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SYNOPSIS 

In conventional finite element analysis of reinforced concrete the 

steel bars are normally assumed to lie along the concrete element 

edges and very often the bond gripping the steel to the concrete is 

assumed to be infinitely stiff. The first assumption makes it 

difficult to model all steel bars leading to the inclusion of only a 

few representative bars. Shear reinforcement is usually ignored. 

Thin concrete cover also creates difficulty by causing long thin 

finite elements in that region. The second assumption does not 

reflect the true behaviour of the system. 

In this research a new method for the modelling of steel in 

reinforced concrete by finite element analysis has been developed 

which allows all steel reinforcement to be included in the 

analysis. The method is based on modelling the steel and concrete 

separately, the two materials being interconnected by the bond 

forces between them. Thus, bond stiffness is naturally included in 

the analysis. Such interconnection of steel and concrete is 

achieved by an interface bond matrix which is derived from the 

relative displacements between the steel and the concrete at the 

steel nodes. A linear bond slip relation is assumed for the bond, 

and a linear stress strain relation is assumed for the concrete and 

the steel. The work has extended also to nonlinear bond stress-slip 

relation. Concrete is represented by 8-noded isoparametric 

quadrilateral elements, and the steel is represented by two noded 

bar elements. The bond is represented by springs joining each steel 

node to all 8-concrete nodes. 



The solution of the resulting system of equations is achieved in 

an iterative manner which converges quite rapidly, and which 

requires less computation than the direct solution needs . 

Three types of problems are analysed in two dimension to 

demonstrate the application of this new method. These are beam, 

cantilever and pullout problems. The first two, being real 

problems, demonstrate the ability of the method to handle complex 

steel arrangements, thin concrete covers and anchorage of steel, 

while the third problem shows the application of load to the steel 

rather than to the concrete. Concrete and steel deformations and 

stresses are calculated at their nodes. Bond stresses are given at 

all steel nodes. In the nonlinear bond analysis, deterioration of 
bond will be demonstrated in pullout and pushout tests at high 

loads. 
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1. INTRODUCTION 

Finite element analysis of reinforced concrete structures has 

attracted many researchers as can be seen from the large number 

of published papers in this field. Modelling of concrete behaviour 

has received considerable attention in these investigations. 

However some of the important aspects which are necessary for 

accurate modelling of finite element analysis of reinforced 

concrete have received less attention and these are : 

i) Modelling of bond holding the concrete and steel together is 

usually ignored in conventional methods by assuming perfect 

bond between the two materials. 

ii) One finite element mesh is used to represent both the 

concrete and the steel with elements representing the steel 

at the edges of the concrete elements which leads to 

concrete elements whose size and shape is set by the 

geometry of the steel bars and also to the inclusion of only 

few representative bars in the analysis and not all the 

reinforcement which is usually present in a real structure. 

iii) Modelling of 
-thin 

concrete cover over reinforcement creates 

a problem because it influences the mesh representing the 

concrete. 

Bond holding concrete and steel acts in the interface of the two 

materials. The nature of bond allows a certain "slip" to develop 

between concrete and steel at their interface before failure of 

bond occurs. Therefore, including bond stiffness is an essential 

requirement for an accurate analysis of reinforced concrete. 
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In finite element analysis of reinforced concrete the mesh used to 

model structure usually consists of adjacent finite elements 

representing concrete and steel and are set in a pattern that will 

reflect the relative location of the concrete and steel in the real 

structure. Because of the restriction imposed by the conventional 
Q 

method of analysis the finite elements representing the 

reinforcement bars are placed at the edges of the elements 

repreAnting the concrete because finite elements representing 

steel and concrete can not intersect each other. This will result 

in selecting only a few representative bars. Otherwise, including 

all bars will result in an immense number of concrete elements. 

Concrete cover creates another difficulty in representing the 

finite element mesh for concrete because usually long and thin 

elements end up in this area leading to elements with aspect ratio 

'height/base' much higher (or lower) than one, thus, reducing the 

accuracy of the solution. The above may be avoided when using 

finite element analysis with embedded or distributed 

representation of the steel. 

In this research 'a new method is developed in which the concrete 

and steel are modelled quite separately. Forces are transferred 

between the two materials through bond acting at their interface. 

These forces are calculated using the bond stiffness value 

obtained from the bond stress-slip curve. Thus bond is included in 

the analysis. This proposed method of modelling is derived in 

chapter 3. 

The separate analysis of the reinforcement leads to modelling of 

the reinforcing bars in the absence of the concrete. This will 

3 



allow the inclusion of all steel bars regardless of their location or 

orientation. Also, separate analysis of concrete will eliminate 

concrete cover problems because the concrete mesh is designed to 

match the expected stress pattern in the concrete in the absence 

of the reinforcement. 

Further advantages of the method are that loads can be applied to 

either or both the concrete and the steel, and other details such as 

anchorage of bars can be modelled. 

Efficiency of the method of solution in terms of the number of 

arithmetic operations required to carry out the solution will be 

examined since these have a direct influence on the computer time 

used for the solution. Standard methods of assembling one 

stiffness matrix for the whole structure and solving it directly 

may be quite inefficient specially when a large number of 

reinforcement bars are present. In this thesis a new approach is 

taken for the solution of the system equilibrium equations. 

Separate stiffness matrices are assembled. An iterative method 

of solution is adopted and compared to standard methods. 

The aim of this thesis is to describe the development of this new 

method and to demonstrate its applicability to some real 

reinforced concrete structures. It is not the intention to present 

actual studies of the behaviour of the constituent materials of 

reinforced concrete. Therefore, the approach taken to achieve this 

is to use the simplest possible constitutive model for concrete 

and steel which can establish the basic characteristics of each 

material behaviour. Thus, the model will be described for a linear 

4 



elastic stress strain relationship for concrete and a linear elastic 

relationship for steel. A linear stress-slip relationship for bond 

is used initiry, however, since this research is more concerned 

with modelling of bond, the model is extended to include a 

nonlinear bond stress-slip relationship. The method of solution is 

applicable to any bond model. In this thesis a bond model 

described by Allwood et at. (1984) is chosen. The selected bond 

model describes the nonlinear bond stress-slip relationship taking 

into account lateral pressure between concrete and steel. 

A set of real reinforced concrete structures will be analysed by 

this method to demonstrate its applicability. Solution of plane 

stress modelling of three types of problems will be presented to 

illustrate the different advantages of this model. The problems 

are as follows: a beam problem, cantilever problem and pull-out 

test problems. Some of these problems will be solved using both 

linear and nonlinear bond models. 

5 
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2. LITERATURE REVIEW 

-2.1 
Introduction 

In a reinforced concrete structure the transfer of load between 

concrete and the reinforcing steel bars depends upon bond holding 

the two materials together. Experimental studies on bond shows 

that some "slip" develops in the interface of the two materials 

before complete failure of bond occurs. Bond stiffness values, 

obtained from measurements of this "slip" and the associated 

bond-stress, are to be be included in finite element analysis of 

reinforced concrete structures. Without representation of bond 

incorrect results may be obtained e. g. Allwood (1980). 

There is a lot of research available on the finite element analysis 

of reinforced concrete which assumes perfect bond between 

concrete and steel ignoring the relative displacement between the 

two materials. The review in this chapter will be concerned with 

only those studies which include bond stiffness or which allow for 

bond in other forms. Also, finite element analysis of reinforced 

concrete with distributed or embedded reinforcement with and 

without including bond will be reviewed in this chapter. 

Other reviews are done later in chapter 5 and include a brief 

review on nonlinear stress-strain relationship of concrete, a 

review of experimental work done on bond, and a brief review of 

nonlinear bond-stress slip relationship. 
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2.2 Review 

2.2.1 Modelling of Bond in Finite Element Analysis 

The earliest work done on modelling of bond in finite element 

analysis of reinforced concrete was that of Ngo and Scordelis 

(1967). They introduced a linkage element between concrete and 

steel to represent bond. According to Ngo and Scordelis " The 

linkage element can be thought of conceptually as consisting of 

two linear springs parallel to a set of orthogonal axes H and V ", 

figure (2.1). Also, " The linkage element has no physical 

dimensions at all and only its mechanical properties are of 

importance ". Each of the springs is assigned a stiffness value 

from which the stiffness matrix for the linkage element is 

obtained. If the springs in the H and V directions have stiffness kh 

and kv respectively then the stress strain relation is given by : 

Oh Kh 0 Eh 

ßv 0 KV Ev 

where. eh and ev are the relative displacements between points I 

and J in the H and V directions. 

The bond linkage element as applied to the finite element 

idealisation of a single reinforced concrete beam is shown 

schematically in Figure (2.2). 

The above work of Ngo and Scordelis assumes a linear relationship 

between bond slip and bond stress. Nilson (1968) pointed out that 

the relationship between bond stress and bond slip is strictly. 

8 
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Figure(2.1) - Linkage Element to Represent Bond, 

After Ngo and Scordelis (1967) 
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Figure(2.2) - Linkage Element within an Analytical Model, 

After Ngo and Scordelis (1967) 
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nonlinear and that is based on experimental evidence. Thus he 

introduced a bond-slip equation which is derived indirectly from 

experiments reported by Bresler and Bertero (1966). Nilson 

introduced a third order degree polynomial relating local bond 

stress (µ) to local bond slip (d) which is given as 

µ= 3606x103 d- 5356x106 d2 + 1986x109 d3 

The spring linkage stiffness is found by differentiating µ with 

respect to the displacement d. The application of the linkage 

element to a reinforced concrete member is shown in figure (2.3). 

One linkage element is specified at the top of a bar segment and 

one at the bottom as shown in figure (2.3). 

Using spring linkage elements to represent bond in finite element 

analysis of reinforced concrete can be found in the work of many 

authors. Some examples are given now. Robins (1971) used spring 

linkage elements to simulate bond in the analysis of a reinforced 

concrete deep beam by finite element method. Labib and Edwards 

(1978) used a transverse linkage element to simulate bond. Again, 

spring linkage element is found in the work of Scordelis, Ngo and 

Franklin (1974). Imbabi and Cope (1984) used a linkage element 

with stiffness components parallel and normal to the 

reinforcement bar so as to simulate bond-slip and dowel action. 

Nagatomo and Kaka (1985) used linkage element to model the 

relative slippage along rib surface in the finite element study on 

bond. 

Allwood (1980) used the spring connectors to represent bond in 
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the study of a reinforced concrete beam-column connection. He 

used nonlinear springs deduced from bond stress-slip relationship 

obtained from his experimental work. Also, he used nonlinear 

springs following the relationship from Edwards and Yannopoulus 

(1978) . For comparison with perfect bond he used also infinitely 

stiff springs. Figure (2.4) shows stresses in the reinforcement of 

the beam-column for the different stiffness values. 

Allwood, Parsons and Robins (1984) have developed a bond model 

which allows for the effect of lateral pressures between concrete 

and steel. These lateral pressures are generated initially by the 

shrinkage of concrete as it cures but are modified by contraction 

of the reinforcing bars under load and by the stresses created in 

the concrete from applied loads also. The model predicts the bond 

stress-slip behaviour up to and beyond local failure. The basis of 
the bond model is to extend the concept of a local ultimate bond 

strength and to create a local bond stress-slip relationship 
depending on the radial interface pressure. The above model is 

adopted for the nonlinear bond model of this research and will 
therefore be explained in greater details later in chapter 5. 

The bond element used in the above model of Allwood et al. was 
developed by Parsons (1984). It is a6 noded shearing element 
figure (2.5). Quadratic variation in both the displacements and 
bond stress-slip moduli is assumed along the length of the 

element. 

Reinhardt Blaauwendraed and Vos (1984) have modelled bond in a 

numerical way by making use of the shape of the steel bar and the 

properties of the concrete. They assumed that there is a concrete 
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layer "slip layer" around the bar which is stressed to a much 

higher extent than the remaining part of the structure. This layer 

is treated by non-linear finite element analysis. -Figure (2.6) 

shows a deformed bar with a "slip layer" which is divided into 

sections according to the rib spacing. 'Once the behaviour of a slip 
layer section is known, it can be handled as a single element 

(interface element) in a finite element mesh with stresses and 
displacements along the boundary as shown in figure (2. 'rß). The 

stresses and displacements can be used as input for a linear 

elastic analysis of the remainder of the concrete part. 

Yankelevsky (1985) presented a one dimensional model which is 

based on equilibrium and a linear bond stress-slip law. An 

equilibrium between axial force in a bar element and the 

circumferential shear stress is obtained. Also, by ignoring 

concrete deformation as compared to steel deformation an 

equilibrium between steel strain and bond slip can be obtained. 
The relationship between axial force and slip at the element nodes 
is expressed through' a stiffness matrix. 

2.2.2 Modelling with Embedded Reinforcement 

Finite element analysis of reinforced concrete with embedded 

reinforcement is found in the work of Phillips and Zienkiewicz 

(1976). Isoparametric elements are used to idealize the concrete 

and special elements embedded in the isoparametric elements are 

used to simulate the reinforcement. The formulation of the steel 
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elements requires that the strain in. the steel is equal to that in 

the surrounding isoparametric element. Thus perfect bond is 

assumed. The reinforcing bars are restricted to lie along the local 

co-ordinate lines of the basic element. The same shape functions 

are used for the bar as for the main concrete element. The 

displacements of the bar are obtained from the displacements of 

the basic element because full compatibility between the bar and 

the basic element is assumed. 

Balkrishnan and Murray (1987) adopted a similar approach in which 

their embedded representation for reinforcement includes bond 

slip. A typical finite element of their model is composed of 

quadratic concrete elements, embedded reinforcing bars, and 

distributed bond elements selectively placed along the 

reinforcement. The bond slip at a given point on the steel bar is 

obtained from the contribution of the bond elements lying within 

the concrete element. If a number of p bond elements are selected 

then 

Wb =I Hi Ubj 

where 

wb the bond slip 

Ubj is the degree of freedom of the p nodes on the reinforcement 

within the concrete element 

Hj are the shape functions used to interpolate the bond slip at any 

point. 

Bond slip at a certain point along the bar is related to the steel 
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displacement , wS, and to the concrete displacement, wc, at that 

point by the relation 

Wb - Ws- We 

The stiffness matrix of the concrete element is assembled in the 

standard manner. The stiffness matrix for the reinforcing element 

is formed and assembled in the standard manner and added to the 

stiffness matrix of the concrete element. Finally the stiffness 

matrix for the bond elements is assembled with the concrete and 

reinforcement element in the standard manner. 

The method presented for the reinforcing element requires that 

the bar is placed parallel to a local coordinate axis. The bond 

elements require additional nodal points along the reinforcement. 

Thus, increasing both the number and the band width of the 

equations from those for the concrete mesh alone. 
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2.3 Discussion 

From the literature review presented in the previous section it can 

be seen that the number of papers found on modelling of bond 

between concrete and steel in finite element analysis of 

reinforced concrete is quite few. 

The review shows that the most common way of representing bond 

is by using the linkage element. Linkage element can be used to 

represent bond in the longitudinal direction for example Ngo and 

Scordelis (1967) or it can be used to represent both longitudinal 

direction and dowel action for example Imbabi and Cope (1984). 

The importance of including bond in the analysis and the effect of 

the stiffness values used in the linkage element has been 

demonstrated by Allwood (1980) figure (2.4) 

Finite element analysis of reinforced concrete with Embedded 

reinforcement as outlined by Phillips and Zienkiewicj (1976) 

assumes perfect bond between concrete and steel. Also, the 
0 

reinforcing bars are assumed to lie along the local coordinate lines 

of the concrete element so inclined bars to the element axis can 

not be included. 

Balkrishnan and Murray5 (1987)' approach using embedded 

reinforcement is similar to Phillips and Zienkiewic$ approach but 

allows for bond. Stiffness matrices for concrete reinforcement 

and bond elements are assembled in the standard manner. The 

resulting reinforcement and bond matrices are then added to the 

concrete matrices as in the conventional manner. This will result 
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t 
in a consequen& increase in the total number of degrees of 
freedom and band width for the resulting equation( Direct methods 

S 
of Solving a very large global stiffness matrix which usually 

results for the whole structure is expensive operation from 

computer point of view. 

Another assumption made to simplify the derivation of the 

stiffness matrices is to place the reinforcing element parallel tö 

the local axis of the concrete element. Thus inclined bars to the 

concrete element axis can not be included in the analysis. 

J 
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3. A NEW METHOD FOR MODELLING OF REINFORCED CONCRETE 

LINEAR CASE 

3.1 Introduction 

The purpose of this chapter is to develop the new method for 

modelling of reinforced concrete by the finite element method 

which removes some of the constraints imposed by the 

conventional method of analysis. Some of the difficulties faced 

when modelling reinforced concrete structures by the conventional 

method are demonstrated first by the following example. 

. 1.1 A Conventional an 

Figure (3-1) shows a cantilever which is to be analysed by the 

conventional finite element analysis. The cantilever is composed 

of two materials, namely concrete and steel. In the conventional 

analysis of this structure each of the two materials is 

represented by an appropriate type of finite element. Concrete is 

represented by 8-noded rectangular plane elements. The steel is 

represented by 3-noded bar elements to satisfy compatibility 

between the selected concrete elements and the steel bars 

elements. In the construction of the mesh two conditions are to be 

satisfied i) the selected elements and the overall mesh has to 

reflect the physical shape and the relative location of each 

material. ii) The elements representing each material can not 

cross each other so the steel is laid along the edges of the 
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Figure (3.1) - Cantilever showing full detailed reinforcement 
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concrete elements leading to a mesh consisting of adjacent 

elements. 

It is difficult to construct a mesh that will represent the concrete 

and all the steel shown in the cantilever of figure (3-1) based on 

the above conditions, because an immense number of concrete 

elements are required whose size and shape is set by the geometry 

of the reinforcement bars rather than by the need to model the 

stress flows in the concrete. Also it is expensive to solve for a 

mesh with large number of elements from computer point of view. 

As a result, the problem is usually simplified by including only the 

main reinforcements and ignoring the shear and other detailed 

reinforcement. In this cantilever case the tension reinforcement 

is the only reinforcement included. So the cantilever in figure 

(3-2) is now to be analysed instead of the original one. The finite 

element mesh of figure (3-3) is now constructed to represent the 

cantilever of figure (3-2). 

Another problem arises which is the modelling of the shallow 

concrete cover on the main steel bars near the concrete surface. 

The problem faced in this region is the very high aspect ratio of 

the elements representing concrete. Thus, a finer mesh has to be 

constructed. Again this will create a similar problem in the 

concrete elements at the two ends of the column. In order to have 

elements of acceptable aspect ratio the appropriate mesh for this 

problem will need a very large number of concrete elements. The 

solution of the resulting system of equations greatly increase 

computer time needed to perform the calculations. 
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Figure (3.2) - Cantilever of figure (3.1) showing main 

reinforcement 
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Figure (3.3) - Finite element mesh for the cantilever of figure 

(3.2) for the conventional method. 
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The above discussion of the cantilever by the conventional 

analysis represents only the difficulty involved in constructing 

the finite element mesh. Another very important point in the 

conventional method which is often assumed is that the analysis 

is based on assuming the bond between the steel and the concrete 

to be infinitely stiff. However, such an assumption dog not 

reflect the true relation between the concrete and the steel. In 

the analysis of a beam column intersection by the finite element 

method, Allwood (1980) has shown the important effect on the 

stress distribution in the main reinforcement within the column 

when allowing for realistic bond stiffness value versus infinite 

bond figure (2.4). Thus the. modelling of bond must be included for 

a more realistic analysis. 

3.1.2. The new method of analysis 

In this chapter a new method will be described for the analysis of 

reinforced concrete by finite element method and which uses bond 

between reinforcement and the surrounding concrete as the basis 

for the development of the theory. The steel and the concrete will 

each be modelled and analysed separately. Figure (3-4) illustrates 

the basic idea of separating the concrete and the reinforcement of 

the structure to be analysed. Such analysis does not require the 

concrete and the steel to have adjacent elements or common 
interconnecting nodes. The process of combining these into a mass 

of reinforced concrete is achieved by interconnecting the two 

materials through the bond forces acting between them. Thus 

bond, a basic requirement in reinforced concrete construction, is 
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Figure (3.5) - Finite element mesh for the cantilever of figure 

(3.1) using the new method. 
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naturally included in the analysis. These bond forces are derived 

from the relative movement between the steel and the concrete 

The analysis of the cantilever in figure (3.1) by this method can be 

carried out using the simple finite element mesh shown by figure 

(3.5). The mesh shown only matches the expected concrete 

stress patterns. Also, all the steel bars shown are included 

without affecting the concrete mesh and with very little impact 

on the computer time needed for the solution. Modelling of the 

concrete cover is no longer a problem. Modelling of bond is also 
included in the analysis. By this method some of the other details 

in reinforced concrete design can be achieved such as steel 

anchorage. In the case of the cantilever the tension steel is to be 

anchored in the column. It will be shown that steel anchorage can 
be easily modelled by this method. 

In the details of the method given now, linear constitutive 

equations are assumed for the concrete, steel and bond and the 

concrete is assumed to carry tension. Although concrete may be 

represented by any convenient element shape, in the derivation of 

the method concrete is represented by two dimensional 

isoparametric quadrilateral elements, and the steel is represented 
by two noded bar elements. Bond may be conveniently represented 

here as springs joining the concrete and reinforcement nodes 

together. 
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3.2 Theory of the method 

3.2.1 General 

Consider a steel bar embedded in a mass of concrete as shown in 

figure (3-6), which may represent a small part of a reinforced 

concrete structure. Upon loading the structure both the concrete 

and the steel will experience some deformations although the load 

is applied to the concrete surface. Therefore, a transfer of forces 

between the concrete and the steel takes place. This transfer of 
forces between the concrete and the steel occurs through bond. 

Bond is the term used to describe the interaction between the 

embedded bar and the surrounding concrete which takes place in 

the interface of the two materials. 

