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ABSTRACT 

This thesis is concerned with the Numerical Solution of Partial 

Differential Equations. 

Initially some definitions and mathematical background are given, 

accompanied by the basic theories of solving linear systems and other 

related topics. Also, an introduction to splines, particularly cubic 

splines and their identities are presented. The methods used to solve 

parabolic partial differential equations are surveyed and classified 

into explicit or implicit (direct and iterative) methods. We 

concentrate on the Alternating Direction Implicit (ADI), the Group 

Explicit (GE) and the Crank-Nicolson (C-N) methods. 

A new method, the Splines Group Explicit Iterative Method is 

derived, and a theoretical analysis is given. An optimum single 

parameter is found for a special case. Two criteria for the 

acceleration parameters are considered; they are the Peaceman-Rachford 

and the Wachspress criteria. The method is tested for different 

numbers of both parameters. The method is also tested using single 

parameters, i. e. when used as a direct method. The numerical results 

and the computational complexity analysis are compared with other 

methods, and are shown to be competitive. The method is shown to have 

good stability property and achieves high accuracy in the numerical 

results. 

Another direct explicit method is developed from cubic splines; 

the splines Group Explicit Method which includes a parameter that can 

be chosen to give optimum results. Some analysis and the computational 

complexity of the method is given, with some numerical results shown 



to confirm the efficiency and compatibility of the method. 

Extensions to two dimensional parabolic problems are given in a 

further chapter. 

In this thesis the Dirichlet, the Neumann and the periodic 

boundary conditions for linear parabolic partial differential equations 

are considered. 

The thesis concludes with some conclusions and suggestions for 

further work. 
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1.1 INTRODUCTION 

Many scientific and engineering problems lead to what are called, 

Partial Differential Equations, in which the dependent variable is 

expressed in terms of several independent variables. 

The partial differential equations, or as 'abbreviated p. d. e., can 

be classified, according to their physical meaning, into equations which 

are generally associated with a) equilibrium problems, and b) diffusion 

or propagation problems. 

The first of these are termed elliptic kind. They are defined on 

closed regions with known boundary conditions at all points of the 

region's boundary, so also they are called boundary value problems. The 

second kind are termed either parabolic or hyperbolic type. They are 

defined on regions on which initial conditions are given, on part of the 

region, and the boundary conditions are given on remaining parts.. These 

regions are generally open from one side at least. The problems are also 

called initial, or initial boundary value problems [ABDULLAH, A. R. B., 

1983, AMES, W. F., 1977, SMITH, D. G., 1978, YOUSIF, W. S., 19841. 
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1.2 CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS 

Some problems which lead to p. d. e. 's are of a different nature, 

(like; steady temperature distribution, steady voltage distribution,..., 

natural frequency problems in vibrations,..., propagation of pressure 

waves in a fluid, propagation of heat,... ). This consequently shows 

different mathematical formulation, and thus another way of class- 

ification is due to the characteristic equation [AMES, W. F., 1977]. 

Let us consider the general linear equation of second order (with 

two independent variables, x, y), 

222u 
ua 

äX2+b 
axay+cäY 2+e=0, 

(1.2.1) 

where a, b, c and e are functions of x, y, u, 
1X 

and 
äu. 

Here we will 
Y 

find that there are two directions in which the integration of the 

p. d. e. at any point of the x-y plane, reduces to the integration of 

an equation involving total differentials only [SMITH, D. G., 1978]. 

Let the derivatives in equation (1.2.1) be denoted by, 

Du au a2u_a2u a2 u 
ax - P' a g' 2 r' axa =sand-=t. Y- ax ay aY 

Let C be a curve in the x-y plane on which the values of u, p, q, r, s 

and t satisfy (1.2.1). (The initial values of u, p and q are not given 

on C). Therefore the differentials of p and q in directions tangential 

to C satisfy the equations, 

dp =ý dx +ý dy = rdx + sdy 

and 

where, 

dq =ý dx +ý dy = sdx + tdy 

ar+bs+ct+e=0 . 

(1.2.2) 

(1.2.3) 

(1.2.4) 
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Using equation (1.2.2) and (1.2.3) to eliminate r and t 

from equation (1.2.4) gives, 

a 
-ai(dp-sdy) + bs + äy(dq-sdx) +e=O, 

and multiplying by - 
ddx 

gives, 

(1.2.5) 

sja (ý) 2-bý+ 
c1 -{aýý+cý+e 

dx} 
=0. (1.2.6) 

Now choose the curve C so that the slope of the tangent at 

every point on it is a root of the equation, 

a(ý) 
2- 

bý+ c= 0. 

On such a curve the original differential equation, is 

(1.2.7) 

equivalent to setting the second part of (1.2.6) to zero, i. e., 

adx 
dýx 

+c 
dýx 

+e ddýx =0 (1.2.8) 

This shows that at every point of the solution domain there 

are two directions, given by the roots of equation (1.2.7), along 

which there is a-relationship between the total differentials dp 

and dq, given by equation (1.2.8). 

The directions given by the root dd x 
of equation (1.2.7) are 

called characteristics of the differential equation, and the p. d. e. 

is said to be parabolic, hyperbolic or elliptic according to whether 

the equation has one, two or'no real roots. This can be judged by 

the value of the discriminant b2-4ac, i. e., 

>0 hyperbolic 

if b2-4ac =O then parabolic (GERALD, C. F., 1978]. 

<O elliptic 
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1.3 BOUNDARY CONDITIONS 

The importance of boundary conditions for p. d. e. 's can be seen 

quite easily, by noticing that there is a number of equations which 

have the same form, but they have different boundary conditions, which 

characterises them to be different problems. 

The main types of boundary conditions are: 

1. The Dirichlet Problem, in which the solution u is known on the 

boundary of the region, for example, 

ul S 
f, 

where s is the boundary. The physical meaning of this is that 

the temperature on the boundary is given. 

2. The Neumann Problem, in which the solution u is presented by its 

normal derivative on the boundary, and is written as, 

au1 
=f. aVIS 

This means that the heat flow through the boundary is given. 

3. The Mixed or Robins' Problem, in which the solution is presented 

combined with its derivative on s, and written as, 

(av + au)ýS =f, 

where a is the coefficient of thermal conductivity. The 

particular case a=o gives the Neumann problem. 
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4. The Periodic Problem, in which the solution satisfies the 

periodicity condition, this can be written as, 

u(x) = u(x+f), for any x, 

where £ is the period. 
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1.4 AN INTRODUCTION TO SPLINES 

Definition 1.4.1 

Let x0, Xl,..., xk be a strictly increasing set of real numbers. 

Then a spline S of degree n , with knots at x0 < x1 <... < xk is a 

function possessing the following two properties: 

1. In each of the k+2. intervals, (-°°, x0)' [x0, xl) , ..., [xk-l'xk 

[xk-), S is a polynomial of degree n or less. 

2. S and its derivatives of order 1,2,..., n-1, are continuous 

in (--, --), i. e. SE Cn-1(-f-). 

The spline is a different polynomial in each of the k+2 intervals, 

and the continuity constraint Cn-limposes maximal continuity on 

this piecewise defined function, without it degenerating into the same 

polynomial everywhere. 

Definition 1.4.2 

The spline S is said to interpolate the values uO, ul,..., uk'at 

the points x0, xl,..., xk if, 

If 

S(x 
i1= 

ui , i=O, 1,..., k. 

ui =u (xi) . 

where u is a given function, then S is said to interpolate u at the 

points x0, xl,.... xk. 

S is said to be a cubic spline on [a, b] with knots xi's, i=0,1, 

..., 
k, where, 

a=x0 <x1 < ... <xk= b, 

if sE C2[a, b] and in each of the intervals [x 
i-1, xi S 

is a cubic polynomial. 



7 

In order to construct a cubic S interpolating the values ui=u(xi)I 

i=0,1,..., k such that, 

S(xi) = ui (1.4.1) 

we use the second derivatives of S, namely Mi =S(2)(xi), 

In the interval [xi_l, x11, S is a polynomial of degree three 

and hence 5(2 )is 
a linear polynomial. Therefore, if the values 

Mi =S(2)(xi), i=0,1,..., k, are known S can be obtained in [xi_1'xi] 

by integrating, 

(2) (x) =1, Mi-1(x-x) + M(x-xi-1)] , 

twice, where, 

hi = x-xi-1' i=1,..., k 

(x -x)2 (x-x )2 
(1)(x) 

_-Mi-1 2h, + Mi 2h-1 +A (1.4.2) 
ýi 

(x, -x)3 (x-x 
1-1) 

S(x) = Mi-1 16h + Mi 6h + Ax +ß. (1.4.3) 
ii 

Evaluating equation (1.4.3) at the knots xi_1 and xi gives, 

2 
S(x1-1ý 6 Mi-1 + Axi-1 + B- ui-1 

h2 
S(xi) =6 Mi + Axi + B= ui . 

Subtracting (1.4.4) from (1.4.5) gives, 
h 

thus, 

2 

ui ui-1 6 
[Mi-Mi-11 + A(xi-xi-1) , 

h 
A=h (uui-1) 

6 
(M1-M1-1ý 

(1.4.4) 

(1.4.5) 

(1.4.6) 

and, 
h 

S(1) = Mi(x-xi-1)2-Mi-1(xi-x)2 + 
h(ui-ui-1)- *(Mj_Mji) 

2h 
ý 

i 
(1.4.7) 
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To evaluate B let, 

Ax +B= C(x-xi-1) + D(xi-x) , 

which is a straight line equation. At Xz_, and Xi equation (1.4.3) 

gives, 
h 2 
L6- 

Si=ui=Mi 6 +Chi 

and, 

C=hi-Ming 

I 

I 

h? 
, Si-1 ui-1 = Mi-1 

6+ Dhi 

hi 
D hi - Mi-1 

6 

thus, 

I 

U. hi 
Ax+B = (x-xi-1){ h- Mi 6}+ 

(xi-x 
i 

Substituting A as in (1.4.6) we get, 

ui-1 
M 

hi ýhi 
i-1 

6} 
() 

ui 
- 

hi 
+ (x -x) 

ui-1 
-M 

hl 
- Ax . ß= x-xi-1 

i 
M. 

1 

}i {h, 
i-1 6 

Substituting this in (1.4.3) gives, 

(xi-x)3 (x-xi-1)3 (x-xi) (xi-x) 
S (x) - 6h Mi-1 + 6h Mi +h. tuiMi 6h 

iiIi 
L 2 

} 
A, 

6l {ui-l-Mii 
" (1.4.8) 

An important relation is derived from equation (1.4.7) where 

we have, 

(1) 
i-) =hh 6 Mi-1 +3 Mi + hi 

(ui ui-1) ' i=1, ... , k, (1.4 . 9) 

(1) hi+1 
- 

hi+l 
1_ 

i+) -- 3 M1 6 Mi+l +_hi+1 

(1.4: 10) 

and from the continuity condition of the cubic splines we know that, 
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S il) =S il) 
I i- i+, 

thus (1.4.9) and (1.4.10) give, 

hi hi hi+1 hi+1 u i-1 11 m i-1 + )M +M= -(-+ )U; 6 i-1 3316 i+l hi hi hi+l 

U i+l 
+--, hiýl 

for equally spaced knots, i. e. when h=hi, i=1,..., k, (1.4.11) 

will be, 

(1.4.11) 

6 
Mi-1 + 4Mi + Mi+l 

h2 
{u1-1-2u1+ui+1}, (1.4.12) 

Another way of representing S is in terms of its first 

derivatives mi =S(1)(xi), i=O, 1,..., k. By using the continuity 

condition of the second derivatives at the knots leads to another 

important relation, for equally spaced knots, 

=3 -u i-1 + 4mi + mi+1 h{ui+1 i-1}' 
i=1,2,..., k-1, (1.4.13) 

[AHLBERG, J. H., NILSON, E. N. and WALSH, J. L., 1967]. 

The main cubic spline relationships are given here, 

_h mi+1 mi -2 (Mi+Mi+1) . 

or 

and, 

u -u h 
mi =6 (2Mi+Mi-1ý +i hi-1 

u -u 
mi =-h (2Mi+Mi+1ý + 

i+h i' 

Mi - h(mi-1+2mi) - 
u -u 

h2 

or 
Mi h( 

2mi+mi+1) +6u 
i+1u i2h2 

I 

0 

(1.4.14) 

(1.4.15) 

(1.4.16) 

(1.4.17) 

(1.4.18) 
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2.1 MATRIX ALGEBRA 

Definition 2.1.1 

A vector is a set of n numbers which are written in the form, 

ýý 
vi 

v= 

V2 

v n 

Definition 2.1.2 

A matrix is a rectangular array of numbers. The size of a matrix 

is described by specifying the number of rows and columns, (mxn). 

The numbers aij, of a matrix A are called eZements of A, 

Fa 
11 a12 -- ----- aln 

A= 

a21 a22' 

11I 
11 
1(1 
i(1 
11 
11 

at -- '- -ý. ml' 

1 
I 
I 
i 
ý 
1 
1 

,1 I 
I 
I 
i 
1 
1 
i 
ý a 
ML 

A matrix A is said to be singular if IAI=O, where IAI is the determinant 

of A, i. e. there is no matrix A-1 so that A-1 A=I, where A-1 is the 

inverw of A. 

If aij=aji then A is syrronetric, i. e. AT=A, where AT is the 

transpose of A. 

A matrix is diagonal when ai"j=0 for i#j, and aii/0, 

it is tridiagonal if aiij=0 for li-jl>1, 

n 
and diagonaZZy dominant if 1aii1 > Iaij I for all i. 

j=1 
j1i 
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A is called block diagonal if, 
FB1 

A= 

B2 
ý 

ý 

Lý ýaJ 

i 

and Bi1 i=1,2,..., s is a square submatrix not necessarily all of the 

same order. 

Two matrices A and B are similar if they have the same eigenvalues. 

If AB=BA then they commute. 

A Hermitian matrix AH=A is such that aij=aji. 

A real matrix A is said to be positive definite if vHAv>O 

for all vectors v/0 and positive semi-definite if vHAv; O: 

Conjugation of a matrix means that all elements are conjugated and 

is written as A*. 

A symmetric matrix has: 

(i) n real eigenvalues; and 

(ii) n mutually orthogonal eigenvectors. 

If A and B are symmetric and AB=BA, then AB is symmetric. 

If (v, Av)>O for all complex v, then A is symmetric. 

If A is symmetric and positive definite, then its eigenvalues are 

all positive. 

ATA has positive eigenvalues. 
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2.2 NORMS 

The norm is a pure number used to measure the magnitude of vectors 

and matrices comparatively. 

The vector norm has to fulfil the following conditions, 

1. IIvIj>O for all v10 and IIOII=O. (2.2.1a) 

2. IIcv 1= Ic I jIvJj for any complex number c. (2.2.1b) 

3. Irv+uJI : IIýII+IluII " (2.2. lc) 
The most common vector norms are the: 

1. Maximum norm II vII =maxi I vi I. 
2. Absolute norm II vII =ýI vi I. 

i 
3. Euclidean norm II VII =(I vi 12 

(2.2.2a) 

(2.2.2b) 

(2.2.2c) 

All these norms are special cases of the more general Rp-norm, 

defined as, 

11vII = 
f'j 

Ivilpll/P 
for p=co, p=l and p=2, respectively. 

Analogously, a matrix norm, has to fulfil the following 

conditions: 

1. IIAII >0 if A¢0 and 1101 1=0 
2. IIcAII=IcI IIAII for any complex c. 

3. IIA+BII <, IIAII+IIBII" 
4. IIABII : IIAII IIBII 

The most common matrix norms are: 

1. The maximum norms, 

IJAI I= IJAI IGO = max j la,, I 

(2.2.3) 

(2.2.4a) 

(2.2.4b) 

(2.2.4c) 

(2.2.4d) 

(2.2.5a) 

IJAII =h Ail1 = max 
i 

la ii I. 
(2.2.5b) 
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2. The Euclidean norm, 

N(A) _(I aij f 2] (2.2.6) 
i, j 

3. The Hilbert or spectral norm, 

IIAIl2 = Y'l-i , 

where Al is the largest eigenvalue of AHA. 

(2.2.7) 

Since matrices and vectors appear together often, a relation 

between their norm is needed to be introduced. 

A matrix norm is said to be eonrpatible with a given vector 

norm if , 
11 AvIl ,I IAI I Iºv11, for all y#0 , 

(2.2.8) 

and is defined as, 

IIAII = sup 
Av 

v/o 11 A 
(2.2.9) 

a matrix defined in this way is said to be subordinate to the vector 

norm under discussion. 
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2.3 EIGENVALUES AND EIGENVECTORS 

For any matrix A there is a set of numbers ai and a set of vectors 

such that, 

(A-X 
iI) vi =0, (2.3.1) 

where Ai, i=1,2,..., n, are called eigenvalues and vi, i=1,2,..., n, 

are eigenvectors. These eigenvalues are the roots of the character- 

istic equation, 
(A-XI) =0. (2.3.2) 

It is of importance to mention that 4 «Jleigenvalues . the 

greatest modulus is called the spectral radius and is denoted 

as p (A) . 

If the equation Av=Xv is premultiplied by A, we get A2v=XAv=a2v 

and, analogously AmV=Xmv and A-lv= 
1 
V. 

If A is the tridiagonal matrix, 

rä b, 

ca bý 
ý.. O 

. 

.ý. 

.ý ý ýcýa 
r 

where a, b and c are real and bc>O, then the eigenvalues of A are 

given by, 

X= a+2, /bc cos 
s'T 

, s=1,2,..., n. 
s n+l 

Theorem 2.3.1: (Gerschgorin) 

(2.3.4) 

The eigenvalues of a matrix A lie in the union of the discs, 

n nc 
G lai, 

jl , or Ix ai, il `G lai*jl (2.3.5) 
j=1 i=1 
j#i iij 
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Thus, p(A) <, min(max j lai,, l; maj x 
ilai, 

jl). 
(2.3.6) 

i 

Theorem 2.3.2 

For any matrix A, IIAII>p(A), where IIAII is any norm of A. 

Proof : 

For any eigenvalue'A, and associate eigenvector v of A, it 

follows that, 

and so, 

Thus, 

1aI Ilvil = 11XvII = IlAvIl : IIAIIIIvIl,, 

IXI ý IJAII for any eigenvalue of A. 

P(A) : IIAII " 
(2.3.7) 

Different types of matrices have different types of eigenvalues 

and eigenvectors. In Table (2.3.1) some matrices are listed with 

their corresponding eigenvalues and eigenvectors. 

Theorem 2.3.3 

For any real matrix A, IIAII2=(p(A Ä)II where IIAII2 is 

the spectral norm of A. 

Proof : 

A 
TA is symmetric and positive definite. Let {v(i)}, (i=1,2,..., n) 

be an orthonormal set of real eigenvectors of ATA, i. e., 

A 
Av (i) 

=Xiv 
(i) 

0 (0<X1: A2: ---<'x ), 

with, 
ý(i)T. v 

(j) 
=O (iýý) " 

and v(i)T. v(i) =1 (1, i; n) . 

Any other non-zero vector v in the space spanned by v(i), (i=1,2,..., n) 

can be expressed as, 
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v= 
nciv 

i=1 
and so, 

I 

Avlý2 
(Ay, Ay) 

=y 
ATAy 

11 v112 (° "") vTv 
(ieiv M T(ixieiv(i) c xilei, 2 

eiv(i)T(Iciv(i)) cG Iejl2 
ij 

This gives the result, 
lIAVI 12 2 

O: ýi5 ; Xn. 
11v112 

But v=v 
(n) 

shows that equality is possible on the right, and so, 

12 = max 
1 IAv 112 

=Xn= P(A 
Ä). 

IIVII2/o IIVI12 

Theorem 2.3.4 

If A is symmetric, IIAII2=p(A). 

Proof: 

I'AI 12=p (ATA) =p (A2) = p2 (A) . 

Thus the result follows, [MITCHELL, A. R. 1961). 
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2.4 FINITE DIFFERENCE APPROXIMATION 

In many applications of mathematics, the governing equations 

relate discrete changes (differences) of variables, rather than rates 

of changes (derivatives), defined by limited processes. [HILDEBRAND, 

1968, p. 1]. When solving partial differential equations, these 

differences are actually used to simulate derivatives and the resulting 

equations are known as the finite difference equations. 

The change in a function U(x), corresponding to an increase in 

the argument x by a positive amount h, is called the forward difference 

of U(x), relative to the increment h, and is denoted by AU(x): 

AU (x) = U(x+h) - U(x) . 
(2.4.1) 

To show how this approximates a derivative, let the function 

U and its derivative be single-valued, finite and continuous 

functions of x, then by Taylor's theorem, we have, 

U(x+h) = U(x)+h'U(x) +2h2U"(x)+ 
6 3U"' (x) + ,.., 

and 
U(x-h) = U(x)-h'U(x) + 2h 

2U""(x)- 
6 3U"' 

(x) + ... . 

Adding these two equations gives, 

U(x+h) + U(x-h) = 2U (x) +h2U" (x) +0 (h4) , 

where 0(h4) denotes the remaining terms which are of fourth and 

higher order of h. 

Neglecting these terms of higher power of h, as they are 

small in comparison with lower powers of h, we get, 

U" (x) m 
4{U (x+h) -2U (x) +U (x-h) }, 

(2.4.2) 

(2.4.3) 

(2.4.4) 

(2.4.5) 

with leading error of order h2, i. e. O(h2). 
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Subtracting (2.4.3) from (2.4.2) and neglecting terms of order h3 

gives, 

U' (x) 2 2-1h-{U 
(x+h) -U (x-h) }, (2.4.6) 

with an error of order h2. 

Equation (2.4.6) is called a central difference approximation. 

Using equations (2.4.2) and (2.4.3), considering the second and 

higher powers of h are negligible, leads us to the forward difference 

and backward difference approximations respectively: 

U' (x) =1 U (x +h) -U (x) 1. 

U' (x) =1 U (x) -U (x -h) }, 

(2.4.7) 

(2.4.8) 

with leading error of order h. 

Our dealings with the parabolic partial differential equations 

will be through the applications of these differences. 

We will consider the simplest possible form of the one 

dimensional parabolic p. d. e.: 
2 

au av 
at - 

ax2 
i (2.4.9) 

where U(x, t) is a function of two independent variables t and X. 

This equation describes different kinds of problems; one of these 

is heat conduction, in which U represents the temperature at a 

distance x from one end of a thin uniform bar after a time t. 

For this initial boundary value problem, assume that the length 

of the bar is 1 and the temperatures at the end points of the bar 

are known and the temperature of the bar at time zero is U0 (either 

maximum or minimum). For a numerical solution we use equation (2.4.7) 

to approximate the left hand side of equation (2.4. 
_9) , and equation 
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(2.4.5) for the right hand side. This leads to the finite 

difference equation: 

U (x, t+tt) -U (x, t) U (x+tx, t) -2U (x, t) +U (x-Ax, t)' (2.4.10) 
At (Gx)2 

It is obvious that after At time the solution U at some 

point x is given by, 

U (x, t+At) = U(x, t) + 
At 

(ex) 
2 (U (x+Lx, t) -2U (x, t) +U (x-Ax, t)), (2.4.11) 

i. e., in terms of U at the previous time level. This can be 

illustrated in Fig. (2.4.1), 

t 

or 
au 

U(p, t) 
given 
on 

boundary 

otI O, O ýýx f 

FIGURE 2.4.1 

-- 0 

dX 

given on 
boundary 

unknown value 
of Ui, j+l 

known value of 
Ui, j. 

i 

where the spatial variable is. represented on the x-axis, the time 

variable on the y-axis and U on the mesh points created by the 

intersections of parallel lines to both axes. These grid points 

are usually chosen to be equally spaced for they are easier and 

faster to calculate than those which are unequally spaced. 

i, ! +l 
(1) "- 

T- ýý 

Ld i+1 t_l, i 

U(O, x) =f (x) 
initial conditions 

X 
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Setting, 
tj = jxk; where k=pt, j=O, 1,... , 

xi = ixh; where h=Ax, i=0,1,... , 

and r= k/h2. 

Equation (2.4.10) can be written as, 

ui"j+1 ui, j+ r(ui+l, j-2ui, j+ui-1, j) . (2.4.12) 

This formula is known as the explicit formula. It expresses one 

unknown value on the (j+l)th time level directly in terms of 

known values on the jth time level. 

There are many different schemes of finite difference, made up 

by using combinations of equations (2.4.5), (2.4.6), (2.4.7) and 

(2.4.8). Each one has its own properties concerning, for instance, 

stability, accuracy and complexity. 

To demonstrate some other solution schemes of finite difference 

formula, let us consider the, so-called, weighted average formula, 

u -u u -2u +u u -2u +u i, j+1 i, j i+1, j i, j i-l, j 
+ (1-e) i+1, j+1 i, j+1 i-1, j+1 

At (Ax)2 (Ax)2 

(2.4.13) 

[CRANDALL, 19551, as an approximation to equation (2.4.9), where 

0,8,1. This was constructed by using equation (2.4.5) in the two 

time levels (j) and (j+l) for the r. h. s. of (2.4.9), and (2.4.7) for 

the l. h. s. of (2.4.9). If 6=1, we get the classical explicit formula 

described above. For other values of 0 we get the well known Implicit 

scheme, e. g. 0=0 gives the classical implicit formula, 

-rui+1, j+l + (1+2r)uiý 
j+1 rui-1, j+1 ui, j' 

(2.4.14) 

See Fig. (2.4.2a), 
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and when 6=1, (2.4.13) gives the Crank-Nicolson formula, 

-rui-1, j+1 + (2+2r) ui. j+1 - rui+l, j+1 = rui-1, j+ 
(2-2r) uij 

+ rui+1, j9 
(2.4.15) 

See Fig. (2.4.2b) . 

-r. 1+2r -r 

j+1 

i 

i-i 

-r 

j+l 

7 

r 

i-1 

i 
(a) 

2+2r 

i+1 

-r 

ýý 

2-2r 

i 

(b) 

r 

i+l 

FIGURE 2.4.2: Molecular representation of: 

a. Classical implicit formula, 

b. Crank-Nicolson formula. 
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Applying either of the two equations (2.4.14) and (2.4.15) on 

every non-boundary points of the jth time level will result in the 

system of linear equations, 

Auj+l = Buj + ý, J=0#1,9*.. (2.4.16) 

For the classical implicit formula (2.4.14), 

jl+2r -r 
-r 1+2r -r 

. 1% "O 1% - 
A= 

\\\ 
\\\ 

ý\\ 
\ý\ 

ý 
. 

-r 

ý 

1+2r -r 

-r 1+2ri 

(2.4.17) 

and B is the identity matrix. While for the Crank-Nicolson formula 

(2.4.15), 

A= 

and, 

B= 

(2+2r -r 

ý 0 

-r 2+2r -r ý.. 

ýý. 
ýýý. 

.... 

M-2 rr 

r 
ýý\ 

2-2r r 

-r 2+2r -r 

-r 2+2r 

0 
IN ý 

\ýýN. 

-` *% N. 

0 
1ý % 

ýr 2-2r ýr 

r 2-2r 
ý. 

_. 

.. I 

ý 

ý 

(2.4.18) 

(2.4.19) 

In both cases c represents the vector associated with the boundary 

conditions. 
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2.5 ALGORITHMS FOR SOLVING SPECIAL SYSTEMS OF EQUATIONS 

From the implicit schemes, systems of equations are produced, 

where more than one unknown value is expressed in terms of known values. 

These systems have different forms and properties, depending on 

the difference formula used and the boundary conditions. 

Here are some of the common matrix systems that appear by using 

finite difference methods, and some algorithms to solve them. 

Our system of equations will, in general, be: - 

Au =f, 

where A is the nxn matrix of coefficients, u is the vector of 

(2.5.1) 

the unknown values to be found and f is the vector of the known 

values with their coefficients, including the boundary conditions. 

The matrix A can be tridiagonal, 

ý 

A= 

periodic, 

'A = 

bl cl 

a2 b2 
` 

c2 
` 

ý_ ýý 1% 

0 

11% 

C 

an-1 bn-1` cn-1 

ab nn r 

... bl cl 

a2 b2 c2 

ýý. 
.ýý 

.ý. 
.ý`ý 

C 
n 

0 

0 

S. 
5% 

ý 'S. S. .\ 

an-1 bn-1 c 
n-1 

a n 

ý 

ý 
al 

b 
n 

(2.5.2) 

(2.5.3) 
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quin-diagonal, 

A= 

cl d1 el 

b2 c2 d2 e2 

a3 b3 c3 d3 e3 

\ý\\ 
\\ 

\\ 

an-2 bn-2 cn-2 dn-2 en-2 

ý an-1 bn-1 c 
n-1 

dn-1 

abc nnn 

or they may be symmetric, i. e. c, in equations (2.5.2) !li 

or 3=e. and b=d. in equation (2.5.4). 

The theoretical solution of equation (2.5.1) is, 

= A-lf , 

(2.5.4) 

ý 

(2.5.5) 

as long as there exists an inverse to A. 

But following that scheme broadly, i. e., finding the inverse 

of a matrix, needs many arithmetical operations, especially for large 

order matrices, where the number of operations increases rapidly with 

the order of the matrix. 

Direct and iterative methods were developed to solve equation 

(2.5.1). From the direct method we have the Gauss elimination method, 

and other methods which are different versions of Gauss's method like 

triangularization (L-U Decomposition) and Crout's method. These 

methods are for general matrices, but can be modified to solve 

tridiagonal systems by saving the extra arithmetical work needed in 

the general case. 
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For the tridiagonal matrix (2.5.2) this algorithm was developed 

in algorithmic form to solve the system (2.5.1). Let 

cl ci 
wl bl 

and fl 
gl bl 

Wi bi-aiwi-i 0 

fi-aigi-i 

b. -a w, 
ii i-i 

The components ui of the solution vectorr t are then found by 

backward substitution, 

(2.5.6) 

(2.5.7) 

un 9n; ui gi-Wiui+1 ' i=n-l, n-2,..., 1. (2.5.8) 

An iterative method for solving systems of equations is 

one in which a first approximation to the solution is used to 

calculate a second approximation. This is repeated many times 

until convergence is-achieved. From these methods we name the 

Jacobi, Gauss-Seidel and Successive Over-relaxation methods. 

Let ui1), ui2)1... be the first, second,..., approximations to 

ui, then for a general case, assuming that A is a full nxn matrix, 

the Jacobi scheme, after m iterations, is written as, 

u(m+1) =1f- 
iC1 

a u(m) _n au 
(m) 

iaIi_ lj 7_ijj ii j-1 j-i+1 
i=1,2,..., n. (2.5.9) 

This scheme is applicable for a tridiagonal system with 

less amount of work, but has slow convergence. 

In using both direct and iterative methods different sources 

of inaccuracy arise. One of them is the round-off error. It may 

happen that it is necessary during the computation to cope with 

the disappearance of significant digits. This may cause a lower 
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order of accuracy in the results. In certain cases, the coefficients 

are such that the results are particularly sensitive to round-off; 

such systems are called ill-conditioned. 

In the design of iterative methods, ' the iteration matrix is 

formed by splitting the°l. h. s. coefficient matrix and transfer one 

part to the r. h. s. of the equation. 

The main idea of this process is to get an easily solvable 

matrix on the l. h. s., a triangular, a diagonal or other easy matrix. 

The new r. h. s. matrix will be associated with the same vector 

of the unknowns that is on the l. h. s. Therefore in order to make 

the system solvable, i. e. with only l. h. s. vector of unknowns, 

numerical values will have to be given to the new unknowns on the 

r. h. s. These values are either the initial conditions if available 

or any convenient guess near to the expected solution. 

As a logical consequence, the nearer the guess is to the solution, 

the lower number of iterations are required. It is obvious that an 

initial guess solution is given only once, at the beginning of the 

iterative process. 

We shall remember that, if the diagonal elements are to be split, 

then not more than half of each element to be transferred to the other 

side. This is to keep the method convergent. 

For example, the matrix A in equation >(2.5. l) can be, split into, 

A= I-G , (2.5.10) 

where I is the identity matrix. Equation (2.5.1) will be, 

Iu=Gu+f . (2.5.11) 

As described above, in order to solve this system we need to 
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have the r. h. s. vector u known, so the general form of (2.5.11) 

will be, 
( 
u n+1) 

= Gün) +f, n=0,1,... 

For n=0 u. will be the initial guess values. 

(n) lni 
e= u-u , 

Let the error in the nth approximation to the exact solution 

be, 

so it follows by the subtraction of equation (2.5.12) from 

equation (2.5.11) that, 

(2.5.12) 

(2.5.13) 

e(n+1) = Gen) 

Therefore, 

e= Gen-1) = Glen-2) -n (0) ... _ Ge 0 
(2.5.14) 

The sequence of iterative values 
ulý, u2;..., uný... 

will converge 

to u as n tends to infinity if, 

lim 
end 

=0 (2.5. l ) 

n-, m 

and hence ýýis 
arbitrary it follows that the iteration Since ü0ý 

e 

will converge if and only if, 

lim Gn =O. 
n-*,, o 

(2.5.16) 

Let us assume now that the matrix G is of order in, and has m 

linearly independent eigenvectors vs, s=1,2,.... m. These vectors 

can be used as basis for an m dimensional vector space, so that the 

error vector 
(0) 

can be expressed uniquely as a linear combination 

of them, namely, 

csv s s=1 
I (2.5.1'7 
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where cs, s=1,2,..., m are scalars. Hence, 

el) = GeG) 
m 

=Lc Gv 
s=1 

ss 
c2. s. lsi 

But Gvs=Xsvs, where as, s=1,2,..., m'are the eigenvalues of G. 

Hence, 
(1) 

cm e=ccsx 
sv s s=1 

(2.5.19) 

Similarly, 

(n) mn 
e=E csX svs, s=1 

(2.5.20) 

Therefore 
( 
en)will tend to the null vector as n tends to infinity 

if and only if IXs1<1 for all s. In other words, the iteration 

will converge for any arbitrary u°ý if and only if the spectral 

radius p(G)<l. 

This results in that a sufficient condition for convergence 

is J IGII<l" 

Whereas we have Gvs=Asvs. Hence, 

IIGvSII = IIasvSIl = Iasi IIvSIl " 
But for any matrix norm that is compatible with a vector norm 11v S11 

II Gvs 11 .IIGIIII vS 11 

Therefore, 

IxSI i l°SI I. I IGI II IvSI I 
so, 

Jx . IIGII , s=1,2,..., m. 

This means that IIGII<1 will be sufficient condition for convergence 

but not necessary because the norm of G can exceed one even when p(G)<l. 
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2.6 CONVERGENCE, STABILITY AND CONSISTENCY 

From the finite difference formulae obtained there are some 

certain tests that they must pass. These tests are: 

2.6.1 Convergence 

The difference between the theoretical solutions of the partial 

differential equations U, 'and the difference equation u, at a grid 

point (i, j) is called the discretization error. 

If this error converges to zero as h and k tend to zero, then 

the difference scheme is said to be convergent. 

Let us consider, as an example, the classical explicit formula 

(2.4.12). In order to test its convergence we will need to keep its 

leading error terms to test them. Then equation (2.4.12. ) will be, 

ui, j+l = ui. j+r(ui+1, j-2ui'j+ui-l, j) +0 (k2+kh2)" (2.6.1) 

Let, 

z ilj =U 
l. Ij 

-u i. j , 
(2.6.2) 

represent the discretization error at a point (i, j). 

From equation (2.6.1) this satisfies the equation, 

zi z10, +r (z -2ziý+zi-l, j) + 0(k2+kh2) . (2.6.3) 
. j+1 j i+1ýj 

24 
If 

32 
and 

34 
in the-leading part of the local truncation 

3t 3X 
error remains bounded, we find by taking the modulus of (2.6.3) 

that, 

1zi 
,j +i 

1 <, lzi, 
jl + r(lz i+i, j 

1-21z 
i, j 

I+Izi-i, 
j 

() + A(k2+kh2)" 

(2.6.4) 

Let, 
IziI = maxlzi, jI i 
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equation (2.6.4) gives, 

lzj+1l , lzjl + A(k2+kh2) . 

Since the initial data are the same for the difference and the 

differential equation, we have, 

1z01 =0, 

therefore, 
Iz1I 5Iz0I + A(k2+kh2) =A (k2+kh2) 

(2.6.5) 

lz2l ; lzll + A(k2+kh2) ,I z0 1+ 2A(k2+kh2) = 2A(k2+kh2) 

(zmI , mA(k2+kh2) . 

As time (denoted T) equals mxk, we get, 

I zm (: (mxk )A (k+h2 ) 11 

lim Iz UM TA(k+h2) =0 
h-*0 m h->O 
k->O k->O 

(2.6.6) 

Convergence is now satisfied. 

The discretization error can usually be diminished by 

decreasing Ax and At, but this leads to an increase in the number 

of equations to be solved, and this is limited subject to the cost 

of computations and computer storage capacity, etc. 

2.6.2 Stability 

As we have seen from the above topic that beside the 

discretization, there is another source of error due to the fact that 

in solving the finite difference equation each calculation is carried 
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out to a finite number of decimal places or significant figures. This 

is, called the rounding error. 

It is the difference between the theoretical solution and the 

numerical solution of the finite difference equation. 

It would be useful if one could control and make this error as 

small as possible. So the aim is to find the conditions under which 

this error tends to zero as the calculations proceed. 

There are two relatively simple methods which are commonly used 

for examining the stability of a finite difference scheme. 

The Von Neumann Method 

This method expresses an initial line of errors in terms of a 

finite Fourier'series, and considers the growth of a function that 

reduces'to this series for t=0 (SMITH, G. D., 1978, p. 92]. The Fourier 

series can be formulated in terms of complex exponentials, i. e. 
inTrx/ß, 

JAne where i=y/--l and k is the interval which the function is 

defined on. Let us denote the error when t=0 at the grid points by, 

N^ 
E(xi)' _. ,i pn eißnxi , i=0, . 

n=0 
., N , (2.6.7) 

where ßn=nir/&. The N+1 equations in (2.6.7) are sufficient to 

determine the unknowns AO, Al,..., AN uniquely , Showing that an 

arbitrary distribution of initial'errors can be expressed in this 

complex exponential form. 

To investigate the propagation of this error as t increases, 

it is necessary to find a solution of the finite difference equation 

which reduces to e'ax, when t=0. Let, 

E i, j = eißx eat = 
Te ax 

eamk = eißx& 
m (2 . 6.8) 
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where C=e01'k, a is, in general, a complex constant and m is the 
A 

number of time steps. This will reduce to eißx when m=0. 

Therefore, the error will not increase as t increases if, 

I&I si. (2.6.9) 

This method applies to linear difference equations with constant 

coefficients, and strictly speaking only to initial value problems 

with periodic initial data, since it neglects the boundary conditions. 

The Matrix Method 

Although this method is more difficult than the first, since 

it involves matrix algebra, it is still more convenient when solving 

an initial boundary value problem. It includes the boundary conditions 

automatically, where the f irst'one ignores them. 

Consider equation (2.4.16), 

Auj 
+1 = Buj +c, (2.6.10) 

where B is the coefficient matrix of the right hand side, u7, is 

the vector of functions at time level j and c is a vector 

associated with the boundary conditions. For the linear parabolic 

equation with constant coefficients, A and B are constant matrices. 

Equation (2.6.10) can be written as, 

A Buj +, c' u j+1 - 
-1 (2.6.11) 

where c=A lc. 
Due to the errors mentioned earlier, the vector u 

is calculated as, 

-NO v u1 +1 = A-lBu j+ (2.6.12) 
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Let, ej+1 - uj+1 - uj +1 , (2.6.13) 

be the error vector. Subtracting equation (2.6.11) from 

equation (2.6.12) gives, 

which leads to, 

eý+1 A_1Bei " 

ej+1 = (A-1B) j+1e0 
, 

from which it follows that, 

IIQj+1II , II(A-1ß)j+lll Ileoil " 

where 11.11 is a suitable norm. The necessary and sufficient 

condition for the stability of the calculation is, 

II(A-lB) j +1II 
51 

(2.6.14) 

(2.6.15) 

(2.6.16) 

(2.6.17) 

for all time steps J. 

From the matrix norm property of equation (2.2.4d) we have, 

II(A-lB)j+lll : II(A-1B)jII II(A-1B)II 

s II (A-1B) j -1 IIII A-1B IIII A-1B I I= II (A-1B) 
j -1 II 

I; A-1BII2 

, IIA-1BII IIA-1BII... IIA-1Bi( = (IA-1BiIj+1. 

Hence, from equation (2.6.17), 

IIA-1Bllj+1 `1' 

and that only happens when, 

Il A-1B II <, 1. (2.6.18) 

6y Theorav+n 1.3.1t we hcive" 
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Thus, 

IIA-1B1I p(A-1B) . 

P (A-18) S1 

is a necessary and sufficient condition for stability. 

(2.6.19) 

2.6.3 Consistency 

It may, happen sometimes that an approximating finite difference 

formula converges to the solution of a different differential 

equation as Ax and At tend to zero. Such a formula is said to be 

inconsistent with the partial differential equation. 

The importance of this concept of consistency can be seen 

through Lax's theorem which states that: 'Given a properly posed 

linear initial value problem and a finite difference approximation 

to it that satisfies the consistency condition, stability is the 

necessary and sufficient condition for convergence'. (The 'properly 

posed problem' term will be discussed later in this chapter). 

To define consistency let us consider the partial differential 

equation, 

L (U) =0. (2.6.20) 

We are required to find the solution in the region R={O<x<1}x{O<t<T}, 

given the initial conditions, 

U (x, 0) =f (x) , for t=0 , (2.6.21) 

and boundary conditions, 

U (0, t) =q (t) , at x=O, t>O 1 
(2.6.22) 

U (l, t) _ ý2 (t) , at x=1, t>O 

where L is an operator. Let Lh, k denote an approximation to L 
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on the grid points of the region as in Fig. (2.4.1). 

Then the difference scheme Lhjk(u) is said to be consistent 

with the initial-boundary value problem (2.6.20)-(2.6.22), if, 

1 ILhk (u) - r. (v) II -Y 0, (2.6.23) 

as h-)O and k-}O, for a suitable norm 11-11. 

The value of equation (2.6.23) is called the error of the 

approximation. 

We demonstrate with the simple example of equation (2.4.11), 

which is an approximation to, 

au _a2U (2.6.24) at - ax2 
2 

a-ö 
. at ax2 

ii Lh k(u)-L(U)II = II(ui, jkl-ui. j - 
ui+l, j-2u2ºj+ui+l. j) 

- 
'h 

(at - a22) 11 ua 
ax 

(2.6.25) 

From the Taylor series expansion about the point (i, j), 

and by substituting the leading terms, the truncated error terms 

on the right hand side of equation (2.6.25) give, 

IILh, k(u)-L(o)II = 12 a2226a4 411 
u 

at aX 
_2 4 

+0 , 
(2.6.26) 

as k->O and h->O, provided that L 
-U and 

1L 
are bounded at every 

at ax 
point of R. This shows that the approximation (2.4.11) is consistent 

with the initial-boundary problem (2.6.24). It also shows that the 

consistency test of a certain difference approximation to a parabolic 

equation is, 
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Principle Part of Local Truncation Error 0 (2.6.27) 
k 

as h->O and k-*O. 

Now that we have seen an example of consistent formula, we 

now show how a formula can be inconsistent. 

Let us consider the well known Du-fort Frankel formula 

(DU-FORT AND FRANKEL, 19531, in three time levels: 

ui, j+1 ui, j-1 
= 

ui+l, j-ui, j+l-ui, ]-1+ui-1,7 
2k 

h2 
(2.6.28) 

This is a stable scheme and has local truncation error of, 

11 a3., t, 
2 a4.. v3 a2.. 

+---"+ L. T. E. °6k 
at3 1'x4 h2 at2 

... . 

From equation (2.6.27) we have, 

2 
L. T. E. 

_, 
k2. au 

as h->O and k->O k h2 at2 

and if h=a then we see that the scheme is consistent with the 

hyperbolic equation, 

au 
_ 

a2u 
+2 

a2u 
a at ax2 at2 

kc. o. L, 71 

(2.6.30) 

1) 
However if k->O faster than h (e. g. when k=0(h`)), then (2.6.28) 

J. .rvv aa vu. +ý vv in r 7n% 

is consistent with the parabolic equation (2.6.24). 



38 

2.7 PROPERLY POSED PROBLEMS 

A physical problem is said to be properly (well) posed if its 

solution exists, is unique and depends continuously on the auxiliary 

data. 

Existence and uniqueness are an affirmation of the principle of 

determinism without which experiments could not be repeated with the 

expectation of consistent data. The continuous dependence criteria 

is an expression of the stability of the solution, that is, a small 

change in any of the problem's auxiliary data should produce only a 

correspondingly small change in the solution [AMES, W. F., 1977, p. 41). 

It is important to know whether the problem under attack is well 

posed or not. As an example, consider the Laplace equation, 

ago 
+ ago = 

ax2 ay2 
o, 

defined in the semi-strip O<y, -7r/2; x<n/2, with the boundary 

conditions, 

with 

U(- 2, y) = U(2, y) =0 

U (x, 0) =0 

äy (x, o) =ý (x) , 

0 (- 2) =0 (2) =o 
If we put fi(x)=0, then the solution of the problem is 

U(x, y)=0. If we put, 

2n+1 
Ox) =e cos(2n+l)x , 

then we get the unique solution, 

1 
U(x, y) = 2n+1 e 

�2n+1 
cos(2n+1)xsinh(2n+1)y 

c2.7.1i 

(2.7.2) 

(2.7.3) 

(2.7.4) 
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For sufficiently large n, the function 0 and its derivatives 

differ from 0 by an arbitrary small amount. Yet for any non-zero y 

and large n, the function U has the form of a cosine function of 

arbitrarily large amplitude. Consequently, for sufficiently large n, 

the function U differs by an arbitrary great amount from the zero 

solution [MIKHLIN, 1967, p. 19]. 
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2.8 RATE OF CONVERGENCE 

Assume that the iteration matrix G has m linearly independent 

eigenvectors vs corresponding to the eigenvalues Xs and that 

I x1 I >IxZ>. ". 
JXm1' By equation (2.5.15) the error vector en can be 

expressed as, 
a (n) 

ai{clvl + 
2nc2v2 

+... +( 
a 

ýý)ncv} 11mm 

For large values of n we get, 

Similarly, 

thus, 

(n 
ei 11 

n+1) -' 
Iei I I711ý p(G) 

(2.8.1) 

(2.8.2) 

gives an indication of the amount by which the error is decreased 

by each convergent iteration. The logarithm of 1/p(G) i. e. 1og10(1/p) 

or -log10p shows the number of digits, say p, by which the error is 

reduced. 

