This item is held in Loughborough University's Institutional Repository (https://dspace.lboro.ac.uk/) and was harvested from the British Library's EThOS service (http://www.ethos.bl.uk/). It is made available under the following Creative Commons Licence conditions.

(c) creative

C O M M O N S D E E D

Attribution-NonCommercial-NoDerivs 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:

BY. Attribution. You must attribute the work in the manner specified by the author or licensor

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Leqal Code (the full license).
Disclaimer ${ }^{\square}$

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/

CHANNEL ESTIMATORS FOR HF RADIO LINKS

\author{

Abstract

A Doctoral Thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the Loughborough University of Technology

}

December 1988

Supervisor: Professor A. P. Clark
Department of Electronic and Electrical Engineering

D © © j c © it e d

亿 ©
my porents

LIST OF CONTENTS

ABSTRACT iv
ACKNOWLEDGEMENT vi
GLOSSARY OF SYMBOLS AND TERMS vii

1. INTRODUCTION 1
1.1 Background 1
1.2 Outline of the Investigation 5
2. HF CHANNEL 7
2.1 Introduction 7
2.2 Structure of the Ionosphere 7
2.3 Propagation mechanism in Ionosphere 10
2.4 Distortion introduced by the HF channel 12
2.4.1 Time dispersion 12
2.4.2 Frequency dispersion 12
2.4.3 Fading 14
2.4.3.1 Interference or Selective fading 14
2.4.3.2 Polarization fading 15
2.4.3.3 Absorption fading 15
2.4.3.4 Skip fading 15
2.5 Statistical distribution of the received signal 15
2.6 Simulation of an HF channel 21
2.7 Results of the tests on the simulated fading channel 30
3. MODEL OF THE DATA TRANSMISSION SYSTEM 40
3.1 Introduction 40
3.2 Data transmission over a model of an HF channel using QAM. 41
3.3 Equipment filters used in the channel model 53
3.4 Computer simulation of the HF channel 64
3.5 Model of the system used in the testing of estimators 67
4. LINEAR FEEDFORWARD ESTIMATOR 76
4.1 Introduction 76
4.2 Model of data transmission system used in the tests 76
4.3 System 4.1 77
4.4 System 4.2 81
4.5 System 4.3 85
4.6 System 4.4 88
4.7 Results and analysis of the computer-simulation tests 90
5. RLS KALMAN ESTIMATOR 98
5.1 Introduction 98
5.2 Model of data transmission system used in the tests 99
5.3 System 5.1 100
5.4 System 5.2 108
5.5 System 5.3 110
5.6 Results and analysis of the computer-simulation tests 111
6. ADAPTIVE CHANNEL ESTIMATORS 118
6.1 Introduction 118
6.2 Model of data transmission system used in the tests 118
6.3 System 6.1 119
6.4 System 6.2 124
6.5 System 6.3 125
6.6 System 6.4 127
6.7 System 6.5 128
6.8 Results and analysis of the computer-simulation tests 130
7. EFFICIENT CHANNEL ESTIMATORS 143
7.1 Introduction 143
7.2 Model of data transmission system used in the tests 143
7.3 System 7.1 144
7.4 System 7.2 148
7.5 System 7.3 149
7.6 System 7.4 152
7.7 System 7.5 153
7.8 System 7.6 155
7.9 System 7.7 156
7.10 System 7.8 157
7.11 Starting up procedure for the estimators 158
7.12 Results and analysis of the computer-simulation tests 159
8. FAST TRANSVERSAL FILTER ALGORITHM FOR HF CHANNEL ESTIMATION 184
8.1 Introduction 184
8.2 Model of data transmission system used in the tests 185
8.3 System 8.1 186
8.3.1 Adaptive forward linear predictor 188
8.3.2 Adaptive backward linear predictor 192
8.3.3 Gain transversal filter 196
8.4 Stabilization of FTF algorithm 206
8.5 Initialization of the algorithm 211
8.6 System 8.2 212
8.7 Results of the computer-simulation test 215
9. COMMENTS ON THE RESEARCH PROJECT 225
9.1 Comparison of the channel estimators 225
9.2 Conclusion 228
9.3 Suggestions for future work 229
APPENDIX A: RAYLEIGH FADING FILTER 231
APPENDIX B: TRANSMITTER \& RECEIVER FILTERS 239
APPENDIX C: DIFFERENTIATION WITH RESPECT TO A VECTOR 249
APPENDIX D: MATRIX INVERSE IDENTITY 255
APPENDIX E: GRAM-SCHMIDT ORTHONORMALIZATION PROCESS 257
APPENDIX F1: GENERATION OF THE SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE HF CHANNEL 259
APPENDIX F2: COMPUTER-SIMULATION PROGRAM FOR SYSTEM 5.1 264
APPENDIX F3: COMPUTER-SIMULATION PROGRAM FOR SYSTEM 6.5 269
APPENDIX F4: COMPUTER-SIMULATION PROGRAM FOR SYSTEM 7.5 273
APPENDIX F5: COMPUTER-SIMULATION PROGRAM FOR SYSTEM 8.2 281
REFERENCES 287

Abstract

The thesis is concerned with the estimation of the sampled impulse-response (SIR), of a time-varying HF channel, where the estimators are used in the receiver of a 4800 bits/s, quaternary phase shift keyed (QPSK) system, operating at 2400 bauds with an 1800 Hz carrier.

HF modems employing maximum-likelihood detectors at the receiver require accurate knowledge of the SIR of the channel. With this objective in view, the thesis considers a number of channel estimation techniques, using an idealised model of the data transmission system. The thesis briefly describes the ionospheric propagation medium and the factors affecting the data transmission over HF radio. It then presents an equivalent baseband model of the HF channel, that has three separate Rayleigh fading paths (sky waves), with a 2 Hz frequency spread and transmission delays of $0,1.1$ and 3 milliseconds relative to the first sky wave.

Estimation techniques studied are, the Gradient estimator, the Recursive leastsquares (RLS) Kalman estimator, the Adaptive channel estimators, the Efficient channel estimator (that takes into account prior knowledge of the number of fading paths in the channel), and the Fast Transversal Filter (FTF), estimator (which is a simplified form of the Kalman estimator). Several new algorithms based on the above mentioned estimation techniques are also proposed.

Results of the computer simulation tests on the performance of the estimators, over a typical worst channel, are then presented. The estimators are reasonably optimized to achieve the minimum mean-square estimation error and adequate allowance has been made for stabilization before the commencement of actual measurements. The results, therefore, represent the steady-state performance of the estimators.

The most significant result, obtained in this study, is the performance of the Adaptive estimator. When the characteristics of the channel are known, the Efficient estimators have the best performance and the Gradient estimators the poorest. Kalman estimators are the most complex and Gradient estimators are the simplest. Kalman estimators have a performance rather similar to that of Gradient estimators. In terms of both performance and complexity, the Adaptive estimator lies between the Kalman and Efficient estimators. FTF estimators are known to exhibit numerical

instability, for which an effective stabilization technique is proposed. Simulation tests have shown that the mean squared estimation error is an adequate measurement for comparison of the performance of the estimators.

ACKNOWLEDGEMENT

The author would like to express his deep gratitude to his supervisor, Professor A. P. Clark, for his considerable help and guidance

The support and the opportunity provided by the Association of Commonwealth Universities, to carry out this research, is gratefully acknowledged.

The author would also like to express his sincere thanks to his brother Ganesh, and to his friends and colleagues for their kind encouragement throughout the duration of research.

GLOSSARY OF SYMBOLS AND TERMS

$\mathrm{a}(\mathrm{t})$ Impulse-response of a filter
A(f) Frequency résponse of a filter
$|A(f)|$ Absolute value of $A(f)$
$a(t) * b(t)$ Convolution between $a(t)$ and $b(t)$
C_{i} Weighted squared error in the $\left\{r_{b}\right\}$
e_{i} Error in the estimated value of r_{i}
E [.] Expectation operator
$\mathrm{g}+1$ Number of samples in the sampled impulse-response of linearbaseband channel
j When not used as a subscript, $\mathrm{j}=\sqrt{-1}$
K_{i} Kalman gain vector
$\mathrm{n}(\mathrm{t})$ White Gaussian noise with zero mean and two-sided power spectral density of $\frac{1}{2} \mathrm{~N}_{0}$
$\frac{1}{2} \mathrm{~N}_{0}$ Power spectral density of $\mathrm{n}(\mathrm{t})$
$\mathrm{q}_{\mathrm{b}}(\mathrm{t})$ Statistically independent random processes
$\left\{q_{h i}\right\}$ Sequence obtained by sampling $q_{h}(t)$
\mathfrak{R} [.] Real part of a complex number
r(t) Received signal
$\left\{r_{i}\right\}$ Sequence of received signal samples
r_{i}^{\prime} Estimated received signal sample
s_{i} Data symbols_{i}^{\prime} Detected data symbol
\bar{S}_{h} Complex conjugate of the vector S_{b}
Superscript * Complex conjugate
Superscript T Matrix (or Vector) transpose
T Sampling interval
V_{i}^{*} Conjugate transpose of the vector V_{i}
$\mathrm{w}(\mathrm{t})$ Gaussian random process with zero mean
$y(t)$ Impulse-response of linear baseband channel
Y_{i} Sampled impulse-response of linear baseband channelY_{i}^{\prime} Estimate of Y_{i} at time $\mathrm{t}=\mathrm{i} \mathrm{T}$
$Y_{i+1, i}^{\prime}$ One-step prediction of Y_{i+1} at time $t=i T$
$Y_{i+1, i}^{\prime \prime}$ Estimate (prediction) of the rate of change with respect to i of $Y_{i+1}$$\xi_{1}$ Mean square error in the estimate (prediction) of $Y_{i}$$\xi_{2}$ Mean square normalized error in the estimate (prediction) of $\mathrm{Y}_{\mathrm{i}}$$\xi_{i}$ Square of the error in the estimate (prediction) of Y_{i}
σ^{2} Variance of $w(t)$ or $\left\{w_{i}\right\}$
ϕ_{h} Transition matrix
ψ Signal/noise ratio

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND.

The radio frequency band, between $3-30 \mathrm{MHz}$, called the High frequency (HF) band [1], has for many years been used as a transmitting medium, for communication over long distances. Despite the advent of satellite communication systems, HF still continues to be used owing to the fact that it is economical and flexible. HF has been extensively used for point - to - point communication, for commercial shipping, aircraft communication and for military applications. The ionosphere acts as a good reflector of HF radio waves and propagation of HF is achieved by ionospheric refraction [1]. However, HF transmission is unpredictable due to the existence of multiple transmission paths caused by reflection from different layers of the ionosphere [1-20]. Advances in modem design and availability of high speed signal processing chips has renewed interest in data transmission over HF radio links.

In the past, the HF radio medium was successfully used for low data rate telegraphy, such as manually transmitted and received Morse code. The signal element duration here, with serial transmission, is very much greater than the multipath spread and thus the detection of such a signal could be achieved through simple means. However, with the increasing demand for HF communication, it has become necessary to increase the data transmission rate, and as a result the multipath spread can extend over the duration of several signal elements. The system is now subject to inter-symbol interference (ISI) [2-4]. As the speed of transmission increases, so do the bit errors, affecting both modem performance and reliability. Until recently, the preferred method of transmitting digital data at medium to high speed, (greater than $1200 \mathrm{bits} / \mathrm{s}$ [67]), has been to employ a number of low speed channels in parallel in order to avoid ISI. The transmission takes place at a fairly low rate, over each of a number of subchannels within a 3 KHz band. An alternative approach is to use serial transmission and employ some form of adaptive signal processing at the receiver. Comparison of the two transmission techniques at a speed of $2400 \mathrm{bits} / \mathrm{s}$
has shown that the performance of a parallel HF modem is generally inferior to that of the serial modem [33, 52]. The present trend is, therefore, towards serial modems.

HF radio links are time-varying channels which can introduce considerable levels of attenuation and delay distortions [1-8, 12-18, 29, 42]. Therefore, for the correct operation of the data-transmission system, at all times, over such a link, the system should be designed for the optimum tolerance to attenuation and delay distortions. Considerable advances have been achieved in the design of serial modems for HF radio links [5, 29, 31, 42-43, 46-48, 50-52, 67-69, 71-72]. This has made it possible to achieve an increase in the highest practically obtainable transmission rate over a voiceband HF channel from 2400 to 9600 bits/s [5, 29, 31, 42-43, 46-48, 50-52, 67-69, 71-72]. The increase has been achieved through the development of more effective techniques for tracking the sampled impulse-response of the time-varying baseband channel [53-64, 73-89, 92-97, 99-116], together with the development of more effective detection processes for handling the severe signal distortion introduced by the HF radio link [31, 47-49, 51, 90].

Increasing the data rate over a bandlimited channel results in an increase in the amount of inter-symbol interference (ISI). Detectors used to combat inter-symbol interference can be classed into two separate groups. The first group of detectors employ an equalizer, which has a knowledge of the interfering components. The received signal passes through an equalizer before arriving at the detector input and the detection process is now a simple threshold comparator. The detector makes a decision on the value of a transmitted data symbol, by comparing the corresponding sample value with the appropriate threshold level (or levels). Equalization techniques used are the linear equalizer and the non-linear equalizer (or the deci-sion-feedback equalizer) $[20,36,42-43,56]$. The tap gains of a linear or non-linear equalizer can be adjusted adaptively for a time varying channel, using the gradient algorithm [42, 75] or the Kalman algorithm [75, 78-79] or a lattice algorithm [86] to minimize the mean square error in the equalized signal at its output. Alternatively, an equalizer can be adjusted from an estimate of the sampled impulse-response of the channel.

The second method available to overcome the problem of inter-symbol interference is to modify the detection process itself, to take account of the signal distortion that has been introduced by the channel. These detectors perform processes of maximum
likelihood detection or maximum likelihood sequence estimation (MLSE), and are the optimum detection processes for a sequence of data symbols transmitted over a non ideal bandlimited channel which introduces ISI and additive white Gaussian noise (AWGN), and where the transmitted symbols are equally likely to have any one of their possible values [42]. In maximum-likelihood detection, the detector, instead of removing the ISI, takes full account of it, thus using the entire transmitted energy in the detection process.

The Viterbi algorithm is used to implement MLSE [20, 36-37, 42-43, 47]. It is not feasible to implement the MLSE in its true form because of the enormous memory requirement and equipment complexity. However, the Viterbi algorithm achieves the same tolerance to noise as that of MLSE [20, 36-37, 42-43, 47]. A Viterbi detector operates by storing a complete set of possible sequences (vectors) of transmitted data symbol values together with the costs of the vector. The cost of a vector is taken as the square of the unitary distance between the corresponding received signal vector, for the given signal distortion but in the absence of noise, and the signal vector actually received. The detected message is selected as the particular sequence or vector, which has the minimum cost.

For a Viterbi detector, the amount of storage required and computational complexity increases exponentially as the number of components in the sampled impulse-response of the channel increases. In order to overcome this problem, the detector is further modified and also an allpass linear feedforward transversal filter network is employed ahead of the detector [49]. The detector now limits the number of vectors held in the receiver at any time instant to a small value, regardless of the number of components in the sampled impulse-response of the channel, but without reducing unduly the tolerance of the detector to noise. This type of detector is now referred to as a near-maximum likelihood (NML) detector [36-37, 42, 47-48]. It has been shown in [51] that NML detectors are not significantly inferior to true Viterbi detectors in terms of their tolerances to additive white Gaussian noise, especially when binary and quaternary signals are transmitted.

Decision-feedback equalizers have a poor performance over a time varying HF channel [37, 47]. At low error rates, they are 1-3 dB inferior to the corresponding NML detectors depending on severity of fades [47]. The errors here are caused predominantly by the deepest fades and, in addition, the equalizers suffer from inherent error propagation tendencies.

A NML detector is, therefore, the most suitable detector for a time varying HF channel. However, these detectors require a knowledge of the sampled impulse-response of the channel. The adaptive filter used ahead of the detector also requires this information. Under the condition when the detector and adaptive filter is provided with the correct channel estimate and when perfect operation of the adaptive filter can be assumed, the performance of the NML detector gives an upper bound to the performance obtained when the channel response must be estimated. Any error in the estimation of the channel directly affects the performance of the detector. Further more, an incorrect channel estimate leads to an incorrect adjustment of the adaptive filter. It is, therefore, very essential, for the good performance of the detector (and hence the HF modem), that the channel estimator is able to make an accurate estimate of the sampled impulse-response of the channel.

The channel characteristics of a telephone circuit do not vary (or vary only very slowly) with time. These channels, therefore, come under the category of time-invariant channels. The estimate of the impulse-response of such a channel can be made quite accurately, and usually remains correct over the period of the following hundred or even thousand data symbols. One method, for fast start up, is to transmit a training sequence before actual data [91]. However, with an HF channel, the channel characteristics vary considerably with time and season of the year, geographical location, sunspot number etc. [1-8, 12-18, 20-22, 25]. The received signal is continuously varying randomly in amplitude due to fading and, therefore, the sampled impulse-response of the channel must be estimated continuously at the receiver from the received data signal.

A receiver employing a NML detector can, therefore, be considered to consist of a detector and an estimator connected back to back. The input to the channel estimator is the current detected data and the received sample and its output is an estimate/prediction of the channel sample impulse-response, ready for use by the detector at the next sampling instant. A channel estimator is basically a tapped delay line finite impulse-response (FIR) filter with the filter tap coefficients forming the channel sampled impulse-response. The tap coefficients of the filter are adjusted adaptively, according to a particular algorithm, in order to track a time varying channel.

The algorithms used for the adaptive adjustment of the filter can be broadly classified into least mean-squares (LMS) and recursive least-squares (RLS) algo-
rithm. In LMS algorithm the tap coefficients of the filter are determined using the method of steepest descent [20,27, 35, 58-61, 101]. The algorithm is simple and works adequately in a variety of applications but suffers from the disadvantage of having a slow convergence rate.

The RLS algorithm, on the other hand, makes use of the input information to the channel estimator in such a way as to ensure optimality at every time instant. A Kalman filter has been used as a means of holding the receiver correctly adjusted to the channel in [53, 55, 73-75, 77-88]. Computer-simulation tests, however, have shown that the conventional Kalman filter [53, 73-75, 77-81], together with the more recent developments [83-88] are not optimum for a typical HF channel [88]. Both RLS and Kalman algorithms offer improved convergence, but at the expense of increased computation. New fast RLS algorithms have been developed [59, 84, 87, $97,101,104-116]$, but these exhibit numerical instability [111-116].

Another form of estimation technique, known as the Improved channel estimator [89], that makes use of the prior knowledge of the number of different paths (separate sky waves) present in the HF channel, has shown very much improved performance, compared to the conventional LMS and RLS algorithms. It, however, has sub-optimum performance when the channel is modelled incorrectly [100]. It has been demonstrated in [70] that the LMS algorithm will perform as well as (if not better than) the RLS algorithm over a fading HF channel. An useful improvement in performance is achieved if a predictor is also incorporated in the system [33, 54]. This simple modification, however, is not enough to match the performance of an improved channel estimator. The main source of complexity in the improved channel estimator is the requirement of modelling of the multipath propagation in the HF radio link. This suggests that the best approach towards a simpler but adequate estimator would be to develop the simple LMS algorithm [54] which does not require any prior knowledge of the channel.

1.2 OUTLINE OF THE INVESTIGATION

The investigation is concerned with the estimation of the sampled impulse response of a time-varying HF channel, where the estimators are used in the receiver of a 4800 bits/s, quaternary phase shift keyed (QPSK) system operating at 2400 bauds
with an 1800 Hz carrier. Computer-simulation has been used to test the performance of estimators over a model of the HF data transmission system. Several novel estimation algorithms are proposed and their performance compared.

Chapter 2 contains a description of the HF radio channel. It contains a brief description of the structure of the ionosphere followed by the propagation mechanism in the ionosphere. Finally it presents a model of the HF channel.

Chapter 3 describes a model of a synchronous serial QAM digital data transmission system, and presents an equivalent baseband model of a three sky wave data transmission system.

Chapter 4 considers a simple gradient estimator [33, 53-54], operating as an HF channel estimator. Four variations of the estimation technique are also described

Chapter 5 considers RLS Kalman estimators for HF channel estimation. Three variations of the RLS Kalman estimation technique are also described.

The class of estimators considered in Chapter 6 are called adaptive channel estimators. These estimators are adaptive in the sense that the step sizes of the gradient algorithm are here adjusted to suit the channel.

In Chapter 7, an improved channel estimator [89] is used to estimate the sampled impulse-response of an HF channel. All the estimators described in this chapter assume prior knowledge of the basic structure of the channel.

Chapter 8 considers Fast transversal filter (FTF), for HF channel estimation. This is a fast RLS algorithm [84] and is computationally efficient.

At the end of each chapter the results of the computer simulation tests on a model of a data transmission system are presented. The systems have been approximately optimized within the available computer time, for best performance and the results represent the steady-state performance of the estimators. Finally, in Chapter 9, some of the best estimators developed in the thesis have been compared.

CHAPTER 2

HF CHANNEL

2.1 INTRODUCTION.

An HF channel as a transmission medium is still of great importance even after the introduction of several other kinds of transmission media such as satellites, optical fibres, coaxial cables etc. When cable links are used as a transmission medium, the properties of the transmission route can be quite accurately defined and reproduced independently of time factors, but for HF radio links this is not the case. For sky wave propagation, in particular, the transmission conditions are constantly changing and this results in a received signal that follows the changes in the transmission medium. In estimating such a channel, major processes in the ionosphere and their effect on HF propagation must be well understood. This chapter looks in detail at the structure of the ionosphere, the distortions introduced by a time varying channel and the modelling of the channel for use in the testing of data modems.

2.2 STRUCTURE OF THE IONOSPHERE.

The ionosphere extends between 50 and 2000 km above the earth's surface, and is composed of molecules and atoms of nitrogen and oxygen [8, 9]. These are ionized principally, by the electromagnetic radiation from the sun, into free electrons and ions [9]. The ionosphere consists of several ionized layers. These can be classified into three main groups, named D, E and F layers $[1,8-9,12]$. The ionization and the density of ions present in these layers vary with time, as the ionization rate is a function of the intensity of solar radiation and this in turn varies considerably with the time of day, the season and the sunspot activity. As the solar radiation becomes stronger so does the capacity of the individual layers to reflect high frequency waves. However, the attenuation of the radio waves increases at the same time.

The D layer, at a height of 60 to 90 km above the earth, is the lowest layer. The critical frequency for the D layer, defined as the highest carrier frequency of a vertically incident ray that can be reflected by the layer [13], is of the order of 100 to

700 KHz [12]. Thus for HF radio waves, the D layer acts principally as an attenuator. The D region appears after sunrise and during night time, in the absence of solar radiation, the D layer virtually vanishes and, therefore, does not interfere with HF radio propagation.

The E layer is between 90 to 130 km above the earth's surface and is the next highest layer [1, 7-9, 12-13]. The E layers has a critical frequency of about 4 MHz [7-8]. As with the D layer, ionization begins at sunrise and maximum density occurs near noon with the seasonal maximum occurring in summer. After sunset the layer gradually breaks down. Thin ionized layers with a maximum electron density, greater than that of the Elayer, are often found between 90 and 150 Km above the earth [13]. These layers are called sporadic E layers because they arise only occasionally $[1,7-9,12-14]$. These are capable of reflecting high frequencies as they have a high critical frequency.

人 The next layer, called the F layer, is very important for the propagation of short waves. The lower region of the F layer shows a different variation characteristic than the upper region of the F layer, hence they have been sub-divided into two layers called the F1 and F2 layers. The F1 layer which exists only during daytime is located between 130 and 210 km above the earth [8-9]. Like the E layer, the F1 layer is strongly influenced by the solar radiation. The maximum ionization occurs about one hour after midday, with the seasonal maximum occurring during summer. The F1 layer is not generally used for long distance communications [6]. At night the two layers, F1 and F2, merge and are termed, simply, the F layer [1, 7-9, 12-14].

The F2 region is the highest ionospheric region and is located between 225 to 450 km above the earth's surface [1]. The critical frequency for the F2 layer is between 5 to 10 MHz . During night time and sometimes during the day time, particularly in winter, there is only a single F layer as the two layers F1 and F2 merge, and the critical frequency drops to 3 to 5 MHz . The F2 layer is an important part of the ionosphere for HF radio communication both during day and night time. Since the F2 layer is at a considerable height, it can support single hop propagations over a distance as great as 4000 km .

Fig. 2.2.1, [9], shows the ionospheric regions as a function of height above the earth's surface. Fig. 2.2.2, [13], shows the electron density profile for summer noon and midnight at middle latitudes.

Fig. 2.2.1 - lonospheric regions as a function of height above the earth's surface

Fig. 2.2.2 - Typical electron density distribution for summer noon \& midnight conditions at mid-latitudes

2.3 PROPAGATION MECHANISM IN IONOSPHERE.

HF radio waves are returned to earth from the ionosphere through a process known as refractive bending. The refractive index, η, of the ionospheric layer changes continuously with its height as η is a function of the electron density in the ionised medium.

The refractive bending of a radio wave is demonstrated in Fig. 2.3.1 and Fig. 2.3.2. For a given angle of incidence of a radio wave meeting a reflecting layer, total internal reflection occurs when [12, 14]

$$
\sin \theta_{i}=\left[1-\frac{81 . N}{f^{2}}\right]^{\frac{1}{2}}
$$

where f is the frequency of the radio wave in Hz , and N is electron density in electrons per cubic metre. At vertical incidence $\left(\sin \theta_{i}=0\right)$, the wave will be completely refracted back towards the earth if the frequency of the wave is equal to or less than the crtical frequency, f_{c},

$$
f_{c}=9 \sqrt{N_{\max }}
$$

where $\mathrm{N}_{\max }$ is the maximum electron density in the ionosphere. For a given angle of incidence, θ_{i}, the maximum frequency at which reflection takes place is called the maximum usable frequency (m.u.f) and is related to the critical frequency as

$$
\text { m.u. } f=f_{c} \sec \theta_{i}
$$

As seen in Fig. 2.3.2, at the (m.u.f), the radio wave takes the critical path which is the shortest distance back to earth. This is called the skip distance.

The refraction processes via a flat ionised region at some height " b " above the earth's surface is equivalent to a mirror like reflection from a reflector located at a height " a " above the earth (Fig. 2.3.3) [12, 14]. This height " a " is called the virtual

Fig. 2.3.1 - lonospheric Reflection Mechanism

Fig. 2.3.2 - Critical Conditions for Reflection

Fig. 2.3.3 - Virtual Path
height [14]. Thus the actual ray path can be replaced by the virtual ray path in a medium of unit refractive index and reflected from a plane located at the virtual height.

For long radio path lengths several hops are necessary, with the number of hops depending upon the transmission conditions existing in the individual sections of the path. Fig. 2.3.4 shows some of the possibilities for a multi-hop link.

2.4 DISTORTION INTRODUCED BY THE HF CHANNEL

2.4.1 TIME DISPERSION.

A radio wave may reach a remote receiver via several routes (as illustrated in Fig. 2.3.4). All these routes will have different path lengths and hence the radio waves will take different times to traverse them. Time dispersion is due to multipath propagation. The earth's magnetic field splits the waves into two magneto-ionic components called the ordinary and extraordinary waves and the propagation conditions in the ionosphere are different for the two waves. Thus the ordinary and extraordinary rays appear as multiple rays and this results in time dispersion. Different modes of propagation have different group delays and this difference in the group delays also results in time dispersion. Time dispersion gives rise to inter-symbol interference, when the data transmission rate becomes comparable to the relative multipath delay. It is, thus, a function of frequency, path length, local time, season and also geographical location.

2.4.2 FREQUENCY DISPERSION.

Frequency dispersion arises on a single propagation path due to the Doppler effect introduced by the change in the altitude of the ionospheric layers. The upper regions of the atmosphere at high altitude are ionized first when the sun rises. The height of this ionization level reduces as the sun rises further and further, until noon when it reaches a minimum. Thus the path traversed by a particular radio wave keeps

Fig. 2.3.4 - Examples of possible radiation paths for Multipath links.
decreasing and the emitted frequency appears to have increased by an amount $+\Delta f$. Exactly the opposite phenomenon takes place when the sun sets whereby, now, the radio wave takes a longer path to reach the receiver and the emitted frequency now appears to have decreased by an amount $-\Delta f$. During night time when the ionosphere is calm there is no Doppler effect. When the ionosphere is calm the value of Δf is between 1 and 2 Hz [1] and at other times it can be as high as 6 Hz .

2.4.3 FADING

Random variations of the signal strength at the receiver are referred to as fading. Fading phenomena can be classified as follows [1, 4, 14].

2.4.3.1 INTERFERENCE OR SELECTIVE FADING.

An HF signal arriving at a remote receiver is composed of a large number of different rays, after having travelled via the ionosphere over paths of different lengths. The total field strength of the received signal is the phasor sum of all waves arriving at the receiver. Due to random variation of the ionospheric conditions, the phase and the field strength of different rays, and hence that of the received signal, vary in a random manner.

A modulated carrier has, within its bandwidth, a large number of frequency components that are exposed to randomly varying multipath propagation conditions. This can result in selective blackouts or fading of a small section of the bandwidth. This fading effect is called selective fading. Interference fading can also occur if at the receiver the sky wave signals are also superimposed by the ground wave signals. When the radio links are exposed to severe ionospheric disturbances, there is another type of interference called flutter fading. In this the variation in signal strength takes the form of a fast rhythmic beat, as though a low frequency oscillation is superimposed on the modulated carrier. This represents a considerable source of disturbance for radio reception.

2.4.3.2 POLARIZATION FADING

This is due to the effect of the earth's magnetic field splitting the radio waves into ordinary and extraordinary waves (Section 2.4.1). The combined effect of the phase and amplitude of these waves is to change the polarisation of the received signal to be elliptically polarised. The phase and dimensions of the axes of the ellipse are constantly changing as the ordinary and extraordinary waves are subjected to random variations in the propagation conditions. This results in a type of fading called polarization fading.

2.4.3.3 ABSORPTION FADING.

This type of fading occurs due to the variation in the absorption characteristics of the ionosphere with time. The attenuation characteristic of the D layer slowly changes and can last longer than an hour [1] and is usually the greatest during sunrise and sunset [4]. The depth of fading can be as high as 10 dB below the mean value [1].

2.4.3.4 SKIP FADING.

For a specific distance between two short wave stations, the highest frequency to be reflected is called the maximum usable frequency (MUF). Skip fading is caused by the continuous variation of the MUF. The operating frequency, which at one particular instant, is definitely below the MUF, may no longer be so at another instant and so penetrates the reflecting layer for a short period of time. During this time radio communication is interrupted at the receiver.

2.5 STATISTICAL DISTRIBUTION OF THE RECEIVED SIGNAL

Consider a transmitted signal that is represented in general form as.

$$
s(t)=\mathscr{R}\left\{u(t) \cdot \exp ^{\left.j 2 \pi f_{c} t\right\}}\right.
$$

where $\mathscr{R}\{$.$\} is the real part of the complex-valued quantity in brackets, f_{c}$ is the frequency of the carrier and,

$$
u(t)=a(t) e^{j \theta(t)}
$$

$\mathrm{a}(\mathrm{t})$ denotes the amplitude (envelope) of $\mathrm{s}(\mathrm{t})$, and $\theta(t)$ denotes the phase of $\mathrm{s}(\mathrm{t})$. Due to multipath the received signal is of the form [18,20]

$$
r(t)=\sum_{n} \alpha_{n}(t) s\left[t-\tau_{n}(t)\right]
$$

where $\alpha_{n}(t)$ is the amplitude of the signal received via the $\mathrm{n}^{\text {th }}$ path at time t and $\tau_{n}(t)$ is the propagation delay for the $\mathrm{n}^{\text {th }}$ path. Considering the received signal as consisting of a continuum of multipath components, the summation in Eqn. 2.5.2 can be replaced by integral, and can be written as $[18,20]$

$$
r(t)=\int_{-\infty}^{\infty} \alpha(\tau ; t) s(t-\tau) d \tau
$$

where $\alpha(\tau ; t) d \tau$ represents the amplitude at time t of all rays arriving with relative delay times in the range $(\tau, \tau+d \tau)$. Combining Eqns. 2.5 . 1 and 2.5.3

$$
r(t)=\mathfrak{R}\left\{\int_{-\infty}^{\infty} \alpha(\tau ; t) u(t-\tau) e^{j 2 \pi f_{c}(t-\tau)} d \tau\right\}
$$

or

$$
r(t)=\Re\left\{\left[\int_{-\infty}^{\infty} \alpha(\tau ; t) e^{-j 2 \pi f_{c} \tau} u(t-\tau) d \tau\right] e^{j 2 \pi f_{c} t}\right\}
$$

Let

$$
h(\tau ; t)=\alpha(\tau ; t) e^{-j 2 \pi f_{c} \tau}
$$

The integral in Eqn. 2.5.5 represents the convolution of $u(t)$ with an equivalent low-pass time-variant channel impulse-response $h(\tau ; t)$.

Thus when an unmodulated carrier, at frequency f_{c}, is transmitted, the equivalent low-pass received signal is [20]

$$
r(t)=\sum_{n} \alpha_{n}(t) e^{-j 2 \pi f_{c} \tau_{n}(t)}=\sum_{n} \alpha_{n}(t) e^{-j \theta_{n}(t)}
$$

where $\theta_{n}(t)=2 \pi f_{c} \tau_{n}(t)$. Thus the received signal consists of the sum of a number of time-variant phasors having amplitudes $\alpha_{n}(t)$ and phases $\theta_{n}(t)$. A large dynamic change in the medium is required for $\alpha_{n}(t)$ to change sufficiently to cause a significant change in the received signal. On the other hand, $\theta_{n}(t)$ changes by 2π radians whenever $\tau_{n}(t)$ changes by ($1 / \mathrm{f}_{\mathrm{c}}$). But ($1 / \mathrm{f}_{c}$) is a small quantity, and, hence, $\theta_{n}(t)$ can change by 2π radians with relatively small motions of the medium. Owing to irregularity of the ionised media, the variation in $\tau_{n}(t)$ is random and, therefore, variation in $\theta_{n}(t)$ is also random $[18,20]$. The multipath propagation model for the channel, in Eqn. 2.5.7, results in fading of the received signal. The fading is caused primarily by variation in the relative phases of the individual $\left\{\theta_{n}(t)\right\}[20]$.

When there are a sufficiently large number of phases, i.e for large value of n, of roughly equal size and their phases changing randomly and independently of each other, then by the central limit theorem, the two quadrature components of the resultant signal will each tend to be distributed as a zero-mean Gaussian random variable, with equal variance and independent fluctuations [18, 20].

The received waveform thus has all the characteristics of a very narrow band complex-valued Gaussian random process, characterised by a power spectral density of non-zero width, and with the envelope having a Rayleigh distribution and the phase uniformly distributed between 0 and 2π radians [18-21].

A single non-fading ("specular") dominant component may also be received, giving a Nakagami-Rice or Ricean amplitude distribution [3, 9, 20-21]. The Rayleigh fading model need not be valid for all HF channels. A specular component can be present on high rays and ground waves on short links which are again, essentially non-fading. However, the majority of ionospheric media exhibit Rayleigh fading, and thus, based on the present knowledge of ionospheric characteristics, it appears that the Rayleigh fading model best describes most HF channels [19].

The value of the envelope of the received signal at any time, can be taken to be Rayleigh distributed. It is a continuous random variable, derived from two independent Gaussian random variables X and Y , and its probability density function is given by [1, $3,15,21-23]$

$$
p_{R}(r)=\left\{\begin{array}{lc}
\frac{r}{\sigma^{2}} e^{-\frac{r^{2}}{2 \sigma^{2}}} & 0 \leq r \leq \infty \\
0 & r<0
\end{array}\right.
$$

The mean values of X and $\mathrm{Y}, \mathrm{m}_{\mathrm{x}}$ and m_{y} respectively are zero and their variance σ^{2} is such that

$$
\sigma_{X}^{2}=\sigma_{Y}^{2}=\sigma^{2}
$$

The envelope, $R=+\sqrt{X^{2}+Y^{2}}$, has a Rayleigh distribution [21,24] and has a probability density function given by Eqn. 2.5.8.

Since R cannot be negative, by definition, it must have a non-zero mean value, even though X and Y have zero means. Fig. 2.5.1 shows the plot of probability density function as a function of r. The curve attains a maximum value of $1 / \sigma \sqrt{e}$ at $r=\sigma$.

The Cumulative distribution function, of the Rayleigh distribution, is given by

$$
\begin{align*}
f(r) & =\int_{0}^{r} \frac{u}{\sigma^{2}} e^{-\frac{u^{2}}{2 \sigma^{2}}} d u \\
& =1-e^{-\frac{r^{2}}{2 \sigma^{2}}}
\end{align*}
$$

for $\mathrm{r} \geq 0$.

Fig. 2.5.2 shows the plot of the cumulative distribution function. The mean value of R is given by

Fig. 2.5.1 - Rayleigh Probability Density Function

Fig. 2.5.2 - Rayleigh Cumulative Distribution Function

$$
\not \subset \bar{r}=\int_{0}^{\infty} r f(r) d r=\sqrt{\frac{\pi}{2} \sigma}
$$

and the second moment (mean-square value) of R is given by

$$
E\left[R^{2}\right]=E\left[X^{2}+Y^{2}\right]=E\left[X^{2}\right]+E\left[Y^{2}\right]
$$

where $E\left[X^{2}\right]$ and $E\left[Y^{2}\right]$ are given by

$$
\begin{align*}
& E\left[X^{2}\right]=\sigma^{2}+m_{x}^{2} \\
& E\left[Y^{2}\right]=\sigma^{2}+m_{y}^{2}
\end{align*}
$$

Substituting Eqn. 2.5.13 in Eqn. 2.5.12 and noting that the mean values of X and Y , (m_{x} and m_{y} respectively) are zero, the mean square value of $R(i . e r$) is given by

$$
\bar{r}^{2}=2 \sigma^{2}
$$

The variance of R is given by

$$
\begin{align*}
\sigma_{r}^{2} & =E\left[R^{2}\right]-m_{r}^{2} \\
& =\bar{r}^{2}-(\bar{r})^{2}
\end{align*}
$$

From Eqns. 2.5.11, 2.5.14 and 2.5.15,

$$
\sigma_{r}^{2}=\left(2-\frac{\pi}{2}\right) \sigma^{2}
$$

The median value of the Rayleigh distribution occurs, at $r=r_{m}$, at the point where the cumulative distribution function $\mathrm{f}(\mathrm{r})$ (in Eqn. 2.5.10) is equal to 0.5 . Therefore, from Eqn. 2.5.10,

$$
f\left(r_{m}\right)=0.5=1-e^{-\frac{r_{m}^{2}}{2 \sigma^{2}}}
$$

Solving Eqn. 2.5.17 for r_{m}

$$
r_{m}=(\sqrt{2 \ln 2}) \sigma
$$

were σ^{2} is the variance of Gaussian random variables used in the derivation of Rayleigh fading.

2.6 SIMULATION OF AN HF CHANNEL

An accurate assessment, of the performance of an HF digital radio system, can be made through repeated tests of the system over an actual channel. However, when comparison is to be made between two or more systems over a real channel, then they must all be tested simultaneously, because propagation or channel conditions vary uncontrollably and cannot be accurately repeated at other times or over other links. Moreover, it is not possible to repeat a test on a system for the same channel conditions.

The use of a channel simulator for evaluating the performance of a digital communication system offers several advantages. They are accurate and a large range of channel conditions can be simulated in a controlled manner. It is possible to compare the performances of several systems under the same channel conditions using a channel simulator, and tests can be repeated any number of times with consistent results.

The most commonly used channel simulator and the one recommended by the International Radio Consultative Committee(CCIR) is that proposed by Watterson et al., in reference [26]. This channel simulator is based on the tapped delay line model. This is the model used in the HF channel simulation, albeit with the omission of constant Doppler shift. The block diagram of the HF ionospheric channel model is shown in Fig. 2.6.1

The input signal is fed to the adjustable tapped delay line. There are as many taps as there are modes of propagation. At each tap the delayed signal is modulated in amplitude and phase by an appropriate complex-valued random tap gain function $\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$. The delayed and modulated signals are summed with additive noise. The additive noise has a Gaussian probability density although in actual channels, the type of additive noise is usually from several sources such as galactic, man made,
solar and radio, and can be highly impulsive. However, in HF radio links the mostly common additive noise is atmospheric noise, which is Gaussian in nature [29]. Hence a good tolerance to additive white Gaussian noise almost certainly means a good tolerance to atmospheric noise.

A single Rayleigh fading propagation path is modelled as in Fig. 2.6.2. $q_{1}(t)$ and $\mathrm{q}_{2}(\mathrm{t})$, in Fig.2.6.2, are two random processes. In simulating a Rayleigh fading sky wave these random processes should be Gaussian with zero mean and the same variance. They should be statistically independent and the shape of their power spectra must be Gaussian, having same rms frequency, f_{m}. Thus the power spectrum of $q_{1}(t)$ and $q_{2}(t)$ are given by

$$
\left|Q_{1}(f)\right|^{2}=\left|Q_{2}(f)\right|^{2}=\exp \left(-\frac{f^{2}}{2 f_{r m s}^{2}}\right)
$$

The fading rate can be controlled by the bandwidth of the power spectra of the Gaussian variables $\mathrm{q}_{1}(\mathrm{t})$ and $\mathrm{q}_{2}\left(\mathrm{t}\right.$). The frequency (Doppler) spread, f_{sp}, introduced by $\mathrm{q}_{1}(\mathrm{t})$ and $\mathrm{q}_{2}(\mathrm{t})$ into an unmodulated carrier is defined as the width of the power spectrum [25] and is given by,

$$
f_{s p}=2 f_{r m s}
$$

The rms frequency is related to the fading rate, f_{e}, which is defined (for a single carrier) as the average number of downward crossings per unit time, of the envelope through the median value, according to the equation:

$$
f_{r m s}=\frac{f_{e}}{1.475}
$$

from Eqns. 2.6.2 and 2.6.3 f_{sp} is related to f_{c} by:

$$
f_{s p}=1.356 f_{e}
$$

Practical measurements of the channel multipath structure have shown that there are usually two to four distinct paths present [31] but each associated with a different delay in transmission. The delay spread is usually upto about 5 milliseconds $[3,30]$. Doppler spread often is under 0.01 Hz (very slow fading), whereas for a more

Fig. 2.6.1 - Block Diagram of HF Ionospheric channel model

Fig. 2.6.2 - Rayleigh fading introduced by one sky wave
notorious HF channel, the Doppler spread can usually be in the range $1-2 \mathrm{~Hz}$ [3]. Reference [19] has recommended testing of HF modems on HF channels classified as Good, Moderate, Poor and Flutter conditions. Table 2.6.1 lists the parameters for these four channel conditions. Long sky wave paths are the ones for which most HF modems are designed, usually for a multipath spread up to about 3 milliseconds and a Doppler spread of $1-2 \mathrm{~Hz}$ [3]. The chosen model is a 3 sky wave channel with a frequency spread of 2 Hz and transmission delays of the three sky waves, measured relative to that of the first sky wave, being 1.1 , and 3 milliseconds. These parameters represent a poor channel as per the classifications of reference [19] (Table 6.2.1).

The random process $\mathrm{q}_{1}(\mathrm{t})$ is generated by filtering a zero mean white Gaussian noise signal $V_{1}(t)$ as shown in Fig. 2.6.3. The power spectra of $q_{1}(t)$ is Gaussian, hence the filter should also have a Gaussian frequency response matching the power spectrum of the Gaussian variable $q_{1}(t)$. The theoretical power spectrum of $q_{1}(t)$ given in Eqn. 2.6.1 is plotted in Fig. 2.6.4. The frequency response of the filter is given by,

$$
F(f)=\exp \left(-\frac{f^{2}}{4 f_{r m s}^{2}}\right)
$$

A Bessel filter is used in the channel simulator to provide the necessary shaping to the random process $q_{1}(t)$. The frequency and impulse-response of the Bessel filter approaches Gaussian, when the order of the filter is sufficiently large [32]. In the simulated channel model there are 3 sky waves and, therefore, it requires six random processes $\mathrm{q}_{\mathrm{i}}(\mathrm{t})$ for $\mathrm{i}=1,2, \ldots, 6$. Each of the random processes are similarly generated. The variance of all six variables $q_{1}(t)$ to $q_{6}(t)$ are equal to 0.167 . This value of variance for each individual process ensures that the total variance of the 3 sky wave channel is unity. Each of the values of $q_{i}(t)$ is generated from an independent source, so that all six random processes $q_{1}(t)$ to $q_{6}(t)$ are uncorrelated. Table 2.6.2 details the characteristics of the filter chosen for the model and Appendix A describes the filter design in detail.

The digital filter is implemented as shown in Fig. 2.6.5. It is a combination of a two 2-pole section and a single pole section. The single pole section has a real pole whereas the two pole sections have complex conjugate poles.

Fig. 2.6.3 - Method of generating $q_{1}(\dagger)$

Fig. 2.6.4 - Theoritical Power Spectra of $q_{i}(\dagger)$

For digital implementation of the channel model it is neither possible nor necessary to represent the random fading sequence $\mathrm{q}_{\mathrm{i}}(\mathrm{t})$ as a continuous signal. This must be represented by discrete samples in time. From Nyquist's sampling theorem, for faithful reproduction of the continuous signal, it is necessary that the sampling rate should be greater than twice the highest frequency present in the continuous signal. $\mathrm{q}_{\mathrm{i}}(\mathrm{t})$ has a Gaussian spectrum, and hence theoretically has infinite bandwidth. However, since the assumed model has an rms bandwidth of only 1 Hz , it is adequate if the signal is sampled at 10 samples per second. For testing a 2400 baud digital data modem on the channel, however, it is necessary that the channel samples are also obtained at 2400 Hz . This means that $\mathrm{q}_{\mathrm{i}}(\mathrm{t})$ must be sampled at 2400 Hz . This gross over sampling has an adverse effect on the digital filters having the required narrow-band Gaussian shape. In order to be consistent with the sampling frequency the roots of the digital filter must correspond to this sampling frequency and at the same time it is necessary to see that these roots are not too close to the unit circle in the Z-plane. Unfortunately at this high sampling frequency the pole locations of such filters in the Z-plane are pushed very close to the unit circle and the tap values become very large. The filter coefficients must now be specified with very high precision, otherwise there can be instability in the operation of the of the filter. This problem can be overcome by employing a reduced sampling frequency in the digital filters and then interpolating between samples in order to obtain the required sampling rate. Thus $\mathrm{q}_{\mathrm{i}}(\mathrm{t})$ has been sampled at 100 Hz as a compromise between the requirements for the Nyquist sampling criterion, the need to limit the degree of interpolation used and the need to have the pole locations in the Z-plane at an adequate distance from the unit circle.

In the simulation of a 3 sky wave channel, two types of interpolation have been studied, namely the linear interpolation technique and the non-linear interpolation technique. Non-linear interpolation uses the NAG (Numerical Algorithms Group) routine, E 01 ABF [38]. This routine uses Everett's central difference form for the interpolating polynomial [39-41]. The simplest method of interpolation is linear interpolation. Linear interpolation is considered adequate as $q_{i}(t)$ is considerably oversampled [36].

TABLE 2.6.1 HF CHANNEL PARAMETERS

Conditions	Diff. Time Delay	Frequency Spread
Good	0.5 ms	0.1 Hz
Moderate	1 ms	0.5 Hz
Poor	2 ms	1 Hz
Flutter fading	0.5 ms	10 Hz

TABLE 2.6.2 CHARACTERISTICS OF THE FIFTH ORDER BESSEL FILTER

Order of the filter, L	5
Frequency spread, $\mathrm{f}_{\mathrm{p}}(\mathrm{Hz})$	2
Cutoff frequency, $\mathrm{f}_{\mathrm{c}}(\mathrm{Hz})$	1.1774
Filter poles in the S-plane	
pr	
p_{2}^{\prime},	p_{3}^{\prime}

Fig. 2.6.6 - Model of a 3 Sky wave HF Radio Link.

2.7 RESULTS OF THE TESTS ON THE SIMULATED FADING CHANNEL.

The results of the tests carried out on the simulated channel are summarized in Figs. 2.7.1-2.7.9 and in Table 2.7.1. Fig. 2.7.1 compares the frequency response of the 5-pole Bessel filter used to generate the Gaussian random sequence, with the theoretical Gaussian response given by Eqn. 2.6.5. As can be seen in Fig. 2.7.1 the 5-pole Bessel filter response agrees very well with the theoretical response in the frequency band of interest.

Figs. 2.7.3 and 2.7.2 show the amplitude and phase variations of the random sequences, $\mathrm{Q}_{\mathrm{n}}(\mathrm{t}), \mathrm{n}=1, \ldots, 3$, used in the channel simulation. The amplitude variation of $Q_{n}(t)$ is random and the phase variation is uniform, which is an essential requirement for the sequence to have a Rayleigh distribution.

Figs. 2.7.4 and 2.7 .5 compares the probability density function and the cumulative distribution function of the sequences $\mathrm{Q}_{\mathrm{n}}(\mathrm{t}), \mathrm{n}=1, \ldots, 3$, with that of the corresponding theoretical curves, given by Eqns. 2.5.8 and 2.5.10 respectively (Figs. 2.5.1 and 2.5.2). Though the sequences (2500 elements) are not long enough to make any statistical predictions, the results are in complete agreements with the theoretical probability density function and cumulative distribution function.

Figs. 2.7.6-2.7.9 compare the linear and non-linear interpolations. Fig. 2.7.6 shows the linear interpolated sequence superimposed on the non-interpolated sequence. Amplified versions of the positive peak and the negative peak, in Fig. 2.7.6, are depicted in Fig. 2.7.7. The error in the interpolation, though not very significant, can be clearly seen in the Fig. 2.7.7. The non-interpolated sequence, in Figs. 2.7.62.7.9, has been plotted using the curve fitting routine (spline interpolation) of computer graphics software.

Figs. 2.7.8 and 2.7.9 show the non-linear interpolated sequence superimposed on the non-interpolated sequence. The non-linear interpolation is obtained using the NAG routine, E 01 ABF . Amplified versions of the positive peak and the negative peak, in Fig. 2.7.8, are depicted in Fig. 2.7.9. Clearly, the non-linear interpolated sequence produces a much smoother curve, compared with the linear interpolated sequence.

However, non-linear interpolation is computationally complex and since the error in linear interpolation is only marginal, the latter has been adopted in the computer-simulation of the 3 sky wave HF channel.

Table 2.7 .1 shows the measured mean value, variance and the number of fades relative to the median value of the sequences Q_{n}, for $n=1, \ldots, 3$, for six different values of seed integer for the random number generator. From Eqn. 2.5.18, the median value corresponding to a variance of 0.167 , of the Gaussian random variables used in the derivation of a three sky wave Rayleigh fading channel, is 0.4811 . The measurement of the number of fades in Table 2.7.1 have been made relative to this median value over a duration of 25 seconds of the fading channel, sampled at 2400 Hz . The theoretical number of fades can be obtained from Eqn. 2.6.4 and for this duration, it is about 37 fades. As can be seen from the Table 2.7.1, the measured results compare very well with the theoretical value.

Fig. 2.7.1 - Frequency Response of Bessel Filter

Fig. 2.7.2 - Variation of Phase of $Q_{n}(\dagger)$ in the Complex Number Plane

Fig. 2.7.4 - PDF of $Q_{n}(t)$

Fig. 2.7.5 - CDF of $Q_{n}\left({ }^{(}\right)$

Fig. 2.7.6 - Linear Interpolation of Fading Sequence

Fig. 2.7.7 - Linear Interpolation of Fading Sequence

Fig. 2.7.8 - Non-Linear Interpolation of The Rayleigh fading Sequence

Fig. 2.7.9 - Non-Linear Interpolation of Rayleigh fading Sequence

TABLE 2.7.1 MEASURED CHARACTERISTICS OF THE FADING SEQUENCES USED TO MODEL A 3 SKY WAVE CHANNEL.

SEED INTEGER	MEAN VALUE OF q_{1}	VARIANCE OF q_{1}	NO. OF FADES MEASURED RELATIVE TO THE MEDIAN VALUE
9	$\begin{array}{r} -0.003 \\ 0.015 \\ -0.007 \\ 0.014 \\ -0.054 \\ -0.031 \end{array}$	$\begin{aligned} & 0.182 \\ & 0.129 \\ & 0.212 \\ & 0.158 \\ & 0.169 \\ & 0.166 \end{aligned}$	44 46 44
55	$\begin{array}{r} -0.012 \\ 0.027 \\ 0.002 \\ -0.014 \\ -0.016 \\ 0.008 \end{array}$	$\begin{aligned} & 0.166 \\ & 0.218 \\ & 0.165 \\ & 0.158 \\ & 0.163 \\ & 0.176 \end{aligned}$	$\begin{aligned} & 33 \\ & 49 \\ & 48 \end{aligned}$
107	$\begin{array}{r} -0.011 \\ -0.034 \\ -0.006 \\ 0.048 \\ -0.021 \\ 0.033 \end{array}$	$\begin{aligned} & 0.188 \\ & 0.176 \\ & 0.153 \\ & 0.156 \\ & 0.175 \\ & 0.152 \end{aligned}$	$\begin{aligned} & 42 \\ & 44 \\ & 40 \end{aligned}$
158	$\begin{array}{r} 0.025 \\ 0.035 \\ -0.066 \\ -0.031 \\ 0.000 \\ -0.040 \end{array}$	$\begin{aligned} & 0.126 \\ & 0.144 \\ & 0.152 \\ & 0.195 \\ & 0.186 \\ & 0.131 \end{aligned}$	$\begin{aligned} & 39 \\ & 43 \\ & 38 \end{aligned}$
197	$\begin{array}{r} \hline 0.036 \\ -0.035 \\ -0.045 \\ -0.018 \\ -0.002 \\ 0.018 \end{array}$	$\begin{aligned} & 0.190 \\ & 0.177 \\ & 0.158 \\ & 0.200 \\ & 0.175 \\ & 0.153 \end{aligned}$	$\begin{aligned} & 42 \\ & 41 \\ & 46 \end{aligned}$
500	$\begin{array}{r} -0.029 \\ 0.086 \\ 0.003 \\ 0.078 \\ -0.054 \\ 0.039 \end{array}$	$\begin{aligned} & 0.171 \\ & 0.187 \\ & 0.148 \\ & 0.189 \\ & 0.147 \\ & 0.140 \end{aligned}$	$\begin{aligned} & 45 \\ & 41 \\ & 43 \end{aligned}$

CHAPTER 3

MODEL OF THE DATA TRANSMISSION SYSTEM

3.1 INTRODUCTION

A general communication system or for that matter a digital communication system consists of a transmitter, a transmission path and a receiver. The signal waveform $\mathrm{s}(\mathrm{t})$, at the input to the transmitter, carries the information to be transmitted. The interference and distortion in the transmission path (an HF radio link in this thesis), modifies the transmitted signal. The role of the receiver is to faithfully reproduce the transmitted information from the distorted received signal at the input to the receiver. These data transmission systems can be broadly classified as, serial data transmission systems and parallel data transmission systems.

In a serial data transmission system, the signal elements are transmitted as a sequential stream whose frequency spectrum occupies the entire available bandwidth. In a parallel data transmission system two or more sequential streams of signal elements are sent simultaneously, and the spectrum of an individual data stream occupies only a part of the available bandwidth [29]. In a serial system the signal elements are normally transmitted at a steady rate of a given number of elements per second (bauds). The receiver extracts the element timing information from the received signal and operates in time synchronism with the received signal. Such a system is called a synchronous serial system.

A serial transmission system is less complex than a parallel transmission system as the latter needs several demodulators to process the different signals. In applications where a relatively high transmission rate is required over a given channel, a synchronous serial system is the most commonly used system [42] and is the one assumed.

3.2 DATA TRANSMISSION OVER A MODEL OF AN HF CHANNEL USING QAM.

Fig. 3.2.1 shows the model of a data transmission system [30, 34, 36]. The input to the system is the stream of data elements $\sum_{i} s_{i} \delta(t-i T)$, where

$$
s_{i}=s_{0, i}+j s_{1, i}
$$

where $\mathrm{j}=\sqrt{-1}$ and $\left\{\mathrm{s}_{0, i}\right\}$ and $\left\{\mathrm{s}_{1, i}\right\}$ are statistically independent and equally likely to have any one of their possible values $\pm 1 \pm \mathrm{j}$.

Each of the two lowpass filters in the transmitter has a real-valued response $a^{\prime}(t)$ and transfer function $A^{\prime}(f)$. In the HF radio link, the voiceband is translated to the HF band at the transmitter and a corresponding demodulator translates it back to the voiceband at the receiver. The modulation and demodulation processes are linear and the only distortion introduced into the signal is that due to the radio equipment filters and the HF channel.

The white Gaussian noise in Fig. 3.2.1 is real-valued and has a two sided power spectral density of $\frac{1}{2} N_{0}$. The bandpass filter at the output of the demodulator removes the noise outside the data signal band without excessively distorting the signal. This filter has the impulse-response given by $c(t)$. The distorted QAM signal is now fed to two coherent demodulators whose reference carriers are in synchronism with the average instantaneous carrier frequency of the received signal. The output of the coherent demodulator is filtered by a lowpass filter before being fed to the detector. Each of the two lowpass filters in the receiver has an impulse-response $b^{\prime}(t)$ and the transfer function $B^{\prime}(f)$. In Fig. 3.2.1, the in-phase and quadrature channels are real-valued. An equivalent model of the data transmission system is shown in Fig. 3.2.2, for the case where a QAM signal is transmitted over an equivalent linear baseband channel [30, 34, 36].

The signals at the output of the two lowpass filters in the transmitter of Fig. 3.2.1, are

$$
\sum_{i} s_{0, i} a^{\prime}(t-i T) \quad \& \quad \sum_{i} s_{1, i} a^{\prime}(t-i T)
$$

Fig. 3.2.1 - Model of the Data Transmission System over HF Transmission Media.
TIME VARYING LINEAR BASEBAND CHANNEL

Fig. 3.2.2 - Equivalent Model of The Data Transmission System
and the signal $\mathrm{x}_{2}(\mathrm{t})$ at the output of the adder is a real-valued waveform and is given by

$$
\begin{align*}
x_{2}(t)= & \sqrt{2} \sum_{i} s_{0, i} a^{\prime}(t-i T) \cos \left(2 \pi f_{c} t\right)- \\
& \sqrt{2} \sum_{i} s_{1, i} a^{\prime}(t-i T) \sin \left(2 \pi f_{c} t\right)
\end{align*}
$$

The factor $\sqrt{2}$ in Eqn. 3.2.3 ensures that the average power level is unity for each of the two signals, $\sqrt{2} \cos 2 \pi f_{c} t$ and $-\sqrt{2} \sin 2 \pi f_{c} t$, when transmitted over an infinite period [30]. Therefore, the modulation process introduces no change in the signal level.

Eqn. 3.2.3 can be alternatively expressed as $[34,36]$

$$
x_{2}(t)=\sqrt{2} \Re\left[\sum_{i} s_{i} a^{\prime}(t-i T) e^{j 2 \pi f_{c} t}\right]
$$

where

$$
e^{j 2 \pi f_{c} t}=\cos \left(2 \pi f_{c} t\right)+j \sin \left(2 \pi f_{c} t\right)
$$

$x_{2}(t)$ is fed to the radio equipment transmitter filter G in Fig. 3.2.2. Filter G has an impulse-response of $g(t)$ and a transfer function of $G(f)$. The output of this filter, $x(t)$ is real-valued and is given by

$$
x(t)=\Re\left[\sqrt{2} \sum_{i} s_{i} a^{\prime}(t-i T) e^{j 2 \pi f_{c} t}\right] * g(t)
$$

where * represents convolution.

Eqn. 3.2.5 can be written as

$$
\begin{align*}
& x(t)= \frac{1}{\sqrt{2}}\left\{\sum_{i} s_{i} a^{\prime}(t-i T) e^{j 2 \pi f_{c} t}+\right. \\
&\left.\sum_{i} s_{i}^{*} a^{\prime}(t-i T) e^{-j 2 \pi f_{c} t}\right\} * g(t)
\end{align*}
$$

Consider the convolution

$$
\left(u_{1}(t) e^{-j 2 \pi f_{c} t}\right) *\left(u_{2}(t) e^{-j 2 \pi f_{c} t}\right)
$$

By definition Eqn. 3.2.7 can be written as

$$
\begin{align*}
\int_{-\infty}^{\infty}\left[u_{1}(\tau) e^{-j 2 \pi f_{c} \tau}\right] & {\left[u_{2}(t-\tau) e^{-j 2 \pi f_{c}(t-\tau)}\right] d \tau } \\
= & \int_{-\infty}^{\infty} u_{1}(\tau) u_{2}(t-\tau) e^{-j 2 \pi f_{c} t} d \tau
\end{align*}
$$

Therefore, from Eqns. 3.2.7 and 3.2.8,

$$
\left[u_{1}(t) * u_{2}(t)\right] e^{-j 2 \pi f_{c} t}=\left[u_{1}(t) e^{-j 2 \pi f_{c} t}\right] *\left[u_{2}(t) e^{-j 2 \pi f_{c} t}\right]
$$

From Eqns. 3.2.6 and 3.2.9

$$
\begin{align*}
x(t)= & \frac{1}{\sqrt{2}}\left\{\sum_{i} s_{i} a(t-i T) e^{j 2 \pi f_{c} t}+\right. \\
& \left.\sum_{i} s_{i}^{*} a^{*}(t-i T) e^{-j 2 \pi f_{c} t}\right\}
\end{align*}
$$

where

$$
a(t-i T)=a^{\prime}(t-i T)^{*}\left[g(t) e^{\left.-j 2 \pi f_{c}\right]}\right]
$$

Eqn. 3.2.11 represents the overall filtering at the transmitter end, which includes the lowpass filter and the radio transmitter equipment filter which is a bandpass filter.
$a^{\prime}(t-i T)$ and $g(t)$ are real-valued in Eqn. 3.2.11 and, therefore, the complex conjugate of $a(t-i T)$ is simply given by

$$
a^{*}(t-i T)=a^{\prime}(t-i T) *\left[g(t) e^{j 2 \pi f_{c} t}\right]
$$

Fig. 2.6.2 shows the Rayleigh fading introduced by a single sky wave HF channel. Thus, when $\mathrm{x}(\mathrm{t})$ is fed into a single Rayleigh fading channel, the output from it would be

$$
z^{\prime}(t)=x(t) q_{1}(t)+\hat{x}(t) q_{2}(t)
$$

where $q_{1}(t)$ and $q_{2}(t)$ are statistically independent Gaussian random processes that generate the fading and $\hat{x}(t)$ represents the Hilbert transform of $x(t)$. The Hilbert transform of $x(t)$ is given by the convolution of $x(t)$ with the Hilbert transform filter i.e

$$
\hat{x}(t)=x(t) * f(t)
$$

where $f(t)$ is the impulse-response of a Hilbert transform filter, whose Fourier transform is $\mathrm{F}(\mathrm{f})$ and is given by

$$
\begin{array}{rlrl}
F(f) & =j & f<0 \\
& =0 & f=0 \\
& =-j & f>0
\end{array}
$$

From Eqns. 3.2.10 and 3.2.14

$$
\begin{align*}
& \hat{x}(t)= \frac{1}{\sqrt{2}}\{ \\
& \sum_{i} s_{i} a(t-i T) e^{j 2 \pi f_{c} t}+ \\
&\left.\sum_{i} s_{i}^{*}(a(t-i T))^{*} e^{-j 2 \pi f_{c} t}\right\} * f(t)
\end{align*}
$$

and from Eqns. 3.2.9 and 3.2.16

$$
\begin{align*}
\hat{x}(t)= & \frac{1}{\sqrt{2}} \sum_{i} s_{i}\left[a(t-i T) * f(t) e^{-j 2 \pi f_{c} t}\right] e^{j 2 \pi f_{c} t}+ \\
& \frac{1}{\sqrt{2}} \sum_{i} s_{i}^{*}\left[(a(t-i T))^{*} * f(t) e^{j 2 \pi f_{c} t}\right] e^{-j 2 \pi f_{c} t}
\end{align*}
$$

The Fourier transform of $f\left(t e^{-2 v e}\right.$ is $\mathrm{F}\left(\mathrm{f}+\mathrm{f}_{c}\right)$ and from Eqn. 3.2.15 this has a value of -j over the frequency band $-\mathrm{f}_{\mathrm{c}}$ to $+\mathrm{f}_{\mathrm{c}}$. On the other hand, the Fourier transform of $f(t)^{\operatorname{lax} / d}$
is $F\left(f-f_{c}\right)$ and this has a value of $+j$ in the frequency band $-f_{c}$ to $+f_{c}$. Moreover $a(t)$ is bandlimited to that of $A^{\prime}(f)$. Therefore, after taking the Fourier transform of Eqn. 3.2.17, substituting the values for $F(f+f)$ and $F\left(f-f_{c}\right)$ from Eqn. 3.2.15 and then taking the inverse Fourier transform of the resultant relation, Eqn. 3.2.17 reduces to [34-37]

$$
\begin{array}{r}
\hat{x}(t)=\frac{1}{\sqrt{2}}\left\{\sum_{i}-j s_{i} a(t-i T) e^{j 2 \pi f_{c} t}+\right. \\
\left.j s_{i}^{*}(a(t-i T))^{*} e^{-j 2 \pi f_{c} t}\right)
\end{array}
$$

where s_{i}^{*} and $(\mathrm{a}(\mathrm{t}))^{*}$ are the complex conjugates of s_{i} and $\mathrm{a}(\mathrm{t})$ respectively. For the sake of simplicity, the HF channel is now considered to be composed of two independent Rayleigh-fading sky waves. The explanation can, however, be logically extended to any number of sky waves. For the two sky wave channel, the relative delay between the two sky waves is taken to be τ seconds. $x(t)$ is now fed to the HF channel and the output from the channel is given by,

$$
\begin{align*}
z(t)= & {\left[x(t) q_{1}(t)+\hat{x}(t) q_{2}(t)\right]+} \\
& {\left[x(t-\tau) q_{3}(t)+\hat{x}(t-\tau) q_{4}(t)\right] }
\end{align*}
$$

For a three sky wave channel, $\mathrm{z}(\mathrm{t})$ can be written as

$$
\begin{align*}
z(t)= & {\left[x(t) q_{1}(t)+\hat{x}(t) q_{2}(t)\right]+} \\
& {\left[x\left(t-\tau_{1}\right) q_{3}(t)+\hat{x}\left(t-\tau_{1}\right) q_{4}(t)\right]+} \\
& {\left[x\left(t-\tau_{2}\right) q_{4}(t)+\hat{x}\left(t-\tau_{2}\right) q_{6}(t)\right] }
\end{align*}
$$

where τ_{1} and τ_{2} are the delays in transmission of the second and third sky waves, respectively, relative to the first sky wave.