To model bond in finite element analysis, consider the previous bar 

of figure (3-6) to be represented by strings of two noded bar 

elements. Figure (3-6) shows one steel node sj which is to be 

closely examined. The same figure also shows a concrete point ci 

which is located next to steel node si, i. e. both have the same x 

and y coordinates. Naturally upon loading the structure, both the 

concrete point and the steel node will deform. The deformation of 

the concrete point cj in the direction of the bar axis is given by 

Ucj. The deformation of the steel node sj along the bar axis is 

given by Usf. The relation between the two deformations can be 

classified into two types according to the bond phenomena 

between the concrete and the steel : 
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i) If the concrete and the steel are perfectly bonded together then 

the two deformations Uci and Usk are identical, or 

Ucj - USA =0 (3-1) 

ii) If the bond between the concrete and the steel is not perfectly 

connecting the two materials i. e. bond allows for a "special" 

relation to exist between the concrete and the steel other than 

perfect bond of the two materials, then the concrete point 

deformation Uci is different from the steel node deformation USA, 

leading to the following relation 

uci - USA = 0j (3-2) 

where Aj is the relative displacement along the bar axis of the 

steel node sj with respect to the surrounding concrete which 

develops before failure of bond occurs. A is known as "slip". 

Thus the slip which is being included here in the theory is the 

recoverable slip not the permanent slip associated with the 

failure of bond near cracks as might be defined normally. 

It is easier to model reinforced concrete based on equation (3-1) 

since modelling of bond is not required. However, since laboratory 

experiments (see chapter 5) have shown different deformations 

between concrete and steel, then equation (3-2) is valid. So a 

more realistic modelling of reinforced concrete should include 

bond. One of the difficulties faced in exact modelling of bond 

arises from the lack of complete understanding of the bond 

phenomena in transmitting forces between concrete and steel. 
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However bond behaviour can be closely modelled based on the bond 

stress slip obtained from experimental measurements (see section 

5.4.2) 

3.2.2 The bond spring 

In this research bond modelling depends on the relative 

displacement A along the bar axis between concrete and steel 

given by equation (3-2). 

The concrete point Ci and the steel node si are assumed to be 

connected by a linear spring. The spring has no physical 

dimensions but it has material properties described by its 

stiffness. The spring stiffness will be included in the analysis of 

reinforced concrete to transfer forces from concrete to steel or 

from steel to concrete. Modelling of bond by springs, or "bond 

springs", will not change the geometry of the structure since it 

does not have any physical dimensions. The bond spring is assumed 

to act only along the axis of the reinforcement so it idealizes 

longitudinal interaction between the bar and the surrounding 

concrete. 

Bond is assumed to act at the whole surface area of the steel. For 

the derivation of the finite element analysis every bond spring 

will cover an area equal to one bar element interface area and its 

point of action is at the centre of the bar element. The steel nodes 

are chosen to represent the point of action of the bond springs. 
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3.2.3 Bond matrix at a steel node 

If the reinforcement bar is divided into a number of elements 

equal to n, then, this results in n+1 steel nodes. Therefore, n+1 

bond springs exist along the bar. Since steel nodes represent the 

point of action of bond springs then each spring will be effective 

over the interface area of one bar element which extends from one 

half the element on the left of the steel node to one half the 

element on the right of the node. Springs at the ends of the bar are 

effective for one half bar element, either to the right or to the 

left of the steel node. Therefore, the stiffness of one bond spring 

can be calculated as follows 

b= Ro . S2 . 1/2 1 adjacent bar elements lengths (3-3a) 

where 

b is the bond spring stiffness which expresses the stiffness 

of the bond over an area of one bar element and lumped at 

the steel node. 

Ro is the bond stiffness. This value is obtained from the initial 

tangent of the bond stress-slip curve. Ro is further 

discussed in sections (5.4.2) and (5.4.3). 

S2 is the perimeter of the bar 

Consider again the steel node sj. The bond force acting on the 

steel at the steel node sj is given by psi and is calculated from 

the bond stiffness, R0, and the relative displacement of the steel 

node with respect to the surrounding concrete point cj. pS j 
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represents the bond force for one half the bar element to the left 

of the steel node and one half the bar element to the right of the 

steel node and by assuming the that the bar elements for the same 

bar are of equal lengths the following is obtained : 

sl2 

PS1 
f. 

s/2 
R0 . S2 . (USA - Ucj) dx (3-3b) 

i 

where . 
s is the length of one bar element 

(USA - Ucj) at node j is assumed to be the average value over the 

integral length leading to : 

psi = Ro . !D. s. (USA - Ui ) 

or psi =b. (Usk - Ucj) 

Further, to go by the definition of A in equation (3-2) this can be 

rewritten as 

pSj = -b . (Ucj - USA) (3-4a) 

To establish equilibrium with the surrounding concrete an opposite 

force in direction and -equal in magnitude given by pct is to be 

acting on the surrounding concrete at the point cj . This leads to 

pct =b. (Ucj - USA) (3-4b) 

Equations (3-4a) and (3-4b) can be expressed in matrix form 

leading to 
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b -b Ucj Pcj 

"_ X3-5) 

-b b Usj Psj 

The stiffness matrix of equation (3-5) is the bond matrix 

describing the relation between one steel node and the surrounding 

concrete in the longitudinal direction of the reinforcement. 

3.2.4 Transformation of bond matrix 

3.2.4.1 General 

In the previous section the bond interface matrix relating one 

steel node to one concrete point, which represents the surrounding 

concrete was derived. Since in the analysis of concrete by finite 

element method concrete is Usually represented by elements of 

triangular or quadrilateral. shapes, then the steel node sj is to be 

related to concrete element nodes rather than the concrete point 

c1 

Although the method applies for any element shape, quadrilateral 

concrete element will be used to illustrate the method. , The 

concrete is assumed to be represented by 8-noded, plane, 

quadrilateral, isoparametric element. The choice of this element 

will lead to quadratic shape functions describing the concrete 
displacement variation over the element and the element 
boundaries and so relating generic displacements within the 

element to nodal displacements of the element. 
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3.2.4.2 Transformation of displacements 

Consider the previous concrete point cj to be located within the 

boundary of an isoparametric quadrilateral plane element figure 

(3.7). The displacement of this point in the x axis direction is 

given by ucj and its displacement in the y axis direction is given 

by vcj. So Ucj is a vector given by 

uc1 

[u] = 
vcj 

Further Ucj can be related to the nodal displacements through the 

shape function [N] see Zienkiewicz (1985) 

voj = [N] . 
[Del (3.6) 

From the above two equations the following is obtained 

ucj N1j 0 N2j 0 .............. N8j 0 

[ucjl= 

vcj 0 N. 1j 0 N2j 
............. 0 N81 

ue1 

ve 1 

ue 2 

ve 2 

(3-7) 

Ue8 

ve 8 
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Figure (3.7) -A reinforcing steel bar crossing 8-noded 

! so-parametric concrete element 
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where vaG, e ý ýý 

N ij is the/shape function relating the concrete displacements at 

point j to concrete displacement at element node i. 

uei is the concrete displacement at element node i in the x 

direction. 

ve i is the concrete displacement at element node i in the y 

direction. 

The vector [Deis defined as 

Uel 

Ve 1 

ue 2 

[De] 

ue 8 

Ve 8 

(3-8) 

numbers refer to local numbering of the concrete element nodes. 

Recall that the concrete displacement of point cj in the direction 

of the bar axis is given by Ucj. Thus if the bar is at angle e to the 

local x-axis of the concrete element figure (3-7), then theMý 

kt,. edisplace ment [1Jj1is related to ucj and vcj by the following 

relation 

Ucj = ucj. coso + vcj. sino 
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Substituting equations (3-7) into equation (3-) and re-arranging 

to obtain 

\Ucj\= [ N1i. coso Ni . sino 

1 

N2j. coso .................... ] 

ue 1 

ve 1 

ue2 

(3-9ý 

-ve 8 

The matrix [Cej)is defined as 

[Ce]] _[ N1 j. cose N. i]. sino N2j. coso . .................. ] (3-10) 

Thus [Cep] is the transformation matrix which relates the 

displacement of the concrete point cj within the concrete element 

in the direction of the steel bar axis to the element nodal 

displacements. 
U 

Equation (3-9c can be rewritten in the form 

Ucj =I Cej j. [De) (3-11) 

The above equation transforms the concrete displacement Uc j 

acting at the point cj in the direction of the steel axis to the 

concrete degrees of freedom. 
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3.2.4.3 Transformation of bond forces 

The deformation of the concrete point cj was related to the 

concrete element nodes by equation (3-11). In this section the 

bond force pct is to be related to the concrete element nodes. This 

is done using the well known transformation based on the 

equivalenw of work done in either local or global axes. Thus since 

Ucj Cej l Del 

then 

[ 
e1= [Cejit " 

CPcj] 

where 

(3-11) 

(3-12) 

ýPej is the vector of bond forces which is equivalent to pct and 

acting on the concrete element nodes. 

3.2.4.4 The transformation matrix 

In the previous two sections the displacement of the concrete in 

the direction of the steel axis for point cj which lies within the 

concrete element was found and expressed by equation (3-11). 

Also the equivalent nodal forces due to a force acting at the point 

cj within the concrete element is expressed by equation (3-12). In 

this section the transformation of the bond matrix given by 

equation (3-5) will be accomplished. 
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Substituting equation (3-11) into equation (3-4b) the following is 

obtained 

ýPýjý= b. ([Cej] " 
CD3 

-IQ) 

By pre-multiplying the above equation by [Gellt the following 

relation is obtained 

[Ce]]t - 
&j) = [Ce]]t b. [Ce]] . 

KI 
- [Ce]]t .b. 

CUS]l (3-13) 

Now substituting for (Ce]]t. Ipojl from equation (3-12) to get 

Ue) 
_ [Ce]]t .b. [Ce]] . 

[De' 
- [Ce]]t .b. 

[USJ l (3-14) 

Similarly, by substituting equation (3-11) into equation (3-4a) 

will lead to 

psj _ -b . ([Ce]] . 
[Del 

-1USj) 

or 

ps] = -b . 
[Ce]] 

. 
Del +b. 

[US]l (3-15) 

Equations (3-14) and (3-15) can be expressed in matrix form as 

[Cej]t. b. [Cej] -[Cej]t. b Del 1 
el 

_ (3-16) 

-b. [Cej] b USA Psj 
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Equation (3-16) expresses the (17x17) bond matrix connecting one 

steel node whose deformation is specified along the bar axis to all 

degrees of freedom of the concrete element. Figure (3-8) 

illustrates the springs connecting a steel node to all degrees of 

freedom for the 8-noded quadrilateral element, implied in the 

transformations leading to (3-16). 

are scalars. I 

3.2.5 Element bond matrix 

Note that in (3-16) USA and pSj 

In the previous section the bond matrix was derived for one steel 

node within a quadrilateral concrete element . By applying 

equation (3-16) to all steel nodes located in the same concrete 

element, the element bond matrix can be established. This is 

accomplished by adding the contribution of the bond matrix of each 

steel node located in the same concrete element . In equation form 

this is expressed as 

[KBe] 

-[ Kbe ]"[Cel 

where 

Ce]t Kbe] [Del 

Kbe ] CDsel 

[ 
bcel 

- (3-17) 

[Pbsei 

[KBe] is the sum of the [Cef]t. bj. [Cej] of all 

the steel nodes within the concrete element . 
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i. e. [KBe] _I [Ce]]t. bj. [Ce]] 

j= the steel node number 

[Kbe I is a diagonal matrix of b values of the steel nodes 

within the concrete element 

b1 0 
................ 

0 

0 b2 
.............. 

0 

[Kbe] _ .......................... 

0 ................. bnse 

[ Ce ] is a matrix containing all [Cep] of the steel nodes 

within the concrete element 

Ce1 

Ce2 

i. e. [Cel 
= 

Ce nse 

nse is the number of steel nodes in the concrete 

element. 
[Dsel a vector containing displacements of all steel nodes 

within one concrete element. 
tPbce\ internal bond forces acting at the concrete element 

degrees of freedom. 

[ bseT internal bond forces acting at the steel nodes within 

the concrete element. 
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Example: 

Figure (3-9) shows 3 steel nodes lying within a 8-noded 

quadrilateral concrete element. The selected steel nodes are of 

different bars. Thus every steel node will have its own spring 

bond stiffness value b and the angle of inclination of the bar o of 

which it is a part . To establish the bond matrix for this concrete 

element it is first necessary to establish the bond matrix for the 

first node which will be of the form 

[Cel ]t"b1 "[Cel l -[Cel ]t"b1 1Del CPel 

x= (3-18) 

-b1. [Ce1 l b1 Us1 Ps 1 

The subscript 1 refers to node number one. The same is carried 

out for the next two nodes numbers 2 and 3. Once this has been 

done the element bond matrix is now constructed as shown in 

figure (3-10). 

3.2.6 Global bond matrix 

The global bond matrix relating all the reinforcement bars to the 

concrete is assembled according to the following steps: 

i) Divide all steel nodes up into groups, each of which lie over one 

concrete element. 

ii) Construct the bond matrix for every node according to equation 

(3-16) 

iii) Assemble in the element matrix for the node in step 2 
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: ment 

Figure (3-9) - Three steel nodes from two different bars 

within 8-noded quadrilateral concrete element. 
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Figure (3-10) Element bond matrix for figure (3-9) 
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according to equation (3-17) 

iv) Repeat step ii and iii for all steel nodes within the same 

element according to the grouping of step i as illustrated in 

figure (3-10). 

v) assemble the element bond matrix into the global bond matrix. 

This assembly is achieved by adding the correct element 

contribution according to the global freedom numbering of the 

degrees of freedom of the concrete elements and the global 

numbering of the steel nodes . Once steps ii to iv have been 

repeated for all concrete elements which have steel nodes within 
their boundaries, the global bond matrix of all steel nodes can be 

established . The results can be expressed in matrix form as 

[KB] -[C]'. [Kb] {Dcc ýPbc] 

-[Kb]"[Cl (Kb] tDsi 
lpbsl 

The matrix [ KB ] in equation (3-19) is assembled from the [ KB e] 

matrix of all the concrete elements . It is a banded matrix and its 

band width is controlled by the numbering of the concrete element 

nodes. Thus it is of the same band width as the concrete stiffness 

matrix (section (3.1)) 

The above global displacement vector contains concrete and 

reinforcement displacements which are separated in two vectors 

Dc and Ds such that Dc is a vector containing concrete 

displacements alone and 

displacements alone. 

Ds is a vector containing steel 

48 



Some short cuts are taken in the program to simplify these steps. 

For example the global KB is not assembled instead the KBe matrix 

for each element is assembled and saved so the calculation is done 

for one concrete element and its associated steel nodes at a time. 

This is further explained in chapter 4. 

The matrix [ Kb ] is a diagonal matrix containing the spring 

stiffness of all the steel nodes in the order of the steel nodes 

global numbering. 
{D1 is the vector of displacement of all degrees of freedom of 

concrete 
CD 

s1 is the vector of all steel nodes displacements for all the bars 

I PbcI is the vector of all internal bond forces acting at the concrete 

degrees of freedom 

\ bsl is the vector of all internal bond forces acting at the steel 

nodes _ 
[C] is assembled from all [Ce] 

Example: 

Figure (3-11) shows a small mesh containing three 8-noded 

rectangular elements. One steel bar * passes through the 

elements at an angle 8. There are three steel nodes in every 

concrete element. The global bond matrix is established according 

to the steps shown above. The resulting global matrix is shown in 

figure (3-12) 

49 



N 
M 

M 

Co 

N 
N 

N 
N 

N 

00 

N 

CV 

CC) 
N 

a) 
a) 
U 

0 
U 

Cr) 

a) 

0 

C) 
S 
U) 
U) 
cz 
n. 
L 
(Ti 

-o 
0) 
C 
C. ) 

OC 

_C 

CD 

E CD a) 
d) 

a 

M 

a) L 

0) 

LL 

50 



Bell 777 

nNr,. ni i'{ 

CV 

I IK Be2 

U 

- 77 

C M 

1 [KBe3 
� r 

/ f / i r Y 
Y f 'f° 

AC el bei 
--' K b 

r '. 
[K l [0 be3 e3] / / 

Figure (3-12) Global bond matrix for the mesh of figure (3-11) 
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33 Modelling of concrete 

The concrete may be modelled by any type of finite element 

derived by the displacement approach but it should be noted that 

the shape functions are also used in transforming the bond 

interface matrix in section (3.2). 

As the concrete mesh must accurately represent the concrete 

alone, it has to match the concrete distribution of forces and 

stresses regardless of the steel location . Two dimensional plane 

stress analysis assuming linear, elastic stress-strain 

relationship will be used see chapter 5 for more details. The 

formulation of the element stiffness matrix for concrete is based 

on the adopted constitutive laws and is done in the conventional 

manner. To be consistent with section (3.2) quadratic shape 

functions are used to approximate the element boundary and the 

displacement variation over the element. Therefore concrete is 

represented by 8-noded quadratic isoparametric plane elements. 

For the numerical integration four Gaussian integration points are 

used to evaluate the stiffness integral figure (3.13). The global 

stiffness matrix of the concrete is assembled in the standard 

manner, leading to 

[Kc] . 
CDcl 

= [PC] 

where 

(3-20) 
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[Kc] is the global stiffness matrix of the concrete structure which 

contains the contribution of all concrete element stiffness 

matrices 

[D 
c' is the vector containing the global deformations of all degrees 

of freedom of the concrete. 

[PcI is the vector containing all external loads applied to concrete. 

3.4 Reinforcement Modelling 

In this research reinforcing steel is modelled by strings of two 

noded bar elements joined together to represent each 

reinforcement bar. Only one degree of displacement is considered 

at each node being the displacement of the reinforcement along the 

axis of the bar. Thus, linear variation of longitudinal displacement 

is assumed along the bar axis. The numbering of steel nodes is 

done independent of the concrete nodes numbering. One 

dimensional, linear, elastic stress-strain relationship is assumed. 

If the nodes at a bar element ends are marked 1 and 2 figure (3.14) 

then the element stiffness matrix is given by: 
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P1 1 -1 U1 

- (Es. as) /s 

p2 -i 1 u2 

where 

P1 , P2 are axial forces at nodes 1 and 2 respectively 

ul, u2 are axial deformations at nodes 1 and 2 respectively 

as is cross-sectional area of the bar 

s is bar element length 

The global load displacement relationship is presented here for the 

purpose of the derivation of the method. 

[KS] CD5ý 
_ [PS] (3-21) 

where 

[KS] is the global stiffness matrix of all the steel reinforcements 

involved in the structure so that it contains the contribution of all 

the steel elements. 

[Ks] has a special form as used in this method and it is always a 

banded matrix of band width equals 3, i. e. a tri-diagonal matrix 

[ Ds ] is the vector containing the displacements of all the steel 

nodes of all the bars . 
[ Ps ] is the vector containing the applied load to steel 
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Note that, although the shape functions describing the concrete 
displacement variation over the element and the element 

boundaries are quadratic and the steel displacement variation is 

linear, the error in compatibility is reduced by dividing the steel 
into small segments and further reduced by the integration of 
distributed bond stresses into lumped bond forces. Many steel 

nodes are usually used per concrete element (typically 7 to 10) to 

represent the distribution of bond stress within an element and 

thus there is only a little improvement in compatibility to be 

gained by using 3 noded bar element for steel. 
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Figure (3.13) - Quadrilateral element with four Gaussian 

integration points. 
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Figure (3-14) - Axial displacements at the nodes of 

a two noded bar element 
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3.5 The overall system of equations 

In section (3.3) the concrete has been modelled separately which 

lead to the load-displacement relation given by equation (3-20). 

Also in section (3.4) the steel has been modelled separately and 

that leads to the load-displacement relation given by equation 

(3-21) . In this section the two materials will be interconnected 

by the system bond matrix developed in section (3.2.6) and which 

was -expressed in equation (3-19) to represent a mass of 

reinforced concrete. 

The displacement vector in equation (3-20) contains concrete 

displacements alone. In order to keep concrete and steel 
displacements separated equation (3-20) is written in the 

following form 

[Kc] 0 (Dcl [ 
C1 

00 Cosh 0 

The above form is advantageous in the solution of the resulting 

equations as will be shown in chapter 4. 

The same thing is repeated for the steel in equation (3-21) which 

for the same reasons as mentioned above is represented in the 

following form 
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oo (b j0 

[Ks] CDS1 [PS] 

The equilibrium equation of the complete structure in terms of the 

concrete degrees of freedom, Dc and the steel degrees of freedom, 

CDs, is shown by equation (3-22) below. 

[Kc] 000 [KB] -[C]t. [Kb] ci 
rp 

ci 

++_ (3-22) 

000 [Ks] -[Kb]-[C] [Kb] Ups] [Psl 

Equation (3-22) describes the behaviour of the complete system. 

The stiffness matrix given relates the displacement at all degrees 

of freedom of concrete and at all steel degrees of freedom to the 

applied loads to concrete and/or steel. The solution of this 

relation will be explained in chapter 4. 
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3.6 Mo delling of re info rc eme nt anc ho rage 

3.6.1 G enera l 

Ca- 
One of the design criteria of reinforced concrete structures is to 

prevent the reinforcing bars from pulling out at the ends upon 

loading of the concrete member. Such conditions can be 

accomplished by end anchorage of the reinforcement . 

In the method adopted the anchorage can be achieved in two ways: 
i) Anchorage by high bond. 

ii) Anchorage by applying a force. 

3.6.2 Anchorage by high bond 

The bond has been modelled by springs holding the steel and the 

concrete together, and thus the amount of slippage between the 

concrete and the steel depends on the stiffness of these springs. 
Reinforcement anchorage at a certain point can be treated as the 

point having perfect bond with the concrete surrounding it, i. e. 

equation (3-1) holds for such a node. Thus the reinforcement 

anchorage at the point can be modelled by a spring with very high 

stiffness value. This can be seen from Equation (3-4b) repeated 
here 

(Ucj - USA) .b= Pct 

it can be re-arranged as 
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Pc j 
(Ucj - USA) = 

b 

(3-23) 

The slip between concrete point cj and the steel node sj (Ucj- Usk) 

in equation (3-23) approaches zero when the spring stiffness (b) 

approaches infinity. Leading to an infinite value for Ro 

In this method the anchored steel node will refer to a node with 

infinite bond so that Ro value at that node will be set to a very 

high value typically a thousand times higher than Ro at other steel 

nodes. 

