  varies rapidly in time and also depends on the reference

frame chosen. After averaging over these indexes, we obtain:

 ∑ ∑
⋅

=
= =

s

t

s

t
j

j

j

j
tt

ss 1 1
),(

1
σσ , (16)

where sj is the number of reference frames considered and s has been already defined

above. In this way, σ represents an average rms measure of the phase change

dispersion between pixels. This definition of phase error differs from that given in

Ref. 2, and is more appropriate for the case where one is concerned about vibration-

induced spatial fluctuations in the evaluated phase rather than about the rigid body

translation of the whole sample.

4.  Numerical and experimental results and discussion

4.1 Unwrapping success rate

The unwrapping success rate of different PS formulae was evaluated

numerically by use of the simulation described above. The dynamic PS speckle

interferometer used for the experiments described in Section 3 was modeled as if it

were operating in the presence of random vibration with rms phase amplitudes σφ  =

π/2, π, 3π/2, 2π and 5π/2 radians, by setting: Nt = 1000, 2000 and 4000 frames; I0 =
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0.5; V = 1; p = 11; Tf = 1/1000, 1/2000 and 1/4000 seconds;  δτ =Tf /p seconds; ∆φ =

π/2 rad and L = 15. The coefficients a(t), b(t), w(t) and M  were imposed by the

particular PS algorithm used.

Table 1 shows the unwrapping success rate for the different PS algorithms

tested when the phase of a random vibration was evaluated for different rms

amplitudes and framing rates. Each value was obtained by evaluating 100 one-

second duration random signals, all of them generated as described in Section 2, with

a spectral content similar to the one shown in Fig. 2. It is seen that the success rate

decreases as the rms surface displacement increases, and also when the PS algorithm

window size increases. Combinations having a given product of framing rate and

number of frames M in the PS algorithm have approximately the same success rate,

suggesting that it is the time duration of the PS window, Tw, which controls the

unwrapping reliability.

Some insight into this behaviour is provided by plotting the windowed

Fourier transform (WFT) of the intensity signal.3 Figure 4(a) shows the velocity of

the surface for a rms phase amplitude of σφ  = π/2 or, equivalently, σz = λ/8. Figures

4(b) and 4(c) show the modulus of ˜ I (kt ,t) calculated by Eq. (8) when a Hanning

window was used for M = 32 and M = 64, respectively. A vertical slice through the

images shown in Figs. 4(b) and 4(c) at a point t along the horizontal axis corresponds

to the magnitude of the Fourier transform of the M intensity values starting at frame

t. Low frequency variations in the surface velocity manifest themselves as shifts in

the peak position of the modulus function away from the line kt = 1 (the carrier

frequency). High frequency variations result in broadening and splitting of the signal

peak. Both effects are visible in Figs. 5(b) and 5(c), where the rms vibration

amplitude is σz = λ/2. The phase extraction formula described by Eq. (4) evaluates
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the phase at a fixed frequency kt  = 1; carrying out the phase unwrapping along this

line will then result in the accumulation of a ±2π phase unwrapping error if a zero-

modulus hole appears between the line and the signal peak.1 In the remainder of this

sub-section we investigate three simple criteria based on these observations, with the

aim of predicting an expected unwrapping success rate for a given spectral content of

the vibration signal.

Criterion 1: Nyquist velocity exceeded by at least one random noise peak.

 The Nyquist velocity is the main limiting factor for sinusoidal excitation10 and this

is perhaps therefore the most obvious criterion.

The expected number of velocity peaks in unit time, whose magnitude is

greater than a given velocity value vn, can be written:18

µ = 2
f 2 S( f )df

f1
f2∫

S( f )dff1

f2∫

 

 
 

 

 
 

1 / 2

exp −
vn

2

2 S ( f ) dff1

f2∫

 

 
 

 

 
   (17)

where f1 and f2 are respectively the lower and upper frequencies present in the

vibration spectrum. Equation (17) differs from that specified in Ref. 18 by a factor of

2 since negative velocity peaks are as damaging as positive velocity peaks. The

probability of a given number of peaks in time τ follows the Poisson distribution. In

particular, the probability of zero peaks, which in this model can be equated to the

unwrapping success rate, is given by

P(0 ) = exp( −µτ) (18)

Substituting the values f1 = 0, f2 = 610 Hz (the Nyquist frequency limit for the D-A

converter), the Nyquist velocity limit of vn = ±66.5 mm s-1 (for a 1 kHz framing

rate), and the expression for spectral density given by Eqn. (1) with S0 = 0.51 µm s-2,

we find a value µ = 3 × 10–9 s-1. This would imply an unwrapping failure about once

every 10 years, as opposed to the much more frequent failures observed in practice.
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Furthermore, such a criterion predicts the unwrapping  success rate to be

independent of PS window size, in contrast to the results shown in Table 1. For both

these reasons, such a criterion has to be regarded as inappropriate when dealing with

random vibrations, at least for this particular combination of spectral density and

camera framing rate.

