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Abstract

In this thesis, we consider the random dynamical system from a sequence of random
quadratic mapping fεk

(x) = εkx(1 − x), where εk can choose µ or λ randomly, where
1 < µ < λ 6 1+

√
5. That means we consider Xk = fεk

· · · fε1(X0), where {εk : k > 1} is a
sequence with εk = µ or λ and X0 ∈ [0, 1]. As to this random dynamical system, we prove
the existence of the stationary solution when 1 < µ < λ 6 3 and the existence of random
periodic solution of period 2 for ε2i = ε2i+1 (i ∈ Z) when 3.00547 6 µ < λ 6 1 +

√
5.

Keywords: stationary solution, random periodic solution, random dynamical sys-
tems, random quadratic mapping, pathwise, invariant measure.
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Chapter 1

Introduction

1.1 The problem

Random dynamical systems are used to model the dynamics when it is influenced or
perturbed by some kind of random noises. In 1945, Ulam and Neumann [40] pointed
out the importance of random dynamical systems. In the last thirty years, the research
of random dynamical systems is further expanded especially in the field of stochastic
differential equations and stochastic partial differential equations in a series of work such
as [4, 23, 24, 28, 31]. Pathwise stationary solution and random periodic solution are two
central concepts in the study of random dynamical systems [4, 13, 14, 21, 20, 29, 31, 36,
37, 42, 43, 44]. To study them is key towards understanding the longtime behavior of
the random dynamical systems and their local and global topological structure. In this
thesis, we will consider a random dynamical system which is comprised by a family of
quadratic functions {fη : 0 6 η 6 4}, where fη is the map on the interval [0, 1], defined
by fη(x) = ηx(1 − x). Given a pair of parameter values µ < λ and a number γ ∈ (0, 1),
we consider a sequence of maps {fεk

: k > 0} with P (fεk
= fµ) = γ, P (fεk

= fλ) = 1− γ.
Here εk is a random variable with Bernoulli distribution:

P (εk = µ) = 1− P (εk = λ) = γ.

Define Ω = {(· · · , ε−2, ε−1; ε0, ε1, ε2, · · · εk, · · · ) : εk = µ or λ, k = · · · ,−2,−1, 0, 1, 2, · · · }
as the sample space of the underlying probability space for the random dynamical system.
Denote ω = (· · · , ε−2, ε−1; ε0, ε1, ε2, · · · εk, · · · ) and define the metric dynamical system
θ : {· · · ,−2,−1, 0, 1, 2, · · · } × Ω → Ω by θkω = (· · · , εk−2, εk−1; εk, εk+1, · · · ). We define
the evaluation map at position 1: e : Ω → {µ, λ} by the formula e(ω) = ε0. It is obvious
that e(θkω) = εk ∈ {µ, λ}. Moreover, for a given random variable X0 ∈ [0, 1], we consider

Φ0(ω, ·) = id, Φ1(ω, ·) = fe(ω)(·).

Φk(ω, ·) = Φk−1(θω) ◦ Φ1(ω, ·), Xk = Φk(ω, X0). (1.1)

with X0 independent of {εk : k > 1}. We can check that Φ defined above satisfies the
condition of random dynamical system given in Def 1.1.1 below. Firstly, we recall the
definition of random dynamical systems [4].

1
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Definition 1.1.1 Let (Ω,F , P) be a probability space and θ : Ω → Ω be a measurable
transformation which preserves the measure P, i.e. for each measurable set A ∈ F ,

P(θ−1A) = P(A). (1.2)

A discrete time measurable random dynamical system over (Ω,F , P, θ) on a topological
space X with Borel σ-algebra B is a measurable mapping

Φ : (n, ω, x) ∈ Z× Ω×X → Φ(n, ω)(x) ∈ X

satisfying the cocycle property: Φ(0, ω) = id and

Φ(n + m,ω) = Φ(m, θnω) ◦ Φ(n, ω) (1.3)

for every n, m ∈ Z and almost every ω ∈ Ω.

Here it is easy to check the probability P in our problem satisfies Definition 1.1.1, i.e. for
each ω, the number of µ and the number of λ in θ−1ω should be equal to those in the set
A, so we can get the equation (1.2). On the other hand, it is obvious to see the cocycle
property is satisfied by definition of Φ in (1.1).

These random dynamical systems, defined from a sequence of random mappings, com-
prise a mathematically rich class of Markov processes. There has been many research on
iterated random quadratic mapping on [0, 1] mainly based on seminal work of Dubins and
Freedman [19]. Bhattacharya and Rao [12] proved that there exists a unique invariant
probability π for the process Xk on (0, 1) when 1 < µ < λ 6 3 and the support S(π) of π
is a Cantor subset of [pµ, pλ] (pµ and pλ are fixed points of fµ and fλ respectively similar as
(1.5)) when fλ(pµ) > fµ(pλ) (1 < µ < λ 6 2). Bhattacharya and Majumdar [10] extended
the above result to the case 3 < µ < λ < 1 +

√
5. Unfortunately, there is a gap in their

proof. They use that [βµ, βλ] is an invariant interval, where βµ and βλ are defined similar
as (1.6) when η = µ or λ. Actually, this is not true in general. One needs more conditions
for the result to hold. While our main interest here is to study the pathwise stationary
solution and the random periodic solutions of the random mapping. We can see naturally
both stationary solution and random periodic solution give an invariant measure.

To see the motivation of random stationary solution and random periodic solution,
firstly recall some well-known elementary result about the fixed point and its stability of
the deterministic quadratic map [8, 30, 32, 22, 38, 39],

fη(x) = ηx(1− x), x ∈ [0, 1]. (1.4)

At the beginning, this family of quadratic maps arose as a sample models of population
biology. This model actually posses very interesting dynamics such as periodic solutions,
bifurcations and so on [1, 15, 6, 41, 25]. When η ∈ [0, 4], this function is sometimes called
an iterated map function, since it maps x ∈ [0, 1] to another value of x in the same range
[0, 1]. An x?

η satisfying
x?

η = fη(x?
η).

is called a fixed point of the iterated map. The subscript η indicates that x? depends on
the value of η. For the logistic map (1.4), there are two fixed points generally:

x?
η = 0, x?

η = 1− 1
η

=: pη. (1.5)
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When η 6 1, x?
η = 0 is the only stable fixed point. When η > 1, 0 and pη are both in

the range of interest between 0 and 1. For 1 6 η 6 3, there is only one stable fixed point
pη = 1− 1

η . Moreover

{
pη ∈ (0, 1

2 ] when η ∈ (1, 2],
pη ∈ (1

2 , 1) when η ∈ (2, 3],

and for any x ∈ (0, 1), fk(x) → x?, as k →∞.
Considering inherent uncertainty in many kinds of systems, a randomly perturbed

system is a useful model addressing uncertainty as well. Random dynamical systems
generated by monotone random maps can be applied in economics field, for example, as
model of survival or models of optimal transition of stocks from one period to the next
under uncertainty [10]. However, when 1 < µ < λ 6 3, for the random case, it is very
different. There is no ”fixed point” unless we only apply the same map fµ or fλ on the
”fixed point” of fµ or fλ respectively. It is easy to see that starting from any point, when
we apply fλ, the point will move towards the fixed point of fλ, and when we apply fµ,
the point will move towards to the fixed point of fµ. So the situation is very interesting
and there is no fixed point in the sense of deterministic dynamical systems. So stationary
solution should be understood in the sense of random stationary solution given below.

For η ∈ (3, 1 +
√

5], it is known that in this case fη has an unstable, or repelling,
fixed point pη = 1− 1

η which is encompassed by an attractive, or stable, period-two orbit
{αη, βη}, such that:

αη =
η + 1−

√
(η + 1)(η − 3)
2η

< pη = 1− 1
η

< βη =
η + 1 +

√
(η + 1)(η − 3)
2η

. (1.6)

In other words, the iteration alternates between one point and the other. Starting from
one of these points, we must iterate twice to return to the same point. The two points
constitute an attractor of period two, also called a 2-cycle, given that

βη = f(αη) = f(f(βη)),
αη = f(βη) = f(f(αη)).

These two points, which are not fixed points of f , are fixed points of the function:

F (x) = f(f(x)) = f2(x).

Needless to say, the situation in random case is more complicated than the deterministic
case and also more complex than the stationary solution for random mapping when 1 <
µ < λ 6 3.

Of course, for the deterministic quadratic mapping, further increases in η will lead
to period-22, period-23 and so on, Occurring at even smaller and smaller increments of
η. When η > 3.5699···, a region where aperiodic and periodic attractors alternate [22].
Accordingly the random case will also be more and more complicated as the periodicity
increases and deserved to be studied in the future.
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1.2 Random stationary solution

The main result of this thesis is Theorem 1.2.2 and Theorem 1.3.2 blew. First, we recall
the definition of stationary solution.

Definition 1.2.1 A random invariant point (stationary solution) for the random dynam-
ical system Φ is a random variable Y ? : Ω → X with

Φ(k, ω)Y ?(ω) = Y ?(θkω) P− a.s, (1.7)

for every k ∈ Z.

Theorem 1.2.2 Assume 1 < µ < λ 6 3. Then for any ω = (· · · , ε−k+1, · · · , ε−1; ε0, ε1, · · · ),
there exists Y ?(ω) ∈ (0, 1), such that Φk(ω)Y ?(ω) = Y ?(θkω) for all k. And for any
x ∈ [1− 1

µ , 1− 1
λ ], we have

lim
n→∞

Φn(θ−nω)(x) = Y ?(ω).

In order to prove this theorem, we need to use the following Proposition 2.1.6, Proposition
2.1.8 and Proposition 2.1.16. According to the result of these propositions, we have proved
that as n → ∞, the limit of fε−1fε−2 · · · fε−n+1fε−n(x) exists, denoted by Y ?(ω). We will
prove that Y ?(ω) gives the stationary solution of the random mapping in Chapter 3.

1.3 Random periodic solution of period 2

The study of periodic solutions of dynamical systems began with Poincare’s fundamental
work [34]. Poincare-Bendixson Theorem played key role in these studies [9]. Since then
there have been a lot of research about the periodic solutions in real world problem,
such as Van der Pol equations [35] and Liénard equations [27]. Now, this topic is still
one of the most interesting phenomena for deterministic dynamical systems. The current
understanding of periodic solutions in a random environment is minimal. Needless to
say, to understand random periodic solution is a key to understand many interesting
phenomenon in complex systems. In this thesis, we study the random periodic solution
for the random quadratic mapping. Inspired by the definition of the random periodic
solution of cocycles on a cylinder in Zhao and Zheng’s [44] and random periodic solutions
for random semi-flow in Feng, Zhao and Zhao [21], we give our definition as follows, for
the discrete time case.

Definition 1.3.1 Consider

Ω = {(· · · , ε−2, ε−1; ε0, ε1, ε2, · · · εk, · · · ) : εk = µ or λ, k = · · · ,−2,−1, 0, 1, 2, · · · }. (1.8)

A random dynamical system

Φ : (n, ω, x) ∈ Z× Ω×X → Φ(n, ω)(x) ∈ X

given in Definition 1.1.1. A random periodic solution of period 2 is a pair of the random
variable {α(ω), β(ω)} such that when n is even

Φn(ω, α(ω)) = α(θn(ω)), (1.9)

4
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Φn(ω, β(ω)) = β(θn(ω)), (1.10)

and when n is odd,

Φn(ω, α(ω)) = β(θn(ω)), (1.11)
Φn(ω, β(ω)) = α(θn(ω)). (1.12)

When we compose the condition ε2i = ε2i+1, i ∈ Z or ε2i = ε2i−1, i ∈ Z on ω. Now we con-
sider Ω? = {ω = (· · · , ε−2, ε−1; ε0, ε1, · · · ) with ε2i = ε2i+1 for all i = 0,±1,±2. · · · or ε2i =
ε2i−1 for all i = 0,±1,±2. · · · }. Define θ as before. Then θ : Ω? → Ω?.

Theorem 1.3.2 Assume 3.00547 6 µ < λ 6 1 +
√

5. For ω ∈ Ω?, there exist random
periodic solution of period 2, α(ω) and β(ω), which satisfy (1.9), (1.10), (1.11) and (1.12).

The proof of this theorem will also be given in Chapter 3.

1.4 Invariant measure

It is well known that stationary solution supports corresponding invariant measure. Since
we have proved the existence of pathwise stationary solution and random periodic solution,
we can prove there is an invariant measure for this random dynamical system [7, 10, 11, 12].
According to the definition of invariant measure [4], we will give the following remark.

Remark 1.4.1 It is well known that the random dynamical systems Φn has an invariant
measure ν iff the random measure νω in factorization of the measure ν satisfies

Φ(n, ω)νω = νθnω P− a.s. (1.13)

When 1 < µ < λ 6 3, we denote the stationary solution by Y ?(ω). Let νω = δY ?(ω),
Dirac measure. Then it is easy to see (1.13) holds as

Φ(n, ω)νω = Φ(n, ω)δY ?(ω) = δΦ(n,ω)Y ?(ω) = δY ?(θnω) = νθnω.

When 3.00547 6 µ < λ 6 1 +
√

5, for the periodic solution {α(ω), β(ω)} of period 2,
let νω = 1

2δα(ω) + 1
2δβ(ω). Then we can see that

(i) When n = 1,

Φ(1, ω)νω =
1
2
Φ(1, ω)δα(ω) +

1
2
Φ(1, ω)δβ(ω)

=
1
2
δΦ(1,ω)α(ω) +

1
2
δΦ(1,ω)β(ω)

=
1
2
δβ(θ1ω) +

1
2
δα(θ1ω) = νθ1ω.

(ii) When n = 2,

Φ(2, ω)νω =
1
2
Φ(2, ω)δα(ω) +

1
2
Φ(2, ω)δβ(ω)

=
1
2
δα(θ2ω) +

1
2
δβ(θ2ω) = νθ2ω.

That is to say (1.13) also holds for ω ∈ Ω?.

5



Chapter 2

Limit of the pullback random
mappings

In order to get the existence of the stationary solution for the random mapping, we will
prove that pullback Φ(n, θ−nω)x converges to a limit as n → ∞ , and the limit does not
depend on x for any 1 < µ < λ 6 3.

2.1 The existence of the limit when µ, λ ∈ (1, 3]

For any ω ∈ Ω and x ∈ [1 − 1
µ , 1 − 1

λ ], we will check whether or not the limit of
fε−1fε−2 · · · fε−k

(x) exists as k →∞.
The proof is surprisingly complicated and difficult, We break it into 3 cases: 1 < µ <

λ 6 2, 2 < µ < λ 6 3, 1 < µ 6 2 < λ 6 3. Note when 1 < µ < λ 6 3, pµ = 1 − 1
µ and

pλ = 1− 1
λ are two attracting points of fµ and fλ respectively. Moreover, we can notice{

f ′µ(x) < 1 when x ∈ (1
2 −

1
2µ , 1

2 + 1
2µ),

f ′λ(x) < 1 when x ∈ (1
2 −

1
2λ , 1

2 + 1
2λ).

Since [12 −
1
2λ , 1

2 + 1
2λ ] ⊂ [12 −

1
2µ , 1

2 + 1
2µ ], so for any x ∈ [12 −

1
2λ , 1

2 + 1
2λ ], f ′µ(x) < 1 and

f ′λ(x) 6 1. The key in the deterministic case is that the modular derivative of each map is
less than 1 in the neighborhood of the fixed point. The dynamical system will definitely
move into the neighborhood of the fixed point. However, in the random case, fλ makes
the process moving towards its fixed point pλ and fµ makes the process moving towards
pµ. As a result, the process may move out of the interval [12−

1
2λ , 1

2 + 1
2λ ]. So the derivative

of one step map may not have modular smaller than 1. The idea is to consider several
steps together to make the modular derivative of the composited map smaller than 1. We
start with the following easy case.

Proposition 2.1.1 Assume 1 < µ < λ 6 3. If there are only finitely many λ′s in
(ε−1ε−2 · · · ), then for any x,

lim
k→∞

fε−1fε−2 · · · fε−k
(x) = fε−1fε−2 · · · fε−m(pµ).

6
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Here m is an integer such that ε−j = µ for all j > m. If there are only finitely many µ′s
in (ε−1ε−2 · · · ), then

lim
k→∞

fε−1fε−2 · · · fε−k
(x) = fε−1fε−2 · · · fε−m̃(pλ).

Here m̃ is an integer such that ε−j = λ for all j > m̃.

The proof of this lemma is obvious, following the result for the deterministic case we
mentioned in the above section 1.1.

If there are infinitely many µ and infinitely many λ in (ε−1ε−2 · · · ), the situation will
be much more complicated than the above case.

Figure 2.1: The parameter diagram for 1 < µ < λ 6 3

Note 1
2 −

1
2µ < · · · < 1

2 −
1

2 k
√

µk−1λ
< 1

2 −
1

2 k−1
√

µk−2λ
< 1

2 −
1

2
√

µλ
< 1

2 −
1
2λ < 1− 1

λ and

f ′λ(1
2 −

1

2 k
√

µk−1λ
)(f ′µ(1

2 −
1

2 k
√

µk−1λ
))k−1 = 1, for k > 1. So for any 1 < µ < λ 6 2, either

1− 1
µ ∈ (1

2−
1
2λ , 1− 1

λ ] or there exists k > 2 such that 1− 1
µ ∈ (1

2−
1

2 k
√

µk−1λ
, 1

2−
1

2 k−1
√

µk−2λ
].

We consider these cases respectively. They are equivalent to the following cases: 1 < µ <
λ < µ

2−µ ; µ
2−µ 6 λ < µ

(2−µ)2
; · · · ; µ

(2−µ)k−1 6 λ < µ
(2−µ)k respectively. See Figure 2.1. In

the following, we will discuss the general cases. We need a series of lemmas. The proof of
these lemmas are quite complicated and technical. We defer them to later sections.

7
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Lemma 2.1.2 For any k > 1, 1 < µ < λ 6 2, the following inequality holds,

fµ(
1
2
− 1

2 k
√

µk−1λ
) >

1
2
− 1

2 k+1
√

µkλ
. (2.1)

For any k > 2, 1 < µ 6 2 < λ 6 3, the above inequality (2.1) also holds, while for k = 1
and 1 < µ 6 2 < λ 6 3, we have

f ′λ(fµ(
1
2
− 1

2λ
))f ′µ(

1
2
− 1

2λ
) < 1.

Lemma 2.1.3 If λ > µ
2−µ , then for any x ∈ [1− 1

µ , 1
2 −

1
2λ ],

fλ(fµ(x)) > x. (2.2)

See Figure 2.2.

1-
1

λ1
2

1
2λ

−
1− 1

μ 1
2

1
2√μλ

−

fλ’(x)fμ’(x)fμ’(x)<1

fλ’(x)>1,  fμ’(x)<1

fλ’(x)<1,   fμ’(x)<1

1
2

1
2√μ2λ

− 3

fλ’(x)fμ’(x)<1

fλ’(x)≥1,  fμ’(x)<1

μ

λ λ

μ

Figure 2.2: 1
2 −

1

2 3
√

µ2λ
< 1− 1

µ 6 1
2 −

1
2
√

µλ

Lemma 2.1.4 Assume λ > µ
(2−µ)2

. Define a2 by fµ(fµ(a2)) = 1
2 −

1
2
√

µλ
, then for any

x ∈ [1− 1
µ , a2], we have

fλ(fµ(fµ(x))) > x. (2.3)

See Figure 2.2. The above result holds in a more general case.

Lemma 2.1.5 For any given k > 3, if µ
(2−µ)k 6 λ 6 2, then for any x ∈ [1− 1

µ , ak],

fλ fµ · · · fµ︸ ︷︷ ︸
k

(x) > x. (2.4)

Here ak is defined by fµ · · · fµ︸ ︷︷ ︸
k

(ak) = 1
2 −

1

2 k
√

µk−1λ
.

With these lemmas, we can prove proposition 2.1.6.

8



Loughborough University Doctoral Thesis

1

2
- 1

2
k

√μk-1λ

fμ

(k)

fλ’(x)[fμ’(x)]
k
<1

fλ’(x)[fμ’(x)]
k-2

<1fλ’(x)[fμ’(x)]
k-1

<1

fμ

(k-1)

1-
1
μ 1

2
- 1

2
k-1

√μk-2λ

1

2
- 1

2λ
λ

ak ak-1

λ

Figure 2.3: λ > µ
(2−µ)k

Proposition 2.1.6 Assume 1 < µ < λ < 2. Then for any x ∈ [1− 1
µ , 1− 1

λ ], limk→∞ fε−1fε−2 · · · fε−k
(x)

exists and the limit is independent of x.

Proof. For any 1 − 1
µ 6 x < y 6 1 − 1

λ , by mean value theorem, we know that there
exists ξ ∈ [x, y],

|fε−1fε−2 · · · fε−n(x)− fε−1fε−2 · · · fε−n(y)| =
∂(fε−1fε−2 · · · fε−n(ξ))

∂ξ
|x− y|. (2.5)

The key is to estimate |∂(fε−1fε−2 ···fε−n (ξ))

∂ξ | and to prove |∂(fε−1fε−2 ···fε−n (ξ))

∂ξ | → 0 as n →∞.
We consider different cases.

Case (I). ξ ∈ [12 −
1
2λ , 1− 1

λ ]. We consider four cases.

1. For any ξ ∈ [12 −
1
2λ , 1 − 1

λ ], consider ω such that the process does not leave the
interval [12 −

1
2λ , 1 − 1

λ ]. Then f ′εk
6 1 for each fεk

in these maps. However, notice
for any ε1, ε2, if fε1(x) ∈ [12 −

1
2λ , 1− 1

λ ], then we always have

f ′ε2(fε1(x))f ′ε1(x) 6 max{f ′µ(a1)f ′λ(
1
2
− 1

2λ
), f ′λ(

1
2
− 1

2λ
)f ′λ(fλ(

1
2
− 1

2λ
))} < 1,

where a1 is defined by fµ(a1) = 1
2 −

1
2λ . Consequently we can get that

∂(fε−1fε−2 · · · fε−n(ξ))
∂ξ

6 L
[n
2
]

1 , (2.6)

where we choose L1 = max{f ′µ(a1), f ′λ(fλ(1
2 −

1
2λ))}.

2. For ξ ∈ [12 −
1
2λ , 1 − 1

λ ], consider such ω such that the process is mapped by fµ to
(1
2 −

1
2
√

µλ
, 1

2 −
1
2λ) at certain time, but never to [1 − 1

µ , 1
2 −

1
2
√

µλ
]. There are two

cases again. The first case is the process will come back to [12 −
1
2λ , 1 − 1

λ ]. The
second case is to stay in (1

2 −
1

2
√

µλ
, 1

2 −
1
2λ) forever.

9
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(a) In the first case, by Lemma 2.1.2 and Lemma 2.1.3, in the sequence from the
time it leaves the interval [12 −

1
2λ , 1 − 1

λ ] to the first time it comes back to
the interval, it is obvious that the number of f ′µs is more than or equal to the
number of f ′λs as Figure 2.4. But note also any pair of fµ and fλ makes the
multiplication of their derivative less than 1. The largest of these multiplication
is

f ′λ(
1
2
− 1

2
√

µλ
)f ′µ(fµ(a2)) < 1.

After that, from the first time it comes back to [12 −
1
2λ , 1− 1

λ ], the computation
of derivative is the same as the case (I)1.

1-
1

λ
1
2

1
2λ

−1
2

1
2√μλ

−

fλ’(x)(fμ’(x))2<1

fλ’(x)<1,   fμ’(x)<1

1
2

1
2√μ2λ

− 3

fλ’(x)fμ’(x)<1

μ

λ λ

μ

1− 1
μ

fλ’(x)(fμ’(x))k-1<1

1
2

1
2√μk-1λ

− k

fλ’(x)(fμ’(x))k<1

μ μ

λ λ

μ

Figure 2.4:

(b) However, if ξ ∈ [12 −
1
2λ , 1− 1

λ ] is mapped by fµ to (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ) and stays

in the interval forever. Then the number of f ′µs is more than the number of f ′λs
in the sequence. As before, any pair of fµ and fλ makes the multiplication of
their derivatives less than 1. The largest it is again

f ′λ(
1
2
− 1

2
√

µλ
)f ′µ(fµ(a2)) < 1.

Therefore, we can see that in case 2, for any ξ ∈ [12 −
1
2λ , 1− 1

λ ],

∂(fε−1fε−2 · · · fε−n(ξ))
∂ξ

6 L
[n
2
]

2 , (2.7)

where L2 = max{f ′λ(1
2 −

1
2
√

µλ
)f ′µ(fµ(a2)), L1} < 1.

3. For ξ ∈ [12 −
1
2λ , 1 − 1

λ ], consider the case that the process is mapped by fµ to
(1
2 −

1
2
√

µλ
, 1

2 −
1
2λ) and then goes to the interval (1

2 −
1

2 3
√

µ2λ
, 1

2 −
1

2
√

µλ
] for certain

steps, but never goes to [1− 1
µ , 1

2 −
1

2 3
√

µ2λ
]. After that, we consider two subcases.

(a) The process will stay in (1
2 −

1

2 3
√

µ2λ
, 1

2 −
1

2
√

µλ
] forever. Then in the sequence

from the time it enters the interval (1
2 −

1

2 3
√

µ2λ
, 1

2 −
1

2
√

µλ
], by Lemma 2.1.4, we

know that the number of f ′µs is at least twice as many as the number of f ′λs.
So we have

∂(fε−1fε−2 · · · fε−n(ξ))
∂ξ

6 L
[n
3
]

3 , (2.8)

10
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where

L3 = max{f ′λ(
1
2
− 1

2 3
√

µ2λ
)(f ′µ(fµ(fµ(a3))))2, L2} < 1.

(b) The process will come back to the interval (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ). Let ξ1 ∈ (1

2 −
1

2 3
√

µ2λ
, 1

2−
1

2
√

µλ
] be the point for the first time the process enters (1

2−
1

2 3
√

µ2λ
, 1

2−
1

2
√

µλ
]. Consider the case which is followed by the map fλ that takes the process

back to (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ). Set ξ′1 by fµ(fµ(ξ′1)) = ξ1. Since the start point

ξ ∈ [12 −
1
2λ , 1− 1

λ ] and by Lemma 2.1.2, ξ′1 < 1− 1
λ and fµ(ξ′1) > 1

2 −
1

2
√

µλ
. In

this sequence, from the time that the process at ξ′1 to the time it leaves that
interval and reaches fλ(ξ1) > ξ′1, there are two f ′µs and one f ′λs.
While if after reaching ξ1, the process does not leave the interval immediately
but later. There are two cases. From the time at ξ1 to the time the process
back to the interval (1

2 −
1

2
√

µλ
, 1

2 −
1
2λ), if there are 2l(l ∈ N) f ′µs, then from

the time the process at ξ′1 to the first time it goes back to (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ),

the number of f ′µs is at least twice as many as the number of f ′λs. Otherwise, if
there are (2l + 1) fµ, then from the time the process at fµ(ξ′1) to the first time
it goes back to (1

2 −
1

2
√

µλ
, 1

2 −
1
2λ), the number of f ′µs is at least twice as many

as the number of f ′λs.
In other words, we can also have (2.8) in any case of (I)(3)(b).

4. Consider the case that the point from [12 −
1
2λ , 1− 1

λ ] continue to be mapped into the
interval [1− 1

µ , 1
2−

1

2 k
√

µk−1λ
] after it enters the interval (1

2−
1

2 k
√

µk−1λ
, 1

2−
1

2 k−1
√

µk−2λ
].

Note in this interval [1− 1
µ , 1

2 −
1

2 k
√

µk−1λ
],

f ′λ(x)[f ′µ(x)]k < 1.

There are two possibilities.

(a) The process will remain in [1− 1
µ , 1

2 −
1

2 k
√

µk−1λ
] forever. Then by Lemma 2.1.2

and Lemma 2.1.5, in the sequence, from the first time the process enters the
interval [1 − 1

µ , 1
2 −

1

2 k
√

µk−1λ
], the number of f ′µs is at least k times as many

as the number of f ′λs. Again any k f ′µs and one fλ make the multiplication of
their derivatives less than 1, the largest of these is

f ′λ(1− 1
µ

)(f ′µ(1− 1
µ

))k < 1.

Hence we can get
∂(fε−1fε−2 · · · fε−n(ξ))

∂ξ
6 L

[ n
k+1

]

k+1 , (2.9)

where

Lk+1 = max{f ′λ(1− 1
µ

)(f ′µ(1− 1
µ

))k, Lk} < 1,

11
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and Lk = max{f ′λ(
1
2
− 1

2 k
√

µk−1λ
)[f ′µ(fµ · · · fµ︸ ︷︷ ︸

k−1

(ak))]k−1, Lk−1}.

(b) The process will leave [1 − 1
µ , 1

2 −
1

2 k
√

µk−1λ
], to (1

2 −
1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
]

and assume it stays in it forever. Then by Lemma 2.1.5, the number of f ′µs is
at least k − 1 times as many as the number of f ′λs. Again any k − 1 f ′µs and
one fλ make the multiplication of their derivatives less than 1, the largest of
these is

f ′λ(
1
2
− 1

2 k
√

µk−1λ
)[f ′µ(fµ · · · fµ︸ ︷︷ ︸

k−1

(ak))]k−1 < 1.

So we have

∂(fε−1fε−2 · · · fε−n(ξ))
∂ξ

6 L
[n
k
]

k , (2.10)

where Lk = max{f ′λ(1
2 −

1

2 k
√

µk−1λ
)[f ′µ(fµ · · · fµ︸ ︷︷ ︸

k−1

(ak))]k−1, Lk−1}.

(c) In case (b), if the point will not stay in (1
2 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
] forever

and it is mapped into [1 − 1
µ , 1

2 −
1

2 k
√

µk−1λ
] again. After that it can be case

(a) or the point will be mapped into (1
2 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
] again. Let

ξ1 ∈ [1 − 1
µ , 1

2 −
1

2 k
√

µk−1λ
] be the point for the first time the process enters

[1 − 1
µ , 1

2 −
1

2 k
√

µk−1λ
]. Consider the case above is immediately followed by the

map fλ that takes the process back to (1
2 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
]. Set ξ′1

by fµ(fµ · · · fµ︸ ︷︷ ︸
k−1

(ξ′1)) = ξ1. Since the starting point ξ ∈ [12 −
1
2λ , 1 − 1

λ ], so by

Lemma 2.1.2, ξ′1 < 1 − 1
λ . In this sequence, from the time that the process at

ξ′1 to the time it leaves that interval and reaches fλ(ξ1) > ξ′1, there are k f ′µs
and one f ′λs.
While if after the process reaches ξ1, it does not leave the interval immediately
but later. Let ξi ∈ [1− 1

µ , 1
2−

1

2 k
√

µk−1λ
], ξi = fµ(ξi−1), i = 2, · · · , k. It is easy to

see that ξi > fµ · · · fµ︸ ︷︷ ︸
i

(1
2 −

1

2 k
√

µk−1λ
) and ξk < ξk−1 < · · · < ξi < · · · < ξ2 < ξ1.

We set that ξi is the point which starts to move to the right and into the
interval (1

2 −
1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
] by fλ. Set ξ′i by fµ(fµ · · · fµ︸ ︷︷ ︸

k−1

(ξ′i)) = ξi

and obviously, ξ′i > 1
2 −

1

2 k
√

µk−1λ
and fµ(ξ′k) = ξ1 as Figure 2.5 shows. From

the time that the process at ξ′i to the time it leaves that interval and reaches
fλ(ξi) > ξ′i, there are k f ′µs and one f ′λs.
Furthermore, if after the process reaches ξk, but it does not leave the interval
immediately but later. With the same reason as (I)(3)(b), there are k cases.

12
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1

2
- 1

2
k
√μk-1λ

1-
1
μ - 1

2λ

λ 1

2
- 1

2√μ  λ
1

2
- 1

2
3 

√μ2  λ
 2
1

fμ

(k-1)

ξ1
’ξ1

λ

λξ2ξk ξk
’ ξ2

’

Figure 2.5: ξ′1 < 1
2 −

1
2λ

Generally speaking, we will describe the i− th case as follows. From the time
at ξ1 to the time the process back to the interval (1

2 −
1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
],

if there are lk + i (l ∈ N, i ∈ N) fµ. From the time the process at ξ′i to the
first time it goes back to (1

2 −
1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
], the number of f ′µs is

at least k times as many as the number of f ′λs. So we can also get (2.9) as well.

After that, it will be the previous cases.

Summarizing above, we can get for any ξ ∈ [12 −
1
2λ , 1− 1

λ ],

∂(fε−1fε−2 · · · fε−n(ξ))
∂ξ

6 L
[ n
k+1

]

k+1 . (2.11)

Case (II). ξ ∈ (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ).

1. If for any ξ ∈ (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ), the process can enter the interval [12 −

1
2λ , 1− 1

λ ] as

Figure 2.5 shows. Consider that f ′λ(ξ) > 1 and f ′λ(ξ)fµ(′ξ) < 1 for ξ ∈ (1
2−

1
2
√

µλ
, 1

2−
1
2λ). It is easy to see that there exists n1 such that when fλ(fλ · · · fλ(1

2 −
1

2
√

µλ
)) >

1
2 −

1
2λ , where n1 is the minimum number of fλ in this sequence. From time 0 till

the first time that it enters [12 −
1
2λ , 1 − 1

λ ], there are at most n1 more f ′λs than
the number of f ′µs. After that, it will be case (I). By Lemma 2.1.3, then for any
ξ ∈ (1

2 −
1

2
√

µλ
, 1

2 −
1
2λ), we have

∂(fε−1fε−2 · · · fε−n(ξ))
∂ξ

6 Mm1
1 L

[
n−m1
k+1

]

k+1 , (2.12)

here M1 = f ′λ(1
2 −

1
2
√

µλ
) and m1 = n1.