3.6.3 Anchorage by applying an external force 

In this section the development length concept for anchorage of 

reinforcement will be used in deriving another way of representing 

anchorage . 
Anchorage can be achieved by applying an external force to the 

steel acting at the node which is to be anchored so as to prevent 

the steel node from moving with respect to the surrounding 

concrete. This external force is calculated from the average bond 

stress over the development length of the reinforcement. The 

method is presented now 

Consider a steel node sj of the steel bar shown in figure (3-15a). 

This node is to be anchored to the surrounding concrete 
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represented by node cj. If the slip at that node is delta A, the 

necessary force to bring the two nodes together is calculated from 

the average bond stress over the development length ( Id ) of the 

steel bar assuming linear variation of bond stress over Id , figure 

(3-15 b). 

Hence 

fbs = (A/ 2) . Id . Ro .0 (3-24a) 

where 

fbs is the average bond force acting on Id and which is 

necessary to push back the node sj to the point of anchorage. 

Id is the development length of the reinforcement needed for 

the transfer of force between the reinforcement and the 

concrete. Its initial value may be selected according to the 

Building Codes requirements . 

The applied force on the concrete which is necessary to establish 

equilibrium with the steel can be obtained from equation (3-24a) 

by calculating the equivalent nodal forces of the concrete using 

equation (3-12) leading to 

fbc _I Cej]t . fbs 

where 

(3-24b) 

fbc is the average bond force applied at the nodes of the 

concrete element accommodating the steel node. 
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(a) - Anchorage of a reinforcement bar to the surrounding concrete. 

fbs .d Od. *Rp* 0) 

fbs-0 

. - A Id 

point of anchorage 

(b) - Bond force variation over the bar length due to A 

Figure (3-15) -Reinforcement anchorage by applying external force 
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The solution of both equations (3-24a) and (3-24b) depends on 
knowing the value of A in advance. So their application can be 

done in an iterative fashion. 

From the solution of equation (3-22) the value of A can be 

calculated. As the value of b is made known, then the forces of 

equations (3-24) is calculated. These forces can now be assembled 

in the load vector of equation (3-22). Another solution has to be 

obtained for the system again and a new value of A is calculated. 

The process is repeated until the value of A becomes sufficiently 

small. 

The application of this method is demonstrated in chapter 4. This 

can be achieved in an efficient way. 
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3.7 Summary 

A new method for the analysis of reinforced concrete by finite 

element method has been developed. The method uses bond 

between reinforcement and the surrounding concrete as the basis 

for the development of the theory. Bond is modelled by springs 
joining the steel and the concrete. Bond inter-forces were derived 

from the springs stiffness and the relative movement between the 

steel and the surrounding concrete. The stiffness bond matrix for 

one steel node was first established from the bond interforces. 

Then the element bond matrix was established for all steel nodes 

within a concrete element. The global bond matrix was assembled 

from the bond matrix of the concrete elements which have steel 
bars passing through them. The concrete and the steel have each 
been modelled and analysed separately. The process of combining 

them into a mass of reinforced concrete was achieved by 

interconnecting the two materials through the global bond matrix. 
Thus the system load-displacement equations for the complete 

structure were established. Modelling of reinforcement anchorage 
by two methods was discussed. 
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4. SOLUTION OF EQUATIONS 

4.1 Introduction 

In solving problems by finite element method usually large number 

of simultaneous, linear algebraic equations have to be solved. In 

this chapter appropriate methods which can be applied for the 

solution of the system equilibrium equations presented in section 

(3.4) are discussed. 

The solution of the resulting set of simultaneous equations can be 

accomplished by direct technique methods such as Choleski 

reduction or the direct Gaussian elimination procedure. But, since 

the global stiffness matrix i. e. equation (3-22) is assembled from 

all degrees of freedom of concrete and of total degrees of freedom 

of all the reinforcement bars present then this will lead to a very 
large matrix with large band width. Conventional methods of 

solving such a large number of system equations ( i. e. by direct 

solution ) is expensive from computer point of view. Therefore, 

new approaches will be examined for the solution of the resulting 

system of equations. Advantage of the separate representation of 

matrices in equation (3-22) will be taken in establishing an 

approach based on iterative technique. 

In general by using direct technique methods the answer will be 

given in a fixed number of steps and a unique solution will be 

produced. The indirect method technique will involve an iterative 

procedure which will start by an initial approximation to the 
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solution and generates a sequence of approximate solutions which 

converges to the true solution if the iteration process was 

successful or diverges for unsuccessful process, 

The possibility of a direct solution is discussed. Two out of 

several other possible iterative schemes for the solution of 

equation (3-22) are studied and presented. 

While studying the different methods that can be applied for the 

solution of the system equations presented in section (3-5) the 

methods will be compared for efficiency in terms of computer 

time required to perform the number of arithmetic operations 

needed in the solution of the resulting equations 

The method of applying external force to model steel anchorage 

will be demonstrated. 
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4.2 Illustrative problems 

In the discussion of the methods that can be applied for the 

solution of the system equilibrium equations the following 

example will be used by the different methods for the purpose of 

testing and comparing these methods. 

The single span beam shown in figure (6-1) will be analysed taking 

into account all the reinforcement involved in tension, 

compression steel and stirrups. The beam is simply supported and 

uniformly loaded. Further details of the beam are given in chpater 

6. 

The -finite element mesh for concrete suitable for this method is 

shown in figure (6.2). There are 20 concrete 8-noded quadrilateral 

elements with a total of 85 nodes. 

Another problem is given here which may be used in some cases to 

help in demonstrating some of the ideas when examining the 

different methods. 

This problem is for a cantilever which is represented in the simple 

layout shown in figure (4-1) . It is loaded with uniformly 

distributed load. The reinforcement details and distribution are 

shown in the figure. There are a total of 13 bars groups with a 

total number of 130 nodes. The concrete mesh has 18 8-noded 

quadrilateral elements with a total number of 73 nodes 

figure(4-2). 

The tension steel is fixed at the cantilever fixed end. 
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Figure (4.1) Details of Cantilever 

Figure (4.2) Finite Element Mesh For Concrete inthe Above Cantilever 
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4.3 Direct solution 

Direct solution of the set of simultaneous equations defined by 

equation (3.22) is straightforward and can be accomplished by any 

method such as Choleski reduction or the direct Gaussian 

elimination procedure. 

To obtain a direct solution to equation (3.22) it will be rewritten 

in the following form : 

[K ]ý[ KB] -[Clt" [Kbl [Dc] I [PC l 

_ (4-1) 

Kb ý"LCl [Ks]+[Kb] [Ds] [Psi 

The above matrix is a symmetrical banded matrix whose band 

width depends on the efficiency of the numbering scheme. In the 

above form of representation the concrete terms and the steel are 

given into separate quantities as they are derived in chapter 3. 

The actual elements of these matrices obtained for a direct 

solution is a mixture of terms corresponding to steel and to 

concrete assembled according to global degrees of freedom 

numbering. The associated mesh with this solution should have a 

continuous node numbering system for all the concrete and the 

steel degrees of freedom numbers. 
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Example of mesh assembly 

The small mesh of figure (3-11) will be used to demonstrate the 

direct solution method. An efficient node numbering of the mesh 

which is suitable for direct solution is illustrated in figure (4-3) 

which corresponds to figure (3-11). The global matrix for a direct 

solution is assembled as shown in figure (4-4) which corresponds 

to the matrix shown in figure (3-12). 

The beam solution : 

Solution to the real beam given in section (4.2) will be used to 

demonstrate direct solution for the purpose of comparison with 

iterative solution. The tension reinforcement is divided into 40 

elements or 41 steel nodes and the same thing is done to the 

compression reinforcement. Each of the strirrups is divided into 4 

elements or 5 steel nodes. An efficient numbering scheme for all 

concrete and steel nodes was carried out. The maximum half band 

band width is found to be 66 . The number of simultaneous 

equations (N) to be solved is the same as the total degrees of 

freedom (TDOF) and equals to 474. Leading to a banded matrix of 

474 X 66 elements which have to be stored and solved. The number 

of multiplications/divisions operations required for solving this 

system of equations using Choleski Algorithm is approximately 

equal to 1.1 millions operations. 

The effect of increasing the number of steel nodes on the amount 

of calculations required is demonstrated here. - The number of 

nodes for each stirrup is increased to 9 nodes instead of 5 nodes 

while keeping the number of steel nodes in the tension and the 

compression steel the same as before. 
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(For Direct Solution) 
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In this case the total number of degrees of freedom becomes 654 

and the half band width is 94. Leading to a number of arithmetic 

operations to over 3 million operations 

The efficiency of this solution in terms of the number of 

arithmetic operations needed will be studied in comparison with 

the iterative methods of solution that will be discussed next. In 

this solution the concrete and the steel displacements are solved 

simultaneously and they are not separated. 
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4.4 Iterative methods of solution 

4.4.1 General 

Equation (3-22) is 

sub-matrices. This 

studied to find out the 

solution for the resultir 

possible by indirect 

procedure. 

presented in a partitioned form of 

form of separate submatrices ham been 

possibility of obtaining a new approach of 

ýg equations. Such solution may be made 

solution which involves an iterative 

Solutions of simultaneous linear equations by iterative technique 

starts from an initial approximate solution and then a sequence of 

approximate solutions are generated. The process is repeated 

until a satisfactory solution is reached. Relaxation methods can 

be adopted to improve the convergence of the iterative methods. 

Thus slow converging iteration procedure can be accelerated by 

over-relaxation methods which is used to speed up the 

convergence, on the other hand, iteration methods that converge in 

an oscillatory manner can be improved using under-relaxation 

methods to obtain convergence in a faster manner. The decision to 

stop the iteration is based upon the convergence criteria set for 

the solution. Iteration may continue until satisfactory accuracy 

results. The number of iterations is usually restricted to some 

maximum so as to control over slow converging methods or 

diverging methods. 

The iterative technique required for the solution of equation 

(3-22) is actually a combination of both direct and iterative 

methods. A direct solution to the set of finite elements related to 

75 



concrete done separately and another direct solution for the steel. 

The iterative solution of: the complete structure is sought by 

determining the interforces and applying them in conjunction with 

the i' external loads to each set of finite elements. 

i. e. 

Forces on concrete = Loads applied to concrete + Interforces 

Forces# on steel = Loads applied to steel + Interforces 

The purpose of the iteration process is to adjust the solutions 

obtained for the concrete and the steel during the iterations so 
ces 

that the final solution satisf4 equation (3-22). 

The system of matrices represented by equation (3-22) consist of 

the following 

1) Concrete stiffness matrix [Kc] 

2) Steel stiffness matrix [Ks] 

3) Bond matrix containing bond stiffness terms related to 

concrete displacement and bond stiffness terms related to steel 

displacement. 

Equation (3-22) can be re-written in a form suitable for the 

iterative method as follows : 

[Ks] [DJ + [KB] [DJ - [C]t [Kb] [ DS] = [AC] (4-2a) 

[KS] [DS] + [Kb] [Ds] - [Kb] [C] [Dc] = [PS] (4-2b) 

Different combinations of the above matrices can be formed which 

will lead to different forms of methods of solutions. Two of these 
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combinations have been studied thoroughly and are presented in 

the following two sections. 

4.4.2 First method examined 

4.4.2.1 The meth 

In this section an iterative scheme which was tried and found 

unsuccessful will be presented. In this method of solution the 

terms of the bond matrix related to the concrete will be added to 

the concrete stiffness matrix and the terms of the bond matrix 

related to the steel will be added to the steel stiffness matrix. 
This can be done by combining the appropriate matrices of 

equations (4-2) together and rearranging as : 

[Kc+KB] . [DC] _ [PC] + [C]t . [Kb] . [DS] (4-3a) 

[KS+Kb] " [DS] = [Ps] +[ Kb l" [Cl " [Dc] (4-3b) 

In this form the term [C]t . [Kb] . [Ds] represents the interforces 
k'b C 

applied to concrete and the term [6] . [h] . [Dc] represents the 

interforces applied to steel. 

A solution to the above arrangements can be obtained by the 

following iterative scheme : 

[Kc+KB] . [Dc1 ]=[ PC ] (4-4) 

[KS+Kb] - [Da'] = [PS] +[ Kb l" [C] . [Da'] (4-5a) 

[Kc+KBI [DCi+1 ]= [PC] + [C]t. [Kbl - [Da'] (4-5b) 
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where i refers to the iteration number. 
involves equations (4-5). 

The iteration only 

Before the iteration solution starts [ Kc+KB] is assembled and 

reduced to banded lower triangle matrices once only. The same 

thing is also done to [Ks+Kb]. 

The iterative solution of the above arrangements is summarised in 

the following steps : 

1) Total load is applied to the structure so that 

[ Pc ]= full load or [ PS ]= full load 

2) Calculate [ Dc1 ] using equation (4-4). This will be the initial 

approximate solution. 
3) Total forces on steel are calculated from equation (4-5a) 

according to [PS] + [Kb]. [C]. [Dc] 

using latest concrete displacements calculated. 
4) Steel displacements are obtained due to the load calculated in 

step 3 and by solving equation (4-5a) using the reduced form of 

[Ks+Kb] 

Thus, this is not an full solution but a back-substitution in the 

reduced form of [ Ks + Kb ]. 

5) Total forces on concrete is calculated and applied according to 

[PC] + [C]t " [Kbl " [Ds] 

using the latest steel displacements calculated. 

6) The load found in step 5 is applied to the concrete and the 

concrete displacements are calculated by solving equation 
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(4-5b) using the reduced form of [ Kc+KB]. 

Steps 3 through 6 are repeated until the solution converges or 

until a maximum allowed number of iterations is reached. 

The steel or the concrete solutions can be used for examining the 

convergence of the method. Since enormous numbers of data for 

displacements are available in every iteration corresponding to 

the total degrees of freedom of the concrete and the steel, the 

average of the absolute value of all displacements is used to 

examine convergence of the solution, that is 

(I I Dcii )/ TDOFC 

(I I Dsi I)/ TDOFS 

where 

TDOFC = Total degrees of freedom of concrete 

TDOFS = Total degrees of freedom of steel 

These average values are found to be a good indication of the 

convergence of the method. Any of the two quantities can be used 

as can be seen while discussing the method. 

The convergence of the solution was found to be extremely slow. 
Hundreds of iterations are allowed without much hope for 

convergence of the solution. This can be seen from figure (4-5) 

which shows t he convergence behaviour of the solution of the 

beam problem using the steel displacements to examine the 

convergence. After 200 iterations the soluti on is far from 

convergence. 
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4.4.2.2 Application of accelerator 

It was necessary to use a relaxation method to speed up the slow 

convergence of the solution . An overrelaxation (accelerating) 

factor beta (ß ) is applied to the solution. A constant accelerator 

factor ßs is applied to the steel displacements in every iteration 

to correct for the current iteration solution and another constant 

accelerator ßc is applied to the current concrete displacements. 

The application of these factors is done according to 

[ DSi ] [ psi-1 ] + RS " ([ Ds' ]- ( pst-1 ]) (4-6a) 

[DC'] _ [psi-1 I + ßC " ([Dc'] - [psi-1 ]) (4-6b) 

Equation (4-6a) is applied after solving for the steel 
displacements in step 4, while equation (4-6b) is applied after 

solving for the concrete displacements in step 6. The application 

of the two factors within the iterative solution is given here in 

equation form : 

[KC+KBl" [Dc1] _ [PC] 

[KS+Kb]" [Ds'] = [PSI + [Kbl[C]" [Day] 

[Dsi] =[DS'-1]+ßS. ([Dsi] - [Ds'-1 ]) 

[Kc +KB]. [Dc i+1] 
_ [PC] + qt. [ Kb ]. [ Ds'] 

[ DCi+1 ]=[ Dc' ]+ ßc . ([ Dc'+1 ]-[ Dc' ]) 

There are a number of other methods for applying equations (4-6) 
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to the solution other than the one shown in the above equations and 

which depends on where to apply equation (4-6) within the 

iterative loop. These have been studied but the form shown above 
is adopted. 

The major difficulty was in finding the values of B. and ßc that 

will speed up the rate of convergence without upsetting the 

solution. The choice for the value of any of the two betas was 

completely arbitrary. Only through experimentation the values of 

ßs and ßc were chosen. It was necessary to limit their sizes as 

large values will disturb the convergence of the solution . The 

maximum value allowed were limited to be less than 2.0 

i. e. 

1.0 <_ ßs < 2.0 

1.0 5ßc< 2.0 

The values of the two factors are independent. 

As convergence was extremely slow the effective value for either 

of the two constants as obtained from experimentation were very 

close to 2.0 

The same beam problem is solved again after introducing the two 

overrelaxation factors. Figure (4-6) shows the convergence of the 

method using different values for the accelerating factors. 

Several points can be seen from this graph i) the great effect of 

the accelerating factors on the convergence of the solution ii) 

The need for high values of betas . iii) The convergence of the 

method is best described when using ßc = ßs = 1.98 
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Therefore the solution using a constant accelerator of 1.98 for 

both concrete and steel solutions was studied thoroughly for the 

steel and the concrete solutions. The results were encouraging but 

still need to be improved. Allowing for larger number of 

iterations upsets the solution again. 

4.4.2.3 Solution starting with a better value 

The solution in the previous section started with initial concrete 

displacements obtained from equation (4-4) . The extra stiffness 

added to the concrete matrix [Kc] have obviously caused a rough 

start of the solution Another starting value can be obtained by 

simply calculating the deflection of the concrete nodes by solving 

the problem for plane concrete alone ignoring the presence of the 

steel. The purpose of which is to provide a better approximation 

of the starting value for the iterative process. This will lead to 

replacing equation (4-4) with 

[Ks]. [Da] = [PC] (4-7) 

Obviously the concrete deformations obtained using the above 

equation are too high since the stiffening effect of the 

reinforcement is absent. 

It would be legitimate therefore to scale these values down by 

some factor K. Thus a constant x whose value is less than one is 

applied for all concrete displacements once only before starting 
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the iteration process as illustrated in flowchart (4.1). In equation 

form this is given by 

[DC°] = x. [Dc] 

0< x<1.0 

The value of K can be found from two different approaches : 

i) As already noted that the high values of the concrete 

displacements are due to the absence of the stiffening effect of 

the reinforcement from the solution of equation (4-7). Therefore 

it is straightforward to calculate a value of x from the different 

stiffnesses of the problem . Thus x can be estimated from the 

relative stiffness of the structure with and without 

reinforcement as follows 

stiffness of the structure without reinforcement 
K= 

stiffness of the structure with reinforcement 

The value of x, of course, depends on each individual problem It 

has to be estimated manually from the bending stiffness for the 

two cases allowing for the ratio of Young's modulus to steel and 

concrete. For the beam problem the value of x is estimated to be 

0.75 . Figure(4-7) shows the effect of applying different values of 

K to the beam problem. The solution without the effect of applying 

x (i. e. x=1.0) starts from a very high initial approximate value for 

concrete and the values are reduced as iteration proceeds. The 

effect of using the value of x of 0.75 is shown. 
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ii) The value of x can be derived mathematically from first few 

iterations. This is made possible by identifying the upper and 

lower limits of x. An upper limit for x of 1.0 and a lower limit 

of 0 have already been given. However, it can be safely assumed 

that the exact concrete deformations of the complete structure is 

greater than one half the value obtained from equation (4-5) 

Leading to the following 

0.5 < xe <1 .0 

The exact value of x or "xe" can be obtained in terms of x=1.0 and 

x=0.5 as follows. The slopes for the two convergence curves of 

x=0.5 and x=1.0 can be calculated from the concrete displacements 

obtained from the first two iterations. The following slopes can 

be calculated for the two values of x as 

when x=1.0 slope = (Dc2 - Dc1) / (1.0 - xe) (4-8a) 

when x=0.5 slope = (Dc2 - Dc1) / (0.5 - Ke) (4-8b) 

where 

Dc1 = concrete displacement at first iteration 

D2= concrete displacement at second iteration 
c 

By assuming the two slopes to be equal the equations (4-8) yield 

the following 

(Dc2- Dc1)K=1.0 (1.0-xe 

(Dc2 - Dc1)K=0.5 (0.5 - xe) 

where 
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(ßc2 - ßc1 ) x=1.0 is the value at K =1.0 

(DC2 - Dc' ) x=0.5 is the value at x=0.5 

By substituting numerical values in the above formula from the 

first two iterations an approximate value of xe can be found. For 

the general case x can be obtained after the ith iteration when 

comparing concrete displacements to the ones obtained in any 

preceding iteration. 

The effect of the values assigned to the relaxation parameters is 

also illustrated when solving the cantilever problem in figure 

(4.1). Figure (4-8) shows the convergence of the cantilever when 

using different values of ßc , ßs and using different values of x. 

Convergence of the problem is obtained for the two cases of 

ßs=1.99, ßc=1.8 and x=1.0 or 0.5 after about 40 iterations. The 

values of ßs=1.99, ßc=1.99 and K=1.0 or 0.5 causes violent 

behaviour of the iterative solution but it looks that the two curves 

are approaching convergence if the iteration was. allowed to 

continue. 
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4.4.2.4 Conclusion 

This method has been examined thoroughly. Very great effort was 

put into the method. Different approaches to improve the solution 

have been implemented. The results were always studied 

thoroughly which included calculating the first and the second 

differences of the concrete and the steel solutions, studying bond 

forces convergence, the different methods of applying B. and ßc, 

effect- of different x values and physical interpretations of the 

results. 

The number of iteration required for the convergence of the beam 

solution is always 50 or more which is very high. The amount of 

arithmetic operations for the 50 iterations is not any better than 

the direct solution . Different accelerating factors have to be 

used . It was always a difficult problem to find a method for 

determining the accelerator parameters. The displacements 

changed very little at each iteration suggesting that the left hand 

side of equation (4-3) included excessive stiffness. This suggested 

an alternative described next 
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4.4.3 Adopted method of solution 

4.4.3.1 The method 

It was shown in the previous section that when the stiffness 

terms of the bond matrix was added to both the steel and the 

concrete matrices the extra stiffness have caused the convergence 

of the m ethod to be extremely slow. Also it was shown that by 

starting the iteration solution with a concrete displacement 

obtained from the solution of [ Kc ] .[ Dc ] =[ Pc ] the 

convergence of the solution ' is improved . 