From Eqns. 3.2.10, 3.2.18 and 3.2.19

$$
\begin{align*}
z(t)=\frac{1}{\sqrt{2}}\left\{\sum_{i} s_{i}^{*}(a(t-i T))^{*}\left[q_{1}(t)+j q_{2}(t)\right] e^{-j 2 \pi f_{c} t}+\right. \\
s_{i} a(t-i T)\left[q_{1}(t)-j q_{2}(t)\right] e^{j 2 \pi f_{c} t}+ \\
s_{i}^{*}(a(t-\tau-i T))^{*}\left[q_{3}(t)+j q_{4}(t)\right] e^{-j 2 \pi f_{c}(t-\tau)}+ \\
\left.s_{i} a(t-\tau-i T)\left[q_{3}(t)-j q_{4}(t)\right] e^{j 2 \pi f_{c}(t-\tau)}\right\}
\end{align*}
$$

Let

$$
\begin{align*}
h_{i}(t-i T)= & a(t-i T)\left[q_{1}(t)-j q_{2}(t)\right]+ \\
& a(t-\tau-i T)\left[q_{3}(t)-j q_{4}(t)\right] e^{-j 2 \pi f_{c} \tau}
\end{align*}
$$

Then, from Eqns. 3.2.21 and 3.2.22,

$$
\begin{array}{r}
z(t)=\frac{1}{\sqrt{2}}\left\{\sum _ { i } \left(s_{i} h_{i}(t-i T) e^{j 2 \pi f_{c} t}+\right.\right. \\
\left.\left.s_{i}^{*}\left(h_{i}(t-i T)\right)^{*} e^{-j 2 \pi f_{c} t}\right)\right\}
\end{array}
$$

If τ is assumed constant then $e^{-j 2 \pi \sigma_{s}}$ is a fixed complex-valued scalar quantity with absolute value of 1 and, therefore, would not affect the statistical properties of $\left[q_{g}(t)-j q_{4}(t)\right] e^{-j 2 \sigma_{\varepsilon}}$, bearing in mind that $q_{i}(t)$'s are statistically independent with zero mean Gaussian random processes. Therefore, Eqn. 3.2.22 can be simplified as

$$
\begin{align*}
h_{i}(t-i T)= & a(t-i T)\left[q_{1}(t)-j q_{2}(t)\right]+ \\
& a(t-\tau-i T)\left[q_{3}(t)-j q_{4}(t)\right]
\end{align*}
$$

The output from the radio receiver filter, (Fig. 3.2.2), whose sampled impulse-response is $d(t)$, is

$$
z^{\prime}(t)=z(t) * d(t)+n(t) * d(t)
$$

and the output of the linear demodulator in Fig. 3.2.2 is

$$
\begin{align*}
r(t)= & \sqrt{2}\left\{\left[z(t)^{*} d(t)^{*} c(t)\right] e^{-j 2 \pi c_{c}^{\prime} t}\right\} * b^{\prime}(t)+ \\
& \sqrt{2}\left\{[n(t) * d(t) * c(t)] e^{-j 2 \pi f_{c}^{\prime} t}\right\} b^{\prime}(t)
\end{align*}
$$

Let

$$
b(t)=\left\{\left[d(t)^{*} c(t)\right] e^{-j 2 \pi c_{c}^{\prime} c^{l} t}\right\}^{\prime}(t)
$$

and

$$
w(t)=\sqrt{2}\left\{[n(t) * d(t) * c(t)] e^{-j 2 \pi f_{c}^{\prime} t}\right\} b^{\prime}(t)
$$

where $n(t)$ is a real-valued additive white Gaussian noise waveform comprising a two sided power spectral density of $\frac{1}{2} N_{0}$. w(t) in Eqn. 3.2.28 represents a band-limited, complex-valued Gaussian noise waveform.

Combining Eqns. 3.2.26, 3.2.27 and 3.2.28 we have

$$
r(t)=\sqrt{2}\left[z(t) e^{-j 2 \pi f_{c}^{f}}\right] * b(t)+w(t)
$$

Eqn. 3.2.27 represents the overall filtering carried out on the signal at the receiver. Also it is assumed that the receiver is operating in synchronism with the transmitter and any constant phase difference between the reference carrier and the received signal is neglected (i.e. $f_{c}=f_{c}^{\prime}$). Then from Eqns. 3.2.23 and 3.2.29,

$$
\begin{align*}
r(t)=\sum_{i}\left[s_{i} h_{i}(t-i T)\right. & \left.+s_{i}^{*}\left(h_{i}(t-i T)\right)^{*} e^{-j 4 \pi f_{c} t}\right] * b(t) \\
& +w(t)
\end{align*}
$$

The Gaussian shaped filter used to generate $q_{i}(t)$, has a frequency response that decreases sharply with f (Fig. 2.7.1). $\mathrm{h}_{\mathrm{i}}(\mathrm{t}-\mathrm{i} \mathrm{T})$, which consists of the time invariant impulse-response $a(t)$ and the random components $q_{i}(t)$'s can, therefore, be considered to be strictly bandlimited. i.e.

$$
|H(f)|=0 \quad|f|>f_{c}
$$

The second term in Eqn. 3.2.30,

$$
\left[s_{i}^{*}\left(h_{i}(t-i T)\right)^{*} e^{-j 4 \pi f_{c} t}\right]
$$

is, therefore, outside the pass band of the low pass filter with an impulse-response b(t). Hence

$$
r(t)=\sum_{i} s_{i} h_{i}(t-i T) * b(t)+w(t)
$$

Let

$$
Y_{i}(t-i T)=h_{i}(t-i T)^{*} b(t)
$$

Then

$$
r(t)=\sum_{i} s_{i} Y_{i}(t-i T)+w(t)
$$

Combining Eqns. 3.2.24 and 3.2.33, $\mathrm{Y}_{\mathrm{i}}(\mathrm{t}-\mathrm{iT})$ can be written as,

$$
\begin{align*}
Y_{i}(t-i T)= & \left\{a(t-i T)\left[q_{1}(t)-j q_{2}(t)\right]+\right. \\
& \left.a(t-\tau-i T)\left[q_{3}(t)-j q_{4}(t)\right]\right\}^{*} b(t)
\end{align*}
$$

and for a three sky wave channel

$$
\begin{align*}
Y_{i}(t-i T)= & \left\{a(t-i T)\left[q_{1}(t)-j q_{2}(t)\right]+\right. \\
& a\left(t-\tau_{1}-i T\right)\left[q_{3}(t)-j q_{4}(t)\right]+ \\
& \left.a\left(t-\tau_{2}-i T\right)\left[q_{5}(t)-j q_{6}(t)\right]\right\} * b(t)
\end{align*}
$$

$Y_{i}(t-\mathrm{iT})$ is the impulse-response of the equivalent time varying linear baseband channel. Fig. 3.2.3 shows the baseband model of the QAM system over a two sky wave HF radio link.

The average transmitted energy at the output of the transmitter filter in Fig. 3.2.3 is given by

$$
E_{t}=E\left[\int_{-\infty}^{\infty}\left|s_{i} a(t-i T)\right|^{2} d t\right]
$$

Where $\mathrm{E}[$.] represents the expected value of the quantity within the square brackets.

Let

$$
\vec{s}_{i}^{2}=E\left[\left|s_{i}\right|^{2}\right]
$$

From Parseval's Theorem, Eqn. 3.2.37 can be written as

$$
E_{t}=\vec{s}_{i} \int_{-\infty}^{\infty}|A(f)|^{2} d f
$$

The average energy per signal element at the input of the receiver filter in Fig. 3.2.3 is given by

$$
\begin{aligned}
& E_{r}=E \int_{-\infty}^{\infty}\left\{s_{i} a(t-i T)\left[q_{1}(t)-j q_{2}(t)\right]+\right. \\
&\left.a(t-\tau-i T)\left[q_{3}(t)-j q_{4}(t)\right]\right\}^{2} d t
\end{aligned}
$$

or

$$
\begin{align*}
& E_{r}=\vec{s}_{i}^{2}\left[\bar{q}_{1}^{2}(t)+\vec{q}_{2}^{2}(t)+\bar{q}_{3}^{2}(t)+\bar{q}_{4}^{2}(t)\right] \\
& \int_{-\infty}^{\infty}|A(f)|^{2} d(f)
\end{align*}
$$

Fig. 3.2.3- Baseband Model of The QAM System Over

If $\vec{q}_{i}^{2}(t)=\vec{q}_{j}^{2}(t)$, for $\mathrm{i}=1, \ldots, 4$, and for $\mathrm{j}=1, \ldots, 4$, and the sum of their variances is equal to unity, then the average energy per signal element at the output of the transmitter filter and at the input to the receiver filter in Fig. 3.2.3 are equal and the HF channel, on average, does not introduce any attenuation or gain to the transmitted data signal and hence does not affect the signal/noise ratio of the system.

The signal/noise ratio is defined as

$$
\psi=\frac{\text { Transmitted energy per bit }}{\text { Two sided noise power spectral density }}
$$

or

$$
\psi=10.0 \quad \log _{10}\left(\frac{E_{b}}{\frac{1}{2} N_{0}}\right)
$$

It has been shown in references [34, 37] that, for a QPSK signal,

$$
\frac{E_{b}}{\frac{1}{2} N_{0}}=\frac{s_{i}^{2}}{2 \sigma_{u}^{2}}
$$

where σ_{u}^{2} is the variance of the additive Gaussian noise.

3.3 EQUIPMENT FILTERS USED IN THE CHANNEL MODEL.

The baseband model of the data transmission system over a three sky wave HF radio link is shown in Fig. 3.3.1. The impulse-response of the linear baseband channel is time varying and for a three sky wave channel, it is given by

$$
\begin{align*}
Y_{i}(t-i T)=\{ & a(t-i T)\left[q_{1}(t)-j q_{2}(t)\right]+ \\
& a\left(t-\tau_{1}-i T\right)\left[q_{3}(t)-j q_{4}(t)\right]+ \\
& \left.a\left(t-\tau_{2}-i t\right)\left[q_{5}(t)-j q_{6}(t)\right]\right\}^{*} b(t)
\end{align*}
$$

Time varying linear baseband channel

where

$$
a(t)=a^{\prime}(t) *\left(g(t) e^{-j 2 \pi f_{c} t}\right)
$$

and

$$
b(t)=\left\{\left[d(t)^{*} c(t)\right] e^{-j 2 \pi f_{c} t}\right\} \quad * \quad b^{\prime}(t)
$$

$a(t)$ is the impulse-response of the overall transmitter filter A and $b(t)$ is the impulse-response of the overall receiver filter B in Fig. 3.3.1. $a^{\prime}(t), \mathrm{g}(\mathrm{t}), \mathrm{d}(\mathrm{t}), \mathrm{c}(\mathrm{t})$ and $b^{\prime}(t)$ are the impulse-responses of filters $A^{\prime}, \mathrm{G}, \mathrm{D}, \mathrm{C}$ and B^{\prime} respectively in Fig. 3.2.2. Filters G and D are the radio transmitter and radio receiver filters respectively. The details of the practical filters, used in the channel model, are given elsewhere [44-45]. As is clear from Fig. 3.2.2, there are four other filters besides the radio filters G and D . The digital lowpass filters A^{\prime} and B^{\prime} are used to prevent aliasing and have an approximately sinusoidal roll-off in amplitude [45]. Under the condition when the HF link does not introduce any fading, attenuation or group delay distortion and where there are no multipath effects, then Eqn. 3.3.1 reduces to

$$
Y_{i}(t)=[a(t) \quad * \quad b(t)]
$$

For optimum performance of the detection process $Y_{i}(\mathrm{t})$ in Eqn. 3.3.4 should be minimum phase [46] and $\mathrm{a}(\mathrm{t})$ and $\mathrm{b}(\mathrm{t})$ should be such that $|A(f)|=|B(f)|[29]$.* Figs. 3.3.2-3.3.4 show a combination of the equipment bandpass filters operating on the voiceband signal [34, 36-37]. Fig. 3.3.2 shows the frequency characteristics of the radio filters G and D in cascade over the positive frequencies and Table 3.3.1 shows the attenuation and group delay samples of the radio filters in cascade taken at 50 Hz frequency intervals. The radio filters used are the Clansman VRC 321 type, this being a typical radio filter generally used in a practical system. Fig. 3.3.3 shows the frequency characteristics of the modem transmitter and receiver filters in cascade and in the pass band of the QAM signal over positive frequencies. Table 3.3.2 shows the sampled values of the same characteristics taken at a frequency interval of 50 Hz . The frequency characteristics in Fig. 3.3.3 corresponds to the impulse-response

$$
\left\{a^{\prime}(t) *\left[c(t) e^{-j 2 \pi f_{c} t}\right] * b^{\prime}(t)\right\} e^{j 2 \pi f_{c} t}
$$

* Although this has been assumed, it is not in fact necessary for the estimation process.
(a) - Attenuation Characteristics

(b) - Group Delay Characteristics

Fig. 3.3.2 - Frequency Characteristics of the Radio filters G and D in cascade over the positive Frequency
(a) - Attenuation Characteristics

(b) - Group Delay Characteristics

Fig. 3.3.3 - Filter Characteristics Corresponding to the impulse response $\left\{a^{\prime}(t) *\left[c(t) e^{-12 \pi t o t}\right] * b^{\prime}(t) e^{12 \pi t c t}\right\}$

Fig. 3.3.4 - Filter Characteristics Corresponding To The Impulse Response $\{a(t) * b(t)\} e^{2 \pi t t}$

TABLE 3.3.1 ATTENUATION AND GROUP DELAY CHARACTERISTICS OF RADIO FILTER IN CASCADE.

FREQUENCY (Hz)	ATT. (dB)	G.D. (msec)	FREQUENCY (Hz)	ATT. (dB)	G.D. (msec)
50	50.00	9.00	1950	0.00	1.18
100	21.00	7.00	2000	0.00	1.15
150	16.50	6.50	2050	0.00	1.13
200	13.00	5.30	2100	0.00	1.10
250	10.00	4.50	2150	0.00	1.10
300	7.60	3.90	2200	0.00	1.10
350	5.60	3.40	2250	0.00	1.12
400	4.10	2.90	2300	0.00	1.15
450	2.75	2.60	2350	0.00	1.18
500	2.00	2.35	2400	0.00	1.23
550	1.50	2.05	2450	0.00	1.25
600	1.25	1.90	2500	0.05	1.27
650	1.05	1.75	2550	1.10	1.29
700	0.95	1.65	2600	0.15	1.32
750	0.80	1.60	2650	0.30	1.35
800	0.70	1.55	2700	0.45	1.35
850	0.60	1.50	2750	0.85	1.35
900	0.50	1.15	2800	1.35	
950	0.40	1.50	2850	1.02	1.35
1000	0.30	1.50	2900	1.20	1.35
1050	0.25	1.50	2950	1.42	1.35
1100	0.20	1.50	3000	1.38	
1150	0.15	1.50	3050	1.90	1.40
1200	0.10	1.50	3100	2.20	1.50
1250	0.05	1.50	3150	1.58	
1300	0.00	1.50	3200	3.60	1.66
1350	0.00	1.50	3250	3.50	1.75
1400	0.00	1.50	3300	4.00	1.83
1450	0.00	1.45	3350	5.25	1.92
1500	0.00	1.45	3400	6.50	2.00
1550	0.00	1.42	3450	2.25	2.08
1600	0.00	1.39	3500	10.00	2.16
1650	0.00	1.36	3550	12.00	2.25
1700	0.00	1.33	3600	14.00	2.33
1750	0.00	1.30	3650	20.00	2.41
1800	0.00	1.27	3700	30.00	2.50
1850	0.00	1.24	3750	2.58	
1900	0.00	1.21			

TABLE 3.3.2 ATTENUATION AND GROUP DELAY CHARACTERISTICS OF EQUIPMENT FILTER.

$\underset{(\mathrm{Hz})}{\text { FREQUENCY }}$	$\underset{(\mathrm{dB})}{\mathrm{ATT}}$	$\begin{gathered} \text { G.D. } \\ \text { (msec) } \end{gathered}$	$\underset{(\mathrm{Hz})}{\text { FREQUENCY }}$	$\begin{array}{r} \text { ATT. } \\ (\mathrm{dB}) \end{array}$	$\begin{gathered} \text { G.D. } \\ \text { (msec) } \end{gathered}$
50	99.99	1.51	1950	0.00	2.88
100	93.79	1.83	2000	0.01	2.89
150	77.62	2.12	2050	0.05	2.90
200	64.73	2.37	2100	0.13	2.92
250	53.94	2.58	2150	0.23	2.95
300	44.70	2.76	2200	0.35	2.97
350	36.70	2.91	2250	0.40	3.00
400	30.40	3.03	2300	0.45	3.03
450	24.40	3.15	2350	0.57	3.05
500	19.50	3.26	2400	0.76	3.10
550	15.65	3.37	2450	0.93	3.15
600	12.30	3.47	2500	1.45	3.19
650	9.55	3.48	2550	1.97	3.25
700	7.30	3.48	2600	2.64	3.30
750	5.50	3.47	2650	3.25	3.35
800	4.10	3.43	2700	4.05	3.39
850	3.10	3.41	2750	5.20	3.42
900	2.20	3.37	2800	6.72	3.44
950	1.65	3.32	2850	8.20	3.47
1000	1.25	3.26	2900	10.25	3.49
1050	0.75	3.19	2950	12.45	3.50
1100	0.35	3.14	3000	14.95	3.51
1150	0.02	3.09	3050	17.70	3.51
1200	0.00	3.04	3100	21.10	3.49
1250	0.00	3.01	3150	24.80	3.45
1300	0.00	2.98	3200	28.60	3.41
1350	0.00	2.95	3250	32.83	3.33
1400	0.00	2.93	3300	37.63	3.22
1450	0.00	2.90	3350	43.10	3.08
1500	0.00	2.88	3400	49.15	2.89
1550	0.00	2.87	3450	55.55	2.65
1600	0.00	2.87	3500	62.30	2.36
1650	0.00	2.86	3550	69.55	2.05 1.69
1700	0.00	2.86	3600	76.75	1.69
1750	0.00	2.85	3650	84.05	1.33
1800	0.00	2.85	3700 3750	90.85 96.80	1.03 0.79
1850 1900	0.00 0.00	2.85 2.88	3750	96.80	0.79

Fig. 3.3.4 shows the frequency characteristics corresponding to the impulse-response

$$
\{a(t) * b(t)\} e^{j 2 \pi f_{c} t}
$$

The attenuation and group delay characteristics corresponding to each of $a(t)$ and $b(t)$, in Eqn. 3.3.1, are obtained by shifting the frequency characteristics in Fig. 3.3.4 by $\mathrm{f}_{\mathrm{c}}=1800 \mathrm{~Hz}$, to the left, and dividing them by 2 . A sequence $\left\{a_{k}^{\prime}\right\}$ is obtained by taking the inverse DFT of the frequency characteristics at a sampling rate of 4800 samples $/ \mathrm{sec}$. This sequence is made minimum phase by replacing the roots which are outside the unit circle in the z plane, by the complex conjugate of their reciprocals, giving the sequence $\left\{a_{k}^{\prime \prime}\right\}$ which, is at a sampling rate of 4800 samples $/ \mathrm{sec}$. The method by which the minimum phase sequence is obtained can be found elsewhere $[43,49]$. The DFT of $\left\{a_{k}^{\prime \prime}\right\}$ has been obtained with a sampling interval of 50 Hz and since the sampling rate is 4800 samples per second, there are 96 components in the DFT of $\left\{a_{k}^{\prime \prime}\right\}$. In order to obtain different sampling phases the $\left\{a_{k}^{\prime \prime}\right\}$ have been oversampled at 20 times the original sampling rate, i.e at a sampling rate of 96000 samples per second. This is done by injecting 1824 zero-valued components, in the middle of the DFT of $\left\{a_{k}^{\prime \prime}\right\}$, thus increasing the number of components from 96 to 1920. This injection process is equivalent to increasing the sampling rate from 4800 samples $/ \mathrm{sec}$. to $4800 \times 20=96000$ samples $/ \mathrm{sec}$. The inverse DFT of this expanded sequence, $\left\{\hat{a}_{k}\right\}$, gives the minimum phase impulse-response $a(t)$ sampled at 96000 samples $/$ sec. The transmitter filter impulse-response ${ }_{\chi \times}$ $\left\{\mathrm{a}_{1, k}\right\}$ corresponding to $\mathrm{a}(\mathrm{t}-\mathrm{iT})$ is obtained by taking every $20^{\text {h }}$ sample of $\left\{\hat{a}_{k}\right\} .\left\{\mathrm{a}_{2, k}\right\}$ and $\left\{\mathrm{a}_{3, k}\right\}$ corresponding to $\mathrm{a}\left(\mathrm{t}-\tau_{1}-\mathrm{i} \mathrm{T}\right)$ and $\mathrm{a}\left(\mathrm{t}-\tau_{2}-\mathrm{i} \mathrm{T}\right)$ respectively, are also obtained by taking every $20^{\text {di }}$ sample from the same sequence $\left\{\hat{a}_{k}\right\}$. However, they are delayed τ_{1} and τ_{2} sec. with respect to $\left\{\mathrm{a}_{1, k}\right\}$.

Table 3.3.3 gives the sampled impulse-response of the minimum phase transmitter filters used in the channel model. Transmitter filters A2 and A3, in Table 3.3.3, corresponds to a delay of 1.1 msec . and 3 msec . with respect to A 1 , respectively. Appendix B gives the oversampled sequence $\left\{\hat{a}_{k}\right\}$ and explains the way in which the filters A2 and A3 are obtained. The receiver filter $b(k)$ has also been obtained by taking every $20^{\text {d }}$ sample of the oversampled sequence $\left\{\hat{b}_{k}\right\}$. $\left\{\hat{b}_{k}\right\}$ has been obtained exactly as $\left\{\hat{a}_{k}\right\}$, but at a different sampling phase, so that the model does not assume any particular sampling phase. Table 3.3.4 shows the sampled impulse-response of the minimum phase receiver filter used in the channel model and Appendix B gives the oversampled sequence $\left\{\hat{b}_{k}\right\}$.

TABLE 3.3.3 THE SAMPLED IMPULSE RESPONSE OF THE TRANSMITTER FILTERS FOR A THREE SKY WAVE CHANNEL.

TRANSMITTER FILTER A1	
REAL PART	IMAGINARY PART
-0.179590	2.353941
-3.077346	20.759024
-9.940902	45.58459
-11.786947	41.490998
-3.461827	8.704583
4.443815	-11.786982
3.064254	-5.581905
-1.359658	3.158213
-1.497353	1.36546
0.292560	-0.777689
0.518083	-0.129256
-0.184279	0.288030
-0.316778	-0.232482
0.002190	-0.210755
-0.044381	0.039206
0.051553	0.009851

TRANSMITTER FILTER
A2

REAL PART IMAGINARY PART
0.000000 0.000000 0.000000 0.000000 0.000000 -1.669437 -7.849215
-12.388708
-6.602316
2.940855
4.300508
-0.336838
-1.901434
-0.143359
0.624260
0.027858
-0.382007
-0.041691
-0.043971 0.074933
-0.059413

TRANSMITTER FILTER A3

REAL PART	IMAGINARY PART
0.000000	0.000000
0.000000	0.000000
0.000000	0.000000
0.000000	0.000000
0.000000	0.000000
0.000000	0.000000
0.000000	0.000000
0.000000	0.000000
0.000000	0.000000
0.000000	0.000000
0.000000	0.000000
0.000000	0.000000
0.000000	0.000000
0.000000	0.000000
-1.313654	11.068896
-7.110405	37.213660
-12.346972	47.957516
-7.584870	22.826248
2.235385	-7.249859
4.593861	-10.002670
0.093164	0.869544
-1.970418	3.107280
-0.323370	-0.226110
0.631324	-0.555291
0.103572	0.288210
-0.386594	-0.015670
-0.073453	-0.321577
-0.038647	-0.010771
0.060805	0.014091
-0.071350	0.013571

TABLE 3.3.4 THE SAMPLED IMPULSE RESPONSE OF THE RECEIVER FILTER

REAL PART	IMAGINARY PART
-1.941769	1.362559
-15.979786	11.594104
-35.141773	27.334294
-34.478872	28.087009
-11.234198	7.271462
7.815516	-9.260247
7.512406	-5.095446
-0.505751	3.232650
-3.370713	1.897535
-0.675917	-1.281360
1.048266	-0.483031
0.362188	0.761480
-0.310590	0.197901
0.043841	-0.153267
0.073895	0.094033
-0.064694	-0.031213

3.4 COMPUTER SIMULATION OF THE HF CHANNEL

Fig. 3.3.1 shows the baseband model of the data transmission system over a three sky wave HF radio link. The transmitter and receiver filters used in the channel simulation are shown in Figs. 3.3.2-3.3.4. The sampled impulse-response of the minimum phase transmitter and receiver filters, at a sampling rate of 4800 samples/sec., are given in Tables 3.3.3-3.3.4. From Eqn. 3.3.1, the sampled impulse-response of the linear baseband channel is

$$
\begin{align*}
Y_{i}(t-i T)= & \left\{a^{\prime \prime}(t-i T)\left[q_{1}(t)-j q_{2}(t)\right]+\right. \\
& a^{\prime \prime}\left(t-\tau_{1}-i T\right)\left[q_{3}(t)-j q_{4}(t)\right]+ \\
& \left.a^{\prime \prime}\left(t-\tau_{2}-i T\right)\left[q_{5}(t)-j q_{6}(t)\right]\right\}^{*} b^{\prime \prime}(t)
\end{align*}
$$

where $a^{\prime \prime}(t)$ and $b^{\prime \prime}(t)$ are minimum phase sampled impulse-responses of filters $\mathrm{a}(\mathrm{t})$ and $b(t)$ respectively. The demodulated baseband signal $r(t)$ at the output of the QAM system model, is given by Eqn. 3.2.34. The waveform $r(t)$ is sampled once per data symbol s_{i}, at the time instant iT. Assuming correct sampling at the receiver and the fact that the delay in transmission is such that the first potentially non-zero sample of a received signal element arrives without any delay, the complex-valued sample $r(t)$ at time $t=\mathrm{iT}$ is given by

$$
\begin{align*}
r_{i} & =\sum_{h=0}^{g} s_{i-h} y_{i, h}+w_{i} \\
& =Y_{i} S_{i}^{T}+w_{i}
\end{align*}
$$

where

$$
Y_{i}=\left[\begin{array}{lllll}
& y_{i, 0} & y_{i, 1} & \ldots & y_{i, g}
\end{array}\right]
$$

and

$$
S_{i}=\left[\begin{array}{lllll}
s_{i} & s_{i-1} & \ldots \ldots & s_{i-g}
\end{array}\right]
$$

Y_{i} and S_{i} are $(g+1)$ - component row vectors, and S_{i}^{\top} is the transpose of S_{i}. The $\left\{r_{i}\right\}$, $\left\{y_{i, h}\right\}$ and $\left\{w_{i}\right\}$ are complex-valued. $y_{i, h}=0$ for $h<0$ and $h>g$ for practical purpose. Y_{i} is taken to be the sampled impulse-response of the linear baseband channel at time $t=i T$. The vector Y_{i} is obtained by sampling the $\left\{Y_{i}(t-i T)\right\}$ at a sampling rate of 2400 samples per second. The convolution process in Eqn. 3.4.1 is carried out in the discrete time domain. In order to avoid any aliasing, when any one of the sequences $q_{i}(t)$, for $i=1,2, \ldots, 6$, changes rapidly, the sampling rate of the convolution is set to 4800 samples/sec., which is well above the Nyquist rate for filters A and B. $q_{i}(t) s, i=1,2, \ldots, 6$, have also been generated at a sampling rate of 4800 samples $/ \mathrm{sec}$., as described in Section 2.6, and the corresponding resultant samples up to time $t=i T$ are represented by the following six sequences.

$$
\begin{aligned}
Q Q_{1, i} & =\left[\begin{array}{lllll}
& q_{1,1} & q_{1,2} & \ldots & q_{1,2 i}
\end{array}\right] \\
Q Q_{2, i} & =\left[\begin{array}{lllll}
& q_{2,1} & q_{2,2} & \ldots . & q_{2,2 i}
\end{array}\right]
\end{aligned}
$$

$$
Q Q_{6, i}=\left[\begin{array}{llll}
& q_{6,1} & q_{6,2} & \cdots
\end{array} q_{6,2 i}\right]
$$

Let

$$
\begin{align*}
A 1 & =\left[\begin{array}{lllll}
a_{1,0}^{\prime \prime} & a_{1,1}^{\prime \prime} & \ldots . & a_{1, p}^{\prime \prime}
\end{array}\right] \\
A 2 & =\left[\begin{array}{lllll}
& a_{2,0}^{\prime \prime} & a_{2,1}^{\prime \prime} & \ldots . & a_{2, p}^{\prime \prime}
\end{array}\right] \\
A 3 & =\left[\begin{array}{lllll}
\prime \prime & a_{3,0}^{\prime \prime} & a_{3,1}^{\prime \prime} & \ldots . & a_{1, \mathrm{p}}
\end{array}\right]
\end{align*}
$$

and

$$
B 1=\left[\begin{array}{lllll}
& b_{0} & b_{1} & \ldots & b_{\rho}
\end{array}\right]
$$

where

$$
\begin{align*}
& a_{1, k}^{\prime \prime}=a^{\prime \prime}\left(k \frac{T}{2}\right) \\
& a_{2, k}^{\prime \prime}=a^{\prime \prime}\left(k \frac{T}{2}-\tau_{1}\right)
\end{align*}
$$

$$
\begin{align*}
& a_{3, k}^{\prime \prime}=a^{\prime \prime}\left(k \frac{T}{2}-\tau_{2}\right) \\
& b_{k}^{\prime \prime}=b^{\prime \prime}\left(k \frac{T}{2}\right)
\end{align*}
$$

It is assumed that there are only ($1+1$) significant components in the sampled impulse-response of the filters and, therefore, for all practical purpose

$$
\begin{align*}
& a(t)=b(t)=0 \\
& \text { for } \mathrm{t}<0 \text { and } \mathrm{t}>1
\end{align*}
$$

ρ in Eqns. 3.4.7-3.4.10 is related to the maximum delay between sky waves (assumed to be τ_{2}) as $[34,36]$

$$
\rho=l+\tau_{2} \frac{2}{T}
$$

In Eqns. 3.4.7-3.4.14, $1 / \mathrm{T}$ is the data symbol rate of 2400 symbols/sec. A1, A2 and A3 are the three transmitter filters used for the modelling of a three sky wave HF channel, with impulse-responses $a^{\prime \prime}(t), a^{\prime \prime}\left(t-\tau_{1}\right)$ and $a^{\prime \prime}\left(t-\tau_{2}\right)$ respectively, sampled at 4800 samples $/ \mathrm{sec}$. B1 is the receiver filter with an impulse-response $b(t)$ sampled at 4800 samples $/ \mathrm{sec}$.

From Eqns. 3.4.6-3.4.14, the components of the vector Y_{i}, in Eqn. 3.4.4, at time $\mathrm{t}=\mathrm{i}$, are given by [34],

$$
\begin{array}{r}
y_{i, h}=\left(\frac{T}{2}\right) \sum_{k=0}^{2 h}\left[a_{1, k}^{\prime \prime}\left(q_{1,2(i-h)+k}-j q_{2,2(i-h)+k}\right)+\right. \\
a_{2, k}^{\prime \prime}\left(q_{3,2(i-h)+k}-j q_{4,2(i-h)+k}\right)+ \\
\left.a_{3, k}^{\prime \prime}\left(q_{5,2(i-h)+k}-j q_{6,2(i-h)+k}\right) \quad\right] b_{2 h-k}^{\prime \prime}
\end{array}
$$

for $h=0,1, \ldots, g$.
where g is related to τ_{2}, by the following relation [36].

$$
g=\frac{2 l+\rho_{2}+1}{2}
$$

Thus for $\tau_{2}=3 \mathrm{msec}$. and $\mathrm{l}+1=16$ (Table 3.4.3) g is 22 . $\left\{\mathrm{y}_{\mathrm{i} h}\right\}$ are obtained at a sampling rate of 2400 samples $/$ sec., by taking every alternate sample from the convolution process.

3.5 MODEL OF THE SYSTEM USED IN THE TESTING OF ESTIMATORS.

The model of the data transmission system used in the tests is shown in Fig. 3.5.1. This model is consistent with Figures 3.2.2 and 3.3.1, but it shows in greater detail the receiver configuration. The output signal from the linear modulator is a serial stream of real-valued QPSK signal elements, with a carrier frequency of 1800 Hz and an element rate of 2400 bauds. Each signal element itself comprises the sum of two binary double sideband suppressed carrier amplitude modulated elements, with their carriers in phase quadrature, the binary values of the in-phase and quadrature elements being determined respectively by the real and imaginary parts ($\mathrm{s}_{0, i}$ and $\mathrm{s}_{1, i}$) of the corresponding data-symbol s_{i}. Thus the QPSK signal is handled as a quadrature amplitude modulated (QAM) signal.

The HF radio link is modelled as having three independent Rayleigh fading paths with the transmission delays being $0,1.1$ and 3 milliseconds relative to the first sky waves. Stationary white Gaussian noise, with zero mean and a two-sided power spectral density $\frac{1}{2} N_{0}$, is added to the data signal at the output of the HF radio link.

The six Gaussian waveforms involved in the three sky waves have the same variance and the same root-mean-square bandwidth which is 1 Hz in every case. Thus the signal received over each sky wave has the same mean-square value and the same frequency spread of 2 Hz . The selected time delays of the three sky waves ensure a different sampled impulse-response for each path and are such that one of the relative (differential) time delays is not an integral multiple of the other.

The channel model used in this thesis is based on the CCIR recommended model for poor conditions [19]. A constant value of frequency offset (Doppler shift) is not
considered here, since this is taken care off by Doppler-shift correction circuits which operate both ahead of and independently of the channel estimator. The channel estimator, therefore, operates on a signal that is essentially free from any constant (or very slowly varying) frequency offset.

The vector Y_{i} (Eqn. 3.4.4) is taken to be the sampled impulse-response of the linear baseband channel in Fig. 3.5.1. The received samples $\left\{\mathrm{r}_{\mathrm{i}}\right\}$ are fed to an adaptive linear feedforward transversal filter. The latter is an allpass network that adjusts the sampled impulse-response of the channel and filter to be minimum phase, without changing any amplitude distortion in the received signal [49]. The filter, in fact, maximises the ratio of the magnitude of the first few components of the resultant sampled impulse-response to the output noise variance, when the noise components are statistically independent [43]. With the aid of the adaptive filter, a near-optimum tolerance to noise can be achieved by means of a relatively simple detector, leading to a potentially cost-effective system [51].

The received samples $\left\{\mathrm{r}_{\mathrm{i}}\right\}$ are also fed to the channel estimator, after being suitably delayed. The channel estimator uses the received samples

$$
\begin{array}{llll}
r_{i-g} & r_{i-g+1}, & \ldots, & r_{i}
\end{array}
$$

together with the "early" detected data-symbols

$$
s_{i-g}^{\prime \prime}, \quad s_{i-g+1}^{\prime \prime}, \quad \ldots, \quad s_{i}^{\prime \prime}
$$

and the one-step prediction of Y_{i}, given by

$$
Y_{i, i-1}^{\prime}=\left[\begin{array}{llll}
y_{i, i-1,0}^{\prime} & y_{i, i-1,1}^{\prime} & \ldots & y_{i, i-1, g}^{\prime}
\end{array}\right]
$$

to form the updated estimate of Y_{i}, given by

$$
Y_{i}^{\prime}=\left[\begin{array}{llll}
y_{i, 0}^{\prime} & y_{i, 1}^{\prime} & \ldots & y_{i, g}^{\prime}
\end{array}\right]
$$

and then the one-step prediction of $\mathrm{Y}_{\mathrm{i}+1}$, given by $Y_{i+1, i,}^{\prime}$. The latter is fed to the detector, ready for the next detection process that gives $s_{i+1}^{\prime \prime}$, and so on. Clearly, any error in $Y_{i+1, i}^{\prime}$ correspondingly degrades the detection of $\mathrm{s}_{\mathrm{i}+1}$.

The "early" detected data symbols have no delay in detection. This minimizes the period over which prediction must be carried out but increases somewhat the error rate in the $\left\{s_{i}^{\prime \prime}\right\}$. The detected data-symbols $\left\{s_{i}^{\prime}\right\}$ at the output of the detector, in Fig. 3.5.1, have a delay in detection of 32 sampling intervals, no significant reduction in error rate being achieved by any further increase in the delay in detection.

In practice, a small improvement in tolerance to noise is usually achieved by using a prediction $Y_{i+m, i-1}^{\prime}$ of the sampled impulse-response of the channel, over $\mathrm{m}+1$ sampling intervals, where typically $1 \leq m \leq 8$, the value of m depending upon the relative transmission delays of the different sky waves. However, since the relative performances of the different estimators is not significantly affected by the precise period over which prediction is carried out, it is assumed here that one-step prediction is used for the detector (Eqn. 3.5.1).

The important advantage gained by using the adaptive filter in Fig. 3.5.1 is that it avoids the need for prediction over many sampling intervals, such as must be used in the absence of the filter [50,52]. Prediction over many sampling intervals can considerably increase the error in the prediction [50, 54]. Further details of the adaptive filter and detector are given elsewhere [37, 43, 49, 51].

Since this study is only about the operation of the channel estimators and not about the detectors, the correct detection of all data symbols is assumed, even at low signal/noise ratios, so that

$$
s_{i}^{\prime \prime}=s_{i}
$$

for all \{i\}.

In any practical application of the system the data signal is divided into separate blocks, each preceded by a training signal whose data-symbol values are known at the receiver. Under fading conditions, most errors in detection occur during the deeper fades and generally in long bursts. Often, during an error burst, the channel estimate becomes significantly degraded, leading to more errors in the $\left\{s_{i}^{\prime \prime}\right\}$, which in turn further degrades the channel estimate, and so on, until there is a complete failure of the system. The error burst is now extended to the end of the block of data symbols, but the following training signals restore correct operation of the channel estimator, ready for the next block of data symbols. When more than a few errors
have occurred in the $\left\{s_{i}^{\prime}\right\}$, for any block of data symbols, the whole block of the detected data-symbols $\left\{s_{i}^{\prime}\right\}$ is usually rendered invalid and is rejected by the receiver. Furthermore, any large burst of errors in the $\left\{s_{i}^{\prime \prime}\right\}$ is usually accompanied by a substantial burst of errors in the $\left\{s_{i}^{\prime}\right\}$. It follows that, for the most reliable operation of the system, the channel estimator must give the most accurate possible estimate (prediction) of the channel when the $\left\{s_{i}^{\prime \prime}\right\}$ are correct. Once an appreciable burst of errors has occurred in the $\left\{s_{i}^{\prime \prime}\right\}$, the chances are that the corresponding block of $\left\{s_{i}^{\prime}\right\}$ are invalid, and no advantage is gained by improving the channel estimate under these conditions.

Tests have indicated that the performance of the channel estimate is only likely to be significantly affected by errors in the $\left\{s_{i}^{\prime \prime}\right\}$ at the higher error rates (above 10^{-2}) [50, 52].

Figures 3.5.2-3.5.4 show the 3- sky wave channel characteristics over a duration of 25 seconds of transmission. The channel characteristics have been plotted for six different values of seed integer for the random number generator. A typical worst fading sequence, obtained using a seed integer value of 500 , has been chosen to test the performance of the estimators in this thesis. Table 3.5 . 2 shows the number of fades measured, over the duration of transmission, obtained for different values of seed integer. The fades have been measured relative to 0 dBm , as opposed to the median value, since the channel characteristics represent a 3- sky wave channel. The number of fades measured are generally consistent with the theoretical values (Section 2.7)

(a) - Seed Integer $=107$

TABLE 3.5.1 5-POLE BESSEL FILTER CHARACTERISTICS

Frequency Spread	2 Hz	
Unit circle Roots	0.8948131	
	0.9016149	-0.0479304
	0.9016149	0.0479304
	0.9260914	-0.1011889
	0.9260914	0.1011889
Abs.Value of Roots	0.8948131	
	0.9028880	
	0.9316032	
Co-Efficients of Filter	-1.8032297225	
	0.8152066804	
	-1.8521828825	
	0.8678845458	
	-0.8948130729	
	19378.0	

TABLE 3.5.2 MEASURED CHARACTERISTICS OF THE FADING CHANNEL FOR DIFFERENT VALUES OF SEED INTEGERS. THE FADES HAVE BEEN MEASURED RELATIVE TO 0 dBm .

SEED INTEGER	NO. OF FADES	MEAN LENGTH OF THE CHANNEL
9	34	1.0321
55	31	1.0420
107	33	1.0367
158	28	1.0145
195	34	1.0653
500	31	1.0405

CHAPTER 4

LINEAR FEEDFORWARD ESTIMATOR

4.1 INTRODUCTION

It has been shown in [54] that the simple linear "feedforward" estimator originally proposed for use with a maximum-likelihood detector [55], is likely to form the basis of the most cost effective estimator, for a randomly varying channel or where the receiver has only a limited knowledge of the correct model of the channel. A simple estimator designed for a $2400 \mathrm{bits} / \mathrm{s}$ modem [54] is a development of the conventional gradient estimator [55], and employs a polynomial filter that gives a prediction of the channel response. This chapter describes four channel estimators for use in HF radio links and these are called as systems 4.1-4.4. System 4.2 is the simple estimator described in $[33,35,46,50,54,57]$ and forms a basis for comparison of all the estimators developed in this thesis. System 4.1 does not use a predictor and, therefore, is a simple linear "feedforward" estimator. Systems 4.3 and 4.4 are developments of the simple estimator but make no use of any knowledge of the number of sky waves. Results of the computer-simulation tests on the estimators, over a model of a data transmission system, are presented at the end of the chapter.

4.2 MODEL OF DATA TRANSMISSION SYSTEM USED IN THE TESTS

The model of the data transmission system used in the tests, is shown in Fig. 3.5.1. Further details on the model of the channel and the data transmission system are given in Chapters 2 and 3, respectively.

The received sample at time $\mathrm{t}=\mathrm{i} \mathrm{T}$ is given by (Eqn. 3.4.2)

$$
\begin{align*}
r_{i} & =\sum_{h=0}^{g} s_{i-h} y_{i, h}+w_{i} \\
& =Y_{i} S_{i}^{T}+w_{i}
\end{align*}
$$

r_{i} is sample value of the complex-valued resultant baseband signal $r(t)$ at time $t=i T$. Y_{i} and S_{i} are ($\mathrm{g}+1$)- component row vectors, and s_{i}^{T} is the transpose of S_{i} (Eqns. 3.4.4 and 3.4.5).

$$
\begin{align*}
Y_{i} & =\left[\begin{array}{llllll}
& y_{i, 0} & y_{i, 1} & \ldots \ldots & y_{i, g}
\end{array}\right] \\
S_{i} & =\left[\begin{array}{llllll}
& s_{i} & s_{i-1} & \ldots . . & s_{i-g}
\end{array}\right]
\end{align*}
$$

The vector Y_{i} is taken to be the sampled impulse-response of the linear baseband channel. The noise samples $\left\{w_{i}\right\}$ have zero mean and variance that is dependent on $\frac{1}{2} N_{0}$ and neighbouring $\left\{w_{i}\right\}$ being slightly correlated [46,50]. The detection process is assumed perfect, even at low signal/noise ratios and, therefore, the detected value of s_{i} designated as s_{i}^{\prime} is equal to s_{i} for all values of \{i\} (Eqn. 3.5.3). The signals r_{i} and s_{i}^{\prime} are fed to the channel estimator to give an estimate of the channel sampled impulse-response Y_{i}^{\prime} at time $\mathrm{t}=\mathrm{i} \mathrm{T}$, where

$$
Y_{i}^{\prime}=\left[\begin{array}{lllll}
y_{i, 0}^{\prime} & y_{i, 1}^{\prime} & \ldots . . & y_{i, g}^{\prime}
\end{array}\right]
$$

This estimate of the channel sampled impulse-response, Y_{i}^{\prime}, is fed to the detector to detect $s_{i+1}^{\prime \prime}$ when the next received signal $\mathrm{r}_{\mathrm{i}+1}$ is received by the detector.

4.3 SYSTEM 4.1

This system is also called the Linear feedforward estimator and has been developed by Magee and Proakis [55] and is also called the simple estimator in [54]. The channel estimator originally proposed for use with a maximum-likelihood detector employing the Viterbi algorithm, [55], after modification for use with complexvalued symbols, becomes the linear feedforward estimator. Fig. 4.3.1 shows the linear feedforward transversal filter estimator. Each square marked T, in the figure, is a store that holds the corresponding detected data symbol $\mathrm{s}_{\mathrm{i}-\mathrm{b}}$, and they are like a shift register. Each time the stores are triggered on receipt of a received sample r_{i},

Fig. 4.3.1. - Linear Feedforward Transversal Filter
the stored values are shifted one place to the right. There are $(\mathrm{g}+1)$ stores corresponding to the total number of components in the sampled impulse-response of the channel. Each symbol $\mathrm{s}_{\mathrm{inh}}$ is multiplied by the corresponding tap weight $y_{i-1, k}^{\prime}$ and the resulting products are added to give the estimate r_{i}^{\prime} of the received sample r_{i}.

To determine Y_{i}^{\prime}, the estimator forms an estimate of the received sample r_{i}, such that

$$
\begin{align*}
r_{i}^{\prime} & =\sum_{h=0}^{g} s_{i-h} y_{i-1, h}^{\prime} \\
& =Y_{i-1}^{\prime} S_{i}^{T}
\end{align*}
$$

The vector S_{i} here (Eqn. 4.2.4) is determined from the values of the corresponding $\left\{s_{i-h}^{\prime \prime}\right\}$, assuming that Eqn. 3.5.3 holds. The estimator next forms the error signal

$$
e_{i}=r_{i}-r_{i}^{\prime}
$$

The estimation problem is to determine Y_{i}^{\prime} in such a way that e_{i} given by Eqn. 4.3.3 is made as small as possible.

From Eqns. 4.2.2 and 4.3.2

$$
e_{i}=\left(Y_{i}-Y_{i-1}^{\prime}\right) S_{i}^{T}+w_{i}
$$

The estimator uses e_{i} to form a correction vector X_{i}, which is added to Y_{i-1}^{\prime} to give the next estimate of the channel

$$
Y_{i}^{\prime}=Y_{i-1}^{\prime}+X_{i} \quad x_{1}=Y_{i}^{\prime}-Y_{i-1}^{\prime}
$$

where X_{i} is a (g+1)- component row vector and is chosen such that

$$
Y_{i}^{\prime} S_{i}^{T}=r_{i}
$$

From Eqns. 4.3.2-4.3.6

$$
X_{i} S_{i}^{T}=e_{i}
$$

It is thus clear, from Eqns. 4.3.5 and 4.3.6, that both $Y_{i}^{\prime} S_{i}^{T}$ and $Y_{i-1}^{\prime} S_{i}^{T}$ are the estimates of r_{i}. X_{i} is added to Y_{i-1}^{\prime} in Eqn. 4.3.5, in such a way that Y_{i}^{\prime} is more close to the actual channel impulse-response Y_{i} and reduces to zero the error in the corresponding estimate of r_{i}.

Let Z_{i} be any ($\mathrm{g}+1$)- component row vector such that

$$
Z_{i} S_{i}^{T}=0
$$

which means that the vectors Z_{i} and s_{i}^{*} are orthogonal, where s_{i}^{*} is the complex conjugate of S_{i}. The vector X_{i} can now be represented as

$$
X_{i}=a S_{i}^{*}+Z_{i}
$$

where a is the appropriate complex-valued scalar quantity. From Eqns. 4.3.8 and 4.3.9

$$
\begin{align*}
X_{i} S_{i}^{T} & =a S_{i}^{*} S_{i}^{T}+Z_{i} S_{i}^{T} \\
& =a\left|S_{i}\right|^{2}
\end{align*}
$$

where $\left|S_{i}\right|$ is the unitary length of S_{i}, and from Eqn. 4.3.7

$$
a=e_{i}\left|S_{i}\right|^{-2}
$$

Therefore, in the absence of noise, e_{i} represents the deviation from the ideal or the error in the value of the orthogonal projection of Y_{i-1}^{\prime} on the one- dimensional subspace spanned by s_{i}^{*}.

In the gradient or steepest-descent algorithm for estimating Y_{i}, the vector X_{i}, that is added to Y_{i-1}^{\prime} to give the estimate Y_{i}^{\prime} satisfying (Eqn. 4.3.6) is in the direction for which $\left|X_{i}\right|$ is minimized. All vectors here lie in a $(\mathrm{g}+1)$ - dimensional unitary vector space [46].

From Eqns. 4.3.8 and 4.3.9

$$
\left|X_{i}\right|^{2}=\left|a S_{i}^{*}\right|^{2}+\left|Z_{i}\right|^{2}
$$

and the component $\mathrm{a} S_{i}^{*}$ of X_{i} is fixed by Eqns. 4.3.7 and 4.3.10. Thus $\left|X_{i}\right|$ is minimum when $Z_{i}=0$. Now

$$
X_{i}=a S_{i}^{*}=e_{i} \mid S_{i} \vdash^{-2} S_{i}^{*}
$$

so that, for Eqn. 4.3.6 to be satisfied,

$$
Y_{i}^{\prime}=Y_{i-1}^{\prime}+e_{i} \mid S_{i} \vdash^{-2} S_{i}^{*}
$$

To reduce the effect of noise, the magnitude of the change X_{i} in Eqn. 4.3.5 is scaled, without changing its direction. Now

$$
Y_{i}^{\prime}=Y_{i-1}^{\prime}+b e_{i} S_{i}^{*}
$$

where b is an appropriate small positive real-valued constant, such that $b \ll \mid s_{i} t^{2}$. Eqn. 4.3.6 is no longer satisfied. Eqn. 4.3.15 is the conventional gradient algorithm, which for convenience is now referred to as system 4.1. This estimator assumes that the sampled impulse-response of the channel varies only very slowly with time. The algorithm for system 4.1 is, in fact, a recursive solution to the least squares estimation problem, also termed as the least mean-square (LMS) error algorithm [35,121, 58-59]. The estimator starts with an initial estimate Y_{0}^{\prime} and measures the gradient of the mean square error function that is to be minimized, and updates the estimate according to the gradient. The error in the estimate is successively reduced and the estimate converges to the optimum value of the sampled impulse-response of the channel.

4.4 SYSTEM 4.2

This estimator, called the system 4.2, is a simple modification to system 4.1. It has been shown [57] that a linear feedforward estimator has a good overall performance, to track a time invariant or a slowly time-varying channel. However, the characteristics of a HF channel vary rapidly and in order to track such a channel it is necessary to adopt sophisticated techniques. It has been shown that an useful improvement in the performance of system 4.1 can be achieved if a predictor is also incorporated with the system [54]. Eqn. 4.3.15 now gets modified to

$$
Y_{i}^{\prime}=Y_{i, i-1}^{\prime}+b e_{i} S_{i}^{*}
$$

where $Y_{i, i-1}^{\prime}$ is the prediction of Y_{i} at time $\mathrm{t}=(\mathrm{i}-1) \mathrm{T}$.

With a receiver employing a maximum-likelihood detector (Fig. 4.4.1), there is an inherent delay of several sampling interval. Thus the detected data-symbol s_{i}, designated as $\left\{s_{i}^{\prime}\right\}$, is detected after the reception $\mathrm{r}_{\mathrm{i}+\mathrm{n}-1}$, where $(\mathrm{n}-1)$ is the delay in detection [62]. Thus a feedforward estimator makes an estimate Y_{i}^{\prime} of Y_{i} and is only available to the detector on the receipt of r_{i+n}. Therefore, there is a delay of n sampling intervals in the estimation of Y_{i}. The use of Y_{i+n}^{\prime} in place of Y_{i}^{\prime} reduces the error in the detection of $\mathrm{s}_{\mathrm{i}+1}$. Not only is there a need for n -step prediction of $Y_{i++, i}^{\prime}$, a one-step prediction $Y_{i+1, i}^{\prime}$ of Y_{i+1} is also required so that Y_{i}^{\prime} can be replaced by $Y_{i+1, i}^{\prime}$ when forming the updated estimate Y_{i+1}^{\prime} in the channel estimator.

However, with the detector arrangement as shown in Fig. 4.4.1, there is an important advantage gained in using the adaptive filter. It avoids the need for prediction over many sampling intervals such as must be used in the absence of the filter [50, 52]. Prediction over many sampling intervals can increase considerably the error in prediction [53-54]. The adaptive filter is used to make the sampled impulse-response of the channel and filter to be minimum phase [49]. Fig. 4.4.1 shows the most cost effective detection method, wherein the estimator is fed the early detected data, $\left\{s_{i}^{\prime \prime}\right\}$, and the estimator need to do only a one-step prediction of the sampled impulse-response of the channel [51].

Least-Squares fading memory prediction is used to make a one-step prediction of the channel sampled impulse-response. This is done by determining a set of ($\mathrm{g}+1$) polynomial of degree-1, from the sequence of vectors $Y_{i}^{\prime}, Y_{i-1}^{\prime}, \ldots$. , each of which gives weighted least-squares fit to the components in the corresponding locations in the vectors $Y_{i}^{\prime}, Y_{i-1}^{\prime}, \ldots$. , and then using the values of the polynomial at time $t=(i+1) \mathrm{T}$. \nless Extensive tests on the different versions of the prediction process have shown that a degree-1 polynomial gives the best overall performance [52, 54]. The chosen polynomial is such that it gives the best fit to the sequence of past observations and the exponentially weighted sum of the squares of the error function is minimized [53]. In [53], the technique is applied to the prediction of the value of a variable parameter, derived from past observations which are either inaccurate or are corrupted in noise, the observations being unaffected by the prediction process. The technique is now applied to make a prediction based on the past updated estimates of

the parameter and the prediction has an influence on the subsequent updated estimation. Extensive tests have shown that this technique has improved the overall performance of the estimator without any sign of instability [54].

The prediction process carried out by the estimator is now considered. The estimator uses the updated estimate of Y_{i}, given by Y_{i}^{\prime} in Eqn. 4.2.5, and the one-step prediction of Y_{i}, given by $Y_{i, i-1}^{\prime}$ in Eqn. 3.5.1, to determine an estimate of the error in prediction, which is

$$
X_{i}=Y_{i}^{\prime}-Y_{i, i-1}^{\prime}
$$

the actual error in $Y_{i, i-1}^{\prime}$ being

$$
Y_{i}-Y_{i, i-1}^{\prime}
$$

The prediction of Y_{i+1} is now determined by means of a polynomial filter [53] that operates as follows

$$
\begin{align*}
& Y_{i+1, i}^{\prime \prime}=Y_{i, i-1}^{\prime \prime}+(1-\theta)^{2} X_{i} \\
& Y_{i+1, i}^{\prime}=Y_{i, i-1}^{\prime}+Y_{i+1, i}^{\prime \prime}+\left(1-\theta^{2}\right) X_{i}
\end{align*}
$$

The vector $Y_{i+1, i}^{\prime}$ is the degree -1 least squares fading memory prediction of Y_{i+1} [53-54], and the vector $Y_{i+1, i}^{\prime \prime}$ is a prediction of the rate of change with respect to i of $\mathrm{Y}_{\mathrm{i}+1}$. The symbol θ is a real-valued constant in the range 0 to 1 and is usually close to 1. θ in Eqns. 4.4.3 and 4.4.4 and b in Eqn. 4.4.1 are optimized in combination so that the error in the one-step prediction of the sampled impulse-response of the channel is minimized.

$$
-e^{2} x_{i}
$$

At the start of the process,

$$
Y_{1,0}^{\prime \prime}=0
$$

and

$$
Y_{1,0}^{\prime}=Y_{0}^{\prime}
$$

where Y_{0}^{\prime} is determined from an appropriate training sequence transmitted ahead of the transmission of actual data [91]. The results of the computer-simulation tests are given at the end of the chapter.

4.5 SYSTEM 4.3

This estimator known as system 4.3 operates by moving from $Y_{i, i-1}^{\prime}$ to Y_{i}^{\prime} in a direction closer to that given by the correct direction $Y_{i}-Y_{i, i-1}^{\prime}$ than that given by the gradient algorithm, which is be s_{i}^{*}. The process uses no prior knowledge of Y_{i}, and operates entirely from the $\left\{r_{i}\right\}$ and $\left\{s_{i}^{\prime \prime}\right\}$, just like system 4.1 and system 4.2.

Assume that

$$
Y_{i}=Y_{i, i-1}^{\prime}+V_{i}
$$

so that V_{i} is the actual error in $Y_{i, i-1}^{\prime}$. In the gradient algorithm, the receiver does not attempt to estimate V_{i} itself but instead determines X_{i} from Eqn. 4.3.13. A better estimate of V_{i} is determined as follows.

Suppose that

$$
V_{i-h} \simeq V_{i}
$$

for $\mathrm{h}=1,2, \ldots, \mathrm{~m}$, where m is not too large. This is the case when $Y_{i, i-1}^{\prime}$ is tracking Y_{i} with an error V_{i} that varies only slowly with i . Eqn. 4.5 .2 should usually hold when $m \leq 4$. Now, in the absence of noise, X_{i} in Eqn. 4.3.13 is the orthogonal projection of V_{i} on to the one-dimensional subspace spanned by s_{i}^{*}. A better estimate of V_{i}, than that given by X_{i}, should normally be given by the orthogonal projection of V_{i} on to the subspace spanned by the $\mathrm{m}+1$ vectors $\left\{s_{i-h}^{*}\right\}$, for $\mathrm{h}=0,1, \ldots, \mathrm{~m}$. Indeed, the more of the $\left\{S_{i-n}^{*}\right\}$ that are linearly independent and hence the higher the dimensionality of the subspace, the better is likely to be the resulting estimate of V_{i}, at least at high signal/noise ratios.

Thus, to achieve a better estimate of V_{i}, the receiver uses the one-step prediction $Y_{i, i-1}^{\prime}$ that has previously been determined to evaluate the corresponding estimates $r_{i, 0}^{\prime}, r_{i, 1}^{\prime}, \ldots ., r_{i, m}^{\prime}$ of the received samples $r_{i}, r_{i-1}, \ldots ., r_{i-m}$, respectively, such that

$$
r_{i, h}^{\prime}=Y_{i, i-1}^{\prime} S_{i-h}^{T}
$$

for $h=0,1, \ldots, m$. It is assumed here that Y_{h} itself does not vary significantly with h, for $i-m \leq h \leq i$. The receiver next determines the error $\mathrm{e}_{\mathrm{i}, \mathrm{h}}$ in each $r_{i, h}^{\prime}$, as given by

$$
e_{i, h}=r_{i-h}-r_{i, h}^{\prime}
$$

Assume that $\mathrm{m}+1$ vectors $\left\{s_{i-h}^{*}\right\}$, for $\mathrm{h}=0,1, \ldots, \mathrm{~m}$, are linearly independent, and let the $(g+1)$ - component row vector P_{i} be the orthogonal projection of V_{i} on to the $(\mathrm{m}+1)$ - dimensional subspace spanned by the $\left\{S_{i-k}^{*}\right\}$. Since P_{i} lies in the given subspace, it must be a linear combination of the $m+1$ vectors $\left\{S_{i-n}^{*}\right\}$, such that

$$
P_{i}=L_{i} Q_{i}^{*}
$$

where L_{i} is an ($m+1$)-component row vector and Q_{i} is an ($m+1$) $x(g+1)$ matrix whose $(h+1)^{t h}$ row is $\mathrm{S}_{\mathrm{i}-\mathrm{h}}$. The vector $\mathrm{V}_{\mathrm{i}}-\mathrm{P}_{\mathrm{i}}$ is now orthogonal to the given subspace and hence to each vector s_{i-k}^{*}. Thus

$$
\left(V_{i}-P_{i}\right) S_{i-h}^{T}=0
$$

for $h=0,1, \ldots, m$, and

$$
\left(V_{i}-P_{i}\right) Q_{i}^{T}=0
$$

From Eqns. 4.5.5 and 4.5.7,

$$
L_{i} Q_{i}^{*} Q_{i}^{T}=V_{i} Q_{i}^{T}
$$

where $Q_{i}^{*} Q_{i}^{T}$ is a $(\mathrm{m}+1) \mathrm{x}(\mathrm{m}+1)$ nonsingular matrix, so that

$$
L_{i}=V_{i} Q_{i}^{T}\left(Q_{i}^{*} Q_{i}^{T}\right)^{-1}
$$

and

$$
P_{i}=V_{i} Q_{i}^{T}\left(Q_{i}^{*} Q_{i}^{T}\right)^{-1} Q_{i}^{*}
$$

Now, from Eqns. 4.3.4 and 4.5.1 to 4.5.4,

$$
e_{i, h} \approx V_{i} S_{i-h}^{T}+w_{i-h}
$$

Clearly, $\mathrm{e}_{\mathrm{i}, \mathrm{h}}$ is an unbiased estimate of $v_{i} S_{i-h}^{T}$. Let

$$
E_{i}=\left[\begin{array}{llll}
e_{i, 0} & e_{i, 1} & \ldots & e_{i, m}
\end{array}\right]
$$

so that, from Eqn. 4.5.11, E_{i} is an unbiased estimate of $V_{i} Q_{i}^{T}$. It follows that

$$
P_{i}^{\prime}=E_{i}\left(Q_{i}^{*} Q_{i}^{T}\right)^{-1} Q_{i}^{*}
$$

is an unbiased estimate of P_{i} and can be evaluated from the knowledge of E_{i} and Q_{i}.

The updated estimate of Y_{i} is next evaluated as

$$
Y_{i}^{\prime}=Y_{i, i-1}^{\prime}+b P_{i}^{\prime}
$$

where b is a positive constant.
A small value of b reduces the effects of additive noise. Finally, the prediction of Y_{i+1} is determined using the degree-1 least square fading memory prediction, as explained in Section 4.4, using Eqns. 4.4.2 to 4.4.4, where $\mathrm{X}_{\mathrm{i}}=\mathrm{bP} P_{i}^{\prime}$. At high signal/noise ratios, the updated estimate of Y_{i} given by Eqn. 4.5.14 is usually closer to Y_{i} than that given by Eqn. 4.3.15. However, as m increases so there is a corresponding increase in the number of noise components $\left\{\mathrm{w}_{i-\mathrm{h}}\right\}$ introduced into P_{i}^{\prime}, with the result that at low signal/noise ratios, Eqn. 4.3.15 could well give a better estimate of Y_{i} than Eqn. 4.5.14.

