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ABSTRACT 

The thesis is concerned with the estimation of the sampled impulse-response (SIR), 

of a time-varying HF channel, where the estimators are used in the receiver of a 
4800 bits/s, quaternary phase shift keyed (QPSK) system, operating at 2400 bauds 

with an 1800 Hz carrier. 

T= 

FIF modems employing maximum-likelihood detectors at the receiver require 
accurate knowledge of the SIR of the channel. With this objective in view, the thesis 
considers a number of channel estimation techniques, using an idealised model of 
the data transmission system. The thesis briefly describes the ionospheric propaga- 
tion medium and the factors affecting the data transmission over BF radio. It then 
presents an equivalent baseband model of the I-IF channel, that has three separate 
Rayleigh fading paths (sky waves), with a 2Hz frequency spread and transmission 
delays of 0,1.1 and 3 milliseconds relative to the first sky wave. 

Estimation techniques studied are, the Gradient estimator, the Recursive least- 

squares (RLS) Kalman estimator, the Adaptive channel estimators, the Efficient 

channel estimator ( that takes into account prior knowledge of the number of fading 

paths in the channel ), and the Fast Transversal Filter (F-FF), estimator (which is a 
simplified form of the Kalman estimator). Several new algorithms based on the 
above mentioned estimation techniques are also proposed. 

Results of the computer simulation tests on the performance of the estimators, over a 
typical worst channel, are then presented. The estimators are reasonably optimized to 
achieve the minimum mean-square estimation error and adequate allowance has 
been made for stabilization before the commencement of actual measurements. The 

results, therefore, represent the steady-state performance of the estimators. 

The most significant result, obtained in this study, is the performance of the 
Adaptive estimator. When the characteristics of the channel are known, the Efficient 

estimators have the best performance and the Gradient estimators the poorest. 
Kalman estimators are the most complex and Gradient estimators are the simplest. 
Kalman estimators have a performance rather similar to that of Gradient estimators. 
In terms of both performance and complexity, the Adaptive estimator lies between 

the Kalman and Efficient estimators. FTF estimators are known to exhibit numerical 

iv 



instability, for which an effective stabilization technique is proposed. Simulation 
tests have shown that the mean squared estimation error is an adequate measurement 
for comparison of the performance of the estimators. 
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GLOSSARY OF SYMBOLS AND TERMS 

a(t) Impulse-response of a filter 

A(f) Frequency r6sponse of a filter 

IA(f)I Absolute value of A(f) 

a(t) * b(t) ConvOlution between a(t) and b(t) 

Ci Weighted squared error in the (rh) 

e, Error in the estimated value of r, 

Expectation operator 

g+l Number of samples in the sampled impulse-response of linear 
baseband channel 

When not used as a subscript, j =- 

K, Kalman gain vector 

n(t) White Gaussian noise with zero mean and two-sided power 
spectral density of 1 N,, 2 

'N Power spectral density of n(t) j2 0 

q, (t) Statistically independent random processes 

[q,,, ) Sequence obtained by sampling q, (t) 

91 [. ] Real part of a complex number 

r(t) Received signal 

[r, j Sequence of received signal samples 

Estimated received signal sample 

S, Data symbol 

/ Detected data symbol si 

Sh Complex conjugate of the vector S, 
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Superscript* Complex conjugate 

Superscript T Matrix (or Vector) transpose 

T Sampling interval 

Vi* Conjugate transpose of the vector V, 

w(t) Gaussian random process with zero mean 

y(t) Impulse-response of linear baseband channel 

Y, Sampled impulse-response of linear baseband channel 

y ./ 
Estimate of Y, at time t=iT 

One-step prediction of Y, 
+, at time t=iT Yi' + 1, i 

Y// Estimate (prediction) of the rate of change with respect to i of i+l, i 
Yi+l 

ý, Mean square error in the estimate (precliction) of Y, 

Mean square normalized error in the estimate (prediction) of Y, 

ý, Square of the error in the estimate (prediction) of Y, 

(, 2 Variance of w(t) or [w, l 

k Transition matrix 

Nf Signal/noise ratio 
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CHAPTER I 

INTRODUCTION 

1.1 BACKGROUND. 

The radio frequency band, between 3- 30 MHz, called the High frequency (HF) 
band [11, has for many years been used as a transmitting medium, for communica- 
tion over long distances. Despite the advent of satellite communication systems, HIF 
still continues to be used owing to the fact that it is economical and flexible. HF has 
been extensively used for point - to - point communication, for commercial shipping, 
aircraft communication and for military applications. The ionosphere acts as a good 
reflector of I-IF radio waves and propagation of HIF is achieved by ionospheric 

refraction [1]. However, HF transmission is unpredictable due to the existence of 
multiple transmission paths caused by reflection from different layers of the 
ionosphere [1 - 20]. Advances in modem design and availability of high speed 
signal processing chips has renewed interest in data transmission over HF radio 
links. 

In the past, the RF radio medium was successfully used for low data rate telegraphy, 
such as manually transmitted and received Morse code. The signal element duration 
here, with serial transmission, is very much greater than the multipath spread and 
thus the detection of such a signal could be achieved through simple means. 
However, with the increasing demand for HF communication, it has become 

necessary to increase the data transmission rate, and as a result the multipath spread 
can extend over the duration of several signal elements. The system is now subject 
to inter-symbol interference (ISI) [2-4]. As the speed of transmission increases, so 
do the bit errors, affecting both modem performance and reliability. Until recently, 
the preferred method of transmitting digital data at medium to high speed, (greater 

than 1200 bits/s [67]), has been to employ a number of low speed channels in 

parallel in order to avoid ISI. The transmission takes place at a fairly low rate, over 

each of a number of subchannels within a3 KHz band. An alternative approach is to 

use serial transmission and employ some form of adaptive signal processing at the 

receiver. Comparison of the two transmission techniques at a speed of 2400 bits/s 
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has shown that the performance of a parallel HF modem is generally inferior to that 
of the serial modem [33,52]. The present trend is, therefore, towards serial 
modems. 

Trc 

FIF radio links are time-varying channels which can introduce considerable levels of 
attenuation and delay distortions [1-8,12-18,29,42]. Therefore, for the correct 
operation of the data-transmission system, at all times, over such a link, the system 
should be designed for the optimum tolerance to attenuation and delay distortions. 
Considerable advances have been achieved in the design of serial modems for HF 

radio links [5,29,31,42-43,46-48,50-52,67-69,71-72]. This has made it possible 
to achieve an increase in the highest practically obtainable transmission rate over a 
voiceband HF channel from 2400 to 9600 bits/s [5,29,31,42-43,46-48,50-52, 
67-69,71-721. The increase has been achieved through the development of more 
effective techniques for tracking the sampled impulse-response of the time-varying 
baseband channel [53-64,73-89,92-97,99-116], together with the development of 
more effective detection processes for handling the severe signal distortion intro- 
duced by the HF radio link [31,47-49,51,90]. 

Increasing the data rate over a bandlimited channel results in an increase in the 

amount of inter-symbol interference (ISI). Detectors used to combat inter-symbol 
interference can be classed into two separate groups. The first group of detectors 

employ an equalizer, which has a knowledge of the interfering components. The 

received signal passes through an equalizer before arriving at the detector input and 
the detection process is now a simple threshold comparator. The detector makes a 
decision on the value of a transmitted data symbol, by comparing the corresponding 

sample value with the appropriate threshold level (or levels). Equalization tech- 

niques used are the linear equalizer and the non-linear equalizer (or the deci- 

sion-feedback equalizer) [20,36,42-43,56]. The tap gains of a linear or non-linear 

equalizer can be adjusted adaptively for a time varying channel, using the gradient 

algorithm [42,75] or the Kalman algorithm [75,78-79] or a lattice algorithm [86] to 

minimize the mean square error in the equalized signal at its output. Alternatively, 

an equalizer can be adjusted from an estimate of the sampled impulse-response of 
the channel. 

The second method available to overcome the problem of inter-symbol interference 

is to modify the detection process itself, to take account of the signal distortion that 
has been introduced by the channel. These detectors perform processes of maximum 
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likelihood detection or maximum likelihood sequence estimation (MLSE), and are 
the optimum detection processes for a sequence of data symbols transmitted over a 
non ideal bandlimited channel which introduces ISI and additive white Gaussian 
noise (AWGN), and where the transmitted symbols are equally likely to have any 
one of their possible values [42]. In maximum-likelihood detection, the detector, 
instead of removing the ISI, takes full account of it, thus using the entire transmitted 
energy in the detection process. 

The Viterbi algorithm is used to implement MLSE [20,36-37,42-43,47]. It is not 
feasible to implement the MLSE in its true form because of the enormous memory 
requirement and equipment complexity. However, the Viterbi algorithm achieves 
the same tolerance to noise as that of MLSE [20,36-37,42-43,47]. A Viterbi 
detector operates by storing a complete set of possible sequences (vectors) of 
transmitted data symbol values together with the costs of the vector. The cost of a 
vector is taken as the square of the unitary distance between the corresponding 
received signal vector, for the given signal distortion but in the absence of noise, and 
the signal vector actually received. The detected message is selected as the 
particular sequence or vector, which has the minimum cost. 

For a Viterbi detector, the amount of storage required and computational complexity 
increases exponentially as the number of components in the sampled impulse-res- 

ponse of the channel increases. In order to overcome this problem, the detector is 
further modified and also an allpass linear feedforward transversal filter network is 

employed ahead of the detector [49]. The detector now limits the number of vectors 
held in the receiver at any time instant to a small value , regardless of the number of 
components in the sampled impulse-response of the channel, but without reducing 

unduly the tolerance of the detector to noise. This type of detector is now referred 
to as a near-maximum likelihood (NML) detector [36-37,42,47-48]. It has been 

shown in [51] that NML detectors are not significantly inferior to true Viterbi 

detectors in terms of their tolerances to additive white Gaussian noise, especially 

when binary and quaternary signals are transmitted. 

Decision-feedback equalizers have a poor performance over a time varying HF 

channel [37,47]. At low error rates, they are 1-3 dB inferior to the corresponding 
NML detectors depending on severity of fades [47]. The errors here are caused 

predominantly by the deepest fades and, in addition, the equalizers suffer from 

inherent error propagation tendencies. 
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A NML detector is, therefore, the most suitable detector for a time varying I-IF 
channel. However, these detectors require a knowledge of the sampled impulse-res- 

ponse of the channel. The adaptive filter used ahead of the detector also requires this 
information. Under the condition when the detector and adaptive filter is provided 
with the correct channel estimate and when perfect operation of the adaptive filter 

can be assumed, the performance of the NML detector gives an upper bound to the 
performance obtained when the channel response must be estimated. Any error in 
the estimation of the channel directly affects the performance of the detector. 
Further more, an incorrect channel estimate leads to an incorrect adjustment of the 
adaptive filter. It is, therefore, very essential, for the good performance of the 
detector (and hence the I-IF modem), that the channel estimator is able to make an 
accurate estimate of the sampled impulse-response of the channel. 

The channel characteristics of a telephone circuit do not vary (or vary only very 
slowly) with time. These channels, therefore, come under the category of time-in- 
variant channels. The estimate of the impulse-response of such a channel can be 

made quite accurately, and usually remains correct over the period of the following 
hundred or even thousand data symbols. One method, for fast start up, is to transmit 
a training sequence before actual data [91]. However, with an I-IF channel, the 
channel characteristics vary considerably with time and season of the year, 
geographical location, sunspot number etc. [1-8,12-18,20-22,25]. The received 
signal is continuously varying randomly in amplitude due to fading and, therefore, 
the sampled impulse-response of the channel must be estimated continuously at the 

receiver from the received data signal. 

A receiver employing a NML detector can, therefore, be considered to consist of a 
detector and an estimator connected back to back. The input to the channel 

estimator is the current detected data and the received sample and its output is an 

estimate/prediction of the channel sample impulse-response, ready for use by the 
detector at the next sampling instant. A channel estimator is basically a tapped delay 

line finite impulse-response (FIR) filter with the filter tap coefficients fon-ning the 

channel sampled impulse-response. The tap coefficients of the filter are adjusted 

adaptively, according to a particular algorithm, in order to track a time varying 

channel. 

The algorithms used for the adaptive adjustment of the filter can be broadly 

classified into least mean-squares (LMS) and recursive least-squares (RLS) algo- 
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rithm. In LMS algorithm the tap coefficients of the filter are determined using the 
method of steepest descent [20,27,35,58-61,101]. The algorithm is simple and 
works adequately in a variety of applications but suffers from the disadvantage of 
having a slow convergence rate. 

The RLS algorithm, on the other hand, makes use of the input information to the 
channel estimator in such a way as to ensure optimality at every time instant. A 
Kalman filter has been used as a means of holding the receiver correctly adjusted to 
the channel in [53,55,73-75,77-88]. Computer- simulation tests, however, have 
shown that the conventional Kalman filter [53,73-75,77-81], together with the more 
recent developments [83-88] are not optimum for a typical HF channel [88]. Both 
RLS and Kalman algorithms offer improved convergence, but at the expense of 
increased computation. New fast RLS algorithms have been developed [59,84,87, 
97,101,104-1161, but these exhibit numerical instability [ 111- 1161. 

Another form of estimation technique, known as the Improved channel estimator 
[89], that makes use of the prior knowledge of the number of different paths 
(separate sky waves) present in the HF channel, has shown very much improved 

performance, compared to the conventional LMS and RLS algorithms. It, however, 
has sub-optimum performance when the channel is modelled incorrectly [100]. It 
has been demonstrated in [70] that the LMS algorithm will perform as well as (if not 
better than) the RLS algorithm over a fading HF channel. An useful improvement in 

performance is achieved if a predictor is also incorporated in the system [33,54]. 
This simple modification, however, is not enough to match the performance of an 
improved channel estimator. The main source of complexity in the improved 

channel estimator is the requirement of modelling of the multipath propagation in the 
I-IF radio link. This suggests that the best approach towards a simpler but adequate 
estimator would be to develop the simple LMS algorithm [54] which does not 
require any prior knowledge of the channel. 

1.2 OUTLINE OF THE INVESTIGATION 

The investigation is concerned with the estimation of the sampled impulse response 

of a time-varying I-IF channel, where the estimators are used in the receiver of a 
4800 bits/s, quaternary phase shift keyed (QPSK) system operating at 2400 bauds 
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with an 1800 Hz carrier. Computer- simulation has been used to test the performance 
of estimators over a model of the HF data transmission system. Several novel 
estimation algorithms are proposed and their performance compared. 

Chapter 2 contains a description of the HF radio channel. It contains a brief 
description of the structure of the ionosphere followed by the propagation mechan- 
ism in the ionosphere. Finally it presents a model of the HF channel. 

Chapter 3 describes a model of a synchronous serial QAM digital data transmission 
system, and presents an equivalent baseband model of a three sky wave data 
transmission system. 

Chapter 4 considers a simple gradient estimator [33,53-54], operating as an HF 
channel estimator. Four variations of the estimation technique are also described 

Chapter 5 considers RLS Kalman estimators for BF channel estimation. Three 

variations of the RLS Kalman estimation technique are also described. 

The class of estimators considered in Chapter 6 are called adaptive channel 
estimators. These estimators are adaptive in the sense that the step sizes of the 
gradient algorithm are here adjusted to suit the channel. 

In Chapter 7, an improved channel estimator [89] is used to estimate the sampled 
impulse-response of an RF channel. All the estimators described in this chapter 
assume prior knowledge of the basic structure of the channel. 

Chapter 8 considers Fast transversal filter (FTF), for I-IF channel estimation. This is 

a fast RLS algorithm [84] and is computationally efficient. 

At the end of each chapter the results of the computer simulation tests on a model of 

a data transmission system are presented. The systems have been approximately 

optimized within the available computer time, for best performance and the results 

represent the steady-state performance of the estimators. Finally, in Chapter 9, some 

of the best estimators developed in the thesis have been compared. 
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CHAPTER 2 

HF CHANNEL 

2.1 INTRODUCTION. 

An IIF channel as a transmission medium is still of great importance even after the 
introduction of several other kinds of transmission media such as satellites, optical 
fibres, coaxial cables etc. When cable links are used as a transmission medium, the 
properties of the transmission route can be quite accurately defined and reproduced 
independently of time factors, but for HF radio links this is not the case. For skv 
wave propagation, in particular, the transmission conditions are constantly changing 
and this results in a received signal that follows the changes in the transmission 
medium. In estimating such a channel, major processes in the ionosphere and their 
effect on HF propagation must be well understood. This chapter looks in detail at 
the structure of the ionosphere, the distortions introduced by a time varying channel 
and the modelling of the channel for use in the testing of data modems. zn 

2.2 STRUCTURE OF THE IONOSPHERE. 

The ionosphere extends between 50 and 2000 Vým above the earth's surface, and is 

composed of molecules and atoms of nitrogen and oxygen [8,9]. These are ionized 

principally, by the electromagnetic radiation from the sun, into free electrons and 
ions [9]. The ionosphere consists of several ionized layers. These can be classified 
into three main groups, named D, E and F layers [1,8-9,12]. The ionization and the 
density of ions present in these layers vary with time, as the ionization rate is a 
function of the intensity of solar radiation and this in turn varies considerably with 
the time of day, the season and the sunspot activity. As the solar radiation becomes 

stronger so does the capacity of the individual layers to reflect high frequency 

waves. However, the attenuation of the radio waves increases at the same time. 

The D layer, at a height of 60 to 90 km above the earth, is the lowest layer. The 

critical frequency for the D layer, defined as the highest carrier frequency of a 
vertically incident ray that can be reflected by the layer [ 13], is of the order of 100 to 
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700 KHz [12]. Thus for HF radio waves, the D layer acts principally as an 
attenuator. The D region appears after sunrise and during night time, in the absence 
of solar radiation, the D layer virtually vanishes and, therefore, does not interfere 
with HF radio propagation. 

The E layer is between 90 to 130 krn above the earth's surface and is the next 
highest layer [1,7-9,12-13]. The E layers has a critical frequency of about 4 MHz 
[7-8]. As with the D layer, ionization begins at sunrise and maximum density occurs 
near noon with the seasonal maximum occurring in surnmer. After sunset the layer 
gradually breaks down. Thin ionized layers with a maximum electron density, 

greater than that of the E layer, are often found between 90 and 150 Km above the 
earth [13]. These layers are called sporadic E layers because they arise only 
occasionally [1,7-9,12-14]. These are capable of reflecting high frequencies as they 
have a high critical frequency. 

The next layer, called the F layer, is very important for the propagation of short 
waves. The lower region of the F layer shows a different variation characteristic 
than the upper region of the F layer, hence they have been sub-divided into two 
layers called the F1 and F2 layers. The Fl layer which exists only during daytime is 
located between 130 and 210 krn above the earth [8-9]. Like the E layer, the F1 
layer is strongly influenced by the solar radiation. The maximum ionization occurs 
about one hour after midday, with the seasonal maximum occurring during summer. 
The F1 layer is not generally used for long distance communications [6]. At night 
the two layers, F1 and F2, merge and are termed, simply, the F layer [ 1,7-9,12-14]. 

The F2 region is the highest ionospheric region and is located between 225 to 450 

km above the earth's surface [1]. The critical frequency for the F2 layer is between 

5 to 10 MHz. During night time and sometimes during the day time, particularly in 

winter, there is only a single F layer as the two layers F1 and F2 merge, and the 

critical frequency drops to 3 to 5 N4Hz. The F2 layer is an important part of the 
ionosphere for I-IF radio communication both during day and night time. Since the 
F2 layer is at a considerable height, it can support single hop propagations over a 
distance as great as 4000 km. 

Fig. 2.2.1, [9], shows the ionospheric regions as a function of height above the 

earth's surface. Fig. 2.2.2, [13], shows the electron density profile for summer noon 

and midnight at middle latitudes. 
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2.3 PROPAGATION MECHANISM IN IONOSPHERE. 

r 

BF radio waves are returned to earth from the ionosphere through a process known 
as refractive bending. The refractive index, TI, of the ionospheric layer changes 
continuously with its height as 'n is a function of the electron density in the ionised 
medium. 

The refractive bending of a radio wave is demonstrated in Fig. 2.3.1 and Fig. 2.3.2. 
For a given angle of incidence of a radio wave meeting a reflecting layer, total 
internal reflection occurs when [12,14] 

sin Oi 
"IV 
f .... 2.3.1 

where f is the frequency of the radio wave in Hz, and N is electron density in 

electrons per cubic metre. At vertical incidence ( sinoi=0 ), the wave will be 

completely refracted back towards the earth if the frequency of the wave is equal to 
or less than the crtical. frequency, f, 

94N 
. 2.3.2 

where N,,. is the maximum electron density in the ionosphere. For a given angle of 
incidence, 61, the maximum frequency at which reflection takes place is called the 

maximum usable frequency (m. u. f) and is related to the critical frequency as 

M. U. f =f c sec eý .. 2.3.3 

As seen in Fig. 2.3.2, at the (m. u. f), the radio wave takes the critical path which is 

the shortest distance back to earth. This is called the skip distance. 

The refraction processes via a flat ionised region at some height "b" above the 

earth's surface is equivalent to a mirror like reflection from a reflector located at a 
height "a" above the earth (Fig. 2.3.3) [12,14]. This height "a" is called the virtual 
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height [14]. Thus the actual ray path can be replaced by the virtual ray path in a 
medium of unit refractive index and reflected from a plane located at the virtual 
height. 

For long radio path lengths several hops are necessary, with the number of hops 
depending upon the transmission conditions existing in the individual sections of the 
path. Fig. 2.3.4 shows some of the possibilities for a multi-hop link. 

2.4 DISTORTION INTRODUCED BY THE HF CHANNEL 

2.4.1 TIME DISPERSION. 

A radio wave may reach a remote receiver via several routes (as illustrated in Fig. 
2.3.4). All these routes will have different path lengths and hence the radio waves 
will take different times to traverse them. Time dispersion is due to multipath 
propagation. The earth's magnetic field splits the waves into two magneto-ionic 
components called the ordinary and extraordinary waves and the propagation 
conditions in the ionosphere are different for the two waves. Thus the ordinary and 
extraordinary rays appear as multiple rays and this results in time dispersion. 
Different modes of propagation have different group delays and this difference in the 

group delays also results in time dispersion. Time dispersion gives rise to 
inter-symbol interference, when the data transmission rate becomes comparable to 
the relative multipath delay. It is, thus, a function of frequency, path length, local 

time, season and also geographical location. 

2.4.2 FREQUENCY DISPERSION. 

Frequency dispersion arises on a single propagation path due to the Doppler effect 
introduced by the change in the altitude of the ionospheric layers. The upper regions 

of the atmosphere at high altitude are ionized first when the sun rises. The height of 

this ionization level reduces as the sun rises further and further, until noon when it 

reaches a minimum. Thus the path traversed by a particular radio wave keeps 
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decreasing and the emitted frequency appears to have increased by an amount +Af. 
Exactly the opposite phenomenon takes place when the sun sets whereby, now, the 
radio wave takes a longer path to reach the receiver and the emitted frequency now 
appears to have decreased by an amount -Af. During night time when the 
ionosphere is calm there is no Doppler effect. When the ionosphere is calm the 
value of Af is between 1 and 2 Hz [1] and at other times it can be as high as 6 Rz. 

2.4.3 FADING 

Random variations of the signal strength at the receiver are referred to as fading. 
Fading phenomena can be classified as follows [1,4,14]. 

2.4.3.1 INTERFERENCE OR SELECTIVE FADING. 

An IIF signal arriving at a remote receiver is composed of a large number of 
different rays, after having travelled via the ionosphere over paths of different 
lengths. The total field strength of the received signal is the phasor sum of all waves 
arriving at the receiver. Due to random variation of the ionospheric conditions, the 
phase and the field strength of different rays, and hence that of the received signal, 
vary in a random manner. 

A modulated carrier has, within its bandwidth, a large number of frequency 

components that are exposed to randomly varying multipath propagation conditions. 
This can result in selective blackouts or fading of a small section of the bandwidth. 
This fading effect is called selective fading. Interference fading can also occur if at 
the receiver the sky wave signals are also superimposed by the ground wave signals. 
When the radio links are exposed to severe ionospheric disturbances, there is another 
type of interference called flutter fading. In this the variation in signal strength takes 
the form of a fast rhythmic beat, as though a low frequency oscillation is 

superimposed on the modulated carrier. This represents a considerable source of 
disturbance for radio reception. 
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2.4.3.2 POLARIZATION FADING 

This is due to the effect of the earth's magnetic field splitting the radio waves into 
ordinary and extraordinary waves (Section 2.4.1). The combined effect of the phase 
and amplitude of these waves is to change the polarisation of the received signal to 
be elliptically polarised. The phase and dimensions of the axes of the ellipse are 
constantly changing as the ordinary and extraordinary waves are subjected to 
random variations in the propagation conditions. This results in a type of fading 
called polarization fading. 

2.4.3.3 ABSORPTION FADING. 

This type of fading occurs due to the variation in the absorption characteristics of the 
ionosphere with time. The attenuation characteristic of the D layer slowly changes 
and can last longer than an hour [1] and is usually the greatest during sunrise and 
sunset [4]. The depth of fading can be as high as 10 dB below the mean value [1]. 

2.4.3.4 SKIEP FADING. 

For a specific distance between two short wave stations, the highest frequency to be 

reflected is called the maximum usable frequency (MUF). Skip fading is caused by 

the continuous variation of the MUR The operating frequency, which at one 

particular instant, is definitely below the MUF, may no longer be so at another 
instant and so penetrates the reflecting layer for a short period of time. During this 

time radio communication is interrupted at the receiver. 

2.5 STATISTICAL DISTRIBUTION OF THE RECEIVED SIGNAL 

Consider a transmitted signal that is represented in general form as. 

91lu (t). exp 
j 21rfc tI 

.... 2.5.1 
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where 911.1 is the real part of the complex-valued quantity in brackets, fC is the 
frequency of the carrier and, 

u(t) = a(t)e"(t) 

a(t) denotes the amplitude (envelope) of s(t), and 0(t) denotes the phase of s(t). Due 
to multipath the received signal is of the form [ 18,20] 

I (X,, (t)s [t - 'C', (t)] 
n 

2.5.2 

where cc,, (t) is the amplitude of the signal received via the n1b path at time t and -[,, (t) is 

the propagation delay for the nthpath. Considering the received signal as consisting 

of a continuum of multipath components, the summation in Eqn. 2.5.2 can be 

replaced by integral, and can be written as [ 18,20] 

cc(, c; t)s (t -, r)dr 

where a(T; t)dc represents the amplitude at time t of all rays arriving with relative 
delay times in the range ýr,, c + dr). Combining Eqns. 2.5.1 and 2.5.3 

j27cf 

cc(, c; t)u (t -, r)e '(t 

or 

911f - cc(, u; t)e 
-j2nfc-r 

u (t -, c)dc]e 
j 21tf, 11 

Let 

(x(, c; t)e 
-j2icf, -r 

The integral in Eqn. 2.5.5 represents the convolution of u(t) with an equivalent 

low-pass time-variant channel impulse-response h(, c; t) - 

16 



Thus when an unmodulated carrier, at frequency f., is transmitted, the equivalent 
low-pass received signal is [201 

IeIe -jGýQ) 
nn . 2.5.7 

where Ojt) = 21rf.,;, (t). Thus the received signal consists of the sum of a number of 
time-variant phasors having amplitudes (x. (t) and phases 0, M) .A large dynamic 
change in the medium is required for ajt) to change sufficiently to cause a 
significant change in the received signal. On the other hand, 0,, (t) changes by 2n 
radians whenever -cjt) changes by (1/Q. But (1/Q is a small quantity, and, hence, 
0,, (t) can change by 27c radians with relatively small motions of the medium. Owing 
to irregularity of the ionised media, the variation in c,, (t) is random and, therefore, 
variation in OJO is also random [18,20]. The multipath propagation model for the 
channel, in Eqn. 2.5.7, results in fading of the received signal. The fading is caused 
primarily by variation in the relative phases of the individual f (),, (t)l [201. 

When there are a sufficiently large number of phases, i. e for large value of n, of 
roughly equal size and their phases changing randomly and independently of each 
other, then by the central limit theorem, the two quadrature components of the 
resultant signal will each tend to be distributed as a zero-mean Gaussian random 
variable, with equal variance and independent fluctuations [18,20]. 

The received waveform thus has all the characteristics of a very narrow band 

complex-valued Gaussian random process, characterised. by a power spectral density 

of non-zero width, and with the envelope having a Rayleigh distribution and the 

phase uniformly distributed between 0 and 27c radians [18-21]. 

A single non-fading ("specular") dominant component may also be received, giving 
a Nakagami-Rice or Ricean amplitude distribution [3,9,20-21]. The Rayleigh 
fading model need not be valid for all HF channels. A specular component can be 

present on high rays and ground waves on short links which are again, essentially 

non-fading. However, the majority of ionospheric media exhibit Rayleigh fading, 

and thus, based on the present knowledge of ionospheric characteristics, it appears 
that the Rayleigh fading model best describes most I-IF channels [19]. 0 
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The value of the envelope of the received signal at any time, can be taken to be 
Rayleigh distributed. It is a continuous random variable, derived from two 
independent Gaussian random variables X and Y, and its probability density function 
is given by [1,3,15,21-23] 

re 22 

(ý2 

PR (r) = 

r 

The mean valuesof X and Y, m. and mY respectively aw zero and their variance (72 
is 

such that 

C72 G2 x Cýy 
. 2.5.9 

The envelope, R= +-FX2 + Y2 

, has a Rayleigh distribution [21,241 and has a probability 
density function given by Eqn. 2.5.8. 

Since R cannot be negative, by definition, it must have a non-zero mean value, even 
though X and Y have zero means. Fig. 2.5.1 shows the plot of probability density 
function as a function of r. The curve attains a maximum value of i/a4e- at r= (T. 

The Cumulative distribution function, of the Rayleigh distribution, is given by 

2 
u 

rU 

f(r) -e 
202du 

(y2 

2 
r 

e 
2cý 

for r ý! 0. 

.. 2.5.1O 

Fig. 2.5.2 shows the plot of the cumulative distribution function. The mean value of 
R is given by 
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rf(r)dr 

and the second moment (mean-square value) of R is given by 

E [R2] 
=E [X2 + y2] =E [X2]+E[Y2] 

where E [X2 ) and E[y21 are given by 

E [X2] =d+M2 

E[Y2-1 G2+M2 
y 

Substituting Eqn. 2.5.13 in Eqn. 2.5.12 and noting that the mean values of X and Y, 
(mX and mY respectively) are zero, the mean square value of R (i. e -r) is given by 

r 
-2 

= 2(3ý 
.... 2.5.14 

The variance of R is given by 

(: 72 [R2] 2 
=EM, 

=- (_)2 
... 2.5.15 

From Eqns. 2.5.11,2.5.14 and 2.5.15, 

(Y2, 

The median value of the Rayleigh distribution occurs, at r= rm, at the point where the 

cumulative distribution function f(r) (in Eqn. 2.5.10) is equal to 0.5. Therefore, from 
Eqn. 2.5.10, 

f(r. ) = 0.5 =1- 

Solving Eqn. 2.5.17 for r. 
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r,,, = (Nf-2--I-n2)a 
.... 2.5.18 

were al is the variance of Gaussian random variables used in the derivation of 
Rayleigh fading. 

2.6 SIMULATION OF AN HF CHANNEL 

An accurate assessment, of the performance of an HF digital radio system, can be 
made through repeated tests of the system over an actual channel. However, when 
comparison is to be made between two or more systems over a real channel, then 
they must all be tested simultaneously, because propagation or channel conditions 
vary uncontrollably and cannot be accurately repeated at other times or over other 
links. Moreover, it is not possible to repeat a test on a system for the same channel 
conditions. 

The use of a channel simulator for evaluating the performance of a digital 

communication system offers several advantages. They are accurate and a large 

range of channel conditions can be simulated in a controlled manner. It is possible 
to compare the performances of several systems under the same channel conditions 
using a channel simulator, and tests can be repeated any number of times with 
consistent results. 

The most commonly used channel simulator and the one recommended by the 
International Radio Consultative Comrnittee(CCIR) is that proposed by Watterson et 
al., in reference [26]. This channel simulator is based on the tapped delay line 

model. This is the model used in the HF channel simulation, albeit with the 

omission of constant Doppler shift. The block diagram of the HF ionospheric 

channel model is shown in Fig. 2.6.1 

The input signal is fed to the adjustable tapped delay line. There are as many taps as 
there are modes of propagation. At each tap the delayed signal is modulated in 

amplitude and phase by an appropriate complex-valued random tap gain function 

Q(t). The delayed and modulated signals are summed with additive noise. The 

additive noise has a Gaussian probability density although in actual channels, the 

type of additive noise is usually from several sources such as galactic, man made, 
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solar and radio, and can be highly impulsive. However, in I-IF radio links the mostly 
common additive noise is atmospheric noise, which is Gaussian in nature [29]. 
Hence a good tolerance to additive white Gaussian noise almost certainly means a 
good tolerance to atmospheric noise. 

A single Rayleigh fading propagation path is modelled as in Fig. 2.6.2. q, (t) and 
q, (t), in Fig. 2.6.2, are two random processes. In simulating a Rayleigh fading sky 
wave these random processes should be Gaussian with zero mean and the same 
variance. They should be statistically independent and the shape of their power 
spectra must be Gaussian, having same rms frequency, f... Thus the power 
spectrum of q, (t) and q, (t) are given by 

21 Q2(f) 12 
= eXp -" Ql(f) 2, 2fms 2.6.1 

The fading rate can be controlled by the bandwidth of the power spectra of the 
Gaussian variables q, (t) and q, (t). The frequency (Doppler) spread, fP, introduced by 

q, (t) and q, (t) into an unmodulated carrier is defined as the width of the power 
spectrum [25] and is given by, 

flP = 2f,,. .... 2.6.2 

The rms frequency is related to the fading rate, f., which is defined (for a single 
carrier) as the average number of downward crossings per unit time, of the envelope 
through the median value, according to the equation: 1-") 

fIffu =- 
f" 

1.475 

from Eqns. 2.6.2 and 2.6.3 f is related to f by: 
SP c 

f,,, = 1.3 5 6f, 

Practical measurements of the channel multipath structure have shown that there are 

usually two to four distinct paths present [31] but each associated with a different 

delay in transmission. The delay spread is usually upto about 5 milliseconds [3,30]. 

Doppler spread often is under O. OlHz (very slow fading), whereas for a more 
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notorious HF channel, the Doppler spread can usually be in the range 1-2 Hz [3]. 
Reference [19] has recommended testing of HF modems on IIF channels classified 
as Good, Moderate, Poor and Flutter conditions. Table 2.6.1 lists the parameters for 
these four channel conditions. Long sky wave paths are the ones for which most HIF 
modems are designed, usually for a multipath spread up to about 3 milliseconds and 
a Doppler spread of 1-2 Hz [3]. The chosen model is a3 sky wave channel with a 
frequency spread of 2Hz and transmission delays of the three sky waves, measured 
relative to that of the first sky wave, being 1.1, and 3 milliseconds. These 

parameters represent a poor channel as per the classifications of reference [19] 
(Table 6.2.1). 

The random process q, (t) is generated by filtering a zero mean white Gaussian noise 
signal V, (t) as shown in Fig. 2.6.3. The power spectra of q, (t) is Gaussian, hence the 
filter should also have a Gaussian frequency response matching the power spectrum Z: ) 

of the Gaussian variable q, (t). The theoretical power spectrum of q, (t) given in Eqn. 
2.6.1 is plotted in Fig. 2.6.4. The frequency response of the filter is given by, 

F exp - ,2 4frm .. 2.6.5 

A Bessel filter is used in the channel simulator to provide the necessary shaping to 
the random process q, (t). The frequency and impulse-response of the Bessel filter 

approaches Gaussian, when the order of the filter is sufficiently large [32]. In the 

simulated channel model there are 3 sky waves and, therefore, it requires six random 
processes q, (t) for i=1,2, ..., 6. Each of the random processes are similarly 
generated. The variance of all six variables q, (t) to q, (t) are equal to 0.167. This 

value of variance for each individual process ensures that the total variance of the 3 

sky wave channel is unity. Each of the values of q, (t) is generated from an 
independent source, so that all six random processes q, (t) to q, (t) are uncorrelated. 
Table 2.6.2 details the characteristics of the filter chosen for the model and 
Appendix A describes the filter design in detail. 

The digital filter is implemented as shown in Fig. 2.6.5. It is a combination of a two 
2-pole section and a single pole section. The single pole section has a real pole 

whereas the two pole sections have complex conjugate poles. 
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For digital implementation of the channel model it is neither possible nor necessary 
to represent the random fading sequence q, (t) as a continuous signal. This must be 
represented by discrete samples in time. From Nyquist's sampling theorem, for 
faithful reproduction of the continuous signal, it is necessary that the sampling rate 
should be greater than twice the highest frequency present in the continuous signal. 
q, (t) has a Gaussian spectrum, and hence theoretically has infinite bandwidth. 
However, since the assumed model has an rms bandwidth of only 1 Hz, it is 
adequate if the signal is sampled at 10 samples per second. For testing a 2400 baud 
digital data modem on the channel, however, it is necessary that the channel samples 
are also obtained at 2400 Hz. This means that q, (t) must be sampled at 2400 Hz. 
This gross over sampling has an adverse effect on the digital filters having the 
required narrow-band Gaussian shape. In order to be consistent with the sampling 
frequency the roots of the digital filter must correspond to this sampling 
frequency and at the same time it is necessary to see that these roots are not too close 
to the unit circle in the Z-plane. Unfortunately at this high sampling frequency the 
pole locations of such filters in the Z-plane are pushed very close to the unit circle 
and the tap values become very large. The filter coefficients must now be specified 
with very high precision, otherwise there can be instability in the operation of the of 
the filter. This problem can be overcome by employing a reduced sampling 
frequency in the digital filters and then interpolating between samples in order to 
obtain the required sampling rate. Thus q, (t) has been sampled at 100 Hz as a 
compromise between the requirements for the Nyquist sampling criterion, the need 
to Emit the degree of interpolation used and the need to have the pole locations in the 
Z-plane at an adequate distance from the unit circle. 

In the simulation of a3 sky wave channel, two types of interpolation have been 

studied, namely the linear interpolation technique and the non-linear interpolation 

technique. Non-linear interpolation uses the NAG (Numerical Algorithms Group) 

routine, E01ABF [38]. This routine uses Everett's central difference form for the 
interpolating polynomial [39 - 41]. The simplest method of interpolation is linear 

interpolation. Linear interpolation is considered adequate as q, (t) is considerably 

oversampled [36]. 
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TABLE 2.6.1 HF CHANNEL PARAMETERS 

Conditions Diff. Time Delay Frequency Spread 

Good 0.5 rns 0.1 Hz 

Moderate 1 rns 0.5 Hz 

Poor 2 rns 1 Hz 

Flutter fading 0.5 rns 10 Hz 

TABLE 2.6.2 CHARACTERISTICS OF THE FIFTH ORDER 
BESSEL FILTER 

Order of the filter, L 5 

Frequency spread, fý (Hz) 2 

Cutoff frequency, ý (Hz) 1.1774 

Filter poles in the S-plane 

PI -11.1140 +j 0 
P29 P3 

- 10.2156 !ýj5.3110 
P41 P4 

-7.01848: ýj 10.8830 

Filter poles in the Z-plane 
Pi 0.8949+ j0 

P27 P3 0.9016--ýj 0.047-9 
PV P5 0.92@: ýj 0.1012 
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2.7 RESULTS OF THE TESTS ON THE SIMULATED FADING CHANNEL. 

The results of the tests carried out on the simulated channel are summarized in Figs. 
2.7.1 - 2.7.9 and in Table 2.7.1. Fig. 2.7.1 compares the frequency response 
of the 5-pole Bessel filter used to generate the Gaussian random sequence, with the 
theoretical Gaussian response given by Eqn. 2.6.5. As can be seen in Fig. 2.7.1 the 
5-pole Bessel filter response agrees very well with the theoretical response in the 
frequency band of interest. 

Figs. 2.7.3 and 2.7.2 show the amplitude and phase variations of the random 
sequences, Q(t), n=l, .., 3, used in the channel simulation. The amplitude variation 
of Q(t) is random and the phase variation is uniform, which is an essential 
requirement for the sequence to have a Rayleigh distribution. 

Figs. 2.7.4 and 2.7.5 compares the probability density function and the cumulative 
distribution function of the sequences Q(t), n=1, .., 3, with that of the corresponding 
theoretical curves, given by Eqns. 2.5.8 and 2.5.10 respectively (Figs. 2.5.1 and 
2.5.2). Though the sequences (2500 elements) are not long enough to make any 
statistical predictions, the results are in complete agreements with the theoretical 
probability density function and cumulative distribution function. 

Figs. 2.7.6 - 2.7.9 compare the linear and non-linear interpolations. Fig. 2.7.6 shows 
the linear interpolated sequence superimposed on the non-interpolated sequence. 
Amplified versions of the positive peak and the negative peak, in Fig. 2.7.6, are 
depicted in Fig. 2.7.7. The error in the interpolation, though not very significant, can 
be clearly seen in the Fig. 2.7.7. The non-interpolated sequence, in Figs. 2.7.6 - 
2.7.9, has been plotted using the curve fitting routine (spline interpolation) of 
computer graphics software. 

Figs. 2.7.8 and 2.7.9 show the non-linear interpolated sequence superimposed on the 

non-interpolated sequence. The non-linear interpolation is obtained using the NAG 

routine, E01ABF. Amplified versions of the positive peak and the negative peak, in 

Fig. 2.7.8, are depicted in Fig. 2.7.9. Clearly, the non-linear interpolated sequence 

produces a much smoother curve, compared with the linear interpolated sequence. 
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However, non-linear interpolation is computationally complex and since the error in 
linear interpolation is only marginal, the latter has been adopted in the computer-si- 
mulation of the 3 sky wave HF channel. 

Table 2.7.1 shows the measured mean value, variance and the number of fades 

relative to the median value of the sequences Q., for n= 1, .., 3, for six different 

values of seed integer for the random number generator. From Eqn. 2.5.18, the 

median value corresponding to a variance of 0.167, of the Gaussian random 
variables used in the derivation of a three sky wave Rayleigh fading channel, is 
0.4811. The measurement of the number of fades in Table 2.7.1 have been made 
relative to this median value over a duration of 25 seconds of the fading channel, 

sampled at 2400 Hz. The theoretical number of fades can be obtained from Eqn. 

2.6.4 and for this duration, it is about 37 fades. As can be seen from the Table 2.7.1, 

the measured results compare very well with the theoretical value. 
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TABLE 2.7.1 MEASURED CHARACTERISTICS OF THE FADING SE- 
QUENCES USED TO MODEL A3 SKY WAVE CHAN- 
NEL. 

SEED IN- MEAN VALUE VARIANCE OF NO. OF FADES 
TEGER OF q, MEASURED 

q, RELATIVE TO THE 
MEDIAN VALUE 

9 -0.003 0.182 
0.015 0.129 44 

-0.007 0.212 
0.014 0.158 46 

-0.054 0.169 
-0.031 0.166 44 

55 -0.012 0.166 
0.027 0.218 33 
0.002 0.165 

-0.014 0.158 49 
-0.016 0.163 
0.008 0.176 48 

107 -0.011 0.188 
-0.034 0.176 42 
-0.006 0.153 
0.048 0.156 44 

-0.021 0.175 
0.033 0.152 40 

158 0.025 0.126 
0.035 0.144 39 

-0.066 0.152 
-0.031 0.195 43 
0.000 0.186 

-0.040 0.131 38 

197 0.036 0.190 
-0.035 0.177 42 
-0.045 0.158 
-0.018 0.200 41 
-0.002 0.175 
0.018 0.153 46 

500 -0.029 0.171 
0.086 0.187 45 
0.003 0.148 
0.078 0.189 41 

-0.054 0.147 
0.039 0.140 43 
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CHAPTER 3 

MODEL OF THE DATA TRANSMISSION SYSTEM 

3.1 INTRODUCTION 

A general communication system or for that matter a digital communication system 
consists of a transmitter, a transmission path and a receiver. The signal waveform 
s(t), at the input to the transmitter, carries the information to be transmitted. The 
interference and distortion in the transmission path ( an IIF radio link in this thesis ), 

modifies the transmitted signal. The role of the receiver is to faithfully reproduce 
the transmitted information from the distorted received signal at the input to the 
receiver. These data transmission systems can be broadly classified as, serial data 

transmission systems and parallel data transmission systems. 

In a serial data transmission system, the signal elements are transmitted as a 
sequential stream whose frequency spectrum occupies the entire available band- 

width. In a parallel data transmission system two or more sequential streams of 
signal elements are sent simultaneously, and the spectrum of an individual data 

stream occupies only a part of the available bandwidth [29]. In a serial system the 

signal elements are normally transmitted at a steady rate of a given number of 
elements per second (bauds). The receiver extracts the element timing information 
from the received signal and operates in time synchronism with the received signal. 
Such a system is called a synchronous serial system. 

A serial transmission system is less complex than a parallel transnýfission system as 
the latter needs several demodulators to process the different signals. In applications 

where a relatively high transmission rate is required over a given channel, a 

synchronous serial system is the most commonly used system [42] and is the one 

assumed. 
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3.2 DATA TRANSMISSION OVER A MODEL OF AN HF CHANNEL 
USING QAM. 

Fig. 3.2.1 shows the model of a data transmission system [30,34,36]. The input to 
the system is the stream of data elements lsj5(t - iT), where 

i 

Si i- SO + jsl, i .... 3.2.1 

where J= 4----1 and {s,,,, ) and {s,., ) are statistically independent and equally likely to 
have any one of their possible values ±1±j. 

Each of the two lowpass filters in the transmitter has a real-valued response al(l) and 
transfer function A'V). In the BF radio link, the voiceband is translated to the 11F 
band at the transmitter and a corresponding demodulator translates it back to the 

voiceband at the receiver. The modulation and demodulation processes are linear 

and the only distortion introduced into the signal is that due to the radio equipment 
filters and the HF channel. 

The white Gaussian noise in Fig. 3.2.1 is real-valued and has a two sided power 
spectral density of ! N, The bandpass filter at the output of the demodulator removes 2 

the noise outside the data signal band without excessively distorting the signal. This 
filter has the impulse-response given by c(t). The distorted QAM signal is now fed 

to two coherent demodulators whose reference carriers are in synchronism with the 

average instantaneous carrier frequency of the received signal. The output of the 

coherent demodulator is filtered by a lowpass filter before being fed to the detector. 
Each of the two lowpass filters in the receiver has an impulse-response b'(1) and the 

transfer function B'V). In Fig. 3.2.1, the in-phase and quadrature channels are 

real-valued. An equivalent model of the data transmission system is shown in Fig. 

3.2.2, for the case where a QAM signal is transmitted over an equivalent linear 

baseband channel [30,34,36]. 

The signals at the output of the two lowpass filters in the transmitter of Fig. 3.2-1, 

are 

s,,, ia 
1(t - iT) & lsl, ial(t - iT) . 3.2.2 
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and the signal x 2(t) at the output of the adder is a real-valued waveform and is given 
by 

x2(t) -\F21so, ja'(t-iT)cos(27cft) - i 

, ý2 sl, ial(t - iT) sin(27cft) . 3.2.3 

The factor F2 in Eqn. 3.2.3 ensures that the average power level is unity for each of 
the two signals, ýYcos2nft and -4-2sin27cft , when transmitted over an infinite period 
[30]. Therefore, the modulation process introduces no change in the signal level. 

Eqn. 3.2.3 can be alternatively expressed as [34,36] 

x2(t) = si a 1(t - iT) e 
j2nft 1 

where 

ej 
27rfc f= 

cos(2Tcft) +j sin(2nft) 

x, (t) is fed to the radio equipment transmitter filter G in Fig. 3.2.2. Filter G has an 
impulse-response of g(t) and a transfer function of G(f). The output of this filter, 

x(t) is real-valued and is given by 

2, xf 

x(t)=ý-ý2jsjal(t-ff)ej 
"]*g(t) 

i 

where * represents convolution. 

Eqn. 3.2.5 can be written as 

x (t) =11 sia 1(t - iT)e 
j 2irfc t+ 

21 i 

-j21cf 
si*a 1(t - iT)e c I* 
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Consider the convolution 

(t) e -j2'xfc t) (u, (t)e -j2l cfc t) 
... 3.2.7 

By definition Eqn. 3.2.7 can be written as 

Jul(u)e -j2lrf, 'T] [u, (t -, c)e 
-j27rf, (t 

u, (, -c)u, (t -, r)e 
-j2nfýt 

dT 
.. 3.2.8 

Therefore, from Eqns. 3.2.7 and 3.2.8, 

[Ul(t)*U2(t)le -j 2-xf, t= [ul(t)e-j2ltfct]*[u2(t)e-j2Tcfc] 
.. 3.2.9 

From Eqns. 3.2.6 and 3.2.9 

sia (t - iT)e 
j 2icfc, I 

si .a *(t - iT)e -j21rfct 

where 

a(t-iT) = al(t-iT)*6(t)e-j2lcf"I .... 3.2.11 

Eqn. 3.2.11 represents the overall filtering at the transmitter end, which includes the 
lowpass filter and the radio transmitter equipment filter which is a bandpass filter. 

al(i - iT) and g(t) are real-valued in Eqn. 3.2.11 and, therefore, the complex conjugate 

of a(t-iT) is simply given by 

a*(t-iT) = al(t-iT) * 6(t)ej2lrfc] 
.. 3.2.12 
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Fig. 2.6.2 shows the Rayleigh fading introduced by a single sky wave HIF channel. 
Thus, when x(t) is fed into a single Rayleigh fading channel, the output from it 

would be 

zl(t) = x(t)ql(t) + x^(t)q2(t) 

where q, (t) and q, (t) are statistically independent Gaussian random processes that 
generate the fading and . 9(t) represents the Hilbert transform of x(t). The Hilbert 

transform of x(t) is given by the convolution of x(t) with the Hilbert transform filter 
i. e 

.1 
(t) = f(t) 

where f(t) is the impulse-response of a Hilbert transform filter, whose Fourier 

transform is F(f) and is given by 

F(fl= j f<O 

=0 f=0 

= -j f>0... 3.2.15 

From Eqns. 3.2.10 and 3.2.14 

j2-xft 

sia (t - iT)e + C2 

si*(a (t - iT))*e -j2lcfct 
.. 3.2.16 

I* 
f(t) 

and from Eqns. 3.2.9 arýcL3.2.16 

-j 2, rfc 
27cf 

Si[a (t - iT)*f(t)e ']e j T2 
I 

1 2-mf -j2lcf V=Y7, si[(a(t-iT))"'*f(t)ej "le 
21 

The Fourier transform of is F(f+Q and from Eqn. 3.2.15 this has a value of I 

over the frequency band -f. to +f,. On the other hand, the Fourier transform of fwe"'4' 
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is F(f-fC) and this has a value of +j in the frequency band -f C to +f . Moreover a(t) is 
bandlimited to that Of AIV). Therefore, after taking the Fourier transform of Eqn. 
3.2.17, substituting the values for F(f+f) and F(f-f. ) from Eqn. 3.2.15 and then 
taking the inverse Fourier transform of the resultant relation, Eqn. 3.2.17 reduces to 
[34-371 

1 j2nf 
x^ (t) =-1 -js, a (t - iT)e ct + 

jsi*(a (t - iT))*e -j2lcf, 1) 

.. 3.2.18 

where si* and (a(t))* are the complex conjugates of s, and a(t) respectively. For the 
sake of simplicity, the I-IF channel is now considered to be composed of two 
independent Rayleigh-fading sky waves. The explanation can, however, be logically 

extended to any number of sky waves. For the two sky wave channel, the relative 
delay between the two sky waves is taken to be T seconds. x(t) is now fed to the HIF 

channel and the output from the channel is given by, 

[x(t)ql(t) + X^(t)q2(t)] + 

[x (t -, r)q3(t) + ý(t -, r)q4(t)] 

For a three sky wave channel, z(t) can be written as 

[x(t)q, (t) + X^(t)q2(t)] + 

[x (t - Tl)q3(t) + 2(t - 

T2)q4(t) 

.... 3.2.19 

.... 3.2.20 

where c, and ý, are the delays in transmission of the second and third sky waves, 

respectively, relative to the first sky wave. 

