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Abstract 

This paper discusses an innovative approach to mapping 
Genotypes to Phenotypes through XML rules. Specifically, 
it concentrates on the mapping process using two very 
different domains – Regular Expressions (REs) and 
Software Program Statements. The paper shows that our 
Genotype-Phenotype system can be applied to any domain 
that requires the use of REs and it can be adapted to work 
for any other domain with minimum effort. 
  
Keywords: Genetic Evolution, Genotypes, Phenotypes, XML 
Mapping, Regular Expressions, Complete Software Structures. 

1. Introduction 

GP research has attracted attention in various fields such 
as: game strategies [14], military defence [13], plant 
biology [7], electronics [20], railway platform allocation 
[4], spam filtering [5], feature extraction from media files 
[12], [16], automated web extraction [3], [31] etc. One can 
use different terminologies to define GP, but 
fundamentally: “At the most abstract level, GP is a 
systematic, domain independent method for getting 
computers to automatically solve problems starting from a 
high-level statement of what needs to be done” [18]. 
 
This paper focuses on a specific part of GP – the 
Genotype-Phenotype Mapping – thus other components of 
GP will not be covered here. Readers are encouraged to 
look at [31] for a discussion of the different GP 
components in relation to a real project, as well as [1], [8] 

and [9] for a large selection of GP papers and surveys of 
the history of evolutionary computing.  
 
The Genotype-Phenotype Mapping relates to the way 
individuals in a population are represented, as this can 
have a significant effect on the performance of GP. A 
Genotype represents each individual in the search space, 
whereas its Phenotype represents the individual in the 
solution space [2]. Some research, particularly earlier GP 
research, do not make a distinction between Genotypes 
and Phenotypes [5], [17], [27]. Individuals in each genetic 
population remain the same throughout the evolution 
process. In these works the search space and the solution 
space are identical.  
 
In 1994, Banzhaf [2] suggested the separation of the two 
spaces and introduced his work on the Genotype-
Phenotype mapping. The separation involves the encoding 
of the individuals to a form known as the ‘Genotype’, 
which is later on decoded back to the corresponding 
program, referred to as the ‘Phenotype’. This separation 
simplifies and increases the efficiency of certain genetic 
operations such as: reproduction and mutation, because 
these would no longer be constrained by the parameters 
used in the program being evolved. In Genotype-
Phenotype based GP, genetic operators such as Crossover 
and Mutation would be performed on the Genotype, 
whereas other processes, such as the Fitness scoring, 
would be performed on the Phenotype. Sections 3.1 and 
3.4 explain this concept further through examples. 
 
There are researchers who criticise the separation into 
Genotypes and Phenotypes [19]. The main concern 
expressed is that the conversion process of a mutated 
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Genotype into the Phenotype may result in anomalies that 
could potentially lead to invalid solutions. A direct 
mapping between the encoded program and the actual 
program is therefore vital to ensure the validity of the 
solutions [23], [28]. 
 
In our research, the Genotypes are presented as strings of 
integers. The direct mapping of these integers to the 
corresponding structures is achieved through an 
innovative approach involving XML rules as described in 
section 3.4.  
 
This research is part of a larger project in collaboration 
with an independent brokerage – Apricot Training 
Management (ATM) – which helps organisations to 
identify and analyse their training needs and recommend 
suitable courses for their employees. ATM currently uses 
time-consuming, labour-intensive, manual techniques to 
gather information related to training courses, however, 
this process often results in out-of-date courses being 
stored in the company’s database and many hours being 
wasted on Web browsing and data entry. Our overall 
project is to provide ATM with a system that will 
automate the extraction and storing of training course 
information into the company’s database, guaranteeing 
always up-to-date training data [29], [30]. Specifically, the 
research concentrates on the evolution of Regular 
Expressions (REs) for the extraction of pieces of 
information such as course names, prices, dates and 
locations from training web pages. 
 
The following section focuses on research and techniques 
related to Genotype-Phenotype based GP.  

2. Related Research 

Many researchers have embraced the separation of the 
search space from the solution space through the use of 
Genotypes and Phenotypes [2], [15], [28]. This, however, 
adds an additional step to the genetic evolution process – 
the translation or mapping of the Genotypes to their 
corresponding Phenotypes. This step occurs after the 
genetic reproduction stage (i.e. the crossover and mutation) 
and before the Fitness test can take place. 
 
