

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

EXPLICIT ALTERNATING DIRECTION METHODS

FOR PROBLEMS IN FLUID DYNAMICS

BY

AZZAM AHMAD AL-WALI

A Doctral Thesis

Submitted in partial fulfilment of the requirements
for the award of Doctor of Philosophy

of the Loughborough University of Technology

August, 1994

SUPERVISOR: PROFESSOR D. J. EVANS, PhD, D. Sc.,
Department of Computer Studies

@- by Azzam Ahmad Al-Wali, 1994

10-01

Jýl,

--

In the name of God, Most Gracious, Most Merciful.

Cowper wrote: "Oars alone can ne'er prevail
To reach the distant Coast;

The breath of heaven must swell the sail,
Or all the toil is lost. "

Indeed!.

ACKNOWLEDGEMENTS

All praise be to God the Almighty, Who has given me the desire, will and
perseverance to complete the work of this thesis.

I am greatly indebted to my supervisor Professor D. J. Evans who to me
häs a "breath of heaven" swelling my sail. His friendly unfailing guidance,
continuous help, incessant encouragement, and his informative remarks has
helped me steer my way during this period of endurance.

I thank him for allowing me the opportunity of working under his supervision
and for his patience throughout. His conscientious character, his concern for
those who work with him and under his supervision, his hard work, his
versatile knowledge and experience, has made me share with other students
and visiting researchers a deep admiration of him. I hope that I shall benefit
from his example in learning and in the passing on of knowledge to my
students and colleagues in the future.

I also wish to thank Dr. C. li for many fruitful discussions, Dr. A. Benson for
his comments, Dr. W. Yousif and Mr. G. Samra for their technical assistance,
and Mrs J. Poulton for her friendly and professional management of the affairs
of staff and students of the Parallel Algorithms Research Centre.

Abstract

Recently an iterative method was formulated employing a new splitting strategy for the

solution of tridiagonal systems of difference equations. The method was successful in solv-

ing the systems of equations arising from one dimensional initial boundary value problems,

and a theoretical analysis for proving the convergence of the method for systems whose

constituent matrices are positive definite was presented by Evans and Sahimi [22]. The

method was known as the Alternating Group Explicit (AGE) method and is referred to

as AGE-1D. The explicit nature of the method meant that its implementation on parallel

machines can be very promising.

The method was also extended to solve systems arising from two and three dimensional

initial-boundary value problems, but the AGE-2D and AGE-3D algorithms proved to be

too demanding in computational cost which largely reduces the advantages of its parallel

nature.

In this thesis, further theoretical analyses and experimental studies are pursued to establish

the convergence and suitability of the AGE-1D method to a wider class of systems arising

from univariate and multivariate differential equations with symmetric and non symmetric

difference operators. Also the possibility of a Chebyshev acceleration of the AGE-1D

algorithm is considered.

For two and three dimensional problems it is proposed to couple the use of the AGE-1D

algorithm with an ADI scheme or an ADI iterative method in what is called the Explicit

Alternating Direction (EAD) method. It is then shown through experimental results that

the EAD method retains the parallel features of the AGE method and moreover leads to

savings of up to 83 % in the computational cost for solving some of the model problems.

The thesis also includes applications of the AGE-1D algorithm and the EAD method to

solve some problems of fluid dynamics such as the linearized Shallow Water equations,

and the Navier Stokes' equations for the flow in an idealized one dimensional Planetary

Boundary Layer.

The thesis terminates with conclusions and suggestions for further work together with a

comprehensive bibliography and an appendix containing some selected programs.

Contents

1 Introduction 8

1.1 The relation between the problems of fluid dynamics and partial dif-

ferential equations8

1.2 The thesis outline 10

2 Basic principles of numerical analysis 12

2.1 Matrices and Vectors 12

2.2 Common types of matrices 14

2.3 Properties of matrices 15

2.4 Vector norms and related matrix norms 20

2.5 Other definitions and theorems 21

3 Current methods for the finite difference solution of partial differ-

ential equations 24

3.1 Classification of partial differential equations 24

3.1.1 Classification of first and second order partial differential

equations 24

3.1.2 Classification of multidimensional PDEs and systems of PDEs 27

3.1.3 Boundary and Initial value Problems 30

1

2

3.2 Discretization and the derivation of finite difference formulae 31

3.3 Derivation of some basic finite difference schemes 37

3.4 Properties of various finite difference schemes 39

3.4.1 Consistency , ... 41

3.4.2 Stability 42

3.4.3 Convergence
............ 52

3.5 Direct methods 53

3.6 Iterative methods 57

3.7 Consistency of iterative methods 62

3.8 Convergence of iterative methods 65

4 The ADI and the AGE Methods 68

4.1 The Alternating Direction Implicit (ADI) methods 68

4.1.1 Intermediate boundary conditions 74

4.1.2 Other alternating direction methods 76

4.2 The ADI iterative methods 77

4.3 Consistency of the ADI method 80

4.4 The Alternating Group Explicit (AGE) Iterative method 81

4.4.1 A historical review 81

4.4.2 The Alternating Group Explicit (AGE) method 83

4.4.3 Convergence analysis of the AGE method as applied to sym-

metric matrix systems 91

4.5 The AGE method for two dimensional parabolic problems 95

5 Further developments of the AGE methods 102

5.1 Introduction 102

3

5.2 Consistency analysis of the AGE method 102

5.2.1 A comment on the AGE-PR and the AGE-DR methods ... 105

5.3 The AGE method for hyperbolic problems 106

5.3.1 A note on using central difference approximations for advec-

tion problems 109

5.3.2 Convergence analysis 111

5.3.3 Numerical results 114

5.4 Convergence analysis of the AGE-2D method 116

5.5 The AGE-1D for block symmetric systems 118

5.6 Chebyshev acceleration of the AGE-1D method 123

5.7 The various forms of the AGE method and the computational re-

quirements 126

6 The Explicit Alternating Direction methods (EAD) 130

6.1 Introduction 130

6.2 The EAD method 131

6.2.1 A parabolic problem
131

6.2.2 A hyperbolic problem 142

6.2.3 The EAD method with an LOD scheme component 146

6.3 The EAD fully iterative method 146

6.3.1 A two dimensional hyperbolic problem 147

6.3.2 A three dimensional Parabolic Equation 149

6.4 The EAD fully Iterative method for Elliptic problems 160

6.5 Convergence analysis of the EAD fully iterative method 167

6.5.1 The two dimensional advection problem 167

4

6.5.2 The three dimensional heat conduction problem 169

6.6 Consistency of the three level ADI iterative procedure 171

7 Further applications of the AGE-1D and EAD methods for coupled

systems 175

7.1 Physical Background 175

7.2 The AGE-1D method for an idealized planetary boundary layer model 176

7.3 The EAD method for the linearized Shallow Water Equations 180

8 Conclusions and suggestions for Further work 192

8.1 Conclusions 192

8.2 Suggestions for further work 196

A The truncation error, consistency and stability analysis of an LOD

scheme 206

B The listings of some programs 209

B. 1 Program par-AGE-1D-odd 209

B. 2 Program pbl 215

B. 3 Program EADIullysterative
..... 224

B. 4 Program Shallow_Water. EAD 234

List of Figures

3.1 A rectangular domain of solution for a 2D pde 30

3.2 A rectilinear grid of meshpoints
31

3.3 Diagrams of the computational molecules for various finite difference

schemes 40

4.1 The computational molecules for the AGE-1D method
88

4.2 Grouping of the meshpoints in the AGE algorithm
90

4.3 Albe-nation /No AIEerr lion i. n space For UP- RGE-2D nekho """ too

5.1 The No. of iterations vs. the acceleration parameter for the AGE-2D

method
117

(,. 1A schematic repreDenLalion of tlu EAD Ecchn; clues .. """ 132

5

List of Tables

5.1 Values of the optimal acceleration parameter for the AGE-1D; A hy-

perbolic problem 115

5.2 AGE-1D variants and their computational requirments 129

6.1 The heat conduction problem (no heat source) at t= . 0018: AGE-2D

vs. EAD. Results 135

6.2 Accuracies and the computational work in the experiments of ta-

ble6.1 135

6.3 The heat conduction problem (no heat source) at t= . 0036 :
AGE-2D vs. EAD. Results 136

6.4 Accuracies and the computational work in the experiments of ta-

ble6.3
................................... 136

6.5 The heat conduction problem (with a heat source) at t=0.1: AGE-

2D vs. EAD. Results 137

6.6 The Accuracies and the computational work in the experiments of
table 6.5 137

6.7 The heat conduction problem (with a heat source) at t=0.1 : AGE-

2D vs. EAD. Results for very small tolerance 138

6.8 Accuracies and the computational work in the experiments of ta-

ble6.7 138

6

7

6.9 The heat conduction problem (with a heat source) at t=0.5 : AGE-

2D vs. EAD. Results 139

6.10 Accuracies and the computational work in the experiments of ta-

ble6.9 139

6.11 The 2D advection problem, EAD vs. AGE-2D. Results. 144

6.12 Accuracies and computational work in the experiments of table 6.11 . 145

6.13 The 2D advection problem: AGE-2D vs. EAD fully iterative

method. Results 148

6.14 Accuracies and computational work in the experiments of table 6.13 . 148

6.15 Errors AGE-3D vs. the EAD fully iterative method. 159

6.16 The computational cost AGE-3D vs. the EAD fully iterative method 159

6.17 The EAD fully iterative method for the 2D Laplace equation, h=L

6/210 165

6.18 The computational cost of the three possible strategies of the EAD

fully iterative method for the experiment of table 6.17 165

6.19 The absolute errors of the solutions to the Laplace equation, as ob-

tained by the EAD iterative method, strategy III for h= 6/160. ... 166

6.20 The computational cost of the three possible strategies of the EAD

fully iterative method, for h= 6/160 166

7.1 The absolute errors in the velocity profiles of a 1D model for the

planetary boundary layer in the steady state 180

7.2 The EAD method for the linearized shallow water equations: Results

at t=600s 191

8.1 Comparing AGE-2D and RAGE-2D 194

Chapter 1

Introduction

1.1 The relation between the problems of fluid

dynamics and partial differential equations

The problems of fluid dynamics revolve around determining as a function of time

and/or of space one or more of the dependent variables which characterises a fluid (i. e
its velocity, and/or some of its thermodynamic variables, e. g pressure, temperature,

density, specific internal energy ... etc.).

In most cases such problems may be mathematically described by a single first or

second order partial differential equation (henceforth abbreviated as PDE) having

the general form:

L(ü) =r (1.1)

or a system of such equations.

In (1.1) L(ü) is a differential operator which has the general form:

s-N
L(ü) E«;;

äaöx +Ebk
ax

+cü (1.2)
i=1 ; =1 si k_1

ak

where N is the number of dimensions in (1.1), r is a known function of the indepen-

dent variables xi (i =1,... N), and ii is the dependent variable.

8

9

If all a, 1 in (1.2) are equal to zero, then (1.1) is of first order. If any a;, 5 is different

from zero, then (1.1) is of second order. The number of dimensions N is greater or

equal to two. If N=1 then (1.1) reduces to a total differential equation.

Different types and categories of (1.1) arise from the nature of the physical problem

which it expresses. Problems which exhibit solutions of transient nature, or represent

an unsteady state, are known as propagation problems. They involve time as one of

the independent variables in (1.1), and aim at predicting the subsequent behaviour

of a system, given its initial state. The type of (1.1) for such problems is either

parabolic or hyperbolic or it may be of mixed type. Hyperbolic PDEs are usually

associated with unattenuated convective or advective motions like the Shallow

Water equations (7.14), while parabolic equations are associated with propagation

problems involving a dissipation mechanism, usually through heat conduction (e. g

equation 4.91) or viscous shear (e. g equation 7.2).

On the other hand, equilibrium problems (e. g the steady flow problem of equa-

tions 7.3) involve finding the steady state configuration of the dependent variable ii

in a bounded region fit, which satisfies the differential equation throughout R and

satisfy certain boundary conditions on the boundary äJ2 of R. Equations of the

form (1.1) for such problems will not involve any time derivatives and fall into the

category of elliptic equations.

Equation (1.1) can be further classified in terms of linearity or nonlinearity, de-

pending on the coefficients ai� bk, and c appearing in equation (1.2).

" Equation (1.1) is said to be non-linear if any of the coefficients a; 1, bk, and

c is a function of ü or one of its derivatives.

" If the coefficients a, 3 are functions only of ü, and any of its first order deriva-

tives, but not of its second order derivatives, (1.1) is said to be quasi linear.

" If all a; j are functions of the independent variables xk (k=1
... N) only, then

(1.1) is semi linear.

. Further if bk and c are constants, then (1.1) is linear.

10

9 If (1.1) is linear, with r=0, then it is said to be homogeneous.

The mathematical classification of PDEs and systems of PDEs into one of the three

categories (i. e hyperbolic, parabolic and elliptic) is given in section 3.1.

1.2 The thesis outline

This thesis is concerned with improving and extending the AGE method for the

solution partial differential equation using finite difference approximations. The

AGE method is an iterative method which solves tridiagonal systems and banded

systems which arise from the approximation of differential equations by finite dif-

ference schemes using central difference operators.

The AGE method is not expected to compete with direct methods in terms of the

computational cost. Direct methods are more efficient. They are also very stable

relative to the growth of rounding errors when solving positive definite matrix sys-

tems. The AGE-1D method is however known to converge in a small number of

iterations, and its explicit nature allows a maximum exploitation of parallel com-

puters. This justifies considering further development and analysis of the method

which can make it more efficient to use competitively.

In this thesis, chapter two introduces some basic definitions and theories in numer-

ical analysis which are necessary tools most of which are referred to later in the

thesis, while chapter three contains a classification of the partial differential equa-

tions and introduces some finite difference schemes and their various properties. It

also includes a survey of direct and iterative methods which are used for the solution

of various linear systems. Chapter 4 introduces the Alternating Direction Implicit

methods in two and three dimensions. Also, the AGE method is introduced in this

chapter and the relevant literature on the method is surveyed.

In chapter 5, the method is developed by extending the range of application of

the AGE-1D algorithm and analysing its convergence for systems arising from the

use of unsymmetric central difference operators and also analyzing its convergence

11

when applied to block symmetric systems. Also a preliminary consideration of the

possibility of a Chebyshev acceleration of the AGE-1D method is carried out by

determining the conditions under which the eigenvalues of its iteration matrix are

real.

Also chapter 5 contains a listing of all the variants of the AGE-1D method with their

computational and storage requirements. Also included is a consistency analysis of

the AGE-1D and AGE-2D algorithms which were omitted in the literature on the

AGE method, together with a convergence analysis for the AGE-2D algorithm.

In chapter 6, the EAD method which is based on combining the applications of the

AGE-1D algorithm with the ADI techniques is introduced. The EAD method is then

applied to some model problems in two and three dimensions, and a comparative

analysis of the computational costs of the EAD method and the AGE-2D and AGE-

3D methods is carried out with results showing great savings achieved by using the

EAD method.

In chapter 7, the AGE-1D method and the EAD method are applied to solving

multivariate equations which are respectively the equations of a one dimensional

idealized planetary boundary layer model, and a linearized model of the shallow

water equations in two dimensions.

The thesis ends with a chapter on conclusions and suggestions for further research.

Chapter 2

Basic principles Of numerical

analysis

This chapter introduces the basic concepts, definitions, and rules which are necessary

tools in numerical analysis and to which referrence is made in the course of this

thesis.

2.1 Matrices and Vectors

A matrix is a rectangular array of scalars. These scalars are called the elements of

the matrix. They may be complex or real, and have a general representation of aq.

The subscripts i and j indicate respectively the row and column numbers determin-

ing the position of the element in the matrix. The size of a matrix is determined by

its number of rows m and its number of columns n. The size of the matrix is said

to be of size mxn, and is denoted as Amxn" If m=n, then the matrix is said to be

a square matrix of order n.

A vector is a matrix with one row (row vector) or one column (column vector). A

vector is defined in the real Euclidean space R", if all its elements are real. If any

of its elements is complex, then it is defined in a complex Euclidean space C. The

12

13

dimension of the space is determined by the number of elements of the vector. A

set of vectors vk, k=1... n belonging to a space C" (or IV) are linearly dependent

if there exists tt complex (or real) numbers ak (k =1""" n), not all equal to zero,

such that:

aiV(k) + a2V(2) + ... + anV(n) =0 (2. i)

If no such set of numbers exist, the vectors V(c) are said to be linearly independent.

They form a basis for the space C" (or R"). A fundamental property of a basis is

that any vector uE C" (or R") can be represented uniquely as a linear combination

of the base vectors. i. e we can write:

n
u

:
CkV(k) (2.2)

where ck (k = 1,2, """ n) are scalars. Basic algebraic operations on matrices and

vectors can be performed if the matrix/vector operands are conformable with each

other for the respective operations. Thus, for the matrices A, B, C and D, and the

vectors x, y, and z, we may have the following equalities:

Cm, q = AM, n X Bp, q

where c;; =
n E a; kbkj

k-1
C7º,

9 = Am,
n

+ Bp,
q

where c. j = a; j + b"

(conformable only if n= p)

(conformable only if m=p and n= q)

The inner product of two vectors: The inner or scalar product of two vectors

y and z belonging to the space C", is denoted by (y, z) and is defined as:
(y, z) _ ýs

1 y; z; where z; is the complex conjugate of z;.

Two vectors x and y are said to be orthogonal if their scalar product (x, y) = 0. A

system of vectors is orthogonal if any two vectors in the system are orthogonal.

14

The length of a vector is given as:

l%t, X) =

F

for xER" or
n

(X, X) _ ßi2

If all the elements of a vector x are divided by a scalar a, such that the length of

the vector becomes equal to unity, then the vector is said to be normalized.

Two normalized vectors x and y which are orthogonal are said to be orthonormal.

Theorem 2.1 Vectors forming an orthogonal system, are linearly independent.

Positive Defin; 6 matrix: A matrix A is said to bepcsiLive de-Wh if for all xE 1Z"`,

x96 0andAER"'"wehave:

(x, Ax) >0

A is said to be positive . eins deFini e. LF:

..,,

(x, Ax) >0 forallx54 0

with the equality holding for at least one xEC.

2.2 Common types of matrices

We now define the following matrices:

(2.3)

(2.4)

Diagonal matrix: Any square matrix D whose off diagonal elements are equal to

zero, (i. e d; 5 =0 for i0 j) is said to be a diagonal matrix.

Identity matrix: Any diagonal matrix I whose entries along the diagonal are equal
to 1 is said to be an identity matrix. '

Null or zero matrix: This is a matrix whose elements are all zeros.

Band matrix: A matrix A is said to be a Banded matrix, of band 2p+1 if its

elements aij =0 for Ii-j 1> p. If p=1, then A is a tridiagonal matrix.

15

Other properties: A matrix A is said to be symmetric if a; j = a,,;, and skew

symmetric if a; 1 = -a; 2. It is said to be a hermitian matrix if a; 1 = äq, where the

bar indicates the complex conjugate of a. If a; 1 = -ä; j then the matrix is skew her-

mitian. A is said to be unitary if AAH =I(AH being the the conjugate transpose

of A) and A is normal if AAH = AHA.

Non Singular matrix: A square matrix A is said to be a nonsingular matrix if

there exists a matrix Q such that AQ = QA = I, Q is called the inverse of A and

is usually denoted as A-'.

2.3 Properties of matrices

Definition 2.1 Determinant of a matrix The determinant of a square matrix

A is a scalar quantity denoted by `det A' or IAI and is given by:

A I= E P(ji, js,
...,

jn)aljý, a2j2, ... anjn (2.5)

il sh 9... dß

where p(jl, j2i ... 7 j�) is a permutaion equal to :: F1, given in general as:

P(jl, j29..., jn) = sign J (jr - ja)
1<s<r<n

For a singular matrix IA 1= 0

(2.6)

Theorem 2.2 If for a vector x, and a matrix A, with IA (j4 0 then Ax_o pX=O

Definition 2.2 Trace of a matrix: This is denoted by tr(A), and is equal to the

sum of the diagonal elements in a square matrix.

Definition 2.3 Eigenvalues of a matrix: An eigenvalue of a matrix An. n is a

real, or complex scalar A, which for some nonzero vector y satisfies the relation:

Ay = Ay or (AI - A)y =0 (2.7)

16

where 0 is a zero vector.

The corresponding vectors y which satisfy equation (2.7) are the eigenvectors of A.

A has n eigenvalues which can be all distinct or repeated up to a multiplicity n,

depending on the shape and properties of A. Similarily A has n eigenvectors some of

which may be identical. From theorem (2.2), equation (2.7) can have a non-trivial

solution only if :

IAI-A1=O (2.8)

The expansion of the determinant I AI -AI yields an nth degree polynomial in

A, f (A), called the Characteristic Polynomial, and the roots of the equation (2.8)

are the eigenvalues of the matrix A. Equation (2.8) is called the Characteristic

Equation. The Characteristic Polynomial is given as :

f (A) =) al -A I= a" + a�_, \"-1 + ... + aiA + ao (2.9)

where -al = (the sum of the eigenvalues) = tr(A)

Theorem 2.3 The Cayley - Hamilton theorem. This theorem states that any

square matrix A satisfies its own Characteristic equation. Thus,

n

F(A) = An + an_, An'1 +... + a1A + aoI = [J(A
- A, I) = On, n

. _i

Theorem 2.4 Gerschgorin's First Theorem. This theorem states that the mod-

ulus of the largest eigenvalue of a square matrix is less or equal to the m(LXIMU n sum of tl, e
moduli of the elements along any row or any column.

Theorem 2.5 Gerschgorin's Circle Theorem. This theorem states that the

eigenvalues of a matrix A lie in the union of the discs given by

n

Iz-a�l< E Ia+iI (i=1,2... n)
j=1i#i

in the complex plane z.

17

The spectral radius of A is the radius of the smallest circular disc in the complex

plane with centre (aii) at the origin, which contains all the eigenvalues of A. It is

denoted by p. From theorem 2.5 it is given as the modulus of the largest eigenvalue

of A.

The eigenvalues of a tridiagonal matrix A of the form given as:

ab

cab0

where a, b, and c are real A= (2.10)
" with be >0

0cab

ca

are given by the following formula:

. ý, =a+2 bccosn+l (s=1,2,... n) (2.11)

An extension of the above formula to apply to block tridiagonal matrices with real

elements, is derived and tested next. This for a square matrix A of the form:

DH

A=1

is given as:

VDH
0

O
VD H

V D
nmxnm

where D, H, and V are

any commutative matrices (2.12)

having real eigenvalues.

Aj (D) +2 Aj (H)ai (V) cos
n+1

(2.13)

(s=1,2,... n), (j =1,2... m)

where n is the number of blocks along the diagonal. m is the size of the matrices D,

H, and V.

18

Example: Consider the matrix A given as:

2.5 0 1 4 0

525 4 1 4

052 0 4 1

-3 10 2 5 0

A= 1 -3 1 5 2 5

01 -3 0 5 2

-3 1 0
0

1 -3 1

0 1 -3
which is of the form given in (2.12) where

140

414

041
250

525

052

0

250 140 -3 10

D= 525 ; H= 414 ; and V= 1 -3 1

052 041 01 -3

The eigenvalues of D, H, and V are given as:

A(D) = [9.07160678,2, -5.07106781

A(H) = [6.6568542,1, -4.6568542]

A(V) = [-1.5857864, -3, -4.4142136]

Applying (2.13) to (2.14) give the eigenvalues of A as:

A1,1 = 9.07160678 + 2/6.6568542 x (-1.5857864) cos
4

A2,1 = 9.07160678 + 26568542 x (-1.5857864) cos
2

A3,1 = 9.07160678 +26.6568542 x (-1.5857864) cos
3

A1 2 =2+2 (1) -x(-3) cos ,
A2 2 =2+2 (1) -x(-3) cos

2
,

A3 2 =2+2 (1) x (-3) cos
3

, 4
A1,3 = -5.0710678 + 2V(-4.6568542) x (-4.4142136) cos

4

A2,3 = -5.0710678 + 2V(-4.6568542) x (-4.4142136) cos 2

A3,3 = -5.0710678 + 2-\/(---4.6568542) x (-4.4142136) cos
34

(2.14)

19

i. e X1,1 = 9.07160678 + 4.59485561

A2,1 = 9.07160678

A3,1 = 9.07160678 - 4.59485561

A1, Z = 2.0 + 2.4494897i

A2,2 = 2.0

. 13,2 = 2.0 + 2.44948971

A1,2 = 1.3408507

A1,2 = -5.0710678

A1,2 = -11.482986

To check the authenticity of the formula (2.13), the Characteristic Polynomial for

A was determined, using REDUCE (a package which facilitates the symbolic com-

putation of matrix functions) as:

DETA=1 (VI - A)I (2.15)

i. e. DETA = -(V9 - 18V8 - 20V7 + 2504V6 - 16708V5 -152V4

+315168V3 - 1374592V2 + 2412576V - 1464640) (2.16)

Solving for the roots of DETA=O, using an IMSL library subroutine gives the values

of the nine eigenvalues of A as:

Real Part

9.07106781186548

9.07106781186548

9.07106781186548

2.0

2.0

2.0

1.34085065082633

Imaginary Part

+4.49485564215113

0

-4.49485564215113

+2.44948974278318

0

-2.44948974278318

0

20

-11.4829862745573 0

-5.07106781186547 0

which agrees with the values obtained using formula (2.13). This exercise was re-

peated for several such block tridiagonal matrices and always formula (2.13) has

given the correct results.

For A triangular matrix the eigenvalues are the elements along the main diagonal.

For a general matrix the eigenvalue which is often of most interest is the one with the

largest modulus, i. e the Spectral Radius. This may be obtained numerically using

an iterative procedure called the power method (see [47]). If all the eigenvalues are

required the QR algorithm described in [44] is the usual method.

2.4 Vector norms and related matrix norms

The norm of a vector is a non-negative real scalar which is usually used to represent

the magnitude of any vector x in its space C" (or R"). It is denoted by ýIx and

it satisfies the following relations:

a) 11 x 11> 0 for x 54 0 (positivity)
b) (Ikx II : Ikl. llxll, Vscalar k, (homogeneity)

C) It x+y (III x II+ II y II for
all x, y E Cn

The most widely used norm is the Holder norm, (or p- norm) which is defined as:

11 X IIv= (> I X1 IT (2.17)
c

Special cases of this norm are the 1,2 and oo norms given respectively as:

IIXIII = Ix1I+Ix2I+... +Ixnl
11 x 112 = (I xl 12 +I x2 12 -F... -I- I x� IZ)1 (The L2 norm or Euclidean norm)

& lix ýý = max I x, (i = 1,2 n), The maximum norm)

It can be seen that 1x 112 is equal to the length of x in C" (or R").

21

Similarly a matrix norm is a real scalar which is used as a measure of the magnitude

of a matrix, which satisfies:

aý IIAII>0 for A#0

b) IIkAII=IkI x 11 AII for any scalar kEC, AEC"'"

c) IIA+BII: IIAII+IIBII for any A, BEC'"'

d) IIAB II: IIAII x 11 BII for any A, BEC"'"

The matrix Holder norm which is subordinate to the vector Holder norm is defined

as:

II A lip= max
II Ax lip (2.18)

XjAo 11 x lip
for which the following relation holds:

IIAxllp<IIAIlpxllxllp forallxEC" (2.19)

with equality holding for at least one x 0. Relation (2.19) implies that (I A II

serves as the upper bound for the amplification power of A.

Again, the special cases 1A 111,11 A 112,11 A are the most commonly used.
These are given as:

n

IIAIIý = maxlIai, il
n

11AIloo = max 1: IQ+, iI
i=1

II A II2 = (The maximum eigenvalue of ANA) '= [p(AHA)]

It can be seen that II A (I1 (II A III) is the largest of the sums of the magnitudes of
the elements along any column (row) in A. Also II A 112= p(A) if A is symmetric or
Hermitian, and thus this norm is referred to as the spectral norm.

2.5 Other definitions and theorems

22

Definition 2.4 A matrix A is said to be convergent to zero if the sequence of ma-

trices Al, A2, A3, ... A' converges to the null matrix i. e. if for any norm:

jzmnýoo II A' II= 0 (2.20)

It follows from the property (d) of matrix norms (i. e. II AB IIIIAIIxIIBI I) that

a sufficient condition for A to be convergent to zero is:

IIAII<1 (2.21)

The following important theorem has a simple proof given in [50].

Theorem 2.6 A necessary and sufficient condition for A to be convergent to zero

is:

p(A) <1 (2.22)

Other important theorems and definitions which are referred to in this thesis are

given below.

Theorem 2.7 The eigenvalues of the inverse to a matrix A are the reciprocals of

the eigenvalues of A. i. e

Ai(A-') 1
ý Ti -(A)

Theorem 2.8 If A and B are square matrices which commute and have distinct

eigenvalues, then they share a complete set of simultaneous eigenvectors.

Definition 2.5 Similar matrices and Similarity Transfomations If a ma-

trix A is postmultipled by any non-singular matrix L and premultiplied by L',

to produce a matrix T= L-1AL, then is said to have undergone a similarity
transformation. The matrices A and T are said to be similar.

Similar matrices share the same eigenvalues A j, and for any eigenvector x of A the

corresponding eigenvector of T is L'lx.

23

Theorem 2.9 For any square matrix A, there is a unitary matrix L= U such that

U-1AU =T is upper triangular.

The eigenvalues of A must be shared by the similarity matrix T, and appear along

its main diagonal. When T is diagonal, it is usually denoted by A, and A is said to

be diagonalizable. The proof for theorem 2.9 is given in [45].

Theorem 2.10 Any square matrix which has linearly independent eigenvectors can

be diagonalized by the similarity transformation U-'AU where the columns of U are

the eigenvectors of A.

Theorem 2.11 If A is a positive definite matrix, then there exists a lower trian-

gular matrix L such that LLT = A.
I

Chapter 3

Current methods for the finite

difference solution of partial

differential equations

In this chapter the procedures and steps that are involved in the numerical finite

difference solution of partial differential equations are introduced. We first describe

how the partial differential equations and systems of equations are mathematically

classified into their various categories.

3.1 Classification of partial differential equa-

tions

3.1.1 Classification of first and second order partial differ-

ential equations

The classification of PDEs is pursued for first and second order two dimensional

equations and then generalized to equations of higher dimensions.

24

25

Consider the second order equation:

0zý 2ý 2-

A8x +Baxa +C
-

+Dý +Eü+Fü+G=o
y y2 Y

The solution of such

ü-= ü(x, y)

equation (ws the form:

(3.1)

which represent a surface in the (x, y, ü) space called the integral surface. If on the
22

integral surface there exist curves across which the partial derivatives äx 1, ä äv, and
äy; are discontinuous or indeterminate, these curves are called the characteristics

curves ([32]). In the directions of these curves in the (x, y) plane equation (3.1)

involves only total differentials.

To obtain these characteristic directions, it is customary to abbreviate äz' Bi,
8x1

äxäv+ and äy; as p, q, r, s, and t respectively. Thus (3.1) becomes:

Ar+Bs+Ct+H=0 (3.2)

where H represents the remainder of the terms in (3.1).

Along the tangents to any curve C in the (x, y) plane inside the solution domain,

u, p, and q satisfy the total differential formulae:

dü =
aiidx

+
ady

(3.3) y

dp = rdx + sdy (3.4)

dq = sdx + tdy (3.5)

If (3.4) and (3.5) were used to eliminate r and t in (3.2) we get:

-[A(dx)+H] dx-Cdr+3 A(dxy
)z

_B()+C =0 (3.6)

If C is chosen so that the tangents to it at any point has a slope ä which satisfies:

[A(.
)2 - B(äy) +C] =0 (3.7)

26

then the term involving s vanishes, and (3.6) reduces to a relation between the total

differentials of p and q given as:

[A()+H] ax+cdx
=o (3.8)

Thus, the roots of equation (3.7) determines the characteristics directions for which
(3.8) holds. These characteristics relate directly to the classification of the PDE's,

and to their numerical and analytic methods of solution.

Equation (3.7) has two real distinct, one real double, or conjugate complex, roots

depending whether its discriminant B2 - 4AC is positive, equal to zero, or negative

respectively. Where two real roots exist, it implies the existence of two real char-

acteristics and (3.2) is said to be hyperbolic. If a double root exists, then there

is only one real characteristic and (3.2) is a parabolic PDE. If no real roots exist,

then the characteristics are complex and (3.2) is an elliptic equation.

For first order two dimentional PDEs, the characteristic directions at any point

point in the solution domain, are defined as the directions along which the first

order derivatives are undetermined, or not defined uniquely, and the PDE reduces

to a simpler ordinary differential equation in ü. Any first order equation in two di-

mensions has one real characteristic, the direction of which is obtained as illustrated

by the following example. Consider the equation:

C5 + Dau =E
y

(3.9)

Along the tangential direction to some curve C in the (x, y) plane in the solution
domain, the following total differential formula is satisfied:

dü =ý dx -}-
ýy

dy (3.10)

If we substitute for äz in (3.9) from (3.10) and rearrange we get:

Cdx+(D-Cdý)ou =E (3.11)
y

27

If C is chosen so that:

D-cam =o

then ä' is eliminated from (3.11) which becomes the ODE:

dü .E TX

(3.12)

(3.13)

If on the other hand, we substituted for av in (3.9) from (3.10) instead of äz, we

get a similar total differential equation given as:

dü E
dý u

(3.14)

which again only holds along the same characteristic direction

dy D
dx C

obtained from (3.13). Thus, equation (3.9) is always hyperbolic. Finally we note

that the classification of PDEs is independent of the co-ordinate system used.

3.1.2 Classification of multidimensional PDEs and sys-

tems of PDEs

Consider the multidimensional second order PDE in the general form given as:

NN atü
ýýajiöx;

r7x;
+H=O (3.15)

j=l i=l
where N> 2 and H=f (z, y, ü, as-), i, j=1... N.

A classification for (3.15) is given by [51, depending on the eigenvalues of the matrix

A whose elements are a; 1 as follows:

a) If any of the eigenvalues is zero, (3.15) is parabolic.

b) If all the eigenvalues are non-zero and are of the same sign, (3.15) is elliptic.

28

c) If all the eigenvalues are non zero, and all but one, are of the same sign (3.15)

is hyperbolic.

In what follows, the classification of systems of first order PDEs is considered, for

two and higher dimensions. It is noted that systems of second order equations could

be transformed, with the aid of some auxiliary variables to larger systems of first

order equations, and classified accordingly.

Consider the following system of n equations in two dimensions:

sic ä, + dig = ei By

i=1... n
cji as + d1i ä= ej (3.16)

j =1... n.

Cn.
ä + dntä = en

v

n is also the number of independent variables.

This system can be written in matrix form as:

cx +D
ý`

=E
y

(3.17)

where C and D are square matrices with elements c1; and d1; respectively, with

ü= [ül, ü2 ... ün]T and E= [ei, e2, ... e�]T.

We may seek n characteristic directions to the system (3.17), which may be rewrit-

ten after premultiplication by C-1 (assuming C is non singular) as:

äx +A öu
B (3.18)

y

where A= C-1D and B= C-1E. The characteristic directions for (3.18) can be

obtained in a similar manner to the derivation of the characteristic direction of the

scalar equation (3.18). Thus, the following analogue to (3.13) is obtained.

öü dy äü
-+(A-Idý)ay =B (3.19)

x

29

Thus, (3.18) reduces to a system of total differential equations if:

(A -I
dy) äu

=0 (3.20)
dx äy

A necessary condition for (3.20) to hold without having a trivial solution for a. is

that:

det IA-Idyl =0

The slopes of the characteristic directions for (3.18) are thus given as the eigenvalues

of the matrix A.

If A has n real eigenvalues with n linearly independent eigenvectors äthen (3.18 y)

is hyperbolic.

If A has q real eigenvalues, where 1<q<n-1, and no complex eigenvalues, (i. e

some eigenvalues are equal) then (3.18) is parabolic.

If A has no real eigenvalues (i. e they are all complex) then (3.18) is. elliptic.

If A has real and complex eigenvalues then (3.18) is a mixed system. From the

above, it can be seen that it is sufficient for A to be symmetric for (3.18) to be

hyperbolic, and for A to be skew symmetric for (3.18) to be elliptic.

Classification of systems of PDEs in more than two dimensions is given in [30] and

[5] among others. Here it will only be noted that systems in three dimensions such

as:

-
+Au+Bz =Ö

y
(3.21)

are considered hyperbolic if " for all a, ß with a2 +A2 = 1, there exist a nonsingular

transformation matrix P such that:

P(aA+/B)P-1 =D (3.22)

where D is a diagonal matrix with real elements. The symmetry of A and B is

sufficient to guarantee that the above system is hyperbolic"([34] p: 180).

30

3.1.3 Boundary and Initial value Problems

For the solution of a PDE to be unique, appropriate conditions on certain line/s

or surface/s (non characteristic) should be prescribed. Take for example, a two

Figure 3.1: A rectangular domain of solution for a 2D pde

dimensional PDE, whose solution is defined and sought in the region SJR shown in

figure 3.1..:

" If only initial conditions are prescribed along the xl axis (or any line x2 =

constant) then the problem defined by the PDE is an initial value problem,

and the conditions prescribed to it are often referred to as Cauchy conditions.

" If some conditions are prescribed on the x2 axis as well (or any line xl =

const) then the problem defined by the PDE is an initial-boundary value

problem. If further conditions are prescribed on xl = a, then the problem is

overprescribed.

If certain conditions are given at the boundary OR of R, then the problem

defined by the PDE is a boundary value problem.

The type of conditions which may be prescribed fall in one of the following categories:

Dirichlet Conditions: For such conditions the dependent variable (ü) satisfies

ü=f

where f is known function.

f-. X1
a

31

Neumann or derivative conditions: Here the normal derivative of the function

satisfies a given function along a certain line or boundary e. g äxß =f(on

the xl-axis).

Robin or mixed conditions: Here the dependent variable satisfies a combination

of the above Dirichlet and Neumann conditions.

e. g
a-

+ Kil = f, K 54 0 (along the xl axis)
z

3.2 Discretization and the derivation of finite

difference formulae

Finite difference methods for solving differential equations are derived by replacing

the continuous derivatives of a function, in the differential equation, by finite dif-

R= (O<x<a), t>O S

Figure 3.2: A rectilinear grid of meshpoints

ference expressions, involving the values of the function at discrete points defined

by a grid covering the region R of the solution. The first step therefore, is the

construction of a rectilinear grid covering R with lines parallel to the coordinates of

the independent variables x,. If one of the independent variables is time (fig: 3.2),

then the resulting finite difference schemes may be implicit or explicit, depending

on whether the spatial derivatives are evaluated at the current or subsequent time

steps. This is illustrated, following the approach of [34], by considering the following

32

general equation given as:

aü
= Lit (3.23)

ät

where L(x;, D{) is üººeo r, - c. I... p ;j=1... q

and where p is the number of space dimensions, q is the order of the differential

equation, and D; =a as; *

From the Taylor series expansion of üt+k, at any chosen point in the grid we have:

2

ü°+k = (1 +k
it

+2 k2
2+"" ")üt

(k is the time step)

= exp(kat)fit =exp(kL)üt (from equation 3.23 (3.24)

which leads to a general expression for exact difference formulae, having the form:

ü°+k = exp[(1 +0- 6)kL]üt (3.25)

a exp(-OkL)ü+k = exp[(1 - O)kL]ü' (3.26)

The difference formula is explicit if 0=0 and implicit otherwise. i. e 0 54 0.

Exact formulae expressing derivatives at a point in terms of finite difference operators

(defined below), and vice versa, are dealt with in great detail in [31].

If in the mesh of gridpoints shown in figure 3.2 every gridpoint T is denoted by m

and n. Then m=n=0 defines the gridpoint 0(0,0) at the origin, and T, n, n defines

a point whose ordinates are (mh, nk) where h and k are the gridspacings in the t

and x directions respectively.

A set of important difference operators are defined as follows:

SxU = Um+ - Um_ (Central difference operator)

pxUm = Um - Um-1 (Backward difference operator)

AxUm = Um +I - Um (forward difference operator)

Higher order (central, backward, and forward) difference operators can be defined

recursively, however, only the second order difference operators will be given below

33

together with other useful operators.

SxU+º= bx(Um+ - Um-) = Um+l - 2Um + Um-i

Ox Um = px(Um - Um-1) = Um - 2Um_1 + Um
_2

ýyUm = ýx(Um+1 - Um) = Um
+2 - 2U, +1 + Um

1CxU, n, =
2(Um+

,+
Um_,.) (µx is an averaging operator)

Un = Um+l - Um_1 (mean central difference)

Ex U, "� = Um+1 ; E, * U, n = U, n+a

where E is called the shift operator and a is any constant.

It can be seen that the following relations between these operators are valid:

ÖX
m ýzÜ�a+3 ýxÜm_2

E-1 , p=1-E-1
5s

22

24
8= Ef - E-1 Hs = 2µbz = Az -I- pi

These difference operators are also related to the derivative D; (here äx or D) at a

point T�ti, �, through the Taylor Series, where:

ExUm = Um+l _ (1 +
hD

+h2 2ý
2

-E- ... +
hn n)Um

=E= ehD (3.27)

L=E-1 O=ehD-1

hD-}-h2D2--... h ýn...
ý (3.28)

p=1-E-1=1-e-hD

hD (hD)2 (hD)3 (-1)n_l(hD)n
+ ...) (3.29) p=(1' 2' + 3! n!

8= Ei - E'1 =e ,Q-e h°
= 2sinh(2)

34

[(hD)+ 5
+...

(
2Di3

+...
(2.!

+...
22nD)n

n!

-(E12'+ E-4) =
2(e h2 +e-h2) = cosh(hD)

and Hx = 2j Sx = 2cosh(hD) x 2sinh(D) = 2sinh(hD).

