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Jýl, 

-- 

In the name of God, Most Gracious, Most Merciful. 

Cowper wrote: "Oars alone can ne'er prevail 
To reach the distant Coast; 

The breath of heaven must swell the sail, 
Or all the toil is lost. " 

Indeed!. 
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Abstract 

Recently an iterative method was formulated employing a new splitting strategy for the 

solution of tridiagonal systems of difference equations. The method was successful in solv- 

ing the systems of equations arising from one dimensional initial boundary value problems, 

and a theoretical analysis for proving the convergence of the method for systems whose 

constituent matrices are positive definite was presented by Evans and Sahimi [22]. The 

method was known as the Alternating Group Explicit (AGE) method and is referred to 

as AGE-1D. The explicit nature of the method meant that its implementation on parallel 

machines can be very promising. 

The method was also extended to solve systems arising from two and three dimensional 

initial-boundary value problems, but the AGE-2D and AGE-3D algorithms proved to be 

too demanding in computational cost which largely reduces the advantages of its parallel 

nature. 

In this thesis, further theoretical analyses and experimental studies are pursued to establish 

the convergence and suitability of the AGE-1D method to a wider class of systems arising 

from univariate and multivariate differential equations with symmetric and non symmetric 

difference operators. Also the possibility of a Chebyshev acceleration of the AGE-1D 

algorithm is considered. 

For two and three dimensional problems it is proposed to couple the use of the AGE-1D 

algorithm with an ADI scheme or an ADI iterative method in what is called the Explicit 

Alternating Direction (EAD) method. It is then shown through experimental results that 

the EAD method retains the parallel features of the AGE method and moreover leads to 

savings of up to 83 % in the computational cost for solving some of the model problems. 

The thesis also includes applications of the AGE-1D algorithm and the EAD method to 

solve some problems of fluid dynamics such as the linearized Shallow Water equations, 

and the Navier Stokes' equations for the flow in an idealized one dimensional Planetary 

Boundary Layer. 

The thesis terminates with conclusions and suggestions for further work together with a 

comprehensive bibliography and an appendix containing some selected programs. 
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Chapter 1 

Introduction 

1.1 The relation between the problems of fluid 

dynamics and partial differential equations 

The problems of fluid dynamics revolve around determining as a function of time 

and/or of space one or more of the dependent variables which characterises a fluid (i. e 
its velocity, and/or some of its thermodynamic variables, e. g pressure, temperature, 

density, specific internal energy ... etc. ). 

In most cases such problems may be mathematically described by a single first or 

second order partial differential equation (henceforth abbreviated as PDE) having 

the general form: 

L(ü) =r (1.1) 

or a system of such equations. 

In (1.1) L(ü) is a differential operator which has the general form: 

s-N 
L(ü) E«;; 

äaöx +Ebk 
ax 

+cü (1.2) 
i=1 ; =1 si k_1 

ak 

where N is the number of dimensions in (1.1), r is a known function of the indepen- 

dent variables xi (i =1,... N), and ii is the dependent variable. 
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If all a, 1 in (1.2) are equal to zero, then (1.1) is of first order. If any a;, 5 is different 

from zero, then ( 1.1) is of second order. The number of dimensions N is greater or 

equal to two. If N=1 then (1.1) reduces to a total differential equation. 

Different types and categories of (1.1) arise from the nature of the physical problem 

which it expresses. Problems which exhibit solutions of transient nature, or represent 

an unsteady state, are known as propagation problems. They involve time as one of 

the independent variables in (1.1), and aim at predicting the subsequent behaviour 

of a system, given its initial state. The type of (1.1) for such problems is either 

parabolic or hyperbolic or it may be of mixed type. Hyperbolic PDEs are usually 

associated with unattenuated convective or advective motions like the Shallow 

Water equations ( 7.14), while parabolic equations are associated with propagation 

problems involving a dissipation mechanism, usually through heat conduction (e. g 

equation 4.91) or viscous shear (e. g equation 7.2). 

On the other hand, equilibrium problems (e. g the steady flow problem of equa- 

tions 7.3) involve finding the steady state configuration of the dependent variable ii 

in a bounded region fit, which satisfies the differential equation throughout R and 

satisfy certain boundary conditions on the boundary äJ2 of R. Equations of the 

form (1.1) for such problems will not involve any time derivatives and fall into the 

category of elliptic equations. 

Equation (1.1) can be further classified in terms of linearity or nonlinearity, de- 

pending on the coefficients ai� bk, and c appearing in equation (1.2). 

" Equation (1.1) is said to be non-linear if any of the coefficients a; 1, bk, and 

c is a function of ü or one of its derivatives. 

" If the coefficients a, 3 are functions only of ü, and any of its first order deriva- 

tives, but not of its second order derivatives, ( 1.1) is said to be quasi linear. 

" If all a; j are functions of the independent variables xk (k=1 
... N) only, then 

( 1.1) is semi linear. 

. Further if bk and c are constants, then ( 1.1) is linear. 
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9 If (1.1) is linear, with r=0, then it is said to be homogeneous. 

The mathematical classification of PDEs and systems of PDEs into one of the three 

categories (i. e hyperbolic, parabolic and elliptic) is given in section 3.1. 

1.2 The thesis outline 

This thesis is concerned with improving and extending the AGE method for the 

solution partial differential equation using finite difference approximations. The 

AGE method is an iterative method which solves tridiagonal systems and banded 

systems which arise from the approximation of differential equations by finite dif- 

ference schemes using central difference operators. 

The AGE method is not expected to compete with direct methods in terms of the 

computational cost. Direct methods are more efficient. They are also very stable 

relative to the growth of rounding errors when solving positive definite matrix sys- 

tems. The AGE-1D method is however known to converge in a small number of 

iterations, and its explicit nature allows a maximum exploitation of parallel com- 

puters. This justifies considering further development and analysis of the method 

which can make it more efficient to use competitively. 

In this thesis, chapter two introduces some basic definitions and theories in numer- 

ical analysis which are necessary tools most of which are referred to later in the 

thesis, while chapter three contains a classification of the partial differential equa- 

tions and introduces some finite difference schemes and their various properties. It 

also includes a survey of direct and iterative methods which are used for the solution 

of various linear systems. Chapter 4 introduces the Alternating Direction Implicit 

methods in two and three dimensions. Also, the AGE method is introduced in this 

chapter and the relevant literature on the method is surveyed. 

In chapter 5, the method is developed by extending the range of application of 

the AGE-1D algorithm and analysing its convergence for systems arising from the 

use of unsymmetric central difference operators and also analyzing its convergence 
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when applied to block symmetric systems. Also a preliminary consideration of the 

possibility of a Chebyshev acceleration of the AGE-1D method is carried out by 

determining the conditions under which the eigenvalues of its iteration matrix are 

real. 

Also chapter 5 contains a listing of all the variants of the AGE-1D method with their 

computational and storage requirements. Also included is a consistency analysis of 

the AGE-1D and AGE-2D algorithms which were omitted in the literature on the 

AGE method, together with a convergence analysis for the AGE-2D algorithm. 

In chapter 6, the EAD method which is based on combining the applications of the 

AGE-1D algorithm with the ADI techniques is introduced. The EAD method is then 

applied to some model problems in two and three dimensions, and a comparative 

analysis of the computational costs of the EAD method and the AGE-2D and AGE- 

3D methods is carried out with results showing great savings achieved by using the 

EAD method. 

In chapter 7, the AGE-1D method and the EAD method are applied to solving 

multivariate equations which are respectively the equations of a one dimensional 

idealized planetary boundary layer model, and a linearized model of the shallow 

water equations in two dimensions. 

The thesis ends with a chapter on conclusions and suggestions for further research. 



Chapter 2 

Basic principles Of numerical 

analysis 

This chapter introduces the basic concepts, definitions, and rules which are necessary 

tools in numerical analysis and to which referrence is made in the course of this 

thesis. 

2.1 Matrices and Vectors 

A matrix is a rectangular array of scalars. These scalars are called the elements of 

the matrix. They may be complex or real, and have a general representation of aq. 

The subscripts i and j indicate respectively the row and column numbers determin- 

ing the position of the element in the matrix. The size of a matrix is determined by 

its number of rows m and its number of columns n. The size of the matrix is said 

to be of size mxn, and is denoted as Amxn" If m=n, then the matrix is said to be 

a square matrix of order n. 

A vector is a matrix with one row (row vector) or one column (column vector). A 

vector is defined in the real Euclidean space R", if all its elements are real. If any 

of its elements is complex, then it is defined in a complex Euclidean space C. The 

12 
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dimension of the space is determined by the number of elements of the vector. A 

set of vectors vk, k=1... n belonging to a space C" (or IV) are linearly dependent 

if there exists tt complex (or real) numbers ak (k =1""" n), not all equal to zero, 

such that: 

aiV(k) + a2V(2) + ... + anV(n) =0 (2. i) 

If no such set of numbers exist, the vectors V(c) are said to be linearly independent. 

They form a basis for the space C" (or R"). A fundamental property of a basis is 

that any vector uE C" (or R") can be represented uniquely as a linear combination 

of the base vectors. i. e we can write: 

n 
u 

: 
CkV(k) (2.2) 

where ck (k = 1,2, """ n) are scalars. Basic algebraic operations on matrices and 

vectors can be performed if the matrix/vector operands are conformable with each 

other for the respective operations. Thus, for the matrices A, B, C and D, and the 

vectors x, y, and z, we may have the following equalities: 

Cm, q = AM, n X Bp, q 

where c;; = 
n E a; kbkj 

k-1 
C7º, 

9 = Am, 
n 

+ Bp, 
q 

where c. j = a; j + b" 

(conformable only if n= p) 

(conformable only if m=p and n= q) 

The inner product of two vectors: The inner or scalar product of two vectors 

y and z belonging to the space C", is denoted by (y, z) and is defined as: 
(y, z) _ ýs 

1 y; z; where z; is the complex conjugate of z;. 

Two vectors x and y are said to be orthogonal if their scalar product (x, y) = 0. A 

system of vectors is orthogonal if any two vectors in the system are orthogonal. 
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The length of a vector is given as: 

l%t, X) = 

F 

for xER" or 
n 

(X, X) _ ßi2 

If all the elements of a vector x are divided by a scalar a, such that the length of 

the vector becomes equal to unity, then the vector is said to be normalized. 

Two normalized vectors x and y which are orthogonal are said to be orthonormal. 

Theorem 2.1 Vectors forming an orthogonal system, are linearly independent. 

Positive Defin; 6 matrix: A matrix A is said to bepcsiLive de-Wh if for all xE 1Z"`, 

x96 0andAER"'"wehave: 

(x, Ax) >0 

A is said to be positive . eins deFini e. LF: 

..,, 

(x, Ax) >0 forallx54 0 

with the equality holding for at least one xEC. 

2.2 Common types of matrices 

We now define the following matrices: 

(2.3) 

(2.4) 

Diagonal matrix: Any square matrix D whose off diagonal elements are equal to 

zero, (i. e d; 5 =0 for i0 j) is said to be a diagonal matrix. 

Identity matrix: Any diagonal matrix I whose entries along the diagonal are equal 
to 1 is said to be an identity matrix. ' 

Null or zero matrix: This is a matrix whose elements are all zeros. 

Band matrix: A matrix A is said to be a Banded matrix, of band 2p+1 if its 

elements aij =0 for Ii-j 1> p. If p=1, then A is a tridiagonal matrix. 
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Other properties: A matrix A is said to be symmetric if a; j = a,,;, and skew 

symmetric if a; 1 = -a; 2. It is said to be a hermitian matrix if a; 1 = äq, where the 

bar indicates the complex conjugate of a. If a; 1 = -ä; j then the matrix is skew her- 

mitian. A is said to be unitary if AAH =I( AH being the the conjugate transpose 

of A) and A is normal if AAH = AHA. 

Non Singular matrix: A square matrix A is said to be a nonsingular matrix if 

there exists a matrix Q such that AQ = QA = I, Q is called the inverse of A and 

is usually denoted as A-'. 

2.3 Properties of matrices 

Definition 2.1 Determinant of a matrix The determinant of a square matrix 

A is a scalar quantity denoted by `det A' or IAI and is given by: 

A I= E P(ji, js, 
..., 

jn)aljý, a2j2, ... anjn (2.5) 

il sh 9... dß 

where p(jl, j2i ... 7 j�) is a permutaion equal to :: F1, given in general as: 

P(jl, j29..., jn) = sign J (jr - ja) 
1<s<r<n 

For a singular matrix IA 1= 0 

(2.6) 

Theorem 2.2 If for a vector x, and a matrix A, with IA (j4 0 then Ax_o pX=O 

Definition 2.2 Trace of a matrix: This is denoted by tr(A), and is equal to the 

sum of the diagonal elements in a square matrix. 

Definition 2.3 Eigenvalues of a matrix: An eigenvalue of a matrix An. n is a 

real, or complex scalar A, which for some nonzero vector y satisfies the relation: 

Ay = Ay or (AI - A)y =0 (2.7) 
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where 0 is a zero vector. 

The corresponding vectors y which satisfy equation (2.7) are the eigenvectors of A. 

A has n eigenvalues which can be all distinct or repeated up to a multiplicity n, 

depending on the shape and properties of A. Similarily A has n eigenvectors some of 

which may be identical. From theorem (2.2), equation (2.7) can have a non-trivial 

solution only if : 

IAI-A1=O (2.8) 

The expansion of the determinant I AI -AI yields an nth degree polynomial in 

A, f (A), called the Characteristic Polynomial, and the roots of the equation (2.8) 

are the eigenvalues of the matrix A. Equation (2.8) is called the Characteristic 

Equation. The Characteristic Polynomial is given as : 

f (A) =) al -A I= a" + a�_, \"-1 + ... + aiA + ao (2.9) 

where -al = (the sum of the eigenvalues) = tr(A) 

Theorem 2.3 The Cayley - Hamilton theorem. This theorem states that any 

square matrix A satisfies its own Characteristic equation. Thus, 

n 

F(A) = An + an_, An'1 +... + a1A + aoI = [J(A 
- A, I) = On, n 

. _i 

Theorem 2.4 Gerschgorin's First Theorem. This theorem states that the mod- 

ulus of the largest eigenvalue of a square matrix is less or equal to the m(LXIMU n sum of tl, e 
moduli of the elements along any row or any column. 

Theorem 2.5 Gerschgorin's Circle Theorem. This theorem states that the 

eigenvalues of a matrix A lie in the union of the discs given by 

n 

Iz-a�l< E Ia+iI (i=1,2... n) 
j=1i#i 

in the complex plane z. 



17 

The spectral radius of A is the radius of the smallest circular disc in the complex 

plane with centre (aii) at the origin, which contains all the eigenvalues of A. It is 

denoted by p. From theorem 2.5 it is given as the modulus of the largest eigenvalue 

of A. 

The eigenvalues of a tridiagonal matrix A of the form given as: 

ab 

cab0 

where a, b, and c are real A= (2.10) 
" with be >0 

0cab 

ca 

are given by the following formula: 

. ý, =a+2 bccosn+l (s=1,2,... n) (2.11) 

An extension of the above formula to apply to block tridiagonal matrices with real 

elements, is derived and tested next. This for a square matrix A of the form: 

DH 

A=1 

is given as: 

VDH 
0 

O 
VD H 

V D 
nmxnm 

where D, H, and V are 

any commutative matrices (2.12) 

having real eigenvalues. 

Aj (D) +2 Aj (H)ai (V) cos 
n+1 

(2.13) 

(s=1,2,... n), (j =1,2... m) 

where n is the number of blocks along the diagonal. m is the size of the matrices D, 

H, and V. 
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Example: Consider the matrix A given as: 

2.5 0 1 4 0 

525 4 1 4 

052 0 4 1 

-3 10 2 5 0 

A= 1 -3 1 5 2 5 

01 -3 0 5 2 

-3 1 0 
0 

1 -3 1 

0 1 -3 
which is of the form given in (2.12) where 

140 

414 

041 
250 

525 

052 

0 

250 140 -3 10 

D= 525 ; H= 414 ; and V= 1 -3 1 

052 041 01 -3 

The eigenvalues of D, H, and V are given as: 

A(D) = [9.07160678,2, -5.07106781 

A(H) = [6.6568542,1, -4.6568542] 

A(V) = [-1.5857864, -3, -4.4142136] 

Applying (2.13) to (2.14) give the eigenvalues of A as: 

A1,1 = 9.07160678 + 2/6.6568542 x (-1.5857864) cos 
4 

A2,1 = 9.07160678 + 26568542 x (-1.5857864) cos 
2 

A3,1 = 9.07160678 +26.6568542 x (-1.5857864) cos 
3 

A1 2 =2+2 (1) -x(-3) cos , 
A2 2 =2+2 (1) -x(-3) cos 

2 
, 

A3 2 =2+2 (1) x (-3) cos 
3 

, 4 
A1,3 = -5.0710678 + 2V(-4.6568542) x (-4.4142136) cos 

4 

A2,3 = -5.0710678 + 2V(-4.6568542) x (-4.4142136) cos 2 

A3,3 = -5.0710678 + 2-\/(---4.6568542) x (-4.4142136) cos 
34 

(2.14) 
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i. e X1,1 = 9.07160678 + 4.59485561 

A2,1 = 9.07160678 

A3,1 = 9.07160678 - 4.59485561 

A1, Z = 2.0 + 2.4494897i 

A2,2 = 2.0 

. 13,2 = 2.0 + 2.44948971 

A1,2 = 1.3408507 

A1,2 = -5.0710678 

A1,2 = -11.482986 

To check the authenticity of the formula (2.13), the Characteristic Polynomial for 

A was determined, using REDUCE (a package which facilitates the symbolic com- 

putation of matrix functions) as: 

DETA=1 (VI - A)I (2.15) 

i. e. DETA = -(V9 - 18V8 - 20V7 + 2504V6 - 16708V5 -152V4 

+315168V3 - 1374592V2 + 2412576V - 1464640) (2.16) 

Solving for the roots of DETA=O, using an IMSL library subroutine gives the values 

of the nine eigenvalues of A as: 

Real Part 

9.07106781186548 

9.07106781186548 

9.07106781186548 

2.0 

2.0 

2.0 

1.34085065082633 

Imaginary Part 

+4.49485564215113 

0 

-4.49485564215113 

+2.44948974278318 

0 

-2.44948974278318 

0 
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-11.4829862745573 0 

-5.07106781186547 0 

which agrees with the values obtained using formula (2.13). This exercise was re- 

peated for several such block tridiagonal matrices and always formula (2.13) has 

given the correct results. 

For A triangular matrix the eigenvalues are the elements along the main diagonal. 

For a general matrix the eigenvalue which is often of most interest is the one with the 

largest modulus, i. e the Spectral Radius. This may be obtained numerically using 

an iterative procedure called the power method ( see [47]). If all the eigenvalues are 

required the QR algorithm described in [44] is the usual method. 

2.4 Vector norms and related matrix norms 

The norm of a vector is a non-negative real scalar which is usually used to represent 

the magnitude of any vector x in its space C" (or R"). It is denoted by ýIx and 

it satisfies the following relations: 

a) 11 x 11> 0 for x 54 0 (positivity) 
b) (Ikx II : Ikl. llxll, Vscalar k, (homogeneity) 

C) It x+y (III x II+ II y II for 
all x, y E Cn 

The most widely used norm is the Holder norm, (or p- norm) which is defined as: 

11 X IIv= (> I X1 IT (2.17) 
c 

Special cases of this norm are the 1,2 and oo norms given respectively as: 

IIXIII = Ix1I+Ix2I+... +Ixnl 
11 x 112 = (I xl 12 +I x2 12 -F... -I- I x� IZ)1 (The L2 norm or Euclidean norm) 

& lix ýý = max I x, (i = 1,2 .... n), The maximum norm) 

It can be seen that 1x 112 is equal to the length of x in C" (or R"). 
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Similarly a matrix norm is a real scalar which is used as a measure of the magnitude 

of a matrix, which satisfies: 

aý IIAII>0 for A#0 

b) IIkAII=IkI x 11 AII for any scalar kEC, AEC"'" 

c) IIA+BII: IIAII+IIBII for any A, BEC'"' 

d) IIAB II: IIAII x 11 BII for any A, BEC"'" 

The matrix Holder norm which is subordinate to the vector Holder norm is defined 

as: 

II A lip= max 
II Ax lip (2.18) 

XjAo 11 x lip 
for which the following relation holds: 

IIAxllp<IIAIlpxllxllp forallxEC" (2.19) 

with equality holding for at least one x 0. Relation (2.19) implies that (I A II 

serves as the upper bound for the amplification power of A. 

Again, the special cases 1A 111,11 A 112,11 A are the most commonly used. 
These are given as: 

n 

IIAIIý = maxlIai, il 
n 

11AIloo = max 1: IQ+, iI 
i=1 

II A II2 = (The maximum eigenvalue of ANA) '= [p(AHA)] 

It can be seen that II A (I1 (II A III) is the largest of the sums of the magnitudes of 
the elements along any column (row) in A. Also II A 112= p(A) if A is symmetric or 
Hermitian, and thus this norm is referred to as the spectral norm. 

2.5 Other definitions and theorems 
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Definition 2.4 A matrix A is said to be convergent to zero if the sequence of ma- 

trices Al, A2, A3, ... A' converges to the null matrix i. e. if for any norm: 

jzmnýoo II A' II= 0 (2.20) 

It follows from the property (d) of matrix norms (i. e. II AB IIIIAIIxIIBI I) that 

a sufficient condition for A to be convergent to zero is: 

IIAII<1 (2.21) 

The following important theorem has a simple proof given in [50]. 

Theorem 2.6 A necessary and sufficient condition for A to be convergent to zero 

is: 

p(A) <1 (2.22) 

Other important theorems and definitions which are referred to in this thesis are 

given below. 

Theorem 2.7 The eigenvalues of the inverse to a matrix A are the reciprocals of 

the eigenvalues of A. i. e 

Ai(A-') 1 
ý Ti -(A) 

Theorem 2.8 If A and B are square matrices which commute and have distinct 

eigenvalues, then they share a complete set of simultaneous eigenvectors. 

Definition 2.5 Similar matrices and Similarity Transfomations If a ma- 

trix A is postmultipled by any non-singular matrix L and premultiplied by L', 

to produce a matrix T= L-1AL, then is said to have undergone a similarity 
transformation. The matrices A and T are said to be similar. 

Similar matrices share the same eigenvalues A j, and for any eigenvector x of A the 

corresponding eigenvector of T is L'lx. 
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Theorem 2.9 For any square matrix A, there is a unitary matrix L= U such that 

U-1AU =T is upper triangular. 

The eigenvalues of A must be shared by the similarity matrix T, and appear along 

its main diagonal. When T is diagonal, it is usually denoted by A, and A is said to 

be diagonalizable. The proof for theorem 2.9 is given in [45]. 

Theorem 2.10 Any square matrix which has linearly independent eigenvectors can 

be diagonalized by the similarity transformation U-'AU where the columns of U are 

the eigenvectors of A. 

Theorem 2.11 If A is a positive definite matrix, then there exists a lower trian- 

gular matrix L such that LLT = A. 
I 



Chapter 3 

Current methods for the finite 

difference solution of partial 

differential equations 

In this chapter the procedures and steps that are involved in the numerical finite 

difference solution of partial differential equations are introduced. We first describe 

how the partial differential equations and systems of equations are mathematically 

classified into their various categories. 

3.1 Classification of partial differential equa- 

tions 

3.1.1 Classification of first and second order partial differ- 

ential equations 

The classification of PDEs is pursued for first and second order two dimensional 

equations and then generalized to equations of higher dimensions. 

24 
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Consider the second order equation: 

0zý 2ý 2- 

A8x +Baxa +C 
- 

+Dý +Eü+Fü+G=o 
y y2 Y 

The solution of such 

ü-= ü(x, y) 

equation (ws the form: 

(3.1) 

which represent a surface in the (x, y, ü) space called the integral surface. If on the 
22 

integral surface there exist curves across which the partial derivatives äx 1, ä äv, and 
äy; are discontinuous or indeterminate, these curves are called the characteristics 

curves ([32]). In the directions of these curves in the (x, y) plane equation ( 3.1) 

involves only total differentials. 

To obtain these characteristic directions, it is customary to abbreviate äz' Bi, 
8x1 

äxäv+ and äy; as p, q, r, s, and t respectively. Thus (3.1) becomes: 

Ar+Bs+Ct+H=0 (3.2) 

where H represents the remainder of the terms in ( 3.1). 

Along the tangents to any curve C in the (x, y) plane inside the solution domain, 

u, p, and q satisfy the total differential formulae: 

dü = 
aiidx 

+ 
ady 

(3.3) y 

dp = rdx + sdy (3.4) 

dq = sdx + tdy (3.5) 

If ( 3.4 ) and (3.5 ) were used to eliminate r and t in ( 3.2 ) we get: 

-[A(dx)+H] dx-Cdr+3 A(dxy 
)z 

_B( )+C =0 (3.6) 

If C is chosen so that the tangents to it at any point has a slope ä which satisfies: 

[A(. 
)2 - B(äy) +C] =0 (3.7) 
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then the term involving s vanishes, and ( 3.6) reduces to a relation between the total 

differentials of p and q given as: 

[A()+H] ax+cdx 
=o (3.8) 

Thus, the roots of equation ( 3.7) determines the characteristics directions for which 
( 3.8 ) holds. These characteristics relate directly to the classification of the PDE's, 

and to their numerical and analytic methods of solution. 

Equation ( 3.7) has two real distinct, one real double, or conjugate complex, roots 

depending whether its discriminant B2 - 4AC is positive, equal to zero, or negative 

respectively. Where two real roots exist, it implies the existence of two real char- 

acteristics and ( 3.2 ) is said to be hyperbolic. If a double root exists, then there 

is only one real characteristic and ( 3.2 ) is a parabolic PDE. If no real roots exist, 

then the characteristics are complex and (3.2 ) is an elliptic equation. 

For first order two dimentional PDEs, the characteristic directions at any point 

point in the solution domain, are defined as the directions along which the first 

order derivatives are undetermined, or not defined uniquely, and the PDE reduces 

to a simpler ordinary differential equation in ü. Any first order equation in two di- 

mensions has one real characteristic, the direction of which is obtained as illustrated 

by the following example. Consider the equation: 

C5 + Dau =E 
y 

(3.9) 

Along the tangential direction to some curve C in the (x, y) plane in the solution 
domain, the following total differential formula is satisfied: 

dü =ý dx -}- 
ýy 

dy (3.10) 

If we substitute for äz in ( 3.9 ) from ( 3.10 ) and rearrange we get: 

Cdx+(D-Cdý)ou =E (3.11) 
y 
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If C is chosen so that: 

D-cam =o 

then ä' is eliminated from ( 3.11 ) which becomes the ODE: 

dü .E TX 

(3.12) 

(3.13) 

If on the other hand, we substituted for av in ( 3.9 ) from ( 3.10 ) instead of äz, we 

get a similar total differential equation given as: 

dü E 
dý u 

(3.14) 

which again only holds along the same characteristic direction 

dy D 
dx C 

obtained from ( 3.13 ). Thus, equation ( 3.9) is always hyperbolic. Finally we note 

that the classification of PDEs is independent of the co-ordinate system used. 

3.1.2 Classification of multidimensional PDEs and sys- 

tems of PDEs 

Consider the multidimensional second order PDE in the general form given as: 

NN atü 
ýýajiöx; 

r7x; 
+H=O (3.15) 

j=l i=l 
where N> 2 and H=f (z, y, ü, as- ), i, j=1... N. 

A classification for ( 3.15 ) is given by [51, depending on the eigenvalues of the matrix 

A whose elements are a; 1 as follows: 

a) If any of the eigenvalues is zero, ( 3.15 ) is parabolic. 

b) If all the eigenvalues are non-zero and are of the same sign, ( 3.15 ) is elliptic. 
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c) If all the eigenvalues are non zero, and all but one, are of the same sign ( 3.15 ) 

is hyperbolic. 

In what follows, the classification of systems of first order PDEs is considered, for 

two and higher dimensions. It is noted that systems of second order equations could 

be transformed, with the aid of some auxiliary variables to larger systems of first 

order equations, and classified accordingly. 

Consider the following system of n equations in two dimensions: 

sic ä, + dig = ei By 

i=1... n 
cji as + d1i ä= ej (3.16) 

j =1... n. 

Cn. 
ä + dntä = en 

v 

n is also the number of independent variables. 

This system can be written in matrix form as: 

cx +D 
ý` 

=E 
y 

(3.17) 

where C and D are square matrices with elements c1; and d1; respectively, with 

ü= [ül, ü2 ... ün]T and E= [ei, e2, ... e� ]T. 

We may seek n characteristic directions to the system ( 3.17 ), which may be rewrit- 

ten after premultiplication by C-1 ( assuming C is non singular) as: 

äx +A öu 
B (3.18) 

y 

where A= C-1D and B= C-1E. The characteristic directions for ( 3.18 ) can be 

obtained in a similar manner to the derivation of the characteristic direction of the 

scalar equation ( 3.18 ). Thus, the following analogue to ( 3.13 ) is obtained. 

öü dy äü 
-+(A-Idý)ay =B (3.19) 

x 
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Thus, ( 3.18 ) reduces to a system of total differential equations if: 

(A -I 
dy) äu 

=0 (3.20) 
dx äy 

A necessary condition for ( 3.20) to hold without having a trivial solution for a. is 

that: 

det IA-Idyl =0 

The slopes of the characteristic directions for ( 3.18 ) are thus given as the eigenvalues 

of the matrix A. 

If A has n real eigenvalues with n linearly independent eigenvectors äthen ( 3.18 y) 

is hyperbolic. 

If A has q real eigenvalues, where 1<q<n-1, and no complex eigenvalues, (i. e 

some eigenvalues are equal) then ( 3.18 ) is parabolic. 

If A has no real eigenvalues (i. e they are all complex) then ( 3.18 ) is. elliptic. 

If A has real and complex eigenvalues then ( 3.18 ) is a mixed system. From the 

above, it can be seen that it is sufficient for A to be symmetric for ( 3.18 ) to be 

hyperbolic, and for A to be skew symmetric for ( 3.18 ) to be elliptic. 

Classification of systems of PDEs in more than two dimensions is given in [30] and 

[5] among others. Here it will only be noted that systems in three dimensions such 

as: 

- 
+Au+Bz =Ö 

y 
(3.21) 

are considered hyperbolic if " for all a, ß with a2 +A2 = 1, there exist a nonsingular 

transformation matrix P such that: 

P(aA+/B)P-1 =D (3.22) 

where D is a diagonal matrix with real elements. The symmetry of A and B is 

sufficient to guarantee that the above system is hyperbolic"( [34] p: 180). 
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3.1.3 Boundary and Initial value Problems 

For the solution of a PDE to be unique, appropriate conditions on certain line/s 

or surface/s (non characteristic) should be prescribed. Take for example, a two 

Figure 3.1: A rectangular domain of solution for a 2D pde 

dimensional PDE, whose solution is defined and sought in the region SJR shown in 

figure 3.1..: 

" If only initial conditions are prescribed along the xl axis ( or any line x2 = 

constant) then the problem defined by the PDE is an initial value problem, 

and the conditions prescribed to it are often referred to as Cauchy conditions. 

" If some conditions are prescribed on the x2 axis as well ( or any line xl = 

const) then the problem defined by the PDE is an initial-boundary value 

problem. If further conditions are prescribed on xl = a, then the problem is 

overprescribed. 

If certain conditions are given at the boundary OR of R, then the problem 

defined by the PDE is a boundary value problem. 

The type of conditions which may be prescribed fall in one of the following categories: 

Dirichlet Conditions: For such conditions the dependent variable (ü) satisfies 

ü=f 

where f is known function. 

f-. X1 
a 
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Neumann or derivative conditions: Here the normal derivative of the function 

satisfies a given function along a certain line or boundary e. g äxß =f( on 

the xl-axis). 

Robin or mixed conditions: Here the dependent variable satisfies a combination 

of the above Dirichlet and Neumann conditions. 

e. g 
a- 

+ Kil = f, K 54 0 (along the xl axis) 
z 

3.2 Discretization and the derivation of finite 

difference formulae 

Finite difference methods for solving differential equations are derived by replacing 

the continuous derivatives of a function, in the differential equation, by finite dif- 

R= (O<x<a), t>O S 

Figure 3.2: A rectilinear grid of meshpoints 

ference expressions, involving the values of the function at discrete points defined 

by a grid covering the region R of the solution. The first step therefore, is the 

construction of a rectilinear grid covering R with lines parallel to the coordinates of 

the independent variables x,. If one of the independent variables is time (fig: 3.2 ), 

then the resulting finite difference schemes may be implicit or explicit, depending 

on whether the spatial derivatives are evaluated at the current or subsequent time 

steps. This is illustrated, following the approach of [34], by considering the following 
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general equation given as: 

aü 
= Lit (3.23) 

ät 

where L(x;, D{) is üººeo r, - c. I... p ;j=1... q 

and where p is the number of space dimensions, q is the order of the differential 

equation, and D; =a as; * 

From the Taylor series expansion of üt+k, at any chosen point in the grid we have: 

2 

ü°+k = (1 +k 
it 

+2 k2 
2+"" ")üt 

(k is the time step) 

= exp(kat)fit =exp(kL)üt (from equation 3.23 (3.24) 

which leads to a general expression for exact difference formulae, having the form: 

ü°+k = exp[(1 +0- 6)kL]üt (3.25) 

a exp(-OkL)ü+k = exp[(1 - O)kL]ü' (3.26) 

The difference formula is explicit if 0=0 and implicit otherwise. i. e 0 54 0. 

Exact formulae expressing derivatives at a point in terms of finite difference operators 

(defined below), and vice versa, are dealt with in great detail in [31]. 

If in the mesh of gridpoints shown in figure 3.2 every gridpoint T is denoted by m 

and n. Then m=n=0 defines the gridpoint 0(0,0) at the origin, and T, n, n defines 

a point whose ordinates are (mh, nk) where h and k are the gridspacings in the t 

and x directions respectively. 

A set of important difference operators are defined as follows: 

SxU = Um+ - Um_ (Central difference operator) 

pxUm = Um - Um-1 ( Backward difference operator) 

AxUm = Um +I - Um (forward difference operator ) 

Higher order (central, backward, and forward) difference operators can be defined 

recursively, however, only the second order difference operators will be given below 
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together with other useful operators. 

SxU+º= bx(Um+ - Um-) = Um+l - 2Um + Um-i 

Ox Um = px(Um - Um-1) = Um - 2Um_1 + Um 
_2 

ýyUm = ýx(Um+1 - Um) = Um 
+2 - 2U, +1 + Um 

1CxU, n, = 
2(Um+ 

,+ 
Um_,. ) (µx is an averaging operator) 

Un = Um+l - Um_1 (mean central difference) 

Ex U, "� = Um+1 ; E, * U, n = U, n+a 

where E is called the shift operator and a is any constant. 

It can be seen that the following relations between these operators are valid: 

ÖX 
m ýzÜ�a+3 ýxÜm_2 

E-1 , p=1-E-1 
5s 

22 

24 
8= Ef - E-1 Hs = 2µbz = Az -I- pi 

These difference operators are also related to the derivative D; ( here äx or D) at a 

point T�ti, �, through the Taylor Series, where: 

ExUm = Um+l _ (1 + 
hD 

+h2 2ý 
2 

-E- ... + 
hn n )Um 

=E= ehD (3.27) 

L=E-1 O=ehD-1 

hD-}-h2D2--... h ýn... 
ý (3.28) 

p=1-E-1=1-e-hD 

hD (hD)2 (hD)3 (-1)n_l(hD)n 
+ ... ) (3.29) p=( 1' 2' + 3! n! 

8= Ei - E'1 =e ,Q-e h° 
= 2sinh(2 ) 
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[(hD)+ 5 
+... 

( 
2Di3 

+... 
(2.! 

+... 
22nD)n 

n! 

-(E12'+ E-4) = 
2(e h2 +e-h2) = cosh(hD) 

and Hx = 2j Sx = 2cosh(hD) x 2sinh(D) = 2sinh(hD). 

Hx = 2[(hD) + 
(h 

!+ 
(1t 

!+... 
ý 

(3.30) 

(3.31) 

(3.32) 

Expressions of higher order differences in terms of derivatives can be obtained by 

simply raising both sides of the respective equation of (3.28 
... 3.32) to the cor- 

responding exponent. Thus, for example, squaring both sides of ( 3.30) gives 52 

as: 

s ) 
.}... J s2 = [(hD)2 + 

12 
(hD)4 + 

360 
(3.33) 

Thus suitable finite difference approximations of the derivatives in the differential 

equations, involve truncating the corresponding exact formula of (3.28 ... 3.30). 

This truncation leads to the introduction of an error known as the local truncation 

error (L. T. E) which is defined as the difference between the differential equation 

and the difference equation which is used to replace it. The terms in the (L. T. E) 

which are of least order in the grid spacings h and k represent the principle part of 

the (L. T. E). It can be seen from ( 3.28) ... 
(3.30) that the truncation error resulting 

from the central difference replacement fore has a principal part proportional to 

h2 while forward and backward difference replacements have truncation errors with 

principal parts proportional to h. 

Equations (3.28) 
... 

(3.30) express the relations between the 0, p, and 8 difference 

operators and the derivative defined at the nodal gridpoint Tm,,, which is, at the 

backward end of the interval [T,,,,,, -º Tm+l, n], at the forward end of the interval 

[T,,,,,, -+ and at the centre of the interval [T,,, +I, � _ Tm_ 
, n]. 

More generally the derivative at some arbitrary point T,,, +e, n, where (0 <0< 1), in 

the interval [T,,,,,, -º Tm+i,,, ] may be defined in terms of finite differences involving 
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the values of the function at T,,, +1,,,, and T, n, n. This is done using the following 

relations: 

Un _ E(1-e)Un - e(1-e)hDUn m+l m+9 - m+B 

Un ( e) Un - 
(-ehD) n 

m= 
E'' 

m+B e Um+B 

Thus, 

(e(1-s)hD _ -ehD)Un Un Un m+B = m+1 -m (3.34) 

Un 
_n_ m+1 

Um 
- 

(hD + 
[(1- 0)2 - 92) 

h2D2 + 
[(1- 3)' + 031 It3D3 + 

... )Um+e (3.35) 

which is a general equation whose L. H. S represents a forward, backward or central 
difference depending on whether 0=0,2, or 1 respectively. First and higher order 
derivatives may also be represented in terms of differences in the values of the cor- 

responding function, at more than two gridpoints. Using more than two gridpoints 

generally produces difference schemes of higher order accuracies. Consider, for ex- 

ample, expressing the derivative D (here ä) at Tm, n in terms of the values of the 

function at the points Tm-2, 
n, 

Tm-i, 
n, 

Tm, n, 
Tm+l, 

n, and Tm+2, n. 
Also we use the 

relations: 

Um+Z = E2Um - e2hDUm ni Um+1 = r'' Um = ehDUm 

n2n, -2hD nn1n -hD n Um-2E Um=e Um' U, 
m-I=E 

Un=e Um 

Then, if a, b, c, d, and f are arbitrary coefficients then: 

aUm+z + bUm+l + cUm -- dUm-1 + eUm-z 

_ (ae2hD + behD +c+ de-ehD + fe-2hD)Um 

= (a+b+c+d+ f)Um+(2a+b-d-2f)hD 

+ 
(22a+b+d+22f)h2D2+ (2 3a+b-c-2 3f) 

h3D3 
2! 3! 

+ 
(24a+b+d+24f)CD4, 

+ 
(25a+b-d-2'f) 

h5D5 
4! 5! 

(26a +b+c+ 26f) 
h6D6 (3.36) 

61 
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One can henceforth solve for a, b, c, d, and f to give the various finite difference 

replacements of desired accuracies with truncation error up to 0 (h5). The values 

a, b, c, d and f must satisfy simultaneously, equating the second term on the R. H. S of 
( 3.36 ) to D, and equating to zero the first term and the other terms up to the 

fifth, depending on the accuracy required. Thus, for a difference replacement whose 

truncation error is of order h4, a, b, c, d, and f should satisfy: 

a+b+c+d+ f=0 

(2a+ b-d-2f)h =1 
4a+b+d+4f =0 

8a+b-d-8f =0 

16a+b+d+16f =0 

The system ( 3.37 ) is satisfied for: 

;and1 -8 8 
2h 

(3.37) 

These values nullify the sixth term in ( 3.36 ) making the truncation error of the 

resulting difference replacements of order (h5). 

By substituting the values of a, b, c, d and f, we obtain the finite difference equation 

for äx as: 

a"ýn 

_ 

Um+2 
- 

8Um+l + öl%m_1 
- 

Um-2 
+ O(h5) 

löx m 12h 
(3.38) 

The use of various finite difference replacements of the derivatives in the PDEs yield 

symmetric, or asymmetric, implicit or explicit schemes depending on the way the 

finite difference approximations are applied. 

The properties of various finite difference schemes will be discussed in the next 

section. 
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3.3 Derivation of some basic finite difference 

schemes 

The most important properties of a finite differences scheme will be considered 
by looking at some finite difference replacements of the following heat conduction 

equation in one space dimension: 

L(- =au-a2u ät X2 
(3.39) 

defined over the region SJR = [0 <x< 1], t>0, and subject to the initial condition: 

ü(x, 0) = g(x) 

and the boundary conditions 

ü(0, t) = bi and ü(1, t) = b2 

It can be readily seen that replacing ät and äx, using ( 3.28 ) and ( 3.33 ), where 

terms other than the first on the RHS of these equations are neglected, yield a finite 

difference approximation to ( 3.39 ), having a local truncation error of the order 
O(h2)+ 0(k). The resulting formula: 

QtUn 82Umn k ä2Ü h2 944L n 

km h2 + 
(2 

ät2 12 ax4) + 0(k2, h4) 
m 

U+++1 - U" U" - 2U" + U" 
- mkm= m+l 

him 
m1+ 0(h2) + O(k) (3.40) 

is called the Classical Explicit scheme. The principal part of its Local Truncation 

Error (LTE) is (k 82ii 
_ 

h2 84j n 
2 öt2 12 öx4 m 

Similarly if ( 3.39 ) is approximated implicitly at the point (mh, (n + 1)k) where 
backward and central differences are used respectively for et and e we get the 

fully implicit scheme given by: 

OtUn b. 2 U, 
n+1 

k 02ü h2 ä4ü n+1 
s4 n+I 

k h2 +( ät2 12 äx4) 
m 

O(k, h ) 

Principal part of the L. T. E 

t%n+1 -Un If n+l 2 Un+1 + Un+l 
rn 

km_ 
m+1 - h2 m1 +0(h2) + O(k) (3.41) 
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whose truncation error is of order O(h2) + O(k) If ( 3.39 ) is evaluated implicitly at 
the point (mh, (n + !. )k) and central differences are used to replace äi and e we 

get the Crank-Nicholson scheme given by: 

ýtU +2 
jjtS2U 

+2 l[b, 2U +1 +62Umj 
2 

k- h2 -L h2 
1+ O(k 2) + O(h ) 

j%m+l 
- 

Um 1r Um +l 
- 2U, n+1 y+1+ Um 

+1 - 2U, n + Um-1 

/ k2( h2 
k2,03 ü_ h2 a4il k2 a4ü "+ 

+ 
(24 

-at-3 12 ax4 +s at2ax2/ to 

+ 0(k4, h4) 

Another scheme which approximates ( 3.39 ) explicitly at (mh, nk), but employs a 

mean central difference Ht for the time derivative, is the Dufort-Frankel method. 
Here again the central difference öi is used to replace the space derivative. In this 

scheme the Um appearing in the expression for 55Um is replaced by the arithmetic 

average of U +1 and Um 1. The resulting formula is given as: 
Um+l 

- Urn 1_ Um+l-(U+1+Un 1)+U, 
_1 

2k h2 
22 4ý k2 2ý n 

+6 -5 -t-3 12 ax4 +h ate 
]m+ 

O(k4) + O(hs) (3.42) 

which has a truncation error of order O(h2, k2, h; 

An asymmetric scheme, due to Saul'yev [43], is based on taking at the level n+1, 
the forward/backward "part" of the second order spatial derivative in ( 3.39) while 
keeping, at the level n, the remaining backward/forward "part". Thus, äff; is ap- 

proximated as: 

öýü 
_1 

öü n (ail nz 
Tx öx)m - 

(TM- 
+ O(h ) (3.43) 

11 

/aül n aZ n+B 

and ax )mý(aii)n+l ax- k 
Cax )m 

0<0<1 (3.44) 
} 

If we replace either of ()" 
+, or (N)m" ms 

_1 
in ( 3.43 ) using ( 3.44 ) and then 

substitute for j in ( 3.39 ), we get either of these two equations: 
[(Oii)n+l (aa)n 

i] 
+ O(h') + O(k) (3.45) 
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ail 
ät =1 

[(aii)n+l 
äx- 

(ä2n+l + 0(h2) + o(h(3.46) 
mm 

Two formulae can be obtained if forward and central difference replacements were 

used for the time and space derivatives respectively in ( 3.45 ) and ( 3.46 ). These 

formulae are given by: 

Ü+1-vM[v+i-ü+l-um+U_1] k mk 
h2 

'ý +0( , h2, k) (3.47) 

and 
Um+l - Um 

_ 
[Um+i - Um - Um+i +U ±I ks 

k h2 + O(h, h, k) (3.48) 

and shall be referred to as Saul'yev I and Saul'yev II respectively. The principal 

part of their truncation error is respectively: (-T1 + T2) and (Ti + T2) where: 

_k 
atü kh 04ü k3 04Ü "+j 

Ti 
(Utax 

+s 
ax3at 

+ 24h axat3) 
m 

and T2 __ 
h2 a4n 

- 
k2 a4Ü k2 a3Ü "+ (12 

ax4 s aX ate 24h at3 
) 

m 

The above difference replacements are only some of the many replacements for 

( 3.39 ) and shall be referred to while introducing next the concepts of consis- 

tencJ and stability. A schematic representation of the above schemes is shown in 

figure 3.3. 