The following concentrates on the different methods that 
have been used to achieve the mapping process.   
 
Banzhaf [2] represented his Genotypes as linear binary 
strings. The mapping stage then processed these 
Genotypes from left to right in 5-bit sections, where each 
5-bit code mapped to a pre-specified symbol. For example: 
00000 mapped to PLUS, 00100 mapped to POW, 11000 
mapped to variable X etc. The first bit indicated whether 

the code represented a function (PLUS, POW etc.) or a 
terminal (X, Y etc.). The research also discussed their 
concern about generating constant numbers. Koza [17] 
solved this problem by defining “random ephemeral 
constants” where constants are only generated once for a 
particular program and then reused wherever they are 
needed within that program. 
 
Keller [15] continued in the footsteps of Banzhaf, 
concentrating on providing experimental evidence for 
choosing the Genotype-Phenotype approach instead of the 
normal GP approach. Keller’s system however, could only 
evolve programs in languages defined by the LALR (Look 
Ahead Look Recursive) grammar, as this was the grammar 
chosen for the repairing stage of the Genotype-Phenotype 
mapping process.  
 
There was a certain amount of redundancy in the genetic 
coding in both Banzhaf’s and Keller’s works. They both 
admitted that, in their works, different binary strings could 
correspond to the same symbol, which could lead to 
inconsistencies e.g. 000 and 100 both mapping to ‘a’.  
 
A slightly different Genotype representation is seen in the 
work of Withall et al. [28]. In here Genotypes are 
represented as linear blocks of integers. Each block 
comprises exactly four integers, each representing a 
different gene. Although both research works used fixed-
length genomes, in [2] the resulting Phenotypes could vary 
in length, whereas in [28] they remained fixed.  
 
The first integer in Withall’s Genotype determines the 
type of function that follows. Similarly, the Genotype in 
our research is represented as a string of integers. There 
are no fixed length genomes determined however; instead 
the Genotype can contain any number of genes.  
 
The unique feature of our research is the use of XML to 
define the necessary rules to achieve the Genotype-
Phenotype mapping. The first gene in the string 
determines the XML rule to be followed, which in itself 
guides the mapping of the rest of the genes into a valid 
Phenotype. This is explained in detail in section 3.4. 

3. Genotype to Phenotype Mapping 

Before discussing our mapping approach, it is important to 
explain a few related topics in order for the reader to fully 
understand how the approach works. The following 
discusses the main representation chosen for the system, as 
well as the different domains on which this approach was 
tested. Specifically, the two domains relate to the 
Genotype-Phenotype mapping of: REs and Software 
Program Statements.  The Software Program Statements 
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domain was chosen because it is very different from that 
of REs and thus, it can truly illustrate the extent to which 
our system needs to be changed to apply to such a domain. 
 
Section 3.4 explores the XML mapping process in detail. 

3.1 GP Representation 

There are two main representations in GP: the Tree-Based 
GP and the Linear GP [28]. The Tree-Based GP represents 
programs as syntax trees (Fig. 1), where program variables 
and constants make up the tree leaves (x, 1, 5, y, 2), 
whereas the program operators (*, +, –, /) are the internal 
nodes. The tree leaves are also known as the terminals, 
whereas the internal nodes are known as the functions. 
Fig. 1 shows the tree representation of program “(x+1)*(5-
(y/2))”. For complex programs, the main tree may contain 
many sub trees.  

 
 

Fig. 1 Tree-based GP Representation 

Linear GP represents programs as a linear sequence of 
instructions (Fig. 2). Based on biological evolution, the 
sets of instructions are known as Genomes and each 
individual instruction is called a gene. All the available 
Genomes for a particular program form the Genotype. 
Linear GP representations may have either fixed length 
Genomes i.e. the same number of genes for every 
instruction, or variable ones. This depends on the problem 
to be solved.  
 

 
 

Fig. 2 Linear GP Representation 

 
We have chosen the linear approach for our research, 
because it is more appropriate for the representation of 
non-standard models like REs. Furthermore, linear GP 
runs faster than tree-based GP [21]. This is because almost 
all computer architectures represent computer programs in 
a linear fashion – as a sequence of commands to execute. 