In principle, Y_{i}^{\prime} in Eqn. 4.5.14 can be determined directly from Eqns. 4.5.12 and 4.5.13, provided that $Q_{i} Q_{i}^{T}$ is nonsingular. When $Q_{i} Q_{i}^{T}$ is singular, the last j rows of both Q_{i}^{*} and Q_{i} are removed, without changing the remaining rows, to leave each matrix with $\mathrm{m}-\mathrm{j}+1$ rows. The integer j here has the smallest possible value such that the resultant $(\mathrm{m}-\mathrm{j}+1) \mathrm{x}(\mathrm{m}-\mathrm{j}+1)$ matrix $Q_{i} Q_{i}^{T}$ is nonsingular. The ($\mathrm{m}+1$)-component row vectors E_{i} is similarly reduced to $m-j+1$ components, by discarding its last j
components, without changing its remaining components and the corresponding ($\mathrm{m}-\mathrm{j}+1$)-components row vector P_{i}^{\prime} is then evaluated from Eqn. 4.5.13 using the reduced forms of $\mathrm{E}_{\mathrm{i}}, \mathrm{Q}_{\mathrm{i}}^{*}$ and Q_{i}^{T}. The vectors Y_{i}^{\prime} and $Y_{i+1, i}^{\prime}$ are determined as before.

On the receipt of $\mathrm{r}_{\mathrm{i}+1}$, the receiver determines the error signal

$$
e_{i+1, h}=r_{i+1-h}-Y_{i+1, i}^{\prime} S_{i+1-h}^{T}
$$

for $\mathrm{h}=0,1, \ldots, \mathrm{~m}$, to give $\mathrm{E}_{\mathrm{i}+1}$, and it is now ready to determine $P_{i+1}^{\prime}, Y_{i+1}^{\prime}$, and $Y_{i+2, i+1}^{\prime}$

Much of the complexity of system 4.3 is involved with the inversion of the matrix $Q_{i}^{*} Q_{i}^{T}$ in Eqn. 4.5.13, together with the determination of the value of j when $Q_{i} Q_{i}^{T}$ is singular. Many different techniques, including various iterative processes, are available for the matrix inversion, and some of these are ideally suited to the given application [42, 63-66].

4.6 SYSTEM 4.4

The estimator to be discussed in this section is called the system 4.4. The receiver now operates as system 4.3, but it assumes always that $\mathrm{e}_{\mathrm{i} h}=0$ for $\mathrm{h}=1,2, \ldots, \mathrm{~m}$, regardless of whether or not that is, in fact, the case. Thus ($\mathrm{m}+1$)-component vector E_{i} in Eqn. 4.5.12 is now taken to be

$$
E_{i}=\left[\begin{array}{llllll}
e_{i, 0} & 0 & 0 & \ldots & 0
\end{array}\right]
$$

where

$$
e_{i, 0}=e_{i}=r_{i}-r_{i}^{\prime}
$$

as before. This assumption is not perhaps as arbitrary as it may seem at first sight, since it is equivalent to applying the algorithm of system 4.3 such that this operates only to reduce the magnitude of $\mathrm{e}_{\mathrm{i}, 0}$, the magnitude of the $\left\{\mathrm{e}_{\mathrm{i}, \mathrm{h}}\right\}$, for $\mathrm{h}=1,2, \ldots, \mathrm{~m}$, having been reduced by the corresponding previous operations.

It follows from Eqn. 4.5.13 that

$$
P_{i}^{\prime}=e_{i, 0} F_{i} Q_{i}^{*}
$$

where the $(m+1)$-component row vector F_{i} is given by the first row of the $(\mathrm{m}+1) \mathrm{x}(\mathrm{m}+1)$ nonsingular matrix $\left(Q_{i} Q_{i}^{T}\right)^{-1}$. Now the first row of $\left.\varphi_{i} Q_{i}^{T}\right)^{-1}$ must be orthogonal to each of the columns of $Q_{i}\left(Q_{i}^{*}\right)^{T}$ other than the first, since $\left.Q_{i} Q_{i}^{T}\right)^{-1} \varphi_{i} Q_{i}^{T}$ is an identity matrix. Let the $(\mathrm{h}+1)^{\text {ih }}$ column of $Q_{i}\left(Q_{i}\right)^{T}$ be $G_{i, h}^{T}$, so that $\left\{\mathrm{G}_{i, h}\right\}$, for $\mathrm{h}=0,1, \ldots$, m , are linearly independent $(\mathrm{m}+1)$-component row vectors. The Gram-Schmidt orthonormalization process, (see Appendix E), is now applied to the $\mathrm{m}+1$ vectors $\left\{\mathrm{G}_{\mathrm{i}, \mathrm{h}}\right\}$, in order, starting with $\mathrm{G}_{\mathrm{i}, \mathrm{m}}$ and ending with $\mathrm{G}_{\mathrm{i}, 0}$. The orthogonal vectors $\left\{\mathrm{H}_{\mathrm{i}, \mathrm{m}}\right\}$ obtained from this process are as follows

$$
\begin{align*}
& H_{i, m}=G_{i, m} \\
& H_{i, m-1}=G_{i, m-1}-\left|H_{i, m}\right|^{-2} G_{i, m-1}\left(H_{i, m}^{*}\right)^{T} H_{i, m}
\end{align*}
$$

and so on to

$$
\begin{align*}
H_{i, 0}=G_{i, 0} & -\mid H_{i, 1} \vdash^{2} G_{i, 0}\left(H_{i, 1}^{*}\right)^{T} H_{i, 1} \\
& -\ldots \ldots \\
& -\mid H_{i, m} \vdash^{2} G_{i, 0}\left(H_{i, m}^{*}\right)^{T} H_{i, m}
\end{align*}
$$

But $\mathrm{H}_{\mathrm{i}, 0}$ is orthogonal to $\mathrm{H}_{\mathrm{i}, \mathrm{m}}, \mathrm{H}_{\mathrm{i}, \mathrm{m}-1}, \ldots, \mathrm{H}_{\mathrm{i}, 1}$, so that it is also orthogonal to $\mathrm{G}_{\mathrm{i}, \mathrm{m}}, \mathrm{G}_{\mathrm{i}, \mathrm{m}-1}, \ldots$, $\mathrm{G}_{\mathrm{i}, 1}$. This means that $\mathrm{H}_{\mathrm{i}, 0}$ lies in the same one-dimensional subspace as $\mathrm{G}_{\mathrm{i}, 0}$, since $\left\{\mathrm{H}_{\mathrm{i}, \mathrm{h}}\right\}$ and $\left\{\mathrm{G}_{\mathrm{i}, \mathrm{h}}\right\}$, for $\mathrm{h}=1,2, \ldots, \mathrm{~m}$, span the same m-dimensional subspace of the $(m+1)$-dimensional vector space containing all $\left\{\mathrm{H}_{\mathrm{i}, \mathrm{h}}\right\}$ and $\left\{\mathrm{G}_{\mathrm{i}, \mathrm{h}}\right\}$. Consequently F_{i} (in Eqn. 4.6.2) must be such that

$$
F_{i}=f_{i} H_{i, 0}
$$

where f_{i} is an appropriate scalar, and

$$
F_{i}\left(G_{i, 0}^{*}\right)^{T}=1
$$

since $\left(Q_{i}^{*} Q_{i}^{T}\right)^{-1}\left(Q_{i}^{*} Q_{i}^{\tau}\right)$ is an identity matrix. Thus

$$
f_{i}=\left(H_{i, 0}\left(G_{i, 0}^{*}\right)^{T}\right)^{-1}
$$

and the $(m+1)$-component vector F_{i} is now given by (4.6.5), (4.6.6) and (4.6.8).

The ($\mathrm{g}+1$)-component vector P_{i}^{\prime} is finally determined from Eqn. 4.6.2, to give Y_{i}^{\prime} from Eqn. 4.5.14 and $Y_{i+1, i}^{\prime}$ obtained by using the one-step least square fading memory prediction, using Eqns. 4.4.2 to 4.4.4, where $X_{i}=b P_{i}^{\prime}$. On the receipt of $r_{i+1}, e_{i+1,0}$ is determined from Eqn. 4.5.15, where $\mathrm{h}=0$, and the whole procedure just described is repeated.

If $Q_{i}^{*} Q_{i}^{T}$ is singular, $\mathrm{H}_{\mathrm{i}, \mathrm{h}}=0$ for some integer h , and the Gram-Schmidt process is terminated. When this occurs the last row of Q_{i}^{*} and the last row of Q_{i} are discarded, so that Q_{i}^{*} and Q_{i} have m rows and $Q_{i}^{*} Q_{i}^{T}$ is an $m \times m$ matrix. The Gram-Schmidt orthonormalization process is then applied to the columns of the reduced matrix $Q_{i}\left(Q_{i}^{*}\right)^{T}$, starting with the m^{h} column. If again $\mathrm{H}_{\mathrm{i}, \mathrm{h}}=0$ for some integer h , the process is terminated, and each of the matrices Q_{i}^{*} and Q_{i} is reduced by omitting its last row, to give (m-1) $x(m-1)$ matrix $Q_{i} Q_{i}^{T}$. The procedure is continued as described until an $(\mathrm{m}-\mathrm{j}+1) \times(\mathrm{m}-\mathrm{j}+1)$ nonsingular matrix $Q_{i}^{*} Q_{i}^{T}$ is obtained. The last j rows of both Q_{i}^{\cdot} and Q_{i} have now been removed, without changing the remaining rows, to leave each matrix with $\mathrm{m}-\mathrm{j}+1$ rows. Finally, the Gram-Schmidt orthonormalization process is applied to the columns of the $(m-j+1) \times(m-j+1)$ matrix $Q_{i}\left(Q_{i}\right)^{T}$, starting with the $(m-j+1)^{\text {th }}$ column, and the $(m-j+1)$-component row vector F_{i} is derived from Eqns. 4.6.5 to 4.6 .8 to give P_{i}^{\prime} in Eqn. 4.6.2. The process then continues as before.

4.7 RESULTS AND ANALYSIS OF COMPUTER-SIMULATION TESTS.

Computer-simulation tests have been carried out on the channel estimators described in Section 4.3-4.6. The results of the tests are compiled in Tables 4.7.1-4.7.4 and in Figs. 4.7.1-4.7.2. The error measurement is

$$
\xi_{1}=10 \log _{10}\left(\frac{1}{54000} \sum_{i=6001}^{60000}\left|Y_{i}-Y_{i, i-1}^{\prime}\right|^{2}\right)
$$

and

$$
\xi_{2}=10 \log _{10}\left(\frac{1}{54000} \sum_{i=6001}^{60000} \frac{\left|Y_{i}-Y_{i, i-1}^{\prime}\right|^{2}}{\left|Y_{i}\right|^{2}}\right)
$$

The parameter ξ_{1} is called the mean square estimation error and is a measure of the actual error in $Y_{i, i-1}^{\prime}$. The parameter ξ_{2} is called the mean square normalized estimation error and is a measure of the normalized or relative error in $Y_{i, i-1}^{\prime}$.

During the first 6000 received samples the estimation process operates as described in Sections 4.3-4.6, but no measurements are carried out. This stabilizes the fading, additive noise and the estimation process, thus eliminating any transient behaviour of the estimator at start up. Measurements are thus carried out on the estimators during their stable operation, over the next 54000 received samples. The results, in Tables 4.7.1-4.7.4 are, therefore, the steady state performances of the estimators under test.

The signal/noise ratio, is measured as ψ, where

$$
\psi=10 \quad \log _{10}\left(\frac{E_{b}}{\frac{1}{2} N_{0}}\right)
$$

where E_{b}, the average transmitted energy per bit at the input and output of the HF radio link, is unity and the two sided power spectral density of the white Gaussian noise at the output of the HF radio link is $(1 / 2) N_{0}$.

In all tests, ($\mathrm{g}+1$), the total number of components in the sampled impulse-response is taken to be 32. At the start of the estimation process, $Y_{1,0}^{\prime}=Y_{0}$, the first actual channel sampled impulse-response. In each of the Tables 4.7.1 to 4.7.4, the scalar constants, such as, b in Tables 4.7.1 and b and θ in Tables 4.7.2 to 4.7.4, have been optimized as accurately as possible so that the error in the estimation/prediction of the sampled impulse-response of the channel, defined by Eqn. 4.7.1, is minimized.

Eqns. 4.7.1 and 4.7.2 measures the unitary distance between the vectors Y_{i} and $Y_{i, i-1}^{\prime}$ in dBs . In Eqn. 4.7.2, this unitary distance has been normalized with the length of the vector Y_{i}. In Fig. 4.7.1, systems 4.1 and 4.2 have been compared using measures ξ_{1} and ξ_{2}. A comparison of the systems 4.1 and 4.2, in Fig. 4.7.1 and Tables 4.7.1 and 4.7.2, show that the relative performances of the two systems are not significantly affected by whether ξ_{1} or ξ_{2} is used as a measurement criteria.

A degree-one predictor with system 4.1 has significantly improved the performance of system 4.2. This is evident from Tables 4.7.1 and 4.7.2. The results of the simulation tests on systems 4.1 and 4.2 with statistically independent noise component $\left\{w_{i}\right\}$ in Eqn. 4.2.1, in place of the slightly correlated noise components actually obtained at the output of the receiver filter, show only a negligibly small differences in performance (Tables 4.7.1 and 4.7.2). Thus correlation in the noise components does not appear to have any significant effect.

Table 4.7.3 shows the mean square error in the estimates of channel sampled impulse-response given by system 4.3 and the results from system 4.4 are compiled in Table 4.7.4. Simulation tests were carried out on systems 4.3 and 4.4 for a maximum value of $\mathrm{m}=4$. From the results of the computer-simulation tests, it is evident that not much advantage is gained in the use of sophisticated estimation processes of systems 4.3 and 4.4 , at least at low signal/noise ratio. However, the systems show improved performance at high signal/noise ratios. At low signal/noise ratios, increasing m has only marginal improvement in the performance of systems 4.3 and 4.4. The performance of system 4.3 is more or less the same as system 4.4. System 4.3 is the most complex of the four systems considered in this chapter as it involves inversion of a $(\mathrm{m}+1) \mathrm{x}(\mathrm{m}+1)$ matrix. No case was observed, during simulation test on systems 4.3 and 4.4 , when the matrix $Q_{i}^{*} Q_{i}^{T}$ was singular.

Fig. 4.7.2 shows the steady state performance of systems 4.1 and 4.2 at 30 dB signal/noise ratio. The parameter in Fig. 4.7.2, is here the square of the error in $Y_{i, i-1}^{\prime}$ measured in dB , relative unity, and is

$$
\xi_{i}=10 \log _{10}\left(\left|Y_{i}-Y_{i, i-1}^{\prime}\right|^{2}\right)
$$

The relatively better performance of system 4.2 over systems 4.3 and 4.4 , when $\psi=$ 20 or 30 dB , confirms that this is basically a good estimation process for a time varying channel of the type tested. A degree-one predictor with system 4.1 (system 4.2) provides a useful overall improvement in the performance at all signal/noise ratios. System 4.2 is considerably less complex than systems 4.3 and 4.4, it is by far the most cost effective of the four system.

TABLE 4.7.1 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATE OF THE CHANNEL SAMPLED IMPULSE-RESPONSE GIVEN BY SYSTEM 4.1 FOR A 3 SKY WAVE CHANNEL.

ψ $(d B)$	b	Correlated noise	Uncorrelated noise		
			ξ_{2}		
$(d B)$	$(d B)$	ξ_{1}	ξ_{2}		
$(d B)$	$(d B)$				
10	0.009	-11.848	-10.590	-11.814	-10.581
20	0.010	-15.967	-14.895	-15.919	-14.889
30	0.020	-19.891	-18.816	-19.853	-18.839
40	0.021	-20.649	-19.644	-20.598	-19.671
60	0.020	-20.718	-19.719	-20.664	-19.750

TABLE 4.7.2 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATE OF THE CHANNEL SAMPLED IMPULSE-RESPONSE GIVEN BY SYSTEM 4.2 FOR A 3 SKY WAVE CHANNEL.

ψ	$\mathbf{d B}$			Correlated noise		Uncorrelated noise	
			ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$	ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$	
10	0.139	0.980	-11.925	-10.640	-12.013	-10.709	
20	0.113	0.966	-18.942	-17.660	-18.918	-17.572	
30	0.091	0.949	-25.052	-23.825	-25.072	-23.797	
40	0.070	0.930	-29.012	-27.944	-29.016	-27.955	
60	0.087	0.933	-30.990	-30.116	-30.952	-30.112	

TABLE 4.7.3 MEAN SQUARE ERROR IN THE ESTIMATE OF THE CHANNEL SAMPLED IMPULSE-RESPONSE GIVEN BY SYSTEM 4.3 FOR A 3 SKY WAVE HF CHANNEL.

$\begin{gathered} \psi \\ (\mathrm{dB}) \end{gathered}$	M	θ	b	
20	1	0.970	4.76	-19.068
	2	0.970	3.34	-19.111
	3	0.970	2.56	-19.140
	4	0.970	2.07	-19.163
30	1	0.960	5.36	-25.339
	2	0.960	3.88	-25.461
	3	0.960	3.06	-25.554
	4	0.960	2.52	-25.630
60	1	0.940	4.60	-31.567
	2	0.930	2.65	-32.008
	3	0.930	2.24	-32.450
	4	0.930	1.98	-32.785

TABLE 4.7.4 MEAN SQUARE ERROR IN THE ESTIMATE OF THE CHANNEL SAMPLED IMPULSE-RESPONSE GIVEN BY SYSTEM 4.4 FOR A 3 SKY WAVE HF CHANNEL.

$\begin{gathered} \psi \\ (\mathrm{dB}) \end{gathered}$	M	θ	b	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$
20	1	0.970	8.11	-19.010
	2	0.970	7.97	-19.025
	3	0.970	7.86	-19.026
	4	0.970	7.75	-19.028
30	1	0.960	8.35	-25.290
	2	0.960	8.25	-25.405
	3	0.960	8.15	-25.490
	4	0.960	8.06	-25.588
60	1	0.940	6.74	-31.557
	2	0.940	6.88	-32.081
	3	0.930	5.45	-32.644
	4	0.930	5.62	-33.231

Fig. 4.7.1 - Performance of Systems $4.1 \& 4.2$

CHAPTER 5

RLS KALMAN ESTIMATOR.

5.1 INTRODUCTION

The Kalman filter has become one of the most investigated estimation algorithm in many areas and in particular for the HF channel estimation [35, 53, 70, 73-79, 81-88, 92-99, 101-110], following the first publication of the theory of the Kalman filter [73]. A Kalman estimator gives the least-squares estimate of the sampled impul-se-response of a time invariant channel that introduces additive Gaussian noise [53, 77, 95-96] and that it has the most rapid rate of convergence, when the estimation process is started with a completely unknown channel estimate. This has motivated the study of Kalman filter algorithm for use in HF channel estimation. The algorithm as a HF channel estimator has been extensively studied elsewhere [35, 88]. This chapter considers a particular form of the algorithm called the Recursive least-squares (RLS) algorithm for the application to the HF channel estimation. The method is very closely related to the Kalman algorithm, by virtue of its similarity to the state-space stochastic filter approach of the Kalman algorithm. The algorithm is referred to as the RLS Kalman algorithm or, more simply, as the Kalman algorithm [59, 99, 101, 103].

The increased rate of convergence of the RLS Kalman algorithm, as compared to the LMS algorithm, is at the expense of increased computational complexity. This has led to the development of computationally efficient Kalman algorithms, called the Fast Kalman algorithms. A class of Fast Kalman algorithm, called the Fast Transversal Filter (FTF) algorithm, for HF channel estimation, is considered in detail in Chapter 8. In this chapter three types of Kalman algorithms, referred to as systems 5.1-5.3, are considered. Systems 5.1 and 5.2 assume that the channel varies linearly with time, or in other words the rate of change in the channel is constant, whereas system 5.3 assumes that the channel is time invariant or varies very slowly with time, so that the rate of change in the channel can be neglected.

5.2 MODEL OF DATA TRANSMISSION SYSTEM USED IN THE TESTS

Fig. 3.5.1 shows the model of the data transmission system used in the tests and has been considered in detail in Chapter 3. The HF radio link and the model of the data transmission system are given in detail in Chapters 2 and 3, respectively. The linear baseband channel has a sampled impulse-response, given by the ($\mathrm{g}+1$)- component row vector, Y_{i}, where, (Eqn. 3.4.4)

$$
Y_{i}=\left[\begin{array}{lllll}
{\left[\begin{array}{llll}
i, 0 & y_{i, 1} & \ldots & y_{i, g}
\end{array}\right]}
\end{array}\right.
$$

where $y_{i \mathrm{~h}}=0$ for $\mathrm{h}<0$ and $\mathrm{h}>\mathrm{g}$.

The received sample at time $\mathrm{t}=\mathrm{iT}$, is given by (Eqn. 3.4.2)

$$
\begin{align*}
r_{i} & =\sum_{h=0}^{g} s_{i-h} y_{i, h}+w_{i} \\
& =Y_{i} S_{i}^{T}+w_{i}
\end{align*}
$$

where S_{i}, the input data vector, is a ($\mathrm{g}+1$)- component row vector, given by (Eqn. 3.4.5)

$$
S_{i}=\left[\begin{array}{lllll}
s_{i} & s_{i-1} & s_{i-2} & \ldots . & s_{i-g}
\end{array}\right]
$$

S_{i}^{T} is the transpose of S_{i}. The scalar quantity w_{i} in Eqns. 5.2.2 and 5.2.3 is a noise component originating from the white Gaussian noise. The signals r_{i} and s_{i} are fed to the channel estimator to give an estimate of the channel sampled impulse-response, Y_{i}^{\prime} , at time $\mathrm{t}=\mathrm{iT}$, where

$$
Y_{i}^{\prime}=\left[\begin{array}{lllll}
y_{i, 0}^{\prime} & y_{i, 1}^{\prime} & \ldots . & y_{i, g}^{\prime}
\end{array}\right]
$$

Y_{i}^{\prime} is fed to the detector, ready to detect $\mathrm{s}_{\mathrm{i}+1}$, when $\mathrm{r}_{\mathrm{i}+1}$ is received by the detector.

5.3 SYSTEM 5.1

The first of the RLS Kalman estimators considered here is called the system 5.1. It assumes that the channel is varying linearly with time, such that

$$
Y_{i+1}-Y_{i}=Y_{i}-Y_{i-1}
$$

which means that $Y_{i+1}-Y_{i}$ is a constant vector that is independent of i. It is assumed that the receiver has prior knowledge of Eqn. 5.3.1 but has no knowledge of the vector $Y_{i+1}-Y_{i}$.

System 5.1 operates with a channel-estimation vector, for time $\mathrm{t}=\mathrm{i} \mathrm{T}$, which is

$$
V_{i}=\left[\begin{array}{lllllll}
& y_{i, 0}^{\prime} & y_{i, 1}^{\prime} & \ldots . & y_{i, g}^{\prime} & y_{i, 0}^{\prime \prime} & \ldots . \\
y_{i, g}^{\prime \prime}
\end{array}\right]
$$

where $y_{i, h}^{\prime}$ is an estimate of $y_{i, h}$, (Eqn. 5.2.1), for $h=0,1, \ldots, g$, and $y_{i, h}^{\prime \prime}$ is an estimate of the rate of change of $y_{i, b}$ with i. Thus V_{i} is a $(2 g+2)$ - component row vector. The data vector, for time $\mathrm{t}=\mathrm{iT}$, is the $(2 \mathrm{~g}+2)$ - component row vector

$$
S_{i}=\left[\begin{array}{lllllllll}
s_{i} & s_{i-1} & \ldots . . & s_{i-g} & 0 & 0 & \ldots & 0
\end{array}\right]
$$

The estimate of r_{i} formed by the channel estimator, is now

$$
r_{i}^{\prime}=V_{i} S_{i}^{T}
$$

The quantity r_{i}^{\prime} is the updated estimate of r_{i}. Similarly V_{i} is an updated estimate of the corresponding channel vector.

The error in r_{i}^{\prime} is

$$
e_{i}=r_{i}-r_{i}^{\prime}
$$

The vector $\left\{\mathrm{V}_{\mathrm{i}}\right\}$ determined by system 5.1 is such as to minimize the weighted least-squares cost function

$$
C_{i}=\sum_{h=0}^{i} \omega^{i-h}\left|e_{h}\right|^{2}
$$

where ω is a real-valued constant in the range 0 to 1 . The quantity C_{i} is the weighted squared error in the $\left\{r_{h}^{\prime}\right\}$. On receipt of r_{i}^{\prime}, the algorithm of system 5.1 repeats a sequence of operations to update the channel-estimation vector in such a manner as to minimize C_{i}. Hence the algorithm is recursive and is least squares as well. The quantity that is minimized by the gradient algorithm is the expected value of the squared error, whereas here it is the weighted squared error that is minimized.

Now, consider the $(2 g+2) \times(2 g+2)$ matrix

$$
\begin{align*}
& \phi_{h}=\left[\begin{array}{cccccccccccccc}
1 & 0 & 0 & \ldots & . & 0 & 0 & 0 & 0 & \ldots & . & 0 & 0 & 0 \\
0 & 1 & 0 & \ldots & . & 0 & 0 & 0 & 0 & \ldots & . & 0 & 0 & 0 \\
0 & 0 & 1 & \ldots & . & 0 & 0 & 0 & 0 & \ldots & . & 0 & 0 & 0 \\
. & . & . & & & & & & & & & & & \\
. & . & . & & & & & & & & & & & \\
0 & 0 & 0 & \ldots & . & 0 & 1 & 0 & 0 & \ldots & . & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & . & 0 & 0 & 1 & 0 & \ldots & . & 0 & 0 & 0 \\
h & 0 & 0 & \ldots & . & 0 & 0 & 0 & 1 & \ldots & . & 0 & 0 & 0 \\
0 & h & 0 & \ldots & . & 0 & 0 & 0 & 0 & \ldots & . & 0 & 0 & 0 \\
0 & 0 & h & \ldots & . & 0 & 0 & 0 & 0 & \ldots & . & 0 & 0 & 0 \\
. & . & . & & & & & & & & & & & \\
. & . & . & & & & & & & & & & & \\
0 & 0 & 0 & \ldots & . & h & 0 & 0 & 0 & \ldots & . & 1 & 0 & 0 \\
0 & 0 & 0 & \ldots & . & 0 & h & 0 & 0 & \ldots & . & 0 & 1 & 0 \\
0 & 0 & 0 & \ldots & . & 0 & 0 & h & 0 & \ldots & . & 0 & 0 & 1
\end{array}\right] \\
& \phi_{h}=\left[\begin{array}{cc}
I & O \\
h I
\end{array}\right]
\end{align*}
$$

where I is a $(\mathrm{g}+1) \mathrm{x}(\mathrm{g}+1)$ identity matrix, O is a $(\mathrm{g}+1) \mathrm{x}(\mathrm{g}+1)$ zero matrix, and h is any positive or negative integer or zero. From Eqns. 5.3.1 and 5.3.7, it is evident that

$$
V_{i+h}=V_{i} \phi_{h}
$$

is the best channel estimation vector that can be determined for time $t=(i+h) T$, given the channel estimation vector V_{i}, for time $t=i T$. This is because it makes full use of all the available prior knowledge of the channel. If V_{i} is taken to be the actual channel vector instead of an estimate of this vector, Eqn. 5.3.8 holds exactly for all positive and negative values of integer $\{\mathrm{h}\}$. The matrix ϕ_{h} is known as a transition
matrix, and it can be used to convert the channel vector or estimate of this vector, at time iT, to the channel vector or estimate of this vector, at time ($\mathrm{i}+\mathrm{h}$)T. Except where otherwise stated, V_{i} is taken to be the estimate of the channel vector at time $\mathrm{t}=\mathrm{i} \mathrm{T}$, as in Eqn. 5.3.2. Finally, from Eqn. 5.3.7

$$
\phi_{h}=\phi^{h}
$$

and ϕ_{0} is the $(2 g+2) x(2 g+2)$ identity matrix.

From Eqns. 5.3.4-5.3.6, the least-squares cost function at time $t=i \mathrm{~T}$ becomes

$$
C_{i}=\sum_{h=0}^{i} \omega^{i-h}\left|r_{h}-V_{h} S_{h}^{T}\right|^{2}
$$

At time $t=\mathrm{i} \mathrm{T}$, the channel estimation vector is V_{i} and from Eqn. 5.3.8, V_{i}, is related to V_{h}, as

$$
V_{h}=V_{i} \phi_{h-i}
$$

Combining Eqns. 5.3.10 and 5.3.11, C_{i} is given by

$$
C_{i}=\sum_{h=0}^{i} \omega^{i-h}\left|r_{h}-V_{i} \phi_{h-i} S_{h}^{T}\right|^{2}
$$

The estimator of system 5.1, determines the channel estimation vector V_{i} at time $\mathrm{t}=\mathrm{i} \mathrm{T}$, which together with the given transition-matrix ϕ_{h}, minimizes C_{i}.

Now

$$
C_{i}=\sum_{h=0}^{i} \omega^{i-h}\left(r_{h}-V_{i} \phi_{h-i} S_{h}^{T}\right)\left(r_{h}-V_{i} \phi_{h-i} S_{h}^{T}\right)^{*}
$$

or

$$
\begin{align*}
C_{i}=\sum_{h=0}^{i} \omega^{i-h}\left(r_{h} r_{h}^{*}-r_{h} \bar{S}_{h} \phi_{h-i}^{T} V_{i}^{*}\right. & -r_{h}^{*} V_{i} \phi_{h-i} S_{h}^{T} \\
& \left.+V_{i} \phi_{h-i} S_{h}^{T} S_{h} \phi_{h-i}^{T} V_{i}^{*}\right)
\end{align*}
$$

where r_{k}^{\bullet} is the complex conjugate of r_{h} and so is \bar{r}_{h}. Vector \bar{S}_{h} is the complex conjugate of the vector S_{h}, and the vector v_{i}^{*} is the conjugate transpose of the vector V_{i}, that is $\left.\bar{v}_{1}\right)^{\text {r }}$.

The parameter C_{i} in Eqn. 5.3.13 is real and positive and with all the parameters (except V_{i}) remaining constant, C_{i} is a convex function of the channel estimation vector $\mathrm{V}_{\mathrm{i}}[59,103]$. The quantity C_{i} and the elements of the vector V_{i} can then be seen to have a bowl-shaped surface with a unique minimum. At the bottom or minimum point the gradient of C_{i} with respect to V_{i} is zero. The gradient of C_{i} with respect to V_{i} is

$$
\nabla C_{i}=\left[\begin{array}{lllll}
\frac{\partial C_{i}}{\partial y_{i, 0}^{\prime}} \frac{\partial C_{i}}{\partial y_{i, 1}^{\prime}} & . . & \frac{\partial C_{i}}{\partial y_{i, g}^{\prime}} \frac{\partial C_{i}}{\partial y_{i, 0}^{\prime \prime}} \frac{\partial C_{i}}{\partial y_{i, 1}^{\prime \prime}} & . & \frac{\partial C_{i}}{\partial y_{i, g}^{\prime \prime}}
\end{array}\right]
$$

For ∇C_{i} to be zero, each component of the vector must also be zero. Differentiating Eqn. 5.3.14 with respect to V_{i}, the gradient of C_{i} with respect to V_{i} is (Appendix C) [59, 103]

$$
\sum_{h=0}^{i} \omega^{i-h}\left(-2 r_{h} \bar{S}_{h} \phi_{h-i}^{T}+2 V_{i} \phi_{h-i} S_{h}^{T} \bar{S}_{h} \phi_{h-i}^{T}\right)
$$

Under the condition when ∇C_{i} is zero,

$$
\sum_{h=0}^{i} \omega^{i-h} 2 V_{i} \phi_{h-i} S_{h}^{T} \bar{S}_{h} \phi_{h-i}^{T}=\sum_{h=0}^{i} \omega^{i-h} 2 r_{h} \bar{S}_{h} \phi_{h-i}^{T}
$$

or

$$
V_{i} \sum_{h=0}^{i} \omega^{i-h} \phi_{h-i} S_{h}^{T} \bar{S}_{h} \phi_{h-i}^{T}=\sum_{h=0}^{i} \omega^{i-h} r_{h} \bar{S}_{h} \phi_{h-i}^{T}
$$

Let

$$
R_{i}=\sum_{h=0}^{i} \omega^{i-h} \phi_{h-i} S_{h}^{T} S_{h} \phi_{h-i}^{T}
$$

and

$$
Q_{i}=\sum_{h=0}^{i} \omega^{i-h} r_{h} \bar{S}_{h} \phi_{h-i}^{T}
$$

where R_{i} is a $(2 g+2) \times(2 g+2)$ component square matrix and Q_{i} is a $(2 g+2)$ component row vector. Combining, Eqns. 5.3.17-5.3.19,

$$
V_{i} R_{i}=Q_{i}
$$

Therefore,

$$
V_{i}=Q_{i} R_{i}^{-1}
$$

\downarrow It is assumed in Eqn. 5.3.21 that the matrix R_{i} is nonsingular and there exists an inverse of the matrix R_{i}. Eqn. 5.3.21 gives the weighted least-squares estimate of the desired channel-estimation vector at time $t=i \mathrm{~T}$. To determine V_{i} from Eqn. 5.3.21, would mean enormous computational complexity. It is, therefore, necessary to modify Eqn. 5.3.20 in such a way that V_{i}, R_{i} and Q_{i}, at time $t=i T$, can be obtained recursively from V_{i-1}, R_{i-1} and Q_{i-1}, at time $t=(i-1) T$.

From Eqn. 5.3.18

$$
R_{i}=\omega \phi_{-1} R_{i-1} \phi_{-1}^{T}+S_{i}^{T} \bar{S}_{i}
$$

and, from Eqn. 5.3.19

$$
Q_{i}=\omega Q_{i-1} \phi_{-1}^{T}+r_{i} \bar{S}_{i}
$$

From Eqns. 5.3.20 and 5.3.23

$$
V_{i} R_{i}=\omega V_{i-1} R_{i-1} \phi_{-1}^{T}+r_{i} \bar{S}_{i}
$$

Eqn. 5.3.24 gives a relationship between V_{i} and V_{i-1} which form the basis of the required recursive algorithm to determine V_{i}.

From Eqn. 5.3.22,

$$
\omega R_{i-1}=\phi_{1} R_{i} \phi_{1}^{T}-\phi_{1} S_{i}^{T} \bar{S}_{i} \phi_{1}^{T}
$$

Substituting Eqn. 5.3.25 in Eqn. 5.3.24

$$
\begin{align*}
V_{i} R_{i} & =V_{i-1} \phi_{1} R_{i} \phi_{1}^{T} \phi_{-1}^{T}-V_{i-1} \phi_{1} S_{i}^{T} \bar{S}_{i} \phi_{1}^{T} \phi_{-1}^{T}+r_{i} \bar{S}_{i} \\
& =V_{i-1} \phi_{1} R_{i}-V_{i-1} \phi_{1} S_{i}^{T} \bar{S}_{i}+r_{i} \bar{S}_{i}
\end{align*}
$$

or

$$
\begin{align*}
V_{i} & =V_{i-1} \phi_{1}-V_{i-1} \phi_{1} S_{i}^{T} \bar{S}_{i} R_{i}^{-1}+r_{i} \bar{S}_{i} R_{i}^{-1} \\
& =V_{i-1} \phi_{1}+\left(r_{i}-V_{i-1} \phi_{1} S_{i}^{T}\right) \bar{S}_{i} R_{i}^{-1}
\end{align*}
$$

Let

$$
\begin{align*}
& P_{i}=R_{i}^{-1} \\
& V_{i, i-1}=V_{i-1} \phi_{1}
\end{align*}
$$

and

$$
P_{i, i-1}=\phi_{1}^{T} P_{i-1} \phi_{1}
$$

In Eqns. 5.3.30 and 5.3.31, the transition matrix ϕ_{1} shifts the time to which the corresponding estimate applies by one sampling interval from time (i-1)T to time iT. Hence, the updated estimate for time (i-1)T is converted into the corresponding prediction for time iT.

Combining Eqns. 5.3.28-5.3.30,

$$
V_{i}=V_{i, i-1}+\left(r_{i}-V_{i, i-1} S_{i}^{T}\right) \bar{S}_{i} P_{i}
$$

It may be noted that, in Eqn. 5.3.32, the term $\left(r_{i}-V_{i, i-1} s_{i}^{T}\right)$ represents the error in the estimation of the received signal r_{i}.

From Eqns. 5.3.22 and 5.3.29

$$
P_{i}^{-1}=\omega \phi_{-1} P_{i-1}^{-1} \phi_{-1}^{T}+S_{i}^{T} \bar{S}_{i}
$$

and from Eqn. 5.3.31

$$
\begin{align*}
P_{i, i-1}^{-1} & =\left(\phi_{1}^{T} P_{i-1} \phi_{1}\right)^{-1} \\
& =\phi_{-1} P_{i-1}^{-1} \phi_{-1}^{T}
\end{align*}
$$

Therefore, from Eqns. 5.3.33 and 5.3.34,

$$
P_{i}^{-1}=\omega P_{i, i-1}^{-1}+S_{i}^{T} \bar{S}_{i}
$$

or

$$
R_{i}=\omega R_{i, i-1}+S_{i}^{T} \bar{S}_{i}
$$

Eqn. 5.3.36 gives the recursive relationship between R_{i} and $\mathrm{R}_{\mathrm{i}, \mathrm{i}-\mathrm{l}}$. However, in order to obtain the updated estimate of V_{i} from the one-step prediction $\mathrm{V}_{\mathrm{i},-1}$ using Eqn. 5.3.32, it is necessary to evaluate P_{i}.

Applying matrix inverse identity (Appendix D) to Eqn. 5.3.36, the following relationship is obtained.

$$
R_{i}^{-1}=\frac{1}{\omega}\left[R_{i, i-1}^{-1}-\frac{R_{i, i-1}^{-1} S_{i}^{T} \bar{S}_{i} R_{i, i-1}^{-1}}{\omega+\bar{S}_{i} R_{i, i-1}^{-1} S_{i}^{T}}\right]
$$

or

$$
P_{i}=\frac{1}{\omega}\left[P_{i, i-1}-\frac{P_{i, i-1} S_{i}^{T} \bar{S}_{i} P_{i, i-1}}{\omega+\bar{S}_{i} P_{i, i-1} S_{i}^{T}}\right]
$$

Now let

$$
K_{i}=\left(\omega+\bar{S}_{i} P_{i, i-1} S_{i}^{T}\right)^{-1} \bar{S}_{i} P_{i, i-1}
$$

Thus, from Eqns. 5.3.38 and 5.3.39

$$
P_{i}=\omega^{-1} P_{i, i-1}\left[I-S_{i}^{T} K_{i}\right]
$$

Thus P_{i} may be computed recursively according to Eqn. 5.3.40.

Premultiplying both sides of Eqn. 5.3 .40 by \bar{s}_{i}, then

$$
\bar{S}_{i} P_{i}=\omega^{-1}\left[\bar{S}_{i} P_{i, i-1}-\bar{S}_{i} P_{i, i-1} S_{i}^{T} K_{i}\right]
$$

and from Eqn. 5.3.39

$$
\bar{S}_{i} P_{i, i-1}=\left[\omega+\bar{S}_{i} P_{i, i-1} S_{i}^{T}\right] K_{i}
$$

Combining Eqns. 5.3.41 and 5.3.42,

$$
\begin{align*}
\bar{S}_{i} P_{i} & =\omega^{-1}\left[\left(\omega+\bar{S}_{i} P_{i, i-1} S_{i}^{T}\right) K_{i}-\bar{S}_{i} P_{i, i-1} S_{i}^{T} K_{i}\right] \\
& =K_{i}
\end{align*}
$$

From Eqns. 5.3.32 and 5.3.43,

$$
V_{i}=V_{i, i-1}+\left(r_{i}-V_{i, i-1} S_{i}^{T}\right) K_{i}
$$

This completes the derivation of the algorithm for system 5.1. The algorithm is consistent with the corresponding algorithm in [20, 83, 103]. Eqn. 5.3.44 is the desired update recursion for the vector V_{i}. The complete algorithm for system 5.1 is given by Eqns. 5.3.30, 5.3.31, 5.3.39, 5.3.40 and 5.3.44.

5.4 SYSTEM 5.2

System 5.2 is a simple modification of system 5.1 and just as system 5.1, it assumes that the channel is varying linearly with time and that Eqn. 5.3.1 is satisfied. System 5.2 operates with a channel-estimation vector, for time $t=i T$, which is

$$
V_{i}=\left[\begin{array}{lllll}
& y_{i, 0}^{\prime} & y_{i, 1}^{\prime} & \ldots . . & y_{i, g}^{\prime}
\end{array}\right]
$$

where V_{i} is a $(\mathrm{g}+1)$ - component row vector and $y_{i, h}^{\prime}$ is an estimate of $\mathrm{y}_{\mathrm{i}, \mathrm{h}}$ (Eqn. 5.2.1) for $\mathrm{h}=0,1, \ldots ., \mathrm{g}$. The data vector, for time $\mathrm{t}=\mathrm{iT}$, is the $(\mathrm{g}+1)$ - component row vector, and is now given by

$$
S_{i}=\left[\begin{array}{llll}
s_{i} & s_{i-1} & \ldots & s_{i-g}
\end{array}\right]
$$

The transition matrix ϕ_{1}, is no longer given by Eqn. 5.3.30, and is now replaced by

$$
\phi_{i}=\left[\begin{array}{ccccc}
q_{0, i} & 0 & \ldots & . & 0 \\
0 & q_{1, i} & \ldots & . & 0 \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & & \\
0 & 0 & \ldots & . & q_{g, i}
\end{array}\right]
$$

where

$$
\begin{align*}
& q_{h, i}=\frac{y_{i, i-1, h}^{\prime}}{y_{i-1, h}^{\prime}} \\
& \text { for } \mathrm{h}=0,1, \ldots \ldots, \mathrm{~g}
\end{align*}
$$

The transition matrix, ϕ_{i}, is therefore, no longer a constant but varies with time.

An update of the vector V_{i} is determined using the RLS Kalman filter algorithm. All the vectors here are $(\mathrm{g}+1)$ - component row vectors and all the matricies are $(\mathrm{g}+1) \mathrm{x}$ $(\mathrm{g}+1)$. System 5.2, then makes a one-step prediction of the vector V_{i} using the least-squares fading memory prediction [53], in the following manner.

An error in the update of the vector V_{i} is given by

$$
E_{i}=V_{i}-V_{i, i-1}
$$

A one-step prediction of V_{i}, is now given by a polynomial filter which is described by the following two equations.

$$
\begin{align*}
& V_{i+1, i}^{\prime}=V_{i, i-1}^{\prime}+\theta_{1} E_{i} \\
& V_{i+1, i}=V_{i, i-1}+V_{i+1, i}^{\prime}+\theta_{2} E_{i}
\end{align*}
$$

where θ_{1} and θ_{2} are positive real-valued scalar constants. θ_{1} and θ_{2} are optimized to minimize the error in the prediction of the channel impulse-response. In Eqns. 5.4.6 and 5.4.7, $v_{i+1, i}^{\prime}$ is the estimate of the rate of change with i of the vector V_{i}. At the start of the estimation process

$$
V_{i+1, i}^{\prime}=0
$$

and

$$
V_{i, i-1}=V_{0}
$$

where V_{0} is determined from the appropriate training sequence that precedes the transmission of data [91]. The one-step prediction of system 5.2 (Eqns. 5.4.5-5.4.7) is slightly different from that used by system 4.2 (Eqns. 4.4.2-4.4.4). θ_{1} and θ_{2}, in Eqns. 5.4.6 and 5.4.7 respectively, no longer bear any fixed relationship. Com-puter-simulation tests, have shown some useful improvement in the performance of system 5.2. Eqns. 5.4.6 and 5.4.7 allows greater flexibility and improved performance of system 5.2 and tests have not shown any kind of instability in the algorithm.

Having obtained the one-step prediction of the vector V_{i}, given by Eqn. 5.4.7, the transition matrix ϕ_{i} can now be determined using Eqn. 5.4.3, ready for determining the next updated vector $\mathrm{V}_{\mathrm{i}+1}$, for time $\mathrm{t}=(\mathrm{i}+1) \mathrm{T}$.

5.5 SYSTEM 5.3

System 5.3 is the conventional RLS Kalman algorithm and assumes that the channel is time invariant or it varies very slowly with time. The algorithm of system 5.3 is a simple modification of that for system 5.1. Eqn. 5.3.1 is now replaced by

$$
Y_{i+1}-Y_{i}=0
$$

It is, therefore, assumed that the rate of change in the channel estimate is zero. The channel-estimation vector, for time $\mathrm{t}=\mathrm{iT}$, now becomes

$$
V_{i}=\left[\begin{array}{lllll}
y_{i, 0}^{\prime} & y_{i, 1}^{\prime} & \ldots & y_{i, g}^{\prime}
\end{array}\right]
$$

where $y_{i, h}^{\prime}$ is an estimate of $y_{i, h}$ for $h=0,1, \ldots ., g . V_{i}$ is now a ($\mathrm{g}+1$)- component row vector. The data vector, for time $t=i T$, is the $(g+1)$ - component row vector

$$
S_{i}=\left[\begin{array}{llll}
s_{i} & s_{i-1} & \ldots & s_{i-g}
\end{array}\right]
$$

The remainder of the algorithm for system 5.3 is exactly the same as that for system 5.1, except that the transition matrix ϕ_{1}, in Eqns. 5.3.30 and 5.3.31, is now given by the $(\mathrm{g}+1) \mathrm{x}(\mathrm{g}+1)$ component identity matrix.

Thus

$$
\phi_{1}=\left[\begin{array}{cccccc}
1 & 0 & \ldots & . & 0 & 0 \\
0 & 1 & \ldots & . & 0 & 0 \\
. & & & & & \\
. & & & & & \\
. & & & & & \\
0 & 0 & \ldots & . & 1 & 0 \\
0 & 0 & \ldots & . & 0 & 1
\end{array}\right]
$$

All the vectors here are $(\mathrm{g}+1)$ components vectors and the matrix is $(\mathrm{g}+1) \mathrm{x}(\mathrm{g}+1)$. The Kalman filter is now the conventional arrangement with exponential window (fading memory).

5.6 RESULTS AND ANALYSIS OF COMPUTER SIMULATION TESTS

Computer-simulation tests have been carried out on the systems 5.1-5.3 over a model of the receiver of a 4800 bits/s QPSK system, operating at 2400 bauds, with an 1800 Hz carrier. The results of the tests are given in Tables 5.6.1-5.6.3 and in Figs. 5.6.1-5.6.2. Two different measures of the average error in $Y_{i, i-1}^{\prime}$, have been used in the tests. These are

$$
\begin{align*}
& \xi_{1}=10 \log _{10}\left(\frac{1}{54000} \sum_{i=6001}^{60000}\left|Y_{i}-Y_{i, i-1}^{\prime}\right|^{2}\right) \\
& \xi_{2}=10 \log _{10}\left(\frac{1}{54000} \sum_{i=6001}^{60000} \frac{\mid Y_{i}-Y_{i, i-1}^{\prime} P^{2}}{\left|Y_{i}\right|^{2}}\right)
\end{align*}
$$

where the mean-square value of $\left|Y_{i}\right|$ is close to unity. The parameter ξ_{1}, termed as the mean-squared estimation error, measures the actual error in $Y_{i, i-1}^{\prime}$, whereas the parameter ξ_{2}, termed as the mean-squared normalized error, measures the normalized or relative error in $Y_{i, i-1}^{\prime}$. The first 1000 of the received samples in any test, are ignored to allow the stabilization of the fading and additive noise processes. During the next 5000 received samples the estimation process is allowed to stabilize and no measurement of error is carried out. This eliminates the effect of any transient behaviour of the estimators at the start-up. In fact computer-simulation tests were carried out to see the effect of stabilization length on the performance of the systems $5.1-5.3$, and 5000 received samples were found to be more than adequate for the estimators to stabilize. Over the next 54000 received samples, ξ_{1} and ξ_{2} are evaluated according to Eqns. 5.6.1-5.6.2. Thus ξ_{1} and ξ_{2} give a measure of the steady-state performance of the estimators.

At the start of the estimation process, the matrix P_{i}, in Eqn. 5.3.40, is taken as an identity matrix and the estimate of the channel is set to its actual value, for all the systems. In system 5.1, the vector V_{i}, in Eqn. 5.3.2, is taken as

$$
V_{0}=\left[\begin{array}{lllllll}
y_{0,0} & y_{0,1} & \ldots & y_{0,8} & 0 & \ldots & 0
\end{array}\right]
$$

at the start of estimation process. The initial estimate is obtained by means of a training sequence that precedes before the start of the actual transmission of data. In the tests, however, the estimate of the channel is set to its actual value.

Simulation tests were carried out on all systems with different initial settings of the P_{i} matrix and the results show that it did not make any difference to the performance of the systems. The transition matrix ϕ_{i}, in system 5.2 , is set to identity matrix at the beginning of the transmission.

The signal/noise ratio is measured as $\psi \mathrm{dB}$, where

$$
\psi=10 \log _{10}\left(\frac{E_{b}}{\frac{1}{2} N_{0}}\right)
$$

where E_{b} is the average transmitted energy per bit at the input to the HF radio link, and is unity, while ${ }_{2}^{2} N_{0}$ is the two-sided power spectral density of the additive white Gaussian noise at the output of the HF radio link.

At every signal/noise ratio, the scalar constants ω in systems 5.1 and 5.3 and ω, θ_{1} and θ_{2} in system 5.2 have been approximately optimized, so that the error in the estimation/prediction of the sampled impulse-response of the channel, defined by Eqn. 5.6.1, is minimized.

Tables 5.6.1-5.6.3 and Figs. 5.6.1-5.6.2 summarize the results of extensive computer-simulation tests. Fig. 5.6.1 compares the performance of systems 5.1 5.3. The results show a significant improvement in the performance of systems 5.1 and 5.2, compared with system 5.3. The results also show that the relative performance of systems 5.1 - 5.3 are not significantly affected by the error measurement used. Thus, for the purpose of comparison, both ξ_{1} and ξ_{2} give a reliable measure of the effectiveness of an estimator. Computer-simulation tests on systems 5.1-5.3, to study the effect of noise statistics on the performance of the estimators, have shown that only negligibly small differences in the performance of the systems occur with either correlated or uncorrelated noise introduced in the channel in Eqn. 5.2.3.

Fig. 5.6.2 show the steady state performance of systems 5.1 and 5.3 , at 60 dB signal/noise ratio. The parameter in Fig. 5.6.2, is here, the square of the error in $Y_{i, i-1}^{\prime}$ measured in dB , relative to unity, and is

$$
\xi_{i}=10 \log _{10}\left(\left|Y_{i}-Y_{i, i-1}^{\prime}\right|^{2}\right)
$$

The measurement in Fig. 5.6.2, is taken during the stable operation of the estimator. The channel estimators, listed in order of increasing complexity are systems 5.3, 5.2 and 5.1. System 5.2 is, however, comparatively a simpler system, compared with system 5.1, as the former determines the transition matrix ϕ_{i} using a degree-one predictor (Section 5.5) and, all vectors are having ($\mathrm{g}+1$) components and all matrices are $(\mathrm{g}+1) \mathrm{x}(\mathrm{g}+1)$.

TABLE 5.6.1 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATE OF THE CHANNEL SAMPLE IMPULSE-RESPONSE GIVEN BY SYSTEM 5.1 FOR A 3 SKY WAVES CHANNEL.

ψ (dB)	ω	Correlated noise		Uncorrelated noise	
		ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$	ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$
10	0.990	-12.270	-10.975	-12.273	-10.955
20	0.985	-19.418	-18.214	-19.435	-18.289
30	0.970	-26.195	-24.928	-26.229	-24.939
40	0.960	-32.437	-31.361	-32.477	-31.381
60	0.880	-40.191	-39.347	-40.185	-39.342

TABLE 5.6.2 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATE OF THE CHANNEL SAMPLE IMPULSE-RESPONSE GIVEN BY SYSTEM 5.2 FOR A 3 SKY WAVES CHANNEL.

ψ (dB)	ω	θ_{1}	θ_{2}	Correlated noise		Uncorrelated noise	
				ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$	ξ_{1} dB	ξ_{2} $(\mathrm{~dB})$
10	0.975	0.002	0.800	-12.168	-10.878	-12.153	-10.853
20	0.965	0.008	0.825	-18.944	-17.659	-18.961	-17.656
30	0.950	0.014	0.800	-25.764	-24.520	-25.826	-24.572
40	0.930	0.020	0.850	-31.744	-30.607	-31.796	-30.656
60	0.850	0.038	0.925	-38.057	-37.132	-38.131	-37.219

TABLE 5.6.3 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR in the estimate of the channel sample impulse reSPONSE GIVEN BY SYSTEM 5.3 FOR A 3 SKY WAVES CHANNEL.

ψ (dB)		Correlated noise		Uncorrelated noise	
		ξ_{1} $(d B)$	ξ_{2} $(d B)$	ξ_{1} $(d B)$	ξ_{2} $(d B)$
10	0.980	-12.170	-10.917	-12.137	-10.894
20	0.950	-17.634	-16.391	-17.624	-16.379
30	0.910	-21.695	-20.587	-21.693	-20.578
40	0.870	-23.163	-22.147	-23.172	-22.150
60	0.860	-23.403	-22.407	-23.421	-22.424

Fig. 5.7.1 - Performance of Systems 5.1, $5.2 \& 5.3$

CHAPTER 6

ADAPTIVE CHANNEL ESTIMATORS

6.1 INTRODUCTION

A simple estimator designed for a 4800 bits/s modem and employing a polynomial filter that gives a prediction of the channel sampled impulse-response has already been considered in Chapter 4. This estimator is a development of the conventional gradient estimator [33, 35-36, 52, 54, 57, 62, 99-100]. The class of estimators, referred to as systems $6.1-6.5$, considered in this chapter are called the Adaptive channel estimators. These estimators are developments of the simple gradient estimator. They are adaptive because they make no use of any prior knowledge of the channel and are able to track effectively an HF channel irrespective of the number of sky waves present in the fading channel. The adaptive channel estimators are studied for use in a QPSK modem that operates at 4800 bits/s over a voiceband HF radio link. Results of the computer-simulation tests are presented, comparing the accuracies of the channel estimates given by different estimators, at the end of this chapter.

6.2 MODEL OF DATA TRANSMISSION SYSTEM USED IN THE TESTS

The model of the data transmission system used in tests is shown in Fig. 3.5.1. The received signal, at time $t=i T$, is given by (Eqn. 3.4.2)

$$
\begin{align*}
r_{i} & =\sum_{h=0}^{g} s_{i-h} y_{i, h}+w_{i} \\
& =Y_{i} S_{i}^{T}+w_{i}
\end{align*}
$$

r_{i} is sample value of the complex-valued resultant baseband signal $r(t)$ at time $t=i T$, as can be seen from Fig. 3.5.1. Y_{i} and S_{i} are $(\mathrm{g}+1)$ - component row vectors, and s_{i}^{τ} is the transpose of S_{i}.
Y_{i} and S_{i} are given by (Eqns. 3.4.4 and 3.4.5)

$$
\begin{align*}
Y_{i} & =\left[\begin{array}{llllll}
y_{i, 0} & y_{i, 1} & y_{i, 2} & \ldots & y_{i, g}
\end{array}\right] \\
S_{i} & =\left[\begin{array}{llllll}
s_{i} & s_{i-1} & s_{i-2} & \ldots & s_{i-g}
\end{array}\right]
\end{align*}
$$

The vector Y_{i}, represents the sampled impulse-response of the linear baseband channel, at time $t=\mathrm{iT}$. The HF channel is assumed to have $(\mathrm{g}+1)$ components in its sampled impulse-response. The scalar quantity w_{i} in Eqns. 6.2 .1 and 6.2 .2 is the noise sample at time $t=i T$. The signal r_{i} and s_{i} are fed to the channel estimator to give an estimate of the channel sampled impulse-response Y_{i}^{\prime}, at time $\mathrm{t}=\mathrm{i} \mathrm{T}$, where

$$
Y_{i}^{\prime}=\left[\begin{array}{llllll}
y_{i, 0}^{\prime} & y_{i, 1}^{\prime} & y_{i, 2}^{\prime} & \ldots & y_{i, g}^{\prime}
\end{array}\right]
$$

This estimate of the channel sampled impulse-response, Y_{i}^{\prime}, is fed to the detector to detect s_{i+1} when the next received signal r_{i+1} is received by the detector. Details regarding the channel and the channel model can be found in Chapters 2 and 3 respectively.

6.3 SYSTEM 6.1

System 6.1 is a development of the Feedforward transversal filter estimator of system 4.2 [54]. The estimator of system 6.1 uses the same linear feedforward transversal filter (Fig. 4.3.1, [54]). As is shown in Fig. 4.3.1, the estimator holds in store the detected data symbols

$$
S_{i}^{\prime}=\left[\begin{array}{llllll}
& s_{i}^{\prime} & s_{i-1}^{\prime} & s_{i-2}^{\prime} & \ldots & s_{i-g}^{\prime}
\end{array}\right]
$$

following the detection of s_{i}. Correct detection is assumed and, therefore, Eqn. 6.3.1 can be written as

$$
S_{i}=\left[\begin{array}{lllll}
s_{i} & s_{i-1} & s_{i-2} & \cdots & s_{i-g}
\end{array}\right]
$$

The estimator forms an estimate of r_{i}^{\prime} of the received sample r_{i}, such that

$$
\begin{align*}
r_{i}^{\prime} & =\sum_{h=0}^{g} s_{i-h} y_{i, i-1, h}^{\prime} \\
& =Y_{i, i-1}^{\prime} S_{i}^{T}
\end{align*}
$$

where $Y_{i, i-1}^{\prime}$ is the one-step prediction of Y_{i}, given by

$$
Y_{i, i-1}^{\prime}=\left[\begin{array}{llllll}
& y_{i, i-1,0}^{\prime} & y_{i, i-1,1}^{\prime} & \cdots & y_{i, i-1, g}^{\prime}
\end{array}\right]
$$

$Y_{i, i-1}^{\prime}$ is a $(g+1)$ - component row vector. The error in the estimation of received signal is, therefore,

$$
e_{i}=r_{i}-r_{i}^{\prime}
$$

The one-step prediction of Y_{i}, given by $Y_{i, i-1}^{\prime}$, in Eqn. 6.3.5, is obtained from the updated estimate of Y_{i}, given by

$$
Y_{i}^{\prime}=\left[\begin{array}{lllll}
& y_{i, 0}^{\prime} & y_{i, 1}^{\prime} & \cdots \cdots & y_{i, g}^{\prime}
\end{array}\right]
$$

in the following manner.

An estimate of the error in prediction is

$$
X_{i}=Y_{i}^{\prime}-Y_{i, i-1}^{\prime}
$$

The actual error in $Y_{i, i-1}^{\prime}$ is

$$
Y_{i}-Y_{i, i-1}^{\prime}
$$

The prediction of Y_{i+1} is now determined by means of a polynomial filter [53] that operates as follows

$$
Y_{i+1, i}^{\prime \prime}=Y_{i, i-1}^{\prime \prime}+(1-\theta)^{2} X_{i}
$$

$$
Y_{i+1, i}^{\prime}=Y_{i, i-1}^{\prime}+Y_{i+1, i}^{\prime \prime}+\left(1-\theta^{2}\right) X_{i}
$$

The vector $Y_{i+1, i}^{\prime}$ is a degree-1 least-squares fading memory prediction of Y_{i+1} [53-54], and the vector $Y_{i+1, i}^{\prime \prime}$ is a prediction of the rate of change with i of Y_{i+1}. The scalar constant θ is real-valued and is in the range 0 to 1 (usually close to 1).

An estimate X_{i}^{\prime} of the actual error in $Y_{i, i-1}^{\prime}$ given by Eqn. 6.3.9, can in principle, be derived from the fact that the prediction given by Eqns. 6.3.8-6.3.11 employs a degree-1 least-squares fading memory polynomial filter [53-54]. The latter assumes that the rate of change of Y_{i} with i is constant or only slowly varies with i. Thus a significant source of error in a prediction $Y_{i, i-1}^{\prime}$ is likely to be the acceleration (variation in rate of change) in Y_{i}. If the only source of error in $Y_{i, i-1}^{\prime}$ is due to the acceleration in Y_{i}, then

$$
Y_{i}=Y_{i, i-1}^{\prime}+c_{i} A_{i}
$$

where c_{i} is a complex-valued scalar and

$$
\begin{align*}
A_{i} & =\left(Y_{i+1}-Y_{i}\right)-\left(Y_{i}-Y_{i-1}\right) \\
& =Y_{i+1}-2 Y_{i}+Y_{i-1}
\end{align*}
$$

such that $X_{i}=c_{i} A_{i}$ (from Eqn. 6.3.9). An estimate of A_{i} is given by

$$
A_{i}^{\prime}=Y_{i+1, i}^{\prime}-2 Y_{i, i-1}^{\prime}+Y_{i-1, i-2}^{\prime}
$$

The weakness of A_{i}^{\prime} in Eqn. 6.3.14 is its relatively high noise level, bearing in mind that $Y_{i-1, i-2}^{\prime}, Y_{i, i-1}^{\prime}$ and $Y_{i+1, i}^{\prime}$ do not differ greatly, much of the difference between them being due to the noise. Thus, instead of using A_{i}^{\prime}, the estimator uses the corresponding vector

$$
Z_{i}=z_{i, 0} \quad z_{i, 1} \quad \ldots . \quad z_{i, g}
$$

which is derived from A_{i}^{\prime} as follows. First, let the absolute value (modulus) of the $(\mathrm{h}+1)^{\text {th }}$ component of A_{i}^{\prime} be $\alpha_{i, h}$, for $\mathrm{h}=0,1, \ldots, \mathrm{~g}$, and suppose that A_{1}^{\prime} is the first of the $\left\{A_{i}^{\prime}\right\}$ to be processed. Now $z_{i, h}$ is a measure of the average value of $\alpha_{i, h}$, which may be either the growing-memory average, given by

$$
z_{i, h}=i^{-1} \sum_{j=1}^{i} \alpha_{j, h}
$$

or else the fading-memory average, given by

$$
z_{i, h}=a \sum_{j=1}^{i}(1-a)^{i-j} \alpha_{j, h}
$$

where a is a real-valued constant such that $0<\mathrm{a}<1$, and j is an integer. Eqn. 6.3.16 can be implemented sequentially as

$$
\begin{align*}
z_{i, h} & =\left(1-i^{-1}\right) z_{i-1, h}+i^{-1} \alpha_{i, h} \\
& =z_{i-1, h}+i^{-1}\left(\alpha_{i, h}-z_{i-1, h}\right)
\end{align*}
$$

and Eqn. 6.3.17 can be implemented sequentially as

$$
\begin{align*}
z_{i, h} & =(1-a) z_{i-1, h}+a \alpha_{i, h} \\
& =z_{i-1, h}+a\left(\alpha_{i, h}-z_{i-1, h}\right)
\end{align*}
$$

where

$$
z_{0, h}=\alpha_{0, h}=0
$$

for $h=0,1, \ldots ., g$.

Since all components of Z_{i} are real-valued whereas the components of A_{i} in Eqn. 6.3.13 are in general complex-valued, neither $Y_{i, i-1}^{\prime}+Z_{i}$ nor $Y_{i, i-1}^{\prime}+c_{i} Z_{i}$ could be used as a satisfactory updated estimate of Y_{i} in Eqn. 6.3.12. Nevertheless, $z_{i, ~}$ gives a measure of the magnitude $\left|y_{i, h}-y_{i, i-1, h}^{\prime}\right|$ of the error in the component $y_{i, i-1, h}^{\prime}$ of $Y_{i, i-1}^{\prime}$. Furthermore, for the most accurate tracking of a time-varying channel, the step size employed in the gradient algorithm of Eqn. 4.4 .1 should be permitted to vary from one component of $Y_{i, i-1}^{\prime}$ to another, and should increase with the likely magnitude of the error in that component. These considerations suggest that Eqn. 4.4.1 should be replaced by

$$
y_{i, h}^{\prime}=y_{i, i-1, h}^{\prime}+b u_{i, h} e_{i} s_{i-h}^{*}
$$

for $\mathrm{h}=0,1, \ldots ., \mathrm{g}$, where b is an appropriate small positive real-valued constant, and

$$
u_{i, h}=p\left(z_{i, h}\right)
$$

$p\left(z_{i, h}\right)$ is a monotonically non-decreasing positive real-valued function of $z_{i b}$. The parameter $u_{i, h}$ in Eqn. 6.3 .23 cannot be replaced by $z_{i, h}$ itself, for the following reasons. Firstly, no $u_{i, ~}$ must be permitted to remain at zero for any significant period, since, if this occurs, the corresponding component of $Y_{i, i-1}^{\prime \prime}$ in Eqn. 6.3.10 may become locked at zero, thus preventing any further change in the corresponding $y_{i, i-1, h}^{\prime}$. Secondly, no $u_{i, h}$ should be permitted to become too large, in order to avoid possible instability of the algorithm given by Eqn. 6.3.23. Thus the value of $u_{i, p}$ should be constrained such that

$$
k_{1}<u_{i, h}<k_{2}
$$

where k_{1} and k_{2} are appropriate positive real-valued constants. Finally, tests have shown that, for the best performance, $u_{i, h}$ must vary non-linearly with $z_{i, d}$ over the range k_{1} and k_{2}. In the most effective arrangement that has been found, $u_{i, h}$ varies with $\mathrm{z}_{\mathrm{i}, \mathrm{b}}$ as shown in Fig. 6.3.1, where $-\mathrm{k}_{1}=10^{-6}$ and $\mathrm{k}_{2}=\infty$. The quantity k_{0} is a small positive real-valued constant, such that

$$
d=k_{0}^{4}
$$

and, when $\mathrm{z}_{\mathrm{i}, \mathrm{h}}>\mathrm{d}$,

$$
u_{i, h}=z_{i, h}^{0.25}
$$

The nonlinear variation of $u_{i, h}$ with $z_{i, h}$ here prevents $u_{i, h}$ from becoming too large, so that it is not, in fact, necessary to limit the maximum value of $u_{i, b}$. The prediction of $\mathrm{Y}_{\mathrm{i}+1}$ is determined by Eqns. 6.3.8-6.3.11.