2. If ξ ∈ (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ), the process stays in this interval forever, then for any

ξ ∈ (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ), it will be same as case (I)(2)(b).

13
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3. If ξ ∈ (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ) is mapped into (1

2 −
1

2 3
√

µ2λ
, 1

2 −
1

2
√

µλ
] and never to [1 −

1
µ , 1

2 −
1

2 3
√

µ2λ
].

(a) After that, if the process stays in (1
2 −

1

2 3
√

µ2λ
, 1

2 −
1

2
√

µλ
] forever, we have dis-

cussed this case in case (I)(3)(a).

(b) However if the process can go back to (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ) as Figure 2.6 shows.

Assume the process enters (1
2 −

1

2 3
√

µ2λ
, 1

2 −
1

2
√

µλ
] at the first time from a point

d2 ∈ (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ). Consider the case that the process goes back to

(1
2−

1
2
√

µλ
, 1

2−
1
2λ) immediately as Figure 2.6 shows. As d2 ∈ (fµ(a2), 1

2−
1

2
√

µλ
),

then by Lemma 2.1.4 , we have

d′2 := fλ(fµ(d2)) > fλ(
1
2
− 1

2
√

µλ
), fµ(d′2) > d2 >

1
2
− 1

2
√

µλ
. (2.13)

After that, if d′2 keeps in the interval (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ), that will be case

2. However if case (3)(b) happens again, then by (2.13), Lemma 2.1.4 and
Lemma 2.1.2, from the time at d′2 to the time that the process comes back to
(1
2 −

1
2
√

µλ
, 1

2 −
1
2λ), the number of f ′µs is at least twice as many as the number

of f ′λs. In this case, we can get the largest derivative of this multiplication as
follows,

f ′λ(fµ(d2))f ′µ(d2) < max{f ′λ(fµ(
1
2
− 1

2
√

µλ
))f ′µ(

1
2
− 1

2
√

µλ
)} := N2.

Obviously, N2 > 1. After that it will be case 2 again or repeat case 3. In this

1

2
-

1

2
k

√μk-1λ

fμ

(k)

1-
1
μ

1

2
- 1

2λ

λ

1
2

− 1
2 3

√μ2λ

1
2

− 1
2√μλ

fμ

(k)

fμ

(k-1)

a2

dk
’ d3

’ d2

fμ

(k-1)

fμ

( i ) fμ

( k-i ) i=1,2,....,k-1

d2
’d3

dk

λ

λ

λ

λ

λ λ

λ λ

fμ
fμ

Figure 2.6: case (b)
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case, one can easily obtain the following inequality:

∂(fε−1fε−2 · · · fε−n(ξ))
∂ξ

6 N2L
[n−2

3
]

3 . (2.14)

4. Consider the case that if ξ ∈ (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ) is mapped into the interval [1 −

1
µ , 1

2 −
1

2 k
√

µk−1λ
] after the process enters (1

2 −
1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
].

(a) After that, if the process stays in [1 − 1
µ , 1

2 −
1

2 k
√

µk−1λ
] forever, that is case

(I)(4)(a). However, if the process goes back to (1
2 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
]

and stays in this interval forever, it is case (I)(4)(b).

(b) Otherwise, if the process is mapped back to the interval (1
2 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
] again after it enters [1 − 1

µ , 1
2 −

1

2 k
√

µk−1λ
]. Let ξ1 ∈ [1 − 1

µ , 1
2 −

1

2 k
√

µk−1λ
] be the point for the first time the process enters [1− 1

µ , 1
2 −

1

2 k
√

µk−1λ
].

Consider the case that above process is immediately followed by the map fλ that
takes the process out of (1

2−
1

2 k
√

µk−1λ
, 1

2−
1

2 k−1
√

µk−2λ
]. Set ξ′1 by (fµ · · · fµ︸ ︷︷ ︸

k

(ξ′1)) =

ξ1. So by Lemma 2.1.2, fµ(ξ′1) < 1
2 −

1
2λ . Then in this sequence, from the

time that the process at fµ(ξ′1) to the time it leaves that interval and reaches
fλ(ξ1) > ξ′1, there are k− 1 f ′µs and one f ′λs as Figure 2.5 shows. After that, if
this process is repeated, from the time that the process at fλ(ξ1) to the time it
leaves that interval and reaches fλ(fµ · · · fµ︸ ︷︷ ︸

k

(fλ(ξ1))) > fλ(ξ1), there are k f ′µs

and one f ′λs. The largest derivative of this multiplication is d
dx [fλ fµ · · · fµ︸ ︷︷ ︸

k−1

(1
2 −

1

2 k
√

µk−1λ
)] := Nkk.

On the other hand, if we have ξ′1 < 1
2 −

1
2λ , then in this sequence, from the time

that the process at ξ′1 to the time it leaves that interval and reaches fλ(ξ1) > ξ′1,
there are k f ′µs and one f ′λs,

∂(fε−1fε−2 · · · fε−n(ξ))
∂ξ

6 NkkL
[n−k

k+1
]

k+1 . (2.15)

In fact, if the above process is immediately followed by case (II)(3)(b), then we
can let ξ1 ∈ (1

2 −
1

2 i
√

µi−1λ
, 1

2 −
1

2 i−1
√

µi−2λ
] (i = 3, · · · , k + 1) be the point for

the first time the process enters (1
2 −

1

2 i
√

µi−1λ
, 1

2 −
1

2 i−1
√

µi−2λ
], then we consider

the case above is immediately followed by the map fλ that takes the process
out of (1

2 −
1

2 i
√

µi−1λ
, 1

2 −
1

2 i−1
√

µi−2λ
]. Set ξ′1 by fµ(fµ · · · fµ︸ ︷︷ ︸

i

(ξ′1)) = ξ1. Since the

starting point ξ ∈ (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ), so by Lemma 2.1.2, fµ(ξ′1) < 1

2 −
1
2λ .

Therefore, in this sequence, from the time that the process at fµ(ξ′1) to the
time it leaves that interval and reaches fλ(ξ1) > ξ′1, there are i − 1 f ′µs and
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one f ′λs with the same reason as above. After that, if this process repeated,
from the time that the process at fλ(ξ1) to the time it leaves that interval
and reaches fλ(fµ · · · fµ︸ ︷︷ ︸

i

(fλ(ξ1))) > fλ(ξ1), there are i f ′µs and one f ′λs. The

largest derivative of this multiplication is d
dx [fλ fµ · · · fµ︸ ︷︷ ︸

i−1

(1
2−

1

2 i
√

µi−1λ
)] := Nii. If

ξ1 ∈ [1− 1
µ , 1

2−
1

2 k
√

µk−1λ
], it will be case (II)(4)(b). Obviously, Nkk = max{Nii}.

Concluding the above four cases, for any ξ ∈ (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ), we have

∂(fε−1fε−2 · · · fε−n(ξ))
∂ξ

6 Mm1
1 NkkL

[
n−m1−k

k+1
]

k+1 . (2.16)

Case (III). ξ ∈ (1
2 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
].

1. If ω makes the process stay in (1
2−

1

2 k
√

µk−1λ
, 1

2−
1

2 k−1
√

µk−2λ
] forever, then it is similar

to case (I)(4)(b).

2. If the process enters [1− 1
µ , 1

2 −
1

2 k
√

µk−1λ
] and stays in it forever, then it is the case

(I)(4)(a).

3. If ξ ∈ (1
2 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
] is mapped into [1− 1

µ , 1
2 −

1

2 k
√

µk−1λ
] and then

enters (1
2 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
] again by the map fλ at some stage, then from

the first time the process leaves the interval (1
2 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
] to the

first time the process enters (1
2 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
] again, with the same

reason as case (II)(3)(b), by Lemma 2.1.5, see Figure 2.6, it is easy to see the last
point dk at which the process leaves (1

2 −
1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
] should satisfy

dk ∈ (fµ · · · fµ︸ ︷︷ ︸
k−1

(ak), 1
2 −

1

2 k
√

µk−1λ
). From Figure 2.6, since f ′λ(x̃)(f ′µ(x̃))i−1 > 1 for

any x̃ ∈ [1− 1
µ , 1

2 −
1

2 k
√

µk−1λ
] and i = 2, · · · , k, then for the process like (III)(3). It

is easy to see that the largest derivative of the multiplication can be computed as
follows.

So for any integer i ∈ [2, k], we have

d

dx
[fλ(fµ · · · fµ︸ ︷︷ ︸

i−1

(dk))] < max{ d

dx
[fλ(fµ · · · fµ︸ ︷︷ ︸

i−1

(
1
2
− 1

2 k
√

µk−1λ
))]} = Nki.

Obviously Nki > 1 is possible. For the process fλ(fµ · · · fµ︸ ︷︷ ︸
i−1

(dk)), there are i steps

and
k∑

i=2

(i) =
(k − 1)(k + 2)

2
:= k̃.

16
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By Lemma 2.1.5,

d′k := fλ(fµ(dk)) > fλ(fµ(
1
2
− 1

2 k
√

µk−1λ
)), fµ(fµ · · · fµ︸ ︷︷ ︸

k−2

(d′k)) > dk >
1
2
− 1

2 k
√

µk−1λ
.

(2.17)
After that, if case (III)3 continues to happen till the process reaches d′k, then the
largest derivative will be M ′

k =
∏k

i=2 Nki. After that if the process keeps in the
interval (1

2 −
1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
], it will be case (I)(4)(b). However, if case

(III)(4) is repeated till the last point which leaves the interval [1− 1
µ , 1

2 −
1

2 k
√

µk−1λ
]

is fµ(dk), see Figure 2.6. After that, for this same process, by Lemma 2.1.5, the
number of f ′µs is at least k times as many as the number of f ′λs. Again any k f ′µs
and one fλ make the multiplication of their derivatives less than 1, the largest of
these is

f ′λ(1− 1
µ

)(f ′µ(1− 1
µ

))k < 1.

So we have
∂(fε−1fε−2 · · · fε−n(ξ))

∂ξ
6 M ′

kL
[n−k̃

k+1
]

k+1 . (2.18)

4. Consider ω such that the process enters (1
2 −

1

2 k−1
√

µk−2λ
, 1

2 −
1

2 k−2
√

µk−3λ
]. Since

f ′λ(x)(f ′µ(x))k−2 > 1 and f ′λ(x)(f ′µ(x))k−1 < 1 for any x ∈ (1
2 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
]. So we can let nk−1 denote the minimum number of fλ in the sequence

fλ(fµ · · · fµ︸ ︷︷ ︸
k−2

fλ · · · fµ · · · fµ︸ ︷︷ ︸
k−2

fλ(
1
2
− 1

2 k
√

µk−1λ
)) >

1
2
− 1

2 k−1
√

µk−2λ
.

Then from time 0 to the first time it enters the interval (1
2 −

1

2 k−1
√

µk−2λ
, 1

2 −
1

2 k−1
√

µk−2λ
], the number of f ′λs is at most nk−1 more than 1

k−2 − th of the number of

f ′µs. The derivative of this multiplication is M
nk−1

k−1 and Mk−1 = f ′λ(1
2 −

1

2 k−1
√

µk−2λ
).

5. If the process continue to jump along the x-axis direction till it is into the interval
[12 −

1
2λ , 1− 1

λ ] after it enters (1
2 −

1

2 k−1
√

µk−2λ
, 1

2 −
1

2 k−2
√

µk−3λ
], with the same reason

as (III)4, we have

∂(fε−1fε−2 · · · fε−n(ξ))
∂ξ

6 M
mk−1

k−1 L
[
n−mk−1

k+1
]

k+1 , (2.19)

where mk−1 = n1 + n2 · · · + ni + · · · + nk−1 and for i = 2, · · · , k − 1, ni denote the
minimum number of fλ in the following sequence

fλ(fµ · · · fµ︸ ︷︷ ︸
i−1

fλ · · · fµ · · · fµ︸ ︷︷ ︸
i−1

fλ(
1
2
− 1

2 i+1
√

µiλ
) >

1
2
− 1

2 i
√

µi−1λ
.

17
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As a result, considering above five cases, for any ξ ∈ (1
2 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
], we

have
∂(fε−1fε−2 · · · fε−n(ξ))

∂ξ
6 M

mk−1

k−1

k∏
j=2

M ′
jL

[
n−nk−1−m̃

k+1
]

k+1 . (2.20)

Here M ′
j =

∏j
i=2 Nji, Nji = d

dx [fλ(fµ · · · fµ︸ ︷︷ ︸
i−1

(1
2 −

1

2 j
√

µj−1λ
))] and m̃ =

∑k
m=2(

∑m
i=2 i).

Case (IV). ξ ∈ [1− 1
µ , 1

2 −
1

2 k
√

µk−1λ
].

1. Consider ω such that the process starting at ξ ∈ [1 − 1
µ , 1

2 −
1

2 k
√

µk−1λ
] stays in the

interval forever. This case is same as the case (I)(4)(a).

2. consider the case the process starts at ξ. The process enters (1
2 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
]. Since f ′λ(x)(f ′µ(x))k−1 > 1 and f ′λ(x)(f ′µ(x))k < 1 for [1 − 1

µ , 1
2 −

1

2 k
√

µk−1λ
]. So we can let nk denote the minimum number of fλ in the sequence

fλ(fµ · · · fµ︸ ︷︷ ︸
k−1

fλ · · · fµ · · · fµ︸ ︷︷ ︸
k−1

fλ(1− 1
µ

)) >
1
2
− 1

2 k
√

µk−1λ
.

Then from time 0 to the first time it enters the interval (1
2−

1

2 k
√

µk−1λ
, 1

2−
1

2 k−1
√

µk−2λ
],

the number of f ′λs is at most nk more than 1
k−1 − th of the number of f ′µs. After

that, it will repeat case (I)(4)(b) and (I)(4)(c). So we have

∂(fε−1fε−2 · · · fε−n(ξ))
∂ξ

6 Mnk
k L

[
n−nk
k+1

]

k+1 , (2.21)

where Mk = f ′λ(1− 1
µ).

3. If the process ξ ∈ [1 − 1
µ , 1

2 −
1

2 k
√

µk−1λ
] can be mapped into (1

2 −
1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
] and then continue to move towards the right direction till it reaches the

internal [12 −
1
2λ , 1− 1

λ ] as Figure 2.5 shows, with the same reason as case (III)3, by
Lemma 2.1.5, we have

∂(fε−1fε−2 · · · fε−n(ξ))
∂ξ

6 Mmk
k

k∏
j=2

M ′
jL

[
n−mk−m̃

k+1
]

k+1 , (2.22)

where mk = n1 + n2 · · ·+ ni + · · ·+ nk and for i = 2, · · · , k − 1.

Concluding above three cases, we can conclude that for any ξ ∈ [1− 1
µ , 1

2 −
1

2 k
√

µk−1λ
],

inequality (2.22) always holds.

18
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In conclusion Case (I) to Case (IV), when 1 < µ < λ 6 2, for any x, y ∈ [1− 1
µ , 1− 1

λ ],
we can always have the following inequality:

|fε−1 · · · fε−n(x)− fε−1 · · · fε−n(y)| 6
∂(fε−1 · · · fε−n(ξ))

∂ξ
|x− y|

6 Mmk
k

k∏
j=2

M ′
jL

[
n−mk−m̃

k+1
]

k+1 |x− y|. (2.23)

Limit of pullback when 1 < µ < λ 6 2.
Consequently, when 1 < µ < λ 6 2, if we choose x = 1− 1

λ and y = fε−(n+1)
· · · fε−(n+m)

(1−
1
λ), in (2.23), we can get

|fε−1fε−2 · · · fε−n(1− 1
λ

)− fε−1fε−2 · · · fε−n(fε−(n+1)
· · · fε−(n+m)

(1− 1
λ

))|

6 Mmk
k

k∏
j=2

M ′
jL

[
n−mk−m̃

k+1
]

k+1 |1− 1
λ
− fε−(n+1)

· · · fε−(n+m)
(1− 1

λ
)| → 0,

as n →∞.
In conclusion, fε−1fε−2 · · · fε−n(1− 1

λ) is a Cauchy sequence in [1− 1
µ , 1− 1

λ ]. So there
is a limit, denoted by Y ?(ω). Also for

|fε−1fε−2 · · · fε−n(x)− Y ?(ω)| 6 |fε−1fε−2 · · · fε−n(x)− fε−1fε−2 · · · fε−n(1− 1
λ

)|

+|fε−1fε−2 · · · fε−n(1− 1
λ

)− Y ?(ω)| → 0.

Therefore, we can get
lim

n→∞
fε−1fε−2 · · · fε−n(x) = Y ?(ω),

which is independent of x. And Proposition 2.1.6 is proved. ]

We now consider the case 2 < µ < λ 6 3. We need the following lemma and we will
leave the proof to section 4.

Lemma 2.1.7 If µ ∈ (2, λ) and λ ∈ [1 +
√

3, 3], then for any ε1 and ε2, we have

|f ′ε2(fε1(x))f ′ε1(x)| 6 1, ∀ x ∈ [
µλ(4− λ)

16
,
λ

4
]. (2.24)

Only when λ = 2 and x = 2
3 , equality in (2.24) holds.

Proposition 2.1.8 Assume 2 < µ < λ 6 3. Then for any x ∈ [1− 1
µ , 1− 1

λ ], limk→∞ fε−1 · · · fε−k
(x)

exists and the limit is independent of x.

Proof. It is easy to see that [12 , λ
4 ] is an interval on which fµ and fλ are monotone and this

interval is left invariant by fµ and fλ, i.e. fµ[12 , λ
4 ] ⊂ [12 , λ

4 ] and fλ[12 , λ
4 ] ⊂ [12 , λ

4 ].
More precisely, for any 2 < µ < λ 6 3, the invariant interval will be [µλ(4−λ)

16 , λ
4 ].

This means that once the process enters the interval [µλ(4−λ)
16 , λ

4 ], it will remain in it
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forever under the action of fµ and fλ. At the same time, since 2 < µ < λ 6 3, we have
µλ(4−λ)

16 > 1
2 −

1
2λ since

µλ(4− λ)
16

− (
1
2
− 1

2λ
) >

λ(4− λ)
8

− λ− 1
2λ

=
4λ2 − λ3 − 4λ + 4

8λ
> 0.

We consider the following three cases.

μλ(4−λ)
16

1
2 μ λ

1− 11− 11 1
2 2λ

+λ
4

|fλ’(x)|<1, |fμ’(x)|<1 

1 1
2 2λ

−

Figure 2.7: 2 < λ 6 1 +
√

3

1. When 2 < µ < λ < 1 +
√

3 as Figure 2.7 shows, we have λ
4 < 1

2 + 1
2λ . Note

|f ′µ(x)| < 1 and |f ′λ(x)| < 1 for any x ∈ [µλ(4−λ)
16 , λ

4 ] ⊂ [µλ(4−λ)
16 , 1

2 + 1
2λ ]. So for any

x, y ∈ [µλ(4−λ)
16 , λ

4 ], it is easy to get

|fε−1fε−2 · · · fε−(n−1)
fε−n(x)− fε−1fε−2 · · · fε−(n−1)

fε−n(y)| 6 Ln|x− y|, (2.25)

where L = max{|f ′λ(λ
4 )|, |f ′λ(µλ(4−λ)

16 )|} < 1.

2. When 2 < µ < λ and 1 +
√

3 6 λ < 3, from the proof of Lemma 2.1.7, as Figure 2.8
shows, we can get

|fε−1fε−2 · · · fε−(n−1)
fε−n(x)− fε−1fε−2 · · · fε−(n−1)

fε−n(y)| 6 L̄[n
2
]|x− y|, (2.26)

where

L̄ = max{|f ′λ(fλ(
1
2

+
√

3λ2 − 6λ

6λ
))f ′λ(

1
2

+
√

3λ2 − 6λ

6λ
)|, |f ′λ(fµ(

µλ(4− λ)
16

))f ′µ(
µλ(4− λ)

16
)|,

|f ′λ(fµ(
1
2
±

√
3µ2 − 6µ

6µ
))f ′µ(

1
2
±

√
3µ2 − 6µ

6µ
)|, |f ′λ(fµ(

λ

4
))f ′µ(

λ

4
)|} < 1.

3. When 2 < µ < λ = 3, 1
2 +

√
3λ2−6λ

6λ = 2
3 and µλ(4−λ)

16 = 3µ
16 . We have |f ′λ(2

3)| = 1
and |f ′λ(fλ(2

3))f ′λ(2
3)| = 1, and |f ′ε1(fε2(x))f ′ε2(x)| < 1 for any x ∈ [3µ

16 , 2
3) ∪ (2

3 , λ
4 ]. In

the sequence fε−1fε−2 · · · fε−(n−1)
fε−n(x), the number of terms fλ(fλ(x)) is denoted

by k1. Then obviously, k1 < n
2 . Moreover, for the other [n

2 ]− k1 terms, in every pair
fε1(fε2(x)), we have ε1 = µ or ε2 = µ. Since there are infinite f ′µs in the sequence
fε−1fε−2 · · · fε−(n−1)

fε−n(x) as n → ∞, so [n2 − k1] must go to infinity. Then it is
obvious that

|fε−1fε−2 · · · fε−(n−1)
fε−n(x)−fε−1fε−2 · · · fε−(n−1)

fε−n(y)| 6 Lk1
1 L

[n
2
]−k1

2 |x−y|, (2.27)
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μλ(4−λ)
16

1
2

√3λ2−6λ
6λ μ λ

1− 11− 11 1
2 2λ

+ λ
4

|fλ’(x)|<1, |fμ’(x)|<1 |fλ’(x)|≥1

1
2

−
1 1
2 2λ

−

Figure 2.8: 1 +
√

3 < λ 6 3

where L1 = max{|f ′λ(fλ(x))f ′λ(x)|} 6 1. Because it is easy to see that

|f ′µ(fµ(x))f ′µ(x)| < |f ′λ(fµ(x))f ′µ(x)|,

so according to (4.16), we can take

L2 = max{|f ′λ(fµ(
1
2
±

√
3µ2 − 6µ

6µ
))f ′µ(

1
2
±

√
3µ2 − 6µ

6µ
)|, |f ′λ(fµ(

µλ(4− λ)
16

))f ′µ(
µλ(4− λ)

16
)|,

|f ′λ(fµ(
λ

4
))f ′µ(

λ

4
)|, |f ′µ(fλ(

1
2

+
√

3λ2 − 6λ

6λ
))f ′λ(

1
2

+
√

3λ2 − 6λ

6λ
)|} < 1.

In conclusion, with the same reason as Proposition 2.1.6, we can conclude that the limit
of fε−1fε−2 · · · fε−k

(x) exists as k →∞ for x ∈ [1− 1
µ , 1− 1

λ ] ∈ [µλ(4−λ)
16 , λ

4 ]. ]

Now we consider the case 1 < µ 6 2 < λ 6 3, which can be divided into two cases:
4
λ < µ 6 2 and 1 < µ 6 4

λ . For the former case, we need Lemma 2.1.9.

Lemma 2.1.9 For 4
λ < µ 6 2, 2 < λ 6 3, we have

|f ′ε2(fε1(x))f ′ε1(x)| 6 1, ∀ x ∈ [
µλ(4− λ)

16
,
λ

4
]. (2.28)

As for the later case, it is easy to see that for any 1 < µ 6 4
λ , 2 < λ 6 3, there exists an

integer k > 0 such that µ
(2−µ)k 6 λ < µ

(2−µ)k+1 . We need the following lemmas.

Lemma 2.1.10 If 1 < µ 6 4
λ and 2 < λ 6 3, then for any x ∈ [1− 1

µ , 1
2 −

1
2λ ],

fλ(fµ(x)) > x. (2.29)

See Figure 2.9.

Lemma 2.1.11 If 1 < µ < 4
λ and 2 < λ < 7

3 , then for any x ∈ [1− 1
µ , a2], fλ(fµ(fµ(x))) >

x, where a2 is defined by fµ(fµ(a2)) = 1
2 −

1
2
√

µλ
.

If 1 < µ < 4
λ and 7

3 6 λ 6 3,

fλ(fµ(
1
2
− 1

2
√

µλ
)) >

1
2
− 1

2λ
. (2.30)

See Figure 2.9.
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1
2

− 1
2 3

√μ2λ 1− 1
μ

1
2

− 1
2√μλ

1
2

− 1
2λ

fμ

fλ

a2b2

fμ

fμ

fλfλ

Figure 2.9: λ > µ
(2−µ)2

Lemma 2.1.12 Assume λ > µ
(2−µ)2

, and b2 is defined by fµ(b2) = 1
2 −

1
2
√

µλ
. Then for

x ∈ [1− 1
µ , b2], the following inequality holds:

fλ(fµ(fµ(x))) > x. (2.31)

See Figure 2.10.

1
2

− 1
2 3

√μ2λ 1− 1
μ 1

2
− 1

2√μλ

1
2

− 1
2λ

μ

λ
b2

Figure 2.10: fλ(fµ(fµ(b2))) > b2

Lemma 2.1.13 Assume 1 < µ 6 4
λ , 2 < λ 6 3, and λ > µ

(2−µ)k . Then for any x ∈
[1− 1

µ , bk] and k > 2,
fλ(fµ · · · fµ︸ ︷︷ ︸

k

(x)) > x, (2.32)

where fµ · · · fµ︸ ︷︷ ︸
k−1

(bk) = 1
2 −

1

2 k
√

µk−1λ
. See Figure 2.11.

Lemma 2.1.14 When k > 3, d
dx [fλ fµ · · · fµ︸ ︷︷ ︸

k−1

(x)] < 1 for x ∈ [ck, bk], where bk is defined

in the same way as in Lemma 2.1.13 and ck = fµ(bk).

See Figure 2.11.
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1

2
- 1

2

1

2
- 1

2
k

√μk-1λ
k-1

√μk-2λ

λ

bk bk-1
ck

(k-1) 

μ

x

f

(k-1) 

μf
(k) 

μf

λλ

Figure 2.11: λ > µ
(2−µ)k when 1 < µ 6 4

λ , 2 < λ 6 3

Lemma 2.1.15 When 1 < µ 6 2 < λ 6 3, for any k > 2, we have the following inequality

fλ(
1
2
− 1

2 k
√

µk−1λ
) >

1
2
− 1

2 k−1
√

µk−2λ
. (2.33)

Proposition 2.1.16 Assume 1 < µ 6 2 < λ 6 3. Then for any x ∈ [1 − 1
µ , 1 − 1

λ ],
limk→∞ fε−1fε−2 · · · fε−k

(x) exists and the limit is independent of x.

Proof.
(1). When µ > 4

λ , it is obvious that 1− 1
µ > µλ(4−λ)

16 . This case is similar to the case
2 < µ < λ 6 3. According to (4.18), (4.19) and (4.20) in the proof of Lemma 2.1.9, which
can be seen in section 4.4.1, when µ ∈ ( 4

λ , λ) and λ ∈ (2, 3), for any x, y ∈ [µλ(4−λ)
16 , λ

4 ], we
can get

|fε−1fε−2 · · · fε−(n−1)
fε−n(x)− fε−1fε−2 · · · fε−(n−1)

fε−n(y)| 6 L̃1
[n
2
]|x− y|, (2.34)

where L̃1 = max{L′1, L′2} < 1 and L′1, L′2 are defined in section 4.4.1.
While when λ = 3, with the same reason as the case 2 < µ < λ = 3, we can get

|fε−1fε−2 · · · fε−(n−1)
fε−n(x)− fε−1fε−2 · · · fε−(n−1)

fε−n(y)| 6 Lk1
1 L̃2

[n
2
]−k1 |x− y|, (2.35)

where L1 is the same as in (2.27) and

L̃2 = max{L′2, L′3} < 1.

The contents L′2, L′3 will be given in 4.4.1.
(2). On the other hand, when µ 6 4

λ , the proof is similar to the case 1 < µ < λ 6 2.
We need the following lemmas. Proof is same as the case 1 < µ < λ 6 2, we will first
discuss ξ ∈ [12 −

1
2λ , 1− 1

λ ].
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2
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bk b3
a2 a1b2

dk d3

Figure 2.12: Contracted process

(I). ξ ∈ [12 −
1
2λ , 1− 1

λ ].

(i) For any ξ ∈ [12 −
1
2λ , 1 − 1

λ ], if the process stays in the interval, then we have
|f ′εk

(x)| 6 1. The multiplication of the derivatives of any pair of function is less than
or equal to

L1 = max{|f ′µ(a1)|, |f ′λ(fλ(
1
2
− 1

2λ
))|} < 1,

where a1 is defined by fµ(a1) = 1
2 −

1
2λ . Then for any ξ ∈ [12 −

1
2λ , 1− 1

λ ], we can get

| d

dξ
[fε−1fε−2 · · · fε−n(ξ)]| 6 L

[n
2
]

1 . (2.36)

(ii) For ξ ∈ [12 −
1
2λ , 1− 1

λ ], if the process is mapped by fµ to (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ) and then

comes back to [12 −
1
2λ , 1− 1

λ ] without going into [1− 1
µ , 1

2 −
1

2
√

µλ
]. By Lemma 2.1.2

and Lemma 2.1.3, in the sequence from the time it leaves the interval [12 −
1
2λ , 1− 1

λ ]
to the first time it comes back to the interval, it is obvious that the number of f ′µs is
more than or equal to the number of f ′λs. But note also any pair of fµ and fλ makes
the multiplication of their derivative less than 1. The largest of these multiplication
is

L′2 = f ′λ(
1
2
− 1

2
√

µλ
)f ′µ(b2) < 1.

After that, it will be the case (1) again.

However, if ξ ∈ [12 −
1
2λ , 1 − 1

λ ] is mapped by fµ to (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ) and stays

in the interval forever. Then the number of f ′µs is more than the number of f ′λs in
the sequence. As before, any pair of fµ and fλ makes the multiplication of their
derivatives less than 1. The largest of them is again L′2.
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Therefore, in this case, we have for any ξ ∈ [12 −
1
2λ , 1− 1

λ ],

| d

dξ
[fε−1fε−2 · · · fε−n(ξ)]| 6 L

[n
2
]

2 , (2.37)

where L2 = max{L′2, L1} < 1.

(iii) Starting from ξ ∈ [12 −
1
2λ , 1− 1

λ ], if the process is mapped by fµ to (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ)

and then goes to the interval (1
2 −

1

2 3
√

µ2λ
, 1

2 −
1

2
√

µλ
]. There are two subcases.

(a) If the above step is followed immediately by the map fλ, we consider cases
2 < λ < 7

3 and 7
3 6 λ 6 3 respectively.

By Lemma 2.1.10 and Lemma 2.1.11, the case 2 < λ < 7
3 is the same as

the case (I)(3)(b) when 1 < µ < λ 6 2. The largest derivative is f ′λ(1
2 −

1

2 3
√

µ2λ
)(f ′µ(d3))2 < 1, where fµ(d3) = 1

2 −
1

2 3
√

µ2λ
.

In the second case 7
3 6 λ 6 3, from (2.30), as Figure 2.9 shows, we know

the map fλ will directly take a point x to the interval [12 −
1
2λ , 1 − 1

λ ] when
x > fµ(1

2 −
1

2
√

µλ
) as Figure 2.9 shows. From the first time that the process

starting at ξ ∈ [12 −
1
2λ , 1− 1

λ ] enters [fµ(1
2 −

1
2
√

µλ
), 1

2 −
1

2
√

µλ
] to the time that

the process comes back to [12 −
1
2λ , 1− 1

λ ], the largest derivative is

max{f ′λ(fµ(
1
2
− 1

2λ
))f ′µ(

1
2
− 1

2λ
), f ′λ(fµ(

1
2
− 1

2
√

µλ
))f ′µ(

1
2
− 1

2
√

µλ
)f ′µ(b2)}.

According to Lemma 2.1.2, we have

f ′λ(fµ(
1
2
− 1

2
√

µλ
))f ′µ(

1
2
− 1

2
√

µλ
)f ′µ(b2) < f ′λ(

1
2
− 1

2 3
√

µ2λ
)(f ′µ(

1
2
− 1

2
√

µλ
))2 < 1,

and f ′λ(fµ(1
2 −

1
2λ))f ′µ(1

2 −
1
2λ) < 1.

While if the process starting at ξ ∈ [12−
1
2λ , 1− 1

λ ] enters (1
2−

1

2 3
√

µ2λ
, fµ(1

2−
1

2
√

µλ
))

and then comes back to [12 −
1
2λ , 1 − 1

λ ], by Lemma 2.1.12 and Lemma 2.1.14,
in the sequence, the number of f ′µs is at least twice as many as the number of
f ′λs and the largest derivative is f ′λ(1

2 −
1

2 3
√

µ2λ
)(f ′µ(d3))2.

(b) If the process will stay in (1
2 −

1

2 3
√

µ2λ
, 1

2 −
1

2
√

µλ
] forever. By Lemma 2.1.12 and

Lemma 2.1.14, in the sequence, the number of f ′µs is at least twice as many
as the number of f ′λs. But any two f ′µs and one f ′λs makes the product of the
absolute value of their derivatives less than 1 and all of them are controlled by
f ′λ(1

2 −
1

2 3
√

µ2λ
)(f ′µ(d3))2 < 1.

In all cases of (a) and (b), one can easily get the following estimate

| d

dξ
[fε−1fε−2 · · · fε−n(ξ)]| 6 L

[n
3
]

3 , (2.38)
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where

L3 = max{f ′λ(fµ(
1
2
− 1

2λ
))f ′µ(

1
2
− 1

2λ
), f ′λ(fµ(

1
2
− 1

2
√

µλ
))f ′µ(

1
2
− 1

2
√

µλ
)f ′µ(b2),

f ′λ(
1
2
− 1

2 3
√

µ2λ
)(f ′µ(d3))2, L2} < 1.