3.4 Properties of various finite difference 

schemes 

When we resort to finite difference methods to solve differential equations, we need 

to guarantee that the computational solution (u) is close to the finite difference 

solution U and converges to the exact solution ü of the well posed problem, given by 

the differential equation and its the auxiliary conditions, as the grid spacings tend 

to zero. 
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The Crank-Nicholson Scheme 

The Saul'yev I scheme 

Figure 3.3: Diagrams of the computational molecules for various finite difference 

replacements of equation 3.39 

The fully implicit scheme The Explicit scheme 

The Dufort- Frankel scheme 

The Saul'yev II scheme 
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To guarantee this in the case of linear differential equations, it is required, firstly 

to ensure that the difference scheme used is consistent with the given differential 

equation, and secondly that small perturbations in the initial conditions, and errors 
due to round-off from arithmetic operations performed when solving the difference 

equations decay, rather than grow, while the computational solution is advanced, i. e, 

that the solution is stable. 

3.4.1 Consistency 

A difference scheme is said to be consistent with the differential equation, which it 

approximates, if as the grid is refined (i. e h --> 0, k -º 0) the local truncation error 
tends to zero. That is, the finite difference equations become an exact representation 

of the differential equations. 

If we consider the difference formulae given in section 3.3 we see that for each of 

the Classical Explicit, fully implicit and the Crank-Nicholson schemes, the local 

truncation error tend to zero unconditionally as h -º 0, and k --> 0. These formulae 

are therefore Unconditionally consistent with equation ( 3.39 ). 

As for the Dufort- Frankel scheme and the Saul'yev formulae I and II, we notice that 

their truncation error terms contain products of the terms (h; ) and (h) respectively. 

This means that if k and h tend to zero at the same rate, or h tends to zero faster 

than k, the truncation error will not tend to vanish, in which case the difference 

formulae will not be consistent with ( 3.39 ). If on the other hand k -º 0 at a faster 

rate than h, the truncation error tend to zero. Therefore, under this condition the 

Dufort-Frankel and the Saul'yev schemes are consistent. In this case they are said 
to be conditionally consistent with equation ( 3.39 ). 

If the auxiliary conditions to ( 3.39 ) involve derivatives which are also replaced by 

difference approximations, then for the difference scheme to be consistent with the 

PDE problem it is also required that the truncation error arising from the finite 

difference approximation to the derivatives in the auxiliary conditions tend to zero 
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as h, k--->0. 

3.4.2 Stability 

The problem of stability is concerned with finding the conditions which satisfy the 

second requirement, i. e, the requirement that for fixed grid spacings k and h, the 

difference between the computational solution u and the exact solution of the finite 

difference equations i. e, I um - Um I decays or remain bounded as n --+ oo, where u 

is the solution calculated up to the accuracy of the machine rather than the exact 

solution of the difference equations. 

The stability of a finite difference scheme can be investigated in a more analytical 

way through several methods. The most common methods are the Von-Neumann 

or Fourier series method, the matrix method and the energy method. The first 

method is suitable for pure initial value problems with periodic initial data thus 

neglecting the effects of boundary conditions, while the latter two incorporate the 

effects of the boundary conditions in initial-boundary value problems. The energy 

method can deal effectively with variable coefficients and indicate the correct choice 

of computational scheme. But its short comming is that a it provides only sufficient 

conditions for stability which may be far removed from what is necessary in certain 

initial- boundary value problems" ([47] p: 141). In what follows only illustrations on 

the theory and applications of the Fourier method and the matrix method are given. 

The Fourier method 
Consider the equation ( 3.39 ) which is discretized over its region of definition QE 

(0 <x< 1), t>0 using any of the finite difference approximations given in 

section 3.3. It can easily be shown that the computational error Z,,, = um - Um also 

satisfies the same finite difference equations as U. 

Thus, for the computational error associated with the Classical Explicit scheme, we 

can write: 

Z�ä 1= rZ 1+ (1 - 2r)Z� + rZm_1 (3.49) 
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In the Fourier method, the errors Z, at the mesh points at a certain time level (say 

t=0) are represented by a finite Fourier series leading to the error function: 

N+1 

Z0 1 
m= 

Aj exp(ipjmh) 
i=o 

(3.50) 

where m= (0,1,2 
... N+ 1), is the index for the (N+2) mesh points dividing the 

interval 0<x<1 on the line t=0, f33 is the frequency of the error, and i= 

The method can be applied to all linear finite difference approximations. The 

growth, or decay, of each mode in (3.50) depends on the finite difference equa- 

tion. If any mode can grow without bound, the difference equations have unstable 

solutions. 

Because of the linearity assumption, separate solutions are additive, and it is süf$- 

cient to study the propagation of error due to just a single term exp(ißmh) of the 

Fourier series in (3.50), where ß is any real number. 

We therefore seek a solution for (3.49) in the separation-of-variables form, which 

reduces to exp(ißmh) for t=0. This solution is given by: 

exp(at) exp(ißmh) = exp(ank) exp(ißmh) 

where a(ß) is complex in general. 

Therefore, we can see that the original error component will not grow as n -º oo if: 

I exp(ak) (< 1 (3.51) 

here we introduce the parameter e= exp(ak), which is known as the amplification 
factor for the mth Fourier mode of the error distribution as it propagates one step 
forward in time. 

To determine this factor for the Classical Explicit scheme, we substitute for Z, by 

exp(ank) exp(i/3mh) 54 0 in the "error" equation ( 3.49). 

This gives: 

exp(a(n + 1)k) exp(ißmh) = (1 - 2r) exp(ank) exp(ißmh) + 
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rexp(ank) x [exp(iß(m + 1)h) + exp(iß(m - 1)h)] 

The cancellation of common terms and substituting ý for exp(ak) leads to: 

ý= (1 - 2r) + r[exp(i fah) + exp(-ißh)] (3.52) 

By using the relation: exp(iph) + exp(-ißh) =2 cos(Qh) and the trigonometric 

relation [1 - cos(Qh)] =2 sin2(ý) equation ( 3.52) becomes: 

=I- 4r sin2 
h 

(2 ) 

To obtain the stability criteria, the magnitude of the amplification factor for all the 

error modes should be less or equal to one. This is satisfied if. 

-1 <1- 4r sin2( 
2< 

+1 

for all (ßh). 

(3.53) 

The right side of the inequality (3.53) is trivially satisfied. The left side of (3.53) is 

satisfied if: 

r< 
2(ý) 

for all (ßh) 
2 sin 

Thus a necessary condition for the stability of the explicit scheme is r<z 

Similarly, a stability analysis could be carried out for other schemes, by substituting 
for Zm = exp(ank) exp(ißmh) in their corresponding "error" equations, and deter- 

mining the condition which is to be imposed on the mesh ratio `r' to make (ý 1: 5 1. 

The application of the Fourier series method can be extended to investigate the 

stability of a system of finite difference equations. 

To illustrate this, the Dufort-Frankel approximation: 

(1 + 2r)U +1 = (1 - 2r)Um '+ 2r(U,;; +1 + U�_1) (3.54) 

to equation ( 3.39 ) is rewritten as a system of two equations as: 

(1 + 2r)Um+l = 2r(Um+l + Um_1) + (1 - 2r)V� 

Vm+1 = Um (3.55) 
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By introducing a second variable Vm = Um-1. As before the computational errors 
un - Un 

Zm =mm at 
it - Vn 

the mesh points on the initial time level (t = 0) are represented 
VMm 

by a Fourier series as: 

N+i 

Z, °� _ Al exp(iß3mh) 
j=o 

(3.56) 

where A, is a (2 x 1) vector. Again we study the growth or decay of one error mode 

exp(ißmh) by seeking a solution to the "error" system corresponding to (3.49) in 

the seperation-of-variables form, which reduces to exp(ißmh) for t=0. Let this 

solution be: 

Zm = (G)" exp(ißmh), (3.57) 

where the time dependence of this error mode is contained in the complex coefficient 
(G)". The superscript n implies that G is raised to the power n. G is a (2 x 2) 

matrix. Clearly from (3.57): 

Zm 1= (G)Z , 

Thus G is the `amplification' matrix. 

The criterion for stability is: 

IIGII_<1 

To find G for the Dufort-Frankel scheme, we write the "error" system corresponding 

to (3.55), (using the relation (2 +i + 2m_1) =2 cos(ßh)Zm) as: 

Q, 2 +1 = Q02, n 

where Q1 
1+2r 0 

= 
01 , Qo 

4r cos (ph) 1- 2r 
= 

10 

Thus G= Qi1Qo = 
1 1 0 4r cos(ßh) 1- 2r 

1+2r 0 1+2r 1 0 
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arcoe Qh 1-2r 

G= 1+2r 1+2r i. e. 
10 

The eigenvalues of G are: 

2r cos(ßh) 1- 4r2sin2ßh 
Ai = (3.58) 

1 +2r 

and thus p(G) <1 (3.59) 

which satisfies the necessary condition for stability. 

Consideration of (3.58) shows that (3.59) is satisfied for every (ßh). 

If G is normal (i. e it commutes with its adjoints) then (3.59) is also a sufficient 

condition ([33] p: 173). 

The matrix method 
The matrix method is applicable to initial boundary value problems, i. e equation 
( 3.39 ) together with the initial conditions: 

ü(x, O) = g(x) 

and the Dirichlet boundary conditions: 

ü(O, t) =0 and ü(1, t) =0 

After discretization, the number of mesh points at each time level interior to the 

domain is N. Thus at a certain time level, the set of algebraic equations representing 

the finite difference approximation at each mesh point can be written in matrix form 

as: 

AU'Fl = BU" + CU"-1 +d (3.60) 

where A, B, and C are NxN matrices given below. U is an Nx1 vector of the 

dependent variable i. e U= [Ul, Uz, ... UN]T . The vector d represents the boundary 

conditions - in the above example a=0. The matrix A is: 

A=I (i. e NxN identity matrix) for the Explicit scheme 
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(2 + 2r) -r 

-r (2 + 2r) -r 0 

A= the Crank - Nicholson scheme. 
0 -r 

-r (2 + 2r) 

t1= (1 + 2r)I for the Du f ort - Frankel scheme. 

(1 + 2r) -r 

-r (1 + 2r) -r 0 

A= the Implicit scheme. 
0 -r 

-r (1 + 2r) 

(1 + r) -r 
(1 + r) -r 0 

A= the Saul'yev I scheme. 

0 -r 
(1+r) 

(1 +r) 

-r (1 + r) 0 

A= the Saul'yev II scheme. 

0 

L -r (1+r) 

The matrix B is given as: 

(1 - 2r) r 

r (1 - 2r) r 0 

B= the Explicit scheme (3.61) 

0 r 

r (1 - 2r) 
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(2 - 2r) r 

r (2 - 2r) r0 
B= the Crank - Nicholson scheme. 

0r 

r (2 - 2r) 

0 2r 

2r 0 2r 0 

B= the Du f ort - Frankel scheme. 
0 2r 

2r 0 

B=I for the Implicit scheme. 

(1 - r) 

r (1 - r) 0 

B= the Saul'yev I scheme. 

0 

r (1 - r) 

(1 - r) r 
(1 - r) r0 

B= the Saul'yev II scheme. 

0r 

(1 - r) 

The matrix C is an (N x N) zero matrix for all schemes except the Dufort-Frankel, 

which is a three time level scheme for which: 

C= (1- 2r)I 

For all the two time level schemes stability can be investigated by writing (3.60) in 

the explicit form: 

U'+'= A-'BU" + A''a (3.62) 
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and examining the eigenvalues of A-'B. 

The error vector 
(Zn = ün - 

U") satisfies: 

Zn+l = GZn 

where G= A'1B. 

Thus, if z° is the Nx1 vector representing the perturbation in the initial conditions 

then: 

Zn+l _ G'º+Izo (3.63) 

and 11 z 'II=IIG"+111x11z011 

The following inequality: 

P"+1(G): 511 Gn+l 11: 5 (11 GII )"+l 

where p(G) is the spectral radius of G, can be used to deduce from ( 3.63) the 

following conditions for stability. 

i) The spectral radius condition 

p(G) <1 (3.64) 

is a necessary condition for stability, since it guarantees that G" -º 0, and conse- 

quently z' -º 0 as n -º oo, but gives no indication of the magnitude of z" for finite 

n. 

ii) The norm condition 

11(G)fl_<1 (3.65) 

which is sufficient for stability and guarantees an ever-diminishing error as n in- 

creases ([34] p: 41). 
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For the Classical explicit scheme: 

G=B 
. 
(B is given by equation 3.61) 

and IIGII=I1-2rI+2r<1 if r<1 

For the remaining two time level schemes G is given as: 

G= A-1B 

Since A and B commute, the eigenvalues of G can be obtained using equation (2.10) 

and theorem (2.7) as: 

a; (G) _A 
(B) (3.66) 

A+(A) 

Thus for the implicit and Crank-Nicholson schemes we have respectively 

1 A. (G) 
1+ 2r + 2r cos "r 

}<1Vr, s (3.67) 
() 

N+1 

(2-2r)+2rcosN+1 
and )3(G) =}<1d r' s (3.68) 

(2+2r)+2rcos air N+l 

Since A and B are commutative and symmetric then G= A-1B is also symmetric. 

Therefore p(G) =II G 112, and the spectral radius condition satisfied for the implicit 

and Crank-Nicholson schemes by (3.67) and (3.68) respectively is also a sufficient 

condition for the stability of the two schemes. As for the Saul'yev (I and II) schemes, 

since A is a upper/lower triangular matrix with diagonal elements (1+r), and B is 

a lower/upper triangular matrix with diagonal elements (1-r) then for both schemes 
the eigenvalues of G are A, (G) = i+r <1 for every r, of multiplicity N. As for the 

Dufort-Frankel scheme the "error" equation corresponding to (3.60) can be written 
in explicit form as: 

zn+l =1 
-}12r 

[Bz" + (1 - 2r)Iz"'1] (3.69) 
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To investigate the stability, (3.69) should be rewritten as the following system: 

Zn+1 (1 + 2r)-1B (1. - 2r)(1 + 2r)-1I z" 

z" I 0L-] 1 
(3.70) 

which is of the form:, 

E"+1 = WE" (3.71) 

Zn+l 
where E"+1 = 

Zn 

Since the matrices (1+2r)-'B, I and (1-2r)(1+2r)"1I are all symmetric and comm- 

mute with each other, they have a common set of linearly independent eigenvectors. 

Also, the eigenvalues of W are the eigenvalues of the matrices: 
Ak 1-2r 

1+2r 1+2r 

10 

where AA, is the kth eigenvalue of B given as: 

Ak = 2r cos k1/V + 1), k= (1,2, ... N). 

Thus the eigenvalues (v, ) of W can be obtained by solving for: 

A- 1-2r 

det 1+2r v 
1+2r 

1 -v 

which gives: 

Ak 
_1-2r_ v(v- 1+2rý 1+2r 

giving: 

1 
v(W) =1+ 2r 

2r cos 
N+1 [1 

- 4rß sin 2N+1, 
i I. 

k= (1, ... N) (3.72) 

It can be shown from (3.72) that the magnitudes of all the eigenvalues of W are less 

than unity for every r. This satisfies the spectral radius condition for stability given 

in (3.64). 
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The problem of finding a continuous exact solution for a PDE has now been 

transformed to finding the solution, at discrete points, given by its finite difference 

approximation. This involves solving a large system of algebraic equations (one at 

each point) for the whole mesh. This system may be explicit or implicit, depending 

on the difference scheme. The solution of the systems of equations arising from 

explicit finite difference schemes is straight-forward. i. e., matrix vector multiplica- 

tion. However implicit difference schemes require the solution of large systems of 

algebraic difference equations which have the general form: 

Au=b (3.73) 

where A is an NxN matrix, (N being the total number of gridpoints in the region of 
the solution). U is an Nx1 vector representing the unknown values of the solution 

at the gridpoints, and b is an Nx1 vector of known elements. Solutions at non 

gridpoints are interpolated from the surrounding gridpoint solutions. 

Methods for solving ( 3.73 ) fall into two categories, namely Direct methods and 
iterative methods. These are the subjects of the following two sections. 

3.4.3 Convergence 

A finite difference scheme is said to be convergent if, at a fixed mesh point, the exact 

solution of the finite difference replacement and that of the differential equation get 
uniformly closer as the mesh is refined. 

In the case of finite difference replacements for linear initial value problems, stability 

and consistency of the finite difference scheme guarantee convergence, as stated by 

the Lax equivalence theorem which states (see [39] p: 45) "Given a properly posed 
linear initial value problem and a finite difference approximation to it that satis- 
fies the consistency condition, stability is the necessary and sufficient condition for 

convergence". 

For the more difficult initial boundary value problems and for nonlinear problems, 

establishing the convergence is generally very difficult. A theoretical convergence 
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analysis can be carried out only for simple cases where the differential equation is 

not very complicated and the difference scheme replacing it is simple. Examples 

of such theoretical treatment are the convergence analyses given for the classical 

explicit scheme replacement of the one dimensional heat conduction equation (3.39) 

in ([35] p: 117-119) and the five point explicit scheme replacement of the wave 

equation ( 5.11 ) in ([47] p: 146-148). 

Convergence in some more difficult cases may be inferred numerically by examining 

whether the error of the subsequent computational solutions of the difference equa- 

tions obtained on progressively refined grids is uniformly reduced. An example of 

such analysis of convergence is found in ([24] P: 75-76). 

Finally, the Lax equivalence theorem, for other than linear initial value problems, 

may be interpreted as providing a necessary condition, and not always sufficient, for 

convergence [24]. 

In the next two sections we introduce the methods for solving the the various systems 

of difference equations which has the typical form of ( 3.73 ). 

3.5 Direct methods: 

Direct methods yield an exact solution of (3.73) in the absence of round-off errors, 

in a finite number of numerical operations. 

However, direct. methods are not recommended, when the coefficient matrix A in 

(3.73) is arbitrakly sparse. This is because in these methods, the matrix A is altered 

during the computation process, and fill in by non zero elements may occur in 

the band of the matrix ([25] p: 484), which requires large storage in the computer 

memory. All direct methods are considered variants of the Gauss elimination 

method, which is based on augmenting the right hand side vector in (3.73) by A, 

and performing some appropriate elementary row operations on the augmented 

matrix so that the elements below the diagonal of A are eliminated. The matrix A 

becomes upper triangular, and the solution is then obtained by a back-substitution 
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process. In the Gauss-Jordan method, instead of a back- substitution process, 

the elimination process proceeds to eliminate the elements above the diagonal of 
A in the augmented matrix as well. Then each row is divided by its diagonal 

element, thus transforming A to an identity matrix. The solution vector afterwards, 

is given by the rightmost column of the augmented matrix. In the above elimination 

methods, care is taken where possible, to avoid 
_ý.,, . 

division by zero ( The elimination 

method will fail if such division is unavoidable) and to ensure at each elimination 

step that the diagonal elements of A have the largest absolute value of all the 

elements below it in its column (this helps in reducing round off errors). This 

is achieved by appropriate interchanges in the rows of the augmented matrix in 

a process known as maximal column pivoting or partial pivoting. The detailed 

description of this method, including other intermediate procedures involved (e. g 

scaling), and illustrative examples are given in ([25]). 

Other methods known as the LU decomposition methods are variants of the Gaussian 

elimination method. These are methods based on factoring the matrix A in terms 

of a lower triangular matrix L and an upper triangular matrix U, thus enabling the 

system Ax=b to be rewritten as: 

LUx =b (3.74) 

where a condition is imposed on the diagonal elements in L, U or in both. 

The equation (3.74) is factorized to two systems with the aid of an intermediate 

vector z and solved in the following two subsequent stages: 

Lz =b (3.75) 

followed by; 

Ux =z (3.76) 

where z is obtained in (3.75) by a forward substitution and the solution x is obtained 
from (3.76) by a back-substitution process. Partial pivoting may also be necessary 
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for the LU decomposition methods, but it is slightly different than pivoting in the 

Gauss and Gauss-Jordan methods, and demands extra computations. The way in 

which pivoting in the LU methods is employed is illustrated in Algorithm 3.5 below. 

The most popular LU decomposition methods are, the Dolittle method, which 

imposes a condition that the diagonal elements of L be all unity, the Crout method 

where the diagonal elements of U are all unity, and the Choleski method where the 

condition l;; = u;; is imposed. This last method is applicable only when A is positive 
definite, and decomposes A into LLT (i. e., U= LT) making use of Theorem 2.11 

thus eliminating the work of finding U. 

A general algorithm for the factorization procedures, including partial pivoting, 

the forward and backward substitution processes for LU decomposition methods is 

(extracted from Burden's [2]) is given next. 

Alogorithm for LU methods: 

1. Input the dimension n of A, the entries a; 1 and b; in an augmented matrix 
(n+1)xnarray A. 

2. Input the diagonal elements of U or of L. 

3. Let p be the smallest integer such that 1<p<n and 

j apt (= max jajl l( find the first pivot element). 
1<j<n 

if I apl I=0, then Output ('No unique solution'). STOP. 

4. If p01 then interchange rows p and 1 in (augmented) array A. 

5. Select 11, and ull satisfying 111u11 = all. 

6. For j=2... nsetUlf=al3/lll 
& 111 = ail/ull 

( Calculate the Ist row of U) 

(Calculate the Ist row of L) 

7. For i=2... n do steps 8-11 
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8. Let p be the smallest integer such that i<p<n and 

i-1 

api -E lpkuki = max 
l 
aj; - ljkuk: l (find the ith pivot element). 

k=1 i<j<n 

If the maximum is zero, OUTPUT 'No unique solution'. 

9. If p0i then interchange rows p and i in A and L. 

10. Select 1;; and u;; satisfying: 

i-1 
liiuii = aii -> 

likuki 

k=1 

11. For j=i+1, ... n Set: 

1 '-1 
Ui, j = 144 

[au, 
j -E 

likuki 

k=1 
i-1 

Iji =1 
[aiu 

-E likuk. 1 uii k=1 

(Calculate the ith row of U) 

(Calculate the ith column of L) 

12. Set Hold = an,, - 
Ek-1 Ink'ukn 

If Hold=O OUTPUT 'No solution exists' STOP 

Select unn and Inn satisfying 1nnUnn = Hold. 

(Steps 13 and 14 are to perform forward and backward substitutions). 

1 i-1 
13. Set zl = al,,, +l/lii ; For i=2... n, Set z; _ [ai,,, 

+l -> lnk'ukn] 
1" 

j_i 

14. Set 2n = , Zn/Unn i=n-1.... I Set 2; =1 l'Z; - 
1: 

u; 1x1 
u;; 

OUTPUT' (x1 ........ x� )' STOP. 

The maximum computational cost for the methods mentioned above, is given in 

terms of the number of multiplication/division operations and addition/subtraction 

operations involved. For the Gaussian elimination and Dolittle methods (IN3 + 

'N2 - 3) multiplications divisions and (33 + z' - sN) additions or subtractions 

are involved. Choleski's method requires s' + ZN2 -3 multiplications/divisions 
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and 63 + NZ - sN additions/subtractions and N square roots. The number N is 

the order of the coefficient matrix A. However, A u5uai1 exhibits a special pattern 

which will keep the computational cost far below the maximum figures given above. 

In general for a banded matrix of bandwidth 2p +1 we can obtain the number mul- 

tiplication/division and addition/subtraction operations required by the Gaussian 

elimination, Crout, and Dolittle methods by a simple exercise. This gives for the 

total of multiplication/division operations to be: 

count - mult = 
3(N - 2)p2 + (9N3- 4)p + 3N - 2p3 (3.77) 

and the number of addition/subtraction operations required is: 

count - add - 
3(2N-3)p2+(612N-5)p-4p3 (3.78) 

The two figures given by (3.77) and (3.78) are thus of order O(Np2). Upon substi- 

tuting for p=N-1 (i. e. A is a full matrix) we, retrieve the previous expressions given 

above. If A is tridiagonal (i. e. p=l), then substituting for p in (3.77) and (3.78) 

shows that 5n-4 multiplication/divisions operations and 3N-3 addition/subtraction 

operations are needed to solve the system Ax = b. Finally, when A is block- 

tridiagonal of order MN, as sometimes is the case when a system of M coupled 

differential equations, in M unknowns, is discretized using central difference opera- 

tors, the number of operations involved is of order 3NM3 
([24] p: 189). 

It remains to say that although the elimination methods are reliable and efficient, 

when A has a narrow band,,, tkey 
_Lnvo1, 

Ve 
, 

heavy dependencies in computa- 

tion which makes them unsuitable for parallel computers. 

3.6 Iterative methods 

These are methods which solve the system (3.73), i. e., Au = b, by calculating a 

sequence of approximate solutions u that converges to A-lb as k increases. The 

sequence is continually generated until successive solutions are sufficiently alike. 
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Iterative methods have the advantage over the direct methods in that round off 

errors do not accumulate, but rather decay with the number of iterations, and in 

that they are more economic to use when A exhibits a non easy pattern. 

In this section a survey of some linear, stationary iterative methods of first degree 

is presented. 

An iterative method for solving (3.73) can be constructed generally by decomposing 

A as: 

A=N-P (3.79) 

such that (3.73) can be rewritten as: 

(N - P)u =b or Nu = Pu +b (3.80) 

where N is a nonsingular matrix, sometimes referred to as the splitting matrix. It is 

usually chosen to be easily solvable, (e. g diagonal, triangular). 

If we add the superscript (k + 1) to u on the left hand side of ( 3.80 ) and the 

superscript (k) to u on the right hand side of ( 3.80 ) we obtain an iterative method. 

Equation ( 3.80 ) can be rewritten as: 

uk+l = Guk +f (3.81) 

where G= N-1P is called the iteration matrix. Also the right side vector f= N-1 b. 

For most well known methods, A is split into the form (D -L- U) where L, U, 

and D are matrices including respectively only the elements of A which are strictly 
below, strictly above, and on, the diagonal of A. Thus N-P=D-L-U. 

If we take N=D and P=L+U, we obtain the well known Jacobi (J) method given 
as: 

Duk+l = (L + U)uk +b or uk+i = D'1(L + U)uk + D'lb (3.82) 

where the iteration matrix Gj =B= D'1(L + U) is known as the Jacobi matrix. 
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If N=D-L and P=U we obtain the Gauss-Seidel (GS) method given as: 

Duk+l = Luk+i + Uuk +b or uk+l = (D - L)'lUuk + (D - L)-lb (3.83) 

with iteration matrix G= (D - L)'1U. 
race 

The GS method almost always has a better convergence 
(than the J method, but the 

J method has the advantage of being susceptible to significant improvement in its 

convergence rate by some acceleration techniques such as the Chebyshev acceleration 

and the Conjugate Gradient acceleration. This is because the eigenvalues of the 

iteration matrix of the J method are real. This is not the case for the GS method 

and its extrapolated version (i. e. the SOR method introduced next). 

If a relaxation parameter w is introduced into the Gauss-Seidel method such that 

0<w<2, a significant acceleration in the convergence rate of the method occurs, 

giving rise to a new method which is known as the Successive Overrelaxation (S. O. R) 

method. 

This is more easily illustrated by considering the molecular form of equation ( 3.8.3) 

i. e. the equation for the elements of any vector in the sequence of approximate 

solutions. This is: 

i-1 n 
uk+l -1 

/bi 
_ 

[1 
aij, uý+l _E ai, uý ) 

aii 
lL 

s=1 i=i+1 
(3.84) 

If u, is both added and subtracted to the RHS of ( 3.84 ), it can be rewritten as: 

Ui +1 (bi _ ail 

i-1 n 
aii, uý+l -E aijuj 

1=1 i=i 

(3.85) 

where the term in the square brackets represents a residual or a correction term 

which tends to zero as the method converges. The SOR method is obtained by 

relaxing the correction term by a factor of w such that 0<w<2. Thus ( 3.85 ) is 

rewritten as: 
i-1 n 

uk+l _ uk +w (bi - aijuj+l -> aijuj) (3.86) 
i=ii 
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This is equivalent to evaluating us +1 as a weighted average of uk and (u; +1)cs, 

i. e. us+i = wut + (1 - w)u; 

This can be written in matrix form as: 

uk+i = (1 - w)uk + w[D-1(Luk+i + Uuk + b)] (3.87) 

or 

uk+l = LG, uk + (D - wL)'lwb 

where Lu, = (D - wL)'1 [wU + (1 - w)D]. 

(3.88) 

The iteration matrix for the SOR method is GSOR = L. The matrices N and P 

corresponding to ( 3.79 ) are N= w'1D -L and P ='U + (w-I - 1)D. 

For w=1 the SOR method reduces to the GS method. The optimal relaxation 
factor for the SOR method lies always between 1 and 2. The convergence of the 

method is sensitive to the choice of the acceleration parameter, and an optimum 

choice w' of the parameter is given as: 

2 
1 -F 1-p2(B) 

(3.89) 

where p(B) is the spectral radius of the Jacobi matrix B corresponding to matrix A. 

This is often difficult to estimate because the spectral radius is not usually known in 

advance, and often the few first iterations are used to estimate p(B) and consequently 

w' follows ([29]). 

The Symmetric Successive Overrelaxation (SSOR) method evaluates the uk+l iter- 

ate in two half iterations representing two sweeps of the SOR iterations in opposite 
directions. The first sweep is a forward sweep where the values ui+j, uz+j ... , un+j 

are from the half iteration are obtained, while the values un+l, un±i, .... ui+l for 

the complete iteration are obtained after a further backward sweep. The relaxation 

parameter of the SOR method used in both sweeps is the same. If different accel- 

eration parameters were used for the two sweeps, the method is then referred to as 

the unsymmetric SSOR or (USSOR). 
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The two sweeps of the SSOR can be written as: 

uk+2 = L,, uk + (D - wL)-lwb 

and uk+1 = Uu ý+ (D - wU)-lwb 

where U,,, = (D - wU)'1 [(1 - w)D + wL]. 

Upon eliminating uk+2 we get: 

k+l = Uý, L,, uk+} -}- f 

where, 

(3.90) 

(3.91) 

(3.92) 

f= (D - wU)-1 [(1 - w)D + wL](D - wL)-lwb + (D - wU)-lwb (3.93) 

= w(2 - w)(D - wU)'1D(D - wL)-lb (3.94) 

The proof of the equality: 

(D - wU)- [(1- w)D + wL](D - wL)-lwb + (D - wU)-lwb 

= w(2 - w)(D - wU)-1D(D - wL)-lb (3.95) 

of the right hand sides of ( 3.93 ) and ( 3.94 ) is referred to later and is therefore 

given below: 

The LHS of (3.95) = (D - wU)-' { [(1- w)D + wL](D - wL)-1 + I) wb. 

Therefore we only need to prove that: 

[(1 - w)D + wL](D - wL)-' +I= (2 - w)D(D - wL)-' (3.96) 

[(1- w)D +wL] (D - wL)'1 +I 

= [(D - wL) - wD + 2wL](D - wL)'1 +1 

=I- wD(D - wL)'1 + 2wL(D - wL)'1 +I 

= (2D - 2wL - wD + 2wL)(D - wL)-l 

= (2 - w)D(D - wL)-1 
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which verifies equation ( 3.96 ). 

The splitting matrix N for the SSOR method is given as: 

N=2w 
w(D - L)D-1(D - U) (3.97) 

The SSOR method converges slower than the SOR method, but has the advantage 

that it can be accelerated by the techniques mentioned earlier. 

There are other first order methods, some of which are very well known such as the 

Simultaneous Displacement method and the (nonstationary) Richardson method. 

These are given respectively by the following two equations: 

uk+i=uff`+a(b-Auk)=(I-aA)Lk+ a6 (3.98) 

Rk 

and 

uk+l = uk + ak (b - Auk) = (I - akA)Uk + owkb (3.99) 

Rk 

where a constant factor a or a different choice ak for every iteration is multiplied 
by the residual vector Rk and then added to the vector Uk of the present iterate. 

We shall suffice ourselves with the above typical well known methods, and discuss 

next the properties of iterative methods with reference to them. 

3.7 Consistency of iterative methods 

In the analysis of iterative methods ( 3.81 ) and their convergence properties, it is 

important to consider the related linear system: 

(I - G)u =f (3.100) 

and the relation between its solution and that of the system Au = b. 

A basic requirement of an iterative method as (3.81) is that for a non-singular coef- 
ficient matrix A, when a solution is obtained of the system Au = b, all subsequent 
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iterates remain the same. This is known as the Consistency condition. Another 

requirement is that if the iterative method converges, it should converge only to the 

exact solution ü= A'lb of the above system and not to any other solution. This is 

the condition of Reciprocal Consistency. The following theorems give the necessary 

and sufficient conditions for consistency and reciprocal consistency of an iterative 

method. 

Theorem 3.1 If A is nonsingular, then an iterative method of the form (3.81) is 

consistent if and only if. 

f= (1- G)A'lb (3.101) 

Theorem 3.2 If (I-G) is nonsingular, then the iterative method (3.81) is recipro- 

cally consistent if and only if. - 

b= A(I - G)-if (3.102) 

Theorem 3.3 If A is nonsingular, then an iterative method (3.81) is completely 

consistent if and only if it is consistent and (I-G) is nonsingular. 

If an iterative method is both consistent and reciprocally consistent then it is said 

to be completely consistent. Complete consistency implies that the exact solution of 

the system Au =b and the related system are identical. More details, and proofs 

of the above theorems are given in ([50], p: 65-66). 

For the above mentioned methods it is easy to verify, when A is nonsingular and 

have nonzero diagonal elements that: 

For the Jacobi method: 

G=B=D-'(L+U); (I-G)=I-D-'(L+U) =I-D-1(D-A)=D-'A 

Therefore (I-G) is nonsingular, and since f= D'b, 

then f= (I - G)A-lb (i. e., the method is consistent) 

Then by Theorem 3.3 the method is completely consistent. 
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Similarly 

for the Gauss-Seidel method: 

G=(D-L)-lU =(I-G)=I-(D-L)-'(D-L-A)=(D-L)-1A. 
Therefore (I-G) is nonsingular. 

Also, 

f= (D - L)-'b = (I - G)A-1b, (i. e., the GS method is 

For the SOR method: 
G= (D - wL)'1 [wU + (1 - w)D] 

(I - G) = (D - wL)-1 [D - wL - wU - (1 - w)D] 
(I - G) = (D - wL)-1 [wA] = w(D - wL)-'A (Hence I-G is nonsingular). 

Also 

f= w(D - wL)'1b f= (I - G)A'1b (i. e., the SOR method is consistent). 

For the SSOR method: 
G= (D - wU)-l[(1- w)D + wL](D - wL)-I[(1 - w)D +wU] 

But from equation ( 3.95) we have: 

(D - wU)'1 [(1 - w)D + wL] (D - wL)-l 

= (2 - w) (D - wU)'1 D(D - wL)-' - (D - wU)'1 

Therefore, 

I-G=I- [(2 - w)(D - wU)-1D(D - wL)'1 - (D - wU)-1][(1- w)D + wU] 

=I- (D - wU)'1((2 - w)D(D - wL)"1 - I](D - wL - wAJ 

=I- (D - wU)'1 [(2 - w)D - w(2 - w)D(D - wL)-'A -D+ wL + wA] 

=I- (D - wU)-' [-w(2 - w)D(D - wL)-'A +D- wU) 

= w(2 - w)(D - wU)'1 D(D - wL)-'A 

Therefore (I-G) is nonsingular. 

Also from (3.94) we have: 

f= w(2 - w)(D - wU)'1D(D - wL)-lb 

=f= (I - G)A-1b. 

Hence the SSOR method is completely consistent. 
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It follows then, also by Theorem 3.3 that the GS, the SOR, and the SSOR methods 

are completely consistent. 

The complete consistency of the simultaneous displacement method and the Richard- 

son method is obvious from equations (3.98) and (3.99) for every a0 and ak 54 0. 

3.8 Convergence of iterative methods 

Complete consistency is always assumed for any reasonable iterative method, how- 

ever, a very important property, namely convergence is not always assumed. In this 

section, the basic theorems concerning convergence and the rate of convergence are 

outlined. 

Definition 3.1 An iterative method is said to be convergent if, for any initial 

vector u° the sequence of vectors uk converges to the exact solution n= A-1b, as k 

increases. 

i. e. if : lim uk =ü k-. oo 
(3.103) 

Since the exact solution ü= A-lb also satisfies ( 3.81 ) and the related system 
( 3.100 ) then the error vector defined as: 

ek=uk- ü 

satisfies the relation: 

ek+l = Gek = G2ek-1 = ... = Gk+ieo 

Therefore it follows that for convergence we require that: 

ýý=0 m 11 Gk u 
kýco 

(3.104) 

(3.105) 

(3.106) 

and from the Definition 2.4 and Theorem 2.6 a necessary and sufficient condition 
for an iterative method ( 3.81 ) to be convergent is that: 

p(G) <1 (3.107) 
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We can estimate the rate of convergence of an iterative method ( 3.81 ) by using 

the relation ( 3.105 ), from which we can write: 

IIekIIn<_IIGk 1IrxIIe°IIp (3.108) 

Thus if we require that the norm of the error vector e° be reduced by a factor E, we 
have to choose k large enough to satisfy: 

11 Gk Ilp< E (3.109) 

Then the average rate of convergence is defined for k iterations, as: 

Rk(G) =-k 1og. 11 Gk fl (3.110) 

It is shown in ([50], P86-87) that: 

l im (I I Gk 1121` = p(G) 

From which the asymptotic rate of convergence R(G) is defined as: 

R(G) =l im Rk (G) = -log, p(G) (3.111) 

Thus for two convergent iterative methods I and II with iteration matrices G' and 
G" respectively, the method I is faster than II if it has a larger asymptotic rate of 

convergence. 

i. e. if: -1og p(G') > -logp(C') 

or if: p(G') < p(G") 

Evans has shown in [10] for several iterative methods that the asymptotic rate of 

convergence is inversely proportional to the condition number is of the coefficient 

matrix A of (3.73) which is defined as: 

K(A) = (IAII x IIA-111 (3.112) 
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which when A is symmetric gives IC(A) _ mäÄ where max AA and min AA are the 

maximum and minimum eigenvalues of A respectively. 

Evans has also introduced the principle of preconditioning the original system (3.73) 

by transforming it into a new system MAu = Mb whose condition number can 
be minimized (s'c(MA) « ic(Al ), thus maximizing the rate of convergence. Detailed 

description of preconditioning techniques can be found in [11], [12], [18], and [17] 

among others. 

The iteration procedure (3.81) is pursued until the exact solution ü= A-lb is 

reached within a certain prescribed tolerance # such that: 

11 uk -u IIn_ Q (3.113) 

Since usually n is not known in advance, then the criterion for convergence is based 

on the norm of the residual vector R'k defined as: 

11 Rk II=II Auk -b 11 (3.114) 

approaching zero with a prescribed sufficiently small tolerance. 



Chapter 4 

The ADI and the AGE Methods 

4.1 The Alternating Direction Implicit (ADI) 

methods 

It has been earlier demonstrated in chapter 3 that implicit finite difference meth- 

ods exhibit unlimited stability, while explicit, schemes are generally subject to a 

restricting condition on their mesh ratio, in the interest of numerical stability. This 

restriction becomes extremely more severe for multidimensional problems. However, 

for multidimensional problems, implicit central difference methods require the solu- 

tion of a system of difference equations of the form Au = b, where the coefficient 

matrix A is no longer tridiagonal, but rather A is sparse, structurely banded and 

of large order. The solution of such systems becomes increasingly difficult and de- 

manding in computer time and memory as the dimensions of the problem increase. 

These difficulties can be considerably alleviated by applying a class of methods, 

which possesses both the unconditional stability of the implicit methods, and main- 

tains the simplicity of the one dimensional approach to the problem, even when 

applied to problems of several dimensions. This class is known as the Alternating 

Direction Implicit (ADI) methods. It may be applied iteratively to some problems 
(steady state problems) and applied either iteratively or directly in p steps to other 
(diffusion/convection) problems. In this section, we present some of these methods 

68 
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as direct methods applied to the diffusion equation in two or more space dimensions. 

We consider the following two dimensional PDE: 

aü 
= Lü (4.1) ät 

where L is a (linear) differential operator, and the equation is defined over a region 
R_ [0 < X1, x2 < 1], [t > 0] and subject to the initial condition: 

Ü(Xl9 x290) = 9(x19 x2) 

where (xl, x2) ER and the boundary condition: 

(4.2) 

ü(xi, x3, t) =f (xi, x2, t) where (xis x2) E OR. (4.3) 

where ÖR is the boundary of R. The region Q is covered by a rectangular mesh 
having ml and m2 internal points, in the x1 and x2 directions respectively, with the 

corresponding grid spacings hl and h2 given by hl = 1/(ml-F1) and h2 = 1/(m2+1). 

The coordinates of any point P are given as P(ihl, jh2) where 0<i< ml +1 and 
0<j< m2 + 1, with the solution at P denoted by üij. 

