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Abstract 

We describe a technique for measuring depth-resolved displacement fields within a 3-

dimensional (3-D) scattering medium based on wavelength scanning interferometry. 

Sequences of 2-dimensional interferograms are recorded whilst the wavelength of the laser 

is tuned at constant rate. Fourier transformation of the resulting 3-D intensity distribution 

along the time axis reconstructs the scattering potential within the medium, and changes in 

the 3-D phase distribution measured between two separate scans provides one component 

of the 3-D displacement field. The technique is illustrated with a proof-of-principle 

experiment involving two independently controlled reflecting surfaces. Advantages over 

the corresponding method based on low coherence interferometry include a depth range 

unlimited by mechanical scanning devices, and immunity from fringe contrast reduction 

when imaging through dispersive media. 
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Keywords: Depth-resolved, displacement measurements, Wavelength Scanning Interferometry, 
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1. Introduction 

The ability to measure internal displacement fields within a material or structure would be highly 

desirable in many fields, ranging from alignment of complex optical systems to nondestructive 

evaluation of composites. Standard interferometric techniques (with either speckled or smooth 

wavefronts) have sufficient sensitivity for such applications but are typically restricted to the 

measurement of surface deformations. However, only in special cases is it possible to infer the 

internal deformation state of the structure or material from knowledge of the surface 

displacements alone. 

Depth-discrimination with multiple wavelengths has been used in optical profilometry for 

a number of years. Two basic forms have been developed, depending on whether the multiple 

wavelengths are present simultaneously [1] or sequentially [2]. In the former case, denoted here 

by Low Coherence Interferometry (LCI), one illuminates with a broadband source and scans the 

reference mirror or sample through the required depth range. In the latter case, which we call 

Wavelength Scanning Interferometry (WSI), a tunable light source is used thereby avoiding the 

need for mechanical movement of the sample or the interferometer.  

When measuring transparent objects (e.g, optical lenses or flats), reflections from 

surfaces beyond the surface of interest occur but are normally regarded as a nuisance, and 

wavelength tuning combined with specially-designed phase shifting algorithms have therefore 

been developed to suppress their effects [3,4]. Optical Coherence Tomography (OCT), on the 

other hand, is a rapidly developing imaging technology, primarily used for medical applications, 

that exploits the signal from subsurface reflections to provide information on the structure of 

biological tissues (see, for example, Ref. [5] for a recent review of the field). Most OCT systems 

operate in a pointwise manner, with mechanical scanning in one or more lateral directions to 

build up cross-sectional images, and are based on the LCI technique. The WSI version of OCT 
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was proposed by Fercher et al in 1995 [6], and demonstrated by a number of authors (see e.g. 

Ref. [7]).  

The first demonstrations of depth-resolved displacement field measurement have been 

presented very recently [8][9]. These experiments were based on LCI: the interferometer is only 

sensitive to the movement of scattering points lying within the slice selected by the reference 

mirror position, and conventional fringe analysis algorithms can be used to extract the required 

displacement field.  

The purpose of this paper is to present results from proof-of-principle experiments based 

on a WSI approach to sub-surface displacement field measurement. As far as we are aware, this 

is the first time that depth-resolved two-dimensional displacement fields have been demonstrated 

using wavelength scanning interferometry.  

2. Wavelength Scanning Interferometry 

For these proof-of-principle experiments we used the simplest possible sample 

configuration, shown in Fig. 1, consisting of two independently tiltable reflecting surfaces, S1 

and S2. A third surface, R, provided the reference wave. All three surfaces were the glass-air 

interfaces of glass flats (thickness 5.1 mm), antireflection coated on one side to suppress the 

reflection from the second glass-air interface. The light source used was a solid-state tunable 

laser TL (New Focus Vortex 6005), the beam from which was expanded by lens L1 and steered 

by mirror M towards collimating lens L2. The reflected light from the three glass-air interfaces R, 

S1 and S2 was imaged by lens L3 onto the sensor of a high-speed camera, C (VDS HCC-1000), 

which recorded the resulting 3-beam interference patterns.  