Hx = 2[(hD) +
(h

!+
(1t

!+...
ý

(3.30)

(3.31)

(3.32)

Expressions of higher order differences in terms of derivatives can be obtained by

simply raising both sides of the respective equation of (3.28
... 3.32) to the cor-

responding exponent. Thus, for example, squaring both sides of (3.30) gives 52

as:

s)
.}... J s2 = [(hD)2 +

12
(hD)4 +

360
(3.33)

Thus suitable finite difference approximations of the derivatives in the differential

equations, involve truncating the corresponding exact formula of (3.28 ... 3.30).

This truncation leads to the introduction of an error known as the local truncation

error (L. T. E) which is defined as the difference between the differential equation

and the difference equation which is used to replace it. The terms in the (L. T. E)

which are of least order in the grid spacings h and k represent the principle part of

the (L. T. E). It can be seen from (3.28) ...
(3.30) that the truncation error resulting

from the central difference replacement fore has a principal part proportional to

h2 while forward and backward difference replacements have truncation errors with

principal parts proportional to h.

Equations (3.28)
...

(3.30) express the relations between the 0, p, and 8 difference

operators and the derivative defined at the nodal gridpoint Tm,,, which is, at the

backward end of the interval [T,,,,,, -º Tm+l, n], at the forward end of the interval

[T,,,,,, -+ and at the centre of the interval [T,,, +I, � _ Tm_
, n].

More generally the derivative at some arbitrary point T,,, +e, n, where (0 <0< 1), in

the interval [T,,,,,, -º Tm+i,,,] may be defined in terms of finite differences involving

35

the values of the function at T,,, +1,,,, and T, n, n. This is done using the following

relations:

Un _ E(1-e)Un - e(1-e)hDUn m+l m+9 - m+B

Un (e) Un -
(-ehD) n

m=
E''

m+B e Um+B

Thus,

(e(1-s)hD _ -ehD)Un Un Un m+B = m+1 -m (3.34)

Un
n m+1

Um
-

(hD +
[(1- 0)2 - 92)

h2D2 +
[(1- 3)' + 031 It3D3 +

...)Um+e (3.35)

which is a general equation whose L. H. S represents a forward, backward or central
difference depending on whether 0=0,2, or 1 respectively. First and higher order
derivatives may also be represented in terms of differences in the values of the cor-

responding function, at more than two gridpoints. Using more than two gridpoints

generally produces difference schemes of higher order accuracies. Consider, for ex-

ample, expressing the derivative D (here ä) at Tm, n in terms of the values of the

function at the points Tm-2,
n,

Tm-i,
n,

Tm, n,
Tm+l,

n, and Tm+2, n.
Also we use the

relations:

Um+Z = E2Um - e2hDUm ni Um+1 = r'' Um = ehDUm

n2n, -2hD nn1n -hD n Um-2E Um=e Um' U,
m-I=E

Un=e Um

Then, if a, b, c, d, and f are arbitrary coefficients then:

aUm+z + bUm+l + cUm -- dUm-1 + eUm-z

_ (ae2hD + behD +c+ de-ehD + fe-2hD)Um

= (a+b+c+d+ f)Um+(2a+b-d-2f)hD

+
(22a+b+d+22f)h2D2+ (2 3a+b-c-2 3f)

h3D3
2! 3!

+
(24a+b+d+24f)CD4,

+
(25a+b-d-2'f)

h5D5
4! 5!

(26a +b+c+ 26f)
h6D6 (3.36)

61

36

One can henceforth solve for a, b, c, d, and f to give the various finite difference

replacements of desired accuracies with truncation error up to 0 (h5). The values

a, b, c, d and f must satisfy simultaneously, equating the second term on the R. H. S of
(3.36) to D, and equating to zero the first term and the other terms up to the

fifth, depending on the accuracy required. Thus, for a difference replacement whose

truncation error is of order h4, a, b, c, d, and f should satisfy:

a+b+c+d+ f=0

(2a+ b-d-2f)h =1
4a+b+d+4f =0

8a+b-d-8f =0

16a+b+d+16f =0

The system (3.37) is satisfied for:

;and1 -8 8
2h

(3.37)

These values nullify the sixth term in (3.36) making the truncation error of the

resulting difference replacements of order (h5).

By substituting the values of a, b, c, d and f, we obtain the finite difference equation

for äx as:

a"ýn

_

Um+2
-

8Um+l + öl%m_1
-

Um-2
+ O(h5)

löx m 12h
(3.38)

The use of various finite difference replacements of the derivatives in the PDEs yield

symmetric, or asymmetric, implicit or explicit schemes depending on the way the

finite difference approximations are applied.

The properties of various finite difference schemes will be discussed in the next

section.

37

3.3 Derivation of some basic finite difference

schemes

The most important properties of a finite differences scheme will be considered
by looking at some finite difference replacements of the following heat conduction

equation in one space dimension:

L(- =au-a2u ät X2
(3.39)

defined over the region SJR = [0 <x< 1], t>0, and subject to the initial condition:

ü(x, 0) = g(x)

and the boundary conditions

ü(0, t) = bi and ü(1, t) = b2

It can be readily seen that replacing ät and äx, using (3.28) and (3.33), where

terms other than the first on the RHS of these equations are neglected, yield a finite

difference approximation to (3.39), having a local truncation error of the order
O(h2)+ 0(k). The resulting formula:

QtUn 82Umn k ä2Ü h2 944L n

km h2 +
(2

ät2 12 ax4) + 0(k2, h4)
m

U+++1 - U" U" - 2U" + U"
- mkm= m+l

him
m1+ 0(h2) + O(k) (3.40)

is called the Classical Explicit scheme. The principal part of its Local Truncation

Error (LTE) is (k 82ii
_

h2 84j n
2 öt2 12 öx4 m

Similarly if (3.39) is approximated implicitly at the point (mh, (n + 1)k) where
backward and central differences are used respectively for et and e we get the

fully implicit scheme given by:

OtUn b. 2 U,
n+1

k 02ü h2 ä4ü n+1
s4 n+I

k h2 +(ät2 12 äx4)
m

O(k, h)

Principal part of the L. T. E

t%n+1 -Un If n+l 2 Un+1 + Un+l
rn

km_
m+1 - h2 m1 +0(h2) + O(k) (3.41)

38

whose truncation error is of order O(h2) + O(k) If (3.39) is evaluated implicitly at
the point (mh, (n + !.)k) and central differences are used to replace äi and e we

get the Crank-Nicholson scheme given by:

ýtU +2
jjtS2U

+2 l[b, 2U +1 +62Umj
2

k- h2 -L h2
1+ O(k 2) + O(h)

j%m+l
-

Um 1r Um +l
- 2U, n+1 y+1+ Um

+1 - 2U, n + Um-1

/ k2(h2
k2,03 ü_ h2 a4il k2 a4ü "+

+
(24

-at-3 12 ax4 +s at2ax2/ to

+ 0(k4, h4)

Another scheme which approximates (3.39) explicitly at (mh, nk), but employs a

mean central difference Ht for the time derivative, is the Dufort-Frankel method.
Here again the central difference öi is used to replace the space derivative. In this

scheme the Um appearing in the expression for 55Um is replaced by the arithmetic

average of U +1 and Um 1. The resulting formula is given as:
Um+l

- Urn 1_ Um+l-(U+1+Un 1)+U,
_1

2k h2
22 4ý k2 2ý n

+6 -5 -t-3 12 ax4 +h ate
]m+

O(k4) + O(hs) (3.42)

which has a truncation error of order O(h2, k2, h;

An asymmetric scheme, due to Saul'yev [43], is based on taking at the level n+1,
the forward/backward "part" of the second order spatial derivative in (3.39) while
keeping, at the level n, the remaining backward/forward "part". Thus, äff; is ap-

proximated as:

öýü
_1

öü n (ail nz
Tx öx)m -

(TM-
+ O(h) (3.43)

11

/aül n aZ n+B

and ax)mý(aii)n+l ax- k
Cax)m

0<0<1 (3.44)
}

If we replace either of ()"
+, or (N)m" ms

_1
in (3.43) using (3.44) and then

substitute for j in (3.39), we get either of these two equations:
[(Oii)n+l (aa)n

i]
+ O(h') + O(k) (3.45)

39

ail
ät =1

[(aii)n+l
äx-

(ä2n+l + 0(h2) + o(h(3.46)
mm

Two formulae can be obtained if forward and central difference replacements were

used for the time and space derivatives respectively in (3.45) and (3.46). These

formulae are given by:

Ü+1-vM[v+i-ü+l-um+U_1] k mk
h2

'ý +0(, h2, k) (3.47)

and
Um+l - Um

_
[Um+i - Um - Um+i +U ±I ks

k h2 + O(h, h, k) (3.48)

and shall be referred to as Saul'yev I and Saul'yev II respectively. The principal

part of their truncation error is respectively: (-T1 + T2) and (Ti + T2) where:

_k
atü kh 04ü k3 04Ü "+j

Ti
(Utax

+s
ax3at

+ 24h axat3)
m

and T2 __
h2 a4n

-
k2 a4Ü k2 a3Ü "+ (12

ax4 s aX ate 24h at3
)

m

The above difference replacements are only some of the many replacements for

(3.39) and shall be referred to while introducing next the concepts of consis-

tencJ and stability. A schematic representation of the above schemes is shown in

figure 3.3.

3.4 Properties of various finite difference

schemes

When we resort to finite difference methods to solve differential equations, we need

to guarantee that the computational solution (u) is close to the finite difference

solution U and converges to the exact solution ü of the well posed problem, given by

the differential equation and its the auxiliary conditions, as the grid spacings tend

to zero.

40

The Crank-Nicholson Scheme

The Saul'yev I scheme

Figure 3.3: Diagrams of the computational molecules for various finite difference

replacements of equation 3.39

The fully implicit scheme The Explicit scheme

The Dufort- Frankel scheme

The Saul'yev II scheme

41

To guarantee this in the case of linear differential equations, it is required, firstly

to ensure that the difference scheme used is consistent with the given differential

equation, and secondly that small perturbations in the initial conditions, and errors
due to round-off from arithmetic operations performed when solving the difference

equations decay, rather than grow, while the computational solution is advanced, i. e,

that the solution is stable.

3.4.1 Consistency

A difference scheme is said to be consistent with the differential equation, which it

approximates, if as the grid is refined (i. e h --> 0, k -º 0) the local truncation error
tends to zero. That is, the finite difference equations become an exact representation

of the differential equations.

If we consider the difference formulae given in section 3.3 we see that for each of

the Classical Explicit, fully implicit and the Crank-Nicholson schemes, the local

truncation error tend to zero unconditionally as h -º 0, and k --> 0. These formulae

are therefore Unconditionally consistent with equation (3.39).

As for the Dufort- Frankel scheme and the Saul'yev formulae I and II, we notice that

their truncation error terms contain products of the terms (h;) and (h) respectively.

This means that if k and h tend to zero at the same rate, or h tends to zero faster

than k, the truncation error will not tend to vanish, in which case the difference

formulae will not be consistent with (3.39). If on the other hand k -º 0 at a faster

rate than h, the truncation error tend to zero. Therefore, under this condition the

Dufort-Frankel and the Saul'yev schemes are consistent. In this case they are said
to be conditionally consistent with equation (3.39).

If the auxiliary conditions to (3.39) involve derivatives which are also replaced by

difference approximations, then for the difference scheme to be consistent with the

PDE problem it is also required that the truncation error arising from the finite

difference approximation to the derivatives in the auxiliary conditions tend to zero

42

as h, k--->0.

3.4.2 Stability

The problem of stability is concerned with finding the conditions which satisfy the

second requirement, i. e, the requirement that for fixed grid spacings k and h, the

difference between the computational solution u and the exact solution of the finite

difference equations i. e, I um - Um I decays or remain bounded as n --+ oo, where u

is the solution calculated up to the accuracy of the machine rather than the exact

solution of the difference equations.

The stability of a finite difference scheme can be investigated in a more analytical

way through several methods. The most common methods are the Von-Neumann

or Fourier series method, the matrix method and the energy method. The first

method is suitable for pure initial value problems with periodic initial data thus

neglecting the effects of boundary conditions, while the latter two incorporate the

effects of the boundary conditions in initial-boundary value problems. The energy

method can deal effectively with variable coefficients and indicate the correct choice

of computational scheme. But its short comming is that a it provides only sufficient

conditions for stability which may be far removed from what is necessary in certain

initial- boundary value problems" ([47] p: 141). In what follows only illustrations on

the theory and applications of the Fourier method and the matrix method are given.

The Fourier method
Consider the equation (3.39) which is discretized over its region of definition QE

(0 <x< 1), t>0 using any of the finite difference approximations given in

section 3.3. It can easily be shown that the computational error Z,,, = um - Um also

satisfies the same finite difference equations as U.

Thus, for the computational error associated with the Classical Explicit scheme, we

can write:

Z�ä 1= rZ 1+ (1 - 2r)Z� + rZm_1 (3.49)

43

In the Fourier method, the errors Z, at the mesh points at a certain time level (say

t=0) are represented by a finite Fourier series leading to the error function:

N+1

Z0 1
m=

Aj exp(ipjmh)
i=o

(3.50)

where m= (0,1,2
... N+ 1), is the index for the (N+2) mesh points dividing the

interval 0<x<1 on the line t=0, f33 is the frequency of the error, and i=

The method can be applied to all linear finite difference approximations. The

growth, or decay, of each mode in (3.50) depends on the finite difference equa-

tion. If any mode can grow without bound, the difference equations have unstable

solutions.

Because of the linearity assumption, separate solutions are additive, and it is süf$-

cient to study the propagation of error due to just a single term exp(ißmh) of the

Fourier series in (3.50), where ß is any real number.

We therefore seek a solution for (3.49) in the separation-of-variables form, which

reduces to exp(ißmh) for t=0. This solution is given by:

exp(at) exp(ißmh) = exp(ank) exp(ißmh)

where a(ß) is complex in general.

Therefore, we can see that the original error component will not grow as n -º oo if:

I exp(ak) (< 1 (3.51)

here we introduce the parameter e= exp(ak), which is known as the amplification
factor for the mth Fourier mode of the error distribution as it propagates one step
forward in time.

To determine this factor for the Classical Explicit scheme, we substitute for Z, by

exp(ank) exp(i/3mh) 54 0 in the "error" equation (3.49).

This gives:

exp(a(n + 1)k) exp(ißmh) = (1 - 2r) exp(ank) exp(ißmh) +

44

rexp(ank) x [exp(iß(m + 1)h) + exp(iß(m - 1)h)]

The cancellation of common terms and substituting ý for exp(ak) leads to:

ý= (1 - 2r) + r[exp(i fah) + exp(-ißh)] (3.52)

By using the relation: exp(iph) + exp(-ißh) =2 cos(Qh) and the trigonometric

relation [1 - cos(Qh)] =2 sin2(ý) equation (3.52) becomes:

=I- 4r sin2
h

(2)

To obtain the stability criteria, the magnitude of the amplification factor for all the

error modes should be less or equal to one. This is satisfied if.

-1 <1- 4r sin2(
2<

+1

for all (ßh).

(3.53)

The right side of the inequality (3.53) is trivially satisfied. The left side of (3.53) is

satisfied if:

r<
2(ý)

for all (ßh)
2 sin

Thus a necessary condition for the stability of the explicit scheme is r<z

Similarly, a stability analysis could be carried out for other schemes, by substituting
for Zm = exp(ank) exp(ißmh) in their corresponding "error" equations, and deter-

mining the condition which is to be imposed on the mesh ratio `r' to make (ý 1: 5 1.

The application of the Fourier series method can be extended to investigate the

stability of a system of finite difference equations.

To illustrate this, the Dufort-Frankel approximation:

(1 + 2r)U +1 = (1 - 2r)Um '+ 2r(U,;; +1 + U�_1) (3.54)

to equation (3.39) is rewritten as a system of two equations as:

(1 + 2r)Um+l = 2r(Um+l + Um_1) + (1 - 2r)V�

Vm+1 = Um (3.55)

45

By introducing a second variable Vm = Um-1. As before the computational errors
un - Un

Zm =mm at
it - Vn

the mesh points on the initial time level (t = 0) are represented
VMm

by a Fourier series as:

N+i

Z, °� _ Al exp(iß3mh)
j=o

(3.56)

where A, is a (2 x 1) vector. Again we study the growth or decay of one error mode

exp(ißmh) by seeking a solution to the "error" system corresponding to (3.49) in

the seperation-of-variables form, which reduces to exp(ißmh) for t=0. Let this

solution be:

Zm = (G)" exp(ißmh), (3.57)

where the time dependence of this error mode is contained in the complex coefficient
(G)". The superscript n implies that G is raised to the power n. G is a (2 x 2)

matrix. Clearly from (3.57):

Zm 1= (G)Z ,

Thus G is the `amplification' matrix.

The criterion for stability is:

IIGII_<1

To find G for the Dufort-Frankel scheme, we write the "error" system corresponding

to (3.55), (using the relation (2 +i + 2m_1) =2 cos(ßh)Zm) as:

Q, 2 +1 = Q02, n

where Q1
1+2r 0

=
01 , Qo

4r cos (ph) 1- 2r
=

10

Thus G= Qi1Qo =
1 1 0 4r cos(ßh) 1- 2r

1+2r 0 1+2r 1 0

46

arcoe Qh 1-2r

G= 1+2r 1+2r i. e.
10

The eigenvalues of G are:

2r cos(ßh) 1- 4r2sin2ßh
Ai = (3.58)

1 +2r

and thus p(G) <1 (3.59)

which satisfies the necessary condition for stability.

Consideration of (3.58) shows that (3.59) is satisfied for every (ßh).

If G is normal (i. e it commutes with its adjoints) then (3.59) is also a sufficient

condition ([33] p: 173).

The matrix method
The matrix method is applicable to initial boundary value problems, i. e equation
(3.39) together with the initial conditions:

ü(x, O) = g(x)

and the Dirichlet boundary conditions:

ü(O, t) =0 and ü(1, t) =0

After discretization, the number of mesh points at each time level interior to the

domain is N. Thus at a certain time level, the set of algebraic equations representing

the finite difference approximation at each mesh point can be written in matrix form

as:

AU'Fl = BU" + CU"-1 +d (3.60)

where A, B, and C are NxN matrices given below. U is an Nx1 vector of the

dependent variable i. e U= [Ul, Uz, ... UN]T . The vector d represents the boundary

conditions - in the above example a=0. The matrix A is:

A=I (i. e NxN identity matrix) for the Explicit scheme

47

(2 + 2r) -r

-r (2 + 2r) -r 0

A= the Crank - Nicholson scheme.
0 -r

-r (2 + 2r)

t1= (1 + 2r)I for the Du f ort - Frankel scheme.

(1 + 2r) -r

-r (1 + 2r) -r 0

A= the Implicit scheme.
0 -r

-r (1 + 2r)

(1 + r) -r
(1 + r) -r 0

A= the Saul'yev I scheme.

0 -r
(1+r)

(1 +r)

-r (1 + r) 0

A= the Saul'yev II scheme.

0

L -r (1+r)

The matrix B is given as:

(1 - 2r) r

r (1 - 2r) r 0

B= the Explicit scheme (3.61)

0 r

r (1 - 2r)

48

(2 - 2r) r

r (2 - 2r) r0
B= the Crank - Nicholson scheme.

0r

r (2 - 2r)

0 2r

2r 0 2r 0

B= the Du f ort - Frankel scheme.
0 2r

2r 0

B=I for the Implicit scheme.

(1 - r)

r (1 - r) 0

B= the Saul'yev I scheme.

0

r (1 - r)

(1 - r) r
(1 - r) r0

B= the Saul'yev II scheme.

0r

(1 - r)

The matrix C is an (N x N) zero matrix for all schemes except the Dufort-Frankel,

which is a three time level scheme for which:

C= (1- 2r)I

For all the two time level schemes stability can be investigated by writing (3.60) in

the explicit form:

U'+'= A-'BU" + A''a (3.62)

49

and examining the eigenvalues of A-'B.

The error vector
(Zn = ün -

U") satisfies:

Zn+l = GZn

where G= A'1B.

Thus, if z° is the Nx1 vector representing the perturbation in the initial conditions

then:

Zn+l _ G'º+Izo (3.63)

and 11 z 'II=IIG"+111x11z011

The following inequality:

P"+1(G): 511 Gn+l 11: 5 (11 GII)"+l

where p(G) is the spectral radius of G, can be used to deduce from (3.63) the

following conditions for stability.

i) The spectral radius condition

p(G) <1 (3.64)

is a necessary condition for stability, since it guarantees that G" -º 0, and conse-

quently z' -º 0 as n -º oo, but gives no indication of the magnitude of z" for finite

n.

ii) The norm condition

11(G)fl_<1 (3.65)

which is sufficient for stability and guarantees an ever-diminishing error as n in-

creases ([34] p: 41).

50

For the Classical explicit scheme:

G=B
.
(B is given by equation 3.61)

and IIGII=I1-2rI+2r<1 if r<1

For the remaining two time level schemes G is given as:

G= A-1B

Since A and B commute, the eigenvalues of G can be obtained using equation (2.10)

and theorem (2.7) as:

a; (G) _A
(B) (3.66)

A+(A)

Thus for the implicit and Crank-Nicholson schemes we have respectively

1 A. (G)
1+ 2r + 2r cos "r

}<1Vr, s (3.67)
()

N+1

(2-2r)+2rcosN+1
and)3(G) =}<1d r' s (3.68)

(2+2r)+2rcos air N+l

Since A and B are commutative and symmetric then G= A-1B is also symmetric.

Therefore p(G) =II G 112, and the spectral radius condition satisfied for the implicit

and Crank-Nicholson schemes by (3.67) and (3.68) respectively is also a sufficient

condition for the stability of the two schemes. As for the Saul'yev (I and II) schemes,

since A is a upper/lower triangular matrix with diagonal elements (1+r), and B is

a lower/upper triangular matrix with diagonal elements (1-r) then for both schemes
the eigenvalues of G are A, (G) = i+r <1 for every r, of multiplicity N. As for the

Dufort-Frankel scheme the "error" equation corresponding to (3.60) can be written
in explicit form as:

zn+l =1
-}12r

[Bz" + (1 - 2r)Iz"'1] (3.69)

51

To investigate the stability, (3.69) should be rewritten as the following system:

Zn+1 (1 + 2r)-1B (1. - 2r)(1 + 2r)-1I z"

z" I 0L-] 1
(3.70)

which is of the form:,

E"+1 = WE" (3.71)

Zn+l
where E"+1 =

Zn

Since the matrices (1+2r)-'B, I and (1-2r)(1+2r)"1I are all symmetric and comm-

mute with each other, they have a common set of linearly independent eigenvectors.

Also, the eigenvalues of W are the eigenvalues of the matrices:
Ak 1-2r

1+2r 1+2r

10

where AA, is the kth eigenvalue of B given as:

Ak = 2r cos k1/V + 1), k= (1,2, ... N).

Thus the eigenvalues (v,) of W can be obtained by solving for:

A- 1-2r

det 1+2r v
1+2r

1 -v

which gives:

Ak
1-2r v(v- 1+2rý 1+2r

giving:

1
v(W) =1+ 2r

2r cos
N+1 [1

- 4rß sin 2N+1,
i I.

k= (1, ... N) (3.72)

It can be shown from (3.72) that the magnitudes of all the eigenvalues of W are less

than unity for every r. This satisfies the spectral radius condition for stability given

in (3.64).

52

The problem of finding a continuous exact solution for a PDE has now been

transformed to finding the solution, at discrete points, given by its finite difference

approximation. This involves solving a large system of algebraic equations (one at

each point) for the whole mesh. This system may be explicit or implicit, depending

on the difference scheme. The solution of the systems of equations arising from

explicit finite difference schemes is straight-forward. i. e., matrix vector multiplica-

tion. However implicit difference schemes require the solution of large systems of

algebraic difference equations which have the general form:

Au=b (3.73)

where A is an NxN matrix, (N being the total number of gridpoints in the region of
the solution). U is an Nx1 vector representing the unknown values of the solution

at the gridpoints, and b is an Nx1 vector of known elements. Solutions at non

gridpoints are interpolated from the surrounding gridpoint solutions.

Methods for solving (3.73) fall into two categories, namely Direct methods and
iterative methods. These are the subjects of the following two sections.

3.4.3 Convergence

A finite difference scheme is said to be convergent if, at a fixed mesh point, the exact

solution of the finite difference replacement and that of the differential equation get
uniformly closer as the mesh is refined.

In the case of finite difference replacements for linear initial value problems, stability

and consistency of the finite difference scheme guarantee convergence, as stated by

the Lax equivalence theorem which states (see [39] p: 45) "Given a properly posed
linear initial value problem and a finite difference approximation to it that satis-
fies the consistency condition, stability is the necessary and sufficient condition for

convergence".

For the more difficult initial boundary value problems and for nonlinear problems,

establishing the convergence is generally very difficult. A theoretical convergence

53

analysis can be carried out only for simple cases where the differential equation is

not very complicated and the difference scheme replacing it is simple. Examples

of such theoretical treatment are the convergence analyses given for the classical

explicit scheme replacement of the one dimensional heat conduction equation (3.39)

in ([35] p: 117-119) and the five point explicit scheme replacement of the wave

equation (5.11) in ([47] p: 146-148).

Convergence in some more difficult cases may be inferred numerically by examining

whether the error of the subsequent computational solutions of the difference equa-

tions obtained on progressively refined grids is uniformly reduced. An example of

such analysis of convergence is found in ([24] P: 75-76).

Finally, the Lax equivalence theorem, for other than linear initial value problems,

may be interpreted as providing a necessary condition, and not always sufficient, for

convergence [24].

In the next two sections we introduce the methods for solving the the various systems

of difference equations which has the typical form of (3.73).

3.5 Direct methods:

Direct methods yield an exact solution of (3.73) in the absence of round-off errors,

in a finite number of numerical operations.

However, direct. methods are not recommended, when the coefficient matrix A in

(3.73) is arbitrakly sparse. This is because in these methods, the matrix A is altered

during the computation process, and fill in by non zero elements may occur in

the band of the matrix ([25] p: 484), which requires large storage in the computer

memory. All direct methods are considered variants of the Gauss elimination

method, which is based on augmenting the right hand side vector in (3.73) by A,

and performing some appropriate elementary row operations on the augmented

matrix so that the elements below the diagonal of A are eliminated. The matrix A

becomes upper triangular, and the solution is then obtained by a back-substitution

54

process. In the Gauss-Jordan method, instead of a back- substitution process,

the elimination process proceeds to eliminate the elements above the diagonal of
A in the augmented matrix as well. Then each row is divided by its diagonal

element, thus transforming A to an identity matrix. The solution vector afterwards,

is given by the rightmost column of the augmented matrix. In the above elimination

methods, care is taken where possible, to avoid
_ý.,, .

division by zero (The elimination

method will fail if such division is unavoidable) and to ensure at each elimination

step that the diagonal elements of A have the largest absolute value of all the

elements below it in its column (this helps in reducing round off errors). This

is achieved by appropriate interchanges in the rows of the augmented matrix in

a process known as maximal column pivoting or partial pivoting. The detailed

description of this method, including other intermediate procedures involved (e. g

scaling), and illustrative examples are given in ([25]).

Other methods known as the LU decomposition methods are variants of the Gaussian

elimination method. These are methods based on factoring the matrix A in terms

of a lower triangular matrix L and an upper triangular matrix U, thus enabling the

system Ax=b to be rewritten as:

LUx =b (3.74)

where a condition is imposed on the diagonal elements in L, U or in both.

The equation (3.74) is factorized to two systems with the aid of an intermediate

vector z and solved in the following two subsequent stages:

Lz =b (3.75)

followed by;

Ux =z (3.76)

where z is obtained in (3.75) by a forward substitution and the solution x is obtained
from (3.76) by a back-substitution process. Partial pivoting may also be necessary

55

for the LU decomposition methods, but it is slightly different than pivoting in the

Gauss and Gauss-Jordan methods, and demands extra computations. The way in

which pivoting in the LU methods is employed is illustrated in Algorithm 3.5 below.

The most popular LU decomposition methods are, the Dolittle method, which

imposes a condition that the diagonal elements of L be all unity, the Crout method

where the diagonal elements of U are all unity, and the Choleski method where the

condition l;; = u;; is imposed. This last method is applicable only when A is positive
definite, and decomposes A into LLT (i. e., U= LT) making use of Theorem 2.11

thus eliminating the work of finding U.

A general algorithm for the factorization procedures, including partial pivoting,

the forward and backward substitution processes for LU decomposition methods is

(extracted from Burden's [2]) is given next.

Alogorithm for LU methods:

1. Input the dimension n of A, the entries a; 1 and b; in an augmented matrix
(n+1)xnarray A.

2. Input the diagonal elements of U or of L.

3. Let p be the smallest integer such that 1<p<n and

j apt (= max jajl l(find the first pivot element).
1<j<n

if I apl I=0, then Output ('No unique solution'). STOP.

4. If p01 then interchange rows p and 1 in (augmented) array A.

5. Select 11, and ull satisfying 111u11 = all.

6. For j=2... nsetUlf=al3/lll
& 111 = ail/ull

(Calculate the Ist row of U)

(Calculate the Ist row of L)

7. For i=2... n do steps 8-11

56

8. Let p be the smallest integer such that i<p<n and

i-1

api -E lpkuki = max
l
aj; - ljkuk: l (find the ith pivot element).

k=1 i<j<n

If the maximum is zero, OUTPUT 'No unique solution'.

9. If p0i then interchange rows p and i in A and L.

10. Select 1;; and u;; satisfying:

i-1
liiuii = aii ->

likuki

k=1

11. For j=i+1, ... n Set:

1 '-1
Ui, j = 144

[au,
j -E

likuki

k=1
i-1

Iji =1
[aiu

-E likuk. 1 uii k=1

(Calculate the ith row of U)

(Calculate the ith column of L)

12. Set Hold = an,, -
Ek-1 Ink'ukn

If Hold=O OUTPUT 'No solution exists' STOP

Select unn and Inn satisfying 1nnUnn = Hold.

(Steps 13 and 14 are to perform forward and backward substitutions).

1 i-1
13. Set zl = al,,, +l/lii ; For i=2... n, Set z; _ [ai,,,

+l -> lnk'ukn]
1"

j_i

14. Set 2n = , Zn/Unn i=n-1.... I Set 2; =1 l'Z; -
1:

u; 1x1
u;;

OUTPUT' (x1 x�)' STOP.

The maximum computational cost for the methods mentioned above, is given in

terms of the number of multiplication/division operations and addition/subtraction

operations involved. For the Gaussian elimination and Dolittle methods (IN3 +

'N2 - 3) multiplications divisions and (33 + z' - sN) additions or subtractions

are involved. Choleski's method requires s' + ZN2 -3 multiplications/divisions

57

and 63 + NZ - sN additions/subtractions and N square roots. The number N is

the order of the coefficient matrix A. However, A u5uai1 exhibits a special pattern

which will keep the computational cost far below the maximum figures given above.

In general for a banded matrix of bandwidth 2p +1 we can obtain the number mul-

tiplication/division and addition/subtraction operations required by the Gaussian

elimination, Crout, and Dolittle methods by a simple exercise. This gives for the

total of multiplication/division operations to be:

count - mult =
3(N - 2)p2 + (9N3- 4)p + 3N - 2p3 (3.77)

and the number of addition/subtraction operations required is:

count - add -
3(2N-3)p2+(612N-5)p-4p3 (3.78)

The two figures given by (3.77) and (3.78) are thus of order O(Np2). Upon substi-

tuting for p=N-1 (i. e. A is a full matrix) we, retrieve the previous expressions given

above. If A is tridiagonal (i. e. p=l), then substituting for p in (3.77) and (3.78)

shows that 5n-4 multiplication/divisions operations and 3N-3 addition/subtraction

operations are needed to solve the system Ax = b. Finally, when A is block-

tridiagonal of order MN, as sometimes is the case when a system of M coupled

differential equations, in M unknowns, is discretized using central difference opera-

tors, the number of operations involved is of order 3NM3
([24] p: 189).

It remains to say that although the elimination methods are reliable and efficient,

when A has a narrow band,,, tkey
_Lnvo1,

Ve
,

heavy dependencies in computa-

tion which makes them unsuitable for parallel computers.

3.6 Iterative methods

These are methods which solve the system (3.73), i. e., Au = b, by calculating a

sequence of approximate solutions u that converges to A-lb as k increases. The

sequence is continually generated until successive solutions are sufficiently alike.

58

Iterative methods have the advantage over the direct methods in that round off

errors do not accumulate, but rather decay with the number of iterations, and in

that they are more economic to use when A exhibits a non easy pattern.

In this section a survey of some linear, stationary iterative methods of first degree

is presented.

An iterative method for solving (3.73) can be constructed generally by decomposing

A as:

A=N-P (3.79)

such that (3.73) can be rewritten as:

(N - P)u =b or Nu = Pu +b (3.80)

where N is a nonsingular matrix, sometimes referred to as the splitting matrix. It is

usually chosen to be easily solvable, (e. g diagonal, triangular).

If we add the superscript (k + 1) to u on the left hand side of (3.80) and the

superscript (k) to u on the right hand side of (3.80) we obtain an iterative method.

Equation (3.80) can be rewritten as:

uk+l = Guk +f (3.81)

where G= N-1P is called the iteration matrix. Also the right side vector f= N-1 b.

For most well known methods, A is split into the form (D -L- U) where L, U,

and D are matrices including respectively only the elements of A which are strictly
below, strictly above, and on, the diagonal of A. Thus N-P=D-L-U.

If we take N=D and P=L+U, we obtain the well known Jacobi (J) method given
as:

Duk+l = (L + U)uk +b or uk+i = D'1(L + U)uk + D'lb (3.82)

where the iteration matrix Gj =B= D'1(L + U) is known as the Jacobi matrix.

59

If N=D-L and P=U we obtain the Gauss-Seidel (GS) method given as:

Duk+l = Luk+i + Uuk +b or uk+l = (D - L)'lUuk + (D - L)-lb (3.83)

with iteration matrix G= (D - L)'1U.
race

The GS method almost always has a better convergence
(than the J method, but the

J method has the advantage of being susceptible to significant improvement in its

convergence rate by some acceleration techniques such as the Chebyshev acceleration

and the Conjugate Gradient acceleration. This is because the eigenvalues of the

iteration matrix of the J method are real. This is not the case for the GS method

and its extrapolated version (i. e. the SOR method introduced next).

If a relaxation parameter w is introduced into the Gauss-Seidel method such that

0<w<2, a significant acceleration in the convergence rate of the method occurs,

giving rise to a new method which is known as the Successive Overrelaxation (S. O. R)

method.

This is more easily illustrated by considering the molecular form of equation (3.8.3)

i. e. the equation for the elements of any vector in the sequence of approximate

solutions. This is:

i-1 n
uk+l -1

/bi
_

[1
aij, uý+l _E ai, uý)

aii
lL

s=1 i=i+1
(3.84)

If u, is both added and subtracted to the RHS of (3.84), it can be rewritten as:

Ui +1 (bi _ ail

i-1 n
aii, uý+l -E aijuj

1=1 i=i

(3.85)

where the term in the square brackets represents a residual or a correction term

which tends to zero as the method converges. The SOR method is obtained by

relaxing the correction term by a factor of w such that 0<w<2. Thus (3.85) is

rewritten as:
i-1 n

uk+l _ uk +w (bi - aijuj+l -> aijuj) (3.86)
i=ii

60

This is equivalent to evaluating us +1 as a weighted average of uk and (u; +1)cs,

i. e. us+i = wut + (1 - w)u;

This can be written in matrix form as:

uk+i = (1 - w)uk + w[D-1(Luk+i + Uuk + b)] (3.87)

or

uk+l = LG, uk + (D - wL)'lwb

where Lu, = (D - wL)'1 [wU + (1 - w)D].

(3.88)

The iteration matrix for the SOR method is GSOR = L. The matrices N and P

corresponding to (3.79) are N= w'1D -L and P ='U + (w-I - 1)D.

For w=1 the SOR method reduces to the GS method. The optimal relaxation
factor for the SOR method lies always between 1 and 2. The convergence of the

method is sensitive to the choice of the acceleration parameter, and an optimum

choice w' of the parameter is given as:

2
1 -F 1-p2(B)

(3.89)

where p(B) is the spectral radius of the Jacobi matrix B corresponding to matrix A.

This is often difficult to estimate because the spectral radius is not usually known in

advance, and often the few first iterations are used to estimate p(B) and consequently

w' follows ([29]).

The Symmetric Successive Overrelaxation (SSOR) method evaluates the uk+l iter-

ate in two half iterations representing two sweeps of the SOR iterations in opposite
directions. The first sweep is a forward sweep where the values ui+j, uz+j ... , un+j

are from the half iteration are obtained, while the values un+l, un±i, ui+l for

the complete iteration are obtained after a further backward sweep. The relaxation

parameter of the SOR method used in both sweeps is the same. If different accel-

eration parameters were used for the two sweeps, the method is then referred to as

the unsymmetric SSOR or (USSOR).

61

The two sweeps of the SSOR can be written as:

uk+2 = L,, uk + (D - wL)-lwb

and uk+1 = Uu ý+ (D - wU)-lwb

where U,,, = (D - wU)'1 [(1 - w)D + wL].

Upon eliminating uk+2 we get:

k+l = Uý, L,, uk+} -}- f

where,

(3.90)

(3.91)

(3.92)

f= (D - wU)-1 [(1 - w)D + wL](D - wL)-lwb + (D - wU)-lwb (3.93)

= w(2 - w)(D - wU)'1D(D - wL)-lb (3.94)

The proof of the equality:

(D - wU)- [(1- w)D + wL](D - wL)-lwb + (D - wU)-lwb

= w(2 - w)(D - wU)-1D(D - wL)-lb (3.95)

of the right hand sides of (3.93) and (3.94) is referred to later and is therefore

given below:

The LHS of (3.95) = (D - wU)-' { [(1- w)D + wL](D - wL)-1 + I) wb.

Therefore we only need to prove that:

[(1 - w)D + wL](D - wL)-' +I= (2 - w)D(D - wL)-' (3.96)

[(1- w)D +wL] (D - wL)'1 +I

= [(D - wL) - wD + 2wL](D - wL)'1 +1

=I- wD(D - wL)'1 + 2wL(D - wL)'1 +I

= (2D - 2wL - wD + 2wL)(D - wL)-l

= (2 - w)D(D - wL)-1

62

which verifies equation (3.96).

The splitting matrix N for the SSOR method is given as:

N=2w
w(D - L)D-1(D - U) (3.97)

The SSOR method converges slower than the SOR method, but has the advantage

that it can be accelerated by the techniques mentioned earlier.

There are other first order methods, some of which are very well known such as the

Simultaneous Displacement method and the (nonstationary) Richardson method.

These are given respectively by the following two equations:

uk+i=uff`+a(b-Auk)=(I-aA)Lk+ a6 (3.98)

Rk

and

uk+l = uk + ak (b - Auk) = (I - akA)Uk + owkb (3.99)

Rk

where a constant factor a or a different choice ak for every iteration is multiplied
by the residual vector Rk and then added to the vector Uk of the present iterate.

We shall suffice ourselves with the above typical well known methods, and discuss

next the properties of iterative methods with reference to them.

3.7 Consistency of iterative methods

In the analysis of iterative methods (3.81) and their convergence properties, it is

important to consider the related linear system:

(I - G)u =f (3.100)

and the relation between its solution and that of the system Au = b.

A basic requirement of an iterative method as (3.81) is that for a non-singular coef-
ficient matrix A, when a solution is obtained of the system Au = b, all subsequent

63

iterates remain the same. This is known as the Consistency condition. Another

requirement is that if the iterative method converges, it should converge only to the

exact solution ü= A'lb of the above system and not to any other solution. This is

the condition of Reciprocal Consistency. The following theorems give the necessary

and sufficient conditions for consistency and reciprocal consistency of an iterative

method.

Theorem 3.1 If A is nonsingular, then an iterative method of the form (3.81) is

consistent if and only if.

f= (1- G)A'lb (3.101)

Theorem 3.2 If (I-G) is nonsingular, then the iterative method (3.81) is recipro-

cally consistent if and only if. -

b= A(I - G)-if (3.102)

Theorem 3.3 If A is nonsingular, then an iterative method (3.81) is completely

consistent if and only if it is consistent and (I-G) is nonsingular.

If an iterative method is both consistent and reciprocally consistent then it is said

to be completely consistent. Complete consistency implies that the exact solution of

the system Au =b and the related system are identical. More details, and proofs

of the above theorems are given in ([50], p: 65-66).

For the above mentioned methods it is easy to verify, when A is nonsingular and

have nonzero diagonal elements that:

For the Jacobi method:

G=B=D-'(L+U); (I-G)=I-D-'(L+U) =I-D-1(D-A)=D-'A

Therefore (I-G) is nonsingular, and since f= D'b,

then f= (I - G)A-lb (i. e., the method is consistent)

Then by Theorem 3.3 the method is completely consistent.

64

Similarly

for the Gauss-Seidel method:

G=(D-L)-lU =(I-G)=I-(D-L)-'(D-L-A)=(D-L)-1A.
Therefore (I-G) is nonsingular.

Also,

f= (D - L)-'b = (I - G)A-1b, (i. e., the GS method is

For the SOR method:
G= (D - wL)'1 [wU + (1 - w)D]

(I - G) = (D - wL)-1 [D - wL - wU - (1 - w)D]
(I - G) = (D - wL)-1 [wA] = w(D - wL)-'A (Hence I-G is nonsingular).

Also

f= w(D - wL)'1b f= (I - G)A'1b (i. e., the SOR method is consistent).

For the SSOR method:
G= (D - wU)-l[(1- w)D + wL](D - wL)-I[(1 - w)D +wU]

But from equation (3.95) we have:

(D - wU)'1 [(1 - w)D + wL] (D - wL)-l

= (2 - w) (D - wU)'1 D(D - wL)-' - (D - wU)'1

Therefore,

I-G=I- [(2 - w)(D - wU)-1D(D - wL)'1 - (D - wU)-1][(1- w)D + wU]

=I- (D - wU)'1((2 - w)D(D - wL)"1 - I](D - wL - wAJ

=I- (D - wU)'1 [(2 - w)D - w(2 - w)D(D - wL)-'A -D+ wL + wA]

=I- (D - wU)-' [-w(2 - w)D(D - wL)-'A +D- wU)

= w(2 - w)(D - wU)'1 D(D - wL)-'A

Therefore (I-G) is nonsingular.