Criterion 2: Signal peak shifted by the signal peak width, due to low-frequency

vibration.

The width of the signal peak (from maximum to first zero) is obtained from the

Fourier transform of the window function as ∆kt = 8/M for the case of a Hanning

window.10 The scaling between the shift in the signal peak, δkt, and out-of-plane

velocity component vz is as follows:

δkt = 8T f v z / λ (19)

where Tf is the camera interframe time. Unwrapping failure can be expected when

δkt ≥ ∆kt. The distinction between low and high frequency vibration is somewhat

arbitrary, but since the relevant timescale is the PS window duration Tw, an

appropriate order-of-magnitude cut-off frequency is fw = 2/Tw (for Hanning

windows). The combination of Eqns (17) (with limits f1 = 0 and f2 = fw), (18) and

(19) allows the unwrapping success rate to be calculated according to this criterion.

However, the results are again found to be over-optimistic.

Criterion 3: Ridge splitting due to high-frequency vibration.

Splitting of the ridge (seen for example in Fig. 5(c)) occurs due to significant

changes in velocity within the timescale of the window duration, Tw. It is therefore

due principally to the higher frequency components of the velocity spectrum. Unlike

the two previous criteria there is no obvious analytical method of predicting the

onset of splitting. We therefore make the assumption that it will occur if a velocity
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peak, due to the frequency components of the spectrum above fw, exceeds some

threshold value vT. We chose vT = 22 µm s-1 (i.e., one third of the Nyquist velocity),

which minimises the rms error between the simulation and analytical results of the

success rate.

Table 2 shows the predicted unwrapping success rates based on this criterion for the

case vT = 22 µm s-1, obtained by the use of Eqns.  (17)-(19) with limits f1 = fw and f2

= 610 Hz. The results show the correct trend: unwrapping reliability decreases with

increasing window size, a result which can be explained in simple terms as being due

to the inclusion of a progressively greater fraction of the spectrum S(f). In view of

the crude nature of the approximation used, the agreement with the numerical results

is not too bad, although the changes in unwrapping reliability take place over a

narrower range of vibration amplitudes than is observed in the simulations. The

overly pessimistic prediction at high excitation levels could be explained in part by

cases where unwrapping errors of opposite sign cancel out, thereby counting as an

unwrapping success in the numerical simulations but as a failure in this empirical

model.

The third criterion seems the most appropriate for the current case and

suggests that signal peak splitting may be the most important source of unwrapping

error when the ratio of camera framing rate to corner frequency f0, takes the current

value of 20:1. However, it is to be expected that this ratio can be increased as

cameras with higher framing rates become available; splitting of the signal peak

would then be expected to become less severe and the second criterion could become

the dominant factor in determining unwrapping success rate. An adaptive PS

algorithm capable of following the ridge would then show significant benefits over

the Hanning-window algorithms considered here.1 In particular, it would allow the
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full velocity range of the interferometer (i.e., between 0 and the Nyquist velocity

limit) to be utilized. Under such circumstances, criterion 2 would no longer be

applicable and criterion 1 could then become the most appropriate of the three for

predicting the success rate of the phase unwrapping.

4.2 Vibration-induced phase errors

If several PS algorithms are able to track the phase, i.e. the framing rate and

the window duration have been set so the unwrapping success rate is sufficiently

close to 1, it is desirable to select the method that minimizes the rms phase change

error produced by the vibration. As an example, Table 3 shows the average rms

phase error σ  calculated according to Eqn. (16) for different PS algorithms over a

range of framing rates and σφ=π, from the simulated intensity data. The

corresponding unwrapping success rate for all the cases is greater than 0.95 (see

Table 1). Each σ  value was obtained using a single 2.5 second random signal with

sj = s/5 starting points. These results may be interpreted as minimum values that

could be obtained for optimal experimental working conditions, i.e. without the

presence of other noise sources (intensity noise, non-linearity of the camera or the

phase shifter device or speckle decorrelation).

For the Carré algorithm it is seen that the rms phase error decreases as the

framing rate of the camera increases. This effect does not occur for the Hanning

window algorithms, for which the average rms phase error is almost independent of

framing rate. The Hanning window duration does, however, have a significant effect

on the average phase error: each factor of 2 increase in window size produces a

reduction in the phase error by a factor of ~8×.  By contrast, the phase error due to

random errors in the measured intensity scales approximately as 1/√M,19 and that

due to speckle decorrelation is almost independent of M. This result is interesting,



19

therefore, because it suggests that under conditions of low vibration intensity the

effect of the vibration can be reduced below the level of the other noise sources by

increasing the duration of the time window. Experimentally-derived values are

presented in Table 4. In view of the problems with unwrapping reliably the high

amplitude vibrations, we include only the amplitudes of λ/4 and below. These results

indicate that the duration of the Hanning window has nearly no effect on the average

phase error. As stated above, this may be related to other error sources such as

intensity and decorrelation errors, which are present in the experiment but not in the

simulation.

