

This item is held in Loughborough University's Institutional Repository (<u>https://dspace.lboro.ac.uk/</u>) and was harvested from the British Library's EThOS service (<u>http://www.ethos.bl.uk/</u>). It is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: <u>http://creativecommons.org/licenses/by-nc-nd/2.5/</u>

DISCRIMINANT ANALYSIS MODEL FOR PREDICTING CONTRACTOR PERFORMANCE IN HONG KONG

by

CHI MING TAM, MSc, MCIOB, MHKIE

A Doctoral Thesis submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy

of the

Loughborough University of Technology

December 1992

Work's Front

© CHI MING TAM

DEDICATION

To my beloved wife ALICE CHEUNG, brothers and mother, who gave me inspiration and support

15

DECLARATION

No portion of the research referred to in this thesis has been submitted in support of an application for another degree or qualification at this or any other university or other institution of learning.

ACKNOWLEDGEMENTS

This dissertation can never be made possible without the help of a large number of people, but unfortunately a few can only be named.

I would like to present my sincere thanks to many organisations who have provided valuable information about their building projects for the study and their time, experience and knowledge during the preparation of this report.

Thanks to Dr. A.F.Abidali for sending me a copy of his thesis on the topic of "A Methodology for Predicting Company Failure in the Construction Industry".

Grateful thanks are extended to my supervisor, Prof. Frank C. Harris for his continuous guidance, support and encouragement throughout the entire research process, particularly for introducing me the mathematical techniques, without which the dissertation can never be made possible.

I should also thank the librarians of the City Polytechnic of Hong Kong for entertaining me in the tiring book research. I should also be indebted to my wife Alice Cheung for her great . patience when I was at work. Last but not least, I extend my sincere thanks to a number of reputable persons in the construction industry in Hong Kong, who gave me valuable advices and information.

- iii -

ABSIRACT

This thesis describes the development of an operational research model for the identification of determinating variables and prediction of contractor performance in Hong Kong. The mathematical technique used is the Discriminant Analysis approach.

The model is also verified with two other analyses namely Multiple Regression Analysis and Unidimensional Scaling Analysis. One of the aims of the research is to betray the underlying factors that influence contractor performance which are measured in the clients' point of view. The second aim is to develop an accurate model for predicting contractor performance used by clients in vetting contractors.

All aspects of the model's development are described, including the quantification of the variables, data collection, analysis of the model results, verification of the model results with other models and testing the model using independent data. Further, the variables adopted in the model are compared with the actual practices in Hong Kong.

The predictive model produced by the study is made up of six . variables measuring the three dimensions namely the inherent characteristics of the project, the contractor's internal attributes and the external influence of the project team,

- iv -

including the complexity of the project, the working experience of the project leaders, the percentage of professionally qualified staff in the company, the past performance of the contractor, the origin of the company and the architect's or client's supervision and control on the quality of work and work progress.

However, the developed models should only be used as part of an assessment process and with caution as there are other unpredictable factors which are not able to quantify and include in the model such as the changing of the company structure and strategy, change in management quality, profitability and the happening of overtrading. Nevertheless, the use of the model to exclude companies from tender lists could accelerate the contractor selection process and spare more time for clients to concentrate on more important issues.

- v -

TABLE OF CONTENTS

6

A

	Page
Dedication	i
Declaration	ii
Acknowledgements	iii
Abstract	iv
Contents	vi
List of Tables	xvii
List of Figures	xxi

CONTENTS

CHAPIER 1:	GENERAL INTRODUCTION	1
1.1	Introduction	1
1.2	Aim and Objectives	2
	1.2.1 Aim	2
	1.2.2 Objectives	2
1.3	Methodology.	2
1.4	Background Information on the	
•	Construction Industry of Hong Kong	3
	1.4.1 Importance of the Industry in the	
	Economy	4
	1.4.2 Levels of Expenditure in the	
	Private Sectors of Construction	
	Works	4
	1.4.3 Change in Productivity of the	
	Industry	4

	и И	
	1.4.4 The Labour Recruitment of the	
	Industry	6
	1.4.5 Procurement Method	6
	1.4.6 Foreign Contractors	8
	1.4.7 Features of Contractors	8
	1.4.8 Summary	10
CHAPTER 2:	REVIEW OF PREVIOUS STUDIES	11
2.1	Introduction	11
2.2	Previous Studies	11
	2.2.1 Mustafa and Ryan's Work	11
	2.2.2 Nguyen's Work	15
	2.2.3 Diekmann's Work	18
	2.2.4 Russell's Work	19
	2.2.5 Russell and Skibniewski's Work	19
2.3	Summary	22
CHAPTER 3:	THE TECHNIQUE OF DISCRIMINANT ANALYSIS .	24
3.1	Introduction	24
3.2	Application of the Discriminant Analysis	
	in Construction Related Research	25
3.3	Assumptions about the Data in	Applying
	Discriminant Analysis	26
3.4	Relationship to Multiple Regression	
	Analysis	27
3.5	The General Concepts of Multiple	
	Discriminant Analysis	28