For convergence we need 0<p <1 and it is easy to see that p 

increases as p decreases, and thus (-log 
1Op) provides a measure for 

the rate of convergence of the iterative methods. Therefore, the 

quantity (-log 
ep) 

is defined as the asymptotic rate of convergence 

which is denoted as R (G). 
GO 

(n) 
= 7ýic1vl 

en+1) 1 
n+lc 

1v , 1 

en+1) = en 1 

Let eý 
denote the ith component of en, then we see that, 

ý 

, 
The average rate of convergence Rn (G) after n iterations is 

defined as, 
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Rn (G) = -1/n loge ( II n 12 

where 11G 
2 is the spectral norm of Gn 

(2.8.3) 

It is shown [YOUNG, D. M., 1971, p. 87] that a crude estimate 

of the number of iterations needed to reduce the error IleO11 to 

all 
P )I, 

where a is a fraction, is obtained by, 

n= -loge a/R(G) . 
(2.8.4) 
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3.1 INTRODUCTION 

In this chapter we present some finite difference methods for 

approximating the solution of partial differential equations of 

parabolic type. Differential equations of this type describe diffusion 

processes of many kinds. In recent years much progress has been made 

in developing more efficient finite difference procedures and in methods 

for determining whether or not the numerical solutions are indeed good 

approximations to the solutions of the partial differential equations. 

Clearly, the best method should be presented for the use of the applied 

scientist. However it is not always easy to say which method is 

better. There are a number of comparison points to be considered, 

and it is found, by experience for any specific scheme, that an 

improvement in any of these points results in worsening one or more 

of the other points. It seems like a natural law of balance. However 

each scheme is used where and when it is more useful and efficient. 
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3.2 A GENERAL TWO TIME-LEVEL FINITE DIFFERENCE APPROXIMATION FOR ONE- 

SPACE DIMENSIONAL P. D. E. 's 

The general form of a linear parabolic partial differential 

equation is, 

Q(x, t)2t = aXa (a(x, t)aX) -c (x, t) u (3.2.1) 

defined within some prescribed region R of the (x, t) plane. 

Within this region the functions o(x, t), a(x, t) are strictly 

positive and c(x, t) is non-negative. 

We concentrate our attention on the constant coefficient case, 

and when a(x, t)=a(x, t)=l and c(x, t)=0 to give, 
2 

8t 
=a2, O: x, l, O: t; T, . (3.2.2) 

ax 

subject to the initial-boundary conditions, 

U (x, 0) =f (x) , O<x<l 

U (Opt) =g (t) , O<t, T, 

U (1 it) =h (t) , O<t, T. 

A general finite difference approximation of (3.2.2) is 

ui, j+1 ui, j 
_ 

1(8 öu -9 d u. k h2 lx i+}, j+l 2x i-}, j+l 

ý1 +eiaxui+}. j_e2axui-I, j 0 

under the conditions, on 9,., 611 i=1,2, that, 

6i, 9i e 1, i=1,2, 

2 
(91+9i) =2, 

1=1 

-81-ei+e2+82 =0, [Abdullah, 19831 

(3.2.3) 

(3.2.4) 

(3.2.5a) 

(3.2.5b) 

(3.2.5c) 

Most of the difference schemes for solving (3.2.2) are obtained from 
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the formula (3.2.4), by substituting Ai, ei, i=1,2, with different 

values governed by the conditions (3.2.5a)-(3.2.5c). 

Now we derive some of the well known formulae: 

a) If e1=1,9i=o, i=1,2 we get the classical explicit formula, 

Fig. (3.2.1a) , 

ui. j+l r(ui-1, j+ui+l, j)+(1-2r)ui, j , (3.2.6) 

which is stable for r; }, and has a principal truncation error 

of order (Lt+(Lx)2), (SMITH, 1978). . 

b) If 91=0,6i=1, i=1,2, we get, 

-rui-l, j+l+(1+2r)ui, j+1-rui+l, j+1 ui, j ' 

which is known as the fully-implicit formula. This is an 

(3.2.7) 

unconditionally stable scheme for r>0 and has a principal 

truncation error of order (At+(Ax)2). Its molecular diagram 

is shown in Fig. (3.2.1b). 

c) If i=1,2, then (3.2.4) yields, 

-rui-1, j+1+(2+2r)ui, j+l-rui+l, j+1 = rui-l, j+(2-2r)ui, j+rui+l, j 

(3.2.8) 

which is the Crank-Nicolson formula Fig. (3.2.1c). This 

formula is unconditionally stable for all r>O and has a 

principle truncation error of O((At)2+(Ax)2). 

d) If 9i=a/2,6i=1-a/2, i=1,2, where a is a free parameter, we 

get the formula due to Saul'yev [1964: 91, eq. 8.16], Fig. (3.2.1d), 

-arui-1, j+1+2(1+ar)ui, j+1 arui+l, j+1 (2-a)rui-1, j+2(1-2r+ar)ui, j 

+(2-a)ru i+l, j 1 (3.2.9) 
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i 
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i 

j +l 
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j +1 

i 

0--0, 
--- 

1-2r r 
i-1 i i+l 

(a) 

-r 

i-i 

-r 

C)2r 

(2-a) r 
i-i 

1+2r -r 
ý 

0 (b) I 

2+2r 

i 
(c) 

i+1 

-r 

0 

r 
i+l 

o-o (l+ar) 

2 (1-2r+ar) 
i 

(d) 

FIGURE 3.2.1 

(2-a)r 
i+1 
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The previous three formulae (3.2.6), (3.2.7) and (3.2.8) are 

actually special cases of (3.2.9). This formula is stable for r 

such that, 
1 

r' 2(1-a) ' 

and a principal truncation error of, 

O(At+(tx)2), for a#1 , 

0((At)2+(AX)2), for a=1. 

(3.2.10) 

(3.2.11) 

e) If Ai=a-1/6r, 81=1-(a-l/6r), i=1,2, where a, again, is a free 

parameter. This will give the cubic spline formula of Papamichael 

and Whiteman (1973], 

(1-6ar) (ui+l, 
j+l+ui-1, j+1)+2(2+6ra)ui, j+l = (1-6r(1-a)) 

(ui-l, 
j+ui+l, j)+2(2-6r(1-a) 

)ui, j" 

(3.2.12) 

The formula has unconditional stability when }; a; l and is 

stable for r; 6(1 2a) when O; a<, }. Its principal truncation 

error is O(1t+(1x)2), but for a=}, the principal truncation 

error order improves to ((1t)2+(1x)2+(At)2). The molecular 

diagram of this formula is shown in Fig. (3.2.2). 

f) If 61=A2=1 and e 2=6i=0, then we get the formula due to Saul'yev 

(1964: 32, eq. 3.10) as shown in Fig. (3.2.3a). This formula has 

a principal truncation error of order (At -Atbx), and it is 

unconditionally stable for r>O. It is written as, 

-rui+l, j+1+(1+r)ui. j+1 rui-l, j+(1-r)ui. j , (3.2.13) 

g) Saul'yev's alternative formula is in an opposite direction to 

(3.2.13). It is formed by letting Al=82=O and A2= 6i=1, and 
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1-6ar 2(2+6ra) 1-6ra 

1+6r (1--a) 2 (2-6r (1-a) ) 

FIGURE 3.2.2 

1+6r (1-a) 

1+r -r 

0ý-- 

0 

r 
i-1 

0 
i+1 

ý0 
i-1 

0 " 1-r 
i (a) 

1+r 

1-r r 

i i+1 

(b) 

FIGURE 3.2.3 
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has the same properties except that its principal truncation error 

has an opposite sign of (3.2.13). It is written as (SAUL'YEV, 1964), 

-rui-l, j+l+(1+r)ui. j+l 0 rui+l, j+(1-r)ui, j . (3.2.14) 

Fig. (3.2.3b) represents the molecular diagram of equation (3.2.14). 

All the formulae mentioned above are of three point type. In 

Abdullah (1983: 162) a four point formula is presented. it is a 

combination of equations (3.2.13) and (3.2.14), which result in a 2x2 

coefficient matrix that is easy to invert. This formula is unconditionally 

stable for r; l and has a principal truncation error, for the 2 point 

group, of order ( -Ottx) and (- x 
+ptex). The molecular diagram 

is shown in Fig. (3.2.4). 

j +1 

J 

r2 r (1-r) 
1+2r 1+2r 

i-1 i 

j+l 

i 

r (1+r) 
1+2r 

i-i 

Oi 
(1-r2) 
1+2r 

i 
FIGURE 3.2.4 

1 
(1-r2) r(1+r) 
1+2r 1+2r 

i+l i+2 

r (1-r) 
1+2r 

2 
r 

1+2r 

i+l i+2 
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This scheme is called the Group Explicit (G. E. ) method and is 

written as: 

1 
ui, j+1 1+2r 

(r (l+r) ui-1 
, j+ 

(1-r2 ) ui 
, j+r 

(1-r) ui+1, j+r2ui+2 ,j)' 
(3.2.15) 

and, 

ui+l, j+1 1+2r (r2ui-1, j+r (1-r) ui 
, j+(1-r2) ui+1, j+r (1+r) ui+2, j)' 

(3.2.16) 
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3.3 TRUNCATION ERROR OF THE GENERAL APPROXIMATION 

The general formula (3.2.4) can be written as, 

-relui+l, j+l+[l+r(el+62)lu, j+l-re2ui-1, j+1 relui+l, j 

+[1-r(el+e2)]ui, j+re2ui-l, j 
(3.3.1) 

Using Taylor's series expansion about the point (i, j+}), the 

truncation error of equation (3.3.1) IS/ 

2 
rh aau +k au 

- 
rhýu + rh--k: a2U 

ax at 2 
aX2 

2 axat 

rh3a a3u rh2k0 +4 +6 
ax 

a3u+ rhk2a a3u 

ax2at s 

34 
+ 

k3 aU rh Bau+ rh3ký 84u 
24 

at3 
24 

aX4 
12 

ax3at 

aXat 
2 

22434 
rh kL 

-ý 
u+ rhk 

-ý-u + O(kýl, hý2) = 0, (3.3.2) 
16 

aX2at2 
48 

aXat3 
where, 

a= -e1+e2-ei+e2 , -el-e2-ei-e2 

Y= -el+e2+ei-e2 , -e1-e2+ei+e2 , 
ý1+ý2 = 5. 

If the conditions (3.2.5a), (3.2.5b) and (3.2.5c) are fulfilled, 

then a=0, ß=2. Dividing through by k, (3.3.2) will become, 

au 
_a2u 

ky a2u kA a3u k3 a3u 
at ax2 

+ 2h axat +4 
ax2at 

+ 24 at3 

_ 
h2 a4u+ khy a4u k2 a4u k3Y a4u 
12 ax4 12 ax3at 8 ax2at2 

+ 48h 
axat3 

, ý. ý� 
0(k l, h Z) 

=0. (3.3.3) 
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As we are dealing with the equation (3.2.2), the first two terms 

of (3.3.3) will vanish. Further, in order to estimate the truncation 

error of the formulae (3.2.6)-(3.2.9) and (3.2.12)-(3.2.14), we have 

to-satisfy their conditions, concerning the free parameters ei and Ai, 

i=1,2,. Now substituting Ai and ei, i=1,2, in equation (3.3.3) we get, 

k a3u k 233u 
- 

2a 4 4u 
- 

k2 a4u 
T(3.2.6) -2 

ax2at 
+ 24 at3 12 ax4 s ax2at2 

k 
0(k 

Elh C2) 

--+ 

k 

ax 

3 3u k2 a3u 
- 

h2 a4u k2 a4u 1 &1 C2 
T(3.2.7) _-2 2 

at 
+ 24 

at3 
12 ax4+ S2 2+ý(k ,h 

ax at 
(3.3.5) 

k2 a3u h2 a4u k2 a4u1 
&1 &2 

T (3.2.8) = 24 -3 12 4-T2 2+ k0 (k 'h ) (3.3.6) 

at DX 
4 

at 

T(3.2.9) = 
k(1-a) 3 

3u 
+ka3u 

h2 a4u_ k2 a42 
2+k ý(klhý2) 

2 aX2at 
24 

at3 12 3x4 
8 ax at 

(3.3.7) 

k a3u 
+ 

k2 83u 
_ 

h2 a4u 
_ 

k2 a= 
T(3.2.12) = y(1-2(a-1/6r)) 

- 
2_ 24 

.3 
12 7-4 8 �__2,, _2 ax at dt dx ax oL 

ýg 
10(k l�h), 
x 

_ ,.. .,..,, k a2u k2 a3u h2 a4u kh a4u 
m14 

_/_ 
141 cý 

h axat ' 24 at3 12 
ax4 

6 ax3at 

k34a u3 
k + O(k 

E1 

'h 

&2 

24h 
aXat 

and, 

_,, �. �k3 
2u k2 a3u h2 a4u. kh 3 4u 

'1'1 t_/. 
-I 

41 =-4. -- 

h axat ' 24 at3 12 ax4 6 
ax3at 

(3.3.4) 

+ 

(3.3.8) 

(3.3.9) 

2434ý C_k au 
+k 

au 
+lOikl. h2), (3.3.10) 

8 ax2at2 
24h axat3 

k 

+ 

ka4u 
--- 8 
ax2at2 

respectively. 
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3.4 STABILITY ANALYSIS FOR THE GENERAL APPROXIMATION 

The stability conditions of the general-approximation formula 

(3.3.1) will be investigated, using the Fourier series method, where 

the error function at any point (i, j) is expressed as, 

A i ißh ajk A 

Eiýj =ee, where i=/-l, h=Ax, k=At, a is complex 

= ei 
ißhýj. &=e °k 

Substituting the error function into equation (3.3.1), gives, 
A 

-rel eißh(i+1)ýj+l+(1+r(el+e2) 
ßh(i-1)& j+l ißhi&j+l 

-r82 eiA 

ißh(i+1) j ißhi j ißh(i-1) j 
= r61 eC +(1-r(61+62)]e E +r92e 

(3.4.1) 
A 

dividing by eißhi gives, 
n 

ý 

A 

r9ieißh+[1-r(91+82)1+r82e-ißh 

- 
-r9lelßh+[1+r(0 +0 )2J -rA2eißh 

1-r(1-cosßh)(9i+62)+Yr--l r(6i-62)sinßh 

1-r (cosßh-1) (e1+e2) - -lr (el-e2) sinßh 

(3.4.2) 

(3.4.3) 

For stability we need 1&1,1. Substituting the values of ei, 9i, 

i=1,2, of section 3.2 into equation (3.4.3) leads us to expressions 

which verify the stability conditions of the schemes in equations 

(3.2.6)-(3.2.9) and (3.2.12)-(3.2.14) as below: 

For i=1,2 

a) 91=1, Oi=O, equation (3.4.3) becomes, 

I1-2r(1-cosßh) 
1 0 (3.4.4) 1 

as 1-cosßh=2sin2 Zh, 
we get, 

ý1. 11-4rsin2 ß2 i 
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i) 1-4rsin2 ,1, 

-4rsin2 , 0, 

-r; 0, i. e. for all r>0, where, 

max sing = 1. 

ii) -1,1-4rsin2 
ý, 

4rsin2 ý, 2, 

. 
.. rý} . 

As this is the lower bound of stability, the scheme will 

only be stable at values of r under this valise. 

b) 61=0, ei=1, then (3.4.3) becomes, 

1 
<, 1 11+2r(1-cosßh)l 

or. 
1 ( 

ý 1+4rsin2 h 

i) 1; 1+4rsin 

0; 4r 

o<r . 

2ah 14 1 
2 

I 

1. 

ii) -1-4rsin2 
ý51 

-4rsin2 
ý<2 

-2r<, l 

r, -} neglected. 

c) ei=ei=I, (3.4.3) gives, 

1-r(1-cosßh) 
`1 ll+r(1-cosßh)ý 

or 
-2rsin2 11 

2ßI1 
1+2rsin 2 

which is valid for all r>O. 

(3.4.5) 

(3.4.6) 

(3.4.7) 

(3.4.8) 
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d) 9i=a/2,8i=1-a/2, (3.4.3) leads to, 

1-ar (1-cosßh) 
1+ (2--a) r (1-cos5h) 

1-tar sing äh 

1+2r (2-a) sing 
2h 

1, 

51 

i) 1-2ar sing äh 5 1+2r (2-a) sing Zh 

0: 4r d+ O<r 

ii) -1-2r (2-a) sing 
2h 

<, 1-20irsin2 2h 

-4r+2ar sin2 
ah 

5 2-2ar sin2 ßh/2 

- 4r (1-a) sing 2h ig 2 

i. e., 1 
r521a-1) 

e) 6i=a-1/6r, 81=1-(a-1/6r), then (3.4.3) gives, 

1-2r (1-a+1/6r) (1-cosBh) 
1+2r (a-1/6r) (1-cosßh) 

or 

1-2r (1-a+1/6r) (2sin2 
2h) 

1 
1+2r (a-1/6r) (2sin2 

2h) 

;1, 

S1 I 

i) 1-4r (1-a+1/6r) sin2 
2h 

: 1+4r (a-1/6r) sin2 
2h 

-4r: O -* r>0 
2 

ii) -1-4r (a-1/6r) sin 
2h 

5 1-4r (1-a+1/6r) sin 
2 ß2 

-4ar+2/3+4r-4ar+2/3 2, 

4r-Bar 5 2-4/3 = 2/3 

r(2-4a) 5 1/3 

1_1 
r3 (2-4a) 6 (1-2a) 

For a=} the stability condition (3.4.10) will be 

(3.4.9) 

(3.4.10) 

r, -, 
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i. e. the cubic spline formula (3.2.12) will be unconditionally stable 

for all r>O. For this same value of a, the principal truncation error 

of (3.2: 12) rises from 0(k, h2) to O(k2ph2). For equations (3.2.13) 

and (3.2.14), we substitute the values of 91 and 9i in equation (3.4.3) 

to get, for the first equation, where 91=82=1 and Ai=e2=O 

E= 1-r(1-cosBh)-v'--l- r sinBh 

Now 

= 

1+r(1-cosßh)-vf--l r sinBh 

(1-r)2+2r(1-r)cosßh+r2cos2ßh+r2sin2ßh 

(1+r)2-2r(1+r)cosßh+r2cos2ßh+r2sin2ßh 

Oh ßh 
(1-r) 2+2r 

(1-r) (cos2 2 -sin2 2 +r2 
9 

(l+r)2-2r(1+r)(cos2 
Zh 

-sin2 
Zh)+r2 

(1-r)2+2r(1-r)(1-2sin2 Zh)+r2 

0 

= 

(1+r)2-2r(l+r)(1-2sin2 2h)+r2 

1-2r+r2+2r-2r2-4rs+4r2s+r2 

1+2r+r2-2r-2r2+4rs+4r2s+r2 

= 
1-4rs+4r2s 

, 
1+4rs+4r2s 

1, for r; 0 . 

Hence 11; 1 for r; 0, where s=sing 2h. 

IeI2 = 
[(1-r)+rcosßhj2+r2sin2ßh 

[(1+r)-rcosßhj2+r2sin26h 

i 

0 

(3.4.11) 

(3.4.12) 

(3.4.13) 

(3.4.14) 

(3.4.15) 

(3.4.16) 

(3.4.17) 

For the remaining Saul'yev equation (3.2.14) where T02 =1 and 

e1=e2=0, equation (3.4.3) gives, 

ý 
1-r(1-cosßh)+V--l r sinßh 

1+r(1-cosßh)+/--l r sinßh 
(3.4.18) 

This C is the complex conjugate of & given by (3.4.11) and hence 

(CI2 51 for r, o. 
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Thus, 

1 for r30 . (3.4.19) 

Therefore, the Saul'yev scheme is stable for all r, 0. 

The stability conditions for the (G. E. ) system of equations 

(3.2.15) and (3.2.16) is proven, by the matrix method, to be 

unconditionally stable for r, l. [Abdullah, 1983; p. 179]. 
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3.5 EQUATIONS OF INCREASED ACCURACY 

The principal criteria of any finite-difference scheme, for the 

numerical approximation of an equation are listed as follows according 

to their importance: 

1. Stability 

2. Order of error of approximation 

3. Simplicity (SAUL'YEV, 1964, p. 83). 

The importance of stability of a numerical scheme is clearly seen 

through Lax's theorem [see Section 2.6.3], where it states that 

stability is the necessary and sufficient condition for convergence. 

This puts it on top priority of any numerical scheme. However unstable 

schemes will not be considered in this thesis as they are not convergent. 

Convergence itself, which depends on the order of error of approximation 

occurs in various forms. Slower convergence requires more 

computational work and is impractical while faster convergence needs 

less work and is desirable. This shows that the rate and order of 

convergence is important. 

In most cases the order of error of the numerical solution is 

similar to that of the error of approximation which shows the importance 

of the order of error [SAUL'YEV, 1964, p. 85). 

Let LU=O be a p. d. e. and let a corresponding f. d. e. be denoted by 

Lhui,, j=O. Then for a sufficiently smooth function W(x, t) satisfying 

the equation LW=O, the expression, ' 

LhWi 
"j 

0 (ha) , a>O , (3.5.1) 

denotes that the order of error incurred by approximating the 

operator L by Lh at the point (ih, jk) is a for the class of functions 

satisfying the equation LW=O (SAUL'YEV, 1964, p. 84). In accordance 



58 

with this a is a measure of the category of the finite difference 

scheme, that is: 

a) a, 0: Divergent schemes 

b) O<a<2: Low accuracy schemes 

c) a=2: Standard accuracy (3.5.2) 

d) 2<a<6: High accuracy 

e) a=6: Extreme accuracy 

Examples of these types will be presented in this section. 

The third criterion (i. e. simplicity) is clearly concerned with 

the amount of computational work, i. e. arithmetical operations involved 

to get the solution. The simpler the scheme is the less work and time 

that is required. 

i) Asymmetric Finite Difference Equations 

The general versions of the two equations (3.2.13) and (3.2.14) 

have been introduced. by Saul'yev (1964, p. 31). They are of O(h) and 

given by, 

(1+gr)uifj+1-6rui-1, j+1 - (1-0)rui-l, 
j+[1+(g-2)r]ui, j+rui+i, j' 

(3.5.3) 

and, 
(1+gr)ui,, j+l-Orui+l, j+l rui-l, j+[1+(8-2)r]ui, j+(1-9)rui+l,,, 

(3.5.4) 

where 0; 8; 1. Figs. (3.5.1a) and (3.5.1b) show the molecular 

diagram of (3.5.3) and (3.5.4). Both formulae generate the classical 

explicit formula when 9=0, and they reduce to the formulae (3.2.13) 

and (3.2.14) respectively when 6=1. 

These two formulae can be used explicitly if they are applied 

from left, to right for the first formula and in the opposite direction 
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j +l 

7 

j +l 

J 

FIGURE 3.5.1 

for the second. Accordingly this applies to equations (3.2.13) and 

(3.2.14), respectively, as well. For example, if formula (3.5.3) is 

applied on the first interior point i from the left boundary at the 

time level 0, then the functions at the points (i-1,0), (i, 0) and. 

(i+1, O) are known from the initial conditions. The function at (i-1,1) 

is known from the boundary conditions. Hence the only point where the 

function is unknown is (i, l) and that can be found by using equation 

(3.5.3) as, 

-Ar 1+Or 
0---0 

(1-0)r 

ýý 
1+(A-2)r r 

i-1 i i+1 
(a) 

0 

1+8r -er 
0---0 

0 r 1+(6-2)r (1-8)r 

i-1 i i+1 

(b) 
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(1+gr)ui"j+1 6rui-1, j+1+(1-6)rui-l. j+(1+(0-2)r]ui1j+rui+l, j' 

(3.5.5) 

This will be applied at the second interior point as now, the 

first point is known, and so on to the end of the line. Similarly 

with equation (3.5.4), (3.2.13) and (3.2.14) according to their 

direction. However, these equations are not accurate enough to be 

used, by themselves, for the numerical solution of parabolic equations. 

As their order of error is O(h+k) whereas the classical explicit and 

the fully implicit formulae are of O(h2+k). These formulae are of the 

type b) of the classification (3.5.2). It was mentioned by A. F. Filipov 

(SAUL'YEV, 1964, p. 34) that in the case of Cauchy'sproblem, a necessary 

and sufficient condition for the stability of equations (3.5.3) and 

(3.5.4) is that, 

rc 
1 

-" 2 (1-8) 
(3.5.6) 

This verifies the stability condition of equations (3.2.13) and (3.2.14), 

i. e. when 8=1 we get rýco. As the order of error of formulae (3.5.3) 

and (3.5.4) does not encourage their use, Saul'yev (1964, p. 43) has 

suggested the use of both formulae alternatively at the time steps. 

In this alternative strategy, the two equations seem to support each 

other at the weak side of their asymmetry by having their low order 

of error O(h) diminished. This alternating method can be written as, 

ui, j+1 1+8r [8rui-1, 
j+1+(1-8)rui-1, j+{1+(8-2)r}ui, j+rui+l, jl, 

(3.5.7) 

and 
ui, j+2 1+gr 

Ierui+1, 
j+2+rui-1j+{1+(e-2)r}ui, j+(1-8)rui+l, j1, 

(3.5.8) 

where j=O, 2,4,... and i=1,2,..., n-1 for (3.5.7) and i=n-l, n-2,..., l 
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for (3.5.8). This method is then comparable with the classical 

explicit and fully implicit methods. 

Further, if we put equations (3.5.3) and (3.5.4) in matrix form, 

i. e., 

and 

respectively, where, 

r+0r 

A= 

ýr l+0 r 

--e r 

0 

0 
fý 

f\ 
\\ 

f 'S. 
\f 

\f 
`f l+gr 

r -2r ý -r6 1+9r 

,c 

0 

(3.5.10) 

and b 
. 

is the vector containing the associated boundary conditions. 

Then at every time step, we define the average value of u from both 

equations, i. e., 

where, 

and 

ui, j+1 

ui. ]+l+ui. ]+l 
2 

AüJ+, _ (A+C) uj +b 

A +C) uj +b 
Tuj+I 

_= 
(AT 

r -2r r 

ý. ý 
ýýf 

\\ 

8 

i Substituting (3.5.12) in (3.5.11) we can write ui j+l as, 

i, j+1 
li 

(3.5.11) 

(3.5.12) 

-1 T -1 } 
+A 

+2A ) 
C}uj + {A-1+(AT)-1}b , (3.5.13) 

Au1+1 = (A+C)'1ý +b 

ATu1+1 (AT+C) ui +b } 
I-2r r 

1. 

(3.5.9) 

C 

ý\\ 

r -2r r 

where, 
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Fa a a2---------an-2 

an-3 2a--------a 

a2 a 2- ---- -- --an-4 

A-1+ (AT) -1 
_r 2 2(1+( r) IIý 

n-2 n-3 1 n-4 
aaa --ý --- 

where or 
a 1+6r 

The formula (3.5.13) is stable for all values of r where, 

(SAUL'YEV 1964, p. 53) (3.5.14) 

This method and the alternating method have an error of order (almost) 

0(h2). 

This was an example of how a scheme of category (b) can be 

improved gradually to category (c), according to the classification 

(3.5.2). 

ii) Formulae with Choice of Parameters 

Consider the two equations (3.5.3) and (3.5.4). If the 

combination of them is to be an approximation to 

LU =0, 

and is defined as LAX u, then we have, 

(3.5.15) 

Lpxui, j = -9r(ui-1, j+1+ui+l, j+1)+2(1+9r)ui, j+1-r(2-9) 
(ui-l, j+ui+l, j) 

2[1+r(9-2)]ui j=0. 
(3.5.16) 

This implicit equation has an optimal accuracy, with error of order 

0(h2) i. e. it belongs to type (c) of (3.5.2) but it is no longer 

explicit. The following theorem will show how equation (3.5.15) can 
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have a higher order of accuracy' for different choices of parameters. 

Theorem 3.5.1: (SAUL"YEV 1964- , P9Z) 

If the solution of equation (3.5.15) has derivatives up to the 

8th order which are bounded in absolute magnitude throughout D, then 

the following relations hold in D: 

0 (h2) if 0/1_ 
6r 

. 6: l - 2r 

L(ui. ý)-LAX(ui, j) j 0(h4) if 6=1- 6r , r# 
1 

f -, _/ 

0(h6) if 0=1- 
6r 

1r= 

2I 

1 

2ý 

(3.5.17) 

where L(ui"j) and LAX(ui'j) are the differential and difference 

expressions respectively. 

Proof: 

In the proof two subjects will be considered, the stability and 

the accuracy of equation (3.5.16). 

1. To investigate the stability we will use the matrix method. Hence 

equation (3.5.16) can be written in matrix form as, 

Alui"j+1 A2ui, j +b 

or ui"]+1 A11(A2ui". +b) " (3.5.18) 

where A1=0C-21, A2=-21+(g-2)C, 

is the tridiagonal matrix as given in (2.5.10) and I is the 

identity matrix. Since the eigenvalues of C are given by, 

as(C) _ -4r sin2 2n ' s=1,2,..., n-1 (3.5.19) 

therefore, Xs(A1) _ -4er sin2 2n 
-2' (3.5.20) 

and X (A2) _ -2-4(6-2)rsin2 
2n 

' 
(3.5.21) 

For the stability of (3.5.16) we need, 



64 

XS (A2) 
TS (Al) 

2+4(6-2)r sin2 
2n 

2+40r sing 
2n 

: 1, (3.5.22) 

or -2-4er sin2 
sit ; 2+4(0- 2)rsin2 sir ; 2+40rsin2 s7r (3.5.23) 
2n. 2n. 2n 

The righthand side of this inequality is always fulfilled and for 

the 1. h. s. we have, 

Br (0-1) sing 2n >. -4 

or 1 
r' 2(1-0) ' 

(3.5.24) 

which is the stability condition for equation (3.5.16). Thus, for 

any value of 0 there is a specific value of r that satisfies the 

stability of (3.5.16). 

2) For the accuracy of (3.5.16) we apply a Taylor series expansion 

to replace the values of u involved in (3.5.16) in the neighbourhood 

of (ih, (j+l)k) to obtain, 

LAx (u i, j+l)-L 
(uij+l) = 12 

2 
(6r-68r-1) 

a2t2 
i, j+l 

43 

360(120r2+1-30r+156r-909r2) 
a3i, 

j+1 + 0(h6). 

at 
(3.5.25) 

This general formula expresses the accuracy of (3.5.16). When Oil-1/6r, 

then no change will happen and the first condition of (3.5.17) is held. 

For 6=1-1/6r, the coefficient of h2 in (3.5.25) vanishes, and hence 

the second condition of (3.5.17) holds. 

For the third condition of (3.5.17) to hold, we need the 

coefficient of h4 in (3.5.25) to vanish, i. e. the term in the brackets 

120r2 + 1-30r + 156r - 908r2 =0 

which is satisfied for 8=1-1/6r and r- . Hence an accuracy of 0(h6) 
2g 

has been achieved. This shows how the scheme with accuracy of type (c) 

in classification (3.5.2), can be moved to type (d) and up to type (e) 
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with a proper choice of parameters. 

Remarks on Theorem 3.5.1 

1. For 0=0 and r=1/6, an explicit equation with an accuracy 0(h4) is 

obtainable. The scheme, 

=12 ui, j+l 6(ui-l, j+ui+l, jý +3 ui. j 
(3.5.26) 

was considered by Milne (1953, p. 134) and D. Yu Panow (1955, p. 125). 

2. For 6=1-1/6r, the formula of Douglas is obtained with accuracy of 

O(h4) when r/ 
1 

and O(h6) when r=1 The formula is written 
2/ 2/ 

as, 

(1-6r)(ui-l, j+l+ui+l, j+l)+(10+12r)ui, j+1 - (1+6r)(ui-l, j+ui+l, j) 

+(10-12r)ui, j . (3.5.27) 

3. The stability condition (3.5.14) for the explicit equation 

(3.5.13) coincides with the condition (3.5.24) of the implicit 

equation (3.5.16). 

4. The identity 
aSU asfau 

ats at' -'ax" , s=1,2,... 

a=1,2,..., s, 

has been used for the diffusion equation in Theorem 3.5.1 but it 

cannot be extended directly to the cases of variable coefficient 

and multidimensional equations. 

We have already seen different ways of achieving a higher order of 

accuracy: 

a) Altering the direction in space, at every time step, when 

solving the equation. 
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b) Taking the arithmetic mean of solutions in different 

directions. 

c) Imposing a more strict choice on the free parameters. 

Other methods of increasing accuracy are as follows. 

iii) Alternating Method 

In this method the two classical implicit and explicit formulae 

are used alternatively at every time step. Although the explicit 

scheme is only stable for small time steps compared with the implicit 

scheme, this combination seems to cancel this restriction and is valid 

for any time step. 

Theorem 3.5.2 

The scheme, 

ui, 2j+1-ui, 2j'_ ui-1, j+1-2ui, 2j+l+ui+l, 2j+1 
k 

h2 

u, 2j+2-ui, 2j+1 ui-1,2j+1-2ui, 2j+l+ui+l, 2j+1 
k= -_ 

h2 

(3.5.28a) 

(3.5.28b) 

is absolutely stable, if the time step At (i. e. k) is constant or 

changes after an even number of time steps [SAUL'YEV, 1964, p. 23]. 

Proof: 

The two equations (3.5.28a) and (3.5.28b) can be written in 

matrix form as, 
Au2j+1 = u2j ' 

and 

respectively, where, 

u2j+2 = $u2j+1 ' 

A= I-rT and B= I+rT , 

(3.5.29a) 

(3.5.29b) 

(3.5.30) 
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with i as the identity matrix and T is given as, 

F1_ -1 

2 

T_ 

\\ 
\\\ 

ý\\ 

0 
%. I 

(3.5.31) 
\ 

\\\ 
\\\ 

\\\, 

ý-1 \2 -1 

-1 2 

The two equations (3.5.29a) and (3.5.29b) can be written as, 

u2j+2 = (BA-1 )u2j . 

To prove the stability of this equation it is necessary and 

sufficient for the amplification matrix (BA l) 
to satisfy, 

IIBA 1II 
:1. 

As the eigenvalues of T are given by, 

as(T) = -2+2cos 
Sir s=1,2 n-1, 

= -4sin2 
2 

Therefore, 

and 

0 ýýý 
ýý 

ýýý 
ý\ý\- 

as(A) = 1+4r sin2 
2n 

as(B) = 1-4rsin2 2s7r n 

Thus the stability condition for the equation (3.5.32) is, 

1-4rsin2 sir 
n51 

1+4rsin2 sn 
n 

(3.5.32) 

(3.5.33) 

(3.5.34) 

(3.5.35) 

(3.5.36) 

which holds for all r>O. 

We shall mention that the order of use of (3.5.28a) and (3.5.28b) 

does not make any change in the Theorem (3.5.2). Another way of using 

the explicit and implicit formulae alternatively is nodewise along the 

same line instead of linewise. In this method the implicit equation is 

-1 2 -1 
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used explicitly, thus it is called Implicitly-Explicit. It was 

proposed by Saul'yev (1964, p. 66), Gordon (1965) and was called Hopscotch 

by Gourlay (1970) later. In a simple form it can be written as, 

u2i, j+1 = ru21-l, j+(1-2r)u2i, j+ru2i+1, j' 1; i, 2 (3.5.37a) 

and 

u=1 {u +ru +ru }, i; i`n+1 (3.5.37b) 
21-1, j+1 1+2r 2i-l, j 2i, j+1 2i-2, j+1 2 

Figure 3.5.2 shows how equation (3.5.37b) can be applied 

explicitly, where equation (3.5.37a) is applied at the nodes denoted 

by the letter E and (3.5.37b) is applied at the nodes denoted by I. 

J +l 

J 

IEIEIEI 

FIGURE 3.5.2 

In this method we have to keep the order of the equations that are used, 

i. e. to apply the explicit equation first as it provides a known value 

at the j+lth time level which is then used in the implicit equation. 

Other ways of increasing the accuracy of the equations (3.2.6) 

and (3.2.7) is to take the average, i. e., 

ui, j+k-ui. j 
= 

ui+l, j-2ui2j+ui-l, j 
+ 

ui+l, j+l-2u2, j+l+ui-1li+1 

hh (3.5.38) 
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which is the well known Crank-Nicolson formula of accuracy O(h2+k2). 

The summation of (3.5.28a) and (3.5.28b) gives the formula, 

ui, 2j+2-ui, 2j 
_ 

ui+1,2j+1-2ui, 2j+l+ui-1,2j+1 
2k h2 

I (3.5.39) 

which is the unstable Richardson formula of accuracy O(h2+k2). 

Formally it is written as, 

ui, 1C+1-ui, R-1 ui-1, k-2ui, k i+l ,ý 
2k = 

h2 
, 1C=2 j+l . (3.5.40) 

iv) Multi-Level Difference Schemes 

A higher order accuracy is produced if more time levels than the 

minimum number required by the differential equation are used in 

constructing a difference scheme. As an example of improving the 

accuracy of the classical implicit scheme for the heat equation (3.2.2) 

we have, 
ui, j+l-uiºj 

= 
ui-1, j+1-2ui, j+l+ui+l, j+1 

+ O(k)+O(h2), (3.5.41) k 
h2 

which uses the three time levels, of Richhtn3erand Morton (1967, p. 86) 

given below, 

3/2 uij+1-2ui, j+ju i, j-1 
- 

ui+l, j+1-2u i. j+l+u-1, j+1 22 
k- 

h2 
+ 0(k )+O(h ). 

(3.5.42) 

it is clearly seen that in a three time level scheme such as (3.5.42), 

initial conditions are required on two time levels j-1 and j to obtain 

the solution on the (j+1)th time level. At the beginning of the 

process, where only the initial conditions at the zero time level is 

available, a simple two-time level scheme needs to be used. When the 
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extra initial data on time level 1 then becomes available, the scheme 

(3.5.42) will be applicable. It is essential that the data calculated 

at level 1 should be of an accuracy comparable with that of the three- 

level scheme. (MITCHELL, 1969]. 

Equation (3.5.42) can be written as, 

-2rui-l, j+l+(3+4r)ui, j+1-2rui+l, j+l = 4ui, j-ui, j-1 ' 

In matrix form, this becomes, 

uj +1 = 4A-1uj -A-1uj-1+A-1G, +1 I 

(3.5.43) 

(3.5.44) 

where c'+1 is the vector of the associated boundary conditions and, 

(3+4r) -2r 

-2r 3+4r -2r 

A= 

0 

\ 
\ S. \ 

S. ý\ 

ýý 

-1 
1ý 

0 
11 

-2r (3+4r)J 

If we put, 

wJ+1 - 

/- - 

U7 +1 

uj 
-- 

I (3.5.45) 

then we can write equation (3.5.44) in the partitioned form as, 

Iuj+l 

`ý 

4A-1 H_111 

- -I O 

or wj+l = Pwj + c7 

uj 
-1 

I Cj 
+ ý_. 

ý 

L .J 

where P is the coefficient matrix in (3.5.46). 

U. 
J 

-2r (3+4r) -2r 

(3.5.46) 

(3.5.47) 

This is now reduced to a two level formula which will be stable 
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if the modulus of the eigenvalues of P are less than or equal to unity. 

Assuming that the matrix A, of order n-1, has n-1 distinct eigenvalues, 

Xs, s=1,2,..., n-1. Then it has n-1 linearly independent eigenvectors. 

The eigenvalues 4 of P are the eigenvalues of the matrix, 

['4Z /AS -1/. AS 

1O 
ý 

I 

where Xs, s=1,2,..., n-1 are described above, and are given by, 

n as =3+ Sr sin2 `, s=1,2,..., n-1 . (3.5.48) 

From, 
4/a -u -1/x 

det(P-µI) = det SS=O 

1 -µ 

we get, 

ss 
or, 2/4- --; k 

-I- 
s 

_ [2#/l-8rsin2 2L]/(38 
rsin2 Zn) 

if the roots are real, lµl_'(2±1)/(3+a), Q>O, hence jp1<1. 

When the roots are complex, 141= 
2s , <1. Therefore, 

(3+8rsin 
2n 

the scheme (3'. 5.42) is unconditionally stable. 

As the above example is an implicit scheme, now we demonstrate 

an explicit scheme. Richardson (1910) has proposed the scheme, 

ui. j+l-ui, j-1 ui-l, j-2ui, jui+l, i 22 
2k 

h2 
+ O(k )+O (h ). (3.5.49) 

As mentioned earlier, although it has an order of accuracy of 
22 

O(k)+O(h), it is unconditionally unstable. To show this we will 

1 -µ 

use the same partitioning technique to reduce it to two time levels. 
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Equation (3.5.49) can be written as, 

, j+1 - 2r6 2x 
ui 

,j+ 
ui, j-1 

As in (3.5.45) let, 

w0+1 

equation (3.5.50) can then be put in matrix form as, 

rui+i1 

U. 
.ý 

or 

where, 

P= 

ý, ui, j+l 
ui j 

rdX 1 

1O 

Wj+l = Pwj 

r_ 
2 

rý 

U. ý 

u J-1 

As before using a Fourier series to represent the error terms, 

A 
w i, j =wo, j e 

ißih 

(3.5.52) 

where w0, j 
is a constant vector, and substituting in (3.5.52) gives, 

r-8rsin2 ý1 

W7+1 

1. o 
w, 

ý 

(3.5.50) 

(3.5.51) 

I 

The amplification matrix above has the eigenvalues, 

ai = -4rsin2 
ý± (1+16r2sin4 ý)l 

, i=1,2. 

(3.5.53) 

For the stability of (3.5.52) we need that 1x11,1, i=1,2. ' 

This condition is violated by X2, i. e. when the negative sign is used, 

for all r, [MITCHELL, A. R., 1969, p. 88]. If however, the initial 

boundary value problem considered is reduced to a pure boundary value 

problem, then the Richardson scheme becomes stable (SAUL'YEV, 1964, p. 901. 

lraX 1 

1O 1O 
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The stability problem of Richardson's formula can be overcome and 

explicitly maintained if DuFort-Frankel's suggestion is used. 

DuFort-Frankel (1953) replaced the term 2ui, 
j 

by (ui, j-1+ui, j+l)' 

therefore (3.5.49) becomes, 

I L 

h 
which can be written as, 

(1+2r)ui. j+1 = 2r(ui+l, 
j+ui-l, j)+(1-2r)ui'j-l 

In matrix form this becomes, 

where, 

and, 

B=2r 

ui, j+1-ui, i-1 
= 

ui+1, j-(ui, j-l+ui, j+l)+ui-i, j 
2k 

.2 
(3.5.54) 

(3.5.55) 

AuJ+l = Bu7 + Cuj-1 , (3.5.56) 

A= (1+2r)I, C= (1-2r) I, 

fÖ 1 

ýý1 0ý1 

1O1 
1.1. 0 

`\ \\ IN 

\ \ \ %. 

0 
1 oj 

, 

Reducing the formula to two time levels, from equation (3.5.56) we get, 

wj+l = Pw, 

[A1B 

I 

A_1C 

0 0 
(3.5.57) 

For stability, we require that the eigenvalues g, of p to be 

less than or equal unity in modulus. 

For P we have, 

I4 2-µA-1B-A-1CI 
=0 (3.5.58) 

or 
I4 2A-µB-CI 

=0. (3.5.59) 
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This in fact can be written directly as, 

(1+2r)4 
2-4rµcos SIT 

- (1-2r) =0 n. 
(3.5.60) 

which shows that 141 <1 for all values of r, therefore (3.5.54) is 

stable. 

However, although this scheme is stable, it suffers from the 

inconsistency with the heat equation as discussed in Section 2.6. 

A general three-time level explicit difference scheme for 

the approximation of the heat equation (3.2.2) is given by Jain (1979, 

p. 214). It involves seven points and may be written as, 

(1+t)ulýj+1 = [1+2T+r(1-y)6 
X2 

luiýj-(t-rYdX]ui"j-1 (3.5.61) 

where T and y are arbitrary parameters. The truncation error of 

(3.5.61) is of order, 

1. (At+(px)2) if y and T are arbitrary. 

2. (At)2+(Ax)2 if T+Y+}=0 and either, y or T is arbitrary. 

3. (Ax) 
4 

if T+Y+}- 12r =0 and either y or T is arbitrary. 

The stability condition for (3.5.61) is: 

1.1+2T-2 (1-2y) r, O 

2.1-4yr>O . 

We find that for: 

1. y, O, the conditions (3.5.63) are satisfied if, 

O< rL1+2T and 1+2r >O, 2 (1-2y) 

(3.5.62) 

(3.5.63) 

2. y<}, the stability condition is obtained as 0<r<rmin, where 

1+2T>O and, 
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rmin = min 1+2t i4y 
' 2(1-2y) (3.5.64) 

The above conditions are shown in Fig. (3.5.3). 

? 
ý 

-F--T--1 
}x 

I I 

FIGURE 3.5.3 

stable 

O<r<r 
min 

Having seen some advantages of the multi-level formulae over 

some two-level:; formulae as far as the accuracy is concerned, they, 

in fact, have some disadvantages, where the stability in Richardson's 

method and the consistency in DuFort-Frankel's method are serious 

problems. 
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3.6 DERIVATIVE BOUNDARY CONDITIONS 

Boundary conditions of derivative type are not less frequent, 

in practice, than other types of boundary conditions. 

Consider the heat equation (3.2.2) subject to the boundary 

conditions, 
Du 

_ ax =p (U i) at x=0, O<t: T 

Du 
ax -q (U-w2 ) at x=1, O<t, <T , 

(3.6.1a) 

(3.6.1b) 

where p, q, w1, w2 are constants and p, g3O. 

These conditions do not give the temperatures at the end points, 

i. e. the temperatureisstill unknown at the end points. Therefore we 

need two more equations, one for each end. These equations are the 

difference approximations of the derivatives on the boundary conditions 

(3.6.1a) and (3.6.1b). A forward difference for the left end and 

backward difference for the right end can be used, see Figure(3.6.1), 

and equations (3.6.1a) and (3.6.1b) will be, 

ul, J -u0'j_ 
Ax p( uo 

, j-wl 
) 

au =n (U-w ) 

ax `" 1" 

u(-l, j 
ýE- -- 

-1 

un, j -un-l 
,j 

Ax = -q(un j-w2) , , 

au 
ax 

u(O, j) u(1, j) u(n-l, j u(nj) 

0 1 n-i -- "n+l 

2 n-1 

(3.6.2a) 

(3.6.2b) 

-q (U-w2 ) 

u(n+l, j) 

X 

FIGURE 3.6.1 
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respectively. For a more accurate approximation, the central difference 

is used, and is written as, 

u 
15 

2ýx1ý - P(u0, j Wl) , for the left end, (3.6.3a) 

and 
un+1 un-1 

20x = -q(un j-w2), for the right end, (3.6.3b) 

which can be written as, 

ui-l, j = -2Oxp(u0 
,j 

wl)+ul. j ' 

and, 
un+1, j= -2 dxq (un 

,j 
-w2 )+u 

n-l, j ' 

(3.6.4a) 

(3.6.4b) 

This, as we can see, creates two extra nodes, which are not on 

the domain, namely the points u_l, j and un+1, j, where the temperature 

is not known. To eliminate them we apply the formula used for the 

interior points, on these boundary points, assuming that the heat 

equation is satisfied at the end points. The unknown u_l/j and un+l, j 

are obtained as below. 

