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Abstract

In this thesis, we consider the random dynamical system from a sequence of random
quadratic mapping fe, (z) = exx(1 — x), where €; can choose p or A randomly, where
1 < p < X< 1++/5. That means we consider X = fe, -+ fe, (Xo), where {e; : k > 1} is a
sequence with e = p or A and Xy € [0, 1]. As to this random dynamical system, we prove
the existence of the stationary solution when 1 < p < A < 3 and the existence of random
periodic solution of period 2 for e; = €9;41 (i € Z) when 3.00547 < u < A < 14 /5.

Keywords: stationary solution, random periodic solution, random dynamical sys-
tems, random quadratic mapping, pathwise, invariant measure.
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Chapter 1

Introduction

1.1 The problem

Random dynamical systems are used to model the dynamics when it is influenced or
perturbed by some kind of random noises. In 1945, Ulam and Neumann [40] pointed
out the importance of random dynamical systems. In the last thirty years, the research
of random dynamical systems is further expanded especially in the field of stochastic
differential equations and stochastic partial differential equations in a series of work such
as [4, 23, 24, 28, 31]. Pathwise stationary solution and random periodic solution are two
central concepts in the study of random dynamical systems [4, 13, 14, 21, 20, 29, 31, 36,
37, 42, 43, 44]. To study them is key towards understanding the longtime behavior of
the random dynamical systems and their local and global topological structure. In this
thesis, we will consider a random dynamical system which is comprised by a family of
quadratic functions {f, : 0 < n < 4}, where f, is the map on the interval [0,1], defined
by fy(z) = nz(1 — z). Given a pair of parameter values ¢ < A and a number v € (0,1),
we consider a sequence of maps {fe, : k > 0} with P(f., = f.) =7, P(fe, = fn) =1—1.
Here ¢, is a random variable with Bernoulli distribution:

Pleg=p)=1—=Plex =) =1.

Define Q = {(--- ,e_9,€_1;€0,€1,€2, €k, - )i €x =por A\, k=---,-2-1,0,1,2,---}
as the sample space of the underlying probability space for the random dynamical system.
Denote w = (-+- ,€_2,€_1;€0,€1,€2, - €k, -+ ) and define the metric dynamical system
0:{ - ,-2,-1,0,1,2,---} x Q = Q by 0*w = (-, €1_2, €p—1; €k €ht1, -+ ). We define

the evaluation map at position 1: e : Q — {u, A} by the formula e(w) = €y. It is obvious
that e(frw) = € € {1, A\}. Moreover, for a given random variable Xy € [0, 1], we consider

@O(w7 ) = 1d, (I)l(w7 ) = fe(w)(’)'

Op(w, ) = Pp—1(0w) o P1(w,-), Xi = Pr(w, Xo). (1.1)

with X¢ independent of {e; : k > 1}. We can check that ® defined above satisfies the
condition of random dynamical system given in Def 1.1.1 below. Firstly, we recall the
definition of random dynamical systems [4].
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Definition 1.1.1 Let (2, F,P) be a probability space and 0 : Q — Q be a measurable
transformation which preserves the measure P, i.e. for each measurable set A € F,

P(6~1A) = P(A). (1.2)

A discrete time measurable random dynamical system over (Q,F,P,0) on a topological
space X with Borel o-algebra B is a measurable mapping

O: (nw,x) €ZxOAxX — P(nw)(z)eX
satisfying the cocycle property: ®(0,w) = id and
O(n+m,w) = P(m,0"w) o P(n,w) (1.3)
for every n,m € Z and almost every w € Q).

Here it is easy to check the probability P in our problem satisfies Definition 1.1.1, i.e. for
each w, the number of 4 and the number of X in §~'w should be equal to those in the set
A, so we can get the equation (1.2). On the other hand, it is obvious to see the cocycle
property is satisfied by definition of ® in (1.1).

These random dynamical systems, defined from a sequence of random mappings, com-
prise a mathematically rich class of Markov processes. There has been many research on
iterated random quadratic mapping on [0, 1] mainly based on seminal work of Dubins and
Freedman [19]. Bhattacharya and Rao [12] proved that there exists a unique invariant
probability 7 for the process X on (0,1) when 1 < p < A < 3 and the support S(7) of 7w
is a Cantor subset of [p,, px] (p, and py are fixed points of f, and fy respectively similar as
(1.5)) when fx(pu) > fu(pr) (1 < p < A < 2). Bhattacharya and Majumdar [10] extended
the above result to the case 3 < p < A < 1+ +/5. Unfortunately, there is a gap in their
proof. They use that [3,, 3)] is an invariant interval, where 3, and 3 are defined similar
as (1.6) when 7 = p or A. Actually, this is not true in general. One needs more conditions
for the result to hold. While our main interest here is to study the pathwise stationary
solution and the random periodic solutions of the random mapping. We can see naturally
both stationary solution and random periodic solution give an invariant measure.

To see the motivation of random stationary solution and random periodic solution,
firstly recall some well-known elementary result about the fixed point and its stability of
the deterministic quadratic map [8, 30, 32, 22, 38, 39],

fn(x) =nz(l —z), zel0,1]. (1.4)

At the beginning, this family of quadratic maps arose as a sample models of population
biology. This model actually posses very interesting dynamics such as periodic solutions,
bifurcations and so on [1, 15, 6, 41, 25]. When 7 € [0, 4], this function is sometimes called
an iterated map function, since it maps = € [0, 1] to another value of x in the same range
[0,1]. An z} satisfying
Ty = fn(:):;)
is called a fixed point of the iterated map. The subscript n indicates that z* depends on
the value of 7. For the logistic map (1.4), there are two fixed points generally:
1

zy =0, ry=1- " =:py. (1.5)
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When 1 < 1, 7 = 0 is the only stable fixed point. When 1 > 1, 0 and p, are both in
the range of interest between 0 and 1. For 1 < n < 3, there is only one stable fixed point
pyp=1- % Moreover

Py € (07 %] when ne (172]7
Py € (%, 1) when n € (2,3],

and for any z € (0,1), f*(x) — z*, as k — oc.

Considering inherent uncertainty in many kinds of systems, a randomly perturbed
system is a useful model addressing uncertainty as well. Random dynamical systems
generated by monotone random maps can be applied in economics field, for example, as
model of survival or models of optimal transition of stocks from one period to the next
under uncertainty [10]. However, when 1 < p < A < 3, for the random case, it is very
different. There is no "fixed point” unless we only apply the same map f,, or fy on the
"fixed point” of f,, or fy respectively. It is easy to see that starting from any point, when
we apply f\, the point will move towards the fixed point of f\, and when we apply f,,
the point will move towards to the fixed point of f,. So the situation is very interesting
and there is no fixed point in the sense of deterministic dynamical systems. So stationary
solution should be understood in the sense of random stationary solution given below.

For n € (3,1 4 /5], it is known that in this case fn has an unstable, or repelling,
fixed point p, = 1 — % which is encompassed by an attractive, or stable, period-two orbit
{ow, By}, such that:

1 1)(n -3 1 1 D(n-3
oy = 1 g;)@ Lq%zl_n<%:”+ + gr)m ). (e

In other words, the iteration alternates between one point and the other. Starting from
one of these points, we must iterate twice to return to the same point. The two points
constitute an attractor of period two, also called a 2-cycle, given that

These two points, which are not fixed points of f, are fixed points of the function:

F(z) = f(f(z)) = f*(x).

Needless to say, the situation in random case is more complicated than the deterministic
case and also more complex than the stationary solution for random mapping when 1 <
w<A<3.

Of course, for the deterministic quadratic mapping, further increases in n will lead
to period-22, period-2® and so on, Occurring at even smaller and smaller increments of
n. When n > 3.5699..., a region where aperiodic and periodic attractors alternate [22].
Accordingly the random case will also be more and more complicated as the periodicity
increases and deserved to be studied in the future.
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1.2 Random stationary solution

The main result of this thesis is Theorem 1.2.2 and Theorem 1.3.2 blew. First, we recall
the definition of stationary solution.

Definition 1.2.1 A random invariant point (stationary solution) for the random dynam-
ical system ® is a random variable Y* : Q — X with

Ok, w)Y*(w) = Y*(0*w) P— a.s, (1.7)
for every k € Z.

Theorem 1.2.2 Assumel < < A< 3. Then foranyw = (-++ ,€_ky1, " ,€_1;€0,€1, "),
there exists Y*(w) € (0,1), such that ®(w)Y*(w) = Y*(0Fw) for all k. And for any
x €] —%,1—%], we have

lim ®,(0 "w)(x) = Y*(w).

n—oo
In order to prove this theorem, we need to use the following Proposition 2.1.6, Proposition
2.1.8 and Proposition 2.1.16. According to the result of these propositions, we have proved
that as n — oo, the limit of fc_ fe_, - fe_.., fe_,(x) exists, denoted by Y*(w). We will
prove that Y*(w) gives the stationary solution of the random mapping in Chapter 3.

1.3 Random periodic solution of period 2

The study of periodic solutions of dynamical systems began with Poincare’s fundamental
work [34]. Poincare-Bendixson Theorem played key role in these studies [9]. Since then
there have been a lot of research about the periodic solutions in real world problem,
such as Van der Pol equations [35] and Liénard equations [27]. Now, this topic is still
one of the most interesting phenomena for deterministic dynamical systems. The current
understanding of periodic solutions in a random environment is minimal. Needless to
say, to understand random periodic solution is a key to understand many interesting
phenomenon in complex systems. In this thesis, we study the random periodic solution
for the random quadratic mapping. Inspired by the definition of the random periodic
solution of cocycles on a cylinder in Zhao and Zheng’s [44] and random periodic solutions
for random semi-flow in Feng, Zhao and Zhao [21], we give our definition as follows, for
the discrete time case.

Definition 1.3.1 Consider
Q={(,€e_9,6_1;€0,€1,€2, "€, -+ )i€x=por \, k=---,-2-10,1,2,---}. (1.8)
A random dynamical system
®: (nw,x) €ZxAxX — Pnw)(zx)eX

given in Definition 1.1.1. A random periodic solution of period 2 is a pair of the random
variable {a(w), B(w)} such that when n is even

P, (w,a(w)) = a™(w)), (1.9)
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Op(w, f(w)) = BO"(w)), (1.10)
and when n is odd,

P (w, a(w)) = B(0"(w)), (1.11)

Pp(w, B(w)) = a(0"(w)). (1.12)
When we compose the condition €g; = €2;41, ¢ € Z or €2; = €2;—1, ¢ € Z on w. Now we con-
sider O ={w = (- ,€e_9,€_1;€0,€1, -+ ) with €z; = €241 foralli=0,+1,£2.---or ey; =

€9i—1 for all i =0,£1,42.---}. Define 0 as before. Then 6 : Q* — Q*.

Theorem 1.3.2 Assume 3.00547 < p < A < 1+ V5. Forw € Q*, there exist random
periodic solution of period 2, a(w) and ((w), which satisfy (1.9), (1.10), (1.11) and (1.12).

The proof of this theorem will also be given in Chapter 3.

1.4 Invariant measure

It is well known that stationary solution supports corresponding invariant measure. Since
we have proved the existence of pathwise stationary solution and random periodic solution,
we can prove there is an invariant measure for this random dynamical system [7, 10, 11, 12].
According to the definition of invariant measure [4], we will give the following remark.

Remark 1.4.1 It is well known that the random dynamical systems ®, has an invariant
measure v iff the random measure v, in factorization of the measure v satisfies

D(n,w)v, =vgn, P—a.s. (1.13)

When 1 < < A < 3, we denote the stationary solution by Y*(w). Let v, = dy«(y),
Dirac measure. Then it is easy to see (1.13) holds as

P(n,w)vy = P(n,w)dy+ (W) = 0d(nw)y*(w) = Ov*(6nw) = Vonw-

When 3.00547 < 1 < A < 1+ +/5, for the periodic solution {a(w), B(w)} of period 2,
let v, = %5a(w) + %55(w). Then we can see that

(i) When n =1,
1
d(L,w, = (1,w)daw) + 5@(1,w)55(w)

1
= 50%0(1w)a(w) T 508(1w)w)

— oo

1
= §5ﬂ(glw) + 5(5a(91w) = Vp1,-
(ii) When n = 2,

1 1
(I)(27w>l/w = 5(1)(27“))604(0.))+§(I)<27w)5,3(w)

1 1
§5a(92w) + 5(55(9%)) = Vp2,.

That is to say (1.13) also holds for w € Q*.



Chapter 2

Limit of the pullback random
mappings

In order to get the existence of the stationary solution for the random mapping, we will
prove that pullback ®(n, 0 "w)z converges to a limit as n — oo , and the limit does not
depend on x for any 1 < pu < A < 3.

2.1 The existence of the limit when pu, A € (1, 3]

For any w € Q and =z € [1 — %,1 — %], we will check whether or not the limit of
fe i fe s - fe_, (x) exists as k — oo.

The proof is surprisingly complicated and difficult, We break it into 3 cases: 1 < p <
AN<2,2<pu<A<3,1<pu<2<A<3. Notewhenl<u<)\<3,p“:1—%and

py=1-— % are two attracting points of f,, and f) respectively. Moreover, we can notice

fulz) <1 when z € (
{ filz) <1 when z € (

SIS

1 1 1
Tt
T+ 3%)-

Since [3 — 55,3 + 55 C [%—ﬁ,%%—i], so for any = € [ — &, 2 + 5], fu(x) <1 and
fi(z) < 1. The key in the deterministic case is that the modular derivative of each map is
less than 1 in the neighborhood of the fixed point. The dynamical system will definitely
move into the neighborhood of the fixed point. However, in the random case, f) makes
the process moving towards its fixed point p) and f, makes the process moving towards
pu- As aresult, the process may move out of the interval [% — %, %4— %] So the derivative
of one step map may not have modular smaller than 1. The idea is to consider several
steps together to make the modular derivative of the composited map smaller than 1. We
start with the following easy case.

Proposition 2.1.1 Assume 1 < p < X < 3. If there are only finitely many N's in
(e_1€_9---), then for any x,

leHolo f€,1 fe,Q te fe,k (I’) = f671f672 e fe_m (pp,)

6
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Here m is an integer such that e_; = p for all j > m. If there are only finitely many p's
in (e_1€6_9--), then

kli—{gofG_lfe_g e 'fe,k(l‘) = f6—1f6—2 o 'fﬁ—m(pk)'

Here m is an integer such that e_; = X\ for all j > m.

The proof of this lemma is obvious, following the result for the deterministic case we
mentioned in the above section 1.1.

If there are infinitely many p and infinitely many A in (e_je_s---), the situation will
be much more complicated than the above case.

(2—n)?

=

o

Figure 2.1: The parameter diagram for 1 < pu < A < 3

1_ 1 1 1 1 1 1
NOte?_ﬂ<"'<§_2’“uk—u<§_2’HT—2A<§ 2ﬁ<2 55 <1—1 and
1 1 1 k=1 _

;\(5_2]{/;)(]@/(5_2,{/%)) =1,for k > 1. So for any 1 < p < A < 2, either
1o (1_1 . 1.1 1 1 1
1—-€(5— 2/\,1—/\]orthereeX1stsk:22suchthat1—;6(5—2m,§—2k7%ﬁ].

We consider these cases respectively. They are equivalent to the following cases: 1 < u <
B 2

A< 3 u’ S o <AL MR S G <AL @ u)k respectively. See Figure 2.1. In

the followmg, we will discuss the general cases. We need a series of lemmas. The proof of

these lemmas are quite complicated and technical. We defer them to later sections.
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Lemma 2.1.2 Forany k> 1, 1 < p < X < 2, the following inequality holds,
1 1 1 1
fuls )> 5= Y=Yy

2 N 2k 'uk—l)\
Forany k > 2,1 < pu <2< X< 3, the above inequality (2.1) also holds, while for k =1
and 1 < p <2< A<3, we have

(2.1)

1 1 1 1
f,/\(fu(g - ﬁ))f,;(g - ﬁ) <1
Lemma 2.1.3 If )\ > ﬁ, then for any x € [1 — %, % — %],
I(ful2)) > 2. (2.2)
See Figure 2.2.
£,/ 00f, ()f,/ (x)<1

£, (x)>1, f, (x)<1

£, 0)f,/ (x)<1
f, (=1, f,/(x)<1 frx)<1, f
N [

1__1 1 A A 1_1_
THEH 11 1_1 A
2 0w A
2 2V 2 2
FigureZ.Q:%—%<1fi<%72\/lﬂ

Lemma 2.1.4 Assume A\ > ﬁ Define az by f.(fu(az)) = % — 2\/13’ then for any

re(l— i,ag], we have

IS fu(2))) > . (2.3)

See Figure 2.2. The above result holds in a more general case.
Lemma 2.1.5 For any given k > 3, if ﬁ < A< 2, then for any x € [1 — i,ak],
Infu fulz) > . (2.4)
—
k

Here ay, is defined by f,,--- fu(ar) =
k

11
2 Qkuk—l)\

With these lemmas, we can prove proposition 2.1.6.
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M. u
AVAN AVAN
1_']_ ] 1 dy N A 1
0 1 2

: . [
Figure 2.3: A > R

Proposition 2.1.6 Assumel < u < A < 2. Then for anyx € [1—%, 1—%], lmpg oo fe y fe o

exists and the limit is independent of x.

Proof. Forany 1 — - <z <y <1— %, by mean value theorem, we know that there
exists £ € [z, y],

8(f6_1f6_2 e fe,n(f))

\feorfery o fe (@) = fe feo - [, (W) = o€ |z —yl. (2.5)
The key is to estimate | Ofecn e 625 Jeon ]and to prove | e e 625 FeenO) ] — 0asn — oo.

We consider different cases.

%] We consider four cases.

— %\, 1-— %], consider w such that the process does not leave the
interval [§ — 55,1 — 3].

5% Then f’ < 1 for each f,, in these maps. However, notice
for any €1, €, if fe,(z) € [ — 2&, 1 — 1], then we always have
1 1 1 1

Fo @y (@) < maa{ () (G — 550 A = g PG — 55 < 1

where a; is defined by f,(a1) = % — % Consequently we can get that

a(feqfefg T fefn (5))
73

where we choose L1 = max{ f,(a1), AAHG =50}

(3]

< L1 bl (26)

2. For ¢ € [% — %, 1-— %], consider such w such that the process is mapped by f,, to

(3 - ﬁ,% — 1) at certain time, but never to [1 — %,% — ﬁ] There are two
cases again. The first case is the process will come back to [% - %, 1-— %] The
second case is to stay in ( % - m, % — ) forever.

'fﬁ—k(x)
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(a) In the first case, by Lemma 2.1.2 and Lemma 2.1.3, in the sequence from the
time it leaves the interval [3 — 5,1 — 1] to the first time it comes back to
the interval, it is obvious that the number of f;Ls is more than or equal to the
number of fis as Figure 2.4. But note also any pair of f, and f) makes the
multiplication of their derivative less than 1. The largest of these multiplication

1S

1 1
! !
S 1.
15~ 3o ) <
After that, from the first time it comes back to [% — %, 1— %], the computation

of derivative is the same as the case (I)1.

£/, )<
£/ ((F, ()<

n

w
| /\ v\. .....
1__1 ;\,_1_ 1
T N

Figure 2.4:

: 11 17 1 111
(b) However, if £ € [5 — 55,1 — 3] is mapped by f, to (5 — NI 5x) and stays

in the interval forever. Then the number of f,s is more than the number of f{s
in the sequence. As before, any pair of f,, and f\ makes the multiplication of
their derivatives less than 1. The largest it is again

1(G = 5o () < L

Therefore, we can see that in case 2, for any £ € [% — %, 1— %],

a(f6_1f6_2 e fe_n (‘S))
73

where Ly = maz{f{(3 — ﬁ)f[;(fu(@))ill} <1

< Ly, (2.7)

3. For € € [% — 41— %], consider the case that the process is mapped by f, to

1 1 1.1 : 1 11 1 .
(53— SN 5x) and then goes to the interval (5 — o 2\/m] for certain

11 1
w2 23!"2)‘

]. After that, we consider two subcases.

(a) The process will stay in (3 — h] forever. Then in the sequence

1 1_
2 28/u2x’2 2V

from the time it enters the interval (% -3 %/IT)\, % — ij],
I

know that the number of fLs is at least twice as many as the number of fis.

So we have o f L©)
€_1 6_286 [ < ng]’

by Lemma 2.1.4, we

(2.8)

10
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4. Consider the case that the point from [% — 3%

where
Ly = maz{f§(5 — =) fu(Fulfula))?, L2} < 1
3 A 9 QW p\Sp S p 03 s L2 .
(b) The process will come back to the interval (f - ﬁ, 5= 2)\) Let & € (% _
. \/—, 5 2f] be the point for the first time the process enters (%—ﬁ, %—

Consider the case which is followed by the map f) that takes the process
2\/;7

back to (% - ﬁ,% - %) Set & by fu(fu(&1)) = & Since the start point

1 1
ez - 2/\, 1— 1] and by Lemma 2.1.2, £{ <1 — % and f,(&]) > § — ﬁ In
this sequence, from the time that the process at &| to the time it leaves that
interval and reaches fy(£1) > &}, there are two f),s and one f}s.
While if after reaching &1, the process does not leave the interval immediately

but later. There are two cases. From the time at £; to the time the process

back to the interval (3 — ﬁ, + — 1), if there are 2I(l € N) .5, then from
the time the process at & to the first time it goes back to (5 — ﬁ,% — 21/\),

the number of fLs is at least twice as many as the number of f{s. Otherwise, if
there are (204 1) f,, then from the time the process at f,(£]) to the first time
it goes back to (f — ﬁ’ % — ), the number of f/’Ls is at least twice as many
as the number of f1s.

In other words, we can also have (2.8) in any case of (I)(3)(b).

L1— %] continue to be mapped into the

i 11 1 i i 1_ 1 1_ 1
interval [1— 2, 5 ; m] after it enters the interval (5 Y= ’“*{/ﬂ]

Note in this interval [1 — s S w—

There are two possibilities.

(a) The process will remain in [1 — %, 1 — 7] forever. Then by Lemma 2.1.2
w2 9k e

and Lemma 2.1.5, in the sequence, from the ﬁrst time the process enters the

interval [1 — i,% - m], the number of f)s is at least k times as many

as the number of f{s. Again any k fLs and one fy make the multiplication of
their derivatives less than 1, the largest of these is

/ Lo 1
A= ;)(fu(l - ;))’“ <L

Hence we can get

0 e e o T, kLJrl
oS - Jenl©) _ il 9
where
Lisi = ’ma:r{fﬁ(l—i)(f,ﬁ(l—i))k,Lk} <1,

11
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(b)

1 1
and Ly = maiﬂ{f,’\(§—m)[f,:(fu"'fu(ak))]k_l,Lk—1}~
k-1

The process will leave [1 — b i Wﬁ]’ to (5 — 2%%’% ~3 ’“‘{/lﬂ]
and assume it stays in it forever. Then by Lemma 2.1.5, the number of fLs is
at least k — 1 times as many as the number of f{s. Again any k — 1 f;Ls and
one f) make the multiplication of their derivatives less than 1, the largest of
these is

fi(5 - G ) < 1.

k—1

1
2/ k=N
So we have

a(fe_1fe_2 e fefn (5))
o€

< Lk (2.10)

— 7 (1 1 / k—1
where Ly = max{f/\(i - m)[fy(fﬂ o fular))® 7 L1}
k-1
1 1 1_ 1
2 2’{/}1,k71>\’ 2 2k71 'uk,QA
and it is mapped into [1 — 1,1 — —L__] again. After that it can be case

w2 2 K/ k=1

: - : 1 1 1 1
(a) or the point will be mapped into (5 — T2 ) k‘{/uk‘Q/\]

3 ﬁ] be the point for the first time the process enters
=
[1—2L 1L ] Consider the case above is immediately followed by the
17 2 2k #k—l)\
1 1 1 1

map f that takes the process back to (5 — 2 ’“—{/M—QA]' Set &)

by fu(fu---fu(§1)) = &. Since the starting point § € [% - %, 1- %], so by
k—1

Lemma 2.1.2, ] <1 — % In this sequence, from the time that the process at

§1 to the time it leaves that interval and reaches f(§1) > &1, there are k f) s
and one fis.