-

- vii -

٠

•

÷

~

<u>Page</u>

		Page
	3.5.1 Percentage of Cases Classified	· · ·
	Correctly	29
	3.5.2 The Between Groups and Within	
	Groups Variabilities	30
	3.5.3 The Canonical Correlation	30
	3.5.4 Wilks' Lambda	30
3.6	Summary	31 /
CHAPTER 4:	DECISION FACTORS AFFECTING PERFORMANCE	
	AND THEIR QUANTIFICATION	33
4.1	Introduction	33
4.2	Data Selection	34
4.3	Variables that Measure the Client's	
	Satisfaction on Contractor Performance .	35
	4.3.1 Quality	37
	4.3.2 Time	38
	4.3.3 Cost	38
4.4	The Intrinsic Traits of Contractor	
	Thought Affecting Performance	39
	4.4.1 Staff Training Programme	39
	4.4.2 Plant Ownership Policy	39
	4.4.3 Size of the Company	40
	4.4.4 Quality of Management Team -	
	Professional Qualifications	40
	4.4.5 Quality of Management Team -	
	Project Leader's Experience	41
	4.4.6 Past Performance of the Project	
	Manager	42

- viii -

.

.

.

•

ruge

.

.

.

·

.

•

.

CHAPT	ER 5:	DATA COLLECTION AND FORMATION OF DATA	
		CROUPS	52
	5.1	Introduction	52
	5.2	Methodology of Data Collection	52
	5.3	Formation of Data Groups	53
	5.4	Data Analysis	54
		5.4.1 Types of Projects	54
		5.4.2 Types of Contractors	54
		5.4.3 Size of Contractors	55
		5.4.4 Project Size	56
	5.5	Summary	57
CHAPTE	R 6:	RELATION BETWEEN PERFORMANCE AND TIME,	
		COST & QUALITY	58
	6.1	Introduction	58
	6.2	Data Analysis	58
	6.3	Z ₁ Model Deríved	59
		6.3.1 Percentage of Cases Classified	
		Correctly.	61
		6.3.2 The Between Groups and Within	
		Groups Variabilities	64
		6.3.3 The Canonical Correlation	64
	6.4	Summary and Conclusion	64
CHAPTER	7:	THE DISCRIMINANT ANALYSIS MODEL	66
	7.1	Introduction	66
	7.2	The Resultant Model Z2	69 ^Y

•

		Page
7.3	The Constituent Variables	69
	7.3.1 Complexity of Project	69
	7.3.2 Percentage of Professional Staff .	71
	7.3.3 Project Leader's Experience	73
	7.3.4 Past Performance	73
	7.3.5 Origin of Contractor	74
	7.3.6 Architect's or Client's Control	
	and Supervision	75
7.4	The Cut-Off Value Between Groups	75
7.5	Classification Power	79
	7.5.1 Percentage of Cases Classified	
	Correctly	79
	7.5.2 The Between Groups and Within	
	Groups Variabilities	7 9
	7.5.3 The Canonical Correlation	80
7.6	${ m Z}_3$ Model Consisting of New Works Only	80
	7.6.1 The Resultant Z_3 Model	81
	7.6.2 Percentage of Cases Classified	
	Correctly	82
7.7	Z4 Model Consisting of Building Works Only	82
	7.7.1 The Resultant Z_4 Model	85
	7.7.2 Percentage of Cases Classified	
	Correctly.	89
7.8	Comparing Models Z_2 , Z_3 and Z_4	89 B
7.9	Summary and Conclusion	90 Š

1

.

•

~

.

CHAPTER 8:	INTERVIEW SURVEY TO STRUCTURE CLIENTS'	
	UNSTRUCTURED APPROACH IN CONTRACTOR	
	SELECTION	93
8.1	Introduction	93
8.2	Interview	93
8.3	Results	95
	8.3.1 Comparing the Survey Results with	
	the Discriminant Model	95
	8.3.2 Ways to Quantify Variables	103
	8.3.3 Additional Screening Requirements	
	for large and/ or Complex Projects	106
8.4	Summary and Conclusion	106
CHAPTER 9:	COMPARING THE DISCRIMINANT ANALYSIS	
	MODEL WITH MULTIPLE REGRESSION ANALYSIS	
	AND UNIDIMENSIONAL SCALING MODELS	107
9.1	Introduction	107
9.2	Multiple Regression Analysis Model	107
	9.2.1 The Regression Model	108
	9.2.2 The Standardized Coefficients	108
	9.2.3 Assumptions in Applying the Model.	109
	9.2.4 Goodness of Fit	110
	9.2.5 Stepwise Regression	113
	9.2.6 The Resultant Model	114
	9.2.7 The Relative Importance or	
	Contribution of Variables to the	
	Model	114

.

.

•

.