6.4 SYSTEM 6.2

System 6.2, instead of attempting to measure the acceleration in Y_{i} directly, uses the fact that the greater the maximum magnitude of any $y_{i b}$, the greater is likely to be its maximum acceleration and hence the greater the probable value of the largest error in the corresponding prediction $y_{i, i-1, h}^{\prime}$. System 6.2 operates on estimates of the magnitude of the $\left\{y_{i, h}\right\}$.

The estimator forms an estimate r_{i}^{\prime} of the received sample r_{i}, given by Eqns. 6.3.36.3.4. It then forms the error in the estimate of the received signal, given by Eqn. 6.3.6. The estimator forms either the growing-memory or the fading-memory average $x_{i, h}^{2}$ of the mean square absolute value of $y_{i, i-1, h}^{\prime}$, for $\mathrm{h}=0,1, \ldots$, g . In particular, the growing memory average $x_{i, h}^{2}$ is now given by

$$
x_{i, h}^{2}=x_{i-1, h}^{2}+i^{-1}\left(\left|y_{i, i-1, h}^{\prime}\right|^{2}-x_{i-1, h}^{2}\right)
$$

and the fading memory average $x_{i, h}^{2}$ is given by

$$
x_{i, h}^{2}=x_{i-1, h}^{2}+a\left(\left|y_{i, i-1, h}^{\prime}\right|_{-}^{2}-x_{i-1, h}^{2}\right)
$$

where a is positive real-valued constant such that $0<\mathrm{a}<1$, and

$$
x_{0, h}^{2}=\left|y_{0,-1, h}\right|^{2}
$$

for $\mathrm{h}=0,1, \ldots, \mathrm{~g} . \quad \mathrm{Y}_{0.1}$ is determined by a training signal that precedes the transmission of data.

The estimator next forms an update of $y_{i, i-1, h}^{\prime}$ using Eqn. 6.3.23,

$$
y_{i, h}^{\prime}=y_{i, i-1, h}^{\prime}+b u_{i, h} e_{i} s_{i-h}^{*}
$$

where

$$
u_{i, h}=p\left(x_{i, h}^{2}\right)
$$

$p\left(x_{i, h}^{2}\right)$, as before, is a monotonically non-decreasing positive real-valued function of $x_{i, h}^{2}$. In system 6.2, $\mathrm{u}_{\mathrm{i}, \mathrm{h}}$ varies with $x_{i, h}^{2}$ according to Fig. 6.4.1. In all the tests, $(\mathrm{g}+1)$, the total number of components in the sampled impulse-response of the channel is taken as 32. However, with the particular HF radio link tested, the last ten components of Y_{i} are all ideally equal to zero. This has lead to the non-adaptive version of system 6.2, in which the number of components of $Y_{i, i-1}^{\prime}$ is reduced to 22, by simply setting to zero its last ten components and operating system 4.2 with the corresponding 22 component vector $Y_{i, i-1}^{\prime}$. Eqn. 4.4.1 is now used in place of Eqn. 6.4.4 for the gradient algorithm. The prediction of Y_{i+1} is determined, as before, by means of a degree-1 least-squares fading memory prediction, using Eqns. 6.3.86.3.11. The results of the computer-simulation tests on a model of a data transmission system are presented at the end of the chapter.

6.5 SYSTEM 6.3

System 6.3 is a simple modification of system 6.2. Just as system 6.2, system 6.3 operates on the estimates of the magnitude of the $\left\{y_{i, h}\right\}$.

Just before the receipt of the received-signal r_{i}, the estimator has in store the one-step prediction $Y_{i, i-1}^{\prime}$ of the vector Y_{i}. The estimator first forms the growing memory average using Eqn. 6.4.1, or the fading memory average using Eqn. 6.4.2, $x_{i, h}^{2}$, of the mean square absolute value of $y_{i, i-1, h}^{\prime}$ for $h=0,1, \ldots ., g$. At the start of the estimation process

$$
x_{a, h}^{2}=\left|y_{0,-1, h}\right|^{2}
$$

$\mathrm{Y}_{0.1}$ is determined by a training signal that proceeds the transmission of data.

The estimator next forms an estimate r_{i}^{\prime} of the received sample r_{i}, using Eqn. 6.3.3. It then measures the error in the estimation of the received signal using Eqn. 6.3.6.

The estimator next forms an update of $y_{i, i-1, k}^{\prime}$ using

$$
y_{i, h}^{\prime}=y_{i, i-1, h}^{\prime}+b u_{i, h} e_{i} s_{i-h}^{*}
$$

Fig. 6.3.1 - Variation of $u_{i, h}$ with $z_{i, h}$

Fig. 6.4.1 - Variation of $u_{i, h}$ with $x_{i, h}^{2}$
where b is an appropriate real-valued scalar constant and

$$
u_{i, h}=p\left(x_{i, h}^{2}\right)
$$

$p\left(x_{i, h}^{2}\right)$ is a monotonically non-decreasing positive real-valued function of $x_{i, k}^{2}$. In system 6.3, $\mathrm{u}_{\mathrm{i}, \mathrm{h}}$ and $\mathrm{x}_{\mathrm{i}, \mathrm{h}}$ are related according to Fig. 6.5.1. Over the linear region $\mathrm{u}_{\mathrm{i}, \mathrm{h}}$ and $\mathrm{x}_{\mathrm{i} \mathrm{h}}$ satisfies the relation

$$
u_{i, h}=c x_{i, h}
$$

and $\mathrm{u}_{\mathrm{i}, \mathrm{p}}$ is such that

$$
K_{1}<u_{i, h}<K_{2}
$$

In Eqn. 6.5.4, c is an appropriate positive real-valued constant.

An interesting arrangement of system 6.3 is that a in Eqn. 6.4 .2 is set to unity so that

$$
x_{i, h}^{2}=\left|y_{i, i-1, h}^{\prime}\right|^{2}
$$

and no averaging is in fact carried out. The one-step prediction of Y_{i+1} is determined using Eqns. 6.3.8-6.3.11.

6.6 SYSTEM 6.4

System 6.4 also makes use of the estimate of the magnitude of the $\left\{y_{i, h}\right\}$.

The estimator holds in store the one-step prediction $Y_{i, i-1}^{\prime}$ of the vector Y_{i} just before the receipt of r_{i}. It forms the growing memory average, Eqn. 6.4.1, or the fading memory average, Eqn. 6.4.2, of the mean square absolute value of $y_{i, i,-1, h}^{\prime}$, for $\mathrm{h}=0,1$, $\ldots ., \mathrm{g}$. At the start of the estimation process, it is assumed that $\mathrm{Y}_{0,1}$, is known, being determined by a training signal that precedes the transmission of data. Thus

$$
x_{0, h}^{2}=\left|y_{0,-1, h}\right|^{2}
$$

The estimator forms an estimate of the received signal using Eqn. 6.3.3 and measures the error in the estimation of the received signal using Eqn. 6.3.6. It then forms an update of $y_{i, i-1, n}^{\prime}$ using Eqn. 6.4.4. One-step prediction of Y_{i+1} is then made by the estimator using Eqns. 6.3.8-6.3.11. In Eqn. 6.4.4, $\mathrm{u}_{\mathrm{i}, \mathrm{h}}$ and $x_{i, k}^{2}$ are now related according to Fig. 6.6.1, for system 6.4. Over the curved portion of the relationship in Fig. 6.6.1,

$$
u_{i, h}=c x_{i, h}^{0.5}
$$

where c is an appropriate positive real-valued scalar constant.

The value of $\mathrm{u}_{\mathrm{i}, \mathrm{h}}$ is constrained such that

$$
K_{1}<u_{i, h}<K_{2}
$$

where K_{1} and K_{2} are appropriate positive real-valued constants. The nonlinear variations of $u_{i, h}$ with $x_{i, h}^{2}$ here prevents $u_{i, h}$ from becoming too large so that it is not, in fact, necessary to limit the maximum value of $u_{i, h}$. System 6.4 has been studied for both fading-memory averaging and growing-memory averaging of $x_{i, k}^{2}$ and the results of the computer-simulation tests on a model of a digital data transmission system are presented in Section 6.8.

6.7 SYSTEM 6.5

System 6.5 is a simple modification of system 6.4. On receipt of r_{i}, the estimator holds in store the one-step prediction $Y_{i, i-1}^{\prime}$ of the vector Y_{i}. System 6.5 first forms the fading-memory average using Eqn. 6.4.2, or the growing-memory average using Eqn. 6.4.1, $x_{i, h}^{2}$, of the mean squared absolute value of $y_{i, i-1, h}^{\prime}$ for $h=0,1, \ldots ., \mathrm{g}$. An estimate of the received signal is formed using Eqn. 6.3.3 and a measure of the error in the estimation of the received signal obtained using Eqn. 6.3.6. Now system 6.5 forms an update of $Y_{i, i,-1, h}^{\prime}$ using Eqn. 6.4.4. Here in Eqn. 6.4.4, b is an appropriate scalar constant and $u_{i, h}$ and $x_{i, h}^{2}$ are related according to Fig. 6.7.1. Over the curved portion of the relationship in Fig. 6.7.1

Fig. 6.5.1 - Variation of $u_{i, h}$ with $x_{i, h}$

Fig. 6.6.1 - Variation of $u_{i, h}$ with $x_{i, h}^{2}$

$$
u_{i, h}=\left(x_{i, h}^{2}\right)^{\frac{1}{4}}=x_{i, h}^{\frac{1}{2}}
$$

The value of $u_{i, h}$ is constrained such that

$$
K_{1}<u_{i, h}<K_{2}
$$

where K_{1} and K_{2} are appropriate positive real-valued constants. It is not necessary to limit the maximum value of $u_{i, h}$, owing to the nonlinear variation of $u_{i, h}$ and $x_{i, h}^{2}$, as can been seen form Fig. 6.7.1. This prevents $u_{i, f}$ from becoming too large.

System 6.5 makes a one-step prediction of Y_{i+1} using Eqns. 6.3.8-6.3.11. As a variation to the algorithm of system 6.5 , no prediction is made and the updated estimates given by Eqn. 6.4 .4 is now used. This arrangement is therefore called system 6.5 (Degree-zero), whereas the former is called the system 6.5 (Degree-one).

6.8 RESULTS AND ANALYSIS OF COMPUTER-SIMULATION TESTS

Computer-simulation tests have been carried out on the systems 6.1-6.5. The results of the tests are given in Tables 6.8.1-6.8.9 and in Figs. 6.8.1-6.8.3. The mean-square error in $Y_{i, i-1}^{\prime}$ is measured in dB relative to unity, and is given by

$$
\xi_{1}=10 \log _{10}\left(\frac{1}{56000} \sum_{i=4001}^{60000}\left|Y_{i}-Y_{i, i-1}^{\prime}\right|^{2}\right)
$$

where the mean-square value of $\left|Y_{i}\right|$ is unity. The first 1000 of the received sample in any test are ignored to allow the stabilization of the fading and additive noise processes. During the next 3000 received samples the estimation process operates as described, with a good starting-up procedure, but no measurements are carried out. This eliminates the effect of any transient behaviour of the estimator at start up. Over the following 56000 received samples, ξ_{1} is evaluated according to Eqn. 6.8.1. Thus ξ_{1} gives a measure of the steady-state performance of the estimator, which is here taken to be its performance during the prolonged and uninterrupted transmission of the data signal.

Fig. 6.7.1 - Variation of $u_{i, h}$ with $x_{i, h}^{2}$

The signal/noise ratio is measured as $\psi \mathrm{dB}$, where

$$
\psi=10 \quad \log _{10}\left(\frac{1}{\frac{1}{2} N_{0}}\right)
$$

Eqn. 6.8.2 uses the fact that the average transmitted energy per bit at the input and output of the HF radio link is unity, and the two-sided power spectral density of the additive white Gaussian noise at the output of the HF radio link is $\frac{1}{2} N_{0}$.

In each of the Tables 6.8.1 and 6.8.9, the adjustable scalar parameters have been optimized as far as possible to minimize ξ_{1}. In a particular case, for each of systems 6.1 and 6.3 (Tables 6.8.1 and 6.8.3), no averaging is applied in the evaluation of $\mathrm{z}_{\mathrm{i}, \mathrm{h}}$ and $\mathrm{x}_{\mathrm{i},}$, respectively, such that $\mathrm{a}=1$ in Eqns. 6.3.17 and 6.4.2. Each system is now approximately optimized, subject to the condition $\mathrm{a}=1$ in the fading-memory algorithm. Again, for the first half of the results in Table 6.8.1, b is fixed at unity.

Three different values of $\psi(20,30$ and 60 dB$)$ have been used in the tests, where the values 20 and 30 dB are such that a significant number of errors in detection of the received data symbols are likely to be caused from time to time by the additive noise, whereas the value 60 dB represents a high signal/noise, where the fading predominates over the noise. System 6.5 has, however, been tested at additional values of $\psi(10$ and 40 dB$)$.

Table 6.8 .6 shows the performance of system 6.5 incorporated with a degree-one predictor, whereas, Table 6.8 .7 shows the performance of system 6.5 without the predictor. In Tables 6.8.6-6.8.9, the parameter ξ_{1}, is a measure of the actual error in $Y_{i, i-1}^{\prime}$, given Eqn. 6.8.1, whereas, the parameter ξ_{2} is a measure of the normalized or relative error in $Y_{i, i-1}^{\prime}$. ξ_{2} is given by

$$
\xi_{2}=10 \log _{10}\left(\frac{1}{56000} \sum_{i=4001}^{60000} \frac{\left|Y_{i}-Y_{i, i-1}^{\prime}\right|^{2}}{\left|Y_{i}\right|^{2}}\right)
$$

System 6.5, in Tables 6.8.6 and 6.8.7, uses the fading memory average $x_{i, h}^{2}$ of the mean squared absolute value of $y_{i, i-1, h}^{\prime}$, for $\mathrm{h}=0,1, \ldots ., \mathrm{g}$, given by Eqn. 6.4.2.

Tables 6.8.8 and 6.8.9 show the performance of system 6.5 with a four Rayleigh fading sky waves. The scalar constants, for system 6.5 , have been optimized for a
three sky wave channel. Three of the sky waves are exactly as previously assumed, and the fourth sky wave has a frequency spread of 2 Hz and a transmission delay of 4 ms . relative to that of the first sky wave. The average signal power received from the fourth sky wave is 20 dB below that received from each of the others, so that the average energy per bit at the output of the HF radio link is now a little above unity. The parameters measured in Tables 6.8.8 and 6.8.9, are ξ_{1} and ξ_{2}, using Eqns. 6.8.1 and 6.8 .3 respectively. Table 6.8 .9 shows the performance of system 6.5 when the channel is introducing uncorrelated noise, in Eqn. 6.2.1.

The good performance achieved by system 6.1 suggests that the basic mechanism behind the improvement in performance of systems 6.2-6.5 over system 4.2 (Chapter 4), is, at least in part, due to the fact that systems 6.2-6.5 are better able to correct an error in $Y_{i, i-1}^{\prime}$ caused by an acceleration in Y_{i}. In system 6.2 there are a series of local minima in the value of ξ_{1}, as the parameters are varied, instead of a single global minimum. This has led to some difficulty in the selection of the parameter values in the Table 6.8.2.

The rather similar performances of system 6.2-6.5 suggest that the precise relationship between $u_{i, h}$ and $x_{i, h}$ is not critical, so long as the general form of the relationship does not differ too much from that for system 6.5. In a practical implementation of any of these systems, $u_{i, h}$ would be determined from $x_{i, h}$ by means of a look-up table, so that the complexity of the relationship between $u_{i, t}$ and $x_{i, b}$ is of no great practical significance.

The growing-memory averages would not be suitable for a practical application of the system, since a drift in phase of the timing waveform at the receiver could introduce considerable changes into the relative peak magnitudes of the different components of Y_{i}, and contrary to the case of fading-memory averages, these would not be tracked by the growing-memory averages. The latter have, however, been studied as a check for the effectiveness of the former, because, in the absence of any shift in timing phase or change in fading statistics, the growing-memory averages can be taken to be optimum.

Tests have been carried out with system 6.5, for two different values of K_{1} and also two different values of a (Table 6.8.5). A very near good performance is obtained here, particularly when $K_{1}=10^{-6}$ and $a=0.01$. System 6.5 has similar performances with a three sky wave and with a four sky wave channel, as can be seen from Tables
6.8.6 and 6.8.9. Fig. 6.8.1 shows the variation of ξ_{1} and ξ_{2} with ψ for system 6.5 (Degree-zero) and system 6.5 (Degree-one) and Fig. 6.8.2 compares system 6.5 for the two different measurement of errors given by Eqns. 6.8.1 and 6.8.3. From the plots it can be seen that the relative performance of the systems are not significantly affected by whether ξ_{1} or ξ_{2} is used as a measurement criteria. Further tests have been carried out with statistically independent noise components $\left\{w_{i}\right\}$ in Eqn. 6.2.1, in place of the slightly correlated noise components actually obtained at the output of the receiver filters. Tests have shown that there is only a negligibly small difference in the observations. Thus the correlation in the noise components does not appear to have any significant effect. Fig. 6.8 .3 shows the steady state performance of system 6.5 at $\psi=60 \mathrm{~dB}$.

The most promising of the various systems studied here is system 6.5 , which gains considerable advantage over system 4.2 in tolerance to additive white Gaussian noise at all signal/noise ratios. The fact that system 6.1 has a performance almost as good as that of system 6.5 suggests that at least a part of the basic mechanism behind the good performance of system 6.5 is its ability to track the accelerations in Y_{i} more accurately than can system 4.2.

TABLE 6.8.1 MEAN SQUARE ERROR IN THE ESTIMATED SAMPLED IMPUL-SE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 6.1

Averaging	ψ	b	θ	K_{0}	K_{1}	K_{2}	a	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$
Growing memory	20	1.0	0.97	0.043	10^{-6}	∞	-	-23.1
	30	1.0	0.96	0.035	10^{-6}	∞	-	-30.2
	60	1.0	0.92	0.030	10^{-6}	∞	-	-41.3
Fading memory	20	1.0	0.97	0.043	10^{-6}	∞	0.25	-23.1
	30	1.0	0.96	0.035	10^{6}	∞	0.11	-30.2
	60	1.0	0.92	0.030	10^{-6}	∞	0.42	-41.2
Fading memory	20	1.0	0.97	0.043	10^{-6}	∞	1.00	-22.3
	30	1.0	0.96	0.035	10^{-6}	∞	1.00	-29.8
	60	1.0	0.92	0.030	10^{-6}	∞	1.00	-40.9
Growing memory	20	0.9	0.97	0.043	10^{-6}	∞	-	-23.3
	30	1.1	0.96	0.035	10^{-6}	∞	-	-30.2
	60	1.2	0.92	0.030	10^{-6}	∞	-	-41.7
Fading memory	20	1.0	0.97	0.043	10^{-6}	∞	0.25	-23.1
	30	1.1	0.96	0.035	10^{-6}	∞	0.11	-30.2
	60	1.2	0.92	0.030	10^{-6}	∞	0.42	-41.6
Fading memory	20	0.8	0.97	0.043	10^{-6}	∞	1.00	-23.3
	30	1.1	0.96	0.035	10^{6}	∞	1.00	-29.8
	60	1.2	0.92	0.030	10^{-6}	∞	1.00	-41.0

TABLE 6.8.2 MEAN SQUARE ERROR IN THE ESTIMATED SAMPLED IMPUL-SE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 6.2

Averaging	ψ	b	θ	d_{0}	K_{1}	K_{2}	a	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$
Growing memory$\mathrm{g}=31$	20	1.0	0.960	4×10^{-5}	10^{-6}	0.120	-	-23.3
	30	1.0	0.947	4×10^{-5}	10^{-6}	0.086	-	-29.0
	60	1.0	0.900	10^{-5}	10^{-6}	0.130	-	-40.6
Fading memory$g=31$	20	1.0	0.960	4×10^{-6}	10^{-6}	0.170	0.04	-23.1
	30	1.0	0.947	3×10^{-6}	10^{-6}	0.086	0.02	-29.0
	60	1.0	0.940	2×10^{-6}	10^{-6}	0.240	0.02	-37.2
NonAdaptive$\begin{aligned} & \mathrm{u}_{\mathrm{i}, \mathrm{l}}=1 \\ & \mathrm{~g}=21 \end{aligned}$	20	0.15	0.970	-	-		-	-21.1
	30	0.12	0.950	-	-		-	-27.8
	60	0.15	0.930	-	-		-	-36.8

TABLE 6.8.3 MEAN SQUARE ERROR IN THE ESTIMATED SAMPLED IMPUL-SE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 6.3

AVERAG- ING	Ψ	\mathbf{b}	θ	\mathbf{c}	K_{1}	K_{2}	\mathbf{a}	ξ_{1} $(\mathbf{d B})$
Growing memory	20	1.0	0.985	2.8	10^{-5}	0.72	-	-22.4
	30	1.0	0.977	2.8	10^{-5}	0.64	-	-29.2
	60	1.0	0.954	19.4	0.02	0.48	-	-40.3
Fading memory	20	1.0	0.985	2.8	10^{-5}	0.72	0.95	-21.9
	30	1.0	0.977	2.8	10^{-5}	0.64	0.95	-28.1
	60	1.0	0.954	19.4	0.02	0.48	1.00	-38.0
Fading memory	20	1.0	0.985	2.8	10^{-5}	0.72	1.00	-21.9
	30	1.0	0.977	2.8	10^{-5}	0.64	1.00	-28.1
	60	1.0	0.954	19.4	0.02	0.48	1.00	-38.0

TABLE 6.8.4 MEAN SQUARE ERROR IN THE ESTIMATED SAMPLED IMPULSE RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 6.4

Averaging	ψ	\mathbf{b}	θ	\mathbf{c}	K_{1}	K_{2}	\mathbf{a}	ξ_{1} $(\mathrm{~dB})$
Growing memory	20	1.0	0.985	0.90	0.001	∞	-	-21.6
	30	1.0	0.976	0.80	0.001	∞	-	-28.7
	60	1.0	0.951	0.72	0.003	∞	-	-40.3
	30	1.0	0.985	0.90	0.001	∞	1.00	-22.0
	60	1.0	0.976	0.80	0.001	∞	1.00	-28.8

TABLE 6.8.5 MEAN SQUARE ERROR IN THE ESTIMATED SAMPLED IMPUL-SE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 6.5

AVERAG- ING	ψ	\mathbf{b}	θ	K_{0}	K_{1}	K_{2}	\mathbf{a}	ξ_{1} $(\mathrm{~dB})$
Growing memory	20	1.0	0.985	0.063	10^{-6}	∞	-	-23.6
	30	1.0	0.976	0.064	10^{-6}	∞	-	-30.6
	60	1.0	0.950	0.024	10^{-6}	∞	-	-43.7
Fading memory	20	1.0	0.985	0.063	10^{-6}	∞	0.01	-23.2
	30	1.0	0.976	0.064	10^{-6}	∞	0.01	-30.3
	60	1.0	0.950	0.024	10^{-6}	∞	0.01	-43.4
Fading memory	20	0.86	0.985	0.063	0.001	∞	0.01	-22.3
	30	0.86	0.976	0.064	0.001	∞	0.01	-28.8
	60	0.78	0.950	0.024	0.001	∞	0.01	-40.0
Fading memory	20	1.0	0.985	0.063	10^{-6}	∞	1.0	-23.1
	30	1.0	0.976	0.064	10^{-6}	∞	1.0	-29.5
	60	1.0	0.950	0.024	10^{-6}	∞	1.0	-42.2

TABLE 6.8.6 MEAN SQUARE ERROR AND MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 3 SKy WAVE CHANNEL FROM SYSTEM 6.5 (DEGREE ONE)

ψ	\mathbf{b}	θ	K_{0}	K_{1}	K_{2}	\mathbf{a}	ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$
10	1.0	0.990	0.063	10^{-6}	∞	0.01	-16.2	-14.9
20	1.0	0.985	0.063	10^{-6}	∞	0.01	-23.2	-21.9
30	1.0	0.976	0.064	10^{-6}	∞	0.01	-30.3	-29.0
40	1.0	0.970	0.064	10^{-6}	∞	0.01	-35.8	-34.4
60	1.0	0.950	0.024	10^{-6}	∞	0.01	-43.4	-42.7

TABLE 6.8.7 MEAN SQUARE ERROR AND MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 6.5 (DEGREE ZERO)

ψ	\mathbf{b}	K_{0}	K_{1}	K_{2}	\mathbf{a}	ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$
10	0.02	0.001	10^{-6}	∞	0.01	-15.595	-14.299
20	0.05	0.003	10^{-6}	∞	0.01	-21.835	-20.646
30	0.08	0.002	10^{-6}	∞	0.01	-26.737	-25.522
40	0.11	0.003	10^{-6}	∞	0.01	-29.625	-28.553
60	0.11	0.002	10^{-6}	∞	0.01	-30.297	-29.098

TABLE 6.8.8 MEAN SQUARE ERROR AND MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 4 SKY WAVE CHANNEL FROM SYSTEM 6.5 (DEGREE ONE).

ψ	\mathbf{b}	θ	K_{0}	K_{1}	K_{2}	\mathbf{a}	ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$
10	1.0	0.990	0.063	10^{-6}	∞	0.01	-16.3	-15.0
20	1.0	0.985	0.063	10^{-6}	∞	0.01	-23.4	-22.1
30	1.0	0.976	0.064	10^{-6}	∞	0.01	-30.4	-29.1
40	1.0	0.970	0.064	10^{-6}	∞	0.01	-35.4	-34.2
60	1.0	0.950	0.024	10^{-6}	∞	0.01	-42.8	-42.1

TABLE 6.8.9 MEAN SQUARE ERROR AND MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 4 SKY WAVE CHANNEL FROM SYSTEM 6.5 (DEGREE ONE). THE CHANNEL INTRODUCING UNCORRELATED NOISE.

ψ	\mathbf{b}	θ	K_{0}	K_{1}	K_{2}	\mathbf{a}	ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$
10	1.0	0.990	0.063	10^{-6}	∞	0.01	-16.4	-15.1
20	1.0	0.985	0.063	10^{-6}	∞	0.01	-23.5	-22.1
30	1.0	0.976	0.064	10^{-6}	∞	0.01	-30.4	-29.1
40	1.0	0.970	0.064	10^{-6}	∞	0.01	-35.5	-34.2
60	1.0	0.950	0.024	10^{-6}	∞	0.01	-42.8	-42.2

Fig. 6.8.1 - Performance of System 6.5

Fig. 6.8.2 - Performance of System 6.5

CHAPTER 7

EFFICIENT CHANNEL ESTIMATORS

7.1 INTRODUCTION

An estimation technique, that takes into account the knowledge of the basic structure of the HF channel, specifically the number of sky waves present in the channel and that the relative delays in transmission between the sky waves are fixed, is proposed in [89]. Computer-simulation tests over various fading channels, on the new estimation technique in [89], have shown that it gains a considerable improvement in performance over some more conventional estimators [20, 35-36, 50-59, 62, 77, 83-84, 87-89, 103]. The much greater accuracy in the channel estimate given by the technique, enables satisfactory operation to be achieved over a model of an HF radio link, at substantially higher transmission rates than is possible with more conventional estimators [20, 35-36, 50, 52-55, 57, 77, 89]. All the estimators discussed in this chapter take into account the prior knowledge of the channel. Several estimation techniques are considered and in some of these a Kalman filter is incorporated into the system in such a way that the filters operates on only a few variable quantities and is, therefore, considerably less complex than conventional Kalman filters. Three different Kalman filters are studied, two of these being designed for a channel varying linearly (at a constant rate) with time and the third one being a conventional Kalman filter that is designed for a time invariant or very slowly time varying channel. All of these employ an exponential window and, therefore, operate with a fading memory. Performance of these estimators are compared through series of computer simulation tests and these are presented at the end of the chapter. Comparison of the results of this estimator with that of the feedforward estimator with prediction, shows a considerable superiority for the efficient channel estimator.

7.2 MODEL OF DATA TRANSMISSION SYSTEM USED IN THE TESTS

Fig. 3.5.1 shows the model of the data transmission system used in the tests. The
type of equipment filters used in the computer-simulation of the channel and the channel model are described in detail in Chapter 3. Chapter 2 describes the modelling of the channel and the particular type of channel used for the test.

The received signal sample, at time $t=i T$, is given by (Eqn. 3.4.2)

$$
\begin{align*}
r_{i} & =\sum_{h=0}^{g} s_{i-h} y_{i, h}+w_{i} \\
& =Y_{i} S_{i}^{T}+w_{i}
\end{align*}
$$

where (Eqn. 3.4.4)

$$
Y_{i}=\left[\begin{array}{llll}
y_{i, 0} & y_{i, 1} & \cdots & y_{i, g}
\end{array}\right]
$$

and (Eqn. 3.4.5)

$$
S_{i}=\left[\begin{array}{llll}
s_{i} & s_{i-1} & \ldots & s_{i-g}
\end{array}\right]
$$

Y_{i} and S_{i} are $(\mathrm{g}+1)$ - component row vectors, and s_{i}^{T} is the transpose of $\mathrm{S}_{\mathrm{i}},(\mathrm{g}+1=32)$.
The vector Y_{i}, represents the sampled impulse-response of the channel, at time $t=i T$. The signals r_{i} and the detected data are fed to the channel estimator to give an estimate of the channel sampled impulse-response Y_{i}^{\prime} at time $\mathrm{t}=\mathrm{i} \mathrm{T}$. Where

$$
Y_{i}^{\prime}=\left[\begin{array}{lllll}
y_{i, 0}^{\prime} & y_{i, 1}^{\prime} & \ldots & y_{i, g}^{\prime}
\end{array}\right]
$$

The channel estimate obtained from the estimator is now fed to the detector to detect S_{i+1} when the next received signal r_{i+1} is received by the detector.

7.3 SYSTEM 7.1

The estimator to be described, called the system 7.1, is the original estimator called the Improved channel estimator in [89]. Data signal is transmitted via 3 independent sky waves and that the time delay introduced in transmission over each sky wave is taken to be fixed over the duration of the data signal. It is assumed that there is no
drift in phase of the timing sampling waveform at the receiver relative to the received signal. The resulting impulse-response of the combined transmitter and receiver filter extends over only a few sampling intervals and the rate of fading on the received data signal is very small compared with the signal element rate. Under the assumed conditions the sampled impulse-response Y_{i} of the linear baseband channel, at time $t=\mathrm{iT}$, approximately satisfies [89]

$$
Y_{i}=\lambda_{i} L+\mu_{i} M+v_{i} N
$$

where L, M and N are fixed ($\mathrm{g}+1$)- component row vectors, with complex-valued components, and λ_{i}, μ_{i} and v_{i} are complex-valued scalars that vary with i. Each of the vectors $\lambda_{i} L, \mu_{i} M$ and $v_{i} N$ is the sampled impulse-response of the channel, at time $\mathrm{t}=\mathrm{iT}$, when the corresponding one of the three sky wave is received in the absence of the other two. For any given value of i, the quantities λ_{i}, μ_{i} and v_{i} are statistically independent Gaussian random variables with zero mean and the same fixed variance. However, for neighbouring values of i, the $\left\{\lambda_{i}\right\},\left\{\mu_{i}\right\}$ and $\left\{v_{i}\right\}$ are highly correlated. The vectors L, M and N are linearly independent and, therefore, span a three-dimensional of the $(\mathrm{g}+1)$ dimensional unitary vector space containing all possible $(\mathrm{g}+1)$ component vectors $\left\{Y_{i}\right\}$ [89]. Since Y_{i} is a linear combination of L, M and N, it must be in the three-dimensional subspace spanned by these.

Thus if the receiver can determine the time invariant vectors L, M, and N, then by just estimating the variables λ_{i}, μ_{i} and v_{i} the estimate of the sampled impulse-response of the channel Y_{i} can easily be obtained. They are not normally orthogonal and do not bear a simple relationship. However, the vector Y_{i} must lie in a three dimensional subspace spanned by L, M, and N, in the ($g+1$)- dimensional unitary vector space containing all ($\mathrm{g}+1$)- component vectors over the complex field. Since L, M, and N are fixed, subspace spanned by the vectors is also fixed, so that the receiver needs only the estimate of the subspace. Consider three orthonormal $(g+1)$ - component vectors A, B, and C that form a basis of the given subspace, such that

$$
Y_{i}=a_{i} A+b_{i} B+c_{i} C
$$

and, for the given vectors A, B, and C, Y_{i} is uniquely determined by $\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}$ and c_{i}. The scalars a_{i}, b_{i} and c_{i} and the components of A, B, and C are all complex-valued. The orthonormal vectors A, B, and C are all of unit length and may be selected quite arbitrarily, just so long as they lie in the given subspace.

Just before the received signal r_{i} is fed to the estimator, the latter has formed the one-step prediction $Y_{i, i-1}^{\prime}$ of the vector Y_{i}. The estimator also holds estimate of A, B, and C, which are the $(g+1)$ - component row vectors A_{i}, B_{i} and C_{i}. These are orthonormal vectors which span a three-dimensional subspace close to that spanned by A, B, and C . The estimator now forms an estimate (prediction) of the received signal r_{i} given by

$$
r_{i}^{\prime}=Y_{i, i-1}^{\prime} S_{i}^{T}
$$

On receipt of r_{i}, the estimator forms the error signal

$$
e_{i}=r_{i}-r_{i}^{\prime}
$$

and then the updated estimate of Y_{i}, given by

$$
Y_{i}^{\prime}=Y_{i, i-1}^{\prime}+b e_{i} \bar{S}_{i}
$$

where b is a small positive real-valued constant and \bar{S}_{i} is the complex conjugate of S_{i}. Although $Y_{i, i-1}^{\prime}$ lies in the subspace spanned by $\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}$ and $\mathrm{C}_{\mathrm{i}}, Y_{\mathrm{i}}^{\prime}$ does not usually lie in the given subspace. The estimator, therefore, forms the ($\mathrm{g}+1$)- component row vector F_{i} that lie in the subspace, at the minimum unitary distance form Y_{i}^{\prime}. From the projection theorem [43], F_{i} is the orthogonal projection of Y_{i}^{\prime} on to the given subspace. It has been shown [89] that

$$
F_{i}=\alpha_{i} A_{i}+\beta_{i} B_{i}+\gamma_{i} C_{i}
$$

where α_{i}, β_{i} and γ_{i} are obtained as follows

$$
\begin{align*}
& \alpha_{i}=Y_{i}^{\prime} A_{i}^{*} \\
& \beta_{i}=Y_{i}^{\prime} B_{i}^{*} \\
& \gamma_{i}=Y_{i}^{\prime} C_{i}^{*}
\end{align*}
$$

A_{i}, B_{i} and C_{i} are not likely to lie exactly in the three- dimensional subspace containing Y_{i}, moreover, the vectors L, M and N can vary slowly with time and, therefore, the subspace is unlikely to be stationary. It is for this reason that for the satisfactory operation of the estimator, the subspace spanned by A_{i}, B_{i} and C_{i} must be adjusted adaptively to track the received signal in such a way that the new subspace spanned by the new vectors $\mathrm{A}_{\mathrm{i}+1}, \mathrm{~B}_{\mathrm{i}+1}$ and $\mathrm{C}_{\mathrm{i}+1}$ is more closer to Y_{i}^{\prime}. The adjustment of the subspace is done in the following manner

The vector

$$
E_{i}=Y_{i}^{\prime}-F_{i}
$$

is now taken to represent the error in the subspace spanned by A_{i}, B_{i} and C_{i}, such that a three-dimensional subspace closer to that containing Y_{i} is spanned by A_{i+1}, B_{i+1} and $\mathrm{C}_{\mathrm{i}+1}$, where

$$
\begin{align*}
A_{i+1} & =A_{i}+\eta \alpha_{i}^{*} E_{i} \\
B_{i+1} & =B_{i}+\eta \beta_{i}^{*} E_{i} \\
C_{i+1} & =C_{i}+\eta \gamma_{i}^{*} E_{i}
\end{align*}
$$

where η is a small positive real-valued constant, and $\alpha_{i}^{*}, \beta_{i}^{*}$ and γ_{i}^{*} are the complex conjugate of α_{i}, β_{i} and γ_{i}, respectively. Clearly, E_{i} is orthogonal to the given subspace and, therefore, to each of A_{i}, B_{i} and $C_{i}[89]$.

The estimator next determines the one- step predictions $\alpha_{i+1, i}, \beta_{i+1, i}$ and $\gamma_{i+1, i}$ of a_{i+1}, b_{i+1} and c_{i+1} in Eqn. 7.3.2, for the case $A=A_{i+1}, B=B_{i+1}$ and $C=C_{i+1}$. Degree- 1 least square fading memory prediction is employed here [53-54], and $\alpha_{i+1, i}$ is determined from the following equations.

$$
\begin{align*}
& \varepsilon_{\alpha, i}=\alpha_{i}-\alpha_{i, i-1} \\
& \alpha_{i+1, i}^{\prime}=\alpha_{i, i-1}^{\prime}+(1-\theta)^{2} \varepsilon_{\alpha, i}
\end{align*}
$$

and

$$
\alpha_{i+1, i}=\alpha_{i, i-1}+\alpha_{i+1, i}^{\prime}+\left(1-\theta^{2}\right) \varepsilon_{\alpha, i}
$$

$\varepsilon_{\alpha, i}$ is the measured error in $\alpha_{i, i-1}, \theta$ is a real-valued constant in the range 0 to 1 , and $\alpha_{i+1, i}^{\prime}$ is the one-step prediction of the rate of change with i of a_{i+1}. The estimator here assumes that a_{i}, b_{i} and c_{i} in Eqn. 7.3.2 vary linearly (at a constant rate) with i. Finally the estimator forms

$$
Y_{i+1, i}^{\prime}=\alpha_{i+1, i} A_{i+1}+\beta_{i+1, i} B_{i+1}+\gamma_{i+1, i} C_{i+1}
$$

which is the one-step prediction of Y_{i+1}, ready for the next estimation process on receipt of r_{i+1}. $Y_{i, i-1}^{\prime}$ in Eqns. 7.3.3 and 7.3.5, is of course given by Eqn. 7.3.17 with i replaced by $\mathrm{i}-1$.

A retraining process is normally carried out after every one or two thousand received samples $\left\{r_{i}\right\}$ using an appropriate training signal [51, 91], and, during this operation, the Gram-Schmidt orthonormalization process (Appendix E) is applied to $\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}$ and C_{i} to hold them accurately orthonormal [89]. It is not, however, necessary to orthonormalize the vectors more frequently, and the results of computer-simulation tests in fact suggest that substantially less frequent orthonormalization could well be used [89]. The basic algorithm for system 7.1 is given by Eqns. 7.3.3-7.3.17.

7.4 SYSTEM 7.2

System 7.2 is a simple modification of system 7.1 in which equations 7.3.14-7.3.16 are replaced by

$$
\alpha_{i, i-1}=\alpha_{i-1}
$$

and similarly for $\beta_{i, i-1}$ and $\gamma_{i, i-1}$. The remainder of the algorithm of system 7.2 is the same as for system 7.1. The assumption made here is that a_{i}, b_{i} and c_{i} are time invariant or are varying very slowly with time [55, 57]. Thus prediction algorithm is not applied to the scalar quantities α, β and γ. System 7.2 can, therefore, be called as system 7.1 without prediction.

7.5 SYSTEM 7.3

System 7.3 is a development of system 7.1 in which a number of changes are made to the algorithm. The estimator first forms the fading memory average $x_{i, k}^{2}$ of the mean square absolute value of $y_{i, i-1, h}^{\prime}$ for $h=0,1, \ldots ., \mathrm{g}$, given by (as explained in Chapter 6 and in [62]).

$$
x_{i, h}^{2}=x_{i-1, h}^{2}+a\left(\left|y_{i, i-1, h}^{\prime}\right|^{2}-x_{i-1, h}^{2}\right)
$$

and at the start of the estimation process

$$
x_{0, h}^{2}=\left|y_{0,-1, h}\right|^{2}
$$

where a is a real-valued constant, which has the value 0.01 here and $Y_{0,1}$ is determined by a training signal that precedes the transmission of data. Eqn. 7.3.5 is then replaced by the following equation:

$$
y_{i, h}^{\prime}=y_{i, i-1, h}^{\prime}+b u_{i, h} e_{i} s_{i-h}^{*}
$$

for $h=0,1, \ldots, g$, where $u_{i, h}$ is related to $x_{i, h}$ according to Fig. 6.7.1. Over the curved portion of the curve in Fig. 6.7.1,

$$
u_{i, h}=\left(x_{i, h}^{2}\right)^{\frac{1}{4}}=x_{i, h}^{\frac{1}{2}}
$$

Further details of Eqns. 7.5.1-7.5.4 are given in Chapter 6. The estimator next forms the $(\mathrm{g}+1)$ - component row vector

$$
F_{i}=Y_{i}^{\prime} A_{i}^{*} A_{i}+Y_{i}^{\prime} B_{i}^{*} B_{i}+Y_{i}^{\prime} C_{i}^{*} C_{i}
$$

which is the orthogonal projection of Y_{i}^{\prime} on to the subspace spanned by $\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}$ and C_{i}, as can be seen from Eqns. 7.3.6-7.3.9. Again from equations 7.3.7-7.3.13, the estimator forms

$$
\begin{align*}
& E_{i}=Y_{i}^{\prime}-F_{i} \\
& A_{i+1}=A_{i}+\eta A_{i}\left(Y_{i}^{\prime}\right)^{*} E_{i} \\
& B_{i+1}=B_{i}+\eta B_{i}\left(Y_{i}^{\prime} E_{i} E_{i}\right. \\
& C_{i+1}=C_{i}+\eta C_{i}\left(Y_{i}^{\prime}\right)^{*} E_{i}
\end{align*}
$$

as before. However, the quantities α_{i}, β_{i} and γ_{i} are not given by equations 7.3.77.3.9, for which reason they have been omitted from Eqn. 7.5.5 and equations 7.5.7 -7.5.9. They are, instead, determined independently by a technique that is derived as follows

Suppose that S_{i} in Eqn. 7.2.4 satisfies

$$
S_{i}=s_{a, i} \bar{A}_{i}+s_{b, i} \bar{B}_{i}+s_{c, i} \bar{C}_{i}+\bar{U}_{i}
$$

where $\mathrm{s}_{\mathrm{a}, \mathrm{i}}, \mathrm{s}_{\mathrm{b}, \mathrm{i}}$ and $\mathrm{s}_{\mathrm{c}, \mathrm{i}}$ are appropriate scalars, and

$$
A_{i} U_{i}^{*}=B_{i} U_{i}^{*}=C_{i} U_{i}^{*}=0
$$

\bar{U}_{i} and U_{i}^{*} are the complex conjugate and conjugate transpose, respectively, of U_{i}, and similarly for A_{i}, B_{i} and C_{i}. It is evident that U_{i} is orthogonal to each of A_{i}, B_{i} and C_{i}, so that it is also orthogonal to

$$
Y_{i, i-1}^{\prime}=\alpha_{i, i-1} A_{i}+\beta_{i, i-1} B_{i}+\gamma_{i, i-1} C_{i}
$$

which is the one-step prediction of Y_{i}. Therefore, from Eqns. 7.5.10-7.5.12

$$
\begin{aligned}
Y_{i, i-1}^{\prime} S_{i}^{T}=\alpha_{i, i-1} s_{a, i}\left|A_{i}\right|^{2} & +\beta_{i, i-1} s_{b, i}\left|B_{i}\right|^{2} \\
& +\gamma_{i, i-1} s_{c, i}\left|C_{i}\right|^{2}
\end{aligned}
$$

or

$$
Y_{i, i-1}^{\prime} S_{i}^{T}=\alpha_{i, i-1} S_{a, i}+\beta_{i, i-1} S_{b, i}+\gamma_{i, i-1} S_{c, i}
$$

bearing in mind that A_{i}, B_{i} and C_{i} form an orthogonal set of vectors in a unitary vector space. Now let

$$
F_{i, i-1}^{\prime}=\left[\begin{array}{llll}
\alpha_{i, i-1} & \beta_{i, i-1} & \gamma_{i, i-1}
\end{array}\right]
$$

and

$$
S_{i}^{\prime}=\left[\begin{array}{lll}
s_{a, i} & s_{b, i} & s_{c, i}
\end{array}\right]
$$

From equations 7.5.10 and 7.5.11, the following relations can be obtained

$$
\begin{align*}
s_{a, i} & =S_{i} A_{i}^{T} \\
s_{b, i} & =S_{i} B_{i}^{T} \\
s_{c, i} & =S_{i} C_{i}^{T}
\end{align*}
$$

The estimate of the received signal from Eqns. 7.3.3, 7.5.13-7.5.18, is given by

$$
r_{i}^{\prime}=F_{i, i-1}^{\prime}\left(S_{i}^{\prime}\right)^{T}
$$

The error in the estimation of the received signal is

$$
e_{i}=r_{i}-r_{i}^{\prime}
$$

and the updated estimate

$$
F_{i}^{\prime}=\left[\begin{array}{llll}
\alpha_{i} & \beta_{i} & \gamma_{i}
\end{array}\right]
$$

is given by

$$
F_{i}^{\prime}=F_{i, i-1}^{\prime}+b^{\prime} e_{i}\left(\overline{S_{i}^{\prime}}\right)
$$

according to the gradient algorithm, as in Eqn. 7.3.5. The parameter b^{\prime} is a small positive real-valued constant.

The estimator next determines the one-step prediction $F_{i+1, i}^{\prime}$ using degree-1 least square fading memory prediction [53-54], in the following manner

$$
\begin{align*}
& \varepsilon_{i}=F_{i}^{\prime}-F_{i, i-1}^{\prime} \\
& F_{i+1, i}^{\prime \prime}=F_{i, i-1}^{\prime \prime}+(1-\theta)^{2} \varepsilon_{i} \\
& F_{i+1, i}^{\prime}=F_{i, i-1}^{\prime}+F_{i+1, i}^{\prime \prime}+\left(1-\theta^{2}\right) \varepsilon_{i}
\end{align*}
$$

where the vector ε_{i} is the measured error in $F_{i, i-1}^{\prime}, \theta$ is a real valued constant in the range 0 to 1 and the vector $F_{i+1, i}^{\prime \prime}$ is the one-step prediction of the rate of change with i of a_{i+1}, b_{i+1} and c_{i+1} respectively in Eqn. 7.3.2. Finally the estimator forms

$$
Y_{i+1, i}^{\prime}=\alpha_{i+1, i} A_{i+1}+\beta_{i+1, i} B_{i+1}+\gamma_{i+1, i} C_{i+1}
$$

where $\alpha_{i+1, i}, \beta_{i+1, i}$ and $\gamma_{i+1, i}$ are the elements of the vector $F_{i+1, i}^{\prime}$. The basic algorithm of system 7.3 is, therefore, given by Eqns. 7.5.12, 7.5.14-7.5.22, 7.5.1-7.5.9, 7.5.237.5.26.

An important difference between systems 7.1 and 7.3 , is that system 7.3 uses an additional set of operations, given by equations 7.5.14-7.5.25, to evaluate α_{i}, β_{i} and γ_{i}, instead of evaluating these from Y_{i}^{\prime} in (Eqns. 7.3.7-7.3.9). Thus, in system 7.3, the quantities α_{i}, β_{i} and γ_{i} are determined independently of Y_{i}^{\prime}. The modification introduces greater flexibility into the algorithm and provides additional decoupling (isolation) between scalars α_{i}, β_{i} and γ_{i} and the vectors A_{i}, B_{i} and C_{i}. Another important difference between systems 7.1 and 7.3 , is that a more effective algorithm, given by equations 7.5.1-7.5.4, is used in system 7.3 to determine Y_{i}^{\prime} and hence to adjust the orthogonal vectors $\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}$ and C_{i} in place of Eqn. 7.3.5 in system 7.1.

7.6 SYSTEM 7.4

This estimator is a simple modification of system 7.3. System 7.4 assumes that the sampled impulse-response of the channel is time invariant or varies only slowly with time. Thus it is assumed that

$$
F_{i, i-1}^{\prime}=F_{i-1}^{\prime}
$$

and the prediction algorithm, given by Eqns. 7.5.23-7.5.25, is not used by system 7.4. The remainder of the algorithm, for system 7.4, are the same as for system 7.3.

7.7 SYSTEM 7.5

System 5 is a development of system 7.3. The estimator first forms the fadingmemory average $x_{i, k}^{2}$ of the mean-square absolute value of $y_{i, i-1,1}$, for $h=0,1, \ldots ., \mathrm{g}$, as given by [62].

$$
x_{i, h}^{2}=x_{i-1, h}^{2}+a\left(\left|y_{i, i-1, h}^{\prime}\right|^{2}-x_{i-1, h}^{2}\right)
$$

and

$$
x_{0, h}^{2}=\left|y_{0,-1, h}\right|^{2}
$$

where a is a real-valued constant, which has a value 0.01 here. An update of $y_{i, i-1, k}^{\prime}$ is formed using equation

$$
y_{i, h}^{\prime}=y_{i, i-1, h}^{\prime}+b u_{i, h}\left(r_{i}-Y_{i, i-1}^{\prime} S_{i}^{T}\right) s_{i-h}^{*}
$$

for $\mathrm{h}=0,1, \ldots ., \mathrm{g}$, where $\mathrm{u}_{\mathrm{i}, \mathrm{h}}$ is related to $\mathrm{x}_{\mathrm{i}, \mathrm{h}}$ according to Fig. 6.7.1, and Eqn. 7.5.4. The one-step prediction $Y_{i+1, i}^{\prime}$ of Y_{i}, using the degree- 1 least squares fading memory prediction [53-54], is given by

$$
\begin{align*}
& E_{i}^{\prime}=Y_{i}^{\prime}-Y_{i, i-1}^{\prime} \\
& Y_{i+1, i}^{\prime \prime}=Y_{i, i-1}^{\prime \prime}+(1-\kappa)^{2} E_{i}^{\prime} \\
& Y_{i+1, i}^{\prime}=Y_{i, i-1}^{\prime}+Y_{i+1, i}^{\prime \prime}+\left(1-\kappa^{2}\right) E_{i}^{\prime}
\end{align*}
$$

E_{i}^{\prime} is the measured error in the update of $Y_{i, i-1}^{\prime}, \mathrm{K}$ is a real-valued constant in the range 0 to 1 , and $Y_{i+1, i}^{\prime \prime}$ is the one-step prediction of the rate of change with i of Y_{i+1}.

The estimator next forms the $(g+1)$ - component row vector F_{i}.

$$
F_{i}=Y_{i+1, i}^{\prime} A_{i}^{*} A_{i}+Y_{i+1, i}^{\prime} B_{i}^{*} B_{i}+Y_{i+1, i}^{\prime} C_{i}^{*} C_{i}
$$

An update of the subspace spanned by A_{i}, B_{i} and C_{i} is next determined using equations

$$
\begin{array}{lr}
E_{i}=Y_{i+1, i}^{\prime}-F_{i} & \ldots .7 .7 .8 \\
A_{i+1}=A_{i}+\eta A_{i}\left(Y_{i+1, i}^{\prime}\right)^{*} E_{i} & \ldots .7 .7 .9 \\
B_{i+1}=B_{i}+\eta B_{i}\left(Y_{i+1, i}^{\prime}\right)^{*} E_{i} & \ldots .7 .7 .10 \\
C_{i+1}=C_{i}+\eta C_{i}\left(Y_{i+1, i}^{\prime}\right)^{*} E_{i} & \ldots .7 .7 .11
\end{array}
$$

From equations 7.5.10-7.5.19, the estimate of the received signal, r_{i}^{\prime}, is

$$
r_{i}^{\prime}=F_{i, i-1}^{\prime}\left(S_{i}^{\prime}\right)^{T}
$$

where, $F_{i, i-1}^{\prime}$ and s_{i}^{\prime} are given by Eqns. 7.5.14 and 7.5.15 respectively.

The estimator next forms the updated estimate, F_{i}^{\prime}, given by (from Eqns. 7.5.20 7.5.22)

$$
F_{i}^{\prime}=F_{i, i-1}^{\prime}+b^{\prime} e_{i}\left(\bar{S}_{i}^{\prime}\right)
$$

The estimation algorithm of system 5, next determines the one-step prediction of F_{i}^{\prime}, using a degree- 1 least squares fading memory prediction, given by

$$
\begin{align*}
F_{i+1, i}^{\prime \prime} & =F_{i, i-1}^{\prime \prime}+(1-\theta)^{2}\left[F_{i}^{\prime}-F_{i, i-1}^{\prime}\right] \\
F_{i+1, i}^{\prime} & =F_{i, i-1}^{\prime}+F_{i+1, i}^{\prime \prime}+\left(1-\theta^{2}\right)\left[F_{i}^{\prime}-F_{i, i-1}^{\prime}\right]
\end{align*}
$$

Finally the estimator forms

$$
Z_{i+1, i}=\alpha_{i+1, i} A_{i+1}+\beta_{i+1, i} B_{i+1}+\gamma_{i+1, i} C_{i+1}
$$

which is the same as Eqn. 7.3 .17 but $\mathrm{Z}_{\mathrm{i}+1, i}$ used in place of $Y_{i+1, i}^{\prime}$, to avoid confusion with $Y_{i+1, i}^{\prime}$ in Eqn. 7.7.6. The algorithm given by (7.7.1) - (7.7.6) and (7.7.7) (7.7.16) is now quite independent of the rest of the algorithm of system 5. It is evident that $Y_{i+1, i}^{\prime}$ is no longer constrained to lie in the three-dimensional subspace. Use of Eqns. 7.7.1-7.7.6 should further improve the ability of the vectors A_{i}, B_{i} and C_{i} to track variations in the three-dimensional subspace, particularly when the estimator employs an incorrect model of the HF radio link.

7.8 SYSTEM 7.6

This system is based on the application of Kalman estimation technique to system 7.3. An important property of systems 7.3 and 7.4 is that the evaluation of α_{i}, β_{i} and γ_{i} from $\alpha_{i-1}, \beta_{i-1}$ and γ_{i-1} involves only the use of three-component vectors, which means that the gradient estimator here can be replaced by a Kalman-filter, without resulting in any undue increase in equipment complexity. System 7.6, employs a recursive least-squares (RLS) Kalman filter [103] to determine α_{i}, β_{i} and γ_{i} in place of the gradient algorithm with prediction used in system 7.3. Thus Eqns. 7.5.227.5.25 in system 7.3 are now replaced by the Kalman-filter algorithm. The assumption made here is that a_{i}, b_{i} and c_{i} in Eqn. 7.3 .2 vary linearly (at a constant rate) with i. Furthermore, it uses an exponential window (a fading memory) and attempts to minimize the quantity

$$
C_{h}=\sum_{i=0}^{h} \omega^{h-i}\left|r_{i}-V_{i} X_{i}^{T}\right|^{2}
$$

where

$$
\begin{align*}
V_{i} & =\left[\begin{array}{lllllll}
\alpha_{i} & \beta_{i} & \gamma_{i} & \alpha_{i}^{\prime} & \beta_{i}^{\prime} & \gamma_{i}
\end{array}\right] \\
X_{i} & =\left[\begin{array}{lllllll}
& s_{a, i} & s_{b, i} & s_{c, i} & 0 & 0 & 0
\end{array}\right]
\end{align*}
$$

and ω is a positive real-valued constant in the range 0 to $1 . V_{i} X_{i}^{T}$ in Eqn. 7.8.1 is an estimate of r_{i}. The parameter α_{i}, β_{i} and γ_{i} in Eqn. 7.8.2, are the estimates of a_{i}, b_{i} and c_{i} respectively, as before, and $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$ and γ_{i} are the estimate of the rate of change with i of a_{i}, b_{i} and c_{i}, respectively. It is assumed in Eqn. 7.8.1, that the estimator started operation on the receipt of r_{0} and that r_{h} has just been received. Consider now the 6 x 6 matrix

$$
\phi_{i}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
i & 0 & 0 & 1 & 0 & 0 \\
0 & i & 0 & 0 & 1 & 0 \\
0 & 0 & i & 0 & 0 & 1
\end{array}\right]
$$

where i is a positive or negative integer or zero. The parameter C_{b} in Eqn. 7.8.1 can then be taken to be

$$
C_{h}=\sum_{i=0}^{h} \omega^{i-h}\left|r_{i}-V_{h} \phi_{i-h} X_{i}^{T}\right|^{2}
$$

If P_{i-1} is the appropriate 6×6 positive-definite Hermitian matrix, the Kalman-filter algorithm becomes

$$
\begin{array}{lr}
P_{i, i-1}=\phi_{1}^{*} P_{i-1} \phi_{1} & \ldots .7 .8 .6 \\
K_{i}=\left(\omega+\bar{X}_{i} P_{i, i-1} X_{i}^{T}\right)^{-1} \bar{X}_{i} P_{i, i-1} & \ldots .7 .8 .7 \\
P_{i}=\omega^{-1} P_{i, i-1}\left(I-X_{i}^{T} K_{i}\right) & \ldots .7 .8 .8 \\
V_{i}=V_{i, i-1}+\left(r_{i}-V_{i, i-1} X_{i}^{T}\right) K_{i} & \ldots .7 .8 .9 \\
V_{i+1, i}=V_{i} \phi_{1} & \ldots .7 .8 .10
\end{array}
$$

where K_{i} is a row vector, I is a identity matrix, ϕ_{i} is the conjugate transpose of ϕ_{1}, \bar{X}_{i} is the complex conjugate of X_{i}, and X_{i}^{T} is the transpose of X_{i}. All the vectors here have six components and all matrices are 6×6. The algorithm given by Eqns. 7.8.67.8.10 is derived from first principle in Chapter 5 [103] and is consistent with the corresponding algorithms in [20] and [83]. The basic algorithm for system 7.6 is now given by Eqns. 7.5.12, 7.5.16-7.5.18, 7.8.2-7.8.4, 7.8.6-7.8.10, 7.5.1-7.5.9 and 7.5.26, where 7.5.26 is determined from Eqn. 7.8.10 and from Eqns. 7.5.7-7.5.9.

7.9 SYSTEM 7.7

System 7.7 is a modification of system 7.6. Here in system 7.7 as well, the scalars α_{i}, β_{i} and γ_{i} are determined using the RLS Kalman-filter algorithm using Eqns. 7.8.6 to 7.8.10. All the vectors here are, however, 3-component vectors and all matrices are 3×3. The vector V_{i} is now given by

$$
V_{i}=\left[\begin{array}{lll}
\alpha_{i, i-1} & \beta_{i, i-1} & \gamma_{i, i-1}
\end{array}\right]
$$

and the vector X_{i} is now replaced by

$$
X_{i}=\left[\begin{array}{lll}
s_{a, i} & s_{b, i} & s_{c, i}
\end{array}\right]
$$

The transition matrix ϕ_{1} is no longer given by Eqn. 7.8.4, and is now replaced by

$$
\phi_{i}=\left[\begin{array}{ccc}
q_{\alpha, i} & 0 & 0 \\
0 & q_{\beta, i} & 0 \\
0 & 0 & q_{\gamma, i}
\end{array}\right]
$$

where

$$
q_{\alpha, i}=\frac{\alpha_{i, i-1}}{\alpha_{i-1}}
$$

and similarly for $q_{\beta, i}$ and $q_{\gamma, i}$. The quantity $\alpha_{i, i-1}$ is here determined from α_{i-1} and $\alpha_{i-1, i-2}$ by Eqns. 7.3.14-7.3.16, and similarly for $\beta_{i, i-1}$ and $\gamma_{i, i-1}$. System 7.7 otherwise operates in the same way as does system 7.6. The basic algorithm of system 7.7 is, therefore, given by Eqns. 7.5.12, 7.5.16-7.5.18, 7.9.1-7.9.4, 7.8.6-7.8.10, 7.5.1-7.5.9 and 7.3.14-7.3.17. System 7.7 assumes that the channel varies linearly with time.

7.10 SYSTEM 7.8

System 7.8 is a very simple modification of system 7.7, in which the transition matrix ϕ_{1}, in Eqn. 7.9.3, is replaced by the 3×3 identity matrix given

$$
\phi_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The system assumes that the channel is time invariant or varies very slowly with time so that the rate of change of a_{i}, b_{i} and c_{i} in Eqn. 7.3.2 is assumed zero. Thus

$$
\alpha_{i, i-1}=\alpha_{i-1}
$$

Similar changes are applied also to $\beta_{i, i-1}$ and $\gamma_{i, i-1}$. The remainder of the algorithm of system 7.7 is left unchanged. The Kalman filter is now the conventional arrangement with an exponential window (fading memory).

7.11 STARTING UP PROCEDURE FOR THE ESTIMATORS

Systems 7.1 to 7.8 require the knowledge of the initial subspace, spanned by $\mathrm{A}_{0}, \mathrm{~B}_{0}$ and C_{0}. In addition, the systems also require the scalars $\alpha_{0,-1}, \beta_{0,-1}$ and $\gamma_{0,-1}$ and their rate of change $\alpha_{0,-1}^{\prime}, \beta_{0,-1}^{\prime}$ and $\gamma_{0,-1}$ and the initial estimate of the sampled impulse response of the channel $Y_{0,-1}^{\prime}$. Of course, the rate of change of scalars would not be essential for systems 7.2, 7.4 and 7.8 , as these systems assume that the channel is time invariant or varies only slowly with time. In Reference [36], a number of techniques have been suggested to obtain the initial subspace. The initial subspace spanned by A_{0}, B_{0} and C_{0} may be determined as follows. Using a conventional estimation method, estimates of the sampled impulse response of the channel are obtained at three well spaced time instances, $\mathrm{t}=-2 \mathrm{kT}, \mathrm{t}=-\mathrm{kT}$ and $\mathrm{t}=0$ and let these estimates be $Y_{-2 k}^{\prime}, Y_{-k}^{\prime}$ and Y_{0}^{\prime}, respectively. The constant k is a reasonably large positive integer, so that the estimates are significantly different and non-collinear. It is assumed that these estimates are reasonably correct and the constant k is chosen in such way that the HF channel is not in deep fade at that time instant. The estimates $Y_{-2 k}^{\prime}, Y_{-k}^{\prime}$ and Y_{0}^{\prime} are then orthonormalized, using Gram-Schmidt orthonormalization procedure (see Appendix E), to give the orthonormal vector

$$
\begin{align*}
& A_{0}=\left|Y_{-2 k}^{\prime}\right|^{-1} Y_{-2 k}^{\prime} \\
& B_{0}^{\prime}=Y_{-k}^{\prime}-Y_{-k}^{\prime} A_{0}^{*} A_{0} \\
& B_{0}=\left|B_{0}^{\prime}\right|^{-1} B_{0}^{\prime} \\
& C_{0}^{\prime}=Y_{0}^{\prime}-Y_{0}^{\prime} B_{0}^{*} B_{0}-Y_{0}^{\prime} A_{0}^{*} A_{0} \\
& C_{0}=\left|C_{0}^{\prime}\right|^{-1} C_{0}^{\prime}
\end{align*}
$$

where the vectors A_{0}^{*}, B_{0}^{*} and C_{0}^{*} are the conjugate transpose of the vectors $\mathrm{A}_{0}, \mathrm{~B}_{0}$ and C_{0} respectively. The vectors $\mathrm{A}_{0}, \mathrm{~B}_{0}$ and C_{0}, therefore, form an orthogonal basis of the three-dimensional subspace spanned by $Y_{-2 k}^{\prime}, Y_{-k}^{\prime}$ and Y_{0}^{\prime}. The initial values of scalars $\alpha_{i, i-1}, \beta_{i, i-1}, \gamma_{i, i-1}, \alpha_{i}, \beta_{i}$ and γ_{i} are then given by

$$
\begin{align*}
& \alpha_{0,-1}=\alpha_{i}=Y_{0}^{\prime} A_{0}^{*} \\
& \beta_{0,-1}=\beta_{i}=Y_{0}^{\prime} B_{0}^{*} \\
& \gamma_{0,-1}=\gamma_{i}=Y_{0}^{\prime} C_{0}^{*}
\end{align*}
$$

and the rate of change $\alpha_{0,-1}^{\prime}, \beta_{0,-1}^{\prime}$ and $\gamma_{0,-1}^{\prime}$ are set to

$$
\begin{align*}
& \alpha_{0,-1}^{\prime}=0 \\
& \beta_{0,-1}^{\prime}=0 \\
& \gamma_{0,-1}^{\prime}=0
\end{align*}
$$

The initial estimate of the sampled impulse response of the channel, $Y_{0,-1}^{\prime}$, is set to Y_{0}

7.12 RESULTS AND ANALYSIS OF COMPUTER-SIMULATION TESTS.

Computer-simulation tests have been carried out on the systems 7.1 to 7.8 . The results of the tests are given in Tables 7.12.1-7.12.14 and in Figs. 7.12.1-7.12.11. Two different measures of the average error in $Y_{i, i-1}^{\prime}$, have been used in the tests. These are

$$
\begin{align*}
& \xi_{1}=10 \log _{10}\left(\left.\frac{1}{54000} \sum_{i=6001}^{60000} \right\rvert\, Y_{i}-Y_{i, i-1}^{\prime} P^{2}\right) \ldots .7 .12 .1 \\
& \xi_{2}=10 \log _{10}\left(\frac{1}{54000} \sum_{i=6001}^{60000} \frac{Y_{i}-Y_{i, i-1}^{\prime} P^{2}}{\left|Y_{i}\right|^{2}}\right)
\end{align*}
$$

where the mean-square value of $\left|Y_{i}\right|$ is close to unity. The parameter ξ_{1} is a measure of the actual error in $Y_{i, i-1}^{\prime}$, whereas the parameter ξ_{2} is a measure of the normalized or relative error in $Y_{i, i-1}^{\prime}$. During the first 6000 of the received samples in any test, starting up procedure is carried out according to Section 7.11. During the start-up the vectors A_{i}, B_{i} and C_{i} are adjusted to be orthonormal by means of the Gram-Schmidt orthonormalization process [89], (Appendix E), which is not repeated over the remainder of the test. The starting-up procedure is followed by an appropriate period with no measurements, to ensure that there are no transients introduced during the start-up. Over the following 54,000 received samples, measurement of errors according to Eqns. 7.12.1 and 7.12.2 are carried out.

