This item is held in Loughborough University's Institutional Repository (https://dspace.Iboro.ac.uk/) and was harvested from the British Library's EThOS service (http://www.ethos.bl.uk/). It is made available under the following Creative Commons Licence conditions.

Attribution-NonCommercial-NoDerius 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:
BY:
Attribution. You must attribute the work in the manner specified by the author or licensor.

Noncommercial. You may not use this work for commercial purposes,

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Leqal Code (the full license).
Disclaimer 민

For the full text of this licence, please go to:

DISCRIMINANT ANALYSIS MODEL FOR PREDICTING CONTRACTOR PERFORMANCE IN HONG KONG

by

CHI MING TAM, MSc, MCIOB, MHKIE

A Doctoral Thesis submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of the

Loughborough University of Technology

December 1992
(C) CHI MING TAM

DEDICATION

To my beloved wife ALICE CHEUNG, brothers and mother, who gave me inspiration and support

DECLARAITIN

No portion of the research referred to in this thesis has been submitted in support of an application for another degree or qualification at this or any other university or other institution of learning.

ACKNOWIEDGEMENIS

This dissertation can never be made possible without the help of a large number of people, but unfortunately a few can only be named.

I would like to present my sincere thanks to many organisations who have provided valuable information about their building projects for the study and their time, experience and knowledge during the preparation of this report.

Thanks to Dr. A.F.Abidali for sending me a copy of his thesis on the topic of "A Methodology for Predicting Company Failure in the Construction Industry".

Grateful. thanks are extended to my supervisor, Prof. Frank C. Harris for his continuous guidance, support and encouragement throughout the entire research process, particularly for introducing me the mathematical techniques, without which the dissertation can never be made possible.

I should also thank the librarians of the City Polytechnic of Hong Kong for entertaining me in the tiring book research. I' should also be indebted to my wife Alice Cheung for her great. patience when I was at work. Last but not least, I extend my sincere thanks to a number of reputable persons in the construction industry in Hong Kong, who gave me valuable advices and information.

ABSLRACT

This thesis describes the development of an operational research model for the identification of determinating variables and prediction of contractor performance in Hong Kong. The mathematical technique used is the Discriminant Analysis approach.

The model is also verified with two other analyses namely Multiple Regression Analysis and Unidimensional Scaling Analysis. One of the aims of the research is to betray the underlying factors that influence contractor performance which are measured in the clients' point of view. The second aim is to develop an accurate model for predicting contractor performance used by clients in vetting contractors.

All aspects of the model's development are described, including the quantification of the variables, data collection, analysis of the model results, verification of the model results with other models and testing the model using independent data. Further, the variables adopted in the model are compared with the actual practices in Hong Kong.

The predictive model produced by the study is made up of six variables measuring the three dimensions namely the inherent characteristics of the project, the contractor's internal attributes and the external influence of the project team,
including the complexity of the project, the working experience of the project leaders, the percentage of professionally qualified staff in the company, the past performance of the contractor, the origin of the company and the architect's or client's supervision and control on the quality of work and work progress.

However, the developed models should only be used as part of an assessment process and with caution as there are other |unpredictable factors which are not able to quantify and include in the model such as the changing of the company structure and strategy, change in management quality, profitability and the happening of overtrading. Nevertheless, the use of the model to exclude companies from tender lists could accelerate the contractor selection process and spare more time for clients to concentrate on more important issues.

TABLE OF CONIFNIS

Page
Dedication i
Declaration ii
Acknowledgements iii
Abstract iv
Contents vi
List of Tables xvii
List of Figures xxi
CONTENTS
CHAPIER 1: GENERAL INIRODUCTION 1
1.1 Introduction 1
1.2 Aim and Objectives 2
1.2.1 Aim 2
1.2.2 Objectives 2
1.3 Methodology. 2
1.4 Background Information on the
Construction Industry of Hong Kong 3
1.4.1 Importance of the Industry in the Economy. 4
1.4.2 Levels of Expenditure in the
Private Sectors of Construction Works. 4
1.4.3 Change in Productivity of the Industry 4
1.4.4 The Labour Recruitment of the Industry 6
1.4.5 Procurement Method 6
1.4.6 Foreign Contractors. 8
1.4.7 Features of Contractors. 8
1.4.8 Summary. 10
CHAPIER 2: REVIEW OF PREVIOUS STUDIES 11
2.1 Introduction 11
2.2 Previous Studies 11
2.2.1 Mustafa and Ryan's Work. 11
2.2.2 Nguyen's Work. 15
2.2.3 Diekmann's Work. 18
2.2.4 Russell's Work 19
2.2.5 Russell and Skibniewski's Work 19
2.3 Sumary. 22
CHAPTER 3: THE TECHNIQUE OF DISCRTMINANT ANALYSIS 24
3.1 Introduction 24
3.2 Application of the Discriminant Analysis in Construction Related Research 25
3.3 Assumptions about the Data in Applying Discriminant Analysis 26
3.4 Relationship to Multiple Regression Analysis 27
3.5 The General Concepts of Multiple Discriminant Analysis. 28

Page

3.5.1 Percentage of Cases Classified Correctly. 29
3.5.2 The Between Groups and Within
Groups Variabilities 30
3.5.3 The Canonical Correlation. 30
3.5.4 Wilks' Lambda. 30
3.6 Summary 31
CHAPIER 4: DECISION FACIORS AFFECITING PERFORMANCE AND IHETR QUANIIFICATION 33
4.1 Introduction 33
4.2 Data Selection 34
4.3 Variables that Measure the Client'sSatisfaction on contractor Performance35
4.3.1 quality. 37
4.3.2 Time 38
4.3.3 Cost 38
4.4 The Intrinsic Traits of Contractor Thought Affecting Performance. 39
4.4.1 Staff Training Programe 39
4.4.2 Plant Ownership Policy 39
4.4.3 Size of the Company. 40
4.4.4 Quality of Management Team - Professional Qualifications. 40
4.4.5 Quality of Management Team - Project Leader's Experience. 41
4.4.6 Past Performance of the Project Manager. 42
4.4.7 Contractor's Experience in the Types of Job 42
4.4.8 Contractor's Work Ioad 43
4.4.9 Contractor's Past Performance or Image. 43
4.4.10 Number of Years in the Business 44
4.4.11 Origin of the Company 44
4.4.12 Amount of Directly Employed Labour. 45
4.4.13 Listed on the Stock Market. 46
4.4.14 Decision Making Centralised in Head Office or De-centralised to Site 46
4.4.15 Contractor is Client's Subsidiary Firm. 46
4.5 External Factors Thought to Affect contractor Performance 47
4.5.1 The Architect's Performance. 47
4.5.2 Architect's or Client's
Supervision and Control on Quality and Work Progress. 47
4.5.3 Punctuality of Payment by the Client 48
4.5.4 Complexity of the Project. 48
4.5.5 Profitability. 49
4.6 Summary 50
Fage
CHAPIER 5: DATA COLJECTION AND FORMATION OF DATA grours 52
5.1 Introauction 52
5.2 Methodology of Data Collection 52
5.3 Formation of Data Groups 53
5.4 Data Analysis. 54
5.4.1 Types of projects. 54
5.4.2 Types of Contractors 54
5.4.3 size of Contractors. 55
5.4.4 Project Size 56
5.5 Summary. 57
CFAPTER 6: REIATION BEIWIEEN FERFORMANCE AND TTME, COST \& QUALITTY 58
6.1 Introduction 58
6.2 Data Analysis. 58
6.3 Z_{1} Model Derived 59
6.3.1 Percentage of Cases Classified correctly. 61
6.3.2 The Between Groups and Within
Groups Variabilities 64
6.3.3 The Canonical Correlation. 64
6.4 Sumaty and conclusion 64
CHAPIER 7: THE DISCRIMINANT ANALYSIS MODEL. 66
7.1 Introduction 66
7.2 The Resultant Model Z_{2} 69
7.3 The Constituent Variables. 69
7.3.1 Complexity of project. 69
7.3.2 Percentage of Professional Staff 71
7.3.3 Project Leader's Experience. 73
7.3.4 Past Performance 73
7.3.5 origin of Contractor 74
7.3.6 Architect's or Client's Control and Supervision. 75
7.4 The Cut-Off Value Between Groups 75
7.5 Classification Power 79
7.5.1 Percentage of Cases Classified Correctly. 79
7.5.2 The Between Groups and Within Groups Variabilities 79
7.5.3 The Canonical Correlation. 80
7.6 Z_{3} Model Consisting of New Works Only 80
7.6.1 The Resultant z_{3} Model 81
7.6.2 Percentage of Cases Classified correctly. 82
7.7 z_{4} Model Consisting of Building Works only 82
7.7.1 The Resultant Z_{4} Model 85
7.7.2 Percentage of cases Classified correctly. 89
7.8 Comparing Models Z_{2}, Z_{3} and z_{4} 89
7.9 Sumary and conclusion 90
page
CHAPIER 8: INIEIRVIEW SURVEY TO STRUCIURE CLIENTS' UNSIRUCIURED APPRDACH IN CONIRACTOR SELECIION 93
8.1 Introduction 93
8.2 Interview. 93
8.3 Results. 95
8.3.1 Comparing the Survey Results with the Discriminant Model 95
8.3.2 Ways to Quantify Variables 103
8.3.3 Additional Screening Requirements for Lange and or Complex Projects 106
8.4 Summary and Conclusion 106
CHAPIER 9: COMPARING IHE DISCRIMINANI ANAIYSIS
MODEU WIITH MUUTIPLE REGRESSION ANALYSIS
AND UNIDIMENSIONAL SCAITNG MODETS. 107
9.1 Introduction 107
9.2 Multiple Regression Analysis Model 107
9.2.1 The Regression Model 108
9.2.2 The Standardized Coefficients. 108
9.2.3 Assumptions in Applying the Model. 109
9.2.4 Goodness of Fit. 110
9.2.5 Stepwise Regression. 113
9.2.6 The Resultant Model. 114
9.2.7 The Relative Importance or Contribution of Variables to the Model 114
9.2.8 Comparison Between the Discriminant Model and the Multiple Regression Model 116
9.2.9 Quality of Classification. 119
9.2.10 Goodness of Fit 122
9.3 Unidimensional Scaling Model 123
9.3.1 Introduction to Unidimensional
Scaling. 123
9.3.2 Item Construction. 126
9.3.3 Item Scoring 128
9.3.4 Item Selection 130
9.3.5 quality of Classification. 132
9.3.6 Comparison Between the Discriminant Model and the Unidimensional Scaling Model. 132
9.4 Conclusion and Summary 134
CHAPIER 10: TESTING THE MODETS USING INDEPENDENT
DATA 136
10.1 Introduction 136
10.2 Test Data Groups 137
10.3 Validation of the Discriminant Analysis Model. 137
10.4 Validation of the Multiple Regression Analysis Model 140
10.5 Conclusion and Summary 141
CHAPIER 11: PERIPHERAL FACIORS NEEDED TO BE TAKEN INTO ACCOUNT WHEN USING THE MODEL 143
11.1 Introduction 143
11.2 Methodology. 143
11.3 Case Studies 144
11.3.1 Case 1- 'Good Performance' Case Classified as 'Bad' 144
11.3.2 Case 2- 'Rad' Performance Case Classified as 'Good' 147
11.3.3 Case 3- 'Bad Performance' Case Classified as 'Good'. 149
11.4 Summary and conclusion 151
11.4.1 Change in Company Policy and Attitude. 151
11.4.2 Change in Management quality. 152
11.4.3 Profitability 152
11.4.4 Overtrading 153
CHAPIER 12: COMMENIS FROM THREE ORGANISATIONS ON THE DISCRIMINANT VARIABLES 155
12.1 Introduction 155
12.2 Interview 1- Public Housing Client 155
12.2.1 Past Performance. 156
12.2.2 Management Capability 157
12.2.3 Financial Standing. 157
12.2.4 Other Variables 158
Page
12.3 Interview 2- Estate Office of a Tertiary Institution 158
12.3.1 Past_Per \& Complex. 159
12.3.2 origin. 159
12.3.3 Prof_Sta \& Lead_Ex. 159
12.4 Interview 3- Project Management Consultant 160
12.5 Summary and Conclusion 161
CHAPIER 13: DISCUSSION AND CONCIUSIONS 163
13.1 Introduction 163
13.2 The Discriminant Analysis Model. 164
13.3 Verification of the Discriminant Model Using Multiple Regression and Unidimensional Scaling Models. 164
13.4 Peripheral Factors in Exercising the Discriminant Model 165
13.5 Recommendations for Inplementing the Discriminant Model 166
13.6 Suggestion for Future Stuady. 166
REFERENCES: 168
APPENDIX 1: Measuring the Degree of Concordance of Clients on the levels of Complexity of Work 176
APPENDIX 2: Raw Data of 34 Cases for Model
Formulation and 16 Cases for Testing 181
APPENDIX 3: SPSS (pc) Computer Printout of theStepwise Procedures in computing the Z_{1}Discriminant Analysis Model. 186
APPENDIX 4: SPSS (pc) Computer Printout of theStepwise Procedures in Computing the Z_{2}Discriminant Analysis Model. 198
APPENDIX 5: SPSS (pc) Computer Printout of theStepwise Procedures in Computing the Z_{3}Discriminant Analysis Model. 215
APPENDIX 6: SPSS (pc) Computer Printout of theStepwise Procedures in Computing the Z_{4}Discriminant Analysis Model. 230
APPENDIX 7: SPSS (pc) Computer Printout of the Stepwise Procedures in Computing the Multiple Regression Analysis Model . . . 247
APPENDIX 8: Introduction to the Performance
Assessment Scoring System (PASS) of the Hong Kong Housing Authority. 279
APPENDIX 9: University's Panel of Contractors- Monitoring of Contractors' Performance. 297

LIST OF TABTES

Table NoPage

1
Construction as a Proportion of Gross Domestic Product 5
Value of Work Completed at Constant
Prices at Year 1980. 5
Change in productivity in theConstruction Industry from 1976-1989 . .7
The Number of Overseas Contractors
Eligible to Tender for Public Works. 9
Rating Matrix or Binary Relation 17
Relative Weightings of the SuccessCriteria in Might and Fisher's Mail
Survey 35
The Standardized Discriminant
Coefficients and their Relative
Weightings in the Z_{1} Model 36,60
Group Size of Projects in the Study. 53
Types of Projects in the Samples 55
Types of Contractors in the Modelling
Groups 55
Size of Company in the Modelling Group 56
Project Size in the Sampling Groups. 56
Group Means of Time, Cost and quality. 58
Pooled Within Groups Correlation Matrix
in the Z_{1} Model. 59The Standardized and UnstandardizedCanonical Discriminant Function

Coefficients in the Z_{1} Model 60
Overall Classification Results of the Z_{1} Model. 61
Classification Results and the
Discriminant Scores of cases in the Z_{1} Model 62
Pooled Within Group Correlation Matrix of Variables in the Z_{2} Model 71
Unstandardized Discriminant Function
Coefficients for the Z_{2} Model. 72
Standardized Discriminant Function
Coefficients and their Priority Order of
Contribution to the Z_{2} Model 73
Classification Results and the
Discriminant scores of Cases in the Z_{2}
Model. 77
Overall Classification Results of the Z_{2} Model 79
Number of Cases by Group in the z_{3} Model 80
Standardized Discriminant Function
Coefficients and their Priority Order ofContribution to the Z_{3} and Z_{2} Model. . .82
Overall Classification Results of the Z_{3}
Model 83
Classification Results and theDiscriminant Scores of cases in the Z_{3}
Model 84Number of Cases by Group in the Z_{4} Model85
28
Standardized Discriminant FunctionCoefficients and their Priority Order ofContribution to the Z_{4} and Z_{2} Model. . . 86Classification Results and theDiscriminant scores of Cases in the Z_{4}Model87Summary Table of the RegressionStatistics122

39
A. 1 Results of Survey on the Levels of Complexity of Work 178

IIST OF FIGURES

Figure page
1 Analytic Hierarchy Process in BiaEvaluation 13
All Groups Stack Histogram for Model z_{1}. 63
Subject Grouping of the 20 Variables inthe z_{2} Model 68Normality Assumption in Deriving theCut-off Point for Two Groups78All Groups Stacked Histogram for Model
Z_{2} 78All Groups Stacked Histogram for Modelz_{3}84
All Groups Stacked Histogram for Model
Z_{4} 88
Regression Assumptions 111
Stacked Histogram for the RegressionModel.121
Means of group $1 \& 2$ and the Demarcation Value of the Variable 'TRAINING' 129Stacked Histogram for the UnidimensionalScaling Model133
Form of Interview Questions Used in the Interview Survey 94
Criteria in contractor Selection Other
Than Bidding Prices. 96
Clients' Perception on Quality of Staff and Its Importance 97
Figure Page
15 16
Clients' Perception on Quality of the Project Leader and Its Importance. 98
Various Approaches to Measure Past
Various Approaches to Measure Past Performance. Performance. 99 99
The Ways That Clients Define Tight
Control And Its Importance 100
Clients' Attitude and Perception on
Overseas Contractor. 101
Additional Screening Requirements for
Large and Complex Projects 102

CHAPIER 1

GENFERAL INTBRODUCIITON

1.1 INIROLUCIION

In Hong Kong, most of the new construction works are let in the form of competitive tendering. Construction clients commonly try to gauge a contractor's potential performance on a past record of finishing on time, to cost and with good quality of work before inviting bids. However, the tendering method can only measure a portion of the cost component as contractors often succeed in obtaining claims for extras. Unfortunately, the other two components, time (completion an time) and quality of work, are even more difficult to assess at the tendering stage. While careful pre-selection may help in judgement, decision making is subjective and often not accurate.

One of the largest housing developens in Hong Kong openly criticised the performance of contractors explaining that it is difficult to rely solely on the present selective tendering process in evaluating contractors' performance and other methods need to be devised to include as much quantitative and objective factors as possible. These aspects form the basis of the research described in this thesis where a quantitative model has been developed.

1.2 ATM AND OBJECIIVES

1.2.1 ATM

The primary aim of this research is to develop a quantitative model able to assess and predict contractor performance in the process of bid evaluation.

1.2.2 OBJECIIVES

1.2.2.1 To develop a formalised and structured approach in the prequalification of contractors.
1.2.2.2 To quantify the subjective elements in performance assessment.
1.2.2.3 To investigate the reasons that ascribe contractor performance.
1.2.2.4 To draw clients' attention to the attributes that can improve contractor performance.

1.3 MEIHODOLOGY

The mathematical technique of Discriminant Analysis was adopted in the research to evaluate the performance of contractors.

Multiple Regression Analysis and Unidimensional Scaling techniques were used to verify and compare the results.

Because of the complexities of calculation involved, it was impractical to achieve this manually. Therefore the package called 'Statistical Packages for Social Science' (SPSSpC) was used for computation.

The project information was obtained through interviews with the client and the contractor representatives.

1.4 BACKGROUND INFORMATION ON THE CONSIRUCIION INDUSTRY OF HONG KONG

Before going further, it is worth at this stage to introduce the characteristics of the construction incustry in Hong Kong:

Hong Kong has become a major financial and industrial centre in the Far East despite its size. Its significance has been strengthened by its strategic location on China's south-eastern coastline, and lies on the edge of the economically important Pacific Basin. Located at the mouth of the Pearl River, Hong Kong is just inside the tropics. It has a total area of 1064 sq. kilometres.

The Territory is covered with mountains and hills which account
for 80% of the whole territory. So far only 16% of the total land is built up and this is mainly concentrated on the relatively flat and low-lying parts of Hong Kong Island and the Kowloon Peninsula. 5

The population reached six millions in 1991 (source from the Census and Statistics Department of Hong Kong). Thus most buildings are high rise structures in order to house the population.

1.4.1 IMPORTANCE OF THE INDUSIRY IN THE ECONOMY

The importance of the construction industry in Hong Kong's economy is demonstrated by the statistias given in Table 1.

The percentage of the construction industry as a percentage of the Gross Domestic Product is expected to rise in the coming few years as Hong Kong has geared up to start an estimated HK\$140 billions worth of the Port and Airport Development project.

1.4.2 LEVETS OF EXPENDIIURE IN THE PRIVANE SECIORS OF CONSIPUCITION WORKS

The distribution of private and public work sectors are shown in Table 2.
1.4.3 CHANGE IN PRODUCITVIIY OF THE INDUSIRY
Table 1 Construction as a Proportion of Gross Domestic Product

$|$| Building \& Construction as a Percentage of the total G.D.P. $\%$ | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| 10.5 | 12.5 | 12.5 | 11.7 | 12.1 | 11.9 | 13.2 | 12.4 | 10.6 | 9.8 | 8.8 | 8.2 |

(Source: Census \& Statistics Department of Hong Kong)
Table 2 Value of Work Completed at constant Prices at year 1980
(Source: Census \& Statistics Department of Hong Kong)

Building \& Construction Expenditure 1976-1986 (in HK\$ Billion)												
At Constant 1980 Price	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
Private	5.7	7.4	7.4	8.3	10.5	11.5	11.9	11.6	11.1	11.4	11.6	12.3
Public	3.7	5.2	6.4	6.1	6.1	6.4	8.5	8.8	8.0	6.2	6.0	6.5
Total	9.4	12.6	13.8	14.4	16.6	17.8	20.4	20.4	19.1	17.6	17.6	18.7
Change \%	+13	+34	+10	+4	+15	+8	+14	0	-6	-8	0	+7
Public \%	39	41	46	42	37	36	42	43	42	35	34	35

Table 3 shows the number of workers, value of construction works and the average output per worker from 1976- 1989.

Over the thirteen years, the productivity of the industry has increased by 44\% due to the use of machines and the highly prefabricated construction methods such as steel frame and curtain walling.

1.4.4 THE IABOUR RECPUITIMENT OF THE INDUSIRY

In Hong Kong, the labour recruitment of the industry is overwhelmed with labour-only subcontractors. Main contractors normally maintain a small pool of direct labour on sites to carry out the miscellaneous works such as small amount of re-work, cleaning, setting out, and etc. The rest normally are subletted.

However, as the labour shortage became more severe in the recent years, a few construction firms have turned to directly employed labour because of the difficulties in managing labour-only subcontractors. However, the scale is still very small. Nevertheless, as the Hong Kong government starts to import labour, the use of directly employed labour will inevitably be augmented.

1.4.5 PROCUREMENP MEEHOD

The procurement method used in Hong Kong is still very traditional. The use of selective tendering dominates the market.
Table 3 Change in Productivity in the construction Industry from 1976-1989
Number of workers on construction sites

1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
48,761	63,010	74,734	85,959	90,498	88,877	82,055	70,611	68,603	66,313	70,808	72,486	76,340	70,503
Value of construction works (HK\$ Billion)													
At current prices													
4,689	6,876	8,363	12,339	16,623	19,937	24,787	25,112	24,414	22,970	24,403	30,362	37,352	45,573
At constant prices (1980)													
9,415	12,593	13,838	14,447	16,623	17,880	20,417	20,373	19,110	17,634	17,600	18,633	18,775	19,749
Average output per worker (at constant 1980 price)													
193,085	199,857	185,163	168,068	183,684	201,177	248,821	288,524	278,559	265,921	248,559	257,078	245,939	280,116
Changes in output \%													
-	+3.5	-7.4	-9.2	+9.3	+9.5	+23.7	+16	-3.5	-4.5	-6.5	+3.4	-4.3	+13.9
Oummulative changes:													
-	+3.5	-3.9	-13.1	-3.8	+5.7	+29.4	+45.4	+41.9	+37.4	+30.9	+34.3	+30	+44

There have been only a few records of management contracting or design and build contracts and they were normally confined to the very large projects.

1.4.6 FOREIGN CONIRACIORS

The construction of the Mass Transit Railway system in 1976 introduced overseas contractors, which were mainly British, Japanese and French, to Hong Kong. The booming conditions in the early 1980's drew other foreign contractors such as Korean, Mainland Chinese, Australian, and Italian. At the start, such firms mainly concentrated on the civil engineering sector which is machine and technique intensive and comprises mostly directly employed labour. Furthemore, the less complicated management of subcontracts and labour together with relatively little services coordination and small amount of trades contractors involved avoids the need to involve local practice. As these firms entered into the building industry, however the increased complexity of the process of this type of work has tended to affect their performance.

Table 4 shows the number of overseas contractors eligible to tender for public works. ${ }^{6}$

1.4.7 FEATURES OF CONIRACIORS ${ }^{4}$

Most construction companies in the developing countries are sole ownerships, and Hong Kong is not exceptional.
Table 4 The number of overseas contractors eligible to tender for public works

		Year					
	1980	1981	1982	1983	1984	1985	1986
Japan	11	12	12	15	15	16	18
South Korea	3	4	5	6	7	9	10
China	-	2	3	3	4	4	6
United Kingdom	1	6	8	9	10	9	8
France	2	4	4	4	5	7	8
Australia	2	2	2	2	3	2	1
Italy	3	3	3	3	3	3	4
Other	3	4	11	11	19	21	21
Total	25	37	48	53	66	71	76

In the last decade, contractors were unable or unwilling to employ qualified personnel. Their proprietors were also reluctant to delegate responsibility to others, especially where this involved monetary transactions such as the purchase of materials.

Also, owing to their cultural background and the setting of their operations, proprietors of contracting firms had a paternalistic and highly personal management style. Goodwill was important in business relationships. Winning contracts, obtaining materials, arranging for credit from banks and receiving interim payments from clients were rarely straight forward business transactions.

However as the scale of the economy has enlarged and the emergence of large overseas contractors, Hong Kong is experiencing changes from the traditional way of business to a new system. For example, contractors are having to manage their firms more professionally by delegating some reponsibilities, and seeking technical and managerial training or employing qualified personnel. They have begun to realise that contractual rights and relationships with clients have changed from a faithful to confrontational attitude.

1.4.8 SUMMARY

The above description outlines the past and existing market and incustry conditions in Hong Kong. These provide some contextual information to the study which are considered vital to understand the background of the research.

CHAPIER 2

REVIEN OF PREVIOUS SIUDIES

2.1 INIRODUCIION

In the past, research on the performance of contractors has tended to concentrate on the contractors' business point of view; i.e. the assessment of the productivity, the financial performance, profitability and etc. $2,3,4$ with little work done relevant to clients' concerns relating to time, cost and quality.

2.2 PREVIOUS STUDIES

2.2.1 MUSIAFA AND RYAN'S WORK ${ }^{7}$

-The research concerned the process of evaluating bids characterised by the existence of multiple cxiterion; some of which were found to be qualitative. They concluded that existing methods used in bid evaluation all have their limitations ${ }^{7}$ in so far as most solicitation documents stipulate that the work shall be awarded to the responsible contractor who submits the lowest responsive bid. 'Responsible' and 'responsive' summarise | the criteria used in the selection of the contractor, implying that it is not enough to be the lowest bidder for the contractor to be selected.

In their work, it mentioned that the bid evaluation was characterised by multiple quantitative and qualitative criteria. The price of the bid was only one criterion in the evaluation process, and the expected performance was the second. The latter criterion was influenced by many subjective and objective factors.

Mustafa and Ryan et al suggested a number of attributes which they thought would affect the performance namely:

- specific experience suitable for undertaking the work;
- safety record;
- attitudes towards correcting faulty or incamplete work;
- compliance with specification, and contractual requirements in previous work:
- management capability to plan, schedule and execute the work in a timely manner;
- availability of facilities: the availability and application of special equipment and facilities;
- availability of in-house skilled labour;
- financial stability;
- number of years of experience in the related industry;
- reputation and position in the market; and
- quality of products, records.

Their work involved the evaluation of bids by a systematic approach called 'Analytic Hierarchy Process' (AHP) which is very similar to the concept of tree diagram.

- 13 -

AHP enables decision makers to structure a complex problem in the form of a hierarchy. Each factor and alternative can be identified and evaluated with respect to other related factors. The model is illustrated in Figure 1.

In general, AHP involves the following steps ${ }^{21}$:
2.2.1.1 Breaking down the decision into a hierarchy of decision elements. (In Figure 1, the decision elements are Capabilities:- engineering support, cost-benefit analysis, risk analysis; Technology:- korwledge and understanding of the technology, experience base in specific technologies, breadth or muber of technologies in which expertise is stated in the offer; Predictive Performance; Labour Rate; Loading Factors of the Tender; Cost of a Sample Task; and etc.)
2.2.1.2 Allocating relative weights to each element according to the client's and project's requirements.
2.2.1.3 Aggregating the relative weights of the decision elements in order to obtain a numerical outcome; for example, Contractor A may get 0.8 score and contractor B scores $0.75, C$ scores 0.5 and thus the contract should be awarded to Contractor A.

This model has the shortfall that the weightings assigned are arbitrary and thus by and large is quite subjective.

2.2.2 NGUYEN'S WORK ${ }^{8}$

Nguyen V. et al also agreed that besides the cost criterion, evaluating tenders usually required two other general criteria based on the contractor's previous experience and the predictive judgement on the contractor's likely performance for the present job. 8

They further suggested another set of factors thought to affect the contractor's performance, namely:

- technical competence and managerial expertise;
- compliance with specifications in previous undertakings;
- attitude towards correcting faulty or incomplete work;
- safety records;
- ability to meet work schedules; and
- attitude towards claims and counter-claims.

Nogyen suggested the use of fuzzy sets to consider the bid evaluation taking into account 3 main criteria; i.e. cost, past performance, and predictive performance. The method can be illustrated with the following example.

2.2.2.1 EXAMPLE ${ }^{8}$

Suppose there are five tenderers $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ and $\left\{Y_{1}, Y_{2}, Y_{3}\right\}$ are the criteria of cost, past performance and predictive performance of equal importance.

In the tender evaluation process, the client holds meetings with partners or associates to exchange individual assessments and opinions on various tenderers. Each partner or interest group presents a rating table for all factors considered on every tenderer. Suppose equal importance, or weights, among the partners or interest groups is used, the aggregation method would then be:

A rating given to tenderer i on account of a criterion j is a binary grade of membership $u_{i j}$. Aggregation and averaging of k rating values of $u_{i j}$ given by k different decision makers will give the Y_{2} and Y_{3} values for contractors x_{1} to x_{5} in Table 5.

For the cost criterion, the rating can be scaled from a threshold as follows:

Suppose the tenders submitted are:
$x_{1}-\$ 316,989 ;$
$x_{2}-\$ 229,311 ;$
$x_{3}-\$ 244,946 ;$
$x_{4}-\$ 276,350$; and
$x_{5}-\$ 222,220 ;$
and the panel agreed the desired lowest price, in this instance equal to $\$ 215,553$. Then the u values are:

$$
\begin{aligned}
& u_{1}-0.68 ; \quad \text { (Bid price } \times u=\text { Basic price) } \\
& u_{2}-0.94 ; \\
& u_{3}-0.88 ; \\
& u_{4}-0.78 ; \text { and } \\
& u_{5}-0.97 .
\end{aligned}
$$

Then the resulting rating matrix or binary relation is shown in Table 5.

Table 5 Rating Matrix or Binary Relation

	y_{1}	Y_{2}	Y_{3}
x_{1}	0.68	0.83	0.90
x_{2}	0.94	0.89	0.67
x_{3}	0.88	0.95	0.72
x_{4}	0.78	0.96	0.79
x_{5}	0.97	0.77	0.93

The best suited method for multicriteria decision making process in a fuzzy framework is a decision subset D.
$D=Y_{1}$ AND Y_{2} AND $Y_{3} ;$
$D=\left\{x_{1}\left|0.68, x_{2}\right| 0.67, x_{3}\left|0.72, x_{4}\right| 0.78, x_{5} \mid 0.77\right\}$

In decsion subset D, the membership grade of each contractor is obtained by taking the minimm across the respective row in Table 5. From D, it is seen that contractor x_{4} is selected on the basis of highest degree of support $(=0.78)$ assigned to x_{4}, even though contractor x_{4} by no means tendered with the lowest bid.

However, the shortfall of the approach is once again the reliance on the subjective judgement of the partners or associates of the 1 client on the predictive performance.

2.2.3 DIEKNANN'S WORK ${ }^{9}$

His approach assumed the existence of n one-dimensional utility functions to transform the attributes of the decision alternatives into preferences. In his method, multiple criteria were identified and assigned weights. Alternative bids were then given scores with respect to each criterion. These scores were multiplied by the weights assigned to the criterion. The sum of the weighted scores of each alternative represented its overall weight. The alternative receiving the highest total weight was selected. The model had the following form:

$$
U(x)=I_{1} u\left(x_{1}\right)+I_{2} u\left(x_{2}\right)+\ldots+I_{n} u\left(x_{n}\right)
$$

where $u\left(x_{i}\right)$ is the single attribute utility function of x_{i} and I_{i} is a scale (or a weight) which indicates the importance of achieving objective x_{i}.

The shortfall of this method is that most weights and scores are arbitrarily assigned to an arbitrary scale on which the decision makers is making absolute judgements. There is little meaning attached to what an assigned weight represents.

2.2.4 RUSSETL'S WORK ${ }^{10}$

Russell et al have suggested the following decision factors in bid evaluation:

- past performance;
- financial stability;
- status of current work program: to evaluate the contractor's current work load and determine any severe difficulties with on going projects;
- technical expertise: to evaluate technical characteristics of a contractor; and
- project specific criteria: to evaluate whether a candidate contractor can provide unusual expertise or specialised facilities required by the project.

2.2.5 FUSSEIL AND SKIENIEWSKI'S WORK ${ }^{22}$

Russell and Skibniewski et al concluded from their work that contractor prequalification was a decision making process involving a wide range of criteria for which information was often qualitative, subjective and imprecise. The process was largely an art where subjective judgement, based on the individual's experience was employed.

They suggested the following objectives in determining the client's perception on performance:

- Cost of the project
- Tine required for completion
- Quality of finished product
- Safety achieved during construction

They also suggested the following decision parameters on contractor performance:

- Experience over last five years in similar construction
- Experience in completion of project in schedule
- Present workload and capability to support project
- Experience and capability of contractor key site management personnel
- Availability of first line supervisors
- Quality control program and quality of work on past projects
- Past owner/ contractor relationship
- Past and present experience on legal suits or claims

A number of bid evaluation models were proposed by them, namely:

2.2.5.1 DIMENSIONAL WEIGTIIING

In this process, each decision parameter and its relative weight of importance were determined based on the characteristics of the decision maker. Once the decision parameters were established, the alternatives, in this case the contractors, could be rated with respect to the decision parameters. A contractor's score was

> calculated as a weighted sum of ratings over all decision parameters. The magnitude or the rank order of the scores could then be used to perform contractor selection.

2.2.5.2 TWO STEP PREQUALIFICATION

An alternative suggested was the two step prequalification model. In the first step, contractors were selected or discarded based on how well they satisfied each of the preliminary screening dimensions which were, say for instance the corporate experience in constructing similar projects; capability of handling such a project; and the financial profile.

The second step utilised the dimensional weighting strategy described with more specific criteria being used to determine the contractor's attractiveness as a bidder.

This method could allow rapid elimination of urmanted contractors. This in turn allowed the owner to focus on the remaining contractors and study their merits and demerits more extensively.

2.2.6.3 DIMENSICNWIDE SLRATEGY

This approach was to select the more salient dimensions in measuring contractor competence and all contractors were evaluated with respect to it. If the contractor failed to meet
the owner's expectations, he was discarded from the potential bidder list. The rest who passed the first dimension would proceed to the next. Typical decision criteria used in this model included:

- contractor's safety performance;
- prior experience;
- past performance;
\dagger - location of home office;
- type of labour employed;
- financial stability and
- longevity.

2.2.6.4 PREQUALIFICAITION FORMLIA

One example was that the State Departments of Transportation in Ohio of U.S.A. used a formula to restrict the workload of contractor as follows:
"The maximum work volume must be smaller than the contractor's net current assets (from a current financial statement) multipled by 10."

2.3 SUMMARY

These early methods illustrate fairly useful approaches to the
subject of bid evaluation with the results demonstrating some systematic and structured overtures. However, all used subjective judgement, none of which could provide a quantitative model, in $\|$ assessing or predicting contractor performance. This research thesis concentrates on this shortfall.

This research adopted a mathematical technique called Discriminant Analysis to develop a quantitative model in the form of a fonmula by which each contractor's predictive perfonmance can be expressed in Z scores. The Z score is a linear scale transformed from multiattribute and multidimensional scales which collectively ascribe the performance behaviour. This approach is new and different from the early studies on contractor performance.

CHAPIER 3

THE TECHNIQUE OF DISCRIMINANI ANALYSIS

3.1 INIRODUCIION

Discriminant analysis , first introduced by Sir Ronald Fisher ${ }^{13}$, is a statistical technique designed to distinguish among several mutually exclusive groups based upon linear combinations of the independent, sometimes called predictor, variables.

As in real life, there may be a number of factors ascribing the outcomes of a problem in the social, behavioural and biological sciences. The contributions and the identification of the variables to the outcome is the information that most researchers look for.

The discriminant analysis technique is a useful tool for the assigrment of observations from unknown groups or populations to mutually exclusive groups or populations and for finding out the predictive variables and arrange them in the order of importance. With two groups, it is possible to derive one discriminant function that maximizes the ratio of between to within groups sums of squares. Where there are three groups, two discriminant functions can be calculated. The first function, as in the two group case, has the largest ratio of between groups to within groups sums of squares. The second function is
uncorrelated with the first and has the next largest ratio. In general, if there are K groups, ($\mathrm{K}-1$) discriminant functions can be computed. They are all uncorrelated with each other and maximize the ratio of between groups to within groups sums of squares, subject to the constraints of being uncorrelated.

3.2 APPIICAITION OF THE DISCRIMINANT ANALYSIS IN CONSIRUCIION ReLATED RESEARCH

To date the technique has generally not been applied in construction related research works, there being few references to previous research ${ }^{11,12,14,15}$. However of notice, Mason and Abidali ${ }^{11,12}$ et al applied the technique in predicting company failure in the construction industry by taking financial ratios f as the predictors.

Salamonsson and Flood ${ }^{15}$ et al also used the technique to classify building firms in Australia based upon the job area, job complexity, completion time and cost as the predictors.

Skitmore and Marsden ${ }^{14}$ et al used the method to investigate the decision making path for different procurement methods based upon the following predictors:
-Speed
-Certainty
-Flexibility

```
-Quality level
-Complexity
-Risk avoidance and responsibility
-Price competition
```

The reasons for this technique's ladk of citation may be due to complexity and its very advanced nature. In contrast, Multiple Regression Analysis applications are more commonly reported, however, discriminant analysis is more powerful in discriminating two or more number of groups.

3.3 ASSUMPIIONS ABOUT THE DATA IN APPIYING DTSCRIMINANT ANATYSIS

For the linear discriminant function to be "optimal", that is, I to provide a classification rule that minimizes the probability of misclassification, the following assumptions about the data must be met:

- In each group, the variables must be from multivariate | normal distributions.
- The population covariance matrices for all groups must all| be equal.

In testing the first assumption, a simple tactic is to examine first the distributions of each of the variables individually. \mid

If the variables are jointly distributed as a multivariate normal, it follows that each is individually distributed normally. Therefore, if any of the variables have markedly non-normal distributions, there is reason to suspect that the multivariate normality assumption is violated. For the second assumption, the SPSS (Statistical Package for the Social Science) has provided a feature, that is the Box's M test to test the equality of the group covariance matrices. A small probability might lead to reject the null hypothesis that the covariance matrices are equal. The test is also sentitive to departures from multivariate normality. That is, matrices tend to be unequal if the normality assumption is violated.

These two assumptions are not always satisfied in practice. U However, the technique has been found to be very robust implying | that the assumptions need not be strongly adhered to ${ }^{11}$.

3.4 RETATIONSHIP TO MULITLPLE RBGRESSION ANALYSIS

Two group linear discriminant analysis is closely related to multiple linear regression analysis. The binary grouping variables in the discriminant analysis can be treated as the dependent variable in multiple linear regression analysis and the predictor variables as the independent variables.

However, multiple regression analysis is less powerful than discriminant analysis in the case of binary groupings dependent
variables with only 'Yes' or 'No' alternatives. Multiple regression analysis is more suitable to cases where the dependent variable is a continum ${ }^{16}$.

Nevertheless it is not unusual to obtain the same set of dependent variables both in the two group discriminant analysis and the multiple regression analysis and the two sets of coefficients are usually proportional.

3.5 THE GENERAL CONCEPT OF MUITIPIE DISCRTMINANT ANALYSIS

For a two group linear discriminant analysis, the prime objective is to derive a linear function having the significant variables that maximize the between group variation to the within group variation.

The discriminant function has the following form:

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{C}_{0}+\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}+\ldots+\mathrm{C}_{\mathrm{n}} \mathrm{~V}_{\mathrm{n}} \\
& \text { where } \quad \\
& \\
& \\
& \\
& \\
& \mathrm{C}_{1} \text { to } \mathrm{C}_{\mathrm{n}}=\text { the discriminant score weighting coeficients } \\
& \\
& \mathrm{C}_{0}=\mathrm{constant} \\
& \\
& V_{1} \text { to } V_{n}=\text { the discriminant variables }
\end{aligned}
$$

The first step in discriminant analysis is to select cases to be
|included in the computations. Cases containing missing information have to be excluded. When all the cases are ready, the next step is to generate and examine the within groups correlation matrix since interdependencies among the variables will affect most multivariate analysis. The correlation matrix| should show whether one variable is directly correlated with another, either negatively or positively. If a very strong correlation exists (over ± 0.90), it may be necessary to combine the two criteria, as they may essentially be measuring the same performance factor. A further difficulty with correlations of this magnitude is that any results may be distorted by the presence of multicollinearity.

The third step is going through a large amount of tedious calculation to arrive at the variables found to be significant , and their discriminant coefficients, together with a constant.

Ultimately, the effectiveness of the function is measured by the following methods:

3.5.1 PERCENIAGE OF CASES CLASSIFIED CORRECIIY

|The percentage of cases classified correctly is one indicator of the effectiveness of the discriminant function. Another | indicator of effectiveness of the function is the actual discriminant scores in the group.

3.5.2 THE BEIWEFN GROUPS AND WIIHIN GROUPS VARIABIIIIIES

In fact, the coefficients of the discriminant function are chosen so that the ratio of the between groups sum of squares to the within groups sum of squares is as large as possible. Any other linear combination of the predictor variable will have a smaller ratio.

One way to measure the variabilities is the use of the Eigenvalue which is the ratio of the between groups to within groups sums of squares.

$$
\mid \text { Eigenvalue }=\frac{\text { Between groups sum of squares }}{\text { Within groups sum of squares }}
$$

| Large Eigenvalues are associated with 'good' functions.

3.5.3 THE CANONICAL CORRETATICN

This is a measure of the degree of association between the |discriminant scores and the groups.

In the two groups situation, the canonical correlation is simply the usual Pearson correlation coefficient between the discriminant score and the group variable.

3.5.4 WIIKS' LAMBDA

This is the ratio of the within groups sum of squares to the
total sum of squares. It is the proportion of the total variance in the discriminant scores not explained by differences among groups.

Small values of lambda are associated with functions that have \mid much variability between groups and little variability within groups. A lambda of 1 occurs when the mean of the discriminant | scores is the same in all groups and there is no between groups variability. However, this figure provides little information about the effectiveness of the discriminant function in classification, being mainly a test of the null hypothesis that the population means are equal. Small differences may be statistically significant but still not permit good discrimination among the groups.

3.6 SUMMARY

Using the discriminant analysis, it is able to derive a function which can maximize the groups' difference by means of an index expressed in Z-score. A cut off point is able to be established in the two groups. Thus the group membership can be assigned when the score is known.

The advantages of this approach in performance appraisal are as follows:
a) It is a multivariate approach which can consider the entire
profile of all the attributes that affect the dependent variable (in this research, the contractor performance).
b) The interrelationship between attributes can be taken into consideration.
c) The classification tool is a straight forward function which is easy to interpret and use.
d) A quantitative approach is provided which can reduce the effect of subjective judgement in contractor evaluation.

CHAPIER 4

DECISION FACIORS AFFECTING PERFORMANCE AND THETR QUANITFICAITION

4.1 INIRODUCIION

A builder's overall performance is generally perceived as being related to such factors as quality of workmanship, completion on time, within budget and the builder's "attitude when dealing with the client ${ }^{15}$ although safety in construction could also be included 22,23 . These factors provide the primary investigation in this study.

First of all, performance needs to be defined. In this research, performance is divided into two groups: good and poor in which 'fair' performance would be categorised into 'good' pool to avoid ambiguity. Clients were asked to classify the contractor performance into the two groups in interviews.

In order to unveil the clients' decision pattern, a set of variables of time, cost and quality was modelled using the Discriminant Analysis technique to generate the z_{1} model to determine if there was indeed any decision making structure and to ascertain the relative weightings of each factor. The study lof these factors forms the first part of this chapter.

In the second part, the variables thought to affect contractor performance were investigated. It being believed that contractor performance is multidimensional and a function of a number of
attributes; for instance the ability of members in the project, the type of project, etc. Some of the attributes are conceived to be the intrinsic features of the contractor while the others may be the external traits which are out of the contractor's control. Indeed research carried out on bid evaluation has highlighted certain intrinsic factors; however, the external influences have seldam been discussed.

4.2 DATA SEIBCIION

| Firstly, a sample of projects was selected based upon the following criteria:
| - Different sizes.
1- Different types; e.g. renovation works, foundation works to complicated hospital projects.

1- Range of contractors from sole proprietary owned firms to large public companies.

The data was designed according to the following objectives:

- The information must be relevant to the subject according to previous research works.
- Additional variables to be included if thought to be significant in the context of the Hong Kong enviromment.
- The information must be easily accessable in order not to cause too much inconvenience to the interviewees and thus to maintain the accuracy of data.
- The information must not be so sensitive to cause reluctance to disclose.

4.3 VARTABLES THAT MEASURE THE CUTENI'S SAITSFACITON ON CONIRACTOR PERFORMANCE

Historically, project performance has been evaluated in terms of | cost, schedule and quality ${ }^{2,1}$. In simple terms, the objectives are to complete the project within time, within budget and to the quality specified. Although same researchers also included safety as the fourth dimension ${ }^{22}$; however, in the context of | Hong Kong, there is no system in the private sector to penalize contractors although one of the public clients has started considering that a poor safety record might handicap contractors with respect to invitation to tender.

Some previous research reported by Might and Fisher ${ }^{18}$ involving a mail survey of 100 development projects in 30 different firms in the U.S.A. produced the following results relating to contractor performance:

1 Table 6 Relative weightings of the Success Criteria in Miont and Fisher's Mail Survey

Success Criteria	Relative Weight (\%)
Technical Performance (Quality)	54
Cost Performance	
(Cost) Scheduled Performance (Time)	23
	22

The result suggests that clients tend to be very concerned about quality (the highest weighting) with the weightings of cost and time being comparable in magnitude.

Indicators of this kind, i.e. the three criteria, seemed |appropriate for modelling by the Discriminant Analysis method described in Chapter 6. After a full analysis the relative weightings of the 3 factors measured by the standardized discriminant coefficients were found to be:

Table 7 The Standardized Discriminant Coefficients and their Relative weightings in the Z_{1} Model

Criteria	Stand. Discriminant Coefficients	Relative Weightings
Time	-0.41669	25%
Cost	-0.26144	16%
Quality	0.95613	59%
		100%

Comparing the two sets of research results evidently clients seem most concerned about the quality (in Might and Fisher's ${ }^{18}$ and this study, the weightings are 54% and 59% respectively). Indeed the weightings of all the three criteria are comparable, the difference being the reverse priority order of the weightings for time and cost factors (in Might and Fisher's ${ }^{18}$ and this study, the priorities for time factor are ranked 3 and 2 respectively). However, in Hong Kong the high cost of land rental charges would explain the clients' concern on the time criterion.

The importance given by clients to the quality element may be related to the difficulty in projecting likely quality performance at the time the contract is awarded although the specifications might give some indications. In contrast, time and cost are stipulated precisely in contracts which can be known at the outset in spite of the fact that their exact extent cannot be valuated.