These observations led to rearranging the equations of solution 

presented in the form given by equations (4-2) such that the extra 

stiffness coming from bond terms can be removed from the 

concrete stiffness matrix. This can be achieved using the 

following iteration scheme which is yet another way of 

representing a solution to equations (3-22) : 

Kc 1" Dpi+1 J=C Pc ]- ([KB] "[ Dci] -[ C]t [ Kb] "[ DS' ]) (4-9a) 

[Ks + Kb] LDsi+11 =[ Ps ]+[ Kb 1"[C]-[ Dci+1 ] (4-9b) 

Before the iteration solution starts [ Kc ] is assembled and reduced 

to banded lower triangle matrices once only . The same thing is 

also done to [ Ks+Kb] . 

The iterative solution of the above arrangements is summarised in 

the following steps : 
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1) Total load is applied to the structure so 

[ Pc ]= full load applied to concrete 

or [ Ps ]= full load applied to steel 

2) Solution starts with an initial value of zero deformations for 

all the concrete and the steel starting solutions or 

[ Dc0] =0 

and [ DSO] =0 

3) Total forces on concrete are calculated and applied according to 

[Pc] - ([KB]. LDcl - [ Ct] . [Kb]. [Ds] ) 

by substituting the previous obtained values of Dc and Ds 

for the first iteration this will reduce to [ Pc ]. 

4) Concrete solution is obtained due to the load calculated in step 

3 and using the reduced form of [ Kc ] 

It is noted here that in the first iteration the solution of [ Dc ] 

is identical to that obtained by equation (4-7). 

5) Total forces on steel are calculated according to 

[PS] + [Kb]. [C] . [DJ 

using the concrete deformations obtained in step 4. 

6) Steel solution is obtained due to the load as calculated in step 3 

and using the reduced form of [ Ks + Kb ]. 

Steps 3 through 6 are repeated until the change in the solution 

becomes sufficiently small . 
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4.4.3.2 Convergence Criterion 

The convergence of the solution can be examined from the behavior 

of the concrete displacements, the steel displacements or the bond 

forces calculated in every iteration. The three quantities depend 

on each other. Experimentation have shown that the the concrete 

displacements are the most sensitive indicator of convergence. 

The measure used for judgement of convergence is the sum of the 

absolute values of the concrete displacement for all degrees of 

freedom 

i. e. 

((EIDc I)/TDOFC) 

The iteration is stopped when the maximum change in any value of 

the concrete displacement is less than a specified tolerance (?, ) 

CI DPI' -I pci-1 1 )max 

IDc`I 
< %1. 

Where the value of the tolerance (2. ) is set to 

%=1/ 1000 

This means that iteration cycle is stopped when the change in 

every element of [ Dc ] is less than one thousands of its current 

value. 
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4.4.3.3 Converaence of 

The solution obtained this way converges extremely rapidly . The 

convergence for the beam problem defined in section (4-2) and 

solved by the previous method converges now in 13 iterations 

where it needed several hundreds of iterations by the previous 

method. 

The way the solution converges is in an oscillatory manner as 

shown in figure (4-9). The reason for this can be seen from the 

physical interpretation of equations (4-9). In equation (4- 9a) the 

applied loads and the bond interforces act on the concrete alone 

without any stiffening by the steel or the bond, leading naturally 

to displacements which are too large . This leads in turn to too 

large an estimate of the bond interforces in equation (4-9b) and to 

steel displacements which are too large. By comparing figures 

(4.5) and figure (4.9) the great improvement obtained using this 

method over the previous method is quite clear. In the earlier 

method the concrete matrix was over stiffened by including the 

bond component. 

4.4.3.4 Damoina factor (a 

In the previous method an over-relaxation factor was needed to 

speed up the convergence of the method. In this method although 

the convergence was quite rapid it may still be improved by the 

relaxation method using an under-relaxation, or damping, factor. 

It is quite simple to calculate automatically a damping factor 
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alpha ( a) which allows for the extra stiffening due to steel. The 

value of alpha is to relate the calculated value of the concrete 

displacement to the " exact " value " Dc, exact "" Thus the 

concrete displacements caused by each increment of force are 

reduced by multiplying by a constant damping factor alpha of less 

than one (1.0 <a) in order to correct concrete displacements . 

The value of Alpha can be derived from the first two undamped 

iterations alone , by considering what value is needed to yield the 

exact solution . The following derivation of alpha is presented : 

If [ Dc1 ] is the concrete deformation after one undamped iteration 

then the exact deformation is obtained by multiplying by a or 

[Dc, exact' -a. [ Dci ] (4-1 Oa) 

After two undamped iterations the concrete displacement is [ Dc2] 

and thus the exact deformation is 

Dc, exact] -- [ Dc' ]+a. ([ Dc2] -[Dc1]) (4-1 Ob) 

By solving equations (4-10a) and (4-10b) simultaneously for the 

value of alpha that will yield 

EIßc1 

2-EIDc2I - IIßc1 I 
(4-11) 
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The superscripts 1 and 2 refers to the iteration number 

Note that the sum of all degrees of freedom of the concrete- 

displacement have been used instead of using individual concrete 

displacements. This is because a constant factor alpha will be 

applied to all concrete displacements which was found to be very 

effective otherwise a number of alphas corresponding to TDOFC 

have to be used. 

The alpha factor will be used for all iterations starting by the 

values obtained in the second iteration [ Dc2] . The application of 

this factor is illustrated here 

[ Dc'] =[ Dpi-1 ]+a. ([ Dc'] -[ Dc'-'] ) (4-12) 

The complete iterative process is summarised in flowchart (4-2). 

The convergence of the solution of the beam problem is now 

obtained in 6 iterations using this process . Figure (4-10) shows 

the effect of applying the damping factor on the convergence of 

the beam problem. 

4.4.3.5 Another form for applying the Alpha factor 

Another method for applying the alpha factor defined by equation 

(4-11) can still be implemented using the same idea when deriving 

a factor the purpose of which is to seek a faster convergence 

method . In this new method also the concrete displacements 

caused by each increment of force are reduced and that by applying 
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alpha in a different form. Alpha is assumed to be effective 

starting from the first iteration cycle. The argument for this 

application is illustrated here 

In the second iteration Dc2 is calculated from 

[Dc 2] Dc1 ]+a. (L Dc2] -L Dc1 ]) (4-13a) 

But this is also adjusted by a giving 

[Dc2 ]=a [Dc1 ]+a ([Dc1] +a {[DC2] - [Dc1 ]} -a [Dc1 ]) (4-13b) 

leading to 

[Dc2] =a [Dc1 ]+a [Dcl ]+a. a [Dc2] - ma [Dc1 ]-a. a [Dc1 ] 

or 

[Dc2 ]=2a [Dc1 ]-2 (x. a [Dc1 ]+«. a [DC2] 

[Dc2] =2a (1- a) [ Dc' ]+a. a[ DC2] (4-14) 

By presenting it in general terms the following form is obtained 

[DC i] =2 ((X - a2) [D0i-1 ]+ a2 . [DC'] (4-15) 

Application of alpha in this form to the beam and the cantilever 

problems of section 4.2 are illustrated in table (4.1) which shows 

the concrete average deformations as obtained by applying the 

damping factor in the two forms. The convergence of the solution 
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(D 1 i-1 i-1 
D =Dc + a, (DC - Dc ) 

1 
Dc=2cc. (1-a. )D D 

l+m2 
ö öL c c c 

E LE (D1 
i- 

Dc 
1) 

max 
Dc occurs ( Dc i Dc 

1) 
max 

/ Dý occurs 
03 W at at 

L- d. o. f Value d. o. f Value 
CL 

1 84 1.0 84 1.0 

2 84 0.56 84 0.56 
L 

3 84 0.018 84 0.016 
I- 
F= 4 84 0.00297 84 0.00229 
0) 
ö 5 84 0.00015 84 0.000512 
L 

E 6 84 000048 0 84 0.0001 
E . 
0) 7 84 0.000007 84 0.000023 
CO 

v 
1 120 1.0 120 1.0 

L 

2 120 0.41 120 0.407 

E 3 120 0.035 120 0.0261 

ö 4 120 0.0041 120 0.00259 

n- 5 120 0.00032 120 0.00082 
L 
C) 

6 120 0.000054 120 0.00014 

7 120 0.0000013 120 0.000032 
v 

Table (4-1) - Effect of the method of application of (a) on the 

convergence of the solution 
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did not improve. The first form of applying a requires less number 

of iterations to obtain a solution for the beam problem. The same 

thing is noted in the convergence for the cantilever problem. Since 

no improvement has been obtained then it is recommended to use 

the first form which does not include 
,a 

square term. 

4.4.3.6 Comments on the method 

The method discussed in this section has shown considerable 

improvement over the method discussed in section (4.3 ) i. e. 

figures (4.5) and (4.9). 

It is appropriate here to make some comments on the computations 

involved in the iterative method. 

First, it should be noted that the matrix [Ks + Kb ] is a 

tri-diagonal matrix with a half-band width of only two and also 

that it can be created directly from the reinforcement and bond 

data without the overheads of the conventional assembly process. 

This is made possible because the steel nodes are numbered 

independently of the concrete degrees of freedom. [Ks + Kb] is 

assembled for all steel bars. It is, of course , symmetrical and so 

its reduction by Choleski is very simple. 

Secondly, it is also not necessary to assemble the bond matrix 

[KB]. It can be more efficiently left as element related matrices. 
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Thus, the term [Ce]t. b. [Ce] is calculated for every steel node 

within the element and assembled in the element [KBe]. Also it is 

not necessary to assemble the bond matrix [Kb]. [C]. It can be more 

efficiently left as terms related to steel nodes i. e. b. Cej. All the 

operations in equations (4-9) can then be performed on those 

matrices by selecting the relevant displacements from [Dc] and 

[DS] according to element node numbers . 

Third, another obvious point to be discussed is that the left hand 

side matrices [Kc] and [Ks + Kb] of equations (4-9) need be reduced 

to banded lower triangular matrices once only at the start of the 

iterative cycles. Because of the form of [Ks + Kb] this is a trivial 

operation and the computational effort is principally that of 

assembling and reducing [ Kc ]. 

Finally, the back-substitutions through the reduced [Kc] needed in 

equations (4-9) makes little contribution to the solution time . 
The amount of computation involved in the solution of this method 

can be summarised in the following steps : 

1) reduction of [Kc] 

2) reduction of [Ks + Kb] 

3) performing the multiplication [Ce]t. [Kbe] . [Ce] . [De] repeated 

NCE times. The element bond matrix [Celt- [Kbe]. [Ce] is 

performed once before the iteration process. For 2 dimensional 
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8-noded concrete element this matrix dimension is 16 by 16. 

4) Back-substitutions through the reduced [Kc] to obtain [Dc] 

5) Performing the multiplication [C]t . [Kb] . [DS] . The 

multiplication [C]t. [Kb] is performed once before the iteration 

process. [Ds ] size is the same as TDOFS. 

6) back substitutions through the reduced (Ks+kb) to solve for [Ds] 

Steps 3 through 5 are repeated for the number of iterations 

needed. 

Comparison with the Direct Solution 

The amount of calculations needed for the solution of the beam 

problem based on a direct method of solution have been done in 

section 4.3. The amount of multiplications/divisions operations 

required for this same problem based on the iterative method as in 

the above steps is estimated to be 180,000 operations for the six 

iterations when having 41 nodes for each of the tension and 

compression reinforcement and 5 steel nodes for each stirrup. 

Comparing this figure with the one needed for the direct solution 

which is approximately 1.1 million operations shows that the 

iteration method is more efficient. 

Further, when the number of steel nodes in every stirrup is 

increased to 9 instead of 5 the amount of calculations for the 

iterative method is approximately 220,000 while in the direct 

solution the number of operations was approximately 3 million 
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operations. 

Therefore, the increase in the number -of steel nodes which is 

expected to improve the solution for the steel have very little 

influence on the amount of calculations and thus computer time 

when using the iterative method. 

Example of computer time 

The computer time needed for the solution of this problem starting 

from reading the input data stage up to obtaining the complete 

solution is 55 seconds of computer CPU time using Multics system. 

4.5 Anchorage by applying an external force 

4.5.1 General 

The idea of steel anchorage has already been discussed in section 

(3-5) and it was found that anchorage can be modelled either by 

i) Using a high value for the bond stiffness parameter, or 

ii) by applying an external force to the concrete at the point which 

is to be anchored. The first method is straightforward since it 

only requires setting the spring stiffness at the point to be 

anchored to a very high value which may be a thousand times or 

more higher than the regular value. However the second method of 

steel anchorage involves an iterative process as discussed in 

section (3-6) and it's implementation is demonstrated here. 
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The iteration for anchorage can be easily adopted within the 

overall iteration process for the solution of the system equations. 

In this way the iteration process will serve two purposes. 

The implementation of the method within the iterative solution is 

summarised in the following steps 

1) Solving for concrete displacements. 

2) Obtaining concrete displacements at the position of the 

anchored nodes using current concrete values and equation (3-11) 

3) Solving for steel displacements. 

4) Getting current steel displacements of the anchored nodes. 

5) Calculating A from steps 2 and 5 for each anchored node. 

6) Knowing A, fbs and The can be calculated according to equations 

(3-24) and then applied to the structure. 

All above steps are repeated until A becomes sufficiently small. 

Thus the iterative process adjusts the values of- the concrete and 

the steel displacements at the point of anchorage to satisfy 

equation (3-1). 

4.5.2 Calculation of development length 

The calculation of fbs is obtained from an assumed value given for 

the development length (1d) to start with. 

The value of Id is entered in the input data. Length of Id entered 

may be larger or smaller than the required length for anchorage. 

The exact length can be calculated in the second iteration by 

noting the following : 
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1) In the first iteration d is obtained before applying any external 

load i. e. Al is obtained when fbs0 = 0 is applied. 

where fbsO is the initial external force on steel. 

2) In the second iteration 02 is obtained after applying fbs1 " 

where fbsl is the external force on the steel applied at the end of 

the first iteration of the solution. 

Figures (4-11) shows the two possible cases 

i) when fbsl is larger than the required value causing the anchored 

steel node to be pulled in the opposite direction figure (4-11a) 

ii) when fbs1 is smaller than the required force for anchorage so e 

is reduced a little but not small enough figure (4-11b). 

Fbs, exact (fbse) which will cause A to be zero can be calculated 

from figures (4-11). The two figures will lead to the following 

relationship 

Al 
Fbs, exact - fbs0 +( fbsl - fbsO) 

Al - A2 

but fbs0-0 

L1 

let CO = 
Al - 'ý'2 

leading to 

fbse - 10 fbs 1 
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The value of co can be applied from the second iteration. Flowchart 

(4-3) shows the application of this anchorage method within the 

iterative method of solution. 

Anchorage is achieved when the maximum value of A for all steel 

nodes is less than some tolerance. The tolerance value is chosen 

arbitrarily to be 10-6 mm. Therefore if the relative displacement 

between the anchored steel node and the surrounding concrete is 

less than the above tolerance then anchorage is successful. 

Actually, as will be see in chapter 6, a much smaller value for 0 

than the above specified tolerance is reached by the end of the 

iterative solution of the system equations and no need for further 

iterations to achieve anchorage. 
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(a) - Effect of large external applied force 

E1 

(b) - Effect of small external applied force 

Figure (4-1 1) - Calculation of External Force Nedded For 
Reinforcement Anchorage 
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Apply w 
to ld 
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Flowchart (4-3) - Inclusion of the iterative method for anchorage 

within the iterative method of solution 
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4.6 Summary 

Methods for solution of the system equations derived in chapter 3 

is presented in this chapter. Direct method of solution was 
discussed. Two iterative methods were studied thoroughly. The 

first iterative method examined was not successful although great 

effort was put into improving the method, it is very slow and 

needs several accelerating parameters to improve the convergence 

rate. Another iterative method was examined and it was found to 

converge extremely rapidly. It showed several advantages over the 

other methods and therefore is adopted. The advantages of the 

method adopted is : 

i) The method convergences quite rapidly 

ii) It is quite efficient as compared to the direct solution 

iii) The damping parameter needed for accelerating convergence 

can be calculated automatically within the method. 

The method of anchoring steel by applying an external force was 
demonstrated. 

Some results will be given in chapter 6. 
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5. NON-LINEAR BEHAVIOUR OF CONCRETE, STEEL AND BOND 

5.1 Introduction 

A new method for modelling of reinforcement and bond between 

concrete and reinforcement in -finite element analysis of 

reinforced concrete was derived in chapter 3. As already pointed 

out the approach taken in the development of the theory is through 

the simplest possible constitutive laws for the concrete and 

reinforcing steel which may be used to describe the behaviour of 

each material. Thus simple linear elastic stress-strain 

relationship for the two materials and for bond have been used. 

Analysis of reinforced concrete using an assumed linear behaviour 

of its constituents may be true at low level of loading. However 

the actual behaviour of the two materials and of bond between the 

two materials at general loading levels is more complex 

especially for concrete. In fact an accurate analysis of reinforced 

concrete is made complicated by a number of factors among which 

are the following factors : 

1. The non-linear stress-strain relationship of concrete. 

2. The nonlinear bond stress-slip relationship. 

3. Yielding of steel. 

4. Cracking of concrete under increasing load. 

5. Crushing of concrete. 

6. Local failure of bond. 

7. Effect of dowel action in the steel reinforcement. 
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Including nonlinear material behaviour in the method of solution is 

discussed in chapter 7 and is demonstrated for nonlinear bond 

behaviour. 

In this chapter the constitutive laws of concrete and steel 

presented in literature will be reviewed briefly. Also, the 

constitutive laws used for the two materials in this thesis will be 

explained. Experimental work on bond is reviewed. Nonlinear bond 

stress-slip relationship is discussed. 
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5.2 Concrete 

5.2.1 Brief review of concrete behaviour 

Concrete is an inhomogenous anisotropic material whose 

characteristics change with load level and the length of load 

application. Stress strain relationship for concrete is strictly 

nonlinear. Much effort is continually directed towards 

investigations of different constitutive relationships for concrete. 

Investigations into the stress-strain relationship of concrete have 

been directed to the three known formulations namely uniaxial, 
biaxial and triaxial formulations. 

Figure (5.1) shows a typical stress-strain curve for the case of 

uniaxial loading of concrete. A brief survey of the formulation of 

the stress strain relationships of concrete under uniaxial loading 

is given by Popvics (1970). The literature of Chen, C. T. and Chen 

W. F. (1975) gives a summary of the results for biaxial and 

triaxial stress states. Figure (5.2) illustrates the strength failure 

envelope for the case of biaxial loading. The figure shows 

relationships obtained by several authors. The shape of the failure 

surface in triaxial stress state is approximately as shown by 

figure (5.3) which is reported in the literature of Chen, C. T. and 
Chen W. F. (1975). 

Representation of nonlinear stress-strain relation of concrete in 

finite element analysis of reinforced concrete can be based on any 

of the above presented formulations. Constitutive relationships 

are normally stated in matrix form to be suitable for finite 

element analysis. A constitutive relationship for the uniaxial 
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stress-strain relationship is found for example in the work of 

Saenz (1964). A constitutive relation for an elastic orthotropic 

material in biaxial stress for example can be found in the work of 

Liu et al. (1972). Other forms of concrete stress strain relations 

for biaxial state is given by Kupfer and Gerstle (1973) and Darwin 

and Pecknold (1977). An analytical form of the stress strain 

strain relation for concrete in triaxial state is proposed by Ahmad 

and Shah (1982) and by Chen, C. T. and Chen W. F. (1975). 

It is appropriate to comment here on the difference between using 

a linear elastic model for concrete versus using a concrete model 

based on biaxial formulation. Using the linear elastic relationship 

places no limit on compressive or tensile stresses which may be 

carried by the concrete, while the failure strength envelope will 

allow only realistic compressive and tensile stresses to be 

carried by the concrete. Also, higher stresses are predicted by 

linear analysis as compared to non-linear analysis. However the 

linear elastic relationship holds for stresses up to 30% of the 

ultimate strength of concrete. Also-in tension concrete behaves in 

a linear elastic manner. 

Cracking of Concrete: 

Cracking is an essential effect of the inelastic behaviour of 

concrete. Including cracks of concrete in the analysis of 

reinforced concrete is very important to accurate modelling of 

concrete. Effect of cracks in finite element analysis of concrete 

can be included at locations when tensile failure condition of 

concrete is met. 
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5.2.2 Concrete constitutive laws 

In the previous section the constitutive laws governing the 

behaviour of concrete available in literature were explained. 

However in the model developed in this work concrete behaviour is 

simplified by assuming linear elastic stress strain relationship. 

Also, cracks which develops in concrete are not handled. The 

three dimensional state of stress of a reinforced concrete 

structure is approximated by two dimensional analysis. 

Concrete stresses are defined by: 

CFX 

6= G y 

tx 

where 

ax , ßy are the normal stresses in the x and y directions 

tiXy is the shearing stress 

The corresponding strains are defined by 

EX - aiax a 
E y =0 

alay 

yXy aiay a/ax 

where 

U 

V 
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ex sy are the normal strains in the x and y direction 

Yxy is the shearing strain 

u, v are the displacements in the x and y directions. 

For uncracked, isotropic material the stress-strain relationship is 

given by 

ß=DE 

where D is the elasticity matrix 

i) For plane stress D is defined by 

E1v0 

D=v10 

1-v2 00 (1-v)/2 

ii) For plat' strain D is defined by 

E 1-v v0 

D=v 1-v 0 

(1+v? )(1-2v) 00 (1-2v)/2 

Where 

E is the uniaxial elastic modulus 

v is Poisson's ratio 

(5.1) 

(5.2) 

(5.3) 
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Steel in reinforced concrete structures is loaded in direct tension 

or compression. Its behaviour can be adequately described by 

uniaxial stress strain curve. A typical stress-strain relationship 

of steel is shown in figure (5.4). Steel shows linear elastic 

relation for the first part of the curve. For any additional 

stresses beyond the yield stress steel shows plastic deformation. 