In all the tests, except where stated, the estimates $Y_{-2 k}^{\prime}, Y_{-k}^{\prime}$ and Y_{0}^{\prime} are taken as their actual values $\mathrm{Y}_{-2 k}, \mathrm{Y}_{-k}$ and Y_{0}, respectively. Where -2 kT , -KT and T in the tests were $2000^{\text {d }}, 3500^{\text {h }}$ and $5000^{\text {th }}$ sampling instants. Thus, the orthogonal vectors A_{0}, B_{0} and C_{0} derived from these estimates span the correct subspace containing $Y_{-2 k}, Y_{-k}$ and Y_{0}. In the tests the magnitude of $Y_{-2 k}, Y_{-k}$ and Y_{0} are

$$
\begin{align*}
& \left|Y_{-2 k}\right|=0.898 \\
& \left|Y_{-k}\right|=0.617 \\
& \left|Y_{0}\right|=1.024
\end{align*}
$$

and the angle between the vectors, being

$$
\begin{align*}
& Y_{-2 k} \& Y_{0}=72.38^{\circ} \\
& Y_{-k} \& Y_{0}=62.98^{\circ} \\
& Y_{-2 k} \& Y_{-k}=64.56^{\circ}
\end{align*}
$$

A duration of 1000 sampling interval was considered sufficient for the stabilization, following start-up, after studying the results from the simulation tests and hence the actual measurements starts after the receipt of the first 6000 received samples. Thus ξ_{1} and ξ_{2} give a measure of the steady-state performance of the systems.

The signal/noise ratio is measured as $\psi \mathrm{dB}$, where

$$
\psi=10 \quad \log _{10}\left(\frac{1}{\frac{1}{2} N_{0}}\right)
$$

Eqn. 7.12.5 uses the fact that the average transmitted energy per bit, at the input and output of the HF radio link is unity, and the two-sided power spectral density of the additive white Gaussian noise at the output of the HF radio link is $\frac{1}{2} N_{0}$.

Tables 7.12.1-7.12.14 and Figs. 7.12.1-7.12.11 summarise the results of extensive computer-simulation tests. At every point on each curve, in Figs. 7.12.1-7.12.5, the appropriate parameters b and θ or b^{\prime} and θ are adjusted, as closely as has been possible to determine within the available computer time, to their optimum value, which vary steadily over each curve. The three-dimensional subspace spanned by the vectors A_{i}, B_{i} and C_{i} is held fixed as the subspace containing Y_{i} over the initial training signal at the start of the test, the parameter η being set to zero, during this period. During the period when the actual error measurements are done, however, two values of $\eta, 0.0$ and 0.01 , have been considered in the tests, unless otherwise stated. $\eta=0.0$, represents the condition when the three-dimensional subspace, A_{i}, B_{i} and C_{i} remain unchanged during the period of error measurements, whereas $\eta=0.01$ represents the condition when the subspace is changed to neutralize the small drift in the subspace. The value of 0.01 is about as large as would be desirable for η, in an
application where there are no more than three sky waves, and it permits adequate tracking of the expected drift in Y_{i} with i caused by an error in the receiver timing sampling frequency [89, 36]. A comparison of the Tables 7.12.1-7.12.14 and Figures 7.12.1-7.12.5 show that a substantial advantage in performance is gained by systems $7.1,7.3,7.6$ and 7.7 , which assume that the channel is varying linearly with time, over systems $7.2,7.4$ and 7.8 , which assume that the channel is time-invariant or varies only very slowly with time.

Figs. 7.12.1-7.12.2 and Tables 7.12.1 and 7.12.3, show that, with $\eta=0$, system 7.1 has a slightly better performance than system 7.3 , whereas, with $\eta=0.01$, system 7.3 has better performance than system 7.1 over the whole range of signal/noise ratios tested, with a typical advantage of about 1 dB . Again, when $0<\psi<40$, system 7.1 has a noticeably better performance with $\eta=0.0$ than with $\eta=0.01$, with the difference in performance as much as 1.7 dB at 10 dB signal/noise ratio, whereas the performance of system 7.3 is effectively the same with the two values of η and here the difference is only of the order of 0.3 dB at 10 dB signal/noise ratio. The best performance here is given by system 7.1 with $\eta=0.0$. When $\psi>40$, system 7.1 and 7.3 show a much improved performance when η is set to 0.01 in place of 0.0 . The reason for this is that Eqn. 7.3.1 only holds exactly if all shaping of the data signal in the demodulated waveform $r(t)$ is introduced at the transmitter [89]. Since the shaping of data signal is in fact shared approximately equally between the transmitter and receiver in Fig. 3.5.1, Eqn. 7.3.1 does not hold exactly. However, the discrepancy is quite small [89]. Checks on the operation of system 7.3 have confirmed that when, $\eta=0.01$ and $\psi=60$, the typical or average distance of Y_{i} to the three-dimensional subspace is substantially smaller than when $\eta=0.0$ and $\psi=60$, and this appears to account for much of the improvement gained in setting η. Thus when $\eta=0.01$, the subspace spanned by A_{i}, B_{i} and C_{i} approximately tracks the small variations in the corresponding subspace containing Y_{i}. With systems 7.2 and 7.4, the performances are more or less the same with the two values of η.

Fig. 7.12.5 shows the performance of systems $7.1,7.3$ and 7.5 with four Rayleigh fading sky waves. Three of the sky waves are exactly as previously assumed, and the fourth sky wave has a frequency spread of 2 Hz and a transmission delay of 4 ms relative to that of the first sky wave. The average signal power received from the fourth sky wave is 20 dB below that received from each of the others, so that the average energy per bit at the output of the HF radio link is now a little above unity.

Each of the systems 7.1, 7.3 and 7.5 here assume that there are just three sky waves, which are as previously described, and this means that the systems now employ an incorrect model of the HF radio link.

The two curves, in Fig. 7.12.5, marked "System 7.1 not optimized" and "System 7.3 not optimized" show the performances of systems 7.1 and 7.3 , using a three-dimensional subspace as before, and with $\eta=0.01$ and their other parameters having the corresponding values used in Fig. 7.12.1 and Fig. 7.12.2, respectively. A comparison of these curves with those in Figures 7.12 .1 and 7.12 .2 shows the serious degradation in performance that is introduced by the fourth sky wave.

The two curves, in Fig. 7.12.5, marked "System 7.1 optimized" and "System 7.3 optimized" show the performances of systems 7.1 and 7.3 , with four sky waves, where the parameter η, b, b^{\prime} and θ are appropriately optimized at each signal/noise ratios. However, a three-dimensional subspace is again used, so that the systems are, in fact, far from being fully optimized. A substantial improvement in performance is clearly achieved by the optimization process.

The best performance in Fig. 7.12.5, particularly at high signal/noise ratios, is achieved by system 7.5. The parameters η, b, b, θ and κ are here appropriately optimized at each point of the curve, but a three-dimensional subspace is again used, so that the system is tested under the conditions equivalent to those for the previous two curves in Fig. 7.12.5.

Fig. 7.12.3 shows the performance of system 7.5 over a three sky wave channel. Comparing the performances of system 7.5 with that of systems 7.1 and 7.3, in Figs. 7.12.1 and 7.12.2, it is clear that when $\eta=0.00$, all the three systems have a very similar performance. However, when $\eta=0.01$, then the performance system 7.5 deteriorates, at least at high signal/noise ratios. The reason for this is that in the algorithm for system 7.5, Eqn. 7.7.6 used for the adjustment of the three-orthogonal subspace is obtained from an independent estimation process and Eqn. 7.7.16 provides the channel estimate formed from the knowledge of the subspace. Thus as long as the subspace formed is correct, the adjustment of the subspace is better done in systems 7.1 and 7.3 and, therefore, provide the better channel estimate as compared to system 7.5. However, under incorrect start-up condition system 7.5 provides better channel estimate, as is evident from Fig. 7.12.5.

Fig. 7.12.4 shows the performance of systems 7.6-7.8. These algorithm use RLS Kalman estimation technique. Tables 7.12.6-7.12.8 show the error measure and the optimum value of the parameters used in the algorithm. It is evident from Fig. 7.12.4 that the performances of systems 7.6-7.8 are very similar to those of systems 7.1 and 7.3.

Table 7.12.14 shows the performance of system 7.5 over a three sky wave channel. The orthogonal vector A_{0}, B_{0} and C_{0} are, however, not determined from the actual sample values, $Y_{-2 k}, Y_{-k}$ and Y_{0}, as described earlier, and are instead determined from the estimates $Y_{-2 k}^{\prime}, Y_{-k}^{\prime}$ and Y_{0}^{\prime}, given by Eqn. 7.7.6. The three-dimensional vector space is now formed from the noisy channel estimate. Under this condition, it is clear from Table 7.12.14, that there is a considerable improvement in the performance of system 7.5 , when η is set to 0.01 , than when it is 0.0 .

Fig. 7.12.6 shows the steady-state performance of systems 7.3 and 7.4 at $\psi=60$ and $\eta=0.01$. The y-axis parameter, Estimation error in dB, ξ_{i}, is the square of the error in the channel estimate $Y_{i, i-1}^{\prime}$ in dB and is given by

$$
\xi_{i}=10.0 \log _{10}\left(\left|Y_{i}-Y_{i, i-1}^{\prime}\right|^{2}\right)
$$

Fig. 7.12.7 shows the steady-state performance of systems $7.1,7.3$ and 7.5 over a 4 sky wave channel. Figs. 7.12.8-7.12.11 give a measure of the degree to which the vectors A_{i}, B_{i} and C_{i} remain orthogonal over the duration of a test for systems 7.1 and 7.3 at $\psi=10$ and $\eta=0.01$. Figs. 7.12.8 and 7.12.10 plot the variation with i of each of

$$
\left|A_{i} B_{i}^{*}\right|, \quad\left|A_{i} C_{i}^{*}\right| \&\left|B_{i} C_{i}^{*}\right|
$$

for systems 7.1 and 7.3 respectively, the three curves being superimposed to show for each i , the maximum magnitude of the corresponding three inner products. Departure of the vectors $\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}$ and C_{i} from orthogonality for systems 7.3 is less as compared to system 7.1. Thus the slightly inferior performance of system 7.1 compared to system 7.3 can be attributed to this phenomena. However, there is no evidence of any tendency for the magnitude of any inner product to increase with i , for any system. The maximum magnitude of the inner product is of the order of 55×10^{-6} for system 7.3 and 27.5×10^{-5} for system 7.1.

Figs. 7.12.9 and 7.12.11 plots the variation with i of each of,

$$
\left(\left|A_{i}\right|-1\right), \quad\left(\left|B_{i}\right|-1\right) \&\left(C_{i} \mid-1\right)
$$

for systems 7.1 and 7.3 , respectively, the three curves being superimposed, to show, for each i, the maximum value of the corresponding three errors. As before, the tests were carried out on the systems, operating with $\psi=10 \mathrm{~dB}$ and $\eta=0.01$. It is clear, from the figures, that no error exceeds, 55×10^{-6} for system 7.3 and 52×10^{-5} for system 7.1, over the duration of the test. Here again, it is clear that for system 7.1, the departure of the vectors A_{i}, B_{i} and C_{i} from unit length is far greater than that for systems 7.3. There is, however, no evidence of any tendency for the error to increase with i .

It can be seen from Figures 7.12.8-7.12.11, that the vectors A_{i}, B_{i} and C_{i} remain orthonormal to a remarkable degree of accuracy, even under the unfavourable conditions tested. System 7.1 show substantially greater departure from the ideal, but again there is no evidence of any instability or steady deterioration in the system. Systems 7.3 uses a much better update of Y_{i}, given by Eqn. 7.5.3, to adjust the three-dimensional orthogonal vector space and hence has the superior orthonormality property.

Tests have been carried out on modifications of systems 7.3 and 7.4 in which F_{i} is given by Eqn. 7.3.6, where α_{i}, β_{i} and γ_{i} are now determined from F_{i}^{\prime} in Eqn. 7.5.22. Thus Eqn 7.3.6 replaces Eqn. 7.5.5 and Eqns. 7.5.7-7.5.9 are replaced by Eqns. 7.3.11-7.3.13. The system is much simpler than the corresponding system 7.3 or 7.4 and it operates well over a sequence of 54,000 received symbols, at typical signal/noise ratios but there is now a steady and significant drift in A_{i}, B_{i} and C_{i} from an ideal orthonormal set. Tests at high noise levels have shown that a catastrophic failure in operating of the system can occur. The reason for this effect is that E_{i} in Eqn. 7.5.6 is no longer necessarily orthogonal to the subspace spanned by A_{i}, B_{i} and C_{i}, the orthogonality of E_{i} being a basic assumption on which the algorithms of systems 7.1 - 7.8 are based [89]. These modifications have, therefore, not been considered in the thesis.

Figures 7.12.1-7.12.5 compare the performances of systems 7.1-7.8 using the error measure defined by Eqns. 7.12.1 and 7.12.2. The figures, however, reveal that the
relative performances of the systems have not changed with the type of measurement used. It is, therefore, evident that for purposes of comparison, both ξ_{1} and ξ_{2} give a reliable measure of the effectiveness of an estimator.

Tests were also carried out on systems $7.1-7.8$ with statistically independent noise components $\left\{w_{i}\right\}$ in Eqn. 7.2.2, in place of the slightly correlated noise components actually obtained at the output of the receiver filter. The results, however, show that only negligibly small difference in performances of the systems with the two types of noise. Thus the correlation in the noise component does not appear to have any significant effect.

Systems 7.1-7.8 achieve a considerable improvement in performance, over the conventional Kalman (systems 5.1-5.3) and gradient estimators (systems 4.1-4.1), this being due to the additional prior knowledge of the channel that is used by the systems. When the number of dimensions of the subspace is too small (so that the estimator assumes too small a number of separate fading paths), the system which has potentially the best overall performance is system 7.5. When the number of dimensions of the subspace is correct or nearly so, but there may be significant drifts in the subspace (due, say, to drifts in the timing phase), system 7.3 is the most promising system. When the number of dimensions of the subspace is correct and there is a negligible drift in the subspace, system 7.1 is the preferred system, being less complex than system 7.3 , which, in turn, is less complex than system 7.5.

TABLE 7.12.1 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 7.1

$\begin{gathered} \psi \\ (\mathrm{dB}) \end{gathered}$	θ	b	$\eta=0.00$				$\eta=0.01$			
			Correlated noise		Uncorrelated noise		Correlated noise		Uncorrelated noise	
			$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \\ \hline \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \\ \hline \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$
10	0.960	0.095	-20.843	-19.503	-21.361	-20.044	-19.098	-18.277	-19.539	-18.768
20	0.946	0.112	-28.715	-27.465	-29.197	-27.913	-27.382	-26.534	-27.817	-26.959
30	0.922	0.130	-36.473	-35.240	-36.886	-35.621	-35.484	-34.554	-35.865	-34.920
40	0.865	0.110	-43.713	-42.585	-44.080	-42.902	-43.470	-42.418	-43.840	-42.743
60	0.788	0.156	-51.445	-51.224	-51.514	-51.279	-55.366	-54.268	-55.529	-54.361

TABLE 7.12.2 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 7.2.

Ψ (dB)	\mathbf{b}	$\eta=0.00$				$\eta=0.01$				
			Correlated noise		Uncorrelated noise		Correlated noise		Uncorrelated noise	
	ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$								
10	0.020	-19.265	-18.088	-19.703	-18.425	-18.991	-17.891	-19.424	-18.263	
20	0.040	-25.543	-24.366	-25.911	-24.653	-25.262	-24.165	-25.623	-24.459	
30	0.075	-31.329	-30.152	-31.576	-30.363	-31.036	-29.946	-31.281	-30.161	
40	0.140	-35.975	-34.806	-36.065	-34.913	-35.584	-34.544	-35.673	-34.646	
60	0.185	-38.479	-37.445	-38.495	-37.514	-38.097	-37.246	-38.056	-37.286	

TABLE 7.12.3 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 7.3

ψ (dB)	b	b^{\prime}	θ	$\eta=0.00$				$\eta=0.01$			
				Correlated noise		Uncorrelated noise		Correlated noise		Uncorrelated noise	
				$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\overline{\xi_{1}}$ (dB)	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \\ \hline \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$
10	0.1	0.09	0.960	-20.811	-19.479	-21.315	-20.018	-20.545	-19.298	-20.998	-19.808
20	0.1	0.11	0.945	-28.719	-27.464	-29.208	-27.917	-28.566	-27.359	-29.029	-27.800
30	0.1	0.13	0.920	-36.495	-35.249	-36.921	-35.637	-36.446	-35.210	-36.854	-35.592
40	1.0	0.10	0.860	-43.678	-42.553	-44.044	-42.870	-43.965	-42.741	-44.341	-43.064
60	1.0	0.14	0.770	-51.444	-51.227	-51.521	-51.290	-56.172	-54.850	-56.335	-54.937

TABLE 7.12.4 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 7.4

$\begin{gathered} \psi \\ (\mathrm{dB}) \end{gathered}$	b	b^{\prime}	$\eta=0.00$				$\eta=0.01$			
			Correlated noise		Uncorrelated noise		Correlated noise		Uncorrelated noise	
			$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	ξ_{2} (dB)	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{array}{r} \xi_{2} \\ (\mathrm{~dB}) \\ \hline \end{array}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$
10	0.10	0.02	-19.265	-18.088	-19.703	-18.425	-19.032	-17.925	-19.424	-18.236
20	0.10	0.04	-25.543	-24.366	-25.911	-24.653	-25.444	-24.298	-25.780	-24.580
30	0.10	0.09	-31.393	-30.153	-31.655	-30.380	-31.350	-30.120	-31.614	-30.349
40	1.00	0.15	-35.967	-34.778	-36.042	-34.870	-36.008	-34.797	-36.091	-34.896
60	1.00	0.18	-38.450	-37.413	-38.467	-37.484	-38.285	-37.363	-38.295	-37.409

TABLE 7.12.5 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 7.5.

Ψ (dB)	κ	b^{\prime}	θ	$\eta \underset{b=1.0}{=} 0.00$				$\eta \underset{b=1.0}{=0.01}$			
				Correlated noise		Uncorrelated noise		Correlated noise		Uncorrelated noise	
				$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \\ \hline \end{gathered}$	ξ_{2} (dB)	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \\ \hline \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{array}{r} \xi_{2} \\ (\mathrm{~dB}) \\ \hline \end{array}$
10	. 990	. 09	. 960	-20.757	-19.593	-21.398	-20.054	-18.621	-17.813	-18.911	-18.076
20	. 985	. 11	. 945	-28.685	-27.486	-29.319	-27.985	-26.596	-25.777	-26.947	-26.141
30	. 976	. 13	. 920	-36.484	-35.256	-37.062	-35.780	-34.125	-33.387	-34.482	-33.782
40	. 970	. 10	. 860	-43.672	-42.602	-44.179	-43.051	-40.185	-39.611	-40.551	-40.036
60	. 950	. 14	. 770	-51.460	-51.268	-51.557	-51.318	-49.622	-50.010	-49.752	-50.199

TABLE 7.12.6 MEAN SQUARE ERROR \& NORMALIZED MEAN SQUARE ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 7.6

$\begin{gathered} \psi \\ (\mathrm{dB}) \end{gathered}$	b	ω	$\eta=0.00$				$\eta=0.01$			
			Correlated noise		Uncorrelated noise		Correlated noise		Uncorrelated noise	
			$\begin{array}{r} \hline \xi_{1} \\ (\mathrm{~dB}) \\ \hline \end{array}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\overline{\xi_{1}}$ (dB)	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{array}{r} \xi_{1} \\ (\mathrm{~dB}) \\ \hline \end{array}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \\ \hline \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$
10	0.10	0.986	-20.510	-19.229	-20.903	-19.630	-20.264	-19.062	-20.614	-19.436
20	0.10	0.974	-28.281	-26.971	-28.723	-27.387	-28.143	-26.877	-28.561	-27.282
30	0.10	0.962	-35.976	-34.739	-36.325	-35.077	-35.918	-34.695	-36.256	-35.029
40	1.00	0.932	-43.344	-42.155	-43.653	-42.454	-43.608	-42.322	-43.940	-42.640
60	1.00	0.880	-51.258	-51.043	-51.307	-51.084	-55.946	-54.618	-56.050	-54.711

TABLE 7.12.7 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 7.7

$\begin{gathered} \Psi \\ (\mathrm{dB}) \end{gathered}$	b	ω	θ	$\eta=0.00$				$\eta=0.01$			
				Correlated noise		Uncorrelated noise		Correlated noise		Uncorrelated noise	
				$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$
10	0.1	0.860	0.955	-19.313	-17.745	-20.250	-18.774	-19.242	-17.723	-19.997	-18.593
20	0.1	0.830	0.935	-28.091	-26.773	-28.593	-27.266	-27.944	-26.675	-28.430	-27.161
30	0.1	0.815	0.900	-36.175	-34.861	-36.542	-35.225	-36.122	-34.820	-36.472	-35.180
40	1.0	0.820	0.840	-43.722	-42.532	-44.051	-42.886	-43.383	-42.339	-43.662	-42.662
60	1.0	0.800	0.710	-51.699	-51.507	-51.799	-51.591	-56.809	-55.367	-56.970	-55.522

TABLE 7.12.8 MEAN SQUARE ERROR \& NORMALIZED MEAN SQUARE ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 7.8.

$\begin{gathered} \psi \\ (\mathrm{dB}) \end{gathered}$	b	ω	$\eta=0.00$				$\eta=0.01$			
			Correlated noise		Uncorrelated noise		Correlated noise		Uncorrelated noise	
			ξ_{1} (dB)	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \\ \hline \end{gathered}$	ξ_{1} (dB)	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \\ \hline \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \\ \hline \end{gathered}$	ξ_{2} (dB)	ξ_{1} (dB)	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$
10	0.10	0.958	-19.332	-18.145	-19.746	-18.468	-19.096	-17.978	-19.462	-18.275
20	0.10	0.906	-25.720	-24.499	-26.080	-24.792	-25.617	-24.429	-25.962	-24.717
30	0.10	0.807	-31.810	-30.590	-32.036	-30.784	-31.759	-30.554	-31.980	-30.747
40	1.00	0.616	-37.008	-35.846	-37.051	-35.879	-37.046	-35.868	-37.089	-35.902
60	1.00	0.330	-40.996	-40.151	-40.990	-40.167	-39.979	-39.743	-40.374	-39.849

TABLE 7.12.9 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 4 SKY WAVE CHANNEL FROM SYSTEM 7.1. SYSTEM 7.1 PARAMETERS OPTIMIZED FOR THE ESTIMATION OF A 3 SKY WAVE CHANNEL.

$(\underset{d B}{\psi})$	θ	b	$\eta=0.00$		$\eta=0.01$	
			ξ_{1} dB	$\begin{gathered} \xi_{2} \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \xi_{1} \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \xi_{2} \\ \mathrm{~dB} \end{gathered}$
10	0.960	0.095	-19.538	-18.359	-18.603	-17.725
20	0.946	0.112	-23.655	-22.754	-24.760	-23.581
30	0.922	0.130	-24.738	-23.948	-27.452	-25.909
40	0.865	0.110	-24.539	-23.779	-27.208	-25.714
60	0.788	0.156	-23.422	-22.648	-26.780	-25.085

TABLE 7.12.10 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 4 SKY WAVE CHANNEL FROM SYSTEM 7.1. SYSTEM 7.1 PARAMETERS OPTIMIZED FOR THE ESTIMATION OF A 4 SKY WAVE CHANNEL.

$(\underset{(d B)}{\Psi}$	θ	b	$\eta=0.00$		Optimized η				
						Correlated noise		Uncorrelated noise	
			$\overline{\xi_{1}}$ (dB)	ξ_{2} (dB)	η	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \\ \hline \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$
10	0.960	0.095	-19.538	-18.359	0.00	-19.538	-18.359	-19.935	-18.762
20	0.950	0.120	-23.652	-22.756	0.01	-24.775	-23.605	-24.920	-23.743
30	0.940	0.135	-24.798	-24.013	0.03	-29.149	-27.353	-29.150	-27.386
40	0.940	0.145	-24.956	-24.187	0.03	-30.637	-28.334	-30.579	-28.312
60	0.935	0.125	-24.974	-24.205	0.04	-31.038	-28.707	-30.994	-28.679

TABLE 7.12.11 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 4 SKY WAVE CHANNEL FROM SYSTEM 7.3. SYSTEM 7.3 PARAMETERS OPTIMIZED FOR THE ESTIMATION OF A 3 SKY WAVE CHANNEL.

$\underset{\mathrm{dB}}{\Psi}$	b	b^{\prime}	θ	$\eta=0.00$		$\eta=0.01$	
				ξ_{1} dB	$\begin{gathered} \xi_{2} \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \xi_{1} \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \xi_{2} \\ \mathrm{~dB} \end{gathered}$
10	0.1	0.09	0.960	-19.517	-18.241	-19.528	-18.348
20	0.1	0.11	0.945	-23.654	-22.751	-24.123	-23.056
30	0.1	0.13	0.920	-24.722	-23.932	-25.405	-24.382
40	1.0	0.10	0.860	-24.543	-23.784	-25.264	-24.267
60	1.0	0.14	0.770	-23.338	-22.562	-28.351	-26.086

TABLE 7.12.12 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 4 SKY WAVE CHANNEL FROM SYSTEM 7.3. SYSTEM 7.3 PARAMETERS OPTIMIZED FOR THE ESTIMATION OF A 4 SKY WAVE CHANNEL.

(dB)	b	b^{\prime}	θ	$\eta=0.00$		Optimized η				
							Correlated noise		Uncorrelated noise	
				ξ_{1} (dB)	ξ_{2} (dB)	η	ξ_{1} (dB)	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$
10	0.1	0.095	0.960	-19.538	-18.359	0.00	-19.538	-18.359	-19.935	-18.762
20	0.3	0.110	0.945	-23.654	-22.751	0.02	-25.369	-23.998	-25.495	-24.137
30	1.0	0.115	0.935	-24.796	-24.010	0.02	-30.036	-27.928	-30.036	-27.961
40	1.0	0.125	0.935	-24.956	-24.187	0.02	-31.861	-29.327	-31.835	-29.315
60	1.0	0.130	0.935	-24.978	-24.209	0.02	-32.226	-29.535	-32.227	-29.526

TABLE 7.12.13 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 4 SKY WAVE CHANNEL FROM SYSTEM 7.5. SYSTEM 7.5 PARAMETERS OPTIMIZED FOR THE ESTIMATION OF A 4 SKY WAVE CHANNEL.

$\boldsymbol{(d B})$	\mathbf{b}	κ	b^{\prime}	θ	η	Correlated noise		Uncorrelated noise	
						ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$	ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$
10	1.0	0.990	0.09	0.960	0.00	-19.538	-16.321	-19.935	-16.323
20	1.0	0.985	0.11	0.945	0.01	-25.572	-23.359	-25.679	-23.375
30	1.0	0.976	0.13	0.920	0.02	-30.915	-30.285	-30.929	-30.320
40	1.0	0.970	0.10	0.860	0.15	-35.899	-35.822	-35.965	-35.911
60	1.0	0.950	0.14	0.770	0.16	-38.243	-42.369	-38.388	-42.832

TABLE 7.12.14 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 7.5. THE ORTHOGONAL SUB-SPACE FORMED FROM THE ESTIMATES.

$(\underset{d B}{*})$	b	к	b^{\prime}	θ	η	$\eta .00$		$\eta .01$	
						$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{1} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \xi_{2} \\ (\mathrm{~dB}) \end{gathered}$
10	1.0	0.990	0.09	0.960	0.00	-13.772	-13.886	-18.600	-17.795
20	1.0	0.985	0.11	0.945	0.00	-22.025	-22.071	-26.584	-25.765
30	1.0	0.976	0.13	0.920	0.00	-29.139	-29.225	-34.114	-33.375
40	1.0	0.970	0.10	0.860	0.00	-32.963	-33.286	-40.158	-39.577
60	1.0	0.950	0.14	0.770	0.00	-39.888	-40.441	-49.562	-49.923

Fig. 7.12.1 - Performance of Systems $7.1 \& 7.2$

Fig. 7.12.2 - Performance of Systems $7.3 \& 7.4$

Fig. 7.12.3 - Performance of System 7.5

Fig. 7.12.4 - Performance of Systems 7.6, 7.7 \& 7.8

CHAPTER 8

FAST TRANSVERSAL FILTER ALGORITHM FOR HF CHANNEL ESTIMATION

8.1 INTRODUCTION

When a channel estimator has no prior knowledge of the channel, a recursive least-squares (RLS) algorithm gives a convergence rate that is far superior to that of the least mean squares (LMS) algorithm [20, 59, 101]. However, this superior convergence rate of the RLS algorithm is at the expense of increased computation. Adaptive and computationally efficient RLS algorithms have been introduced in transversal filter form [20,59, 97, 101, 104-106] as well as in lattice filter form [20, $59,101,108-110]$. These algorithm are computationally efficient, requiring a number of arithmetic operations per iteration that is proportional to the number of variable parameters in the adaptive filter. However, they are still very much more complex than the LMS algorithm [20, 59, 101]. Fast Transversal Filter (FTF) implementations of the RLS adaptive filtering algorithm are presented in [84, 87]. This technique is the most promising of all the Fast RLS algorithms. The FTF algorithm is particularly suited to the application of channel estimation, as most of the computations involve only the detected data symbols that have possible values of $\pm 1 \pm \mathrm{j}$ for a QPSK system. This chapter studies the application of the FTF algorithm to HF channel estimation. The FTF implementation of the RLS algorithm exploits the shifting property of serialized data, thereby resulting in a substantial reduction in computational complexity.

The FTF algorithm in its original form [84, 87] is known to exhibit an unstable behaviour and a sudden divergence due to accumulation of round-off errors in finite precision computation [111-116]. Methods to overcome these round-off errors have been suggested in [116-118]. These introduce a redundant equation to measure a particular parameter in the algorithm which, however, only prolongs the stable operation of the estimator [113]. An alternative method to overcome the round-off
error accumulation is suggested in this chapter, and a one-step prediction is incorporated into the FTF algorithm that takes into account the rate of change in the estimates of the sampled impulse-response of the channel.

8.2 MODEL OF DATA TRANSMISSION SYSTEM USED IN THE TESTS

Fig. 3.5.1 shows the model of the data transmission system used in the tests. The particular application studied is the transmission of digital data at 4800 bits/sec. employing a serial quaternary phase shift keyed (QPSK) signal with a carrier frequency of 1800 Hz and an element rate of 2400 bauds. Stationary Gaussian noise, with zero mean and a two-sided power spectral density of $\frac{1}{2} N_{0}$ is added to the data signal at the output of the HF radio link.

The received signal sample at time $\mathrm{t}=\mathrm{i} \mathrm{T}$ is given by (Eqn. 3.4.2)

$$
\begin{align*}
r_{i} & =\sum_{h=0}^{g} s_{i-h} y_{i, h}+w_{i} \\
& =Y_{i} S_{i}^{T}+w_{i}
\end{align*}
$$

where (Eqn. 3.4.4)

$$
Y_{i}=\left[\begin{array}{lllll}
& y_{i, 0} & y_{i, 1} & \ldots . & y_{i, g}
\end{array}\right]
$$

and (Eqn. 3.4.5)

$$
S_{i}=\left[\begin{array}{llll}
s_{i} & s_{i-1} & \ldots . & s_{i-g}
\end{array}\right]
$$

Y_{i} and S_{i} are ($\mathrm{g}+1$)- component row vectors, and S_{i}^{T} is the transpose of S_{i}. In all the tests here $g=31$, so that the sampled impulse-response of the channel has 32 components. As is shown in Fig. 3.5.1, the signal r_{i} and the "early" detected data-symbol $s_{i}^{\prime \prime}$ (see Section 3.5) are fed to the channel estimator to give an estimate of the channel sampled impulse-response Y_{i}^{\prime} at time $\mathrm{t}=\mathrm{iT}$, given by

$$
Y_{i}^{\prime}=\left[\begin{array}{lllll}
& y_{i, 0}^{\prime} & y_{i, 1}^{\prime} & \ldots & y_{i, 8}^{\prime}
\end{array}\right]
$$

Correct detection is assumed so that (Eqn. 3.5.3)

$$
s_{i}^{\prime \prime}=s_{i}
$$

Since the prime concern is only with the performance of the channel estimator. Further details on the channel model are given in Chapter 3.

8.3 SYSTEM 8.1

System 8.1 is the conventional FTF algorithm [84]. The channel estimator operates with a channel estimation vector, for time $t=i T$, which is

$$
Y_{i}^{\prime}=\left[\begin{array}{lllll}
y_{i, 0}^{\prime} & y_{i, 1}^{\prime} & \cdots & y_{i, g}^{\prime}
\end{array}\right]
$$

where $y_{i, h}^{\prime}$ is an estimate of $y_{i, h}$, for $\mathrm{h}=0,1, \ldots, \mathrm{~g}$. The data vector, for time $\mathrm{t}=\mathrm{i} \mathrm{T}$, is a ($\mathrm{g}+1$)- component row vector given by Eqn. 8.2.4.

The estimator forms an estimate of the received sample, r_{i}, given by

$$
r_{i}^{\prime}=Y_{i}^{\prime} S_{i}^{T}
$$

where S_{i}^{T} is the transpose of S_{i}. S_{i} is determined from the corresponding $\left\{S_{i-n}^{\prime}\right\}$, assuming that Eqn. 8.2.6 holds. The estimator next forms the error signal

$$
e_{i}=r_{i}-r_{i}^{\prime}
$$

The estimate of Y_{i} is obtained recursively in such way that the cumulative squared error measure

$$
C_{i}=\sum_{h=0}^{i} \lambda^{i-h}\left|e_{h}\right|^{2}
$$

is minimized. The parameter λ is a real valued constant in the range 0 to 1 . The quantity C_{i} is the cumulative sum of the weighted squared error in the $\left\{r_{n}^{\prime}\right\}$, bearing in mind that r_{0} is the first received sample that is operated on by the estimator. λ is a weighting factor that introduces an exponential window into the processed samples and is, therefore, sometimes called the fade factor or the forgetting factor for the filter.

At time $\mathrm{t}=\mathrm{i} \mathrm{T}$, the channel estimation vector Y_{i}^{\prime} that minimizes C_{i} is given by $[20,59$, 83, 101, 103],

$$
Y_{i}^{\prime}=Q_{i} R_{i}^{-1}
$$

where

$$
R_{i}=\sum_{h=0}^{i} \lambda^{i-h} S_{h}^{T} \bar{S}_{h}
$$

and

$$
Q_{i}=\sum_{h=0}^{i} \lambda^{i-h} r_{h} \bar{S}_{h}
$$

where \bar{S}_{h} is the complex conjugate of S_{h} and S_{h}^{T} is the transpose of $\mathrm{S}_{\mathrm{h}} . \mathrm{R}_{\mathrm{i}}$, called the sample autocorrelation matrix, is $(\mathrm{g}+1) \mathrm{x}(\mathrm{g}+1)$ square matrix and Q_{i}, called the sample cross-correlation vector, is a ($\mathrm{g}+1$)- component row vector.
Y_{i}^{\prime} is given recursively as (see Eqn. 5.3.44) $[20,59,83,101,103]$

$$
\begin{align*}
Y_{i}^{\prime} & =Y_{i-1}^{\prime}+\left(r_{i}-Y_{i-1}^{\prime} S_{i}^{T}\right) K_{i} \\
& =Y_{i-1}^{\prime}+K_{i} e_{i}
\end{align*}
$$

where K_{i} is called the Kalman gain vector. Eqn. 8.3.7 is derived from first principle in Chapter 5 and in [103] and is consistent with [20,83].

The FTF algorithm uses four transversal filters in order to obtain the channel estimate [59, 84, 87, 101]. One filter gives an estimate of the sampled impulse-res-
ponse of the HF channel. Three other filters called the forward linear predictor, the backward linear predictor and the gain transversal filter are used in the estimation of so called Kalman gain vector (K_{i} in Eqn. 8.3.7) necessary for updating the channel estimate. For each of the four filters an estimation error is first evaluated followed by the updating of the tap coefficients of the filter.

8.3.1 ADAPTIVE FORWARD LINEAR PREDICTOR

The set of data symbols $\mathrm{s}_{\mathrm{i}-1}, \mathrm{~s}_{\mathrm{i}-2}, \ldots ., \mathrm{s}_{\mathrm{i}(\mathrm{s}+1)}$ is used to make a prediction of the symbol s_{i} at time $t=i T$. The operation corresponds to one-step prediction into the future, measured with respect to the time $t=(i-1) \mathrm{T}$. This form of prediction is referred to as one-step prediction in the forward direction or simply forward prediction.

The one-step forward predictor is as shown in Fig. 8.3.1. It consists of a linear filter with $(\mathrm{g}+1)$ taps. The tap co-efficients of the forward predictor are given by the (g+1)- component vector

$$
F_{g+1, i}=\left[\begin{array}{lllll}
f_{i, 1} & f_{i, 2} & \cdots & f_{i, g+1}
\end{array}\right]
$$

and the data symbols held in the forward predictor are given by the ($\mathrm{g}+1$)component vector

$$
S_{g+1, i-1}=\left[\begin{array}{llll}
s_{i-1} & s_{i-2} & \cdots & s_{i-(g+1)}
\end{array}\right]
$$

In Eqns. 8.3.8 and 8.3.9, and henceforth in this Chapter, the first subscript of any vector or matrix represents the order of the vector or matrix. The forward prediction error produced by the predictor at time $t=i T$ in response to the input vector $S_{g+1, i-1}$ is given by

$$
e_{f, i}=s_{i}-\sum_{h=1}^{8+1} f_{i, h} s_{i-h}
$$

where $e_{f, i}$ is referred to as the a-posteriori forward error prediction since its computation is based on the current value of the predictor tap weight vector. The
subscript f, in $e_{f i}$, denotes that the error is from forward predictor. Thus the one-step forward predictor can also be represented as a one-step forward prediction error filter, as shown in Fig. 8.3.2, with ($\mathrm{g}+2$) taps. Comparing Figs. 8.3.1 and 8.3.2 with reference to Eqn. 8.3.10, the tap co-efficients of the two filters can be related as follows

$$
\begin{align*}
A_{g+2, i} & =\left[\begin{array}{llllll}
& a_{i, 0} & a_{i, 1} & a_{i, 2} & \ldots & a_{i, g+1}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
1 & -f_{i, 1} & -f_{i, 2} & \ldots & -f_{i, g+1}
\end{array}\right]
\end{align*}
$$

In $A_{g+2 i}(g+2)$ represents the order, and i represents the time instant.

The $\mathrm{e}_{\mathrm{f}, \mathrm{i}}$ can now be written as

$$
e_{f, i}=A_{g+2, i} S_{g+2, i}^{T}
$$

where

$$
S_{g+2, i}=\left[\begin{array}{lllll}
s_{i} & s_{i-1} & \ldots & s_{i-(g+1)}
\end{array}\right]
$$

Now let

$$
\phi_{g+2, i}=\sum_{h=0}^{i} \lambda^{i-h} S_{g+2, h}^{T} \bar{S}_{g+2, h}
$$

$\phi_{g+2, i}$ is a square matrix of dimension ($\mathrm{g}+2$) $\mathrm{x}(\mathrm{g}+2)$ and is called the auto correlation matrix of the input vector $\mathrm{S}_{\mathrm{g}+2 \mathrm{i}}$ to the forward prediction error filter. The matrix, $\phi_{\delta+2 i,}$, can be partitioned as

$$
\phi_{g+2, i}=\left[\begin{array}{cc}
x_{1, i} & \delta_{1, i} \\
\delta_{1, i}^{*} & \phi_{g+1, i-1}
\end{array}\right]
$$

where the scalar $\mathrm{X}_{1, i}$ is the first element of the matrix $\phi_{8+2, i}$ and is given by

$$
x_{1, i}=\sum_{h=0}^{i} \lambda^{i-h}\left|s_{h}\right|^{2}
$$

Fig. 8.3.1 - One Step Forward Predictor

Fig. 8.3.2 - Forward Prediction Error Filter
and the ($\mathrm{g}+1$)- component row vector, $\delta_{1, i}$, in Eqn. 8.3.16, is given by

$$
\delta_{1, i}=\sum_{h=0}^{i} \lambda^{i-h} s_{h} \bar{S}_{g+1, h-1}
$$

$\delta_{1, i}$ is the complex conjugate transpose of $\delta_{1, i} \cdot \phi_{z_{+1, i-1}}$ is $(\mathrm{g}+1) \mathrm{x}(\mathrm{g}+1)$ square matrix and is given by

$$
\phi_{g+1, i-1}=\sum_{h=0}^{i-1} \lambda^{i-1-h} S_{g+1, h}^{T} \bar{S}_{g+1, h}
$$

At time $\mathrm{t}=\mathrm{iT}$, the vector $\mathrm{A}_{g^{+2} 2}$ is obtained in such a way that the cumulative sum of the weighted squared errors from the forward prediction error filter,

$$
\alpha_{i}=\sum_{h=0}^{i} \lambda^{i-h}\left|e_{f, h}\right|^{2}
$$

is minimized, subject to the constraint that the first component of $A_{8+2 i}$ equals unity. $\mathrm{A}_{\mathrm{g}+2 \mathrm{i}}$ now satisfies the relation

$$
A_{g+2, i} \phi_{g+2, i}=\left[\begin{array}{llll}
\alpha_{i} & 0 & \ldots . & 0
\end{array}\right]
$$

Eqn. 8.3.21 is called the augmented normal equation for a forward linear predictor [59].

Combining equations 8.3.12, 8.3.16 and 8.3.21 we have

$$
\left[\begin{array}{ccc}
1 & \left.-F_{g+1, i}\right]
\end{array}\left[\begin{array}{lc}
x_{1, i} & \delta_{1, i} \\
\delta_{1, i}^{*} & \phi_{g+1, i-1}
\end{array}\right]=\left[\begin{array}{cccc}
\alpha_{i} & 0 & \ldots . & 0
\end{array}\right]\right.
$$

The updated estimate of $\mathrm{F}_{\mathrm{g}+1, i}$, is given by

$$
F_{g+1, i}=F_{g+1, i-1}+K_{g+1, i-1} e_{f, p, i}
$$

where $e_{f, p, i}$ is the forward a-priori prediction error and is given by

$$
e_{f, p, i}=s_{i}-F_{g+1, i-1} S_{g+1, i-1}^{T}
$$

$K_{8+1, i-1}$ is the gain vector for the forward prediction filter of order ($\mathrm{g}+1$) and is given by (see Eqn. 5.3.43)

$$
K_{g+1, i-1}=\bar{S}_{g+1, i-1} \phi_{g+1, i-1}^{-1}
$$

Combining equations $8.3 .11,8.3 .12$ and 8.3.23

$$
A_{g+2, i}=A_{g+2, i-1}-\left[\begin{array}{ll}
0 & K_{g+1, i-1}
\end{array}\right] e_{f, p, i}
$$

where

$$
\begin{align*}
e_{f, p, i} & =\left[\begin{array}{ll}
1 & -F_{g+1, i-1}
\end{array}\right]\left[\begin{array}{ll}
s_{i} & S_{g+1, i-1}
\end{array}\right]^{T} \\
& =A_{g+2, i-1} S_{g+2, i}^{T}
\end{align*}
$$

The minimum value of the sum of squares of weighted forward prediction error is given by

$$
\alpha_{i}=\lambda \alpha_{i-1}+e_{f, p, i} e_{f, i}^{*}
$$

In Eqn. 8.3.29, the second term is always a real valued scalar, i.e.

$$
e_{f, p, i} e_{f, i}^{*}=e_{f, p, i}^{*} e_{f, i}
$$

8.3.2 ADAPTIVE BACKWARD LINEAR PREDICTOR

In the backward linear predictor, the set of data symbols $\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}-1}, \ldots, \mathrm{~s}_{\mathrm{i}, \mathrm{g}}$ is used to make a prediction of the symbol $\mathrm{s}_{\mathrm{i}_{(\mathrm{g}+1)} \text {. }}$. This is a one-step backward prediction. Fig 8.3.3 shows the one-step backward predictor and Fig. 8.3.4 shows the corresponding backward prediction error filter.

The backward prediction error at time $t=i T$ is given by

Fig. 8.3.3 - One Step Backward Predictor

Fig. 8.3.4-Backward Prediction Error Filter

$$
e_{b, i}=s_{i-(g+1)}-\sum_{h=0}^{g} p_{i, h} s_{i-h}
$$

$e_{b, i}$ is referred to as the backward a-posteriori prediction error. The subscript b, in $e_{b, j}$, denotes that the error is from the backward predictor. Eqn. 8.3.31 is equivalent to

$$
e_{b, i}=s_{i-(g+1)}-P_{g+1, i} S_{g+1, i}^{T}
$$

The vector

$$
P_{g+1, i}=\left[\begin{array}{llll}
p_{i, 0} & p_{i, 1} & \cdots & p_{i, g}
\end{array}\right]
$$

gives the tap coefficients of the backward predictor and the data symbols held in the backward predictor is given by the ($\mathrm{g}+1$)-component vector

$$
S_{g+1, i}=\left[\begin{array}{lllll}
s_{i} & s_{i-1} & s_{i-2} & \cdots & s_{i-g}
\end{array}\right]
$$

The backward predictor, of Fig. 8.3.3, gives an estimate of $\mathrm{s}_{\mathrm{i}-(\xi+1)}$, on the other hand, the output from the backward prediction error filter, of Fig. 8.3.4, is the error in estimating $\mathrm{s}_{\mathrm{i}(-(\mathrm{z}+1)}$. From Figs. 8.3.3 and 8.3.4, the tap coefficients of the backward prediction error filter, are given by the ($\mathrm{g}+2$)- component vector

$$
\begin{align*}
B_{g+2, i} & =\left[\begin{array}{lllll}
-P_{g+1, i} & 1 &]
\end{array}\right. \\
& =\left[\begin{array}{llllll}
& b_{i, 0} & b_{i, 1} & \ldots \ldots & b_{i, g+1} &
\end{array}\right] \\
& =\left[\begin{array}{llllll}
-p_{i, 0} & -p_{i, 1} & \ldots & -p_{i, g} & 1
\end{array}\right]
\end{align*}
$$

From equations 8.3.32 and 8.3.35, $\mathrm{e}_{\mathrm{b}, \mathrm{i}}$ is now given by

$$
e_{b, i}=B_{g+2, i} S_{g+2, i}^{T}
$$

The desired vector $\mathrm{B}_{\mathrm{g}+2 \mathrm{i}}$ is obtained by minimizing the cumulative sum squares of the weighted backward prediction error, up to the time instant $t=i T$, subjected to the constraint that the last component of $\mathrm{B}_{\mathrm{g}+2 \mathrm{i}}$ equals unity.

The elements of the matrix $\phi_{\boldsymbol{z}+2, i}$, (Eqn. 8.3.15), can now be written in partition form as

$$
\phi_{g+2, i}=\left[\begin{array}{cc}
\phi_{g+1, i} & \delta_{2, i}^{*} \\
\delta_{2, i} & x_{2, i}
\end{array}\right]
$$

where $\phi_{g+1, i}$ is a $(g+1) x(g+1)$ element matrix and is given by,

$$
\phi_{g+1, i}=\sum_{h=0}^{i} \lambda^{i-h} S_{g+1, h}^{T} \bar{S}_{g+1, h}
$$

$\delta_{2 i}$ is a ($\mathrm{g}+1$)- component row vector given by

$$
\delta_{2, i}=\sum_{h=0}^{i} \lambda^{i-h} s_{h-(g+1)} \bar{S}_{g+1, h}
$$

$\delta_{2 i}^{*}$ is the complex conjugate transpose of the vector $\delta_{2, i}$. Finally the scalar $x_{2, i}$, in Eqn. 8.3.37, is the last element of the matrix $\phi_{8+2, i}$ and is the weighted sum of the squares of the desired response form the backward predictor, and is given by

$$
x_{2, i}=\sum_{h=0}^{i} \lambda^{i-h}\left|s_{h-(g+1)}\right|^{2}
$$

The vector $\mathrm{B}_{\mathrm{g}+2 \mathrm{i}}$ (Eqn. 8.3.35) giving the minimum sum of weighted backward prediction error squares,

$$
\beta_{i}=\sum_{h=0}^{i} \lambda^{i-h}\left|e_{b, h}\right|^{2}
$$

satisfies

$$
B_{g+2, i} \phi_{g+2, i}=\left[\begin{array}{lllll}
0 & \ldots . & 0 & \beta_{i}
\end{array}\right]
$$

Eqn. 8.3.42 is called the augmented normal equation for a backward predictor [59].

The updated estimate of $\mathrm{P}_{\mathrm{g}+1, \mathrm{i}}$ is given by

$$
P_{g+1, i}=P_{g+1, i-1}+K_{g+1, i} e_{b, p, i}
$$

where $e_{b, p, i}$ is the a-priori prediction error for the backward predictor and is given by

$$
e_{b, p, i}=s_{i-(g+1)}-P_{g+1, i-1} S_{g+1, i}^{T}
$$

$\mathrm{K}_{\mathrm{g}+1, \mathrm{i}}$ is the gain vector for the backward prediction filter and is given by

$$
K_{g+1, i}=\bar{S}_{g+1, i} \phi_{g+1, i}^{-1}
$$

Combining equations 8.3.35 and 8.3.43,

$$
B_{g+2, i}=B_{g+2, i-1}-\left[\begin{array}{ll}
K_{g+1, i} & 0
\end{array}\right] e_{b, p, i}
$$

Also

$$
e_{b, p, i}=\left[\begin{array}{ll}
-P_{g+1, i-1} & 1
\end{array}\right]\left[\begin{array}{ll}
S_{g+1, i} & S_{i-(g+1)}
\end{array}\right]^{T}
$$

or

$$
e_{b, p, i}=B_{g+2, i-1} S_{g+2, i}^{T}
$$

The recursive weighted sum of the square of backward prediction error is given by

$$
\beta_{i}=\lambda \beta_{i-1}+e_{b, p, i} e_{b, i}^{*}
$$

It may be noted that the last term in Eqn. 8.3.48, is real valued scalar so that

$$
e_{b, p, i} i_{b, i}^{*}=e_{b, p, i}^{*} e_{b, i}
$$

It can thus be seen that, $\mathrm{K}_{\mathrm{g}+1, \mathrm{i}}$ is used in updating the backward prediction filter, whereas $\mathrm{K}_{\mathrm{k}_{\mathrm{+1}, \mathrm{i}-1}}$ is used in updating the forward prediction filter. Another transversal filter called the gain transversal filter is used to obtain $\mathrm{K}_{\mathrm{g}+1, \mathrm{i}}$ from $\mathrm{K}_{\mathrm{g}+1, \mathrm{j} 1}$.

8.3.3 GAIN TRANSVERSAL FILTER

The Gain vectors for the forward and backward prediction filter are given by Eqn. 8.3.25 and Eqn. 8.3.45 respectively. $\mathrm{K}_{\mathrm{k}+2 \mathrm{i}}$, is given by

$$
K_{g+2, i}=\bar{S}_{g+2, i} \Phi_{g+2, i}^{-1}
$$

The inverse of the matrix $\phi_{8+2, i}$, (Eqn.8.3.15), can be expressed as, [59],

$$
\phi_{g+2, i}^{-1}=\left[\begin{array}{cc}
O & O_{g+1} \\
O_{g+1}^{T} & \phi_{g+1, i-1}^{-1}
\end{array}\right]+\frac{1}{\alpha_{i}} A_{g+2, i}^{T} \bar{A}_{g+2, i}
$$

where $\mathrm{O}_{\mathrm{g}+1}$ is a $(\mathrm{g}+1)$ - component zero vector. Pre-multiplying Eqn. 8.3.50 by $\bar{s}_{\mathrm{s}+2 \mathrm{i}}$ and simplifying,

$$
K_{g+2, i}=\left[\begin{array}{ll}
0 & K_{g+1, i-1}
\end{array}\right]+\frac{e_{f, i}^{*}}{\alpha_{i}} A_{g+2, i}
$$

since

$$
e_{f, i}^{*}=\bar{A}_{g+2, i} S_{g+2, i}^{*}
$$

$S_{8+2 i}^{*}$ is the complex conjugate transpose of the vector $\mathrm{S}_{g^{2}+2 i}$.
Similarly the inverse of $\phi_{g+2 i}$ can be expressed as, [59]

$$
\phi_{g+2, i}^{-1}=\left[\begin{array}{cc}
\phi_{g+1, i}^{-1} & O_{g+1} \\
O_{g+1}^{T} & O
\end{array}\right]+\frac{1}{\beta_{i}} B_{g+2, i}^{T} \bar{B}_{g+2, i}
$$

Pre-multiplying Eqn. 8.3.53 by $\bar{S}_{8+2 ; i}$ and simplifying,

$$
\left.K_{g+2, i}=\begin{array}{ll}
K_{g+1, i} & 0
\end{array}\right]+\frac{e_{b, i}^{*}}{\beta_{i}} B_{g+2, i}
$$

Since $e_{b, i}^{\circ}$, in Eqn. 8.3.54, is given by

$$
e_{b, i}^{*}=\bar{B}_{g+2, i} S_{g+2, i}^{*}
$$

The gain vector $\mathrm{K}_{\mathrm{g}+1, \mathrm{i}}$, (Eqn. 8.3.45), can be considered to be the tap coefficients of a transversal filter with $\mathrm{g}+1$ taps, and the data symbols held in the filter being given
by the vector $\mathrm{S}_{\mathrm{s}+1 \mathrm{j}}$, Eqn. 8.3.34 (see Fig. 8.3.5). The output from the filter is the least-squares estimate of the desired response, $\mathrm{d}_{\mathrm{i}}[4]$, where d_{i} has a value of unity at time $t=\mathrm{iT}$ and is zero elsewhere [59].

The error in estimating d_{i}, in Fig. 8.3.5 is, therefore,

$$
\gamma_{i}=1-K_{g+1, i} S_{g+1, i}^{T}
$$

Combining equations 8.3.45 and 8.3.56

$$
\gamma_{i}=1-\bar{S}_{g+1, i} \phi_{g+1, i}^{-1} S_{g+1, i}^{T}
$$

Since $\phi_{8}^{-1}+1, i$ is an Hermitian matrix, it is evident from Eqn. 8.3.57 that γ_{i} is real valued, and has the limits given by [59, 84, 87, 101]

$$
0 \leq \gamma_{i} \leq 1
$$

Post-multiplying both sides of Eqn. 8.3.26 by $S_{8+2 i}^{T}$,

$$
A_{g+2, i} S_{g+2, i}^{T}=A_{g+2, i-1} S_{g+2, i}^{T}-\left[0 \quad K_{g+1, i-1}\right] S_{g+2, i}^{T} e_{f, p, i}
$$

or

$$
\begin{align*}
e_{f, i} & =e_{f, p, i}-\left[\begin{array}{ll}
0 & K_{g+1, i-1}
\end{array}\right]\left[\begin{array}{ll}
s_{i} & S_{g+1, i-1}
\end{array}\right]^{T} e_{f, p, i} \\
& =e_{f, p, i}-\left[\begin{array}{l}
1 \\
-
\end{array} \gamma_{i-1}\right] e_{f, p, i}
\end{align*}
$$

or

$$
\gamma_{i-1}=\frac{e_{f, i}}{e_{f, p, i}}
$$

Similarly the following equations can be obtained.

$$
\gamma_{i}=\frac{e_{b, i}}{e_{b, p, i}}
$$

Fig. 8.3.5-Gain Transversal Filter.

$$
\gamma_{i}=\frac{e_{i}}{e_{p, i}}
$$

where $e_{p, i}$ and e_{i} are the a-priori and a-posteriori error, respectively, in the estimation of the received signal, r_{i}.

Post-multiplying Eqn. 8.3 .51 by $s_{s+2 i}^{T}$,

$$
\begin{aligned}
K_{g+2, i} S_{g+2, i}^{T} & =\left[\begin{array}{ll}
0 & K_{g+1, i-1}
\end{array}\right] S_{g+2, i}^{T} \\
& +\frac{e_{f, i}^{*}}{\alpha_{i}} A_{g+2, i} S_{g+2, i}^{T}
\end{aligned}
$$

Using Eqn. 8.3.56, this reduces to

$$
\left(1-\gamma_{1, i}\right)=\left(1-\gamma_{i-1}\right)+\frac{e_{f, i}^{*}}{\alpha_{i}} e_{f, i}
$$

or

$$
\gamma_{1, i}=\gamma_{i-1}-\frac{\left|e_{f, i}\right|^{2}}{\alpha_{i}}
$$

where $\gamma_{1, i}$ is the error in the estimation of d_{i}, from the extended gain transversal filter, of order $(\mathrm{g}+2)$, with tap coefficient, $\mathrm{K}_{\mathrm{g}+2 \mathrm{i}}$.

Similarly post-multiplying Eqn. 8.3.54 by $S_{8+2 i}^{T}$ and simplifying,

$$
\gamma_{1, i}=\gamma_{i}-\frac{\left|e_{b, i}\right|^{2}}{\beta_{i}}
$$

From Eqn. 8.3.29,

$$
\frac{\lambda \alpha_{i-1}}{\alpha_{i}}=1-\frac{e_{f, p, i} e_{f, i}^{*}}{\alpha_{i}}
$$

Using equations 8.3.60 and 8.3.63

$$
\frac{\lambda \alpha_{i-1}}{\alpha_{i}}=1-\frac{\left|e_{f, i}\right|}{\gamma_{i-1} \alpha_{i}}=\frac{\gamma_{1, i}}{\gamma_{i-1}}
$$

Therefore,

$$
\gamma_{1, i}=\lambda \frac{\alpha_{i-1}}{\alpha_{i}} \gamma_{i-1}
$$

Similarly using equations $8.3 .48,8.3 .61$ and 8.3 .64 , it can be shown that

$$
\gamma_{1, i}=\lambda \frac{\beta_{i-1}}{\beta_{i}} \gamma_{i}
$$

Thus, the three filters that provide the necessary inputs to solve the RLS problem, defined in Eqn. 8.3.4, have now been defined. Fig. 8.3.6 shows the parameters evaluated by the transversal filter.

The update of the tap coefficients of all the Transversal filters will now be considered. The four transversal filters in Fig. 8.3.6 hold a common ($\mathrm{g}+2$)components data vector (Eqn. 8.3.14).

The update of the extended gain vector is obtained as follows. Substituting Eqn. 8.3.26 in Eqn. 8.2.51,

$$
\begin{align*}
K_{g+2, i} & =\left[\begin{array}{ll}
0 & K_{g+1, i-1}
\end{array}\right]+\frac{e_{f, i}^{*}}{\alpha_{i}}\left\{A_{g+2, i-1}-\left[\begin{array}{ll}
0 & K_{g+1, i-1}
\end{array}\right] e_{f, p, i}\right\} \\
& =\left\{1-\frac{e_{f, i}^{*} e_{f, p, i}}{\alpha_{i}}\right\}\left[\begin{array}{ll}
0 & K_{g+1, i-1}
\end{array}\right]+\frac{e_{f, i}^{*}}{\alpha_{i}} A_{g+2, i-1}
\end{align*}
$$

From Eqns. 8.3.29 and 8.3.65

$$
\left\{1-\frac{e_{f, i}^{*} e_{f, p, i}}{\alpha_{i}}\right\}=\frac{\lambda \alpha_{i-1}}{\alpha_{i}}=\frac{\gamma_{1, i}}{\gamma_{i-1}}
$$

Therefore, Eqn. 8.3.67 can be written as

Fig. 8.3.6-Transversal Filter
Computation Of RLS Variables

$$
K_{g+2, i}=\frac{\gamma_{1, i}}{\gamma_{i-1}}\left[\begin{array}{ll}
0 & K_{g+1, i-1}
\end{array}\right]+\frac{e_{f, i}^{*}}{\alpha_{i}} A_{g+2, i-1}
$$

Let

$$
\tilde{K}_{g+2, i}=\frac{K_{g+2, i}}{\gamma_{1, i}}
$$

$\bar{K}_{g+2, i}$ is called the normalized gain vector. Therefore, from Eqns. 8.3.68 and 8.3.69

$$
\bar{K}_{g+2, i}=\left[\begin{array}{ll}
0 & \bar{K}_{g+1, i-1}
\end{array}\right]+\frac{e_{f, i}^{*}}{\gamma_{1, i} \alpha_{i}} A_{g+2, i-1}
$$

From Eqns. 8.3.60, 8.3.65 and 8.3.70

$$
\tilde{K}_{g+2, i}=\left[\begin{array}{ll}
0 & \tilde{K}_{g+1, i-1}
\end{array}\right]+\lambda^{-1} \frac{e_{f, p, i}^{*}}{\alpha_{i-1}} A_{g+2, i-1}
$$

An update of $\mathrm{A}_{8+2, i}$ is obtained using Eqn. 8.3.26. Substituting $\bar{K}_{8+1, i-1}$, (using the definition in Eqn. 8.3.69), in place of $\mathrm{K}_{\mathrm{g}+1, \mathrm{i}-1}$ in Eqn. 8.3.26,

$$
A_{g+2, i}=A_{g+2, i-1}-\left[\begin{array}{ll}
0 & \tilde{K}_{g+1, i-1}
\end{array}\right] \gamma_{i-1} e_{f, p, i}
$$

or

$$
A_{g+2, i}=A_{g+2, i-1}-\left[\begin{array}{ll}
0 & \tilde{K}_{g+1, i-1}
\end{array}\right] e_{f, i}
$$

Consider Eqn. 8.3.54

$$
K_{g+2, i}=\left[\begin{array}{ll}
K_{g+1, i} & 0
\end{array}\right]+\frac{e_{b, i}^{*}}{\beta_{i}} B_{g+2, i}
$$

Substituting Eqn. 8.3.46, for $\mathrm{B}_{\mathrm{g}^{+2 i}}$.

$$
\begin{align*}
K_{g+2, i} & =\left[\begin{array}{ll}
K_{g+1, i} & 0
\end{array}\right]+\frac{e_{b, i}^{*}}{\beta_{i}} \begin{cases}\left.B_{g+2, i-1}-\left[\begin{array}{ll}
K_{g+1, i} & 0
\end{array}\right] e_{b, p, i}\right\} \\
& =\left\{\begin{array}{ll}
1-\frac{e_{b, p, i} e_{b, i}^{*}}{\beta_{i}}
\end{array}\right\}\left[\begin{array}{ll}
K_{g+1, i} & 0
\end{array}\right]+\frac{e_{b, i}^{*}}{\beta_{i}} B_{g+2, i-1}\end{cases}
\end{align*}
$$

But from Eqns. 8.3.48 and 8.3.66

$$
\left\{1-\frac{e_{b, p, i} e_{b, i}^{*}}{\beta_{i}}\right\}=\frac{\lambda \beta_{i-1}}{\beta_{i}}=\frac{\gamma_{1, i}}{\gamma_{i}}
$$

Therefore, from Eqn. 8.3.73 and 8.3.74

$$
K_{g+2, i}=\left[\begin{array}{ll}
K_{g+1, i} & 0
\end{array}\right] \frac{\gamma_{1, i}}{\gamma_{i}}+\frac{e_{b, i}^{*}}{\beta_{i}} B_{g+2, i-1}
$$

or (using Eqn. 8.3.69)

$$
\begin{align*}
\tilde{K}_{g+2, i} & =\left[\begin{array}{ll}
\bar{K}_{g+1, i} & 0
\end{array}\right]+\frac{e_{b, i}^{*}}{\gamma_{1, i} \beta_{i}} B_{g+2, i-1} \\
& =\left[\begin{array}{ll}
\tilde{K}_{g+1, i} & 0
\end{array}\right]+\frac{e_{b, p, i}^{*} \gamma_{i}}{\gamma_{1, i} \beta_{i}} B_{g+2, i-1}
\end{align*}
$$

and from Eqns. 8.3.66 and 8.3.75

$$
\bar{K}_{g+2, i}=\left[\begin{array}{ll}
\bar{K}_{g+1, i} & 0
\end{array}\right]+\lambda^{-1} \frac{e_{b, p, i}^{*}}{\beta_{i-1}} B_{g+2, i-1}
$$

or

$$
\left[\begin{array}{ll}
\tilde{K}_{g+1, i} & 0
\end{array}\right]=\bar{K}_{g+2, i}-\lambda^{-1} \frac{e_{b, p, i}^{*}}{\beta_{i-1}} B_{g+2, i-1}
$$

The last element of $\tilde{K}_{g+2, i}$ is given by (from Eqns. 8.3.75 and 8.3.77),

$$
\tilde{k}_{g+2, g+2}=\frac{\lambda^{-1} e_{b, p, i}^{*}}{\beta_{i-1}}=\frac{e_{b, i}^{*}}{\gamma_{1, i} \beta_{i}}
$$

since the last term of $\mathrm{B}_{\mathrm{k}+2 \cdot \mathrm{i}-1}$ is to be equal to unity.