Also from (3.94) we have:

f= w(2 - w)(D - wU)'1D(D - wL)-lb

=f= (I - G)A-1b.

Hence the SSOR method is completely consistent.

65

It follows then, also by Theorem 3.3 that the GS, the SOR, and the SSOR methods

are completely consistent.

The complete consistency of the simultaneous displacement method and the Richard-

son method is obvious from equations (3.98) and (3.99) for every a0 and ak 54 0.

3.8 Convergence of iterative methods

Complete consistency is always assumed for any reasonable iterative method, how-

ever, a very important property, namely convergence is not always assumed. In this

section, the basic theorems concerning convergence and the rate of convergence are

outlined.

Definition 3.1 An iterative method is said to be convergent if, for any initial

vector u° the sequence of vectors uk converges to the exact solution n= A-1b, as k

increases.

i. e. if : lim uk =ü k-. oo
(3.103)

Since the exact solution ü= A-lb also satisfies (3.81) and the related system
(3.100) then the error vector defined as:

ek=uk- ü

satisfies the relation:

ek+l = Gek = G2ek-1 = ... = Gk+ieo

Therefore it follows that for convergence we require that:

ýý=0 m 11 Gk u
kýco

(3.104)

(3.105)

(3.106)

and from the Definition 2.4 and Theorem 2.6 a necessary and sufficient condition
for an iterative method (3.81) to be convergent is that:

p(G) <1 (3.107)

66

We can estimate the rate of convergence of an iterative method (3.81) by using

the relation (3.105), from which we can write:

IIekIIn<_IIGk 1IrxIIe°IIp (3.108)

Thus if we require that the norm of the error vector e° be reduced by a factor E, we
have to choose k large enough to satisfy:

11 Gk Ilp< E (3.109)

Then the average rate of convergence is defined for k iterations, as:

Rk(G) =-k 1og. 11 Gk fl (3.110)

It is shown in ([50], P86-87) that:

l im (I I Gk 1121` = p(G)

From which the asymptotic rate of convergence R(G) is defined as:

R(G) =l im Rk (G) = -log, p(G) (3.111)

Thus for two convergent iterative methods I and II with iteration matrices G' and
G" respectively, the method I is faster than II if it has a larger asymptotic rate of

convergence.

i. e. if: -1og p(G') > -logp(C')

or if: p(G') < p(G")

Evans has shown in [10] for several iterative methods that the asymptotic rate of

convergence is inversely proportional to the condition number is of the coefficient

matrix A of (3.73) which is defined as:

K(A) = (IAII x IIA-111 (3.112)

67

which when A is symmetric gives IC(A) _ mäÄ where max AA and min AA are the

maximum and minimum eigenvalues of A respectively.

Evans has also introduced the principle of preconditioning the original system (3.73)

by transforming it into a new system MAu = Mb whose condition number can
be minimized (s'c(MA) « ic(Al), thus maximizing the rate of convergence. Detailed

description of preconditioning techniques can be found in [11], [12], [18], and [17]

among others.

The iteration procedure (3.81) is pursued until the exact solution ü= A-lb is

reached within a certain prescribed tolerance # such that:

11 uk -u IIn_ Q (3.113)

Since usually n is not known in advance, then the criterion for convergence is based

on the norm of the residual vector R'k defined as:

11 Rk II=II Auk -b 11 (3.114)

approaching zero with a prescribed sufficiently small tolerance.

Chapter 4

The ADI and the AGE Methods

4.1 The Alternating Direction Implicit (ADI)

methods

It has been earlier demonstrated in chapter 3 that implicit finite difference meth-

ods exhibit unlimited stability, while explicit, schemes are generally subject to a

restricting condition on their mesh ratio, in the interest of numerical stability. This

restriction becomes extremely more severe for multidimensional problems. However,

for multidimensional problems, implicit central difference methods require the solu-

tion of a system of difference equations of the form Au = b, where the coefficient

matrix A is no longer tridiagonal, but rather A is sparse, structurely banded and

of large order. The solution of such systems becomes increasingly difficult and de-

manding in computer time and memory as the dimensions of the problem increase.

These difficulties can be considerably alleviated by applying a class of methods,

which possesses both the unconditional stability of the implicit methods, and main-

tains the simplicity of the one dimensional approach to the problem, even when

applied to problems of several dimensions. This class is known as the Alternating

Direction Implicit (ADI) methods. It may be applied iteratively to some problems
(steady state problems) and applied either iteratively or directly in p steps to other
(diffusion/convection) problems. In this section, we present some of these methods

68

69

as direct methods applied to the diffusion equation in two or more space dimensions.

We consider the following two dimensional PDE:

aü
= Lü (4.1) ät

where L is a (linear) differential operator, and the equation is defined over a region
R_ [0 < X1, x2 < 1], [t > 0] and subject to the initial condition:

Ü(Xl9 x290) = 9(x19 x2)

where (xl, x2) ER and the boundary condition:

(4.2)

ü(xi, x3, t) =f (xi, x2, t) where (xis x2) E OR. (4.3)

where ÖR is the boundary of R. The region Q is covered by a rectangular mesh
having ml and m2 internal points, in the x1 and x2 directions respectively, with the

corresponding grid spacings hl and h2 given by hl = 1/(ml-F1) and h2 = 1/(m2+1).

The coordinates of any point P are given as P(ihl, jh2) where 0<i< ml +1 and
0<j< m2 + 1, with the solution at P denoted by üij.

If L= Di +D2 (where Dl = a8 and D2 = azj) we get the heat equation in two

dimensions given by :

8ü
T= (Di 2+ D2)ß =

ä-Xi + äýý (4.4)

An exact replacement of (4.4) is :

uiti = exp[k(Di +D2)]üi, i

= exp(k[OD2 + (1 - O)D2 + OD2 + (1 - 9)D2 ii,,; (4.5)

exp[k(-OD 2- OD2)]ü 1-

exp[k((l - O)Dl + (1 - B)D2)ýü (4.6)

70

from which, we can derive the following weighted central difference approximation:

[1 - Orbi, - Ors 3]U +' = [1 + (1 - O)rbil + (1 - O)rbx, 1Ui'j (4.7)

where U1 is now the finite difference solution, r is defined as r= k/h2, k being the

time increment, and h= hl = h2, n is the index for the time coordinate, and 0 is

an extrapolation parameter 0<0<1 to be chosen as follows:

If 0=0 we get the classic Explicit scheme.

If 0= 1/2 we get the Crank Nicholson scheme.

and

If 0=1 we get the fully Implicit scheme.

Another way of writing (4.6) is :

exp[-OkDi]exp[-OkD2]U '= exp[' (1- O)kDfl exp((1- 9)kDz]U, (4.8)

The truncated expansion of (4.8) yields :

(i - erasl)(i - ersi,)v; }1= (i + (1- O)rax,)(i + (1- O)r6 3)ÜÄ (4.9)

It can be seen that the different schemes arising from substituting the different

values of 0 in (4.9) are only perturbations of those schemes resulting from sub-

stituting the same 0 values in (4.7). i. e for 0=0,211 we get schemes which are

perturbations of the Explicit, Crank-Nicholson's and Implicit schemes respectively.

If however, the above weighted approximation (4.9) of (4.1) is applied to ad-

vance the solution implicitly in only one direction (the xl direction) from time t=n

to some intermediate' time n*, then consecutively applied to advance the solution

implicitly only in the other direction (the x2 direction) to the time level t=n-ß-1,

we obtain an implicit scheme which, at each stage, only requires the solution of a

simple tridiagonal system. Such schemes produce only conditionally stable solutions
1This intermediate time n' level does not necessarily correspond to any time level between t=n

and t=nß-1

71

at intermediate `time levels', but produce unconditionally stable solutions after full

time steps. Such schemes are referred to as the Alternating Direction Implicit (ADI)

methods. The first of such schemes is due to [38]. The two steps of this scheme are

given as:

(1 -
2rSs1)Ü

ý_ (1 -I-
2röxý)un

(1-2rSxs)Üý1 = (1--2rSi1)Üý (4.10)

If U7 is eliminated from the above equations we get the composite equation given

by (4.9)with 0=Z.

The above scheme henceforth referred to as the P-R scheme has a truncation

error of order O(k2, h2). This can easily be verified by applying the Taylors' Series

expansion to its composite formula. One setback for the P-R scheme is that it is

only conditionally stable when extended to three dimensional problems.

Another scheme due to [7] which exhibits unconditional stability even when applied

to a three dimensional problem is given as :

-in (1 -
2röx1)Ü

_ (1 +
2röxÜ,

i + rýX3
,3

(1 -
2r622)Ü 1=Ü, * -

2r6., 2, Ujn (4.11)

The elimination of U in* from the above pair of equations leads to the recovery of
(4.9), again with 8=2. Thus the Douglas scheme is also a perturbation of the

Crank-Nicholson scheme, and has also a truncation error of order 0(k2, h2). Also

[8] formulated a scheme which is a perturbation of the fully Implicit scheme in two

dimensions, and has truncation error of order O(k, h2). This is given as :

(1 - röxi)Ü j_ (1 + rbxz)Ü j
(1 - röxý)Ü ý1=Uj- rS TT (4.12)

Upon eliminating U from the above pair of equations, we obtain a composite
formula for the Douglas and Rachford (D-R) scheme which is given as:

(1 - rbxi)(1 - rbz2)Ü 1= (1 + r2b2,62) in (4.13)

72

Another ADI method of second order accuracy in both the time and space direction

is obtained by splitting (4.9) in a manner suggested by [9]. This split is given as :

(1 -
2röý1)Ü

_

(1-2rbx2)Üj1 -

(1 + röi,)(1 +
2ä=2)Ü

U�« +, s
(4.14)

The above schemes (with the exception of the P-R scheme) can be easily extended

to provide unconditionally stable solutions to the heat equations in three dimensions,

which is given as:

öü

ät =(Di+Dz+D3)ü=ai+ä z+ä 3 (4.15)

defined over the domain given by X21 = [0 < xl, x2, x3 5 1], t > 01, with the initial

conditions :

u(xl9 x2f X3, O)
- 91x1, X29 x3) 4.16)

where (xj, x2, x3) E tl
, and the boundary conditions :

i! (-bx2, x39t) = fl(xlfx2, x3, t) 4.17)

where (xl, x2i x3, t) EO -RI x [t > 0].

If R1 is covered with a uniform grid mesh with spacings hl, h2, and h3 in the

directions parallel to the axes x1, x2, and x3 respectively, whereby for simplicity we
take hl = h2 = h3 = h, and r= k/h2, k being the time increment. The meshpoints
indices in the x1, x2, and x3 directionsii, j, and I respectively.

The extensions to the above mentioned`ADI schemes are given as follows.

For the Douglas scheme, the split formulae are:

(1 - 2rbz1)Üaý1

(1 -
2r62

. 12)Ü7j

(1-2rbx3)Ü"1

_ (1 + 2rösl
+ rözz + röza)U, i,,

n"
12n

= U', i, l -2 rbX2 U; apr

nwr
1

CZ rTn = ýi,
ý 2 r0=3 vß, 7,1 (4.18)

73

which gives upon eliminating the intermediate solutions U71 and Uýý the following

composite formula: C

(1-2rSi-2ra=, -2rS=3)Ül

va1vx7 + vatvs3 + vX2vs3
2rSx1S 3vs3)vf, j, tl

(1 +
2rSy1

+
2rS

2
-f 2rSz3Uit

+4 (Sx16 + 624I8 X3 3+
c2 53- 2rSx1S=2 S=3)Ü, i, t (4.19)

The scheme is thus similar to the Crank Nicholson scheme in three dimensions with

the second group of terms on both sides of (4.19) representing a "perturbation".

Equation (4.19) can be written as:

3
ý(1

-
2r52'Uiýl1

= ý(1 +
1r6z,)Ui' -

1r3ý62,
U ,! (4.20)

For the D-R scheme the formulae are:

(1-r61)ü;,, [1+r(Sý, + 53)]U, 1
(1-rSz2)Ü = Üa,, -rSz Uä,, 12

(1 - rSiý) Ü, 1=Üä, *1 - rSx3 Ü i,, (4.21)

which upon eliminating the intermediate solutions give:

ý(1
- rbsý)Ü ä1=- rbx,)Ü j -I- r

i, Ü ý, ý (4.22)
?

J(1
3

For the D'yakonov scheme, the split formulae are as follows:

(1 -
2rbi1)Ü

ýý _ (1 -I-
282

X2)(1 +
2rb2

X 3)U,
"jiI

(1 -
2rbs2)U

,*=Ü,;,, - (1 + 2r5.3)Üä. 1

(1-2r6OU 1= Üýj+(1+2rbi3)Üj, l (4.23)

which gives after the elimination of U
,,, and U7, the equation:

ý(1
-

2röýý)Üä 1- fl(1 +
2rbiý)Üa,

ý (4.24)

74

If any of the above direct ADI methods is used to solve (4.4), or (4.15), where

the unknowns of the difference equations are ordered along the lines x1, i. e the

horizontal lines, then along the lines x2 i. e the vertical lines, (then along the lines

x3 i. e the levels of the mesh, for the three dimensional problem) - which is known as

the Natural Ordering - the ADI method will lead to solving a tridiagonal or a block

tridiagonal system of equations: For the two dimensional problem these systems are

given as:

Hu = bi (4.25)

Vu = b2 (4.26)

where bl and b2 are known vectors. H and V are square matrices of order m2, with

H being block diagonal, and V block tridiagonal. They are given as:

H= diag(Hi) and V= diag(Vb, VV, Vt) where Hl = diag(a2, b, al), V= diag(al),

Vb = diag(a2) ; and VV = diag(b).

H1, Vb, Vb, and VV are square matrices of order m. For the D-R scheme: at = a2 =r

and b= 1+2r while for the remaining ADI schemes mentioned above: al = a2 =Z

and b=1+r. It is customary to solve (4.25) and (4.26) using direct LU

decomposition methods.
The ADI methods as direct difference schemes can be similarly applied to hyperbolic

problems. Such applications are presented in treatments in subsequent chapters.

In the following section, the application of the ADI strategy applied as an iterative

method is presented.

4.1.1 Intermediate boundary conditions

It is to be noted that for the application of any of the above ADI schemes, it is

necessary to determine the intermediate values of the solution at some boundaries.

75

These values can be approximated from (4.3) and equation (4.17) to be as:

U"' = f"", l the 2 dimensional problem

Un* n+l at the appropriate boundaries.
'"''t the 3 dimensional problem.
n"" _ n+l U+J, I fi, j, 1

However the above formulae lead to a loss of accuracy in the respective ADI scheme.

The way to, conserving accuracy is by deriving these intermediate boundary values

from the equations of the respective ADI schemes. Thus for the two dimensional

ADI-PR 'scheme we get:

Üä = (1 -
2r6 2

2)Ui%j
2(1

+ 2rbx2) s,
j (4.27)

This can be written using (4.3) as:

Ü=
2(1-2röi,

)f 1-}-2(1-F2rbz2)f ä for the P-R scheme. (4.28)

Similarly the following formulae are derived for other ADI schemes described above:

Ü _ (1 -
2rbýý)f 1 for the D'Yakonov scheme (4.29)

Ü _ (1 - röiý) fä1+ rbxz f for the D-R scheme. (4.30)

As for the three dimensional methods the intermediate boundary values as derived

from the respective schemes are:

Üit-f, i, tý'(1-r52)(1-röx,)(f; tl-J;
ý,

t)

and

,
jot

+ fi
jot)

Uä1 -f jot + (1 - 2röi2)(1 - 2rbx,)(f º1 -f , jot)

and
n** 1Z nl n Uiä, t - Ps.

,,, t
ý' (1 - Zröx,)(ft, 9, t - fin

for the D-R scheme.

(4.31)

for the Douglas scheme.

(4.32)

76

nr -11212 n+l U+, i, ý - s(1 -2 r5 2)(1 - 2rbz,)fý, ý, º

-1-z(1 + zrbx2)(1 + zrbi3)f,
"11,

and
Un? " =I (1

- rö2 ýf"1
_

(1 +1 a2 ýf n
Soll 2 z3 8,2,1 22 x3 tai

for the D'yakonov scheme.

(4.33)

4.1.2 Other alternating direction methods

The ADI method is the method which is used as a component in the EAD method

to be presented in the next chapter, however it will be also demonstrated that other

alternating direction methods can be that component. To mention briefly other

alternating direction methods, we consider equation (4.1) again. If this equation

has g space dimensions then a fractional splitting method applied to its solution

involves splitting the operator L into g simpler operators such that:

L=EL;
s_i

with each operator L; being operating over a time interval 9. Thus over each
interval we have:

g
Tt

= L; ü (4.34)

Then the equivalence of equation (4.1) is taken to be the integral of equa-

tions (4.34) over the whole interval k. If all the operators L; involve derivatives

in only one space dimension, (i. e if Ll = j, L2 = 82
...) then the fractional

splitting method is referred to as the locally one dimensional (LOD) method.

Further details and examples of the finite difference schemes derived for these meth-

ods, as well as the relations between these schemes and the ADI schemes can be

found in [33].

77

4.2 The ADI iterative methods

Consider the heat equations (4.4) and (4.15) with Dirichlet boundary conditions

that are independent of time. If we apply any of the above ADI schemes successively

until the solution reaches its steady state, then the applied ADI scheme can be taken

to represent an iteration procedure which converges when:

U;; 1=Üj=Uc, j .. for all i, j (4.35)

Thus the ADI iterative methods for elliptic differential equation are by-products of

the above ADI "direct" schemes that were developed for the parabolic equations.

If we substitute the values in (4.35) in any of the corresponding ADI schemes

given in the previous section for solving (4.4) and (4.15) we get respectively the

following equations:

(5.1 + 6i2) U1,1 =0 (4.36)

and

ý62+2+ fy3ý Ui, i, º =0 (4.37)
'T 2I -T

which are respectively the five point, and seven point difference replacements of

the Laplace equation in two and three dimensions which are given by equating to

zero the LHSs of equations (4.4) and (4.15) respectively. The quantity `r' is

now an iteration parameter which may be varied from iteration to iteration. The

above iterative process can be shown to be convergent for any positive `r', with an

accelerated rate of convergence when `r' is varied according to an optimal sequence
(see [34] p: 149-152).

Another way of demonstrating how the ADI strategy can be applied to solve the

Laplace equation in two dimensions iteratively is given as follows. Consider the

system of equations, resulting from applying the five point difference formula (4.36)

to the totality of mesh points (m2) given as:

(H + V)u =f (4.38)

78

where now H and V are two constituents of the coefficient matrix, with H arising
from the 6 U;, j approximation and V from the S U;, j approximation in equation
(4.36). The vector f is associated with the terms of (5 + 62) U involving boundary

values. Now equation (4.38) is equivalent, to each of the following equations, for

any matrices D and E.

(H + D)u =f- (V - D)u

(V+E)u=f-(H-E)u

(4.39)

(4.40)

provided that (H + D) and (V + E) are non-singular. The Peaceman-Rachford

iterative procedure for solving (4.38) can be derived by consecutively substituting
for the D and E matrices a sequence of matrices Dk = ri I and Ek = r2 I, to calculate

the sequence of vectors uk+l/z and uk+l by using the following formulae:

(H + riI)uk+1/2 =f- (V - riI)uk

(V + rk j)uk+i =f- (H - rkj)uk+l/2 22 (4.41)

where rk and rk are two parameter sequences that are chosen so as to maximize the

rate of convergence .
If r1 = r1 and r2 = r2 for all iterations k, then we have the case of the stationary
P-R iterative method, with two parameters. If further rl = rz = r, then we have the

P-R iterative method with one acceleration parameter. A method due to Douglas

and Rachford for solving iteratively equation (4.38) is given by:

(H + riI)uk+1/2 =f- (V - rýI)uk
(V + rk i I)uk+i = Vuk + rz uk+1/2 (4.42)

The equations (4.41), (4.42) can be given in a more general formula as:

(H + rkI)uk+1/2 =f- (V - rkI)uk

(V + r1I)u'ý+1 = (V - (1- w)rzI)uk + (2 - w)rzuk+l/z (4.43)

where w is a parameter that takes the values 0 and 1, for the P-R and D-R

methods respectively. In this thesis we shall be concerned only with the stationary

79

ADI iterative methods, and in particular with the ADI iterative methods with a

single parameter.

The ADI technique can also be applied as an iterative method for solving systems

of equations which arise from applying conventional difference schemes (e. g Crank

Nicholson, fully implicit ... etc.) to time dependent problems. This is illustrated

by considering the Crank Nicholson difference approximation to (4.4) given as:

(1-Zröil-2rSiz)Üý2rb, 2, +1rä. 2 (4.44)

when equation (4.44) is applied to the totality of internal points of the square grid,

we get the structured system of equations of the form:

Aluk+' = bi (4.45)

where Al is a block tridiagonal matrix given as: Al = diag(SS, DD, SS), with

DD = diag(z', 1 + 2r, z) and SS = diag(z). b is a known vector derived from

the values associated with the values of the solution at the explicit time level as

well as the values at the boundaries. An ADI iterative method for solving this

system can be obtained by splitting Al to Hl +V1 such that Hl arises from the term

(Z -2 rbzl) and Vl from the term (' -z rö 2) i. e we split Al into Hl and V, such that

we include in Hl the coefficients associated with the central difference operator in

the xl direction, while the coefficients associated with the central difference operator

in the x2 direction are included in Vi. Then the system (4.45) is solved as a two

step iterative procedure, the first represents a sweep through the components of

the solution vector u along the horizontal lines of the mesh, and is equivalent to

applying an iterative method having a matrix splitting equal to: N= (Hl + riI),

and the second step represent another sweep through the components of the solution

vector along the vertical lines of the mesh and is equivalent to applying an iterative

method with the matrix splitting equal to: N= (V1 + rzI). Each of these two

sweeps constitute a half iteration in each single ADI iteration. The first sweep

will generate new values uj (where uj = UI J, uz, j, ... um, j) for j=1,2 ... m, which

80

we shall denote uk+112 and the second sweep will generate new values ui (where

ui = u;, l, u;, 2, ... u;, m) for i=1,2... m, which we shall denote uk+l. The formulae

of these two sweeps are given as:

(Hid- rkI)uk+l/z =

(V+rzl)uk+i =

b-(V - riI)uk

b-(Hi-rZI)uk+1/2 (4.46)

The above presented ADI iterative method can be implemented to solve systems

arising from the application of various finite difference schemes to other time de-

pendent problems, (Parabolic or Hyperbolic) with the convergence properties being

dependent on the form of the coefficient matrix, which is dictated by the particular

problem. The different convergence properties of the ADI method will be discussed

in further chapters when these different problems are discussed.

4.3 Consistency of the ADI method

The composite form of an ADI iterative method for solving (4.45) is obtained by

eliminating uk+1/2 from the pair of equations (4.46) and is given as:

uk+l _ GADIUk -+k (4.47)

where GADI is the iteration matrix for the ADI method, given as:

GADI = (V1 + r21)-1(Hi - r21)(Hl + riI)-1(V1 - r11) (4.48)

and

k= (Vi + r2I)-l[I - (Hl - r21)(Hi + r1I)-1]b

_ (Vi + r2I)'1[I - [(H1 + r, I) - (rl + r2)I](Hl + r1I)'1]b (4.49)

_ (r1 + r2)(Vi + r21)-1(H1 + riI)-1b (4.50)

Lemma 4.1 The ADI iterative method as defined in equations 4.46 is completely

consistent.

81

Proof: The iteration matrix of (4.47) given by (4.48) can be rewritten in the

form:

GADI = (Vi + r21)-1[H1 + r11- (r' + r2)I](Hi + riI)-'(Al - Hl - r11)

= (Vl + r21)-l[I - (rl + r2)(Hl + r, I)-'](Al - Hl - r, I)

= (Vi+r21)-I[Al-Hl-r1I-(rl+r2)Ai+(rl+r2)I]

= (Vi + r21)-1[Vi + r21 - (rl + r2)I

-(ri +. r2)(Hi + r, 1)-'A+ (ri + r2)I]

= (Vi+r21)-'[(Vi+r21)-(rl+r2)(Hi+r, I)-'A]

=I- (ri + r2)(Vi + r2I)-l(Hi + r1I)-'A

I- GADI = -(rl + r2)(Vi + r21)-1(HI + riI)-'A (4.51)

Therefore (I - GADI) is equal to the product of nonsingular matrices and is thus

nonsingular. Also:

(I - Ganl)A-lb = -(rl + r2)(Vi + r2I)-1(H1 + r1I)-1b =k

Hence the proof follows from theorems 3.1 and 3.3.

4.4 The Alternating Group Explicit (AGE) It-

erative method

4.4.1 A historical review

The Alternating Group Explicit (AGE) iterative method was first introduced in

[14] for the solution of Parabolic differential equations in one space dimension. This

method is based on applying a splitting strategy alternately, at each half (intermedi-

ate) iteration
, to the tridiagonal systems of stable implicit difference schemes. The

method therefore is not a difference scheme itself, but rather an iterative procedure

82

for solving the ; tridiagonal systems of difference equations which are traditionally

solved directly by using elimination methods. Therefore its analysis is analogous to

that of the ADI iterative method described earlier. The convergence analysis of the

method, when applied to the one dimensional parabolic heat equation is given by

[41], together with several numerical experiments. Sahimi proved theoretically that

the method is convergent when applied to the symmetric difference systems of equa-

tions arising from the one dimensional parabolic problem, with Dirichlet boundary

conditions. Sahimi also carried out several experiments of the method, including its

application to hyperbolic problems. His experiments with the hyperbolic problems

which produce unsymmetric difference systems of equations showed that the method
is also convergent in this case, but his attempts to justify the convergence theoret-

ically was unsuccessful and he concluded that the failure of his attempt "does not

necessarily imply the non-convergence of the AGE iterative process but only confirms

the theoretical difficulty that arises when dealing with unsymmetric matrices". The

AGE method was later extended to systems of difference equations arising from the

two and three dimensional heat equations (see [20] and [21]). Also another variant

of the method was given in [19] for the one dimensional parabolic problem. Another

work by [16] included the reorganization of the the AGE procedure to, which re-

sulted in a saving of about 25% of the computational work involved, at the expense

of one extra vector storage. The authors also exposed the suitability of the method
for parallel computers and showed that it exhibits an almost linear speed up.

In the following subsections the method is presented for the one dimensional heat

problem together with its convergence analysis as given in [22].

In the remaining sections of this chapter the AGE method is presented for

two dimensional problems. The added developments and theoretical justifications
for the method are given in the next chapter.

83

4.4.2 The Alternating Group Explicit (AGE) method

Consider the one dimensional heat problem given by:

at -
atü

0<x<1 0<t<T (4.52)
at äxß

subject to the initial conditions: ii(x, 0) =f (x) 0<x<1 and the Dirichlet

boundary conditions given by:

ü(0, t) = g(t); ü(1, t) = h(t). 0<t<T

We discretize the above problem on a uniformly spaced mesh whose points are

defined by the coordinates x; = ih, and t= jk, with i=0,1, ... m, m+1 (where,

without loss of generality, m is assumed to be odd) and j=0,1,2 ..., n where h=
m+l

and k=
nT, 1.

The mesh ratio r=h, .A weighted difference approximation to the

above problem will produce a symmetric system of equations which can be written

in matrix form as:

Äu'+1 =1 (4.53)

where the matrix A has the form:

äb0
Ä=

.b
0cä

with ii =(1+2r0); b=c= -rO

where 0 is a weighting parameter which is equal to 0,1, or 0.5 depending respectively

on whether the explicit, implicit, or the Crank Nicholson scheme is applied. The

vector i is a known vector of order m, consisting of boundary values as well as the

values at the time level j. u1+' is the required solution vector at time level j+1.

If the system (4.53) is divided by rO (0 ý 0) then we get the following equivalent

system:

Au'+1 =f (4.54)

84

where f= Bf and A= diag(c, a, b) with b=c= -1 and a= re.

The AGE iterative method for solving (4.54) consists of splitting the coefficient

matrix as:

A=GI+G2

where Gl and G2 are given as:

a/2

C

G1 =

0
where

(4.55)

oCo
G2 _ (4.56)

C
C

. xm a/2
m. m

a/2 b
C=

c a/2 zx2

where it is assumed that the following conditions are satisfied:

1. (Gl + sI) and (G2 + sI) are nonsingular for any s>0

2. For any vectors fl and f2 the systems:
(GI + sI)ui = fi

and

(G2+sI)u2=f2

are more easily solved in explicit form, since they consist of simple (2 x 2)

subsystems which can be inverted by inspection.

Equation (4.54) can thus be written as:

(G, + G2)u =f (4.57)

The stationary AGE method with a single parameter consists of writing (4.57) as

a pair of equations given as:

(Gi + sI)up+1/2 = (sI - G2)uP +f (4.58)

85

and

(G2 + sI)up+i = (sI - Gl)ur+112 +f, Pj0 (4.59)

where u° is an initial approximation of uj+i, (taken as the solution vector uj at the

j" time level), and s is an acceleration parameter which is chosen to maximize the

rate of convergence of the method. After the elimination of the intermediate values

up+1/2, the method can be expressed, as a single equation in the form,

uP+l = Gup +k (4.60)

where k is a known vector given as:

k= (G2 + sI)-1[(sI - G1)(G1 + sj)_1 + I]f

= 2s(G2 + sI)-1(Gl + sI)-lf (4.61)

and G is the iteration matrix of the method given as:

G= (G2 + sI)-1(Gl - sI)(Gi + sI)-'(G2 - sI) (4.62)

The equations that apply at each mesh point to compute the solution of (4.54)

by the AGE method with a fixed parameter can thus be derived from (4.58) and
(4.59) as follows: Let

r2 b rl -b G= and Gm =
c r2 -c rl

where r2 =s+2 and rl =s-ä

then we can write:

r2
0G0

G

(Gi+sl)= (Gs+sl)=

G0 rz

86

Since also (G1 + sI)-1 and (G2 +, I)-1 are block diagonal matrices with square

blocks being at most of order 2. Then they can be easily determined by inverting

the block diagonal entries of (Gl + sI) and (G2 +, I). Hence we can write:

LO
r,

G-ý

(Gl + sI)-' _

G-1
mxm

and G-ý

(G2 + sl)-i =

0
where

r2 -b
and 0=rz-be

-c r2

Similarly (sI - G1) and (sI - G2) are given as:

rl

Gm

(sI - GI) =

0
and

Gm

(sI-G2

0

G-1

rim

0

1 ?2 MXM

(4.63)

0

Gm

0

rl

87

Now equations (4.58) and (4.59) can be expressed explicitly as:

up+1/s = (Gi + sI)-'[(sI - G2)up + f] (4.64)

and

un+l = (G2 + sI)-'[(sI - Gl)up+112 + f] 'P ?0 (4.65)

or:

Ul 1 rs

U2 r2 -b

U3 -c r2

"_1

TL.
-o

Um-1

um

r1 -b

-c r1

0

0

0

rl -b

-c rl

rl

ul

U2

U3

um-2

um-1

um

0

r2 -b

-c r2

p f1

f2
13

fm-2

fm-1

,lm

Ix

(4.66)

and

88

i- ii

&-(9
i+1 i+2

Pýý Qýý

i-1 i i+l i+2

Figure 4.1: The computational molecules for the AGE-1D method at each pair of

of grouped points.

U1 P+1 r2 -b

U2 -c r2

U3 .

" 1
_

Um-2

U

O

m-1

0
Ix

r2 -b

-c r2

L UM JL,
°J

rl U1 p fi

rl -b U2 f2

-c rl
O

U3 f3

+ (4.67)

um-Z fm-2

O
rl -b um-1

,
fm-1

-c rl Um f.

Equations (4.66) and (4.67) show that the solutions up+1/2 and up+l can be obtained

by applying at each consecutive pair of mesh points x; and x; +l the corresponding

two computational molecules of figure 4.1, representing the following two formulae:

u; = (Pu 1+ Qu; + Ru, +i + Su, +2 + T;)/L (4.68)

89

u, +i = (Pu 1+
Qui + Ru+i +S2+ 4)/L (4.69)

At the half (intermediate) iteration level (i. e for q=p+ 1/2 and v=p) the above

equations are applied at the mesh points x; (for i=2,4, """, m- 1) and the coeffi-

cients are given as:

P= -cr2; Q= rlr2; R= -bri; T; = ref; - bf; +l; and S=0
for i=m-1

b2 otherwise.

0 for i=m-1 P=
-cr2; Q= rlr2i R= -bri; T't = r2fI - bf, +l; and S=

-brt otherwise.

For the meshpoint xl the following computational formula is used:

ui+i/z = (rlui - but + fl)/r2 (4.70)

At the complete iteration level (i. e q=p+1 and v=p+2), the equations (4.68)

and (4.69) are applied at the mesh points x; (i = 1,3, """, m- 2) where the coeffi-

cients are now given by:

0 on =1
; Q=rlr2; R=-brl S=b2; andT; =-cf; +r2f; +l

-cr2 f or i 01

0 foci=l
; Q=cr1; rlr2 br2; and-cf; +r2f++l

c2 fori 1

For the single meshpoint x,,,, the following computational formula is used:

P+1 P+1/2 Pil 2 Llm = -CUm-1 + plum + f'm)/r2 (4.71)

Thus at each level (q =p+Z, p) the mesh points are organized in groups of two,

at which the solution can be obtained by the appropriate explicit formulae (4.68)

90

P

P

Figure 4.2: The Alternation in the order of meshpoints grouping every half iteration

and (4.69). In the grouping of points we alternate between leaving the first point

ungrouped, and leaving the last point ungrouped every half iteration level as shown

in figure 4.2. Such grouping of points, the alternation in forming the groups, and

the explicit nature of the formulae used for obtaining the solution give the method

its name, viz. the Alternating Group Explicit (AGE) iterative method.

It can also be seen by examining the matrix equations (4.66) and (4.67) that

obtaining the solution at all them meshpoints require 3m multiplications and 3m-2

additions (note that b=c= -1) for each half iteration. i. e 6m multiplications and

6m additions are needed for every complete single iteration. The more efficient

organization of the AGE algorithm given by [16] requires only 4m multiplications

and 5m -4 additions. The above illustrated variant of the AGE method is called

the AGE Peaceman-Rachford method due to the analogy of the method with the

ADI-PR iterative method. Another variant of the method which is also due to Evans

and Sahimi is the AGE Douglas-Rachford, (AGE-DR) method which uses a different

formula than AGE-PR for the second half iteration. This is given by:

(G1 + sI)u"+l12 = (sI - G2)up +f

91

(G2 + sl)uP+l = G2uP + 3UP+1/2 (4.72)

It is noted that all Sahimi's experiments (see (411) show that the AGE-PR has faster

convergence than the AGE-DR method. His experiments show also that the AGE-

DR method often takes more than twice the number of iterations that the AGE-PR

method needs to converge.

4.4.3 Convergence analysis of the AGE method as applied

to symmetric matrix systems

The convergence analysis of the stationary AGE-PR method, with a single param-

eter, as applied to the above heat diffusion problem with Dirichlet boundary condi-

tions is given here after [22]. The AGE-PR method is written in composite form in

the following single equation as:

up+l = G(s)u' + k(s)

where

(4.73)

G(s) = (G2 + sI)-1(sI - Gl)(G1 + sI)-1(sI - G2) (4.74)

is the iteration matrix. We now define an error vector e representing the difference

between the computed solution after each iteration up and the exact solution ü=

A-'f of (4.54) i. e., we define:

eP = up -ff and ep+i = un+l -ü

then it can be shown that :

e" = GP(s)e°, p >_ 1

where

e° - u°-ü

92

(u° being the starting vector). Thus, for the method to converge we need to prove

that: p(G(s)) <1

Proof: If we apply a similarity transformation to G(s) such that

G(s) = (G2 + sI)G(s)(G2 + sI)-1

= (sI - G1)(G1 + sI)-1(sI - G2)(G2 + sI)-1 (4.75)

then

p(G(s)) = P(G(s)) <_II d(-9) 112
<_II (sI - G1)(G1 + sI)-1 112 x 11 (sI - G2)(G2 + sI)-i 112 (4.76)

where p(G(s)) and p(G(s)) are the spectral radii of G(s) and d(s) respectively.
It can be seen from equation (4.56) that both Gl and G2 are symmetric positive
definite (SPD) matrices, thus having positive eigenvalues p; and' respectively.
Since (sI - G1) and (G1 + sI)-1 commute, and Gl has positive eigenvalues pi,

we can write:

II (sl - Gl)(Gi + sI)-1 112 = p[(sI - Gl)(Gi + sI)-1l

= 1max<s<m

Is

s+ 1L;
"il <1 (since p; > 0) (4.77)

Likewise, (G2 + s1)-1 and (sI - G2) commute and G2 has positive eigenvalues r7;

and we can write:

(sI - G2)(G2 + sI)-l 112 = p[(sI - G2)(G2 + sI)-l]

= max
Is- 77' I<1

(since i7i > 0) (4.78)
1<i<m s -F '17i

Hence;

p(G(s)) = p(G(s))

< p[(sI - G1)(G1 + sI)-1]p[(sI - G2)(G2 + s1)-lI <1 (4.79)

and convergence is assured.

The optimum parameters for AGE-PR, which minimizes the upper bound of

p(M(s)) can be obtained if bounds a and ß are found for the eigenvalues of Gl

and Gz such that:

a< Pi977i <0 (4.80)

93

We now write the relation (4.79) as:

P[M(s)] <c max
s- 71i I ý.

max
Is- Pi

1<i<m s+ 17i 1<i<m s +. 1. li

max
s-x1-

max I ý(z; s) ý2 (4.81)
{a<i<p

3+zl}f a<z<p

}

where «(z; s) is a (decreasing) function of z and therefore its maximum is at one of

the endpoints of the interval.

Hence:

s-z s-a s-ß (4.82) m<QIs+zI =maxýls-ýal'Is-,
9

When s= we have:

3-a s -CY3 -# -/ (4.83)
s+a -

I3+aI

S+p v+vfa-

For 0<s</, it can be verified that:

< <pls+zl -
Is+ßI

s+ß

and that:

ß-s_y-y__ 2N/ý(vG7 -s) (4.84)
s+Q V+ (s+Q)(N/i[+v/ý)

>0

Similarly for s> vfa7 it can be verified that:

m < Q
s+z - s+a - s+a

and that:

s-aß/j3-/ 2/(s-a))0 (4.85)
s+a Vl + Oc-i (s + Q) (Vl +

Therefore

min max c(z; s) = max
IO(z;

aß)I
s>0 a<s< a<z<

_1 0(a; aa) I =10(a; aa) I=0 (a, «p)

94

Therefore the optimum acceleration parameter is:

s= a/j (4.86)

If the AGE algorithm is applied to solve the system 4.54 then the upper (p) and
lower (a) bounds of the eigenvalues of Gl and G2 are given respectively as:

aaa x-1 and a=a-1 22

This makes the formula for the optimum parameter (4.86) be:

s= (2)ý -1) (4.87)

For the non stationary AGE method, Sahimi pointed out that it is very difficult to

obtain the optimum parameter sequence for the AGE method which will improve

its convergence, except in the very special case where Gl and G2 commute. This is

possible in the above problem if the boundary conditions are periodic and if Gl and
GZ were of order 4, which is a very restrictive problem.

We finally note from the above analysis that when s=s the spectral radius of the

iteration of the AGE method is:

P(G) lZ
=/ -1

2
(4.88)

' v/ +, /&l , '+ 1

where P=E is the condition number for Gl and G2.

This means that the asymptotic rate of convergence for the AGE method is:

ROO =-log
1- Pte'' (4.89)
1+P3

If P»1 we get:
Z

RO = -log
1- Pi'

=- log P3 =log(1 - 4P3
I+P2

4 (4.90)

95

4.5 The AGE method for two dimensional

parabolic problems

The AGE method was also extended by [20] to solve the heat diffusion problem in

two dimensions given by:

öü
_

02ü 02ü

T axi + axz -I- q(xi, xzi t) ,
(xi, x2, t) ERxt>0 (4.91)

where W is a rectangular closed region defined by:

i= (2711 x2); 0< xl <L and 0< x2 <M,

subject to the initial conditions:

u(x1, x27 0) =f (Xl9 x2) ; (X1e X29 t) ERX0

and where ü(xl, x2, t) is specified at the boundary äJ of i as:

ü(xl, x29 t) =9 (xl, x2) t) E (3R x (t > 0)

To obtain the numerical solution of the above problem we cover the domain with a

uniform mesh where the coordinates of the meshpoints P are (x1, x2pt,) where x1; =
ihl, x21 = jh2, and tj = 1k, (0 <i<m+ 1), (0 <j<n+ 1), and hl = L/(m + 1)

and h2 = M/(n + 1), and k is the increment in time. For simplicity, we choose m
and n such that hl = h2 = h. The mesh ratio is therefore r= k/h2.

A weighted finite difference approximation given by:

[1- Orbs, - 9rbz,]Ui+1 = [1 + (1 - 9)rbzl + (1- 9)rbz3JU, "j + kq(xi, x2, t)(4.92)

is used to replace (4.91) at each meshpoint. Here 0 is a weighting parameter which
is equal to z and 1 for the Crank-Nicholson and the Implicit schemes respectively.
This results in a system of equations of order nxm for the totality of meshpoints

at each time step. This system can again be written in the form:

Au'+l =f (4.93)

96

where f is a known vector of order mxn consisting of the boundary values, the

source term values at each point, and the solution values at the time level u1. The

vector ul+l is the solution vector which is to be calculated for the time level 1+1.

The matrix A now has the form:

T a1I

a21
A=

0. a1I
a21 T

mnXmn

where I is an mxm identity matrix and T is an mxm matrix given as:

T= diag(a2, b, al) with b= (1 + 4r0) and al = a2 = -r9

where 0 is a weighting parameter of the difference scheme.