(iv) Starting from ξ ∈ [12 −
1
2λ , 1 − 1

λ ], if the process is mapped by fµ into the interval
(1
2 −

1

2 4
√

µ3λ
, 1

2 −
1

2 3
√

µ2λ
], then consider cases

(a) The process will stay in (1
2 −

1

2 4
√

µ3λ
, 1

2 −
1

2 3
√

µ2λ
] forever. By Lemma 2.1.13

and Lemma 2.1.14, then the process from the time that the process enters
(1
2 −

1

2 4
√

µ3λ
, 1

2 −
1

2 3
√

µ2λ
], the number of f ′µs is at least three times as many

as the number of f ′λs and the multiplication of the derivatives is controlled by
f ′λ(1

2 −
1

2 4
√

µ3λ
)f ′µ(d3)3 < 1.

(b) The process will come back to the interval (1
2−

1

2 3
√

µ2λ
, 1

2−
1

2
√

µλ
]. With the same

reason as (I)(3)(b) when 1 < µ < λ 6 2, by Lemma 2.1.13, the multiplication
of the derivatives is controlled by f ′λ(1

2 −
1

2 4
√

µ3λ
)f ′µ(d3)3 < 1. After that it will

be case (iii) again.
If the process enters (1

2 −
1

2
√

µλ
, 1

2 −
1
2λ) after it enters (1

2 −
1

2 3
√

µ2λ
, 1

2 −
1

2
√

µλ
],

then by Lemma 2.1.13, 2.1.14 and Lemma 2.1.12, in the process from the time
that the process enters (1

2 −
1

2 4
√

µ3λ
, 1

2 −
1

2 3
√

µ2λ
] to the first time it goes to (1

2 −
1

2
√

µλ
, 1

2 −
1
2λ), the multiplication of the derivatives is controlled by max{f ′λ(1

2 −
1

2 4
√

µ3λ
)f ′µ(d3)3, f ′λ(fµ(1

2 −
1

2 3
√

µ2λ
))f ′µ(1

2 −
1

2 3
√

µ2λ
)f ′µ(d3)}.

If the process enters [12 −
1
2λ , 1 − 1

λ ] after it enters (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ), then

by Lemma 2.1.13, 2.1.14, 2.1.12 and Lemma 2.1.2, in the process, from the
time that the process enters (1

2 −
1

2 4
√

µ3λ
, 1

2 −
1

2 3
√

µ2λ
] to the first time it goes to

[12−
1
2λ , 1− 1

λ ], the multiplication of the derivatives is controlled by max{f ′λ(1
2−

1

2 4
√

µ3λ
)f ′µ(d3)3, f ′λ(fµ(1

2 −
1

2 3
√

µ2λ
))f ′µ(1

2 −
1

2 3
√

µ2λ
)f ′µ(d3), L3}.

As a result, considering both cases of (a) and (b), one can easily get:

| d

dξ
[fε−1fε−2 · · · fε−n(ξ)]| 6 L

[n
4
]

4 , (2.39)

where

L4 = max{f ′λ(
1
2
− 1

2 4
√

µ3λ
)f ′µ(d3)3, f ′λ(fµ(

1
2
− 1

2 3
√

µ2λ
))f ′µ(

1
2
− 1

2 3
√

µ2λ
)f ′µ(d3), L3} < 1.

(v) The above argument can continue. Let’s say now the point from [12 −
1
2λ , 1 − 1

λ ] is
mapped to the interval [1− 1

µ , 1
2 −

1

2 k
√

µk−1λ
]. There are two possibilities:
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(a) The process remains in [1 − 1
µ , 1

2 −
1

2 k
√

µk−1λ
] forever. Then by Lemma 2.1.14

and Lemma 2.1.13, in the sequence from the time x enters [1− 1
µ , 1

2 −
1

2 k
√

µk−1λ
],

the number of f ′µs is at least k times as many as the number of f ′λs. Again any
k f ′µs and one fλ make the multiplication of their derivatives less than 1, the
largest of these is

f ′λ(1− 1
µ

)(f ′µ(1− 1
µ

))k < 1.

(b) The process leaves [1− 1
µ , 1

2−
1

2 k
√

µk−1λ
] and goes to (1

2−
1

2 k
√

µk−1λ
, 1

2−
1

2 k−1
√

µk−2λ
].

For this case, as the description in the case (I)(4)(c) when 1 < µ < λ 6 2, the
largest derivative of the multiplication is

f ′λ(1− 1
µ

)(f ′µ(1− 1
µ

))k < 1.

After case (b), it will come to the previous cases.

Summarizing above, we can get

| d

dξ
[fε−1fε−2 · · · fε−n(ξ)]| 6 L

[ n
k+1

]

k+1 , (2.40)

where

Lk+1 = max{f ′λ(fµ(
1
2
− 1

2 k
√

µk−1λ
))f ′µ(

1
2
− 1

2 k
√

µk−1λ
)(f ′µ(dk))k−2,

f ′λ(1− 1
µ

)(f ′µ(1− 1
µ

))k, Lk} < 1,

and dk is defined by fµ(dk) = 1
2 −

1

2 k
√

µk−1λ
and

Lk = max{f ′λ(
1
2
− 1

2 k
√

µk−1λ
)(f ′µ(dk))k−1,

f ′λ(fµ(
1
2
− 1

2 k−1
√

µk−2λ
))f ′µ(

1
2
− 1

2 k−1
√

µk−2λ
)(f ′µ(dk−1))k−3, Lk−1} < 1.

(II). ξ ∈ (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ).

Consider the following possibilities:

(i) If the process starting at ξ ∈ (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ) enters the interval [12 −

1
2λ , 1 − 1

λ ],

then by Lemma 2.1.15, fλ(1
2 −

1
2
√

µλ
) > 1

2 −
1
2λ . So for any ξ ∈ (1

2 −
1

2
√

µλ
, 1

2 −
1
2λ),

we have

| d

dξ
[fε−1fε−2 · · · fε−n(ξ)]| 6 M1L

[n−1
k+1

]

k+1 , (2.41)

where M1 = f ′λ(1
2 −

1
2
√

µλ
).
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(ii) The process starting at ξ ∈ (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ) stays in this interval forever, then

(2.37) also holds as the case (I)(iii).

(iii) If ξ ∈ (1
2−

1
2
√

µλ
, 1

2−
1
2λ) is mapped into the interval (1

2−
1

2 3
√

µ2λ
, 1

2−
1

2
√

µλ
] and never to

[1− 1
µ , 1

2−
1

2 3
√

µ2λ
]. After that, if the process stays in that interval forever, then (2.38)

holds. However, if the process can jump out of the interval (1
2 −

1

2 3
√

µ2λ
, 1

2 −
1

2
√

µλ
]

again by fλ, then as the case (II)(3)(b) when 1 < µ < λ 6 2, if this case (II)(iii)
repeats, then we have

| d

dξ
[fε−1fε−2 · · · fε−n(ξ)]| 6 N2L

[n−2
k+1

]

3 , (2.42)

where N2 and L3 are defined in the same way as in (2.14) and (2.38) respectively.

(iv) The above argument can continue. So if ξ ∈ (1
2 −

1
2
√

µλ
, 1

2 −
1
2λ) is mapped into the

interval [1− 1
µ , 1

2 −
1

2 k
√

µk−1λ
] at a point ξ1. After that, if it stays in it forever, then

(2.40) holds. While it is mapped by fλ to the interval [1 − 1
µ , 1

2 −
1

2 k
√

µk−1λ
], it is

the same case as (I)(4)(b) when 1 < µ < λ 6 2. We define ξ′1 as fµ · · · fµ︸ ︷︷ ︸
k

(ξ′1) = ξ1,

then by Lemma 2.1.2, Lemma 2.1.14 and Lemma 2.1.13, fµ(ξ′1) < 1
2 −

1
2
√

µλ
and

fλ(ξ1) > fµ(ξ′1). So we have the following inequality

| d

dξ
[fε−1fε−2 · · · fε−n(ξ)]| 6 L

[ n
k+1

]

k+1 , (2.43)

where Lk+1 are defined the same as in (2.40). Concluding these four possibilities of
case (II), for any ξ ∈ (1

2 −
1

2
√

µλ
, 1

2 −
1
2λ), we always have

| d

dξ
[fε−1fε−2 · · · fε−n(ξ)]| 6 M1N2L

[n−3
k+1

]

k+1 . (2.44)

.

We can discuss the cases ξ ∈ (1
2 −

1

2 3
√

µ2λ
, 1

2 −
1

2
√

µλ
), · · · , ξ ∈ [12 −

1

2 k
√

µk−1λ
, 1

2 −
1

2 k−1
√

µk−2λ
]

similarly, but we omit the details here.

(III). We consider the case ξ ∈ [1− 1
µ , 1

2 −
1

2 k
√

µk−1λ
].

(i) If ξ ∈ [1− 1
µ , 1

2 −
1

2 k
√

µk−1λ
] and the process stays in this interval forever, then (2.40)

holds.

(ii) If the process moves to the right and eventually enters the interval [12 −
1
2λ , 1 −

1
λ ]. During this process, when the process enters [12 −

1

2 i
√

µi−1λ
, 1

2 −
1

2 i−1
√

µi−2λ
), the

following (case ?) is possible to happen for each i = 2, 3, · · · , k. While for i = 2, we
have discussed in case (II)(iii), now we will consider other i.

28



Loughborough University Doctoral Thesis

(Case ?) the process is mapped into the interval [12−
1

2 i+1
√

µiλ
, 1

2−
1

2 i
√

µi−1λ
) and then

comes back to the interval [12 −
1

2 i
√

µi−1λ
, 1

2 −
1

2 i−1
√

µi−2λ
) with a map fλ . Actually,

we have discussed similar case in the case (IV)3 under the condition 1 < µ < λ 6 2.
By Lemma 2.1.13 and Lemma 2.1.14, the largest derivative of the multiplication is
d
dx [fλ(fµ · · · fµ︸ ︷︷ ︸

j−1

(1
2 −

1

2 i
√

µi−1λ
))] := N ′

ij ; here j = 2, 3, · · · , i.

Now it follows from Lemma 2.1.15 that

| d

dξ
[fε−1fε−2 · · · fε−n(ξ)]| 6

k∏
t=1

Mt

k∏
i=2

M ′
iL

[n−k−k̄
k+1

]

k+1 , (2.45)

where Mk = f ′λ(1− 1
µ) Mt = f ′λ(1

2 −
1

2 t
√

µt−1λ
) for t = 1, 2, · · · , k− 1, M ′

i =
∏i

j=2 N ′
ij

for i = 2, · · · , k and k̄ =
∑k

m=2(
∑m

i=2 i).

Concluding all above cases (I), (II) and (III), we can always get (2.45) for any ξ ∈ [1 −
1
µ , 1− 1

λ ] when 1 < µ 6 4
λ , 2 < λ 6 3.

As a result, when 1 < µ 6 2 < λ 6 3, for any x ∈ [1 − 1
µ , 1 − 1

λ ], using the same
argument as in the proof of Proposition 2.1.6 when 1 < µ < λ 6 2, there is a limit of
fε−1fε−2 · · · fε−n(x), denoted by Y ?(ω). It is also noted that Y ?(ω) is independent of x. ]

2.2 3 < µ < λ 6 1 +
√

5

2.2.1 Limit of pullback.

Lemma 2.2.1 For 3.00547 6 µ < λ 6 1+
√

5 and k > 2, we have the following inequality:

Fµ(xk−1) > xk, (2.46)

where xk satisfies F ′
λ(xk)(F ′

µ(xk))k−1 = 1.

Let Fθ = fθ(fθ(x)) = θ2x(1 − x)(1 − θx + θx2). Here, the reason we choose µ > 3.00547
is that we need to guarantee βµ > 1− 1

λ > 1− 1
1+

√
5

in order to make sure that [βµ, βλ] is
an invariant interval. Under this condition, [αµ, αλ] is also an invariant interval.

Lemma 2.2.2 Assume F ′
λ(βµ)F ′

µ(βµ) < 1, then for any x ∈ [βµ, x1], we have

Fλ(Fµ(x)) > x. (2.47)

Lemma 2.2.3 Assume F ′
λ(βµ)(F ′

µ(βµ))2 < 1 and 3.00547 6 µ < λ 6 1 +
√

5 and y2 is
defined by Fµ(Fµ(y2)) = x2. Then for any x ∈ [βµ, y2], we have

Fλ(Fµ(Fµ(x))) > x. (2.48)

Lemma 2.2.4 Assume 3.00547 6 µ < λ 6 1 +
√

5, then we can always find a k such
that xk+1 < βµ 6 xk, where xk is defined by F ′

λ(xk)(F ′
µ(xk))k−1 = 1. Moreover, for any

x ∈ [βµ, yk],
Fλ(Fµ · · ·Fµ︸ ︷︷ ︸

k

(x)) > x, (2.49)
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where yk is defined by Fµ · · ·Fµ︸ ︷︷ ︸
k

(yk) = xk.

Proposition 2.2.5 Assume 3.00547 6 µ < λ < 1 +
√

5 and ω = (· · · , ε−2, ε−1; ε0, ε1, · · · )
with ε2i = ε2i+1 for all i, there exists α(ω), β(ω) such that for any x ∈ [βµ, βλ] and
y ∈ [αλ, αµ], we can get

lim
n→∞

fε−1 · · · fε−2n(x) = β(ω),

lim
n→∞

fε−1 · · · fε−2n(y) = α(ω).

Proof. Fµ and Fλ are increasing in these two invariant intervals. For any x ∈ (0, 1), the
process will enter either [αλ, αµ] or [βµ, βλ] after finite Fµ and finite Fλ.

If there are infinitely many µ and finitely many λ in (ε1ε2 · · · ), then obviously x will
go towards the attracting point αµ or αλ eventually. i.e.

lim
k→∞

Fε−1Fε−2 · · ·Fε−k
(x) =

{
Fε−1Fε−2 · · ·Fε−m1

(αµ) when x ∈ [αλ, αµ],
Fε−1Fε−2 · · ·Fε−m1

(βµ) when x ∈ [βµ, βλ].

Here m1 ∈ Z such that ε−j = µ for all j > m1.
With the same reason, if there are infinitely many λ and finitely many µ in (ε1ε2 · · · ),

then

lim
k→∞

Fε−1Fε−2 · · ·Fε−k
(x) =

{
Fε−1Fε−2 · · ·Fε−m2

(αλ) when x ∈ [αλ, αµ],
Fε−1Fε−2 · · ·Fε−m2

(βλ) when x ∈ [βµ, βλ].

Here m2 ∈ Z such that ε−j = λ for all j > m2.
However, If there are infinitely many µ and infinitely many λ in (ε1ε2 · · · ), this case

will be more complicated than the above one.
Note that F ′

µ(x) 6 1 for x ∈ [βµ, βλ]. On the other hand, we can also find a point
x1 < βµ which satisfies F ′

λ(x1) = 1 when F ′
λ(βµ) < 1. Obviously, for any x ∈ [βµ, βλ],

F ′
εk

(x) < 1 for any εk = λ or µ. Then it is obvious that the following limit exists when n
approaches infinity.

lim
n→∞

Fε−1Fε−2 · · ·Fε−n(x) = Y (ω). (2.50)

While when F ′
λ(βµ) > 1, we will consider F ′

λ(βµ)(F ′
µ(βµ))k, k > 1 respectively. Then

we will use the following lemmas 2.2.1, 2.2.2, 2.2.3 and 2.2.4 to prove this proposition as
Figure 2.13 shows.

βμ βλx2

Fμ

Fλ xk x3x4 x1

F’μ(x)<1

F’λ(x)<1
F’λ(x)Fμ’(x)<1F’λ(x)(Fμ’(x))

2
<1F’λ(x)(Fμ’(x))

3
<1

F’λ(x)(Fμ’(x))
k
<1

Fλ

Figure 2.13: Contracted process
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Consider
ω = (· · · , ε−2, ε−1; ε0, ε1, · · · ), (2.51)

with ε2i = ε2i+1, i = 0,±1,±2, · · · . As Figure 2.13 shows, with the same reason as the
case 1 < µ < λ 6 2. We have the following inequality for any x, y ∈ [βµ, βλ],

|fε−1fε−2 · · · fε−(2n−1)
fε−2n(x)− fε−1fε−2 · · · fε−(2n−1)

fε−2n(y)|

6 Mmk
k

k∏
j=2

M ′
jL

[
2n−mk−m̃

k+1
]

k+1 |x− y|. (2.52)

Here the parameters are defined similarly as (2.23). Mk = F ′
λ(βµ), M ′

j =
∏k

i=2 Nji, Nji =
d
dx [fλ(fµ · · · fµ︸ ︷︷ ︸

i−1

(xj))], Lk+1 = max{F ′
λ(βµ)(F ′

µ(βµ))k, Lk}, Lk = max{F ′
λ(xk)(F ′

µ(Fµ · · ·Fµ︸ ︷︷ ︸
k−1

(ak)))k−1},

m̃ =
∑k

m=2(
∑k

i=2 i) and mk = n1 + · · ·+ ni + · · ·+ nk, ni denotes the minimum number
of F ′

λs in the following sequence

Fλ(Fµ · · ·Fµ︸ ︷︷ ︸
i−1

Fλ · · ·Fµ · · ·Fµ︸ ︷︷ ︸
i−1

Fλ(xi+1)) > xi, i = 2, · · · , k − 1.

Moreover, nk denotes the minimum number of Fλ in the following sequence

Fλ(Fµ · · ·Fµ︸ ︷︷ ︸
k−1

Fλ · · ·Fµ · · ·Fµ︸ ︷︷ ︸
k−1

Fλ(βµ)) > xk.

If we choose x = βλ and y = fε−(2n+1)
· · · fε−2(n+m)

(βλ), by (2.52), we can get as n →∞

|fε−1fε−2 · · · fε−2n(βλ)− fε−1fε−2 · · · fε−2n(fε−(2n+1)
· · · fε−2(n+m)

(βλ))|

6 Mmk
k

k∏
j=2

M ′
jL

[
2n−mk−m̃

k+1
]

k+1 |βλ − fε−(2n+1)
· · · fε−2(n+m)

(βλ)| → 0.

As a result, fε−1fε−2 · · · fε−n(βλ) is a Cauchy sequence in [βµ, βλ]. So there is a limit
denoted by β(ω). Also for

|fε−1fε−2 · · · fε−2n(x)− β(ω)| 6 |fε−1fε−2 · · · fε−2n(x)− fε−1fε−2 · · · fε−2n(βλ)|
+|fε−1fε−2 · · · fε−2n(βλ)− β(ω)| → 0.

Therefore, we can get
lim

n→∞
fε−1fε−2 · · · fε−2n(x) = β(ω),

which is independent of x.
With the same reason, for any y ∈ [αλ, αµ], we can get

lim
n→∞

fε−1fε−2 · · · fε−2n(y) = α(ω).

]
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Chapter 3

Proof of the two main theorems

3.1 Proof of Theorem 1.2.2

For ω = (· · · , ε−2, ε−1; ε0, ε1, ε2, · · · , εk0 · · · ), we define

θω = (· · · , ε−2, ε−1, ε0; ε1, ε2, · · · , εk0 · · · ),
θ−1ω = (· · · , ε−2; ε−1, ε0, ε1, ε2, · · · , εk0 · · · ).

So θnω = (· · · , ε−2, ε−1, ε0, ε1, ε2 · · · , εn−1; εn, · · · εk0 · · · ).
Moreover, according to Proposition 2.1.6, Proposition 2.1.8 and Proposition 2.1.16,

when 1 < µ < λ 6 3 for x ∈ [1− 1
µ , 1− 1

λ ], we define

Y ?(ω) = lim
n→∞

fε−1fε−2 · · · fε−(n−1)
fε−n(x). (3.1)

Recalling that we have defined Φ(ω, x) = fε0(x), and it is easy to see that

Φ2(ω, x) = Φ(θω)Φ(ω, x) = fε1fε0(x),
Φ3(ω, x) = Φ(θ2ω)Φ(θω)Φ(ω, x) = fε2fε1fε0(x),

...
Φk(ω, x) = Φ(θk−1ω)Φ(θk−2ω) · · ·Φ(θω)Φ(ω, x)

= fεk−1
fεk−2

· · · fε1fε0(x). (3.2)

So we can get

Φk(ω, Y ?(ω)) = fεk−1
fεk−2

· · · fε1fε0 lim
n→∞

fε−1fε−2 · · · fε−(n−1)
fε−n(x)

= lim
n→∞

fεk−1
fεk−2

· · · fε1fε0fε−1fε−2 · · · fε−(n−1)
fε−n(x)

= Y ?(θkω).

Therefore, Y ?(ω) is a stationary solution of the random dynamical system.
Moreover

Φn(ω) = Φ(θn−1ω) ◦ Φ(θn−2ω) ◦ · · · ◦ Φ(θω) ◦ Φ(ω),
Φn(θ−nω)(x) = Φ(θ−1ω) ◦ Φ(θ−2ω) ◦ · · · ◦ Φ(θ−n+1ω) ◦ Φ(θ−nω)(x)
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= fε−1fε−2 · · · fε−(n−1)
fε−n(x).

So for x ∈ [1− 1
µ , 1− 1

λ ], we can get

lim
n→∞

Φn(θ−nω)(x) = lim
n→∞

fε−1fε−2 · · · fε−(n−1)
fε−n(x) = Y ?(ω). (3.3)

3.2 Proof of Theorem 1.3.2

With the same reason as the proof of theorem 1.2.2, and according to Proposition 2.2.5,
we can get (1.9) and (1.10).

we define
α(θω) = fε0(β(ω)), β(θω) = fε0(α(ω)).

Then we have

Φ1(ω, α(ω)) = fε0(α(ω)) = β(θ(ω)),
Φ1(ω, β(ω)) = fε0(β(ω)) = α(θ(ω)).

Consequently, by the cocycle property of random dynamical systems, we can get (1.11)
and (1.12). By Definition 1.3.1, then Theorem 1.3.2 is proved.
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Chapter 4

Proof of lemmas

4.1 Two general lemmas for µ, λ ∈ (1, 3]

Proof of Lemma 2.1.2. To see the inequality (2.1) for 1 < µ < λ 6 2, define m by
fµ(m) = 1

2 −
1

2 k+1
√

µkλ
. Then we need to prove that m < 1

2 −
1

2 k
√

µk−1λ
, i.e.

1
2
−

√
µ2 − 2µ + 2µ

1
k+1 λ−

1
k+1

2µ
<

1
2
− 1

2 k
√

µk−1λ
.

It is equivalent to prove that D(k) = µ2 − 2µ + 2(µ
λ)

1
k+1 − (µ

λ)
2
k > 0. Differentiating D

with respect to k, we have

D′(k) =
2
k2

ln(
µ

λ
)(

µ

λ
)

1
k+1 [(

µ

λ
)

k+2
k(k+1) − k2

(k + 1)2
].

Now, we will prove that D′(k) < 0. Since ln(µ
λ) < 0, we need to prove that

(
µ

λ
)

k+2
k(k+1) − k2

(k + 1)2
> 0.

Because (µ
λ)

k+2
k(k+1) is increasing as (µ

λ) increases, so (µ
λ)

k+2
k(k+1) > (1

2)
k+2

k(k+1) . We will check

whether or not [(1
2)

k+2
k(k+1) − k2

(k+1)2
] > 0. Considering that k+2

k(k+1) 6 1
k + 1

k+1 < 2
k , we can

get (1
2)

k+2
k(k+1) > (1

2)
2
k . In order to prove D′

k < 0, we need to prove ((1
2)

1
k )2 > ( k

k+1)2. So

we will check whether or not 2
1
k − k+1

k < 0. Let B(a) = 2a − 1− a, a ∈ (0, 1]. Then it is
easy to see that

B′′(a) = 2a(ln 2)2 > 0.

Therefore, the maximum point of B should be at the start point or the end point of a.
But B(0) = 0, B(1) = 0. As a result, B( 1

k ) < 0. So D′(k) < 0. So D(k) decreases as k
increases and for any k > 1, D(k) > limk→∞ D(k) = µ2− 2µ + 1 > 0. Thus the inequality
(2.1) holds.
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Now, we will prove inequality (2.1) still holds for λ ∈ (2, 3] and k > 1. We will check

whether or not [(1
3)

k+2
k(k+1) − k2

(k+1)2
] > 0. Let E(k) = 3

k+2
2k(k+1) − k+1

k , then we differentiate
E with respect to k to get

E′(k) =
1
k2

[3
k+2

2k(k+1) (ln 3)
−k2 − 4k − 2

2(k + 1)2
+ 1].

Here, let F (k) = [3
k+2

2k(k+1) (ln 3)−k2−4k−2
2(k+1)2

+ 1] and we have

F ′(k) = 3
k+2

2k(k+1) (ln 3)[
(−k2 − 4k − 2)2

4k2(k + 1)4
+

k

(k + 1)3
] > 0.

Therefore, F (k) increases in k, limk→∞ F (k) > 0 and F (2) < 0. This implies that there
exists k0, such that

E′(k) 6 0 for k ∈ [2, k0], E′(k) > 0, for k ∈ (k0,∞).

and E(k) decreases first and then increase. So E(k) reaches the maximum value at k = 2
and k = ∞ for k > 2:

E(2) = 3
1
3 − 3

2
< 0,

lim
k→∞

E(k) = 0.

It is easy to see now E(k) < 0 when k > 2 and Lemma 2.1.2 holds. When k = 1,

f ′λ(fµ(
1
2
− 1

2λ
))f ′µ(

1
2
− 1

2λ
) =

2λ2µ− λ2µ2 + µ2

2λ2
,

and 2λ2µ− λ2µ2 + µ2 − 2λ2 = λ2(2µ− µ2 − 2) + µ2.

When λ2 > µ2

2µ−µ2−2
, f ′λ(fµ(1

2 −
1
2λ))f ′µ(1

2 −
1
2λ) < 1. Because ( µ2

µ2+2−2µ
)′ = 2µ(2−µ)

(µ2+2−2µ)2
> 0

and µ2

µ2+2−2µ
< 2, it is easy to get λ2 > µ2

2µ−µ2−2
and

f ′λ(fµ(
1
2
− 1

2λ
))f ′µ(

1
2
− 1

2λ
) < 1.

Proof of Lemma 2.1.15. In order to prove (2.33), we just need to prove

λ
µ2 − (µ

λ)
2
k

4µ2
>

µ− (µ
λ)

1
k−1

2µ
.

We let A(µ, λ, k) = λµ2 − λ(µ
λ)

2
k − 2µ2 + 2µ(µ

λ)
1

k−1 and we differentiate A(µ, λ, k) with
respect to µ to get

∂A(µ, λ, k)
∂µ

= 2λµ− 4µ + 2(
µ

λ
)

1
k−1 +

2
k − 1

(
µ

λ
)

1
k−1 − 2µ

kλ
(
µ

λ
)

2
k

> 2[
1

k − 1
(
µ

λ
)

1
k−1 + (

µ

λ
)

1
k−1 − 3

kµ
(
µ

λ
)

2
k ].
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Since λ ∈ (2, 3], we can get (µ
λ)

1
k−1 > (µ

λ)
2
k and (µ

λ)
1

k−1 > 3
kµ(µ

λ)
2
k when k > 3. However,

when k = 2, we have
∂A(µ, λ, k)

∂µ
> 2[

2µ

λ
− 3

2λ
] > 0.

As a result, ∂A(µ,λ,k)
∂µ > 0 and A(µ, λ, k) increases as µ increases. So we can get

A(µ, λ, k) > A(1, λ, k) = λ− λ
k−2

k − 2 + 2λ−
1

k−1 .

When k > 2,

∂A(1, λ, k)
∂λ

= 1− λ−
2
k +

2
k
λ−

2
k − 2

(k − 1)λ
λ−

1
k−1

>
2
k
λ−

2
k − 1

k − 1
λ−

1
k−1 =

λ−
2
k

k
(2− k

k − 1
λ

k−2
k(k−1) ).

Since λ
k−2

k(k−1) 6 3
1
6 = 1.2 and k

k−1 6 3
2 for k > 3, and we also have 2 − k

k−1λ
k−2

k(k−1) = 0

when k = 2. Therefore, ∂A(1,λ,k)
∂λ > 0 and A(1, λ, k) is an increasing function with respect

to λ. So we can get

A(µ, λ, k) > A(1, 2, k) = 2(2−
1

k−1 − 2−
2
k ) > 0.

As a result, (2.33) holds and Lemma 2.1.15 is proved.

4.2 1 < µ < λ 6 2

4.2.1 λ > µ
2−µ

In the case µ
2−µ 6 λ < µ

(2−µ)2
, we have 1

2 −
1

2
√

µλ
< 1 − 1

µ 6 1
2 −

1
2λ as Figure 2.2

shows. Recall that f ′µ(x) and f ′λ(x) are both less than 1 in (1
2 −

1
2λ , 1 − 1

λ ]. However, for
x ∈ (1

2 −
1

2
√

µλ
, 1

2 −
1
2λ ], f ′µ(x)f ′λ(x) < and f ′λ(x) > 1. We prove the following lemma.

Proof of Lemma 2.1.3. We first prove that (2.2) holds for x = 1
2 −

1
2λ . Let F (x) =

fλ(fµ(x))− x for any x ∈ [12 −
1

2
√

µλ
, 1− 1

λ ], then we have

F (x) = x[λµ(1− x)(1− µx + µx2)− 1].

For this, let G(x) = λµ(1− x)(1− µx + µx2)− 1. Then

G′(x) = λµ(−3µx2 + 4µx− µ− 1) = −3λµ2(x− 2
3
)2 + µλ(

µ

3
− 1) < 0.

So G(x) is decreasing with respect to x, G(x) > G(1
2 −

1
2λ) for any x ∈ [1 − 1

µ , 1
2 −

1
2λ ].

Simple computation shows that

G(
1
2
− 1

2λ
) =

µ(λ + 1)(4λ2 − µλ2 + µ)− 8λ2

8λ2
.
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But

A(µ, λ) = µ(λ + 1)(4λ2 − µλ2 + µ)− 8λ2

= −(λ + 1)(λ2 − 1)(µ− 2λ2

λ2 − 1
)2 +

4λ4

λ− 1
− 8λ2.

It is trivial to see that 2λ2

λ2−1
> 2 and so µ < 2λ2

λ2−1
. Therefore, A(µ, λ) is monotonically

increasing when µ increases in the interval (1, 2).
But when µ = 1, A(1, λ) = 3λ3 − 5λ2 + λ + 1 > 0 for λ > 1. Therefore A(µ, λ) >

A(1, λ) > 0. So G(1
2 −

1
2λ) = A

8λ2 > 0 and F (1
2 −

1
2λ) > 0. Consequently, (2.2) holds for

x = 1
2 −

1
2λ .

On the other hand, for x ∈ [1 − 1
µ , 1

2 −
1
2λ ], f ′µ(x) > 0, f ′λ(x) > 0, f ′′µ(x) = −2µ < 0

and f ′′λ (x) = −2λ < 0, so we have

F ′(x) = f ′λ(fµ(x)) · f ′µ(x)− 1,

F ′′(x) = f ′′λ (fµ(x))(f ′µ)2 + f ′λ(fµ(x)) · f ′′µ(x) = −2λ(f ′µ)2 − 2µf ′λ(fµ(x)) < 0

As a result, F (x) gets the minimum value when x = 1 − 1
µ or x = 1

2 −
1
2λ . It is easy to

see that F (1 − 1
µ) > 0 and we recall that F (1

2 −
1
2λ) > 0, so we can get F (x) > 0 for

x ∈ [12 −
1

2
√

µλ
, 1

2 −
1
2λ ]. This lemma is proved.

For x ∈ (1
2 −

1
2λ , 1− 1

λ), note fµ(x) > fµ(1
2 −

1
2λ) and fλ(fµ(1

2 −
1
2λ)) > 1

2 −
1
2λ . So for

x ∈ (1
2 −

1
2λ , 1− 1

λ), we have

fλ(fµ(x)) > fλ(fµ(
1
2
− 1

2λ
)) >

1
2
− 1

2λ
.

That is to say, when x ∈ (1
2 −

1
2λ , 1− 1

λ), then fλ(fµ(x)) ∈ (1
2 −

1
2λ , 1− 1

λ).

4.2.2 λ > µ
(2−µ)2

In this case, 1
2 −

1
2
√

µλ
> 1 − 1

µ i.e. µ
(2−µ)2

6 λ. Note f ′λ(x)f ′µ(x) > 1 for any x ∈
[1 − 1

µ , 1
2 −

1
2
√

µλ
]. So we can not claim that |fλ(fµ(x)) − fλ(fµ(y))| < |x − y| for any

x, y ∈ [1 − 1
µ , 1

2 −
1

2
√

µλ
] and then we can not guarantee the process mapped out of the

interval (1
2−

1
2λ , 1− 1

λ ] and then back to this interval is contracting by what we have proved
so far.

Now we consider the process that x is mapped by fµ twice and then by fλ. First note
f ′λ(x)f ′µ(x)f ′µ(x) = λµ2(1 − 2x)3 6 1 when x > 1

2(1 − 1
3
√

µ2λ
). Therefore, when 1

2(1 −
1

3
√

µ2λ
) < 1− 1

µ , i.e λ < µ
(2−µ)3

, we have for any x ∈ (1− 1
µ , 1

2−
1

2
√

µλ
], f ′λ(x)fµ(x)′f ′µ(x) < 1

and d
dx [fλ(fµfµ(x))] < 1. So if two fµ at first and then one fλ is applied, the process will

be contracted.

Proof of Lemma 2.1.4. First, we prove (2.3) holds when x = a2, i.e.

fλ(
1
2
− 1

2
√

µλ
) > a2. (4.1)
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1
2

− 1
2 3

√μ2λ 1− 1
μ

1
2

− 1
2√μλ

1
2

− 1
2λ

fμ

fλ

m a2

m

fμ

fλ

Figure 4.1: fµ(fλ(1
2 −

1
2
√

µλ
)) > m

For this, we only need to prove the following inequality is true as Figure 4.1 shows

fµ(fλ(
1
2
− 1

2
√

µλ
)) > m, (4.2)

where fµ(m) = 1
2 −

1
2
√

µλ
.