In the application of the method to reinforced concrete problems 

in chapters 6 and 8 steel is assumed to have yield stress of 400 

MPa or 60,000 psi. 

In this thesis steel behaviour is taken to be linear elastic and 

yielding of steel is not considered. This assumption is adequate 

for the solution of the reinforced concrete problems selected in 

this research. 

The stress-strain relationship is given by : 

a= ES 9 

where 

8 is the axial strain in steel. 

Es is the elasticity modulus for steel. 

(5.2) 

-Modulus of elasticity of steel is taken to be 200,000 MPa or 

29,000,000 psi. 
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5.4 Bond 

5.4.1 A brief review of experimental work on bond 

In chapter 2. a review of research on finite element analysis of 

reinforced concrete which include bond was presented. It was 

shown that bond stress-slip curve and the associated bond 

stiffness value are very often included in modelling of bond in 

finite element analysis. Further, bond stress-slip curves are 

obtained from experimental measurements of steel and concrete 

strain distribution along the steel concrete interface. Slip of an 

embedded bar over a given length is the total relative movements 

between the bar and the surrounding concrete over the given 

length. Experimental measurements of the slip along the concrete 

steel interface is a very difficult problem. In this section a brief 

review of experimental work done on the study of bond is 
4 

presented. 

Parsons (1984) literature on bond gives a comprehensive review on 

the experimental research on bond. Work on bond was started by 

Abrams (1913) who studied bond using plain and deformed bars in 

pull-out and beam tests. He found that bond resistance in 

deformed bars was greater than in plain bars. Glanville (1930) 

measured load distribution in the bar and published his theoretical 

and experimental results on bond. Clark (1946) and (1949) worked 

on different designs of deformed bars. Studying bond is normally 

done by attaching electrical strain gauges to bars embedded in 

concrete. This method of studying bond is found in the work of 

Wilkins (1951), Mains (1951), Peattie and Pope (1956), Perry and 

Thompson (1966) and Nilson (1972). Test results on pullout 
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specimens showed the great importance of the tubs in the outside 

surfaces of the bar on bond. 

Mains (1951) used a steel bar with a built-in electrical strain 

gauges. This was done by cutting the bar longitudinally into two 

halves. In one half of the bar a groove was made to place the 

strain gauges then the bar was welded back into place. Specimens 

were used using plain and deformed bars. The results of tests 

indicated that stress magnitude and distribution in the 

reinforcement and bond stress affected by the cracks. Very high 

stress occurs near a crack. The bond stress distribution in the 

longitudinal direction was not uniform in pull-out test. 

Peatte and Pope (1956) have studied the longitudinal steel stress 
in plain bars for pull-out and torsion tests. Strain gauges were 

mounted in longitudinal slots on the bar. A theoretical analysis of 

the pull-out test was developed and was based. on adhesion, 
friction and bearing. In the adhesion stage the steel stress is in 

proportion to the applied load and the distribution of load is 

exponential until a critical strain in the concrete develop then 

rupture of adhesion occurs at the loaded end and moves toward the 

unloaded end as applied load is increased. Parland (1957) 

performed experimental tests to determine the distribution of 

stress in steel. , Perry and Thompson (1966) used a similar 

technique to Mains method to study the stress distribution at a 

crack in constant moment region of a reinforced concrete beam. 

Tanner (1971) and Nilson (1972) have used a similar method to 

Mains for measuring internal strains in steel and strains in 
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concrete at the interface with steel by placing strain gauges on 
the steel surface. The internal displacement in the concrete and 

steel can be obtained from the strains. Slip at any point along the 

bar is obtained from the difference between the concrete and steel 

displacements. Thus the bond stress-slip relationship is obtained 

for any point along the bar. Experiments showed that the bond 

stress-slip relationship is not unique. and it depends upon the 

strength of concrete and the distance from the loaded end of the 

beam. 

Tassios and Yannopoulos (1981) have observed that there is no 

unique relationship between bond stress and slip and that it 

changes with position. Dorr (1978) used bars with grooves milled 

on the outer surface of the specimen. The bond stress-slip was 

investigated and also the influence of hydrostatic pressure. 

Allwood (1980) investigated the stress distribution in the 

reinforcement in a beam column connection by attaching the strain 

gauges to the polished outer surface of the steel. Allwood found 

that the steel stress distribution is different than that which is 

usually assumed in design. Spencer et al. (1982) studied the bond 

of deformed bars under cyclic loading using fibre reinforced 

concrete. They mounted the strain gauges in grooves on both sides 

of the bar. 
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Mechanism of bond 

Experimental research work on bond studied the essential aspects 

of mechanism of bond. The bond action between reinforcing steel 
bars and concrete is made up of three components e. g. Lutz and 
Gergery (1967) 

1) Chemical adhesion. 

2) Friction. 

3) Mechanical interlock between concrete and steel. 
Bond in plain bars depends mainly on adhesion and friction with 

some mechanical interlock due to roughness of bar surface while-1 ' 

deformed bars depends mainly on mechanical interlock which gives 
deformed bars superior bond strength. 

5.4.2 Bond stress-slip relationship 

Bond stress can be thought of as the shearing stress between 

reinforcing bar and the surrounding concrete. Bond stress-slip 

relationship is strictly non-linear and it varies with the position 

along the bar. Experimental results of bond stress-slip 

relationship are presented based on average or local values. To 

include such a relation in analysis by finite element method 

normally an 'average bond stress-slip relationship is used. 

Different relations are obtained by different investigators. The 

degree by which these results differs is illustrated in figure (5.5) 
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which shows the average bond stress-slip relationship obtained 
by a number of investigators. Figure (5.6) compares bond 

stress-slip relationship obtained by Allwood (1980) with results 

obtained by other investigators. Local bond stress-slip 

relationship is shown in figure (5.7) given by Nilson (1972). Figure 

(5.7) shows separate curves which are established at different 

distances from the end face of the specimen. Further, bond 

stress-slip relationship is affected by the lateral pressure 
between concrete and steel as shown in figure (5.8). The figure 

illustrates the effect of lateral pressure on bond strength from 

the results of two investigators. 

The above bond stress-slip relationship shows clearly that the 

relationship is nonlinear. To incorporate such a relationship in 

finite element analysis Nilson (1968) used a third order 

polynomial to express the nonlinear bond stress-slip relationship 
based on experimental results. However very little work has been 

done in establishing a more detailed model that can describe the 

behaviour of different aspects of bond. One of such investigations 

is the model described by Allwood, Parsons and Robins (1984) 

which incorporates past-relevant research on the behaviour of bond 

and which allows for the effect of lateral pressure between 

concrete and steel. The model is based on extending the concept of 
local ultimate bond strength to create a local bond stress-slip 

relationship depending on the radial interface pressure in concrete 

and steel as load is applied. The model is explained next in detail 

because it will be used for nonlinear behaviour of bond in chapter 

7. 
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5.4.3 Nonlinear bond model by Allwood et. al. (1984) 

The model described by Allwood et al. (1984) incorporates a 

nonlinear bond stress-slip relationship within a detailed 

modelling of bond. The model predicts the bond stress-slip 

relationship up to and beyond local failure of bond. Although the 

model is developed primarily for plain bars it has been developed 

further to cover deformed bars. Since the ultimate bond stress 

has been studied extensively, the model had extended the concept 

of ultimate bond strength and the radial interface pressure to 

create a local bond stress slip relationship. The model allows for 

the effect of lateral pressure between concrete and steel which is 

found to modify the bond strength. It consists of the following 

stages: 

1) A nonlinear relationship for bond stress versus slip is assumed 

for the bond below ultimate value, which is a function of the 

ultimate bond stress 

2) The ultima te local stress is assumed to be a function of 

adhesion and radial pressure between reinforcing bar and the 

surrounding co ncrete. 

3) Once local ultimate bond st ress is reached then excessive slip 

will take place and a reduction of bond will occur. 

Ultimate bond stress: 

As the concrete shrinks it generates radial pressure at the bar 

concrete interface and so bond strength develops between concrete 

and steel. Further, the radial interface pressure is modified by 

stresses carried by concrete and steel due to applied load. A 

linear relationship is assumed between ultimate bond stress and 
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radial pressure expressed as : 

qu = q0 +µ. Pr (5.5) 

where 

Pr radial pressure existing at the concrete steel interface. 

qu local ultimate bond stress 

qo ultimate bond stress associated with initial shrinkage 

It coefficient of friction 

The relation is shown in figure (5.9). Contraction of the bar as it 

carries axial load relieves some radial pressure while concrete 
lateral pressure exerted against the bar increases radial pressure. 
Including these effects in equation (5.5) gives the following 

relation for the ultimate bond stress : 

qu = q0 +µ (Grconc - 6rbad 

where 

6rcon = compressive radiäl pressure 

(5.6) 

Erbar = Tensile interface radial pressure due to bar contraction 

I 

t and ap explicit values 

The values assigned to coefficient of friction µ and qo affect the 

way bond failure occurs and are estimated based on experimental 

evidence. Also, µ and qp values depend on bar type. For plain bars 

p. and qo values are 0.4 and 2 N/mm2 respectively while for 

deformed bars the values are 1.05 and 9.5 N/ mm2 respectively. 
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Concrete Lateral Pressure 

The lateral concrete stresses exerted on the bar were calculated 

by considering the problem of an infinite plate with a circular hole 

into which an elastic circular disc has been inserted and the plate 

is subjected to uniaxial stress field. Extending the analysis to a 

circular steel elastic bar within an elastic concrete body is found 

in the work of Parsons (1984). Following the above analysis the 

average interfacial radial pressure is found to be 0.7704 times the 

uniaxial lateral pressure. Therefore, in the two dimensional 

analysis of the model the lateral stresses on the reinforcement is 

converted to an average interfacial radial pressure by the relation: 

arconc = 0.7704. at 

Where 

at is the concrete stress acting at right angles to the bar. 

(5.7) 

at is calculated from the concrete stresses components (ax, 

(Yy, zXy) at the level of steel bar nodes. Concrete stresses 

components at the level of the bar are calculated from the 

concrete stresses at the four quadrature points within the 

concrete element using least square technique. This is shown in 

greater detail in chapter 7 when discussing the method of solution. 

Tensile interfacial radial pressure due to bar contraction 

Due to Poisson's ratio effect the radial contraction when the bar is 

axially loaded in tension will relieve the compressive interfacial 

radial pressure as calculated 'above. It is assumed in the model 

that the bar radial contraction and the associated interfacial 
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radial pressure could be estimated using Timoshenko's thick 

walled cylinder theory. 

The following relation is thus obtained for the interfacial radial 

pressure due to bar contraction 

6S uS 1 
Erbar 

Es (1ýv\+ 1-vs 

Ec Es 

where 

vS, vc are Poissons ratios for steel and concrete respectively 

Es, Ec are Elasticity Modulii for steel and concrete respectively 

Local bond stress-slip relationship 

The local bond stress slip relationship is assumed to be nonlinear 

according to Saenz' (1964) equation which was used to describe 

the uniaxial stress-strain curve for concrete. Using the form of 
Saenz equation here allows for the initial bond stress-slip 

modulus, the slip at maximum bond and maximum bond stress to be 

independent variables. Thus the nonlinear bond stress-slip 

relationship is assumed to be 

Ro .A 
q= (5.9) 

Ro AA 2- 
1+-2 

(Au 

qu/Au Au 
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where 

A is bond slip 

Rp is initial bond stress-slip modulus 

q is bond stress at given -slip of 0 

qu is local maximum bond stress 

Au is slip at ultimate bond stress 

Figure (5.10) ' illustrates the bond stress slip relationship. 

Initial bond stress slip modulus 

Quite different values for the initial slope, Ro, have been used by 

different investigators. Nilson (1968) used a value of 1000 

N/mm2 per mm, while Allwood (1980) used a value of 75 N/ mm2 

per mm which is calculated from his experimental results figure 

(5.6). In this thesis different values are used for RO depending on 

the reinforcement type i. e. plain or deformed steel bars. The 

value also depends on the problem type i. e. pull-out tests or 

flexural problems. For example in Pull-out test type of problems 

using plain bar the value of Ro is given as 200 N/mm2 per mm. 

Explicit values of Ro are given for different problems in chapter 6 

and 8. 

Slip at ultimate bond stress :- 

The value for the slip at ultimate bond stress is assumed to be a 

constant value of 0.1 mm. 
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Failure of bond 

Failure of bond at any location is assumed to occur once the bond 

slip value has exceeded the maximum allowable slip "slip at 

ultimate bond stress". After bond failure has occured at a 

particular location the ultimate bond stress at the location can 

not be maintained because the adhesive component of bond will be 

distroyed which is an important component in bond for plain bars. 

Thus, the model assumes that the bond stress is reduced by a 

factor ß when the slip exceeds the maximum allowable value of 0.1 

mm. The value of ß depends on the method of failure which is 

influenced by the bar type. Explicit value of ß is taken to be 0.5 

for plain bars and 1.0 for deformed bars. 
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6. APPLICATION OF THE LINEAR BOND MODEL 

6.1 Introduction 

The purpose of this chapter is to demonstrate the application of 

the method described in chapter 3 by analysing different 

reinforced concrete problems. The solutions presented for all 

. problems are obtained assuming linear elastic bond stress slip 

relationship for bond as well as linear elastic stress strain 

relationship for concrete and steel. Two dimensional plane stress 

analysis is used for the concrete. 

Three different problems are selected for demonstrating the 

applicability of the method to reinforced concrete problems which 

are: 

i) Simply supported beam 

ii) Pull-out Test - 
iii) Cantilever Problem 

The behaviour and design of these problems have been much 

investigated. Their solution here will show some of the details 

that can be included now in the analysis of reinforced concrete 

structures by finite element analysis using the present method. 

Thus -solution of the above problems will demonstrate the 

following advantages of the method which includes: 

Applicability of the method to real structures 

Simplicity of the mesh needed by the method 

Ability of the method to handle : 

138 



complex steel arrangements. 

different orientation of the steel. 

thin concrete covers. 

steel anchorage 

choice of applying load to either concrete or steel. 

The importance of bond modelling in the solution of reinforced 

concrete problems will be examined by solving for different bond 

stiffness values. Further in the solution of the problems the 

effect of mesh size and also the effect of the choice of the number 

of steel nodes selected on the solution will be studied. 

6.2 Bond initial stiffness modulus (ROI 

The initial bond stiffness modulus value is calculated from the 

slope of the bond stress-slip curve i. e. figure (5-6) for example. 

The value of RO when used in the present model reflects the 

bonding strength between concrete and steel. The greater the 

value of RO used in the solution the greater the gripping of the two 

materials together is assumed. 

The value of the initial bond stiffness modulus RO , found by 

different investigators varies quite considerably i. e figures (5.5 ) 

and (5.6). However, The value of RD used in the solution of the 

above problems is given below. 
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For the pull-out test problem the value of R0 to be used is 200 

N/mm3 or 737.67 kips/in3. This value has been used by Allwood, 

Parsons and Robins (1984) in their non-linear bond model of plain 

bars and which is estimated from experimental results of pull-out 

tests. However very little is published about the value of RO for 

flexjural cases. Allwood (1980) has used the value of 75 N/mm3 

in the analysis of a beam-column connection by finite element 

analysis. This value is calculated from the initial loading up to 5 

kN in figure (5.6 ). In the analysis of the beam and the cantilever 

problems of this chapter the initial bond stiffness modulus value 

to be used is 54.3 N/mm3, or 200 kips/in3. This value has been 

found from experimentation to give the best results when solving 

the beam problem shown in figure (6.1) using different values of 

R0. 

It will be shown in chapter 8 when using the non-linear bond model 

that the value of RO will depend on the type of reinforcement. RO 

is given a higher value for modelling of bond in deformed bars than 

in the case of plain bars. 
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6.3 Single span beam 

6.3.1 Details of the beam 

In this section a real beam problem will be modelled and analysed 

by the method. It is a simply supported single span beam and is 

shown in figure (6.1). The beam is designed according to ACI 

318-83 and is given by Wang and Salmon (1983). The details of 

the reinforcement which includes tension compression and shear 

reinforcement is shown in figure (6.1) and is summarised here: 

Tension reinforcement 8 bars no. 9 

Compression reinforcement 4 bars no. 7 

45 stirrups 2 bars no. 3/ stirrup 

The different parameters used for concrete, steel and bond are 

listed below: 

Ec = 3640 kips/in2 

Es = 29000 kips/in2 

R0 = 200 kips/in3 

The beam is loaded with a uniform distributed load of 2.7 kips/ft . 
The width of the beam is 14 inch. 

6.3.2 Finite element mesh 

In constructing the finite element -mesh for the concrete the 

elements are chosen to match the concrete stress distribution 

without worrying about the reinforcement. This leads to' the 

simple finite element mesh for the concrete as shown in figure 
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(6.2). There are 20 8-noded rectangular isoparametric elements 

with a total of 85 concrete nodes. The load is applied at the 

concrete nodes located at top of the beam such that a uniform 
distribution of load is ensured. 

The reinforcement is divided into 2-noded bar elements 
independent of the above concrete mesh. The number of steel 

nodes is chosen to match the steel stress distribution. Further, 

every bar has its own number of nodes. The choice of the number 

of bar elements is specified in the input data for every bar. All 

the steel shown in figure (6.1) is included in the analysis. The 

main reinforcement is divided into 40 2-noded bar elements. Thus 

each of the tension and the compression reinforcement has 41 

steel nodes. Each stirrup is divided into 8 2-noded bar elements 
leading to 9 steel nodes in each stirrup. Thus, the total number of 

all steel nodes is 487. 

Stirrups ends anchorage: 

The stirrup ends are fixed to concrete 
'because 

they are hooked 

around the tension and the compression reinforcement, and since 
the displacement of the main reinforcement in the vertical 
(y-axis) direction is ignored, therefore, the main reinforcement 
displaces laterally with the concrete and so does the stirrups 

ends. 

To have more accurate modelling of the reinforcement the two 

ends of each stirrup (i. e. the top node and bottom node) are fixed 

to concrete by setting the value of the initial bond stiffness 
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modulus at these nodes to be a very high value. In this case RO is 

set to be a ten thousand times higher at the stirrups ends than at 

any other node. Thus 

R0 used at stirrup ends = 200 x 10000 kips/in3 

6.3.3 Discussion of the results: 

The problem has been solved with all the above details. The 

solution converges in 6 iterations. The central processing unit 

(CPU) time required for the formulation of the problem and 

obtaining the solution is 55 seconds using Honeywell Multics 

computer system. The effect of applying a damping factor on the 

convergence of this problem was shown in figure (4.10) 

Stresses in reinforcement: 

Figure (6.3) shows the stress distribution in the tension 

reinforcement as well as in the compression reinforcement. The 

stress curve shown reflects the expected pattern of the stress 
distribution in the main reinforcement of a simply supported beam. 

The dotted line shown in figure (6.3) represent the beam mid-span 
location. 

Balance of forces: 

Figure (6.4) shows the tensile forces carried by the tension and 

the compression steel along with the average longitudinal normal 

forces carried by the concrete. 

At any cross-section of the beam the concrete force curve gives 

the average value of the tension and compression forces of all 
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concrete nodes acting on that cross section. The concrete forces 

curve in figure (6.4) shows some force to exist at the supports 

instead of showing zero force as it should be. This is due to the 

effect of the supporting forces in this region. Otherwise, the 

algebraic summation of the concrete and steel forces shown in 

figure (6.4) is always zero for any cross-section of the beam. So 

balance of forces is ensured. 

Bond stresses: 

Figure (6.5) shows the bond stress distribution along the tension 

and the compression reinforcement. The figure shows how the 

bond stresses near the ends of the beam are influenced by the 

distribution of the supporting forces of the beam. The bond on the 

tension steel is increased whilst that on the compression steel is 

reduced. Also the figure shows. zero bond stress at mid-span of 

the beam which is expected because there is no relative movement 

between steel and concrete at this part of the beam. 

It can be seen from figure (6.5) that there are some oscillatory 

variations in the bond stresses near the support. These variations 

coincide with the boundary of the concrete elements. This could 

be explained by examining the bond stresses. The bond stresses 

are calculated from the steel and the concrete displacements. By 

examining the steel and the concrete displacements, it is found 

that whereas the steel displacements varied quite smoothly, even 

down to their second differences, the concrete displacements did 

not. The concrete displacements are derived from equation (3.11) 

repeated here 
11 
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The second differences of these displacements showed large 

discrepancies at the boundaries of the concrete elements but 

smooth values away from the boundaries 

This is very similar problem to that which occurs when 

calculating element stresses at points within an 8-noded 

elements, as first noted by Hinton and Campbell (1979). They 

showed that stresses derived from the shape functions were most 

accurate at the Gauss points and at their worst at the boundary 

edges. It is now common to derive such stresses by interpolating 

through the Gauss point values as recommended by Hinton and 

Campbell. It is possible that a similar smoothing process could be 

used to improve the bond stresses calculated by the method 

described in this research. 

To see the effect of the number of steel nodes on the results, 

another solution has been obtained by selecting different number 

of bar elements for the steel. Each of the tension and compression 

reinforcement was divided into 36 steel nodes and the stirrups 

each 4 bar elements or 5 steel nodes. This is done to see the 

effect of the number of bar elements. There was not much 

difference in the two solutions. 

stress in stirrups: 

Before discussing the stress in the stirrups it should be 

remembered that in this research only longitudinal deformation 

along the reinforcement axis are considered and that lateral 

displacement of the bars are not considered. Interforces normal to 

148 



the axis of the reinforcement are not included. Therefore the 

stirrups here do not contribute to the beam shearing I strength. 