To solve this problem using the Crank-Nicolson formula, we apply 

equation (2.4.15) for i=0 to get, 

-ru-1, j+1+(2+2r)uo, j+1-rui, j+1 = ru-1, j+(2-2r)uo, j+rul, j. 
(3.6.5) 

Substituting u_1, ß of equation (3.6.4a), in equation (3.6.5) 

results in, for all time levels, 

-2ru1, j+1+(2+2r+2rhp)u0, j+1 . 
2ru1, 

j+(2-2r-2rhp)uo, j+4rhpw1. 
(3.6.6) 

Analogously for the points (n, j) and (n, j+l) then by applying equation 

(2.4.15) for i=n, and substituting un+l, j and un+l, j+l in (3.6.4b) we 

get, 
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-2ru n-1, j+1 +(2+2r+2rhq)u 
n, j+1 = 2ru 

n-1, 
+(2-2r-2rhq)u 

n 
±4rhgw 2 ,, 

(3.6.7) 

Thus, the system of equations can be expressed in the form, 

Au J +l = Bu7 +b, 

where u. =(u ,u,..., u )T, 
"0 O, j Ili n, j 

A= 21-rQ, B= 21+rQ , 

where Q is an (n+l) th 
order matrix and is given as, 

r-2(1+rhp) 2 

4= f 

(3.6.8) 

L2 -2 (1+rhq)J 

and b is the (n+l) th 
component vector involving the boundary conditions 

and given as b=(4rhpwl, O, O,..., 4rhgw2). 

To prove the stability of (3.6.8) we put it in the form, 

uj+1 = A-lBuj + A-lb . 

where it is assumed that A is non-singular. 

We note that the matrix Q is not symmetric and so 

A-1B = (2I-rQ)-1(2I+rQ) . 

Therefore, we introduce the diagonal matrix, 
r2 

1 -2 1ý 
. `ý. 

ýý. 
ý. ý 

ýý` 

0 

`1 

1, O 
D= 

ý 
0 

1 

(3.6.9) 

�1J 
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so that Q is similar to the symmetric matrix, 

Q= D_lQD 

i. e. they have the same set of eigenvalues. Then, 
ti 

(A_1B) = D_1(A_1B)D 

= D-1(2I-rQ)-1(2I+rQ)D 

= [D-1(2I-rQ) -1D] [D-1(2I+rQ) D] 

= [D (2I-rQ) D-1] -1 [D-1(2I+rQ) D] 

(21(21+rQ) 

The two matrices (2I-rQ)-1 and (2I+rQ) are symmetric and commute, and 

so (A-1B) is symmetric. Therefore A-1B is similar to the symmetric 
... 

matrix (A-1B). Then the necessary and sufficient condition, for stability 

is, ti 
P (A_1B) =P (A-1B) f 

where P(A-1B) is the spectral radius of A-1B. 

Ai = (2-rX i) 
-1(2+rai) 

, 

Let µi (i=0,1,.... n) be the eigenvalues of A-1B given by 

(3.6.10) 

(3.6.11) 

where Xi (i=0,1,..., n) are the eigenvalues of the matrix Q. 

To satisfy the condition (3.6.10) we need A. (i=0,1,..., n); 0, 

which can be seen to be quite easily satisfied by using the Gerschgorin's 

Theorem, where we find that, 

-4-2rhp 

X4=j or 
1 I or -4-4rhq ) 

which are negative in all cases. Therefore, equation (3.6.8) is 

unconditionally stable. 
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3.7 NON-LINEAR PARABOLIC EQUATIONS 

Many of the numerical methods and techniques of proof for linear 

equations with constant coefficients carry over to nonlinear equations. 

However conditions of stability and convergence are more complicated 

to investigate. Direct methods, in general, are difficult to apply, 

so iterative methods are usually used to solve them. 

There are many physical problems of nonlinear behaviour, for 

example, the heat conduction problem given by, 

PC au =a (K 
aU) 

, (3.7.1) 
at ax. ax 

where P, C and K may depend on U. 

A more general case of nonlinear parabolic equation is written as, 
2 

F (x, t, U, 
at 

' ax 'a 2) =0, o<x<l, 
ax 

O<t, T, (3.7.2) 

with the conditions, 

U (x, 0) =f (x) , O. xiýl 

U (O, t) = gl (t) 

U (1, t) = g) (t) .. I... / i_ . 

0<t<, T 
I 

u tl, t1 = g2 tt) ) 

(3.7.3) 

For special cases of this we mention the work of Douglas (1956), for 

the quasi-linear parabolic equation, 
2 

aU-.., av . ... __ - ... __ 
ax 

2= r" txz, u) at *u tx. L. u1 " r, a. >u. (3.7.4) 

Also Richtmyer and Morton (1967, p. 201) considered the non-linear 

problem of the form, 

at ax2 

aU 
_ 

a2Un 
i (3.7.5) 

with n=5. 

Stability of the finite difference scheme, for nonlinear equations, 

depends not only on the form of the scheme but also upon the solution 
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itself (i. e. whether we have local stability), where the system may 

be stable for some values t (time) and not for others. In practice, 

when there is conditional stability, it is necessary, sometimes, to 

alter At in order to restore stability. 

Equation (3.7.1) can be written in the form, 

ago . -- au ago. 
ax 

or 

= FIx, L. u, 
at 

, 

ax 
21 , 

Du DU a2U 
at =F (X't'U' ax .2), 

ax 
where 2aF 2 >a>O for real a. 

a ca u/ax 
In analogy, as the weighted average formula, 

(u- 
At 

ý- )=e1a 
aX (ui )+ ýý-e )1 ax (u 

i+1) 
(Ax) ,j (Ax) 2 ,j 

(3.7.6) 

(3.7.7) 

(3.7.8) 

is used for approximating the linear heat equation (3.2.2), it can 

also be used to approximate equation (3.7.7), to give, 

(ui, jýt-ui, j) 
= F(iAx, jAt, [6ui +(1-8)u 

+1] 
, 

,jt,. ý 
(ui+1, 

j-ui-1, j) 
2 Ax 

(ui+l, j+l-u 
2Ax 

d2u 
le 6xýýý 

+ 0-9) x i, +1) 
(Q ('Ax) 2 

(3.7.9) 

As in the linear case, for 8=1, }, 0, equation (3.7.9) becomes the 

explicit, Crank-Nicolson and implicit formula respectively. 

In the case of equation (3.7.1), a different technique is used. 

The simplest difference approximation to (3.7.1) is, 

P(ui, 
j). C(ui, j) 

(ui, 
jQý-ui, j) 1n . __ .. n" _/ 9 '7 1 n\ 

(Ax) 2 
OXLK(ili. 

1)0 xUi, jJ '% . 7.1 . 
ZV, 
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or 

P(ui, j). C(ui, i) 

ui, jýt-ui. 7 
= 

1 

(AX) 
2ýKýui+ý, jý 

K(ui-}, jiiui, j-ui-l, j)l ' 

Putting, 

leads to, 

K(ui+}, j) = K(ui+1.2+ui, 
i) 

and 

K(u K(uiºj+ui-1, 
j) 

i-}, j 2 

(3.7.11) 

P(u ýC(u. ) 
(ui. j+1_ui. j) 

=1 IK(ui+l. j+ui. j)(u u i, j i, j At h2 2 i+l, j i, j 

2 
, j)(uilj. 

-K(ui'jui-l 

which is an explicit formula. 

(3.7.12) 

Also, an implicit replacement for the nonlinear equation gives 

rise to a system of nonlinear difference equations. For example, let 

us consider the equation, 

L(U) = F(x, t, U) 

where L is a linear partial differential operator. Denoting 

2 
L=(ät -a 2), the weighted average form of (3.7.13) becomes, 

ax 

(3.7.13) 

(uj+l-ui, j) 
= 6[ 

ax 22u 

+F(iAx, jAt, u )]+(1+8)[ 
ö2 

i, x uiý+ At (Ox) i, j i. j (Ax) 
2 j+1 

F(iAx, jAt, ui, j+l)> ' 

or, 

(3.7.14) 

-grui-1, j+1+(1+2r6)ui, j+1-Arui+l, j-9(Ot)F(ui, j+1) = r(1-9)u + i-lýj 

[1-2r(1-6)]ui, j+r(1-6)ui+l, j+(et)(1-8)F(ui1j)" 
(3.7.15) 
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Let the boundary conditions be given by, 

au 
ax =v0 x=o, t>O , 
aU 

ax 
= -U, X=1, t>0 , (3.7.16) 

and the initial conditions U(>, 6)=1, O<x, <1, and using the 

central difference operator to approximate the boundary conditions, 

we get, after some arrangements, the matrix equation, 

(I-r(1-0)Bjuj+1-Ot(1-O)F(uj+1) _ [I+rOB]u+AtOF(uj) , (3.7.17) 

where, 

2(1+L, x) -2 

B= 

. ýý 
,.. 

\ý \\I 

ýý. 

-1 2 

2.2 (1+px)J 

As can be seen from equation (3.7.17), the function F on the 

left side, is dependent on uj+l and this often accounts for the non- 

linearity, therefore the system cannot be solved directly, but an 

iterative (indirect) method needs. to be employed. 
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3.8 ITERATIVE TECHNIQUES 

Iterative methods consist of the repeated application of a simple 

algorithm. They yield the exact answer only as a limit of a sequence, 

even without consideration of round-off errors. 

In any iteration one begins with an initial approximation and 

then successively modifies the approximation according to some rule. 

To be useful the iteration must converge but it is not considered to 

be effective unless the convergence is rapid [W. F. AMES, 1977, p. 98]. 

i) Nonlinear Equations 

Let us consider the iterative methods for determining the 

solutions of the equation, 

f(x) =0 

where f and x are vectors of the same dimension n. If n=1, then 

(3.8.1) is a single equation, and if n>1, then it is a system of n 

equations. As it is impossible to solve such systems directly, 

iterative methods of solution are necessary. 

Successive substitictions, in which (3.8.1) is first rewritten 

in an equivalent form, 

x=g (x) , 

and use is made then of the recurrence formula, 

xk+l = g(xk) . 

(3.8.2) 

(3.8.3) 

Generally there are many convenient ways of rewriting (3.8.1) 

in the form (3.8.2), and the convergence or divergence of the 

sequence of approximations, to the limit a may depend upon the 

particular form chosen. 

In order to see this, we assume that g(x) has a continuous 
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derivative on the closed interval bounded by a and xk and it is clear 

that, 

a=g (a) . (3.8.4) 

Equation (3.8.3) implies that, 

where the 

a xk+l = g(a)-g(xk) = (a-xk)g'(& k) , (3.8.5) 

lies between xk and a. If the iteration converges, 

i. e., xkthen also g' (ýk) =g' (a) as k-°. If we exclude the cases 

where g'(a)=0 and g'(a)=tl, we can deduce that, 

a-xk+1 (a-xk)g'(a) 

and therefore also that, 

a-xk = c[g'(a)] 
k, 

as k-o. - , (3.8.6) 

where c is a certain constant. This deviation actually would 

grow unboundedly in magnitude as k increases if (g'(a)1>1. Therefore 

in order that the iteration converges to a, it is necessary to have 

jg'(a)k; 1. 

Theorem 3.8.1 

Let g(x) satisfy the Lipschitz condition, 

lg(x)-g(x')l 
'< AIx-x'I , (3.8.7) 

for all values x, x' in the closed interval I=[x0 e, x0+e] where 

the Lipschitz constant A is such that O; a, <l, and let the initial 

estimate x0 be such that 

IxO-g(x0)I ; (1-X)e . 

Then: 

1. all the iterates xk, defined by (3.8.3), lie within the 

(3.8.8) 

interval I, i. e., 
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XÖ E<Xk; XO+E , 

2. (Existence) the iterates converge to some point, say, 

lim xk =a 
k-ý 

which is a root of (3.8.2), and 

3. (Uniqueness) a is the only root in I. 

For proof see[ISoACSON, E. & KELLER, H. B., 1966, p. 86] 

Corollary 

If jg'(x)k, a<l for Ix-x0 ,6 and (3.8.8) is satisfied, then the 

conclusion of Theorem (3.8.1) is valid. 

Proof 

From the mean value theorem we have, 

g (x1) -g (x2) = g' () (xl-x2) , where x1< <x2 

the Lipschitz constant A in (3.8.7) is replaced here by g'(F). 

Definition 3.8.1 

Let xo, x1,..., be a sequence that converges to a, and ek=xk-a. 

If there exists a number P and a constant c/o such that, 

lek+ll 
lita. 
k-*- 1 eklP 

=C I (3.8.9) 

then P is called the order of convergence of the sequence and c is 

the asymptotic error constant. 

Newton-Raphson Method 

Let us consider the nonlinear equation (3.8.1). To derive the 

method from Taylor's formula we expand about xk to get, 
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f(x) = f(xk)+(x-xk)f' (xk)+}(x-xk)2f"(Z) , (3.8.10) 

where f (xkx). By neglecting the quadratic term, and rewriting 

the equation in iterative form, i. e. x=xk+1' we get, 

f' (xk) (xk+1-xk) +f (xk) 2-2f(X)=0, k=1,2,... (3.8.11) 

The Newton Raphson formula is defined as, 

f( x k) 
xk+l - Xk f'(xk 

Recalling equation (3.8.3) gives, 

f (xk) 
g (xk) =X kfý (xk) , 

(3.8.12) 

(3.8.13) 

and g(xk) is called the iteration function. 

The convergence of the method is found by rewriting equation 

(3.8.10) as, 

f (xk )f� 

f' (xk) + (x xk) -'(x-x, r) 
2 

f' (xk) 

and from (3.8.12), 

x-xk+1 -}(x-xk) 
f11ýX) 

k) 
1" 

Let ek=xk-x, we get, 

or, 

2 f"(&) 
ek+l -ý ek fI (xk) I 

k+l f'(x) 
as xkýx. 

ek 

(3.8.14) 

(3.8.15) 

By definition (3.8.1), this method is second order, or quadratically 

convergent. 

This method actually must be provided with a good initial estimate 

to converge. This is shown by the following theorem. 
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Theorem 3.8.2 

Assume that f' (x) jO and f" (x) does not change sign in the 

interval (a, b] and that f (a) .f (b) <O. Then if, 

If(a) 
<b - aand (fI (a) 

f(b) 
<b - f'(b) a, 

then the Newton Raphson method converges from an arbitrary initial 

point x0 in the interval [a, b]. ' 

This is illustrated in Figure (3.8.1), where the iteration 

process converges from any point x0 E [a, b], it may as well diverge 

from some points xö E [al, bl]. 

f 

14 
ý 
I 

i 
ý 
ý ý 

I 
I 

al 

T 
ý 
º 
º 
ý 

i f (b) /f' (b) 

' I ý. 

a 

tI 

J/_ ; 
(a) /f' (a) 

i 
i 
I 

f(a1)/f' (a1) 

f (bl) /f' (b1) 

i // ;i 

i 

FIGURE 3.8.1 

i 
ý ý bl 

ýX 
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The Secant Method 

This method is derived from the Newton Raphson method (3.8.12) 

by approximating the derivative f'(xk) by the difference quotient, 

xk-xk-1 
f, (xk) 3f (xk) -f (xk-1) 

which leads to the following analysis. 

Given the initial approximations x0 and xl, the sequence 

x2, x3,... is computed by, 

Xk+1 = Xk+dk . 

(xk xk-1) 
where ök = -f xk) (f (xk) -f (xk-1)) 'f (xk) #f (xk-1) 

The iteration function g(xk) for this method is, 

g(xk) = ök+xk . 

(3.8.16) 

(3.8.17) 

As the evaluation of xk+1 requires the information of two points i. e. 

xk and xk-l, this type of method is called a two-points iterative 

formula. 

The preference between this method and Newton Raphson's method 

depends on the amount of work required to compute f'(x). If the work 

required to compute f'(x) is more than 0.44 of the work required to 

compute 
.a 

value of f(x), then the Secant method is recommended, 

otherwise Newton Raphson method is to be used. [DAHLQUIST, 1974, p. 2281. 

For a system of non-linear equations, neglecting the second 

order term, equation (3.8.10) can be written in system notation as, 

f (x) =f (xk) +f' (xk) (x-xk) +O (1 x- 1)2. (3.8.18) 

where x and f are vectors of dimension n and f'(xk) is the Jacobian 
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matrix denoted by J with elements 

af 
i (x) fý iX) = 

1, j axj , i, j=1,2,..., n. (3.8.19) 

This leads to Newton Raphson's n dimensional method, 

J (xk) (x3c+1 Xic) +f (xk) =0, (3.8.20) 

which is a linear system of equations for xk+l and can be solved 

directly, if J(xk) is non-singular. 

Although Newton's method is theoretically attractive it may be 

difficult to use in practice. In fact, each step requires the 

solution of the linear system (3.8.20) (the inverse of J(xk) is rarely 

computed explicitly] and especially for problems arising from partial 

differential equations in which the dimension of the system may be 

several thousand, this may be a difficult task. Moreover, at each 

step, not only n components of J(xk) but also the n2 entries of J'(xk) 

are needed, and, unless the partial derivatives afi/axj have a simple 

functional form, it may be desirable to avoid their computation 

altogether. [ORTEGA, J. M. & RHEINBOLDT, W. C., 1970, p. 185]. 

Algorithmic Considerations of the Method 

The algorithmic steps which can be applied to the system (3.8.20) 

are as follows: 

1. Calculate f(xk) and J(xk) 

2. Evaluate xk+1 from the system (3.8.20) 

3. Calculate f(xk+1 

Now the following cases can arise: 

a) If IIf (xk+l) I I<Jif (xk) I (, we continue with the same Jacobian. 
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b) if IIf (xk+l)) 11 IIf (xk) II go to step 2. 

C) if IIf(xk+1)II>1If(xk)II take xk+l=xk Akwk, where wk=xk+l-xk is 

found by solving the system J(xk)(xk+l-xk)+f(xk)=0, and ak 
k 

2 
k=1,... until a reduction in HIf(xk+l)II is obtained (WALSH, J., 

19761. 

As the calculation of the Jacobian matrix is too expensive for 

some non-linear systems, a functional iteration method which does not 

use the Jacobian matrix at all, or a method which replaces the Jacobian 

matrix by some approximation to it is recommended. This latter method 

is the Secant method for linear systems. In this method let, 

Yk =f (xk+l) -f (xk) 

then from (3.8.18) and neglecting the error term, we get, 

Jk)dk = yk , 

(3.8.21) 

(3.8.21) 

where dk-xk+l xk. 

If the Jacobian matrix J(xk) is replaced by some approximation 

Bk, we obtain, 

k+lak Yk ' 

where, 
(Bk6k Ykýgk T Bk+l Bk 

T _gkk#O 
gkak 

with gk, is arbitrarily chosen (say, qk=ök). 

(3.8.22) 

ii) Linear Equations 

Iterative methods are frequently used for large sparse linear 

systems as they make good use of this property. Also in using 

iterative methods, errors due to round-off may be damped out as the 

procedure continues. In fact, special iterative methods are frequently 

used to improve solutions obtained by direct methods. 
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Let the linear system be, 

Ax=b, (3.8.23) 

where A is the coefficient matrix, x is the unko, --. wn vector and 

b is the r. h. s. known vector. 

For our purposes it will be found convenient to express the matrix 

A as the sum of its main diagonal, its strictly lower triangular and 

upper triangular elements, as in the matrix notation, 

1all a12 a13 a14 

tý 
lall 

D= 

A= 

ja 21 a22 a23 a24 

a31 a32 a33 a34 

I 
41 a42 a43 a44 

a22 0 

0 
a33 

441 

and 

, -L = 

= D-L-U , where 

F 

1a21 0 

a31 a32 ý 

a41 a42 a43 ý 

a12 a13 a14 

0 a23 a24 

-U = 

0 
O a34 

0 
Equation (3.8.23) can now be written as, 

(D-L-U)x =b. (3.8.24) 

From this form in fact the Jacobi iteration formula is derived as, 

Dxk+1)= (L+U)xký+ b (3.8.25) 

giving, 
x(k+1) _ D'1(L+U) 

xk+D-1b 
(3.8.26) 

The matrix D 
1(L+U) 

is called the Jacobi iteration matrix. Inspite 
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of its simplicity, it is seldom used because of its very slow 

convergence. 
(k+l) 

In the Jacobi method, one does not use the new values of xi 
(k+1) 

i=0,1,..., n until all the components of the vectors x. _. _ have been 

evaluated. In the Gauss-Seidel method the values of 
xj+l; 

j=011,..., i-1 

that have already been calculated are to be used in evaluating xik+1). 

This formula is written as, 

D 
tk+li 

=k+li + Uxk, + b 

leading to, ( 
x 

k+l) 
= (D-L) -lUxk+ (D-L) -lb 

, 

and the matrix (D-L)-lU is called the Gauss-Seidel iteration matrix. 

The Gauss-Seidel method can be modified by introducing the 

parameter w such that, 

(X 
ixi)= w(x 

+1 
-x i i) 

xk+lý-Xký _ ýD -1 ýýk+1+Uxk+b-Dxký , 

where xi+1 is the new value obtained from (3.8.28), and w is called 

the over (or under) relaxation factor if > (or <) 1. From equation 

(3.8.27) we have that, 
ik+1) (k) (k+l) WW 

D(x -x )= Lx +Ux +b-Dx , 

therefore, (k+l) (k) (k+1) W (k) 
D(x -x )= w(Lx +Ux +b-Dx ), 

or 

hence, 

which gives, 

-1 (k+ll 
-1 ( ki -1 (I-wD L)x = ((1-w)I+wD U}x +wD 

(3.8.27) 

(3.8.28) 

(3.8.29) 

(3.8.30) 

Xk+11_ (I-WD 1L)-1{(1-W)I+WD 

lU)xk+(I-wD-1L)-1wD 
lb. 

(3.8.31) 
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This method is known as the Successive Over-relaxation (Under 

relaxation) method corresponding to the range of 1<w<2 (w<l), 

abbreviated as S. O. R. and the matrix (I-wD 
lL)-1{(1-w)I+wD-lu) is 

called the S. O. R. iteration matrix. 

This modification on the Gauss-Seidel method will allow us to 

choose w so that the solution converges faster, and an optimum 

convergence rate can be achieved if the optimal w is chosen. It is 

noticeable that when w=1, the method reduces to the Gauss-Seidel method. 

Each of the three methods described above can be written as, 
(k+l) (k' 
x= Gx +c, (3.8.32) 

where G is the iteration matrix and c is the vector of known values. 

This equation was derived from the original equation, 

x= Gx +c, (3.8.33) 

where x is the unique solution of the linear system Ax=b. 

Theorem 3.8.2 

A necessary and sufficient condition for a stationary iterative 

method, (3.8.32) to converge from an arbitrary initial approximation 

X0 is that 

p(G) = max IAi(G)I<1 , 
O, i, n 

where p(G) is the spectral radius of G. 

For proof see Section 2.5. 

(3.8.34) 

Theorem 3.8.3 

Let A be a symmetric matrix with positive diagonal elements. 

Then the S. O. R. method converges if and only if A is positive definite 

and O<w<2. 

Proof: See Young, D. M., 1971, p. 113. 
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Remarks: 

1. Qeh(ýOSýýwý. cle'thýEe matrices are produced in the finite difference 

approximation of partial differential equations. 

2. In the practical use of S. O. R. w is usually chosen to be 1; w<2- 

3. The optimal (best value of) w, denoted as woPt, for maximum rate 

of convergence is given by [YOUNG, D. M., 1971, p. 169], 

2 
wopt ' 

1+�1-u- 

(3.8.35) 

. where µ is the spectral radius of the Jacobi iteration matrix 

D 
1(L+U) 

. 
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3.9 NUMERICAL METHODS FOR THE SOLUTION OF TWO DIMENSIONAL PROBLEMS 

Numerical methods for solving problems in one space dimension, 

can usually be extended to solve two dimensional problems. This 

includes explicit, implicit, direct and iterative methods. 

For the heat flow problem in two dimensions, let us consider the 

equation, 
aU a2ua2u 
at ax2 

+ 
ay2 

(3.9.1) 

in the (x, y) plane where O; x; n, O; y, m and t>O, with the initial 

condition, 

U(x, y, 0) = f(x, y) , 

and boundary conditions, 

U(x, O, t) = g1(x, t) 

U(x, m, t) = g2(x, t) 

U(O"y"t) = g3 (y"t) " 

and U(n, y, t) = g4(y, t) 

(3.9.1a) 

(3.9. lb) 

One way of approximating equation (3.9.1) explicitly is by the 

extension of the classical explicit equation (3.2.6), which leads 

to the formula, 

uiºjºk+1 uiºjºk + 
At 

2 X2 
2 (uiºjºk) + 

At 
2 öy(uiºjºk)º (3.9.2) 

(AX) (Ay) 

where the central difference operator 62 is defined as, 

2 axu(i, 
j, k) = ui+l, j, k 

2uiºj, k+ui-l, j, k 

To determine the stability of (3.9.2) we use the Von Neumann analysis 

by assuming an error of the form, 

e 
keißlitix 

eiß2JAY i, j, k 
(3.9.3) 
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By substitution of (3.9.3) into (3.9.2) gives that, 

Y= 
& k+l 

k & 

= 1-4(rlsin2 ( ßl ý2 )- r2 sin 
2( 

ß2 2-)) ,(3 . 9.4 ) 

where rl = 
At 

2 r2 = 
At 

2 and y is the amplification factor. 
(Ax) (Ay) 

For the stability of (3.9.2) we require that IyI; 1, i. e. 

-1; 1-4rlsin2 (ßl 
A2x) 

-r2sin2 (ß2 2 
): 1. 

The right handside inequality is neglected as trivial, so we are 

left with -2 <. -9(rlsin2 (ßl A2 ) -r2sin2 (ß2 v-)), 
which results in the 

relation, 
r1 +r2, }. (3.9.5) 

Thus, for a square mesh Ax=Ay and r1=r2 (=r say) we have, 

r, 1/4 , (3.9.6) 

which is more restrictive than that for the one dimensional problem. 

The local truncation error for the formula (3.9.2) can be derived by 

using Taylor's series expansion and is given as follows: 

T =u -u -Atö2(u )- At? (u ) i, j, k i, j, k+l i, j, k A., 
2 x i, j, k 

A.. 
2 y i, j, k 

Lä d6 py 

_ 
a2v 

- (au) 
ati, j, k 

`ax2, 
i, j, k 

(32U) 
ay2i, j, k 

+ ýot ca2U) _ (Ax)2 ia4U) - at2 i, j, k 12 ax4 i, j, k 
(Dy)2(a44)i 

k+ ... 12 ay , j, 

(3.9.7) 

Hence, 
T= O(At) + O( (AX) 

2+ 
(Ay) 

2) 
" (3.9.8) 

For unconditional stability then logically we turn to the 

implicit formula (3.2.7) which when generalized to two dimensional gives, 
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-u 
22 

uiºj, k+l i, j, k 
ax 

(u )+ -ý(u (3.9.9) 
At 

(Ax )2 i, j, k+1 (QY)2 i, j, k+l 

Using the same stability analysis as above we find that, 

Y 
1 

I (3.9.10) 
1+4rlsin2 (ßi ý2 ) +4r2sin2 ( ß2 2) 

which is less than unity for any r1, r2. The local truncation 

error is (not surprisingly) again of the form, 

T=O (At + (Ax) 2+ 
(Ay) 2) (3.9.11) 

The Crank-Nicolson two dimensional version of equation (3.2.8) is 

given as, 

2ö226 
uiºj, k+l-ui, j, k 

= 1[ 
ax 

(u +x (u + _Y' (u 
At (Ax) 

2 i, j, k+l (Qx) 
2 i, j, k (AY) 

2 i, j, k+l 

d2 
+ (uiý )] . (3.9.12) 

(AY)2 j, k 

For the stability of this formula using the same analysis we 

have, 

Y= 
1-2r1sin2(0l 

22 2) 

1+2r1sin2(ßl ý2)+2r2sin2(ß2 
2) 

F (3.9.13) 

which is always less than unity in magnitude. Hence the Crank 

Nicolson formula is unconditionally stable for rl, r2>0. However its 

local truncation error is of the form, 

T= O((At)2+(Ax)2+(AY)2) . (3.9.14) 

All of the schemes presented above are shown in molecular form by 

Figure 3.9.1. 

Although the implicit equations (3.9.9) and (3.9.12) are 

unconditionally stable, they are much more difficult to solve than 
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(a) Explicit 

(b) Implicit 

i_1 

k+l 

k 

k+l 

k 

J- qpý- . -% ' J. 1, il 
.L *j /- nry 

i-i 

j -1 

(c) Crank-Nicolson 

J +l 

i+l 
k 

FIGURE 3.9.1 



100 

their one dimensional equivalents. They require, for each time step, 

the solution of (nmx nm) linear systems, and as each equation of 

(3.9.9) or (3.9.12) involves five unknowns the system is no longer 

tridiagonal. This requires a great amount of computational work. 

Therefore a method which maintains simplicity, reduces computational 

work and possesses a good stability property was needed. This was the 

Alternating Direction Implicit (A. D. I. ) class of methods. 
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3.10 THE ALTERNATING DIRECTION IMPLICIT METHOD (A. D. I. ) 

This method is especially designed to solve problems in more 

than one spatial dimension. There is no one dimensional analogue 

scheme which has been developed yet. 

In this method the solution is obtained after two successive 

sweeps each time step. These two sweeps are in different directions, 

if the first sweep is in the x direction, then the second one is in 

the y direction. 

This is done by approximating only one of 
2 

the second derivatives (say a 2) of equation (3.9.1) in terms of the 

ax 2 
unknown (new) values of U, while the other second derivative (a 2) 

is 
ay 

approximated in'terms of the known (old) values of U, that is for the 

first sweep. For the second sweep, the opposite thing happens i. e., 
2 

a 

2) 
is to be approximated in terms of the'unknown values of U, while 

DY 
the other second derivative (a 2) is approximated in terms of the 

ax 
known values of U. So for the 1st sweep, we have, 

22 
ui, j, k+i-ui, j, k 

_ 
Sx 6 

-Y( 3.10. la) 
At/2 (Ax)2 

ui, j, k+} + 
(Ay)2 

ui, j, k 

and for the 2nd sweep, 
22 

ui, j, k+l-ui, j, k+} 
ax 

(3.10.1b) 
At/2 (Ax)2 

ui, j, k+} + 
(AY) 

ý2 ui, jk+l' 

This results in tridiagonal systems which can be solved directly 

using (say) the Thomas algorithm. 

The method above was introduced by Peaceman and Rachford in 1955. 

They show that using only one single equation of (3.10.1) leads to an 

unstable scheme and that (3.10.1a) and (3.10.1b) have to be used 
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alternatively for stability. Also it is necessary in the 2 sweeps 

that At is the same for each particular step. This can be shown by 

using the Von Neumann analysis for equation (3.10.1) which gives for 

each sweep, 
k+} 1-4rsin2(ß2 Ay/2) 

1+4rsin(ßl Ax/2) 
2 Y 

ýk 

and 

I- .,. "1 I 

ýx*'ý2 1+4rsin`(ß2 Ay/2) 

respectively, where r= 
At 

2= 
At 

2 for simplicity. For some 
2 (Ax) 2 (AY) 

values of 0 
l, 

ß2 and r any of the above two ratios has an absolute 

value considerably greater than unity. However the overall stability 

ratio for the two sweeps is given by, 

ýk+1 
_ 

1-4rsin2(ß1 Ax/2) 1-4rsin2(ß2 Ay/2) 
(3.10.3) Yk 

1+4rsin2(ß1 Ax/2) 1+4rsin2(ß2 Ay/2) 

which has an absolute value less than unity for all ßl, ß2 and r. 

Equation (3.10.1) can be written in implicit form as, 

(1-r/2 dx2 )ui, j, k+} = (1+r/2 dy)ui, 
j, k º 

and 

(3.1O. 2a) 

tk+l 1-4rsin2(ß1 6x/2) 
Y=_ (3.10.2b) 

(1-r/2 6 2) 
u= (1+r/2 d2) u 

y i, j, k+1 x i, j, k+} 

(3.10.4a) 

(3.1O. 4b) 

Eliminating the intermediate values of u i, j, k+} 
in these 2 

equations gives, 

order, 

(1-r/2 dy 2)u 
i, j, k+1 = (1+r/2 dx 2)(1-r/2 

dx 2)-1(1+r/2 dy2)u i, j, k" 

(3.10.5) 

This formula can be shown to have a local truncation error of 

T=0( (At) 
2+ 

(Ox) 
2+ 

(AY) 2) 
º 

(3.10.6) 

which is similar to Crank-Nicolson's (DOUGLAS, j., 1961]. 
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3.11 ITERATION BY A. D. I. METHOD 

We have seen in the previous section that the A. D. I. method 

enables us to solve directly the resulting tridiagonal systems of the 

heat flow linear equations. 

The A. D. I. method may also be used to iterate to the solution of 

Laplace's equation. In this case, each stage of iteration may be 

regarded as a time step of an unsteady-state problem, while the 

starting values used for the first iteration correspond to the initial 

condition. 

Consider the Laplace's equation, 
22 3II U 

+ =O 
ax2 ay2 

defined on a square domain with Dirichlet boundary conditions. This 

can be represented in terms of the five point finite difference 

formula, 

(ui-1, j-2ui, j+ui+l, j)+(ui, j-l-2ui, j+ui, j+1) =0, 

i, j=1,2,..., n, (3.11.2) 

where it is'assumed that Ax=Ay. In matrix form this is written, 

Au =b, (3.11.3) 

where b is the vector associated with the boundary conditions, A 

is a n2Xn2 matrix of coefficient and u is the vector of unknowns. 

The matrix A can be split into component form as A=H+V+E, where H 

and V are tridiagonal symmetric and positive definite matrices, and 

the matrix E is a non-negative diagonal matrix. Thus, equation 

(3.11.3) can be written as, 

(H+V+E)u =b (3.11.4) 
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By ordering the mesh points by rows, one can make H tridiagonal 

whilst by ordering them by columns, one can make V tridiagonal. 

However one cannot in general make them both tridiagonal simultaneously. 

Equation (3.11.4) is equivalent to the forms, 

(H1+pI)u = b-(V1-pI)u , (3.11.5) 

or (V1+pI)u = b-(H1-pI)u , 

where H1=H+}E, V1=V+}E, p is scalar and I is the identity matrix. 

This suggests the iterative method, 

k) (H1+pkI)ük+ýý= b-(Vi pkI)( u 

(V1+pkI)ük+11= b-(H1-pkI)ük+j), 

where k is an iteration index. The scalar p is called the 

(3.11.6a) 

(3.11.6b) 

acceleration parameter, and its value is chosen to maximise the rate 

of convergence. It is obvious that 
u 

represents a starting 

approximation. We shall bear in mind that in equation (3.11.6a), Hl 

is a tridiagonal matrix and in equation (3.11.6b), V1 is also 

tridiagonal. In fact this alteration must occur in each cycle of 

double iterations (two sweeps). I 

For the convergence of the method of A. D. I., from equation 

(3.11.6) we have, 

ük+})= (H1+pkI)-lb-(H1+pkI)-1(V1_pkI)uWý (3.11.7) 

k+1)-lb-ýV1+pkI)-1(H1_pkI) ýk+}) 
= (3.11.8) 

and this leads to, 

ük+l)- (V1+pkI)-l(Hl-pkI)(H1+pkI)-1 (V1-pkI)u 
+S. 

or 
(k+l) (k 

=Gu 
+S 

p 

(3.11.9) 

where, 
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j-1 

j+l 
k+l time level 

k time level 

i-1 

J-1 
k time level 

FIGURE 3.11.2: The A. D. I. method molecular diagram for one time step 

j -1 

k+2 iteration 

k+l iteration 

k iteration 

j+l 

FIGURE 3.11.3: The A. D. I. iterative method molecular diagram for one 
iteration 



106 

(3.11.10) Gp = (V1+pkI)_1(H1-PkI)(H1+pkI)-1(V1-PkI) 1 

is called the iteration matrix, and, 

S= (Vl+pk2)-1{I+(H1-pk2)(Hl+pk2)-1}b . (3.11.11) 

If we denote the error vector by e then 
ek= uk- 

u and 
ek+1) 

GeW 
k 

in general after k iterations, 

where, 

(k) k 
_ (. ý Gp )e ýý 

, K>1 , 
j=1 j 

k 

... 7TG = GPk"GPk-1 GP1 

(3.12.11) 

(3.11.13) 

Now for the stationary case with pj=p, the matrix Gp defined as, 

Gp = (Vl+pI)Gp(V1+pI)-1 (3.11.14) 

is similar to Gp, and thus has the same eigenvalues as Gp. With 

(3.11.10) it follows that, 

Therefore, 

Gp = (Hl-PI) (H1+pI)-1(V1-pI) (V1+pI)-1 

P(Gp) = P(Gp) iIýpII II(H1-PI)(H1+pI)_lIi"II(ý1-pI) 

(V1+PI)-111 1 

where p(GP) is the spectral radius of G. Since Hl and V1 are 

symmetric and positive definite, in the L2 norm, we get that, 

Jf(H1-PI)(H1+PI)-1f) 
= max 

1, i, n 

xi -P 

ai+p 
<1, (3.11.16) 

where Ai, i=1,..., n are the eigenvalues of H1 and they are positive. 
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Similarly for the corresponding matrix product with V1 shows that 

i1l Iý(V1-pI)(V1+p I) (ý = max I 
µi -P 

+P I<1, 
(3.11.17) 

1, i, n 
ui 

where pi, i=l,..., n are the eigenvalues of V1 (positive). Hence 

p(Gp)<1 for all p>O, which proves that the Peaceman Rachford (P. R. ) 

iterative method converges. 

It is shown in Varga (1962) that, 

min p (G )= min p (G ), 
p>O opt 

(3.11.18) 

where GW 
opt 

is the iteration matrix of the point S. O. R. method, this 

concludes that the P. R. method and point S. O. R. method have the same 

rate of convergence for the model problem. However, the A. D. I. 

iterative method involves a good deal more arithmetic work than the 

point successive overrelaxation iterative method, in fact using a 

sequence of acceleration parameters {pi} is essential to recover this 

weakness in convergence rate, and this is known as the Non-Stationary 

case. 

For our model problem (3.11.1) it can be shown that H1 and V1 

commute, i. e. H1V1=V1H1, this implies, as the theorem of Frobenius 

states below, that H1 and V1 posses a common basis of orthogonal 

vectors xi, i=l,..., n. 

Theorem 3.11.1 

Let H1 and V1 be Hermitian nxn matrices. Then, there exists an 

orthogonal basis of eigenvectors {xi}i_1 with Hlxi=X xi and Vlxi=llxi 

for 1<, i, n if and only if H1V1=V1H1. For proof see [VARGA, S. 1962, 

p. 220]. 
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Now consider the A. D. I. iteration matrix G. For K'iterations 
p 

of the method, it is clear that, 

kk µi-p ýi p 
( 7T Gp )xi = IT (µ p1ý 

+p) xi , 
j=1 j j=l ijij 

Using the nXn unitary matrix U generated by the vectors xý, we see 
k 

that U(U G )U* is a real diagonal matrix. Therefore, 
j=l pi 

II TT GI I= P iý G i= max TT 
I ui-P jI 

+p j=1 Pj j=1 Pj 1: i; n j=1 µi ji 

I 

(3.11.19) 

We notice that if all the eigenvalues of either of the matrices H1 

or V1 are known ä 
priori, then we could choose a sequence of positive 

real numbers {ýj}k_l, so that, 

k 
IlTT cýll=o 

j=1 j 

and we could have a direct method instead of iterative method. 

Since this is not an easy task, we assume that we can estimate a lower 

bound a and an upper bound ß of the eigenvalues Xi and µi of H1 and Vl, 

i. e., 
0< a: Xi, ui ;a, l; i, n . 

Then clearly, 

-ý IXi -P max 15i5n j=1 Iai+pjilµi+pj 

which leads to, 

k 

ai+pjý 

(3.11.20) 

k ai p 
. 
ý. lI 

max Tr II max I 
11 : i$n j=11Xi+pjIj 1: i: n j=1`µi+pjl 

k 
max II 

a: Y: ß j=1 Y jI +p 

ý 

(3.11.21) 

IITT Gp II: { max 1ý(Y; pj)I}2 , 
(3.11.22) 

j=1 j a. Y. ß 
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where 
k Y-p 

(Yºp 
j) _ý (YY+pý) 

j=1 j 
(3.11.23) 

The problem of minimizing fl y, p has been solved analytically in 

terms of elliptic functions by Wachspress (1966) and is given by, 

pj = ýß) (j-1)/(k-1) 
ý k; 2 , j=1,2,..., k. (3.11.24) 

Peaceman and Rachford (1955) used a different set of parameters 

given by the expression, 

pP =ß (a) (2j-l)/(2k) 
jB 

With this set of parameters it can be shown that, 

k 1- (a) 1/ (2k) 
l2 

JI ß 
1/(2k) ! J=l 

TT G 
pjI I: 1+001) J 

(3.11.25) 

(3.11.26) 
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3.12 VARIANTS OF THE A. D. I. AND OTHER FORMS OF SCHEMES 

Many variants of the P. R. scheme have been proposed. For example, 

a modification on equation (3.11.6b), where from (3.11.6a) we get, 

Hl ( uk+i) = b- (Vl-pkI ) 
ýk) 

pk(uk+}) 

writing (3.11.6b) as, 

(V1+pkI) ýk+1) = b-Hlük+}+pkuk+}) 

by (3.12.1) to give, and substituting H1uk+}, 

(k+l) 'W (k+j) 
(V1+pkI)u = (V1-pI)u +2pu 

and by introducing a weighting parameter w we get, 

I)ük+l) 
W (k+j) 

(V 
1 +pk = (V1-(1-w)PI)u +(2-w)Pu 

(3.12.1) 

(3.12.2) 

(3.12.3) 

(3.12.4) 

which gives various schemes as w varies, where for w=O, it is 

obviously the basic P. R. formula (3.11.6) and for w=1, it produces 

a formula due to Douglas and Rachford (1956). For H1 and V1 having 

the same properties as the P. R. scheme and for fixed acceleration 

parameter p>O, the above general A. D. I. scheme is convergent for O; w$2. 

Apart from these variant schemes, several other alternating 

direction schemes have been considered for parabolic equations. We 

mention here the Locally One Dimensional method (L. O. D. ) which was 

developed by the Russian numerical analysts, in particular D'Yakonov, 

Marchuk, Samarskii and Yanenko. They considered the equation, 

au a2U a2v 
at ax2 

+ 
ay2 , 

which is to be written as the pair, 

au a2U } 
at ax2 

(3.12.5) 

(3.12.6) 
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and 
au a2v ý at = aY2 . 

(3.12.7) 

This assumption is valid when the partial differential equation 

is termed separable. 

For the solution to advance from the k time level to the (k+l) 

time level it is assumed that (3.12.6) holds from k to k+} and 

(3.12.7) holds from k+} to k+l. The discretisation of (3.12.6) and 

(3.12.7) are, 

uk+} = ruk +(1-2r)uk +ruk i, j i-l, j i, j i+1, j 
and, 

k+l k+} kt} k+} 
ui. j = rui, j-1+(1-2r)ui. j+rui. j+1 

The elimination of uk+} leads to the nine point formula, 

uk+l = (1+röX2 )(l+rdy)uý 

which has a truncation error of O((At]2+ t(Ax]2+ t[Ay]2). 

(3.12.8) 

(3.12.9) 

(3.12.10) 

Although both the L. O. D. method and formula (3.12.10) have the 

same accuracy and stability properties, it is more economical to use 

the L. O. D. method, because in using the formula (3.12.10) nine function 

evaluations are required for the calculation of uk+l at each grid 

point, while in using L. O. D. method, only six function evaluations are 

required. 
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i, j-1 

i j+1 

i, j 

w 
i-1, j i, j i+1, j 

FIGURE 3.12.1: The L. O. D. molecule 

k+l 

k+} 

k+} 

k 

k+l 

k 

FIGURE 3.12.2: The nine points formula of Eq. (3.12.10) 
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4.1 INTRODUCTION 

In this chapter we introduce a new formula for solving parabolic 

partial differential equations explicitly. It is derived from the 

cubic splines properties and its function and derivative relationships. 

The analysis of the stability and an estimate of the truncation errors, 

together with some numerical results are also included. 

The derivation of the method is based on the simplest heat 

conduction problem given by the equation, 

au a2U 
- ýxat 

axe , o, l, t, o , 
(4.1.1) 

under various boundary conditions. 
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4.2 THE SPLINE ALTERNATING GROUP EXPLICIT METHOD; (SPAGE) 

In Section 1.4, some important relations between the spline 

function, its first derivative and its second derivative are as stated. 

Now consider the function U in the x-t plane and let us assume the 

cubic spline polynomial S is interpolating the function U at the points 

Ui=Si, i=O, 1,..., n. The function S satisfies the relations (1.4.9) 

and (1.4.10) for any time level, since it is independent of time. This 

leads us to write, 

miºj(+) 6 Mi+l, j 3 Mi, j + h(ui+l, j ui, j) 
(4.2.1) 

and 
miIjt-) 6 Mi-l, 

j +3 Mi. j + htui. j-ui-l, j) , (4.2. la) 

or 

and 

that, 

ýi, j+1ý-) 6 Mi-l, j+l +3 
21 

Mi, j+l + h(ui, j+l-ui-l, j+l 
(4.2.2) 

mi, j+1(+) 6 Mi+l, j+1 3 Mi, j+l + h(ui+l, j+l-ui, j+1)(4.2.2a) 

From the continuity properties of the cubic splines we have 

mi. ] 
(+) = miºj (-) . 

and 
mi. j+l(+) = mi. j+l(-) . 

Letting At-+O we get, 

mi, j(+) = mi/j+1(-) . 

and mi, j 
(-ý ' 

(4.2.3) 

(4.2.4) 

(4.2.5) 

(4.2.6) 

Substituting equation (4.2.5) in equations (4.2.1) and (4.2.2) gives, 

hm 
+hM + 

1(u 
-u )=- 

hM 
-hM 6 i-l, j+l 3 i, j+l h i, j+1 i-l, j+l 6 i+l, j 3 i, j 

+ h(ui+lºj-ui, j) 
(4.2.7) 
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Similarly from equations (4.2.6), (4.2.1a) and (4.2.2a) we get, 

-hM -hM + 
1(u 

-u ) =hM +hM 6 i+l, j+l 3 i, j+l h i+l, j+1 i, j+l 6 i-l, j 3 i, j 

1 
+ h(uiij-ui-l, jý 

Multiplying by h equations (4.2.7) and (4.2.8) become, 

(4.2.8) 

Mi-l, j+l + 2Mi. 
j+l + 

h2(ui, j+1 ui-l, j+l) - Mi+l, j-2Miýj 

+ h2ýui+l, 
j iºjý º 

and, 

-Mi+l, j+l-2Mi, j+l + 
h2(ui+l, j+l ui, j+1) = Mi-1, j+2Milj 

(4.2.9) 

6 
+ (u -u 

h2 ij i-l, j 

respectively. 

(4.2.10) 

Assuming that the function U is such that UE Cn[a, b], n; 4, it 

is well known that the best order of uniform convergence that can be 

achieved by S and its derivatives is, 

IIS(r) - U(r)II = O(h4-r) ; r=0,1,2 , (4.2.11) 

where 11.11 denotes the uniform norm on [0,1], [pARAMICHAEL, N. AND 

WORSEY, A. J. ], [DANIEL, J. W. and SWARTZ, B. K. ]. 