From Eqns. 3.2.10,3.2.18 and 3.2.19 
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z(t) =-ill si*(a(t -iT))* [ql(t)+jq2(t)le -i 2-nf, i 

ý2- i 
j 27cfr f 

sia (t - iT) [q, (t) - 
jq2(t)]e + 

si . (a (t -, r - iT)) . [q3(t)+jq4(t)le -j2icfc(i -, c) 

s, a (t -T- iT) [q3(t)-jq4(t)]e 
j 2irfc (t - T) 1 

Let 

hi(t-iT) = a(t-iT)[ql(t) - 
jq2(t)] 

a (t -, r - iT) [q3(t)-jq4(t)]e -j2nf, -r 

Then, from Eqns. 3.2.21 and 3.2.22, 

ý ihi(t - iT)ej2"f" + S 

-\F2 I( 

si * (hi(t - iT))*e -j2lrf, 1) 1 

+ 

.. 3.2.21 

.. 3.2.22 

.... 3.2.23 

If r is assumed constant then is a fixed complex-valued scalar quantity with 
absolute value of 1 and, therefore, would not affect the statistical properties of 
[q3(t) 

- jq, (t)1e-jw, %, bearing in mind that q. (t)'s are statistically independent with zero 
mean Gaussian random processes. Therefore, Eqn. 3.2.22 can be simplified as 

hi(t-iT) = a(t-iT)[ql(t) - jq2(t)] + 

iT) [q3(t) 
- 

jq4(t)] 
.... 3.2.24 

The output from the radio receiver filter, ( Fig. 3.2.2), whose sampled impulse-res- 

ponse is d(t), is 

ZI(t) z (t) d (t) +n (t) d (t) 

and the output of the linear demodulator in Fig. 3.2.2 is 

. 3.2.25 
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r(t) = ý-2 ý[z(t)*d(t)*c(t)]e -j27/c'l*bl(t) + 

ý-2 f[n(t)*d(t)*c(t)le -j27r/c 'j* b l(t) 
.... 3.2.26 

Let 

b(t) = 
l[d(t)*c(t)le -i 2 ý. 

'I*bl(t) 
.... 3.2.27 

and 

-j2lc/ w(t) 4-2f[n(t)*d(t)*c(t)le 
ý: 'J* b 

where n(t) is a real-valued additive white Gaussian noise waveform comprising a 
two sided power spectral density of ! N,,. w(t) in Eqn. 3.2.28 represents a band-li- 2 

mited, complex-valued Gaussian noise waveform. 

Combining Eqns. 3.2.26,3.2.27 and 3.2.28 we have 

-j21cýý [7(t)e 
.... 3.2.29 

Eqn. 3.2.27 represents the overall filtering carried out on the signal at the receiver. 
Also it is assumed that the receiver is operating in synchronism with the transmitter 

and any constant phase difference between the reference carrier and the received 
signal is neglected (i. e. f, =t, ). Then from Eqns. 3.2.23 and 3.2.29, 

i*(hi(t - iT))*e -j41cfct ]*b [si hi (t - iT) +s 

+ w(t) .... 3.2.30 

The Gaussian shaped filter used to generate q, (t), has a frequency response that 
decreases sharply with f (Fig. 2.7.1). h, (t-iT), which consists of the time invariant 

impulse-response a(t) and the random components q_, (t)'s can, therefore, be con- 

sidered to be strictly bandlimited. i. e. 
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I H(f) I=0 If I>f, 

The second term in Eqn. 3.2.30, 

Isi * (hi(t - iT))*e 
-j 4icfc t 

is, therefore, outside the pass band of the low pass filter with an impulse-response 
b(t). Hence 

r(t) Isihi(t-iT)*b(t) + w(t) .... 3.2.32 
i 

Let 

Y (t - iT) hi(t - iT)*b (t) .... 3.2.33 i 

Then 

r(t) lsiYi(t-iT) + w(t) .... 3.2.34 
i 

Combining Eqns. 3.2.24 and 3.2.33, Y, (t-iT) can be written as, 

Y. (t-iT) fa(t-iT)[q, (t)-jq, (t)] + 

a (t -, r - iT) lq3(t) - jq4(t)] I *b (t) .. 3.2.35 

and for a three sky wave channel 

Yi(t - iT) a (t - iT) [ql(t) -jq2(t)] + 

a (t - -T, - iT) [q3(t)-jq4(tA + 

(t - 
ý2- iT) [q5(t)-jq6(t)1 I* b (t) .. 3.2.36 
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Y, (t-iT) is the impulse-response of the equivalent time varying linear baseband 

channel. Fig. 3.2.3 shows the baseband model of the QAM system over a two sky 
wave HF radio link. 

The average transmitted energy at the output of the transmitter filter in Fig. 3.2.3 is 

given by 

Et E[f sia (t - iT) Fdt] 
.... 3.2.37 

Where E[j represents the expected value of the quantity within the square brackets. 

Let 

--2 
si ELI si 

121 

From Parseval's Theorem, Eqn. 3.2.37 can be written as 

si2f IA (f) Fdf 
. 3.2.38 

The average energy per signal element at the input of the receiver filter in Fig. 3.2.3 

is given by 

Er =E£ Isia(t-iT)[ql(t) - 
jq2(t)1 + 

(t -, c - iT) [q, (t) - 
jq4(t)] 12 dt 

or 

Er s 
2i 

I(t) + q2 34 
[q-2 -2(t)+ -q2(t) + 

-q2(t)] 

El A (f) 
12 d(f) .... 3.2.39 
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If 
q, (1) for i=1, .., 4, and for j=1, .., 4, and the sum of their variances is qj 

equal to unity, then the average energy per signal element at the output of the 

transmitter filter and at the input to the receiver filter in Fig. 3.2.3 are equal and the 
T= 

I-IF channel, on average, does not introduce any attenuation or gain to the transmitted 
data signal and hence does not affect the signaVnoise ratio of the system. 

The signal/noise ratio is defined as 

v= 
Transmitted energy per bit 

.. 3.2.40 
Two sided noise power spectral density 

or 

Eb 

10.0 log, o 1 No 2 

It has been shown in references [34,37] that, for a QPSK signal, 

Eb si 
2 

.... 3.2.42 
1 No 2cý 
2 

where (Y2. is the variance of the additive Gaussian noise. 

3.3 EQUIPMENT FILTERS USED IN THE CHANNEL MODEL. 

The baseband model of the data transmission system over a three sky wave BF radio 

link is shown in Fig. 3.3.1. The impulse-response of the linear baseband channel is 

time varying and for a three sky wave channel, it is given by 

Yi(t-iT) =I a(t - iT)[ql(t) - 
jq2(t)] + 

(t -, rl - iT) [q3(t) 
- 

jq4(t)] + 

(t -, c2- it) [q5(0-jq6(tA J*b(t) 
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where 

a(t) -j2lcf I 
a(t) (t)e .. 3.3.2 

and 

b (t) -j27cf f[d(t)*c(t)le cl �3.3.3 

a(t) is the iMPulse-response of the overall transmitter filter A and b(t) is the 
impulse-response of the overall receiver filter B in Fig. 3.3.1. a'(1), g(t), d(t), c (t) and 
b'(1) are the impulse-responses of filters A', G, D, C and BI respectively in Fig. 3.2.2. 
Filters G and D are the radio transmitter and radio receiver filters respectively. The 
details of the practical filters, used in the channel model, are given elsewhere 
[44-45]. As is clear from Fig. 3.2.2, there are four other filters besides the radio 
filters G and D. The digital lowpass filters A' and BI are used to prevent aliasing and 
have an approximately sinusoidal roll-off in amplitude [45]. Under the condition 
when the HF link does not introduce any fading, attenuation or group delay 
distortion and where there are no multipath effects, then Eqn. 3.3.1 reduces to 

Y(t) = [a(t) * b(t)] 
.. 3.3.4 

For optimum performance of the detection process Yi(t) in Eqn. 3.3.4 should be 

minimum phase [46] and a(t) and b(t) should be such that IA Oý I =IB (0 1 [291 "" 

Figs. 3.3.2 - 3.3.4 show a combination of the equipment bandpass filters operating 
on the voiceband signal [34,36-37]. Fig. 3.3.2 shows the frequency characteristics 
of the radio filters G and D in cascade over the positive frequencies and Table 3.3.1 

shows the attenuation and group delay samples of the radio filters in cascade taken at 
50 Hz frequency intervals. The radio filters used are the Clansman VRC 321 type, 
this being a typical radio filter generally used in a practical system. Fig. 3.3.3 shows 
the frequency characteristics of the modem transmitter and receiver filters in cascade 
and in the pass band of the QAM signal over positive frequencies. Table 3.3.2 

shows the sampled values of the same characteristics taken at a frequency interval of 
50 Hz. The frequency characteristics in Fig. 3.3.3 corresPonds to the impulse-res- 

ponse 

I 
a'(t) * [c (t)e -j2, Efl] b 1(t) le j 21rfý i 

�3.3.5 

'* Although this has been assumed, it is not in fact necessary for the estimation 

process. 
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(a) - Attenuation Characteristics 
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TABLE 3.3.1 ATTENUATION AND GROUP DELAY CHARACTERISTICS OF RADIO 
FILTER IN CASCADE. 

FREQUENCY 
(Hz) 

ATT. 
(dB) 

G. D. 
(msec) 

FREQUENCY 
(Hz) 

ATT. 
(dB) 

G. D. 
(msec) 

50 50.00 9.00 1950 0.00 1.18 100 21.00 7.00 2000 0.00 1.15 
150 16.50 6.50 2050 0.00 1.13 200 13.00 5.30 2100 0.00 1.10 
250 10.00 4.50 2150 0.00 1.10 
300 7.60 3.90 2200 0.00 1.10 
350 5.60 3.40 2250 0.00 1.12 
400 4.10 2.90 2300 0.00 1.15 
450 2.75 2.60 2350 0.00 1.18 
500 2.00 2.35 2400 0.00 1.23 
550 1.50 2.05 2450 0.00 1.25 
600 1.25 1.90 2500 0.05 1.27 
650 1.05 1.75 2550 1.10 1.29 
700 0.95 1.65 2600 0.15 1.32 
750 0.80 1.60 2650 0.30 1.35 
800 0.70 1.55 2700 0.45 1.35 
850 0.60 1.50 2750 0.65 1.35 
900 0.50 1.15 2800 0.85 1.35 
950 0.40 1.50 2850 1.02 1.35 
1000 0.30 1.50 2900 1.20 1.35 
1050 0.25 1.50 2950 1.42 1.35 
1100 0.20 1.50 3000 1.65 1.38 
1150 0.15 1.50 3050 1.90 1.40 
1200 0.10 1.50 3100 2.20 1.50 
1250 0.05 1.50 3150 2.60 1.58 
1300 0.00 1.50 3200 3.00 1.66 
1350 0.00 1.50 3250 3.50 1.75 
1400 0.00 1.50 3300 4.00 1.83 
1450 0.00 1.45 3350 5.25 1.92 
1500 0.00 1.45 3400 6.50 2.00 
1550 0.00 1.42 3450 8.25 2.08 
1600 0.00 1.39 3500 10.00 2.16 
1650 0.00 1.36 3550 12.00 2.25 
1700 0.00 1.33 3600 14.00 2.33 
1750 0.00 1.30 3650 20.00 2.41 
1800 0.00 1.27 3700 30.00 2.50 
1850 0.00 1.24 3750 45.00 2.58 
1900 0.001 1.21 

1 1 1 
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TABLE 3.3.2 ATTENUATION AND GROUP DELAY CHARACTERISTICS OF 
EQUIPMENT FILTER. 

FREQUENCY 
(Hz) 

ATT. 
(dB) 

G. D. 
(msec) 

FREQUENCY 
(Hz) 

ATT. 
(dB) 

G. D. 
(msec) 

50 99.99 1.51 1950 0.00 2.88 
100 93.79 1.83 2000 0.01 2.89 
150 77.62 2.12 2050 0.05 2.90 
200 64.73 2.37 2100 0.13 2.92 
250 53.94 2.58 2150 0.23 2.95 
300 44.70 2.76 2200 0.35 2.97 
350 36.70 2.91 2250 0.40 3.00 
400 30.40 3.03 2300 0.45 3.03 
450 24.40 3.15 2350 0.57 3.05 
500 19.50 3.26 2400 0.76 3.10 
550 15.65 3.37 2450 0.93 3.15 
600 12.30 3.47 2500 1.45 3.19 
650 9.55 3.48 2550 1.97 3.25 
700 7.30 3.48 2600 2.64 3.30 
750 5.50 3.47 2650 3.25 3.35 
800 4.10 3.43 2700 4.05 3.39 
850 3.10 3.41 2750 5.20 3.42 
900 2.20 3.37 2800 6.72 3.44 
950 1.65 3.32 2850 8.20 3.47 
1000 1.25 3.26 2900 10.25 3.49 
1050 0.75 3.19 2950 12.45 3.50 
1100 0.35 3.14 3000 14.95 3.51 
1150 0.02 3.09 3050 17.70 3.51 
1200 0.00 3.04 3100 21.10 3.49 
1250 0.00 3.01 3150 24.80 3.45 
1300 0.00 2.98 3200 28.60 3.41 
1350 0.00 2.95 3250 32.83 3.33 
1400 0.00 2.93 3300 37.63 3.22 
1450 0.00 2.90 3350 43.10 3.08 
1500 0.00 2.88 3400 49.15 2.89 
1550 0.00 2.87 3450 55.55 2.65 
1600 0.00 2.87 3500 62.30 2.36 
1650 0.00 2.86 3550 69.55 2.05 
1700 0.00 2.86 3600 76.75 1.69 
1750 0.00 2.85 3650 84.05 1.33 
1800 0.00 2.85 3700 90.85 1.03 
1850 0.00 2.85 3750 96.80 0.79 

t 1900 0.00 
1 

2.88 
1 
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Fig. 3.3.4 shows the frequency characteristics corresponding to the impulse-response 

fej 
27cf, i 

The attenuation and group delay characteristics corresponding to each of a(t) and 
b(t), in Eqn. 3.3.1, are obtained by shifting the frequency characteristics in Fig. 3.3.4 
by f= 1800 Hz, to the left, and dividing them by 2. A sequence 141 is obtained by Ck 
taking the inverse DFT of the frequency characteristics at a sampling rate of 4800 
samples/sec. This sequence is made minimum phase by replacing the roots which 
are outside the unit circle in the z plane, by the complex conjugate of their 
reciprocals, giving the sequence la, "I which, is at a samvliný, Y rate of 4800 
samples/sec. The method by which the minimum phase sequence is obtained can be 
found elsewhere [43,49]. The DFT of ja, "l has been obtained with a sampling 
interval of 50 Hz and since the sampling rate is 4800 samples per second, there are 
96 components in the DFT of la, "I. In order to obtain different sampling phases the 
Ja, ': '1 have been oversampled at 20 times the original sampling rate, i. e at a sampling 
rate of 96000 samples per second. This is done by injecting 1824 zero-valued 
components, in the middle of the DFT of la, "I , thus increasing the number of 
components from 96 to 1920. This injection process is equivalent to increasing the 
sampling rate from 4800 samples/sec. to 4800 x 20 = 96000 samples/sec. The 
inverse DFT of this expanded sequence, Jd, J, gives the minimum phase impulse-res- 

ponse a(t) sampled at 96000 samples/sec. The transmitter filter impulse-response 
[a,., ) corresponding to a(t-iT) is obtained by taking every 20th sample of Jd, J. [a,,, ) 

and [a,., ) corresponding to a(t- -c, -iT) and a(t- r, -iT) respectively, are also obtained 
by taking every 20th sample from the same sequence 1dkJ. However, they are 
delayed -r, and T, sec. with respect to f a,, k) . 

Table 3.3.3 gives the sampled impulse-response of the minimum phase transmitter 
filters used in the channel model. Transmitter filters A2 and A3, in Table 3.3.3, 

corresponds to a delay of 1.1 msec. and 3 msec. with respect to Al, respectively. 
Appendix B gives the oversampled sequence Id, j and explains the way in which the 
filters A2 and A3 are obtained. The receiver filter b(k) has also been obtained by 

taking every 20-h sample of the oversampled sequence 16,1.16,1 has been obtained 

exactly as Jdkj, but at a different sampling phase, so that the model does not assume 

any particular sampling phase. Table 3.3.4 shows the sampled impulse-response of 
the minimum phase receiver filter used in the channel model and Appendix B gives 

the oversampled sequence Jýkj. 
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TABLE 3.3.3 THE SAMPLED IMPULSE RESPONSE OF THE TRANSMITTER FILTERS 
FOR A THREE SKY WAVE CHANNEL. 

TRANSMITTER FILTER 
Al 

REAL PART ]IMAGINARY 
PART 

TRANSMITTER FILTER 
A2 

REAL PART IMAGINARY 
PART 

TRANSMITTER FILTER 
A3 

REAL PART IMAGINARY 
PART 

-0.179590 2.353941 0.000000 0.000000 0.000000 0.000000 
-3.077346 20.759024 0.000000 0.000000 0.000000 0.000000 
-9.940902 45.558459 0.000000 0.000000 0.000000 0.000000 

-11.786947 41.490998 0.000000 0.000000 0.000000 0.000000 
-3.461827 8.704583 0.000000 0.000000 0.000000 0.000000 
4.443815 -11.786982 -1.669437 13.237271 0.000000 0.000000 
3.064254 -5.581905 -7.849215 39.649346 0.000000 0.000000 

-1.359658 3.158213 -12.388708 46.927222 0.000000 0.000000 
-1.497353 1.736546 -6.602316 19.234661 0.000000 0.000000 
0.292560 -0.777689 2.940855 -8.880413 0.000000 0.000000 
0.518083 -0.129256 4.300508 -9.025616 0.000000 0.000000 

-0.184279 0.288030 -0.336838 1.628428 0.000000 0.000000 
-0.316778 -0.232482 -1.901434 2.813901 0.000000 0.000000 
0.002190 -0.210755 -0.143359 -0.431135 0.000000 0.000000 

-0.044381 0.039206 0.624260 -0.453717 -1.313654 11.068896 
0.051553 0.009851 0.027858 0.308176 -7.110405 37.213660 

-0.382007 -0.077233 -12.346972 47.957516 
-0.041691 -0.304327 -7.584870 22.826248 
-0.043971 0.008506 2.235385 -7.249859 
0.074933 0.009381 4.593861 -10.002670 

-0.059413 0.009499 0.093164 0.869544 
-1.970418 3.107280 
-0.323370 -0.226110 0.631324 -0.555291 0.103572 0.288210 
-0.386594 -0.015670 
-0.073453 -0.321577 
-0.038647 -0.010771 
0.060805 0.014091 

-0.071350 0.013571 
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TABLE 3.3.4 THE SAMPLED IMPULSE RESPONSE OF THE RECEIVER FILTER 

REAL PART IMAGINARY PART 

-1.941769 1.362559 

-15.979786 11.594104 

-35.141773 27.334294 

-34.478872 28.087009 

-11.234198 7.271462 

7.815516 -9.260247 
7.512406 -5.095446 

-0.505751 3.232650 

-3.370713 1.897535 

-0.675917 -1.281360 
1.048266 -0.483031 
0.362188 0.761480 

-0.310590 0.197901 

0.043841 -0.153267 
0.073895 0.094033 

-0.064694 -0.031213 
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3.4 COMPUTER SIMULATION OF THE HF CHANNEL 

Fig. 3.3.1 shows the baseband model of the data transmission system over a three 
sky wave HF radio link. The transmitter and receiver filters used in the channel 
simulation are shown in Figs. 3.3.2 - 3.3.4. The sampled impulse-response of the 
minimum phase transmitter and receiver filters, at a sampling rate of 4800 

samples/sec., are given in Tables 3.3.3 - 3.3.4. From Eqn. 3.3.1, the sampled 
impulse-response of the linear baseband channel is 

Yj (t - iT) = ja 11(t - iT) [q, (t) - 
jq2(t)] + 

a"(t -, cl - iT) [q3(t)-jq4(t)1 + 

all(t - T2 - iT) [q5(t) -jq6(t)ll *b 11(t) 
. 3.4.1 

where all(t) and V(t) are minimum phase sampled impulse-responses of filters a(t) and 
b(t) respectively. The demodulated baseband signal r(t) at the output of the QAM 

system model, is given by Eqn. 3.2.34. The waveform. r(t) is sampled once per data 

symbol s,, at the time instant iT. Assuming correct sampling at the receiver and the 
fact that the delay in transmission is such that the first potentially non-zero sample of 
a received signal element arrives without any delay, the complex-valued sample r(t) 
at time t=iT is given by 

9 
ri I si-hyi, h + wi 

.... 3.4.2 
h=O 

YisiT + wi .... 3.4.3 

where 

Yi : --: I Yi, o Yi, I---- Yi, 
g1 

and 

Si ýI Si si-I si-g 1 
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T 
Y, and Si are (g+l)- component row vectors, and Sjs the transpose of S,. The (r, ), 

I y,,, ) and [w, ) are complex-valued. yi,, =0 for h<0 and h>g for practical purpose. 
Y, is taken to be the sampled impulse-response of the linear baseband channel at 
time t=iT. The vector Y, is obtained by sampling the JYj(t - iT)l at a sampling rate of 
2400 samples per second. The convolution process in Eqn. 3.4.1 is carried out in 

the discrete time domain. In order to avoid any aliasing, when any one of the 

sequences q, (t), for i=l, 2,.., 6, changes rapidly, the sampling rate of the convolution 
is set to 4800 samples/sec., which is well above the Nyquist rate for filters A and B. 

q, (t)s, i=l, 2,.., 6, have also been generated at a sampling rate of 4800 samples/sec., 
as described in Section 2.6, and the corresponding resultant samples up to time t=iT 

are represented by the following six sequences. 

QQI, i =[ ql, l 
ql, 2 .... q 1,2i 

1 

QQ2, i =[ q2,1 q 2,2 .... 
q2,2i I 

QQ6, i =[ q6,1 q6,2 
.... 

q6,2i 1 

Let 

A1=[ al, o a,,, a# .... 3.4.7 
1, p 

A2=[ a#o 2, a#l 2, a#p 2, 

A3=[ a#o 3, a#, 3, a#p 1, 

and 

Bl =[bob, .... bpl 

where 

#/ al, k a 

aH =a 1(k T 
2, k 
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a# =a l(k T 
_, c2) 3, k 2 

bk 

It is assumed that there are only (1+1) significant components in the sampled 
impulse-response of the filters and, therefore, for all practical purpose 

a (t) =b (t) =0 
for t<0 and t>1 

p in Eqns. 3.4.7 - 3.4.10 is related to the maximum delay between sky waves 

assumed to ber, ) as [34,36] 

p=I+ t2 .. 3.4.16 

In Eqns. 3.4.7 - 3.4.14, l/T is the data symbol rate of 2400 symbols/sec. Al, A2 and 
A3 are the three transmitter filters used for the modelling of a three sky wave HF 

channel, with impulse-responses a"(o, a"(i--c, ) and a/'(I-T, ) respectively, sampled at 
4800 samples/sec. BI is the receiver filter with an impulse-response b(t) sampled at 
4800 samples/sec. 

From Eqns. 3.4.6 - 3.4.14, the components of the vector Yj, in Eqn. 3.4.4, at time 

t=iT, are given by [34], 

(T) 2h 
Yi, h 

I [ailk(ql, 
2(i-h)+k 2 k=O 

1, - jq2,2(i 
- h) 

a2, k(q3,2(i - h) +k 

H a3, k(q5,2(i - h) +k 

for h=0,1, .. -, g. 

- 
jq4,2ýi 

-h)+ k) 

- 
jq6,2(i 

- h) +J lb" 2h -k 

where g is related toc,, by the following relation [361. 

.. 3.4.17 
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21+P2+ 

2 

Thus for T, =3 msec. and 1+1 = 16 (Table 3.4.3) g is 22. [y. ) are obtained at a 
sampling rate of 2400 samples/sec., by taking every alternate sample from the 
convolution process. 

3.5 MODEL OF THE SYSTEM USED IN THE TESTING 
OF ESTIMATORS. 

The model of the data transmission system used in the tests is shown in Fig. 3.5.1. 
This model is consistent with Figures 3.2.2 and 3.3.1, but it shows in greater detail 

the receiver configuration. The output signal from the linear modulator is a serial 
stream of real-valued QPSK signal elements, with a carrier frequency of 1800 Hz 

and an element rate of 2400 bauds. Each signal element itself comprises the sum of 
two binary double sideband suppressed carrier amplitude modulated elements, with 
their carriers in phase quadrature, the binary values of the in-phase and quadrature 

elements being determined respectively by the real and imaginary parts (s,,., and s,,, ) 

of the corresponding data-symbol s,. Thus the QPSK signal is handled as a 

quadrature amplitude modulated (QAM) signal. 

The IIF radio link is modelled as having three independent Rayleigh fading paths 

with the transmission delays being 0,1.1 and 3 milliseconds relative to the first sky 

waves. Stationary white Gaussian noise, with zero mean and a two-sided power 

spectral density W,,, is added to the data signal at the output of the HF radio link. 

I The six Gaussian waveforms involved in the three sky waves have the same 

variance and the same root-mean- square bandwidth which is 1 Hz in every case. 
Thus the signal received over each sky wave has the same mean-square value and 

the same frequency spread of 2 Hz. The selected time delays of the three sky waves 

ensure a different sampled impulse-response for each path and are such that one of 

the relative (differential) time delays is not an integral multiple of the other. 

The channel model used in this thesis is based on the CCIR recommended model for 

poor conditions [19]. A constant value of frequency offset (Doppler shift) is not 
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considered here, since this is taken care off by Doppler-shift correction circuits 
which operate both ahead of and independently of the channel estimator. The 
channel estimator, therefore, operates on a signal that is essentially free from any 
constant (or very slowly varying) frequency offset. 

r. ri ... I I- 51 1-9+13, 
ri 

The vector Y, (Eqn. 3.4.4) is taken to be the sampled impulse-response of the linear 
baseband channel in Fig. 3.5.1. The received samples frý. ) are fed to an adaptive 
linear feedforward transversal filter. The latter is an allpass network that adjusts the 
sampled impulse-response of the channel and filter to be minimum phase, without 
changing any amplitude distortion in the received signal [49]. The filter, in fact, 

maximises the ratio of the magnitude of the first few components of the resultant 
sampled impulse-response to the output noise variance, when the noise components 
are statistically independent [43]. With the aid of the adaptive filter, a near-optimum 
tolerance to noise can be achieved by means of a relatively simple detector, leading 

to a potentially cost-effective system [5 1 ]. 

The received samples fr, j are also fed to the channel estimator, after being suitably 
delayed. The channel estimator uses the received samples 

together with the "early" detected data-symbols 

s 
fl 

I i-g+P 

4 

and the one-step prediction of Y,, given by 

Yi"i-i ryil, 
i-i, o Yi, i-l, l Yi, i-l, gl .... 3.5.1 

to form the updated estimate of Y,, given by 

= "yihio yLi ".. Y!, g II 

and then the one-step prediction of Yj, given by Yil.,, i 

. 3.5.2 

The latter is fed to the 
detector, ready for the next detection process that gives s, ", and so on. Clearly, any 

error in Y, ',,,, correspondingly degrades the detection of s,.,,. 
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The "early" detected data symbols have no delay in detection. This minimizes the 
period over which prediction must be carried out but increases somewhat the error 
rate in the isi'll. The detected data-symbols isill at the output of the detector, in Fig. 
3.5.1, have a delay in detection of 32 sampling intervals, no significant reduction in 
error rate being achieved by any further increase in the delay in detection. 

In practice, a small improvement in tolerance to noise is usually achieved by using a 
prediction Yj',., j_, of the sampled impulse-response of the channel, over m+1 
sampling intervals, where typically I !ým: 5 8, the value of m depending upon 
the relative transmission delays of the different sky waves. However, since the 
relative performances of the different estimators is not significantly affected by the 
precise period over which prediction is carried out, it is assumed here that one-step 
prediction is used for the detector (Eqn. 3.5.1). 

The important advantage gained by using the adaptive filter in Fig. 3.5.1 is that it 
avoids the need for prediction over many sampling intervals, such as must be used in 
the absence of the filter [50,52]. Prediction over many sampling intervals can 
considerably increase the error in the prediction [50,54]. Further details of the 
adaptive filter and detector are given elsewhere [37,43,49,5 1]. 

Since this study is only about the operation of the channel estimators and not about 
the detectors, the correct detection of all data symbols is assumed, even at low 

signal/noise ratios, so that 

Si 

for all (i1. 

In any practical application of the system the data signal is divided into separate 
blocks, each preceded by a training signal whose data-symbol values are known at 
the receiver. Under fading conditions, most errors in detection occur during the 
deeper fades and generally in long bursts. Often, during an error burst, the channel 

estimate becomes significantly degraded, leading to more errors in the 1s, 11, which in 

turn further degrades the channel estimate, and so on, until there is a complete failure 

of the system. The error burst is now extended to the end of the block of data 

symbols, but the following training signals restore correct operation of the channel 

estimator, ready for the next block of data symbols. When more than a few errors 
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have occurred in the IZI, for any block of data I symbols, the whole block of the 
detected data-symbols Is,! I is usually rendered invalid and is rejected by the receiver. 
Furthermore, any large burst of errors in the Is,! 'I is usually accompanied by a 
substantial burst of errors in the Isill. It follows that, for the most reliable operation 
of the system, the channel estimator must give the most accurate possible estimate 
(prediction) of the channel when the 1s,! 'I are correct. Once an appreciable burst of 
errors has occurred in the Is, 111, the chances are that the corresponding block of Is, 11 are 
invalid, and no advantage is gained by improving the channel estimate under these 
conditions. 

Tests have indicated that the performance of the channel estimate is only likely to be 

significantly affected by errors in the isi"I at the higher error rates (above 10-2) [50, 
52]. 

Figures 3.5.2 - 3.5.4 show the 3- sky wave channel characteristics over a duration of 
25 seconds of transmission. The channel characteristics have been plotted for six 
different values of seed integer for the random number generator. A typical worst 
fading sequence, obtained using a seed integer value of 500, has been chosen to test 
the performance of the estimators in this thesis. Table 3.51 shows the number of 
fades measured, over the duration of transmission, obtained for different values of 
seed integer. The fades have been measured relative to 0 dBm, as opposed to the 

median value, since the channel characteristics represent a 3- sky wave channel. The 

number of fades measured are generally consistent with the theoretical values 
(Section 2.7) 
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TABLE 3.5.1 5-POLE BESSEL FILTER CHARACTERISTICS 

Frequency Spread 2 Hz 

Unit circle Roots 0.8948131 
0.9016149 -0.0479304 
0.9016149 0.0479304 
0.9260914 -0.1011889 
0.9260914 0.1011889 

Abs. Value of Roots 0.8948131 
0.9028880 
0.9316032 

Co-Efficients of Filter -1.8032297225 
0.8152066804 

-1.8521828825 
0.8678845458 

-0.8948130729 

Filter Gain 1 19378.0 

TABLE 3.5.2 MEASURED CHARACTERISTICS OF THE FAD- 
ING CHANNEL FOR DIFFERENT VALUES OF 

SEED INTEGERS. THE FADES HAVE BEEN 

MEASURED RELATIVE TO 0 dBm. 

SEEDINTEGER NO. OF FADES MEAN LENGTH OF 
THE CHANNEL 

9 34 1.0321 

55 31 1.0420 

107 33 1.0367 

158 28 1.0145 

195 34 1.0653 

500 31 1.0405 
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CHAPTER 4 

LINEAR FEEDFORWARD ESTIMATOR 

4.1 INTRODUCTION 

It has been shown in [54] that the simple linear "feedforward" estimator originally 
proposed for use with a maximum-likelihood detector [55], is likely to form the basis 
of the most cost effective estimator, for a randomly varying channel or where the 
receiver has only a limited knowledge of the correct model of the channel. A simple 
estimator designed for a 2400 bits/s modem [54] is a development of the conven- 
tional gradient estimator [55], and employs a polynomial filter that gives a prediction 
of the channel response. This chapter describes four channel estimators for use in 
FIF radio links and these are called as systems 4.1 - 4.4. System 4.2 is the simple 
estimator described in [33,35,46,50,54,57] and forms a basis for comparison of 
all the estimators developed in this thesis. System 4.1 does not use a predictor and, 
therefore, is a simple linear "feefforward" estimator. Systems 4.3 and 4.4 are 
developments of the simple estimator but make no use of any knowledge of the 

number of sky waves. Results of the computer- simulation tests on the estimators, 
over a model of a data transmission system, are presented at the end of the chapter. 

4.2 MODEL OF DATA TRANSMISSION SYSTEM USED IN THE TESTS 

The model of the data transmission system used in the tests, is shown in Fig. 3.5.1. 

Further details on the model of the channel and the data transmission system are 

given in Chapters 2 and 3, respectively. 

The received sample at time t=iT is given by (Eqn. 3.4.2) 
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9 
ri si-hyi, h + wi 

h=O 

YisiT + wi 

.... 4.2.1 

4.2.2 

r, is sample value of the complex-valued resultant baseband signal r(t) at time t=iT. 
Y, and S, are (g+ l)- component row vectors, and siTis the transpose of Si (Eqns. 3.4.4 

and 3.4.5). 

Yi Ao Yi, i Yi, 
g 

Si Si Si-i si-g 
. 4.2.3 

. 4.2.4 

The vector Y, is taken to be the sampled impulse-response of the linear baseband 

channel. The noise samples[w, j have zero mean and variance that is dependent on 1N. 2 

and neighbouring tw, ) being slightly correlated [46,50]. The detection process is 

assumed perfect, even at low signal/noise ratios and, therefore, the detected value of 
s, designated as s, ' is equal to s, for all values of t i) (Eqn. 3.5.3). The signals r, and s, ' 

are fed to the channel estimator to give an estimate of the channel sampled 
impulse-response YIat time t=iT, where 

i'i =[ yLo yL1 Yg II . 4.2.5 

This estimate of the channel sampled impulse-response, YI, is fed to the detector to 
detect sill, when the next received signal is received by the detector. 

4.3 SYSTEM 4.1 

This system is also called the Linear feedforward estimator and has been developed 

by Magee and Proakis [551 and is also called the simple estimator in [54]. The 

channel estimator originally proposed for use with a maximum-likelihood detector 

employing the Viterbi algorithm, [55], after modification for use with complex- 

valued symbols, becomes the linear feedforward estimator. Fig. 4.3.1 shows the 

linear feedforward transversal filter estimator. Each square marked T, in the figure, 

is a store that holds the corresponding detected data symbol s,.,, and they are like a 

shift register. Each time the stores are triggered on receipt of a received sample r,, 
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the stored values are shifted one place to the right. There are (g+l) stores 
corresponding to the total number of components in the sampled impulse-response 

of the channel. Each symbol s i-h is multiplied by the corresponding tap weight yi-,, h 
and the resulting products are added to give the estimate rilof the received sample r,. 

To determine YiI, the estimator forms an estimate of the received sample r,, such that 

9 
ri I 

., 
Si-hYi-l, h 

h=O 

yi, 
-A 

.... 4.3.1 

.. 4.3.2 

The vector S, here (Eqn. 4.2.4) is determined from the values of the corresponding 
Is, %j , assuming that Eqn. 3.5.3 holds. The estimator next forms the error signal 

= 

The estimation problem is to determine YI in such a way that e, given by Eqn. 4.3.3 is 

made as small as possible. 

From Eqns. 4.2.2 and 4.3.2 

wi �4.3.4 

The estimator uses ej to form a correction vector X,, which is added to Y, '-, to give the 

next estimate of the channel 

Yi, Yil- 1+ Xi 

where Xiis a (g+l)- component row vector and is chosen such that 

yi, ýT 
ri 

From Eqns. 4.3.2 - 4.3.6 

xis 
iT= ei 
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It is thus clear, from Eqns. 4.3.5 and 4.3.6, that both Yi 
/S 

iT and Y, /- s, T 
are the estimates 

of r,. Xjs added to Y, '-, in Eqn. 4.3.5, in such a way that Y, ' is more close to the actual 
channel impulse-response Y, and reduces to zero the error in the corresponding 
estimate of r,. 

Let Zibe any (g+l)- component row vector such that 

ZST 
ii .. 4.3.8 

which means that the vectors Zý and s: are orthogonal, where si* is the complex 
conjugate of S,. The vector X, can now be represented as 

Xi =a Si* + Zi 

where a is the appropriate complex-valued scalar quantity. From Eqns. 4.3.8 and 
4.3.9 

+ ZST XiSiT a Si*SiT 
ii 

= al Si F 

where I Si I is the unitary length of S,, and from Eqn. 4.3.7 

,L eil Si F 
.... 4.3.11 

Therefore, in the absence of noise, e, represents the deviation from the ideal or the 

error in the value of the orthogonal projection of YiI, on the one- dimensional 

subspace spanned by s, *. 

In the gradient or steepest-descent algorithm for estimating Y,, the vector X,, that is 

added to Yjl, to give the estimate Yj' satisfying (Eqn. 4.3.6) is in the direction for 

which I xi I is minimized. All vectors here lie in a (g+l)- dimensional unitary vector 

space [46]. 

From Eqns. 4.3.8 and 4.3.9 

IXiF = laSi' 12 +I zi F 

.... 4.3.12 
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and the component aS* of X, is fixed by Eqns. 4.3.7 and 4.3.10. Thus I xi I is 
minimum when Zi = 0. Now 

Xi =aS, * = eil Si rSi* 

so that, for Eqn. 4.3.6 to be satisfied, 

Yi' Yi'- 1+ eil Si rS, * 

.... 4.3.13 

.... 4.3.14 

To reduce the effect of noise, the magnitude of the change X, in Eqn. 4.3.5 is scaled, 
without changing its direction. Now 

b eiSi* 4.3.15 

where b is an appropriate small positive real-valued constant, such that b <I si r2. Eqn. 
4.3.6 is no longer satisfied. Eqn. 4.3.15 is the conventional gradient algorithm, 
which for convenience is now referred to as system 4.1. This estimator assumes that 
the sampled impulse-response of the channel varies only very slowly with time. The 

algorithm for system 4.1 is, in fact, a recursive solution to the least squares 
estimation problem, also termed as the least mean-square (LMS) error algorithm [35, IZI, 
58-59]. The estimator starts with an initial estimate YI, and measures the gradient of 
the mean square error function that is to be minimized, and updates the estimate 
according to the gradient. The error in the estimate is successively reduced and the 

estimate converges to the optimum value of the sampled impulse-response of the 

channel. 

ý 4.4 SYSTEM 4.2 

This estimator, called the system 4.2, is a simple modification to system 4. L It has 

been shown [57] that a linear feedforward estimator has a good overall performance, 
to track a time invariant or a slowly time-varying channel. However, the characteris- 

tics of a BF channel vary rapidly and in order to track such a channel it is necessary 

to adopt sophisticated techniques. It has been shown that an useful improvement in 

the performance of system 4.1 can be achieved if a predictor is also incorporated 

with the system [54]. Eqn. 4.3.15 now gets modified to 
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Yj" i-I+b eiSi' 

where Y, 'j-, is the prediction of Y, at time t=(i-1)T. 

With a receiver employing a maximum-likelihood detector (Fig. 4.4.1), there is an 
inherent delay of several sampling interval. Thus the detected data-symbol sil 
designated as Is, (I , is detected after the reception where (n-1) is the delay in 
detection [62]. Thus a feedforward estimator makes an estimate YiI of Yi and is only 
available to the detector on the receipt of r-, +.. 

Therefore, there is a delay of n 
sampling intervals in the estimation of Y,. The use of Yj'+. in place of Yi, reduces the 
error in the detection of s, +,. 

Not only is there a need for n-step prediction of Yil+., i ,a 
one-step prediction Y, '+,,, of Y, 

+1 
is also required so that YiI can be replaced by Yj'+, 

'j 
when forming the updated estimate Y, ',, in the channel estimator. 

However, with the detector arrangement as shown in Fig. 4.4.1, there is an important 

advantage gained in using the adaptive filter. It avoids the need for prediction over 
many sampling intervals such as must be used in the absence of the filter [50,52]. 
Prediction over many sampling intervals can increase considerably the error in 

prediction [53-54]. The adaptive filter is used to make the sampled impulse-res- 

ponse of the channel and filter to be minimum phase [49]. Fig. 4.4.1 shows the most 
cost effective detection method, wherein the estimator is fed the early detected data, 

Isi'll , and the estimator need to do only a one-step prediction of the sampled 
impulse-response of the channel [51]. 

Least-Squares fading memory prediction is used to make a one-step prediction of the 

channel sampled impulse-response. This is done by determining a set of (g+1) 

polynomial of degree- 1, from the sequence of vectors YiI, Yj'_ 1, each of which gives 

weighted least-squares fit to the components in the corresponding locations in the 

vectors YjI, Yj' ... ..... and then using the values of the polynomial at timet=(i+l)T. 
Extensive tests on the different versions of the prediction process have shown that a 
degree-1 polynomial gives the best overall performance [52,54]. The chosen 

polynomial is such that it gives the best fit to the sequence of past observations and 
the exponentially weighted sum of the squares of the error function is minimized 
[53]. In [53], the technique is applied to the prediction of the value of a variable 

parameter, derived from past observations which are either inaccurate or are 

corrupted in noise, the observations being unaffected by the prediction process. The 

technique is now applied to make a prediction based on the past updated estimates of 

82 



L- 

1. C ri 

4-s 
C) 
u 

*lri 

C/D 

(ID 

83 



the parameter and the prediction has an influence on the subsequent updated 
estimation. Extensive tests have shown that this technique has improved the overall 
performance of the estimator without any sign of instability [54]. 

The prediction process carried out by the estimator is now considered. The estimator 
uses the updated estimate of Yj, given by Yl in Eqn. 4.2.5, and the one-step prediction 
of Yj, given by YiIj, in Eqn. 3.5.1, to determine an estimate of the error in prediction, 
which is 

II xi yi, 

the actual error in YjIj-, being 

Yi - Yil' i-1 
The prediction of Yj, is now determined by means of a polynomial filter [53] that 
operates as follows 

yill +102.... 4.4.3 xi 

yil, + Yill+ 
1, i+ 

()2 Wi 

.... 4.4.4 Yil+ 1, i t'l-1 

The vector Y, ',,,, is the degree -1 least squares fading memory prediction of Y, 
+1 

[53-54], and the vector Yi"+,,, is a prediction of the rate of change with respect to i of 
Y, 

+, * 
The symbol 0 is a real-valued constant in the range 0 to 1 and is usually close to 

1.0 in Eqns. 4.4.3 and 4.4.4 and b in Eqn. 4.4.1 are optimized in combination so 
that the error in the one-step prediction of the sampled impulse-response of the 

channel is minimized. 

At the start of the process, 

# Yll'o 

and 

Yll'o YO 
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where YI, is determined from an appropriate training sequence transmitted ahead of 
the transmission of actual data [91]. The results of the computer-simulation tests are 
given at the end of the chapter. 

4.5 SYSTEM 4.3 

This estimator known as system 4.3 operates by moving from YIi-, to YI in a direction 
closer to that given by the correct direction Yi-ril,, -, than that given by the gradient 
algorithm, which is bes, *. The process uses no prior knowledge of Y,, and operates 
entirely from the frý) and I s, ý' 1, just like system 4.1 and system 4.2. 

Assume that 

YI v 
ii -1 .... 4.5.1 

so that V, is the actual error in Yili-,. In the gradient algorithm, the receiver does not 
attempt to estimate V, itself but instead determines Xi from Eqn. 4.3.13. A better 

estimate of Vi is determined as follows. 

Suppose that 

vi 
-h 

'2ýý vi 

.. 4.5.2 

for h=1,2, ..., m, where m is not too large. This is the case when Yi1i is tracking Y 

with an error V, that varies only slowly with i. Eqn. 4.5.2 should usually hold when 
m ý5 4. Now, in the absence of noise, X, in Eqn. 4.3.13 is the orthogonal projection of 
V, on to the one-dimensional subspace spanned by s, *. A better estimate of V,, than 
that given by Xi. should normally be given by the orthogonal projection of Vi on to 
the subspace spanned by the m+1 vectors is, *-, I , for h=O, 1, ..., m. Indeed, the more 
of the is, *-, I that are linearly independent and hence the higher the dimensionality of 

the subspace, the better is likely to be the resulting estimate of V,, at least at high 

signal/noise ratios. 
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Thus, to achieve a better estimate of V,, the receiver uses the one-step prediction YiI., , 
that has previously been determined to evaluate the corresponding estimates 
r, '. "' rl,,, of the received samples ri, ri-,,, respectively, such 
that 

- Y/ 
-T 

ri, h- ij ISi-h 

for h=0,1, ..., m. It is assumed here that Y,, itself does not vary significantly with h, 
for i-m !ýh5i. The receiver next determines the error ejhin each ril,,, as given by 

ei, h ri 
-h 

ri, h 

Assume that m+1 vectors isi*-, l , for h =0,1, ..., m, are linearly independent, and let 
the (g+l)- component row vector P, be the orthogonal projection of V, on to the 
(m+l)- dimensional subspace spanned by the is, *-, I. Since P, lies in the given 
subspace, it must be a linear combination of the m+1 vectors is, *-, I , such that 

Pi = LiQi* 

where L, is an (m+l)-component row vector and Q, is an (m+l)x(g+l) matrix whose 
(h+1) tA row is S i-h' The vector V, - P, is now orthogonal to the given subspace and 
hence to each vector s, *-,. Thus 

(vi - Pi)s 
iTh0 

for h=0,1, ..., m, and 

(vi - Pi)Q iT=0.... 4.5.7 

From Eqns. 4.5.5 and 4.5.7, 

L *(2T Vi(? T 
aii 

where Qi*Q, Tis a (m+l)x(m+l) nonsingular matrix, so that 

Li ViQT(Q*QT) iii 
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and 

p=T*T -1 * 

i ViQi (Qi Q) Qi 

Now, from Eqns. 4.3.4 and 4.5.1 to 4.5.4, 

ei, h 
ViSiTh+ Wi-h 

Clearly, e is an unbiased estimate Of Vi ST 

. Let i'h i- 

Ei =[ ei, () ei� ei,. ] 

so that, from Eqn. 4.5.11, Ej is an unbiased estimate of ViQiT. It follows that 

pi= Ei(Qi *Q 
i 
Tyl Qi* 

is an unbiased estimate of P, and can be evaluated from the knowledge of E, and 

The updated estimate of Y, is next evaluated as 

bPi 
.. 4.5.14 

where b is a positive constant. A small value of b reduces the 
effects of additive noise. Finally, the prediction of Y, 

+, 
is determined using the 

degree-1 least square fading memory prediction, as explained in Section 4.4, using 
Eqns. 4.4.2 to 4.4.4, where Xi = bpi'. At high signal/noise ratios, the updated 
estimate of Y, given by Eqn. 4.5.14 is usually closer to Y, than that given by Eqn. 
4.3.15. However, as m increases so there is a corresponding increase in the number 
of noise components f w, _, 

) introduced into PI, with the result that at low signal/noise 
ratios, Eqn. 4.3.15 could well give a better estimate of Y, than Eqn. 4.5.14. 

In principle, Y, ' in Eqn. 4.5.14 can be determined directly from Eqns. 4.5.12 and 
4.5.13, provided that Q*QT is nonsin ular. When Q*QT is singular, the last j rows of ii9ii 
both ! 2, * and Q, are removed, without changing the remaining rows, to leave each 
matrix with m-j+ 1 rows. The integer j here has the smallest possible value such that 
the resultant (m-j+l)x(m-j+l) matrix Q, *QT is nonsingular. The (m+l)-component 

row vectors E, is similarly reduced to m-j+l components, by discarding its last J 
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components, without changing its remaining components and the corresponding 
(m-j+l)-components row vector P, ý is then evaluated from Eqn. 4.5.13 using the 
reduced forms of E,, Q* and QiT. The vectors YiI and Yil,,, i are determined as before. 

On the receipt of rý.,, the receiver determines the error signal 

ei+l, h ri+l-h 
.... 4.5.15 

for h=0,1, ..., m, to give E,,,, and it is now ready to detennine P, /.,.,, Yil,,, and Y,,,,,,, 

Much of the complexity of system 4.3 is involved with the inversion of the matrix 
Qi * Qi T in Eqn. 4.5.13, together with the determination of the value of j when Q, *Q, T is 

singular. Many different techniques, including various iterative processes, are 
available for the matrix inversion, and some of these are ideally suited to the given 
application [42,63-661. 

4.6 SYSTEM 4.4 

The estimator to be discussed in this section is called the system 4.4. The receiver 

now operates as system 4.3, but it assumes always that e,, =0 for h=1,2, ... ' M, 

regardless of whether or not that is, in fact, the case. Thus (m+l)-component vector 
E, in Eqn. 4.5.12 is now taken to be 

Ei =[ ei, o 00 

where 

ei, o = ei = ri - r,, - 

as before. This assumption is not perhaps as arbitrary as it may seem at first sight, 

since it is equivalent to applying the algorithm of system 4.3 such that this operates 

only to reduce the magnitude of e,.,,, the magnitude of the fe,,, ), for h =1,2, ... ' M, 

having been reduced by the corresponding previous operations. 

It follows from Eqn. 4.5.13 that 
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Pi = ei, oFiQi* 

where the (m+l)-component row vector F, is given by the first row of the 
(m+l)x(m+l) nonsingular matrix (Q: QUý Now the first row of (Q,, Q, ")-' must be 
orthogonal to each of the columns of Q, (Q, *f other than the first, since (Q: Q, T)-(Q, 'Q, T) is an 

T identity matrix. Let the (h+1)th column of Q, cQ: ý be Gi,,, so that (G. ), for h=0,1, 

m, are linearly independent (m+l)-component row vectors. The Gram-Schmidt 

orthonormalization process, ( see Appendix E ), is now applied to the m+l vectors 
[G 

ih 
1, in order, starting with GiM and ending with G,, 

O- 
The orthogonal vectors (H 

ijn 
obtained from this process are as follows 

Hi, 
m = Gi, 

m .... 4.6.3 

Hi, m-l = Gi,,,, 
-, -I Hi,. FGi,. 

-, 
(H*m) 

T 
Hi, 

.... 4.6.4 i, rn 

and so on to 

Hi, 0G-I Hi'l rGi, 
O(Hi 

- 
, i, o 

-I Hi, rGi, 
O(Hi 

-T Hi,. 

But H,. 
O 

is orthogonal to H, 
in , 

H, 
dm, .... 