The laser wavelength, λ, can be tuned in an approximately linear manner around a center 

wavelength, λc, by adjusting a voltage supplied by signal generator SG to the laser controller LC. 
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The time-varying phase difference φ(t) = 4πd/λ(t) between beams reflected back from any pair of 

surfaces can be expanded around λc in a first order Taylor series approximation as: 
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where IR, I1 and I2 are the intensities of the beams coming from surfaces R, S1 and S2, 

respectively. φR1, φR2, φ12 are the phase differences between R and S1, R and S2 and S1 and S2, 

respectively, given by Eq.(1) and using the optical path differences dR1, dR2, d12 between the 

corresponding surfaces. A Fourier transform of W(t)I(t), where W is a window function, then 

reveals (considering only positive frequencies) four amplitude peaks: the dc component and three 

peaks corresponding to each of the cosine terms, centered at frequencies fR1, fR2 and f12. Provided 

the distance between reference and sample is greater than the sample depth, the peaks of interest 

(fR1 and  fR2) are separated from the unwanted peaks (f12 and the dc), resulting in a reconstruction 
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of the true scattering potential of the sample, rather than the autocorrelation of the scattering 

potential [6]. 

The Fourier transform of W(t)I(t) in the neighbourhood of the peak from surface j (j = 1, 

2) may be written (neglecting constants and the contributions from other peaks) as 

 [ ] )(~)0(exp)(~)(~
RjRj ffWifWfI −=⊗ φ , (3) 

where ~ denotes Fourier transformed variables and ⊗  denotes convolution.  The quantity φRj(0), 

which is the phase at t = 0, i.e. at the centre wavelength λc, and which is related to the optical 

path between the surfaces, can therefore be retrieved by evaluating the arctangent of the ratio 

between the imaginary and real parts of )(~)(~
RjRj fWfI ⊗ . If surface j is now displaced by an 

amount uz in the out-of-plane direction, Eq. (1) shows that φRj(0) changes by 4πuz/λc.  The phase 

difference between φRj(0) evaluated before and after displacement can therefore be used to 

calculate uz(x,y), where x and y are the two in-plane coordinates, provided that the phase of 

)(~ fW  is known and taken into account in the calculation. 

The finite window duration has of course the effect of broadening a given spectral line. A 

rectangular window of duration T, for example, results in a sinc function of width (measured 

between the first zeros on either side of the maximum) Δf = 2/T.  It can be shown that this 

corresponds to an effective depth resolution of δ = λc
2/Δλ (or a factor of 2 larger if using a 

Hanning window instead). Given that the coherence length of the laser is sufficient and that a 

Hanning window is used, it can be shown that the depth range (maximum distance a surface can 

be from the reference surface) is Δz = δNf/8, where Nf is the number of frames acquired during 

time T while tuning the wavelength over the range Δλ. This is just a consequence of limiting the 
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carrier frequency f below one half the sampling rate of the camera in accordance with the 

Shannon sampling theorem. 

One minor complication that should be pointed out is that the tilting of surface 1 will 

induce small phase shifts in the signal from surface 2, even if surface 2 does not itself move. This 

should be only a small effect in the current setup since the rate of change of phase with angle is 

zero for a plate initially oriented normal to the optical axis.  This prediction is confirmed to be 

the case by the validation method presented in the next section. For more complex specimen 

geometries, however, it may be necessary when interpreting the phase change from any given 

layer to include the measured displacement information for all the preceding layers. Other factors 

that will also need to be considered when extending the technique to the measurement of true 3-

D samples are the effect of multiple scattering, phase noise due to speckle decorrelation as the 

wavelength is tuned, and the development of a robust 3-D phase unwrapping algorithm [10]. 