6. Conclusions

A controlled experiment has been designed to measure the rms phase error

that appears when a high-speed speckle interferometer is used together with different

PS algorithms in the presence of piston random vibrations. Due to the complexity of

the experiment and the limited range of the vibration rms amplitude that could be

generated, a numerical simulation has also been performed. It is shown that more

important than the rms phase error is the ability to track the phase during the time

history of the signal. A measure of this ability is obtained by evaluating the

unwrapping success rate for different PS algorithms. It is seen that the unwrapping

success rate depends mainly on the duration of the PS algorithm window, with short

window algorithms offering greater unwrapping reliability, and also on the rms

displacement amplitude of the vibration. Three criteria for predicting the probability

of unwrapping success were investigated. The Nyquist velocity limit was found not

to be the direct controlling factor. Instead, a criterion for splitting of the signal peak,

based on the spectral content lying above the characteristic frequency of the PS

window, was found to agree better with the simulation results.
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Provided that the unwrapping reliability is close to unity, one can then choose

the PS algorithm which gives the minimum average rms phase error in order to

obtain unwrapped phase maps with the highest signal-to-noise ratio. The Carré

algorithm proved to combine a high unwrapping success rate together with quite a

small average rms phase error for rms displacement amplitudes below 3λ/8. For

Hanning window algorithms, as the window width M increases, the average rms

phase error due to vibration decreases much faster than that due to other error

sources, but with progressively lower chances of a successful unwrapping.
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Figure Captions

Figure 1. Dynamic high-speed phase-shifting speckle interferometer

showing: frame store (F), Pockels cell (P), high voltage driver (D), function

generator (G), digital to analog converter (DA), signal conditioner (SC), high voltage

amplifier (HA), test object (O), 90:10 beam splitters (BS), mirrors (M) and lenses

(L).

Figure 2. Velocity spectrum of the random vibration used to excite the PZT

transducer for a λ/2 rms amplitude of the disk displacement.

Figure 3. Detail of the unwrapped phase-change measured at different

locations of a disk submitted to piston random vibration for a rms displacement

amplitude of σz = λ/4. Each curve corresponds to the phase of pixel clusters with

different starting phase. The mean phase over all the clusters is also shown in bold.

Figure 4. (a) Velocity of a surface excited with a random vibration with a

rms phase amplitude of π/2 radians. (b) Modulus, in arbitrary units, calculated from

the windowed Fourier transform of the intensity signal using a Hanning window

with M=32. (c) Idem for M=64. The framing rate of the camera corresponds to 1

kHz.

Figure 5. (a) Velocity of a surface excited with a random vibration with rms

phase amplitude of 2π radians. (b) Modulus, in arbitrary units, calculated from the

windowed Fourier transform of the intensity signal using a Hanning window with

M=32. (c) Idem for M=64. The framing rate of the camera corresponds to 1 kHz.
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Table 2. Comparison of simulation and analytical (using criterion 3) unwrapping

success rates for a range of vibration amplitudes (σφ) and Hanning window durations

(M).

σφ (rad) Simulation (S) or
analytical (A)

M = 8 M = 16 M = 32 M = 64

S 0.65 0.29 0.22 0.175π/2

A 0.40 0.00 0.00 0.00

S 0.93 0.39 0.22 0.192π

A 0.98 0.18 0.00 0.00

S 0.99 0.63 0.32 0.283π/2

A 1.00 0.98 0.70 0.24

S 1.00 0.98 0.75 0.44π

A 1.00 1.00 1.00 1.00

S 1.00 1.00 1.00 0.98π/2

A 1.00 1.00 1.00 1.00
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Table 3. Average rms phase error (in radians) obtained for different PS algorithms

using simulated data at different framing rates. Values for cases with a success rate

lower than 0.95 were not calculated (see Table 1, σφ=π).

Hanning
σφ (rad) σz (µm) Framing

rate
(kHz)

Carré

M=8 M=16 M=32 M=64

1 0.013640 0.022154 0.003510 --- ---

2 0.004176 0.021078 0.002716 0.000363 ---π λ/4

4 0.001116 0.020778 0.002625 0.000339 0.000045
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Table 4. Rms phase error averaged over different pixel clusters and 500 starting

points (reference frames) evaluated from experimental data for different PS

algorithms and vibration amplitudes. The framing rate of the system was 1kHz.

σφ σz Carré Hanning8 Hanning16 Hanning32 Hanning64

2π λ/2 0.0949 0.1747 0.0808 -- --
π λ/4 0.0873 0.1486 0.0732 -- --

π/2 λ/8 0.0809 0.2325 0.0710 0.0681 0.0657
π/4 λ/16 0.0596 0.3077 0.0430 0.0375 0.0372
π/8 λ/32 0.0738 0.1320 0.0645 0.0630 0.0621
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