H,. 
I, so that it is also orthogonal to G,., G,, 

17 ... I 
G,,, 

- 
This means that H,, 

O 
lies in the same one-dimensional subspace as G,,,,, since 

JH 
ih 

I and fG 
ih 

), for h =1,2, ..., m, span the same m-dimensional subspace of the 
(m+l)-dimensional vector space containing all [H,,, ) and IG,., ). Consequently F, (in 

Eqn. 4.6.2) must be such that 

Fi = fiHi, o 

where ý. is an appropriate scalar, and 

Fi(Gi' (ý)T =1 

since (Q, -Q,, )-l (Q, *Q, r) is an identity matrix. Thus 
16 

fi (Hi, 
O(G i, O)T) 
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and the (m+l) -component vector F, is now given by (4.6.5), (4.6.6) and (4.6.8). 

\ 

The (g+1)-component vector Pý is finally determined from Eqn. 4.6.2, to give YjI from 
9 

Eqn. 4.5.14 and Yil,,,, obtained by using the one-step least square fading memory 
prediction, using Eqns. 4.4.2 to 4.4.4, where X, = bp,. On the receipt of r, +,, e, +,. o is 
determined from Eqn. 4.5.15, where h=0, and the whole procedure just described is 

repeated. 

If Q, *Q, l is singular, H,, 
b =0 for some integer h, and the Gram-Schmidt process is 

terminated. When this occurs the last row of Q, and the last row of Q, are discarded, 

! 2*QT so that Q* and Q, have m rows and ij 
is an mxm matrix. The Gram-Schmidt 

orthonormalization process is then applied to the columns of the reduced matrix 

Q, (Q, *ý, starting with the mthcolumn. If again H 
ih =0 for some integer h, the process is 

terminated, and each of the matrices Qj* and Q, is reduced by omitting its last row, to 

give (m-1) x (m-1) matrix Qi*QiT. The procedure is continued as described until an 

(m-j+l) x (m-j+l) nonsingular matrix Q, *QT is obtained. The last j rows of both Q, * 

and Q, have now been removed, without changing the remaining rows, to leave each 

matrix with m-j+l rows. Finally, the Gram-Schmidt orthonormalization process is 

applied to the columns of the (m-j+l) x (m-j+l) matrix Qi(QY, starting with the 

(m-j+l)th column, and the (m-j+l)-component row vector F, is derived from Eqns. 

4.6.5 to 4.6.8 to give PIin Eqn. 4.6.2. The process then continues as before. 

4.7 RESULTS AND ANALYSIS OF COMPUTER-SIMULATION 

TESTS. 

Computer- simulation tests have been carried out on the channel estimators described 

in Section 4.3 - 4.6. The results of the tests are compiled in Tables 4.7.1 - 4.7.4 and 
in Figs. 4.7.1 - 4.7.2. The error measurement is 

1 60000 
10 logio - 

Es I yi yii-l 
(54000i= 

6001 

and 

.... 4.7.1 
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10 
1 60000 

1 yj 
logio 

-1 
54000 i= 6001 I 

Yi r .. 4.7.2 

The parameter ý, is called the mean square estimation error and is a measure of the 
actual error in Yili-,. The parameter ý, is called the mean square normalized 
estimation error and is a measure of the normalized or relative error in yjI., - 1, 

During the first 6000 received samples the estimation process operates as described 
in Sections 4.3 - 4.6, but no measurements are carried out. This stabilizes the fading, 

additive noise and the estimation Process, thus eliminating any transient behaviour of 
the estimator at start up. Measurements are thus carried out on the estimators during 

their stable operation, over the next 54000 received samples. The results, in Tables 
4.7.1 - 4.7.4 are, therefore, the steady state performances of the estimators under test. 

The signal/noise ratio, is measured as W, where 

Eb 

Nf 10 loglo 1 No 2 
.. 4.7.3 

where E bI the average transmitted energy per bit at the input and output of the HF 

radio link, is unity and the two sided power spectral density of the white Gaussian 

noise at the output of the HF radio link is (1/2)N,,. 

In all tests, (g+l), the total number of components in the sampled impulse-response 

is taken to be 32. At the start of the estimation process, Y, ',,, = Y, the first actual 

channel sampled impulse-response. In each of the Tables 4.7.1 to 4.7.4, the scalar 

constants, such as, b in Tables 4.7.1 and b and 0 in Tables 4.7.2 to 4.7.4, have been 

optimized as accurately as possible so that the error in the estimation/prediction of 

the sampled impulse-response of the channel, defined by Eqn. 4.7.1, is minimized. 

Eqns. 4.7.1 and 4.7.2 measures the unitary distance between the vectors Y, and Yi', j-, 
in dBs. In Eqn. 4.7.2, this unitary distance has been normalized with the length of 

the vector Yi. In Fig. 4.7.1, systems 4.1 and 4.2 have been compared using measures 

and ý2. A comparison of the systems 4.1 and 4.2, in Fig. 4.7.1 and Tables 4.7.1 

and 4.7.2, show that the relative performances of the two systems are not 

significantly affected by whether ý, or ý, is used as a measurement criteria. 

- 
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A degree-one predictor with system 4.1 has significantly improved the performance 
of system 4.2. This is evident from Tables 4.7.1 and 4.7.2. The results of the 
simulation tests on systems 4.1 and 4.2 with statistically independent noise 
component f w, I in Eqn. 4.2.1, in place of the slightly correlated noise components 
actually obtained at the output of the receiver filter, show only a negligibly small 
differences in performance (Tables 4.7.1 and 4.7.2). Thus correlation in the noise 
components does not appear to have any significant effect. 

Table 4.7.3 shows the mean square error in the estimates of channel sampled 
impulse-response given by system 4.3 and the results from system 4.4 are compiled 
in Table 4.7.4. Simulation tests were carried out on systems 4.3 and 4.4 for a 
maximum value of m=4. From the results of the computer-simulation tests, it is 

evident that not much advantage is gained in the use of sophisticated estimation 
processes of systems 4.3 and 4.4, at least at low signal/noise ratio. However, the 

systems show improved performance at high signal/noise ratios. At low signal/noise 
ratios, increasing m has only marginal improvement in the performance of systems 
4.3 and 4.4. The performance of system 4.3 is more or less the same as system 4.4. 
System 4.3 is the most complex of the four systems considered in this chapter as it 
involves inversion of a (m+l) x (m+1) matrix. No case was observed, during 

simulation test on systems 4.3 and 4.4, when the matrix Q, Q, ' was singular. 

Fig. 4.7.2 shows the steady state performance of systems 4.1 and 4.2 at 30 dB 

signal/noise ratio. The parameter in Fig. 4.7.2, is here the square of the error in YjIj-, 

measured in dB, relative unity, and is 

ýi = 10 loglo(i Yi - yi"i-l 1 2) 

.. 4.7.4 

The relatively better performance of system 4.2 over systems 4.3 and 4.4, when V= 
20 or 30 dB, confirms that this is basically a good estimation process for a time 

varying channel of the type tested. A degree-one predictor with system 4.1 (system 

4.2) provides a useful overall improvement in the performance at all signal/noise 

ratios. System 4.2 is considerably less complex than systems 4.3 and 4.4, it is by far 

the most cost effective of the four system. 
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TABLE 4.7.1 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATE OF THE CHANNEL SAMPLED 
IMPULSE-RESPONSE GIVEN BY SYSTEM 4.1 FOR A3 SKY 
WAVE CHANNEL. 

v 

(dB) 

b Correlated noise Uncorrelated noise 

(dB) 

ý2 

(dB) 

41 

(dB) 

ý2 

(dB) 

10 0.009 -11.848 -10.590 -11.814 -10.581 
20 0.010 -15.967 -14.895 -15.919 -14.889 
30 0.020 -19.891 -18.816 -19.853 -18.839 

40 0.021 -20.649 -19.644 -20.598 -19.671 

60 0.020 -20.718 -19.719 -20.664 -19.750 

TABLE 4.7.2 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATE OF THE CHANNEL SAMPLED 
IMPULSE-RESPONSE GIVEN BY SYSTEM 4.2 FOR A3 SKY 
WAVE CHANNEL. 

v 

(dB) 
b 0 Correlated noise Uncorrelated noise 

(dB) 

ý2 

(dB) (dB) 

ý2 

(dB) 

10 0.139 0.980 -11.925 -10.640 -12.013 -10.709 

20 0.113 0.966 -18.942 -17.660 -18.918 -17.572 

30 0.091 0.949 -25.052 -23.825 -25.072 -23.797 

40 0.070 0.930 -29.012 -27.944 -29.016 -27.955 

60 0.087 0.933 -30.990 -30.116 -30.952 -30-112 
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TABLE 4.7-3 MEAN SQUARE ERROR IN THE ESTIMATE OF THE CHAN- 
NEL SAMPLED IMPULSE-RESPONSE GIVEN BY SYSTEM 4.3 
FOR A3 SKY WAVE HF CHANNEL. 

v 

(dB) 

m 0 
b 

(dB) 

20 1 0.970 4.76 -19.068 
2 0.970 3.34 -19.111 

3 0.970 2.56 -19.140 

4 0.970 2.07 -19.163 

30 1 0.960 5.36 -25.339 

2 0.960 3.88 -25.461 

3 0.960 3.06 -25.554 

4 0.960 2.52 -25.630 

60 1 0.940 4.60 -31.567 

2 0.930 2.65 -32.008 

3 0.930 2.24 -32.450 

4 0.930 1.98 -32.785 
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TABLE 4.7.4 MEAN SQUARE ERROR IN THE ESTIMATE OF THE CHAN- 
NEL SAMPLED IMPULSE-RESPONSE GIVEN BY SYSTEM 4.4 
FOR A3 SKY WAVE HF CHANNEL. 

(dB) 

m 0 b 
(0) 

20 1 0.970 8.11 -19.010 

2 0.970 7.97 -19.025 

3 0.970 7.86 -19.026 

4 0.970 7.75 -19.028 

30 1 0.960 8.35 -25.290 

2 0.960 8.25 -25.405 

3 0.960 8.15 -25.490 

4 0.960 8.06 -25.588 

60 1 0.940 6.74 -31.557 

2 0.940 6.88 -32.081 

3 0.930 5.45 -32.644 

4 0.930 5.62 -33.231 
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Fig. 4.7.1 - Performance of Systems 4.1 & 4.2 
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CHAPTER 5 

RLS KALMAN ESTIMATOR. 

5.1 INTRODUCTION 

The Kalman filter has become one of the most investigated estimation algorithm in 
many areas and in particular for the HF channel estimation [35,53,70,73-79,81-88, 
92-99,101-110], following the first publication of the theory of the Kalman filter 
[73]. A Kalman estimator gives the least-squares estimate of the sampled impul- 

se-response of a time invariant channel that introduces additive Gaussian noise [53, 
77,95-96] and that it has the most rapid rate of convergence, when the estimation 
process is started with a completely unknown channel estimate. This has motivated 
the study of Kalman filter algorithm for use in HF channel estimation. The 

algorithm as a I-IF channel estimator has been extensively studied elsewhere [35,88]. 
This chapter considers a particular form of the algorithm called the Recursive 
least-squares (RLS) algorithm for the application to the HF channel estimation. The 

method is very closely related to the Kalman algorithm, by virtue of its similarity to 
the state-space stochastic filter approach of the Kalman algorithm. The algorithm is 

referred to as the RLS Kalman algorithm or, more simply, as the Kalman algorithm 
[59,99,101,1031. 

The increased rate of convergence of the RLS Kalman algorithm, as compared to the 
LMS algorithm, is at the expense of increased computational complexity. This has 
led to the development of computationally efficient Kalman algorithms, called the 
Fast Kalman algorithms. A class of Fast Kalman algorithm, called the Fast 
Transversal Filter (FTF) algorithm, for HIF channel estimation, is considered in detail 
in Chapter 8. In this chapter three types of Kalman algorithms, referred to as 
systems 5.1 - 5.3, are considered. Systems 5.1 and 5.2 assume that the channel 

varies linearly with time, or in other words the rate of change in the channel is 

constant, whereas system 5., 3 assumes that the channel is time invariant or varies 

very slowly with time, so that the rate of change in the channel can be neglected. 
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5.2 MODEL OF DATA TRANSMISSION SYSTEM USED IN THE TESTS 

Fig. 3.5.1 shows the model of the data transmission system used in the tests and has 
been considered in detail in Chapter 3. The HF radio link and the model of the data 
transmission system are given in detail in Chapters 2 and 3, respectively. The linear 
baseband channel has a sampled impulse-response, given by the (g+l)- component 
row vector, Y,, where, (Eqn. 3.4.4) 

Yi I Yi, o Yi, I---- Yi, 
g1.... 5.2.1 

where yih= 0 for h<0 and h>g. 

The received sample at time t=iT, is given by (Eqn. 3.4.2) 

9 
ri I Si-hYilh + Wi 

.... 5.2.2 
h=O 

Yisi T+ Wi .... 5.2.3 

where S,, the input data vector, is a (g+l)- component row vector, given by (Eqn. 
3.4.5) 

Si =[ Si Si-i Si-2 si-g 1 

ST is 

i the transpose of S,. The scalar quantity w, in Eqns. 5.2.2 and 5.2.3 is a noise 
component originating from the white Gaussian noise. The signals r, and s, are fed to 
the channel estimator to give an estimate of the channel sampled impulse-response, Yi, 

, at time t=iT, where 

Y/ = 
iIAoAI yi, g . 5.2.5 

Y, / is fed to the detector, ready to detect s, +,,, when rl+l is received by the detector. 
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5.3 SYSTEM 5.1 

The first of the RLS Kalman estimators considered here is called the system 5.1. It 
assumes that the channel is varying linearly with time, such that 

yi +1- Yi = Yi - Yi 
-1.... 5.3.1 

which means that Y, 
+1 - 

Yj is a constant vector that is independent of i. It is assumed 
that the receiver has prior knowledge of Eqn. 5.3.1 but has no knowledge of the 
vector Y, 

+, - 
Y,. 

System 5.1 operates with a channel-estimation vector, for time t=iT, which is 

##I vi Yi, o Yi, l yi, 
g 

yiýo Yi, 
g 

where yý, is an estimate of y,.,, (Eqn. 5.2.1), for h=O, 1, 
..., g, and yll is an estimate of 1, 

i'h 

the rate of change of y,,, with i. Thus V, is a (2g+2)- component row vector. The 

data vector, for time t=iT, is the (2g+2)- component row vector 

Si 
.,::: 

I Si Si-i -. -. si-g 

The estimate of r, formed by the channel estimator, is now 

T visi 
. 5.3.4 

The quantity r, is the updated estimate of r,. Similarly V, is an updated estimate of the 

corresponding channel vector. 

The error in rl is 

e7, r, ri .. 5.3.5 

The vector (V, j determined by system 5.1 is such as to minimize the weighted 
least-squares cost function 
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i 
ci = 2: (0 

i-h 1 
eh 

ý 

h=O 

where co is a real-valued constant in the range 0 to 1. The quantity Ci is the weighted 
squared error in the 1 rh'I. On receipt of r, ' , the algorithm of system 5.1 repeats a 
sequence of operations to update the channel-estimation vector in such a manner as 
to minimize C,. Hence the algorithm is recursive and is least squares as well. The 
quantity that is minimized by the gradient algorithm is the expected value of the 
squared error, whereas here it is the weighted squared error that is minimized. 

Now, consider the (2g+2) x (2g+2) matrix 

0h= 

1 0 0 0 0 0 0 0 0 0 
o 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
h 0 0 0 0 0 1 0 0 0 
0 h 0 0 0 0 0 0 0 0 
0 0 h 0 0 0 0 0 0 0 

0 0 0 h 0 0 0 1 0 0 
0 0 0 0 h 0 0 0 1 0 

-0 
0 0 ... .0 0 h 0 ... .0 0 1 

oh I 1 
hl 

where I is a (g+l) x (g+l) identity matrix, 0 is a (g+l) x (g+l) zero matrix, and h is 

any positive or negative integer or zero. From Eqns. 5.3.1 and 5.3.7, it is evident 
that 

Vi+h vioh 

is the best channel estimation vector that can be determined for time t=(i+h)T, given 
the channel estimation vector Vi. for time t=iT. This is because it makes full use of 

all the available prior knowledge of the channel. If Vi is taken to be the actual 

channel vector instead of an estimate of this vector, Eqn. 5.3.8 holds exactly for all 

positive and negative values of integer (h). The matrix ý, is known as a transition 
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matrix, and it can be used to convert the channel vector or estimate of this vector, at 
time iT, to the channel vector or estimate of this vector, at time (i+h)T. Except 

where otherwise stated, V, is taken to be the estimate of the channel vector at time 

t=iT, as in Eqn. 5.3.2. Finally, from Eqn. 5.3.7 

Oh 

and ýo is the (2g+2) x (2g+2) identity matrix. 

**5.3.9 

From Eqns. 5.3.4 - 5.3.6, the least-squares cost function at time t=iT becomes 

T ci vA 

h=O .. 5.3.1O 

At time t=iT, the channel estimation vector is V, and from Eqn. 5.3.8, V,, is related to 

V, as 

Vh :- VA 
-i .... 5.3-11 

Combining Eqns. 5.3.10 and 5.3.11, C, is given by 

ýoj - 
hl 

_iST 
ci 

h 
rh Vi 

hh 

The estimator of system 5.1, determines the channel estimation vector V, at time 

t=iT, which together with the given transition-matrix ý,, minimizes C,. 

Now 

I 

_iST)* 
C (J) 

i 
_iST) 

(r. -h(r. -Vio, .- 
vioh 

h 
h=O 

or 
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i 
i-h(rr, * 

_ r. 
- OT- vr* Sh 

hiih _iST 
vioh 

h 
h=O 

+v 
_iS7-ShýT_ 

v *) Ahhii 

.. 5.3.13 

where r, *, is the complex conjugate of r, and SO is -rh. Vector Y, is the complex 

conjugate of the vector S, and the vector v, * is the conjugate transpose of the vector 
V,, that is ýVj. 

The parameter Ci in Eqn. 5.3.13 is real and positive and with all the parameters 
(except V) remaining constant, C, is a convex function of the channel estimation 
vector V, [59,103]. The quantity C, and the elements of the vector VI can then be 

seen to have a bowl-shaped surface with a unique minimum. At the bottom or 
minimum point the gradient of C, with respect to V, is zero. The gradient of C, with 

respect to V, is 

aci aci aci aci aci aci vci = ý, - ay! ay 'lay! / ay! / 
5.3.14 

1 

ayll, o ayt, 
1,9 i, O I'l 1191 

For VCj to be zero, each component of the vector must also be zero. Differentiating 

Eqn. 5.3.14 with respect to V,, the gradient of C, with respect to V, is (Appendix Q 

[59,1031 -j 

h ýT T (-2r. S. 
. _i 

+ 2Vjk-iShShC-i) 

h0 

Under the condition when VCj is zero, 

Coi -h 7-J T i-h 2Viýh 
-iSh 

SA 
-i 

1w 2rhShýh-i 

h=0 h=O 

or 

17 -r, T I d-h Vi 
., 

k-ishshoh-i 

h=O 
(1)'-hrh- 

T SA 

h0 

.. 5.3.15 

.. 5.3.16 

.. 5.3.17 

Let 
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I 
I d-h 7-, T T Ri = 

Oh-iShShOh-i 
h=O 

and 

Qi 
T d-h 0 rhSh h-i 

h=O 

where R, is a (2g+2) x (2g+2) component square matrix and Q, is a (2g+2) 

component row vector. Combining, Eqns. 5.3.17 - 5.3.19, 

ViRi = Qj 
.... 5.3.20 

Therefore, 

Vi QiRi 

It is assumed in Eqn. 5.3.21 that the matrix R, is nonsingular and there exists an 
inverse of the matrix R,. Eqn. 5.3.21 gives the weighted least-squares estimate of the 
desired channel-estimation vector at time t=iT. To determine V, from Eqn. 5.3.21, 

would mean enormous computational complexity. It is, therefore, necessary to 

modify Eqn. 5.3.20 in such a way that V,, R, and Q, at time t=iT, can be obtained 

recursively from V, 
-,, 

Ri, and Q, at time t=(i-l)T. 

From Eqn. 5.3-18 

Ri o4-lRi T+ s- .... 5.3.22 
- 

ý-l ilsi 

and, from Eqn. 5.3.19 

risi .... 5.3.23 

From Eqns. 5.3.20 and 5.3.23 

ViRi coVi-IRi-lo TI+ risi .... 5.3.24 
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Eqn. 5.3.24 gives a relationship between V, and V, 
_I which form the basis of the 

required recursive algorithm to determine V,. 

From Eqn. 5.3.22, 

O)Ri -IO, 
Ri OT 

_ ýj Y-, T T 

1 si, siol 
.... 5.3.25 

Substituting Eqn. 5.3.25 in Eqn. 5.3.24 

V. R. Vi TýT 

-, 
ý, Rjýj 

-1 
_V i _JýJS7SiýTýT 

+ riS, 
.. 5.3.26 i 

Vj 
-, 

ý, Rj - Vi- lýlSiySi + riSi .. 5.3.27 

or 

Vi Vj-, ý, - Vi 7- - -1 
- 10, Si SiRi 1+ riSiRi 

Vi- 
1ý1 + (ri Vi 

-Jýjs i 
T) -S 

iRi 
1 

.. 5.3.28 

Let 

Pi Ri 
.... 5.3.29 

Vi, i-l = vi-A 
.... 5.3.30 

and 

Tp C i-A 

In Eqns. 5.3.30 and 5.3.3 1, the transition matrix ý, shifts the time to which the 

corresponding estimate applies by one sampling interval from time (i-1)T to time iT. 
Hence, the updated estimate for time (i-l)T is converted into the corresponding 

prediction for time iT. 

Combining Eqns. 5.3.28 - 5.3.30, 

v V, 
i- + (r V, 

i-IST)-Sipi .... 5.3.32 iiIiii 

105 



It may be noted that, in Eqn. 5.3.32, the term (ri - v,., _, s, T ) represents the error in the 
estimation of the received signal ri. 

From Eqns. 5.3.22 and 5.3.29 

-1 = Coo -1 
JOT + S7-, Pi - _lp i- -1 i Si 

.... 5.3.33 

and from Eqn. 5.3.31 

Tp -1 01 
i-101) 

11T.... 
5.3.34 

Therefore, from Eqns. 5.3.33 and 5.3.34, 

-1 1 7-1:; p COP +s.... 5.3.35 i Si 

or 

Ri CoRi, i 
7-17 

.... 5.3.36 
-1 + Si Si 

Eqn. 5.3.36 gives the recursive relationship between R, and R,., 
-,. 

However, in order 
to obtain the updated estimate of V, from the one-step prediction V,,, 

-, using Eqn. 

5.3.325 it is necessary to evaluate P,. 

Applying matrix inverse identity (Appendix D) to Eqn. 5.3.36, the following 

relationship is obtained. 

R-1 
R,, j-jSjlSjR, -j-j] 

+S jR, -' , i-lSt 

or 

1 
Pi -[Pi, i-i 

(1) 
Pi'i-isi7sipi'i-I 

+Sipi, i-ls iT 

.... 5.3.37 

... 5.3.38 

Now let 
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K. +-T 
-I- 

t 
sipi, i-lsi) sipi, i-l .... 5.3.39 

Thus, from Eqns. 5.3.38 and 5.3.39 

Pi = (CIP i, i-lv -SiT Kil 
.... 5.3.40 

Thus P, may be computed recursively according to Eqn. 5.3.40. 

Premultiplying both sides of Eqn. 5.3.40 by Yj . then 

sipi -Sipi, 
i-ls 

TK 
i 

and from Eqn. 5.3.39 

sipi, 
i-l = [(J) + sipi'i T 

-IS i lKi 
.... 5.3.42 

Combining Eqns. 5.3.41 and 5.3.42, 

Sipi (6-1[((O+Sipi, i_JST)K 
STp, 1 

ii 
sipi'i-I 

i Ail 

= Ki 
.... 5.3.43 

From Eqns. 5.3.32 and 5.3.43, 

V Vi, 
i_l + (ri_Vi, 

i_, 
ST)Ki 

ii.... 5.3.44 

This completes the derivation of the algorithm for system 5.1. The algorithm is 

consistent with the corresponding algorithm in [20,83,103]. Eqn. 5.3.44 is the 
desired update recursion for the vector V,. The complete algorithm for system 5.1 is 

given by Eqns. 5.3.30,5.3.31,5.3.39,5.3.40 and 5.3.44. 
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5.4 SYSTEM 5.2 

System 5.2 is a simple modification of system 5.1 and just as system 5.1, it assumes 
that the channel is varying linearly with time and that Eqn. 5.3.1 is satisfied. System 
5.2 operates with a channel-estimation vector, for time t=iT, which is 

vi Y/ i, o Yi, l Yi, 
g 

where V, is a (g+l)- component row vector and yil, is an estimate of yi,, (Eqn. 5.2.1) 
for h=O, 1...... g. The data vector, for time t=iT, is the (g+l)- component row vector, 
and is now given by 

si si Si-i 
.... Si-9 I 

.. 5.4.2 

The transition matrix 01, is no longer given by Eqn. 5.3M, and is now replaced by 

qo, i 00 
0 ql, i 0 

-0 
0 qg, i- 

where 

Yi, i-l, h 
qh, i 

Yi / 
-I, h 

for h=O, 1ý..... 19. 

.. 5.4.3 

.. 5.4.4 

The transition matrix, 0i . is therefore, no longer a constant but varies with time. 

An update of the vector V, is determined using the RLS Kalman filter algorithm. All 

the vectors here are (g+l)- component row vectors and all the matricies are (g+l) x 
(g+l). System 5.2, then makes a one-step prediction of the vector V, using the 
least-squares fading memory prediction [53], in the following manner. b 
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An error in the update of the vector V, is given by 

Ei = Vi - Vi, i-, . 5.4.5 

A one-step prediction of Vi, is now given by a polynomial filter which is described 
by the following two equations. 

vil vl 
+1, i = i, i-l + OjEj 

Vi+l, i = Vi, 
i-l + V! + 02Ej 

. 5.4.6 

.. 5.4.7 

where 0, and 0, are positive real-valued scalar constants. 0, and 0, are optimized to 
minimize the error in the prediction of the channel impulse-response. In Eqns. 5.4.6 

and 5.4.7, V, ',,, i is the estimate of the rate of change with i of the vector V,. At the 
start of the estimation process 

vi/+1, i 
=0.... 5.4.8 

and 

vi, i-I -- VO 

where VO is determined from the appropriate training sequence that precedes the 
transmission of data [91]. The one-step prediction of system 5.2 (Eqns. 5.4.5 - 5.4.7) 
is slightly different from that used by system 4.2 (Eqns. 4.4.2 - 4.4.4). 0, and 0, , in 
Eqns. 5.4.6 and 5.4.7 respectively, no longer bear any fixed relationship. Com- 

puter-simulation tests, have shown some useful improvement in the performance 
' 
of 

system 5.2. Eqns. 5.4.6 and 5.4.7 allows greater flexibility and improved perform- 
ance of system 5.2 and tests have not shown any kind of instability in the algorithm. 

Having obtained the one-step prediction of the vector Vi, given by Eqn. 5.4.7, the 
transition matrix 0i can now be determined using Eqn. 5.4.3, ready for determining 

the next updated vector V,,.,, for time t=(i+1)T. 
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5.5 SYSTEM 5.3 

System 5.3 is the conventional RLS Kalman algorithm and assumes that the channel 
is time invariant or it varies very slowly with time. The algorithm of system 5.3 is a 
simple modification of that for system 5.1. Eqn. 5.3.1 is now replaced by 

Y- Yj 
1+1 

It is, therefore, assumed that the rate of change in the channel estimate is zero. The 

channel-estimation vector, for time t=iT, now becomes 

Y/ i, o Yi, i yi, 
g 

where yil,, is an estimate of y,,, for h=O, 1...... g. V, is now a (9+1)- component row 

vector. The data vector, for time t=iT, is the (9+1)- component row vector 

Si : -- I Si si-I 
... - 

Si-g 1 

The remainder of the algorithm for system 5.3 is exactly the same as that for system 
5.1, except that the transition matrix ý, , in Eqns. 5.3.30 and 5.3.3 1, is now given by 

the (g+l) x (g+l) component identity matrix. 

Thus 

1000 

0100 

.... 5.5.6 

0010 
LO 00 lj 

All the vectors here are (g+l) components vectors and the matrix is (g+l) x (g+1). 

The Kalman filter is now the conventional arrangement with exponential window 
(fading memory). 
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5.6 RESULTS AND ANALYSIS OF COMPUTER SIMULATION TESTS 

Computer- simulation tests have been carried out on the systems 5.1 - 5.3 over a 
model of the receiver of a 4800 bits/s QPSK system, operating at 2400 bauds, with 
an 1800 Hz carrier. The results of the tests are given in Tables 5.6.1 - 5.6.3 and in 
Figs. 5.6.1 - 5.6.2. Two different measures of the average error in YIi-,, have been 

used in the tests. These are 

1 60000 

10 logio -II Yj Yj"j-, 
54000 i= 6001 

1 60000 1 Y. Yili- 
If ý2 10 loglo IIy 12 54000 i= 6001 i 

where the mean-square value of I Yj I is close to unity. The parameter ý,, termed as 
the mean-squared estimation error, measures the actual error in Y, ',, 

-,, whereas the 
parameter ý,, termed as the mean-squared normalized error, measures the normalized 
or relative error in Y,,,, -,. 

The first 1000 of the received samples in any test, are 
ignored to allow the stabilization of the fading and additive noise processes. During 

the next 5000 received samples the estimation process is allowed to stabilize and no 
measurement of error is carried out. This eliminates the effect of any transient 
behaviour of the estimators at the start-up. In fact computer-simulation tests were 
carried out to see the effect of stabilization length on the performance of the systems 
5.1 - 5.3, and 5000 received samples were found to be more than adequate for the 

estimators to stabilize. Over the next 54000 received samples, ý, and ý, are evaluated 

according to Eqns. 5.6.1 - 5.6.2. Thus ý, and ý, give a measure of the steady-state 

performance of the estimators. 

At the start of the estimation process, the matrix P,, in Eqn. 5.3.40, is taken as an 
identity matrix and the estimate of the channel is set to its actual value, for all the 

systems. In system 5.1, the vector V,, in Eqn. 5.3.2, is taken as 

Vo ý [Yo, 
0 Yo, i ... Yo, 

g0... 
01 

.. 5.6.3 
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at the start of estimation process. The initial estimate is obtained by means of a 
training sequence that precedes before the start of the actual transmission of data. In 
the tests, however, the estimate of the channel is set to its actual value. 

Simulation tests were carried out on all systems with different initial settings of the 
P, matrix and the results show that it did not make any difference to the performance 
of the systems. The transition matrix in system 5.2, is set to identity matrix at the 
beginning of the transmission. 

The signal/noise ratio is measured as -qf dB, where 

Eb 

10 loglo I No 2 

where Eb is the average transmitted energy per bit at the input to the HF radio link, 
and is unity, while ! N,, is the two-sided power spectral density of the additive white 2 

Gaussian noise at the output of the BF radio link. 

At every signal/noise ratio, the scalar constants co in systems 5.1 and 5.3 and co, 0, 
and 0, in system 5.2 have been approximately optimized, so that the error in the 
estimation/prediction of the sampled impulse-response of the channel, defined by 
Eqn. 5.6.1, is minimized. 

Tables 5.6.1 - 5.6.3 and Figs. 5.6.1 - 5.6.2 summarize the results of extensive 
computer- simulation tests. Fig. 5.6.1 compares the performance of systems 5.1 - 
5.3. The results show a significant improvement in the performance of systems 5.1 

and 5.2, compared with system 5.3. The results also show that the relative 
performance of systems 5.1 - 5.3 are not significantly affected by the error 
measurement used. Thus, for the purpose of comparison, both ý, and ý, give a 
reliable measure of the effectiveness of an estimator. Computer- simulation tests on 
systems 5.1 - 5.3, to study the effect of noise statistics on the performance of the 

estimators, have shown that only negligibly small differences in the performance of 
the systems occur with either correlated or uncorrelated noise introduced in the 

channel in Eqn. 5.2.3. 
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Fig. 5.6.2 show the steady state performance of systems 5.1 and 5.3, at 60 dB 

signal/noise ratio. The parameter in Fig. 5.6.2, is here, the square of the error in Y,,., -, 
measured in dB, relative to unity, and is 

10 

10910(1 yi .. 5.6.5 

The measurement in Fig. 5.6.2, is taken during the stable operation of the estimator. 
The channel estimators, listed in order of increasing complexity are systems 5.3,5.2 

and 5.1. System 5.2 is, however, comparatively a simpler system, compared with 

system 5.1, as the former determines the transition matrix ý, using a degree-one 

predictor (Section 5.5) and, all vectors are having (g+l) components and all matrices 

are (g+l) x (g+l). 
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TABLE 5.6.1 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED ERROR 
IN THE ESTIMATE OF THE CHANNEL SAMPLE IMPULSE-RES- 
PONSE GIVEN BY SYSTEM 5.1 FOR A3 SKY WAVES CHANNEL. 

v 

(dB) 

(0 Correlated noise Uncorrelated noise 

41 

(dB) 

ý2 

(dB) 

41 

(dB) 

ý2 

(dB) 

10 0.990 -12.270 -10.975 -12.273 -10.955 
20 0.985 -19.418 -18.214 -19.435 -18.289 
30 0.970 -26.195 -24.928 -26.229 -24.939 
40 0.960 -32.437 -31.361 -32.477 -31.381 

60 0.880 -40.191 -39.347 -40.185 -39.342 

TABLE 5.6.2 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED ERROR 
IN THE ESTIMATE OF THE CHANNEL SAMPLE IMPULSE-RES- 
PONSE GIVEN BY SYSTEM 5.2 FOR A3 SKY WAVES CHANNEL. 

(dB) 

0 02 Correlated noise Uncorrelated noise 

(dB) 

ý2 

(dB) dB 

ý2 

(dB) 

10 0.975 0.002 0.800 -12.168 -10.878 -12.153 -10.853 

20 0.965 0.008 0.825 -18.944 -17.659 -18.961 -17.656 

30 0.950 0.014 0.800 -25.764 -24.520 -25.826 -24.572 

40 0.930 0.020 0.850 -31.744 -30.607 -31.796 -30.656 

60 
1 

0.850 
1 

0.038 0.925 
1 

-38.057 
1 

-37.132 
1 

-38.131 -37.219 
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TABLE 5.6.3 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED ERROR 
IN THE ESTIMATE OF THE CHANNEL SAMPLE IMPULSE RE- 
SPONSE GIVEN BY SYSTEM 5.3 FOR A3 SKY WAVES CHANNEL. 

v 

(dB) 
0) Correlated noise Uncorrelated noise 

(dB) 

ý2 

(dB) (0) 

ý2 

(dB) 

10 0.980 -12.170 -10.917 -12.137 -10.894 

20 0.950 -17.634 -16.391 -17.624 -16.379 

30 0.910 -21.695 -20.587 -21.693 -20.578 

40 0.870 -23.163 -22.147 -23.172 -22.150 

60 0.860 -23.403 -22.407 -23.421 -2 14 2=4 
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CHAPTER 6 

ADAPTIVE CHANNEL ESTIMATORS 

6.1 INTRODUCTION 

A simple estimator designed for a 4800 bits/s modem and employing a polynomial 
filter that gives a prediction of the channel sampled impulse-response has already 
been considered in Chapter 4. This estimator is a development of the conventional 
gradient estimator [33,35-36,52,54,57,62,99-100]. The class of estimators, 
referred to as systems 6.1 - 6.5, considered in this chapter are called the Adaptive 

channel estimators. These estimators are developments of the simple gradient 
estimator. They are adaptive because they make no use of any prior knowledge of 
the channel and are able to track effectively an HF channel irrespective of the 

number of sky waves present in the fading channel. The adaptive channel estimators 
are studied for use in a QPSK modem that operates at 4800 bits/s over a voiceband 
IIF radio link. Results of the computer-simulation tests are presented, comparing the 

accuracies of the channel estimates given by different estimators, at the end of this 

chapter. 

6.2 MODEL OF DATA TRANSMISSION SYSTEM USED IN THE TESTS 

The model of the data transmission system used in tests is shown in Fig. 3.5.1. The Z--) 
received signal, at time t=iT, is given by (Eqn. 3.4.2) 

r9 
I si-hyi, h 

h=O 

yiSi+ Wi 
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rý is sample value of the complex-valued resultant baseband signal r(t) at time t=iT, 
as can be seen from Fig. 3.5.1. Y, and S, are (g+l)- component row vectors, and sT is 
the transpose of Si. 

Y, and S, are given by (Eqns. 3.4.4 and 3.4.5) 

yi Yi, O Yi, l Yi, 2 Yi, g 

Si Si Si-I Si-2 ... Si-g 

The vector Y,, represents the sampled impulse-response of the linear baseband 

channel, at time t=iT. The HF channel is assumed to have (g+l) components in its 

sampled impulse-response. The scalar quantity w, in Eqns. 6.2.1 and 6.2.2 is the 
noise sample at time t=iT. The signal rý and s, are fed to the channel estimator to give 
an estimate of the channel sampled impulse-response YI, at time t=iT, where 

yi' Yi, 0 yi, I yi, 2 yi, 
g 

This estimate of the channel sampled impulse-response, Y, ' , is fed to the detector to 
detect s, +, when the next received signal r, +, 

is received by the detector. Details 

regarding the channel and the channel model can be found in Chapters 2 and 3 

respectively. 

6.3 SYSTEM 6.1 

System 6.1 is a development of the Feedforward transversal filter estimator of 

system 4.2 [54]. The estimator of system 6.1 uses the same linear feedforward 

transversal filter (Fig. 4.3.1, [54]). As is shown in Fig. 4.3.1, the estimator holds in 

store the detected data symbols 

S/ S! .... 6.3.1 i-2 I-g 
I 

following the detection of s,. Correct detection is assumed and, therefore, Eqn. 6.3.1 

can be written as 
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Si 
': -- 

I Si Si 
-1 

Si 
-2**- 

Si 
-g1 

The estimator forms an estimate of r, of the received sample r,, such that 

9 
I Si-hYi, i-l, h 

h=O 

T Y! Si Ili-i 

where Y,,,, -, 
is the one-step prediction of Yj, given by 

-i'l 

Y/ - component row vector. The error in the estimation of received signal is a (g+1) 
is, therefore, 

ei = ri - r, ' .. 6.3.6 

The one-step prediction of Y,, given by Yili-,, in Eqn. 6.3.5, is obtained from the 

updated estimate of Yj, given by 

yi, =[ Yi, o Yi, l yi, 
g 

1 

in the following manner. 

An estimate of the error in prediction is 

xi = yi, - yi" i-1.... 
6.3.8 

The actual error in Y,,,, -, 
is 

yi - yi" i-1 

The prediction of Yj,., is now determined by means of a polynomial filter [53] that 

operates as follows 

yfl + (1-0) 2 Xi 
.... 6.3.1O 
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yil Y/ 11 (l-o2 
i, i-l + yil, i +A 

The vector Yil,,, i is a degree-1 least-squares fading memory prediction of Y, 
+1 

[53-54], 
and the vector Yi"+,, i is a prediction of the rate of change with i of Yj, The scalar 
constant 0 is real-valued and is in the range 0 to I (usually close to 1). 

An estimate xil of the actual error in Y,,., -, given by Eqn. 6.3.9, c in p nciple, be an ri 
derived from the fact that the prediction given by Eqns. 6.3.8 - 6.3.11 employs a 
degree-1 least-squares fading memory polynomial filter [53-54]. The latter assumes 
that the rate of change of Y, with i is constant or only slowly varies with i. Thus a 
significant source of error in a prediction Yj',, _j 

is likely to be the acceleration 
(variation in rate of change) in Y,. If the only source of error in Yj"j, is due to the 
acceleration in Yi. then 

Yj YiI. + ciAi 1,1-1 

where c, is a complex-valued scalar and 

Ai = (Yi+l Yj) - (Yi - Yi-1) 

= Yi+l 2Yj + Yi-, 

such that X, = c, A, (from Eqn. 6.3.9). An estimate of A, is given by 

A' =I 2Y! + Y, .... 6.3.14 i 
yil+l, 

i - I'l-I i-l, i-2 

The weakness Of A,! in Eqn. 6.3.14 is its relatively high noise level, bearing in mind 
thaty, '-,, 

i-2 , YIi-, and Y, ',,, i do not differ greatly, much of the difference between them 
being due to the noise. Thus, instead of using A,! , the estimator uses the 

corresponding vector 

Zi : -- Zi, o Zi, I---- Zi, 
.. 6.3.15 

which is derived from A, as follows. First, let the absolute value (modulus) of the 
(h+l), hcomponent Of A,! be ai,, , for h=O, 1, ..., g, and suppose that A, ' is the first of the 

IA,! l to be processed. Now z,. his a measure of the average value of (xi,, , which may be 

either the growing-memory average, given by 
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i 
zi, h ocj, 

or else the fading-memory average, given by 

i 
zi, ha -a )'-jXj, 

where a is a real-valued constant such that 0<a<1, and j is an integer. Eqn. 6.3.16 
can be implemented sequentially as 

zi, h 
(1- '-I)zi 

- 1, h+ 
'-Icci, 

h .... 6.3.18 

Zi 
- 1, h 

+ ((Xi, 
h zi 

- 1, h) .... 6.3.19 

and Eqn. 6.3.17 can be implemented sequentially as 

Zi, h 
(1-a)zi-,, 

h + a(xi, h .... 6.3.20 

zi-l, h + a((xi, h - zi-l, h) .... 6.3.21 

where 

ZO, h CCO, h0.... 6.3.22 

for h=0,1 g. 

Since all components of Z, are real-valued whereas the components of Ai in Eqn. 
6.3.13 are in general complex-valued, neither Y, ýj_, + 4. nor YjI, -, + q4- could be 

used as a satisfactory updated estimate of Yi in Eqn. 6.3.12. Nevertheless, zi), gives a 
measure of the magnitude I yj, - yt!, i - ý,, I of the error in the component yij -,,, of YjI,, - 1. 
Furthermore, for the most accurate tracking of a time-varying channel, the step size 
employed in the gradient algorithm of Eqn. 4.4.1 should be permitted to vary from 

one component of Yj', j_, to another, and should increase with the likely magnitude of 
the error in that component. These considerations suggest that Eqn. 4.4.1 should be 

replaced by 
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+ bu eis* yt, h yi, i-l, h i, h i-h 
.... 6.3.23 

for h=0,1, g, where b is an appropriate small positive real-valued constant, and 

ui, h --": P (zi, 
h) .... 6.3.24 

p(z. ) is a monotonically non-decreasing positive real-valued function of zi.., The 

parameter u,, t 
in Eqn. 6.3.23 cannot be replaced by z ih itself, for the following 

reasons. Firstly, no u ihmust be permitted to remain at zero for any significant 
period, since, if this occurs, the corresponding component of Y, /, Ii 

-, 
in Eqn. 6.3.10 may 

become locked at zero, thus preventing any further change in the corresponding 

Y,!, i-,,,. Secondly, no u,,, should be permitted to become too large, in order to avoid 
possible instability of the algorithm given by Eqn. 6.3.23. Thus the value of u ih 
should be constrained such that 

Ui, h <k 
... 6.3.25 

where k, and k, are appropriate positive real-valued constants. Finally, tests have 

shown that, for the best performance, u, A must vary non-linearly with z,, h over the 

range k, and k, In the most effective arrangement that has been found, u,., varies 

withZ, has shown in Fig. 6.3.1, where-k I= 
10-6 and k, = -. The quantity k,, is a small 

positive real-valued constant, such that 

4 
d ký .... 6.3.26 

and, when z,. h> d, 

z 
0.25 

.... 6.3.27 i, h i, h 

The nonlinear variation of ui., with z iýh 
here prevents u, h 

from becoming too large, so 

that it is not, in fact, necessary to limit the maximum value of u., The prediction of 

Y, 
+1 

is determined by Eqns. 6.3.8 - 6.3.11. 
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6.4 SYSTEM 6.2 

System 6.2, instead of attempting to measure the acceleration in Yi directly, uses the 
fact that the greater the maximum magnitude of any y,,, the greater is likely to be its 

maximum acceleration and hence the greater the probable value of the largest error 0 
in the corresponding prediction System 6.2 operates on estimates of the 

magnitude of the ty,., ). 

The estimator forms an estimate r, ' of the received sample r,, given by Eqns. 6.3.3 - 
6.3.4. It then forms the error in the estimate of the received signal, given by Eqn. 

6.3.6. The estimator forms either the growing-memory or the fading-memory 

average xi. t. 
for h=O, 1, g. In , of the mean square absolute value of yýj 

'2 

particular, the growing memory average xj2, is now given by 

22 . -1 X2 1, xi, h xi 
- 1, h+I 

(I 
yl ., i -1, h 

f 
i- 

and the fading memory average x, 2, is given by 

222 
Xi Xi 

- 1, h+a 
(I 

yi" i- 1', 
Xi 

where a is positive real-valued constant such that 0<a<1, and 

2 
Xo, h YO, 

-I, h 

for h=0,1, ..., g. Y,,, 
_, 

is determined by a training signal that precedes the 

transmission of data. 

The estimator next forms an update of y,,, -,,, using Eqn. 6.3.23, 

+ bui, heis* .... 
6.4.4 yi, h yi, i-l, h i-h 

where 

P (Xi2 .... 
6.4.5 Ui, h h) 
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P(Xi', ) , as before, is a monotonically non-decreasing Positive real-valued func on of ti 
Xi2 In system 6.2, u varies with according to Fig. 6.4.1. In all the tests, (g+j), ih 

the total number of components in the sampled impulse-response of the channel is 
taken as 32. However, with the particular I-IF radio link tested, the last ten 
components of Y, are all ideally equal to zero. This has lead to the non-adaptive 
version of system 6.2, in which the number of components of Yj', j_, is reduced to 22, 
by simply setting to zero its last ten components and operating system 4.2 with the 
corresponding 22 component vector Yil,, -,. 

Eqn. 4.4.1 is now used in place of Eqn. 
6.4.4 for the gradient algorithm. The prediction of Yi+1 is determined, as before, by 
means of a degree-I least-squares fading memory prediction, using Eqns. 6.3.8 - 
6.3.11. The results of the computer- simulation tests on a model of a data 
transmission system are presented at the end of the chapter. 

6.5 SYSTEM 6.3 

System 6.3 is a simple modification of system 6.2. Just as system 6.2, system 6.3 

operates on the estimates of the magnitude of the [ y, ý, 
1. 

Just before the receipt of the received-signal r, the estimator has in store the one-step 
prediction YI -, of the vector Y.. The estimator first forms the gowing memory 
average using Eqn. 6.4.1, or the fading memory average using Eqn. 6.4.2, x, 2,, of the 
mean square absolute value of y, ', i-,,, for h=O, 1...... g. At the start of the estimation 
process 

2 
Xp, h YO, 

-l, h 

YO, 

-1 
is determined by a training signal that proceeds the transmission of data. 

The estimator next forms an estimate r, ' of the received sample r,, using Eqn. 6.3.3. It 

then measures the error in the estimation of the received signal using Eqn. 6.3-6. 

The estimator next forms an update of yi, i-,,, using 

+b eis yi, h Yi, i - 1, h Ui, h i-h . 6.5.2 
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i, h 

k0 

k1 

Fig. 6.3.1 - Variation of u iýl With z ih 

u i, h 

k2 

k1 

Fig. 6.4.1 - Variation of u ih With X i, h 
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where b is an appropriate real-valued scalar constant and 

(X 2 
ui, h P i, h) 

p (x 2h) 

j, is a monotonically non-decreasing positive real-valued function of In 

system 6.3, u,,, and x. are related according to Fig. 6.5.1. Over the linear region ui., 
and x ihsatisfies the relation 

Ui, h Cxi, h 

and ui,, is such that 

K, < ui, h < K2 

In Eqn. 6.5.4, c is an appropriate positive real-valued constant. 

An interesting arrangement of system 6.3 is that a in Eqn. 6.4.2 is set to unity so that 

i, h 
I 

Yi, i-I, h 
12 

. 6.5.6 

and no averaging is in fact carried out. The one-step prediction of Y, is determined 

using Eqns. 6.3.8 - 6.3.11. 

6.6 SYSTEM 6.4 

System 6.4 also makes use of the estimate of the magnitude of the [ yix I- 

The estimator holds in store the one-step prediction Yilj, of the vector Y, just before 

the receipt of r,. It forms the growing memory average, Eqn. 6.4.1, or the fading 

memory average, Eqn. 6.4.2, of the mean square absolute value of y,!, j_,, A,, for h=O, 1, 

g. At the start of the estimation process, it is assumed that Y,,, 
_,, 

is known, being 

determined by a training signal that precedes the transmission of data. Thus 

2h= 
Yo, 

-i"h 
F 

.... 6.6.1 
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The estimator forms an estimate of the received signal using Eqn. 6.3.3 and 
measures the error in the estimation of the received signal using Eqn. 6.3.6. It then 
forms an update of y, ý,,,, using Eqn. 6.4.4. One-step prediction of Y1+1 is then made 
by the estimator using Eqns. 6.3.9 - 6.3.11. In Eqn. 6.4.4, u and are now related 
according to Fig. 6.6.1, for system 6.4. Over the curved portion of the relationship 
in Fig. 6.6.1 ý 

0.5 
ui, h cxi, h 

where c is an appropriate positive real-valued scalar constant. 

The value of uiI is constrained such that 

uj,, ý < K2 

where K, and K, are appropriate positive real-valued constants. The nonlinear 
variations of u,, bwith xj% here prevents u, from becoming too large so that it is not, in h 

fact, necessary to limit the maximum value of u,, h. System 6.4 has been studied for 
both fading-memory averaging and growing-memory averaging of xj2 , and the results 
of the computer-simulation tests on a model of a digital data transmission system are 
presented in Section 6.8. 

6.7 SYSTEM 6.5 

System 6.5 is a simple modification of system 6.4. On receipt of r, the estimator 
holds in store the one-step prediction Yj',, _, of the vector Yi. System 6.5 first forms the 
fading-memory average using Eqn. 6.4.2, or the growing-memory average using 

.,, of the mean squared absolute value of yý, _, 
for h =0,1 . ..... g. An Eqn. 6.4.1, xj2 8, 

estimate of the received signal is formed using Eqn. 6.3.3 and a measure of the error 

in the estimation of the received signal obtained using Eqn. 6.3.6. Now system 6.5 

forms an update of using Eqn. 6.4.4. Here in Eqn. 6.4.4, b is an appropriate 

scalar constant and u and x, 2, are related according to Fig. 6.7.1. Over the curved i, h 
portion of the relationship in Fig. 6.7.1 
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11 
24x2 Ui, h 

(Xi, 
h) i, h 

The value of u ih is constrained such that 

K, < ui, h ,:: K2 

.... 6.7.2 

where K, and K, are appropriate positive real-valued constants. It is not necessary to 
limit the maximum value of u ihý owing to the nonlinear variation of u and x, 2,, as can i, h 

been seen form Fig. 6.7.1. This prevents U. from becoming too large. 

System 6.5 makes a one-step prediction of Y, 
+, using Eqns. 6.3.8 - 6.3.11. As a 

variation to the algorithm of system 6.5, no prediction is made and the updated 
estimates given by Eqn. 6.4.4 is now used. This arrangement is therefore called 
system 6.5 (Degree-zero), whereas the former is called the system 6.5 (Degree-one). 