(4.94)

If equation (4.92) is divided by r9, we obtain a system which is similar to (4.93)

but the coefficients b, al, and a2 become:

b=4+= 4(1 + Q) where Q =Ore > 0, al=a2=-l (4.95)

This latter form of the coefficient matrix makes the application of AGE-2D method,

which is introduced next, to solve (4.93) more economic.

The AGE iterative method which was formulated by [20] for solving (4.93) consists

of splitting A into four matrices G1, Gz, G3, and G4 such that:

Tl

Gl+Ga

0
0

TI
mnXmn

(4.96)

where Tl = diag(a2, b/2, al).

97

and

21 all

a21 .0
G3 + G4 = (4.97)

alI
0

a21 6
2I mnXmn

The matrices T1 and I are of order m, since a natural ordering of the components

of the solution vector is assumed. Hence (G1 + G2) is tridiagonal and (G3 + G4) is

block tridiagonal. The AGE- method for such two dimensional problems, henceforth

referred to as AGE-2D is given in four steps as:

(G1 + sI)uT+l/4 = (sI - Gl - 2G2 - 2G3 - 2G4)u* + 2f = vi

(G2 + sI)uT+1/s = G2uf + sup+1/4 V2
(G3 + sI)UT+3/4 = G3 Up + gUp+1/2 V3

(G4 + sI)uP, +1
= G4u, p. + sU, P. +3/4 V4 (4.98)

where the suffix `r' under the solution vector indicates a row-wise ordering of its

components, s is the acceleration parameter. The first equation of (4.98) can also
be written as:

(G1 + sI)uT+1/4 = (G1 + sI - 2A)uf + 2f (4.99)

Again, without loss of generality, the size of the matrix is assumed to be odd. i. e n

and m are odd. Then Gl and G2 can be given as:

C, C2

.0 .0 Gi =O and Gz =0 (4.100)

C1
mnxmn

C2
mnxmn

98

or alternatively as:

C1
C2

O

Cl

G1 =

O C2

Cl mnXmn

and

C2
Cl 0

C2
Gz

O cl
Cz

where

mnXmn

c
c al

a2 c

C1 =,

c al

a2 C

,.

(4.101)

(4.102)

(4.103)

99

and

c al

a2 c

Cz =
[:

:]

2

c

(4.104)

with c= b/4. The choice of Gl and G2 in equation (4.100) seems to be the natural

choice, but for reasons not discussed by the above authors, they chose Gl and Gz as

givenbj cquaEiw s (J land (yaot). Numerical experiments carried out by the author showed

that Sahimi and Evans' choice is marginally better than the seemingly natural choice

given by equations (4.100), because it produces improved convergence. Equations

(4.103) and (4.104) correspond to the different grouping (alternating) of the mesh

points along euch mesk line WA. each su6Er-ra, 6on Qeve(as shown in-
figure 4.2.

Equations (4.100) correspond to no alternation in space. -(figure 4.3 -right) while

equations (4.101) and (4.102) correspond to alternating in space figure 43 -left).

The matrices G3 and G4 are given as:

T2

0
G3 = (4.105)

T2
O

I 4 mnXmn

100

Alternation in the grouping of

the meshpoints in space (along

the x2 dimension), as well

as with iteration levels.

ýI

soon 16 ff'. I

x2I

XT

Ii
J-M, IL IL IL

X21 zl

T-16 16 16 It i

x 2/

xl

"21; . 7TT

Alternation in the grouping

of the meshpoints only with
iteration levels, and not

along the x2 dimension.

II
IL IL IL

z2l
/7TT

x2J

I

ýffl

ý, Am-16 16 L!

x2fý
/-Tr

Figure 4.3: Two different ways of grouping the meshpoints at different iteration
levels. A filled box stems from each pair of meshpoints grouped together. A dashed
box on the side indicates a single ungrouped point.
Right : The grouping of the meshpoint changes along only one direction

as the iteration level changes. Left : The grouping of the meshpoints
changes along all (two) directions as the iteration level changes

101

and

bi
4

T2

G4 = (4.106)

T2 mnXmn

where

T2
4I alI

=
a21 4I

2mX2m

If when computing the third and fourth equations of (4.98) we use a column-like-

ordering of the components of the solution vector, G3 and G4 will have the same

forms as Gl and G2 respectively.

The component formulae for the AGE-2D method as obtained from equations (4.98)

are given in the above reference, and are not repeated here. The number of oper-

ations needed for each full AGE iteration (equations 4.98) is (16mn - 2m - 4n)

multiplications and (15mn - 2m - 8n) additions.

Evans and Sahimi has extended further the application of the AGE method to three

dimensional problems. The AGE-3D algorithm is given in chapter 6.

In the next chapter, some of the theoretical analyses which is still missing about the

method are presented.

/

Chapter 5

Further developments of the AGE

methods

5.1 Introduction

In this chapter we consider the consistency of the AGE-1D and AGE-2D algorithms

and the convergence of the AGE-1D method when applied to the hyperbolic linear

advection equation. A theoretical examination of whether a Chebyshev acceleration

of the AGE-1D method is possible is also given together with other notes on the

applications of the AGE method.

5.2 Consistency analysis of the AGE method

The consistency analysis for the AGE method is omitted in the literature presently

available on the method, and is therefore given in this section for the AGE-PR,

and AGE-DR variants in one dimension as well as the AGE-2D method for two

dimensional problems. The AGE-PR algorithm for solving the tridiagonal system:

Au=F (5.1)

102

103

where A is a tridiagonal Toeplitz matrix, is given earlier in chapter 4.4. The com-

posite form (4.73) of the AGE-PR algorithm is again given here by:

up+' = G(s)up + k(s) (5.2)

where s is the acceleration parameter. The iteration matrix G and the vector k are

given as:

G(s) = (G2 + sI)-1(sI - G1)(G1 + sI)-1(sl - Gz) (5.3)

and

k= (G2 + sI)-1[(sI - G1)(G1 + sI)-i + I] F

= 2s(Gz + sI)-ß(G1 + sI)-'f

The exact solution for (5.1) is ü= A-'f. Thus for (5.2) to be consistent with

(5.1), the following condition (of theorem 3.1):

A-'f = GA-'f +k=k= (I - G)A-lf

must be satisfied.
If also (I-G) is nonsingular, then by (theorem 3.3 the method is completely

consistent.

Lemma 5.1 The AGE-PR method is completely consistent.

Proof The iteration matrix G given above can be written as:

G= (G2 + sI)-'[(G1 + sI - 2s1)(Gl + sI)-1(A - Gl - sI)]

= (G2+ sI)-l {(I - 2s(Gl +sI) I J[A- (Gl + sI)]}

= (G2 + sI)-1{(A - Gl - sI) - 2s(Gl + sI)-'A + 2s1}

= (G2 + sI)-1 {(G, + sI) - 2s1- 2s(Gl + sI)-'A + 2s1}

=I- 2s(G2 + sI)'1(Gl + sI)-A (5.4)

104

Now (I - G)A'lf = [I -I+ 2s(G2 + sI)-1(G1 + sI)-'A]A-lf

= 2s(G2 + sI)-'(Gl + sI)'lf

=k

Therefore the AGE-PR method is consistent.
Also from (5.4) we have:

(I - G) = 2s(G2 + sI)-'(Gl + sI)-'A

which implies that (I - G) is the product of nonsingular matrices and is therefore

nonsingular.

Thus the AGE-PR method is also reciprocally consistent and hence the proof is

completed.
Similarly we can state and verify the following lemma.

Lemma 5.2 The AGE-DR method is completely consistent.

Proof The AGE-DR method given by the pair of equations (4.72) can also be

written in the composite form (5.27) where now:

G= GDR = (G2 + sI)-'(Gl + sI)'1[(Gl + sI)G2 + s(sI - G2)]

and k= s(G2 + sI)-'(Gl + sI)-'f

Thus,

G= (G2 + sI)-'(Gl + sI)-1[(Gi + sI)G2 + s(sI + G1 - A)]

(G2 + sI)-'(Gi + sI)-1[(Gl + sI)(G2 + sI) - sA)]

=I- s(G2 + sI)-1(Gl + sI)-'A (5.5)

Therefore (I'- G) is nonsingular.
Also (I - G)A'lf = k. Hence the AGE-DR method is completely consistent.

Lemma 5.3 The AGE-2D method given by equations (4.98) for two dimensional

problems is completely consistent.

105

The set of equations (4.98), can be written in the composite form of (5.27) where

G is now given as:

and

G= (G4 + sI)-i G4 + s(G4 + sI)-1(G3 + sI)-1G3
2

+s2[J(Gi + sI)-'G2
i=4
s

+s311(Gi + s1)-1- 2s3JJ(G, + sI)-'A (5.6)
i=4 i=4

k= 2s31J(Gi + sI)-lf (5.7)
i=4

The iteration matrix G can be manipulated as:

G= (G4 + sI)-1(G4 + sI - sI) + s(G4 + sI)-1(G3 + sJ)1 (G3 + sI - sI)
ss

+3Z11(Gi + sl)-1(G2 + sI - sI) + s31J(Gi + sI)-'
i=4 i=4

1

-2s311(Gi + sl)-'A
i=4

which reduces after some cancellations to:

I

G=I -2s 3[J(Gi + sI)-'A (5.8)
i=4

from which we can easily deduce that (I - G) is nonsingular and that:

(I - G)A-'f =k

which concludes the proof.

5.2.1 A comment on the AGE-PR and the AGE-DR

methods

It has been mentioned earlier that according to Sahimi's E4il experiments the

AGE-PR method proved always to converge faster than the AGE-DR method. These

106

experimental results are justified theoretically here, by comparing the spectral radii

of the iteration matrices of the two methods.
The iteration matrices GPR and GDR are given respectively by the last equation in

(5.4 and 5.5), from which we can write:

GDR =2 (I + GPR] (5.9)

Therefore, (when Gl and G2 are both positive definite) we can write:
11

P(GDR) =2+ 2p(GPR)

P(GDR) =1+
P(GPR) (5.10)

2
Thus it can be easily seen that for p(GpR) = 1, we have p(GDR) = 1, while for any

p(GPR) <1 we always have

P(GDR) > P(GPR)

and hence the AGE-PR method is always faster to converge . Moreover AGE-DR

requires one more multiplication operation at each meshpoint per iteration than the

AGE-PR method. It is therefore clear that the AGE-PR is superior to the AGE-DR

method.

5.3 The AGE method for hyperbolic problems

It has been mentioned earlier that the AGE method has been successfully applied
to hyperbolic problems. These problems include the second order wave equation,

and first order advection equation.

For the second order wave equation: we have

192Ll atü
O<x<1, O<t<T (5.11) äZ E= äX2

subject to the following auxiliary conditions,

ü(x, 0) = gl(x) 0<x<1 (5.12)
äi(x, 0) = g2(x)

107

and
U(0, t) = El(t)

0<t<T (5.13)
U(1, t) = E2 (t)

Evans and Sahimi [21] applied a general three level implicit approximation which

leads to solving a symmetric tridiagonal system as in the case of solving the parabolic
heat problem, described in section 4.4. Therefore in this case the same convergence

analysis given in the that section applies.

However, first order equations lead to the solution of unsymmetric difference sys-

tems of equations when implicit schemes based on central differences are applied.

In this section, the theoretical proof of the convergence of the AGE method for such

problems is provided, togetherwith a formula determining the choice of the `best'

parameter for the method.

Consider the linear advection hyperbolic equation.

öü öü
it + c5 =o (5.14)

in the domain J2 =a<x<b, t>0 satisfying the following initial conditions:

ü(x, 0) = g(x)

with Dirichlet (I) and periodic (II) boundary conditions,

Probleml ;
ü(a, t) = ql(t), t>0

ü(b, t) = q2(t)it >0

ProblemII : ü(a, t) = ü(b, t), t>0

where c is a constant which stands for the speed of advection.

(5.15)

(5.16)

(5.17)

For the numerical solution of the above problem, we cover its domain with a mesh,
having a uniform spacing h in the x direction, and a uniform time increment k along

the t direction. If at each point (i, j+
z) we replace (5.14) by the following

weighted central difference approximation:

-eU; -i, a+i + Uii+i + eU, +i, j+i = -qU; -,, j + U+, i + qUU+l, j 5.18)

108

where

Ock
e 2h and q=

(1 2h)ck (5.19)

where 0=Z for the Crank Nicholson (CN) t jFe ýcjýemc.

where 0=I.
- for the fully Implicit scheme.

we obtain the following linear system to be solved at each time level (j + 1)k:

Aui+i = di

where d; is a known vector of order n, and the matrix A has the form:

1e

-e
0

A= for probleml

L
-e 1

nxn

and

1e -e

-e
0

A=
0e

e -e 1
nxn

Now to solve (5.20) we split A as:

A=Gi+G2

where assuming n is even, Gl is given by:

C

C0
G1 =C

OC
C nXn

for probl emII

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

109

and G2 is given as:

0.5

CO
G2 =C for problem (1) (5.25)

OC
0.5

nXn

and

0.5 -e

CO
G2 =C for problem (II) (5.26)

OC
e 0.5

nxn

0.5 e
where C=

-e 0.5
Now the AGE method, as presented in section 4.4 is applied to solve (5.20). The

method in its composite form is given by:

uP+i = G(s)up + k(s) (5.27)

where s is the acceleration parameter. The iteration matrix G and the vector k are

given as:

G(s) = (G2 + sI)-'(Gl - sI)(Gi + sI)'1(G2 - sI)

and k= 2s(G2 + sJ)'1(G1 + sI)-ld;

5.3.1 A note on using central difference approximations

for advection problems

Before proceeding with our convergence analysis in this section, we make the fol-

lowing note on the finite difference approximations of the first order hyperbolic ad-

vection equation. The truncation error expressions for most of the first and second

110

order finite difference replacements of the advection equation (5.14) have leading

terms which are products of the second and/or third order spatial differences i. e a

and äy (see [37] p: 67 and [24] p: 278-279). This means that the solutions obtained

by such methods for the advection equation are actually solutions for the transport

equation given by :

öü äü 82ü (5.28) ät = Cäß + Ddi'!
äý2

or the linear Korteweg de Vries equation given by:

3ý au
=sau + Ddia au (5.29) T ax p ax3

The terms äx; and ä` are referred to respectively as the diffusion term and the dis-

persion term. The effect of the diffusion term on a wavelike solution is to dampen

its amplitude, while the effect of the dispersion term when the solution consists of

different waves, is to advance at a differential speed the different waves of the so-

lution, so that waves with short wavelengths will have much smaller phase speeds

than those of large wavelengths, thus leading to an oscillatory behaviour in the solu-

tion (for illustration see the above two references). Dd; ff and Vdi, p are respectively

the coefficients of the leading diffusion and dispersion terms in the truncation error

expressions of the finite difference approximations to the advection equation, and

are functions of k and h the time and space steps of the numerical solution.

In contrast, an exact wavelike solution for (5.14) would be non attenuative and

non dispersive. Schemes such as the upwind scheme given in the above references

suffer from the artificial diffusivity introduced by its truncation error expression and

hence represents more an approximation to the transport equation (5.28) rather

than to equation (5.14). Such a scheme is much preferred due to its explicit na-

ture and ability to provide a very good representation of the phase speed of the

solution. It is of first order accuracy, and like all other explicit difference schemes

has a stability condition which coincides with the Courant-Friedrichs-Lewy (CFL)

condition, (the CFL condition requires that a particle of fluid should not travel more

than one spatial step-size h in one time step k) i. e. it requires that ch < 1. On the

ill

other hand, a scheme like the Crank-Nicholson scheme is of second order accuracy

and is unconditionally stable (neutral stability). It is however a dispersive scheme

that advances different modes of the solution at different speeds, and is more an

approximation of equation (5.29) rather than equation (5.14). This means that

a severe upper limit on the time step (to reduce Vd;, p) should be imposed to suffi-

ciently cut down the dispersion if all the modes of the solution are to be adequately

represented. This restriction eliminates the advantage of the unconditional stability

of the scheme. However for some problems, like in weather forecasting models, high-

speed oscillations (corresponding to short wavelength components of the solution,

such as gravity waves ... etc.) are unimportant, so that the deceleration of their

phase speed poses no problem [23].

We nok FnJ3, that the choice of a difference scheme foran advection problem de-

pends on the particular nature of the Solution Sought and involves mostly a trade

off between the effects of artificial diffusion and dispersion introduced by various
finite difference approximations. We now proceed with the following convergence

analysis.

5.3.2 Convergence analysis

Now we study the convergence of the AGE method which is governed by its iteration

matrix G.

Since G is similar to the matrix:

M= (G1 - sI)(Gi + sI)-'(G2 - sI)(G2 + sI)-1 (5.30)

then

P(G) = P(M) <_II M 112 (5.31)

112

By the definitions of Gl and G2 (see equations 5.24,5.25,5.26), it can be shown
that:

D

D0
(G1 - sI)(Gj + sI)"1 =D (5.32)

0D
D

nxn
where

D= (C - sI)(C + sI)-'

and (G,, - s1)(Gi t sl)'' is given as:

D0
sI)

(G, +sIý =D for G2 having the form in (5.25). (5.33)

0D
CU

nxn

with a=
0.5-S

for G2 having the form (5.25) and that : 0.5+S

CT

C0

PG2P = for G2 having the form (5.26). (5.34)

0

where P is a permutation matrix given as:

10... 00

00... 01
P=0/10 (5.35)

01
00 0

113

Hence in the latter case, we have:

DT

D0
P(G2 - sI)(G2 + sI)-1P = (5.36)

D

From the inequality (5.31) we can write:

P(G) < II (G1- sI)(Gi + 3I)-111211(G2 - sI)(G2 + sI)-1112

= 11 D 11211 P(G2 - sI)(G2 + sI)-'P 112

Therefore,

P(G) = IID112xmax{laI, IID112} (5.37)
for G2 having the form in (5.25).

and p(G) = II D 11211 DT 112=11 D fI2 (5.38)
for G2 having the form in (5.26).

Note that:

JID 112- <11 C- sl 11z11 (C + sI)-1 112-
(0.5

+ s)z + e2
<1 (5.39)

and I a1_1
0.5-s il<1. 0.5+s

Hence by (5.37 and 5.38) the AGE method is convergent for any s>0.

We can further determine a "good choice" s' of s as follows:

Since Ia <1 D 112 for any real number e, therefore

Fse=
(0.5- s)2 + e2 (5.40) p(G) <- (ý)
(0.5+s)2+e2

for each case. Note that:

dF
=2

[s2 - (0.25 + e2)] (5.41)
WS [(0.5 + s)2 +e2] 2

114

Hence,

<0 if 0<3<3*
dF
TS =0 if s= s*

>0 if s>s*

where s* is given by:

s' - V05.25 + e2 (5.42)

Thus, by substituting for s by s* in (5.40) we get:

p(G) < F(s', e) _
(0.5

- 0.25 + e2)+ e2
-

2%/0-. 25 + e2 -1 (5.43)
(0.5+ 0.25+e21+e2 2 0.25+ e2 +1

The parameter s* is defined in terms of the parameter e= ft -k, which is governed by

the chosen mesh sizes and can be determined `ä priori'. The following numerical

results in table 5.1 show that the above choice for s= s* is best. They also show

that the AGE method is not too sensitive to the choice of s, i. e there is an interval

(sL, SR) -3 s* such that the AGE method with any s in this interval has the same

convergence rate.

5.3.3 Numerical results

The following problem of linear advection i. e:

öü öü

ät + Ox =o (5.44)

defined in the region R=0<x< 27r; t>0, with periodic boundary conditions and
initial conditions obtained from the analytical solution given as:

u= cosy - t) (5.45)

115

dt=0.01 dx=0.01 e=0.48 s* = 0.707

s 0.2 0.4 0.707* 1.2 1.3 1.9 2.7 3.1 3.7 4.0

NIT 6 4 4 4 5 6 7 8 8 9

dt=0.02 dx=0.03 e=0.33 s* = 0.6

s 0.2 0.4 0.6* 0.9 1.2 1.7 2.3 2.7 3.1 3.7

NIT 6 4 4 4- 1-5 6 7 8 9 10

dt=0.08 dx=0.03 e=1.3 s* = 1.39

s 0.2 0.4 0.6 0.8 1.2 1.39* 1.9 2.7 3.1 4.0

NIT 26 16 12 11 10 10 10 11 12 14

dt=0.08 dx=0.014 e=2.85 s* = 2.89

s 0.2 0.6 0.8 1.3 1.9 2.7 2.89* 3.4 3.7 4.5

NIT 79 36 29 22 19 17 17 17 18 19

dt=0.04 dx=0.14 e=0.142 s* = 0.52

s 0.1 0.2 0.3 0.5 0.52* 0.8 1.0 1.2 1.9 3.1

NIT 9 5 4 3 3 4 4 5 7 10

Table 5.1: This table shows how the number of iterations (NIT) needed to obtain

convergence for the AGE Algorithm varies with the acceleration parameter Y. It

also shows how the optimum value for `s' agrees with the best parameter s* calcu-
lated using equation (5.42) for different values of e.

was solved by the AGE method. The fully implicit scheme was used in this example
for the discretization of equation 5.44. Thus the variable e given by equation (5.19)

is now e= k/2h.

The value of e was varied by varying the time and space steps k and h. The Number

of iterations (NIT) needed for the convergence of the AGE method was obtained
for runs with different values of the acceleration parameter s, and the results are

presented in table 5.1. It can be seen from table 5.1 that the choice of the parameter

s* given by equation (5.43) is the best choice. The table also illustrates that the

AGE method is not too sensitive to the choice of s.

116

5.4 Convergence analysis of the AGE-2D

method

In this section the convergence of the AGE-2D method for the two dimensional heat

conduction problem of chapter 4 is considered.

The iteration matrix G of the AGE-2D algorithm (4.98) can be written (see equa-

tion (5A) as:

1
GAGE-2D =I -2s

3 [J(Gi + sI)-'A

i=4

(5.46)

The convergence of the method is governed by the spectral radius of G, and is

guaranteed if

p(G) < 1. (5.47),

However it can be seen from (5.46) that very little can be deduced about the

spectral radius of the iteration matrix G. We therefore use the numerical results

below to verify the convergence of the algorithm and indicate the best range of the

acceleration parameter to obtain the most rapid convergence of the method.

In the following results the algorithm is used to solve the system:

Au=b

where the coefficient matrix A is given by equation 4.94 and the coefficients of A are

given equation 4.95. The right hand side vector b for the model problem is chosen

such that it makes the components of the solution vector equal to unity.

The numerical results for a wide range of values of rO and different values of the

acceleration parameter s are shown in figure 5.1. The numerical results indicate that

the algorithm converges well for increasing values of rO >0 for every 1<s<4.0. It

can be seen from figure 5.1 that for all values of rO the optimum value/s of s lie in

the above interval with the rate of convergence decreasing towards the sides of the

117

No. of
Iterations

2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

Figure 5.1: This figure shows how the number of iterations needed for the AGE-2D
t)»k thcn

method to converge vary with the acceleration parameter s. Notice)the values of rO
increase the curve gets steeper around the best range of values of s.

The acceleration parameter s

118

interval. The position of this optimum value/s gets shifted to the left of the interval

(to around s=1.3) as the values of rO become large.

It is also noted that as the value of rO (i. e., the mesh ratio) increases the convergence

curve gets steeper around the best value/s of s, which is quite unfavourable for the

practical estimation of s. However, the curves show that an over estimate of s is

preferable.

5.5 The AGE-1D for block symmetric systems

In this section we consider the convergence of the AGE-1D method as applied to

a block symmetric system of equations. The system in consideration can arise
from a finite difference approximation to a coupled system of equations like the

one considered in section 7.2. This is given as:

Aw =b (5.48)

where b is a known vector and A is a block symmetric matrix of the form:

E -I2

-I2
0

A=m is even;
0

-I2

-'2 E xmx2m

where
10 2a 2b

12 andE= a>0.
01 -2b 2a

We now consider the convergence of the AGE-1D method when applied to the so-
lution of this system. Let

ab
-Iz 11E

2I

C, _z-2
4x4

_ 12 E
-b aab (5.49)

-I2
-b a 4x4

119

If A is split as follows:

A= Gl + G2 (5.50)

where,

C zE

"OC0 Gl and G2 = (5.51)

O0C
C 2E

The AGE algorithm for solving system (5.48) can be written as:

(G1 + s1)w"+2 =b- (G2 - sI)u" =Y

wp+l = (G2 + sI)-1[b - (GI - sI)(Gi + s1)-1]

W pt1= T3wP+ k (5.52)

where s is the acceleration parameter of the AGE method, and T, is the iteration

matrix given as:

T. = (G2 + sI)-i(Gi - sI)(G1 + sI)-1(G2 - sI)

which can be shown to be similar to :

(Gl - sI)(Gi + sI)-1(C2 - sI)(G2 + s1)-1

we note that:
c-. t c+ I

OO
(G1 - sI) =O; and (G1 + sI) =0

c-. r Cl..!

and

c-. r
0

(C2 - sI) _
0

C-. I
4E-. l

120

; and

ýE+a'

C+ al

0

0
c+. l

ýE+ al

Therefore

D0
(Gl - sI)(Gi + sI)-' =

and;

F0 D

(G2 - sI)(G2. ± sI)-1 =
0D

F

where D= (C - sI)(C + sI)-' and F= (2E-sI)(2E+sI)_1.

Thus we have the following relations:

p (Ta) -ß (T, 1 LII (i'.)112

ýP(Ta) < II (G1- sI)(Gi + sJ)-111211(G2 - sI)(G2 + sI)-1112

_ JjD112max{IID112,11F112}
b

Let2E=G a
=

(-b

a
The eigenvalues of G are a+ ib and a- ib.

Also

(1) 111
G= (a + ib) , and = (a - ib) , ii -i -i

Therefore

11
X= and y=

-i i

(5.53)

(5.54)

(5.55)

121

are the eigenvectors of G. They are orthogonal since

1
xT y

i

Hence, there exists an unitary orthogonal matrix U so that:

a+ib 0
U-'GU= =A and UHU=I

0ä- ib

U0
If we let: Q= we then have:

0U
Q-1DQ = Q'1(C - sI)QQ-1(C + sI)ý (5.56)

A -12 A -12
. 51

]
+ sI

1
(5.57)

-12 A -12 A

A-sI2 -12 A+s12 -'2 -1

-I2 A-sI2 -I2 A+s12
Further there is a permutation maxtrix P such that:

ai -1 00

AT- sI2 -12 -1 Ai 00
PP= (5.59)

-I2 A sI2 0 0 a2 -1
0 0 -1 .Z

where

Ai = a+ib:: Fs=ads+ib

A2 = a-ibis=ads-ib

Again there exists an unitary orthogonal matrix Ul so that
AT -1 00 Ai +1000

vl
1

-1 AT 00 Ul
_a

Al -1 ao [

vl, 00 a1 -1

[

UI] -00 a2 +10

00 -1 A000 AT

Hence:

II D 112 = II Q-1DQ 112
AT 1 1 -1

_
AT -1 0 0 J1i _1 0

- A;. +1 o ,1 +1

o %7- i a2 -1 2
(AT +11 ai -1 a2 +1 a2 -1 - max

l I I

2+ ýz -' l

l
T2 ' -l

I l

122

Since

ai = a-s+ib ; At =a+s+ib

a2 = a-s-ib ;A =a-Fs-ib

Therefore

_i +1 1)2+b2 1 (a-s+ (a+1-s)2+b2
_

Iii

+1 _
[
(a+s+1)2+b2J - [(a+1+s)2+b2

AT - (a-s-1)2+b2 (a-1-s)2+b2
_ Ai -ll

I

L(a+s-1)2+b2J - L(a-1+s)2+b2]
_ý +1

_
1 (a-s+1)2+b2 (a+l -s)2+b2]

'\z I'l
] [

= (a+s+1)Z+b2 (a+1+s)2+bz

_
-1 _

(a-s-1)2+b2 (a-1-s)2+b2 Ißä

-

l

L(a+s-1)2+b2]

[(a-1+s)2+b2]

we also have

II F II2=
(a-s)2+b2

/, I For evecý 57O
(a-+s2

Thus iE can 6e seer From (5.55) Eho. 3

r(a-1-s)2+b2 (a+1-s)2+b2 I
p(T,)<max I(a-1+s)2+b2] '[(a+1+s)2+b2]

(5.60)

xmax {(a_1+s)2+b2j
(a-1-s)z-}-b2 (a-s)2+b2 'ý (a+1-s)2+b2

(5.61)
' L(a+s)2+b2] '

[(a+1+s)2+b2j

Hence

p(T.)<1 if a>1 for any s>0 (5.62)

The experimental results given in section 7.2 indicate that the inequality in (5.62)

is strict and that for such block symmetric systems the method is convergent for

any s>0.

123

5.6 Chebyshev acceleration of the AGE-1D

method.

In this section we consider whether or not in theory, the convergence of the AGE-1D

iterative procedure may be accelerated by using the Chebyshev polynomials, when

AGE-1D is applied for one dimensional problems or as component of the Explicit

Alternating Direction (EAD) method (see chapter 6) method for multidimensional

problems.

We therefore consider here the AGE-1D method for solving the system:

Aix = bl (5.63)

where

e -c

-c e -c 0

Al =m is even,

-c
0

-C e
mxm

or alternately the normalized equivalent system:

Ax=b (5.64)

with

a -1

-1 a -1 0

A- ; a_ c
0

La

System (5.63) or (5.64 are the type of systems which arise from two point
boundary value problems, 1D parabolic heat conduction problems, and also as a

124

subsystem in higher dimensional parabolic (heat conduction) and elliptic (Laplace,

Poisson) problems, where the AGE-1D method may be applied as a component of

the EAD method.

If we apply the AGE-1D method for solving (5.64), then we have:

XP+1 = Tarp + b'

where b' = 2s(G2 + sI)'1(Gl + sI)"1 b
_., Qnöº

T, - (G2 + sI)-1(Gl - sI)(Gi + sI)-ß(G2 - sI)

is the iteration matrix. Gl and G2 are given as:

C1 2

0 Cl 0

G1 and G1=

00 C1
C1 2

(5.65)

a -1
with C1= 2

To accelerate the convergence of the AGE-1D method by using the Chebyshev poly-

nomials it is required that the eigenvalues of the iteration matrix T. be real. We

now consider the conditions posed by this requirement.

The matrix T, is similar to F1. F2 where

Fi = (G1 - sI)(Gi + sI)-' ; F2 = (G2 - sI)(G2 + sI)-'

Therefore T. and F1. F2 6vc the same eigenvalues.

1 (a)2-s2-1 -2s Let C= (Cl
- sl)(Cl + sI)'1 = (ý + s)2 _12 _2s

°-)2
- s2 -1 z

_1
(z)2_s2-1 -2s

ýµ
-2s z)2_s2_1

125

where A= 2+s+1 and it = 2+s-1.

E

1 1
Also we define the matrices E and D=

1 -1 0

E
We now have

1 a. \ fly a=zs- CE = where
'1 as -pic 1 0=2 _S+

yo
and E

[
=1

aA Pit
where y

a;
z=

Q
A 0z AFB as

We therefore have:

FiD=DA S F, DAD-'

where

y

z 0

A

0 y
z

If, and only if:

Y>0

z>0

then the matrix

0

0 f

is real positive definite.

(5.66)

(5.67)

126

We then have Fi = DAlA2D-' = (DA1D'1)(DA12D'1) = F1F1.

Under the conditions of (5.66) and (5.67) Fi and F1 are not singular. Therefore,

FiF2 = FiFiFz = F1 1 (Fl'FZF')Fl1

Thus, F1F2 and (Fl F2F1) has the same eigenvalues. It can be easily seen that

(Fl F2F') is symmetric and therefore has only real eigenvalues. Hence under the

conditions given by the inequalities (5.66) and (5.67) the requirement that all the

eigenvalues of T, be real is satisfied.

However the above conditions are very restrictive, and therefore using the Chebyshev

polynomial to accelerate the AGE-1D method may not be practical for the above

stated problem.

5.7 The various forms of the AGE method and

the computational requirements

There exist various forms for the formulation of the AGE-1D method some of which

were referred to earlier, e. g the usual formulation of (4.58), (4.59) and the com-

posite form of (4.60). The computational cost of some of these formulations are
less than others. The computational cost also is usually less for normalized systems

such as (4.54) than for non-normalized systems such as (4.53). The various forms

of the AGE-PR method for solving these systems are listed together with their com-

putational cost per iteration in the table below. But first some of the variants not

given earlier are introduced next.

To start with we rewrite here the above mentioned two formulations which are

referred to as Formulation I and Formulation II respectively.

Formulation I

(Gi + sI)up+1I2 =f+ (G2 - 31)u" = zi

(G2 + sI)up+i .=f+ (G1 - sl)up+'/2 = Z2

127

Formulation II

uP+l = Gu' +k

For this formulation we note that the vector k is given by

k= 2s(G2 + sJ)'1(Gl + sI)-'f

and is calculated once for each system (i. e not every iteration) at the cost of (4m-4)

multiplications and (3m-4) additions. and G is the iteration matrix of the method

given as:

G= (G2 + sI)-1(Gi - sI)(Gi + sJ)'1(G2 - sI) (5.68)

The iteratic n matrix G has the following form:

a' b' c' d'

e' f' g' h'

h' g' i' j' c' d'

d' e' j' _º 9º h'

h' g' i' j' c' d'

d' it it gº h'

h' g' f' e'

d c' b' a'

where a' .., j' are terms obtained after the product of the matrices given in equa-
tion 5.68 is carried out.

Formulation III

(G1 + sI)uP+1/2 =f+ (G2 - sl)uP = zI
(GZ + sI)uP+l = (G2

- sI)uP + 2suP+1/2 = Z2

This variant of the AGE-PR method can be easily derived by manipulating the

second equation of Formulation I. It is less costly in its computational work.

128

Formulation IV

(G1 + sI)up+1/Z =f+ (G2 - sI)up = zl

(G2 + sI)uP" =f+ (G1- sI) (Gl + sI)-'zi
ur+l/2

This formulation is due to Evans and Li [16]. Here the half iterate of the solution
is never obtained but rather only the right hand side zi of the first equation is

obtained and used in computing the full iterate solution in the second equation.

By this formulation the solution may be obtained at a lower computational cost

per iteration than by any of the above formulations. The second equation of this

formulation is computed according to [16] as:

uv+i = f'+ (Gz -F sI) 0 [(GI
- sI)(Gi + sI)-lzi] (5.69)

is
where O\the determinent of the 2x2 submatrices of (G2 + sI) and is as given in

(4.63), and :

(G2-}-sl)=ý(GZ-FsJ)'1

the underbrace indicates the term which is to be calculated first. The vector f' needs
to be computed and stored. It is given as:

ft = (C2 + sl)-1 f

which has to be calculated once only and not every iteration. It is computed at the

cost of 2m multiplications and m additions.

A slight improvement can still be obtained if the second equation is computed as:

u'+i = (Gz 7
sI) [f' + 0(Gl - sI)(Gj + sI)'lzi] (5.70)

where i is now defined as:

f'-Af

I

129

Normalized eitam Non-normalized System

The Coeto
AGE-ID variant

No. of +/" op.

per iteration

No. of x op.

per iteration

No. of t/" op.

per iteration

No. of x op.

per iteration
storage

requirement

Formulation I 6m-4 6m 6m-4 am S vectors
Formulation II Sm-8 6m-8 Sm-8 am-8 3 vectors

Formulation III Sm-4 6m Sm-4 7m a vectors
Formulation IV Sm-4 4m Sm-4 6m. 4 S vectors

'The figures given are for systems of order m where m is supposed even. They are almost
identical to the case when m is odd

Table 5.2: This table shows the computational requirements when using any of the

four main variants of the AGE-1D for solving tridiagonal systems which have off
diagonal elements of identical modulus.

This cuts down the cost of computing f' by m multiplications and m additions at

no other extra cost.

Table 5.2 shows the computational work per iteration and the storage requirements

of each of the variants of the AGE-1D algorithm for normalized systems and non-

normalized systems.

Chapter 6

The Explicit Alternating

Direction methods (EAD)

6.1 Introduction

For many real time problems, parallelism is the only way forward for obtaining any

dramatic progress. A high degree of parallelism - defined as the number of indepen-

dent operations that may be performed simultaneously - must persist throughout the

different stages of solving any particular problem. These stages proceed in sequence
from choosing the suitable algorithm, to expressing the algorithm in a high level

language, compiling the language into a machine-readable object code, and finally

executing the code on the target machine. Ideally the parallelism at any of these

stages should be greater or equal to that in the subsequent stages, if the parallelism

of the target computer is to be fully exploited. This places a greater emphasis on

the parallelism of the first stage, namely the choice of a parallel algorithm.

The Alternating Group Explicit (AGE) iterative method was an important step in

this context. However, it required, especially for two or more dimensional problems,

a considerable greater computational work per iteration and an even larger number

of iterations to converge. This meant that the advantages of the parallelism of the

method should outweigh the disadvantages only when the systems being solved are

130

131

of a very large order.

The Explicit Alternating Direction (EAD) methods presented in this chapter, rep-

resent further developments on the AGE method for two or more dimensional prob-

lems, which require much less computational work than the the corresponding AGE-

2D or AGE-3D methods and are even faster to converge, thus also improving on the

parallelism of the AGE-2D and AGE-3D methods. The EAD methods are based

on combining the use of the ADI techniques with the AGE-1D algorithm. The re-

sulting EAD method will be referred to as an EAD fully iterative method if the

AGE method is combined with an ADI iterative method. Otherwise if the use of

the AGE method is combined with an ADI direct scheme, the resulting method is

then referred to simply as the EAD method (see figure 6.1). Like the AGE method,

the main positive features to be stressed in the formulation of the EAD methods is

that it is an explicit algorithm for solving what is actually an implicit system, thus

allowing maximum parallelism in its application. Another not important advantage
is that the intermediary boundary values which have to be obtained for the standard
ADI schemes are not required when the EAD fully iterative method is applied. The

methods are introduced next, and a comparison between the EAD methods and the

AGE methods is presented.

6.2 The EAD method.

6.2.1 A parabolic problem

In this section the EAD method (fig. 6.1-left) is presented by solving the two dimen-

sional heat problem given by equation (4.91) together with the auxiliary conditions

as presented in subsection 4.5. We also use the same mesh described thereof.

The following ADI-PR and ADI-DR schemes can be used to approximate equation
(4.91). These are given respectively by:

(1 -
Ir52

rT ä= (1 + 2rbz2)U, ä -I-
2k4(xi,

x2, t+
2)

The differential equation

I An ADI differencing
scheme

Two difference I
equations

Tridiagonal system

AGE-1D
Iterative

algorithm

onvergence
yes

No

T iagoni system

AGE-ID R
E' Iterative

II algorithm s

ooverpace
Yes L

No S

The EAD direct method or
The EAD method

Iteratiso E
altoritbm S

cover pace
Y ss

No

The differential equation

Finite difference scheme
e. g. Crank-Nicholson

A wide band system

An OUTER ADI Iteration

idisgonal Syste

o n.
AGE-1D
iteration

ridiasoaal syste

n OD

The EAD fully Iterative method

132

NO

E
S

L

S

Figure 6.1: A scheu, .; c rtptesevN66n ac the EID Eec. ý oes.

133

(1 -
2röiz)Ü 1= (1 +

2röz1)U,
+ 2kq(x1, x2)t+ 2) (PR) (6.1)

and

1 (1 -rS 1)U = (I+rbz,)Ü j -I-q(xi, xs, t-I-

(1 - röi2)Üä 1= Üä - rbX2Ü 2 (DR) (6.2)

When applied to the totality of the meshpoints, equations (6.1) and (6.2) give

rise to two systems given by (4.25) and (4.26) which are to be solved in sequence.
If these systems were normalized (i. e. divided by

zr
for the PR scheme, or by r for

the DR scheme) we then get the following equivalent systems:

Hlu = dl (6.3)

and

Viu = d2 (6.4)

where Hl and Vl has the same form as H and V of equations (4.25) and (4.26)

but with:

ai =as =-1 and b=
(1+2 r)

=2+
1

(Or) Fr

where B=z and 1, for the PR and DR schemes respectively. Each of the above

systems is then solved using the AGE-1D iterative method, as applied to one dimen-

sional problems. This is given using the economic Formulation IV of the algorithm

as:

(Gl + sl)u'+1/2 = dl - (G2 - sI)uP = zl

(G2 + sI)up+l = [dl - (Gl - sI)(Gi + sI)-lz1] = Z2 (6.5)

where s is the AGE-1D acceleration parameter. we use this algorithm, at the first

level, to solve the system (6.3) whereby we iterate until the solution vector is ob-
tained. This is then used in evaluating the RHS of equation (6.4) as well as a

134

starting vector when applying the AGE algorithm again, at the second level to solve
(6.4). At the second level the AGE algorithm is again given by (6.5), but by

replacing G1, G2, and dl by G3, G4, and d2 respectively.

The two pairs of matrices GI, Gz and G3, G4 are the constituent matrices into which
Hl and Vl are split respectively. They have exactly the same structure as given in

subsection 4.5.

To compare the computational costs of the AGE-2D method and the EAD method

we note the following: On one hand the AGE-2D algorithm for solving system (4.93)

requires (16mn - 2m - 4n) multiplications and (15mn - 2m - 8n) additions for each
full AGE-2D iteration. The calculation of the R. H. S of system (4.93) itself requires

mit multiplications and 4mn+2(m+n) additions if a Crank-Nicholson (CN) scheme
is used, and just mit multiplications and 2(m + n) additions if the fully implicit

scheme is used. This is if we assume the source term q is zero. On the other hand

the above AGE-1D algorithm used in the EAD method at each ADI level requires
4mn multiplications and 5mn - 4n additions per iteration. The calculation of the
R. H. Ss of equations (6.3) and (6.4) require 2mn multiplications and 4mn + 4n

additions if the Peaceman Rachford scheme is used, and 3mn multiplications and
5mn + 4n additions if the DR scheme is used. We also require for the EAD method
to calculate the intermediate values of the solution at the two boundaries parallel
to the x2 direction. This is done by the appropriate formulae given in section 4.1

at a trivial cost of 6n multiplications and 10n additions for either of the PR or DR

schemes. If the source/sink term is not zero then an additional cost of evaluating
the R. H. Ss of equation (4.93) and equations (6.3) and (6.4) is incurred.