The methods adopted to quantify these three criteria are described in the following pages.

4.3.1 QUALITIY

Quality is very difficult to define in the construction industry; for instance, if the specification calls for soil to be compacted to a given density but was not achieved in reality, quality would not be attained and the defect would not show up immediately. Further, there are many trades in a building project which could not be realistically expected to achieve a good quality. Thus ultimately the question is whether the completed work possesses the attributes desired by the owner and designer. These can only be measured subjectively by their comformity to the specifications established for the project ${ }^{2}$.

In this study, quality was assessed by ordering clients perceptions on a ranked basis, namely:

Quality of work
Rank
Poor quality compared with the specifications. 1

Slightly poorer than average compared with 2 the specifications.
 Meet the requirements of the specifications. 3
 Slightly better than average compared with 4 the specifications.
 Good quality compared with the specifications. 5

 4.3.2 TIME

 4.3.2 TIME}

This factor was measured by the following ratio:

Actual Completion Time
Estimated Contract Duration in the Tender

This measure is designed to determine the percentage delay of the project caused by the contractor. The accuracy of this factor may be affected by variations, consequently, projects with few variations were selected in order to minimize such effects.

4.3.3 CosT

This was measured in the ratio of:

Final cost of Contract
 Tender Price

The main objective here is to identify contractors with a tendency towards inflating prices through claims against the client.

While these last two criteria cannot be determined precisely without access to detailed project information, the crude figures facilitate an indication to be made of the clients' decision pattern in judging performance.

4.4 THE INIRTNSIC TRAIIS OF CONIRACIOR LIKEIY TO AFFECT PERFORMANCE

Researchers ${ }^{4}, 7,8,10,22,23,24,25$ have suggested a number of internal attributes of contractors thought to affect performance. In this study, nearly all, plus unique elements were included and discussed below.

4.4.1 SIAFF TRATNING PROGRAMME

Companies which invest in human resources are normally well established and often appear to have better long term planning policies. Training in management skills may be one of the factors in improving their performance in managing projects and was thus included in the model as a variable defined by the following ratio:

Number of staff members taking management training Total no. of staff

4.4.2 PLANT ONNERSHIP POLICY

Both Mustafa et al ${ }^{7}$ and Russell et al ${ }^{22}$ suggested the
availability, quantity, quality and suitability of plant would affect contractor performance. Further, construction contracting is a risky business with flucuations of work commonly hindering contractors in the acquisition of fixed assets. Plant ownership trend can provide some indication of the long term planning policies and attitudes especially in fostering good relationships with clients. This factor is designed to measure the availability and quantity of company owned plant and was quantified as follows:

Preceding year's total amount of plant owned Preceding year's turnover

4.4.3 SIZE OF THE COMPANY

Large companies generally possess more resources and more sophisticated systems of management and because of size, have to live up to a particular public image, thus indirectly affecting performance.

Size in this context was quantified by the number of staff employed as human resources are the main assets of a construction firm. In contrast, works in hand are unreliable as a measure because of the possibility of short term overload. Fixed assets are difficult to include while the turnover of a year does not reflect the size of the company.

4.4.4 QUALITY OF MANAGFMENT TEAM - PROFESSIONAL QUALTFICAITIONS

Nguyen and Russell et al mentioned in their works 8,22 that management qualifications and expertise were the criteria for contractor selection. Giege and Selin ${ }^{24}$ cited in their interview survey that competent personnel in management and organisation of the project was one of the most important factors for success. Moreover, Russell et al ${ }^{22}$ described that the capability of contractor's key site management and technical field personnel was one of the determinants of success.

In the building incustry of Hong Kong, many senior management staff in construction firms are promoted from supervisory or trade foreman level and seldom receive professional management training. Some are less adaptive to changing technology than others and sometimes find it difficult to accept new ideas and changed skills. Thus the percentage of staff acquiring professional qualifications could affect the performance behaviour.

The ratio used to quantify this element was chosen to be:

Number of professionally qualified staff
 Total no. of staff

4.4.5 QUALITY OF MANAGFMENT TEAM - PROUECT LEADER'S EXPERIENCE

Jaselskis et al and Russell et al mentioned in their works ${ }^{23,22}$ that experience of contractor's key site management and technical field personnel was one of the determinants in contractor selection. Jaselskis ${ }^{23}$ also specifically cited that
the project manager's number of years of experience could affect contractor performance.

A count of the number of years of experience of the project leader in construction contracting was thus selected as the measure in this case.

4.4.6 PAST PERFORMANCE OF THE PROJECT MANAGER

The past performance of the project manager in the eyes of his or her senior may reflect the quality of the project manager which may affect the contractor performance. This was obtained by asking the project manager's superior about the past performance and gauged as follows:

1. Slightly poorer than average
2. Fair
3. Better than average

4.4.7 CONIRACIOR'S EXPERIENCE IN THE TYPE OF JOB

Both Jaselskis et al and Mustafa et al specified in their works ${ }^{23,7}$ that the specific experience of the contractor suitable for undertaking the work was one of the criteria in determining success.

Contractors who are familiar with the type of project may manage that potential kind of work more efficiently and thus perform
better and this was gauged by the ratio:

Number of similar jobs in a fixed period of time Total no. of jobs in the same period

4.4.8 CONIRACIOR'S WORK IOAD

Both Jaselskis et al ${ }^{23}$ and Russell et al ${ }^{22}$ described that the allowable work volume for a contractor had to be limited in bid evaluation. If contractors are overloaded with work, resources and labour availability may be affected and this can be gauged as follows:

Total contract sum in hand Total no. of staff

In this approach, the workload relative to the staff establishment was used to define the real workload situation since staff is one of the most important resources in the construction industry and the staff establishment normally prescribes the size of a construction firm.

4.4.9 CONIRACIOR'S PAST PERFORMANCE OR IMAGE

> Mustafa et al ${ }^{7}$ described that reputation and position in the market was one of the criteria in bid evaluation. Russell 10 stated that past performance was important in contractor \mid selection.

Past performance may be one of the factors governing future
performance but is difficult to measure objectively. The method adopted in this research ranked the past performance of the contractor in the order from 5 to 1 representing very bad, bad, fair, good and very good respectively of which clients were asked to judge in interviews.

4.4.10 NUMBER OF YEARS IN THE BUSTNESS

Longevity is one of the factors to be considered in contractor appraisal ${ }^{23}$. Mustafa et al specifically stated that the number of years of experience in the related industry would be considered in bid appraisal.

Contractors that have survived long in the market may be more reliable, possessing different marketing policies from competitors; e.g. more experience in controlling and managing the local works. Some attempt at gauging this aspect was included in the model as a variable for age of the firm.

4.4.11 ORIGIN OF THE COMPANY

Abdel Salam ${ }^{25}$ cited that foreign contractors were faced with a general lack of information concerning both technical and administrative experience in the host country. In addition, most foreign contractors relied on campensating costs through claims. In order to maximize turnover and enter into the market, there was a tendency to tender below the true economic cost of the work. Then too mich time and effort were expended on trying to
increase the financial return and avoid loss. There was no margin for small expenditures that might improve quality of process, which a good contractor executing work at adequate price would usually undertake, on his own responsibility, in the interest of a good job and his own reputation.

Foreign contractors normally obtained information from their own native embassy staff who mainly dealt with commercial and trade field probably had no practical experience of the construction industry. As a result, they might be unaware of matters that could cause local problems on major projects carried out in whole or in part by expatriates.

Further, overseas contractors may have different management skills compared with the local contractors whose business policies may be influenced by the chinese culture and the Chinese way of running business. This variable was described by 3 classes; representing overseas contractors, overseas and local joint venture contractors and local contractors.

4.4.12 AMOUNT OF DIRECIIY EMPIOYFD LABOUR

Russell et al^{22} stated that the type of labour employed was \mid one of the decision factors in assessing the potential performance. Mustafa et al ${ }^{7}$ mentioned that the availability of in-house skilled labour would affect contractor performance.

However, direct labour could be easier to manage and may produce
higher quality of work when compared with labour only subcontractors, particularly in booming conditions with severe labour shortages.

This effect was measured by the percentage of directly employed labour in the total workforce of the company. This was the ratio of the amount of direct labour over the estimated total number of labour working for the contractor at the moment of interview.

4.4.13 LISIED ON THE SIOCK MARKET

Private companies may be very flexible while public companies may be more stable in policy and decision making and some quantification measure was therefore included in the model. This was gauged by 1 or 2 representing 'yes' or 'no'.

4.4.14 DECTSION MAKING CENIRALTSED IN HEAD OFFICE OR DE-CENIRALISED TO SITE

This factor was included in order to see whether types of company control affect performance and was gauged by 1, 3 and 2 for centralised, decentralised and mediocrity.

4.4.15 CONIRACIOR IS CLIENI'S SUBSIDIARY FIRM

In Hong Kong, most large developers have subsidiaries or part owned firms and the relationships of subsidiary contractors with clients can be quite close compared to general contractors and
was thus included in the model.

This was gauged by 1 and 2 representing 'yes' and 'no'.

4.5 EXIERNAL FACIORS THOUGHI TO AFFECT CONIRACTOR PERFORMANCE

The above are internal attributes of contractors; however, there may be many external influences which were seldom discussed in previous research works which could affect contractor performance such as:

4.5.1 THE ARCHIIECT'S PERFORMANCE

The quality of drawings, the number of drawing amendments, variations and the timely issuance of drawings may be important. Clearly these aspects are very difficult to quantify and can only be quantified by subjective ranking; e.g. on a scale 1 to 5 representing very poor to very good respectively.

4.5.2 ARCHIECT'S OR CLIENT'S SUPERVISION AND CONIROL ON gUALITY AND WORK PROGRESS

If the client or architect supervises and controls tightly the quality of work and work progress, contractors may perform better. Early signalling of the client's dissatisfaction on the work progress and the quality of works by issuing architectual instructions and warnings can reduce disputes at the end of the
contract.

Again this factor is very difficult to quantify and was measured in rank order 1 to 5 representing very loose to very tight control.

4.5.3 PUNCIUALITIY OF PAYMENT BY THE CLIENT

Frequent delays of payments may cause discontent to the contractor resulting in disputes. This was gauged by 1 and 2 representing 'punctual' and 'umpunctual'.

4.5.4 COMPLEXITY OF THE PROECT

Simple works require little management imput while complicated works involve the coordination of complicated electrical and mechanical services and management of nominated specialist subcontractors and the client's requirement may be more stringent. That may affect contractors' performance.

A small survey was carried out in order to rank the levels of complexity. Firstly, six levels of work were derived arbitrarily by the author. Questionnaires were sent to clients asking them to gauge the complexity in ascending order and the Kendall Coefficient of corcordance ${ }^{52}$ was used to test the judges' agreement and was proved to have a high concordance (for details please refer to Appendix 1).

This was quantified in the following manner:

Foundation works, site formation, slope protection and similar simple civil engineering works which output relies on that of machine and contractors normally use directly employed labour without the trouble of coordinating subcontractors. No electrical and mechanical works are involved.
 1

Renovation or alteration works. 2
Factory or domestic housing works which require a little amount of E\&M services coordination. 3
Deluxe housing projects or office buildings which require more subcontracting and E\&M coordination. 4
Hotel or high class office buildings. 5
Hospital or complicated structures or projects. 6

4.5.5 PROFITABITITY 1

If the contractor knows, at the outset of the project, that work will be profitable, a more cooperative spirit and willingness to spend a little more to achieve a better quality might prevail. However, on the contrary, contractors may seek every chance of claims and upset the client. This was gauged by the ratio:

Winning tender price
Pre-tender estimate

Both the tender price and the pre-tender estimate were obtained through the interview with the clients.

4.6 SUMMARY

In the first part of this chapter, three variables were described which were thought important in evaluating performance, namely:

- Time
- Cost
- Quality
f In the second part, twenty factors conceived affecting performance were included, namely:

Internal Factors

- The staff training programme
- Plant ownership policy
- Size of company
- The percentage of professionally qualified staff
- Project leader's experience
- Past performance of the project manager
- Contractor's experience in the type of job
- Contractor's work load
- Contractor's past performance or image
- Number of years in the business
- Origin of the company
- Amount of directly employed labour
- Listed on the stock market or not
- Decision making centralised in head office or decentralised to site
- Whether the contractor is client's subsidiary firm

External Factors

- Architect's performance
- Architect's or client's supervision and control on the quality of work and work progress
- Punctuality of payment by the client
- Complextity of the project
- Profitability of the project

The Discriminant Analysis model is intended to separate the two groups of performance by maximizing the differentiation among attributes. The list of variables is by no means exhaustive but the most important factors were included and considered in the model.

CHAPTER 5

DATA COTIECIIION AND FORMATION OF DANA GROUPS

5.1 INIRODUCIION

This section concerns the methodology of data collection, data types and formation of the data groups used to develop and verify the discriminant model for contractor performance. The data type, the main features of project samples will be discussed in the following pages together with the types of projects chosen which were aimed to produce a fair representation of the population.

5.2 MEIHODOLOGY OF DATA COITBCIICN

Cases were selected on the criteria that a wide spread of the M ${ }^{2}$. different characteristics of projects was included.

Once cases were selected, contacts were made to ascertain who r would be best able to act as key informants about the details of the projects. These individuals were then provided with information outlining the research followed up by personal meetings to establish willingness to participate. Once access had been agreed, an indepth interview was arranged which was based on a structured questionnaire. The nomenclature and role of those interviewed varied considerably, as might be expected
including managing directors, project managers, contract managers, property managers, chief architects, chief quantity
surveyors, management consultants.

5.3 FORMATION OF DATA GROUPS

In this study, four groups of project samples were chosen as shown in Table 8:

Table 8 Group Size of Projects in the Study

Groups		Number of Cases
1	'Good Performance' Group	24
2	'Bad Performance' Group	9
	Total:	34
3	Test 'Good Performance' Group	10
4	Test 'Bad Ferformance' Group	6
	Total:	

Groups one and two were used for modelling the discriminant
function whilst Groups three and four were served for testing
and verifying the model.

Groups one and two consist of a total of 34 cases which were collected on a random basis. They were gathered in years of 1989 to 1990.

The test groups three and four were specially selected to include more 'bad' cases for examining the discriminant power of the model. The information required for the test groups were much simplified to contain the significant variables discovered
in the discriminant model only. They were collected in year 1991.

5.4 DATA ANALYSTS

| Since both the collection of the good and bad performance cases were at random, the 'prior probability' in the modelling which is an estimate of the likelihood that a case belongs to a particular group when no information about it is available, can be estimated by the observed proportions of cases in each group. In this study, nine out of the thirty-four cases belong to the 'bad' group. The prior probabilities of belanging to group 2 (bad) and group 1 (good) are then 0.26 and 0.74 respectively. In other words, the chance that clients can encounter good performance is 74% out of all projects and 26% for poor performance.

5.4.1 TYPES OF PRONECTS

The types of project in the sample groups are shown in Table 9. The modelling groups cases were designed to give a wide spread of different types in order to secure a fair representation of the population.

5.4.2 TYPES OF CONIRACIORS

The types of contractors in terms of their nationality in the sample groups are shown in Table 10. The percentage of foreign
contractors in the modelling groups represents more or less their market share in Hong Kong.

Table 9 Types of Projects in the Samples

Types of Project	Number of cases	
	Modelling Groups	Testing Groups
Foundation, site formation, slope protection and similar civil engineering projects.	4	0
Renovation or alteration projects.	4	3
Factory or domestic housing projects.	9	7
Deluxe housing projects or office buildings.	5	5
Hotel or high class office building projects.	7	1
Hospital or camplicated structure. projects.	5	0

Table 10 Types of Contractors in the Modelling Groups

ORIGIN	NUMBER				
	Modelling Groups	Testing Groups			
Foreign Contractors	5	1			
Local Contractors	29	15			
Total:				34	16

5.4.3 SIZE OF CONIRACIORS

The size of contractor was measured in terms of the number of
staff employed (refer to para. 4.4.3 of Chapter 4). Their sizes in the modelling groups are shown in Table 11 which spread over a very large range.

Table 11 Size of Company in the Modelling Group

Number of staff employed	Number of cases
15 or less	5
16 to 99	3
100 to 199	7
200 to 999	14
1000 or above	5
Total:	

5.4.4 PROTECT SIZE

The sizes of project measured in terms of contract sums are shown in Table 12 which demonstrated that the spread is very extensive.

Table 12 Project Size in the Sample Groups $/$

SIZE	NUMBER OF CASES	
	Modelling Groups	Testing Groups
1 Million or less (HKS)	2	0
Above 1 million up to 10 millions	3	4
Above 10 millions up to 50 millions	6	5
Above 50 millions up to 100 millions	11	3
Above 100 millions up to 500 millions	10	4
Above 500 millions	2	0
	Total:	34

5.5 SUMMARY

Attempts have been made to include different and a wide spread of types, sizes and other important features of project in the samples. The period of data collection has been confined to |within two years for the modelling groups to avoid any changing conditions of the industry which could affect the consistency of the results.

The test groups were designed to obtain a balance in the number
of good and bad cases in order to demonstrate the predicting power of the model.

CHAPIER 6

RETATION BEIWEFN PERFORMANCE AND TTME, COST \& CUALITY

6.1 InIroduction

This section concerns the formulation of the Z_{1} model to portray clients' decision profile in determining contractor performance using variables such as time, cost and quality. As discussed in section 4.3 of Chapter 4, cost, schedule and quality were considered as the most important predictors in performance. These three variables were investigated in the model for their underlying structure in performance appraisal.

6.2 DATA ANALYSTS

There were forty-four cases adopted in the analysis. The ways to 11 wly $44-$
quantify the variables have been described in chapter 4. The group means of the three variables, time, cost, and quality, are shown in Table 13.

Table 13 Group Means of Time, cost and quality

Group	Time	Cost	Quality
1	1.09584	1.04866	3.21875
2	1.60417	1.07392	1.91667
Total	1.23448	1.05555	2.86364

Table 13 shows that the variable TIME overran by 9.6% in the 'good' group on average while that was 60.49\% in the 'bad'
group. Also, the budget overran by 4.9% in the 'good' group but 7.4\% in the 'bad' group. The quality was slightly above average in the 'good' group but slightly below the 'slightly poor' catagory in the 'bad' group.

The correlation of the three variables are shown in Table 14.

Table $14 \frac{\text { Pooled Within Groups Correlation Matrix in the } Z_{1}}{\text { Model }}$

	Time	Cost	Quality
Time	1.00		
Cost	-0.03588	1.00	
Quality	0.09256	0.14920	1.00

J The small correlations infer that multicollinearity does not upset the model.

$6.3 \mathrm{Z}_{1}$ MDDEL DERIVED

(Details of computer generation of the model are described in Appendix 3.)

The standardized and unstandardized Discriminant Function Coefficients found are shown in Table 15. The magnitude of the unstandardized coefficients is not a good index of relative importance when the varibles differ in the units in which they are measured. However, when the variables are standardized to adjust for the unequal means and standard deviations of independent variable, the relative importance can be measured more accurately. Therefore, the importance of an individual variable can be assessed according to the size of the
standardized canonical discriminant function coeffieients in the priority order of quality, time and cost since the values are little distorted by small correlations. The actual signs of the coefficients are arbitrary which are determined by the way of quantification.

Table 15 The Standardized and Unstandardized Canonical Discriminant Function Coefficients in the Z_{1} Model

	Standardized Discriminant Function Coefficients	Unstandardized Discriminant Function Coefficients
Time	-0.41669	-0.7132566
Cost	-0.26144	-2.932977
Quality	0.95613	1.760698

Table 7 The Standardized Discriminant coefficients and their Relative weightings in the Z_{1} Model

Criteria	Stand. Discriminant Coefficients	Relative Weightings
Time	-0.41669	25%
Cost	-0.26144	16%
Quality	0.95613	59%
		100%

The Z_{1} model function for time, cost and quality is as follows:

$$
\begin{aligned}
\mathrm{Z}_{1} & =1.760698 * \text { QUALITY }-0.7132566 * \text { CON_TIME } \\
& -2.932977 * \text { CON_COST }-1.065610
\end{aligned}
$$

| where QUALITIY= Quality of work in the rank of:
1 - poor quality compared with the specification.

> 2- slightly poorer than average compared with the 3 - specification. 4- slightly better than average compared with the 5 - specification. CON_TIME= The ratio of: $\frac{\text { Actual completion time }}{\text { Estimated contract duration in the tender }}$ CON_COST= The ratio of: Final cost of contract Tender price

6.3.1 PERCENIAGE OF CASES CLASSIFIED CORRECTIY

The classification power of the model can be gauged by the percentage of cases being assorted correctly. Table 16 illustrates the overall classification results of the model and Table 17 shows the individual classification of the cases and their discriminant scores.

Table 16 Overall Classification Results of the Z_{1} Model

Actual Group	Number of Cases	Predicted Group Membership	
		Group 1	Group 2
Group 1	32	$31(96.9 \%)$	1 (3.1\%)
Group 2	12	$1(8.3 \%)$	11 (91.7\%)

The distribution of the classified cases is illustrated in 1 what. Foll? Figure 2.

From the results, it demonstrates that the effectiveness of

Table 17 Classification Results and the Discriminant Scores of Cases in the Z_{1} Model

Case	Actual Group	Discriminant Scores	Classified Group	Classification
1	1	0.7446	1	Correct
2	1	-0.0464	1	correct
3	1	2.0083	1	correct
4	2	-3.8920	2	Correct
5	1	0.5703	1	correct
6	1	-0.2597	1	correct
7	2	-1.1294	2	correct
8	1	2.2152	1	Correct
9	2	-1.2506	2	Correct
10	1	0.3967	1	correct
11	1	0.7667	1	Correct
12	1	0.3911	1	Correct
13	1	0.012	1	Correct
14	1	0.4236	1	Correct
15	1	1.9577	1	correct
16	1	0.1303	1	correct
17	1	0.2746	1	correct
18	1	2.086	1	correct
19	1	0.3425	1	Correct
20	1	0.5116	1	correct
21	1	1.8910	1	correct
22	1	1.6873	1	correct
23	1	-0.1091	1	correct
24	2	-1.4663	2	correct
25	1	1.8261	1	correct
26	2	-3.3300	2	Correct
27	1	2.1796	1	correct
28	2	-0.3770	1	Wrong
29	2	-1.4282	2	Correct
30	1	0.6670	1	correct
31	1	0.5489	1	correct
32	1	1.2689	2	Wrong
33	1	2.3309	1	Correct
34	1	0.2176	1	Correct
35	1	0.5371	1	Correct
36	1	0.5949	1	correct
37	1	0.4197	1	Correct
38	1	0.0828	1	Correct
39	1	-0.9368	1	Correct
40	2	-2.0504	2	correct
41	2	-4.1608	2	correct
42	2	-2.1185	2	Correct
43	2	-1.1025	2	Correct
44	2	-1.5131	2	Correct

classification of the model is very high. The two groups are well separated by the discriminant model z_{1}.

6.3.2 THE BEIWEFN GROUPS AND WIIHIN GROUPS VARTABTIITIES

This is scaled by eigenvalues as described in section 3.5.2 of Chapter 3. Large eigervalues mean 'good' classification and the eigenvalue is gauged as:

$$
\text { Eigenvalue }=\frac{\text { Between groups sum of squares }}{\text { Within groups sum of square }}=1.54778
$$

The value is fairly large and so the classification is considered as good and effective.

6.3.3 THE CANONICAL CORRELATION

This is the correlation which measures the association between the discriminant scores and the groups. The value is 0.779 which 11 where
from? is quite high and again this demonstrates that the classification is good.

6.4 SUMMARY AND CONCIUSICN

Although there were two cases misclassified in the forty-four cases, the model was demonstrated to be effective in separating | the two groups. It is thus believed that clients' judgement on
contractor performance has an underlying decision structure. The priority order of importance in their perception is as follows:|

1. Quality
2. Time
3. Cost

The relative importance of 'quality' is almost 2.4 times that of the second ranked variable, i.e. time while the relative importance of 'time' is almost 1.6 times that of the last, i.e. cost. The importance given by clients to the quality element may be related to the difficulty in projecting likely quality performance at the time the contract is awarded while the other two variables are stipulated precisely in contracts although their exact extent cannot be ascertained until the completion of \mid a contract.

The magnitude and order of importance of the variables are comparable with the findings of Might and Fisher's ${ }^{18}$ mail survey as described in section 4.3 of Chapter 4. The matching of the two research results indicates that the clients' perception on performance is not the consequences of the random and unstructured projections. They share certain commonalities in performance appraisal. It concludes that clients' judgement on performance is trustworthy to be used as a performance indicator.

GHAPIER 7

THE DISCRTMITNANT ANALYSIS MODFET

7.1 INIRRODUCIITON

This Chapter includes a description of the main discriminant model z_{2}, and its constituent variables, together with the relationship between the variables and contribution of each variable to the model. The cut-off value for the model is also encompassed.

The derived model included all types of project in the building industry of Hong Kong as described in Table 9 of Chapter 5 which embodies renovation works, building related civil engineering works such as site formation, slope protection and foundation construction, and the construction of high rise buildings. In order to investigate the different effects of different types of project on the prediction model, two sub-models, comprising new works (Z_{3} model) and building works (Z_{4} model) cases only were also selected from the main model.

There are twenty variables studied namely:

- The staff training programme
- Plant ownership policy
- Size of company
- The percentage of professionally qualified staff
- Project leader's experience
- Past performance of the project manager
- Contractor's experience in the type of job
- Contractor's work load
- Contractor's past performance or image
- Number of years in the business
- Origin of the company
- Amount of directly employed labour
- Listed on the stock market or not
- Decision making centralised in head office or decentralised to site
- Whether the contractor is client's subsidiary firm
- Architect's performance
- Architect's or client's supervision and control on the quality of work and work progress
- Punctuality of payment by the client
- Complextity of the project
- Profitability of the project

The variables were classified into two groups, namely the internal attributes of contracting firms and the external influences of projects. The variables could be further subdivided into subject groups which measure the important characteristics of projects as shown in Figure 3.

The final prediction model produced in the research is made up | of six variables, measuring six distinct aspects of the project attributes, namely: the complexity of the project, the percentage of professional staff, the project leader's

experience, the past performance of the contractor, the origin of the firm and the architect's and the client's supervision and control on the progress and quality of the project.

7.2 THE RESULITANS MODEL Z_{2}

(Details of computer generation of the model are described in Appendix 4.)

The following six variables linear function resulted:

$$
\begin{aligned}
\text { |Discriminant function }= & -0.5616 \text { (COMPLEX) } \\
& +11.9324 \text { (PROF_STA) } \\
& +0.0949 \text { (LEAD_EX) } \\
& -1.7845 \text { (PAST_PER) } \\
& +0.8219 \text { (ORIGIN) } \\
& +1.0364 \text { (CONIROL) }-1.1408
\end{aligned}
$$

```
where COMPIEX : The complexity of the project
    PROF_STA: Percentage of professional qualified
        staff
        LEAD_EX : Project leader's experience
        PAST_PER: Contractor's past performance or image
        ORIGIN : Origin of the company
        CONIROL : Architect's or client's supervision and
        control on the quality of work and work
        progress
```


7.3 THE CONSIIIUENI VARIABLES

The constituent variables in the developed model are described in the next few pages.

7.3.1 COMPLEXITY OF PROECCI

As described in Chapter 4, complicated works typically involve the coordination of complex electrical and mechanical services,
the management of nominated specialist subcontractors and furthermore clients' requirements are often more stringent. The more complicated the work, the more effort generally required, with increased likelinood of poor performance by all the parties involved.

Surprisingly this factor has hardly ever been pinpointed by researchers in bid evaluation but is inherent in many projects. An appreciation of the importance of complexity can help clients in exercising tighter supervision on the progress and quality of work.

The degree of importance of this variable should be revealed in that clients would choose experienced contractors for the complicated and large projects while keeping the simple and small scale work for small and new contracting firms together with better supervision by the architect or the client on complicated contracts. Evidence that this is the case can be seen in the relatively high correlation between the variables of complexity and the experience of the contractor in similar jobs and client's or architects' control, 0.50214 and 0.62167 respectively (refer to Table 18).

Table 18 Pooled Within Group Correlation Matrix of Variables in the Z_{2} Model

	COMPLEX	PROF_STA	LEAD_EX	PAST_PER	ORIGIN	CONIROL
COMPLEX	1.000					
PROF_STA	-0.178	1.000				
IEAD_EX	0.039	-0.032	1.000		1.000	
PAST_PER	-0.322	0.561	0.346	1.000		
ORIGIN	-0.082	-0.701	0.050	-0.285	1.000	
CONIROL	0.622	-0.227	-0.214	-0.268	0.040	1.000
CONT_EX	-0.502	-0.100	-0.110	0.180	0.143	-0.175

Where COMPLEX: The complexity of project PROF_STA: The percentage of professional staff LEAD_EX: The project leader's experience PASI_PER: The past performance of contractor ORIGIN: The origin of the firm CONIROL: The architects' or clients' control and supervision on progress and quality of work

CONT_EX: The experience of the contractor in similar types of job

7.3.2 PERCENIAGE OF PROFESSIONAL SIAFF

In Chapter 4, it was suggested that the competence of contractors' staff would influence their performance. Indeed the Z_{2} model function indicates that firms with a higher percentage of professional staff have a better chance of achieving good performance, i.e. staff who have had professional training and experience may be more efficient and professional
in production and project management and thereby contribute to achieving completion dates, improved quality and cost savings from which clients would finally benefit.

The contribution of this factor to the function was the second most important in terms of standardized discriminant function coefficients (see Table 20). In contrast, however a higher percentage of professional staff may also mean that contractors could have more expertise in claims negotiation. As a result, this negative contribution has reduced the importance of this variable to the function.

Table 19 Unstandardized Discriminant Function Coefficients for the Z_{2} Model

Variables	Unstandardized Discriminant Function Coefficients
COMPLEX	-0.5616
PROF_STA	11.9324
IEAD_EX	0.0949
PAST_PER	-1.7845
ORIGIN	0.8219
CONTROL	1.0364
Constant	-1.1408

Table 20 Standardized Discriminant Function Coefficients and their Priority Order of Contribution to the Z_{2} Model

Variables	Standardized Discriminant Function Coefficients	Order of Contribution
COMPIEX	-0.8867	4
PROF_STA	0.9110	2
LEAD_EX	0.6372	5
PAST_PER	-1.1000	1
ORIGIN	0.5184	6
CONIROL	0.8870	3

7.3.3 PRONECT LEADER'S EXPERTENCE

The model shows that the more experienced the project leader, the more likely the final outcome would be favourable. This verifies Jaslskis and Russell et al's findings that project leaders' experience correlated positively with the predictive performance.

Nevertheless, the contribution of this variable to the function is not high (see Table 20) in terms of standardized discriminant function coefficients which is quite understandable as only a small part of staff competence is measured.

7.3.4 PAST PERFORMANCE

Most previous research suggests that contractors' past performance to be a very important determinant of predictive performance. Iikewise, this study also highlighted that this
factor's contribution to the function in terms of standardized discriminant function coefficients is high (see Table 20).

Thus past negative performance could be expected to be repeated with companies forming the habit of managing projects in a characteristic manner, e.g. hard attitude in dealing with clients trying to maximize profits irrespective of the relationship with clients, or standing very firm on claims, etc.

On the contrary, if the policy of a company is to care for quality and clients' relations, this would have a positive contribution to its performance.

7.3.5 ORIGIN OF CONIRACTOR

Local Chinese contractors have their own way of running business and generally prefer commercial settlements rather than bringing the case to arbitration or court. In contrast most overseas contractors in Hong Kong (especially those from the Western countries) are very claim conscious. Further such firms may have difficulties in managing local subcontractors; particularly the labour only employers.

Abdel Salam ${ }^{25}$ cited that foreign contractors generally lack knowledge on local problems thereby affecting their performance.

The contribution of this factor to the function in terms of
standardized discriminant function coefficients is not very strong (see Table 20). Contractor origin is rarely mentioned in previous research works in bid evaluation, and may be only significant in the Hong Kong context where the society is intermixed with western and eastern cultures with the industrial market typical international where overseas contractors are not prejudiced.

7.3.6 ARCHITECIS' OR CHIENIS' CONIROL AND SUPERVISION

Surprisingly, this factor has also rarely been identified by previous researchers in bid evaluation, when in reality it is a variable which can be controlled by clients. For example where the predictive performance is considered likely to be poor, clients could intervene and try and tighten up supervision..

This factor is shown to be one of the important determinants in performance prediction in the Z_{2} model in terms of standardized discriminant coefficients (see Table 20).
7.4 THE CUI-OFF VALIE BETWEFN GROUPS ${ }^{26}$

The derivation of the cut-off value between the two groups is described in the following pages. The mathematical model was explained in Troy's work ${ }^{26}$ and will not be discussed in this section.

In order to set the cut-off point mathematically, it is required to ascertain that the distributions of the groups are normal (see Figure 4). As Figure 5 reveals, the distributions of the two groups deviate very little from normality.

The following formulae are abstracted from Troy's work ${ }^{26}$:

$$
z_{c}=-b \pm \sqrt{ }\left(b^{2}-4 a c\right) / 2 a
$$

Where $\mathrm{Z}_{\mathrm{c}}=$ The cut-off value between the two groups

$$
\begin{aligned}
& \mathrm{a}=\left(1 / 4 \sigma_{2}^{2}-1 / 4 \sigma_{1}^{2}\right) \\
& \mathrm{b}=\left(\mu_{1} / 2 \sigma_{1}^{2}-\mu_{2} / 2 \sigma_{2}^{2}\right) \\
& \mathrm{c}=\left(\mu_{2}^{2} / 4 \sigma_{2}^{2}-\mu_{1}^{2} / 4 \sigma_{1}^{2}-\log _{10} \mu_{1}+\log _{10} \mu_{2}\right) \\
& \mu_{1}, \mu_{2}=\text { Means of Group } 1 \& 2 \text { samples } \\
& =1.0168,-2.8244 \text { (see Table } 21) \\
& \sigma_{1}, \sigma_{2}=\text { Standard deviations of Group } 1 \& 2 \\
& \quad \text { samples } \\
& =0.9901,1.0290 \text { (see Table } 21 \text {) }
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& \mathrm{a}=-0.0189 \\
& \mathrm{~b}=1.8522 \\
& \mathrm{c}=1.6365 \\
& \mathrm{z}_{\mathrm{c}}=\text { The cut-off value }=-0.8757
\end{aligned}
$$

Table 21 Classification Results and the Discriminant Scores of Cases in the Z_{2} Model

Case	Actual Group	Discriminant Scores	Classified Group	Classification
1	1	1.7270	1	Correct
2	1	0.6614	1	correct
3	1	2.9198	1	correct
4	2	-2.0789	2	correct
5	1	1.8374	1	Correct
6	1	0.0420	1	correct
7	2	-1.7774	2	Correct
8	1	-0.0765	1	Correct
9	2	-1.3102	2	correct
10	1	0.4852	1	Correct
11	1	0.0104	1	Correct
12	1	0.6749	1	Correct
13	1	0.6749	1	Correct
14	1	1.9644	1	correct
15	1	1.8972	1	Correct
16	1	0.6121	1	correct
17	1	1.0022	1	correct
18	1	2.8211	1	Correct
19	1	0.4621	1	Correct
20	1	0.6614	1	correct
21	1	1.4905	1	correct
22	1	1.8779	1	Correct
23	1	2.8437	1	Correct
24	2	-3.7487	2	Correct
25	1	0.1870	1	correct
26	2	-4.3826	2	Correct
27	1	-0.0996	1	Correct
28	2	-3.8130	2	correct
29	2	-2.7081	2	Correct
30	2	-2.4454	2	Correct
31	1	0.0060	1	correct
32	2	-3.1556	2	Correct
33	1	1.1756	1	correct
34	1	-0.4381	1	correct

μ_{1}	$=$ Mean of Group 1 sample		
	$=1.0168$	\quad	$=$ Mean of Group 2 sample
:---			
$=-2.8244$			

Figure 4 Normality Assumption in Deriving the Cut-off Point for Two Groups

Figure 5 All Groups Stack Histogram for Model Z2

7.5 CLASSIFICATION POWER

The classification power of the z_{2} model is gauged by the following methods:

7.5.1 PERCENIAGE OF CASES CTASSIFIED CORRECTIY

Table 22 illustrates the overall classification results of the model revealing that the overall classification is intact.

Table 22 overall Classification Results of the Z_{2} Model

Actual Group	No. of Cases	Predicted Group Membership	
		Group 1	Group 2
Group 1	25	25 (100%)	0 Group 2
	9	0	(0%)
		(0%)	(100%)

The discriminant scores and the classification of the individual cases are shown in Table 21 and the distributions of frequency of the two groups are illustrated in Figure 5. The results demonstrate that the effectiveness of classification is high and the two groups are well separated by the discriminant model z_{2}.

7.5.2 THE BEIWEFN GROUPS AND WIIHIN GROUPS VARTABTIITIES

This is scaled by Eigenvalues as described in Section 3.5.2 of Chapter 3. Large Eigenvalues mean 'good' classification and the

Eigenvalue is gauged as:

$$
\text { Eigenvalue }=\frac{\text { Between Groups Sum of Squares }}{\text { Within Groups Sum of Squares }}=3.05139
$$

The value is large enough to be considered that the model is powerful in classification.

7.5.3 THE CANONICAL ORRREIATION

This is the correlation which measures the association between the discriminant scores and the groups. The value is 0.868 which is high enough to be believed that classification is good and effective.

$7.6 \mathrm{Z}_{3}$ MODEL CONSISITNG OF NEW WCRKS ONIY

Thirty cases falling into the group of new building and new building related civil engineering works selected from the main z_{2} model were applied to generate a sub-model which excluded renovation and alteration works. The purpose of the sub-model is to investigate if there are any differences between the sub-model and the main model.

Table 23 Number of Cases by Group in the Z_{3} Model

Performance	No. of Cases
1	22
2	8
Total:	30

7.6.1 THE RESUUTIANT Z_{3} MODEL

(Details of computer generation of the model are described in Appendix 5.)

In this Z_{3} study, the six variables found in the Z_{2} discriminant function were re-modelled and the following linear function resulted:

$$
\begin{aligned}
\text { Discriminant function }= & -0.6347 \text { (COMPLEX) } \\
& +9.6270 \text { (PROF_STA) } \\
& +0.0812 \text { (IEAD_EX) } \\
& -1.5578 \text { (PAST_PER) } \\
& +0.7796 \text { (ORIGIN) } \\
& +1.0709 \text { (OONIROL) }-1.0049
\end{aligned}
$$

where COMPIEX : The complexity of the project
PROF_STA: Percentage of professional qualified staff

LEAD_EX : Project leader's experience PAST_PER: Contractor's past performance or image ORIGIN : Origin of the company

CONIROL : Architect's or client's supervision and control on the quality of work and work progress

The standardized discriminant function coefficients and their priority order of contribution to the z_{3} and z_{2} discriminant functions are illustrated in Table 24.

From Table 24, it is noticed that the priority orders of COMPLEX and PROF__STA were exchanged. This infers that for new projects, the complexity of a project plays a more important role than when all types of building works are considered in determining contractor performance.

Table 24 Standardized Discriminant Function Coefficients and their Priority Order of contribution to the Z_{3} and Z_{2} models

Variables	z_{3} Model		z_{2} Model	
	Standardized Discriminant Function Coefficients	Order of Contri- bution	Standardized Discriminant Function Coefficients	Order of Contri- bution
COMPLEX	-0.98426	2	-0.8867	4
PROF_SIA	0.76314	4	0.9110	2
LEAD_EX	0.54974	5	0.6372	5
PAST_PER	-0.98495	1	-1.1000	1
ORIGIN	0.50646	6	0.5184	6
CONIROL	0.96312	3	0.8870	3

The classification results, the frequency distribution and the discriminant scores of the cases in the z_{3} model are shown in Table 25 and Figure 6. Both indicate that the classification is good in separating the two groups.

7.6.2 PERCFNITAGE OF CASES CLASSIFIED CORRECITY

Table 26 illustrates the perfect overall classification results of the model.

$7.7 \mathrm{Z}_{4}$ MODEL CONSISITNG OF BUITDING WORKS ONIY

Twenty-six cases falling into the group of building works only selected from the main Z_{2} model were applied to generate a

Table 25 Classification Results and the Discriminant Scores of Cases in the Z_{3} Model

Case	Actual Group	Discriminant Scores	Classified Group	Classification
1	1	2.9762	1	
2	1	1.8598	1	Correct
3	1	0.1397	1	Correct
4	2	-1.7411	2	Correct
5	1	-0.0717	1	Correct
6	2	-1.1572	2	Correct
7	1	0.5630	1	Correct
8	1	0.1268	1	Correct
9	1	0.7253	1	Correct
10	1	0.7253	1	Correct
11	1	1.7045	1	Correct
12	1	0.9823	1	Correct
13	1	0.9461	1	Correct
14	1	2.9889	1	Correct
15	1	0.4601	1	Correct
16	1	0.6486	1	Correct
17	1	1.6484	1	Correct
18	1	1.8556	1	Correct
19	1	2.5455	1	Correct
20	2	-3.4364	2	Correct
21	1	0.2428	1	Correct
22	2	-4.3456	2	Correct
23	1	-0.1747	1	Correct
24	2	-3.8283	2	Correct
25	2	-2.8234	2	Correct
26	2	-2.2573	2	Correct
27	1	0.1483	1	Correct
28	2	-2.7203	1	Correct
30	1	1.3547	1	Correct

Table 26 Overall Classification Results of the Z_{3} Model

Actual Group	No. of Cases	Predicted Group Membership	
		Group 1	Group 2
Group 1	22	22 (100%)	0 (0%)
Group 2	8	0 (0%)	8 (100%)

Figure 6 All Groups Stacked Histogram for Model Z3
sub-model which excluded renovation, alteration and civil engineering works. The purpose of the sub-model is to investigate if there are any difference between the sub-model and the main model.

Table 27 Number of Cases by Group in the Z_{4} Model

Performance	No. of Cases
1	18
2	8
Total:	26

7.7.1 THE RESULITANT Z_{4} MODEL

(Details of computer generation of the model are described in Appendix 6.)

In this z_{4} study, the six variables found in the z_{2} discriminant function were re-modelled and the following linear function resulted:

$$
\begin{aligned}
\text { Discriminant function }= & -0.5626 \text { (COMPLEX) } \\
& +10.6218 \text { (PROF_STA) } \\
& +0.0931 \text { (IEAD_EX) } \\
& -1.7666 \text { (PAST_PER) } \\
& +0.7885 \text { (ORIGIN) } \\
& +1.0347 \text { (CONIROL) }-0.7053
\end{aligned}
$$

The standardized discriminant function coefficients and their priority onder of contribution to the z_{4} and z_{2} discriminant functions are illustrated in Table 28.

Table 28 Standardized Discriminant Function Coefficients and their Priority Order of contribution to the Z_{2} and Z_{2} models

Variables	Z_{4} Model		z_{2} Model	
	Standardized Discriminant Function Coefficients	Order of contri- bution	Standardized Discriminant Function Coefficients	Onder of contri- bution
COMPIEX	-0.6857	3	-0.8867	4
PROF_STA	0.5756	5	0.9110	2
LEAD_EX	0.6718	4	0.6372	5
PAST_PER	-1.0436	1	-1.1000	1
ORIGIN	0.4552	6	0.5184	6
CONIROL	0.8874	2	0.8870	3

The results in Table 28 show that the importance of the percentage of professional staff has dropped from rank 2 to 5 while the priority orders of the complexity of project, project leader's experience and architects' or clients' supervision and control have escalated. This infers that for building works, the percentage of professional staff plays a less important role in determining contractor performance. This is perhaps due to the paradoxical nature of this variable that high percentage means better management quality and better claim expertise as explained in Section 7.3.2.

The classification results, the frequency distribution and the discriminant scores of the cases in the Z_{4} model are shown in Table 29 and Figure 7. Both indicate that the classification is good in separating the two groups.

Table 29 Classification Results and the Discriminant Scores of Cases in the Z_{4} Model

case	Actual Group	Discriminant Scores	Classified Group	Classification
1	1	2.1629	1	Correct
2	1	0.3836	1	Correct
3	2	-1.5390	2	Correct
4	1	0.1540	1	Correct
5	2	-1.0627	2	Correct
6	1	0.7166	1	Correct
7	1	0.2445	1	Correct
8	1	0.9027	1	Correct
9	1	0.9027	1	Correct
10	1	1.9281	1	Correct
11	1	3.1121	1	Correct
12	1	0.7229	1	Correct
13	1	0.9521	1	Correct
14	1	1.7551	1	Correct
15	1	2.1300	1	Correct
16	1	3.0996	1	Correct
17	2	-3.5017	2	Correct
18	1	0.4867	1	Correct
19	2	-4.2062	2	Correct
20	1	0.1603	1	Correct
21	2	-3.6410	2	Correct
22	2	-2.4880	2	Correct
23	2	-2.1978	2	Correct
24	1	2.2305	1	
25	1	-2.8514	2	1.4433

Table 30 Overall Classification Results of the Z_{4} Model

Actual Group	No. of Cases	Predicted Group Membership	
		Group 1	Group 2
Group 1	18	18 (100%)	0 (0%)
Group 2	8	0 (0%)	8 (100%)

Figure 7 All Group Stacked Histogram for Model Z4

7.7.2 PERCENIAGE OF CASES CLASSIFIED CORRECIIY

Table 30 illustrates the perfect overall classification results of the model.

7.8 COMPARTNG MODELS $\mathrm{Z}_{2}, \mathrm{Z}_{3}$ AND Z_{4}

The above sections demonstrate that the three models are very similar in nature although having a small deviation in the priority order of some predictive variables. Table 31 shows the standardized discriminant function coefficients of the three models.

Table 31 Standardized Discriminant Function Coefficients of $\underline{Z}_{\mathbf{2}}$ \underline{Z}_{3} AND \mathbf{Z}_{4} MODELS

	Standardized Discriminant Function Coefficients		
	z_{2} Model	z_{3} Model	z_{4} Model
Types	All Projects	New Works Only	Building Works Only
No. of Cases	34 cases	30 cases	26 cases
Variables			
COMPLEX	-0.8867	-0.9843	-0.6857
PROF_STA	0.9110	0.7631	0.5756
LEAD_EX	0.6372	0.5497	0.6718
PAST_PER	-1.1000	-0.9850	-1.0436
ORIGIN	0.5184	0.5065	0.4552
CONIROL	0.8870	0.9631	0.8874

It is worth noting that the contribution of the percentage of professional staff drops enormously from model Z_{2} to Z_{4}. This is perhaps due to the paradoxical nature of this variable that high percentage means better management quality and better claim expertise as explained in Section 7.3.2.

Basically the contributions of the predictive variables of the three models follow a very close pattern and their classification results are ideal.

7.9 SUMMARY AND CONCIUSICN

The results from applying the linear discriminant analysis technique produced a linear discriminant model made up of six variables measuring the aspects of the personnel characteristics, company reputation, origin of firms, special features of the job and the project team's influences on contracting firms and projects.

There was no misclassification in the model which demonstrated that separation of the two groups was effective. Further, it will be demonstrated in Chapter 10 that the percentage of 'grouped' cases correctly classified by applying the model z_{2} to a test group with 16 cases was found to be 87.5%. Having such a high classification power, it is believed that there is an underlying structure influencing contractor performance.

The priority order of contribution of each factor to the function is as follows:

1. Past Performance
2. Percentage of Professional Staff
3. Client's or architect's supervision and control
4. Complexity of the Project
5. Project Leader's Experience
6. Origin of the Contracting Firm

The results show that the factors, 'Project Ieader's Experience' and 'Origin of the Contracting Firm' are the least discriminant of the variables while 'Past Performance' and 'Percentage of Professional Staff' are relatively more important than others.