6.8 RESULTS AND ANALYSIS OF COMPUTER-SIMULATION TESTS 

Computer- simulation tests have been carried out on the systems 6.1 - 6.5. The 

results of the tests are given in Tables 6.8.1 - 6.8.9 and in Figs. 6.8.1 - 6.8.3. The 

mean-square error in YIi-, is measured in dB relative to unity, and is given by 

1 60000 

41 10 loglo -II Yi - ylý'i 
-1 .... 6.8.1 

(56000 

i= 4001 

where the mean-square value of I Yj I is unity. The first 1000 of the received sample 
in any test are ignored to allow the stabilization of the fading and additive noise 
processes. During the next 3000 received samples the estimation process operates as 
described, with a good starting-up procedure, but no measurements are carried out. 
This eliminates the effect of any transient behaviour of the estimator at start up. 
Over the following 56000 received samples, ý, is evaluated according to Eqn. 6.8.1. 

Thus ý, gives a measure of the steady-state performance of the estimator, which is 

here taken to be its performance during the prolonged and uninterrupted trans- 

mission of the data signal. 

130 



ih 

Ko 

K1 

Fig. 6.7.1 - Variation of ui, h WithX 
2 
i, h 

131 

x2 1, 



The signal/noise ratio is measured as V dB, where 

I 

10 loglo 1 No 2 

Eqn. 6.8.2 uses the fact that the average transmitted energy per bit at the input and 
output of the IIF radio link is unity, and the two-sided power spectral density of the 
additive white Gaussian noise at the output of the HF radio link is ! N,,. 2 

In each of the Tables 6.8.1 and 6.8.9, the adjustable scalar parameters have been 

optimized as far as possible to minimize ý,. In a particular case, for each of systems 
6.1 and 6.3 (Tables 6.8.1 and 6.8.3), no averaging is applied in the evaluation of z,,, 
and x ihý respectively, such that a=1 in Eqns. 6.3.17 and 6.4.2. Each system is now 
approximately optimized, subject to the condition a=1 in the fading-memory 

algorithm. Again, for the first half of the results in Table 6.8.1, b is fixed at unity. 

Three different values of V (20,30 and 60 dB) have been used in the tests, where the 

values 20 and 30 dB are such that a significant number of errors in detection of the 

received data symbols are likely to be caused from time to time by the additive 
noise, whereas the value 60 dB represents a high signal/noise, where the fading 

predominates over the noise. System 6.5 has, however, been tested at additional 
values of V (10 and 40 dB). 

Table 6.8.6 shows the performance of system 6.5 incorporated with a degree-one 

predictor, whereas, Table 6.8.7 shows the performance of system 6.5 without the 

predictor. In Tables 6.8.6 - 6.8.9, the parameter ý,, is a measure of the actual error in 

Yil,, -,, given Eqn. 6.8.1, whereas, the parameter ý, is a measure of the normalized or 

relative error in YIi-,. ý, is given by 

10 
1 60000 

1 
Yj 

log, -I 0 56000 i= 4001 I Yi r .. 6.8.3 

System 6.5, in Tables 6.8.6 and 6.8.7, uses the fading memory average )ý,, of the 

mean squared absolute value of yi, i-,,,, for h=O, 1....... g, given by Eqn. 6.4.2. 

Tables 6.8.8 and 6.8.9 show the performance of system 6.5 with a four Rayleigh 

fading sky waves. The scalar constants, for system 6.5, have been optimized for a 

- 
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three sky wave channel. Three of the sky waves are exactly as previously assumed, 
and the fourth sky wave has a frequency spread of 2 Hz and a transmission delay of 
4 ms. relative to that of the first sky wave. The average signal power received from 
the fourth sky wave is 20 dB below that received from each of the others, so that the 
average energy per bit at the output of the HF radio link is now a little above unity. 
The parameters measured in Tables 6.8.8 and 6.8.9, are ý, and ý,, using Eqns. 6.8.1 
and 6.8.3 respectively. Table 6.8.9 shows the performance of system 6.5 when the 
channel is introducing uncorrelated noise, in Eqn. 6.2.1. 

The good performance achieved by system 6.1 suggests that the basic mechanism 
behind the improvement in performance of systems 6.2 - 6.5 over system 4.2 
(Chapter 4), is, at least in part, due to the fact that systems 6.2 - 6.5 are better able to 
correct an error in Y, ', j, caused by an acceleration in Y,. In system 6.2 there are a 
series of local minima in the value of ý,, as the parameters are varied, instead of a 
single global minimum. This has led to some difficulty in the selection of the 
parameter values in the Table 6.8.2. 

The rather similar performances of system 6.2 - 6.5 suggest that the precise 
relationship between u,,, and x,,, is not critical, so long as the general form of the 

relationship does not differ too much from that for system 6.5. In a practical 
implementation of any of these systems, u,,, would be determined from x. by means 
of a look-up table, so that the complexity of the relationship between u, h and x,., is of 
no great practical significance. 

The growing-memory averages would not be suitable for a practical application of 
the system, since a drift in phase of the timing waveform at the receiver could 
introduce considerable changes into the relative peak magnitudes of the different 

components of Yi. and contrary to the case of fading-memory averages, these would 
not be tracked by the growing-memory averages. The latter have, however, been 

studied as a check for the effectiveness of the former, because, in the absence of any 
shift in timing phase or change in fading statistics, the growing-memory averages 
can be taken to be optimum. 

Tests have been carried out with system 6.5, for two different values of K, and also 

two different values of a (Table 6.9.5). A very near good performance is obtained 
here, particularly when KI= 10-6 and a=0.01. System 6.5 has similar performances 

with a three sky wave and with a four sky wave channel, as can be seen from Tables 
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6.8.6 and 6.8.9. Fig. 6.8.1 shows the variation of ý, and ý2with xv for system 6.5 
(Degree-zero) and system 6.5 (Degree-one) and Fig. 6.8.2 compares system 6.5 for 
the two different measurement of errors given by Eqns. 6.8.1 and 6.8.3. From the 
plots it can be seen that the relative performance of the systems are not significantly 
affected by whether ý, or ý2 is used as a measurement criteria. Further tests have 
been carried out with statistically independent noise components I wj in Eqn. 6.2.1, 
in place of the slightly correlated noise components actually obtained at the output of 
the receiver filters. Tests have shown that there is only a negligibly small difference 
in the observations. Thus the correlation in the noise components does not appear to 
have any significant effect. Fig. 6.8.3 shows the steady state performance of system 
6.5 at xV = 60 dB. 

The most promising of the various systems studied here is system 6.5, which gains 
considerable advantage over system 4.2 in tolerance to additive white Gaussian noise 
at all signal/noise ratios. The fact that system 6.1 has a performance almost as good 

as that of system 6.5 suggests that at least a part of the basic mechanism behind the 

good performance of system 6.5 is its ability to track the accelerations in Y, more 

accurately than can system 4.2. 
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TABLE 6.8.1 MEAN SQUARE ERROR IN THE ESTIMATED SAMPLED IMPUL- 
SE-RESPONSE OF A3 SKY WAVE CHANNEL FROM SYSTEM 6.1 

Averag- 
ing 

b 0 KO K, K2 a 

(dB) 
Growing 20 1 1.0 0.97 0.043 10-6 

00 -23.1 
memory 30 1.0 0.96 0.035 10-6 

00 -30.2 
60 1.0 0.92 0.030 10-6 

00 -41.3 
Fading 20 1.0 0.97 0.043 10-6 

00 0.25 -23.1 
memory 30 1.0 0.96 0.035 10-6 

00 0.11 -30.2 
60 1.0 0.92 0.030 10-6 

00 0.42 -41.2 
Fading 20 1.0 0.97 0.043 10-6 

00 1.00 -22.3 
memory 30 1.0 

. 
0.96 0.035 10-6 

00 1.00 -29.8 
60 1.0 0.92 0.030 10-6 

00 1.00 -40.9 
Growing 20 - 0.9 0.97 0.043 10-6 

00 - -23.3 
memory 30 1.1 0.96 0.035 10-6 

00 -30.2 
60 1.2 0.92 0.030 10-6 

00 - -41.7 
Fading 20 1 .0 0.97 0.043 10-6 

00 0.25 -23.1 
memory 30 1.1 0.96 0.035 10-6 

00 0.11 -30.2 
60 1.2 0.92 0.030 10-6 

00 0.42 -41.6 
Fading 20 

. 
0.8 0.97 0.043 10-6 

00 1.00 -23.3 
memory 30 1.1 0.96 0.035 10-6 

00 
1.00 

-29.8 
60 1.2 

. 
0.92 

. 
0.030 10-6 

00 

A 
1.00 -41.0 
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TABLE 6.8.2 MEAN SQUARE ERROR IN THE ESTIMATED SAMPLED fMPUL- 
SE-RESPONSE OF A3 SKY WAVE CHANNEL FROM SYSTEM 6.2 

Averag- 
ing 

b 0 do K, K2 1 
a 

(0) 
Growing 20 1.0 0.960 4x 10-5 10-6 0.120 -, )1 

memory 30 1.0 0.947 4x 10-5 10-6 0.086 -29.0 
g=31 60 1.0 0.900 10-1 10-6 0.130 - -40.6 

Fading 20 1.0 0.960 4x 10-6 10-6 0.170 0.04 -23.1 
memory 30 1.0 0.947 3x 10-6 10-6 0.086 0.02 -29.0 

g=31 60 1.0 0.940 2x 10-6 10-6 0.240 0.02 -37.2 
Non- 20 0.15 0.970 - - -21.1 

Adaptive 30 0.12 0.950 -27.8 
u ih =1 
g=21 

60 0.15 0.930 -36.8 

TABLE 6.8.3 MEAN SQUARE ERROR IN THE ESTIMATED SAMPLED IMPUL- 
SE-RESPONSE OF A3 SKY WAVE CHANNEL FROM SYSTEM 6.3 

AVERAG- 
ING 

Nf b 0 c K, K2 a 

(dB) 

Growing 20 1 1.0 0.985 2.8 10-1 0.72 -22.4 
memory 30 1.0 0.977 2.8 10-5 0.64 -29.2 

60 1.0 0.954 19.4 0.02 0.48 - -40.3 
Fading 20 1.0 0.985 2.8 10-5 0.72 0.95 -21.9 

memory 30 1.0 0.977 2.8 10-, 0.64 0.95 -28.1 
60 1.0 0.954 19.4 0.02 0.48 1.00 -38.0 

Fading 20 1.0 0.985 2.8 10-1 0.72 1.00 -21.9 
memory 30 1.0 0.977 2.8 10-5 0.64 1.00 -28.1 

60 1.0 0.954 19.4 0.02 0.48 1.00 -38.0 
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TABLE 6.8.4 MEAN SQUARE ERROR IN THE ESTIMATED SAMPLED INI- 
PULSE RESPONSE OF A3 SKY WAVE CHANNEL FROM SYS- 
TEM 6.4 

Averaging b 0 c K, K2 a 

(ffý) 
Growing 20 1.0 0.985 0.90 0.001 00 -21.6 
memory 30 1.0 0.976 0.80 0.001 00 -28.7 

60 1.0 0.951 0.72 0.003 coo -40.3 
Fading 20 1.0 0.985 0.90 0.001 00 1.00 -22.0 

memory 30 1.0 0.976 0.80 0.001 00 1.00 -28.8 
60 1.0 0.951 0.72 0.003 00 1 1.00 -40.2 

TABLE 6.8.5 MEAN SQUARE ERROR IN THE ESTIMATED SAMPLED IMPUL- 
SE-RESPONSE OF A3 SKY WAVE CHANNEL FROM SYSTEM 6.5 

AVERAG- 
ING 

b 0 KO K, K2 a 

(dB) 
Growing 20 1.0 0.985 0.063 10-6 00 -23.6 
memory 30 1.0 0.976 0.064 10-6 

00 -30.6 
60 1.0 0.950 0.024 10-6 

00 -43.7 
Fading 20 1.0 0.985 0.063 10-6 

00 0.01 -23.2 
memory 30 1.0 0.976 0.064 10-6 

00 0.01 -30.3 
60 1.0 0.950 0.024 10-6 

00 0.01 -43.4 
Fading 20 0.86 0.985 0.063 0.001 00 0.01 -22.3 

memory 30 0.86 0.976 0.064 0.001 00 0.01 -28.8 
60 0.78 0.950 0.024 0.001 00 0.01 -40.0 

Fading 20 1.0 0.985 0.063 10-6 

00 1.0 -23.1 
memory 30 1.0 

1 
0.976 0.064 10-6 

00 1.0 
- 

-29.5 
60 1.0 1 0.950 0.024 10-6 1.0 1 

-42.2 
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TABLE 6.8.6 MEAN SQUARE ERROR AND MEAN SQUARE NORMALIZED ERROR 
IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A3 SKY 
WAVE CHANNEL FROM SYSTEM 6.5 (DEGREE ONE) 

b 0 Ko K, K7 a 

(dB) 

ý2 

(dB) 
10 1.0 0.990 0.063 1 (Y-6 

00 0.01 -16.2 -14.9 
20 1.0 0.985 0.063 1()-6 

00 0.01 -23.2 -21.9 
30 1.0 0.976 0.064 10-6 

00 0.01 -30.3 -29.0 
40 1.0 0.970 0.064 10-6 

00 0.01 -35.8 -34.4 
0.950 1 0.024 1 10-6 

1 

C>o 
1 (). ()l i 

-43.4 
1 

-42.7 
1 

TABLE 6.8.7 MEAN SQUARE ERROR AND MEAN SQUARE NORMALIZED ERROR 
IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A3 SKY 
WAVE CHANNEL FROM SYSTEM 6.5 (DEGREE ZERO) 

b Ko K, K2 a 

(dB) 

ý2 

(dB) 
10 0.02 0.001 1()-6 

00 0.01 -15.595 -14.299 
20 0.05 0.003 io-, 1 00 0.01 -21.835 -20.646 
30 0.08 0.002 10-6 

00 0.01 -26.737 -25.522 
40 0.11 0.003 1()-6 

00 0.01 -29.625 -28.553 
60 

1 
0.11 

1 
0.002 1 10-6 

00 0.01 -30.297 -29.098 
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TABLE 6.8.8 MEAN SQUARE ERROR AND MEAN SQUARE NORMALIZED ERROR 
IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A4 SKY 
WAVE CHANNEL FROM SYSTEM 6.5 (DEGREE ONE). 

b 0 Ko K, K2 a 

(dB) 

ý2 

(dB) 
10 1.0 0.990 0.063 10-6 

00 0.01 -16.3 -15.0 
20 1.0 0.985 0.063 10-6 

00 0.01 -23.4 -22.1 
30 1.0 0.976 0.064 10-6 

Oo 0.01 -30.4 -29.1 
40 1.0 0.970 0.064 10-6 

00 0.01 -35.4 -34.2 
60 1.0 0.950 0.024 10-6 

00 
0.01 

-42.8 -42.1 

TABLE 6.8.9 MEAN SQUARE ERROR AND MEAN SQUARE NORMALIZED ERROR 
IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A4 SKY 
WAVE CHANNEL FROM SYSTEM 6.5 (DEGREE ONE). THE CHAN- 
NEL INTRODUCING UNCORRELATED NOISE. 

b 0 Ko K, K2 a 

(dB) 

ý2 

(dB) 

10 1.0 0.990 0.063 10-6 
00 0.01 -16.4 -15.1 

20 1.0 0.985 0.063 10-6 
00 0.01 -23.5 -22.1 

30 1.0 0.976 0.064 10-6 
00 0.01 -30.4 -29.1 

40 1.0 0.970 0.064 10-6 
00 0.01 -35.5 -34.2 

1.0 0.950 0.024 10-6 0.01 -42.8 -42.2 
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CHAPTER 7 

EFFICIENT CHANNEL ESTIMATORS 

7.1 INTRODUCTION 

An estimation technique, that takes into account the knowledge of the basic structure 
of the HF channel, specifically the number of sky waves present in the channel and 
that the relative delays in transmission between the sky waves are fixed, is proposed 
in [89]. Computer- simulation tests over various fading channels, on the new 
estimation technique in [891, have shown that it gains a considerable improvement in 
performance over some more conventional estimators [20,35-36,50-59,62,77, 
83-84,87-89,103]. The much greater accuracy in the channel estimate given by the 
technique, enables satisfactory operation to be achieved over a model of an HF radio 
link, at substantially higher transmission rates than is possible with more conven- 
tional estimators [20,35-36,50,52-55,57,77,89]. All the estimators discussed in 
this chapter take into account the prior knowledge of the channel. Several estimation 
techniques are considered and in some of these a Kalman filter is incorporated into 
the system in such a way that the filters operates on only a few variable quantities 
and is, therefore, considerably less complex than conventional Kalman filters. 
Three different Kalman filters are studied, two of these being designed for a channel 
varying linearly (at a constant rate) with time and the third one being a conventional 
Kalman filter that is designed for a time invariant or very slowly time varying 
channel. All of these employ an exponential window and, therefore, operate with a 
fading memory. Performance of these estimators are compared through series of 
computer simulation tests and these are presented at the end of the chapter. 
Comparison of the results of this estimator with that of the feedforward estimator 
with prediction, shows a considerable superiority for the efficient channel estimator. 

7.2 MODEL OF DATA TRANSMISSION SYSTEM USED IN THE TESTS 

Fig. 3.5.1 shows the model of the data transmission system used in the tests. The 
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type of equipment filters used in the cOmPuter-simulation of the channel and the 
channel model are described in detail in Chapter 3. Chapter 2 describes the 
modelling of the channel and the particular type of channel used for the test. 

The received signal sample, at time t=iT, is given by (Eqn. 3.4.2) 

9 
ri I Si-hYi, h + Wi 

h=O 

yiST + Wi i 

where (Eqn. 3.4.4) 

Yi : --:: 
IAoAI---- Yi, 

g1 

and (Eqn. 3.4.5) 

Si 
--: 

Isi Si-i 
---- Si-gl 

Y. and S are (g+l)- component row vectors, and ST is the transpose of Si, (g+l = 32). 
1ii 

The vector Y,, represents the sampled impulse-response of the channel, at time t=iT. 
The signals rý and the detected data are fed to the channel estimator to give an 
estimate of the channel sampled impulse-response Yi, at time t=iT. Where 

Yi Yi, o Yo Yi, 
g .. 7.2.5 

The channel estimate obtained from the estimator is now fed to the detector to detect 

s, +1 when the next received signal rý+, is received by the detector. 

7.3 SYSTEM 7.1 

The estimator to be described, called the system 7.1, is the original estimator called 
the Improved channel estimator in [891. Data signal is transmitted via 3 independent 

sky waves and that the time delay introduced in transmission over each sky wave is 

taken to be fixed over the duration of the data signal. It is assumed that there is no 
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drift in phase of the timing sampling waveform at the receiver relative to the 
received signal. The resulting impulse-response of the combined transmitter and 
receiver filter extends over only a few sampling intervals and the rate of fading on 
the received data signal is very small compared with the signal element rate. Under 
the assumed conditions the sampled impulse-response Yj of the linear baseband 
channel, at time t=iT, approximately satisfies [89] 

Yj = XiL + ýtjM + viN .... 7.3.1 

where L, M and N are fixed (g+l)- component row vectors, with complex-valued 
components, and Xi , ýtj and vi are complex-valued scalars that vary with i. Each of 
the vectors XjL, ýty and viN is the sampled impulse-response of the channel, at time 
t=iT, when the corresponding one of the three sky wave is received in the absence of 
the other two. For any given value of i, the quantities Xi , ýtj and vi are statistically 
independent Gaussian random variables with zero mean and the same fixed variance. 
However, for neighbouring values of i, the JXjj, 1ý4-j and Ivil are highly correlated. 
The vectors L, M and N are linearly independent and, therefore, span a three-dimen- 
sional of the (g+l) dimensional unitary vector space containing all possible (g+l) 

component vectors JYJ [891. Since Yj is a linear combination of L, M and N, it must 
be in the three-dimensional subspace spanned by these. 

Thus if the receiver can determine the time invariant vectors L, M, and N, then by 
just estimating the variables \. , ýLi and vi the estimate of the sampled impulse-res- 

ponse of the channel Yj can easily be obtained. They are not normally orthogonal 
and do not bear a simple relationship. However, the vector Yj must lie in a 
three dimensional subspace spanned by L, M, and N, in the (g+i)- dimensional 

unitary vector space containing all (g+l)- component vectors over the complex field. 

Since L, M, and N are fixed, subspace spanned by the vectors is also fixed, so that 

the receiver needs only the estimate of the subspace. Consider three orthonormal 
(g+l)- component vectors A, B, and C that form a basis of the given subspace, such 
that 

Yj = ajA + biB + ciC 
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and, for the given vectors A, B, and C, Yi is uniquely determined by a,, b, and ci. The 
scalars a,, b, and c, and the components of A, B, and C are all complex-valued. The 
orthonormal vectors A, B, and C are all of unit length and may be selected quite 
arbitrarily, just so long as they lie in the given subspace. 

Just before the received signal rý. is fed to the estimator, the latter has formed the 
one-step prediction Yi1j, of the vector Yi. The estimator also holds estimate of A, B, 
and C, which are the (g+l)- component row vectors A,, B, and Ci. These are 
orthonon-nal vectors which span a three-dimensional subspace close to that spanned 
by A, B, and C. The estimator now forms an estimate (prediction) of the received 
signal r, given by 

T Yi"i-lsi I 

On receipt of r,, the estimator forms the error signal 

= r1 - 734 

and then the updated estimate of Y,, given by 

Yi' Yi', i-l + beiSi 

where b is a small positive real-valued constant and Y, is the complex conjugate of Si. 
Although Y, ', 

-, 
lies in the subspace spanned by A, ý B, and C,., Yi, does not usually lie in 

the given subspace. The estimator, therefore, forms the (g+l)- component row 
vector Fi that lie in the subspace, at the minimum unitary distance form YI. From the 

projection theorem [431, F, is the orthogonal projection of YiI on to the given 
subspace. It has been shown [89] that 

Fi = (xiAi + PiBi + yiCi 

where aj, Pi andy are obtained as foHows 

(xi = Y, Ai 
Pi = YilBi* 

, yi = Yi'ci* 

.. 7.3.6 

7.3.7 

. 7.3.8 

.. 7.3.9 
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A, ý B, and C, are not likely to lie exactly in the three- dimensional subspace 
containing Yi, moreover, the vectors L, M and N can vary slowly with time and, 
therefore, the subspace is unlikely to be stationary. It is for this reason that for the 
satisfactory operation of the estimator, the subspace spanned by A,, B, and C, must be 

adjusted adaptively to track the received signal in such a way that the new subspace 
spanned by the new vectors A, 

+,, 
B, 

+, and C, 
+1 

is more closer to Y, 1. The adjustment of 
the subspace is done in the following manner 

The vector 

Ei = Yil - Fi .... 7.3.1O 

is now taken to represent the error in the subspace spanned by A,, B, and C,, such that 

a three-dimensional subspace closer to that containing Y, is spanned by A,,,, B,,, and 
C, 

+,, where 

. Ei Ai, 1 = Ai + licci 
Bi += Bi + 11 ß, Ei i 
Ci +, = Ci + 11ýi Ei 

.... 7-3.11 

... . 7.3.12 

.. 7.3.13 

where TI is a small positive real-valued constant, and CL,, p, * and -fi* are the complex 

conjugate of (xi, Pi and y, , respectively. Clearly, E, is orthogonal to the given 

subspace and, therefore, to each of A,, B, and C, [89]. 

The estimator next determines the one- step predictions ai,,, i, pi,,, i and -yj,,, j of a, +,, 
b, 

+1 and ci+1 in Eqn. 7.3.2, for the case A=A, B=B,.,, and C=C, 
+,. 

Degree- 1 least 

square fading memory prediction is employed here [53-541, and ccj+,, j is determined 

from the following equations. 

CC4 i :, -- oci ai, i-i 

0)2E 

and 

(Xi + I, i ai, i -I+ Oýi + 1,1 + 02)Ecýi 

.. 7.3.14 

.... 7.3.15 

... 7.3.16 
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F_, j is the measured error in cci, i-,, 0 is a real-valued constant in the range 0 to 1, and 
aý.,, is the one-step prediction of the rate of change with i of a, +,. 

The estimator here 

assumes that ajý b, and c, in Eqn. 7.3.2 vary linearly (at a constant rate) with i. Finally 
the estimator forms 

Yl i+I'l Yi+l, i i+l .... 7.3.17 

which is the one-step prediction of Yj, ready for the next estimation process on 
receipt of ri,,. Yj(j_, in Eqns. 7.3.3 and 7.3.5, is of course given by Eqn. 7.3.17 with i 

replaced by i- 1 

A retraining process is normally carried out after every one or two thousand received 
samples (r, ) using an appropriate training signal [51,911, and, during this operation, 
the Gram-Schmidt orthonormalization process (Appendix E) is applied to A,, B, and 
C, to hold them accurately orthonormal [89]. It is not, however, necessary to 

orthonormalize the vectors more frequently, and the results of computer-simulation 
tests in fact suggest that substantially less frequent orthonormalization could well be 

used [891. The basic algorithm for system 7.1 is given by Eqns. 7.3.3 - 7.3.17. 

7.4 SYSTEM 7.2 

System 7.2 is a simple modification of system 7.1 in which equations 7.3.14 - 7.3.16 

are replaced by 

(Ii, i-I ---ý (Ii -I .... 7.4.1 

and similarly for Oj, j-, andyi, i-,. The remainder of the algorithm of system 7.2 is the 

same as for system 7.1. The assumption made here is that a,, b, and c, are time 
invariant or are varying very slowly with time [55,57]. Thus prediction algorithm is 

not applied to the scalar quantities a, P andy. System 7.2 can, therefore, be called as 

system 7.1 without prediction. 
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7.5 SYSTEM 7.3 

System 7.3 is a development of system 7.1 in which a number of changes are made 
to the algorithm. The estimator first forms the fading memory average of the 
mean square absolute value of y,,, -,,, 

for h=O, l . ..... g, given by (as explained in 
Chapter 6 and in [62]). 

Xi, h Xi 
- 1, h+a 

(1 
.... 7.5.1 

22 
Yii-l, h Xi2- 1, h) 

and at the start of the estimation process 

.2 xo, h YO, 
-I, h 

where a is a real-valued constant, which has the value 0.01 here and YO, 
_1 

is 
determined by a training signal that precedes the transmission of data. Eqn. 7.3.5 is 

then replaced by the following equation: 

+b ui, heis Yi, h Yi, i-l, h i-h 

for h=0,1 . ..... g, where u,., is related to x,,, according to Fig. 6.7.1. Over the curved 
portion of the curve in Fig. 6.7.1, 

x i, h i, h h) .. 7.5.4 

Further details of Eqns. 7.5.1 - 7.5.4 are given in Chapter 6. The estimator next 
forms the (g+1) - component row vector 

Fi = Yi'Ai*Ai + Yj'ýB, *Bl + Yi'Ci*Ci .... 7.5.5 

which is the orthogonal projection of YI on to the subspace spanned by A,, B, and C,, 

as can be seen from Eqns. 7.3.6 - 7.3.9. Again from equations 7.3.7 - 7.3.13, the 

estimator forms 
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Ei = Yil - Fi 

Ai, l = Ai + llAi(Yil)*Ei .... 7.5.7 
Bi+l = Bi + llBi(Yil)*Ei .... 7.5.8 
Ci, l = Ci + llCi(Yil)*Ei .... 7.5.9 

as before. However, the quantities aj, Pi and yj are not given by equations 7.3.7 - 
7.3.9, for which reason they have been omitted from Eqn. 7.5.5 and equations 7.5.7 

-7.5.9. They are, instead, determined independently by a technique that is derived as 
follows 

Suppose that S, in Eqn. 7.2.4 satisfies 

Si s., iAi + sb, iBi + sc, iCi + ui 

where s..,,, s bj and s., are appropriate scalars, and 

AjUi *= Bi i= Ci Ui = 

u, and u, * are the complex conjugate and conjugate transpose, respectively, of Ui, and 
similarly for Ai, Bi and C,. It is evident that U, is orthogonal to each of A,, B, and C,, 

so that it is also orthogonal to 

A+ Pi, i ci Yi"i-l (Xi, i-i i -, 
Bi + yi, i-l .. 7.5.12 

which is the one-step prediction of Y,. Therefore, from Eqns. 7.5.10 - 7.5.12 

T Yi', 
i-lSi : -'- (Xi, i-lSa, il Ai F+ Pi, 

i-lSb, il Bi F 

^ti, i-iS. li'l 
Ci F 

or 

Pi, 
i-lSb, i .. 7.5.13 

bearing in n-dnd that A,, B, and C, form an orthogonal set of vectors in a unitary 

vector space. Now let 
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i-1=I (Xi, i-I pi'i-I 1 

and 

si =I Sa, i Sb, i Sc, 
i1 

From equations 7.5.10 and 7.5.11, the following relations can be obtained 

T 
Sa, i ii.... 7.5.16 

T 
Sb, i=ii.... 7.5.17 

= SiCT Sc, i i .... 7.5.18 

The estimate of the received signal from Eqns. 7.3.3,7.5.13 - 7.5.18, is given by 

/T 
ri' = Fj" i-1 (S, ) 

The error in the estimation of the received signal is 

ri - r,,. 

and the updated estimate 

Fil =[ (xi Pi Yj I 

is given by 

.. 7.5.19 

.... 7.5.20 

. 7.5.21 

Fil = Fj"j_j + blej MSil 
.... 7.5.22 

according to the gradient algorithm, as in Eqn. 7.3.5. The parameter bl is a small 
positive real-valued constant. 

The estimator next determines the one-step prediction Fj',,, j using degree-1 least 

square fading memory prediction [53-54], in the following manner 

ei = FI - Fýi 
Fll 1, i i+ = Fll i, i 1 

)2Ei 

Fil i+1, i -- Filý + i, i -1 Fill, i+ ti + 02 

.... 7.5.23 

.... 7.5.24 

.... 7.5.25 
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where the vector Ej is the measured error in FjIj_, 0 is a real valued constant in the 
range 0 to 1 and the vector F, ",,,, is the one-step prediction of the rate of change with i 
of a, +,,, 

b, 
+, and c, +, respectively in Eqn. 7.3.2. Finally the estimator forms 

(xi+,, iAi+l + Di+,, iBi+l + yi.,,,, C, +, .... 7.5.26 

where ccj,,, j, pi,,, i andyi,,, i are the elements of the vector FjI, j. The basic algorithm of 
system 7.3 is, therefore, given by Eqns. 7.5.12,7.5.14 - 7.5.22,7.5.1 - 7.5.9,7.5.23 - 
7.5.26. 

An important difference between systems 7.1 and 7.3, is that system 7.3 uses an 
additional set of operations, given by equations 7.5.14 - 7.5.25, to evaluate cci, Pi and 
, yi, instead of evaluating these from YiI in (Eqns. 7.3.7 - 7.3.9). Thus, in system 7.3, 

the quantities eci, Pi and -yi are determined independently of YI. The modification 
introduces greater flexibility into the algorithm and provides additional decoupling 
(isolation) between scalars (xi, Pi and -yi and the vectors A,, B, and Ci. Another 
important difference between systems 7.1 and 7.3, is that a more effective algorithm, 
given by equations 7.5.1 - 7.5.4, is used in system 7.3 to determine YI and hence to 

adjust the orthogonal vectors A,, B, and C, in place of Eqn. 7.3.5 in system 7.1. 

7.6 SYSTEM 7.4 

This estimator is a simple modification of system 7.3. System 7.4 assumes that the 

sampled impulse-response of the channel is time invariant or varies only slowly with 
time. Thus it is assumed that 

Fil'i-, = Fil-I .... 7.6.1 

and the prediction algorithm, given by Eqns. 7.5.23 - 7.5.25, is not used by system 
7.4. The remainder of the algorithm, for system 7.4, are the same as for system 7.3. 
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7.7 SYSTEM 7.5 

System 5 is a development of system 7.3. The estimator first forms the fading- 

memory average x, 2, of the mean-square absolute value of y. --0 1...... g, as _,.,, 
for h 

given by [62]. 

22 
Xi, h Xi-l, h +a (I Yil, i-l, h Xi2-1, h) 

and 

2 
xo, h YO, 

-l, h 

where a is a real-valued constant, which has a value 0.01 here. An update of yil, j-, is 
formed using equation 

+ btli, 
h(ri - Y! T*.... 7.7.3 Yi, h Yi, i-l, h I, i-1si )si-h 

for h=O, I...... g, where u ih is relatedto Xih according to Fig. 6.7.1, and Eqn. 7.5.4. 
The one-step prediction Yil,,, i of Y,, using the degree-1 least squares fading memory 
prediction [53-54], is given by 

Eil = i 
yill yfl 2 

i, i-l + 

Yil. i+ Yill+ 1, i+ (1 - ie)Eil Yil+ 1, i 1,1-1 

Eil is the measured error in the update of Yil,, -,, -K is a real-valued constant in the range 
0 to 1, and Yj", j 

is the one-step prediction of the rate of change with i of Y,.,,. 

The estimator next forms the (g+l)- component row vector F,. 

Fi Yi,,, iAiAi + Yil,,, iBiBi + Yil,,, iCiCi .. 7.7.7 

An update of the subspace spanned by A,, B, and C, is next determined using 
equations 
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Ei = Yil+ 1, i - Fi 

Ai+I = Ai + ilAi(Yi/�, i) Ei 
Bi+, = Bi + TlBi(Yil+�i)*Ei 
ci+l = Ci + llCi(Yil+�i)"Ei 

From equations 7.5.10 - 7.5.19, the estimate of the received signal, ril, is 

1 (si) 

where, Fili-, and sil are given by Eqns. 7.5.14 and 7.5.15 respectively. 

The estimator next forms the updated estimate, Fl , given by ( from Eqns. 7.5.20 - 
7.5.22) 

Fil = Fi, i+ blei rS, st I i) 

The estimation algorithm of system 5, next determines the one-step prediction of FI, 
using a degree-1 least squares fading memory prediction, given by 

Fill, 1, i = Fll + (1 - 0)2 [FI - FI 
.. 7.7.14 

Fil -- F! i+ Fill, + (1 -02) [Fil - Fýi i+l, i 1, i-1 i+I, i J, -11 

Finally the estimator forms 

'yi+,, iCi+l 

which is the same as Eqn. 7.3.17 but Z, 
+,, used in place of Yil+,,, , to avoid confusion 

with Yil+,. i in Eqn. 7.7.6. The algorithm given by (7.7.1) - (7.7.6) and (7.7.7) - 
(7.7.16) is now quite independent of the rest of the algorithm of system 5. It is 

evident that Y, '+,, i is no longer constrained to lie in the three-dimensional subspace. 
Use of Eqns. 7.7.1 - 7.7.6 should further improve the ability of the vectors A,, B, and 
C, to track variations in the three-dimensional subspace, particularly when the 

estimator employs an incorrect model of the HF radio link. 
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7.8 SYSTEM 7.6 

This system is based on the application of Kalman estimation technique to system 
7.3. An important property of systems 7.3 and 7.4 is that the evaluation of aj, pi and 
yj from (xi, Pi, and y, -, 

involves only the use of three-component vectors, which 
means that the gradient estimator here can be replaced by a Kalman-filter, without 
resulting in any undue increase in equipment complexity. System 7.6, employs a 
recursive least-squares (RLS) Kalman filter [103] to determine cci, Pi and -yj in place 
of the gradient algorithm with prediction used in system 7.3. Thus Eqns. 7.5.22 - 
7.5.25 in system 7.3 are now replaced by the Kalman-filter algorithm. The 

assumption made here is that a,, b, and c, in Eqn. 7.3.2 vary linearly (at a constant 
rate) with i. Furthermore, it uses an exponential window (a fading memory) and 
attempts to minimize the quantity 

h 
ch I co 

hI 
ri - VYiT 

i=O 

where 

vi = (xi pi -yi cei Wi ýi 1 
.... 7.9.2 

Xi = Sa, i Sb, i Sc, i 

and co is a positive real-valued constant in the range 0 to 1. vixiTin Eqn. 7.8.1 is an 
estimate of r,. The parameter ai, Pi and yi in Eqn. 7.8.2, are the estimates of a, b, and 
c, respectively, as before, and aý, fVi and Y, are the estimate of the rate of change with i 

of aý., b, and c,,, respectively. It is assumed in Eqn. 7.8.1, that the estimator started 
operation on the receipt of r,, and that r, has just been received. Consider now the 6x 
6 matrix 

0 0 0 0 0 

0 1 0 0 0 0 
0 0 1 0 0 0 

i 0 0 1 0 0 
0 i 0 0 1 0 

-0 
0 i 0 0 1. 

7.8.4 

where i is a positive or negative integer or zero. The parameter C, in Eqn. 7.8.1 can 
then be taken to be 
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h 
ch = 1: rvxT 

12 
, (0 A-h 

i 
i=O 

If P, 
_, 

is the appropriate 6x6 positive-definite Hermitian matrix, the Kalman-filter 

algorithm becomes 

pi, i-I = o*ipi_ioi 

Ki = (o)+XiPi, i -, 
Xi') XiPi, i-l 

Pi = cd-'Pi, i-, (I - Xý T Ki) 
Vi = Vi, 

i-l + (ri - Vi 
i IXi )Ki 

Vi+l, i viol 

where K, is a row vector, I is a identity matrix, o, is the conjugate transpose of 0, Yi is 
the complex conjugate of X,, and xiTis the transpose of X,. All the vectors here have 

six components and all matrices are 6x6. The algorithm given by Eqns. 7.8.6 - 
7.8.10 is derived from first principle in Chapter 5 [103] and is consistent with the 
corresponding algorithms in [20] and [83]. The basic algorithm for system 7.6 is 

now given by Eqns. 7.5.12,7.5.16-7.5.18,7.8.2-7.8.4,7.8.6-7.8.10,7.5.1-7.5.9 and 
7.5.26, where 7.5.26 is determined from Eqn. 7.8.10 and from Eqns. 7.5.7-7.5.9. 

7.9 SYSTEM 7.7 

System 7.7 is a modification of system 7.6. Here in system 7.7 as well, the scalars 
(xi, Pi andy are determined using the RLS Kalman-filter algorithm using Eqns. 7.8.6 

to 7.8.10. All the vectors here are, however, 3- component vectors and all matrices 
are 3x3. The vector V, is now given by 

Vi =I (xi, i-I pi, i-i yi, i-l 1 .... 7.9.1 

and the vector X, is now replaced by 

xi I Sa, i Sb, i Sc, i 1 

The transition matrix 0, is no longer given by Eqn. 7.8.4, and is now replaced by 
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qß, i 

where 

ai'i-I 

and similarly for qý, j and q, j- The quantity cci, j-, is here determined from aj, and 
ýYi-l, i-2 by Eqns. 7.3.14 - 7.3.16, and similarly for Pi, i-, and Yi, i-,. System 7.7 

otherwise operates in the same way as does system 7.6. The basic algorithm of 
system 7.7 is, therefore, given by Eqns. 7.5.12,7.5.16-7.5.18,7.9.1-7.9.4, 

7.8.6-7.8.10,7.5.1-7.5.9 and 7.3.14-7.3.17. System 7.7 assumes that the channel 
varies linearly with time. 

7.10 SYSTEM 7.8 

System 7.8 is a very simple modification of system 7.7, in which the transition 
matrix 0, in Eqn. 7.9.3, is replaced by the 3x3 identity matrix given 

1 0 0 
= 0 1 O 

0 0 1 
.... 7.10.1 

The system assumes that the channel is time invariant or varies very slowly with 
time so that the rate of change of a,, b, and c, in Eqn. 7.3.2 is assumed zero. Thus 

(li, i -I --.,: Oci -i .. 7.1O. 2 

Similar changes are applied also to Pj. j-, and yi, j 0 -,. 
The remainder of the algorithm of 

system 7.7 is left unchanged. The Kalman filter is now the conventional arrange- 

ment with an exponential window (fading memory). 
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7.11 STARTING UP PROCEDURE FOR THE ESTIMATORS 

Systems 7.1 to 7.9 require the knowledge of the initial subspace, spanned by AO, BO 
and CO. In addition, the systems also require the scalars or,, -,, 

DO, andy,, -, and their 
rate of change aý,, Po, -, and Y., and the initial estimate of the sampled impulse 

response of the channel Yl-,. Of course, the rate of change of scalars would not be 

essential for systems 7.2,7.4 and 7.8, as these systems assume that the channel is 
time invariant or varies only slowly with time. In Reference [36], a number of 
techniques have been suggested to obtain the initial subspace. The initial subspace 
spanned by AO, BO and CO may be determined as follows. Using a conventional 
estimation method, estimates of the sampled impulse response of the channel are 
obtained at three well spaced time instances, t=-2kT, t=-kT and t=O and let these 
estimates be iý,, , jý, and Y, ', , respectively. The constant k is a reasonably large 

positive integer, so that the estimates are significantly different and non-collinear. It 
is assumed that these estimates are reasonably correct and the constant k is chosen in 

such way that the HF channel is not in deep fade at that time instant. The estimates 
3ý2k 

, )ý, and Y. 1 are then orthonormalized, using Gram-Schmidt orthonormalization 
procedure (see Appendix E), to give the orthonormal vector 

Ao 1 lý2k r'Y'2* 

BI A(, )A 0 
Yýk )ýk 

0 

Bo IB/r 1 BI 00 
C/ yo/ - YýBo*BO - YýAJA0 0 
Co =1 Co r, Co, .... 7.11.5 

where the vectors AO* , B,, * and c, * are the conjugate transpose of the vectors A, B,, and 
CO respectively. The vectors A0, B,, and CO, therefore, form an orthogonal basis of the 

three-dimensional subspace spanned by yý,, , YI and Y, ',. The initial values of scalars 

(xi, j - 11 Pi, j -,, -yi, i -,, cci, Pi andy are then given by 

Cto, YýAO 
ßo, 

-i 
ßi YPO 

70, Yolco 

and the rate of change cý , P, and are set to 

.... 7.11.6 

.... 7.11.7 

.... 7.11.8 
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PO 1 
.... 7.11.9 

.... 7.11.10 

.... 7.11.11 

The initial estimate of the sampled impulse response of the channel, Y, /,, 
-,, 

is set to YO 

7.12 RESULTS AND ANALYSIS OF COMPUTER-SIMULATION TESTS. 

Computer- simulation tests have been carried out on the systems 7.1 to 7.8. The 
results of the tests are given in Tables 7.12.1 - 7.12.14 and in Figs. 7.12.1 - 7.12.11. 
Two different measures of the average error in Y, ',, 

-, , have been used in the tests. 
These are 

1 60000 

10 loglo -II Yi - Yil' i-17.12.1 54000 i= 6001 

1 

.. -- 

60000 yi - Y/ 
ii ý2 10 loglo 

2 54000 i =6ool yi I 

where the mean-square value of I Yj I is close to unity. The parameter ý, is a measure 
of the actual error in Y, ',, 

-,, whereas the parameter ý, is a measure of the normalized or 
relative error in Yjlj, During the first 6000 of the received samples in any test, 
starting up procedure is carried out according to Section 7.11. During the start-up 
the vectors A,, B, and Cý are adjusted to be orthonormal by means of the 
Gram-Schmidt orthonormalization. process [89], (Appendix E), which is not repeated 
over the remainder of the test. The starting-up procedure is followed by an 
appropriate period with no measurements, to ensure that there are no transients 
introduced during the start-up. Over the following 54,000 received samples, 
measurement of errors according to Eqns. 7.12.1 and 7.12.2 are carried out. 

In all the tests, except where stated, the estimates , V, and YI, are taken as their 

actual values 
Y-2kl'y-k 

and Yoý respectively. Where -2kT, -KT and T in the tests were 
200&h, 3500th and 5000thsampling instants. Thus, the orthogonal vectors A, B,, and 
Co derived from these estimates span the correct subspace containing Y. 2.1 Y-kand YO* 

In the tests the magnitude Of Y-W Y-k 
and Yo are 
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Yýu I=0.898 

r-k I=0.617 

Yo I=1.024 

and the angle between the vectors, being 

)ý-2k & Yo 72.38' 
)ý-k & Yo 62.9 8' 
)ý-2k & )ý-k 64.56 0 

A duration of 1000 sampling interval was considered sufficient for the stabilization, 
following start-up, after studying the results from the simulation tests and hence the 
actual measurements starts after the receipt of the first 6000 received samples. Thus 
ý, and ý, give a measure of the steady-state performance of the systems. 

The signal/noise ratio is measured as xV dB, where 

10 loglo 
2 .. 7.12.5 

Eqn. 7.12.5 uses the fact that the average transmitted energy per bit, at the input and 
output of the HF radio link is unity, and the two-sided power spectral density of the 

additive white Gaussian noise at the output of the HF radio link is ! N,. 2 

Tables 7.12.1 - 7.12.14 and Figs. 7.12.1 - 7.12.11 surnmarise the results of extensive 
computer- simulation tests. At every point on each curve, in Figs. 7.12.1 - 7.12.5, the 

appropriate parameters b and 0 or b' and 0 are adjusted, as closely as has been 

possible to determine within the available computer time, to their optimum value, 
which vary steadily over each curve. The three-dimensional subspace spanned by 

the vectors A,, B, and Ci is held fixed as the subspace containing YI over the initial 

training signal at the start of the test, the parameter il being set to zero, during this 

period. During the period when the actual error measurements are done, however, 

two values of il, 0.0 and 0.01, have been considered in the tests, unless otherwise 
stated. il = 0.0, represents the condition when the three-dimensional subspace, A,, B, 

and C, remain unchanged during the period of error measurements, whereas -n = 0.01 

represents the condition when the subspace is changed to neutralize the small drift in 

the subspace. The value of 0.01 is about as large as would be desirable for ii, in an 
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application where there are no more than three sky waves, and it permits adequate 
tracking of the expected drift in Y, with i caused by an error in the receiver timing 
sampling frequency [89,36]. A comparison of the Tables 7.12.1 - 7.12.14 and 
Figures 7.12.1 - 7.12.5 show that a substantial advantage in performance is gained 
by systems 7.1,7.3,7.6 and 7.7, which assume that the channel is varying linearly 
with time, over systems 7.2,7.4 and 7.8, which assume that the channel is 
time-invariant or varies only very slowly with time. 

Figs. 7.12.1 - 7.12.2 and Tables 7.12.1 and 7.12.3, show that, with 11 = 0, system 7.1 
has a slightly better performance than system 7.3, whereas, with T, = 0.01, system 7.3 
has better performance than system 7.1 over the whole range of signal/noise ratios 
tested, with a typical advantage of about 1 dB. Again, when 0< XV < 40, system 7.1 
has a noticeably better performance with il = 0.0 than with Tj = 0.01, with the 
difference in performance as much as 1.7 dB at 10 dB signal/noise ratio, whereas the 
performance of system 7.3 is effectively the same with the two values of -9 and here 
the difference is only of the order of 0.3 dB at 10 dB signal/noise ratio. The best 

performance here is given by system 7.1 withTI = 0.0. When V> 40, system 7.1 and 
7.3 show a much improved performance when 71 is set to 0.01 in place of 0.0. The 

reason for this is that Eqn. 7.3.1 only holds exactly if all shaping of the data signal in 

the demodulated waveform. r(t) is introduced at the transmitter [89]. Since the 
shaping of data signal is in fact shared approximately equally between the 
transmitter and receiver in Fig. 3.5.1, Eqn. 7.3.1 does not hold exactly. However, 

the discrepancy is quite small [89]. Checks on the operation of system 7.3 have 

confirmed that when, il = 0.01 and V= 60, the typical or average distance of Y, to the 
three-dimensional subspace is substantially smaller than when il = 0.0 and W= 60, 

and this appears to account for much of the improvement gained in setting -q. Thus 

when 71 = 0.01, the subspace spanned by A,, B, and C, approximately tracks the small 
variations in the corresponding subspace containing Yi. With systems 7.2 and 7.4, 

the performances are more or less the same with the two values of il. 

Fig. 7.12.5 shows the performance of systems 7.1,7.3 and 7.5 with four Rayleigh 
fading sky waves. Three of the sky waves are exactly as previously assumed, and 
the fourth sky wave has a frequency spread of 2 Hz and a transmission delay of 4 ms 

relative to that of the first sky wave. The average signal power received from the 
fourth sky wave is 20 dB below that received from each of the others, so that the 

average energy per bit at the output of the HF radio link is now a little above unity. 
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Each of the systems 7.1,7.3 and 7.5 here assume that there are just three sky waves, 
which are as previously described, and this means that the systems now employ an 
incorrect model of the HF radio link. 

The two curves, in Fig. 7.12.5, marked "System 7.1 not optimized" and "System 7.3 
not optimized" show the performances of systems 7.1 and 7.3, using a three-dimen- 
sional subspace as before, and with il = 0.01 and their other parameters having the 
corresponding values used in Fig. 7.12.1 and Fig. 7.12.2, respectively. A compari- 
son of these curves with those in Figures 7.12.1 and 7.12.2 shows the serious 
degradation in performance that is introduced by the fourth sky wave. 

The two curves, in Fig. 7.12.5, marked "System 7.1 optimized" and "System 7.3 

optimized" show the performances of systems 7.1 and 7.3, with four sky waves, 
where the parameter il, b, b' and 0 are appropriately optimized at each signal/noise 
ratios. However, a three- dimensional subspace is again used, so that the systems are, 
in fact, far from being fully optimized. A substantial improvement in performance is 

clearly achieved by the optimization process. 

The best performance in Fig. 7.12.5, particularly at high signal/noise ratios, is 

achieved by system 7.5. The parameters il, b, b', 0 and K are here appropriately 
optimized at each point of the curve, but a three-dimensional subspace is again used, 
so that the system is tested under the conditions equivalent to those for the previous 
two curves in Fig. 7.12.5. 

Fig. 7.12.3 shows the performance of system 7.5 over a three sky wave channel. 
Comparing the performances of system 7.5 with that of systems 7.1 and 7.3, in Figs. 
7.12.1 and 7.12.2, it is clear that whenTI = 0.00, all the three systems have a very 
similar performance. However, when il =0.01, then the performance system 7.5 
deteriorates, at least at high signal/noise ratios. The reason for this is that in the 

algorithm for system 7.5, Eqn. 7.7.6 used for the adjustment of the three-orthogonal 

subspace is obtained from an independent estimation process and Eqn. 7.7.16 

provides the channel estimate formed from the knowledge of the subspace. Thus as 
long as the subspace formed is correct, the adjustment of the subspace is better done 

in systems 7.1 and 7.3 and, therefore, provide the better channel estimate as 

compared to system 7.5. However, under incorrect start-up condition system 7.5 

provides better channel estimate, as is evident from Fig. 7.12.5. 
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Fig. 7.12.4 shows the performance of systems 7.6 - 7.8. These algorithm use RLS 
Kalman estimation technique. Tables 7.12.6 - 7.12.8 show the error measure and the 
optimum value of the parameters used in the algorithm. It is evident from Fig. 
7.12.4 that the performances of systems 7.6 - 7.8 are very similar to those of systems 
7.1 and 7.3. 

Table 7.12.14 shows the performance of system 7.5 over a three sky wave channel. 
The orthogonal vector A, B,, and C,, are, however, not determined from the actual 
sample values, 

Y-20 Y-k 
and Y, as described earlier, and are instead determined from 

the estimates rý, Yý, and Y. 1, given by Eqn. 7.7.6. The three-dimensional vector space 
is now formed from the noisy channel estimate. Under this condition, it is clear 
from Table 7.12.14, that there is a considerable improvement in the performance of 
system 7.5, when'n is set to 0.01, than when it is 0.0. 