In case (b), if the point will not stay in ( | forever

again. Let

While if after the process reaches &7, it does not leave the interval immediately
but later. Let &; € [1—l l—*], & = ful&—1), i =2,--- k. Itis easy to

B2 g k/uk=1y
) 1 1 .
see that & > fu--- fu(5 2’{/;ﬁ) and & < &1 < <& < < & < &.

i
We set that &; is the point which starts to move to the right and into the

interval (% - 2%7% - 2197{/1@] by f)v Set 5; by fu(fufu(gé)) =&
k-1

L and f,(&.) = & as Figure 2.5 shows. From

the time that the process at &/ to the time it leaves that interval and reaches
fa(&i) > &, there are k f)s and one f}s.

Furthermore, if after the process reaches &, but it does not leave the interval
immediately but later. With the same reason as (I)(3)(b), there are k cases.

and obviously, & > 1 —

12
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NS ~\/\\/'\/\I """""""" A

1'1H & & E]1 §;< ), i '|)\ Ez%_ 1%1 19
_- —_- 2Vun BN
2 2 2 270 " 2 2k

Figure 2.5: ¢ < 3 — 5&

Generally speaking, we will describe the ¢ — th case as follows. From the time

at & to the time the process back to the interval (1 — T 1k = 3— = 1/#“ 2)\]
if there are [k +1¢ (I € N,i € N) f# From the time the process at & to the
first time it goes back to (3 — W, 5= \/ﬁ] the number of f)s is

at least k times as many as the number of f)\s So we can also get (2.9) as well.

After that, it will be the previous cases.

Summarizing above, we can get for any £ € [% — %, 1-— %],

a(f€71f€72.“f€7n(€)) < L[kLH]

0t S Ly (2.11)
Case (II). £ € (5 — ﬁ’ i- %)
1. If for any § € (* - ﬁ7 % — ), the process can enter the interval [l — %, 1— %] as
Figure 2.5 shows. Consider that £4(&) > 1and f5(€) fu('€) < 1for € € @—ﬁé_
1

2)- It is easy to see that there exists ny such that when f(fy-- fa(3 — T)) >

1_ where 17 is the minimum number of fy in this sequence. From time 0 till

3~
the first time that it enters [1 — 55,1 — 1], there are at most n; more f{s than
the number of f;s. After that, it will be case (I). By Lemma 2.1.3, then for any
fE (*—ﬁ,%— 21)\) we have
a(fe_ fe_ fefn(g)) [Frrtt]
- 286 Mmlij:f : (2.12)

here M = fﬁ\(% - 2\/15) and mq = ny.

2. 1If ¢ € (% - ﬁ,% — 2)\) the process stays in this interval forever, then for any
ce(i- ﬁ, 2 — 55, it will be same as case (I)(2)(b)

13
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3.If¢ e (35— ﬁ,% — 5¢) is mapped into (3 — 23172)\,% - 2\/1!3] and never to [1 —
11 1
w2 23 ,uz)\]'
(a) After that, if the process stays in (% -3 %/l,ﬂ’ % — 2\/1;K] forever, we have dis-
cussed this case in case (I)(3)(a).
owever if the process can go back to (5 — 5=, 5 — 57) as Figure 2.6 shows.
b) H if th back to (5 — 5=, 3 — 55) as Figure 2.6 sh

Assume the process enters (% ~3 %}T)\, % — 2\/15] at the first time from a point
o

dy € (% - ﬁ,% - %) Consider the case that the process goes back to

(- ﬁ, 1 — &) immediately as Figure 2.6 shows. As da € (fy(a2), 3 — ﬁ),
then by Lemma 2.1.4 | we have

1 1 )

= FFulde)) > B = 5= ) > do> (213)

1
2 VDN
After that, if d, keeps in the interval (3 — L _1_ ), that will be case

2 2/pn 2 2
2. However if case (3)(b) happens again, then by (2.13), Lemma 2.1.4 and

Lemma 2.1.2, from the time at d}, to the time that the process comes back to

(3 - ﬁ, 3 — 55), the number of fi,s is at least twice as many as the number

of f{s. In this case, we can get the largest derivative of this multiplication as
follows,

11
2 2\

Obviously, Ny > 1. After that it will be case 2 again or repeat case 3. In this

[{\f_
Y

f (K

Mo
R .o
3

S o)) (o) < mar{ (55 = 5= DIl )} = Ns

1 X I—f(k—1)—| .7‘

k s .?
2y M'fm . g HEPEVSE

(i) | (k1)
ARl
x

X

-
-

Figure 2.6: case (b)

14
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case, one can easily obtain the following inequality:

8 € € ot Je, n-2
4. Consider the case that if £ € (% — ﬁ,% — %) is mapped into the interval [1 —
%, % - Wﬁ] after the process enters (% — m, % — W}

(a)

After that, if the process stays in [1 — l,% — —— ] forever, that is case
H EVITED

1 1 1 ]

2 If/uk—l)\’ 2 2 k=3 k=2

(I)(4)(a). However, if the process goes back to (3 —

and stays in this interval forever, it is case (I)(4)(b).

Otherwise, if the process is mapped back to the interval (% - ﬁ?% -
=
1 . . 11 1 11
W] agaln after it enters [1 w2 m} Let 51 € []. 3
1 . . 11 1
W] be the point for the first time the process enters [1— 7, 5 — " uk_l)\].

Consider the case that above process is immediately followed by the map fy that
1 1 1 1 / Y
takes the process out of (5— 23 kﬁ{/uki%\]. Set &1 by (fu--- ful(&l)) =

k
&. So by Lemma 2.1.2, f,(&) < % - % Then in this sequence, from the

time that the process at f,,(£]) to the time it leaves that interval and reaches

fa(€1) > &, there are k — 1 f s and one f}s as Figure 2.5 shows. After that, if

this process is repeated, from the time that the process at f)(£1) to the time it

leaves that interval and reaches fx(fy - fu(fx(§1))) > fa(€1), there are k f) s
N——

k
and one f{s. The largest derivative of this multiplication is %[ Ixfu- fu(% —
——

k-1
On the other hand, if we have &} < % - %, then in this sequence, from the time
that the process at & to the time it leaves that interval and reaches f)(&1) > &1,
there are k f)s and one f}s,

a(feqfefz e fffn (5))
73

In fact, if the above process is immediately followed by case (II)(3)(b), then we

can let & € (% — 2\1./:1,7&,% — 21._{/1“1,7%] (i =3,--- ,k+ 1) be the point for

the first time the process enters (3 — —A— 1 - ——L__] then we consider

2 2%’2 Qi_m

the case above is immediately followed by the map f) that takes the process
out of (% - ﬁ, % - m} Set gi by fu(fﬂ Ce fﬂ(gi)) = 61, Since the

n—k
< NIy (2.15)

i
starting point £ € (% — ﬁ,% — %), so by Lemma 2.1.2, f,(§) < % - %
Therefore, in this sequence, from the time that the process at f,(£]) to the

time it leaves that interval and reaches f)(&1) > &], there are i — 1 fLs and

15
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one fis with the same reason as above. After that, if this process repeated,

from the time that the process at f)(£1) to the time it leaves that interval

and reaches f(fyu -+ fu(fA(€1))) > fa(€1), there are i f)s and one fis. The
H',—/

1

. . . .. . . d 1 1 L
largest derivative of this multiplication is 7= [fx fu - - fu(5— 2m)] = Ny. If
i—1
& € [1—%, %_WﬁL it will be case (II)(4)(b). Obviously, Nxr = max{Ny;}.
Concluding the above four cases, for any £ € (% — ﬁ,% — o), we have

a(fe_1fe_2 e fefn (5))

[n—ml—k]

e < M Ny L P70 . (2.16)
Case (III). § ~ (% — m,% — W]
1 1 1

1. If w makes the process stay in (% —

to case (I)(4)(b).

5— forever, then it is similar
2K/ /pk—1N7 2 2k uk*%\] ’

2. If the process enters [1 — £, 1 — ——L_] and stays in it forever, then it is the case

w2 9k k=1
(D(4)(a).

1 1 1 1 : . 11 1
3 Iff € (§ - m, 5 g Pl k—2)\] 1S mapped mto [1 - ﬁ’ 5 W] and then
enters (% — m, % — W] again by the map f) at some stage, then from
the first time the process leaves the interval (1 — —2A— 1 — ——L__] to the

2 2k uk—l)\’ 2 Qk_l/uk—Q)\

1 1 1 . . .
et 2k_{/uk_Z/\] again, with the same
reason as case (II)(3)(b), by Lemma 2.1.5, see Figure 2.6, it is easy to see the last
point di at which the process leaves (l — should satisfy

1 1 1
2 2%’5_21@7{/@]

first time the process enters (3 —

1 1 : : ~ ~\\i—1
dp € (fu- fular), s — W) From Figure 2.6, since f}(Z)(f,(2))"~" > 1 for
k—1
any T € [1 — i, % — m] and i = 2,---  k, then for the process like (IIT)(3). It

is easy to see that the largest derivative of the multiplication can be computed as
follows.

So for any integer i € [2, k], we have

1

m))]} = Ng;-

d d 1
U w0 < mar{ UG Sl -
i—1 i—1
Obviously Nj; > 1 is possible. For the process fi(f,--- fu(dk)), there are i steps
——

i—1
and

>0~ (k — 1)2(/<;+2) i

16
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By Lemma 2.1.5,

, 1 1 / 1 1
k3= Duld) > DG = Gommes D Sl Bl i) > die> 5 = 5o
k—2
(2.17)

After that, if case (III)3 continues to happen till the process reaches d),, then the
largest derivative will be M} = Hf:z Ny;. After that if the process keeps in the

interval (1 — 2’§/u1k—1,\’% - 1;/“—2)‘]7 it will be case (I)(4)(b). However, if case
(II1)(4) is repeated till the last point which leaves the interval [I — 1,1 — —— L __]

w2 28/ k=1

is fu(dy), see Figure 2.6. After that, for this same process, by Lemma 2.1.5, the
number of f/s is at least k& times as many as the number of fis. Again any k f,s
and one f) make the multiplication of their derivatives less than 1, the largest of
these is

1 1
A=) a=-=)k<1.
A u)( ul M))
So we have )
0 . o fe n—k
. Consider w such that the process enters (1 L ! L ]. Since

2 gk l/hm2x’ 2 gk R/k-s)
/ / k—2 / ! k—1 1 1 1
fA(:C)l(fu(x)) > 1 and fk(a;)(fu(:c)) < 1 for any z € (5 — Y=

|. So we can let ng_; denote the minimum number of f in the sequence

1 1 1 1
fA(fu"'fqu"'fu“'fquS—W))>§—m-

k—2 k—2

Then from time 0 to the first time it enters the interval (% - ﬁ,% -
o

1
2 k—1 /Mk,Q)\
. . . . . . . Nie—1 _ 1 1
flLs. The derivative of this multiplication is M, *]" and My_, = fi(5 — W)
. If the process continue to jump along the x-axis direction till it is into the interval

1 1 1 : 1 1 1 1
[§ ~ 3 1-— X] after 1t enters (§ — 2 k_{/lu,k—Q)\’ 5~ 2 k_%/uk—S)\]
as (IIT)4, we have

], the number of f{s is at most n;_; more than ﬁ — th of the number of

, with the same reason

n—mip._1

Ofe s fey fe (6) < M’ZkflLECT}7 (2.19)

23

where mp_1 =mn1+mno---+n;+---+ni_1 and for i =2,--- |k — 1, n; denote the
minimum number of f) in the following sequence

1 1 1

1
f/\(fui"fqu"'fui"fqu(i—W)>§—m-

i—1 i—1

17
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- 1 1 1
As a result, considering above five cases, for any { € (5 — 22 T o u’“‘zAL we
have
a(fe_ fe_ fe_n(g)) m [n . m]
1 2‘8& <M leMLkH’““ . (2.20)
7j=2
1 1 ~ k .
Here M} = [Ti_y Nji, Nji = 421\ (fu- -+ fu(s — W))] and m =30 (D0, 9).
i—1
1. Consider w such that the process starting at £ € [1 — %, % — ﬁ] stays in the
e
interval forever. This case is same as the case (I)(4)(a).
1 1

: 1
2. consider the case the process starts at . The process enters (5 — =it
W] Since f/’\(ac)(fl’t(zlf))k*1 > 1 and fj\(x)(f/a(x))k < 1 for [1 — %,%

1

————1. So we can let nj denote the minimum number of f) in the sequence
2k pk=1)

I fu b fu e fu (1= )
SN—— SN—— H

k-1 k-1

1 1
> s 5

Then from time 0 to the first time it enters the interval (3 — ——~ i_ 1 ],
ok u—ix’ 2 o F-1/ 2y

the number of f{s is at most nj; more than k— th of the number of f’s After
that, it will repeat case (I)(4)(b) and (I)(4)(c). So we have

Ofesfey - felu(§)) ]
=l 235 : SMFLy (2.21)
where My, = f{(1 — i)
3. If the process & € [I — +,2 — —L__] can be mapped into (7 R S S
w2 o k/ k-1 2 R /uk—1\" 2

1
2 F 7/ uk—2x
internal [§ — o, 1 — 1] as Figure 2.5 shows, with the same reason as case (I1I)3, by
Lemma 2.1.5, we have

| and then continue to move towards the right direction till it reaches the

8(]05, fef fﬁfn(g)) m [m}
1 285 S My kHM, PTG (2.22)
7j=2
where mp =ny+no---+n;+---+ni and fort =2,--- ,k— 1.

Concluding above three cases, we can conclude that for any £ € [1 — =+, 5 — —F—],

inequality (2.22) always holds.

18
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In conclusion Case (I) to Case (IV), when 1 < u < A < 2, for any z,y € [1—%7 1-1],
we can always have the following inequality:

a(fe 17 'fe n(ﬁ))

‘fﬁ—ln.fe—n(w)_fﬁ—l“‘fﬁ—n(y)| < - 85 - ‘x_y‘
n 'mkffn,
< M“%HM' L P -yl (223)
7j=2

Limit of pullback when 1 < p < X <2
Consequently, when 1 < g < A < 2, if we choose x = 1—% andy = fe_ 0 e nim (1—
1), in (2.23), we can get

1 1
|fe_1fe_2 o 'fe_n(l - X) - f€_1f€_2 T f€—n(f€—(n+1) o ‘f€7(n+m)(]‘ - X))|
S My, HM k+1 |1_X_f€—<n+1> ey (1= )|_’0
Jj=2
as n — oo.
In conclusion, fe_, fe_, - fe_, (1 — %) is a Cauchy sequence in [1 — & l- 1]- So there

is a limit, denoted by Y*(w). Also for

|f€71f€72'“f€—n(x)_Y*(w)| < |f671f672”'f6_n($)_f671f€72.“f€—n(1_%)|
Jr|fe_1fe_2 ’ "fe_n(l - %) *Y*(W)‘ — 0.

Therefore, we can get

Jim fefey oo fe (@) =Y (@),

which is independent of z. And Proposition 2.1.6 is proved. i
We now consider the case 2 < p < A < 3. We need the following lemma and we will
leave the proof to section 4.

Lemma 2.1.7 If € (2,)) and X € [1 +/3,3], then for any €1 and ez, we have

/ ' pA(4 —A) A
| fe, (fer (@) fo, ()] < 1, Ve [T’ Z]' (2.24)

Only when A\ =2 and x = %, equality in (2.24) holds.

Proposition 2.1.8 Assume2 < u < A < 3. Then for anyx € [l—i, 1—%], limy oo fe o fe_ (@)
exists and the limit is independent of x.

L )‘} is an interval on which f,, and f) are monotone and this

204
interval is left invariant by f, and fy, i.e. fu[3,2] C [3, 3] and fa3, 3] C [3. 3],

More precisely, for any 2 < g < A < 3, the invariant interval will be [“)‘(ﬁ;/\), %]

This means that once the process enters the interval [ )‘(146_ )‘), %], it will remain in it

Proof. It is easy to see that [5
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forever under the action of f, and f\. At the same time, since 2 < p < A < 3, we have

pA(4—=A) _ 1
6 >f 5y since

pAd—=X) 1 1 AM4—=X) A—1 4X2-X3—4x+4

I U S Ve ) =0
We consider the following three cases.
If,00]<1, |,/ (x)|<1
_d — 1 1- 1 e 1.1
2 7 ME-M 2 - ) 4 2" 2
16
Figure 2.7: 2 < A <14+ 3
1. When 2 < u < XA < 1+ +/3 as Figure 2.7 shows, we have % < %—i— % Note
|fi(x)] < 1and [fi(z)] < 1 for any € [%ﬁ_”,%} C [“)‘({%_A),%—i- 2. So for any

T,y € [“)‘(;16_’\), 2], it is easy to get

|f6—1f6—2 e fe n,1>f6_n(x) - f6_1f€_2 T fe,(n,l)fe_n(y” < Ln|x - yl, (2‘25)

where L = max{| f4(3)], {42520} < 1.

2. When 2 < 1 < X and 1+ /3 < \ < 3, from the proof of Lemma 2.1.7, as Figure 2.8
shows, we can get

|fe_1fe_2 T fe,(n,l)fefn (x) - fe_lfe_z T fe,(n,mfefn(y)‘ < E[%]‘x - y‘v (2‘26)

where

~ 2 2 _

L = mas{| (G + O gL VIO g, (AU AU,
500 L= 0 5 YO NI < 1

3. When2<,u<)\—3,2+7M:%and%ﬁ:?g Wehave]fﬁ(%)\ZI

and |F{(AGNAG)] = 1. and |, (fuo (@) £ ()] < 1 for amy = € [%,2)U(2,3]. In
the sequence f671f€72 e fe,(n,l)fe,n(x)y the number of terms f)(fx(x)) is denoted
by k1. Then obviously, k1 < 5. Moreover, for the other [§] — k1 terms, in every pair
fer (fey (), we have e1 = p or €3 = . Since there are infinite fs in the sequence
feoifes  fe iy fen () as m — o0, so [§ — k1] must go to infinity. Then it is
obvious that

|fe_yfeor-- fe—(n71)fefn(x)_f671fefz e 'fef(n—l)fefn(y)‘ Lle[ - kl‘x_y‘7 (2.27)
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If/00I<1, [F/()]<]T If,'(x)|=1

111 e pA(4-1) Lyl 2

1 L1102

2h 2 60 16 w A 2 2\ 4
Figure 2.8: 1 +v/3 <A <3
where L1 = maz{|f}(fx(z))f5(z)|} < 1. Because it is easy to see that
L (fu@) f @) < IfA(fu(@) ()],
so according to (4.16), we can take
o1 B 6., 1 32 >\4)\ A — A

L =m0 d o OOy, A0 N 100N,

A A AZ — 6\ A2 —
BGCICDLRGG + Y22 P (G + %M} <1

In conclusion, with the same reason as Proposition 2.1.6, we can conclude that the limit
. A(4—X
of fe \fe o+ fe_,(x) exists as k — oo for z € [1 — i, 1-3] et (16 ), 2. il

Now we consider the case 1 < p < 2 < A < 3, which can be divided into two cases:
% <p<2and 1< p < . For the former case, we need Lemma 2.1.9.

Lemma 2.1.9 For/\<u 2, 2 < A< 3, we have

/ / :u>‘(4_)‘) A
L a@) @) <1, vaoeFR2 (2:28)

As for the later case, it is easy to see that for any 1 < p < %, 2 < X\ < 3, there exists an
integer k > 0 such that o )k <AL W We need the following lemmas.

Lemma 2.1.10 Ifl<u<x and 2 < X\ < 3, then for any x € [1 — + 1—%],

In(fu(z)) > . (2.29)
See Figure 2.9.

Lemma 2.1.11 If1 < u< /\ and2 < \ < 3, then for any x € [1—7 az], fx(fu(fulx))) >
x, where as is defined by f.(f.(az)) =% — ﬁ
If1<,u<§and§<)\<3,

1 1 1

ﬁ)) > - =, (2.30)

1
fA(f,u(i_ 92 2\

See Figure 2.9.
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11
2 W

/i |

f;

: : [
Figure 2.9: A > )

Lemma 2.1.12 Assume A\ > £ and by is defined by f,(b2) = % — —L_. Then for

(2—p*’ PAV/TN
xell— i, ba], the following inequality holds:
I(fulfu(x))) > . (2.31)
See Figure 2.10.
I P AN
11 1 x o 11
2 W - 11 2 on
2 2\/M_7\

Figure 2.10: fa(fu(fu(b2))) > b2

Lemma 2.1.13 Assume 1 < p < %, 2 < AN<3,and N\ > L. Then for any x €

(2—p)*
11— i’bk] and k > 2,
I(fu- - Jul2) >, (2.32)
k
_ 1 1 :
where f, - fu(br) = 5 — Vs See Figure 2.11.

k-1

Lemma 2.1.14 When k > 3, L[f\ fu - fu(z)] < 1 for x € [c, bg], where by, is defined
—_——

k—1
in the same way as in Lemma 2.1.13 and c, = f,,(by).

See Figure 2.11.
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K
(k) (k-1)
A M
/f /\ ....... \/\/\ L~ \/ ....... ~N
........................... -);“"'-Ck‘x bk ;\‘ bk-]
1 1 1 1

Figure 2.11: A>ﬁwhen1<ugf, 2<A<3
Lemma 2.1.15 When 1 < <2 < A < 3, for any k > 2, we have the following inequality
1 1 1 1

) >
2 2% uk—l)\) 2 2k k)

Proposition 2.1.16 Assume 1 < p < 2 < XA < 3. Then for any x € [1 — %,1 — %],
limy oo fe_\ feo - fe_ . (z) exists and the limit is independent of x.

I (2.33)

Proof.

(1). When p > %, it is obvious that 1 — % > %. This case is similar to the case
2 < < A< 3. According to (4.18), (4.19) and (4.20) in the proof of Lemma 2.1.9, which
can be seen in section 4.4.1, when p € (§,) and X € (2,3), for any z,y € [“’\({?)‘) , %],

can get

we

rFe Fe i fer(@ = fesfsfo o fn@I <Pz =y, (234)

where Ly = max{L}, L}} < 1 and L}, L} are defined in section 4.4.1.
While when A = 3, with the same reason as the case 2 < u < A = 3, we can get

. (21—
Jerfers e feon(@) = frfera e fe i fon ) S DL M2 — gl (2.35)

where Lj is the same as in (2.27) and
Lo = maz{Lh, L4} < 1.

The contents Lf, L% will be given in 4.4.1.
(2). On the other hand, when p < %, the proof is similar to the case 1 < u < A < 2.
We need the following lemmas. Proof is same as the case 1 < pu < A < 2, we will first

discuss & € [% - %,1 — %]
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B0, T ¢ o0 fOIF 00T°< 1y £/ 00,/ (x)<1
NN AVANIEN Z0. VN ™~
di by d; by b, @& a,
fu(k) fu(k)
A AN AN AN~

Figure 2.12: Contracted process

@M. ell- L. 11,

(i)

For any & € [% - %, 1 - %], if the process stays in the interval, then we have

|f¢, ()] < 1. The multiplication of the derivatives of any pair of function is less than
or equal to

Ly = maa{|fi(a)], ARG — 57)
1 1

where a; is defined by f,(a1) = 5 % Then for any £ € [% —ox 1 — %], we can get

I} <1,

da

oo foa - Fe(€)]] < LB, (2.36)

For ¢ € [% — %, 1— %], if the process is mapped by f, to (% — ﬁ, % — %) and then
comes back to [3 — 35,1 — 1] without going into [1 — i, - ﬁ] By Lemma 2.1.2
and Lemma 2.1.3, in the sequence from the time it leaves the interval [§ — 55,1 — 1]
to the first time it comes back to the interval, it is obvious that the number of f}’Ls is
more than or equal to the number of f{s. But note also any pair of f, and f\ makes
the multiplication of their derivative less than 1. The largest of these multiplication

is
1 1

L/ — /! _
After that, it will be the case (1) again.