Approximating the second derivative of U in equation (4.1.1) by 

M with the forward difference approximation of 
ät 

on the jth time 

level once and the backward difference approximation of 
ät 

on the 

(j+l) time level for another, we get, 

_ 
ui, i+l_ui, j MAt 

_ 
ui, j+l-ui, j Mi, j+l At 

(4.2.12) 

(4.2.13) 
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respectively, with the approximation errors being ignored. Adding 

equation (4.2.12) to (4.2.13) gives, 

or 

uiºj+l-uiºj 
" Mi"j+Mi"j+l __ 2( 

At ) 

uiºj+l-ui. j 2(Mi, j+Mi, j+1) = 4( At 
(4.2.14) 

At the points (i-l, j+l) and (i+l, j) we approximate 
at by a weighted 

backward difference formula at the points (i-l, j+l) and (i, j+l) and 

a forward difference formula at the points (i-l, j) and (i, j) 

respectively, to result in rewriting equation (4.1.1) as, 

aui-l, 
j+l-ui-l, j) 

+ (1-a) (ui'j+l-ui'j) (4.2.15) 
At At 

and, 
ui-1'l-ui-l, j) 

+ (1-ß)(ui, jQý-uij) 
, (4.2.16) 

i+l, j At 

where O; a, ß, 1. Adding (4.2.15) to (4.2.16) gives, 

Mi-1, j+1+Mi+1, j= 
2re( 

ui-1, ý1-ui-1, j)+ (1- e) (ui' +ý uiýI 

where 0,6,1. 

Rearranging equation (4.2.9) to give, 

(4.2.17) 

+M )+2(M +M )+ 6(u 
-u )= 

6(u 
-u (Mi-1, 

j+1 i+11j i, j+1 i, j h2 i, j+l i-1, j+1 h2 
i+l, j i, j 

(4.2.18) 
Substituting equations (4.2.14) and (4.2.17) in (4.2.18) results in, 

i-l, j+l i-l, j i- )}+4( i IjAt+1 
ui, j) 

+ 
6(u 

2{e( At 
)+(1-9)( 'j+l 

At 
i'j 

h2 i, j+l 

_6 -u i-1, j+1) 
h2(ui+l, 

j i, j) 
(4.2.19) 
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Multiplying by At 
equation (4.2.19) leads to the asymmetric formula, 

(33e+r)uiýj+1+(3 -r)ui-1, j+1 ru i+1, j+(33e-r)ui/ j+ 3 i-1, j, 

(4.2.20) 

where r-A2 and its associated diagram is shown in Figure (4.2.1). 
h 

j +1 

j 

i-1 i 

FIGURE 4.2.1 

i+1 

In a similar manner and by approximating 
at 

at the points 

(i+l, j+l) and (i-l, j) by weighted backward differences at the points 

(i+l, j+l) and (i, j+l), and forward differences at the points (i+l, j+l) 

and (i, j+l) respectively, results in rewriting equation (4.1.1) as, 

and, 

a(ui+l, 
j+1-ui+l, j) 

+ (1-a)(ui'j+l-u111 )ý (4.2.21) 
i+l, j+l At At 

Mi-1 j= 

ui+lºj+ýtui+l, j) 
+ (1-ß)(ui, öti-uiýj) (4.2.22) 

and from equations (4.2.10) and (4.2.14) we obtain the other 

asymmetric formula, 

(330 +r)ui. j+1+(3 -r)ui+l, j+1 3 i+l, j+(330 -r)ui, j+rui-l, jt 
(4.2.23) 

which is represented diagramaticially in Figure (4.2.2). 
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j+l 

j 

i-i i i+1 

FIGURE 4.2.2 

Equations (4.2.20) and (4.2.23) are'the spline equivalence to 

the formulae proposed by Saul'yev (1964), p. 29. 

It is obvious that these two formulae can be used as was 

suggested by Saul'yev (1964), i. e. to use equation (4.2.20) from 

left to right, starting from the node (1, j+1), which is adjacent to 

the left boundary, and, to use equation (4.2.23) from right to left, 

starting from the node (n-l, j+l) which is adjacent to the right 

boundary. 

Here we do not follow the above procedure, but we combine the 

two equations (4.2.20) and (4.2.23) to produce a (2x2) coefficient 

matrix for a group of two unknowns at the points i, j+l and i+l, j+l. 

This matrix is then inverted to produce an explicit formula for each 

of the two unknowns. This is done as follows: 

Consider the two points (i, j+}) and (i+l, j+}) at which we apply 
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the equations (4.2.23) and (4.2.20), respectively simultaneously to 

find the solution u at the points (i, j+l) and (i+l, j). Therefore, at 

the point (i, j+j) the p. 8. P-. 
- 

is approximated by the equation, 

(3-9) 
+r) u +(e -r) u=9u +( 

(3-9) 
-r)u +ru , 3 i, j+l 3 i+l, j+l 3 i+l, j 3 i, j i-l, j 

(4.2.24) 

and at the point (i+1, j+}) ui+1, j+1 is approximated by the equation, 

((3-8) +r) u +(e -r) u-9u +((3-9) -r)u +ru " 3 i+l, j+1 3 i, j+l 3 i, j 3 i+l, j i+2, j 

(4.2.25) 

In matrix form, equations (4.2.24) and (4.2.25) can be written as, 

ýt338, 
+r 

3 
-r 

ý ý0 

ý 

fl-A% I3 -r %ý3"' 

L_ 

(33 6) 
r0 

(4.2.26) can be written as, 

riºj+1 

_i det 
iu. 

... 
I 

1+1,3+-U 
(3-6) 

._ 3 tr { 

-r 

3I (j ; 
(3-6) 

__ _,, 
L1 I 

33J LAi+1, jj 

+r 

1 1F-(3-0) 0 
i, j+1 3 -r 3 

lu 

IIV1, J-V! 
ui+1, j+1ý I3 

JL 

13-e) 
_0ýý;, 

i 

Fhj, 
j 

Luj ij 

ruii, 
j1 

+r (4.2.26) 
L i+2, j 

The 2x2 coefficient matrix can be easily inverted and equation 

where det=1+ 2(33-9) 
This simplifies to, 

ruj, 
j+1 

Luj+h, j+l 

= 
1 

det 

3 

u 

Lui+2, 
j 

(3-20-3r2+@r) (r9-3r2+3r) 
331 

(r8-3r 2+3r) 
(3-26-3r2+r6) 

Lý'J 

N 

J 
(4.2.27) 

ui, j 

ui+1, j 
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(3r-r6+3r2 (3r2 r6) I3 
1-1, j +3 ü1+2, j 

(3r2-r9) (3r-r8+3r2) !3 
i-1, j +3 i+2, jiJ 

Lý 

which is obviously two single explicit equations represented 

diagrammatically by Figure (4.2.3), in a more simplified form. 

j+l 

I 

r(3-8+3r) 
(3+6r-28) 

i-1 

(3-28-3r2+r8) 
(3+6r-28) 

i 

r(O-3r+3) 
(3+6r-20) 

i+1 

r(3r-8) 
(3+6r+29) 

i+2 

(4.2.28) 

i 

J +l 

II 

r(3r-8) 
(3+6r-20) 

i-i 

r(9-3r+3) 
(3+6r-20) 

i 

FIGURE 4.2.3 

i+1 

I 

r(3-8+3r) 
(3+6r-29) 

i+2 

In the case of single points near the left or right boundaries 

we use equation (4.2.20) or equation (4.2.23) respectively, which are 

written in the form, 

(3-28-3r2+r8) 
(3+6r-28) 

7 
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u1ºj+1 = Iru2, j+(33e -r) u1, j+ 3 O, j-(3 -r)uo, j+ll/(33e +r) 

for the left boundary and, 
(4.2.29) 

_ 3-0 un-1, jtl 
[ýn-2, 

j+ 
(y -r) un-1, j 

for the right boundary. 

+3 
nIj-(3 -r)un, j+l]/(33e +r), 

(4.2.30) 
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4.3 VARIETIES OF THE SPAGE METHOD 

The domain line O; x; l is divided into n equal intervals. We show 

now the varieties that can be produced when n is an even or odd integer. 

a) Even Number of Intervals: This means an odd number of internal nodes 

(n-1) at every time level, which results in one single (ungrouped) node 

at either end of the interval. 

al) SPAGER (with Right single points) 

This scheme is obtained by using equation (4.2.28) for, 
(n22) 

times 

for the first (n-2) points (ui , i=1,2,..., n-2) grouped as two points at 

a time, and equation (4.2.30) for the single point (un-1). This is 

called the line Group Alternating Explicit with Right single point. 

Its diagram is shown in Figure (4.3.1), and its implicit matrix form 

is written as, 

(3-A+3r 6-3r 

ýý- ----ýýIý 

ý 

ý-3r 3-e+3r '11i 
------- - 1- ---r-------ý- --- 

3-8+3r 8-3r I1ý 
I1Ii 
I------A 

e-3r 3-6+3r I 

-------ý-------ýý, ----ý----- i--- t 
It`; ý ýpI II"' 

--------- ý----- -- -ý ---- -- ---- 
I 

ý-6+3r 6-3r 

ýý... ý ý. .ý .ý ýL ý ... ý ý. .... ý. 

"ýýý VýJl J-VTJ1 ýý 
ý. ý ý 1ý ý_. ___---- 

d-3r 
ý- ----- -- --- 

rl, 
j+l 

ý 

u2, j+1 

u3, j+1 
u4, j+1 

un-3, j+1 

un-2, j+11 
ý ý- ---- ý- ----- -ý_ 

-ýii 
ý3-6+3r un-1, j+11 
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e-3r ý0 
_-----r -------º--- - 9 3-0-3r 3r 

-3r - 
3-6-3r i6 

;. i- 
ýr ý'ý CI II NI 
II lk. %I 
III 
II ýý I 

. , io 
ýý %1 

ý... ý 

ýI6 
ý3-A-3r 

Iýj 
3r 

ý 
I 

- 1- - 
1 
I 
I 

ýr 

I 
I 

1 
ý 

1 
1 

I 

.r .ýýwr 

-- ---1--- ----t ------ 3r 

3-9-3r 9 
-- --I ----- -- --- -i-- --- -- -- - -- -- i- -- 

Ii 
I I; 1 

_ý .- ° u 1, j 

u2 j 

iu3, j 
º 

iý 
iý 

un 4, j 

un-3, j 

un-2, j 

} 
n-l, j 

8 63-6-3r 3r 
ý 
I 3r 3-0-3r 

+ bl , (4.3.1) 

where T 
b. l = Dru 

0, j'0,0,..., 0,6un, j-(6-3r)un, j+ll , 

which includes the known boundary values. The system (4.3.1) can be 

written as, 

(3I+(3r-6)G1)u, 
+1 = (31-3rG2-9G1)ui + bl , 

I 

(4.3.2) 

where, 
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Gl = 

II r-' 

- ----ý- -i ic 
I 
ý 

-4 -- 

and 

G2 = 

V 

11 II 
-ý- - -ý-- 

ý1 -11 

-1 1" It 

----I----T--- 
ICý 

ýý I 
I 

II 

I- 
I 
1 
1 

r 
I 
I 
1 
I 
L 
I 
I 

II 

-- 
1-- 1 - -+ - 
Iý 1_ 

\ý 

-i 
i 
i 
ý 
i 

1 
-1 1, 

lý 

iC 
\ 

`ý i 

--ý=-=iý-- 
II 1 
1 
1 
I 

-1--- 
1 
1 

I 
ý 

ý 
I 
i 

where, 

I 

II 

10 
I- 
I 
1 

i 

Gýlý = 

1 '_ 1 

ii -i 
ý ý-ý ý 

1 -1i 

-1 1J 

FG (1) 

1 G(1) 

G(2) 

ý 
ý 

0 

ý 
\%% 

((n22) -1) G 
0 

Gý2ý 

1% 
ý 

ý 

ý 

0 

. 
ý 

.. ý.. _ýý 
G- "l 

( `n22, 

-1) 

1 

G ((n-2) 2 _. ý ý 

, i=1,2,..., (n-2)/2 . 

a2) SPAGEL (with Left single point) 

For this scheme we use equation (4.2.29) for the single point (ul) 

and equation (4.2.28) (n22) times for the remaining (n-2) points (ui, 

i=2,3,..., n-1) grouped two at a time. The scheme is called the Spline 

Alternating Group Explicit with Left single point, its diagram is shown 

by Figure (4.3.2) and it is written in matrix form as, 

(31+(3r-O)G2)uJ+l = (3I-3rG1-9G2)uu + b2 

t ýI 

1 
ýý 

. .i 
- ---L--" O %.. c'"-" ý 

(4.3.3) 



125 

where b2 = [OuOIJ-(O-3r)u0,1 
1, O, O,..., O, 3run jJ . 

a3) SSPAGE 

In this scheme the two above mentioned schemes are used at 

alternative time levels. It is called Single Spline Alternating 

Group Explicit, and its diagram is shown by Figure (4.3.3). The scheme 

is expressed in matrix form as, 

+ hl (31+(3r-8)G1)uj+1 = (3I-3rG2-6G1)uj 

or 

"-- - -, -1" -J+2 . -- ---2 - -1" - j+l - -1 

(31+(3r-6)G2)uj+l = (31-3rG1-6G2)uj + b2 

(3T+(3r-A)G )u = (3T-Irr. -AG In +h 

IA IAi 
,- ý_.... .. 

(31+(3r-A)rG2)uj+2 = (31-3rG 
1- G2)uJ+l + b2 

} (4.3.5) 

a4) DSPAGE 

The final scheme of this group is obtained by using (4.3.4) and 

(4.3.5) at every other time level alternatively. The Double Spline 

Alternating Group Explicit requires four time level steps to complete 

a single cycle. Its diagram is given in Figure (4.3.4), and its 

matrix form is as follows: - 

(3I+(3r-O)G1)uj+l = (3I-3rG2-6G1)uj + bl 

(31+(3r-O)G2)uj+2 = (3I-3rG1-6G2)uJ+1 + b2 

(31+(3r-6)G2)uj+3 (31-3rG1-eG2)uj+2 + b2 

(31+(3r-8)G1)uj+4 = (3I-3rG2-6G1)uJ+3 + bl 

or 
(31+(3r-8)G2)uj+l =. (31-3rG1-6G2)uj + b2 1 

(31+(3r-e)G1)uj+2 = (31-3rG2-6G1)uJ+l + bl }0 

(4.3.6) 

(4.3.7) 
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1st - 
group 

=-. 
--cr- 

jo-m"mmvv- 

n22th group 

single point 

Spline Alternating Group with Right single point (SPAGER) method 

FIGURE 4.3.1 

lst - 
group 

single 
point. 

n-22th group 

Spline Alternating Group with Left single point (S? ACEL) method 

FIGURE 4.3.2 

Single spline Alternating Group Explicit (SSPAGE) method 

FIGURE 4.3.3 

Double Spline Alternating Group Explicit (DSPAGE) Zethod 

FIGURE 4.3.4 
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(31+(3r-e)G1)uJ+3 = (31-3rG2-eG1)uj+2 + bl 

(31+(3r-6)G2)u, j+4 = (31-3rG1-eG2)uj+3 + b2 

b) Odd Number of Intervals: This grid obviously produces an even 

number of internal nodes (n-1). This leads to either no single point 

at all at each end or two single (ungrouped) points, one adjacent to 

each boundary. 

bl) SPAGEU (with both Ungrouped ends) 

This scheme is obtained by using equation (4.2.29) for the single 

point near the right boundary, equation (4.2.28) for the grouped 

points (ui, i=2,..., n-2) two at a time, i. e., using it (n23) times and 

equation (4.2.30) for the single left point. This is shown in Figure 

(4.3.5) and its matrix form is written as, 
NNN 

(31+(3r-e)G1)uj+l = (31-3rG2-eG1)uj + b3 (4.3.8) 

where b3 = ((6uO, 
j-(O-3r)uO, j+1)1O, O1..., (6un. j-(6-3r)un, j+l] 

11 .... 

G(1) 

M 
G1 = 

0 
G(n23) 

ij 

Gý2ý 

f 
ý 

f 

0 

`ýý 
ý 

(n23-1) 

I 
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r(1) 
G(2) 

f 
N 

G2 = 
N 

N 

ý 

0 

f 
ý n-1 

G2 
-0 

with GM , i=1,..., n21, 
as previously defined. 

I 

This scheme is called Spline Alternating Group Explicit with both 

Ungrouped ends. 

b2) SPAGEC (with Complete ends) 

In this scheme there is no single (ungrouped) point. All the 

internal points are combined into groups of two points each. It is 

obtained by using equation (4.2.28) only for the (n-1) points, i. e. to 

be used (n21) times and is called Spline. Alternating Group Explicit 

with Complete ends. The mesh diagram is shown by Figure (4.3.6) and its 

matrix form is given as, 

NN 'V 

(31+(3r-6)G2)uj+l = (3I-3rG1-6G2)uj + b4 , 

where b4 _ [3ru 
o, j, 

0,0,..., 0,3ru 
n, jj. 

b3) SSPAGE 

(4.3.9) 

This scheme corresponds to the scheme (4.3.4) and is given by, 

%0 f%p (31+(3r-8)G1)uj+l = (3I-3rG2-6G1)uj + b3 

. 
(31+(3r-6)G2)uj+2 = (31-3rG1-6G2)uJ+l + b4j 

Its diagram is shown in Figure (4.3.7). 

b4) DSPAGE. 

(4.3.10) 

This is the corresponding scheme to (4.3.6). Its diagram is 
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Ist 
group 

ungrouped 

Z 

ýº 

 s .- 

z n23th group 

ungrouged 

Spline Alternating Group with Ungrouped ends (SPAGEU) method 

FIGURE 4.3.5 

1st - 
group 

n2-1th group 

Spline Alternating Group with Complete groups (SPAGEC) method 

FIGURE 4.3.6 

Single Spline Alternating Group Explicit (SSPAGE) method 

FIGURE 4.3.7 

Double Spline Alternating Group Explicit (DSPAGE) method 

FIGURE 4.3.8 
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shown in Figure (4.3.8) and its matrix form is given as, 

NNN 

(3I+(3r-8)G1)uJ+l = (31-3rG2-6G1)u, + b3 

(31+(3r-e)G2)uJ+2 = (31-3rG1-eG2)uJ+1 + bý 

(31+(3r-e)G2)uj+3'= (31-3rG1-eG2)uj+2 + b-4 0 (4.3.11) 

(31+(3r-9)G1 )uj+4 = (31-3rG2-8G1)u. j+3 + b3 
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4.4 THE SPLINE ALTERNATING GROUP EXPLICIT METHOD FOR PERIODIC 

BOUNDARY CONDITIONS 

In Section 4.3 we described schemes that are only applicable for 

the Dirichlet boundary condition. In the case of periodic boundary 

conditions, the coefficient matrix will be slightly different. We now 

present the varieties of the case: 

c) Even Number of Intervals: This grid produces an even number of 

unknown points, since uO, j-un, j, 
for j=O, 1,..., and both are unknown. 

cl) SPAGEC 

This scheme, where we have no single (ungrouped) points, is written 

in matrix form as below (see Fig. (4.4.1)). 

416.. . ü r-T r-I 
----+ 

n1234 n-3 n-2 n-1 n1 

FIGURE 4.4.1 

(3-6+3r, g-3r I 

16-3r 3-8+3r I 

i 
ý 
ý 

---- -- - -. ý ------ ý- ---- -} -- ----- 
13-0+3r 8-3r 

ý 0-3r 3-0+3r 0 
- -- -- - -i--- -- -�ý --- - f--------- 

1I 
II 'I I 
II 
11I 

--------I--------I ---- -; - _----- 
(oý 3-e+sr d-sr 
Iýý 

14 I; le-3r 3-6+3r 

r' 1, j+1 
I 

- --- 

! 
u2, j+l 

u3, j+1 

u4, i +1 

iý 
I 

un-l, j+l 

un, j+1 , 
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F-3-0-3r 6 3r 

6 
ý3-6-3r 

3r 
II 

I! '2r 'A-A-Ir AIý 

f -- ----I \ý----i -ö--- 1 

II1 
I1I.! ý ýI1 1% 1 Ir____6 - r_. _r - .. " 
III0 13-8-3r 3r 

IQ! (i 
I 3r 3-0-3r 10 

j----. -G-------r--------r--------ý---- 

ul j 

u 2, j 

u3 j 

ý 

u 
n-2, j 

un-1, j 
L3 r 

(4.4.1) 
or 

where, 

(31+(3r-O)G2)uj+l = (31-3rG1-OG 
2)ul 

ri -ý 

G(1) 

ý N 

G1 = ý(2) O 

-- - -- -: --- ---r---- 

S. 

\ 
ý 

\ 
%%ý. 

ý((n-2/2)) 
C 

with 

1-1 
L 

1 

I 

G(i), i=1,2,..., (n22) as defined previously. 

c2) SPAGEU 

(4.4.2) 

(4.4.3) 

i) In this scheme we have two ungrouped end points and is given by, 

-6+3r J-- 
-i- -----ý------ _ý 

6-3r rl 
ý j+1 

13-8+3r 9-3r I 
(u2 

, j+1 

----ý-__ --_ =-T-ý- --- -f- ---- ---r--- - 
Cý r IIýýI 

II ýý I 
II ý_ ý I 

I----t--------1-- -ý ---- --1----- 
i P-8+3r 6-3r 

-- - -ý- -----C -Iý - -- -i 
8-3r 

-3-6+3r 
I 

-- --, - - 1-- 
A-3r IIý ý3_A+3r 

i= -I; I I- - , -J 

6-3r 3_0+3ri 
ý- -- r_ -- -- -ý- --- -- - r----- ý 

u3 J+l 

i un-2, j+1 
un-l, j+ll 

un, j+1 
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(3-9-3r 3r 
IjIýI 

3r 
--------L-- --- 

0 i 

_, ýýýI ýý I- ------ 

IOI 
ý IIý 

II II 
II \I I 

.. n., __ IoI'1 
3-v-sr I0. ýý 

L 
3-6-3r 3r 

ý1 -- --- i--- --- -ý- -----ý 
ý_ - -- -- ,iI 

3r 3-6-3r ý6II 

--- --- -1- -------------- 1- ----- 
1Oie 13-e-3r 3r 

1Iý 3r 3-e-3r e 

------ --1- ------ 
ý 

----J ---- ----q--- -- ---- 

e 

1 
I 
1 
ý 

i 
i 
i 
i 
i 

.i 

1 
ý 
I 
( 

9 13-6-3r 3r 

3r 3-e-3r 

11, 
j 

! 
lug, j 

1U3, j 

u4, j 
iu 

n- 
1 
3, j 

! un-2, j 

Lun, 
j 

or 
N 

(3I+(3r-6)G1)uý+1 = (3I-3rG2-6G1)uj 

(see Fig. (4.4.2a)). 

I 

(4.4.4) 

(4.4.5) 

ii) Instead of using equation (4.2.20) and (4.2.23) at the points i=1 

and i=n respectively, we do the reverse and use equation (4.2.20) 

for i=n and (4.2.23) for i=l, (see Fig. (4.4.2b)). The system 

will be, 

ýun-1, j 
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0 I 
Q---ý----o 

ýý_ý 

o-ý----b 

f 
.s n12123 

(a) 

n-1 n n-1 n1 

___ ___ ___i : n12123 n-1 n n-1 n1 

(b) 

FIGURE 4.4.2: The two ways of treating the single boundary points 
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3-6+3r 6-3r 

---- -ý --- -- - 
13-8+3r 8-3r ý 
ýI 

8-3r 3-8+3r1 

i 
ý ý 
ý 
ý 
i 
ý ý ý ý---ý-- 

L' i 

F-3-0-3r 0 

8 3-e-3r 

I\ 
Iý 

I' 
1ý 

'O 
_ ý_ _ i 

ý 
1 
1 

.\I1 

-I 

i' 
I II 

ý ru1, 
j+l 1 lu 

2, j+l 

Iý 

iý 
tý 

iu 
L n-1, j+1 

( 

ý---i------. 4- r -- 

- r--- - ,- ----- 

f 
1 
1 

1 

i 

I8I 3-6-3r 3r 

--------- Tmml -------, ----, ----- 

0 

3r 

3-8-3r 3r 
I 

3r 3-6-3r ý9 
1- ------ _1 --- --) - 

I 
I 
i 
I 

I 

I 

i I 
l 
I 

-- r- 

C 

i- --- -- i------ -I - 
I 

I0 
t 

_I 1 

I 
( 
ý 
ý 

I 
i 

i 
-1 --- -+ -- 

I 
I 

I 

! 
I 
I 
ý 

Ful 
Ij 

u 2, j 

un-1, j 
u 

n, j 

O 

ý 

ý 

II 
II I 

II 
II 

i-------I - --- 
13-6+3r 6-3r 1 
Iý 
ý 8-3r 3-6+3r1 
a 

I 8-3r ý3-6+3r 
I 

I 
I 

I 

1 
I 
i 

II 

I 

I 

i ý\ ý 
\ý 

I \_ I 

I 

i 

'17 

l_n, j+1 r 

1 
I 
I 
1 

-r 
I 
I 
1 
1 

3r 

iý - 

1 
I 
i 

-I-------- 
i 

0 I 3r 3-8-3r 11 
-- ý -------- 

13-6-3r 

6 

6 
3-6-3rd 

or 
AV AV (31+(3r-e)c1)uj+l = (3I-3rG2-eG3)uj 
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where, 

AV G1 = 

ýl 
-1 

Ir 

G 
(1) 

G(2) 
ý S. 

5% 

ýý 
G 

(n-2) /2 

0 

1 

-1 1 

1 

G(1) 

I1v 

G2 = 

'S ý 

C 

G 
(2) 

0 

0 

` 
G(n-4)/2 

1 

and, 

-1 

r-G (1) 

-1 1 

G(2) 

AV G3 = 

0 

Gý3ý 
1% 1% 

ý ý 

0 

1n ý 

1 -1 

1 

1J 

ý 

I 

I 

ý 
(n-2) /2 
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c3) SSPAGE 

This scheme is composed by using, alternatively, the schemes 

SPAGEC and SPAGEU and is written in matrix form, as, 

rr N I" I ry ry y 

(31+(3r-e)c1)uj+2 = (31-3rG2-ec1)uj+l 

N 
O%p N 

(31+(3r-e)G2)uj+l = (31-3rG1-8G2)uý 

NNý 

(31+(3r-e)G1)uj+2 = (31-3rG2-eGl)uj+1 
(4.4.6) 

c4) DSPAGE 

As given previously in a4) and b4), this scheme is obtained by 

applying (4.4.6) followed by a rearranged form of (4.4.6) to make a 

cycle of four equations written in matrix form as, 

(31+(3r-8)G2)uj+l = (31-3rG1-eG2)uj I 
N ýv 

(3I+(3r-6)G1)uj+2 = (31-3rG2-6G1)uj+l I 
NN 

N N Al 

(31+(3r-6)G1)uj+3 = (31-3rG2-eG1 )uj+2 ' 
NNV 

(31+(3r-8)G2)uj+4 = (31-3rG1-6G 
2)uj+3 

(4.4.7) 

d) Odd Number of Intervals: This produces an odd number of unknown 

points at every time level. At the single (ungrouped) point either of 

the two equations (4.2.24) or (4.2.25) can be used. This leads to 

produce different forms of systems. 

dl) SPAGER 

The scheme with right single (ungrouped) point. 

i) If equation (4.2.24) is used, for i=n we get, 

n-3 n-2 n-1 n1 

(3-A+3r)un, 
j+1+(e-3)u11ý+1 8u1. j+(3-8-3r)un. i+3ru n_l, j* 1" %w v -da/ u "+-w 

, j+1 1, j n, j n-1, j 

(4.4.8) 
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The first group will be of the form, 

ý ýul 
n 6+3r e-3r I NI [_Q_3r 6+ 

3r(u 
ý 

Le-3r 3-e+3r1 Lu21 

j+1 
Le 3-e-3r1 (-u2 

j 
Lu3J 

j 

(4.4.9) 

thus the system is written as, 

[31+(3r-6)G1]uj+1 = [31-3rG2-eG1]uj 

where, 
(1) 

r 
G(2) 

-.. 

Gý3ý 
A 
G1 = 

0 

A 
G2 = 

ýo . . . . 
. 

Ll 

El 

II 
Gý1ý 

G 
(2) 

ý 
ý 

ý 
1% 

\ 
\ 

1% 
G 

(n-1) /2 

1 

-1 

0 

Q ý` 
G(n-1)/21 

ii) If equation (4.2.25) is used, for i=n-1, we get, 

(4.4.10) 

r 

(3-6+3r)un, j+l+(e-3r)un-1, j+1 bun-llj+(3-e-3r)unj +3rul/j 

0 (4.4.11) 
n-1 n1 

while for the first group it is the same as in i). Thus the 
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system will be, 

nnA 
(31+(3r-9)G1]u; 

+l = (31-3r2-9G1]ui 

where, 

rG(1' 

n^ 
G1 = 

G(2) 
. ý ý 

0 

ý 
ý 

0 

. (n-1) /2 

-1 1 

r1 G 
(1) 1 

G(2) 

n^ 
G2 

(4.4.12) 

I 

0 

ý 
f 

ý 
ý 

0 

G 
(n-3)/2 

1 -1 

-1 1 

d2) SPAGEL 

In this scheme two cases also arise: 

i) When using equation (4.2.25), for i+l=l we get, 

-ri 
I ri 

n-1 n123 
(3-0+3r)ul. 

j+1+(0-3r)unýý+1 0un, j+(3-8-3r)ulýj+3ru2ºj 

(4.4.13) 

and the system will be, 
n12 

[31+ ( 3r-6 ) G2J uJ+1 = [31-3rG1-eG2j u (4.4.14) 
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ii) When equation (4.2.24) is used, for i=1 we get, 

(3-e+3r)u1, j+l+(e-3r)u2, j+1 = eu2, j+(3-e-3r)ul, j+3run, jI 

and the system will be, 

1% 

[3I+(3r-6)G11uJ+1 = [3I-3rG2-6G1]uj 

where, 

-1 

G 
ý1ý 

v 
G1 = 

G 
(2) 

ý 
ý 

f 
f 

G 

11 
L_ 
f -1 i 

VV G2 = 

GCl) 

0 

G 
f 

f 

0 
n 

C 

0 
f 

ý 
f 

`ýG(n-3)/2 

E 
12 

I 

I 

-1 

i 

1 

(4.4.15) 

(4.4.16) 

d3) SSPAGE 

This scheme is obtainable by the use of dl) and d2) alternatively 

from one time level to another, with either (i) or (ii) always. 

d4) DSPAGE 

In a similar way to c4) a scheme corresponding to (4.4.7) is 

obtainable, using either (i) or (ii) in dl) and d2). 
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4.5 THE SPLINE ALTERNATING GROUP EXPLICIT METHOD FOR DERIVATIVE 

BOUNDARY CONDITIONS 

In the case of derivative boundary conditions, we approximate the 

derivatives at the end points by the central difference formula. 

Let the boundary conditions, defined on [O, x, l, t>0] be of the 

form, 

ax 
(x, t) = f0, at x=O , (4.5.1) 

and au 
ax(xn't) = fn, at x=1 (4.5.2) 

Using the central difference operator on 
ax, 

equation (4.5.1) and 

(4.5.2) give, 

u1-u-1 

2h - fp " 

un+l-un-1 

2h fn 

respectively. Recalling equation (4.2.20) which for i=0 is 

written as, 

(3-8+3r)uO, 
j+l+(6-3r)u-l, j+l = 3rul, 

j+(3-6-3r)uO, j+6u-1, j 

Now rearranging equation (4.5.3) as, 

(4.5.3) 

(4.5.4) 

(4.5.5) 

U-1 = ul-2hf0 , (4.5.6) 

and'substituting in equation (4.5.5), for both time levels, leads to, 

(3-6+3r)uO, j+l+(e-3r)ul, j+l 3rul, 
j+(3-9-3r)uo, j*6u11j+2h(8-3r)fO, j+l 

-2hef0Ij . 
(4.5.7) 

For the other boundary point, we use equation (4.2.23) which 

for i=n is, 
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(3-6+3r)unº j+l+(6-3r)un+l, j+l - 6u 
n+1, j+(3-6-3r)unº j+3ru n-1, J' 

(4.5.8) 

Again, rearranging equation (4.5.4) to give, 

un+1 un-1+2hfn , (4.5.9) 

and substituting in equation (4.5.8), for both time levels, leads to, 

(3-8+3r)un, j+l+(e-3r)un-1, j+l = 8un-l, j+(3-8-3r)un, j+3run-1, j 

-2h (6 -3X)fn, j+1+2h8 
fn, j. 

(4.5 . 10) 

Thus, for a single point at either boundary we use; 1) equation 

(4.5.7) for the lefthand boundary point, which will be written as, 

(3-9+3r)u0, j+1 = (3r+g)u1, 
j+(3-0-3r)u0ij-(8-3r)u1, j+1+ 

+2h(6-3r)f0, j+1-2hof0, j 1 (4.5.11) 

where ul, j+l would be known from the first group, 2) equation 

(4.5.10) for the righthand boundary point which is, 

(3-g+3r)un, 
j+1 = (6+3r)un-l, 

j+(3-6-3r)un, j-(6-3r)un-1, j+1 

-2h(6-3r)fn, j+1+2hgfn j, 
(4.5.12) 

where un-1, j+1 would be known from the previous group. 

For the groups which include the end points we proceed as follows: 

At the lefthand boundary point we have the group of functions u0 and 

ul, so we use the system (4.2.26), with the function u-1 being 

replaced by equation (4.5.6). Therefore, the system will be, 

r3_0ý3r 0-3 r1 r 
o, j+1 

- 

[3-O-3r 0 1[u0 
j uljj-2hf0fj1 

+3r 
0-3r 3-0+3rJ Lul, 

j+1 
L8 3-o-3r u1 j u2, j 

J 

(4.5.13) 
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Similarly at the righthand boundary for the points un_1 and un and 

using the same system but replacing un+1 j 
by equation (4.5.9) results 

in, 

3-6+3r 6-3r 
n-l, j+lº 

- 

3-6-3r 6u 11 n-l, j 
+ 

8-3r 3-6+3r un, j+l 6 3-0-3 r:, un, j 

+3r 
[n_2i 

. (4.5.14) 
Lun-1, j+2hfn, j 

This shows that the coefficient matrix on the righthand side of 

the system that results from the occurrence of derivative boundary 

conditions is the same as that resulting from the case of Dirichlet 

boundary conditions. But the matrices on the lefthand side are 

slightly different, thus we have the following varieties: 

e) Odd Number of Intervals: This produces an even number of points and 

two cases. 

el) SPAGEC 

In this scheme there is no single point and the system is written 

as follows, 

[3I+(3r-e)G2]uJ+l = [31-3rGi-eG2]uj + b5 (4.5.15) 

where b5 = [-6rhf000,..., 0,6rhfn] , 
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Gý1ý 

F-1 
-1 

ý 

0 
Gi = 

ý 

c i2) 
ý ý IN 

ý 

ý ýý 
G 

(n-1) /2 

-1 J 

e2) SPAGEU 

This scheme has two single points, one at each boundary. It is 

written as, 

iºI N 

[31+(3r-6)G1]uj+1 = [3I-3rG2-eGl]uj + bs 

where, 

(4.5.16) 

bi = [-(A-3r)(ul, 
j+l-2hf0, j+l)-2hAf0ºj, 0,..., 0, -(6-3r) 

(un-1, j+1+2hfn, j+j+2h6fn, j) . 

For the schemes SSPAGE and DSPAGE, we follow the same arrangement 

as in the cases of the Dirichlet and the periodic boundary conditions. 

f) Even Number of Intervals: This produces an odd number of points, 

thus two cases: 

fl) SPAGER 

A single point at the right boundary is obtained and the system 

produced is written as, 

[31+(3r-6)G1]uj+1 = (31-3rG1-eG1]uj + b7 (4.5.17) 

where, 
bT = (-6rhf , O, ... , O, - (9-3r) (u +2hf )+2hOf ]. 
ý7o, j n-l, j+l n, j+l n, j 
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f2) SPAGEL 

A single point at the left boundary is obi%; ied and the system 

produced is written as, 

Gv [31+(3r-9)G2]uJ+l = [31-3r1-6G1]uj + bß 

where, 

(4.5.18) 

T 
N= [-(6-3r)(ul, 

j+l-2hf0, j+l)-2h9f0, j, 
0,..., 0,6rhfn, jj 

Similarly as in (a), (b), (c) and (d) the schemes SSPAGE and 

DSPAGE can be produced. 
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4.6 TRUNCATION ERROR FOR THE SPAGE 

In order to estimate the truncation error for the difference 

schemes of the SPAGE method, we need to estimate the truncation error 

for the three main equations in the method. The main equations (4.2.20), 

(4.2.23) and (4.2.26) can be written in simpler forms, respectively, as 

(3-A+3r)uiºj+1+(6-3r)ui+l, j+1 - hui+1, j+(3-8 )uiýj+3ru 
i-l, j 

(4.6.1) 

(3-6+3r)ui, j+l+(e-3r)ui-1, j+1 = hui-l, j+(3-A-3r)ui, j+3rui+l, j 
(4.6.2) 

and 
3-6+3r 6-3r [i. 

i+i -6-3r 6 uiýj u 
+ 3r 

6-3r 3-6+3r ui+l, j+1 0 3-6-3r Lui+1, j Lui+2, j 

(4.6.3) 

where all the schemes we described earlier are combinations of these 

equations. 

Rewriting equation (4.6.1) as, 

(3-e+3r)ui, j+l+(e-3r)ui+l, j+l-euirl, j-(3-e-3r)ui, j-3rui-l, j a 

(4.6.4) 

and using the Taylor's expansion about the point (i, j+}), we get for 

the following terms, 

(3-9+3r)ui, j+1 
(3-8+3r){uioj+i+ 2 

ut+(2)2/2 utt +(2)3/6 

uttt+(2 
4/24 

utttt + Oik5)}, (4.6.5a) 

(9-3r)ui+l, j+1 - (6-3r) {uiýj+}+huX+(2)ut + }(h2uXX+2h(2)uXt+(2 
2utt) 

-1 (h3uxxx+3h2(2)uxxt+3h(2 2xtt+k 
+ +6 
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24(h4uxxxx+4h3(2)uxxxt+6h2(2 2uxxtt+4h(2)3uxttt 

+ý2ýýutttt + o(ha'kß)} ' 

-9u i+l ,j= 
-g {ui, 

j+} +hu 
x- (2 k) ut+J (h2uxx-2h (k)2uxtT (2k) 2u 

tt 
) 

+6 (h3uý 3h2 (2) uxxt+3h (2) 2uxtt (2k ) 
3uttt) 

(4.6.5b) 

+ 241 
(h4uxxxx-4h3(2k )uxxxt+6h2(2k )2uxxtt 4h(2k )3uxttt 

k 
+ (2)4utttt)+ O(ha, kß)} 

-(3-6-3r)ui, ý -(3-6-3r){ui1j+}-(2)ut + (2)2/2 utt - (2)3/6 
uttt + (2)4/24 utttt +0 (k5)} 

and, 

-3r ui-1, j = -3r{uiºj+}-hu x-(2)ut+}(h2uxx+2h(2)uxt+(2)2utt) 

6(h3uxx+3h2 (! 2 
ý) uxxt+3h (12 )2uxtt+ (l2 i) 3uttt) 

(4.5.6c) 

(4.6.5d) 

+ 24(h4uxxxx+4h3(2)uxxxt+6h2(2)2uxxtt+4h(2)3uxttt 

+(2) 
4utttt) 

+ O(ha, kß)}, 

where a+ß=5. Adding the terms on the righthand side gives, 

ui, j+}{3+3r-8+6-3r-3+3r+8-6-3r} =0 

huX{6-3r-6+3r} =o 

2 t{3+3r-e+e-3r+3-3r-8+8+3r} = 
2it 

h2 h2 
2 uý{0-3r-0-3r} _ -6r 2 uxx 

N 

(4.6.5e) 

h2uxt{e-3r+8-3r} _ (29-6r) 2 
xt 
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k 
8 utt{3+3r-e+e-3r-3+3r+e-e-3r} =O 

h3 
6 uxxx{e-3r-6+3r} =o 

2 
hk 

24k 
uxxt{0-3r+0+3r} ° 2eh4 zxxt 

hfl 
xtt{e-3r-6+3r} =o 

k3 k3 
48 uttt{3+3r-e+e-3r+3-3r-e+e+3r} =6 48 uttt 

h4 h4 
24 uxxxx{6-3r-9-3r} _ -6r 24 u 

xxxx 

LL. 3 
J%44 u {6-3r+6-3r} 
12 xxxt 

k2h2 
16 uxxtt{6-3r-6-3r} 

k3h 
48 uxttt{6-3r+g-3r} 

= (20-6r) kh3 
u 

(4.6.6) 
12 xxxt 

k2h2 
_ -6r 16 xxtt 

3 
_ (20-6r) 

48 uxttt 

24- 
x16{3+3r-0+0-3r-3+3r+g-g-3r} =O 

and 

O(h01', kß) . 

i 
J 

-Adding, again, the terms of the r. h. s. of (4.6.6) and dividing 

by 3k gives, 

222 
T4.6.1 -(6'3r)3 uxt + 

eh 
uxxt + 24 uttt 12 uxxxx + 

322 
(0-3r) 18 uxxxt -8 uxxtt + (8-3r) 72 

uxttt + O(h°l, kß) 

(4.6.7) 

where ut ux =0, from equation (4.1.1). 

Similarly for equation (4.6.2), using Taylor expansion about the 

point (i, j+j) we get, 
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4.6.2 =- (6 -3r) 3 uxt + 
Oh 

222 
6 

xxt 
+ 24 uttt 12 uxxxx 

nk 
- (0 -3r)18 uxxxt 8 uxxtt - (9-3r) "72 uxttt +0 (h'" k" ). 

(4.6.8) 

For equation (4.6.3), we use Taylor expansion about the point 

(i, j+I) for the 1st equation of (4.6.3) and about the point (i+l, j+}) 

for the 2nd equation of (4.6.3). This results in, respectively, 

2 
T(4.6.3)I (-h(3r-9)/(3+6r-2e))uxxx + (2)uxxt + 24 uttt + 

(h2(89-3-24r))u + (kh(3r-9) )u _ku2 12(3+6r-20) xxxx 2(3+6r-2A) xxxt 8 xxtt 

+ 0(ha, kß) , (4.6.9) 

and, 2 
T(4.6.3)II - (h(3r-8)/(3+6r-29))uxxx +2 uxxt + 24 uttt + 

h2(8A-3-24r) 
_ 

kh(3r-6) k 
12(3+6r-20) )uxxxx (2(3+6r-2A))uxxxt 8 uxxtt 

+ 0(h(l, ka) . 
(4.6.10) 

Thus having found the truncation errors for the equations (4.6.1), 

(4.6.2) and (4.6.3), we can express the truncation error for the 

difference schemes of the Spline Alternating Group Explicit Method in 

terms of equations (4.6.7), (4.6.8), (4.6.9) and (4.6.1o). 

i) SPAGER 

For any group of two,. points, (i, j+j) and (i+l, j+}), that are 

computationally combined, the truncation error is given by the two 

equations (4.6.9) and (4.6.10), respectively, for i=1,3,..., n-3. For 

the last single (ungrouped) point, the truncation error is given by 

equation (4.6.7). (See Figure (4.6.1a)). 

h3 k2 hk2 
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ii) SPAGEL 

For the first single point of this scheme, the truncation error 

is given by (4.6.8), and for the grouped points (i, j+j) and (i+l, j+}), 

i=2,4,..., n-2, the truncation error is given by equations (4.6.9) and 

(4.6.10) respectively. (See Figure (4.6.1b)). 

iii)' SPAGEC 

In this scheme, which occurs in the case of an odd number of 

intervals, there is no single (ungrouped) point, therefore the 

truncation error is given by the equations (4.6.9) and (4.6.10) only. 

(See Figure (4.6.2a)). 

iv) SPAGEU 

Since this scheme has a single point at each end, then the 

truncation error for the first (left end) single point is given by 

equation (4.6.8), for the last (right end) single points is given by 

equation (4.6.7) and for the point (i, j+j) and (i+l, j+}), i=2,4,..., n-3, 

is given by the equations (4.6.9) and (4.6.10), respectively. (See 

Figure (4.6.2b)). 

v) SSPAGE 

For this scheme, in the both cases of even or odd number of 

intervals, the truncation error on the (j)th and (j+l)th time level is 

given by the truncation errors of SPAGER and SPAGEL, respectively, for 

the even case, or by the truncation error of SPAGEC and SPAGEV, 

respectively for the odd case. In any case, some terms of the 

truncation error, on most of the interior points, tend to cancel each 

other due to the difference in their signs. These terms are the 
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[h(3r-8)/(3+6r-20)1 and [kh(3r-0)/2(3+6r-20)). This leaves the 

truncation error to be approximately O(k, h2). (See Figure (4.6.1c) 

for even case and Figure (4.6.2c) for odd case). 

vi) DSPAGE 

Similar to the previous scheme, this has a truncation error of 

O(k, h2), due to the same reason as given in (v). (See Figure (4.6.1d) 

for even case and Figure (4.6.2d) for odd case). 
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4.7 STABILITY OF THE SPLINE ALTERNATING GROUP EXPLICIT METHOD 

To establish the stability conditions of this group of schemes, 

we will deal first with the case when Dirichlet boundary conditions are 

imposed on all the boundaries. Any other case wi_1 be easy to consider 

with, may be, a little modification. 

The scheme al) can be written as, 

u. j+1=Tr Uj +b., 

where, 

T- 
r 

tl t2 t3 

t2 tl t4 

t4 tl t2 t3 

t3 t2 tl t4 
I 

0 

ý 

1 t3 t2 tl t4 

t' t' ` 
41 

ý 

where, 

tl = (3-26-3r2+r6)/det 

and 

where, 

t2 = r(6-3r+3)/det 

t3 = r(3r-O)/det , 

t4 = r(3-6+3r)/det 

t4 = r/(3-6+3r) 

ti = (3-0-3r)/(3-8+3r) , 

[t4uO, j't3uo, j'0,..., o, (0un, 
j-(9-3r)un, ý-1)/(3-0+3r)] 

I 

0 
f 

(4.7.1) 

(4.7.2) 
I 

%`ý 
t4 tl t2 t3 

det = (3+6r-26) . 
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The system (4.7.1) is stable if, 
4 

II Tr 1 1., = max (cIt I) :1. 
row i=1 i (4.7.3) 

From examining the elements of the matrix T we find that the rows 
r 

from the third to the (n-l)th have the maximum sum of modulus. 