Fig. 7.12.6 shows the steady-state performance of systems 7.3 and 7.4 at XV = 60 and 
,n=0.01. The y-axis parameter, Estimation error in dB, ýj, is the square of the error 
in the channel estimate YjIj-, in dB and is given by 

ýi = 10.0 logjýl yi - Yi"i-i .. 7.12.6 

Fig. 7.12.7 shows the steady-state performance of systems 7.1,7.3 and 7.5 over a4 

sky wave channel. Figs. 7.12.8 - 7.12.11 give a measure of the degree to which the 

vectors A,, B, and C, remain orthogonal over the duration of a test for systems 7.1 

and 7.3 at xV = 10 and il-=0.01. Figs. 7.12.8 and 7.12.10 plot the variation with i of 

each of 

I AiBi* 1,1 AiCi -I&I BiCi* I 

for systems 7.1 and 7.3 respectively, the three curves being superimposed to show 

for each i, the maximum magnitude of the corresponding three inner products. 

Departure of the vectors A,, B, and C, from orthogonality for systems 7.3 is less as 

compared to system 7.1. Thus the slightly inferior performance of system 7.1 

compared to system 7.3 can be attributed to this phenomena. However, there is no 

evidence of any tendency for the magnitude of any inner product to increase with i, 

for any system. The maximum magnitude of the inner product is of the order of 

55x 10-6 for system 7.3 and 27.5xlO-5for system 7.1. 
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Figs. 7.12.9 and 7.12.11 plots the variation with i of each of, 

dAi I- 1), dBi I- 1) &dC, I- 1) 

for systems 7.1 and 7.3, respectively, the three curves being superimposed, to show, 
for each i, the maximum value of the corresponding three errors. As before, the tests 
were carried out on the systems, operating with xV = 10 dB and il = 0.01. It is clear, 
from the figures, that no error exceeds, 55x10-6for system 7.3 and 52x10-5 for system 
7.1, over the duration of the test. Here again, it is clear that for system 7.1, the 
departure of the vectors A,, B, and C, from unit length is far greater than that for 

systems 7.3. There is, however, no evidence of any tendency for the error to 
increase with i. 

It can be seen from Figures 7.12.8 - 7.12.11, that the vectors A,, B, and C, remain 
orthonormal. to a remarkable degree of accuracy, even under the unfavourable 
conditions tested. System 7.1 show substantially greater departure from the ideal, 
but again there is no evidence of any instability or steady deterioration in the system. 
Systems 7.3 uses a much better update of Yi, given by Eqn. 7.5.3, to adjust the 
three-dimensional orthogonal vector space and hence has the superior orthonormal- 
ity property. 

Tests have been carried out on modifications of systems 7.3 and 7.4 in which F, is 

given by Eqn. 7.3.6, where cci, Pi and yj are now determined from F, ' in Eqn. 7.5.22. 
Thus Eqn 7.3.6 replaces Eqn. 7.5.5 and Eqns. 7.5.7 - 7.5.9 are replaced by Eqns. 
7.3.11 - 7.3.13. The system is much simpler than the corresponding system 7.3 or 
7.4 and it operates well over a sequence of 54,000 received symbols, at typical 

signal/noise ratios but there is now a steady and significant drift in A,, B, and C, from 

an ideal orthonormal set. Tests at high noise levels have shown that a catastrophic 
failure in operating of the system can occur. The reason for this effect is that E, in 

Eqn. 7.5.6 is no longer necessarily orthogonal to the subspace spanned by A,, B, and 
C,,, the orthogonality of E, being a basic assumption on which the algorithms of 

systems 7.1 - 7.8 are based [89]. These modifications have, therefore, not been 

considered in the thesis. 

Figures 7.12.1 - 7.12.5 compare the performances of systems 7.1 - 7.8 using the error 

measure defined by Eqns. 7.12.1 and 7.12.2. The figures, however, reveal that the 
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relative performances of the systems have not changed with the type of measurement 
used. It is, therefore, evident that for purposes of comparison, both ý, and ý, give a 
reliable measure of the effectiveness of an estimator. 

Tests were also carried out on systems 7.1 - 7.8 with statistically independent noise 
components [w, j in Eqn. 7.2.2, in place of the slightly correlated noise components 
actually obtained at the output of the receiver filter. The results, however, show that 
only negligibly small difference in performances of the systems with the two types 
of noise. Thus the correlation in the noise component does not appear to have any 
significant effect. 

Systems 7.1 - 7.8 achieve a considerable improvement in performance, over the 
conventional Kalman (systems 5.1 - 5.3) and gradient estimators (systems 4.1 - 4.1), 

this being due to the additional prior knowledge of the channel that is used by the 

systems. When the number of dimensions of the subspace is too small (so that the 

estimator assumes too small a number of separate fading paths), the system which 
has potentially the best overall performance is system 7.5. When the number of 
dimensions of the subspace is correct or nearly so, but there may be significant drifts 
in the subspace (due, say, to drifts in the timing phase), system 7.3 is the most 

promising system. When the number of dimensions of the subspace is correct and 
there is a negligible drift in the subspace, system 7.1 is the preferred system, being 

less complex than system 7.3, which, in turn, is less complex than system 7.5. 

0 
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TABLE 7.12.1 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF 
A3 SKY WAVE CHANNEL FROM SYSTEM 7.1 

0 b Tj = 0.00 Tj = 0.01 

(dB) Correla ed noise Uncorrelated noise Correlated noise Uncorrelated noise 

(dB) (dB) (dB) 

42 

(dB) 

41 

(dB) 

42 

(dB) 

41 

(dB) 

ý2 

(dB) 
10 0.960 0.095 -20.843 -19.503 -21.361 -20.044 -19.098 -18.277 -19.539 -18.768 
20 0.946 0.112 -28.715 -27.465 -29.197 -27.913 -27.382 -26.534 -27.817 -26.959 
30 0.922 0.130 -36.473 -35.240 -36.886 -35.621 -35.484 -34.554 -35.865 -34.920 
40 0.865 0.110 -43.713 -42.585 -44.080 -42.902 -43.470 -42.418 -43.840 -42.743 
60 0.788 0.156 -51.445 -51.224 -51.514 -51.279 -55.366 -54.268 -55.529 -54.361 

TABLE 7.12.2 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF 

A3 SKY WAVE CHANNEL FROM SYSTEM 7.2. 

v b 11 = 0.00 Tj = 0.01 

(dB) Correlatednoise Uncorrelated noise Correlatednoise Uncorrelated noise 

(dB) 

ý2 

(dB) (dB) 

ý2 

(dB) (dB) 

ý2 

(dB) (dB) 

ý2 

(dB) 

10 0.020 -19.265 -18.088 -19.703 -18.425 -18.991 -17.891 -19.424 -18.263 
20 0.040 -25.543 -24.366 -25.911 -24.653 -25.262 -24.165 -25.623 -24.459 
30 0.075 -31.329 -30.152 -31.576 -30-363 -31.036 -29.946 1 -31.281 -30.161 
40 

- 
0.140 -35.975 -34.806 -36.065 -34.913 -35.584 -34.544 -35.673 -34.646 

60 1 0.195 -38.479 -37.445 -38.495 
1 

-37.514 -38.097 
1 

-37.246 -38.056 -37.286 
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TABLE 7.12.3 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF 
A3 SKY WAVE, CHANNEL FROM SYSTEM 7.3. 

4f b b' 0 Tj 0.00 0.01 

(dB) Correlated noise Uncorrelated noise Correlated noise Uncorrelated noise 

(dB) 

ý2 

(dB) (dB) 

42 

(dB) (dB) 

ý2 

(dB) (dB) 

ý2 

(dB) 
10 0.1 0.09 0.960 -20.811 -19.479 -21.315 -20.018 -20.545 -19-298 -20.998 -19.908 
20 0.1 0.11 0.945 -28.719 -27.464 -29.208 -27.917 -28.566 -27.359 -29.029 -27.800 
30 0.1 0.13 0.920 -36.495 -35.249 -36.921 -35-637 -36.446 -35.210 -36.854 -35.592 
40 1.0 0.10 1 0.860 -43.678 -42.553 -44.044 

1 1 
-42.870 

1 
-43.96-5j -42.741 

-- [-Z4 44.341 -43.064 
60 1.0 0.14 0.770 -51.444 -51.227 

1 
-51.521 

1 
-51.290 

1 
-56.172 

[-54.850 T-56.335 
1 

-5 

TABLE 7.12.4 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF 
A3 SKY WAVE CHANNEL FROM SYSTEM 7.4 

Nf b bl 11 = 0.00 71 = 0.01 

(dB) Correlatednoise Uncorrelated noise Correlatednoise Uncorrelated noise 

(dB) 

ý2 

(dB) (dB) 

ý2 

(dB) (dB) 

t2 

(dB) (dB) 

ý2 

(dB) 

10 0.10 0.02 
, -19.265 -18.088 -19.703 -18.425 -19.032 -17.925 -19.424 -18.236 

20 1 0.10 0.04 J 
-25.543 -24.366 -25.911 -24.653 -25.444 -24.298 -25.780 -24.580 

30 0.10 0.09 -31.393 -30.153 1 -31.655 -30.380 -31.350 -30.120 -31.614 -30.349 
40 1.00 0.15 -35.967 -34.778 -36.042 -34.870 -36.008 -34.797 -36.091 -34.896 
60 1.00 0.18 -38.450 -37.413 38.467 1 

-37.484 -38.285 -37-363 -38.295 
1 

-37.409 
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TABLE 7.12.5 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF 
A3 SKY WAVE CHANNEL FROM SYSTEM 7.5. 

K bl 0 Tj = 0.00 
b=1.0 

Tj = 0.01 
b=1.0 

(dB) Correlated noise Uncorrelated noise Correlated noise Uncorrelated noise 

(dB) 

ý2 

(dB) 

i 

(dB) 

ý2 

(dB) (dB) 

ý2 

(dB) (dB) 

ý2 

(dB) 

10 . 990 . 09 . 960 -20.757 -19.593 -21.398 -20.054 -18.621 -17.813 -18.911 -18.076 
20 . 985 . 11 . 945 -28.685 -27.486 -29.319 -27.985 -26.596 -25.777 -26.947 -26.141 
30 . 976 . 13 . 920 -36.484 -35.256 -37.062 -35.780 -34.125 -33.387 -34.482 -33.782 
40 . 970 . 10 . 860 -43.672 -42.602 -44.179 -43.051 -40.185 -39.611 -40.551 -40.036 
60 . 950 . 14 . 770 -51.460 -51.268 -51.557 -51.318 -49.622 -50.010 -49.752 -50.199 

TABLE 7.12.6 MEAN SQUARE ERROR & NORMALIZED MEAN SQUARE 

ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF 

A3 SKY WAVE CHANNEL FROM SYSTEM 7.6 

y b (0 11 = 0.00 11 = 0.01 

(dB) Correlatednoise Uncorrelatednoise Correlatednoise Uncorrelatednoise 

1 (dB) 

ý2 

(dB) (dB) 

ý2 

(dB) (dB) 

ý2 

(dB) (dB) 

ý2 

(dB) 

10 0.10 0.986 -20.510 -19.229 -20.903 -19.630 -20.264 -19.062 -20.614 -19.436 
20 0.10 0.974 -28.281 -26.971 -28.723 -27.387 -28.143 -26.877 -28.561 -27.282 
30 0.10 0.962 -35.976 -34.739 -36.325 -35.077 -35.918 -34.695 -36.256 -35.029 
40 1.00 0.932 -43.344 -42.155 -43.653 -42.454 -43.608 -42.322 -4j940 -442.640 
60 1.00 0.880 -51.258 -51.043 

1 

-51.307 -51.084 -55.946 -54.618 050 -56.050 _5 -54.711 
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TABLE 7.12.7 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATED SAMPLED IMPULSE -RESPONSE OF 
A3 SKY WAVE CHANNEL FROM SYSTEM 7.7 

V/ b co 0 71 = 0.00 Tj = 0.01 

(dB) Correlated noise Uncorrelated noise Correlated noise Uncorrelated noise 

(dB) 

ý2 

(dB) (dB) 

ý2 

(dB) (dB) 

ý2 

(dB) (dB) 

ý2 

(dB) 
10 0.1 0.860 0.955 -19.313 -17.745 -20.250 . -18.774 -19.242 -17.723 -19.997 -18.593 
20 0.1 0.830 0.935 -28.091 -26.773 -28.593 -27.266 -27.944 -26.675 -28.430 -27.161 
30 0.1 0.815 0.900 -36.175 -34.861 -36.542 -35.225 -36.122 -34.820 -36.472 -35.180 
40 1.0 0.820 0.840 -43.722 -42.532 . 051 -42.886 -43.383 -42.339 -43.662 -42.662 
60 1.0 0.800 0.710 

1 

-51.699 

1 

-51.507 
: 

_51 -51.799 -51.591 
. 
-56 809 -'1 

1 

TABLE 7.12.8 MEAN SQUARE ERROR & NORMALIZED MEAN SQUARE 
ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF 

A3 SKY WAVE CHANNEL FROM SYSTEM 7.8. 

v b (0 71 = 0.00 Tj = 0.01 

(dB) Correlated noise Uncorrelated noise Correlated noise Uncorrelated noise 

(dB) 

ý2 

(dB) (dB) 

ý2 

(dB) (dB) 

ý2 

(dB) (dB) 

ý2 

(dB) 

10 0.10 0.958 -19.332 1 -18.145 
_ 
-19.746 -18.468 -19.096 -17.978 -19.462 -18.275_ 

20 0.10 0.906 -25.720 -24.499 -26.080 -24.792 -25.617 -24.429 -25.962 -24.717 
30 0.10 0.807 -31.810 -30.590 -32.036 -30.784 -31.759 -30.554 -31.980 -30.747 
40 1.00 0.616 -37.008 -35.846 -37.051 -35.879 -37.046 -35.868 -37.089 -35.902 
60 1.00 0.330 -40.996 -40.151 -40.990 -40.167 -39.979 -39.743 -40.374 -39.849 
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TABLE 7.12.9 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF 
A4 SKY WAVE CHANNEL FROM SYSTEM 7.1. SYSTEM 7.1 
PARAMETERS OPTIMIZED FOR THE ESTIMATION OF A3 SKY 
WAVE CHANNEL. 

Jf 
B) 

0 b 0.00 0.01 

dB 

ý2 

dB dB dB 

10 0.960 0.095 -19.538 -18.359 -18.603 -17.725 
20 0.946 0.112 -23.655 -22.754 -24.760 -23.581 
30 0.922 0.130 -24.738 -23.948 -27.452 -25.909 
40 0.865 0.110 -24.539 -23.779 -27.208 -25.714 

[_ W 0.788 1 0.156 1 
-23.422 

1 
-22.648 -26.780 

1 
-25.085 

TABLE 7.12.10 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATED SAMPLED IMPULSE -RESPONSE OF 
A4 SKY WAVE CHANNEL FROM SYSTEM 7.1. SYSTEM 7.1 
PARAMETERS OPTIMIZED FOR THE ESTIMATION OF A4 SKY 
WAVE CHANNEL. 

0 b 0.00 Optimized -q 

Correlated noise Uncorrelated noise 

(dB) 

ý2 

(dB) (dB) 

ý2 

(dB) (dB) 

ý2 

(dB) 

10 0.960 0.095 -19.538 -18.359 0.00 -19.538 -18.359 -19.935 -18.762 
20 0.950 0.120 -23.652 -22.756 0.01 -24.775 -23.605 -24.920 -23.743 
30 0.940 0.135 -24.798 -24.013 0.03 -29.149 -27.353 -29.150 -27.386 
40 0.940 0.145 -24.956 -24.187 0.03 -30.637 -28.334 -30.579 -28.312 
60 0.935 0.125 -24.974 -24.205 

1 0.04 -31.038 -28.707 -30.994 -28.679 
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TABLE 7.12.11 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF 
A4 SKY WAVE CHANNEL FROM SYSTEM 7.3. SYSTEM 7.3 
PARAMETERS OPTIMIZED FOR THE ESTIMATION OF A3 SKY 
WAVE CHANNEL. 

A b bl 0 0.00 0.01 

dB 

t2 

dB dB 

t2 

dB 

10 0.1 0.09 0.960 -19.517 -18.241 -19.528 -18.348 
20 0.1 0.11 0.945 -23.654 -22.751 -24.123 -23.056 
30 0.1 0.13 0.920 -24.722 -23.932 -25.405 -24.382 
40 1.0 0.10 0.860 -24.543 -23.784 -25.264 -24.267 
60 1.0 0.14 0.770 -23.338 -22.562 -28.351 -26.086 

TABLE 7.12.12 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF 

A4 SKY WAVE CHANNEL FROM SYSTEM 7.3. SYSTEM 7.3 

PARAMETERS OPTIMIZED FOR THE ESTIMATION OF A4 SKY 

WAVE CHANNEL. 

(A) 
b bl 0 0.00 Optimized -q 

Correlated noise Uncorrelated noise 

(dB) 

ý2 

(dB) 

TI 

(dB) 

ý2 

(dB) 

ti 

(0) 

ý2 

(dB) 

10 0.1 0.095 0.960 -19.538 -18.359 0.00 -19.538 -18.359 -19.935 -18.762 
20 0.3 0.110 0.945 -23.654 -22.751 0.02 -25.369 -23.998 -25.495 -24.137 
30 1.0 0.115 0.935 -24.796 -24.0 10 

1 

0.02 -30.036 -27.928 -30.036 -27.961 
40 1.0 0.125 0.935 -24.956 -24.187 0.02 -31.861 -29.327 -31.835 -29.315 

1.0 0.130 0.935 -24.978 -24.209 0.02 
1 

-32.226 
1 

-29.535 
1 

-32.227 -29 526 
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TABLE 7.12.13 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF 
A4 SKY WAVE CHANNEL FROM SYSTEM 7.5. SYSTEM 7.5 
PARAMETERS OPTIMIZED FOR THE ESTIMATION OF A4 SKY 
WAVE CHANNEL. 

b K bl 0 TI Correlated noise Uncorrelated noise 

(dB) 

42 

(dB) (dB) 

ý2 

(dB) 

10 1.0 1 0.990 0.09 0.960 0.00 -19.538 -16.321 -19.935 1 -16.323 
20 1.0 0.985 0.11 0.945 0.01 -25.572 -23.359 -25.679 

1 
-23.375 

30 1.0 0.976 0.13 0.920 0.02 -30.915 -30.285 -30.929 -30.320 
40 1.0 0.970 0.10 0.860 0.15 -35.899 -35.822 -35.965 -35.911 
60 1.0 1 0.950 0.14 0.770 1 0.16 1 

-38.243 -42.369 -38.388 -42.832 

TABLE 7.12.14 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED 
ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF 
A3 SKY WAVE CHANNEL FROM SYSTEM 7.5. THE ORTHOGO- 
NAL SUB-SPACE FORMED FROM THE ESTIMATES. 

(A) 
b K bl 0 71 10: 

0 
1.01 

(dB) (dB) (dB) (dB) 

10 1.0 0.990 0.09 0.960 0.00 -13.772 -13.886 -18.600 -17.795 
20 1.0 0.985 0.11 0.945 0.00 -22.025 -22.071 -26.584 -25.765 
30 1.0 0.976 0.13 0.920 0.00 -29.139 -29.225 -34.114 -33.375 
40 - 1.0- 0.970 0.10 0.860 0.00 -32.963 -33.286 -40.158 -39.577 
60 1.0 0.950 0.14 1 0.770 1 -0.00 - r-39.888 1 

-40.441 
1 

-49.562 -49.923 
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CHAPTER 8 

FAST TRANSVERSAL FILTER ALGORITHM 

FOR HF CHANNEL ESTIMATION 

8.1 INTRODUCTION 

When a channel estimator has no prior knowledge of the channel, a recursive 
least-squares (RLS) algorithm gives a convergence rate that is far superior to that of 
the least mean squares (LMS) algorithm [20,59,101]. However, this superior 
convergence rate of th. - RLS algorithm is at the expense of increased computation. 
Adaptive and computationally efficient RLS algorithms have been introduced in 
transversal filter form [20,59,97,101,104-106] as well as in lattice filter form [20, 
59,101,108-110]. These algorithm are computationally efficient, requiring a 
number of arithmetic operations per iteration that is proportional to the number of 
variable parameters in the adaptive filter. However, they are still very much more 
complex than the LMS algorithm [20,59,101]. Fast Transversal Filter (FTF) 
implementations of the RLS adaptive filtering algori thm are presented in [84,87]. 
This technique is the most promising of all the Fast RLS algorithms. The FTF 

algorithm is particularly suited to the application of channel estimation, as most of 
the computations involve only the detected data symbols that have'possible values of 
±1 ±j for a QPSK system. This chapter studies the application of the FTF algorithm 
to H: F channel estimation. The FTF implementation of the RLS algorithm exploits 
the shifting property of serialized data, thereby resulting in a substantial reduction in 

computational complexity. 

The FTF algorithm in its original form [84,87] is known to exhibit an unstable 
behaviour and a sudden divergence due to accumulation of round-off errors in finite 

precision computation [111- 116]. Methods to overcome these round-off errors have 

been suggested in [116-118]. These introduce a redundant equation to measure a 

particular parameter in the algorithm which, however, only prolongs the stable 

operation of the estimator [ 113]. An alternative method to overcome the round-off 
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error accumulation is suggested in this chapter, and a one-step prediction is 
incorporated into the FTF algorithm that takes into account the rate of change in the b 
estimates of the sampled impulse-response of the channel. 

8.2 MODEL OF DATA TRANSMISSION SYSTEM USED IN THE TESTS 

Fig. 3.5.1 shows the model of the data transmission system used in the tests. The 

particular application studied is the transmission of digital data at 4800 bits/sec. 

employing a serial quaternary phase shift keyed (QPSK) signal with a carrier 
frequency of 1800 Hz and an element rate of 2400 bauds. Stationary Gaussian noise, 

with zero mean and a two-sided power spectral density of ! N,, is added to the data 2 

signal at the output of the BF radio link. 

The received signal sample at time t=iT is given by (Eqn. 3.4-2) 

9 
h ri Si-hYil 

h=o 

yi SiT+ Wi 

where (Eqn. 3.4.4) 

Yi : --: 
I Yi, o Yi, l ---- 

Yi, 
g 

1 

and (Eqn. 3.4.5) 

Si : -- I Si si-I .. -. si-g 1 

Yj and Si are (g+l)- component row vectors, and sT is the transpose of S,. In all the 

tests here g=31, so that the sampled impulse-response of the channel has 32 

components. As is shown in Fig. 3.5.1, the signal r, and the "early" detected 

data-symbol s,!, (see Section 3.5) are fed to the channel estimator to give an estimate 

of the channel sampled impulse-response Y, 1 at time t=iT, given by 
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yil Yi"o Yi", Yi, 
g 

Correct detection is assumed so that (Eqn. 3.5.3) 

s#= si 

i 

Since the prime concern is only with the performance of the channel estimator. 
Further details on the channel model are given in Chapter 3. 

8.3 SYSTEM 8.1 

System 8.1 is the conventional FTF algorithm [84]. The channel estimator operates 
with a channel estimation vector, for time t=iT, which is 

yi, =[ Yi, o Yij .... yi, g 
1 .... 8.3.1 

where y,,, is an estimate of y,,,, for h=0,1, ... ' g. The data vector, for time t=iT, is a 
(g+1)- component row vector given by Eqn. 8.2.4. 

The estimator forms an estimate of the received sample, r,, given by 

/T Yi, Si 
. 8.3.2 

ST is 

where i the transpose of S,. S, is determined from the corresponding is,! -, I 

assuming that Eqn. 8.2.6 holds. The estimator next forms the error signal 

ei --= r, - r, 

The estimate of Y, is obtained recursively in such way that the cumulative squared 

error measure 

-, 
Ä! -h 1 

eh 
ý ci 

h=O . 8.3.4 
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is minimized. The parameter X is a real valued constant in the range 0 to 1. The 

quantity C, is the cumulative sum of the weighted squared error in the jr, 11 , bearing 
in mind that r,, is the first received sample that is operated on by the estimator. X is a 
weighting factor that introduces an exponential window into the processed samples 
and is, therefore, sometimes called the fade factor or the forgetting factor for the 
filter. 

At time t=iT, the channel estimation vector YI that minimizes C, is given by [20,59, 
83,101,103], 

Yil QiRi 

where 

h I-,; - Ri X'-' Sh Sh 
h=O 

and 

.. 8.3.5 

Qi 2ý- h 
rs, 

h=O 

where Y, is the complex conjugate of S,, and ST is the transpose of S, R,, called the h 
sample autocorrelation matrix, is (g+l) x (g+l) square matrix and Q, called the 

sample cross-correlation vector, is a (g+l)- component row vector. 

Yj/ is given recursively as (see Eqn. 5.3.44) [20,59,83,101,1031 

T (ri - Yi'-, Si )Ki 

= Ke, .. 8.3.7 

where K, is called the Kalman gain vector. Eqn. 8.3.7 is derived from first principle 
in Chapter 5 and in [103] and is consistent with [20,83]. 

The FTF algorithm uses four transversal filters in order to obtain the channel 

estimate [59,84,87,1011. One filter gives an estimate of the sampled impulse-res- 
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ponse of the HF channel. Three other filters called the forward linear predictor, the 
backward linear predictor and the gain transversal filter are used in the estimation of 
so called Kalman gain vector (Ki in Eqn. 8.3.7) necessarY for updating the channel 
estimate. For each of the four filters an estimation error is first evaluated followed 
by the updating of the tap coefficients of the filter. 

8.3.1 ADAPTIVE FORWARD LINEAR PREDICTOR 

The set of data symbols Si-V Si-25 
***" 

s 
i-(g+l) is used to make a prediction of the symbol s, 

at time t=iT. The operation corresponds to one-step prediction into the future, 

measured with respect to the time t=(i-l)T. This form of prediction is referred to as 
one-step prediction in the forward direction or simply forward prediction. 

The one-step forward predictor is as shown in Fig. 8.3.1. It consists of a linear filter 

with (g+1) taps. The tap co-efficients of the forward predictor are given by the 
(g+1)- component vector 

Fg+,, 
i =I fi, 

l 
fi, 

2 '*** 
fi, 

g+l 
I 

.... 8.3.8 

and the data symbols held in the forward predictor are given by the (g+l)- 

component vector 

sg+l, 
i-1 

I 8i-1 Si-2 '*** si-(g+l) I 

.. 8.3.9 

In Eqns. 8.3.8 and 8.3.9, and henceforth in this Chapter, the first subscript of any 

vector or matrix represents the order of the vector or matrix. The forward prediction 

error produced by the predictor at time t=iT in response to the input vector S, 
+,, -, 

is 

given by 

ef, i 
g+l 

Si -I fi, 
hSi-h 

h=l 

where e,., is referred to as the a-posteriori forward error prediction since its 

computation is based on the current value of the predictor tap weight vector. The 
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subscript f, in eti. ) denotes that the error is from forward predictor. Thus the one-step 
forward predictor can also be represented as a one-step forward prediction error 
filter, as shown in Fig. 8.3.2, with (g+2) taps. Comparing Figs. 8.3.1 and 8.3.2 with 
reference to Eqn. 8.3.10, the tap co-efficients of the two filters can be related as 
follows 

Ag 
+2, i ai, 0 ai, 1 

ai, 2 ai, g+l .... 8.3.11 

1 -fi, 1 -fi, 2 -fi, g+ 

In Ag+,,, (g+2) represents the order, and i represents the time instant. 

The ef., can now be written as 

sT ef, i 
Ag+2, 

i g+2, i 

where 

Sg+2, 
i 

I Si Si-i --. - Si-(g+l) 1 

Now let 

)&hsT s Og+2, 
i 

h=O g+2, h g+2, h 

ýS 
+2j is a square matrix of dimension (g+2) x (g+2) and is called the auto correlation 

matrix of the input vector S g+2, i to the forward prediction error filter. The matrix, 
ý8 

+ 2, i. can be p artitioned as 

Og+2, 
i 

where the scalar x,,,,, is the first element of the matrix and is given by 

I 
xi, i =IS, h=0 
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Fig. 8.3.1 - One Step Forward Predictor 

Fig. 8.3.2 - Forward Prediction Error Filter 
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and the (g+1)- component row vector, 51, j , in Eqn. 8.3.16, is given by 

X! - h 
ShSg+l, h-1 

h=O 

8*,, i is the complex conjugate transpose of 8,, i. ýg+,, i-, is (g+l) x (g+1) square matrix 

and is given by 

x. -1-hST 
h=O g+l, hsg+l, h 

At time t=iT, the vector Ag+,,, is obtained in such a way that the cumulative sum Of 
the weighted squared errors from the forward prediction error filter, 

I 
(xi 1 2ý . -hj ef, h 

h=O 

is minimized, subject to the constraint that the first component of A g+2, i equals unity. 
A g+2ý now satisfies the relation 

Ag 
+2, iOg +2, i =[ (Xi 0 .... 

Eqn. 8.3.21 is called the augmented normal equation for a forward linear predictor 
[59]. 

Combining equations 8.3.12,8.3.16 and 8.3.21 we have 

[i -Fg 
xi, i 81, i 

.. 8.3.22 II 

The updated estimate of F g+ Ij 11 is given by 

Fg+,, i = Fg+,,, 
-, 

+ Kg+,, i-l efp, i 

where ef,,,, i is the forward a-priori prediction error and is given by 

ef, P, 
si - Fg 

+ 1, iT -, 
Sg+,, i-l 
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K, 
+,, i-l is the gain vector for the forward prediction filter of order (g+l) and is given 

by (see Eqn. 5.3.43) 

Kg+1, j_i .. 8.3.25 

Combining equations 8.3.11,8.3.12 and 8.3.23 

Ag+2, i = Ag+2, i-, - [0 Kg+�i-, ]efp, 
i 

where 

ef, p, i = [I -Fg, l'i -1 
si sg 

, I, i_l 
]T 

.... 8.3.27 

sT = Ag+2, 
i-I g+2, i .... 8.3.28 

The minimum value of the sum of squares of weighted forward prediction error is 

given by 

ai = kui 
-, ef, i e;, i 

In Eqn. 8.3.29, the second tem-i is always a real valued scalar, i. e. 

ef, e; ef* 

8.3.2 ADAPTIVE BACKWARD LINEAR PREDICTOR 

.. 8.3.29 

.. 8.3.30 

In the backward linear predictor, the set of data symbols si, si, ***, si-g is used to make 

a prediction of the symbol s i-(g+l)' 
This is a one-step backward prediction. Fig 8.3.3 

shows the one-step backward predictor and Fig. 8.3.4 shows the corresponding 

backward prediction error filter. 

The backward prediction error at time t=iT is given by 
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Fig. 8.3.3 - One Step Backward Predictor 

Fig. 8.3.4 - Backward Prediction Error Filter 
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9 
eb, i Si-(9+1) Pi, hSi-h 

h=O 

e,, i is referred to as the backward a-posteriori prediction error. The subscript b, in eb,., 
denotes that the error is from the backward predictor. Eqn. 8.3.31 is equivalent to 

sT eb, i Si-(g+l) - pg+l, 
i g+l, i 

The vector 

Pg+l, 
i 

I Pi, o Po .... Pi, 
g 

1 

gives the tap coefficients of the backward predictor and the data symbols held in the 
backward predictor is given by the (g+l)- component vector 

Sg+l, 
i 

I Si Si-I Si-2 
'--' 

Si-g 1 

.... 8.3.34 

The backward predictor, of Fig. 8.3.3, gives an estimate of s, -(,,, ), on the other hand, 

the output from the backward prediction error filter, of Fig. 8.3.4, is the error in 

estimating s i-(g+l)* From Figs. 8.3.3 and 8.3.4, the tap coefficients of the backward 

prediction error filter, are given by the (g+2)- component vector 

Bg+2, 
i -P 9+1, i 

bi, o bi, l bi, 
g+l 

I -Pi, o -Pi, i -... -pi, g 
1] 

From equations 8.3.32 and 8.3.35, e,, i is now given by 

sT e,, i 
Bg+2, 

i g+2, i 

The desired vector 
Bg+2, 

i is obtained by minimizing the cumulative sum squares of the 

weighted backward prediction error, up to the time instant t=iT, subjected to the 

constraint that the last component of B &+2, i equals unity. 

The elements of the matrix 0,,: ýj, (Eqn. 8.3.15), can now be written in partition form 

as 

194 



Og+l, 
i 

8*2, 
i 

82, 
i X2, il 

where 0,,,, i is a (g+1) x (g+1) element matrix and is given by, 

i -h sTs Og+l, 
i 

h=O g+l, h g+l, h 

is a (g+l)- component row vector given by 

52, 
i 8h 

-(g + 1)Sg + 1, h 
h=O 

5ýi is the complex conjugate transpose of the vector 5,, i. Finally the scalar x,, i , in 
Eqn. 8.3.37, is the last element of the matrix ý,, zi and is the weighted sum of the 
squares of the desired response form the backward predictor, and is given by 

-hl X2, i -d 
sh-(g+1) 

h=O . 8.3.40 

The vector B g+zi (Eqn. 8.3.35) giving the minimum sum of weighted backward 

prediction error squares, 

-h e b, h 
h=O 

satisfies 

Bg 
+2, iOg +2, i =[o.... o Pi 

Eqn. 8.3.42 is called the augmented normal equation for a backward predictor [591. 

The updated estimate of P g+l, i is given by 

Pg+l, 
i = Pg+,, 

i-l + Kg+,, 
ieb, p, i .... 8.3.43 

where e,,,,, i is the a-priori prediction error for the backward predictor and is given by 
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sT eb, 
p, i 

Si-(9+1) - 
pg+l, 

i-I 9+1, i 

is the gain vector for the backward prediction filter and is given by 

Kg+,, 
i 

s 
9+1, iýg+l'i 

Combining equations 8.3.35 and 8.3.43, 

Bg 
+2, i = Bg 

+2, i -1 
[Kg+l, 

i 

Also 

eb, 
p, i 

ý- [ 
-pg + I, i -1 

or 

B sT 
b, p, i g+2, i-1 g+2, i 

111 Sg+l, 
i 

.... 8.3.44 

.... 8.3.45 

.... 8.3.46 

.... 8.3.47 

The recursive weighted sum of the square of backward prediction error is given by 

i3i =+ ebP1eb . 

.. 8.3.48 

It may be noted that the last term in Eqn. 8.3.48, is real valued scalar so that 

eb,,, ieb, i eb,,, ieb, i 

It can thus be seen that, K, 
+,, 

is used in updating the backward prediction filter, 

whereas K 
g+IJ-1 

is used in updating the forward prediction filter. Another transversal 
filter called the gain transversal filter is used to obtain K 

g+', 
from Kg+,, 

_,. 

8.3.3 GAIN TRANSVERSAL FILTER 

The Gain vectors for the forward and backward prediction filter are given by Eqn. 

8.3.25 and Eqn. 8.3.45 respectively. K &+2ý'ý is given by 

leb, 
p, i 

8i 
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Kg+2, 
i 

Sg+2, Ag+2, 
i 

.... 8.3.49 

The inverse of the matrix 0,,,, i , (Eqn. o. 3.15), can be expressed as, [59], 

Og+l 
T ýg+2, 

i 

[]+ 

jAg+2, i oT 11 
Ag+2, 

.... 8.3.50 
g+l 

ý-g+l, 
i-l Cý- 

where Og+l is a (g+l)- component zero vector. Pre-multiplying Eqn. 8.3.50 by Y, 
+,, 

and simplifying, 

ef, i Kg 
+2, i = [0 Kg, 1, j-, ]+ 

(xi 
Ag 

+ 2, i 

since 

ef, i- 
Ag, 

2, i g+2, i 

s;,,, is the complex conjugate transpose of the vector S g+2, i* 

Similarly the inverse of 0,,, ýj can be expressed as, [59] 

-1 ýg+l, 
i 

0 
9+1 T 

+ Bg+2, 
iBg+2, i + 2,1 oT 
ii 

1 

g+l 
0 Pi 

Pre-multiplying Eqn. 8.3.53 by Y,,,, i and simplifying, 

Kg+2, 
i = [Kg+�i 01 + 

e'b"Bg+2� 
ßi 

Since e, *,,, in Eqn. 8.3.54, is given by 

eb, i 
Bg+2, 

iSg+2, i 

The gain vector Kg+,.,, (Eqn. 8.3.45), can be considered to be the tap coefficients of 

a transversal filter with g+1 taps, and the data symbols held in the filter being given 
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by the vector S, 
+,,, 

Eqn. 8.3.34 ( see Fig. 8.3.5 ). The output from the filter is the 
least-squares estimate of the desired response, di [41, where d, has a value of unity at 
time t=iT and is zero elsewhere [591. 

The error in estimating d,, in Fig. 8.3.5 is, therefore, 

K+ 
iST g1 g+l, i .... 8.3.56 

Combining equations 8.3.45 and 8.3.56 

I 
J, iST , yi Sg+l, 

io-g+ g+l, i 

Since ý-, '+, is an Hermitian matrix, it is evident from Eqn. 8.3.57 thatyi is real valued, 
and has the limits given by [59,84,87,101] 

Yj 

Post-multiplying both sides of Eqn. 8.3.26 by sT,, 
i, 

A ST 
- 

[0 Ag+2, 
iSg+z, i g+2, i-1 g+2, i 

or 

ef, i = ef,,, i 
Kg+,, 

i-l 
I[ si 

= ef, P, i yi-, ]efp, i 

or 

efi- 
ef,,, i 

Similarly the following equations can be obtained. 

Yi 
eb, i 

eb,,, i 

Kg 
+ l'i 

T 

jefp, i -1 
]Sg+2, 

Sg+l, 
i-1 

IT ef, p, i 

. 8.3.58 

.. 8.3.59 

.. 8.3.60 

.. 8.3.61 
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ei 
ep, i .. 8.3.62 

where epjand e, are the a-priori and a-posteriori error, respectively, in the estimation 
of the received signal, ri. 

ST Post-multiplying Eqn. 8.3.51 by g+2,0 

T[0 Kg+J, 
i_I 

IST Kg 
+2, iSg +2, i g+2, i 

ef, i T 
+ 

aj 
Ag+2, 

iSg+2, i 

Using Eqn. 8.3.56, this reduces to 

+ 
ef, 

YI 
Cý- 

ef, i 

or 

efi 
oci .... 8.3.63 

where -y,. i is the error in the estimation of d,, from the extended gain transversal filter, 

of order (g+2), with tap coefficient, K g+2, i* 

Similarly post-multiplying Eqn. 8.3.54 by ST 
, and simplifying, 9+ 

71,1 
eb, i 

12 

pi 

From Eqn. 8.3.29, 

kai 
-I ef,,, iefi 

(Xi 

Using equations 8.3.60 and 8.3.63 

.. 8.3.64 
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xCci 
-iI efi r 71, i 

(Xi 'Yi -i Cý- Yi -I 

Therefore, 

Cci -i 
(Xi 

SimilaTly using equations 8.3.48,8.3.61 and 8.3.64, it can be shown that 

Pi-i 
Ii Pi 

Thus, the three filters that provide the necessary inputs to solve the RLS problem, 
defined in Eqn. 8.3.4, have now been defined. Fig. 8.3.6 shows the parameters 
evaluated by the transversal filter. 

The update of the tap coefficients of all the Transversal filters will now be 

considered. The four transversal filters in Fig. 8.3.6 hold a common (g+2)- 

components data vector (Eqn. 8.3.14). 

The update of the extended gain vector is obtained as follows. Substituting Eqn. 
8.3.26 in Eqn. 8.2.5 1, 

Kg+2, 
i = [0 Kg�, 

i-, 
] + 

efi 
J Ag+2, 

i-1 -1 () Kg+I, 
i-1 

lefp, 
i 

1 

cý. 

e; jef�, i 1-, [0 Kg, 
1, j-11 + 

ef"Ag+�, 

-, 

1 

(Xi 

1 

(Xi 

.... 8.3.67 

From Eqns. 8.3.29 and 8.3.65 

efjef,,, i X(xi 
-1 71, i 

(Xi Cý- Yi-i 

Therefore, Eqn. 8.3.67 can be written as 
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Forward Prediction Filter 
With 

Tap Weight Vector 
e f, p,, 
e f, i 

e b, p, i 

e b, i 

pi 

Gain Transversal Filter 
With 

Tap Weight Vector 
K 

g+1, i 

Channel Estimator Filter 
With 

Tap Weight Vector 

y/ g+l, i 

Fig. 8.3.6 - Transversal Filter 

Yi 

-Yli 

ep 1 

Computation Of RLS Variables 
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71, iý [0 Kg, 1, i 
fi A Kg 

+2,1 
+ 

ý- 

g+2, i-1 
f'i 

(Xi 

Let 

Kg+2, 
&' - 

Kg+2, i 
.... 

8.3.69 
Yi, i 

is called the normalized gain vector. Therefore, from Eqns. 8.3.68 and 8.3.69 

ef Kg+2, 
i = [0 Kg+�i-ll + jU Ag+2, 

i-1 
^yl, icci 

From Eqns. 8.3.60,8.3.65 and 8.3.70 

Kg 
+2, i = [0 kg+�i-ll + K-lef'p"Ag��-, 

.... 
8.3.71 

(4-1 

An update of A, 
+,, 

is obtained using Eqn. 8.3.26. Substituting Rg 
+ 1, j -, 

(using the 

definition in Eqn. 8.3.69), in place of K,, 
+,,, -, 

in Eqn. 8.3.26, 

Ag 
+2, i = Ag+2, 

i-1 
[0 kg 

+ 1, i -, 
]yi 

-, 
ef�, i 

or 

Ag+2, 
i = Ag+2, 

i-1 - [0 Kg+�i-llefi 

Consider Eqn. 8.3.54 

Kg+2, 
i = [Kg+�i 01 

Substituting Eqn. 8.3.46, for Bg+,,. 

eb, i Bg 
pi 
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Kg 
+2, i = [Kg+�i 01 + 

e�, 
{Bg+2, 

i-1 - [K, 
+�i 

Ole�p�l ßi 

eb,., jeb, i [Kg+�i 0]+ 
eb 

'i Bg 
+2,1 -1 

11 

ßi 
1 

ßi 

. 8.3.73 

But from Eqns. 8.3.48 and 8.3.66 

eb,,, ieb, i Yi, i 
.... 8.3.74 Pi Pi 7i 

Therefore, from Eqn. 8.3.73 and 8.3.74 

Kg+2, i = [Kg+�i O]y1" + 
e'b"Bg+2�-i 

Yi ßi 

or (using Eqn. 8.3.69) 

e�, 
Kg 

+2, i = [Kg+�i 0] + Bg 
+2, i -1 

e�p�y, 

= [Kg+�i 0] + 
Yi, ißi 

Bg 
+2, i -1 .... 8.3.75 

and from Eqns. 8.3.66 and 8.3.75 

Kg+2, 
i = [Kg+�i 0] + _, 

eb, 
p, i Bg+2, i-, ßi 
-1 

or 

01 = Kg+2, 
i _ _, 

eb, 
p, i Bg+2, i-, ßi 
-i 

The last element of k, +2,, is given by (from Eqns. 8.3.75 and 8.3.77), 
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X-'e *e* b. p, i b, i kg 
+2, g +2 =. ßi-i - 'Yi, ißi .... 8.3.78 

since the last term of Bg+, 
i-l 

is to be equal to unity. 

Therefore, 

[ kg+ 
1, i kg +2, i 

kg 
+2, g + 2Bg +2, i -1 

Also from Eqn. 8.3.78, 

eb, 
p, i 

4i 
- lkg +2, g +2 

It is thus seen that e b, pj can be obtained either using Eqn. 8.3.47 or using Eqn. 8.3.80. 
In the computer-simulation tests, however, e,, P,, 

is obtained from Eqn. 8.3.47, the 

reasons for which are discussed in detail in Section 8.4. 

From Eqn. 8.3.66 

'Yi -III, i .... 8.3.81 
Xpi-i 

and from Eqn. 8.3.48 

e b, i 
Xpi-i 

=1 
Pi 

Combining Eqns. 8.3.78 and 8.3.82 

4i-l 
=1-e,,,, iy,, ik, +2, g +2 .... 8.3.83 

Pi 

Therefore, from Eqns. 8.3.81 and 8.3.83 

Yi =[I- ej,, P, jyj, jýg+2, g+j-lyj, j 

From Eqn. 8.3.46, the update of B.,, is 
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Bg 
+2, i = Bg 

+2, i -1 
Kg+ 

1, i 
0 leb�, 

i 

= Bg+2, 
i-1 

kg+ 
1, i 

0 ], yieb, 
p, i 

= Bg+2, 
i-1 

kg+ 
1, i 

Oleb, 
i 

Finally the update of the estimate of the sampled impulse-response of the HIF 
channel is obtained as follows. The estimate of the received signal is (Eqn. 8.3.2), 

sT Y9"+l, 
i-1 g+l, i 

The actual received signal is given in Eqn. 8.2.1. The ep, is given by 

ep, i= Y/ sT.... 8.3.87 ri 
9+1, i-1 g+l, i 

and ei is 

e., j7i 

The update of Y,,,,,, is given by 

YgI Y/ 
. +1, i =j g+,,, -, 

A complete summary of the steady state algorithm is given in Table 8.3.1. 

8.4 STABILIZATION OF FTF ALGORITHM. 

FTF algorithms are known to exhibit numerical instability [111-116] and this 

restricts the use of FTF algorithms to only a limited period of time, beyond which 
the estimation of the sampled impulse-response of the channel is incorrect. 
Instability occurs when, either, the value of y, exceeds unity (its theoretical 

maximum value) or when it diverges towards zero. When yj exceeds unity the 

co-efficients of the four transversal filters diverges to infinity [84,112-1141, and 
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TABLE 8.3.1 

sT 
ef, 

Ag+2, 
i-1 g+2, i 

ef'i yi-I efp, i 

+ ef, ef, 

71, i Yi -i 

Kg 
+2, i = [0 Kg+�i-, ,+ -1 ef�, i Ag 

U-i-i 

Ag 
+2, i 

Ag 
+2, i -10 

kg+,, 
i-l I ef, i 

eB 
sT 

b, ppi g+2, i-1 9+2, i 

Bsg +2, g +2 ýi 
g+2, i-1 g+2, i 

k ßi-, k* 

yi (1- eb, p, i 
, yl, ikg +2, g +2 

)-1 fl, i 

eb, i yi eb�, i 

ß, + eb�, i eb, i 

[Kg+�i 0]I? 
g +2, i - 

kg 
+2, g +2Bg +2, i -1 

Bg 
+2, i 

Bg 
+2, i -1[ 

Kg 
+1, i 

0] eb, i 

e�, ri y/ s 
9+1, i-i g+1,1 

ei = -ii e., i 

y/ y/ + Kg 
+1, i ei 

9 g+l, i-1 
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when yj diverges to zero, the gain vector K, 
+,, also drifts to zero. Under the former 

condition, the estimation process fails, and under the latter condition, the tracking 
ability of the algorithm is degraded [ 112-114]. 

Several techniques have been proposed to overcome the problem of instability [59, 
84) 112-115]. A periodic reinitialization procedure is proposed in [59], were the 
operation of the FTF algorithm is interrupted and then restarted at periodic intervals. 
Immediately following such a restart, a simple LMS algorithm provides an estimate 
of the desired response, with the coefficients of the feedforward filter set to the value 
attained by the FTF algorithm just before the restart was initiated. This procedure is 
depicted in Fig. 8.4.1. This method is not particularly suitable for estimating a time 
varying channel as the LMS algorithm does not quickly adapt to the transition from 

the FTF algorithm, owing to its slow rate of convergence. Thus change-overs, 
between FTF and LMS algorithms, introduce large errors into the estimation of the 

channel sampled impulse-response [113]. 

The parameter e b. pP can be obtained either using a simple but numerically unstable 
relation 

ý, 
' 

Pi 
-IIý; +2, g +2 1 (Eqn. 8.3.80), requiring only two multiplications or using a 

more complicated but more stable relation Bg+2,, 
-, 

sgT+2,, 

, (Eqn. 8.3.47), which 
requires (g+2) multiplications. [59,84,101,111-114]. 

Let 

sT k* g+2, i-I g+2, i 
4i-1 

g+2, g+l .... 8.4.1 

ý, is exactly equal to zero when the equations of the algorithm, in Table 8.3.1, are 

evaluated with infinite precision. However, simulation tests have shown that, due to 

the occurrence of numerical round-off errors, I ýj I grows exponentially with time 
[111-114]. ýj therefore, gives a measure of the round-off error [111-114]. In[841, a 

version of a stable algorithm, e is given by B,, j-, ST ,. There is, however, only a b, p, i g+ 

marginal increase in the period of stable operation. 

The stabilization algorithm of [112-114] attempts to minimize -xi, given by [111- 

114], 
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-(g, j) _JST 
Xi Isi Bg 

h=O +2, i g+2, il 

- 
Isi 

- (g + 1) B' 
_JST l'i 

]2 
g+2, i g+ 

I 

/2 
+p.... 8.4.2 

where 

= el k k* (i 
b, p, i 

Pi-I 
g+2, g+2 

and 

el = BI sT b, P, i g+2, i-1 g+2, i 

The algorithm finds a modified set of tap coefficients, Bg' 
zi-I , for the backward 

prediction error filter, in place of Bg+2, 
i-1, and attempts to force ýj to zero. p is a scalar 

constant in the range 0 to 1. Computer- simulation tests on the application of the 

algorithm to acoustic echo cancellation have shown an improved stability [ 113 1 as 
compared to the original FTF algorithm [84,871. However, contrary to claims in 
[ 113], instability has been observed in moderately severe environments [ 111]. 

The new stabilization technique proposed here, makes only passive use of the 

parameter ý, defined in Eqn. 8.4.1, and does not attempt to modify B g+2, i-11 as has been 

the case in [113]. As a matter of fact, this technique takes advantage of the 
instability measure, Eqn. 8.4.1, proposed in [113] and e,,,, is measured using 

sT Bg 
12j- I g+2, i When the absolute value of the control variable, ýj, exceeds a certain 

threshold, a parallel FTF algorithm is initialized, while the original FTF algorithm is 

still operational and still providing an estimate of the sampled impulse-response of 
the channel. The threshold value is decided in such a way that the parallel FTF 

algorithm has sufficient time to start up, while at the same time the original FTF 

algorithm has not completely failed during this period. When the parallel FTF 

algorithm is fully operational it takes over from the original FTF algorithm, to 

provide the estimate of the channel impulse-response. The arrangement is shown in 

Fig. 8.4.2. The process continues, as in Fig. 8.4.2, every time the control variable 

exceeds the threshold limit. The algorithm is only slightly more complex than the 

original FTF algorithm [84], since during the period when the parallel FTF algorithm 
is operational, most of the tap co-efficients of the forward and backward prediction 
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filters are zero. The input vectors to both the original and parallel FTF algorithm is 
Sg+2, 

i I 
(Eqn. 8.3.14), and so, at the time of take over from the parallel FIT algorithm, 

the normalized Kah-nan gain vector, kg+,, 
i . is nearly the same from the two 

algorithm. This is due to the fact that FIFF algorithm has a fast tracking ability and, 
therefore, the period of operation of the parallel FI7F algorithm generally need not be 

very large. 