However, if £ € [% - %, 1- %] is mapped by f, to (% — ﬁ,% — %) and stays

)fh(b2) < 1.

in the interval forever. Then the number of fLs is more than the number of f{s in
the sequence. As before, any pair of f, and f\ makes the multiplication of their
derivatives less than 1. The largest of them is again L.
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Therefore, in this case, we have for any & € [% —_— %],

22X
g e Fe O < L (2:37)
where Ly = max{L,, L1} < 1.
(iii) Starting from & € [% - %, 1-— %] if the process is mapped by f, to (f — ﬁ’ % — %)
and then goes to the interval (% 5 %/TA’ 5 -5 \/ﬁ} There are two subcases.
o

(a) If the above step is followed immediately by the map f), we consider cases

2<A< % and % < A < 3 respectively.

By Lemma 2.1.10 and Lemma 2.1.11, the case 2 < A < % is the same as

the case (I)(3)(b) when 1 < p < A < 2. The largest derivative is f}(3 —
2?\’/1%)(fl:(d3)) < 1, where fu(dd) % 2%.

In the second case % < A < 3, from (2.30), as Figure 2.9 shows, we know

the map fy will directly take a point z to the interval [§ — %, 1 — 1] when

T > fu(l — %) as Figure 2.9 shows. From the first time that the process

starting at £ € [ — 75,1 — 1] enters [f, (2 — ﬁ), 35— 2F] to the time that
the process comes back to [% — i, 1-— %], the largest derivative is
1 1 1 1 1 1 I
/ - - / - (=

According to Lemma 2.1.2, we have
1 . 1 1,11

P2 2N
and f3(fu(3 = 9x))fl(z — 2x) < L.
While if the process starting at £ € [%—i, 1—%} enters (

f)\(fu( )7 <1

L1 f (l_#))
2 2\3/ p,2>\’ BA2 0 2/u

and then comes back to [% — %, 1-— %], by Lemma 2.1.12 and Lemma 2.1.14,
in the sequence, the number of fl’Ls is at least twice as many as the number of

f4s and the largest derivative is f4 (%

- s (i)

If the process will stay in (% — 2§/17>\, % 2F] forever. By Lemma 2.1.12 and
o

Lemma 2.1.14, in the sequence, the number of f;/ﬁ is at least twice as many
as the number of f{s. But any two f,s and one f}s makes the product of the
absolute value of their derivatives less than 1 and all of them are controlled by

A = s ()

In all cases of (a) and (b), one can easily get the following estimate

= Do fos o f @) < L (2.38)

dg
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where

Ly - max{fm@ - %))f’ (5= 33 AU = 55— 5500

f&(% )3 Lo} < 1.

2F

(iv) Starting from & € [& — 55,1 — 1], if the process is mapped by f,, into the interval
then consider cases

(1 o 1 1 1 ]
20 23N 28/u2a”
(a) The process will stay in (3 — —+—, 2 — —+—] forever. By Lemma 2.1.13

233N 2 23/

and Lemma 2.1.14, then the process from the time that the process enters

(5 — 2%,% - 2%], the number of f)s is at least three times as many

as the number of f{s and the multiplication of the derivatives is controlled by

1 1 3
fg\(ﬁ - zm)f;t(d?’)
2%/1@,% Q\ﬁ] With the same
reason as (I)(3)(b) when 1 < u < A < 2, by Lemma 2.1.13, the multiplication

(b) The process will come back to the interval (5 —

of the derivatives is controlled by f4(3 — 2%/1%)]%(6{3)3 < 1. After that it will
be case (iii) again.
If the process enters (3 — ﬁ,% — o) after it enters (3 — ——, % — -],

20 2%/uaN’ 2 2VeA
then by Lemma 2.1.13, 2.1.14 and Lemma 2 1.12, in the process from the time
that the process enters (3 — ——, 1 — ] to the first time it goes to (1 —

1

5 ﬂ’ 5— ), the multiplicatlon of the derlvatlves is controlled by maxz{ f}(

s L A~ #))f’(% — /) fulds)}-

If the process enters 5 — 55,1 — 1] after it enters (5 — -——, 3 — 55), then

27 2/ 2
by Lemma 2.1.13, 2.1.14, 2.1.12 and Lemma 2 1.2, in the process, from the

time that the process enters (5 — T - ] to the first time it goes to

L_
2

[2— 35, 1— 1], the multlphcatlon of the derlva‘mves is controlled by maz{ f}(3 —

SO ) s = b A = b falda). L)

As a result, considering both cases of (a) and (b), one can easily get:

(%]
| g[fe s fe (O < Lyt (2.39)
where
Ly = maz{f}(5 - 4s)*, 5y — =Dl - (), L} < 1.
4 = _— ,7 —
A 9 2\/7 A\ 2m o ) 2\/7 3 3

(v) The above argument can continue. Let’s say now the point from [% — %, 1-— %] is

mapped to the interval [1 — i, % — ﬁ] There are two possibilities:

=

26



Loughborough University Doctoral Thesis

(a) The process remains in [1 — 1,3 — ——2—] forever. Then by Lemma 2.1.14
H 28/ k=1
and Lemma 2.1.13, in the sequence from the time z enters [1 — i, % — ﬁ],
i
the number of fl’ts is at least k times as many as the number of fs. Again any
k fLs and one f) make the multiplication of their derivatives less than 1, the

largest of these is

1 1
A=) -=)r <1
ATy
(b) The process leaves [1—%, %—Wﬁ] and goes to (%—2 V:k—lA’ %f S 1;&—2)\].

For this case, as the description in the case (I)(4)(c) when 1 < p < A < 2, the
largest derivative of the multiplication is

/ Ly 1
A= ;)(fu(l - ;))k

<1

After case (b), it will come to the previous cases.

Summarizing above, we can get

d n_
gVt fea @)l < e, (2.40)
where
, 1 1 , 1 1 , B
Lgtr = max{f)\(fu(§ - W))fu(g - m)( u(dk))k %,

£ - ;><f;<1 - ;»’mk} <1,

and dy, is defined by f,(dy) = % — —— and

2 'ulc—1>\
L = maa(A(G ~ g ) ()™
AUl = e DAL — e () L} < 1
A\ 2 9 k-l ,U/k72)\ D) 2k_\1/m p\Ck—1 sy Lif—1 .

Consider the following possibilities:

(i) If the process starting at & € (% — ﬁ, % — %) enters the interval [% — % 1— %],
1

then by Lemma 2.1.15, f,\(% — L) > % — %\ So for any £ € (l _ 1 1_ ),

2V 2 2 7 2/un 22X
we have p »
Idfg[fe_lfe_Q [ (O S ML, (2.41)
where M; = f}(3 — ﬁ)
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(ii) The process starting at { € (5 — T2 2x) stays in this interval forever, then

(2.37) also holds as the case (I)(iii).

(iii) If ¢ € (53— ﬁ, $—35y) is mapped into the interval (§— 5 {/1—/\ 3— 2\/1W] and never to
12
-1 1 ]. After that, if the process stays in that interval forever, then (2.38)

w2 Q\ﬁ

holds. However, if the process can jump out of the interval (2

2= 237”’ SR
again by f\, then as the case (II)(3)(b) when 1 < p < A < 2, if this case (II)(iii)
repeats, then we have

G
| 5[fe ey fe (9]l < '““ (2.42)
where Ny and L3 are defined in the same way as in (2.14) and (2.38) respectively.
(iv) The above argument can continue. So if £ € (5 — ﬁ, 3 — 5) is mapped into the
interval [1 — i,% - Wﬁ] at a point &. After that, if it stays in it forever, then
(2.40) holds. While it is mapped by fy to the interval [1 — %,% - ﬁ], it is

the same case as (I)(4)(b) when 1 < g < A < 2. We define &} as f,--- fu(§]) =
———

k
then by Lemma 2.1.2, Lemma 2.1.14 and Lemma 2.1.13, f,(¢]) < § — 2\/lﬁ and

(&) > fu(&)). So we have the following inequality

[741]
| 5[fe e fe OIS LA (2.43)
where L1 are defined the same as in (2.40). Concluding these four possibilities of
case (II), for any & € (5 — ﬁ, +—34), we always have
n—3
| g[fe ey fel, (O] < MlN?Lklf:ll : (2.44)
We can discuss the cases £ € (%— 2%/1/@,%— 2\/15)’ €€ [%— T :kfl/\a%— 2;%{/1‘@]
similarly, but we omit the details here.
(III). We consider the case { € [1 — i, 37— m]
(i) fee[1—1 1 — L _Jand the process stays in this interval forever, then (2.40)

w2 28/ k=1

ii) If the process moves to the right and eventually enters the interval [+ — 2L 1 —
2 72X
1 . : 1 1 1 1
%] During this process, when the process enters [5 — STyt 3 5 ui‘QA)’ the
following (case %) is possible to happen for each i = 2,3,--- , k. While for i = 2, we

have discussed in case (II)(iii), now we will consider other 1.
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L1 1 1
(Case *) the process is mapped into the interval [3 S 2 2{/ﬁ) and then
comes back to the interval [7 - A 11 ) withamap f, . Actually,

Qz/uz'ﬂ)\’? 21—1/1“'72)\
we have discussed similar case in the case (IV)3 under the condition 1 < g < A < 2
By Lemma 2.1.13 and Lemma 2.1.14, the largest derivative of the multiplication is
d 1 1
ﬂ[fA(fu"'fu(i_ m))] Nz/]uhere]—Q 3,
j—1
Now it follows from Lemma 2.1.15 that

k
| g[fe e fe (O < HMtHM Lk:l“ : (2.45)
t=1 =2
where My = f{(1—+4) My = f{(3 — 2F) for t =1,2,-- ,k—1, M/ =T[i_, NJ;

fori=2,--- kand k = Z 5O o 1),

Concluding all above cases (I), (II) and (III), we can always get (2.45) for any £ € [1 —
l=3lwhenl<pu<y, 2<A<3,
1

As a result, when 1 < p < 2 < XA < 3, for any x € [1 — 1= %], using the same
argument as in the proof of Proposition 2.1.6 when 1 < pu < A < 2, there is a limit of
fesfeo - fe_, (x), denoted by Y*(w). It is also noted that Y*(w) is independent of x. f

2.2 3<pu<A<1++V5

2.2.1 Limit of pullback.

Lemma 2.2.1 For3.00547 < 1 < A < 1++/5 and k > 2, we have the following inequality:
Fu(xp—1) > xp, (2.46)

where xy, satisfies F)’\(xk)(F/’L(a:k))k_l =1.

Let Fp = fo(fo(z)) = 0%x(1 — 2)(1 — 0x + 622). Here the reason we choose p > 3.00547
is that we need to guarantee 5, > 1 — % >1- 1+\/5 in order to make sure that [3,, 3,] is

an invariant interval. Under this condition, [ay, «y] is also an invariant interval.

Lemma 2.2.2 Assume F\(8,)F),(8,) <1, then for any x € [y, 1], we have
F\(Fu(x)) > . (2.47)

Lemma 2.2.3 Assume F}(3,)(F},(8,))* <1 and 3.00547 < p < A < 1+ /5 and y3 is
defined by F,,(F,(y2)) = x2. Then for any x € By, y2], we have

Fy(Fu(Fu())) > . (2.48)

Lemma 2.2.4 Assume 3.00547 < p < A < 1+ \/5, then we can always find a k such
that xp+1 < By < x, where xy is defined by F/’\(:ck)(Fl’L(xk))k_l = 1. Moreover, for any
T e [ﬂuayk])

F\(Fy---Fyu(z)) > =, (2.49)

—
k

29



Loughborough University Doctoral Thesis

where yy, is defined by F, - - F,,(yr) = xy.
—_——

k

Proposition 2.2.5 Assume 3.00547 < <A< 1++vV5andw = (- ,e_9,€6_1;€0,€1,--)
with €z; = €41 for all i, there exists a(w), B(w) such that for any x € (B, B and
y € [an, ayl, we can get

nlLH;O f671 U f€72n(x) = 6(("})7
M feo oo fe (y) = alw).

Proof. F), and F) are increasing in these two invariant intervals. For any = € (0,1), the
process will enter either [ay, o] or [8,, 5] after finite F), and finite F).
If there are infinitely many p and finitely many A in (ej€eg---), then obviously x will
go towards the attracting point ay, or a) eventually. i.e.
) F._F., - F._  (a,) when x € oy, oy
lim F. . F. ---F._ (2)= -1 2 comiA T H PUHD
g €1+ €-2 E—k( ) { F€_1FE—2 P F67m1 (6M) when x E [ﬂu7ﬁ)\]

Here m; € Z such that e_; = p for all j > mj.
With the same reason, if there are infinitely many A\ and finitely many p in (e1e9---),
then

lim F, [ F. ,---F

€k
k—o0

(2) = { Fe Fe,---Fc_, (ax) when = € [ay, a,),
Fe \Fe, - Fe,,(B)) when x € [By, Bal.

Here mo € Z such that e_; = A for all j > ma.
However, If there are infinitely many g and infinitely many A in (ejea---), this case
will be more complicated than the above one.
Note that F!’L(x) < 1 for € [8,,65]. On the other hand, we can also find a point
x1 < [, which satisfies F}(z1) = 1 when F}(3,) < 1. Obviously, for any = € [B,, B:],
F/ (z) <1 for any e, = A or pu. Then it is obvious that the following limit exists when n
approaches infinity.
lim F, [ Fe ,---Fc_
n—oo
While when Fy(8,) > 1, we will consider F(8,)(F},(8.))k, k > 1 respectively. Then
we will use the following lemmas 2.2.1, 2.2.2, 2.2.3 and 2.2.4 to prove this proposition as
Figure 2.13 shows.

() =Y (w). (2.50)

(x)<

e R o e
Fi(x)<
N\---vm\/\ ------

BM Fa Xk

Figure 2.13: Contracted process
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Consider
w= (", €2, 15€0,€1, "), (2.51)

with €g; = €9;41, © = 0,£1,4+2,---. As Figure 2.13 shows, with the same reason as the
case 1 < p < A < 2. We have the following inequality for any z,y € [B,, 81],

|f€71 fefz T fe—(2n—1)f572n (x) - fﬁfl f€72 T fe—(Qn—l)fe*Zn (y)‘
k [2n—mk—ﬁz}
< M]an H Mj{Lk+1k+1
j=2

|z — yl. (2.52)

Here the parameters are defined similarly as (2.23). M, = F\(8,), M; = Hfﬂ Nji, Nj; =
e lA(fu - () Ly = maz{ F5(8,) (FL,(8u))¥, Li}, L = maax{ F}(xx) (F,(Fu - - Fu(ax))* '},

—_—— ——

i—1 k—1
m = an:z(ZfZQ i) and m =ng + -+ n; + -+ + ng, n; denotes the minimum number
of Fys in the following sequence
FA(FN--'F#F)\-~'Fu---FHF)\(ZL’i+1)) >z, 1= 2,'-- ,]{7— 1.
——— —_——
i—1 i—1
Moreover, nj denotes the minimum number of F in the following sequence
Fx(Fy-FyFx- Fy- Fy Fx(By)) > .
—_—— —_——

k—1 k—1

If we choose x = By and y = fe_,. 1" fe_snim) (6)), by (2.52), we can get as n — oo

|f671f672 te f672n (ﬁ)\) - fefl fefg tee f6—27L(f6_(2n+1) tee fe_Q(n+m) (ﬁ)\)”
k [Qn—mk—rh]
g M]?Lk H M;Lk+1k+l ‘ﬁ)\ - f€7(2n+1) e f€72(n+'m) (ﬁ)\)’ — 0
j=2

As a result, fe_, fe_, - fe_,(Bx) is a Cauchy sequence in [3,,3,]. So there is a limit
denoted by ((w). Also for

‘f671f672 T fﬁm(x) - ﬁ(wﬂ < ‘fe,lfe,2 te f€—2n(33) — f€71f672 R f€72n(ﬁ)\)‘
+‘f€—1f672 T fe,gn(ﬁ)\) - ﬂ((«LJ)’ — 0.

Therefore, we can get

Jim S feyo fen (@) = Bl),

which is independent of z.
With the same reason, for any y € [y, ], we can get

N fo, fe, e feon(y) = a(w).
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Chapter 3

Proof of the two main theorems

3.1 Proof of Theorem 1.2.2

Forw=(--+,e_9,€_1;€0,€1,€2, - , €, -+ ), we define
Ow :("'76727671,60;61a627"'7€k0"')a
9_1(") :( ,€E-2,€_1,€0,€1,€2," " 7€/€0"')'
So 0"w = (- ,€.2,6.1,€0,€1,€2" " ,€n—15€n, " €y """ ).
Moreover, accordmg to Pr0p081t10n 2.1.6, Proposition 2.1.8 and Proposition 2.1.16,
When1<,u<)\<3forxe[1—ll 1], we define
Y*(w)= lim fe_ fe_, - f57<n71>f6—n (). (3.1)
n—oo

Recalling that we have defined ®(w,x) = f,(z), and it is easy to see that

(I)Q(wvx) = <I>(9w)<I>(w,x) = fs1feo(x)a
@3((4},3}) = ‘I’(@QW)(I)(HW)‘I)(W,J:) = fEQfEleO(x)7

Dp(w,z) = O 1W)D(HF2w) - B(dw)D(w, x)
= fe sy fer feo (). (32)
So we can get
Q.Y @) = forfoa Sondeo 10 fo feyoo fe o fe (@)
= fo fon fofeesfe s fe g fe (@)
= Y*(6Fw).

Therefore, Y*(w) is a stationary solution of the random dynamical system.
Moreover

Pp(w) = PO W) o (" W) o0 P(hw) o B(w),
D, (07 "w)(z) = PO 'w)od(O W) o0 d(H " W) 0 B0 "w)(x)
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f5_1f€_2 T f€,(n,1)f€7n (.I)

So for x € [1—%,1— %], we can get

lim ®,(07"w)(x) = nh_)lf{)lo feifes  fe_uoyyfen (@) =Y (W). (3.3)

n—oo

3.2 Proof of Theorem 1.3.2

With the same reason as the proof of theorem 1.2.2, and according to Proposition 2.2.5,
we can get (1.9) and (1.10).
we define

a(fw) = foo (B(w)), BBw) = feo(a(w)).

Then we have

01 (w, a(w)) = feoo (aw)) = B(0(w)),
D1 (w, B(w)) = feo (B(w)) = a(O(w))-

Consequently, by the cocycle property of random dynamical systems, we can get (1.11)
and (1.12). By Definition 1.3.1, then Theorem 1.3.2 is proved.
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Chapter 4

Proof of lemmas

4.1 Two general lemmas for p, A € (1, 3]

Proof of Lemma 2.1.2. To see the inequality (2.1) for 1< ,u < A < 2, define m by

fu(m) =1 — % Then we need to prove that m < 3 — m ie.
I
1 \//L2—2/1J+2u’€+1A ol 1
2 21 2 9k Hk—l)\'

It is equivalent to prove that D(k) = p? — 2u + 2(§)*1 — (%)% > 0. Differentiating D
with respect to k, we have

Now, we will prove that D'(k) < 0. Since In(§) < 0, we need to prove that

2
L SR
()\) (k+1)2
k+2 L. . . k+2 1 k42 .
Because (&)%) is 1ncreas1ng as (§) increases, so (§)*®D > (5)**D. We will check

1 k+2
whether or not [(f)k(kﬂ) _

(k+1) z] > 0. Considering that k(kkizl) < ++ 47 < %, we can
2

get (3 )’“(’“H) > ($)%. In order to prove D) < 0, we need to prove ((%)%)2 > (/,C—_]il)2 So
we will check whether or not 2% — EEL < 0. Let B(a) =2% —1—a, a € (0,1]. Then it is

easy to see that
B"(a) = 2%(In2)? > 0.

Therefore, the maximum point of B should be at the start point or the end point of a.
But B(0) =0, B(1) =0. As a result, B(3) < 0. So D'(k) < 0. So D(k) decreases as k
increases and for any k > 1, D(k) > limg_,o D(k) = p? — 2+ 1 > 0. Thus the inequality
(2.1) holds.
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Now, we will prove inequality (2.1) still holds for A € (2,3] and k£ > 1. We will check
k+2 k+2
whether or not [(%)Wjﬂ) - z] > 0. Let E(k) = 3T k%gl, then we differentiate
FE with respect to k to get

(k+1)

ket —k? — 4k -2

E'k) = %[;w (3= 1

k+2
Here, let F(k) = [32k<k++1) (In 3)% + 1] and we have

—k? — 4k — 2)? k

F'(k) :3%(1113)[( Ak2(k + 1) + (k+1)3

| >0.

Therefore, F'(k) increases in k, limg_,o, F'(k) > 0 and F'(2) < 0. This implies that there
exists kg, such that

E'(k) <0 for ke [2,kol, E'(k)>0, forkce (kg,o0).

and E(k) decreases first and then increase. So E(k) reaches the maximum value at k = 2
and k = oo for k > 2:

3
E(2)23%—§<0,
lim E(k) = 0.
k—oo

It is easy to see now E(k) < 0 when k > 2 and Lemma 2.1.2 holds. When k = 1,

| 1 202 — N2 + 2
f,\(fu(§ ))fu(*—ﬁ) a 2); Tu ,

and 222 — )\2u + 12— 202 = N2(2u — i — 2) + p2.

2 2 —
When \? > m, f/\(fu( L))f’(l - %) < 1. Because (#2+“2_2#)’ = (Hi’ﬁ_gﬁp >0
2

< 2, it is easy to get A% > fuL and

and om 5

2+2 24

KUy~ s )fly — 550 <1

Proof of Lemma 2.1.15. In order to prove (2.33), we just need to prove

o

w? = (%)

N

1

— (EY%=1
>/~L (,\)
7

We let A(p, A, k) = Ap? — A(£)F — 202 + 2u(#)FT and we differentiate A(u, A, k) with
respect to p to get

OA(p, N\ k) . 2 p i 2u p2
S e R L VR s (G S s (1
1 u g 3 .2
2
> 2= (0T (OFT - (L
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Since A € (2, 3], we can get (%)ﬁ > (%)% and (%)ﬁ > %(%)% when k£ > 3. However,

when k = 2, we have

OA(p, A\, k) 20 3
SERAY SofE S so.
o Ay le
As a result, 8A(gl’j"k) > 0 and A(p, A, k) increases as p increases. So we can get

Al A k) > AL ME) = A — A5 — 2 420 1,

When k > 2,
0A(1, )\ k) 2 2 2 2 1
— 7 = 1-A I N L
B\ B (R §Y
2
2 2 1 ATk k k=2
“ANE— —— X 1 = 2 — AFGE=T)),
e Pl v )
k—2 1 k—2
Since A**-1) < 36 = 1.2 and k—fl < % for £ > 3, and we also have 2 — k—fl)\’““@*l) =0

when k& = 2. Therefore, %{\,k) > 0 and A(1, A, k) is an increasing function with respect

to A\. So we can get
Al M E) > A(1,2,k) = 2(27 1 — 27%) > 0,

As a result, (2.33) holds and Lemma 2.1.15 is proved.

4.2 1 <AL2

=

<
I
421 A>h
Inthecaseﬁ <A< ﬁ, Wehave%—ﬁ < 1—% < %—%asFigureZQ
shows. Recall that f)(x) and f}(x) are both less than 1 in (3 — 3,1 — 3]. However, for
1 11

T € (3 — SN axhs fa(x) fi(x) < and f{(x) = 1. We prove the following lemma.

Proof of Lemma 2.1.3. We first prove that (2.2) holds for z = 1 — 5L, Let F(z) =
fr(fu(z)) — z for any = € [§ — ﬁ, 1 — 1], then we have

F(x) = 2 (1 — 2)(1 — pz + pa?) — 1].