Simple computations give fµ(fλ(1
2−

1
2
√

µλ
)) = (µλ−1)(4µ−µλ+1)

16µ and m =
µ−

q
µ2−2µ+2

√
µ
λ

2µ ,
so to prove (4.2) is reduced to prove

A =
(µλ− 1)(4µ− µλ + 1)− 8µ + 8

√
µ2 − 2µ + 2

√
µ
λ

16µ
> 0.

Denote B(µ, λ) = (µλ− 1)(4µ−µλ + 1)− 8µ + 8
√

µ2 − 2µ + 2
√

µ
λ and we differentiate B

with respect to µ to have

∂B

∂µ
= 8µλ− 2µλ2 + 2λ− 12 + 4

2µ− 2 + 1√
µλ√

µ2 − 2µ + 2
√

µ
λ

.

Denote D = (2µ− 2 + 1√
µλ

)2 − (µ2 − 2µ + 2
√

µ
λ), then

D = 3(µ− 1)2 +
µλ +

√
µ(2µ− 4)

√
λ + 1

µλ
.

Let h(λ) = µλ +
√

µ(2µ− 4)
√

λ + 1. It is easy to see that

h′(λ) =
√

µ

λ
(
√

µλ− (2− µ)) > 0.

Then h(λ) is an increasing function of λ and

h(λ) > h(µ) = 3µ2 − 4µ + 1 > 0.
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It follows that D > 0 and then

∂B

∂µ
> 8µλ− 2µλ2 + 2λ− 8 = (8− 2λ)(µλ− 1) > 0.

Therefore, B(µ, λ) increases as µ increases and then B(µ, λ) > B(1, λ). But

B(1, λ) = −λ2 + 6λ− 13 + 8

√
2√
λ
− 1.

Note ∂B(1,λ)
∂λ = (−2λ+6)λ

√
2
√

λ−λ−4

λ
√

2
√

λ−λ
.

Denote F (λ) = (−2λ + 6)λ
√

2
√

λ− λ− 4, then

F (λ) = −4λ

√
2
√

λ− λ− λ2

1√
λ
− 1√

2
√

λ− λ
+ 6

√
2
√

λ− λ + 3λ

1√
λ
− 1√

2
√

λ− λ

=
5λ2 − 9λ

√
λ + 15

√
λ− 9λ√

2
√

λ− λ
.

Let E(λ) = 5λ2 − 9λ
√

λ + 15
√

λ− 9λ. Then it is easy to see that

E′
λ = 10λ− 27

2

√
λ− 3

2
+

15
2

(
1√
λ
− 1).

Obviously, 10λ − 27
2

√
λ − 3

2 and 1√
λ
− 1 are both less than 0 when 1 < λ 6 2, so E′

λ < 0

and then E is a decreasing function in λ. Since E(1) = 2 > 0 and E(2) = 2 − 3
√

2 < 0,
we can find a point a which satisfies E(a) = 0. As a result, we can have{

F ′(λ) > 0 when λ ∈ (1, a),
F ′(λ) < 0 when λ ∈ [a, 2].

That means F (λ) increases when λ ∈ (1, a) and decreases when λ ∈ [a, 2]. Since F (1) = 0
and F (2) = 4(

√
2
√

2− 2− 1) < 0, we can find b > a such that F (b) = 0. This implies{
∂B(1,λ)

∂λ > 0, when λ ∈ (1, b),
∂B(1,λ)

∂λ < 0, when λ ∈ [b, 2].

This means B(1, λ) is an increasing function of λ when λ ∈ (1, b) and a decreasing function
when λ ∈ [b, 2]. Because B(1, 1) = 0 and B(1, 2) = 8

√√
2− 1 − 5 > 0, so B(1, λ) >

0, ∀ λ ∈ (1, 2]. Since we have proved that B is an increasing function with respect to
µ, B(µ, λ) > B(1, λ) > 0 for any 1 < µ < λ 6 2. Therefore, we can get that A > 0 and
(4.1) holds.

To sum up all above, if fµ(fµ(a2)) = 1
2 −

1
2
√

µλ
, fλ(1

2 −
1

2
√

µλ
) > a2 holds.

Second, consider 1 − 1
µ < x 6 a2. Let G(x) = fλ(fµ(fµ(x))) − x. Note f ′′λ (x) = −2λ,

f ′′µ(x) = −2µ, f ′µ(x) > 0 and f ′µ(x) > 0 for x ∈ [1 − 1
µ , 1 − 1

λ ], then we differentiate G(x)
with respect to x to have

G′(x) = f ′λ(fµ(fµ(x))) · f ′µ(fµ(x)) · f ′µ(x)− 1,
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G′′(x) < f ′′λ (fµ(fµ(x))) · (f ′µ(fµ(x)) · f ′µ(x))2 + f ′λ(fµ(fµ(x))) · f ′′µ(fµ(x)) · (f ′µ(x))2

+f ′λ(fµ(fµ(x))) · f ′µ(fµ(x)) · f ′′µ(x) < 0.

Therefore G(x)reaches the minimum valve at x = 1− 1
µ or x = a2. Since G(1− 1

µ) > 1− 1
µ

and G(a2) > a2, then it follows that (2.3) holds for any x ∈ [1− 1
µ , a2].

4.2.3 µ
(2−µ)3

6 λ 6 2

Proof of Lemma 2.1.5. Notice λ > µ
(2−µ)k > µ

(2−µ)3
> µ

(2−µ)2
. So for any x ∈ [1− 1

µ , a2],
where a2 is defined in Lemma 2.1.4, it follows from Lemma 2.1.4 that

fλ(fµ(fµ(x))) > x.

Now we use induction method to prove the lemma. First we assume that for a 3 6 k 6 n
and λ > µ

(2−µ)k−1 ,

fλ fµ · · · fµ︸ ︷︷ ︸
k−1

(x) > x, x ∈ [1− 1
µ

, ak−1], (4.3)

where ak−1 is defined by fµ · · · fµ︸ ︷︷ ︸
k−1

(ak−1) = 1
2 −

1

2 k−1
√

µk−2λ
.

Now, assume λ > µ
(2−µ)k . First, we prove that

fλ fµ · · · fµ︸ ︷︷ ︸
k

(ak) > ak, (4.4)

where ak is defined by fµ · · · fµ︸ ︷︷ ︸
k

(ak) = 1
2 −

1

2 k
√

µk−1λ
.

For this, we define some λ0 such that

fµ(fλ(
1
2
− 1

2 k
√

µk−1λ
)) = fλ0(

1
2
− 1

2 k
√

µk−1λ
)). (4.5)

Obviously, λ0 < λ. Moreover, computing both sides of (4.5) and solving equation (4.5),
we can get

λ0 = λ · (µ− µλ

4
+

1
4
(
λ

µ
)

k−2
k ). (4.6)

(i) We prove
1
2
− 1

2 k
√

µk−1λ
<

1
2
− 1

2 k−1
√

µk−2λ0

. (4.7)

It is equivalent to prove

A = (µk−1λ)
1
k − (µk−2λ0)

1
k−1 = µk2−2k(µλk−1 − λk

0) < 0.

Since λ0 = λ · (µ− µλ
4 + 1

4(λ
µ)

k−2
k ), then we can get

µλk−1 − λk
0 = λk ·

[
µ

λ
−

(
µ− µλ

4
+

1
4
(
λ

µ
)

k−2
k

)k
]

.
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1

2
- 1

2
k

√μk-1λ

fμ

(k)

fλ’(x)[fμ’(x)]
k
<1

fλ’(x)[fμ’(x)]
k-1

<1

1-
1
μ

1

2
-

1

2λ

μ

λ

λ0
fμ

(k-1)

1-
1
λ

ak

λ

Figure 4.2: fµ(fλ(1
2 −

1

2 k
√

µk−1λ
)) = fλ0(

1
2 −

1

2 k
√

µk−1λ
))

Let B(k) = µ − µλ
4 + 1

4(λ
µ)

k−2
k − (µ

λ)
1
k . We differentiate B(k) with respect to k to

derive that

B′(k) = −1
4
(
µ

λ
)

2−k
k ln(

µ

λ
)

2
k2

+ (
µ

λ
)

1
k ln(

µ

λ
)

1
k2

=
1
k2

(
µ

λ
)

1
k ln(

µ

λ
)
(

1− 1
2
(
µ

λ
)

1−k
k

)
< 0,

since 1 − 1
2(µ

λ)
1−k

k > 0 and ln µ
λ < 0. Thus B decreases as k increases. It turns out

that for any k

B(k) > lim
k→∞

B(k) = µ− µλ

4
+

λ

4µ
− 1 >

(µ− 1)2

2µ
> 0.

As a result, A < 0 and (4.7) holds.

(ii) We prove that

λ0 >
µ

(2− µ)k−1
. (4.8)

Differentiating λ0(λ) with respect to λ, we can get

∂λ0(λ)
∂λ

= µ− µλ

2
+

1
4
(
λ

µ
)

k−2
k (1 +

k − 2
k

) > µ− µλ

2
> 0.

Therefore, λ0(λ) is an increasing function in λ and

λ0(λ) > λ0

(
µ

(2− µ)k

)
=

µ

(2− µ)k
·
[
µ− µ2

4(2− µ)k
+

(2− µ)2−k

4

]
.
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Now, we prove that µ− µ2

4(2−µ)k + (2−µ)2−k

4 > 2− µ. Note

D = 2µ− 2− µ2

4(2− µ)k
+

(2− µ)2−k

4
=

1
4(2− µ)k

· [4(µ− 1)(2(2− µ)k − 1)].

Notice µ
(2−µ)k 6 2, so (2 − µ)k > µ

2 > 1
2 . It follows that D > 0. Then (4.8) follows

easily.

Now it follows from (4.5), (4.7), (4.8), and (4.3) that

fµ · · · fµ︸ ︷︷ ︸
k

(fλ(
1
2
− 1

2 k
√

µk−1λ
)) > fµ · · · fµ︸ ︷︷ ︸

k−1

(fλ0(
1
2
− 1

2 k
√

µk−1λ
)) >

1
2
− 1

2 k
√

µk−1λ
.

Thus, (4.4) holds.

Now considering arbitrary x ∈ [1 − 1
µ , ak]. Note f ′′λ (x) < 0, f ′′µ(x) < 0, f ′µ(x) > 0,

1

2
- 1

2
k

√μk-1λ

fμ

(k)

fλ’(x)[fμ’(x)]
k+1

<1 fλ’(x)[fμ’(x)]
k
<1

fμ

(k)

1-
1
μ 1

2
- 1

2
k+1

√μk λ

1

2
- 1

2λ
λ

fμ

(k+1)

λ

Figure 4.3: Contracted process

f ′λ(x) > 0 and we have

d

dx
[fλ(fµ · · · fµ︸ ︷︷ ︸

k

(x))− x] = f ′λ(fµ · · · fµ︸ ︷︷ ︸
k

(x)) · f ′µ(fµ · · · fµ︸ ︷︷ ︸
k−1

(x)) · · · f ′µ(x)− 1,

d2

dx2
[fλ(fµ · · · fµ︸ ︷︷ ︸

k

(x))− x] = f ′′λ (fµ · · · fµ︸ ︷︷ ︸
k

(x)) · (f ′µ(fµ · · · fµ︸ ︷︷ ︸
k−1

(x)) · · · f ′µ(x))2

+f ′λ(fµ · · · fµ︸ ︷︷ ︸
k

(x)) · f ′′µ(fµ · · · fµ︸ ︷︷ ︸
k−1

(x)) · (f ′µ(fµ · · · fµ︸ ︷︷ ︸
k−2

(x)) · · · f ′µ(x))2

+ · · ·+ f ′′µ(x) · f ′λ(fµ · · · fµ︸ ︷︷ ︸
k

(x)) · f ′µ(fµ · · · fµ︸ ︷︷ ︸
k−1

(x)) · · · f ′µ(fµ(x))

< 0.
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Therefore (fλ(fµ · · · fµ︸ ︷︷ ︸
k

(x))−x) obtains the minimum value at x = 1− 1
µ or x = ak. Since it

is easy to see that fλ(fµ · · · fµ︸ ︷︷ ︸
k

(1− 1
µ)) > 1− 1

µ and we have proved that fλ(fµ · · · fµ︸ ︷︷ ︸
k

(ak)) >

ak, it turns out that for any x ∈ [1− 1
µ , ak], (2.4) holds.

4.3 2 < µ < λ 6 3

Figure 4.4: 2 < µ < λ 6 3

For any 2 < µ < λ 6 3, it is easy to see that [fµ(λ
4 ), λ

4 ] is an invariant interval. This
means that once x enters the interval [µλ(4−λ)

16 , λ
4 ], it will remain there forever under the

random action of fµ and fλ.

4.3.1 2 < λ < 1 +
√

3

Considering that
µλ(4− λ)

16
>

λ(4− λ)
8

>
1
2
− 1

2λ
>

1
2
− 1

2µ
,

we can easily get |f ′ε(x)| < 1 for x ∈ [µλ(4−λ)
16 , 1

2 ] and ε = µ, λ ∈ (2, 3]. As Figure 2.7
shows, note when 2 < λ < 1 +

√
3, we can see that λ

4 < 1
2 + 1

2λ . So |f ′µ(x)| < 1 and
|f ′λ(x)| < 1 are satisfied for any x ∈ [12 , λ

4 ] ⊂ [12 , 1
2 + 1

2λ ]. So it is easy to see that the limit
of fε−1fε−2 · · · fε−k

(x) exists as k →∞ for x ∈ [µλ(4−λ)
16 , λ

4 ].
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4.3.2 1 +
√

3 6 λ 6 3

Proof of Lemma 2.1.7. From Figure 2.8, we can see that |f ′λ(x)| > 1 for x ∈ [12 + 1
2λ , λ

4 ].
So we need to check the sign of |f ′µ(x)f ′λ(fµ(x))|−1, |f ′µ(x)f ′µ(fµ(x))|−1, |f ′λ(x)f ′λ(fλ(x))|−
1 and |f ′λ(x)f ′µ(fλ(x))| − 1 for x ∈ [µλ(4−λ)

16 , λ
4 ].

Recall the following facts for any x ∈ [µλ(4−λ)
16 , λ

4 ]:

∗ |f ′λ(x)| > |f ′µ(x)|,
∗ |fλ(x)| > |fµ(x)|,
∗ |f ′λ(fλ(x))| > |f ′µ(fλ(x))|.

First, we will prove for any x ∈ [µλ(4−λ)
16 , λ

4 ]

|f ′λ(fλ(x)) · f ′λ(x)| 6 1, (4.9)
|f ′µ(fλ(x)) · f ′λ(x)| 6 1. (4.10)

Note f ′λ(fλ(x)) · f ′λ(x) = λ2(1− 2x)(1− 2λx + 2λx2).
Let g(x) = (1− 2x)(1− 2λx + 2λx2). Differentiate g(x) with respect to x to get

g′(x) = −2[1− 2λx + 2λx2 + λ(1− 2x)2].

Solve g′(x) = 0 to get x = 1
2 ±

√
3λ2−6λ

6λ . Obviously, when x ∈ [12 −
√

3λ2−6λ
6λ , 1

2 +
√

3λ2−6λ
6λ ),

g′(x) > 0. When x ∈ [12 +
√

3λ2−6λ
6λ , λ

4 ], g′(x) 6 0. It is easy to see that |g(x)| takes
maximum valve at x = 1

2 ±
√

3λ2−6λ
6λ , x = µλ(4−λ)

16 or x = λ
4 . Moreover, if we Solve

|g(x)| = 0, we can get x = 1
2 and x = 1

2 ±
√

λ2−2λ
2λ .

Since 2 6 λ2 − 2λ 6 3 for 1 +
√

3 6 λ 6 3, so we can have
√

6 6
√

3λ(λ− 2) 6 3 and

|f ′λ(fλ(
1
2

+
√

3λ2 − 6λ

6λ
)) · f ′λ(

1
2

+
√

3λ2 − 6λ

6λ
)|

= λ2|g(
1
2

+
√

3λ2 − 6λ

6λ
)| =

√
3(λ2 − 2λ)

3
2

9
6 1. (4.11)

Since µλ(4−λ)
16 > λ(4−λ)

8 and
√

3λ2−6λ
6λ − (1

2 −
λ(4−λ)

8 ) = 4−
√

3λ(λ−2)3

8
√

3λ
> 0, i.e. µλ(4−λ)

16 >

1
2 −

√
3λ2−6λ

6λ . So we have

|g(
µλ(4− λ)

16
)| < |g(

1
2
−
√

3λ2 − 6λ

6λ
)|.

It is also easy to see λ
4 ∈ (1

2 +
√

3λ2−6λ
6λ , 1

2 +
√

λ2−2λ
2λ ) from 1

2 <
√

6
4 6

√
3λ(λ−2)

4 6 3
4 <

√
3

2 ,
so

|g(
λ

4
)| < g(

1
2

+
√

3λ2 − 6λ

6λ
).

As a result,

|f ′λ(fλ(x))f ′λ(x)| = λ2|g(x)| 6 λ2|g(
1
2
±
√

3λ2 − 6λ

6λ
)| 6 1.
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That is to say (4.9) holds for x ∈ [µλ(4−λ)
16 , λ

4 ] and only when x = 2
3 and λ = 3, f ′λ(fλ(x)) ·

f ′λ(x) = 1. Moreover, (4.10) follows easily as

|f ′µ(fλ(x)) · f ′λ(x)| < |f ′λ(fλ(x)) · f ′λ(x)|. (4.12)

Second, we prove that for any x ∈ [µλ(4−λ)
16 , λ

4 ],

|f ′λ(fµ(x))]f ′µ(x)| < 1, (4.13)
|f ′µ(fµ(x))f ′µ(x)| < 1. (4.14)

We only need to prove (4.13) as |f ′µ(fµ(x))| < |f ′λ(fµ(x))|.
For this, note f ′λ(fµ(x))f ′µ(x) = µλ(1− 2x)(1− 2µx + 2µx2). Let h(x) = (1− 2x)(1−

2µx + 2µx2) and solve h′(x) = 0 to get x = 1
2 ±

√
3µ2−6µ
6µ . It is easy to see that |h(x)|

attains the maximum value at x = 1
2 ±

√
3µ2−6µ
6µ , x = µλ(4−λ)

16 or x = λ
4 . It is obvious to

see that

|µλh(
1
2
±

√
3µ2 − 6µ

6µ
)| = µλ

√
3(µ2 − 2µ)

3
2

9µ2
<

√
3(µ2 − 2µ)

3
2

9
< 1.

We also have

|µλh(
λ

4
)| =

λ(λ− 2)|8µ− 4λµ2 + µ2λ2|
16

6
3|µ2(λ− 2)2 − 4µ(µ− 2)|

16
.

Denote E(λ) = 3|µ2(λ−2)2−4µ(µ−2)|
16 and it is easy to see that E(λ) increases as λ increases

and |E(λ)| < max{|E(µ)|, |E(3)|} < 1. So

|f ′λ(fµ(
λ

4
))f ′µ(

λ

4
)| < 1. (4.15)

Moreover,

|µλh(
µλ(4− λ)

16
)| = |8µλ− µ2λ2(4− λ)||128− 16µ2λ(4− λ) + µ3λ2(4− λ)2|

1024
.

From (4.15), we can see that |8µλ − µ2λ2(4 − λ)| = λ|8µ − 4λµ2 + µ2λ2| < 16. Let
λ(4− λ) = m, then m ∈ [3, µ(4− µ)) and

|128− 16µ2λ(4− λ) + µ3λ2(4− λ)2| = |µ3(m− 8
µ

)2 − 64µ + 128|

6 max{|128− 64µ|, |9µ3 − 48µ + 128|, |128− 16µ3(4− µ) + µ5(4− µ)2|} < 64.

So
|f ′λ(fµ(

µλ(4− λ)
16

))f ′µ(
λµ(4− λ)

16
)| < 1.

As a result, we can get

|f ′λ(fµ(x))f ′µ(x)| = µλ|h(x)| 6 µλ(max{|h(
1
2
±

√
3µ2 − 6µ

6µ
)|, |h(

µλ(4− λ)
16

)|, |h(
λ

4
)|}) < 1,

(4.16)
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i.e. (4.13)holds. In conclusion, we can get

|f ′ε2(fε1(x))f ′ε1(x)| 6 max{|f ′λ(fλ(
1
2

+
√

3λ2 − 6λ

6λ
))f ′λ(

1
2

+
√

3λ2 − 6λ

6λ
)|,

|f ′λ(fµ(
µλ(4− λ)

16
))f ′µ(

µλ(4− λ)
16

)|, |f ′λ(fµ(
λ

4
))f ′µ(

λ

4
),

|f ′λ(fµ(
1
2
±

√
3µ2 − 6µ

6µ
))f ′µ(

1
2
±

√
3µ2 − 6µ

6µ
)|}.

So for any x ∈ [µλ(4−λ)
16 , λ

4 ] |f ′ε2(fε1(x))f ′ε1(x)| < 1 for any ε1, ε2 = λ, µ except the special
case when ε1 = ε2 = λ = 3 and x = 2

3 .

4.4 1 < µ 6 2 < λ 6 3

Figure 4.5: 1 < µ 6 2 < λ 6 3

We consider

fµ(
λ

4
)− (

1
2
− 1

2µ
) =

µ

16

(
λ(4− λ)− 8(µ− 1)

µ2

)
.
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Since λ(4− λ) > 3 for λ ∈ (2, 3] and 8(µ−1)
µ2 6 2 for 1 < µ 6 2, it follows that

fµ(
λ

4
) > (

1
2
− 1

2µ
).

On the other hand, we consider

fµ(
λ

4
)− (1− 1

µ
) =

−µ2(λ− 2)2 + 4(2− µ)2

16µ
=

[2(2− µ) + µ(λ− 2)](4− µλ)
16µ

.

Obviously, we can get

fµ(
λ

4
) > 1− 1

µ
, if 1 < µ 6

4
λ

,

fµ(
λ

4
) < 1− 1

µ
. if

4
λ

< µ 6 2.

At first, we will discuss two different cases when 4
λ < µ 6 2 and when 1 < µ 6 4

λ
respectively.

4.4.1 Case 4
λ

< µ 6 2, 2 < λ 6 3.

Proof of Lemma 2.1.9. Note fµ(λ
4 ) = µλ(4−λ)

16 < 1− 1
µ . Note λ

4 6 1
2 + 1

2µ , so [µλ(4−λ)
16 , λ

4 ]
is an invariant interval as Figure 4.5 shows. Then for any combination of ε1 and ε2 of
|f ′ε2(fε1(x))f ′ε1(x)|, it is easy to see that |f ′µ(fµ(x))f ′µ(x)| < 1 for any x ∈ [µλ(4−λ)

16 , λ
4 ] since

1
2 −

1
2µ < µλ(4−λ)

16 < λ
4 6 1

2 + 1
2µ , Then we need to check the sign of |f ′λ(fλ(x))f ′λ(x)| − 1,

|f ′µ(fλ(x))f ′λ(x)| − 1 and |f ′λ(fµ(x))f ′µ(x)| − 1.

(i) We prove |f ′λ(fλ(x))f ′λ(x)| < 1 ∀ x ∈ [µλ(4−λ)
16 , λ

4 ], recall

f ′λ(fλ(x))f ′λ(x) = λ2(1− 2x)(1− 2λx + 2λx2) := λ2g(x).

Solve g′(x) = 0 to get x = 1
2 ±

√
3λ2−6λ

6λ and λ
4 ∈ [12 +

√
3λ2−6λ

6λ , 1
2 +

√
λ2−2λ
2λ ]. It is

easy to see that |g(x)| has the maximum value at x = 1
2 ±

√
3λ2−6λ

6λ , or x = µλ(4−λ)
16 .

Moreover

|λ2g(
1
2
±
√

3λ2 − 6λ

6λ
)| = λ2|

√
3(λ2 − 2λ)

3
2

9λ2
| 6 1. (4.17)

Similar to the case when 2 < µ < λ and 1 +
√

3 < λ 6 3, it is easy to see that
max{|f ′λ(fλ(x))f ′λ(x)|} 6 1 when x = 1

2 ±
√

3λ2−6λ
6λ . On the other hand, we have

|λ2g(
µλ(4− λ)

16
)| = |(8λ2 − µλ3(4− λ))(128− 16µλ2(4− λ) + µ2λ3(4− λ)2)|

1024
.

Let A(µ, λ) = (8λ2 − µλ3(4 − λ))(128 − 16µλ2(4 − λ) + µ2λ3(4 − λ)2), then we
differentiate A(µ, λ) with respect to µ to get

∂A(µ, λ)
∂µ

= λ3(4− λ)[−3λ3(4− λ)2µ2 + 48λ2(4− λ)µ− 128(λ + 1)].
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Solving ∂A(µ,λ)
∂µ = 0, we have µ = 8

λ(4−λ) ±
8
√

3λ2−6λ
3λ2(4−λ)

. Since 8
λ(4−λ) > 2, then for

µ ∈ ( 4
λ , 2], |A(µ, λ)| reaches the maximum value at µ = 8

λ(4−λ) −
8
√

3λ2−6λ
3λ2(4−λ)

or µ = 4
λ

or µ = 2. Since (32− 8λ2(4− λ) + λ3(4− λ)2)′ = λ(5λ3 − 32λ2 + 72λ− 64) < 0 for
λ ∈ (2, 3], then we can get 32− 8λ2(4− λ) + λ3(4− λ)2 ∈ [−13, 0). Moreover,

A(
8

λ(4− λ)
− 8

√
3λ2 − 6λ

3λ2(4− λ)
, λ) = −64 · 16λ(λ− 2)

√
3λ2 − 6λ

9
> −64 · 16 = −1024,

A(2, λ) = 8λ2(λ− 2)2[32− 8λ2(4− λ) + λ3(4− λ)2] > 8 · 32 · (−13) > −1024,

A(
4
λ

, λ) = 64λ2(λ− 2)(λ3 − 4λ2 + 8) > 64 · 32((
8
3
)3 − 4 · (8

3
)2 + 8) > −1024.

So |f ′λ(fλ(µλ(4−λ)
16 ))f ′λ(µλ(4−λ)

16 )| 6 1. Considering (4.17), we caN get the conclu-
sion that |f ′λ(fλ(x))f ′λ(x)| 6 1 λ ∈ (2, 3]. Note that when λ ∈ (2, 3), we have
|f ′λ(fλ(x))f ′λ(x)| < 1 and

|f ′λ(fλ(x))f ′λ(x)| 6 max{f ′λ(fλ(
1
2
±
√

3λ2 − 6λ

6λ
))f ′λ(

1
2
±
√

3λ2 − 6λ

6λ
),

f ′λ(fλ(
µλ(4− λ)

16
))f ′λ(

µλ(4− λ)
16

)} = L′1 6 1. (4.18)

However, when λ = 3, it is possible for |f ′λ(fλ(1
3))f ′λ(1

3)| = 1 and |f ′λ(fλ(2
3))f ′λ(2

3)| =
1, Otherwise, |f ′λ(fλ(x))f ′λ(x)| < 1.

(ii) We prove |f ′λ(fµ(x))f ′µ(x)| < 1 for x ∈ [µλ(4−λ)
16 , λ

4 ]. Similar to the case when 2 <
µ < λ 6 3, we have

f ′λ(fµ(x))f ′µ(x) = λµ(1− 2x)(1− 2µx + 2µx2),

Denote h(x) = (1− 2x)(1− 2µx + 2µx2),
then h′(x) = −12µx2 + 12µx− 2µ− 2.

Note when x = 1
2 ±

√
3µ2−6µ
6µ , h′(x) = 0 and µλh(1

2 ±
√

3µ2−6µ
6µ ) < 1. As a result,

we only need to check |f ′λ(fµ(x))f ′µ(x)| < 1 at x = µλ(4−λ)
16 and x = λ

4 . Because
|µ(8− 4λµ + µλ2)| < max{|µ(8− 4µ)|, |µ(8− 3µ)|} 6 16

3 and λ− 2 6 1, we have

|f ′λ(fµ(
λ

4
))f ′µ(

λ

4
)| = λµ(λ− 2)|8− 4λµ + µλ2|

16
< 1.

On the other hand,

µλh(
µλ(4− λ)

16
) =

(8µλ− µ2λ2(4− λ))(128− 16µ2λ(4− λ) + µ3λ2(4− λ)2)
1024

.

Let H(µ) = (8µλ−µ2λ2(4−λ))(128−16µ2λ(4−λ)+µ3λ2(4−λ)2) and we differentiate
H with respect to µ to get

H ′(µ) = 2λ(4− µλ(4− λ))(128− 16µ2λ(4− λ) + µ3λ2(4− λ)2)
+µλ(8− µλ(4− λ))µλ(4− λ)(−32 + 3µλ(4− λ)).
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Because 4−µλ(4−λ) < 4−4(4−λ) < 0 and −32+3µλ(4−λ) < −32+6λ(4−λ) < 0
when µ ∈ ( 4

λ , 2], it is easy to get H ′(µ) < 0 and H(µ) increases as µ decreases. So

H(µ) < H(
4
λ

) = 1024(λ− 2)2 6 1024.

By using the same methods in (i), we can show that for any x ∈ [1 − 1
µ , λ

4 ],

|f ′λ(fµ(µλ(4−λ)
16 ))f ′µ(λµ(4−λ)

16 )| < 1.

|f ′λ(fµ(x))f ′µ(x)| 6 max{|f ′λ(fµ(
µλ(4− λ)

16
))f ′µ(

λµ(4− λ)
16

)|, |f ′λ(fµ(
λ

4
))f ′µ(

λ

4
)|,

|f ′λ(fµ(
1
2
±

√
3µ2 − 6µ

6µ
))f ′µ(

1
2
±

√
3µ2 − 6µ

6µ
)|}

= L′2 < 1. (4.19)

(iii) We will prove that |f ′µ(fλ(x))f ′λ(x)| < 1 for any x ∈ [µλ(4−λ)
16 , λ

4 ]. Note

f ′µ(fλ(x))f ′λ(x) = µλ(1− 2x)(1− 2λx + 2λx2) = µλg(x).

Similar as before, it is easy to see that |f ′µ(fλ(x))f ′λ(x)| reaches the maximum value

at x = 1
2 ±

√
3λ2−6λ

6λ or at x = µλ(4−λ)
16 . Calculations show

|µλh(
1
2
±
√

3λ2 − 6λ

6λ
)| = µ

√
3(λ2 − 2λ)

3
2

9λ
<

√
3(λ2 − 2λ)

3
2

9
< 1.

Moreover,

|µλh(
µλ(4− λ)

16
)| = |(8µλ− µ2λ2(4− λ))(128− 16µλ2(4− λ) + µ2λ3(4− λ)2)|

1024
.

Let A = (8µλ − µ2λ2(4 − λ))(128 − 16µλ2(4 − λ) + µ2λ3(4 − λ)2) and B(µ) =
128− 16µλ2(4− λ) + µ2λ3(4− λ)2). We differentiate B(µ) with respect to µ to get

B′(µ) = 2λ2(4− λ)(µλ(4− λ)− 8) < 0.

So B(µ) decreases as µ increases and B has the maximum value at µ = 4
λ . Therefore,

B(µ) < B(
4
λ

) = 128− 64λ(4− λ) + 16λ(4− λ)2 = 16(8− λ2(4− λ)) < 0,

and B(µ) > B(2) = 4(32− 8λ2(4− λ) + λ3(4− λ)2).

Let D(λ) = −8λ2(4− λ) + λ3(4− λ)2) = λ5 − 8λ4 + 24λ3 − 32λ2, then

D′(λ) = λ(5λ3 − 32λ2 + 72λ− 64),
and (5λ3 − 32λ2 + 72λ− 64)′ = 15λ2 − 64λ + 72 > 0.

So D′(λ) < 0. Therefore ,we have D > D(3) = −45 and B(2) = 4(32+D(λ)) > −52.

Recalling that (8µλ − µ2λ2(4 − λ)) < 16, we can get |A| < 16×52
1024 < 1. As a result,

for x ∈ [µλ(4−λ)
16 , λ

4 ], we can get

|f ′µ(fλ(x))f ′λ(x)| 6 max{|f ′µ(fλ(
1
2
±
√

3λ2 − 6λ

6λ
))f ′λ(

1
2
±
√

3λ2 − 6λ

6λ
)|,

|f ′µ(fλ(
µλ(4− λ)

16
))f ′λ(

µλ(4− λ)
16

)|} = L′3 < 1. (4.20)
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4.4.2 Case 1 < µ < 4
λ

< 2 < λ 6 3

In this case, fµ(λ
4 ) > 1 − 1

µ , so [µλ(4−λ)
16 , λ

4 ] is no longer an invariant interval. See Figure
4.6.

Figure 4.6: 1− 1
µ < µλ(4−λ)

16

Proof of Lemma 2.1.10. Actually, we just need to prove that Lemma 2.1.3 still holds
for 2 < λ 6 3. Recalling that in the proof of Lemma 2.1.3, F (x) = xG(x) and G(1

2−
1
2λ) =

A(µ,λ)
8λ2 . Since A(µ, λ) is an increasing function about µ for µ ∈ (1, 2] and A(1, λ) =

3λ3 − 5λ2 + λ + 1 > 0 for 2 < λ 6 3, we can get F (1
2 −

1
2λ) > 0 and Lemma 2.1.10 holds.

Proof of Lemma 2.1.11. First, we will find the condition for the inequality (2.30).
Note

fλ(fµ(
1
2
− 1

2
√

µλ
))− (

1
2
− 1

2λ
) =

(µλ− 1)(4λ− µλ + 1)− 8λ + 8
16λ

:=
N(µ)
16λ

,

∂N

∂µ
= 2λ(2λ− µλ + 1) > 0.