Therefore, 

I ITrI la, ' Itll+lt2I+It31+lt4l 

3-29-3r2+r9l+Ir9-3r2+3rj +1 3r2-r6I+13r-r6+3r2 
(3+6r-2A1 

From the condition O61 and r>O, we have: 

1) For 9=0 

IITrI 

la) If r, <1, 

I ITJ Ic, _ 

lb) If r>1, 

iirllý, = 

= 
311-r21 +3rl1-rl+3r2+3rl1+r) 

13+6rl 

3-3r2+3r-3r2+3r2+3r+3r2 

3+6r 
1 

3r2-3+3r2-3r+3r2+3r+3r2 
ý 

12r2-3 
ý1. 

3+6r- 3+6r 

Thus r>l is invalid for stability. 

2) For 0=1 

ii r1iý= 
1+r-3r 2I+rl4-3r 

+rl3r-11+12r+3r2 
11+6r) 

For the first term (1+r-3r2) to be positive we need r to be <0.767. 

2a) If r<1/3, 

I IrlI"= 1+r-3r2+4r-3r2+r-3r2+2r+3r2 
1+6r 

1+8r-6r2 
1+6r = 

This is >1 as soon as r>O. 

Therefore JITrIIco=l+e, where O<e<0.09 and (1+0.09) n does not 

grow very rapidly. 



a 

2b) If 1/3; rý0.767, 

IITII ,, a 
1+r-3r2+4r-3r2+3r2-r+2r+3r2 

ra1. 1+6r 

2c) If 0.767<r<4/3, 

IITII.. = 
3r2-r-1+4r-3r2+3r2-r+2r+3r2 

a 
6r2+4r-1 

r 1+6r 1+6r 
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> 1. 

In this instance, we have evidence from the numerical experiments 

carried out that the scheme is stable for r; l. 

2d) If r, 4/3, 

iirii. 
3r2-r-1+3r2-4r+3r2-r+2r+3r2 

1+6r 

> l. 

12r2-4r-1 
1+6r-- = 

We have proved that the method is stable when 0=0 and r; l and when 

0=1 and 1/3, <r<, 0.767. 

By direct evaluation of the eigenvalues of Tr when n=31 and r=1, 

for 0=0.5,0.7,0.8,0.9,0.95,0.99 and from the apparent stability of 

the numerical solutions obtained in Chapter 5 and 6 it appears that 

P(Tr) ;1 for r<l. (4.7.4) 

Hence we believe that the SPAGER scheme is stable for r$l. 
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Similarly for the a2) scheme, where the amplification matrix T 

is given as, 

ý ti tl t4 

t4 tl t2 t3 

tl t2 tl t4 

Tj = 
11% 

0 

S. - 
5- 

... 

0 
I 

N 

t4 tl t2 

t3 t2 tl 

ý 
which is also stable for r, l, i. e. SPAGEL is stable for r<l. 

We can also prove the stability of the equations (4.3.2) and 

(4.3.3) in their implicit form by using this Lemma of Kellog [1964, p. 848). 

Lemma 4.7.1 

If p>O and B is non-negative definite, then (pI+B) has a bounded 

inverse and II(pI+B)-ll12; 
p-l. 

In our case, for equations (4.3.2) and (4.3.3) we need to show 

that (3r-8)G1 and (3r-8)G2 are non-negative. This is easily shown by 

observing that the eigenvalues of G1 or G2 are, 0 and 2 of multiplicity 

of the number of the groups and a single eigenvalue of 1, which are 

all non-negative. Thus (3r-O)G 
1 and (3r-O)G 

2 are non-negative definite. 

It is important to draw attention to the fact that equations (4.3.2), 

(4.3.3) and all similar equations representing other schemes are 

multiplied by a factor of 3 of the original equations. Thus according 

to Lemma (4.7.1), from equation (4.3.2) (I+(r-8/3)G1)-1 is bounded and 

II(I+(r-9/3)G1)-1112; 1" Similarly from equation (4.3.3) we get 

ýý(I+(r-6/3)G2)-1112: 1' 
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For the stability of these two equations we need that 

IITrII =II(I+(r-6/3)G1)-1(I-rG2-8/3G1)II :1 

and 
IITRII =1 (I+(r-a/3)G2)-1(I-rG1-6/3G2)II : 1. 

We have, 

IIcI+cr-e/3)cl)-l(I-rG2-e/3c1)II2. lI(I+(r-e/3)c1)-1112 

II(I-rc2-e/3c1)II2s11(I-rc2-e/3c1)112 

= max. modulus of eigenvalues, 

where the eigenvalues of (I-rG2-9/3G1) are 

(1), (1-20/3), (1-e/3), (1-2r), (1-2r-20/3), (1-2r-0/3), (1-r), 

(1-r-20/3) and (1-r-9/3). 

Therefore hl-rG2-6/3G1If2 
,1 for r; l. 

Thus, stability is fulfilled for both equations (4.3.2) and (4.3.3) 
For the stability of the single and double sweep processes in 

equations (4.3.4) and (4.3.6) respectively we need to state the second 

Lemma of Kellogg [1964, p. 849]. 

Lemma 4.7.2 

If p>O and B is non-negative definite, the operator T(B)=(pI-B). 

(pI+B) -1 is a bounded operator with IIT(B)II2s1" 
Now we write equation (4.3.4) as, 

(I+(r-6/3)G1)uj+1 = (I-rG2-9/3G1)u1 + b1 

(I+(r-g/3)G2)u, j+2 = (I-rG1-0/3G 2)uj+l + b2 

Eliminating uj+1 leads to, 

uJ+2 = Tui + b12 ., 

where b12 is independent of u and, 

(4.7.5) 
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Let, 

T= (I+(r-8/3)G2)-1(I-rG1-8/3G2)(I+(r-8/3)G1)-1(I-rG2-8/3G1). 

(4.7.6) 

T= (I+ (r-G/3)G2)T (I+(r-6/3)G2) -1 (4.7.7) 

The matrix T is similar to T, thus they have the same eigenvalues. 

From (4.7.6), 

Awo 

T= (I-rG1-O/3G2)(I+(r-0/3)G1)-1(I-rG2-0/3G1)(I+(r-0/3)G2)-1 1 

(4.7.8) 

and I ITI 12 =II (I-rGl-A/3G2) (I+(r-e/3)G1)-1(I-rG2-6/3G1) (I+(r-e/3)c2)-1112 

II(I-rGl-A/3G2)(I+(r-e/3)G1)-11121I(I-rG2-e/3G1) 

(I+(r-6/3)G2)-1112 . (4.7.9) 

As we have shown G1 and G2 are non-negative definite and consequently 

(r-a/3)G1, (r-0/3)G2, (rG1+e/3G2) and (rG2+9/3G1). Thus from Lemma 

(4.7.2) we obtain the stability of this scheme for r>O. 

In a closely analogous way, the stability of the double sweep 

scheme, equation (4.3.6) can be established. We can now write equation 

(4.3.6) as, 

(I+(r-9/3)G1)u1+1 = (I-rG2-A/3G1)uj + bl , 

(I+(r-0/3)G 2)uJ+2 = (I-rGl-B/3G2)uj 
+1 

+ b2 

(I+(r-0/3)G 2)uJ+3 = (I-rG1-0/3G 2)uJ+2 + b2 

(I+(r-0/3)G1)uj+4 = (I-rG2-0 /3G1)uJ+3 + bl " 

1 
(4.7.10) 

which can be treated as two single sweeps working in a reverse order of 

each other. Thus for the first two equations of (4.7.10) we have the 

previous case-of the single sweep scheme. For the last two equations 
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at (4.7.10), eliminating uJ+3 gives, 

uj+4 = Vu 
J+2 + b34 

where b34 is independent of 
,u 

and, 

T' = (I+(r-9/3)G1)-1(I-rG2-9/3G1)(I+(r-6/3)G2)-1 

(I-rGl-B/3G2) . 

Let, 

l) 
-1 

. T' = (I+(r-9/3)G1 )T' (I+(r-0/3)G 

The matrix is similar to T' and thus has the same eigenvalues as T'. 

T' 
= (I-rG2-A/3G1) (I+ (r-8/3)G2) -1(I-rGl-8/3G2) (I+(r-8/3)G1) -1, 

ý1 T'112 = 11(I-rG2-8/3G1)(I+(r-6/3)G2)-1(I-rG1-9/3G2)(I+(r-6/3)G1)-1 

s II (I-rG2-e/3G1) (I+(r-e/3)G2) -111211(I-rG1-e/3G2) 

(I+(r-8/3)G1) -1( ( (4.7.14) 

7 
which is similar to T in equation (4.7.9), thus, 

IIT'II2= IIT'II2. ; 1. 
Now eliminating uj+1, uj+2 and uj+3 in equation (4.7.10) we get, 

(4.7.11) 

(4.7.12) 

(4.7.13) 

uj+4 T"uj + bll 11 

where b11 is independent of u and, 

(4.7.15) 

T" = (I+(r-6/3)G1)-1(I-rG2-0/3G1)(I+(r-9/3)G2)-1(I-rG1-8/3G2) 

(I+(r-9/3)G2) -1(I-rG1-8/3G2) (I+(r-A/3)G1) -1(I-rG2-6/3G1) . 

(4.7.16) 

From (4.7.6) and (4.7.12) we find that, 
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or 

T" = T'. T " 

I IT� 112 =I IT'TI 12 " 
IIT'I121ITI12 

v 'v 
Since the eigenvalues of T' and T are the same eigenvalues as T' and T 

respectively, we get, 

(ITnII2sIIT" 1121ITII2 
1. 

Therefore stability of the double sweep scheme is unconditional 

for r>O. 

In the case of an even number of internal points, i. e. as in 

(bl) and (b2), we notice that the eigenvalues of G1 are 1 of multiplicity 

2,0 and 2 of multiplicity of the number of the groups involved. 

Whereas, the eigenvalues of 
G2 are 0 and 2 of multiplicity of the 

number of the groups. Therefore, the stability of the schemes SPAGEU 

and SPAGEC is obtained in the same way as was used in the case of an 

odd number of points. Thus, these two schemes are unconditionally 

stable for r: l. The single and double sweep schemes of this case are 

treated in the same way as in the previous case, thus they enjoy 

unconditional stability for r>0. 
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4.8 STABILITY OF THE SPLINE ALTERNATING GROUP EXPLICIT METHOD: 

PERIODIC CASE 

In this case although the coefficient matrices are different 

from those in the previous section, they can be proved to have the 

same eigenvalues. 

Let us take the scheme cl) SPAGEC. Equation (4.4.2) can be 

written as, 

uJ+l = T3 uj , 

where, ,r -1 N T3 = (I+(r-6/3)G2) (I-rG1-8/362) 

where we have divided by 3 to put into original form. 

A. & 

(4.8.1) 

The eigenvalues of G2 are discussed in the previous section. 
N 

For the matrix G1, it can be transformed to G2 by using the permutation 

matrix P and its inverse i-1 
f 

PG1P1 = G2 , 

where P 
1=PT 

and, 

rl 

P= 

00ý 
ýý. 

! ý_ `. 

I 
0Q 

0 
ý ýý ýý 
ý ý. ýý 

1 

_\ `\ 
fý 

1 
1 

ý 

o___r___r...... _o r .r 

(4.8.2) 

Thus G1 is similar to G2 and has the same eigenvalues. Therefore, 

following the same analysis as in the previous section leads to the 

same condition of stability, that is unconditional stability for r, l. 

This concludes that the stability of the single and double sweep 

schemes in the periodic case is also unconditional for r>O. 
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For, the case of the odd number of intervals, where we have the 

nvv 
matrices G1, G2, G1, G 

2, G1 and 
G2, 

apart from the 2x2 matrices Gýiý 

that are in these matrices, a 3x3 group is produced and is of the form, 

r -1 031 
01 -1 

L -1 1J 
or can be reformed so. This group can be shown to have the eigenvalues 

0,1 and 2. This leads us to follow the same stability analysis as for 

the previous cases. 
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4.9 STABILITY OF THE SPLINE ALTERNATING GROUP EXPLICIT METHOD FOR 

DERIVATIVE BOUNDARY CONDITIONS CASE 

In this case the matrices arising are not different from the 

cases discussed earlier except for Gi in el) and e2), where, 

1 

Gi = 

-1 

Gý1ý 

0 

c (2) O 

G 
(n-1) /2 

-1 

. __, 

1l 

It can be easily shown that a similarity transformation using a 

permutation matrix can transform Gi to G2. Thus, the analysis is the 

same as in the last two sections and the conclusion is that the 

schemes SPAGEL, SPAGER, SPAGEC and SPAGEU are stable for r; l and the 

schemes SSPAGE and DSPAGE are stable for r>O. 
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4.10 COMPUTATIONAL COMPLEXITY OF THE SPLINE ALTERNATING GROUP 

EXPLICIT METHOD 

The simplicity of this method is shown through its easy form and 

by its inexpensive cost. The number of arithmetic operations involved 

to evaluate one point of the solution at one time step is as follows, 

addition multiplication division 

(grouped point) 341 

For an ungrouped point the number of arithmetic operations 

depends on the type of boundary conditions, but for a general form of 

a single ungrouped point it is the same as for a grouped point. 
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4.11 THE RELATIONSHIP BETWEEN THE SPLINE ALTERNATING GROUP EXPLICIT 

METHOD AND SOME OTHER METHODS 

If we recall our original SPAGE equations, 

(3-e+3r)ui, j+l+(e-3r)ui+l, j+1 
eui+l, 

j+(3-e-3r)ui, j+3ru i-l, j 

(4.11.1) 

and, 

(3-6+3r)ui, j+l+(8-3r)ui-1, j+1 
3rui+l, 

j+(3-6-3r)uifj+9ui-i, j ' 

(4.11.2) 

then by putting A=O, produces Saulyev's formulae (3.2.13) and 

(3.2.14) respectively. Therefore, our SPAGE formulae reduces to 

the Group Explicit formulae of Abdullah (1983). 

Also, by putting 9=3r both equations (4.11.1) and (4.11.2) 

reduce to the classical explicit formula. In fact, adding the two 

equations above produces the three point two time level formula, 

(6-3r)u 
i-1j+1 +2(3-6+3r)u 

i, j+1 +(8-3r)u i+l, j+1 = (6+3r)u i-l, j + 
, 

+2(3-6-3r)uitj+(9+3r)ui+l, j 
(4.11.3) 

which reduces to the Crank-Nicolson formula when 0=0. It reduces to 

the well known explicit formula for 0=3r and to the fully implicit 

formula for 0=-3r. Putting 0=1, this formula produces a particular 

form of the cubic splines formula (due to Papamichael and Whiteman 

(1973))with optimum truncation error, see equation (3.2.12). These 

schemes are shown in Figure (4.11.1). 

Another way of looking at the relationship between the SPAGE 

scheme and the other schemes mentioned above is through the mechanical 

transposition of some of the elements of the coefficient matrices. We 
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FIGURE 4.11.1 
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take, as an example, the Crank-Nicolson case, i. e. when 0=0 in the 

SPAGE schemes. Consider the SPAGER scheme, this is written when 8=0, 

as, 

with, 

1 -1 I 

-1 1t i' 
--- -ý-\ ---- ö (-- ý -- 

IýI I 
i ýý ýi 

w 

G1 = 

and 

. _.. 

(31+3rG1)uj+l = (31-3rG2)uj + bl , 

i0 
i 
, 

*N ,I 

ý S% 

-- - -1 ---- I--_ _ I- ý 
`.. IJ 11 il 

2+2r -r 

-r 2+2r Itr)I 

`r; I 2+2r 

--i--- 
ý 
ý 

--L-, 
Q 

i 
i _ý__ 

. __.. `0 

= [3ru bl 
o'j, 

o, o,..., 0,6unlj-(6-3r)un, 
j+l) . 

The matrix form of the Crank-Nicolson method is as follows, 

i 

-r) 

-- -: 1 I1 -11 
II 
I-1 1I 

-I- -- 

I 

I---- "- - 

I 
i 

-r- 
i 

J-- 

(-r 2+2r 
-ý- -- ý ý-r j 2+2rý - ý- 

1 
I 

ý 

In 

i 
ý 

, G2 = 

I 
( 
t 

_.. 
i 

Iýul 

II 
;II 
T----r -- I 
IIý 

I 

i 

ý 
1- 

-4 -r -'- ---- . }.. --- 

I1 -1 ý 
I-i ii 

TI Iý 
ýýý 

- 1- - --4 - 

, ý. 

i 
i 
I 
L 

--- 

ý 
II 

\*4 

I ! 
/-% 

- a- -. ý= - 
ýi 
iý 
Iý ý 

T--il ! 
I 
I 

- -- =I - 

w 

(4.11.4) 

Cl ý 

'I 

ý1 -1ý 
ý 
i-1 1: 
I 

---A 

I 

. 
yn-IJ 

I 
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F2-2r Ir 

3 
2 

- -i- - rý 2-2r r 

r 2-2r 
-- -r- - -- 

i 
r 
r 
r 

-r - 
ý 
º 

ý 

1 -}I i 
II 

-} 11 ý 

I 

TI T- Zr 
where, b" = F` (u +u ) , 0,0, ... O, =(u +u )]. 22O, j+l O, j '2n, j+l n, j 

The process is to transfer the elements outside the diagonal 

boxes (in circles) from the matrix of j+lth time level to the matrix 

of the jth time level. The resulting system is similar to the system 

of SPAGER and is written as, 

(3I+3rG1)t3j+1 = (3I-3rG1)uj+(3rF1)uj+(3rF1)ui+i , (4.11.6) 

where, 

. _.. 

A 
G1 = 

fI 
----ý=---- ý; - 

i 
ý- 
i 
i 
ý 
ýr 
Iý. 
1 
I 

'C i 

ý 

%ft i 
.I 

ý-_ý-_--r ý2-2r 
I 
1 
I 

-t-T h 
1ý L' ý1 

._I ln 

. _., 

i 
i 
, r 
ý , 

i 
i 
ý 
1-- 
i 
ý 
i 

Il -} 
I I 

I_ i ii 
_ L=_ iý 

Iý 
ý '1 

F1 = I 

r 
ir 

2-2r 
1 

ýo tj 

-ý 
}-°-ý 

i- 

i 
I -- -, -- : r- -- - 
r-o i 

ý 

I 
1 
I 
I 
i 
1 
1 
i 

iý 

ul 

un-1 j 

I 

ýý I 
Ic 
I 
I 

I 

N 

C 

l 
1 
t 

i 
I 
ý 
ý 
ý 

+ b2. 

(4.11.5) 

I --Q 
- I- -- 

.. ý 

Ip } 
ý} 

O 

Analogously, the Crank-Nicolson scheme can be converted to a 

SPAGEL-like system and can be written as, 

(3I+3rG2) 
j++, 

= (31-3rG2)uj+(3rF2)u 
j +(3rF2)uJ+l 

1 

- __i 

C) 

i ý 
i 
ý 

- 1 

-. ...., 

,-i ý. i 

(4.11.7) 

where, 
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A 
G= 

2 

`) -. -ý 
U. -j i 

Ii 

II 
i 

1 
ý .+rý .ý 

ý1ý 

ýIýý 

Ij 
i 

---i- 

`. 

-} 11 

1 

I ý 

. T_ _ý 
I 

i 

O1_ 
i 

.I il 
II 

I; 
; -} 

iý II 
II 

, F2 = 

This suggests using equation (4.11.6) and (4.11.7) alternatively as a 

single iteration. 

The same strategy can be applied to the cubic splines formula. 

In the SPACER scheme let 9=1, this leads to the equation, 

[31+(3r-1)G1]uj+l = [31-G1-3rG2]ui , 

ul 
l 
1 
l 
t 
I 
I 
l 
t 
l 
1 
1 
t 

ul 

where G1 and G2 are as described earlier. The cubic spline system is 

given as follows, 

( 2+3r) u+ (1-3r) (u +u i, j+1 2 i-1, j+1 i+l, j+l) = (2'3r)ui, j + 

1+3r)(u 
i-l, j +u i+l, j) º 

i=l,..., n-1, 

or 
12+3r 

1-3r 

1-3r 
2ý 

2+ir 

I 

I 
1-3r 

2- -- .ý 
I 

-1=-- 1 

i 
-------1 - 

ý 

1-3r ý 
2+3r 1-2ri 

I 
I 
I 
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-i- 

1C 
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1 1. 

( 
ý_ 
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1 

I- 

i 
, 
ý 
i 

rý 

_ý 

1 
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2 

2 
-I--- 

Ii 
I 

I 
I 

1 

1 61 iO 
I1 

1 
I 
I 

I 

ý 
o 

II 4 o. I 

CK ý 

O\Iý --_A--`\J-r 
J 

r 1 

Ib}I 

I ý} oi 
---ý----. --ý -7 

ý. 

0 
I2+3r 

I 1-3r 

I 

--p 

-f -- - 

i 
i 
ý 

-_- ý-- 1-3r 
21 1 

2+3r 1 1-3r 
i; ic-; 

- 
2 

2+3r 
I -- 
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(4.11.8) 
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I- n-1 
.r... 
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ý.. ý 

- -- L--` 
-L -------"_ _I -_ _-- 1+3r 2-3r 1+3r 

22 

1+3r 
2-3r 1+3r ý 

2 ` ------ý ----- I 
-- -ý- -- -ý-.. 

1 -- -I ----- 
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I 
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1 
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I 
1 
i 
1 

123ri2-3r 123r 

11+3r 
2-3r 

2 
I --v 

ul 

( 
I 

ý 
un' 

-1 
ý.. ý 

+b3 , 

i 

(4.11.10) 

where, bT = 
113ru 

+ 
1-3ru 1+3r 1-3r I 

32 p'j -2 uO, j+1l 0ý0ý... ý0,2 un/i+ 2 ünrj+l. 

Following the same process of transferring the elements from the 

lefthand side coefficient matrix to the righthand side matrix to 

produce, 

(3I+(3r-1)GA 
1)ük+1) 

(3I-(3r-1)G1)u 
j +(1+3r)F1u +(1-3r)F1uJ+l 

(4.11.11) 

Different partitioning to the above matrices produces again a system 

similar to a SPAGEL system which is written as, 

(31+(3r-1)G2)ý 
jk+1, 

(3I-(3r-1)CG )u 
j +(1+3r)F2u j +(1-3r)F2U 1 

(4.11.12) 

Again equations (4.11.11) and (4.11.12) form a single iteration of 

a sequence of iterations that can be carried on until convergence is 

achieved. For the convergence of these techniques, we need, in 

equations (4.11.6) and (4.11.7), that the eigenvalues of, 

(31+3rGi)3rFi <1, i=1,2, 

and in equation (4.11.11) and (4.11.12), that the eigenvalues of 

(31+(3r-l)G 
1 

i)(1-3r)Fi < 1, i=1,2, 

This is guaranteed since the eigenvalues of Fit i=1,2 are always 41 

In the next chapter, this strategy is further developed. 

1+3r 
2-3r III 
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4.12 NUMERICAL RESULTS 

On three different problems, the schemes described in this 

chapter are tested and their results compared with the exact solutions 

in terms of the absolute error, (eil, and the percentage error, %e1, 

which are calculated as follows. 

(ei, 
j l= lui 

,j-Ui, j Ir (4.12.1) 

and 
%ei = 

(eitiI 
x 100 , 

Vi, j 

(4.12.2) 

where ui'j represents the numerical solution and Ui1j represents the 

exact solution. 

In the three problems, numerical results were obtained by 

dividing the domain into both even and odd number of intervals. 

Also different values of r were used (0.1), (0-5), (1-0)1 (1-5)" 

(0.121), (0.605), (1.21) and (1.815). This was done for a different 

number of time steps 10,50 and 100. Also because of the four steps 

of the double sweep schemes we used 12 and 52 time steps (instead of 

10 and 50) for these schemes only, assuming that two extra steps 

would not show a big difference in error and percentage error 

comparison. 

Because of the large number of tables that can be involved, we 

show only some of them. 

Example 1 

The model problem below is considered, 
au a2u 

at ax2 
' °, X, l 

with the initial conditions, 
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U(x, O) = 4x (1-x) ,Ox, l 

and the boundary conditions, 

U (O, t) =U (l, t) =0, t; 0 

The exact solution is given by, 

l (4.12.3) 

CCo 
22 

U (x, t) = 
33 1 

e-k 7r t sin (kTrx) , (4.12.4) 
Tr k=1,3,5,... k 

[SAUL'YEV, 1964, p. 34]. 

For this example the results are shown in Tables [4.12.1-4.12.6]. 

Example 2 

In this example a problem with derivative boundary conditions is 

solved. The problem is given by, 

au =a2U- ne,. e, -1 at aX2 

with the initial condition, 

I 

U (x, 0) = sinx+cosx, x, 0 

and the boundary conditions, 

au -t 
ax 

(O, t) =e, tI0, 

ax 
(l, t) = e-t (cos (1.0) -sin (1.0) ), to , 

(4.12.5) 

where the analytical solution is given by [MITCHELL and WAIT, 1977, p. 179]. 

U(x, t) = e-t(sinx+cosx) , O; x, l, t; o . 
(4.12.6) 

In this case, the derivatives at the boundaries x=0.0 and x=1.0 

are approximated by the first order central difference formula. 

The numerical results are shown in Tables [4.12.7-4.12.12]. 
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Example 

The problem considered here has periodic boundary conditions. 

The equation is, 

2t 
=a22+ lo(1-x)xt , o, x, l 

ax 

with the initial condition, 

U(x, O) = x(1-x) 

and the boundary conditions, 

U(o, t) = U(l, t), 
au (Olt) = 

aX(l, 
t) . 

The exact solution of this problem is, 

It 

U(x, t) = 
1+5t2 

-5c 
cos 2n6x {4n2n2t-l+e 4n2¶2t} 

68 
n=1 (nn) 

(4.12.7) 

w -4n2n2t 
Ie cos2nnx. 

n=1 n2ý2 

In this example we used the second treatment (ii) for the single 

boundary points, as it almost always gives more accurate results than 

the first treatment (i) in Section 4.4. 

The numerical results are shown in Tables [4.12.13-4.12.16]. 

In Table (4.12.7) we compare the SPAGE method with the C. N. 

and the G. E. method with r=0.1 and for 100 time steps. Also in 

Table (4.12.18) a comparison made with r=1.0 and for 100 time steps. 

All comparisons are made in terms of the percentage errors. 

2 Go 
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4.13 REMARKS 

A large number of numerical tests were carried out to check the 

validity and accuracy of the schemes derived in this chapter. From 

these experiments the following remarks can be made. 

a) In the tables of Section 4.12 the effect of 0 on the first and 

third problems can be clearly seen. 

In fact 0 may not increase the accuracy in some cases but it 

usually smooths the curve of the solution to match with the curve 

of the exact solution. 

b) In the first example, with Dirichlet boundary conditions, we see 

that for an even number of intervals the value of 0=0.6 for the 

SPAGEL and SPAGER schemes gives the most accurate solution for 

the different values of r=0.1,0.5 and 1.0. 

c) In most cases of the Dirichlet boundary problem we notice that the 

two schemes SSPAGE and DSPAGE give their most accurate solution 

when 6=0 except for the cases of odd number of intervals and r<0.5. 

d) For the Neumann boundary problem, the schemes SPAGEL, SPACER, 

SPAGEC, SPAGEU and SSPAGE for both even and odd numbers of 

intervals, give their most accurate solution when 6=0 for all 

values of r, while the DSPAGE scheme, for both even and odd numbers 

of intervals, gives the most accurate solutions when 8=0 for 

r<l. 0 and when 9"=0.5 for r>, 1.0. 

e) For the periodic problem it is recommended for all schemes to use 

O O. 7 when r=0.1 and 0=1.0 when r=0.5,1.0, except for SPAGEC 

where 6=0.0 appears to be best for r=0.5,1.0. 
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When r<1, the SSPAGE and DSPAGE appear to be at their optimum 

accuracy with O. O<, g, 0.5. 

f) In almost all cases for our numerical examples we do not recommend 

the SSPAGE scheme when r>0.5. This scheme appears to be as good as 

the other schemes for r, 0.5. 

g) From the comparison results in Tables (4.12.17) and (4.12.18) we 

can clearly see the superiority of the results from SPAGE over 

other results. 

h) The number of intervals (odd or even) does not appear to make any 

large difference in the numerical results. 

i) The results confirm the theoretical stability conditions that the 

simple schemes (SPAGER, SPAGEL, SPAGEC and SPAGEU) are stable for 

r; l and the composed schemes (SSPAGE and DSPAGE) are stable for r>O. 

However, this does not imply that we can use higher values of r 

than that used already, simply because of lack of accuracy due to 

the rounding errors and the limited arithmetic capacity of the 

machine. 

j) From Tables (4.12.13,14 and 15) we notice that as r increases the 

accuracy of the SPAGEC scheme is almost unchanged, while the scheme 

SPAGEU gets less accurate. 

k) Although, in our numerical results, the effect of having a single 

solitary point at one or both boundary points is not clear due to 

the use of 6, we think that, in the case of one single boundary 

point, it can be moved to the middle of the domain. Then use 
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complete groups at both boundaries and for the single middle 

points an accurate formula can be used. By this technique we 

appear to eliminate the high truncation error in approximating a 

single (ungrouped) point, (see Figure (4.13.1)). The formula to 

be used for the single point can be determined according to r. 

For r<0.5, the classical explicit formula can be used, while for 

r50.5, an implicit formula, like the classical implicit of 

Crank-Nicolson (C. N. ) can be used. 

2) Using a very similar technique to that used in deriving the 

SPAGE method, a three time level group explicit scheme can be derived. 

This is done in the same manner as in Section (4.2) up to equation 

(4.2.14), where then at the point (i-l, j+l) we approximate 
ýt by a 

weighted backward difference formula, as in equation (4.2.15), at the 

two points (i-l, j+l) and '(i, j+l), while at (i+l, j) we use again a 

weighted backward difference formula instead of the forward formula, 

as in (4.2.16) and the weighted points are (i+l, j) and (i, j) instead 

of (i-1, j) and (i, j), as in (4.2.16). This produces the following 

equations in correspondence to equations (4.2.15) and (4.2.16), 

Mi-1, j+1 - a(ui-l. 
j+lAtui-l, j)+(1-a) (uiI jAt i. j) (4.13.1) 

and 

a(ui, 
jQti, j-1)+(1-a) (ui+l, j 

Qt+1, 
j-l) 

, i+l, j 

where O; a<, l. 

Recalling equations (4.2.14) and (4.2.18), we have, 

jý 
" 

2(Miºj+Miºj+l) 
. 

4( 
ui 

. j+1 -ui, 
At 

(4.13.2) 

(4.13.3) 

and 
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(4.13.4) 

respectively. 

Now substituting equations (4.13.1), (4.13.2) and (4.13.3) in 

(4.13.4) gives, 

ui-l, j+l-ui-l, j) 
+(1-a)( 

-ui'j 
At At 

+a(ui'j 
ui, j-l) 

+(1-a)( 
-ui+l, j-1 

At At 

+4( 
u i, j+l -u i, j 

+6 (u -u )=6 (u -u (4.13.5) At 
h2 i, j+l i-l, j+l h2 i, j i-l, j 

Rearranging equation (4.13.5) leads to, 

46a 
At 
cc 6 

h2)ui-1, j+1+ý(Qta) + At + 
h2)ui, j+1 ý i-l, j 

+ 
(1-a) 

_a+4-6 )ui, +6 
(1-a) 

+ý ( At At At h2 j (h2 At 
)ui+l, j Et i, j-1 

1-a 
+ At li+l, j-1 

(4.13.6) 

As in Section (4.2) but in the reverse direction to the above, 

we approximate 
ät 

at the points (i+l, j+l) and (i-1, j) by a weighted 

backward difference formula at the groups of points (i+l, j+l), (i, j+l) 

and (i, j), (i-1, j) respectively. This results in rewriting equation 

(4.1.1) as, 

ui+l, j+l ui+l, j)+(1-a)(ui"j+l-ui, i 
At At 

(4.13.7) (i+l, j+1) 

and, 

6 Mi-l, j+Mi+l, j+2(Mi, j+l+Mi, j) + 
h2(ui. j+l-ui-l, j+l) h2(ui, j+l-ui-l, jý 

= a(ui. 
j-ui. j-1)+(1-a)( ui-l, j u 

M i-l, j-1) (4.13.8) 
(i-1, J) At At 

respectively. 



198 

Substituting equation (4.2.14), (4.13.7) and (4.13.8) in 

equation (4.2.10) gives, 

a6 (1-a) 
+46a 

(1-a) a (Qt - h2)u(i+l, j+l) +( At At + 
h2)ui, j+l ýt i+l, j+ý dt 

+4-6 )u +( 
6 

-(1-a))u + au (1-a) 
At h2 i, j h2 At i-l, j At i, j-1 At 

(4.13.9) 

Multiply equations (4.13.6) and (4.13.9) by At to give, 

(a-6r)ui-1, j+1+(5-a+6r)ui, j+l aui-l, j+(5-2a-6r)ui/j+(6r-(1-a))ui+1, j 

+auiºj-1+(1-a)ui+l, j-1 º 

and 

(4.13.10) 

(a-6r) ui+l, j+l+(5-a+6r)ui, j+l aui+l, j+(5-2a-6r)ui/j+(6r-(1-a))ui_llj 

+ auitj-1+(1-a)ui-l, j-1 
' (4.13.11) 

respectively, where r= 
A2. 

See Figures (4.13.2a and b). 
h 

Using the same idea of producing the SPAGE scheme, then by 

shifting equation (4.13.10) one step towards the positive direction of 

the x axis and combining this with equation (4.13.11) results in the 

equation, 

-a+6r a-6r uiýj+1 
_ 

-2a-6r a ui, j 
I+ 

La-6r 5-a+6r ui+l, j+1 a 5-2a-6r ui+l, j1 

6r-(1-a)) ui-1, j (1-a)ui-1, j-l+auij-1 

6r-(1-a)) ui+2, j 
+ 

aui+l, j-1+(1-a)ui+2, j-1 

(see Figure (4.13.3). 

(4.13.12) 

Equation (4.13.12) can then be easily solved. 
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This scheme still requires some theoretical analysis and the 

associated numerical experiment to test its applicability. As a 

three time level scheme, this could increase the accuracy of the 

SPAGE schemes even more so and improve the stability bounds. This 

will require further experimentation and will be left for future study. 
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a-6r 5-a+6r 

5-2a-6r 

a 

i-1 

j+l 

6r-(1-a) j 

a0 1-a 0 

i i+l 

FIGURE 4.13.2a 

5-a+6r a-6r 

J-1 

j+l 

6r- (1-a) 

-a 

i-i i 

FIGURE 4.13.2b 

5-2a-Gr a1 

6a j-i 

i+1 
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i-1 i i+1 

Molecular Diagram of Equation (4.13.12) 

FIGURE 4.13.3 

i+2 

j+l 

i 

J-1 
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5.1 INTRODUCTION 

In the previous chapter we introduced a direct explicit- method 

for solving parabolic partial differential equations,, and examined its 

efficiency. 

In this chapter, we will introduce an iterative explicit method 

for solving a similar problem which is closely related to the direct 

method. The method is derived from the cubic splines formula of 

Papamichael and Whiteman (1973). A splitting technique is used to 

produce a (2X2) block diagonal system which is them solved iteratively. 

The method is tested using the Peaceman-Rachford and Wachspress 

ADI parameters. Also, the eigenvalues of the (2X2) matrix are used as 

parameters to accelerate convergence. A constant single, parameter is 

determined which gives the minimum number of iterations possible. 

Some numerical results are presented and compared. 

The problem is again the heat conduction equation, 
2 at 

=a2,0<'X<"" t? O 
ax 

for different boundary conditions. 
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5.2 THE ALTERNATING DIRECTION IMPLICIT (ADI) METHOD 

This method was introduced by Peaceman, D. W. and Rachford, H. H., Jr. 

in 1955. They considered the two dimensional unsteady-state heat flow 

equation 
au a2o a2n 
at aX2 aY 

2 

1 

(5.2.1) 

The ADI method suggests that only one of the second derivatives, 
2 

say 
a 2, is replaced by a central difference evaluated in terms of the 
ax 

unknown values of U at 3 unknown points, while the other derivative, 
a2U 

'----' I-- - .. -- .-.. , -- ------- -r I. _......, 

ay 
2, is reptacea ny a central airrerence evaluatea in Lerms vi juivwii 

values of U. Then, sets of'simultaneous equations are formed that can 

be solved implicitly in the x-direction. The procedure is then repeated 

for a second time step of equal size, '-with the difference equations 

implicit in the y-direction. The overall procedure of the two time 

steps is stable for any size time step At. 

Thus, two difference equations are used 

k+l k k+l k+l k+l kkk 
uiýý-ui, 

= 
ui-l, j -2uilý+ui+1, j 

+ 
ui, j-l-2uiºj2ui, j+1 (5.2.2) 

At (Ax) (Ay) 

for the first time step and 

k+2 k+1 k+l 2k+1 k+1 k+2- k+2 k+2 
ui, j ui, j 

= 
ui-l, j_ ui, +u u -2u +u 

At 
j i+l, j 

+ 
i, j1 111 i, +1 (5.2.3) 

(Ax) 
2 (AY)2 

for the second time step, where i, j, k represents the spaces x, y and 

time directions respectively. 

These two equations can be arranged to give the following sets of 

equations, 
k+1 k+1 k+l kkk 

-ru +(1+2r)u -ru = ru +(1-2r)u +ruiý (5"2.4) 
i-l, j i, j i+l, j i, j-1 i, j j+1 

and 



204 

-ruk+2 +(1+2r)uk+2-ruk+2 = ruk+l +(1-2r)uk+l+ruk+l (5.2.5) 
i, j-1 i, j i, j+l i-1, j i, j i+1, j 

Each of them produces a tridiagonal system which can be solved 

using the direct tridiagonal system solver. 

The ADI method is also used to iterate to the solution of Laplace's 

equation 
a2z + a22 

=o. u 
ax BY 

(5.2.6) 

In this case each stage of iteration is regarded as time step of an 

unsteady state problem. 

In both cases, the method is stable for r>O provided that the two 

steps (5.2.4) and (5.2.5) are applied alternatively, or the corresponding 

form of the Laplace equation. The convergence proof for the iterative 

procedure follows from the stability analysis of the unsteady state 

case, see [Peaceman, D. W. and Rachford, H. H. Jr., 1955]. 

The two difference equations that approximate equation (5.2.6) can 

be written in the matrix form as 

(H+pkI)ük+}ý_ c+ (V-pkI)ük) (5.2.7) 

(V+p 
(c+1) 

=c+ (H-pkI)ük+}ý (5.2.8) 

where H and V are the coefficient matrices, pk'pk are acceleration 

parameters, I is the identity matrix, c is the vector associated with 

the boundary conditions and k represents the number of iterations 

(Birkhoff, G., Varga, R. S. and Young, D., 19621. 

Equations (5.2.7) and (5.2.8) can be written as 

ük+})= (H+pkI)-1[c+(V-pkI)ükJ 

k+l)_ (V+pkl)-1[c+(H-pkI)ük+ýý 

I (5.2.9) 

(5.2.10) 
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Douglas, J. Jr. and Rachford, H. [1956, p. 422) have suggested a 

variant of the Peaceman and Rachford method. They used the vector u 

in the second equation so that equations (5.2.9) and (5.2.10) can be 

written as 

ük+} _ (H+pkI)-1[c+(V-pkI)u 
] 

ük+11_ 
(V+pkI)-1[Vük+pkük+}f 

which is also convergent for all r>0. 

(5.2.11) 

(5.2.12) 
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5.3 THE SPLINE ALTERNATING GROUP EXPLICIT ITERATIVE METHOD 

Now we recall the cubic splines equation due to Papamichael 

and Whiteman (1973), i. e., 

(1-3r) (ui-1, j+l+ui+l, j+l)+(4+6r)uilj+l - (1+3r) (ui-lýj+ui+l, j) 

+(4-6r)ui, j 
0 (5.3.1) 

This is used to give an approximate solution to the equation (5.1.1). 

Let us define equation (5.1.1) in the domain 0; x: 1 and t>. O. 

For i=l,..., n, equation (5.3.1) produces the system 

Au J +l = Bu j+c, 

where, 

A= 

(4+6r 1-3r 

1-3r 4+6r 1-3r 

\ ýý \O \ 
\ý\\ 

\\\ 
\\ý 

\\\ 
S. \\ 

0 

4-6r 1+3r 

I.. 
1*11 

1-3r 4+6r 1-3r 

1-3r 4+6rr 

B= 

11 

1+3r 4-6r 1+3r O 
ý.. ýý ýý . 

0 

\\\ 
\\\ 

\\\ 
\ý\\\\\ 

1+3r 4-6r 1+3r 

1+3r 4-6r 
ý 

(5.3.2) 

F 

I 

and c is the vector associated with the boundary conditions. 

The procedure described earlier in the previous chapter, section 

11 is to split the left hand side coefficient matrix A into Al and A2 
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so that A1 and A2 are block diagonal matrices and each block is a 

(2x2) matrix. Then transferring each of A1 and A, in turn to the 

righthand side of the equation results in a single block diagonal 

matrix on the left side which is easily solvable. 

Let A be of order n where n (without loss of generality) is an 

odd number. Then we have 

A=A1+ A2 

where, 
Fa- b 

cab 

cab 
ý. ý 

ýýý 

A= 

0 

c aý b 

0 

A1 = 

a b' f 

C, a1 
-- - -I- - -ý-- 

Ia1 bý 
if 
Ic all 

-- -ý- - -ýý\ 

i 

- -ý --- ý iI 
Ii 

- -t --I 

ý 
iI 

cab 

cab 

ca 

r 
i 
ý 

{ 
i 
i 
I 

4 

I 
I 
I 

.ý 

- I- 
I 
I 
I 

--ý-- OT 
ý 

--ý-ý-ý- lal 
1 
I 

I 

b1 I 
i ic al 

-I- -ý 
al 

r 

(5.3.3) 

I 

0 

and 
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A2 = 

III E 

iý iý a2 
ý, I 

--1-- 
ý- 

-- -ý ---1- --- ' a2 b1ýI 
1I 
Ic a2 ýII 

--i- --1ý - -ýI- - --t ---- 
ýýý 

I IQ ýý 
- -I - ýý I- -1-- 

ýa2 b -r - -- - 
I1 
1I Ic 

-I -- 
2I 

- -I- - -ý ---a -I- --- 
III a_ b 

I 

where a1 + a2 =a. 

We are going to consider the case when a1=a2=a/2. Thus 

from the system above we have 

al = a2 = 2+3r 

and b=c= 1-3r . 

This leads us to write equation (5.2.2) as 

(A1+pI)uj+1}, = Buj +c- (A2-pl)uj+l 

(A2+pI)uj+ll, = Buj +c- (Al-pI) uj+lj, ' 

(5.3.4) 

(5.3.5a) 

(5.3.5b) 

where k is the iteration counter and p is a positive scalar. 

The application of these two equations alternatively gives an 

approximate solution to the equation (5.1.1) after At time steps. It 

is necessary that At be the same for both equations (5.3.5a) and 

(5.3.5b) for stability. 

As the order of the equations (5.3.5a) and (5.3.5b) does not make 

any difference as long as they alternate successively, we write 

(without loss of generality) equation (5.3.5a) in a systematic form 

to get, 
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al+p bI 
I 

b al+p I 

I 
ý 
1 
ý 

-r- 
i 
i 

CI 
\ý 

ý- L-` -i--- i-=- -- 
II 
II 

ý, C, 
Iýý 

( a1+p b 

b a+p 
7- .- 

--L-- --I- - 

I 

I 

I 

i 

df 

fdf 

fdf 
`ý. 

ýýý 

la1+p 
1 

-ýý ýýý ýýý 
ýýý ý--- 

fd 

r a, _p ý 
I 

i 
---I ý 

--ý 
al-p 

ýb 
-- y- -- 

i 
i 

ii 
ý 
ý 
i 
ý 

I 

b -i-- 

al-pl 
- - TZ. 

i 
_i ý 

Ci 

I., 

i 

I 
- -ý -- 

fdf 

b 

I 

--L ýI 
ii 
I1 
II 

ýI 

, ý. f 

Ib al+p 
- --F -- 

t 'd 

ial-p bý 

ýba, -p 

I 

i 

I 
i 
I 
I 
Iý 
I 
I 
I 

i- 
I 
I 
I 

-1 ' 
I 

ý 
i 

-I- -- 
ý a1+P 

Ful 

u2 

u3 

r 
ý 
I 
ý 

un-3 

un_2 

N-lJ 
j 

Ii_ -1 rý 

i 
ý ý 
ý 

, 
a-P b 

al-P 

Fu1 

u2 

u3 

u4 

un-3 

un-2 

Lun-1J 

(k+} ) 

+ 

Fu 
i 

J +l 

u2 

u3 
r 
i 
i 
i 

un-4 

un-3 

un-2 

uI 
-ý� 

= 

FC 
1 

C2 

º 
1 
I 
I 
1 
I 
1 
I 
I 

c 
n-2 

ýn-11 

(k) 

f 

j+l 

(5.3.6) 
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where al = 2+3r, b= 1-3r, d= 4-6r , 

f= 1+3r. 

To solve this system for uj+ij), we follow the normal way of 

substituting the initial and boundary conditions into the vectors u 

and c respectively. 

j 

For the vector u(k) we first substitute the initial conditions J+l 
and then after having found uj+1}), we use equation (5.3.5b) to find 

the values of uj+ll). At this stage a convergence test will be carried 

out for all the elements of the vector uj+l. If the test fails another 

iteration will be needed and the vector u(k) in equation (5.3.5a) will 
J+l 

take the value of the vector u(k+l), while the vector ui will keep the 

same initial values. If-the convergence test is successful then either 

we terminate the process (if that was the required solution) or carry 

on for another time step where in this case the last value of uj++l) 

will be fed into the vectors uj and uj+l and the above described 

process is repeated. 

In equations (5.3.5a), (5.3.5b) and (5.3.6) we have shown the 

acceleration parameter p as a fixed number for the simplicity of 

representation. It, in fact, will be of great advantage to use more 

than one parameter to reduce the number of iterations to achieve 

convergence and this will become clear later. 

If we write equation (5.3.2) as 

Au =g, (5.3.7) 

where g= Buj +c, (5.3.8) 

then from the system (5.3.6) a (2x2) block of interior points will 

look like this, 
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al+p b 

Lb al 
"J +1 

ui+l, j+1 

(k+} ) 
= 

^- gi 

gi+l 

ý - 

al-p 0 

0 al-p 

I bu i-i, j+1 
bui+2, j+1 

where gi = f`ui-l, 
j+ui+l, j)+dui, j+ci . 

Inverting the lefthand side matrix leads to, 

1hi, j+i 
Lujý1i1J 

(k+}) 
1 

det 

a1+p 

- Il_\ 
r. -ý % A. I 

In ui_1 
lj +1 

Lb 
ui+2, j+1 b ui+2, j+1J 

(k) 

(5.3.10) 

where det is the determinant of the inverted matrix and is equal to 

(al+P) 
2-b2 

b a1+p 

Equation (5.3.10) is now written as two equations, 

u 
(k+} )= (pu (k) 

+qu 
(k) 

+tu 
(k) 

+su 
(k) 

+w ) /det , (5 .3 . 11) 
i, j+l i-1, j+1 i, j+1 i+l, j+l i+2, j+1 i 

u 
(k+1) 

_ (su 
(k) 

+tu 
(k) 

+qu 
(k) 

+Pu 
(k) 

+w ) /det, (5.3.12 ) 
i+l, j+l i-1, j+1 i, j+1 i+l, j+l i+2, j+1 i+l 

where, 

p= -(al+p)b, q= -(a1+p) (al-p) .t= b(al-p) . 

s= b2, wi = (a1+P)gi-bgi+1 and wi+1 -bgi+(al+P)gi+1 

i, j+1 
lu (k) 

ui+1, j+1 

(k) 

(5.3.9) 

ui, j+1 

ui+1, j+1 

The computational molecule diagrams of equation (5.3.11) and 

(5.3.12) are shown in Figs. (5.3.1a) and (5.3.1b) respectively. 



i-1 i i+1 

a. 