Therefore,

$$
\left[\begin{array}{cc}
\tilde{K}_{g+1, i} & 0
\end{array}\right]=\tilde{K}_{g+2, i}-\tilde{K}_{g+2, g+2} B_{g+2, i-1}
$$

Also from Eqn. 8.3.78,

$$
e_{b, p, i}=\lambda \beta_{i-1} \tilde{k}_{g+2, g+2}^{*}
$$

It is thus seen that $\mathrm{e}_{\mathrm{b}, \mathrm{p}, \mathrm{i}}$ can be obtained either using Eqn. 8.3.47 or using Eqn. 8.3.80. In the computer-simulation tests, however, $\mathrm{e}_{\mathrm{b}, \mathrm{p}, \mathrm{i}}$ is obtained from Eqn. 8.3.47, the reasons for which are discussed in detail in Section 8.4.

From Eqn. 8.3.66

$$
\gamma_{i}=\frac{\beta_{i}}{\lambda \beta_{i-1}} \gamma_{1, i}
$$

and from Eqn. 8.3.48

$$
\frac{\lambda \beta_{i-1}}{\beta_{i}}=1-\frac{e_{b, p, i} e_{b, i}^{*}}{\beta_{i}}
$$

Combining Eqns. 8.3.78 and 8.3.82

$$
\frac{\lambda \beta_{i-1}}{\beta_{i}}=1-e_{b, p, i} \gamma_{1, i} \bar{k}_{g+2, g+2}
$$

Therefore, from Eqns. 8.3.81 and 8.3.83

$$
\gamma_{i}=\left[1-e_{b, p, i} \gamma_{1, i} \bar{k}_{g+2, g+2}\right]^{-1} \gamma_{1, i}
$$

From Eqn. 8.3.46, the update of $\mathrm{B}_{8+2 i}$ is

$$
\begin{align*}
B_{g+2, i} & =B_{g+2, i-1}-\left[\begin{array}{ll}
K_{g+1, i} & 0
\end{array}\right] e_{b, p, i} \\
& =B_{g+2, i-1}-\left[\begin{array}{ll}
\bar{K}_{g+1, i} & 0
\end{array}\right] \gamma_{i} e_{b, p, i} \\
& =B_{g+2, i-1}-\left[\begin{array}{ll}
\bar{K}_{g+1, i} & 0
\end{array}\right] e_{b, i}
\end{align*}
$$

Finally the update of the estimate of the sampled impulse-response of the HF channel is obtained as follows. The estimate of the received signal is (Eqn. 8.3.2),

$$
r_{i}^{\prime}=Y_{g+1, i-1}^{\prime} S_{g+1, i}^{T}
$$

The actual received signal is given in Eqn. 8.2.1. The $\mathrm{e}_{\mathrm{p}, \mathrm{i}}$ is given by

$$
e_{p, i}=r_{i}-Y_{g+1, i-1}^{\prime} S_{g+1, i}^{T}
$$

and e_{i} is

$$
e_{i}=e_{p, i} \gamma_{i}
$$

The update of $Y_{s+1 ;}^{\prime}$ is given by

$$
Y_{g+1, i}^{\prime}=Y_{g+1, i-1}^{\prime}+\tilde{K}_{g+1, i} e_{i}
$$

A complete summary of the steady state algorithm is given in Table 8.3.1.

8.4 STABILIZATION OF FTF ALGORITHM.

FTF algorithms are known to exhibit numerical instability [111-116] and this restricts the use of FTF algorithms to only a limited period of time, beyond which the estimation of the sampled impulse-response of the channel is incorrect. Instability occurs when, either, the value of γ_{i} exceeds unity (its theoretical maximum value) or when it diverges towards zero. When γ_{i} exceeds unity the co-efficients of the four transversal filters diverges to infinity [84, 112-114], and

$$
\begin{aligned}
& e_{f, p, i}=A_{g+2, i-1} S_{g+2, i}^{T} \\
& e_{f, i}=\gamma_{i-1} e_{f, p, i} \\
& \alpha_{i}=\lambda \alpha_{i-1}+e_{f, p, i} e_{f, i}^{*} \\
& \gamma_{1, i}=\lambda \frac{\alpha_{i-1}}{\alpha_{i}} \gamma_{i-1} \\
& \tilde{K}_{g+2, i}=\left[0 \quad \tilde{K}_{g+1, i-1}\right]+\lambda^{-1} \frac{e_{f, p, i}^{*}}{\alpha_{i-1}} A_{g+2, i-1} \\
& A_{g+2, i}=A_{g+2, i-1}-\left[0 \quad \tilde{K}_{g+1, i-1}\right] e_{f, i} \\
& e_{b, p, i}=B_{g+2, i-1} S_{g+2, i}^{T} \\
& \zeta_{i}=B_{g+2, i-1} S_{g+2, i}^{T}-\lambda \beta_{i-1} \tilde{k}_{g+2, g+2}^{*} \\
& \gamma_{i}=\left(1-e_{b, p, i} \gamma_{1, i} \tilde{k}_{g+2, g+2}\right)^{-1} \gamma_{1, i} \\
& e_{b, i}=\gamma_{i} e_{b, p, i} \\
& \beta_{i}=\lambda \beta_{i-1}+e_{b, p, i} e_{b, i}^{*} \\
& {\left[\tilde{K}_{g+1, i}\right.} \\
& \left.B_{g+2, i}=0\right]=\tilde{K}_{g+2, i}-\tilde{k}_{g+2, g+2} B_{g+2, i-1} \\
& e_{p, i}=r_{i}-Y_{g+1, i-1}^{\prime} S_{g+1, i}^{T} \\
& e_{i}=\gamma_{i} e_{p, i} \\
& Y_{g+1, i}^{\prime}=Y_{g+1, i-1}^{\prime}+\tilde{K}_{g+1, i} e_{i}
\end{aligned}
$$

when γ_{i} diverges to zero, the gain vector $\mathrm{K}_{\mathrm{g}+1, \mathrm{i}}$ also drifts to zero. Under the former condition, the estimation process fails, and under the latter condition, the tracking ability of the algorithm is degraded [112-114].

Several techniques have been proposed to overcome the problem of instability [59, 84, 112-115]. A periodic reinitialization procedure is proposed in [59], were the operation of the FTF algorithm is interrupted and then restarted at periodic intervals. Immediately following such a restart, a simple LMS algorithm provides an estimate of the desired response, with the coefficients of the feedforward filter set to the value attained by the FTF algorithm just before the restart was initiated. This procedure is depicted in Fig. 8.4.1. This method is not particularly suitable for estimating a time varying channel as the LMS algorithm does not quickly adapt to the transition from the FTF algorithm, owing to its slow rate of convergence. Thus change-overs, between FTF and LMS algorithms, introduce large errors into the estimation of the channel sampled impulse-response [113].

The parameter $\mathrm{e}_{\mathrm{b}, \mathrm{p}, \mathrm{i}}$, can be obtained either using a simple but numerically unstable relation $\lambda \cdot \beta_{i-1} \cdot \tilde{k}_{g+2,8+2}$, (Eqn. 8.3.80), requiring only two multiplications or using a more complicated but more stable relation $B_{8+2, i-1} S_{8+2, i}^{T}$, (Eqn. 8.3.47), which requires ($\mathrm{g}+2$) multiplications. [59, 84, 101, 111-114].

Let

$$
\zeta_{i}=B_{g+2, i-1} S_{g+2, i}^{T}-\lambda \beta_{i-1} \tilde{k}_{g+2, g+1}^{*}
$$

ζ_{i} is exactly equal to zero when the equations of the algorithm, in Table 8.3.1, are evaluated with infinite precision. However, simulation tests have shown that, due to the occurrence of numerical round-off errors, $\left|\zeta_{i}\right|$ grows exponentially with time [111-114]. ζ_{i}, therefore, gives a measure of the round-off error [111-114]. In [84], a version of a stable algorithm, $\mathrm{e}_{\mathrm{b}, \mathrm{p}, \mathrm{i}}$ is given by $B_{8+2, i-1} S_{8+2 ; \cdot}^{T}$. There is, however, only a marginal increase in the period of stable operation.

The stabilization algorithm of [112-114] attempts to minimize χ_{i}, given by [111114],

$$
\begin{align*}
\chi_{i}=\sum_{h=0}^{i} \lambda^{i-h} & {\left[\left\{s_{i-(g+1)}-B_{g+2, i-1} S_{g+2, i}^{T}\right\}\right.} \\
& \left.-\left\{s_{i-(g+1)}-B_{g+2, i-1}^{\prime} S_{g+1, i}^{T}\right\}\right]^{2} \\
& +\rho \zeta_{i}^{\prime 2}
\end{align*}
$$

where

$$
\zeta_{i}^{\prime}=e_{b, p, i}^{\prime}-\lambda \beta_{i-1} \bar{k}_{g+2, g+2}^{*}
$$

and

$$
e_{b, p, i}^{\prime}=B_{g+2, i-1}^{\prime} S_{g+2, i}^{T}
$$

The algorithm finds a modified set of tap coefficients, $B_{8+2 i-1}^{\prime}$, for the backward prediction error filter, in place of $\mathrm{B}_{\mathrm{g}^{2} 2 \cdot \mathrm{i} 1}$, and attempts to force ζ_{i} to zero. ρ is a scalar constant in the range 0 to 1 . Computer-simulation tests on the application of the algorithm to acoustic echo cancellation have shown an improved stability [113] as compared to the original FTF algorithm [84, 87]. However, contrary to claims in [113], instability has been observed in moderately severe environments [111].

The new stabilization technique proposed here, makes only passive use of the parameter ζ_{i} defined in Eqn. 8.4.1, and does not attempt to modify $\mathrm{B}_{\mathrm{g}+2, i-1}$, as has been the case in [113]. As a matter of fact, this technique takes advantage of the instability measure, Eqn. 8.4.1, proposed in [113] and $e_{b, p, i}$ is measured using $B_{g+2, i-1} S_{z+2, i}^{T}$. When the absolute value of the control variable, ζ_{i}, exceeds a certain threshold, a parallel FTF algorithm is initialized, while the original FTF algorithm is still operational and still providing an estimate of the sampled impulse-response of the channel. The threshold value is decided in such a way that the parallel FTF algorithm has sufficient time to start up, while at the same time the original FTF algorithm has not completely failed during this period. When the parallel FTF algorithm is fully operational it takes over from the original FTF algorithm, to provide the estimate of the channel impulse-response. The arrangement is shown in Fig. 8.4.2. The process continues, as in Fig. 8.4.2, every time the control variable exceeds the threshold limit. The algorithm is only slightly more complex than the original FTF algorithm [84], since during the period when the parallel FTF algorithm is operational, most of the tap co-efficients of the forward and backward prediction

> Initiation of restart cycle $t=(i-N) T$

Transition
from LMS to FTF algorithm $\mathrm{t}=\mathrm{i} \mathrm{T}$

Initiation of next restart cycle $\mathrm{t}=(\mathrm{i}+\mathrm{M}) \mathrm{T}$

Fig 8.4.1 - One cycle of the periodic reinitialization procedure of the FTF algorithm

Fig 8.4.2 - One cycle of the stabilization technique for the FTF algorithm
filters are zero. The input vectors to both the original and parallel FTF algorithm is $\mathrm{S}_{\mathrm{g}+2 \mathrm{i}}$, (Eqn. 8.3.14), and so, at the time of take over from the parallel FTF algorithm, the normalized Kalman gain vector, $\bar{K}_{g+1, i}$, is nearly the same from the two algorithm. This is due to the fact that FTF algorithm has a fast tracking ability and, therefore, the period of operation of the parallel FTF algorithm generally need not be very large.

Tests have shown that the period over which the FTF algorithm is stable is, to a large extent, a function of the factor λ, in Eqn. 8.3.4, which in turn is a function of the system signal/noise ratio. The closer the optimum value of λ is equal to 1 , the longer is the period of stable operation. For the lower signal/noise ratios, the optimum value of λ is much closer to 1 . Simulation tests on the new stabilization technique, for HF channel estimation, have shown that this technique provides adequate stabilization, at the required signal/noise ratios.

8.5 INITIALIZATION OF THE ALGORITHM

Prior to the actual transmission of data, training signal, comprising of a particular known sequence of data symbols, is transmitted. Since the data symbols are known at the receiver, the latter can estimate quite accurately, the initial sampled impulse-response of the channel [91]. This prior knowledge of the channel estimate, at the start of the estimation process using the FTF algorithm, permits the use of non zero initial conditions [59, 84]. At the start of operation of the FTF algorithm, the vectors $\mathrm{A}_{8+2,0}, \mathrm{~B}_{8+2,20}, \bar{K}_{g+1,0}$ and $Y_{8+1,0}^{\prime}$ are set to the following values

$$
\begin{align*}
& A_{g+2,0}=\left[\begin{array}{llllll}
1 & 0 & \ldots . & 0 &] \\
B_{g+2,0} & =\left[\begin{array}{llllll}
0 & \ldots . . & 0 & 1
\end{array}\right] \\
K_{g+1,0} & =\left[\begin{array}{llllll}
& 0 & 0 & \ldots . & 0
\end{array}\right] \\
Y_{g+1,0}^{\prime} & =Y_{g+1,0}
\end{array}\right.
\end{align*}
$$

$Y_{8+1,0}^{\prime}$ is determined from the training signal at the start of transmission, and (in Table 8.3.1)

$$
\begin{align*}
& \alpha_{0}=\lambda^{g+1} \mu \\
& \beta_{0}=\mu \\
& \gamma_{0}=1
\end{align*}
$$

The parameter μ is a scalar constant that adjusts the tracking ability of the algorithm [59, 84].

8.6 SYSTEM 8.2

System 8.2 uses the algorithm of system 8.1 , modified by the assumption that the sampled impulse-response of the channel varies linearly with time. It has been shown in $[99,103]$ that a useful improvement in the performance of the RLS Kalman algorithm can be achieved by the given assumption. Eqn. 8.3.89 is now modified to

$$
Y_{g+1, i}^{\prime}=Y_{g+1, i, i-1}^{\prime}+\tilde{K}_{g+1, i} e_{i}
$$

where $Y_{\xi+1, i, i-1}^{\prime}$ is the prediction of Y_{i} made at time $\mathrm{t}=(\mathrm{i}-1) \mathrm{T}$ and $r_{i}^{\prime} \mathrm{in}$ Eqn. 8.3.2 is now given by

$$
r_{i}^{\prime}=Y_{g+1, i, i-1}^{\prime} S_{i}^{T}
$$

$Y_{\xi+1, i}^{\prime}$ is the updated estimate of the channel sampled impulse-response at time $\mathrm{t}=\mathrm{i} \mathrm{T}$. System 8.2 makes a one-step prediction of the channel sampled-impulse response using a least-squares fading memory prediction. This is achieved by $g+1$ separate degree-1 least squares fading memory polynomial filters, each operating on the corresponding component of $Y_{8+1, i, i-1}^{\prime}[33,53]$. Further details of these filters are given elsewhere [33, 53].

The estimator of system 8.2 uses the updated estimate of $Y_{z+1, i}^{\prime}$ given by Eqn. 8.6.1 and the one step prediction of $Y_{\xi+1, i, i-1}^{\prime}$ to determine an estimate of the error in the prediction which is

$$
X_{i}=Y_{g+1, i}^{\prime}-Y_{g+1, i, i-1}^{\prime}
$$

A one-step prediction is now given by a polynomial filter, which is described by the following two equations

$$
\begin{align*}
& Y_{g+1, i+1, i}^{\prime \prime}=Y_{g+1, i, i-1}^{\prime \prime}+\theta_{1} X_{i} \\
& Y_{g+1, i+1, i}^{\prime}=Y_{g+1, i, i-1}^{\prime}+Y_{g+1, i+1, i}^{\prime \prime}+\theta_{2} X_{i}
\end{align*}
$$

where θ_{1} and θ_{2} are scalar constants that may be selected as required and are, therefore, adjusted to minimize the error in the prediction of the channel impul-se-response. In the original prediction algorithm $[19,53] \theta_{1}$ and θ_{2} are given by $(1-\theta)^{2}$ and $\left(1-\theta^{2}\right)$, where $0<\theta<1$. A further development of the algorithm, studied here, is to allow θ_{1} and θ_{2} to be optimized independently. At the start of the prediction process

$$
Y_{g+1,1,0}^{\prime \prime}=0
$$

and

$$
Y_{g+1,1,0}^{\prime}=Y_{g+1,0}^{\prime}
$$

where $Y_{\xi+1,0}^{\prime}$ is determined from the training signal that precedes the transmission of data [91]. The initialization of the estimation process is carried out according to Section 8.5.

Computer-simulation tests, on the accuracy of the one-step prediction given by Eqns. 8.6 .4 and 8.6 .5 , for use with the FTF algorithm, have shown a useful improvement in the performance of the estimator without any sign of instability. Table 8.6.1 summarises the complete algorithm for system 8.2 and the results of the com-puter-simulation tests are presented in Section 8.7.

UPDATING ALGORITHM

$$
\begin{aligned}
& e_{f, p, i}=A_{g+2, i-1} S_{g+2, i}^{T} \\
& e_{f, i}=\gamma_{i-1} e_{f, p, i} \\
& \alpha_{i}=\lambda \alpha_{i-1}+e_{f, p, i} e_{f, i}^{*} \\
& \gamma_{1, i}=\lambda \frac{\alpha_{i-1}}{\alpha_{i}} \gamma_{i-1} \\
& \bar{K}_{g+2, i}=\left[0 \quad \tilde{K}_{g+1, i-1}\right]+\lambda^{-1} \frac{e_{f, p, i}^{*}}{\alpha_{i-1}} A_{g+2, i-1} \\
& A_{g+2, i}=A_{g+2, i-1}-\left[0 \quad \tilde{K}_{g+1, i-1}\right] e_{f, i} \\
& e_{b, p, i}=B_{g+2, i-1} S_{g+2, i}^{T} \\
& \zeta_{i}=B_{g+2, i-1} S_{g+2, i}^{T}-\lambda \beta_{i-1} \tilde{k}_{g+2, g+2}^{*} \\
& \gamma_{i}=\left(1-e_{b, p, i} \gamma_{1, i} \tilde{k}_{g+2, g+2}\right)^{-1} \gamma_{1, i} \\
& e_{b, i}=\gamma_{i} e_{b, p, i} \\
& \beta_{i}=\lambda \beta_{i-1}+e_{b, p, i} e_{b, i}^{*} \\
& {\left[\tilde{K}_{g+1, i}\right.} \\
& \left.B_{g+2, i}=0\right]=\tilde{K}_{g+2, i}-\tilde{k}_{g+2, g+2} B_{g+2, i-1} \\
& e_{p, i}=r_{i}-Y_{g+1, i-1}^{\prime} S_{g+1, i}^{T} \\
& e_{i}=\gamma_{i} e_{p, i} \\
& Y_{g+1, i}^{\prime}=Y_{g+1, i, i-1}^{\prime}+\tilde{K}_{g+1, i} \\
& 0] e_{b, i} \\
& l_{g+1, i} e_{i}
\end{aligned}
$$

PREDICTION ALGORITHM

$$
\begin{aligned}
& X_{i}=Y_{g+1, i}^{\prime}-Y_{g+1, i, i-1}^{\prime} \\
& Y_{g+1, i+1, i}^{\prime \prime}=Y_{g+1, i, i-1}^{\prime \prime}+\theta_{1} X_{i} \\
& Y_{g+1, i+1, i}^{\prime}=Y_{g+1, i, i-1}^{\prime}+Y_{g+1, i+1, i}^{\prime \prime}+\theta_{2} X_{i}
\end{aligned}
$$

8.7 RESULTS OF THE COMPUTER-SIMULATION TEST.

Computer-simulation tests have been carried out on systems 8.1 and 8.2. The results of the tests are given in Tables 8.7.1 to 8.7.3 and in Figs. 8.7.1 to 8.7.5. The error measurements are

$$
\xi_{1}=10 \log _{10}\left(\frac{1}{54000} \sum_{i=6001}^{60000}\left|Y_{g+1, i}-Y_{g+1, i, i-1}^{\prime}\right|^{2}\right)
$$

and

$$
\xi_{2}=10 \log _{10}\left(\frac{1}{54000} \sum_{i=6001}^{60000} \frac{\left|Y_{g+1, i}-Y_{g+1, i, i-1}^{\prime}\right|^{\prime}}{\left|Y_{g+1, i}\right|^{2}}\right)
$$

In the case of system $8.2 Y_{\xi+1, i}^{\prime}=Y_{\xi+1, i, i-1}^{\prime}$. The parameter ξ_{1} is a measure of the actual error in $Y_{8+1, i, i-1}^{\prime}$, whereas, the parameter ξ_{2} is a measure of the normalized or relative error in $Y_{\xi+1, i, i-1}^{\prime}$. During the first 6000 received samples the estimation process operates as described in Sections 8.3 and 8.6, but no measurements are carried out. This stabilizes the fading, additive noise and the estimation process, thus eliminating the effect of any transient behaviour of the estimator at start up. Measurements are carried out according to Eqns. 8.7.1 and 8.7.2 over the next 54000 received samples. Thus ξ_{1} and ξ_{2} measure the steady-state performance of an estimator. In Eqns. 8.7.1 and 8.7.2, $\left|Y_{g+1, i}-Y_{g+1, i, i-1}^{\prime}\right|$ is the unitary length of the vector $Y_{g+1, i}-Y_{g+1, i, i-1}^{\prime}$ and so is the unitary distance between the vectors $Y_{g+1, i}$ and $Y_{\xi+1, i, i-1}^{\prime}$. In Eqn. 8.7.2, this unitary distance has been normalized by the length of the vector $Y_{g+1, i}$.

In all the tests the signal/noise ratio is measured as $\psi \mathrm{dB}$, where

$$
\psi=10 \quad \log _{10}\left(\frac{E_{b}}{\frac{1}{2} N_{0}}\right)
$$

and E_{b} is the average transmitted energy per bit at the input to the HF radio link and is arranged to be unity. The two sided power spectral density of the white Gaussian noise at the output of the HF radio link is $(1 / 2) \mathrm{N}_{0}$.

In each of the Tables 8.7.1 and 8.7.2, the scalar constants, such as λ in Table 8.7.1 and λ, θ_{1} and θ_{2} in Table 8.7.2, have been approximately optimized to minimize the error in the estimation/prediction of the sampled impulse-response of the channel. The value of μ in Eqns. 8.5.5 and 8.5.6 has been set to 0.1. Stabilization of the algorithm is carried according to Section 8.4 and Fig. 8.4.2, when the control variable, $\left|\zeta_{i}^{\mid}\right|^{2}$, defined in Eqn. 8.4.3 exceeds a threshold level of 0.0001.

Fig. 8.7.1 shows the variation of ξ_{1} and ξ_{2} with ψ, for systems 8.1 and 8.2 . It can be seen from Fig. 8.7.1 that the relative performances of systems 8.1 and 8.2 are not significantly affected by whether Eqn. 8.7.1 or Eqn. 8.7.2 is used as a measurement criteria. This is further demonstrated in Tables 8.7.1 to 8.7.2. Therefore, it does not make any difference whether ξ_{1} or ξ_{2}, is used to give a relative measure of the effectiveness of an estimator [99]. Comparing the performances of systems 8.1 and 8.2, in Fig. 8.7.1 and Tables 8.7.1 to 8.7.2, it is clear that the one-step predictor has considerably improved the estimation process.

Fig. 8.7.2 is a plot of ξ_{1} against ψ and compares systems 8.1 and 8.2 with the corresponding RLS Kalman estimators, [99], referred to as system 5.3 and 5.1 respectively, of Chapter 5. As would be expected, the performance of system 8.1 is essentially the same as that of system 5.3, the difference being hardly noticeable, since the two estimators are basically the same and differ only in their implementation. However, system 8.2 shows a marked improvement over system 5.1, over the entire range of signal/noise ratios tested. The difference between system 8.2 and system 5.1 is in the way the one-step predictor has been implemented.

Figs. 8.7.3 and 8.7.4 show the variation with time of γ_{i}, (Eqn. 8.3.84), and $10 \log _{10}$ $\mid \zeta_{i}{ }^{2}$, (Eqn. 8.4.3), respectively at $\psi=10$, for the transmission of data at 2400 bauds over 25 seconds. The two plots clearly show the transitions when reinitialization (according to Fig. 8.4.2) is taking place following a build-up of error. Although the parallel FTF algorithm is brought into use as many as 18 times, the estimation process does not show any sign of instability or collapse. This is the case at all signal/noise ratios tested.

Fig. 8.7.5 show the steady state performance of systems 8.1 and 8.2 at $\psi=30$. The parameter estimation error, ξ_{i}, in Fig. 8.7.5 is here the square of the error in $Y_{i+1, i, i-1}^{\prime}$, measured in dB relative to unity, and is

$$
\xi_{i}=10 \log _{10}\left|Y_{g+1, i}-Y_{g+1, i, i-1}^{\prime}\right|^{2} \quad \text {...8.7.4 }
$$

Computer-simulation tests on the estimators with statistically independent noise components $\left\{w_{i}\right\}$ in Eqn. 8.2.2, in place of the slightly correlated noise components actually obtained at the output of the receiver filter, show only a negligibly small difference in performance. Thus the correlation in the noise components does not appear to have any significant effect.

System 8.2 achieves a considerable improvement in performance over a conventional FTF algorithm (system 8.1). The new stabilization technique is adequate to counter the built-up of round-off errors and only marginally increases the computational complexity of the algorithm. In view of the good performance by system 8.2 it is clearly the most cost-effective of the two estimators studied in this chapter and is well worth further study.

TABLE 8.7.1 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 8.1.

ψ (dB)	λ	Correlated noise		Uncorrelated noise	
		ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$	ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$
10	0.98	-12.153	-10.916	-12.119	-10.879
20	0.96	-17.628	-16.438	-17.617	-16.434
30	0.92	-21.638	-20.546	-21.637	-20.536
40	0.88	-23.126	-22.115	-23.130	-22.107
60	0.88	-23.348	-22.354	-23.360	-22.361

TABLE 8.7.2 MEAN SQUARE ERROR \& MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE CHANNEL FROM SYSTEM 8.2.

ψ	θ_{1}	θ_{2}	λ	Correlated noise		Uncorrelated noise	
(dB)				ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$	ξ_{1} $(\mathrm{~dB})$	ξ_{2} $(\mathrm{~dB})$
10	0.008	1.100	0.988	-12.458	-11.190	-12.436	-11.197
20	0.015	0.925	0.980	-19.938	-18.627	-19.920	-18.683
30	0.020	0.850	0.965	-27.141	-25.873	-27.123	-25.886
40	0.030	0.900	0.950	-33.698	-32.506	-33.622	-32.449
60	0.048	0.900	0.896	-42.269	-41.385	-42.223	-41.326

TABLE 8.7.3 COMPARISON OF MEAN SQUARE ERROR IN THE ESTIMATED SAMPLED IMPULSE-RESPONSE OF 3 SKY WAVE CHANNEL FROM FTF \& RLS KALMAN ALGORITHM.

Ψ (dB)	SYSTEM 8.1 ξ_{1} $(\mathrm{~dB})$	SYSTEM 5.3 $\boldsymbol{\xi}_{1}$ $(\mathrm{~dB})$	SYSTEM 8.2 ξ_{1} $(\mathrm{~dB})$	SYSTEM 5.1 ξ_{1} $(\mathrm{~dB})$
10 dB	-12.153	-12.186	-12.458	-12.270
20 dB	-17.628	-17.650	-19.938	-19.418
30 dB	-21.638	-21.719	-27.141	-26.195
40 dB	-23.126	-23.191	-33.698	-32.437
60 dB	-23.348	-23.432	-42.269	-40.191

Fig. 8.7.1 - Performance of Systems 8.1 and 8.2

Fig. 8.7.2 - Performance comparison of Systems 8.1, 5.3, 8.2 and 5.1

CHAPTER 9

COMMENTS ON THE RESEARCH PROJECT

9.1 COMPARISON OF THE CHANNEL ESTIMATORS.

Results of the computer-simulation tests on different estimators considered in this thesis have already been presented at the end of their respective chapters. Tables 9.1.1 and 9.1.2 and Fig. 9.1.1, however, compare the performances of systems 4.2, $5.1,6.5,7.5$ and 8.2. These systems have the best performance in their respective class of estimators. As can be seen from the Figure 9.1.1, system 7.5 has the best overall performance. This system however, utilizes some prior knowledge of the basic structure of the channel in the estimation process. Compared with the gradient estimator (system 4.2), the improvement in performance of system 7.5 is of the order of 6.5 dB at 10 dB signal/noise ratio and 19.5 dB at 60 dB signal/noise ratio.

At high signal/noise ratios, a Kalman estimator (system 5.1 and system 8.2) has a significantly better performance than the corresponding gradient estimator (system 4.2). However, the improvement is only marginal at low signal/noise ratios. With the assumption that the channel varies linearly with time and taking into account the rate of change in the channel sampled impulse-response (system 5.1), a considerable improvement in the performance can be achieved, at least at high signal/noise ratios, at the expense of increased computation.

The best of the estimators considered in this thesis is system 6.5 which require only a marginal increase in computational complexity compared to system 4.2. This has a particularly good relative performance at the lower signal/noise ratios, which is where a good performance is of greatest practical value. Systems 6.5 and 7.5 have comparable performances at high signal/noise ratios when the latter assumes an incorrect model of the channel. However, the former is a much simpler estimator than system 7.5.

TABLE 9.1.1 MEAN SQUARE ERROR IN THE ESTIMATES OF THE CHANNEL SAMPLED IMPULSE-RESPONSE.

SNR $\mathbf{d B}$	SYSTEM $\mathbf{4 . 2}$ $\mathbf{d B}$	SYSTEM $\mathbf{5 . 1}$ $\mathbf{d B}$	SYSTEM $\mathbf{6 . 5}$ $\mathbf{d B}$	SYSTEM $\mathbf{7 . 5}$ $\mathbf{d B}$	SYSTEM $\mathbf{8 . 2}$ $\mathbf{d B}$
10	-11.925	-12.270	-16.200	-18.621	-12.458
20	-18.942	-19.418	-23.200	-26.596	-19.938
30	-25.052	-26.195	-30.300	-34.125	-27.141
40	-29.012	-32.437	-35.800	-40.185	-33.698
60	-30.990	-40.191	-43.400	-49.622	-42.269

TABLE 9.1.2 MEAN SQUARE NORMALIZED ERROR IN THE ESTIMATES OF THE CHANNEL SAMPLED IMPULSE-RESPONSE.

SNR $\mathbf{d B}$	SYSTEM $\mathbf{4 . 2}$ $\mathbf{d B}$	SYSTEM $\mathbf{5 . 1}$ $\mathbf{d B}$	SYSTEM $\mathbf{6 . 5}$ $\mathbf{d B}$	SYSTEM $\mathbf{7 . 5}$ $\mathbf{d B}$	SYSTEM $\mathbf{8 . 2}$ $\mathbf{d B}$
10	-10.640	-10.975	-14.900	-17.813	-11.190
20	-17.660	-18.214	-21.900	-25.777	-18.627
30	-23.825	-24.928	-29.000	-33.387	-25.873
40	-27.944	-31.361	-34.400	-39.611	-32.506
60	-30.116	-39.347	-42.700	-50.010	-41.385

Fig. 9.1.1 - Performance of Systems 4.2, 5.1, $6.5,7.5$ and 8.2

All the estimators in Tables 9.1.1 and 9.1.2 uses a one-step least-squares fadingmemory prediction algorithm. Simulation tests have shown that the one-step predictor offers a considerable improvement in the performance of the estimators compared to the case where prediction is not used.

System 8.2, together with the stabilization algorithm proposed in Chapter 8, offers a most efficient way to implement the RLS Kalman algorithm and is computationally less complex compared with system 5.1. Fig. 9.1.1 and Tables 9.1.1-9.1.2 compare the estimators using two different measures, namely, the mean square estimation error and the mean square normalized estimation error. The two measures do not change the relative performance of the estimators. The channel estimators listed in order of complexity and starting with the simplest estimator, are system $4.2,6.5,7.5$, 8.2 and 5.1.

9.2 CONCLUSION

In this thesis several novel estimation techniques have been developed and tested on a model of a data transmission system over an HF radio link. The channel estimators are either based on the RLS Kalman filter algorithm or the feedforward transversal filter algorithm. When the characteristics of the channel, such as the number of sky waves etc., are known then the efficient estimators (system 7.1-7.8) offer the best solution for channel estimation. The advent of fast Kalman algorithms have not reduced the complexity of the Kalman estimators compared to the Feedforward estimators. They have, in addition, the problem of numerical instablity in the algorithm. A degree-one Kalman algorithm (systems 5.1 and 5.2) which takes into account the rate of change in the channel sampled impulse-response has improved the estimator performance only at high signal/noise ratios. A feedforward estimator together with a degree-one fading memory predictor (system 4.2) is the simplest of all the estimators. System 6.5 is only slightly more complex than system 4.2 and has very good performance in the entire range of signal/noise ratios. The former does not take into account any prior knowledge of the channel. System 6.5 appears to be potentially the most cost-effective of all the estimators, considered in this thesis, for the given application in this thesis.

9.3 SUGGESTIONS FOR FUTURE WORK

The most promising of all the estimators have been systems $7.1-7.8$, which require a prior knowledge of the number of sky waves present in the HF channel. With this information and correct start-up, the systems 7.1-7.8 have near optimum performance. In practice, however, the number of sky waves present in the HF channel cannot be accurately forecasted and, moreover, they constantly change with time. Computer-simulation tests have shown (Chapter 7) that, incorrect assumption or incorrect start-up leads to an inefficient estimation process. In some of the systems, the algorithm uses a more effective updating process (systems 7.3-7.8) and this has considerably reduced the estimation error due to an incorrect start-up or an incorrect channel model. This suggests that, perhaps, the use of a better updating algorithm can lead to an even better estimation process. This needs further investigation.

The efficient estimators (Chapter 7) become increasingly complex as the number of sky waves in the channel increases, since the existing algorithm requires an adequate start-up procedure. This thesis, however, has proposed a number of changes to the original algorithm (system 7.1) whereby it would only be required to track a reduced number of variable quantities (systems $7.3-7.8$), where these are numerically equal to the number of sky waves present in the channel. This has resulted in an much simpler estimation algorithm. However, the problem of determining the n-dimensional subspace at start-up still remains. Here n is the number of sky waves present in the HF channel. So a suitable, adaptive (and a very much simpler) starting-up procedure is still to be developed.

It is evident from the results of the computer-simulation tests (Fig. 9.1.1), that system 6.5 has performance intermediate between systems 7.5 (Efficient estimator) and 4.2 (Simple gradient estimator). An important feature of system 6.5 is that it applies error correction, in the channel update algorithm, in accordance with the modulus value of the channel components. Although this thesis has proposed a number of novel techniques to give corrections to the channel components, this, however, needs further theoretical and experimental investigation in order to ascertain the precise relationship between the channel components and the required
error correction. A simple mathematical relationship would simplify the hardware implementation of the algorithm. It would be of interest also to see the performance of the adaptive channel estimators on a frequency domain channel response.

Computer-simulation results of the Kalman estimators have shown that they have a performance comparable to that of the simple gradient estimator. However, modifications which take account of the variation in the channel sampled impul-se-response have improved the performance only at high signal/noise ratios (system 5.1, Fig. 9.1.1) and also this algorithm, however, is computationally complex. System 8.2 is much simpler than system 5.1 and requires very much less computation. In recent times, their has been considerable interest in Recursive least-squares estimation using systolic arrays. This new technique is not likely to improve the performance of the estimation process. However, the algorithm can be very easily implemented in hardware. Moreover, there appears to be a possibility of obtaining the minimum phase version of the channel together with the estimate of the channel sampled impulse-response thus reducing the overall computational complexity of the modem.

APPENDIX A

RAYLEIGH FADING FILTER

A single Rayleigh fading propagation path is modelled as in Fig. 2.6.2, where $q_{1}(\mathrm{t})$ and $q_{2}(\mathrm{t})$ are two Gaussian random processes with zero mean and the same variance. The shape of their power spectrum is Gaussian having the same rms frequency, f_{m} : The power spectrum of $q_{1}(\mathrm{t})$ and $q_{2}(\mathrm{t})$ are given by, Eqn. 2.6.1, as

$$
\left|Q_{1}(f)\right|^{2}=\left|Q_{2}(f)\right|^{2}=\exp \left(-\frac{f^{2}}{2 f_{r m s}^{2}}\right)
$$

As is shown in Fig. 2.6.3, the random process $\Psi_{i}(t)$ is generated by filtering a zero mean white Gaussian noise signal $\mathrm{V}_{\mathrm{i}}(\mathrm{t})$. The filter used in Fig. 2.6.3 has a Gaussian frequency response and is given by, Eqn. 2.6.5, as

$$
F(f)=\exp \left(-\frac{f^{2}}{4 f_{r m s}^{2}}\right)
$$

and the 3 dB cut-off frequency of the filter is

$$
f_{c}=1.17741 f_{r m s}
$$

The rms frequency, f_{mm}, and the frequency spread, f_{sp}, are related as follows, (Eqn. 2.6.2),

$$
\begin{equation*}
f_{s p}=2 f_{r m s} \tag{A 1.4}
\end{equation*}
$$

Therefore, from Eqns. A1.3 and A1.4,

$$
f_{c}=0.588705 f_{s p}
$$

The impulse-response and the magnitude-response of a Bessel filter tends towards Gaussian as the order of the filter is increased [32]. A Bessel filter has, therefore, been used to obtain the Rayleigh fading filter in Fig. 2.6.3.

$$
H(s)=\frac{d_{0}}{B_{n}(s)}
$$

where $B_{n}(s)$ is the $n^{\text {th }}$ - order Bessel Polynomial and d_{0} is a normalizing constant of the form

$$
d_{0}=\frac{(2 n)!}{2^{2} n!}
$$

$\mathrm{B}_{\mathrm{n}}(\mathrm{s})$ can be put in the form [32]

$$
B_{n}(s)=\sum_{k=0}^{n} d_{k} s^{k}
$$

where

$$
\begin{aligned}
& d_{k}=\frac{(2 n-k)!}{2^{n-k} k!(n-k)!} \\
& \text { for } \mathrm{k}=0,1, \ldots \ldots, \mathrm{n}
\end{aligned}
$$

A $5^{\text {th }}$ order Bessel filter has been chosen as a practical choice and thus $n=5$. Fig. 2.7.1 compares the frequency response of this filter with that of the desired theoretical frequency response (Gaussian). It can be seen that a $5^{\text {th }}$ order Bessel filter has a frequency response that is Gaussian, at least in the range of interest.

Eqn. A1. 6 becomes

$$
H(s)=\frac{945}{s^{5}+15 s^{4}+105 s^{3}+420 s^{2}+945 s+945}
$$

Eqn. A1.10 can be expressed as

$$
H(s)=\frac{945}{\prod_{i=1}^{s}\left(s-P_{i}\right)}
$$

where P_{i} are known as the poles of $\mathrm{H}(\mathrm{s})$ and are given by [117]

$$
\begin{align*}
& P_{1}=-3.64674 \\
& P_{2}, P_{3}=-3.35196 \pm j 1.74266 \\
& P_{4}, P_{5}=-2.32467 \pm \mathrm{j} 3.57102
\end{align*}
$$

Substituting $\mathrm{s}=\mathrm{j} \Omega$, in Eqn. A1.11, the frequency response of the Bessel filter is

$$
H(j \Omega)=\frac{945}{\prod_{i=1}^{5}\left(j \Omega-P_{i}\right)}
$$

where, in Eqn. A1.13, Ω is the angular frequency and $\mathrm{j}=\sqrt{-1}$. When $\Omega=\Omega_{c}$ $\mathrm{rad} / \mathrm{sec}$., the amplitude response of the $5^{\text {h }}$ order Bessel filter, drops by 3 dB from its peak value. Ω_{c} is called the 3 dB cut-off angular frequency and is given by [34]

$$
\Omega_{c}=2.4274 \mathrm{rad} / \mathrm{sec} .
$$

One of the parameter of importance in the characterization of a channel is the frequency spread, f_{sp}. Therefore, it is desirable to express the cut-off frequency of the Bessel filter in terms of the frequency spread.

Let

$$
\omega=C_{0} \Omega
$$

where

$$
\begin{equation*}
C_{0}=\frac{\omega_{c}}{\Omega_{c}}=\frac{2 \pi f_{c}}{\Omega_{c}} \tag{A 1.16}
\end{equation*}
$$

where f_{c}, from Eqn. A1.3, is the cut-off frequency of the desired filter.

Therefore, from Eqns. A1.14 and A1.16,

$$
C_{0}=2.58844 f_{c}
$$

Substituting the value of Ω, from Eqn. A1.15, in Eqn. A1.13

$$
H(j \omega)=\frac{945}{\prod_{i=1}^{5}\left(j \frac{\omega}{c_{0}}-P_{i}\right)}
$$

Let

$$
P_{i}^{\prime}=C_{0} P_{i}
$$

Then, from Eqns. A1.18 and A1.19,

$$
H(j \omega)=\frac{945 C_{0}^{5}}{\prod_{i=1}^{5}\left(j \omega-P_{i}^{\prime}\right)}
$$

and, from Eqns. A1.17 and A1.20,

$$
\begin{align*}
H(j \omega) & =\frac{109805.0518 f_{c}^{5}}{\prod_{i=1}^{5}\left(j \omega-P_{i}^{\prime}\right)} \\
& =\frac{d_{0}^{\prime}}{\prod_{i=1}^{5}\left(s-P_{i}^{\prime}\right)}
\end{align*}
$$

where, in Eqn. A1.22,
$s=j w$
$d_{0}^{\prime}=109805.0518 f_{c}^{5}$
and

$$
P_{i}^{\prime}=2.58844 f_{c} P_{i}
$$

$$
\text { for } \mathrm{i}=1,2, \ldots, 5
$$

Table A1.1 summarizes all the parameters of the Bessel filter for a frequency spread of 2 Hz .

Eqn. A1.22 is the transfer function of a $5^{\text {th }}$ order Bessel filter. This analog filter is to be digitized for use in computer-simulation. The method used for this is called the impulse-invariant transformation method [32]. The important feature of this transformation is that, the impulse-response of the resulting digital filter is a sampled version of the impulse-response of the analog filter. In this technique the poles $\left\{P_{i}^{\prime}\right\}$, in the s-plane, of Eqn. A1.22, are transformed to poles at $\left\{e^{p+4}\right\}$, in the z-plane [32], where T is the sampling interval.

Therefore, using the impulse-invariant transformation method, Eqn. A1.22 can be written as

$$
\begin{align*}
H(z) & =\frac{K}{\prod_{i=1}^{5}\left(1-e^{P_{i}^{\prime} T} z^{-1}\right)} \\
& =\frac{K}{\prod_{i=1}^{5}\left(1-q_{i} z^{-1}\right)}
\end{align*}
$$

where in Eqn. A1.24, K is the DC gain of the filter, $\mathrm{q}_{\mathrm{i}} \mathrm{s}$ are the poles and are equal to

$$
q_{i}=e^{P_{i}^{\prime} T}
$$

$q_{i}(t) s$ have Gaussian spectra, and so contain all the frequency components. However, for a frequency spread of 2 Hz , the 3 dB bandwidth of the analog filter is 2.35 Hz , as can be seen from Eqns. A1.3 and A1.4. So frequencies above about 25 Hz have negligibly small amplitude as can be seen from Fig. 2.6.4 and, therefore, a sampling rate of 100 samples $/ \mathrm{sec}$. is adequate enough for accurate representation of $q_{i}(t)$. The z-plane poles obtained from Eqns. A1.24 for a frequency spread of 2 Hz are

$$
\begin{aligned}
q_{1} & =0.8948 \\
q_{2}, q_{3} & =0.9016 \pm j 0.047 \vartheta \\
q_{4}, q_{5} & =0.9261 \pm j 0.1012
\end{aligned}
$$

The digital filter is implemented as shown in Fig. 2.6.5 [34-36]. It comprises of a cascade of two 2-pole section and a single pole section. Each of the 2-pole section has a complex conjugate poles and the single pole section has a real pole. The transfer function of the filter in Fig. 2.6.5 is, therefore,
$H(z)=\frac{K}{\left(1-q_{1} z^{-1}\right)\left\{\left(1-q_{2} z^{-1}\right)\left(1-q_{3} z^{-1}\right)\right\}\left\{\left(1-q_{4} z^{-1}\right)\left(1-q_{5} z^{-1}\right)\right\}}$
..A 1.27
$=\frac{K}{\left(1-q_{1} z^{-1}\right)\left\{1-\left(q_{2}+q_{3}\right) z^{-1}+\left(q_{2} q_{3}\right) z^{-2}\right\}\left\{1-\left(q_{4}+q_{5}\right) z^{-1}+\left(q_{4} q_{5}\right) z^{-2}\right\}}$
.A 1.28
where q_{2} and q_{3} and q_{4} and q_{5} are complex conjugate pairs. Therefore, from Eqn. A1.28 and Fig. 2.6.5, the filter co-efficients $\left\{\mathrm{C}_{\mathrm{i}}\right\}$ are given by

$$
\begin{aligned}
& \mathrm{C}_{1}=-\mathrm{q}_{1} \\
& \mathrm{C}_{2}=-\left(\mathrm{q}_{2}+\mathrm{q}_{3}\right) \\
& \mathrm{C}_{3}=\mathrm{q}_{2} \mathrm{q}_{3} \\
& \mathrm{C}_{4}=-\left(\mathrm{q}_{4}+\mathrm{q}_{5}\right) \\
& \mathrm{C}_{5}=\mathrm{q}_{4} \mathrm{q}_{5}
\end{aligned}
$$

The filter co-efficients obtained for a frequency spread of 2 Hz are listed in Table 2.6.2. The value of K, called the gain of the filter, in Eqn. A1.28, is chosen such that the $\left\{\mathscr{q}_{i}(t)\right\}$ s have a variance corresponding to $1 / 2 n_{s}$, where n_{s} represents the number of sky waves. This ensures that the mean length of the channel sampled impulse-response vector is equal to unity. Theoretically the value of K can be obtained as follows. The energy in the waveform $\mathrm{H}(\mathrm{f})$, Eqn. A1.22, given by

$$
\begin{equation*}
E_{h}=\int_{-\infty}^{\infty} \mid H(F)^{p} d f \tag{A 1.29}
\end{equation*}
$$

is determined. E_{b} is normalized by a scalar, K , such that the energy in the waveform is equal to $1 / 2 n_{s}$. However, a simpler method is to pass a sequence of digital data, whose first element is a 1 and the rest of the elements are zero, through the 5 pole digital filter. For a sufficiently long sequence, the sum of the squares of the output of the digital filter, $\mathrm{E}_{\mathrm{sum}}$, is very close to E_{h}, particularly since the sampling frequency of the filter is considerably larger than the bandwidth of the filter. $\mathrm{E}_{\text {sum }}$ is now normalized by K such that the energy in the waveform is equal to $1 / 2 n_{s}$. The gain of the 5 -pole digital filter obtained in this way for a 2 Hz frequency spread is equal to 19378. With this value of K , in Eqn. A1.28, the resultant channel sampled impulse-response vector length is very close to unity as can be seen from Table 3.5.2.

TABLE A1.1 FIFTH ORDER ANALOG BESSEL FILTER FOR A FREQUENCY SPREAD OF $2 \mathbf{H z}$.

Frequency spread, $\mathrm{f}_{\mathrm{sp}}(\mathrm{Hz})$	2	
Cut-off frequency, $\mathrm{f}_{\mathrm{c}}(\mathrm{Hz})$	1.1774	
Constant d_{0}^{\prime}	248451.99	
Filter poles in the s-plane		
	P_{1}^{\prime}	$-11.1139+\mathrm{j} 0$
	$P_{2}^{\prime}, P_{3}^{\prime}$	$-10.2155 \pm \mathrm{j} 5.3110$
	$P_{4}^{\prime} P_{5}^{\prime}$	$-7.0847 \pm \mathrm{j} 10.8831$

APPENDIX B

TRANSMITTER \& RECEIVER FILTERS

Fig. 3.3.4 shows the frequency characteristics of the combined equipment and radio filters. In order to obtain different sampling phases, the filter sampled impulse-response has been obtained at a sampling rate that is 20 times higher (i.e., at a sampling rate of 96000 samples $/ \mathrm{sec}$.) than the original sampling rate. This oversampled transmitter and receiver filter responses are given in Table B1.1. Section 3.3 explains in detail, the method by which the oversampled filters are obtained. The sampled impulse-responses $a_{1, k}, a_{2, k}$ and $a_{3, k}$ corresponding to $a(t-i T), a\left(t-\tau_{1}-i T\right)$ and $\mathrm{a}\left(\mathrm{t}-\tau_{2}-\mathrm{iT}\right)$ (for generating a three sky wave channel) have been obtained by taking every $20^{\text {h }}$ sample from the oversampled transmitter filter. The three filters are, therefore, at a sampling rate of 4800 samples/sec. $\mathrm{a}_{1, \mathrm{k}}$ has $(-0.179590+\mathrm{j} 2.353941)$ as its first sample and the other samples are obtained by picking every $20^{\text {th }}$ sample from the first sample from Table B1.1 (Table 3.3.3).
$\mathrm{a}_{2, \mathrm{k}}$ is delayed 1.1 millisecond with respect to $\mathrm{a}_{1, k}$. Expressing this delay as a fraction of the number of samples, ρ^{\prime}, gives

$$
\rho^{\prime}=\frac{1.1 x 10^{-3}}{(1 / 4800)}=5.28
$$

In other words the first sample of $\mathrm{a}_{2, \mathrm{k}}$ is delayed by 5.28 samples with respect to the first sample of $a_{1, k}$. It is, however, necessary to obtain the samples of the delayed filters at the sampling instants of the non-delayed filter. This delay can be expressed as a whole number of samples and a fractional part (i.e. $5+0.28$). The first component of $a_{2, k}$ is thus added to the $(5+1) 6^{\text {th }}$ component of $a_{1, k}$. This leaves a discrepancy of ($6-5.28$) 0.72 sampling intervals. This discrepancy is taken care of by choosing (from the oversampled version) the sample that is $(0.72 \times 96000 / 4800=$ 14.4) 14 samples ahead of $(-0.179590+\mathrm{j} 2.353941)$. Thus the sample that is chosen as the first sample of $a_{2, k}$ is $(-1.669437+j 13.237271)$. The remaining sample of $a_{2, k}$ are, of course, chosen as every 20^{m} sample from the sampled version, starting with $(-1.669437+\mathrm{j} 13.237271)$. The 3 millisecond delayed filter $\mathrm{a}_{3, \mathrm{k}}$ has been similarly obtained and is shown in Table 3.3.3. The oversampled version of the receiver filter in Table B1.1 has been obtained as described in Section 3.3, but at a different
sampling phase. Table 3.3 .4 shows the sample impulse-response of the receiver filter at 4800 samples $/ \mathrm{sec}$. and has been obtained from Table B1.1 with $(-1.941764+$ j 1.362559) as its first sample.

TABLE B1.1. - OVERSAMPLED TRANSMITTER \& RECEIVER FILTER

(A) - IN PHASE RESPONSE OF TRANSMITTER FILTER SAMPLED AT 96000 SAMPLES/SEC.

-0.0002096
-0.0002893
0.0002107
0.0002904
-0.0002113
-0.0002909
0.0002113
0.0002905
-0.0002106
-0.0002889
0.0002089
0.0002858
-0.0002059
-0.0002805
0.0002011
0.0002722
-0.0001937
-0.0002596
0.0001825
0.0002407
-0.0001655
-0.0002118
0.0001394
0.0001666
-0.0000975
-0.0000918
0.0000253
-0.0000440
0.0001148
0.0003319
-0.0004487
-0.0011355
0.0016070
0.0049406
-0.0105240
-0.0841076
-0.2740073
-0.6560838
-1.3136537
-2.3098150
-3.6554823
-5.2949561
-7.1104051
-8.9314755
-10.5497287
-11.7490864
-12.3469721
-12.2252865
-11.3445819
-9.7521911
-7.5848703
-5.0528272
-2.4056875
0.1015622
2.2353854
3.8123224
4.7276308

-0.0002887
-0.0002103
0.0002901
0.0002111
-0.0002908
-0.0002114
0.0002908
0.0002110
-0.0002897
-0.0002098
0.0002873
0.0002073
-0.0002829
-0.0002033
0.0002760
0.0001970
-0.0002653
-0.0001875
0.0002492
0.0001731
-0.0002249
-0.0001513
0.0001873
0.0001168
-0.0001267
-0.0000594
0.0000212
-0.0000461
0.0001868
0.0002744
-0.0006966
-0.0009363
0.0025614
0.0043280
-0.0189960
-0.1105917
-0.3323647
-0.7630237
-1.4845339
-2.5518017
-3.9628099
-5.6487240
-7.4804261
-9.2784116
-10.8296895
-11.9216180
-12.3826494
-12.1096509
-11.0799204
-9.3588701
-7.0999776
-4.5243415
-1.8851016
0.5649945
2.5999552
4.0500667
4.8284836

-0.0003572	-0.0003399
0.0000000	0.0001107
0.0003588	0.0003413
0.0000000	-0.0001110
-0.0003596	-0.0003420
0.0000000	-0.0001111
0.0003593	0.0003416
0.0000000	-0.0001108
-0.0003577	-0.0003399
0.0000000	0.0001100
0.0003542	0.0003364
0.0000000	-0.0001085
-0.0003483	-0.0003305
0.0000000	0.0001060
0.0003389	0.0003212
0.0000000	-0.0001023
-0.0003246	-0.0003070
0.0000000	0.0000966
0.0003030	0.0002856
0.0000000	-0.0000881
-0.0002703	-0.0002531
0.0000000	0.0000750
0.0002194	0.0002024
0.0000000	-0.0000540
-0.0001362	-0.0001190
0.0000000	0.0000182
-0.0000113	-0.0000305
0.000000	0.0000502
0.0003124	0.0003414
0.0000000	-0.0002091
-0.0010966	-0.0011788
0.0000000	0.0007335
0.0043277	0.0048672
0.0000000	-0.0043177
-0.044391835	-0.0622160
$-0.1795896(1)$	-0.2233037
-0.4747796	-0.5602256
-1.0126609	-1.1564934
-1.8685694	-2.0820312
$-3.07734553)$	-3.3601064
-4.6101723	-4.9483961
-6.3729500	-6.7407393
-8.2151244	-8.5764574
-9.9409021	-10.2528991
-11.3324982	-11.5522808
-12.1892192	-12.2822589
-12.3646935	-12.3102829
-11.7869473	-11.5804806
-10.4677274	-10.1222704
-8.5086316	-8.0550490
-6.0938784	-5.5766967
-3.4618271	-2.9319357
-0.8688202	-0.3769656
1.4399026	1.8482796
3.2570916	3.5478141
4.4438154	4.5994647
4.9495636	4.9707467

4.9665164	4.9376234
4.5938614	4.4562826
3.7379757	3.5236767
2.5744110	2.3220794
1.2992157	1.0473111
0.0931639	-0.1265567
-0.9032046	-1.0682722
-1.5969945	-1.6948431
-1.9472954	-1.9765922
-1.9704176	-1.9408745
-1.7308727	-1.6590449
-1.3164980	-1.2207005
-0.8183711	-0.7164903
-0.3233694	-0.2315715
0.0960762	0.1665695
0.3981238	0.4432363
0.5738109	0.5943870
0.6313238	0.6298011
0.5854067	0.5657863
0.4609658	0.4295803
0.2911328	0.2543641
0.1035718	0.0656237
-0.0826035	-0.1177907
-0.2438612	-0.2704365
-0.3506899	-0.3636354
-0.3865939	-0.3855371
-0.3580021	-0.3459950
-0.2815380	-0.2620450
0.1763861	-0.1543700
-0.0734526	-0.0566187
-0.0098828	-0.0037687
0.0011207	-0.0013998
-0.0181736	-0.0228239
-0.0386471	-0.0415585
-0.0477136	-0.0475377
-0.0366473	-0.0308152
0.0053171	0.0167220
0.0608046	0.0689425
0.0765135	0.0710176
0.0234435	0.0076085
-0.0508838	-0.0609485
-0.0713496	-0.0665586
-0.0295126	-0.0188364
0.0126510	0.0160815
0.0122893	0.0084275
-0.0068719	-0.0090381
-0.0076666	-0.0053654
0.0046743	0.0062320
0.0055350	0.0039116
-0.0035251	-0.0047346
-0.0043159	-0.0030676
0.0028221	0.0038080
0.0035297	0.0025184
-0.0023491	-0.0031798
-0.0029819	-0.0021333
0.0020098	0.0027267
0.0025790	0.0018487

4.8849186
4.3005084
3.2985708
2.0668985
0.7995878
-0.3368383
-1.2205644
-1.7787073
-1.9930423
-1.8014342
-1.5809597
-1.1222815
-0.6154345
-0.1433592
0.2320973
0.4832902
0.6103202
0.6242601
0.5432531
0.3966679
0.2170838
0.0278577
-0.1517680
-0.2945709
-0.3736477
-0.3820071
-0.3322094
-0.2415492
-0.1543700
-0.0416905
0.0002018
-0.0048610
-0.0272931
-0.0439705
-0.0464696
-0.0236212
0.0284445
0.0749333
0.0626009
-0.0084686
-0.0681863
-0.0594132
-0.0088283
0.0175578
0.0041943
-0.0101718
-0.0027205
0.0071031
0.0020017
-0.0054343
-0.0015785
0.0043901
0.0013006
-0.0036771
-0.0011046
0.0031602
0.0009591

4.8093491	4.7119541
4.1279029	3.9398962
3.0642536	2.8223321
1.8103897	1.5540244
0.5572496	0.3214244
-0.5368582	-0.7258700
-1.3596576	-1.4852158
-1.8486294	-1.9047481
-1.9971243	-1.9893827
-1.8528030	-1.7957047
-1.4973528	-1.4089564
-1.0219528	-0.9204182
-0.5158362	-0.4182949
-0.0591323	0.0207712
10.2925598	0.3479056
0.5183509	0.5484959
0.6217122	0.6286729
0.6148771	0.6018517
0.5180829	0.4905592
0.3624759	0.3272300
0.1794357	0.1415545
-0.0095622	-0.0464514
-0.1842786	-0.2150615
-0.3160803	-0.3348201
-0.3807599	-0.3850420
-0.3761463	-0.3680978
-0.3167778	-0.2998377
-0.2202693	-0.1984549
-0.1118143	-0.0919475
-0.0288560	-0.0182370
10.0021899	0.0024109
-0.0089801	-0.0134947
-0.0314685	-0.0352709
-0.0458416	-0.0471151
-0.0443806	-0.0411434
-0.0151063	-0.0053910
0.0400358	0.0509968
0.0783720	0.0789564
0.0515533	0.0383126
-0.0240446	-0.0384004
-0.0723509	-0.0733706
-0.0504447	-0.0402683
0.0000000	0.0072489
0.0172292	0.0153572
0.0000000	-0.0037884
-0.0102567	-0.0093694
0.0000000	0.0025394
0.0072476	0.0066944
0.0000000	-0.0019003
-0.0055818	-0.0051885
0.0000000	0.0015140
0.0045286	0.0042267
0.0000000	-0.0012561
-0.0038043	-0.0035609
0.0000000	0.0010721
0.0032766	0.0030735
0.0000000	-0.0009344

(B) - QUADRATURE RESPONSE OF TRANSMITTER FILTER SAMPLED AT 96000 SAMPLES/SEC.