So N increases as µ increases and N > N(1) = (3λ−7)(λ−1). Obviously, when λ ∈ [73 , 3],
N > 0. So (2.30) holds.
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However, when λ ∈ (2, 7
3), we will check whether Lemma 2.1.4 still holds. In the proof

of Lemma 2.1.4, A = fµ(fλ(1
2 −

1
2
√

µλ
))−m = B(µ,λ)

16µ . When λ ∈ (2, 7
3 ], h′(λ) > 0, h(λ) is

still an increasing function and h(λ) > 0, then D > 0 and ∂B
∂µ > 8µλ− 2µλ2 + 2λ + 8 > 0.

So B increases as µ increases and B > B(1, λ). Similar to the proof of Lemma 2.1.4, we
also can get B(1, λ) increases first and then decrease for 2 < λ < 7

3 . Because B(1, 2) > 0
and B(1, 7

3) > 0, it is easy to get B(1, λ) > 0 and then Lemma 2.1.4 holds for 2 < λ < 7
3 .

So Lemma 2.1.11 is proved.

Proof of Lemma 2.1.12. First, we will prove (2.31) holds when x = b2, i.e. fλ(fµ(1
2 −

1
2
√

µλ
)) > b2. Let H = fλ(fµ(1

2 −
1

2
√

µλ
))− b2 and L(µ, λ) = 16µλH. Then

L(µ, λ) = µ(µλ− 1)(4λ− µλ + 1)− 8µλ + 8λ

√
µ2 − 2µ + 2

√
µ

λ
,

and the derivative of L(µ, λ) with respect to µ is

∂L(µ, λ)
∂µ

= (2µλ− 1)(4λ− µλ + 1)− λ(µ2λ− µ)− 8λ + 4λ
2µ− 2 + 1√

µλ√
µ2 − 2µ + 2

√
µ
λ

.

Similar to the proof of Lemma 2.1.4, we can also get
2µ−2+ 1√

µλq
µ2−2µ+2

√
µ
λ

> 1 when 2 < λ 6 3.

So we have

∂L

∂µ
= (2µλ− 1)(4λ− µλ + 1)− λ(µ2λ− µ)− 4λ =: R(µ).

Then

R(µ) = −3µ2λ2 + 8µλ2 + 4µλ− 8λ− 1

= −3λ2(µ− 4λ + 2
3λ

)2 +
16λ2 − 8λ + 1

3
.

Because 4λ+2
3λ > 1, we need to prove R(1) > 0 and R( 4

λ) > 0 in order to prove R > 0 for
all 1 < µ < 4

λ . But this is trivial to see as

R(1) = (5λ + 1)(λ− 1) > 0,

R(
4
λ

) = 24λ− 33 > 0.

Therefore, ∂L
∂µ > 0.So L(µ, λ) is an increasing function with respect to µ. It turns out that

L > L(1, λ) = 3λ2 − 10λ− 1 + 8λ

√
−1 +

2√
λ

.

To check the sign of L(1, λ), we compute the derivative

∂L(1, λ)
∂λ

= 6λ− 10 +
12√
λ
− 8√

−1 + 2√
λ

.
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Obviously, when 12√
λ
− 8 > 0, so ∂L(1,λ)

∂λ > 0. But when λ ∈ (9
4 , 3), 12√

λ
− 8 > −1.072,√

−1 + 2√
λ

> 0.39 and 6λ−10 > 7
2 , we can get ∂L(1,λ)

∂λ > 7
2 −

1.072
0.39 > 0. As a result, L(1, λ)

increases as λ increases and we have

L(µ, λ) > L(1, λ) > L(1, 2) > 0.

So H > 0. Therefore (2.31) holds for x = b2. Now let G(x) = fλ(fµ(fµ(x))) − x and
because f ′η(x) = η(1− 2x) > 0 for x ∈ (0, 1

2) and f ′′η (x) = −2η < 0, then we have

G′(x) = f ′λ(fµ(fµ(x))) · f ′µ(fµ(x)) · f ′µ(x)− 1,

G′′(x) = f ′′λ (fµ(fµ(x))) · (f ′µ(fµ(x)) · f ′µ(x))2 + f ′′µ(fµ(x)) · f ′λ(fµ(fµ(x)) · (f ′µ(x))2

+(f ′λ(fµ(fµ(x))) · f ′µ(fµ(x))) · f ′′µ(x)

= −2λ(f ′µ(fµ(x)) · f ′µ(x))2 − 2µf ′λ(fµ(fµ(x)) · (f ′µ(x))2

−2µf ′λ(fµ(fµ(x))) · f ′µ(fµ(x)) < 0.

Therefore, G(x) increases first and then decreases as x increase. Considering that G(1−
1
µ) > 0 and G(b2) > 0, we can get (2.31) holds for x ∈ [1− 1

µ , b2].

Proof of Lemma 2.1.14. Let fµ(m) = 1
2 −

1

2 k
√

µk−1λ
, then m = 1

2 −
q

µ2−2µ+2(µ
λ
)
1
k

2µ .

Let c = fµ(1
2 −

1

2 k
√

µk−1λ
) = µ

2k−2
k λ

2
k−1

4µ
k−2

k λ
2
k

. Then we have for any x ∈ [ck, bk],

[fλ fµ · · · fµ︸ ︷︷ ︸
k−1

(x)]′x < (f ′µ(m))k−2f ′µ(
1
2
− 1

2 k
√

µk−1λ
)f ′λ(c)

= (µ2 − 2µ + 2(
µ

λ
)

1
k )

k−2
2 (

µ

λ
)

1
k λ(1− µ

2k−2
k λ

2
k − 1

2µ
k−2

k λ
2
k

)

= (µ2 − 2µ + 2(
µ

λ
)

1
k )

k−2
2 (µ

1
k λ

k−1
k − 1

2
µ

k+1
k λ

k−1
k +

1
2
(
λ

µ
)

k−3
k ).

Let E(λ) = (µ2− 2µ+2(µ
λ)

1
k )

k−2
2 (µ

1
k λ

k−1
k − 1

2µ
k+1

k λ
k−1

k + 1
2(λ

µ)
k−3

k ) and differentiate E(λ)
with respect to λ to get

E′(λ) = (µ2 − 2µ + 2(
µ

λ
)

1
k )

k−2
2
−1(

µ

λ
)

1
k F (λ),

where F (λ) = −k−2
k

1
λ(µ

1
k λ

k−1
k − 1

2µ
k+1

k λ
k−1

k + 1
2(λ

µ)
k−3

k )+(µ2−2µ+2(µ
λ)

1
k )(k−1

k − k−1
2k µ+

k−3
2k (µ

λ)
2
k ), then we have

F (λ) = (µ2 − 2µ)(
k − 1

k
− k − 1

2k
µ) + (

µ

λ
)

1
k
2− µ

2
+ (

µ

λ
)

2
k
k − 3
2k

(µ− 2) +
k − 4
2kµ

(
µ

λ
)

3
k ,

F ′(λ) = − µ

kλ2
(
µ

λ
)

1
k
−1G(λ),

where
G(λ) =

2− µ

2
+

k − 3
k

(µ− 2)(
µ

λ
)

1
k +

3(k − 4)
2kµ

(
µ

λ
)

2
k .
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(i) When k = 3, since λ > µ
(2−µ)3

, µ
λ 6 (2− µ)3. So we have

G(λ) = 1− µ

2
− 1

2µ
(
µ

λ
)

2
3 > 1− µ

2
− (2− µ)2

2µ
> 0.

(ii) When k = 4, (µ
λ)

1
4 > 0.7598, so

G(λ) = 1− µ

2
+

1
4
(
µ

λ
)

1
4 > 1− µ

2
+ 0.1899(µ− 2) > 0.

(iii) When k > 5, (µ
λ)

1
k > (µ

λ)
1
5 > 0.8 and µ(2− µ) < 1 for µ ∈ (1, 2], so

G′(λ) = − µ

k2λ
(
1
λ

)
1
k
−1[(k − 3)µ(µ− 2) + 3(k − 4)(

µ

λ
)

1
k ]

< − µ

k2λ
(
1
λ

)
1
k
−1[µ(µ− 2)(k − 3) + 2.4(k − 4)]

< − µ

k2λ
(
1
λ

)
1
k
−1(k − 3 + 2.4k − 9.6) < 0.

So when k > 5, G(λ) decreases as λ increases. Because 1.18
(2−1.18)3

> 3 and µ
(2−µ)k 6 λ 6 3,

so µ < 1.18 when k > 3 and so (µ
3 )

1
k
−1 > (1.18

3 )
1
5
−1 > 2.1. Thus we have

G > G(3) =
2− µ

2
+

k − 3
k

(µ− 2)(
µ

3
)

1
k +

3(k − 4)
2kµ

(
µ

3
)

2
k

=
2− µ

2
+

k − 3
2k

(µ− 2)(
µ

3
)

1
k +

2− µ

2
+

k − 3
k

(µ− 2)(
µ

3
)

1
k +

3(k − 4)
2kµ

(
µ

3
)

2
k

=
2− µ

2
[1 +

k − 3
k

(
µ

3
)

1
k ] + (

µ

3
)

1
k

1
2k

[(k − 3)(µ− 2) + (k − 4)(
µ

3
)

1
k
−1]

> (
µ

3
)

1
k

1
2k

[3− k + 2.1(k − 4)] > 0.

As a result, G(λ) > 0 when k > 3 and so F ′(λ) < 0. F (λ) decreases as λ increases.

F (λ) 6 F (
µ

(2− µ)k
) =

(2− µ)2

2k
[−(k − 1)µ + k − (k − 3)(2− µ) +

(k − 4)(2− µ)
µ

]

<
(2− µ)2

2k
[−(k − 1)µ + k + (2− µ)(k − 4− k + 3)] < 0.

So F (λ) < 0 and E′(λ) < 0. E(λ) decreases as λ increases.

E(λ) 6 E(
µ

(2− µ)k
) = (µ2 − 2µ + 2(2− µ))

k−2
2 (

µ

(2− µ)k−1
− 1

2
µ

(2− µ)k−1
+

1
2
(2− µ)3−k)

= (2− µ)k−2 1
(2− µ)k−2

= 1.

Therefore, [fλ fµ · · · fµ︸ ︷︷ ︸
k−1

(x)]′x < E 6 1 and Lemma 2.1.14 is proved. ]
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Proof of Lemma 2.1.13. We consider two cases k ∈ [2, 23] and k > 23.
Case (I), k ∈ [2, 23]. For this case, there are two subcases: λ ∈ (2, 2.8] and λ ∈ (2.8, 3].
Case(i), λ ∈ (2, 2.8]. We will prove (2.32) by induction method.
Consider λ > µ

(2−µ)2
. Set b2 satisfying fµ(b2) = 1

2 −
1

2
√

µλ
. Then from Lemma 2.1.12,

for any x ∈ [1− 1
µ , b2],

fλ(fµ(fµ(x))) > x.

Now we assume for any k > 3 and λ > µ
(2−µ)k−1 ,

fλ fµ · · · fµ︸ ︷︷ ︸
k−1

(x) > x, ∀ x ∈ [
1
2
− 1

2 k
√

µk−1λ
, bk−1], (4.21)

where bk−1 is defined by fµ · · · fµ︸ ︷︷ ︸
k−2

(bk−1) = 1
2 −

1

2 k−1
√

µk−2λ
.

First, we will prove the following inequality

fλ fµ · · · fµ︸ ︷︷ ︸
k

(bk) > bk, (4.22)

where bk is defined by fµ · · · fµ︸ ︷︷ ︸
k−1

(bk) = 1
2 −

1

2 k
√

µk−2λ
.

1

2
- 1

2
k

√μk-1λ

λ0μ

λ

1

2
- 1

2

1

2
- 1

2
k

√μk-1λ
k-1

√μk-2λ

fμk fμk-1

λλ

Figure 4.7: k ∈ [3, 23] and λ ∈ (2, 2.8]
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When λ > µ
(2−µ)3

, we choose some λ0 such that

fλ0(
1
2
− 1

2 k
√

µk−1λ
) = fλ(fµ(

1
2
− 1

2 k
√

µk−1λ
)).

It is easy to solve this equation and get

λ0 = λ(µ− 1
4
µ2 +

1
4
(
µ

λ
)

2
k ). (4.23)

Now we will prove

1
2
− 1

2 k
√

µk−1λ
< fµ(

1
2
− 1

2
√

k − 1µk−2λ0

). (4.24)

(4.24) can be simplified into the following inequality,

(λ− µλ

4
+

1
4
(
µ

λ
)

2
k
−1)(µ2 − 2µ + 2(

µ

λ
)

1
k )

k−1
2 > 1.

Let A(µ, λ) = (λ− µλ
4 + 1

4(µ
λ)

2
k
−1)(µ2−2µ+2(µ

λ)
1
k )

k−1
2 −1 and differentiate A with respect

to µ to get

∂A

∂µ
= (−λ

4
+

1
4
(
2
k
− 1)(

µ

λ
)

2
k
−2)

1
λ

)(µ2 − 2µ + 2(
µ

λ
)

1
k )

k−1
2

+
k − 1

2
(µ2 − 2µ + 2(

µ

λ
)

1
k )

k−1
2
−1(2µ− 2 +

2
k
(
µ

λ
)

1
k
−1 1

λ
)(λ− µλ

4
+

1
4
(
µ

λ
)

2
k
−1)

= (µ2 − 2µ + 2(
µ

λ
)

1
k )

k−1
2
−1[(−λ

4
− 1

4
(1− 2

k
)(

µ

λ
)

2
k
−1)

1
µ

)(µ2 − 2µ + 2(
µ

λ
)

1
k )

+(λ− µλ

4
+

1
4
(
µ

λ
)

2
k
−1)((k − 1)(µ− 1) +

k − 1
k

1
µ

(
µ

λ
)

1
k )].

Since

λ− µλ

4
+

1
4
(
µ

λ
)

2
k
−1 − 2[

λ

4
+

1
4µ

(1− 2
k
)(

µ

λ
)

2
k
−1] >

λ

4
(2− µ− 1

µ2
) > 0,

and 2(k − 1)(µ− 1) + 2
k − 1
kµ

(
µ

λ
)

1
k − (µ2 − 2µ + 2(

µ

λ
)

1
k ))

= (µ− 1)(2(k − 1)− (µ− 1)) + 2(
µ

λ
)

1
k (

k − 1
kµ

− 1) + 1 > −2
k

+ 1 > 0.

So ∂A
∂µ > 0 and A(µ, λ) increases as µ increases. Therefore,

A(µ, λ) > A(1, λ) = (
3
4
λ +

1
4
λ1− 2

k )(−1 + 2λ−
1
k )

k−1
2 − 1 =: B(λ, k).

Differentiate B with respect to λ to get

∂B(λ, k)
∂λ

= (−1 + 2λ−
1
k )

k−1
2
−1D(λ, k),
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where D(λ, k) = −3
4 + 3k+3

4k λ−
1
k − k−2

4k λ−
2
k + k−3

4k λ−
3
k . Now it is obvious that

∂D

∂λ
=

λ−
1
k
−1

4k2
[−(3k + 3) + (2k − 4)λ−

1
k − 3(k − 3)λ−

2
k ] < 0.

So D(λ, k) decreases as λ increases and D(λ, k) < D(2, k). Moreover,

∂D(2, k)
∂k

=
λ−

3
k

4k3
[2

1
k (−3.4k + 2.8) + 2

2
k (−0.9k + 2.1) + 5.1k − 2.1] > 0, k ∈ [5, 23].

So D(2, k) < D(2, 23) < 0. Because D(2, 3) < 0 and D(2, 4) < 0, we can get D(λ, k) < 0
for k ∈ [3, 23]. Therefore, ∂B(λ,k)

∂λ < 0 and B > B(2.8, k).

∂B(2.8, k)
∂k

=
(−1 + 2 · 2.8−

1
k )

k−1
2
−1

2k2
[2.81− 2

k (−1 + 2 · 2.8−
1
k ) ln 2.8

+k2(2.1 +
2.81− 2

k

4
)(−1 + 2 · 2.8−

1
k ) ln(−1 + 2 · 2.8−

1
k ) + 2 ln 2.8(k − 1) · 2.8−

1
k ]

:=
(−1 + 2 · 2.8−

1
k )

k−1
2
−1

2k2
E,

where

E = (−1 + 2 · 2.8−
1
k )2.81− 2

k (1.03 + 0.13k2 (2.1 + 2.81− 2
k

4 ) ln(−1 + 2 · 2.8−
1
k ))

2.81− 2
k

+2.8−
1
k [0.87k2 (2.1 + 2.81− 2

k

4 )(−1 + 2 · 2.8−
1
k ) ln(−1 + 2 · 2.8−

1
k ))

2.8−
1
k

+ 2 ln 2.8(k − 1)].

Let a = 2.8−
1
k , then we have a 6 2.8−

1
23 and

( (2.1+0.7a2)(−1+2a) ln(−1+2a)
a )′a > 0, so

(2.1 + 0.7a2)(−1 + 2a) ln(−1 + 2a)
a

< −0.239,

( (2.1+0.7a2) ln(−1+2a)
2.8a2 )′a > 0, so

(2.1 + 0.7a2) ln(−1 + 2a)
2.8a2

< −0.098.

Now we will prove for k ∈ [3, 23], E < 0. First, when k ∈ [9, 23],

E < (−1 + 2 · 2.8−
1
k )2.81− 2

k (1.03− 0.01274k2) + 2.8−
1
k (0.20793k2 + 2.06k − 2.06) < 0.

Second, when k ∈ [4, 8], (2.1+0.7a2)(−1+2a) ln(−1+2a)
a < −0.6298 and (2.1+0.7a2) ln(−1+2a)

2.8a2 <
−0.337. We have

E < (−1+2 ·2.8−
1
k )2.81− 2

k (1.03−0.35 ·0.337k2)+2.8−
1
k (0.65 ·0.6298k2+2.06k−2.06) < 0.

Finally, when k = 3, we can also get E < 0.
So E < 0 for k ∈ [3, 23]. Then we have ∂B(2.8,k)

∂k < 0 and

B(λ, k) > B(2.8, 23) > 0.
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As a result, for k ∈ [3, 23] and λ ∈ (2, 2.8], we have A(µ, λ) > 0 and (4.22) holds.
On the other hand, we will prove (4.21) always holds for x ∈ [1− 1

µ , bk].

[fλ fµ · · · fµ︸ ︷︷ ︸
k

(x)− x]′x = f ′λ(fµ · · · fµ︸ ︷︷ ︸
k

(x)) · f ′µ(fµ · · · fµ︸ ︷︷ ︸
k−1

(x)) · · · f ′µ(fµ(x)) · f ′µ(x)− 1,

[fλ fµ · · · fµ︸ ︷︷ ︸
k

(x)− x]′′x = −2λ · [f ′µ(fµ · · · fµ︸ ︷︷ ︸
k−1

(x)) · · · f ′µ(fµ(x)) · f ′µ(x)]2

−2µf ′λ(fµ · · · fµ︸ ︷︷ ︸
k

(x))[f ′µ(fµ · · · fµ︸ ︷︷ ︸
k−1

(x)) · · · f ′µ(fµ(x)) · f ′µ(x)]2 · · ·

−2µf ′λ(fµ · · · fµ︸ ︷︷ ︸
k

(x)) · f ′µ(fµ · · · fµ︸ ︷︷ ︸
k−1

(x)) · · · f ′µ(fµ(x))

< 0. (4.25)

Therefore, fλ fµ · · · fµ︸ ︷︷ ︸
k

(x)− x gets the minimum value at x = 1− 1
µ and x = bk. But it is

evident that fλ fµ · · · fµ︸ ︷︷ ︸
k

(1− 1
µ) > 1− 1

µ , (2.32) holds for any x ∈ [1− 1
µ , bk], k ∈ [2, 23].

Case (ii), λ ∈ (2.8, 3]. If we let divide k into cases 3m, 3m + 1 and 3m + 2, so
m ∈ [1, 7]. Firstly, we will prove the following lemma.

Lemma 4.4.1 For any k > 3 and λ ∈ [2.5, 3], we have the following inequality

fµ(fµ(fµ(
1
2

+
1

2 k
√

µk−1λ
))) >

1
2
− 1

2 k+2
√

µk+1λ
. (4.26)

1

2
- 1

2
k

√μk-1λ

1

2
- 1

2
k+2

√μk+1λ

m1

fμ

fμ

m0

Figure 4.8: m0 < m1

Proof. Set m0 satisfying fµ(m0) = 1
2 −

1

2 k+2
√

µk+1λ
and m1 = fµ(fµ(1

2 −
1

2 k
√

µk−1λ
)). In

order to get (4.26), we will prove m0 < m1, i.e

(µ2 − (µ
λ)

2
k )(4µ− µ2 + (µ

λ)
2
k )

16µ
>

µ−
√

µ2 − 2µ + 2(µ
λ)

1
k+2

2µ
.

Let A(µ) = (µ2 − (µ
λ)

2
k )(4µ − µ2 + (µ

λ)
2
k ) − 8µ + 8

√
µ2 − 2µ + 2(µ

λ)
1

k+2 and differentiate
A(µ) with respect to µ to get

1
4
A′(µ) = 3µ2 − µ3 − 2 + B(µ),
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where B(µ) = (µ − 1)(µ
λ)

2
k + µ−2

k (µ
λ)

2
k − 1

kµ(µ
λ)

4
k + 2

µ−1+ 1
(k−2)µ

(µ
λ
)

1
k+2r

µ2−2µ+2(µ
λ
)

1
k+2

. Firstly, it is easy

to see 3µ2 − µ3 − 2 > 0 for µ ∈ (1, 2] and we let . Secondly, we differentiate B(µ) with
respect to µ and get

B′(µ) = (
µ

λ
)

2
k +

2(µ− 1)
kµ

(
µ

λ
)

2
k +

1
k
(
µ

λ
)

2
k +

2(µ− 2)
k2µ

(
µ

λ
)

2
k +

1
kµ2

(
µ

λ
)

4
k − 4

k2µ2
(
µ

λ
)

4
k

+2
[1− 1

(k+2)µ2 (µ
λ)

1
k+2 + 1

(k+2)2µ2 (µ
λ)

1
k+2 ](µ2 − 2µ + 2(µ

λ)
1

k+2 )− (µ− 1 + 1
(k+2)µ(µ

λ)
1

k+2 )2

(µ2 − 2µ + 2(µ
λ)

1
k+2 )

√
µ2 − 2µ + 2(µ

λ)
1

k+2

.

Since 1.253
(2−1.253)3

> 3, so we have µ < 1.253. Note the following facts for k > 3:

(i). (
µ

λ
)

2
k − 4

k2µ2
(
µ

λ
)

4
k > (

µ

λ
)

2
k (1− 4

k2
) > 0,

(ii).
1
k
(
µ

λ
)

2
k +

2(µ− 2)
k2µ

(
µ

λ
)

2
k >

1
k2

(
µ

λ
)

2
k (k − 2) > 0,

(iii). µ2 − 2µ + 2(
µ

λ
)

1
k+2 − (µ− 1 +

1
(k + 2)µ

(
µ

λ
)

1
k+1 ) = (µ− 1)2 + (2− 1

(k + 2)µ
)(

µ

λ
)

1
k+2 − µ

> (2− 1
5
)× 3.0−

1
5 − 1.253 > 0,

(iv). 1− 1
(k + 2)µ2

(
µ

λ
)

1
k+2 − (µ− 1 +

1
(k + 2)µ

(
µ

λ
)

1
k+1 ) > 2− µ− 2

k + 2
> 2− 1.253− 2

5
> 0.

Then we can get B′(µ) > 0 and we have

B(µ) > B(µ = 1) =
2

k + 2
λ−

1
k+2√

−1 + 2λ−
1

k+2

− 1
k
(λ−

2
k + λ−

4
k ).

Let D(k) = 2λ−
1

k+2 − k+2
k (λ−

2
k + λ−

4
k )

√
−1 + 2λ−

1
k+2 and we differentiate D(k) as to k

to get

D′(k) =
1

(k + 2)2
λ−

1
k+2 (2− k + 2

k
(λ−

2
k + λ−

4
k )

1√
−1 + 2λ−

1
k+2

) ln λ

+
2
k2

(λ−
2
k + λ−

4
k

√
−1 + 2λ−

1
k+2 )(1− k + 2

k
lnλ)− k + 2

k3
λ−

4
k

√
−1 + 2λ−

1
k+2 lnλ

=
λ−

1
k+2 lnλ

(k + 2)2
[2− k + 2

k

λ−
2
k + λ−

4
k√

−1 + 2λ−
1

k+2

− 1.5
(k + 2)3

k3
λ
−3k−8
k(k+2)

√
−1 + 2λ−

1
k+2 ]

+
λ−

4
k

k2

√
−1 + 2λ−

1
k+2 [2(1 + λ

2
k )(1− k + 2

k
lnλ)− 0.5

k + 2
k

lnλ].

Since lnλ 6 ln 3 < 1.1, so for k > 4, we have

(
(k + 2)3

k3
λ
− 3k+8

k(k+2) )′k =
k + 2
k4

λ
− 3k+8

k(k+2) (−6k − 12 + lnλ(3k + 16 +
16
k

))
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<
k + 2
k4

λ
− 3k+8

k(k+2) (−2.7k + 5.6 + 4.4) < 0.

So (k+2)3

k3 λ
− 3k+8

k(k+2) decreases as k increases and (k+2)3

k3 λ
− 3k+8

k(k+2) > 1 when k = 4. However,

even when k = 3, (k+2)3

k3 λ
− 3k+8

k(k+2) > 1. So we have

(k + 2)3

k3
λ
− 3k+8

k(k+2) > 1, (k > 3). (4.27)

Considering the following facts for λ ∈ [2.5, 3]:

(
k + 2

k
(λ−

2
k + λ−

4
k ))′k =

2
k2

[−(λ−
2
k + λ−

4
k ) +

k + 2
k

lnλ(λ−
2
k + 2λ−

4
k )]

>
2
k2

λ−
4
k [(ln 2.5− 1)λ

2
k + (2 ln 2.5− 1)] > 0. (4.28)

So k+2
k (λ−

2
k + λ−

4
k ) increases as k increases and we have

k + 2
k

(λ−
2
k + λ−

4
k ) >

5
3
(3−

2
3 + 3−

4
3 ) > 1.186.

when k > 5,

2(1 + λ
2
k )(1− k + 2

k
lnλ)− 0.5

k + 2
k

lnλ < 2(1 + 3
2
5 )(1− lnλ)− 0.5 ln λ < 0.

While when k ∈ [3, 4],

2(1 + λ
2
k )(1− k + 2

k
lnλ)− 0.5

k + 2
k

lnλ < 2(1 + 3
2
3 )(1− 6

4
lnλ)− 0.5× 6

4
lnλ

< 6.2− 10.05 ln λ < 0.

As a result of above facts, we can get

D′(k) <
λ−

1
k+2 lnλ

(k + 2)2
(2− 1.186− 1.5

√
−1 + 2× 3−

1
5 ) < 0.

So D(k) decreases as k increases and

D(k) > lim
k→∞

D(k) = 0.

Therefore, B > 0 and A′(µ) > 0. A(µ) is an increasing function as to µ and

A(µ) > A(1) = 8
√
−1 + 2λ−

1
k+2 − 2λ−

2
k − λ−

4
k − 5 =: E(k, λ).

Differentiate E(k, λ) with respect to k to get

∂E

∂k
=

4

(k + 2)2
√
−1 + 2λ−

1
k+2

(2λ−
1

k+2 − (k + 2)2

k2
(λ−

2
k + λ−

4
k )

√
−1 + 2λ−

1
k+2 ).
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Let F (k) = 2λ−
1

k+2 − (k+2)2

k2 (λ−
2
k + λ−

4
k )

√
−1 + 2λ−

1
k+2 and differentiate F with respect

to k to get

F ′(k) =
1

(k + 2)2
λ−

1
k+2 lnλ(2− (k + 2)2

k2

λ−
2
k + λ−

4
k√

−1 + 2λ−
1

k+2

)

+
k + 2
k3

(2λ−
2
k + 4λ−

4
k )

√
−1 + 2λ−

1
k+2 (1− k + 2

k
lnλ) +

k + 2
k3

2λ−
2
k

√
−1 + 2λ−

1
k+2

=
λ−

1
k+2

(k + 2)2
[lnλ(2− (k + 2)2

k2

λ−
2
k + λ−

4
k√

−1 + 2λ−
1

k+2

) + 0.42λ
2
k
(k + 2)3

k3
λ
−3k−8
k(k+2)

√
−1 + 2λ−

1
k+2 ]

+
(k + 2)3

k3
λ−

2
k

√
−1 + 2λ−

1
k+2 [(2 + 4λ−

2
k )(1− k + 2

k
lnλ) + 1.58].

Note we have the following facts:

(i). (
λ−

2
k + λ−

4
k√

−1 + 2λ−
1

k+2

)′λ =
λ−1[−2(λ−

2
k + 2λ−

4
k )(−1 + 2λ−

1
k+2 ) + k

k+2λ−
1

k+2 (λ−
2
k + λ−

4
k )]

k(−1 + 2λ−
1

k+2 )
3
2

<
λ−1[(λ−

2
k + λ−

4
k )(−2 + 5λ−

1
k+2 )]

k(−1 + 2λ−
1

k+2 )
3
2

< 0.

(ii). (
(k + 2)2

k2
(λ−

2
k + λ−

4
k ))′k =

2(k + 2)
k3

[(−2 +
k + 2

k
lnλ)(λ−

2
k + λ−

4
k ) +

k + 2
k

λ−
4
k lnλ]

<
2(k + 2)

k3
λ−

4
k [(−2 +

10
8

1.1)(1 + 2.5
2
8 ) +

10
8

1.1]

< 0, (k > 8).

So when k > 11, we have

lnλ(2− (k + 2)2

k2

λ−
2
k + λ−

4
k√

−1 + 2λ−
1

k+2

) > 1.1(2− 132

112

3−
2
11 + 3−

4
11√

−1 + 2× 3−
1
13

) > −0.417.

Let G(λ, k) = (2 + 4λ−
2
k )(1− k+2

k lnλ). When 1− k+2
k lnλ < 0, we have

∂G

∂k
=

4 ln λ

k2
(2λ−

2
k (2− k + 2

k
lnλ) + 1) >

4 ln λ

k2
(2λ−

2
k (2− 5.5

3
)) > 0,

∂G

∂λ
=

2
kλ

[2λ−
2
k (2

k + 2
k

lnλ− k − 4)− (k + 2)] < 0.

So when k > 11, G(λ, k) > G(3, 11) > −1.575.

(iii). (λ
2
k

√
−1 + 2λ−

1
k+2 )′k =

λ
2
k lnλ

k2

√
−1 + 2λ−

1
k+2

[−2(−1 + 2λ−
1

k+2 ) + λ−
1

k+2
k2

(k + 2)2
]

<
λ

2
k lnλ

k2

√
−1 + 2λ−

1
k+2

(2− 3λ−
1

k+2 ) < 0.
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So λ
2
k

√
−1 + 2λ−

1
k+2 decreases as k increases and we have

λ
2
k

√
−1 + 2λ−

1
k+2 > 1.

Considering (4.27), we have the following result for k > 11,

F ′(k) >
λ−

1
k+2

(k + 2)2
(−0.417 + 0.42) +

(k + 2)3

k3
λ−

2
k

√
−1 + 2λ−

1
k+2 (−1.575 + 1.58) > 0.

Therefore, when k > 11, F increases as k increases and we can get F (k) < limk→∞ F (k) =
0. So ∂E

∂k < 0 when k > 1.
On the other hand, for k ∈ [3, 10],

∂E

∂λ
=

4λ−1

k + 2
(−2

λ−
1

k+2√
−1 + 2λ−

1
k+2

+
k + 2

k
(λ−

2
k + λ−

4
k )).

It is easy to see that x√
−1+2x

decreases as x increases when x = λ−
1

k+2 < 1. So λ
− 1

k+2q
−1+2λ

− 1
k+2

>

1. Because of (4.28), we have k+2
k (λ−

2
k +λ−

4
k ) < 12

10(2.5−
2
10 +2.5−

4
10 ) < 1.74. Then ∂E

∂λ < 0
and E > E(k, 3). Moreover, when λ = 3 and k = 5, 6, 7,

(
(k + 2)2

k2
(3−

2
k + 3−

4
k ))′k =

2(k + 2)
k3

3−
4
k [(−2 + 1.1

k + 2
k

)
1 + 3−

2
k

3−
2
k

+ 1.1
k + 2

k
]

< 0.

This means (k+2)2

k2 (3−
2
k + 3−

4
k ) decreases as k increases for k ∈ [5, 10].

F (k)√
−1 + 2× 3−

1
k+2

=
2× 3−

1
k+2√

−1 + 2× 3−
1

k+2

− (k + 2)2

k2
(3−

2
k + 3−

4
k )

<
2× 3−

1
7√

−1 + 2× 3−
1
7

− 122

102
(3−

2
10 + 3−

4
10 ) < 0.

It is easy to check F (3) > 0 and F (4) > 0, so F (k) > 0 for k > 3. Thus ∂E
∂k < 0 and E

decreases as k increases. This leads to

A > E(k, λ) > lim
k→∞

E(k, λ) = 0.

So Lemma 4.4.1 is proved. ]

Second, we will use Lemma 4.4.1 to finish the proof of Lemma 2.1.13 for k ∈ [3, 23].
Consider case (1), k = 3m, see Figure 4.9, we will prove the following inequality in order
to prove (4.22),

fλ(fµ(
1
2
− 1

2 3m
√

µ3m−1λ
)) > fµ(

1
2
− 1

2 m
√

µm−1λ
). (4.29)
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1

2
- 1

2 √μm-1λ
1

2
- 1

2
3m

√μ3m-1λ

fμfμ

m

3m

fλ

Figure 4.9: fλ(fµ(1
2 −

1

2 3m
√

µ3m−1λ
)) > fµ(1

2 −
1

2 m
√

µm−1λ
)

Which is equivalent to prove

A(µ, λ, m) = (µ2 − (
µ

λ
)

2
3m )(4µ− µ2 + (

µ

λ
)

2
3m )− 4µ3

λ
+ 4(

µ

λ
)1+

2
m > 0.