Analysis of the beam is done using the value of the bond initial 

stiffness mo dulus of 200 kips/in3 for the main reinforcement as 

well as for the stirrups. However, it is not quite clear e* what 

value of RO should be used for the stirrups. Steel used in stirrups 

have much smaller diameter than the main reinforcement which 

suggests a lower bond stiffness modulus to be used for the 

stirrups than for the main steel. The beam is analysed using three 

values of in itial bond stiffness modulus for the stirrups which are 

R0= 20,50, and 200 kips/in3. The value of RO for the main 

reinforcement is kept at 200 kips/in3 all the time. Results for 

some of the stirrups selected at various location in the beam will 

be shown. 

Figure (6.6) shows the stress in the first stirrup which is located 

next to the support. The figure shows the stress in this stirrup is 

in compression. The effect of the " choice of Ro on the stress 

distribution is noted. The stress in the stirrup reduces as the 

value of RO is reduced. Also, the stress curve becomes smoother 

as the value of RO is reduced. Figure (6.7) shows the stress in the 

stirrup at mid-span of the beam which is in compression for the 

upper part and in tension for the lower part. The same effect is 

noted here for the change in RO value as the first stirrup except 

that th e stress curv e is smooth at all the RO values. The stress in 

the middle stirrup is higher than that of the first stirrup. There 

are a number of published resu lts for the study of stresses in 
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stirrups such as Kani (1969), Regan and Khan (1974), Ruhnau 

(1974). These studies of stirrups are related to cracks. However, 

Kani (1969) has stated that there are two zones of ineffective web 

reinforcement one near the loading part and the other near the 

support. The results obtained by Scordelis, Ngo and Franklin 

(1974) support this statement because their results indicate near 

zero forces in these zones. The results obtained using the present 

method as discussed above considering longitudinal deformation 

along the bar axis only shows that the stress in the stirrup near 

the support is lower than the stress in the other stirrup. 

Bond stress in stirrups: 

Figure (6.8) shows the bond stress in the first stirrup. The bond 

stress of the middle stirrup is shown by figure (6.9). Again the 

bond stress varies smoothly in the middle stirrup while the curve 

is irregular behaviour in the stirrup next to the support. 

\- 
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Q. 4 Pull-out test 

6.4.1 Details of the problem 

The pull-out test is a typical experimental test that is done to 

study the bond behaviour. In this test a steel bar is embedded in a 

block of concrete while a force is applied to pull the steel out of 

the concrete block. 

The concrete cube dimensions used in this problem are 

150mmx15Ommx15Omm. The reinforcement used is one steel bar 

embedded in the concrete cube as shown in figures (6.10). In this 

problem the load is applied to the reinforcement bar so that in 

equation (3.22) 

[PC] =0 

[PS] = full load 

The applied load is 2 kN and is acting away from the concrete 

figure (6.10). The diameter of the steel bar is 16 mm. 

The different parameters used are listed here : 

Ec = 33000 N/mm2 

Es = 200000 N/mm2 

R0 = 200 N/mm3 

/I 
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6.4.2 Finite element mesh 

The finite element mesh which is used in the analysis of this 

problem is shown in figures (6.10) . The concrete is represented 

by 8-noded rectangular, isoparametric elements. 3 different 

meshes are used : 

i) 3x3 mesh with a total of 9 elements and 40 nodes figure 

(6.1 Oa) 

ii) 4x4 mesh with a total of 16 elements and 65 nodes figure 

(6.1 Ob) 

iii) 5x5 mesh with a total of 25 elements and 89 nodes figure 

(6.1 Oc) 

The problem will be solved for each of the above meshes to see the 

effect of mesh size. Also it is noted that the reinforcing bar 

location with respect to the concrete elements is different in each 

of the above meshes. In the case of the 4x4 mesh the steel bar 

lies along the boundary of the concrete elements while in the 3x3 

and 5x5 meshes the steel bar lies across the concrete elements. 

Two different sets of bar elements are used for the steel bar as 

follows: 

i) 15 2-noded bar elements with a total of 16 nodes. 

ii) 30 2-noded bar elements with a total of 31 nodes. 

The results will show the effect of number of steel nodes on the 

solution. 
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6.4.3 Discussion of the results: 

The problem have been solved for all the above cases. The solution 

converges in 4 iterations in all cases. 

Effect of mesh size 

There is no difference between the solutions obtained for the 

above 3 meshes on the reinforcing bar solution. Further, the bar 

location with respect to the concrete elements has no effect on 

the steel results in this problem. Figure (6.11) shows the b ond 

stress distribution along the reinforcement bar for the 3x3 and 
4x4 meshes using 31 steel nodes. The stress distribution in the 

bar is shown by figure (6.12) for the same selected concrete 

meshes and number of steel nodes. The solution obtained using the 

two meshes is the same. 

The effect of the three meshes on the concrete stress distribution 

is studied. Figure (6.13) shows the stress in the concrete at the 

bar location and in the lateral direction of the bar axis. The 

stresses obtained using the 4x4 and 5x5 meshes are similar except 

at the bar loaded end where the concrete stress obtained using the 

4x4 mesh is higher. The 3x3 mesh gives lower stress than the 

other two meshes. Figure (6.14) shows the concrete stresses at 

the bar location and in the longitudinal direction to the bar axis. 
The concrete stress given by the 3 meshes is the same at the free 

end of the bar, but, as at the loaded end of the bar the concrete 

stress varies showing the highest value for the 4x4 mesh then the 

5x5 mesh then the 3x3 mesh. I- 
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The above led to studying the lateral concrete stress distribution 

in the supported face of the the concrete the results are shown in 

figure (6.15). The concrete stress distribution at the supported 

face in the case of the 3x3 and 5x5 meshes is smoother than the 

case of the 4x4 mesh. This is due to the way the concrete is 

loaded. Loading of the concrete in this case is accomplished 

according to equation (4.9a) repeated here: 

[Kc] . [Dcl = [Pc] - [KB] " [Dc] + [Ct] " [Kbl " [DS] 

In the 3x3 and 5x5 meshes the bar is passing across the concrete 

elements. In the above equation PC = 0, thus, the load is 

transferred from the steel to the concrete through the bond 

interforces only using all the concrete element nodes which the 

bar is passing through them. While in the case of the 4x4 mesh the 

load is transferred only through the nodes located at the element 

edge. The situation is similar to a distributed load versus point 

load application. However this does not affect the balance of 

forces between the steel and the concrete at this surface but does 

show a higher stress in the concrete at the loaded end of the bar. 

Effect of number of steel nodes 

Figure (6.16) shows the bond stress distribution obtained using 

two different sets of numbers for steel nodes which are 16 and 

the 31 steel nodes. Figure (6.17) shows the stress distribution in 

the bar for the above selected numbers of steel nodes. Dividing 

the bar into 15 2-noded bar elements will give 4 steel nodes per 

concrete element while dividing the bar into 30 bar elements will 

produce 8 steel nodes per concrete elements. As - it can be seen 

from the above two figures the number of steel nodes has no 

effect on the solution in this case. I- 
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6.5 Cantilever 

6.5.1 Details of the problem 

Figure (6.18) illustrates a real reinforced concrete cantilever and 

column layout. The cantilever length is 144 inch (3658 mm) and 

which is designed according to ACI Code 318-83. All the 

reinforcements shown in the figure which includes details such as 

curtailed bars, stirrups and ties are included in the analysis. The 

reinforcement consist of : 

Cantilever: 2 bars no. 8 full length tension reinforcement 

1 bar no. 8 curtailed bar for tension 

reinforcement. 

2 bars no. 3 to hold stirrups 

14 stirrups 2 bars no. 3/ stirrup 

Column :4 bars no. 8 longitudinal reinforcement 

10 ties 2 bars no. 3 / tie 

Including such reinforcements will demonstrate the ability of the 

method to handle various reinforcement arrangements and 

orientations. 

The parameters used for concrete, steel and bond are the same as 

used in the beam of section (6.3.1). 

6.5.2 Finite element mesh 

The difficulties faced in constructing a finite element mesh for 

this problem by the conventional finite element analysis is 
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discussed in section (3.1). Using the method developed in chapter 

3 leads to selecting a suitable finite element mesh for the 

concrete alone. Thus, the concrete mesh shown in figure (3.5) is 

used for this problem. There are 42 8-noded rectangular concrete 

elements with a total of 165 nodes. 

Each of the reinforcing bars was divic 

2-noded bar elements on its own. 

divided into 96 bar elements and 

elements. Rest of reinforcement 

numbers of bar elements. There are 

with a total of 350 steel nodes. 

led into a different number of 

Full length reinforcement is 

curtailed bar into 47 bar 

are divided into different 

29 reinforcement bar groups 

The stirrup ends are also fixed to the concrete by high bond for the 

same reason given in section 6.3.2 . The same thing is done to the 

tie ends. 

Anchorage of tension reinforcement 

From the design of the cantilever it is found that the straight 

embedment of the tension reinforcement is enough to anchor the 

bars both in the column and in the beam. To demonstrate the 

applicability of the method to reinforcement anchorage the 

tension steel ends will - be anchored in the column using the two 

methods explained previously which is anchorage by high bond and 

by applying a force. 
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6.5.3 Results and discussion 

The solution of this problem is obtained in 5 iterations using two 

dimensional plane stress analysis. 

Stress in tension reinforcement: 

Figure (6.19) shows the stresses in both the full length and the 

curtailed tension steel of the cantilever. Of interest in the figure 

the occurrence of the peak stress in the cantilever tension steel 

which is lying outside the column and not at the column face. This 

reflects the increasing contribution made by the curtailed bars to 

resisting the bending moment in this zone. 

Bond stress along the tension bars: 

Figure (6.20) shows the bond stress distribution along the full 

length tension bars. The dotted straight line in the figure 

represents the location of the column face. The peak bond stress 

occurs virtually at the column face. Again as in the beam problem 

there are irregularities in the bond stress curves which coincide 

with the concrete element edges. These irregularities is an affect 

of the same phenomenon noted in the bond stresses of the beam 

problem section (6.3.3). The same explanation given for the beam 

problem holds here. 

Figure (6.21) shows the bond stress distribution in the curtailed 

tension bar along with the full length bar. The bond stress at the 

free end of the full length bar is zero while the bond stress at the 

curtailed bar free end is not zero as may be expected although no 

anchorage is applied at either of the two ends. The reason for this 

is as follows. The last few inches of the curtailed bar is much less 
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effective in carrying load when compared to the corresponding 

part of the full length bar as shown in figure (6.19). Thus the 

steel nodes in this area gains very little or zero extra deformation 

due to loading of this part of the bar. Therefore, steel nodes in 

. this. area can not deform as much as do the corresponding nodes in 

the full length bars although they occupy the same position as far 

as the model is concerned. The effect of this is greatest at the 

free end. Thus, the difference between displacements of these 

nodes specially the free end of the curtailed bar and the 

surrounding concrete is greater than the corresponding nodes in 

the full length bars. Since the bond stress is calculated from the 

relative displacement between the concrete and the steel, 

therefore, this will show a bond stress to exist at the free end of 

the curtailed bar and which is greater than the corresponding bond 

stress of the full length bar in that area. 

Anchorage of tension reinforcement 

i)Anchorage by high bond 

The solution obtained above is obtained with the tension 

reinforcement being anchored to the concrete at the column face. 

Anchorage is done here by setting the value of R0 at nodes numbers 

1 and 98 which corresponds to the first nodes in the full length 

and curtailed tension bars respectively to be. 10000x200 kips/in3 

Figure (6.22) shows the steel stress in the tension bars for the 

two cases with and without anchorage. The stress is zero when no 

anchorage is used and they will be stress in the bar ends if the 

ends are anchored. The effect will be more clear if a shorter 
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embedment length of the bars is used within the column. Figure 

(6.23) shows the effect of anchorage on bond stress. The anchored 

end shows zero bond stress when the bar ends are anchored. The 

solution obtained reflects the expected behaviour. 

ii) Anchorage by applying a force 

The purpose of this solution is to apply an external force to the 

tension bars at the bars ends which are to be anchored as 

explained in chapter 4. This is done by specifying an approximate 

development length, dl, which is entered in the input data of the 

program along with the nodes numbers which are to be anchored. 

In this case a development length of 12 inches is the approximate 

value entered for both full length and curtailed bars. The program 

calculates a development length of 10.87 inches which is needed 

to hold the tension bars end to the concrete so that the relative 

movement results between the bar end and the surrounding 

concrete is less than a specified tolerance. i. e 10"6 mm (section 

4.6). The number of iterations needed for the solution is the same 

as in the case of anchorage by high bond i. e. no extra number of 

iteration is required to achieve this method of anchorage. 

The solution obtained is the same as the one obtained using high 

bond for both the stress produced in steel and the bond stress as 

shown in figures (6.24) and (6.25) respectively. 
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Effect of bond stiffness modulus: Figure (6.27) shows how the 

bond stiffness RO affects the stress distribution in the full length 

tension bars. It will be noted how sensitive the peak stress is to 

the choice of value for R0. It is also noted that large RO values 

reflect greater bond strength between the steel and the concrete 

and so the stress in the steel increases as Rp increases. Figure 

(6.28) shows the bond stress distribution for the different RO 

values used. 
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7. SOLUTION OF NONLINEAR BOND BEHAVIOUR 

7.1 Introduction 

The purpose of this chapter is to demonstrate the way in which 

nonlinear material behaviour can be included along with the 

method of solution presented in chapter 4. 

The bond model developed in chapter 3 was based on linear elastic 

stress-strain relationship for concrete and steel. Also linear 

elastic bond stress-slip relation was used for bond between steel 

and the surrounding concrete. A more appropriate analysis is to 

consider nonlinear behaviour of all above elements of reinforced 

concrete. However, since in this thesis, material modelling is not 

of primary importance but how to include a nonlinear method of 

solution of nonlinear material behaviour with this new method of 

modelling is more important, further, this research is more 

concerned about modelling of bond between concrete and steel 

using the new method presented in chapter 3, therefore, a 

nonlinear stress-slip relationship for bond is adopted. The linear 

bond model developed in chapter 3 will form the basis for the 

nonlinear bond model. 

The method of solution can be used with any nonlinear bond model. 

As pointed out in chapter 5a nonlinear bond model described by 

Allwood et al. (1984) which incorporates many details about bond 

behaviour was selected. 
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In this chapter techniques for solution of nonlinear material 

behaviour are reviewed briefly. An incremental iterative method 

is adopted and thus is explained in detail as applied to the 

nonlinear bond model of Allwood et al. Convergence of the 

incremental iterative method is discussed. 
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7.2 Nonlinear methods of solution 

In general techniques used in the solution of nonlinear material 

behaviour can be broadly classified into three types 

i) Incremental loading method. 

ii) Iterative methods 

iii) A combination of the two approaches 

i) Incremental loading method : 

In this method the load is subdivided into small load increments 

such that a linear approximation can be assumed for each of the 

load increments. Further, as the solution of a load increment is 

obtained a new stiffness matrix is calculated using the current 

slope of the stress-strain relationship. Then the next load 

increment is applied and a solution is obtained using the stiffness 

matrix obtained from the updated slope. The method is illustrated 

in figure (7.1). A better approximation can be obtained by reducing 

the size of the load increments but on the other hand this 

increases the number of times for recalculating the stiffness 

matrix which is an expensive operation from computer point of 

view. 

ii) Iterat ive method: 

Iterative methods require resolution of the problem until a 

solution which -satisfies the nonlinear relationship is obtained. 

This can be done by direct iteration as shown in figure (7.2). In 

this method the full load is applied to the structure and the 

solution is repeated until a satisfactory solution -is reached. 
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Another iterative method is the method of residual forces. In this 

method a solution is obtained using linear relationship then the 

linear solution is compared to the nonlinear "exact" solution. The 

difference between the two solutions is the out of balance 

residuals which are a measure of lack of equilibrium. These 

residuals are then applied to the structure to restore equilibrium. 

The process is repeated until the residuals become sufficiently 

small. There are two methods to achieve this which are the initial 

stress method and the initial strain method. 

The initial stress method is shown in figure (7.3). A solution is 

obtained using linear elastic analysis which is represented by 

point 1 in figure (7.3). The solution is then compared to the exact 

solution represented by point 2. The difference between the two 

solutions represents the out of balance stresses or residual 

stresses. The residual stresses are then applied to the structures 

at nodal points in the form of forces. If needed, these forces can 

be transferred at element nodal points using the virtual work 

principle as in the case of concrete. A new solution is thus 

obtained which is indicated by point 3 in the same figure. The 

process is repeated until every residual stress becomes smaller 

than a specified tolerance. In this process the stiffness matrix 

needs to be calculated only once. 

The method may still be improved to obtain faster convergence by 

using either the tangent or the secant stiffness approaches figures 

(7.4). This is accomplished by recalculating the stiffness matrix 

during the solution, based on the accumulated level of strain or-_ 

displacement, using the current secant or tangent values of 
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modulii. The solution converges faster than the initial method but 

involves extra calculations of the stiffness matrix. 

iii) Combined solution 

A solution can be obtained using the incremental and the iterative 

methods of solution presented above which is expected to be 

superior to both methods. In this method the load is divided into 

small increments and an iteration method is adopted for each 

increment of load. A new stiffness matrix is calculated at the 

beginning of each load increment based on the updated tangent of 

the stress strain curve. This method has been adopted and is 

explained in detail as used with the nonlinear bond model. 
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7.3 Nonlinear bond solution 

7.3.1 Procedure outline 

The nonlinear method of solution used in this research is a 

combination of the incremental and the iterative techniques 

introduced in the previous section. The linear solution presented 

in chapter 4 forms the basis for the nonlinear solution. Thus, both 

linear and nonlinear solutions involve iterative schemes. The 

iterative solution of the linear case will be in the middle of the 

iterative nonlinear solution. See flowchart (7.1). 

The method is explained now in detail* for nonlinear bond 

behaviour. Flowchart (7.1) shows the basic steps for the nonlinear 

solution. The nonlinear bond behaviour is according to the Allwood 

et , al. bond model presented earlier in chapter 5. The steps are 

outlined below : 

1) The total load is divided into small increments. 

2) Stiffness matrices namely Ks+Kb and KB are calculated using 

the initial stiffness modulus, R0. 

3) A load increment is applied and the problem is solved using the 

linear method presented in chapter 4. It should be remembered 

that at this stage the solution will give the following among other 

things 

i) Concrete displacements at concrete nodal points. 
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Flowchart (7.1) - Nonlinear method of solution for bond. 
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ii) Three components of concrete stresses at quadrature points. 

iii) Axial steel stresses and displacements at steel nodes. 

4) Concrete and steel displacements are accumulated at their 

respective nodes and in the proper direction. 

5) Interfacial radial pressure on steel caused by concrete is 

calculated from equation (5.7) as follows. Concrete stresses at 

the steel nodes location lying within the boundary of a certain 

concrete element are calculated from the concrete stresses at the 

quadrature points of the concrete element. This is done by using 

the local least square stress smoothing technique for 2 

dimensional parabolic isoparametric elements as presented by 

Hinton, Scott and Ricketts (1975) . The smoothed stresses are 

assumed to have bilinear variation over the element. The 

following relation is derived from the above paper : 

1 

-43 
-43 

3 

11 

-43 43 

43 J3 

-3 3 

1 ßi 

43 

-43 6iii (7.1) 

-3 ßiv 

where 

6iii, 'iv are stresses at the four quadrature points. 

i;, ij are local coordinates. 
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Equation (7.1) is repeated for all three stress components ( ax , 6y, 

tixy) at every quadrature point for every steel node in the same 

concrete element. Thus, concrete stresses are now available at 

the steel bar nodes. The normal forces on the bar at the steel 

nodes are calculated from the stress components and from the 

degree of inclination of the bar with respect to the concrete 

element through which it passes to obtain at. Then arconc is 

calculated from equation (5.7). 

7) Steel interfacial radial pressure is calculated using equation 

(5.8). 

9) Ultimate bond strength is calculated using equation (5.6). 

10) If A at a steel node is greater than the maximum allowable 

slip (Au), then this means that local bond failure has occurred. 

Therefore, bond stress is reduced to i3. qu at that node. If A is less 

than Au then bond stress is calculated according to equation (5.9). 

11) Residual bond stresses at all steel nodes are found from the 

difference between bond stresses from linear analysis and from 

nonlinear analysis (zq). 

12) If iq is greater than some specified tolerance then tq is 

converted into equivalent forces by multiplying iq by the 

corresponding bar priemeter and the appropriate length of the bar 

element at the steel node. This is repeated for all steel nodes. An 
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equivalent force can be found at the concrete element nodes using 

the principle of virtual work according to equation (3.12). 

Residual forces are assembled in the corresponding global load 

vectors Pc and Ps respectively and another solution starts using 

the same stiffness matrices which are already in the reduced 

form. Thus, this adds up to the efficiency of the method. 

13) If residuals are less than the specified tolerance then a new 

slope is calculated, new stiffness matrices are calculated and a 

new load increment is applied. 

Stiffness matrices are only recalculated at the end of each load 

increment and are not recalculated within the load increment to 

obtain a faster solution as in the initial tangent method. Thus, the 

method used in the solution of each load increment is the initial 

stress method. 
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7.3.2 Convergence of the method 

In order to examine the convergence of the method the pull-out 

test shown in figure (6.10) is used selecting the 4x4 concrete 

mesh. The concrete cube sides each measure 100 mm. The 

parameters of a deformed bar are used according to table (8.5). 

The above problem was solved three times using a different set of 

load increments each time. Table (7.1) compares the number of 

iterations needed for the convergence of the solution. In general, 

small load increments give smaller residuals and thus reduce the 

number of iterations needed for the nonlinear solution to converge 

for that load increment, but, at the same time this increases the 

total number of iterations needed to obtain the complete solution 

of the problem table (7.1(c)). further, the number of times needed 

to recalculate the stiffness matrices also increases. On the other 

hand, large load increments give large residual bond stresses and 

thus increase the number of iterations needed for the residuals to 

vanish in the nonlinear solution of that load increment, i. e. load 

increment number 1 in table (7.1(a)). 