For this, let G(z) = Au(1 — 2)(1 — px + pa?) — 1. Then

2
G'(z) = M(=3ux® +dpx —p— 1) = =3 % (z — 5)2 + u)\(% —1)<o.
So G(z) is decreasing with respect to x, G(z) > G(3 — 5) for any = € [1 — %,% — 3l

Simple computation shows that

11 A+ 1)(40% — pA? + p) — 82

GG o) = 82

36



Loughborough University Doctoral Thesis

But

A, A) = A+ 1) (AN = A + ) — 8N

2\ 4Nt
_ D2 — 1) (4 — 2

— 8%
It is trivial to see that )\22);21 > 2 and so p < )\22);21.
increasing when p increases in the interval (1,2).
But when = 1, A(1,A) = 3\3 —=5X2 + A+ 1 > 0 for A > 1. Therefore A(u,\) >
A(l,lx\) >10. So G(3 — 55) = & > 0 and F(3 — ;) > 0. Consequently, (2.2) holds for
On the other hand, for z € [1 — i, 5= axh fu(@) >0, fi(z) >0, fil(z) = =21 < 0
and f(z) = —2X <0, so we have

F'(x) = fa(fu(@) - filx) — 1,
F"(x) = f(ful@)(£)? + S (Ful@) - £i(2) = =2M(£])? = 2ufi(fu(2)) <O

Therefore, A(u,A) is monotonically

As a result, F(z) gets the minimum value when z = 1 — L or = % — % It is easy to
I

see that F(1 — i) > 0 and we recall that F(3 — ) > 0, so we can get F(z) > 0 for

T €[5 — SN 55]. This lemma is proved.

For x € (% - %, 1-— %), note fy,(x) > fu(% — %) and fA(fM(% _ %)) > % _ % 9o for
x € (3 — 35,1 — 3), we have
1 1 1 1
I(fu(z)) > f/\(fu(§ - 5)) > 3 o

That is to say, when = € (3 — 5,1 — 1), then fa(fu(2)) € (53 — 55,1 — 3)-

4.2.2 > -t

(2-p)?
In this case, 2 — #ﬁ > 1 —i ie. ﬁ < A Note fy(z)f,(z) = 1 for any = €
1 - %,% -3 1;4/\]’ So we can not claim that |[f\(f.(x)) — fa(fu(y))| < |z — y| for any
z,y € [1 — %,% — ﬁ] and then we can not guarantee the process mapped out of the

interval (% — %, 1— %] and then back to this interval is contracting by what we have proved

Now we consider the process that x is mapped by f,, twice and then by f\. First note
S@) fl (@) fi(x) = (1 —22)° < 1 when z > (1 — \/17) Therefore, when (1 —

JTa
1

S “2)\) < 1—%, Le A < ﬁ, we have for any = € (1— -, 5—%], @) fu(x) f(z) <1

m
and L[fA(fufu(z))] < 1. So if two f,, at first and then one fy is applied, the process will
be contracted.

Proof of Lemma 2.1.4. First, we prove (2.3) holds when = = ag, i.e.

1 1
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p—

1-

l\)l»—\

&
3
>

1
W

Figure 4.1: f,(f\(3 — 2\/1@)) >m

For this, we only need to prove the following inequality is true as Figure 4.1 shows

1 1
1 < 4.2
fu(f)\(Q 2@)) m, ( )
where f,(m) =% — ﬁ
_ 2__ 3
Simple computations give fu(f,\(%—%/lﬂ)) = (“)‘_1)(146’2_“)“%1) and m = LV 2i#+2\ﬁ’

so to prove (4.2) is reduced to prove

(U — 1)(4u—uA+1)—8u+8\/,u2—2u+2\/g
>
16p

A= 0.

Denote B(p, A) = (uA—1)(4pp — pA+1) — 8+ 8\/u2 —2u + 2\/§ and we differentiate B

with respect to u to have

1
OB 20— 2+ —
T2 o8N — 2uN2 4+ 20 — 12+ 4 VA

5 :
H \/uQ—Q,u—I—Q\/E

Denote D = (2u — 2+ —12)2 — (42 — 21 4 2,/4), then

VN
A 2u —HvA+1

Let h(\) = pA + /(2 — 4)V A + 1. It is easy to see that

w
W) =[5 (VA = (2 =) >0,
Then h(A) is an increasing function of A and

h(\) > h(u) = 3p* — 4+ 1 > 0.
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It follows that D > 0 and then
0B

—M>8u)\—2u)\2+2)\—8:(8—2)\)(MA—1)>0.

0
Therefore, B(p, \) increases as p increases and then B(u, A) > B(1,\). But

| 2
B(1,\) = —A\? + 6\ — 13 +8 \f/\—l.

Note 2BUIA) _ (—22+6)AV 2V A—1—4

oA AV/2VA-A
Denote F'(A\) = (—2X + 6)AV/ 2V A — A — 4, then

1

-1 L1
FOO) = —a/2Va-A- 222 46/2Vh - A +30—2

V2V = A V2V = A
_BAZ—9AVA+ 15V A — 9\
2VX — A '
Let E(\) = 5A% — 9\ + 15/ X — 9\. Then it is easy to see that
27 3 15 1
El =10\ — —VA— -+ —(—= —1).
=10\ 2\f 2+2(ﬁ )
Obviously, 10)\—277 /\—%and\%/\—lare both less than 0 when 1 < XA < 2, so F} <0

and then E is a decreasing function in A. Since E(1) =2 > 0 and F(2) = 2 — 32 < 0,
we can find a point a which satisfies E(a) = 0. As a result, we can have

F'(A\) >0 when A € (1,a),
F'(\) <0 when A € [a, 2].

That means F'(\) increases when A € (1,a) and decreases when A € [a,2]. Since F'(1) =0
and F(2) = 4(v/2v2 —2 —1) <0, we can find b > a such that F(b) = 0. This implies

)

9BLA) >, when X € (1,b)
9BLA) <o, when X € [b, 2).

This means B(1, A) is an increasing function of A when A € (1, ) and a decreasing function
when A € [b,2]. Because B(1,1) = 0 and B(1,2) = 8/v2—-1—-5 > 0, so B(1,)\) >
0, vV X € (1,2]. Since we have proved that B is an increasing function with respect to

w, B(p,A\) > B(1,\) > 0 for any 1 < pr < A < 2. Therefore, we can get that A > 0 and
(4.1) holds.

To sum up all above, if f,(f.(a2)) = 3 — 59—, fA(3 — 57~) > a2 holds.

NN SNID
Second, consider 1 — i <z < az. Let G(z) = fL(fu(fu(x))) —z. Note f{(xz) = —2X,
W (2) = —2u, f/(z) >0 and f,(z) > 0 for x € [ — i, 1 — 1], then we differentiate G(z)

with respect to x to have
G'(z) = [fulfu(@) - fu(fu(@)) - filz) -1,
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G"(x) < F(fulful@) - (fu(ful@)) - fu(2))? + AFulfu(2)) - f(Ful@)) - (fu(2)?
A (fu(@) - fu(fu(@) - £l (2) <O.
Therefore G(x)reaches the minimum valve at x = 1 — % or x = ag. Since G(1— i) >1- i
and G(az) > ag, then it follows that (2.3) holds for any z € [1 — %, as].

4.2.3 Lo <AL2

(2—p)

. 1
Proof of Lemma 2.1.5. Notice \ > (qu)k > (2—#;03 > (2_‘;)2. So for any = € [1—ﬁ, asl,

where ay is defined in Lemma 2.1.4, it follows from Lemma 2.1.4 that

IFulfu(2))) > .

Now we use induction method to prove the lemma. First we assume that for a 3 <k < n
and \ > [

(et
1
f)\fu"'f#(x)>xa xe[l_iva‘k—l]a (43)
N—_—— 1%
k—1
where aj_1 is defined by f,,--- fu(ar—1) = % - m
k—1
Now, assume A > ﬁ First, we prove that
Ia S fulag) > ax, (4.4)
——
k
. 1 1
where ay, is defined by f,--- fu(ar) = 5 — Y=
k
For this, we define some Ay such that
1 1 1 1
fu(fA(§ - m)) = f,\o(§ - m))- (4.5)

Obviously, A9 < A. Moreover, computing both sides of (4.5) and solving equation (4.5),
we can get

_ PA LT Ay
(i) We prove
1 1 1 1
< (4.7)

2 9k Iukfl)\ 2 9 kfl/,uka)\O'

It is equivalent to prove
_ 1 _ 1 2_ _
A= (EFINF = (F2h0) T = MR (AR = ) <0,

Since Ao = A - (0 — “T/\ + %(%)k%), then we can get

k
RV B A R
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f (I, ()] <1
OO o<1 "
f (k)
“...
\/\a
1 _ 1_ “ 1_ - l ’l - 1_
M X 2 2\ A
f (k-1)
Ny
R B
2 20
Figure 4.2: f#(f)\(% by :kfl)\)) = on(% - m))

(if)

Let B(k) = p — MT:\ + i(%)% - (%)% We differentiate B(k) with respect to k to
derive that

woro o1

B =~ w2+ i),

“ilx
Lopa Lop 1k
= prm) (1- 5607 ) <o

since 1 — %(%)% > 0 and In§ < 0. Thus B decreases as k increases. It turns out
that for any k

B(k)> lim Bk)=p— "+~ —-1>
(k) > lim B(k) = p a

As a result, A < 0 and (4.7) holds.

We prove that

Ao > W (4.8)

Differentiating \o(A) with respect to A, we can get

dXo(A) N 1 N k=2 k—2 75

o Mg ) ) 2

Therefore, A\g(A) is an increasing function in A and

peoN_ _on i @2-p
)\0()\)>)\0((2_M)k>_(2—,u,)k'|:'u_4(2—,u)k+ 4
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Now, we prove that p — 4(2M2u)’“ + (2_@ > 2 — u. Note
2 2—k
p (2—p) 1 k
D=2y—-2- + = A —1)(2(2 — )" = 1))
Tt e = e - D 0t - 1)
Notice ﬁ < 2,50 (2—p)* > L > 1. It follows that D > 0. Then (4.8) follows
easily.

Now it follows from (4.5), (4.7), (4.8), and (4.3) that

1 1 1 1 1 !
fu'l;'fu(f/\(2 - W)) > fu};“lfu(fx\o(2 - QW» 97 28/ uk—IN

Thus, (4.4) holds.

Now considering arbitrary = € [1 — i,ak]. Note fy(z) < 0, f;(z) <0, f,(z) >0,

£ OQIF, ()] <1 £, (X)If, (x)]<1

L fu(k+1) fu(k) L fu(k)
\. ..... \/vr /\/ """ \/\/\ .........
1—1@ 1 oy A i | 1 _; %
2 2Ywn 2 2V

Figure 4.3: Contracted process

fi(z) > 0 and we have

i[fx(fu“'fu(ﬂf))—JJ] = fAfu fu@) - fu(fu o fu(@) - fu(a) — 1,
e k k k—1
2

e k k k—1

AL Ful@) - fu e Fu(@) - (o (fu - ful@) -+ F(2))?

k k—1 k—2
o @) Afu e fu(@) - fu(fu e fu(@) - fu(ful@)
k k—1
< 0.
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Therefore (fx(fu--- fu(x))—x) obtains the minimum value at v = 1 —i or x = ay. Since it
——

k
is easy to see that fy(f,--- fu(l— i)) > 1 —i and we have proved that fy(f,--- fu(ax)) >
SN—— SN——

k k
ag, it turns out that for any = € [1 — i,ak], (2.4) holds.

43 2<pu<A<3

0.8

HAGAD) 05 A "
16 % 4

Figure 4.4: 2 < p <A <3

For any 2 < p < A < 3, it is easy to see that | fu(%), 2] is an invariant interval. This

£ )‘(fﬁ_ )‘), %], it will remain there forever under the

means that once x enters the interval |
random action of f, and fy.

431 2<\<1++3

Considering that

uA(4—A)>A(4—A)>1_i>1_i’
16 8 2 227 2 2u

we can easily get |f/(z)] < 1 for x € [“’\(fg)‘) 1and e = p, A € (2,3]. As Figure 2.7

)
shows, note when 2 < A < 1+ /3, we can see that § < % + 25 So |f(z)| < 1 and
|fi(z)] < 1 are satisfied for any x € [1,2] C [3, 2 + 55]. So it is easy to see that the limit
of fe \fe o+ fe_. () exists as k — oo for x € [“’\(fﬁ_)‘) , 2]
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4.3.2 14++/3<)2<3

Proof of Lemma 2.1.7. From Figure 2.8, we can see that |f(z)| > 1 for z € |
So we need to check the sign of | £,(z) fy(fu(®)|~ L, |£() FL(Fule))| -1, | o) f4
Land |4 () fi(fa(@))] = 1 for = € (252, 3],
Recall the following facts for any = € [”)‘(;16_’\), %]:
* @) > [ (@)],
(@)l

D[

+
=2
Tl

—~~
8

(=)

* (@) > | fu
* AU @) > [fu(fa(@))]-
First, we will prove for any = € [“’\(fg)‘), %]
(@) - fal@)] < 1, (4.9)
[fu(fa(@)) - filz)] < 1 (4.10)

Note f{(fa(z)) - fi(z) = A2(1 — 22)(1 — 2Az + 2\z?).
Let g(z) = (1 —22)(1 — 2\z + 2)Az?). Differentiate g(x) with respect to z to get

d(z) = —2[1 — 22z + 222® + A\ (1 — 22)?].

Solve ¢'(z) = 0 to get z = & & 7””\62/\_&. Obviously, when z € [§ — 3)252/\_6)‘, 3+ 3)‘62/\_6)‘),

g'(z) > 0. When z € [ + V3’\62/\_6’\,%], g'(x) < 0. Tt is easy to see that |g(x)| takes
%j: 7”’)%2/\7(”‘, r = %6_)‘) or x = %. Moreover, if we Solve
lg(x)| =0, we can get z = 5 and z = § + 7”‘;;%

Since 2 < A2 —2X < 3 for 1 + /3 < XA < 3, so we can have /6 < /3A(A —2) < 3 and

V3AZ — 6

maximum valve at x =

3A2 — 6A

1 1
/ —_— . , J—
K+ Y2 g+ YO
1 V3X2—6x 3(\2 - 2)\)3
= \|g(= + )| = V3( k < 1. (4.11)
2 6 9
Sinco U 5 210 o VIS _ () _ Aoy VBT gy
% — 7”%2)\_6)‘. So we have
A4 = N) 1 V3N 6A
92 0 - YO,
It is also easy to see % € (% + Vg’\GQ/\_G)‘,%—i— ”\;;2’\) from % < @ < 7W < % < @,
SO
A 1 32 — 6
’9(1)\ < 9(5 + T)-
As a result,
1 3X2 — 6
(@) fa(@)] = Ag(x)] < A2!9(§ + T)I <1
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That is to say (4.9) holds for x € [“)‘(4 A 2] and only when z = 2 and A = 3, f{(fa())

fi(z) = 1. Moreover, (4.10) follows easily as

[fu(a(@)) - fa(@)] < [f3(a(2) - fA(2)]. (4.12)

Second, we prove that for any = € [“)‘(146_)‘) , 2]
| AA(fu(@)] fu(@)] < 1, (4.13)
| fu(fu(@) ()| < 1. (4.14)

We only need to prove (4.13 ) as \f’ (ful@)] < |fA(ful2))]-
For this, note f}(fu(2))f,(z) = pA(1 — 22)(1 — 2ux + 2ux?). Let h(z) = (1 —2z)(1 —

2z + 2p2?) and solve h/(z) = 0 to get @ = 1 £ ¥ C /L P easy to see that |h(z)]

6u

attains the maximum value at x = % + Y 3“2 6“, = ;16 A or = %. It is obvious to
see that

1, \/3u®—6p VB2 —21)7  V3(u - 2p)2

|uAh(= £ ———)| = pA 5 < <1.

2 6 Iu 9

We also have
A AA = 2)[8 — 4Ap? + PN _ 3|p* (A = 2)° — dp(p — 2)]

Denote E()\) = 3‘“2()‘_2);5_4“(“_2)' and it is easy to see that F()\) increases as ) increases
and |[E(\)| < maz{|E(un)|,|E(3)|]} < 1. So

A A
ACHIACIESE (4.15)
Moreover,
Wh(,m(zl — /\))| _ I8ur— EA2(4 — N)[]128 — 162X (4 — N) + A2 (4 — )\)2]'

16 1024

From (4.15), we can see that [8u\ — p2A2(4 — \)| = A|8u — 4 u? + p2X\?| < 16. Let
A4 — ) =m, then m € [3, u(4 — p)) and

8
1128 — 16p2A(4 — A) + p3A2(4 — N\)?| = |3 (m — ;)2 — 64y + 128|
< maz{|128 — 64p|,|9p>® — 48u + 128], [128 — 163 (4 — p) + p°(4 — p)?|} < 64.

50 u)\(4 Ao (A=)

Al N <

As a result, we can get

|3 (fu(@) fr ()| = pAlh(z)] < ,u)\(maxﬂh(%i 3#2/; 6y, |h(ux(?6_ )

LI <1
(4.16)
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i.e. (4.13)holds. In conclusion, we can get

1 3A2 — 6 1 V3A2—6)
|fé, (fea (@) fE ()] < ma${|f,/\(f/\(*+T))f,/\(§+T)|a

02RO G,

U5+ %))fu( =By

S A A

So for any = € [F=5, x))fl (x)| <1 for any €1,e3 = A, p except the special
case when e = eos = A =3a x:%.
44 1<p<2<A<3
0.8 4
y / PR s
/ e B
P A
v / / \\\
/ / F !
2 / \\
: ,/'J \\
/ N
W :
0+ = x 1
16 1l x

Figure 4.5: 1< pu<2<A<3

We consider
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Since A(4 —\) > 3 for A € (2,3] and % < 2 for 1 < p <2, it follows that

A 1 1
f“(Z) > (§ - ﬂ)'
On the other hand, we consider
Pyl SO ) 202 ) = 2)) )
By " 164 164 '
Obviously, we can get
A 1 4
) = 1- ™ 1 X
fu(4) " if 1<p< \
A 1 4
- 1——. — 2.
f#(4) < " Zf <p<

At first, we will discuss two different cases when % < p < 2and when 1 < p < 3
respectively.

4.4.1 Case <p<2, 2<A<3

Proof of Lemma 2.1.9. Note f,(3) = M <1- u' Note 2 < %—l—i, SO [“)‘(ﬁ;)‘),%]

is an invariant interval as Figure 4.5 shows Then for any combination of ¢; and ey of
|f6’2(f61( 2\ fL ()], it is casy to see that |f,(f.(2))fl(2)] < 1 for any = € [F2EA A gince

: # < “)‘(I% A < 4 <i4 2 , Then we need to check the sign of |f{(fx(2))f}(x)] — 1,

!f (fx( NfA(x)] =1 and ‘fA(fu( ) fi(x)] = 1.

(i) We prove |fi(fa(z))fi(z)| <1V ze [”)‘(fg)‘), %], recall

P @A) = A1 — 20)(1 — 22 +20a?) 1= Ng(a)
Solve ¢'(z) = 0 to get © = %iiw\ and 3 € [+ V?’)‘z 61 4 ”\2 T2 It is

easy to see that |g(z)| has the maximum value at z = § + ¥ 3’\62/\ 6 or x = %.
Moreover
1 3\ —6) V3(A2 = 2))2
Mgz + —— ) ="/ <L 4.17
Ng(y 2 LA OR) =y VB Z2 (117)

Similar to the case when 2 < < XA and 1 + V3 < X < 3, it is easy to see that
maz{|f{(fr(2))fi(z)|} <1 when z = J £ ¥39=64 3)‘2 62 On the other hand, we have

pA(4 — A))| L (8A% — A3 (4 — X)) (128 — 16pA2 (4 — N) + A3 (4 — N)?)]
16 B 1024 '

Let A(p,A) = (822 — puA3(4 — \))(128 — 16uA?(4 — A) + 2\3(4 — N\)?), then we

differentiate A(u, A\) with respect to u to get

OA(p, A)
O

IA%g(

= X34 = N)[=3X3(4 — A2 4+ 4802 (4 — N — 128(\ + 1)].
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A V3N2Z .
Solving (“ ) = 0, we have y = /\(48_)\) + 83)\22\:7%’\. Since ﬁ > 2, then for
pe (3,2, |A(,u, A)| reaches the maximum value at p = )\(48_)\) - 8;;’?::/?;‘ or pu=7%

or ;= 2. Since (32 — 8A2(4 — ) + A3(4 — N)?)" = A(5A3 — 3202 + 72\ — 64) < O for
A € (2,3], then we can get 32 — 8)\%(4 — \) + A3(4 — \)? € [-13,0). Moreover,

8 8V/3X\2-6) \) = 64 16M(\ — 2)v/3)% — 6)
AM4—X)  3A2(4-N) 7 9
A2,0) = 822N — 2)2[32 = 8X2(4 — \) + X34 — N\)?] > 8-3% . (—13) > —1024,
4 8 8

A5 = 64X2(N — 2)(A3 — 402 +8) > 64 - 32((§)3 —4- (5)2 +8) > —1024.

A(

> —64-16 = —1024,

So | fA(fa (W‘ (1-2) ))f)\(“)‘(f6 A) )] < 1. Considering (4.17), we caN get the conclu-

sion that ’f,\(fA z))fi(z)] < 1 A € (2,3]. Note that when A € (2,3), we have
| AU () 4 ()] < 1 and

RAEAE] < mar{f AT gl VI 20
AAEEE g PRy <y

However, when A = 3, it is possible for |f(f\(3))fi(3)| =1 and (A (3)AA(3)] =
1, Otherwise, | f}(fa(x))fi(x)] < 1.

We prove |f}(fu(z))f,(z)] < 1 for z € [“)‘({16_/\), 2]. Similar to the case when 2 <

B < A< 3, we have

Afu@)fu@) = Al —22)(1 = 2px + 2uz®),
Denote  h(z) = (1—2x)(1 - 2uzx + 2ux?),
then R'(z) = —12uz®+ 12ux — 2p — 2.

Note when o = £ + ¥ 3%176”, W(z) =0 and pAh(3 £ ¥ 3Hu 6”) < 1. As a result,
A

we only need to check [f}(fu(z))f,(z)] <1 at x = W and r = 7. Because
(8 — 4Ap + pX?)] < max{|u(8 — 4p)|, [1(8 — 3p)[} < % and A — 2 < 1, we have

Me(X = 2)|8 — 4Ap + p)?|

..
16 <

A5 ))f#( 2=

On the other hand,

pA(A =X)L (B — A% (4 — N))(128 — 1612 A(4 — A) + pPA%(4 — N)?)
16 )= 1024 '

Let H(p) = (8uA—p2A2(4—X)) (128 =162 A (4— ) +13A2(4—))?) and we differentiate
H with respect to u to get

pAR(

H' () = 2M4— pA(4—N)(128 — 16p2M(4 — \) + p3 2 (4 — \)?)
FuA(8 — pA(4 — A))pA(4 — AN) (=32 4+ 3uX(4 — N)).

48



Loughborough University Doctoral Thesis

(iii)

Because 4 —puA(4—X) <4—4(4—X) < 0and —3243pA(4—X) < =324+6A(4—X) <0
when p € (%, 2], it is easy to get H'(1) < 0 and H(u) increases as p decreases. So

4
H(p) < H(X) =1024(\ — 2)? < 1024.

. . . 1 A
By using the same methods in (i), we can show that for any = € [1 — m 7l

|4 (Fu(PRUAy) pr (A=A g,

KU @] < mar 40202 p Ay G ),
/ 3u? —6p.. ., \/3u — 6
’fA(fu(i + T”fu(i + T)’}
= IL<1. (4.19)

We will prove that |f,,(fx(x))f}(x)] <1 for any x € [M, 2]. Note
Fulfa@) fi(z) = pA(1 = 22)(1 = 2Xa + 20a?) = pAg(x).

Similar as before, it is easy to see that |f,(fx(z))f}(z)| reaches the maximum value
at x = % £ 7”’)%2/\_6)‘ or at x = %6_)‘). Calculations show

N

1, VB2 —6A,,  w/302—202  3(A\2—2))
[BAR(S + 9 )| = o < 5 < 1.
Moreover,
pA(4 — ) |(8pA — p2A2(4 — N)) (128 — 162 (4 — N) + 23 (4 — \)?)|
A1 = 1024 '

Let A = (8u\ — p?X2(4 — X\))(128 — 16puM?(4 — \) + 2X3(4 — N)?) and B(p) =
128 — 16pA2(4 — ) + pu2A\3(4 — M\)?). We differentiate B(u) with respect to u to get

B'(1) = 2X2(4 — M) (pA(4 — X)) — 8) < 0.