The execution of tree-shaped programs is not natural for 
computers, thus interpreters or compilers would need to be 
used as part of the tree-based GP [21], which is 
computationally expensive. 

3.2 Regular Expressions (REs) 

REs [26], [10], [22], [25] are powerful tools used to detect 
patterns in data. They can range from basic to very 
complex, matching from just literal text1 to very specific 
instances of text based on certain criteria. For example: 
^[A-Z][a-z]+ matches all instances that begin (^) with an 
uppercase letter ([A-Z]) followed by one or more (+) 
lowercase letters ([a-z]) such as “Regular” or 
“Expression” but not “RE” or “REs”. 
 
 REs are very well known, particularly in the UNIX 
community and they feature largely in some programming 
languages such as Perl, PHP or AWK. However, the 
manual generation of REs can be a difficult, error-prone 
and time consuming undertaking, especially for complex 
patterns. This is due to the fact that although REs are built 
up from small building blocks, where each block is fairly 
simple; all the available blocks can be combined in an 
infinite number of ways [10], which may result in a highly 
complex RE. Tools have been developed to evaluate the 
validity of REs [11], [24], however, very little, if anything 
has been done towards the automatic generation of REs.  
 
Our research focuses on the automatic generation of REs 
through the use of genetic programming principles in 
order to automate web extraction. This paper concentrates 
on the mapping of Genotypes (strings of meaningless 
numbers) to Phenotypes (REs) through XML rules as 
explained in section 3.4. 

3.3 Software Program Statements 

The research in this paper is based on the work of Withall 
et al. [28]. The examples are kept as close to the original 
as possible in order to ensure their integrity. The only 
difference is that the Software Program Statements in [28] 
were evolved to be valid in Perl, whereas in this paper 
their validity is ensured against VB.NET 2008. Fig. 3 
shows an example of the syntax differences in both 
languages. 
 

                                                           
1 / all this is literal text and will be matched / 
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PERL: if ($x != $y) {
       $z = $z + 1;
  }

VB.NET: IF x <> y THEN
       z = z + 1
  END IF

 
Fig. 3 PERL vs. VB.NET 

The Software Program Statements that are considered in 
this paper include simple structures that are commonly 
used in programming such as: FOR … NEXT; IF … 
THEN … ELSE, WHILE … END WHILE as well as 
useful statements such as Addition (x = y + z), Subtraction 
(x = y - z), Multiplication (x = y * z) and Division (x = y / 
z).  
 
The following section will explain in detail how 
Genotypes are converted to either REs or Software 
Program Statements using XML rules. 

3.4 XML Mapping – REs  

It is very important for the Genotypes and Phenotypes to 
have a direct relationship between them, in order for 
essential characteristics to be preserved from the parents 
and inherited by the offspring [28]. Koza [17] did not 
encounter this problem, because the Genotypes were not 
separated from the Phenotypes in his work, however, 
representations such as grammatical evolution [20] could 
be in danger of creating offspring that do not inherit 
important qualities from their parents, due to a lack of 
direct mapping between the parent and offspring 
Phenotypes. 
 
Our Genotype to Phenotype mapping is similar to the 
work of Withall et al. [28], whereby the Genotypes are 
used for the genetic manipulation, whereas the Phenotypes 
are used for the Fitness Test. One of the differences, 
however, is the length of the Genomes. Withall et al. use 
fixed-length gene blocks or Genomes, where each block 
comprises four genes, however, they allow for variable-
length Genomes through padding – in cases of shorter 
program structures or statements, left over genes are 
ignored. In this research, we only use variable-length 
Genomes. This is because different REs may contain a 
varying number of components (i.e. tags, RE structures, 
keywords etc.). One can create a regular expression that is 
a centimetre long or one that covers a whole A4 page. 
Withall et al., however, deal with the evolution of 
structures, as discussed in section 3.3, which are more 

rigid when it comes to the number of components they 
contain.  
 
As mentioned previously, a unique attribute of this 
research is that it achieves the Genotype to Phenotype 
conversion through XML rules (Fig.  4). This technique 
has many advantages including: improved readability, 
compatibility with many programming languages, 
portability and extendibility (XML is not restricted to a 
limited set of keywords defined by the proprietary 
vendors, which aids the process of creating rules of 
different levels of complexity).  
 