3. Experimental results 

The results presented here were obtained by tuning the laser wavelength around λc = 

635.05nm at a rate Δλ/T ~ 0.058nm s-1. A sequence of 940 interferograms was recorded with the 

camera running at 912 frames per second. The optical path difference between surfaces R and S1 

and S1 and S2 was approximately 51mm and 20mm, respectively.  

Figure (2-a) shows the normalized intensity I(t) measured for one pixel in the field of 

view, while Fig (2-b) shows the portion of the frequency spectrum of I(t) where the peaks of 

interest are present. Prior to the Fourier transform, the mean value of the intensity signal was 

subtracted and the signal multiplied with a Hanning window. The peak frequencies for RS1 and 

RS2 are within 6% and 3%, respectively, from those expected using the third term of Eq. (1). The 

peak widths of approximately 4 Hz correspond to the expected value for a Hanning window of 
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4/T where in this case T ≈ 1 s. This corresponds to a depth resolution δ ≈ 14 mm. The depth 

range of the system was Δz ≈ 1650 mm. Small independent tilts were then introduced to surfaces 

S1 and S2 and a second sequence of interferograms was recorded. Finally, the phase difference 

was obtained by subtracting the phase φRj(0) evaluated for all the pixels in sequence 1 from the 

corresponding values in sequence 2. 

Figures (3-a) and (3-b) show the measured wrapped phase difference maps for the 

movement of S1 and S2, respectively. The images show a region of about 10×10 mm2 at a 

resolution of 256×256 pixels. Each fringe represents an out of plane displacement uz = λc/2 ~ 317 

nm. Figure 4 shows the displacement field obtained for S1 and S2 after unwrapping the phase 

difference maps shown in Fig. 3. The original spatial resolution of 256×256 pixels has been 

reduced by a factor of ten along each axis for clarity in the mesh plot.  

In order to validate the results, the tilts were measured independently using standard two-

beam interferometry at a fixed wavelength between surfaces R-S1 and R-S2. Only one of the two 

sample surfaces (S1 and S2) was present at a time. The optical phase difference was evaluated for 

each case using a spatial phase shifting method [11]. Figure 5 shows four profiles corresponding 

to the displacements measured for S1 and S2 at x = 5mm with WSI and with two beam 

interferometry. 

The tilt angles about the x and y axes were calculated as Ωx = 21 μrad and Ωy = 306 μrad 

for surface S1, and Ωx = 112 μrad and Ωy = 48 μrad for surface S2. The discrepancies between 

the tilt angles measured with both methods for the horizontal, x, and vertical, y, directions were 

e1x=  0.9, e1y= 5.0 μrad for surface S1 and  e2x= 1.9, e2y= 1.0 μrad for S2. Although this can be 

regarded as good agreement, a small phase offset error was found between the two methods, as 

can be seen in Fig. 5, and may be attributed to drifts in λc between successive recording 
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sequences.. In some applications a constant phase offset may not be an issue, but in situations 

where it is important to measure absolute displacements the problem could be overcome by 

incorporating a reference etalon into the interferometer.  

4. Discussion 

The results presented in the previous section suggest that WSI is a viable technique for 

depth-resolved displacement field measurement. In this section we discuss its strengths and 

weaknesses compared to the LCI version [8][9]. 

The main disadvantage is that images need to be acquired for all wavelengths before even 

a single slice can be selected. The use of a 1 kHz framing camera on this demonstration system 

nevertheless allowed all data acquisition to be performed in ~1 s, a figure which is compatible 

with high-volume production testing.  

On the other hand we can foresee at least three significant advantages, which are 

summarized here. Firstly, the depth range of the displacement field is limited only by the 

coherence length of the laser, rather than by the mechanical scan range of the reference arm of 

the interferometer as in Low Coherence Interferometry. There seems no reason why depth ranges  

that would be regarded as unfeasible for LCI (of order 1 m or more) cannot be measured using 

WSI. Secondly in systems with broadband light sources, dispersion may be a significant cause of 

fringe contrast reduction. In WSI the fringes are produced at high visibility at all times by a 

single wavelength and therefore the reduction in data quality due to dispersion does not arise. 