If L= Di +D2 (where Dl = a8 and D2 = azj) we get the heat equation in two 

dimensions given by : 

8ü 
T= (Di 2+ D2)ß = 

ä-Xi + äýý (4.4) 

An exact replacement of ( 4.4 ) is : 

uiti = exp[k(Di +D2)]üi, i 

= exp(k[OD2 + (1 - O)D2 + OD2 + (1 - 9)D2 ii,,; (4.5) 

exp[k(-OD 2- OD2)]ü 1- 

exp[k((l - O)Dl + (1 - B)D2)ýü (4.6) 
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from which, we can derive the following weighted central difference approximation: 

[1 - Orbi, - Ors 3]U +' = [1 + (1 - O)rbil + (1 - O)rbx, 1Ui'j (4.7) 

where U1 is now the finite difference solution, r is defined as r= k/h2, k being the 

time increment, and h= hl = h2, n is the index for the time coordinate, and 0 is 

an extrapolation parameter 0<0<1 to be chosen as follows: 

If 0=0 we get the classic Explicit scheme. 

If 0= 1/2 we get the Crank Nicholson scheme. 

and 

If 0=1 we get the fully Implicit scheme. 

Another way of writing (4.6 ) is : 

exp[-OkDi]exp[-OkD2]U '= exp[' (1- O)kDfl exp( (1- 9)kDz]U, (4.8) 

The truncated expansion of ( 4.8 ) yields : 

(i - erasl)(i - ersi, )v; }1= (i + (1- O)rax, )(i + (1- O)r6 3)ÜÄ (4.9) 

It can be seen that the different schemes arising from substituting the different 

values of 0 in ( 4.9 ) are only perturbations of those schemes resulting from sub- 

stituting the same 0 values in ( 4.7 ). i. e for 0=0,211 we get schemes which are 

perturbations of the Explicit, Crank-Nicholson's and Implicit schemes respectively. 

If however, the above weighted approximation ( 4.9 ) of ( 4.1 ) is applied to ad- 

vance the solution implicitly in only one direction (the xl direction) from time t=n 

to some intermediate' time n*, then consecutively applied to advance the solution 

implicitly only in the other direction ( the x2 direction ) to the time level t=n-ß-1, 

we obtain an implicit scheme which, at each stage, only requires the solution of a 

simple tridiagonal system. Such schemes produce only conditionally stable solutions 
1This intermediate time n' level does not necessarily correspond to any time level between t=n 

and t=nß-1 
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at intermediate `time levels', but produce unconditionally stable solutions after full 

time steps. Such schemes are referred to as the Alternating Direction Implicit (ADI) 

methods. The first of such schemes is due to [38]. The two steps of this scheme are 

given as: 

(1 - 
2rSs1)Ü 

ý_ (1 -I- 
2röxý)un 

(1-2rSxs)Üý1 = (1--2rSi1)Üý (4.10) 

If U7 is eliminated from the above equations we get the composite equation given 

by (4.9)with 0=Z. 

The above scheme henceforth referred to as the P-R scheme has a truncation 

error of order O(k2, h2). This can easily be verified by applying the Taylors' Series 

expansion to its composite formula. One setback for the P-R scheme is that it is 

only conditionally stable when extended to three dimensional problems. 

Another scheme due to [7] which exhibits unconditional stability even when applied 

to a three dimensional problem is given as : 

-in (1 - 
2röx1)Ü 

_ (1 + 
2röxÜ, 

i + rýX3 
,3 

(1 - 
2r622)Ü 1=Ü, * - 

2r6., 2, Ujn (4.11) 

The elimination of U in* from the above pair of equations leads to the recovery of 
( 4.9), again with 8=2. Thus the Douglas scheme is also a perturbation of the 

Crank-Nicholson scheme, and has also a truncation error of order 0(k2, h2). Also 

[8] formulated a scheme which is a perturbation of the fully Implicit scheme in two 

dimensions, and has truncation error of order O(k, h2). This is given as : 

(1 - röxi)Ü j_ (1 + rbxz)Ü j 
(1 - röxý)Ü ý1=Uj- rS TT (4.12) 

Upon eliminating U from the above pair of equations, we obtain a composite 
formula for the Douglas and Rachford (D-R ) scheme which is given as: 

(1 - rbxi)(1 - rbz2)Ü 1= (1 + r2b2,62) in (4.13) 



72 

Another ADI method of second order accuracy in both the time and space direction 

is obtained by splitting ( 4.9 ) in a manner suggested by [9]. This split is given as : 

(1 - 
2röý1)Ü 

_ 

(1-2rbx2)Üj1 - 

(1 + röi, )(1 + 
2ä=2)Ü 

U�« +, s 
(4.14) 

The above schemes (with the exception of the P-R scheme) can be easily extended 

to provide unconditionally stable solutions to the heat equations in three dimensions, 

which is given as: 

öü 

ät =(Di+Dz+D3)ü=ai+ä z+ä 3 (4.15) 

defined over the domain given by X21 = [0 < xl, x2, x3 5 1], t > 01, with the initial 

conditions : 

u(xl9 x2f X3, O) 
- 91x1, X29 x3) 4.16) 

where (xj, x2, x3) E tl 
, and the boundary conditions : 

i! (-bx2, x39t) = fl(xlfx2, x3, t) 4.17) 

where (xl, x2i x3, t) EO -RI x [t > 0]. 

If R1 is covered with a uniform grid mesh with spacings hl, h2, and h3 in the 

directions parallel to the axes x1, x2, and x3 respectively, whereby for simplicity we 
take hl = h2 = h3 = h, and r= k/h2, k being the time increment. The meshpoints 
indices in the x1, x2, and x3 directionsii, j, and I respectively. 

The extensions to the above mentioned`ADI schemes are given as follows. 

For the Douglas scheme, the split formulae are: 

(1 - 2rbz1)Üaý1 

(1 - 
2r62 

. 12)Ü7j 

(1-2rbx3)Ü"1 

_ (1 + 2rösl 
+ rözz + röza)U, i,, 

n" 
12n 

= U', i, l -2 rbX2 U; apr 

nwr 
1 

CZ rTn = ýi, 
ý 2 r0=3 vß, 7,1 (4.18) 
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which gives upon eliminating the intermediate solutions U71 and Uýý the following 

composite formula: C 

(1-2rSi-2ra=, -2rS=3)Ül 

va1vx7 + vatvs3 + vX2vs3 
2rSx1S 3vs3)vf, j, tl 

(1 + 
2rSy1 

+ 
2rS 

2 
-f 2rSz3Uit 

+4 (Sx16 + 624I8 X3 3+ 
c2 53- 2rSx1S=2 S=3)Ü, i, t (4.19) 

The scheme is thus similar to the Crank Nicholson scheme in three dimensions with 

the second group of terms on both sides of ( 4.19 ) representing a "perturbation". 

Equation ( 4.19) can be written as: 

3 
ý(1 

- 
2r52'Uiýl1 

= ý(1 + 
1r6z, )Ui' - 

1r3ý62, 
U ,! (4.20) 

For the D-R scheme the formulae are: 

(1-r61)ü;,, [1+r(Sý, + 53)]U, 1 
(1-rSz2)Ü = Üa,, -rSz Uä,, 12 

(1 - rSiý) Ü, 1=Üä, *1 - rSx3 Ü i,, (4.21) 

which upon eliminating the intermediate solutions give: 

ý(1 
- rbsý)Ü ä1=- rbx, )Ü j -I- r 

i, Ü ý, ý (4.22) 
? 

J(1 
3 

For the D'yakonov scheme, the split formulae are as follows: 

(1 - 
2rbi1)Ü 

ýý _ (1 -I- 
282 

X2)(1 + 
2rb2 

X 3)U, 
"jiI 

(1 - 
2rbs2)U 

,*=Ü,;,, - (1 + 2r5.3)Üä. 1 

(1-2r6OU 1= Üýj+(1+2rbi3)Üj, l (4.23) 

which gives after the elimination of U 
,,, and U7, the equation: 

ý(1 
- 

2röýý)Üä 1- fl(1 + 
2rbiý)Üa, 

ý (4.24) 
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If any of the above direct ADI methods is used to solve ( 4.4 ), or ( 4.15 ), where 

the unknowns of the difference equations are ordered along the lines x1, i. e the 

horizontal lines, then along the lines x2 i. e the vertical lines, (then along the lines 

x3 i. e the levels of the mesh, for the three dimensional problem) - which is known as 

the Natural Ordering - the ADI method will lead to solving a tridiagonal or a block 

tridiagonal system of equations: For the two dimensional problem these systems are 

given as: 

Hu = bi (4.25) 

Vu = b2 (4.26) 

where bl and b2 are known vectors. H and V are square matrices of order m2, with 

H being block diagonal, and V block tridiagonal. They are given as: 

H= diag(Hi) and V= diag(Vb, VV, Vt) where Hl = diag(a2, b, al), V= diag(al), 

Vb = diag(a2) ; and VV = diag(b). 

H1, Vb, Vb, and VV are square matrices of order m. For the D-R scheme: at = a2 =r 

and b= 1+2r while for the remaining ADI schemes mentioned above: al = a2 =Z 

and b=1+r. It is customary to solve ( 4.25 ) and ( 4.26 ) using direct LU 

decomposition methods. 
The ADI methods as direct difference schemes can be similarly applied to hyperbolic 

problems. Such applications are presented in treatments in subsequent chapters. 

In the following section, the application of the ADI strategy applied as an iterative 

method is presented. 

4.1.1 Intermediate boundary conditions 

It is to be noted that for the application of any of the above ADI schemes, it is 

necessary to determine the intermediate values of the solution at some boundaries. 
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These values can be approximated from ( 4.3 ) and equation ( 4.17 ) to be as: 

U"' = f"", l the 2 dimensional problem 

Un* n+l at the appropriate boundaries. 
'"''t the 3 dimensional problem. 
n"" _ n+l U+J, I fi, j, 1 

However the above formulae lead to a loss of accuracy in the respective ADI scheme. 

The way to, conserving accuracy is by deriving these intermediate boundary values 

from the equations of the respective ADI schemes. Thus for the two dimensional 

ADI-PR 'scheme we get: 

Üä = (1 - 
2r6 2 

2)Ui%j 
2(1 

+ 2rbx2 ) s, 
j (4.27) 

This can be written using (4.3 ) as: 

Ü= 
2(1-2röi, 

)f 1-}-2(1-F2rbz2)f ä for the P-R scheme. (4.28) 

Similarly the following formulae are derived for other ADI schemes described above: 

Ü _ (1 - 
2rbýý)f 1 for the D'Yakonov scheme (4.29) 

Ü _ (1 - röiý) fä1+ rbxz f for the D-R scheme. (4.30) 

As for the three dimensional methods the intermediate boundary values as derived 

from the respective schemes are: 

Üit-f, i, tý'(1-r52)(1-röx, )(f; tl-J; 
ý, 

t) 

and 

, 
jot 

+ fi 
jot) 

Uä1 -f jot + (1 - 2röi2)(1 - 2rbx, )(f º1 -f , jot) 

and 
n** 1Z nl n Uiä, t - Ps. 

,,, t 
ý' (1 - Zröx, )(ft, 9, t - fin 

for the D-R scheme. 

(4.31) 

for the Douglas scheme. 

(4.32) 
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nr -11212 n+l U+, i, ý - s(1 -2 r5 2)(1 - 2rbz, )fý, ý, º 

-1-z(1 + zrbx2)(1 + zrbi3)f, 
"11, 

and 
Un? " =I (1 

- rö2 ýf"1 
_ 

(1 +1 a2 ýf n 
Soll 2 z3 8,2,1 22 x3 tai 

for the D'yakonov scheme. 

(4.33) 

4.1.2 Other alternating direction methods 

The ADI method is the method which is used as a component in the EAD method 

to be presented in the next chapter, however it will be also demonstrated that other 

alternating direction methods can be that component. To mention briefly other 

alternating direction methods, we consider equation ( 4.1 ) again. If this equation 

has g space dimensions then a fractional splitting method applied to its solution 

involves splitting the operator L into g simpler operators such that: 

L=EL; 
s_i 

with each operator L; being operating over a time interval 9. Thus over each 
interval we have: 

g 
Tt 

= L; ü (4.34) 

Then the equivalence of equation ( 4.1 ) is taken to be the integral of equa- 

tions ( 4.34 ) over the whole interval k. If all the operators L; involve derivatives 

in only one space dimension, (i. e if Ll = j, L2 = 82 
... ) then the fractional 

splitting method is referred to as the locally one dimensional (LOD) method. 

Further details and examples of the finite difference schemes derived for these meth- 

ods, as well as the relations between these schemes and the ADI schemes can be 

found in [33]. 
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4.2 The ADI iterative methods 

Consider the heat equations (4.4 ) and ( 4.15 ) with Dirichlet boundary conditions 

that are independent of time. If we apply any of the above ADI schemes successively 

until the solution reaches its steady state, then the applied ADI scheme can be taken 

to represent an iteration procedure which converges when: 

U;; 1=Üj=Uc, j .. for all i, j (4.35) 

Thus the ADI iterative methods for elliptic differential equation are by-products of 

the above ADI "direct" schemes that were developed for the parabolic equations. 

If we substitute the values in ( 4.35 ) in any of the corresponding ADI schemes 

given in the previous section for solving (4.4 ) and ( 4.15 ) we get respectively the 

following equations: 

(5.1 + 6i2) U1,1 =0 (4.36) 

and 

ý62+2+ fy3ý Ui, i, º =0 (4.37) 
'T 2I -T 

which are respectively the five point, and seven point difference replacements of 

the Laplace equation in two and three dimensions which are given by equating to 

zero the LHSs of equations ( 4.4 ) and ( 4.15 ) respectively. The quantity `r' is 

now an iteration parameter which may be varied from iteration to iteration. The 

above iterative process can be shown to be convergent for any positive `r', with an 

accelerated rate of convergence when `r' is varied according to an optimal sequence 
( see [34] p: 149-152 ). 

Another way of demonstrating how the ADI strategy can be applied to solve the 

Laplace equation in two dimensions iteratively is given as follows. Consider the 

system of equations, resulting from applying the five point difference formula ( 4.36 ) 

to the totality of mesh points (m2) given as: 

(H + V)u =f (4.38) 
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where now H and V are two constituents of the coefficient matrix, with H arising 
from the 6 U;, j approximation and V from the S U;, j approximation in equation 
( 4.36 ). The vector f is associated with the terms of (5 + 62) U involving boundary 

values. Now equation ( 4.38 ) is equivalent, to each of the following equations, for 

any matrices D and E. 

(H + D)u =f- (V - D)u 

(V+E)u=f-(H-E)u 

(4.39) 

(4.40) 

provided that (H + D) and (V + E) are non-singular. The Peaceman-Rachford 

iterative procedure for solving ( 4.38 ) can be derived by consecutively substituting 
for the D and E matrices a sequence of matrices Dk = ri I and Ek = r2 I, to calculate 

the sequence of vectors uk+l/z and uk+l by using the following formulae: 

(H + riI)uk+1/2 =f- (V - riI)uk 

(V + rk j)uk+i =f- (H - rkj)uk+l/2 22 (4.41) 

where rk and rk are two parameter sequences that are chosen so as to maximize the 

rate of convergence . 
If r1 = r1 and r2 = r2 for all iterations k, then we have the case of the stationary 
P-R iterative method, with two parameters. If further rl = rz = r, then we have the 

P-R iterative method with one acceleration parameter. A method due to Douglas 

and Rachford for solving iteratively equation ( 4.38 ) is given by: 

(H + riI)uk+1/2 =f- (V - rýI)uk 
(V + rk i I)uk+i = Vuk + rz uk+1/2 (4.42) 

The equations ( 4.41 ), ( 4.42 ) can be given in a more general formula as: 

(H + rkI)uk+1/2 =f- (V - rkI)uk 

(V + r1I)u'ý+1 = (V - (1- w)rzI)uk + (2 - w)rzuk+l/z (4.43) 

where w is a parameter that takes the values 0 and 1, for the P-R and D-R 

methods respectively. In this thesis we shall be concerned only with the stationary 



79 

ADI iterative methods, and in particular with the ADI iterative methods with a 

single parameter. 

The ADI technique can also be applied as an iterative method for solving systems 

of equations which arise from applying conventional difference schemes ( e. g Crank 

Nicholson, fully implicit ... etc. ) to time dependent problems. This is illustrated 

by considering the Crank Nicholson difference approximation to (4.4 ) given as: 

(1-Zröil-2rSiz)Üý2rb, 2, +1rä. 2 (4.44) 

when equation ( 4.44 ) is applied to the totality of internal points of the square grid, 

we get the structured system of equations of the form: 

Aluk+' = bi (4.45) 

where Al is a block tridiagonal matrix given as: Al = diag(SS, DD, SS), with 

DD = diag( z', 1 + 2r, z) and SS = diag(z ). b is a known vector derived from 

the values associated with the values of the solution at the explicit time level as 

well as the values at the boundaries. An ADI iterative method for solving this 

system can be obtained by splitting Al to Hl +V1 such that Hl arises from the term 

(Z -2 rbzl) and Vl from the term (' -z rö 2) i. e we split Al into Hl and V, such that 

we include in Hl the coefficients associated with the central difference operator in 

the xl direction, while the coefficients associated with the central difference operator 

in the x2 direction are included in Vi. Then the system ( 4.45 ) is solved as a two 

step iterative procedure, the first represents a sweep through the components of 

the solution vector u along the horizontal lines of the mesh, and is equivalent to 

applying an iterative method having a matrix splitting equal to: N= (Hl + riI), 

and the second step represent another sweep through the components of the solution 

vector along the vertical lines of the mesh and is equivalent to applying an iterative 

method with the matrix splitting equal to: N= (V1 + rzI). Each of these two 

sweeps constitute a half iteration in each single ADI iteration. The first sweep 

will generate new values uj (where uj = UI J, uz, j, ... um, j) for j=1,2 ... m, which 
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we shall denote uk+112 and the second sweep will generate new values ui (where 

ui = u;, l, u;, 2, ... u;, m) for i=1,2... m, which we shall denote uk+l. The formulae 

of these two sweeps are given as: 

(Hid- rkI)uk+l/z = 

(V+rzl)uk+i = 

b-(V - riI)uk 

b-(Hi-rZI)uk+1/2 (4.46) 

The above presented ADI iterative method can be implemented to solve systems 

arising from the application of various finite difference schemes to other time de- 

pendent problems, (Parabolic or Hyperbolic) with the convergence properties being 

dependent on the form of the coefficient matrix, which is dictated by the particular 

problem. The different convergence properties of the ADI method will be discussed 

in further chapters when these different problems are discussed. 

4.3 Consistency of the ADI method 

The composite form of an ADI iterative method for solving ( 4.45 ) is obtained by 

eliminating uk+1/2 from the pair of equations ( 4.46 ) and is given as: 

uk+l _ GADIUk -+k (4.47) 

where GADI is the iteration matrix for the ADI method, given as: 

GADI = (V1 + r21)-1(Hi - r21)(Hl + riI)-1(V1 - r11) (4.48) 

and 

k= (Vi + r2I)-l[I - (Hl - r21)(Hi + r1I)-1]b 

_ (Vi + r2I)'1[I - [(H1 + r, I) - (rl + r2)I](Hl + r1I)'1]b (4.49) 

_ (r1 + r2)(Vi + r21)-1(H1 + riI)-1b (4.50) 

Lemma 4.1 The ADI iterative method as defined in equations 4.46 is completely 

consistent. 
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Proof: The iteration matrix of ( 4.47) given by ( 4.48) can be rewritten in the 

form: 

GADI = (Vi + r21)-1[H1 + r11- (r' + r2)I](Hi + riI)-'(Al - Hl - r11) 

= (Vl + r21)-l[I - (rl + r2)(Hl + r, I)-'](Al - Hl - r, I) 

= (Vi+r21)-I[Al-Hl-r1I-(rl+r2)Ai+(rl+r2)I] 

= (Vi + r21)-1[Vi + r21 - (rl + r2)I 

-(ri +. r2)(Hi + r, 1)-'A+ (ri + r2)I] 

= (Vi+r21)-'[(Vi+r21)-(rl+r2)(Hi+r, I)-'A] 

=I- (ri + r2)(Vi + r2I)-l(Hi + r1I)-'A 

I- GADI = -(rl + r2)(Vi + r21)-1(HI + riI)-'A (4.51) 

Therefore (I - GADI) is equal to the product of nonsingular matrices and is thus 

nonsingular. Also: 

(I - Ganl)A-lb = -(rl + r2)(Vi + r2I)-1(H1 + r1I)-1b =k 

Hence the proof follows from theorems 3.1 and 3.3. 

4.4 The Alternating Group Explicit (AGE) It- 

erative method 

4.4.1 A historical review 

The Alternating Group Explicit (AGE) iterative method was first introduced in 

[14] for the solution of Parabolic differential equations in one space dimension. This 

method is based on applying a splitting strategy alternately, at each half (intermedi- 

ate) iteration 
, to the tridiagonal systems of stable implicit difference schemes. The 

method therefore is not a difference scheme itself, but rather an iterative procedure 
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for solving the ; tridiagonal systems of difference equations which are traditionally 

solved directly by using elimination methods. Therefore its analysis is analogous to 

that of the ADI iterative method described earlier. The convergence analysis of the 

method, when applied to the one dimensional parabolic heat equation is given by 

[41], together with several numerical experiments. Sahimi proved theoretically that 

the method is convergent when applied to the symmetric difference systems of equa- 

tions arising from the one dimensional parabolic problem, with Dirichlet boundary 

conditions. Sahimi also carried out several experiments of the method, including its 

application to hyperbolic problems. His experiments with the hyperbolic problems 

which produce unsymmetric difference systems of equations showed that the method 
is also convergent in this case, but his attempts to justify the convergence theoret- 

ically was unsuccessful and he concluded that the failure of his attempt "does not 

necessarily imply the non-convergence of the AGE iterative process but only confirms 

the theoretical difficulty that arises when dealing with unsymmetric matrices". The 

AGE method was later extended to systems of difference equations arising from the 

two and three dimensional heat equations (see [20] and [21]). Also another variant 

of the method was given in [19] for the one dimensional parabolic problem. Another 

work by [16] included the reorganization of the the AGE procedure to, which re- 

sulted in a saving of about 25% of the computational work involved, at the expense 

of one extra vector storage. The authors also exposed the suitability of the method 
for parallel computers and showed that it exhibits an almost linear speed up. 

In the following subsections the method is presented for the one dimensional heat 

problem together with its convergence analysis as given in [22]. 

In the remaining sections of this chapter the AGE method is presented for 

two dimensional problems. The added developments and theoretical justifications 
for the method are given in the next chapter. 
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4.4.2 The Alternating Group Explicit (AGE) method 

Consider the one dimensional heat problem given by: 

at - 
atü 

0<x<1 0<t<T (4.52) 
at äxß 

subject to the initial conditions: ii(x, 0) =f (x) 0<x<1 and the Dirichlet 

boundary conditions given by: 

ü(0, t) = g(t); ü(1, t) = h(t). 0<t<T 

We discretize the above problem on a uniformly spaced mesh whose points are 

defined by the coordinates x; = ih, and t= jk, with i=0,1, ... m, m+1 (where, 

without loss of generality, m is assumed to be odd) and j=0,1,2 ..., n where h= 
m+l 

and k= 
nT, 1. 

The mesh ratio r=h, .A weighted difference approximation to the 

above problem will produce a symmetric system of equations which can be written 

in matrix form as: 

Äu'+1 =1 (4.53) 

where the matrix A has the form: 

äb0 
Ä= 

.b 
0cä 

with ii =(1+2r0); b=c= -rO 

where 0 is a weighting parameter which is equal to 0,1, or 0.5 depending respectively 

on whether the explicit, implicit, or the Crank Nicholson scheme is applied. The 

vector i is a known vector of order m, consisting of boundary values as well as the 

values at the time level j. u1+' is the required solution vector at time level j+1. 

If the system ( 4.53) is divided by rO (0 ý 0) then we get the following equivalent 

system: 

Au'+1 =f (4.54) 



84 

where f= Bf and A= diag(c, a, b) with b=c= -1 and a= re. 

The AGE iterative method for solving ( 4.54 ) consists of splitting the coefficient 

matrix as: 

A=GI+G2 

where Gl and G2 are given as: 

a/2 

C 

G1 = 

0 
where 

(4.55) 

oCo 
G2 _ (4.56) 

C 
C 

. xm a/2 
m. m 

a/2 b 
C= 

c a/2 zx2 

where it is assumed that the following conditions are satisfied: 

1. (Gl + sI) and (G2 + sI) are nonsingular for any s>0 

2. For any vectors fl and f2 the systems: 
(GI + sI)ui = fi 

and 

(G2+sI)u2=f2 

are more easily solved in explicit form, since they consist of simple (2 x 2) 

subsystems which can be inverted by inspection. 

Equation ( 4.54) can thus be written as: 

(G, + G2)u =f (4.57) 

The stationary AGE method with a single parameter consists of writing ( 4.57) as 

a pair of equations given as: 

(Gi + sI)up+1/2 = (sI - G2)uP +f (4.58) 
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and 

(G2 + sI)up+i = (sI - Gl)ur+112 +f, Pj0 (4.59) 

where u° is an initial approximation of uj+i, (taken as the solution vector uj at the 

j" time level), and s is an acceleration parameter which is chosen to maximize the 

rate of convergence of the method. After the elimination of the intermediate values 

up+1/2, the method can be expressed, as a single equation in the form, 

uP+l = Gup +k (4.60) 

where k is a known vector given as: 

k= (G2 + sI)-1[(sI - G1)(G1 + sj)_1 + I]f 

= 2s(G2 + sI)-1(Gl + sI)-lf (4.61) 

and G is the iteration matrix of the method given as: 

G= (G2 + sI)-1(Gl - sI)(Gi + sI)-'(G2 - sI) (4.62) 

The equations that apply at each mesh point to compute the solution of ( 4.54) 

by the AGE method with a fixed parameter can thus be derived from ( 4.58) and 
( 4.59) as follows: Let 

r2 b rl -b G= and Gm = 
c r2 -c rl 

where r2 =s+2 and rl =s-ä 

then we can write: 

r2 
0G0 

G 

(Gi+sl)= (Gs+sl)= 

G0 rz 
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Since also (G1 + sI)-1 and (G2 +, I)-1 are block diagonal matrices with square 

blocks being at most of order 2. Then they can be easily determined by inverting 

the block diagonal entries of (Gl + sI) and (G2 +, I). Hence we can write: 

LO 
r, 

G-ý 

(Gl + sI)-' _ 

G-1 
mxm 

and G-ý 

(G2 + sl)-i = 

0 
where 

r2 -b 
and 0=rz-be 

-c r2 

Similarly (sI - G1) and (sI - G2) are given as: 

rl 

Gm 

(sI - GI) = 

0 
and 

Gm 

(sI-G2 

0 

G-1 

rim 

0 

1 ?2 MXM 

(4.63) 

0 

Gm 

0 

rl 
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Now equations ( 4.58) and ( 4.59) can be expressed explicitly as: 

up+1/s = (Gi + sI)-'[(sI - G2)up + f] (4.64) 

and 

un+l = (G2 + sI)-'[(sI - Gl)up+112 + f] 'P ?0 (4.65) 

or: 

Ul 1 rs 

U2 r2 -b 

U3 -c r2 

"_1 

TL. 
-o 

Um-1 

um 

r1 -b 

-c r1 

0 

0 

0 

rl -b 

-c rl 

rl 

ul 

U2 

U3 

um-2 

um-1 

um 

0 

r2 -b 

-c r2 

p f1 

f2 
13 

fm-2 

fm-1 

,lm 

Ix 

(4.66) 

and 
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i- ii 

&-(9 
i+1 i+2 

Pýý Qýý 

i-1 i i+l i+2 

Figure 4.1: The computational molecules for the AGE-1D method at each pair of 

of grouped points. 

U1 P+1 r2 -b 

U2 -c r2 

U3 . 

" 1 
_ 

Um-2 

U 

O 

m-1 

0 
Ix 

r2 -b 

-c r2 

L UM JL, 
°J 

rl U1 p fi 

rl -b U2 f2 

-c rl 
O 

U3 f3 

+ (4.67) 

um-Z fm-2 

O 
rl -b um-1 

, 
fm-1 

-c rl Um f. 

Equations ( 4.66) and ( 4.67) show that the solutions up+1/2 and up+l can be obtained 

by applying at each consecutive pair of mesh points x; and x; +l the corresponding 

two computational molecules of figure 4.1, representing the following two formulae: 

u; = (Pu 1+ Qu; + Ru, +i + Su, +2 + T; )/L (4.68) 
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u, +i = (Pu 1+ 
Qui + Ru+i +S2+ 4)/L (4.69) 

At the half (intermediate) iteration level (i. e for q=p+ 1/2 and v=p) the above 

equations are applied at the mesh points x; (for i=2,4, """, m- 1) and the coeffi- 

cients are given as: 

P= -cr2; Q= rlr2; R= -bri; T; = ref; - bf; +l; and S=0 
for i=m-1 

b2 otherwise. 

0 for i=m-1 P= 
-cr2; Q= rlr2i R= -bri; T't = r2fI - bf, +l; and S= 

-brt otherwise. 

For the meshpoint xl the following computational formula is used: 

ui+i/z = (rlui - but + fl)/r2 (4.70) 

At the complete iteration level (i. e q=p+1 and v=p+2), the equations ( 4.68) 

and ( 4.69) are applied at the mesh points x; (i = 1,3, """, m- 2) where the coeffi- 

cients are now given by: 

0 on =1 
; Q=rlr2; R=-brl S=b2; andT; =-cf; +r2f; +l 

-cr2 f or i 01 

0 foci=l 
; Q=cr1; rlr2 br2; and-cf; +r2f++l 

c2 fori 1 

For the single meshpoint x,,,, the following computational formula is used: 

P+1 P+1/2 Pil 2 Llm = -CUm-1 + plum + f'm)/r2 (4.71) 

Thus at each level (q =p+Z, p) the mesh points are organized in groups of two, 

at which the solution can be obtained by the appropriate explicit formulae ( 4.68 ) 
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P 

P 

Figure 4.2: The Alternation in the order of meshpoints grouping every half iteration 

and ( 4.69 ). In the grouping of points we alternate between leaving the first point 

ungrouped, and leaving the last point ungrouped every half iteration level as shown 

in figure 4.2. Such grouping of points, the alternation in forming the groups, and 

the explicit nature of the formulae used for obtaining the solution give the method 

its name, viz. the Alternating Group Explicit (AGE) iterative method. 

It can also be seen by examining the matrix equations ( 4.66) and ( 4.67) that 

obtaining the solution at all them meshpoints require 3m multiplications and 3m-2 

additions (note that b=c= -1) for each half iteration. i. e 6m multiplications and 

6m additions are needed for every complete single iteration. The more efficient 

organization of the AGE algorithm given by [16] requires only 4m multiplications 

and 5m -4 additions. The above illustrated variant of the AGE method is called 

the AGE Peaceman-Rachford method due to the analogy of the method with the 

ADI-PR iterative method. Another variant of the method which is also due to Evans 

and Sahimi is the AGE Douglas-Rachford, (AGE-DR) method which uses a different 

formula than AGE-PR for the second half iteration. This is given by: 

(G1 + sI)u"+l12 = (sI - G2)up +f 
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(G2 + sl)uP+l = G2uP + 3UP+1/2 (4.72) 

It is noted that all Sahimi's experiments (see (411) show that the AGE-PR has faster 

convergence than the AGE-DR method. His experiments show also that the AGE- 

DR method often takes more than twice the number of iterations that the AGE-PR 

method needs to converge. 

4.4.3 Convergence analysis of the AGE method as applied 

to symmetric matrix systems 

The convergence analysis of the stationary AGE-PR method, with a single param- 

eter, as applied to the above heat diffusion problem with Dirichlet boundary condi- 

tions is given here after [22]. The AGE-PR method is written in composite form in 

the following single equation as: 

up+l = G(s)u' + k(s) 

where 

(4.73) 

G(s) = (G2 + sI)-1(sI - Gl)(G1 + sI)-1(sI - G2) (4.74) 

is the iteration matrix. We now define an error vector e representing the difference 

between the computed solution after each iteration up and the exact solution ü= 

A-'f of ( 4.54) i. e., we define: 

eP = up -ff and ep+i = un+l -ü 

then it can be shown that : 

e" = GP(s)e°, p >_ 1 

where 

e° - u°-ü 
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(u° being the starting vector). Thus, for the method to converge we need to prove 

that: p(G(s)) <1 

Proof: If we apply a similarity transformation to G(s) such that 

G(s) = (G2 + sI)G(s)(G2 + sI)-1 

= (sI - G1)(G1 + sI)-1(sI - G2)(G2 + sI)-1 (4.75) 

then 

p(G(s)) = P(G(s)) <_II d(-9) 112 
<_II (sI - G1)(G1 + sI)-1 112 x 11 (sI - G2)(G2 + sI)-i 112 (4.76) 

where p(G(s)) and p(G(s)) are the spectral radii of G(s) and d(s) respectively. 
It can be seen from equation ( 4.56) that both Gl and G2 are symmetric positive 
definite (SPD) matrices, thus having positive eigenvalues p; and' respectively. 
Since (sI - G1) and (G1 + sI)-1 commute, and Gl has positive eigenvalues pi, 

we can write: 

II (sl - Gl)(Gi + sI)-1 112 = p[(sI - Gl)(Gi + sI)-1l 

= 1max<s<m 

Is 

s+ 1L; 
"il <1 (since p; > 0) (4.77) 

Likewise, (G2 + s1)-1 and (sI - G2) commute and G2 has positive eigenvalues r7; 

and we can write: 

(sI - G2)(G2 + sI)-l 112 = p[(sI - G2)(G2 + sI)-l] 

= max 
Is- 77' I<1 

(since i7i > 0) (4.78) 
1<i<m s -F '17i 

Hence; 

p(G(s)) = p(G(s)) 

< p[(sI - G1)(G1 + sI)-1]p[(sI - G2)(G2 + s1)-lI <1 (4.79) 

and convergence is assured. 

The optimum parameters for AGE-PR, which minimizes the upper bound of 

p(M(s)) can be obtained if bounds a and ß are found for the eigenvalues of Gl 

and Gz such that: 

a< Pi977i <0 (4.80) 
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We now write the relation ( 4.79 ) as: 

P[M(s)] <c max 
s- 71i I ý. 

max 
Is- Pi 

1<i<m s+ 17i 1<i<m s +. 1. li 

max 
s-x1- 

max I ý(z; s) ý2 (4.81) 
{a<i<p 

3+zl}f a<z<p 

} 

where «(z; s) is a (decreasing) function of z and therefore its maximum is at one of 

the endpoints of the interval. 

Hence: 

s-z s-a s-ß (4.82) m<QIs+zI =maxýls-ýal'Is-, 
9 

When s= we have: 

3-a s -CY3 -# -/ (4.83) 
s+a - 

I3+aI 

S+p v+vfa- 

For 0<s</, it can be verified that: 

< <pls+zl - 
Is+ßI 

s+ß 

and that: 

ß-s_y-y__ 2N/ý(vG7 -s) (4.84) 
s+Q V+ (s+Q)(N/i[ +v/ý) 

>0 

Similarly for s> vfa7 it can be verified that: 

m < Q 
s+z - s+a - s+a 

and that: 

s-aß/j3-/ 2/( s-a) )0 (4.85) 
s+a Vl + Oc-i (s + Q) (Vl + 

Therefore 

min max c(z; s) = max 
IO(z; 

aß)I 
s>0 a<s< a<z< 

_1 0(a; aa) I =10(a; aa) I=0 (a, «p) 
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Therefore the optimum acceleration parameter is: 

s= a/j (4.86) 

If the AGE algorithm is applied to solve the system 4.54 then the upper (p) and 
lower (a) bounds of the eigenvalues of Gl and G2 are given respectively as: 

aaa x-1 and a=a-1 22 

This makes the formula for the optimum parameter ( 4.86) be: 

s= (2)ý -1) (4.87) 

For the non stationary AGE method, Sahimi pointed out that it is very difficult to 

obtain the optimum parameter sequence for the AGE method which will improve 

its convergence, except in the very special case where Gl and G2 commute. This is 

possible in the above problem if the boundary conditions are periodic and if Gl and 
GZ were of order 4, which is a very restrictive problem. 

We finally note from the above analysis that when s=s the spectral radius of the 

iteration of the AGE method is: 

P(G) lZ 
=/ -1 

2 
(4.88) 

' v/ +, /&l , '+ 1 

where P=E is the condition number for Gl and G2. 

This means that the asymptotic rate of convergence for the AGE method is: 

ROO =-log 
1- Pte'' (4.89) 
1+P3 

If P»1 we get: 
Z 

RO = -log 
1- Pi' 

=- log P3 =log(1 - 4P3 
I+P2 

4 (4.90) 
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4.5 The AGE method for two dimensional 

parabolic problems 

The AGE method was also extended by [20] to solve the heat diffusion problem in 

two dimensions given by: 

öü 
_ 

02ü 02ü 

T axi + axz -I- q(xi, xzi t) , 
(xi, x2, t) ERxt>0 (4.91) 

where W is a rectangular closed region defined by: 

i= (2711 x2); 0< xl <L and 0< x2 <M, 

subject to the initial conditions: 

u(x1, x27 0) =f (Xl9 x2) ; (X1e X29 t) ERX0 

and where ü(xl, x2, t) is specified at the boundary äJ of i as: 

ü(xl, x29 t) =9 (xl, x2) t) E (3R x (t > 0) 

To obtain the numerical solution of the above problem we cover the domain with a 

uniform mesh where the coordinates of the meshpoints P are (x1, x2pt, ) where x1; = 
ihl, x21 = jh2, and tj = 1k, (0 <i<m+ 1), (0 <j<n+ 1), and hl = L/(m + 1) 

and h2 = M/(n + 1), and k is the increment in time. For simplicity, we choose m 
and n such that hl = h2 = h. The mesh ratio is therefore r= k/h2. 

A weighted finite difference approximation given by: 

[1- Orbs, - 9rbz, ]Ui+1 = [1 + (1 - 9)rbzl + (1- 9)rbz3JU, "j + kq(xi, x2, t)(4.92) 

is used to replace (4.91) at each meshpoint. Here 0 is a weighting parameter which 
is equal to z and 1 for the Crank-Nicholson and the Implicit schemes respectively. 
This results in a system of equations of order nxm for the totality of meshpoints 

at each time step. This system can again be written in the form: 

Au'+l =f (4.93) 
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where f is a known vector of order mxn consisting of the boundary values, the 

source term values at each point, and the solution values at the time level u1. The 

vector ul+l is the solution vector which is to be calculated for the time level 1+1. 

The matrix A now has the form: 

T a1I 

a21 
A= 

0. a1I 
a21 T 

mnXmn 

where I is an mxm identity matrix and T is an mxm matrix given as: 

T= diag(a2, b, al) with b= (1 + 4r0) and al = a2 = -r9 

where 0 is a weighting parameter of the difference scheme. 

(4.94) 

If equation ( 4.92 ) is divided by r9, we obtain a system which is similar to ( 4.93 ) 

but the coefficients b, al, and a2 become: 

b=4+= 4(1 + Q) where Q =Ore > 0, al=a2=-l (4.95) 

This latter form of the coefficient matrix makes the application of AGE-2D method, 

which is introduced next, to solve ( 4.93 ) more economic. 

The AGE iterative method which was formulated by [20] for solving ( 4.93 ) consists 

of splitting A into four matrices G1, Gz, G3, and G4 such that: 

Tl 

Gl+Ga 

0 
0 

TI 
mnXmn 

(4.96) 

where Tl = diag(a2, b/2, al). 
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and 

21 all 

a21 .0 
G3 + G4 = (4.97) 

alI 
0 

a21 6 
2I mnXmn 

The matrices T1 and I are of order m, since a natural ordering of the components 

of the solution vector is assumed. Hence (G1 + G2) is tridiagonal and (G3 + G4) is 

block tridiagonal. The AGE- method for such two dimensional problems, henceforth 

referred to as AGE-2D is given in four steps as: 

(G1 + sI)uT+l/4 = (sI - Gl - 2G2 - 2G3 - 2G4)u* + 2f = vi 

(G2 + sI)uT+1/s = G2uf + sup+1/4 V2 
(G3 + sI)UT+3/4 = G3 Up + gUp+1/2 V3 

(G4 + sI)uP, +1 
= G4u, p. + sU, P. +3/4 V4 (4.98) 

where the suffix `r' under the solution vector indicates a row-wise ordering of its 

components, s is the acceleration parameter. The first equation of ( 4.98) can also 
be written as: 

(G1 + sI)uT+1/4 = (G1 + sI - 2A)uf + 2f (4.99) 

Again, without loss of generality, the size of the matrix is assumed to be odd. i. e n 

and m are odd. Then Gl and G2 can be given as: 

C, C2 

.0 .0 Gi =O and Gz =0 (4.100) 

C1 
mnxmn 

C2 
mnxmn 



98 

or alternatively as: 

C1 
C2 

O 

Cl 

G1 = 

O C2 

Cl mnXmn 

and 

C2 
Cl 0 

C2 
Gz 

O cl 
Cz 

where 

mnXmn 

c 
c al 

a2 c 

C1 =, 

c al 

a2 C 

,. 

(4.101) 

(4.102) 

(4.103) 
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and 

c al 

a2 c 

Cz = 
[: 

:] 

2 

c 

(4.104) 

with c= b/4. The choice of Gl and G2 in equation ( 4.100) seems to be the natural 

choice, but for reasons not discussed by the above authors, they chose Gl and Gz as 

givenbj cquaEiw s (J land (yaot). Numerical experiments carried out by the author showed 

that Sahimi and Evans' choice is marginally better than the seemingly natural choice 

given by equations ( 4.100 ), because it produces improved convergence. Equations 

( 4.103) and ( 4.104) correspond to the different grouping (alternating) of the mesh 

points along euch mesk line WA. each su6Er-ra, 6on Qeve( as shown in- 
figure 4.2. 

Equations ( 4.100) correspond to no alternation in space. -( figure 4.3 -right) while 

equations ( 4.101) and ( 4.102) correspond to alternating in space figure 43 -left). 

The matrices G3 and G4 are given as: 

T2 

0 
G3 = (4.105) 

T2 
O 

I 4 mnXmn 
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Alternation in the grouping of 

the meshpoints in space (along 

the x2 dimension), as well 

as with iteration levels. 

ýI 

soon 16 ff'. I 

x2I 

XT 

Ii 
J-M, IL IL IL 

X21 zl 

T-16 16 16 It i 

x 2/ 

xl 

"21; . 7TT 

Alternation in the grouping 

of the meshpoints only with 
iteration levels, and not 

along the x2 dimension. 

II 
IL IL IL 

z2l 
/7TT 

x2J 

I 

ýffl 

ý, Am-16 16 L! 

x2fý 
/-Tr 

Figure 4.3: Two different ways of grouping the meshpoints at different iteration 
levels. A filled box stems from each pair of meshpoints grouped together. A dashed 
box on the side indicates a single ungrouped point. 
Right : The grouping of the meshpoint changes along only one direction 

as the iteration level changes. Left : The grouping of the meshpoints 
changes along all (two) directions as the iteration level changes 
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and 

bi 
4 

T2 

G4 = (4.106) 

T2 mnXmn 

where 

T2 
4I alI 

= 
a21 4I 

2mX2m 

If when computing the third and fourth equations of ( 4.98 ) we use a column-like- 

ordering of the components of the solution vector, G3 and G4 will have the same 

forms as Gl and G2 respectively. 