The initial XML rules were created manually after an 
extensive analysis of a number of web pages. However, in 
the future, new rules will be able to be added to the XML 
file automatically (Hinde, Stone and Siau are currently 
working towards implementing this functionality).  
 
The rest of this section explains the way XML is used to 
guide the mapping of Genotypes to valid Phenotypes. The 
Genotype-Phenotype mapping process for the REs domain 
is shown below: 
 

Pseudo-code: Genotype-Phenotype Mapping Process 
1) Determine the XML rule to follow 
2) Follow the chosen XML rule to the end 
3) IF the Genotype has fewer genes than the rule 

requires 
a) Follow the rule for the number of genes available  
b) Repair outcome to create a valid partial solution. 

4) IF the Genotype has enough genes for the XML rule 
a) Follow all the components within the rule 
b) Repair outcome (if necessary) to create a valid 

and complete solution. 
5) IF the Genotype has more genes than the  rule 

requires 
a) Follow the same steps as above (4a and 4b) 
b) Ignore the rest of the genes in the Genotype 

 
 
Note that this is not a character by character evolution, 
because this would increase the search space and 
dramatically increase the execution time. Instead REs are 
divided into three collections: HTML tags (e.g. “title”, “tr” 
etc.), keywords (e.g. “course”, “title” etc.) and RE 
substructures (e.g. “.*?” or “[\s]?” etc.). Each evolved 
gene will be translated to an element of one of these 
collections. Each collection is further divided into a 
number of components e.g. the Start-Tag component 
determines an opening tag, the End-Tag determines a 
closing tag, the Start-REStructure determines an opening 
RE structure, an RE-Structure determines a normal 
structure that does not need closing etc.  
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Fig.  4 Sample of XML Rules for REs 

These components are important for ensuring consistency 
and accuracy in the Phenotypes created. For example once 
a Start-Tag has been determined, the system automatically 
knows that it needs to reuse this tag as an End-Tag when 
told so by the rules. 

 
We have also introduced some additional components that 
are not related to the specified collections e.g. the Start-
Capture component translates to the symbol ‘(‘ and 
indicates the beginning of a capturing group i.e. the part of 
the RE, which will capture the part of the results needed; 
the End-Capture component indicates the end of the 
capturing group etc.  These additional components do not 
use any genes from the Genotype. They were introduced 
simply to help the mapping process to translate Genotypes 
into syntactically correct REs. Fig.  4 shows a partial list 
of the components needed for the Genotype-Phenotype 
Mapping process and the order in which they are used 
within the XML rules. 
 
Each XML rule (Fig.  4) determines the necessary 
components and the order in which they are to be chosen 
by the mapping stage in order to create a valid and 
efficient RE. The first gene in the Genotype is always 
associated with the RE rule choice. The remaining string 
of integers in the Genotype maps to the different 
components within that RE rule.  
 
The modulo function is used for this purpose, e.g. Table 1 
shows the Genotype to be translated using the information 
in Fig.  4. The value of the first gene is 5. This represents 
the RE rule to be used. In this case, there are two different 
rules in the XML file, so 5 mod 2 = 1, which means that 
the second rule (id = 1) is chosen. This rule contains five 
different components. The first component number is 4 
(Table 2). This corresponds to the Start-Tag component 
(Fig.  4), which means the next gene in the Genotype 
(gene 7) needs to be mapped to one of the tags in the 
‘tags’ collection. In this case, the collection has three tags, 
thus 7 mod 3 = 1 gives the ‘td’ tag. The following 
component number is 6. This corresponds to the Start-
Capture component, which maps to the symbol “(“ without 
using any genes from the Genotype.  
 
The remaining components are dealt with in the same 
manner (see Table 2). Note that in this example, only the 
first three genes of the Genotype were needed; the 
remaining two are simply ignored.  
 

Table 1: Genotype 

5 7 15 22 43
 

 
Table 2: Genotype to RE Mapping 

Component 
No. 