However, It is found that a faster solution can be obtained by 

dividing the total applied load into load increments of different 

sizes. Larger sizes of the load increments are applied first then 

the smaller ones table (7.1). The 5 load increments in table 

(7.1(a)) are faster than the 22 small load increments in table 

(7.1(c)) when comparing the total number of iterations needed for 

the complete solution. Also, stiffness matrices have to be - 

recalculated only 5 times for solution of table (7.1(a)) while it 

was necessaru to repeat the procedure 22 times for the solution in 
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table (7.1(c)). 

Convergence of the solution near ultimate load is sensitive and 

requires small load increments. Small load increments are 

important for following up failure of bond more closely if it 

should occur. The same problem is solved again using smaller load 

increments for the last 2 kN of the load table (7.2). Table (7.2(a)) 

is the same as table (7.1(b)). Load increments for the last 2 kN are 

reduced by 1/2 in table (7.2(b)) as compared to table (7.2(a)) and 

further by another factor of 1/2 in table (7.2(c)). As a result the 

predicted load at which failure of bond occurs are 22 kN, 22.5 kN 

and 22.75 kN for the three solutions as in tables (7.2(a), (b), (c)) 

respectively. 

No difficulties were faced during the solution of the problems. In 

all cases the solution continues until failure of bond has occurred. 

The computer program then stops due to failure of bond and not to 

" failure of solution. 
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(a) (b) (c) 
Increment No. of iterations increment No. of Iterations ! neremert No. of Iterations 

No. Size Resid. Dispi. No. Size Resid. Displ. No. Size Resid. Disp1. 

1 10 9 44 1 5 S 24 11 2 9 

2 5 6 29 2 5 S 24 21 2 9 

3 5 12 59 3 2.5 3 14 31 2 9 

4 1 5 19 4 2.5 4 19 41 2 9 

5 1 8 24 5 2. S 4 19 51 2 9 

6 2.5 7 28 61 2 9 
7 1.. 5 20 71 2 9 
8 1 7 21 81 2 9 

91 2 9 

10 1 2 9 

11 1 2 9 
12 1 2 9 
13 1 2 9 

14 1 2 "9 
15 1 2 9 

16 1 2 8 
17 1 3 13 
1ß 1 3 12 
19 1 3 12 
20 1 4 16 
21 1 4 16 
22 1 6 21 

T Ot83 5 22 40 175 8 22 40 169 22 22 55 233 

Table (7.1) - Effect of load increments size on the 

convergence of the solution. 
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(a) - (Tabl e(7.1(b)) (b) (c) 

Increment No. of Iterations Increment No. of Iterations Increment No. of Iteration 
No. Size Resid. Displ. No. Size Resid. Displ. No. Size Resid. Dispi. 

1 5 5 24 1 5 5 24 15 5 24 

2 5 5 24 2 5 5 24 25 5 24 

3 2.5 3 14 3 2.5 3 14 3 2.5 3 14 

4 2.5 4 19 4 2.5 3 19 4 2.5 3 19 

5 2.5 4 19 5 2.5 4 19 5 2.5 4 19 

6 2.5 7 28 6 2.5 7 28 6 2.5 7 28 

7 1 5 20 7 0.5 2 8 7 0.25 2 8 

8 1 7 21 8 0.5 3 11 8 0.25 2 8 

9 0.5 3 9 9 0.25 2 7 

10 0.5 4 12 10 0.25 2 7 

11 0.5 8 24 11 0.25 2 6 

12 0.25 2 6 

13 0.25 2 6 

14 0.25 2 6 
15 0.25 2 6 

16 0.25 2 6 
17 0.25 3 9 

Total 8 22 40 169 11 22.5 48 192 17 22.75 51 203 

lab1e (7.2) - Effect of increment size in the last few loads. 
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7.3.3 Nonlinear part of the program 

A few steps are illustrated about the nonlinear part of the 

program 

Failure o f bond. 

As load increments are added to the structure then local failure of 

bond sta rts to progress throughout steel nodes. The program keeps 

a record of all steel nodes which failed. At the end of the solution 

of each load increment the program gives the number of the steel 

nodes t hat have failed. Once failure of all steel nodes has 

occurred then the program stops giving the appropriate message. 

Tolerance on residuals 

The tolerance used to examine the convergence of the nonlinear 

solution is the size of the residual bond stresses. The solution is 

assumed to converge when the difference between the linear and 

the nonlinear bond stresses is less than 1% of the nonlinear bond 

stress. 

Input data. 

The input data for the nonlinear part includes more information to 

be added to the linear part. One thing is explained here about load 

increments. The program divides the total applied load into 

increments based on the number of load increments desired as 

entered in the input data and, then, it subdivides each load 

increment into further smaller loads based on the information in 

the input data. 
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The output of the computer solution contains many details. This is 

given in Appendix "B". 

Anchored steel nodes 

Anchorage of steel nodes is not part of the nonlinear bond analysis. 

Thus, the program avoids anchored nodes during the nonlinear part 

of the solution. 

Example of CPU time 

The CPU time required for the solution of the pullout problem 

explained above as for the solution in table (7.1(b)) is four minutes 

and zero seconds using Honeywell Multics System. 

11 
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8. APPLICATION OF THE NONLINEAR BOND MODEL 

8.1 Introduction 

The application of the bond model described in chapter 3 for the 

case of linear elastic bond stress slip relationship was illustrated 

in chapter. 6. The method was then extended to accommodate a 

nonlinear bond behaviour. The objective of this chapter is to show 

the application of the bond model after introducing the nonlinear 

bond stress slip relationship as described by Allwood et al. 

(1984) and which is done according to the nonlinear method of 

solution introduced in chapter 7. 

The iterative method of the nonlinear bond solution discussed in 

chapter 7 requires that the total applied load be divided into a 

number of increments. The load increments are then added 

gradually. This will allow examining and following the solution 

obtained in each load increment. This advantage of the method 

will be taken in examining the bond stress behaviour as well as 

the stress distribution in the reinforcement and in the concrete as 

the load is gradually increased. To study the deterioration in bond 

due to loading the gradual increase of load will continue until 

failure of bond occurs. 

The nonlinear bond model was described by Allwood et al. (1984) 

and was developed basically to model bond for plain bars embedded 

in concrete. The method was then extended for modelling of bond 

in concrete structures reinforced with deformed bars. This is 
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accomplished by changing some of the parameters within the 

model so that an adequate behaviour of bond between each type of 

reinforcement and the surrouding concrete can be described. Thus, 

problems which are selected are classified into two classes 

according to the reinforcement type: 

i) Concrete structures reinforced with plain bars 

ii) Concrete structures reinforced with deformed bars 

For each type of reinforcement a separate set of problems will be 

solved. 

The analysis of the different problems is carried out using 

nonlinear bond stress slip relationship but still a linear elastic 

stress strain relationship is assumed for concrete and steel. The 

solution obtained will be checked against experimental results or 

other analytical solutions whenever possible. 
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8.2 Application of the bond model to plain bars 

8.2.1 General 

In this section application of the model to concrete structures 

reinforced with plain bars will be demonstrated. The bond model 
for plain bars is based on an assumed frictional mechanism of 

bond. 

Since one of the objectives of the solution is to predict the 

deterioration in bond due to loading using the present model the 

selected problems are typical of those,, of bond tests. In order to 

evaluate the solution obtained using the present model, solution to 

some of the problems selected have been already obtained either 

analytically or experimentally by other investigators. 

Two reinforced concrete problems will be solved which are: 

i) Pull-out test by Parsons (1984). 

ii) Pull-out test by Standish (1982). 

Numerical and experimental solutions of the above tests are 

available and they will be checked for available results. 

$. 2.2 Bond, concrete and steel parameters 

The nonlinear bond model requires several bond parameters to be 

present in order to establish the nonlinear bond stress slip 
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relationship based on Saenz curve (1969). Further, these 

parameters are used in predicting the deterioration of bond. Table 

(8.1) summarises the values of the different bond parameters 

needed in the nonlinear bond model for analysis of concrete 

structures reinforced with plain bars. These values have been 

given by Allwood et al. (1984) and which were used in their 

nonlinear analysis of bond. Some of these values are estimated 

from the experimental results of Robins and Standish (1982). 

Table (8.2) lists the parameters used for concrete and steel in the 

solution of the different problems. 

8.2.3 Failure criterion 

It is essential for the nonlinear modelling of bond to include bond 

failure criterion. The controlling factor which will be used to test 

for local bond failure is the amount of the gross relative 

deformation (slip) developed between the steel and the 

surrounding concrete. An estimated value for tolerance slip at 

which the maximum bond stress occurs is chosen to be a constant 

value of 0.1 mm. This value based on experimental evidence. 

In the present model once the gross relative slip of steel with 

respect to concrete at any steel node has exceeded 0.10 mm then 

the bond at that node is assumed to fail. When local bond failure 

occurs the maximum bond stress will not be maintained because 

the adhesive component of bond will be destroyed and so a 

reduction of bond strength is expected. Therefore the failure of 
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Parameter Symbol Value 

initial bond stress/slip modulus RO 200 N/mm3 

Slope of local ultimate bond stress 

radial pressure. 

u 0.40 

slip at ultimate bond stress bu 0.10 mm 

Reduction factor of ultimate bond 

stress for slip greater than Au 

p 0.50 

Bond stress due to shrinkage q0 3 N/mm2, or 

2 N/mm2 

Table (8.1) - Parameters used for modelling of bond between 

concrete and plain bars, after Aliwood et al. (1984) 

Parameter Symbol Value 

Modulus of elasticity for concrete EC 33 kN/mm2 

Poisson's ratio for concrete. vc 0.20 

Modulus of elasticity for steel Es 200 kN/mrr 

Poisson's ratio for steel vs 0.30 

Table (8.2) - Concrete and steel parameters. 
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bond is modelled by a drop of the bond stress to be one half the 

ultimate bond stress at that node i. e. the value of ß is equal 0.5. 

Local failure of bond at steel nodes will continue gradually from 

one node to the other as the load is increased until bond at all 

steel nodes have failed. 

8.2.4 Pull-out test by Parsons (1984). 

The test selected here is intended to simulate a block of concrete 

such as exists in a pull out test. The concrete block and the 

reinforcing steel as well as the parameters used are detailed 

according to the test run by Parsons (1984) for his experimental 

and analytical investigations of bond. 

The reason for selecting this test is to compare the results 

obtained analytically and experimentally by Parsons with the 

results obtained using the present model. This is possible because 

of the following points : 

1) Parsons (1984) has used the same nonlinear bond model with 

the same bond parameters as shown in table (8.1) for his 

analytical solution by conventional finite element analysis using 

the following : 

a) Bond element used-in his study is the 6 noded shearing element 

section (2.2.1) and shown in figure (2.5). 

b) Nonlinear stress-strain relationship for concrete is used in his 

analysis considering cracking of concrete. 
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2) Parameters used in the analytical solution is selected to 

represent his experimental tests. 

The concrete cube used in this test has the dimensions 

150mmx150mmx150mm. One reinforcing plain steel bar is used. 
The diameter of the bar is 16 mm. The parameters for bond are as 

shown by table (8.1) with q0 (the initial stress due to shrinkage)= 

2.0 N/mm2. Parameters for concrete and steel are shown by table 

(8.2). Finite element mesh of the concrete block is the 4x4 mesh 

shown in figure (6.10b). The steel bar is divided into 30 2-noded 

bar elements leading to a total of 31 steel nodes. Node number 1 

represents the free end of the bar while node number 31 

represents the loaded end of the bar. 

Load Application: 

The load is applied at the bar end having node number 31 and in the 

direction outward of the concrete cube. The purpose of the test is 

to apply the load gradually to the steel bar until bond between the 

reinforcing bar and the concrete fails. Loading starts by applying 

a pulling load of 2 kN and then increasing the load by adding 
increments of 2 kN for the next 4 increments. Then the load 

increments are reduced to 1 kN until deterioration of bond occurs 

at all steel nodes table (8.3). 

Results and Discussion 

Failure load: 

The maximum pulling load reached just before failure of bond at 
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all steel nodes occurs is at a load of 12 kN. As the next increment 

of load i s added the bond fails at all steel nodes. This happens at a 
load of 13 M. Parsons (1984) ran two experimental pull out tests 

on this cube and he found that the failure loads in the two tests 

were 12 kN and 14 M. Failure load predicted by the present model 

lies within the experimental values. 

Stress in the bar: 

Figure (8.1) shows the stress distribution in the reinforcing bar as 

the load is gradually increased. It is noted from figure (8.1) that 

the shape of the stress curve changes from a concave shape at the 

very low loads level to a convex shape at the high load level near 

to bond failure. Figure (8.2) shows the experimental and the 

analytical results obtained by Parsons for the load distribution in 

the bar of this test along with the results obtained from the 

present model. The stress distribution obtained using the present 

model is very close to Parsons analytical solution using 6 noded 

shearing element section (2.2.1). The maximum load predicted by 

the present model is the same as the maximum load shown for the 

experimental results. 

Bond stress : 

Figure (8.3) shows the bond stress distribution along the 

reinforcing steel bar as the pulling load is gradually increased. At 

low levels of load figure (8.3) shows the bond stress is maximum 

at the loaded end and is decreasing as the free end of the bar is 

approached. The same phenomena is noticed until the pulling load 

of 8 kN is reached. At a pulling load of 10 kN the bond stress 

reaches maximum at the loaded end and stays almost constant 
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load inc. 
number 

increment 
size 

Total load 
applied. 

1 2 kN 2 kN 

2 2 4 

3 2 6 

4 2 8 

5 2 10 

6 1 11 

7 1 12 

8 1 13 kN 

Table (8.3) - Loading of pull-out test using 16 mm plain bar. 
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Figure (8.1) - Reinforcement stress in pull-out of 16 mm plain, bar. 
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throughout the rest of the bar. When the pulling load is increased 

after this stage failure of bond is approached and it is shown that 

at the last two loads before bond failure the bond stress is 

maximum at the free end and is minimum at the loaded end. This 

shows that the failure of bond occurs at the loaded end first and 

spreads towards the free end. By studying the actual values 

obtained in the computer output none of the steel nodes slip 

exceeds the maximum allowable slip, that is 0.1 mm, up to the 

maximum pulling load of 12 M. But at 13 kN all the nodes exceed 

the maximum allowable slip and so failure of bond at all steel 

nodes occurs. 

Figure (8.4) shows the bond stress distribution for this problem as 

obtained by Parsons analytical solution. The figure shown is 

reproduced from Parsons actual results so that the loading end 

corresponds to the solution obtained in figure (8.3). The 

similarities between the two solutions can be seen. 

Concrete stress: 

Figure (8.5) shows the concrete stress distribution at the bar level 

in the perpendicular direction of the bar axis while figure (8.6) 

shows the concrete stress distribution in longitudinal direction of 

the bar axis. It is noted that the maximum tensile concrete stress 

reached is less than the tensile fracture stress of the concrete. 

Figure (8.7) shows the concrete stresses obtained by Parsons 

analytical solution for this test. Again the load in the case of 

Parsons is applied in the left end of the bar as compared to the 

loading for the present work. 
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Figure (8.7) - Analytical concrete stress near the bar, after 
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load inc 
number 

. increment 
size 

Total load 
applied 

1 2 kN 2 kN 

2 2 4 

3 1 5 

4 1 6 

5 1 7 

6 1 8 

7 0.5 8.5 

8 0.5 9.0 

9 0.5 9.5 

10 0.5 10.0 

Table (8.4) - Loading in pull-out test( 12 mm plain bar) 
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8.2.5 Pull-out test by Standish (19821 

In the pull-out test presented in this section the concrete block 

and the reinforcing steel as well as the parameters used are 
detailed according to the test run by Standish (1982) in his 

experimental work. The difference of this test and the test 

presented in the previous section is in the following a) The 

dimensions of the concrete cube of this test are 

100mmx100mmx100mm. b) The reinforcement bar is a plain round 

steel bar with 12 mm diameter. c) q0 (initial bond stress) equals 

to 3 N/mm2 with the rest of the bond parameters are as shown in 

table (8.1). The same concrete mesh as the previous problem is 

used and also the same number of elements is used in the 

reinforcing bar. 

The purpose of this test is to compare the results obtained from 

the finite element solution obtained using this method as 

compared to some of the available experimental results obtained 

by Standish (1982) and also to the analytical results obtained by 

Parsons (1984) for this test. 

Load Application: 

The load is applied to the steel bar in increments of 2 kN for the 

first 4 kN of pulling load and then by increments of 1 kN for the 

next 4 kN of load. It is then reduced to load increments of 0.5 kN 

until failure of bond occurs table (8.4) (on previous page). 
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Results and Discussion: 

Failure load: 

All the steel nodes have failed at a pulling load of10 kN. The 

maximum applied load prior to bond failure is 9.5 M. The 

experimental results of Standish for this test gives a failure load 

of 10 kN while the analytical solution of Parsons predicts a 
failure load of 9 M. 

Figure (8.8) shows the free end slip obtained by this method as 

compared to the experimental results obtained by Standish (1982) 

and by the analytical solution of Parsons (1984). The free end slip 

obtained by this method shows a better match with the 

experimental results obtained by Standish. 

Stress in steel: 

The stress distribution in the steel bar for all load increments is 

shown by figure (8.9). The stress distribution is very similar the 

pull-out test of section 8.2.2. 

Bond stress: 

Figure (8.10) shows the bond stress distribution along the bar for 

all load increments. 

Concrete stress: 

Figure (8.11) shows the concrete stresses at the bar level and in 

the perpendicular direction to the bar axis for all load increments. 

Also it shows the concrete stress at the bar level and in the 

direction of the bar axis. Figure (8.12) shows the concrete 

stresses near the bar as obtained by Parsons analytical solution 

using the same nonlinear bond model. The two figures are very 

similar, but, again the load in the case of Parsons solution is 

applied at the opposite end. 
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8.3 Application of the bond model to deformed bars 

8.3.1 General 

In this section the bond model will be applied to analyse concrete 

structures reinforced with deformed bars. Although the bond 

model was developed for plain bars based on an assumed frictional 

mechanism of bond, it will be used for modelling of bond for 

deformed bars where the bond relies mainly on the mechanical 

interlock of the ribs bearing against the surrounding concrete. 

This will be done by adjusting the value of the parameters used in 

plain bars to be adequate for modelling of bond between deformed 

bars and the surrounding concrete based on experimental 

observations. 

The problems selected here are a pull-out test as in the case of 

plain bars in addition to a flexural problem. Analysis of the 

following problems is carried out : 

1) Pullout test by Standish (1982). 

2) Cantilever problem. 

8.3.2 Bond Parameters 

From the experimental results of Robins and Standish (1982) in 

studying the effect of lateral pressure on bond of reinforcing bars 

in concrete they found that at zero external lateral pressure 

applied on the concrete the mode of failure of the deformed bars, 

the primary cause of failure was splitting of the concrete J 

surrounding the bar. When lateral stress is applied to the cube and 
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for stress beyond 10 kN/mm2 failure is caused by shearing. Based 

on these observations there are two sets of bond parameters 

derived one for each type of failure. However, since this work is 

not intended to study the effect of lateral pressure on bond, no 

external pressure will be applied on the concrete cube and the data 

for splitting type of failure is selected. Table (8.5) shows all bond 

parameters used in modelling of bond between concrete and 

deformed bars and which represent the splitting case. 

As shown in Table (8.5) the value for RO given for deformed bars is 

very high as compared to the value for RO used in modelling of 

plain bars table (8.1) and this is to reflect the better bonding of 
deformed bars. The value of bond stress due to shrinkage of 

concrete is increased to 9.5 kN/mm2 as found from the results of 
Robins and Standish (1982). The coefficient of friction value are 
increased from 0.4 to 1.05. This is also to reflect the greater 

friction obtained between the deformed bar and the concrete as 

the concrete pressure increases on the bar as a result of loading. 

8.3.3 Failure Criterion 

Failure of bond in the case of deformed bars at any steel node 

occurs when the local gross relative slip between concrete and the 

reinforcement exceeds 0.1 mm which is the same as in plain bars 

except that for slips greater than 0.1 mm the bond stress will be 

maintained at its maximum value and so the value of ßis 

increased from 0.5 to 1.0. Complete deterioration of bond in the 

structure occurs when bond at all steel nodes have failed. 

215 



M . - O 

O \ O1 Y 
- (13 U M 

_ 

tit M 

o::: ) Z Ln Z 
ODN C) 0 

(D 
Lf) 

ö 

. im 
O 

U) 

(f) M 
O L O 

'D 
O 

D 
C 

N O 
O 
C 

C E 
.0 

(A 
L 

Co 
L 

Co 

J 55 
Co 

-be C n O y L' L 
(L) (f) CC) 2 

-6-2 lýI le- R7 
V) O 0 C) 
fn +ý 

.a 
L 

L 
O aj O O Cl) 

O ' 
CL 

O V CD 

Ö O ý' =L N 

.a Ön O 
"O ýO = 

""' 
C) OO 

CL 
O 

n o 
a) ,ý o 

aD 
CT) 

Ov 

} 

O 
O 

. JD 

O C) 

.0 

O 
Q) 

0 

OO O 

TJ Q 
O 

E 
L -p 
OO 

v-- U 
(/) O 
LN 
G) 

O 
y-+ 
a) 

L 
.-O 

L 
O 
4 a) 
'D E 
OL 
00 

LD `ý- 

"D 

I -0 
C 

Ln O 

cci O 

C) 
NL 

.a= OO 
F- U 

216 



8.3.4 Pull-out test by Standish (1982).. 

The pullout test to be modelled by the method for the case of 

deformed bars will be according to the pull-out test details of 

Standish (1982) as described in section (8.2.7) except for the 

reinforcement which is replaced by one deformed bar with nominal 

diameter of 12 mm. The value of the parameters used for 

modelling of bond are shown in table (8.5) and the parameters used 

for concrete and steel are shown in table (8.2). 

The analytical solution obtained for this test using the present 

bond model will be compared with the experimental results of 

Standish and the analytical solution of Parsons. Such a 

comparison is possible because the bond parameters used 

correspond to the work of both authors and for the same reasons 

given in section (8.2.5) 

Finite element mesh for the concrete block is still the same as in 

section (8.2.5) and also the reinforcement is represented in the 

same way. 