Experiments were carried out for the heat conduction problem given above, with

and without a heat source. Comparisons are made between, on one hand, the AGE-

2D method as applied to the fully implicit scheme and the Crank-Nicholson scheme,

and on the other hand the EAD method using the (ADI) PR and DR schemes. The

results are given, for the case without a heat source in tables 6.1... 6.4, and for the

case of a heat source in tables 6.5... 6.10. The figures for the total number of +/*

operations given in the tables, include the evaluation of R. H. S vector/s in each case.

135

"1 x, .. 02: mw, k ratio : e_a_ A. : A:.. - . 02. At .. 0002. t. 10-4

XI . 02 . 30 . 58 . 86 1.14 1.42 1.70 1.98

scheme

IMF ' 3.3E-06 2.2E. 05 1.1E-05 1.8E-05 1.7E. 05 1.1E-05 2.2E-05 3.4E. 06

EAD--D-fl- 1.8E-06 2.0E-05 7.4E-06 1.7E-05 1.4E-05 1.2E-05 1.8E-05 4.4E. 06

5.2E. 06 2.0E-05 1.6E-05 1.4E-05 2.1E. 05 6.2E-06 2.4E. 05 1.2E-06

UN EAD 8.1E. 07 5.3E-06 2.7E-06 4.3E-06 4.3E. 06 2.7E-06 5.3E-06 8.3E-07

3.4E-06 9.9E-06 5.3E-06 7.9E. 06 8.2E-06 4.8E-06 1.0E-05 1.3E-06

Elect solution . 007201 . 054642 -. 027678 -. 044269 . 044269 . 027678 -. 054642 .. 007201

bl ae a . 50: meek -t. n- n_&_ Am. _ Asp :. n4_ Ar, . nnn4. e- foýý

X1 - . 02 . 30 . 58 . 86 1.14 1.42 1.70 1.98
scheme
IMF EAD-LUD 4.9E-05 . 3.3E-04 1.6E-04 2.7E-04 2.7E-04 1.7E-04 3.5E-04 5.3E-05

3.8E 0S 3.0E-04 1.4E-04 2.5E-04 2.3E. 04 1.7E-04 2.9E-04 6.1E-05

8.7E-05 5.3E-04 2.6E-04 4.4E-04 4.2E-04 2.8E-04 3.9E-04 6.9E-05

UN EAIT- 1.3E-OS 8.2E-0$ 4.1E-05 6.6E-05 6.6E-OS 4.1E-OS 8.1E-OS 1.3E-05

2.2E-05 1.7E-04 8.3E-05 1.3E-04 1.3E. 04 8.5E-05 1.6E-04 2.4E-O5

Exact solution . 114680 . 870221 -. 440807 -. 705023 . 705023 . 440807 -. 870221 -. 114680

cl s, s . 98: mesh retso a O. S. A:. - A..:. 0M. At - . 0002. s. 10-4

sl s . 02 . 30 . 58 . 86 1.14 1.42 1.70 1.98

scheme

EAD-LUD 3.9E-06 2.8E-05 1.4E-05 2.2E-05 2.2E-05 1.4E-05 2.7E-05 4.3E-06

EAD-IJlt 3.1E-06 1.9E-05 9.8E-06 1.5E-05 1.5E-05 9.2E-06 1.9E-05 3.2E-05

4.0E-06 5.4E-05 1.9E-05 4.6E-05 3.7E-03 3.3E-05 4.9E-05 1.1E-05

EAD 1.1E-08 7.5E-06 3.8E-06 6.1E-06 6.1E-06 3.8E-06 7.5E-06 1.1E-06

1.4E-06 1.2E-05 5.5E-06 9.7E-06 9.2E-06 6.3E-06 1.1E-05 1.8E-06

Exact solution . 007201 . 054642 -. 027678 -. 044269 . 044269 . 027678 -. 054642 -. 007201

Table 6.1: The absolute errors of the solutions to the model 2D heat problem, as

obtained by the AGE-2D method and the EAD method, at t= . 0018.

Method IMP CN

EAD-LOD EAD-DR AGE-1D EAD-PR AGE-ID

Average of all absolute errors 8.58E-05 7.6E-05 2.33E-04 2.13E. 05 7.26E-05

Number of iterations 3/3 3/1 4 2/2 4

No. (in men) of +&" operations 2S+; 40" 20+; 16e 60+; 780 20+; 16e 60+; 76e
Total (in rose) of ; /e operations 47 44 137 42 141

Computational cost w. r. t. AGE-4D 34 % 32 % 100 % 30 % 100 %
No. of points of synchronization 17 14 33 14 33

Table 6.2: Average of absolute errors, number of iterations, and the computational

work involved in the experiments of table 6.1.

136

&) s2 - . 02; mash ratios 1.0, Asl = Ast .. 02, At s . 0004, s. 10-4

:l- . 02 . 30 . 5e . e6 1.14 1.42 1.70 1.98
scheme

1.1E-03 6.5E-05 3.5E-05 5.2E-05 5.4E-05 3.2E-05 6.6E-05 1.0E-05

EAD-DR 1.5E-05 S. SE-05 3.0E-05 4.2E-05 4.6E-05 2.4E-05 5.3E-05 3.5E-05

-
AUE- 3.8E-05 1.2E. 04 6.6E-05 1.8E-04 2.7E. OS 1.7E-04 3.6E-05 5.6E-05

7= EAD 1.1E-06 5.8E-06 3.4E-06 4.5E-06 5.1E-06 2.6E-06 6.1E-06 6.5E-07

AUE- 3.9E-06 4.7E-06 1.13E-05 4.2E-07 1.1E-05 3.9E-06 1.0E-05 1.2E-06

Exact solution . 006589 . 049997 -. 025326 ". 040506 . 040506 . 025326 -. 049997 -. 0065e9

b) x2 - . 50; mash ratio: 1.0, Gala pst - . 02, &t si . 0004, sa 10-4

21 as . 02 . 30 . 58 . 86 1.14 1.42 1.70 1.98
scheme

IMF EAD-LUD 1.6E-04 9.9E-04 4.9E-04 8.1E-04 7.9E-04 5.1E-04 9.8E. 04 1.7E-04

EAD-DR 2.2E-04 9.2E-04 4.1E-04 7.3E-04 6.8E. 04 4.8E-04 8.3E-04 5.4E. 04

1.9E-04 1.5E-03 6.8E-04 1.2E-03 1.1E-03 9.2E. 04 1.5E-03 3.2E-04

EAD 1.1E-05 1.3E. 04 6.8E-05 1.0E-04 1.1E-04 6.4E-05 1.3E-04 2.0E-05

3.5E-05 2.8E-04 1.3E-04 2.3E-04 2.1E-04 1.5E-05 2.7E-04 5.3E-05

Exact solution . 104933 . 796256 -. 403340 . 645099 . 645099 . 403340 -. 796256 -. 104933

c) s2 s . 98; meek ratios 1.0,15-sl : pst 1 . 04, At , . 0004, es 10-4

X1 >. . 02 . 30 . 58 . 86 1.14 1.42 1.70 1.98

$Cheme

IMF ' 1.4E-O5 1.0E-04 4.8E-05 8.5E-05 8.0E-05 5.5E-05 1.0E-04 1.7E-05

1.4E-05 5.9E-05 2.0E-05 4.9E-05 3.9E-05 3.5E-05 5.0E-04 3.3E-05

' 8.9E-06 3.7E-04 2.6E-05 3.8E-04 1.6E-04 3.0E-04 2.7E-04 1.1E-04

IN EAD 4.1E-06 3.0E-05 1.5E-05 2.4E-05 2.4E-05 1.5E-05 3.0E. 05 4.2E-08

' 1.4E-06 3.8E-05 8.2E-06 3.5E-05 2.1E-05 2.7E-05 3.1E-05 9.3E-06

Ex&ct solution . 006589 . 049997 -. 025326 -. 040506 . 040506 . 025326 -. 049997 ". 006589

Table 6.3: The absolute errors of the solutions to the model 2D conduction problem,

as obtained by the AGE-2D method and the EAD method, at t=0.0036

Method IMP CN

EAD-LOD EAD-DR AGE-4D EAD-PR AGE-1D

Average of all absolute errors 2.61E"04 2.29E. 04 6.98E. 04 3.77E-05 1.21E-04

Number of iterations 4/2 4/1 4 3/2 4

No. (in mxn) of +&e operations 30+; 240 25+; 200 60+; 76s 25+; 20e 60+; 760

Total (in mxn) of +/e operations 56 53 137 51 141

Relative cost w. r. t. AGE-4D 41 % 39 % 100 % 36 % 100 %
No. of points of synchronisation 20 17 33 17 33

Table 6.4: Average of absolute errors, number of iterations, and the computational

work involved in the experiments of table 6.3.

137

a) s, = . 1: mesh ratios . 1. As, . Ase a 0.1. At s 0.001. s- 10-4

22 .1 .2 .3 .4 .5 .6 .7 .6 .9
scheme

1.3E-06 3.2E-06 3.9E-06 5.3E-06 5.6E. 06 6.5E-06 5.5E-06 5.6E-06 2.2E. 06

EAD-Dii 2.0E-06 3.9E-06 5.6E-06 7.1E-06 6.1E-06 6.7E-06 6.4E-06 7.1E-06 4.4E. 06

2.0E-05 3.9E-05 5.7E-05 7.3E-05 6.4E-05 9.0E-05 6.9E-05 7.6E-05 4.6E-05

1.2E-06 2.4E-06 3.5E-06 4.4E-06 5.1E-06 5.4E-06 5.2E-06 4.4E-06 2.7E-06

' 1. TE-05 3.4E-05 5.0E-05 6.3E. 05 7.2E-05 7.7E-05 7.4E-05 6.2E-OS 3.8E-O5

Exact solution . 029016 0.067946 0.126695 0.205177 0.303306 0.421006 0.558194 0.714801 0.890760

b) xa . 50: mesh ratio = . 1. As. - A: n . 0.1. At s 0.001. e: 10"

22 = .1 .2 .3 .4 .s .6 .7 .8 .9
scheme

4.6E-06 9.8E-06 1.4E. os 1.8E-05 2.1E-05 2.3E-05 2.2E-os 1.9E 0s 1.1E-oS

EAD-DK 8.1E-06 1.6E-05 2.3E-05 2.9E-05 3.4E-05 3.6E-05 3.6E-05 3.0E-05 1.9E-05

' 8.4E-05 1.66E-04 2.4E-04 3.1E-04 3.6E-04 3.9E-04 3.4E-04 3.3E-04 3.1SE-04

UN EAD 5.1E-06 1.0E-05 1. SE-05 1.8E-05 2.1E-05 2.3E. 05 2.2E-05 1.9E-06 1.2E-05

AGE-"2D- 7.2E-OS 1.4E-04 2.1E-04 2.6E-04 3.0E-04 3.2E-OS 3.2E-04 2.7E-04 1.6E-04

Exact solution 0.303308 0.376183 0.468197 0.578931 0.707976 0.854943 1.019463 1.201191 1.399809

c) si s . 9; mesh ratios . 1. Axi : Ase : 0.1. At a 0.001. a- 10-4

2 .1 .2 .3 .{ .5 .6 .7 .8 .9
scheme

3.2E-06 5.9E-05 8.6E-06 1.1E-05 1.3E. 05 1.4E. 05 1.4E-05 1.3E-05 8.3E-06

EAD-Dit {. 4E 06 8.6E-06 1.3E-05 1.6E-05 1.9E-05 2.1E-05 4.2E-05 2.0E-05 1.4E-05

' 4.8E-05 9.6E-05 1.4E-04 1.8E-04 2.1E-04 2.4E. 04 4.5E-04 2.3E-04 1.6E. 04

4.7E-06 5.4E-06 7.9E-06 1.0E-05 1.2E-05 1.3E-05 1.3E-05 1.4E-05 6.4E-06

AGE-21) 3.8E-05 7.4E-05 1.1E-04 1.4E. 04 1.6E-04 1. $E-04 1.8E-04 1.6E-04 1.1E-04

Exact solution 0.890760 0.990813 1.109460 1.246013 1.399809 1.570209 1.756611 1.958450 2.175209

Table 6.5: The absolute errors of the solutions to the model 2D heat problem, WITH

A HEAT SOURCE as obtained by the AGE-2D method and the EAD method,

at t=0.1

Method IMP CN

EAD-LOD EAD-DR AGE-2D EAD"PR AGE-2D

Average of all absolute errors 1.01E-05 1.57E-05 2.13E-04 9.64E-06 1.74E-04

Number of iterations 2/2 2/1 2 2/2 3

No. (in -: a) of + 6c e operations 20+; 16e 15+; 12e 30+; 360 20+; 16e 45+; Sze

Total (in men) of +/e operations 36 3S 69 42 107

Relative cost w. r. t. AGE-2D S5 % 51 % 100 % 39 % 100 %

No. of points of synchronisation 14 11 17 14 22

Table 6.6: Average of absolute errors, number of iterations, and the computational

work involved in the experiments of table 6.5.

138

a) z :. 1; mesh ratio :. 1. Gri at Ax, a 0.1. At a 0.001. s. 10-a

22 1 .1 .2 .3 .4 .5 .6 .7 .8 .9
scheme
IMF

' 1.2E. 06 2.4E-06 3.5E-06 4.4E. 06 5.1E-06 5.4E-06 5.2E-06 4.4E. 06 2.7E-06

EAD-Dlt 2.0E-06 3.8E-06 1.6E-06 7.0E-06 8.1E-06 8.6E. 06 8.4E-06 7.0E-06 4.4E-06

2.0E-06 3.9E. 06 5.6E-06 7.0E-06 8.1E-06 8.6E-06 8.4E. 06 7.1E-06 4.4E-06

EAD 1.2E-O6 2.4E-06 3.5E-06 4.4E-06 5.1E-06 6.4E-06 5.2E. 06 4.4E. 06 2.7E-06

1.2E-06 2.4E-06 3.5E-06 4.4E-06 5.1E-06 5.4E-06 5.2E. 06 4.4E-06 2.7E-06

Exsct solution . 029018 0.067946 0.126695 0.205177 0.303308 0.421006 0.558194 0.714801 0.890760

b) xi as . 50: mesh ratios . 1_ A:. : A- s 0.1 .
At in 0.001. am 10-8

sZ a .1 .2 .3 .4 .5 .6 .7 .6 .9
scheme
IMF EA] ' 5.1E-06 1.0E-OS 1.4E-OS 1.8E-05 2.1E. 05 9.3E-05 2.4E-05 1.9E-OS 1.9E-05

8.1E-06 1.6E-05 4.3E-05 2.9E-OS 3.4E-05 3.7E-05 3.6E-05 3.0E-05 1.9E. 05

AGE- 8.1E-06 1.8E-05 4.3E-05 7.9E-OS 3.4E. 05 3. TE-05 3.6E-05 3. OE. 05 1.9E-O5
-SIE-06

1.0E-o5 1.5E-05 1.8E-OS 9.1E-O6 2.3E-05 2.2E. 05 1.9E-05 1.4E-05

5.1E-06 1.0E-05 1.5E-05 1.8E-05 7.1E-05 2.3E-05 2.2E. 05 1.9E. 05 1.4E-05

Exact solution 0.303308 0.376183 0.468197 0.578931 0.707976 0.854943 1.019463 1.201191 1.399809

Ci X1 ss . 9: mesh ratio= . 1. A. A:., = 111 .
At= 0.001. am 10-8

22 as .1 .2 .3 .4 .5 .6 .7 .6 .9
scheme

IMF ' 2.7E-06 5.4E-06 7.9E-06 1.0E-05 1.2E-05 1.3E-05 1.3E-05 1.2E. 05 8.3E-06

k; AD-DR 4.4E. 06 6.6E-06 1.3E-05 1.6E-05 1.9E. 05 2.1E-05 2.1E-05 1.9E-05 1.3E. 05

4.4E-06 8.6E-06 1.3E. 05 1.6E-05 1.9E-05 2.1E-05 2.1E. 05 1.9E-05 1.3E-05

2.7E-06 5.4E-06 7.9E-06 1.0E-05 1.2E-05 1.3E-05 1.3E. 05 1.2E-05 8.4E-06

2.7E-06 5.4E-06 7.9E. 06 1.0E-05 1.2E. 05 1.3E. 05 1.3E. 05 1.2E-05 8.4E-06

Exact solution 0.890760 0.990813 1.109460 1.246013 1.399809 1.570209 1.756611 1.958450 2.175209

Table 6.7: The absolute errors of the solutions to the model 2D conduction

problem, WITH HEAT SOURCE as obtained by the AGE-2D method and
the EAD method, at t=0.1

Method IMP CN

EAD-LOD EAD-DR AGE-2D EAD-PR AGE-2D
Average of all absolute errors 9.6E-06 1.57E-05 1.96E-05 9.6E. 66 1.24E-05

Number of iterations 4/4 4/2 9 3/3 30
No. (in men) of + tc * operations 40+; 32. 30+; 24" 135+; 171. 30+-, 24* 150+; 1900
Total (in men) of +/* operations 74 62 307 60 34S

Relative cost w. r. t. AGE-2D 24 % 20 % 100 % 17 % 100 %

No. of points of synchronization 26 20 73 20 61

Table 6.8: Average of absolute errors, number of iterations, and the computational
work involved in the experiments of table 6.7.

139

xi ss . 5: mesh ratio: 1.0. As. . Aso : 0.1. At se 0.01

a) s: l0-4

22 .1 .2 .3 .4 .5 .6 .7 .6 .9
scheme

IMF EAD-LUD 4.7E-06 1.0E-05 1.2E-05 1.5E-05 1.7E-05 1.8E-05 1.7E-05 1.4E-05 6.4E-07

' 2.5E-05 4.7E-05 7.1E-05 8.7E-05 1.0E. 04 1.0E-04 1.0E-04 6.9E-05 5.2E. 05

' 2.8E-05 1.1E-04 8.9E-05 1.6E-04 1.1E-04 1.5E-04 1.0E-04 6.5E-05 7.5E-05

EAD 6.1E-06 1.5E-05 1.5E-05 2.1E-05 1.7E-05 1.4E-05 1.7E-05 1.1E-05 1.0E-05

1.6E-05 3.4E-05 4.3E. 05 5.7E-05 5.9E-05 6.2E-05 5.4E-05 4.2E-05 2.6E-05

Exact solution 0.289030 0.347770 0.425933 0.523238 0.639410 0.774190 0.927330 1.098597 1.287781

b) es 10-8

s2 s .1 .2 .3 .4 .5 .6 .7 .8 .9
scheme
IMF -E"-LOD 4.2E-06 8.3E-06 1.2E. 05 1.5E-05 1.7E-05 1.8E-05 1.7E-05 1.4E-05 8.7E-06

' 3.1E-05 6.0E-05 8.6E-05 1.1E-04 1.2E-04 1.3E-04 1.2E-04 1.0E-04 6.4E. OS

3.0E-05 5.9E-05 8.5E-05 1.1E-04 1.2E-04 1.3E-04 1.2E-04 1.0E-05 6.3E-05

EAD-PR 4.3E-06 6.4E-06 1.2E-05 1.5E-OS I. TE-05 1.8E-05 1.7E-05 1.1E. 05 9.0E-06

' 4.3E-06 8.3E-06 1.2E-05 1.5E-05 1.7E-05 1.8E-05 1.7E-05 1.4E-05 8.9E-06

Exact solution 0.289030 0.347770 0.425933 0.523238 0.639410 0.774190 0.927330 1.098597 1.287781

Table 6.9: The absolute errors of the solutions to the model 2D conduction

problem, WITH A HEAT SOURCE as obtained by the AGE-2D method and
the EAD method, at t=0.5

a) 6es10-4

Method IMP CN

EAD-LOD EAD-DR AGE-2D EAD-PR AGE-2D
Average of all absolute errors 1.09E-05 4.71E-05 7.28E-05 8.76E-06 3.2E-05

Number of iterations 4/4 3/1 4 2/2 4
No. (in mxn) of +&e operations 40+; 32s 20+; He 60+; 760 20+; 16e 60+; 76e
Total (in mxn) of +/e operations 74 44 137 60 141

Relative cost w. r. t. AGE-2D 54 % 32 % 100 % 42 % 100 %

No. Of points of synchronisation 26 14 33 14 33

b) ss 10-8

Method IMP CN

EAD-LOD EAD-DR AGE-2D EAD-PR AGE-2D
Average of all absolute errors 7.52E-06 5.5E-0S 6.6E-05 7.74E-06 9.6E-o6

Number of iterations 8/8 6/6 22 3/3 11
No. (in men) of + se e operations 60+; 64e 70+; 56e 330+; 416. 30+; 24e 165+; 209.
Total (in mxn) of {/e operations 146 134 749 114 379

Computational cost w. r. t. AGE-2D 19 % 18 % 100 % 30 % 100 %
No. Of points of synchronization 50 44 67 20 69

Table 6.10: Average of absolute errors, number of iterations, and the computational
work involved in the experiments of table 6.9.

140

The tables also include some results which are obtained when the EAD method em-

ploys an LOD scheme instead of an ADI scheme. This is the subject of section 6.2.3,

where the appropriate comments concerning these results shall be given.

The results show throughout that the EAD method produces more accurate results

than the AGE-2D method when the tolerance is not very small (e. g E= 10'4). Of

course when the tolerance is too small (e. g e= 10-8) the solutions by both methods

converge as expected, to the respective exact finite difference solution and are almost
identical. Also it can be seen that the EAD method requires at most just over 50 %

of the computations required by the AGE-2D method (see table 6.6). However in

most experiments it even requires much less than that, with savings up to 83 %

achieved in some cases, see table 6.8.

The other improvement on the AGE-2D is in the overall parallelism. To appreciate

that we note that for the execution of one single AGE-2D iteration, we require four

sub-iterations of the solution to be done in sequence (see equations 4.98). We also

note that the method requires the evaluation of the vector representing the right
hand side (i. e. vi, i=1, ... 4) in each of the equations of (4.98) before evaluat-
ing explicitly the sub-iteration solution vectors up+# = (G; + sI)'lvj. This means

that there are two sets of computations to be done in sequence or two synchroniza-

tion points at each sub-iteration level. This brings to eight the total number of

synchronization points per each AGE-2D iteration.

We note here that the pairs of computation sets at the second, third, and fourth

sub-iteration levels can be combined easily into one set at each level. This can
be done by replacing the implicit (second, third, and fourth equations of (4.98)

respectively by the following explicit equations:

of+l/a = (G2 + sI)-1Gsu; + s(G2 + sl)-lu*+1/4

UT+3/4 = (G3 + sI)-1G3U* + s(G3 + sI)-1Uf+1/2

u*+1 = (G4 + sI)-1G4ur + s(G4 + sl)-lUr+3/4 (6.6)

Each of the above equations can be evaluated by one set of computations. This

brings down the total number of synchronization points to five per each full AGE-2D

141

iteration but will increase the number of computations required for each iteration.

Hence the total number of synchronization points involved at every time step when

applying the AGE-2D method is (8 * NIT + 1) or at best (5 * NIT + 1), NIT being

the total number of iterations required. One set is added in each case to account
for the set of computations required for evaluating the R. H. S. of (4.93).

On the other hand, the number of synchronization points involved in applying the

EAD method, depend only on the total number of AGE-1D iterations (NIT) at
the two ADI levels, and on the number of synchronization points involved in each
AGE-1D iteration.

The Algorithm for AGE-1D as given by equations (6.5) involves three computation

sets to be done in sequence: one for evaluating the vector z1, the second for evaluat-
ing the vector z2 representing the RHS of the second equation in (6.5) and thirdly

for evaluating uP+l = (G2 + sI)-1z2. This brings the total number of synchroniza-

tion points to (3 * NIT + 2). Two more synchronization points are added to account
for the two computation sets required for evaluating the R. H. Ss of equations (6.3)

and(6.4).

We note here also that the second equation of (6.5) can be evaluated in one set of

computations using the following explicit replacement:

ur+' = [(G2 + sI)-'d, - (G2 + sI)-'(Gi - sI)(GI + sI)-lzl] (6.7)

This will reduce the total number of synchronization points to (2 * NIT + 2), but it

increases the number of multiplications required each iteration.

Tables 6.2,6.4,6.6,6.8 and 6.10 show throughout that the EAD methods involve

a much smaller number of , Synchronization poinhs than the corresponding
AGE-2D method. This reduction is on average much more than half, and nearly
three quarters of the total number of s jnchronizabon poinEs,, This broadly

implies that the overall parallelism of the EAD method is better than that of the

AGE-2D method.

Finally we comment that the tables show that the computational cost of the EAD-

142

PR method is (except for table 6.10 a) very close and sometimes considerably less

than that of the EAD-DR method. Also for the latter method the values of the

solution at the explicit time level t should also be retained for use at the second
ADI level, which means that it requires an extra storage of one vector more than

the EAD-PR solution. This always justifies, the use of the more accurate EAD-PR

method always for the two dimensional problems. We also note that the results

obtained for the AGE-2D method in the above comparison are extracted from [20].

6.2.2 A hyperbolic problem

The EAD method can also be applied to a hyperbolic problem. This is the linear

two dimensional advection equation given by:

öü äü äü

at -- äx1- x2
defined in Rxt>0, where Q is a rectangular region defined by:

Sli=(xl, x2); 0 <xl <Land0<x2<M,

subject to the initial conditions:

x0 ü(x1, x2,0) =
e'+_ ' (X17 x2, t) EW

and where ü(xl, x2, t) is specified at the boundary OR of R as:

ü(X1, x2, t) _
M, e;

in. 03i xt>0

(6.8)

To obtain the numerical solution of the above problem we cover the domain with the

grid mesh described in section 4.5. A Crank Nicholson type difference approximation
to the above equation is given as:

[1 -ý-
2rÖx,

-ý-
2röx, JÜý+1 = [1- 2röz,

- 2röx,]U,? (6.9)

where r is now 2h.

143

When equation (6.9) is applied to the totality of meshpoints inside SJR, a normalized

system (i. e. divided by z r) having exactly the same structure as (4.93) is obtained,

but with al = 1, a2 = -1, and b=*. This system is then solved using the AGE-2D

method. On the other hand the EAD-PR method is applied to solve the above

problem, where we use the ADI-PR scheme which is now given as:

(1+1 rb. �
)Üj _ (1-1rbX3)Üi

22

(1 + 2rös,)Ü 1= (1 -
2rbx,)Ü (PR) (6.10)

When applied to the totality of the meshpoints, the pair of equations (6.10) give

rise to two systems having the same structure as (4.25) and (4.26) which are to

be solved in sequence. If these systems were normalized (i. e divided by
Zr

) we then

get the equivalent systems given by equations (6.3) and (6.4), but with at = 1,

a2 = -1 and b=T. These systems are then solved using the AGFJD iterative method

as explained above for the parabolic problem. The cost of calculating the R. H. Ss of

equations (6.3) and (6.4) and that of equation (4.93) is the same as that given

above for the parabolic problem where the corresponding PR and CN methods were

used. The costs per each AGE-2D iteration and AGE-1D iteration are also the same

as in the parabolic problem.

Tables (6.11) and (6.12) give the results obtained by the AGE-2D method and

the EAD method together with the computational work involved. It can be clearly

seen that the EAD method again proves to be far less demanding in computational

work (needs only 25 % of the computational requirements of the AGE-2D method)

and involves a smaller number of sequential sets of operations than the AGE-2D

method.

144

RESULTS AFTER 30 TIME STEPS. The EAD method Gst - Aso -hs0.1. tiro. at.. i-0.05_ m.. h -ti- f &1
- _5 e- 10-6 -e-l- . mann. aO f3.1_ 4.41

S2- .1 .2 .3 .4 .5 .6 .7 .8 .9 0-1 Exact . 49319 . 51913 . 54779 . 57947 . 61448 . 65317 . 69593 . 74318 . 79541

umer. . 48242 . 52143 . 54015 . 56252 . 60924 . 65627 . 69255 . 74530 . 79419

percentage error 2.18 %
. 44 % 1.4 % . 53 % as %

. 47 % . 48 % . 28% . 15 %
xZ = 0-5 Exact

- -
. 61N8 . 64041 . 66907 . 70075 . 73576 . 77445 . 81721 . 86446 . 91669

17u mer. . 60924 . 64198 . 66431 . 70314 . 73108 . 77684 . 81241 . 86594 . 91197

percentage error as %
. 24 %

. 71 % . 34 % . 64 % . 31 %
. 59 %

. 17 %
. 31 %

X2 = Exact . 79541 . 82134 . 85001 . 88168 . 91669 . 95538 . 99814 1.04540 1.09762

Numer. . 79419 . 82233 . 64709 . 88319 . 91197 . 95683 . 99175 1.04637 1.08972

percentage error is % . 12 %
. 34 % AT % . 51 % . 15 % . 64 % . 09% . 72 %

Average of all absolute errors 0.5% Number of iterations 4/4
No. (in men) of +&* operations 40+; 32" Total (in men) of +/e operations 78

Computational cost w. r. t. AGE-2D 25 % No. of points of synchronization 26

RESULTS AFTER 30 TIME STEPS. The AGE-2D method As. : Asn ah0.1. e:..... e... w. n nt w ...:.. ! ýF. 1 c. .. tnýd .. ý. t ý... .c la ii nt

XZ = 0.1 Exact . 49319 . 51913 . 54779 . 57947 . 61448 . 65317 . 69593 . 74318 . 79541

umer. . 49011 . 48479 . 54534 . 56556 . 59820 . 65688 . 69104 . 74998 . 79387

percentage error . 62 % 6.61 % . 49 % 2.4 % 2.65 % S7 % . 70 % . 12% . 19%

x2 = 0-5 Exact . 61448 . 64041 . 66907 . 70075 . 73576 . 77445 . 81721 . 86446 . 91669

Numer. . 62054 . 65015 . 64974 . 71164 . 72752 . 76206 . 82168 . 86193 . 90955

-
percentage error . 99 % 1.52 % 2.89 % 1.55 % 1.12 % 1.6 % . 55 % . 29 % . 78 %

xQ = 0-9 Exact . 79541 . 82134 . 85001 . 88168 . 91669 . 95538 . 99814 1.04540 1.09762 ý
umer. . 79441 . 82371 . 84716 . 88370 . 91258 . 95869 . 99499 1.05419 1.09559

percentage error . 12 %
. 29 %

. 33 %
. 06 %

. 43 %
. 35 % 1.32 %

. 18 %
. 72 %

Average of all absolute errors 1.0% Number of iterations 9
No. (in rose) of + Se e operations 135+; 171. Total (in man) of . /e operations 311

Computational cost w. r. t. AGE. 2D 100 % No. of points of synchronization 73

Table 6.11: The absolute percentage errors of the solutions to the model
2D advection problem, as obtained by the AGE-2D method and the EAD

method, at t=1.5.

145

Method CN

EAD AGE-2D

Average of all absolute errors 0.5 % 1.0 %

Number of iterations 4/4 9

No. (in mxn) of +&* operations 40+; 32* 135+; 171*

Total (in mxn) of +/* operations 78 311

Relative cost w. r. t. AGE-2D 25 % 100 %

No. of points of synchronization 26 73

Table 6.12: Average of absolute errors, number of iterations, and the computational

work involved in the experiments of table 6.11.

146

6.2.3 The EAD method with an LOD scheme component

It has been stated that the EAD method may be composed of the AGE-1D method

and other alternating direction schemes rather than the ADI method. In this sub-

section we consider replacing the ADI component of the EAD method for the heat

conduction problem given above with the following LOD scheme:

(1
- rSsl)Ü ý= Unj + k4(x1, X21 t+1

2
(1 - rö2 uln+l =Ü (6.11)

The results obtained by this EAD-LOD method appear in tables 6.1... 6.4, and

in tables 6.5... 6.10 . It can be seen that compared to the EAD-DR scheme, the

EAD-LOD scheme requires generally more computational work, although it needs

one vector less of storage, since the values of U, ä do not need to be retained for the

second equation of (6.11) while they need to be saved for the second equation of
(6.2).

6.3 The EAD fully iterative method

In this section we represent the EAD fully iterative method (see figure 6.1-right) as
it may be applied to time dependent problems (parabolic and hyperbolic) and as it

may be applied to elliptic problems. For time dependent problems of two dimensions

or more the EAD fully iterative method described in this section uses the respective

conventional fully implicit or Crank Nicholson schemes rather than using the

different ADI perturbations of these schemes. It then solves the resulting system of
difference equations by using an inner AGE-1D iteration procedure within an outer
ADI iteration procedure (fig 6.1-right). The same principle is applied when solving
boundary value problems. The method is illustrated in the following subsections.

147

6.3.1 A two dimensional hyperbolic problem

We consider the same two dimensional advection problem described in the previous

section. If we apply a Crank Nicholson type scheme to the alert mentioned problem

we again end up needing to solve a system of difference equations which is given by

(4.93)whereat=1, a2 = -1, and b=f.

We then split the coefficient matrix A such that:

A=H1+Vi (6.12)

where Hl and Vi has the same form as H and V of equations (4.25) and (4.26

but with:

al =1 and a2 = -1 and b=1.
r

and then solve (4.93) using an ADI iterative algorithm in a manner usually applied
in solving systems arising from boundary value problems, i. e., we solve:

(Hi +pI)u*' = b-(Vi-pI)u'

(V1 + pI)u** =b- (Hl - pI)u* (6.13)

or more conveniently:

(Hi+pI)u* =b- (Vi - pI)up

(Vi + pI)u** = (Vi - pI)u* + 2pu* (6.14)

where p is an iteration parameter. Each of the systems in (6.14) is then solved

using the AGE-1D method as given by (6.5) in which consecutively Gl and G2 are
determined by the appropriate splittings:

HI +pI=GI+G2 (6.15)

and

Vi+pI=G1+G2. (6.16)

148

RESULTS AFTER 30 TIME STEPS. The EAD fully iterative method
Convergence occured after 4 ADI iterations each involving 1/1 AGE iterations.
As, an As, as ha0.1. timen . ten k se 0.05. meah ratio (IL1 a . 5: a= 10'6 accel. carom. e9 13.6.4.41

22 s .1 .2 .3 .4 .5 .6 .7 .8 .9
X2 = 0-1 Exact . 49319 . 51913 . 54779 . 57947 . 61446 . 65317 . 69593 . 74318 . 79541

unier. . 48244 . 52147 . 54017 . 58256 . 60924 . 65631 . 69253 . 74534 . 79418

abs. error
. 01076 . 00234 . 00762 . 00310 . 00524 . 00314 . 00340 . 00215 . 00123

percentage error 2.18 % . 45 % 1.4 % . 53-% as % . 48 % . 48 % . 29 % . 15 %

X2 = 0-5 Exact . 61448 . 64041 . 66907 . 70075 . 73576 . 77445 . 81721 . 86446 . 91669

unier. . 60924 . 64197 . 66430 . 70313 . 73106 . 77682 . 81242 . 86592 . 91197

a s. error . 00524 . 00155 . 00477 . 00238 . 00467 . 00238 . 00479 . 00146 . 00472

percentage error as % . 24 % . 71 % . 34 % . 83 % . 31 % . 59 % . 17 % . 51 %

X2 = xaC
. 79541 . 82134 . 85001 . 88168 . 91689 . 95538 . 99814 1.04540 1.09762

Numer. . 79418 . 82230 . 84709 . 88317 . 91197 . 95681 . 99176 1.04636 1.08973

a Ys. error
. 00123 . 00096 . 00292 . 00149 . 00472 . 00143 . 00638 . 00096 . 00789

percentage error . 15 % . 12 % . 34 % . 17 % . 51 % . 15% . 64 % . 09% . 72 %

Table 6.13: The absolute and percentage errors at t=1.5 of the solutions to the

model 2D advection problem, as obtained by the EAD fully iterative method, when

a CN type difference scheme is applied.

where in (6.15) Gl and G2 are as given in equation (4.100), while in (6.16) they

have a structure similar to that of G3 and G4 respectively. In both cases al = 1,

a2 = -1 and c= 49 = (zr +, 2P-
). We thus have an outer ADI iteration procedure

and an inner AGE-1D iteration procedure in the EAD fully iterative method.
However it is recognized that as each new iteration of the ADI algorithm (6.14)

is only an enhanced approximation to the required solution we can do with non

exact values of u* and u** in (6.14) and thus do only one inner AGE iteration.

Table 6.13 shows the results after 30 time steps when the method is applied.

The EAD fully iterative method

Average of all absolute errors 0.5 %

Total (in mxn) of +&* operations 60+ & 41*

Total (in mxn) of +/* operations 101

Relative cost w. r. t. AGE-2D 32 %

No. of points of synchronizations 26

Table 6.14: Average of absolute percentage errors, number of iterations, and the

computational work involved in the experiments of table 6.13.

149

The accuracies of the EAD method and the EAD fully iterative method are similar.

We note that calculating the R. H. S of the first equation in (6.14) requires mit

multiplications and 3mn additions, and that of the second equation requires mit

multiplications and mit additions. This has to be done for each iteration. Table 6.14

gives the total computational cost of this EAD method for this problem. It can be

clearly seen that for such a problem (also expected for all 2D time dependent

problems) the EAD fully iterative method is not better than the EAD method

although it is still much more economic than the AGE-2D method. The advantage

of the EAD fully iterative method is however that it can be easily extended to solve

the 3D problems which employ the unconditionally stable CN scheme while the EAD

method cannot apply a 3D version of the PR scheme due to the stability restrictions

as is shown in the next section.

6.3.2 A three dimensional Parabolic Equation

In this subsection the EAD fully iterative method is applied to the three dimensional

heat-conduction equation which is given as:

äü
_

02ü ä2ü ä2ü

ät äxi + äxz +äx3 + q(xl, mss, mss, t) (6.17)

defined over the domain given by R1 = [0 < x1, x21 x3 < 1], t>0, with the initial

conditions :

ü(xl
t x2, x39 0) - 91 (x1, x2) x3) (6.18)

where (xl, x2, x3) E SJRI , and the boundary conditions:

u(Xly x2, X3, t)
-

f1(x1, x2, x3, t) (6.19)

where (xl, x2i x3, t) E Mi x (t > 01 .

We cover X21 with a uniform mesh of gridpoints with spacings hl, h2, and h3 in the
directions parallel to the axes xl, x2, and x3 respectively, whereby for simplicity we

150

take hl = h2 = h3 = h. The meshpoints indices in the x1, x2, and x3 directions are

i, j, and k respectively, where 0<i, j, k<m+1. Thus h= 1/(m + 1). The index

for the time direction is n. The mesh ratio is given as r= k/h2, k being the time

increment. A weighted finite difference approximation to (6.17) is given by (with

0<0<1):

[1- Orb., - Orb! - Brbx3l U jk1 =

[i + (1 - O)rbx, + (i - O)rbx, + (i - O)rbs2 jUj k+ kq(xi, x2, x3, t) (6.20)

where 0 equals z and 1 for the Crank-Nicholson and the Implicit schemes

respectively. For solving the above heat equation, it is established that such

schemes are unconditionally stable. If equation (6.20) is divided by Or and

applied to the totality of meshpoints P; j, k (ordered in the natural sequence of
P111,1, P2,1,1,

...
Pm,, l, l, ... ,

Pi, 2,1,
Pi,

m, l, ... ,
Pi

, 2, ... ,
P{J, 3, ... ,

Pj, 1, *rº
) at each

time step, it leads to a normalized system of finite difference equations of order

m3. Without loss of generality, we here choose m to be odd. This system is given

as:

Au'+i =f (6.21)

where f is a known vector of order m3 consisting of the boundary values, the source

term values at each point, and the solution values at the time level u". The vector

un+l is the solution vector which is to be calculated for the time level n+1. The

coefficient matrix A is nonsingular and has the form:

A2 -12

12 0
A- .

0
-42

-12
A2

m3Xm3

151

where 12 is an identity matrix of order m2, and A2 is a block matrix given as:

Al -I,

-I1 0
A2 =

.. -I1

-I, Al m2Xm2

where Il is an identity matrix of order m, and Al is given as:

C -1
-1

O

A1=

-1 C
mxm

with c= (6 + ä). The AGE iterative method which was formulated by [22] for

solving (6.21) consists of splitting A into six matrices G1, G2, G3, G4i G5 and G6

such that:

A= GI+G2+G3+G4+G5+G6 (6.22)

where we have:

Gl + G2 =H= diag(H2) (6.23)

with H2 = diag(Hj), Hl being of order m, and given as Hl = diag(-1, c/3, -1).

and

G3+G4=V=diag(V2) (6.24)

where V2 = diag(-Il, VI, -Il) is of order m2. The matrix Vi is of order m and is

given as V1 = diag(c/3).

Also G5 and G6 are given such that:

Gs + G6 =W= diag(-I2,3I2, -I2) (6.25)

152

Gl and G2 are now given respectively as:

Gl = diag((%) and G2 = diag((%)

where

Gl = diag(Ti) and G2 = diag(T2)

Tl and T2 are given respectively as:

c/6

c/6 .1

-1 c/6
Ti =

c/6 -1

-1 c/6
and

c/6 -1

-1 c/6

T2 =

c/6 -1

-1 c/6
c/6

The matrices G3 and G4 are given as:

G3 = diag(G3) and G4 = diag(G4)

where G3 and G4 are given respectively as:

T2

0
G3 =

Tz

6`1 m2Xm2

(6.26)

(6.27)

(6.28)

153

and

CI 61

T2 0
G4 . (6.29)

O
T2

M2 XM2

where

sjl Il
T2 =

_A1 6I1
2mx2m

Simlarily G5 and G6 are given respectively as:

T3

0
Gs = (6.30)

T3

C 12
m3Xm3

and

C sr2

T3 0
G6 = (6.31)

O
T3

m3xm3

where

I2 `I2

C 2 6I2

J2m2X2m2

with I2 as defined above. It can be seen that the inversion of the matices, G1, G2, G3,

G4, G5 and G6 is simply a matter of inverting their respective constituent 2x2

matrices, or 2x2 block matrices. They are therefore easily invertable matrices.