First note 1.253
(2−1.253)3

> 3, so µ ∈ (1, 1.253). Then we differentiate A(µ, λ, m) with respect
to µ to see that

1
2

∂A(µ, λ, m)
∂µ

= 6µ2 − 2µ3 − 6µ2

λ
+ (2µ− 2)(

µ

λ
)

2
3m

+
2µ

3m
(
µ

λ
)

2
3m − 2

3mµ
(
µ

λ
)

4
3m − 4

3m
(
µ

λ
)

2
3m +

2(m + 2)
mλ

(
µ

λ
)

2
m

> 2µ2(3− 3
2.8

− µ)− 4
3m

> 2(
5.4
2.8

− 1)− 4
3

> 0.

So A(µ, λ, m) is an increasing function as to µ and

A(µ, λ, m) > A(1, λ,m) = 3− 4
λ
− 2λ−

2
3m − λ−

4
3m + 4λ−1− 2

m .

∂A(1, λ,m)
∂m

=
2 ln λ

3m2
λ−1− 2

m (λ
3m+2
3m + λ

3m+4
3m − 6)

>
2 ln λ

3m2
λ−1− 2

m (2.8
23
21 + 2.8

25
21 − 6) > 0.

So A(1, λ,m) decreases as m increases and we can get

A(µ, λ, m) > A(1, λ, 7) = 3− 4
λ
− 2λ−

2
21 − λ−

4
21 + 4λ−

9
7 .

On the other hands, we have

∂A(1, λ, 7)
∂λ

=
4
λ2

(1− 9
7
λ−

2
7 +

1
21

λ
19
21 +

1
21

λ
17
21 ) > 0.

Therefore, A(µ, λ, 7) > A(1, 2.8, 7) and (4.29) is proved. So (4.22) holds. Then by (4.25),
(4.21) holds for k 6 23.

By a similar argument, we can prove (4.21) still holds for k 6 23 in the case that
k = 3m + 1 and k = 3m + 2.
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Case (2). k = 3m + 1, see Figure 4.10. We will prove the following inequality:

fλ(fµ(
1
2
− 1

2 3m+1
√

µ3mλ
)) >

1
2
− 1

2 m+1
√

µmλ
. (4.30)

In order to get (4.30), we need to prove

1

2
- 1

2 √μm λ

1

2
- 1

2 √μ3m λ

fμfμ
3m

fλ m+1
3m+1

Figure 4.10: fλ(fµ(1
2 −

1

2 3m+1
√

µ3mλ
)) > 1

2 −
1

2 m+1√µmλ

λ
(µ2 − (µ

λ)
2

3m+1 )(4µ− µ2 + (µ
λ)

2
3m+1 )

16µ2
>

1
2
− 1

2µ
(
µ

λ
)

1
m+1 .

Let A(µ, λ, m) = (µ2 − (µ
λ)

2
3m+1 )(4µ − µ2 + (µ

λ)
2

3m+1 ) − 8µ2

λ + 8(µ
λ)

m+2
m+1 and differentiate

A(µ,m) with respect to µ to get

∂A(µ, λ, m)
2∂µ

= 6µ2 − 2µ3 − 8µ

λ
+ (2µ− 2)(

µ

λ
)

2
3m+1

+
2µ

3m + 1
(
µ

λ
)

2
3m+1 − 2

(3m + 1)µ
(
µ

λ
)

4
3m+1 − 4

3m + 1
(
µ

λ
)

2
3m+1 + 8

m + 2
m + 1

(
µ

λ
)

1
m+1

1
λ

.

Since 6µ2 − 2µ3 − 8µ
λ > 2µ(3µ − µ2 + 2) > 0 and − 4

3m+1(µ
λ)

2
3m+1 + 8m+2

m+1(µ
λ)

1
m+1 1

λ >

8 · 3−
3
2 − 4

3 > 0, ∂A(µ,m)
∂µ > 0 and we can get

A(µ, λ, m) > A(1, λ,m) = 3− 2λ−
2

3m+1 − λ−
4

3m+1 − 8
λ

+ 8λ−
m+2
m+1 ,

∂A(1, λ,m)
∂m

= −12 ln λ
λ−

m+2
m+1

(3m + 1)2
(λ

3m2+5m
(3m+1)(m+1) + λ

3m2+3m−2
(3m+1)(m+1) − 2(3m + 1)2

3(m + 1)2
).

For m ∈ [2, 7], 2(3m+1)2

(m+1)2
< 5.042 and λ

3m2+5m
(3m+1)(m+1) + λ

3m2+3m−2
(3m+1)(m+1) > 2.8

182
176 + 2.8

166
176 > 5.54,

so A(1.m) decreases as m increases and we have

A(1, λ,m) > A(1, λ, 7) = 3− 2λ−
2
22 − λ−

4
22 − 8

λ
+ 8λ−

9
8 ,

∂A(1, λ, 7)
∂λ

= λ−2(
4
22

λ
20
22 +

4
22

λ
18
22 + 8− 9λ−

1
8 ) > 0.
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So A(µ, λ, m) > A(1, 2.8, 7) > 0 and (4.30) holds. So (4.22) holds and then by (4.25),
(4.21) holds for k 6 23.

Case (3). k = 3m + 2, see Figure 4.11, we will prove

fλ(fµ(
1
2
− 1

2 3m+2
√

µ3m+1λ
)) >

1
2
−

√
µ2 − 2µ + 2(µ

λ)
1

m+2

2µ
. (4.31)

In order to get (4.31), we need to prove

1

2
- 1

2 √μm+1λ

fμfμ
3m

fλ

1

2
- 1

2 √μ      λ
3m+2

3m+1

m+2

fμ

Figure 4.11: fλ(fµ(1
2 −

1

2 3m+2
√

µ3m+1λ
)) > 1

2 −

r
µ2−2µ+2(µ

λ
)

1
m+2

2µ

λ
(µ2 − (µ

λ)
2

3m+2 )(4µ− µ2 + (µ
λ)

2
3m+2 )

16µ2
>

1
2
−

√
µ2 − 2µ + 2(µ

λ)
1

m+2

2µ
.

Let A(µ, λ, m) = (µ2 − (µ
λ)

2
3m+2 )(4µ− µ2 + (µ

λ)
2

3m+2 )− 8µ2

λ + 8µ
λ

√
µ2 − 2µ + 2(µ

λ)
1

m+2 .

∂A(µ, λ, m)
2∂µ

= 6µ2 − 2µ3 − 8µ

λ
+ (2µ− 2)(

µ

λ
)

2
3m+2 +

2µ

3m + 2
(
µ

λ
)

2
3m+2 − 2

(3m + 2)µ
(
µ

λ
)

4
3m+2

− 4
3m + 2

(
µ

λ
)

2
3m+2 +

4
λ

√
µ2 − 2µ + 2(

µ

λ
)

1
m+2 +

4µ

λ
·
µ− 1 + 1

(m+2)µ(µ
λ)

1
m+2√

µ2 − 2µ + 2(µ
λ)

1
m+2

.

Since 4
λ

√
µ2 − 2µ + 2(µ

λ)
1

m+2 > 4
3

√
−1 + 2(1

3)
1
3 > 0.829 > 4

3m+2 and we recall that 6µ2 −
2µ3 − 8µ

λ > 0, we can easily get ∂A(µ,λ,m)
∂µ > 0 and

A(µ, λ, m) > A(1, λ,m) = 3− 2λ−
2

3m+2 − λ−
4

3m+2 − 8
λ

+
8
λ

√
−1 + 2λ−

1
m+2 .

∂A(1, λ,m)
∂m

= − 12λ−1− 1
m+2 lnλ

(3m + 2)2
√
−1 + 2λ−

1
m+2

[λ
3m2+9m+2

(3m+2)(m+2)
1 + λ−

2
3m+2√

−1 + 2λ−
1

m+2

− 2(3m + 2)2

3(m + 2)2
]

< − 12λ−1− 1
m+2 lnλ

(3m + 2)2
√
−1 + 2λ−

1
m+2

[λ(1 + 2.8−
2
5 )− 3 · 232

3 · 92
] < 0.
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So A(1, λ,m) decreases as m increases and

A(1, λ,m) > A(1, λ, 7) = 3− 2λ−
2
23 − λ−

4
23 − 8

λ
+

8
λ

√
−1 + 2λ−

1
9 .

∂A(1, λ, 7)
∂λ

=
4

23λ2
(λ

21
23 + λ

19
23 ) +

8

λ2

√
−1 + 2λ−

1
9

(1−
√
−1 + 2λ−

1
9 − 1

9
λ−

1
9 )

>
8

λ2

√
−1 + 2λ−

1
9

(1−
√
−1 + 2 · 2.8−

1
9 − 1

9
· 2.8−

1
9 ) > 0.

So A(1, λ, 7) increases as λ increases and

A(µ, λ, m) > A(1, 2.8, 7) > 0.

So (4.22) holds. With the same reason as the case λ ∈ (2.2.8]. (2.32) can be proved.
Case (II), k > 24. There are two subcases, λ ∈ (2, 2.61] and λ ∈ (2.61, 3].
Case(i). λ ∈ (2, 2.61].
At first, we need to prove the following lemma.

Lemma 4.4.2 When λ ∈ (2, 2.61] and k > 24, we have the following inequality

fµ(fµ(
1
2
− 1

2 k−1
√

µk−2λ
)) >

1
2
− 1

2 k
√

µk−1λ
. (4.32)

See Figure 4.12.

1

2
-

1

2

1

2
- 1

2
k+1

√μkλ k

√μk-1λ

fμ

m
fμ

Figure 4.12: fµ(fµ(1
2 −

1

2 k−1
√

µk−2λ
)) > 1

2 −
1

2 k
√

µk−1λ

Proof. Set m satisfying fµ(m) = 1
2 −

1

2 k+1
√

µkλ
. We need to find the condition for fµ(1

2 −

1

2 k
√

µk−1λ
) > m. Let A(µ, λ, k) = µ2− (µ

λ)
2
k − 2µ + 2

√
µ2 − 2µ + 2(µ

λ)
1

k+1 and then we can

get

∂A(µ, λ, k)
∂µ

= 2(µ− 1 +
µ− 1 + 1

(k+1)µ(µ
λ)

1
k+1√

µ2 − 2µ + 2(µ
λ)

1
k+1

− 1
kµ

(
µ

λ
)

2
k ).
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Let B = (µ− 1 + 1
(k+1)µ(µ

λ)
1

k+1 )2 − ( 1
kµ(µ

λ)
2
k )2(µ2 − 2µ + 2(µ

λ)
1

k+1 ), then we have

B = (µ− 1)2 +
µ− 1

µ
(
µ

λ
)

1
k+1 (

2
k + 1

− µ− 1
k2µ

(
µ

λ
)

3k+4
k(k+1) )

+
1

(k + 1)2µ2
[(

µ

λ
)

2
k+1 − (k + 1)2

k2
(
µ

λ
)

4
k (2(

µ

λ
)

1
k+1 − 1)].

Since (k+1
k (µ

λ)
2
k )′k = 2(µ

λ
)
2
k

k2 (−1 − 2k+1
k ln(µ

λ)) > 0, so we have k+1
k (µ

λ)
2
k < 1. It is also

obvious that (µ
λ)

2
k+1 > 2(µ

λ)
1

k+1 − 1 and 2
k+1 −

µ−1
k2µ

(µ
λ)

3k+4
k(k+1) > 0. It turns over that B > 0

and ∂A(µ,k)
∂µ > 0. So A(µ, λ, k) > A(1, λ, k) = 2

√
−1 + 2λ−

1
k+1 − λ−

2
k − 1.

(
k + 1

k
(−1 + 2λ−

1
k+1 ))′k =

1
k2

(1− λ−
1

k+1 + 2
k + 1

k
λ−

1
k+1 lnλ) > 0,

k + 1
k

(−1 + 2λ−
1

k+1 ) < 1,

∂A(1, λ, k)
∂λ

=
2λ−1− 2

k

k + 1
(−1 +

k + 1
k

√
−1 + 2λ−

1
k+1 ) < 0.

So A(1, λ, k) decreases as λ increases. Therefore, for λ ∈ (2, 2.61], we have

A(1, λ, k) > A(1, 2.61, k).

We differentiate A(1, λ, k) with respect to k to get

∂A(1, λ, k)
∂k

=
2λ−

2
k lnλ

(k + 1)2
(

λ
k+2

k(k+1)√
−1 + 2λ−

1
k+1

− (k + 1)2

k2
) =:

2λ−
2
k lnλ

(k + 1)2
D(λ, k),

∂D(λ, k)
∂k

=
1

(k + 1)2
[
λ

k+2
k(k+1) lnλ(1− 3λ−

1
k+1 )

(−1 + 2λ−
1

k+1 )
3
2

−
4k+2

k2 λ
k+2

k(k+1) lnλ√
−1 + 2λ−

1
k+1

+ 2
(k + 1)3

k3
]

= :
1

(k + 1)2
E(λ, k).

∂E(λ, k)
∂k

=
λ

k+2
k(k+1) (lnλ)2

(k + 1)2(−1 + 2λ−
1

k+1 )
3
2

(
k2 + 4k + 2

k2
(−1 + 2λ−

1
k+1 ) + λ−

1
k+1

)

(
−1 + 3λ−

1
k+1

−1 + 2λ−
1

k+1

+
4k + 2

k2
)

+
λ

2
k (lnλ)2

(k + 1)2(−1 + 2λ−
1

k+1 )
5
2

+
λ

k+2
k(k+1) lnλ

(−1 + 2λ−
1

k+1 )
1
2

· 4k + 4
k3

− 6(k + 1)2

k4

>
1
k2

[
k2λ

k+2
k(k+1) (lnλ)2

(k + 1)2(−1 + 2λ−
1

k+1 )
5
2

((3λ−
1

k+1 − 1)2 + λ−
1

k+1 )
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+
λ

k+2
k(k+1) lnλ

(−1 + 2λ−
1

k+1 )
1
2

· 4k + 4
k

− 6(k + 1)2

k2
].

Because limk→∞ A(1, k) = 0, so to prove A(1, k) > 0, we only need to prove ∂A(1,k)
∂k < 0,

i.e. D(k) > 0. For λ ∈ (2, 2.61] and k > 24,
√
−1 + 2λ−

1
k+1 > 0.96, λ

k+2
k(k+1) < 1.043,

λ−
1

k+1 > 0.962 and lnλ < 0.96. We can verify

(
k + 1

k
(−1 + 2λ−

1
k+1 ))′k =

1
k2

(1− 2λ−
1

k+1 +
2k

k + 1
λ−

1
k+1 lnλ) > 0,

k + 1
k

(−1 + 2λ−
1

k+1 ) < 1,

(3λ−
1

k+1 − 1)2 + λ−
1

k+1 = 9λ−
2

k+1 − 5λ−
1

k+1 + 1 > 4.52.

It turns out that

∂E(λ, k)
∂k

>
1
k2

[4.52 · (0.96)2 + 4− 6 · 1.0422] > 0.

So E(2.61, k) increases as k increases and it is easy to see

lim
k→∞

E(2.61, k) = −2 ln λ + 2 > 0,

A(2.61, 24) = −0.0387 < 0.

So there exists k1 such that E(2.61, k) < 0 for k ∈ [24, k1] and E(2.61, k) > 0 for k >
k1. That is to say D(2.61, k) decreases first and then increases as k increases. Because
limk→∞ D(2.61, k) = 0 and D(2.61, 24) < 0, we can get D(2.61, k) < 0 and so A(1, 2.61.k)
is a decreasing function as to k when λ ∈ (2, 2.61]. As a result, we can get

A(µ, λ, k) > lim
k→∞

A(1, 2.61.k) = 0, λ ∈ (2, 2.61], k > 24.

Lemma 4.4.2 is proved. Now we will prove Lemma 2.1.13 when λ ∈ (2, 2.61] and k > 24
by induction method.

Consider λ > µ
(2−µ)22

. Set b22 satisfying fµ · · · fµ︸ ︷︷ ︸
21

(b22) = 1
2−

1

2 22
√

µ21λ
an set b23 satisfying

fµ · · · fµ︸ ︷︷ ︸
22

(b23) = 1
2 −

1

2 23
√

µ22λ
, then we know from the previous section that for any x ∈

[1− 1
µ , b22],

fλ(fµ · · · fµ︸ ︷︷ ︸
22

(x)) > x,

and for any x ∈ [1− 1
µ , b23],

fλ(fµ · · · fµ︸ ︷︷ ︸
23

(x)) > x.

Now we assume for any k > 24, when λ > µ
(2−µ)k−2 ,

fλ fµ · · · fµ︸ ︷︷ ︸
k−2

(x) > x, x ∈ [1− 1
µ

, bk−2], (4.33)
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where bk−2 is defined by fµ · · · fµ︸ ︷︷ ︸
k−3

(bk−2) = 1
2 −

1

2 k−2
√

µk−3λ
.

Then we will prove the following inequality as Figure 4.13 shows,

fλ fµ · · · fµ︸ ︷︷ ︸
k

(bk) > bk. (4.34)

We can get that m0 = 1
2 −

q
µ2−2µ+2(µ

λ
)
1
k

2µ if fµ(m0) = 1
2 −

1

2 k
√

µk−1λ
, we choose λ0 such

1

2
- 1

2
k

√μk-1λ

λ0μ

λ

1

2
-

1

2

1

2
- 1

2
k

√μk-1λ
k-2

√μk-3λ

fμk fμk-2

λλ

a

Figure 4.13: fλ0(a) = fλ(fµ(1
2 −

1

2 k
√

µk−1λ
)) when k > 24 and λ ∈ (2, 2.61]

that
fλ0(a) = m0,

where a = fλ(fµ(1
2 −

1

2 k
√

µk−1λ
)). See Figure 4.13. We can solve λ0 to get

λ0(λ) =
λ

8
(
µ

λ
)

3
k (µ

k−1
k λ

1
k + 1)(4µ

k−2
k λ

2
k − µ

2k−2
k λ

2
k + 1).

(i). We now prove m0 < fµ(1
2 −

1

2 k−2
√

µk−3λ0

).

First, we prove
1
2
− 1

2 k
√

µk−1λ
<

1
2
− 1

2 k−1
√

µk−2λ0

. (4.35)

In order to get (4.35), we need to prove the following inequality,

A(k) := (µ
k−1

k λ
1
k + 1)(4µ− µ2 + (

µ

λ
)

2
k )− 8 > 0. (4.36)
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Differentiate A with respect to k to get

A′(k) = − 1
k2

(ln
λ

µ
)(

µ

λ
)

1
k )[4µ2 − µ3 − µ(

µ

λ
)

2
k )− 2(

µ

λ
)

3
k )]

< − 1
k2

ln
λ

µ
(
µ

λ
)

1
k )(4µ2 − µ3 − µ− 2).

Because µ
(2−µ)2

6 3, we have µ 6 4
3 and (4µ2−µ3−µ−2)′′ = 8−6µ > 0. So 4µ2−µ3−µ−2

reaches the minimum value at µ = 1 and µ = 4
3 and thus 4µ2 − µ3 − µ − 2 > 0. As a

result, A′(k) < 0 and A(k) decreases as k increases. So

A > lim
k→∞

A = (µ + 1)(4µ− µ2 + 1)− 8 = D(µ).

Note

D′(µ) = −3µ2 + 6µ + 5 = −3(µ− 1)2 + 8 > 0.

So D(µ) increases as µ increases, D(µ) > D(1) = 0, so A > 0. We have proved (4.35).
If fµ(d) = 1

2 −
1

2 k−1
√

µk−2λ0

, then m0 < d. Because λ0 < λ ∈ (2, 2.61], we have fµ(fµ(1
2 −

1

2 k−2
√

µk−3λ0

)) > 1
2 −

1

2 k−1
√

µk−2λ0

by Lemma 4.4.2. Therefore,

m0 < d < fµ(
1
2
− 1

2 k−2
√

µk−3λ
).

(ii). We now prove λ0 > µ
(2−µ)k−2 . First note

λ0(λ) =
λ

8
(µ + (

µ

λ
)

1
k )(4µ− µ2 + (

µ

λ
)

2
k ),

λ′0(λ) =
1
8
[(µ + (

µ

λ
)

1
k )(4µ− µ2 + (

µ

λ
)

2
k )− 1

k
(
µ

λ
)

1
k (4µ− µ2 + (

µ

λ
)

2
k )− 2

k
(
µ

λ
)

2
k (µ + (

µ

λ
)

1
k )]

=
1
8
[
k − 1

k
(
µ

λ
)

1
k (4µ− µ2 + (

µ

λ
)

2
k ) + µ(4µ− µ2 + (

µ

λ
)

2
k )− 2

k
(
µ

λ
)

2
k (µ + (

µ

λ
)

1
k )].

Because 4µ−µ2 +(µ
λ)

2
k − (µ+(µ

λ)
1
k ) > 3µ−µ2− 1 > 0 and µ− 2

k (µ
λ)

2
k > µ− 2

k > 0, λ0(λ)
is an increasing function about λ and we have

λ0 > λ0(
µ

(2− µ)k
) =

µ

(2− µ)k
>

µ

(2− µ)k−2
.

So (4.34) holds.
(iii). We can see now (2.32) holds for all x ∈ [1− 1

µ , bk] by a similar argument as before.
Case (ii). λ ∈ (2.61, 3]. When k > 24 and λ ∈ (2.61, 3], we use the following five

cases, Case (1) to Case (5) to prove Lemma 2.1.13.
Firstly, we begin from the following Lemma.

Lemma 4.4.3 For k > 10 and λ ∈ [2.55, 3], we have the following inequality,

fµ(fµ(fµ(fµ(fµ(
1
2
− 1

2 k
√

µk−1λ
))))) >

1
2
− 1

2 k+3
√

µk+2λ
. (4.37)

See Figure 4.14.
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Figure 4.14: n > n1

Proof. Firstly, we prove n > n1 in order to get (4.37). Here n = fµ(fµ(fµ(1
2 −

1

2 k
√

µk−1λ
)))

and fµ(fµ(n1)) = 1
2 −

1

2 k+3
√

µk+2λ
. This means we need to prove

(µ2 − (µ
λ)

2
k )(4µ− µ2 + (µ

λ)
2
k )[16µ− (µ2 − (µ

λ)
2
k )(4µ− µ2 + (µ

λ)
2
k )]

256µ

>
2µ−

√
µ2 − 2µ + 2

√
µ2 − 2µ + 2(µ

λ)
1

k+3

2µ
. (4.38)

For this Let E(µ) = (µ2−(µ
λ)

2
k )(4µ−µ2+(µ

λ)
2
k ), D(µ) =

√
µ2 − 2µ + 2

√
µ2 − 2µ + 2(µ

λ)
1

k+3−
µ, B(µ) = E(16µ − E). We need to prove A(µ, λ, k) = B(µ) + 128D(µ) > 0. Since

1.045
(2−1.045) > 3, it is easy to see µ ∈ (1, 1.045).

E′(µ) = 12µ2 − 4µ3 + 4(µ− 1)(
µ

λ
)

2
k +

4µ

k
(
µ

λ
)

2
k − 8

k
(
µ

λ
)

2
k − 4

kµ
(
µ

λ
)

4
k

> 12µ2 − 4µ3 − 8
k

> 0,

E(µ) < µ2(4µ− µ2 + 1) < 8,

E′(µ) < 12µ2 − 4µ3 + 4(µ− 1) < 16,

E′′(µ) = 24µ− 12µ2 + 4(
µ

λ
)

2
k +

8(µ− 1)
kµ

(
µ

λ
)

2
k +

4
k
(
µ

λ
)

2
k +

8
k2

(
µ

λ
)

2
k

− 16
k2µ

(
µ

λ
)

2
k +

4
kµ2

(
µ

λ
)

4
k − 16

k2µ
(
µ

λ
)

4
k

>
4
k2

(
µ

λ
)

2
k (k + 2− 4

µ
) +

4
k2µ

(
µ

λ
)

4
k (k − 4) > 0.

We differentiate B(µ) with respect to µ to get

B′(µ) = E′(µ)(16µ− 2E) + 16E,

B′′(µ) = E′′(µ)(16µ− 2E) + 2E′(µ)(16− E′(µ)) > 0.

So B′(µ) is an increasing function with respect to µ. On the other hand, we differentiate
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D(µ) with respect to µ to get

D′(µ) =

µ− 1 +
µ−1+ 1

(k+3)µ
(µ

λ
)

1
k+3r

µ2−2µ+2(µ
λ
)

1
k+3√

µ2 − 2µ + 2
√

µ2 − 2µ + 2(µ
λ)

1
k+3

− 1,

D′′(µ) =
1

(µ2 − 2µ + 2
√

µ2 − 2µ + 2(µ
λ)

1
k+3 )

3
2 · (µ2 − 2µ + 2(µ

λ)
1

k+3 )
·

[(µ2 − 2µ + 2(
µ

λ
)

1
k+3 + (1− k + 2

(k + 3)2
µ−

2k+5
k+3 λ−

1
k+3 )

√
µ2 − 2µ + 2(

µ

λ
)

1
k+3

−
(µ− 1 + 1

k+3µ−
k+2
k+3 λ−

1
k+3 )2√

µ2 − 2µ + 2(µ
λ)

1
k+3

) · (µ2 − 2µ + 2
√

µ2 − 2µ + 2(
µ

λ
)

1
k+3 )

−((µ− 1)
√

µ2 − 2µ + 2(
µ

λ
)

1
k+3 + µ− 1 +

1
(k + 3)µ

(
µ

λ
)

1
k+3 )2].

Let M1 = (µ2−2µ+2(µ
λ)

1
k+3 )(µ2−2µ+2

√
µ2 − 2µ + 2(µ

λ)
1

k+3 )−((µ−1)
√

µ2 − 2µ + 2(µ
λ)

1
k+3 )2−

(µ−1+ 1
(k+3)µ(µ

λ)
1

k+3 )2 and M2 = [(1− k+2
(k+3)2

µ−
2k+5
k+3 λ−

1
k+3 )

√
µ2 − 2µ + 2(µ

λ)
1

k+3− (µ−1+ 1
k+3

µ
− k+2

k+3 λ
− 1

k+3 )2r
µ2−2µ+2(µ

λ
)

1
k+3

]·

(µ2 − 2µ + 2
√

µ2 − 2µ + 2(µ
λ)

1
k+3 ) − 2(µ − 1)

√
µ2 − 2µ + 2(µ

λ)
1

k+3 (µ − 1 + 1
(k+3)µ(µ

λ)
1

k+3 )

and then D′′(µ) = M1+M2

(µ2−2µ+2

r
µ2−2µ+2(µ

λ
)

1
k+3 )

3
2 ·(µ2−2µ+2(µ

λ
)

1
k+3 )

.

Since k > 10 and 1.1
(2−1.1)10

> 3, we can easily get µ ∈ (1, 1.1) and (µ
λ)

1
k+3 > 3−

1
13 >

0.9189. Note

(i). µ2 − 2µ + 2(
µ

λ
)

1
k+3 − (µ− 1 +

1
(k + 3)µ

(
µ

λ
)

1
k+3 )

= (µ− 1)2 + 2(
µ

λ
)

1
k+3 − 1

(k + 3)µ
(
µ

λ
)

1
k+3 − µ > (

µ

λ
)

1
k+3 (2− 1

(k + 3)µ
− µ) > 0,

(ii). 2
√

µ2 − 2µ + 2(
µ

λ
)

1
k+3 − 1 > 2

√
2(

µ

λ
)

1
k+3 − 1− 1 > 0.83,

(iii). µ− 1 +
1

(k + 3)µ
(
µ

λ
)

1
k+3 < 1.1− 1 +

1
13

< 0.83 < 2
√

µ2 − 2µ + 2(
µ

λ
)

1
k+3 − 1.

Hence, M1 > 0.
Second, for M2, note

(i).
2k2 + 9k + 10

(k + 3)2
(
µ

λ
)

1
k+3 − 1 >

2 · 102 + 90 + 10
132

· 0.9189− 1 > 0.63,

(ii). 2(µ− 1)(µ2 − 2µ + 2(
µ

λ
)

1
k+3 ) < 2 · 0.1 · (µ2 − 2µ + 2 · 0.9189) < 0.17 < 0.63,

(iii). µ2 − 2µ + 2
√

µ2 − 2µ + 2(
µ

λ
)

1
k+3 − (µ− 1 +

1
(k + 3)µ

(
µ

λ
)

1
k+3 )
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= (µ− 1)2 + 2
√

µ2 − 2µ + 2(
µ

λ
)

1
k+3 − 1

(k + 3)µ
(
µ

λ
)

1
k+3 − µ

> 2
√
−1 + 2 · 0.9189− 1

13
− 1 > 0.

Hence, M2 > 0 and then D′′(µ) > 0. Since ∂A(µ,λ,k)
∂µ = B′(µ) + 128D′(µ) and ∂A(µ,k)2

∂2µ
=

B′′(µ) + 128D′′(µ) > 0, ∂A(µ,λ,k)
∂µ increases as µ increases and ∂A(µ,λ,k)

∂µ > ∂A(1,λ,k)
∂µ . But

∂A(1, λ, k)
∂µ

= E′(1)(16− 2E(1)) + 16E(1)

= (8− 4
k
λ−

2
k − 4

k
λ−

4
k )(16− 2(1− λ−

2
k )(3 + λ−

2
k )) + 16(1− λ−

2
k )(3 + λ−

2
k )

+128
1

k+3λ−
1

k+3√
−1 + 2

√
−1 + 2λ−

1
k+3

√
−1 + 2λ−

1
k+3

− 128

= 8(−5
k
λ−

2
k − 7

k
λ−

4
k − 3

k
λ−

6
k − 1

k
λ−

8
k +

16
k + 3

λ−
1

k+3√
−1 + 2

√
−1 + 2λ−

1
k+3

√
−1 + 2λ−

1
k+3

).

Let F (k) = 5λ−
2
k + 7λ−

4
k + 3λ−

6
k + λ−

8
k − 16λ−

3
k and differentiate F (k) as to k to get

F ′(k) =
2 ln λ

k2
λ−

3
k (5λ

1
k + 14λ−

1
k + 9λ−

3
k + 4λ−

5
k − 24)

> 14 · 3−
1
10 + 9 · 3−

3
10 + 4 · 3−

5
10 − 19 > 0.

So F (k) increases as k increases and then

F (k) < lim
k→∞

F (k) = 0.

This leads to

∂A(1, λ, k)
∂µ

> 128(−1
k
λ−

3
k +

1
k + 3

λ−
1

k+3√
−1 + 2

√
−1 + 2λ−

1
k+3

√
−1 + 2λ−

1
k+3

).

Let H(k) = k2

(k+3)2
λ

2(2k+9)
k(k+3) − (−1 + 2

√
−1 + 2λ−

1
k+3 )(−1 + 2λ−

1
k+3 ). Then

H ′(k) =
2λ−

1
k+3

(k + 3)2
H1(k),

where H1(k) = λ
5k+18
k(k+3) ( 3k

k+3 − 3 ln λ + k2

(k+3)2
lnλ) − (3

√
−1 + 2λ−

1
k+3 − 1) ln λ. Then

differentiate H1(k) as to k to get

H ′
1(k) =

λ
5k+18
k(k+3) lnλ

(k + 3)2
[
−5k2 − 36k − 54

k2
(

3k

k + 3
− 3 ln λ +

k2

(k + 3)2
lnλ) +

9
lnλ

+
k

k + 3
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+
5k

k + 3
− 3λ−

6
k lnλ√

−1 + 2λ−
1

k+3

].

Let a = ln λ, then a ∈ (0.936, 1.1) for λ ∈ [2.55, 3]. For k > 10, −5k2−36k−54
k2 ∈ [−9.14,−5).

Since (−5k2−36k−54
k2 ( 3k

k+3−3a+ k2

(k+3)2
a)+ 9

a)′a = −5k2−36k−54
k2 (−3+ k2

(k+3)2
)− 9

a2 > (−5)·(−2)−
9

0.936 > 0, then −5k2−36k−54
k2 ( 3k

k+3 −3 ln λ+ k2

(k+3)2
lnλ)+ 9

ln λ + k
k+3 > −9.14(3−2 · ln 2.55)+

9
ln 2.55 + 10

13 > 0. On the other hand, (2λ−
1

k+3 −1−2λ−
12
k )′k = 2λ−

12
k ln λ

(k+3)2
(λ

11k+36
k(k+3) −6 (k+3)2

k2 ) <

2λ−
12
k ln λ

(k+3)2
(3

110+36
130 −6) < 0, so we have λ−

6
kq

−1+2λ
− 1

k+3

< 1 and 5k
k+3−

3λ−
6
k ln λq

−1+2λ
− 1

k+3

> 50
13−3.3 >

0. Thus it is obvious that H ′
1(k) > 0 and we can get

H1(k) < lim
k→∞

H1(k) = 1− 2 ln λ < 0.

So H ′(k) < 0 and H(k) decrease as k increases. Then we can get H(k) > limk→∞ H(k) > 0
and ∂A(µ,λ,k)

∂µ > ∂A(1,λ,k)
∂µ > 0. As a result, A(µ) is an increasing function as to µ. So

A(µ, λ, k) > A(1, λ, k) = (3− 2λ−
2
k − λ−

4
k )(13 + 2λ−

2
k + λ−

4
k )

+128

√
−1 + 2

√
−1 + 2λ−

1
k+3 − 128.