The cut-off value of the z_{2} model was derived to be at $\mathbf{- 0 . 8 7 5 7}$ below which performance is more likely to be poor. In the bid evaluation process, clients can consider the tender cost as well as the predictive performance arrived using the Z_{2} model. Tenderers with poor predictive performance can be removed from shortlist as quality, time of completion and cost would most likely not meet clients' expectation.

Two sub-models of new works and building works only were also derived to investigate if there are any deviations from the main model. The results demonstrate that the divergence is very small and all the three models have a very good classification power.

The priority order of contribution of each factor to the Z_{3} function (consists of new works only) is as follows:

1. Past Performance
2. Complexity of the Project
3. Client's or architect's supervision and control
4. Percentage of Professional Staff
5. Project Leader's Experience
6. Origin of the Contracting Firm

The priority order of contribution of each factor to the Z_{4} function (consists of building works only) is as follows:

1. Past Performance
2. Client's or architect's supervision and control
3. Complexity of the Project
4. Project Leader's Experience
5. Percentage of Professional Staff
6. Origin of the Contracting Firm

The only point worth noting is the factor, the percentage of professional staff, whose contribution to the models drops significantly from Z_{2} to Z_{4}. The priorities of the variables, past performance of contractors and the origin of the company, remain unchanged throughout.

CHAPIER 8
 INTERVIEN SURVEY TO SIRUCTURE CLIENIS' UNSTHUCIURED
 APPROACH IN CONIRACIOR SEIBCIION

8.1 INIRODUCTION

Although most clients do not have a structured approach in the contractor selection process, it is believed that there are some criteria relevant to the the selection process. In order to find out the ways that clients handle the process and verify the results with the discriminant model developed, an interview survey was conducted.

The purpose of the survey is to find out the criteria which clients consider in the selection process and the ways they measure the factors. The interviewees were selected amongst the | largest clients in Hong Kong which includes the director of the largest public housing organisation which provides more than 50% of the total annual supply of housing in Hong Kong.

8.2 INIERVIEN

The study reported in this Chapter is derived from an interview survey of construction industry clients in Hong Kong, the aim of which was to find out clients' decision patterns and practices upon contractor selection and the ways they gauge the factors. The interview questions are shown in Figure 12.

CONIRACIOR SEIECTION CRIIERIA

1. What are the criteria your organisation adopted in contractor selection besides bidding prices?
\qquad
2. How do you assess the past performance of contractors?
\qquad
3. Are there any additional screening procedures or requirements for complex projects? And what are they if any?
\qquad
4. Do you agree that staff quality will be attributable to contractor performance and if agree how do you measure it ?
\qquad
———_
5. Do you agree that the experience of the project manager will be attributable to contractor performance and if agree how do you measure it?
\qquad
\qquad
6. What action would you take if the contractor performance is likely to be poor? Will you exercise tighter project control?
\qquad
\qquad
7. What do you mean by 'tighter' control?
\qquad
\qquad
8. Will you treat overseas contractors differently? Why?

Since interviewees are the representatives of the large developers, project management consultants and the largest public housing organisation in Hong Kong, they have much experience in the contractor selection process and can reflect clients' actual concern on the determinants of performance. The $\|$ total number of interviewees in this survey is ten.

8.3 Resutis

The survey results are summarised in Figure 13, 14, 15, 16, 17, 18, 19.

8.3.1 COMPARING THE SURVEY RESUUIS WIIH THE DISCRIMINANI MODEL

The discriminant model Z_{2} has identified six variables with the strongest contribution to the scale of performance in the following priority order:

- Past performance
- Percentage of professional staff
- Clients' control
- Complexity of the project.
- Project leader's experience
- Origin of the contractor

Likewise, the survey discovers that the three most frequently highlighted criteria in contractor selection are past

Figure 14 Clients' Perception on Quality of Staff and Its Importance

- 97 -

Figure 15 Clients' Perception on Quality of the Project Leader and Its Importance

Figure 16 Various Approaches to Measure Past Performance

- 99 -

Figure 17 The Ways That Clients Define Tight Control
And Its Importance
- 100 -

	INTERVIEWEES									
	1	2	3	4	5	6	7	8	9	10
CLIENTS' ATTITUDE IN DEALING WITH OVERSEAS CONTRACTORS										
Tighter Control and Supervision	\#								¢	¢
Communicate Formally and Keep Documentation Properly	\#									
Avoid Dealing with Overseas Contractors unless a special Expertise is Required				\#						
CLIENTS' PERCEPTION ON OVERSEAS CONTRACTORS										
Claims and Variations Conscious	\#			\#	\#*				告	ェ.
Like to Play the Contract with Clients and Consultants	\#			\#	\#*					
High Preliminary				\#						

Figure 18 Clients' Attitude and Perception on Overseas Contractor

- 101 -

INTERVIEWEES											Frequency	
	1	2	3	4	5	6	7	8	9	10	$\begin{array}{lll} 1 & 2 & 3 \\ 1 & 1 & 1 \end{array}$	
Financial Capacity/ Stability	\#						\#	- No Speclfic Screening Procedures		\#	$++++\square++$	
Feasibility of the Proposed Method Statement	\#	\#	\#								$\pm+[++[+]$	
Feasibility of the Proposed Programme	\#	\#	\#								$\pm+[+[++]$	
Workload							\#			\#	$+++{ }^{+}+$	
Expertise			\#							\#	$+{ }^{+}+{ }^{+}+$	
Project Leader's C.V.		\#									$\pm+$	
Quality of Staff										\#	$+ \pm$	

[^0]and Complex Projects
performance, quality of management staff and complexity of the project/ expertise required which corresponds to the model's findings (see Figure 13).

The survey also reveals that all the respondents agreed that the quality of management staff and experience of the project leader could affect contractor performance and the way to remedy the likely poor performance was to exercise tighter supervision and control.

As regards overseas contractors, only three out of the ten interviewees had experience in dealing with them and all the three respondents agreed that overseas contractors were more difficult to deal with as they were more claims and variations conscious and had the know-how to play the contract with clients. In dealing with them, clients would exercise tighter supervision and maintain a more formal commuication channel and documentation.

In conclusion, the survey results basically match well with that of the discriminant model. That means that clients are concerned about the determinants of the predictive performance although they do not have a structured approach to assess them.

8.3.2 WAYS TO QUANIIFY VARIABTES

8.3.2.1 QUALITY OF MANAGRMENT SIAFF AND THE PROTECT LEADER

The quality of management staff embraces a variety of constituents; however, most are difficult to quantify and collect. The survey shows that the education level is the most frequently highlighted constituent by the respondents and is the easy measurable variable and thus was adopted in building the discriminant model.

Similarly, the quality of the project leader is difficult to define and composed of many determinants. However, experience is most frequently highlighted by respondents in the survey and was adopted in building the discriminant model.

8.3.2.2 PAST PERFORMANCE

The survey shows that there were two out of the ten respondents totally relying on comprehensive performance appraisal systems to assess past performance, another two had rude scoring scales supplimented with human judgements, the rest relied purely on individuals' recommendations. It seems that there was not a unified approach in the assessment.

It is thus recommended, for the purpose of applying the discriminant model for organisations where no comprehensive performance appraisal system exists, that the average of the client's, the architect's and consultant's reconmendations gauged in five ranges be adopted; that is good, better than average, fair, poorer than average, poor, is taken to be the assessment of past performance.

In cases where a comprehensive performance appraisal system exists, the five extents (good, better than average, fair, poorer than average, poor) are represented by mark ranges where each range embodies 20% of the total recorded cases.

8.3.2.3 CUIENT'S SUPERVISION AND CONIROL

The survey cannot evidence any systematic approaches to measure this factor; however, clients' perception on 'tighter control' was identified (see Figure 17).

It is thus recommended, for the purpose of applying the discriminant model, that the degree of control is gauged by the number of positive or negative responses to the actions described (refer to Figure 17). and then measured by the following rule:

Action Taken
Most answers Type of Control are positive Tight A few positive answers Tighter than average Most answers are neutual Fair A few negative answers Looser than average Most answers are negative Loose

Actions:

-close supervision
-communicate formally and maintain a complete set of documentation as evidence for future disputes
-More site supervisory staff
-More frequent feedback and detailed scrutiny of reports
-Close progress control
-Exert pressure on the top management of the contractor
-Avoid over-certification of payments

8.3.3 ADDIITONAL SCREENING REQUIREMENIS FOR LARGE AND/ OR COMPIEX PROJECIS

Besides the general criteria described in the contractor selection process, the survey also identifies the additional screening requirements for large and/ or complex projects (see Figure 19). For these types of projects, clients should examine contractors in more detail.

8.4 SUMMARY AND CONCIUSICN

This Chapter has described an interview survey which was aimed comparing the criteria that clients are currently exercising in contractor selection with the developed discriminant model, and to find ways to quantify the variables.

The results demonstrate that the current practice in contractor selection is very close to the factors that the discriminant model has investigated.

As regards the provision of a more quantitative system for evaluating the vaguely defined variables; past performance and the client's control and supervision, this Chapter has recommended the approaches which enable the discriminant model more easy to apply.

CHAPIER 9

COMPARTNG THE DISCRIMITNANI ANALYSIS MODELL WIHH

MUHYIPIE REGRESSION ANATYSTS AND UNDDIMIENSIONAT SCATMNG MODETS

9.1 INIRODUCIIION

In this Chapter, two models other than the discriminant analysis approach were developed to verify with the discriminant analysis model namely:
a) Multiple Regression Analysis Model; and
b) Unidimensional Scaling Model.

These two models are less complicated than the discriminant model both in terms of mathematical theroies and computations. Multiple regression closely resembles discriminant analysis as explained in. Section 3.4 of Chapter 3. The unidimensional scaling model was designed to scale persons, stimuli, or both persons and stimuli. The main shortfall of the scaling model is the neglect of interrelationship between the predictive variables. These two models will be discussed in the following pages.

9.2 MUITIPLE REGRESSION ANALYSIS MODFT

Researchers in the social sciences, business, policy studies and other areas rely heavily on the use of regression analysis ${ }^{27}$. The frequency with which the technique is employed can be
demonstrated by a review of articles in professional journals such as the American Econmics Review, Journal of Policy Analysis and Management, Journal of Marketing, etc.

Multiple linear regression analysis is a method for measuring the effects of several factors concurrently. There are numerous occasions where the use of multiple regression analysis is appropriate, as in social science, there normally are a number of factors determining the outcame of a dependent variable.

The concept of multiple regression analysis is identical to that of simple regression analysis except that two or more independent variables are used simultaneously to explain the dependent variables.

9.2.1 THE REGRESSION MODEL

The regression model is in the following form:
$C=\alpha+B_{1} x_{1}+B_{2} x_{2}+\ldots+B_{n} x_{n}$

Where $\quad \alpha$ is a constant.
B_{n} is the coeficients for X_{n}.
X_{n} is the independent variable determining the outcome of C .

9.2.2 THE SIANDARDIZED COEFFICIENIS

In multiple regression analysis, standardized coefficients
are also used as in the discriminant model and interpreted as indicators to measure the contribution of each independent variable to the model. Likewise, coefficients are standardized to a unity standard deviation and a zero mean.

Unlike the discriminant model, standardized coefficients are named as beta coefficients in multiple regression. The standardized coefficients measure the change in the dependent variable (measure in standard deviations) that results from a one-standard-deviation change in the independent variables ${ }^{27}$.

Thus,

Beta Coefficient $=B_{1} *\left(S_{x} / S_{y}\right)$
where B_{1} is the regression coefficient
S_{x} is the standard deviation of the independent variable.

Sy is the standard deviation of the dependent variable.

9.2.3 ASSUMPIIONS IN APPIYING THE MODETL

To draw inferences about population values based on sample results, the following assumptions are needed to be met. However, it has been demonstrated that regression analysis is generally robust in the presence of departures from assumptions ${ }^{30}$.

9.2.3.1 NORAALITY AND EQUALITIY OF VARIANCE

For any fixed value of the independent variable, the distributions of the dependent variables should be normal and have constant variances (see Figure 8).

9.2.3.2 INDEPENDENCE

The data set should be non-collinear or non-multicollinear. More precisely, a set of observations on a collection of independent variables is said to be non-collinear if no one variable is a linear combination of the others.

9.2.3.3 LINEARITY

The mean values of the dependent variable all lie on a straight line, which is the population regression line. An alternative way of stating this assumption is that the linear model is correct.

9.2.4 GOONNESS OF FIT

The coefficient of determination (the R square) is the most commonly used measure of the goodness of fit of a linear model. The R square statistic measures closeness as the percentage of total variation in the dependent variable explained by the regression line.

If the data points were all to lie directly on the regression model, the observed values of the dependent variable would be

equal to the predicted values, and the R square would be equal to 1. As the independent varaible explains less and less of the variation in the dependent variables, the value R square falls toward zero.

The sample R square tends to be an optimistic estimate of how well the model fits the population. The model usually does not fit the population as well as it fits the sample from which it is derived. The value of the coefficient of determination will never decrease when another variable is added to the regression. Although the additional variable may be of no use whatsoever in explaining variations in the dependent variable, it cannot reduce the explanatory value of the previously included variables. Since including additional variables can never decrease the value of R square and normally increase it, it is common to use the adjusted R square which is adjusted for the number of independent variables used in the regression. Thus it is possible that by adding another independent variable to the regression, the adjusted R square will decrease although R square actually increases. Hence, the statistic adjusted R square is to correct R square to more closely reflect the goodness of fit of the model in the population. The adjusted R square is derived as follows ${ }^{13}$:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{a}}^{2}=\mathrm{R}^{2}-\left\{\mathrm{p}\left(1-\mathrm{R}^{2}\right) /(\mathrm{N}-\mathrm{p}-1)\right\} \\
& \text { Where } \quad \mathrm{p} \text { is the number of independent variables in the } \\
& \quad \text { equation } \\
& \\
& N \text { is the number of observations. }
\end{aligned}
$$

For this reason, the adjusted R square is used to determine whether including another independent variable increases the explanatory power of the regression.

9.2.5 STEEWISE REGRESSION

Since decisions regarding which of mmerous possible variables to include in a regression equation are difficult, stepwise regression techniques are used to remove the unsignificant variables. These techniques which are most commonly used ${ }^{13}$, allow the investigation of different combinations of independent variables. The selection criterion is usually based on the partial correlation coefficient, the coefficient of determination, R square and whether the inclusion of the variable would be significant which is tested by the F distribution.

In the stepwise regression, simple linear regressions using each of all the possible independent variables specified will be generated. The one having the largest partial correlation coefficient and producing the highest R square and meanwhile passing the F -distribution test will be selected. In step 2, the remaining independent variables together with the variable chosen in step 1 will be used to produce different regression results each with two independent variables. The one combination generating the highest R square will be selected. This process contimues until all the variables are included in the equation or no remaining variable increases the R square statistic
sufficiently to permit the inclusion of additional variables or combinations cannot pass the F -distribution test.

9.2.6 THE RESUITEANI MODET

(Details of computer generation of the model are described in Appendix 7.)

The selection method used in developing the model is the 'stepwise selection' which incorporates both the 'forward selection' and the 'backward elimination' approaches. The first variable is examined to see whether it should be removed according to the removal criterion and then variables not in the equation are examined for entry. The following model is developed:

$$
\begin{aligned}
\text { PERFORM }= & +0.36853 \text { (PAST_PER) }+0.1355 \text { (COMPLEX) } \\
& -0.22549 \text { (CONIROL) }-0.02055 \text { (IEAD_EX) } \\
& -1.42476(\text { PROF_STA })+0.92865
\end{aligned}
$$

where COMPLEX : The complexity of the project
PROF_STA: Quality of management teamProfessional qualifications

LEAD_EX : Quality of management teamProject leader's experience

PAST_PER: Contractor's past performance or image CONIROL : Architect's or client's supervision and control on the quality of work and work progress

9.2.7 THE REIATIVE TMPORIANCE OR CONIRIBUITION OF VARTABTES TO THE MODEL

The order of contribution of variables to the model are shown in Table 33.

Table 32 Unstandardized Partial Regression Coefficients

Varibles	Unstandardized Partial Regression Coefficients
COMPLEX	0.1355
PROF_STA	-1.42476
LEAD_EX	-0.02055
PAST_PER	0.36853
CONIROL	-0.22549
(Constant)	0.92865

Table 33 Beta Coefficients (Standardized Regression Coefficients)

Varibles	Beta Coefficients (Standardized Partial Regression Coefficients)	Order of Contribution
COMPLEX	0.48856	2
PROF_STA	-0.24559	5
LEAD_EX	-0.30394	4
PAST_PER	0.64489	1
CONIROL	-0.48198	3

The past performance of contractors is considered as the most important determinant in performance prediction. The complexity of projects is ranked the second and the percentage of professional staff has the least contribution to the model.

9.2.8 COMPARTSON BEIWEEN THE DISCRTMINANI MODEL AND THE MUIMTPIE REGRESSION MODEL

The number of variables in the multiple regression model is reduced from 6 to 5 and the variable ORIGIN is removed when compared with the discriminant model. Although ORIGIN has the next highest contribution to the regression model amongst the variables not falling into the equation, it cannot pass the F-distribution test and have a high probability of F-distribution to enter; i.e. 10.8% comparing with the criterion of 6%. This may be due to the fact that the distribution is highly skew towards the locals because there are only 5 overseas cases amongst the total 34 and the multiple regression model has more stringent criteria in variable selection than that of the discriminant model.

Comparing the two models' standardized coefficients, it reveals that the contribution of the variable PAST_PER is ranked the first in both models. However, PROF_STA falls from the second in the discriminant model to the last in the regression model. This may be due to the high correlation between PROF_STA and ORIGIN and the variable ORIGIN was removed from the regression model.

The contribution ranking of the complexity of projects in the regression model has risen from the fourth in the discriminant model to the second and thus this is considered more important in the regression model.

Mearwhile, it is worth noting that the variable PROF_STA (the percentage of professional staff in the company) has a positive effect on the contractor performance in both models; that is the higher the percentage, the better is the performance.

Table 34 Comparison of the Standardized Coefficients Between Discriminant Model and Multiple Regression Model

	Standardized Coefficients			
	Discriminant Model	Rank	Regression Model	Rank
COMPLEX	-0.8867	4	0.4886	2
PROF_STA	0.9110	2	-0.2456	5
IEAD_EX	0.6372	5	-0.3039	4
PAST_PER	-1.1000	1	0.6449	1
ORIGIN	0.5184	6		
CONIROL	0.8870	3	-0.4820	3

* The signs of the coefficients are arbitrary only.

The variables COMPIEX and CONIROL have the comparable magnitude in both the discriminant model and multiple regression model.

On the whole, the size and ranking of the coefficients in both models do not differentiate too much only with the exception of the variable: 'the percentage of professional staff'.

Table 35 compares the results of the two other discriminant models Z_{3} (for new works only), Z_{4} (for building works only,
Table 35 Results of The Discriminant Models Z_{3} and Z_{4} and the Regression Model

Variables	Z_{3} Model		Z_{4} Model		Regression Model	
	Standardized Coefficients	Order of Contribution	Standardized Coefficients	Order of Contribution	Beta Coefficient	Order of Contribution
COMPIEX	-0.9843	2	-0.6857	3	0.4886	2
PROF_STA	0.7631	4	0.5756	5	-0.2456	5
LEAD_EX	0.5497	5	0.6718	4	-0.3039	4
PAST_PER	-0.9850	1	-1.0436	1	0.6449	1
ORIGIN	0.5065	6	0.4552	6		
CONIROL	0.9631	3	0.8874	2	-0.4820	3

see Chapter 7) and the regression model.

It can be noticed that the variable contribution pattern of the Z_{4} discriminant model matches that of the regression model most. It thus is advisable to follow the regression model or the Z_{4} discriminant model for building works only.

9.2.9 GUALIIY OF CLASSIFICAITION

Table 36 shows the results of the regression model for each individual cases of the sample. Since there are binary results only: i.e. '1' for 'good performance and '2' for 'poor performance' in the dependent variable PERFORM, the demarcation value for group 1 and 2 is set to be 1.5.

The overall classification results are summarised in Table 37.

Table 37 The overall Classification Results of the Regression Model

Actual group	No. of cases	Predicted group membership	
		1	2
Group 1	25	$\begin{gathered} 25 \\ (100 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$
Group 2	9	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\stackrel{9}{(100 \%)}$

Percentage of "grouped" cases correctly classified is 100% which demonstrates that the classification of the model is effective

Table 36 Classification Results and the Regression Scores of Cases in the Multiple Regression Model

Case	Actual Group	Regression Scores	Classified Group	Classification
1	1	0.8293	1	Correct
2	1	1.1581	1	Correct
3	1	0.6740	1	Correct
4	2	1.6963	2	Correct
5	1	0.8459	1	Correct
6	1	1.2358	1	Correct
7	2	1.6846	2	Correct
8	1	1.3280	1	Correct
9	2	1.5824	2	Correct
10	1	1.1925	1	Correct
11	1	1.2825	1	Correct
12	1	1.1514	1	Correct
13	1	1.1514	1	Correct
14	1	0.8565	1	Correct
15	1	1.0920	1	Correct
16	1	1.1327	1	Correct
17	1	1.0453	1	Correct
18	1	0.6469	1	Correct
19	1	1.2225	1	Correct
20	1	1.1434	1	Correct
21	1	0.9720	1	Correct
22	1	0.9148	1	Correct
23	1	0.6835	1	Correct
24	2	1.8271	2	Correct
25	1	1.2461	1	Correct
26	2	2.0361	2	Correct
27	1	1.3580	1	Correct
28	2	1.9255	2	Correct
29	2	1.6474	2	Correct
30	2	1.8568	2	Correct
31	1	1.2981	1	Correct
32	2	1.9433	2	1
34	1	1.0083	1	

- 121 -
and good. The frequency distribution of individual cases are illustrated in Figure 9.

9.2.10 GOODNESS OF FIT

Table 38 shows the summary of the regression model.

Table 38 Summary Table of the Recression Statistics

Step	Multiple Regression Coefficient	R square	Adjusted R square	Variable In
1	0.6324	0.3999	0.3812	PAST_PER
2	0.7064	0.4991	0.4667	COMPLEX
3	0.7917	0.6267	0.5894	CONIROL
4	0.8302	0.6892	0.6463	IEAD_EX
5	0.8532	0.7279	0.6793	PROF_SIA

Where COMPLEX: The complexity of project PROF_STA: The percentage of professional staff

IEAD_EX: The project leader's experience PAST_PER: The past performance of contractor CONIROL: The architects' or clients' control and supervision on progress and quality of work

The regression statistic R square is 0.7279 , indicating that 1 Thi is a a athd 72.79\% of the variation in the performance behaviour is explained by variations in the predictive variables, PAST_PER, COMPIEX, CONIROL, LEAD_EX, and PROF_STA.

9.3 UNIDIMENSIONAL SCALING MODEL

9.3.1 INIRROUCTICN TO UNIDIMENSIONAL SCAIING

Unlike length, height and time which have the worldwide accepted, defined and measurable scales to measure, some social, political, psychological issues; such as attitudes, preferences and perceptions are very difficult to define and measure; for instance, the goverment's performance, the voters' preference in election, etc. Scaling is a set of mathematical techniques that enable a researcher to uncover the 'hidden structure' of data bases and form a standard by which the social concepts and psychological perceptions can be measured.

Scaling models may be employed for three related but distinct purposes ${ }^{31}$, 32. First, scaling analysis may perform a hypothesis that there is a single dimension, ideology (e.g., liberalism), that underlies voters' preferences for different political candidates. In this case, the scaling model is used as a criterion to evaluate the relative fit of a given set of observed data to a specific model. Second, scaling may be | employed for the purpose of simply describing a data structure, that is, for discovering the latent dimensions underliying a set of obtained observations. This would be the case, for example, if psychologists attempted to specify the dimensions underlying the perceived loudness of various sounds. No hypothesis is necessarily being tested here. Instead, the purpose of the
analysis is mainly exploratory. Whether the primary purpose of the analysis is confirmatory (the testing of a specific hypothesis) or exploratory, the technique can be used to derive and construct a scale, in which case it is a scaling method. In this thind instance the purpose of scaling is to develop a unidimensional scale on which individuals can be given scores. Their scores on the particular scale can then be related to other measure of interest. Sociologists, for example, may construct a scale for measuring socioeconomic status that can be correlated with a variety of attitudinal and behavioral measures. In this study, a scaling model with scores was derived || to measure the performance scale of contractors.

There are a mumber of scaling models designed to scale persons, stimuli, or both persons and stimuli. In this research, Likert scaling ${ }^{28}$ was used which was designed to scale subjects only. In Likert scaling, individuals are presented with a list of statements about a single topic (in this study, the performance of contractors) and are instructed to respond to each statement in terms of their degree of agreement or disagreement. Then the scale is obtained by adding together the response scores of its constituent items to form a 'summative' scale. Alternatively, the term 'linear composite' is used to designate such a scale.

The Likert approach to scaling consists of three interrelated tasks: (1) item construction, (2) item scoring, and (3) item selection. In this study, there are totally 20 independent
variables, the first step to do is to derive a univariate correlation table between each variable and the dependent variable PERFORM. Variables having a high correlation, for the purpose of this study, correlation coefficients higner than 0.2, are chosen to form items of the scale. It makes little sense to combine unrelated items into a total sum since undifferentiating items contribute little useful information to the total. Indeed, they may actually decrease the reliability and /or validity of the scale ${ }^{28}$.

Weightings are then assigned to each item or variable according to their degree of correlation with the dependent variable PERFORM. However, Sewell and Alwin et al 33,34 arrived at the following conclusion regarding weightings:
> "The problem of assigning weights to items in a scale is one which is rather annoying but not of great practical significance in light of the roughness of most sociometric devices at the present time. Several studies have shown that essentially the same final results are obtained with arbitrary common sense weighting as with more complicated, but still arbitrary, statistical techniques."

Nevertheless, in order to manipulate the scores of the model to fall into a scale of 0 to 100 for the ease of interpretation of the results, equal weightings were assigned.

Finally, for the item selection, the item-to-total correlations
were calculated and those having a low value were removed from the final scale because they failed to discriminate between groups. The following sections will describe the process of modelling item construction, item scoring and item selection.

9.3.2 IHFM CONSIRUCIION

In order to decide which variables among the twenty independent variables to be included in the model, it has to remove the unrelated or less related items which may decrease the reliabilty or validity of the scale. Univariate correlation coefficients between the predictive variables and the dependent variable PERFORM (performance) were used to measure their relativeness. Table 39 shows the coefficients.

In the preliminary screening, variables having a coefficient larger than 0.2 are selected and included in the model. From Table 39, it is noticed that ten variables among the twenty fulfil this requirement and they are COMPIEX (the complexity of project), TRAINING (amount of management training provided), PROF__STA (the percentage of professional staff), CONT_EX (the contractor's experience in similar jobs), PAST_PER (the past performance of the contractor), ORIGIN (the origin of the contractor), IISTED (whether the contractor is a public or private firm), CENIRAL (whether decision making is centralised or de-centralised), ARCH_PER (architect performance), and CONIROL (architect/ client's control and supervision).

Table 39 The Univariate Correlation Coefficients Between the Dependent Variable PERFORM and other Independent Variables

Independent Variables		Correlation Coefficient with the dependent variable PERFORM
COMPLEX	(The complexity of projects)	0.27
TRAINING	(Amount of management training)	-0.252
PIANT	(Plant ownership policy)	-0.054
COM_SIZE	(Size of company)	0.09
PROF_STA	(Percentage of professional staff)	0.227
IEAD_EX	(Project leader's experience)	-0.05
CONT_EX	(Contractor's experience in similar jobs)	-0.208
WORKTOAD	(Contractor's workload)	0.188
PAST_PER	(Contractor's past performance)	0.632
YEAR_BUS	(Number of years in business)	-0.178
ORIGIN	(Origin of contractors)	-0.504
DEL	(Amount of directly employed labour)	0.145
LTSTED	(Public or private firm)	0.236
CENIRAL	(Decision centralised or de-centralised)	0.455
SUBSID	(Subsidiary firm of the client or not)	0.095
ARCH_PER	(Architect performance)	-0.384
CONIROL	(Clients' control)	-0.474
PAYMENT	(Punctual payment or not)	0.133
PROFTT	(Profitability)	0.151
PAS_P_PM	(Past performance of the project manager)	0.016

9.3.3 ITHM SCORING

As mentioned in Section 9.3.1, equal weightings of a maximum of 10\% were allocated to the ten shortlisted independent variables yielding a maximum of 100% score.

In order to delineate the value of a variable to be good and bad, a cut off value (x value) is defined at which both the chances of falling into good and bad groups are the same as illustrated in Figure 10 with an assumption that all variables are normallly distributed, and their means and standard deviations are used to estimate the x value.

The 10\% weighting score was further subdivided according to the attainment level of each variable; for example, if the value of the variable 'IRAINING' is larger than or equal to 0.177 which is the mean of the 'good' group, 10% score will be assigned; if however, the value is between 0.117 to 0.079 which is the demarcation value between the two groups, 6.67% would be allotted and if the value is between 0.079 to 0.068 which is the mean of the 'bad' group, 3.33\% would be apportioned; and finally 0% for value below or equal to 0.068 (see Figure 10 for details).

However, this does not apply to certain variables processing binary values; such as 'LTSTED' (whether the company has been listed in the stock market) has only 'Yes' and 'No' options and in that case, either 10% or 0% will be assigned.

The sums of score for each individual case are obtained by summing up the scores of the items. The results are presented in Table 40.

9.3.4 ITEM SELECIION

The next step is to check the item to total correlation to eliminate the undifferenting items which should have a low correlation. The correlations of each variable with the sum of score are shown in Table 41.

Table 41 correlations of Items with the Total Sum of Score

Items	Correlations to Sum-of-Score
COMPIEX	0.1250
TRAINING	0.2726
PROF_STA	0.7167
CONT_EX	0.1435
PAST_PER	0.7966
ORIGIN	0.7607
LISTED	0.4217
CENIRAL	0.7037
ARCH_PER	0.6731
CONIROL	0.5261

Since none of the above is extremely low, all variables are selected and included in the model.

Table 40 Classification Results and the Scaling Scores of Cases in the Unidimensional Scaling Model

Case	Actual Group	Scaling Scores	Classified Group	Classification
1	1	90	1	
2	1	71.67	1	Correct
3	1	71.67	1	Correct
4	2	45	Correct	
5	1	53.33	1	Correct
6	1	75	1	Correct
7	2	55	1	Correct
8	1	50	1	Wrong
9	2	55	1	Correct
10	1	60	1	Wrong
11	1	50	1	Correct
12	1	60	1	Correct
13	1	60	1	Correct
14	1	75	1	Correct
15	1	61.67	1	Correct
16	1	55	1	Correct
17	1	35	2	Wrong
18	1	95	1	Correct
19	1	70	1	Correct
20	1	80	1	Correct
21	1	78.33	1	Corrrect
22	1	65	1	Correct
23	1	75	1	Correct
24	2	18.33	2	Correct
25	1	78.33	1	Correct
26	2	6.67	2	Correct
27	1	65	1	Correct
28	2	21.67	2	Correct
29	2	13.33	2	Correct
30	2	41.67	2	Correct
31	1	51.67	1	Correct
32	2	40	2	Correct
33	1	1	50	

9.3.5 QUALITY OF CLASSIFICAITION

The maximm score of the scale is 100%, and thus the mid value, 50\%, is taken as the demarcation value between good and bad groups. Table 40 shows the scores and classification of each individual cases. The overall classification results are shown in Table 42. The frequency distribution of scores is illustrated in Figure 11.

Table 42 The overall Classification Results of the Unidimensional Scaling

Actual group	No. of cases	Predicted group membership					
		1	2				
Group 1	25	24	1 Group 2			(96%)	(4%)
	9	2	7				
		(22.22%)	(77.78%)				

9.3.6 COMPARISON BEIWEEN THE DISCRTMMNANI MODEL AND THE UNIDIMENSIONAL SCAITNG MODEL

The number of variables in the unidimensional scaling model has increased from 6 in the discriminant model to 10. The variables TRAINING, CONT_EX, LISTED, CENIRAL, and ARCH_PER were added and the variable IEAD_EX is removed when compared with the discriminant model. Table 43 compares the variables included in the discriminant and unidimensional models.

Table 43 Variables Included in the Discriminant and Unidimensional Scaling Models

Variables	Discriminant Model	Unidimensional Scaling Model
COMPLEX	*	*
TRAINING	-	*
PROF_STA	*	*
CONT_EX	-	*
PAST_PER	*	*
ORIGIN	*	*
LEAD_EX	*	-
LISTED	-	*
CENIRAL	-	*
ARCH_PER	-	*
CONTROL	*	*

It can be noticed that the unidimensional scale is much inferior to the discriminant model and the regression model both in terms of the quality of classification and the variables embodied. The reasons would be the neglect of the interrelationship between the independent variables and the much simplified computation and mathematical concept of the unidimensional scale.

9.4. CONCTUSION AND SUMNARY

The discriminant analysis (D.A.), multiple regression analysis (MRA) and unidimensional scaling (A score) techniques were
employed to generate three models to classify contractor performance with the 34 cases. The results obtained from the D.A. and MRA are compatible to each other with a small difference in the number of variables selected. In the D.A. model six variables were found to be significant in classification while in the MRA five were obtained which eliminates the variable ORIGIN. This may be due to the fact that the sample was skew towards locals (5 out of 34 are overseas contractors).

In comparing the D.A. model and the unidimensional scale, the | variations are large. Firstly, there were ten variables included in the unidimensional scaling model compared with anly six in the D.A. model. Secondly the quality of classification of the |unidimensional -scaling is much inferior to D.A. and MRA. It is because the unidimensional scaling technique has ignored the interrelationship between variables. Each variable in the unidimensional scaling was considered independently but in D.A and MRA the interrelationship of variables was taken into consideration in the variable selection process.

As mentioned in Section 3.4, the D.A. model should have the stronger classification power in the case of binary grouping dependent variable when compared with the MRA model. The unidimensioal scaling is proved to be the weakest amongst the three models due to its simplified approach.

CHAPITFR 10

TESITING THE MODETS USING INDEPENDENT DATA

10.1 INIRODUCIION

A discriminant model usually fits the sample from which it is derived better than it will fit another sample from the same population ${ }^{13}$. Thus, the percentage of cases classified correctly by the model is an inflated estimate of the true performance in the population.

There are several ways to obtain a better estimate of the true misclassification rate. One technique is called the leaving-one -out method. It involves leaving out each of the cases in turn, calculating the function based on the remaining $n-1$ cases, and then classifying the left-out case. Since the case which is being classified is not included in the calculation of the function, the observed misclassification rate is a less biased estimate of the true one. However, as the function is made up of most cases in the sample, the estimate of the misclassification rate is not precise enough.

Another technique is to obtain a test group, then the model can be tested against the test group. Since the sample cases are not used for both estimating the function and testing it, the observed error rate in the 'test' sample should better reflect the function's effectiveness. This approach was adopted in this sturdy.

Hitherto, three models; namely discriminant analysis, multiple regression analysis and unidimensional scaling models, have been described. However, as described in Chapter 9, the unidimensional scaling model has a very high percentage of misclassification and thus was excluded from testing. The test results of the Discriminant and Multiple Regression Models will be described in the following pages.

10.2 TESS DATA GROUPS

In order to prove the validity of the models for each group, two groups of test projects were collected. As described in Table 5 of Chapter. 5, the number of cases in the test groups of 'Good Performance' and 'Poor Performance' are 10 and 6 respectively.

In the test groups, more 'Bad' cases were included to examine the discriminant power of the models. It is because when one of the groups is much smaller than the other, a highly correct classification rate can occur even when most of the 'minority' group cases are misclassified; for example, in judging everyone to be disease free in an AIDS screening program, the error rate will be very small since few people actually have infected with AIDS. Thus the 'Poor Performance' group was deliberately enlarged to test the actual validity of the models.

10.3 VALIDATITON OF THE DISCRIMINANT ANAIYSIS MODEL

The discriminant analysis model developed is as follows:

Discriminant function $=-0.5616$ (COMPLEX)

+ 11.9324 (PROF_STA)
+0.0949 (LEAD_EX)
- 1.7845 (PAST_PER)
+0.8219 (ORIGIN)
+1.0364 (CONIROL) - 1.1408
where COMPIEX : The complexity of the project
PROF_STA: Percentage of professional qualified staff

LEAD_EX : Project leader's experience
PAST_PER: Contractor's past performance or image
ORIGIN : Origin of the company
CONIROL : Architect's or client's supervision and control on the quality of work and work progress

The results obtained from the independent data groups are shown in Table 44 and 45.

Table 44 Overall Classification Results of the Test Data Groups in the Discriminant Analysis Model

Actual Group	No. of Cases	Predicted Group Membership	
		Group 1	Group 2
Group 1	10	9 Group 2	6

Percent of 'grouped' cases correctly classified: 87.5\%

Table 45 Classification Results and the Discriminant Scores of the Test Data Groups in the Discriminant Analysis Model

Case	Actual Group	Discriminant Scores	Classified Group	Classification
1	1	-2.067	2	Wrovg
2	1	0.739	1	Correct
3	1	3.048	1	Correct
4	1	4.052	1	Correct
5	1	3.238	1	Correct
6	1	0.509	1	Correct
7	1	2.318	1	Correct
8	1	2.072	1	Correct
9	1	0.844	1	Correct
10	1	-0.384	1	Correct
11	2	0.139	1	WRONG
12	2	-1.795	2	Correct
13	2	-3.473	2	Correct
14	2	-2.931	2	Correct
15	2	-2.369	2	Correct
16	2	-5.347	2	Correct

In the z_{2} model development, there are 25 cases from the 'Good' group and 9 from the 'Bad' group. Thus, the prior probabilities of group 1 (good performance) and group 2 (bad performance) are $73.53 \%(25 / 34 * 100 \%)$ and 26.47% ($9 / 34 * 100 \%$) respectively. If the classification rate for the 'Good' group is lower than or equal to 74%, it would suspect that the outcome happens only accidentally and the performance is not better than chance. Similarly, if the classification rate for the 'Bad' group is lower than or equal to 26%, it would suspect that the outcome just happens by chance.

In this study, the classification rates for the 'Good' and 'Bad' groups are 90% and 83.3% which are well above 74% and 26% and
thus the classification performance is very convincing. It $\left\lvert\, \begin{aligned} & \text { Depulh or } \\ & \text { vow muth } \\ & \text { alewngh }\end{aligned}\right.$
demonstrates a satisfactory prediction power of the model.

10.4 VALIDAITION OF THE MULITIPLE REGRESSION ANALISSIS MODEL

The multiple regression analysis model developed is as follows:

$$
\begin{aligned}
\text { PERFORM }= & +0.36853 \text { (PAST_PER) }+0.1355 \text { (COMPLEX) } \\
& -0.22549 \text { (ONNIROL) }-0.02055 \text { (IEAD_EX) } \\
& -1.42476(\text { PROF_STA })+0.92865
\end{aligned}
$$

where COMPLEX : The complexity of the project
PROF_STA: Quality of management teamProfessional qualifications

LEAD_EX : Quality of management teamProject leader's experience

PAST_PER: Contractor's past performance or image CONIROL : Architect's or client's supervision and control on the quality of work and work progress

The results obtained from the independent data group are summarised in Table 46 and 47.

Table 46 Overall Classification Results of the Test Data Groups in the Multiple Regression Analysis Model

Actual Group	No. of Cases	Predicted Group Membership	
		Group 1	Group 2
Group 1	10	9	1
		(90%)	(10%)
Group 2	6	1	5
		(16.7%)	(83.3%)

[^1]Table 47 Classification Results and the Multiple Regression Scores of the Test Data Groups in the Multiple Regression Analysis Model

Case	Actual Group	Discriminant Scores	Classified Group	Classification
1	1	1.6969	2	Wrong
2	1	1.1359	1	Correct
3	1	0.5421	1	Correct
4	1	0.6757	1	Correct
5	1	0.5010	1	Correct
6	1	1.1208	1	Correct
7	1	0.7533	1	Correct
8	1	0.8509	1	Correct
9	1	1.0901	1	Correct
10	1	1.3383	1	Correct
11	2	1.1561	1	Wrong
12	2	1.6291	2	Correct
13	2	2.0514	2	Correct
14	2	1.8888	2	Correct
15	2	1.7533	2	Correct
16	2	2.1881	2	Correct

The classification results obtained are same as that of the discriminant model. Thus it concludes that the prediction power of the multiple regression model is satisfactory which verifies the reliability of the discriminant model.

10.5 CONCIUSION AND SUMNARY

The discriminant model was extremely accurate in classifying 87.5\% of the sample correctly. The Type I error (i.e. when the case is actually bad but classified into the 'Good' group) was proved to be 16.7% while the Type II error (i.e. when the case is actually good but classified into the 'Bad' group) was 10%. This is significantly better than a pure chance model. The
results, therefore, are encouraging.

The multiple regression analysis model has proved to be effective in discriminating between the 'Good' and 'Bad' groups which has counterproved the validity and reliability of the discriminant model.

CHAPIER 11
 PERIPHERAL FACIORS NEEDED TO BE TAREN INIO ACOOUNI WHEN USING THE MODEL

11.1 INIRODUCIION

As revealed in the last Chapter, the test cases no. 1 and 11 were found to be misclassified both by the Discriminant Analysis and the Multiple Regression Analysis models. This infers that the models correctly classified 87.5% of the sample projects. Despite of this high percentage of accuracy, the misclassifications highlighted that there were some uncertainties in prediction which could not be explained by the models.

It is the aim of this Chapter to investigate the underlying factors and provide recommendations in exercising the Discriminant Analysis Prediction Model.

11.2 MEHHODOLOGY

In order to unveil the hidden factors, detailed interviews with the contractors and/or the clients' representatives were intended for the two misclassified cases. However one of the contractors was not willing to disclose the information. The only misclassified case studied was categorized into the 'Bad' group by the models which, however in actual fact, belonged to the 'Good' group.

However, one single case is not adequate to provide a complete picture; thus, two more cases were found and collected over a four month period. In these two cases, the clients had expected a good performance but the contractor performance turned out to be poor. Consequently detailed investigations were carried out and two discriminant scores derived for the two projects. These cases should have fallen into the 'Good' group but in actual, its performance was poor.

11.3 CASE STUDIES

The following pages describe the findings from the detailed investigations of the three mis-catagorised cases.

11.3.1 CASE 1- 'GOOD PERFORMANCE' CASE CLASSIFIED AS 'BAD'

This case was one of the misclassified cases in the testing sample. The detailed interview was conducted in August, 1991 with the contracts manager of the company and the findings are presented as follows:
A) Brief history of the company:

The company was set up in 1985; by which time, it was a joint venture firm between a Japanese contractor and a local company. In 1988, the organisation was re-shuffled and the company re-organised and sub-divided. The joint venture was ended and
the company has become a 100% locally owned company. The past image of the contractor was very poor with some reconds of poorly constructed public housing projects bearing poor quality and delay in completion.
B) Change of management team after re-shuffle:

Since the re-shuffle, more professional staff have been recruited; the percentage of which has increased from 5% to 10%. A few unsatisfactory project managers were dismissed.
C) Change of management system and style:

In the past, they did not have a proper control system and everything was kept in mind rather than on paper. After the re-organisation, a management control system was introduced. Computers have also been adopted in management.

The decision making system was changed from strictly centralized in the past to a more flexible and de-centralized system.
D) Change of subcontractors list:

In the past, the subcontractors had a very close relation with the top management and usually recruited through negotiations rather than from proper competitive tendering. After the re-shuffle, the list of subcontractors was changed and subject to selection through tendering.
E) Workload:

Since the re-organisation, workload has nearly doubled.
F) Profitability:

Losses cocurred in the past but profits were evident during the time of the interview.
G) Change in company strategy:

In the past, the objective was to maximise profit but recently more emphasis have been given to improving the quality of work and image.
H) Amount of plant owned:

This remained roughly the same before and after the re-organisation.
I) Size of the company:

The size has not changed.
11.3.1.1 SUMMARY

From the information obtained above, four factors are evident
which might affect the "PAST PERFORMANCE" variable used in the model; namely:

- Change of company policy in managing and rumning projects.
- Improvement in management both in terms of human resources and the system itself.
- Change of the company origin from an overseas and local joint venture to a wholly local firm.
- Improvement in profitability; thus the firm could afford more resources to improve management and quality of work.

11.3.2 CASE 2- 'BAD PERFORMANCE' CASE CTASSIFIED AS 'GOOD'

This is one of the two cases where the client had expected a good performance but the result turned out to be bad. The discriminant score of 0.4622 would, according to the Discriminant Model, fall in the 'Good' catagory; however, the client was not satisfied with performance. The interviews were conducted in January, 1992 with both the general manager of the contractor and the client's representative. The findings are presented as follows:

A) Brief history of the company:

The company was a subsidiary of a large construction fim which had been set up for more than 30 years. The firm had specialised in maintenance works before the split from its mother company in 1987 at which time the mother company went into a joint venture
with a Dutch firm. After the split, the firm entered into the new works' market and expanded rapidly.
B) Workload:

The company expanded very fast in term of workload. In 1987, the total contract sum in hand was 200 million Hong Kong dollars but increased to 1000 million dollars in 1991.
C) Delay payment to subcontractors:

Because of rapid expansion, subcontractors' payments were delayed in order to save cash for expansion.
D) Profitability:

The marginal profit dropped due to the keener competition in the new works' market.
E) Project particulars:

The project in question was obtained through a negotiated form of contract. Although the contractor's resources had been fully committed at that time, the offer was accepted in order not to upset the client. Trying to avoid hiring new staff to manage the project, the works were wholly sublet to a third contractor but a few supervisiory staff were still maintained to oversee the project.

From the above information, three possible reasons for reduction in performance are identified as follows:

- The contractor lacked experience in handling new works projects.
- The profitability of the company was falling which might subsequently lead to difficulties for the management.
- Lastly, but the most important, the over-expansion of the company caused in a difficult situation in terms of cash flow and human resources.

11.3.3 CASE 3- 'BAD PERFORNANCE' CASE CLASSIFIED AS 'GOOD'

This is the second case where the client had expected a good performance but the result turned out to be bad. The discriminant score was 0.7387 which, according to the Discriminant Model should fall under the 'Good' catagory; however, the client was not satisfied with this level of performance. The interviews were conducted in February, 1992 with both the contractor's chief quantity surveyor and the client's representative. The findings are presented as follows:
A) Brief history of the company:

The company was a very traditional Chinese contractor set up 30 years ago. The firm was taken over by a large developer and went public in 1990. Top management has also changed since then.
B) overtrading:

In order to present a favourable image regarding the financial accounts before going public, the company tried to increase turnover in a fairly short period of time and actually won a number of projects in 1990. The high workload forced the company to promote some younger staff to manage projects. Secondly, payments to subcontractors were severely delayed; same of which had been delayed for more than four months and a few subcontractors were preparing legal actions at the time of interview.
C) Project particulars:

In this project, the client complained that the main problem contributing to the poor performance was the lack of experience of the project manager in tackling the waterproofing works which needed much remedial work. Further the confused management and commuication systems irritated the client and the architect. The project was also delayed due to poor coordination of subcontractors.

11.3.3.1 SUMMARY

The root problems of the contractor's poor performance are summarised as follows:

- The change of the top management led to an alteration in the company strategy and policy.
- Over-expansion increased competition for resources; both in terms of financial and human. Although in the development of the Discriminant Model, workload was taken as one of the determinants; nevertheless, it is quite difficult to define 'overtrading' in terms of 'workload' since workload has to reach a certain point before overtrading is realized. Further, the maximm manageable workload may vary from company to company due to different structures, organisation and types of work that companies specialise in.

11.4 SUMMARY AND CONCIUSION

From the study of the three cases above, it is probable that the following factors would affect the accuracy in exercising the Discriminant Model; namely:

11.4.1 CHANGE IN COMPANY POLICY AND ATIIIUDE

It is recognised both from cases 1 and 3 that a change in company policy and top management may affect the predictive performance was not previously considered in the development of
the model because of the difficulties in quantifying 'changes in attitude and policy'.