154

The AGE method for this three dimensional problem; henceforth referred to as

AGE-3D is a six level iterative formula given as:

(Gl + sI)u; +l/6 = (sI - G, - 2G2 - 2G3 - 2G4 - 2G5 - 2G6)ur + 2f

(G2 + sI)ur+2/6 = G2ur + sup+1/6

(G3 + sI)Ur+3/6 = G3UT + SUT+2/6

(G4 + SI)Ur+4/6 = G4Up + SU*+3/6

(Gs + SI)Uf+5/6 = G5 Up + SUT+4/6

(C6 + sI)uv+' = G6uv + suT+5/6 (6.32)

where the suffix `r' under the solution vector indicates a rowwise ordering of the

components, and s is the acceleration parameter. The first equation of (6.32) can

also be written as:

(G1 + sI)u; +'1s = (G1 + sI - 2A)ur + 2f (6.33)

It is to be noted here that if when solving for the third and fourth sub-iterations,

and the fifth and sixth sub-iterations, the components of the solution vector were

ordered rowwise along the x2 axis and along the x3 axis respectively, then G3, G4

and G5, G6 will have the forms as Gl and Gz. Also with such a change in the

ordering of the unknowns, the matrices V and W(defined by equations (6.24) and
(6.25) respectively) will have the same form as H defined by equation (6.23).

Thus for the AGE-3D method, the solution is obtained by iterating equation (6.32)

in six stages until convergence is obtained.

We now present the EAD iterative method for the above three dimensional prob-
lem. This consists again of applying the finite difference approximation (6.20) as
described above to obtain the same system given*by equation(6.21). i. e. we use an

unconditionally stable finite difference scheme. We then split the coefficient matrix

A such that :

A=H+V+W

155

and proceed to solve (6.21) by applying an outer three levels ADI iterative

technique given by the following equations:

(H + pI)un+s/s = (p -V- W)up +b

(V + pI)up+4/6 = (p -H- W)up+z/6 +b

(W + pI)ur+i = (p -H- V)u'+4/6 +b (6.34)

where H, V and W are defined in (6.23), (6.24), and (6.25) respectively, and p is the

ADI iteration parameter. Each of the equations of (6.34 represents a tridiagonal,

or block tridiagonal system which is then solved by the AGE-1D method, in what
is referred to as the inner iterative process in the EAD fully iterative method.

To do this we redefine G1, G2, G3, G4, G5, and G6 given above as follows:

G; = G; -1-
2Ii=1,... 6 (6.35)

We then do the following splittings:

(H+pI)=GI +G2

(V+pI)=G3+G4

(W+pI)=Gs+G6

where G; are the newly defined matrices. The AGE-1D algorithm which is applied

at each of the three ADI levels of equation (6.34) to solve for UP+2/6, up+4/6 , and

up+l is that given by equation (6.5) i. e :

(G1 + sI)up+l/2 = dl -
(G2 - sl)u' =z

(G2 + sI)up+l = [dl - (G1 - sl)(Gi + sI)-lzj (6.36)

where uP+l corresponds to the required iterations of the solution up+2/s, up+4/6, and

up+l at the first, second and third ADI levels respectively. Also uP+1/2 in (6.36)

refers also respectively to some intermediate values, i. e up+l/s, uv+3/6, and up+a/s.

Again with the same reasoning as put forward in the case of the 2D hyperbolic case

earlier, (i. e, because each new iteration of equation (6.34) is only an enhanced

156

approximation to the required solution, we can therefore use non exact values of

ur+2/6, up+4/6 and up+l in equation (6.34) and do only one inner AGE4D iteration).

The solution is obtained for the above problem by the EAD fully iterative when

the outer ADI iteration procedure converges. The EAD fully iterative method

requires at each ADI level the calculation a RHS of one of the equations of (6.34).

This requires m3 multiplications and 5m3 additions. This is added to the cost of

4m3 multiplcations and 5m3 additions required by each iteration of the AGE-1D

algorithm given by (6.5). This makes a total of 5m3 multiplications and 10m3

additions for each ADI level or 15m3 multiplications and 30m3 additions for each
full EAD iteration. This is compared with the cost of 24m3 multiplications and 23m3

additions for a full AGE-3D iteration given by equations (6.32). We also make the

following count on how many synckronizC&ion_ ppinEs Eke meil, od Involves

to examine broadly the overall parallelism of each method. We note that for a single

AGE-3D iteration, we require six sub-iterations of the solution to be done in sequence
(see equations (6.32). The evaluation of the vector representing the right hand side
(i. e. vi, i=1, ... 6) in each of the equations of (4.98) has to be performed before

evaluating explicitly the sub-iteration solution vectors u"+I = (G; + sI)'lvi. This

implies that there are two sets of computations to be performed in sequence at each

sub-iteration level. This brings the total number of -
SyChrO U zatiorny po.. n ES.

to twelve per each full AGE-3D iteration. We also note here that the pairs of

computation set at the second, third, fourth, fifth, and sixth sub-iteration levels can
be combined easily into one set at each level. This can be done by replacing the

implicit (second, third, fourth, fifth, and sixth equations of (6.32) respectively by

the following explicit equations:

u*+2/6 = (G2 + sI)-'Gsu; + s(G2 + sl)-pup+1/6
ur+3/6 = (G3 + sI)-1G3uT + s(G3 + sI)-1V*+2/6

ur+4/6 = (G4 + sl)-'G4uf + s(G4 + sl)-IUp+3/6
u*+5/6 = (G5 + sI)-'Gsur + s(Gs + sl)-lu*+4/6

ur+l = (G6 + sl)-'G6u* + s(G6 + sI)-'uP+5/6 (6.37)

157

Each of the above equations can be evaluated by one set of computations. This will

increase the number of computations involved in one full AGE-3D iteration, but

will bring down the number of syncihrpnizokior% poinIS to seven sets per

each iteration. We note that the first equation of (6.32) is much more complicated

than the second, third and the fourth, fifth, and sixth and is thus more difficult to

evaluate it explicitly. Hence the total number of Synchronization p&J1 Es

involved at every time step when applying the AGE-3D method is (12 * NIT + 1)

or at best (7 * NIT + 1), NIT being the total number of iterations required. One ? 61nE

is added in each case to account for the set of computations required for evaluating

the R. H. S. of (6.21).

On the other hand, when applying the EAD fully iterative method, we require one

set of operations to evaluate the R. H. S at each ADI level, and (see page 141) three

sets of operations to execute one AGE-1D iteration in that level, if the algorithm

given by (6.36) is used. This makes a sum of 4 sets of computations at each ADI

level, or a total of 12 sets for the execution of a full iteration of the EAD method.

It is also noted before (see page 141) that every one AGE-1D iteration at each ADI

level may be executed in only two sets of computations. This will again increase the

number of computations to be done for each AGE-1D sub-iteration but will diminish

the number of sets of computations which are to be done in sequence. The total

number of sjnckronizo±ion pnin s for the EAD fully iterative method is

(12 * NIT -{-1), or at best (9 * NIT + 1), NIT being the total number of iterations

required. Again one set is added in each case to account for the set of computations

required for evaluating the R. H. S. of (6.21). In the following experiment we do not

attempt to reduce the number of, S3 n6%ronizo, (. iort p6i aLs. We compare between

the two methods by the following experiments equation where the source function

q of equation (6.17) is given as:

q(xl, x2, x3, t) _ (31r2 -1)sin(irxl) sin(7rx2) sin(irx3) exp(-t) (6.38)

and the functions defining the initial and boundary conditions are:

gl (xl, x2, x3i 0) = sin(rxi) sin(7rx2) sin(1rX3) (6.39)

158

fl(xl, x2i x3, t) = sin(axl) sin(irx2) sin(ax3) exp(-t) (6.40)

as derived from the following exact solution to equation (6.17):

ü(24, x29 x3, t) = sin(irxl) sin(7rx2) sin(7rx3) exp(-t) (6.41)

The results which are obtained by applying the EAD fully iterative, are compared

with those obtained by applying the AGE-3D method as given in [22] where we

use a grid having 39 internal meshpoints along each of the directions x1, x2, and

x3, thus making the space step h=0.025. Also a time step k=3.125 x 10'5 is

chosen, thus giving a mesh ratio of 0.05. These results are shown in tables 6.15 and
6.16. Table 6.15 shows that the EAD fully iterative method converges much faster

than the AGE-3D method (about four times faster). This fast convergence produces

an even better accuracy of the solution (although both methods use identical finite

difference schemes) when the tolerence applied is not very small (e. g. C= 10-4).

This is because a method which converges faster cuts down, on average, larger

chunks of error in the solution vector every iteration, and is likely to make a higher

reduction of the error in the solution vector before it converges. The small number

of iterations for the EAD fully iterative also results in much less computational work

to be done, and a smaller number of sequential sets of operations to be executed.
Table 6.16 shows that the EAD fully iterative requires less than a quarter of the

computations 1 needed by the AGE-3D method. It also shows that the number of

sets of computations, to be pereformed in sequence is cut down to only a quarter
by the EAD fully iterative method as compared with the AGE-3D method. This

implies a significant superiority in the overall parallelism of the method.

'This does not include the cost of calculating the RJLS of (6.21) which is the same for both

methods, and is trivial compared to the sums in this table.

159

a) s2 : 0.025 , m3 = 0.025;

mesh ratio 0.05,421 pst s Ax3 s 0.025, At s 3.125E - 05 ,t-3.125E - 05 ,ss 10-

21 as . 025 . 50 0.975 No. of iterations Average of errors

scheme
IMF EAD 2.89E-08 3.14E-06 7.86E. 07 2 1.3E-06

1.81E"06 3.89E-05 6.99E-07 9 2.4E-07

2.98E-06 5.61E-07 5.14E-07 2 3.68E-08

7.1E-08 1.41E-05 5.6E-08 9 4.72E-07

Exact solution 0.000482996 0.006156022 0.000482996 """ """

b) 82 - 0.975 , 113 = 0.025;

mesh ratio - 0.05, Gs1 s pst - Asa m 0.025, At m 3.125E - 05 ,t is 8.250E - 05 ,se, 10-4

sl - . 025 . 50 0.975 No. of iterations Average of errors

scheme

EAD 4.32E-08 7.75E-06 1.62E. 06 2 2.71E-06

7.0E-06 2.93E-04 7.02E-05 8 1.23E. 04

4.35E-09 2.22E-06 1.04E-06 2 1.09E-06

1.67E-06 2.16E-04 7.46E-05 9 7.5E"05

Exact solution 0.000483011 0.006156214 0.000483011 """ "".

c) sZ - 0.975 's3 a 0.5,

mesh ratio - 0.05, Axt : &z2 - &z3 - 0.025, Gt - 3.125E - OS ,t ss 1.250E - 04 ,e- 10-4

S1. . 025 SO 0.975 No. of iterations Average of errors

scheme

EAD 5.14E-06 2.54E-04 4.31E-05 2 1.0E-04

9.58E-04 2. S9E-02 8.57E-04 8 9.2E-03

1.4E-06 8.32E-05 2.56E-05 2 3.67E-03

' 2.81E-04 2.16E-02 5.16E-04 8 7.4E-03

Exact solution 0.006156599 0.078468904 0.006156599 "" ".

d) 22 1 O. 5 . 23 a 0.5;

mesh ratios 0.05, Ast I A22 I Asa s 0.025, At s 3.125E - 03 ,ts1.5625E - 04 ,es 10-4

21 s . 025 . 50 0.975 No. of iterations Average of errors

scheme
IMF EAD- 6.6E-05 3.85E-03 6.56E-04 2 1.52E-03

9.83E-03 1.88E-01 1.55E-02 8 7.1E"02

7.82E-08 1.19E-03 3.79E-04 2 5.25E. 04

3.95E-03 8.77E-02 3.89E-03 8 3.1E-02

Exact solution 0.078471356 1.000156262 0.078471356

Table 6.15: The absolute errors of the solutions by the AGE-3D and the EAD fully

iterative methods to the model 3D heat conduction problem.

Method IMP CN

EAD AGE-3D EAD AGE-3D

Number of iterations 2 6 2 6
No. (in m3) of +&e operations 30+; 60e 164+; 192. 30+; 60e 164+; 192.
Total (in m3) of +/e operations 90 376 42 376

Computational cost w. r. t. AGE-3D 24 % 100 % 24 % 100 %

No. of synchronization points 25 97 2S 97

Table 6.16: The computational work involved in the experiments of table 6.15.

160

6.4 The EAD fully Iterative method for Elliptic

problems

In this section, the EAD fully iterative method strategy is applied in the solution

of a boundary value problem.

Consider the simple two dimensional Laplace equation given by:

o2Ü ä2U-
-X2 + ax2 =0 (6.42)

defined over the domain RUaR. where R= [0 < X1, X2 < L], with the Dirichlet

boundary conditions :

ü(x1, x2) = fl(xbx2) (x1, x2) EOR (6.43)

We cover t with a uniform mesh of gridpoints with spacings, hl, and h2, in the

directions parallel to the axes x1, and x2 respectively, whereby for simplicity we

take hl = h2 = h. We choose h such that we have an odd number m of gridpoints

lying inside i along any line of the mesh along the x1 or x2 directions. We thus

have h= L/(m + 1).

A central finite difference replacement of the second order derivatives to 0(h2)

accuracy in equation (6.42) gives :

Tz [Sil + SsýjU$3 =0 (6.44)

which leads to the following five point formula:

-U; +,, 1- U+-,, j - Uij+i - U;, 1-i + 4U11 =0 (6.45)

If we apply equation (6.45) to the totality of mesh points in i we obtain a symmetric

system of difference equations given as:

Au =b (6.46)

161

where A is a nonsingular square matrix of order m2 given by:

Al -I,

-Il 0
A=

0 -Iý
-I, Al M2XM2

where Ii is an identity matrix of order in, and Al is a matrix given as:

4 -1

A1=
0

-1
-1 4

mxm

and b is the vector associated with the values at the boundaries.

If the Peaceman-Rachford method is applied to solve the system (6.46) iteratively

we need to split A into :

A=H+V (6.47)

and solve the following two systems in sequence:

(H + PI)up+1/2 = (PI - V)up +b

(V + PI)uv+i = (PI - H)u"+1/2 +b (6.48)

where H= diag(H1), with Hl = (-1,2, -1) and V= diag(-Il, 2I1, -I,), and pa

chosen acceleration parameter.

Equations (6.48) are equivalent to the following, less computationaly demanding,

systems:

(H + pI)up+i/s = (p1- V)up +b ='q

(V + pI)up+i = (V - pI)up + 2pur+1/2 (6.49)

162

It is customary to solve each of the two systems in (6.49) using a direct method

i. e Guassian elimination.

The EAD fully iterative technique for solving (6.46) employs the Peaceman-

Rachford method producing equations (6.49), but rather than using a direct tridi-

agonal solver, it implements the AGE-1D algorithm given by (6.5) to solve each

system in (6.48). There are three ways of implementing the AGE-ID within each

ADI iteration here.

Strategy I: One is to iterate the AGE-ID algorithm until it converges to the values

up+1/2 and uP+l in (6.49), and this approach is referred to as strategy I.

Strategy II: Another way is to apply only one sweep of AGE-1D within each ADI

iteration, which is the strategy followed for the initial boundary value problems in

subsections 6.3.1 and 6.3.2. This is referred to as strategy II, and is based on the

reasoning that the values up+1/2 and uP+' in each ADI iteration of (6.48) are only

enhanced values of the solution and need not to be computed exactly each time.

Strategy III We note however that unlike the time dependent problems where

the starting vector, representing the values at the previous time step, is close to

the required solution, the starting vector here may be very far off the required

solution. We therefore use more enhanced non-exact values of up+1/2 and uP+l, for

the first ADI iteration by having three inner AGE-1D iterations. In subsequent ADI

iterations only one sweep of the AGE-1D algorithm is used. This is strategy III.

For strategy I convergence is expected for a low number of ADI iterations. However

the computational cost for each ADI iteration of strategy I. kb compared to that

of strategies II and III.

In strategy III, it is expected that by having three sweeps of the AGE-1D algorithm

in the first ADI iteration, a better starting vector will be provided for the subsequent
ADI iterations and will thus result in a significant improvement in the convergence

rate compared to strategy II, and thus save the computational cost further. Strategy

III is thus recommended, and is henceforth meant whenever reference is made to

the EAD fully iterative method for elliptic problems.

163

Tables 6.17 ... 6.20 give the numerical solutions to the Laplace equations by the

EAD fully iterative method and a comparison of the computational costs of strategies

I, II, and III. It is clear that strategy III is most desirable, requiring about 43 %

and 72 % of the computational cost of strategy I in the first and second experiments

respectively.

The counts for the number of additions/subtractions and multiplications is done

as follows. The cost of calculating the right hand side of the first equation in

(6.49) is easily worked out as m2 multiplications and 3m2 - 2m additions. The

operations count for calculating the rhs of the second equation in (6.49) is m2

additions and m2 multiplications. This makes the total for both right hand sides

2m2 multiplications and 4m2 - 2m (= 4m2) additions or 6m2 (+/ x) operations. To

this we add the cost of solving each block tridiagonal system at each of the levels

in every ADI iteration. This depends on the number of sweeps of the AGE-1D

algorithm of (6.5) applied at each ADI level in each iteration. Each sweep costs

5m2 additions and 5m2 multiplications or 10m2 (+/,)() operations.

For strategy II, we have only one sweep of the AGE-1D algorithm in each of the two

ADI levels. This together with the costs of calculating the right hand sides in (6.49)

make the total cost for strategy II equal to (20m2 + 6m2)NIT, or (26m2NIT) opert cnS,

where NIT is the number of ADI iterations needed for the solution to converge.

For strategy III, the cost is (60m2+20m2(NIT-1)+6m2NIT) or 26m2NIT+40m2ope 0flS.

For strategy I the number of sweeps of the AGE-1D algorithm, required in each
ADI iteration starts high and drops to 1 at the final ADI iteration. The average

number of sweeps per each ADI level is denoted by p and is given in brackets for

the respective experiments in tables 6.18 and 6.20. The total cost for strategy I is

thus (20m2#NIT + 6m2NIT).

Experiment

Consider the above Laplace equation where the Dirichlet conditions at the bound-

aries are given as follows:

ü(xi, 0) = ü(xi, L) = f(xi) = xi(xi - L)

164

ü(O, x2) = ü(L, x2) = g(x2) = x2(L - x2) (6.50)

The exact solution of such a problem is unique and is given by:

ü(xl, x2) = xl(xl - L) + x2(L - x2) (6.51)

By discretizing the problem as described above, we arrive at the system (6.46)

where the vector b is given as:

b= 9(x2(1)) + f(xi(1)), f(xl(2)),
...,

f(xi(m - 1)), 9(x2(1)) + f(x1(m));

9(x2(2)), 0, ... , 0,9(x2(2)); 9(x2(m - 1)), 0, ... 9 0) 9(x2(m - 1));

f (xi(1)) + 9(x2(m)), f (xl(2)),
... ,f

(xi(m -1)), f(xi(m)) + g(x2(m))]T

We follow the same steps above for (6.49) which is rewritten here as:

(H + pI)uv+1I2 = API - V)up +b =q

(V + pI)up+i = (V - pI)uP + 2pur+i'2 (6.52)

The term denoted by vector a above may be stored after being calculated to be used
in the second equation of (6.49) to save work. Alternatively, we note from the first

equation of (6.49) that :

(V - pI)u" =6- q (6.53)

Therefore, we may replace the second equation in (6.52) by :

(V + pI)up+i =b-q+ 2pup+1/2 (6.54)

This costs an extra m2 additions/subtractions, but saves the need for the extra

storage of the vector a, and reduces by one the number of synchronization points in

the execution of each ADI iteration.

165

Axi = Axe = . 027, e= 10'6

XI = . 027 . 136 . 245 . 354 . 463 . 572

xz = . 027

Anal. . 0000000 . 0912397 . 1586777 . 2023140 . 2221488 . 2181818
Numer. -. 0000012 . 0912400 . 1586780 . 2023139 . 2221488 . 2181815

error 1.2E-06 3.1E-07 3.6E-07 1.7E-07 4.9E-07 2.7E-07

X2 = . 245

Anal. -. 1586777 -. 0674380 . 0000000 . 0436364 . 0634711 . 0595041

Numer. -. 1586772 -. 0674367 -. 0000009 . 0436360 . 0634700 . 0595038

error 4.9E-07 1.3E-06 9.0E-07 3.2E-07 1.0E-06 3.4E-07

X2 = . 464

Anal. -. 2221488 -. 1309091 -. 0634711 -. 0198347 . 0000000 -. 0039669

Numer. -. 2221480 -. 1309059 -. 0634672 -. 0198317 . 0000016 -. 0039666

error 7.8E-07 3.1E-06 3.9E-06 3.0E-06 1.6E-06 3.6E-07

Table 6.17: The absolute errors of the solutions to the Laplace equation, as obtained
by the EAD fully iterative method, strategy III for h= 6/210.

The computational cost for different strategies of the EAD fully iterative method.
Strategy I Strategy II Strategy III

ADI/ AGE parameters p=0.4&s=1.0 p=0.3&s= 1.0 p=0.3&s=1.0
No. of ADI/ AGE iterations 28 (4.8) 69 (1/1) 1 (3/3) & 45(1/1)

Average of absolute errors 6.3E-07 3.8E - 06 1.26E-06
Total number of (+/x) in m2 2856 1794 1236

Table 6.18: The computational cost of the three possible strategies of the EAD fully

iterative method for the experiment of table 6.17

166

0x1 = Ox2 = . 0375, E= 10-6

XI = . 037 . 15 . 26 . 37 . 49

xi = . 037

Anal.
. 0000000 . 0914062 . 1575000 . 1982812 . 2137500

Numer.
. 0000003 . 0914072 . 1575013 . 1982825 . 2137507

error 2.7E-07 9.6E-07 1.3E-06 1.2E-06 7.1E-07

xl = . 262

Anal. -. 1575000 -. 0660938 . 0000000 . 0407812 . 0562500

Numer. -. 1574985 -. 0660886 . 0000070 . 0407877 . 0562538

error 1.5E-06 5.1E-06 7.0E-06 6.4E-06 3.8E-06

xl = . 487

Anal. -. 2137500 -. 1223438 -. 0562500 -. 0154688 . 0000000

Numer. -. 2137491 -. 1223406 -. 0562458 -. 0154648 . 0000023

error 8.9E-07 3.1E-06 4.2E-06 3.9E-06 2.3E-06

Table 6.19: The absolute errors of the solutions to the Laplace equation, as obtained
by the EAD iterative method, strategy III for h= 6/160.

The computational cost for different strategies of the EAD fully iterative method.
Strategy I Strategy II Strategy III

ADI/AGE parameters p=0.7ands=l. 0 p=0.9&s= 1.3 p=0.7&s=1.4
No. of ADI/ AGE iterations 24(3/3) 46 (1/1) 1(3/3) & 42(1/1)

Average of absolute errors 3.2E - 06 3.6E - 06 3.3E-06

Total number of (+/x) in m2 1604 1196 1158

Table 6.20: The computational cost of the three possible strategies of the EAD fully

iterative method, for h= 6/160.

167

Two experiments for solving the above problem with different mesh sizes are carried

out. For both experiments we choose L=0.6. We also choose m= 20 for the first

experiment, tables 6.17 and 6.18, and m= 15 for the second experiment, tables 6.19

and 6.20, thus giving the mesh sizes h=0.6/21 and h=0.6/16 respectively.

6.5 Convergence analysis of the EAD fully iter-

ative method

The convergence of the EAD fully iterative follows in an obvious manner if the

convergence of its outer and inner iteration procedures is assured.

For the inner AGE-1D iteration the convergence is assured by the analyses given in

subsections 4.4.2 and 5.3.2.

For the case where the EAD fully iterative method is applied to two dimensional

problems, where the constituent matrix Hl and Vi of the coefficient matrix A are

symmetric positive definites (e. g case of the elliptic problem of section 6.4) the

convergence of the outer ADI iterative procedure. is u. e I1 documented in the

literature (e. g see [49]p: 212-213 and [28]p: 196).

In the following two subsections the convergence of the outer ADI iterative procedure
is given for the problems of subsections 6.3.1 and 6.3.2 respectively.

6.5.1 The two dimensional advection problem

As for the application of the EAD fully iterative method for the two dimensional ad-

vection problem of subsection 6.3.1 it is noted that the outer ADI iterative procedure
is given by (6.13). This is rewritten here as :

(H1 + pI)u' 112 = (pI - Vi)uP +b

(vi + pI)up+l = (pI - H1)up+1/z +b (6.55)

with p being the acceleration parameter.

168

The matrices Hl and V1, each of order m2, are again given here respectively as:

Hl = diag(Ti) where Tl = diag(a2, b, al)

and Vl = diag(a4I, bI, a31);

For the advection problem we have the following relations:

al = -a2 = ax and a3 = -a4 = ay

(a. = ay =1 for the normalized system of subsection 6.3.1)

and b= 1/r, where r= k/2h. k and h being respectively the time increment and

space step used in the discretization of the problem.

Now we establish the proof for the convergence of the ADI procedure of (6.55).

The iteration matrix of (6.13) is given by:

To = (Vi + pI)-i(Hi - pI)(Hi + pI)-i(Vi - p1) (6.56)

is the ADI iteration matrix. The ADI iterative procedure will converge if :

S(T) <1 (6.57)

By the special structures of Hl and V1, it can be shown that they are commutative
i. e H1Vi = Vi Hl. Therefore they share the same eigenvector matrix X such that

Hl = XA1X-' and Vl = XA2X'1. (6.58)

where Al = diag()J) and A2 = diag(i 1) are diagonal matrices with elements aj and

ij representing respectively the eigenvalues of Hl and V1. It is noted also from the

structures of Hl and Vl that they have only m distinct eigenvalues. These are given
by:

j=b+ iv� 'j, =b+ iw1 with i2 = -1,

169

where

v, = 2axcos((n 1
1)

), and wi = 2aycos((n +
1)

)j= 1'... m

By (6.56) and (6.58), the eigenvalues ýj of T. can be given as:

(. \i - P)(77i - P) ýý
(Ai + P)(77i + P)

Hence the spectral radius S(TT) is given by:

(b-p)2+vý (b- p)2+wi
S(Tp)=maxjýjj=max (6.59)

> (b+p)2+VJ (b+p)2+wi

By defining

v= max vi = 2as cos
ým

+ 1) ;w= max wf = 2a, cos (m
+ 1(6.60)

S(Tp) = ((b + p)Z + v2) ((b + p)2 + w2)
<1 for every p>0 (6.61)

Hence the method is convergent.

6.5.2 The three dimensional heat conduction problem

We now consider the convergence analysis for the EAD fully iterative method given
by equations (6.34) for the three dimensional parabolic problem. The iteration

matrix To of the method is given as:

T. = (W + pI)-1(pI -V- H)(V + pI)-1(pI -H- W)(H + pI)-1(pI -V- W)

By virtue of the mutual commutativity of H, V, and W, the eigenvalues of T,, may
be given as:

At(7'v) - (a1(pI -V- H))(AL(pI -H- W))(. c(PI -V- W)) (6.62)
At(W+pI) JºI(V+pI) AI(H+pI)

170

If we define:

H, =H-3I

Vi=V-3I

Wi=W-3I

Then equation (6.62) becomes:

(Xi[(P ý7'v) --V, - Hl]
Aa[Wi+(P+3)1]

)

x
At[(P - 3`)1- Hl - Wi]l

X
(Al[(P - 3`)I - V1- W1]

(6.63)
alVi+(P+3 I] / ai[HI+(P+`)I] / CD II

Then by the formula of (2.13) the eigenvalues of Tp can be written as:

(P_+2cos--_+2cos_-_Y'
mim

2cos(mst1)+s+p
k is a (p-L

-}-2COS(mitl)+2COS(»a3t1)
X

2cos(ýj1)+s+p

(p-L+2cos(k>r)+2cos(ýý
X3 m3t1 m2t1

2cos(mi+i)+3+p

i=1,..., m1; 1=1,... m2 ; k=1,... m3

from which we can write:

(6.64)

S(TP) = max { Ai, J, k(Tp)} < max
p3 ý' 2 cos(mi+l) -- 2 cos(-ý+1)

+, 7, k 2 cos (m3+1) -}- 3 -}- p

iý kx
p- 2c +2cos(ml+i)+2cos(m, +l) x max 2 cos(

M2+1)
+3+p

p- 3` +2 cos(k")+2 cos(-_*) (6.65) m3+l x max mý+l
ij, k 2 cos(m,

+1) +3 ý' p

i=1,..., m1; ý=1,... m2; k=1,... m3

We now consider the first term on the right hand side of inequality (6.65). For this

term to have a modulus less than unity it must have:

(P_+2cosi+2cosi\
-1 <1 (6.66)

2 cos(ms+l) +3 + p)

171

To satisfy the right inequality, we should have:

p_
2c

+2 cos(
Zr)+2 cos(

jr)<2 cos(
kr

)+c -f- p (6.67)
3 ml+1 m2+1 m3+1 3

or

-c. <2 cos(
k7r

)-2 cos(
ST)-2 cos(

jr (6.68)
m3+1 ml+1 m2+1

which is always satisfied because c>6.

To satisfy the left inequality of (6.66) we should have:

-2 cos(
kr

)-c-p<p- 2c
-- 2 cos(

zr) -{- 2 cos('ýr) (6.69)
m3-ý1 33 ml+1 m2+1

+c -2p <+2cos(
kr

)+2cos(ml M +2cos(
mjr -}- 1)

) (6.70)
m3+1 2+ 31

The right side of (6.70) is greater than -6, therefore (6.70) is satisfied if:

+3 --2p < -6 (6.71)

Note that c=6+B. Therefore the left inequality of (6.66) is satisfied if.

p>4+ 61e
(6.72)

A similar condition can be derived to assure that the second and the third terms on
the right hand side of inequality (6.65) are less than unity.

This means that the convergence of the iterative procedure given by (6.34) is

assured for values of the acceleration parameter p which satisfy (6.72).

6.6 Consistency of the three level ADI iterative

procedure

We consider here the proof of the following lemma.

172

Lemma 6.1 The three level ADI iterative procedure defined by equation (6.34) for

solving (6.21) is consistent.

Proof :

Upon eliminating up+2/6 and up+4/6 the three level ADI iterative procedure may be

written in one step as:

up+i = Tu" +k

where TP is the iteration matrix given as:

(6.73)

Tp = (W+pI)-1(pI-V-H)(V+pI)-'(pI-W-V)(H+pI)-1(pI-W-V)(6.74)

and k is given as:

k= (W+pI)-1{(pI-H-V)(V+pI)-1[(pI-H-W)(H+pI)-i+I]+I}b

= (W + pI)-'{(pI -H- V)(V + pI)-1[-I - (W + pI)(H + pI)-i

+3p(H + pI)-1 + I] + I}b

= (W + pI)-1{(pI -H- V)[-(V + pI)-1(W + pI)(H + pI)-i

+3p(V + pI)'1(H + pI)'1] + I}b

= (W + pI)-'{(3p1- (H + pI) - (V + pI))[-(V + pI)-'(W +, pI)(H + pI)-1

+3p(V + pI)-1(H + pI)-'] + I}b

(W + pI)-i{[_3p(V+ pI)-'(W + pI)(H+ pI)-i + (V + pI)-1(W +pI)

+(W + pI)(H + pI)-' + 9p2(V + pI)-1(H + pI)-1 - 3p(V + pI)-i

-3p(H + pI)-1) + I}b

= {-3p(V + pI)-'(H + pI)-i ,+ (V + pI)-' + (H + pI)-i + (W + pI)-i

-3p(W + pI)'1(V + pI)-' + 9p2(V + pI)-1(H + pI)'1(W + pI)'1

-3p(W + pI)'1(H + pI)-'}b (6.75)

To prove consistency for the above iterative procedure we need (by theorem 3.1) to

prove that (I-TP)A-1b = k. From (6.74) and using the relation (A = H+V+W)

173

we can write:

I-T1, =I- (W +PI)-1((W +PI) - A)(V +PI)-1((V +PI) - A)

(H + pI)-'((H + pI) - A)

=I- [I - (W + pI)-IA][I - (V + pI)-1A][I - (H + pI)-1A]

= I-[(I-(W+pI)-'A)][I-(V+pI)-1A-(H+pI)'1A

+(V + pI)-1(H + pI)-'A 2J

= I-[I-(H+pI)-lA-(V+pI)-lA-(W+pI)-'A

+(W + pI)-'(H + pI)-1A2 ,+ (W + pI)-1(V + pI)-1A2

+(H + pI)-1(V + pI)-'A2

-(W + PI)-1(V + pI)-1(H + PI)-1A3] (6.76)

Further expansions of the last term of (6.76) and eliminations lead to :

I-T, = (H + pI)-1A+ (V + pI)-1A+ (W + pI)-'A

-(W + pl)-' (H + PI)-1A2

-(W + pI)-1(V + pI)-'A2 - (H + pI)-1(V + pI)-"A2

+(W + pI)-1(V + pI)-'(H + PI)-'A 2[(H + pI)

+(V + pI) + (W + pI) - 3p1)]

= (H + pI)-1A+ (V + pI)-1A+ (W + pI)-1A - (W + pI)-ý(H + pI)-'A2

-(W + pI)-'(V + pI)-ýA2 - (H + pI)-1(V + pI)-1A2

+(W + pI)-'(H + pI)-1A2 + (W + pI)-'(V + pI)-'A2

+(H + pI)-'(V + pI)-1A2 - 3p(H + pI)-1(V + pI)-1(W + pI)-'A2

= (H + pI)-'A+ (V + pI)-1A+ (W + pI)'1A

-3p(H + pI)-1(V + pI)-'(W + pI)-'A2

[(H + pI)-l + (V + PI)-l + (W + pI)-i

+9p2(H + pI)-'(V + pI)-'(W + pI)-i - 3p(W + pI)-'(H + pI)-i

-3p(W + pI)-'(V + pI)-i

-3p(H + pI)-1(V + pI)-']A (6.77)

174

Therefore from (6.77) and (6.75) we can see that:

(I - Tp)A'1b =k (6.78)

Hence this ADI method is consistent.

To prove also that this iterative procedure is reciprocally consistent we need by

theorem 3.2 to show that (I - TP) is nonsingular.

This however does not follow in a staightforward manner from equations (6.76)

and (6.77).

Chapter 7

Further= applications of the

AGE-1D and EAD methods for

coupled systems

7.1 Physical Background

The equations governing fluid motion through a control volume V fixed in space and

time may be derived from Newton's second law of motion which require that the

rate of change of the linear momentum be equal to the sum of the forces applied.

This can be expressed by the following equation:

jejfdV= >F (7. i)

i. e " mass x acceleration = force", where e is the density of the fluid, and v is the

velocity vector having components u, v, and w in the cartesian coordinates (ix, jy, kz).

EF sums the contribution from all forces acting on the surface of the control volume

or throughout the volume. The most common of these forces are gravity, viscosity,

pressure gradient and force due to the rotation of the earth (i. e the coriolis force).

Different types of the equations may be derived from (7.1) depending on the nature

of the flow. Of particular importance are the:

175

176

1. The Euler equations: These apply strictly to inviscid flows. This is a category

which covers a wide range of flows where the viscosity forces are negligible

compared to other acting forces (e. g the barotropic flow in the `free atmosphere'

away from the effect of the surface of the earth).

2. The Navier-Stokes equations: These account also for the contribution of the

viscosity or stress forces to the rate of change of the linear momentum. These

equations also have a wide range of applications in modelling different flows

(e. g the flow around a streamlined body immersed in fluid, and the atmospheric

flow in the Planetary Boundary Layer (i. e the layer of atmosphere close to the

earth's surface.)

These equations can be found in ([24] chapter 11) among various other specialised

references and are not given here.

Different types of equations can be obtained through various simplifications of the

Euler and Navier-Stokes equations to model certain flows based on appropriate as-

sumptions that can be made about the flow (such as about the scale of contribution

of some forces compared to others, and assumptions about the compressibilty of the

fluid) as well as on whether the model is one, two, or three dimensional. In the

following sections we consider some of these simplified models. We apply the AGE-

1D method to solve the momentum equations of a simple idealized 1D model of the

Planetary Boundary Layer, in the steady state. We also apply the EAD method

for solving a linearized version of the Shallow Water Equations which describes an

incompressible, inviscid flow with a free surface.

7.2 The AGE-1D method for an idealized plan-

etary boundary layer model

Introduction

In this section the momentum equations of a simple one dimensional model for an

177

idealized planetary boundary layer (henceforth referred to as PBL) in its steady state
is considered.
The PBL is the region close to the ground (up to 1 or 2 km) where the atmosphere
is strongly influenced by the presence of the surface. In contrast to the smoother
flow above it in the "free atmosphere", the PBL is usually turbulent, and thus
the "turbulent diffusion" terms in its momentum equations are significant. The
equations for such a model can be given as:

äii äzü
ät -fvg + fv + km = äz2
äv 02i)

ät = fug-fý`+kmäzß (7.2)

where ü and v represent the components of the wind mean velocity in the west-east
and south-north direction respectively. Similarly u9 and v9 are components of the
wind velocity in the upper free atmosphere layer. Also k,,, is a turbulent diffusion
coefficient, and f= 211 sin is called the coriolis parameter which is constant at
any fixed latitude cb of the earth, fl = 7.27 x 10-5rds-1 is the angular momentum
of the earth.
The problem and the AGE-1D method
In the steady state form the above problem is given by the following equations:

fv-fv9+kmd z=0

fü- fug+kmä z=0 (7.3)

defined over the domain R= [0, L].

The model is subject to the following conditions at its lower and upper boundaries:

ü=v=0 at z=0 (No wind at earth surface)
v= v'=O

at wind direction is east - west (7.4)
= u9 x =L in the free atmosphere

and has an analytical solution given by:

ü= u9(1 - exp
ä

cos
ä)

- v9(exp sin
ý)

D= v9(1 - exp
s

cos s) + u9(exp
T

sin
ý)

where 8= Vlkf: ýý. Equations (7.3) may be rewritten as:

Al
äzZ

+ Blw + Cl =0 (7.5)

178

with w=ü; Al =
km 0;

Cl =
[_fv9]

; Bl =0f v0 k�ý f u9 -f 0

We now discretize equation (7.5) along the z-axis with equally spaced gridpoints

p; (0 <i<m+ 1) and gridspacing h= L/(m + 1), and apply a central difference

approximation to the second order derivative to obtain the following replacement of
(7.5):

Aiwa+i + (-
2
At + B1)wi +2 Aiwa-i + Cl =0 (7.6) 2 T- T-

for 1<i<m

Multiplying by km' this equation becomes:

-w; +i + Ew; + w; _1 =S (7.7)

2a 2b su
where E= and S

II=

- 2b 2a sv

[l

with a=1; b= -2 ; su = fvgh2/km; and sv = -fugh2/k,,,.

If (7.7) is applied to all the gridpoints p; inside J2 we get a bivariate unsymmetric

system of difference equations of the form (5.48) where

W= (wi, w2i ... Wm)T.

To solve this system by the AGE method we split A in the same way as given by

(5.50) and (5.51) and apply the AGE algorithm given by the first two equations

of equations (5.52).

It can be seen that (G1 + sI) and (G2 + sI) can be easily inverted since they are
block diagonal and consist only of 2x2 matrices (i. e G+ sI) and/or 2x2 block

matrices (i. e C+sI). We can thus define:

1_ 1. k G+ sI I (G + sI)I. 1 A-1
(C+sI)- C=_ (7.8)

I G+ sI A-1 (G + sI)0-1

where 0 is a nonsingular matrix given as:

a+ sb [a+ sb]_[I 0 adelc bdelc

-b a+s -b a+ s01 -bdelc adelc

179

with adelc = (a + s)2 - b2 -1 and bdelc = 2(a + s)b.

We can now write (G1 + sI)-1 and (G2 + sJ)-1 (and also define Gl and G2) as:
C

C0

C
(Gý + sJ)-ý =

QGl
.Ö (7.10)

0C
C

and
I A(G + sI)-1

d2

co
c

C
00

(7.11)

. (G + sI)'1

Thus the second equation of (5.52) may be rewritten as:

wp+l = b' -
Gz[0-2(Gl

- sI)GJy (7.12)
%

where b' = (G2 + sI)-lb.

If we define C= 0-2C(C - sI) then the underbraced may be replaced by H and

equation (7.12) can be written as:

wP+i = b' -
GZHy

where H= diag(O).

(7.13)

The use of equation (7.13) saves 2m multiplications per iteration compared to

when using the second equation of (5.52) because equation (7.13) preserves the

unity coefficients in C, while in the latter equation these elements are not preserved.

The component equations of the above matrix equations are not given here but can

be found in the listing of the 'program pbl' given in Appendix 2. We give here the

numerical results obtained by applying the AGE method to the above problem.

180

L=210 ;h= 10 u9=10 v9=0.0

e=1.0E - 03 Accelaration Parameter s= . 28

RESULTS AFTER 30 iterations

Anal U . 227 . 679 1.129 1.575 2.015 2.449 2.874 3.291 3.698 4.094

Numer U . 227 . 679 1.128 1.574 2.014 2.448 2.874 3.290 3.698 4.094

error . 000 . 000 . 001 . 001 . 001 . 001 . 001 . 001 . 000 . 000

Anal V . 222 . 635 1.010 1.349 1.653 1.924 2.164 2.374 2.557 2.715

Numer V . 222 . 635 1.010 1.349 1.653 1.924 2.164 2.374 2.557 2.715

error . 001 . 000 . 000 . 001 . 001 . 001 . 001 . 001 . 000 . 000

Table 7.1: The absolute errors in the velocity profiles of a 1D model for the planetary
boundary layer in the steady state

7.3 The EAD method for the linearized Shallow

Water Equations

In this section we solve using the EAD method, the linearized form of the equations
describing the flow of an incompressible inviscid fluid in a rectangular basin. These

equations are called the Shallow Water Equations. They are of the Euler type of

equations and apply to flows where the horizontal components of velocity exhibit

wavelike solutions with wavelengths which are much greater than the depth of the

fluid, hence the name Shallow Water equations.