,

9.2.8 Comparison Between the Discriminant Model and the Multiple Regression 116 119 9.2.9 Quality of Classification. . . . 122 9.2.10 Goodness of Fit 123 Unidimensional Scaling Model 9.3 9.3.1 Introduction to Unidimensional 123 Scaling. 126 9.3.2 Item Construction. 128 130 9.3.4 Item Selection 9.3.5 Quality of Classification. . . . 132 9.3.6 Comparison Between the Discriminant • Model and the Unidimensional 132 Scaling Model. 134 9.4 Conclusion and Summary CHAPTER 10: TESTING THE MODELS USING INDEPENDENT 136 136 137 . 10.3 Validation of the Discriminant Analysis 137 10.4 Validation of the Multiple Regression 140 141 10.5 Conclusion and Summary

Page

•

•

.

CHAPTER 11:	PERIPHERAL FACTORS NEEDED TO BE TAKEN	
	INTO ACCOUNT WHEN USING THE MODEL	143
11.1	Introduction	143
11.2	Methodology	143
11.3	Case Studies	144
	11.3.1 Case 1- 'Good Performance' Case	
	Classified as 'Bad'	144
	11.3.2 Case 2- 'Bad' Performance Case	
	Classified as 'Good'	147
	11.3.3 Case 3- 'Bad Performance' Case	
	Classified as 'Good'	149
11.4	Summary and Conclusion	151
	11.4.1 Change in Company Policy and	
	Attitude	151
	11.4.2 Change in Management Quality	152
	11.4.3 Profitability	152
	11.4.4 Overtrading	153

.

CHAPTER 12:	COMMENTS	FROM	THREE	ORGANISATIONS	ON	THE
	DISCRIMINA	VI VARIA	BLES .		15	55
12.1	Introductio	on		•••••	15	55
12.2	Interview :	L- Publi	c Housir	g Client	15	55
	12.2.1 Past	: Perfor	mance.	• • • • • • •	15	6
•	12.2.2 Mana	igement	Capabili	ty	15	57
	12.2.3 Fina	ncial S	tanding.		15	7
	12.2.4 Othe	er Varia	bles		15	8

٠

.

٠

•

•

			1090
	12.3	Interview 2- Estate Office of a Tertiary	
		Institution	158
		12.3.1 Past_Per & Complex	159
		12.3.2 Origin	159
		12.3.3 Prof_Sta & Lead_Ex	159
	12.4	Interview 3- Project Management	
		Consultant	160
	12.5	Summary and Conclusion	161
CHAPTER	13:	DISCUSSION AND CONCLUSIONS	163
	13.1	Introduction	163
	13.2	The Discriminant Analysis Model	164
	13.3	Verification of the Discriminant Model	
		Using Multiple Regression and	
		Unidimensional Scaling Models	164
	13.4	Peripheral Factors in Exercising the	
		Discriminant Model	· 165
	13.5	Recommendations for Implementing the	
		Discriminant Model	166
	13.6	Suggestion for Future Study	166
REFERENC	CES:		168
APPENDI	X 1:	Measuring the Degree of Concordance of	
		Clients on the levels of Complexity of	
`		Work	176

.

.

.

<u>Page</u>

.

•

.

.

APPENDIX 2:	Raw Data of 34 Cases for Model	
	Formulation and 16 Cases for Testing	181
APPENDIX 3:	SPSS(pc) Computer Printout of the	
	Stepwise Procedures in Computing the ${\tt Z}_1$	
	Discriminant Analysis Model	186
APPENDIX 4:	SPSS(pc) Computer Printout of the	
	Stepwise Procedures in Computing the \mathbf{Z}_2	
	Discriminant Analysis Model	198
APPENDIX 5:	SPSS(pc) Computer Printout of the	
	Stepwise Procedures in Computing the Z3	
	Discriminant Analysis Model	215
APPENDIX 6:	SPSS(pc) Computer Printout of the	
	Stepwise Procedures in Computing the \mathbf{Z}_4	
	Discriminant Analysis Model	230
APPENDIX 7:	SPSS(pc) Computer Printout of the	
	Stepwise Procedures in Computing the	
	Multiple Regression Analysis Model	247
APPENDIX 8:	Introduction to the Performance	
	Assessment Scoring System (PASS) of the	
	Hong Kong Housing Authority	279
APPENDIX 9:	University's Panel of Contractors-	
	Monitoring of Contractors' Performance .	297

.

٠

.'