Thus in qualifying contractors, this factor needs to be considered by intervewing contractors regarding changes in the company strategy and top management.

11.4.2 CHANGE IN MANAGENENT QUATITY

cases 1 and 2 indicated that changes in staff quality and the management system could affect the predictive performance. Again this can be discovered through interviewing contractors and scrutinising the submitted project organisation chart.

The changes in management quality, company strategy and attitude may, in long run, change the 'PAST PERFORMANCE' factor used in the model.

11.4.3 PROFITABITIIY

The profitability of the projects themselves was included in the development of the model. However, the overall profitability of companies was not included due to the difficulty and the sensitivity in collecting the information; especially from small private companies.

This factor was demonstrated to be affecting the predictive performance from cases 1 and 2 as profitable contractors can
afford more resources and have more room to improve their quality of work and image while non-profitable contractors may be clinging to maximize the profit. This information can be obtained from the contractor pre-qualification interview.

11.4 .4 OVERTRADING

Attempts were made to quantify this factor in the Discriminant Model using the variable 'WORKLOAD'; however the overtrading condition was difficult to determine as not normally be directly proportional to workloads and is usually a situation where the available resources are over-committed. This situation may vary according to different company structures, organisation and trading specialisms.

This factor was demonstrated to be affecting the predictive performance very much in Cases 2 and 3 and can only be revealed at a contractor pre-qualification interview.

In conclusion, the Discriminant Model should only be used as part of an overall assessment of contractors' predictive performance. Any predictions should be interpreted with caution as the model has some peripheral factors which are difficult to be quantified and included. However, the Discriminant Model can confidently be adopted as a quantitative tool in assessing contractor's predictive performance in order to exclude contractors fram tender lists and consequently improve the bid evaluation process thereby leaving more time for the clients to
concentrate on detailed analysis of the tender.

This Chapter highlighted some peripheral factors which need to be considered in exercising the Discriminant Model to assess contractor performance in the contractor pre-qualification stage.

CHAPIER 12

COMMENIS FRCM THREE ORGANISAIITONS ON THE DISCRIMINNANT VARIABIES

12.1 INIRODUCIION

In order to compare the actual practices to the viability of the discriminant variables of the model, three interviews were \| conducted with the representatives of the largest public housing client, one of the largest project management consultants and the estate offfice of a tertiary institution in Hong Kong.

In the model, there were six variables identified as significant in describing contractor performance; namely:

1. COMPIEX : The complexity of the project
2. PROF_STA: Percentage of professional qualified staff
3. LEAD_EX : Project leader's experience
4. PAST_PER: Contractor's past performance or image
5. ORIGIN : Origin of the company
6. CONIROL : Architect's or client's supervision and control on the quality of work and work progress

The findings of the interviews are presented in the following pages.

12.2 INIERRVIEN 1- FUBIIC HOUSING CTIENI

In this interview, the deputy director mentioned that three extra factors were considered in addition to the bidding price
in the contractor selection process; viz.:

12.2.1 PAST PERFORMANCE

A comprehensive past performance track recording system was adopted called PASS (the Performance Assessment Scoring System) described in details in Appendix 8. This system was used to provide an objective measurement of quality. Random sample checks carried out monthly throughout each contract period were administered. The checks contained either PASS or FAIL, without good, average or poor ratings. Full compliance gives a total of 100 points made up as follows:

Structural 35%
Building 35\%
External 10\%
General Conditions: 20\%
100\%

In this performance assessment system, quality was the only dimension measured whereas other factors such as the degree of claim consciousness, completion time and management attitude were not able to describe.

The discriminant variable 'PAST-PER' in the model, which measures more dimensions than just quality alone, can serve similar purposes in judging contractors' track reconds of quality.

12.2.2 MANAGEMENT CAPABTITIY

The education levels of staff and the management organisation structure were the next aspects which assessed the management capability. Furthermore, ISO 9000 was going to be implemented | which asked for higher education levels of management staff. Only those contractors succeeding in obtaining accreditation of ISO 9000 would be allowed to tender.

This, to a certain extent, corresponds to the provision of the discriminant variable 'PROF-STA' in the model. It was also pointed out that the experience of project managers 'IEAD-EX' would be attributable to contractor performance but this was not measured directly in the selection process.

12.2.3 FINANCTAL STANDING

The captial liquidity, which may affect contractors' ability in funding the work, was also one of their main concerns.

The financial attribute included in developing the model was the profitability of the project. The liquidity information, however, was too sensitive and difficult to collect especially from small private contractors and thus was not included in the \mid sour model. Nevertheless, the information can be obtained from the contractor prequalification interview.

12.2.4.1 CONIROL

It was agreed that more frequent feedback of reports on contract was required when the project ran into difficulties although this was not measured in the selection process.

12.2.4.2 COMPLEXITY

No attempt was designed to guage this variable in the organisation. This may be due to the standardisation of most public housing designs bearing a constant degree of camplexity.

12.3.4.3 ORIGIN

No discrimination was made between local and overseas contractors. The reason behind may be that it was a goverrment subvented organisation which beared public accountability and thus tried to avoid discrimination.

12.3 INIERVIEW 2- ESTANTE OFFICE OF A TERTIARY INSIIIUIION

The assistant estate officer mentioned in the interview that the following factors were considered on top of the bidding price in contractor selection.

1. Degree of familarity with the contractor. (This corresponds to Ward, Curtis and Chapman' 19 et al's findings regarding the quality of the relationships with the contractor concerning impressions of harmony, goodwill and trust or
conversely, of arguments, distrust and conflict.)
2. Claim consciousness of contractors.
3. The technical requirements of the project.
4. The complexity of the job.
12.3.1 PAST_PER \& COMPLEX

The first two factors correspond to the discriminant variable PAST-PER since these represent, to a certain extent, the track record of the contractor concerned. Besides that, they have a systematic approach in assessing contractors' track record on quality (refer to Appendix 9 for details) although the system was not as comprehensive as the PASS used by the last organisation.

The latter two correspond to the variable COMPLEX as they measure the complexity of a project.

12.3.2 ORIGIN

Besides the above four factors, it was pointed out that the use of overseas contractors was tried to avoid where possible unless a particular expertise, which was only available from them, was required. It was noted that these contractors were normally more claim conscious, having high preliminaries and the know-how to play with the contract.

12.3.3 PROF_STA \& LEAD_EX

Although it was admitted that the staff quality and experience could affect contractor performance, they found it difficult to
measure these two aspects. The cooperativeness of staff, familarity with the job, education levels, experience and attitude were considered important in describing staff quality.

12.4 INIERVIEW 3- PROJECI MANAGEMENT CONSUUTANT

One of the partners in the consulting firm mentioned that the following factors were considered on top of the bidding price in contractor selection.

1. Past performance which was guaged by peers', other clients', architects' and consultants' recommendations.

This corresponds to the discriminant variable, PAST-PER, in the model.
2. Quality of management staff which included education levels, experience and types of job experience which were abtained through the pre-qualification interview.

This corresponds to the discriminant variables, PROF-STA and LEAD-EX, used in the model.
3. Contractors' expertise.

This is, to a certain extent, measured by the variable COMPLEX in the model although the former measures the contractors' ability to manage complex jobs while the latter
measures the job's complexity itself.

As regards overseas contractors, there was no experience in dealing with them.

12.5 SUMMARY AND CONCTUSION

In Interview 1, two out the three assessment criteria adopted by the organisation were measured directly or indirectly by the three discriminant variables; viz. PAST-PER, PROF-STA and IEAD-EX. However, the variables, COMPLEX and ORIGIN were not adopted due to the special nature of the organisation.

In Interview 2, PASI-PER, COMPIEX and ORIGIN were considered, however, they did not measure the quality of management staff.

In Interview 3, PAST__PER, PROF-STA, LEAD-EX were assessed directly while COMPIEX was measured indirectly.

It is not surprising that clients' supervision and control (CONIROL) was not considered by the three organisations as this is a post contract measure. Notwithstanding this, this factor was viewed as a step to improve poor performance by the three organisations.

From the interviews, it reveals that there was not a unified approach in contractor selection in Hong Kong despite of a few
common criteria. This infers that the selection processes were designed subjectively according to individuals' perception and organisations' own experience without any theoretical support.

CHAPIHR 13

DISCUSSION AND CONCIUSIONS

13.1 INIRODUCIION

In the construction industry, most clients would hope that their projects could be finished on time, within budget, and up to the required quality. The competitive tendering system, however, cannot satisfy these assessment requirements. Some methods are apparently needed which will provide a quantitative indication of contractors' predictive performance to assist clients in making decision objectively and dispassionately.

The purpose of this dissertation was to investigate empirically the characteristics of contractor behaviour in performance and attempt to develop an accurate performance prediction model for the clients of the construction industry. Multiple discriminant analysis was utilized to accomplish this with contractor internal attributes and project characteristics serving as predictive variables.

The study encormassed essentially three parts. The first part| included the development of the Discriminant Model. Secondly, the model was tested and verified with two other models; namely the Multiple Regression Analysis Model and the Unidimensional Scaling Model. Finally, a set of peripheral factors was 1 investigated and recommended to suppliment the inadequacy of the Discriminant Model.

In the beginning of this study, the general concept and previous works on this subject were introduced. Based upon the previous studies, a list of decision factors were derived and investigated by the discriminant analysis technique. Two sets of data projects belonging to the two groups were collected and analysed by the model. Then the model produced a formula in the following form indicating the six most important factors in deciding contractor performance: 1

$$
\begin{aligned}
\text { Discriminant function }= & -0.5616 \text { (COMPLEX) } \\
& +11.9324 \text { (PROF_STA) } \\
& +0.0949 \text { (IEAD_EX) } \\
& -1.7845 \text { (PAST_PER) } \\
& +0.8219 \text { (ORIGIN) } \\
& +1.0364 \text { (CONIROL) }-1.1408
\end{aligned}
$$

where COMPLEX : The complexity of the project
PROF_STA: Percentage of professional qualified staff

IEAD_EX : Project leader's experience
PAST_PER: Contractor's past performance or image ORIGIN : Origin of the company

CONIROL : Architect's or client's supervision and control on the quality of work and work progress

13.3 VERTFICAIION OF THE DISCRIMINANT MODETL USING MUHTIPLE REGRESSION AND UNIDIMENSICNAL SCAITNG MODFELS

In the second part of the study, two mathematical models were developed using the same set of data. Firstly, a Multiple

Regression Model was developed and its results were comparable to that of the Discriminant Model which demonstrated the validity of the discriminant analysis approach. Although the Multiple Regression Model is similar to the Discriminant Model, 1 however; as mentioned in Chapter 3 and 9, the discriminant analysis approach has a stronger classification power than the multiple regression analysis approach in the case of binary grouping and thus was preferred.

The Unidimensional Scaling Model was then developed and its classification results were much inferior to those of both the Discriminant and Regression Models. It is because the unidimensional scaling approach has ignored the interrelationship between variables; for example, the percentage of professional staff may affect the past performance of a contractor. Although this approach did not produce any fruitful results, the model showed that there was an underlying structured approach in assessing contractor performance.

13.4 PERIPHERAL FACIORS IN EXERCISING THE DISCRININANI MODEL

As there were a few misclassifications, detailed investigation to the misclassified cases was carried out to study the side factors which could not be explained by the models.

The study discovered that the Discriminant Model should be used with care when the following signs appeared: |
A) The contractor has a drastic change in company policy and attitude in running and managing projects.
B) The contractor has an abrupt change in management quality both in terms of the staff quality and the management system itself.
C) The profitability of the company is descending or the company is suffering a long period of loss.
D) The company has a strong sign of over-trading.

13.5 RECCMMENDATIONS FOR IMPIEMENTING THE DISCRIMIINANT MODEL

There were 34 cases, including 25 cases in the 'Good' group and 9 in the 'Bad' group, used to develop the Discriminant Model. However, the developer or project manager can include information of the newly completed projects in the model and strengthen the data employed in the model development. Consequently the model can grow and perfect itself as more and more project information are embodied.

13.6 SUGGESTICN FOR FUIURE SIUDY

In this study, all types of works and companies of all sizes \mid were examined. But in the actual construction enviromment, companies of different sizes or carrying different types and sizes of projects may exhibit different characteristics in
performance. Hence, it is recommended that each catagory may be \| investigated individually.

Further, the model, as mentioned in the last paragraph, can grow as more project information are available. It is possible to develop an expert system package in expanding the model and vetting contractors on tender lists.
\forall 1. Vemon Ireland B.E. The Role of Mangerial Action in the Cost, Time and Quality Performance of High Rise Commercial Building Projects. PhD Thesis University of Sydney, 1983
-A 2. Maloney, W.F. Framework for Analysis of Performance. Journal of Construction Engineering and Management, Vol. 116, No. 3, pp. 399-415, September 1990.
3. Arditi, D. Factors Affecting U,S. Contractors' Performance Overseas. Journal of Construction Engineering and Management, Vol. 117, No. 1, pp. 27-46, March 1991.
4. Ofori, G. Programmes for Improving the Performance of Contracting firms in Developing Countries: A Review of Approaches and Appropriate Options. Construction Management and Economics, pp. 19-38, September 1991.
5. Town Planning in Hong Kang, 1985. Hong Kang Goverrment Printer.
6. Smith, J. Outlook Favourable for Hong Kong Growth. Journal of Building Technology \& Management, pp. 31-33, April/May 1989.
\rightarrow 7. Mustafa, M.A. and Ruan, T.C. Decision Support for Bid Evaluation. Journal of Project Management, Vol.8, No. 4, pp. 230-235, November 1990.
8. Nguyen, V.U. Tender Evaluation by Fuzzy Sets. Journal of Construction Engineering and Management, Vol. 3, No. 3, pp. 231-243, September 1985.
9. Diekmann, J.E. Cost-Plus Contractor Selection. Journal of the Technical Council, ASCE, Vol. 107, No. TC1, pp. 13-25, April 1981.
10. Russell, J.S. Model for Owner Prequalification of Contractors. Journal of Management in Engineering, Vol. 6, No. 1, pp. 59-75, Jamary 1990.
11. Abidali, A.F. A Methodology for Predicting Company Failure in the Construction Industry. PhD Thesis, 1990, Lougborough University of Technology.
12. Mason, R.J. Bankuptcy Prediction by Discriminant Analysis. MSC Thesis, Ioughborough University of Technology.
13. SPSS: Statistical Package for Social Science, Advanced Statistics Guide (V 2.0). SPSS Inc., Illinois, U.S.A.
14. Skitmore, R.M. and Marsden, D.E. Which Procurement system? Towards a Universal Procurement Selection Technique. Construction Management and Economics, Vol. 6, pp. 71-89, June 1988.
15. Salomonsson, G. and Flood, J. Operational Mode of Small

Builders in Housing Alterations and Additions: A Discriminant Analysis. . Proceedings of CIB Building Economics \& Construction Management, Vol. 6, pp. 429-437, 1990.
16. Altman, E.I. The Prediction of Corporate Bankruptcy: A Discriminant Analysis. New York: Garland, 1988.
\rightarrow 17. Wit, A.D. Measurement of Project Success. International Journal of Project Management, Vol. 6, No. 3, August, 1988, pp. 164-170.
\# 18. Might, R.J. and Fisher, W.A. The Role of Structural Factors in Determining Project Management Success. IFEE Transaction of Engineering Management, Vol. ENB2, No. 2, May 1985, pp. 71-77.
19. Ward, S.C., Curtis, B. and Chapman, C.B. Objectives and Performance in Construction Projects. Construction Management and Economics, Vol. 9, pp.343-353, September 1991.
20. Barnes, M. Construction Project Management. International Journal of Project Management, Vol. 6, No. 2, pp. 69-79, May 1988.
21. Boucher, T.O. and MacStravic, E.I. Multiattribute Evaluation Within a Present Value Framework and Its Relation to the Analytic Hierarchy Process. The Engineering

Economist, Vol. 37, No. 1, Fall 1991, pp.1-32.
22. Russell, J.S. and Skibniewski, M.J. Decision Criteria in Contractor Prequalification. Journal of Management in Engineering, Vol. 4, No. 2, PP. 148-164, ASCE.
23. Jaselskis, E.J. and Russell, J.S. An Efficiently Structured Approach for Selection of Most Promising Construction Contractors. Project Management Journal, Vol. 22. No. 4, December 1991, pp. 31-38.
24. Giege, T. and Selin, G. Evaluation of a Plant Reconstruction and Extension Project. International Journal of Project Management, Vol. 5, No. 3, PP. 135-137, August 1987.
25. Abdel Salam, M.E. Client Viewpoint on Foreign Contracts. International Journal of Project Management, Vol.3, No. 3, pp. 183-184, August 1985.
26. Troy, D. PhD Thesis, Alabama University, U.S.A., 1968. The computations are taken from Hoel (pp. 181-182) and lecture notes from Dr. Paul M. Hummel's course on Mathematical Statistics at the University of Alabama.
\rightarrow 27. Schroeder, L.D., Sjoquist, D.L., and Stephan, P.E. Understanding Regression Analysis - An Introductory Guide. A Sage University Paper, 1986.
\rightarrow 28. McIver, J.P. and Carmines, E.G. Unidimensional Scaling. A Sage University Paper, 1981.
29. Achen, C.H. Interpreting and Using Regression. A Sage University Paper, 1982.
30. Pedhazur, E.J. Multiple Regression in Behavioral Research. CBS Colledge Publishing, and Edition, 1982.
31. Combs, C.H. A Theroy of Data. New York: Joh Wiley, 1964.
32. Weisberg, H.F. Dimensionland: An Excursion into Spaces. American Journal of Political Science, 1974, No. 18, pp. 743-776.
33. Sewell, W.H. The Development of a Sociometric Scale. Sociometry, No. 5, pp. 279-297, 1941.
34. Alwin, D.F. The Use of Factor Analysis in the Construction of Linear Composites in Social Research. Sociological Methods and Research, No. 2, pp. 191-214, 1973.
35. Eye, A.V. Introduction to Configural Frequency Analysis: the Search for Types and Antitypes in Cross-Classifications. Cambridge: Cambridge University Press, 1990.

A 36. Goldstein, M. Discrete Discriminant Analysis. New York: Wiley, 1978.
-A 37. Gordon, A.D. Classification: Methods for the Exploratory Analysis of Multivariate Data. London: Chapman and Hall, 1981.
38. Hand, D.J. Discrimination and Classification.
Chichester: J.Wiley, 1981.
-1 39. Hand, D.J. Kernel Discriminant Analysis. Chichester: Research Studies Press, 1982.
40. James, M. Classification Algorithms. New York: Wiley, 1985.
41. Klecka, W.R. Discriminant Analysis. Beverly Hills: Sage Publications, 1980.
42. Statistical Method of Discrimination and Classification: Advances in Theory and Applications. New York: Pergamon, 1986.
43. Classification and Regression Trees. Belmont, Calif.: Wadsworth International Group, 1984.
44. Classification Pattern Recognition and Reduction of Dimensionality. Amsterdam: North-Holland, 1982.
45. Advances in Multivariate Statistical Analysis. Dordrecht, Holland: D. Reidel, 1987.
46. Anderson, T.W. An Introduction to Multivariate Statistical Analysis. New York: Wiley, 1984.
47. Arnold, S.F. The Theory of Linear Models and Multivariate Analysis. New York: Wiley, 1981.
48. Housing Authority Performance Assessment Scoring System (PASS). Housing Department, Hong Kong Government, July, 1991.
49. University's Panel of Contractors Monitoring of Contractor Performance. The Estate Office, The University of Hong Kong, April, 1992.
50. Jiang, C.Y. Introduction to Fuzzy Sets and their Applications in Construction Management. China Building Industry Publisher, 1986. (Crinese Book- Direct Translation of Book Title and Author's Name)
51. Bray, J.H. Multivariate Analysis of Variance. Beverly Hills: Sage, 1985.
52. Siegel S. Nonparametric Statistics For The Behavioral Sciences. MoGraw-Hill Book Company, 1988.
53. Flury, B. Multivariate Statistics: A Practical Approach. London: Chapman and Hall, 1988.
54. Kleinbaum, D.G. Applied Regression Analysis and Other

Multivariate Methods. 2nd Edition, Boston, Mass.: PWS-Kent, 1988.
55. Birnie J. and Yates A. Cost Prediction Using Decision/ Risk Analysis Methodologies. Construction Management and Economics, Vol.9, 1991, pp. 171-186.
56. William Ihbs C. Innovative Contract Incentive Features for Construction. Construction Management and Economics. Vol.9, No.2, April 1991, pp. 157-169.
57. Russell J.R., Hancher D.E., and Skibniewski Contractor Prequalification Data for Construction Owners. Construction Management and Economics, Vol.10, No.1, 1992, pp.117-135.
58. Russell J.S. Decision Models for Analysis and Evaluation of Construction Contractors. Construction Management and Economics, No.10, No.2, 1992, pp. 185-202.
59. Tam C.M. and Harris F.C. Discriminant Analysis Technique for Contractor Performance Appraisal in Hong Kong. CIB'92 World Building Congress, Proceedings Section 5E, Vol. 2. May 1992.
60. Tam C.M. Structured Approach in Bid Evaluation. Proceedings of the International Project Management Conference. Guangzhou, PRC, November, 1992.

APPENDIX 1

Measuring the Degree of Concordance of Clients on the levels of Complexity of Work

APPENDIX CNE

MEASURTNG THE DEGREE OF CONCORDANCE OF CTITENSS

ON THE LEVETS OF COMPLEXITY OF WORK

Al. 1 INIRODUCIICN

In order to unveil the levels of complexity of work, a survey was carried out for clients to rank the six pre-set groups of work according to their complexity. Nine replies were collected $\|$ and a non-parametric statistical technique called the Kendall Coefficient of Concordance was adopted to test the degree of agreement between the clientsees. The levels of complexity of work were then derived in ordinal approach.

A1. 2 SURVEY

Twenty questionnaires had been sent out and nine were returned. The results of the survey are shown in Table A.1. From the results, it can be noticed that there is a clear pattern of ranking order as follows:

1- Foundation works, site formation, slope protection and similar simple civil engineering works.

2- Renovation or alteration works.
3- Factory or domestic housing works.
4- Deluxe housing projects or office buildings.
5- Hotel or high class office buildings.
6- Hospital or complicated structures or projects.
Table A. 1 Results of Survey on the Levels of Complexity of Work

Types of work	Client									ΣR_{i}
	1	2	3	4	5	6	7	8	9	
	Ranking									
Foundation works, site formation, slope protection and similar simple civil engineering works	2	1.5	1.5	1	1	2	1	1	1	12
Renovation or alteration works	2	1.5	1.5	2	2	1	2	2	2	16
Factory or domestic housing works	2	3	3	3	3	3	3	3	3	26
Deluxe housing projects or office buildings	4	4	4	4.5	4	4	4	4	4	36.5
Hotel or high class office buildings	5	5	5	4.5	5	5.	5	5	5	44.5
Hospital or complicated structures or projects	6	6	6	6	6	6	6	6	6	54

- 178 -

A1.3 KENDALL COEFFICIENI OF CONCORDANCE 52

A1.3.1 STEP 1

$\mathrm{N}=$ the number of entities to be ranked $=6$.
$\mathrm{K}=$ the number of judges assigning ranks $=9$.

The sums of ranks assigned to each entity by K judges are shown in Table A. 1 as R_{i}.

The mean of $\mathrm{R}_{\mathrm{i}}=(12+16+26+36.5+44.5+54) / 6=31.5$
$S=S u m$ of squares of the observed deviations from the mean of $R_{i}:(12-31.5)^{2}+(16-31.5)^{2}+(26-31.5)^{2}+$ $(36.5-31.5)^{2}+(44.5-31.5)^{2}+(54-31.5)^{2}=1351$

A1.3.2 STEP 2

Adjustment for ties:

Client 1: $\mathrm{T}_{1}=\Sigma\left(\mathrm{t}^{3}-\mathrm{t}\right) / 12=\left(3^{3}-3\right)=24$
Client 2: $\mathrm{T}_{2}=\Sigma\left(\mathrm{t}^{3}-\mathrm{t}\right) / 12=\left(2^{3}-2\right)=6$
Client 3: $T_{3}=\Sigma\left(t^{3}-t\right) / 12=\left(2^{3}-2\right)=6$
Client 4: $T_{4}=\Sigma\left(t^{3}-t\right) / 12=\left(2^{3}-2\right)=6$
$K \Sigma T=9 *(24+6+6+6)=378$

Compute the coefficient of concordance

```
W = the coefficient of concordance = S/{(1/12) K
    = 1351/{0.083*81*(216-6)-378}
    = 1.307
```

A1.3.3 SIEP 3- Compute Chi-Square with a degree of freedam of ($\mathrm{N}-1$)

$$
\begin{aligned}
\text { Chi-Square } & =\mathrm{K}(\mathrm{~N}-1) \mathrm{W} \\
& =9 *(6-1) * 1.307 \\
& =58.81
\end{aligned}
$$

Al. 4 CONCLUSION

From Chi-Square Tables, it can be found that probability that the value of Chi-Square is greater than or equal to 20.52 for a degree of freedom of 5 is 0.001 . Thus having a Chi-Square value of 58.81, it can be concluded with considerable assurance that the agreement among the 9 judges is higher than it would be by chance.

APPENDIX 2

Raw Data of 34 Cases for Model Formulation and 16 Cases for Testing

彦0000000000000000－00000000000000000000

WORKLOAD

APPENDIX 3

SPSS(pc) Computer Printout of the Stepwise Procedures in Computing the Z_{1} Discriminant Analysis Model

DSCRIMINANT /GROUPS PERFORM (1,2) /VARIABLES CON_TIME CON_COST QUALITY /SELECT INCLUDE (1) /METHOD WILKS /PRIORS SIZE /STATISTICS=all.

Since ANALYSIS= was omitted for the first analysis all variables on the VARIABLES= list will be entered at level 1.

This Discriminant Analysis requires 1364 (1.3K) BYTES of workspace.

```
Page 4
SPSS/PC+
```

On groups defined by PERFORM CONTRACTOR'S PERFORMANCE

50 (unweighted) cases were processed.
6 of these were excluded from the analysis.
0 had missing or out-of-range group codes. 6 had at least one missing discriminating variable. 0 were excluded by the SELECT= variable.
44 (unweighted) cases will be used in the analysis.

Number of Cases by Group

Number of Cases PERFORM			
Unweighted	Weighted Label		
1	32	32.0	
2	12	12.0	
Total	44	44.0	

Page 5
Group Means

PERFORM	CON_TIME	CON_COST	QUALITY
1	1.09584	1.04866	3.21875
2	1.60417	1.07392	1.91667
Total	1.23448	1.05555	2.86364

Group Standard Deviations

PERFORM	CON_TIME	CON_COST	QUALITY
1	.14246	.08500	.55267
2	1.11621	.09987	.51493


```
Page 10
SPSS/PC
At step 1, QUALITY was included in the analysis.
                                    Degrees of Freedom Signif. Between Groups
\begin{tabular}{lrllll} 
Wilks' Lambda & .45565 & 1 & 1 & 42.0 & \\
Equivalent \(F\) & 50.1759 & & 1 & 42.0 & .0000
\end{tabular}
--------------- Variables in the analysis after step 1 ----.-...............
Variable Tolerance F to remove Wilks' Lambda
QUALITY 1.0000000 50.176
-----.-.-.-.-.- Variables not in the analysis after step 1 ......................
    Minimum
Variable Tolerance Tolerance F to enter Wilks' Lambda 
F statistics and significances between pairs of groups after step 1
Each F statistic has 1 and 42.0 degrees of freedom.
Group 1
    Group
        2 50.176
                                    .0000
Page 12
SPSS/PC+
At step 2, CON_TIME was included in the analysis.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Wilks' Lambda}} & \multicolumn{4}{|r|}{Degrees of Freedom} & \multirow[t]{2}{*}{Signif.} & \multirow[t]{2}{*}{Between Groups} \\
\hline & & . 40906 & 2 & 1 & 42.0 & & \\
\hline Equivalent & & 29.6145 & & 2 & 41.0 & . 0000 & \\
\hline \multicolumn{8}{|l|}{} \\
\hline Variable Tol & Tolerance & F to remove & Wil & & & & \\
\hline CON_tIME & . 9914332 & 4.6694 & & & & & \\
\hline QUALITY & . 9914332 & 45.604 & & & & & \\
\hline
\end{tabular}
```


[^2]

	FUNC 1
QUALITY	.87855
CON_TIME	-.31881
CON_COST	-.10383

\qquad
Page 18 SPSS/PC+

Unstandardized Canonical Discriminant Function Coefficients

	FUNC 1
CON_TIME	-.7132566
CON_COST	-2.932977
QUALITY	1.760698
(constant)	-1.065610

Canonical Discriminant Functions evaluated at Group Means (Group Centroids)

Group	FUNC $\quad 1$
1	.74434
2	-9.98489

Page 19 SPSS/PC+

Test of equality of group covariance matrices using Box's M

The ranks and natural logarithms of determinants printed are those of the group covariance matrices.

Group Label	Rank	Log Determinant
1.	3	-10.158298
2	3	-5.730461
Pooled Within-Groups		
Covariance Matrix	3	-7.164973

Page 20 SPSS/PC+

Case	Mis		Actual	Highest Probability			2nd Highest		Discriminant
Number	Val	Sel	Group	Group	P(D/G)	P(G/0)	Group	P(G/D)	Scores...
1		Yes	1	1	. 9998	. 9910	2	. 0090	. 7446
2		Yes	1	1	. 4291	. 9274	2	. 0726	-. 0464
3		Yes	1	1	. 2062	. 9997	2	. 0003	2.0083
4		Yes	2	2	. 0565	. 9996	1	. 0004	-3.8920

5	Yes	1		1	.8618	.9857	2	.0143
6	Yes	1	1	.3154	.8771	2	.1229	.5703
7	Yes	2	2	.3923	.6008	1	.3992	-1.1294
8	Yes	1	1	.1413	.9998	2	.0002	2.2152
9	Yes	2	2	.4628	.6769	1	.3231	-1.2506
10	Yes	1		1	.7281	.9772	2	.0228
11	Yes	1	1	.9822	.9916	2	.0084	.7967
12	Yes	1	1	.7239	.9768	2	.0232	.3971
13	Yes	1	1	.9150	.9880	2	.0120	.6376
14	Yes	1	1	.7484	.9787	2	.0213	.4236
15	Yes	1	1	.2250	.9997	2	.0003	1.9577
16	Yes	1	1	.5392	.9539	2	.0461	.1303
17	Yes	1	1	.6386	.9684	2	.0316	.2746
18	Yes	1	1	.1797	.9998	2	.0002	2.0860
19	Yes	1	1	.6878	.9736	2	.0264	.3425
20	Yes	1	1	.8160	.9832	2	.0168	.5116
21	Yes	1	1	.2515	.9996	2	.0004	1.8910

Page 21

Case	Mis		Actual	Highest	Probab	ility	2nd Hi	ghest	Discriminant
Number	Val	Sel	Group	Group	P(D/G)	$P(G / 0)$	Group	P(G/D)	Scores...
22		Yes	1	1	. 3457	. 9993	2	. 0007	1.6873
23		Yes	1	1	. 3934	. 9150	2	. 0850	-. 1091
24		Yes	2	2	. 6040	. 7905	1	. 2095	-1.4663
25		Yes	1	1	. 2794	. 9995	2	. 0005	1.8261
26		Yes	2	2	. 1786	. 9984	1	. 0096	-3.3300
27		Yes	1	1	. 1512	. 9998	2	. 0002	2.1796
29		Yes	2 **	1	. 2622	. 8382	2	. 1618	-. 3770
30		Yes	2	2	. 5778	. 7728	1	. 2272	-1.4282
31		Yes	1	1	. 9384	. 9890	2	. 0110	. 6670
32		Yes	1	1	. 8450	. 9848	2	. 0152	. 5489
33		Yes	1 **	2	. 4740	. 6877	1	. 3123	-1.2689
38		Yes	1	1	. 1126	. 9999	2	. 0001	2.3309
39		Yes	1	1	. 5983	. 9633	2	. 0367	. 2176
40		Yes	1	1	. 8358	. 9843	2	. 0157	. 5371
41		Yes	1	1	. 8812	. 9866	2	. 0134	. 5949
42		Yes	1	1	. 7454	. 9785	2	. 0215	. 4197
43		Yes	1	1	. 5083	. 9478	2	. 0522	. 0828
44		Yes	1	1	. 0927	. 5292	2	. 4708	-. 9368
45		Yes	2	2	. 9478	. 9489	1	. 0511	-2.0504
47		Yes	$2 \times$	2	. 0296	. 9998	1	. 0002	-4.1608
48		Yes	2	2	. 8937	. 9572	1	. 0428	-2.1185

Page 22
SPSS/PC+

Case	Mis		Actual	Highest Probability	2nd Highest	Discriminant
Number	Val Sel	Group	Group $P(D / G) P(G / D)$	Group $P(G / D)$	Scores...	
49	Yes	2	2	.3775	.5830	1.4170
50	Yes	2	2	.6371 .1025		
			.8109	1	.1891	-1.5131.

Symbols used in Plots

1	1
2	2

Page	23	SPSS/PC+
	Histogram for Group	1

Canonical Discriminant Function 1

Centroids 1
Page 24

 SPSS/PC+
 Histogram for Group 2

Canonical Discriminant Function 1


```
    *)
Gentroids
2
```

Page 25 SPSS/PC+

Canonical Discriminant Function 1

Centroids 21

Page 26
SPSS/PC+

APPENDIX 4

SPSS(pc) Computer Printout of the Stepwise
 Procedures in Computing the Z_{2} Discriminant Analysis Model

DSCRIMINANT /GROUPS PERFORM $(1,2) / V A R I A B L E S ~ C O M P L E X ~ T O ~ P R O F I T ~ P A S _P _P M ~$ /METHOO WILXS /PRIORS SIZE /STATISTICS=all.

Since ANALYSIS= was omitted for the first analysis all variables on the VARIABLES= list will be entered at level 1.

This Discriminant Analysis requires 14568 (14.2K) BYTES of workspace.

Page 4 SPSS/PC

On groups defined by PERFORM CONTRACTOR'S PERFORMANCE

34 (unweighted) cases were processed.
0 of these were excluded from the analysis.
34 (unweighted) cases will be used in the analysis.

Number of Cases by Group

Number of			
PERFORM	Cases		
Unweighted			

Group Means

Group Standard Deviations

| PERFORM | COMPLEX | | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1.60416 | TRAINING | PLANT | COM_SIZE |
| 2 | 1.50000 | .09793 | .10303 | 363.42538 |
| Total | 1.61461 | .02926 | .04169 | 363.47092 |
| | | .08757 | .09037 | 359.35047 |
| PERFORM | PROF_STA | | | |
| 1 | .08198 | LEAD_EX | CONT_EX | WORKLOAD |
| 2 | .05618 | 7.55491 | .30068 | 1828796.17430 |
| Total | .07719 | 3.04138 | .29417 | 2985459.93833 |
| | | 6.62303 | .30109 | 2182022.12344 |

	OMPLEX	training	Plant	COM_SI2E
complex	2.492500			
training	.2575958E-01	.7406266E-02		
plant	-. 3700167E-01	. 1028317E-02	.8396523E-02	
COM_SIZE	171.5717	-3.989149	-2.885438	132086.3
Prof_sta	-.2147208E-01	.1406259E-02	. $1729518 \mathrm{E}-03$	-5.391813
LEAD_EX	. 4150000	-. 1130129	-.4404667E-01	273.1942
CONT_EX	-. 2370842	. 2328318 E -02	.9993650E-02	-. 2216078
HORKLOAD	1615882.	-30407.05	-31533.83	. $2304657 E+09$
PASt_PER	-. 3137500	-.5975833E-02	.9131667E-02	12.55708
YEAR_BUS	11.00750	-. 2419708E-01	-. 5362796	2347.710
ORIGIN	-.8166667E-01	-.5428056E-02	-. 4092222E-02	17.94472
DEL.	-. 5398729E-01	.1126102E-02	. $3201524 \mathrm{E}-02$	-14.32466
LISTED	-. 2375000	.8029167E-02	.1261042E-01	-47.02917
CEntral	-. 1610417	-.5877847E-02	-.4345139E-03	23.49139
SUBSID	.4833333E-01	.8808611E-02	.1118319E-01	32.19556
ARCH_PER	-.8666667E-01	. $1077278 \mathrm{E}-01$.1035111E-01	60.25639
CONTROL	. 8400000	.1758292E-01	.2811667E-02	80.59833
PAYMENT	-.5291667E-01	.2474444E-02	-.9434722E-03	6.704722
Profit	.7749354E-01	-.8114932E-03	-.1245340E-04	11.32974
PAS_P_PM	. 2979167	.6007639E-02	.4699306E-02	-10.89306
	PROF_STA	LEAD_EX	CONT_EX	WORKLOAD
PROF_STA	.5829154E-02			
LEAD_EX	-. 1634333E-01	45.12000		
CONT_EX	-. 2282668E-02	-. 2211379	.8943762E-01	
WORKLOAD	18502.74	-3517108.	-193506.5	.4736614E+13
PAST_PER	.2641958E-01	1.433750	. $3311792 \mathrm{E}-01$	-243679.2
YEAR_BUS	-. 2706217	-14.60250	-2.219947	.1297196E+08
ORIGIN	-. $3374694 \mathrm{E}-01$. 2133333	.2690528E-01	-716249.9
DEL	.6944564E-02	. $4343396 E-01$.2941669E-02	32926.28
LISTED	. $1034583 \mathrm{E}-01$	-. 8687500	.7106042E-01	193142.9
CENTRAL	.1036535E-01	1.834583	.2803361E-01	-212201.0
SUBSID	.4116389E-02	-. 8341667	.1123569E-01	376850.2
ARCH_PER	-.1414153E-01	- .4579167	-. $2411264 \mathrm{E}-01$	-228192.8
CONTROL	-. 1481417E-01	-1.230000	-. $4482333 \mathrm{E}-01$	768910.2
PAYMENT	-. 1449444E-02	-. 3879167	. $30745288-01$	-101143.6
PROFIT	-. 2996876E-02	-. 2560271E-01	-. 3819998E-02	73534.04
PAS_P_PM	.2302361E-01	.9166667E-01	-.3576319E-01	466106.9

Page 6
SPSS/PC+
7/13/91

	PAST_PER	YEAR_BUS	ORIGIN	DEL
PAST_PER	.3800000			
YEAR_BUS	-5.248750	224.6800		
ORIGIN	-.1108333	-.4183333	.3977778	

DEL	.2969917E-01	$-.4857940$	-.5275514E-01	.1642012E-01
LISTED	.7500000E-01	-4.293750	-. 1208333	.2446667E-01
central	. 1754167	-1.760833	-. 4638889E-01	.1796226E-01
SUBSID	.2541667E-01	-. 7045833	-.7555556E-01	.8812778E-02
ARCH_PER	-. 1533333	5.211667	. 1211111	-. 2561993E-01
CONTROL	-. 1412500	4.441250	.2166667E-01	-. 2539208E-01
payment	. $2416667 \mathrm{E}-01$	-. 8220833	.3027778E-01	-. $1745139 \mathrm{E}-03$
Profit	-. $2409917 \mathrm{E}-01$. 6064283	.1663472E-02	-. 1284977E-02
PAS_P_PM	.5833333E-01	. 1395833.	-. 1819444	.3509097E-01
	Listed	CEMTRAL	SUBSID	ARCH_PER
Listed	. 2500000			
CENTRAL	-. 1458333E-01	. 1706944		
SUBSID	. 1416667	-.5534722E-01	. 2186111	
ARCH_PER	-. 1958333	-.3743056E-01	-.8847222E-01	. 6119444
CONTROL	.6250000E-02	-. 1664583	. 1179167	-.1208333E-01
payment	. 2916667E-01	-.1326389E-01	.1694444E-01	-. 5013889E-01
Profit	-.9185417E-02	-. 4680486E-02	.4461181E-02	.6115764E-02
PAS_P_PM	.2083333E-01	.3784722E-01	.1388889E-02	.9722222E-02
	CONTROL	PAYMENT	Profit	PAS_P_PM
CONTROL	. 7325000			
payment	. 2041667E-01	.5777778E-01		
Profit	. 2578583E-01	-.3154653E-02	. 1629019E-01	
PAS_P_PM	.7083333E-01	-. 1319444E-01	-. 4361806E-02	. 4236111

Pooled Within-Groups Correlation Matrix

| | COMPLEX | TRASHING PLANT | COM_SIZE PROF_STA | LEAD_EX | CONT_EX | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| COMPLEX | 1.00000 | | | | | | |
| TRAINING | .18959 | 1.00000 | | | | | |
| PLANT | -.25577 | .13040 | 1.00000 | | | | |
| COM_SIZE | .29902 | -.12754 | -.08664 | 1.00000 | | | |
| PROF_STA | -.17914 | .21402 | .02472 | -.19431 | 1.00000 | | |
| LEAD_EX | .03913 | -.19550 | -.07156 | .11191 | -.03187 | 1.00000 | |
| CONT_EX | -.50214 | .09047 | .36468 | -.00204 | -.09997 | -.11008 | 1.00000 |
| HORKLOAD | .47028 | $-.16235 *$ | -.15812 | .29137 | .11935 | -.24058 | -.29730 |
| PAST_PER | -.32238 | -.11264 | .16166 | .05605 | .56135 | . .34626 | .17964 |
| YEAR_BUS | .46515 | -.01876 | -.39044 | .43096 | -.23647 | -.14503 | -.49522 |
| ORIGIN | -.08202 | -.10001 | -.07081 | .07829 | -.70083 | .05036 | .14265 |
| DEL | -.26686 | .10212 | .27266 | -.30759 | .70983 | .05046 | .07676 |
| LISTED | -.30087 | . .18660 | .27524 | -.25880 | .27109 | -.25867 | .47522 |
| CENTRAL | -.24689 | -.16531 | -.01148 | .15645 | .32860 | .66106 | .22689 |
| SUBSID | .06548 | .21891 | .26102 | .18947 | .11531 | -.26560 | .08035 |
| ARCH_PER | -.07017 | .16002 | .14440 | .21194 | -.23678 | -.08715 | -.10307 |
| CON_ROL | .62167 | .23872 | .03585 | . .25912 | -.22671 | -.21395 | -.17512 |
| PAYMENT | -.13944 | .11962 | -.04284 | .07675 | -.07898 | -.24026 | .42770 |
| PROFIT | .38458 | -.07388 | -.00106 | .24425 | -.30754 | -.02986 | -.10008 |
| PAS_P_PM | .28993 | .10726 | .07880 | -.04605 | .48333 | .02097 | -.18374 |

Page 7	SPSS/PC+	7/13/91

horkload past_per year_bus origin del listed central

HORKLOAD	1.00000						
PAST_PER	-.18163	1.00000					
YEAR_BUS	.39764	-.56804	1.00000				
ORIGIN	-.52181	-.28507	-.04425	1.00000			
OEL	.11806	.37598	-.25292	-.65276	1.00000		
LISTED	.17749	.24333	-.57291	-.38317	.38187	1.00000	
CENTRAL	-.23600	.68876	-.28433	-.17803	.33928	-.07060	1.00000
SUBSID	.37034	.08818	-.10053	-.25622	.14709	.60598	-.28652
ARCH_PER	-.13403	-.31797	.44447	.24548	-.25558	-.50088	-.11581
CONTROL	.41280	-.26773	.34619	.04014	-.23153	.01461	-.47075
PAYMENT	-.19334	.16310	-.22817	.19972	-.00567	.24268	-.13356
PROFIT	.26472	-.30630	.31698	.02066	-.07857	-.14393	-.08876
PAS_P_PM	.32905	.14539	.01431	-.44324	.42075	.06402	.14075

| | SUBSID | ARCH_PER | CONTROL | PAYMENT | PROFIT | PAS_P_PM |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SUBSID | 1.00000 | | | | | |
| ARCH_PER | -.24189 | 1.00000 | | | | |
| CONTROL | .29467 | -.01805 | 1.00000 | | | |
| PAYMENT | .15077 | -.26665 | .09924 | 1.00000 | | |
| PROFIT | .07476 | .06125 | .23606 | -.10283 | 1.00000 | |
| PAS_P_PM | .00456 | .01910 | .12716 | -.08434 | -.05251 | 1.00000 |

Correlations which cannot be computed are printed as '.1
Hilks' Lambda (U-statistic) and univariate F-ratio
with 1 and 32 degrees of freedom

Variable	Wilks' Lambda	F	Significance
complex	. 92712	2.515	. 1226
training	. 93654	2.168	. 1506
PLANT	. 99705	.9483E-01	. 7601
COM_SIZE	. 99188	. 2621	. 6122
PROF_STA	. 94865	1.732	. 1975
LEAD_EX	. 99745	.8177E-01	. 7768
COHT_EX	. 95669	1.449	. 2376
WORKLOAD	. 96469	1.171	. 2872
PAST_PER	. 60006	21.33	. 0001
YEAR_BUS	. 96820	1.051	. 3130
ORIGIN	. 74618	10.89	. 0024
DEL	. 97897	. 6876	. 4131
LISTED	. 94444	1.882	. 1796
central	. 79281	8.363	. 0068
SUBSID	. 99104	. 2894	. 5943
ARCH_PER	. 85249	5.537	. 0249
CONTROL	. 77525	9.277	. 0046
payment	. 98222	. 5792	. 4522
Profit	. 97724	. 7452	. 3944
PAS_P_PM	. 99976	.7715E-02	. 9306

Page 8	SPSS/PC+	7/13/91

Covariance Matrix for Group. 1.