The component formulae for the AGE-2D method as obtained from equations ( 4.98) 

are given in the above reference, and are not repeated here. The number of oper- 

ations needed for each full AGE iteration (equations 4.98) is (16mn - 2m - 4n) 

multiplications and (15mn - 2m - 8n) additions. 

Evans and Sahimi has extended further the application of the AGE method to three 

dimensional problems. The AGE-3D algorithm is given in chapter 6. 

In the next chapter, some of the theoretical analyses which is still missing about the 

method are presented. 

/ 



Chapter 5 

Further developments of the AGE 

methods 

5.1 Introduction 

In this chapter we consider the consistency of the AGE-1D and AGE-2D algorithms 

and the convergence of the AGE-1D method when applied to the hyperbolic linear 

advection equation. A theoretical examination of whether a Chebyshev acceleration 

of the AGE-1D method is possible is also given together with other notes on the 

applications of the AGE method. 

5.2 Consistency analysis of the AGE method 

The consistency analysis for the AGE method is omitted in the literature presently 

available on the method, and is therefore given in this section for the AGE-PR, 

and AGE-DR variants in one dimension as well as the AGE-2D method for two 

dimensional problems. The AGE-PR algorithm for solving the tridiagonal system: 

Au=F (5.1) 

102 
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where A is a tridiagonal Toeplitz matrix, is given earlier in chapter 4.4. The com- 

posite form ( 4.73 ) of the AGE-PR algorithm is again given here by: 

up+' = G(s)up + k(s) (5.2) 

where s is the acceleration parameter. The iteration matrix G and the vector k are 

given as: 

G(s) = (G2 + sI)-1(sI - G1)(G1 + sI)-1(sl - Gz) (5.3) 

and 

k= (G2 + sI)-1[(sI - G1)(G1 + sI)-i + I] F 

= 2s(Gz + sI)-ß(G1 + sI)-'f 

The exact solution for ( 5.1 ) is ü= A-'f. Thus for ( 5.2 ) to be consistent with 

( 5.1 ), the following condition (of theorem 3.1): 

A-'f = GA-'f +k=k= (I - G)A-lf 

must be satisfied. 
If also (I-G) is nonsingular, then by (theorem 3.3 the method is completely 

consistent. 

Lemma 5.1 The AGE-PR method is completely consistent. 

Proof The iteration matrix G given above can be written as: 

G= (G2 + sI)-'[(G1 + sI - 2s1)(Gl + sI)-1(A - Gl - sI)] 

= (G2+ sI)-l {(I - 2s(Gl +sI) I J[A- (Gl + sI)]} 

= (G2 + sI)-1{(A - Gl - sI) - 2s(Gl + sI)-'A + 2s1} 

= (G2 + sI)-1 {(G, + sI) - 2s1- 2s(Gl + sI)-'A + 2s1} 

=I- 2s(G2 + sI)'1(Gl + sI)-A (5.4) 



104 

Now (I - G)A'lf = [I -I+ 2s(G2 + sI)-1(G1 + sI)-'A]A-lf 

= 2s(G2 + sI)-'(Gl + sI)'lf 

=k 

Therefore the AGE-PR method is consistent. 
Also from (5.4 ) we have: 

(I - G) = 2s(G2 + sI)-'(Gl + sI)-'A 

which implies that (I - G) is the product of nonsingular matrices and is therefore 

nonsingular. 

Thus the AGE-PR method is also reciprocally consistent and hence the proof is 

completed. 
Similarly we can state and verify the following lemma. 

Lemma 5.2 The AGE-DR method is completely consistent. 

Proof The AGE-DR method given by the pair of equations ( 4.72 ) can also be 

written in the composite form ( 5.27 ) where now: 

G= GDR = (G2 + sI)-'(Gl + sI)'1[(Gl + sI)G2 + s(sI - G2)] 

and k= s( G2 + sI)-'(Gl + sI)-'f 

Thus, 

G= (G2 + sI)-'(Gl + sI)-1[(Gi + sI)G2 + s(sI + G1 - A)] 

(G2 + sI)-'(Gi + sI)-1[(Gl + sI)(G2 + sI) - sA)] 

=I- s(G2 + sI)-1(Gl + sI)-'A (5.5) 

Therefore (I'- G) is nonsingular. 
Also (I - G)A'lf = k. Hence the AGE-DR method is completely consistent. 

Lemma 5.3 The AGE-2D method given by equations ( 4.98) for two dimensional 

problems is completely consistent. 
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The set of equations ( 4.98), can be written in the composite form of ( 5.27) where 

G is now given as: 

and 

G= (G4 + sI)-i G4 + s(G4 + sI)-1(G3 + sI)-1G3 
2 

+s2[J(Gi + sI)-'G2 
i=4 
s 

+s311(Gi + s1)-1- 2s3JJ(G, + sI)-'A (5.6) 
i=4 i=4 

k= 2s31J(Gi + sI)-lf (5.7) 
i=4 

The iteration matrix G can be manipulated as: 

G= (G4 + sI)-1(G4 + sI - sI) + s(G4 + sI)-1(G3 + sJ)1 (G3 + sI - sI) 
ss 

+3Z11(Gi + sl)-1(G2 + sI - sI) + s31J(Gi + sI)-' 
i=4 i=4 

1 

-2s311(Gi + sl)-'A 
i=4 

which reduces after some cancellations to: 

I 

G=I -2s 3[J(Gi + sI)-'A (5.8) 
i=4 

from which we can easily deduce that (I - G) is nonsingular and that: 

(I - G)A-'f =k 

which concludes the proof. 

5.2.1 A comment on the AGE-PR and the AGE-DR 

methods 

It has been mentioned earlier that according to Sahimi's E4il experiments the 

AGE-PR method proved always to converge faster than the AGE-DR method. These 
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experimental results are justified theoretically here, by comparing the spectral radii 

of the iteration matrices of the two methods. 
The iteration matrices GPR and GDR are given respectively by the last equation in 

( 5.4 and 5.5 ), from which we can write: 

GDR =2 (I + GPR] (5.9) 

Therefore, (when Gl and G2 are both positive definite) we can write: 
11 

P(GDR) =2+ 2p(GPR) 

P(GDR) =1+ 
P(GPR) (5.10) 

2 
Thus it can be easily seen that for p(GpR) = 1, we have p(GDR) = 1, while for any 

p(GPR) <1 we always have 

P(GDR) > P(GPR) 

and hence the AGE-PR method is always faster to converge . Moreover AGE-DR 

requires one more multiplication operation at each meshpoint per iteration than the 

AGE-PR method. It is therefore clear that the AGE-PR is superior to the AGE-DR 

method. 

5.3 The AGE method for hyperbolic problems 

It has been mentioned earlier that the AGE method has been successfully applied 
to hyperbolic problems. These problems include the second order wave equation, 

and first order advection equation. 

For the second order wave equation: we have 

192Ll atü 
O<x<1, O<t<T (5.11) äZ E= äX2 

subject to the following auxiliary conditions, 

ü(x, 0) = gl(x) 0<x<1 (5.12) 
äi(x, 0) = g2(x) 
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and 
U(0, t) = El(t) 

0<t<T (5.13) 
U(1, t) = E2 (t) 

Evans and Sahimi [21] applied a general three level implicit approximation which 

leads to solving a symmetric tridiagonal system as in the case of solving the parabolic 
heat problem, described in section 4.4. Therefore in this case the same convergence 

analysis given in the that section applies. 

However, first order equations lead to the solution of unsymmetric difference sys- 

tems of equations when implicit schemes based on central differences are applied. 

In this section, the theoretical proof of the convergence of the AGE method for such 

problems is provided, togetherwith a formula determining the choice of the `best' 

parameter for the method. 

Consider the linear advection hyperbolic equation. 

öü öü 
it + c5 =o (5.14) 

in the domain J2 =a<x<b, t>0 satisfying the following initial conditions: 

ü(x, 0) = g(x) 

with Dirichlet (I) and periodic (II) boundary conditions, 

Probleml ; 
ü(a, t) = ql(t), t>0 

ü(b, t) = q2(t)it >0 

ProblemII : ü(a, t) = ü(b, t), t>0 

where c is a constant which stands for the speed of advection. 

(5.15) 

(5.16) 

(5.17) 

For the numerical solution of the above problem, we cover its domain with a mesh, 
having a uniform spacing h in the x direction, and a uniform time increment k along 

the t direction. If at each point (i, j+ 
z) we replace ( 5.14 ) by the following 

weighted central difference approximation: 

-eU; -i, a+i + Uii+i + eU, +i, j+i = -qU; -,, j + U+, i + qUU+l, j 5.18) 
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where 

Ock 
e 2h and q= 

(1 2h)ck (5.19) 

where 0=Z for the Crank Nicholson (CN) t jFe ýcjýemc. 

where 0=I. 
- for the fully Implicit scheme. 

we obtain the following linear system to be solved at each time level (j + 1)k: 

Aui+i = di 

where d; is a known vector of order n, and the matrix A has the form: 

1e 

-e 
0 

A= for probleml 

L 
-e 1 

nxn 

and 

1e -e 

-e 
0 

A= 
0e 

e -e 1 
nxn 

Now to solve ( 5.20 ) we split A as: 

A=Gi+G2 

where assuming n is even, Gl is given by: 

C 

C0 
G1 =C 

OC 
C nXn 

for probl emII 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 
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and G2 is given as: 

0.5 

CO 
G2 =C for problem (1) (5.25) 

OC 
0.5 

nXn 

and 

0.5 -e 

CO 
G2 =C for problem (II) (5.26) 

OC 
e 0.5 

nxn 

0.5 e 
where C= 

-e 0.5 
Now the AGE method, as presented in section 4.4 is applied to solve ( 5.20 ). The 

method in its composite form is given by: 

uP+i = G(s)up + k(s) (5.27) 

where s is the acceleration parameter. The iteration matrix G and the vector k are 

given as: 

G(s) = (G2 + sI)-'(Gl - sI)(Gi + sI)'1(G2 - sI) 

and k= 2s(G2 + sJ)'1(G1 + sI)-ld; 

5.3.1 A note on using central difference approximations 

for advection problems 

Before proceeding with our convergence analysis in this section, we make the fol- 

lowing note on the finite difference approximations of the first order hyperbolic ad- 

vection equation. The truncation error expressions for most of the first and second 
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order finite difference replacements of the advection equation ( 5.14 ) have leading 

terms which are products of the second and/or third order spatial differences i. e a 

and äy (see [37] p: 67 and [24] p: 278-279 ). This means that the solutions obtained 

by such methods for the advection equation are actually solutions for the transport 

equation given by : 

öü äü 82ü (5.28) ät = Cäß + Ddi'! 
äý2 

or the linear Korteweg de Vries equation given by: 

3ý au 
=sau + Ddia au (5.29) T ax p ax3 

The terms äx; and ä` are referred to respectively as the diffusion term and the dis- 

persion term. The effect of the diffusion term on a wavelike solution is to dampen 

its amplitude, while the effect of the dispersion term when the solution consists of 

different waves, is to advance at a differential speed the different waves of the so- 

lution, so that waves with short wavelengths will have much smaller phase speeds 

than those of large wavelengths, thus leading to an oscillatory behaviour in the solu- 

tion (for illustration see the above two references). Dd; ff and Vdi, p are respectively 

the coefficients of the leading diffusion and dispersion terms in the truncation error 

expressions of the finite difference approximations to the advection equation, and 

are functions of k and h the time and space steps of the numerical solution. 

In contrast, an exact wavelike solution for ( 5.14 ) would be non attenuative and 

non dispersive. Schemes such as the upwind scheme given in the above references 

suffer from the artificial diffusivity introduced by its truncation error expression and 

hence represents more an approximation to the transport equation ( 5.28 ) rather 

than to equation ( 5.14 ). Such a scheme is much preferred due to its explicit na- 

ture and ability to provide a very good representation of the phase speed of the 

solution. It is of first order accuracy, and like all other explicit difference schemes 

has a stability condition which coincides with the Courant-Friedrichs-Lewy (CFL) 

condition, (the CFL condition requires that a particle of fluid should not travel more 

than one spatial step-size h in one time step k) i. e. it requires that ch < 1. On the 
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other hand, a scheme like the Crank-Nicholson scheme is of second order accuracy 

and is unconditionally stable (neutral stability). It is however a dispersive scheme 

that advances different modes of the solution at different speeds, and is more an 

approximation of equation ( 5.29 ) rather than equation ( 5.14 ). This means that 

a severe upper limit on the time step (to reduce Vd;, p) should be imposed to suffi- 

ciently cut down the dispersion if all the modes of the solution are to be adequately 

represented. This restriction eliminates the advantage of the unconditional stability 

of the scheme. However for some problems, like in weather forecasting models, high- 

speed oscillations ( corresponding to short wavelength components of the solution, 

such as gravity waves ... etc. ) are unimportant, so that the deceleration of their 

phase speed poses no problem [23]. 

We nok FnJ3, that the choice of a difference scheme foran advection problem de- 

pends on the particular nature of the Solution Sought and involves mostly a trade 

off between the effects of artificial diffusion and dispersion introduced by various 
finite difference approximations. We now proceed with the following convergence 

analysis. 

5.3.2 Convergence analysis 

Now we study the convergence of the AGE method which is governed by its iteration 

matrix G. 

Since G is similar to the matrix: 

M= (G1 - sI)(Gi + sI)-'(G2 - sI)(G2 + sI)-1 (5.30) 

then 

P(G) = P(M) <_II M 112 (5.31) 
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By the definitions of Gl and G2 (see equations 5.24,5.25,5.26 ), it can be shown 
that: 

D 

D0 
(G1 - sI)(Gj + sI)"1 =D (5.32) 

0D 
D 

nxn 
where 

D= (C - sI)(C + sI)-' 

and (G,, - s1)(Gi t sl)'' is given as: 

D0 
sI) 

(G, +sIý =D for G2 having the form in (5.25). (5.33) 

0D 
CU 

nxn 

with a= 
0.5-S 

for G2 having the form ( 5.25 ) and that : 0.5+S 

CT 

C0 

PG2P = for G2 having the form (5.26). (5.34) 

0 

where P is a permutation matrix given as: 

10... 00 

00... 01 
P=0/10 (5.35) 

01 
00 0 
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Hence in the latter case, we have: 

DT 

D0 
P(G2 - sI)(G2 + sI)-1P = (5.36) 

D 

From the inequality ( 5.31) we can write: 

P(G) < II (G1- sI)(Gi + 3I)-111211(G2 - sI)(G2 + sI)-1112 

= 11 D 11211 P(G2 - sI)(G2 + sI)-'P 112 

Therefore, 

P(G) = IID112xmax{laI, IID112} (5.37) 
for G2 having the form in ( 5.25 ). 

and p(G) = II D 11211 DT 112=11 D fI2 (5.38) 
for G2 having the form in (5.26). 

Note that: 

JID 112- <11 C- sl 11z11 (C + sI)-1 112- 
(0.5 

+ s)z + e2 
<1 (5.39) 

and I a1_1 
0.5-s il<1. 0.5+s 

Hence by (5.37 and 5.38) the AGE method is convergent for any s>0. 

We can further determine a "good choice" s' of s as follows: 

Since Ia <1 D 112 for any real number e, therefore 

Fse= 
(0.5- s)2 + e2 (5.40) p(G) <- (ý) 
(0.5+s)2+e2 

for each case. Note that: 

dF 
=2 

[s2 - (0.25 + e2)] (5.41) 
WS [(0.5 + s)2 +e2] 2 
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Hence, 

<0 if 0<3<3* 
dF 
TS =0 if s= s* 

>0 if s>s* 

where s* is given by: 

s' - V05.25 + e2 (5.42) 

Thus, by substituting for s by s* in ( 5.40 ) we get: 

p(G) < F(s', e) _ 
(0.5 

- 0.25 + e2)+ e2 
- 

2%/0-. 25 + e2 -1 (5.43) 
(0.5+ 0.25+e21+e2 2 0.25+ e2 +1 

The parameter s* is defined in terms of the parameter e= ft -k, which is governed by 

the chosen mesh sizes and can be determined `ä priori'. The following numerical 

results in table 5.1 show that the above choice for s= s* is best. They also show 

that the AGE method is not too sensitive to the choice of s, i. e there is an interval 

(sL, SR) -3 s* such that the AGE method with any s in this interval has the same 

convergence rate. 

5.3.3 Numerical results 

The following problem of linear advection i. e: 

öü öü 

ät + Ox =o (5.44) 

defined in the region R=0<x< 27r; t>0, with periodic boundary conditions and 
initial conditions obtained from the analytical solution given as: 

u= cosy - t) (5.45) 
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dt=0.01 dx=0.01 e=0.48 s* = 0.707 

s 0.2 0.4 0.707* 1.2 1.3 1.9 2.7 3.1 3.7 4.0 

NIT 6 4 4 4 5 6 7 8 8 9 

dt=0.02 dx=0.03 e=0.33 s* = 0.6 

s 0.2 0.4 0.6* 0.9 1.2 1.7 2.3 2.7 3.1 3.7 

NIT 6 4 4 4- 1-5 6 7 8 9 10 

dt=0.08 dx=0.03 e=1.3 s* = 1.39 

s 0.2 0.4 0.6 0.8 1.2 1.39* 1.9 2.7 3.1 4.0 

NIT 26 16 12 11 10 10 10 11 12 14 

dt=0.08 dx=0.014 e=2.85 s* = 2.89 

s 0.2 0.6 0.8 1.3 1.9 2.7 2.89* 3.4 3.7 4.5 

NIT 79 36 29 22 19 17 17 17 18 19 

dt=0.04 dx=0.14 e=0.142 s* = 0.52 

s 0.1 0.2 0.3 0.5 0.52* 0.8 1.0 1.2 1.9 3.1 

NIT 9 5 4 3 3 4 4 5 7 10 

Table 5.1: This table shows how the number of iterations (NIT) needed to obtain 

convergence for the AGE Algorithm varies with the acceleration parameter Y. It 

also shows how the optimum value for `s' agrees with the best parameter s* calcu- 
lated using equation ( 5.42 ) for different values of e. 

was solved by the AGE method. The fully implicit scheme was used in this example 
for the discretization of equation 5.44. Thus the variable e given by equation ( 5.19 ) 

is now e= k/2h. 

The value of e was varied by varying the time and space steps k and h. The Number 

of iterations (NIT) needed for the convergence of the AGE method was obtained 
for runs with different values of the acceleration parameter s, and the results are 

presented in table 5.1. It can be seen from table 5.1 that the choice of the parameter 

s* given by equation ( 5.43 ) is the best choice. The table also illustrates that the 

AGE method is not too sensitive to the choice of s. 
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5.4 Convergence analysis of the AGE-2D 

method 

In this section the convergence of the AGE-2D method for the two dimensional heat 

conduction problem of chapter 4 is considered. 

The iteration matrix G of the AGE-2D algorithm ( 4.98) can be written (see equa- 

tion ( 5A) as: 

1 
GAGE-2D =I -2s 

3 [J(Gi + sI)-'A 

i=4 

(5.46) 

The convergence of the method is governed by the spectral radius of G, and is 

guaranteed if 

p(G) < 1. (5.47), 

However it can be seen from ( 5.46 ) that very little can be deduced about the 

spectral radius of the iteration matrix G. We therefore use the numerical results 

below to verify the convergence of the algorithm and indicate the best range of the 

acceleration parameter to obtain the most rapid convergence of the method. 

In the following results the algorithm is used to solve the system: 

Au=b 

where the coefficient matrix A is given by equation 4.94 and the coefficients of A are 

given equation 4.95. The right hand side vector b for the model problem is chosen 

such that it makes the components of the solution vector equal to unity. 

The numerical results for a wide range of values of rO and different values of the 

acceleration parameter s are shown in figure 5.1. The numerical results indicate that 

the algorithm converges well for increasing values of rO >0 for every 1<s<4.0. It 

can be seen from figure 5.1 that for all values of rO the optimum value/s of s lie in 

the above interval with the rate of convergence decreasing towards the sides of the 
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No. of 
Iterations 

2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 

Figure 5.1: This figure shows how the number of iterations needed for the AGE-2D 
t)»k thcn 

method to converge vary with the acceleration parameter s. Notice)the values of rO 
increase the curve gets steeper around the best range of values of s. 

The acceleration parameter s 
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interval. The position of this optimum value/s gets shifted to the left of the interval 

(to around s=1.3) as the values of rO become large. 

It is also noted that as the value of rO (i. e., the mesh ratio) increases the convergence 

curve gets steeper around the best value/s of s, which is quite unfavourable for the 

practical estimation of s. However, the curves show that an over estimate of s is 

preferable. 

5.5 The AGE-1D for block symmetric systems 

In this section we consider the convergence of the AGE-1D method as applied to 

a block symmetric system of equations. The system in consideration can arise 
from a finite difference approximation to a coupled system of equations like the 

one considered in section 7.2. This is given as: 

Aw =b (5.48) 

where b is a known vector and A is a block symmetric matrix of the form: 

E -I2 

-I2 
0 

A=m is even; 
0 

-I2 

-'2 E xmx2m 

where 
10 2a 2b 

12 andE= a>0. 
01 -2b 2a 

We now consider the convergence of the AGE-1D method when applied to the so- 
lution of this system. Let 

ab 
-Iz 11E 

2I 

C, _z-2 
4x4 

_ 12 E 
-b aab (5.49) 

-I2 
-b a 4x4 
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If A is split as follows: 

A= Gl + G2 (5.50) 

where, 

C zE 

"OC0 Gl and G2 = (5.51) 

O0C 
C 2E 

The AGE algorithm for solving system ( 5.48 ) can be written as: 

(G1 + s1)w"+2 =b- (G2 - sI)u" =Y 

wp+l = (G2 + sI)-1[b - (GI - sI)(Gi + s1)-1 ] 

W pt1= T3wP+ k (5.52) 

where s is the acceleration parameter of the AGE method, and T, is the iteration 

matrix given as: 

T. = (G2 + sI)-i(Gi - sI)(G1 + sI)-1(G2 - sI) 

which can be shown to be similar to : 

(Gl - sI)(Gi + sI)-1(C2 - sI)(G2 + s1)-1 

we note that: 
c-. t c+ I 

OO 
(G1 - sI) =O; and (G1 + sI) =0 

c-. r Cl..! 

and 

c-. r 
0 

(C2 - sI) _ 
0 

C-. I 
4E-. l 
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; and 

ýE+a' 

C+ al 

0 

0 
c+. l 

ýE+ al 

Therefore 

D0 
(Gl - sI)(Gi + sI)-' = 

and; 

F0 D 

(G2 - sI)(G2. ± sI)-1 = 
0D 

F 

where D= (C - sI)(C + sI)-' and F= (2E-sI)(2E+sI)_1. 

Thus we have the following relations: 

p (Ta) -ß (T, 1 LII (i'. )112 

ýP(Ta) < II (G1- sI)(Gi + sJ)-111211(G2 - sI)(G2 + sI)-1112 

_ JjD112max{IID112,11F112} 
b 

Let2E=G a 
= 

(-b 

a 
The eigenvalues of G are a+ ib and a- ib. 

Also 

(1) 111 
G= (a + ib) , and = (a - ib) , ii -i -i 

Therefore 

11 
X= and y= 

-i i 

(5.53) 

(5.54) 

(5.55) 
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are the eigenvectors of G. They are orthogonal since 

1 
xT y 

i 

Hence, there exists an unitary orthogonal matrix U so that: 

a+ib 0 
U-'GU= =A and UHU=I 

0ä- ib 

U0 
If we let: Q= we then have: 

0U 
Q-1DQ = Q'1(C - sI)QQ-1(C + sI)ý (5.56) 

A -12 A -12 
. 51 

] 
+ sI 

1 
(5.57) 

-12 A -12 A 

A-sI2 -12 A+s12 -'2 -1 

-I2 A-sI2 -I2 A+s12 
Further there is a permutation maxtrix P such that: 

ai -1 00 

AT- sI2 -12 -1 Ai 00 
PP= (5.59) 

-I2 A sI2 0 0 a2 -1 
0 0 -1 .Z 

where 

Ai = a+ib:: Fs=ads+ib 

A2 = a-ibis=ads-ib 

Again there exists an unitary orthogonal matrix Ul so that 
AT -1 00 Ai +1000 

vl 
1 

-1 AT 00 Ul 
_a 

Al -1 ao [ 

vl, 00 a1 -1 

[ 

UI] -00 a2 +10 

00 -1 A000 AT 

Hence: 

II D 112 = II Q-1DQ 112 
AT 1 1 -1 

_ 
AT -1 0 0 J1i _1 0 

- A;. +1 o ,1 +1 

o %7- i a2 -1 2 
( AT +11 ai -1 a2 +1 a2 -1 - max 

l I I 

2+ ýz -' l 

l 
T2 ' -l 

I l 
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Since 

ai = a-s+ib ; At =a+s+ib 

a2 = a-s-ib ;A =a-Fs-ib 

Therefore 

_i +1 1)2+b2 1 (a-s+ (a+1-s)2+b2 
_ 

Iii 

+1 _ 
[ 
(a+s+1)2+b2J - [(a+1+s)2+b2 

AT - (a-s-1)2+b2 (a-1-s)2+b2 
_ Ai -ll 

I 

L(a+s-1)2+b2J - L(a-1+s)2+b2] 
_ý +1 

_ 
1 (a-s+1)2+b2 (a+l -s)2+b2 ] 

'\z I'l 
] [ 

= (a+s+1)Z+b2 (a+1+s)2+bz 

_ 
-1 _ 

(a-s-1)2+b2 (a-1-s)2+b2 Ißä 

- 

l 

L(a+s-1)2+b2] 

[(a-1+s)2+b2] 

we also have 

II F II2= 
(a-s)2+b2 

/, I For evecý 57O 
(a-+s2 

Thus iE can 6e seer From (5.55) Eho. 3 

r(a-1-s)2+b2 (a+1-s)2+b2 I 
p(T, )<max I(a-1+s)2+b2] '[(a+1+s)2+b2] 

(5.60) 

xmax {(a_1+s)2+b2j 
(a-1-s)z-}-b2 (a-s)2+b2 'ý (a+1-s)2+b2 

(5.61) 
' L(a+s)2+b2] ' 

[(a+1+s)2+b2j 

Hence 

p(T. )<1 if a>1 for any s>0 (5.62) 

The experimental results given in section 7.2 indicate that the inequality in ( 5.62 ) 

is strict and that for such block symmetric systems the method is convergent for 

any s>0. 
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5.6 Chebyshev acceleration of the AGE-1D 

method. 

In this section we consider whether or not in theory, the convergence of the AGE-1D 

iterative procedure may be accelerated by using the Chebyshev polynomials, when 

AGE-1D is applied for one dimensional problems or as component of the Explicit 

Alternating Direction (EAD) method (see chapter 6) method for multidimensional 

problems. 

We therefore consider here the AGE-1D method for solving the system: 

Aix = bl (5.63) 

where 

e -c 

-c e -c 0 

Al =m is even, 

-c 
0 

-C e 
mxm 

or alternately the normalized equivalent system: 

Ax=b (5.64) 

with 

a -1 

-1 a -1 0 

A- ; a_ c 
0 

La 

System ( 5.63 ) or ( 5.64 are the type of systems which arise from two point 
boundary value problems, 1D parabolic heat conduction problems, and also as a 
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subsystem in higher dimensional parabolic (heat conduction) and elliptic (Laplace, 

Poisson) problems, where the AGE-1D method may be applied as a component of 

the EAD method. 

If we apply the AGE-1D method for solving ( 5.64 ), then we have: 

XP+1 = Tarp + b' 

where b' = 2s(G2 + sI)'1(Gl + sI)"1 b 
_., Qnöº 

T, - (G2 + sI)-1(Gl - sI)(Gi + sI)-ß(G2 - sI) 

is the iteration matrix. Gl and G2 are given as: 

C1 2 

0 Cl 0 

G1 and G1= 

00 C1 
C1 2 

(5.65) 

a -1 
with C1= 2 

To accelerate the convergence of the AGE-1D method by using the Chebyshev poly- 

nomials it is required that the eigenvalues of the iteration matrix T. be real. We 

now consider the conditions posed by this requirement. 

The matrix T, is similar to F1. F2 where 

Fi = (G1 - sI)(Gi + sI)-' ; F2 = (G2 - sI)(G2 + sI)-' 

Therefore T. and F1. F2 6vc the same eigenvalues. 

1 (a)2-s2-1 -2s Let C= (Cl 
- sl)(Cl + sI )'1 = (ý + s)2 _12 _2s 

°-)2 
- s2 -1 z 

_1 
(z)2_s2-1 -2s 

ýµ 
-2s z)2_s2_1 
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where A= 2+s+1 and it = 2+s-1. 

E 

1 1 
Also we define the matrices E and D= 

1 -1 0 

E 
We now have 

1 a. \ fly a=zs- CE = where 
'1 as -pic 1 0=2 _S+ 

yo 
and E 

[ 
=1 

aA Pit 
where y 

a; 
z= 

Q 
A 0z AFB as 

We therefore have: 

FiD=DA S F, DAD-' 

where 

y 

z 0 

A 

0 y 
z 

If, and only if: 

Y>0 

z>0 

then the matrix 

0 

0 f 

is real positive definite. 

(5.66) 

(5.67) 



126 

We then have Fi = DAlA2D-' = (DA1D'1)(DA12D'1) = F1F1. 

Under the conditions of ( 5.66 ) and ( 5.67 ) Fi and F1 are not singular. Therefore, 

FiF2 = FiFiFz = F1 1 (Fl'FZF')Fl1 

Thus, F1F2 and (Fl F2F1) has the same eigenvalues. It can be easily seen that 

(Fl F2F') is symmetric and therefore has only real eigenvalues. Hence under the 

conditions given by the inequalities ( 5.66 ) and ( 5.67 ) the requirement that all the 

eigenvalues of T, be real is satisfied. 

However the above conditions are very restrictive, and therefore using the Chebyshev 

polynomial to accelerate the AGE-1D method may not be practical for the above 

stated problem. 

5.7 The various forms of the AGE method and 

the computational requirements 

There exist various forms for the formulation of the AGE-1D method some of which 

were referred to earlier, e. g the usual formulation of ( 4.58), ( 4.59 ) and the com- 

posite form of ( 4.60 ). The computational cost of some of these formulations are 
less than others. The computational cost also is usually less for normalized systems 

such as ( 4.54 ) than for non-normalized systems such as ( 4.53 ). The various forms 

of the AGE-PR method for solving these systems are listed together with their com- 

putational cost per iteration in the table below. But first some of the variants not 

given earlier are introduced next. 

To start with we rewrite here the above mentioned two formulations which are 

referred to as Formulation I and Formulation II respectively. 

Formulation I 

(Gi + sI)up+1I2 =f+ (G2 - 31)u" = zi 

(G2 + sI)up+i .=f+ (G1 - sl)up+'/2 = Z2 
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Formulation II 

uP+l = Gu' +k 

For this formulation we note that the vector k is given by 

k= 2s(G2 + sJ)'1(Gl + sI)-'f 

and is calculated once for each system (i. e not every iteration) at the cost of (4m-4) 

multiplications and (3m-4) additions. and G is the iteration matrix of the method 

given as: 

G= (G2 + sI)-1(Gi - sI)(Gi + sJ)'1(G2 - sI) (5.68) 

The iteratic n matrix G has the following form: 

a' b' c' d' 

e' f' g' h' 

h' g' i' j' c' d' 

d' e' j' _º 9º h' 

h' g' i' j' c' d' 

d' it it gº h' 

h' g' f' e' 

d c' b' a' 

where a' .., j' are terms obtained after the product of the matrices given in equa- 
tion 5.68 is carried out. 

Formulation III 

(G1 + sI)uP+1/2 =f+ (G2 - sl)uP = zI 
(GZ + sI)uP+l = (G2 

- sI)uP + 2suP+1/2 = Z2 

This variant of the AGE-PR method can be easily derived by manipulating the 

second equation of Formulation I. It is less costly in its computational work. 
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Formulation IV 

(G1 + sI)up+1/Z =f+ (G2 - sI)up = zl 

(G2 + sI)uP" =f+ (G1- sI) (Gl + sI)-'zi 
ur+l/2 

This formulation is due to Evans and Li [16]. Here the half iterate of the solution 
is never obtained but rather only the right hand side zi of the first equation is 

obtained and used in computing the full iterate solution in the second equation. 

By this formulation the solution may be obtained at a lower computational cost 

per iteration than by any of the above formulations. The second equation of this 

formulation is computed according to [16] as: 

uv+i = f'+ (Gz -F sI) 0 [(GI 
- sI)(Gi + sI)-lzi] (5.69) 

is 
where O\the determinent of the 2x2 submatrices of (G2 + sI) and is as given in 

( 4.63 ), and : 

(G2-}-sl)=ý(GZ-FsJ)'1 

the underbrace indicates the term which is to be calculated first. The vector f' needs 
to be computed and stored. It is given as: 

ft = (C2 + sl)-1 f 

which has to be calculated once only and not every iteration. It is computed at the 

cost of 2m multiplications and m additions. 

A slight improvement can still be obtained if the second equation is computed as: 

u'+i = (Gz 7 
sI) [f' + 0(Gl - sI)(Gj + sI)'lzi] (5.70) 

where i is now defined as: 

f'-Af 

I 
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Normalized  eitam Non-normalized System 

The Coeto 
AGE-ID variant 

No. of +/" op. 

per iteration 

No. of x op. 

per iteration 

No. of t/" op. 

per iteration 

No. of x op. 

per iteration 
storage 

requirement 

Formulation I 6m-4 6m 6m-4 am S vectors 
Formulation II Sm-8 6m-8 Sm-8 am-8 3 vectors 

Formulation III Sm-4 6m Sm-4 7m a vectors 
Formulation IV Sm-4 4m Sm-4 6m. 4 S vectors 

'The figures given are for systems of order m where m is supposed even. They are almost 
identical to the case when m is odd 

Table 5.2: This table shows the computational requirements when using any of the 

four main variants of the AGE-1D for solving tridiagonal systems which have off 
diagonal elements of identical modulus. 

This cuts down the cost of computing f' by m multiplications and m additions at 

no other extra cost. 

Table 5.2 shows the computational work per iteration and the storage requirements 

of each of the variants of the AGE-1D algorithm for normalized systems and non- 

normalized systems. 



Chapter 6 

The Explicit Alternating 

Direction methods (EAD) 

6.1 Introduction 

For many real time problems, parallelism is the only way forward for obtaining any 

dramatic progress. A high degree of parallelism - defined as the number of indepen- 

dent operations that may be performed simultaneously - must persist throughout the 

different stages of solving any particular problem. These stages proceed in sequence 
from choosing the suitable algorithm, to expressing the algorithm in a high level 

language, compiling the language into a machine-readable object code, and finally 

executing the code on the target machine. Ideally the parallelism at any of these 

stages should be greater or equal to that in the subsequent stages, if the parallelism 

of the target computer is to be fully exploited. This places a greater emphasis on 

the parallelism of the first stage, namely the choice of a parallel algorithm. 

The Alternating Group Explicit (AGE) iterative method was an important step in 

this context. However, it required, especially for two or more dimensional problems, 

a considerable greater computational work per iteration and an even larger number 

of iterations to converge. This meant that the advantages of the parallelism of the 

method should outweigh the disadvantages only when the systems being solved are 

130 
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of a very large order. 

The Explicit Alternating Direction (EAD) methods presented in this chapter, rep- 

resent further developments on the AGE method for two or more dimensional prob- 

lems, which require much less computational work than the the corresponding AGE- 

2D or AGE-3D methods and are even faster to converge, thus also improving on the 

parallelism of the AGE-2D and AGE-3D methods. The EAD methods are based 

on combining the use of the ADI techniques with the AGE-1D algorithm. The re- 

sulting EAD method will be referred to as an EAD fully iterative method if the 

AGE method is combined with an ADI iterative method. Otherwise if the use of 

the AGE method is combined with an ADI direct scheme, the resulting method is 

then referred to simply as the EAD method (see figure 6.1). Like the AGE method, 

the main positive features to be stressed in the formulation of the EAD methods is 

that it is an explicit algorithm for solving what is actually an implicit system, thus 

allowing maximum parallelism in its application. Another not important advantage 
is that the intermediary boundary values which have to be obtained for the standard 
ADI schemes are not required when the EAD fully iterative method is applied. The 

methods are introduced next, and a comparison between the EAD methods and the 

AGE methods is presented. 

6.2 The EAD method. 

6.2.1 A parabolic problem 

In this section the EAD method (fig. 6.1-left) is presented by solving the two dimen- 

sional heat problem given by equation ( 4.91 ) together with the auxiliary conditions 

as presented in subsection 4.5. We also use the same mesh described thereof. 

The following ADI-PR and ADI-DR schemes can be used to approximate equation 
( 4.91 ). These are given respectively by: 

(1 - 
Ir52 

rT ä= (1 + 2rbz2)U, ä -I- 
2k4(xi, 

x2, t+ 
2) 
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(1 - 
2röiz)Ü 1= (1 + 

2röz1)U, 
+ 2kq(x1, x2)t+ 2) (PR) (6.1) 

and 

1 (1 -rS 1)U = (I+rbz, )Ü j -I-q(xi, xs, t-I- 

(1 - röi2)Üä 1= Üä - rbX2Ü 2 (DR) (6.2) 

When applied to the totality of the meshpoints, equations ( 6.1 ) and ( 6.2 ) give 

rise to two systems given by ( 4.25 ) and ( 4.26 ) which are to be solved in sequence. 
If these systems were normalized (i. e. divided by 

zr 
for the PR scheme, or by r for 

the DR scheme) we then get the following equivalent systems: 

Hlu = dl (6.3) 

and 

Viu = d2 (6.4) 

where Hl and Vl has the same form as H and V of equations ( 4.25 ) and ( 4.26 ) 

but with: 

ai =as =-1 and b= 
(1+2 r) 

=2+ 
1 

(Or) Fr 

where B=z and 1, for the PR and DR schemes respectively. Each of the above 

systems is then solved using the AGE-1D iterative method, as applied to one dimen- 

sional problems. This is given using the economic Formulation IV of the algorithm 

as: 

(Gl + sl)u'+1/2 = dl - (G2 - sI)uP = zl 

(G2 + sI)up+l = [dl - (Gl - sI)(Gi + sI)-lz1] = Z2 (6.5) 

where s is the AGE-1D acceleration parameter. we use this algorithm, at the first 

level, to solve the system (6.3) whereby we iterate until the solution vector is ob- 
tained. This is then used in evaluating the RHS of equation ( 6.4 ) as well as a 
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starting vector when applying the AGE algorithm again, at the second level to solve 
( 6.4 ). At the second level the AGE algorithm is again given by ( 6.5 ), but by 

replacing G1, G2, and dl by G3, G4, and d2 respectively. 

The two pairs of matrices GI, Gz and G3, G4 are the constituent matrices into which 
Hl and Vl are split respectively. They have exactly the same structure as given in 

subsection 4.5. 

To compare the computational costs of the AGE-2D method and the EAD method 

we note the following: On one hand the AGE-2D algorithm for solving system ( 4.93 ) 

requires (16mn - 2m - 4n) multiplications and (15mn - 2m - 8n) additions for each 
full AGE-2D iteration. The calculation of the R. H. S of system ( 4.93 ) itself requires 

mit multiplications and 4mn+2(m+n) additions if a Crank-Nicholson (CN) scheme 
is used, and just mit multiplications and 2(m + n) additions if the fully implicit 

scheme is used. This is if we assume the source term q is zero. On the other hand 

the above AGE-1D algorithm used in the EAD method at each ADI level requires 
4mn multiplications and 5mn - 4n additions per iteration. The calculation of the 
R. H. Ss of equations ( 6.3 ) and ( 6.4 ) require 2mn multiplications and 4mn + 4n 

additions if the Peaceman Rachford scheme is used, and 3mn multiplications and 
5mn + 4n additions if the DR scheme is used. We also require for the EAD method 
to calculate the intermediate values of the solution at the two boundaries parallel 
to the x2 direction. This is done by the appropriate formulae given in section 4.1 

at a trivial cost of 6n multiplications and 10n additions for either of the PR or DR 

schemes. If the source/sink term is not zero then an additional cost of evaluating 
the R. H. Ss of equation ( 4.93 ) and equations (6.3 ) and ( 6.4 ) is incurred. 

Experiments were carried out for the heat conduction problem given above, with 

and without a heat source. Comparisons are made between, on one hand, the AGE- 

2D method as applied to the fully implicit scheme and the Crank-Nicholson scheme, 

and on the other hand the EAD method using the (ADI) PR and DR schemes. The 

results are given, for the case without a heat source in tables 6.1... 6.4, and for the 

case of a heat source in tables 6.5... 6.10. The figures for the total number of +/* 

operations given in the tables, include the evaluation of R. H. S vector/s in each case. 
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"1 x, .. 02: mw, k ratio : e_a_ A. : A:.. - . 02. At .. 0002. t. 10-4 

XI . 02 . 30 . 58 . 86 1.14 1.42 1.70 1.98 

scheme 

IMF ' 3.3E-06 2.2E. 05 1.1E-05 1.8E-05 1.7E. 05 1.1E-05 2.2E-05 3.4E. 06 

EAD--D-fl- 1.8E-06 2.0E-05 7.4E-06 1.7E-05 1.4E-05 1.2E-05 1.8E-05 4.4E. 06 

5.2E. 06 2.0E-05 1.6E-05 1.4E-05 2.1E. 05 6.2E-06 2.4E. 05 1.2E-06 

UN EAD 8.1E. 07 5.3E-06 2.7E-06 4.3E-06 4.3E. 06 2.7E-06 5.3E-06 8.3E-07 

3.4E-06 9.9E-06 5.3E-06 7.9E. 06 8.2E-06 4.8E-06 1.0E-05 1.3E-06 

Elect solution . 007201 . 054642 -. 027678 -. 044269 . 044269 . 027678 -. 054642 .. 007201 

bl ae a . 50: meek -t. n- n_&_ Am. _ Asp :. n4_ Ar, . nnn4. e- foýý 

X1 - . 02 . 30 . 58 . 86 1.14 1.42 1.70 1.98 
scheme 
IMF EAD-LUD 4.9E-05 . 3.3E-04 1.6E-04 2.7E-04 2.7E-04 1.7E-04 3.5E-04 5.3E-05 

3.8E 0S 3.0E-04 1.4E-04 2.5E-04 2.3E. 04 1.7E-04 2.9E-04 6.1E-05 

8.7E-05 5.3E-04 2.6E-04 4.4E-04 4.2E-04 2.8E-04 3.9E-04 6.9E-05 

UN EAIT- 1.3E-OS 8.2E-0$ 4.1E-05 6.6E-05 6.6E-OS 4.1E-OS 8.1E-OS 1.3E-05 

2.2E-05 1.7E-04 8.3E-05 1.3E-04 1.3E. 04 8.5E-05 1.6E-04 2.4E-O5 

Exact solution . 114680 . 870221 -. 440807 -. 705023 . 705023 . 440807 -. 870221 -. 114680 

cl s, s . 98: mesh retso a O. S. A:. - A..:. 0M. At - . 0002. s. 10-4 

sl s . 02 . 30 . 58 . 86 1.14 1.42 1.70 1.98 

scheme 

EAD-LUD 3.9E-06 2.8E-05 1.4E-05 2.2E-05 2.2E-05 1.4E-05 2.7E-05 4.3E-06 

EAD-IJlt 3.1E-06 1.9E-05 9.8E-06 1.5E-05 1.5E-05 9.2E-06 1.9E-05 3.2E-05 

4.0E-06 5.4E-05 1.9E-05 4.6E-05 3.7E-03 3.3E-05 4.9E-05 1.1E-05 

EAD 1.1E-08 7.5E-06 3.8E-06 6.1E-06 6.1E-06 3.8E-06 7.5E-06 1.1E-06 

1.4E-06 1.2E-05 5.5E-06 9.7E-06 9.2E-06 6.3E-06 1.1E-05 1.8E-06 

Exact solution . 007201 . 054642 -. 027678 -. 044269 . 044269 . 027678 -. 054642 -. 007201 

Table 6.1: The absolute errors of the solutions to the model 2D heat problem, as 

obtained by the AGE-2D method and the EAD method, at t= . 0018. 