LIST OF TABLES

•

<u>Table No</u>		<u>Page</u>
1	Construction as a Proportion of Gross	
	Domestic Product	5
2	Value of Work Completed at Constant	
	Prices at Year 1980	5
3	Change in productivity in the	
	Construction Industry from 1976-1989	7
4	The Number of Overseas Contractors	
	Eligible to Tender for Public Works	9
5	Rating Matrix or Binary Relation	17
6	Relative Weightings of the Success	
	Criteria in Might and Fisher's Mail	
	Survey	35
7	The Standardized Discriminant	
	Coefficients and their Relative	
	Weightings in the Z_1 Model	36,60
8	Group Size of Projects in the Study	53
9	Types of Projects in the Samples	55
10	Types of Contractors in the Modelling	
	Groups	55
11	Size of Company in the Modelling Group .	56
12	Project Size in the Sampling Groups	56
13	Group Means of Time, Cost and Quality	58
14	Pooled Within Groups Correlation Matrix	
	in the Z ₁ Model	59
15	The Standardized and Unstandardized	
	Canonical Discriminant Function	

.

,

T	ab]	le_	No

•

	Coefficients in the Z_1 Model \ldots	60
16	Overall Classification Results of the Z_1	
	Model	61
17	Classification Results and the	
	Discriminant Scores of Cases in the Z_1	
	Model	62
18	Pooled Within Group Correlation Matrix	
	of Variables in the Z_2 Model \ldots	71
19	Unstandardized Discriminant Function	
	Coefficients for the Z2 Model	72
20	Standardized Discriminant Function	
	Coefficients and their Priority Order of	
	Contribution to the Z_2 Model	73
21	Classification Results and the	
	Discriminant Scores of Cases in the \mathbf{Z}_2	
	Model	77
22	Overall Classification Results of the Z_2	
	Model	7 9
23	Number of Cases by Group in the Z_3 Model	80
24	Standardized Discriminant Function	
	Coefficients and their Priority Order of	
	Contribution to the Z_3 and Z_2 Model	82
25	Overall Classification Results of the Z_3	
	Model	83
26	Classification Results and the	
	Discriminant Scores of Cases in the Z_3	
	Model	84

<u>Paqe</u>

.

. . . .

.

Table_No		<u>Page</u>
27	Number of Cases by Group in the \mathbf{Z}_4 Model	85
28	Standardized Discriminant Function	
	Coefficients and their Priority Order of	
	Contribution to the Z_4 and Z_2 Model	86
29	Classification Results and the	
	Discriminant Scores of Cases in the ${ m Z}_4$	
	Model	87
30	Overall Classification Results of the ${ m Z}_4$	
	Model	88
31	Standardized Discriminant Function	
	Coefficients of Z_2 , Z_3 and Z_4 Models	89
32	Unstandardized Partial Regression	
	Coefficients	115
33	Beta Coefficients (Standardized	
	Regression Coefficients)	115
. 34	Comparison of the Standardized	
	Coefficients Between Discriminant Model	
	and Multiple Regression Model	117
35	Results of the Discriminant Models Z_3	
	and \mathtt{Z}_4 and the Regression Model	118
36	Classification Results and the	
	Regression Scores of Cases in the	
	Multiple Regression Model	120
37	The Overall Classification Results of	
	the Regression Model	119
` 38	Summary Table of the Regression	
	Statistics	122

-

•

<u>Table_No</u>

.

.

.

•

.

39	The Univariate Correlation Coefficients	
	Between the Dependent Variable PERFORM	
``	and Other Independent Variables	127
40	Classification Results and the Scaling	
	Scores of Cases in the Unidimensional	
	Scaling Model	131
41	Correlations of Item with the Total Sum	
	of Score	130
42	The Overall Classification Results of	
	the Unidimensional Scaling	132
43	Variables Included in the Discriminant	
	and Unidimensional Scaling Models	134
44	Overall Classification Results of the	
	Test Data Groups in the Discriminant	
	Analysis Model	138
45	Classification Results and the	
	Discriminant Scores of the Test Data	
	Groups in the Discriminant Analysis	
	Model	139
46	Overall Classification Results of the	
	Test Data Groups in the Multiple	
	Regression Analysis Model	140
47	Classification Results and the Multiple	
	Regression Scores of the Test Data	
	Groups in the Multiple Regression	
	Analysis Model	141
A.1	Results of Survey on the Levels of	
	Complexity of Work	178

LIST OF FIGURES

Figure		Page
1	Analytic Hierarchy Process in Bid	
	Evaluation	13
2	All Groups Stack Histogram for Model Z_1 .	63
3	Subject Grouping of the 20 Variables in	
	the Z ₂ Model	68
4	Normality Assumption in Deriving the	
	Cut-off Point for Two Groups	78
5	All Groups Stacked Histogram for Model	
	z ₂	78
6	All Groups Stacked Histogram for Model	
	Z ₃	84
7	All Groups Stacked Histogram for Model	
	Z ₄	88
8	Regression Assumptions	111
9	Stacked Histogram for the Regression	
	Model	121
10	Means of group 1 & 2 and the Demarcation	
	Value of the Variable 'TRAINING'	129
11	Stacked Histogram for the Unidimensional	
	Scaling Model	133
12	Form of Interview Questions Used in the	
	Interview Survey	94
13	Criteria in Contractor Selection Other	
	Than Bidding Prices	96
14	Clients' Perception on Quality of Staff	
	and Its Importance	97

.