Tests have shown that the period over which the FTF algorithm is stable is, to a large 

extent, a function of the factor X, in Eqn. 8.3.4, which in turn is a function of the 
system signal/noise ratio. The closer the optimum value of X is equal to 1, the longer 
is the period of stable operation. For the lower signal/noise ratios, the optimum 
value of ?, is much closer to 1. Simulation tests on the new stabilization technique, 
for BF channel estimation, have shown that this technique provides adequate 
stabilization, at the required signal/noise ratios. 

8.5 INITIALIZATION OF THE ALGORITHM 

Prior to the actual transmission of data, training signal, comprising of a particular 
known sequence of data symbols, is transmitted. Since the data symbols are known 

at the receiver, the latter can estimate quite accurately, the initial sampled 
impulse-response of the channel [91]. This prior knowledge of the channel estimate, 

at the start of the estimation process using the FTF algorithm, permits the use of non 

zero initial conditions [59,84]. At the start of operation of the FTF algorithm, the 

vectors A 
g+2,01 

B 
g+Z01 

k, 
+,, o and YI + 1, o are set to the following values 

Ag 
+2,0 =10.... 8.5.1 

Bg 
+2,0 =0 

Kg+ 
1,0 =[00 

y/ g+1,0 
y9 

+ 1,0 
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Y/,,,,, is determined from the training signal at the start of transmission, and (in Table 9 
8.3.1) 

0ý 

PO 

70 

The parameter g is a scalar constant that adjusts the tracking ability of the algorithm 
[59,84]. 

8.6 SYSTEM 8.2 

System 8.2 uses the algorithm of system 8.1, modified by the assumption that the 

sampled impulse-response of the channel varies linearly with time. It has been 

shown in [99,103] that a useful improvement in the performance of the RLS 
Kalman algorithm can be achieved by the given assumption. Eqn. 8.3.89 is now 
modified to 

Y/ - Y/ .. + kg 
9+I, i g+1,1,1 -1 .... 8.6.1 

where is the prediction of Yi made at time t=(i-l)T and ril in Eqn. 8.3.2 is now 
given by 

r= .. 8.6.2 

Y' is the updated estimate of the channel sampled impulse-response at time t=iT. g 

System 8.2 makes a one-step prediction of the channel sampled-impulse response 
using a least-squares fading memory prediction. This is achieved by g+1 separate 
degree-1 least squares fading memory polynomial filters, each operating on the 

corresponding component of Y, '+,, j_, [33,53]. Further details of these filters are 

given elsewhere [33,531. 
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The estimator of system 8.2 uses the updated estimate of Y,,.,,, given by Eqn. 8.6.1 
and the one step prediction of to determine an estimate of the error in the 
prediction which is 

Y/ 
.- 

Y/ Xi 
g+l, t g+l, i, i-I 

A one-step prediction is now given by a polynomial filter, which is described by the 
following two equations 

yH+ OjXj yg"+l, i+l, i 9+i, i, i-i 

Y/ Y/ + Y/I 'y g++9+1, i, i -19+I, i + I, i 
+ 02 

i 

where 01 and 0, are scalar constants that may be selected as required and are, 
therefore, adjusted to minimize the error in the prediction of the channel impul- 

se-response. In the original prediction algorithm [19,53] 01 and 0, are given by 
(1 

_ 
())2 and (1 - o2) , where 0<0<1. A further development of the 

algorithm, studied here, is to allow 0, and 0, to be optimized independently. At the 
start of the prediction process 

- yg" + 1,1,0 

and 

YgI = Y/ .... 8.6.7 +1,1,0 g+1,0 

where Y, ',,,,, is determined from the training signal that precedes the transmission of 
data [91]. The initialization of the estimation process is carried out according to 
Section 8.5. 

Computer- simulation tests, on the accuracy of the one-step prediction given by Eqns. 
8.6.4 and 8.6.5, for use with the FIT algorithm, have shown a useful improvement in 

the performance of the estimator without any sign of instability. Table 8.6.1 

summarises the complete algorithm for system 8.2 and the results of the com- 

puter- simulation tests are presented in Section 8.7. 
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TABLE 8.6.1 

UPDATING ALGORITHM 

ef, A g+2, i-1 g+2, i 

ef, yi -1 ef, P, i 

(xi = I(x, 
-, 

(Xi -i 
(xi 

e i Kg 
+2, i [o kg+,, 

i-l +V 'ý'-P' Ag 
+2, t. -I Oci -1 

Ag 
+2, i 

Ag 
+2, i -I - [o kg+,, 

i-l I ef'i 

eBsT b, p, i g+2, i-1 g+2, i 

(i BsT g+2, i-1 g+2, i 
Pi 

-Ig +2, g +2 

Yj 1- eb, 
p, i7l, ikg + 2, g +2 

Yl 'yl, i 

eb, i yj eb, 
p, i 

+ eb, 
p, i 

eb, i 

[ Kg 
+ 1, i 

0] = kg+2, 
i - 

kg+2, 
g+2Bg+2, i-l 

Bg 
+2, i 

Bg 
+2, i -1[ 

kg 
+ l'i 

0] eb, i 

T 
ep, i ri Y/ s g+i, i-i g+l, i 

ei = yj ep, i 
yg, 

+ 1,1 .=Y +I, i, i-l 
+ Kg+,, i ei 

9 

PREDICTION ALGORITHM 

xi yg+l, 
i 9 

Y// yfl + OjXj 
9+1, i+l, i g+l, i, i-I 

y/=y+ Y/I 
'y 

g+l, i+l, i g+l, i, l-l g+l, i+l, i 
+ 02 
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8.7 RESULTS OF THE COMPUTER-SIMULATION TEST. 

Computer- simulation tests have been carried out on systems 8.1 and 8.2. The 
results of the tests are given in Tables 8.7.1 to 8.7.3 and in Figs. 8.7.1 to 8.7.5. The 

error measurements are 

60000 
10 10910 yg+l, 

i 54000 i= 6001 

and 

1 60000 
1y1, 

i 
yl+,, 

i, i-l 
f 

ý2 10 10910 
-Igg 
54000 i= 6001 

1 yg+I, 
i 

r 

In the case of system 8.2 Y, ',,. i = The parameter ý, is a measure of the actual 
error in Y, '+,, i,, -, . whereas, the parameter ý, is a measure of the normalized or relative 
error in Ygl+,,,,, -,, 

During the first 6000 received samples the estimation process 

operates as described in Sections 8.3 and 8.6, but no measurements are carried out. 
This stabilizes the fading, additive noise and the estimation process, thus eliminating 

the effect of any transient behaviour of the estimator at start up. Measurements are 
carried out according to Eqns. 8.7.1 and 8.7.2 over the next 54000 received samples. 
Thus ý, and ý, measure the steady-state performance of an estimator. In Eqns. 8.7.1 

I and8.7.2, ly, 
+,,, - Y,, +,,,, i-, 

l is the unitary length of the vector Y,,,, i - Y, '+,, i, i-, and so 

is the unitary distance between the vectors Y, +,, i and Y, '+,, i, i-,. In Eqn. 8.7.2, this 

unitary distance has been normalized by the length of the vector Yg 

In all the tests the signal/noise ratio is measured as xV dB, where 

Eb 
10 loglo 1 No 2 

.. 8.7.3 

and Eb is the average transmitted energy per bit at the input to the IIF radio link and 
is arranged to be unity. The two sided power spectral density of the white Gaussian 

noise at the output of the HF radio link is (1/2)N, 
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In each of the Tables 8.7.1 and 8.7.2, the scalar constants, such as X in Table 8.7.1 
and ý, 01 and 0, in Table 8.7.2, have been approximately optimized to Minimize the 
error in the estimation/prediction of the sampled impulse-response of the channel. 
The value of ýt in Eqns. 8.5.5 and 8.5.6 has been set to 0.1. Stabilization of the 
algorithm is carried according to Section 8.4 and Fig. 8.4.2, when the control 
variable, I ý- F, defined in Eqn. 8.4.3 exceeds a threshold level of 0.0001. 

Fig. 8.7.1 shows the variation of ý, and ý, with xV, for systems 8.1 and 8.2. It can be 
seen from Fig. 8.7.1 that the relative performances of systems 8.1 and 8.2 are not 
significantly affected by whether Eqn. 8.7.1 or Eqn. 8.7.2 is used as a measurement 
criteria. This is further demonstrated in Tables 8.7.1 to 8.7.2. Therefore, it does not 
make any difference whether ý, or ý,, is used to give a relative measure of the 
effectiveness of an estimator [99]. Comparing the performances of svstems 8.1 and 
8.2, in Fig. 8.7.1 and Tables 8.7.1 to 8.7.2, it is clear that the one-step predictor has 
considerably improved the estimation process. 

Fig. 8.7.2 is a plot of ý, against V and compares systems 8.1 and 8.2 with the 
corresponding RLS Kalman estimators, [99], referred to as system 5.3 and 5.1 

respectively, of Chapter 5. As would be expected, the performance of system 8.1 is 

essentially the same as that of system 5.3, the difference being hardly noticeable, 
since the two estimators are basically the same and differ only in their implementa- 

tion. However, system 8.2 shows a marked improvement over system 5.1, over the 
entire range of signal/noise ratios tested. The difference between system 8.2 and 
system 5.1 is in the way the one-step predictor has been implemented. 

Figs. 8.7.3 and 8.7.4 show the variation with time of yj ,( Eqn. 8.3.84 ), and 10 log,,, 
I ý- r, ( Eqn. 8.4.3 ), respectively at V= 10 , for the transmission of data at 2400 bauds 

over 25 seconds. The two plots clearly show the transitions when reinitialization 
(according to Fig. 8.4.2) is taking place following a build-up of error. Although the 

parallel FTF algorithm is brought into use as many as 18 times, the estimation 
process does not show any sign of instability or collapse. This is the case at all 
signal/noise ratios tested. 

Fig. 8.7.5 show the steady state performance of systems 8.1 and 8.2 at xv = 30. The 

parameter estimation error, ýj, in Fig. 8.7.5 is here the square of the error in 

measured in dB relative to unity, and is 
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ýi = 10 logio , yg+�i 
- y, 

+1, i, i-i 
ý 

Computer- simulation tests on the estimators with statistically independent noise 
components {w, ) in Eqn. 8.2.2, in place of the slightly correlated noise components 
actually obtained at the output of the receiver filter, show only a negligibly small 
difference in performance. Thus the correlation in the noise components does not 
appear to have any significant effect. 

System 8.2 achieves a considerable improvement in performance over a conven- 
tional FTF algorithm (system 8.1). The new stabilization technique is adequate to 

counter the built-up of round-off errors and only marginally increases the computa- 
tional complexity of the algorithm. In view of the good performance by system 8.2 

it is clearly the most cost-effective of the two estimators studied in this chapter and 
is well worth further study. 
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TABLE 8.7.1 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED ERROR 
IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A3 SKY 
WAVE CHANNEL FROM SYSTEM 8.1. 

Nf Correlated noise Uncorrelated noise 
(dB) 41 

(dB) 

42 

(dB) (dB) 

42 

(dB) 
10 0.98 -12.153 -10-916 -12.119 -10.879 
20 0.96 -17.628 -16.438 -17.617 -16.434 
30 0.92 -21.638 -20.546 -21.637 -20.536 
40 0.88 -23.126 -22.115 -23.130 -22.107 
60 0.88 -23.348 -22.354 -23.360 -22.361 

TABLE 8.7.2 MEAN SQUARE ERROR & MEAN SQUARE NORMALIZED ERROR 
IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A3 SKY 
WAVE CHANNEL FROM SYSTEM 8.2. 

v 01 02 Correlated noise Uncorrelated noise 

(dB) 
(dB) 

ý2 

(dB) (dB) 

ý2 

(dB) 

10 0.008 1.100 0.988 -12.458 -11.190 -12.436 -11.197 

20 0.015 0.925 0.980 -19.938 -18.627 -19.920 -18.683 

30 0.020 0.850 0.965 -27.141 -25.873 -27.123 -25.886 

40 0.030 0.900 0.950 -33.698 -32.506 -33.622 -32.449 
::: 

6: 0] 0.048 0.900 0.896 -42.269 -41.385 -42.223 -41.326 
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TABLE 8.73 COMPARISON OF MEAN SQUARE ERROR IN THE ESTIMATED 
SAMPLED IMPULSE-RESPONSE OF 3 SKY WAVE CHANNEL 
FROM FTF & RLS KALMAN ALGORITHM. 

(dlyB) 
SYSTEM 8.1 

(dB) 

SYSTEM 5.3 

(dB) 

SYSTEM 8.2 

(dB) 

SYSTEM 5.1 

(dB) 
10 dB -12.153 -12.186 -12.458 -12.270 
20 dB -17.628 -17.650 -19.938 -19.418 
30 dB -21.638 -21.719 -27.141 -26.195 
40 dB -23.126 -23.191 -33.698 -32.437 
60 dB -23.348 -23.432 -42.269 -40.191 
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CHAPTER 9 

COMMENTS ON THE RESEARCH PROJECT 

9.1 COMPARISON OF THE CHANNEL ESTIMATORS. 

Results of the computer- simulation tests on different estimators considered in this 
thesis have already been presented at the end of their respective chapters. Tables 
9.1.1 and 9.1.2 and Fig. 9.1.1, however, compare the performances of systems 4.2, 
5.1,6.5,7.5 and 8.2. These systems have the best performance in their respective 
class of estimators. As can be seen from the Figure 9.1.1, system 7.5 has 

the best overall performance. This system however, utilizes some prior knowledge 

of the basic structure of the channel in the estimation process. Compared with the 
gradient estimator (system 4.2), the improvement in performance of system 7.5 is of 
the order of 6.5 dB at 10 dB signal/noise ratio and 19.5 dB at 60 dB signal/noise 
ratio. 

At high signal/noise ratios, a Kalman estimator (system 5.1 and system 8.2) has a 
significantly better performance than the corresponding gradient estimator (system 
4.2). However, the improvement is only marginal at low signal/noise ratios. With 

the assumption that the channel varies linearly with time and taking into account the 

rate of change in the channel sampled impulse-response (system 5.1), a considerable 
improvement in the performance can be achieved, at least at high signal/noise ratios, 
at the expense of increased computation. 

The best of the estimators considered in this thesis is system 6.5 which require only a 

marginal increase in computational complexity compared to system 4.2. This has a 

particularly good relative performance at the lower signal/noise ratios, which is 

where a good performance is of greatest practical value. Systems 6.5 and 7.5 have 

comparable performances at high signal/noise ratios when the latter assumes an 
incorrect model of the channel. However, the former is a much simpler estimator 

than system 7.5. 
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TABLE 9.1.1 MEAN SQUARE ERROR IN THE ESTIMATES OF THE CHANNEL 
SAMPLED IMPULSE-RESPONSE. 

SNR 
dB 

SYSTEM 
4.2 
dB 

SYSTEM 
5.1 
dB 

SYSTEM 
6.5 
dB 

SYSTEM 
7.5 
dB 

SYSTEM 
8.2 
dB 

10 -11.925 -12.270 -16.200 - 18.621 -12.458 
20 -18.942 -19.418 -23.200 -26.596 -19.938 
30 -25.052 -26.195 -30.300 -34.125 -27.141 
40 -29.012 -32.437 -35.800 -40.185 -33.698 
60 -30.990 -40.191 -43.400 -49.622 -42.269 

TABLE 9.1.2 MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATES OF 
THE CHANNEL SAMPLED IMPULSE-RESPONSE. 

SNR 
dB 

SYSTEM 
4.2 
dB 

SYSTEM 
5.1 
dB 

SYSTEM 
6.5 
dB 

SYSTEM 
7.5 
dB 

SYSTEM 
8.2 
dB 

10 -10.640 -10.975 -14.900 -17.813 -11.190 
20 -17.660 -18.214 -21.900 -25.777 -18.627 
30 -23.825 -24.928 -29.000 -33.387 -25.873 
40 -27.944 -31.361 -34.400 -39.611 -32.506 
60 -30.116 -39.347 -42.700 -50.010 -41.385 
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All the estimators in Tables 9.1.1 and 9.1.2 uses a one-step least-squares fading- 
memory prediction algorithm. Simulation tests have shown that the one-step 
predictor offers a considerable improvement in the performance of the estimators 
compared to the case where prediction is not used. 

System 8.2, together with the stabilization algorithm proposed in Chapter 8, offers a 
most efficient way to implement the RLS Kalman algorithm and is computationally 
less complex compared with system 5.1. Fig. 9.1.1 and Tables 9.1.1 - 9.1.2 compare 
the estimators using two different measures, namely, the mean square estimation 
error and the mean square normalized estimation error. The two measures do not 
change the relative performance of the estimators. The channel estimators listed in 

order of complexity and starting with the simplest estimator, are system 4.2,6.5,7.5, 
8.2 and 5.1. 

9.2 CONCLUSION 

In this thesis several novel estimation techniques have been developed and tested on 
a model of a data transmission system over an I-IF radio link. The channel estimators 
are either based on the RLS Kalman filter algorithm or the feedforward transversal 
filter algorithm. When the characteristics of the channel, such as the number of sky 
waves etc., are known then the efficient estimators (system 7.1 - 7.8) offer the best 

solution for channel estimation. The advent of fast Kalman algorithms have not 
reduced the complexity of the Kalman estimators compared to the Feedforward 

estimators. They have, in addition, the problem of numerical instablity in the 
algorithm. A degree-one Kalman algorithm (systems 5.1 and 5.2) which takes into 

account the rate of change in the channel sampled impulse-response has improved 

the estimator performance only at high signal/noise ratios. A feedforward estimator 
together with a degree-one fading memory predictor (system 4.2) is the simplest of 
all the estimators. System 6.5 is only slightly more complex than system 4.2 and has 

very good performance in the entire range of signal/noise ratios. The former does 

not take into account any prior knowledge of the channel. System 6.5 appears to be 

potentially the most cost-effective of all the estimators, considered in this thesis, for 

the given application in this thesis. 
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9.3 SUGGESTIONS FOR FUTURE WORK 

The most promising of all the estimators have been systems 7.1 - 7.8, which require 
a prior knowledge of the number of sky waves present in the HF channel. With this 
information and correct start-up, the systems 7.1 - 7.8 have near optimum 
performance. In practice, however, the number of sky waves present in the HF 

channel cannot be accurately forecasted and, moreover, they constantly change with 
time. Computer- simulation tests have shown (Chapter 7) that, incorrect assumption 
or incorrect start-up leads to an inefficient estimation process. In some of the 
systems, the algorithm uses a more effective updating process (systems 7.3 - 7.8) and 
this has considerably reduced the estimation error due to an incorrect start-up or an 
incorrect channel model. This suggests that, perhaps, the use of a better updating 
algorithm can lead to an even better estimation process. This needs further 
investigation. 

The efficient estimators (Chapter 7) become increasingly complex as the number of 
sky waves in the channel increases, since the existing algorithm requires an adequate 
start-up procedure. This thesis, however, has proposed a number of changes to the 

original algorithm (system 7.1) whereby it would only be required to track a reduced 
number of variable quantities (systems 7.3 - 7.8), where these are numerically equal 
to the number of sky waves present in the channel. This has resulted in an much 
simpler estimation algorithm. However, the problem of determining the n-dimen- 
sional subspace at start-up still remains. Here n is the number of sky waves present 
in the BF channel. So a suitable, adaptive (and a very much simpler) starting-up 

procedure is still to be developed. 

It is evident from the results of the computer- simulation tests (Fig. 9.1.1), that 

system 6.5 has performance intermediate between systems 7.5 (Efficient estimator) 

and 4.2 (Simple gradient estimator). An important feature of system 6.5 is that it 

applies error correction, in the channel update algorithm, in accordance with the 

modulus value of the channel components. Although this thesis has proposed a 

number of novel techniques to give corrections to the channel components, this, 
however, needs further theoretical and experimental investigation in order to 

ascertain the precise relationship between the channel components and the required 
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error correction. A simple mathematical relationship would simplify the hardware 
implementation of the algorithm. It would be of interest also to see the performance 
of the adaptive channel estimators on a frequency domain channel response. 

Computer- simulation results of the Kalman estimators have shown that they have a 
performance comparable to that of the simple gradient estimator. However, 

modifications which take account of the variation in the channel sampled impul- 

se-response have improved the performance only at high signal/noise ratios (system 
5.1, Fig. 9.1.1) and also this algorithm, however, is computationally complex. 
System 8.2 is much simpler than system 5.1 and requires very much less computa- 
tion. In recent times, their has been considerable interest in Recursive least-squares 

estimation using systolic arrays. This new technique is not likely to improve the 

performance of the estimation process. However, the algorithm can be very easily 
implemented in hardware. Moreover, there appears to be a possibility of obtaining 
the minimum phase version of the channel together with the estimate of the channel 
sampled impulse-response thus reducing the overall computational complexity of the 

modem. 
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APPENDIX A 

RAYLEIGH FADING FILTER 

A single Rayleigh fading propagation path is modelled as in Fig. 2.6-2, where<7, (t) 
andcl, (t) are two Gaussian random processes with zero mean and the same variance. 
The shape of their power spectrum is Gaussian having the same rms frequency, f,. 

S. The power spectrum ofcl, (t) and cl, (t) are given by, Eqn. 2.6.1, as 

IQ1(f) F IQ2(f) F exp - 
`2 

2f, 2, 
ý, 

.... A 1.1 

As is shown in Fig. 2.6.3, the random processq, (t) is generated by filtering a zero 
mean white Gaussian noise signal V, (t). The filter used in Fig. 2.6.3 has a Gaussian 
frequency response and is given by, Eqn. 2.6.5, as 

exp - 'r ... A 1.2 
4f, 2,,, 

and the 3 dB cut-off frequency of the filter is 

fc, = 1.17741 f,,,,, ... A 1.3 

The rms frequency, f, and the frequency spread, f, are related as follows, (Eqn. 
rms SP 

2.6.2)) 

lp 
A 1.4 f2f, 

Therefore, from Eqns. A 1.3 and A 1.4, 

f, = 0.588705 fp ... A 1.5 

The impulse-response and the magnitude-response of a Bessel filter tends towards 
Gaussian as the order of the filter is increased [321. A Bessel filter has, therefore, 
been used to obtain the Rayleigh fading filter in Fig. 2.6.3. 

231 



The Bessel filters have the transfer function of the form [32,117-1191 

H (s) 
do 

... A 1.6 B, (s) 

where B. (s) is the nth - order Bessel Polynomial and d,, is a normalizing constant of 
the form 

do - 
(2n)! 
22n! ... A 1.7 

B. (s) can be put in the form [32] 

n 
Bn (S I dks kA1.8 

k=O 

where 

dk (2n - k)! 
.... A 1.9 

2 n-k k! (n k)ý! 

for k=O, 1n 

A 5, h order Bessel filter has been chosen as a practical choice and thus n=5. Fig. 
2.7.1 compares the frequency response of this filter with that Of the desired 

theoretical frequency response (Gaussian). It can be seen that a 5th order Bessel filter 
has a frequency response that is Gaussian, at least in the range of interest. 

Eqn. A1.6 becomes 

H (s) = S4+ S3 

945 
OS2+ S5+15 105 +42 945s +945 

Eqn. Al. 10 can be expressed as 

A1.10 
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H(s) 5 
Tj (s 

i=l 

945 

- Pi) 

where Pi are known as the poles of H(s) and are given by [ 1171 

P, = -3.64674 
p23 p3 

= -3.35196 ±i 1.74266 

pV Ps = -2.32467 ±i 3.57102 

.. -A 1.11 

A 1.12 

Substituting s=jQ , 
in Eqn. Al. 11, the frequency response of the Bessel filter is 

945 

ri (A2 - Pi) 
i=l 

A 1.13 

where, in Eqn. Al. 13,92 is the angular frequency and j= When KI = Q, 

rad/sec., the amplitude response of the 5thorder Bessel filter, drops by 3 dB from its 

peak value. Q. is called the 3 dB cut-off angular frequency and is given by [34] 

Qc = 2.4274rad/ sec. A 1.14 

One of the parameter of importance in the characterization of a channel is the 
frequency spread, f NP . Therefore, it is desirable to express the cut-off frequency of 
the Bessel filter in terms of the frequency spread. 

Let 

CO = con 

where 

Co 
- 

(01 
- 

27cf, 
ý2C £2c 

where f. , from Eqn. A 1.3, is the cut-off frequency of the desired filter. 

.... A 1.15 

A 1.16 
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Therefore, from Eqns. A 1.14 and A 1.16, 

Co = 2.58844 f, 
.... A 1.17 

Substituting the value of 92, from Eqn. Al. 15, in Eqn. Al. 13 

H(jw) = 
945 

... -41.18 

CO 
,' (i lü - Pi) 

Let 

Pi = copi 
... A 1.19 

Then, from Eqns. A1- 18 and A 1.19, 

H (j co) 5 
945 Co5 

... A 1.20 
Uco - Pio 

and, from Eqns. Al. 17 and A 1.20, 

109805.0518 
H (jo)) =5... A1.21 

ri Pi,! ) 
i=l 

do' 
... A 1.22 

pi() 

where, in Eqn. A1.22, 

S =jw 

do' 109805.0518 f5 
and 

Pl 2.58844 f: Pi i 
for i=1,2,.., 5 

A 1.23 
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Table Al. 1 summarizes all the parameters of the Bessel filter for a frequency spread 
of 2 Hz. 

Eqn. A1.22 is the transfer function of a 5thorder Bessel filter. This analog filter is to 
be digitized for use in computer-simulation. The method used for this is called the 
impulse-invariant transformation method [32]. The important feature of this 
transformation is that, the impulse-response of the resulting digital filter is a sampled 
version of the impulse-response of the analog filter. In this technique the poles jp. ý), 
in the s-plane, of Eqn. A1.22, are transformed to poles at in the z-plane [32], 

where T is the sampling interval. 

Therefore, using the impulse-invariant transformation method, Eqn. Al. 22 can be 

written as 

e 
P(T 

K 
5 

rj qiz-1) 
i=l 

A 1.24 

where in Eqn. A1.24, K is the DC gain of the filter, q, s are the poles and are equal to 

qi =e 
Pj'fT 

A 1.25 

q, (t)s have Gaussian spectra, and so contain all the frequency components. However, 
for a frequency spread of 2 Hz, the 3 dB bandwidth of the analog filter is 2.35 Hz, as 
can be seen from Eqns. A1.3 and AlA So frequencies above about 25 Hz have 

negligibly small amplitude as can be seen from Fig. 2.6.4 and, therefore, a sampling 

rate of 100 samples/sec. is adequate enough for accurate representation of (Ii(t). The 

z-plane poles obtained from Eqns. A1.24 for a frequency spread of 2 Hz are 
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qý = 0.8 94-13 

q, q, = O. '9016±j 0.0478 

q, q, = 0.97-61 ±i 0.10) 2 

A 1.26 

The digital filter is implemented as shown in Fig. 2.6.5 [34-361. It comprises of a 
cascade of two 2-pole section and a single pole section. Each of the 2-pole section 
has a complex conjugate poles and the single pole section has a real pole. The 
transfer function of the filter in Fig. 2.6.5 is, therefore, 

H (z) =K (1 - qlz-1) f (1 - q2Z-I) (1- q3Z-1)1 J(l - q4z-1) (1 - q5z-1)) 

A 1.27 

K 

qlz-1) (q2+ q3)Z-l+ (q2q3)Z-21 f 1- (q4+ qs)z-'+ (q4qs)z'l 

.A1.28 

where q, and q, and q, and q, are complex conjugate pairs. Therefore, from Eqn. 
A 1.28 and Fig. 2.6.5, the filter co-efficients ( C, I are given by 

cl = -q, 
c2= -(q2+ q 3) 

C3 
= q. 2q 3 

C4 
= -(q 4+q 5) 

C5 
=q4 q5 

The filter co-efficients obtained for a frequency spread of 2 Hz are listed in Table 

2.6.2. The value of K, called the gain of the filter, in Eqn. A1.28, is chosen such that 

the [q, (t) Is have a variance corresponding to 1/2n., where n. represents the number of 

sky waves. This ensures that the mean length of the channel sampled impulse-res- 

ponse vector is equal to unity. Theoretically the value of K can be obtained as 
follows. The energy in the waveform. H(f), Eqn. A1.22, given by 
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Eh = 
fl H (F) Pdf 

... A 1.29 

is determined. Ehis normalized by a scalar, K, such that the energy in the waveform 
is equal to 1/2n. . However, a simpler method is to pass a sequence of digital data, 

whose first element is a1 and the rest of the elements are zero, through the 5 pole 
digital filter. For a sufficiently long sequence, the sum of the squares of the output 

of the digital filter, E, is very close to E h' particularly since the sampling frequency 

of the filter is considerably larger than the bandwidth of the filter. E. is now 

normalized by K such that the energy in the waveform is equal to 1/2n.. The gain of 

the 5-pole digital filter obtained in this way for a2 Hz frequency spread is equal to 
19378. With this value of K, in Eqn. A1.28, the resultant channel sampled 
impulse-response vector length is very close to unity as can be seen from Table 

3.5.2. 
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TABLE AM FIFTH ORDER ANALOG BESSEL FILTER FOR A FRE- 
QUENCY SPREAD OF 2 Hz. 

r7__ 

. Nequency spread, f, (Hz) 2 

Cut-off frequency, f, (Hz) 1.1774 

Constant do 248451.99 

Filter poles in the s-plane 
Pi -11.1139 +j 0 

P/ 251P/ 3 - 10.2155 -ý j 5.3110 
p4X/ 

-7.0847 : Lj 10.8831 

11 
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APPENDIX B 

TRANSMITTER & RECEIVER FIELTERS 

Fig. 3.3.4 shows the frequency characteristics of the combined equipment and radio 
filters. In order to obtain different sampling phases, the filter sampled impulse-res- 

ponse has been obtained at a sampling rate that is 20 times higher (i. e., at a sampling 
rate of 96000 samples/sec. ) than the original sampling rate. This oversampled 
transmitter and receiver filter responses are given in Table Bl. l. Section 3.3 

explains in detail, the method by which the oversampled filters are obtained. The 

sampled impulse-responses al, ki a,, k and a,, k corresponding to a(t-iT), a(t-'C, -iT) and 
a(t--c, -iT) (for generating a three sky wave channel) have been obtained by taking 
every 20th sample from the oversampled transmitter filter. The three filters are, 
therefore, at a sampling rate of 4800 samples/sec. a I, k has (-0.179590 +i2.353941) 
as its first sample and the other samples are obtained by picking every 20th sample 
from the first sample from Table B 1.1 (Table 3.3.3). 

a,., is delayed 1.1 millisecond with respect to a,,,. Expressing this delay as a fraction 

of the number of samples, pl, gives 

i. i 
= 5.28 

(1/4800) 

In other words the first sample of a,,, is delayed by 5.28 samples with respect to the 
first sample of a,,,,. It is, however, necessary to obtain the samples of the delayed 
filters at the sampling instants of the non-delayed filter. This delay can be expressed 
as a whole number of samples and a fractional part (i. e. 5+0.28). The first 

component of a,,,, is thus added to the (5 + 1) 6th component of a,.,. This leaves a 
discrepancy of (6 - 5.28) 0.72 sampling intervals. This discrepancy is taken care of 
by choosing (from the oversampled version) the sample that is (0.72 x 96000/4800 = 
14.4) 14 samples ahead of (-0.179590 +j2.353941). Thus the sample that is chosen 

as the first sample of a,,,, is (- 1.669437 +j 13.23727 1). The remaining sample of a,, k 
are, of course, chosen as every 20th sample from the sampled version, starting with 
(- 1.669437 +j 13.23727 1). The 3 millisecond delayed filter a,., has been similarly 

obtained and is shown in Table 3.3.3. The oversampled version of the receiver filter 

in Table B1.1 has been obtained as described in Section 3.3, but at a different 
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sampling phase. Table 3.3.4 shows the sample impulse-response of the receiver 
filter at 4800 samples/sec. and has been obtained from Table BIA with (-1.941764 + 
j 1.362559) as its first sample. 
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TABLE B1.1. - OVERSAMPLED TRANSMITTER & RECEIVER 
FILTER 

(A) - IN PHASE RESPONSE OF TRANSMITTER FIELTER 
SAMPLED AT 96000 SAMPLES/SEC. 

-0.0002096 -0-0002887 -0-0003396 -0-0003572 -0-0003399 
-0.0002893 -0-0002103 -0-0001106 0.0000000 0.0001107 

0.0002107 0.0002901 0.0003411 0.0003588 0.0003413 
0.0002904 0.0002111 0.0001110 0.0000000 -0-0001110 

-0.0002113 -0-0002908 -0-0003419 -0-0003596 -0-0003420 
-0.0002909 -0-0002114 -0-0001111 0.0000000 -0.0001111 

0.0002113 0.0002908 0.0003418 0.0003593 0.0003416 
0.0002905 0.0002110 0.0001109 0.0000000 -0-0001108 

-0.0002106 -0-0002897 -0-0003404 -0.0003577 -0-0003399 
-0.0002889 -0-0002098 -0-0001102 0.0000000 0.0001100 

0.0002089 0.0002873 0.0003373 0.0003542 0.0003364 
0.0002858 0.0002073 0.0001088 0.0000000 -0-0001085 

-0.0002059 -0-0002829 -0-0003319 -0.0003483 -0-0003305 
-0.0002805 -0-0002033 -0-0001066 0.0000000 0.0001060 

0.0002011 0.0002760 0.0003234 0.0003389 0.0003212 
0.0002722 0.0001970 0.0001032 0.0000000 -0.0001023 

-0-0001937 -0-0002653 -0-0003103 -0-0003246 -0-0003070 
-0.0002596 -0-0001875 -0.0000979 0.0000000 0.0000966 

0.0001825 0.0002492 0.0002906 0.0003030 0.0002856 
0.0002407 0.0001731 0.0000901 0.0000000 -0-0000881 

-0.0001655 -0-0002249 -0.0002608 -0.0002703 -0.0002531 
-0.0002118 -0-0001513 -0.0000781 0.0000000 0.0000750 

0.0001394 0.0001873 0.0002146 0.0002194 0.0002024 
0.0001666 0.0001168 0.0000591 0.0000000 -0-0000540 

-0-0000975 -0-0001267 -0-0001395 -0-0001362 -0.0001190 
-0.0000918 -0-0000594 -0-0000272 0.0000000 0.0000182 

0.0000253 0.0000212 0.0000077 -0-0000113 -0-0000305 
-0-0000440 -0.0000461 -0-0000322 0.0000000 0.0000502 

0.0001148 0.0001868 0.0002566 0.0003124 0.0003414 
0.0003319 0.0002744 0.0001636 0.0000000 -0.0002091 

-0-0004487 -0-0006966 -0.0009238 -0-0010966 -0.0011788 
-0-0011355 -0-0009363 -0-0005602 0.0000000 0.0007335 

0.0016070 0.0025614 0.0035082 0.0043277 0.0048672 
0.0049406 0.0043280 0.0027763 0.0000000 -0.0043177 

-0.0105240 -0.0189960 -0.0301401 -0.0443918 Jý -0.0622160 
-0-084107-6 -0-1105917 -0.1422238 -0--179 - 

5896 0) -0.2233037 
-0.2740073 -0.3323647 -0.3990578 -0.4747796 -0.5602256 
-0.6560838 -0.7630237 -0.88168427(4 -1.0126609 -1.1564934 
-1.3136537 -1.48453-39 -1.66 9-4 37 4TTý5--ý3 -1.8685694 -2.0820312 
-2-3098150 -2.5518017 -2.8077597 -3.0773455)(t) -3.3601064 
-3-6554823 -3.9628099 -4.2813263 -4.6101723 -4.9483961 
-5.2949561 -5.6487240 -6.0084869 -6.3729500 -6.7407393 
-7-1104051 -7.4804261 -7.8492148 -8.2151244 -8.5764574 
-8-9314755 -9.2784116 -9.6154822 -9.9409021 -10.2528991 

-10-5497287 -10.8296895 -11.0911373 -11.3324982 -11.5522808 
-11.7490864 -11.9216180 -12.0686870 -12.1892192 -12.2822589 
-12.3469721 -12.3826494 -12.3887079 -12.3646935 -12.3102829 
-12-2252865 -12.1096509 -11.9634618 -11.7869473 -11.5804806 
-11.3445819 -11.0799204 -10.7873130 -10.4677274 -10.1222704 

-9.7521911 -9.3588701 -8.9438114 -8.5086316 -8.0550490 
-7.5848703 -7.0999776 -6.6023157 -6.0938784 -5.5766967 
-5-0528272 -4.5243415 -3.9933167 -3.4618271 -2.9319357 
-2.4056875 -1.8851016 -1.3721641 -0.8688202 -0.3769656 

0.1015622 0.5649945 1.0116413 1.4399026 1.8482796 
2.2353854 2.5999552 2.9408554 3.2570916 3.5478141 
3.8123224 4.0500667 4.2606477 4.4438154 4.5994647 
4.7276308 4.8284836 4.9023211 4.9495636 4.9707467 
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4.9665164 4.9376234 4.8849186 4.8093491 4.7119541 
4.5938614 4.4562826 4.3005084 4.1279029 3.9398962 
3.7379757 3.5236767 3.2985708 3.0642536 2.8223321 
2.5744110 2.3220794 2.0668985 1.8103897 1.5540244 
1.2992157 1.0473111 0.7995878 0.5572496 0.3214244 
0.0931639 -0.1265567 -0.3368383 -0.5368582 -0.7258700 

-0.9032046 -1.0682722 -1.2205644 -1.3596576 -1.4852158 
-1.5969945 -1.6948431 -1.7787073 -1.8486294 -1-9047481 
-1.9472954 -1.9765922 -1.9930423 -1.9971243 -1.9893827 
-1.9704176 -1.9408745 -1.8014342 -1.8528030 -1.7957047 
-1.7308727 -1.6590449 -1.5809597 -1-. 4973528 -1.4089564 
-1.3164980 -1.2207005 -1.1222815 -1.0219528 -0.9204182 
-0.8183711 -0.7164903 -0.6154345 -0.5158362 -0.4182949 
-0.3233694 -0.2315715 -0.1433592 -0.0591323 0.0207712 

0.0960762 0.1665695 0.2320973 (0.2925598 0.3479056 
0.3981238 0.4432363 0.4832902 0.5183509 0.5484959 
0.5738109 0.5943870 0.6103202 0.6217122 0.6286729 
0.6313238 0.6298011 0.6242601 0.6148771 0.6018517 
0.5854067 0.5657863 0.5432531 0.5180829 0.4905592 
0.4609658 0.4295803 0.3966679 0.3624759 0.3272300 
0.2911328 0.2543641 0.2170838 0.1794357 0.1415545 
0.1035718 0.0656237 0.0278577 -0-0095622 -0.0464514 

-0.0826035 -0.1177907 -0.1517680 -0.18427B6 -0.2150615 
-0.2438612 -0.2704365 -0.2945709 -0.3160803 -0-3348201 
-0.3506899 -0.3636354 -0.3736477 -0.3807599 -0.3850420 
-0.3865939 -0.3855371 -0.3820071 -0.3761463 -0-3680978 
-0.3580021 -0.3459950 -0.3322094 -0.3167778 -0.2998377 
-0.2815380 -0.2620450 -0.2415492 -0.2202693 -0.1984549 

0.1763861 -0.1543700 -0.1543700 -0.1118143 -0.0919475 
-0.0734526 -0.0566187 -0.0416905 -0.0288560 -0.0182370 
-0.0098828 -0.0037687 0.0002018 /0.0021899 0.0024109 

0.0011207 -0.0013998 -0.0048610 -0.0089801 -0.0134947 
-0.0181736 -0.0228239 -0.0272931 -0.0314685 -0.0352709 
-0.0386471 -0.0415585 -0.0439705 -0.0458416 -0.0471151 
-0.0477136 -0.0475377 -0.0464696 --0.0443806 -0.0411434 
-0-0366473 -0.0308152 -0.0236212 -0-0151063 -0-0053910 

0.0053171 0.0167220 0.0284445 0.0400358 0.0509968 
0.0608046 0.0689425 0.0749333 0.0783720 0.0789564 
0.0765135 0.0710176 0.0626009 0.0515533 0.0383126 
0.0234435 0.0076085 -0.0084686 -0.0240446 -0-0384004 

-0.0508838 -0.0609485 -0.0681863 -0.0723509 -0.0733706 
-0.0713496 -0.0665586 -0.0594132 -0.0504447 -0.0402683 
-0.0295126 -0-0188364 -0.0088283 0.0000000 0.0072489 

0.0126510 0.0160815 0.0175578 0.0172292 0.0153572 
0.0122893 0.0084275 0.0041943 0.0000000 -0.0037884 

-0.0068719 -0.0090381 -0.0101718 -0.0102567 -0.0093694 
-0.0076666 -0-0053654 -0.0027205 0.0000000 0.0025394 

0.0046743 0.0062320 0.0071031 0.0072476 0.0066944 
0.0055350 0.0039116 0.0020017 0.0000000 -0.0019003 

-0-0035251 -0.0047346 -0.0054343 -0.0055818 -0.0051885 
-0.0043159 -0-0030676 -0-0015785 0.0000000 0.0015140 

0.0028221 0.0038080 0.0043901 0.0045286 0.0042267 
0.0035297 0.0025184 0.0013006 0.0000000 -0.0012561 

-0-0023491 -0.0031798 -0.0036771 -0.0038043 -0.0035609 
-0-0029819 -0.0021333 -0.0011046 0.0000000 0.0010721 

0.0020098 0.0027267 0.0031602 0.0032766 0.0030735 
0.0025790 0.0018487 0.0009591 0.0000000 -0.0009344 
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(B) - QUADRATURE RESPONSE OF TRANSMITTER FILTER 
SAMPLED AT 96000 SAMPLESSEC. 

-0.0018960 
-0.0026938 

0.0020224 
0.0028795 

-0.0021666 
-0.0030923 

0.0023328 
0.0033386 

-0.0025262 
-0.0036272 

0.0027542 
0.0039696 

-0.0030268 
-0.0043825 

0.0033584 
0.0048899 

-0.0037705 
-0.0055278 

0.0042956 
0.0063535 

-0.0049871 
-0.0074620 

0.0059365 
0.0090242 

-0.0073159 
-0.0113770 

0.0094846 
0.0152746 

-0.0133169 
-0.0227450 

0.0214730 
0.0410111 

-0.0456111 
-0.1123821 

0.1932385 
1.2493078 
3.3108456 
6.5455425 

11.0688962 
16.8321857 
23.5042446 
30.5187820 
37.2136597 
42.9059887 
46.9257109 
48.7146794 
47.9575159 
44.6307293 
38.9744463 
31.4713441 
22.8262482 
13.8752357 

5.4416399 
-1.7735266 
-7.2498590 

-10.7020093 
-12.1218489 
-11.7524642 
-10.0026703 

-7.3680608 
-4.3741695 
-1.5058820 

-0.0026261 
-0.0019699 

0.0028023 
0.0021066 

-0.0030035 
-0.0022634 

0.0032356 
0.0024451 

-0.0035060 
-0.0026583 

0.0038253 
0.0029116 

-0.0042076 
-0.0032175 

0.0046736 
0.0035943 

-0.0052539 
-0.0040692 

0.0059957 
0.0046859 

-0.0069761 
-0.0055173 

0.0083288 
0.0066959 

-0.0103073 
-0.0084850 

0.0134480 
0.0114840 

-0.0190802 
-0.0173412 

0.0313657 
0.0321468 

-0.0694746 
-0.0942916 

0.3342662 
1.5751498 
3.8591911 
7.3452371 

12.1286245 
18.1095118 
24.9003445 
31.9050405 
38.4543095 
43.8641239 
47.4762122 
48.7718190 
47.4936015 
43.6738546 
37.6019147 
29.8079459 
21.0330921 
12.1224692 

3.8815751 
-3.0207994 
-8.1065690 

-11.1439499 
-12.1798142 
-11.4979467 

- 9.5297832 
6.7813882 

-3.7766193 
-0.9822748 

-0.0031067 
-0.0010424 

0.0033165 
0.0011152 

-0.0035564 
-0-0011988 

0.0038332 
0.0012959 

-0.0041563 
-0.0014098 

0.0045381 
0.0015454 

-0.0049962 
-0.0017095 

0.0055556 
0.0019120 

-0.0062539 
-0.0021679 

0.0071491 
0.0025013 

-0.0083367 
-0.0029528 

0.0099837 
0.0035966 

-0.0124094 
-0.0045820 

0.0162988 
0.0062543 

-0.0233823 
-0-0095856 

0.0392410 
0.0183105 

-0.0909950 
-0.0579434 

0.5082941 
1.9429154 
4.4557341 
8.1974720 

13.2372707 
19.4199272 
26.3051808 
33.2731191 
39.6493461 
44.7499103 
47.9331639 
48.7250491 
46.9272219 
42.6261192 
36.1597834 
28.1049601 
19.2346609 
10.3969514 

2.3756530 
-4.1946128 
-8.8804125 

-11.5050480 
-12.1686116 
-11.1917489 

-9.0256163 
-6.1846416 
-3.1879262 
-0.4810978 

-0.0032874 
0.0000000 
0.0035109 
0.0000000 

-0.0037666 
0.0000000 
0.0040621 
0.0000000 

-0.0044073 
0.0000000 
0.0048159 
0.0000000 

-0.0053068 
0.0000000 
0.0059076 
0.0000000 

-0.0066593 
0.0000000 
0.0076259 
0.0000000 

-0.0089133 
0.0000000 
0.0107080 
0.0000000 

-0.0133702 
0.0000000 
0.0176836 
0.0000000 

-0.0256677 
0.0000000 
0.0440432 
0.0000000 

-0.1074007 
0.0000000 
0.7175366 
2.3539405 
5.1016214 
9.1023946 

14.3926361 
20.7590237 
27.7134459 
34.6175658 
40.7932681 
45.5584592 
48.2935224 
48.5737616 
46.2599267 
41.4909978 
34.6534397 
26.3691066 
17.4377717 

8.7045826 
0.9284061 

-5.2922114 
-9.5708828 

-11.7869820 
-12.0913914 
-10.8377827 

-8.4944258 
-5.5819054 
-2.6113002 
-0 . 0043047 

-0.0031465 
0.0010562 
0.0033619 

-0.0011310 
-0.0036085 

0.0012171 
0.0038938 

-0.0013172 
-0.0042275 

0.0014350 
0.0046230 

-0.0015757 
-0.0050990 

0.0017465 
0.0056827 

-0.0019583 
-0.0064148 

0.0022274 
0.0073593 

-0.0025804 
-0.0086221 

0.0030629 
0.0103921 

-0.0037594 
-0.0130372 

0.0048442 
0.0173697 

-0.0067345 
-0.0255267 

0.0106649 
0.0448589 

-0.0218003 
-0.1156220 

0.0827311 
0.9639589 
2.8095026 
5.7979150 

10.0597638 
15.5920086 
22.1221047 
29.1197780 
35.9329096 
41.8806123 
46.2851556 
48.5547200 
48.3178150 
45.4936549 
40.2723551 
33.0886132 
24.6072306 
15.6491184 

7.0510150 
-0.4559482 
-6.3112590 

-10.1779415 
-11.9917925 
-11.9515022 
-10.4400583 

-7.9404850 
-4.9771435 
-2.0497120 

0.4463982 
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0.8695437 1.2638933 1.6284281 1.9623394 2.2650217 
2.5360673 2.7752627 2.9825874 3.1582131 3.3025044 
3.4160186 3.4995038 3.5538956 3.5803102 3.5800345 
3.5545124 3.5053270 3.4341804 3.3428704 3.2332656 
3.1072800 2.9668481 2.8139013 2.6503465 2.4780490 
2.2988169 2.1143913 1.9264385 1.7365460 1.5462211 
1.3568901 1.1698997 0.9865176 0.8079318 0.6352500 
0.4694956 0.3116039 0.1624149 0.0226669 -0.1070118 

-0.2261096 -0.3342379 -0.4311352 -0.5166680 -0.5908297 
-0.6537350 -0.7056120 -0.7467906 -0.7776891 -0.7987986 
-0.8106669 -0.8138825 -0.8090599 -0.7968257 -0.7778083 
-0.7526319 -0.7219063 -0.6862301 -0.6461880 -0.6023532 
-0.5552906 -0.5055596 -0.4537174 -0.4003201 -0.3459233 
-0.2910796 -0.2363349 -0-1822225 -0.1292556 -0.0779191 
-0.0286612 0.0181148 0.0620573 0.1028714 0.1403215 

0.1742316 0.2044829 0.2310091 0.2537894 0.2728409 
0.2882096 0.2999617 0.3081762 0.3129383 0.3143350 
0.3124536 0.3073812 0.2992077 0.2880296 0.2739555 
0.2571122 0.2376502 0.2157487 0.1916186 0.1655045 
0.1376831 0.1084602 0.0781650 0.0471432 0.0157477 

-0.0156703 -0.0467'706 -0.0772327 -0-1067625 -0-1350979 
-0.1620121 -0-1873135 -0.2108453 -0.2324818 -0.2521238 
-0.2696933 -0.2851283 -0.2983775 -0.3093963 -0.3181453 
-0.3245889 -0.3286970 -0.3304483 -0.3298346 -0.3268660 
-0.3215770 -0.3140314 -0.3043271 -0.2925984 -0.2790169 
-0.2637901 -0.2471575 -0.2293845 -0.2107548 -0-1915610 
-0.1720951 -0.1526387 -0-1334542 -0.1147769 -0.0968097 
-0.0797193 -0.0636352 -0.0486510 -0.0348275 -0.0221972 
-0.0107706 -0-0005416 0.0085057 0.0163927 0.0231422 

0.0287766 0.0333169 0.0367850 0.0392056 0.0406106 
0.0410431 0.0405616 0.0392435 0.0371870 0.0345120 
0.0313582 0.0278816 0.0242491 0.0206313 0.0171942 
0.0140909 0.0114524 0.0093809 0.0079429 0.0071662 
0.0070377 0.0075054 0.0084818 0.0098505 0.0114746 
0.0132057 0.0148949 0.0164020 0.0176054 0.0184091 
0.0187484 0.0185930 0.0194722 0.0168480 0.0153603 
0.0135711 0.0115816 0.0094992 0.0074293 0.0054678 
0.0036951 0.0021717 0.0009352 0.0000000 -0-0006413 

-0-0010149 -0-0011618 -0-0011323 -0-0009808 -0.0007607 
-0-0005197 -0.0002965 -0-0001182 0.0000000 0.0000550 

0.0000538 0.0000111 -0-0000540 -0-0001207 -0.0001701 
-0-0001877 -0.0001650 -0-0001006 0.0000000 0.0001250 

0.0002584 0.0003820 0.0004777 0.0005303 0.0005291 
0.0004698 0.0003546 0.0001930 0.0000000 -0.0002049 

-0-0003999 -0-0005637 -0-0006772 -0.0007265 -0.0007039 
-0-0006091 -0.0004496 -0.0002399 0.0000000 0.0002463 

0.0004742 0.0006599 0.0007839 0-0008322 0.0007987 
0.0006853 0.0005019 0.0002658 0.0000000 -0.0002695 

-0-0005158 -0.0007142 -0-0008442 -0-0008922 -0.0008527 
-0-0007287 -0-0005317 -0.0002807 0.0000000 0.0002828 

0.0005397 0.0007452 0.0008787 0.0009265 0.0008835 
0.0007534 0.0005486 0.0002891 0.0000000 -0.0002902 
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(C) - IN PHASE RESPONSE OF RECEIVER FIELTER 
SAMPLED AT 96000 SAMPLES/SEC. 