So B(u) decreases as  increases and B has the maximum value at y = %. Therefore,

B(u) < B(%) =128 — 64A(4 — \) + 16X (4 — \)? = 16(8 — A\%(4 — \)) < 0,
and B(p) > B(2) = 4(32 —8X2(4 — \) + X3(4 — \)?).
Let D(A) = —8A2(4 — \) + A3(4 — A)?) = A5 — 8A* + 2423 — 32)2, then
D'(\) = A(5A3 — 32)\% 4 72\ — 64),
and (53 = 32)\% 4 72\ — 64)' = 1507 — 64\ + 72 > 0.

So D'(A\) < 0. Therefore ,we have D > D(3) = —45 and B(2) = 4(32+D()\)) > —52.

Recalling that (8uX — p?A%(4 — X)) < 16, we can get |A| < 1852 < 1. As a result,

for z € [“)‘(fg)‘) , %], we can get

LA @)A@] < maxﬂf;t(fk(;i?ﬂé—%wii V?M(;i—w”’
\fﬁ(fx(uk(jﬁ_ /\)))fﬁ(M(jﬁ_ Viy=r, <1 (420
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44.2 Casel<pu<3;<2<A<3

In this case, fu(%) >1-— %, SO [”’\(fﬁ_k), %] is no longer an invariant interval. See Figure
4.6.
0.8 4
v
& e
e \\.
! //‘ \--.\
 / s
D : 1 Al4 y - \I
0 L, pM4~%] 0.5 2 1
1l 16 x

. . 1 A(4—=X)
Figure 4.6: 1 — 0 < “T

Proof of Lemma 2.1.10. Actually, we just need to prove that Lemma 2.1.3 still holds

for 2 < A < 3. Recalling that in the proof of Lemma 2.1.3, F(z) = 2G(z) and G(5 — 55) =

Aé‘;’;‘). Since A(p, ) is an increasing function about p for p € (1,2] and A(1,\) =

3N —BA2+ A +1>0for 2 < A< 3, we can get F'(3 — 5) > 0 and Lemma 2.1.10 holds.

1
2

Proof of Lemma 2.1.11. First, we will find the condition for the inequality (2.30).

Note
f(f(l— 1 ))_(l_i)i(,u)\—l)(4)\—u)\+1)—8/\+8_7N(u)
At T o i 2 2\ 16 BTN
ON
a_2A(2A—u>\+1)>0.

So N increases as y increases and N > N (1) = (3A—7)(A—1). Obviously, when A € [£,3],
N > 0. So (2.30) holds.
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However, when X € (2, %), we will check whether Lemma 2.1.4 still holds. In the proof

of Lemma 2.1.4, A = f,(fA(3 = 57=)) —m = BUd) When A € (2, %], H(A) > 0, h(}) is

still an increasing function and h(A) > 0, then D > 0 and ‘?9—5 > 8uA — 2uN? + 21 +8 > 0.
So B increases as p increases and B > B(1,A). Similar to the proof of Lemma 2.1.4, we
also can get B(1,\) increases first and then decrease for 2 < A < I. Because B(1,2) > 0
and B(1, 1) > 0, it is easy to get B(1,\) > 0 and then Lemma 2.1.4 holds for 2 < A < Z.
So Lemma 2.1.11 is proved.

Proof of Lemma 2.1.12. First, we will prove (2.31) holds when x = by, i.e. f,\(fu(% -

ﬁ)) > by. Let H = f\(fu(3 — wlm)) — by and L(p, \) = 16u\H. Then

L(p, N) = p(pA — 1)(4X — pA + 1) — 8ur + 8)\\/,u2 - 2u+2\/E,

and the derivative of L(u, A) with respect to y is

L\ 2 — 2+ A
acgm):(2/ua/\—1)(4A—uA+1)—A(/fk—u)—8A+4A e
I \/u2—2,u,+2\/E

o 2p—2+ =
Similar to the proof of Lemma 2.1.4, we can also get ———=£2— > 1 when 2 < A < 3.

\/u272u+2\/§

So we have
oL 9
on = (2uA = 1)(AX — pA + 1) = A(p"X — p) — 44X =: R(p).
Then
R(p) = =3\ 4 8u)? +4u) — 8\ —1
4N+ 2 16A%2 —8A +1
- _ )\2 o 2 .
AN — =)+ 3

Because %—;\rz > 1, we need to prove R(1) > 0 and R(%) > 0 in order to prove R > 0 for

all 1 < pu < %. But this is trivial to see as

R(1) = (5 +1)(A—1) > 0,

4
R(5) =24\ — 33 > 0.

Therefore, g—ﬁ > 0.So0 L(u, A) is an increasing function with respect to p. It turns out that

/ 2
L>L(1,\) =3\ —10A—1+8\/—1+ —.
(1.2) VA

To check the sign of L(1,\), we compute the derivative

12

12 g
8L€()1)\’)\):6>\—10+ﬁ2.

1+ %
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OL(1,)\)

Obv1ously, when ﬁ —8 20, so =3¢~ > 0. But when A € (%,3), % -8 > —1.072,

-1+ f > 0.39 and 6A—10 > I, we can get 8L(1 A T—L9%2 > 0. As aresult, L(1, )

increases as A increases and we have

L(p, N) > L(1,)) > L(1,2) > 0.
So H > 0. Therefore (2.31) holds for x = by. Now let G(z) = fa(fu(fu(z))) — 2 and
because f,(z) =n(1 —2z) >0 for x € (O, 3) and fi(z) = =21 < 0, then we have
G'(z) = Hlfulful@) - f(fu@) - fil) -
G'(x) = SA(fulful@) (F(ful@) - fila )) f [(Ful@)) - Afu(Ful@) - (fu(2))?
(A Fu(fu(@))) - i (fu(@))) - £ ()
= 2(fL(ful@)) - [i(2))? = 2uf3(fu(fu(2)) - (fi(2))?

=2 f\(fulfu(@))) - £ (fu(x)) <O.

Therefore, G(z) increases first and then decreases as x increase. Considering that G(1 —
i) > 0 and G(b2) > 0, we can get (2.31) holds for z € [1 — i,bg].

1
p2—2p+2(4) *

Proof of Lemma 2.1.14. Let f,(m) = % Y :kil)\, then m = % - o
2k—2 2
_ (1 1 _ AR —1
Let ¢ = fu(5 — 21{/#’“1/\) = “4M¥A% Then we have for any x € [cg, bi],
Drdu Buf@le < U200 — — ) (0
AJp B x Iz B9 9k 1) A
k—1
2kk—2 2 1
[ L k2 g [ —
= @ - ah B - R A
21 k% Ak
= (12 f2u+2(/;)%)7(uk o %M%,\% +;(2) )

Let E(\) = (u? — 2u+2(§)%)k : (,u%/\ F iR ATE + %(%)%) and differentiate F(\)
with respect to A to get

A
where F()\):_%%(/ﬁ)\%l_éu%)\%+%(%) = )_1_(“2_2#_1_2(%)%)(%_%#4_
%(%)%), then we have
FO) = =2 = S+ O - (DF -+ St
POy = =5 item,
where 2—p k=3 g1 3k—4) p2
GO = ==+ =D + =5 = ()
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(i) When k = 3, since A > (2—#/1)3 £ < (2—p)?. So we have

(i) When k = 4, (£)7 > 0.7598, so

1
G(A):1—g+4(’;)i>1——+01899( 2) > 0.

(iii) When k > 5, (%)% > (%)% > 0.8 and pu(2 — p) <1 for p € (1,2], so

GO = Gk = Bl — 2) + 30k — (53
< R i~ 2)(k — 3) + 2.4k — 4)
< —%(%)%’1(k—3+2.4k—9.6)<O.

: 1.18
So when k > 5, G(\) decreases as A increases. Because ooiisyg > 3 and ﬁ <AL,

so i < 1.18 when k > 3 and so (’5)7*1 > (1318)3*1 > 2.1. Thus we have

G

Y,
Q
@
+
=

|

>

P

-
_I._

2kp

e e e L

Byt (k= 3)(n =)+ (k= )(4)E]
> 0.

As a result, G(A\) > 0 when k£ > 3 and so F'(\) < 0. F(\) decreases as A increases.

—_ )2 . .
F(\) < F((Q_“N),c)z(2 Qk“) [—(k—l)u+k—(k—3)(2—ﬂ)+W]

=tk 2 (k-4 k1 3)] <0,

T

So F(A\) <0 and E'(\) < 0. E(\) decreases as A increases.

7 9 k—2 I 1 W 1 3_k
< = — — N “(9 _
E(N) < E((2—u)k) (n™ —2p+2(2—p)) 2 ((Q—M)’H 2= )T +5@2=p0)")
1
o Nk—2 _
= B e =t
Therefore, [f\ fu- - fu(z)], < E <1 and Lemma 2.1.14 is proved. #
k—1
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Proof of Lemma 2.1.13. We consider two cases k € [2,23] and k£ > 23.
Case (I), k € [2,23]. For this case, there are two subcases: A € (2,2.8] and A € (2.8, 3].
Case(i), A € (2,2.8]. We will prove (2.32) by induction method.

. . . 1
Consider A > ﬁ Set by satisfying f,(ba) = % NS Then from Lemma 2.1.12,

for any x € [1 — %,bg],

Il fu(2))) > .

Now we assume for any k£ > 3 and \ > W,

1 1
Infu-fulz) >z, VYaoe [5 R = Mk_l)\,bk,l], (4.21)
k—1

: 1 1
where bkf]_ is defined by fu ce fu(bkf]_) =35 = m
k—2
First, we will prove the following inequality

Ix fu o fu(br) > by, (4.22)
Kk

where by, is defined by f,--- fu(by) = % SR —
—_——— 28/ pk=2)

A
1 1

2 2

Figure 4.7: k € [3,23] and A € (2,2.8]
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When A > %5, we choose some A\g such that

(2—p)?>
1 1 1 1
Prol5 = m) = Alfu(g - m”-
It is easy to solve this equation and get
1 1 w2
Ao = Ap—=p?+ = (5)%). 4.2
0= Ap— g0+ (%) (4.23)

Now we will prove

1 1 1 1

). (4.24)

5 o < Jul

2 ot 7LD 2 2k - k=2

(4.24) can be simplified into the following inequality,

A1 2_ 1, k=1
A=E 4B — 2+ 2HDF > 1

Let A(p, \) = (A= "4—)‘ + i(%)%_l)(uz —2/;—1—2(%)%)% —1 and differentiate A with respect
to p to get

= 1G0T
T R S L R C T RE- (O L [P WAL
= G2 =2 TS - 10 - D6 - 225
+HA= 2+ ZEFNE - -1+ b
Since
=B Bt g - DB > fe-u- ) >0
and 2k = 1)(u—1) + 252 (= (2 2 +20Dh)

I 1))+2(A)i(’“k‘ul SIS 2150,

So % > 0 and A(p, \) increases as p increases. Therefore,

3 k—1
2

AN > ALY = CA+ iAlf%)(q F oA )5 1= BOL).

Differentiate B with respect to A to get

OB\, k)

= = (—=1+ 2\ %) T 1D\ k),
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EIN]

where D(\, k) = _% + k43 \—% _ %@2)‘7

k3 + ]1—;3)\7%. Now it is obvious that

1
oD A r !
5= T:Q[—(Sk 1 3) + (2k — A F —3(k —3)A"F] < 0.
So D(\, k) decreases as A increases and D(\, k) < D(2, k). Moreover,

3
D2,k) A%
0 ék’ ) 4k§ 2% (~3.4k + 2.8) + 28 (—0.9k +2.1) + 5.1k —2.1] >0, k€ [5,23].

So D(2,k) < D(2,23) < 0. Because D(2,3) < 0 and D(2,4) < 0, we can get D(\, k) <0
for k € [3,23]. Therefore, % < 0and B > B(2.8,k).

k—1
0B(2.8,k) (—1+2-287 %) 21 | > 1
—a - e 28 7%k (—-142-2.87%)In2.8
2.817% , y )
+k2(2.1 + J(=14+2-28 F)In(—14+2-2.8 k) +2In2.8(k — 1) - 2.87¥]

(—1+42.287%) 7 !
o 2k?2 b

where

(2.1 + 2-8:% )In(—1+2-2.87%))
2.87%
(2.1+ 2-8:% J=142-287%)In(—1+2-2.87%))
2.8 %

E = (—1+2-2.8#)2.877(1.03 + 0.13%>

+2.87%[0.87k> +2In2.8(k — 1)].

Let a = 2.8_%, then we have a < 2.8_% and
((2.1+0.7a2)(71+2a) ln(71+2a))/ S0 o (2.1 +0.7a®)(—1 + 2a) In(—1 + 2a)
a a ) a

2
(2.140.7a2) In(—1+2a) (2.140.7¢%) In(—1 + 2a)
( 2.802 Ja >0, s0 5 8a2

< —0.239,

< —0.098.

Now we will prove for k € [3,23], E < 0. First, when k € [9, 23],

E < (—1+2-2.875)2.877(1.03 — 0.01274k%) + 2.8 (0.20793k2 + 2.06k — 2.06) < 0.

Second, when k € [4, 8], (2'1+0'7a2)(71j2a)ln(flwa) < —0.6298 and (Q'HO'?C;E)S;IPHZG) <
—0.337. We have

E < (—1+42-2.875)2.8'7%(1.03—0.35-0.337k%) + 2.8~ # (0.65- 0.6298%> +2.06k — 2.06) < 0.

Finally, when k = 3, we can also get E < 0.

So E < 0 for k € [3,23]. Then we have aB(gkg’k) < 0 and

B(\ k) > B(2.8,23) > 0.
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As a result, for k € [3,23] and A € (2,2.8], we have A(u, A) > 0 and (4.22) holds.
On the other hand, we will prove (4.21) always holds for x € [1 — %, bi].

xS Ful@) = aly = f(fu - Su(@) - fu(f - fu(@) - £ (fu(2)) - fu(x) = 1,
N—— N—_—— N——

k k k—1
[ fur fule) —aly = =2\ [fi(fu - fu(@) - Fu(fu(@) - f(2)]?
k k—1
k k—1
k k—1
< 0. (4.25)

Therefore, fy fu - fu(xz) — = gets the minimum value at z =1 — i and x = bg. But it is
———

k
evident that fy f,--- fu(1 — %) >1-— %, (2.32) holds for any = € [1 — %,bk], k€ [2,23].
—_—

k
Case (ii), A € (2.8,3]. If we let divide k into cases 3m, 3m + 1 and 3m + 2, so
m € [1,7]. Firstly, we will prove the following lemma.

Lemma 4.4.1 For any k > 3 and X\ € [2.5,3], we have the following inequality

1 1 1 1
fu
m m
g e ™ a0
2 2 2 2y
Figure 4.8: mo < my
Proof. Set my satisfying f,(mo) = & — W and m1 = fu(fu(3 — m)) In

order to get (4.26), we will prove my < mq, i.e

2 2 _1
(= (R) ) (p—p* + (0)F) _ - \/“2 —2p +2(5)F
164 24 '

Let A(p) = (p? — (%)%)(ém —p?+ (%)%) —8u + 8\/u2 —2u+ 2(%)#2 and differentiate
A(p) with respect to p to get

1
1A () = 3" = = 2+ B(u),
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1
1 1
p—1+4 (= (%) k+2

BN

)% +2 . Firstly, it is easy

where B(p) = (1 — 1)(§)% + L22(4)F — 2L

>

u272u+2(%)%“
to see 3u? — pu? —2 > 0 for p € (1,2] and we let . Secondly, we differentiate B(u) with
respect to 1 and get

= (Mg 2D e Lnyg 20 =2) pye L opgs 4 g
_1 1 1 1
1~ e ()77 4 g ()P ] (02 — 2004+ 2(4)F92) — (0 — 1+ gy ()72 )2

Since (”is > 3, so we have p < 1.253. Note the following facts for k£ > 3:

3—1.253)
. .z 4 p.a .z 4
(2). (X)k - W(X)k > <X)k(1 - ﬁ) >0,
. Topz 2w—2),pz2_ 1 po2
(). %(X)k + W(x)’“ > ﬁ(x)’“(k —2)>0,
1 1 1 1
2 9,19y (u_14 Pyey = (p— 12+ (2 — ——— Py
(i) o =2 25)7 (0= 1+ g (GO = (0= D 4 2= ) (R —
1 1
>(275)><3.0 5 —1.253 > 0,
. 1 oy 1 1 phy 1 2 2
ol () (-1 (R 2 - >2-1253— = >0
Then we can get B'(1) > 0 and we have
1
2 A Fr2 1
B(w) > B(u=1) = — —(vEeah,

Y

Let D(k) = ONTFT — k—f()\_% + /\_%)\/ —1+2)\ 72 and we differentiate D(k) as to k

to get

Di(k) = — 2 b FE2o-t -t ! In A
k1 2)? r
(k+2) V=1 + 2\ e

2 k+2 k42
R —1+ 207 F)(1 - Z InA) — ];)F% 142\ FEInA

3 a3
kit 27 &3 /1 4 2x#]

AFZInA k+2 AR 4AE .

2

2 3

(k+2) CEY A — k
4

ATk k42 k+ 2

+k—;\/—1+2xki2[2(1+x%)(1— Z In\) — 0.5 Z In \J.

Since In A < In3 < 1.1, so for k > 4, we have

2)3 2 skts 1
((k;) ATRED Y, = kk—tx lf(m(—()‘k—12+1nA(3k+16+£))
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k
%)\ K27 (— 2.7k + 5.6 + 4.4) < 0.

S0 (k+2) (k+2)

A k k+2) decreases as k: increases and
(k+2)

3k+8
A k42 > 1 when k = 4. However,

even when k=23, A ’“(’“+2) > 1. So we have

2)3  _ sk
(IC‘];)A B > 1, (k> 3). (4.27)

Considering the following facts for A € [2.5, 3]:

(%()\_% FATR) = %HA—% A~ 4)+%1 ATE +207%))]
> %x%[(ln% —DAF 4 (2In25-1)] >0.  (4.28)
So k—‘,‘;z()\_% + /\_%) increases as k increases and we have
%(X% FATE) > 2(3—% +373) > 1.186.

when k > 5

k+2 k
2(1+/\%)(1—%1 ) — 055

2
In\ < 2(1+35)(1—1n)\)—05In\ < 0.

While when k € [3,4],

k+2 k 6 6
2(1+A%)(1—%1 )\)—05%1 A< 2(1+33)(1—11n/\)—0.5x11n)\

< 6.2—-10.05In A <O0.

As a result of above facts, we can get

1
AE7 In
D'(k) < M(2—1.186—1.5 “1+2x378) <.

So D(k) decreases as k increases and

D(k) > lim D(k) = 0.

k—o0

Therefore, B > 0 and A’(u) > 0. A(p) is an increasing function as to u and

A(p) > A(1) = 8\ —1 + 2\ 52 — 20"F — A% — 5 = B(k, \).

Differentiate E(k, A) with respect to k to get

2
‘;f _ 1 1 (2\ 72 — (k ‘]:22) (A"F £ A"#)\ =1 + 22 w).
(k +2)2\/—1+ 2\ Fi2
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Let F(k) = ONTFHT — %722)2()\_% + )\_%)\/ —1+ 2\ 72 and differentiate F with respect

to k to get

1 k 2 A~ AT
F/(k) = m)\_’%ﬁ ln)\(2 ( + ' + ;
\V—1+2) w2

A2 o0 Lanty/ o1 o wh( 1_@1 A+ k];22x%\/—1+2x#2

k3

4
% 2 Tk Tk %(kr2)
_ (2_'—;2)2[111)\(2 (k"i‘ A F4A ) -+ 0.427% (k_]:))\k(k]ls 71+2)\—ﬁ2]
—1 4+ 2R

k+2)3 k+2
+(;)>\2\/—1+2/\_k+2[(2+4)\k)(1— Z In \) + 1.58].

Note we have the following facts:

AEEATE ATU=2(AF 4208 (=1 4 207 FE ) 4+ Ao A TEE (AE 4 AE)]

),\ = _ 1 .3
V=14 2\ 7 (=1 4207 F2)>

(). (

ATU(ATE £ ATE) (=2 4+ BN T
P 1 V) Y
R(—1 42X\ "2)3

E+2)2 2 4 2(k + 2 k+2 k+2 _a
i (ot eachy = 2 e B ot ach £ B2ty
2(k+2) _a 10 2. 10
SEF A2 4 L) (1 4 2.5%) + L]
0, (k > 8).
So when k£ > 11, we have
2
A2 — (k“ N I N ) > —0.417.

A/ =142\~ == \/—1—1—2><3 1

Let G(A\ k) = (2+4A77)(1 — B2 1n \). When 1 — 21n ) < 0, we have

0G  4In ) k+2 41n/\ 5.5
— = AR (2— " ln 1 AR (2 — 22
oG 2 k+2

> k)\[2)\"(271 nA—k—4)— (k+2)] <O0.

So when k > 11, G(\, k) > G(3,11) > —1.575.

2

2 )

(4i7). ()\%\/—1+2)\*ﬁ2)§C = AR lInA [_2(_14_2)\**&2)4_)(#2 k 2]
k2\/—1 4 2\~ %2 (k+2)

AF In A
K24/ —1+ 2\~ F2
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So )\%\/ -1+ 2)\_#2 decreases as k increases and we have
2 __1_
AR\ =142\ k2 > 1.,

Considering (4.27), we have the following result for k > 11,

1
A2 k+2)3
F(k) > M(—o.zﬂ? +0.42) + (;)A‘i\/ —1 4 2\ 2 (—1.575 + 1.58) > 0.

Therefore, when k > 11, F increases as k increases and we can get F(k) < limg_,o F'(k) =

0.So%—%<0whenkz>1.

On the other hand, for k € [3,10],

EJES

9B a7 ATz k2

= (—2 (A8 + A7
o\ k+2 /_1+2>\_%+2

))-

1

1
It is easy to see that ——Z— decreases as  increases when z = \™#2 < 1. So ——2A—2___ >
e N
1. Because of (4.28), we have %(/\*%—F)\*%) < %(2.5*% +2.57%) < 1.74. Then a—/\ <0
and E > E(k,3). Moreover, when A = 3 and k = 5,6, 7,
2
(k+2)?,_2 __a., 2(k+2)__a kE+2 1437k k+ 2
——(3 3 = —3 —2+11 1.1
< 0.
This means (16:722)2(3_% + 3_%) decreases as k increases for k € [5,10].
1
F(k 2 x 37 k2 k+2)?
(k) — = X 1 —(Zz)(3i+32)
\/—1+2><3‘m \/—1+2x3‘m
1
2x37°7 122
< X0 (3715 +3710) < 0.

-
\V/—1+2x3°7 0

It is easy to check F'(3) > 0 and F'(4) > 0, so F'(k) > 0 for k£ > 3. Thus %—E <0and E
decreases as k increases. This leads to

A>E(k,A) > klim E(k,\) = 0.
So Lemma 4.4.1 is proved. i

Second, we will use Lemma 4.4.1 to finish the proof of Lemma 2.1.13 for k € [3,23].
Consider case (1), k = 3m, see Figure 4.9, we will prove the following inequality in order

to prove (4.22), 1 1
D> fulg = gy 429

1
fA(fu(§ 9 m Mmfl)\

C 9w 3m—1)

61



Loughborough University Doctoral Thesis

il . o
AN
L Jo_
T 2 20
2 ZBW}\’ f?u M ;\.

Figure 4.9: f\(fu(3 — 2;»m{/ﬁ)) > fulz — Wﬁ)

Which is equivalent to prove

[ 2 o2 Apt e
Alps dom) = (1 = (3)37) (4p — p* + (F)5m) = == +4(7)Fm > 0.
A A A A
First note % > 3,80 u € (1,1.253). Then we differentiate A(u, A\, m) with respect
to p to see that
1614(/1,)\,771) 2 3 6#2 M2
i Vs Rk L) R YV B § Y M
5 o 6" — 20" — ==+ ( )(5)?
20, 2 2 .4 4 p.2  2(m+2),p. 2
R R (L U
3m A 3mp A 3m A mA A
3 4 5.4 4
2023 — s= —p) — =— >2(5= —1)— = > 0.
> Wy g, 253>
So A(p, A,m) is an increasing function as to p and
4
Al Am) > A(L A m) =3 = £ — 2N B — A" 3w 4 AN
OA(1,\,m) 2In A __2 , 3m+2 3m44
—_— = AT m (A 3m A sm —6
om 3m? (Ao A )

21n A

A1 (2.8%1 +2.8%1 — 6) > 0.