Method IMP CN 

EAD-LOD EAD-DR AGE-1D EAD-PR AGE-ID 

Average of all absolute errors 8.58E-05 7.6E-05 2.33E-04 2.13E. 05 7.26E-05 

Number of iterations 3/3 3/1 4 2/2 4 

No. (in men) of +&" operations 2S+; 40" 20+; 16e 60+; 780 20+; 16e 60+; 76e 
Total (in rose) of ; /e operations 47 44 137 42 141 

Computational cost w. r. t. AGE-4D 34 % 32 % 100 % 30 % 100 % 
No. of points of synchronization 17 14 33 14 33 

Table 6.2: Average of absolute errors, number of iterations, and the computational 

work involved in the experiments of table 6.1. 
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&) s2 - . 02; mash ratios 1.0, Asl = Ast .. 02, At s . 0004, s. 10-4 

:l- . 02 . 30 . 5e . e6 1.14 1.42 1.70 1.98 
scheme 

1.1E-03 6.5E-05 3.5E-05 5.2E-05 5.4E-05 3.2E-05 6.6E-05 1.0E-05 

EAD-DR 1.5E-05 S. SE-05 3.0E-05 4.2E-05 4.6E-05 2.4E-05 5.3E-05 3.5E-05 

- 
AUE- 3.8E-05 1.2E. 04 6.6E-05 1.8E-04 2.7E. OS 1.7E-04 3.6E-05 5.6E-05 

7= EAD 1.1E-06 5.8E-06 3.4E-06 4.5E-06 5.1E-06 2.6E-06 6.1E-06 6.5E-07 

AUE- 3.9E-06 4.7E-06 1.13E-05 4.2E-07 1.1E-05 3.9E-06 1.0E-05 1.2E-06 

Exact solution . 006589 . 049997 -. 025326 ". 040506 . 040506 . 025326 -. 049997 -. 0065e9 

b) x2 - . 50; mash ratio: 1.0, Gala pst - . 02, &t si . 0004, sa 10-4 

21 as . 02 . 30 . 58 . 86 1.14 1.42 1.70 1.98 
scheme 

IMF EAD-LUD 1.6E-04 9.9E-04 4.9E-04 8.1E-04 7.9E-04 5.1E-04 9.8E. 04 1.7E-04 

EAD-DR 2.2E-04 9.2E-04 4.1E-04 7.3E-04 6.8E. 04 4.8E-04 8.3E-04 5.4E. 04 

1.9E-04 1.5E-03 6.8E-04 1.2E-03 1.1E-03 9.2E. 04 1.5E-03 3.2E-04 

EAD 1.1E-05 1.3E. 04 6.8E-05 1.0E-04 1.1E-04 6.4E-05 1.3E-04 2.0E-05 

3.5E-05 2.8E-04 1.3E-04 2.3E-04 2.1E-04 1.5E-05 2.7E-04 5.3E-05 

Exact solution . 104933 . 796256 -. 403340 . 645099 . 645099 . 403340 -. 796256 -. 104933 

c) s2 s . 98; meek ratios 1.0,15-sl : pst 1 . 04, At , . 0004, es 10-4 

X1 >. . 02 . 30 . 58 . 86 1.14 1.42 1.70 1.98 

$Cheme 

IMF ' 1.4E-O5 1.0E-04 4.8E-05 8.5E-05 8.0E-05 5.5E-05 1.0E-04 1.7E-05 

1.4E-05 5.9E-05 2.0E-05 4.9E-05 3.9E-05 3.5E-05 5.0E-04 3.3E-05 

' 8.9E-06 3.7E-04 2.6E-05 3.8E-04 1.6E-04 3.0E-04 2.7E-04 1.1E-04 

IN EAD 4.1E-06 3.0E-05 1.5E-05 2.4E-05 2.4E-05 1.5E-05 3.0E. 05 4.2E-08 

' 1.4E-06 3.8E-05 8.2E-06 3.5E-05 2.1E-05 2.7E-05 3.1E-05 9.3E-06 

Ex&ct solution . 006589 . 049997 -. 025326 -. 040506 . 040506 . 025326 -. 049997 ". 006589 

Table 6.3: The absolute errors of the solutions to the model 2D conduction problem, 

as obtained by the AGE-2D method and the EAD method, at t=0.0036 

Method IMP CN 

EAD-LOD EAD-DR AGE-4D EAD-PR AGE-1D 

Average of all absolute errors 2.61E"04 2.29E. 04 6.98E. 04 3.77E-05 1.21E-04 

Number of iterations 4/2 4/1 4 3/2 4 

No. (in mxn) of +&e operations 30+; 240 25+; 200 60+; 76s 25+; 20e 60+; 760 

Total (in mxn) of +/e operations 56 53 137 51 141 

Relative cost w. r. t. AGE-4D 41 % 39 % 100 % 36 % 100 % 
No. of points of synchronisation 20 17 33 17 33 

Table 6.4: Average of absolute errors, number of iterations, and the computational 

work involved in the experiments of table 6.3. 
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a) s, = . 1: mesh ratios . 1. As, . Ase a 0.1. At s 0.001. s- 10-4 

22 .1 .2 .3 .4 .5 .6 .7 .6 .9 
scheme 

1.3E-06 3.2E-06 3.9E-06 5.3E-06 5.6E. 06 6.5E-06 5.5E-06 5.6E-06 2.2E. 06 

EAD-Dii 2.0E-06 3.9E-06 5.6E-06 7.1E-06 6.1E-06 6.7E-06 6.4E-06 7.1E-06 4.4E. 06 

2.0E-05 3.9E-05 5.7E-05 7.3E-05 6.4E-05 9.0E-05 6.9E-05 7.6E-05 4.6E-05 

1.2E-06 2.4E-06 3.5E-06 4.4E-06 5.1E-06 5.4E-06 5.2E-06 4.4E-06 2.7E-06 

' 1. TE-05 3.4E-05 5.0E-05 6.3E. 05 7.2E-05 7.7E-05 7.4E-05 6.2E-OS 3.8E-O5 

Exact solution . 029016 0.067946 0.126695 0.205177 0.303306 0.421006 0.558194 0.714801 0.890760 

b) xa . 50: mesh ratio = . 1. As. - A: n . 0.1. At s 0.001. e: 10" 

22 = .1 .2 .3 .4 .s .6 .7 .8 .9 
scheme 

4.6E-06 9.8E-06 1.4E. os 1.8E-05 2.1E-05 2.3E-05 2.2E-os 1.9E 0s 1.1E-oS 

EAD-DK 8.1E-06 1.6E-05 2.3E-05 2.9E-05 3.4E-05 3.6E-05 3.6E-05 3.0E-05 1.9E-05 

' 8.4E-05 1.66E-04 2.4E-04 3.1E-04 3.6E-04 3.9E-04 3.4E-04 3.3E-04 3.1SE-04 

UN EAD 5.1E-06 1.0E-05 1. SE-05 1.8E-05 2.1E-05 2.3E. 05 2.2E-05 1.9E-06 1.2E-05 

AGE-"2D- 7.2E-OS 1.4E-04 2.1E-04 2.6E-04 3.0E-04 3.2E-OS 3.2E-04 2.7E-04 1.6E-04 

Exact solution 0.303308 0.376183 0.468197 0.578931 0.707976 0.854943 1.019463 1.201191 1.399809 

c) si s . 9; mesh ratios . 1. Axi : Ase : 0.1. At a 0.001. a- 10-4 

2 .1 .2 .3 .{ .5 .6 .7 .8 .9 
scheme 

3.2E-06 5.9E-05 8.6E-06 1.1E-05 1.3E. 05 1.4E. 05 1.4E-05 1.3E-05 8.3E-06 

EAD-Dit {. 4E 06 8.6E-06 1.3E-05 1.6E-05 1.9E-05 2.1E-05 4.2E-05 2.0E-05 1.4E-05 

' 4.8E-05 9.6E-05 1.4E-04 1.8E-04 2.1E-04 2.4E. 04 4.5E-04 2.3E-04 1.6E. 04 

4.7E-06 5.4E-06 7.9E-06 1.0E-05 1.2E-05 1.3E-05 1.3E-05 1.4E-05 6.4E-06 

AGE-21) 3.8E-05 7.4E-05 1.1E-04 1.4E. 04 1.6E-04 1. $E-04 1.8E-04 1.6E-04 1.1E-04 

Exact solution 0.890760 0.990813 1.109460 1.246013 1.399809 1.570209 1.756611 1.958450 2.175209 

Table 6.5: The absolute errors of the solutions to the model 2D heat problem, WITH 

A HEAT SOURCE as obtained by the AGE-2D method and the EAD method, 

at t=0.1 

Method IMP CN 

EAD-LOD EAD-DR AGE-2D EAD"PR AGE-2D 

Average of all absolute errors 1.01E-05 1.57E-05 2.13E-04 9.64E-06 1.74E-04 

Number of iterations 2/2 2/1 2 2/2 3 

No. (in -: a) of + 6c e operations 20+; 16e 15+; 12e 30+; 360 20+; 16e 45+; Sze 

Total (in men) of +/e operations 36 3S 69 42 107 

Relative cost w. r. t. AGE-2D S5 % 51 % 100 % 39 % 100 % 

No. of points of synchronisation 14 11 17 14 22 

Table 6.6: Average of absolute errors, number of iterations, and the computational 

work involved in the experiments of table 6.5. 
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a) z :. 1; mesh ratio :. 1. Gri at Ax, a 0.1. At a 0.001. s. 10-a 

22 1 .1 .2 .3 .4 .5 .6 .7 .8 .9 
scheme 
IMF 

' 1.2E. 06 2.4E-06 3.5E-06 4.4E. 06 5.1E-06 5.4E-06 5.2E-06 4.4E. 06 2.7E-06 

EAD-Dlt 2.0E-06 3.8E-06 1.6E-06 7.0E-06 8.1E-06 8.6E. 06 8.4E-06 7.0E-06 4.4E-06 

2.0E-06 3.9E. 06 5.6E-06 7.0E-06 8.1E-06 8.6E-06 8.4E. 06 7.1E-06 4.4E-06 

EAD 1.2E-O6 2.4E-06 3.5E-06 4.4E-06 5.1E-06 6.4E-06 5.2E. 06 4.4E. 06 2.7E-06 

1.2E-06 2.4E-06 3.5E-06 4.4E-06 5.1E-06 5.4E-06 5.2E. 06 4.4E-06 2.7E-06 

Exsct solution . 029018 0.067946 0.126695 0.205177 0.303308 0.421006 0.558194 0.714801 0.890760 

b) xi as . 50: mesh ratios . 1_ A:. : A- s 0.1 . 
At in 0.001. am 10-8 

sZ a .1 .2 .3 .4 .5 .6 .7 .6 .9 
scheme 
IMF EA] ' 5.1E-06 1.0E-OS 1.4E-OS 1.8E-05 2.1E. 05 9.3E-05 2.4E-05 1.9E-OS 1.9E-05 

8.1E-06 1.6E-05 4.3E-05 2.9E-OS 3.4E-05 3.7E-05 3.6E-05 3.0E-05 1.9E. 05 

AGE- 8.1E-06 1.8E-05 4.3E-05 7.9E-OS 3.4E. 05 3. TE-05 3.6E-05 3. OE. 05 1.9E-O5 
-SIE-06 

1.0E-o5 1.5E-05 1.8E-OS 9.1E-O6 2.3E-05 2.2E. 05 1.9E-05 1.4E-05 

5.1E-06 1.0E-05 1.5E-05 1.8E-05 7.1E-05 2.3E-05 2.2E. 05 1.9E. 05 1.4E-05 

Exact solution 0.303308 0.376183 0.468197 0.578931 0.707976 0.854943 1.019463 1.201191 1.399809 

Ci X1 ss . 9: mesh ratio= . 1. A. A:., = 111 . 
At= 0.001. am 10-8 

22 as .1 .2 .3 .4 .5 .6 .7 .6 .9 
scheme 

IMF ' 2.7E-06 5.4E-06 7.9E-06 1.0E-05 1.2E-05 1.3E-05 1.3E-05 1.2E. 05 8.3E-06 

k; AD-DR 4.4E. 06 6.6E-06 1.3E-05 1.6E-05 1.9E. 05 2.1E-05 2.1E-05 1.9E-05 1.3E. 05 

4.4E-06 8.6E-06 1.3E. 05 1.6E-05 1.9E-05 2.1E-05 2.1E. 05 1.9E-05 1.3E-05 

2.7E-06 5.4E-06 7.9E-06 1.0E-05 1.2E-05 1.3E-05 1.3E. 05 1.2E-05 8.4E-06 

2.7E-06 5.4E-06 7.9E. 06 1.0E-05 1.2E. 05 1.3E. 05 1.3E. 05 1.2E-05 8.4E-06 

Exact solution 0.890760 0.990813 1.109460 1.246013 1.399809 1.570209 1.756611 1.958450 2.175209 

Table 6.7: The absolute errors of the solutions to the model 2D conduction 

problem, WITH HEAT SOURCE as obtained by the AGE-2D method and 
the EAD method, at t=0.1 

Method IMP CN 

EAD-LOD EAD-DR AGE-2D EAD-PR AGE-2D 
Average of all absolute errors 9.6E-06 1.57E-05 1.96E-05 9.6E. 66 1.24E-05 

Number of iterations 4/4 4/2 9 3/3 30 
No. (in men) of + tc * operations 40+; 32. 30+; 24" 135+; 171. 30+-, 24* 150+; 1900 
Total (in men) of +/* operations 74 62 307 60 34S 

Relative cost w. r. t. AGE-2D 24 % 20 % 100 % 17 % 100 % 

No. of points of synchronization 26 20 73 20 61 

Table 6.8: Average of absolute errors, number of iterations, and the computational 
work involved in the experiments of table 6.7. 
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xi ss . 5: mesh ratio: 1.0. As. . Aso : 0.1. At se 0.01 

a) s: l0-4 

22 .1 .2 .3 .4 .5 .6 .7 .6 .9 
scheme 

IMF EAD-LUD 4.7E-06 1.0E-05 1.2E-05 1.5E-05 1.7E-05 1.8E-05 1.7E-05 1.4E-05 6.4E-07 

' 2.5E-05 4.7E-05 7.1E-05 8.7E-05 1.0E. 04 1.0E-04 1.0E-04 6.9E-05 5.2E. 05 

' 2.8E-05 1.1E-04 8.9E-05 1.6E-04 1.1E-04 1.5E-04 1.0E-04 6.5E-05 7.5E-05 

EAD 6.1E-06 1.5E-05 1.5E-05 2.1E-05 1.7E-05 1.4E-05 1.7E-05 1.1E-05 1.0E-05 

1.6E-05 3.4E-05 4.3E. 05 5.7E-05 5.9E-05 6.2E-05 5.4E-05 4.2E-05 2.6E-05 

Exact solution 0.289030 0.347770 0.425933 0.523238 0.639410 0.774190 0.927330 1.098597 1.287781 

b) es 10-8 

s2 s .1 .2 .3 .4 .5 .6 .7 .8 .9 
scheme 
IMF -E"-LOD 4.2E-06 8.3E-06 1.2E. 05 1.5E-05 1.7E-05 1.8E-05 1.7E-05 1.4E-05 8.7E-06 

' 3.1E-05 6.0E-05 8.6E-05 1.1E-04 1.2E-04 1.3E-04 1.2E-04 1.0E-04 6.4E. OS 

3.0E-05 5.9E-05 8.5E-05 1.1E-04 1.2E-04 1.3E-04 1.2E-04 1.0E-05 6.3E-05 

EAD-PR 4.3E-06 6.4E-06 1.2E-05 1.5E-OS I. TE-05 1.8E-05 1.7E-05 1.1E. 05 9.0E-06 

' 4.3E-06 8.3E-06 1.2E-05 1.5E-05 1.7E-05 1.8E-05 1.7E-05 1.4E-05 8.9E-06 

Exact solution 0.289030 0.347770 0.425933 0.523238 0.639410 0.774190 0.927330 1.098597 1.287781 

Table 6.9: The absolute errors of the solutions to the model 2D conduction 

problem, WITH A HEAT SOURCE as obtained by the AGE-2D method and 
the EAD method, at t=0.5 

a) 6es10-4 

Method IMP CN 

EAD-LOD EAD-DR AGE-2D EAD-PR AGE-2D 
Average of all absolute errors 1.09E-05 4.71E-05 7.28E-05 8.76E-06 3.2E-05 

Number of iterations 4/4 3/1 4 2/2 4 
No. (in mxn) of +&e operations 40+; 32s 20+; He 60+; 760 20+; 16e 60+; 76e 
Total (in mxn) of +/e operations 74 44 137 60 141 

Relative cost w. r. t. AGE-2D 54 % 32 % 100 % 42 % 100 % 

No. Of points of synchronisation 26 14 33 14 33 

b) ss 10-8 

Method IMP CN 

EAD-LOD EAD-DR AGE-2D EAD-PR AGE-2D 
Average of all absolute errors 7.52E-06 5.5E-0S 6.6E-05 7.74E-06 9.6E-o6 

Number of iterations 8/8 6/6 22 3/3 11 
No. (in men) of + se e operations 60+; 64e 70+; 56e 330+; 416. 30+; 24e 165+; 209. 
Total (in mxn) of {/e operations 146 134 749 114 379 

Computational cost w. r. t. AGE-2D 19 % 18 % 100 % 30 % 100 % 
No. Of points of synchronization 50 44 67 20 69 

Table 6.10: Average of absolute errors, number of iterations, and the computational 
work involved in the experiments of table 6.9. 
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The tables also include some results which are obtained when the EAD method em- 

ploys an LOD scheme instead of an ADI scheme. This is the subject of section 6.2.3, 

where the appropriate comments concerning these results shall be given. 

The results show throughout that the EAD method produces more accurate results 

than the AGE-2D method when the tolerance is not very small (e. g E= 10'4). Of 

course when the tolerance is too small (e. g e= 10-8) the solutions by both methods 

converge as expected, to the respective exact finite difference solution and are almost 
identical. Also it can be seen that the EAD method requires at most just over 50 % 

of the computations required by the AGE-2D method (see table 6.6). However in 

most experiments it even requires much less than that, with savings up to 83 % 

achieved in some cases, see table 6.8. 

The other improvement on the AGE-2D is in the overall parallelism. To appreciate 

that we note that for the execution of one single AGE-2D iteration, we require four 

sub-iterations of the solution to be done in sequence (see equations 4.98). We also 

note that the method requires the evaluation of the vector representing the right 
hand side (i. e. vi, i=1, ... 4) in each of the equations of ( 4.98 ) before evaluat- 
ing explicitly the sub-iteration solution vectors up+# = (G; + sI)'lvj. This means 

that there are two sets of computations to be done in sequence or two synchroniza- 

tion points at each sub-iteration level. This brings to eight the total number of 

synchronization points per each AGE-2D iteration. 

We note here that the pairs of computation sets at the second, third, and fourth 

sub-iteration levels can be combined easily into one set at each level. This can 
be done by replacing the implicit (second, third, and fourth equations of ( 4.98 ) 

respectively by the following explicit equations: 

of+l/a = (G2 + sI)-1Gsu; + s(G2 + sl)-lu*+1/4 

UT+3/4 = (G3 + sI)-1G3U* + s(G3 + sI)-1Uf+1/2 

u*+1 = (G4 + sI)-1G4ur + s(G4 + sl)-lUr+3/4 (6.6) 

Each of the above equations can be evaluated by one set of computations. This 

brings down the total number of synchronization points to five per each full AGE-2D 
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iteration but will increase the number of computations required for each iteration. 

Hence the total number of synchronization points involved at every time step when 

applying the AGE-2D method is (8 * NIT + 1) or at best (5 * NIT + 1), NIT being 

the total number of iterations required. One set is added in each case to account 
for the set of computations required for evaluating the R. H. S. of ( 4.93 ). 

On the other hand, the number of synchronization points involved in applying the 

EAD method, depend only on the total number of AGE-1D iterations (NIT) at 
the two ADI levels, and on the number of synchronization points involved in each 
AGE-1D iteration. 

The Algorithm for AGE-1D as given by equations ( 6.5 ) involves three computation 

sets to be done in sequence: one for evaluating the vector z1, the second for evaluat- 
ing the vector z2 representing the RHS of the second equation in ( 6.5 ) and thirdly 

for evaluating uP+l = (G2 + sI)-1z2. This brings the total number of synchroniza- 

tion points to (3 * NIT + 2). Two more synchronization points are added to account 
for the two computation sets required for evaluating the R. H. Ss of equations (6.3 ) 

and(6.4). 

We note here also that the second equation of ( 6.5) can be evaluated in one set of 

computations using the following explicit replacement: 

ur+' = [(G2 + sI)-'d, - (G2 + sI)-'(Gi - sI)(GI + sI)-lzl] (6.7) 

This will reduce the total number of synchronization points to (2 * NIT + 2), but it 

increases the number of multiplications required each iteration. 

Tables 6.2,6.4,6.6,6.8 and 6.10 show throughout that the EAD methods involve 

a much smaller number of , Synchronization poinhs than the corresponding 
AGE-2D method. This reduction is on average much more than half, and nearly 
three quarters of the total number of s jnchronizabon poinEs,, This broadly 

implies that the overall parallelism of the EAD method is better than that of the 

AGE-2D method. 

Finally we comment that the tables show that the computational cost of the EAD- 



142 

PR method is (except for table 6.10 a) very close and sometimes considerably less 

than that of the EAD-DR method. Also for the latter method the values of the 

solution at the explicit time level t should also be retained for use at the second 
ADI level, which means that it requires an extra storage of one vector more than 

the EAD-PR solution. This always justifies, the use of the more accurate EAD-PR 

method always for the two dimensional problems. We also note that the results 

obtained for the AGE-2D method in the above comparison are extracted from [20]. 

6.2.2 A hyperbolic problem 

The EAD method can also be applied to a hyperbolic problem. This is the linear 

two dimensional advection equation given by: 

öü äü äü 

at -- äx1- x2 
defined in Rxt>0, where Q is a rectangular region defined by: 

Sli=(xl, x2); 0 <xl <Land0<x2<M, 

subject to the initial conditions: 

x0 ü(x1, x2,0) = 
e'+_ ' (X17 x2, t) EW 

and where ü(xl, x2, t) is specified at the boundary OR of R as: 

ü(X1, x2, t) _ 
M, e; 

in. 03i xt>0 

(6.8) 

To obtain the numerical solution of the above problem we cover the domain with the 

grid mesh described in section 4.5. A Crank Nicholson type difference approximation 
to the above equation is given as: 

[1 -ý- 
2rÖx, 

-ý- 
2röx, JÜý+1 = [1- 2röz, 

- 2röx, ]U,? (6.9) 

where r is now 2h. 
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When equation ( 6.9 ) is applied to the totality of meshpoints inside SJR, a normalized 

system (i. e. divided by z r) having exactly the same structure as ( 4.93 ) is obtained, 

but with al = 1, a2 = -1, and b=*. This system is then solved using the AGE-2D 

method. On the other hand the EAD-PR method is applied to solve the above 

problem, where we use the ADI-PR scheme which is now given as: 

(1+1 rb. � 
)Üj _ (1-1rbX3)Üi 

22 

(1 + 2rös, )Ü 1= (1 - 
2rbx, )Ü (PR) (6.10) 

When applied to the totality of the meshpoints, the pair of equations ( 6.10 ) give 

rise to two systems having the same structure as ( 4.25 ) and ( 4.26 ) which are to 

be solved in sequence. If these systems were normalized (i. e divided by 
Zr 

) we then 

get the equivalent systems given by equations ( 6.3 ) and ( 6.4 ), but with at = 1, 

a2 = -1 and b=T. These systems are then solved using the AGFJD iterative method 

as explained above for the parabolic problem. The cost of calculating the R. H. Ss of 

equations (6.3 ) and (6.4 ) and that of equation ( 4.93 ) is the same as that given 

above for the parabolic problem where the corresponding PR and CN methods were 

used. The costs per each AGE-2D iteration and AGE-1D iteration are also the same 

as in the parabolic problem. 

Tables ( 6.11 ) and ( 6.12 ) give the results obtained by the AGE-2D method and 

the EAD method together with the computational work involved. It can be clearly 

seen that the EAD method again proves to be far less demanding in computational 

work (needs only 25 % of the computational requirements of the AGE-2D method) 

and involves a smaller number of sequential sets of operations than the AGE-2D 

method. 
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RESULTS AFTER 30 TIME STEPS. The EAD method Gst - Aso -hs0.1. tiro. at.. i-0.05_ m.. h -ti- f &1 
- _5 e- 10-6 -e-l- . mann. aO f3.1_ 4.41 

S2- .1 .2 .3 .4 .5 .6 .7 .8 .9 0-1 Exact . 49319 . 51913 . 54779 . 57947 . 61448 . 65317 . 69593 . 74318 . 79541 

umer. . 48242 . 52143 . 54015 . 56252 . 60924 . 65627 . 69255 . 74530 . 79419 

percentage error 2.18 % 
. 44 % 1.4 % . 53 % as % 

. 47 % . 48 % . 28% . 15 % 
xZ = 0-5 Exact 

- - 
. 61N8 . 64041 . 66907 . 70075 . 73576 . 77445 . 81721 . 86446 . 91669 

17u mer. . 60924 . 64198 . 66431 . 70314 . 73108 . 77684 . 81241 . 86594 . 91197 

percentage error as % 
. 24 % 

. 71 % . 34 % . 64 % . 31 % 
. 59 % 

. 17 % 
. 31 % 

X2 = Exact . 79541 . 82134 . 85001 . 88168 . 91669 . 95538 . 99814 1.04540 1.09762 

Numer. . 79419 . 82233 . 64709 . 88319 . 91197 . 95683 . 99175 1.04637 1.08972 

percentage error is % . 12 % 
. 34 % AT % . 51 % . 15 % . 64 % . 09% . 72 % 

Average of all absolute errors 0.5% Number of iterations 4/4 
No. (in men) of +&* operations 40+; 32" Total (in men) of +/e operations 78 

Computational cost w. r. t. AGE-2D 25 % No. of points of synchronization 26 

RESULTS AFTER 30 TIME STEPS. The AGE-2D method As. : Asn ah0.1. e:..... e... w. n nt ..... w ...:.. ! ýF. 1 c. .. tnýd .. ý. t ...... ý... .c la ii nt 

XZ = 0.1 Exact . 49319 . 51913 . 54779 . 57947 . 61448 . 65317 . 69593 . 74318 . 79541 

umer. . 49011 . 48479 . 54534 . 56556 . 59820 . 65688 . 69104 . 74998 . 79387 

percentage error . 62 % 6.61 % . 49 % 2.4 % 2.65 % S7 % . 70 % . 12% . 19% 

x2 = 0-5 Exact . 61448 . 64041 . 66907 . 70075 . 73576 . 77445 . 81721 . 86446 . 91669 

Numer. . 62054 . 65015 . 64974 . 71164 . 72752 . 76206 . 82168 . 86193 . 90955 

- 
percentage error . 99 % 1.52 % 2.89 % 1.55 % 1.12 % 1.6 % . 55 % . 29 % . 78 % 

xQ = 0-9 Exact . 79541 . 82134 . 85001 . 88168 . 91669 . 95538 . 99814 1.04540 1.09762 ý 
umer. . 79441 . 82371 . 84716 . 88370 . 91258 . 95869 . 99499 1.05419 1.09559 

percentage error . 12 % 
. 29 % 

. 33 % 
. 06 % 

. 43 % 
. 35 % 1.32 % 

. 18 % 
. 72 % 

Average of all absolute errors 1.0% Number of iterations 9 
No. (in rose) of + Se e operations 135+; 171. Total (in man) of . /e operations 311 

Computational cost w. r. t. AGE. 2D 100 % No. of points of synchronization 73 

Table 6.11: The absolute percentage errors of the solutions to the model 
2D advection problem, as obtained by the AGE-2D method and the EAD 

method, at t=1.5. 
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Method CN 

EAD AGE-2D 

Average of all absolute errors 0.5 % 1.0 % 

Number of iterations 4/4 9 

No. (in mxn) of +&* operations 40+; 32* 135+; 171* 

Total (in mxn) of +/* operations 78 311 

Relative cost w. r. t. AGE-2D 25 % 100 % 

No. of points of synchronization 26 73 

Table 6.12: Average of absolute errors, number of iterations, and the computational 

work involved in the experiments of table 6.11. 
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6.2.3 The EAD method with an LOD scheme component 

It has been stated that the EAD method may be composed of the AGE-1D method 

and other alternating direction schemes rather than the ADI method. In this sub- 

section we consider replacing the ADI component of the EAD method for the heat 

conduction problem given above with the following LOD scheme: 

(1 
- rSsl )Ü ý= Unj + k4(x1, X21 t+1 

2 
(1 - rö2 uln+l =Ü (6.11) 

The results obtained by this EAD-LOD method appear in tables 6.1... 6.4, and 

in tables 6.5... 6.10 . It can be seen that compared to the EAD-DR scheme, the 

EAD-LOD scheme requires generally more computational work, although it needs 

one vector less of storage, since the values of U, ä do not need to be retained for the 

second equation of ( 6.11 ) while they need to be saved for the second equation of 
(6.2). 

6.3 The EAD fully iterative method 

In this section we represent the EAD fully iterative method (see figure 6.1-right) as 
it may be applied to time dependent problems (parabolic and hyperbolic) and as it 

may be applied to elliptic problems. For time dependent problems of two dimensions 

or more the EAD fully iterative method described in this section uses the respective 

conventional fully implicit or Crank Nicholson schemes rather than using the 

different ADI perturbations of these schemes. It then solves the resulting system of 
difference equations by using an inner AGE-1D iteration procedure within an outer 
ADI iteration procedure (fig 6.1-right). The same principle is applied when solving 
boundary value problems. The method is illustrated in the following subsections. 
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6.3.1 A two dimensional hyperbolic problem 

We consider the same two dimensional advection problem described in the previous 

section. If we apply a Crank Nicholson type scheme to the alert mentioned problem 

we again end up needing to solve a system of difference equations which is given by 

(4.93 )whereat=1, a2 = -1, and b=f. 

We then split the coefficient matrix A such that: 

A=H1+Vi (6.12) 

where Hl and Vi has the same form as H and V of equations ( 4.25 ) and ( 4.26 

but with: 

al =1 and a2 = -1 and b=1. 
r 

and then solve ( 4.93 ) using an ADI iterative algorithm in a manner usually applied 
in solving systems arising from boundary value problems, i. e., we solve: 

(Hi +pI)u*' = b-(Vi-pI)u' 

(V1 + pI)u** =b- (Hl - pI)u* (6.13) 

or more conveniently: 

(Hi+pI)u* =b- (Vi - pI)up 

(Vi + pI)u** = (Vi - pI)u* + 2pu* (6.14) 

where p is an iteration parameter. Each of the systems in ( 6.14 ) is then solved 

using the AGE-1D method as given by (6.5 ) in which consecutively Gl and G2 are 
determined by the appropriate splittings: 

HI +pI=GI+G2 (6.15) 

and 

Vi+pI=G1+G2. (6.16) 
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RESULTS AFTER 30 TIME STEPS. The EAD fully iterative method 
Convergence occured after 4 ADI iterations each involving 1/1 AGE iterations. 
As, an As, as ha0.1. timen . ten k se 0.05. meah ratio (IL1 a . 5: a= 10'6 accel. carom. e9 13.6.4.41 

22 s .1 .2 .3 .4 .5 .6 .7 .8 .9 
X2 = 0-1 Exact . 49319 . 51913 . 54779 . 57947 . 61446 . 65317 . 69593 . 74318 . 79541 

unier. . 48244 . 52147 . 54017 . 58256 . 60924 . 65631 . 69253 . 74534 . 79418 

abs. error 
. 01076 . 00234 . 00762 . 00310 . 00524 . 00314 . 00340 . 00215 . 00123 

percentage error 2.18 % . 45 % 1.4 % . 53-% as % . 48 % . 48 % . 29 % . 15 % 

X2 = 0-5 Exact . 61448 . 64041 . 66907 . 70075 . 73576 . 77445 . 81721 . 86446 . 91669 

unier. . 60924 . 64197 . 66430 . 70313 . 73106 . 77682 . 81242 . 86592 . 91197 

a s. error . 00524 . 00155 . 00477 . 00238 . 00467 . 00238 . 00479 . 00146 . 00472 

percentage error as % . 24 % . 71 % . 34 % . 83 % . 31 % . 59 % . 17 % . 51 % 

X2 = xaC 
. 79541 . 82134 . 85001 . 88168 . 91689 . 95538 . 99814 1.04540 1.09762 

Numer. . 79418 . 82230 . 84709 . 88317 . 91197 . 95681 . 99176 1.04636 1.08973 

a Ys. error 
. 00123 . 00096 . 00292 . 00149 . 00472 . 00143 . 00638 . 00096 . 00789 

percentage error . 15 % . 12 % . 34 % . 17 % . 51 % . 15% . 64 % . 09% . 72 % 

Table 6.13: The absolute and percentage errors at t=1.5 of the solutions to the 

model 2D advection problem, as obtained by the EAD fully iterative method, when 

a CN type difference scheme is applied. 

where in ( 6.15 ) Gl and G2 are as given in equation ( 4.100 ), while in ( 6.16 ) they 

have a structure similar to that of G3 and G4 respectively. In both cases al = 1, 

a2 = -1 and c= 49 = (zr +, 2P- 
). We thus have an outer ADI iteration procedure 

and an inner AGE-1D iteration procedure in the EAD fully iterative method. 
However it is recognized that as each new iteration of the ADI algorithm ( 6.14 ) 

is only an enhanced approximation to the required solution we can do with non 

exact values of u* and u** in ( 6.14 ) and thus do only one inner AGE iteration. 

Table 6.13 shows the results after 30 time steps when the method is applied. 

The EAD fully iterative method 

Average of all absolute errors 0.5 % 

Total (in mxn) of +&* operations 60+ & 41* 

Total (in mxn) of +/* operations 101 

Relative cost w. r. t. AGE-2D 32 % 

No. of points of synchronizations 26 

Table 6.14: Average of absolute percentage errors, number of iterations, and the 

computational work involved in the experiments of table 6.13. 
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The accuracies of the EAD method and the EAD fully iterative method are similar. 

We note that calculating the R. H. S of the first equation in ( 6.14 ) requires mit 

multiplications and 3mn additions, and that of the second equation requires mit 

multiplications and mit additions. This has to be done for each iteration. Table 6.14 

gives the total computational cost of this EAD method for this problem. It can be 

clearly seen that for such a problem ( also expected for all 2D time dependent 

problems) the EAD fully iterative method is not better than the EAD method 

although it is still much more economic than the AGE-2D method. The advantage 

of the EAD fully iterative method is however that it can be easily extended to solve 

the 3D problems which employ the unconditionally stable CN scheme while the EAD 

method cannot apply a 3D version of the PR scheme due to the stability restrictions 

as is shown in the next section. 

6.3.2 A three dimensional Parabolic Equation 

In this subsection the EAD fully iterative method is applied to the three dimensional 

heat-conduction equation which is given as: 

äü 
_ 

02ü ä2ü ä2ü 

ät äxi + äxz +äx3 + q(xl, mss, mss, t) (6.17) 

defined over the domain given by R1 = [0 < x1, x21 x3 < 1], t>0, with the initial 

conditions : 

ü(xl 
t x2, x39 0) - 91 (x1, x2) x3) (6.18) 

where (xl, x2, x3) E SJRI , and the boundary conditions: 

u(Xly x2, X3, t) 
- 

f1(x1, x2, x3, t) (6.19) 

where (xl, x2i x3, t) E Mi x (t > 01 . 

We cover X21 with a uniform mesh of gridpoints with spacings hl, h2, and h3 in the 
directions parallel to the axes xl, x2, and x3 respectively, whereby for simplicity we 
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take hl = h2 = h3 = h. The meshpoints indices in the x1, x2, and x3 directions are 

i, j, and k respectively, where 0<i, j, k<m+1. Thus h= 1/(m + 1). The index 

for the time direction is n. The mesh ratio is given as r= k/h2, k being the time 

increment. A weighted finite difference approximation to ( 6.17 ) is given by (with 

0<0<1): 

[1- Orb., - Orb! - Brbx3l U jk1 = 

[i + (1 - O)rbx, + (i - O)rbx, + (i - O)rbs2 jUj k+ kq(xi, x2, x3, t) (6.20) 

where 0 equals z and 1 for the Crank-Nicholson and the Implicit schemes 

respectively. For solving the above heat equation, it is established that such 

schemes are unconditionally stable. If equation ( 6.20 ) is divided by Or and 

applied to the totality of meshpoints P; j, k (ordered in the natural sequence of 
P111,1, P2,1,1, 

... 
Pm,, l, l, ... , 

Pi, 2,1, .... 
Pi, 

m, l, ... , 
Pi 

, 2, ... , 
P{J, 3, ... , 

Pj, 1, *rº 
) at each 

time step, it leads to a normalized system of finite difference equations of order 

m3. Without loss of generality, we here choose m to be odd. This system is given 

as: 

Au'+i =f (6.21) 

where f is a known vector of order m3 consisting of the boundary values, the source 

term values at each point, and the solution values at the time level u". The vector 

un+l is the solution vector which is to be calculated for the time level n+1. The 

coefficient matrix A is nonsingular and has the form: 

A2 -12 

12 0 
A- . 

0 
-42 

-12 
A2 

m3Xm3 



151 

where 12 is an identity matrix of order m2, and A2 is a block matrix given as: 

Al -I, 

-I1 0 
A2 = 

.. -I1 

-I, Al m2Xm2 

where Il is an identity matrix of order m, and Al is given as: 

C -1 
-1 

O 

A1= 

-1 C 
mxm 

with c= (6 + ä). The AGE iterative method which was formulated by [22] for 

solving ( 6.21) consists of splitting A into six matrices G1, G2, G3, G4i G5 and G6 

such that: 

A= GI+G2+G3+G4+G5+G6 (6.22) 

where we have: 

Gl + G2 =H= diag(H2) (6.23) 

with H2 = diag(Hj), Hl being of order m, and given as Hl = diag(-1, c/3, -1). 

and 

G3+G4=V=diag(V2) (6.24) 

where V2 = diag(-Il, VI, -Il) is of order m2. The matrix Vi is of order m and is 

given as V1 = diag(c/3). 

Also G5 and G6 are given such that: 

Gs + G6 =W= diag(-I2,3I2, -I2) (6.25) 
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Gl and G2 are now given respectively as: 

Gl = diag((%) and G2 = diag((%) 

where 

Gl = diag(Ti) and G2 = diag(T2) 

Tl and T2 are given respectively as: 

c/6 

c/6 .1 

-1 c/6 
Ti = 

c/6 -1 

-1 c/6 
and 

c/6 -1 

-1 c/6 

T2 = 

c/6 -1 

-1 c/6 
c/6 

The matrices G3 and G4 are given as: 

G3 = diag(G3) and G4 = diag(G4) 

where G3 and G4 are given respectively as: 

T2 

0 
G3 = 

Tz 

6`1 m2Xm2 

(6.26) 

(6.27) 

(6.28) 
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and 

CI 61 

T2 0 
G4 . (6.29) 

O 
T2 

M2 XM2 

where 

sjl Il 
T2 = 

_A1 6I1 
2mx2m 

Simlarily G5 and G6 are given respectively as: 

T3 

0 
Gs = (6.30) 

T3 

C 12 
m3Xm3 

and 

C sr2 

T3 0 
G6 = (6.31) 

O 
T3 

m3xm3 

where 

I2 `I2 

C 2 6I2 

J2m2X2m2 

with I2 as defined above. It can be seen that the inversion of the matices, G1, G2, G3, 

G4, G5 and G6 is simply a matter of inverting their respective constituent 2x2 

matrices, or 2x2 block matrices. They are therefore easily invertable matrices. 
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The AGE method for this three dimensional problem; henceforth referred to as 

AGE-3D is a six level iterative formula given as: 

(Gl + sI)u; +l/6 = (sI - G, - 2G2 - 2G3 - 2G4 - 2G5 - 2G6)ur + 2f 

(G2 + sI)ur+2/6 = G2ur + sup+1/6 

(G3 + sI)Ur+3/6 = G3UT + SUT+2/6 

(G4 + SI)Ur+4/6 = G4Up + SU*+3/6 

(Gs + SI)Uf+5/6 = G5 Up + SUT+4/6 

(C6 + sI)uv+' = G6uv + suT+5/6 (6.32) 

where the suffix `r' under the solution vector indicates a rowwise ordering of the 

components, and s is the acceleration parameter. The first equation of ( 6.32) can 

also be written as: 

(G1 + sI)u; +'1s = (G1 + sI - 2A)ur + 2f (6.33) 

It is to be noted here that if when solving for the third and fourth sub-iterations, 

and the fifth and sixth sub-iterations, the components of the solution vector were 

ordered rowwise along the x2 axis and along the x3 axis respectively, then G3, G4 

and G5, G6 will have the forms as Gl and Gz. Also with such a change in the 

ordering of the unknowns, the matrices V and W( defined by equations ( 6.24 ) and 
( 6.25 ) respectively) will have the same form as H defined by equation ( 6.23 ). 

Thus for the AGE-3D method, the solution is obtained by iterating equation ( 6.32 ) 

in six stages until convergence is obtained. 

We now present the EAD iterative method for the above three dimensional prob- 
lem. This consists again of applying the finite difference approximation ( 6.20 ) as 
described above to obtain the same system given*by equation( 6.21 ). i. e. we use an 

unconditionally stable finite difference scheme. We then split the coefficient matrix 

A such that : 

A=H+V+W 
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and proceed to solve ( 6.21 ) by applying an outer three levels ADI iterative 

technique given by the following equations: 

(H + pI)un+s/s = (p -V- W)up +b 

(V + pI)up+4/6 = (p -H- W)up+z/6 +b 

(W + pI)ur+i = (p -H- V)u'+4/6 +b (6.34) 

where H, V and W are defined in ( 6.23 ), ( 6.24 ), and ( 6.25) respectively, and p is the 

ADI iteration parameter. Each of the equations of ( 6.34 represents a tridiagonal, 

or block tridiagonal system which is then solved by the AGE-1D method, in what 
is referred to as the inner iterative process in the EAD fully iterative method. 

To do this we redefine G1, G2, G3, G4, G5, and G6 given above as follows: 

G; = G; -1- 
2Ii=1,... 6 (6.35) 

We then do the following splittings: 

(H+pI)=GI +G2 

(V+pI)=G3+G4 

(W+pI)=Gs+G6 

where G; are the newly defined matrices. The AGE-1D algorithm which is applied 

at each of the three ADI levels of equation ( 6.34) to solve for UP+2/6, up+4/6 , and 

up+l is that given by equation ( 6.5 ) i. e : 

(G1 + sI)up+l/2 = dl - 
(G2 - sl)u' =z 

(G2 + sI)up+l = [dl - (G1 - sl)(Gi + sI)-lzj (6.36) 

where uP+l corresponds to the required iterations of the solution up+2/s, up+4/6, and 

up+l at the first, second and third ADI levels respectively. Also uP+1/2 in ( 6.36) 

refers also respectively to some intermediate values, i. e up+l/s, uv+3/6, and up+a/s. 