,

· - xxi -

· ·

Figure		Page
15	Clients' Perception on Quality of the	
	Project Leader and Its Importance	98
16	Various Approaches to Measure Past	
	Performance	99
17	The Ways That Clients Define Tight	
	Control And Its Importance	100
18	Clients' Attitude and Perception on	
	Overseas Contractor	101
19	Additional Screening Requirements for	
	Large and Complex Projects	102

.

•

.

. •

.

. .

•

CHAPIER 1

GENERAL INTRODUCTION

1.1 INTRODUCTION

In Hong Kong, most of the new construction works are let in the form of competitive tendering. Construction clients commonly try to gauge a contractor's potential performance on a past record of finishing on time, to cost and with good quality of work before inviting bids. However, the tendering method can only measure a portion of the cost component as contractors often succeed in obtaining claims for extras. Unfortunately, the other two components, time (completion on time) and quality of work, are even more difficult to assess at the tendering stage. While careful pre-selection may help in judgement, decision making is subjective and often not accurate.

One of the largest housing developers in Hong Kong openly criticised the performance of contractors explaining that it is difficult to rely solely on the present selective tendering process in evaluating contractors' performance and other methods need to be devised to include as much quantitative and objective factors as possible. These aspects form the basis of the research described in this thesis where a quantitative model has been developed.

- 1 -

1.2.1 AIM

The primary aim of this research is to develop a quantitative model able to assess and predict contractor performance in the process of bid evaluation.

1.2.2 OBJECTIVES

- 1.2.2.1 To develop a formalised and structured approach in the prequalification of contractors.
- 1.2.2.2 To quantify the subjective elements in performance assessment.
- 1.2.2.3 To investigate the reasons that ascribe contractor performance.
- 1.2.2.4 To draw clients' attention to the attributes that can improve contractor performance.

1.3 METHODOLOGY

The mathematical technique of Discriminant Analysis was adopted in the research to evaluate the performance of contractors. Multiple Regression Analysis and Unidimensional Scaling techniques were used to verify and compare the results.

Because of the complexities of calculation involved, it was impractical to achieve this manually. Therefore the package called 'Statistical Packages for Social Science' (SPSSpc) was used for computation.

The project information was obtained through interviews with the client and the contractor representatives.

1.4 BACKGROUND INFORMATION ON THE CONSTRUCTION INDUSTRY OF HONG KONG

Before going further, it is worth at this stage to introduce the characteristics of the construction industry in Hong Kong:

Hong Kong has become a major financial and industrial centre in the Far East despite its size. Its significance has been strengthened by its strategic location on China's south-eastern coastline, and lies on the edge of the economically important Pacific Basin. Located at the mouth of the Pearl River, Hong Kong is just inside the tropics. It has a total area of 1064 sq. kilometres.

The Territory is covered with mountains and hills which account

- 3 -

for 80% of the whole territory. So far only 16% of the total land is built up and this is mainly concentrated on the relatively flat and low-lying parts of Hong Kong Island and the Kowloon Peninsula.⁵

The population reached six millions in 1991 (source from the Census and Statistics Department of Hong Kong). Thus most buildings are high rise structures in order to house the population.

1.4.1 IMPORIANCE OF THE INDUSTRY IN THE ECONOMY

The importance of the construction industry in Hong Kong's economy is demonstrated by the statistics given in Table 1.

The percentage of the construction industry as a percentage of the Gross Domestic Product is expected to rise in the coming few years as Hong Kong has geared up to start an estimated HK\$140 billions worth of the Port and Airport Development project.

1.4.2 LEVELS OF EXPENDITURE IN THE PRIVATE SECTORS OF CONSTRUCTION WORKS

The distribution of private and public work sectors are shown in Table 2.

1.4.3 CHANGE IN PRODUCTIVITY OF THE INDUSTRY

Table 1 Construction as a Proportion of Gross Domestic Product

.

		Buildir	Building & Construction as a Percentage of the total G.D.P.\$	structi	on as a	A Percer	itage of	the to	otal G.I).P.\$	
1976	1977	1978	1979	1980 1981	1981	1982	1983	1984	1985	1985 1986	1987
10.5	12.5	12.5	11.7	12.1	12.1 11.9	13.2	12.4	10.6 9.8		8.8	8.2

(Source: Census & Statistics Department of Hong Kong)

 Table 2 Value of Work Completed at constant Prices at year 1980

 (Source: Census & Statistics Department of Hong Kong)

	Build	Building & C	Donstruc	tion Ex	penditu	ure 1976	-1986	Construction Expenditure 1976-1986 (in HK\$ Billion)	Billior	(1		
At Constant 1980 Price	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
Private	5.7	7.4	7.4	8.3	10.5	11.5	11.9	11.6	11.1	11.4	11.6	12.3
Public	3.7	5.2	6.4	6.1	6.1	6.4	8.5	8.8	8.0	6.2	6.0	6.5
Total	9.4	12.6	13.8	14.4	16.6	17.8	20.4	20.4	19.1	17.6	17.6	18.7
Change %	+13	+34	+10	+4	+15	+8	+14	0	9-	8	0	+7
Public %	39	41	46	42	37	36	42	43	42	35	34	35

1

ر م ا Table 3 shows the number of workers, value of construction works and the average output per worker from 1976-1989.