Finally, the limited dynamic range of wholefield image sensors based on CCD or CMOS 

technology (the number of grey levels, Ng, is typically only 256) limits the performance of WSI 

to a much lesser extent than that of LCI. If δ is the slice thickness and Z the overall thickness of a 

sample containing uniformly distributed scatterers, then only the fraction δ/Z of scattered 
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photons contribute interferometric signal in the case of LCI, the rest merely producing a dc offset 

to the intensity image. The modulation depth can therefore never exceed Ngδ/Z grey levels, and 

as a result, attempts to improve the axial resolution (i.e. reduce δ) have the unfortunate 

consequence of reducing the intensity modulation by a corresponding factor. For example, in the 

case δ/Z = 1/100, with an 8-bit camera, the signal would be no more than 2-3 grey levels deep 

and the measurements therefore rather susceptible to noise. WSI on the other hand ensures that 

the full dynamic range of the camera is utilized, and may be expected to have a signal to noise 

ratio some (Z/δ) times greater than with LCI. 

5. Conclusions 

We have demonstrated how Wavelength Scanning Interferometry can be used to measure 

depth-resolved displacement fields of different surfaces through transparent media. The depth 

resolution is limited by the wavelength tuning range and the number of frames registered by the 

camera whilst the wavelength is tuned. Like the Low-Coherence Interferometry (LCI) version, 

the method provides decoupling of the depth resolution and displacement sensitivity. However, 

our approach has a number of potential benefits over LCI, in particular the avoidance of 

mechanical scanning (particularly important for large specimens) and the ability to make 

measurements even in the presence of significant optical dispersion and image sensors with low 

dynamic range.  
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7. Figure captions 

 
Figure 1. Optical setup showing tunable laser (TL), signal generator (SG), laser controller (LC), 

lenses (L1, L2, L3), steering mirror (M), reference surface (R), surfaces under test (S1, S2), high-

speed camera (C) and personal computer (PC). 

Figure 2. (a) Normalized intensity signal recorded at one pixel with the high-speed camera. (b) 

Frequency spectrum of Fig. 2(a). The peaks RS1, RS2 and S1S2 correspond to the interference 

signal for surfaces R and S1, R and S2 and S1 and S2, respectively.  

Figure 3. Wrapped phase difference map of S1 (a) and S2 (b) showing the tilt introduced for each 

surface. Black represents -π radians and white + π radians. 

Figure 4. Displacement due to independent tilt of surfaces S1 and S2 measured simultaneously 

using WSI. 

Figure 5. Comparison of the displacements measured independently with WSI and with standard 

two beam interferometry for surfaces S1 and S2 at x = 5mm. 
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Figure 1. Optical setup showing tunable laser (TL), 

signal generator (SG), laser controller (LC), lenses 

(L1, L2, L3), steering mirror (M), reference surface 

(R), surfaces under test (S1, S2), high-speed camera 

(C) and personal computer (PC). 
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Figure 2. (a) Normalized intensity signal recorded at 

one pixel with the high-speed camera. (b) Frequency 

spectrum of Fig. 2(a). The peaks RS1, RS2 and S1S2 

correspond to the interference signal for surfaces R 

and S1, R and S2 and S1 and S2, respectively. 
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Figure 3. Wrapped phase difference map of S1 (a) and 

S2 (b) showing the tilt introduced for each surface. 

Black represents -π radians and white +π radians.  
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Figure 4. Displacement due to independent tilt of 

surfaces S1 and S2 measured simultaneously using 

WSI. 
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Fig. 5 Comparison of the displacements measured 

independently with WSI and with standard two 

beam interferometry for surfaces S1 and S2 at x = 

5mm 
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