But

∂A(1, λ, k)
∂λ

=
8
λ

(
5λ−

2
k

k
+

7λ−
4
k

k
+

3λ−
6
k

k
+

λ−
8
k

k

+
16λ−

1
k+3

(k + 3)

√
−1 + 2

√
−1 + 2λ−

1
k+3 ·

√
−1 + 2λ−

1
k+3

)

=
1
λ

(−A(1, k, λ)
∂µ

) < 0.

So A(1, λ, k) is a decreasing function as to λ and A(1, λ, k) > A(1, 3, k).
Let G(k) = 5λ−

2
k +7λ−

4
k +3λ−

6
k +λ−

8
k − 16λ−

4
k , then we differentiate G with respect

to k for k > 10,

G′(k) =
2λ−

4
k

k2
(5λ

2
k + 9λ−

2
k + 4λ−

4
k − 18),

(5λ
2
k + 9λ−

2
k + 4λ−

4
k )′k =

2λ−
2
k lnλ

k2
(−5λ

4
k + 9 + 8λ−

4
k ) > 0.

So we can get
5λ

2
k + 9λ−

2
k + 4λ−

4
k − 18 < 0.

So G(k) is a decreasing function as to k and G(k) > limk→∞ G(k) = 0. THen we can get

∂A(1, λ, k)
∂k

= 8 ln λ(−5λ−
2
k + 7λ−

4
k + 3λ−

6
k + λ−

8
k

k2
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+
16λ−

1
k+3

(k + 3)2
√
−1 + 2

√
−1 + 2λ−

1
k+3 ·

√
−1 + 2λ−

1
k+3

)

< lnλ(−16λ−
4
k

k2
+

16λ−
1

k+3

(k + 3)2
√
−1 + 2

√
−1 + 2λ−

1
k+3 ·

√
−1 + 2λ−

1
k+3

).

Let P (k, λ) = k4

(k+3)4
λ

6k+24
k(k+3) − (−1+2

√
−1 + 2λ−

1
k+3 )(−1+2λ−

1
k+3 ), then we differentiate

P (k, λ) about k to get

∂P (k, λ)
∂λ

=
2λ−1− 1

k+3

k + 3
[
k3(3k + 12)

(k + 3)4
λ

7k+24
k(k+3) + 3

√
−1 + 2λ−

1
k+3 − 1] > 0,

∂P (k, λ)
∂k

=
2λ−

1
k+3

(k + 3)2
[λ

7k+24
k(k+3)

3k2

(k + 3)2
(

2k

k + 3
− k2 + 8k + 12

(k + 3)2
lnλ)− lnλ(3

√
−1 + 2λ−

1
k+3 − 1)]

:=
2λ−

1
k+3

(k + 3)2
Q(k, λ),

∂Q(k, λ)
∂k

=
3λ

7k+24
k(k+3)

(k + 3)2
(

2k

k + 3
− k2 + 8k + 12

(k + 3)2
lnλ)(

6k

k + 3
− 7k2 + 48k + 72

(k + 3)2
lnλ)

+λ
7k+24
k(k+3)

3k2

(k + 3)4
(6− 2k

k + 3
lnλ)− 3λ−

1
k+3 (lnλ)2

(k + 3)2
√
−1 + 2λ−

1
k+3

>
3λ

7k+24
k(k+3)

(k + 3)2
· 1.064k2 − 1.488k − 11.232

(k + 3)2
· −1.7k2 − 34.8k − 79.2

(k + 3)2

+λ
7k+24
k(k+3)

3k2

(k + 3)4
· 3.8k + 18

k + 3
− 3λ−

1
k+3 (lnλ)2

(k + 3)2
√
−1 + 2λ−

1
k+3

.

So P (k, λ) increases as λ increases and P (k, λ) 6 P (k, 3). Since it is obvious that −1 +
2λ−

1
k+3 > 0.8379 for k > 10, so

(λ
8
k

k2

(k + 3)2

√
−1 + 2λ−

1
k+3 )′k =

λ
8
k

(k + 3)2
√
−1 + 2λ−

1
k+3

[(−8 ln λ +
6k

k + 3
)(−1 + 2λ−

1
k+3 )

+
k2

(k + 3)2
λ−

1
k+3 lnλ]

<
λ

8
k

(k + 3)3
√
−1 + 2λ−

1
k+3

(0.8379(−1.488k − 22.464)(k + 3) + k) < 0.

So λ
8
k

k2

(k+3)2

√
−1 + 2λ−

1
k+3 > 1. Thus we have

∂Q(k, λ)
∂k

>
3λ

7k+24
k(k+3)

(k + 3)6
[(1.064k2 − 1.488k − 11.232)(−1.7k2 − 34.8k − 79.2) + k2(k + 3)(2.59k + 14.37)]
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+
3λ−

1
k+3

(k + 3)2
[λ

8
k

k2

(k + 3)2

√
−1 + 2λ−

1
k+3 1.21− (lnλ)2]

>
3λ

7k+24
k(k+3)

(k + 3)6
(0.78k4 − 12.36k3 + 29.7k2 + 508.7k + 889.5) > 0.

So Q(k, λ) increases as k increases. Because limk→∞ Q(k, λ) = 6 − 5 ln λ > 0 and

Q(10, λ) = λ
94
130 · 300

169(20
13 −

192
169 lnλ)− lnλ(3

√
−1 + 2λ−

1
13 − 1). It is easy to see that

∂Q(10, λ)
∂λ

=
300
169

λ−1+ 94
130 (

94
130

(
30
13

− 192
169

lnλ)− 192
169

)− 1
λ

(3
√
−1 + 2λ−

1
13 − 1− λ−

1
13 lnλ

13
√
−1 + 2λ−

1
13

) < 0.

So Q(10, λ) < Q(10, 2.55) < 0. Note that there exists k0 such that Q(k, λ) < 0 for
k ∈ [10, k0] and Q(k, λ) > 0 for k > k0, i.e. P (k, λ) decreases first and then increases as k
increases. Since limk→∞ P (k, λ) = 0, and P (13, 3) < 0, we can get P (k, λ) < 0 for k > 13
and so A(1, k) decrease as k increases. Therefore,

A(µ, λ, k) > lim
k→∞

A(1, λ, k) = 0.

While for k ∈ [10, 12], recalling that A(µ, λ, k) > A(1, 3, k) and A(1, 3, k) > 0 when
k = 10, 11, 12. So A(µ, λ, k) > 0 for all k > 10. Lemma 4.4.3 is proved. ]

Now, we prove (4.22) still holds for λ ∈ (2.61, 3] when k > 24. We mainly use Lemma
4.4.3 . Since 1.044

(2−1.044)24
> 3, it is easy to get µ ∈ (1, 1.044). When k > 24, we divide k

into cases k = 5m, 5m + 1, 5m + 2, 5m + 3 and 5m + 4.
Case (1). k = 5m, m > 5, see Figure 4.15, we prove

fλ(
1
2
− 1

2 5m
√

µ5m−1λ
) >

1
2
− 1

2 2m
√

µ2m−1λ
. (4.39)

Let A(m) = λ
4 −

1
4µ(λ

µ)
5m−2
5m − 1

2 + 1
2µ(µ

λ)
1

2m and differentiate A(m) with respect to m to

fμ5m

fλ

1

2
- 1

2 √μ     λ
5m

5m-1

1

2
- 1

2 √μ     λ
2m

2m-1

Figure 4.15: fλ(1
2 −

1

2 5m
√

µ5m−1λ
) > 1

2 −
1

2 2m
√

µ2m−1λ

get

∂A(m)
∂m

=
(µ

λ)
1

2m

2µm2
ln(

λ

µ
)(−2

5
(
λ

µ
)

10m+1
10m + 1) <

(µ
λ)

1
2m

2µm2
ln(

λ

µ
)(

2 · 2.61
5 · 1.044

− 1) > 0.
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That is to say A(m) decreases as k increases and A(m) > limm→∞ A(m) = 0. Then (4.39)
is proved. By (4.25), fλ fµ · · · fµ︸ ︷︷ ︸

k

(x) − x reaches the minimum value at x = 1 − 1
µ and

x = y∗ for x ∈ [1− 1
µ , y?]. From (4.39) and a > y?, where fµ fµ · · · fµ︸ ︷︷ ︸

k−1

(a) = 1
2−

1

2 5m
√

µ5m−1λ
,

we know (4.34) holds. Considering that fλ fµ · · · fµ︸ ︷︷ ︸
k

(1− 1
µ) > 1− 1

µ , we can easily see that

(2.32) holds.
Case (2). k = 5m + 1, m > 5. See Figure 4.16, by Lemma 4.4.3, we just need to prove

fλ(fµ(
1
2
− 1

2 5m+1
√

µ5mλ
)) >

1
2
− 1

2 2m+1
√

µ2mλ
. (4.40)

Let A(µ,m) = (µ2 − (µ
λ)

2
5m+1 )(4µ− µ2 + (µ

λ)
2

5m+1 )− 8µ2

λ + 8(µ
λ)

2m+2
2m+1 and we differentiate

fμ5m

fλ

1

2
- 1

2 √μ   λ
5m+1

5m

1

2
- 1

2 √μ   λ
2m+1

2m

Figure 4.16: fλ(fµ(1
2 −

1

2 5m+1
√

µ5mλ
)) > 1

2 −
1

2 2m+1
√

µ2mλ

A(µ,m) with respect to µ.

1
2

∂A(µ,m)
∂µ

= 6µ2 − 2µ3 − 8µ

λ
+ (2µ− 2)(

µ

λ
)

2
5m+1 +

2µ

5m + 1
(
µ

λ
)

2
5m+1 − 2

(5m + 1)µ
(
µ

λ
)

4
5m+1

− 4
5m + 1

(
µ

λ
)

2
5m+1 + 4

2m + 2
(2m + 1)λ

(
µ

λ
)

1
2m+1 .

Since 6µ2−2µ3− 8µ
λ > 2µ(3µ−µ2−1) > 0, (λ

µ)
m−1

(2m+1)(5m+1) < 1.02 and (µ
λ
)

1
2m+1

λ − (µ
λ
)

2
5m+1

5m+1 =

(µ
λ
)

1
2m+1

λ (1−
λ( λ

µ
)

m−1
(2m+1)(5m+1)

5m+1 ) > 0, we can easily get ∂A(µ,m)
∂µ > 0 and A(µ,m) increases as

µ increases. Thus

A(µ,m) > A(1,m) = 3− 2λ−
2

5m+1 − λ−
4

5m+1 − 8
λ

+ 8λ−
2m+2
2m+1 .

Note 24(5m+1)3

5(2m+1)3
> 63.38 for m > 5, we have

∂A(1,m)
∂m

=
−5λ−

2m+2
2m+1 lnλ

(5m + 1)2
[λ

10m2+8m
(5m+1)(2m+1) (1 + λ−

2
5m+1 )− 4(5m + 1)2

5(2m + 1)2
] =:

−5λ−
2m+2
2m+1 lnλ

(5m + 1)2
B(m),

B′(m) = λ
10m2+8m

(5m+1)(2m+1)
−10m2 + 20m + 8

(2m + 1)2(5m + 1)2
lnλ(1 + λ−

2
5m+1 )
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+λ
10m2+4m−2

(5m+1)(2m+1)
10

(5m + 1)2
lnλ− 24(5m + 1)

5(2m + 1)3

<
1

(5m + 1)2
[10λ lnλ− 24(5m + 1)3

5(2m + 1)3
] <

1
(5m + 1)2

(30 ln 3− 63.38) < 0.

So B(m) decreases as m increases and B(m) > limm→∞ B(m) = 2λ−5 > 0 as λ ∈ (2.61, 3].
Therefore, ∂A(1,m)

∂m < 0 and

A(µ,m) > lim
m→∞

A(1,m) = 0.

So (4.34) holds. By (4.25), fλ fµ · · · fµ︸ ︷︷ ︸
k

(x)−x attains the minimum value at x = 1− 1
µ and

x = y∗, then because of (4.34) and fλ fµ · · · fµ︸ ︷︷ ︸
k

(1− 1
µ) > 1− 1

µ , (2.32) holds.

Case (3). k = 5m + 2, m > 5. See Figure 4.17, we will prove the following inequality,

fλ(fµ(
1
2
− 1

2 5m+2
√

µ5m+1λ
)) >

1
2
−

√
µ2 − 2µ + 2(µ

λ)
1

2m+2

2µ
. (4.41)

Let A(µ,m) = (µ2 − (µ
λ)

2
5m+2 )(4µ− µ2 + (µ

λ)
2

5m+2 )− 8µ2

λ + 8µ
λ

√
µ2 − 2µ + 2(µ

λ)
1

2m+2 and

fμ5m

fλ

1

2
- 1

2 √μ     λ
5m+2

5m+1

1

2
- 1

2 √μ    
2m+2

2m+1λ

Figure 4.17: fλ(fµ(1
2 −

1

2 5m+2
√

µ5m+1λ
)) > 1

2 −

r
µ2−2µ+2(µ

λ
)

1
2m+2

2µ

differentiate A(µ,m) as to µ to get

∂A(µ,m)
2∂µ

= 6µ2 − 2µ3 − 8µ

λ
+ (2µ− 2)(

µ

λ
)

2
5m+2 +

2µ

5m + 2
(
µ

λ
)

2
5m+2 − 2

(5m + 2)µ
(
µ

λ
)

4
5m+2

− 4
5m + 2

(
µ

λ
)

2
5m+2 +

4
λ

√
µ2 − 2µ + 2(

µ

λ
)

1
2m+2 +

4µ

λ
·
µ− 1 + 1

(2m+2)µ(µ
λ)

1
2m+2√

µ2 − 2µ + 2(µ
λ)

1
2m+2

.

For m > 5, (µ
λ)

1
2m+2 > 0.91,

√
µ2 − 2µ + 2(µ

λ)
1

2m+2 > 0.9 and

r
µ2−2µ+2(µ

λ
)

1
2m+2

λ > 0.3 >
1

5m+2 . So ∂A(µ,m)
∂µ > 0, A(µ,m) > A(1,m) and

A(1,m) = 3− 2λ−
2

5m+2 − λ−
4

5m+2 − 8
λ

+
8
√
−1 + 2λ−

1
2m+2

λ
,
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∂A(1,m)
∂m

=
−4λ−1− 1

2m+2 lnλ

(5m + 2)2
√
−1 + 2λ−

1
2m+2

· [λ
10m2+15m+2
(5m+2)(2m+2) (1 + λ−

2
5m+2 )

√
−1 + 2λ−

1
2m+2 − 4(5m + 2)2

5(2m + 2)2
]

:=
−4λ−1− 1

2m+2 lnλ

(5m + 2)2
√
−1 + 2λ−

1
2m+2

B(m),

B′(m) =
λ

10m2+15m+2
(5m+2)(2m+2) lnλ

(5m + 2)2

√
−1 + 2λ−

1
2m+2 [

−10m2 + 2
(2m + 2)2

(1 + λ−
2

5m+2 ) + 2λ−
2

5m+2 ]− 48(5m + 2)
5(2m + 2)3

+
lnλ

(5m + 2)2
[(10− 2)λ

10m2+11m−2
(5m+2)(2m+2)

√
−1 + 2λ−

1
2m+2

+λ
5m

5m+2
1 + λ−

2
5m+2√

−1 + 2λ−
1

2m+2

2(5m + 2)2

(2m + 2)2
].

For m > 5, 48(5m+2)3

5(2m+2)3
> 109.35, (5m+2)2

(2m+2)2
< 25

4 , λ
10m2+11m−2
(5m+2)(2m+2) < 2.794, λ−

1
2m+2 > 0.91 and

we have

(
λ

5m
5m+2 + λ

5m−2
5m+2√

−1 + 2λ−
1

2m+2

)′m =
10 ln λ

(5m + 2)2(−1 + 2λ−
1

2m+2 )
3
2

[(−1 + 2λ−
1

2m+2 )(λ
5m

5m+2 + 2λ
5m−2
5m+2 )

−(λ
5m

5m+2 + λ
5m−2
5m+2 )

(5m + 2)2

5(2m + 2)2
]

>
10 ln λ

(5m + 2)2(−1 + 2λ−
1

2m+2 )
3
2

[(λ
5m

5m+2 + λ
5m−2
5m+2 )(−1 + 0.75λ−

1
2m+2 )

+λ
5m−2
5m+2 (−1 + 2λ−

1
2m+2 )].

Since −1 + 2λ−
1

2m+2 + 7
3(−1 + 0.75λ−

1
2m+2 ) = 15

4 λ−
1

2m+2 − 10
3 > 0 and 7

3λ
5m−2
5m+2 − (λ

5m
5m+2 +

λ
5m−2
5m+2 ) = 4

3(λ
5m−2
5m+2 − 0.75λ

5m
5m+2 ) > 0, we can get ( λ

5m
5m+2 +λ

5m−2
5m+2q

−1+2λ
− 1

2m+2

)′m > 0, λ
5m

5m+2 +λ
5m−2
5m+2q

−1+2λ
− 1

2m+2

<

2λ < 6 and

B′(m) <
1

(5m + 2)2
(−109.35 + 1.1 · (8 · 2.794 + 6 · 12.5)) < 0.

Therefore, B(m) decrease as m increases and B(m) > limm→∞ B(m)2λ − 5. For λ ∈
(2.61, 3], B(m) > 0 and ∂A(1,m)

∂m < 0, then A(1,m) decreases as m increases, A(µ,m) >
limm→∞ A(1,m) = 0 and (4.41) holds.

Therefore, (4.34) holds. By (4.25), fλ fµ · · · fµ︸ ︷︷ ︸
k

(x) − x gets the minimum value at

x = 1− 1
µ and x = y∗, then because of (4.34) and fλ fµ · · · fµ︸ ︷︷ ︸

k

(1− 1
µ) > 1− 1

µ , (2.32) holds.

Case (4). k = 5m+3 for m > 5. See Figure 4.18, we will prove the following inequality:

fλ(fµ(
1
2
− 1

2 5m+3
√

µ5m+2λ
)) >

µ−
√

µ2 − 2µ + 2
√

µ2 − 2µ + 2(µ
λ)

1
2m+3

2µ
. (4.42)
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fμ5m

fλ

1

2
- 1

2 √μ      λ
5m+3

5m+2

1

2
- 1

2 √μ    
2m+3

2m+2λ

Figure 4.18: fλ(fµ(1
2 −

1

2 5m+3
√

µ5m+2λ
)) >

µ−

s
µ2−2µ+2

r
µ2−2µ+2(µ

λ
)

1
2m+3

2µ

Let

A(µ,m) = (µ2−(
µ

λ
)

2
5m+3 )(4µ−µ2+(

µ

λ
)

2
5m+3 )−8µ2

λ
+

8µ

λ

√
µ2 − 2µ + 2

√
µ2 − 2µ + 2(

µ

λ
)

1
2m+3

and differentiate A(µ,m) as to µ to get

∂A(µ,m)
2∂µ

= 6µ2 − 2µ3 − 8µ

λ
+ (2µ− 2)(

µ

λ
)

2
5m+3 +

2µ

5m + 3
(
µ

λ
)

2
5m+3 − 2

(5m + 3)µ
(
µ

λ
)

4
5m+3

− 4
5m + 3

(
µ

λ
)

2
5m+3 +

4
λ

√
µ2 − 2µ + 2

√
µ2 − 2µ + 2(

µ

λ
)

1
2m+3

+
4µ

λ

µ− 1 +
µ−1+ 1

(2m+3)µ
(µ

λ
)

1
2m+3r

µ2−2µ+2(µ
λ
)

1
2m+3√

µ2 − 2µ + 2
√

µ2 − 2µ + 2(µ
λ)

1
2m+3

.

For µ > 5, (µ
λ)

1
2m+3 > 0.9189,

√
µ2 − 2µ + 2

√
µ2 − 2µ + 2(µ

λ)
1

2m+3 > 0.911 and then we

can easily get

s
µ2−2µ+2

r
µ2−2µ+2(µ

λ
)

1
2m+3

λ > 0.91
3 > 1

5m+3 . So ∂A(µ,m)
∂µ > 0, A(µ,m) >

A(1,m) and

A(1,m) = 3− 2λ−
2

5m+3 − λ−
4

5m+3 − 8
λ

+
8

√
−1 + 2

√
−1 + 2λ−

1
2m+2

λ
,

∂A(1,m)
∂m

=
−4λ−1− 1

2m+3 lnλ

(5m + 3)2
√
−1 + 2λ−

1
2m+3

√
−1 + 2

√
−1 + 2λ−

1
2m+3

·[λ
10m2+22m+6
(5m+3)(2m+3) (1 + λ−

2
5m+3 )

√
−1 + 2λ−

1
2m+3

√
−1 + 2

√
−1 + 2λ−

1
2m+3 − 4(5m + 3)2

5(2m + 3)2
]
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>
−4λ−1− 1

2m+3 (lnλ) · [λ
10m2+22m+6
(5m+3)(2m+3) (1 + λ−

2
5m+3 )(−1 + 2

√
−1 + 2λ−

1
2m+3 )− 4(5m+3)2

5(2m+3)2
]

(5m + 3)2
√
−1 + 2λ−

1
2m+3

√
−1 + 2

√
−1 + 2λ−

1
2m+3

:=
−4λ−1− 1

2m+3 · (lnλ)

(5m + 3)2
√
−1 + 2λ−

1
2m+3

√
−1 + 2

√
−1 + 2λ−

1
2m+3

B(m).

We differentiate B(m) with respect to m to get

B′(m) =
1

(5m + 3)2
[λ

10m2+22m+6
(5m+3)(2m+3) lnλ(

−10m2 + 60m + 72
(2m + 3)2

(1 + λ−
2

5m+3 )(−1 + 2
√
−1 + 2λ−

1
2m+3 )

+10λ
−2

5m+3 (−1 + 2
√
−1 + 2λ−

1
2m+3 )

+
4(λ−

1
2m+3 + λ

− 9m+9
(5m+3)(2m+3) )(5m + 3)2

(2m + 3)2
√
−1 + 2λ−

1
2m+3

)− 72(5m + 3)3

5(2m + 3)3
].

Since −10m2+60m+72
(2m+3)2

< 0.722,λ
10m2+22m+6
(5m+3)(2m+3) lnλ < 3.32,

√
−1 + 2λ−

1
2m+3 > 0.915 and

(3.32 8(5m+3)2

0.915(2m+3)2
− 72(5m+3)3

5(2m+3)3
)′m = 72(5m+3)

(2m+3)3
( 6.64
0.915 −

27(5m+3)
5(2m+3) ) < 0, we can get

B′(m) <
1

(5m + 3)2
[3.32 · (0.722 · 2 + 10 +

8(5m + 3)2

0.915(2m + 3)2
)− 72(5m + 3)3

5(2m + 3)3
],

<
1

(5m + 3)2
[3.32× 10.444 + 3.32

50
0.914

− 225] < 0.

So B(m) decreases as m increases and B(m) > limm→∞ B(m) = 2λ−5. When λ ∈ [2.61, 3],
B(m) > 0, ∂A(1,m)

∂m < 0 and A(1,m) is a decreasing function as to m, so we can get
A(µ,m) > limm→∞ A(1,m) = 0 and (4.42) holds.

So (4.34) holds. By (4.25), fλ fµ · · · fµ︸ ︷︷ ︸
k

(x)−x reaches the minimum value at x = 1− 1
µ

and x = y∗, then because of (4.34) and fλ fµ · · · fµ︸ ︷︷ ︸
k

(1− 1
µ) > 1− 1

µ , (2.32) holds.

Case (5), k = 5m + 4 for m > 4. See Figure 4.19, we need to prove the following
inequality

fλ(fµ(
1
2
− 1

2 5m+4
√

µ5m+3λ
)) >

1
2
− 1

2 2m+2
√

µ2m+1λ
. (4.43)

Let A(µ,m) = (µ2 − (µ
λ)

2
5m+4 )(4µ − µ2 + (µ

λ)
2

5m+4 ) − 8µ2

λ + 8(µ
λ)

2m+3
2m+2 and differentiate

A(µ,m) as to µ to get

∂A(µ,m)
2∂µ

= 6µ2 − 2µ3 − 8µ

λ
+ (2µ− 2)(

µ

λ
)

2
5m+4 +

2µ

5m + 4
(
µ

λ
)

2
5m+4 − 2

(5m + 4)µ
(
µ

λ
)

4
5m+4

− 4
5m + 4

(
µ

λ
)

2
5m+4 + 4

2m + 3
(2m + 2)λ

(
µ

λ
)

1
2m+2 .
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Figure 4.19: fλ(fµ(1
2 −

1

2 5m+4
√

µ5m+3λ
)) > 1

2 −
1

2 2m+2
√

µ2m+1λ

Since 6µ2−2µ3− 8µ
λ > 2µ(3µ−µ2−1) > 0, (λ

µ)
m

(2m+2)(5m+4) < 1.02 and (µ
λ
)

1
2m+2

λ − (µ
λ
)

2
5m+4

5m+4 =

(µ
λ
)

1
2m+2

λ (1−
λ( λ

µ
)

m
(2m+2)(5m+4)

5m+4 ) > 0, we can easily get ∂A(µ,m)
∂µ > 0 and A(µ,m) increases as

µ increases,

A(µ,m) > A(1,m) = 3− 2λ−
2

5m+4 − λ−
4

5m+4 − 8
λ

+ 8λ−
2m+3
2m+2 .

Since 16(5m+4)3

5(2m+2)3
> 44.2 for m > 5, we have

∂A(1,m)
∂m

=
−5λ−

2m+3
2m+2 lnλ

(5m + 4)2
[λ

10m2+19m+8
(5m+4)(2m+2) (1 + λ−

2
5m+4 )− 4(5m + 4)2

5(2m + 2)2
] =

−5λ−
2m+3
2m+2 lnλ

(5m + 4)2
B(m).

We differentiate B(m) with respect to m to get

B′(m) = λ
10m2+19m+8
(5m+4)(2m+2)

−10m2 + 8
(2m + 2)2(5m + 4)2

lnλ(1 + λ−
2

5m+4 )

+λ
10m2+15m+4
(5m+4)(2m+2)

10
(5m + 4)2

lnλ− 16(5m + 4)
5(2m + 2)3

<
1

(5m + 4)2
[10λ lnλ− 16(5m + 4)3

5(2m + 2)3
] <

1
(5m + 4)2

(30 ln 3− 44.2) < 0.

So B(m) decreases as m increases and B(m) > limm→∞ = 2λ − 5 > 0 for λ ∈ (2.61, 3].
Therefore, ∂A(1,m)

∂m < 0 and we can get

A(µ,m) > lim
m→∞

A(1,m) = 0.

So (4.22) holds. By (4.25), fλ fµ · · · fµ︸ ︷︷ ︸
k

(x)− x attains the minimum value at x = 1− 1
µ

and x = bk, then because of (4.34) and fλ fµ · · · fµ︸ ︷︷ ︸
k

(1− 1
µ) > 1− 1

µ , (2.32) holds.

Concluding Case (I) and Case (II), Lemma 2.1.13 holds for all µ ∈ (1, 4
λ ], λ ∈ (2, 3]

and k > 2.
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4.5 3 < µ < λ 6 1 +
√

5

Proof of Lemma 2.2.1. Since µ > 3.00547, so βµ > 0.690988. Under this condition,
βµ > 1 − 1

1+
√

5
> 1 − 1

λ holds for any λ 6 1 +
√

5. Because Fµ(x1) > x2 is obviously
true when βµ > x2, i.e. µ > 3.05018. So we just need to discuss the case when µ ∈
[3.00547, 3.05018]. In this case, F ′

λ(βµ)(F ′
µ(βµ))20 > 1 +

√
5 when µ = 3.00547, hence

k − 1 6 20, so k 6 21.

βμ βλ

Fλ’(x)(Fμ’(x))k-2>1

xkxk+1

Fλ’(xk-1)(Fμ’(xk-1))k-2=1

xk-1

Fμ

x2
x1

Fμ

z

Figure 4.20: Fµ(xk−1) > xk

If Fµ(z) = xk, then z =
µ+

q
µ2−2µ−2

√
µ2−4µxk

2µ . In order to prove (2.46), we just need
to prove the following inequality as Figure 4.20 shows,

F ′
λ(z)(F ′

µ(z))k−2 > 1.

This means that we will prove the following inequality

(
√

µ2 − 2µ− 2
√

µ2 − 4µxk

√
µ2 − 4µxk)k−1 >

µ
√

µ2 − 4µxk

λ3(µ +
√

µ2 − 4µxk)− λ2µ2
. (4.44)

Because µ
√

µ2−4µxk

λ3(µ+
√

µ2−4µxk)−λ2µ2
< µ

λ3 < 1
µ2 , we just need to prove the following inequality

A(µ, xk, k) = (
√

µ2 − 2µ− 2
√

µ2 − 4µxk

√
µ2 − 4µxk)k−1 − 1

µ2
> 0. (4.45)

Note

∂A(µ, xk, k)
∂xk

= −(k − 1)(
√

µ2 − 2µ− 2
√

µ2 − 4µxk

√
µ2 − 4µxk)k−2

2µ√
µ2 − 2µ− 2

√
µ2 − 4µxk

√
µ2 − 4µxk

(µ2 − 2µ− 3
√

µ2 − 4µxk),

∂A(µ, xk, k)
∂µ

=
(k − 1)(

√
µ2 − 2µ− 2

√
µ2 − 4µxk

√
µ2 − 4µxk)k−2√

µ2 − 2µ− 2
√

µ2 − 4µxk

√
µ2 − 4µxk

[(µ− 1)(µ2 − 4µxk) + (µ− 2xk)(µ2 − 2µ− 3
√

µ2 − 4µxk)] +
2
µ3

.
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If
√

µ2 − 2µ− 2
√

µ2 − 4µxk

√
µ2 − 4µxk > 1, then (4.45) is evident. Otherwise, A(µ, xk, k)

is decreasing with respect to k. Meanwhile, since
√

µ2 − 4µxk <
√

3.050182 − 4 · 3.05 · 0.690988 <
1 and µ2−2µ−3

√
µ2 − 4µxk = (µ−1)2−1−3

√
µ2 − 4µxk > 0 for µ ∈ [3.00547, 3.05018]

and xk ∈ [0.690988, 0.7378252], we can get that ∂A(µ,xk)
∂xk

< 0 and ∂A(µ,xk)
∂µ > 0. Therefore,

A(µ, xk) increases as µ increases and xk decreases. So we have the following conclusions:

(i) When k 6 5, xk 6 0.7378252, A(µ, xk, k) > A(3.00547, 0.7378252, 5) > 0;

(ii) When k ∈ [6, 15], µ 6 3.02166, xk 6 0.71431,

A(µ, xk, k) > A(3.00547, 0.71431, 15) > 0;

(iii) When k ∈ [16, 21], µ 6 3.00603 and xk 6 0.6922,

A(µ, xk, k) > A(3.00547, 0.6922, 21) > 0.

As a result, (2.46) holds and Lemma 2.2.1 is proved. ]

Proof of Lemma 2.2.2. First, solving F ′
λ(x1) = 1, we can get

x1(λ) =
1
2

+

√
λ− 2
3λ

cos(
1
3

arccos
3

λ(2− λ)

√
3

λ(λ− 2)
).

Set A(λ) = Fλ(Fµ(x1(λ)))− x1(λ). We only consider the case when µ = 3. If this is true
for A(λ) > 0, then A(λ) > 0 for all µ > 3.00547.

A(λ) = 9x1(λ)[λ2(1− x1(λ))(1− 3x1(λ) + 3x1(λ)2)(1− 9x1(λ)(1− x1(λ))(1− 3x1(λ) + 3x2
1(λ)))

(1− 9λx1(λ)(1− x1(λ))(1− 3x1(λ) + 3x2
1(λ))

+81λx2
1(λ)(1− x1(λ))2(1− 3x1(λ) + 3x2

1(λ))2)− 1
9
].

We use maple to differentiate A(λ) with respect to λ and observe A′(λ) > 0. We don’t
include the computation as it is quite lengthy. So we have

A(λ) > A(3) = 0.

So (2.47) holds for x = x1. Note when for x ∈ [βµ, x1], F ′
λ(x)F ′

µ(x) < 1. Let B(x) =
Fλ(Fµ(x))− x. Then

B′
x = F ′

λ(Fµ(x))F ′
µ(x)− 1 (Fµ(x) < x)

< F ′
λ(Fµ(x))F ′

µ(Fµ(x))− 1 (Fµ(x) > βµ > x2)
< 0.

So B(x) is a decreasing function as to µ and B(x) > B(x1) > 0. Therefore, Lemma 2.2.2
holds. ]
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βμ
βλ

Fλ’(x)<1, Fμ’(x)<1Fλ’(x)(Fμ’(x))
2
<1

x2

Fμ

Fλ

x3

Fλ’(x)Fμ’(x)<1

m

x1

Fμ

Fμ

FλFλ

Figure 4.21: βµ ∈ (x3, x2]

Proof of Lemma 2.2.3. First, we will prove (2.48) holds for x = y2. For this, we first

need to prove Fµ(Fλ(x2)) −m > 0, where Fµ(m) = x2. Note m =
µ+

q
µ2−2µ−2

√
µ2−4µx2

2µ
as Figure 4.21 shows. Let A(µ, λ, x2) = Fµ(Fλ(x2))−m. Then we get

A(µ, λ, x2) = µ2λ2x2(1− x2)(1− λx2 + λx2
2)(1− λ2x2(1− x2)(1− λx2 + λx2

2))
(1− µλ2x2(1− x2)(1− λx2 + λx2

2) + µ(λ2x2(1− x2)(1− λx2 + λx2
2))

2)

−
µ +

√
µ2 − 2µ− 2

√
µ2 − 4µx2

2µ
.

It is easy to see that

∂A(µ, λ, x2)
∂λ

=
∂Fµ(Fλ(x2))
∂(Fλ(x2))

∂Fλ(x2)
∂λ

,

∂2A(µ, λ, x2)
∂λ2

=
∂2Fµ(Fλ(x2))
∂(Fλ(x2))2

(
∂Fλ(x2)

∂λ
)2 +

∂Fµ(Fλ(x2))
∂(Fλ(x2))

∂2Fλ(x2)
∂λ2

.