212 

k+} 

k 

k+j 

k 

b. 
FIGURE 5.3.1: Computational diagram of equation a. (5.3.11) and 

b. (5.3.12) 

J +l 

0 

i 

j+l 

IF 

j 

For a single point near the boundary, i. e. for the n-lth point 

in (5.3.6) we have, 

or 

(k+j ) (k) (k) (a1+P)un-1, j+1 1: gn-1 - bun-2, 
j+1 _(al_P)un_l, j+l 

(5.3.13) 

11 u(k+}) -1 fg -bu(k) -(a -p)u(k) I. (5.3.14) 
n-l, j+l r(a1+p) n-1 n-2, j+1 1 n-1, j+1 

i+2 

This equation involves the boundary condition on the right end and on 

both time levels, thus its molecular diagram will look like Fig. (5.3.2). 
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k+} 
-L 

j+l 

k 

i 

n-2 n-1 n 

FIGURE 5.3.2: Computational diagram of equation (5.3.14) 

In the case of having a single point near the left boundary, i. e. 

when using the second sweep 

(A2+pI)u(k+l) = Buj +c- (Al-pI)uj+l}) 
J+l 

we will have the single equation 

or 

(a +p)u(k+l) 
(k+}) (k+}) (5.3.15) 

l 1, j+1 = q1-(a1-p)ul, j+l 'bu2"j+l ' 

u(k+l) =1 Ig (a _p)u(k+}) - bu(k+})1 ý 
(5.3.16) 

1, j+l (al-p) 111, j+l 2, j+l 

which its molecular diagram is shown in Fig. (5.3.3). 

k+l 
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O 
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ý 
Id' 

_/ 
I 
ý_ 

fj 
%- i 

2 

I 

1 

j 

FIGURE 5.3.3: Computational diagram of equation (5.3.16) 
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5.4 CONVERGENCE OF THE (SPAGEI) METHOD 

It can be easily seen that (A1+pI) and (A2+p I) are symmetric and 

positive definite. In fact, the eigenvalues of A1 and A2 are easily 

found where we have for the same pair of eigenvalues for all the 2x2 

group matrices and they are (1+6r) and 3, while the eigenvalue of the 

single element is the element itself (2+3r). Thus, the eigenvalues of 

A1 or A2 are (1+6r) and 3 each of multiplicity of (numbered groups) 

plus the single element (2+3r). 

Let U be the true solution of (5.1.1) then 

(A1+A2)U =g1 (5.4.1) 

and (A1+pI)U = g-(A 2-pI)U . (5.4.2) 

Therefore by (5.3.5a) we have 

similarly, 

(Al+pI)e(k+}) = (A2-pI)e(k) . 

(A2+pI)e(k+l) = (Al-pI)e(k+}) , 

(5.4.3) 

(5.4.4) 

where e(k) = U-u(k) represents the error vector. 

Hence 

e 
(k+l) 

-- Tpe 
(k) 

I (5.4.5) 

where 

We need the spectral radius of T to be less than unity for 
P 

TP= (A2+PI) -1(Al-PI) (A1+PI) -1(A2-PI) 
. (5.4.6) 

the method to be convergent. 

Let 
Tp= (A2+pI)T (A2{pI)-1 

I (5.4.7) 
N 

then T is similar to T, and 
pp 

ti 
Tp = (Al-pI) (Al+pI) -1(A2-pI) (A2+pI) -1 (5.4.8) 
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The spectral norm of (5.4.9) leads to 

and 

2. 
I ITp II2=II (A1-PI) (A1+pI)-1(A2-PI) (A2+pI) -111 

I ITp II2.: II (Al-PI) (Al+pl) -l i1211 (A2-PI) (A2+p, )-1112 . (5.4.9) 

But we have 

II (Al-pI) (A1+pI) -1 112 A-p 
ax 
x A+p I 

where A ranges over all the eigenvalues of A1. 

As we have found that X is positive, therefore 

(A1-pI) (A1+p, )-l112 <' 1. 

Similarly for A2 we have, 

II(A2-PI)(A2+pI)-lIl ,. l 

and thus, 
ýýTpl 12 :1, 

or I ITpII2 :1, 

hence convergence immediately follows. 

= max (5.4.10) 

(5.4.11) 

(5.4.12) 

(5.4.13) 
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5.5 EIGENVALUE AND ITERATION PARAMETERS 

There is extensive research underway into what kind of iteration 

parameters, how to choose them and how many to use in order to have 

an optimum number of iterations to achieve convergence. 

a) Stationary Case; p is constant 

In the case of one acceleration parameter, it is found from Young 

(1971, p. 504) that, 

p=Y 

is the optimum value where a and b are such that, 

0<a iý µ, v<b 

(5.5.1) 

(5.5.2) 

and g and V are the eigenvalues of the matrices A1 and A2 respectively. 

From the previous section, the spectral radius of the matrix 

Tp is given by, 

S (Tp) :Si (Gl-pI) ((G (G2+pI) -1) 

_ (max 
"'+p I) 

(max 

a; uý a, v-, tt 

_ (max Y-P 

a: Ya: ) 

ly+p 

V" e 
V+ p) 

)2 = ý(a, b, P) " 

Since (Y-P)/(Y+P) is an increasing function of y we have, 

max 
jY- C) != 

max( 
a: Y: b 

Now when p='vS, we get, 

a-oi- 
a+P 

b- 
b+p 

) 

(5.5.3) 

(5.5.4) 

(5.5.5) 

= 
lb-( )l (5.5.6) 

la+pýý +b+p' ý' 

, /G+, ý' 

If O<p</Z-,, then, 
lb-p I- YS-/a- = 

2�b(ý-p) 
>0. (5.5.7) b+p 

ºS+ra (b+p) (vg+ra) 
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Also, if V<p, then, 

(a-p I- 6--vla- 
_ 

2rb (p- a�-b) >0. (5.5.8) 
a+p rb +Aa- (p+a) (rb+ra) 

Thus p_YrZ is an optimum value that minimizes 0(a, b; p) and, 

S (TyrZ) 5 0(a, b; P) = (/b--Ea 
2 

/b-+wra- 

Since in the case of A1 and A2 where the eigenvalues are known, 

we can determine the optimum parameter quite easily. Evidently the 

three eigenvalues coincide when r=1/3 to give the eigenvalue 3 of 

multiplicity n, where n is the order of either of the matrices. 

b) Non-stationary case 

In this case where we allow pn to vary from one iteration to 

another in a cyclic manner, we aim to reduce the number of iterations. 

For pi, i=1,..., n, we shall need that, 

ITT Tp II=S (-FF Tp max 7F( l 
pi+µ 

1. I 
pi+ý 

(5.5.9) 
i=1 i i=1 i 1, j, m i=1 ijij 

and the requirement that A1 and A2 are commutative. 

Therefore if we know all the eigenvalues of A1 or A2 
a 

priori 

we could choose a sequence of positive numbers pi so that, 

n 
HIT T II =0 i=1 pi 8 (5.5.10) 

and we would then have a direct method, (VARGA, R. S. 19621. 

Although this is easily done in our case, we should also state 

what Peaceman and Rachford presented as a choice of parameters [PEACEMAN, 

D. W. and RACHFORD, H. H. Jr., 1955]. 

They supposed that the eigenvalues µ of A1 and v of A2 are such 

that, 
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a u, vb, (5.5.11) 

where a and b are the least and greatest eigenvalues respectively. 

The Peaceman and Rachford parameters are given by, 

Pi(p) = b(b) 
(21 -1)/2m (5.5.12) 

Another choice of parameters is given by Wachspress (19601 which is, 

a (i-1)/(m-1) 
pi(w) = b(b) , m32, i=1,2,..., m, (5.5.13) 

where a and b are as defined above. 

In Table (5.5.1) we present the eigenvalues of A1 or A2, which 

can be used as acceleration parameters, also the Peaceman Rachford 

(P. R. ) and Wachspress (W) parameters for some values of r. In the 

table, m represents the number of parameters, e. v. is the eigenvalues 

or the theoretical parameters which should be used. 

In Table (5.5.1) for m=l, column e. v. contains the mean value 

of the eigenvalues and for m=2 it contains the largest and the smallest 

eigenvalues. 

Unfortunately the rate of convergence for the non-stationary case 

improves by an appropriate choice of the iteration parameters if and 

only if the matrices A1 and A2 commute, i. e., 

A1A2 = A2A1 , 
(5.5.14) 

and this is not satisfied for our matrices A1 and A2. Even in the 

case of periodic boundary conditions the commutivity condition is 

only satisfied when A1 and A2 are of order 4. 

Now we see how the eigenvalues A of the iteration matrix 

(Al-PI) (A2-pI) 
T_ 

(Al+pI) (A2+pI) . 
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r m e. v. P. R. W. 

0.1 1 2.3 2.191 - 
2 3.0 2.564 3.0 

1.6 1.872 1.6 
3 6 2: 1pp 1 

2: 
0 . 9 91 

4 3.0 2.773 3.0 
2.3 2.370 2.433 
1.6 2.025 1.973 

- 1.731 1.6 
5 3.0 2.817 3.0 

2.3 2.484 2.564 
1.6 2.191 2.191 

1.932 1.872 
1.704 1.6 

0.333 any 3 3 3 
0.5 1 3.5 3.464 - 

2 4.0 3.722 4.0 
3.0 3.224 3.0 

3 4.0 3.813 4.0 
3.5 3.464 3.464 
3.0 3.147 3.0 

4 4.0 3.859 4.0 
3.5 3.591 3.634 
3.0 3.342 3.302 

- 3.110 3. o 
5 4.0 3.887 4.0 

3.5 3.669 3.722 
3.0 3.464 3.464 

- 3.270 3.224 

- 3.088 3.0 
1 5.0 4.583 - 
2 7.0 5.664 7.0 

3.0 3.708 3.0 
3 7.0 6.078 7.0 

5.0 4.583 4.583 
3.0 3.455 3.0 

4 7.0 6.297 7.0 
5.0 5.095 5.278 
3.0 4.122 3.979 

- 3.335 3.0 
5 7.0 6.431 7.0 

5.0 5.429 5.664 
3.0 4.583 4.583 

- 3.868 3.708 
- 3.265 3.0 

TABLE 5.5.1: continued... 
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r m e. v. P. R. W. 

2 1 8.0 6.245 - 
2 13.0 9.010 13.0 

3.0 4.328 3.0 
3 13.0 10.181 13.0 

8.0 6.245 6.245 
3.0 3.831 3.0 

4 13.0 10.823 13.0 
8.0 7.501 7.974 
3.0 5.199 4.891 

- 3.603 3.0 
5 13.0 11.227 13.0 

8.0 8.373 9.010 
3.0 6.245 6.245 

- 4.658 4.328 
- 3.474 3.0 

TABLE 5.5.1: continued 
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behave towards the acceleration parameter p for different values of r. 

Figure (5.5.1), (5.5.2) and (5.5.3) show the behaviour of the 

eigenvalues of T as p changes values. This is done for r with the 

values 0.1,0.5 and 1.0 respectively. 

In our numerical experiments here we let A1 and A2 be (without 

loss of generality) of order 9. 

Let µl, µ2 and u3 represent the eigenvalues of Al or A2, where 

ul and µ3 are of multiplicity of the number of the groups (which is 

4 in this case). We have seen in Section (5.4) that µ1=1+6r, 43=3 

and µ2=2+3r. It is noticeable that, 

u= 
Al + µ3 

rý 2 
(5.5.15) 

Since g1 is a function of r (it is less than 3 for r<1/3 and 

greater than 3 for r>1/3), we let g and µ be the smallest and the 

largest eigenvalues of A1 respectively. 

Initially let p be less than µ, which makes all the eigenvalues 

of T real, and as p gets closer to µ, the eigenvalues Xi will get 

closer to zero. When p becomes equal to µ we find that (n-1) /2 of 

the ai (4 in this case) becomes zero and the remaining X. are real. 

Once p passes this value of µ to lie within the range between p and µ, 

some of ai will commence to have complex values and will be arranged 

in such a way that when p=�4--, the i19 will be on a circle in the 
i=1 

complex plane. 

Then as p increases further, the Xi will start to dig rtish the 

circle and will gradually attain real values again in the opposite 

order as previously. 
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This experiment justifies the optimization of p=v. In 

addition we notice from Figure (5.5.1) that the eigenvalues Xi have 

their minimum modulus when p ranges between �u and 4 2, i. e., 

�µµ ýp< µ2 

or 
V/47 

u+u 
�uµ <, p2 

From the rate of convergence formula, 

(5.5.16) 

(5.5.17) 

R= -log10p(T) 1 (5.5.18) 

and in order to have a high rate of convergence for our method we 

need max to be small. Thus, using p=/Aµ to produce n eigenvalues 
l: i, n 

of T equal in modulus enables us to attain the optimum rate of 

convergence for the stationary case. 

But as the have lower modulus for 

,. _ µ+µ 
1(4 µ<p 

2 
(5.5.19) 

which give a higher rate of convergence, this suggests the use of 

more than one parameter p with values within the range (5.5.19) in 

order to reduce the number of iterations. 

This result has been established by Wachspress (Wachspress, E. L., 

19621 analytically, where he suggested that the optimum sequence of 

parameters are in the interval, 

Pi : (a+b) /2 (5.5.20) 

where a and b are the minimum and maximum bounds of the eigenvalues 

respectively. 

The only difference from the numerical experiment is that we 

have found numerically and geometrically in Figures (5.5.1), (5.5.2) 

and (5.5.3) that when p=(4+µ)/2, the iteration matrix T will have at 
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least one eigenvalue with modulus greater than �W. t which is not 

recommended. 

In Figure (5.5.1), for r=0.1, u=1.6, µ2=2.3 and µ=3. We notice 

that when p=2.3, the eigenvalue Al is greater than (1. 

In Figure (5.5.2), for r=0.5, µ=3, µ2=3.5 and µ=4. We notice 

that Al is greater than () when p=µ2. 

Similarly for r=l in Figure (5.5.3). Therefore we omit the equal 

sign on the righthand side of (5.5.20) and write it as, 

/Z 5 pi < (a+b) /2 . 
(5.5.21) 

In Figure (5.5.4) the eigenvalues (1+6r), (2+3r) and 3 are 

shown as El, (E1+E3)/2 and E3 respectively. The curve sgrt(E1E3) 

represents the optimum parameter p, and the shaded area represents 

the possible range of optimum acceleration parameters pi as in (5.5.21) 

which confirms the earlier hypothesis of equation (5.5.16). 
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5.6 THE SPAGEI METHOD FOR DIFFERENT BOUNDARY CONDITIONS 

a) Dirichlet Boundary Condition Case 

We have presented in Section 5.3 the case when the domain is 

divided into an even number of intervals. We now discuss the case 

when the domain is divided into an odd number of intervals. By 

splitting the coefficient matrix A into A1 and A2 (as before) we get 

either A1 (or A2) with no single element at either end, while A2 (or 

Al) has two single elements, one at each end. This is written as, 

A=A1 +A2 

Thus if A1 has no single element then, 

A1 = 

and 

A2 = 

'N 

o' ýI-, - ý 

Ic 
---- -al 

l- 
-----ý 

a1 biºi 
ýIt 

ca1I1 
---1-ý-- 1---- --º---- 

ia1 b1º 

111 

. iý. 

i 
i 
i 

--- 1_ ---------I--- 

i al 
ý 

I- 

ý' 
i 

---- ýr 

al b 

ý 
ýý ic al 

I 

ý 

, 
al bII 

ýC a1I 
- =- -1ý----ý-- I º\ Or 

ýýýýý 
i I 

i 
lO '¼ 

I 

II-----II 

1 1O 

I 
- -I -- 

ý 
1 
i 

-ý- - 
i 

I 

i 
.i 

11 

I 

S. 

Ii 
ýi 
2_ 

__ I- _ 
'al 

I IC a1 
------ -1- -1 I-. 

1iI 

iý1 al 
I 

I 

i, 
I-I- I 

(5.6.1) 

f 
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Although the matrix A1 will now have only two eigenvalues of the 

same multiplicity, our choice of acceleration parameters will not 

change. It is obvious that the two eigenvalues are (1+6r) and (3), 

the missing eigenvalue (2+3r) can still be used as an acceleration 

parameter since its value is in-between the other two eigenvalues. 

For the matrix A2 the situation has not changed in using the 

acceleration parameters, although it has the eigenvalue (2+3r) of 

multiplicity 2. 

For the two single points at the ends of the range equation 

(5.3.14) is used for the point un-l, j+l and for the point u(1, j+1) 

equation (5.3.16) is used. 

Periodic Boundary Condition Case 

In this case the boundary conditions are expressed as follows, 

u (O, t) = u(n, t) , 

and ax (0, t) = 
ar-(n, t) 

(5.6.2) 

(5.6.3) 

It is sufficient to use the information of equation (5.6.2) 

only. Thus, our system of equations will be, 

(1-3r)(ui+l, j+l+ui-l, j+l)+(4+6r)ui, j+l = (1+3r)(ui+l, j+ui-l, j) 

+(4-r)ui, j , i=1,..., n, (5.6.4) 

or since u(i, t) u(n+i, t) we get, 

(1-3r) (u2, 
j+l+un, j+l)+(4+6r)u1ý 

(1+3r) (u2,, j+un j)+ , 
(4-6r)ul, j, 

(1-3r)(ui+l, j+l+ui-l, j+l)+(4+6r)ui, j+l = (1+3r)(ui+l, j+ui-l, j 

+(4-6r)ui, j, 
i=2, n-1. 

(1-3r) (ul1j+1+un-1, 
j+1)+(4+6r)un. i+1 - (1+3r) (u1, j+un-1, j) 

---. r- 

+(4-6r)un, j" 

1 

ýl 

(5.6.5) 
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In matrix form the system (5.6.5) will look like this, 

4+6r 1-3r 1-3r 

1-3r 4+6r 1-3r 
ýý 1% - 

1-3r 

0 

f4-6r 1+3r 

1% 

1. 

1+3r 4-6r 1+3r 
.". N, 

ýý. 
ý ýý 

C 

I., 

11 

-1 

\ 
ý 

\ 
ý 

\\ \ý 

.. 

-1 

.` 

N 

1% 

N, 

-1 

0 

11 
1ý "I 

I \ 

\\\\ -. 

1-3r 4+6r 1-3r 

\ 
\ý 

\ý 
\ 

fý 

FU 
1 

u2 

un-1 

Lun J 

1-3r7 Iül 

C 

%. %ý N 

1-3r 4 +6rJ 

\ý 

1+3r 4-6r 1+3r 

Ll-3r 

or 

1+3r 4-6r 

AuJ+l -, Buj 

u2 
I 
I 
1 
I 
I 

i 
I 
I 

I 

ül 
n-1 

Lun J 

= 

j+l 

(5.6.6) 

j 

(5.6.7) 

Again by splitting A'we have, 

A=A1+A2 

Now two cases arise by putting the value of n to be even or odd. 

bl) n is an even integer: 

This leads to an even number of unknown points. Thus the matrices 

A1 and A2 will look like this, 
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2+3r 1-3r 

1-3r 2+3r 

-- i- - 

A1 = 

A2 = 

2+3r 
-- -L -- 

2+3r 

11-3r 
I 
I 
ý 

ý 
I 

ý 

I `. 
iý 
i` . 

I0 
ý- -- ý ý ý i 
r 

. 
_. 

--- 

1-3r ý 

2+3r I 

10 
ý- - 

1ý 

i 
ý 

C: 

i 
ýý llý 

1. I 

o2+3r 1-3r 
i 
1-3r 2+3r 
I 

1-3r 

,I 

ol I 
N 

I 

i 
_ý__ 

i 
I 
I 

\1 
\\, 

, --7 

2+3r 1-3rr 
1 

i I 
, 1-3r 2+3r ; 
i 

2+3r 1-3r' I 

I 

In solving the system all 2x2 groups will be treated as in the 

case of Dirichlet boundary conditions, but in the sweep, 

(A2+PI)uj+ll) = Buj - (A1-pI)uj+1}) (5.6.8) 

two different (2X2) sets of points will appear, one set at each end. 

i) For i=1, we will have the equation, 

(a +P)u(k+l)+bu(k+l) =9 -(a -P)u(k+})-bu(k+j) (5.6.9) 
1 1, j+1 n, j+l 111, j+1 2, j+1 

where (al+p), (al-p) and b are as before, 

9l =f (unij+u2, 
j) + dulj " 

where f and d are as previously defined. 

and 

(5.6.10) 
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ii) For i=n, we will have the equation, 

(a +p)u(k+l) + bu (k+l) 
=g -(a �p)u(k+})-bu(k+j) 1 n, j+l 1, j+l n1n, j+l n-l, j+l 

where 

gn = f(un-l, 
j+ul, j) + dun, 

j * (5.6.12) 

We can easily notice that by adding equation (5.6.9) to (5.6.12) 

gives a (2x2) group which can be solved as any other (2x2) group of 

our system. This will be 

(k+1) r_ .- L-i r- -1 alTp D ul 

b al+p un b al+p 
lu1 

n 
j+l 

gl 

gn 

r. 0 .., -- PbI ul 

b al'P un 

(k+}) 

j+l 

I 
bu 

(k+} ) 
2, j+1 

bu 
(k+} ) 
n-1, j+1 

Inverting the lefthand side coefficient matrix leads to 

u -1 (k+1) 

u 
n 

i +1 

lI uý 
n 

j+l ý j+l 

1 
det 

(k+} ) 

O al PI Zuni 

.L (k+} ) rbuol 
, ,, I41 JTl IL (S_F, _idl 

bun-l, j+l 

which gives the two equations 

I%r. v. _., 

u 
(k+1) 

_1 [w + su 
(k+J) 

+ tu 
(k+}) 

+ qu 
(k+}) 

+ pu 
(k+} )] 

1, j+1 det 1 n-1, j+1 n, j+1 l, j+l 2, j+1 

(5.6.15) 

and 

where 

u(k+1) =1 [w + Pu(k+J) + qu(k+}) + tu 
(k+}) 

+ su(k+})l 
n, j+l det n n-l, j+l n, j+1 l, j+l 2, j+1 ' 

(5.6.16) 

wl = (a1+p)g1-bgn. wn = (a1-p)gn-bgl, 

(5.6.13) 

ýrý - 

al pO ul 

0 al-p un 

_ý .. 

(k+} ) II 

p, q, s and t are as defined in Section 5.3. 
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b2) n is an odd integer: 

This obviously leads to an odd number of unknown points, and we 

have two ways of splitting the matrix A. 

i) When the matrix A is evenly split, then A1 and A2 will look like, 

al bi 
1 

A1 = 

A2 = 

ý, iýýý 

b al I 
-- - ý-ý- -- 

I ýý 

b 

10 `I' 
--- -i-"- -- -- = ýal 

b-ý- 
Iý 

i 
---. 1- - --- --ýb -alý- 

IIL( 

ýJ. j- 
-- 

'- 
-----ý--- 

1a, biI 

II- 
ii 
II 

-- -ý- - --ý - 

II 
ýýý al I 

al III 

- -ý -- =Tý- - -- ^(- -- 

G! 

i 
lb aý (I 

IIý %-If I 
1\I 

1ý 

- ý-- -ý ---- 
i, 

iý 
ý 

r 
i 

f 

i 

\I 

ý F.. 
ýý 

b, 

11% 1 ý ~1 

ib al 

IJ 

Solving the system for both sweeps will be as previously done, 

except the end points must be left last to be evaluated. The reason 

is that each of them is presented as a pair of end points in one 

sweep. For the sweep, 

(A1+pI)uj+l}) = Buj-(A2-pI)uj+l 

the right end point is presented in the equation, 

0 

a 

(a (k+}) (k+j) 
= 

(k) (k) 
1+p)un"j+l+bul, j+1 gn -bu n-l, j+l-(al-p)un, j+1 
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The computational molecule diagram of equations (5.6.15) and 

(5.6.16) is shown in Fig. (5.6.1). 

det 

-fb I 

n-1 

0. 
t/d q/det 

- 11.1 e-% 
db /1ý -fb ý 

I+f (al4)ý (`d (aýP) 
1% 

`% 

n 

(a) 

k+l ý 

j+l 

k+} J 

ýý 

if (al-P)ý 

1 

%. .0 

ý ý 

j 

j+l 

/ý fb \/ -db 1 
If (al+dl (+d(a1+P ý t+f (aj+p)) 

\-/`/ 

n-1 n 

(b) 

\j 

1 

fb 
ý_ý 

2 

FIGURE 5.6.1: Computational diagram of equations a) (5.6.15) and 

b) (5.6.16) 
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where the function uikj+i should be known in order to find unk' by 

u(k+}) =1 (g -bu(k) -(a -p)u(k) -bu(k+j) ) 
n, j+1 (al+p) n n-l, j+l 1 n, j+l l, j+l 

(5.6.18) 

While for the sweep 

(A2+pI)u(+ll) =B uj-(Al-pI)uj+l}) 

the left end point is presented in the equation, 

(a +P)u(k+l)+bu(k+l) =9 -(a -P)u(k+})-bu(k+}) (5.6.19) 
1 1, j+1 nj+l 111, j+1 2, j+1 

in which the function u(k+l) should be known from the (2X2) group at n, j+l 

the right end boundary. Therefore equation (5.6.19) is written as, 

u(k+l) =1 [q (a'-p)u(k+})-bu(k+})-bu(k+l)] (5.6.20) 
1, j+1 (a1+p) 111, j+l 2, j+1 n, j+1 

The molecular diagram of equations (5.6.18) and (5.6.20) are 

shown in Fig. (5.6'. 2) . 

I 
I 
I 
I 

i 
ri 

ý ,ý Iý_ý, 
iýýý. ý 

f 

`ýýl+p % 

., i 
aý . 

_f 
ý f I ._ .-%\. _ 

in\I 

.; 1*ý, l 
`mal+p ) 

n-1 n1 

(a) 

k+} 

k 

j+l 

i 
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j+l 

i 

(b) 

FIGURE 5.6.2: Computational molecules of equation a) (5.6.8) 

and b) (5.6.20) 

ii) When the matrix A is split unevenly, then A1 and A2 will look like 

äl bý 
1 

b--- al 
ý\ -- 

A1 = 

I 
tp 

ý----i ---- 

ý 

I 

ýý 
ý 

---i-- Oi 
I.. 

i 
I al b, 

I 
I 

ýb al I 

i 
I 
I 

aý 
1 -4 

--f f 
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A2 = 

al bý 

--I--- --I- ------ -1-- 
I al bI 
II 

- 
b---alr-ý-------. 

t__- _. 
. OI 

ºý 

_. - -- -- 
b 

This means in the direction 

I I 
a 1 

b all 
i 

(Al+pI) u 
j+lý, =BUJ (A2-pI) u j+l 

S 

we have one single (ungrouped) point which is at the right end boundary 

and is presented in the equation 

u(k+j) =1 Eg -(a -p) u(k) -bu(k) ý. (5.6.21) 
n, j+l (a1+p) n1n, j+1 1, j+l 

While for the direction, 

(A2+pI)uj+ll) -B. Uý (Al-pI)uj+ýj) 

We have at the left end boundary one equation with two unknowns, 

namely, 

(a +p )u (k+l) 
+bu 

(k+l) 
= 

(k+} ) (k+} ) 
1 1, j+l n, j+l g1-(a1'p)ul, j+1-but, j+l 

and at the right end boundary we have two equations with three 

unknowns. These are, 

and 

(5.6.22) 

(a +p)u(k+l) +bu(k+l) = 
(k+}) (k+}) 

1 n-l, j+l n, j+1 gn-l -bun-2, j+1-(a1 p)un-l, j+l 
(5.6.23) 

+p)u 
(k+l)+b(u(k+l)+u(k+l) 

_ 
(k+}) (a . 1 n, j+1 1, j+1 n-1, j+l) gn-(al_p)un, j+i 

(5.6.24) 

Neither of the two boundary cases above can be solved 

independently, since the number of unknowns is more than the number 
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of equations, but adding them together provides the right information 

needed to solve them simultaneously. This leads to the 3x3 system, 

a1+p 0bu -k+} j 

0 a1+p b un-1 
Lb 

b a1+p un 

j+1 

gl 

a gn-1 

gn 

ýý 

a, -p ý 0, ru, 1(k+} ) 
I1 

0 al'P ýý un-1 
1 

O0 al-p 

bu(k+}) 
r2, 

j+1 

bu 
(k+i) 
n-2, j+l 

L° Inverting the 1. h. s. coefficient matrix gives, 

ul 

un-1 

U n 

(k+1) 

-J j +ý 

r(al+p )2 -b 
2` b2 

b2 

-(a1+p)b 

_(al+p)5ý 

(aý+p)2-b2 -(a, +p)b 
ii 

-(al+p)b (al+p) 

r1 (k+}) rut - 

- (al-p ) un-1 

U 
n j+l 0 

LJj +], 

Fg, ý 
I gn-1 

i !n 

ºi 

W 

U n 
j+l 

(5.6.25) 

(5.6.26) 

which leads to the three equations for u 1, j+1 ,u n-1, j+1 and un 
, j+11 

u(k+1) =1 IPg +b2q +Q5 -P(a - )u(k+})+Ru(k+}) l, j+l det 1 n-1 nlp1, j+1 n-l, j+l 

+Sbu(k+})_bPu(k+})-b3u(k+}) ý 
n, j+1 2 , j+1 n-2, j+1 

and 

=1 
(k+i) (k+}) 

un-l, 
(k+1) 

j+l det[b 
2 

g1+Pgn-1+Qgn+Ru1. j+1-(al-p)Pun-l, j+l 

+Sbu 
(k+} ) 

-b3u 
(k+} ) 

-Pbu 
(k+} ) 

n, j+l 2, j+1 n-2, j+1 

(5.6.27) 

(5.6.28) 

unkj+l det(5291+45n-1+(al+p)2gn+Sbuikj+l+Sbunki}j+l 

-(a +P)su(k+})-Qbu(k+})_4bu(k+}) (5.6.29) 
1 n, j+l 2, j+1 n-2, j+1 

... 

bI un-2 

2 

(k+} ), 
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where,, 

and 

det = (a1+p) 
3-2 

(a1+p) b2 

P= (a1+p)2-b2 1 

4= -(al+p)b 

R= -b 
2 

(a 
1-P) 

S (a1-p) (a1+p) 

The molecular diagram of equations 

are shown in Fig. (5.6.3). 

(5.6.27), (5.6.28) and (5.6.29) 

k+1 

j+1 

k+} 

i 
ý 
ý 

I 
i 

/ b`d 1 
+Qf 

2f 
(b' 

\/ 
\_O, 

i 

/Pf 

`+b2f 
ý+Qd 

/ 

(a) 

i 
ý I 

(4) j 

j+i 

Qf 

I 

'ý\ 
ý Qd+ %40 

f4*' 
(A+p f 

\I/ \ tý / 
.. ý ... ý 

I 

/ -. ', 

(a, +p)2f 

I 

-ý. 

Pf ý 

'/ 

i 

ý Qf )j 
, ýý ý_ý 

(b) 
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k+l 

j+1 

k+} 

i III' 
I. ( 

Pf 
Pd 1 tPfý (b2d 1( b2f ý 

ý Qf ý \+Qa ý \+Qf / 
.... ý -- -ý 

n-2 n-1 n12 

(c) 

FIGURE 5.6.3: Molecular representation of equations a) (5.6.27), 

b) (5.6.29) and c) (5.6.28) 

j 

c) Derivative Boundary Condition Case 

For this case we have the boundary conditions expressed in terms 

of the derivative of the unknown function. For the problem given by 

equation (5.1.1), the derivative boundary conditions are as follows: - 

aul f 
*41 ax 

x=o 
1 

aul 
= ax 

x=1 
2 

(5.6.30) 

(5.6.31) 

For this type of boundary condition we use either the central 

difference or the forward difference approximation to the derivatives 

involved. 
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cl) The central difference: 

By using this approximation (5.6.30) and (5.6.31) are written as, 

ul, j-u f (5.6.32) 
2Ax 1 

and un+1, j-un-l, j 
2Ax 0 (5.6.33) 

respectively, for any time level J. This approximation is of order 

2 
(h ) accurate. 

The points (-l, j) and (n+1, j) are not within the given domain and 

hence are virtual points. To eliminate them we use equation (5.3.1). 

To determine the function at the points (-l, j) and (-1, j+1), we let 

i=0 in equation (5.3.1) to give, 

(1-3r) (u-l, 
j+l+ul. j+1)+(4+6r)u0, j+1 = (1+3r) (u-l, j+ui1j) 

+(4-6r)u0,, j . 
From equation (5.6.32) we have, 

while for the (j+l)th level we have, 

u-l. j -- ul, j_2pxf1 , 

u1, j+l -- ul. j+l-2Axfl 

(5.6.34) 

(5.6.35) 

(5.6.36) 

Substituting the values of u_l, j and u_l, j+l 
in equation (5.6.34) 

we get, 

(1-3r)(2u1. j+1-2pxf1)+(4+6r)u0, j+1 = (1+3r)(2u1"j-2txf1) 

+(4-6r)ua, j , 
(5.6.37) 

which becomes, 

(4+6r)uo, j+1+2(1-3r)ul/j+l = (4-6r)u0, 
j+2(1+3r)ul, j-120xf1r. 

(5.6.38) 

Similarly for the remaining end point, when i=n, equation 
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(5.3.1) becomes, 

(1-3r)(un-l, j+l+un+l, j+l)+(4+6r)unoj+l = (1+3r)(un-l, j+un+l, j) 

+(4+6r)un, j . (5.6.39) 

Rewriting equation (5.6.33) as, 

un+l, j " un-l, j + 20xf2 . 

and similarly for the (j+l)th level we have, 

un+l, j+l ,, un-l, j+1 + 2Axf2 . 

(5.6.40) 

(5.6.41) 

Substituting un+l, J+l and un+l, j into equation (5.6.39) we get, 

(1-3r) (2un-1, j+1+2Axf2)+(4+6r)un, j+1 = (1+3r) (2un-1, j+2pxf2)+ 

(4-6r) un j, 

which becomes, 

2(1-3r)u 
n-1, j+1 +(4+6r)u 

n, j+1 = 2(1+3r)u 
n-1, j +(4-6r)unij 

+12Axf2r . 

Thus, the system of equations will become, 

(5.6.42) 

(5.6.43) 

(4+6r)uo, j+1+2(1-3r)u1, j+1. 
(4-6r)uO 

j+2(1+3r)ulIj-12Ax 
f1r , 

(1-3r)(ui-l, j+l+ui+l, j+l)+(4+6r)ui, j+l = (1+3r)(ui-l#j+ui+l, j) 

+(4-6r)ui, j, 
i=1,..., n-1 

2(1-3r)u- +(4+6r)u = 2(1+3r)u +(4-6r)u j+12pxf r 
n-l, j+l n, j+l n-l, j n, n 

(5.6.44) 

In matrix form this is written as, 

i 

Auj+1 Buj +c, (5.6.45) 
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where 

lä 2b 

bab 

bab 
" 11% ' 1ý1 Cl 

A= 

\\\ 

ý 
ý 

\ 
ý\\ 

ý 0 %I 
\` 

-S 

`' b" ab 

2b a 

B= 

d 2f 

fdf 

.ýý 
\\0 '. 

.. ý . ý`. 
.ý ý. 

I ui = 

0 
f\ý 

fd *' f 

2f d 

and 

l-. 

c=. Ic0,0,0, ... , O, cnJ 
T, 

where a, b, d and f are as previously defined, 

c0 = 12Axf1r and cn = 12Axfnr 

f 

uo i 

ul j 

un-1, j 

Lun, j J 

By following the same procedure in splitting the matrix A we get, 

"(A1+pI)uj+l}) g-(A2-pI)uj+1 (5.6.46) 

(A2+pI)uj+ll) g-(A1 pI)uj+l}) (5.6.47) 

In the case of n being an even or an odd number we will always 

have the general 2x2 group, the equations for the end points will have 

slight differences. 

... 
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i) When n is an even number: 

This will lead to A1 and A2 as follows, 

A1 = 

a(iIT 1-ý 

- -1--a1- bi -----I--- 
III 

F -ý-b - 
al ýZ-- 

-r --- 
Iý 

ý 

ýI 
ý- 

i 

and 

A2 = 

i v ý_ 
i 
ý 
I 

_I_ Ial býi 
ýM 
lb al 

i! 

-ý-- 

ý' 1'ý 
iiý 

Thus, from equation (5.6.46) the end point equations are, 

(a +p)u(k+}) =g -(a -p)u(k) 2bu(k) 
1 0, j+1 010, j+1- 1, j+1 

to give, 

L- III 

F al 

b 

- -= T,, - ---- of- -- ý- 
, IN i ý, 

(al b 

ýýi 2b al 

2b I 

'\l.. J I 
I\ 

I I\I 

10- 11 
1 

NI 

'fý 
ýý t b a1 pI ý 

I 
ºýI 
I r-. 

IN. 
. 

u(k+}) =1 Ig _(a -p)u(k) -2bu(k) ]ý (5.6.48) 
0, j+1 (a1+p) 01O, j+l 1, j+1 

and in submatrix block form the equations at the other end are, 

-1 n al+p b ru 

2b ý+p Ln 

(k+} ) 
gn-1 I_ rai_P 

oý 
Fun-1] (k) 

- 

rbun-2 I (k) 

2b ý+p I Lun jj+l 

"n JL0 alýd 
Lun J 

i-0 

Lo J 

4+1 

N 

J+J- 
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which in explicit form becomes, 

n-1 
(k+}) 

1a 1+P -b n- 
apu 

n-(k) _-1l det 
un j+1 -2b a1+p gn al-P un _Jj+l 

rb, u 
n-2 

(k) 

Lo i+1 
or as two equations, 

and, 

where, 

u(k+}) =1 [w +qu(k) +tu(k) +Pu(k) 3 (5.6.49) 
n-l, j+l det n-1 n-1, j+1 n, j+l n-2, j+1 

u(k+}) =1 [w +2tu(k) , }qu(k) +2su(k) ), (5.6.50) 
n, j+l det n n-1, j+1 n, j+1 n-2, j+1 

det = (al+p)2-2b2, wn-1 - (a1+p)gn-1-bgn 

wn = -2bgn-1+ (al+p) gn. q= -(a 1 +p)(al-p) ,t=b (al-p) 

p= -(a1+p)b and s=b 
2 

From equation (5.6.47) the end points equation will have a 

similar form to (5.6.48), (5.6.49) and (5.6.50) with a revised spacial 

position. 

ii) When n is an odd number: 

This will make A1 and A2 of an even order with the form, 

alt I1 

l al bi ýI 

Iý I(I 

- -ý- 
a1 

J----- 1- --L - 
A1 = 

r_ 

Iý( 

i---: 

--- 

1 ýb 
aý 

__I1 
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and 
rä1 2b ii 

II 
b al i( 

--- ý- --1 

I 

A2 = 

II 
ý al býi 

ba I 

r... Iý 
I' 
iý 

- 
L-- 

-ý -- - 

11 11 
-r- --- --- 

_- 
-- r- -- 

ý\ 

ý 

-1 - 
i 

i 

I 
I 

I 

I 

2b al, 

where the cases of the end points are treated as in i) above. 

c2) The forward and backward difference method 

In this case we use the forward difference for the left end point 

and the backward difference for the right end point. 

Therefore equation (3.6.30) will be 

ul_u0' 
fl . 

and equation (3.6.31) will be, 

un, j-un-l. j 
Ax f2 

(5.6.51) 

(5.6.52) 

for any time level J. This approximation is of order (h) accurate. 

Rewriting equations (5.6.51) and (5.6.52) to get 

uo, j Z ul j- 
dxfl 

and 
u n, j un-l, j + dxf2 , 

(5.6.53) 

(5.6.54) 

respectively. 

Using equation (5.3.1) for i=l, and substituting u0, j 
in (5.6.53) 

we get, 

0 
i ý_ iý 

\1I 

('; II 

-1--- 
"-. 

----- !ab1 
11i 
ib al f 

r. i_ 

I 

I 
I 

a. b i 
I 
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(5+3r)u1, j+1+(1-3r)u2, j+1 - (5-3r)u1, j+(1+3r)u21J+6rAxf1 8 

Similarly for i=n-1 and equation (5.6.54) we get, 

(1-3r)un_2, j+1+(5+3r)un-1, j+1 = (1+3r)un_2. j+(5-3r)unl, j 

+6rtxf2 0 

Hence the system of equations will be, 

(5.6.55) 

(5.6.56) 

(5+3r)u1, j+l+(1-3r)u2, j+1 = (5-3r)ulej+(1+3r)u2, j+6rAxfl ,1 

(1-3r)ui-1, j+1+(4+6r)ui, j+l+(1-3r)ui+l, j+l - (1+3r)ui-1, j 

+(4-6r)uitj+(1+3r)ui+l, j' 
i=2,..., n-2 

(5+3r)u +(1-3r)u = (5-3r)u +(1+3r)u +6rAxf2 
n-1, j+1 n-2, j+1 n-1, j n-2, j 

(5.6.57) 

which is solvable by the SPAGEI method. For the evaluation of 

up, j+l and un, j+l we use equations (5.6.53) and (5.6.54) respectively. 



255 

5.7 NUMERICAL RESULTS FOR STATIONARY CASES 

In this section we present some numerical results obtained by 

solving the heat conduction equation (5.1.1) associated with different 

boundary conditions. They are the Dirichlet, periodic and the derivative 

(Neumann) boundary conditions. 

The purpose of these results is to show the accuracy of the method 

and the effect of the use of different kinds of parameters. Also, to 

demonstrate the high stability of the schemes. 

The parameters we used here are the Peaceman-Rachford, the 

Wachpress and the eigenvalues of the constituent matrices of the 

iteration matrix, where we take the small and the large eigenvalue of 

the 2x2 group matrix as the lower and upper limits of the sequence of 

parameters that are chosen. In the case of periodic boundary conditions 

we include the range of parameters that we obtained in Section 5.5 as 

another range of eigenvalues, from which we considered (see equation 

(5.5.21)) V and (a+b)/2 as the lower and upper limits of the sequence 

of parameters. 

In these experiments, we have used only the minimum number of 

parameters. Thus, only one parameter is used for the Peaceman-Rachford 

method (5.5.12) and the mid eigenvalue or (a+b)/2 in the case of only 

two eigenvalues available. The Wachpress parameters (equation (5.5.13)) 

chosen are the minimum number of 2. 

Example 1 

The heat conduction equation 

au a2u 
at = 

axe 
t>0 

is considered with the initial conditions, 

(5.7.1) 
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U(x, 0) = 4x(1-x), 0, x, 1, t=0, (5.7.2) 

and the Dirichlet boundary conditions, 

U (O, t) = 0.0, X=0 

. rt ,t ;o 
and U(1, t) = 0.0, x=1 J 

(5.7.3) 

The numerical solution is tested against the exact solution 

which is given by, 

U(x, t) = 
32 C1 sin(kirx)e 

k2 7r 
2t 

(5.7.4) 
n3 k=1,3,..., k3 

The numerical results are shown in Tables In Tables 

(5.7.1,2 and 3) we see the results of an even number of intervals 

with r having the values 0.1,1.0 and 2.0, while the Tables (5.7.4 and 

5) show the results of an odd number of intervals for r equal to 0.606 

and 1.815. 

Example 2 

In this example a problem with Neumann boundary condition is 

considered. The heat equation is, 

au a2u 
at - 

aX2 I o, x, 1, t; o , 

with the initial conditions 

U(x, O) =, sinx + cosx , x, 0 

and boundary conditions, 

U(O, t) =et 

Tý(1, t) = e't(cos (1)+sin(1)) 

and the exact solution is given by, 

(5.7.5) 

(5.7.6) 

t; 0 . 
(5.7.7) 

U(x, t) = e-t(sinx + cosx) , o, x; 1, to , 
(5.7.8) 
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The numerical results are shown in Tables (5.7,6,7,..., 10), 

compared with the exact solution. Tables (5.7.6,7 and 8) are for an 

even number of intervals with r having the values 0.1,1.0 and 2.0 with 

Tables (5.7.9 and 10) for an odd number of intervals with r equal to 

0.605 and 1.815. 

Example 3 

In this final example the method is tested for periodic boundary 

conditions. The problem is given by 

2 

at =a2+ 10(1-x)xt, O$x, l, t>O , (5.7.9) 
ax 

with the initial conditions, 

U(x, 0) = x(l-x) 

and boundary conditions, 

U(O, t) = U(l, t), 
X(XO, 

t) = 
X(xn, 

t) 
" 

The exact solution of this problem is given by 

U(x, t) _ 
1+5t2) 

_5 
cos2n8Trx {4n2n2t-1+e-4n2ý2t} 

68 
n=1 1 (mr) 

(5.7.10) 

(5.7.11) 

co -4n2n2t 
-Ie22 cos2nnx . 

(5.7.12) 

n=1 n7r 

For this example we tested the method with an even number of intervals 

with values of r 0.1 , 1.0 and 4.0, which are shown in Tables (5.7.11, 

12 and 13), and for an odd number of intervals with values of r 0.605 

and 2.42. The results are shown in Tables (5.7.14 and 15). 
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Experiment 1 

This experiment is to -compare between using 1) the range of 

parameters a, p; b (where a and b represent the smallest and largest 

eigenvalues respectively) or 2) the range (a+b)/2; p; �ab, in the 

sense of the number of iterations required to obtain the same results. 

The Peaceman Rachford (P. R. ) formula (5.5.12) and the Wachspress (W. ) 

formula (5.5.13) are used. Different values of r are considered. The 

results are shown in Table (5.7.16). The periodic boundary condition 

problem in Example 3 above is used for this purpose. 

Experiment 2 

In this experiment we test the use of the optimum parameter (p=3). 

This means that we will always have r=1/3. The aim is to see the order 

of accuracy that this parameter will provide. The problems considered 

here are the Dirichlet, Neumann and Periodic boundary condition problems. 

The number of iterations is 2 iterations per a time step. All the 

results are shown in Table (5.7.17). 
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ange of 
ara- 

eters 

0.1 

0.5 

1.0 

2.0 

4.0 

0.121 

0.605 

1.21 

2.42 

NO. OF ITERATIONS 

a, p, b 

P. R. I W. 

304 

300 

397 

573 

331 

300 

404 

765 

854 1 3383 

288 

301 

402 

598 

319 

305 

317 

516 

a+b 
2 

P. R. 

306 

239 

401 

616 

1002 

320 

251 

402 

671 

1111 4.84 1 900 1 929 

TABLE 5.7.16: Experiment 1 

<p, VZ 

W. 