	COMPLEX	training	PLANT	COM_SIZE
COMPLEX	2.573333			
training	.2473500E-09	.9589623E-02		
Plant	-.5778000E-01	.1423913E-02	. $1061608 \mathrm{E}-01$	
COM_SIZE	128.0317	-6.175857	-6.605630	132078.0
PROF_STA	-.4610167E-01	.1472577E-02	. $3506117 \mathrm{E}-03$	-6.352302
LEAD_EX	.5333333E-01	-. 1651283	-. $6267333 \mathrm{E}-01$	382.2450
CONT_EX	-. 2887233	.2611665E-02	.1412691E-01	-10.92865
HORKLOAD	1208410.	-54392.41	-35342.31	. $1898272 \mathrm{E}+09$
PAST_PER	-. 4600000	-.7648333E-02	. $8661667 \mathrm{E}-02$	-5.826667
YEAR_buS	13.21833	-.5765167E-01	-. 6717617	2992.502
ORIGIN	. 1966667	-.6633333E-03	-.9993333E-02	17.63000
DEL	-. 1122608	.9606817E-03	.4904134E-02	-19.54014
LISTED	-. 3583333	.1040000E-01	.1884167E-01	-65.69167
CENTRAL	-. 2633333	-.9249167E-02	-.5191667E-03	21.55333
SUBSID	-. 4666667E-01	.1176333E-01	.1265167E-01	18.43667
ARCH_PER	-. $6000000 \mathrm{E}-01$.1436833E-01	. $1302833 E-01$	81.40667
CONTROL	. 9116667	.2513833E-01	-.3806667E-02	45.72833
Payment	-. 5666667E-01	.3456667E-02	-. 1378333E-02	-16.73167
Profit	.7585250E-01	-. 1257732E-02	.1800992E-03	10.21803
PAS_P_PM	. 1333333	.2200000E-02	.7400000E-02	-28.99167
	PROF_STA	LEAD_EX	CONT_EX	HORKLOAD
PROF_STA	.6720223E-02			
LEAD_EX	-. 3193000 E-01	57.07667		

CONT_EX	$-.1096715 \mathrm{E}-02$	-. 3181700	.9040579E-01	
WORKLOAD	-10300.51	-4241446.	-150049.6	.3344495E+13
PAST_PER	. $3349000 \mathrm{E}-01$	2.161667	.4743500E-01	-379830.1
Year_bus	-. 4071067	-19.59500	-2.627485	9894557.
ORIGIN	-.2657000E-01	. 2566867	-. 1830000E-02	-87878.20
DEL	.7986789E-02	.2238417E-01	.9149161E-02	-60214.85
Listed	.9516667E-02	-. 8666667	.9802500E-09	-2609.000
central	.1271167E-01	2.355833	. 3241750E-01	-350666.6
SUBSID	.2470000E-02	-. 8900000	.2818000E-01	257381.4
ARCH_PER	-. 1586000E-01	-. 7633333	-.2759000E-01	-234285.3
CONTROL	-. 1969667E-01	-1.223333	-. $3861167 \mathrm{E}-01$	699251.9
payment	.7850000E-03	-. 4200000	.1549833E-01	-96894.23
PROFIT	-.4271552E-02	-. 3427583E-01	-. $7425858 \mathrm{E}-03$	2706.556
PAS_P_PM	.2055000E-09	-. 1833333	-. $4659167 \mathrm{E}-01$	242612.2
	PAST_PER	YEAR_BUS	ORIGIN	DEL
PAST_PER	. 4233333			
YEAR_BUS	-6.415000	270.6567		
ORIGIN	-. 1200000	1.053333	. 1600000	
DEL	.5146000E-01	-. 9806142	-. 3898833E-01	.1488491E-01
LISTED	.5833333E-01	-5.808333	-.5000000E-01	. 2723333E-01
central	. 2408333	-2.570000	-.4333333E-01	. $2106542 \mathrm{E}-01$
SUBSIO	-. 2166667E-01	-. 9950000	-.2666667E-01	.8546667E-02
ARCH_PER	-. 1766667	6.393333	.9666667E-01	-. 2925250E-01
CONTROL	-. 2716667	5.630000	.5666667E-01	-. 3532833E-01
payment	. $1833333 \mathrm{E}-01$	-. 8183333	.3333333E-02	.4285833E-02
PROFIT	-.2486833E-01	. 4500850	.1800500E-01	-.6534071E-02
PA	. $9166667 \mathrm{E}-09$	500	66666	.2582500E-01

	LISTED	CENTRAL	SUBSID	ARCH_PER
LISTED	.2500000			
CENTRAL	$-.1250000 \mathrm{E}-01$.2183333		
SUBSID	.1333333	$-.6916667 \mathrm{E}-01$.2266667	
ARCH_PER	-.1916667	$-.5916667 \mathrm{E}-01$	$-.7166667 \mathrm{E}-01$.7233333
CONTROL	$-.3333333 \mathrm{E}-01$	-.2150000	$.6000000 \mathrm{E}-01$	$.1166667 \mathrm{E}-01$
PAYMENT	$.2500000 \mathrm{E}-01$	$-.2000000 \mathrm{E}-01$	$.133333 \mathrm{E}-01$	$-.4833333 \mathrm{E}-01$
PROFIT	$-.1344167 \mathrm{E}-01$	$-.8717500 \mathrm{E}-02$	$.2457500 \mathrm{E}-02$	$.4010833 \mathrm{E}-02$
PAS_P_PM	.0000000	$.2500000 \mathrm{E}-01$	$-.1666667 \mathrm{E}-01$	$.5000000 \mathrm{E}-01$

	CONTROL	PAYMENT	PROFIT	PAS_P_PM
CONTROL	.7266667			
PAYMENT	$.1333333 E-01$	$.4000000 E-01$		
PROFIT	$.2247833 E-01$	$-.2460833 E-02$	$.1651547 E-01$	
PAS_P_PM	.1083333	$-.8333333 E-02$	$-.1332500 E-01$.4166667

Covariance Matrix for Group 2,

	complex	training	Plant	COM_SIZE
COMPLEX	2.250000			
training	. 2883333E-01	.8561944E-03		
plant	. 2533333E-01	-.1584722E-03	.1737861E-02	
COM_SI2E	299.7917	2.570972	8.275139	132111.1
PROF_STA	.5241667E-01	.1207306E-02	-.3600278E-03	-2.510347
LEAD_EX	1.500000	.4333333E-01	. $1183333 \mathrm{E}-01$	-53.95833
CONT_EX	-. $8216667 \mathrm{E}-01$.1478278E-02	-.2406139E-02	31.89951
HORKLOAD	2838297.	41549.03	-20108.37	.3523810E+09
PAST_PER	. 1250000	-.9583333E-03	. 1054167 E -01	67.70833
YEAR_buS	4.375000	.7616667E-01	-. 1298333	413.3333
ORIGIN	-. 9166667	-. 1972222E-01	.1361191E-01	18.88889
DEL	. 1208333	.1622361E-02	-. 1906306E-02	1.321806
LISTED	. 1250000	.9166667E-03	-.6083333E-02	8.958333
CENTRAL	. 1458333	. $4236111 \mathrm{E}-02$	-.1805556E-03	29.30556
SUBSID	. 3333333	-.5555556E-04	.6777778E-02	73.47222
ARCH_PER	-. 1666667	-. 1388889E-04	.2319444E-02	-3.194444
		- 203		

CONTROL	. 6250000	-.5083333E-02	.2266667E-01	185.2083
payment	- - $4166667 \mathrm{E}-01$	-. 4722222E-03	.3611111E-03	77.01389
PROFIT	.8241667E-01	.5272222E-03	-.5901111E-03	14.68486
PAS_P_PM	. 7916667	.1743056E-01	-. 3402778E-02	43.40278
	PROF_STA	LEAD_EX	CONT_EX	WORKLOAD
PROF_STA	. $3155944 \mathrm{E}-02$			
LEAD_EX	. $3041667 \mathrm{E}-01$	9.250000		
CONT_EX	-.5840528E-02	.6995833E-01	.8653311E-01	
HORKLOAD	104912.5	-1344095.	- 323877.1	.8912971E+13
PAST_PER	.5208333E-02	-. 7500000	-.9833333E-02	164773.7
YEAR_bus	. 1388333	. 3750000	-. 9973333	.2220415E+08
ORIGIN	-.5527778E-01	.8333333E-01	. 1131111	-2601365.
DEL	.3817889E-02	. 1065833	-. 1568081E-01	312349.7
LIStED	.1283333E-01	-. 8750000	-.9833333E-02	780398.7
CENTRAL	.3326389E-02	. 2708333	.1488194E-09	203195.9
SUBSID	.9055556E-02	-. 6666667	-. 3959722E-01	735256.8
ARCH_PER	-.8986111E-02	. 4583333	-. 1368056E-01	-209915.6
COMTROL	-.1666667E-03	-1.250000	-. $6345833 \mathrm{E}-01$	977885.2
Payment	-.8152778E-02	-. 2916667	.7648611E-01	-113891.9
Profit	.8271528E-03	.4166667E-03	-.1305224E-01	286016.5
PAS_P_PM	.3044444E-01	. 9166667	-.3277778E-02	1136591.

Page 10 SPSS/PC+

	PAST_PER	Year_bus	Origin	DEL
PAST_PER	. 2500000			
Year_bus	-1.750000	86.75000		
ORIGIN	-. $8333333 \mathrm{E}-01$	-4.833333	1.111111	
DEL	-. 3558333E-01	. 9986667	-.9405556E-01	.2102578E-01
LISTED	. 1250000	. 2500000	-. 3333333	.1616667E-01
CENTRAL	-. 2083333E-01	. 6666667	-.5555556E-01	. $8652778 \mathrm{E}-02$
Sugsio	. 1666667	. 1666667	-. 2222222	.9611111E-02
ARCH_PER	-.8333333E-01	1.666667	. 1944444	-. 1472222E-01
CONTROL	. 2500000	. 8750000	-.8333333E-01	.4416667E-02
Payment	.4166667E-01	-. 8333333	. 1191111	-. 1355556E-01
PROFIT	-.2179167E-01	1.075458	-. 4736111E-01	.1446231E-01
PAS_P_PM	-.4166667E-01	1.833333	-. 5277778	.6288889E-01

	LISTED	CENTRAL	SUBSID	ARCH_PER
Listed	. 2500000			
central	-. 2083333E-01	.2777778E-01		
Suasio	. 1666667	-. 1388889E-01	. 1944444	
ARCH_PER	-. 2083333	.2777778E-01	-. 1388889	. 2777778
CONTROL	. 1250000	-. 2083333E-01	. 2916667	-.8333333E-01
Payment	.4166667E-01	.6944444E-02	.2777778E-01	-.5555556E-01
Profit	. $3583333 \mathrm{E}-02$.7430556E-02	. 1047222E-01	.1243056E-01
PAS_P_PM	.8333333E-01	.7638889E-01	.5555556E-01	-. 1111119
	CONTROL	Payment	profit	PAS_P_PM
CONTROL	. 7500000			
PAYMENT	.4166667E-01	. 1111111		
Profit	. $3570833 \mathrm{E}-01$	-. 5236111E-02	.1561436E-01	
PAS_P_PM	-.4166667E-01	-.2777778E-01	.2252778E-01	. 4444444

Total Covariance Matrix with 33 degrees of freedom

	COMPLEX	TRAINING	PLANT	COM_SIZE
COMPLEX	2.606952			
TRAINING	$.1536384 \mathrm{E}-01$	$.7668485 \mathrm{E}-02$		
PLANT	$-.3802139 \mathrm{E}-01$	$.1105515 \mathrm{E}-02$	$.8166210 \mathrm{E}-02$	
COM_SIZE	180.4902	-4.582788	-2.957098	129132.8
PROF_STA	$-.1319697 \mathrm{E}-01$	$.9777576 \mathrm{E}-03$	$.8178788 \mathrm{E}-04$	-4.661848
LEAD_EX	.2566845	-.1022121	$-.4106952 \mathrm{E}-01$	254.0856
CONT_EX	-.2572121	$.3640091 \mathrm{E}-02$	$.9998606 \mathrm{E}-02$	-2.244485
WORKLOAD	1745644.	.38531 .37	-32592.41	$.2367632 \mathrm{E}+09$

| PAST_PER | $-.8823529 E-01$ | $-.1672727 E-01$ | $.6420677 \mathrm{E}-02$ | 28.22816 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YEAR_BUS | 9.508021 | $.3554545 \mathrm{E}-01$ | . .5068895 | 2189.927 |
| ORIGIN | -.2370766 | $.2727273 \mathrm{E}-02$ | $-.2188948 \mathrm{E}-02$ | 5.668449 |
| DEL | $-.4428922 \mathrm{E}-01$ | $.6839394 \mathrm{E}-03$ | $.3013653 \mathrm{E}-02$ | -13.29148 |
| LISTED | -.1782531 | $.5151515 \mathrm{E}-02$ | $.1164171 \mathrm{E}-01$ | -41.73619 |
| CENTRAL | $-.6550802 \mathrm{E}-01$ | $-.1028788 \mathrm{E}-01$ | $-.1442959 \mathrm{E}-02$ | 29.51604 |
| SUBSID | $.6595365 \mathrm{E}-01$ | $.7575758 \mathrm{E}-02$ | $.1062923 \mathrm{E}-01$ | 32.63815 |
| ARCH_PER | -.2237077 | $.1751515 \mathrm{E}-01$ | $.1161141 \mathrm{E}-01$ | 48.05169 |
| CONTROL | .6167558 | $.2706061 \mathrm{E}-01$ | $.4955437 \mathrm{E}-02$ | 63.45811 |
| PAYMENT | $-.3743316 \mathrm{E}-01$ | $.1696970 \mathrm{E}-02$ | $-.1071301 \mathrm{E}-02$ | 7.532977 |
| PROFIT | $.8350490 \mathrm{E}-01$ | $-.1210000 \mathrm{E}-02$ | $-.1062843 \mathrm{E}-03$ | 11.60762 |
| PAS_P_PM | .2932264 | $.5606061 \mathrm{E}-02$ | $.4508021 \mathrm{E}-02$ | -10.24064 |

Page 11	SPSS/PC +	$7 / 13 / 91$

	PROF_STA	LEAD_EX.	CONT_EX	HORKLOAD
PROF_STA	.5958500E-02			
LEAD_EX	-. 2169697E-01	43.86453		
CONT_EX	-. $3309606 \mathrm{E}-02$	-. 1934848	.9065388E-01	
WORKLOAD	25114.83	-3547636.	-213337.0	.4761221E+13
PAST_PER	.3428788E-01	1.224599	. 1060606E-02	-33083.98
YEAR_buS	-. 3092121	-13.26560	-1.985061	.1148202E+08
ORIGIN	-. 3906061E-01	. 3279857	.4878788E-01	-843077.0
DEL	.7057674E-02	.3593316E-01	. $1693500 \mathrm{E}-02$	39513.02
LISTED	.1212121E-01	-. 8823529	. $6142424 \mathrm{E}-01$	236256.6
central	.1368939E-01	1.709447	. $1415152 \mathrm{E}-01$	-120487.3
SUBSID	.4757576E-02	-. 8235294	.8151515E-02	383384.9
ARCH_PER	-. 1931818E-01	-. 3368984	-.3303030E-02	-352671.3
CONTROL	-. 2230303E-01	-1.040998	-. 1503030E-01	559537.2
Payment.	-.8484848E-03	-. 3868093	.2781818E-01	-85020.96
PROFIT	-. 2570568E-02	-.3123975E-01	-. $4906045 \mathrm{E}-02$	79170.17
PAS_P_PM	.2250000E-01	.8556150E-01	-.3530303E-01	456063.0
	PAST_PER	YEAR_BUS	ORIGIN	DEL
PAST_PER	. 6140820			
Year_bus	-6.415330	225.0267		
ORIGIN	-. 2869875	. 5632799	. 5169340	
DEL	.3796569E-01	-. 5205499	-.5785651E-01	.1626467E-01
LISTED	. 1319073	-4.483066	-. 1604278	.2593405E-01
CENTRAL	. 2731729	-2.263815	-. 1203209	. 2126493E-01
SUBSID	.4634581E-01	-. 8003565	-.8912656E-01	.9355615E-02
ARCH_PER	-. 3074866	5.910873	. 2335116	-. 3077050E-01
CONTROL	-. 3618538	5.520499	. 1853832	-. 3301604E-01
Payment	. $3921569 \mathrm{E}-01$	-. 8823529	.1782531E-01	.4197861E-03
PROFIT	-. 1386408E-01	. 5367487	-.5334225E-02	-.8912877E-03
PAS_P_PM	.6149733E-01	. 1087344	-. 1800357	. $3421168 \mathrm{E}-01$
	LISTED	CENTRAL	SUBSID	ARCH_PER
LISTED	. 2566845			
CENTRAL	.1069519E-01	. 2087790		
SUBSID	. 1426025	-.4456328E-01	. 2139037	
ARCH_PER	-. 2281640	-. 1029412	-.9982175E-01	. 6960784
CONTROL	-. $4812834 \mathrm{E}-01$	-. 2557932	.9447415E-01	. 1336898
Payment	.3208556E-01	-.6238859E-02	.1782531E-01	-.5882353E-01
PROFIT	-.6616756E-02	-.5496881E-03	.5165775E-02	-. 2152406E-03
PAS_P_PM	.2139037E-01	.3877005E-01	.1782531E-02	.6238859E-02
	CONTROL	Payment	Profit	PAS_P_PM
CONTROL	. 9162210			
Payment	.5347594E-02	.5704100E-01		
PROFIT	.1630125E-01	-.2448307E-02	.1616439E-01	
PAS_P_PM	. $6417112 \mathrm{E}-01$	-.1247772E-01	-.4038770E-02	. 4108734

Variables not in the analysis after step 0

\qquad

Minimum

Variable	Tolerance	Tolerance	F to enter	Wilks! Lambda
COMPLEX	1.0000000	1.0000000	2.5153	.92712
TRAINING	1.0000000	1.0000000	2.1684	.93654
PLANT	1.0000000	1.0000000	$.94826 E-01$.99705
COM_SIZE	1.0000000	1.0000000	.26210	.99188
PROF_STA	1.0000000	1.0000000	1.7323	.94865
LEAD_EX	1.0000000	1.0000000	$.81769 E-01$.99745
CONT_EX	1.0000000	1.0000000	1.4488	.95669
WORKLOAD	1.0000000	1.0000000	1.1714	.96469
PAST_PER	1.0000000	1.0000000	21.328	.60006
YEAR_BUS	1.0000000	1.0000000	1.0509	.96820
ORIGIN	1.0000000	1.0000000	10.885	.74618
OEL	1.0000000	1.0000000	.68758	.97897
LISTED	1.0000000	1.0000000	1.8824	.94444
CENTRAL	1.0000000	1.0000000	8.3628	.79281
SUBSID	1.0000000	1.0000000	.28941	.99104
ARCH_PER	1.0000000	1.0000000	5.5370	.85249
CONTROL	1.0000000	1.0000000	9.2769	.77525
PAYMENT	1.0000000	1.0000000	.57919	.98222
PROFIT	1.0000000	1.0000000	.74516	.97724
PAS_P_PM	1.0000000	1.0000000	$.77146 E-02$.99976

Page 13	SPSS/PC $+\quad 7 / 13 / 91$

At step 1, PAST_PER Was included in the analysis.

Minimun

Variable	Tolerance	Tolerance	F to enter	Hilks' Lambda
COMPLEX	.8960681	.8960681	6.1334	.50094
TRAINING	.9873114	.9873114	.53397	.58990
PLANT	.9738653	.9738653	.66379	.58748
COM_SIZE	.9968585	.9968585	$.37359 E-01$.59934
PROF_STA	.6848895	.6848895	1.3825	.57444
LEAD_EX	.8801069	.8801069	2.3470	.55783
CONT_EX	.9677283	.9677283	2.4834	.55555
HORKLOAD	.9670098	.9670098	2.2187	.55998
YEAR_BUS	.6773262	.6773262	2.1922	.56043
ORIGIN	.9187325	.9187325	2.4874	.55549
DEL	.8586394	.8586394	.55714	.58946
LISTED	.9407895	.9407895	$.38071 \mathrm{E}-01$.59932
CENTRAL	.5256065	.5256065	$.92385 E-01$.59828
SUBSIO	.9922236	.9922236	$.10010 \mathrm{E}-01$.59986
ARCH_PER	.8988939	.8988939	. .50607	.59042
CONTROL	.9283220	.9283220	2.0500	.56284
PAYMENT	.9733995	.9733995	$.36550 E-04$.60006
PROFIT	.9061802	.9061802	3.3283	.54188
PAS_P_PM	.9788611	.9788611	.20228	.59617

F statistics and significances between pairs of groups after step 1
Each f statistic has 1 and 32.0 degrees of freedom.

	Group	1
Group		
2		21.328
		.0001

```
Page 14 SPSS/PC+

At step 2, complex was included in the analysis.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|l|}{Degrees of Freedorm} & \multirow[t]{2}{*}{Signif.} & \multirow[t]{2}{*}{Between Groups} \\
\hline Wilks' Lambda & . 50094 & 2 & 1 & 32.0 & & \\
\hline Equivalent F & 15.4415 & & 2 & 31.0 & . 0000 & \\
\hline
\end{tabular}
\begin{tabular}{lrcc} 
Variable & Tolerance & F to remove & Wilks' Lambda \\
COMPLEX & .8960681 & 6.1334 & .60006 \\
PAST_PER & .8960681 & 26.373 & .92712
\end{tabular} Variables not in the analysis after step 2 ............................
\begin{tabular}{lcccc} 
& & Minimum & & \\
Variable & Tolerance & Tolerance & F to enter & Wilks' Lambda \\
TRAINING & .9610922 & .8722720 & 1.0679 & .48373 \\
PLANT & .9275793 & .8534797 & \(.64058 E-01\) & .49988 \\
COM_SIZE & .8846514 & .7952061 & .37019 & .49484 \\
PROF_STA & .6848806 & .6338123 & 1.1340 & .48270 \\
LEAD_EX & .8547498 & .7670816 & 3.1711 & .45306 \\
CONT_EX & .7475033 & .6921508 & .16273 & .49824 \\
WORKLOAD & .7778294 & .7207684 & .15601 & .49835 \\
YEAR_BUS & .5885678 & .5885678 & .31719 & .49570 \\
ORIGIN & .8849755 & .7983689 & 1.0193 & .48448 \\
OEL & .8349645 & .8055525 & \(.93339 E-01\) & .49939 \\
LISTED & .8855802 & .8434832 & .54253 & .49205 \\
CENTRAL & .5249175 & .5008948 & \(.37144 E-01\) & .50033 \\
SUBSID & .9823822 & .8840717 & \(.17536 E-01\) & .50065 \\
ARCH_PER & .8656155 & .7794891 & \(.46280 E-01\) & .50017 \\
CONTROL & .6084737 & .5873327 & 10.262 & .37326 \\
PAYMENT & .9649793 & .8818337 & \(.45538 E-01\) & .50019 \\
PROFIT & .8150043 & .8059096 & .96931 & .48527 \\
PAS_P_PM & .8522681 & .7801825 & 1.6671 & .47457
\end{tabular}
```

F statistics and significances between pairs of groups after step 2
Each f statistic has 2 and 31.0 degrees of freedom.
Group 1

Group		
2		15.442
		.0000

```
Page 15 SPSS/PC+ \(\quad\) 7/13/91

At step 3, CONTROL Was included in the analysis.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & Degr & S & Freedom & Signif. & Between Groups \\
\hline Wilks' Lamboda & . 37326 & 3 & 1 & 32.0 & & \\
\hline Equivalent \(F\) & 16.7910 & & 3 & 30.0 & .0000 & \\
\hline
\end{tabular}
\begin{tabular}{lrcc} 
Variable & Tolerance & \(F\) to remove & Wilks' Lambda \\
COMPLEX & .5873327 & 15.237 & .56284 \\
PAST_PER & .8886833 & 12.156 & .52451 \\
CONTROL & .6084737 & -10.262 & .50094
\end{tabular}

Variables not in the analysis after step 3
\begin{tabular}{lcccc} 
& \multicolumn{4}{c}{ Minimum } \\
Variable & Tolerance & Tolerance & F to enter & Hilks' Lambda \\
TRAINING & .9386005 & .5861746 & .21779 & .37048 \\
PLANT & .8613095 & .5230740 & .28220 & .36966 \\
COM_SIZE & .8728676 & .5597290 & \(.41571 E-01\) & .37273 \\
PROF_STA & .6748524 & .5840906 & 1.5423 & .35441 \\
LEAD_EX & .7813500 & .5309825 & 5.8271 & .31081 \\
CONT_EX & .7160344 & .4425231 & \(.48470 E-01\) & .37264 \\
WORKLOAD & .7548743 & .5379633 & .66322 & .36491 \\
YEAR_BUS & .5974889 & .5419057 & .35394 & .36876 \\
ORIGIN & .8774373 & .5617956 & .37031 & .36855 \\
DEL & .8318044 & .5814706 & .18263 & .37092 \\
LISTED & .8112717 & .5101906 & 2.1784 & .34718 \\
CENTRAL & .4037693 & .4037693 & 2.8081 & .34031 \\
SUBSID & .8694187 & .5385057 & .74053 &. .36397 \\
ARCH_PER & .8656155 & .5728975 & \(.33345 E-01\) & .37283 \\
PAYMENT & .9026121 & .5572143 & .81347 & .36307 \\
PROFIT & .8145488 & .5432659 & .59480 & .36576 \\
PAS_P_PM & .8502391 & .5261285 & 1.5127 & .35475
\end{tabular}

F statistics and significances between pairs of groups after sṭep 3
Each F statistic has 3 and 30.0 degrees of freedom.
Group 1
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Group} \\
\hline \multirow[t]{2}{*}{2} & \multicolumn{2}{|l|}{16.791} \\
\hline & \multicolumn{2}{|l|}{. 0000} \\
\hline Page 16 & SPSS/PC+ & 7/13/91 \\
\hline
\end{tabular}

At step 4, LEAD_EX was included in the analysis.
\begin{tabular}{lrccccc} 
& & \multicolumn{2}{c}{ Degrees of } & Freedom & Signif. Between Groups \\
Wilks' Lambda & .31081 & 4 & 1 & 32.0 & & \\
Equivalent F & 16.0764 & & 4 & 29.0 & .0000
\end{tabular}
\(\qquad\)
\begin{tabular}{lccc} 
Variable & Tolerance & F to remove & Hilks' Lambda \\
COMPLEX & .5309825 & 19.110 & .51562 \\
LEAD_EX & .7813500 & 5.8271 & .37326 \\
PAST_PER & .7664780 & 16.898 & .49191 \\
CONTROL & .5562275 & 13.273 & .45306
\end{tabular}

Variables not in the analysis after step \(\qquad\)
\begin{tabular}{lrccc} 
& \multicolumn{4}{c}{\begin{tabular}{c} 
Minimum \\
Variable
\end{tabular}} \\
Tolerance & Tolerance & F to enter & Wilks' Lambda \\
TRAINING & .9129192 & .5262526 & .61974 & .30408 \\
PLANT & .8606007 & .4803946 & .17173 & .30891 \\
COM_SIZE & .8668520 & .5132124 & \(.98718 E-05\) & .31081 \\
PROF_STA & .5923844 & .4825447 & 3.9845 & .27209 \\
CONT_EX & .7129001 & .4164008 & \(.29506 E-02\) & .31077 \\
WORKLOAD & .7006056 & .4623777 & \(. .24201 E-01\) & .31054 \\
YEAR_BUS & .5872690 & .4950659 & .33111 & .30717 \\
ORIGIN & .8252934 & .4906048 & \(.34413 E-03\) & .31080 \\
DEL & .8254527 & .5284908 & .33008 & .30719 \\
LISTED & .7425928 & .4892013 & .52563 & .30508 \\
CENTRAL & .2623073 & .2623073 & \(.75450 E-01\) & .30997 \\
SUBSID & .8069761 & .5167999 & \(.39526 E-01\) & .31037 \\
ARCH_PER & .8621542 & .5159217 & \(.72456 E-03\) & .31080 \\
PAYMENT & .8437490 & .5197775 & \(.70090 E-01\) & .31003 \\
PROFIT & .8139085 & .4968155 & .56597 & .30465 \\
PAS_P_PM & .8378861 & .4687735 & 1.8871 & .29118
\end{tabular}

F statistics and significonces between pairs of groups after step 4 Each \(F\) statistic has 4 and 29.0 degrees of freedom.
\begin{tabular}{|c|c|}
\hline & 1 \\
\hline \multicolumn{2}{|l|}{Group} \\
\hline 2 & 16.076 \\
\hline & . 0000 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
Page 17 & SPSS/PC+ & 7/13/91
\end{tabular}

At step 5, PROF_STA was included in the analysis.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & Degr & & dom & Signif. & & Between Groups \\
\hline Wilks' Lambda & . 27209 & 5 & 1 & 32.0 & & & \\
\hline Equivalent F & 14.9815 & & 5 & 28.0 & . 0000 & & \\
\hline
\end{tabular}

Variables in the analysis after step 5 .........................
\begin{tabular}{lrcc} 
Variable & Tolerance & F to remove & Wilks' Lambda \\
COMPLEX & .5122598 & 19.997 & .46641 \\
PROF_STA & .5923844 & 3.9845 & .31081 \\
LEAD_EX & .6858678 & 8.4716 & .35441 \\
PAST_PER & .4825447 & 22.232 & .48813 \\
CONTROL & .5274149 & 15.017 & .41802
\end{tabular}

Variables not in the analysis after step 5
\begin{tabular}{lrccc} 
& \multicolumn{4}{c}{ Minimum } \\
& \multicolumn{2}{c}{ " } \\
Voriable & Tolerance & Tolerance & F to enter & Hilks' Lambda \\
TRAINING & .8109538 & .4645754 & \(.13715 E-01\) & .27195 \\
PLANT & .0568320 & .4681431 & \(.67574 E-01\) & .27141 \\
COM_SIZE & .8035577 & .4462241 & .26803 & .26941 \\
CONT_EX & .6469050 & .4160424 & .28450 & .26925 \\
WORKLOAD & .6572375 & .4585087 & .38277 & .26829 \\
YEAR_BUS & .5738811 & .3786970 & .66412 & .26556 \\
ORIGIN & .4587421 & .3292789 & 2.7630 & .24683 \\
OEL & .4514117 & .3239547 & .91323 & .26319 \\
LISTED & .7297675 & .4861655 & .83737 & .26390
\end{tabular}
\begin{tabular}{lllll} 
CENTRAL & .2619172 & .2619172 & \(.33045 E-01\) & .27176 \\
SUBSID & .8057077 & .4678539 & \(.65318 E-01\) & .27143 \\
ARCH_PER & .8593382 & .4500598 & \(.16837 E-01\) & .27192 \\
PAYMENT & .7657723 & .4161170 & .10884 & .27100 \\
PROFIT & .7847592 & .4703480 & .12283 & .27086 \\
PAS_P_PM & .6378709 & .4509740 & .17604 & .27033
\end{tabular}

F statistics and significances between pairs of groups after step 5 Each \(F\) statistic has 5 and 28.0 degrees of freedom.
\begin{tabular}{|c|c|c|}
\hline & 1 & \\
\hline \multicolumn{3}{|l|}{Group} \\
\hline 2 & 14.982 & \\
\hline & . 0000 & \\
\hline
\end{tabular}

At step 6, ORIGIN was included in the analysis.
\begin{tabular}{lrcccccc} 
& & Degrees of & Freedom & Signif. Between Groups \\
Wilks' Lambda & .24683 & 6 & 1 & 32.0 & &
\end{tabular}

Variables in the analysis after step 6 \(\qquad\)
\begin{tabular}{lrcc} 
Variable & Tolerance & F to remove & Hilks' Lambda \\
COMPLEX & .4906048 & 11.056 & .34790 \\
PROF_STA & .3292789 & 6.9980 & .31080 \\
LEAD_EX & .6858599 & 7.1670 & .31235 \\
PAST_PER & .4780581 & 20.846 & .43740 \\
ORIGIN & .4587421 & 2.7630 & .27209 \\
CONTROL & .5273377 & 12.273 & .35903
\end{tabular}
.................. Variables not in the analysis after step 6 ..........................
\begin{tabular}{lcccc} 
& \multicolumn{4}{c}{ Minimum } \\
Variable & Tolerance & Tolerance & F to enter & Hilks' Lambda \\
TRAINING & .7823584 & .2845318 & \(.34441 \mathrm{E}-01\) & .24650 \\
PLANT & .8266384 & .3191984 & \(.24564 \mathrm{E}-02\) & .24681 \\
COM_SIZE & .8023391 & .3119939 & .29681 & .24404 \\
CONT_EX & .6413423 & .3018862 & .41651 & .24294 \\
HORKLOAD & .4233616 & .2955002 & .18857 & .24505 \\
YEAR_BUS & .5571406 & .3292789 & .25374 & .24444 \\
DEL_ & .3803947 & .2735525 & \(.91026 E-01\) & .24597 \\
LISTED & .5910761 & .3149880 & \(.39113 E-01\) & .24646 \\
CENTRAL & .2599279 & .2599279 & \(.93921 E-01\) & .24594 \\
SUBSID & .7474988 & .3215280 & \(.34427 E-01\) & .24650 \\
ARCH_PER & .8468296 & .3288040 & \(.44421 E-02\) & .24679 \\
PAYMENT & .7465063 & .3234794 & \(.39329 E-02\) & .24679 \\
PROFIT & .7541791 & .3052177 & \(.45363 E-03\) & .24682 \\
PAS_P_PM & .6349894 & .2889594 & .24770 & .24450
\end{tabular}

F statistics and significances between pairs of groups after step 6
Each F statistic has 6 and 27.0 degrees of freedom.
Group \(\quad 1\)

Group
2
13.731
. 0000

F level or tolerance or VIN insufficient for further computation.
Summary Table
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Action & Vars & Hilks ' & & \\
\hline Step & Entered Removed & in & Lambda & sig. & Label \\
\hline 1 & PASt_PER & 1 & . 60006 & . 0001 & CONTRACTOR'S PAST PERFORMANCE OR IMA \\
\hline 2 & COMPLEX & 2 & . 50094 & . 0000 & COMPLEXITY OF PROJECT \\
\hline 3 & control & 3 & . 37326 & . 0000 & architect or client supervision and \\
\hline 4 & LEAD_EX & 4 & . 31081 & . 0000 & PROJECT LEADER'S EXPERIENCE \\
\hline 5 & PROF_STA & 5 & . 27209 & . 0000 & management team's quality-profession \\
\hline 6 & origin & 6 & . 24683 & . 0000 & ORIGIN OF the company \\
\hline
\end{tabular}

Page 19
SPSS/PC+
7/13/91

Classification Function Coefficients
(Fisher's Linear Discriminant Functions)
PERFORM \(=12\)
\begin{tabular}{lrr} 
COMPLEX & 1.532383 & 3.689788 \\
PROF_STA & 113.3637 & 67.52847 \\
LEAD_EX & .2260276 & -.1383812 \\
PAST_PER & 7.275977 & 14.13054 \\
ORIGIN & 18.80951 & 15.65250 \\
CONTROL & 6.785520 & 2.804390 \\
(constant) & -58.44693 & -58.55843
\end{tabular}

Canonical Discriminant functions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fcn Eigenvalue} & \multirow[t]{2}{*}{Pct of Variance} & \multirow[t]{2}{*}{\[
\begin{array}{cc}
\text { Cum } \\
\text { Pct }
\end{array}
\]} & \multirow[t]{2}{*}{Canonical Corr} & \multicolumn{6}{|l|}{After Wilks'} \\
\hline & & & & & fon & Lambda & Chisquare & DF & Sig \\
\hline & & & & : & 0 & . 2468 & 40.573 & 6 & . 0000 \\
\hline 1* 3.0514 & 100.00 & 100.00 & 0.8679 & & & & & & \\
\hline
\end{tabular}
* marks the 1 canonical discriminant functions remaining in the analysis.

Standardized Canonical Discriminant Function Coefficients

FUNC 1
COMPLEX -. 88670
PROF_STA . 91103
LEAD_EX . 63724
PAST_PER -1.10002
ORIGIN .51835
CONTROL . 88703
\begin{tabular}{lll} 
Page 20 & SPSS/PC+ & 7/13/91
\end{tabular}

Structure Matrix:

Pooled-within-groups correlations between discriminating variables and canonical discriminant functions
(Variables ordered by size of correlation within function)
\begin{tabular}{lr} 
& FUNC 1 \\
PAST_PER & -.46736 \\
ORIGIN & .33389 \\
CENTRAL &. .32796 \\
CONTROL & .30823 \\
ARCH_PER & .25199 \\
YEAR_BUS & \(.18 B 71\) \\
TRAINING & .18611 \\
WORKLOAD & -.17338 \\
COM_SIZE & -.16209 \\
COMPLEX & -.16050 \\
PROF_STA & -.13319 \\
LISTED &. .10448 \\
PAS_P_PM & -.09851
\end{tabular}
\begin{tabular}{ll} 
SUBSID & -.09069 \\
PAYMENT & -.08926 \\
PROFIT & -.08318 \\
DEL & -.04186 \\
LEAD_EX & .02894 \\
PLANT & .02098 \\
CONT_EX & .00501 \\
& \\
Unstandardized Canonical Discriminant Function Coefficients
\end{tabular}
\begin{tabular}{lc} 
& FUNC 1 \\
COMPLEX & -.5616425 \\
PROF_STA & 11.93241 \\
LEAD_EX & \(.9486742 E-01\) \\
PAST_PER & -1.784466 \\
ORIGIN & .8218719 \\
CONTROL & 1.036417 \\
(constant) & -1.140765
\end{tabular}

Canonical Discriminant Functions evaluated at Group Means (Group Centroids)
\begin{tabular}{rr} 
Group & FUNC 1 \\
1 & 1.01680 \\
2 & -2.82444
\end{tabular}

Page 21 SPSS/PG + 7/13/91

Test of equality of group covariance matrices using Box's \(M\)

The ranks and natural logarithms of determinants printed are those of the group covariance matrices.
\begin{tabular}{crc} 
Group Label & Rank & Log Determinant \\
1 & 6 & -6.076040 \\
2 & 6 & -10.344742 \\
Pooled Within-Groups & & \\
Covariance Matrix & 6 & -4.779148
\end{tabular}

\begin{tabular}{lllllllr}
22 & 1 & 1 & .3892 & 1.0000 & 2 & .0000 & 1.8779 \\
23 & 1 & 1 & .0677 & 1.0000 & 2 & .0000 & 2.8437 \\
24 & 2 & 2 & .3553 & 1.0000 & 1 & .0000 & -3.7487 \\
25 & 1 & 1 & .4067 & .9946 & 2 & .0054 & .1870 \\
26 & 2 & 2 & .1192 & 1.0000 & & 1 & .0000 \\
27 & 1 & 1 & .2643 & .9839 & 2 & .0161 & -.0826 \\
28 & 2 & 2 & .3229 & 1.0000 & 1 & .0000 & -3.8130 \\
29 & 2 & 2 & .9074 & .9973 & 1 & .0027 & -2.7081 \\
30 & 2 & 2 & .7047 & .9926 & 1 & .0074 & -2.4454 \\
31 & 1 & 1 & .3121 & .9892 & 2 & .0108 & .0060 \\
32 & 2 & 2 & .7405 & .9995 & 1 & .0005 & -3.1556 \\
33 & 1 & 1 & .8739 & .9999 & 2 & .0001 & 1.1756 \\
34 & 1 & 1 & .1457 & .9433 & 2 & .0567 & -.4381
\end{tabular}

Symbols used in Plots


Canonical Discriminant Function 1



Closs 222222222222222222222221111111111111111111111111111111119111
Centroids 2
\begin{tabular}{cc} 
Page 24 & SPSS/PC \(+13 / 91\)
\end{tabular}



Percent of "grouped" cases correctly classified: 100.00\%

Classification Processing Sumary
34 Cases were processed.
0 Cases were excluded for missing or out-of-range group codes. 0 Cases had at least onc missing discriminating variable.
34 Cases were used for printed output.

\section*{APPENDIX 5}

\section*{SPSS(pc) Computer Printout of the Stepwise Procedures in Computing the \(\mathrm{Z}_{3}\) Discriminant Analysis Model}

DSCRIMINANT /GROUPS PERFORM (1,2) /VARIABLES COMPLEX PROF_STA LEAD_EX PAST_PER ORIGIN CONTROL /METHOD HILKS /PRIORS SIZE /STATISTICS=all.

Since ANALYSIS= was omitted for the first analysis all variables on the variables= list will be entered at level 1.

This Discriminant Analysis requires 1904 ( 1.9K) BYTES of workspace.
Page 4 SPSS/PC+

On groups defined by PERFORM CONTRACTOR'S PERFORMANCE
30 (unweighted) cases were processed.
0 of these were excluded from the analysis.
30 (unweighted) cases will be used in the analysis.

Number of Cases by Group

Number of Cases *
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PERFORM & Unweighted & Weighted Label & & & & \\
\hline 1 & 22 & 22.0 & - & & & \\
\hline 2 & 8 & 8.0 & & & & \\
\hline Total & 30 & 30.0 & & & & \\
\hline Group Means & & - & & & & \\
\hline PERFORM & COMPLEX & PROF_STA & LEAD_EX & PAST_PER & ORIGIN & CONTROL \\
\hline 1 & 3.54545 & . 08464 & 15.77273 & 2.59091 & 2.90909 & 3.68182 \\
\hline 2 & 4.62500 & . 12688 & 14.87500 & 3.62500 & 2.00000 & 2.62500 \\
\hline Total & 3.83333 & . 09590 & 15.53333 & 2.86667 & 2.66667 & 3.40000 \\
\hline
\end{tabular}

Group Standard Deviations
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PERFORM & COMPLEX & PROF_STA & LEAD_EX & - PAST_PER & ORIGIN & CONTROL \\
\hline 1 & 1.62502 & . 08560 & 7.65899 & . 66613 & . 42640 & . 89370 \\
\hline 2 & 1.30247 & . 05614 & 2.74838 & . 51755 & 1.06904 & . 91613 \\
\hline Total & 1.59921 & . 08017 & 6.66816 & . 77608 & . 75810 & 1.00344 \\
\hline
\end{tabular}
\begin{tabular}{lllllll} 
& COMPLEX & PROF_STA & LEAD_EX & PAST_PER & ORIGIN & CONTROL \\
COMPLEX & 2.404627 & & & & & \\
PROF_STA & \(-.3375041 E-01\) & \(.6283499 E-02\) & & & & \\
LEAD_EX & -.7731331 & \(-.3781940 E-01\) & 45.88352 & & & \\
PAST_PER & -.3648539 & \(.2861972 E-01\) & 1.734984 & .3997565 & & \\
ORIGIN & \(.3246753 E-02\) & \(-.3641883 E-01\) & .4480519 & -.1363636 & .4220779 & \\
CONTROL & .9890422 & \(-.1585430 E-01\) & -1.177354 & -.1781656 & \(.1298701 E-01\) & .8088474 \\
\(\quad\). & & & & & & \\
Pooled Within-Groups Correlation Matrix & & & & &
\end{tabular}
\begin{tabular}{lrrrrrr} 
& COMPLEX & PROF_STA LEAD_EX & PAST_PER ORIGIN & CONTROL \\
COMPLEX & 1.00000 & & & & & \\
PROF_STA & -.27457 & 1.00000 & & &. & \\
LEAD_EX & -.07360 & -.07043 & 1.00000 & & & \\
PAST_PER & -.37213 & .57104 & .40511 & 1.00000 & & \\
ORIGIN & .00322 & -.70718 & .10181 & -.33197 & 1.00000 & \\
CONTROL & .70918 & -.22239 & -.19326 & -.31332 & .02223 & 1.00000
\end{tabular}

Correlations which cannot be computed are printed as '.'
Wilks' Lambda (U-statistic) and univariate f-ratio
with 1 and 28 degrees of freedom
\begin{tabular}{|c|c|c|c|}
\hline Variable & Wilks' Lambda & F & Significance \\
\hline COMPLEX & . 90781 & 2.843 & . 1029 \\
\hline PROF_STA & . 94385 & 1.666 & . 2074 \\
\hline Lead_ex & . 99633 & . 1030 & . 7506 \\
\hline PAST_PER & . 64083 & 15.69 & . 0005 \\
\hline ORIGIN & . 70909 & 11.49 & . 0021 \\
\hline CONTROL & . 77561 & 8.101 & . 0082 \\
\hline
\end{tabular}

Page 6
SPSS/PC+
Covariance Matrix for Group 1,
\begin{tabular}{lllllll} 
& COMPLEX & PROF_STA & LEAD_EX & PAST_PER & ORIGIN & CONTROL \\
COMPLEX & 2.640693 & & & & \\
PROF_STA & \(-.5831602 E-01\) & \(.7327481 E-02\) & & & \\
LEAD_EX & -1.060606 & \(-.4965801 E-01\) & 58.66017 & &
\end{tabular}


On groups defined by PERFORM CONTRACTOR'S PERFORMANCE
Analysis number \(\quad 1\)

Stepwise variable selection

> Selection rule: Minimize Wilks' Lambda
> Maximum number of steps.................... 12
> Minimum Toterance Level.................... . . 00100
> Minimum \(F\) to enter............................ 1.0000
> Maximum \(F\) to remove.......................... 1.0000

Canonical Discriminant Functions

Maximum number of functions................. 1
\begin{tabular}{lll} 
Minimum cumulative percent of variance... & 100.00 \\
Maximum significance of Wilks' Lambda.... & 1.0000
\end{tabular}
\begin{tabular}{rll} 
Prior Probabilities & \\
Group & Prior & Label \\
1 & .73333 & \\
2 & .26667 & \\
Total & 1.00000 &
\end{tabular}

Page 8
SPSS/PC+

Variables not in the analysis after step
0

Minimum
\begin{tabular}{lcccc} 
Variable & Tolerance & Tolerance & F to enter & Wilks' Lambda \\
COMPLEX & 1.0000000 & 1.0000000 & 2.8433 & .90781 \\
PROF_STA & 1.0000000 & 1.0000000 & 1.6657 & .94385 \\
LEAD_EX & 1.0000000 & 1.0000000 & .10304 & .99633 \\
PAST_PER & 1.0000000 & 1.0000000 & 15.693 & .64083 \\
ORIGIN & 1.0000000 & 1.0000000 & 11.487 & .70909 \\
CONTROL & 1.0000000 & 1.0000000 & 8.1008 & .77561
\end{tabular}

At step 1, PAST_PER was included in the analysis.


Variables not in the analysis after step \(\qquad\)
Minimum *
\begin{tabular}{lrrcc} 
& & Minimum & ". & \\
Variable & Tolerance & Tolerance & F to enter & Wilks' Lambda \\
COMPLEX & .8615175 & .8615175 & 7.1643 & .50645 \\
PROF_STA & .6739127 & .6739127 & .86547 & .62093 \\
LEAD_EX & .8358887 & .8358887 & 2.7418 & .58176 \\
ORIGIN & .8997930 & .8897930 & 2.9878 & .57698
\end{tabular}


\section*{Group}
213.156
. 0001

At step 3, CONTROL was included in the analysis.


At step 4, LEAD_EX was included in the analysis.

Degrees of Freedom Signif. Between Groups
\begin{tabular}{lrllll} 
Hilks' Lambda & .29058 & 4 & 1 & 28.0 & \\
Equivalent F & 15.2587 & & 4 & 25.0 & .0000
\end{tabular}

Variables in the analysis after step 4
\begin{tabular}{lrcr} 
Variable & Tolerance & F to remove & Wilks' Lambda \\
COMPLEX & .4545938 & 21.707 & .54288 \\
LEAD_EX & .8001350 & 3.6171 & .33262 \\
PAST_PER & .7180347 & 11.720 & .42680 \\
CONTROL & .4770297 & 14.380 & .45772
\end{tabular}


Minimum
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable & Tolerance & Tolerance & F to enter & Wilks' Lambda & & \\
\hline PROF_STA & . 5596452 & . 4401812 & 1.6171 & . 27224 & & \\
\hline ORIGIN & . 7965507 & . 4423698 & . 13642 & . 28894 & & \\
\hline Page 12 & & & SPSS/PC+ & & & \\
\hline \multicolumn{5}{|l|}{F statistics and significances between pairs of groups after step} & & 4 \\
\hline \multirow[t]{2}{*}{Each F st} & atistic has & 4 and & 25.0 de & es of freedom. & & \\
\hline & Grous & up 1 & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Group}} & & & \(=\) & & \\
\hline & & 15.25 & & & & \\
\hline 2 & & . 000 & & - & & \\
\hline
\end{tabular}

At step 5, PROF_STA was included in the analysis.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & Degr & o & dom & Signif. & \multirow[t]{2}{*}{Between Groups} \\
\hline Wilks' Lambda & . 27224 & 5 & 1 & 28.0 & & \\
\hline Equivalent F & 12.8316 & & 5 & 24.0 & . 0000 & \\
\hline
\end{tabular}
\begin{tabular}{lrrr} 
Variable & Tolerance & F to remove & Wilks' Lambda \\
COMPLEX & .4543854 & 19.037 & .48818 \\
PROF_STA & .5596452 & 1.6171 & .29058 \\
LEAD_EX & .6689051 & 5.0339 & .32934
\end{tabular}
\begin{tabular}{llll} 
PAST_PER & .4401812 & 12.450 & .41346 \\
CONTROL & .4736817 & 13.777 & .42851
\end{tabular}


F statistics and significances between pairs of groups after step 5 Each F statistic has 5 and 24.0 degrees of freedom.

Group 1

Group
\(2 \quad 12.832\)
.0000

At step 6, ORIGIN was included in the analysis.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|l|}{Degrees of freedom} & \multirow[t]{2}{*}{Signif.} & \multirow[t]{2}{*}{Between Groups} \\
\hline Wilks' Lambda & . 24814 & 6 & 1 & 28.0 & & \\
\hline Equivalent F & 11.6148 & & 6 & 23.0 & . 0000 & \\
\hline
\end{tabular}
\begin{tabular}{lrcc} 
Variable & Tolerance & \(F\) to remove & Wilks' Lambda \\
COMPLEX & .4368113 & 10.732 & .36393 \\
PROF_STA & .3224567 & 3.7814 & .28894 \\
LEAD_EX & .6684600 & 4.1190 & \(*\) \\
PAST_PER & .4398088 & 10.863 & .29258 \\
ORIGIN & .4589571 & 2.2334 & .36534 \\
CONTROL & .4736647 & 11.346 & .27224 \\
\end{tabular}

F statistics and significances between pairs of groups after step 6
Each \(F\) statistic has 6 and 23.0 degrees of freedom.

Group 1
\begin{tabular}{rr} 
Group & 11.615 \\
2 & .0000
\end{tabular}

F level or tolerance or VIN insufficient for further computation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Page & 14 & \multicolumn{3}{|r|}{SPSS/PC+} & \\
\hline \multicolumn{6}{|c|}{Summary Table} \\
\hline & Action & Vars & Wilks \({ }^{\text {' }}\) & & \\
\hline Step & Entered Removed & In & Lambda & sig. & Labe! \\
\hline 1 & PAST_PER & 1 & . 64083 & . 0005 & CONTRACTOR'S PASt PERFORMANCE OR IMAGE \\
\hline 2 & COMPLEX & 2 & . 50645 & . 0001 & COMPLEXITY OF PROJECT \\
\hline 3 & CONTROL & 3 & . 33262 & . 0000 & ARCHITECT OR CLIENT SUPERVISION AND CONT \\
\hline 4 & LEAD_EX & 4 & . 29058 & . 0000 & PROJECT LEADER'S EXPERIENCE \\
\hline 5 & PROF_STA & 5 & . 27224 & . 0000 & management team's quality-professional a \\
\hline 6 & ORIGIN & 6 & . 24814 & . 0000 & ORIGIN OF THE COMPANY \\
\hline
\end{tabular}

\section*{Classification Function Coefficients \\ (Fisher's Linear Discriminạnt Functions)}

PERFORM \(=12\)
\begin{tabular}{llr} 
COMPLEX & 1.769996 & 4.183717 \\
PROF_STA & 104.8577 & 68.24728 \\
LEAD_EX & \(.8377672 E-01\) & -.2248458 \\
PAST_PER & 9.427000 & .15 .35105 \\
ORIGIN & 18.68790 & 15.72341 \\
CONTROL & 6.341327 & 2.268965 \\
(constant) & -59.61441 & -60.17896
\end{tabular}

\section*{Canonical Discriminant Functions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{Percent of} & Cumulative & \multicolumn{6}{|l|}{Canonical : After} \\
\hline Function & Eigenvalue & Variance & Percent & Correlation : & Function & Wilks' Lambda & Chi-squared & D.F. & Significanc \\
\hline & & & & : & 0 & .2481417 & 34.844 & 6 & . 0000 \\
\hline 1* & 3.02996 & 100.00 & 100.00 & . 8670976 & & & & & \\
\hline
\end{tabular}
* marks the 1 canonical discriminant functions remaining in the analysis.

Page 15 SPSS/PC+

Standardized Canonical Discriminant Function Coefficients
\begin{tabular}{lr} 
& \multicolumn{1}{l}{ FUNC 1} \\
COMPLEX & -.98426 \\
PROF_STA & .76314 \\
LEAD_EX & .54974 \\
PAST_PER & -.98495 \\
ORIGIN & .50646 \\
CONTROL & .96312 \\
& \\
Structure Matrix:
\end{tabular}

Pooled-within-groups correlations between discriminating variables and canonical discriminant functions
(Variables ordered by size of correlation within function)
\begin{tabular}{lr} 
& \multicolumn{1}{l}{ FUNC 1} \\
PAST_PER & -.43009 \\
ORIGIN & .36797 \\
CONTROL & .30901 \\
COMPLEX & -.18307 \\
PROF_STA & -.14012 \\
LEAD_EX & .03485
\end{tabular}

Unstandardized Canonical Diseriminant Function Coefficients
\begin{tabular}{lc} 
& FUNC 1 \\
COMPLEX & -.8347252 \\
PROF_STA & 9.627276 \\
LEAD_EX & \(.8115704 E-01\) \\
PAST_PER & -1.557821 \\
ORIGIN & .7795574 \\
CONTROL & 1.070890 \\
(constant) & -1.004874
\end{tabular}

Page 16
SPSS/PC+

Canonical Discriminant Functions evaluated at Group Means (Group Centroids)
\begin{tabular}{rr} 
Group & \multicolumn{1}{c}{ FUNC 1} \\
1 & 1.01408 \\
2 & -2.78879
\end{tabular}

Test of equality of group covariance matrices using Box's M

The ranks and natural logarithms of determinants printed are those of the group covariance matrices.
\begin{tabular}{crc} 
Group Label & Rank & Log Determinant \\
1 & 6 & -6.164931 \\
2 & 6 & -10.725307 \\
Pooled Within-Groups & & \\
Covariance Matrix & 6 & -4.793984
\end{tabular}

Box's M Approximate \(F\) Degrees of freedom Significance
70.309 2.1427 654.9 . 0022

Page 17 SPSS/PC+
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Case \\
Number
\end{tabular} & \begin{tabular}{l}
Mis \\
Val Sel
\end{tabular} & Actual Group & Highest Group & \[
\begin{aligned}
& \text { Probabi } \\
& \text { P(D/G) P }
\end{aligned}
\] & ility
\[
P(G / D)
\] & \begin{tabular}{l}
2nd Hig \\
Group
\end{tabular} & hest
\[
P(G / D)
\] & Discriminant Scores... \\
\hline 1 & & 1 & 1 & . 0498 & 1.0000 & 2 & . 0000 & 2.9762 \\
\hline 2 & & 1 & 1 & . 3977 & 1.0000 & 2 & . 0000 & 1.8598 \\
\hline 3 & & 1 & 1 & . 3819 & . 9927 & 2 & . 0073 & . 1397 \\
\hline 4 & & 2 & 2 & . 2948 & . 9034 & 1 & . 0966 & -1.7411 \\
\hline 5 & & 1 & 1 & . 2776 & . 9839 & 2 & . 0169 & -. 0717 \\
\hline . 6 & & 2 & 2 & . 1028 & . 5036 & 1 & . 4964 & -1.1572 \\
\hline 7 & & 1 & 1 & . 6519 & . 9985 & 2 & . 0015 & . 5630 \\
\hline 8 & & 1 & 1 & . 3749 & . 9924 & 2 & . 0076 & . 1268 \\
\hline 9 & & 1 & 1 & . 7727 & . 9992 & 2 & . 0008 & . 7253 \\
\hline 10 & & 1 & 1 & . 7727 & . 9992 & 2 & . 0008 & . 7253 \\
\hline 11 & & 1 & 1 & . 4899 & 1.0000 & 2 & . 0000 & 1.7045 \\
\hline 12 & & 1 & 1 & . 9747 & . 9997 & 2 & . 0003 & . 9823 \\
\hline 13 & & 1 & 1 & . 9458 & . 9997 & 2 & . 0003 & . 9461 \\
\hline 14 & & 1 & 1 & . 0483 & 1.0000 & 2 & . 0000 & 2.9889 \\
\hline 15 & & 1 & 1 & . 5796 & . 9978 & 2 & . 0022 & . 4601 \\
\hline 16 & & 1 & 1 & 1.7147 & . 9989 & 2 & . 0011 & . 6486 \\
\hline 17 & & 1 & 1 & 1.5259 & 1.0000 & 2 & . 0000 & 1.6484 \\
\hline 18 & & 1 & 1 & 1.4001 & 1.0000 & 2 & . 0000 & 1.8556 \\
\hline 19 & & 1 & & 1.1257 & 1.0000 & 2 & . 0000 & 2.5455 \\
\hline 20 & & 2 & 2 & 2.5172 & . 9998 & 1 & . 0002 & -3.4364 \\
\hline 21 & & 1 & & 1.4405 & . .9951 & 2 & . 0049 & . 2428 \\
\hline 22 & & 2 & & 2.1195 & 1.0000 & 1 & . 0000 & -4.3456 \\
\hline 23 & & 1 & & 1.2345 & 5.9764 & 2 & . 0236 & -. 1747 \\
\hline 24 & & 2 & & 2.2985 & 1.0000 & 1 & . 0000 & -3.8283 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrr}
25 & 2 & 2 & .9723 & .9983 & 1 & .0017 & -2.8234 \\
26 & 2 & 2 & .5951 & .9852 & 1 & .0148 & -2.2573 \\
27 & 1 & 1 & .3866 & .9930 & 2 & .0070 & .1483 \\
28 & 2 & 2 & .9455 & .9974 & 1 & .0026 & -2.7203 \\
29 & 1 & 1 & .7334 & .9999 & 2 & .0001 & 1.3547 \\
30 & 1 & 1 & .2714 & .9830 & 2 & .0170 & -.0858
\end{tabular}
Page 18
sPSS/PC+

Symbols used in Plots



\section*{Centroids}

Page 19
SPSS/PC+
Histogram for Group 2

Canonical Discriminant function 1


Centroids 2

Page 20
SPSS/PC+
All-groups stacked Histogram

Canonical Discriminant Function 1



\section*{APPENDIX 6}

\section*{SPSS(pc) Computer Printout of the Stepwise Procedures in Computing the \(\mathrm{Z}_{4}\) Discriminant Analysis Model}

DSCRIMINANT
/GROUPS PERFORM (1,2) /VARIABLES COMPLEX PROF_STA LEAD_EX PAST_PER
ORIGIN CONTROL /METHOD WILKS /PRIORS SIZE /STATISTICS=all.

Since ANALYSIS= was omitted for the first analysis all variables
on the VARIABLES \(=\) list will be entered at level 1.

This Discriminant Analysis requires 1904 ( 1.9K) BYTES of workspace.
```