-0.0018960
-0.0026938
0.0020224
0.0028795
-0.0021666
-0.0030923
0.0023328
0.0033386
-0.0025262
-0.0036272
0.0027542
0.0039696
-0.0030268
-0.0043825
0.0033584
0.0048899
-0.0037705
-0.0055278
0.0042956
0.0063535
-0.0049871
-0.0074620
0.0059365
0.0090242
-0.0073159
-0.0113770
0.0094846
0.0152746
-0.0133169
-0.0227450
0.0214730
0.0410111
-0.0456111
-0.1123821
0.1932385
1.2493078
3.3108456
6.5455425
11.0688962
16.8321857
23.5042446
30.5187820
37.2136597
42.9059887
46.9257109
48.7146794
47.9575159
44.6307293
38.9744463
31.4713441
22.8262482
13.8752357
5.4416399
-1.7735266
-7.2498590
-10.7020093
-12.1218489
-11.7524642
-10.0026703
-7.3680608
-4.3741695
-1.5058820
-1.5058820
-0.0026261
-0.0019699
0.0028023
0.0021066
-0.0030035
-0.0022634
0.0032356
0.0024451
-0.0035060
-0.0026583
0.0038253
0.0029116
-0.0042076
-0.0032175
0.0046736
0.0035943
-0.0052539
-0.0040692
0.0059957
0.0046859
-0.0069761
-0.0055173
0.0083288
0.0066959
-0.0103073
-0.0084850
0.0134480
0.0114840
-0.0190802
-0.0173412
0.0313657
0.0321468
-0.0694746
-0.0942916
0.3342662
1.5751498
3.8591911
7.3452371
12.1286245
18.1095118
24.9003445
31.9050405
38.4543095
43.8641239
47.4762122
48.7718190
47.4936015
43.6738546
37.6019147
29.8079459
21.0330921
12.1224692
3.8815751
-3.0207994
-8.1065690
-11.1439499
-12.1798142
-11.4979467
-9.5297832
6.7813882
-3.7766193
-0.9822748
-0.0031067
-0.0010424
0.0033165
0.0011152
-0.0035564
-0.0011988
0.0038332
0.0012959
-0.0041563
-0.0014098
0.0045381
0.0015454
-0.0049962
-0.0017095
0.0055556
0.0019120
-0.0062539
-0.0021679
0.0071491
0.0025013
-0.0083367
-0.0029528
0.0099837
0.0035966
-0.0124094
-0.0045820
0.0162988
0.0062543
-0.0233823
-0.0095856
0.0392410
0.0183105
-0.0909950
-0.0579434
0.5082941
1.9429154
4.4557341
8.1974720
13.2372707
19.4199272
26.3051808
33.2731191
39.6493461
44.7499103
47.9331639
48.7250491
46.9272219
42.6261192
36.1597834
28.1049601
19.2346609
10.3969514
2.3756530
-4.1946128
-8.8804125
-11.5050480
-12.1686116
-11.1917489
-9.0256163
-6.1846416
-3.1879262
-0.4810978

-0.0032874	-0.0031465
0.0000000	0.0010562
0.0035109	0.0033619
0.0000000	-0.0011310
-0.0037666	-0.0036085
0.0000000	0.0012171
0.0040621	0.0038938
0.0000000	-0.0013172
-0.0044073	-0.0042275
0.0000000	0.0014350
0.0048159	0.0046230
0.0000000	-0.0015757
-0.0053068	-0.0050990
0.0000000	0.0017465
0.0059076	0.0056827
0.0000000	-0.0019583
-0.0066593	-0.0064148
0.0000000	0.0022274
0.0076259	0.0073593
0.0000000	-0.0025804
-0.0089133	-0.0086221
0.0000000	0.0030629
0.0107080	0.0103921
0.0000000	-0.0037594
-0.0133702	-0.0130372
0.0000000	0.0048442
0.0176836	0.0173697
0.0000000	-0.0067345
-0.0256677	-0.0255267
0.0000000	0.0106649
0.0440432	0.0448589
0.0000000	-0.0218003
-0.1074007	-0.1156220
0.0000000	0.0827311
0.7175366	0.9639589
2.3539405	2.8095026
5.1016214	5.7979150
9.1023946	10.0597638
14.3926361	15.5920086
20.7590237	22.1221047
27.7134459	29.1197780
34.6175658	35.9329096
40.7932681	41.8806123
45.5584592	46.2851556
48.2935224	48.5547200
48.5737616	48.3178150
46.2599267	45.4936549
41.4909978	40.2723551
34.6534397	33.0886132
26.3691066	24.6072306
17.4377717	15.6491184
8.7045826	7.0510150
0.9284061	-0.4559482
-5.2922114	-6.3112590
-9.5708828	-10.1779415
-11.7869820	-11.9917925
-12.0913914	-11.9515022
-10.8377827	-10.4400583
-8.4944258	-7.9404850
-5.5819054	-4.9771435
-2.6113002	-2.0497120
-0.0043047	0.4463982

0.8695437	1.2638933	1.6284281	1.9623394	2.2650217
2.5360673	2.7752627	2.9825874	3.1582131	3.3025044
3.4160186	3.4995038	3.5538956	3.5803102	3.5800345
3.5545124	3.5053270	3.4341804	3.3428704	3.2332656
3.1072800	2.9668481	2.8139013	2.6503465	2.4780490
2.2988169	2.1143913	1.9264385	1.7365460	1.5462211
1.3568901	1.1698997	0.9865176	0.8079318	0.6352500
0.4694956	0.3116039	0.1624149	0.0226669	-0.1070118
-0.2261096	-0.3342379	-0.4311352	-0.5166680	-0.5908297
-0.6537350	-0.7056120	-0.7467906	-0.7776891	-0.7987986
-0.8106669	-0.8138825	-0.8090599	-0.7968257	-0.7778083
-0.7526319	-0.7219063	-0.6862301	-0.6461880	-0.6023532
-0.5552906	-0.5055596	-0.4537174	-0.4003201	-0.3459233
-0.2910796	-0.2363349	-0.1822225	-0.1292556	-0.0779191
-0.0286612	0.0181148	0.0620573	0.1028714	0.1403215
0.1742316	0.2044829	0.2310091	0.2537894	0.2728409
0.2882096	0.2999617	0.3081762	0.3129383	0.3143350
0.3124536	0.3073812	0.2992077	0.2880296	0.2739555
0.2571122	0.2376502	0.2157487	0.1916186	0.1655045
0.1376831	0.1084602	0.0781650	0.0471432	0.0157477
-0.0156703	-0.0467706	-0.0772327	-0.1067625	-0.1350979
-0.1620121	-0.1873135	-0.2108453	-0.2324818	-0.2521238
-0.2696933	-0.2851283	-0.2983775	-0.3093963	-0.3181453
-0.3245889	-0.3286970	-0.3304483	-0.3298346	-0.3268660
-0.3215770	-0.3140314	-0.3043271	-0.2925984	-0.2790169
-0.2637901	-0.2471575	-0.2293845	-0.2107548	-0.1915610
-0.1720951	-0.1526387	-0.1334542	-0.1147769	-0.0968097
-0.0797193	-0.0636352	-0.0486510	-0.0348275	-0.0221972
-0.0107706	-0.0005416	0.0085057	0.0163927	0.0231422
0.0287766	0.0333169	0.0367850	0.0392056	0.0406106
0.0410431	0.0405616	0.0392435	0.0371870	0.0345120
0.0313582	0.0278816	0.0242491	0.0206313	0.0171942
0.0140909	0.0114524	0.0093809	0.0079429	0.0071662
0.0070377	0.0075054	0.0084818	0.0098505	0.0114746
0.0132057	0.0148949	0.0164020	0.0176054	0.0184091
0.0187484	0.0185930	0.0194722	0.0168480	0.0153603
0.0135711	0.0115816	0.0094992	0.0074293	0.0054678
0.0036951	0.0021717	0.0009352	0.0000000	-0.0006413
-0.0010149	-0.0011618	-0.0011323	-0.0009808	-0.0007607
-0.0005197	-0.0002965	-0.0001182	0.0000000	0.0000550
0.0000538	0.0000111	-0.0000540	-0.0001207	-0.0001701
-0.0001877	-0.0001650	-0.0001006	0.0000000	0.0001250
0.0002584	0.0003820	0.0004777	0.0005303	0.0005291
0.0004698	0.0003546	0.0001930	0.0000000	-0.0002049
-0.0003999	-0.0005637	-0.0006772	-0.0007265	-0.0007039
-0.0006091	-0.0004496	-0.0002399	0.0000000	0.0002463
0.0004742	0.0006599	0.0007839	0.0008322	0.0007987
0.0006853	0.0005019	0.0002658	0.0000000	-0.0002695
-0.0005158	-0.0007142	-0.0008442	-0.0008922	-0.0008527
-0.0007287	-0.0005317	-0.0002807	0.0000000	0.0002828
0.0005397	0.0007452	0.0008787	0.0009265	0.0008835
0.0007534	0.0005486	0.0002891	0.0000000	-0.0002902

(C) - IN PHASE RESPONSE OF RECEIVER FILTER

SAMPLED AT 96000 SAMPLES/SEC.

0.0020834	0.0028840
0.0029515	0.0021571
-0.0022093	-0.0030593
-0.0031359	-0.0022927
0.0023522	0.0032587
0.0033463	0.0024477
-0.0025161	-0.0034875
-0.0035888	-0.0026265
0.0027060	0.0037529
0.0038713	0.0028351
-0.0029286	-0.0040645
-0.0042050	-0.0030818
0.0031936	0.0044359
0.0046052	0.0033782
-0.0035142	-0.0048862
-0.0050943	-0.0037411
0.0039102	0.0054437
0.0057057	0.0041961
-0.0044121	-0.0061521
-0.0064922	-0.0047831
0.0050685	0.0070821
0.0075410	0.0055692
-0.0059635	-0.0083562
-0.0090078	-0.0066748
0.0072530	0.0102042
0.0111969	0.0083378
-0.0092603	-0.0131078
-0.0147831	-0.0110937
0.0127627	0.0182477
0.0215573	0.0163959
-0.0200914	-0.0292647
-0.0377947	-0.0295260
0.0412785	0.0626214
0.0995193	0.0830984
-0.1668071	-0.2869621
-1.0483676	-1.3142129
-2.7013103	-3.1322002
-5.2132779	-5.8263700
-8.6610237	-9.4639655
-13.0181011	-13.9817192
-18.0503691	-19.1041028
-23.3570252	-24.4113966
-28.4829812	-29.4457608
-32.9622667	-33.7385899
-36.3227256	-36.8220438
-38.1530362	-38.3098230
-38.2009723	-37.9881746
-36.4049087	-35.8308386
-32.8685841	-31.9726333
-27.8544486	-26.7090951
-21.7865466	-20.4926773
-15.1996546	-13.8692888
-8.6472568	-7.3866587
-2.6349998	-1.5364595
2.4143343	3.2797839
6.2049538	6.7978249
8.6112151	8.9274450
9.6733158	9.7369523
9.5513810	9.4048894
8.4850836	8.1836652
6.7664935	6.3716409
4.6999446	4.2696374

0.0036060	0.0034493
0.0000000	-0.0011545
-0.0038282	-0.0036635
0.0000000	0.0012286
0.0040814	0.0039075
0.0000000	-0.0013136
-0.0043724	-0.0041884
0.0000000	0.0014119
0.0047108	0.0045154
0.0000000	-0.0015271
-0.0051093	-0.0049009
0.0000000	0.0016639
0.0055857	0.0053625
0.0000000	-0.0018291
-0.0061655	-0.0059255
0.0000000	0.0020327
0.0068867	0.0066276
0.0000000	-0.0022900
-0.0078087	-0.0075278
0.0000000	0.0026255
0.0090284	0.0087235
0.0000000	-0.0030806
-0.0107162	-0.0103866
0.0000000	0.0037323
0.0131981	0.0128502
0.0000000	-0.0047375
-0.0171766	-0.0168415
0.0000000	0.0064675
0.0244403	0.0242505
0.0000000	-0.0100061
-0.0408489	-0.0414752
0.0000000	0.0198065
0.0959832	0.1028664
0.0000000	-0.0718006
-0.6090863	-0.8135869
-1.9417691	-2.3047252
-4.0997796	-4.6379411
-7.1672740	-7.8952046
-11.1762206	-12.0820595
-15.9797864	-17.0077375
-21.2303061	-22.2954378
26.4837800	-27.4943951
-31.2786220	-32.1410152
$-35.1417733 x$	-35.7616526
-37.6250430	-37.9243142
-38.4036547	-38.3394980
-37.3414093	-36.9088698
$-34.4788717 \times$	-33.7048744
-30.0136650	-28.9572744
-24.3073586	-23.0596138
-17.8606794	-16.5315711
$-11.2301982 \times$	-9.9297163
-4.9457589	-3.7724599
0.5325620	1.4979660
4.8518440	5.5561560
$7.8155160 \times$	8.2408417
9.4016301	9.5620723
9.7283725	9.6599211
9.0070400	8.7603660
7.5124057	7.1475503
5.5498420	5.1273471
3.4078680	2.9799668

2.5562923	2.1384269	1.7278820	1.3260998	0.9344548
0.5542524	0.1867261	-0.1669666	-0.5057505	-0.8286388
-1.1347394	-1.4232612	-1.6935186	-1.9449349	-2.1770436
-2.3894877	-2.5820173	-2.7544853	-2.9068417	-3.0391275
-3.1514680	-3.2440658	-3.1371960	-3.3712008	-3.4064862
-3.4235203	-3.4228322	-3.4050122	-3.3707125	-3.3206485
-3.2555987	-3.1764049	-3.0839704	-2.9792569	-2.8632797
-2.7371004	-2.6018195	-2.4585658	-2.3084858	-2.1527328
-1.9924551	-1.8287851	-1.6628297	-1.4956608	-1.3283086
-1.1617554	-0.9969315	-0.8347123	-0.6759166	-0.5213057
-0.3715827	-0.2273931	-0.0893236	0.0420976	0.1664022
0.2831831	0.3920953	0.4928585	0.5852576	0.6691446
0.7444381	0.8111235	0.8692507	0.9189314	0.9603349
0.9936831	1.0192439	1.0373248	1.0482656	1.0524314
1.0502056	1.0419837	1.0281681	1.0091636	0.9853737
0.9571988	0.9250337	0.8892674	0.8502824	0.8084543
0.7641518	0.7177366	0.6695626	0.6199751	0.5693099
0.5178921	0.4660349	0.4140381	0.3621876	0.3107546
0.2599960	0.2101542	0.1614588	0.1141273	0.0683671
0.0243771	-0.0176514	-0.0575333	-0.0950895	-0.1301474
-0.1625418	-0.1921175	-0.2187313	-0.2422558	-0.2625825
-0.2796255	-0.2933242	-0.3036466	-0.3105902	-0.3141835
-0.3144855	-0.3115844	-0.3055961	-0.2966613	-0.2849425
-0.2706218	-0.2538974	-0.2349824	-0.2141025	-0.1914962
-0.1674140	-0.1421198	-0.1158908	-0.0890187	-0.0618098
-0.0345840	-0.0076731	0.0185830	0.0438410	0.0677611
0.0900148	0.1102940	0.1283201	0.1438535	0.1567017
0.1667264	0.1738479	0.1780475	0.1793672	0.1779058
0.1738134	0.1672828	0.1585399	0.1478332	0.1354230
0.1215723	0.1065385	0.0905683	0.0738947	0.0567369
0.0393033	0.0217962	0.0044183	-0.0126208	-0.0290985
-0.0447741	-0.0593875	-0.0726604	-0.0843018	-0.0940174
-0.1015230	-0.1065605	-0.1089161	-0.1084392	-0.1050604
-0.0988063	-0.0898108	-0.0783207	-0.0646936	-0.0493906
-0.0329595	-0.0160129	0.0007998	0.0168251	0.0314392
0.0440824	0.0542901	0.0617199	0.0661713	0.0675974
0.0661066	0.0619555	0.0555316	0.0473282	0.0379127
0.0278901	0.0178649	0.0084034	0.0000000	-0.0069515
-0.0121784	-0.0155414	-0.0170357	-0.0167846	-0.0150226
-0.0120718	-0.0083134	-0.0041553	0.0000000	0.0037858
0.0068974	0.0091119	0.0103004	0.0104327	0.0095730
0.0078684	0.0055313	0.0028173	0.0000000	-0.0026535
-0.0049063	-0.0065707	-0.0075227	-0.0077101	-0.0071534
-0.0059408	-0.0042170	-0.0021675	0.0000000	0.0020758
0.0038676	0.0052171	0.0060139	0.0062038	0.0057913
0.0048377	0.0034531	0.0017843	0.0000000	-0.0017257
-0.0032301	-0.0043763	-0.0050659	-0.0052469	-0.0049169
-0.0041225	-0.0029530	-0.0015311	0.0000000	0.0014904
0.0027980	0.0038019	0.0044133	0.0045833	0.0043063
0.0036196	0.0025991	0.0013507	0.0000000	-0.0013207
-0.0024846	-0.0033830	-0.0039349	-0.0040943	-0.0038540
-0.0032453	-0.0023344	-0.0012152	0.0000000	0.0011920

(D) - QUADRATURE RESPONSE OF RECEIVER FILTER SAMPLED AT 96000 SAMPLES/SEC.

-0
-0.00
-0.
01
0.002
0.002
.
0.00
0.
0.00
002
0.0042
,
0.004
. 00
0.006
0.0048
0.
00
0.0100
0
0.014
0.013
0.026
0.0287
-0.069
0.
0.734
1.89776
3.67964
6
9.3680
13.174
17.328
21.512
35
0.37
82
. 6124
6
22.411
6.9650207
. 93
4.89
5.05
. 7021
. 7994

-0.0017684	-0.0020920
-0.0013265	-0.0007019
0.0018869	0.0022331
0.0014184	0.0007509
-0.0020222	-0.0023944
-0.0015237	-0.0008071
0.0021780	0.0025803
0.0016458	0.0008722
-0.0023595	-0.0027970
-0.0017887	-0.0009486
0.0025734	0.0030529
0.0019583	0.0010394
-0.0028292	-0.0033593
-0.0021628	-0.0011490
0.0031405	0.0037328
0.0024141	0.0012841
-0.0035271	-0.0041980
-0.0027302	-0.0014543
0.0040200	0.0047926
0.0031392	0.0016754
-0.0046689	-0.0055784
-0.0036884	-0.0019735
0.0055601	0.0066628
0.0044624	0.0023960
-0.0068550	-0.0082493
-0.0056287	-0.0030378
0.0088926	0.0107699
0.0075633	0.0041152
-0.0125015	-0.0153018
-0.0112861	-0.0062288
0.0202348	0.0252628
0.0204986	0.0116438
-0.0436259	-0.0569346
-0.0580471	-0.0355096
0.2008434	0.3038040
0.9214035	1.1305184
2.2020347	2.5316323
4.1177943	4.5847515
6.7470708	7.3609602
10.0879953	10.8306611
13.9873413	14.8115810
18.1741338	19.0179670
22.3214508	23.1140945
26.0527816	26.7121061
28.9443490	29.3849631
30.5940557	30.7469241
30.7135164	30.5392595
29.1695346	28.6607020
25.9921623	25.1760495
21.3959867	20.3392687
15.7869608	14.5898947
9.7056198	8.4840207
3.7326488	-2.6003648
-1.5852635	-6.46689878
-5.7899250	-8.9481726
-8.5746090	-9.9078276
-9.8339173	-9.9145327
-9.6600448	-8.2992019
-6.1091243	-3.4690010
-3.5158932	-0.9467899

-0.0022137	-0.0021188
0.0000000	0.0007112
0.0022331	0.0022636
0.0000000	-0.0007615
-0.0023944	-0.0024294
0.0000000	0.0008193
0.0025803	0.0026209
0.0000000	-0.0008865
-0.0027970	-0.0028448
0.0000000	0.0009655
0.0030529	0.0031097
0.0000000	-0.0010596
-0.0033593	-0.0034280
0.0000000	0.0011738
0.0037328	0.0038176
0.0000000	-0.0013149
-0.0041980	-0.0043050
0.0000000	0.0014938
0.0047926	0.0049319
0.0000000	-0.0017277
-0.0055784	-0.0057667
0.0000000	0.0020459
0.0066628	0.0069307
0.0000000	-0.0025024
-0.0082493	-0.0086579
0.0000000	0.0032077
0.0107699	0.0114595
0.0000000	-0.0044223
-0.0153018	-0.0166617
0.0000000	0.0069065
0.0252628	0.0287494
0.0000000	-0.0137805
-0.0569346	-0.0717856
0.0000000	0.0502174
0.3038040	0.5699953
1.3625952	1.6181574
2.5316323	3.2696998
5.0809810	5.6067709
7.3609602	8.6725928
11.5941040	12.3762123
14.8115810	16.4849309
19.8575654	20.6900291
23.1140945	24.6367063
27.3342937	27.9159203
29.3849631	30.1049827
30.8364944	30.8614495
30.5392595	29.9886380
28.0870086	27.4498335
25.1760495	23.3826834
19.2456627	18.1194377
14.5898947	12.1575352
7.2714615	6.0724514
2.6003648	0.4313078
-3.4220063	-4.2654451
-6.4668938	-7.6426318
-9.2602472	-9.5113244
-9.9078276	-9.8887123
-9.2402193	-8.9651555
-7.9145327	-7.0582687
-5.0954462	-4.5733089
-2.9873479	-1.9465057
-0.0090979	0.4307804

0.8486902	1.2428835
2.5543929	2.8106573
3.5326443	3.6372023
3.7662970	3.7311846
3.3626719	3.2219288
2.5192911	2.3180335
1.4645527	1.2474814
0.4101854	0.2153215
-0.4728898	-0.6179151
-1.0739389	-1.1558594
-1.3573908	-1.3777569
-1.3526856	-1.3224823
-1.1234453	-1.0572163
-0.7459592	-0.6599706
-0.3039922	-0.2153002
0.1206639	0.1975324
0.4652678	0.5208688
0.6916247	0.7206306
0.7792146	0.7794833
0.7265489	0.7010670
0.5613013	0.5191920
0.3366648	0.2898653
0.1106709	0.0697030
-0.0695178	-0.0968894
-0.1712422	-0.1806410
-0.1828896	-0.1755313
-0.1233136	-0.1063995
-0.0343991	-0.0169347
0.0434430	0.0553573
0.0874120	0.0912970
0.0902695	0.0861192
0.0574296	0.0481657
0.0097832	0.0010815
-0.0243087	-0.0277859
-0.0304985	-0.0289175
-0.0182778	-0.0153320
-0.0057484	-0.0041414
-0.0006569	-0.0003243
0.0000920	0.0001053
0.0000975	0.0000765
-0.0001082	-0.0001611
-0.0002088	-0.0001599
0.0001903	0.0002715
0.0003061	0.0002281
-0.0002485	-0.0003484
-0.0003711	-0.0002733
0.0002867	0.0003987
0.0004136	0.0003029
-0.0003116	-0.0004316
-0.0004412	-0.0003222
0.0003278	0.0004529
0.0004591	0.0003346

1.6118081	1.6118081	2.2686229
3.0368596	3.2326498	3.3978877
3.7120534	3.7120534	3.7756159
3.6716792	3.5893140	3.4857337
3.0653490	3.0653490	2.7121606
2.1101940	1.8975352	1.6817692
1.0320863	1.0320863	0.6120931
0.0286218	-0.1488970	-0.3163297
-0.7508719	-0.7508719	-0.9790951
-1.2249389	-1.2813604	-1.3253953
-1.3869546	-1.3869546	-1.3738767
-1.2838523	-1.2373936	-1.1837168
-0.9856814	-0.9856814	-0.8293693
-0.5720984	-0.4830313	-0.3934445
-0.1279595	-0.1279595	0.0405073
0.2707403	0.3399563	0.4048860
0.5714807	0.5714807	0.6570132
0.7439369	0.7614804	0.7732345
0.7741548	0.7741548	0.7474360
0.6713682	0.6378702	0.6010234
0.4751887	0.4751887	0.3834522
0.2434774	0.1979014	0.1535145
0.0309219	0.0309219	-0.0389437
-0.1208743	-0.1413246	-0.1581338
-0.1863757	-0.1863757	-0.1873154
-0.1655443	-0.1532672	-0.1390640
-0.0886997	-0.0886997	-0.0523731
-0.0002249	0.0155204	0.0301249
0.0657745	0.0657745	0.0818470
0.0934988	0.0940330	0.0929364
0.0806009	0.0738595	0.0660688
0.0385182	0.0287380	0.0190781
-0.0068255	-0.0137700	-0.0196251
-0.0300688	-0.0312132	-0.0313141
0.0267365	-0.0241266	-0.0212551
-0.0125319	-0.0099654	-0.0076930
-0.0028609	-0.0018799	-0.0011601
-0.0001182	0.0000000	0.0000622
0.0001109	0.0001122	0.0001085
0.0000439	0.0000000	-0.0000524
-0.0002036	-0.0002290	-0.0002318
-0.0000883	0.0000000	0.0000963
0.0003299	0.0003578	0.0003503
0.0001228	0.0000000	-0.0001281
-0.0004166	-0.0004453	-0.0004300
-0.0001456	0.0000000	0.0001491
0.0004734	0.0005024	0.0004821
0.0001605	0.0000000	-0.0001628
-0.0005104	-0.0005397	-0.0005161
-0.0001702	0.0000000	0.0001716
0.0005344	0.0005638	0.0005380
0.0001764	0.0000000	-0.0001773

APPENDIX C

DIFFERENTIATION WITH RESPECT TO A VECTOR

The quantity C_{i} in Eqn. 5.3 .13 is real and positive and is a function of the channel estimation vector V_{i} given by Eqn. 5.3.2. The elements of the vector V_{i} can be written as

$$
\begin{aligned}
V_{i}=\left[\begin{array}{llll}
\left(y_{i, 0,1}^{\prime}+j y_{i, 0,2}^{\prime}\right), & \left(y_{i, 1,1}^{\prime}+j y_{i, 1,2}^{\prime}\right), & \ldots, & \left(y_{i, g, 1}^{\prime}+j y_{i, g, 2}^{\prime}\right), \\
& \left(y_{i, 0,1}^{\prime \prime}+j y_{i, 0,2}^{\prime \prime}\right), & \left(y_{i, 1,1}^{\prime \prime}+j y_{i, 1,2}^{\prime \prime}\right), & \ldots .,
\end{array}\left(y_{i, g, 1}^{\prime \prime}+j y_{i, g, 2}^{\prime \prime}\right)\right]
\end{aligned}
$$

or

$$
\begin{align*}
V_{i}=\left[\left(v_{i, 0,1}+j v_{i, 0,2}\right),\right. & \left(v_{i, 1,1}+j v_{i, 1,2}\right), \\
& \ldots, \\
& \left.\left(v_{i, 2 g+1,1}+j v_{i, 2 g+1,2}\right)\right]
\end{align*}
$$

where, for example, $\mathrm{v}_{\mathrm{i}, 0,1}$ is the real part and $\mathrm{v}_{\mathrm{i}, 0,2}$ is the imaginary part of the first element of the vector V_{i}. By the definition of differentiation with respect to a vector, $\frac{x_{c}}{w_{1}}$ is given by [59, 103],

$$
\frac{\partial C_{i}}{\partial V_{i}}=\left[\begin{array}{cccc}
\frac{\partial C_{i}}{\partial v_{i, 0,1}} & + & j & \frac{\partial C_{i}}{\partial v_{i, 0,2}} \\
\frac{\partial C_{i}}{\partial v_{i, 1,1}} & + & j & \frac{\partial C_{i}}{\partial v_{i, 1,2}} \\
& \cdot & & \\
& \cdot & & \\
\frac{\partial C_{i}}{\partial v_{i, 2 g+1,1}} & + & j & \frac{\partial C_{i}}{\partial v_{i, 2 g+1,2}}
\end{array}\right]^{T}
$$

From Eqn. 5.3.13, C_{i} is given by

$$
\begin{align*}
C_{i}=\sum_{h=0}^{i} \omega^{i-h}\left(r_{h} r_{h}^{*}-r_{h} \bar{S}_{h} \phi_{h-i}^{T} V_{i}^{*}\right. & -r_{h}^{*} V_{i} \phi_{h-i} S_{h}^{T}+ \\
& \left.+V_{i} \phi_{h-i} S_{h}^{T} \bar{S}_{h} \phi_{h-i}^{T} V_{i}^{*}\right)
\end{align*}
$$

It is necessary to determine the gradient of C_{i} with respect to V_{i} (Eqn. 5.3.14). From Eqn. $\mathrm{C} 1.4, \partial C_{i} / \partial V_{i}$ is given by,

$$
\begin{align*}
\frac{\partial C_{i}}{\partial V_{i}}= & \sum_{h=0}^{i} \omega^{i-h}\left[\frac{\partial\left(r_{h} r_{h}^{*}\right)}{\partial V_{i}}+\frac{\partial\left(-r_{h} \bar{S}_{h} \phi_{h-i}^{T} V_{i}^{*}\right)}{\partial V_{i}}+\right. \\
& \left.+\frac{\partial\left(-r_{h}^{*} V_{i} \phi_{h-i} S_{h}^{T}\right)}{\partial V_{i}}+\frac{\partial\left(V_{i} \phi_{h-i} S_{h}^{T} \bar{S}_{h} \phi_{h-i}^{T} V_{i}^{*}\right)}{\partial V_{i}}\right]
\end{align*}
$$

Consider the term

$$
C_{i}^{\prime}=-r_{h} \bar{S}_{h} \phi_{h-i}^{T} V_{i}^{*}
$$

and let

$$
D=-r_{h} \bar{S}_{h} \phi_{h-i}^{T}
$$

then from Eqns. C1.6-C1.7

$$
C_{i}^{\prime}=D V_{i}^{*}=\sum_{k=0}^{2 g+1} d_{k}\left(v_{i, k, 1}-j v_{i, k, 2}\right)
$$

where d_{k} are the elements of the vector D , for $\mathrm{k}=0,1, \ldots,(2 \mathrm{~g}+1)$.

Hence

$$
\frac{\partial C_{i}^{\prime}}{\partial v_{i, k, 1}}=d_{k}
$$

for $\mathrm{k}=0,1, \ldots .,(2 \mathrm{~g}+1)$, and

$$
\begin{array}{r}
\frac{\partial C_{i}^{\prime}}{\partial v_{i, k, 2}}=-j d_{k} \\
\text { for } \mathrm{k}=0,1, \ldots .,(2 \mathrm{~g}+1) .
\end{array}
$$

Substituting Eqns. C1.9 and C1.10 in Eqn. C1.3 and simplifying

$$
\frac{\partial C_{i}^{\prime}}{\partial V_{i}}=2 D=-2 r_{h} \bar{S}_{h} \phi_{h-i}^{T}
$$

Similarly consider the term

$$
C_{i}^{\prime \prime}=-r_{h}^{*} V_{i} \phi_{h-i} S_{h}^{T}
$$

From Eqns. C1.7 and C1.12, $c_{i}^{\prime \prime}$ can now be written as

$$
C_{i}^{\prime \prime}=\sum_{k=0}^{2 g+1} d_{k}^{*}\left(v_{i, k, 1}+j v_{i, k, 2}\right)
$$

Hence

$$
\frac{\partial C_{i}^{\prime \prime}}{\partial v_{i, k, 1}}=d_{k}^{*}
$$

for $\mathrm{k}=0,1, \ldots .,(2 \mathrm{~g}+1)$, and

$$
\frac{\partial C_{i}^{\prime \prime}}{\partial v_{i, k, 2}}=j d_{k}^{*}
$$

Substituting Eqns. C1.14 and C1.15 in Eqn. C1.3 and simplifying

$$
\frac{\partial C_{i}^{\prime \prime}}{\partial V_{i}}=0
$$

Now consider the term

$$
\begin{align*}
C_{i}^{\prime \prime \prime} & =V_{i} S_{h}^{T} \bar{S}_{h} \phi_{h-i}^{T} V_{i}^{*} \\
& =V_{i} Q V_{i}^{*}
\end{align*}
$$

where

$$
Q=\phi_{h-i} S_{h}^{T} S_{h} \phi_{h-i}^{T}
$$

is a $(2 g+1) \times(2 g+1)$ matrix.

For the sake of simplicity, let us assume that V_{i} is a two component row vector given by

$$
V_{i}=\left[\left(v_{i, 0,1}+j v_{i, 0,2}\right) \quad\left(v_{i, 1,1}+j v_{i, 1,2}\right)\right]
$$

and Q is a 2×2 matrix given by

$$
Q=\left[\begin{array}{ll}
q_{11} & q_{12} \\
q_{21} & q_{22}
\end{array}\right]
$$

By definition (Eqn. C1.3)

$$
\frac{\partial C_{i}^{\prime \prime \prime}}{\partial V_{i}}=\left[\left(\frac{\partial C_{i}^{\prime \prime \prime}}{\partial v_{i, 0,1}}+j \frac{\partial C_{i}^{\prime \prime \prime}}{\partial v_{i, 0,2}}\right) \quad\left(\frac{\partial C_{i}^{\prime \prime \prime}}{\partial v_{i, 1,1}}+j \frac{\partial C_{i}^{\prime \prime \prime}}{\partial v_{i, 1,2}}\right)\right]
$$

Expanding Eqn. C1.18, using Eqns. C1.20 and C1.21

$$
\begin{align*}
C_{i}^{\prime \prime \prime} & =\left(v_{i, 0,1}^{2}+v_{i, 0,2}^{2}\right) q_{11}+\left(v_{i, 1,1}+j v_{i, 1,2}\right) q_{21}\left(v_{i, 0,1}-j v_{i, 0,2}\right)+ \\
& +\left(v_{i, 0,1}+j v_{i, 0,2}\right) q_{12}\left(v_{i, 1,1}-j v_{i, 1,2}\right)+\left(v_{i, 1,1}^{2}+v_{i, 1,2}^{2}\right) q_{22}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\frac{\partial C_{i}^{\prime \prime \prime}}{\partial v_{i, 0,1}}= & 2 v_{i, 0,1} q_{11} \\
+ & \left(v_{i, 1,1}+j v_{i, 1,2}\right) q_{21} \\
& +\left(v_{i, 1,1}-j v_{i, 1,2}\right) q_{12} \\
\frac{\partial C_{i}^{\prime \prime \prime}}{\partial v_{i, 0,2}}= & 2 v_{i, 0,2} q_{11}-j\left(v_{i, 1,1}+j v_{i, 1,2}\right) q_{21} \\
& +j\left(v_{i, 1,1}-j v_{i, 1,2}\right) q_{12} \\
\frac{\partial C_{i}^{\prime \prime \prime}}{\partial v_{i, 1,1}}= & \left(v_{i, 0,1}-j v_{i, 0,2}\right) q_{21}+\left(v_{i, 0,1}+j v_{i, 0,2}\right) q_{12} \\
& +2 v_{i, 1,1} q_{22} \\
\frac{\partial C_{i}^{\prime \prime \prime}}{\partial v_{i, 1,2}}= & j\left(v_{i, 0,1}-j v_{i, 0,2}\right) q_{21}-j\left(v_{i, 0,1}+j v_{i, 0,2}\right) q_{12} \\
& +2 v_{i, 1,2} q_{22}
\end{align*}
$$

From Eqns. C1.24 and C1.25

$$
\begin{align*}
\left(\frac{\partial C_{i}^{\prime \prime \prime}}{\partial v_{i, 0,1}}+j \frac{\partial C_{i}^{\prime \prime \prime}}{\partial v_{i, 0,2}}\right) & =2\left(v_{i, 0,1}+j v_{i, 0,2}\right) q_{11} \\
& +2\left(v_{i, 1,1}+j v_{i, 1,2}\right) q_{21}
\end{align*}
$$

and from Eqn. C1.26 and C1.27

$$
\begin{align*}
\left(\frac{\partial C_{i}^{\prime \prime \prime}}{\partial v_{i, 1,1}}+j \frac{\partial C_{i}^{\prime \prime \prime}}{\partial v_{i, 1,2}}\right) & =2\left(v_{i, 0,1}+j v_{i, 0,2}\right) q_{12} \\
& +2\left(v_{i, 1,1}+j v_{i, 1,2}\right) q_{22}
\end{align*}
$$

Therefore, from Eqns. C1.19, C1.21, C1.22, C1.28 and C1.29

$$
\begin{align*}
\frac{\partial C_{i}^{\prime \prime \prime}}{\partial V_{i}} & =2 V_{i} Q \\
& =2 V_{i} \phi_{h-i} S_{h}^{T} S_{h} \phi_{h-i}^{T}
\end{align*}
$$

Also

$$
\frac{\partial\left(r_{h} r_{h}^{*}\right)}{\partial V_{i}}=0
$$

Thus from Eqns. C1.5, C1.11, C1.16, C1.30 and C1.31

$$
\frac{\partial C_{i}}{\partial V_{i}}=\sum_{h=0}^{i} \omega^{i-h}\left(-2 r_{h} \bar{S}_{h} \phi_{h-i}^{T}+2 V_{i} \phi_{h-i} S_{h}^{T} \bar{S}_{h} \phi_{h-i}^{T}\right)
$$

as is given in Eqn. 5.3.15.

APPENDIX D

MATRIX INVERSE IDENTITY

From Eqn. 5.3.36

$$
R_{i}=\omega R_{i, i-1}+S_{i}^{T} \bar{S}_{i}
$$

and from Eqn. 5.3.29

$$
P_{i}=R_{i}^{-1}
$$

In order to obtain the updated estimate of V_{i} from the one-step prediction $\mathrm{V}_{\mathrm{i},-1}$, it is necessary to evaluate P_{i} (see Section 5.3).
R_{i} is assumed non-singular, so that premultiplying Eqn. D1.1 by R_{i}^{-1},

$$
R_{i}^{-1} R_{i}=I=\omega R_{i}^{-1} R_{i, i-1}+R_{i}^{-1} S_{i}^{T} S_{i}
$$

Postmultiplying Eqn. D1.3 by $R_{i, i-1}^{-1}$,

$$
R_{i, i-1}^{-1}=\omega R_{i}^{-1}+R_{i}^{-1} S_{i}^{T} \bar{S}_{i} R_{i, i-1}^{-1}
$$

or

$$
R_{i}^{-1} S_{i}^{T} S_{i} R_{i, i-1}^{-1}=R_{i, i-1}^{-1}-\omega R_{i}^{-1}
$$

Postmultiplying Eqn. D1.4 by s_{i}^{T}

$$
\begin{align*}
R_{i, i-1}^{-1} S_{i}^{T} & =\omega R_{i}^{-1} S_{i}^{T}+R_{i}^{-1} S_{i}^{T} \bar{S}_{i} R_{i, i-1}^{-1} S_{i}^{T} \\
& =\omega R_{i}^{-1} S_{i}^{T}\left(I+\omega^{-1} \bar{S}_{i} R_{i, i-1}^{-1} S_{i}^{T}\right)
\end{align*}
$$

The matrix $\left(I+\omega^{-1} \bar{S}_{i} R_{i, i-1}^{-1} S_{i}^{T}\right)$ is also assumed non-singular, hence postmultiplying Eqn. D1.7 by the inverse of the matrix, and simplfying,

$$
\omega R_{i}^{-1} S_{i}^{T}=R_{i, i-1}^{-1} S_{i}^{T}\left(I+\omega^{-1} \bar{S}_{i} R_{i, i-1}^{-1} S_{i}^{T}\right)^{-1}
$$

Postmultiplying Eqn. D1.8 by $\bar{S}_{i} \omega^{-1} R_{i, i-1}^{-1}$,

$$
R_{i}^{-1} S_{i}^{T} \bar{S}_{i} R_{i, i-1}^{-1}=R_{i, i-1}^{-1} S_{i}^{T}\left(I+\omega^{-1} \bar{S}_{i} R_{i, i-1}^{-1} S_{i}^{T}\right)^{-1} \bar{S}_{i} \omega^{-1} R_{i, i-1}^{-1}
$$

Combining Eqns. D1.5 and D1.9

$$
R_{i, i-1}^{-1}-\omega R_{i}^{-1}=R_{i, i-1}^{-1} S_{i}^{T}\left(I+\omega^{-1} \bar{S}_{i} R_{i, i-1}^{-1} S_{i}^{T}\right)^{-1} \bar{S}_{i} \omega^{-1} R_{i, i-1}^{-1}
$$

or

$$
R_{i}^{-1}=\omega^{-1} R_{i, i-1}^{-1}-\omega^{-1} R_{i, i-1}^{-1} S_{i}^{T}\left(I+\omega^{-1} \bar{S}_{i} R_{i, i-1}^{-1} S_{i}^{T}\right)^{-1} \bar{S}_{i} \omega^{-1} R_{i, i-1}^{-1}
$$

or

$$
R_{i}^{-1}=\frac{1}{\omega}\left[R_{i, i-1}^{-1}-\frac{R_{i, i-1}^{-1} S_{i}^{T} \bar{S}_{i} R_{i, i-1}^{-1}}{\omega+\bar{S}_{i} R_{i, i-1}^{-1} S_{i}^{T}}\right]
$$

Eqn. D1.12 is also referred to as the matrix inverse lemma. This completes the derivation of Eqn. 5.3.37 from Eqn. 5.3.36.

APPENDIX E

GRAM SCHMIDT ORTHONORMALIZATION PROCESS

The three orthonormal (g+1)- component basis vectors A, B and C, in Chapter 7, are not likely to lie exactly in the three-dimensional subspace containing Y_{i}, as the subspace itself is unlikely to be stationary owing to the time varying nature of the HF channel. For satisfactory operation of the estimator, the subspace spanned by A_{i}, B_{i} and C_{i} must be adjusted adaptively to track the received signal in such a way that the new subspace spanned by the new vectors $A_{i+1}^{\prime}, B_{i+1}^{\prime}$ and C_{i+1}^{\prime} is closer to Y_{i}. These three vectors will not exactly be orthonormal and so they are orthonormalized using the Gram-Schmidt orthonormalization process [33, 35-36, 120], as follows.

First the receiver sets

$$
A_{i+1}=\mid A_{i+1}^{\prime} \Gamma^{-1} A_{i+1}^{\prime}
$$

so that

$$
\left|A_{i+1}\right|=1
$$

and then

$$
B_{i+1}^{\prime \prime}=B_{i+1}^{\prime}-B_{i+1}^{\prime} A_{i+1}^{*} A_{i+1}
$$

and

$$
B_{i+1}=\left|B_{i+1}^{\prime \prime}\right|^{1} B_{i+1}^{\prime \prime}
$$

so that

$$
\begin{aligned}
& \left|B_{i+1}\right|=1 \\
& B_{i+1} A_{i+1}^{*}=A_{i+1} B_{i+1}^{*}=0
\end{aligned}
$$

and finally

$$
C_{i+1}^{\prime \prime}=C_{i+1}^{\prime}-C_{i+1}^{\prime} B_{i+1}^{*} B_{i+1}-C_{i+1}^{\prime} A_{i+1}^{*} A_{i+1}
$$

and

$$
C_{i+1}=\left|C_{i+1}^{\prime \prime}\right|^{-1} C_{i+1}^{\prime \prime}
$$

so that

$$
\begin{aligned}
& \left|C_{i+1}\right|=1 \\
& C_{i+1} A_{i+1}^{*}=C_{i+1} B_{i+1}^{*}=A_{i+1} C_{i+1}^{*}=B_{i+1} C_{i+1}^{*}=0
\end{aligned}
$$

A_{i+1}, B_{i+1} and C_{i+1} now form the new three orthonormal ($\mathrm{g}+1$)- component basis vectors containing Y_{i+1}.

APPENDIX F1

GENERATION OF THE SAMPLED IMPULSE-RESPONSE OF A 3 SKY WAVE HF CHANNEL

```
PROGRAM HFSIR
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
REAL CF(5),Q(6,-1:3000)
REAL TXR(16),TXI (16),TXDR(16),TXDI (16)
REAL TXDDR(16),TXDDI(16)
REAL RXR(30),RXI (30),WSR(30),WSI (30)
REAL QR (30,30),QI (30,30)
REAL YR(30),YI(30)
REAL QQ (6),EQ(6),VQ (6),FMEAN (6),FVAR (6)
REAL VALI(6),VALO(7)
```

```
DATA CF /-1.80322972300000,0.81520668040000,-1.85218288200000,
0.86788454580000,-0.89481307290000/
DCG=19378
DCG=1.0/DCG
STDVN1=SQRT (1.0)
NOSAM=2600
INFD=500
OPEN (25,FILE='IMP200',FORM='UNFORMATTED')
OPEN (12,FILE='OUTPUT')
C INITIALISING
TAP1=0.0
TAP2=0.0
TAP3=0.0
TAP4=0.0
TAP5=0.0
ISEQ=50+NOSAM
ISEQ1=ISEQ+1
CALL G05CBF (INED)
C GENERATION OF Q (T)
DO 1000 I=1,6
IND=-1
TF=0.0
TVF=0.0
TFG=0.0
TVFG=0.0
DO 1500 J=1,ISEQ1
F0=G05DDF(0.0,STDVN1)
F1=F0-(TAP1*CF(1)+TAP2*CF (2))
F2=F1-(TAP3*CF (3) +TAP4*CF (4))
F3=F2-(TAP5*CF (5))
```

```
    FDCG=F3*DCG
    TAP5=F3
    TAP4=TAP3
    TAP3=F2
    TAP2=TAP1
    TAP1=F1
    IF(J.LE.49) GO TO 1500
    (I,IND)=FDCG
    IND=IND+1
    TF=TF+F3
    TVF=TVF+(F3**2)
    TFG=TFG+FDCG
    TVFG=TVFG+(FDCG**2)
EF=TF/(NOSAM+1)
VARF=TVF/(NOSAM+1)
EFG=TFG/(NOSAM+1)
VARFG=TVFG/ (NOSAM+1)
WRITE (12,1600)EF,VARF
WRITE (12,1700) EFG,VARFG
FORMAT('MEAN OF F3 =',1X,F10.5,2X,'VAR OF F3 =',1X,F10.5)
FORMAT('MEAN OF FDCG =',1X,F10.5,2X,'VAR OF FDCG='1X,F10.5)
CONTINUE
C
TRANSMITTER FILTER 3 ms DELAY
```


RECEIVER FILTER

```
    DATA RXR / -1.9417691,-15.9797864,-35.1417733,-34.4788717,
        -11.2301982, 7.8155160, 7.5124057, -0.5057505,
        -3.3707125, -0.6759166, 1.0482656, 0.3621876,
        -0.3105902, 0.0438410, 0.0738947, -0.0646936,
        0.0000000, 0.0000000, 0.0000000, 0.0000000,
        0.0000000, 0.0000000, 0.0000000, 0.0000000,
        0.0000000, 0.0000000, 0.0000000, 0.0000000,
        0.0000000, 0.0000000/
    DATA RXI / 1.3625952, 11.5941040, 27.3342937, 28.0870086,
        7.2714615, -9.2602472, -5.0954462, 3.2326498,
        1.8975352, -1.2813604, -0.4830313, 0.7614804,
        0.1979014, -0.1532672, 0.0940330, -0.0312132,
        0.0000000, 0.0000000, 0.0000000, 0.0000000,
        0.0000000, 0.0000000, 0.0000000, 0.0000000,
        0.0000000, 0.0000000, 0.0000000, 0.0000000,
        0.0000000, 0.0000000 /
    MLOOP=2500
    ISTEP=48
    STEP=1.0/ISTEP
    DEL1=1.1
    DEL2=3.0
    SAPRAT=2.4
    SFACT=1.0/(2.0*SAPRAT*1000)
    IDELI=INT (SAPRAT*2*DEL1)
    IDEL2=INT(SAPRAT*2*DEL2)
    KMPL=16
    KMP=IDEL2+KMPI
    KMP 1=KMP-1
    ICOUNT=0
    JCOUNT=0
    POS=-1.0
    DO 3010 I=1,KMP
    DO 3005 J=1,KMP
    QR (I,J) =0.0
    QI (I,J)=0.0
3005 CONTINUE
3010 CONTINUE
    DO 3020 I=1,6
    EQ(I)=0.0
    VQ(I)=0.0
CONTINUE
KVL=3
C ENTERING MAIN LOOP
DO 9000 KMAIN=1,MLOOP
\(\mathrm{COM}=0.0\)
C ENTERING SECONDARY LOOP DO 8000 KSEC=1,ISTEP
IFAIL=1
C
NON-LINEAR INTERPOLATION
```

```
DO 3100 I=1,6
```

DO 3100 I=1,6
VALI (1) =Q (I, KMAIN-2)
VALI (1) =Q (I, KMAIN-2)
VALI (2) =Q (I, KMAIN-1)
VALI (2) =Q (I, KMAIN-1)
VALI (3) =Q (I, KMAIN)
VALI (3) =Q (I, KMAIN)
VALI (4)=Q(I,KMAIN+1)
VALI (4)=Q(I,KMAIN+1)
VALI (5) =Q (I,KMAIN+2)
VALI (5) =Q (I,KMAIN+2)
VALI(6)=Q(I,KMAIN+3)
VALI(6)=Q(I,KMAIN+3)
CALL E01ABF (KVL, COM, VALI, VALO, KVL*2, KVL* $2+1$, IFAIL)

```
```

QQ (I) =VALO (KVL*2+1)

```
CONTINUE
COM=COM + STEP
ICOUNT=ICOUNT+1
COUNT=REAL (ICOUNT)
DO \(3120 \mathrm{I}=1,6\)
\(E Q(I)=E Q(I)+Q Q(I)\)
\(V Q(I)=V Q(I)+(Q Q(I) * * 2)\)
\(Q Q(2)=-Q Q(2)\)
\(Q Q(4)=-Q Q(4)\)
\(Q Q(6)=-Q Q(6)\)
SHIFTING ARRAYS FOR CONVOLUTION
DO 3140 I=1, KMP
DO \(3140 \mathrm{~J}=1, \mathrm{KMP} 1\)
\(Q R(I, K M P+1-J)=Q R(I, K M P-J)\)
QI ( \(I, K M P+1-J)=Q I(I, K M P-J)\)
CONTINUE
DO \(3160 \mathrm{I}=1\), KMP
\(\mathrm{QR}(\mathrm{I}, 1)=0.0\)
\(Q I(I, I)=0.0\)
CONTINUE
C CONVOLUTION (TO OBTAIN IMPULSE-RESPONSE OF CHANNEL), BEGINS
DO \(3180 \mathrm{I}=1\), KMPL
\(\operatorname{QR}(1,1)=T X R(I) * Q Q(1)-T X I(I) * Q Q(2)\)
\(Q I(I, 1)=T X R(I) * Q Q(2)+T X I(I) * Q Q(1)\)
CONTINUE
DO \(3200 \mathrm{I}=1, \mathrm{KMPL}\)
\(Q R(I+I D E L 1,1)=Q R(I+I D E L 1,1)+T X D R(I) * Q Q(3)-T X D I(I) * Q Q(4)\)
\(Q I(I+I D E L 1,1)=Q I(I+I D E L 1,1)+T X D R(I) * Q Q(4)+T X D I(I) * Q Q(3)\)
CONTINUE
DO 3220 I=1, KMPL
\(Q R(I+I D E L 2,1)=Q R(I+I D E L 2,1)+T X D D R(I) * Q Q(5)-T X D D I(I) * Q Q(6)\)
\(Q I(I+I D E L 2,1)=Q I(I+\operatorname{IDEL} 2,1)+\operatorname{TXDDR}(I) * Q Q(6)+\operatorname{TXDDI}(I) * Q Q(5)\)
CONTINUE
POS=-POS
IF (POS.LT.0.0) GO TO 8000
\(I O=0\)
JCOUNT=JCOUNT+1
DCOUNT=REAL (JCOUNT)
DO \(3250 \mathrm{I}=1\), \(\mathrm{KMP}, 2\)
IO \(=10+1\)
\(Y R(I O)=0.0\)
\(Y I(I O)=0.0\)
    DO \(3240 \mathrm{~J}=1\), I
    \(\mathrm{YR}(I O)=Y R(I O)+Q R(J, I+1-J) * R X R(I+1-J)-Q I(J, I+1-J) * R X I(I+1-J)\)
    \(Y I(I O)=Y I(I O)+Q I(J, I+1-J) * R X R(I+1-J)+Q R(J, I+1-J) * R X I(I+1-J)\)
    CONTINUE
    \(Y R(I O)=Y R(I O) * S F A C T\)
    \(Y I(I O)=Y I(I O) * S F A C T\)
    CONTINUE
    IF (MOD (KMP, 2) .EQ.0) THEN
GO TO 3260
ELSE
GO TO 3400
END IF
        FMEAN (I) =EQ (I)/COUNT
        FVAR (I)=VQ (I)/COUNT
        CONTINUE
        WRITE (25)(YR(J),J=1,30)
        WRITE(25)(YI (J),J=1,30)
8000 CONTINUE
9000 CONTINUE
C PRINTING RESULTS
        WRITE (12,9210)
9210 FORMAT('MEAN VALUES OF THE QQ-SIGNALS')
        WRITE (12, 9230) (FMEAN (I), I=1,6)
        WRITE (12,9220)
9220 FORMAT(/'VARIANCES OF THE QQ-SIGNALS')
        WRITE (12, 9230) (FVAR (I), I=1,6)
        FORMAT(E20.10)
    PRINT *,'COUNT=',COUNT
    PRINT *,'REAL PART OF IMPULSE RESPONSE'
    WRITE (12,9240) (YR(I), I=1,30)
    PRINT *,'IMAGINARY PART OF IMPULSE RESPONSE'
    WRITE (12,9240)(YI (I), I=1,30)
    FORMAT (5F10.5)
    STOP
    END
```


APPENDIX F2

COMPUTER-SIMULATION PROGRAM FOR SYSTEM 5.1

```
    PROGRAM SYS51
    IMPLICIT DOUBLE PRECISION (A-H, O-Z)
    PARAMETER (N=64,NN=32)
    REAL YR(NN),YI (NN)
    REAL SR(NN),SI(NN),PHI (N,N)
    REAL VR(N),VI(N),S1R(N),SII(N)
    REAL V1R(N/2),V1I (N/2)
    REAL PR(N,N),PI(N,N),PYR(N),PYI(N)
    REAL FPR(N,N),FPI(N,N)
    REAL YPR(N),YPI (N),GKR(N),GKI(N)
    REAL WDR(NN),WDI (NN),WFR(NN),WFI (NN)
    REAL OMEGA
    OPEN (10,FILE='CYB500',FORM='UNFORMATTED')
    OPEN (30,FILE='OUTPUT',FORM='FORMATTED')
    SNR=60.0
    OMEGA=0.88
    ERRTOT=0.0
    ERRNOM=0.0
LCOUNT=0
IQ=200
CALL G05CBF(IQ)
C INITIALISATION OF Y1 & P MATRIX
DO 1000 J=1,N
S1R(J)=0.0
SII(J)=0.0
VR(J)=0.0
VI (J) =0.0
DO 1000 I=1,N
PR(I,J)=0.0
PI(I,J)=0.0
PHI (I,J) =0.0
CONTINUE
DO 1020 I=1,N
PR(I,I)=1.0
PHI (I,I) =1.0
CONTINUE
DO 1040 J=1,NN
PHI((J+NN),J)=1.0
CONTINUE
C INITIALISATION OF W,NOISE AND DATA MATRIX
DO 1060 J=1,NN
SR(J)=1.0
SI (J)=1.0
WDR(J)=0.0
WDI(J)=0.0
CONTINUE
C VALUES TO VARIABLES AND ARRAYS
DATA WFR/-0.0280463, -0.2308071, -0.5075768, -0.4980021,
```

 1 0.0000000, 0.0000000, 0.0000000, 0.0000000,
 1
 DATA WFI/ 0.0196809, 0.1674616, 0.3948080, 0.4056800,
 0.1050267, -0.1337521, -0.0735970, 0.0466914,
 0.0274074, -0.0185076, -0.0069768, 0.0109986,
 0.0028584, -0.0022137, 0.0013582, -0.0004508,
 0.0000000, 0.0000000, 0.0000000, 0.0000000,'
 0.0000000, 0.0000000, 0.0000000, 0.0000000,
 0.0000000, 0.0000000, 0.0000000, 0.0000000',
 0.0000000, 0.0000000, 0.0000000, 0.0000000/
 STDVN=10.0**(-SNR/10.0)
 STDVN=SQRT (STDVN)
 DO 9000 ICOUNT=1,60000
 READ (10) (YR(J),J=1,NN)
 READ (10) (YI(J),J=1,NN)
 IF(ICOUNT.EQ.1) THEN
 DO 2000 J=1,NN
 VR(J)=YR(J)
 VI(J)=YI (J)
 CONTINUE
ENDIF
C SHIFTING OF ARRAYS ONCE FOR EVERY DATA SYMBOL
DO 2020 J=(NN-1),1,-1
K=J+1
SR(K)=SR(J)
SI (K)=SI (J)
2020 CONTINUE
C GENERATING QPSK DATA
XX=G05CAF (XX)
IF (XX-0.5)2100,2100,2120
2100 SR(1)=-1.0
GO TO 2150
2120 SR(1)=1.0
2150 XX=G05CAF (XX)
IF (XX-0.5)2170,2170,2190
2170 SI(1)=-1.0
GO TO 2200
2190 SI(1)=1.0
2200 CONTINUE
C GENERATING NOISE
DO 2250 LNSE=1,2
DO 2220 J=1,NN
K=J+1
WDR (J) = WDR (K)
WDI (J) =WDI (K)
CONTINUE
WDR (NN)=G05DDF (0.0,STDVN)
WDI (NN) =G05DDF (0.0,STDVN)
WNR=0.0
WNI=0.0
DO 2240 J=1,NN
K1=NN+1-J
WNR=WNR+WDR(K1)*WFR(J) -WDI (K1) *WFI (J)
WNI=WNI+WDR (K1) *WFI (J) +WDI (K1) *WFR (J)
CONTINUE

```
ENDIF
C ESTIMATING RECEIVED SIGNAL
\(\mathrm{R} 1 \mathrm{R}=0.0\)
R1I \(=0.0\)
DO \(3060 \mathrm{~J}=1\), NN
\(R 1 R=R 1 R+(S 1 R(J) * V R(J)-S 1 I(J) * V I(J))\)R1I=R1I+(S1R(J)*VI(J) +S1I(J)*VR(J))CONTINUE
C ERROR IN ESTIMATION OF RECEIVED SIGNAL RECER=RR-R1R

            RECEI=RI-R1I
C COMPUTING PHI*P*PHI MATRIX
```

DO 3080 I=1,NN
DO 3080 J=1,N
FPR(I,J)=PR(I,J)+PR((I+NN),J)
FPI(I,J)=PI(I,J)+PI((I+NN),J)

```
CONTINUE

C COMPUTING KALMAN GAIN VECTOR
```

DO 3180 I=1,N
SPMR=0.0
SPMI=0.0
DO 3160 J=1,N
SPMR=SPMR+(S1R(J)*PR(J,I) +SII (J)*PI (J,I))
SPMI=SPMI+(S1R(J)*PI(J,I)-S1I(J)*PR(J,I))
CONTINUE
PYR(I)=SPMR
PYI(I)=SPMI
CONTINUE

```
YPYR=0.0
YPYI=0.0
DO \(3200 \mathrm{~J}=1, \mathrm{~N}\)
\(Y P Y R=Y P Y R+(P Y R(J) * S 1 R(J)-P Y I(J) * S 1 I(J))\)
YPYI=YPYI+(PYI (J) *S1R(J) +PYR(J)*S1I (J))
CONTINUE
\(Y P W R=Y P Y R+O M E G A\)
YPWI=YPYI
YPM \(=Y P W R * Y P W R+Y P W I * Y P W I\)
DO 3220 J=1,N
\(\operatorname{GKR}(J)=(\operatorname{PYR}(J) * Y P W R+P Y I(J) * Y P W I) / Y P M\)
\(\operatorname{GKI}(J)=(P Y I(J) * Y P W R-P Y R(J) * Y P W I) / Y P M\)
CONTINUE

UPDATE INVERSE MATRIX
DO \(3260 \mathrm{~J}=1, \mathrm{~N}\)
SYPM=0.0
RYPM \(=0.0\)
DO \(3240 \mathrm{I}=1, \mathrm{~N}\)
\(\operatorname{SYPM}=\operatorname{SYPM}+(\operatorname{PR}(J, I) * S 1 R(I)-P I(J, I) * S 1 I(I)) \quad i, i\)
RYPM=RYPM+(PI(J,I)*S1R(I) +PR(J,I)*SII(I))
CONTINUE
YPR (J) = SYPM
YPI \((J)=\) RYPM
CONTINUE
```

 DO 3280 I=1,N
 DO 3280 J=1,N
 PR(I,J)=PR(I,J)-(YPR(I)*GKR(J) -YPI(I)*GKI(J))
 PI(I,J)=PI(I,J)-(YPR(I)*GKI (J) +YPI (I)*GKR(J))
 C UPDATING THE ESTIMATES OF THE CHANNEL
DO 4000 J=1,N
VR(J)=VR(J)+(GKR(J)*RECER-GKI (J)*RECEI)
VI(J)=VI (J) +(GKI (J)*RECER+GKR (J)*RECEI)
4 0 0 0 ~ C O N T I N U E ~
9000 CONTINUE
C PRINTING OUT RESULT
ERRTOT=10.0*LOG10 (ERRTOT/LCOUNT)
ERRNOM=10.0*LOG10(ERRNOM/LCOUNT)
PRINT *,'OMEGA=',OMEGA
PRINT *,'SNR=',SNR
PRINT *,'LCOUNT=',LCOUNT
PRINT *,'MEAN SQ ERROR=',ERRTOT
PRINT *,'NORM.MEAN SQ.ERROR=',ERRNOM
REWIND (10)
STOP
END

```

\section*{APPENDIX F3}

\section*{COMPUTER-SIMULATION PROGRAM SYSTEM 6.8}
```

PROGRAM SYS68
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
PARAMETER (IMPR=32)
DIMENSION YR(IMPR),YI(IMPR),Y1R(IMPR),YII(IMPR)
DIMENSION GRDR(IMPR),GRDI(IMPR),ERR(IMPR),ERI(IMPR)
DIMENSION UY1R(IMPR),UY1I(IMPR),SR(IMPR),SI(IMPR)
DIMENSION WDR(IMPR),WDI(IMPR),WFR(IMPR),WFI(IMPR)
DIMENSION B(IMPR),BB(IMPR)
OPEN (10,FILE='IMP500',FORM='UNFORMATTED')
OPEN (30,FILE='OUTPUT')
ERRTOT=0.0
ERRNOM=0.0
LCOUNT=0
IQ=200
CALL G05CBF(IQ)
DO 2000 J=1,IMPR
BB(J)=0.0
B(J)=0.0

DATA WFR /	$\begin{aligned} & -0.0280463, \\ & -0.1622055, \\ & -0.0486855, \\ & -0.0044861, \\ & 0.0000000, \\ & 0.0000000, \\ & 0.0000000, \\ & 0.0000000, \end{aligned}$	$\begin{array}{r} -0.2308071, \\ 0.1128849, \\ -0.0097627, \\ 0.0006332, \\ 0.0000000, \\ 0.0000000, \\ 0.0000000, \\ 0.0000000, \end{array}$	$\begin{array}{r} -0.5075768, \\ 0.1085069, \\ 0.0151408, \\ 0.0010673, \\ 0.0000000, \\ 0.0000000, \\ 0.0000000, \\ 0.0000000, \end{array}$	$\begin{array}{r} -0.4980021, \\ -0.0073049, \\ 0.0052313, \\ -0.0009344, \\ 0.0000000, \\ 0.0000000, \\ 0.0000000, \\ 0.0000000 \end{array}$
DATA WFI /	0.0196809 ,	0.1674616 ,	0.3948080 ,	0.4056800,
	0.1050267 ,	-0.1337521,	-0.0735970,	0.0466914,
	0.0274074 ,	-0.0185076,	-0.0069768,	0.0109986,
	0.0028584 ,	-0.0022137,	0.0013582,	-0.0004508,
	0.0000000 ,	0.0000000 ,	0.0000000 ,	0.0000000,
	0.0000000 ,	0.0000000 ,	0.0000000 ,	0.0000000 ,
	0.0000000 ,	0.0000000 ,	0.0000000 ,	0.0000000 ,
	0.0000000 ,	0.0000000 ,	0.0000000 ,	0.0000000

```
```

 SNR=60.0
 STDVN=10.0**(-SNR/10.0)
 STDVN=SQRT (STDVN)
 DO 9000 ICOUNT=1,60000
 READ (10) (YR (J), J=1, IMPR)
 READ (10) (YI (J),J=1,IMPR)
 SR(IMPR)=1.0
XX=G05CAF (XX)
IF (XX-0.5) 2120,2120,2140
2120 SI (IMPR)=-1.0
GO TO 2150
2140 SI (IMPR)=1.0
2150 CONTINUE
C GENERATING NOISE
DO 2040 J=1,(IMPR-1)
L=J+1
SR(J)=SR(L)
SI(J)=SI (L)
CONTINUE
GENERATING QPSK DATA
XX=G0 5CAF (XX)
IF(XX-0.5) 2060,2060,2080
SR (IMPR)=-1.0
GO TO 2100
DO 2200 LNSE=1,2
DO 2170 J=1,(IMPR-1)
K=J+1
WDR (J) =WDR (K)
WDI (J) =WDI (K)
CONTINUE
WDR (IMPR)=G05DDF (0.0,STDVN)
WDI (IMPR) =G05DDF (0.0,STDVN)
WR=0.0
WI=0.0
DO 2190 J=1,IMPR
K1=IMPR+1-J
WR=WR+WDR(K1) *WFR(J) -WDI (K1) *WFI (J)
WI=WI+WDR (K1) *WFI (J) +WDI (K1) *WFR(J)
CONTINUE
CONTINUE
CALCULATION OF RECEIVED SIGNAL
RR=0.0
RI=0.0
DO 2220 J=1,IMPR
K1=IMPR+1-J
RR=RR+SR(K1)*YR(J)-SI(K1)*YI (J)
RI=RI+SR(K1)*YI (J) +SI (K1) *YR(J)
CONTINUE
RECEIVED SIGNAL WITH NOISE
RR=RR+WR
RI=RI+WI

```
```

 IF (ICOUNT.LE.2000) THEN
 GOTO 9000
 ENDIF
 DO 2240 J=1,IMPR
 YVAR=Y1R(J) *Y1R(J)+Y1I(J)*Y1I(J)
 C BB(J)=(1.0-(1.0/ICOUNT))*BB(J)+(1.0/ICOUNT)*YVAR
 BB}(J)=(1.0-ALFA)*BB(J)+ALFA*YVAR
 CONTINUE
 DO 2240 J=1,IMPR
 B(J)=BB(J)**0.25
 IF(B(J).LT.0.024) THEN
 B(J)=0.000001
 ENDIF
 CONTINUE
 YTOT=0.0
 YERR=0.0
 DO 2260 J=1,IMPR
 YTOT=YTOT+YR(J)**2+YI(J)**2
 YERR=YERR+(YR(J) -Y1R(J))**2+(YI (J) -Y1I (J))**2
 CONTINUE
IF(ICOUNT.GT.6000) THEN
ERRTOT=ERRTOT+YERR
ERRNOM=ERRNOM+YERR/YTOT
LCOUNT=LCOUNT+1
C IF (MOD (LCOUNT, 20).EQ.0) THEN
C PRINT *,10.0*LOG10 (YERR)
C ENDIF
ENDIF
C
C ERROR IN ESTIMATION OF RECEIVED SIGNAL
RECER=RR-R1R
RECEI=RI-R1I
C UPDATING CHANNEL USING FEEDFORWARD ESTIMATOR
DO 2300 J=1,IMPR
K1=IMPR+1-J
UY1R(J)=Y1R(J) +B(J)*(RECER*SR(KI)+RECEI*SI(KI))
UY1I (J) =Y1I (J) +B(J)* (RECEI*SR(K1)-RECER*SI (K1))
CONTINUE
C ERROR IN UPDATING
DO 2320 J=1,IMPR
ERR(J)=UY1R(J)-Y1R(J)
ERI (J)=UY1I (J)-Y1I (J)
CONTINUE
C
PREDICTION USING LS GRADIENT ALGORITHM

```
```

 DO 2340 J=1,IMPR
 GRDR(J)=GRDR(J) + (DUM1 *ERR (J))
 GRDI (J) =GRDI (J) + (DUM1*ERI (J)
 Y1R(J)=Y1R(J) +GRDR(J) + (DUM2 *ERR (J))
 Y1I (J)=Y1I (J) +GRDI (J) +(DUM2*ERI (J))
 CONTINUE
 CONTINUE
 C PRINTING OUT RESULT
ERRTOT=10.0*(LOG10(ERRTOT/LCOUNT))
ERRNOM=10.0*(LOG10(ERRNOM/LCOUNT))
PRINT *,'THETA=',THETA
PRINT *,'SNR=',SNR
PRINT *,'LCOUNT=',LCOUNT
PRINT *,'MEAN SQ ERROR=',ERRTOT
PRINT *,'NOM.MEAN SQ.ERR.=',ERRNOM
REWIND (10)
STOP
END

```

\section*{APPENDIX F4}

\title{
COMPUTER-SIMULATION PROGRAM FOR SYSTEM 7.5
}
```

 PROGRAM SYS75
 IMPLICIT DOUBLE PRECISION (A-H, O-Z)
 PARAMETER(IMPR=32)
 REAL YR(IMPR),YI(IMPR)
 REAL SR(IMPR),SI(IMPR)
 REAL WDR(IMPR),WDI(IMPR),WFR(IMPR),WFI(IMPR)
 REAL Y02R(IMPR),Y02I(IMPR),Y01R(IMPR),Y01I(IMPR)
 REAL YOR(IMPR),YOI(IMPR)
 REAL AR (IMPR),AI (IMPR),BR(IMPR),BI (IMPR)
 REAL CR(IMPR),CI(IMPR),FR(IMPR),FI(IMPR)
 REAL ERRR(IMPR),ERRI(IMPR)
 REAL B(IMPR),BB(IMPR),Y2R(IMPR),Y2I(IMPR)
 REAL SLPR(IMPR),SLPI(IMPR),Y2ER(IMPR),Y2EI(IMPR)
 REAL VR(3),VI(3),S1R(3),S1I(3)
 REAL V1R(3),V1I(3),GR(IMPR),GI(IMPR)
 REAL Y1R(IMPR),Y1I(IMPR)
 REAL ERR(3),ERI (3),GRDR (3),GRDI (3)
 OPEN (10,FILE='IMP500',FORM='UNFORMATTED')
 OPEN (12,FILE='OUTPUT')
 SNR=30.0
 INFD=200
 CALL G05CBF(INFD)
 | DATA WFR / | $\begin{aligned} & -0.0280463, \\ & -0.1622055, \end{aligned}$ | -0.2308071, 0.1128849, | -0.5075768, 0.1085069, | $\begin{aligned} & -0.4980021, \\ & -0.0073049, \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| | -0.0486855, | -0.0097627, | 0.0151408 , | 0.0052313 , |
| | -0.0044861, | 0.0006332 , | 0.0010673 , | -0.0009344, |
| | 0.0000000 , | 0.0000000 , | 0.0000000 , | 0.0000000 , |
| | 0.0000000 , | 0.0000000 , | 0.0000000 , | 0.0000000 , |
| | 0.0000000 , | 0.0000000 , | 0.0000000 , | 0.0000000 , |
| | 0.0000000 , | 0.0000000 , | 0.0000000 , | $0.0000000 /$ |
| DATA WFI / | 0.0196809 , | 0.1674616 , | 0.3948080 , | 0.4056800 , |
| | 0.1050267 , | -0.1337521, | -0.0735970, | 0.0466914 , |
| | 0.0274074 , | -0.0185076, | -0.0069768, | 0.0109986 , |
| | 0.0028584 , | -0.0022137, | 0.0013582, | -0.0004508, |
| | 0.0000000 , | 0.0000000 , | 0.0000000 , | 0.0000000 , |
| | 0.0000000 , | 0.0000000 , | 0.0000000 , | 0.0000000 , |
| | 0.0000000 , | 0.0000000 , | 0.0000000 , | 0.0000000 , |
| | 0.0000000 | 0.0000000 , | 0.0000000 , | 0.0000000 |

C NOISE DATA MATRIX INITIALISATION
DO 1010 J=1,IMPR
WDR(J)=0.0
WDI (J) =0.0
CONTINUE
C SETTING SR \& SI MATRIX TO 1.0
DO 1020 J=1,IMPR
SR(J)=1.0
SI(J)=1.0
B (J)=0.0
BB}(J)=0.