0.0020834 
0.0029515 

-0.0022093 
-0.0031359 

0.0023522 
0.0033463 

-0.0025161 
-0.0035888 

0.0027060 
0.0038713 

-0.0029286 
-0.0042050 

0.0031936 
0.0046052 

-0.0035142 
-0-0050943 

0.0039102 
0.0057057 

-0.0044121 
-0.0064922 

0.0050685 
0.0075410 

-0-0059635 
-0-0090078 

0.0072530 
0.0111969 

-0.0092603 
-0.0147831 

0.0127627 
0.0215573 

-0.0200914 
-0.0377947 

0.0412785 
0.0995193 

-0-1668071 
-1.0483676 
-2.7013103 
-5.2132779 
-8.6610237 

-13.0181011 
-18.0503691 
-23-3570252 
-28.4829812 
-32.9622667 
-36.3227256 
-38.1530362 
-38.2009723 
-36.4049087 
-32-8685841 
-27.8544486 
-21.7865466 
-15-1996546 

8.6472568 
-2-6349998 

2.4143343 
6.2049538 
8.6112151 
9.6733158 
9.5513810 
8.4850836 
6.7664935 
4.6999446 

0.0028840 
0.0021571 

-0.0030593 
-0.0022927 

0.0032587 
0.0024477 

-0.0034875 
-0.0026265 

0.0037529 
0.0028351 

-0.0040645 
-0.0030818 

0.0044359 
0.0033782 

-0.0048862 
-0.0037411 

0.0054437 
0.0041961 

-0.0061521 
-0.0047831 

0.0070821 
0.0055692 

-0.0083562 
-0.0066748 

0.0102042 
0.0083378 

-0.0131078 
-0.0110937 

0.0182477 
0.0163959 

-0.0292647 
-0.0295260 

0.0626214 
0.0830984 

-0.2869621 
-1.3142129 
-3.1322002 
-5.8263700 
-9.4639655 

-13.9817192 
-19.1041028 
-24.4113966 
-29.4457608 
-33.7385899 
-36.8220438 
-38.3098230 
-37.9881746 
-35.8308386 
-31.9726333 
-26.7090951 
-20.4926773 
-13.8692888 

- 7.3866587 
-1.5364595 

3.2797839 
6.7978249 
8.9274450 
9.7369523 
9.4048894 
8.1836652 
6.3716409 
4.2696374 

0.0034098 
0.0011408 

-0.0036185 
-0.0012130 

0.0038560 
0.0012956 

-0.0041289 
-0.0013910 

0.0044457 
0.0015025 

-0.0048183 
-0.0016345 

0.0052630 
0.0017933 

-0.0058032 
-0.0019883 

0.0064736 
0.0022333 

-0.0073280 
-0.0025505 

0.0084540 
0.0029771 

-0.0100041 
-0.0035805 

0.0122676 
0.0044955 

-0.0158593 
-0.0060302 

0.0223137 
0.0090405 

-0.0365054 
-0.0167591 

0.0816758 
0.0508120 

-0.4339259 
-1.6118040 
-3.5981102 
-6.4776362 

-10.3028792 
-14.9699991 
-20.1653032 
-25.4548772 
-30.3789209 
-34.4662838 
-37.2569380 
-38.3936124 
-37.7014554 
-35.1882206 
-31.0199326 
-25.5253126 
-19.1825454 
-12.5447454 

-6.1516341 
-0.4797192 

4.0927200 
7.3346356 
9.1905279 
9.7546952 
9.2226733 
7.8586060 
5.9653346 
3.8383376 

0.0036060 
0.0000000 

-0.0038282 
0.0000000 
0.0040814 
0.0000000 

-0.0043724 
0.0000000 
0.0047108 
0.0000000 

-0-0051093 
0.0000000 
0.0055857 
0.0000000 

-0.0061655 
0.0000000 
0.0068867 
0.0000000 

-0.0078087 
0.0000000 
0.0090284 
0.0000000 

-0.0107162 
0.0000000 
0.0131981 
0.0000000 

-0.0171766 
0.0000000 
0.0244403 
0.0000000 

-0.0408489 
0.0000000 
0.0959832 
0.0000000 

-0.6090863 
-1 .9 417 6 9-1- 
-4.0997796 
-7.1672740 

-11.1762206 
-15.9797864 
-21.2303061 
-26.4837800 
-31.2786220 
-35.1417733ý, 
-37.6250430 
-38.4036547 
-37.3414093 
-34.4788717, k 
-30.0136650 
-24.3073586 
-17.8606794 
-11.2301982, ý 

-4.9457589 
0.5325620 
4.8518440 
7.8 15 5 16 0 
9.4016301 
9.7283725 
9.0070400 
7.5124057 
5.5498420 
3.4078680 

0.0034493 
-0.0011545 
-0.0036635 

0.0012286 
0.0039075 

-0.0013136 
-0.0041884 

0.0014119 
0.0045154 

-0.0015271 
-0.0049009 

0.0016639 
0.0053625 

-0.0018291 
-0.0059255 

0.0020327 
0.0066276 

-0.0022900 
-0.0075278 

0.0026255 
0.0087235 

-0.0030806 
-0.0103866 

0.0037323 
0.0128502 

-0.0047375 
-0.0168415 

0.0064675 
0.0242505 

-0.0100061 
-0.0414752 

0.0198065 
0.1028664 

-0.0718006 
-0.8135869 
-2.3047252 
-4.6379411 
-7.8952046 

-12.0820595 
-17.0077375 
-22.2954378 
-27.4943951 
-32.1410152 
-35.7616526 
-37.9243142 
-38.3394980 
-36.9088698 
-33.7048744 
-28.9572744 
-23.0596138 
-16.5315711 

-9.9297163 
-3.7724599 

1.4979660 
5.5561560 
8.2408417 
9.5620723 
9.6599211 
8.7603660 
7.1475503 
5.1273471 
2.9799668 
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2.5562923 2.1384269 1.7278820 1.3260998 0.9344548 
0.5542524 0.1867261 -0-1669666 -0.5057505 -0-8286388 

-1.1347394 -1.4232612 -1.6935186 -1.9449349 -2.1770436 
-2.3894877 -2.5820173 -2.7544853 -2.9068417 -3.0391275 
-3.1514680 -3.2440658 -3-1371960 -3.3712008ý -3.4064862 
-3.4235203 -3.4228322 -3.4050122 -3.3707125 -3.3206485 
-3.2555987 -3.1764049 -3.0839704 -2.9792569 -2.8632797 
-2.7371004 -2.6018195 -2.4585658 -2.3084858 -2-1527328 
-1.9924551 -1.8287851 -1.6628297 -1.4956608 -1.3283086 
-1.1617554 -0.9969315 -0.8347123 -0.6759166 -0.5213057 
-0.3715827 -0.2273931 -0.0893236 0.0420976 0.1664022 

0.2831831 0.3920953 0.4928585 0.5852576 0.6691446 
0.7444381 0.8111235 0.8692507 0.9189314 0.9603349 
0.9936831 1.0192439 1.0373248 1.0482656 1.0524314 
1.0502056 1.0419837 1.0281681 1.0091636 0.9853737 
0.9571988 0.9250337 0.8892674 0.8502824 0.8084543 
0.7641518 0.7177366 0.6695626 0.6199751 0.5693099 
0.5178921 0.4660349 0.4140381 0.3621876 0.3107546 
0.2599960 0.2101542 0.1614588 0.1141273 0.0683671 
0.0243771 -0.0176514 -0-0575333 -0.0950895 -0.1301474 

-0.1625418 -0.1921175 -0.2187313 -0.2422558 -0.2625825 
-0.2796255 -0.2933242 -0.3036466 -0.3105902 -0.3141835 
-0.3144855 -0.3115844 -0.3055961 -0.2966613 -0.2849425 
-0.2706218 -0.2538974 -0.2349824 -0.2141025 -0-1914962 
-0.1674140 -0.1421198 -0.1158908 -0.0890187 -0-0618098 
-0.0345840 -0.0076731 0.0185830 0.0438410 0.0677611 

0.0900148 0.1102940 0.1283201 0.1438535 0.1567017 
0.1667264 0.1738479 0.1780475 0.1793672 0.1779058 
0.1738134 0.1672828 0.1585399 0.1478332 0.1354230 
0.1215723 0.1065385 0.0905683 0.0738947 0.0567369 
0.0393033 0.0217962 0.0044183 -0.0126208 -0.0290985 

-0.0447741 -0.0593875 -0.0726604 -0.0843018 -0.0940174 
-0.1015230 -0.1065605 -0.1089161 -0.1084392 -0-1050604 
-0.0988063 -0.0898108 -0.0783207 -0.0646936 -0.0493906 
-0.0329595 -0.0160129 0.0007998 0.0168251 0.0314392 

0.0440824 0.0542901 0.0617199 0.0661713 0.0675974 
0.0661066 0.0619555 0.0555316 0.0473282 0.0379127 
0.0278901 0.0178649 0.0084034 0.0000000 -0.0069515 

-0.0121784 -0.0155414 -0.0170357 -0.0167846 -0.0150226 
-0.0120718 -0.0083134 -0.0041553 0.0000000 0.0037858 

0.0068974 0.0091119 0.0103004 0.0104327 0.0095730 
0.0078684 0.0055313 0.0028173 0.0000000 -0.0026535 

-0.0049063 -0.0065707 -0.0075227 -0.0077101 -0.0071534 
-0-0059408 -0.0042170 -0.0021675 0.0000000 0.0020758 

0.0038676 0.0052171 0.0060139 0.0062038 0.0057913 
0.0048377 0.0034531 0.0017843 0.0000000 -0.0017257 

-0-0032301 -0.0043763 -0.0050659 -0.0052469 -0.0049169 
-0-0041225 -0.0029530 -0-0015311 0.0000000 0.0014904 

0.0027980 0.0038019 0.0044133 0.0045833 0.0043063 
0.0036196 0.0025991 0.0013507 0.0000000 -0.0013207 

-0.0024846 -0.0033830 -0.0039349 -0.0040943 -0.0038540 
-0-0032453 -0.0023344 -0.0012152 0.0000000 0.0011920 
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(D) - QUADRATURE RESPONSE OF RECEIVER FILTER 
SAMPLED AT 96000 SAMPLESSEC. 

-0.0012768 -0.0017684 -0.0020920 -0-0022137 -0.0021188 
-0.0018140 -0-0013265 -0.0007019 0.0000000 0.0007112 

0.0013618 0.0018869 0.0022331 0.0022331 0.0022636 
0.0019388 0.0014184 0.0007509 0.0000000 -0.0007615 

-0.0014588 -0.0020222 -0.0023944 -0-0023944 -0.0024294 
-0.0020818 -0.0015237 -0-0008071 0.0000000 0.0008193 

0.0015703 0.0021780 0.0025803 0.0025803 0.0026209 
0.0022472 0.0016458 0.0008722 0.0000000 -0-0008865 

-0.0017001 -0.0023595 -0.0027970 -0.0027970 -0.0028448 
-0.0024407 -0.0017887 -0-0009486 0.0000000 0.0009655 

0.0018529 0.0025734 0.0030529 0.0030529 0.0031097 
0.0026701 0.0019583 0.0010394 0.0000000 -0-0010596 

-0.0020353 -0.0028292 -0.0033593 -0-0033593 -0-0034280 
-0.0029461 -0.0021628 -0-0011490 0.0000000 0.0011738 

0.0022569 0.0031405 0.0037328 0.0037328 0.0038176 
0.0032847 0.0024141 0.0012841 0.0000000 -0-0013149 

-0.0025315 -0.0035271 -0.0041980 -0-0041980 -0.0043050 
-0.0037093 -0.0027302 -0.0014543 0.0000000 0.0014938 

0.0028805 0.0040200 0.0047926 0.0047926 0.0049319 
0.0042571 0.0031392 0.0016754 0.0000000 -0.0017277 

-0.0033384 -0.0046689 -0.0055784 -0-0055784 -0.0057667 
-0.0049896 -0.0036884 -0-0019735 0.0000000 0.0020459 

0.0039643 0.0055601 0.0066628 0.0066628 0.0069307 
0.0060164 0.0044624 0.0023960 0.0000000 -0.0025024 

-0.0048678 -0.0068550 -0-0082493 -0.0082493 -0-0086579 
-0.0075514 -0.0056287 -0-0030378 0.0000000 0.0032077 

0.0062762 0.0088926 0.0107699 0.0107699 0.0114595 
0.0100688 0.0075633 0.0041152 0.0000000 -0.0044223 

-0.0087353 -0.0125015 -0.0153018 -0-0153018 -0.0166617 
-0.0148252 -0.0112861 -0.0062288 0.0000000 0.0069065 

0.0138799 0.0202348 0.0252628 0.0252628 0.0287494 
0.0262190 0.0204986 0.0116438 0.0000000 -0.0137805 

-0.0287389 -0.0436259 -0.0569346 -0.0569346 -0.0717856 
-0.0694849 -0.0580471 -0.0355096 0.0000000 0.0502174 

0.1167072 0.2008434 0.3038040 0.3038040 0.5699953 
0.7347397 0.9214035 1.1305184 1.3625952 1.6181574 
1.8977660 2.2020347 2.5316323 2.5316323 3.2696998 
3.6796437 4.1177943 4.5847515 5.0809810 5.6067709 
6.1621927 6.7470708 7.3609602 7.3609602 8.6725928 
9.3680549 10.0879953 10.8306611 11.5941040 12-3762123 

13.1747412 13.9873413 14.8115810 14.8115810 16.4849309 
17.3288771 18.1741338 19.0179670 19.8575654 20.6900291 
21.5123589 22.3214508 23.1140945 23.1140945 24.6367063 
25-3598096 26.0527816 26.7121061 27.3342937 27.9159203 
28.4536656 28.9443490 29.3849631 29.3849631 30.1049827 
30.3794641 30.5940557 30.7469241 30.8364944 30.8614495 
30.8207268 30.7135164 30.5392595 30.5392595 29.9886380 
29-6124372 29.1695346 28.6607020 28.0870086 27.4498335 
26.7508758 25.9921623 25.1760495 25.1760495 23.3826834 
22.4117411 21.3959867 20.3392687 19.2456627 18.1194377 
16.9650207 15.7869608 14.5898947 14.5898947 12.1575352 
10-9316736 9.7056198 8.4840207 7.2714615 6.0724514 

4.8914092 3.7326488 2.6003648 2.6003648 0.4313078 
-0.5978301 -1.5852635 -2.5276787 -3.4220063 -4.2654451 
-5.0554846 -5.7899250 -6.4668938 -6.4668938 -7.6426318 
-8.1393787 -8.5746090 -8.9481726 -9.2602472 -9.5113244 
-9.7021921 -9.8339173 -9.9078276 -9.9078276 -9.8887123 
-9.7994933 -9.6600448 -9.4727624 -9.2402193 -8.9651555 
-8.6504685 -8.2992019 -7.9145327 -7.9145327 -7.0582687 
-6.5935467 -6.1091243 -5.6085673 -5.0954462 -4.5733089 
-4.0456518 -3-5158932 -2.9873479 -2.9873479 -1.9465057 
-1.4401322 -0.9467899 -0.4690010 -0.0090979 0.4307804 
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0.8486902 1.2428835 1.6118081 1.6118081 2.2686229 
2.5543929 2.8106573 3.0368596 3.2326498 3.3978877 
3.5326443 3.6372023 3.7120534 3.7120534 3.7756159 
3.7662970 3.7311846 3.6716792 3.5893140 3.4857337 
3.3626719 3.2219288 3.0653490 3.0653490 2.7121606 
2.5192911 2.3180335 2.1101940 1.8975352 1.6817692 
1.4645527 1.2474814 1.0320863 1.0320863 0.6120931 
0.4101854 0.2153215 0.0286218 -0.1488970 -0-3163297 

-0.4728898 -0.6179151 -0.7508719 -0.7508719 -0.9790951 
-1.0739389 -1.1558594 -1.2249389 -1.2813604 -1-3253953 
-1.3573908 -1.3777569 -1.3869546 -1.3869546 -1.3738767 
-1.3526856 -1.3224823 -1.2838523 -1.2373936 -1.1837168 
-1.1234453 -1.0572163 -0-9856814 -0-9856814 -0.8293693 
-0.7459592 -0.6599706 -0.5720984 -0.4830313 -0.3934445 
-0.3039922 -0.2153002 -0.1279595 -0.1279595 0.0405073 

0.1206639 0.1975324 0.2707403 0.3399563 0.4048860 
0.4652678 0.5208688 0.5714807 0.5714807 0.6570132 
0.6916247 0.7206306 0.7439369 0.7614804 0.7732345 
0.7792146 0.7794833 0.7741548 0.7741548 0.7474360 
0.7265489 0.7010670 0.6713682 0.6378702 0.6010234 
0.5613013 0.5191920 0.4751887 0.4751887 0.3834522 
0.3366648 0.2898653 0.2434774 0.1979014 0.1535145 
0.1106709 0.0697030 0.0309219 0.0309219 -0.0389437 

-0.0695178 -0.0968894 -0.1208743 -0.1413246 -0.1581338 
-0.1712422 -0.1806410 -0-1863757 -0.1863757 -0.1873154 
-0.1828896 -0.1755313 -0-1655443 -0-1532672 -0.1390640 
-0.1233136 -0.1063995 -0.0886997 -0.0886997 -0.0523731 
-0.0343991 -0.0169347 -0.0002249 0.0155204 0.0301249 

0.0434430 0.0553573 0.0657745 0.0657745 0.0818470 
0.0874120 0.0912970 0.0934988 0.0940330 0.0929364 
0.0902695 0.0861192 0.0806009 0.0738595 0.0660688 
0.0574296 0.0481657 0.0385182 0.0287380 0.0190781 
0.0097832 0.0010815 -0-0068255 -0-0137700 -0.0196251 

-0.0243087 -0.0277859 -0.0300688 -0.0312132 -0.0313141 
-0.0304985 -0.0289175 -0.0267365 -0.0241266 -0.0212551 
-0.0182778 -0-0153320 -0.0125319 -0.0099654 -0.0076930 
-0.0057484 -0.0041414 -0.0028609 -0.0018799 -0.0011601 
-0.0006569 -0.0003243 -0.0001182 0.0000000 0.0000622 

0.0000920 0.0001053 0.0001109 0.0001122 0.0001085 
0.0000975 0.0000765 0.0000439 0.0000000 -0.0000524 

-0.0001082 -0.0001611 -0.0002036 -0.0002290 -0.0002318 
-0.0002088 -0.0001599 -0.0000883 0.0000000 0.0000963 

0.0001903 0.0002715 0.0003299 0.0003578 0.0003503 
0.0003061 0.0002281 0.0001228 0.0000000 -0.0001281 

-0.0002485 -0.0003484 -0.0004166 -0.0004453 -0.0004300 
-0.0003711 -0.0002733 -0.0001456 0.0000000 0.0001491 

0.0002867 0.0003987 0.0004734 0.0005024 0.0004821 
0.0004136 0.0003029 0.0001605 0.0000000 -0.0001628 

-0-0003116 -0.0004316 -0.0005104 -0.0005397 -0.0005161 
-0.0004412 -0.0003222 -0.0001702 0.0000000 0.0001716 

0.0003278 0.0004529 0.0005344 0.0005638 0.0005380 
0.0004591 0.0003346 0.0001764 0.0000000 -0.0001773 
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APPENDEK C 

DIFFERENTIATION WITH RESPECT TO A VECTOR 

The quantity C, in Eqn. 5.3.13 is real and positive and is a function of the channel 
estimation vector V, given by Eqn. 5.3.2. The elements of the vector Vi can be 
written as 

VK/ cy / (yi / 
g, l 

+A1, 
g, 2)ý i Yi, 0,1 +i Yi, 0,2) i, 1,1 +j yi, 1, 

(YiH HH-H 
'O'l 

+jyiH (yi, 
g, l 

+Jyi, 
g, 

ý 
, 0,2)ý 

(Yi, 
1,1 +i Yil, 1,2) ý 

or 

(vi, 
0,1 

+i vi, 0,2) 
(vi, 

l, l 
+jvi, 

1,2)ý 

(Vi, 
2g + 1,1 

+ iVi, 
2g + 1,2A 

.... 
c 1.1 

.... C 1.2 

where, for example, v,,,,,, is the real part and v,,,,,, is the imaginary part of the first 

element of the vector V,. By the definition of differentiation with respect to a vector, 
is given by [59,1031, 

aci 
avi 

aci acj 
avi, 

0,1 
DVi, 

1,2 

aci aci 
avi, 

i, i 
ýVi, 

1,2 

av. 
aci +j aci 
&, 2g + 1,1 

OVi, 
2g+1,2- 

From Eqn. 5.3.13, C, is given by 

.... C 1.3 
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I i-h(rhrh*_rh- TT ci I G) ShOh-ivi -rhvi0h-iSh 
h=O 

v 
_iSY-ShýT_y) 

Ahhi 

.. C 1.4 

It is necessary to determine the gradient of Ci with respect to Vi (Eqn. 5.3.14). From 

Eqn. C1.4, aCilavi is given by, 

a(_ ýT_y) aci 
i-h 

(rh rh*) rhsh hi 

avi h=O avi avi 

_iST) 

4- a(-rh vik 
h 

6(mh-iSFshOTh-ivi) 

avi avi 
I 

Consider the term 

.... C 1.5 

Tv*.... C 1.6 hShOh-i i 

and let 

T 

.... C 1.7 -r. M, 

then from Eqns. C1.6 - C1.7 

2g+l 

Cil DVI dk(Vi, 
k, l -jVi, k, 2) I k=O 

where d,, are the elements of the vector D, for k=0,1, ..., (2g+1). 

Hence 

. 
acil 

dk "C 1.9 
OVi, 

k, l 

fork= 0,1 . ..... (2g+l), and 
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- 

acil 

- -j dk 
.... 

c 1.10 ýVi, 
k, 2 

fork= 0,1 . ..... (2g+l). 

Substituting Eqns. C1.9 and CIAO in Eqn. C1.3 and simplifying 

acil 
2D -2r- 

ýT 
avi 4Sh h-i .... 

c 1.11 

Similarly consider the term 

v 
_iST -rh Ah.... C 1.12 

From Eqns. C 1.7 and C 1.12, ql can now be written as 

2g +I 

I dk* (Vi, 
k, 1+i Vi, k, 2) .... C 1.13 

k=O 

Hence 

acil --= 
dk 

.... C 1.14 ýVi, 
k, Ik 

for k=0,1, (2g+1), and 

acill 
-= jdk 1.15 ýVi, 

k, 2 
k 

Substituting Eqns. C1.14 and C1.15 in Eqn. C1.3 and simplifying 

acill 
.... C 1.16 

avi 

Now consider the term 
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c", = vis Tv 
i 

ýShoh 
_i i 

... C 1.17 

= Vi Q Vi* 
.... C 1.18 

where 

_iSrn- 
T Oh 

hshoh-i .... 
c 1.19 

is a (2g+l) x (2g+l) matrix. 

For the sake of simplicity, let us assume that V, is a two component row vector given 
by 

vi :- I(vi, 
o, l +jvi, 

0,2) 
(Vi, 

1,1 
+i Vi, 1, 

A 

.... C 1.20 

and Q is a2x2 matrix given by 

Q= 
qll qd 

.... C 1.21 
[q2l 

q2 

By definition (Eqn. C1.3) 

act! " 
= 

acill, +j acill, aci,,, +j 
aci.. )] 

.. C 1.22 avi 

I 

avi, 
0,1 

ýVi, 
0,2 

avi, 
1,1 

aVi, 
1,2) 

I 

Expanding Eqn. C 1.18, using Eqns. C 1.20 and C 1.21 

(V 20,1 2 )ql I+ (vi, 1,1 + jvi, 1,2)q2l(Vi, O, l -jVi, 0,0 i, + Vi, 0,2 

+ (V21,1 + V2 )q22 + (ViAl +jVi, 
0,2)ql2(Vi, l, l -jVill, 2) i, i, 1,2 

.... C 1.23 

Therefore, 
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2vi, 0,1q11+(vi, i, l+jvi�, ýq 21 avi, 0,1 

jvi, 
, 
)ql2 

.... C 1.24 

2vi, 
0,2q, l -j(vi,,,, +jvi, 1,2)q2l ýVi, 

0,2 

(Vi, 
1,1 - 

A, 
1,2)ql2 .... C 1.25 

- 

act! " 

- (Vi, 
O, I -jVi, 0,2)q 21 + (Vi, 

O, l +jVi, 
0,2)ql2 avi, 

1,1 

+2vi,,, lq22 .... C 1.26 

- 

acill, 

- 
j(vi, 

o, l -jvi, 0,2)q2l -j(Vi, O, l 
+jVi, 

0,2)ql2 ýVi, 
1,2 

2vi, 
1,2q22 .... C 1.27 

From Eqns. C1.24 and C1.25 

aci/// 
+j 

aci111 
= 2(vi, 0,1+jvi, o, ýqll ývi, 

0,1 
ýVi, 

0,2 

2(vi,,,, +jvi, 1,2)q2l .... C 1.28 

and from Eqn. C1.26 and C1.27 

acill, 
+j 

acilll 
2(vi, o,, +jvi, 0,2)ql2 avi, 

1,1 
aVi, 

1,2 

2(vi,,,, +jVi, 1,2)q22 .... C 1.29 

Therefore, from Eqns. C 1.19, C1.2 1, C 1.22, C 1.28 and C1 . 29 
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acill, 
- 2ViQ avi 

_iSY-ShýT 
2Vioh h h-i 

.... C 1.30 

Also 

a(r,, rh*) 

avi -0.... C 1.31 

Thus from Eqns. C1.5, C1.11, C1.16, C1.30 and C1.31 

aci i 
'-h(_2rh- T 

_iSrS h 
ýTj 

-1 (0 SA-i + 2Viýh 
h .... C 1.32 avi h=O 

as is given in Eqn. 5.3.15. 

254 



APPENDIX D 

MATRIEK INVERSE IDENTITY 

From Eqn. 5.3.36 

Ri CoRi, i 
7-17 

-1 + Si Si 

and from Eqn. 5.3.29 

-1 Pi Ri 

D 1.1 

D 1.2 

In order to obtain the updated estimate of V, from the one-step prediction V,, 
_,, 

it is 

necessary to evaluate P, (see Section 5.3). 

R, is assumed non-singular, so that Premultiplying Eqn. D 1.1 by Ri-', 

1 'Ri, 
i 

Y Ri- Ri I CoRi- -1 
+ Ri-'Si7S'i 

.... 
D 1.3 

Postmultiplying Eqn. D 1.3 by Rj-' J-1 I 

Y- R-1 (oR-1 + R-lS 'R-ý .... D 1.4 i, i-I iii si 
I'l-1 

or 

Ri-'SiY-SiRi-l R-1 - o)Ri 1 
... D 1.5 

'i i, i-i 

Postmultiplying Eqn. D1.4 by s, 

R-' (j)R. -'S T+ Ri-'Si7SiR-il T 
i, i- 

SiT 
i, -Isi .... D 1.6 

ce i 
IS 

i 
T( I+ c6-15R--ý 1ST D 1.7 si 

I'l- I 

The matrix IS i 
T) is also assumed non-singular, hence postmultiplying Eqn. 

D1.7 by the inverse of the matrix, and simpIfying, 
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1T -1 T 1- 1 
coR, - Si' Ri, i-, Si (I+ CC SiR, -. ' ST ii i'l-I I)... D 1.8 

Postmultiplying Eqn. D 1.8 by Yjoj-'Rj-'-j , 

7 -1 
JST 

-1 SiR, -l T -1- R-'SiSiR-, '-, =R i(I+c6 . -, 
Si) Sic6-lR,. -' i ij i ij-1 . -D 1.9 

Combining Eqns. D 1.5 and D 1.9 

-1 1 -1 -1- 1T -1- Ri'i 
- -(j)R- =R _JST(I 

+ oj SiR- 
-, 

Si) Si(07'R-l i ij i i, i i, i-i 

... -D 1.10 

or 

Ri-I (o -1 Ri-I -0-1 R, -l T 1- -1 
JST)-l- -'R, i-, Si(I+cCSiR,, i- i SiO 

... D 1.11 

or 

R-1-, s7-SR. 1-1 

+S iR, -' , i-lS, TI 

Eqn. DI. 12 is also referred to as the matrix inverse lemma. This completes the 
derivation of Eqn. 5.3.37 from Eqn. 5.3.36. 

256 



APPENDIX E 

GRAM SCHMIDT ORTHONORMALIZATION PROCESS 

The three orthonormal (g+l)- component basis vectors A, B and C, in Chapter 7, are 

not likely to he exactly in the three-dimensional subspace containing Y,, as the 

subspace itself is unlikely to be stationary owing to the time varying nature of the 
HF channel. For satisfactory operation of the estimator, the subspace spanned by A,, 

B, and C, must be adjusted adaptively to track the received signal in such a way that 

the new subspace spanned by the new vectors A, ý+, , B,! +, and c, '+, is closer to Y, These 

three vectors will not exactly be orthonormal and so they are orthonormalized using 

the Gram-Schmidt orthonormalization process [33,35-36,120], as follows. 

First the receiver sets 

Ai +1=I Ail+ 1 
rlAil+ 

1 .... El. 1 

so that 

lAi+ll =1 

and then 

Bill, i = Bil+l Bi,, Ai+, Ai, l 

and 

Bi +1=I Bill+ I 
rIBi, 

1 

so that 

lBi+ll 1 

Bi+, Ai * +1 
Ai+, Bi * +1 

and finally 

.... E 1.2 

.... E 1.3 
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C# C/ - Cl B* B- C/ i+l i+l i+l i+l i+l i+, Ai*+, Ai, l .... E 1.4 

and 

C// ci, cill, 1 
11 

i+1.... E 1.5 

so that 

I ci+l I=1 

Ci+, Ai * +1 = Ci,, Bi'+, Ai+, C, *+, 
- Bi+, Ci * +1 0 

A, 
+,, 

B, 
+, and C, 

+, now form the new three orthonormal (g+l)- component basis 

vectors containing Y, 
+,. 
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APPENDEK Fl 

GENERATION OF THE SAMPLED IMPULSE-RESPONSE 
OF A3 SKY WAVE HF CHANNEL 

PROGRAM HFSIR 
IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
REAL CF(5), Q(6, -1: 3000) 
REAL TXR(16), TXI(16), TXDR(16), TXDI(16) 
REAL TXDDR(16), TXDDI(16) 
REAL RXR(30), RXI(30), WSR(30), WSI(30) 
REAL QR(30,30), QI(30,30) 
REAL YR(30), YI(30) 
REAL QQ(6), EQ(6), VQ(6), FMEAN(6), FVAR(6) 
REAL VAL I( 6) , VALO (7) 

C TAP COEFFICIENTS OF THE BESSEL FILTER 

DATA CF /-1.80322972300000,0.81520668040000, -1.85218288200000, 
1 0.86788454580000, -0.89481307290000/ 

DCG=19378 
DCG=1.0/DCG 
STDVN1=SQRT(l. 0) 
NOSAM=2600 
INFD=500 

OPEN (25, FILE='IMP200', FORM='UNFORMATTEDI) 
OPEN (12, FILE='OUTPUT') 

c INITIALISING 

TAP1=0.0 
TAP2=0.0 
TAP3=0 .0 
TAP 4=0.0 
TAP5=0.0 

ISEQ=50+NOSAM 
ISEQ1=ISEQ+l 

CALL G05CBF(INFD) 

c GENERATION OF Q, (T) 

DO 1000 I=1,6 

IND=-l 

TF=O .0 
TVF=O. 0 
TFG=O. 0 
TVFG=0.0 

DO 1500 J=1, ISEQ1 

FO=GO5DDF(O. 0, STDVN1) 
Fl=FO-(TAP1*CF(1)+TAP2*CF(2)) 
F2=Fl-(TAP3*CF(3)+TAP4*CF(4)) 
F3=F2- (TAP5*CF (5) ) 
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FDCG=F3*DCG 
TAP5=F3 
TAP4=TAP3 
TAP3=F2 
TAP2=TAP1 
TAP1=Fl 

IF(J. LE. 49) GO TO 1500 

Q(I, IND)=FDCG 
IND=IND+l 

TF=TF+F3 
TVF=TVF+(F3**2) 
TFG=TFG+FDCG 
TVFG=TVFG+(FDCG**2) 

1500 CONTINUE 

EF=TF/(NOSAM+l) 
VARF=TVF/ (NOSAM+l) 
EFG=TFG/(NOSAM+l) 
VARFG=TVFG/(NOSAM+l) 

WRITE(12,1600)EF, VARF 
WRITE(12,1700)EFG, VARFG 

1600 FORMAT(IMEAN OF F3 =', lX, F10.5,2X, 'VAR OF F3 =f, lX, F10.5) 
1700 FORMAT('MEAN OF FDCG =', lX, F10.5,2x, 'VAR OF FDCG=flX, F10.5) 

1000 

c 

1 
1 
1 

1 
1 
1 

C 

1 
1 
1 

1 
1 

C 

1 
1 
1 

1 
1 
3- 

C 

CONTINUE 

TRANSMITTER FILTER 0 DELAY 

DATA TXR /-0.1795896, 

-3.4618271, 
-1.4973528, 
-0.3167778, 

DATA TXI / 2.3539405, 
8.7045826, 
1.7365460, 

-0.2324818, 

-3.0773455, 
4.4438154, 
0.2925598, 
0.0021899, 

20.7590237, 
-11.7869820, 

-0.7776891, 
-0.2107548, 

TRANSMITTER FILTER 1.1 ms DELAY 

DATA TXDR -1.6694374, 
2.9408554, 

-0.1433592, 
-0.0416905, 

DATA TXDI 13.2372707f 
-8.8804125, 
-0.4311352, 
-0.3043271, 

-9.9409021, -11.7869473, 
3.0642536, -1.3596576, 
0.5180829f -0.1842786, 

-0.0443806,0.0515533 
45.5584592,41.4909978, 
-5.5819054,3.1582131, 
-0.1292556,0.2880296, 

0.0392056,0.0098505 

-7.8492148, 
4.3005084, 
0.6242601, 

-0.0439705, 
39.6493461, 
-9.0256163, 
-0.4537174, 

0.0085057, 

-12.3887079, 
-0.3368383, 

0.0278577, 
0.0749333, 

46.9272219, 
1.6284281, 
0.3081762, 
0.0093809, 

TRANSMITTER FILTER 3 ms DELAY 

DATA TXDDR -1.3136537, 
2.2353854, 

-0.3233694, 
-0.0734526, 

DATA TXDDI 11.0688962, 

-7.2498590, 
-0.2261096, 
-0.3215770, 

RECEIVER FILTER 

-7.1104051, 
4.5938614, 
0.6313238, 

-0.0386471, 
37.2136597r 

-10.0026703, 
-0.5552906, 
-0.0107706, 

-12.3469721, 
0.. 0931639, 
0.1035718, 
0.0608046, 

47.9575159, 
0.8695437, 
0.2882096, 
0.0140909j 

-6.6023157, 
-1.9014342, 
-0.3820071, 
-0.0594132 
19.2346609, 

2.8139013p 
-0.0772327, 

0.0094992 

/ 

/ 

-7.5848703, 
-1.9704176, 
-0.3865939, 
-0.0713496 
22.8262482, 

3.1072800, 
-0.0156703, 

0.0135711 

/ 

/ 
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DATA RXR / -1.9417691, -15.9797864, 
-11.2301982, 7.8155160, 

-3.3707125, -0.6759166, 
-0.3105902, 0.0438410, 

0.0000000, 0.0000000, 
0.0000000, 0.0000000, 
0.0000000, 0.0000000, 
0.0000000, 0.0000000 

DATA RXI 1.3625952, 11.5941040, 
7.2714615, -9.2602472, 
1.8975352r -1.2813604, 
0.1979014, -0.1532672, 
0.0000000, 0.0000000, 
0.0000000, 0.0000000, 
0.0000000, 0.0000000, 
0.0000000, 0.0000000 

MLOOP=2500 
ISTEP=48 
STEP=1.0/ISTEP 
DEL1=1.1 
DEL2=3.0 
SAPRAT=2.4 
SFACT=1.0/(2.0*SAPRAT*1000) 
IDEL1=INT(SAPRAT*2*DELl) 
IDEL2=INT(SAPRAT*2*DEL2) 
KMPL=16 

101" 

KMP=IDEL2+KMPL 
KMP1=KMP-1 
ICOUNT=O 
JCOUNT=O 
POS=-1.0 

Do 3010 I=1, KMP 
Do 3005 J=1, KMP 
QR(I, J)=O. O 
QI(I, J)=O. O 

3005 CONTINUE 
3010 CONTINUE 

Do 3020 I=1,6 
EQ(I)=O. O 
VQ(I)=O. O 

3020 CONTINUE 

C 

C 

C 

KVL=3 

ENTERING MAIN LOOP 
DO 9000 KMAIN=1, MLOOP 

com=o. 0 

ENTERING SECONDARY LOOP 
DO 8000 KSEC=1, ISTEP 
IFAIL=l 

NON-LINEAR INTERPOLATION 

DO 3100 I=1,6 
VALI(1)=Q(I, KMAIN-2) 
VALI(2)=Q(I, KMAIN-1) 
VALI(3)=Q(I, KMAIN) 
VALI(4)=Q(I, KMAIN+l) 
VALI(5)=Q(I, KMAIN+2) 
VALI(6)=Q(I, KMAIN+3) 

-35.1417733, -34.4788717, 7.5124057, -0.5057505, 
1.0482656,0.3621876, 
0.0738947, -0.0646936, 0.0000000,0.0000000, 
0.0000000,0.0000000, 
0.0000000,0.0000000, 

27.3342937, 
-5.0954462, 
-0.4830313, 

0.0940330, 
0.0000000, 
0.0000000, 
0.000000of 

/ 

28.0870086, 
3.2326498, 
0.7614804, 

-0.0312132, 
0.0000000, 
0.0000000, 
0.0000000, 

CALL E01ABF(KVL, COM, VALI, VALO, KVL*2, KVL*2+1, IFAIL) 
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QQ(I)=VALO(KVL*2+1) 

3100 CONTINUE 

COM=COM+STEP 

ICOUNT=ICOUNT+l 
COUNT=REAL(ICOUNT) 

DO 3120 I=1,6 
EQ(I)=EQ(I)+QQ(I) 
VQ(I)=VQ(I)+(QQ(I)**2) 

3120 CONTINUE 

QQ (2) =-QQ (2) 
QQ(4)=-QQ(4) 
QQ(6)=-QQ(6) 

C SHIFTING ARRAYS FOR CONVOLUTION 

3140 

3160 

C 

3180 

3200 

3220 

3240 

3250 

DO 3140 I=1, KMP 
DO 3140 J=1, KMP1 
QR (I, KMP+1-J) =QR (I, KMP-J) 
QI(I, KMP+1-J)=QI(I, KMP-J) 
CONTINUE 
Do 3160 I=1, KMP 
QR(I, 1)=O. O 
QI(I, 1)=O. O 
CONTINUE 

CONVOLUTION (TO OBTAIN IMPULSE-RESPONSE OF CHANNEL), BEGINS 

DO 3180 I=1, KMPL 
QR(I, 1)=TXR(I)*QQ(1)-TXI(I)*QQ(2) 
QI(I, 1)=TXR(I)*QQ(2)+TXI(I)*QQ(l) 
CONTINUE 
DO 3200 I=1, KMPL 
QR(I+IDEL1,1)=QR(I+IDEL1,1)+TXDR(I)*QQ(3)-TXDI(I)*QQ(4) 
QI(I+IDEL1,1)=QI(I+IDELl, l)+TXDR(I)*QQ(4)+TXDI(I)*QQ(3) 
CONTINUE 
DO 3220 I=1, KMPL 
QR(I+IDEL2,1)=QR(I+IDEL2,1)+TXDDR(I)*QQ(5)-TXDDI(I)*QQ(6) 
QI(I+IDEL2,1)=QI(I+IDEL2,1)+TXDDR(I)*QQ(6)+TXDDI(I)*QQ(5) 
CONTINUE 
POS=-POS 
IF(POS. LT. O. 0) GO TO 8000 

Io=o 
JCOUNT=JCOUNT+l 
DCOUNT=REAL(JCOUNT) 

1: 5 
DO 3250 I=1, KMP, 2 
IO=IO+l 
YR (10) =0.0 
Yi (10) =0.0 

Do 3240 J=1, I 
YR(IO)=YR(IO)+QR(J, I+1-J)*RXR(I+1-J)-QI(J, I+1-J) 
YI(IO)=YI(IO)+QI(J, I+1-J)*RXR(I+1-J)+QR(J, I+1-J) 
CONTINUE 

YR (10) =YR (10) *SFACT 
YI (10) =YI (10) *SFACT 
CONTINUE 

IF(MOD(KMP, 2). EQ. O)THEN 
GO To 3260 
ELSE 
GO To 3400 
END IF 

*RXI(I+1-J) 
*RXI(I+1-J) 
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3260 DO 3300 I=1, KMP1,2 
IO=IO+l 
YR (10) =0.0 
Yi (10) =0.0 
MCONV=I+l 

Do 3280 J=MCONV, KMP 
YR(IO)=YR(IO)+QR(J, KMP+l+j-j)*RXR(KMP+J+I-j) 

1 -QI(J, KMP+1+I-J)*RXI(KMp+l+, -j) YI (10) =YI (10) +QI (Jr KMP+1+I-J) *RXR (KMP+J+I-j) 

3280 
1 

CONTINUE 
+QR(J, KMP+1+I-J)*RXI(KMp+l+j-j) 

YR(IO)=YR(IO)*SFACT 
YI (10) =YI (10) *SFACT 

3300 CONTINUE 

GO TO 3500 

3400 DO 3350 I=1, KMP1,2 
IO=IO+l 
YR (10) =0.0 
Yi (10) =0.0 
MCONV=I+2 

Do 3340 J=MCONV, KMP 
YR(IO)=YR(IO)+QR(J, KMP+2+I-J)*RXR(KMP+2+I-J) 

1 -QI(J, KMP+2+I-J)*RXI(KMP+2+I-J) 
YI(IO)=YI(IO)+QI(J, KMP+2+I-J)*RXR(KMP+2+I-J) 

1 +QR(J, KMP+2+I-J)*RXI(KMP+2+I-J) 
3340 CONTINUE 

YR (10) =YR (10) * SFACT 
YI (10) =YI (10) *SFACT 

3350 CONTINUE 

3500 CONTINUE 

DO 9100 I=1,6 
FMEAN(I)=EQ(I)/COUNT 
FVAR(I)=VQ(I)/COUNT 

9100 CONTINUE 
WRITE (25) (YR (J) , J=l, 30) 
WRITE (2 5) (YI (J) 

, J= 1,3 0) 

8000 CONTINUE 

9000 CONTINUE 

c PRINTING RESULTS 

WRITE(12,9210) 
9210 FORMAT(MEAN VALUES OF THE QQ-SIGNALS) 

WRITE (12,9230) (FMEAN (I) , I=l, 6) 
WRITE(12,9220) 

9220 FORMAT(/'VARIANCES OF THE QQ-SIGNALS') 
WRITE(12,9230)(FVAR(I), I=1,6) 

9230 FORMAT (E 2 0.10) 

PRINT *r'COUNT=, COUNT 
PRINT *, 'REAL PART OF IMPULSE RESPONSE' 
WRITE(12,9240)(YR(I), I=1,30) 
PRINT *, 'IMAGINARY PART OF IMPULSE RESPONSE' 
WRITE(12,9240)(YI(I), I=1,30) 

9240 FORMAT(5F10.5) 
STOP 
END 
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APPENDIX F2 

COMPUTER-SIMULATION PROGRAM FOR SYSTEM 5.1 

PROGRAM SYS51 
IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
PARAMETER(N=64, NN=32) 
REAL YR (NN) ,YI (NN) 
REAL SR(NN), SI(NN), PHI(N, N) 
REAL VR(N), VI(N), SlR(N), SlI(N) 
REAL VlR(N/2), VlI(N/2) 
REAL PR(N, N), PI(N, N), PYR(N), PYI(N) 
REAL FPR(N, N), FPI(N, N) 
REAL YPR(N), YPI(N), GKR(N), GKI(N) 
REAL WDR(NN), WDI(NN), W-FR(NN), WFI(NN) 
REAL OMEGA 

OPEN (10, FILE='CYB500', FORM='UNFORMATTED' 
OPEN (30, FILE='OUTPUT', FORM='FORMATTEDI) 

SNR= 6 0.0 
OMEGA=0.88 
ERRTOT=0.0 
ERRNOM=0.0 
LCOUNT=0 

IQ=2 00 
CALL G05CBF(IQ) 

C INITIALISATION 
DO 1000 J=1, N 
SlR(J)=O. O 
sli(i)=0.0 
VR(J)=O. O 
Vi(i)=O. O 
DO 1000 I=1, N 
PR(I, J)=O. O 
PI(I, J)=O. O 
PHI(I, J)=O. O 

1000 CONTINUE 

DO 1020 I=1, N 
PR(I, I)=1.0 
PHI(I, I)=1.0 

1020 CONTINUE 

OF Yl &P MATRIX 

DO 1040 J=1, NN 
PHI((J+NN), J)=1.0 

1040 CONTINUE 

C INITIALISATION 
DO 1060 J=1, NN 
SR(J)=1.0 
Si(i)=1.0 
WDR(J)=O. O 
WDI(J)=O. O 

1060 CONTINUE 

OF W, NOISE AND DATA MATRIX 

c VALUES TO VARIABLES 
DATA WFR/-0.0280463, 

-0.1622055, 
-0.0486855, 
-0.0044861, 

0.00000001 

AND ARRAYS 
-0.2308071, 

0.1128849f 

-0.0097627, 
0.0006332, 
0.000000of 

-0.5075768, 
0.1085069, 
0.0151408, 
0.0010673, 
0.00000001 

-0.4980021, 
-0.0073049, 

0.0052313, 
-0.0009344, 

0.000000of 
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1 
: 1- 
1 

1 
1 
1 
1 
1 
1 
1 

0.0000000, 
0.0000000, 
0.0000000, 

DATA WFI/ 0.0196809, 
0.1050267, 
0.0274074, 
0.0028584, 
0.0000000, 
0.0000000, 
0.0000000, 
0.000000of 

0.0000000, 
0.0000000, 
0.000000of 

0.1674616, 
-0.1337521, 
-0.0185076, 
-0.0022137, 

0.0000000, 
0.0000000, 
0.0000000, 
0.00000001 

STDVN=10.0**(-SNR/10.0) 
STDVN=SQRT(STDVN) 

DO 9000 ICOUNT=1,60000 

READ (10)(YR(J), J=1, NN) 
READ (10)(YI(J), J=1, NN) 

IF(ICOUNT. EQ. 1) THEN 
DO 2000 J=1, NN 
VR(J)=YR(J) 
Vi(i)=Yi(i) 

2000 CONTINUE 
ENDIF 

0.0000000, 
0.0000000, 
0.0000000, 
0.3948080r 

-0.0735970, 
-0.0069768, 

0.0013582, 
0.0000000, 
0.0000000, 
0.0000000, 
0.000000of 

C SHIFTING OF ARRAYS ONCE FOR EVERY DATA SYMBOL 
DO 2020 J=(NN-1), l, -l 
K=J+l 
SR(K)=SR(J) 
SI(K)=SI(J) 

2020 CONTINUE 

C GENERATING QPSK DATA 
XX=G05CAF(XX) 
IF(XX-0.5)2100,2100,2120 

2100 SR(1)=-1.0 
GO To 2150 

2120 SR(1)=1.0 
2150 XX=GOSCAF(XX) 

IF(XX-0.5)2170,2170,2190 
2170 Si(l)=-1.0 

GO TO 2200 
2190 Si(l)=1.0 
2200 CONTINUE 

C 

2220 

2240 
2250 

GENERATING NOISE 
DO 2250 LNSE=1,2 
DO 2220 J=1, NN 
K=J+l 
W'DR(J)=WDR(K) 
WDI(J)=WDI(K) 
CONTINUE 

WDR(NN)=G05DDF(0.0, STDVN) 
WDI(NN)=GO5DDF(0.0, STDVN) 

WNR=O. 0 
WNI=O. 0 
DO 2240 J=1, NN 
Kl=NN+1-J 
WNR=WNR+WDR(Kl)*WFR(J)-WDI(Kl)*WFI(J) 
WNI=WNI+WDR(Kl)*WFI(J)+WDI(Kl)*WFR(J) 
CONTINUE 
CONTINUE 

0.0000000, 
0.0000000, 
0.0000000 

0.4056800, 
0.0466914, 
0.0109986r 

-0.0004508, 
0.0000000, 
0.0000000, 
0.0000000, 
0.0000000 
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c CALCULATION OF RECEIVED SIGNAL 
RR=0.0 
RI=0.0 

DO 2270 J=1, NN 
RR=RR+SR(J)*YR(J)-SI(J)*Yj(j) 
RI=RI+SR(J)*YI(J)+SI(J)*YR(J) 

2270 CONTINUE 

c RECEIVED SIGNAL WITH NOISE 
RR=RR+WNR 
RI=RI+WNI 

IF(ICOUNT. LE. 2000) THEN 
GOTO 9000 
ENDIF 

c ESTIMATION OF IMPULSE RESPONSE 

DO 2290 J=1, NN 
SlR(J)=SR(J) 
Sli(i)=Si(i) 

2290 CONTINUE 

CV MATRIX * PHI PRODUCT 

DO 3000 I=1, NN 
Vl R (I) =VR (I) +VR (I +NN) 
VlI (I) =VI (I) +VI (I+NN) 

3000 CONTINUE 

DO 3020 J=1, NN 
VR(J)=VlR(J) 
Vi(i)=Vli(i) 

3020 CONTINUE 

C ESTIMATING ERROR IN CHANNEL ESTIMATION 

IF(ICOUNT. GT. 5000) THEN 
SYERR=0.0 
YTOT=0.0 
DO 3040 J=1, NN 
YTOT=YTOT+YR(J)**2+YI(J)**2 
YERR=(YR(J)-VR(J))**2+(YI(J)-VI(J))**2 
SYERR=SYERR+YERR 

3040 CONTINUE 
ERRTOT=ERRTOT+SYERR 
ERRNOM=ERRNOM+SYERR/YTOT 
LCOUNT=LCOUNT+l 

C IF(MOD(LCOUNT, 20). EQ. 0) THEN 
C PRINT *, 10.0*LOG10(SYERR) 
C ENDIF 

ENDIF 

C ESTIMATING RECEIVED SIGNAL 

RlR=O. 0 
RlI=O. 0 
DO 3060 J=1, NN 
RlR=RlR+(SlR(J)*VR(J)-Sll(J)*VI(J)) 
RII=RlI+(SlR(J)*VI(J)+SlI(J)*VR(J)) 

3060 CONTINUE 

C ERROR IN ESTIMATION OF RECEIVED SIGNAL 
RECER=RR-RlR 
RECEI=RI-RlI 

C COMPUTING PHI*P*PHI MATRIX 

266 



Do 3080 i=l, NN 
Do 3080 J=1, N 
FPR(I, J)=PR(I, J)+PR((I+NN), J) 
FPI (I, J) =PI (I, J) +PI ( (I+NN) , J) 

3080 CONTINUE 

0 

DO 3 10 0 I= (NN+l) ,N 
DO 3100 J=1, N 
FPR (I, J) =PR (I, J) 
FP I (I, J) =P I (I, J) 