Page }4
SPSS/PC+

```

On groups defined by PERFORM CONTRACTOR'S PERFORMANCE

26 (unweighted) cases were processed.
0 of these were excluded from the analysis.
26 (unweighted) cases will be used in the analysis.

Number of Cases by Group

Number of Cases
PERFORM Unweighted Weighted Label
\begin{tabular}{rrr}
1 & 18 & 18.0 \\
2 & 8 & 8.0 \\
Total & 26 & 26.0
\end{tabular}

Group Means
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PERFORM & COMPLEX & PROF_STA & LEAD_EX & PAST_PER & ORIGIN & CONTROL \\
\hline 1 & 4.11111 & .06817 & 16.27778 & 2.50000 & 3.00000 & 3.88889 \\
\hline 2 & 4.62500 & . 12688 & 14.87500 & 3.62500 & 2.00000 & 2.62500 \\
\hline Total & 4.26923 & . 08623 & 15.84615 & 2.84615 & 2.69231 & 3.50000 \\
\hline \multicolumn{7}{|l|}{Group Standard Deviations} \\
\hline PERFORM & COMPLEX & PROF_STA & LEAD_EX & PAST_PER & ORIGIN & CONTROL \\
\hline 1 & 1.18266 & . 05336 & 8.39331 & . 61835 & .00000 & . 83235 \\
\hline 2 & 1.30247 & . 05614 & 2.74838 & . 51755 & 1.06904 & . 91613 \\
\hline Total & 1.21845 & . 05985 & 7.10320 & . 78446 & . 73589 & 1.02956 \\
\hline
\end{tabular}





At step 3, LEAD_EX was included in the analysis.


Minimum
\begin{tabular}{lrrrr} 
Variable & Tolerance & Tolerance & F to enter & Wilks' Lambda \\
COMPLEX & .7982218 & .6259238 & .40460 & .35774 \\
PROF_STA & .5297124 & .4919228 & 1.9207 & .33408 \\
CONTROL & .8969336 & .6628083 & 3.6244 & .31096
\end{tabular}

SPSS/PC+
f statistics and significances between pairs of groups after step 3 Each F statistic has 3 and 22.0 degrees of freedom.

Group 1

Group
2
12.778
.0000

At step 4, CONTROL was included in the analysis.


At step 5, COMPLEX was included in the analysis.

\begin{tabular}{llll} 
PAST_PER & .6250881 & 8.6452 & .36719 \\
ORIGIN & .8337800 & .66473 & .26489 \\
CONTROL & .5580627 & 7.9082 & .35774
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & Minimum & & \\
\hline Variable & Tolerance & Tolerance & F to enter & . Wilks' Lambda \\
\hline Prof_sta & . 4979703 & . 4603865 & 2.7911 & . 22353 \\
\hline
\end{tabular}
Page 51 SPSS/PC+

F statistics and significances between pairs of groups after step 5 Each F statistic has 5 and 20.0 degrees of freedom.
\begin{tabular}{rrr} 
& Group & 1 \\
Group & & \\
2 & & 11.603 \\
& & .0000
\end{tabular}

At step 6, ORIGIN was removed from the analysis.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|l|}{Degrees of Freedom} & \multirow[t]{2}{*}{Signif.} & 8etween Group \\
\hline Wilks' Lambda & . 26489 & 4 & 1 & 24.0 & & \\
\hline Equivalent F & 14.5696 & & 4 & 21.0 & . 0000 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Variable & Tolerance & \(F\) to remove & Wilks' Lambda \\
\hline COMPLEX & . 5695338 & 8.0299 & . 36618 \\
\hline LEAD_EX & . 6778561 & 4.6523 & . 32357 \\
\hline PAST_PER & . 6697130 & 13.584 & . 43623 \\
\hline CONTROL & . 5704559 & 10.332 & . 39521 \\
\hline
\end{tabular}

Minimum
\begin{tabular}{lcccc} 
Variable & Tolerance & Tolerance & F & to enter \\
PROF_STA & .6516212 & .4618141 & Hilks' Lambda \\
ORIGIK & .8337800 & .4966453 & .66473 & .24907 \\
& & .65637
\end{tabular}



F level or tolerance or VIN insufficient for further computation.

\begin{tabular}{llrlll}
6 & & ORIGIN & 4 & .26489 & .0000 \\
7 & ORIGIN OF THE COMPANY \\
7 & PROF_STA & 5 & .24907 & .0000 & MANAGEMENT TEAM'S QUALITY-PROFESSIONAL a \\
8 & ORIGIN & 6 & .22353 & .0000 & ORIGIN OF THE COMPANY
\end{tabular}

\section*{Classification Function Coefficients \\ (fisher's Linear Discriminant Functions)}
\begin{tabular}{lcr} 
PERFORM \(=\) & \multicolumn{1}{c}{1} & \multicolumn{1}{c}{2} \\
& & \\
& & \\
COMPLEX & 4.459446 & 6.642191 \\
PROF_STA & 96.03139 & 54.82136 \\
LEAD_EX & .1847489 & -.1763594 \\
PAST_PER & 8.776058 & 15.63000 \\
ORIGIN & 18.11079 & 15.05179 \\
CONTROL & 5.380530 & 1.366030 \\
(constant) & -62.90948 & -63.87885
\end{tabular}

Canonical Discriminant Functions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Percent of & Cumulative & Canonical & & After & & & & \\
\hline Function & Eigenvalue & Variance & Percent & Correlation & : & Function & Hilks' Lambda & Chi-squared & D.F. & Significance \\
\hline & & & & , & : & 0 & . 2235317 & 31.462 & 6 & . 0000 \\
\hline 1* & 3.47364 & 100.00 & 100.00 & . 8811744 & : & & & & & \\
\hline
\end{tabular}
* marks the 1 canonical discriminant functions remaining in the analysis.

Page 55 SPSS/PC+
Standardized Canonical Discriminant Function Coefficients
\begin{tabular}{lr} 
& \multicolumn{1}{c}{ FUNC 1 } \\
COMPLEX & -.68571 \\
PROF_STA & .57555 \\
LEAD_EX & .67184 \\
PAST_PER & -1.04358 \\
ORIGIN & .45521 \\
CONTROL & .88742
\end{tabular}

Structure Matrix:

Pooled-within-groups correlations between discriminating variables and canonical discriminant functions
(Variables ordered by size of correlation within function)
\begin{tabular}{lr} 
& \multicolumn{1}{l}{ FUNC 1} \\
PAST_PER & -.49087 \\
ORIGIN & .44643 \\
CONTROL & .37984 \\
PROF_STA & -.27926 \\
COMPLEX & -.10867 \\
LEAD_EX & .05009
\end{tabular}

Unstandardized Canonical Discriminant Function Coefficients

FUNC 1
COMPLEX -. 5625999
PROF_STA 10.62183
LEAD_EX .9307522E-01
PAST_PER - 9.766595
ORIGIN . 7884532
CONTROL 1.034732
(constant) •. 7052658

Canonical Discriminant Functions evaluated at Group Means (Group Centroids)
\begin{tabular}{rr} 
Group & \multicolumn{1}{c}{ FUNC \(\quad 1\)} \\
1 & 1.19377 \\
2 & -2.68598
\end{tabular}

Test of equality of group covariance matrices using Box's M

The ranks and natural logarithms of determinants printed are those of the group covariance matrices.
\begin{tabular}{lrr} 
Group Label & Rank & Log Determinant \\
1 & 5 & (singular) \\
2 & 6 & -10.725307 \\
Pooled Within-Groups & & \\
Covariance Matrix & 6 & -5.839023
\end{tabular}

NOTE 10473
NOT ENOUGH NON-SINGULAR GROUP COVARIANCE MATRICES FOR DSC--At least two are required for a test to be performed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Page 57 & & & SPSS/ & PC+ & & & & \\
\hline Case & Mis & Actual & Highest & Probab & ility \(P(G / D)\) & 2nd Hi & ghest & Discriminant \\
\hline 1 & & 1 & 1 & . 3325 & 1.0000 & 2 & . 0000 & 2.1629 \\
\hline 2 & & 1 & 1 & . 4178 & . 9945 & 2 & . 0055 & . 3836 \\
\hline 3 & & 2 & 2 & . 2514 & . 9060 & 1 & . 0940 & -1.5390 \\
\hline 4 & & 1 & 1 & . 2984 & . 9867 & 2 & . 0133 & . 9540 \\
\hline 5 & & 2 & 2 & . 1045 & . 6029 & 1 & . 3971 & -1.0627 \\
\hline 6 & & 1 & 1 & . 6332 & . 9985 & 2 & . 0015 & . 7166 \\
\hline 7 & & 1 & 1 & . 3425 & . 9906 & 2 & . 0094 & . 2445 \\
\hline 8 & & 1 & 1 & . 7710 & . 9993 & 2 & . 0007 & . 9027 \\
\hline 9 & & 1 & 1 & . 7710 & . 9993 & 2 & . 0007 & . 9027 \\
\hline 10 & & 1 & 1 & . 4627 & 1.0000 & 2 & . 0000 & 1.9281 \\
\hline 11 & & 1 & 1 & . 0551 & 1.0000 & 2 & . 0000 & 3.1121 \\
\hline 12 & & 1 & 1 & . 6378 & . 9985 & 2 & . 0015 & . 7229 \\
\hline 13 & & 1 & 1 & . 8091 & . 9994 & 2 & . 0006 & . 9521 \\
\hline 14 & & 1 & 1 & . 5746 & 1.0000 & 2 & . 0000 & 1.7551 \\
\hline 15 & & 1 & 1 & . 3492 & 1.0000 & 2 & . 0000 & 2.1300 \\
\hline 16 & & 1 & 1 & . 0567 & 1.0000 & 2 & . 0000 & 3.0996 \\
\hline 17 & & 2 & 2 & . 4147 & . 9999 & 1 & . 0001 & -3.5017 \\
\hline 18 & & 1 & 1 & . 4796 & . 9963 & 2 & . 0037 & . 4867 \\
\hline 19 & & 2 & 2 & . 1284 & 1.0000 & 1 & . 0000 & -4.2062 \\
\hline 20 & & 1 & 1 & . 3014 & . 9870 & 2 & . 0130 & . 1603 \\
\hline 21 & & 2 & 2 & . 3396 & 1.0000 & 1 & . 0000 & -3.6410 \\
\hline 22 & & 2 & 2 & . 8430 & . 9974 & 1 & . 0026 & -2.4880 \\
\hline 23 & & 2 & 2 & . 6254 & . 9920 & 1 & . 0080 & -2.1978 \\
\hline 24 & & 1 & 1 & . 3354 & . 9900 & 2 & . 0100 & . 2305 \\
\hline 25 & & 2 & 2 & . 8686 & . 9994 & 1 & . 0006 & -2.8514 \\
\hline 26 & & 1 & 1 & . 8030 & . 9999 & 2 & . 0001 & 1.4433 \\
\hline \multicolumn{3}{|l|}{Symbols used in Plots} & & & & & & \\
\hline Symbol & Group & abel & & & & . & & \\
\hline \multicolumn{2}{|l|}{\[
\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}
\]} & & & & & & & \\
\hline Page & \multicolumn{2}{|l|}{} & \multicolumn{3}{|l|}{\(1^{\text {SPSS/PC+ }}\)} & & & \\
\hline
\end{tabular}

```

 Out -6.0 -4.0 -2.0 .0 2.0 4.0 6.0 Out
 Class 22222222222222222221111111111111111111111111
 Centroids 2
Page 60 SPSS/PC+
All-groups stacked Histogram
Canonical Discriminant Function 1
*)
Centroids 1
Page 61 SPSS/PC+
Classification Results -

```


Percent of "grouped" cases correctly classified: 100.00\%

\section*{Classification Processing Summary}

26 Cases were processed.
0 Cases were excluded for missing or out-of-range group codes.
0 Cases had at least one missing discriminating variable.
26 Cases were used for printed output.

This procedure was completed at 17:09:29

Page 63 SPSS/PC+

FINISH.

End of Include file.

\section*{APPENDIX 7}

\section*{SPSS(pc) Computer Printout of the Stepwise Procedures in Computing the Multiple Regression Analysis Model}

SET /MORE OFF.
REGRESSION /VARIABLES PERFORM COMPLEX TO PROFIT PAS_P_PM /DESCRIPTIVES=all /SELECT INCLUDE EQ 1 /STATISTICS=all /CRITERIA pin(0.06) /DEPENDENT PERFORM /METHOO STEPWISE.
\begin{tabular}{|c|c|c|c|c|}
\hline & & & **** M & TIPLE REGRESSION**** \\
\hline \multicolumn{3}{|l|}{Listwise Deletion of Missing Data Selecting only Cases for which} & \multicolumn{2}{|l|}{INCLUDE EQ 1} \\
\hline & Mean & Std Deviati & Variance & Label \\
\hline PERFORM & 1.265 & . 448 & . 201 & CONTRACTOR'S PERFORMANCE \\
\hline COMPLEX & 3.618 & 1.615 & 2.607 & COMPLEXITY OF PROJECT \\
\hline TRAINING & . 104 & . 088 & . 008 & StAFF TRAINING PROGRAMME \\
\hline PLANT & . 055 & . 090 & . 008 & PLANT OWNERSHIP POLICY \\
\hline COM_SI2E & 430.706 & 359.350 & 129132.759 & SIZE OF THE COMPANY \\
\hline PROF_STA & . 092 & . 077 & . 006 & MANAGEMENT TEAM'S QUALITY-PROFESSIONAL Q \\
\hline LEAD_EX & 14.882 & 6.623 & 43.865 & PROJECT LEADER'S EXPERIENCE \\
\hline CONT_EX & . 341 & . 301 & . 091 & CONTRACTOR'S EXPERIENCE IN THE TYPE OF \(J\) \\
\hline WORKLOAD & 2687845.765 & 2182022.123 & 4761220547176.9 & CONTRACTOR'S WORK LOAD \\
\hline PAST_PER & 2.853 & . 784 & . 614 & CONTRACTOR'S PAST PERFORMANCE OR IMAGE \\
\hline YEAR_BUS & 23.059 & . 15.001 & 225.027 & number of years in the business \\
\hline ORIGIN & 2.706 & . 719 & .517 & ORIGIN OF THE COMPANY \\
\hline DEL & . 108 & .128 & . 016 & AMOUNT OF DIRECTLY EMPLDYED LABOUR \\
\hline LISTED & 1.471 & . 507 & . 257 & LISTED IN THE STOCK Market \\
\hline CENTRAL & 1.603 & . 457 & . 209 & CENTRALISED OR DECENTRALISED DECISION MA \\
\hline SUBSID & 1.706 & . 462 & . 214 & Whether the contractor is the client's 5 \\
\hline ARCH_PER & 2.971 & . 834 & . 696 & ARCHITECT'S PERFORMANCE \\
\hline CONTROL & 3.412 & . 957 & . 916 & ARCHITECT OR CLIENT SUPERVISION AND CONT \\
\hline PAYMENT & 1.059 & . 239 & . 057 & PUNCTUALITY OF PAYMENT BY CLIENT \\
\hline PROFIT & 1.010 & . 127 & . 016 & RATIO OF TENDER PRICE OVER PRE-TENDER ES \\
\hline PAS_P_PM & 2.206 & .641 & .411 & PAST PERFORMANCE OF PROJECT MAMAGER \\
\hline \(N\) of Case & \(s=3 i\) & & & \\
\hline
\end{tabular}

\footnotetext{
Page 4
} SPSS/PC+

Correlation, Covariance, 1-tailed Sig, Cross-Product:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PERFORM & COMPLEX & training & Plant & COH_SIZE & PROF_STA & LEAD_EX \\
\hline \multirow[t]{4}{*}{PERFORM} & 1.000 & . 270 & -. 252 & -. 054 & . 090 & . 227 & -. 050 \\
\hline & . 201 & . 195 & -. 010 & -. 002 & 14.504 & . 008 & -. 150 \\
\hline & . 999 & . 061 & . 075 & . 380 & . 306 & . 099 & . 388 \\
\hline & 6.618 & 6.441 & -. 326 & -. 073 & 478.647 & . 258 & -4.941 \\
\hline \multirow[t]{4}{*}{COMPLEX} & . 270 & 1.000 & . 109 & -. 261 & . 311 & -. 106 & . 024 \\
\hline & . 195 & 2.607 & . 015 & -. 038 & 180.490 & -. 013 & . 257 \\
\hline & . 061 & . 989 & . 270 & . 068 & . 037 & . 276 & . 446 \\
\hline & 6.441 & 86.029 & . 507 & -1.255 & 5956.176 & -. 436 & 8.471 \\
\hline \multirow[t]{4}{*}{training} & -. 252 & . 109 & 1.000 & . 140 & -. 146 & . 145 & -. 176 \\
\hline & -. 010 & . 015 & . 008 & . 001 & -4.583 & . 001 & -. 102 \\
\hline & . 075 & . 270 & . 999 & . 215 & . 206 & . 207 & . 159 \\
\hline & -. 326 & . 507 & . 253 & . 036 & -151.232 & . 032 & -3.373 \\
\hline \multirow[t]{4}{*}{PLANT} & -. 054 & -. 261 & . 140 & 1.000 & -. 099 & . 012 & -. 069 \\
\hline & -. 002 & -. 038 & . 001 & . 008 & -2.957 & . 000 & -. 049 \\
\hline & . 380 & . 068 & . 215 & . 899 & . 304 & . 474 & . 350 \\
\hline & -. 073 & -1.255 & . 036 & . 269 & -97.584 & . 003 & -1.355 \\
\hline \multirow[t]{4}{*}{COM_SIZE} & . 090 & . 311 & -. 146 & -. 091 & 1.000 & -. 168 & . 107 \\
\hline & 14.504 & 180.490 & -4.583 & -2.957 & 129132.759 & -4.662 & 254.086 \\
\hline & . 306 & . 037 & . 206 & . 304 & . 999 & . 171 & . 274 \\
\hline & 478.647 & 5956.176 & -151.232 & -97.584 & 4261381.059 & -153.841 & 8384.824 \\
\hline \multirow[t]{4}{*}{PROF_STA} & . 227 & -. 106 & . 145 & . 012 & -. 168 & 1.000 & -. 042 \\
\hline & . 008 & -. 013 & . 001 & . 000 & -4.662 & . 006 & -. 022 \\
\hline & . 099 & . 276 & . 207 & . 474 & . 171 & . 999 & . 406 \\
\hline & . 258 & -. 436 & . 032 & . 003 & -153.841 & . 197 & -. 716 \\
\hline \multirow[t]{4}{*}{LEAD_EX} & -. 050 & . 024 & -. 176 & -. 069 & . 107 & -. 042 & 1.000 \\
\hline & -. 150 & . 257 & -. 102 & -. 041 & 254.086 & -. 022 & 43.865 \\
\hline & . 388 & . 446 & . 159 & . 350 & . 274 & . 406 & . 999 \\
\hline & -4.941 & 8.471 & -3.373 & -1.355 & 8384.824 & -. 796 & 1447.529 \\
\hline \multirow[t]{4}{*}{CONT_EX} & -. 208 & -. 529 & . 138 & . 367 & -. 021 & -. 142 & -. 097 \\
\hline & -. 028 & -. 257 & . 004 & . 010 & -2.244 & -. 003 & -. 193 \\
\hline & . 119 & . 001 & . 218 & . 016 & . 454 & . 211 & . 293 \\
\hline & . 9226 & -8.488 & . 120 & . 330 & -74.068 & -. 109 & -6.385 \\
\hline
\end{tabular}

\section*{Page 5}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{HORKLOAD} & PERFORM & complex & training & PLANT & COM_SIZE & Prof_Sta & LEAD_EX \\
\hline & . 188 & . 495 & -. 202 & -. 165 & . 302 & . 149 & -. 245 \\
\hline & 183624.367 & 1745643.604 & -38531.370 & -32592.410 & 236763189.747 & 25114.828 & -3547635.544 \\
\hline & . 144 & . 001 & . 126 & . 175 & . 041 & . 200 & . 081 \\
\hline & 6059604.118 & 57606238.941 & -1271535.216 & -1075549.535 & 7813185261.647 & 828789.330 & -117071972.941 \\
\hline \multirow[t]{4}{*}{PAST_PER} & . 632 & -. 070 & -. 244 & . 091 & . 100 & . 567 & . 236 \\
\hline & . 222 & -. 088 & -. 017 & . 006 & 28.228 & . 034 & 1.225 \\
\hline & . 000 & . 348 & . 082 & . 305 & . 286 & . 000 & . 090 \\
\hline & 7.324 & -2.912 & -. 552 & . 212 & 931.529 & 1.132 & 40.412 \\
\hline & & * & & & & & \\
\hline \multirow[t]{4}{*}{YEAR_buS} & -. 178 & . 393 & . 027 & -. 374 & . 406 & -. 267 & -. 134 \\
\hline & -1.198 & 9.508 & . 036 & -. 507 & 2189.927 & -. 309 & -13.266 \\
\hline & . 156 & . 011 & . 440 & . 015 & . 009 & . 063 & . 226 \\
\hline & -39.529 & 313.765 & 1.173 & -16.727 & 72267.588 & -10.204 & -437.765 \\
\hline \multirow[t]{4}{*}{ORIGIN} & -. 504 & -. 204 & . 043 & -. 034 & . 022 & 9.704 & . 069 \\
\hline & -. 162 & -. 237 & . 003 & -. 002 & 5.668 & \(? .039\) & . 328 \\
\hline & . 001 & . 123 & . 404 & . 425 & . 451 & . 000 & . 349 \\
\hline & -5.353 & -7.824 & . 090 & -. 072 & 187.059 & -1.289 & 10.824 \\
\hline \multirow[t]{4}{*}{DEL} & . 145 & -. 215 & . 061 & . 261 & -. 290 & . 717 & . 043 \\
\hline & . 008 & -. 044 & . 001 & . 003 & -13.291 & . 007 & . 036 \\
\hline & . 207 & . 111 & . 365 & . 068 & . 048 & . 000 & . 406 \\
\hline & . 273 & -1.462 & . 023 & . 099 & -438.619 & . 233 & 1.186 \\
\hline \multirow[t]{4}{*}{LISTED} & . 236 & -. 218 & . 116 & . 254 & -. 229 & . 310 & -. 263 \\
\hline & . 053 & -. 178 & . 005 & . 012 & -41.736 & . 012 & -. 882 \\
\hline & . 090 & . 108 & . 257 & . 073 & . 096 & . 037 & . 066 \\
\hline & 1.765 & -5.882 & . 170 & . 384 & -1377.294 & . 400 & -29.118 \\
\hline \multirow[t]{4}{*}{CENTRAL} & . 455 & -. 089 & -. 257 & -. 035 & . 180 & . 388 & . 565 \\
\hline & . 093 & -. 066 & -. 010 & -. 001 & 29.516 & . 014 & 1.709 \\
\hline & . 003 & . 309 & . 071 & . 422 & . 155 & . 012 & . 000 \\
\hline & 3.074 & -2.162 & -. 340 & -. 048 & 974.029 & . 452 & 56.412 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{subsio} & . 095 & . 088 & . 187 & . 254 & . 196 & . 133 & -. 269 \\
\hline & . 020 & . 066 & . 008 & . 011 & 32.638 & . 005 & -. 824 \\
\hline & . 297 & . 310 & . 145 & . 073 & . 133 & . 226 & . 062 \\
\hline & . 647 & 2.176 & . 250 & . 351 & 1077.059 & . 157 & -27.176 \\
\hline \multirow[t]{4}{*}{ARCH_PER} & -. 384 & -. 166 & . 240 & . 154 & . 160 & -. 300 & -. 061 \\
\hline & -. 143 & -. 224 & . 018 & . 012 & 48.052 & -. 019 & -. 337 \\
\hline & . 012 & . 174 & . 086 & . 192 & . 183 & . 042 & . 366 \\
\hline & -4.735 & -7.382 & . 578 & . 383 & 1585.706 & -. 637 & -11.118 \\
\hline
\end{tabular}
Page 6 SPSS/PC+
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PERFORM & complex & training & Plant & COM_SI2E & PROF_STA & LEAD_EX \\
\hline \multirow[t]{4}{*}{CONTROL} & -. 474 & . 399 & . 323 & . 057 & . 184 & -. 302 & -. 164 \\
\hline & -. 203 & . 617 & . 027 & . 005 & 63.458 & -. 022 & -1.041 \\
\hline & . 002 & . 010 & . 031 & . 374 & . 148 & . 041 & . 177 \\
\hline & -6.706 & 20.353 & . 893 & . 164 & 2094.118 & -. 736 & -34.353 \\
\hline \multirow[t]{4}{*}{Payment} & . 133 & -. 097 & . 081 & -. 050 & . 088 & -. 046 & -. 245 \\
\hline & . 014 & -. 037 & . 002 & -. 001 & 7.533 & -. 001 & -. 387 \\
\hline & . 226 & . 292 & . 324 & . 390 & . 311 & . 398 & . 082 \\
\hline & . 471 & -1.235 & . 056 & -. 035 & 248.588 & -. 028 & -12.765 \\
\hline \multirow[t]{4}{*}{Profit} & . 151 & . 407 & -. 109 & -. 009 & . 254 & -. 262 & -. 037 \\
\hline & . 009 & . 084 & -. 001 & -. 000 & 11.608 & -. 003 & -. 031 \\
\hline & . 197 & . 008 & . 270 & . 479 & . 074 & . 067 & . 417 \\
\hline & . 283 & 2.756 & -. 040 & -. 004 & 383.051 & -. 085 & -1.031 \\
\hline \multirow[t]{4}{*}{PAS_P_PM} & . 016 & . 283 & . 100 & . 078 & -. 044 & . 455 & . 020 \\
\hline & . 004 & . 293 & . 006 & . 005 & -10.241 & . 023 & . 086 \\
\hline & . 465 & . 052 & . 287 & . 331 & . 401 & . 003 & . 455 \\
\hline & . 147 & 9.676 & . 185 & . 149 & -337.941 & . 743 & 2.824 \\
\hline
\end{tabular}

Page 7
SPSS/PC+

CONT_EX WORKLOAD PAST_PER YEAR_BUS ORIGIN DEL LISTED
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{PERFORM} & -. 208 & . 188 & . 632 & -. 178 & -. 504 & . 145 & . 236 \\
\hline & -. 028 & 183624.367 & . 222 & -1.198 & -. 162 & . 008 & . 053 \\
\hline & . 119 & . 144 & . 000 & . 156 & . 004 & . 207 & . 090 \\
\hline & . .926 & 6059604.118 & 7.324 & -39.529 & -5.353 & . 273 & 1.765 \\
\hline \multirow[t]{4}{*}{COMPLEX} & -. 529 & . 495 & -. 070 & . 393 & -. 204 & -. 215 & -. 218 \\
\hline & -. 257 & 1745643.604 & -. 088 & 9.508 & -. 237 & -. 044 & -. 178 \\
\hline & . 001 & . 001 & . 348 & . 011 & . 123 & . 111 & . 108 \\
\hline & -8.488 & 57606238.941 & -2.912 & 313.765 & -7.824 & -1.462 & -5.882 \\
\hline \multirow[t]{4}{*}{training} & . 138 & -. 202 & -. 244 & . 027 & . 043 & . 061 & . 116 \\
\hline & . 004 & -38531.370 & -. 017 & . 036 & . 003 & . 001 & . 005 \\
\hline & . 218 & . 126 & . 082 & . 440 & . 404 & . 365 & . 257 \\
\hline & . 120 & -1271535.216 & -. 552 & 1.173 & . 090 & . 023 & . 170 \\
\hline \multirow[t]{4}{*}{Plant} & . 367 & -. 165 & . 091 & -. 374 & -. 034 & . 261 & . 254 \\
\hline & . 010 & -32592.410 & . 006 & -. 507 & -. 002 & . 003 & . 012 \\
\hline & . 016 & . 175 & . 305 & . 015 & . 425 & . 068 & . 073 \\
\hline & . 330 & -1075549.535 & . 212 & -16.727 & -. 072 & . 099 & . 384 \\
\hline \multirow[t]{3}{*}{COM_SIZE} & -. 021 & . 302 & . 100 & . 406 & . 022 & -. 290 & -. 229 \\
\hline & -2.244 & 236763189.747 & 28.228 & 2189.927 & 5.668 & -13.291 & -41.736 \\
\hline & . 454 & . 041 & . 286 & . 009 & . 451 & . 048 & . 096 \\
\hline . & -74.068 & 7813185261.647 & 931.529 & 72267.588 & 187.059 & -438.619 & -1377.294 \\
\hline \multirow[t]{4}{*}{Prof_STA} & -. 142 & . 149 & . 567 & -. 267 & -. 704 & . 717 & . 310 \\
\hline & -. 003 & 25114.828 & . 034 & -. 309 & -. 039 & . 007 & . 012 \\
\hline & . 211 & . 200 & . 000 & . 063 & . 000 & . 000 & . 037 \\
\hline & -. 109 & 828789.330 & 1.132 & -10.204 & -1.289 & . 233 & . 400 \\
\hline \multirow[t]{4}{*}{LEAD_EX} & -. 097 & -. \(245^{\circ}\) & . 236 & -. 134 & . 069 & . 043 & -. 263 \\
\hline & -. 193 & -3547635.544 & 1.225 & -13.266 & . 328 & . 036 & -. 882 \\
\hline & . 293 & . 081 & . 090 & . 226 & . 349 & . 406 & . 066 \\
\hline & -6.385 & -117071972.941 & 40.412 & -437.765 & 10.824 & 1.186 & -29.118 \\
\hline \multirow[t]{4}{*}{CONT_EX} & 1.000 & -. 325 & . 004 & -. 440 & . 225 & . 044 & . 403 \\
\hline & . 091 & -213337.023 & . 001 & -1.985 & . 049 & . 002 & . 061 \\
\hline & . 999 & . 030 & . 490 & . 005 & . 100 & . 402 & . 009 \\
\hline & 2.992 & -7040121.768 & . 035 & -65.507 & 1.610 & . 056 & 2.027 \\
\hline \multirow[t]{2}{*}{WORKLOAD} & -. 325 & 1.000 & -. 019 & . 351 & -. 537 & . 142 & . 214 \\
\hline & -213337.023 & 4761220547176.9 & -33083.975 & 11482016.014 & .843077.041 & 39513.017 & 236256.599 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ARCH_PER & -. 013 & -. 194 & \(\bigcirc .470\) & . 472 & . 389 & -. 289 & -. 540 \\
\hline & -. 003 & -352671.340 & -. 307 & 5.911 & . 234 & -. 031 & -. 228 \\
\hline & . 471 & . 136 & . 003 & . 002 & . 011 & . 049 & . 000 \\
\hline & -. 109 & -11638154.235 & -10.147 & 195.059 & 7.706 & -1.015 & -7.529 \\
\hline control & -. 052 & . 268 & -. 482 & . 384 & . 269 & -. 270 & -. 099 \\
\hline & -. 015 & 559537.191 & -. 362 & 5.520 & . 185 & -. 033 & -. 048 \\
\hline & . 385 & . 063 & . 002 & . 012 & . 062 & . 061 & . 288 \\
\hline & -. 496 & 18464727.294 & -11.941 & 182.176 & 6.118 & -1.090 & -1.588 \\
\hline
\end{tabular}

Page 9

\section*{SPSS/PC+}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & CONT_EX & WORKLIAAD & PAST_PER & year_bus & Origin & DEL & listed \\
\hline \multirow[t]{4}{*}{payment} & . 387 & -. 163 & . 210 & -. 246 & . 104 & . 014 & . 265 \\
\hline & . 028 & -85020.955 & . 039 & -. 882 & . 018 & . 000 & . 032 \\
\hline & . 012 & . 178 & . 117 & . 080 & . 280 & . 469 & . 065 \\
\hline & . 918 & -2805691.529 & 1.294 & -29.118 & . 588 & . 014 & 1.059 \\
\hline \multirow[t]{4}{*}{Profit} & -. 128 & . 285 & -. 139. & . 281 & -. 058 & -. 055 & -. 103 \\
\hline & -. 005 & 79170.167 & -. 014 & . 537 & -. 005 & -. 001 & -. 007 \\
\hline & . 235 & . 051 & . 216 & . 053 & . 372 & . 379 & . 282 \\
\hline & -. 162 & 2612615.522 & -. 458 & 17.713 & -. 176 & -. 029 & -. 218 \\
\hline \multirow[t]{4}{*}{PAS_P_PM} & -. 183 & . 326 & . 122 & . 011 & -. 391 & . 419 & . 066 \\
\hline & -. 035 & 456063.020 & . 061 & . 109 & -. 180 & . 034 & . 021 \\
\hline & . 150 & . 030 & . 245 & . 475 & . 011 & . 007 & . 356 \\
\hline & -1.165 & 15050079.647 & 2.029 & 3.588 & -5.941 & 1.129 & . 706 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Page 10} & \multicolumn{7}{|c|}{SPSS/PC+} \\
\hline & \multirow[b]{2}{*}{central} & \multirow[t]{2}{*}{SUBSID} & \multicolumn{4}{|l|}{multiple regression} & \multirow[b]{2}{*}{PAS_P_PM} \\
\hline & & & ARCH_PER & CONTROL & payment & Profit & \\
\hline \multirow[t]{3}{*}{PERFORM} & . 455 & . 095 & -. 384 & -. 474 & . 133 & . 151 & . 016 \\
\hline & . 093 & . 020 & -. 143 & -. 203 & . 014 & . 009 & . 004 \\
\hline & . 003 & . 297 & . 012 & . 002 & . 226 & . 197 & . 465 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{6}{*}{COMPLEX} & 3.074 & . 647 & -4.735 & -6.706 & . 471 & . 283 & . 147 \\
\hline & & * & & & & & \\
\hline & . 088 & . 088 & -. 166 & . 399 & -. 097 & . 407 & . 283 \\
\hline & -. 066 & . 066 & -. 224 & . 617 & -. 037 & . 084 & . 293 \\
\hline & . 309 & . 310 & . 174 & . 010 & . 292 & . 008 & . 052 \\
\hline & -2.162 & 2.176 & -7.382 & 20.353 & -1.235 & 2.756 & 9.676 \\
\hline \multirow[t]{4}{*}{training} & -. 257 & . 187 & . 240 & . 323 & . 081 & -. 109 & . 100 \\
\hline & -. 010 & . 008 & . 018 & . 027 & . 002 & -. 001 & . 006 \\
\hline & . 071 & . 145 & . 086 & . 031 & . 324 & . 270 & . 287 \\
\hline & -. 340 & . 250 & . 578 & . 893 & . 056 & -. 040 & . 185 \\
\hline \multirow[t]{4}{*}{Plant} & -. 035 & . 254 & . 154 & . 057 & -. 050 & -. 009 & . 078 \\
\hline & -. 001 & . 011 & . 012 & . 005 & -. 001 & -. 000 & . 005 \\
\hline & . 422 & . 073 & . 192 & . 374 & . 390 & . 479 & . 331 \\
\hline & -. 048 & . 351 & . 383 & . 164 & -. 035 & -. 004 & . 149 \\
\hline \multirow[t]{4}{*}{COM_SIZE} & . 180 & . 196 & . 160 & . 184 & . 088 & . 254 & -. 044 \\
\hline & 29.516 & 32.638 & 48.052 & 63.458 & 7.533 & 11.608 & -10.241 \\
\hline & . 155 & . 933 & . 183 & . 148 & . 311 & . 074 & . 401 \\
\hline & 974.029 & 1077.059 & 1585.706 & 2094.118 & 248.588 & 383.051 & -337.941 \\
\hline \multirow[t]{4}{*}{PROF_STA} & . 388 & . 933 & -. 300 & -. 302 & -. 046 & -. 262 & . 455 \\
\hline & . 014 & . 005 & -. 019 & -. 022 & -. 001 & -. 003 & . 023 \\
\hline & . 012 & . 226 & . 042 & . 041 & . 398 & . 067 & . 003 \\
\hline & . 452 & . 157 & -. 637 & -. 736 & -. 028 & -. 085 & . 743 \\
\hline \multirow[t]{4}{*}{- Lead_ex} & . 565 & -. 269 & -. 061 & -. 164 & -. 245 & -. 037 & . 020 \\
\hline & 1.709 & -. 824 & -. 337 & -1.041 & -. 387 & -. 031 & . 086 \\
\hline & . 000 & . 062 & . 366 & . 177 & . 082 & . 417 & . 455 \\
\hline & 56.412 & -27.176 & -11.118 & . 34.353 & -12.765 & -1.039 & 2.824 \\
\hline \multirow[t]{4}{*}{CONT_EX} & . 103 & . 059 & -. 013 & -. 052 & . 387 & -. 128 & -. 183 \\
\hline & . 014 & . 008 & -. 003 & -. 015 & . 028 & -. 005 & -. 035 \\
\hline & . 281 & . 371 & . 471 & . 385 & . 012 & . 235 & . 150 \\
\hline & . 467 & . 269 & -. 109 & -. 496 & . 918 & -. 162 & -1.165 \\
\hline \multirow[t]{4}{*}{WORKLOAD} & -. 121 & . 380 & -. 194 & . 268 & -. 163 & . 285 & . 326 \\
\hline & -120487.339 & 383384.898 & -352671.340 & 559537.191 & -85020.955 & 79170.167 & 456063.020 \\
\hline & . 248 & . 013 & . 136 & . 063 & . 178 & . 051 & . 030 \\
\hline & -3976082.176 & 12651701.647 & -11638154.235 & 18464727.294 & -2805691.529 & 2612615.522 & 15050079.647 \\
\hline Page 11 & & SPSS/PC & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & central & SUBSID & ARCH_PER & CORTROL & Payment & Profit & PAS_P_PM \\
\hline \multirow[t]{4}{*}{PAST_PER} & . 763 & . 128 & -. 470 & -. 482 & . 210 & -. 139 & . 122 \\
\hline & . 273 & . 046 & -. 307 & -. 362 & . 039 & - . 014 & . 061 \\
\hline & . 000 & . 236 & . 003 & . 002 & . 117 & . 216 & . 245 \\
\hline & 9.015 & 1.529 & -10.147 & -11.941 & 1.294 & -. 458 & 2.029 \\
\hline \multirow[t]{4}{*}{YEAR_gus} & -. 330 & -. 115 & . 472 & . 384 & -. 246 & . 281 & . 011 \\
\hline & -2.264 & -. 800 & 5.911 & 5.520 & -. 882 & . 537 & . 109 \\
\hline & . 028 & . 258 & . 002 & . 012 & . 080 & . 053 & . 475 \\
\hline & -74.706 & -26.412 & 195.059 & 182.176 & -29.118 & 17.713 & 3.588 \\
\hline \multirow[t]{4}{*}{ORIGIN} & -. 366 & -. 268 & . 389 & . 269 & . 104 & -. 058 & -. 391 \\
\hline & -. 120 & -. 089 & . 234 & . 185 & . 018 & -. 005 & -. 180 \\
\hline & . 017 & . 063 & . 011 & . 062 & . 280 & . 372 & . 011 \\
\hline & -3.971 & -2.941 & 7.706 & 6.118 & . 588 & -. 176 & -5.941 \\
\hline \multirow[t]{4}{*}{DEL} & . 365 & . 159 & -. 289 & -. 270 & . 014 & -. 055 & :419 \\
\hline & . 021 & . 009 & -. 031 & -. 033 & . 000 & -. 001 & . 034 \\
\hline & . 017 & . 185 & . 049 & . 061 & . 469 & . 379 & . 007 \\
\hline & . 702 & . 309 & -1.015 & -1.090 & . 014 & -. 029 & 1.129 \\
\hline \multirow[t]{4}{*}{LISted} & . 046 & . 609 & -. 540 & -. 099 & . 265 & -. 103 & . 066 \\
\hline & . 019 & . 143 & -. 228 & -. 048 & . 032 & -. 007 & . 021 \\
\hline & . 398 & . 000 & . 000 & . 288 & . 065 & . 282 & . 356 \\
\hline & . 353 & 4.706 & -7.529 & -1.588 & 1.059 & -. 218 & . 706 \\
\hline \multirow[t]{4}{*}{central} & 1.000 & -. 211 & -. 270 & -. 585 & -. 057 & -. 009 & . 132 \\
\hline & . 209 & -. 045 & -. 103 & -. 256 & -. 006 & -. 001 & . 039 \\
\hline & . 999 & . 116 & . 061 & . 000 & . 374 & . 479 & . 228 \\
\hline & 6.890 & -1.471 & -3.397 & -8.441 & -. 206 & -. 018 & 1.279 \\
\hline \multirow[t]{4}{*}{SUBsIo} & -. 211 & 1.000 & -. 259 & . 213 & . 161 & . 088 & . 006 \\
\hline & -. 045 & . 214 & -. 100 & . 094 & . 018 & . 005 & . 002 \\
\hline & . 116 & . 999 & . 070 & . 113 & . 181 & . 311 & . 487 \\
\hline & -1.479 & 7.059 & -3.294 & 3.118 & . 588 & . 170 & . 059 \\
\hline \multirow[t]{3}{*}{ARCH_PER} & -. 270 & -. 259 & 1.000 & . 167 & -. 295 & -. 002 & . 012 \\
\hline & -. 103 & -. 100 & . 696 & . 134 & -. 059 & -. 000 & . 006 \\
\hline & . 061 & . 070 & . 999 & . 172 & . 045 & . 495 & . 474 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & -3.397 & -3.294 & 22.971 & 4.412 & -1.941 & -. 007 & . 206 \\
\hline \multirow[t]{4}{*}{control} & -. 585 & . 213 & . 167 & 1.000 & . 023 & . 134 & . 105 \\
\hline & -. 256 & . 094 & . 134 & . 916 & . 005 & . 016 & . 064 \\
\hline & . 000 & . 113 & . 172 & . 999 & . 448 & . 225 & . 278 \\
\hline & -8.441 & 3.118 & 4.412 & 30.235 & . 176 & . 538 & 2.118 \\
\hline
\end{tabular}

Page 12 SPSS/PC+
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & central & SUBSID & ARCH_PER & CONTROL & Payment & Profit & PAS_P_PM \\
\hline \multirow[t]{4}{*}{Payment} & -. 057 & . 161 * & -. 295 & . 023 & 1.000 & -. 081 & -. 082 \\
\hline & -. 006 & . 018 & -. 059 & . 005 & . 057 & -. 002 & -. 012 \\
\hline & . 374 & . 181 & . 045 & . 448 & . 999 & . 325 & . 323 \\
\hline & -. 206 & . 588 & -1.941 & . 176 & 1.882 & -. 081 & -. 412 \\
\hline \multirow[t]{4}{*}{profit} & -. 009 & . 088 & -. 002 & . 134 & -. 081 & 1.000 & -. 050 \\
\hline & -. 001 & . 005 & -. 000 & . 016 & -. 002 & . 016 & -. 004 \\
\hline & . 479 & . 311 & . 495 & . 225 & . 325 & . 999 & . 390 \\
\hline & -. 018 & . 170 & -. 007 & . 538 & -. 081 & . 533 & -. 133 \\
\hline \multirow[t]{4}{*}{PAS_P_PM} & . 132 & . 006 & . 012 & . 105 & -. 082 & -. 050 & 1.000 \\
\hline & . 039 & . 002 & . 006 & . 064 & -. 012 & -. 004 & . 411 \\
\hline & . 228 & . 487 & . 474 & . 278 & . 323 & . 390 & . 999 \\
\hline & 1.279 & . 059 & . 206 & 2.118 & -. 412 & -. 133 & 13.559 \\
\hline
\end{tabular}

Page 13
SPSS/PC+

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

Beginning Block Number 1. Method: Stepwise

Variable(s) Entered on Step Number 1.. PAST_PER CONTRACTOR'S PAST PERFORMANCE OR IMAGE

Multiple R . 63241
Analysis of Variance


Var-Covar Matrix of Regression Coefficients (B)
Below Diagonal: Covariance Above: Correlation

PAST_PER
PAST_PER . 00612
Page 14 SPSS/PC+
4/22/92

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OEL & . 37989 & -. 09521 & & -. 18859 & . 15384 & . 22705 & -. 32810 & . 50158 & -. 04709 & . 04240 & . 14934 \\
\hline listed & . 33224 & . 02559 & 1 & -. 19474 & . 19710 & . 22415 & -. 26255 & . 12161 & -. 34135 & . 40117 & . 22014 \\
\hline central & . 76292 & -. 02730 & 1 & -. 03559 & -. 07115 & -. 10412 & . 10328 & -. 04433 & . 38487 & . 09944 & -. 10609 \\
\hline SUBSID & . 12788 & . 01380 & 1 & . 09724 & . 21822 & . 24273 & . 18356 & . 06078 & -. 29902 & . 05796 & . 38237 \\
\hline ARCH_PER & -. 47031 & -. 08664 & 1 & -. 19887 & . 12509 & . 19665 & . 20742 & -. 03337 & . 05000 & -. 01103 & -. 20282 \\
\hline COTTROL & -. 48241 & -. 16899 & I & . 36543 & . 20524 & . 10103 & . 23285 & -. 02840 & -. 05038 & -. 04998 & . 25856 \\
\hline payment & . 20953 & | 8.224E-04 & 1 & -. 08246 & . 13221 & -. 06864 & . 06677 & -. 16480 & -. 29398 & . 38591 & -. 15909 \\
\hline PROFIT & -. 13915 & | . 23886 & I & . 39708 & -. 14260 & . 00337 & . 26801 & -. 18305 & -. 00427 & -. 12754 & . 28269 \\
\hline PAS_P_PM & . 12243 & \(1-.06190\) & 1 & . 29186 & . 12972 & . 06672 & -.05673 & . 38534 & -. 00873 & -. 18347 & . 32844 \\
\hline
\end{tabular}

Page 15
SPSS/PC+

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & YEAR_BUS & ORIGIN & DEL & LISTED & CENTRAL & SUBSID & ARCH_PER & CONTROL & Payment & PROFIT \\
\hline PASt_PER & . 54574 & . 50937 & -. 37989 & \(\cdot .33224\) & -. 76292 & -. 12788 & . 47031 & . 48241 & -. 20953 & . 13915 \\
\hline PERFORM & . 16682 & -. 18168 & -. 09521 & . 02559 & -. 02730 & . 01380 & - . 08664 & -. 16899 & 8.224E-04 & . 23886 \\
\hline COMPLEX & . 35450 & -. 23974 & -. 18859 & -. 19474 & -. 03559 & . 09724 & -. 19887 & . 36543 & -. 08246 & . 39708 \\
\hline training & -. 10597 & -. 08085 & . 15384 & . 19710 & -. 07115 & . 21822 & . 12509 & . 20524 & . 13221 & -. 14260 \\
\hline PLANT & -. 32444 & . 01249 & . 22705 & . 22415 & -. 10412 & . 24273 & . 19665 & . 10103 & -. 06864 & . 00337 \\
\hline COM_SIZE & . 46096 & . 07300 & -. 32810 & -. 26255 & . 10328 & . 18356 & . 20742 & . 23285 & . 06677 & . 26801 \\
\hline PROF_STA & . 04231 & -. 41508 & . 50158 & . 12161 & -. 04433 & . 06078 & -. 03337 & -. 02840 & -. 16480 & . .18305 \\
\hline LEAD_EX & -. 00475 & . 18906 & -. 04709 & -. 34135 & . 38487 & -. 29902 & . 05000 & -. 05038 & -. 29398 & -. 00427 \\
\hline CONT_EX & -. 43705 & . 22766 & . 04240 & . 40117 & . 09944 & . 05796 & -. 01103 & -. 04998 & . 38591 & -. 12754 \\
\hline WORKLOAD & . 34023 & -. 54725 & . 14934 & . 22014 & -. 10609 & . 38237 & -. 20282 & . 25856 & -. 15909 & . 28269 \\
\hline YEAR_bus & . 70216 & -. 22576 & -. 06477 & -. 40855 & . 08608 & -. 04557 & . 21562 & . 12119 & -. 13193 & . 20549 \\
\hline ORIGIN & -. 22576 & . 74054 & -. 43747 & -. 27118 & . 02236 & -. 20289 & . 14972 & . 02365 & . 21054 & -. 12924 \\
\hline DEL & -. 06477 & -. 43747 & . 85569 & . 27516 & . 07509 & . 11004 & -. 19052 & -. 08720 & -. 06582 & -. 00211 \\
\hline LISTED & -. 40855 & -. 27118 & . 27516 & . 88961 & -. 20728 & . 56609 & -. 38352 & . 06104 & . 19555 & -. 05649 \\
\hline CENTRAL & . 08608 & . 02236 & . 07509 & -. 20728 & . 41795 & -. 30843 & . 08878 & -. 21681 & -. 21703 & . 09670 \\
\hline SUBSID & -. 04557 & -. 20289 & . 11004 & . 56609 & -. 30843 & . 98365 & -. 19855 & . 27509 & . 13458 & . 10565 \\
\hline ARCH_PER & . 21562 & . 14972 & -. 11052 & -. 38352 & . 08878 & -. 19855 & . 77881 & -. 05948 & -. 19666 & -. 06748 \\
\hline CONTROL & . 12119 & . 02365 & -. 08720 & . 06104 & -. 21681 & . 27509 & -. 05948 & . 76728 & . 12447 & . 06682 \\
\hline PAYMENT & -. 13193 & . 21054 & -. 06582 & . 19555 & -. 21703 & . 13458 & -. 19666 & . 12447 & . 95610 & -. 05147 \\
\hline PROFIT & . 20549 & -. 12924 & -. 00211 & -. 05649 & . 09670 & . 10565 & -. 06748 & . 06682 & -. 05147 & . 98064 \\
\hline PAS_P_PM & . 07812 & -. 32829 & . 37199 & . 02519 & . 03897 & -. 00984 & . 06925 & . 16365 & -. 10716 & -. 03252 \\
\hline
\end{tabular}

\section*{Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE}

XTX Matrix
\begin{tabular}{|c|c|}
\hline & PAS_P_PM \\
\hline PAST_PER & -. 12243 \\
\hline PERFORM & -.08190 \\
\hline COMPLEX & . 29186 \\
\hline training & . 12972 \\
\hline PLANT & . 06672 \\
\hline COH_SILE & -. 05673 \\
\hline PROF_STA & . 38534 \\
\hline LEAD_EX & -. 00873 \\
\hline CONT_EX & -. 18347 \\
\hline WORKLOAD & . 32844 \\
\hline YEAR_BUS & . 07812 \\
\hline ORIGIN & -. 32829 \\
\hline DEL & . 37199 \\
\hline LISTED & . 02519 \\
\hline CENTRAL & . 03897 \\
\hline SUBSID & -. 00964 \\
\hline ARCH_PER & . 06925 \\
\hline CONTROL & . 16365 \\
\hline Payment & -. 10716 \\
\hline Profit & -. 03252 \\
\hline PAS_P_PM & . 98501 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Variable & 8 & SE 8 & 95\% Conf & intrvl 8 & Beta & SE Beta & Correl & Part Cor & Partial & Tolerance \\
\hline PAST_PER & . 36139 & . 07825 & . 20200 & . 52079 & . 63241 & . 13694 & . 63249 & . 63241 & . 63241 & 1.00000 \\
\hline (Constant) & . 23367 & . 23128 & -. 23743 & . 70478 & & & & & & \\
\hline
\end{tabular}



Var-Covar Matrix of Regression Coefficients (B)
Below Diagonal: Covariance Above: Correlation
\begin{tabular}{lrr} 
& PAST_PER & COMPLEX \\
& & \\
PAST_PER & .00530 & .06974 \\
COMPLEX & \(1.7948 E-04\) & .00125
\end{tabular}