Note ∂F (λ,x)
∂λ = λx(1 − x)(2 − 3λx + 3λx2) and ∂2Fλ(x2)

∂λ2 = 2x(1 − x)(1 − 3λx + 3λx2).

Moreover, ∂F (µ,x)
∂x = µ2(1−2x)(1−2µx+2µx2) and ∂2F (µ,x)

∂x2 = −2µ2(6µx2−6µx+µ+1).
it is easy to see 1− 3λx + 3λx2 < 0 for λ ∈ (3, 1 +

√
5], (1− 2x)(1− 2µx + 2µx2) > 0 and

6µx2 − 6µx + µ + 1 > 0 when µ < 1 +
√

5 and x2 > 0.690988. Therefore, ∂2A(µ,λ,x2)
∂λ2 < 0

and A(µ, λ, x2) reaches the minimum point when λ is at the start point or end point.
Moreover,

∂A(µ, λ, x2)
∂µ

= λ2x2(1− x2)(1− λx2 + λx2
2)(1− λ2x2(1− x2)(1− λx2 + λx2

2))

µ(2− 3µλ2x2(1− x2)(1− λx2 + λx2
2) + 3µ(λ2x2(1− x2)(1− λx2 + λx2

2)
2)

−
µ(1− µ−2x2√

µ2−4µx2

) + 2
√

µ2 − 4µx2

2µ2

√
µ2 − 2µ− 2

√
µ2 − 4µx2

.
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Since µ ∈ [3.00547, 3.05018], we have x2 > βµ > 0.690988, and µ
√

µ2 − 4µx2−µ(µ−2x2)+
2(µ2−4µx2) = µ

√
µ2 − 4µx2 +µ2−6µx2 < µ(µ−6 ·0.690988+

√
µ2 − 4µ · 0.690988) < 0.

So it is evident that ∂A(µ,λ,x2)
∂µ > 0 and A(µ, λ, x2) increases as µ increases. Moreover,

∂A(µ, λ, x2)
∂x2

= Fλ(x2)′F ′
µ(Fλ(x2))−

∂m

∂x2

= µ2λ2(1− 2x2)(1− 2λx2 + 2λx2
2)(1− 2Fλ(x2))(1− 2µFλ(x2) + 2µ(Fλ(x2))2)

− 1√
(µ2 − 2µ− 2

√
µ2 − 4µx2)(µ2 − 4µx2)

,

∂2A(µ, λ, x2)
∂x2

2
= −2µ2λ2(1 + λ + 6λx2

2 − 6λx2)(1− 2Fλ(x2))(1− 2µFλ(x2) + 2µ(Fλ(x2))2)

−2µ2λ2(1− 2x2)(1− 2λx2 + 2λx2
2)(1 + µ + 6µ(Fλ(x2))2 − 6µFλ(x2))F ′

λ(x2)

+
1
2
[(µ2 − 2µ− 2

√
µ2 − 4µx2)(µ2 − 4µx2)]−

3
2 (−4µ)(µ2 − 2µ− 3

√
µ2 − 4µx2).

Since F ′
λ(x2) > 0, x2 > 0.690988, so

6λx2 − 6λx + λ + 1 = 6λ(x− 1
2
)2 − λ

2
+ 1 > 1− 0.2603λ > 0,

(µ2 − 2µ)2 − (3
√

µ2 − 4µx1)2 = µ[µ(µ− 2)2 − 9µ + 36x2]
> µ[µ3 − 4µ2 − 5µ + 24.87] > 0.

Thus ∂2A(µ,λ,x2)
∂x2

2 < 0 and it follows that A(µ, λ, x2) reaches the minimum point at the start
point or the end point of x2 for some given µ and λ.

Now, let D(µ, λ, k) = F ′
λ(βµ)(F ′

µ(βµ))k = 2λ
µ3 (1+

√
(µ + 1)(µ− 3))[λ(µ+1−

√
(µ + 1)(µ− 3))−

µ2](−µ2 + 2µ + 4)k. Then

∂D(µ, λ, k)
∂λ

=
2λ

µ3
(1 +

√
(µ + 1)(µ− 3))[λ(µ + 1−

√
(µ + 1)(µ− 3))− µ2](−µ2 + 2µ + 4)k

+
λ2

µ3
(1 +

√
(µ + 1)(µ− 3))[µ + 1−

√
(µ + 1)(µ− 3)](−µ2 + 2µ + 4)k

> 0,

∂D(µ, λ, k)
∂µ

= −3
λ2

µ4
(1 +

√
(µ + 1)(µ− 3))[λ(µ + 1−

√
(µ + 1)(µ− 3))− µ2](−µ2 + 2µ + 4)k

+
2λ

µ3
(−µ2 + 2µ + 4)k(

µ− 1√
(µ + 1)(µ− 3)

(λ(µ + 1−
√

(µ + 1)(µ− 3))− µ2))

2λ

µ3
(1 +

√
(µ + 1)(µ− 3))(−µ2 + 2µ + 4)k(λ(1− µ− 1√

(µ + 1)(µ− 3)
)− 2µ)

+
4kλ

µ3
(1 +

√
(µ + 1)(µ− 3))[λ(µ + 1−

√
(µ + 1)(µ− 3))− µ2]

(−µ2 + 2µ + 4)k−1(1− µ)

<
2λ(µ− 1)(−µ2 + 2µ + 4)k

µ3
√

(µ + 1)(µ− 3)
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·[λ(µ + 1−
√

(µ + 1)(µ− 3))− µ2 − λ(1 +
√

(µ + 1)(µ− 3))]

=
2λ(µ− 1)(−µ2 + 2µ + 4)k

µ3
√

(µ + 1)(µ− 3)
(−2λ

√
(µ + 1)(µ− 3) + µ(λ− µ)).

Since it is easy to see that −2λ
√

(µ + 1)(µ− 3) + µ(λ− µ) is an increasing function with
respect to λ and a decreasing function with respect to µ, then for 3.00547 6 µ < λ 6
1 +

√
5, we have

−2λ
√

(µ + 1)(µ− 3)+µ(λ−µ) < −2λ
√

(3.00547 + 1)(3.00547− 3)+3.00547(1+
√

5−3.00547) < 0.

Consequently, ∂D(µ,λ,k)
∂µ < 0, so D(µ, λ, k) increases as λ increases and decreases as µ

increases. So if we can make sure D(µ, 1 +
√

5, k) < 1, then D(µ, λ, k) < 1. When
3.05018 6 µ < λ 6 1 +

√
5, D(µ, 1 +

√
5, 1) < 1. Note this case was already considered

before. As a result, for k = 2, we just need to discuss the value of A(x2) when µ ∈
[3.00547, 3.05018) and λ ∈ (µ, 1 +

√
5]. We can get the following cases.

(i) µ ∈ [3.025, 3.05018]. It is easy to know if λ 6 3.16668, D(µ, λ, 2) > 1. But
D(µ, λ, 2) < 1, thus λ ∈ [3.16668, 1+

√
5] and then we can get x2 ∈ [0.690988, 0.7378252],

A(µ, λ, x2) > A(3.025, 3.16668, 0.7378252) > 0,

A(µ, λ, x2) > A(3.025, 3.16668, 0.0.690988) > 0,

A(µ, λ, x2) > A(3.025, 1 +
√

5, 0.378252) > 0,

A(µ, λ, x2) > A(3.025, 1 +
√

5, 0.690988) > 0,

A(µ, λ, x2) > min{A(3.025, 3.16668, 0.7378252), A(3.025, 3.16668, 0.690988)
A(3.025, 1 +

√
5, 0.378252), A(3.025, 1 +

√
5, 0.690988)} > 0.

(ii) µ ∈ [3.015, 3.025), we know if λ 6 3.0995, D(µ, λ, 2) > 1. But in our case,
D(µ, λ, 2) < 1, so we have λ ∈ [3.0995, 1+

√
5] and we can get x2 ∈ [0.690988, 0.734151].

A(µ, λ, x2) > A(3.015, 3.171, 0.734151) > 0, for λ ∈ (3.171, 1 +
√

5],
A(µ, λ, x2) > A(3.015, 3.0995, 0.72604) > 0, for λ ∈ [3.0995, 3.171],
A(µ, λ, x2) > A(3.015, 3.0995, 0.690988) > 0,

A(µ, λ, x2) > A(3.015, 1 +
√

5, 0.734151) > 0,

A(µ, λ, x2) > A(3.015, 1 +
√

5, 0.690988) > 0,

A(µ, λ, x2) > min{A(3.015, 3.171, 0.734151), A(3.015, 3.0995, 0.72604)
A(3.015, 3.0995, 0.690988), A(3.015, 1 +

√
5, 0.734151), A(3.015, 1 +

√
5, 0.690988)} > 0.

(iii) With the same argument as above, we can prove A(µ, λ, x2) > 0 by dividing µ into
small sections, such as µ ∈ [3.01, 3.015), µ ∈ [3.0073, 3.01) and µ ∈ [3.00547, 3.0073).

As a result, when 3.00547 6 µ < λ 6 1 +
√

5, A(µ, λ, x2) > 0. Therefore, (2.48) holds for
x = y2. Let B(x) = Fλ(Fµ(Fµ(x)))− x, then when x ∈ [βµ, y2],

B′
x = F ′

λ(Fµ(Fµ(x)))F ′
µ(Fµ(x))F ′

µ(x)− 1 (Fµ(Fµ(x)) < Fµ(x) < x)

< F ′
λ(Fµ(Fµ(x)))(F ′

µ(Fµ(Fµ(x))))2 − 1 (Fµ(Fµ(x)) > βµ)
< 0.

So Lemma 2.2.3 holds. ]
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Figure 4.22: Fλ(xk) > y

Proof of Lemma 2.2.4. We will prove Lemma 2.2.4 in two different cases. When
∂Fλ(x)

∂λ > 0, we will use the similar method as the case when 1 < µ < λ 6 2. While for the
case ∂Fλ(x)

∂λ < 0, we will use different method.

Case I. ∂Fλ(xk)
∂λ > 0, i.e. 2− 3λxk + 3λx2

k > 0.
Let λ1 < λ and λ2 < λ1 defined by F ′

λ1
(βµ)(F ′

µ(βµ))k−1 = 1 and F ′
λ2

(βµ)(F ′
µ(βµ))k−2 = 1

respectively. We use induction principle. When θ > λ2, for x ∈ [βµ, yk−1], we first assume

Fθ(Fµ · · ·Fµ︸ ︷︷ ︸
k−1

(x)) > x, (4.46)

where Fµ · · ·Fµ︸ ︷︷ ︸
k−1

(yk−1) = xk−1.

We now prove that (2.49) holds for x ∈ [βµ, yk], i.e.

Fλ(Fµ · · ·Fµ︸ ︷︷ ︸
k

(x)) > x, (4.47)

where Fµ · · ·Fµ︸ ︷︷ ︸
k

(yk) = xk.

Recall the property of D(µ, λ, k) in the proof of Lemma 2.2.3. Consider D(µ, λ, k) = 1.
We can express λ as a function of µ and then λ′(µ) > 0. When k = 2, λ = 1 +

√
5, we

have µ = 3.035. Note D(µ, λ, 2) < 1 when µ > 3.035, so D(µ, λ, k) < 1. So we just need
to discuss the case when µ ∈ [3.00547, 3.035).

Let λ0 ∈ (λ2, λ1). When µ is in a small interval, it is possible to choose a constant λ0

(independent of µ) such that Fλ(xk) > Fλ0(z) as the figure 4.22 shows, where Fµ(z) = xk,

so z =
µ+

q
µ2−2µ−2

√
µ2−4µxk

2µ . Obviously, z ∈ (xk, xk−1 by Lemma 2.46. Note xk(1−xk) >

z(1− z) = 1
2µ +

√
µ2−4µxk

2µ2 . Let A = Fλ(xk)− Fλ0(z), then

A(µ, λ, xk) = λ2xk(1− xk)(1− λxk + λx2
k)

−λ2
0(

1
2µ

+

√
µ2 − 4µxk

2µ2
)(1− λ0(

1
2µ

+

√
µ2 − 4µxk

2µ2
)). (4.48)
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If we differentiate A(µ, λ, xk) with respect to xk and µ, we can get

∂A(µ, λ, xk)
∂xk

= λ2(1− 2xk)(1− 2λxk + 2λx2
k)

+
λ2

0

µ
√

µ2 − 4µxk

(1− 2λ0(
1
2µ

+

√
µ2 − 4µxk

2µ2
)),

∂A2(µ, λ, xk)
∂x2

k

= −2λ2(6λx2
k − 6λxk + λ + 1)− 2λ2

0

µ(µ2 − 4µxk)
λ0 − µ√
µ2 − 4µxk

.

Note 6λx2− 6λx + λ + 1 > 0 and λ0 > λ2 > µ, so ∂A2(µ,λ,xk)
∂x2

k
< 0 and A(µ, λ, xk) reach its

minimum value when xk reach its maximum or minimum point. Moreover,

∂A(µ, λ, xk)
∂µ

= −λ2
0

−µ + 6xk −
√

µ2 − 4µxk

2µ2
√

µ2 − 4µxk

(1− λ0(
1
2µ

+

√
µ2 − 4µxk

2µ2
))

+λ3
0(

1
2µ

+

√
µ2 − 4µxk

2µ2
)(
−µ + 6xk −

√
µ2 − 4µxk

2µ2
√

µ2 − 4µxk

)

= λ2
0

−µ + 6xk −
√

µ2 − 4µxk

2µ2
√

µ2 − 4µxk

[2λ0(
1
2µ

+

√
µ2 − 4µxk

2µ2
)− 1].

Considering the following facts,

−µ + 6xk −
√

µ2 − 4µxk > −µ + 6 · 0.690988−
√

µ2 − 4 · 0.690988µ

> −3.035 + 4.1459−
√

3.0352 − 2.76 · 3.035
= 0.1973 > 0,

λ0(
1
2µ

+

√
µ2 − 4µxk

2µ2
) > µ(

1
2µ

+

√
µ2 − 4µxk

2µ2
) >

1
2
.

Therefore, ∂A(µ,λ,xk)
∂µ > 0 and A(µ, λ, xk) is an increasing function as to µ. So A(µ, λ, xk)

gets the minimum value when µ is at the lowest value and xk is at endpoints.
Solving the inequality ∂Fλ(xk)

∂λ > 0, we can get xk > 1
2 +

√
9λ2−24λ

6λ . Consider βµ >
1
2 +

√
9λ2−24λ

6λ , we can get µ > 3.0176 as λ 6 1 +
√

5. In other word, if µ > 3.0176, then
2− 3λxk + 3λx2

k > 0. As a result, Fλ(x) must be an increasing function with respect to λ
for any λ ∈ (µ, 1+

√
5] and x ∈ (βµ, βλ). As a result, when µ > 3.0176, we can use Case I

to prove. Otherwise, we will use Case I and following Case II to prove.

Case II. ∂Fλ(xk)
∂λ < 0, i.e. 2 − 3λxk + 3λx2

k < 0. βµ 6 xk 6 0.709735. It follows
that µ 6 3.0176. But βµ > 0.690988 when µ > 3.00547, so xk > 0.690988, and then

λ 6 3.1222. Let x = Fλ(xk) and x∗ = Fµ(Fµ · · ·Fµ︸ ︷︷ ︸
k−1

(x)), then xk = λ+
√

λ2−2λ−2
√

λ2−4λx
2λ ,

Since x−Fµ(x) > Fµ(x)−Fµ(Fµ(x)), we choose l such that l(x−Fµ(x)) > x−x∗ and it is
easy to see that l 6 k as Figure 4.23 shows, then we need to prove the following inequality:

x− l(x− Fµ(x)) > xk =
λ +

√
λ2 − 2λ− 2

√
λ2 − 4λx

2λ
, (4.49)
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Figure 4.23: l1 = x− Fµ(x) > jl2 = j(Fµ(x)− Fµ(Fµ(x))), L =
∑k

i=1 li

Let M(µ, λ, x, l) = x− l(x−Fµ(x))− λ+
√

λ2−2λ−2
√

λ2−4λx
2λ . It is obvious that M(µ, λ, x, l)

decreases as l increases. Meanwhile, we differentiate M(µ, λ, x, l) with respect to µ, λ and
x,

∂M(µ, λ, x, l)
∂µ

= lx(1− x)µ(2− 3µx + 3µx2).

Since it is easy to get 2−3µx+3µx2 > 0 for x > 0.690988 and µ 6 3.0176. So ∂M(µ,λ,x,l)
∂µ > 0

and M(µ, λ, x, l) increases as µ increases. Moreover,

∂M(µ, λ, x, l)
∂λ

= − λ− 6x +
√

λ2 − 4λx

2λ
√

λ2 − 2λ− 2
√

λ2 − 4λx
√

λ2 − 4λx
,

∂M2(µ, λ, x, l)
∂λ2

=
1

2λ2(λ2 − 2λ− 2
√

λ2 − 4λx)(λ2 − 4λx)

·[−(2λx + 6x
√

λ2 − 4λx)
√

λ2 − 2λ− 2
√

λ2 − 4λx

+
λ(λ− 6x +

√
λ2 − 4λx)[(λ− 1)(λ2 − 4λx) + (λ− 2x)(λ2 − 2λ− 3

√
λ2 − 4λx)]

√
λ2 − 4λx

√
λ2 − 2λ− 2

√
λ2 − 4λx

].

Let m1(λ, x) = λ +
√

λ2−4λx
2 − 6x, then m1(λ, x) 6 m1(1 +

√
5, 0.690988) < 0. So we just

need to check the sign of −2x(λ2−2λ−2
√

λ2 − 4λx)+0.5[(λ−1)(λ2−4λx)+(λ−2x)(λ2−
2λ− 3

√
λ2 − 4λx)]. Let m(λ, x) = −4x(λ2− 2λ− 2

√
λ2 − 4λx)+ (λ− 1)(λ2− 4λx)+ (λ−

2x)(λ2 − 2λ− 3
√

λ2 − 4λx). Then we have the following inequality as x > 0.690988,

m(λ, x) = (λ− 6x)(λ2 − 2λ− 3
√

λ2 − 4λx) +
√

λ2 − 4λx(−4x + (λ− 1)
√

λ2 − 4λx)

<
√

λ2 − 4λx(−4x + (λ− 1)
√

λ2 − 4λx)

<
√

λ2 − 4λx(−4 · 0.690988 +
√

5
√

(1 +
√

5)2 − 4(1 +
√

5)0.690988)
< 0.
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As a result, ∂M2(µ,λ,x,k)
∂λ2 < 0 and M(µ, λ, x, k) gets the minimum value when λ is at the

endpoints. Moreover,

∂M(µ, λ, x, l)
∂x

= 1− l + lµ2(1− 2x)(1− 2µx + 2µx2)− 1√
λ2 − 2λ− 2

√
λ2 − 4λx

√
λ2 − 4λx

,

∂M2(µ, λ, x, l)
∂x2

= −2lµ2(6µx2 − 6µx + µ + 1)− 2λ(λ2 − 2λ− 3
√

λ2 − 4λx)

(
√

λ2 − 2λ− 2
√

λ2 − 4λx)3(
√

λ2 − 4λx)3
.

Let m2(λ, x) = λ2 − 2λ − 3
√

λ2 − 4λx, then m2(λ, x) > m2(1 +
√

5, 0.690988) > 0. At
the same time, since 6µx2 − 6µx + µ + 1 = 6µ(x − 1

2)2 − µ
2 + 1 > 0 when µ < 3.0176,

then we can get ∂M2(µ,λ,x,l)
∂x2 < 0 and M(µ, λ, x, l) gets the minimum value when x is at

the endpoints.
In conclusion, for µ ∈ [3.00547, 3.0176], M(µ, λ, x, l) increases as µ increases and k

decreases. So M(µ, λ, x, l) reach the lowest point when x and λ get the endpoints.
Now we can prove (2.49) for k = 3, · · · , 21 respectively. Now we take two examples

k = 3 and k = 6 to show how to use Case I and Case II. Other computation will be
omitted.

When k = 3. a). When 2−3λxk +3λx2
k > 0, use Case I. Consider F ′

λ1
(βµ)F ′

µ(βµ)2 = 1
and F ′

λ2
(βµ)F ′

µ(βµ) = 1, and

A(µ, λ, x3) = λ2x3(1− x3)(1− λx3 + λx2
3)− λ2

0(
1
2µ

+

√
µ2 − 4µx3

2µ2
)(1− λ0(

1
2µ

+

√
µ2 − 4µx3

2µ2
)).

Because λ > λ1, it is easy to see that A(µ, λ, x3) > A(µ, λ1, x3). According to the above
description, we have the following result.

(i) When µ ∈ [3.0275, 3.035], obviously we have x3 ∈ [0.690988, 0.72666], λ > λ1 >
3.1838, and λ2 < 3.16344. We choose λ0 = 3.164 > λ2 and then we have

A(µ, λ1, x3) > min{A(3.0275, 3.1838, 0.72666), A(3.0275, 3.1838, 0.690988)} > 0.

(ii) When µ ∈ [3.023, 3.0275], then x3 ∈ [0.690988, 0.725], λ2 < 3.12833 and λ1 > 3.153.
We choose λ0 = 3.12833 > λ2 and then we have

A(µ, λ1, x3) > min{A(3.023, 3.153, 0.725), A(3.023, 3.153, 0.690988)} > 0.

(iii) When µ ∈ [3.0195, 3.023], then x3 ∈ [0.690988, 0.723961], λ2 < 3.10742 and λ1 >
3.12951. We choose λ0 = 3.10742 > λ2 and then we have

A(µ, λ1, x3) > min{A(3.0195, 3.12951, 0.723961), A(3.0195, 3.12951, 0.690988)} > 0.

(iv) When µ ∈ [3.0171, 3.0195], then x3 ∈ [0.690988, 0.723151], λ2 < 3.09121 and λ1 >
3.11347. We choose λ0 = 3.09121 > λ2 and then we have

A(µ, λ1, x3) > min{A(3.0171, 3.11347, 0.723151), A(3.0171, 3.11347, 0.690988)} > 0.
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(v) When µ ∈ [3.013, 3.0171], then x3 ∈ [0.690988, 0.72259], λ2 < 3.08011 and λ1 >
3.086. We choose λ0 = 3.08011 > λ2 and then we have

A(µ, λ, x3) > A(3.013, 3.106, 0.72259) > 0, λ ∈ [3.106, 1 +
√

5], x3 6 0.72259,

A(µ, λ, x3) > A(3.013, 3.086, 0.71003) > 0, λ ∈ [3.086, 3.106], x3 6 0.70813.

A(µ, λ, x3) > min{A(3.013, 3.106, 0.72259), A(3.013, 3.086, 0.71003),
A(3.013, 3.086, 0.690988)} > 0.

(vi) When µ ∈ [3.01, 3.013], then x3 ∈ [0.690988, 0.7222], λ2 < 3.0612 and λ1 > 3.066.
We choose λ0 = 3.0612 > λ2 and then we have

A(µ, λ, x3) > A(3.01, 3.096, 0.7222) > 0, λ ∈ [3.096, 1 +
√

5], x3 6 0.72259,

A(µ, λ, x3) > A(3.01, 3.066, 0.70536) > 0, λ ∈ [3.066, 3.096], x3 6 0.70536.

A(µ, λ, x3) > min{A(3.01, 3.096, 0.7222), A(3.01, 3.066, 0.70536),
A(3.01, 3.066, 0.690988)} > 0.

(vii) When µ ∈ [3.0075, 3.01], then x3 ∈ [0.690988, 0.7209], λ2 < 3.0473 and λ1 > 3.05.
We choose λ0 = 3.0473 > λ2 and then we have

A(µ, λ, x3) > A(3.0075, 3.12, 0.7209) > 0, λ ∈ [3.12, 1 +
√

5], x3 6 0.7209,

A(µ, λ, x3) > A(3.0075, 3.06, 0.7079) > 0, λ ∈ [3.06, 3.12), x3 6 0.7079,

A(µ, λ, x3) > A(3.0075, 3.05, 0.6982) > 0, λ ∈ [3.05, 3.06), x3 6 0.6982.

A(µ, λ, x3) > min{A(3.0075, 3.12, 0.7209), A(3.0075, 3.06, 0.7079),
A(3.0075, 3.05, 0.6982), A(3.0075, 3.05, 0.690988) > 0}.

(viii) When µ ∈ [3.006, 3.0075], then x3 ∈ [0.690988, 0.720271], λ2 < 3.03561 and λ1 >
3.04. We choose λ0 = 3.03561 > λ2 and then we have

A(µ, λ, x3) > A(3.006, 3.065, 0.720271) > 0, λ ∈ [3.065, 1 +
√

5], x3 6 0.720271,

A(µ, λ, x3) > A(3.006, 3.04, 0.69811) > 0, λ ∈ [3.05, 3.065), x3 6 0.69811,

A(µ, λ, x3) > min{A(3.006, 3.065, 0.720271), A(3.006, 3.04, 0.69811),
A(3.006, 3.04, 0.690988)} > 0.

(ix) When µ ∈ [3.00547, 3.006], then x3 ∈ [0.690988, 0.7199], λ2 < 3.0286 and λ1 >
3.03661. We choose λ0 = 3.0286 > λ2 and then we have

A(µ, λ, x3) > A(3.00547, 3.09, 0.7199) > 0, λ ∈ [3.09, 1 +
√

5], x3 6 0.7199,

A(µ, λ, x3) > A(3.00547, 3.03661, 0.702) > 0, λ ∈ [3.03661, 3.09), x3 6 0.7079,

A(µ, λ, x3) > min{A(3.00547, 3.09, 0.7199), A(3.00547, 3.03661, 0.702),
A(3.00547, 3.03661, 0.690988)} > 0.

91



Loughborough University Doctoral Thesis

b). When 2 − 3λxk + 3λx2
k < 0, use Case II. x3 6 0.709755. We can also get λ 6

3.144778 for µ ∈ [3.00547, 3.0176] and x 6 0.7176. Recalling the property of M(µ, λ, x, l),
we can get

M(µ, λ, x, l) > min{M(3.00547, 3.144778, 0.690988, 3),M(3.00547, 3.1222, 0.690988, 3),
M(3.00547, 3.1222, 0.7176, 3),M(3.00547, 3.144778, 0.7176, 3)} > 0.

When k = 6.

1. Assume ∂Fλ(xk)
∂λ > 0. Define λ1 and λ2 by F ′

λ1
(βµ)F ′

µ(βµ)5 = 1 and F ′
λ2

(βµ)F ′
µ(βµ)4 =

1, and

A(µ, λ, x6) = λ2x6(1− x6)(1− λx6 + λx2
6)

−λ2
0(

1
2µ

+

√
µ2 − 4µx6

2µ2
)(1− λ0(

1
2µ

+

√
µ2 − 4µx6

2µ2
)).

Recall the property of D(µ, λ, k), solving F ′
λ1

(βµ)F ′
µ(βµ)5 < 1 and F ′

λ1
(βµ)F ′

µ(βµ)6 <
1 to get µ > 3.0182 and µ > 3.0156. Recall that A(µ, λ, k) must be increasing in
λ for λ ∈ (µ, 1 +

√
5] when µ > 3.0176. So when µ ∈ [3.0176, 3.0182], or when

µ < 3.0176 but 2− 3λxk +3λx2
k > 0, then with the same argument as above, we can

also prove A(µ, λ, xk) > 0 and get (4.47).

2. When ∂Fλ(xk)
∂λ < 0. While for µ ∈ [3.00547, 3.0176), We can calculate the range of

xk and λ as follows. When 2 − 3λxk + 3λx2
k < 0, βµ < β(3.0176) = 0.709755, so

xk < 0.709755. So xk ∈ [0.690988, 0.709755] and k > 6. While for xk > 0.690988,
we have 2− 3λxk + 3λx2

k > 0 when λ 6 2
3(xk−x2

k)
< 3.1222. So λ ∈ [3.1222, 1 +

√
5].

Since it is easy to get

M(3.00547, 1 +
√

5, 0.690988, 6) > 0, M(3.00547, 3.1222, 0.690988, 6) > 0,

so we just need to check the sign of M(µ, λ, x, l) when x gets the maximum point.
First note x = Fλ(xk) < 0.71916 for xk 6 0.709755.

Let N(µ, x, j) =
µ+

q
µ2−2µ−2

√
µ2−4µx

2µ − x − j(x − Fµ(x)). As Figure 4.23 shows,
li > li+1, (i = 1, · · · , k − 1) is obvious and then j > 1. Then

∂N(µ, x, j)
∂µ

=
µ− 6x +

√
µ2 − 4µx

2µ

√
µ2 − 2µ− 2

√
µ2 − 4µx

√
µ2 − 4µx

+ jµx(1− x)(2− 3µx + 3µx2),

∂N2(µ, x, j)
∂µ∂x

= −
(3 + µ√

µ2−4µx
)(µ2 − 2µ− 2

√
µ2 − 4µx)(µ− 4x)

(µ2 − 2µ− 2
√

µ2 − 4µx)
3
2 (µ2 − 4µx)

3
2

−(µ− 6x +
√

µ2 − 4µx)(−µ2 + 2µ + 3
√

µ2 − 4µx)

(µ2 − 2µ− 2
√

µ2 − 4µx)
3
2 (µ2 − 4µx)

3
2

+2jx(1− x)(1− 3µx + 3µx2) < 0.

92



Loughborough University Doctoral Thesis

Recall that −µ + 6xk −
√

µ2 − 4µxk > 0 and −µ + 6x −
√

µ2 − 4µx increases as x
increases, so µ − 6x +

√
µ2 − 4µx < 0. We also have µ2 − 2µ − 3

√
µ2 − 4µx > 0,

3µx2 − 3µx + 1 < 0 for x < 0.71916. Therefore, ∂N2(µ,x,j)
∂µ∂x < 0 and then ∂N(µ,x,j)

∂µ
decreases in x. So for x > βµ, it is easy to get

∂N(µ, x, j)
∂µ

<
∂N(µ, βµ, j)

∂µ
= 0.

Consequently, we have ∂N(µ,x,j)
∂µ < 0 and N(µ, x, j) decreases in µ.

When k = 6, we will demonstrate in the following that it is sufficient to take j = 1
in the case (a) and (b). But in other cases, we take different valve of j.

(a) µ ∈ [3.013, 3.0176], then λ > 3.166, and

M(µ, λ, x, l) > min{M(3.013, 1 +
√

5, 0.71916, 6),
M(3.00547, 3.166, 0.71916, 6)} > 0.

(b) µ ∈ [3.011, 3.013), then xk ∈ [0.700938, 0.708483] and λ > 2
3(xk−x2

k)
> 3.18, so

x ∈ (0.706, 0.71731) and then we have

M(µ, λ, x, l) > min{M(3.011, 1 +
√

5, 0.71731, 6),
M(3.011, 3.18, 0.71731, 6)} > 0.

(c) µ ∈ [3.009, 3.011) and then xk ∈ [0.69944, 0.70771]. λ > 2
3(xk−x2

k)
> 3.172. So

x ∈ [0.703823, 0.716188]. We can get N(µ, λ, x, 1.05) > 0 and then l = 1−j−k

1−j−1 =
5.329. We can get

M(µ, λ, x, l) > min{M(3.009, 1 +
√

5, 0.716188, 5.329),
M(3.009, 3.172, 0.716188, 5.329)} > 0.

(d) µ ∈ [3.007, 3.009) and then xk ∈ [0.694127, 0.706915]. λ > 2
3(xk−x2

k)
> 3.14. So

x ∈ [0.69578, 0.71505].
For λ ∈ [3.18, 1 +

√
5], xk ∈ [0.70224, 0.706915] and x ∈ [0.70802, 0.71505] We

can get N(µ, x, 1.05) > 0 and then l = 1−j−k

1−j−1 = 5.329 and then

M(µ, λ, x, l) > min{M(3.007, 1 +
√

5, 0.71505, 5.329),
M(3.007, 3.18, 0.71505, 5.329)} > 0.

For λ ∈ [3.14, 3.18), xk ∈ [0.694127, 0.70313] and x ∈ [0.695776, 0.7097] We can
get N(µ, λ, x, 1) > 0 and then l = 6 and then

M(µ, λ, x, l) > min{M(3.007, 1 + 3.14, 0.7097, 5.329),
M(3.007, 3.18, 0.7097, 5.329)} > 0.
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(e) µ ∈ [3.00547, 3.007), xk ∈ [0.690988, 0.70611]. λ > 2
3(xk−x2

k)
> 3.1222.

For λ ∈ [3.175, 1 +
√

5), xk ∈ [0.70154, 0.70611] and x ∈ [0.706976, 0.713903]
We can get N(µ, x, 1.075) > 0 and then l = 5.0459. Consequently, we have

M(µ, λ, x, l) > min{M(3.00547, 1 +
√

5, 0.713903, 5.046),
M(3.00547, 3.18, 0.713903, 5.046)} > 0.

For λ ∈ [3.1222, 3.175), xk ∈ [0.690988, 0.7018612] and x ∈ [0.6931, 0.707964]
We can get N(µ, x, 1) > 0 and then l = 6. Consequently, we have

M(µ, λ, x, l) > min{M(3.00547, 3.1222, 0.707964, 6),
M(3.00547, 3.175, 0.707964, 6)} > 0.

Consequently, when k = 6, (2.49) holds.
In summary, for k ∈ [3, 21], when 2 − 3λxk + 3λx2

k > 0, we proveA(µ, λ, xk) > 0 and
then (4.47) holds for x = yk. With the same argument as before, (2.49) holds. While
when 2− 3λxk + 3λx2

k < 0, we prove M(µ, λ, x, l) > 0. As a result, cen22 also holds. In a
word, for 3.00547 6 µ < λ 6 1 +

√
5, Lemma 2.2.4 holds. ]
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