Component 
Gene 
Used 

Modulo Translation 

- - 5 1 Rule 2 
4 Start-Tag 7 1 td
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6 Start-Capture - - ( 

3 RE-Structure 15 0 .*? 

7 End-Capture - - ) 

5 End-Tag - - td 

 

 
Fig.  5 Phenotype 

Once all the required genes have been decoded, the 
resulting RE is repaired to ensure its validity and 
efficiency. Fig.  5 shows the complete RE (Phenotype) for 
the above example. The additional symbols added by the 
repairing function are shown encircled.  
 
The repairing function is an independent function which 
scrutinises the Phenotype created in order to guarantee the 
validity of the RE2. This function is in charge of tasks like: 
closing opening tags, closing opening parentheses, 
adding/removing RE structures in cases when there are 
fewer genes in the Genotype than required by the XML 
rule, adding variable declarations at the beginning of the 
program, adding ‘footer’ information where necessary e.g. 
when returning the RE to a calling function etc. All this is 
achieved through the use of a STACK programming 
structure, which works in a LIFO (Last In First Out) 
manner. This is particularly helpful when closing nested 
tags and RE structures, for example:   
 
Tag1 + Tag2 + RE-Structure + C-RE + C-Tag2 + C-Tag1  
 
Above, C stands for Closing. The Italic part shows the 
part of the RE added by the repairing function. 
 
The XML rules can also determine whether or not a 
closing tag is actually needed. This is useful in cases 
where the inclusion of a closing tag results in different 
results being extracted to the ones needed. For example, 
the RE: <tr[\s]?id=”row1”.*?><td.*?>.*?</td> contains 
two opening tags (‘tr’ and ‘td’), however, only the ‘td’ tag 
needs to be closed for this to work as intended. This is 
achieved by including no_end=”true” in the rule (Fig.  4). 

3.5 XML Mapping – Software Program Statements 

This section discusses the changes that needed to be made 
to the system for it to work with Software Program 
Statements instead of REs. The areas changed were: the 
XML rules and the repairing function. The following 

                                                           
2 Many HTML tags come in pairs. The system ensures that the 

same closing tag is chosen based on the opening tag evolved, 
and the nesting of the tags in the RE hierarchy is preserved. 

explains the changes involved in order to show the 
minimum effort required to adapt our system to such an 
entirely different domain.  
 
Fig. 7 shows a sample of the XML rules and components 
needed to guide the Genotype-Phenotype stage of the 
genetic evolution of software program statements. When 
compared to the Genotype-Phenotype Mapping system for 
REs (Fig.  4), it is clear that the overall logic remains the 
same, with each XML rule using the available collections 
(in this case: ‘variables’ and ‘comparisons’) to guide the 
system through the different components needed for each 
rule. Identically, there are a number of components that 
have been introduced to simplify and ensure the 
consistency of the mapping process for Software Program 
Statements, but which do not use any genes from the 
Genotype since they do not need to be evolved. Such 
components include: the ‘Assign (=) operator, the 
‘Addition’ (+) operator, etc.  
 

Table 3: Genotype 

 
 

Table 4: Genotype to Software Statement Mapping 

Component 
No. 

Component 
Gene 
Used 

Modulo Translation 

- - 10 0 If 
1 Variable 27 0 x 
2 Comparison 7 3 < 

1 Variable  13 1 y 

- - 19 4 Add 

1 Variable 9 0 x 

11 Assign - - = 

1 Variable 63 0 x 

7 Addition  - - + 

1 Variable 4 1 y 

 

 
Fig.  6 Phenotype 
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Fig. 7 Sample of XML Rules for Software Statements 

For example, Table 3 shows the Genotype to be translated 
using the information in Fig. 7. The value of the first gene 
is 10. This represents the statement type to be used. In this 
case, there are five different rules (statements) in the XML 
file, so 10 mod 5 = 0 means that the statement is an ‘If’. 
This statement contains three different components each 
requiring the use of a gene to choose from the ‘variables’ 
and ‘comparisons’ collections. The ‘variables’ collection 
has three elements, whereas the ‘comparisons’ has four, 
therefore, 27 mod 3 = 0, 7 mod 4 = 3 and 13 mod 3 = 1 
give elements ‘x’, ‘<’ and ‘y’ respectively.   
 