These equations in their linearized form are given in [48] as :
äü öh
ät - -9 äx
av ah
ýt - -9 8y
A öü äv

x
!-) (7.14) at - -ho(a ay

where ü and v are the depth-averaged velocity components in the x- direction

(East-West) and the y- direction (South-North) respectively, h is the depth below

181

the moving water (fluid) surface, ho is the depth when the water is at rest, and g is

the acceleration of gravity.

The set of equations (7.14) are defined over the square region R= [0 < x, y< L]

which fits (in space) exactly one period of the analytical solution given by:

ü=1 sin[(- 2ghot +x -i- y) L
(7.15)

v=4 sin[(- 2ghot -}- x -}- y)
L];

(7.16)

h- ho =
24

sin[(- 2ghot +x -I- y) T] "
(7.17)

with the initial and boundary (periodic) conditions taken from the analytical solu-

tion.

If we define a new variable '= ýIho h then equations (7.14) may be rewritten as:

aü at

ät X
av a3
ät = -ý° äy
a aü av
at = -4)°(ax - ay) (7.18)

or in vector form as:

ýw
=-AT -Býy

w
(7.19)

where

ü00 ýDo 000

v; A= 000; and; B= 00 to

4ý0 000 4ý0 0

The analytical solution is rewritten as:

ü=4 sin[(-f(Dot
2ir

+x+ Y) L]
1
4 sin[(-V2-, bot

2r
+ x+ y) L I;

4ý0
4

sin[(-ýýot +x -f- y)
L

182

A finite difference approximation to equation (7.19) is given as:

(1- P'5)(1- Q'Sv)w; 1= (I + P'5)(1 + Q'S)w, (7.20)

where

00 e2 000

P'
4ds

A= 000 and; Q' = 4d B=00 ez

e2 000 e2 0

with e2 = 4d ýo. Equation (7.20) is clearly a perturbation of the Crank- Nicolson

type scheme. Gustafsson in ((27]) has derived an ADI scheme for equation (7.19)

by splitting (7.20) in the usual Peaceman-Rachford manner to obtain the following

two equations:

(I - P'bx)W, j '_ (1 + Q'bv)W

(I - Q, bv)W j1= (1 + P'bx)W +i.
13

(7.21)

(7.22)

where W, J 1" is an intermediate solution. We now difference equation (7.19) using

an ADI scheme by [23] which is similar to Gustafsson's scheme, but requires less

computations. It is also unconditionally stable and of second order accuracy in time

and space as shown in ([23]). This is given as:

(I - P'öx)W, +1* = z; - (7.23)

13
(7.24) (I - Q'bv)W ;1= 2W+'* - zn.

n

where Z ! I. 1-Q'Sj Y)W, J = z2;; _ Vin I+e2S
x311 ýv + C26y'j

By eliminating W, +'* from the equations (7.23) and (7.24) we obtain equation

(7.20).

If we apply each of equations (7.23) and (7.24) to the totality of mesh points with

a rowwise ordering we get the following two systems:

Aix, = bi (7.25)

Ayr = b2 (7.26)

183

where the unknown vectors x= (w"`+1« ... wn+l« w'"`+1« ... w"'+1«)T and 1,1 i, l """ij ml, m3

y= (WI n+1 wi i
1... w1 ... wim2)T are the intermediate solution vector and

the solution vector at the time level n+1 respectively. The r index indicates a

rowwise ordering and bi and b2 are known vectors.

The matrix Ai is a block diagonal square matrix of order 3m1m2 and is given as:

Ai = diag(Ti) (7.27)

where Ti is the following circulant block-tridiagonal matrix:

I -P' P'

P'

Ti - (7.28)

-P'
-P'

P' I
3miX3mi

A2 is a circulant block-tridiagonal matrix given as:

I -T2 Tz

Tz

A2 - (7.29)

-T2

-T2 TZ I
3mlm2x3mlm2

with

T2 = diag(Q') (7.30)

The EAD method proceeds to solving systems (7.23) and (7.24) by applying the

AGE method. However, because of the form of the matrices P and Q in equations
(7.23) and (7.24), only two variables U and -(D, (in equation 7.23) and V and 4)

(in equation 7.24) are coupled together on the left hand sides of these equations.

184

This means that we can decompose each of (7.23) and (7.24) into two simpler
difference equations, one vector and one scalar, given here respectively for (7.23)

and (7.24) as:

(I - PS)Uä *=U,! ý + QöyV,! ý = zu _
1zli'

(7.31)
I z3; ß

V7+1. = Vi +, e2öyVsýj - z2.
f

and

(7.32)

(I - PS)V; +' = 2V 1" - zv! ý z2''

z3; ß
(7.33)

UM+1 = 2U, "j+1' - z1 (7.34)

where U, V, zu, zv, P and Q are defined as: U, j --
I']

; V; 1 =
I'l

;

zu;, =
zi 1;

zv; j =
z21j

; P=
0 e2

and Q_
00

z3; ß z3; ß

[e2

0 e2 0

Equations (7.32) and (7.34) are explicit in nature, while equations (7.31) and
(7.33) lead respectively to the following two systems:

Alxr = dl (7.35)

A2Yr = d2 (7.36)

where x and y are now given as: x= (u1,1
... u; i

1'
... Ui j ... um m)T

and y = (v"+1 v"+1... v'"` 1... vn+l)T and u and 1""" i'1 iqJ Mlm2 v represent the computed

values of U and V. The Known vectors dl and d2 are given as: dl =
(ZUi,

l . .. ZU{, 1 ... ZUi, 7 ... ZUmlm2)T and d2 = (Zvi,,
... ZV;, l ... ZV;

'. i .. . ZVmlm9)T.

The r index indicates a rowwise ordering.

The matrices Al and A2 have the same structure as A' and AZ given by equations
(7.27 ... 7.30) but by replacing each of P and Q' by P.

i. e we now have Al = diag(Ti),

185

where Ti is the following circulant block-tridiagonal matrix:

I -P P

p.

Tl -

.. -P

-P PI

A2 is a circulant block-tridiagonal matrix given as:

I -T2 Tz

Tz

-T2
L -T2 T2 I 2mim2 X2mjm2

where T2 = diag(P) and I is an identity matrix. Equation (7.32 leads to an

explicit system of difference equations which may be solved concurrently with the

new system (7.35). After that we can solve concurrently (7.36) and the explicit

system of difference equations which arises from (7.34).

The two systems (7.35) and (7.36) are now simpler than (7.25) and (7.26) and

are, according to the EAD method, solved using the AGE-1D iterative procedure

given as:

(G1 + sl)xp+2 = di - (G2 - sI)x' - gl (7.37)

xv+1 = (G2 + s1)-'[di - (G1 - sI)(Gi + sI)-i gl] (7.38)

(G3 + sI)yp+4 = d2 - (G4 - sl)YP = 92 (7.39)

yP+i = (G4 + sJ)-1[d2 - (G3 - sI)(G3 + sI)-1921 (7.40)
01

where s is the acceleration parameter of the AGE method. Here we have split the

matrices Al and A2 such that:

Al = Gl + G2 (7.41)

186

A2 = G3 + G4 (7.42)

where Gl = diag((! i) and G2 = diag(G2), with Gl and G2 being given as:

2I
P

C

.
O

di = (7.43)

O C

-P 2I 2m1 x2m1

and

C
O

G2 = (7.44)

O

C
2m1X2m1

27 -P
where C=

P 2I

G3, and G4 are given as:

R P

G
0

G3 = (7.45)

0 G

-P R 2m, m2X2m, m2

187

and

G

.o G4 = (7.46)

0
G

2m1m2X2m, m2

where R= diag(zI), and P= diag(P) is of order 2m2. G is given as:

R
-P G=

PR

The matrices (G; + sI) (i=1
... 4) can now be easily inverted, since we have:

1
(C+ sl)-1

(1 + s)I PQ+ s)0r' PAT I
=-= (7.47)

Di -P (z -I- s)I -Pi i (2 + s)Di 1

where O1 is a matrix given as:

(
(0.5+s) 0 (0.5+s) 0

Al =
1I

-I-sI)ý-I-P2 = L0 (0.5+S)1 0 (0.5+S)]
0 e2 0 e2 al 0

e2 0 e2 00 al

with al = (0.5+s)Z+e2 =0.25+s2+s+ez.

Therefore

e3 00 -e4

(C + sIý_i _0
e3

[_e4
0

0 e4 e3 0

e4 00 e3

where e3 = (0.5+8) and e4 = =ez . al al

188

We can now write (a1 + sI)'1 and ((% + sI)'1 as:

(2 + s)Di 1 -POT i

(C + sI)-1 0

(61+s1)-1= (7.48)

0 (C + 31)-1
PAT, (j, + s)Al 1

and

(C + sl)-1
(C + sl)-i 0

(G2+sI)-1 = (7.49)

(C + sl)-1
0 (C + 3I)-1

We now have:

(G1 + sI)_i = diag[((% + sI) -1], and (C2 + -9I)-1 = diag[(G2 + sI)-1]

Similarly we have:

(0.5 + s)iz 1 POz i
(G + sI)-' =

-Pz2' (0.5 + s)02
(7.50)

where A2 is a matrix given as:

A2 = (R + sJ)2 + P2 = diag(Ol) (7.51)

We can now write (G3 + sI)-1 and (G4 + sJ)-1 as:

(0.5 + 3)L 1 -PL 1

(G + sI)-l 0
(Gs+sI)-i = (7.52)

0 (G + sI)-1
PA2' (0.5 + s)Az 1

189

and

(G + sI)-'
(G+sI)-' 0

(G4+sI)-i =
0 (G + sI)-1

(7.53)

(G + sI)'1

The matrices (G; -sI), i=1,... 4 are given respectively by equations (7.43 ... 7.46)

but by replacing the value Z along the diagonals by el, where el = 0.5 - s. Thus

instead of C in (7.43) and (7.44) and G in (7.45) and (7.46) we have:

e1I -P ell -P C-sI =; G-sI=
P ejI

P ell

Let us also define:

D= (C - sI)(C + sJ)-1

el 00 -ez e3 00 -e4
0 el -ez 0 Lo e3 -e4 0

_ 0
(

e2 el 0X 0 e4 e3 0

e2 00 el e4 00 e3

El -E2
ýD = E2 E1

e5 0 0 es
where E1 =;

1

E2 =;
0 e5 e6 0

and

es = eie3 - e2e4; e6 = ele4 + e2e3.

The underbraced products in (7.38) and (7.40) may be replaced respectively by

190

the matrices Dl and D2 which are given as: Dl = diag(Dl). Dl is given by:

E1 E2

D0

D
D1=

D

0D

-E2 El

and

E1 E2

Dý 0
D2

D2=
Dz

0 D2

-E2
El

where El = diag(Ei) and E2 = diag(E2) are diagonal square matrices of

order 2m1. The matrix D2 is given as:

D El -E2
s= . E2 E,

Now the component level algorithms for (7.37 ... 7.40) follow in a straight forward

manner.

The following table shows the results from an experiment where in equations (7.18)

we choose 4ýo = 28, which correspond to a depth of the basin ho = 78.4m in (7.14)

where the g= 10ms-2.

The gridpoints spacing is h= 60000m and the basin is a square of dimension

L=9xh= 54,0000m. The time step is taken to be At = 60 seconds.

The AGE-1D algorithm in the EAD method converges in 2 iterations.

191

Convergence at every time step occurred after 2/2 AGE-1D iterations

Lzl = Axz = 60000.0m, At = 60sec, e= 10-s

X2 = 1.8E + 05

sl = 6.0 E+04 1.8E+05 3.0E+05 4.2E+05 5.4E+05

Anal. u . 14695 -. 17366 -. 20726 . 10168 . 24257

Numer. u . 11781 -. 17769 -. 20412 . 10672 . 24278

error u 2.9E-02 4.0E-03 3.1E-03 5.0E-03 2.1E-04

Anal. v . 14695 -. 17366 -. 20726 . 10168 . 24257

Numer. v . 14404 -. 17769 -. 20420 . 10677 . 24128

error v 2.9E-03 4.0E-03 3.1E-03 5.1E-03 1.3E-03

Anal. 28.492 28.039 27.991 28.428 28.627

Numer. 28.467 28.033 27.996 28.435 28.628

error 0 2.5E-02 5.7E-03 4.4E-03 7.2E-03 4.3E-04

X2 = 4.8E + 05

xl = 6.0 E+04 1.8E+05 3.0E+05 4.2E+05 5.4E+05

Anal. u -. 06891 . 22470 . 14695 -. 17366 -. 20726

Numer. u -. 03185 . 22718 . 14243 -. 17761 -. 20564

error u 3.7E-02 2.5E-03 4.5E-03 3.9E-03 1.6E-03

Anal. v -. 06891 . 22470 . 14695 -. 17366 -. 20726

Numer. v -. 06446 . 22696 . 14240 -. 17750 -. 20409

error v 4.4E-03 2.3E-03 4.5E-03 3.8E-03 3.2E-03

Anal. 0 28.187 28.602 27.492 28.039 28.991

Numer. ¢ 28.218 28.605 27.486 28.033 28.993

error 3.1E-02 3.4E-03 6.4E-03 5.5E-03 2.3E-03

Table 7.2: The three components of the solution to the shallow water equations as

obtained by the EAD method after 10 time steps i. e at t=600s

Chapter 8

Conclusions and suggestions for

Further work

8.1 Conclusions

In this thesis the AGE-1D method has been developed and shown to be applicable

to a wide range of problems with acceptable results.

Of particular importance was the establishment of formula (5.43) for the optimum

acceleration parameter of the method for linear systems arising from the use of

central difference operators for the advection equation, and establishing the conver-

gence of the method for the solution of block symmetric systems such as equation

(5.48) in section 5.5. Also, the conditions for a possible acceleration of the method

by using Chebyshev polynomials were determined. These are important contribu-

tions to the justification of the method and to the widening of its application. The
of t6.

applicationJAGE-1D algorithm is still however restricted to tridiagonal and block

tridiagonal systems, and suggestions for appropriate splittings which maintain the

AGE concept of forming easily invertible matrices need to be considered for other

systems (see section 8.2).

As for AGE-2D and AGE-3D iterative methods which require a relatively large

192

193

amount of computational work, it is worth here to mention that we did question the

wisdom behind having four and six subiterations respectively. The formulation of

these methods was in some analogy to the, formulation of ADI methods in general

and the ADI Douglas-Rachford finite difference schemes of (4.12) and (4.18) in

particular.

For these ADI schemes it is necessary to have p number of equations (p is the number

of space dimensions of the problem e. g 2 and 3 for (4.12) and (4.18) respectively)

whereby in each equation the solution is advanced implicitly along one dimension

to an intermediate value, and it is the combination of these equations which forms

the respective ADI finite difference scheme which is usually a perturbation of the

Crank-Nicholson or the implicit scheme.

In the formulation of an iterative method, however we only require an algorithm

which has an easily invertible splitting matrix, and which is completely consistent

and convergent. The algorithm does not have to have a number of subiterations

which is equal to the number of the constituent matrices into which we split the

coefficient matrix A.

This means that an iterative method can be made of only the first equation of
(4.98) or (6.32) alone or from a combination of the first equation and any one of

the remaining equations. We shall refer to these methods as the Reduced AGE-2D

and Reduced AGE-3D algorithms or RAGE-2D and RAGE-3D. These methods can

be shown to be consistent. They also cost less multiplication and addition operations

for each full iteration.

Such an alternative course in the formulation of iterative methods for two and three

dimensional problems appeared to be the remedy for the large amount of computa-

tional work involved in the AGE-2D and AGE-3D algorithms. This course however

was tested by solving the normalized system (4.93). The right hand vector was

set to the value which makes the solution vector have unity elements. The number

of iterations and computational work required by the AGE-2D and all the other
RAGE-2D methods were compared and the results are given in table 8.1 below.

194

The method r9 cost per

0.6 1.1 1.6 2.1 2.6 iteration

AGE-2D NIT 11 13 15 16 17 16mn x& 15mn+

1- >4 s* 2.5 2.2 1.9 1.6 1.6
Total No. in mit of

+&x operations 341 403 465 496 527

RAGE-2D NIT 23 35 44 51 58 4mn x &6mn+

1; 1 3* 8.6 7.7 7.1 6.8 6.8
-Percentage w. r. t. -

of Total +&x ops. 67% 87% 95% 103% 110%

RAGE-2D NIT 18 26 33 39 43 8mn x& 9mn+

1; 2
-

3* 6.5 5.3 5.0 5.0 4.7
Percentage w. r. t. AGE-2D

of Total +&x ops.
-
90% 110% 121% 134% 139%

RAGE-2D NIT 17 25 32 37 42 8mn x& 9mn+

1; 3 s*
-

5.8
-

5.3 5.0 4.7 4.7
Percentage w. r. t. AGE-29

of Total +&x ops. 85% 105% 117% 127% 135%

RAGE-2D NIT 18 26 34 38 44 8mn x& 9mn+

1; 4
-

3* 6.2 5.4 5.2 4.9 4.9
Percentage w. r. t.

of Total +&x ops. 90% 110% 124% 130% 142%

Table 8.1: A comparison between the computational requirements of the AGE-2D

and the RAGE-2D methods

195

The RAGE-2D methods denoted by 1; 2,1; 3, and 1; 4 have algorithms which consist

of a combination of the first equation and the second, the third and the fourth

equations of (4.98) respectively. The algorithm for the RAGE-2D method which
is denoted by 1; consist only of the first equation in (4.98). Table 8.1 shows that

on the whole the AGE-2D method costs less in terms of multiplication and addition

operations then any of the RAGE-2D methods, increasingly so as the mesh ratio r

increases for a fixed 0. The exception is when the mesh ratio is small where still the

best of the RAGE-2D methods (i. e RAGE-2D 1;) does not offer very large savings.

The fact that the AGE-2D method requires less iterations than any of the RAGE-2D

methods (see table 8.1) suggests that having a number of subiterations equal to the

number of G; matrices does perform the expected function of spreading the errors

across the solution vector which in turn minimizes the required number of iterations

to achieve convergence.

The EAD methods on the other handlb�e achieved large savings (45 % to 83 %) in

the computational work as compared to the AGE-2D and AGE-3D methods. These

savings are evident throughout tables 6.1... 6.14. The savings consistently increase

as the tolerance e of the criteria for convergence decreases. The EAD method also
has consistently better accuracies in the results shown in the above mentioned tables,

and also in the comparison with the AGE-3D methods as shown in table 6.15.

By comparing tables 6.12 and 6.14, it becomes clear that the EAD method is a little

more efficient compared to the EAD fully iterative method in solving the two dimen-

sional advection problem although the two methods have comparable accuracies.

The EAD fully iterative method however represents a novel approach in solving

elliptic problems as illustrated in section 6.4. The main advantage is in making

use of the fact that the intermediate values of the solution derived through an ADI

iterative method need not be obtained with large accuracies. This gives a greater
flexibilty in employing a parallel algorithm such as the AGE-1D in obtaining such
intermediate values at a relatively low cost.

The convergence of the outer ADI iteration is established in section 6.5.1 and the

196

convergence of the inner AGE-1D algorithm is given earlier in chapters 4 and 5. This

assures the convergence of the EAD fully iterative method for the elliptic problem

of section 6.4 and the hyperbolic problem of subsection 6.2.2.

Theýconvergence of the outer ADI type iterative procedure has also been established
in subsection 6.5.2. for the EAD fully iterative method for the three dimensional

heat conduction problem. The convergence condition however requires that rela-

tively high values of the acceleration parameter be used which may be undesirable

because it can lead to high rounding errors being created and thus affect greatly the

accuracy of the method. Even more worrying is the difficulty to prove the complete

consistency of the outer ADI iterative procedure in section 6.6. This calls for fur-

ther consideration of the method and its formulation before its application can be

recommended.

In chapter 7, the application of the AGE-1D and the EAD methods were shown to

extend easily to the solution of multivariate systems of equations while maintaining

the simplicity of the inversion of the G; matrices involved in these problems. The

large number of iterations needed for convergence in table 7.2 of section 7.2 is due to

the fact that the problem considered is of elliptic type. If the problem considered was

that of solving the unsteady state equation (7.2) with the proper initial conditions

rather than solving (7.3), the AGE-1D method would have definitely converged in

a much smaller number of iterations.

8.2 Suggestions for further work

It can be noticed that the AGE-ID method is limited so far to tridiagonal and
block-tridiagonal systems. This in turn limits the application of the EAD method

of which the AGE-1D algorithm is a major component. Here we suggest the following

AGE-1D type splitting for quindiagonal systems.

Consider the system:

Au =b (8.1)

197

where

A=

'd bc

babc

cbabc

cbabc

cbabc

cbabc

cbabc

cbabc

cbab

cbd,

In a manner consistent with the splitting strategy of AGE-1D we can split A into:

A=G1+G2+G3

whereby G1, G2 and G3 consist now mainly of 3x3 submatrices and are given as:

d/3 b/2 c

b/2 a/3 b/2

c b/2 a/3

G1=

a/3 b/2 c

b/2 a/3 b/2

c b/2 a/3

a/3 b/2 c
b/2 a/3 b/2

c b/2 a/3

d/3)

198

and

'd/3 b/2

b/2 a/3

G2=

a/3 b/2 c

b/2 a/3 b/2

c b/2 a/3

a/3 b/2 c
b/2 a/3 b/2

c b/2 a/3

a/3 b/2

b/2 d/3,

and
(d/3

G3 =

a/3 b/2

b/2 a/3

a/3 b/2 c

b/2 a/3 b/2

c b/2 a/3

a/3 b/2 c
b/2 a/3 b/2

c b/2 a/3

d/3

The 3x3 submatrix of G1, G2, and G3 has the form of.

xy z

C= yx y

zy x

and can stil l be inverted easi ly. Its inverse has the simple form of:
(x2-V2) V2-,,

aA Q aQ
C=

.X
x2-z2

(i ap p
y2 -2z x2-y!

aA 0 as

199

where /3 =x2+xz-2y2 and a=x-z

An AGE-1D algorithm for solving system (8.1) can have the form:

(G1 + sI)up+lf =b- (G2 + G3 - sI)u" (8.2)

(G2 + sI)up+4 =b- (G1 + G3 - sI)up+'s (8.3)

(G3 + sI)up+l =b- (G1 + G2 - sI)u' (8.4)

For the EAD fully iterative method, it can be pointed out that the convergence

analyses given in section 6.5 falls short of determining what combination of values

should be assigned for the acceleration parameters of the outer ADI and inner AGE-

1D procedures respectively. This is because our analysis was based on establishing

the convergence of the EAD fully iterative method through the analysis of the

convergence of the outer ADI and inner AGE-1D iterative procedures separately.

There is however another route which can lead to a more quantitative assesment

of the convergence of the method and may lead to a formula defining the relation
between the acceleration parameter p of the outer ADI iterative procedure and the

acceleration parameters of the inner AGE-1D iteration for optimal convegence.
Such a route is based on analysing the iteration matrix T of the EAD fully iterative

method which for two and three dimensional problems respectively is given by:

T (p, s) = (Gs + sI)-ß(G1 - sI)(Gl+ sI)-'(G2 - sI)(G4 + sI)-i

X (G3-3I)(G3+3I)-1(G4-3I) (8.5)

T (p, s) = (G2 + sI)-1(Gl - si)(Gi + sI)'1(G2 - sI)

x (G4 . +, sI)-'(G3 - sI)(G3 + sI)-1(G4 - sI)

x (G6 + sI)-'(Gs - sI)(G5 + sI)-1(G6 - sI) (8.6)

The matrices G1, G2, G3 and G4 (also G5 and Gs) in equations (8.5) and (8.6) do

not commute. This makes it difficult to deduce directly the formula for the spectral

radius of T. But the spectral norm of all the G; (i=1... 6) matrices can be easily

obtained and this can lead easily to a relation defining the upper limit of the spectral

radius of the iteration matrix T in terms of p and s.

200

Finally among other areas which need further research we suggest a comparative

study between the EAD fully iterative method and methods such as the SOR

method.

Bibliography

[1] G. BIRKHOFF, R. S. VARGA, AND D. M. YOUNG, Alternating Direction

Implicit methods, Advances in Computers, vol. 3, Academic Press, New York,

1962.

[2] R. L. BURDEN, J. D. FAIRES, AND A. C. REYNOLDS, Numerical Analysis,

P. W. S Publishers, Boston, Massachusettes, second ed., 1981.

[3] G. CARVER, A spectral meteorological model on the ICL DAP, Parallel Com-

puting, 8 (1988), pp. 121-126.

(4J C. CANUTO, M. Y. HUSSAINI, A. QUARTTERONI, AND T. A. ZANG, Spectral

Methods in Fluid Dynamics, Springier-Verlag, New York, 1988.

[5] C. R. CHESTER, Techniques in Partial Differential Equations, McGraw-Hill,

Newyork, 1971.

[6] A. DEIF, Advanced Matrix Theory for Scientists and Engineers, Academic

Press Inc., New York, 1981.

[7] J. DOUGLAS, Alternating direction methods for three space variables, Nu-

merische Mathematik, 4 (1984), pp. 41 - 63.

[8) J. DOUGLAS AND H. H. RACHFORD, On the numerical solution of heat con-

duction problems in two or three space variables, Trans. Amer. Maths. Soc., 82

(1956), pp. 421 - 439.

[9] Y. D'YAKONOV, On the application of disintegrating difference operators, Z,

Vycil. Mat. i. Mat. Fiz., 3 (1963), pp. 385-388.

201

202

[10] D. J. EVANS, The use of preconditioning in iterative methods for solving linear

equations with symmetric positive definite matrices, J. I. M. A., 4 (1968), pp. 295-

314.

[11]
, Comparison of the convergence rates of iterative methods for solving linear

equations with preconditioning, Greek Math Soc., Caratheodory Symp., (1973),

pp. 106-135.

[12J
, Iterative Sparse Matrix Algorithms, in: Software for Numerical Mathe-

matics, Academic Press., 1974, pp. 49-83. edited by D. J. Evans.

[13]
, New Parallel Algorithms for Partial Differential Equations, in: Parallel

Computing 83, Elsevier Science Publishers, Amesterdam, 1984, pp. 3-56. edited

by M. Feilmeier, J. Joubert and U. Schendel.

[14]
, Group Explicit Iterative methods for solving large linear systems, Intern.

J. Computer Math., 17 (1985), pp. 81-108.

[15]
, The solution of periodic parabolic equations by the Coupled Alternating

Group Explicit CAGE iterative method, Intern. J. Computer Math., 34 (1990),

pp. 227-235.

[16] D. J. EVANS AND C. Li, The Alternating Group Explicit (AGE) Iterative

Method and its Parallel Implementation, in: Iterative Methods in Linear Alge-

bra, Elsevier Science Publishers, Amsterdam, 1992, pp. 243-250. edited by R.

Beauwens and P. de Groen.

[17] D. J. EVANS, E. A. LIPITAKIS, AND N. M. MISSIRILIS, On sparse and com-

pact preconditioned Conjugate Gradient methods for partial differential equa-

Lions, Intern. J. Computer Math., 9 (1980), pp. 55-80.

[18] D. J. EVANS AND N. M. MISSIRILIS, The preconditioned simultaneous dis-

placement (PSD) method for elliptic difference equations, M. C. S., 22 (1980),

pp. 256-263.

203

[19] D. J. EVANS AND A. S. RooMI, The solution of parabolic differential equations
by the age method with d'yakonov splitting, Intern. J. Computer Math., 32

(1990), pp. 181-191.

[20] D. J. EVANS AND M. S. SAHIMI, The Alternating Group Explicit (AGE) iter-

ative method for solving parabolic equations I: 2-Dimensional Problems, Intern.

J. Computer Math., 24 (1988), pp. 311-341.

[21]
, The Alternating Group Explicit (AGE) iterative method for solving

parabolic equations H. 3 Space Dimensional Problems, Intern. J. Computer

Math., 26 (1989), pp. 117-142.

[22]
, The Alternating Group Explicit (AGE) Iterative Method to Solve Parabolic

and Hyperbolic PDEs, in: Annual Review of Numerical Fluid Mechanics, and
Heat Transfer., vol. II, Hemispheric Pub. Co. USA., 1989, pp. 283-390. edited

by C. L. Tien and T. C. Chawla.

[23] G. FAIRWEATHER AND I. M. NAVON, A linear ADI method for the shallow

water equations, Journal of Computational Physics, 37 (1980), pp. 1-18.

[24] C. A. J. FLETCHER, Computational Techniques for Fluid Dynamics, Spring-

Verlag, New York, 1988.

[25] C. F. GERALD AND P. 0. WHEATLEY, Applied Numerical Analysis, Addison-

Wesley, New York, fifth ed., 1994.

[26] D. GOTLEIB AND E. TURKEL, Phase error and stability of second order meth-

ods for hyperbolic problems II, Journal of Computational Physics, 15 (1974),

pp. 251-265.

[27] B. GUSTAFSSON, An alternating direction implicit method for solving the shal-
low water equations, Journal of Computational Physics, 7 (1971), pp. 239-254.

[28] W. HACKBUSCH, Iterative Solution of Large Sparse Systems of Equations,

Springer-Verlag, New York, 1994.

204

[29] L. A. HAGEMAN AND D. M. YOUNG, Applied Iterative Methods, Academic

Press Inc., New York, 1981.

[30] G. HELLWIG, Partial Differential Equations, An Introduction, Blaisdell, New

York, 1964.

[31] F. B. HILDEBRAND, Introduction to Numerical Analysis, McGraw-Hill, New

Delhi, second ed., 1974.

[32] M. K. JAIN, Numerical Solution of Partial Differential Equations, Wiley East-

ern Ltd., New Delhi, second ed., 1984.

[33] L. LAPIDUS AND G. F. PINDER, Numerical solution of partial differential

equations in science and engineering, John Wiley and Sons, Newyork, 1982.

[34] A. R. MITCHELL AND D. F. GRIFFITHS, The Finite Difference Method in

Partial Differential Equations, Jhon Wiley & Sons, INC., New York, 1980.

[35] J. NOYE, Numerical Solution of Differential Equations, North-Holland, Ams-

terdam, 1984.

[36] I. G. PAPAGEORGIOU, Mesoscale Modelling of the Atmospheric Boundary

Layer Including Pollution Dispersion of a Coastal Area, PhD thesis, Univer-

sity of Reading, Reading, U. K., 1985.

[37] D. W. PEACEMAN, Fundamentals of Numerical Reservoir Simulation, Elsevier

Scientific Publishing Company, Amesterdam, 1977.

[38] D. W. PEACEMAN AND H. H. RACHFORD, The numerical solution of parabolic

and elliptic partial differential equations, J. Soc. Indust. Appl. Math., 3 (1955),

pp. 28 - 41.

[39] R. D. RICHTMYER AND K. W. MORTON, Difference Methods for Initial Value

Problems, Wiley, New York, 1967.

[40] R. SADOURNY, The dynamics of finite difference models of the shallow water

equations, Journal of the Atmospheric Sciences, 32 (1975), pp. 680-689.

205

[41] M. SAHIMI, Numerical Methods for solving Hyperbolic and Parabolic Partial

Differential Equations, PhD thesis, Loughborough University of Technology,

Loughborough, U. K., 1986.

[42] N. SATOFUKA, Group Explicit Methods for the Solution of Fluid Dynamic

Equations, in: Computational Fluid Dynamics, Elsevier Science Publishers,

Amesterdam, 1988, pp. 117-134. edited by G. Davis and C. Fletcher.

[43] V. K. SAUL'YEV, Integration of Equations of Parabolic Type by the method of

Nets, Pergamon Press, Newyork, 1964. Translated by G. J. Tee.

[44] G. W. STEWART, Introduction to Matrix Computations, Academic Press Inc.,

Newyork, 1973.

[45] G. " STRANG, Linear Algebra and Its Applications, Academic Press Inc.,

Newyork, third ed., 1988.

[46] E. TURKEL, Phase error and stability of second order methods for hyperbolic

problems I, Journal of Computational Physics, 15 (1974), pp. 227-250.

[47] E. H. TWIZELL, Computational Methods for Partial Differential Equations,

John Wiley & Sons, New York, 1984.

[48] P. J. VAN DER HOWEN AND B. P. SOMMEIJER, Reduction of dispersion in hy-

perbolic difference schemes by adapting the space discretization, Tech. Rep. NM-

R8519, Centre of Mathematics and Computer Science, Amsterdam, September

1985.

[49] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Academic Press, New

York, 62. Series in Automatic Computation.

[50] D. M. YOUNG, Iterative Solution of Large Linear Systems, Academic Press

Inc., New York, 1971. Computer Science and Applied Mathematics Series.

Appendix A

The truncation error, consistency

and stability analysis of an LOD

scheme

In this appendix we present the truncation error, consistency and stability analysis of the

LOD scheme given in subsection 6.2.3.

The Composite formula of the scheme given by equation 6.11 is expanded as :

(i -rail - Tam, + r252 a=z)U tj+ 1= Üx

This gives the following formula:

(A. 1)

!1+ 4r)Un+1 _ r(Un+l + Unl + Un+l + Un+l l sa l . +l, j j J+ j1 +-11

4T2Un+1 - 2T2(Un+l + Un+l + Un+l + Un+l 1

+r2(Un+l + Un+l + Uin+l + Un+1 \- Ün" =0 (A. 2)
l 1+1, j+1 i-1 , j+1 +l, j-1 i-1, j-1 / i, ý

The local truncation error of the above formula is easily obtained by Taylor's expansion
in terms of ui. This is done easily using the REDUCE package. After expanding, and

substituting for r= k/h2 , equation (A. 2) can be written as:

(1+4T)U, "nýl-r(U, "+iä }-U iäß Ü+1ý'U 1l)

+4T2Un 1
-2r

2(Un+l
,, F, iJn+l . i� Un+1 + Un+l

+. 7 ++101 +-1, j >ý, f+1 +, j-1)

206

207

12 (Un+l ý, Un+l + Un+1 'i' Uni 1-Üj=
l s+l, j+l s-lj+l i+1, j-1 i-1 . -1)

aü a2ü atü

x äx k(at -ä- z
1941E 1 83ü 1 83u

+axiaxz k-2 atax2 -2 ataxi
_1

04ü 21 j94 ii 21 a_ 21 04ü 2
12 axi

h-
12 axz

h+
24 -wi k-8

at2axi
k

1

8 aýax2
k2 +2 atax2ax2

k2 + O(kah'°)) =0 (A. 3)

where (a +, 0) > 3.

1+ 4T Un l- T/Un+l ý, Un+1 ,+U'+ Un+l (
t, ý l t+l, j t-1, f ', 1+1 1-1

r2 1- 2r 4 Unýt 2(Un+l n+l + Un i+ Un l

,ý t+1, j
+U i- 1, j to+1 t, J-1)

+T2(Un}1 + Un+l + Un+l + Un1 _J= -1 ++I+1 s-1 , j+1 i+l,, j-1 t-1 ,jÜ
aii 2- 02ii

This shows that the above scheme has a local truncation error of order O(k, h2). Fur-

thermore it can be seen from equation (A. 3) that all the terms of the truncation error

are products of k and/or h. Thus as k and h -º 0, the truncation error tends to zero

unconditionally.

Hence the scheme is unconditionally consistent with the heat conduction equation 4.4.

We next consider the stability of the LOD scheme using the matrix method. The two

equations of the scheme are given as:

x
)TT =Ü (A. 5) (1 - r52

(1- r52 'U '= U' (A. 6)

which when applied to all points of the mesh produce two systems to be solved in sequence.

These systems are given the following equations:

Hu* = u" + bi (A. 7)

Vu"+1 = u' + b2 (A. 8)

where u", u* and u"+1 are the solution vectors at time n, the intermediate solution vector,

and the solution vector at time n+l. Vectors bi and b2 are known vectors associated

208

with the boundary values at each stage. Also H and V have the same structure as in

equations 4.25 and 4.26 in section 4.1, but with a= -r and b=1+ 2r.

By eliminating u* from equation (A. 7) using equation (A. 8), we get the following

equation:

un+l = Gu" +b (A. 9)

where b is a known vector, and G is the amplification matrix and is given as:

G= H-1V-1 (A. 10)

Knowing that H and V are both SPD matrices and that they commute with each other

we can write that:

p(G) = max.;,, (G) = max., j(H)\;, 1(V) (A. 11)

Also all the eigenvalues of H and V are larger than unity and are given as:

Aij(H) = Ai, j(V) = (1+2r)+2 r-2cos
Z7ý

M,

)
i= 1,... m1,7 = 1,... m2. (A. 12)

This means that all the eigenvalues of H-1 and V'1 are less than unity. Therefore

p(G) <1 (A. 13)

and the scheme is thus unconditionally stable.

Appendix B

The listings of some programs

B. 1 Program par. AGE-1D_odd

program par-AGE-ID-odd

c**c

c This is a program showing one way of how the AGE-ID C

C algorithm can executed in parallel to solve the system Au=b c

c where A=diag(al, cli, al) of order m (m is odd). The system c

c arises from the approx. of the ID heat problem, and the diagonal c

c elements are given in terms of lamda=(the mesh ratio) and c

c teta=(a weighting parameter depending on the scheme used). C

c**c

C

implicit real (a-h, o-z), integer*2(i-n)

integer*4 dimi, i, m, bytel, byte_size

parameter (diml=10000)

external forksub

integer m_fork, np, n

dimension xu(O: dimi)

dimension ua(O: dimi)

dimension rhst(O: diml)

209

210

real ls(O: diml)

real ls2(0: dim1)

real lamda

integer timei, time2

logical flagon

COMMON/SHAREALL/m, rhst, xu, ls, ls2, it 1, flagon, maxit,

1 eps, byte_size, bytel, e2, al, ci2, ai2, c13, c14, a14, c16

print*, 'Input: m then maxit'

read(*, *)m, maxit

print*, 'Input: no. of procs. np'

read(*, *)np

print*, 'Input: lamda & teta'

read(*, *) lamda, teta

C

eps=0.00000010

ai=-1. dO

c a2=(1. -teta)*lamda

c11=2. dO+1. dO/(lamda*teta)

c The following line is to obtain the 'optimum' acc. param. as

c calculated from the formula.

s=sgrt((c11/2.0)**2 - al**2)

C

el=cll/2. dO+s

e2=c11/2. dO-s

delta=el**2-al**2

c12=(el*e2-al*ai)/delta

a12=(el*al-al*e2)/delta

c13=e2/el

c14=el/delta

a14=-ai/delta

c16=1/el

C

211

write(*, *)'m= I, m

C

C Setting the initial guess vector to zero.

do 9065 i=i, m

xu(i)=O. OdO

9065 continue

C

c Choosing the RHS vector (i. e., b) so that the solution

c vector has all its elements=1

rhst(1)=cli+ai

do 64 i=2, m-1

rhst(i)=cll+al+al

64 continue

rhst(m)=cil+ai

C

c %%% preparing for static load balancing of the

C '/. '/% eomrnütatinnal taaka amnno tho nrneeaanra_ 'LILY'/'/

C

wj=real(m)/real(np)

if (real(int(wj)). eq. wj) then

bgtel=int(wj)

else

bytes=int(vj)+i

endif

if(mod(bytel, 2). ne. 0) then

byte_size=byte1+1

else

byte_size=bytel

endif

7100 its=i

n-m_set_procs(np)

c Timing the execution of the next subroutine.