Again with the same reasoning as put forward in the case of the 2D hyperbolic case 

earlier, (i. e, because each new iteration of equation ( 6.34 ) is only an enhanced 
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approximation to the required solution, we can therefore use non exact values of 

ur+2/6, up+4/6 and up+l in equation ( 6.34 ) and do only one inner AGE4D iteration). 

The solution is obtained for the above problem by the EAD fully iterative when 

the outer ADI iteration procedure converges. The EAD fully iterative method 

requires at each ADI level the calculation a RHS of one of the equations of ( 6.34 ). 

This requires m3 multiplications and 5m3 additions. This is added to the cost of 

4m3 multiplcations and 5m3 additions required by each iteration of the AGE-1D 

algorithm given by ( 6.5 ). This makes a total of 5m3 multiplications and 10m3 

additions for each ADI level or 15m3 multiplications and 30m3 additions for each 
full EAD iteration. This is compared with the cost of 24m3 multiplications and 23m3 

additions for a full AGE-3D iteration given by equations ( 6.32 ). We also make the 

following count on how many synckronizC&ion_ ppinEs Eke meil, od Involves 

to examine broadly the overall parallelism of each method. We note that for a single 

AGE-3D iteration, we require six sub-iterations of the solution to be done in sequence 
(see equations ( 6.32 ). The evaluation of the vector representing the right hand side 
(i. e. vi, i=1, ... 6) in each of the equations of ( 4.98 ) has to be performed before 

evaluating explicitly the sub-iteration solution vectors u"+I = (G; + sI)'lvi. This 

implies that there are two sets of computations to be performed in sequence at each 

sub-iteration level. This brings the total number of - 
SyChrO U zatiorny po.. n ES. 

to twelve per each full AGE-3D iteration. We also note here that the pairs of 

computation set at the second, third, fourth, fifth, and sixth sub-iteration levels can 
be combined easily into one set at each level. This can be done by replacing the 

implicit (second, third, fourth, fifth, and sixth equations of ( 6.32 ) respectively by 

the following explicit equations: 

u*+2/6 = (G2 + sI)-'Gsu; + s(G2 + sl)-pup+1/6 
ur+3/6 = (G3 + sI)-1G3uT + s(G3 + sI)-1V*+2/6 

ur+4/6 = (G4 + sl)-'G4uf + s(G4 + sl)-IUp+3/6 
u*+5/6 = (G5 + sI)-'Gsur + s(Gs + sl)-lu*+4/6 

ur+l = (G6 + sl)-'G6u* + s(G6 + sI)-'uP+5/6 (6.37) 
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Each of the above equations can be evaluated by one set of computations. This will 

increase the number of computations involved in one full AGE-3D iteration, but 

will bring down the number of syncihrpnizokior% poinIS to seven sets per 

each iteration. We note that the first equation of ( 6.32 ) is much more complicated 

than the second, third and the fourth, fifth, and sixth and is thus more difficult to 

evaluate it explicitly. Hence the total number of Synchronization p&J1 Es 

involved at every time step when applying the AGE-3D method is (12 * NIT + 1) 

or at best (7 * NIT + 1), NIT being the total number of iterations required. One ? 61nE 

is added in each case to account for the set of computations required for evaluating 

the R. H. S. of ( 6.21 ). 

On the other hand, when applying the EAD fully iterative method, we require one 

set of operations to evaluate the R. H. S at each ADI level, and ( see page 141) three 

sets of operations to execute one AGE-1D iteration in that level, if the algorithm 

given by ( 6.36 ) is used. This makes a sum of 4 sets of computations at each ADI 

level, or a total of 12 sets for the execution of a full iteration of the EAD method. 

It is also noted before (see page 141) that every one AGE-1D iteration at each ADI 

level may be executed in only two sets of computations. This will again increase the 

number of computations to be done for each AGE-1D sub-iteration but will diminish 

the number of sets of computations which are to be done in sequence. The total 

number of sjnckronizo±ion pnin s for the EAD fully iterative method is 

(12 * NIT -{-1), or at best (9 * NIT + 1), NIT being the total number of iterations 

required. Again one set is added in each case to account for the set of computations 

required for evaluating the R. H. S. of ( 6.21 ). In the following experiment we do not 

attempt to reduce the number of, S3 n6%ronizo, (. iort p6i aLs. We compare between 

the two methods by the following experiments equation where the source function 

q of equation ( 6.17) is given as: 

q(xl, x2, x3, t) _ (31r2 -1)sin(irxl) sin(7rx2) sin(irx3) exp(-t) (6.38) 

and the functions defining the initial and boundary conditions are: 

gl (xl, x2, x3i 0) = sin(rxi) sin(7rx2) sin(1rX3) (6.39) 
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fl(xl, x2i x3, t) = sin(axl) sin(irx2) sin(ax3) exp(-t) (6.40) 

as derived from the following exact solution to equation ( 6.17 ): 

ü(24, x29 x3, t) = sin(irxl) sin(7rx2) sin(7rx3) exp(-t) (6.41) 

The results which are obtained by applying the EAD fully iterative, are compared 

with those obtained by applying the AGE-3D method as given in [22] where we 

use a grid having 39 internal meshpoints along each of the directions x1, x2, and 

x3, thus making the space step h=0.025. Also a time step k=3.125 x 10'5 is 

chosen, thus giving a mesh ratio of 0.05. These results are shown in tables 6.15 and 
6.16. Table 6.15 shows that the EAD fully iterative method converges much faster 

than the AGE-3D method (about four times faster). This fast convergence produces 

an even better accuracy of the solution (although both methods use identical finite 

difference schemes) when the tolerence applied is not very small (e. g. C= 10-4). 

This is because a method which converges faster cuts down, on average, larger 

chunks of error in the solution vector every iteration, and is likely to make a higher 

reduction of the error in the solution vector before it converges. The small number 

of iterations for the EAD fully iterative also results in much less computational work 

to be done, and a smaller number of sequential sets of operations to be executed. 
Table 6.16 shows that the EAD fully iterative requires less than a quarter of the 

computations 1 needed by the AGE-3D method. It also shows that the number of 

sets of computations, to be pereformed in sequence is cut down to only a quarter 
by the EAD fully iterative method as compared with the AGE-3D method. This 

implies a significant superiority in the overall parallelism of the method. 

'This does not include the cost of calculating the RJLS of ( 6.21 ) which is the same for both 

methods, and is trivial compared to the sums in this table. 
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a) s2 : 0.025 , m3 = 0.025; 

mesh ratio 0.05,421 pst s Ax3 s 0.025, At s 3.125E - 05 ,t-3.125E - 05 ,ss 10- 

21 as . 025 . 50 0.975 No. of iterations Average of errors 

scheme 
IMF EAD 2.89E-08 3.14E-06 7.86E. 07 2 1.3E-06 

1.81E"06 3.89E-05 6.99E-07 9 2.4E-07 

2.98E-06 5.61E-07 5.14E-07 2 3.68E-08 

7.1E-08 1.41E-05 5.6E-08 9 4.72E-07 

Exact solution 0.000482996 0.006156022 0.000482996 """ """ 

b) 82 - 0.975 , 113 = 0.025; 

mesh ratio - 0.05, Gs1 s pst - Asa m 0.025, At m 3.125E - 05 ,t is 8.250E - 05 ,se, 10-4 

sl - . 025 . 50 0.975 No. of iterations Average of errors 

scheme 

EAD 4.32E-08 7.75E-06 1.62E. 06 2 2.71E-06 

7.0E-06 2.93E-04 7.02E-05 8 1.23E. 04 

4.35E-09 2.22E-06 1.04E-06 2 1.09E-06 

1.67E-06 2.16E-04 7.46E-05 9 7.5E"05 

Exact solution 0.000483011 0.006156214 0.000483011 """ "". 

c) sZ - 0.975 's3 a 0.5, 

mesh ratio - 0.05, Axt : &z2 - &z3 - 0.025, Gt - 3.125E - OS ,t ss 1.250E - 04 ,e- 10-4 

S1. . 025 SO 0.975 No. of iterations Average of errors 

scheme 

EAD 5.14E-06 2.54E-04 4.31E-05 2 1.0E-04 

9.58E-04 2. S9E-02 8.57E-04 8 9.2E-03 

1.4E-06 8.32E-05 2.56E-05 2 3.67E-03 

' 2.81E-04 2.16E-02 5.16E-04 8 7.4E-03 

Exact solution 0.006156599 0.078468904 0.006156599 "" ". 

d) 22 1 O. 5 . 23 a 0.5; 

mesh ratios 0.05, Ast I A22 I Asa s 0.025, At s 3.125E - 03 ,ts1.5625E - 04 ,es 10-4 

21 s . 025 . 50 0.975 No. of iterations Average of errors 

scheme 
IMF EAD- 6.6E-05 3.85E-03 6.56E-04 2 1.52E-03 

9.83E-03 1.88E-01 1.55E-02 8 7.1E"02 

7.82E-08 1.19E-03 3.79E-04 2 5.25E. 04 

3.95E-03 8.77E-02 3.89E-03 8 3.1E-02 

Exact solution 0.078471356 1.000156262 0.078471356 

Table 6.15: The absolute errors of the solutions by the AGE-3D and the EAD fully 

iterative methods to the model 3D heat conduction problem. 

Method IMP CN 

EAD AGE-3D EAD AGE-3D 

Number of iterations 2 6 2 6 
No. (in m3 ) of +&e operations 30+; 60e 164+; 192. 30+; 60e 164+; 192. 
Total (in m3 ) of +/e operations 90 376 42 376 

Computational cost w. r. t. AGE-3D 24 % 100 % 24 % 100 % 

No. of synchronization points 25 97 2S 97 

Table 6.16: The computational work involved in the experiments of table 6.15. 
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6.4 The EAD fully Iterative method for Elliptic 

problems 

In this section, the EAD fully iterative method strategy is applied in the solution 

of a boundary value problem. 

Consider the simple two dimensional Laplace equation given by: 

o2Ü ä2U- 
-X2 + ax2 =0 (6.42) 

defined over the domain RUaR. where R= [0 < X1, X2 < L], with the Dirichlet 

boundary conditions : 

ü(x1, x2) = fl(xbx2) (x1, x2) EOR (6.43) 

We cover t with a uniform mesh of gridpoints with spacings, hl, and h2, in the 

directions parallel to the axes x1, and x2 respectively, whereby for simplicity we 

take hl = h2 = h. We choose h such that we have an odd number m of gridpoints 

lying inside i along any line of the mesh along the x1 or x2 directions. We thus 

have h= L/(m + 1). 

A central finite difference replacement of the second order derivatives to 0(h2) 

accuracy in equation ( 6.42 ) gives : 

Tz [Sil + SsýjU$3 =0 (6.44) 

which leads to the following five point formula: 

-U; +,, 1- U+-,, j - Uij+i - U;, 1-i + 4U11 =0 (6.45) 

If we apply equation ( 6.45 ) to the totality of mesh points in i we obtain a symmetric 

system of difference equations given as: 

Au =b (6.46) 
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where A is a nonsingular square matrix of order m2 given by: 

Al -I, 

-Il 0 
A= 

0 -Iý 
-I, Al M2XM2 

where Ii is an identity matrix of order in, and Al is a matrix given as: 

4 -1 

A1= 
0 

-1 
-1 4 

mxm 

and b is the vector associated with the values at the boundaries. 

If the Peaceman-Rachford method is applied to solve the system ( 6.46 ) iteratively 

we need to split A into : 

A=H+V (6.47) 

and solve the following two systems in sequence: 

(H + PI)up+1/2 = (PI - V)up +b 

(V + PI)uv+i = (PI - H)u"+1/2 +b (6.48) 

where H= diag(H1), with Hl = (-1,2, -1) and V= diag(-Il, 2I1, -I, ), and pa 

chosen acceleration parameter. 

Equations ( 6.48 ) are equivalent to the following, less computationaly demanding, 

systems: 

(H + pI)up+i/s = (p1- V)up +b ='q 

(V + pI)up+i = (V - pI)up + 2pur+1/2 (6.49) 
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It is customary to solve each of the two systems in ( 6.49 ) using a direct method 

i. e Guassian elimination. 

The EAD fully iterative technique for solving ( 6.46 ) employs the Peaceman- 

Rachford method producing equations ( 6.49 ), but rather than using a direct tridi- 

agonal solver, it implements the AGE-1D algorithm given by (6.5 ) to solve each 

system in ( 6.48 ). There are three ways of implementing the AGE-ID within each 

ADI iteration here. 

Strategy I: One is to iterate the AGE-ID algorithm until it converges to the values 

up+1/2 and uP+l in ( 6.49 ), and this approach is referred to as strategy I. 

Strategy II: Another way is to apply only one sweep of AGE-1D within each ADI 

iteration, which is the strategy followed for the initial boundary value problems in 

subsections 6.3.1 and 6.3.2. This is referred to as strategy II, and is based on the 

reasoning that the values up+1/2 and uP+' in each ADI iteration of ( 6.48 ) are only 

enhanced values of the solution and need not to be computed exactly each time. 

Strategy III We note however that unlike the time dependent problems where 

the starting vector, representing the values at the previous time step, is close to 

the required solution, the starting vector here may be very far off the required 

solution. We therefore use more enhanced non-exact values of up+1/2 and uP+l, for 

the first ADI iteration by having three inner AGE-1D iterations. In subsequent ADI 

iterations only one sweep of the AGE-1D algorithm is used. This is strategy III. 

For strategy I convergence is expected for a low number of ADI iterations. However 

the computational cost for each ADI iteration of strategy I. kb compared to that 

of strategies II and III. 

In strategy III, it is expected that by having three sweeps of the AGE-1D algorithm 

in the first ADI iteration, a better starting vector will be provided for the subsequent 
ADI iterations and will thus result in a significant improvement in the convergence 

rate compared to strategy II, and thus save the computational cost further. Strategy 

III is thus recommended, and is henceforth meant whenever reference is made to 

the EAD fully iterative method for elliptic problems. 
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Tables 6.17 ... 6.20 give the numerical solutions to the Laplace equations by the 

EAD fully iterative method and a comparison of the computational costs of strategies 

I, II, and III. It is clear that strategy III is most desirable, requiring about 43 % 

and 72 % of the computational cost of strategy I in the first and second experiments 

respectively. 

The counts for the number of additions/subtractions and multiplications is done 

as follows. The cost of calculating the right hand side of the first equation in 

( 6.49 ) is easily worked out as m2 multiplications and 3m2 - 2m additions. The 

operations count for calculating the rhs of the second equation in ( 6.49 ) is m2 

additions and m2 multiplications. This makes the total for both right hand sides 

2m2 multiplications and 4m2 - 2m (= 4m2) additions or 6m2 (+/ x) operations. To 

this we add the cost of solving each block tridiagonal system at each of the levels 

in every ADI iteration. This depends on the number of sweeps of the AGE-1D 

algorithm of ( 6.5 ) applied at each ADI level in each iteration. Each sweep costs 

5m2 additions and 5m2 multiplications or 10m2 (+/, )() operations. 

For strategy II, we have only one sweep of the AGE-1D algorithm in each of the two 

ADI levels. This together with the costs of calculating the right hand sides in ( 6.49 ) 

make the total cost for strategy II equal to (20m2 + 6m2)NIT, or (26m2NIT) opert cnS, 

where NIT is the number of ADI iterations needed for the solution to converge. 

For strategy III, the cost is (60m2+20m2(NIT-1)+6m2NIT) or 26m2NIT+40m2ope 0flS. 

For strategy I the number of sweeps of the AGE-1D algorithm, required in each 
ADI iteration starts high and drops to 1 at the final ADI iteration. The average 

number of sweeps per each ADI level is denoted by p and is given in brackets for 

the respective experiments in tables 6.18 and 6.20. The total cost for strategy I is 

thus (20m2#NIT + 6m2NIT ). 

Experiment 

Consider the above Laplace equation where the Dirichlet conditions at the bound- 

aries are given as follows: 

ü(xi, 0) = ü(xi, L) = f(xi) = xi(xi - L) 
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ü(O, x2) = ü(L, x2) = g(x2) = x2(L - x2) (6.50) 

The exact solution of such a problem is unique and is given by: 

ü(xl, x2) = xl(xl - L) + x2(L - x2) (6.51) 

By discretizing the problem as described above, we arrive at the system ( 6.46 ) 

where the vector b is given as: 

b= 9(x2(1)) + f(xi(1)), f(xl(2)), 
..., 

f(xi(m - 1)), 9(x2(1)) + f(x1(m)); 

9(x2(2)), 0, ... , 0,9(x2(2)); .... 9(x2(m - 1)), 0, ... 9 0) 9(x2(m - 1)); 

f (xi(1)) + 9(x2(m)), f (xl(2)), 
... ,f 

(xi(m -1)), f(xi(m)) + g(x2(m))]T 

We follow the same steps above for ( 6.49 ) which is rewritten here as: 

(H + pI)uv+1I2 = API - V)up +b =q 

(V + pI)up+i = (V - pI)uP + 2pur+i'2 (6.52) 

The term denoted by vector a above may be stored after being calculated to be used 
in the second equation of ( 6.49 ) to save work. Alternatively, we note from the first 

equation of ( 6.49 ) that : 

(V - pI)u" =6- q (6.53) 

Therefore, we may replace the second equation in ( 6.52 ) by : 

(V + pI)up+i =b-q+ 2pup+1/2 (6.54) 

This costs an extra m2 additions/subtractions, but saves the need for the extra 

storage of the vector a, and reduces by one the number of synchronization points in 

the execution of each ADI iteration. 
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Axi = Axe = . 027, e= 10'6 

XI = . 027 . 136 . 245 . 354 . 463 . 572 

xz = . 027 

Anal. . 0000000 . 0912397 . 1586777 . 2023140 . 2221488 . 2181818 
Numer. -. 0000012 . 0912400 . 1586780 . 2023139 . 2221488 . 2181815 

error 1.2E-06 3.1E-07 3.6E-07 1.7E-07 4.9E-07 2.7E-07 

X2 = . 245 

Anal. -. 1586777 -. 0674380 . 0000000 . 0436364 . 0634711 . 0595041 

Numer. -. 1586772 -. 0674367 -. 0000009 . 0436360 . 0634700 . 0595038 

error 4.9E-07 1.3E-06 9.0E-07 3.2E-07 1.0E-06 3.4E-07 

X2 = . 464 

Anal. -. 2221488 -. 1309091 -. 0634711 -. 0198347 . 0000000 -. 0039669 

Numer. -. 2221480 -. 1309059 -. 0634672 -. 0198317 . 0000016 -. 0039666 

error 7.8E-07 3.1E-06 3.9E-06 3.0E-06 1.6E-06 3.6E-07 

Table 6.17: The absolute errors of the solutions to the Laplace equation, as obtained 
by the EAD fully iterative method, strategy III for h= 6/210. 

The computational cost for different strategies of the EAD fully iterative method. 
Strategy I Strategy II Strategy III 

ADI/ AGE parameters p=0.4&s=1.0 p=0.3&s= 1.0 p=0.3&s=1.0 
No. of ADI/ AGE iterations 28 (4.8) 69 (1/1) 1 (3/3) & 45(1/1) 

Average of absolute errors 6.3E-07 3.8E - 06 1.26E-06 
Total number of (+/x) in m2 2856 1794 1236 

Table 6.18: The computational cost of the three possible strategies of the EAD fully 

iterative method for the experiment of table 6.17 
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0x1 = Ox2 = . 0375, E= 10-6 

XI = . 037 . 15 . 26 . 37 . 49 

xi = . 037 

Anal. 
. 0000000 . 0914062 . 1575000 . 1982812 . 2137500 

Numer. 
. 0000003 . 0914072 . 1575013 . 1982825 . 2137507 

error 2.7E-07 9.6E-07 1.3E-06 1.2E-06 7.1E-07 

xl = . 262 

Anal. -. 1575000 -. 0660938 . 0000000 . 0407812 . 0562500 

Numer. -. 1574985 -. 0660886 . 0000070 . 0407877 . 0562538 

error 1.5E-06 5.1E-06 7.0E-06 6.4E-06 3.8E-06 

xl = . 487 

Anal. -. 2137500 -. 1223438 -. 0562500 -. 0154688 . 0000000 

Numer. -. 2137491 -. 1223406 -. 0562458 -. 0154648 . 0000023 

error 8.9E-07 3.1E-06 4.2E-06 3.9E-06 2.3E-06 

Table 6.19: The absolute errors of the solutions to the Laplace equation, as obtained 
by the EAD iterative method, strategy III for h= 6/160. 

The computational cost for different strategies of the EAD fully iterative method. 
Strategy I Strategy II Strategy III 

ADI/AGE parameters p=0.7ands=l. 0 p=0.9&s= 1.3 p=0.7&s=1.4 
No. of ADI/ AGE iterations 24(3/3) 46 (1/1) 1(3/3) & 42(1/1) 

Average of absolute errors 3.2E - 06 3.6E - 06 3.3E-06 

Total number of (+/x) in m2 1604 1196 1158 

Table 6.20: The computational cost of the three possible strategies of the EAD fully 

iterative method, for h= 6/160. 
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Two experiments for solving the above problem with different mesh sizes are carried 

out. For both experiments we choose L=0.6. We also choose m= 20 for the first 

experiment, tables 6.17 and 6.18, and m= 15 for the second experiment, tables 6.19 

and 6.20, thus giving the mesh sizes h=0.6/21 and h=0.6/16 respectively. 

6.5 Convergence analysis of the EAD fully iter- 

ative method 

The convergence of the EAD fully iterative follows in an obvious manner if the 

convergence of its outer and inner iteration procedures is assured. 

For the inner AGE-1D iteration the convergence is assured by the analyses given in 

subsections 4.4.2 and 5.3.2. 

For the case where the EAD fully iterative method is applied to two dimensional 

problems, where the constituent matrix Hl and Vi of the coefficient matrix A are 

symmetric positive definites (e. g case of the elliptic problem of section 6.4) the 

convergence of the outer ADI iterative procedure. is u. e I1 documented in the 

literature (e. g see [49]p: 212-213 and [28]p: 196). 

In the following two subsections the convergence of the outer ADI iterative procedure 
is given for the problems of subsections 6.3.1 and 6.3.2 respectively. 

6.5.1 The two dimensional advection problem 

As for the application of the EAD fully iterative method for the two dimensional ad- 

vection problem of subsection 6.3.1 it is noted that the outer ADI iterative procedure 
is given by (6.13). This is rewritten here as : 

(H1 + pI)u' 112 = (pI - Vi)uP +b 

(vi + pI)up+l = (pI - H1)up+1/z +b (6.55) 

with p being the acceleration parameter. 
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The matrices Hl and V1, each of order m2, are again given here respectively as: 

Hl = diag(Ti) where Tl = diag(a2, b, al) 

and Vl = diag(a4I, bI, a31); 

For the advection problem we have the following relations: 

al = -a2 = ax and a3 = -a4 = ay 

(a. = ay =1 for the normalized system of subsection 6.3.1 ) 

and b= 1/r, where r= k/2h. k and h being respectively the time increment and 

space step used in the discretization of the problem. 

Now we establish the proof for the convergence of the ADI procedure of ( 6.55 ). 

The iteration matrix of ( 6.13 ) is given by: 

To = (Vi + pI)-i(Hi - pI)(Hi + pI)-i(Vi - p1) (6.56) 

is the ADI iteration matrix. The ADI iterative procedure will converge if : 

S(T) <1 (6.57) 

By the special structures of Hl and V1, it can be shown that they are commutative 
i. e H1Vi = Vi Hl. Therefore they share the same eigenvector matrix X such that 

Hl = XA1X-' and Vl = XA2X'1. (6.58) 

where Al = diag()J) and A2 = diag(i 1) are diagonal matrices with elements aj and 

ij representing respectively the eigenvalues of Hl and V1. It is noted also from the 

structures of Hl and Vl that they have only m distinct eigenvalues. These are given 
by: 

j=b+ iv� 'j, =b+ iw1 with i2 = -1, 
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where 

v, = 2axcos((n 1 
1) 

), and wi = 2aycos((n + 
1) 

)j= 1'... m 

By ( 6.56 ) and ( 6.58 ), the eigenvalues ýj of T. can be given as: 

(. \i - P)(77i - P) ýý 
(Ai + P)(77i + P) 

Hence the spectral radius S(TT) is given by: 

(b-p)2+vý (b- p)2+wi 
S(Tp)=maxjýjj=max (6.59) 

> (b+p)2+VJ (b+p)2+wi 

By defining 

v= max vi = 2as cos 
ým 

+ 1) ;w= max wf = 2a, cos (m 
+ 1(6.60) 

S(Tp) = ((b + p)Z + v2) ((b + p)2 + w2) 
<1 for every p>0 (6.61) 

Hence the method is convergent. 

6.5.2 The three dimensional heat conduction problem 

We now consider the convergence analysis for the EAD fully iterative method given 
by equations ( 6.34 ) for the three dimensional parabolic problem. The iteration 

matrix To of the method is given as: 

T. = (W + pI)-1(pI -V- H)(V + pI)-1(pI -H- W)(H + pI)-1(pI -V- W) 

By virtue of the mutual commutativity of H, V, and W, the eigenvalues of T,, may 
be given as: 

At(7'v) - (a1(pI -V- H))(AL(pI -H- W))(. c(PI -V- W)) (6.62) 
At(W+pI) JºI(V+pI) AI(H+pI) 
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If we define: 

H, =H-3I 

Vi=V-3I 

Wi=W-3I 

Then equation (6.62) becomes: 

(Xi[(P ý7'v) --V, - Hl] 
Aa[Wi+(P+3)1] 

) 

x 
At[(P - 3`)1- Hl - Wi]l 

X 
(Al[(P - 3`)I - V1- W1] 

(6.63) 
alVi+(P+3 I] / ai[HI+(P+`)I] / CD II 

Then by the formula of (2.13) the eigenvalues of Tp can be written as: 

(P_+2cos--_+2cos_-_Y' 
mim 

2cos(mst1)+s+p 
k is a (p-L 

-}-2COS(mitl)+2COS(»a3t1) 
X 

2cos( ýj1)+s+p 

(p-L+2cos( k>r )+2cos(ýý 
X3 m3t1 m2t1 

2cos(mi+i)+3+p 

i=1,..., m1; 1=1,... m2 ; k=1,... m3 

from which we can write: 

(6.64) 

S(TP) = max { Ai, J, k(Tp)} < max 
p3 ý' 2 cos(mi+l) -- 2 cos(-ý+1) 

+, 7, k 2 cos (m3+1) -}- 3 -}- p 

iý kx 
p- 2c +2cos(ml+i)+2cos(m, +l) x max 2 cos( 

M2+1) 
+3+p 

p- 3` +2 cos( k" )+2 cos(-_*) (6.65) m3+l x max mý+l 
ij, k 2 cos( m, 

+1) +3 ý' p 

i=1,..., m1; ý=1,... m2; k=1,... m3 

We now consider the first term on the right hand side of inequality (6.65). For this 

term to have a modulus less than unity it must have: 

(P_+2cosi+2cosi\ 
-1 <1 (6.66) 

2 cos(ms+l) +3 + p) 
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To satisfy the right inequality, we should have: 

p_ 
2c 

+2 cos( 
Zr )+2 cos( 

jr )<2 cos( 
kr 

)+c -f- p (6.67) 
3 ml+1 m2+1 m3+1 3 

or 

-c. <2 cos( 
k7r 

)-2 cos( 
ST )-2 cos( 

jr (6.68) 
m3+1 ml+1 m2+1 

which is always satisfied because c>6. 

To satisfy the left inequality of ( 6.66 ) we should have: 

-2 cos( 
kr 

)-c-p<p- 2c 
-- 2 cos( 

zr ) -{- 2 cos( 'ýr ) (6.69) 
m3-ý1 33 ml+1 m2+1 

+c -2p <+2cos( 
kr 

)+2cos(ml M +2cos( 
mjr -}- 1) 

) (6.70) 
m3+1 2+ 31 

The right side of (6.70) is greater than -6, therefore (6.70) is satisfied if: 

+3 --2p < -6 (6.71) 

Note that c=6+B. Therefore the left inequality of ( 6.66 ) is satisfied if. 

p>4+ 61e 
(6.72) 

A similar condition can be derived to assure that the second and the third terms on 
the right hand side of inequality (6.65) are less than unity. 

This means that the convergence of the iterative procedure given by ( 6.34 ) is 

assured for values of the acceleration parameter p which satisfy ( 6.72). 

6.6 Consistency of the three level ADI iterative 

procedure 

We consider here the proof of the following lemma. 
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Lemma 6.1 The three level ADI iterative procedure defined by equation (6.34) for 

solving (6.21) is consistent. 

Proof : 

Upon eliminating up+2/6 and up+4/6 the three level ADI iterative procedure may be 

written in one step as: 

up+i = Tu" +k 

where TP is the iteration matrix given as: 

(6.73) 

Tp = (W+pI)-1(pI-V-H)(V+pI)-'(pI-W-V)(H+pI)-1(pI-W-V)(6.74) 

and k is given as: 

k= (W+pI)-1{(pI-H-V)(V+pI)-1[(pI-H-W)(H+pI)-i+I]+I}b 

= (W + pI)-'{(pI -H- V)(V + pI)-1[-I - (W + pI)(H + pI)-i 

+3p(H + pI)-1 + I] + I}b 

= (W + pI)-1{(pI -H- V)[-(V + pI)-1(W + pI)(H + pI)-i 

+3p(V + pI)'1(H + pI)'1] + I}b 

= (W + pI)-'{(3p1- (H + pI) - (V + pI))[-(V + pI)-'(W +, pI)(H + pI)-1 

+3p(V + pI)-1(H + pI)-'] + I}b 

(W + pI)-i{[_3p(V+ pI)-'(W + pI)(H+ pI)-i + (V + pI)-1(W +pI) 

+(W + pI)(H + pI)-' + 9p2(V + pI)-1(H + pI)-1 - 3p(V + pI)-i 

-3p(H + pI)-1) + I}b 

= {-3p(V + pI)-'(H + pI)-i ,+ (V + pI)-' + (H + pI)-i + (W + pI)-i 

-3p(W + pI)'1(V + pI)-' + 9p2(V + pI)-1(H + pI)'1(W + pI)'1 

-3p(W + pI)'1(H + pI)-'}b (6.75) 

To prove consistency for the above iterative procedure we need ( by theorem 3.1) to 

prove that (I-TP)A-1b = k. From ( 6.74 ) and using the relation (A = H+V+W) 
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we can write: 

I-T1, =I- (W +PI)-1((W +PI) - A)(V +PI)-1((V +PI) - A) 

(H + pI)-'((H + pI) - A) 

=I- [I - (W + pI)-IA][I - (V + pI)-1A][I - (H + pI)-1A] 

= I-[(I-(W+pI)-'A)][I-(V+pI)-1A-(H+pI)'1A 

+(V + pI)-1(H + pI)-'A 2J 

= I-[I-(H+pI)-lA-(V+pI)-lA-(W+pI)-'A 

+(W + pI)-'(H + pI)-1A2 ,+ (W + pI)-1(V + pI)-1A2 

+(H + pI)-1(V + pI)-'A2 

-(W + PI)-1(V + pI)-1(H + PI )-1A3] (6.76) 

Further expansions of the last term of ( 6.76 ) and eliminations lead to : 

I-T, = (H + pI)-1A+ (V + pI)-1A+ (W + pI)-'A 

-(W + pl)-' (H + PI)-1A2 

-(W + pI)-1(V + pI)-'A2 - (H + pI)-1(V + pI)-"A2 

+(W + pI)-1(V + pI)-'(H + PI)-'A 2[(H + pI) 

+(V + pI) + (W + pI) - 3p1)] 

= (H + pI)-1A+ (V + pI)-1A+ (W + pI)-1A - (W + pI)-ý(H + pI)-'A2 

-(W + pI)-'(V + pI)-ýA2 - (H + pI)-1(V + pI)-1A2 

+(W + pI)-'(H + pI)-1A2 + (W + pI)-'(V + pI)-'A2 

+(H + pI)-'(V + pI)-1A2 - 3p(H + pI)-1(V + pI)-1(W + pI)-'A2 

= (H + pI)-'A+ (V + pI)-1A+ (W + pI)'1A 

-3p(H + pI)-1(V + pI)-'(W + pI)-'A2 

[(H + pI)-l + (V + PI)-l + (W + pI)-i 

+9p2(H + pI)-'(V + pI)-'(W + pI)-i - 3p(W + pI)-'(H + pI)-i 

-3p(W + pI)-'(V + pI)-i 

-3p(H + pI)-1(V + pI)-']A (6.77) 
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Therefore from ( 6.77 ) and ( 6.75 ) we can see that: 

(I - Tp)A'1b =k (6.78) 

Hence this ADI method is consistent. 

To prove also that this iterative procedure is reciprocally consistent we need by 

theorem 3.2 to show that (I - TP) is nonsingular. 

This however does not follow in a staightforward manner from equations ( 6.76 ) 

and (6.77). 



Chapter 7 

Further= applications of the 

AGE-1D and EAD methods for 

coupled systems 

7.1 Physical Background 

The equations governing fluid motion through a control volume V fixed in space and 

time may be derived from Newton's second law of motion which require that the 

rate of change of the linear momentum be equal to the sum of the forces applied. 

This can be expressed by the following equation: 

jejfdV= >F (7. i) 

i. e " mass x acceleration = force", where e is the density of the fluid, and v is the 

velocity vector having components u, v, and w in the cartesian coordinates (ix, jy, kz). 

EF sums the contribution from all forces acting on the surface of the control volume 

or throughout the volume. The most common of these forces are gravity, viscosity, 

pressure gradient and force due to the rotation of the earth (i. e the coriolis force). 

Different types of the equations may be derived from ( 7.1 ) depending on the nature 

of the flow. Of particular importance are the: 

175 
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1. The Euler equations: These apply strictly to inviscid flows. This is a category 

which covers a wide range of flows where the viscosity forces are negligible 

compared to other acting forces (e. g the barotropic flow in the `free atmosphere' 

away from the effect of the surface of the earth). 

2. The Navier-Stokes equations: These account also for the contribution of the 

viscosity or stress forces to the rate of change of the linear momentum. These 

equations also have a wide range of applications in modelling different flows 

(e. g the flow around a streamlined body immersed in fluid, and the atmospheric 

flow in the Planetary Boundary Layer (i. e the layer of atmosphere close to the 

earth's surface. ) 

These equations can be found in ([24] chapter 11) among various other specialised 

references and are not given here. 

Different types of equations can be obtained through various simplifications of the 

Euler and Navier-Stokes equations to model certain flows based on appropriate as- 

sumptions that can be made about the flow ( such as about the scale of contribution 

of some forces compared to others, and assumptions about the compressibilty of the 

fluid ) as well as on whether the model is one, two, or three dimensional. In the 

following sections we consider some of these simplified models. We apply the AGE- 

1D method to solve the momentum equations of a simple idealized 1D model of the 

Planetary Boundary Layer, in the steady state. We also apply the EAD method 

for solving a linearized version of the Shallow Water Equations which describes an 

incompressible, inviscid flow with a free surface. 

7.2 The AGE-1D method for an idealized plan- 

etary boundary layer model 

Introduction 

In this section the momentum equations of a simple one dimensional model for an 
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idealized planetary boundary layer (henceforth referred to as PBL) in its steady state 
is considered. 
The PBL is the region close to the ground (up to 1 or 2 km) where the atmosphere 
is strongly influenced by the presence of the surface. In contrast to the smoother 
flow above it in the "free atmosphere", the PBL is usually turbulent, and thus 
the "turbulent diffusion" terms in its momentum equations are significant. The 
equations for such a model can be given as: 

äii äzü 
ät -fvg + fv + km = äz2 
äv 02i) 

ät = fug-fý`+kmäzß (7.2) 

where ü and v represent the components of the wind mean velocity in the west-east 
and south-north direction respectively. Similarly u9 and v9 are components of the 
wind velocity in the upper free atmosphere layer. Also k,,, is a turbulent diffusion 
coefficient, and f= 211 sin is called the coriolis parameter which is constant at 
any fixed latitude cb of the earth, fl = 7.27 x 10-5rds-1 is the angular momentum 
of the earth. 
The problem and the AGE-1D method 
In the steady state form the above problem is given by the following equations: 

fv-fv9+kmd z=0 

fü- fug+kmä z=0 (7.3) 

defined over the domain R= [0, L]. 

The model is subject to the following conditions at its lower and upper boundaries: 

ü=v=0 at z=0 (No wind at earth surface) 
v= v'=O 

at wind direction is east - west (7.4) 
= u9 x =L in the free atmosphere 

and has an analytical solution given by: 

ü= u9(1 - exp 
ä 

cos 
ä) 

- v9(exp sin 
ý) 

D= v9(1 - exp 
s 

cos s) + u9(exp 
T 

sin 
ý) 

where 8= Vlkf: ýý. Equations (7.3) may be rewritten as: 

Al 
äzZ 

+ Blw + Cl =0 (7.5) 
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with w=ü; Al = 
km 0; 

Cl = 
[_fv9] 

; Bl =0f v0 k�ý f u9 -f 0 

We now discretize equation ( 7.5 ) along the z-axis with equally spaced gridpoints 

p; (0 <i<m+ 1) and gridspacing h= L/(m + 1), and apply a central difference 

approximation to the second order derivative to obtain the following replacement of 
( 7.5 ): 

Aiwa+i + (- 
2 
At + B1)wi +2 Aiwa-i + Cl =0 (7.6) 2 T- T- 

for 1<i<m 

Multiplying by km' this equation becomes: 

-w; +i + Ew; + w; _1 =S (7.7) 

2a 2b su 
where E= and S 

II= 

- 2b 2a sv 

[l 

with a=1; b= -2 ; su = fvgh2/km; and sv = -fugh2/k,,,. 

If ( 7.7) is applied to all the gridpoints p; inside J2 we get a bivariate unsymmetric 

system of difference equations of the form ( 5.48 ) where 

W= (wi, w2i ... Wm)T. 

To solve this system by the AGE method we split A in the same way as given by 

( 5.50) and ( 5.51 ) and apply the AGE algorithm given by the first two equations 

of equations ( 5.52 ). 

It can be seen that (G1 + sI) and (G2 + sI) can be easily inverted since they are 
block diagonal and consist only of 2x2 matrices (i. e G+ sI) and/or 2x2 block 

matrices (i. e C+sI). We can thus define: 

1_ 1. k G+ sI I (G + sI)I. 1 A-1 
(C+sI)- C=_ (7.8) 

I G+ sI A-1 (G + sI)0-1 

where 0 is a nonsingular matrix given as: 

a+ sb [a+ sb ]_[I 0 adelc bdelc 

-b a+s -b a+ s01 -bdelc adelc 
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with adelc = (a + s)2 - b2 -1 and bdelc = 2(a + s)b. 

We can now write (G1 + sI)-1 and (G2 + sJ)-1 ( and also define Gl and G2) as: 
C 

C0 

C 
(Gý + sJ)-ý = 

QGl 
.Ö (7.10) 

0C 
C 

and 
I A(G + sI)-1 

d2 

co 
c 

C 
00 

(7.11) 

. (G + sI)'1 

Thus the second equation of ( 5.52 ) may be rewritten as: 

wp+l = b' - 
Gz[0-2(Gl 

- sI)GJy (7.12) 
% 

where b' = (G2 + sI)-lb. 

If we define C= 0-2C(C - sI) then the underbraced may be replaced by H and 

equation ( 7.12 ) can be written as: 

wP+i = b' - 
GZHy 

where H= diag(O). 

(7.13) 

The use of equation ( 7.13 ) saves 2m multiplications per iteration compared to 

when using the second equation of ( 5.52 ) because equation ( 7.13 ) preserves the 

unity coefficients in C, while in the latter equation these elements are not preserved. 

The component equations of the above matrix equations are not given here but can 

be found in the listing of the 'program pbl' given in Appendix 2. We give here the 

numerical results obtained by applying the AGE method to the above problem. 
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L=210 ;h= 10 u9=10 v9=0.0 

e=1.0E - 03 Accelaration Parameter s= . 28 

RESULTS AFTER 30 iterations 

Anal U . 227 . 679 1.129 1.575 2.015 2.449 2.874 3.291 3.698 4.094 

Numer U . 227 . 679 1.128 1.574 2.014 2.448 2.874 3.290 3.698 4.094 

error . 000 . 000 . 001 . 001 . 001 . 001 . 001 . 001 . 000 . 000 

Anal V . 222 . 635 1.010 1.349 1.653 1.924 2.164 2.374 2.557 2.715 

Numer V . 222 . 635 1.010 1.349 1.653 1.924 2.164 2.374 2.557 2.715 

error . 001 . 000 . 000 . 001 . 001 . 001 . 001 . 001 . 000 . 000 

Table 7.1: The absolute errors in the velocity profiles of a 1D model for the planetary 
boundary layer in the steady state 

7.3 The EAD method for the linearized Shallow 

Water Equations 

In this section we solve using the EAD method, the linearized form of the equations 
describing the flow of an incompressible inviscid fluid in a rectangular basin. These 

equations are called the Shallow Water Equations. They are of the Euler type of 

equations and apply to flows where the horizontal components of velocity exhibit 

wavelike solutions with wavelengths which are much greater than the depth of the 

fluid, hence the name Shallow Water equations. 

These equations in their linearized form are given in [48] as : 
äü öh 
ät - -9 äx 
av ah 
ýt - -9 8y 
A öü äv 

x 
!-) (7.14) at - -ho(a ay 

where ü and v are the depth-averaged velocity components in the x- direction 

(East-West) and the y- direction (South-North) respectively, h is the depth below 
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the moving water (fluid) surface, ho is the depth when the water is at rest, and g is 

the acceleration of gravity. 

The set of equations ( 7.14 ) are defined over the square region R= [0 < x, y< L] 

which fits (in space) exactly one period of the analytical solution given by: 

ü=1 sin[(- 2ghot +x -i- y) L 
(7.15) 

v=4 sin[(- 2ghot -}- x -}- y) 
L]; 

(7.16) 

h- ho = 
24 

sin[(- 2ghot +x -I- y) T] " 
(7.17) 

with the initial and boundary (periodic) conditions taken from the analytical solu- 

tion. 

If we define a new variable '= ýIho h then equations ( 7.14 ) may be rewritten as: 

aü at 

ät X 
av a3 
ät = -ý° äy 
a aü av 
at = -4)°(ax - ay) (7.18) 

or in vector form as: 

ýw 
=-AT -Býy 

w 
(7.19) 

where 

ü00 ýDo 000 

v; A= 000; and; B= 00 to 

4ý0 000 4ý0 0 

The analytical solution is rewritten as: 

ü=4 sin[(-f(Dot 
2ir 

+x+ Y) L] 
1 
4 sin[(-V2-, bot 

2r 
+ x+ y) L I; 

4ý0 
4 

sin[(-ýýot +x -f- y) 
L 
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A finite difference approximation to equation ( 7.19 ) is given as: 

(1- P'5)(1- Q'Sv)w; 1= (I + P'5)(1 + Q'S )w, (7.20) 

where 

00 e2 000 

P' 
4ds 

A= 000 and; Q' = 4d B=00 ez 

e2 000 e2 0 

with e2 = 4d ýo. Equation ( 7.20 ) is clearly a perturbation of the Crank- Nicolson 

type scheme. Gustafsson in ((27]) has derived an ADI scheme for equation ( 7.19 ) 

by splitting (7.20) in the usual Peaceman-Rachford manner to obtain the following 

two equations: 

(I - P'bx)W, j '_ (1 + Q'bv)W 

(I - Q, bv)W j1= (1 + P'bx)W +i. 
13 

(7.21) 

(7.22) 

where W, J 1" is an intermediate solution. We now difference equation ( 7.19 ) using 

an ADI scheme by [23] which is similar to Gustafsson's scheme, but requires less 

computations. It is also unconditionally stable and of second order accuracy in time 

and space as shown in ([23]). This is given as: 

(I - P'öx)W, +1* = z; - (7.23) 

13 
(7.24) (I - Q'bv)W ;1= 2W+'* - zn. 

n 

where Z ! I. 1-Q'Sj Y)W, J = z2;; _ Vin I+e2S 
x311 ýv + C26y'j 

By eliminating W, +'* from the equations (7.23) and (7.24) we obtain equation 

(7.20). 