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{} & \(\operatorname{SLPR}(J)=0.0\) \\
\hline & \(\operatorname{SLPI}(J)=0.0\) \\
\hline 1020 & CONTINUE \\
\hline \multirow[t]{8}{*}{C} & INITIALISING OF Y1 \& P MATRIX \\
\hline & DO \(1030 \mathrm{~J}=1,3\) \\
\hline & \(\operatorname{S1R}(\mathrm{J})=0.0\) \\
\hline & \(\operatorname{SII}(\mathrm{J})=0.0\) \\
\hline & \(\operatorname{VR}(J)=0.0\) \\
\hline & \(V I(J)=0.0\) \\
\hline & \(\operatorname{GRDR}(\mathrm{J})=0.0\) \\
\hline & \(\operatorname{GRDI}(\mathrm{J})=0.0\) \\
\hline 1030 & CONTINUE \\
\hline \multirow[t]{17}{*}{C} & DATA FOR IMPROVED CHANNEL ESTIMATOR \\
\hline & LCOUNT=0 \\
\hline & DLTA=1.0 \\
\hline & \(\mathrm{C}=0.115\) \\
\hline & THETA \(=0.935\) \\
\hline & ALFA \(=0.01\) \\
\hline & ETA=0.02 \\
\hline & EPSLON=0.976 \\
\hline & \(\operatorname{CosT}=0.064\) \\
\hline & THETA1 \(=(1.0-\) THETA \() *(1.0-\) THETA \()\) \\
\hline & THETA \(2=1.0-\) THETA*THETA \\
\hline & DUM1 \(=(1.0-E P S L O N) *(1.0-E P S L O N)\) \\
\hline & DUM2 \(=(1.0-E P S L O N * E P S L O N)\) \\
\hline & ERRSUM \(=0.0\) \\
\hline & SUMERR=0.0 \\
\hline & ERNOM \(=0.0\) \\
\hline & ERNON \(=0.0\) \\
\hline \multirow[t]{9}{*}{C} & ENTERING MAIN LOOP \\
\hline & DO 9000 JCOUNT \(=1,60000\) \\
\hline & READ (10) (YR (J) , J=1, IMPR) \\
\hline & \(\operatorname{READ}(10)(\mathrm{YI}(\mathrm{J}), \mathrm{J}=1, \mathrm{IMPR})\) \\
\hline & IF (JCOUNT.GE.5002) GO TO 4000 \\
\hline & IF (JCOUNT.EQ.5001) GO TO 1080 \\
\hline & IF (JCOUNT.EQ.3501) GO TO 1060 \\
\hline & IF (JCOUNT.EQ.2001) GO TO 1040 \\
\hline & GO TO 9000 \\
\hline \multirow[t]{6}{*}{C
1040} & StARTING UP PROCEDURE \\
\hline & DO \(1050 \mathrm{I}=1\), IMPR \\
\hline & \(\mathrm{Y} 02 \mathrm{R}(\mathrm{I})=\mathrm{YR}(\mathrm{I})\) \\
\hline & Y02I(I) = YI (I) \\
\hline & \(\operatorname{AR}(\mathrm{I})=\mathrm{YR}(\mathrm{I})\) \\
\hline & \(A I(I)=Y I(I)\) \\
\hline \multirow[t]{2}{*}{1050} & CONTINUE \\
\hline & GO TO 9000 \\
\hline \multirow[t]{5}{*}{1060} & DO 1070 I=1, IMPR \\
\hline & \(\mathrm{Y} 01 \mathrm{R}(\mathrm{I})=\mathrm{YR}(\mathrm{I})\) \\
\hline & Y01I(I) \(=\) YI (I) \\
\hline & \(B R(I)=Y R(I)\) \\
\hline & \(B I(I)=Y I(I)\) \\
\hline \multirow[t]{2}{*}{1070} & CONTINUE \\
\hline & GO TO 9000 \\
\hline \multirow[t]{7}{*}{1080} & DO \(1090 \mathrm{I}=1, \mathrm{IMPR}\) \\
\hline & \(\mathrm{YOR}(\mathrm{I})=\mathrm{YR}(\mathrm{I})\) \\
\hline & \(\mathrm{YOI}(\mathrm{I})=\mathrm{YI}(\mathrm{I})\) \\
\hline & \(C R(I)=Y R(I)\) \\
\hline & \(C I(I)=Y I(I)\) \\
\hline & Y2R(I) \(=\mathrm{YR}\) ( I ) \\
\hline & \(Y 2 I(I)=Y I(I)\) \\
\hline 1090 & CONTINUE \\
\hline
\end{tabular}
```

 Y02MAG=0.0
 Y01MAG=0.0
 YOMAG=0.0
 DO 2000 I=1,IMPR
 Y02MAG=Y02MAG+(Y02R(I)**2+Y02I(I)**2)
 Y01MAG=Y01MAG+(Y01R(I)**2+Y01I(I)**2)
 YOMAG=YOMAG+(YOR(I)**2+YOI(I)**2)
 CONTINUE
 Y02=SQRT(Y02MAG)
 Y01=SQRT (Y01MAG)
 Y0O=SQRT (YOMAG)
 WRITE (12, 2010)Y02,Y01,Y00
 $\mathrm{Y} 20 \mathrm{R}=0.0$
Y20I=0.0
Y10R=0.0
Y10I=0.0
Y21R=0.0
Y21I=0.0
DO 2020 I=1,IMPR
Y20R=Y20R+(Y02R(I)*Y0R(I) +Y02I(I)*Y0I(I))
Y20I=Y20I+(Y02I(I)*Y0R(I)-Y02R(I)*YOI(I))
Y10R=Y10R+(Y01R(I)*Y0R(I) +Y01I(I) *Y0I(I))
Y10I=Y10I+(Y01I(I)*Y0R(I)-Y01R(I) *Y0I(I))
Y21R=Y21R+(Y02R(I)*Y01R(I)+Y02I(I)*Y01I(I))
Y21I=Y21I+(Y02I(I)*Y01R(I)-Y02R(I)*Y01I(I))
CONTINUE
ANG20=((Y20R**2+Y20I**2)/(Y02MAG*YOMAG))**0.5
ANG10=((Y10R**2+Y10I**2)/(Y01MAG*Y0MAG))**0.5
ANG21=((Y21R**2+Y21I**2) /(Y02MAG*Y01MAG))**0.5
ANG20=(180.0*7.0*ACOS (ANG20))/22.0
ANG10 = (180.0*7.0*ACOS (ANG10))/22.0
ANG21=(180.0*7.0*ACOS (ANG21))/22.0
WRITE (12, 2040) ANG20, ANG10, ANG21
FORMAT(1H ,'ANGLE BETWEEN Y(-2T)\&Y(0) =',F10.4,' DEGREES',/,
1
1
CALL GRMSHM (IMPR,AR,AI,BR,BI,CR,CI)
YOCR=0.0
YOCI=0.0
YOBR=0.0
YOBI=0.0
YOAR=0.0
Y0AI=0.0
DO 1220 I=1,IMPR
Y0CR=Y0CR+Y0R(I)*CR(I) +Y0I (I)*CI (I)
YOCI=YOCI+YOI (I) *CR(I)-YOR(I) *CI (I)
Y0BR=Y0BR+Y0R(I)*BR(I) +Y0I (I)*BI (I)
YOBI=Y0BI+Y0I (I)*BR(I) -Y0R(I)*BI (I)
YOAR=Y0AR+Y0R(I)*AR(I) +Y0I (I)*AI (I)
YOAI=YOAI+YOI (I)*AR(I)-YOR(I)*AI(I)
CONTINUE
AFAR=Y0AR
AFAI=Y0AI
BTAR=YOBR
BTAI=Y0BI
GAMR=YOCR
GAMI=YOCI

```
```

 DO 1300 I=1,IMPR
 FR(I)=(AFAR*AR(I)-AFAI*AI(I))+(BTAR*BR(I) -BTAI*BI(I))
 1
 (I)
 1 CONTINUE
DO 1310 I=1,IMPR
$\operatorname{ERRR}(I)=Y 0 R(I)-F R(I)$
$\operatorname{ERRI}(I)=Y 0 I(I)-E I(I)$
CONTINUE
DO 1320 I=1, IMPR
$\operatorname{AR}(I)=\operatorname{AR}(I)+E T A *(A F A R \star E R R R(I)+A F A I * E R R I(I))$
$\mathrm{AI}(I)=A I(I)+E T A *(\operatorname{AFAR} * \operatorname{ERRI}(I)-A F A I * E R R R(I))$
$\operatorname{BR}(I)=\operatorname{BR}(I)+E T A *(B T A R * E R R R(I)+B T A I * E R R I(I))$
$B I(I)=B I(I)+E T A *(B T A R * E R R I(I)-B T A I * E R R R(I))$
$\operatorname{CR}(I)=\operatorname{CR}(I)+E T A *(G A M R * E R R R(I)+G A M I * E R R I(I))$
$C I(I)=C I(I)+E T A *(G A M R * E R R I(I)-G A M I * E R R R(I))$
CONTINUE
CALL GRMSHM (IMPR,AR,AI,BR,BI,CR,CI)
DO 1520 I=1,IMPR
$\mathrm{Y} 1 \mathrm{R}(\mathrm{I})=(\operatorname{AFAR} \star \mathrm{AR}(\mathrm{I})-\mathrm{AFAI} \star \mathrm{AI}(\mathrm{I}))+(\mathrm{BTAR} * \mathrm{BR}(\mathrm{I})-\mathrm{BTAI} * \mathrm{BI}(\mathrm{I}))$
Y1I (I) $=(A F A I * A R(I)+(G A M R * C R(I)-G A M I * C I(I))$
$Y 1 I(I)=(\operatorname{AFAI} \star \operatorname{AR}(I)+\operatorname{AFAR} \star A I(I))+(B T A I * B R(I)+B I A R \star B I(I))$
CONTINUE
$\mathrm{VR}(1)=\mathrm{AFAR}$
$\mathrm{VI}(1)=\mathrm{AFAI}$
$\mathrm{VR}(2)=\mathrm{BTAR}$
$\mathrm{VI}(2)=\mathrm{BTAI}$
VR (3) =GAMR
VI (3) =GAMI
GO TO 9000
C IMPROVED CHANNEL ESTIMATOR
CONTINUE
SQE1=0.0
SQE2=0.0
YTOT=0.0
DO 4500 I=1,IMPR
YTOT=YTOT+YR (I) **2+YI (I) **2
$\operatorname{SQE} 1=\operatorname{SQE} 1+(\mathrm{YR}(\mathrm{I})-\mathrm{Y} 1 \mathrm{R}(\mathrm{I})) * * 2+(\mathrm{YI}(\mathrm{I})-\mathrm{Y} 1 \mathrm{I}(\mathrm{I})) * * 2$
$\operatorname{SQE} 2=\operatorname{SQE} 2+(\mathrm{YR}(\mathrm{I})-Y 2 R(I)) * * 2+(Y I(I)-Y 2 I(I)) * * 2$
CONTINUE
IF (JCOUNT.GT.6000) THEN
ERRSUM=ERRSUM+SQE1
SUMERR=SUMERR+SQE2
ERNOM=ERNOM+SQE1/YTOT
ERNON=ERNON+SQE2/YTOT
LCOUNT $=$ LCOUNT +1
ENDIF
DO 4510 JK=1,IMPR
$Y V A R=Y 2 R(J K) * * 2+Y 2 I(J K) * * 2$
$\mathrm{BB}(\mathrm{JK})=(1.0-\mathrm{ALFA}) * \mathrm{BB}(\mathrm{JK})+\mathrm{ALFA} * \mathrm{YVAR}$
CONTINUE

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{} & DO 4520 JK=1, IMPR \\
\hline & \(\mathrm{B}(\mathrm{JK})=\mathrm{BB}(\mathrm{JK}) * * 0.25\) \\
\hline & IF (B (JK).LT.COST) THEN \\
\hline & \(B(J K)=0.000001\) \\
\hline & ENDIF \\
\hline 4520 & CONTINUE \\
\hline \multirow[t]{5}{*}{C} & SHIFTING OF DATA MATRIX \\
\hline & DO \(4530 \mathrm{I}=\mathrm{IMPR}, 2,-1\) \\
\hline & \(\mathrm{J}=\mathrm{I}-1\) \\
\hline & SR (I) \(=\) SR ( \(J\) ) \\
\hline & \(S I(I)=S I(J)\) \\
\hline 4530 & CONTINUE \\
\hline \multirow[t]{3}{*}{C} & GENERATING DATA \\
\hline & XX=G05CAF (XX) \\
\hline & IF (XX-0.5) 4540, 4540,4550 \\
\hline \multirow[t]{2}{*}{4540} & \(\mathrm{SR}(1)=-1.0\) \\
\hline & GO TO 4560 \\
\hline 4550 & \(\mathrm{SR}(1)=1.0\) \\
\hline \multirow[t]{2}{*}{4560} & \(\mathrm{XX}=\mathrm{G} 05 \mathrm{CAF}(\mathrm{XX})\) \\
\hline & IF (XX-0.5) 4570,4570,4580 \\
\hline \multirow[t]{2}{*}{4570} & SI (1) = - 1.0 \\
\hline & GO TO 4600 \\
\hline 4580 & SI (1) =1.0 \\
\hline 4600 & CONTINUE \\
\hline \multirow[t]{6}{*}{C} & GENERATING NOISE \\
\hline & DO 4650 NOLUP \(=1,2\) \\
\hline & DO \(4620 \mathrm{~J}=\) IMPR,2,-1 \\
\hline & \(\mathrm{I}=\mathrm{J}-1\) \\
\hline & WDR (J) \(=\) WDR ( I ) \\
\hline & WDI (J) \(=\) WDI ( I ) \\
\hline \multirow[t]{8}{*}{4620} & CONTINUE \\
\hline & WDR (1) =G05DDF (0.0, STDVN) \\
\hline & WDI (1) =G05DDF ( \(0.0, \mathrm{STDVN}\) ) \\
\hline & \(\mathrm{WR}=0.0\) \\
\hline & \(\mathrm{WI}=0.0\) \\
\hline & DO \(4640 \mathrm{~J}=1\), IMPR \\
\hline & \(W R=W R+W D R(J) * W F R(J)-W D I ~(J) * W F I ~(J) ~\) \\
\hline & WI=WI+WDR (J) *WFI (J) +WDI (J) *WFR (J) \\
\hline 4640 & CONTINUE \\
\hline 4650 & CONTINUE \\
\hline \multirow[t]{6}{*}{C} & CALCULATING RECEIVED SIGNAL \\
\hline & \(\mathrm{RR}=0.0\) \\
\hline & \(\mathrm{RI}=0.0\) \\
\hline & DO \(4700 \mathrm{I}=1\), IMPR \\
\hline & \(R \mathrm{R}=\mathrm{RR}+\mathrm{SR}(\mathrm{I}) * \mathrm{YR}(\mathrm{I})-S I(\mathrm{I}) * \mathrm{YI}(\mathrm{I})\) \\
\hline & \(R I=R I+S I(I) * Y R(I)+S R(I) * Y I(I)\) \\
\hline \multirow[t]{14}{*}{4700} & CONTINUE \\
\hline & \(\mathrm{RR}=\mathrm{R} R+\mathrm{W} \mathrm{R}\) \\
\hline & \(R I=R I+W I\) \\
\hline & \(\operatorname{S1R}(1)=0.0\) \\
\hline & S1I (1) \(=0.0\) \\
\hline & S1R (2) \(=0.0\) \\
\hline & \(\operatorname{SII}(2)=0.0\) \\
\hline & \(\operatorname{S1R}(3)=0.0\) \\
\hline & S1I (3) \(=0.0\) \\
\hline & DO \(4720 \mathrm{~J}=1\), IMPR \\
\hline & S1R (1) =S1R (1) + (SR (J)*AR (J)-SI (J)*AI (J)) \\
\hline & S1I (1) \(=\) SII (1) + (SR (J)*AI (J) +SI (J) *AR (J) ) \\
\hline & \(\operatorname{SIR}(2)=S 1 R(2)+(S R(J) * B R(J)-S I(J) * B I(J))\) \\
\hline & S1I (2) =S1I (2)+(SR(J)*BI (J) +SI (J) *BR(J)) \\
\hline
\end{tabular}
```

S1R(3)=S1R(3)+(SR(J)*CR(J)-SI (J)*CI (J))
S1I(3)=S1I (3)+(SR(J)*CI (J)+SI(J)*CR(J))

```

C ERROR IN ESTIMATION OF REC!! SIGNAL RECER=RR-R2R
RECEI=RI-R2I
\(R E R=R R-R 1 R\)
\(R E I=R I-R 1 I\)
DO 4760 I=1,IMPR
\(\operatorname{Y2ER}(I)=B(I) *(R E R * S R(I)+R E I * S I(I)) * D L T A\) \(\mathrm{Y} 2 \mathrm{EI}(\mathrm{I})=\mathrm{B}(\mathrm{I}) *(\mathrm{REI*} \mathrm{SR}(\mathrm{I})-\mathrm{RER} * S I(\mathrm{I})) * D L T A\) CONTINUE

DO 4770 I=1, IMPR
\(\operatorname{SLPR}(I)=\operatorname{SLPR}(I)+D U M 1 * Y 2 E R(I)\)
\(\operatorname{SLPI}(I)=\operatorname{SLPI}(I)+D U M 1 * Y 2 E I(I)\)
\(\mathrm{Y} 2 \mathrm{R}(\mathrm{I})=\mathrm{Y} 2 \mathrm{R}(\mathrm{I})+\mathrm{SLPR}(\mathrm{I})+\mathrm{DUM} 2 \star \mathrm{Y} 2 \mathrm{ER}(\mathrm{I})\)
\(\mathrm{Y} 2 \mathrm{I}(\mathrm{I})=\mathrm{Y} 2 \mathrm{I}(\mathrm{I})+\mathrm{SLPI}(\mathrm{I})+\mathrm{DUM} 2 * \mathrm{Y} 2 \mathrm{EI}(\mathrm{I})\)
CONTINUE
C UPDATING OF V VECTOR USING GRADIENT ALGORITHM DO \(4780 \mathrm{I}=1,3\)
\(\operatorname{ERR}(I)=C *(\operatorname{RECER} * S 1 R(I)+R E C E I * S 1 I(I))\)
\(\operatorname{ERI}(I)=C *(R E C E I * S 1 R(I)-R E C E R * S 1 I(I))\)
\(\operatorname{V1R}(I)=\operatorname{VR}(I)+E R R(I)\)
\(\operatorname{V1I}(I)=V I(I)+E R I(I)\)
CONTINUE
DO 5080 JK=1,3
\(\operatorname{GRDR}(J K)=\operatorname{GRDR}(J K)+\) THETA1 *ERR (JK)
GRDI (JK) =GRDI (JK) +THETAI *ERI (JK)
\(\operatorname{VR}(J K)=\operatorname{VR}(J K)+G R D R(J K)+T H E T A 2 * E R R\) (JK)
\(V I(J K)=V I(J K)+G R D I(J K)+T H E T A 2 * E R I\) (JK)
CONTINUE
\(A F A R=0.0\)
\(A F A I=0.0\)
\(B T A R=0.0\)
BTAI \(=0.0\)
GAMR \(=0.0\)
GAMI \(=0.0\)
DO \(5000 \mathrm{I}=1\),IMPR
\(\operatorname{AFAR}=\operatorname{AFAR}+\mathrm{Y} 2 \mathrm{R}(\mathrm{I}) \star \operatorname{AR}(I)+Y 2 I(I) * A I(I)\)
\(A F A I=A F A I+Y 2 I(I) * A R(I)-Y 2 R(I) * A I(I)\)
\(\mathrm{BTAR}=\mathrm{BTAR}+\mathrm{Y} 2 \mathrm{R}(\mathrm{I}) * \mathrm{BR}(\mathrm{I})+\mathrm{Y} 2 \mathrm{I}(\mathrm{I}) * \mathrm{BI}(\mathrm{I})\)
\(B T A I=B T A I+Y 2 I(I) * B R(I)-Y 2 R(I) * B I(I)\)
GAMR \(=\operatorname{GAMR}+\mathrm{Y} 2 \mathrm{R}(\mathrm{I}) * \mathrm{CR}(\mathrm{I})+\mathrm{Y} 2 \mathrm{I}(\mathrm{I}) * \mathrm{CI}(\mathrm{I})\)
\(G A M I=G A M I+Y 2 I(I) * C R(I)-Y 2 R(I) * C I(I)\)
5000
```

CONTINUE

```

DO 5020 I=1,IMPR
\(\mathrm{GR}(\mathrm{I})=(\operatorname{AFAR} \star \operatorname{AR}(\mathrm{I})-\operatorname{AFAI} \star A I(I))+(\mathrm{BTAR} * \mathrm{BR}(I)-\mathrm{BTAI} * \mathrm{BI}(\mathrm{I}))\)
```

 GI(I)=(AFAI*AR(I)+AFAR*AI(I))+(BAMI*BR(I) +BTAR*CBI (I))
    ```

DO 5040 I=1, IMPR
\(\operatorname{ERRR}(I)=Y 2 R(I)-G R(I)\)
\(\operatorname{ERRI}(I)=Y 2 I(I)-G I(I)\)
CONTINUE
DO 5060 I=1,IMPR
\(\operatorname{AR}(I)=\operatorname{AR}(I)+E T A *(\operatorname{AFAR} \star \operatorname{ERRR}(I)+\operatorname{AFAI} \star \operatorname{ERRI}(I))\)
\(A I(I)=A I(I)+E T A *(A F A R * E R R I(I)-A F A I * E R R R(I))\)
\(\operatorname{BR}(I)=\operatorname{BR}(I)+E T A *(B T A R * E R R R(I)+B T A I * E R R I(I))\)
\(\mathrm{BI}(\mathrm{I})=\mathrm{BI}(\mathrm{I})+E T A *\) (BTAR*ERRI (I) -BTAI*ERRR (I))
\(\operatorname{CR}(I)=\operatorname{CR}(I)+E T A *(G A M R \star E R R R(I)+G A M I * E R R I(I))\)
\(C I(I)=C I(I)+E T A *(G A M R * E R R I(I)-G A M I * E R R R(I))\)
CONTINUE
CALL GRMSHM (IMPR,AR,AI,BR,BI,CR,CI)
DO \(6000 \mathrm{~J}=1\), IMPR
\(\operatorname{Y1R}(J)=(\operatorname{VR}(1) * \operatorname{AR}(J)-\operatorname{VI}(1) * A I(J))+(\operatorname{VR}(2) * B R(J)-\operatorname{VI}(2) * B I(J))\)
\(+(\operatorname{VR}(3) * C R(J)-V I(3) * C I(J))\)
\(\mathrm{Y} 1 \mathrm{I}(\mathrm{J})=(\mathrm{VI}(1) * \operatorname{AR}(\mathrm{~J})+\operatorname{VR}(1) * \operatorname{AI}(\mathrm{~J}))+(\mathrm{VI}(2) * \operatorname{BR}(\mathrm{~J})+\operatorname{VR}(2) * \operatorname{BI}(\mathrm{~J}))\)
1
CONTINUE
CONTINUE
C
PRINTING OUT RESULTS
ERRSUM=ERRSUM/LCOUNT
SUMERR=SUMERR/LCOUNT
ERNOM \(=10.0 *\) LOG10 (ERNOM/LCOUNT)
ERNON \(=10.0 *\) LOG10 (ERNON/LCOUNT)
ERRSUM=10.0* (LOG10 (ERRSUM))
SUMERR \(=10.0 *\) LOG10 (SUMERR)
PRINT *,' LCOUNT=', LCOUNT
PRINT *,'C=', C
PRINT *,' THETA=', THETA
PRINT *,'EPSLON=', EPSLON
PRINT *,'ETA=', ETA
PRINT *,' MEAN SQ ERROR IN ESTIMATION=', ERRSUM
PRINT *,'MEAN SQ ERROR IN ESTIMATION (GRAD EST) \(=\) ', SUMERR
PRINT *,'NORM.MEAN SQ.ERR IN EST.=', ERNOM
PRINT *,'NORM.MEAN SQ.ERR IN EST(ADPT.EST)=',ERNON
PRINT *,'SET SNR=', SNR
PRINT *,'DLTA=', DLTA
REWIND (10)
STOP
END
SUBROUTINE GRMSHM (IMPR,AR,AI,BR,BI,CR,CI)
REAL AR (IMPR), AI (IMPR), BR (IMPR), BI (IMPR)
REAL CR (IMPR), CI (IMPR)
AMAG=0.0
DO 1330 I=1, IMPR
AMAG \(=\) AMAG + AR (I) \(* * 2+A I(I) * * 2\)
CONTINUE
AMAG=SQRT (AMAG)
IF (AMAG) \(1340,1350,1340\)
AMAG=0.0
GO TO 1360
1340 AMAG \(=1.0 / \mathrm{AMAG}\)
1360 DO 1370 I=1, IMPR
```

 AR(I)=AMAG*AR (I)
 AI(I)=AMAG*AI (I)
 CONTINUE
 BAR=0.0
 BAI=0.0
 DO 1380 I=1,IMPR
 BAR=BAR+BR(I)*AR(I)+BI (I)*AI (I)
 BAI=BAI+BI(I)*AR(I) -BR(I)*AI(I)
 CONTINUE
DO 1390 I=1,IMPR
BR(I)=BR(I)-(BAR*AR(I)-BAI*AI (I))
BI (I) = BI (I) - (BAI*AR (I) +BAR*AI (I))
CONTINUE
BMAG=0.0
DO 1400 I=1,IMPR
BMAG=BMAG+BR(I)**2+BI(I)**2
1400 CONTINUE
BMAG=SQRT (BMAG)
IF (BMAG) 1410,1420,1410
BMAG=0.0
GO TO 1430
BMAG=1.0/BMAG
DO 1440 I=1,IMPR
BR(I)=BMAG*BR(I)
BI(I)=BMAG*BI (I)
CONTINUE
CBR=0.0
CBI=0.0
CAR=0.0
CAI=0.0
DO 1450 I=1,IMPR
CBR=CBR+CR(I)*BR(I)+CI (I)*BI (I)
CBI=CBI+CI(I)*BR(I) -CR(I)*BI(I)
CAR=CAR+CR(I)*AR(I)+CI(I)*AI(I)
CAI=CAI+CI (I)*AR(I) -CR(I)*AI (I)
CONTINUE
DO 1460 I=1,IMPR
CR(I)=CR(I)-(CBR*BR(I)-CBI*BI(I))-(CAR*AR(I) -CAI*AI (I))
CI(I)=CI(I) - (CBI*BR(I) +CBR*BI (I)) - (CAI*AR(I) +CAR*AI (I))
CONTINUE
CMAG=0.0
DO 1470 I=1,IMPR
CMAG=CMAG+CR(I)**2+CI(I)**2
CONTINUE
CMAG=SQRT (CMAG)
IF (CMAG) 1480,1490,1480
1490 CMAG=0.0
GO TO 1500
1480 CMAG=1.0/CMAG
1500 DO 1510 I=1,IMPR
CR(I)=CMAG*CR(I)
CI(I)=CMAG*CI (I)
1510 CONTINUE
RETURN
END

```

\section*{APPENDIX F5}

\section*{COMPUTER-SIMULATION PROGRAM FOR SYSTEM 8.2}
```

 PROGRAM STFTF
 IMPLICIT DOUBLE PRECISION (A-H, O-Z)
 REAL YR(32),YI(32)
 REAL Y1R(32),Y1I(32),SR(0:32),SI(0:32)
 REAL AR (0:32),AI (0:32),BR(0:32),BI (0:32)
 REAL CR(0:32),CI(0:32),C1R(0:32),C1I (0:32)
 REAL WDR(0:32),WDI (0:32),WFR(0:32),WFI(0:32)
 REAL GRDR(32),GRDI (32),ERR(32),ERI (32)
 REAL A1R(0:32),A1I (0:32),B1R(0:32),B1I(0:32)
 REAL CMR (0:32),CMI (0:32)
 REAL MU,LAMDA
 C FILE 'IMP500' HAS IN ITS STORE 60000 SIR
C OF THE 3 SKY WAVE HE CHANNEI
OPEN (10,FILE='IMP500',FORM='UNFORMATTED')
N=32
NN=N+1
ERRTOT=0.0
ERRNOM=0.0
LCOUNT=0
MCOUNT=0
KSTART=1000
ETAT=0.0
IQ=200
CALL G05CBF(IQ)
MU=0.1
SNR=10.0
LAMDA=0.988
THETA1=0.008
THETA2=1.10
DO 2000 J=0,N
AR (J)=0.0
AI (J)=0.0
BR (J)=0.0
BI (J)=0.0
CR(J)=0.0
CI (J)=0.0
CONTINUE
AR(0)=1.0
BR (N)=1.0
GAMA=1.0
ALFA=(LAMDA**32.0)*MU
BETA=MU
LSTART=0
C INITIALISATION OF NOISE AND DATA MATRIX
DO 2010 J=0,N
SR (J)=1.0
SI (J)=1.0
WDR (J) =0.0
WDI (J) =0.0
CONTINUE

```

C SHIFTING OF ARRAYS ONCE FOR EVERY DATA SYMBOL DO \(2160 J=N, 1,-1\)
SR (J) \(=\) SR ( \(J-1\) )
\(S I(J)=S I(J-1)\)

C GENERATING QPSK DATA
XX=G05CAF (XX)
IF (XX-0.5) 2200,2200,2220
\(\operatorname{SR}(0)=-1.0\)
GO TO 2250
\(S R(0)=1.0\)
\(\mathrm{XX}=\mathrm{G} 05 \mathrm{CAF}(\mathrm{XX})\)
IF (XX-0.5) \(2260,2260,2280\)
\(2260 \operatorname{SI}(0)=-1.0\)
```

 GO TO 2300
 2280 SI (0)=1.0
2300 CONTINUE
C GENERATING NOISE
DO 2450 LNSE=1,2
DO 2420 J=1,N
WDR (J-1) =WDR (J)
WDI (J-1) =WDI (J)
CONTINUE
WDR(N)=G05DDF (0.0,STDVN)
WDI (N)=G05DDF (0.0,STDVN)
WNR=0.0
WNI=0.0
DO 2440 J=0,N
K1=N-J
WNR=WNR+WDR (K1) *WFR (J) -WDI (K1) *WFI (J)
WNI=WNI+WDR(K1) *WFI (J) +WDI (K1) *WFR(J)
CONTINUE
CONTINUE
C CALCULATION OF RECEIVED SIGNAL
RR=0.0
RI=0.0
DO 2480 J=0,(N-1)
RR=RR+SR(J)*YR(J+1)-SI (J)*YI (J+1)
RI=RI+SR(J)*YI (J+1) +SI (J)*YR(J+1)
CONTINUE
C RECEIVED SIGNAL WITH NOISE
RR=RR+WNR
RI=RI+WNI
IF (ETAT.GT.0.0001.AND.KSTART.GT.100) THEN
KSTART=0
MCOUNT=MCOUNT+1
ENDIF
KSTART=KSTART+1
LSTART=LSTART+1
IF(KSTART.LE.50) THEN
CALL RESTART (N,SR,SI,MU,LAMDA,KSTART,
1
1
ENDIF
IF(KSTART.EQ.51) THEN
DO 2500 J=0,N
AR(J)=A1R(J)
AI(J)=A1I(J)
BR(J)=B1R(J)
BI (J)=BII (J)
CR(J)=CMR (J)
CI(J)=CMI (J)
CONTINUE
ALFA=ALFAL
BETA=BETAL
GAMA=GAMAL
ENDIF

```
```

C ESTIMATION OF IMPULSE RESPONSE
ENPR=0.0
ENPI=0.0
DO 2520 I=0,N
ENPR=ENPR+AR(I)*SR(I)-AI (I)*SI (I)
ENPI=ENPI+AR(I)*SI(I) +AI (I)*SR(I)
CONTINUE
ENR=ENPR*GAMA
ENI=ENPI*GAMA
ALFA1=ALFA
ALFA=LAMDA*ALFA1+(ENPR*ENR+ENPI*ENI)
GAMA2=GAMA
GAMA1=LAMDA* (ALFA1/ALFA) *GAMA
EN1R=ENPR/(LAMDA*ALFA1)
EN1I=ENPI/ (LAMDA*ALFAI)
DO 2540 J=1,N
C1R(J)=CR(J-1)+(EN1R*AR(J) +EN1I*AI (J))
C1I(J)=CI (J-1)+(EN1R*AI (J) -EN1I*AR(J))
CONTINUE
C1R(0)=+EN1R
C1I(0)=-EN1I
RNP1R=0.0
RNP1I=0.0
DO 2560 I=0,N
RNP1R=RNP1R+BR(I) *SR(I) -BI (I) *SI (I)
RNP1I=RNP1I+BR(I)*SI(I) +BI (I)*SR(I)
CONTINUE
IF(LSTART.LE.32) THEN
RNP1R=0.0
RNP1I=0.0
ENDIF
GAMA=(1.0/(1.0-GAMA1* (RNP1R*C1R(N)-RNP1I*C1I (N))))*GAMA1
RNPR=+LAMDA*BETA*C1R(N)
RNPI=-LAMDA*BETA*C1I(N)
ETAR=RNP1R-RNPR
ETAI=RNP1I-RNPI
ETAT=ETAR**2+ETAI**2
DO 2580 J=1,N
AR(J)=AR(J)-(ENR*CR(J-I)-ENI*CI (J-1))
AI (J) =AI (J) - (ENR*CI (J-1) +ENI*CR (J-1))
CONTINUE
RNR=RNP1R*GAMA
RNI=RNP1I*GAMA
BETA=LAMDA*BETA+(RNP1R*RNR+RNP1I*RNI)
DO 2600 J=0,(N-1)
CR(J)=C1R(J)-(C1R(N)*BR(J)-C1I (N)*BI (J))
CI(J)=C1I (J) - (C1I (N)*BR(J) +C1R(N)*BI (J))
CONTINUE
DO 2620 J=0,(N-1)
BR(J)=BR(J) - (RNR*CR(J) -RNI*CI (J))
BI (J) = BI (J) - (RNR*CI (J) +RNI*CR (J))
CONTINUE

```
```

 WER=0.0
 WEI=0.0
 DO 2680 J=0,(N-1)
 WER=WER+Y1R(J+1)*SR(J)-Y1I (J+1)*SI (J)
 WEI=WEI+Y1R(J+1)*SI (J) +Y1I (J+1)*SR(J)
 CONTINUE
 ESPR=RR-WER
 ESPI=RI-WEI
 EPSR=ESPR*GAMA
 EPSI=ESPI*GAMA
 DO 2700 J=0,(N-1)
 ERR(J+1)=EPSR*CR(J)-EPSI*CI (J)
 ERI(J+1)=EPSR*CI (J)+EPSI*CR(J)
 CONTINUE
 DO 2800 J=1,N
 GRDR (J)=GRDR (J) +THETA1*ERR (J)
 GRDI (J) =GRDI (J) +THETA1*ERI (J)
 Y1R(J)=Y1R(J) +GRDR (J) +THETA2*ERR (J)
 Y1I (J) =Y1I (J) +GRDI (J) +THETA2*ERI (J)
 CONTINUE
 9000 CONTINUE
4000 CONTINUE
C PRINTING OUT RESULT
PRINT *,'MU=',MU
PRINT *,'LAMDA=',LAMDA
PRINT *,'THETA1=',THETA1
PRINT *,'THETA2=',THETA2
PRINT *,'SNR=',SNR
PRINT *,'LCOUNT=',LCOUNT
PRINT *,'MCOUNT=',MCOUNT
PRINT *,'MEAN SQ ERROR=',10*(LOGIO(ERRTOT))
PRINT *,'NORM.MEAN SQ.ERR=',10.0*(LOG10(ERRNOM))
REWIND (10)
STOP
END
SUBROUTINE RESTART (N,SR,SI,MU,LAMDA,KSTART,
1
I
A1R,A1I,B1R,B1I,CMR,CMI,
ALFAL, BETAL,GAMAL)
REAL SR(0:32),SI (0:32)
REAL A1R(0:32),A1I (0:32),B1R(0:32),B1I (0:32)
REAL CMR (0:32),CMI (0:32), CNR (0:32), CNI (0:32)
REAL MU,LAMDA
IF(KSTART.EQ.1) THEN
DO 6000 J=0,N
A1R(J)=0.0
A1I (J) =0.0
B1R(J)=0.0
B1I (J)=0.0
CMR (J) =0.0
CMI (J)=0.0
CONTINUE
A1R(0)=1.0
B1R(N)=1.0
GAMAL=1.0
ALFAL=(LAMDA**32.0)*MU
BETAL=MU

```
```

 ENDIF
 EMPR=0.0
 EMPI=0.0
 DO 6020 I=0,N
 EMPR=EMPR+A1R(I)*SR(I) -A1I (I) *SI (I)
 EMPI=EMPI+A1R(I)*SI(I)+AII(I)*SR(I)
 6 0 2 0
6 0 4 0
6 0 6 0
ENDIF
EMPR=0.0
EMP I $=0.0$
$\operatorname{EMPI=EMPI+A1R(I)*SI(I)+AII(I)*SR(I)~}$
CONTINUE
$E M R=E M P R * G A M A L$
EMI=EMPI*GAMAL
$A L F A M=A L F A L$
$A L F A L=L A M D A * A L E A L+(E M P R * E M R+E M P I * E M I)$
$G A M A M=L A M D A *(A L F A M / A L F A L) * G A M A L$
$E M 1 R=E M P R /(L A M D A * A L F A M)$
EM1 I=EMP I / (LAMDA*ALFAM)
DO $6040 \mathrm{~J}=1, \mathrm{~N}$
CNR $(J)=\operatorname{CMR}(J-1)+(E M 1 R * A 1 R(J)+E M 1 I * A 1 I(J))$
CNI (J) $=$ CMI (J-1) $+(E M 1 R \star A 1 I(J)-E M 1 I * A 1 R(J))$
CONTINUE
$\operatorname{CNR}(0)=+E M 1 R$
CNI (0) $=-$ EM1I
DO $6060 \mathrm{~J}=1, \mathrm{~N}$
A1R (J) $=$ A1R (J) $-(\operatorname{EMR} * \operatorname{CMR}(J-1)-E M I * C M I(J-1))$
AII $(J)=A 1 I(J)-(E M R * C M I(J-1)+E M I * C M R(J-1))$
CONTINUE
$R M P R=+L A M D A * B E T A L * C N R(N)$
$R M P I=-L A M D A * B E T A L * C N I(N)$
COM1 $=1.0-$ GAMAM* (RMPR*CNR (N) $-\operatorname{RMPI*CNI~(N))~}$
GAMAL=GAMAM/COM1
$R M R=R M P R * G A M A L$
$\mathrm{RMI}=\mathrm{RMP} I * G A M A L$
$B E T A L=L A M D A * B E T A L+(R M P R * R M R+R M P I * R M I)$
DO $6080 \mathrm{~J}=0,(\mathrm{~N}-1)$
$\operatorname{CMR}(J)=\operatorname{CNR}(J)-(\operatorname{CNR}(N) * B 1 R(J)-C N I(N) * B 1 I(J))$
$\operatorname{CMI}(J)=\operatorname{CNI}(J)-(\operatorname{CNI}(N) * B 1 R(J)+\operatorname{CNR}(N) * B 1 I(J))$
CONTINUE
DO $6100 \mathrm{~J}=0,(\mathrm{~N}-1)$
$\operatorname{B1R}(J)=\operatorname{B1R}(J)-(R M R * C M R(J)-R M I * C M I(J))$
B1I (J) $=\mathrm{B} 1 \mathrm{I}(\mathrm{J})-(R M R * C M I(J)+R M I * C M R(J))$
CONTINUE
RETURN
END

```

\section*{REFERENCES}

1 BRAUN, G., : 'Planning and Engineering of Shortwave links', (John Wiley \& Sons, Second edition, 1986).

2 STEIN, S., : 'Fading channel issues in system engineerring', IEEE Journal on Selected areas in communications, Vol. SAC-5, No. 2, pp. 68-89, Feb. 1987.

3 STEIN, S., : 'Fading and multipath channel communications - A roadmap', IEEE Journal on Selected areas in communication, Vol. SAC-5, No. 2, pp. 65-67, Feb. 1987.

4 MASLIN, N. M., : 'High data rate transmission over HF links', The Radio and Electronic Engineers, Vol. 52, No. 2, pp. 75-87, Feb. 1982.

5 HODGKISS, W., TURNER, L.F. and PENNINGTON, J., : 'Serial data transmission over HF radio links', IEE Proc., Vol. 131, Part F, No. 2, pp. 107-116, April 1984.

6 GOLDBERG, B., : '300 KHz - 30 MHz MF/HF', IEEE Trans. Communication Technol., 1966, COM-14, pp 767-784.

7 BRADLEY, P.A., : 'Long-Term HF propagation predictions for radio circuit planning', The Radio and Electronic Engineer, Vol. 45, No. 1/2, pp. 31-41, Jan./Feb. 1975.

8 RUSH, C. M., : 'Ionospheric radio propagation and predictions - A mini review', IEEE Trans. on Antenna and prpagation, Vol. AP-34, No. 9, pp. 1163-1170, Sept. 1986.

9 CCIR: 'Ionospheric characteristics and propagation', Recommendation and Reports, Report 725-1.

10 CCIR: 'Fading of radio signals received via the ionosphere', CCIR XIII' Plenary Assembly, Vol. VI, Report No. 266-3, Geneva, 1974.

11 CCIR: 'Multipath propagation on HF radio circuits', CCIR XII \({ }^{\text {h }}\) Plenary Assemply, Vol III, Report No. 203, Geneva, 1974.
12 PICQUANARD, A., : 'Radio Wave Propagation' (Macmillan, 1974)

13 BAIN, W. C. and RISHBETH, H., : 'Developments in ionospheric physics since 1957', The Radio and Electronic Engineering, Vol. 45, No. 1/2, Jan./Feb. 1975.

14 DAVIES, K.,: 'Ionospheric radio propagation', US Dept. of Commerce, Nat. Bureau of Standards Monograph 80, 1965.

15 HILLS, M.T. and EVANS, B.G., : 'Transmission Systems Design', (George Allan \& Unwin - London)

16 BRIERLEY, H.G., 'Telecommunication Engineering', (Edward Arnold, 1986)

17 SALAMAN, R.K.,: 'A new Ionospheric reduction factor', IRE Trans. Communication System, Vol. CS-10, 1962.

18 STEIN, S. and JONES, J.J., 'Modern Communication Principles', (McGraw-Hill, 1967)

19 CCIR: 'HF ionospheric channel simulator', CCIR XIII \({ }^{\text {h }}\) Plenary Assembly, Vol. III, Report No. 549, pp. 66-75, Geneva, 1974.

20 PROAKIS, J.G. : 'Digital Communications', (McGraw-Hill, 1983).
21 TAUB and SCHILLING : 'Principles of Communication Systems', (McGraw-Hill)

22 SCHWARTZ, M., BENNETT, W.R. and STEIN, S.,: 'Communication Systems and Techniques', (McGraw-Hill, New York, 1966)

23 GRIFFITHS, J.,: 'Interrelation between some statistical distributions used in radio wave propagation', IEE Proc., Vol. 129, Pt. F, No. 6, pp. 411-417, Dec. 1982.

24 CARLSON, A.B., : 'Communication Systems', (McGraw-Hill, 3rd Edition).
25 RALPHS, M.D. and SLADEN, F.M.E.,: 'An HF channel simulator using a new Rayleigh fading method', The Radio and Electronic Engineer, Vol. 46, No. 12, pp. 579-587, Dec. 1976.

26 WATTERSON, C.C., JUROSHEK, J.R. and BENSEMA, W.D.,: 'Experimental confirmation of an HF channel model', IEEE Trans. Commun, Technol., COM-18, pp. 792-803, 1970.

27 COWAN, C.F.N. and GRANT, P.M.,: 'Adaptive Filters', (Prentice-Hall, New Jersey, 1985)

28 LUCKY, R.W.,: 'Techniques for adaptive equalization of digital communication systems', BSTJ, Vol. 45, No. 2, pp. 255-286, Feb. 1966.
29 CLARK, A.P.,: 'Principles of Digital Data Transmission', (Pentech press, London, Second Edition, 1983).
30 CLARK, A.P.,: 'Modelling of digital communication systems', Conference on Mathematical modelling and applications, Arab school of science and technology, April 1986.

31 HODGKISS, W. and TURNER, L.F.,: 'Practical equalization and synchronization statagies for use in serial data transmission over HF channels, The Radio and Electronic Eng., 53, pp 141-146, April 1983.

32 RABINER, L.K. and GOLD, B.,: 'Theory and Application of Digital Signal Processing', (Prentice-Hall, 1975)

33 McVERRY, F.,: 'High speed data transmission over HF radio link', Ph.D Thesis, Dept. of Electronic and Electrical Engineering, Loughborough Univ. of Technology, 1982.

34 NAJDI, H.Y.,: 'Digital Data Transmission over Voice Channels', Ph.D Thesis, Dept. of Electronic and Electrical Enginerring, Loughborough Univ. of Technology, 1982.

35 HARUN, R.,: 'Techniques of Channel Estimation for HF Radio Links', Ph.D Thesis, Dept. of Electronic and Electrical Enginerring, Loughborough Univ. of Technology, 1984.

36 ABDULLAH, S.N.,: 'Data Transmission at 9600 bit/s. over an HF Radio Link', Ph.D Thesis, Dept. of Electronic and Electrical Engineering, Loughborough Univ. of Technology, 1986.

37 JAYASINGHE. S.G.,: 'Techniques of Detection, Estimation and Coding for Fading Channels', Ph.D Thesis, Department of Electronic and Electrical Engineering, Loughborough Univ. of Technology, to be submitted.

38 SUBROUTINE E01ABF, Numerical Algorithms Group.
39 FROBERG, C.E.,: 'Introduction to Numerical Analysis' (Addison-Wesley, 1973).

40 BLUM, E.K.,: 'Numerical Analysis and Computation Theory \& Practice', (Addison-Wesley, 1972).

41 KETTER, R.L. and PRAWEL, S.P.,: 'Modern Methods of Engineering Computation, (McGraw-Hill, 1969).

42 CLARK, A.P.,: 'Advanced Data Transmission System', (Pentech Press, 1977).

43 CLARK, A.P.,: 'Equalizers for Digital Modems', (Pentech Press, 1985).
44 FAIRFIELD, M.J.,: 'Equipment filter design', Internal report, Dept. of Electronic and Electrical Eng., Loughborough Univ. of Technology, 1978.

45 FAIRFIELD, M.J.,: 'The chosen equipment filter (410)', Internal report, Dept. of Electronic and Electrical Eng., Loughborough Univ. of Technology, 1978.

46 CLARK, A.P. and NAJDI, H.Y., 'Detection process of a 9600 bits/s serial modem for HF radio links', IEE Proc. Part F, Vol.-130, pp. 368-376, Aug. 1983.

47 JAYASINGHE, S.G., HARIHARAN, S. and CLARK, A.P.,: 'An adaptive receiver for a \(4.8 \mathrm{Kbit} / \mathrm{s}\) HF radio modem, Publication No. 82, pp. 239-246, Fifth International Conf. on Digital Processing of Signals in Commun., Loughborough, U.K., Sept. 1988

48 CLARK, A.P., ABDULLAH, S.N., JAYASINGHE, S.G. and KEUNG, H.S.,: 'Pseudobinary and pseudoquaternary detection processes for linearly distorted multilevel QAM signals', IEEE Trans. on Commun., Vol. COM33, No. 7, pp. 639-645, July 1985.

49 CLARK, A.P. and HAU, S.F.,: 'Adaptive adjustment of receiver for distorted digital signal', IEE Proc., Part F, Vol. 131, pp. 526-536, Aug. 1984.

50 CLARK. A.P., NAJDI, H.Y. and McVERRY, F.,: 'Performance of a 9600 bit/s serial modem over a model of an HF radio link', IEE Conf. Publication No. 224, Radio Spectrum Conservation Techniques, pp. 151-155, Sept. 1983.

51 CLARK, A.P. and ABDULLAH, S.N.,: 'Near-maximum likelihood detectors for voiceband channels', IEE Proc., Part F, Vol. 134, pp. 217-226, June 1987.

52 CLARK, A.P. and McVERRY, F.,: 'Performance of \(2400 \mathrm{bit} / \mathrm{s}\) serial and parallel modems over an HF channel simulator', IERE Conf. on Digital Signal Processing of Signals in Communications, Proc. No. 49, pp.167-179, Loughborough, 1981.

53 MORRISON, N.,: 'Introduction to Sequential Smoothing and Prediction', (McGraw-Hill, 1968).

54 CLARK, A.P. and McVERRY, F.,: 'Channel estimation for an HF radio link', IEE Proc., Part F, Vol. 128(1), pp. 33-42, Feb. 1981.

55 MAGEE, F.R. and PROAKIS, J.G.,: 'Adaptive maximum-likelihood sequence estimation for digital signaling in the presence of intersymbol interference', IEEE Trans. Inform. Theory, Vol. IT-19, pp. 120-124, 1973.

56 PROAKIS, J.G.,: 'Advances in equalization for ISI', Advances in communication systems theory and applications, Viterbi, A.J. (ed), 4, pp. 123-198, 1975.

57 CLARK, A.P., KWONG, C.P. and McVERRY, F.,: 'Estimation of the sampled impulse response of a channel', Signal Processing, Vol. 2, pp. 39-53, Jan. 1980.

58 HAYKIN, S.,: 'Introduction to Adaptive Filters', (Macmillan publishing company, 1984)

59 HAYKIN, S. : 'Adaptive Filter Theory', (Prentice-Hall, 1986).
60 TREICHLER, J.R., JOHNSON, Jr., C.R. and LARIMORE, M.G.,: 'Theory and Design of Adaptive Filters', (John Wiley, 1987).

61 CANDY, J.V.,: 'Signal Processing - The Model-based Approach', (McGraw-Hill, 1986).

62 CLARK, A.P. and HARIHARAN, S.,: 'Adaptive channel estimators for an HF radio link', IEEE Trans. on Communications, accepted for publication.

63 VARGA, R.S.,: 'Matrix Iterative Analysis', (Prentice-Hall, New Jersey, USA, 1962).

64 WILDE, D.J.,: 'Optimum Seeking Methods', (Prentice-Hall, New Jersey, USA, 1964)

65 CLARK, A.P.,: 'Transmission of digitally coded speech signals by means of random access discrete address systems', Ph.D Thesis, London University, England, 1969.

66 CLARK, A.P.,: 'Adaptive detection of distorted digital signals', The Radio and Electronic Eng., Vol. 40, pp. 107-119, Sept. 1970.

67 PENNINGTON, J.,: 'Comparative measurements of parallel and serial 2.4 Kbps modems', IEE Conf. Publ. No. 206, pp. 141-144, Feb. 1982.

68 ANDERSON, P.H., HSU, F.M. and SANDLER, M.N.,: 'A new adaptive modem for long haul HF digital communications at data rates greater than 1 \(\mathrm{bps} / \mathrm{Hz}\) ', IEEE Military Commun. Conf., Boston, MA, USA, Oct. 1982, Vol. 2, pp. 29.2/1-7.

69 CROZIER, S., TIEDEMANN, K,, LYONS, R. and LODGE, J.,: 'An adaptive maximum likelihood sequence estimation technique for wideband HF communications', IEEE Military Commun. Conf., Boston, MA, USA, Oct. 1982, Vol. 3, pp. 29.3/1-9.

70 McLAUGHLIN, S., MULGREW, B. and COWAN, C.F.N.,: 'Performance comparison of least squares and least mean squares algorithms as HF channel estimators, Proc. ICASSP 87, Dallas, pp. 49.2.1 - 49.2.4, April 1987.

71 FALCONER, D.D., SHEIKH, A.U.H., ELEFTHERIOU, E. and TOBIS, M.,: 'Comparison of DFE and MLSE receiver performance on HF channels', GLOBCOM 83, San Diego, CA, USA, Vol. 1, pp. 13-18, Nov.-Dec. 1983.

72 WALSH, I.J., JENKINS, I.C, HAMMOND, E. and KINGSBURY, N.G.,: 'Implementation of a \(2.4 \mathrm{kbits} / \mathrm{sec}\) adaptive serial HF modem', IEE Conf. Publ. 245, pp. 146-150, Feb. 1985.
\({ }^{7} 3^{`}\) KALMAN, K.E. and BUCY, R.S.,: 'New results in linear filtering and prediction theory', Trans. ASME J. Basic Eng., Vol. 83-D, No. 1, pp. 95-108, March 1961.

74 JAZWINSKI, A.H.,: 'Stocastic Process and Filtering Theory', New York, London: Acadamic Press, 1970.
\(\propto \times 75\), GODARD, D.,: 'Channel equalization using Kalman filter for fast data transmission', IBM J. Res. \& Develop., Vol. 18, pp. 267-273, May 1974.
\(\alpha \propto \overparen{76}\) BARHAM, P.M. and HUMPHRIES, D.E.,: 'Derivation of the Kalman filtering equations from elementary statistics principles', Technical Report 69095, Royal Aircraft Establishment, May 1969.

77 YOUNG, P.C.,: 'Recursive Approaches to Time Series Analysis', Bull. Inst. Math. Appl., Vol. 10, pp. 209-233, May/June 1974.

78 PROAKIS, J.G. and LING, F.,: 'Recursive least squares algorithms for adaptive equalization of time-varying multipath channels',

79 NICHOLSON, G. and NORTON, J.P.,: 'Kalman filter equalization for time-varying communication channel', Aust. Telecommun. Res., Vol. 13, pp. 3-12, 1979.

80 ANDERSON, B.D.O. and MOORE, J.B.,: 'Optimal Filtering', New Jersey, U.S.A. : Prentice-Hall, 1979.

81 HSU, F.M.,: 'Square root Kalman filtering for high speed receiver over fading dispersive HF channels', IEEE Trans. Inform. Theory, Vol. IT-28, pp. 753-763, Sept. 1982.

82 GIORDANO, A.A. and HSU, F.M.,: 'Least Square Estimation with Applications to Digital signal processing', (John Wiley, 1985).

83 RICHARDS, G.A.,: 'Implementation of Kalman filters for process identification', GEC J. of Res., Vol. 1, No. 2, pp. 100-107, 1983.

84 CIOFFI, J.M., and KAILATH, T.,: 'Fast recursive least square transversal filters for adaptive filtering', IEEE Trans. ASSP., Vol. ASSP-32, pp. 304-337, April 1984.

85 CURRIE, J.C. and WEALE, J.R.,: 'Studies of inverse filtering and channel estimation techniques for HF serial modems', IEE Conf. Publ. 245, pp. 151-155, Feb. 1985.

86 LING, F. and PROAKIS, J.G.,: 'Adaptive lattice decision-feedback equalizers - Their performance and application to time-variant multipath channels', IEEE Trans. Commun., Vol. COM-33, pp. 348-356, April 1985.
87 CIOFFI, J.M. and KAILATH, T.,: 'Windowed fast transversal filters adaptive algorithms with normalization', IEEE Trans. ASSP., Vol. ASSP33, pp 607-625, June 1985
\(\chi \propto \nLeftarrow<88\) CLARK, A.P. and HARUN. R.,: 'Assessment of Kalman-filter channel estimators for an HF radio link', IEE Proc., Part F, Vol. 133, pp. 513-520, Oct. 1986.

89 CLARK, A.P. and McVERRY, F.,: 'Improved channel estimator for an HF radio link', Signal Processing, Vol. 5, pp.241-255, May 1983.

90 CLARK, A.P. and ASGHAR, S.M.,: 'Detection of digital signals transmitted over a known time-varying channel', IEE Proc., Part F, Vol. 128, pp. 167-174, June 1981.

91/CLARK, A.P., ZHU, Z.C. and JOSHI, J.K.,: 'Fast start-up channel estimation', IEE Proc., Part F, Vol. 131, pp. 375-382, July 1984.

92 MUELLER, M.S.,: 'Least squares algorithm for adaptive equalizers', Bell Syst. Tech. J., Vol. 60, pp. 1905-1925, Oct. 1981.

93 ELEFTHERIOU, E. and FALCONER, D.D.,: 'Adaptive equalization techniques for HF channels', IEEE J. Sel. Areas in Commun., Vol. SAC-5, pp. 238-247, Feb. 1987.

94 JAZWINSKI, A.H.,: 'Adaptive Filtering', Automatica, Vol. 5, pp. 475-485, 1963.

95 LAWRENCE, R.E. and KAUFMANN, H.,: 'The Kalman filter for the equalization of a digital communication channel', IEEE Trans. on Commun., Vol, COM-19, pp.1137-1141, 1971.

96 MARK, J.W.,: 'A Note on the modified Kalman filter for channel equalization', Proc. IEEE, Vol. 61, pp. 481-482, 1973.

97 FALCONER, D.D., and LJUNG, L. : 'Application of fast Kalman estimator to adaptive estimation', IEEE Trans.Commun., Vol. COM-26, pp. 1439-1446, October 1978.

98 BOZIC, S.M.,: 'Digital and Kalman filtering', (Edward Arnold, 1979).
99 CLARK, A.P., HARIHARAN, S. : 'Channel estimators for voiceband HF radio links', Publication No. 82, pp. 213-218, Fifth International Conference on Digital Processing of Signals in Commun., Loughborough, U.K., Sept. 1988.

100 CLARK, A.P. and HARIHARAN, S.,: 'Efficient estimators for an HF radio link', Submitted to the IEEE Trans. on Commun.

101 ALEXENDER, S.T. : 'Adaptive Signal Processing - Theory and Application', (Springer-Verlag, 1986).

102 KALMAN, R.E. : 'A new approach to linear filtering and prediction problems', J. Basic Engineering, Vol. 82, pp 34-45, March 1960.

103 CLARK, A.P.,: 'Adaptive Detectors for Digital Modems', (Pentech Press, 1988).

104 CARAYANNIS, G., MANOLAKIS, D., and KALORIPTSIDIS, N., : 'A fast sequential algorithm for least squares filtering and prediction', IEEE Trans. on ASSP., Vol. 31, No 6, pp. 1394-1402, December 1983.
105 CARAYANNIS, G., MANOLAKIS, D. and KALORIPTSIDIS, N., : 'Fast Kalman type algorithm for sequential signal processing', Proc. ICASSP, Boston, pp 186-189, 1983.

106 LJUNG, L., MORF, M., and FALCONER, D., : 'Fast calculation of gain matrices for recursive estimation schemes', Int. J. Control, Vol. 27, pp 1-19, January 1978.

107 ALEXENDER, S.T., : 'Fast adaptive filters: A geometrical approach', IEEE ASSP magazine, pp. 18-28, October 1986.

108 MORF, M., VIEIRA, A., and LEE, D.T. : 'Ladder form for identification and speech processing', Proc., 1977 IEEE Conf. Decision Control, New Orleans, LA., pp 1074-1078, December 1977.

109 MORF, M., and LEE, D.T. : 'Recursive least square ladder form for fast parameter tracking', Proc., 1979 Conf. Decision Control, San Diego, CA., pp 1362-1367, 1979.

110 LEE, D.T., MORF, M., and FRIEDLANDER, B. : 'Recursive least square ladder estimation algorithm', IEEE Trans. ASSP., Joint Special Issue on Adaptive Signal Processing, Vol. ASSP-29, pp 627-641, June 1981.

111 CIOFFI, J.M. : 'Limited precision effect in adaptive filtering', IEEE Trans. on Circuits and Syst., Special Issue on Adaptive Filtering, Vol. 34, pp 1097-1100, July 1987.

112 BOTTO, J.L.,: 'Stabilization of fast recursive least-sequares transversal filters for adaptive filtering', Proc. ICASSP 1987, pp. 11.3.1-11.3.4

113 BOTTO, J.L. and MOUSTAKIDES, G.V.,: 'Stabilization of fast RLS transversal filters', Internal Publication No. 306, Institute De Recherche En Informatique et En Automatique, France, August 1986.

114 BOTTO, J.L. and MOUSTAKIDES, G.V.,: 'Stabilization of fast Kalman algorithms', - Submitted to the IEEE Trans. on ASSP.

115 BOTTO, J.L. : 'Numerical divergence of fast RLS transversal filter', Submitted to the IEEE Transactions

116 HARIHARAN, S. and CLARK, A.P.,: 'HF channel estimation using a fast transversal filter algorithm', - Submitted to the IEEE Trans. on ASSP.

117 KUO, F.F.,: 'Network Analysis and Synthesis', (John Wiley, Second Edition, 1966).

118 ANTONIOU, A.,: 'Digital Filters : Analysis and Design', (McGraw-Hill, 1979).

119 TERRELL, T.J.,: 'Introduction to Digital Filters', (Macmillan, 1980).
120 Ayres, F.,: 'Matrices', (Schaum's Outline Series, McGraw-Hill, 1974).
121 WIDROW, B., McCOOL, J. and BALL, M.,: 'The Complex LMS Algorithm', Proc. IEEE, Vol. 63, pp. 719-720, 1975.```