So A(1,A,m) decreases as m increases and we can get

4
Al Am) > AQLNT) =3 = 5 — 2ATET — ATar 44N

On the other hands, we have

JALNT) 4, 9 2 1 .10 1
T:F(l—*)\ 7—}—7)\21‘}'7)\
Therefore, A(u, A\,7) > A(1,2.8,7) and (4.29) is proved. So (4.22) holds. Then by (4.25),
(4.21) holds for k < 23.
By a similar argument, we can prove (4.21) still holds for & < 23 in the case that

k=3m+1and k=3m+ 2.

-
s
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Case (2). k =3m + 1, see Figure 4.10. We will prove the following inequality:
1 1 1

fx(fu(% - W)) > 5~ Ry (4.30)
In order to get (4.30), we need to prove
f, 3m f,
................. N
1 1 J._1
3 ”T\/u_mk fa 2 2™y

Figure 4.10: f)\(fﬂ(% — W)) > 7 W

A
1642 73 2 A

2

Let A(u,A\,m) = (u* — (& )3m+1)(4,u — 4 (K)IrT) — 8% + 8(%)773 and differentiate
A(p, m) with respect to p to get

OA(p, \,m) B 9 3 Su
“oon 6p” —2p” — By + (2p — 2)()\)3 =
2 2 2 e 4 2 m+2 p
— )3m+1 - 3m+1 — _)3m+1 §—(—
3m+1()\) (3m+1)u(/\) 3m+1()\) * m—i—l()\

Since36,u2 —2u® — 8/(L > 2u(3pu — p? +2) > 0 and 3m+1(§)5’"+1 + 8%12(%)"’“% >
8.372 —§>07 % > 0 and we can get

m+2

A(p, Aym) > A(1,A,m) =3 =2\~ TFl A~ 3m+1—§+8)\ mHL

—m4? 32 2. 50 2
M = —-121n >\A7(>\(31i+1)(m+1) + )\(§m+T)3(m+21) _ M)
om (3m + 1)2 3(m+1)2

m2+5m 3m243m—2

For m € [2,7], §3m+)1> < 5.042 and ABEDOIT 4 AGmmID > 2,818 + 2.81% > 5.54,

so A(1.m) decreases as m increases and we have

AL\ m) > A1\, T) =3 —2)\"% — A" — § +8A7S,

OA(L,\,7)

4 20 4 18 1
VRNt ST NP
B3 =A (22)\224-22)\22—!-8 9A"8) > 0.
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So A(p,\,m) > A(1,2.8,7) > 0 and (4.30) holds. So (4.22) holds and then by (4.25),
(4.21) holds for k < 23.

Case (3). k =3m + 2, see Figure 4.11, we will prove

1
1 1 1 p? = 2p+2(5)m+e
NG - o)) > 5 — \/ A (4.31)
2 93mR/BmAl) 2 21

In order to get (4.31), we need to prove

fu 3m fH fl‘-
NN
1 1 o1
- m+2
2 23m+\2/m fa 2 27
Figure 4.11: f)\(f,u(% — %)) > % _ ,LLQ—Q#;‘E(%)W

9 3m+2 /pdmti)

2 2 1
L QT 2 () 1\ A
1642 2 24 ’

_2 _2 2 1
Let A(u, \,m) = (u? — (§)7272) (dp — p® + (§)5777) — 3= 4 87”\/#2 —2p+2(F) ™.

OA(p, A, m) 2 3 8p B2 20 py 2 2 Py 4
- ' =6 —92 - 2u — 2)(=)3m+2 — ' (Y3m+2 — — (T )3m+2
204 w2 = on =23 4 S () Gmir2p

1 uy L
4 4 L ap B T e (5) 7
3m 2 2_9 2 m+2
TImraa) +A\/“’ pt ()\) Y

\/u —ou+2(4) 7

Since %\/,u? —2u+ 2(%)1#2 > %\/—1 + 2(%)% > (0.829 > ﬁ and we recall that 6u? —
203 — 87“ > (0, we can easily get %ﬁ\’m) > 0 and

Al Am) > AL A, m) = 3 — 2\ Farz — \“ sz _ ; + i\/—l o\,

aA(g Am) 120" @2 In A 335?55“?'%122) 14 A\~ wmr 3(3m +22)22]
i (3m + 2) \/—1+2>\ = V1o 3m2)
120" In A 3232
- - M1 +2.875) — Sl <0

(3m + 2)2\/ —1 + 2\ e
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So A(1,\,m) decreases as m increases and

A(L,A,m) > A(1LLA,T) =3 —2\"2 — \~ 23——+§\/—1+2A—*
DAL\, T) 4 = VA %,é

T = metE et r————
—1+2X\7
> -\ -1+2- 2875—7 2877 > 0.
)\\/—1—0—2)\_7

So A(1,\,7) increases as A increases and

A(p, A, m) > A(1,2.8,7) > 0.

So (4.22) holds. With the same reason as the case A € (2.2.8]. (2.32) can be proved
Case (II), k > 24. There are two subcases, A € (2,2.61] and X € (2.61, 3].
Case(i). \ € (2,2.61].

At first, we need to prove the following lemma.

Lemma 4.4.2 When X € (2,2.61] and k > 24, we have the following inequality

b5~ 5 ) ® 5~ (432
See Figure 4.12.
‘ / f“
m
l-_;E::/ﬂ 1
k+ -

Figure 412 fu(fu(% — W)) 2 % — m

1 We need to find the condition for f,(3 —

Proof. Set m satisfying f,(m) = 5 — W
uhA

—L ) >m. Let A(u, \, k) = 2— (& )% —2,u+2\/,u —2u+2(ﬁ)? and then we can
28/ pk—1x T A
get
1
OA(p, A, k) Pt w1 e
SR -1+ — - (b,
a \/uz—i?AHr?(%)ﬁ a
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Let B = (11— 1+ gty (5)F1)% = (2 (8)%)2(1? — 2+ 2(§)%7), then we have

ku
-1 .1, 2 p—1 i sk+a
B= B AT A 0ol e S ENRGFD
1 poz (k412 pa g1
BT Myietymr -1
g - St ed)R - )
Since (ﬂ(ﬁ)%)’ G (=1 — 28 n(#)) > 0, so we have @(H)% < 1. Tt is also
B \X e = TRz k X ; E\X :

2 1

k
obvious that (§)#1 > 2(§)*T — 1 and ki—%l - %(%)’fzkﬁ) > 0. It turns over that B > 0
and 24080 0. S0 A(u, A k) > AL A k) = 2/ —1 2077 —ATE -1,
1 1 1
R iramny = Sa-amE et hemimy > o
k+1

(—1+ 20\ 7)< 1,

OA(L,\ k) A1 % k+1 e
= —14 ——\/—1+42X" ") <0.
o 1 LT T2 <

So A(1, A\, k) decreases as A increases. Therefore, for A € (2,2.61], we have

k

AL\ k) > A(1,2.61, k).

We differentiate A(1, A\, k) with respect to k to get

DAL NE) 2A—%1nA( ARG k12 2)\_%111)\D(>\ .
Ok (k4 1)2 /1+2/\,k%1 K27 (k+1)2 T
OD(MK) 1 ARSI InA(L-3AET) 2w IESNNURR
- 2 1.3 o 3
Ok (k+1) (=14 2\ F1)2 R k
1
= :(k+1)2E()\,k‘).
DE(\ k) AFGED) (In \)2 k2 4 4k + 2
1 1
A2 A 3< . (—1+2)\_k+1)+)\_k+1)
ok (k+1)2(=1 4 2\ 71)2 k
—1 4 3N th+2,
QgonEa K
2 2 2 2
Ak (InA) ARG In \ dk+4 6(k+1)
+ —T 5 T 1Ty L4
(k4+1)2(=142X"F1)2 (=14 2X\ F1)2
k+2
1 2\RGHD (In \)2
o L FAREDMNAT gy )24y e

K22 (k4 1)2(—1 4+ 20" Fi1)3
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AT I 4k 4 6(k + 1)
(—1+2ox 1)z K k?

-

Because limy_.o A(1,k) = 0, so to prove A(1,k) > 0, we only need to prove 7‘9’4&’“ <0,

k
ie. D(k) > 0. For A € (2,2.61] and k > 24, \/—1 4+ 2\ 5 > 0.96, N0 < 1.043,
ATFFT > 0.962 and In A < 0.96. We can verify

k+1 _ 1 1 _ 1 2k 1
(T(_l + 2\ F))) = ﬁ(l — 2N\ R 4 m)\ M11n\) >0,
k+1

= (-1+ AT < 1,

2 1

(3)\_,&1 )2 LONTERT — QATEAT — BATEET 1> 4.52.

It turns out that
OE(\ k) 1
-~ 7 > R
ok k2

So E(2.61,k) increases as k increases and it is easy to see

[4.52-(0.96)% + 4 — 6 - 1.042%] > 0.

lim E(261k) = —2nA+2>0,
—00
A(2.61,24) = —0.0387 < 0.

So there exists k; such that E(2.61,k) < 0 for k € [24,k;] and E(2.61,k) > 0 for k >
k1. That is to say D(2.61,k) decreases first and then increases as k increases. Because
limg_,oo D(2.61,k) = 0 and D(2.61,24) < 0, we can get D(2.61,%) < 0 and so A(1,2.61.k)
is a decreasing function as to k when A € (2,2.61]. As a result, we can get

Al A, k) > lim A(1,2.61.k) =0, A€ (2,261, k> 24

Lemma 4.4.2 is proved. Now we will prove Lemma 2.1.13 when A € (2,2.61] and k > 24
by induction method.

Consider \ > ﬁ Set bog satisfying f,, -« - fu(ba) = %— 1
———

an set bog satisfying

2 22 ,u21>\
21
Ju- fulbaz) = % — 5% 1 G then we know from the previous section that for any = €
N—— H
22
[1— i baa],
I fu() >,
N——
22
and for any x € [1 — i,bgg],
Ifu fu(2)) > .
———
23
Now we assume for any k > 24, when \ > W,
1
f)\fu"'fu(x)>xv T e [1_7abk—2]7 (433)
R 1%

k—2
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: _ 1 1
where bk—2 is defined by f/" s fﬂ(bk_2) =35 = W
k—3

Then we will prove the following inequality as Figure 4.13 shows,

Ix fu e ful(br) > by (4.34)
!

1
g2t 2t

We can get that mg = % — om if fu(mo) = % — Wﬁ, we choose Ay such

k f k-2 f

u W

Nl/\/\""""'/\ N
A 1 X

1 1 S 1
2 295, 2 2V
MM
)
i a
1 1 A

2 2y

Figure 4.13: fy,(a) = A\ (fu(3 — — :HA)) when k > 24 and \ € (2,2.61]

that
fro(@) = mo,
where a = fi(fu(3 — m)) See Figure 4.13. We can solve \g to get

Ao(A) = PR £ 1) AR — BT 1),

| >
—
>=
S—

: 1 1
(i). We now prove mg < fu(5 — W)

First, we prove

1 1 1 1
. S . S— 4.
2 ¥/ k-1 < 2 2R k2 (4.5)
In order to get (4.35), we need to prove the following inequality,
Ak) = (W T AF +1)(Ap — i + (%)%) —8>0. (4.36)
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Differentiate A with respect to k to get

A = =g Ohla? - i - )b - 20
—m SO - p-2)

Because ﬁ < 3, we have i < % and (4p? —pd—p—2)" =8—6u > 0. So dp? — 3 —pu—2
4

reaches the minimum value at 4 = 1 and p = 3 and thus 4p? — P —pu—2>0. Asa
result, A'(k) < 0 and A(k) decreases as k increases. So

A> lim A= (4 1)(4p — p® +1) — 8 = D(p).
— 00
Note

D'(u) = -3 +6u+5=—-3(u—1)*+8>0.

So D(u) increases as p increases, D(u) > D(1) = 0, so A > 0. We have proved (4.35).
If fu(d) =1 — ﬁ, then mg < d. Because g < A € (2,2.61], we have f,(fu(3 —
0

2 1//ik72
1 1
m)) > 5 — m by Lemma 4.4.2. Therefore,

mo < d < fu(% _ Mﬁ).
(if). We now prove Ao > =t First note
qo) = S0t (OB -2+ (b,
b = Sl OB =+ BB — 2k an -2+ (OB - 2R+ ()
= B2 1) b2+ OB - 2t (D)

2 1 2
Because 4y — > + (8)F — (u+ (8)%¥) > 3u—p?—1>0and p— 2(8)k > p—2 >0, Ag(})
is an increasing function about A and we have
K )= M > K
2—wr  @2-pkF " (2-ph?

Ao = Aol

So (4.34) holds.
(iii). We can see now (2.32) holds for all z € [1— %, bi] by a similar argument as before.
Case (ii). A € (2.61,3]. When k& > 24 and X\ € (2.61, 3], we use the following five
cases, Case (1) to Case (5) to prove Lemma 2.1.13.
Firstly, we begin from the following Lemma.

Lemma 4.4.3 For k > 10 and X € [2.55, 3], we have the following inequality,

1 1 1

fu(fu(fu(fu(fu(% - T))))) > 57 W (4.37)

See Figure 4.14.
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fy
: 1\/1:\/n1 n 1 1
_ u
> T 2 2

Figure 4.14: n > ny

Proof. Firstly, we prove n > n; in order to get (4.37). Here n = fu(fu(fu(% - m)))

and f,(fu(n1)) = % — W This means we need to prove
2 2 2 2
(1#* = (5)%) (= p® + (5) ) [16p — (1 — (5)F)(4p — 1 + (5)F)]
25614

20 — \/u2—2u+2\/u2—2u+2(‘§)’“i?"
20 ’

> (4.38)

For this Let B(p) = (4>~ (4)%)(4p—p?+(4)%), D(p) = \/u2 —2p+ 2\/#2 — 2+ 24—
u, B(p) = E(16p — E). We need to prove A(u, A\, k) = B(u) + 128D(u) > 0. Since

(23%25) > 3, it is easy to see p € (1,1.045).

poz  Apopz 8 pe2 4 pia
Bl = 120 =4 + 4 - DO+ (5T - 28 E - (B
> 12,u2—4u3—%>0,
E(p) < p*(4p—p®+1) <8,
E'(p) < 12p* —4p® +4(u —1) < 16,

E" = 24y — 12,2 + 47
(1) " pe+4(5)r + Y
16 p

2.5

2 42
h\ )k+%(x)’c+
2 4 .4 16 p 4
4 4 4
M)%(k+2—;)+—(ﬁ)%(k—4)>0.

~ S

[E15Y
We differentiate B(u) with respect to u to get

B'(p) = E'(n)(16p—2E)+16E,
B'(p) = E"(n)(16p —2E) + 2E'(1)(16 — E'(1)) > 0.

So B’(u) is an increasing function with respect to g. On the other hand, we differentiate
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D(p) with respect to p to get

=
)R+

wl

p= 1+ G (5

w—14

1
\/u2*2u+2(ﬁ) 3
D/(:u) = 2 - 17
1
\/u2 —2u+2\/u2—2u+2(§)m

1

1 1 ’
(W2 —2p+ 2\/u2 — 2+ 2(4) )3 - (42 — 21+ 2(4) )

k+2 _2k+5 _ 1 TR
= ORSERNARERS i

D"(pn) =

(2 = 2+ 2(5)75 + (1 -

k+2 1
(b= 14 ggp FHB3AF3)?2 o1
- N = ——) (1 = 2p 4 242 = 24 2()F)
2 =
p? = 2p+2(5)Fs
1

(= Dyt =2 2507 - 1 R

Let M, = <u2—2u+2<§>%+3>< 292/ 122 — 241+ 2(4) 7 )~ (u—1)\ 142 — 231 + 2(4) P )2

k+2

2k+5 _1

1

1 u FF3NTE+3 )2

(=1 gty () F59)2 and My = [(1— 2,y 155 A= )\/u2—2u+2(§)ri3—(“71+m
\/2 2u+2(5) *F

1 1

(17 = 20+ 24/ — 204+ 2(8)75) — 200 — D12 = 20+ 205)75 (0 — 1+ e (H)F)
and then D" (u) = M1+M2 —.
(u2—2u+2\/ 2-2pu+2(8)FH3 F3)3.(u2— 2u+2(5)F+3)

Since k > 10 and s > 3, we can easily get p € (1,1.1) and (%)k%& > 3716 >

(2= 11)
0.9189. Note
. 2 My 1 1 My 1
. -2 2()F 8 — (u— 14+ ——— (%) 543
() w7 =2 27— (=1t g ()P
Wy 1 1 ey 1 1 1
=(pu-12+25)mm - ———(Oyms —p > (5)F83(2— ——— — ) > 0,
(). 2\/u2—2u+2(§)k-1+3—1>2~/2(§)k-1+3—1—1>0.83,
1 1 1 Ly 1
. -1+ —— () <11l-14— . 24/ pu? —2 2(=)&s — 1.
(13i). +(k+3),u,(/\)+ < +13<083< \/u p+ ()\)+
Hence, M; > 0.
Second, for Ms, note
. 2k + 9k +10 ;1 2-10%2 490+ 10

(id).  2(p—1)(p* — 2u + 2(%)#3) <2-0.1-(p? —2p+2-0.9189) < 0.17 < 0.63,

(iii). p2—2u+ 2\/u2 —2u+ 2(%)#3 —(u—1+ (kj?)m(‘;)kis)
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1 1
=(u—12%24+2,/u2-2 oMyem - 1 (Myes
(h—1)"+ \/M pt2(3)F (k:+3)u(>\) = p

1
>2\/—1+2-0.9189—E—1>0.

Hence, My > 0 and then D”(u) > 0. Since %}’;\’k) = B'(u) + 128D’ (1) and %}’fy =

B"(u) +128D"(u) > 0, %j\k) increases as {1 increases and 8A(gl’t)"k) > 8A(811;>\,k)' But

).

Al
‘W — E1)(16 — 2B(1)) + 16E(1)
4 4
= (8- %)\‘% - EA—%)(m 21— ATE)B+ATE)) +16(1— AE)(3+AF)
e
+128 +3 — 128
\/—1 + 2\/—1 + 2A—%+3\/—1 o\

__1

N O I e P A
K K k K k+3 : :
Y A e

Let F(k) = BATF 4+ TA"% + 3\ % + A% — 16\~ and differentiate F(k) as to k to get

21
Fl(k) = TI;)\)\_%(M% F1ANTE 4 ONTE 4+ ANTE — 24)
3 5

> 14-3715 493710 +4-3710 — 19 > 0.
So F'(k) increases as k increases and then

F(k) < lim F(k) = 0.

k—oo
This leads to
1
0A(1, M\ k 1 1 A\ E+3
OAMLNE) o jog_Ly-2 4 . ).
ou k k+3 ’ T
-1+ 2\/—1 + 2\ F3 \/—1 + 2\ F3
k2 Q(L"'g) __1 __1
Let H(k) = WA REFS) — (=142 =14 2\ #3)(=1 4 2\" *+3). Then
P =
+
H(k) = =——H(k
( ) (k+3)2 1( )7

here Hy(k) — ARG (36— 310\ + 52 In A V/=14+2\"%% — 1)In\. Th
where Hy(k) = (55 — 3l —i—mn)—(i’)——i— 3 — 1)In A en

differentiate Hj(k) as to k to get

5k+18 5 5
ARGFEES) In A —5k* — 36k — 54, 3k k 9 k

I LA N\ S L
(k1 3)2 12 Gos 3 g MY Y e

Hy(k) =
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5k 3\t In A

+ —
R Y A

Let a = In \, then a € (0.936, 1. 1) for A € [2.55,3]. For k > 10, =5K°=36k=54 ¢ [_g 14 _5),

. — _EL2__ _ 2
Since (“KER=54 (3 —3at ko a) +), = IR (34 gy ) — % > (+5)(-2)-

—5k2—36k—54
=D g0k (L 3k 3lnA+(k+3) ln/\)—i—ln)\+m> —9.14(3—2-1n2.55) +

].

9
0.936 > 0 then

- % + 12 > 0. On the other hand, (2A~ 1 2)\_*)§€ = W(Ak(k%) G(k;ﬁ) ) <

<land 2 M>ﬁ—33>

k+3
—142\7 F+3

Hi(k) < hm Hi(k)=1-2InX<0.

—00

I E 1n,\(3M AR

i3 130 —6) < 0, so we have ——2———
V-l42a F

0. Thus it is obvious that H](k) > 0 and we can get

So H'(k) < 0 and H (k) decrease as k increases. Then we can get H (k) > limg_,oo H(k) >0
OA(pAK) — OALAK)
and o > o

> 0. As a result, A(u) is an increasing function as to p. So

A( k) > AN K) = (3—2\"F — A %)(13+ 2\ "% + A7F)

+128\/—1 + 2y —1 42\ 73 — 198,

But
QA NE) §(5A—% . AR . AR . AR
O Nk k k k
16X\~ s
+ )
(k+ 3)\/—1 + 2\/—1 + N . \/_1 + O\~ T3
1 A(L kN
= (-—222) <.
)\( ou )<

So A(1, A\, k) is a decreasing function as to A and A(1,\, k) > A(1,3,k).
Let G(k) = BATE +TATE +3A"F + Ak — 16)\7%, then we differentiate G with respect
to k for k > 10,

2\

o (BAR +0ATE ATk —18),

G'(k)

A7 In A

o (—=BAE + 9+ 8A %) > 0.

(5AF +OATF +4NTF), =

So we can get
2 2 4
BAR +9A7TF +4X7 % — 18 < 0.

So G(k) is a decreasing function as to k and G(k) > limy_,., G(k) = 0. THen we can get

BATE £ TATE 430k £ AR
k2

SA(L\, k)

5% = 8lnA(—
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16\~ 753
+ )
(k+3)2\/—1+2\/—1+2x&s.\/—1+2A—ki3
4 1
16A"# 16\~ 3
< (-2t ).

k2

(k+ 3)2\/—1 T R IRV A
3k+24

6k+
Let P(k, \) = g AFFT — (=142 =1+ 2)753)(~1+2)"53), then we differentiate
P(k,\) about k to get

1
OP(k,\) o\ %53 k‘3(3kz—|—12) Th424 \/i
— = ARG 4 30 —1 420778 — 1] > 0
O k+3 | (k4 3)* * * ’ 1>0,

1
OP(k,\) 2A\TEHS | 7hi2a  3f2 2k K2+ 8k+12 / _ 1
o G G erh s ez AN TAGYSL2AES )]
1
2N T3
= (k+3)2Q(1{7,)\),
Tk+24
OQ(k, ) BNRE 2k k% 48k +12 ) 6k _7k2+48k:+721n)\)
ok  (E+3)2'k+3 (k + 3)2 k+3 (k + 3)2
1
Tht24 32 2k 3ATF3 (ln \)?
+ A\ k(E+3) (k:+3)4(6_k—|—31n>\)_ (InA)

(k +3)2\/—1 + 2\~ 753

Tk
NS 1.064k% — 1.488k — 11.232 —1.7k2 — 34.8k — 79.2

(k +3)2 (k+3) (k +3)7
1
Lk 3K 38k418 3\ ()

k+3)%  k+3 ‘
(k+3) * (k +3)2\/—1+ 2\ 73

So P(k,\) increases as A increases and P(k,\) < P(k,3). Since it is obvious that —1 +
1
2\ &3 > (0.8379 for k > 10, so

k2 / _ 1 A 6k 1
) 71 3)? —1+ 2\ F3), = [(=8In A+ ——=)(—1+ 2\ #+3)

oo
oo

(k +3)2\/—1+ 2\ 7 b3
+k72)\7%+3 In \]
(k + 3)?
bY:
< (0.8379(—1.488k — 22.464)(k + 3) + k) < 0.