Over the thirteen years, the productivity of the industry has increased by 44% due to the use of machines and the highly prefabricated construction methods such as steel frame and curtain walling.

1.4.4 THE LABOUR RECRUITMENT OF THE INDUSTRY

In Hong Kong, the labour recruitment of the industry is overwhelmed with labour-only subcontractors. Main contractors normally maintain a small pool of direct labour on sites to carry out the miscellaneous works such as small amount of re-work, cleaning, setting out, and etc. The rest normally are subletted.

However, as the labour shortage became more severe in the recent years, a few construction firms have turned to directly employed labour because of the difficulties in managing labour-only subcontractors. However, the scale is still very small. Nevertheless, as the Hong Kong government starts to import labour, the use of directly employed labour will inevitably be augmented.

1.4.5 PROCUREMENT METHOD

The procurement method used in Hong Kong is still very traditional. The use of selective tendering dominates the market.

- 6 -

 Table 3 Change in Productivity in the Construction Industry from 1976-1989

 (Source: Construction Industry Training Authority of Hong Kong)

•

.

Number of workers on construction sites	rkers on c	xonstructi	on sites										
<u>1976</u>	<u>1977</u>	<u>1978</u>	<u>1979</u>	<u>1980</u>	1981	<u>1982</u>	<u>1983</u>	<u>1984</u>	<u>1985</u>	<u>1986</u>	<u>1987</u>	<u>1988</u>	<u>1989</u>
48,761	63,010	74,734	85,959	90,498	88,877	82,055	70,611	68,603	66,313	70,808	72,486	76,340	70,503
Value of construction works (HK\$ Billion)	struction	works (HK	\$ Billion	(
At curr	At current prices						· · · · · · · · · · · · · · · · · · ·						
4,689	6,876	8,363	12,339	16,623	19,937	24,787	25,112	24,414	22,970	24,403	30,362	37,352	45,573
At const	At constant prices (1980)	(0861) s											
9,415	12,593	13,838	14,447	16,623	17,880	20,417	20,373	19,110	17,634	17,600	18,633	18,775	19,749
Average output per worker (at constant 1980 price)	ut per wor	ker (at o	onstant 1	980 price)									
193,085	199,857	185,163	168,068	183,684	201,177	248,821	288,524	278,559	265,921	248,559	257,078	245,939	280,116
changes in output %	utput %												
1	+3.5	-7.4	-9.2	+9.3	+9.5	+23.7	+16	-3.5	-4.5	-6.5	+3.4	-4.3	+13.9
Cummulative changes &	changes %												
1	+3.5	-3.9	-13.1	-3.8	+5.7	+29.4	+45.4	+41.9	+37.4	+30.9	+34.3	·+30	+44

- 1 -

•

There have been only a few records of management contracting or design and build contracts and they were normally confined to the very large projects.

1.4.6 FOREIGN CONTRACTORS

The construction of the Mass Transit Railway system in 1976 introduced overseas contractors, which were mainly British, Japanese and French, to Hong Kong. The booming conditions in the early 1980's drew other foreign contractors such as Korean, Mainland Chinese, Australian, and Italian. At the start, such firms mainly concentrated on the civil engineering sector which is machine and technique intensive and comprises mostly directly employed labour. Furthermore, the less complicated management of subcontracts and labour together with relatively little services coordination and small amount of trades contractors involved avoids the need to involve local practice. As these firms entered into the building industry, however the increased complexity of the process of this type of work has tended to affect their performance.

Table 4 shows the number of overseas contractors eligible to tender for public works.⁶

1.4.7 FEATURES OF CONTRACTORS⁴

Most construction companies in the developing countries are sole ownerships, and Hong Kong is not exceptional. Table 4 The number of overseas contractors eligible to tender for public works

			Year	ar			
	1980	1981	1982	1983	1984	1985	1986
Japan South Korea China United Kingdom France Australia Italy Other	18118866	4 3 5 4 6 5 4 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	12 55 3 3 11	15 6 9 4 11 11	15 4 55 3 3 19	16 44 20 21 21	18 6 8 8 21 21
Total	25	37	48	53	66	71	76

•

י 6י In the last decade, contractors were unable or unwilling to employ qualified personnel. Their proprietors were also reluctant to delegate responsibility to others, especially where this involved monetary transactions such as the purchase of materials.

Also, owing to their cultural background and the setting of their operations, proprietors of contracting firms had a paternalistic and highly personal management style. Goodwill was important in business relationships. Winning contracts, obtaining materials, arranging for credit from banks and receiving interim payments from clients were rarely straight forward business transactions.