3100 CONTINUE 

Do 3120 I=1, NN 
Do 3120 J=1, N 
PR(J, I)=FPR(J, I)+FPR(J, (I+NN)) 
PI(J, I)=FPI(J, I)+FPI(J, (I+NN)) 

3120 CONTINUE 

Do 3140 I=(NN+1), N 
Do 3140 J=1, N 
PR (J, I) =FPR (J, I) 
PI (J, I) =FP I (J, I) 

3140 CONTINUE 

C COMPUTING KALMAN GAIN VECTOR 

DO 3180 I=1, N 
SPMR=0.0 
SPMI=0.0 
Do 3160 J=1, N 
SPMR=SPMR+(SlR(J)*PR(J, I)+SlI(J)*PI(J, I)) 
SPMI=SPMI+(SlR(J)*PI(J, I)-SlI(J)*PR(J, I)) 

3160 CONTINUE 
PYR(I)=SPMR 
PYI(I)=SPMI 

3180 CONTINUE 

YPYR=O. 0 
YPYI=O. 0 
DO 3200 J=1, N 
YPYR=YPYR+(PYR(J)*SlR(J)-PYI(J)*SlI(J)) 
YPYI=YPYI+(PYI(J)*SlR(J)+PYR(J)*SlI(J)) 

3200 CONTINUE 

YPWR=YPYR+OMEGA 
YPWI=YPYI 
YPM=YPWR*YPWR+YPWI*YPWI 

DO 3220 J=1, N 
GKR(J)=(PYR(J)*YPWR+PYI(J)*YPWI)/YPM 
GKI (J) = (PYI (J) *YPWR-PYR (J) *YPWI) /YPM 

3220 CONTINUE 

c UPDATE INVERSE MATRIX 

DO 3260 J=1, N 
SYPM=0.0 
RYPM=0.0 
DO 3240 I=1, N 
SYPM=SYPM+(PR(J, I)*SlR(I)-PI(J, I)*SlI(I)) 
RYPM=RYPM+(PI(J, I)*SlR(I)+PR(J, I)*SlI(I)) 

3240 CONTINUE 
YPR(J)=SYPM 
YPI(J)=RYPM 

3260 CONTINUE 

- -ý, ' I- 
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DO 3280 I=1, N 
DO 3280 J=1, N 
PR(I, J)=PR(I, J)-(YPR(I)*GKR(J)-YPI(I)*GKI(J)) 
PI(I, J)=PI(I, J)-(YPR(I)*GKI(J)+YPI(I)*GKR(J)) 

3280 CONT INUE 

Do 3290 I=1, N 
DO 3290 J=1, N 
PR (1, J) = (1.0 /OMEGA) *PR (I, J) 
PI (I, J) = (1.0 /OMEGA) *P I (I, J) 

3290 CONTINUE 

C UPDATING THE ESTIMATES OF THE CHANNEL 

DO 4000 J=1, N 
VR(J)=VR(J)+(GKR(J)*RECER-GKI(J)*RECEI) 
VI(J)=VI(J)+(GKI(J)*RECER+GKR(J)*RECEI) 

4000 CONTINUE 

9000 CONTINUE 

c PRINTING OUT RESULT 
ERRTOT=10.0*LOG10(ERRTOT/LCOUNT) 
ERRNOM=10.0*LOG10(ERRNOM/LCOUNT) 
PRINT *, 'OMEGA=', OMEGA 
PRINT *, 'SNR=', SNR 
PRINT *r'LCOUNT=', LCOUNT 
PRINT *, 'MEAN SQ ERROR=', ERRTOT 
PRINT *F'NORM. MEAN SQ. ERROR=', ERPNOM 

REWIND(10) 

STOP 
END 

I 
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APPENDIX F3 

COMPUTER-SIMULATION PROGRAM SYSTEM 6.8 

2000 

2020 

C 

PROGRAM SYS68 
IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
PARAMETER (IMPR=32) 
DIMENSION YR(IMPR), YI(IMPR), YlR(IMPR), YlI(IMPR) 
DIMENSION GRDR(IMPR), GRDI(IMPR), ERR(IMPR), ERI(IMPR) 
DIMENSION UYlR(IMPR), UYlI(IMPR), SR(IMPR), SI(IMPR) 
DIMENSION WDR(IMPR), WDI(IMPR), WFR(IMPR), WFI(IMPR) 
DIMENSION B(IMPR), BB(IMPR) 

OPEN (10, FILE='IMP500', FOPM=IUNFORMATTEDf) 
OPEN (30, FILE=FOUTPUT') 

ERRTOT=0.0 
ERRNOM=0.0 
LCOUNT=O 

IQ=200 
CALL G05CBF(IQ) 

DO 2000 J=1, IMPR 
BB (J) =0.0 
B (J) =0.0 
CONTINUE 

THETA=0.950 
ALFA=O. l 
DUM1=(1.0-THETA)*(I. O-THETA) 
DUM2=1.0-THETA*THETA 

DO 2020 J=1, IMPR 
GRDR(J)=O. O 
GRDI(J)=O. O 
YlR(J)=YR(J) 
Yl I (J) =YI (J) 
WDR(J)=O. O 
W'DI(J)=0.0 
SR(J)=1.0 
si(j)=1.0 
CONTINUE 

VALUES TO VARIABLES AND ARRAYS 

1 
1 
1 
1 
1 
1 
1 

DATA WFR / 

1 
1 
1 
: 1- 
1 
1 
: 1- 

DATA WFI / 

-0.0280463, 
-0.1622055, 
-0.0486855, 
-0.0044861, 

0.0000000, 
0.0000000, 
0.0000000, 
0.0000000, 

0.0196809, 
0.1050267, 
0.0274074, 
0.0028584, 
0.0000000, 
0.0000000, 
0.0000000, 
0.000000of 

-0.2308071, 
0.1128849r 

-0.0097627, 
0.0006332, 
0.0000000, 
0.0000000, 
0.0000000, 
0.000000of 

0.1674616f 
-0.1337521, 
-0.0185076, 
-0.0022137, 

0.0000000, 
0.0000000, 
0.0000000, 
0.000000of 

-0.5075768, 
0.1085069, 
0.0151408, 
0.0010673, 
0.0000000, 
0.0000000, 
0.0000000, 
0.000000of 

0.3948080, 
-0.0735970, 
-0.0069768, 

0.0013582, 
0.0000000, 
0.0000000, 
0.0000000, 
0.000000of 

-0.4980021, 
-0.0073049, 

0.0052313r 
-0.0009344, 

0.0000000, 
0.0000000, 
0.0000000, 
0.0000000 

0.4056800, 
0.0466914, 
0.01099861 

-0.0004508, 
0.0000000, 
0.0000000, 
0.0000000, 
0.0000000 
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SNR=60.0 
STDVN=10.0**(-SNR/10.0) 
STDVN=SQRT (STDVN) 

DO 9000 ICOUNT=1,60000 

READ (10) (YR (J) , J=l, IMPR) 
READ(10)(YI(J), J=1, IMPR) 

C SHIFTING OF ARRAYS ONCE FOR EVERY DATA SYMBOL 

DO 2040 J=l, (IMPR-1) 
L=J+l 
SR(J)=SR(L) 
SI(J)=SI(L) 

2040 CONTINUE 

q 

C GENERATING QPSK DATA 

XX=GO5CAF (XX) 
IF(XX-0.5) 2060,2060,2080 

2060 SR(IMPR)=-1.0 
GO TO 2100 

2080 SR(IMPR)=1.0 
2100 XX=GO5CAF(XX) 

IF(XX-0.5) 2120,2120,2140 
2120 SI(IMPR)=-1.0 

GO TO 2150 
2140 SI (IMPR) =1.0 
2150 CONTINUE 

C GENERATING NOISE 

DO 2200 LNSE=1,2 
DO 2170 J=1, (IMPR-1) 
K=J+l 
WDR(J)=WDR(K) 
WDI(J)=WDI(K) 

2170 CONTINUE 

WDR(IMPR)=GO5DDF(O. 0, STDVN) 
WDI(IMPR)=GO5DDF(O. 0, STDVN) 

WR=0.0 
wi=o. o 
DO 2190 J=l, IMPR 
Kl=IMPR+1-J 
WR=WR+WDR(Kl)*WFR(J)-WDI(Kl)*WFI(J) 
WI=WI+WDR(Kl)*WFI(J)+WDI(Kl)*WFR(J) 

2190 CONTINUE 
2200 CONTINUE 

C CALCULATION OF RECEIVED SIGNAL 

RR=0.0 
RI=0.0 

DO 2220 J=1, IMPR 
Kl=IMPR+1-J 
RR=RR+SR(Kl)*YR(J)-SI(Kl)*YI(J) 
RI=RI+SR (Kl) *YI (J) +S I (Kl) *YR (J) 

2220 CONTINUE 

C RECEIVED SIGNAL WITH NOISE 

RR=RR+WR 
RI=RI+WI 
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IF (ICOUNT. LE. 2000) THEN 
GOTO 9000 
ENDIF 

DO 2240 J=l, IMPR 
YVAR=YlR(J)*YlR(J)+YlI(J)*YlI(i) 

C BB(J)=(1.0-(1.0/ICOUNT))*BB(J)+(1.0/ICOUNT)*YVAR 
BB(J)=(1.0-ALFA)*BB(J)+ALFA*YVAR 

2240 CONTINUE 

DO 2240 J=1, IMPR 
B(J)=BB(J)**0.25 
IF(B(J). LT. O. 024) THEN 
B(J)=0.000001 
ENDIF 

2240 CONTINUE 

YTOT= 0.0 
YERR=0.0 
DO 2260 J=1, IMPR 
YTOT=YTOT+YR(J)**2+YI(J)**2 
YERR=YERR+(YR(J)-YlR(J))**2+(YI(i)-YlI(i))**2 

2260 CONTINUE 

IF(ICOUNT. GT. 6000) THEN 
ERRTOT=ERRTOT+YERR 
ERRNOM=ERRNOM+YERR/YTOT 
LCOUNT=LCOUNT+l 

c IF(MOD(LCOUNT, 20). EQ. 0) THEN 
c PRINT *, 10.0*LOG10(YERR) 
c ENDIF 

ENDIF 

C ESTIMATING RECEIVED SIGNAL 

RlR=O. 0 
RlI=O. 0 
DO 2280 J=1, IMPR 
Kl=IMPR+1-J 
RlR=RlR+SR(Kl)*YlR(J)-SI(Kl)*YlI(J) 
RlI=RlI+SR(Kl)*YlI(J)+SI(Kl)*YlR(J) 

2280 CONTINUE 

C ERROR IN ESTIMATION OF RECEIVED SIGNAL 
RECER=RR-RlR 
RECEI=RI-RlI 

C UPDATING CHANNEL USING FEEDFORWARD ESTIMATOR 

DO 2300 J=1, IMPR 
Kl=IMPR+1-J 
UYlR(J)=YlR(J)+B(J)*(RECER*SR(Kl)+RECEI*SI(Kl)) 
UYlI(J)=YlI(J)+B(J)*(RECEI*SR(Kl)-RECER*SI(Kl)) 

2300 CONTINUE 

c ERROR IN UPDATING 

DO 2320 J=1, IMPR 
ERR (J) =UYlR (J) -YlR (J) 
ERI(J)=UYlI(J)-YlI(J) 

2320 CONTINUE 

C PREDICTION USING LS GRADIENT ALGORITHM 
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DO 2340 J=1, IMPR 
GRDR (J) =GRDR (J) + (DUM1 *ERR (J) ) 
GRD I (J) =GRD I (J) + (DUM1 * ERI (J) ) 
YlR(J)=YlR(J)+GRDR(J)+(DUM2*ERR(J) 
YlI(J)=YlI(J)+GRDI(J)+(DUM2*ERI(J) 

2340 CONTINUE 

9000 CONTINUE 

c PRINTING OUT RESULT 
ERRTOT=10.0*(LOG10(ERRTOT/LCOUNT)) 
ERRNOM=10.0*(LOG10(ERRNOM/LCOUNT)) 
PRINT *, 'THETA=', THETA 
PRINT *, 'SNR=', SNR 
PRINT *r'LCOUNT=', LCOUNT 
PRINT *r'MEAN SQ ERROR=', ERRTOT 
PRINT *, 'NOM. MEAN SQ. ERR. =', ERRNOM 
REWIND(10) 
STOP 
END 
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APPENDIEK F4 

COMPUTER-SIMULATION PROGRAM FOR SYSTEM 7.5 

1 
1 
1 
1 
1 
1 
1 

1 
: 1- 
1 
1 
1 
1 
1 

C 

C 

1010 

PROGRAM SYS75 
IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
PARAMETER(IMPR=32) 
REAL YR (IMPR) , YI (IMPR) 
REAL SR(IMPR), SI(IMPR) 
REAL WDR(IMPR), WDI(IMPR), WFR(IMPR), WFI(IMPR) 

REAL Y02R(IMPR), YO2I(IMPR), YOlR(IMPR), YOlI(IMPR) 
REAL YOR (IMPR) , YO I (IMPR) 
REAL AR(IMPR), AI(IMPR), BR(IMPR), BI(IMPR) 
REAL CR(IMPR), CI(IMPR), FR(IMPR), FI(IMPR) 
REAL ERRR(IMPR), ERRI(IMPR) 
REAL B(IMPR), BB(IMPR), Y2R(IMPR), Y2I(IMPR) 
REAL SLPR(IMPR), SLPI(IMPR), Y2ER(IMPR), Y2EI(IMPR) 

REAL VR(3), VI(3), SlR(3), SlI(3) 
REAL VlR(3), VlI(3), GR(IMPR), GI(IMPR) 
REAL YlR(IMPR), YlI(IMPR) 
REAL ERR(3), ERI(3), GRDR(3), GRDI(3) 

OPEN (10, FILE='IMP500', FORM='UNFORMATTED') 
OPEN (12, FILE='OUTPUT') 

SNR=30.0 
INFD=200 
CALL G05CBF(INFD) 

DATA WFR / 

DATA WFI / 

-0.0280463, 
-0.1622055, 
-0.0486855, 
-0.0044861, 

0.0000000, 
0.0000000, 
0.0000000, 
0.0000000, 
0.0196809, 
0.1050267, 
0.0274074, 
0.0028584, 
0.0000000, 
0.0000000, 
0.0000000, 
0.0000000, 

-0.2308071, 
0.1128849, 

-0.0097627, 
0.0006332, 
0.0000000, 
0.0000000, 
0.0000000, 
0.0000000, 
0.1674616, 

-0.1337521, 
-0.0185076, 
-0.0022137, 

0.0000000, 
0.0000000, 
0.0000000, 
0.00000001 

DATA FOR NOISE GENERATION 
STDVN=10**(-SNR/10.0) 
STDVN=SQRT(STDVN) 

NOISE DATA MATRIX 
DO 1010 J=1, IMPR 
WDR(J)=O. O 
WDI(J)=O. O 
CONTINUE 

INITIALISATION 

c SETTING SR & SI MATRIX TO 1.0 
DO 1020 J=1, IMPR 
SR(J)=1.0 
Si(i)=1.0 
B(J)=O. O 
BB(J)=O. O 

-0 . 50'75768, 
0.1085069, 
0.0151408, 
0.0010673, 
0.0000000, 
0.0000000, 
0.0000000, 
0.0000000, 
0.3948080r 

-0.0735970, 
-0.0069768, 

0.0013582, 
0.0000000, 
0.0000000, 
0.0000000, 
0.00000001 

-0.4980021, 
-0.0073049, 

0.0052313, 
-0.0009344, 

0.0000000, 
0.0000000, 
0.0000000, 
0.0000000 
0.4056800, 
0.0466914, 
0.0109986, 

-0.0004508, 
0.0000000, 
0.0000000, 
0.0000000, 
0.0000000 
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SLPR(J)=O. O 
SLPI(J)=O. O 

1020 CONTINUE 

C INITIALISING OF Yl &P MATRIX 
DO 1030 J=1,3 
SlR(J)=O. O 
sli(i)=0.0 
VR(J)=O. O 
Vi(i)=0.0 
GRDR(J)=O. O 
GRDI(J)=0-0 

1030 CONTINUE 

C DATA FOR IMPROVED CHANNEL ESTIMATOR 
LCOUNT=O 
DLTA=1.0 
C=0.115 
THETA=0.935 
ALFA=0.01 
ETA=0.02 
EPSLON=0.976 
COST=0.064 
THETA1=(1.0-THETA)*(1.0-THETA) 
THETA2=1.0-THETA*THETA 
DUM1=(1.0-EPSLON)*(1.0-EPSLON) 
DUM2=(1.0-EPSLON*EPSLON) 
ERRSUM=0.0 
SUMERR=0.0 
ERNOM=0.0 
ERNON=0.0 

c ENTERING MAIN LOOP 
DO 9000 JCOUNT=1,60000 
READ (10) (YR (J) J= 1, IMPR) 
READ (10) (YI (J) J=l, IMPR) 

IF(JCOUNT. GE. 5002) GO TO 4000 
IF(JCOUNT. EQ. 5001) GO TO 1080 
IF(JCOUNT. EQ. 3501) GO TO 1060 
IF(JCOUNT. EQ. 2001) GO TO 1040 
GO TO 9000 

C STARTING UP PROCEDURE 
1040 DO 1050 I=1, IMPR 

Y02R (I) =YR (I) 
Y02 I (I) =YI (I) 
AR(I)=YR(I) 
AI(I)=YI(I) 

1050 CONTINUE 
GO TO 9000 

1060 DO 1070 I=1, IMPR 
Y01R(I)=YR(I) 
Yo 11 (1) =YI (I) 
BR(I)=YR(I) 
BI(I)=YI(I) 

1070 CONTINUE 
GO TO 9000 

1080 DO 1090 I=1, IMPR 
YOR(I)=YR(I) 
Yo I (I) =YI (I) 
CR(I)=YR(I) 
Ci(i)=Yi(i) 
Y2R(I)=YR(I) 
Y21(I)=YI(I) 

1090 CONTINUE 
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Y02MAG=0.0 
YO 1MAG=O .0 
YOMAG=O. 0 
DO 2000 I=1, IMPR 
Y02MAG=YO2MAG+(YO2R(I)**2+YO2I(I)**2) 
Y01MAG=YOlMAG+(YOlR(I)**2+YOlI(I)**2) 
YOMAG=YOMAG+(YOR(I)**2+YOI(I)**2) 

2000 CONTINUE 

Y02=SQRT(YO2MAG) 
Y01=SQRT(YOlMAG) 
YOO=SQRT(YOMAG) 

WRITE(12,2010)YO2, YO1, YOO 
2010 FORMAT(lH 'LENGTH OF Y(-2T) VECTOR=', Fl5.7, /, 

1 'LENGTH OF Y( -T) VECTOR=', Fl5.7, /, 
1 'LENGTH OF Y( 0) VECTOR=', Fl5.7) 

Y20R=O. 0 
Y20I=O .0 
Y10R=0 .0 
Yloi=o. o 
Y21R=O. 0 
Y21I=O. 0 
Do 2020 I=1, IMPR 
Y20R=Y20R+(YO2R(I)*YOR(I)+YO2I(I)*YOI(I)) 
Y20I=Y20I+(YO2T(I)*YOR(I)-YO2R(I)*YOI(I)) 
YlOR=YlOR+(YOlR(I)*YOR(I)+YOlI(I)*YOI(I)) 
YlOI=YlOI+(YOlI(I)*YOR(I)-YOlR(I)*YOI(I)) 
Y21R=Y21R+(YO2R(I)*YOlR(I)+YO2I(I)*YOlI(I) 
Y211=Y21I+(YO2I(I)*YOlR(I)-YO2R(I)*Y01I(I) 

2020 CONTINUE 

ANG20=((Y20R**2+Y20I**2)/(YO2MAG*YOMAG))**0.5 
ANG10=((YlOR**2+YlOI**2)/(YOlMAG*YOMAG))**0.5 
ANG21=((Y21R**2+Y21I**2)/(YO2MAG*YOlMAG))**0.5 
ANG20=(180.0*7.0*ACOS(ANG20))/22.0 
ANG10=(180.0*7.0*ACOS(ANG10))/22.0 
ANG21=(180.0*7.0*ACOS(ANG21))/22.0 

WRITE(12,2040)ANG20, ANG10, ANG21 
2040 FORMAT(lH 'ANGLE BETWEEN Y(-2T)&Y(O) =', FlO. 4, ' DEGREES', /, 

1 'ANGLE BETWEEN Y( -T)&Y(O) =', FlO. 4, ' DEGREES', /, 
1 'ANGLE BETWEEN Y(-2T)&Y(-T)=', FlO. 4, ' DEGREES') 

CALL GRMSHM (IMPR, AR, AI, BR, BI, CR, CI) 

YOCR=O. 0 
YoCI=o. 0 
YOBR=O. 0 
YOBI=O. 0 
YOAR=O. 0 
YOAI=O. 0 
DO 1220 1=1, IMPR 
YOCR=YOCR+YOR(I)*CR(I)+YOI(I)*CI(I) 
YOCI=YOCI+YOI(I)*CR(I)-YOR(I)*CI(I) 
YOBR=YOBR+YOR(I)*BR(I)+YOI(I)*BI(I) 
YOBI=YOBI+YOI(I)*BR(I)-YOR(I)*BI(I) 
YOAR=YOAR+YOR(I)*AR(I)+YOI(I)*AI(I) 
YOAI=YOAI+YOI(I)*AR(I)-YOR(I)*AI(I) 

1220 CONTINUE 

AFAR=YOAR 
AFAI=YOAI 
BTAR=YOBR 
BTAI=YOBI 
GAMR=YOCR 
GAMI=YOCI 
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DO 1300 I=1, IMPR 
FR(I)=(AFAR*AR(I)-AFAI*AI(I) 

1 
FI(I)=(AFAI*AR(I)+AFAR*AI(I) 

1300 CONTINUE 

DO 1310 I=1, IMPR 
ERRR (I) =YOR (I) -FR (I) 
ERRI (I) =YO I (I) -FI (I) 

1310 CONTINUE 

)+(BTAR*BR(I)-BTAI*BI(I)) 
+(GAMR*CR(I)-GAMI*CI(I)) 

)+(BTAI*BR(I)+BTAR*BI(l)) 
+(GAMI*CR(I)+GAMR*CI(I)) 

DO 1320 I=1, IMPR 
AR(I)=AR(I)+ETA*(AFAR*ERRR(I)+AFAI*ERRI(I)) 
AI(I)=AI(I)+ETA*(AFAR*ERRI(I)-AFAI*ERRR(I)) 
BR(I)=BR(I)+ETA*(BTAR*ERRR(I)+BTAI*ERRI(I)) 
BI(I)=BI(I)+ETA*(BTAR*ERRI(I)-BTAI*ERRR(I)) 
CR(I)=CR(I)+ETA*(GAMR*ERRR(I)+GAMI*ERRI(I)) 
CI(I)=CI(I)+ETA*(GAMR*ERRI(I)-GAMI*ERRR(I)) 

1320 CONTINUE 

CALL GRMSHM (IMPR, AR, AI, BR, BI, CR, CI) 

DO 1520 I=1, IMPR 
YlR(I)=(AFAR*AR(I)-AFAI*AI(I))+(BTAR*BR(I)-BTAI*BI(I)) 

1 +(GAMR*CR(I)-GAMI*CI(I)) 
YlI(I)=(AFAI*AR(I)+AFAR*AI(I))+(BTAI*BR(I)+BTAR*BI(I)) 

1 +(GAMI*CR(I)+GAMR*CI(I)) 
1520 CONTINUE 

VR (1) =AFAR 
VI (1) =AFAI 
VR (2) =BTAR 
VI (2) =BTAI 
VR (3) =GAMR 
VI (3) =GAMI 

GO TO 9000 

C IMPROVED CHANNEL ESTIMATOR 
4000 CONTINUE 

SQE1=0.0 
SQE2=0.0 
YTOT=0.0 
DO 4500 I=1, IMPR 
YTOT=YTOT+YR(I)**2+YI(I)**2 
SQE1=SQE1+(YR(I)-YlR(I))**2+(YI(I)-YlI(j))**2 
SQE2=SQE2+(YR(I)-Y2R(I))**2+(YI(I)-Y2I(I))**2 

4500 CONTINUE 

IF(JCOUNT. GT. 6000) THEN 
ERRSUM=ERRSUM+SQE1 
SUMERR=SUMERR+SQE2 
ERNOM=ERNOM+SQE1/YTOT 
ERNON=ERNON+SQE2/YTOT 
LCOUNT=LCOUNT+l 
ENDIF 

DO 4510 JK=l, IMPR 
YVAR=Y2R(JK)**2+Y2I(JK)**2 
BB(JK)=(1.0-ALFA)*BB(JK)+ALFA*YVAR 

4510 CONTINUE 
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DO 4520 JK=1, IMPR 
B (JK) =BB (JK) **0.2 5 
IF(B(JK). LT. COST) THEN 
B(JK)=0.000001 
ENDIF 

4520 CONTINUE 

C SHIFTING OF DATA MATRIX 
DO 4530 I=IMPR, 2, -l 
J=I-1 
SR(I)=SR(J) 
SI(I)=SI(j) 

4530 CONTINUE 

C GENERATING DATA 
XX=G05CAF (XX) 
IF(XX-0.5) 4540,4540,4550 

4540 SR(1)=-1.0 
GO TO 4560 

4550 SR(1)=1.0 
4560 XX=G05CAF(XX) 

IF(XX-0.5) 4570,4570,4580 
4570 Si(l)=-1.0 

GO TO 4600 
4580 Si(l)=1.0 
4600 CONTINUE 

C GENERATING NOISE 
DO 4650 NOLUP=1,2 
DO 4620 J=IMPR, 2, -l 
I=J-l 
WDR(J)=WDR(I) 
WDI(J)=WDI(I) 

4620 CONTINUE 

WDR(1)=G05DDF(O. 0, STDVN) 
WDI(1)=GO5DDF(O. 0, STDVN) 

WR=O. 0 
wi=o. 0 
DO 4640 J=1, IMPR 
WR=WR+WDR(J)*WFR(J)-WDI(J)*WFI(J) 
WI=WI+WDR(J)*WFI(J)+WDI(J)*WFR(J) 

4640 CONTINUE 
4650 CONTINUE 

C CALCULATING RECEIVED SIGNAL 
RR=0.0 
RI=0.0 
DO 4700 I=1, IMPR 
RR=RR+SR (I) *YR. (I) -S I (I) *YI (I) 
RI=RI+SI(I)*YR(I)+SR(I)*YI(I) 

4700 CONTINUE 

RR=RR+WR 
RI=RI+WI 

SlR(1)=0.0 
Sli (1) =O. 0 
S1R(2) =O. 0 
S1I (2) =O 0 
S1R (3) =O 0 
S1I (3) =O 0 
Do 4720 J=I, IMPR 
SlR(1)=S1R(1)+(SR(J)*AR(J)-SI(J)*AI(J) 
SJI(1)=S1I(1)+(SR(J)*AI(J)+SI(J)*AR(J) 
SlR(2)=S1R(2)+(SR(J)*BR(J)-SI(J)*BI(J) 
SlI(2)=S1I(2)+(SR(J)*BI(J)+SI(J)*BR(J) 
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SlR(3)=SlR(3)+(SR(J)*CR(J)-SI(J)*CI(J)) 
SlI(3)=SlI(3)+(SR(J)*CI(J)+SI(J)*CR(J)) 

4720 CONTINUE 

c ESTIMATING REC!! SIGNAL 
R2R=0.0 
R21=0.0 
DO 4740 J=1,3 
R2R=R2R+(SlR(J)*VR(J)-SlI(J)*VI(J)) 
R21=R2I+(SlR(J)*VI(J)+S! I(J)*VR(J)) 

4740 CONTINUE 

RlR=O. 0 
RlI=O. 0 
DO 4750 I=1, IMPR 
RlR=RlR+(SR(I)*Y2R(I)-SI(I)*Y2I(I)) 
RlI=RlI+(SI(I)*Y2R(I)+SR(I)*Y2I(I)) 

4750 CONTINUE 

c ERROR IN ESTIMATION OF REC!! SIGNAL 
RECER=RR-R2R 
RECEI=RI-R2I 

RER=RR-RlR 
REI=RI-RlI 

DO 4760 I=1, IMPR 
Y2ER(I)=B(I)*(RER*SR(I)+REI*SI(I))*DLTA 
Y2EI(I)=B(I)*(REI*SR(I)-RER*SI(I))*DLTA 

4760 CONTINUE 

Do 4770 I=1, IMPR 
SLPR(I)=SLPR(I)+DUM1*Y2ER(I) 
SLPI(I)=SLPI(I)+DUM1*Y2EI(I) 
Y2R(I)=Y2R(I)+SLPR(I)+DUM2*Y2ER(I) 
Y21(I)=Y2I(I)+SLPI(I)+DUM2*Y2EI(I) 

4770 CONTINUE 

C UPDATING OF V VECTOR USING GRADIENT ALGORITHM 
DO 4780 I=1,3 
ERR(I)=C*(RECER*SlR(I)+RECEI*SlI(I)) 
ERI(I)=C*(RECEI*SlR(I)-RECER*SlI(I)) 
VlR (I) =VR (I) +ERR (I) 
Vl I (I) =VI (I) +ERI (I) 

4780 CONTINUE 

DO 5080 JK=1,3 
GRDR(JK)=GRDR(JK)+THETA1*ERR(JK) 
GRDI(JK)=GRDI(JK)+THETA1*ERI(JK) 
VR(JK)=VR(JK)+GRDR(JK)+THETA2*ERR(JK) 
VI(JK)=VI(JK)+GRDI(JK)+THETA2*ERI(JK) 

5080 CONTINUE 

5000 

AFAR= 0.0 
AFAI=O. 0 
BTAR=0.0 
BTAI=O. 0 
GAMR=0.0 
GAMI=O. 0 
DO 5000 I=1, IMPR 
AFAR=AFAR+Y2 R (I) *AR (I) +Y2 I (I) *AI (I) 
AFAI=AFAI+Y2I(I)*AR(I)-Y2R(I)*AI(I) 
BTAR=BTAR+Y2R(I)*BR(I)+Y2I(I)*BI(I) 
BTAI=BTAI+Y2I(I)*BR(I)-Y2R(I)*BI(I) 
GAMR=GAMR+Y2R(I)*CR(I)+Y2I(I)*CI(I) 
GAMI=GAMI+Y2I(I)*CR(I)-Y2R(I)*CI(I) 
CONTINUE 
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DO 5020 I=1, IMPR 
GR(I)=(AFAR*AR(I)-AFAI*AI(I) 

1 
GI(I)=(AFAI*AR(I)+AFAR*AI(I) 

1 
5020 CONTINUE 

DO 5040 I=1, IMPR 
ERRR(I)=Y2R(I)-GR(I) 
ERRI (I) =Y2 I (I) -GI M 

5040 CONTINUE 

+ (BTAR*BR (I) -BTAI*BI (I)) 
+(GAMR*CR(I)-GAMI*CI(I)) 

)+(BTAI*BR(I)+BTAR*BI(I)) 
+(GAMI*CR(I)+GAMR*CI(I)) 

DO 5060 I=1, IMPR 
AR(I)=AR(I)+ETA*(AFAR*ERRR(I)+AFAI*ERRI(I)) 
AI(I)=AI(I)+ETA*(AFAP, *ERRI(I)-AFAI*ERRR(I)) 
BR(I)=BR(I)+ETA*(BTAR*ERRR(I)+BTAI*ERRI(I)) 
BI(I)=BI(I)+ETA*(BTAR*ERRI(I)-BTAI*ERRR(I)) 
CR(I)=CR(I)+ETA*(GAMR*ERRR(I)+GAMI*ERRI(I)) 
CI(I)=CI(I)+ETA*(GAMR*ERRI(I)-GAMI*ERRR(I)) 

5060 CONTINUE 

C CALL GRMSHM (IMPR, AR, AI, BR, BI, CR, CI) 

DO 6000 J=1, IMPR 
YlR(J)=(VR(1)*AR(J)-VI(1)*AI(J))+(VR(2)*BR(J)-VI(2)*BI(J)) 

+ (VR (3) *CR (J) -VI (3) *CI (J) ) 
YlI(J)=(VI(1)*AR(J)+VR(1)*AI(J))+(VI(2)*BR(J)+VR(2)*BI(J)) 

1 +(VI(3)*CR(J)+VR(3)*CI(i)) 
6000 CONTINUE 

9000 CONTINUE 

C PRINTING OUT RESULTS 
ERRSUM=ERRSUM/LCOUNT 
SUMERR=SUMERR/LCOUNT 
ERNOM=10.0*LOG10(ERNOM/LCOUNT) 
ERNON=10.0*LOG10(ERNON/LCOUNT) 
ERRSUM=10.0*(LOG10(ERRSUM)) 
SUMERR=10.0*LOG10(SUMERR) 
PRINT *f'LCOUNT=', LCOUNT 
PRINT *, 'C=', C 
PRINT *f'THETA=', THETA 
PRINT *r'EPSLON=', EPSLON 
PRINT *, 'ETA=', ETA 
PRINT *fMEAN SQ ERROR IN 
PRINT *f'MEAN SQ ERROR IN 
PRINT *f'NORM. MEAN SQ. ERR 
PRINT *f'NORM. MEAN SQ. ERR 
PRINT *f'SET SNR=, SNR 
PRINT *, 'DLTA=', DLTA 
REWIND(10) 
STOP 
END 

ESTIMATION=', ERRSUM 
ESTIMATION(GP-AD EST)=', SUMERR 
IN EST. =', ERNOM 
IN EST(ADPT. EST)=", ERNON 

SUBROUTINE GRMSHM (IMPR, AR, AI, BR, BI, CR, CI) 
REAL AR(IMPR), AI(IMPR), BR(IMPR), BI(IMPR) 
REAL CR (IMPR) , CI (IMPR) 
AMAG=0.0 
DO 1330 I=1, IMPR 
AMAG=AMAG+AR(I)**2+AI(I)**2 

1330 CONTINUE 
AMAG=SQRT(AMAG) 
IF(AMAG)1340,1350,1340 

1350 AMAG=0.0 
GO TO 1360 

1340 AMAG=1.0/AMAG 
1360 DO 1370 I=1, IMPR 
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AR (I) =AMAG*AR (I) 
AI(I)=AMAG*AI(I) 

1370 CONTINUE 

BAR=0.0 
BAI=0.0 
DO 1380 I=I, IMPR 
BAR=BAR+BR(I)*AR(I)+BI(I)*AI(I) 
BAI=BAI+BI(I)*AR(I)-BR(I)*AI(I) 

1380 CONTINUE 
DO 1390 I=1, IMPR 
BR(I)=BR(I)-(BAR*AR(I)-BAI*AI(I) 
BI(I)=BI(I)-(BAI*AR(I)+BAR*AI(I) 

1390 CONTINUE 
BMAG=0.0 
DO 1400 I=1, IMPR 
BMAG=BMAG+BR(I)**2+BI(I)**2 

1400 CONTINUE 
BMAG=SQRT(BMAG) 
IF(BMAG)1410,1420,1410 

1420 BMAG=0.0 
GO TO 1430 

1410 BMAG=1.0/BMAG 
1430 DO 1440 I=1, IMPR 

BR (I) =BMAG*BR (I) 
BI (I) =BMAG*BI (I) 

1440 CONTINUE 

CBR=O. 0 
CBI=O. 0 
CAR=O. 0 
CAI=O. 0 
DO 1450 I=1, IMPR 
CBR=CBR+CR(I)*BR(I)+CI(I)*BI(I) 
CBI=CBI+CI(I)*BR(I)-CR(I)*BI(I) 
CAR=CAR+CR(I)*AR(I)+CI(I)*AI(I) 
CAI=CAI+CI(I)*AR(I)-CR(I)*AI(I) 

1450 CONTINUE 
DO 1460 I=1, IMPR 
CR(I)=CR(I)-(CBR*BR(I)-CBI*BI(I) 
CI(I)=CI(I)-(CBI*BR(I)+CBR*BI(I) 

1460 CONTINUE 
CMAG=0.0 
DO 1470 I=1, IMPR 
CMAG=CMAG+CR(I)**2+CI(I)**2 

1470 CONTINUE 
CMAG=SQRT(CMAG) 
IF(CMAG)1480,1490,1480 

1490 CMAG=0.0 
GO TO 1500 

1480 CMAG=1.0/CMAG 
1500 DO 1510 I=1, IMPR 

CR(I)=CMAG*CR(I) 
CI(I)=CMAG*CI(I) 

1510 CONTINUE 
RETURN 
END 

)-(CAR*AR(I)-CAI*AI(I)) 
)-(CAI*AR(I)+CAR*AI(I)) 
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APPENDIX F5 

COMPUTER-SIMULATION PROGRAM FOR SYSTEM 8.2 

PROGRAM STFTF 
IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
REAL YR(32), YI(32) 
REAL YlR(32), YlI(32), SR(0: 32), SI(0: 32) 
REAL AR(0: 32), AI(0: 32), BR(0: 32), BI(0: 32) 
REAL CR(0: 32), CI(0: 32), ClR(0: 32), ClI(0: 32) 
REAL WDR(0: 32), WDI(0: 32), WFR(0: 32), WFI(0: 32) 
REAL GRDR(32), GRDI(32), ERR(32), ERI(32) 

c 
c 

2000 

C 

2010 

REAL AlR(0: 32), AlI(0: 32), BlR(0: 32), BlI(0: 32) 
REAL CMR(0: 32), CMI(0: 32) 
REAL MU, LAMDA 

FILE 'IMP5001 HAS IN ITS STORE 60000 SIR 
OF THE 3 SKY WAVE HF CHANNEL 

OPEN (10, FILE='IMP500', FORM='UNFOPMATTED') 

N=32 
NN=N+l 
ERRTOT=0.0 
ERRNOM=0.0 
LCOUNT=O 
MCOUNT=O 
KSTART=1000 
ETAT=0.0 

IQ=2 00 
CALL G05CBF(IQ) 

mu=o. 1 
SNR=l 0.0 
LAMDA=0.988 
THETA1=0.008 
THETA2=1.10 

DO 2000 J=O, N 
AR(J)=O. O 
AI(J)=O. O 
BR(J)=O. O 
BI(J)=O. O 
CR(J)=O. O 
Ci(i)=O. O 
CONTINUE 

AR (0) =l. 0 
BR (N) =l. 0 

GAMA=1 -0 
ALFA=(LAMDA**32.0)*MU 
BETA=MU 
LSTART=O 

INITIALISATION 
DO 2010 J=O, N 
SR(J)=1.0 
Si(i)=1.0 
WDR(J)=O. O 
WDI(J)=O. O 
CONTINUE 

OF NOISE AND DATA MATRIX 
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C VALUES TO VARIABLES 
DATA WFR/-0.0280463, 

-0.1622055, 
-0.0486855, 
-0.0044861, 

0.0000000, 
0.0000000, 
0.0000000, 
0.0000000, 
0.0000000 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

2120 

C 

2140 

C 

2160 

DATA WFI/ 0.0196809, 
0.1050267, 
0.0274074, 
0.0028584, 
0.0000000, 
0.0000000, 
0.0000000, 
0.0000000, 
0.0000000 

AND ARRAYS 
-0.2308071, 

0.1128849, 
-0.0097627F 

0.0006332, 
0.0000000, 
0.0000000, 
0.0000000, 
0.000000of 

0.1674616, 
-0.1337521, 
-0.0185076, 
-0.0022137, 

0.0000000, 
0.0000000, 
0.0000000, 
0.000000of 

STDVN=10.0**(-SNR/10.0) 
STDVN=SQRT (STDVN) 

DO 2120 J=1, N 
YlR(J)=YR(J) 
Yli(i)=Yi(i) 
GRDR(J)=O. O 
GRDI(J)=O. O 
CONTINUE 

DO 9000 ICOUNT=1,60000 

READ (10) (YR (J) J= 1, N) 
READ (10) (Y I (J) J= 1, N) 

PREDICITION ALGORITHM 

-0.5075768, 
0.1085069, 
0.0151408, 
0.0010673, 
0.0000000, 
0.0000000, 
0.0000000, 
0.0000000, 

0.3948080, 
-0.0735970, 
-0.0069768, 

0.0013582, 
0.0000000, 
0.0000000, 
0.0000000, 
0.000000or 

IF(ICOUNT. GT. 6000) THEN 
YERR=0.0 
YTOT=0.0 
DO 2140 J=1,32 
YERR=YERR+(YR(J)-YIR(J))**2+(YI(i)-YlI(i))**2 
YTOT=YTOT+YR(J)**2+YI(J)**2 
CONTINUE 
LCOUNT=LCOUNT+l 
COUNT=REAL(1.0/LCOUNT) 
ERRTOT=(1.0-COUNT)*ERRTOT+COUNT*YERR 
ERRNOM=(1.0-COUNT)*EPd: ý-NOM+COUNT*(YERR/YTOT) 

ENDIF 

SHIFTING OF ARRAYS ONCE FOR EVERY DATA SYMBOL 
DO 2160 J=N, 1, -1 
SR (J) =SR (J- 1) 
Si(i)=Si(i-l) 
CONTINUE 

c GENERATING QPSK DATA 
XX=G 05 CAF (XX) 
IF(XX-0.5) 2200,2200,2220 

2200 SR(O)=-1.0 
GO TO 2250 

2220 SR(O)=1.0 
2250 XX=G05CAF(XX) 

IF(XX-0.5) 2260,2260,2280 
2260 SI(O)=-1.0 

-0.4980021, 
-0.0073049, 

0.0052313, 
-0.0009344, 

0.0000000, 
0.0000000, 
0.0000000, 
0.0000000, 

0.4056800, 
0.0466914, 
0.0109986, 

-0.0004508, 
0.0000000, 
0.0000000, 
0.0000000, 
0.0000000, 

282 



GO TO 2300 
2280 SI(O)=1.0 
2300 CONTINUE 

C GENERATING NOISE 
DO 2450 LNSE=1,2 
DO 2420 J=1, N 
WDR (J-1) =WDR (J) 
WD I (J-1) =WD I (J) 

2420 CONTINUE 

WDR(N)=G05DDF(O. 0, STDVN) 
WDI(N)=GO5DDF(O. 0, STDVN) 

WNR=O. 0 
WNI=O. 0 
DO 2440 J=O, N 
Kl=N-J 
WNR=WNR+WDR(Kl)*WFR(J)-WDI(Kl)*WFI(J) 
WNI=WNI+WDR(Kl)*WFI(J)+WDI(Kl)*WFR(J) 

2440 CONTINUE 
2450 CONTINUE 

C CALCULATION OF RECEIVED SIGNAL 
RR=0.0 
RI=0.0 

DO 2480 J=O, (N-1) 
RR=RR+SR(J)*YR(J+1)-SI(J)*YI(J+l) 
RI=RI+SR(J)*YI(J+1)+SI(J)*YR(J+l) 

2480 CONTINUE 

C RECEIVED SIGNAL WITH NOISE 
RR=RR+WNR 
RI=RI+WNI 

IF (ETAT. GT. 0.0001. AND. KSTART. GT. 100) THEN 
KSTART=O 
MCOUNT=MCOUNT+l 
ENDIF 

KSTART=KSTART+l 
LSTART=LSTART+l 
IF(KSTART. LE. 50) THEN 

CALL RESTART (N, SR, SI, MU, LAMDA, KSTART, 
AlR, AlI, BlR, BlI, CMR, CMI, 
ALFAL, BETAL, GAMAL) 

ENDIF 

IF(KSTART. EQ. 51) THEN 

Do 2500 J=O, N 
AR(J)=AlR(J) 
AI(J)=AlI(J) 
BR(J)=BlR(J) 
BI(J)=BlI(J) 
CR (J) =CMR (J) 
Ci(i)=CMI(J) 

2500 CONTINUE 

ALFA=ALFAL 
BETA=BETAL 
GAMA=GAMAL 

ENDIF 
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C ESTIMATION OF IMPULSE RESPONSE 
ENPR=0.0 
ENPI=0.0 
DO 2520 I=O, N 
ENPR=ENPR+AR(I)*SR(I)-AI(I)*SI(I) 
ENPI=ENPI+AR(I)*SI(I)+AI(I)*SR(I) 

2520 CONTINUE 

ENR=ENPR*GAMA 
ENI=ENPI*GAMA 

ALFA1=ALFA 
ALFA=LAMDA*ALFA1+(ENPR*ENR+ENPI*ENI) 

GAMA2=GAMA 
GAMA1=LAMDA*(ALFAl/ALFA)*GAMA 

ENlR=ENPR/(LAMDA*ALFAl) 
ENlI=ENPI/(LAMDA*ALFAl) 
Do 2540 J=1, N 
CIP, (J)=CR(J-1)+(ENlR*AR(J)+ENlI*AI(J) 
ClI(J)=CI(J-1)+(ENlR*AI(J)-ENlI*AR(J) 

2540 CONTINUE 
ClR(O)=+ENlR 
ClI (0) =-ENlI 

RNPlR=O. 0 
RNPlI=O. 0 
Do 2560 I=O, N 
RNP 1R=RNP 1R+BR (I) *SR (I) -BI (I) *S I (I) 
RNPlI=RNPlI+BR(I)*SI(I)+BI(I)*SR(I) 

2560 CONTINUE 

IF(LSTART. LE. 32) THEN 
RNPlR=0.0 
RNPlI=0.0 
ENDIF 

GAMA=(1.0/(1.0-GAMA1*(RNPlR*ClR(N)-RNPlI*ClI(N))))*GAMAl 

RNPR=+LAMDA*BETA*ClR(N) 
RNPI=-LAMDA*BETA*ClI(N) 

ETAR=RNPlR-RNPR 
ETAI=RNPlI-RNPI 
ETAT=ETAR**2+ETAI**2 

DO 2580 J=1, N 
AR(J)=AR(J)-(ENR*CR(J-1)-ENI*CI(J-1)) 
AI(J)=AI(J)-(ENR*CI(J-1)+ENI*CR(J-1)) 

2580 CONTINUE 

RNR=RNPlR*GAMA 
RNI=RNPlI*GAMA 

BETA=LAMDA*BETA+(RNPlR*RNR+RNPlI*RNI) 

DO 2600 J=O, (N-1) 
CR(J)=ClR(J)-(ClR(N)*BR(J)-ClI(N)*BI(J)) 
CI(J)=ClI(J)-(ClI(N)*BR(J)+ClR(N)*BI(J)) 

2600 CONTINUE 

DO 2620 J=O, (N-1) 
BR(J)=BR(J)-(RNR*CR(J)-RNI*CI(J)) 
BI (J)=BI (J) - (RNR*CI (J) +RNI*CR(J)) 

2620 CONTINUE 
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WER=O. 0 
WEI=o. 0 
DO 2680 J=O, (N-1) 
WER=WER+YlR(J+1)*SR(J)-Yll(j+l)*Sj(j) 
WEI=WEI+YlR(J+1)*SI(J)+YlI(J+1)*SR(J) 

2680 CONTINUE 

ESPR=RR-WER 
ESPI=RI-WEI 
EPSR=ESPR*GAMA 
EPSI=ESPI*GAMA 

DO 2700 J=O, (N-1) 
ERR (J+l) =EP SR*CR (J) -EP SI *CI (J) 
ERI(J+I)=EPSP, *CI(J)+EPSI*CR(J) 

2700 CONTINUE 

DO 2800 J=1, N 
GRDR(J)=GRDR(J)+THETA1*ERR(J) 
GRDI(J)=GRDI(J)+THETA1*ERI(J) 
YlR(J)=YlR(J)+GRDR(J)+THETA2*ERR(J) 
YlI(J)=YlI(J)+GRDI(J)+THETA2*ERI(J) 

2800 CONTINUE 

9000 CONTINUE 
4000 CONTINUE 

c PRINTING OUT RESULT 
PRINT *, 'mu=,, mu 
PRINT *r'LAMDA=', LAMDA 
PRINT *, 'THETA1=', THETAl 
PRINT *r'THETA2=', THETA2 
PRINT *I' SNR= ", SNR 
PRINT *, 'LCOUNT=, LCOUNT 
PRINT *f'MCOUNT=', MCOUNT 
PRINT *I'MEAN SQ ERROR=', 10*(LOG10(ERRTOT)) 
PRINT *f'NORM. MEAN SQ. ERR=', 10.0*(LOG10(ERRNOM)) 

REWIND(10) 
STOP 
END 

SUBROUTINE RESTART (N, SR, SI, MU, LAMDA, KSTART, 
AlR, AlI, BlR, BlI, CMR, CMI, 
ALFAL, BETAL, GAMAL) 

REAL SR(0: 32), SI(0: 32) 
REAL AlR(0: 32), AlI(0: 32), BlR(0: 32), BlI(0: 32) 
REAL CMR(0: 32), CMI(0: 32), CNR(0: 32), CNI(0: 32) 
REAL MU, LAMDA 

IF(KSTART. EQ. 1) THEN 

DO 6000 J=O, N 
AlR(J)=O. O 
AlI(J)=O. O 
BlR(J)=O. O 
BlI(J)=O. O 
CMR(J)=O. O 
cmi(j)=O. o 

6000 CONTINUE 

A1R (0) =l. 0 
B1R (N) =l. 0 

GAMAL=1.0 
ALFAL=(LAMDA**32.0)*MU 
BETAL=MU 
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ENDIF 

EMPR=O. 0 
EMPI=O. 0 
Do 6020 I=O, N 
EMPR=EMPR+AlR(I)*SR(I)-AlI(I)*Sj(j) 
EMPI=EMPI+AIR(I)*SI(I)+AlI(I)*SR(j) 

6020 CONTINUE 

EMR=EMPR*GAMAL 
EMI=EMPI*GAMAL 

ALFAM=ALFAL 
ALFAL=LAMDA*ALFAL+(EMPR*EMR+EMPI*EMI) 

GAMAM=LAMDA*(ALFAM/ALFAL)*GAMAL 

EMlR=EMPR/(LAMDA*ALFAM) 
EMlI=EMPI/(LAMDA*ALFAM) 
DO 6040 J=1, N 
CNR(J)=CMR(J-1)+(EMlR*AlR(J)+EMlI*AlI(J) 
CNI(J)=CMI(J-1)+(EMlR*AlI(J)-EMlI*AlR(J) 

6040 CONTINUE 
CNR(O)=+EMlR 
CNI(O)=-EMlI 

DO 6060 J=1, N 
AlR(J)=AlR(J)-(EMR*CMR(J-1)-EMI*CMI(J-1)) 
AlI(J)=AlI(J)-(EMR*CMI(J-1)+EMI*CMR(J-1)) 

6060 CONTINUE 

RMPR=+LAMDA*BETAL*CNR(N) 
RMPI=-LAMDA*BETAL*CNI(N) 

COM1=1.0-GAMAM*(PMPR*CNR(N)-RMPI*CNI(N)) 
GAMAL=GAMAM/COM1 

RMR=RMPR*GAMAL 
RMI=RMPI*GAMAL 

BETAL=LAMDA*BETAL+(RMPR*RMR+RMPI*RMI) 

DO 6080 J=O, (N-1) 
CMR(J)=CNR(J)-(CNR(N)*BlR(J)-CNI(N)*BlI(J)) 
CMI(J)=CNI(J)-(CNI(N)*BlR(J)+CNP, (N)*BII(J)) 

6080 CONTINUE 

DO 6100 J=O, (N-1) 
BlR(J)=BlR(J)-(RMR*CMR(J)-RMI*CMI(J)) 
BlI(J)=BlI(J)-(RMR*CMI(J)+RMI*CMR(J)) 

6100 CONTINUE 

RETURN 
END 
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