(k+3)3\/—1 +2) "5
So )‘%(lﬁ%)? -1+ 2)\_16%3 > 1. Thus we have

Tk+24
0Q(k,N) BN
ok (k + 3)6

[(1.064k? — 1.488k — 11.232)(—1.7k? — 34.8k — 79.2) + k2 (k + 3)(2.59k + 14.37)]
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1
3N F3 8 k2 o1
AE \/ =14 2X\7#31.21 — (In \)?
Torar M eV (A
Tk+24
SARETS 4 3 2
> T (0.78k* — 12.36k% + 29.7k? + 508.7k + 889.5) > 0.
(k+ 3)8

So Q(k,\) increases as k increases. Because limg_o Q(k,A) = 6 — 5InA > 0 and

Q(10,)) = A150 - 92 — 12 InA) —InA(3y/ -1+ 2\ 13 — 1). It is easy to see that

dQ(10,A) 300, ,, 01 94 30 192 192 1 1 A" In A
— = A= (= - —=—hA)-—=)- =By -1+2x1 - 1— .
N 160" l3p(3 T 19 MY T 1) TR BV L F2ATE ) <0

13\/—1+2\" %

So Q(10,\) < @(10,2.55) < 0. Note that there exists kg such that Q(k,\) < 0 for
k € [10, ko] and Q(k,\) > 0 for k > kg, i.e. P(k,\) decreases first and then increases as k
increases. Since limy_. P(k,A\) =0, and P(13,3) < 0, we can get P(k,\) <0 for k > 13
and so A(1,k) decrease as k increases. Therefore,

A(p, A\ k) > klim A(1, N\ k) =0.

While for k£ € [10,12], recalling that A(p,\, k) > A(1,3,k) and A(1,3,k) > 0 when
k=10,11,12. So A(u, A\, k) > 0 for all £ > 10. Lemma 4.4.3 is proved. i

Now, we prove (4.22) still holds for A € (2.61, 3] when k£ > 24. We mainly use Lemma
4.4.3 . Since % > 3, it is easy to get u € (1,1.044). When k > 24, we divide k
into cases k = 5m, bm + 1, 5m + 2, 5bm + 3 and 5m + 4.

Case (1). k =5m, m > 5, see Figure 4.15, we prove

1 1 1 1
= T —— 4.
hG 5% M5m—1)\) 275 /2 Ix (4.39)
Let A(m) = 3 — ﬁ(%f@f — -+ ﬁ(%)ﬁ and differentiate A(m) with respect to m to
5m f,
1 1 f 1 1
= L
2 2 mM5m17\~ M 2 2% TIEPN
Figure 4.15: fy(3 — A~ )> i
2 5m /[ sm—1) 2 2m /[ 2m—1)
get
0A(m)  (B)Fm A 2 A 10w (4)7m A, 2261
) S 23 1 < D 22 )5
om 2um Wbt 2um w5 -1.044
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That is to say A(m) decreases as k increases and A(m) > lim;, oo A(m) = 0. Then (4.39)
is proved. By (4.25), fi fu--- fu(z) —  reaches the minimum value at = 1 — i and
—_——
1 g 1 1
— * * —
x =yx forx € [1—E,y ]. From (4.39) and a > y*, where f, f,--- fu(a) = 1T
k—1
we know (4.34) holds. Considering that fy fu--- fu(1 — 1y~ 1 -1 we can easily see that
: , Im T

k
(2.32) holds.

Case (2). k =5m+1, m > 5. See Figure 4.16, by Lemma 4.4.3, we just need to prove

U~ somgmy) 3~ gy (1.40)
Let A(j,m) = (2 — (B)5m51 ) (4 — p? + (&)5me1) — 22 4 8(#)2miT and we differentiate
5m f,
................. NS
do_1 1 1
2 T : 2 T

Figure 4.16: f)\(fu(% — W)) > % _ W

A(p, m) with respect to p.

1 9A(u, m) 2 5 8u B2 20 g2 2 4
- 7 = 6 —92 - 20 — 2)(=)5m+1 Vem+1l — — (L \5m+1
2 o w2 = e A e = () 4 2 (R) Gm+ N
4 w 2m+2 1
5m+1 4——  (Z)2m+1,
5m+1()\) * (2m+1))\()\>

1 o 2
m-+1 _ (X) 5m—+1

(5)2
X 5m+1

m—1
Since 6% —2p* =% > 2u(3p—p? —1) > 0, () BFIEFD < 1.02 and

m—1

)ZmFT A(2) @D (EmFT)
(1——=

. 5m—+1

w increases. Thus

) > 0, we can easily get (“ ) 0 and A(p, m) increases as

>

A, m) > A(l,m) = 3 — 2\ Fmr — A" Farl § N

Note 24(Gm 1) > 63.38 for m > 5, we have

5(2m+1)3
8A(1 m) —5)\7% In\ 10m2+8m 4(5m n 1)2 —5A7% o\
T = e [AG DD (1 AT 5m+1)_ =
m248m _ 2
Bl(m) = Ao SO FIOMES gy

(2m +1)2(5m + 1)?

76
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m2 m—
ey 10 246m+ D)

(5m +1)2 5(2m + 1)3
24(5m + 1)3 1

5em 15 < Gmr )

So B(m) decreases as m increases and B(m) > lim,, oo B(m) = 2A\=5 > 0 as A € (2.61, 3].
Therefore, 8‘4(1 ™) <0 and

[10AIn A —

S In3 — 63. .
CENIE (301n3 — 63.38) < 0

A(p,m) > lim A(1,m) =0.

m—00

So (4.34) holds. By (4.25), f fu--- fu(x) —x attains the minimum value at x = 1 — % and
——

k
x = y*, then because of (4.34) and fy f,--- fu(1 — l) 1-2 (2 32) holds.
H,_/

Case (3). k=5m+2, m > 5. See Flgure 4.17, we will prove the following inequality,

1
1 1 1 p? = 2p+ 2(5) 2
PG = o) > 5 v — (4.41)
9 5m M5m+1)\ 2 2#

2

Let A(,m) = (% — (§)552) (4 — 2 + (§)552) — %+ 312 — 20+ 2(4) 752 and

2 2°m+2 ST, _—
\/ " fh 2 %/ 2m+1
. " 1 1 u2—2u+2(§)W1+2
Figure 4.17: fa(fu(5 — W)) > 5 — om
differentiate A(u,m) as to u to get
OA(p, m) 9 3 8p 20, _2 2 fhy 4
R L 6 —92 - 2 2 5m+2 Vsm4+2 — — (T )5m+2
201 oy o (20 )()\) T Emrz\) Gm+2p N
1
4 4 dp 1= 1+ Gy (R) 7
- +2(i)5m”+A\/“2_2“+2(§)2"3“+AM‘ LIRS
m \/M2_2M+2(%)2m+2
1\ 5ms 2 B\ 53 \/“2_2‘”2(%)2*”“
For m > 5, (§)z+2 > 0.91, \/,u —2p+2(5)2+2 > 0.9 and 5 > 0.3 >
sms- S0 8‘4(8‘;’7“) >0, A(p,m) > A(1,m) and
1
8 8\/—1+2)\ zrz
A(l,m) = 32\ Fmr A TEE o4 b

A A ’

7
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1
0A(1,m) —4X" A In ) 10m? 4 15m 42 / __1 4(5m + 2)?
' 7 = A\ (Gm+2)2m+2) (] A 5m+2 —1 2\ 2my2z — —~— 7
om | (1+ A 52m 1 2)

(5m + 2)2\/ —1 + 2\ sz

1
AN T
:: A 2 In A B(m),

(5m + 2)2\/ —1 + 2\ Tz

107n2+157n+2
AGmt2)Em+2) In X/ 1 —10m?+2 2 __2 . 48(bm+2)
B = —1 42X e[ ——— (1 + )\ 5mt2 2N A2 — ———=
(m) (5m + 2)2 * G2z 0t )+ = Sem+op
m2 m—
+(5lnjz)2[(1o ) \GrrCn) |/ 1 4 2\ TR
m

1+ A" 2(5m + 2)2

Vo1 oamn GmH2?

10m +11m—2
For m > 5, B80m+2° 149 35 (Gmt2? B AGmEn) < 2,794, A 2 > 0.91 and

5m
+\5m+2

J

., » 5(2m+2)3 (2m+2)2
we have
5m S5m—2
Em+2 5m—+2 101n A o o
(%);ﬂ R +2>2(01n+2x2:2)2[(_H%_@W%+2Agm+§)
—1 42X\ T2 " - "
(5m + 2)2
)\5m+2 )\5m+2 _
= * J5@m 12
10In A m me Tmis
S ( )2( n o )3[(>\55n+2+>\§2n+§)(—1+0.75>\2w}+2)
om +2)%(—1 42X 2m$2)2

P ABTE (—1 4 2\ Zmr2))].

. 1 7 __1 15\ — 1 10 7 5m—2 5m
Since —1 +2A72mF2 + £(—140.75A72m+2) = PA"2m¥2 — > 0 and gAsmF2 — (AFm+2 4
5m—2
M) AT AT

1 1
V —142)\ 2m+2 V —142)\ 2m+2

(—109.35+ 1.1+ (8 -2.794 + 6 - 12.5)) < 0.

dm—2 4 dm—2 5m
AsmF2) = (A5mF2 — 0.75\5m+2) > 0, we can get ( > 0, <

2\ <6 and
B —_—
(m) < Gmr 22
Therefore, B(m) decrease as m increases and B(m) > lim,, ..o B(m)2XA — 5. For X\ €
(2.61,3], B(m) > 0 and % < 0, then A(1,m) decreases as m increases, A(u,m) >

limy;, 00 A(1,m) = 0 and (4.41) holds.
Therefore, (4.34) holds. By (4.25), f fu--- fu(z) — x gets the minimum value at
—_——

k
x=1 —% and x = y*, then because of (4.34) and f f,--- fu(1— ) >1-= (2 32) holds.
——

k
Case (4). k = 5m+3 for m > 5. See Figure 4.18, we will prove the following inequality:

1
1 1 u—\/u2—2u+2\/u2—2ﬂ+2(’§)2m+3
fA(fu(*

— >
2 2o sy ) 2p

78
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5m f,
................. N
2 e f —1‘ :
Ve . 2 \3/ M2y

1
u—\/u2—2u+2\/u2—2u+2(’§)w

Figure 4.18: fi(fu(3 — - 5m+i/1y5m+zx)) > o

[y 2 p 2 8u* 8u fiy 1
Apem) = (=G5 4y (i) s B 32,y — o4 oy

and differentiate A(u,m) as to p to get

9A(pu, m) 2 3 8u oy o2 20 g2 2 Jhy 4
— - =6 - 92 - 20 — 2)(—)5m+3 5m+3 — — (Z_)5m+3
2041 o2 = A e = 2)() e 4 s (R) Gty
4 W 4 w1
5m 3 2_9 2 2_9 2(5)2m+3
5m+3(A) + +A\/u p+ \/u pt2(5)m
f 1 e T
4pu \/u2—2u+2(§)W1+3

DY
\/u2—2u+2\/u2—2u+2(‘;)2m1+3

For p > 5, (%)2ml+3 > 0.9189, \/,uQ —2u+ 2\/,112 —2u+ 2(%)2ml+3 > 0.911 and then we

1
\/u2—2u+2\/ﬂ2—2u+2(§)m

can easily get X > % > 5m1+3. So aAgL’m) > 0, A(p,m) >
A(1,m) and
2 \/ 1+2¢—-14+2)\" 2m+2
A(l,m) = 3 =2\ 5 — \~ Sgs _ O
OA(1,m) 4Nz In )

om N T T
(5m +3)2\/ =1+ 2\ 23/ =1 + 2/ —1 4+ 2\ 2m+3
10m +22m+6
JACmEEmES) (1 4 N7 s )V =142\~ 2m+3\/ 142V —-1+2\" TS

79
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10m 22m+6
AN (In A - NERSRES (1 4 A~ ) (<1 4 21/ —1 4 205 — S

>

(5m + 3)2 —1+2)\2m1+3\/—1+2 142\ s

- 4 "z . (In)) )

(5m +3)2\/ =1+ 2\~ 2m+3\/ 1+2¢—-142X" TS

We differentiate B(m) with respect to m to get

1 10m?429m+6 —10m?2 + 60 72 2 1
B'(m) — M[ww&zm% In \( TQJ%’;JF (1 4+ A" 5078 ) (=1 + 21/ —1 + 2\~ 779

F10AFRE (—1 + 20/ —1 + 2\~ Z73)

_ 1 _ 9m+9
4(/\ 2m+3 )\ Gm+3)(2m+3) )(5m + 3)2

(2m + 3)2\/ =1 + 2)~ 7073

m?+22m+6
Since =IOMEHE0MAT2 < 792 \GEECA Y InA < 3.32, /~1+2X7 55 > 0915 and

8(5m+3)2 72(5m+3)3\,  _ 72(5m+3) / 6.64 27(5m+3)
(3'320.915(2m+3)2 ~ 5(2m+3)3 Vi = @m+3)3 (92015 — 5(2m+3) ) <0, we can get

72(5m + 3)3
5(2m + 3)3

) = J

1 8(5m + 3)2 72(5m + 3)3
B’ ——[3.32-(0.722-2+ 10 —
(m) Bm 132032 10+ G o5@m 137~ SemTa)p
1 50

So B(m) decreases as m increases and B(m) > lim,, oo B(m) = 2A—5. When \ € [2.61, 3],
B(m) > 0, %ilm) < 0 and A(1,m) is a decreasing function as to m, so we can get
A(p,m) > limy, 00 A(1,m) = 0 and (4.42) holds.

So (4.34) holds. By (4.25), fx fu--- fu(x) — x reaches the minimum value at x = 1 — i
—_———

k
and x = yx*, then because of (4.34) and fy f,--- fu(1 — f) >1--= (2 32) holds.
%/—/

Case (), k = 5m + 4 for m > 4. See Figure 4.19, we need to prove the following
inequality

1 1 1 1
f)\(fli(i o 9 57n+<1/m)) > 9 9 2m+€/m‘ (4.43)

Let A(u,m) = (u? — (%)5"12%)(4” p? + (& )5m+4) — % + 8(%)3213 and differentiate
A(p, m) as to u to get

9A(pu, m) 2 3 8u -2 20 g2 2 foy A
[ — _2 - — 2 _2 — ) 5m+4 —)5m+4 — — (—)5m+4
2011 67 =207 = o+ Qe =) 4 e ™ - Gy W
4 2 2m+3 ., _1
— — )5m+4 S — 2m 2
TS U o ear LS VA
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JN_,I/_L1

2 Q5mH \/_Sm—-l-JF)\’ l ~ 1 2 22m+2 w2y
2 {‘/ N
Figure 4.19: fa(fu(3 — W)) >3- W

1 2
%) 2m+2 _ (%)m
A Sm+4-4

Since 6M2—2u3—87” > 2u(3u—p®—1) > 0, (A)<2m+27(b5m+4) < 1.02 and ¢

(4)7m7
s— (1=~ ) > 0, we can easily get 2ALm) - 0 and A(p, m) increases as
[ increases,

e

2m+43

A, m) > A(l,m) = 3 — 2\ Fmrd — A\~ 5wt — ; 8\ e,

Since % > 44.2 for m > 5, we have

M —5)\7%111)\ 10m?4+19m+8 A(5m + 4)? B —5)\7%111)\

— B (5m+4)(2m+2) 1 m — —
am Gmiaz O (14X 5) 5em 2 T Gm i)

B(m).
We differentiate B(m) with respect to m to get

10m24+19m+8 —10m? + 8
B’ = \Gm¥H(2m+2)

(m) (2m + 2)2(5m 1 4)?

10m> 4 15m+4 10 16(5m + 4)

AGm+aeCem+2) — ——  Inp )\ — ——— ~

* Gm+42 " 52m+ 2)3

16(5m + 4)3] 1
5(2m + 2)3 (5m + 4)?

In A(1+ A~ 5mra)

[10AIn A —

— 30In3 —44.2) < 0.
(5m + 4)? (30In )

So B(m) decreases as m increases and B(m) > lim,, 0o = 2A —5 > 0 for A € (2.61, 3].
Therefore, W < 0 and we can get

A(p,m) > lim A(1,m)=0.

So (4.22) holds. By (4.25), fx fu--- fu(xz) — = attains the minimum value at z = 1 — i
——

k
and x = by, then because of (4.34) and fy fu - fu(l — 7) >1-—= (2 32) holds.
—_——

k
Concluding Case (I) and Case (II), Lemma 2.1.13 holds for all u € (1,%], A € (2,3]
and k > 2.
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45 3<pu<A<14++5

Proof of Lemma 2.2.1. Since p > 3.00547, so 3, > 0.690988. Under this condition,
By =1~— " f > 1— 1 holds for any A < 1+ V5. Because Fj,(z1) > 3 is obviously
true when ﬁu > xo, ie. p > 3.05018. So we just need to discuss the case when u €
[3.00547,3.05018]. In this case, F}(8,)(F},(8,))* > 1+ V5 when p = 3.00547, hence
k—1<20,s0 k<21

F,/(x)(F,'(x))*>1
F
| Fu / "
X1 B, X z Xi-1 X3 X1 By

F/ () (F (x41)) %=1

Figure 4.20: Fj,(xp_1) > xj,

2 /112
If F,(2) = xj, then z = ”ﬂ/“ 2 i K% Ty order to prove (2.46), we just need
to prove the following inequality as Figure 4.20 shows

F(2)(Fl(2))F 2 > 1.

This means that we will prove the following inequality

p/ p? — Adpay,

(\/u2 — 24— 2/ 12 — dpap/ 2 — dpay) > (4.44)
3w+ p? —dpxy) —

Because /iy < % < 712, we just need to prove the following inequality

A3 (p/ p? —dpay) — A2 p?

Alp, zp, k) = (\/M2 — 24— 2/ p% — Apag/ 2 — dpay) T - :2 > 0. (4.45)
Note
W —(k—l)(\/u2—2u—2 12 — dpap/ g2 — dpay)
21 (1 = 2 — 3/ — dpay),
\/M2 — 2 — 2y/pi? — dpag/p? — Ay,
DA, zr k) (K 1)(\/#2 = 24— 2/ — dpap/ P — dpay) 2
O

\//P — 2 — 2v/pi® — dpap/p® — dpay,

(1= 1) (1? = dpy) + (n — 223) (0* — 20— 3v/ 2 — dpay)] + —
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If \/,u2 —2p — 2/ 1% — dpxp/p? — dpxy > 1, then (4.45) is evident. Otherwise, A(u, zx, k)

is decreasing with respect to k. Meanwhile, since \/,u2 — 4pxy, < +/3.050182 — 4 - 3.05 - 0.690988 <
Tand p? —2u—3/p2 — dpxy, = (u—1)2—1-3y/pu2 — 4pxy, > 0 for p € [3.00547, 3.05018]

and z, € [0.690988,0.7378252], we can get that Z2Uak) < 0 and 2AUbe) 5 . Therefore,

oxy, )
A(p, zx) increases as p increases and xy, decreases. So we have the following conclusions:

(i) When k < 5, xp < 0.7378252, A(u, z), k) > A(3.00547,0.7378252,5) > 0;
(i) When k € [6, 15], 1 < 3.02166, z, < 0.71431,

A(p, x, k) > A(3.00547,0.71431, 15) > 0;
(iii) When k € [16,21], 1 < 3.00603 and z, < 0.6922,
A(p, zr, k) > A(3.00547,0.6922, 21) > 0.

As a result, (2.46) holds and Lemma 2.2.1 is proved. il

Proof of Lemma 2.2.2. First, solving F}(z1) = 1, we can get

A—2 1 3 3

x1(\) = ) cos(g arccos YCESVR Yo 2))

+

N

Set A(X) = Fx(Fj,(x1(X\))) — z1(N). We only consider the case when p = 3. If this is true
for A(A) > 0, then A(X) > 0 for all u > 3.00547.

AN = 92 (NN — 21 (M) = 31 (A) + 321 (M) (1 — 92, (N) (1 — 21(N)(1 = 321(N) 4 322(N)))
(1 =9z (M\)(1 — 21 (M)A = 3z1(\) + 323(N))
1

+81Az2(N) (1 — 21(V)2(1 — 3z1(\) + 322 (N))?) — §].

We use maple to differentiate A(X) with respect to A and observe A’(A) > 0. We don’t
include the computation as it is quite lengthy. So we have

AN > A(3) = 0.

So (2.47) holds for z = x1. Note when for z € [y, z1], Fy(z)F,(z) < 1. Let B(z) =
F\(Fu(x)) — x. Then

B, = F(Fe)F) -1  (Fu) <2
< FX(Fu(2))Fy(Fu(x)) =1 (Fu(z) = By > x2)
< 0.
So B(x) is a decreasing function as to p and B(x) > B(xz1) > 0. Therefore, Lemma 2.2.2
holds. f
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F,/(X)(F, (¥)’<1 9 F/F/ ()< Fr(x)<1,F/(X)<
Fu
X3 B X3 Fx F)\X1 B;.
ALY
| Fa

Figure 4.21: 8, € (3, 2]

Proof of Lemma 2.2.3. First, we will prove (2.48) holds for 2z = y,. For this, we first

pt \/.U2 —2p—24/p2—4pz2

2p

need to prove F,(F)\(z2)) —m > 0, where F},(m) = x2. Note m =
as Figure 4.21 shows. Let A(p, A, x2) = F,(Fx(x2)) — m. Then we get

A, Ny x2) = p2XN220(1 — 29)(1 — Azg 4+ Ax2) (1 — N22o(1 — 29)(1 — Azp + Az3))
(1 — pA222(1 — 29) (1 — Aag + Ax3) + u(N2w2(1 — 22)(1 — Aag + Ax3))?)
u+\/u2—2u—2 p? — 4pws
_ o .

It is easy to see that

8A(,u, )\,xz) N aFH(F)\(xQ)) 8F)\(1’2)

BA - 8(F>\(a:2)) 8/\ ’
82A(M,/\,$2) . 82F#(F,\(a:2)) 8F)\($2) )2 aFH<F)\(.%'2>) 82F)\(l‘2)
8)\2 N 8(F)\(a:2))2 a)\ 8(F)\(x2)) 8)\2 .

Note (>\ 2) — Az(1 — z)(2 — 3\z + 3\z?) and 82133(296 2) = 22(1 — z)(1 — 3z + 3Az?).
Moreover, % = p?(1 —22)(1 — 2ux + 2ux?) and M = —2u%(6px? —6px 4+ p+1).
it is easy to see 1 — 3\x + 3\x? < 0 for A € (3,1 + /5], (1 —22)(1 — 2ux + 2ux?) > 0 and

6ux? — 6pux + pu+1 >0 when o < 1+ /5 and z2 > 0.690988. Therefore, % <0

and A(u, A, x2) reaches the minimum point when A is at the start point or end point.
Moreover,

OA(p, A, 2)

3 = Mao(1 —22)(1 — Awg + A23) (1 — Nao(1 — z2)(1 — Aag + A23))
1

(2 = 3uN?29(1 — 22)(1 — Azg + A23) 4 3u(A\ao(1 — 22) (1 — Azg + Ax3)?)
_ o p—2x _
(1 ity )+ 2y/ 2 — dpxe

2p \/u —2u = 24/ p? — 4pas
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Since p € [3.00547, 3.05018], we have xo > 3, > 0.690988, and pi\/p? — 4pws —p(p—222)+
2(p? —4pxe) = pn/ 2 — 4pxo 4+ p? —6pxs < p(p—6-0.690988 + \/u2 — 4y - 0.690988) < 0.

So it is evident that W > 0 and A(u, A\, x2) increases as p increases. Moreover,

OA(p, N\, x2) . om
T = F)\(.Z'Q) FM(F)\(.TQ)) — aixg
= N1 = 229)(1 = 222y + 20a3) (1 — 2F) (22)) (1 — 2uF (w2) + 2p(Fx(22))?)
1
\/(u2 — 20— 23/ p? — Apxe) (p® — dpxs)
2
PAUNT 90202014 At 6003 — 640) (1 — 2P (2))(1 — 20 (12) + 20(F (2))?)
2

=202 N2(1 — 229)(1 — 2Axo 4+ 2X23) (1 4 p1 + 6(F)(2))* — 6uFy (22)) FX (2)

1
o (07 = 20 = 20/ = o) (= Apiwo)] 2 (—4p) (1 — 20 — 33/ — dpu).

Since Fj(x2) > 0, z2 > 0.690988, so

1 A
6 \x? —6A\z + A +1 = 6A(x—§)2—§+1 >1—0.2603\ > 0,
(1 —2u)* — (3v/p2 — dpx1)? = plu(p —2)? — 9 + 3612)
> plp® — 4p® — 5p + 24.87) > 0.