This is the point where the logic in the Genotype-
Phenotype mapping of REs changes slightly. In this case, 
the system knows that although the first statement has 
been translated in full, the mapping cannot end here. This 
is because, the XML rule for the IF statement includes an 
extra attribute: nested = “true” (Fig. 7) which indicates 
that the IF statement expects another statement inside. The 
following gene (gene 19) in the Genotype is therefore used 
to determine the next statement type. Therefore, 19 mod 5 
= 4 means that the next statement is ‘Add’. The remaining 
components are dealt with in the same manner as 
previously (see Table 4).  
 
Once all the required genes have been decoded, the 
resulting Phenotype is repaired to ensure it is syntactically 
correct. Fig.  6 shows the complete software structure 
(Phenotype) for the above example. The additional 
symbols and programming keywords added by the 
repairing function are shown encircled. The ‘Assign’ and 
‘Addition’ operators are also dealt with in the repairing 
function, as these are static attributes associated with the 
Add statement, thus they do not need to be evolved. The 
repairing function retains the same STACK programming 
structure and responsibilities as in the REs domain. 
 
A difference noticed between the two domains is that 
whilst each rule in Fig. 7 belongs to a different software 
statement or structure, all of the rules in Fig.  4 are used 
for the extraction of the same piece of information from 
the web (the course title in this example). This is because 
REs are very diverse and as such an unlimited number of 
REs can be written to extract the same piece of 
information from a web page. This means that in relation 
to updating the XML rules once written, the Software 
Program Statements would require much less attention 
than REs because these are more rigid structures that need 
a certain number of components, in a particular order, at 
all times. For example, the Add statement mentioned 
above may sum up more than two variables, however, 
there will always be need for one variable to which this 
sum is assigned, one ‘Assign’ operator and one or more 
‘Addition’ operators. 
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4. Discussion 

There is a significant difference between the two domains 
chosen for this paper. REs are diverse and sometimes 
unpredictable, whereas Software Program Statements are 
structured and rigid. They do not have any components in 
common. It is in fact difficult to find any similarities 
between them.  
 
One main difference between the two domains, in relation 
to their GP representation, is that each RE is represented 
as a linear, string of integers, where all the integers (genes) 
are part of the same Genome. A Software Program 
Statement, on the other hand, can be represented as either 
a string of integers or as a set of strings of integers. The 
latter is the case with program structures such as: IF ... 
ELSE ... THEN, or FOR ... NEXT etc. which incorporate 
other independent software statements or structures within 
them. Fig. 3 showed an example of an ‘Add’ statement 
being nested within the IF structure.  
 
Withall et al. [28] deals with these cases by having 
separate Genomes for each individual statement. Updating 
our system to deal with multiple Genomes, would 
potentially require a considerable change, thus, all the 
Genomes were instead joined to form one single Genome. 
Similarly to the example discussed in section 3.5, Fig. 8 
shows an example of the Genotype-Phenotype mapping 
process treating two Genomes (separated with the vertical 
red line) as one and mapping them to the FOR ... Add ... 
NEXT structure below. This example works with the data 
shown in Fig. 7. 
 

 
Fig. 8 Single Genome Mapping 

The only change required to map joined Genomes to a 
valid Phenotype was to alter the system to recognise the 
end of one statement and the beginning of the other. In the 
above example, the system knows that FOR is  a nested 
structure; additionally the XML rule tells the system that 
the FOR structure needs only two variables, thus the 
system deduces that the fourth gene (gene 9) must belong 
to a different statement or structure nested within the FOR 
loop. Gene 9 corresponds to the ‘Add’ statement, thus the 
genes following this one will be mapped according to the 
XML rule for ‘Add’. The repairing function is executed at 

the end to tidy up the solution by closing the FOR 
structure.  
 
The above change took the longest to complete – nearly 
three hours – as it involved altering message calls within 
two different classes in our Object Oriented System. The 
changes stated in section 3.5 were all fairly simple to 
implement and took under 30 minutes to change. Thus 
overall, this has been a 3.5 hour effort, which considering 
the significant differences in both domains, we consider 
this to be a minimal effort. 
 
Results from the execution of our full genetic system in 
the evolution of REs for the extraction of course names 
from web pages can be found in [31]. This system would 
not have to change to work with any other domain that 
requires the use of REs. However, running the full system 
on the Software Program Statements domain, or other RE-
unrelated domains, would require an additional change – a 
different Fitness test.  