However as the scale of the economy has enlarged and the emergence of large overseas contractors, Hong Kong is experiencing changes from the traditional way of business to a new system. For example, contractors are having to manage their firms more professionally by delegating some reponsibilities, and seeking technical and managerial training or employing qualified personnel. They have begun to realise that contractual rights and relationships with clients have changed from a faithful to confrontational attitude.

1.4.8 SUMMARY

The above description outlines the past and existing market and industry conditions in Hong Kong. These provide some contextual information to the study which are considered vital to understand the background of the research.

- 10 -

CHAPIER 2

REVIEW OF PREVIOUS STUDIES

2.1 INTRODUCTION

In the past, research on the performance of contractors has tended to concentrate on the contractors' business point of view; i.e. the assessment of the productivity, the financial performance, profitability and etc.^{2,3,4} with little work done relevant to clients' concerns relating to time, cost and quality.

2.2 PREVIOUS STUDIES

2.2.1 MUSTAFA AND RYAN'S WORK⁷

The research concerned the process of evaluating bids characterised by the existence of multiple criterion; some of which were found to be qualitative. They concluded that existing methods used in bid evaluation all have their limitations⁷ in so far as most solicitation documents stipulate that the work shall be awarded to the responsible contractor who submits the lowest responsive bid. 'Responsible' and 'responsive' summarise the criteria used in the selection of the contractor, implying that it is not enough to be the lowest bidder for the contractor to be selected. In their work, it mentioned that the bid evaluation was characterised by multiple quantitative and qualitative criteria. The price of the bid was only one criterion in the evaluation process, and the expected performance was the second. The latter criterion was influenced by many subjective and objective factors.

Mustafa and Ryan et al suggested a number of attributes which they thought would affect the performance namely:

- specific experience suitable for undertaking the work;
- safety record;
- attitudes towards correcting faulty or incomplete work;
- compliance with specification, and contractual requirements in previous work;
- management capability to plan, schedule and execute the work in a timely manner;
- availability of facilities: the availability and application
 of special equipment and facilities;
- availability of in-house skilled labour;
- financial stability;
- number of years of experience in the related industry;
- reputation and position in the market; and
- quality of products, records.

Their work involved the evaluation of bids by a systematic approach called 'Analytic Hierarchy Process' (AHP) which is very similar to the concept of tree diagram.

- 12 -

AHP enables decision makers to structure a complex problem in the form of a hierarchy. Each factor and alternative can be identified and evaluated with respect to other related factors. The model is illustrated in Figure 1.

In general, AHP involves the following steps²¹:

- 2.2.1.1 Breaking down the decision into a hierarchy of decision elements. (In Figure 1, the decision elements are Capabilities:- engineering support, cost-benefit analysis, risk analysis; Technology:- konwledge and understanding of the technology, experience base in specific technologies, breadth or number of technologies in which expertise is stated in the offer; Predictive Performance; Labour Rate; Loading Factors of the Tender; Cost of a Sample Task; and etc.)
- 2.2.1.2 Allocating relative weights to each element according to the client's and project's requirements.
- 2.2.1.3 Aggregating the relative weights of the decision elements in order to obtain a numerical outcome; for example, Contractor A may get 0.8 score and Contractor B scores 0.75, C scores 0.5 and thus the contract should be awarded to Contractor A.

This model has the shortfall that the weightings assigned are arbitrary and thus by and large is quite subjective.

- 14 -

2.2.2 NOUYEN'S WORK⁸

Nguyen V. et al also agreed that besides the cost criterion, evaluating tenders usually required two other general criteria based on the contractor's previous experience and the predictive judgement on the contractor's likely performance for the present job.⁸

They further suggested another set of factors thought to affect the contractor's performance, namely:

- technical competence and managerial expertise;
- compliance with specifications in previous undertakings;
- attitude towards correcting faulty or incomplete work;
- safety records;
- ability to meet work schedules; and
- attitude towards claims and counter-claims.

Nguyen suggested the use of fuzzy sets to consider the bid evaluation taking into account 3 main criteria; i.e. cost, past performance, and predictive performance. The method can be illustrated with the following example.

2.2.2.1 EXAMPLE⁸

Suppose there are five tenderers $(x_1, x_2, x_3, x_4, x_5)$ and $\{y_1, y_2, y_3\}$ are the criteria of cost, past performance and predictive performance of equal importance.

- 15 -

In the tender evaluation process, the client holds meetings with partners or associates to exchange individual assessments and opinions on various tenderers. Each partner or interest group presents a rating table for all factors considered on every tenderer. Suppose equal importance, or weights, among the partners or interest groups is used, the aggregation method would then be:

A rating given to tenderer i on account of a criterion j is a binary grade of membership u_{ij} . Aggregation and averaging of k rating values of u_{ij} given by k different decision makers will give the y_2 and y_3 values for contractors x_1 to x_5 in Table 5.