Thus w < 0 and it follows that A(u, A, z2) reaches the minimum point at the start
point or the end point of x5 for some glven wand .

Now, let D{si, A k) = F{(3,) (FL(8)* = 2 (/G + 1 = 3)Mp+ 1=/ + D = 3))—
12 (—p? + 2 + 4)F. Then
PR B D= )N+ 1= VG D= 9) — 2l + 2+ 2

2
+5 0+ V(D =3+ 1= V(e + D= 3)(—p +2p + 4)F

>0,
2
W - —3:4(1+ (b+1)(p—3) A +1— (e + 1) (u—3) — p2(—p* +2u + 4)F
2 .
ot 2 (uj_‘l)(u_g)wuﬂ— (i + D) —3)) — 1)
%(H i D= 3) (=2 + 20+ P - —E— L) 9y
(u+1)(p —3)

+@1+m A +1 -/t D)(u—3) - 1]
(—1” 42+ )11 = p)
2A(p = 1) (=p +2p + 4)F

2/ (4 1) (= 3)
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Ap+1-

2 (p —

(u+1)(u 3) —n
1)(—p? +2p + 4)*

(1, k)

w3

Consequently, E)DT’

increases.
3.05018 <
before.

(n+1)(n—3)

Since it is easy to see that —2\\/(u + 1)(p — 3) + (A — ) is an increasing function with
respect to A and a decreasing function with respect to u, then for 3.00547 < p < A <

1+ \/5, we have
=20/ (1 + 1) (1t — 3)+u(A—p) < —2X1/(3.00547 4 1)(3.00547 — 3)+3.00547(14+1/5—3.00547)

AL+ (e +1)(pn—3))]

(=22 (4 1) (= 3) + (A — p))

So if we can make sure D(p,1 + v/5,k) < 1, then D(p, A\ k) < 1.
p<A<1++5 D(u,1++/5,1) < 1. Note this case was already considered
As a result, for K = 2, we just need to discuss the value of A(x3) when p €

< 0, so D(u, A\, k) increases as A increases and decreases as p

When

[3.00547, 3.05018) and A € (i1, 1+ /5]. We can get the following cases.

(i) u € [3.025,3.05018].

It is easy to know if A <

3.16668, D(u,\,2) > 1. But

D(u, A, 2) < 1, thus X € [3.16668, 1++/5] and then we can get x5 € [0.690988, 0.7378252],

A(3.025,3.16668,0.7378252) > 0,
A(3.025,3.16668,0.0.690988) > 0,
(

(ii) p € [3.015,3.025), we know if A < 3.0995, D(u,\,2) > 1.

>

vV V. V V

A(3.025,1 + V/5,0.378252) > 0,
A(3.025,1 + v/5,0.690988) > 0,

min{A(3.025,3.16668,0.7378252), A(3.025, 3.16668, 0.690988)
A(3.025,1 + v/5,0.378252), A(3.025, 1 + /5,0.690988)} > 0.

But in our case,

D(p, A, 2) < 1,50 we have A € [3.0995, 14++/5] and we can get 75 € [0.690988,0.734151].

> A(3.015,3.171,0.734151) > 0, for A € (3.171,1 + V5],
> A(3.015,3.0995,0.72604) > 0, for A € [3.0995,3.171],

A(M? )\ T2

A
A
A

h>

A

s >\ T2
s A, T2
H T2

N)A L2

T2

~— — — — ~— —

> A(3.015, 3.0995,0.690988) > 0,
> A(3.015,1 + /5,0.734151) > 0,
> A(3.015,1 + v/5,0.690988) > 0,

> min{A(3.015,3.171,0.734151), A(3.015, 3.0995, 0.72604)
A(3.015,3.0995,0.690988), A(3.015, 1 + v/5,0.734151), A(3.015, 1 + v/5,0.690988)} > 0.

(iii) With the same argument as above, we can prove A(u, A, z2) > 0 by dividing x into
small sections, such as p € [3.01,3.015), u € [3.0073,3.01) and p € [3.00547, 3.0073).

1 ++/5, A(u, A, x3) > 0. Therefore, (2.48) holds for

As a result, when 3.00547 <

x =y9. Let B(z) =

B,

= F,\(
< FA(
< 0.

Bw< AL

F\(F,(F,(x))) — x, then when x € [, y2],

So Lemma 2.2.3 holds.

u(F,
u(E;

)E,(F,
D(E,

u()
)

u(z

()

u(@)F(z) —

u(E; (ﬂﬁ))))2 -1
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F/)(F/0) <1 | F/(F, ()<<
| () )
AV A\ A~
X1 ﬁu Xk Fr X1 Ey Xk B,
/Fu\/\l-e\
z
Fx

Figure 4.22: Fy(zx) >y

Proof of Lemma 2.2.4. We will prove Lemma 2.2.4 in two different cases. When

O () > 0, we will use the similar method as the case when 1 < p < A < 2. While for the

oA
case mgix) < 0, we will use different method.

Case 1. angg\I’“) >0, i.e. 2—3\xp + 3/\33% > 0.

Let A1 < Aand A2 < A; defined by FY, (8)(F/,(B))F~" = 1 and F, (/Bu)(F;;(ﬁu))k_Q =1
respectively. We use induction principle. When 6 > Ao, for = € [5,, yx—1], we first assume

Fy(Fy--- Fu(x)) > =, (4.46)
—_——
k—1
where F), - Fj,(yp—1) = T—_1.
k—1
We now prove that (2.49) holds for x € [3,, y], i.e.
Fy(F, - Fu(z)) > =, (4.47)
k

where F, - F,(yx) = .
—_———

k
Recall the property of D(u, A, k) in the proof of Lemma 2.2.3. Consider D(u, A\, k) = 1.
We can express A as a function of p and then X(u) > 0. When k =2, A =1+ V5, we
have 1 = 3.035. Note D(u, A,2) < 1 when p > 3.035, so D(u, A, k) < 1. So we just need
to discuss the case when p € [3.00547, 3.035).
Let A\g € (A2, A1). When p is in a small interval, it is possible to choose a constant Ay
(independent of p) such that F)\(zy) > F),(2) as the figure 4.22 shows, where F),(z) = xy,

0 7 — N+\/N2_2H—2\/M2_4chk

2p
z2(1—2) = ﬁ + 7”122;3“”. Let A = Fy(zx) — F)\,(2), then

. Obviously, z € (zk, zx_1 by Lemma 2.46. Note xx(1—xy) >

Alp, \zr) = MNap(l— )1 — Axy + Azh)
o, 1 N/ p?—4duxy 1 /2 —4duxy
Mg+ 5 )=l + 55 —)) (448)
21 21 21 21
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If we differentiate A(u, A, ) with respect to xp and u, we can get

A
OAWATE) 321 901 — gy + 2002)
oxp
)\2 1 24
b0 (1 2x(=— + @)),
T 2 o
DA% (u, N, i) 2 2 224 Ao — i
947 A ) —2)2(6A7 — 6Azg + A+ 1) — :
ox (6] )" W — ) Vi = dpay

Note 622 —6Az +A+1 >0 and A\g > Ay > p, so % < 0 and A(u, A, zx) reach its
k

minimum value when z; reach its maximum or minimum point. Moreover,

OA(u Azg) _\p—pt 6w — /p® — dpay (1- )\o(i N V12— Ay,
ou U 22/ —

o oz )

N Ly —4u$k)(—u+6xk — /1?2 = dpay,

—+

2u 242 202/ 2 — dpxy

)

o B bx — /p? — Ay, L /p? —Adpxy,
= X 2Xo(-+ %55 —) — 1]
2u2N\/ 2 — 4wy 2 24

Considering the following facts,

—p+ 6z — \/p? —4pxy > —p+6-0.690988 — \/u2 —4-0.690988u
> —3.035+4.1459 — \/3.0352 —2.76 - 3.035
— 0.1973 > 0,
/\0(i + 7\/m) > u(i + 7\/m) > 1.
24 242 24 242 2

Therefore, %j"rk) > 0 and A(u, A, xy) is an increasing function as to p. So A(u, A, xx)
gets the minimum value when p is at the lowest value and zy is at endpoints.

Solving the inequality ang(;”’“) > (0, we can get xj > %4— V9)‘;;24)‘. Consider 3, >

% + 7””‘2;24’\, we can get u > 3.0176 as A < 1 + /5. In other word, if g > 3.0176, then
2 — 3A\zg + 3\z7 > 0. As a result, F)(z) must be an increasing function with respect to A
for any A € (1, 1++/5] and € (B, 31). As a result, when p > 3.0176, we can use Case I
to prove. Otherwise, we will use Case I and following Case II to prove.

Case I.  2B3(t) e 2 — 3z + 302 < 0. B, < a;, < 0.709735. Tt follows
that p < 3.0176. But £, > 0.690988 when p > 3.00547, so 3 = 0.690988, and then

A < 3.1222. Let & = F)\(z) and zy = F,(Fy,--- Fy(z)), then x, = )‘+\/’\272’§;2V Ao
———

k—1
Since x — Fy,(x) > Fj,(x) — F,(Fyu(z)), we choose [ such that l(z — F,,(z)) >  —z, and it is
easy to see that [ < k as Figure 4.23 shows, then we need to prove the following inequality:

A+ VA2 220 — 2002 —dhx
2\ ’

x—l(x— Fu(z)) >z = (4.49)
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| e

X1 B, Xl X - X

Figure 4.23: I} = 2 — F,(x) > jla = j(Fu(z) — Fu(Fu(z))), L=F 1,

Let M (p, A\, z,1) = —l(x — Fy(x)) — )‘+\//\L2/;;2' A= 14 s obvious that M(p, A\, z,1)
decreases as [ increases. Meanwhile, we differentiate M (u, A\, x,1) with respect to p, A and
a”"?

OM (p, A\, z,1)

o =lz(1 — z)pu(2 — 3ux + 3pz?).

Since it is easy to get 2—3px+3ux? > 0 for z > 0.690988 and 1 < 3.0176. So %}j’x’l) >0
and M (p, A, z,1) increases as p increases. Moreover,

OM (p, N\, z,1) B A —6x + VA2 —4)\z
2 IMA2 — 2\ — 202 — DV A2 — da
OM?(pu, N, ,1) B 1
2% 2X2(A2 — 2)\ — 2¢/A2 — 4Ax)(\2 — 4)x)

[=(2\z + 6222 — 4Aa:)\/A2 o2V daa

A = 62 + VAT D) [(A — (A2 — 4hz) + (A — 22)(A% — 2X — 322 — 4Az))]
VA=AV A2 - 23 - 2V — 4

Let mi(\,z) = A+ 7”\22_“’ — 62, then my(\, z) < my(1+/5,0.690988) < 0. So we just

need to check the sign of —2x(\% —2A—2v/A2 — 4\x) +0.5[(A—1)(A2 =4 \x) + (A —22) (A2 -

2) — 3V A2 —4)7)]. Let m(A\, z) = —42(A2 —2X =2V A2 —4)z) + (A= 1) (A2 —4)z) + (A —
27) (A% — 2\ — 3v/A2 — 4)\z). Then we have the following inequality as z > 0.690988,

m\z) = (A=62)(A\% — 2\ — 3V A2 — 4\x) + VA2 — Da(—4x + (A — 1)V A2 — 4)z)
VA2 — (=4 + (A — 1)V A2 —4)x)

VA2 — 4Xz(—4 - 0.690988 + \/5\/(1 +V5)2 — 4(1 + v/5)0.690988)
0.

+

-

NN A
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2
As a result, W < 0 and M(pu, A\, x, k) gets the minimum value when A is at the

endpoints. Moreover,

OM (11, A, 1 !

OMGL A D)y 4 21— 22)(1 — 2 + 2ua) — ’
ox \/)\2 =22 =2V A2 — VA2 — A

OM2(u . z.1 2A0(A% — 2\ — 3v/AZ — 4\

%L;CQ’:U’) = 20 (6puz® — 6pr +p+1) — ( VA )

(VA —2X =2V — DB (VA? = )

Let ma(\,z) = A2 — 2\ — 3v/A2Z — 4\z, then ma(\,z) > ma(1 + v/5,0.690988) > 0. At
the same time, since 6ux? — 6pz + pu + 1 = 6u(z — %)2 —5+1 >0 when p < 3.0176,

2
then we can get M < 0 and M (u, A, z,l) gets the minimum value when x is at
the endpoints.

oz
In conclusion, for p € [3.00547,3.0176], M (u, A, z,1) increases as p increases and k
decreases. So M (u, A, z,1) reach the lowest point when = and A get the endpoints.
Now we can prove (2.49) for k = 3,---,21 respectively. Now we take two examples
k =3 and k£ = 6 to show how to use Case I and Case II. Other computation will be
omitted.

When k =3. a). When 2— 3z, + 3z} > 0, use Case I. Consider F} (8,)F},(3,)* =1
and F>’\2 (ﬁu)FL(ﬁ#) =1, and

1 N u? —4dux 1 N u? — 4dux
A(p, N z3) = A2a5(1 — 23)(1 — Aaz + Aa2) — )\%(ﬂ p VAT TSy )\O(Z p VI ONES

242 242

Because A > Aq, it is easy to see that A(u, A\, z3) > A(p, A1, x3). According to the above
description, we have the following result.

(i) When p € [3.0275,3.035], obviously we have z3 € [0.690988,0.72666], A > A1 >
3.1838, and Ay < 3.16344. We choose \g = 3.164 > A5 and then we have

A, M, z3) > min{ A(3.0275,3.1838, 0.72666), A(3.0275, 3.1838, 0.690988) } > 0.

(ii) When p € [3.023,3.0275], then 3 € [0.690988, 0.725], Ao < 3.12833 and A; > 3.153.
We choose \g = 3.12833 > A9 and then we have

A(p, A1, a3) > min{A(3.023,3.153,0.725), A(3.023,3.153,0.690988)} > 0.

(iii) When p € [3.0195,3.023], then x3 € [0.690988,0.723961], Ay < 3.10742 and \; >
3.12951. We choose \g = 3.10742 > A5 and then we have

A(p, M, 3) > min{ A(3.0195,3.12951,0.723961), A(3.0195, 3.12951, 0.690988)} > 0.

(iv) When p € [3.0171,3.0195], then x3 € [0.690988,0.723151], Ay < 3.09121 and A\; >
3.11347. We choose \g = 3.09121 > A5 and then we have

A(p, A\, 3) > min{A(3.0171,3.11347,0.723151), A(3.0171,3.11347, 0.690988)} > 0.
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(v) When p € [3.013,3.0171], then z3 € [0.690988,0.72259], A2 < 3.08011 and A\; >
3.086. We choose Ay = 3.08011 > Ao and then we have

A(p, A\, 3) > A(3.013,3.106,0.72259) > 0, A € [3.106,1 + v/5], 3 < 0.72259,
A(p, A\, 3) > A(3.013,3.086,0.71003) > 0, A € [3.086,3.106], x5 < 0.70813.

A(p, A, z3) > man{A(3.013,3.106,0.72259), A(3.013, 3.086,0.71003),
A(3.013,3.086,0.690988) } > 0.

(vi) When p € [3.01,3.013], then x3 € [0.690988,0.7222], A2 < 3.0612 and \; > 3.066.
We choose \g = 3.0612 > A5 and then we have

A(p, N, 3) > A(3.01,3.096,0.7222) > 0, X € [3.096, 1 + /5], 23 < 0.72250,
A(p, A, z3) > A(3.01,3.066,0.70536) > 0, A € [3.066,3.096], x5 < 0.70536.

A(p, A\ w3) > min{A(3.01,3.096,0.7222), A(3.01, 3.066, 0.70536),
A(3.01,3.066,0.690988)} > 0.

(vii) When p € [3.0075,3.01], then x3 € [0.690988,0.7209], A2 < 3.0473 and A\; > 3.05.
We choose Ay = 3.0473 > A\ and then we have

A(p, A\, z3) > A(3.0075,3.12,0.7209) > 0, A €[3.12,1+ \f] < 0.7200,
A(p, A, z3) > A(3.0075,3.06,0.7079) > 0, A € [3.06,3.12), x5 < 0 7079,
A(p, A\, z3) > A(3.0075,3.05,0.6982) > 0, A € [3.05,3.06), « g 0.6982.

Ap, A\ z3) > min{A(3.0075,3.12,0.7209), A(3.0075, 3.06, 0.7079),
A(3.0075,3.05,0.6982), A(3.0075, 3.05, 0.690988) > 0}.

(viii) When p € [3.006,3.0075], then z3 € [0.690988,0.720271], Ao < 3.03561 and A\ >
3.04. We choose \g = 3.03561 > A9 and then we have

A(p, A, 3) > A(3.006,3.065,0.720271) > 0, A € [3.065,1 + v/5], x5 < 0.720271,
A(p, A, m3) > A(3.006,3.04,0.69811) >0, A € [3.05,3.065), z3 < 0.69811,

A(p, A, m3) > min{A(3.006, 3.065,0.720271), A(3.006, 3.04,0.69811),
A(3.006,3.04,0.690988)} > 0.

(ix) When u € [3.00547,3.006], then z3 € [0.690988,0.7199], A2 < 3.0286 and A >
3.03661. We choose A\g = 3.0286 > Ay and then we have

A(p, A, 3) > A(3.00547,3.09,0.7199) > 0, A € [3.09,1 + /5], 23 < 0.7199,
A(p, A\, 3) > A(3.00547,3.03661,0.702) > 0, A € [3.03661,3.09), 23 < 0.7079,
A(p, A, m3) > min{A(3.00547, 3.09,0.7199), A(3.00547, 3.03661, 0.702),
A(3.00547,3.03661,0.690988)} > 0.
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b). When 2 — 3\z; + 3)@% < 0, use Case II. z3 < 0.709755. We can also get A <
3.144778 for p € [3.00547,3.0176] and = < 0.7176. Recalling the property of M (u, A, z l)
we can get

M, M\, l) > min{M(3.00547, 3.144778,0.690988, 3), M (3.00547, 3.1222, 0.690988, 3),
M (3.00547, 3.1222, 0.7176, 3), M (3.00547, 3.144778,0.7176,3)} > 0.

When k = 6.
1. Assume 258 > 0. Define Ay and Ao by F}, (8,) FL(8,)° = 1 and F}_(8,)FL(5,)* =
1, and
Alp, Mzg) = Nag(l — x6)(1 — Azg + Azd)
% ou 22 Naop 2p2 ’

Recall the property of D(u, A, k), solving F} (8,)F},(6,)° < 1 and F (8,)F},(8,.)°

1 to get p > 3.0182 and p > 3.0156. Recall that A(u, A\, k) must be increasing in
A for A € (u,1 ++/5] when pu > 3.0176. So when u € [3.0176,3.0182], or when
1 < 3.0176 but 2 — 3Axy +3/\x% > 0, then with the same argument as above, we can
also prove A(u, A, zx) > 0 and get (4.47).

2. When ang()fE’“) < 0. While for p € [3.00547,3.0176), We can calculate the range of
xr and A as follows. When 2 — 3Ax; + 3/\37% < 0, B, < B(3.0176) = 0.709755, so
xr < 0.709755. So zj € [0.690988, 0. 709755] and k > 6. While for z; > 0.690988,
we have 2 — 3\zy + 3z} > 0 when A < m < 3.1222. So A € [3.1222,1 + /5]

Since it is easy to get
M (3.00547,1 4 v/5,0.690988,6) > 0, M (3.00547,3.1222,0.690988,6) > 0,

so we just need to check the sign of M (u, A, z,l) when = gets the maximum point.
First note x = F)(zx) < 0.71916 for 3 < 0.709755.

2 / 2
Let N(u,z,j) = u-ﬂ/u 2“ i L j(z — F,(x)). As Figure 4.23 shows,

li>liy1,(i=1,--- k- 1) IS obvious and then j > 1. Then
ON ' -6 V2 —4
(g’m’]) - LTV e +jpa(l — ) (2 = 3pa + 3pa®),
a 2u\/u2 — 20— 2/p% — dpz/p? — dpa
ON2(u, 2, §) (3+\/ﬁ)(# —2p = 2y/p? — dpz)(p — 4x)

Oudz (12 — 20 — 2/1% — dpuz) 3 (2 — dpa) 2
(g 6 /P = ) (i + 200+ 33/~ )
(12 — 2 — 24/1% — 4puz) % (42 — 4pz) 2
+2j2(1 — z)(1 — 3uz + 3ux?) < 0.
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Recall that —u + 625 — 2 —duzxp > 0 and —p + 6z — \/pu? — 4px increases as
H H

increases, so p — 6z + \/p? — 4px < 0. We also have p? — 2u — 3/ 2 — 4px > 0,

) A A
3ux? — 3px +1 < 0 for < 0.71916. Therefore, % < 0 and then %}f’])
decreases in x. So for x > (3, it is easy to get

8N(/.L,.%’,]) < aN(,LL, Bpnj)

=0.
ou o

Consequently, we have ON(p2d) () and N W, x,j) decreases in p.
op

When k = 6, we will demonstrate in the following that it is sufficient to take j =1
in the case (a) and (b). But in other cases, we take different valve of j.

(a) p € [3.013,3.0176], then A > 3.166, and

M(p, Mz,0) > min{M(3.013,1 + v/5,0.71916,6),
M (3.00547, 3.166, 0.71916,6)} > 0.

(b) p € [3.011,3.013), then 5 € [0.700938,0.708483] and A > -2 = > 3.18, so
3(zp—x;)
x € (0.706,0.71731) and then we have

M(p, Mz, 1) > min{M(3.011,1 + /5,0.71731,6),
M (3.011,3.18,0.71731,6)} > 0.

(c) p € [3.009,3.011) and then a € [0.69944,0.70771]. A > 52— > 3.172. So

(zx—aj)
x € [0.703823,0.716188]. We can get N(u, A\, z,1.05) > 0 and then | = }:;ij =
5.329. We can get

M(p, Az, ) > min{M(3.009,1+ /5,0.716188, 5.329),
M (3.009, 3.172,0.716188,5.329)} > 0.

(d) 41 € [3.007,3.009) and then a, € [0.694127,0.706915]. A > 52— > 3.14. So
k
z € [0.69578,0.71505).
For A € [3.18,1 + v/5], 2 € [0.70224,0.706915] and = € [0.70802, 0.71505] We

can get N(u,x,1.05) > 0 and then [ = t;.j = 5.329 and then

M(p, Az, 1) > min{M(3.007,1+/5,0.71505, 5.329),
M (3.007, 3.18,0.71505, 5.329) } > 0.

For \ € [3.14,3.18), 2, € [0.694127,0.70313] and z € [0.695776,0.7097] We can
get N(p, A\, xz,1) > 0 and then | = 6 and then

M(p, Az, 1) > min{M(3.007,1 + 3.14,0.7097, 5.329),
M (3.007,3.18,0.7097, 5.329)} > 0.
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() 1 € [3.00547,3.007), z; € [0.690988,0.70611]. A > z—2 - > 3.1222.

(zr—23)
For A € [3.175,1 + /3), zx € [0.70154,0.70611] and x € [0.706976,0.713903)]
We can get N(u,x,1.075) > 0 and then [ = 5.0459. Consequently, we have

M(p, A 2,1) > min{M(3.00547,1 + /5,0.713903, 5.046),
M (3.00547,3.18,0.713903, 5.046)} > 0.

For A € [3.1222,3.175), =) € [0.690988,0.7018612] and x € [0.6931,0.707964]
We can get N(u,z,1) > 0 and then | = 6. Consequently, we have

MMz, l) > min{M(3.00547,3.1222,0.707964, 6),
M (3.00547, 3.175,0.707964, 6)} > 0.

Consequently, when k = 6, (2.49) holds.

In summary, for k € [3,21], when 2 — 3\z), + 3\z} > 0, we proveA(u, A, z) > 0 and
then (4.47) holds for z = y;. With the same argument as before, (2.49) holds. While
when 2 — 3\zy + 3\z7 < 0, we prove M (u, A\, x,1) > 0. As a result, cen22 also holds. In a
word, for 3.00547 < p < A < 1+ /5, Lemma 2.2.4 holds. #
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