304 

215 

401 

624 

994 

306 

221 

402 

675 

1067 
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5.8 MORE THAN ONE PARAMETER 

Although it was stated in Section 5.5 that in the SPAGEI method, 

the matrices A1 and A2 are not commutative and therefore there is no 

theoretical justification for using more than one acceleration 

parameter,. we actually have used more than one parameter and found 

that in many cases it reduces the number of iterations significantly. 

From equation (2.8.3) and by the definition of the average rate 

of convergence we have, 

R( -FF T41 )m 11 TT TPi lI 
i-1 i=1 

1m 
=-m 1ogP(7TTPi) 

i=1 
(5.8.1) 

where m is the number of parameters and T is the iteration matrix. 

It is proved in [Young, D. M., 1971] and (Varga, R. S., 1962] that 

the number of iterations increases as IlogtxI or Iloghl. 

In Birkhoff et al, 1962, it is shown that the average rate of 

convergence is asymptotically proportional to hl/m for small h. 

Consequently, one would expect that, asymptotically for small h, log(N) 

would be a linear function of log(h-1) with slope 1/(m-1) for the 

Wachspress parameters, where (N) is the number of iterations. 

[Birkhoff, et al, 1962] . In our experimental results, we find that 

the number of iterations are reduced but they do not support the 

theoretical predictions. 

Experiment 1 

In this experiment, in solving the periodic boundary condition 

problem of the previous section (Example 2), we use the Wachspress 
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parameters (5.5.13) as the acceleration parameters. This is done for 

various values of h or (Ax), but At is kept constant in each case. 

For At=0.00005 we used h=170-1,180-1.... 240-1, for At=0.0001 we used 

h=100 
1,110 1,..., 

180 
1 

and for At=0.0005 we used h=30 
1,40 1,..., 

90-1. 

The results are shown in Tables (5.8.1), (5.8.2) and (5.8.3). To 

illustrate the results we display, with logarithmic scales, the number 

of iterations versus h-1. In Figures (5.8.1), (5.8.2) and (5.8.3) we 

show the regression plots to compare with the theory proposed by 

Birkhoff et al [19621 and in Figures (5.8.4), (5.8.5) and (5.8.6) 

the plots show the real behaviour of the development of the number of 

iterations. 



et=o. UOO05 

t=o. 005 

No. of 
No. of Parameters 

Intervals r 2 3 4 

170 1.445 320 315 313 

180 1.62 347 323 322 

190 1.805 392 357 355 

200 2.0 436 404 402 

210 2.205 496 422 413 

220 2.42 525 431 420 

230 2.645 581 453 432 

240 2.88 693 495 443 

250 3.125 775 533 474 
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TABLE 5.8.1: The number of iterations 



At=o. 0001 279 
t=0.01 

No. of 
No. of Parameters 

intervals r 2 3 4 

100 1.0 305 305 303 

110 1.21 313 309 30: 

120 1.44 335 320 316 

130 1.69 386 357 355 

140 1.96 449 417 411 

150 2.25 519 429 421 

160 2.50 581 465 435 

170 2.89 727 529 470 

180 3.24 909 576 527 

TABLE 5.8.2: The number of iterations 
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Ot=0.0005 

t=n_n; 

No. of 
No. of Parameters 

intervals r 2 3 4 

30 0.45 208 208 208 

40 0.8 262 260 260 

50 1.25 332 320 319 

60 1.8 437 396 391 

70 2.45 582 482 448 

80 3.2 920 602 544 

90 4.05 1980 718 662 

TABLE 5.8.3: The number of iterations 
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FIGURE 5.8.1: A regression plot, of the number of iterations 
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FIGURE 5.8.3: A regression plot of the number of iterations 
At=0.0005 
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FIGURE 5.8.6: A plot of the number of iterations 
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5.9 THE SUCCESSIVE OVER-RELAXATION (SOR) METHOD 

We have mentioned briefly the SOR method in Section 3.8. Here 

we apply this method to our cubic splines equation, 

(1-3r)(ui-l, j+l+ui+l, j+l)+(4+6r)ui, j+l = (1+3r)(ui-l, j+ui+l, j) 

+(4-6r)ui, j , i=1,..., n-1. (5.9.1) 

By considering the totality of equation (5.9.1) written in matrix 

form as, 

AuJ+1 = Buj º 

or 

ýýI Oa dal Ii 

I .. 1=1i 

1i 

. ý_ ý. Hi 

aJ 
[uj 

Lbn-1 

where, 

da ul ý bl 

a` da u2 b2 

d= 4+6r, a= 1-3r, 

(5.9.2) 

and bi = (1+3r)(u 
i-l, j +u i+l, j )+(4-6r)ui, j , i=1,..., n-1. 

The SOR iterative method is defined by, 

u 
(k+1) 

=u 
(k) 

+W {b -du 
(k) 

-au 
(k) 

-au 
(k+1) 1, (5.9.3) 

i, j+l i, j+l dii, j+1 i+1, j+1 i-l, j+l 

where w, as previously defined, is the relaxation parameter. 

To determine the optimum value of w to attain the maximum rate 

of convergence we consider the linear system (5.9.2). Let, 

A=D+S+R, 
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where, 

4+6r 

ý 

D= 

ý 

\O \ 

\ 

\ 
\ 

0\ 
4+6r 

and 

Rý 

1% 
N 

\\ 

\ý 

1% 0 
ý 

\\ 

ý 
\ 

\ý 
\ý 

ýÖ 1-3r 

fý 

0 

\ '¼ 
ý �¼ 

\. 

, -. 0 
1-3r 

N 

oý 

From Section 3.8 we recall the Jacobi iteration matrix, 

J=-Dl(S+R) , 

which, for equation (5.9.1), is written as, 

J= -1 
4+6r 

O 1-3r 
. 

1-3r ý\\\0 

ý\\ 

ý\ý\\ 1-3r 

I1 -3r ý 

ý\ 1-3r 

a 

0 

ý% \I 
1-3r \ p1 
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For a tridiagonal matrix of the special form, 

ab 

ca Cab 

ýýýv 
IN. N. ý 

\ %ý N in 

Vr 

Ca 

we use the following formula to evaluate the eigenvalues of the matrix, 

A=a+ 2ºc cos 
N 

where (N-1) is the order of the matrix, [Smith, G. D., 1978). 

Therefore, 

ýl =O+2 ((4+6r))2 cos (N) 

xN-1 =0+2 (4+6r))2 Cos((NNl)ý) 

For sufficiently large N we get, 

ý1 2(4+6r) cos(O) = 2+3r 

and 
_ 

1-3r 
_ 

1-3r 
-1 

2(4 - +6r N-1 +6r) cos(7) 2+3r ' 

Thus the spectral radius p(J) of the matrix J is I X]1 or I AN_l 

The relaxation parameterw is then found by, 

2 
w 

1+ 1� p- (J) 

(For details see (Young, D. M., 1954]. 

Substituting p(J) in (5.9.3) gives, 

2 
Ct) = 

-1 

\\ý 
ý ""� ý 

\\\ 
ý\\ 

O\ \ýc ýa ýb 

1+ (1-3r) 2 
2+3r 

(5.9.3) 

(5.9.4) 
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2 
I 

1+ 
'(3+18r) 

(2+3r) 2 

4+6r 

2+3r+ 3 
(5.9.5) 

This shows that w is a function of r and it is interesting to find 

that when r=1/3 the method becomes the Gauss-Seidel's, where w=1. 

For any other positive value of r we have, 

1<w<2. (5.9.6) 

Experiment 1 

This experiment is to compute the number of iterations that are 

required by the SOR and the SPAGEI method to achieve convergence to 

the same solution. We have chosen for this purpose the Dirichlet 

boundary condition problem of Example 1, Section 4.12. We have solved 

the problem for several number of subintervals of the domain and for 

several values of At. The results are obtained after 10 time steps 

from time =0. In the SPAGEI method we used the Peaceman-Rachford 

single parameter. The results are presented in Tables (5.9.2) and 

are illustrated in Figure (5.9.1). Table (5.9.1) shows the values 

of r that are used in this experiment. 
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n 
At 

10 20 40 80 

0.001 0.1 0.4 1.8 6.4 

0.0025 0.25 1 4 16 

0.005 0.5 2 8 32 

0.01 1.0 4 16 64 

0.02 2.0 8 32 128 

0.04 4.0 16 64 256 

TABLE 5.9.1: The value of r used in Experiment 1 
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""ý`' 
so i "ý"ý.., n 10 20 ý 40 

At 
ý 

60 40 70 160 
0.001 

º 40 30 50 80 

40 70 120 217 
0.0025 

30 40 70 120 

} 50 99 175 314 
0.005 

30 55 91 164 

i 72 135 245 582 

0.01 
41 72 124 222 

ý 

, 

95 174 323 ' 593 
! 

0.02 56 101 184 340 

ý 

103 

0.04 

i 

199 379 ý 720 

71 132 257 480 

TABLE 5.9.2: A comparison of the number of iterations 
between the SOR method (ist line) and the 
SPAGEI method (2nd line) 
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5.10 COMPUTATIONAL COMPLEXITY 

Initially we may state that the truncation error for the cubic 

splines equation and thus the SPAGEI scheme is of order (Ax)2+(At)2, 

i. e. it is the same as that of the Crank-Nicolson equation. 

From the molecular diagram of SPAGEI Figure (5.6.1) we find that 

for a half cycle of the iteration the number of multiplications is 4 

and the number of additions is 3, with the addition of the right hand 

side element to make 4 multiplications and 4 additions as the total 

for half a cycle, i. e. for one cycle it is 8 multiplications and 8 

additions. 
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5.11 REMARKS 

a) Although the SPAGEI method was not compared directly with the 

SPAGE method, it is clearly seen that the SPAGEI method is 

superior in the sense of stability. 

b) From the results in Tables (5.7.1),..., (5.7.15) we see that there 

is no significant difference in the number of iterations when 

r<1.5. The difference however becomes more marked in Tables 8,10, 

13 and 15 where we notice that the Peaceman-Rachford parameter is 

better in the first three tables, while the Wachspress parameters 

are better in the latter table. 

c) In Table 16, Sec. (5.7) the change in the parameter range does not 

generally affect the number of iterations except for certain values 

of r. For r=0.5 and 0.605, the parameters in the optimum range 

(a+b)/2; p, V reduced the number of iterations, while for r=2.42 and 

4.84 they increased the number of iterations. 

d) In Sec. (5.8) we clearly see the effect of increasing the number of 

parameters particularly for large values of h-l. It is found by 

experiment that increasing the number of parameters to more than 

3 or 4 does not have any significant effects and sometimes it even 

starts to increase the number of iterations. 

e) In the comparison between the SPAGEI and the SOR methods we notice 

that the SPAGEI is faster (even though we have only'used one 

parameter) as far as the number of iterations is concerned. From 

Table (5.9.2) we notice that in some cases the SOR method requires 

twice the number of iterations as SPAGEI, in particular, when n=80. 

f) In the iteration process it could be of some advantage to use the 

new values u 
(k+l) 

instead of the old values u(k). Recalling 
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equations (5.3.11) and (5.3.12), by using the new values the two 

equations can be written as (supposing we evaluate the functions from 

left to right) 

u(k+}) = (Pu(k+}) +qu(k) +tu(k) +su(k) +w ) /det , (5.11.1) 
i, j+1 i-1, j+1 i, j+l i+1, j+1 i+2, j+1 i 

u(k+}) = (su(k+}) +tu(k+})+qu(k) +pu(k) +w )/det. (5.11.2) 
i+1, j+1 i-1, j+1 i, j+l i+1, j+1 i+2, j+1 i+l 

This would be applied again when doing the other half of the iteration 

as we start from right to left to give, 

u(k+1) = (su(k+}) +tu(k+J)+qu(k+}) +pu(k+1) +w )/det (5.11.3) 
i+l, j+1 i-l, j+l i, j+l i+l, j+1 i+2, j+1 i+l 

u(k+1) _ (Pu (k+}) 
+qu(k+})+tu(k+1) +su(k+1) +w ) /det . (5.11.4) 

i, j+1 i-1, j+1 i, j+1 i+1, j+1 i+2, j+1 i 

This will give a new shape to the molecular diagram of the method 

which is shown in Fig. (5.11.1). 

g) In actual fact, the number of iterations required for convergence is 

only 1 for the case of using the optimum value of the parameter, i. e. 

3. This is not evident unless the results are printed out after each 

iteration, then we see that the results after the first iteration and 

those after the second iteration are identical. Whereas by using the 

criterion technique we have nothing to compare the results after the 

first iteration until the second iteration is completed. After the 

test is made and convergence fulfilled, the number of iterations becomes 

2 instead of 1. 
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FIGURE 5.11.1: The molecular diagram of the suggested scheme of 
equation (5.11.1)-(5.11.4) 
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6.1 INTRODUCTION 

In Sections (3.9)-(3.12) we introduced some numerical methods for 

solving two dimensional problems. 

In this chapter we introduce an iterative explicit scheme which 

is an extension to the material presented in Chapter 5. The scheme is 

derived by splitting the quindiagonal coefficient matrix into two 

component matrices. In exactly the same manner as in the one dimensional 

case an iterative scheme is produced by transfering one of the two 

components (each in turn) to the right-hand side. The aim of this 

split process is to produce a (4X4) block diagonal system. The (4X4) 

blocks will not directly show by splitting. Reformation of the left- 

hand side part of the coefficient matrix will be needed, which is done 

by pre- and post-multiplication operations by the appropriate elementary 

matrices. 

Also included in this chapter are some numerical results and 

analysis to confirm the validity of the proposed schemes. 
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6.2 THE SPLINE ALTERNATING EXPLICIT ITERATIVE (SPAGEI) METHOD FOR 

TWO DIMENSIONAL PROBLEMS 

The problem that we want to solve is the two dimensional heat 

conduction equation, 

au 
=a2u+a2u at ax2 ay2 

defined on the domain O<x, y; l and t; 0. 

(6.2.1) 

Using the forward difference formula on 
at, 

and a weighted 
a22 

central difference formula on 
ax 2 and 

8y 2, will lead to the generalised 

equation 

Let 

ui, j, k+l-ui, j, k 
ä 

1{A d2(u )+0'6 
2(u 

At (Ax)2 16X i, j, k+l 1xi, j, k 

+1 {O26y2 (6.2.2) 
(DY) 

9i =2- 
1- 

, i=1,2 , 

6i =1+ 
6r, i=1,2 , 

where At At 
r=_ 

(Ax) 
2 (Ay) 2 

This choice of si and ei, i=1,2, is the one which leads to the 

cubic splines fromula for the one dimensional equation. Thus, 

analogously equation (6.2.2) will lead to the cubic splines equation 

for the two dimensional partial differential equations. 

This is written as 

(2+12r)u1, j, k+l+(1-3r)(ui-1, j, k+l+ui+l, j, k+l+ui, j-1, k+1+ui, j+l, k+1) 

: (2-12r)ui, j. k+(1+3r)(ui-l, j, k+ui+l. j, k+ui. j-l. k+ 

ui, j+l, k) (6.2.3) 
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where the truncation error is O(At3+ttAx2). The molecular diagrams 

of equation (6.2.3) is shown in Figure (6.2.1). 

Considering equation (6.2.3) at the points (i, j) , (i+1, j) , (i, j+1) 

and (i+1, j+1) produces the system, 

(2+12r)u i, j , k+l +(1-3r)(u i-1, j, k+1 +u i+1, j , k+1 +u i , j-l, k+l +u i, j+l, k+1 
) 

= (2-12r)ui, 
j"k+(1+3r)(ui-1, j, k+ui+l, j, k+ui, j-l, k+ui, j+l. k) 0 

(2+12r) u i+1, j, k+1 +(1-3r) (u i, j, k+l +u i+2, j, k+1 +u i+l, j-1k+1 + 
, 

ui+1, j+1, k+1) = (2'12r)ui+1, 
j, k +(1+3r)(u i, j, k +u 1+2/j/k+ 

ui+1, j-1, k+ui+l, j+l, k) ' 

(2+12r)uij, j+l, k+l+(1-3r)(a i-l, j+l, k+l+ui+l, j+l, k+l+ui, j, k+l+ 

ui, j+2, k+1) = (2-12r)uitj+l, 
k+(1+3r)(ui-1, j+1, k+ui, j, k+ 

ui, j+2. k) I 

(6.2.3a) 

(6.2.3b) 

(6.2.3c) 

(2+12r)ui+1, 
j+1, k+1+(1-3r)(uioj+l, k+l+ui+2, j+l, k+l+ui+l, j, k+1+ 

ui+l, j+2, k+1) = (2-12r)ui+l, 
j+l, k+(1-3r)(ui., j+l, k+ui+2, j+1, k+ 

ui+l, j, k+ui+l, j+2, k) 1 (6.2.3d) 

where the molecular diagram of this system is shown in Figure (6.2.2). 

Our aim is to leave only the 4 points (i, j, k+l), (i+l, j, k+l), 

(i, j+l, k+l), and (i+l, j+l, k+l), which make the square in the middle of 

Figure (6.2.2), with half the coefficient of the diagonal points on the 

left-hand side. Then transfer all the remaining points plus the diagonal 

points with their half coefficients to the right-hand side. This will 
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take the form of a (4X4) system which is written as, 

ýý 
aff0 

faOf 

f0af 

0ffa 

FU i i, j 
,( n+} )r 

ui+1, j 

ui 
"j+1 

= 

i+i, j +11 k+l 

i, j 
bi+l, 

j 
bi, j+l 

ý 

Lbi+1, 
j+lj 

lui-l, j+ui, j-1 

f 

where 

(n) 

ui+1, J-1 +U i+2, j 

ui+l, j+l+ui, j+2 
ui+1, j+2+ui+2, j+1 k+l 

a= 
(2212r) 

= 1+6r, f= 1-3r, 

IU 
i, j 

ui+l, j 

ui, j+1 

-r (n) 

Lui+1, j+11 k+l 

I 

the subscript (k+l) is the time level, the superscript (n) is the 

iteration counter and 

(6.2.4) 

bi. j = (2-12r)ui, j, k+(1+3r)(ui-1, j, k+ui+l, j, k+uilj-l. k+ui, j+l, k) 

Now let the system (6.2.4) be written in matrix form as 

A1 u(n+}) = b-A 2 u(n) (6.2.5) 

where Alu(n+j) is the l. h. s. of (6.24), b=(biI" bi+1, j' 
bf 

j i, j+1 

bi+l, j+l] and A2un) is the r. h. s. of (6.2.4). For convenience we 

delete the subscript (k) since we are iterating within the same time 

level. Adding an acceleration parameter p to (6.2.5) results in the 

equation. 

(A1+pI)u(n+}) = b-(A2-pI)u(n) 

Thus inverting the coefficient matrix on the 1. h. s. gives the 

a000 

OaO0 

00a0 

000a 

(6.2.6) 

equation, 
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r- ý 
ui j 

ui+1, j 

ui, j+1 

ui+1, j+1 

(n+}) 

a 
1 

det 

aP2-2f2 -a pf -a pf 
2f 

222 

2- 

-a f a--2f- 2f- -a f 
ppp 

-a f 2f2 a2-2f2 -a f 
ppp 

2f2 -a f -a f a2-2f2 Ppp 

lu 
i. i 

ui+1, j 
-a m ui, j+1 

ui+1, j+1 
ýý 

(6.2.7) 

l 
rbi 

ýj1 
bi+l, j 

bi, j+1 
bi+l, 

j+1 
ýý 

(n) 
ui-l, j+ui, j-1 

ui+l, j-1+ui+2, j 
-f ui-1, j+1+ui, j+2 

ui+1, j+2+ui+2, j+1 

where aP=a+p, a a-p and det= p(a2-4f2). 

The equation (6.2.7) can be written in 4 single equations of the 

form, 

u} 
(n+} )=1 [w -a { (a2-2f2)u(n) -a f (U,. 

+,, 
(n) 

+u 
(n) ) +2f2 u 

(n) 
ij det i, j mpi, j, k pji, j+1 i+l, j+1 

-f { (a2-2f2) (u 
(n) 

+u 
(n) ) -a f (u (n) 

+u 
(n) 

+u 
(n) 

p i-1, j i, j-1 p i+l, j-1 i+2, j i-l, j+l 

(n) 2 (n) (n) ) }) ' +ui, j+2)+2f (ui+l, 
j+2+u1+2#j+1 

u 
(n+} )=1 [w -a {-a f (u (n) 

+u 
(n) )+ (a2-2f2 )u (n) 

i+l, j det i+1, jmpi, j i+1, j+1 p i+l, j+ 

(6.2. ßa) 

2f2u (n) }-f {-a f (u (n) 
+u 

(n) 
+u 

(n) +u 
(n) 

i, j+l p i-l, j i, j-l i+lj+2 i+2, j+1 

+(a 
2 

-2f 
2 

Hu (n) 
+u 

(n) )-2f 2 (u (n) +u 
(n) ) }] (6.2.8b) 

p i+l, j-1 Si i+2i-1, j+1 i, j+2 

+(a 
2 

-2f 
2 

u 
(n+} )=1 [w -a {-a f (u (n) 

+u 
(n) 

+2f2u 
(n) ) 

i, j+l det i, j+l mpi, j i+l, j+l i+l, j p 

u 
(n) }-f {-a f (u (n) 

+u 
(n) +u 

(n) +u 
(n) 

i, j+l p i-i, j i, j-1 i+l, j+2 i+2, j+1 

+2f2 (u (n) 
+u 

(n) ) +(a2-2f2) (u 
(n) +u 

(n) 01, (6.2.8c) 
i+l, j-l i+2 ,jp i-1, j+l i, j+2 

(n) 
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u(n+}) =1 (w -a {2f2u(n)-a f(u(n) +u 
(n) 

i+l, j+l det i+l, j+l m i, j p i+l, j i, j+l 

22 (n) 2 (n) (n) (n) 
+(a2 -2f )ui+l, 

j+l}-f{2f 
(ui-1tj+uiij-1)-apf (ui+l, 

j-1 

+ui+2, j+uinl, j+l+uinj+2)(ap-2f2)(ui+l, j+2+ui+2, j+1ý}l 

where, 
w3 (a2-2f2)b -a f (b +b )+2f2b 

i, j p i, j p i+l, j i, j+l i+l, j+1 

w= (a2-2f2)b -a f(b +b )+2f2b , p i+l, j p i, j i+l, j+1 

w= (a2-2f2)b -a f(b +b )+2f2b 
i, j+1 p i, j+j- 1p ii j i+1, j+1 i, j+1 

and Wi+l, j+1 = (a2 -2f2)bi+i, j+1 apf(bi+l, j+bi, j+J+2f2bi, j p 

(6.2. ßd) 

The iterative process is continued until convergence is achieved. 

The molecular diagram of (6.2.4) is shown in Figure (6.2.3) and 

the diagrams of (6.2.8a, b, c and d) are shown in Figures (6.2.4a, b, c and 

d) respectively. 

Therefore in order to get the re-arranged system we first write 

the system that represents all points in the region. Let the region 

to be examined in the (x, y, t) space be covered by a rectilinear grid 

with sides parallel to the axes, with h and k being the grid spacing 

in the distance and time directions change respectively. Thus, there 

are (i-1) (m-1) interior points in the region. For simplicity let t 

and m (without loss of generality) be equal 6 (Figure 6.2.5), then 

for the usual column ordering of the grid points the linear system 

will be, 

Auk+1 = Cuk +gsbý (6.2.9) 
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g is the vector associated with the boundary conditions, al=(2-12r) and 

f' _ (1+3r) . 

Following the same procedure as in the previous chapter, we split 

the matrix A in (6.2.9) into A1 and A2 to give the iterative system, 

A1u 
(n+} )= 

b-A2u 
(n) 

, 
(6.2.10a) 

A2u(n+1) = b-A1u(n+j) (6.2.10b) 

where, 
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Let us consider equation (6.2.10a). In order to have a group of 

4 points (say the points (2,2)-(2,3)-(3,2)-(3,3), see Fig. (6.2.5)) 

ordered in a square form on the grid region and retain the same 

systematic representation as in equation (6.2.4) we need to rearrange 

the linear system as follows. 

To do this we need, as mentioned in Section(6.1), a similarity 

transformation. 

Let us consider the 4 points above, which are included in the 

first 10xlO block submatrix of A1. Thus, the l. h. s. of equation 

(6.2.1Oa) (for the lOxlO block) will be 

[7a ýf 
-ý - 

a f- 
-- I -f---I 

i 
IIt 

fa, fi 

ý 

ý 
----4. -. I 

I If 

ýI_II 

-II --ý---ý 
ý---ý--- 

I 

II- ý 

If 
ý I 

fýfa, I 
--1. ----- 

iraýýýf 

ý 
fi 

i 

fIaf 

or in matrix notation 

f aJ 

A2,3u . 

(6.2.11) 

(6.2.12) 

The elements that are involved in our target 4x4 matrix are all inside 

the dotted strip in (6.2.11). 

Post multiplying A2,3 by 147.15 8, gives, wharf 1 
"r IS 4,7 S 

I 

Iaf' 
Iý 

1u2#11 

u2,2 

u2,3 

u2,4 

u2,5 

U 31l1 º 

u3,21 

u3,3 

u3,4 

L u3,5J 

as äCt; 
ned overlear , 
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A, 

2.. 3 
ä 

f 

af 

., - 
1 

1 

afýf 

fa(f 

If 
I 
If 
I 

f fa I 
I 

_ F- 
a 

ý 

f Iaf 
I 

fý fa 
i 

f I 
I 

fý 

x 

af 

f a1 

r4,7 "1y, p 

1 

o to 1000 

0l0 0100 
--- -I- ---- -ý 

0 Of 11 

1 01 0 

0 11 0 

0 01 1 

0 0; 1 

a ýf 

aff0i 
ý 

fa0f1 

00aff0 

00fa0f 

__ -----ý -- -- 
f ý0 

f0afI0 

ff aý p 

ý 
IfOaf 
i 
ý Of fa 
I 

(6.2.13) 

and premultiplying the resulting matrix by 1 4,7. I 5,8 gives, 
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a 

f 

if 

aff01 

fa0f 

f0af 

0ffa1 

1 

I 

1 

ý 

1 

I 

aff0 

fa0f 

fOaf 

0ffa 

u2,2 

Applying the same similarity transformation on the vector u of (6.2.11) 

gives, 

[u2,1 u2,2 u213 u3,2 u3,3 u3,1 u2,4 u215 u3,4 u3,5JT 

Therefore the resulting 10x10 block will be 

r- . _. a If I 
ý 

aff O' 1 

ýa 

u2,1 

faofý 

f0afý 

0ff ao 
-------1---- --- 

f 1 

I 

i 
I 
ý 
1 
ý 
i 
i 

a 

aff0 

faof 

f0af 

0ffa 

u2,3 

u3,2 

u3,3 

ý3,1 I (6.2.14) 

u2,4 

u2,5 

u3,4 

13,5 

which shows clearly the 4x4 block corresponding to the points 2,2-2,3- 

3,2-3,3 is isolated and can be treated separately. Thus with the 

suitable sequence of similarity transformations A1 could be formed into 
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a block diagonal matrix with 4x4 sub-blocks, which can be inverted 

separately as previously done with the system (6.2.4). 

For points near the boundary there are other groups of 2 which 

appear as line segments on the grid region (Fig. 6.2.5) and a block 

of order 2x2 in the linear system, and finally a single point 

representing the corner points as the point (1,1) in Figure (6.2.5). 

For the groups of 2 points and their related equations we have: 

1. Left side: 

af P 
fa 

ul j 

ul, j+1 

(n+j) Fbi, 
j 

ýý 

Lbh, j+hJ 
-a m 

ul j 
-in) 

ul, j+l 

ý ul, j-l u2, j 

u1, j+2+u2, j+1 

(n) 

(6.2.15) 
to give, 

u 
(n+} )=1 (w -a (a u 

(n) 
-fu 

(n) ) -f {a (u (n) 
+u 

(n) 
l, j aet l, j mpl, j 1, j+1 p l, j-1 2, j 

(n) (n) 
-f(u1, j+2+u2, j+2}] 

(6.2.16a) 

u 
(n+} )_1 (w -a (-fu (n) 

+a u 
(n) ) -f {-f (u (n) 

+u 
(n) ) 

l, j+l det 1, j+1 m l, j p l, j+l 1, j-1 2, j 

+a (u (n) 
+u 

(n) 
p 1, J+2 2, j+lý 

}ý 

2. Right side: 

af p 

fa 
p 

(n+}ý 
-, r- uI-1, j I Ibf-1ºj 

U 
a 

1-1, j+lI IbQ-1, j+1 
ý 

-a m 

(6.2.16b) 

-11 
(n) 

r__ (n) 
.. 

(n) 
uP-1, j 
uQ-1, j+1 

ý_ 

u4. 
-2, jtuQ-1, j-1 

(nl (n) 
-f ui 

-2, j+l+uR-1, j+2 
.. _ 

(6.2.17) 

gives, 
uknl}j a det1 am(apuRnl, j-fu1nl. j+l) -f{ap(uRnZ, j + 

P 

,, ui 

u 
(n) 

) -f (u (n) 
+u 

(n) )}), (6.2.18a) 
1-1, j-1 L-2, j+1 k-1, j+2 



318 

u 
(n+} )a1 

(w -a (-fu (n) 
+a u 

(n) ) -f {-f (u (n) 
! C-1, j+l det R-1, j+l m L-1, jp k-1, j+l L-2, j 

3. Bottom side: 

u1(ni 
-1) 

+a (u (n) 
+u 

(n) )Mý. (6.2.18b) 
jp R-2, j+1 £-1, j+2 

(n+}) 
ap f ruil rbj,. 

1- 
_., 

If aPl Iui+l, ll Ibi+l, l 
L- ._ý 

(n) (n) (n) 
uui-l, l+ui, 2 

-a -f (n) (n) 
m Luj+1,1J ui+1,2*ui+2,1 

(6.2.19) 

gives, 

uin1D = det1 u(n)-fu(n) ) -f{a (u (n) 
+u(n)) 

p i, l i+l, j p i-1,1 1,2 

(n) (n) 
-f (u1+1,2+u1+2,1)}] (6.2.20a) 

u 
(n+} )=1 

[w -a (-fu (n) 
+a u 

(n) ) -f (-f (u (n) 
+u 

(n) 
i+1,1 det i+1,1 m i, l p i+1,1 i-181 1,2 

+a (u (n) 
+u 

(n) } 
p 1+1,2 1+2,1 

4. Top side: 

af 
p 

If a 
p 

(n+}) 

Fu.. , 
Trj I iIm-1 111p m-t 

ui+l, m-1 
Lbj_l, 

_i 
-a m 

(6.2.20b) 

T- (n) 
. 

(n) -ý ýn) ui, m-1 ui, m-2+ui-l, m-1 

-f (n) (n) 
ui+l, m-1 ui+l, 

m-2+ui+2, m-1 

(6.2.21) 

gives, 

(n+} )ý1 (w ý -a (a u 
(n) 

-fu 
(n) 

A) _f {a (u (n) 
+u 

(n) 
ui, m-1 det i, m-1 mpi, in-1 i+1 , m-1 p i, m-2 i-l, m-1) 

(n) (n) 
-f (ui+l, 

m-2+ui+2, m-1)}l " 

(n+}) 
ui+l, m-1 

(6.2.22a) 

det(Wi+l, m-1 am(-fuinfn-1+apui+l, m-1ý f{-f(uinm-2+ 

(n) 
+a 

(n) (n) 
up (ui+l, m-2+ui+2, m-1) 

}ý " (6.2.22b) 

where, 
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W1 
Ij 

a apb1. j-f bl. 
j+1' w, 

_,,, 
- apbL-1, j-fbR-1, j+1 ' 

Will apbi, l-fbi+1,1' Wi, 
m-1 

a apbi, m-l-fbi+l, m-1 ' 

and det = a2-2 f p 

The molecular diagrams of (6.2.18,19,20 and 21) are shown in 

Figure (6.2.6a. b. c and d) respectively. 

For the single corner points we have: 

1. Bottom left: 

u 
(n+} )_ (b -a u 

(n) 
_f (u 

(n) 
+u 

(n) ) )/a 1,1 1,1 m 11 1,2 2,1 p 

2. Bottom right: 

(6.2.23) 

u 
(n+} )_ [b -a u 

(n) 
-f (u (n) 

+u 
(n) )]/a , (6.2.24 ) 

R-10,1 R-111 mL-1,1 R-2,1 1-1,2 p 

3. Top left: 

(n+} )= [b ý -a u Ti) ((n) (n) 
ul, m-1 "M_1 m 1, m-1-f(ul, m-2+u2, m-1))ýap j, 

and 

4. Top right: 

(6.2.25) 

(n+}) 
__ 

(n) (n) (n) ))/a uL-1 
,m 

(bR-l, m-1 amuý, 
-l, m-1-f(uL-2, m-1+uR-1, m-2 p 

(6.2.26) 

The molecular diagram of (6.2.23,24,25 and 26) are shown in 

Figure (6.2.7a, b, c and d) respectively. 
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6.3 THE EIGENVALUES OF THE ITERATIVE MATRIX OF SYSTEM (6.2.10) 

Since we rearranged the linear system in the way we wanted, we 

can now easily obtain the eigenvalues of the l. h. s. coefficient matrix 

where we have blocks of 4X4,2x2 and single elements. 

For the 4x4 blocks we easily obtain the eigenvalues 

12r-1,1+6r, 1+6r and 3. 

For the 2X2 blocks we get 

9r and 2+3r, 

and the single element which is 1+6r. 

Ignoring the multiplicity of the eigenvalues, we record only 5 

eigenvalues 

A1 = 12r-1, X2 = 9r, A3 = 1+6r, A4 = 2+3r and A5 - 3. 

It is not surprising to find that all these eigenvalues coincide when 

r=1/3 to give the value 3, which as in the previous chapter leads us 

to the optimum value of the parameter which gives the minimum number 

of iterations. 

We also notice that the eigenvalue 12r-1 has a critical value 

when r=1/12 which leads to the value X. =O and thus a singular system 

is produced. In fact, this affects the solution when r is nearly 1/12, 

where it leads to a weakly stable system. 

In Table 6.3.1 we present some numerical values of the eigenvalues 

for different values of r and these are shown in Figure (6.3.1). 
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x1 x 2 x 3 
x 4 

r 12r-1 9r 1+6r 2+3r 3 

0 -1 0 1 2 3 

1/20 -2/5 0.45 1.3 2.15 to 

1/12 0 0.75 1.5 2.25 to 

1/10 0.2 0.9 1.6 2.3 of 

1/6 1.0 1.5 2.0 2.5 of 

1/3 3.0 3.0 3.0 3.0 

1/2 5.0 4.5 4.0 3.5 

1.0 11.0 9.0 7.0 5.0 of 

TABLE 6.3.1 
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6.4 TRUNCATION ERROR, CONVERGENCE AND STABILITY CONSIDERATIONS 

To determine the truncation error which was estimated earlier we 

rewrite equation (6.2.3) as, 

(2+12r)ui, j, k+l+(1-3r){ui-l, j, k+l+ui+l, j, k+l+ui, j-l, k+l+ui, j+l, k+l} 

(2-12r)ui, j, k+(1+3r){ui-l, j, k+ui+l, j, k+ui, j-l, k+ui, j+l, k} m ý 

(6.4.1) 

Using Taylor's series expansion about the point (i, j, k+}), we get the 

term, 

T. E. = 6At u -6At(u +u )+ (At)3 
u +At(Ax)2(u +u ) 

t xx yy 4 ttt xxt yyt 

4 (fit) 3 
(uxxtt+uyytt) - 2t 

(0x) 2 (uxxxx+uyyyy) + 

O( (At) 
a1 

+ (Ax)a2) , 
(6.4.2) 

where al+a2='5" 

The first two terms cancel out since they satisfy the partial 

differential equation (6.1.1), the principal part of the truncation 

At(Ax) error is given by O((At)+ 
2 

To establish the convergence of the method we proceed as previously 

in an earlier chapter. Thus we have, 

(Al+pI)u(n+}) _ (A2-pI)u(n) +b 

(A2+pI) u 
(ntl) 

a (A1-PI) u 
(n+} )+b 

From (6.4.3a) we have, 

(n+t) 
ý iA, +pl)-liA, -pI)u(n) +c 

(6.4.3a) 

(6.4.3b) 

1+pI)^l(A2-pI)u%n) +C (6.4.4) 

where c= (A1+pI)-lb, and from (6.4.3b), by substituting u(n+}) in 

(6.4.4) we get, 

(n+}) -1 
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u(n+ýý = Tu 
(n) 

+f+d 

where T is the iterative matrix and is written as, 

and 

(A2+pI)-l(A1-pI)(A1+p)-1(A2-pI) r 

f= (A2+p I) -1(A1+p I) -1b 
ý 

d= (A2+pI)-1b . 

For convergence we need that, 

i. e., 

IIT112 11 

II (A2+pI) -1(A1-pI) (A1+pI) -1(A2-pI) I (2 : 1. 

By using the similarity transformation we can write, 

(A2-pI)T(A2-pI)-1 9 

i. e., 
1r . 'l 

which has the same eigenvalues as T. Thus, 

T= (A2-PI) (A2+pI) -1 (Al-PI) iA1+pI) -1 
, 

11 
TI 12 =II (A2-PI) (A2+pI) -1(Al-PI) (Al+GI) -1( I2 

i. e., � 
P (T) ý 11 

(a2-p) (A1-p) 

x 
max (X 2+p) (Xi +P)ii ý 
l "X2 

(6.4.5) 

(6.4.6) 

(6.4.7) 

(6.4.8) 

(6.4.9) 

(6.4.10) 

where X1 and X2 represent the eigenvalues of A1 and A2 respectively. 

Since A1 and A2 have the same eigenvalues, therefore, we have, 

P (T) = maxI I 
(X -P) I I2 

X (a+P) 

or 
p (T) 1 for all X>O 

. 

(6.4.11) 

(6.4.12) 

Thus convergence immediately follows. 

This result establishes the stability of the method for r>1/12. 
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6.5 NUMERICAL EXPERIMENTS 

Before we test the SPAGIE method for two dimensional problems, we 

mention here the Alternating Group Explicit (AGE) Iterative Method for 

solving multi-dimensional parabolic problems which was introduced by 

SAHIMI, M. S. (1987). This method, which is the Douglas-Rachford formula 

for the AGE scheme, is written as, 

(G1+PI)u(n+1/4) s (PI-G1-2G2-2G3-2G4)u(P)+2f 

(P) 4ý(PI r (P) 

... 

(6.5.1) 

with, 

Gl+G2+G3+G4=A, where A is a sparse quin-diagonal matrix, p is an 

acceleration parameter and f is the r. h. s. of the linear system. 

The matrix A is split into component matrices Gl, G2, G3 and G4 

such that 

'11 
11 

r\\\ 

111 

G1+G2 = 

(G +pI)u(n+1/2) = 
(n) (n+1/4) 

2 G2u(o)+pu(o) 0 2(p) r(p) 

(G +PI)u(n+3/4) = 
(n) (n+1/2) 

' 3 Gau (o) +pu (0) 3-(p) r (p) 

(G +pI) u 
(n+1) 

=Gu 
(n) 

+pu 
(n+3/4) 

º 4 (0) 4 (0) (o) 

ý 

--ý 
ý- 

-ý 
ý 

`I 

- -I: 

i:: 

II \I 

ý\I ----L"-"--- 

1. - 6 

ýI 
`\ 

iIiý ýý 

II 
I. I ýý 

II 

I ý' 

,G 3+G4 
s 

f"ý 
1ý 

I !ý 

ý i" 

with diag(G1+G2)=diag(G3+G4) _ }diag(A). 

The AGE scheme corresponds to sweeping through the mesh parallel 

to the coordinate x and y axes involving at each stage the solution of 

i 

ý 
ýiý \ ý` ýý 
ý' ýýýý. ý) ýýJýýý 

--ý-ý-J- -- 
I\ý 
Iýý 

- -1 - T-`- -I `-- 
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2x2 block systems. The iterative procedure is continued until 

convergence is reached (Sahimi, M. S. 19871. 

Example 1 

where, 

The initial and boundary conditions satisfy the exact 

au a2U 
+ 

a2U 
+ at ax2 aY2 

g(x, Y, t) , - 

g(x, y, t) = sin(x)sin(y)e-t-4.0, O; x, y, 1. 

(6.5.2) 

solution which is given as, 

Example 2 

U(x, y, t) = sin(x)sin(y)e-t + x2 + y2 . 

au a2v + a2v + g(x, y, t) at - 
ax2 ay2 

(6.5.3) 

(6.5.4) 

where, -t 
g(x, y, t) = sin(x) e2- 2x - 6xy, O; x, y, 1, 

1+y 
with the initial conditions 

U(x, y, 0) = sin(x)log(1+y) +x3y+ xy2 , O; x, y; l, 

and the boundary conditions satisfy the exact solution which is, 

U(x, y, t) = sin(x)log(1+y)e 
t+ 

x3y + xy2 . (6.5.5) 

In all cases we used the optimum acceleration parameter of 

Peaceman and Rachford which is 3x( ), and the convergence 

criterion is c=5x10 
6. 

Experiment 1 

In this experiment we tested the method on Example (1) for 

different values of r. In Table (2) we present the results for r=1/3, 
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1 and 2, and in Table (3) r=4,6 and 10. In Table (4) we compare the 

SPAGEI method with AGE iterative method of SAIIIMI (1987) and the 

direct GE method of ABDULLAH, A. B. (1983). 

Experiment 2 

For the same number of time steps we solve Example (2) for values 

of r=1,2,6,10 and 20. The results are shown in Table (5). 
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Average 
r t Method No. of Iter. 

Per Step 

0.33 0.1 SPAGEI 2 

1.0 0.1 SPAGEI 4 

-6 
0.5 SPAGEI 4 E-10 

4 4 E-10 
0.5 AGE-CN 

-8 11 E=10 

E-10 
43 

1.2 AGE-CN 
-g 11 E-10 

2.0 1.0 SPAGEI 5 

1.2 SPAGEI 5 

4.0 4.0 SPAGEI 5.5 

6.0 3.0 SPAGEI 7.4 

10.0 2.0 SPAGEI 11 

5.0 SPAGEI 9 

20.0 10.0 SPAGEI 10.4 

TABLE 6 
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6.6 REMARKS 

a) From Table (2) we notice that the minimum number of iterations 

can still be obtained by using the optimum acceleration parameter 

(3). However, it is observed that we get better results by using 

a greater value of r. In the second line where r=1.0, the 

percentage errors are reduced by a factor of more than (10_1) as 

well as a reduction in the overall number of iterations for the 

same solution. 

b) In Tables (3) and (5) we observe the stability of the method for 

even greater values of r. Although the number of iterations per 

time step increases with r, it is easily compensated by applying 

a smaller number of time steps. This is noticeable in Table (5) 

where for r=4 it takes (5.5x100) iterations to get the solution at 

time (4.0) while for r=10 it takes (9x50) iterations to get the 

solution at time (5.0). 

c) The superiority of the SPAGEI method over the AGE iterative method 

and the direct GE method is clearly seen in Table (4) where in 

the results there is a factor of about 10-1 difference in accuracy 

between the GE and the SPAGEI. For the AGE method with criterion 

s=10 -4, the absolute error is about (3) times as the absolute 

error of the SPAGEI method, while with c=1Ö-8 it is almost the 

same as for the SPAGEI. 

From Table (6) we see that for these particular values of r, t and c 

the number of iterations required for the AGE method with c-10-8 

is (11) per time step while it is only (4) for the SPAGEI to get 

the same solution with similar, if not better, accuracy. 
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d) To exhibit the efficiency of the SPAGEI method we compare in Table 

(6) the number of iterations required for the solution at time (1.2). 

For the AGE method and a less accurate solution with c=lO-4 it 

takes (120x3) iterations to obtain a solution comparable with that 

of the SPAGEI method and when c'lO 
8, 

it takes (120x11) iterations, 

while it takes only (60x5) iterations for the SPAGEI method to 

reach the required solution with r=2. 



CHAPTER SEVEN 

CONCLUSION AND SUGGESTIONS FOR 

FURTHER RESEARCH 
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In the first three chapters some introductory mathematical 

background was presented, as well as some definitions and advanced 

theories in numerical analysis and finite differences. Then an 

introduction to some approximations to differential operators by cubic 

splines was introduced and from the cubic splines formula (3.2.12) 

some new finite difference schemes were derived. 

In Chapter 4 the direct SPACE method proved to be compatible 

with other methods of the same order of truncation error like the 

Group Explicit (G. E. ) method. Also it was found that some schemes of 

the SPAGE method are superior to their corresponding counterparts in 

the G. E. class of method, and in general the SPACE method gives its 

best results when 0.4,90.7. 

In Chapter 5 the iterative method SPAGEI was introduced and was 

shown to be stable and highly accurate solutions to the problems 

considered were obtained. Test for validity of the Peaceman Rachford 

and Wachspress parameters proved positive. In addition, the eigen- 

values of the constituent matrices were used as acceleration parameters. 

The new method was shown to have an easy form such that an optimum 

parameter was easily introduced. Further, the amount of computational 

work saved by using more than one parameter, especially in problems 

with periodic boundary conditions, is so encouraging that further 

research is required to establish guidance for the optimum number of 

parameters required with the appropriate value of r. 

In Chapter 6 the SPAGEI method was extended to two dimensional 

problems and proved to be extremely stable and accurate for relatively 

very large values of r. The optimum parameter used in the one- 

dimensional problem is valid too for the two-dimensional problems. 
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For further work, we mentioned in Chapter 4a way of treating 

the single (ungrouped) points. Numerical results are required to 

show the advantage of this technique. Also in Chapter 4a three time 

level scheme was suggested which needs further analysis and numerical 

experiments. 

An extension of the SPAGE method to two-dimensional problems could 

also be considered for further research too. The suggestion made at 

the end of Chapter 5 for the SPAGEI method would be equivalent to 

applying the Gauss-Seidel method instead of the Jacobi method. In 

the case of two-dimensional problems, the use of more than one 

parameter did not appear to show any advantage in the experiments. 

Whether this would be different by increasing the number of mesh points 

or not is also left for further study. 

In general, the choice of the cubic splines equation as a base 

for the schemes derived in this thesis proved to be an important 

advantage for time dependent problems. It provides the optimum 

parameter with probably the highest value of r, and consequently At, 

to be used amongst all the schemes considered. 