5. Conclusions 

This paper has discussed an innovative approach to 
mapping Genotypes to Phenotypes through XML rules. 
The different steps involved in the process are explained 
through examples.  Two entirely different domains were 
considered – REs and Software Program Statements - in 
order to show the amount of effort and time required to 
adapt the original system to work with a new domain.  
 
Results show that the effort involved in the alterations was 
minimal, with all the changes taking under 3.5 hours. 
More time, however, needs to be spent to optimise the 
translation of constant variables. 
 
The next stage of the research will concentrate on using 
our Genotype-Phenotype mapping process together with 
the rest of the GP system to evolve REs for the extraction 
of other training course details such as prices, dates and 
locations. Analysis of some preliminary web pages has 
indicated a partial dependence amongst this data, which 
will need to be reflected in the Fitness test produced. 

Acknowledgments 

We would like to thank the whole team at ATM for their 
support and help. Also, thank you to ATM, the Centre for 
Innovative and Collaborative Engineering (CICE) and 
Loughborough University for funding our work. We 
would also like to thank Daniel Sills for his help with 
some technical .NET concepts. 
 



9 
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, 2010 

 
 

References 
[1] Back, T., Hammel, U. & Schwefel, H-P. 1997. 

Evolutionary Computation: Comments on the History and 
Current State. IEEE Transactions on Evolutionary 
Computation. 

[2] Banzhaf, W. 1994. Genotype-Phenotype-Mapping and 
Neutral Variation – A case study in Genetic Programming. 
Proceedings of the International Conference on 
Evolutionary Computation. Springer-Verlag, 322-332. 

[3] Barrero, D., Camacho, D. & R-Moreno, M. 2009. 
Automatic Web Data Extraction Based on Genetic 
Algorithms and Regular Expressions. Data Mining and 
Multi-agent Integration. ISBN 978-1-4419-0523-9, 
Springer-Verlag US, 143. 

[4] Clarke, M., Hinde, C.J., Whithall, M.S., Jackson, T.W., 
Phillips, I.W., Brown, S & Watson, R. 2009. Allocating 
Railway Platforms using a Genetic Algorithm. Research 
and Development in Intelligent Systems XXVI, Springer 
London, 421-434. 

[5] Conrad, E. 2007. Detecting Spam with Genetic Regular 
Expressions. SANS Institute Reading Room. Available 
online at: 
http://www.giac.org/certified_professionals/practicals/GCI
A/00793.php  

[6] De Kunder, M. 2010. The size of the World Wide Web 
(Tilburg University). Retrieved February 23rd, 2010 from 
http://www.worldwidewebsize.com  

[7] Dyer, J. & Bentley, P. 2002. PLANTWORLD: Population 
Dynamics in Contrasting Environments. In Cantu-Paz E., 
GECCO, 122-129. 

[8] Fogel, D.B. 1994. An Introduction to Simulated 
Evolutionary Optimisation. IEEE Transactions on Neural 
Networks. 

[9] Fogel, D.B. 1998. The Fossil Record. Fogel, D.B., Ed., 
IEEE Press 

[10] Friedl, J. 2006. Mastering Regular Expressions, Third 
Edition. O’Reilly & Associates (Aug 2006) 

[11] Goyvaerts, J. RegexBuddy. http://www.regular-
expressions.info/regexbuddy.html 

[12] Hsu, P-H. 2007. Feature extraction of hyperspectral images 
using wavelet and matching pursuit. ISPRS Journal of 
Photogrammetry and Remote Sensing. Elsevier Science, 
Amsterdam, vol. 62 (2), 78-92. 

[13] Jackson, D. 2005. Evolving Defence Strategies by Genetic 
Programming. In Lecture Notes in Computer Science. 
Springer Berlin, Vol. 3447, 281-290. 

[14] Keaveney, D. & O’Riordan, C. 2009. Evolving Robust 
Strategies for an Abstract Real-time Strategy Game. 
Proceedings of the 5th International Conference on 
Computational Intelligence and Games. 371-378. 

[15] Keller, R.E. & Banzhaf, W. 1996. Genetic Programming 
using Genotype-Phenotype Mapping from Linear Genomes 
into Linear Phenotypes. Proceedings of the First Annual 
Conference on Genetic Programming, California. 116-122. 