212

call -clock-time(timet)
c ** Forking the AGE-ID subroutine to be executed by np processors. ***

n=m_fork(forksub)

c End of parallel execution. Sequential execution proceeds next.

call m_kill_procs

call _clock_time(time2)
if(iti. ge. maxit) Grite(*, *)'Max number of iterations is exceeded'

di=real(time2-timet)/100.0

write(*, 25) np, di

25 format(/, 30x, ' The time duration for the', /, 20x, '

I AGE-ID ALGORITHM executed on ', 12,

i' machines', /, 30x, ' is', f10.3, ' seconds')

write(*, 133)iti, (ls(i), i=i, m, m/5)

133 format(2x, t30, 'No. of iters. =', i4, /, 'un= ', 10(f10.7))

stop

end

subroutine forksub

implicit real (a-h, o-z), integer*2(i-n)

integer*4 diml, i, m, bytel, byte_size, kl

integer*4 starti, start2, finishi, finish2, begin, end

integer m_get_numprocs, m_get_myid, n, m_sync

parameter (dim1=10000)

dimension xu(O: diml)

dimension ua(O: diml)

dimension rhst(O: dimi)

real ls(O: diml)

real ls2(0: diml)

logical flagon

COMMON/SHAREALL/m, rhst, xu, ls, ls2, itl, flagon, maxit,

1 eps, byte_size, bytel, e2, al, c12, a12, c13, c14, ai4, c16

n_procs=m_get_numprocs()

n-m_get_myid()

213

starts=n*byte_size+i

finishl=(n+i)*byte_size

if(finishl. gt. (m-2)) finishl m-2

start2=starti+i

finish2=finishi+l

begin=n*bytel+i

end=(n+i)*bytei

if(end. gt. m) end--m

700 continue

if(n. eq. (n-procs-1)) then

flagon-. true.

ls(1)=rhst(1)-e2*xu(i)

endif

do 111 i=start2, finish2,2

k1=i+1

C

ls(i)=rhst(i)-(e2*xu(i)+al*xu(kl))

ls(kl)=rhst(kl)-(e2*xu(kl)+al*xu(i))

111 continue

C sync pt. 1

call m_sync()

C Synchronize here, although parctically not necessary

do 114 i=startl, finishi, 2

k1=i+1

ls2(i)=rhst(i)-(ci2*ls(i)+a12*ls(kl))

ls2(kl)=rhst(ki)-(c12*ls(ki)+ai2*ls(i))

114 continue

if(n. eq. (n_procs-1)) ls2(m)=rhst(m)-ci3*ls(m)

C sync pt. 2

call m_sync()

c

c--------------

214

c FROM HERE ON, the vector is is used again (instead of upi) to save memory.

if(n. eq. (n_procs-1)) ls(i)=ci6*ls2(1)

do 120 i=start2, finish2,2

ki=i+i

ls(i)=c14*ls2(i)+a14*ls2(ki)

ls(kl)=c14*ls2(kl)+a14*ls2(i)

120 continue

if(itl. ge. maxit) go to 499

C sync pt. 3

call m_sync()

c Begin testing

do 3386 i=begin, end

sl=abs(ls(i)-xu(i))

if(sl. gt. eps) flagon=. false.

if(. not . (flagon)) i=end

3386 continue

c End of testing

if (flagon) go to 499

do 3065 i=begin, end

xu(i)=1s(i)

3065 continue

if(n. eq. (n_procs-1)) itl=iti+1

call m_syncO

C sync pt. 4

go to 700

49 return

end

215

B. 2 Program pbl

$system

program PBL

C

c Steady state equations of momentum for the i-D model of the idealized

c PLANETARY BOUNDARY LAYER

c

c ************__________***************

c

implicit integer*2(i-n), real*8(a-h, o-z)

integer diml, m

logical flagon

character*10 fname, output

parameter (diml=102)

dimension yu(0: dimi)

dimension yv(0: dimi), ua(O: diml), fzv(dimi), fzu(dimi), va(O: diml)

dimension xu(O: diml), xv(O: dimi), z(O: diml)

dimension bpu(dims), bpv(diml), rsu(diml), rsv(diml)

dimension upl(O: diml), vpl(O: dimi), eru(O: dimi), erv(O: diml)

real km

pi=4. OdO*datan(1. dO)

phi=(pi/4.0)

omega=2.0*pi/(24.0*3600.0)

f=2.0*omega*dsin(phi)

km=10.0

write(*, 545)

545 format(//, 1x, 50('*'), /,

i ix, t25, ' Enter the name of the Input File ', 2x, /, t4, 'Enter', /,

I' "ii" ; for varying the s', t35, ' "12" ; for varying eps, ug, and vg ')

read(*, *)fname

c fname='i3'

216

open(unit=5, file=fname, form='formatted')

if (fname . eq. ' il') then

output='pbl_ri'

elseif(fname. eq. 'i2') then

output='pbl_r2'

else

output='pbl-r'

endif

open(unit=6, file='output', form='formatted')

read(5, *)nruns

write(*, 845)

845 format(//, 1x, 80('*'))

write(6,74)

74 format(ix, 90('*'), /lx, '**', t8, 'Ad2(W)/dz**2+BW+C=0 ', /, ix, '**', t8,

1 'Where W=(u, v) A=((Km, O), (O, Km))

i ; B=((O, f), (-f, O)) ; C=(-f*vg), (f*ug))'

1 , /180('*'), //)

write(6,444)

444 format(lx, t30, ' ANALYTICAL SOLUTON IS : ', /, ix, '

1 ua(k)=ug*(1-exp(-cf*z(k))*cos(cf*z(k)))-vg*exp(-cf*z(k))*sin(cf*z(k))

1 ', /, ix, '

I va(k)=vg*(1-exp(-cf*z(k))*cos(cf*z(k)))+ug*exp(-cf*z(k))*sin(cf*z(k))'

1 , /, 1x, 80('*'), /)

C

C

do 4300 nn=i, nruns

read(5, *)ug, vg, eps, s

read(5, *)dz, finz

h=dz

m=int((finz/dz)) -1

cf =sgrt ((f / (2.0*km)))

C

217

CC

write(6,294)finz, dz, ug, vg, eps

294 format(ix, 'finz =', f10.4,5x, 'dz = ', f8.4, /,

1 ix, t15, 'ug =', f8.5, t30, 'vg = ', f8.4, /, t24, 'eps =', e7.2)

write(6,297)s

297 format(lx, t50, 'Acc. Param. s -', f4.2)

CC

C setting the z-axis

zd=0.0

do 3334 i=O, m+1

z(i)=zd

zd=zd+dz

3334 continue

c

C Calculating the analytical solution

c

do 32 k=0, m+1

ua(k)=ug*(1-dexp(-cf*z(k))*cos(cf*z(k)))-vg*dexp(-cf*z(k))*sin(cf*z(k))

va(k)=vg*(1-dexp(-cf*z(k))*cos(cf*z(k)))+ug*dexp(-cf*z(k))*sin(cf*z(k))

32 continue

C

C Setting the initial guess

do 3012 k=1, m

xu(k)=0.0

xv(k)=0.0

3012 continue

C

c Setting Boundary Conditions from the analytical sol.

G

do 3002 k=0, m+i, m+i

xu(k)=ug*(i. dO-dexp(-cf*z(k))*cos(cf*z(k)))

i -vg*dexp(-cf*z(k))*sin(cf*z(k))

218

xv(k)=vg*(1. dO-dexp(-cf*z(k))*cos(cf*z(k)))

i +ug*dexp(-cf*z(k))*sin(cf*z(k))

3002 continue

xx=xu(m+i)

yy=xv(m+i)-

CCCCCccCCCCC

CCCCC CCCCC

c

c values a and b of G=1/2E=C(a, b)(-b, a)]

a=1. dO

b=-f*h**2/(2. dO*km)

cu=f*vg*h**2/km

cv=-f*ug*h**2/km

ams=a-s

aps=a+s

c The inverse of G+sI

delg=aps**2+b**2

agi=aps/delg

bgi=-b/delg

C

c On the DELTA of C=[((G+sI), -I), (-I, (G+sI))].

c

adelc=aps**2-b**2-1. dO

bdelc=2. dO*b*aps

ddc=adelc**2+bdelc**2

C

C

c On the Elements of [Delta(C)*Inv(G1+sI)] needed for upi and vpl at i-1 & ism.

shi=agi*adelc-bgi*bdelc

sh2-agi*bdelc+bgi*adelc

C

c On the Elements of the Inverse of DELTA(C).

219

C

adelci=adelc/ddc

bdelci=-bdelc/ddc

C On the Elements of the (square of the Inverse) of delta(C).

ei=adelci**2-bdelci**2

e2=2. dO*adelci*bdelci

C On the elements of the product matrix of (G+sI)(G-sI).

f 1=a**2-s**2-b**2-1. dO

f2=2. dO*a*b

C -2s*INV[(DELTA)]**2

hi=-2. dO*s*ei

h2=-2. dO*s*e2

C

C On the elements of the product matrix of

C [(Square of the Inverse) of delta(C)]*[(C+sI)(C-sI)].

C

g1=ei*f 1-e2*f2

g2=e1*f2+e2*f1

C

C On the Elements of D=Inv(C+sI). needed for calculating b'

c ********* In addition to elements of Inv(Delta):

C

aci=aps*adelci-b*bdelci

bci=aps*bdelci+b*adelci

C

C Calculating the rhs. vector b.

fzu(1)=-cu+xu(0)

fzv(1)--cv+xv(0)

do 2001 i=2, m-1

fzu(i)=-cu

fzv(i)=-cv

220

2001 continue

fzu(m)=-cu+xu(m+i)

fzv(m)--cv+xv(m+i)

c

C Calculating the rhs. vector b' or (bp).

bpu(1)=agi*fzu(i)+bgi*fzv(1)

bpv(1)=-bgi*fzu(1)+agi*fzv(1)

do 2002 i=2, m-2,2

bpu(i)=aci*fzu(i)+bci*fzv(i)+adelci*fzu(i+1)+bdelci*fzv(i+1)

bpv(i)=-bci*fzu(i)+aci*fzv(i)-bdelci*fzu(i+i)+adelci*fzv(i+1)

C

bpu(i+1)=adelci*fzu(i)+bdelci*fzv(i)+aci*fzu(i+1)+bci*fzv(i+1)

bpv(i+1)=-bdelci*fzu(i)+adelci*fzv(i)+aci*fzv(i+1)-bci*fzu(i+1)

2002 continue

bpu(m)=agi*fzu(m)+bgi*fzv(m)

bpv(m)--bgi*fzu(m)+agi*fzv(m)

C

C The AGE-ID Algorithm.

Cy= b-(G2-sI)u(p)

C u(p+i) = Inv(G2+sI)[b - (G1-sI)*Inv(G+sI)y]

C= b' - Inv(G2+sI)*(G1-sI)*Inv(G1+sI)*y

C

it=i

2000 continue

C

c ******** calculating the vector y=b-(G_{2}-sI)v ******

yu(1)=fzu(1)-(ams*xu(1)+b*xv(1))

yv(1)=fzv(1)-(ams*xv(1)-b*xu(1))

do 2003 i=2, m-2.2

yu(i)=fzu(i)-(ams*xu(i)+b*xv(i)-xu(i+i))

yv(i)=fzv(i)-(ams*xv(i)-b*xu(i)-xv(i+1))
C

221

2003

C

C

G

yu(i+1)=fzu(i+1)-(ams*xu(i+1)+b*xv(i+1)-xu(i))

yv(i+1)=fzv(i+1)-(ams*xv(i+1)-b*xu(i+1)-xv(i))

continue

yu(m)=fzu(m)-(ams*xu(m)+b*xv(m))

yv(m)=fzv(m)-(ams*xv(m)-b*xu(m))

Calculating [Inv*(DELTA)]**2 * (Gi-sI)*(G1+sI)*y

do 2004 i=1, m-1,2

rsu(i)= gi*yu(i)+g2*yv(i)

rsv(i)= -g2*yu(i)+gl*yv(i)

+hl*yu(i+1)+h2*yv(i+1)

-h2*yu(i+1)+hl*yv(i+1)

rsu(i+i)= gl*yu(i+i)+g2*yv(i+i)

rsv(i+i)= -g2*yu(i+i)+gl*yv(i+i)

2004 continue

+hl*yu(i)+h2*yv(i)

-h2*yu(i)+hl*yv(i)

C Calculating upl, vpl.

up1(1)=bpu(1)-(shl*rsu(1)+sh2*rsv(1))

vpl(i)=bpv(1)-(shl*rsv(i)-sh2*rsu(1))

do 2005 i=2, m-2,2

upi(i)=bpu(i)-(aps*rsu(i)+b*rsv(i)+rsu(i+1))

vpl(i)=bpv(i)-(aps*rsv(i)-b*rsu(i)+rsv(i+i))

c

upl(i+i)=bpu(i+i)-(aps*rsu(i+i)+b*rsv(i+1)+rsu(i))

vpi(i+i)=bpv(i+1)-(aps*rsv(i+i)-b*rsu(i+i)+rsv(i))

2005 continue

upi(m)=bpu(m)-(shl*rsu(m)+sh2*rsv(m))

vpl(m)=bpv(m)-(shl*rsv(m)-sh2*rsu(m))

C

flagon=. true.

do 3085 i=1, m

if ((abs(upl(i)-xu(i)). gt. eps). or. (abs(vpl(i)-xv(i)). gt. eps)) then

flagon=. false.

endif

222

3085 continue

do 400 i=1. m

xu(i)=up1(i)

xv(i)=vpl(i)

400 continue

C

if (flagon) then

do 408 i-l, m

eru(i)-ua(i)-xu(i)

erv(i)-va(i)-xv(i)

408 continue

elseif(it. gt. 200) then

go to 4001

else

it=it+1

go to 2000

endif

vrite(6,48)it

48 format(//, t20, ' RESULTS AFTER ', i3, ' iterations ')

write(6,18)(ua(i), i=i, m, (m+i)/10)

write(6,19)(xu(i), i=i, m, (m+i)/10)

vrite(6,56)(eru(i), i=i, m, (m+1)/10)

write(6,98)(va(i), i=i, m, (m+i)/10)

write(6,89)(xv(i), i=i, m, (m+1)/10)

write(6, S6)(erv(i), i=i, m, (m+l)/10)

18 format(/, ix, 'Anal U=', 10(' ', f6.3))

98 format(/, ix, 'Anal V=', 10(' ', f6.3))

19 format(ix, 'Numer U=', 10(' ', f6.3))

89 format(ix, 'Numer V"', 10(' ', f6.3))

56 format(ix, 'error = ', 10(' ', f6.3))

go to 4002

4001 vrite(6, *)'run is stopped : more than 200 inner iters. for it -', it

223

4002 continue

4300 continue

end

224

B. 3 Program EADJ'ully_iterative

$system

$callwarn

$alignwara

program elliptic_EAD

C This program solves the Laplace problem using

C the EAD fully iterative method- Strategy III

C

implicit real*8 (a-h, o-z), integer*2(i-n)

integer diml, dim, dim2, din

parameter (dim1=100, dim2=100)

integer il, i2

character*10 boundary

real*8 1

dimension ua(0: diml, 0: dim2), un(O: diml, 0: dim2)

dimension d(O: dimi, 0: dim2), rhs(1: diml, l: dim2)

dimension aer(O: diml), xu(O: dimi, 0: dim2)

dimension x(O: dimi), y(O: dim2)

logical finish

COMMON/shareall/dim, din

C

write(*, *)'enter dx, dy, finx, finy, s, ro'

open(unit=5, file='vv_in', form''formatted')

read(5, *)mnit

read(5, *) dim, din, finx, finy, s, ro, eps

open(unit=6, file='vv_strat3', form='formatted')

dx=(finz)/(float(dim) + 1)

dy=(finy)/(float(din) + 1)

write(6,15)dx, dy, finx, finy

write(6, *)' dim- ', dim, ' din= ', din

write(6,915)eps

225

915 format(/, t35, 'Eps= ', lpe9.2)

write(6,151)ro, s

15 format(ix, 2x, 'dx=', f5.2,2x, 'dy=', f5.2,2x,

1 'finx=', f5.2,2x, 'finy=' , f5.2)

151 format(lx, t40. 'The ADI parameter rho= ', f5.3, /,

1 t40, 'The AGE parameter s= ', f5.3)

a1=-1. dO

c1=4. dO

c11=(1. dO/2. dO)*ci+ro

e=2. dO-ro

two_ro=2. dO*ro

C

C setting the x-axis

xd=0.0

do 3334 i=0, dim+i

x(i)=xd

xd=xd+dx

3334 continue

C setting the y_ayis

yd=0.0

do 34 j=0, din+1

y(j)=yd

yd=yd+dy

34 continue

C Setting initial values for the numerical solution.

do 33 i=l, dim.

do 33 j=l, din

xu(i, j)=o. Odo

un(i, j)=xu(i, j)
33 continue

C

cB0UNDAAYC0NDIT10NS

226

C Setting boundary values for the numerical solution.

C

do 38 i=0, dim+i, dim+1

do 38 j=1, din

xu(i, j)=x(i)*(i. O-x(i))+y(j)*(y(j)-i. o)

38 continue

C

do 39 j=0, din+i, din+1

do 39 i=l, dim

xu(i, j)=x(i)*(1.0-x(i))+y(j)*(y(j)-1.0)

39 continue

G

C Calculating the analytical solution

do 32 i=1, dim

do 32 j=l, din

ua(i, j)=x(i)*(1.0-x(i))+y(j)*(y(j)-1.0)

32 continue

c

C The right hand of - Au=d is now Calculated.

C

d(1,1)=xu(0,1)+xu(1,0)

do 12 i=2, dim-1

d(i, 1)=xu(i, 0)

12 continue

d(dim, 1)=xu(dim+1,1)+xu(dim, 0)

do 310 j=2, din-1

d(1, j)=xu(O, j)

do 2 i=2, dim-1

d(i, j)=0. dO

2 continue

d(dim, j)=xu(dim+l, j)

310 continue

227

d(i, din)=xu(i, din+1)+xu(O, din)

do 22 i=2, dim-1

d(i, din)-xu(i, din+i)

22 continue

d(dim, din)=xu(dim, din+1)+xu(dim+l, din)

c

C setting

it=0

write(6, *) 'The first ADI iterations had 3 inner AGE iters. '

88 level_adi=1

it=it+1

c Calculating the R. H. S at each ADI level.

98 call rhsadi(e, two_ro, level_adi, d, xu, rhs)

c CALLING THE AGE ROUTINE TO EXCUTE ONE ITERATION.

ii=o

6666 call ageodd(zu, rhs, level_adi, al, cll, s)

ii=ii+1

G

if(it. gt. 1) ii=ii+2

677 if(ii. le. 2) go to 6666

level_adi-level_adi+1

if(level_adi. le. 2) go to 98

c Test the convergence of ADI

finish=. true.

call test2(zu, un, eps, finish)

do 954 i=l, dim

do 954 j=1, din

un(i, j)-xu(i, j)
954 continue

G

if(finish) go to 231

if(it. ge. mnit) then

228

write(6, *) 'The ADI did NOT converge; max. No. of iterations exceeded'

go to 231

endif

go to 88

231 write(6, *) 'The results after ', it, ' ADI iterations. '

call abser(ua, un, z, y)

stop

end

C

c SUBROUTNES FOLLOW HERE

subroutine rhsadi(e, two_ro, level_adi, d, xu, rhs)

implicit real*8(a-h, o-z), integer*2(i-n)

integer dimi, dim2, dim, din

parameter (dim1=100, dim2=100)

dimension d(O: dimi, 0: dim2), rhs(i: dimi, i: dim2)

dimension xu(O: diml, 0: dim2)

COMMON/shareall/dim, din

c At the first ADI level

if(level_adi. eq. 2) go to 701

700 do 223 i=i, dim

rhs(i, i)=d(i, 1)-(e*xu(i, 1)-xu(i, 2))

do 224 j=2, din-i

rhs(i, j)=d(i, j)-(-xu(i, j-1)+e*xu(i, j)-xu(i, j+i))

224 continue

rhs(i, din)=d(i, din)-(e*xu(i, din)-xu(i, din-1))

223 continue

C

go to 498

c Calculating the RHS=(V-ro*I)xu+ 2*ro*uph which is equivalent to:

c RHS=d-(rhs=[d-(V-ro*I)xu]) + 2*ro*uph

c At the SECOND ADI level

701 do 225 j=l, din

229

do 225 i=l, dim

rhs(i, j)=d(i, j)-rhs(i, j)+two_ro*xu(i, j)
225 continue

498 return

end

G

subroutine ageodd(zu, rhs, level_adi, al, cil, s)

implicit real*8(a-h, o-z), integer*2(i-n)

integer dimi, dim2, dim, din

parameter (diml=100, dim2=100)

dimension d(O: dimi, 0: dim2), rhs(i: dimi, i: dim2)

dimension zu(O: diml, 0: dim2)

real*8 ls(0: dim1,0: dim2)

real*8 ls2(0: dimi, 0: dim2)

COMMON/shareall/dim, din

el=cll/2. dO+s

e2=cii/2. dO-s

delta=el**2-al**2

c12-(el*e2-al*al)/delta

a12=(ei*ai-ai*e2)/delta

c13=e2/el

c14=e1/delta

a14=-al/delta

c16=1. dO/el

C ----------------------------

c

if(level_adi. eq. 1) go to 700

if(level_adi. eq. 2) go to 701

c AGE for level-ADI I

C

700 continue

c Calculating the right hand side of

230

c (G1+sI)uph=rhsadi-(G2-sI)zu=1s

do 112 j=I, din

ls(1, j)-rhs(1, j)-e2*xu(1, j)

do 111 i=2, dim-1,2

ls(i, j)=rhs(i, j)-(e2*xu(i, j)+ai*xu(i+i, j))

ls(i+1. j)=rhs(i+i, j)-(e2*xu(i+1, j)+al*xu(i, j))

Iii continue

112 continue

C

c Calculating the right hand side of

c (G2+sI)upl=rhsadi-(G1-sI)(Gi+sI)"{-1}ls

do 115 j=1, din

do 114 i=l, dim-2.2

ls2(i. j)=rhs(i, j)-(c12*ls(i, j)+a12*ls(i+i, j))

ls2(i+i, j)=rhs(i+i, j)-(c12*ls(i+i, j)+ai2*ls(i, j))

114 continue

ls2(dim. j)-rhs(dim, j)-c13*ls(dim, j)

115 continue

c

c----------------------------

c FROM HERE ON, the vector is is used again (instead of upi) to save memory.

do 118 j=i, din

xu(1, j)=c16*ls2(1, j)

do 120 i=2. dim-1,2

xu(i. j)=c14*ls2(i. j)+a14*ls2(i+1, j)

xu(i+1, j)-c14*ls2(i+i, j)+a14*ls2(i, j)

120 continue

118 continue

go to 499

C

c AGE for level-ADI II

701 continue

231

C

do 211 i=i, dim

ls(i, i)=rhs(i, 1)-e2*xu(i, 1)

do 212 j=2, din-1,2

ls(i, j)=rhs(i, j)-(e2*xu(i, j)+al*xu(i, j+1))

ls(i, j+i)=rhs(i, j+i)-(e2*xu(i, j+i)+ai*xu(i, j))

212 continue

211 continue

C

do 214 i=l, dim

do 215 j=l, din-2,2

ls2(i, j)=rhs(i, j)-(c12*ls(i, j)+a12*ls(i, j+i))

ls2(i, j+i)=rhs(i, j+i)-(ci2*ls(i, j+1)+a12*ls(i, j))

215 continue

ls2(i, din)=rhs(i, din)-ci3*ls(i, din)

214 continue

c

C ----------------------------

c FROM HERE ON, vector is is used again (instead of upi) to save memory.

do 220 i=1, dim

zu(i, i)=c16*ls2(i, 1)

do 218 j=2, din-1,2

zu(i, j)=c14*ls2(i, j)+a14*ls2(i, j+i)

xu(i, j+i)=c14*ls2(i, j+i)+a14*ls2(i, j)

218 continue

220 continue

499 return

end

C

subroutine test2(upl, uph, eps, flagon)

implicit real*8(a-h, o-z), integer*2(i-n)

integer dimi, dim2, dim, din

232

parameter (diml=100, dim2=100)

dimension uph(O: diml, 0: dim2), upl(O: diml, 0: dim2)

logical flagon

COMMON/shareall/dim, din

flagon-. true.

emax=0

do 3386 j=1, din

do 3386 i=1, dim

temp=abs(upl(i, j)-uph(i, j))

if (temp. gt. emax) emax=temp

3386 continue

if (emax. gt. eps) flagon=. false.

return

end

c

subroutine abser(ua, un, x, y)

implicit real*8(a-h, o-z), integer*2(i-n)

integer dimi, dim2, dim, din

parameter (dims=100, dim2=100)

dimension un(O: diml, 0: dim2), ua(O: diml, 0: dim2)

dimension aer(O: diml), x(O: diml), y(O: diml)

COMMON/shareall/dim, din

errorsum=0. dO

count=O. dO

write(6,249)(x(i), i=l, dim, (dim/5))

do 101 j=l, din, (din/5)

do 9 i=i, dim

count=count+1. OdO

aer(i)-abs(ua(i, j)-un(i, j))

errorsum=errorsum+aer(i)

9 continue

write(6,186)y(j)

233

write(6,18)(ua(i, j), i=l, dim, (dim/5))

write(6,19)(un(i, j), i=l, dim, (dim/5))

write(6,56)(aer(i), i=l, dim, (dim/5))

56 format(2x, 6x, ' ', 'er = ', 10(lpe9.2))

101 continue

186 format(/, 'x_{2}=', f5.4)

18 format(/, 7x, 'Anal. U=', 10(f9.7), /)

19 format(7x, 'Numer. U=', 10(f9.7), /)

249 format(7x, ' x_{1}= ', 10(f9.7), /)

C

614 allerroraverage=errorsum/count

write(6,965)allerroraverage

965 format(/, t35, 'Average of all absolute errors =', ipell. 2)

return

end

234

B. 4 Program Shallow WaterJAD

$system

program water

c**C

cA program to solve the linearized shallow water c

c equations in 2D using the c

c EAD method c

c**C

c

implicit real*8(a-h, o-z), integer*2(i-n)

real*8 lamda, l

logical convergent

integer diml, dim2

parameter (dims=ll, dim2=11)

dimension un(O: diml, O: dim2)

C

dimension ua(O: diml, 0: dim2)

dimension xu(O: diml, 0: dim2)

C

dimension va(O: diml, O: dim2)

dimension xv(O: diml, 0: dim2)

C

dimension phia(O: diml, O: dim2)

dimension xphi(0: dim1,0: dim2)

G

dimension dxl(O: diml O: dim2)

G

dimension dz2(0: dim1.0: dim2)

C

dimension dxx(O: diml. 0: dim2)

G

235

dimension z(O: diml). y(O: dim2)

COMMON/shareall/mIn

C

open(unit=5, file='wat_in')

open(unit=6, file='wat_out')

G

c 'lasttime' is the number of time steps the program is required to run.

read(5, *)eps, lasttime, maxit

read(5, *)dt, ds, s

read(5, *)istart, jstart, istep, jstep

c DATA DATA DATA DATA DATA

M-10

n=10

dx=ds

dy-ds

C1 is the length of the domain.

1-(float(m)-l. dO)*ds

C

g=10. dO

pi=datan(1. dO)*4. dO

phi0=dsgrt(10. dO*80. dO)

c s=2.8

c END OF DATA. END OF DATA

C

ratio=dt/ds

lamda=phiO*ratio

print*, ' mesh ratio =dt/ds- ', ratio

print*, ' lamda=(dt/ds)* phiO = ', lamda

C

e2=-dt*phiO/(4. d0*ds)

C Coeffs. that are used only in the AGE-Subroutine.

el=0.5d0-s

236

di=1. dO/(0.25d0+e2*e2+s*s+s)

e3=(0.5+s)*di

e4=-e2*di

e5=e1*e3-e4*e2

e6=e1*e4+e2*e3

C

C Calculating the meshpoints' coordinates

call axes2(z, y, dz, dy)

t=O. OdO

C

c Calculating the initial conditions from the theoretical solution.

call theoretical(xu, xv, xphi, t, x, y, phi0, l)

do 3434 lt=l, lasttime

ti=t+dt

c Updating the analytical solution.

call theoretical(ua, va, phia, tl, x, q, phiO, l)

c At level ADI=1

level_adi=1

cA call : to calc. the known rhs of eq(7: 31) & eq(7: 32)

call rhvi(xu, xv, xphi, level_adi, dxl, dx2, dxx, e2)

i1=1

call evenage(xu, xv, xphi, level_adi, dxi, dx2, eps, ii, maxit,

1 e1, e2, e3, e4, e5, e6, di, s, convergent)

if(. not. (convergent)) go to 11

C At level ADI=2

do 1007 j=i, n

do 1007 i=1, m

xv(i, j)=dxx(i, j)

1007 continue

level_adi=2

cA call : to calc. the known rhs of eq(7: 34) & eq(7: 33)

call rhvi(xu, xv, xphi, level_adi, dxl, dx2, dxx, e2)

237

12=1

call evenage(xu, xv, xphi, level_adi, dxi, dx2, eps, i2, maxit,

el, e2, e3, e4, e5, e6, di, s, convergent)

if(. not. (convergent)) go to 11

C

231 er_sumu=O. dO

er_sumv=0. dO

er_sumphi=O. dO

av_eru=0. dO

av_erv=0. dO

av_erphi=0. dO

C

if(lt. ne. lasttime) go to 3435

write(6, *)' dx=dy= ', ds, ' dt=', dt

write(6, *)' acc. param. s=', s

write(6, *)' mesh ratio -dt/ds= ', ratio

write(6, *)' lamda=ratio*phiO = ', lamda

write(6, *)'after ', lt, ' time steps', ' i. e at lt= ', lt

vrite(6, *)'convergence occured after ', ii, '/', i2, ' AGE-ID 1,

i' iterations'

c Results given next.
C

write(6,13)(x(i), i=istart, m, istep)

vrite(6, *)' '

13 format(5x, 'x direction = ', 10(' ', lpe7.1), //)

call abser(ua, va, phia, xu, xv, xphi, y, istart, jstart, istep, jstep,

1 er_sumu, er_sumv, er_sumphi, av_eru, av_erv, av_erphi)

vrite(6, *)'av_eru=', av_eru

vrite(6, *)'av_erv-', av_erv

write(6, *)'av_erphi=', av_erphi

go to 3435

11 write(*, *) 'stopped'

238

stop

3435 t=t+dt

3434 continue

end

C Subroutines follow next.

subroutine axes2(x, y, dx, dy)

implicit real*8(a-h, o-z), integer*2(i-n)

C Setting the coordinates for the computational grid

integer diml, dim2

parameter (dim1=11, dim2=11)

dimension x(O: diml), y(O: dim2)

COMMON/shareall/m, n

C

do 101 i=0, m+1

x(i)=i*dx

101 continue

do 102 j=0, n+1

y(j)=J*dy

102 continue

return

end

subroutine theoretical(u, v. phi, timelevel, x, y, phiO, 1)

implicit real*8(a-h, o-z), integer*2(i-n)

integer diml, dim2. dim3

parameter (dims=il, dim2=11)

dimension u(O: diml. 0: dim2)

dimension v(O: diml, 0: dim2)

dimension phi(O: diml, 0: dim2)

dimension x(O: diml)

239

dimension y(O: dim2)

real*8 1

COMMON/shareall/m, n

C

write(*, *)'I am in theor. now wait please

pi=4. dO*datan(1. dO)

do i i=1, m

do 1 j=1, n

u(i, j)=0.250d0*
I dsin((-dsgrt(2. do)*phiO*timelevel+x(i)+y(j))*2. dO*pi/1)

v(i, j)=0.25odo*

1 dsin((-dsgrt(2. dO)*phio*timelevel+x(i)+y(j))*2. dO*pi/1)

phi(i, j)=(dsgrt(2. dO)/4. dO)*

1 dsin((-dsgrt(2. dO)*phiO*timelevel+x(i)+y(j))*2. dO*pi/l)+phi0

continue

return

end

subroutine rhvi(xu, xv, xphi, level_adi, dxl, dx2, dxx, e2)

implicit real*8(a-h, o-z), integer*2(i-n)

integer diml, dim2

parameter (dim1=11, dim2=11)

real*8 lamda

dimension xu(O: diml, 0: dim2)

dimension xv(O: diml, O: dim2)

dimension xphi(O: diml, O: dim2)

dimension ua(O: dimi, 0: dim2)

dimension va(O: diml, O: dim2)

dimension phia(O: dimi, 0: dim2)

dimension rhst(O: diml, O: dim2)

dimension x(O: diml)

dimension y(O: dim2)

C

240

dimension dxl(O: diml, 0: dim2)

dimension dx2(0: diml, 0: dim2)

dimension dxx(O: diml, 0: dim2)

C

COMMON/shareall/m, n

c

if(level_adi. eq. 2) go to 655

c The first known vector

c input C xphi, xu, xv, e2]

C

C output [dxl, dx2, dxx]

c dxl t dx2 are then used as input for the AGE subr. to get the

c intermediate values for xu t xphi. The dxx itself represents

c the intermediate value of xv ... see eqs. (7.31) & (7.32).

c

c dxx represents the value of z_{2}_{i, j}

do 10 i=1, m

dxi(i, 1)-xu(i, 1)

dx2(i, 1)=xphi(i, 1)+e2*(xv(i, 2)-xv(i, n))

dxx(i, 1)=xv(i, 1)+e2*(xphi(i, 2)-xphi(i, n))

do 20 j=2, n-1

dxi(i; j)=xu(i, j)

dx2(i, j)=xphi(i, j)+e2*(xv(i, j+1)-xv(i, j-1))

dxx(i, j)=xv(i, j)+e2*(xphi(i, j+1)-xphi(i, j-i))

20 continue

dxl(i, n)-xu(i, n)

dx2(i, n)=xphi(i, n)+e2*(xv(i, 1)-xv(i, n-1))

dxx(i, n)=xv(i, n)+e2*(xphi(i, 1)-xphi(i, n-1))

10 continue

c

go to 6568

c The second known vector

241

c The final value of xu is calculated first eq(7: 34)

c dxl and dx2 represent the components of the rhs of eq(7: 33).

655 do 30 i=l, m

do 30 j=1, n

xu(i, j)=2. dO*xu(i, j)-dxl(i, j)

dxi(i, j)=dxx(i, j)

dx2(i, j)=2. dO*xphi(i, j)-dx2(i, j)

30 continue

c

C

6568 return

end

subroutine evenage(xu. xv. xphi. level_adi, dxl. dx2, eps, iters, maxit,

ei, e2. e3, e4, e5, e6, di, s. flagon)

C subroutine for the use of the AGE-1D algorithm within an outer ADI iterative

C Procedure.

implicit real*8(a-h, o-z), integer*2(i-n)

integer diml, dim2

parameter (diml-1i, dim2-11)

dimension xu(O: diml, O: dim2)

dimension xv(O: dimi. 0: dim2)

dimension xphi(O: diml, 0: dim2)

real*8 lsu(O: diml, 0: dim2)

real*8 lsv(O: dimi, 0: dim2)

real*8 lsh(0: dim1,0: dim2)

real*8 lsl(O: diml, 0: dim2)

real*8 ls2(0: dimi, 0: dim2)

C

real*8 dxl(O: dimi, 0: dim2)

real*8 dx2(0: dimi, 0: dim2)

real*8 lamda

242

COMMON/shareall/m, n

logical flagon

if(level_adi. eq. 1) go to 700

if(level_adi. eq. 2) go to 701

C Calculating gi of equation (7.37)

c

700 do 100 j=1, n

do 100 i=1, m-1,2

lsi(i, j)=dx1(i, j)-(ei*xu(i, j) - e2*xphi(i+i, j))

ls2(i, j)=dx2(i, j)-(ei*xphi(i, j) - e2*xu(i+i, j))

c

lsi(i+i, j)=dxi(i+i, j)-(el*xu(i+i, j) + e2*xphi(i, j))

ls2(i+i, j)=dx2(i+i, j)-(el*xphi(i+i, j) + e2*xu(i, j))

100 continue

c

c

do 1119 j=1, n

C

lsu(1, j)=dxl(1, j)-(e5*lsl(1, j) + e6*1s2(m, j))

1sh(1, j)=dx2(1, j)-(e5*1s2(1, j) + e6*lsl(m, j))

C

do III i=2, m-2,2

lsu(i, j)=dxi(i, j) -(e5*lsi(i, j) - e6*ls2(i+i, j))

lsh(i, j)=dx2(i, j) -(e5*ls2(i, j) - e6*lsl(i+i, j))

C

lsu(i+1, j)-dxl(i+1, j) -(e5*lsl(i+1, j) + e6*ls2(i, j))

lsh(i+1, j)=dx2(i+1, j) -(e5*ls2(i+1, j) + e6*lsl(i, j))

C

III continue

C

lsu(m, j)=dxl(m, j) -(e5*lsl(m, j) - e6*ls2(1, j))

lsh(m, j)-dx2(m, j) -(e5*1s2(m, j) - e6*lsl(1. j))

243

C

1119 continue

C

do 500 j=1, n

do 500 i=1, m-1,2

lsl(i, j)=e3*lsu(i, j) - e4*lsh(i+1, j)

1s2(i, j)=e3*lsh(i, j) - e4*lsu(i+1, j)

C

lsl(i+i, j)=e3*lsu(i+1, j) + e4*lsh(i, j)

1s2(i+1, j)=e3*lsh(i+i, j) + e4*lsu(i, j)

500 continue

C

emaxl=0. dO

emax2=0. dO

flagon=. true.

do 880 j=1, n
do 880 i=1, m

erl-dabs(lsl(i, j)-xu(i, j))

er2=dabs(ls2(i, j)-xphi(i, j))

if(erl. gt. emaxl) emaxl=erl

if(er2. gt. emax2) emax2=er2

880 continue

C

if((emaxl. gt. eps). or. (emax2. gt. eps)) flagon-. false.

do 991 j=1, n

do 991 i=1, m

xu(i, j)=ls1(i, j)
xphi(i, j)=1s2(i, j)

991 continue

if (flagon) go to 499

if(iters. gt. maxit) then

print*, 'max no. of iterations is exceeded in AGE1'

244

go to 499

endif

iters=iters+l

go to 700

c

c AGE at the second level of the ADI method.

C Calculating g2 of equation (7.39)

c

701 do 200 i=1, m

do 200 j=1, n-1,2

lsi(i, j)=dx1(i, j)-(e1*xv(i, j) - e2*xphi(i, j+i))

ls2(i, j)=dx2(i, j)-(el*xphi(i, j) - e2*xv(i, j+1))

c

lsl(i, j+i)=dxl(i, j+i)-(el*xv(i, j+i) + e2*xphi(i, j))

ls2(i, j+1)=dx2(i, j+1)-(el*xphi(i, j+1) + e2*xv(i, j))

200 continue

c

c

c Using the vector lsu here instead of lsv.

c

do 9119 i=1, m

lsu(i, i)=dxl(i, i)-(e5*lsl(i, i) + e6*ls2(i, n))

lsh(i, 1)=dx2(i, 1)-(e5*ls2(i, 1) + e6*lsl(i, n))

C

do 911 j=2, n-2,2

lsu(i, j)=dxl(i, j) -(e5*lsl(i, j) - e6*ls2(i, j+i))

lsh(i, j)=dx2(i, j) -(e5*ls2(i, j) - e6*lsl(i, j+1))

c

lsu(i, j+1)=dxl(i, j+i) -(e5*lsi(i, j+l) + e6*ls2(i, j))

lsh(i, j+1)-dx2(i, j+1) -(e5*ls2(i, j+l) + e6*lsl(i, j))

C

911 continue

4

245

G

lsu(i, n)=dxl(i, n) -(e5*lsl(i, n) - e6*ls2(i, 1))

lsh(i, n)=dx2(i, n) -(e5*ls2(i, n) - e6*lsl(i, 1))

9119 continue

C

C

do 9500 i=1, m

do 9500 j=1, n-1,2

lsl(i, j)=e3*lsu(i, j) - e4*lsh(i, j+1)

ls2(i, j)=e3*lsh(i, j) - e4*lsu(i, j+1)

G

lsi(i, j+i)=e3*lsu(i, j+i) + e4*lsh(i, j)

1s2(i, j+i)=e3*lsh(i, j+i) + e4*lsu(i, j)

9500 continue

G

C

emaxl=O. do

emax2=0. dO

flagon-. true.

do 800 j=1, n

do 800 i=1, n

erl=dabs(lsl(i, j)-xv(i, j))

er2=dabs(ls2(i, j)-xphi(i, j))

if(erl. gt. emaxl) emaxl=erl

if(er2. gt. emax2) emax2=er2

800 continue

G

if((emaxl. gt. eps). or. (emax2. gt. eps)) flagon-. false.

do 901 j=1, n

do 901 i=1, m

xv(i, j)=lsl(i, j)

xphi(i, j)=ls2(i, j)

246

901 continue

if(flagon) go to 499

if(iters. gt. maxit) then

print*, 'max no. of iterations is exceeded in AGE2'

go to 499

endif

iters=iters+l

go to 701

499 return

end

subroutine abser(ua, va, phia, xu, xv, xphi, y, istart, jstart, istep, jstep,

1 er_sumu, er_sumv, er_sumphi,

1 av_eru, av_erv, av_erphi)

C***********

C*********** Subroutine for calculating the errors and printing the

C*********** results of the S. W. program.

C***********

implicit real*8(a-h, o-z), integer*2(i-n)

integer diml, dim2

parameter (diml-11, dim2=11)

dimension xu(O: diml, 0: dim2), xv(O: dims, 0: dim2), xphi(O: diml, 0: dim2)

dimension ua(O: diml, 0: dim2), va(O: dims, 0: dim2), phia(O: dimi, 0: dim2)

dimension aeru(O: diml), aerv(O: dimi), aerphi(O: dimi)

C

dimension y(O: dim2)

COMMON/shareall/min

C

do 101 j=jstart, n, jstep

C

do 11 i=istart, m, istep

247

C

aeru(i)=dabs(ua(i, j)-xu(i, j))

aerv(i)=dabs(va(i, j)-xv(i, j))

aerphi(i)=dabs(phia(i, j)-xphi(i, j))

er_sumu=er_sumu+aeru(i)

er_sumv=er_sumv+aerv(i)

er_sumphi=er_sumphi+aerphi(i)

it continue

G

write(6,18)(ua(i, j), i=istart, m, istep)

write(6,19)(xu(i, j), i=istart, m, istep)

write(6,56)y(j), (aeru(i), i=istart, m, istep)

C

Write(6,1801)(va(i, j), i=istart, m, istep)

write(6,1901)(xv(i, j), i=istart, m, istep)

write(6,5601)y(j), (aerv(i), i=istart, m, istep)

C

write(6,1802)(phia(i, j), i-istart, m, istep)

write(6,1902)(xphi(i, j), i=istart, m, istep)

write(6,5602)y(j), (aerphi(i), i-istart, m, istep)

101 continue

C

ipoints=(m-istart)/(istep)+1

jpoints=(m-istart)/(istep)+i

(prod-float(ipoints*jpoints)

print*, 'ipoints - ', ipoints, ' jpoints " ', jpoints

av_eru=er_sumu/fprod

av_erv=er_sumv/fprod

av_erphi=er_sumphi/fprod

56 format(lx, 'y= ', f8.1, ' ', 'er_u

18 format(/, 5x, 'Analytical U =', 10(' ', f7.5))

19 format(5x, 'Numerical U-', 10(' ', f7.5), /)

248

5601 format(lx, 'y= ')f8.1, ' ', 'er_v = ', 10(' ', lpe8.1), /)

1801 format(/, 5x, 'Analytical V =', l0(' ', f7.5))

1901 format(5x, 'Numerical V=', l0('

5602 format(ix, 'y= ', f8. i, ' ', 'er_phi = ', 10(' ', ipe8.1))

1802 format(/, 5x, 'Analytical Phi =', 10(' ', f7.3), /)

1902 format(5x, 'Numerical Phi = ', 10(' ', f7.3), //)

print*, 'av_eru=', av_eru

print*, 'av_erv=', av_erv

print*, 'av_erphi=', av_erphi

return

end