It also allows an integer value of p to be chosen for steady 

state problems. 
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APPENDIX 

SOME SELECTED PROGRAMS 

Al: dvspage. fortran 

For One-Dimensional p. d. e. using the SPAGE Method 

A2: agepirnnew. fortran 

For One-Dimensional p. d. e. using the SPAGEI Method 

A3: twodagesp. fortran 

For Two-Dimensional p. d. e. using the SPAGEI Method 



Al: dvspage. fortran 
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double precision u (0: 20,0: 5) ,v (0: 20) ,x (0: 20) 
1 , e(0: 20), per(0: 20) 

nd=20 
C ---------------------- 
c Splines A. G. E. method for solving diffusion equations with 
c Derivative B. C. 
c 
c u; numerical solution 
c v; exact solution 
c x; x axis 
c e; absolute error 
c per; percentage error 
c n; number of intervals 
c dt; time step 
c m; number of time steps 
c h.. -interval length 
C -------------------------- 
c input 
C ---------------------------- 

write (6,10000) 
read (5, *) n, dt, m 
h=1.0/n 
t=dt*m 
r=dt/(h*h) 
write(6120000) r, dt, m, t 

C ----------------------------- 
c call for the exact solution 
c -------------------------------- 

call exdiv (nd, n, t, h, v) 
c ------------------------------- 
c initial conditions 
c ------------------------------- 

do 500 ip=0,10 
p=ip*O. 1 

do 100 i=0, n 
x (i) =h*i 

100 u (i, 0) =sin (x (i)) +cos (x (i) ) 
c ------------------------------ 
C ---------------------------- 
c EVEN OR ODD 
C --------------------------- 

y=n/2.0 
iy=int(y) 
if (iy. lt. y) go to 400 

c -------------------------- 
c for even number of intervals 
C --------------------------------- 

write (6,40000) 
read (5, *)nskm 
if (nskm. eq. l) go to 1 
if (nskm. eq. 2) go to 2 
if (nskm. eq. 3) go to 3 
if (nskm. eq. 4) go to 4 

1 call dvspr (nd, n, r, p, u, m, dt) 
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go to 300 
2 call dvspl (nd, n, r, p, u, m, dt) 

go to 300 
3 call dvsspev (nd, n, r, p, u, m, dt) 

go to 300 
4 call dvdspev (nd, n, r, p, u, m, dt) 

go to 300 
C --------------------------------------- 
c for odd number of intervals 

c --------------------------------------- 
400 write (6150000) 

read (5, *)nskm 
if (nskm. eq. l) go to 11 
if(nskm. eq. 2)go to 22 
if (nskm. eq. 3) go to 33 
if (nskm. eq. 4) go to 44 

11 call dvspu (nd, n, r, p, u, m, dt) 
go to 300 

22 call dvspc (nd, n, r, p, u, m, dt) 
go to 300 

33 call dvsspod (nd, n, r, p, u, m, dt) 
go to 300 

44 call dvdspod (nd, n, r, p, u, m, dt) 
300 call error (nd, n, j, v, u, e, per) 

write (6,60000) (e (i) , i=0, n) 
write (6,70000) (per (i) , i=0, n) 

500 continue 
write (6,30000) (v (i) , i=0, n) 

10000 format(' THE SPAGE METHOD FOR HEAT EQs WITH DRVTV B. C. '/ 
&' input No of intevals, time step, No of steps, theta . ') 

20000 format V r=' , f6.3,2x, ' dt=', f7.4,2x, ' No of steps==' i3,2x, / 

&' time=' , f6.3,2x, ' theta=', f7.4) 
30000 format V the exact sol' /6 (fil. 6) ) 
40000 format(' which scheme to use, 1 = ryt, 2 = lft, 3 = s, 4 = d') 
50000 format(' which scheme to use, 1 = u, 2 = c, 3 = s, 4 d') 
60000 format (! the absolute error'/6(fll . 6)) 
70000 format (' `the percentage error' /6 (f8.4,3x) ) 

stop 
end 
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subroutine dvdspod (nd, n, r, p, u, m, dt ) 
double precision u(O: nd, 0: 5) 
h=1.0/n 

C ------------------------------- 
c Double Sweeps Scheme, Derivative B. C., Odd No. of Intervals 
C --------------------------------- 

ap=(3.0-p)/3.0+r 
am= (3.0-p) /3.0-r 
f=p/3.0-r 
g=p/3.0 
det=ap*ap-f*f 
q=ap*am-f*g 
s=ap*g-f*am 
w=r*ap 
z=-f*r 
b=-2.0*h 
cs=cos (1.0) -sin U. 0) 

C --------------------------------- 
k=0 

700 j=0 
f0=exp (-dt*k) *b 
f0 j=exp (-dt* (k+l) ) *b 
fn=-f0*cs 
fnj=-fOj*cs 
u(0, j+l) _ (q*u (0, j) + (s+w) *u (l, j) +z*u (2, j) +w*f0) /det 
u (1, j+l) _ (s*u (0, j) + (q+z) *u (1, j) +w*u (2, j) +z*f0) /det 
do 100 i=2, n-3,2 
u (i, j+1) _ (w*u (i-1, j) +q*u (i, j) +s*u (i+l, j) +z*u (i+2, j) ) /det 
u (i+1, j+l) = (z*u (i-i, j) +s*u (i, j) +q*u (i+l, j) +w*u (1+2, J)) /det 

100 continue 
u (n-1, j+l) _( (q+z) *u (n-1, j) +s*u (n, j) +w*u (n-2, j) +z*fn) /det 
u (n, j+l) _( (s+w) *u (n-1, j) +q*u (n, j) +z*u (n-2, j) +w*fn) /det 

do 200 1=1,2 
j=j+1 
f0=exp (-dt* (k+1) ) *b 
f0 j=exp (-dt* (k+1+1) ) *b 
fn=-f0*cs 
fnj=-fOj*cs 
do 300 i=1, n-2,2 
u (i, j+1) = (w*u (i-1, j) +q*u (i, j) +s*u (i+1, j) +z*u (i+2, j) ) /det 

300 u (i+l, j+1) _ (z*u (i-1, j) +s*u (i, j) +q*u (i+1, j) +w*u (1+2, j) ) /det 

u (0, j+1) =( (r+g) *u (1, j) +am*u (0, j) -: f *u (1, j+1) -f0 j*f 
1 +f0*g) /ap 

u (n, j+1) =( (g+r) *u (n-1, j) +am*u (n, j) -f*u (n-1, j+1) 
1 -f*fnj+g*fn)/ap 

200 continue 
c 

J- +1 
f0=exp (-dt* (k+3) ) *b 
f0 j=exp (-dt* (k+4) ) *b 
fn=-f0*cs 
fnj=-fOj*cs 
u (0, j+1) = (q*u (0, j) + (s+w) *u (1, j) +z*u (2, j) +w*f0) /det 
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u (1, j+1) _ (s*u (0, j) + (q+z) *u (1, j) +w*u (2, j) +z*f0) /det 
do 800 i=2, n-3,2 
u (i, j+l) = (w*u (i-1, j) +q*u (i, j) +s*u (i+1, j) +z*u (i+2, j) ) /dot 
u (i+l, j+l) = (z*u (i-1, j) +s*u (i, j) +q*u (i+l, j) +w*u (i+2, j) ) /dot 

800 continue 
u (n-1, j+l) _( (q+z) *u (n-1, j) +s*u (n, j) +w*u (n-2, j) +z*fn) /det 
u (n, j+l) _( (s+w) *u (n-1, j) +q*u (n, j) +z*u (n-2, j) +w*fn) /det 
do 500 i=O, n 

500 u (i, 0) =u (i, j+1) 
if (k+4. eq. m) go to 600 
k=k+4 
go to 700 

600 write (6,10000) p, (u (i, 0) , i=0, n) 
10000 format(' The Double Sweeps Scheme Solution, Odd Intervals. ', 

1 'theta =' , f7.4, /6 (fl1.6) ) 
return 
end 
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subroutine exdiv (nd, m, t, h, v) 
double precision v(O: nd) 

c exact solution of head conduction problem p. d. e. 
c with derivative boundary conditions (Neumann B. C. ) 
c 
cu (x, t) =exp (-t) * (sin (x) +cos (x) ) 
c 

do 1 i=O, m 
z=h*i 
v (i) =exp (-t) * (sin (z) +cos (z) ) 
continue 
return 
end 



A2: agepirnnew. fortran 

ý 
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double precision u (0: 500,0: 5) ,v (0: 500) , rho (20) ,x (0: 500) 
1, per (0: 500) ,e (0: 500 ) 

common u, v, x 
nd=500 

c Heat conduction problem with periodic B. C. 
c Du/Dt=D2u/D2x + 10(1-x)xt 
c initial cond. u (x, 0) =x (1-x) 
c boundary cond. u (0, t) =u (1, t) 
c 
c The exact sol.: 
cu (x, t) = (1+Stt) /6 - (5/8) *sum (n=1_m) (cos (2n (pi) x) * (4nn (pi)t-1 
c +exp (-4nn (pi) (pi) t) )l /-(n (pi) ) **6 
c -sum (1 m) [exp (-4nnpipit) *cos (2npix) j/ (nnpipi) 
C 
C 

c i=spatial axis counter 
c j=time step counter 
c dt=time step 
c t=total time 
c h=length of intervals 
c jm=max No. of time steps 
c k=iteration counter 
c km=total No. of iterations for t 
c np=No. of parameters 
c a=diagonal element of splitted matrix 
c f=off diagonal element of matrix 
c u=numerical solution 
c v=exact solution 
c b=r. h. s. of linear system 
c ro=acceleration parameter 

write (6,1) 
read (5, *) m, dt, jm, np 
do 18 j=0,5 
do 18 i=O, nd 

18 u (i, j) =0.0 
h=1.0/m 
r=dt/(h*h) 
t=dt*jm 
write (6,6) r, t 
11=1.0+6.0*r 
12=2.0+3.0*r 
13=3.0 
p2=12 
pl=sqrt (11*13) 

C 
c initial conditions 
c 

do 8 i=0, m 
x (i) =h*i 

8 u(i, 0)=x(i) * (1.0-x(i) ) 
C 
c boundary conditions 
c 

0 

do 9 J=015 
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9 u(0, j)=u(m, j) 
C 
c to choose kind of parameters 
c 

write (6,55555) 
read (5, *) krho 
if(krho. eq. 1) go to 11111 
if(krho. eq. 2) go to 22222 
if(np-2) 33,44,55 

33 rho (1) _ (pl+p2) /2 
go to 44444 

44 rho(1)=pl 
rho(2)=p2 
go to 44444 

55 rho(1)p1 
rho (2) = (pl+p2) /2 
rho(3)=p2 
go to 44444 

c peaceman rachford parameters 
11111 do 20000 ip=l, np 
20000 rho (ip) =p2* ((pl/p2) ** ((2.0*ip-1.0) / (2.0*np)) ) 

go to 44444 
c wachspress parameters 
22222 do 30000 ip=l, np 
30000 rho (ip) =p2* ((pl/p2) ** ((ip-1.0) / (np-1.0)) ) 
44444 y=m/2.0 

iy=int(y) 
if(iy. ge. y) go to 10 

c for odd number of intervals 
40 call agepewo (nd, m, jm, r, h, dt, np, rho, u, x) 

go to 20 
c 
c for even number of intervals 
10 call agepewn (nd, m, jm, r, h, dt, np, rho, u, x) 
20 write (6,2) (u (i, 0) , i=0, m) 
c for the exact solution 

call exper (nd, m, t, h, v) 
write (6,3) (v (i) , i=0, m) 

c for the absolute error and percentage error 
call error (nd, m, j, v, u, e, per) 
write (6,4) (e (i) , i=0, m) 
write (6,5) (per (i) , i=0, m) 

c write (6,10000) time 
30 format(' input number of end points') 
cl0000 format( ' time consumed =' f8.5) 
1 format(' input no. of intervals, time step, no. of steps, '/ 

1' no. of parameters') 
2 formatV the numerical sol. ' /6 (f12.6) ) 
3 format(' the exact sol .'/6 (f 12.6) ) 
4 format(" the absolute error' /6 (f12.6) ) 
5 format(' the percentage error'/6(f12.4)) 
6 format(' solution of heat conduction problem'/ 

1' with periodic b. c. for even number of intervals. '// 
2' r=' , f6.3,2x, ' time='.. f6.3) 
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55555 format(' what kind of parameters;. 1 - P. R., 2 n W., 3 K. ') 
stop 
end 
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subroutine agepewn (nd, m, jm, r, h, dt, np, rho, u, x) 
double precision u (0: 500,0: 5) ,x (0: 500) 

1, c (0: 500) ,b (0: 500) , rho (20) ,w (0: 500) 
c splines alternating group explicite iterative method with 
c periodic b. c. int even no. of intervals 
c 
c jcount; time step counter 
c kcount; iteration counter per time step 
c km; overall iteration counter 
c esp; convergance criterion 

eps=0.000005 
a=2.0+3.0*r 
f=1.0-3.0*r 
p2=3.0 
pl=1.0+6.0*r 
j=0 
km=0 
jcount=0 

12 kcount=0 
do 1 i=0, m 

1c (i) =60.0* (1.0-x (i)) *x (i) *dt*dt* (jcount+l) 
do 2 i=1, m-1 

2b (i) _ (1.0+3.0*r) * (u (i-1, j) +u (i+l, j) ) 
1+ (4.0-6.0*r) *u (i, j) +c (i) 
b (m) = (1.0+3.0*r) * (u (m-1, j) +u (1, j)) + (4.0-6.0*r) *u (m, j) 

14 do 13 ip=l, np 
ro=rho (ip) 
u(0, k)=u(m, k) 
ap=a+ro 
am=a-ro 
det=ap*ap-f*f 
p=-ap*f 
q=-ap*am 
v=f*am 
s=f*f 

c first sweep 
do 3 i=1, m-1,2 
w (i) =ap*b (i) -f*b (i+l) 

3w (i+1) =ap*b (i+1) -f *b (i) 
C 

5 

k=0 
do 5 i=l, m-3,2 
u (i, k+l) == (p*u (i-l, k) +q*u (i, k) +v*u (i+i, k) 

1 +s*u (i+2, k) +w (i) ) /det 
u (i+1, k+1) = (s*u (i-l, k) +v*u (i, k) +q*u (i+l, k) 

1 +p*u (i+2, k) +w (i+l) ) /det 
u (m-1, k+i) = (p*u (m-2, k) +q*u (m-1, k) +v*u (m, k) 

1 +s*u (i, k) +w (m-1) ) /det 
u (m, k+1) = (s*u (m-2, k+1) +v*u (m-i, k) +q*u (m, k) 

1 +p*u (1, k) +w (m) ) /det 
C 

c second sweep 
do 17 i=2, m-2,2 
w (i) =ap*b (i) -f *b (i+1) 
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w (i+1) =ap*b (i+1) -f *b (i) 
17 continue 

k=k+1 
u(0, k)=u(m, k) 
do 6 i=2, m-2,2 
u (i, k+1) = (p*u (i-1, k) +q*u (i, k) +v*u (i+1, k) 

1 +s*u (i+2, k) +w (i) ) /det 
6u (i+l, k+l) _ (s*u (i-1, k) +v*u (i, k) +q*u (i+l, k) 

1 +p*u (i+2, k) +w (i+1) ) /det 
u (1, k+l) = (ap*b (1) -f *b (m) +s*u (m-1, k) +v*u (m, k) 

1 +q*u (1, k) +p*u (2, k) ) /det 
u (m, k+1) = (ap*b (m) -f *b (1) +p*u (m-1, k) +q*u (m, k) 

1 +v*u (1, k) +s*u (2, k) ) /det 
C 
C 

k=k+1 
u(0, k)=u(m, k) 
kcount=kcount+l 
do 7 i=l, m 
dif=abs (u (i, k) -u (i, k-2) ) 
if(dif. gt. eps) go to 16 

7 continue 
go to 9 

16 if(kcount. eq. 100) go to 9 
do 20 i=0, m 

20 u (i, k-2) =u (i, k) 
if(ip. eq. np) go to 14 

13 continue 
9 km=km+kcount 

jcount=jcount+l 
c write (6, *) kcount 

u(0, k)=u(m, k) 
do 11 i=0, m 

11 u(i, j)=u(i, k) 
if (jcount. lt. jm) go to 12 

10 write (6,15) km 
write (6,18) 

18 format(' EVEN NUMBER OF INTERVALS ') 
15 format(' the total no. of iterations is', 2x, i6) 

return 
end 
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subroutine exper (nd, m, t, h, v) 
double precision v(0: nd) 

c Periodic heat eq. i. c.; u (0, x) =x (1-x) 
c B. C.; u (O, t) =u (1, t) 

pi=3.141592654 
d=(1.0+5.0*t*t)/6.0 
do 2 i=0, m 
x=i*h 
p1=0.0 
q1=0.0 
do 1 n=1,40 
a=n*pi 
b=2.0*a*x 
c=4.0*a*a*t 
p1=pl+cos (b) * (c-1.0+exp(-c)) / (a**6) 
ql=ql+exp (-c) *cos (b) / (a*a) 

1 continue 
v (i) =d-5.0*pl/8.0-gl 

2 continue 
return 
end 



A3: twodagesp. fortran 
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double precision u (0: 12,0: 12,0: 160) ,v (0: 12,0: 12) , rho (5) 
1 , x(0: 12), y(0: 12), e(0: 12,0: 12) tper(0: 12,0: 12) 
2 , w(0: 12,0: 12), g(0: 12,0: 12), b(0: 12,0: 12) 

c solution of two dimensional parabolic problem 
c using the SPAGEI method. 
c 
c eps; convergance criterion 
c n, m; number of x, y nodes 
c dt; time step 
c kmax; number of time steps 
c np; no. of parameters 
c h; interval length 
c u; numerical solution 
c v; exact solution 
c 

nd=12 
eps=0.000005 

c input no. of x&y nodes , time step, no. of steps 
c , no. of parameters. 

write (6,1) 
read (5, *) n, m, dt, kmax, np 
do 10 i=0, n 

10 x(i)=0.0 
do 2 J=O, m 
Y(j)=0.0 
do 2 i=0, n 
v(i, j)=0.0 
b(i, j)=0.0 
g(i, j)=0.0 
w (i, j) =0.0 
do 2 k=0, kmax 

2 u(i, j, k)=0.0 
c initialisation 

h=1.0/n 
r=dt/(h*h) 
t=dt*kmax 
p2=12.0*r-1.0 
p1=3.0 

C 
C 

do 20 i=O, n 
20 x (i) =i *h 

do 30 j=0, m 
30 y(j)=j*h 
c 
c initial conditions 
c 

do 40 i=O, n 
do 40 j=0, m 

40 u (i, j, 0) =sin (x (i) ) *sin (y (J) )+ (x (i) ) **2+ (y (J) ) **2 
c boundary conditions left&right 

do 50 k=1, kmax 
do 50 J=O, m 
u(0, j, k)=(y(j))**2 
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50 u (n, j, k) =sin (x (n) ) *sin (y ( j) ) *exp (-dt*k) + (x (n) ) **2+ (y ( j) ) **2 
c boundary conditions top&bottom 

do 60 k=l, kmax 
do 60 i=0, n 
u (i, 0, k) = (x (i) ) **2 

60 u (i, m, k) =sin (x (i) ) *sin (y (m) ) *exp (-dt*k) + (x (i) ) **2+ (y (m) ) **2 
c 

a=1.0+6.0*r 
f=1.0-3.0*r 
d=1.0+3.0*r 
c=2.0-12.0*r 

C 

C 
C 

itsum=O 
k=0 

write (6,3) 
read (5, *) krho 

c evaluating the source term (g function) 
c 
280 do 200 i=1, n-1 

do 200 j=1, m-1 
200 g (i, j) =6.0*dt* (sin (x (i)) *sin (y (j)) *exp (-dt* (k+0.5)) -4.0) 
c 
c evaluating the r. h. s. 
c 

do 210 i=1, n-1 
do 210 j=1, m-1 
b (i, j) =c*u (i, j, k) +d* (u (i-1, j, k) +u (i+l, j, k) 

1 +u (i, j-1, k) +u (i, j+1, k) ) +g (i, j) 
210 continue 

do 220 j=2, m-2 
b (1, j) =b (1, j) -f *u (0, j, k+l) 
b (n-1, j) =b (n-i, j) -f *u (n, j, k+1) 

220 continue 
c 

230 
c 

C 

C 

do 230 i=2, n-2 
b(i, 1)=b(i, 1)-f*u(i, 0, k+1) 
b (i, m-1) =b (i, m-1) -f*u (i, m, k+1) 
continue 

b(1,1)=b(1,1)-f*(u(1,0, k+i)+u(O, l, k+1)) 
b(l, m-1)=b(l, m-1)-f* (u(O, m-i, k+1)+u(i, m, k+i) ) 
b (n-1,1) =b (n-i, l) -f* (u (n-1, O, k+i) +u (n, 1, k+i) ) 
b (n-1, m-i ) =b (n-1, m-i ) -f* (u (n-1, m, k+l ) +u (n, m-1, k+l )) 

it=0 

do 260 i=1, n-1 
do 260 j=1, m-1 

260 u (i, j, it) =u (i, j, k) 
c 
c choosing kind of parameters; 1 for p. r. ;2 for w. 
270 do 70 ip=l, np 
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if (krho. eq. 2) go to. 80 
ro=p2* ( (pl/p2) ** ( (2.0*ip-1) / (2.0*np) )') 
go to 140 

80 ro=p2*((pl/p2)**((ip_1)/(np', 1))) 
C 
140 ap=a+ro 

am=a-ro 
90 call toprit (nd, n, m, k, it, am, ap, f, u, b, w) 
c 
c 

it=it+1 
C 
C 

do 240 i=1, n-1 
do 240 j=1, m-1 
dif=abs (u (i, j, it-2) -u (i, j, it) ) 
if (dif. gt. eps) go to 250 

240 continue 
c 
190 itsum=itsum+ (it) /2 

k=k+1 
do 110 i=1, n-1 
do 110 j=1, m-1 

110 u(i, j, k)=u(i, J, it) 
, if (k. eq. kmax) go to 120 
go to 280 

250 if(it. eq. 50) go to 190 
if(ip. eq. np) go to 270 

70 continue 
c 
120 write (6,290) itsum 
c 

call tdexact (nd, n, m, t, x, y, v) 
call tderror (nd, n, m, kmax, v, u, e, per) 
write (6,150) dt, kmax, t, r, krho, np 
write (6,130). ( (u (i, j, k) , j=1, m-1) , i=1, n-1,4) 
write (6,160) ((v (i, j) , j=l, m-1) , i=1, n-1,4 ) 
write (6,170) ((e (i, j) , j=1, m-1) , i=1, n-1,4) 
write (6,180) ( (per (i, j) , j=1, m-1) , i=1, n-1,4) 

1 format(' input; x_nodes, y__nodes, time step 
1 no. of time steps, no. of parameters'), 

3 format(' input kind of parameters; l for P. R. ;2 for W. 1) 
150 format(' time step=', f5.3, x, ' no. of steps=' 

1,13, x, It=", f6.3, 
1 /' r=', f5.2, x, ' kind of prmtrs=' 
1,12, x,, ' no. of prmtrs=', i3/) 

130 format (/' the numerical sol. ', /9 (f8.6, x) ) 
160 format (/' the exact sol. ' /, 9 (f8.6, x) ) 
170 format (/' the absolute error'/, 9 (1pe8.1, x) ) 
180 format(/' the percentage error' , /9 (f8.6, x) ) 
290 format(/' total iterations=', i5) 

stop 
end 
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subroutine toprit (nd, n, m, k, it, am, ap, f, u, b, w) 
C 

c subroutine to find sol. of two-d diff eq. 
c using splines in two dimensions 
c 
c single points at top-right &bottom-left 
c 
C 

double precision u (O: nd, O: nd, 0: 120) 
1 , w(O: nd, O: nd), b(O: nd, O: nd) 

c the constant parameters in general 
c 

c1=ap*ap-2.0*f*f 
c2=-ap*f 
c3=2.0*f*f 

C 

C 

c41=-am*cl 
c42=-am*c2 
c43=-am*c3 

C51=-f *cl 
c52=-f*c2 
c53=-f*c3 

C 

c determinant for 4*4 matrix 
C 

det=ap* (ap*ap-4.0*f*f) 
C 

c6=-ap*am 
c7=am*f 
c8=c2 
c9=f*f 

C 
c determinant for 2*2 matrix 
c 

detl=ap*ap-f*f 
C 
c first sweep 
c 
C 
C 
c for line near left boundary 
c 

20 
c 
c 

do 20 j=2, m-4,2 
w (1, j) =ap*b (1, J) -f *b (1,, J+l) 
w (1, j+l) =-f *b (1, j) +ap*b (1, j+l) 
u (1, j, it+1) = (w (1, j) +c6*u (1, j, it) +c8* (u (1, j-1, it) +u (2, j, it) ) 

1 +c7*u (1, j+1, it) +c9* (u (1, j+2, it) +u (2, j+1, it) )) /detl 
u (1, j+l, it+1) = (w (1, j+1) +c7 *u (1, j, it) 

1 +c9* (u (1, j-1, it) +u (2, j, it) ) 
1 +c6*u (1, j+1, it) +c8* (u (1, j+2, it) +u (2, j+1, it) )) /detl 

continue 
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c for 2x2 block near top_left corner 
c 

w (1, m-2 ) =ap*b (1, m-2 ) -f *b (1, m-1) 
w (l, m-i) =-f*b (i, m-2) +ap*b (l, m-1) 
u (1, m-2, it+l) = (w (l, m-2) +c6*u (1, m-2, it) +c7*u (l, m-l, it) 

1 +c8* (u (1, m-3, it) +u (2, m-2, it) ) +c9*u (2, m-1, it) ) /detl 
u (l, m-1, it+1) = (w (1, m-i) +c7*u (1, m-2, it) +c6*u (i, m-1, it) 

1 +c9* (u (1, m-3, it) +u (2, m-2, it) ) +c8*u (2, m-1, it) ) /detl 
C 

c for line near bottom boundary 

c 
do 30 i=2, n-4,2 
w(i, 1) =ap*b (1,1) -f *b (i+l, 1) 
w (i+l, l) =-f*b (i, l) +ap*b (i+1,1) 
u (i,, 1, it+l) = (w (i, 1) +c6*u (i, 1, it) +c8* (u (i-1,1, it) +u (i, 2, it) ) 

1 +c7*u (i+1,1, it) +c9* (u (i+1,2, it) +u (i+2,1, it))) /detl 
u (i+l, 1, it+1) = (w (i+l, 1) +c7*u (i, 1, it) 

1 +c9* (u (i-1,1, it) +u (i, 2, it) ) 
1 +c6*u (i+1,1, it) +c8* (u (i+1,2, it) +u (i+2,1, 

_it))) 
/detl 

30 continue 
c 
c 
c for 2x2 block near bottom right corner 
c 

w (n-2,1) =ap*b (n-2,1) -f*b (n-1,1) 
w (n-1,1) =-f *b (n-2,1) +ap*b (n-1,1) 
u (n-2,1, it+i) _ (w (n-2,1) +c6*u (n-2,1, it) +c7*u (n-1,1, it) 

1 +c8* (u (n-3,1, it) +u (n-2,2, it) ) +c9*u (n-1,2, it) ) /detl 

u (n-1,1, it+1) = (w (n-1,1) +c7*u (n-2,1, it) +c6*u (n-1,1, it) 
1 +c9* (u (n-3,1, it) +u (n-2,2, it) ) +c8*u (n-1,2, it) ) /detl 

C 
c for bottom-left corner single point 
c 

u(1,1, it+1)=(b(1,1)-am*u(1,1, it)-f* (u(1,2, it) 
1 +u (2,1,, it))) /ap 

c 
c for inner 4x4 blocks 
c 

10 
c 
c 

do 10 i=2, n-2,2 
do 10 j=2, m-2,2 
w (i, j) =c1*b (i, j) +c2* (b (i, j+l) +b (i+l, j) ) +c3*b (i+1, j+l) 
w (i, j+1) =c1*b (i, j+l) +c2* (b (i, j) +b (i+l, j+l) ) +c3*b (i+l, j) 
w (i+1, j) =c1*b (i+1, j) +c2* (b (i, j) +b (i+1, j+1) ) +c3*b (i, j+1) 
w (i+l, j+1) =c1*b (i+1, j+1) +c2* (b (i, j+l) +b (i+l, j) ) +c3*b (i, j) 
continue 

do 70 i=2, n-4,2 
do 70 j=2, m-4,2 
u (i, j, it+1) = (w (i, j) +c41*u (i, j, it) +c42* (u (i, j+1, it) 

1 +u (i+1, j, it) ) 
1 +c43*u (i+1, j+1, it) +c51* (u (i-1, j, it) +u (i, j-1, it) ) 
2 +c52* (u (i-1, j+1, it) +u (i, j+2, it) +u (i+1, j-1, it) +u (i+2, j, it) ) 
3 +c53* (u (i+1, j+2, it) +u (1+2, j+1, it) )) /det 
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u (i; j+l, it+l) _ (w (i, j+l) +c42* (u (i, j, it)+u (i+1, j+1, it) ) 
1 +c52* (u (i-1, j, it) +u (i, j-1, it) +u (i+l, j+2, it) +u (i+2, j+1, it) ) 
2 +c41*u (i, j+l, it) +c51* (u (i-1, j+l, it) +u (i, j+2, it) ) 
3 +c43*u (i+l, j, it) +c53* (u (i+1, j-1, it) +L (i+2, j, it) )) /det 

u (i+l, j, it+l) = (w (i+l, j) +c42* (u (i, j, it)+u (i+l, j+l, it) ) 
1 +c43*u (i, j+1, it) +c41*u (i+l, j, it) +c53* (u (i-1, j+1, it) 
1 +u ( i, j+2, it )) 
2 +c52* (u (i-1, j, it) +u (i, j-1, it) +u (i+1, j+2, it) +u (i+2, j+1, it) ) 
3 +c51* (u (i+1, j-1, it) +u (i+2, j, it) )) /det , 

u (i+l, j+1, it+l) = (w (i+l, j+1) +c42* (u (i, j+1, it) +u (i+l, j, it) ) 
1 +c52* (u (i-1, j+l, it) +u (i, j+2, it) +u (i+1, j-1, it) +u (i+2, j, it) ) 
2 +c43*u (i, j, it) +c41*u (i+1, j+1, it) +c53* (u (i-1, j, it) 
1 +u (i, j-1, it) ) 
3 +c51* (u (i+l, j+2, it) +u (i+2, j+l, it) )) /dat 

70 continue 
c 
c for 4x4 blocks near top boundary 
C 

do '110 i=2, n-4,2 
u (i, m-2, it+1) = (w (i, m-2) +c42* (u (i, m-1, it) +u (i+1, m-2, it) ) 

1 +c43*u (i+1, m-1, it) +c51* (u (i-1, m-2, it) +u (i, m-3, it) ) 
2 +c52* (u (i-1, m-1, it) +u (i+1, m-3, it) +u (i+2, m-2, it) ) 
3 +c41*u (i, m-2, it) +c53*u (i+2, m-1, it) ) /det 

u (i, m-1, it+1) = (w (i, m-1) +c42* (u (i, m-2, it) +u (i+1, m-1, it) ) 
1 +c52* (u (i-1, m-2, it) +u (i, m-3, it) +u (i+2, m-1, it) ) 
2 +c41*u (i, m-1, it) +c43*u (i+l, m-2, it) +c51*u (i-1, m-1, it) 
3 +c53* (u (i+1, m-3, it) +u (i+2, m-2, it) )) /det 

u (i+1, m-2, it+1) = (w (i+1, m-2 ) +c42* (u (i, n-2, it) +u (i+1, m-1, it) ) 
1 +c43*u (i, m-1, it) +c41*u (i+1, m-2, it) +c53*u (i-1, m-1, it) 
2 +c52* (u (i-1, m-2, it) +u (i, m-3, it) +u (i+2, m-1, it) ) 
3 +c51 * (u ( i+1, m-3, it ) +u ( i+2, m-2, it ))) /det 

u (i+1, m-1, it+1) = (w (i+1, m-1) +c42* (u (i, m-1, it) +u (i+1, m-2, it) ) 
1 +c52* (u (i-1, m-1, it) +u (i+1, m-3, it) +u (i*2, m-2, it) ) 
2 +c41*u (i+1, m-1, it) +c53* (u (i-1, m-2, it) -u (i, m-3, it) ) 
3 +c43*u (i, m-2, it) +c51*u (i+2, m-1, it) ) /det 

110 continue 
c 
c for 4x4 blocks'near right boundary 
c 

do 90 j=2, m-4,2 
u (n-2, j, it+l) = (w (n-2, j) +c42* (u (n-2, j+l, it) +u (n-1, j, it) ) 

1 +c43*u (n-1, j+1, it) +c51* (u (n-3, j, it) +u(n-2, j-1, it) ) 
2 +c52* (u (n-3, j+l, it) +u (n-2, j+2, it) +u (n-1, j-1, it) ) 
3 +c41*u (n-2, j, it) +c53*u (n-1, j+2, it) ) /det 

u (n-2, j+l, it+l) _ (w (n-2, j+l) +c42* (u (n-2, j, it) +u (n-1, j+l, it) ) 
1 +c52* (u (n-3, j, it) +u (n-2, j-1, it) +u (n-1, j+2, it) ) 
2 +c41*u (n-2, j+1, it) +c51* (u (n-3, j+l, it) -u (n-2, j+2, it) ) 
3 +c43*u (n-1, j, it) +c53*u (n-1, j-1, it) ) /det 

u (n-1, j, it+1) = (w (n-1, j) +c42* (u (n-2, j, it) +u (n-1, j+l, it) ) 
1 +c43*u (n-2, j+1, it) +c53* (u (n-3, j+1, it) -u (n-2, j+2, it) ) 
2 +c52* (u (n-3, j, it) +u (n-2, j-1, it) +u (n-1, j+2, it) ) 
3 +c41*u (n-1, j, it) +c51*u (n-1, j-1, it) ) /det 

u (n-1, j+l, it+1) = (w (n-1, j+l ) +c42 * (u (n-2, j+l, it) +u (n-1, j, it) ) 
1 +c52* (u (n-3, j+1, it) +u (n-2, j+2, it) +u (n-1, j-1, it) ) 



364 

2 +c41*u (n-1, j+l, it) +c53* (u (n-3, j, it) +u (n-2, j-1, it) ) 
3 +c43*u (n-2, j, it) +c51*u (n-i, j+2, it)) /det 

90 continue 
c 
c for 4x4 block near top-right boundary corner 
c 

C 

u (n-2, m-2, it+1) _ (w (n-2, m-2 ) +c42 * (u (n-2, m-1, it ) 
1 +u (n-l, m-2, it) ) 
1 +c43*u (n-1, m-1, it) +c51 * (u (n-3, m-2, it) +u (n-2, m-3, it) ) 
2 +c52* (u (n-3, m-1, it) +u (n-1, m-3, it) ) +c41*u (n-2, m-2, it) ) /det 

u (n-2, m-1, it+1) = (w (n-2, m-1) +c42 * (u (n-2, m-2, it ) 
1 +u (n-l, m-1, it) ) 
1 +c52* (u (n-3, m-2, it) +u (n-2, m-3, it) ) 
2 +c41*u (n-2, m-1, it) +c43*u (n-1, m-2, it) +c51*u (n-3, m-1, it) 
3 +c53*u (n-1, m-3, it) ) /det 

u (n-1, m-2, it+1) = (w (n-1, m-2) +c42* (u (n-2, m-2, it) 
1 +u (n-1, m-1, it) ) 
1 +c43*u (n-2, m-1, it) +c41*u (n-1, m-2, it) +c53*u (n-3, m-1, it) 
2 +c52 * (u (n-3, m-2, it ) +u (n-2, m-3, it )) 
3 +c51*u(n-1, m-3, it))/det 

u (n-1, m-1, it+1) = (w (n-1, m-1) +c42* (u (n-2, m-1, it ) 
1 +u (n-1, m-2, it) ) 
1 +c52* (u (n-3, m-1, it) +u (n-1, m-3, it) ) 
2 +c43*u (n-2, m-2, it) +c41*u (n-1, m-1, it) 
3 +c53* (u (n-3, m-2, it) +u (n-2, m-3, it) )) /det 

it=it+1 
C 
c second sweep 
c 
c for top-right corner single point 
C 

u (n-1,, m-l-, it+1) = (b (n-1, m-1) -am*u (n-1, m-1, it) 
1 -f* (u (n-1, m-2, it) +u (n-2, m-1, it) )) /ap 

C 
c for line near right boundary 
c 

do 40 j=3, m-3,2 
w (n-1, j) =ap*b (n-1, j) -f*b (n-1, j+i) 
w (n-1, j+i) =-f*b (n-1, j) +ap*b (n-i, j+i) 
u (n-1, J. it+i )= (w (n-1, J) +c6*u (n-1, j, it) 

1 +c8* (u (n-2, j, it) +u (n-1, j-1, it) ) 
2 +c7*u (n-1, j+l, it) +c9* (u (n-2, j+l, it) +u (n-1, j+2, it) )) /detl 

u (n-1, j+1, it+l) = (w (n-1, j+l) +c7*u (n-i, j, it) +c6*u (n-i, j+l, it) 
1 +c8* (u (n-2, j+l, it) +u (n-l, j+2, it) ) 
2 +c9* (u (n-2, j, it) +u (n-1, j-1, it) )) /deti 

40 continue 
c 
c 
c for 2x2 block near right bottom corner 
C 

w (n-1,1) =ap*b (n-1,1) - f*b (n-1,2) 
w (n-1,2) =-f*b (n-1,1) +ap*b (n-1,2) 
u (n-1,1, it+1) = (w (n-1,1) +c6*u (n-1,111 t) +c7*u (n-1,2, it) 
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1 +c8*u (n-2,1, it) +c9* (u (n-2,2, it) +u (n-1,3, it) )) /detl 
u (n-1,2, it+1) = (w (n-1,2) +c7*u (n-1,1, it) +c6*u (n-1,2, it) 

1 +c9*u (n-2,1, it) +c8* (u (n-2,2, it) +u (n-1,3, it) )) /detl 
C 
c for line near, top boundary 
c 

do 50 i=3, n-3,2 
w (i, m-1) =ap*b (i, m-1) -f *b (i+i, m-i) 
w (i+l, m-l) =-f*b (i, m-1) +ap*b (i+l, m-1) 
u (i, m-1, it+l) = (w (i, m-1) +c6*u (i, m-i, it) +c7*u (i+l, m-i, it) 

1 +c8* (u (i, m-2, it) +u (i-l, m-i, it) ) 
2 +c9* (u (i+l, m-2, it) +u (i+2, m-1, it) )) /detl 

u (i+l, m-i, it+l )= (w (i+l, m-1) +c6*u (i+l, m-1, it) +c7*u (i, m-1, it) 
1 +c9* (u (i, m-2, it) +u (i-1, m-1, it) ) 
2 +c8* (u (i+1, m-2, it) +u (i+2, m-i, it) )) /detl 

50 continue 
C 
C 
c for 2x2 block near top left corner 
C 

w (1, m-1) =ap*b (1, m-1) -f *b (2, m-1) 
w (2, m-i) =-f *b (1, m-1) +ap*b (2, m-1) 
u (l, m-i, it+l) _ (w (1, m-i) +c6*u (1, m-i, it) +c7*u (2, m-1, it) 

1 +c8*u (i, m-2, it) +c9* (u (2, m-2, it) +u (3, m-1, it) )) /detl 
u (2, m-1, it+1) = (w (2, m-1) +c7*u (l, m-1, it) +c6*u (2, m-1, it) 

1 +c9*u (l, m-2, it) +c8* (u (2, m-2, it) +u (3, m-1, it) )) /deti 
C 
c for inner 4x4 blocks 
c 

60 
c 
c 

do 60 i=1, n-3,2 
do 60 j=1, m-3,2 
w (i, j) =cl*b (i, j) +c2* (b (i, j+1) +b (i+l, j) ) +c3*b (i+1, j+l) 
w (i, j+1) =c1*b (i, j+l) +c2* (b (i, j) +b (i+1, j+1) ) +c3*b (i+1, j) 
w (i+1, j) =c1*b (i+l, j) +c2* (b (i, J) +b (i+1, j+l) ) +c3*b(i, j+l) 
w (i+1,, j+1) =c1*b (i+1, j+1) +c2* (b (i, j+1) +b (i+1, j) ) +c3*b (i, j) 
continue 

do 80 i=3, n-3,2 
do 80 j=3, m-3,2 
u (i, j, it+1) = (w (i, j) +c41*u (i, j, it) c42* (u (i, j+l, it) 

1 +u (i+1, j, it) ) 
1 +c43*u (i+1, j+1, it) +c51* (u (i-1, j, it) +u (i, j-1, it) ) 
2 +c52* (u (i-1, j+1, it) +u (i, j+2, it) +u (i+1, j-1, it) +u (i+2, j, it) ) 
3 +c53* (u (i+1, j+2, it) +u (i+2, j+1, it) )) /det 

u (i, j+1, it+1) = (w (i, j+l) +c42* (u (i, j, it) +u (i+l, j+l, it) ) 
1 +c52* (u (i-1, j, it) +u (i, j-1, it) +u (i+1, j+2, it) +u (i+2, j+1, it) ) 
2 +c41*u (i, j+1, it) +c43*u (i+1, j, it) +c51* (u (i-1, j+1, it) 
1 +u (i, j+2, it) ) 
3 +c53* (u (i+1, j-1, it) +u (i+2, j, it) )) /det 

u (i+1, j, it+1) = (w (i+1, j) +c42* (u (i, j, it) +u (i+1, j+l, it) ) 
1 +c43*u (i, j+1, it) +c41*u (i+1, j, it) +c53* (u (i-1, j+1, it) 
1 +u (i, j+1, it) ) 
2 +c52* (u (i-1, j, it) +u (i, j-1, it) +u (i+1, j+2, it) +u (i+2, j+1, it) ) 
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3 +c51* (u (i+l, j-1, it) +u (i+2, j, it) )) /det 
u (i+1, j+l, it+l) = (w (i+l, j+l) +c42* (u (i, j+l, it) +u (i+l, j, it) ) 

1 +c52* (u (i-1, j+l, it) +u (i, j+2, it) +u (i+1, j-1, it) +u (i+2, j, it) ) 
2 +c43*u (i, j, it) +c41*u (i+l, j+l, it) +c53* (u (i-1, j, it) 
1 +u (i, j-1, it) ) 
3 +c51* (u (i+l, j+2, it) +u (i+2, j+l, it) )) /det 

80 continue 
c 
c for 4x4 blocks near bottom boundary 
c 

do 120 i=3, m-3,2 
u (i, 1, it+l) = (w (i, l) +c41*u (i, 1, it) +c42* (u (i, 2, it) 

1 +u (i+1,1, it) ) +c43*u (i+1,2, it) +c51* (u (i-1,1, it) ) 
2 +c52*(u (i-1,2, it) +u (i, 3, it) +u (i+2,1, it) ) 
3 +c53* (u (i+1,3, it) +u (i+2,2, it) )) /det 

u (i, 2, it+1) = (w (i, 2) +c42* (u (i, 1, it) +u (i+1,2, it) ) 
1 +c52* (u (i-1,1, it) +u (i+1,3, it) +u (i+2,2, it) ) 
2 +c41*u (i, 2, it) +c43*u (i+1,1, it) +c51* (u (i-1,2, it) +u (i, 3, it) ) 
3 +c53* (u (i+2,1, it) )) /det 

u (i+1,1, it+1) = (w (1+1,1) +c42* (u (i, 1, it) +u (i+1,2, it) ) 
1 +c43*u (i, 2, it) +c41*u (i+1,1, it) +c53* (u (i-1,2, it) +u (i, 3, it) ) 
2 +c52* (u (i-1,1, it) +u (i+1,3, it) +u (i+2,2, it) ) 
3 +c51* (u (i+2,1, it) )) /det 

u (i+1,2, it+l) = (w (i+1,2) +c42* (u (i, 2, it) +u (i+1,1, it) ) 
1+c52* (u (i-1,2, it) +u (i, 3, it) +u (i+2,1, it) ) 
2 +c43*u (i, 1, it) +c41*u (i+1,2, it) +c53* (u (i-1,1, it) ) 
3 +c51 * (u ( i+1,3, it ) +u ( i+2,2, it ))) /det 

120 continue 
c 
c for 4x4 blocks near left boundary 
c 

do 100 j=3, m-3,2 
u (1, j, it+1) = (w(1, j) +c41*u (1, j, it) +C42* (u (1, j+l, it) 

1 +u (2, j, it) ) +c43*u (2, j+l, it) +c51* (+u (1, j-1, it) ) 
2 +c52* (+u (1, j+2, it) +u (2, j-1, it) +u (3, j, it) ) 
3 +c53* (u (2, j+2, it) +u (3, j+l, it) )) /det 

u (1, j+1, it+1) = (w (1, j+1) +c42* (u (1, j, it) +u (2, j+1, it) ) 
1 +c52* (u (1, j-1, it) +u (2, j+2, it) +u (3, j+l, it) ) 
2 +c41*u (1, j+l, it) +c43*u (2, j, it) +c51* (u (l j+2, it) ) 
3 +c53* (u (2, j-1, it) +u (3, j, it) )) /det 

u(2, j, it+l )= (w (2, j) +c42* (u (1, j, it) +u (2, j+l, it) ) 
1 +c43*u (1, j+1, it) +c41*u (2, j, it) +c53*u (1, j+2, it) 
2 +c52* (u (1, j-1, it) +u (2, j+2, it) +u (3, j+l, it) ) 
3 +c51* (u (2, j-1, it) +u (3, j, it) )) /det 

u (2, j+l, it+l) = (w (2, j+l) +c42* (u (1, j+l, it) +u (2, j, it) ) 
"1 +c52* (u (1, j+2, it) +u (2, j-1, it) +u (3, j, it) ) 

2 +c43*u (1, j, it) +c41*u (2, j+l, it) +c53*u (l, j-1, it) 
3 +c51 * (u (2, j+2, it ) +u ( 3, j+l, it ))) /det 

100 continue 
c 
c for 4x4 block near left-bottom corner 
C 

u (1,1, it+1) 2-(W(1,, 1) +c41*u (1,1, it) +c42* (u (1,2, it) +u(2,1, it) ) 
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1 +c43*u (2,2, it) 
2 +c52* (u (1,3, it) +u (3,1, it) ) 
3 +c53* (u (2,3, it) +u (3,2, it) )) /det 

u (1,2, it+1) = (w (1,2) +c42* (u (1,1, it) +u (2,2, it) ) 
1 +c52* (u (2,3, it) +u (3,2, it) ) 
2 +c41*u (1,2, it) +c43*u (2,1, it) +c51* (u (1,3, it) ) 
3 +c53* (u (3,1, it) )) /det 

u (2,1, it+1) = (w (2,1) +c42* (u (1,1, it) +U (2,2, it) ) 
1 +c43*u (1,2, it) +c41*u (2,1, it) +c53*u (1,3, it) 
2 +c52* (u (2,3, it) +u (3,2, it) ) 
3 +c51 * (u ( 3,1, it) )) /det 

u (2,2, it+1) = (w (2,2) +c42* (u (1,2, it) +u (2,1, it) ) 
1 +c52* (u (1,3, it) +u (3,1, it) ) 
2 +c43*u (1,1, it) +c41*u (2,2, it) 
3 +c51* (u (2,3, it) +u (3,2, it) )) /det 

write (6,700) ( (u (i, j, it+1) , i=1, n-1) , j=1, n-1,4) 
700 format (9 (f8.6) ) 

return 
end 