If we apply each of equations ( 7.23 ) and (7.24) to the totality of mesh points with 

a rowwise ordering we get the following two systems: 

Aix, = bi (7.25) 

Ayr = b2 (7.26) 
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where the unknown vectors x= (w"`+1« ... wn+l« w'"`+1« ... w"'+1« )T and 1,1 i, l """ij ml, m3 

y= (WI n+1 wi i 
1... w1 ... wim2 )T are the intermediate solution vector and 

the solution vector at the time level n+1 respectively. The r index indicates a 

rowwise ordering and bi and b2 are known vectors. 

The matrix Ai is a block diagonal square matrix of order 3m1m2 and is given as: 

Ai = diag(Ti) (7.27) 

where Ti is the following circulant block-tridiagonal matrix: 

I -P' P' 

P' 

Ti - (7.28) 

-P' 
-P' 

P' I 
3miX3mi 

A2 is a circulant block-tridiagonal matrix given as: 

I -T2 Tz 

Tz 

A2 - (7.29) 

-T2 

-T2 TZ I 
3mlm2x3mlm2 

with 

T2 = diag(Q') (7.30) 

The EAD method proceeds to solving systems ( 7.23) and ( 7.24) by applying the 

AGE method. However, because of the form of the matrices P and Q in equations 
( 7.23 ) and ( 7.24 ), only two variables U and -(D, (in equation 7.23 ) and V and 4) 

( in equation 7.24 ) are coupled together on the left hand sides of these equations. 
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This means that we can decompose each of ( 7.23 ) and ( 7.24 ) into two simpler 
difference equations, one vector and one scalar, given here respectively for ( 7.23 ) 

and ( 7.24 ) as: 

(I - PS )Uä *=U,! ý + QöyV,! ý = zu _ 
1zli' 

(7.31) 
I z3; ß 

V7+1. = Vi +, e2öyVsýj - z2. 
f 

and 

(7.32) 

(I - PS )V; +' = 2V 1" - zv! ý z2'' 

z3; ß 
(7.33) 

UM+1 = 2U, "j+1' - z1 (7.34) 

where U, V, zu, zv, P and Q are defined as: U, j -- 
I'] 

; V; 1 = 
I'l 

; 

zu;, = 
zi 1; 

zv; j = 
z21j 

; P= 
0 e2 

and Q_ 
00 

z3; ß z3; ß 

[e2 

0 e2 0 

Equations ( 7.32 ) and ( 7.34 ) are explicit in nature, while equations ( 7.31 ) and 
( 7.33 ) lead respectively to the following two systems: 

Alxr = dl (7.35) 

A2Yr = d2 (7.36) 

where x and y are now given as: x= (u1,1 
... u; i 

1' 
... Ui j ... um m )T 

and y = (v"+1 v"+1... v'"` 1... vn+l )T and u and 1""" i'1 iqJ Mlm2 v represent the computed 

values of U and V. The Known vectors dl and d2 are given as: dl = 
(ZUi, 

l . .. ZU{, 1 ... ZUi, 7 ... ZUmlm2 )T and d2 = (Zvi,, 
... ZV;, l ... ZV; 

'. i .. . ZVmlm9 )T. 

The r index indicates a rowwise ordering. 

The matrices Al and A2 have the same structure as A' and AZ given by equations 
( 7.27 ... 7.30 ) but by replacing each of P and Q' by P. 

i. e we now have Al = diag(Ti), 
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where Ti is the following circulant block-tridiagonal matrix: 

I -P P 

p. 

Tl - 

.. -P 

-P PI 

A2 is a circulant block-tridiagonal matrix given as: 

I -T2 Tz 

Tz 

-T2 
L -T2 T2 I 2mim2 X2mjm2 

where T2 = diag(P) and I is an identity matrix. Equation ( 7.32 leads to an 

explicit system of difference equations which may be solved concurrently with the 

new system ( 7.35 ). After that we can solve concurrently ( 7.36 ) and the explicit 

system of difference equations which arises from ( 7.34 ). 

The two systems ( 7.35 ) and ( 7.36 ) are now simpler than ( 7.25 ) and ( 7.26 ) and 

are, according to the EAD method, solved using the AGE-1D iterative procedure 

given as: 

(G1 + sl)xp+2 = di - (G2 - sI)x' - gl (7.37) 

xv+1 = (G2 + s1)-'[di - (G1 - sI)(Gi + sI)-i gl] (7.38) 

(G3 + sI)yp+4 = d2 - (G4 - sl)YP = 92 (7.39) 

yP+i = (G4 + sJ)-1[d2 - (G3 - sI)(G3 + sI)-1921 (7.40) 
01 

where s is the acceleration parameter of the AGE method. Here we have split the 

matrices Al and A2 such that: 

Al = Gl + G2 (7.41) 
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A2 = G3 + G4 (7.42) 

where Gl = diag((! i) and G2 = diag(G2), with Gl and G2 being given as: 

2I 
P 

C 

. 
O 

di = (7.43) 

O C 

-P 2I 2m1 x2m1 

and 

C 
O 

G2 = (7.44) 

O 

C 
2m1X2m1 

27 -P 
where C= 

P 2I 

G3, and G4 are given as: 

R P 

G 
0 

G3 = (7.45) 

0 G 

-P R 2m, m2X2m, m2 
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and 

G 

.o G4 = (7.46) 

0 
G 

2m1m2X2m, m2 

where R= diag(zI), and P= diag(P) is of order 2m2. G is given as: 

R 
-P G= 

PR 

The matrices (G; + sI) (i=1 
... 4) can now be easily inverted, since we have: 

1 
(C+ sl)-1 

(1 + s)I PQ+ s)0r' PAT I 
=-= (7.47) 

Di -P (z -I- s)I -Pi i (2 + s)Di 1 

where O1 is a matrix given as: 

( 
(0.5+s) 0 (0.5+s) 0 

Al = 
1I 

-I-sI)ý-I-P2 = L0 (0.5+S)1 0 (0.5+S)] 
0 e2 0 e2 al 0 

e2 0 e2 00 al 

with al = (0.5+s)Z+e2 =0.25+s2+s+ez. 

Therefore 

e3 00 -e4 

(C + sIý_i _0 
e3 

[_e4 
0 

0 e4 e3 0 

e4 00 e3 

where e3 = (0.5+8) and e4 = =ez . al al 
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We can now write (a1 + sI)'1 and ((% + sI)'1 as: 

(2 + s)Di 1 -POT i 

(C + sI)-1 0 

(61+s1)-1= (7.48) 

0 (C + 31)-1 
PAT, (j, + s)Al 1 

and 

(C + sl)-1 
(C + sl)-i 0 

(G2+sI)-1 = (7.49) 

(C + sl)-1 
0 (C + 3I)-1 

We now have: 

(G1 + sI)_i = diag[((% + sI) -1], and (C2 + -9I )-1 = diag[(G2 + sI)-1] 

Similarly we have: 

(0.5 + s)iz 1 POz i 
(G + sI)-' = 

-Pz2' (0.5 + s)02 
(7.50) 

where A2 is a matrix given as: 

A2 = (R + sJ)2 + P2 = diag(Ol) (7.51) 

We can now write (G3 + sI)-1 and (G4 + sJ)-1 as: 

(0.5 + 3)L 1 -PL 1 

(G + sI)-l 0 
(Gs+sI)-i = (7.52) 

0 (G + sI )-1 
PA2' (0.5 + s)Az 1 
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and 

(G + sI)-' 
(G+sI)-' 0 

(G4+sI)-i = 
0 (G + sI )-1 

(7.53) 

(G + sI)'1 

The matrices (G; -sI), i=1,... 4 are given respectively by equations ( 7.43 ... 7.46) 

but by replacing the value Z along the diagonals by el, where el = 0.5 - s. Thus 

instead of C in ( 7.43) and ( 7.44) and G in ( 7.45) and ( 7.46) we have: 

e1I -P ell -P C-sI =; G-sI= 
P ejI 

P ell 

Let us also define: 

D= (C - sI)(C + sJ)-1 

el 00 -ez e3 00 -e4 
0 el -ez 0 Lo e3 -e4 0 

_ 0 
( 

e2 el 0X 0 e4 e3 0 

e2 00 el e4 00 e3 

El -E2 
ýD = E2 E1 

e5 0 0 es 
where E1 =; 

1 

E2 =; 
0 e5 e6 0 

and 

es = eie3 - e2e4; e6 = ele4 + e2e3. 

The underbraced products in ( 7.38 ) and ( 7.40 ) may be replaced respectively by 
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the matrices Dl and D2 which are given as: Dl = diag(Dl). Dl is given by: 

E1 E2 

D0 

D 
D1= 

D 

0D 

-E2 El 

and 

E1 E2 

Dý 0 
D2 

D2= 
Dz 

0 D2 

-E2 
El 

where El = diag(Ei) and E2 = diag(E2) are diagonal square matrices of 

order 2m1. The matrix D2 is given as: 

D El -E2 
s= . E2 E, 

Now the component level algorithms for ( 7.37 ... 7.40) follow in a straight forward 

manner. 

The following table shows the results from an experiment where in equations ( 7.18 ) 

we choose 4ýo = 28, which correspond to a depth of the basin ho = 78.4m in ( 7.14 ) 

where the g= 10ms-2. 

The gridpoints spacing is h= 60000m and the basin is a square of dimension 

L=9xh= 54,0000m. The time step is taken to be At = 60 seconds. 

The AGE-1D algorithm in the EAD method converges in 2 iterations. 
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Convergence at every time step occurred after 2/2 AGE-1D iterations 

Lzl = Axz = 60000.0m, At = 60sec, e= 10-s 

X2 = 1.8E + 05 

sl = 6.0 E+04 1.8E+05 3.0E+05 4.2E+05 5.4E+05 

Anal. u . 14695 -. 17366 -. 20726 . 10168 . 24257 

Numer. u . 11781 -. 17769 -. 20412 . 10672 . 24278 

error u 2.9E-02 4.0E-03 3.1E-03 5.0E-03 2.1E-04 

Anal. v . 14695 -. 17366 -. 20726 . 10168 . 24257 

Numer. v . 14404 -. 17769 -. 20420 . 10677 . 24128 

error v 2.9E-03 4.0E-03 3.1E-03 5.1E-03 1.3E-03 

Anal. 28.492 28.039 27.991 28.428 28.627 

Numer. 28.467 28.033 27.996 28.435 28.628 

error 0 2.5E-02 5.7E-03 4.4E-03 7.2E-03 4.3E-04 

X2 = 4.8E + 05 

xl = 6.0 E+04 1.8E+05 3.0E+05 4.2E+05 5.4E+05 

Anal. u -. 06891 . 22470 . 14695 -. 17366 -. 20726 

Numer. u -. 03185 . 22718 . 14243 -. 17761 -. 20564 

error u 3.7E-02 2.5E-03 4.5E-03 3.9E-03 1.6E-03 

Anal. v -. 06891 . 22470 . 14695 -. 17366 -. 20726 

Numer. v -. 06446 . 22696 . 14240 -. 17750 -. 20409 

error v 4.4E-03 2.3E-03 4.5E-03 3.8E-03 3.2E-03 

Anal. 0 28.187 28.602 27.492 28.039 28.991 

Numer. ¢ 28.218 28.605 27.486 28.033 28.993 

error 3.1E-02 3.4E-03 6.4E-03 5.5E-03 2.3E-03 

Table 7.2: The three components of the solution to the shallow water equations as 

obtained by the EAD method after 10 time steps i. e at t=600s 



Chapter 8 

Conclusions and suggestions for 

Further work 

8.1 Conclusions 

In this thesis the AGE-1D method has been developed and shown to be applicable 

to a wide range of problems with acceptable results. 

Of particular importance was the establishment of formula ( 5.43) for the optimum 

acceleration parameter of the method for linear systems arising from the use of 

central difference operators for the advection equation, and establishing the conver- 

gence of the method for the solution of block symmetric systems such as equation 

( 5.48 ) in section 5.5. Also, the conditions for a possible acceleration of the method 

by using Chebyshev polynomials were determined. These are important contribu- 

tions to the justification of the method and to the widening of its application. The 
of t6. 

applicationJAGE-1D algorithm is still however restricted to tridiagonal and block 

tridiagonal systems, and suggestions for appropriate splittings which maintain the 

AGE concept of forming easily invertible matrices need to be considered for other 

systems (see section 8.2). 

As for AGE-2D and AGE-3D iterative methods which require a relatively large 
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amount of computational work, it is worth here to mention that we did question the 

wisdom behind having four and six subiterations respectively. The formulation of 

these methods was in some analogy to the, formulation of ADI methods in general 

and the ADI Douglas-Rachford finite difference schemes of ( 4.12 ) and ( 4.18) in 

particular. 

For these ADI schemes it is necessary to have p number of equations (p is the number 

of space dimensions of the problem e. g 2 and 3 for ( 4.12) and ( 4.18 ) respectively) 

whereby in each equation the solution is advanced implicitly along one dimension 

to an intermediate value, and it is the combination of these equations which forms 

the respective ADI finite difference scheme which is usually a perturbation of the 

Crank-Nicholson or the implicit scheme. 

In the formulation of an iterative method, however we only require an algorithm 

which has an easily invertible splitting matrix, and which is completely consistent 

and convergent. The algorithm does not have to have a number of subiterations 

which is equal to the number of the constituent matrices into which we split the 

coefficient matrix A. 

This means that an iterative method can be made of only the first equation of 
( 4.98 ) or ( 6.32) alone or from a combination of the first equation and any one of 

the remaining equations. We shall refer to these methods as the Reduced AGE-2D 

and Reduced AGE-3D algorithms or RAGE-2D and RAGE-3D. These methods can 

be shown to be consistent. They also cost less multiplication and addition operations 

for each full iteration. 

Such an alternative course in the formulation of iterative methods for two and three 

dimensional problems appeared to be the remedy for the large amount of computa- 

tional work involved in the AGE-2D and AGE-3D algorithms. This course however 

was tested by solving the normalized system ( 4.93 ). The right hand vector was 

set to the value which makes the solution vector have unity elements. The number 

of iterations and computational work required by the AGE-2D and all the other 
RAGE-2D methods were compared and the results are given in table 8.1 below. 
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The method r9 cost per 

0.6 1.1 1.6 2.1 2.6 iteration 

AGE-2D NIT 11 13 15 16 17 16mn x& 15mn+ 

1- >4 s* 2.5 2.2 1.9 1.6 1.6 
Total No. in mit of 

+&x operations 341 403 465 496 527 

RAGE-2D NIT 23 35 44 51 58 4mn x &6mn+ 

1; 1 3* 8.6 7.7 7.1 6.8 6.8 
-Percentage w. r. t. - 

of Total +&x ops. 67% 87% 95% 103% 110% 

RAGE-2D NIT 18 26 33 39 43 8mn x& 9mn+ 

1; 2 
- 

3* 6.5 5.3 5.0 5.0 4.7 
Percentage w. r. t. AGE-2D 

of Total +&x ops. 
- 
90% 110% 121% 134% 139% 

RAGE-2D NIT 17 25 32 37 42 8mn x& 9mn+ 

1; 3 s* 
- 

5.8 
- 

5.3 5.0 4.7 4.7 
Percentage w. r. t. AGE-29 

of Total +&x ops. 85% 105% 117% 127% 135% 

RAGE-2D NIT 18 26 34 38 44 8mn x& 9mn+ 

1; 4 
- 

3* 6.2 5.4 5.2 4.9 4.9 
Percentage w. r. t. 

of Total +&x ops. 90% 110% 124% 130% 142% 

Table 8.1: A comparison between the computational requirements of the AGE-2D 

and the RAGE-2D methods 
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The RAGE-2D methods denoted by 1; 2,1; 3, and 1; 4 have algorithms which consist 

of a combination of the first equation and the second, the third and the fourth 

equations of ( 4.98 ) respectively. The algorithm for the RAGE-2D method which 
is denoted by 1; consist only of the first equation in ( 4.98 ). Table 8.1 shows that 

on the whole the AGE-2D method costs less in terms of multiplication and addition 

operations then any of the RAGE-2D methods, increasingly so as the mesh ratio r 

increases for a fixed 0. The exception is when the mesh ratio is small where still the 

best of the RAGE-2D methods (i. e RAGE-2D 1; ) does not offer very large savings. 

The fact that the AGE-2D method requires less iterations than any of the RAGE-2D 

methods (see table 8.1) suggests that having a number of subiterations equal to the 

number of G; matrices does perform the expected function of spreading the errors 

across the solution vector which in turn minimizes the required number of iterations 

to achieve convergence. 

The EAD methods on the other handlb�e achieved large savings (45 % to 83 %) in 

the computational work as compared to the AGE-2D and AGE-3D methods. These 

savings are evident throughout tables 6.1... 6.14. The savings consistently increase 

as the tolerance e of the criteria for convergence decreases. The EAD method also 
has consistently better accuracies in the results shown in the above mentioned tables, 

and also in the comparison with the AGE-3D methods as shown in table 6.15. 

By comparing tables 6.12 and 6.14, it becomes clear that the EAD method is a little 

more efficient compared to the EAD fully iterative method in solving the two dimen- 

sional advection problem although the two methods have comparable accuracies. 

The EAD fully iterative method however represents a novel approach in solving 

elliptic problems as illustrated in section 6.4. The main advantage is in making 

use of the fact that the intermediate values of the solution derived through an ADI 

iterative method need not be obtained with large accuracies. This gives a greater 
flexibilty in employing a parallel algorithm such as the AGE-1D in obtaining such 
intermediate values at a relatively low cost. 

The convergence of the outer ADI iteration is established in section 6.5.1 and the 
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convergence of the inner AGE-1D algorithm is given earlier in chapters 4 and 5. This 

assures the convergence of the EAD fully iterative method for the elliptic problem 

of section 6.4 and the hyperbolic problem of subsection 6.2.2. 

Theýconvergence of the outer ADI type iterative procedure has also been established 
in subsection 6.5.2. for the EAD fully iterative method for the three dimensional 

heat conduction problem. The convergence condition however requires that rela- 

tively high values of the acceleration parameter be used which may be undesirable 

because it can lead to high rounding errors being created and thus affect greatly the 

accuracy of the method. Even more worrying is the difficulty to prove the complete 

consistency of the outer ADI iterative procedure in section 6.6. This calls for fur- 

ther consideration of the method and its formulation before its application can be 

recommended. 

In chapter 7, the application of the AGE-1D and the EAD methods were shown to 

extend easily to the solution of multivariate systems of equations while maintaining 

the simplicity of the inversion of the G; matrices involved in these problems. The 

large number of iterations needed for convergence in table 7.2 of section 7.2 is due to 

the fact that the problem considered is of elliptic type. If the problem considered was 

that of solving the unsteady state equation (7.2) with the proper initial conditions 

rather than solving ( 7.3 ), the AGE-1D method would have definitely converged in 

a much smaller number of iterations. 

8.2 Suggestions for further work 

It can be noticed that the AGE-ID method is limited so far to tridiagonal and 
block-tridiagonal systems. This in turn limits the application of the EAD method 

of which the AGE-1D algorithm is a major component. Here we suggest the following 

AGE-1D type splitting for quindiagonal systems. 

Consider the system: 

Au =b (8.1) 
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where 

A= 

'd bc 

babc 

cbabc 

cbabc 

cbabc 

cbabc 

cbabc 

cbabc 

cbab 

cbd, 

In a manner consistent with the splitting strategy of AGE-1D we can split A into: 

A=G1+G2+G3 

whereby G1, G2 and G3 consist now mainly of 3x3 submatrices and are given as: 

d/3 b/2 c 

b/2 a/3 b/2 

c b/2 a/3 

G1= 

a/3 b/2 c 

b/2 a/3 b/2 

c b/2 a/3 

a/3 b/2 c 
b/2 a/3 b/2 

c b/2 a/3 

d/3) 
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and 

'd/3 b/2 

b/2 a/3 

G2= 

a/3 b/2 c 

b/2 a/3 b/2 

c b/2 a/3 

a/3 b/2 c 
b/2 a/3 b/2 

c b/2 a/3 

a/3 b/2 

b/2 d/3, 

and 
(d/3 

G3 = 

a/3 b/2 

b/2 a/3 

a/3 b/2 c 

b/2 a/3 b/2 

c b/2 a/3 

a/3 b/2 c 
b/2 a/3 b/2 

c b/2 a/3 

d/3 

The 3x3 submatrix of G1, G2, and G3 has the form of. 

xy z 

C= yx y 

zy x 

and can stil l be inverted easi ly. Its inverse has the simple form of: 
(x2-V2) V2-,, 

aA Q aQ 
C= 

.X 
x2-z2 

(i ap p 
y2 -2z x2-y! 

aA 0 as 
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where /3 =x2+xz-2y2 and a=x-z 

An AGE-1D algorithm for solving system ( 8.1) can have the form: 

(G1 + sI)up+lf =b- (G2 + G3 - sI)u" (8.2) 

(G2 + sI)up+4 =b- (G1 + G3 - sI)up+'s (8.3) 

(G3 + sI)up+l =b- (G1 + G2 - sI)u' (8.4) 

For the EAD fully iterative method, it can be pointed out that the convergence 

analyses given in section 6.5 falls short of determining what combination of values 

should be assigned for the acceleration parameters of the outer ADI and inner AGE- 

1D procedures respectively. This is because our analysis was based on establishing 

the convergence of the EAD fully iterative method through the analysis of the 

convergence of the outer ADI and inner AGE-1D iterative procedures separately. 

There is however another route which can lead to a more quantitative assesment 

of the convergence of the method and may lead to a formula defining the relation 
between the acceleration parameter p of the outer ADI iterative procedure and the 

acceleration parameters of the inner AGE-1D iteration for optimal convegence. 
Such a route is based on analysing the iteration matrix T of the EAD fully iterative 

method which for two and three dimensional problems respectively is given by: 

T (p, s) = (Gs + sI)-ß(G1 - sI)(Gl+ sI)-'(G2 - sI)(G4 + sI)-i 

X (G3-3I)(G3+3I)-1(G4-3I) (8.5) 

T (p, s) = (G2 + sI)-1(Gl - si)(Gi + sI)'1(G2 - sI) 

x (G4 . +, sI)-'(G3 - sI)(G3 + sI)-1(G4 - sI) 

x (G6 + sI)-'(Gs - sI)(G5 + sI)-1(G6 - sI) (8.6) 

The matrices G1, G2, G3 and G4 (also G5 and Gs) in equations (8.5) and (8.6) do 

not commute. This makes it difficult to deduce directly the formula for the spectral 

radius of T. But the spectral norm of all the G; (i=1... 6) matrices can be easily 

obtained and this can lead easily to a relation defining the upper limit of the spectral 

radius of the iteration matrix T in terms of p and s. 
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Finally among other areas which need further research we suggest a comparative 

study between the EAD fully iterative method and methods such as the SOR 

method. 



Bibliography 

[1] G. BIRKHOFF, R. S. VARGA, AND D. M. YOUNG, Alternating Direction 

Implicit methods, Advances in Computers, vol. 3, Academic Press, New York, 

1962. 

[2] R. L. BURDEN, J. D. FAIRES, AND A. C. REYNOLDS, Numerical Analysis, 

P. W. S Publishers, Boston, Massachusettes, second ed., 1981. 

[3] G. CARVER, A spectral meteorological model on the ICL DAP, Parallel Com- 

puting, 8 (1988), pp. 121-126. 

(4J C. CANUTO, M. Y. HUSSAINI, A. QUARTTERONI, AND T. A. ZANG, Spectral 

Methods in Fluid Dynamics, Springier-Verlag, New York, 1988. 

[5] C. R. CHESTER, Techniques in Partial Differential Equations, McGraw-Hill, 

Newyork, 1971. 

[6] A. DEIF, Advanced Matrix Theory for Scientists and Engineers, Academic 

Press Inc., New York, 1981. 

[7] J. DOUGLAS, Alternating direction methods for three space variables, Nu- 

merische Mathematik, 4 (1984), pp. 41 - 63. 

[8) J. DOUGLAS AND H. H. RACHFORD, On the numerical solution of heat con- 

duction problems in two or three space variables, Trans. Amer. Maths. Soc., 82 

(1956), pp. 421 - 439. 

[9] Y. D'YAKONOV, On the application of disintegrating difference operators, Z, 

Vycil. Mat. i. Mat. Fiz., 3 (1963), pp. 385-388. 

201 



202 

[10] D. J. EVANS, The use of preconditioning in iterative methods for solving linear 

equations with symmetric positive definite matrices, J. I. M. A., 4 (1968), pp. 295- 

314. 

[11] 
, Comparison of the convergence rates of iterative methods for solving linear 

equations with preconditioning, Greek Math Soc., Caratheodory Symp., (1973), 

pp. 106-135. 

[12J 
, Iterative Sparse Matrix Algorithms, in: Software for Numerical Mathe- 

matics, Academic Press., 1974, pp. 49-83. edited by D. J. Evans. 

[13] 
, New Parallel Algorithms for Partial Differential Equations, in: Parallel 

Computing 83, Elsevier Science Publishers, Amesterdam, 1984, pp. 3-56. edited 

by M. Feilmeier, J. Joubert and U. Schendel. 

[14] 
, Group Explicit Iterative methods for solving large linear systems, Intern. 

J. Computer Math., 17 (1985), pp. 81-108. 

[15] 
, The solution of periodic parabolic equations by the Coupled Alternating 

Group Explicit CAGE iterative method, Intern. J. Computer Math., 34 (1990), 

pp. 227-235. 

[16] D. J. EVANS AND C. Li, The Alternating Group Explicit (AGE) Iterative 

Method and its Parallel Implementation, in: Iterative Methods in Linear Alge- 

bra, Elsevier Science Publishers, Amsterdam, 1992, pp. 243-250. edited by R. 

Beauwens and P. de Groen. 

[17] D. J. EVANS, E. A. LIPITAKIS, AND N. M. MISSIRILIS, On sparse and com- 

pact preconditioned Conjugate Gradient methods for partial differential equa- 

Lions, Intern. J. Computer Math., 9 (1980), pp. 55-80. 

[18] D. J. EVANS AND N. M. MISSIRILIS, The preconditioned simultaneous dis- 

placement (PSD) method for elliptic difference equations, M. C. S., 22 (1980), 

pp. 256-263. 



203 

[19] D. J. EVANS AND A. S. RooMI, The solution of parabolic differential equations 
by the age method with d'yakonov splitting, Intern. J. Computer Math., 32 

(1990), pp. 181-191. 

[20] D. J. EVANS AND M. S. SAHIMI, The Alternating Group Explicit (AGE) iter- 

ative method for solving parabolic equations I: 2-Dimensional Problems, Intern. 

J. Computer Math., 24 (1988), pp. 311-341. 

[21] 
, The Alternating Group Explicit (AGE) iterative method for solving 

parabolic equations H. 3 Space Dimensional Problems, Intern. J. Computer 

Math., 26 (1989), pp. 117-142. 

[22] 
, The Alternating Group Explicit (AGE) Iterative Method to Solve Parabolic 

and Hyperbolic PDEs, in: Annual Review of Numerical Fluid Mechanics, and 
Heat Transfer., vol. II, Hemispheric Pub. Co. USA., 1989, pp. 283-390. edited 

by C. L. Tien and T. C. Chawla. 

[23] G. FAIRWEATHER AND I. M. NAVON, A linear ADI method for the shallow 

water equations, Journal of Computational Physics, 37 (1980), pp. 1-18. 

[24] C. A. J. FLETCHER, Computational Techniques for Fluid Dynamics, Spring- 

Verlag, New York, 1988. 

[25] C. F. GERALD AND P. 0. WHEATLEY, Applied Numerical Analysis, Addison- 

Wesley, New York, fifth ed., 1994. 

[26] D. GOTLEIB AND E. TURKEL, Phase error and stability of second order meth- 

ods for hyperbolic problems II, Journal of Computational Physics, 15 (1974), 

pp. 251-265. 

[27] B. GUSTAFSSON, An alternating direction implicit method for solving the shal- 
low water equations, Journal of Computational Physics, 7 (1971), pp. 239-254. 

[28] W. HACKBUSCH, Iterative Solution of Large Sparse Systems of Equations, 

Springer-Verlag, New York, 1994. 



204 

[29] L. A. HAGEMAN AND D. M. YOUNG, Applied Iterative Methods, Academic 

Press Inc., New York, 1981. 

[30] G. HELLWIG, Partial Differential Equations, An Introduction, Blaisdell, New 

York, 1964. 

[31] F. B. HILDEBRAND, Introduction to Numerical Analysis, McGraw-Hill, New 

Delhi, second ed., 1974. 

[32] M. K. JAIN, Numerical Solution of Partial Differential Equations, Wiley East- 

ern Ltd., New Delhi, second ed., 1984. 

[33] L. LAPIDUS AND G. F. PINDER, Numerical solution of partial differential 

equations in science and engineering, John Wiley and Sons, Newyork, 1982. 

[34] A. R. MITCHELL AND D. F. GRIFFITHS, The Finite Difference Method in 

Partial Differential Equations, Jhon Wiley & Sons, INC., New York, 1980. 

[35] J. NOYE, Numerical Solution of Differential Equations, North-Holland, Ams- 

terdam, 1984. 

[36] I. G. PAPAGEORGIOU, Mesoscale Modelling of the Atmospheric Boundary 

Layer Including Pollution Dispersion of a Coastal Area, PhD thesis, Univer- 

sity of Reading, Reading, U. K., 1985. 

[37] D. W. PEACEMAN, Fundamentals of Numerical Reservoir Simulation, Elsevier 

Scientific Publishing Company, Amesterdam, 1977. 

[38] D. W. PEACEMAN AND H. H. RACHFORD, The numerical solution of parabolic 

and elliptic partial differential equations, J. Soc. Indust. Appl. Math., 3 (1955), 

pp. 28 - 41. 

[39] R. D. RICHTMYER AND K. W. MORTON, Difference Methods for Initial Value 

Problems, Wiley, New York, 1967. 

[40] R. SADOURNY, The dynamics of finite difference models of the shallow water 

equations, Journal of the Atmospheric Sciences, 32 (1975), pp. 680-689. 



205 

[41] M. SAHIMI, Numerical Methods for solving Hyperbolic and Parabolic Partial 

Differential Equations, PhD thesis, Loughborough University of Technology, 

Loughborough, U. K., 1986. 

[42] N. SATOFUKA, Group Explicit Methods for the Solution of Fluid Dynamic 

Equations, in: Computational Fluid Dynamics, Elsevier Science Publishers, 

Amesterdam, 1988, pp. 117-134. edited by G. Davis and C. Fletcher. 

[43] V. K. SAUL'YEV, Integration of Equations of Parabolic Type by the method of 

Nets, Pergamon Press, Newyork, 1964. Translated by G. J. Tee. 

[44] G. W. STEWART, Introduction to Matrix Computations, Academic Press Inc., 

Newyork, 1973. 

[45] G. " STRANG, Linear Algebra and Its Applications, Academic Press Inc., 

Newyork, third ed., 1988. 

[46] E. TURKEL, Phase error and stability of second order methods for hyperbolic 

problems I, Journal of Computational Physics, 15 (1974), pp. 227-250. 

[47] E. H. TWIZELL, Computational Methods for Partial Differential Equations, 

John Wiley & Sons, New York, 1984. 

[48] P. J. VAN DER HOWEN AND B. P. SOMMEIJER, Reduction of dispersion in hy- 

perbolic difference schemes by adapting the space discretization, Tech. Rep. NM- 

R8519, Centre of Mathematics and Computer Science, Amsterdam, September 

1985. 

[49] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Academic Press, New 

York, 62. Series in Automatic Computation. 

[50] D. M. YOUNG, Iterative Solution of Large Linear Systems, Academic Press 

Inc., New York, 1971. Computer Science and Applied Mathematics Series. 



Appendix A 

The truncation error, consistency 

and stability analysis of an LOD 

scheme 

In this appendix we present the truncation error, consistency and stability analysis of the 

LOD scheme given in subsection 6.2.3. 

The Composite formula of the scheme given by equation 6.11 is expanded as : 

(i -rail - Tam, + r252 a=z)U tj+ 1= Üx 

This gives the following formula: 

(A. 1) 

!1+ 4r)Un+1 _ r(Un+l + Unl + Un+l + Un+l l sa l . +l, j j J+ j1 +-11 

4T2Un+1 - 2T2(Un+l + Un+l + Un+l + Un+l 1 

+r2(Un+l + Un+l + Uin+l + Un+1 \- Ün" =0 (A. 2) 
l 1+1, j+1 i-1 , j+1 +l, j-1 i-1, j-1 / i, ý 

The local truncation error of the above formula is easily obtained by Taylor's expansion 
in terms of ui. This is done easily using the REDUCE package. After expanding, and 

substituting for r= k/h2 , equation ( A. 2) can be written as: 

(1+4T)U, "nýl-r(U, "+iä }-U iäß Ü+1ý'U 1l) 

+4T2Un 1 
-2r 

2(Un+l 
,, F, iJn+l . i� Un+1 + Un+l 

+. 7 ++101 +-1, j >ý, f+1 +, j-1) 
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12 (Un+l ý, Un+l + Un+1 'i' Uni 1-Üj= 
l s+l, j+l s-lj+l i+1, j-1 i-1 . -1) 

aü a2ü atü 

x äx k(at -ä- z 
1941E 1 83ü 1 83u 

+axiaxz k-2 atax2 -2 ataxi 
_1 

04ü 21 j94 ii 21 a_ 21 04ü 2 
12 axi 

h- 
12 axz 

h+ 
24 -wi k-8 

at2axi 
k 

1 

8 aýax2 
k2 +2 atax2ax2 

k2 + O(kah'°)) =0 (A. 3) 

where (a +, 0) > 3. 

1+ 4T Un l- T/Un+l ý, Un+1 ,+U'+ Un+l ( 
t, ý l t+l, j t-1, f ', 1+1 1-1 

r2 1- 2r 4 Unýt 2(Un+l n+l + Un i+ Un l 

,ý t+1, j 
+U i- 1, j to+1 t, J-1) 

+T2(Un}1 + Un+l + Un+l + Un1 _J= -1 ++I+1 s-1 , j+1 i+l,, j-1 t-1 ,jÜ 
aii 2- 02ii 

This shows that the above scheme has a local truncation error of order O(k, h2). Fur- 

thermore it can be seen from equation (A. 3 ) that all the terms of the truncation error 

are products of k and/or h. Thus as k and h -º 0, the truncation error tends to zero 

unconditionally. 

Hence the scheme is unconditionally consistent with the heat conduction equation 4.4. 

We next consider the stability of the LOD scheme using the matrix method. The two 

equations of the scheme are given as: 

x 
)TT =Ü (A. 5) (1 - r52 

(1- r52 'U '= U' (A. 6) 

which when applied to all points of the mesh produce two systems to be solved in sequence. 

These systems are given the following equations: 

Hu* = u" + bi (A. 7) 

Vu"+1 = u' + b2 (A. 8) 

where u", u* and u"+1 are the solution vectors at time n, the intermediate solution vector, 

and the solution vector at time n+l. Vectors bi and b2 are known vectors associated 



208 

with the boundary values at each stage. Also H and V have the same structure as in 

equations 4.25 and 4.26 in section 4.1, but with a= -r and b=1+ 2r. 

By eliminating u* from equation ( A. 7 ) using equation ( A. 8 ), we get the following 

equation: 

un+l = Gu" +b (A. 9) 

where b is a known vector, and G is the amplification matrix and is given as: 

G= H-1V-1 (A. 10) 

Knowing that H and V are both SPD matrices and that they commute with each other 

we can write that: 

p(G) = max.;,, (G) = max., j(H)\;, 1(V) (A. 11) 

Also all the eigenvalues of H and V are larger than unity and are given as: 

Aij(H) = Ai, j(V) = (1+2r)+2 r-2cos 
Z7ý 

M, 

) 
i= 1,... m1,7 = 1,... m2. (A. 12) 

This means that all the eigenvalues of H-1 and V'1 are less than unity. Therefore 

p(G) <1 (A. 13) 

and the scheme is thus unconditionally stable. 



Appendix B 

The listings of some programs 

B. 1 Program par. AGE-1D_odd 

program par-AGE-ID-odd 

c**********************************************************************c 

c This is a program showing one way of how the AGE-ID C 

C algorithm can executed in parallel to solve the system Au=b c 

c where A=diag(al, cli, al) of order m (m is odd). The system c 

c arises from the approx. of the ID heat problem, and the diagonal c 

c elements are given in terms of lamda=(the mesh ratio) and c 

c teta=(a weighting parameter depending on the scheme used). C 

c**********************************************************************c 

C 

implicit real (a-h, o-z), integer*2(i-n) 

integer*4 dimi, i, m, bytel, byte_size 

parameter (diml=10000) 

external forksub 

integer m_fork, np, n 

dimension xu(O: dimi) 

dimension ua(O: dimi) 

dimension rhst(O: diml) 
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real ls(O: diml) 

real ls2(0: dim1) 

real lamda 

integer timei, time2 

logical flagon 

COMMON/SHAREALL/m, rhst, xu, ls, ls2, it 1, flagon, maxit, 

1 eps, byte_size, bytel, e2, al, ci2, ai2, c13, c14, a14, c16 

print*, 'Input: m then maxit' 

read(*, *)m, maxit 

print*, 'Input: no. of procs. np' 

read(*, *)np 

print*, 'Input: lamda & teta' 

read(*, *) lamda, teta 

C 

eps=0.00000010 

ai=-1. dO 

c a2=(1. -teta)*lamda 

c11=2. dO+1. dO/(lamda*teta) 

c The following line is to obtain the 'optimum' acc. param. as 

c calculated from the formula. 

s=sgrt( (c11/2.0)**2 - al**2) 

C 

el=cll/2. dO+s 

e2=c11/2. dO-s 

delta=el**2-al**2 

c12=(el*e2-al*ai)/delta 

a12=(el*al-al*e2)/delta 

c13=e2/el 

c14=el/delta 

a14=-ai/delta 

c16=1/el 

C 
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write(*, *)'m= I, m 

C 

C Setting the initial guess vector to zero. 

do 9065 i=i, m 

xu(i)=O. OdO 

9065 continue 

C 

c Choosing the RHS vector (i. e., b) so that the solution 

c vector has all its elements=1 

rhst(1)=cli+ai 

do 64 i=2, m-1 

rhst(i)=cll+al+al 

64 continue 

rhst(m)=cil+ai 

C 

c %%% preparing for static load balancing of the 

C '/. '/% eomrnütatinnal taaka amnno tho nrneeaanra_ 'LILY'/'/ 

C 

wj=real(m)/real(np) 

if (real(int(wj)). eq. wj) then 

bgtel=int(wj) 

else 

bytes=int(vj)+i 

endif 

if(mod(bytel, 2). ne. 0) then 

byte_size=byte1+1 

else 

byte_size=bytel 

endif 

7100 its=i 

n-m_set_procs(np) 

c Timing the execution of the next subroutine. 
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call -clock-time(timet) 
c ** Forking the AGE-ID subroutine to be executed by np processors. *** 

n=m_fork(forksub) 

c End of parallel execution. Sequential execution proceeds next. 

call m_kill_procs 

call _clock_time(time2) 
if(iti. ge. maxit) Grite(*, *)'Max number of iterations is exceeded' 

di=real(time2-timet)/100.0 

write(*, 25) np, di 

25 format(/, 30x, ' The time duration for the', /, 20x, ' 

I AGE-ID ALGORITHM executed on ', 12, 

i' machines', /, 30x, ' is', f10.3, ' seconds') 

write(*, 133)iti, (ls(i), i=i, m, m/5) 

133 format(2x, t30, 'No. of iters. =', i4, /, 'un= ', 10(f10.7)) 

stop 

end 

subroutine forksub 

implicit real (a-h, o-z), integer*2(i-n) 

integer*4 diml, i, m, bytel, byte_size, kl 

integer*4 starti, start2, finishi, finish2, begin, end 

integer m_get_numprocs, m_get_myid, n, m_sync 

parameter (dim1=10000) 

dimension xu(O: diml) 

dimension ua(O: diml) 

dimension rhst(O: dimi) 

real ls(O: diml) 

real ls2(0: diml) 

logical flagon 

COMMON/SHAREALL/m, rhst, xu, ls, ls2, itl, flagon, maxit, 

1 eps, byte_size, bytel, e2, al, c12, a12, c13, c14, ai4, c16 

n_procs=m_get_numprocs() 

n-m_get_myid() 
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starts=n*byte_size+i 

finishl=(n+i)*byte_size 

if(finishl. gt. (m-2)) finishl m-2 

start2=starti+i 

finish2=finishi+l 

begin=n*bytel+i 

end=(n+i)*bytei 

if(end. gt. m) end--m 

700 continue 

if(n. eq. (n-procs-1)) then 

flagon-. true. 

ls(1)=rhst(1)-e2*xu(i) 

endif 

do 111 i=start2, finish2,2 

k1=i+1 

C 

ls(i)=rhst(i)-(e2*xu(i)+al*xu(kl)) 

ls(kl)=rhst(kl)-(e2*xu(kl)+al*xu(i)) 

111 continue 

C sync pt. 1 

call m_sync() 

C Synchronize here, although parctically not necessary 

do 114 i=startl, finishi, 2 

k1=i+1 

ls2(i)=rhst(i)-(ci2*ls(i)+a12*ls(kl)) 

ls2(kl)=rhst(ki)-(c12*ls(ki)+ai2*ls(i)) 

114 continue 

if(n. eq. (n_procs-1)) ls2(m)=rhst(m)-ci3*ls(m) 

C sync pt. 2 

call m_sync() 

c 

c-------------- 
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c FROM HERE ON, the vector is is used again (instead of upi) to save memory. 

if(n. eq. (n_procs-1)) ls(i)=ci6*ls2(1) 

do 120 i=start2, finish2,2 

ki=i+i 

ls(i)=c14*ls2(i)+a14*ls2(ki) 

ls(kl)=c14*ls2(kl)+a14*ls2(i) 

120 continue 

if(itl. ge. maxit) go to 499 

C sync pt. 3 

call m_sync() 

c Begin testing 

do 3386 i=begin, end 

sl=abs(ls(i)-xu(i)) 

if(sl. gt. eps) flagon=. false. 

if( . not . (flagon)) i=end 

3386 continue 

c End of testing 

if (flagon) go to 499 

do 3065 i=begin, end 

xu(i)=1s(i) 

3065 continue 

if(n. eq. (n_procs-1)) itl=iti+1 

call m_syncO 

C sync pt. 4 

go to 700 

49 return 

end 
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B. 2 Program pbl 

$system 

program PBL 

C 

c Steady state equations of momentum for the i-D model of the idealized 

c PLANETARY BOUNDARY LAYER 

c 

c ************__________*************** 

c 

implicit integer*2(i-n), real*8(a-h, o-z) 

integer diml, m 

logical flagon 

character*10 fname, output 

parameter (diml=102) 

dimension yu(0: dimi) 

dimension yv(0: dimi), ua(O: diml), fzv(dimi), fzu(dimi), va(O: diml) 

dimension xu(O: diml), xv(O: dimi), z(O: diml) 

dimension bpu(dims), bpv(diml), rsu(diml), rsv(diml) 

dimension upl(O: diml), vpl(O: dimi), eru(O: dimi), erv(O: diml) 

real km 

pi=4. OdO*datan(1. dO) 

phi=(pi/4.0) 

omega=2.0*pi/(24.0*3600.0) 

f=2.0*omega*dsin(phi) 

km=10.0 

write(*, 545) 

545 format(//, 1x, 50('*'), /, 

i ix, t25, ' Enter the name of the Input File ', 2x, /, t4, 'Enter', /, 

I' "ii" ; for varying the s', t35, ' "12" ; for varying eps, ug, and vg ') 

read(*, *)fname 

c fname='i3' 
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open(unit=5, file=fname, form='formatted') 

if (fname . eq. ' il') then 

output='pbl_ri' 

elseif(fname. eq. 'i2') then 

output='pbl_r2' 

else 

output='pbl-r' 

endif 

open(unit=6, file='output', form='formatted') 

read(5, *)nruns 

write(*, 845) 

845 format(//, 1x, 80('*')) 

write(6,74) 

74 format(ix, 90('*'), /lx, '**', t8, 'Ad2(W)/dz**2+BW+C=0 ', /, ix, '**', t8, 

1 'Where W=(u, v) A=((Km, O), (O, Km)) 

i ; B=((O, f), (-f, O)) ; C=(-f*vg), (f*ug))' 

1 , /180('*'), //) 

write(6,444) 

444 format(lx, t30, ' ANALYTICAL SOLUTON IS : ', /, ix, ' 

1 ua(k)=ug*(1-exp(-cf*z(k))*cos(cf*z(k)))-vg*exp(-cf*z(k))*sin(cf*z(k)) 

1 ', /, ix, ' 

I va(k)=vg*(1-exp(-cf*z(k))*cos(cf*z(k)))+ug*exp(-cf*z(k))*sin(cf*z(k))' 

1 , /, 1x, 80('*'), /) 

C 

C 

do 4300 nn=i, nruns 

read(5, *)ug, vg, eps, s 

read(5, *)dz, finz 

h=dz 

m=int((finz/dz)) -1 

cf =sgrt ((f / (2.0*km)) ) 

C 
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

write(6,294)finz, dz, ug, vg, eps 

294 format(ix, 'finz =', f10.4,5x, 'dz = ', f8.4, /, 

1 ix, t15, 'ug =', f8.5, t30, 'vg = ', f8.4, /, t24, 'eps =', e7.2) 

write(6,297)s 

297 format(lx, t50, 'Acc. Param. s -', f4.2) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C setting the z-axis 

zd=0.0 

do 3334 i=O, m+1 

z(i)=zd 

zd=zd+dz 

3334 continue 

c 

C Calculating the analytical solution 

c 

do 32 k=0, m+1 

ua(k)=ug*(1-dexp(-cf*z(k))*cos(cf*z(k)))-vg*dexp(-cf*z(k))*sin(cf*z(k)) 

va(k)=vg*(1-dexp(-cf*z(k))*cos(cf*z(k)))+ug*dexp(-cf*z(k))*sin(cf*z(k)) 

32 continue 

C 

C Setting the initial guess 

do 3012 k=1, m 

xu(k)=0.0 

xv(k)=0.0 

3012 continue 

C 

c Setting Boundary Conditions from the analytical sol. 