. -I 

Load application: 

The load is applied to the bar at the bar end node number 31. Load 

is applied incrementally, first at pulling load increments of 5 kN 

for the first three increments then at increments of 2.5 kN for the 

next two increments. Finally load increments is reduced to 0.5 kN 

for the rest of load until failure of bond at all steel nodes occurs 

as shown in table (8.6) (page 223). 
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Results and Discussion : 

Failure of bond at all steel nodes occurs at a load of 23.0 kN. 

Unlike the plain bar case this does not happen at once. At the load 

of 22.0 kN it is found that bond at the nodes in the next 60 mm of 

the bar length starting from the loaded end have already failed. By 

adding the next increment of load ( 0.5 kN ) the bond at the 

remaining nodes in the bar fails. From the experimental results of 

Standish the failure load for this test is found to be 22 kN while 

the analytical results of Parsons predicts a failure load of 20.5 M. 

Free-end slip, 

Figure (8.13) shows a comparison for the slip of the free end of 

the bar as obtained from the present model solution and the free 

end slip as obtained from the experimental results of Standish and 

the analytical model of Parsons. 

The very good prediction of the free end slip obtained using the 

present model when compared to the experimental results of 
Standish as shown by figure (8.13) is obvious. 

The better solution obtained by the present model as compared to 

Parsons model fort-the failure load as well as for the free end slip 
is obvious for the case of deformed bars while in the case of plain 

bars the difference between the two solutions is not so obvious. 

It is appropriate to comment here on modelling of bond as 

developed in this research and modelling of bond using 6 noded 

bond interface element shown by figure (2.6) as in the case of 

Parsons work. 
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In the solution of this problem Parsons used 4 bond elements 

which results in only 9 points along the length of the steel bar for 

evaluating bond stresses, while using the present model the bond 

stresses are evaluated at 31 nodes. This difference of the number 

in nodes for evaluating bond stresses affects the results 

especially in the case of deformed bars. In deformed bars the 

change of bond stresses is rapid due to the value of µ=1.05. So, 

using 31 nodes for evaluating bond stresses the model can follow 

the change of bond stresses closely which results in more 

accurate prediction of the free end slips and the higher failure 

loads obtained than when using 9 points for evaluating stresses. 

In the case of plain bars the value of µ used is 0.4 which leads to 

slow change of bond stresses and in this case the number of 

points for evaluating bond being 9 is good enough to follow the 

failure of bond. Therefore the results obtained by the present 

model for the case of plain bars shows slight improvement over 

the solution obtained by Parsons. 

Although the present method treats concrete as linear elastic 

material, this has not much effect on the results of the pull-out 

tests since some of the results obtained are superior to the ones 

obtained by Parsons using nonlinear stress-strain relationship for 

concrete. 

Compressive stresses carried by concrete is less than 13 % of the 

ultimate compressive strength of concrete. Also tensile stress 

carried by concrete is less than 8% of the tensile strength of 

concrete. 
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Stress in the bar: 

Figure (8.14) shows the stress in the bar for all load increments. 

The stress curve shape obtained at low level of loading is the 

same as in the case of plain bars except that the curvature here is 

more obvious. As the applied load increases the shape of the curve 

changes gradually and becomes convex at the maximum load 

applied. Figure (8.15) shows a comparison between the stresses 

obtained at the maximum applied load for deformed and plain bars. 

Bond stress: 

The bond stress obtained for this test for all load increments is 

shown in figure (8.16). The deterioration of bond can be followed 

from the bond stress curves at high loads which is more obvious 

than in the case of plain bars. 

Concrete stress: 
Again concrete stresses at the bar level are calculated at all steel 

nodes locations in the perpendicular direction to the bar axis and 

are presented in figure (8.17) 
. 

Concrete stresses at the bar 

location and in the direction of the bar axis are shown by figure 

(8.18). 
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load inc. 
number 

increment 
size 

Total load 
applied 

1 5 5 

2 5 10 

3 5 15 

4 2.5 17.5 

5 2.5 20.0 

6 0.5 20.5 

7 0.5 21.0 

8 0.5 21.5 

9 0.5 22.0 

10 0.5 22.5 

11 0.5 23.0 

Table (8.6) - Loading of the 12 mm deformed bar in pull out test. 
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8.3.5 Cantilever 

The cantilever details to be analysed in this section are shown by 

figure (6.18). Analysis of the cantilever has been demonstrated in 

section (6.4) for the linear case. The purpose of the solution using 

the nonlinear bond model is to study the effect of the nonlinear 

bond stress slip relationship on the behaviour of the solution as 

the load is increased. 

The solution will be carried out using the bond parameters shown 

by table (8.5) when selecting the equivalent parameters values in 

imperial units. 

Full length and curtailed tension reinforcement will be anchored at 

the bar end in the column by high bond stiffness values. Also 

stirrup and ties ends will be anchored to the concrete in the same 

manner for the same reasons given in section (6.3.2). The value of 

the bond stiffness modulus used for anchorage is 1000 times 

greater than the initial bond stiffness or 

R0 = 1000 x 3684 kips/inch3 

This value will stay constant all the time for all loads increments 

and it will not be affected by the change in slope of the nonlinear 

bond stress slip curve as are the rest of the nodes. 

The finite element mesh is the same as in section 6.4. The same 

number of nodes is selected for the reinforcement. 

Loading: 

The first load applied is a uniformly distributed load of 2.7 kips/ft 
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which is the full loading of the cantilever as designed in section 

6.4. The load is then increased by increments of 0.9 kips/ft for 

four increments. 

Results and Discussion: 

The solution of this problem for all load increments takes 81 

minutes and 31 seconds from the computer central processing unit 

(CPU) time using Multics system whereas as for the pull-out 

problems the solution takes about 4 minutes. The output gives 

details of stress and bond at all the 350 steel nodes in every load 

increment. 

Stresses: 

Figure (8.19) shows stresses in the full length tension 

reinforcement for four load increments. It is noted from this 

figure that the stresses show some irregularities in the 

reinforcement stresses which coincide with the concrete element 

boundaries. Further it is noted that these irregularities become 

smoother as the applied load is increased. These also appear in 

figure (8.21) but exaggerated since bond stress are obtained from 

the derivative of bar stresses. The explanation for this behaviour 

is very similar to the problem discussed in the linear case when 

examining the irregularities. in the bond stress curve. In this 

problem the steel is not loaded- directly but it is loaded through 

the bond interforces which are calculated from the concrete 

displacements at the steel nodes. Loading of steel is achieved 

according to equation (4-9b) repeated here : 
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[KS+Kbl " [DS] = [P5] + [Kb]-- [C] " [Dc] 

The iteration superscript on [Dc] is removed 

Since no load is applied directly to the steel in this problem then 

[Ps] =0 and so the steel loading comes from the term [Kb] . [C] . 

[Dc] . The term [C]. [Dc] will evaluate the concrete displacements at 

the steel nodes location within the 8-noded concrete element 

using shape functions. As pointed out in chapter 6, this method of 

evaluating concrete displacements will create a problem at the 

boundaries of the element which is very similar to the problem 

that occurs when calculating element stresses at points within 

8-noded element as first noted by Hinton and Campell (1974), 

where they showed that stresses derived from the shape functions 

were most accurate at Gauss points and at their worst at the 

boundary edges. 

This problem affects the solution when kb value is very high such 

as in the first load increment where kb equals 3684 kips/in3 

compared to kb equals to 200 kips/inch3 in the linear case 

solution presented in chapter 6. The size of the fprces applied to 

steel is a function of the kb value, thus for high kb value, the 

effect of such irregularities is very clear, on the solution of the 

reinforcement. The irregularity of the forces applied to steel is 

maximum at the element boundaries and thus its effect can be 

seen there. In the linear case where kb is constant (kb=R0=200 

kips/in3), the loading of the steel produces a smooth stress 

pattern. In the nonlinear solution as the load is added the "slip" 
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increases and so the value of the slope of the nonlinear bond 

stress slip curve becomes smaller and so does the value of kb. 

Therefore, the irregularities in the reinforcement solution is 

removed as load increases and so the shape of the stress curve for 

the steel becomes smoother at high loads. 

Figure (8.20) shows the stress in the curtailed bar for the same 

load increments as in figure (8.19). 

Bond S tresse s: 

Figure (8.21) shows the bond stress for the full length bar. The 

results show that the bond starts to deteriorate as the last load 

increment is applied and occurs near the maximum stress in the 

tension reinforcement. A drop in the bond stress is observed at 

that ar ea. This can be seen more clearly from the numerical 

values of the solution. 

It was the purpose of the solution to obtain deterioration in bond 

at all steel nodes location as in the case of pull-out tests. But 

with the limitation imposed by the present modelling of concrete 

this was not possible. 

Modelling of bond in the present work depends on the relative 

movement, or deformations, between reinforcement and the 

surrounding concrete. If a nonlinear stress strain relationship of 

concrete is considered as it should, then the concrete 

deformations especially at those locations where high stresses 

are carried by the concrete, will be different than in the case of 

linear analysis of concrete. Therefore the bond stresses are 

expected to be quite affected by nonlinear concrete analysis in 
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this problem. The second thing to notice is that the nonlinear bond 

stress slip relationship depends on the ultimate bond stress 

calculated which in turn depends on the radial interface pressure 
developed between the concrete and the steel as expressed by 

equation (5.6) repeated here: 

gulf = q0 +' 9" (6rconc - 6rsteed 

Since there is no restriction imposed on the maximum stresses 

carried by the concrete or the steel, this will lead in some 

circumstances to the quantity [µ 
" 

i6rconc - (yrsteel)' beingIN? 6Qf+ve 
and il-s ahs, fu! -e 

,, utve greater than qO which will lead to incorrect calculation of the 

bond stresses. For the above reasons complete deterioration of 

bond could not be demonstrated. 
_ 

This problem did not happen in pull-out test problems because the 

concrete stresses developed were not very high and the linear 

analysis of concrete seems to be quite adequate. 

The irregularities in the bond stress curve are for the same 

reasons mentioned in the linear case analysis of the beam and the 

cantil! ver (chapter 6). 

The bond stresses for the tension curtailed bar is shown in figure 

(8.22) and the same thing is noted about the curtailed bar as in the 

case of the full length bars except her deterioration of bond starts 

to take place at the free end of the bar. 
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9. CONCLUSIONS 

9.1 Objectives: 

The objective of the work done in this research was as follows: 

i) To develop a new method 
, 
for modelling of bond and 

reinforcement in finite element analysis of reinforced concrete. 

ii) To find an efficient method of solution for the resulting 

equations. 

iii) To show the application of the method to some reinforced 

concrete structures. 

iv) To extend the method so that it covers nonlinear bond 

behaviour. 

v) To show application of the nonlinear bond model. 

.2 Achievemen 

A new method of representing the steel in finite element analyses 

of reinforced concrete structures was described in chapter 3 in 

which the concrete and the steel are analysed separately. Bond 

forces, calculated from bond stiffness and the - relative 

displacement between reinforcement and the surrounding concrete, 

are used to transfer -load between concrete and steel. 

Two iterative methods of solution were studied thoroughly. An 

iterative method which converges extremely rapidly and which is 

much more efficient than direct solution especially in the 
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presence of very large number of steel nodes was adopted for the 

solution. Solution of the complete structure by the iterative 

method is achieved by deriving the interforces between the 

concrete and the steel and applying them in an iterative fashion. 

Solutions which are obtained for three practical reinforced 

concrete problems using linear stress/strain and bond/slip 

relationships in two dimentional analysis showed the following 

achievements of the method : 

1) Concrete could be modelled quite separately from the steel. 

Finite element mesh of the concrete was designed solely to 

match the expected stress patterns in the concrete. 

2) All reinforcement bars could be accurately and completely 

modelled regardless of their orientation and location with very 

little impact on the computer time needed for the solution. 

3) Bond stiffness which must be represented in accurate 

modelling of reinforced concrete was included in the analysis 

and thus improved the overall modelling. 

4) Thin concrete cover over reinforcement could be 

accommodated without influencing the finite element mesh 

representing the concrete. 

5) Anchorage of bars could be easily modelled by two methods. 

Either by including a very high stiffness value or by applying 

an external force which is calculated based on a given 

development length. 
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6) Loads could be applied to either or both the concrete and the 

steel. 

7) Detailed stress distributions computed for all bars ensured a 

more accurate modelling of bond and concrete behaviour. 

The method was extended to accommodate a nonlinear bond model 
described by Allwood et al. (1984). Application of the nonlinear 

bond model to different pull-out test problems was compared to 

another solution using the same nonlinear bond model (i. e. the 

model by Allwood et al. ) in conventional finite element analysis of 

reinforced concrete and where bond was represented by 6 noded 

shearing element. The method showed the following advantages: 

1) Free end slip was much better predicted by the present model 

especially when using parameters to describe bond between 

deformed bars and the surrounding concrete. 

2) Higher load needed to cause failure of bond was predicted by the 

present model which is nearer to experimental values. 

3) Steel, bond and concrete stresses agree well with the earlier 

solution. 

The following effects were studied : effect of bond stiffness value 

on main reinforcement showed higher loads are transferred 

between concrete and steel when higher bond stiffness value is 

used. Effect of mesh size and number of nodes showed no 

significant difference obtained in the solution of pull-out test. 
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Effect of the method of anchorage showed that anchorage can be 

equally done by the two methods mentioned earlier. 

9.3 Difficulty and anticipated solutions 

One common difficulty was faced in the solution of flexural 

problems and is the irregularities in the bond stress curves which 

coincides with the concrete element edges. 

This was found to be due to the calculation of the concrete 

displacements at the bar level which are used along with the steel 

displacements to calculate the bond stresses. These concrete 

displacements at the bar level are obtained from the concrete 

nodes using the shape functions. The second differences of the 

concrete displacements at the bar level showed discrepancies at 

the boundaries of the concrete elements but smooth values from 

the boundaries. When calculating element stresses at points 

within an 8-noded element Hinton and Campbell (1974) showed 

that stresses derived from the shape functions were most 

accurate at the Gauss points and at their worst at the boundary 

edges and thus they recommended to interpolate through the Gauss 

point values. Therefore, the solution to this problem may be to use 

a similar smoothing process to improve the bond stresses 

calculated from the method presented in this thesis. The 

possibility of doing this needs further investigation. 
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It is noted that in this research concrete is modelled by 8 noded 

isoparametic quadralateral elements while steel is modelled by 2 

noded bar elements. The error in compatability is reduced by 

dividing the steel into small segments because many steel nodes 

are usually used per concrete element (typically 7 to 10). Thus, 

there is only a littlje improvement in compatability to be gained 

using three noded bar elements for steel. This is expalined in 

section (3.4). 

9.4 Recommendation for further work 

The following extensions of the method presented in this research 
ap3 

recommended for further work 

1) Nonlinear behaviour of concrete must be included. This may be 

implemented in a similar manner to the nonlinear bond model. 

2) Allowing for cracks to develop must be considered. This needs 

careful consideration since their existence could cause the left 

hand side, Kc , of the first equation in (equations 4.9) to become 

singular. Convergence of the method is expected to be much 

slower than in the linear solution. The matrix Kc is very flexible 

when extensive cracking takes place since stiffness of steel is not 

included in this matrix. Concrete deformations obtained in the 

first iteration in the linear solution were very high compared to 

the actual deformation in the concrete and so a damping factor 

was applied starting by the second iteration to reduce the 

concrete deformation nearer to the actual solution. In the 
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presence of cracks such deformations are expected to be much 

exaggerated and thus obtaining the final solution will need more 

iterations. 

3) Extension to three-dimensional analysis should be considered. 

The potential of this method when applied to three dimensional 

reinforced concrete structures is substantial. The constraint 

imposed on the mesh of concrete elements by conventional 

methods of representing reinforcement steel is greater than for 

the two-dimensional problems discussed and the realistic 

inclusion of steel adds considerably to the cost of an analysis. 

The method described in this thesis will show real savings when 

analysing three dimensional problems. 

5) Dowel action. The interforces have been calculated throughout 

this research by consideration of bond action only. Reinforcement 

also adds to the shear stiffness of concrete by dowel action. No 

extra degrees of freedom are necessary to include this effect, only 

the calculation of the interforces normal to the axis of a 

reinforcing bar generated by the shear distortion of the bar. 
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A. COMPUTER PROGRAM 

A. 1 General 

Development of the computer program formed a major part of this 

research. The purpose was to construct an efficient computer 

program which represents the practical implementation of the new 

method discussed in chapter 3. The computer program was 

constructed based on the iterative method of solution presented in 

chapter 4 and then it was extended to accommodate the nonlinear 

method discussed in chapter 7. The program is written in Fortran 

IV language and is developed on the Honeywell Multics System. 

The finite element analysis is based on the displacement type of 

finite element formulation. 

The computer program is built by the author to accommodate the 

method of solutions as explained above. The program gets 

advantage of the NAG (Natural Algorithm Group) finite element 

library subroutines which is available on the Honeywell Multics 

System at Loughborough University of Technology in the following 

parts of the program : 

1) Constructing the stiffness matrix for concrete elements. 

2) Assembling the global concrete stiffness matrix, K. 

3) Reduction of the concrete global stiffness matrix, Kc, and the 

global matrix [Ks+Kb] using Choleski's Method. 

4) The back-substitution in the reduced form of the above two 

matrices. 
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A. 2 Some highlights on the computer program 

The following points are explained about the program : 

1) Banded form of matrices 

All stiffness matrices are assembled in the banded form. This 

includes [Kc] and [Ks+Kb]. 

The band width of the global stiffness matrix of concrete, [Ks], 

depends on the efficiency of the numbering scheme of the nodes of 

the concrete elements. 

However, [Ks+Kb] matrix has a special form of being always a 

tridiagonal matrix. In the program the half band width of [KS+Kb] 

which is always equal to two is formed directly without the 

conventional method of assembly. 

2) Reduction of matrices 

In the program the above matrices are reduced into lower 

triangular matrices using Choleski's method before the iteration 

solution starts. Time needed for the reduction of [Ks+Kb] is trivial 

because of its simple form. 

3) Back substitution 

In the iterative solution forward and backward substitution are 

performed on the reduced forms to produce concrete and 

reinforcement solutions. 
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4) Reinforcement nodes numbering 

Among other informations entered in the input data about every 

reinforcement bar is the number of bar elements into which the 

reinforcement bar is to be divided and the coordinates of the first 

and the last nodes in the bar. The program then divides every 

reinforcement bar into a number of steel nodes, assign a global 

number for every node, obtain the global coordinates for the nodes 

and calculated the angle of inclination of the bar. The node 

numbering continues in sequential order for all steel nodes of all 

bars. 

5) Local coordinates 

The information of every reinforcement bar contains the number of 

concrete element which the bar passes through. This adds one step 

to the efficiency of the program because it is faster to identify 

the concrete elements in which every steel node lies and thus 

calculating the local coordinates of steel nodes. 

Another step in this regard is to specify if the concrete elements 

edges are parallel to the global coordinates axis or if they are 
inclined. This also adds to the efficiency of the program because 

the number of calculation involved in obtaining the local 

coordinates of steel nodes within an inclined concrete elements is 

much more than if the concrete elements edges are parallel to the 

global axis. 

6) Co ndition s of steel nodes 

Steel nodes can be free, anchored or restrained. If a steel node to 

be anchored or restrained then this is indicated in the input data. 
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The information for nodes to be anchored by applying an external 

force contains: global node number, bar diameter and initial 

anchorage length. 

For restrained nodes only global node number is required. 

7) Loading 

Loading can be applied to concrete and/or to steel. If load is 

applied to concrete then load size and the associated concrete 

degree of freedom is specified. If steel is loaded then load size 

and the associated steel node number is specified. 

8) Units 

Units can be either in imperial or in SI. Units have to be 

consistent as follows: 

SI units 

Stress in N/mm2 

Load in N 

Length in mm 

Initial bond stiffness N/mm3 

Imperial units: 

Stress in lb/in2 

Load in lb 

Length in inch 

Initial bond stiffness in lb/in3. 

The unit type is specified in the nonlinear solution so that the 

appropriate value for Du and qO is selected. 
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9) Scratch tapes 

To reduce the memory storage needed for the large number of 

matrices needed in the solution some of the matrices are left as 

element related matrices and are written on a scratch tape. The 

information contained are read again whenever needed. 

A. 3 Calculations of concrete and steel stresses 

Calculations of the concrete stresses at the concrete element 

nodes and at the steel nodes are done as follows 

Concrete stresses at element nodes 

The stress at the concrete element nodes are obtained from the 

four quadrature points for all concrete element using Least square 

smoothing method discussed in chapter 7. Once this is done for all 

concrete elements then the average values at the nodes are 

obtained by knowing the number of the concrete elements which 

the concrete node shares. The program takes care of that. 

Steel stress 

Axial stress in steel at the nodes is simply calculated from axial 

steel displacements by finite difference method. Central, Forward 

and Backward differences are used as needed e. g. Bajarwan 

(1977). 
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A. 4 Testing the grogram 

As part of the testing of the computer program the following 

problem was solved. The beam problem shown in figure (A. 1 a) was 

solved twice once being in the normal position as shown in figure 

(A. 1 a) and another time by rotating the whole problem an angle cp 

to the global coordinates as shown in figure (A. 1 b). 

The solution obtained for the two problems is exactly the same. 
Concrete stress and displacements are transformed in the 

horizontal plane using the angle of inclination cp to make 

comparison possible. Steel displacements and stress are 

compared directly since they are given along the bar axis. 
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(a )- Normal position 

I 

(b)- Inclined position 

Figure (A. 1) - Beam used for testing the program. 
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B. OUTPUT OF THE PROGRAM 

The program output consist of two parts. First it feeds back the 

input data and then the solution. 

The solution given contains detailed solution at every steel node 

which includes node coordinates, displacement, stress in steel, 
bond stress etc. 

Examples of computer output is given in the next three figures. 

Figure (B. 1) shows part of the output feeding back the input data 

for steel in the linear analysis of the cantilever. Figure (B. 2) 

shows part of the output showing the solution for the same 

problem. Figure (B. 3) shows part of the output for the nonlinear 

case solution. 
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