```

 *** MULTIPLE REGRESSION*****
    ```

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline DEL & . 36667 & -. 18951 & -. 03569 & . 17121 & . 17888 & -. 26783 & . 48909 & -. 03943 & -. 05782 & . 24299 \\
\hline LISTED & . 31860 & -. 19569 & . 08705 & . 21504 & .17440 & -. 20030 & . 10863 & -. 33343 & . 29770 & . 31684 \\
\hline CENTRAL & . 76043 & -. 03576 & -. 01607 & -. 06787 & -. 11321 & . 11466 & -. 04670 & . 38631 & . 08052 & -. 08841 \\
\hline SUBSID & . 13469 & . 09771 & -. 01688 & . 20927 & . 26757 & . 15248 & . 06726 & -. 30298 & . 10963 & . 33409 \\
\hline ARCH_PER & -. 48425 & -. 19984 & -. 02388 & . 14341 & . 14584 & . 27098 & -. 04663 & . 05809 & -. 11670 & -. 10408 \\
\hline CONTROL & -. 45681 & . 36721 & -. 28432 & . 17159 & . 19440 & . 11605 & -. 00404 & -. 06524 & . 14419 & . 07711 \\
\hline PAYMENT & . 20375 & -. 08286 & . 02685 & . 13981 & -. 08970 & . 09392 & -. 17029 & -. 29063 & . 34209 & -. 11815 \\
\hline Profit & -. 11133 & . 39902 & . 11354 & -. 17918 & . 10482 & . 14110 & -. 15657 & -. 02041 & . 08346 & . 08552 \\
\hline PAS_P_PM & . 14288 & . 29329 & -. 15401 & . 10283 & . 14130 & -. 15002 & . 40480 & -. 02060 & -. 02839 & . 18352 \\
\hline Page 20 & & & S/PC+ & & & & & & & \\
\hline
\end{tabular}

\author{
*** MULTIPLE REGRESSION****
}

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE
XTX Matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & YEAR_BUS & ORIGIN & DEL & LISted & central & Subsid & ARCH_PER & CONTROL & Payment & Profit \\
\hline PAST_PER & . 52090 & . 52617 & -. 36667 & -. 31860 & -. 76043 & -. 13469 & . 48425 & . 45681 & -. 20375 & . 11133. \\
\hline COMPLEX & -. 35623 & . 24092 & . 18951 & . 19569 & . 03576 & -. 09771 & . 19984 & -. 36721 & . 08286 & -. 39902 \\
\hline PERFORM & . 05494 & -. 10602 & -. 03569 & . 08705 & -. 01607 & -. 01688 & -. 02388 & -. 28432 & . 02685 & . 11354 \\
\hline TRAINING & -. 13862 & -. 05876 & .17121 & . 21504 & -. 06787 & . 20927 & \(.1434{ }^{\frac{4}{1}}\) & . 17159 & . 13981 & -. 17918 \\
\hline Plant & -. 23387 & -. 04876 & . 17886 & . 17440 & -. 11321 & . 26757 & . 14584 & . 19440 & -. 08970 & . 10482 \\
\hline COM_SI2E & . 34765 & . 14963 & -. 26783 & -. 20030 & . 11466 & . 15248 & . 27098 & . 11605 & . 09312 & . 14110 \\
\hline PROF_STA & . 06595 & -. 43106 & . 48901 & . 10863 & -. 04670 & . 06726 & -. 04663 & -. 00404 & -. 17029 & -. 15657 \\
\hline LEAD_EX & -. 01917 & . 19881 & -. 03943 & -. 33343 & . 38631 & -. 30298 & . 05809 & -. 06524 & -. 29063 & -. 02041 \\
\hline CONT_EX & -. 24868 & . 10027 & -. 05782 & . 29770 & . 08052 & . 10963 & -. 11670 & . 14419 & . 34209 & . 08346 \\
\hline HORKLOAD & . 16420 & -. 42820 & . 24299 & . 31684 & -. 08841 & . 33409 & -. 10408 & . 07711 & -. 11815 & . 08552 \\
\hline YEAR_bus & . 57588 & -. 14035 & . 00241 & -. 33918 & . 09876 & -. 08021 & . 28646 & -. 00898 & -. 10255 & . 06404 \\
\hline ORIGIN & -. 14035 & . 68279 & -. 48291 & -. 31810 & . 01378 & -. 17947 & . 10181 & . 11968 & . 19067 & -. 03357 \\
\hline DEL & . 00241 & -. 48291 & . 81994 & . 23825 & . 06835 & . 12846 & -. 14821 & -. 01794 & -. 08144 & . 07315 \\
\hline LISTED & -. 33918 & -. 31810 & . 23825 & . 85151 & -. 21424 & . 58512 & -. 42244 & . 13255 & . 17941 & . 02122 \\
\hline CENTRAL & . 09876 & . 01378 & . 06835 & -. 21424 & . 41667 & -. 30496 & . 08167 & -. 20374 & -. 21998 & .11090 \\
\hline SUBSID & -. 08021 & -. 17947 & . 12846 & . 58512 & -. 30496 & . 97415 & -. 17912 & . 23939 & . 14264 & . 06685 \\
\hline ARCH_PER & . 28646 & . 10181 & -. 14821 & -. 42244 & . 08167 & -. 17912 & . 73907 & . 01355 & -. 21314 & . 01188 \\
\hline CONTROL & -. 00898 & . 11168 & -. 01794 & . 13255 & -. 20374 & . 23939 & . 01355 & . 63309 & . 15475 & -. 07899 \\
\hline PAYMENT & -. 10255 & . 19067 & -. 08144 & . 17941 & -. 21998 & . 14264 & -. 21314 & . 15475 & . 94926 & -. 01857 \\
\hline PROFIT & . 06404 & -. 03357 & . 07315 & . 02122 & . 11090 & . 06685 & . 01188 & -. 07899 & -. 01857 & . 82219 \\
\hline PAS_P_PM & -. 02585 & -. 25797 & . 42730 & . 08230 & . 04941 & -. 03816 & . 12757 & . 05648 & -. 08297 & -. 14898 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Page 22}} & \multicolumn{7}{|c|}{SPSS/PC+} \\
\hline & & \multicolumn{7}{|c|}{****multipleregression} \\
\hline \multicolumn{2}{|l|}{Equation Number 1} & Dependent Variab & \multicolumn{2}{|l|}{PERFORM CO} & \multicolumn{4}{|l|}{contractor's performance} \\
\hline \multicolumn{2}{|l|}{....... in .-.....} & \multicolumn{7}{|l|}{.-.................. Variables not in the Equation .....................} \\
\hline Variable & Sig \({ }^{\text {r }}\) & Variable & Beta in & Partial & Tolerance & Min Toler & T & Sig T \\
\hline PAST_PER & . 0000 & training & -. 13591 & -. 18540 & . 93214 & . 93214 & -1.033 & . 3097 \\
\hline COMPLEX & . 0189 & Plant & -. 03394 & -.04616 & . 92681 & . 92681 & -. 253 & . 8019 \\
\hline \multirow[t]{16}{*}{(Constant)} & . 6477 & COM_SIZE & -. 08290 & -. 11039 & . 88829 & . 88829 & -. 608 & . 5475 \\
\hline & & Prof_sta & -. 16450 & -. 19085 & . 67427 & . 67427 & -1.065 & . 2954 \\
\hline & & Lead_ex & -. 22539 & -. 30919 & . 94268 & . 93864 & -1.781 & . 0851 \\
\hline & & CONT_EX & -. 066131 & \(-.07345\) & . 71901 & . 71552 & -. 403 & . 6895 \\
\hline & & Worxload & .05862 & . 07193 & . 75426 & . 75088 & . 395 & . 6956 \\
\hline & & year_bus & . 09540 & . 10229 & . 57588 & . 57588 & . 563 & . 5775 \\
\hline & & ORIGIN & -. 15527 & -. 18128 & . 68279 & . 68279 & -1.010 & . 3207 \\
\hline & & DEL & -. 04353 & -. 05569 & . 81994 & . 81994 & -. 306 & . 7621 \\
\hline & & LISTED & . 10223 & . 13328 & . 85151 & . 85151 & . 737 & . 4671 \\
\hline & & central & -. 03856 & -. 03517 & . 41667 & . 41667 & -. 193 & . 8485 \\
\hline & & subsio & -. 01733 & -.02417 & . 97415 & . 97415 & -. 132 & . 8955 \\
\hline & & ARCH_PER & -. 03231 & -. 03925 & . 73907 & . 73907 & -. 215 & . 8311 \\
\hline & & CONTROL & -. 44910 & -. 50487 & . 63309 & . 63309 & -3.204 & . 0032 \\
\hline & & PAYMENT & . 02828 & . 03893 & . 94926 & . 94926 & . 213 & . 8325 \\
\hline & & Profit & . 13809 & . 17692 & . 82219 & . 82219 & . 985 & . 3327 \\
\hline & & PAS_P_PM & -. 17123 & -. 22944 & . 89941 & . 89941 & -1.291 & . 2065 \\
\hline
\end{tabular}

Variable(s) Entered on Step Number 3.. CONTROL ARCHITECT OR CLIENT SUPERVISION AND CONT
\begin{tabular}{lrlrlr} 
Multiple R & .79167 & & \multicolumn{2}{c}{ Analysis of Variance } \\
R Square & .62674 & R Square Change & .12769 & & OF \\
Adjusted R Square & .58941 & F Change & 10.26246 & Regression & 3 \\
Standard Error & .28694 & Signif F Change & .0032 & Residual & 30
\end{tabular}
\begin{tabular}{rr} 
Sum of Squares & Mean Square \\
4.14755 & 1.38252 \\
2.47010 & .08234
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline OEL & . 35372 & -. 17911 & -. 02834 & -. 04375 & . 17608 & . 18437 & -. 28454 & . 48888 & -. 04128 & -. 05373 \\
\hline LISted & . 41423 & -. 27257 & . 20936 & . 14657 & . 17911 & . 13370 & -. 22460 & . 10947 & -. 31978 & . 26751 \\
\hline central & . 61342 & . 08241 & -. 32181 & -. 30756 & -. 01265 & -. 05065 & . 15201 & -. 04800 & . 36532 & . 12693 \\
\hline SUBSID & . \(30742^{\circ}\) & -. 04114 & . 37812 & . 09062 & . 14439 & . 19407 & . 10860 & . 06879 & -. 27831 & . 05511 \\
\hline ARCH_PER & -. 47447 & -. 20770 & . 02140 & -. 01780 & . 13974 & . 14168 & . 26850 & -. 04655 & . 05948 & -. 11979 \\
\hline Payment & . 31542 & -. 17263 & . 24444 & . 09635 & . 09787 & -. 13722 & . 06476 & -. 16931 & -. 27468 & . 30684 \\
\hline PROFIT & -. 16833 & . 44484 & -. 12478 & . 07806 & -. 15777 & . 12908 & . 15558 & -. 15707 & -. 02855 & . 10145 \\
\hline PAS_P_PM & . 18363 & . 26053 & . 08921 & -. 12865 & . 08753 & . 12396 & -. 16037 & . 40516 & -. 01478 & -. 04125 \\
\hline
\end{tabular}

Page 24
SPSS/PE+

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR's PERFORMANCE
XTX Matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & WORKLOAD & YEAR_BUS & ORIGIN & DEL & LISTED & CENTRAL & SU8SID & ARCH_PER & PAYment & PROFIT \\
\hline PASt_PER & -. 07092 & . 52738 & . 44558 & -. 35372 & -. 41423 & -. 61342 & -. 30742 & . 47447 & -. 31542 & . 16833 \\
\hline COMPLEX & -. 45182 & -. 36144 & . 30570 & . 17911 & . 27257 & -. 08241 & . 04114 & . 20770 & . 17263 & -. 44484 \\
\hline CONTROL & -. 12180 & . 01419 & . 17641 & . 02834 & . 20936 & . 32181 & \(\cdot .37812\) & -. 02140 & -. 24444 & . 12478 \\
\hline PERform & . 07884 & . 05090 & -. 05586 & \(-.04375\) & .14657 & -. 10756 & . 09062 & -. 01780 & . 09635 & . 07806 \\
\hline TRAINING & -. 27278 & -. 13619 & -. 08903 & .17608 & . 17911 & -. 01265 & . 14439 & . 13974 & . 09787 & -. 15777 \\
\hline PLANT & -. 06096 & -. 23111 & -. 08306 & . 18437 & . 13370 & -. 05065 & . 19407 & . 14168 & -. 13722 & . 12908 \\
\hline COM_SIZE & . 13182 & . 34930 & . 12916 & -. 26454 & -. 22460 & . 15201 & . 10860 & . 26850 & . 06476 & . 15558 \\
\hline PROF_STA & . 19352 & . 06589 & -. 43035 & . 48889 & . 10947 & -. 04800 & . 06879 & -. 04655 & -. 16931 & -. 15707 \\
\hline Lead_ex & -. 25306 & -. 02009 & . 21032 & -. 04128 & -. 31978 & . 36532 & -. 27831 & . 05948 & -. 27468 & -. 02855 \\
\hline CONT_EX & -. 07963 & -. 24664 & . 07483 & -. 05373 & . 26751 & . 12693 & . 05511 & -. 11979 & . 30684 & . 10145 \\
\hline WORKLOAD & . 74487 & . 16529 & -. 44180 & . 24597 & . 30069 & -. 06360 & . 30493 & -. 10573 & -. 13699 & . 09514 \\
\hline YEAR_BUS & . 16529 & . 57575 & -. 13877 & . 00215 & \(\cdot .33730\) & . 09587 & -. 07682 & . 28665 & -. 10036 & . 06291 \\
\hline ORIGIN & -. 44180 & -. 13877 & . 66308 & \(\cdot .47974\) & -. 34148 & . 04972 & \(\cdot .22170\) & . 09942 & . 16337 & -. 01964 \\
\hline DEL & . 24517 & . 00215 & -. 47974 & . 81944 & . 24201 & . 06258 & . 13525 & -. 14783 & -. 07706 & . 07091 \\
\hline LISTED & . 30069 & -. 33730 & -. 34148 & . 24201 & . 82376 & -. 17159 & . 53500 & -. 42528 & . 14701 & . 03775 \\
\hline central & -. 06360 & . 09587 & . 04972 & . 06258 & -. 17159 & . 35111 & -. 22792 & . 08602 & -. 17017 & . 08548 \\
\hline SUBSIO & . 30493 & -. 07682 & -. 22170 & . 13525 & . 53500 & -. 22792 & . 88363 & -. 18424 & . 08412 & . 09671 \\
\hline ARCH_PER & -. 10573 & . 28665 & . 09942 & -. 14783 & -. 42528 & . 08602 & . . 18424 & . 73878 & -. 21645 & . 01357 \\
\hline PAYMENT & -. 13699 & -. 10036 & . 16337 & -. 07706 & . 14701 & -. 17017 & . 08412 & -. 21645 & . 91143 & 7.413E-04 \\
\hline PRDFIT & . 09514 & . 06291 & -. 01954 & . 07091 & . 03775 . & . 08548 & . 09671 & . 01357 & 7.413E-04 & . 81234 \\
\hline PAS_P_PM & . 17664 & -. 02505 & -. 26794 & . 42890 & . 07048 & . 06758 & -. 05952 & . 12636 & -. 09678 & -. 14193 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Variable & 8 & SE B & \[
95 \% \text { canfs }
\] & Intryl B & Beta & SE Beta & Correl & Part Cor & Partial & Tolerance & \(T\) \\
\hline PAst_per & . 25674 & . 07364 & . 10635 & . 40712 & . 44927 & . 12886 & . 63241 & . 38891 & . 53700 & . 74935 & 3.487 \\
\hline COMPLEX & . 13327 & . 03414 & . 06354 & . 20299 & . 48050 & . 12310 & . 26995 & . 43541 & . 58037 & . 82110 & 3.903 \\
\hline CONTROL & -. 21010 & . 06559 & -. 34405 & -. 07696 & -. 44910 & . 14019 & -. 47407 & -. 35733 & -. 50487 & . 63309 & -3.204 \\
\hline (Constant) & . 76696 & . 35715 & . 03757 & 1.49635 & & & & & & & 2.147 \\
\hline
\end{tabular}

Page 27 SPSS/PC+ 4/22/92

Equation Nunber 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

Variable(s) Entered on Step Number 4.. LEAD_EX PROJECT LEADER'S EXPERIENCE



Var-Covar Matrix of Regression Coefficients (B)
Below Diagonal: Covariance Above: Correlation
\begin{tabular}{lrrrr} 
& \multicolumn{1}{c}{ PAST_PER } & COMPLEX & CONTROL & \multicolumn{1}{l}{ LEAD_EX } \\
&. & & & \\
PAST_PER & .00481 & -.13786 & .47380 & -.16907 \\
COMPLEX & \(-3.037 E-04\) & .00101 & -.42177 & -.07332 \\
CONTROL & .00201 & \(-8.986 E-04\) & .00373 & .08445 \\
LEAD_EX & \(-8.482 E-05\) & \(-1.686 E-05\) & \(3.7325 E-05\) & \(5.2349 E-05\)
\end{tabular}

Page 28 SPSS/PC+
4/22/92

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & PAST_PER & COMPLEX & CONTROL & LEAD_EX & PERFORM & training & Plant & COM_SIZE & PROF_STA & CONT_EX \\
\hline & & & & & & & & & & \\
\hline PASt_PER & 1.37377 & -. 17881 & . 70044 & -. 20483 & -. 49879 & . 09207 & -. 22534 & -. 18944 & -. 59490 & -. 08412 \\
\hline COMPLEX & -. 17881 & 1.22446 & -. 58867 & -. 08387 & -. 50078 & -. 00137 & . 36326 & -. 24542 & . 04976 & . 60982 \\
\hline CONTROL & . 70044 & -. 58867 & 1.59090 & . 11010 & . 47571 & -. 25949 & -. 30050 & -. 19235 & . 02552 & -. 22096 \\
\hline LEAD_EX & -. 20483 & -. 08387 & . 11010 & 1.06842 & . 25831 & . 11193 & . 06373 & -. 08775 & . 18580 & . 06596 \\
\hline PERFORM & . 49879 & . 50078 & \(\cdot .47571\) & -. 25831 & . 31081 & -. 07669 & . 04044 & -3.07E-04 & -. 15765 & . 00473 \\
\hline training & -. 09207 & . 00137 & . 25949 & -. 11193 & -. 07669 & . 87391 & . 12586 & -. 17275 & . 27056 & . 14187 \\
\hline PLANT & . 22534 & -. 36326 & . 30050 & -. 06373 & . 04044 & . 12586 & . 86332 & -. 04928 & -. 06647 & . 18376 \\
\hline COM_SIZE & . 18944 & . 24542 & . 19235 & . 08775 & -3.07E-04 & -. 17275 & -. 04928 & . 85981 & -. 18767 & . 12680 \\
\hline Prof_sta & . 59490 & -. 04976 & -. 02552 & -. 18580 & -. 15765 & . 27056 & -. 06647 & -. 18767 & . 64193 & -. 19076 \\
\hline CONT_EX & . 08412 & -. 60982 & . 22096 & -. 06596 & . 00473 & . 14187 & . 18376 & . 12680 & -. 19076 & . 68209 \\
\hline workioan \({ }^{\text {a }}\) & . 12276 & . 47305 & . 09394 & -. 27038 & . 01347 & -. 30111 & -. 07709 & . 15403 & . 14650 & -. 09633 \\
\hline
\end{tabular}
\begin{tabular}{lrrrr|r|rrrrr} 
\\
YEAR_BUS & -.52327 & .36313 & -.01640 & -.02147 & .04571 & -.13844 & -.23239 & .35106 & .06216 & -.24796 \\
ORIGIN & -.48867 & -.32333 & .19957 & .22471 & -.00153 & -.06549 & -.06965 & .11070 & -.39127 & .08871 \\
DEL & .36218 & -.17564 & -.03289 & -.04410 & -.05441 & .17146 & .18174 & -.26091 & .48123 & -.05645 \\
LISTED & .47973 & -.24575 & .17416 & -.34166 & .06397 & .14332 & .11332 & -.19654 & .05006 & .24642 \\
CENTRAL & .53859 & .05177 & -.28159 & .39031 & -.01320 & .02824 & -.02737 & .11995 & .01988 & .15102 \\
SUBSID & .36443 & -.01780 & .34748 & -.29735 & .01873 & .11323 & .17633 & .13302 & .01708 & .03675 \\
ARCH_PER & -.48665 & -.21268 & .02795 & .06355 & -.00243 & .14640 & .14547 & .26328 & -.03550 & -.11587 \\
PAYMENT & .37168 & -.14959 & .21420 & -.29347 & .02539 & .06712 & -.15473 & .08886 & -.22034 & .28873 \\
PROFIT & -.16248 & .44724 & -.12792 & -.03050 & .07069 & -.16096 & .12726 & .15808 & -.16238 & .09957 \\
PAS_P_PM & .18666 & .26177 & .08758 & -.01579 & -.13246 & .08587 & .12301 & -.15907 & .40241 & -.04223
\end{tabular}

Page 29
SPSS/PC+
**** MULTIPLE REGRESSION****
Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & HORKLOAD & YEAR_BUS & ORIGIN & DEL & LISTED & CENTRAL & SUBSID & ARCH_PER & PAYMENT & Profit \\
\hline PAST_PER & -. 12276 & . 52327 & . 48867 & -. 36218 & -. 47973 & -. 53859 & -. 36443 & . 48665 & -. 37168 & . 16248 \\
\hline COMPLEX & -. 47305 & -. 36313 & . 32333 & . 17564 & . 24575 & -. 05177 & . 01780 & . 21268 & . 14959 & -. 44724 \\
\hline CONTROL & -. 09394 & . 01640 & -. 19957 & . 03289 & -. 17416 & . 28159 & -. 34748 & -. 02795 & -. 21420 & . 12792 \\
\hline LEAD_EX & . 27038 & . 02147 & -. 22471 & . 04410 & . 34166 & -. 39031 & . 29735 & -. 06355 & . 29347 & . 03050 \\
\hline PERFORM & . 01347 & . 04571 & \(\cdot .00153\) & -. 05441 & . 06397 & \(\cdot .01320\) & . 01873 & -. 00243 & . 02539 & . 07069 \\
\hline training & -. 30111 & -. 13844 & -. 06549 & . 17146 & . 14332 & . 02824 & . 11323 & . 14640 & . 06712 & -. 16096 \\
\hline Plant & -. 07709 & -. 23239 & -. 06965 & . 18174 & . 11332 & -. 02737 & . 17633 & . 14547 & . . 15473 & . 12726 \\
\hline COM_SIZE & . 15403 & . 35106 & . 11070 & -. 26091 & -. 19654 & . 11995 & . .13302 & . 26328 & . 08886 & . 15808 \\
\hline PROF_STA & . 14650 & . 06216 & \(\cdot .39127\) & . 48123 & . 05006 & . 01988 & . 01708 & -. 03550 & -. 22034 & -. 16238 \\
\hline CONT_EX & -. 09633 & -. 24796 & . 08871 & -. 05645 & . 24642 & . 15102 & . 03675 & -. 11587 & . 28873 & . 09957 \\
\hline WORKLOAD & . 67645 & . 15986 & -. 38494 & . 23401 & . 21423 & . 03518 & . 22968 & -. 08964 & -. 21126 & . 08742 \\
\hline YEAR_BUS & . 15986 & . 57532 & -. 13425 & . 00127 & -. 34416 & . 10371 & -. 08279 & . 28793 & -. 10626 & . 06230 \\
\hline ORIGIN & -. 38494 & -. 13425 & . 61582 & \(\cdot .47047\) & -. 26962 & -. 03237 & -. 15916 & . 08605 & . 22509 & -. 01322 \\
\hline DEL & . 23401 & . 00127 & -. 47047 & . 81762 & . 22791 & . 07869 & . 12297 & -. 14521 & -. 08917 & . 06965 \\
\hline LISTED & . 21423 & -. 34416 & -. 26962 & . 22791 & . 71450 & -. 04677 & . 43992 & -. 40495 & . 05317 & . 02800 \\
\hline CENTRAL & . 03518 & . 10371 & -. 03237 & . 07869 & -. 04677 & . 20852 & -. 11929 & . 06281 & -. 06296 & . 09663 \\
\hline SUBSID & . 22968 & -. 08279 & -. 15916 & . 12297 & . 43992 & -. 11929 & . 80087 & -. 16656 & . 00244 & . 08823 \\
\hline ARCH_PER & -. 08964 & . 28793 & . 08605 & -. 14521 & -. 40495 & . 06281 & -. 16656 & . 73500 & -. 19900 & . 01538 \\
\hline PaYment & -. 21126 & -. 10626 & . 22509 & -. 08917 & . 05317 & -. 06296 & . 00244 & -. 19900 & . 83082 & -. 00764 \\
\hline PROFIT & . 08742 & . 06230 & -. 01322 & . 06965 & . 02800 & . 09663 & . 08823 & . 01538 & -. 00764 & . 81146 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline PAS_P_PM & . 17264 & -. 02536 & -. 26461 & . 42825 & . 06543 & . 07335 & -. 06391 & . 12730 & -. 10112 & -. 14238 \\
\hline Page 30 & & & SPSS/PC+ & & & & &  & & \\
\hline
\end{tabular}

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix


Page 31 SPSS/PC+


Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR's PERFORMANGE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Variable & B & SE B & 95\% Confdnc & ce Intrvl 8 & Beta & SE Beta & Correl & Part Cor & Partial & Tolerance & 1 \\
\hline PASt_PER & . 28504 & . 06934 & . 14322 & . 42685 & . 49879 & .12134 & . 63241 & . 42556 & . 60676 & . 72793 & 4.111 \\
\hline COMPLEX & . 13889 & . 03177 & . 07391 & . 20387 & . 50078 & . 11456 & . 26995 & . 45256 & . 63025 & . 81668 & 4.371 \\
\hline CONTROL & -. 22256 & . 06109 & -. 34750 & -. 09762 & -. 47571 & . 13058 & -. 47407 & -. 37716 & -. 56034 & . 62857 & -3.643 \\
\hline LEAD_EX & -. 01747 & 7.23529E-03 & -. 03226 -2 & 2.66776E-03 & -. 25831 & . 10701 & -. 05049 & -. 24990 & -. 40904 & . 93596 & -2.414 \\
\hline (Constant) & . 96829 & . 34180 & . 26922 & 1.66736 & & & & & & & 2.833 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Variable & sig 1 & Variable & Beta In & Partial & Tolerance & Min Toler & \(T\) & Sig \(T\) & \\
\hline PAST_PER & . 0003 & training & -. 08776 & -. 14715 & . 87391 & . 59954 & -. 787 & . 4378 & \\
\hline COMPLEX & . 0001 & plant & . 04685 & . 07808 & . 86332 & . 58980 & . 414 & . 6817 & \\
\hline CONTROL & . 0010 & COM_SIZE & -3.570E-04 & -. 00059 & . 85981 & . 61202 & -. 003 & . 9975 & \\
\hline LEAD_EX & . 0223 & PROF_STA & -. 24559 & -. 35295 & . 64193 & . 51946 & -1.996 & . 0557 & \\
\hline (Constant) & . 0083 & CONT_EX & 6.9291E-03 & . 01026 & . 68209 & . 56508 & . 054 & . 9571 & \\
\hline & & WORKLOAD & . 01992 & . 02939 & . 67645 & . 62346 & . 156 & . 8775 & \\
\hline & & Year_bus & . 07946 & . 10811 & . 57532 & . 54063 & . 575. & . 5696 & - \\
\hline & & ORIGIM & -2.491E-03 & -. 00351 & . 61582 & . 56769 & -. 019 & . 9853 & \\
\hline & & DEL & -. 06655 & -. 10794 & . 81762 & . 62805 & -. 575 & . 5702 & \\
\hline * & & - listed & . 08953 & . 13575 & . 71450 & . 58967 & . 725 & . 4745 & \\
\hline & & central & -. 06329 & -. 05184 & . 20852 & . 20852 & \(\cdot .275\) & . 7856 & \\
\hline & & SUBSIO & . 02339 & . 03755 & . 80087 & . 57416 & . 199 & . 8438 & \\
\hline & & ARCH_PER & -3.308E-03 & -. 00509 & . 73500 & . 58963 & -. 027 & . 9787 & \\
\hline & & Payment & . 03056 & . 04997 & . 83082 & . 60749 & . 265 & . 7939 & \\
\hline & & PROFIT & . 08711 & . 14076 & . 81146 & . 62071 & . 752 & . 4581 & \\
\hline & & PAS_P_PM & -. 14815 & -. 25128 & . 89414 & . 62520 & -1.374 & . 1804 & \\
\hline
\end{tabular}

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

Variable(s) Entered on Step Number 5.. prof_sta management team's quality-professional a

Multiple R . 85318
Analysis of Variance
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(R\) Square & . 72791 & R Square Change & . 03872 & & OF & Sum of & Squares & Mean Square \\
\hline Adjusted R Square & . 67932 & F Change & 3.98445 & Regression & 5 & & 4.81706 & . 96341 \\
\hline Standard Error & . 25359 & Signif F Change & . 0557 & Residual & 28 & & 1.80059 & . 06431 \\
\hline & & & & \(F=\) & & if \(F=\) & . 0000 & \\
\hline
\end{tabular}

Condition number bounds: \(\quad 1.925,37.127\)

Var-Covar Matrix of Regression Coefficients (B)
Below Diagonal: Covariance Above: Correlation


Equation Humber 1 Dependent Variable.: PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & PASt_PER & COMPLEX & CONTROL & .LEAD_EX & PROF_STA & PERFORM & training & plant & COM_SIZE & CONT_EX \\
\hline & & & & & & & & & - & Con_ \\
\hline PASt_PER & 1.92507 & -. 22492 & . 67679 & -. 37702 & -. 92673 & -. 64489 & . 34280 & -. 28693 & -. 36337 & -. 26091 \\
\hline COMPLEX & -. 22492 & 1.22832 & -. 58670 & -. 06947 & . 07751 & -. 48856 & -. 02234 & . 36841 & -. 23088 & . 62461 \\
\hline CONTROL & . 67679 & -. 58670 & 1.59192 & . 11748 & . 03976 & . 48198 & -. 27025 & . .29785 & -. 18489 & . .21338 \\
\hline LEAO_EX & -. 37702 & -. 06947 & . 11748 & 1.12220 & . 28944 & . 30394 & . 03362 & . 08296 & -. 03343 & . 12117 \\
\hline PROF_STA & -. 92673 & . 07751 & . 03976 & . 28944 & 1.55780 & . 24559 & -. 42147 & . 10354 & . 29236 & . 29717 \\
\hline PERFORM & . 64489 & . 48856 & -. 48198 & -. 30394 & -. 24559 & . 27209 & -. 01025 & . 02412 & -. 04640 & -. 04212 \\
\hline training & -. 34280 & . 02234 & . 27025 & -. 03362 & . 42147 & -. 01025 & . 75988 & . 15387 & -. 09365 & \\
\hline PLANt & . 28693 & -. 36841 & . 29785 & -. 08296 & -. 10354 & . 02412 & . 15387 & . 85644 & -. 06879 & . 16401 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline COM_SIZE & . 36337 & . 23088 & . 18489 & . 03343 & -. 29236 & -. 04640 & -. 09365 & -. 06871 & . 80494 & . 07103 \\
\hline CONT_EX & . 26091 & -. 62461 & . 21338 & -. 12117 & -. 29717 & -. 04212 & . 22227 & . 16401 & . 07103 & . 62541 \\
\hline HorkLoad & -. 01301 & . 48440 & . 09977 & -. 22797 & . 22821 & . 04945 & -. 36285 & -. 06192 & . 19686 & -. 05279 \\
\hline year_bus & -. 58087 & . 36795 & -. 01393 & -. 00347 & . 09683 & . 06098 & -. 16464 & -. 22595 & . 36923 & -. 22949 \\
\hline origin & -. 12606 & -. 35366 & . 18401 & . 11146 & -. 60952 & -. 09763 & . 09942 & -. 11017 & -. 00369 & -. 02757 \\
\hline DEL & -. 08379 & -. 13835 & -. 01375 & . 09519 & . 74965 & . 06377 & -. 03137 & . 23157 & -. 12022 & . 08655 \\
\hline listed & . 43335 & -. 24187 & . 17615 & -. 32717 & . 07798 & . 07626 & . 12222 & . 11850 & -. 18191 & . 26129 \\
\hline central & . 52017 & . 05331 & -. 28080 & . 39607 & . 03096 & -. 00832 & . 01986 & -. 02531 & . 12576 & . 15693 \\
\hline SUBSID & . 34860 & -. 01647 & . 34816 & -. 29241 & . 02660 & . 02293 & . 10604 & . 17810 & . 13802 & . 04183 \\
\hline ARCH_PER & -. 45376 & -. 21544 & . 02654 & . 05328 & -. 05530 & -. 01115 & . 16136 & . 14180 & . 25290 & -. 12642 \\
\hline payment & .57588 & -. 16667 & . 20544 & -. 35725 & -. 34325 & -. 02872 & . 15999 & -. 17754 & . 02444 & . 22325 \\
\hline Profit & -. 01200 & . 43465 & -. 13437 & -. 07750 & -. 25295 & . 03081 & -. 09252 & . 11045 & . 11061 & . 05131 \\
\hline PAS_P_PM & -. 18627 & . 29296 & . 10358 & . 10069 & . 62688 & -. 03363 & -. 08373 & . 16468 & -. 04142 & . 07736 \\
\hline Page 34 & & & SPSS/PC+ & & & & & & & \\
\hline
\end{tabular}

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & WORKLOAD & YEAR_bUS & ORIGIN & DEL & LISTED & CENTRAL & SUBSID & ARCH_PER & PAYMENT & Profit \\
\hline PAST_PER & . 01301 & . 58087 & . 12606 & . 08379 & -. 43335 & -. 52017 & -. 34860 & . 45376 & \(\cdot .57588\) & . 01200 \\
\hline COMPLEX & -. 48440 & -. 36795 & . 35366 & . 13835 & . 24187 & -. 05331 & . 01647 & . 21544 & . 16667 & -. 43465 \\
\hline CONTROL & -. 09977 & . 01393 & -. 18401 & . 01375 & -. 17615 & . 28080 & -. 34816 & -. 02654 & -. 20544 & . 13437 \\
\hline LEAD_EX & . 22797 & . 00347 & -. 11146 & -. 09519 & . 32717 & -. 39607 & . 29241 & -. 05328 & . 35725 & . 07750 \\
\hline PROF_STA & -. 22821 & -. 09683 & . 60952 & \(\cdot .74965\) & -. 07798 & -. 03096 & -. 02660 & . 05530 & . 34325 & . 25295 \\
\hline PERFORM & . 04945 & . 06098 & -. 09763 & . 06377 & . 07626 & -. 00832 & . 02293 & -. 01115 & -. 02872 & . 03081 \\
\hline training & -. 36285 & -. 16464 & . 09942 & -. 03137 & . 12222 & . 01986 & . 10604 & . 16136 & . 15999 & -. 09252 \\
\hline plant & -. 06192 & -. 22595 & -. 11017 & . 23157 & . 11850 & -. 02531 & . 17810 & . 14180 & -. 17754 & . 11045 \\
\hline COM_SIZE & . 19686 & . 36923 & -. 00369 & -. 12022 & -. 18191 & . 12576 & . 13802 & . 25290 & . 02444 & . 11061 \\
\hline CONT_EX & -. 05279 & -. 22949 & -. 02757 & . 08655 & . 26129 & . 15693 & . 04183 & . . 12642 & . 22325 & . 05131 \\
\hline WORKLOAD & . 64302 & . 14567 & -. 29565 & . 12419 & . 20281 & . 03064 & . 22578 & -. 08154 & -. 16098 & . 12448 \\
\hline YEAR_8US & . 14567 & . 56930 & -. 09637 & -. 04533 & -. 34901 & . 10179 & -. 08444 & . 29137 & -. 08492 & . 07803 \\
\hline ORIGIN & -. 29565 & -. 09637 & . 37733 & -. 17715 & -. 23911 & -. 02025 & -. 14875 & . 06442 & . 09079 & -. 11220 \\
\hline DEL & . 12419 & -. 04533 & -. 17715 & . 45686 & . 19038 & . 06378 & . 11017 & -. 11860 & . 07601 & . 19138 \\
\hline LJSTED & . 20281 & -. 34901 & -. 23911 & . 19038 & . 71060 & -. 04832 & . 43859 & -. 40219 & . 07035 & . 04066 \\
\hline central & . 03064 & . 10179 & -. 02025 & . 06378 & -. 04832 & . 20790 & -. 11982 & . 06391 & -. 05614 & . 10165 \\
\hline SUBSID & . 22578 & -. 08444 & -. 14875 & . 11017 & . 43859 & -. 11982 & . 80042 & -. 16561 & . 00831 & . 09254 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline ARCH_PER & -. 08154 & . 29137 & . 06442 & -. 11860 & -. 40219 & . 06391 & -. 16561 & . 73304 & -. 21118 & . 00640 \\
\hline Payment & -. 16098 & -. 08492 & . 09079 & . 07601 & . 07035 & -. 05614 & . 00831 & \(\cdot .21118\) & . 75519 & -. 06337 \\
\hline PROFIT & . 12448 & . 07803 & -. 11220 & . 19138 & . 04066 & . 10165 & . 09254 & . 00640 & -. 06337 & . 77039 \\
\hline PAS_P_PM & . 08080 & -. 06433 & -. 01933 & . 12658 & . 03405 & . 06089 & -. 07462 & . 14955 & . 03701 & -. 04059 \\
\hline Page 35 & & & SPSS/PC+ & & & & & & & \\
\hline
\end{tabular}

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix

PAS_P_PM
\begin{tabular}{lr} 
PAST_PER & .18627 \\
COMPLEX & -.29296 \\
CONTROL & -.10358 \\
LEAD_EX & -.10069 \\
PROF_STA & -.62688
\end{tabular}
PE.-......................
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

TRAINING -.08373
PLANT . 16468
COM_SIZE \(\quad .04142\)
CONT_EX . 07736
HORKLOAD . 08080
YEAR_BUS \(\quad .06433\)
ORIGIN \(\quad-.01933\)
DEL . 12658
LISTED . 03405
CENTRAL . 06089
SUBSID -. 07462
ARCH_PER . 14955
PAYMENT . 03701
PROFIT -. 04059
PAS_P_PM . 64187

Page 36 SPSS/PC+

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Variable & Sig \({ }^{\text {T }}\) & Variable & Beta In & Partial & Tolerance & Min Toler & T & Sig 1 \\
\hline PAST_PER & . 0001 & training & -. 01348 & -. 02253 & . 75988 & . 48083 & -. 117 & . 9076 \\
\hline COMPLEX & . 0001 & plant & . 02816 & . 04997 & . 85644 & . 49475 & . 260 & . 7969 \\
\hline CONTROL & . 0006 & COM_SIZE & -. 05764 & -. 09914 & . 80494 & . 47867 & -. 518 & . 6089 \\
\hline LEAD_EX & . 0070 & CONT_EX & -. 06735 & -. 10211 & . 62541 & . 49166 & -. 533 & . 5981 \\
\hline Prof_Sta & . 0557 & WORKLOAD & . 07691 & . 11823 & . 64302 & . 51939 & . 619 & . 5413 \\
\hline \multirow[t]{10}{*}{(Constant)} & . 0082 & YEAR_BUS & . 10711 & . 15494 & . 56930 & . 39718 & . 815 & . 4222 \\
\hline & & ORIGIN & -. 25873 & -. 30469 & . 37733 & . 37733 & -1.662 & . 1080 \\
\hline & & DEL & . 13959 & . 18088 & . 45686 & . 35870 & . 956 & . 3477 \\
\hline & & LISTED & . 10732 & . 17344 & . 71060 & . 45676 & . 915 & . 3683 \\
\hline & & central & -. 04000 & -. 03496 & . 20790 & . 20790 & -. 182 & . 8571 \\
\hline & & SUBSID & . 02864 & . 04913 & . 80042 & . 48149 & . 256 & . 8002 \\
\hline & & ARCH_PER & -. 01521 & -. 02496 & . 73304 & . 45332 & -. 130 & . 8977 \\
\hline & & Payment & -. 03803 & -. 06336 & . 75519 & . 42297 & -. 330 & . 7440 \\
\hline & & Profit & . 03999 & . 06729 & . 77039 & . 51941 & . 350 & . 7287 \\
\hline & & PAS_P_PM & -. 05240 & -. 08048 & . 64187 & . 46082 & -. 420 & . 6781 \\
\hline
\end{tabular}
End Block Number 1 PIN \(=\). 060 Limits reached.