[16] Klank, U., Padoy, N., Feussner, H. and Navab, N. 2008. 
Automatic feature generation in endoscopic images. 
International Journal of Computer Assisted Radiology and 
Surgery. Springer, 3, 331-339 

[17] Koza, J.R. 1992. Genetic Programming: On the 
Programming of Computers by Means of Natural 
Selection. MIT Press. 

[18] Langdon, W., Poli, R., McPhee, N. & Koza, J.R. 2008. 
Genetic Programming: An Introduction and Tutorial with a 
Survey of Techniques and Applications. In Studies in 
Computational Intelligence. Springer, Berlin, vol. 115, 
927-1028. 

[19] Moore, J.P. 2000. Exploring and Exploiting Models of the 
Fitness Landscape: A Case against Evolutionary 
Optimization. PhD Thesis, University of Plymouth. 

[20] O’Neill, M., Brabazon T., Ryan, C. & Collins J.J. 2001. 
Developing a Market Timing System using Grammatical 
Evolution. Proceedings of GECCO. 

[21] Poli, R., Langdon, W. & McPhee. 2008. N. A Field Guide 
to Genetic Programming. Published via http://lulu.com 
(With contributions from J. R. Koza)  

[22] Regular-Expressions.info (Last Update: Jun 2009). 
http://www.regular-expressions.info/  

[23] Rothlauf, F. 2006. Representations for Genetic and 
Evolutionary Algorithms. Springer-Verlag New York. 

[24] Sells, C. 2009. RegexDesigner.NET http://regexdesigner-
net.findmysoft.com/  

[25] Sun Microsystems. (Last updated: Feb 2008). Lesson: 
Regular Expressions. 
http://java.sun.com/docs/books/tutorial/essential/regex/inde
x.html 

[26] Thompson, K. 1968. Programming techniques: Regular 
expression search algorithm. Commun. ACM, Vol 11(6), 
419-422 

[27] Whigham, P.A. 1995. Grammatically-based Genetic 
Programming. Workshop on Genetic Programming. 

[28] Withall, M.S., Hinde, C.J. & Stone, R.G. 2008. An 
improved representation for evolving programs. Journal of 
Genetic Programming and Evolvable Machines. Springer 
Netherlands, vol. 10(1), 37-70. 

[29] Xhemali, D., Hinde, C.J. and Stone, R.G. 2007. Embarking 
on a Web Information Extraction Project. UKCI 
Conference on Computational Intelligence (London, UK, 
Jul 02-04, 2007) 

[30] Xhemali, D., Hinde, C.J. & Stone, R.G. 2009. Naive Bayes 
vs. Decision Trees vs. Neural Networks in the 
Classification of Training Web Pages. International Journal 
of Computer Science Issues, vol. 4(1), 16-23. 

[31] Xhemali, D., Hinde, C.J. & Stone, R.G. 2010. Genetic 
Evolution of Regular Expressions for the Automated 
Extraction of Course Names from the Web. Internal 
Report. Loughborough University, UK. 

 
Daniela Xhemali is an Engineering Doctorate (EngD) student at 
Loughborough University, UK. She received a First Class 
(Honours) BSc in Software Engineering from Sheffield Hallam 
University in 2005 and an MSc with Distinction in Engineering 
Innovation and Management from Loughborough University in 
2008. Daniela Xhemali has also worked in industry for two years 
as a Software Engineer, programming multi-user, object oriented 
applications, with large database backend. Her current research 
focuses on the use of Genetic Programming principles for the 
extraction of web information. 

 



10 
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, 2010 

 
 

Prof. Christopher J. Hinde is the Programme Director of the 
Computer Science & Artificial Intelligence group as well as the 
Programme Director of the Computer Science & E-business 
group at Loughborough University. Prof. Hinde is also the leader 
of the Intelligent and Interactive Systems Research division. His 
research interests include: Artificial intelligence, fuzzy 
reasoning, logic programming, natural language processing, 
neural nets etc.  
 
Dr. Roger G. Stone is DANS Coordinator and the Quality 
Manager at Loughborough University. Dr. Stone is also a 
member of the Interdisciplinary Computing Research Division. 
His research interests include: Web programming, web 
accessibility, program specification techniques, software 
engineering tools, compiling etc. 