G 

do 3002 k=0, m+i, m+i 

xu(k)=ug*(i. dO-dexp(-cf*z(k))*cos(cf*z(k))) 

i -vg*dexp(-cf*z(k))*sin(cf*z(k)) 
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xv(k)=vg*(1. dO-dexp(-cf*z(k))*cos(cf*z(k))) 

i +ug*dexp(-cf*z(k))*sin(cf*z(k)) 

3002 continue 

xx=xu(m+i) 

yy=xv(m+i)- 

CCCCCccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccCCCCC 

CCCCC CCCCC 

c 

c values a and b of G=1/2E=C(a, b)(-b, a)] 

a=1. dO 

b=-f*h**2/(2. dO*km) 

cu=f*vg*h**2/km 

cv=-f*ug*h**2/km 

ams=a-s 

aps=a+s 

c The inverse of G+sI 

delg=aps**2+b**2 

agi=aps/delg 

bgi=-b/delg 

C 

c On the DELTA of C=[((G+sI), -I), (-I, (G+sI))]. 

c 

adelc=aps**2-b**2-1. dO 

bdelc=2. dO*b*aps 

ddc=adelc**2+bdelc**2 

C 

C 

c On the Elements of [Delta(C)*Inv(G1+sI)] needed for upi and vpl at i-1 & ism. 

shi=agi*adelc-bgi*bdelc 

sh2-agi*bdelc+bgi*adelc 

C 

c On the Elements of the Inverse of DELTA(C). 
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C 

adelci=adelc/ddc 

bdelci=-bdelc/ddc 

C On the Elements of the (square of the Inverse) of delta(C). 

ei=adelci**2-bdelci**2 

e2=2. dO*adelci*bdelci 

C On the elements of the product matrix of (G+sI)(G-sI). 

f 1=a**2-s**2-b**2-1. dO 

f2=2. dO*a*b 

C -2s*INV[(DELTA)]**2 

hi=-2. dO*s*ei 

h2=-2. dO*s*e2 

C 

C On the elements of the product matrix of 

C [(Square of the Inverse) of delta(C)]*[(C+sI)(C-sI)]. 

C 

g1=ei*f 1-e2*f2 

g2=e1*f2+e2*f1 

C 

C On the Elements of D=Inv(C+sI). needed for calculating b' 

c ********* In addition to elements of Inv(Delta): 

C 

aci=aps*adelci-b*bdelci 

bci=aps*bdelci+b*adelci 

C 

C Calculating the rhs. vector b. 

fzu(1)=-cu+xu(0) 

fzv(1)--cv+xv(0) 

do 2001 i=2, m-1 

fzu(i)=-cu 

fzv(i)=-cv 
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2001 continue 

fzu(m)=-cu+xu(m+i) 

fzv(m)--cv+xv(m+i) 

c 

C Calculating the rhs. vector b' or (bp). 

bpu(1)=agi*fzu(i)+bgi*fzv(1) 

bpv(1)=-bgi*fzu(1)+agi*fzv(1) 

do 2002 i=2, m-2,2 

bpu(i)=aci*fzu(i)+bci*fzv(i)+adelci*fzu(i+1)+bdelci*fzv(i+1) 

bpv(i)=-bci*fzu(i)+aci*fzv(i)-bdelci*fzu(i+i)+adelci*fzv(i+1) 

C 

bpu(i+1)=adelci*fzu(i)+bdelci*fzv(i)+aci*fzu(i+1)+bci*fzv(i+1) 

bpv(i+1)=-bdelci*fzu(i)+adelci*fzv(i)+aci*fzv(i+1)-bci*fzu(i+1) 

2002 continue 

bpu(m)=agi*fzu(m)+bgi*fzv(m) 

bpv(m)--bgi*fzu(m)+agi*fzv(m) 

C 

C The AGE-ID Algorithm. 

Cy= b-(G2-sI)u(p) 

C u(p+i) = Inv(G2+sI)[b - (G1-sI)*Inv(G+sI)y] 

C= b' - Inv(G2+sI)*(G1-sI)*Inv(G1+sI)*y 

C 

it=i 

2000 continue 

C 

c ******** calculating the vector y=b-(G_{2}-sI)v ****** 

yu(1)=fzu(1)-( ams*xu(1)+b*xv(1)) 

yv(1)=fzv(1)-( ams*xv(1)-b*xu(1)) 

do 2003 i=2, m-2.2 

yu(i)=fzu(i)-( ams*xu(i)+b*xv(i)-xu(i+i)) 

yv(i)=fzv(i)-( ams*xv(i)-b*xu(i)-xv(i+1)) 
C 
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2003 

C 

C 

G 

yu(i+1)=fzu(i+1)-( ams*xu(i+1)+b*xv(i+1)-xu(i)) 

yv(i+1)=fzv(i+1)-( ams*xv(i+1)-b*xu(i+1)-xv(i)) 

continue 

yu(m)=fzu(m)-( ams*xu(m)+b*xv(m)) 

yv(m)=fzv(m)-( ams*xv(m)-b*xu(m)) 

Calculating [Inv*(DELTA)]**2 * (Gi-sI)*(G1+sI)*y 

do 2004 i=1, m-1,2 

rsu(i)= gi*yu(i)+g2*yv(i) 

rsv(i)= -g2*yu(i)+gl*yv(i) 

+hl*yu(i+1)+h2*yv(i+1) 

-h2*yu(i+1)+hl*yv(i+1) 

rsu(i+i)= gl*yu(i+i)+g2*yv(i+i) 

rsv(i+i)= -g2*yu(i+i)+gl*yv(i+i) 

2004 continue 

+hl*yu(i)+h2*yv(i) 

-h2*yu(i)+hl*yv(i) 

C Calculating upl, vpl. 

up1(1)=bpu(1)-( shl*rsu(1)+sh2*rsv(1) ) 

vpl(i)=bpv(1)-( shl*rsv(i)-sh2*rsu(1) ) 

do 2005 i=2, m-2,2 

upi(i)=bpu(i)-( aps*rsu(i)+b*rsv(i)+rsu(i+1) ) 

vpl(i)=bpv(i)-( aps*rsv(i)-b*rsu(i)+rsv(i+i) ) 

c 

upl(i+i)=bpu(i+i)-( aps*rsu(i+i)+b*rsv(i+1)+rsu(i) ) 

vpi(i+i)=bpv(i+1)-( aps*rsv(i+i)-b*rsu(i+i)+rsv(i) ) 

2005 continue 

upi(m)=bpu(m)-( shl*rsu(m)+sh2*rsv(m) ) 

vpl(m)=bpv(m)-( shl*rsv(m)-sh2*rsu(m) ) 

C 

flagon=. true. 

do 3085 i=1, m 

if ((abs(upl(i)-xu(i)). gt. eps). or. (abs(vpl(i)-xv(i)). gt. eps)) then 

flagon=. false. 

endif 
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3085 continue 

do 400 i=1. m 

xu(i)=up1(i) 

xv(i)=vpl(i) 

400 continue 

C 

if (flagon) then 

do 408 i-l, m 

eru(i)-ua(i)-xu(i) 

erv(i)-va(i)-xv(i) 

408 continue 

elseif(it. gt. 200) then 

go to 4001 

else 

it=it+1 

go to 2000 

endif 

vrite(6,48)it 

48 format(//, t20, ' RESULTS AFTER ', i3, ' iterations ') 

write(6,18)(ua(i), i=i, m, (m+i)/10) 

write(6,19)(xu(i), i=i, m, (m+i)/10) 

vrite(6,56)(eru(i), i=i, m, (m+1)/10) 

write(6,98)(va(i), i=i, m, (m+i)/10) 

write(6,89)(xv(i), i=i, m, (m+1)/10) 

write(6, S6)(erv(i), i=i, m, (m+l)/10) 

18 format(/, ix, 'Anal U=', 10(' ', f6.3)) 

98 format(/, ix, 'Anal V=', 10(' ', f6.3)) 

19 format(ix, 'Numer U=', 10(' ', f6.3)) 

89 format(ix, 'Numer V"', 10(' ', f6.3)) 

56 format(ix, 'error = ', 10(' ', f6.3)) 

go to 4002 

4001 vrite(6, *)'run is stopped : more than 200 inner iters. for it -', it 
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4002 continue 

4300 continue 

end 
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B. 3 Program EADJ'ully_iterative 

$system 

$callwarn 

$alignwara 

program elliptic_EAD 

C This program solves the Laplace problem using 

C the EAD fully iterative method- Strategy III 

C 

implicit real*8 (a-h, o-z), integer*2(i-n) 

integer diml, dim, dim2, din 

parameter (dim1=100, dim2=100) 

integer il, i2 

character*10 boundary 

real*8 1 

dimension ua(0: diml, 0: dim2), un(O: diml, 0: dim2) 

dimension d(O: dimi, 0: dim2), rhs(1: diml, l: dim2) 

dimension aer(O: diml), xu(O: dimi, 0: dim2) 

dimension x(O: dimi), y(O: dim2) 

logical finish 

COMMON/shareall/dim, din 

C 

write(*, *)'enter dx, dy, finx, finy, s, ro' 

open(unit=5, file='vv_in', form''formatted') 

read(5, *)mnit 

read(5, *) dim, din, finx, finy, s, ro, eps 

open(unit=6, file='vv_strat3', form='formatted') 

dx=(finz)/(float(dim) + 1) 

dy=(finy)/(float(din) + 1) 

write(6,15)dx, dy, finx, finy 

write(6, *)' dim- ', dim, ' din= ', din 

write(6,915)eps 
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915 format(/, t35, 'Eps= ', lpe9.2) 

write(6,151)ro, s 

15 format(ix, 2x, 'dx=', f5.2,2x, 'dy=', f5.2,2x, 

1 'finx=', f5.2,2x, 'finy=' , f5.2) 

151 format(lx, t40. 'The ADI parameter rho= ', f5.3, /, 

1 t40, 'The AGE parameter s= ', f5.3) 

a1=-1. dO 

c1=4. dO 

c11=(1. dO/2. dO)*ci+ro 

e=2. dO-ro 

two_ro=2. dO*ro 

C 

C setting the x-axis 

xd=0.0 

do 3334 i=0, dim+i 

x(i)=xd 

xd=xd+dx 

3334 continue 

C setting the y_ayis 

yd=0.0 

do 34 j=0, din+1 

y(j)=yd 

yd=yd+dy 

34 continue 

C Setting initial values for the numerical solution. 

do 33 i=l, dim. 

do 33 j=l, din 

xu(i, j)=o. Odo 

un(i, j)=xu(i, j) 
33 continue 

C 

cB0UNDAAYC0NDIT10NS 
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C Setting boundary values for the numerical solution. 

C 

do 38 i=0, dim+i, dim+1 

do 38 j=1, din 

xu(i, j)=x(i)*(i. O-x(i))+y(j)*(y(j)-i. o) 

38 continue 

C 

do 39 j=0, din+i, din+1 

do 39 i=l, dim 

xu(i, j)=x(i)*(1.0-x(i))+y(j)*(y(j)-1.0) 

39 continue 

G 

C Calculating the analytical solution 

do 32 i=1, dim 

do 32 j=l, din 

ua(i, j)=x(i)*(1.0-x(i))+y(j)*(y(j)-1.0) 

32 continue 

c 

C The right hand of - Au=d is now Calculated. 

C 

d(1,1)=xu(0,1)+xu(1,0) 

do 12 i=2, dim-1 

d(i, 1)=xu(i, 0) 

12 continue 

d(dim, 1)=xu(dim+1,1)+xu(dim, 0) 

do 310 j=2, din-1 

d(1, j)=xu(O, j) 

do 2 i=2, dim-1 

d(i, j)=0. dO 

2 continue 

d(dim, j)=xu(dim+l, j) 

310 continue 
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d(i, din)=xu(i, din+1)+xu(O, din) 

do 22 i=2, dim-1 

d(i, din)-xu(i, din+i) 

22 continue 

d(dim, din)=xu(dim, din+1)+xu(dim+l, din) 

c 

C setting 

it=0 

write(6, *) 'The first ADI iterations had 3 inner AGE iters. ' 

88 level_adi=1 

it=it+1 

c Calculating the R. H. S at each ADI level. 

98 call rhsadi(e, two_ro, level_adi, d, xu, rhs) 

c CALLING THE AGE ROUTINE TO EXCUTE ONE ITERATION. 

ii=o 

6666 call ageodd(zu, rhs, level_adi, al, cll, s) 

ii=ii+1 

G 

if(it. gt. 1) ii=ii+2 

677 if(ii. le. 2) go to 6666 

level_adi-level_adi+1 

if(level_adi. le. 2) go to 98 

c Test the convergence of ADI 

finish=. true. 

call test2(zu, un, eps, finish) 

do 954 i=l, dim 

do 954 j=1, din 

un(i, j)-xu(i, j) 
954 continue 

G 

if(finish) go to 231 

if(it. ge. mnit) then 
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write(6, *) 'The ADI did NOT converge; max. No. of iterations exceeded' 

go to 231 

endif 

go to 88 

231 write(6, *) 'The results after ', it, ' ADI iterations. ' 

call abser(ua, un, z, y) 

stop 

end 

C 

c SUBROUTNES FOLLOW HERE 

subroutine rhsadi(e, two_ro, level_adi, d, xu, rhs) 

implicit real*8(a-h, o-z), integer*2(i-n) 

integer dimi, dim2, dim, din 

parameter (dim1=100, dim2=100) 

dimension d(O: dimi, 0: dim2), rhs(i: dimi, i: dim2) 

dimension xu(O: diml, 0: dim2) 

COMMON/shareall/dim, din 

c At the first ADI level 

if(level_adi. eq. 2) go to 701 

700 do 223 i=i, dim 

rhs(i, i)=d(i, 1)-(e*xu(i, 1)-xu(i, 2)) 

do 224 j=2, din-i 

rhs(i, j)=d(i, j)-(-xu(i, j-1)+e*xu(i, j)-xu(i, j+i)) 

224 continue 

rhs(i, din)=d(i, din)-(e*xu(i, din)-xu(i, din-1)) 

223 continue 

C 

go to 498 

c Calculating the RHS=(V-ro*I)xu+ 2*ro*uph which is equivalent to: 

c RHS=d-(rhs=[d-(V-ro*I)xu]) + 2*ro*uph 

c At the SECOND ADI level 

701 do 225 j=l, din 
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do 225 i=l, dim 

rhs(i, j)=d(i, j)-rhs(i, j)+two_ro*xu(i, j) 
225 continue 

498 return 

end 

G 

subroutine ageodd(zu, rhs, level_adi, al, cil, s) 

implicit real*8(a-h, o-z), integer*2(i-n) 

integer dimi, dim2, dim, din 

parameter (diml=100, dim2=100) 

dimension d(O: dimi, 0: dim2), rhs(i: dimi, i: dim2) 

dimension zu(O: diml, 0: dim2) 

real*8 ls(0: dim1,0: dim2) 

real*8 ls2(0: dimi, 0: dim2) 

COMMON/shareall/dim, din 

el=cll/2. dO+s 

e2=cii/2. dO-s 

delta=el**2-al**2 

c12-(el*e2-al*al)/delta 

a12=(ei*ai-ai*e2)/delta 

c13=e2/el 

c14=e1/delta 

a14=-al/delta 

c16=1. dO/el 

C ---------------------------- 

c 

if(level_adi. eq. 1) go to 700 

if(level_adi. eq. 2) go to 701 

c AGE for level-ADI I 

C 

700 continue 

c Calculating the right hand side of 
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c (G1+sI)uph=rhsadi-(G2-sI)zu=1s 

do 112 j=I, din 

ls(1, j)-rhs(1, j)-e2*xu(1, j) 

do 111 i=2, dim-1,2 

ls(i, j)=rhs(i, j)-(e2*xu(i, j)+ai*xu(i+i, j)) 

ls(i+1. j)=rhs(i+i, j)-(e2*xu(i+1, j)+al*xu(i, j)) 

Iii continue 

112 continue 

C 

c Calculating the right hand side of 

c (G2+sI)upl=rhsadi-(G1-sI)(Gi+sI)"{-1}ls 

do 115 j=1, din 

do 114 i=l, dim-2.2 

ls2(i. j)=rhs(i, j)-(c12*ls(i, j)+a12*ls(i+i, j)) 

ls2(i+i, j)=rhs(i+i, j)-(c12*ls(i+i, j)+ai2*ls(i, j)) 

114 continue 

ls2(dim. j)-rhs(dim, j)-c13*ls(dim, j) 

115 continue 

c 

c---------------------------- 

c FROM HERE ON, the vector is is used again (instead of upi) to save memory. 

do 118 j=i, din 

xu(1, j)=c16*ls2(1, j) 

do 120 i=2. dim-1,2 

xu(i. j)=c14*ls2(i. j)+a14*ls2(i+1, j) 

xu(i+1, j)-c14*ls2(i+i, j)+a14*ls2(i, j) 

120 continue 

118 continue 

go to 499 

C 

c AGE for level-ADI II 

701 continue 
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C 

do 211 i=i, dim 

ls(i, i)=rhs(i, 1)-e2*xu(i, 1) 

do 212 j=2, din-1,2 

ls(i, j)=rhs(i, j)-(e2*xu(i, j)+al*xu(i, j+1)) 

ls(i, j+i)=rhs(i, j+i)-(e2*xu(i, j+i)+ai*xu(i, j)) 

212 continue 

211 continue 

C 

do 214 i=l, dim 

do 215 j=l, din-2,2 

ls2(i, j)=rhs(i, j)-(c12*ls(i, j)+a12*ls(i, j+i)) 

ls2(i, j+i)=rhs(i, j+i)-(ci2*ls(i, j+1)+a12*ls(i, j)) 

215 continue 

ls2(i, din)=rhs(i, din)-ci3*ls(i, din) 

214 continue 

c 

C ---------------------------- 

c FROM HERE ON, vector is is used again (instead of upi) to save memory. 

do 220 i=1, dim 

zu(i, i)=c16*ls2(i, 1) 

do 218 j=2, din-1,2 

zu(i, j)=c14*ls2(i, j)+a14*ls2(i, j+i) 

xu(i, j+i)=c14*ls2(i, j+i)+a14*ls2(i, j) 

218 continue 

220 continue 

499 return 

end 

C 

subroutine test2(upl, uph, eps, flagon) 

implicit real*8(a-h, o-z), integer*2(i-n) 

integer dimi, dim2, dim, din 
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parameter (diml=100, dim2=100) 

dimension uph(O: diml, 0: dim2), upl(O: diml, 0: dim2) 

logical flagon 

COMMON/shareall/dim, din 

flagon-. true. 

emax=0 

do 3386 j=1, din 

do 3386 i=1, dim 

temp=abs(upl(i, j)-uph(i, j)) 

if (temp. gt. emax) emax=temp 

3386 continue 

if (emax. gt. eps) flagon=. false. 

return 

end 

c 

subroutine abser(ua, un, x, y) 

implicit real*8(a-h, o-z), integer*2(i-n) 

integer dimi, dim2, dim, din 

parameter (dims=100, dim2=100) 

dimension un(O: diml, 0: dim2), ua(O: diml, 0: dim2) 

dimension aer(O: diml), x(O: diml), y(O: diml) 

COMMON/shareall/dim, din 

errorsum=0. dO 

count=O. dO 

write(6,249)(x(i), i=l, dim, (dim/5)) 

do 101 j=l, din, (din/5) 

do 9 i=i, dim 

count=count+1. OdO 

aer(i)-abs(ua(i, j)-un(i, j)) 

errorsum=errorsum+aer(i) 

9 continue 

write(6,186)y(j) 
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write(6,18)(ua(i, j), i=l, dim, (dim/5)) 

write(6,19)(un(i, j), i=l, dim, (dim/5)) 

write(6,56)(aer(i), i=l, dim, (dim/5)) 

56 format(2x, 6x, ' ', 'er = ', 10(lpe9.2)) 

101 continue 

186 format(/, 'x_{2}=', f5.4) 

18 format(/, 7x, 'Anal. U=', 10(f9.7), /) 

19 format(7x, 'Numer. U=', 10(f9.7), /) 

249 format(7x, ' x_{1}= ', 10(f9.7), /) 

C 

614 allerroraverage=errorsum/count 

write(6,965)allerroraverage 

965 format(/, t35, 'Average of all absolute errors =', ipell. 2) 

return 

end 
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B. 4 Program Shallow WaterJAD 

$system 

program water 

c******************************************************************C 

cA program to solve the linearized shallow water c 

c equations in 2D using the c 

c EAD method c 

c******************************************************************C 

c 

implicit real*8(a-h, o-z), integer*2(i-n) 

real*8 lamda, l 

logical convergent 

integer diml, dim2 

parameter (dims=ll, dim2=11) 

dimension un(O: diml, O: dim2) 

C 

dimension ua(O: diml, 0: dim2) 

dimension xu(O: diml, 0: dim2) 

C 

dimension va(O: diml, O: dim2) 

dimension xv(O: diml, 0: dim2) 

C 

dimension phia(O: diml, O: dim2) 

dimension xphi(0: dim1,0: dim2) 

G 

dimension dxl(O: diml O: dim2) 

G 

dimension dz2(0: dim1.0: dim2) 

C 

dimension dxx(O: diml. 0: dim2) 

G 
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dimension z(O: diml). y(O: dim2) 

COMMON/shareall/mIn 

C 

open(unit=5, file='wat_in') 

open(unit=6, file='wat_out') 

G 

c 'lasttime' is the number of time steps the program is required to run. 

read(5, *)eps, lasttime, maxit 

read(5, *)dt, ds, s 

read(5, *)istart, jstart, istep, jstep 

c DATA DATA DATA DATA DATA 

M-10 

n=10 

dx=ds 

dy-ds 

C1 is the length of the domain. 

1-(float(m)-l. dO)*ds 

C 

g=10. dO 

pi=datan(1. dO)*4. dO 

phi0=dsgrt(10. dO*80. dO) 

c s=2.8 

c END OF DATA. ........ END OF DATA 

C 

ratio=dt/ds 

lamda=phiO*ratio 

print*, ' mesh ratio =dt/ds- ', ratio 

print*, ' lamda=(dt/ds)* phiO = ', lamda 

C 

e2=-dt*phiO/(4. d0*ds) 

C Coeffs. that are used only in the AGE-Subroutine. 

el=0.5d0-s 
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di=1. dO/(0.25d0+e2*e2+s*s+s) 

e3=(0.5+s)*di 

e4=-e2*di 

e5=e1*e3-e4*e2 

e6=e1*e4+e2*e3 

C 

C Calculating the meshpoints' coordinates 

call axes2(z, y, dz, dy) 

t=O. OdO 

C 

c Calculating the initial conditions from the theoretical solution. 

call theoretical(xu, xv, xphi, t, x, y, phi0, l) 

do 3434 lt=l, lasttime 

ti=t+dt 

c Updating the analytical solution. 

call theoretical(ua, va, phia, tl, x, q, phiO, l) 

c At level ADI=1 

level_adi=1 

cA call : to calc. the known rhs of eq(7: 31) & eq(7: 32) 

call rhvi(xu, xv, xphi, level_adi, dxl, dx2, dxx, e2) 

i1=1 

call evenage(xu, xv, xphi, level_adi, dxi, dx2, eps, ii, maxit, 

1 e1, e2, e3, e4, e5, e6, di, s, convergent) 

if(. not. (convergent)) go to 11 

C At level ADI=2 

do 1007 j=i, n 

do 1007 i=1, m 

xv(i, j)=dxx(i, j) 

1007 continue 

level_adi=2 

cA call : to calc. the known rhs of eq(7: 34) & eq(7: 33) 

call rhvi(xu, xv, xphi, level_adi, dxl, dx2, dxx, e2) 
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12=1 

call evenage(xu, xv, xphi, level_adi, dxi, dx2, eps, i2, maxit, 

el, e2, e3, e4, e5, e6, di, s, convergent) 

if(. not. (convergent)) go to 11 

C 

231 er_sumu=O. dO 

er_sumv=0. dO 

er_sumphi=O. dO 

av_eru=0. dO 

av_erv=0. dO 

av_erphi=0. dO 

C 

if(lt. ne. lasttime) go to 3435 

write(6, *)' dx=dy= ', ds, ' dt=', dt 

write(6, *)' acc. param. s=', s 

write(6, *)' mesh ratio -dt/ds= ', ratio 

write(6, *)' lamda=ratio*phiO = ', lamda 

write(6, *)'after ', lt, ' time steps', ' i. e at lt= ', lt 

vrite(6, *)'convergence occured after ', ii, '/', i2, ' AGE-ID 1, 

i' iterations' 

c Results given next. 
C 

write(6,13)(x(i), i=istart, m, istep) 

vrite(6, *)' ' 

13 format(5x, 'x direction = ', 10(' ', lpe7.1), //) 

call abser(ua, va, phia, xu, xv, xphi, y, istart, jstart, istep, jstep, 

1 er_sumu, er_sumv, er_sumphi, av_eru, av_erv, av_erphi) 

vrite(6, *)'av_eru=', av_eru 

vrite(6, *)'av_erv-', av_erv 

write(6, *)'av_erphi=', av_erphi 

go to 3435 

11 write(*, *) 'stopped' 
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stop 

3435 t=t+dt 

3434 continue 

end 

C Subroutines follow next. 

subroutine axes2(x, y, dx, dy) 

implicit real*8(a-h, o-z), integer*2(i-n) 

C Setting the coordinates for the computational grid 

integer diml, dim2 

parameter (dim1=11, dim2=11) 

dimension x(O: diml), y(O: dim2) 

COMMON/shareall/m, n 

C 

do 101 i=0, m+1 

x(i)=i*dx 

101 continue 

do 102 j=0, n+1 

y(j)=J*dy 

102 continue 

return 

end 

subroutine theoretical(u, v. phi, timelevel, x, y, phiO, 1) 

implicit real*8(a-h, o-z), integer*2(i-n) 

integer diml, dim2. dim3 

parameter (dims=il, dim2=11) 

dimension u(O: diml. 0: dim2) 

dimension v(O: diml, 0: dim2) 

dimension phi(O: diml, 0: dim2) 

dimension x(O: diml) 
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dimension y(O: dim2) 

real*8 1 

COMMON/shareall/m, n 

C 

write(*, *)'I am in theor. now wait please 

pi=4. dO*datan(1. dO) 

do i i=1, m 

do 1 j=1, n 

u(i, j)=0.250d0* 
I dsin((-dsgrt(2. do)*phiO*timelevel+x(i)+y(j))*2. dO*pi/1) 

v(i, j)=0.25odo* 

1 dsin((-dsgrt(2. dO)*phio*timelevel+x(i)+y(j))*2. dO*pi/1) 

phi(i, j)=(dsgrt(2. dO)/4. dO)* 

1 dsin((-dsgrt(2. dO)*phiO*timelevel+x(i)+y(j))*2. dO*pi/l)+phi0 

continue 

return 

end 

subroutine rhvi(xu, xv, xphi, level_adi, dxl, dx2, dxx, e2) 

implicit real*8(a-h, o-z), integer*2(i-n) 

integer diml, dim2 

parameter (dim1=11, dim2=11) 

real*8 lamda 

dimension xu(O: diml, 0: dim2) 

dimension xv(O: diml, O: dim2) 

dimension xphi(O: diml, O: dim2) 

dimension ua(O: dimi, 0: dim2) 

dimension va(O: diml, O: dim2) 

dimension phia(O: dimi, 0: dim2) 

dimension rhst(O: diml, O: dim2) 

dimension x(O: diml) 

dimension y(O: dim2) 

C 
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dimension dxl(O: diml, 0: dim2) 

dimension dx2(0: diml, 0: dim2) 

dimension dxx(O: diml, 0: dim2) 

C 

COMMON/shareall/m, n 

c 

if(level_adi. eq. 2) go to 655 

c The first known vector 

c input C xphi, xu, xv, e2] 

C 

C output [dxl, dx2, dxx] 

c dxl t dx2 are then used as input for the AGE subr. to get the 

c intermediate values for xu t xphi. The dxx itself represents 

c the intermediate value of xv ... see eqs. (7.31) & (7.32). 

c 

c dxx represents the value of z_{2}_{i, j} 

do 10 i=1, m 

dxi(i, 1)-xu(i, 1) 

dx2(i, 1)=xphi(i, 1)+e2*(xv(i, 2)-xv(i, n)) 

dxx(i, 1)=xv(i, 1)+e2*(xphi(i, 2)-xphi(i, n)) 

do 20 j=2, n-1 

dxi(i; j)=xu(i, j) 

dx2(i, j)=xphi(i, j)+e2*(xv(i, j+1)-xv(i, j-1)) 

dxx(i, j)=xv(i, j)+e2*(xphi(i, j+1)-xphi(i, j-i)) 

20 continue 

dxl(i, n)-xu(i, n) 

dx2(i, n)=xphi(i, n)+e2*(xv(i, 1)-xv(i, n-1)) 

dxx(i, n)=xv(i, n)+e2*(xphi(i, 1)-xphi(i, n-1)) 

10 continue 

c 

go to 6568 

c The second known vector 
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c The final value of xu is calculated first eq(7: 34) 

c dxl and dx2 represent the components of the rhs of eq(7: 33). 

655 do 30 i=l, m 

do 30 j=1, n 

xu(i, j)=2. dO*xu(i, j)-dxl(i, j) 

dxi(i, j)=dxx(i, j) 

dx2(i, j)=2. dO*xphi(i, j)-dx2(i, j) 

30 continue 

c 

C 

6568 return 

end 

subroutine evenage(xu. xv. xphi. level_adi, dxl. dx2, eps, iters, maxit, 

ei, e2. e3, e4, e5, e6, di, s. flagon) 

C subroutine for the use of the AGE-1D algorithm within an outer ADI iterative 

C Procedure. 

implicit real*8(a-h, o-z), integer*2(i-n) 

integer diml, dim2 

parameter (diml-1i, dim2-11) 

dimension xu(O: diml, O: dim2) 

dimension xv(O: dimi. 0: dim2) 

dimension xphi(O: diml, 0: dim2) 

real*8 lsu(O: diml, 0: dim2) 

real*8 lsv(O: dimi, 0: dim2) 

real*8 lsh(0: dim1,0: dim2) 

real*8 lsl(O: diml, 0: dim2) 

real*8 ls2(0: dimi, 0: dim2) 

C 

real*8 dxl(O: dimi, 0: dim2) 

real*8 dx2(0: dimi, 0: dim2) 

real*8 lamda 
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COMMON/shareall/m, n 

logical flagon 

if(level_adi. eq. 1) go to 700 

if(level_adi. eq. 2) go to 701 

C Calculating gi of equation (7.37) 

c 

700 do 100 j=1, n 

do 100 i=1, m-1,2 

lsi(i, j)=dx1(i, j)-(ei*xu(i, j) - e2*xphi(i+i, j)) 

ls2(i, j)=dx2(i, j)-(ei*xphi(i, j) - e2*xu(i+i, j)) 

c 

lsi(i+i, j)=dxi(i+i, j)-(el*xu(i+i, j) + e2*xphi(i, j)) 

ls2(i+i, j)=dx2(i+i, j)-(el*xphi(i+i, j) + e2*xu(i, j)) 

100 continue 

c 

c 

do 1119 j=1, n 

C 

lsu(1, j)=dxl(1, j)-( e5*lsl(1, j) + e6*1s2(m, j) ) 

1sh(1, j)=dx2(1, j)-( e5*1s2(1, j) + e6*lsl(m, j) ) 

C 

do III i=2, m-2,2 

lsu(i, j)=dxi(i, j) -( e5*lsi(i, j) - e6*ls2(i+i, j) ) 

lsh(i, j)=dx2(i, j) -( e5*ls2(i, j) - e6*lsl(i+i, j) ) 

C 

lsu(i+1, j)-dxl(i+1, j) -( e5*lsl(i+1, j) + e6*ls2(i, j) ) 

lsh(i+1, j)=dx2(i+1, j) -( e5*ls2(i+1, j) + e6*lsl(i, j) ) 

C 

III continue 

C 

lsu(m, j)=dxl(m, j) -( e5*lsl(m, j) - e6*ls2(1, j) ) 

lsh(m, j)-dx2(m, j) -( e5*1s2(m, j) - e6*lsl(1. j) ) 
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C 

1119 continue 

C 

do 500 j=1, n 

do 500 i=1, m-1,2 

lsl(i, j)=e3*lsu(i, j) - e4*lsh(i+1, j) 

1s2(i, j)=e3*lsh(i, j) - e4*lsu(i+1, j) 

C 

lsl(i+i, j)=e3*lsu(i+1, j) + e4*lsh(i, j) 

1s2(i+1, j)=e3*lsh(i+i, j) + e4*lsu(i, j) 

500 continue 

C 

emaxl=0. dO 

emax2=0. dO 

flagon=. true. 

do 880 j=1, n 
do 880 i=1, m 

erl-dabs(lsl(i, j)-xu(i, j)) 

er2=dabs(ls2(i, j)-xphi(i, j)) 

if(erl. gt. emaxl) emaxl=erl 

if(er2. gt. emax2) emax2=er2 

880 continue 

C 

if((emaxl. gt. eps). or. (emax2. gt. eps)) flagon-. false. 

do 991 j=1, n 

do 991 i=1, m 

xu(i, j)=ls1(i, j) 
xphi(i, j)=1s2(i, j) 

991 continue 

if (flagon) go to 499 

if(iters. gt. maxit) then 

print*, 'max no. of iterations is exceeded in AGE1' 
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go to 499 

endif 

iters=iters+l 

go to 700 

c 

c AGE at the second level of the ADI method. 

C Calculating g2 of equation (7.39) 

c 

701 do 200 i=1, m 

do 200 j=1, n-1,2 

lsi(i, j)=dx1(i, j)-(e1*xv(i, j) - e2*xphi(i, j+i)) 

ls2(i, j)=dx2(i, j)-(el*xphi(i, j) - e2*xv(i, j+1)) 

c 

lsl(i, j+i)=dxl(i, j+i)-(el*xv(i, j+i) + e2*xphi(i, j)) 

ls2(i, j+1)=dx2(i, j+1)-(el*xphi(i, j+1) + e2*xv(i, j)) 

200 continue 

c 

c 

c Using the vector lsu here instead of lsv. 

c 

do 9119 i=1, m 

lsu(i, i)=dxl(i, i)-( e5*lsl(i, i) + e6*ls2(i, n) ) 

lsh(i, 1)=dx2(i, 1)-( e5*ls2(i, 1) + e6*lsl(i, n) ) 

C 

do 911 j=2, n-2,2 

lsu(i, j)=dxl(i, j) -( e5*lsl(i, j) - e6*ls2(i, j+i) ) 

lsh(i, j)=dx2(i, j) -( e5*ls2(i, j) - e6*lsl(i, j+1) ) 

c 

lsu(i, j+1)=dxl(i, j+i) -( e5*lsi(i, j+l) + e6*ls2(i, j) ) 

lsh(i, j+1)-dx2(i, j+1) -( e5*ls2(i, j+l) + e6*lsl(i, j) ) 

C 

911 continue 

4 
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G 

lsu(i, n)=dxl(i, n) -( e5*lsl(i, n) - e6*ls2(i, 1) ) 

lsh(i, n)=dx2(i, n) -( e5*ls2(i, n) - e6*lsl(i, 1) ) 

9119 continue 

C 

C 

do 9500 i=1, m 

do 9500 j=1, n-1,2 

lsl(i, j)=e3*lsu(i, j) - e4*lsh(i, j+1) 

ls2(i, j)=e3*lsh(i, j) - e4*lsu(i, j+1) 

G 

lsi(i, j+i)=e3*lsu(i, j+i) + e4*lsh(i, j) 

1s2(i, j+i)=e3*lsh(i, j+i) + e4*lsu(i, j) 

9500 continue 

G 

C 

emaxl=O. do 

emax2=0. dO 

flagon-. true. 

do 800 j=1, n 

do 800 i=1, n 

erl=dabs(lsl(i, j)-xv(i, j)) 

er2=dabs(ls2(i, j)-xphi(i, j)) 

if(erl. gt. emaxl) emaxl=erl 

if(er2. gt. emax2) emax2=er2 

800 continue 

G 

if((emaxl. gt. eps). or. (emax2. gt. eps)) flagon-. false. 

do 901 j=1, n 

do 901 i=1, m 

xv(i, j)=lsl(i, j) 

xphi(i, j)=ls2(i, j) 
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901 continue 

if(flagon) go to 499 

if(iters. gt. maxit) then 

print*, 'max no. of iterations is exceeded in AGE2' 

go to 499 

endif 

iters=iters+l 

go to 701 

499 return 

end 

subroutine abser(ua, va, phia, xu, xv, xphi, y, istart, jstart, istep, jstep, 

1 er_sumu, er_sumv, er_sumphi, 

1 av_eru, av_erv, av_erphi) 

C*********** 

C*********** Subroutine for calculating the errors and printing the 

C*********** results of the S. W. program. 

C*********** 

implicit real*8(a-h, o-z), integer*2(i-n) 

integer diml, dim2 

parameter (diml-11, dim2=11) 

dimension xu(O: diml, 0: dim2), xv(O: dims, 0: dim2), xphi(O: diml, 0: dim2) 

dimension ua(O: diml, 0: dim2), va(O: dims, 0: dim2), phia(O: dimi, 0: dim2) 

dimension aeru(O: diml), aerv(O: dimi), aerphi(O: dimi) 

C 

dimension y(O: dim2) 

COMMON/shareall/min 

C 

do 101 j=jstart, n, jstep 

C 

do 11 i=istart, m, istep 
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C 

aeru(i)=dabs(ua(i, j)-xu(i, j)) 

aerv(i)=dabs(va(i, j)-xv(i, j)) 

aerphi(i)=dabs(phia(i, j)-xphi(i, j)) 

er_sumu=er_sumu+aeru(i) 

er_sumv=er_sumv+aerv(i) 

er_sumphi=er_sumphi+aerphi(i) 

it continue 

G 

write(6,18)(ua(i, j), i=istart, m, istep) 

write(6,19)(xu(i, j), i=istart, m, istep) 

write(6,56)y(j), (aeru(i), i=istart, m, istep) 

C 

Write(6,1801)(va(i, j), i=istart, m, istep) 

write(6,1901)(xv(i, j), i=istart, m, istep) 

write(6,5601)y(j), (aerv(i), i=istart, m, istep) 

C 

write(6,1802)(phia(i, j), i-istart, m, istep) 

write(6,1902)(xphi(i, j), i=istart, m, istep) 

write(6,5602)y(j), (aerphi(i), i-istart, m, istep) 

101 continue 

C 

ipoints=(m-istart)/(istep)+1 

jpoints=(m-istart)/(istep)+i 

(prod-float(ipoints*jpoints) 

print*, 'ipoints - ', ipoints, ' jpoints " ', jpoints 

av_eru=er_sumu/fprod 

av_erv=er_sumv/fprod 

av_erphi=er_sumphi/fprod 

56 format(lx, 'y= ', f8.1, ' ', 'er_u 

18 format(/, 5x, 'Analytical U =', 10(' ', f7.5)) 

19 format(5x, 'Numerical U-', 10(' ', f7.5), /) 
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5601 format(lx, 'y= ')f8.1, ' ', 'er_v = ', 10(' ', lpe8.1), /) 

1801 format(/, 5x, 'Analytical V =', l0(' ', f7.5)) 

1901 format(5x, 'Numerical V=', l0(' 

5602 format(ix, 'y= ', f8. i, ' ', 'er_phi = ', 10(' ', ipe8.1)) 

1802 format(/, 5x, 'Analytical Phi =', 10(' ', f7.3), /) 

1902 format(5x, 'Numerical Phi = ', 10(' ', f7.3), //) 

print*, 'av_eru=', av_eru 

print*, 'av_erv=', av_erv 

print*, 'av_erphi=', av_erphi 

return 

end 