\footnotetext{
Equation Humber 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE
}

Sumary table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Step & Multr & Rsq & AdjRsq & f(Eqn) & Sigf & Rsqch & FCh & sigch & & Variable & Betaln & Correl & \\
\hline 1 & . 6324 & . 3999 & . 3812 & 21.328 & . 000 & . 3999 & 21.328 & . 000 & In: & PAST_PER & . 6324 & . 6324 & CONTRACTOR'S PAST PERFORMANCE \\
\hline 2 & . 7064 & . 4991 & . 4667 & 15.442 & . 000 & . 0991 & 6.133 & . 019 & In: & COMPLEX & . 3156 & . 2700 & COMPLEXITY OF PROJECT \\
\hline 3 & . 7917 & . 6267 & . 5894 & 16.791 & . 000 & . 1277 & 10.262 & . 003 & In: & CONTROL & -. 4491 & -. 4741 & ARCHITECT OR CLIENT SUPERVISI \\
\hline 4 & . 8302 & . 6892 & . 6463 & 16.076 & . 000 & . 0625 & 5.827 & . 022 & In: & LEAD_EX & -. 2583 & -. 0505 & PROJECT LEADER'S EXPERIEMCE \\
\hline 5 & . 8532 & . 7279 & . 6793 & 14.982 & . 000 & . 0387 & 3.984 & . 056 & In: & PROF_STA & -. 2456 & . 2266 & management team's ouality-pro \\
\hline Page & 38 & \multicolumn{5}{|c|}{SPSS/PC+} & & & & & & & 4/22/92 \\
\hline \multicolumn{14}{|l|}{This procedure was completed at 15:17:18} \\
\hline Page & 39 & & & SPSS/ & C+ & & & & & & & & 4/22/92 \\
\hline
\end{tabular}

FINISH.

End of Include file.

\section*{APPENDIX 8}

\section*{Introduction to the Performance Assessment Scoring System (PASS) of the Hong Kong Housing Authority \({ }^{48}\)}

\section*{\(1 / 1\) INTRODUCTION}

1/1.1 Housing Authority introduced its own independent list of Building Contractors in April 1990.

1/1.2 In managing the Authority's list, the main principle to be followed is that Contractors who perform to the required standard, will have more tendering opportunities than those who do not. This requires the establishment of an objective means of assessing performance standards.

1/1.3 For many years, Housing Department has operated a performance assessment system which is based on the project staff's rating of the contractor's level of achievement under the headings of materials, structure, labour, progress, safety etc. Although the system has served well, it does not measure attainment against a common scale of preset stảndards.

1/1.4 A new Performance Assessment Scoring System (PASS) has been developed to measure performance output directly against defined standards and to provide a fair means of comparing the performance of individual contractors.

1/1.5 At the Building Committee meeting of 16th February 1990, PASS was approved for use on Housing Authority Contracts.

1/1.6 PASS will also be used to guide contractors on aspects which require improvement and will be a practical continuous assessment tool in persuading, training and instructing contractors to improve their performance.

1/1.7 It is considered that the assessment of a contractor's overall performance should be based not only on his PASS score but also on some measure of his management capability and capacity.

1/1.8 Management capabiliry relates to the contractor's organisational input on his contracts. It is useful to monitor input for deciding the contractor's capacity in undertaking the additional work-load which would arise out of new contracts as well as for diagnostic purposes.

1/1.9. Management input aspects will eventually be covered by the contractor's Quality Management Schedule (QM Sch) and will in time be assessed objectively by the HK Quality Assurance Agency (HKQAA) in their half-yearly routine surveillance visits following a contractor's certification to ISO 9002. However, the Contractor's management input at the site level will be assessed by the project team on a quarterly basis on individual contracts.

1/1.10 It is considered that the output scores and input rating should not be combined due to their different natures.

1/1.11 The overall performance reports, considering both PASS Output and Management Input, will be used as an aid in deciding whether or not to promote or downgrade a company and also in awarding preferential tendering opportunities.

\section*{ABOUT PASS}

1/2.1 Thè Singapore Construction Industry Development Board's quality assessment scheme, which has been in successful operation for several years, has been the principal source of reference.

1/2.2 PASS classifies a building's construction in terms of four main aspects : structural work; architectural work, other obligations and external works. The system, focusing on quality, scores performance against predetermined standards and tolerance levels which are assessed at several sample locations. The scores are then added up to give a total. The maximum possible score is 100 points.

1/2.3 At a particular sampling location, the construction work which is to be assessed, is judged as complying or not complying with the stated standards. The assessment is a simple yes/ no exercise. There is no provision for partial attainment of standards. To give a fair assessment, several locations are sampled to give an even measure of the overall standard.

1/2.4 In addition to an objective measure of workmanship and quality, there is a need to monitor progress accurately and fairly. Delays to individual contracts must be identified so that timely corrective action can be taken. A system which identifies contractors who consistently fail to meet established programmes will enable the CPRC to recommend appropriate disciplinary action and provide a further tool for the LMC in deciding tendering eligibility, as part of the overall assessment of a contractor. Such a system will be introduced during the next financial year.

1/2.5 The system is better than the existing performance assessment system in several respects. It is particularly good in directly assessing compliance against standards rather than representing an overall impression: It is therefore directly related to site supervisory functions. It has the added advantage of allowing the contractor to be informed immediately of good or bad performance.

1/2.6 It should be noted that PASS is not intended to replace the normal checks, inspections and tests to be carried out by the "Architect" or to reduce his overall authority or powers under the contract. PASS is, nevertheless, seen as a complementary, but limited, checking system for the various aspects.

\section*{1/3 ASPECTS OF PASS}

\section*{1/3.1 Monthly Assessment}

The PASS Monithly Assessment is divided into four aspects, plus a separate assessment of progress.
(a) Structural Work is allotted 35 percent of the total score. The factors included in this aspect are falsework, formwork, reinforcement, concrete practice, concrete quality and finished concrete. The quality standards and tolerances are given in Part 2.
(b) Architectural Work deals mainly with components and finishes. The 35 percent allotted to architectural work is distributed among several factors, including floor, wall, windows, installation of components, plumbing installation, structural window openings and application of spatterdash. The quality standards and tolerances are given in Part 3.
(c) External Works is given 10 percent of the total assessment. The factor covered by this aspect is drainage. The quality standards and tolerances are given in Part 4.
(d) General Obligations are the contractors's duties and responsibilities under the contract. The 20 percent allowed for this aspect is assessed with respect to the factors of safety and general obligations. The quality standards are given in Part 5.

\section*{1/3.2 Substantial Completion Assessment}

At Substantial Completion, all projects will be checked by a Substantial Completion Assessment (SCA) as a round up of the previous monthly assessments. Details of SCA will be issued later.

\section*{1/3.3 Maintenance Assessment}

A Maintenance Assessment (MA) will be carried out during the Maintenance Period. This assessment aims at checking how the building functions after occupation. Details of MAA will be issued later.

\section*{1/4 \\ PRACTICAL DETAILS OF PASS MONTHLY ASSESSMENT}

\section*{1/4.1 When to carry out the Assessment}

Assessment to be conducted monthly. Assessment dates for 1991 are shown in the Schedule at item 1/4.11.

\section*{1/4.2 Resources}

Introduction of PASS will make some increased demands on project staff time. This may be compensated by the fact that the system is more directly related to the ongoing site supervision functions and this checking would have to be carried out in any event.

\section*{1/4.3 Who is to carry out the Assessment}

The assessment will be done by the project team members, with the assistance of the site staff and in the presence of the contractor's authorised representative.

\section*{1/4.4 Locations}
(a) The system is wholly based on the principle of examining workmanship at random sampling locations. The concept of a location as an identifiable discrete area of the building is essential to an understanding of the scheme.
(b) To improve consistency and to encourage a systematic assessment, locations are further subdivided into spots which are themselves constituent parts (walls, ceilings etc.) of the location. Spots are therefore usually defined as particular elements or areas within the location.
(c) The main aspects of work (e.g. structural, architectural, etc.) are broken down into factors which are assessed in turn at each spot. They have to be broken down into discrete items which have definite standards. These standards are based on specification standards. Very important items are marked *.
(d) The total number of sampling locations for all aspects are to be doubled for contracts with more than 4 standard blocks.

\section*{1/4.5 Method of Assessment}
(a) Particular locations are selected on the day of assessment. There should not be any advance notice of the sampling locations. However, half a day's advance notice may be given to the Contractor's representative to ensure that he could make himself available during the assessment. For details, please refer to item \(1 / 6\) showing assessment checklist for PASS monthly assessment.
(b) The records of test results such as those on concrete and some other tests are also used in the assessment.
(c) The assessment team will usually be concentrating on a particular aspect (e.g. Architectural work) and will proceed to the first sampling location.
(d) On reaching the sampling location the team will examine each factor that is included in the aspect being assessed. If the assessment standards are satisfied, that factor will be given a positive tick ( \((\mathcal{})\) on the standard assessment form. If not, a cross \((X)\) is entered.
(e) The team then moves on to cover the other sampling locations. The overall score will be an expression of how many factors complying with standards out of the total number sampled. This is explained in more detail below.

\section*{1/4.6 Choice of Sample Locations}
(a) Forstructural work, falsework foimwork, reinforcement, concreting procedures and finished concrete, locations at various stages of work will be selected at random. Concrete quality and practice is assessed for the assessment period as a whole.
(b) Sample locations for Architectural Work will be selected to cover different areas of the domestic blocks and a wide range of construction activities will be assessed.
(c) For assessment of external works and other obligations, the assessment team will walk around the site stopping at pre-selected random locations in areas of activity in order to assess the situation against preset standards.

For consistency of documentation, project teams shall complete the "Sampling Location Record" shown in irem 1/7.

\section*{1/4.7 Unperformed Aspects/Factor of Work}

There will be stages of the work when the full range of all aspects/factors of work cannot be assessed because the work is not in progress at the time of assessment. In order to ensure that PASS measure the performance of the contractor direct, only those works assessed will be used to determine the overall PASS score.

\section*{1/4.8 Range of Sample and Assessment of Sequential Work in Progress}

For structural aspects, other obligations and external works, the range of the samples is comparatively easy to assess. For Architectural finishes, work in progress at a particularllocation is sequential, e.g. concreting \(\rightarrow\) door frames \(\rightarrow\) blockwork \(\rightarrow\) fittings \(\rightarrow\) plastering \(\rightarrow\) tiling \(\rightarrow\) glazing \(\rightarrow\) doors \(\rightarrow\) painting \(\rightarrow\) cleaning and the whole process can extend over a significant period - often exceeding one year for an individual flat. For this reason, the Architectural sample location will be spread on a random basis throughout a range of floors where work is in progress. Each month different sample locations will be chosen at random. To determine the available range of floors for sampling locations for architectural assessment, a "progress record" shown in item \(1 / 8\) shall be completed prior to selection of locations.

\section*{1/4.9 Completion of Forms}

On completion of an inspection, the forms will be completed and initialled by members of the project team and the contractor's authorised representative. After each site assessment, the forms will be despatched to HAHQ for entry into a computerised data base.

1/4.10 ... Úse of Instruments
PASS involves the use of levels and other site equipment such as auto plumb, straight edges, plumb-lines and alignment strings. For details, please refer to item \(1 / 6.4\) on GD/14/1.7.1991.

\section*{1/4.11 Proposed Schedule of PASS Assessment / Score Processing / HDCPRC (NW) and LMC Dates}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Month during which assessment lakes place & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oci & Nov & Dee \\
\hline \begin{tabular}{l}
PASS \\
assessments on site last full working week in general)
\end{tabular} & \[
\left\lvert\, \begin{gathered}
\text { Between } \\
25 / 2 / 91 \\
\text { to } \\
1 / 3 / 91
\end{gathered}\right.
\] & Berween 25/3/91 10 28/3/91 & \begin{tabular}{l}
Between
29/4/91 \\
to 3/5/91
\end{tabular} & \begin{tabular}{l}
Between
27/5/91 \\
10
31/5/91
\end{tabular} & \begin{tabular}{l}
Between
\[
24 / 6 / 91
\] \\
to
28/6/91
\end{tabular} & \begin{tabular}{l}
Between 29/7/91 \\
to 2/8/91
\end{tabular} & \begin{tabular}{l}
Botween
27/8/91 \\
10
30/8/91
\end{tabular} & \begin{tabular}{l}
Belween
| 30/9/9| \\
10
\[
4 / 10 / 91
\]
\end{tabular} & \[
\left\lvert\, \begin{gathered}
\text { Between } \\
28 / 10 / 91 \\
10 \\
1 / 11 / 91
\end{gathered}\right.
\] & \[
\left\lvert\, \begin{gathered}
\text { Berween } \\
25 / 11 / 91 \\
10 \\
29 / 11 / 91
\end{gathered}\right.
\] & \[
\left\lvert\, \begin{gathered}
\text { Between } \\
30 / 12 / 91 \\
10 \\
3 / 1 / 92
\end{gathered}\right.
\] \\
\hline Last date for forwarding PASS or quanesly old formal(") reporis to TS unit & \[
4 / 3 / 91
\]
\[
\left(^{*}\right)
\] & \[
2 / 4 / 91
\] & 6/5/91 & \[
3 / 6 / 91
\] & 1/7/91 & 5/8/91 & \[
\begin{gathered}
2 / 9 / 91 \\
\left({ }^{\circ}\right)
\end{gathered}
\] & 7/10/91 & 4/11/91 & \[
\begin{gathered}
2 / 12 / 91 \\
\left({ }^{\circ}\right)
\end{gathered}
\] & 6/1/92 \\
\hline Month during which PRE-PRC (or LMC) actions take place & Mar & Apr & May & Jun & Jul & Aus & Sep & Oct & Nov & Dec & Jan \\
\hline TS unit enters raw seores into dalabase & \[
\begin{gathered}
5 / 3 / 91 \\
10 \\
6 / 3 / 91
\end{gathered}
\] & \[
\begin{gathered}
3 / 4 / 91 \\
10 \\
4 / 4 / 91
\end{gathered}
\] & \[
\begin{gathered}
7 / 5 / 91 \\
10 \\
8 / 5 / 91
\end{gathered}
\] & 4/6/91 10 5/6/91 & \[
\begin{gathered}
2 / 7 / 91 \\
10 \\
3 / 7 / 91
\end{gathered}
\] & 6/8/91 10 7/8/91 & \[
\begin{gathered}
3 / 9 / 91 \\
10 \\
4 / 9 / 91
\end{gathered}
\] & \[
\begin{gathered}
8 / 10 / 91 \\
10 \\
9 / 10 / 91
\end{gathered}
\] & \[
\begin{gathered}
5 / 11 / 91 \\
10 \\
6 / 11 / 91
\end{gathered}
\] &  & \[
\begin{gathered}
7 / 1 / 92 \\
10 \\
8 / 1 / 92
\end{gathered}
\] \\
\hline Triggered reports from TS unit to CA's and consultants for comments 'not adverse' reports from TS unit to CA's for information & 6/3/91 & 10/4/91 & 8/5/91 & \[
5 / 6 / 91
\] & 3/7/91 & \[
718 / 91
\] & 4/9/91 & 10/10/91 & 6/11/91 & 4/12/91 & \\
\hline Lest date for consuluants to return comments 10 CA/6 & 9/3/91 & 13/4/9 & 11/5/91 & 8/6/91 & 6/7/91 & 10/8/9] & 7/9/91 & 13/10/91 & 9111/91 & 7/12/91 & \\
\hline Last date for CA's to forward comments to TS unit lssue PRC agenda & 13/3/91 & 17/4/91 & 15/5/91 & 12/6/91 & 10/7/91 & 14/8/91 & 11/9/91 & 17/10/91 & \[
13 / 11 / 91
\] & 11/12/91 & \\
\hline \begin{tabular}{l}
PRC(NW) \\
meeting consider reports from previous month Add PRC's rating to repors and score-ieague
\end{tabular} & \begin{tabular}{l}
Feb. \\
scores) \\
22/3/91 \\
9:30am
\end{tabular} & Mar. scores) 26/4/91 9:30am & \begin{tabular}{l}
(Apr. scores) \\
24/5/91 \\
9:308m
\end{tabular} & May scores) 21/6/91 9:30am & (Jun. scores) 1977/91 9:30am & \begin{tabular}{l}
(Jul. scores) \\
23/8/91 \\
\(9: 30 \mathrm{~m}\)
\end{tabular} & \begin{tabular}{l}
(Aug. scores) 20/9/91 \\
9:30am
\end{tabular} & (Sep. scores) 25/10/9] 9:30 m & (Oct. scores)
\[
22 / 11 / 91
\]
9:30am & Nov. scores) 20/12/91 9:30am & \\
\hline Score-league to LMC (and issue LMC agenda where appropriale) & 20/3/91 & 29/4/91 & 27/5/91 & 2/7/91 & \[
22 / 7 / 91
\] & 27/8/91 & 1/10/9! & 28/10/91 & 25/11/91 & 31/12/91 & \\
\hline LMC meeting & \[
\begin{gathered}
\text { 4/4/91 } \\
3: 00 \mathrm{pm}
\end{gathered}
\] & & & \[
\begin{array}{r}
5 / 7 / 91 \\
2: 30 \mathrm{pm}
\end{array}
\] & & & \[
\begin{aligned}
& \text { 4/10/91 } \\
& \text { 2:30pm }
\end{aligned}
\] & & & \[
\begin{gathered}
\text { 3/1/92 } \\
\text { 2:30pm }
\end{gathered}
\] & \\
\hline
\end{tabular}

1/5 SCORING SYSTEM
1/5.1 As indicated previously, for the assessment system to be objective and systematic, the whole process has to be broken down into specific blocks or items which can be assessed against pre-determined standards. This breakdown is further illustrated in the glossary diagrams in Part 10 but can be typically summarised as follows :-
(a) The assessment is by aspect of work.
(b) At pre-selected parts of the building called locations.
(c) Location scores are built up by assessments of factors.
(d) Spots, which are discrete elements within each location are chosen for factor assessments.
(e) Each factor is broken down into specific items which have definite predetermined standards.

1/5.2 The breakdown can be modelled like this :-


1/5.3 An understanding of this model helps an appreciation of the scoring system as a whole.

1/5.4 For each factor, spot failure is usually marked by :-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & \multirow{5}{*}{a)} & \multirow{5}{*}{failure of 2 items} \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~A} \\
& \mathrm{C} \\
& \mathrm{~T} \\
& \mathrm{O} \\
& \mathrm{R}
\end{aligned}
\]} & \multirow{4}{*}{Items} & 1 & \(\checkmark\) & \multirow{4}{*}{F} & & \\
\hline & & 2 & \(x\) & & & \\
\hline & & 3 & X & & & \\
\hline & & 4 & \(\checkmark\) & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & \multicolumn{2}{|l|}{SPOT} \\
\hline F & \multirow{4}{*}{Items} & 1* & \(x\left({ }^{\circ}\right)\) & \multirow{4}{*}{F} \\
\hline A
C
- & & 2* & \(\checkmark\) & \\
\hline T & & 3 & \(\checkmark\) & \\
\hline R & & 4 & \(\checkmark\) & \\
\hline
\end{tabular}
b) failure of a
* item
\begin{tabular}{|c|c|c|c|c|}
\hline & & & \multicolumn{2}{|r|}{SPOT} \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~A} \\
& \mathrm{C} \\
& \mathrm{~T} \\
& \mathrm{O} \\
& \mathrm{R}
\end{aligned}
\]} & \multirow{4}{*}{Items} & 1 & \(\checkmark\) & \multirow{4}{*}{F} \\
\hline & & 2 & \(\checkmark\) & \\
\hline & & 3 & X(2) & \\
\hline & & 4 & \(\checkmark\) & \\
\hline
\end{tabular}
c) an item failing its tolerance by more than twice its MPD
\begin{tabular}{|c|c|c|c|c|}
\hline & & & \multicolumn{2}{|l|}{SPOT} \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~A} \\
& \mathrm{C} \\
& \mathrm{~T} \\
& \mathrm{O} \\
& \mathrm{R}
\end{aligned}
\]} & \multirow{4}{*}{ltems} & 1 & NA & \multirow{4}{*}{F} \\
\hline & & 2 & X & \\
\hline & & 3 & NA & \\
\hline & & 4 & NA & \\
\hline
\end{tabular}
d) failure of one item which is the only assessed item amongst N/A items

1/5.5 This criteria permits some degree of scoring tolerance which is necessary for differentiating different levels of performance. This scoring is reflected by a Scoring Index A which is defined as :-
(a) For Structural Work, Architectural Work and External Works :-

No. of spots passed
No. of spots assessed
(b) For Other Obligations a slightly different approach is adopted :-

No. of locations passed
No. of locations assessed
1/5.6 This scoring approach alone was found in early trials to be not sufficiently discriminating. Another parallel was introduced and known as Scoring Index B which is defined as :-

No. of items passed
No. of items assessed
This is necessary to pick up patterns of item failure which are not covered by spot assessment alone :-
(a) A particular item fails consistently at all spots.
(b) Over-failure of the failed spot (e.g. failed spot with more than 2 failed items).

1/5.7 Therefore, the overall factor score is calculated by the following formula.
\[
\begin{aligned}
\text { Factor Score }= & \text { Allotted Points } \times \text { Scoring Index } A \times \\
& \text { Scoring Index } B .
\end{aligned}
\]

1/5.8 The scoring system is further explained graphically at \(1 / 5.9\) and on an example of the scoring system as shown at \(1 / 5.10\).
\(1 / 5.9\)

Scoring Matrix.

Remarks

Assessment by Project Team

Note: For Other Obligations there are slight differences in layout but the principle remains the same.


\section*{Scoring Formula}

Vertical Scoring to determine local performance at assessment spot.

For further details of Failure Criteria, see later sections.
Scoring Index \(B^{\circ}\)
\[
=\frac{-\sqrt{ }}{(\sqrt{ }+x)}
\]

Item Scoring to determine overall performance across all items.
\[
\begin{aligned}
\text { Factor Score } & =\text { Allotted Point } \times \text { Scoring Index } A \times \text { Scoring Index } B \\
& =\text { Allotted Point } \times\left(-\frac{P}{P+F}\right) \times\left(-\frac{V}{\sqrt{ }+X}\right)
\end{aligned}
\]

Factor: Allotted Point \(=7\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & ation & Spot & & & & & & & & \\
\hline 1 & Item / Standard & 1 & \(x\) & & x & & \(\checkmark\) & & \(\checkmark\) & \\
\hline & & 2 & \(\times\) & F & \(\checkmark\) & P & \(\times\) & P & \(\checkmark\) & P \\
\hline & & 3 & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & & x & \\
\hline & Item / Standard & 1 & X & & X & & x & & X & \\
\hline & & 2 & X & F & \(\checkmark\) & P & \(\checkmark\) & P & \(\checkmark\) & P \\
\hline & & 3 & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & \\
\hline & Item / Standard & 1 & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & \\
\hline & & 2 & \(\checkmark\) & P & \(\checkmark\) & P & \(\sqrt{ }\) & P & \(\checkmark\) & P \\
\hline & & 3 & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & \\
\hline & Item / Standard & 1 & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & \\
\hline & & 2 & \(\checkmark\) & P & \(\checkmark\) & P & N/A & P & \(\checkmark\) & P \\
\hline & & 3 & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & \\
\hline & Item / Standard & 1 & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & \\
\hline & & 2 & \(\checkmark\) & P & N/A & P & \(\checkmark\) & P & \(\checkmark\) & P \\
\hline & & 3 & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & \\
\hline
\end{tabular}

Factor Score \(=\) Allotted Point \(\times\left(\frac{P}{P+F}\right) \times\left(\frac{\sqrt{ }}{\sqrt{ }+X}\right)\)
\[
\begin{aligned}
& =7 \times \frac{18}{20} \times \frac{48}{58} \\
& =6.3 \times \frac{48}{58} \\
& =5.2
\end{aligned}
\]

N/A entries represent items not being performed by contractor and hence are not assessed.

1/6 ASSESSMENT CHECKLIST FOR PASS MONTHLY ASSESSMENT

\section*{1/6.1 Assessment Procedure}

\section*{1/6.1.1 Preparation in Office}
(i) PA and SE to observe assessment date stipulated by TS/1
(ii) PA and/or SE to give notification of date and time of assessment to the Contractor's Authorized Representative no more than half a day before the assessment

Person Contacted
Date


Time
(iii) PA to liaise with SE, BSI \& COW

\section*{1/6.1.2 Preparation on Site}
(i) PA or SE to check preparation work by COW \& check presence of COW
(ii) PA or SE to check presence of Contractor's Authorized Representative
(iii) PA to check presence of SE \& BSI for OO Assessment
(iv) PA or SE to check availability of Assessment Equipment
(v) PA or SE to select assessment location and keep records
(a) By drawing lot: or
(b) By computer
(vi) PA to check availability of specification references

1/6.1.3 Assessment
(i) Assess "General Obligations" by record check (PA, SE, BSI \& COW)
(ii) Assess "General Site Safety" (PA, SE, BSI \& COW)
(iii) Assess "Block Related Safety" (PA, SE, BSI \& COW)
(iv) Assess "Extemal Works (Drainage)" (PA \& COW)
(v) Assess Structural Works (SE \& COW)
(vi) Assess Architectural Works (PA \& COW)
(vii) Enter Scores immediately at the assessment spot (PA/SE)
(a) By manual method
(b) By hand-held computer

1/6.1.4 \(\frac{\text { Completion (by PA except for Structural Works: }}{\text { by SE for Structural Works) }}\)
(i) Complete Monthly Score Sheet
(ii) Complete Comment Sheet
(iii) Sign Score Sheets and Comment Sheets
(iv) Send Score Sheets and comment sheets through PC on site to the headquarter to TS/1 for Data Processing before the due date of each month.

\section*{1/6.2 Assessment}

Assessment of the following aspects:-
[ ] Structural
[ ] Architectural
[ ] External Works
[ ] Other Obligations
will be carried out on works as found on site. Works in progress but not yet completed will be assessed on the basis of the works carried out so far.

1/6.3 Equipment
[ ] Laser Leveller [ ] Score Sheets
[ ] Digital Measurement Probe [ ] Straight Edge
[ ] String and Plumbline [ ] Feeler Gauge
[ ] Measuring Tape . [ ] Steel Set Square
[ ] 600 mm Long Spirit Level [ ] Mirror
[ ] 1200mm Long Spirit Level [ ] Binoculars
[ ] Wire Brush
[ ] Screw Driver
[ ] Coins ( \(\$ 5.00\) and \(10 \Varangle\) Coins)
[ ] Hand-held Computer

All equipment for PASS, except coins, hand-held computer and equipment for air/ water test, can be obtained from SLS/C.

\section*{1/7 SAMPLING LOCATION RECORD}

Name of Project :
Date :
Contractor
Block Type :

1/7.1 Structural Assessment (Working Floor) :-
\begin{tabular}{|l|c|c|c|c|}
\hline Location & 1. & 2 & 3 & 4 \\
\hline Block & & & & \\
\hline Floor & F F & F & /F & /F \\
\hline Flat No. & Flat & Flat & Flat & Flat \\
\hline
\end{tabular}

\section*{1/7.2 Structural Assessment (Finishing Floor) :-}

Block No. :
\begin{tabular}{|l|c|c|c|c|}
\hline Location & 1 & 2 & 3 & 4 \\
\hline Floor & \(/ F\) & \(/ F\) & \(/ F\) & \(/ F\) \\
\hline Flat No. & Flat & Flat \(^{*}\) & Flat & Flat \\
\hline
\end{tabular}

1/7.3 Architectural Assessment :- .
Block No. :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Location & 1 Flat & \begin{tabular}{l}
2 \\
Flat
\end{tabular} & \begin{tabular}{l}
3 \\
Flat
\end{tabular} & \begin{tabular}{l}
4 \\
Stair- \\
case
\end{tabular} & \begin{tabular}{l}
5 \\
Corridor
\end{tabular} & \begin{tabular}{l}
6 \\
Structural \\
Window \\
Opening
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
7 \\
Application \\
of \\
Spatterdash
\end{tabular}} \\
\hline Floor .* & /F & \(\sqrt{F}\) & /F & F & /F & /F & /F & F \\
\hline Flat/Wing & FV & Fl/ & FV & W/ & W/ & W/ & W/ & W/ \\
\hline
\end{tabular}

\section*{1/7.4 External Works Assessment (Drainage) :-}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Location & 1 & 2 & 3 & 4 & 5 \\
\hline Between & & & & & \\
\hline
\end{tabular}

1/7.5 General Site Safety :-
\begin{tabular}{|l|l|l|l|l|l|}
\hline Location & 1 & 2 & 3 & 4 & 5 \\
\hline Point & & & & & \\
\hline
\end{tabular}

1/7.6 Block Related Safety \({ }^{+}\):-
Block No. :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Location} & \multicolumn{3}{|c|}{Lower Zone} & \multicolumn{3}{|r|}{Middle Zone} & \multicolumn{3}{|c|}{Higher Zone} \\
\hline & 1 Floor & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \begin{tabular}{l}
9 \\
(Working \\
Floor)
\end{tabular} \\
\hline Floor & G/F & /F \\
\hline Wing & W/ \\
\hline
\end{tabular}
- Each location for Block Related Safety shall preferably be on a different floor where such choice exists. At least one location in each zone shall include a wing with a temporary refuse chute.

\subsection*{1.8 PROGRESS RECORD - ARCHITECTURAL FACTORS}

Name of Project :
Contractor
Block Type :

COW shall complete the Progress Record to determine the available range of floors for Sampling Locations.

\section*{Location 1 - Flat (Kitchen)}
1. Check floor and internal walls in kitchen
2. Check balcony door and walls
3. Check 2 nos. windows and external walls outside those windows
4. Check plumbing installation
5. Check cooking bench and sink unit

\section*{Location 2 - Flat (Bathroom)}
1. Check floor and internal walls in bathroom
2. Check 3 nos. windows and external walls outside those windows
3. Check plumbing installation
4. Check 2 items of sanitary ware

\section*{Location 3 - Flat (Living Room)}
1. Check floor and internal walls in living room
2. Check 3 nos. windows and external walls outside the windows
3. Check 2 nos. door and frame
4. Check plumbing installation

Date :

Block No.:

\section*{Progress Record}

Completed floors
available for checking
for each factor
\begin{tabular}{|ll|ll|}
\hline from & \(/ F\) & to & \(/ F\) \\
\hline from & \(/ F\) & to & \(/ F\) \\
\hline from & \(/ F\) & to & \(/ F\) \\
\hline from & \(/ F\) & to & \(/ F\) \\
\hline from & \(/ F\) & to & \(/ F\) \\
\hline
\end{tabular}
\begin{tabular}{|cc|cc|}
\hline from & \(/ F\) & to & \(/ \mathrm{F}\) \\
\hline from & \(/ F\) & to & \(/ \mathrm{F}\) \\
\hline from & \(/ F\) & to & \(/ \mathrm{F}\) \\
\hline from & F & to &.\(/ \mathrm{F}\) \\
\hline
\end{tabular}
\begin{tabular}{|ll|ll|}
\hline from & \(/ F\) & to & \(/ F\) \\
\hline from & \(/ F\) & to & \(/ F\) \\
& & & \\
\hline from & \(/ F\) & to & \(/ F\) \\
\hline from & \(/ F\) & to & \(/ F\) \\
\hline
\end{tabular}

\subsection*{1.8 PROGRESS RECORD - ARCHITECTURAL FACTORS}

\section*{Name of Project :}

Contractor :
Block Type :

Completed floors
available for checking
for each factor

COW shall complete the Progress
Record to determine the available
range of floors for Sampling
Locations.

\section*{Location 1-Flat (Kitchen)}
1. Check floor and internal walls in kitchen
2. Check balcony door and walls
3. Check 2 nos. windows and external walls outside those windows
4. Check plumbing installation
5. Check cooking bench and sink unit

\section*{Location 2-Flat (Bathroom)}
1. Check floor and internal walls in bathroom
2. Check 3 nos. windows and external walls outside those windows
3. Check plumbing installation
4. ....Check 2 items of sanitary ware

\section*{Location 3-Flat (Living Room)}
1. Check floor and internal walls in living room
2. Check 3 nos. windows and external walls outside the windows
3. Check 2 nos. door and frame
4. Check plumbing installation

Block No. :

\section*{Progress Record}

Date :
\begin{tabular}{|lc|lc|}
\hline from & \(/ \mathrm{F}\) & to & \(/ \mathrm{F}\) \\
\hline from & \(/ \mathrm{F}\) & to & \(/ \mathrm{F}\) \\
\hline from & \(/ \mathrm{F}\) & to & \(/ \mathrm{F}\) \\
\hline from & \(/ \mathrm{F}\) & to & \(/ \mathrm{F}\) \\
\hline from & \(\pi \mathrm{F}\) & to & \(/ \mathrm{F}\) \\
\hline
\end{tabular}
\begin{tabular}{|ll|ll|}
\hline from & \(/ F\) & to & \(/ F\) \\
\hline from & \(/ F\) & to & \(/ F\) \\
\hline from & \(/ F\) & to & \(/ F\) \\
\hline from & \(/ F\) & to \({ }^{\circ}\) & \(/ F\) \\
\hline
\end{tabular}
\begin{tabular}{|ll|ll|}
\hline from & \(/ \mathrm{F}\) & to & \(/ \mathrm{F}\) \\
\hline from & \(/ \mathrm{F}\) & to & \(/ \mathrm{F}\) \\
\hline from & \(/ \mathrm{F}\) & to & \(/ \mathrm{F}\) \\
\hline from & \(/ \mathrm{F}\) & to & \(/ \mathrm{F}\) \\
\hline
\end{tabular}

\section*{APPENDIX 9}

\section*{University's Panel of Contractors- Monitoring of Contractors' Performance \({ }^{49}\)}

\title{
Univergity's Panel of Contractorg \\ Monftoring of Contractors' Performance
}

Sumary notes of meeting held on 2nd April 1992 at 3.30 p.m. Involying MM/AJK/HSS/KH

The meating was called to discuss the decision of University's Tenders Board of 27th June 1991 which proposed actions as follows:-
"Guideldnes for Delisting of Contractors
It was agreed that the guddelines should be prepared by the Ebtates Officer before the end of 1991. Members supported the Estates Officer's emphasis on safety in the drawing up of these guidelines and agreed that these safety measures in construction works are very important and should be taken up by the Estates officer with the Environmental Health and Safety Committee, It was also recommended that more training in this respect should be given to all appropriate personnel within the University."

NOTED that the current monitoring format used by both Building Maintenance and Development Divisions are based on ICAC's. recommendations of many years past i.e. Building Maintenance's Annex \(D\) and Development Division's Annex A\& Annex \(B\) are in accordance with ICAC's recommendations.

AGREED that Development Division's Annex \(B\) is probably slightly more appropriate and should now be used for all reporting by luilding Maintenance, \(E \& M\) and Development Divisions on the Undvarsity's panel of Contractors. However, to this atandard format should be-added a Iurther category, namely, 'adherence to Safety and Health Requirements'.

Minor, Works - this is intended to refer to works generally falling under \$0.75 Million in line with U.P.G.C.'s requirement that any works above this figure require the appointment of quantity aucveyor consuitants.

Major Morks - this is intended to refer to individual contracts excesding \$0.75 Million in value and in accordance with A.S.D.'s liat (category a) not exceeding \(\$ 6\) Million per contract.

For anything larger than the above', i.a, major development projects undertaken by Development Division and development section of \(E \& M\) Division, the formal reporting on the contractor's periormance would be the reaponaibility of the architact involved i.e. architact consultants employed by the University or by the Eatates Office Development Division where the architectural consultancy is done in-house.

The standard tormat to be used for major works should be Development Division's Annex a but it was not felt necessary to include the wealth of detail shown on page 2 of Annex A. In similar faghion to Annax \(B\) agreed this Annex A should also include a section on'Adherence to Safety and Gealth Requirements'.

\section*{Frequency of Reporting}

It vas felt that there should be a differentiation in frequency of roporting between maintenance works and new works and probably also a differentiation accocding to the size of contract value. Small maintenance contracts for example in the region of \(\$ 50,000\) to \(\$ 100,000\) may require a reporting form to be filled in weekly as the cootract period may only be a matter of few weeks whereas for larger-scale projects it would probably suffice to report on a 3 -monthly basis.

\section*{Issuance of Warninge to Contractors}

In line with what is done in the Housing Authority it was felt that the procedures should be along the following lines i.e. to issue the first warning with a time limit for compliance followed by a second warning again with a time limit; failure to comply would result in the contractor being summoned to the Eatates Office to explain/justify his lack of regponse or improvement.

\section*{Suspengion.}

AGREED that there is merit in adopting a system of suspension in similar way as the Housing Authority and other major employers of contractors. In this system, the contractor who is not performing is not totally removed from the List or panel of Coatractors but is barred for a specific tims period trom tender. A suspension period is normally 3 to 6 months after which the contractor automatically rejoins the List/Panel perhaps with his subsequent performance being more carefully scrutinised to ensure compliance.

\section*{Interyiev of Contractors}

For waraing and suapenaion procedures, felt that it is ultimately up to the Division Heads to set out guidelines for who should be responsible for interview of contractors. Again, the vaiue of the contract should determine the appropriate level of staff required but in general terma it was felt that at least tro Estates office staff members need to be involvad both in the deguance of varainge and in the intervier of contractocs e.g. a proposel to losue a warning yould have to be part of a recommendation upward for approval. Similarly the interview of a contractor should be the person involved with the job plus his imnodiate guperior officer.

\section*{Sumary/Conclusion}

These proposals for monitoring of contractors' performance would be reported back as required to Tenders Board for approval. Aseuming that Tenders Board are in agreement then such monitoring procedures to be put in place for review of contractors' performance for \(1992 / 93\) commencing from lat July 1992.

Division Heads are therefore required to ensure that adequate adminiotration procedures are to be in place for coutine review with these routine reviews forming part of the annual review of contractors' performance for submisaion to the Eatates officer and onvard submission to Tanders Board for delation or addition of contractors to exiating 11sts.

\section*{Contract Combletion Report}

Name of Contractor
Contract No. \(\qquad\) Brief Description of Work \(\qquad\)

PART I (To be completad by Inspecting Officer)
Assessment of Contractors Parformancu

Standard of Workmanahip
Rate of Progress
Aderance to Contractual obligations/Insesuctions

Contractors Organisation.
Orerall Assessment
\begin{tabular}{|c|c|c|c|c|}
\hline Very Good & Good & Fair & Yoor & Bad \\
\hline & &.\(\cdot\) & & \\
\hline & &. & & \\
\hline & &. &. &. \\
\hline. & \(\cdot\) & &. &. \\
\hline. & & & & \\
\hline & & &. & \\
\hline
\end{tabular}

Generel Comment on Contrectors Derformance
\(\qquad\)
\(\qquad\)
Certification
I certify' that I have inspected the works on. \(\qquad\) and that they have begn completad to my satisfaction.
\(\qquad\) .

Date \(\qquad\)
PAPT If (To be complated by Officer in charge of the Project)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vary Good & Good & Fals & Poor & Bad \\
\hline Overall Assessiant of Contractor's Wort & & & & & - \\
\hline
\end{tabular}

General Comments
Certification
I certify that I have" inspected the above works on
that they have boen completed to my satisfaction.

Signed \(\qquad\)

Date


\section*{\(1.0 \circ\) STAMOARD OF ORGAKISATION}
1.1. adequacy and managenent ability or site supervisory staff
1.2 aderuacy of plaming
1.3 adequay of superrision
1.4 degree of ow-operation
1.5 technical krowledge of site supervisory staff
1.6 adequacy of site staff's exeartive astibority
1.7 support provided by head offtce to overecte any defielercy
1.8 cortrol over sub-contractors
1.9. attention to mearrenert matters/adequacy of reeords and aeconnts
\begin{tabular}{|l|l|l|l|l|l|}
\hline VG & \(G\) & \(S\) & \(A\) & \(P\) &. \\
\hline & & & & & \\
\hline
\end{tabular}
2.0 COMPLLANCE HITH GEMERAL OBLIGATIONS
2.1 attention to sariety
2.2 cleanliness of site

23 care of the norks
2.4 avoidarce of ruisarce/danzge to general public \& neighbours
2.3 catpliance with insuraxe requiretents
2.6 cooperation whth utilities and care of utility apparatus
2.7 cooperation with other authorised entibactors
2.8. compliance with instructions

29 campliance with enactients e.g. nolse
2.10 submission or treporary works design
2.11 adequey/submission of operational and maintenamice-manuals
2.72 aderuacy of motice for exantnation of works
2. 14 paytent of naminated sub-contractors
2.15 compliance with particulars related to sub-letting
3.0 AOEQUACY OF RESOURCES
3.1 sdequacy or labar

3,2 skill of persomel
3.3 . adequacy or meterials
3.4 standary of materials
3.5 storags of materials
3.6 adequacy or platt
3.7 surtability and state of plant

\subsection*{4.0 WORXMANSHIP}
4.1 standerd of terporery works
4.2 standary or workmenship, earthmorks
4.3 standard of morkmenshig, structural
4.4 standard of workenership, finishes
4.5 standard of workmershlp (others)

\subsection*{5.0 PROGRESS}
5.1 adequacy of programe
5.2 acherence to progyine
5.3 updating of progratme
5.4 sultability of rathod and sequence of working
5.5 schievement in period
5.6 action taken to mitigate delay/catoh up with progrante



Name of Concractort

Contract No. \(\qquad\) Brice Destription of Work \(\qquad\)

Date of Coumencement of Work \(\qquad\)
Dese of this Report \(\qquad\)
Estimaced Date ol Completion \(\qquad\)
Total Value of Concract \(\qquad\)
Estimated Valua. of Work completed to date \(\qquad\)

Report on Contractor's Performance olnce last Report

Stsindard of Workmanship
Rate of Progresa
Adherence to Contractual
Obligation/Inatruction
Contractorb Organisation
\begin{tabular}{|c|c|c|c|c|}
\hline Very Good & Good & Fair & Poor & Bad \\
\hline & & & & \\
\hline
\end{tabular}
N.B. A 'bad' in any of above would normally necesaftate a witten varning to Contractor from the Eseates Offlear.

EA I
General Comments/Inatructiona to Contractor
```


[^0]: Requirements for Large

 - 102 -

[^1]: Percent of 'grouped' cases correctly classified: 87.5\%

[^2]: F level or tolerance or VIN insufficient for further computation.