For the cost criterion, the rating can be scaled from a threshold as follows:

Suppose the tenders submitted are:

 x_1 -- \$316,989; x_2 -- \$229,311; x_3 -- \$244,946; x_4 -- \$276,350; and x_5 -- \$222,220;

and the panel agreed the desired lowest price, in this instance equal to \$215,553. Then the u values are:

 $u_1 - 0.68;$ (Bid price x u = Basic price) $u_2 - 0.94;$ $u_3 - 0.88;$ $u_4 - 0.78;$ and $u_5 - 0.97.$

Then the resulting rating matrix or binary relation is shown in Table 5.

Table 5 Rating Matrix or Binary Relation

	У ₁	У ₂	У ₃
x ₁	0.68	0.83	0.90
x ₂	0.94	0.89	0.67
x ₃	0.88	0.95	0.72
x ₄	0.78	0.96	0.79
x ₅	0.97	0.77	0.93

The best suited method for multicriteria decision making process in a fuzzy framework is a decision subset D.

$$D = Y_1 \text{ AND } Y_2 \text{ AND } Y_3;$$

$$D = \{x_1 | 0.68, x_2 | 0.67, x_3 | 0.72, x_4 | 0.78, x_5 | 0.77\}$$

In decsion subset D, the membership grade of each contractor is obtained by taking the minimum across the respective row in Table 5. From D, it is seen that contractor x_4 is selected on the basis of highest degree of support (=0.78) assigned to x_4 , even though contractor x_4 by no means tendered with the lowest bid.

- 17 -

However, the shortfall of the approach is once again the reliance on the subjective judgement of the partners or associates of the (client on the predictive performance.

2.2.3 DIEKMANN'S WORK⁹

His approach assumed the existence of n one-dimensional utility functions to transform the attributes of the decision alternatives into preferences. In his method, multiple criteria were identified and assigned weights. Alternative bids were then given scores with respect to each criterion. These scores were multiplied by the weights assigned to the criterion. The sum of the weighted scores of each alternative represented its overall weight. The alternative receiving the highest total weight was selected. The model had the following form:

$$U(x) = \P_1 u(x_1) + \P_2 u(x_2) + \dots + \P_n u(x_n)$$

where $u(x_i)$ is the single attribute utility function of x_i and \P_i is a scale (or a weight) which indicates the importance of achieving objective x_i .

The shortfall of this method is that most weights and scores are arbitrarily assigned to an arbitrary scale on which the decision makers is making absolute judgements. There is little meaning attached to what an assigned weight represents.

- 18 -

Russell et al have suggested the following decision factors in bid evaluation:

- past performance;
- financial stability;
- status of current work program: to evaluate the contractor's current work load and determine any severe difficulties with on going projects;
- technical expertise: to evaluate technical characteristics of a contractor; and
- project specific criteria: to evaluate whether a candidate contractor can provide unusual expertise or specialised facilities required by the project.

2.2.5 RUSSELL AND SKIENIEWSKI'S WORK²²

Russell and Skibniewski et al concluded from their work that contractor prequalification was a decision making process involving a wide range of criteria for which information was often qualitative, subjective and imprecise. The process was largely an art where subjective judgement, based on the individual's experience was employed.

They suggested the following objectives in determining the client's perception on performance:

- 19 -

- Cost of the project
- Time required for completion
- Quality of finished product
- Safety achieved during construction

They also suggested the following decision parameters on contractor performance:

- Experience over last five years in similar construction
- Experience in completion of project in schedule
- Present workload and capability to support project
- Experience and capability of contractor key site management personnel
- Availability of first line supervisors
- Quality control program and quality of work on past projects
- Past owner/ contractor relationship
- Past and present experience on legal suits or claims

A number of bid evaluation models were proposed by them, namely:

2.2.5.1 DIMENSIONAL WEIGHTING

In this process, each decision parameter and its relative weight of importance were determined based on the characteristics of the decision maker. Once the decision parameters were established, the alternatives, in this case the contractors, could be rated with respect to the decision parameters. A contractor's score was

- 20 -

calculated as a weighted sum of ratings over all decision parameters. The magnitude or the rank order of the scores could then be used to perform contractor selection.

2.2.5.2 TWO STEP PREQUALIFICATION

An alternative suggested was the two step prequalification model. In the first step, contractors were selected or discarded based on how well they satisfied each of the preliminary screening dimensions which were, say for instance the corporate experience in constructing similar projects; capability of handling such a project; and the financial profile.

The second step utilised the dimensional weighting strategy described with more specific criteria being used to determine the contractor's attractiveness as a bidder.

This method could allow rapid elimination of unwanted contractors. This in turn allowed the owner to focus on the remaining contractors and study their merits and demerits more extensively.

2.2.6.3 DIMENSIONWIDE STRATEGY

This approach was to select the more salient dimensions in measuring contractor competence and all contractors were evaluated with respect to it. If the contractor failed to meet

- 21 -

the owner's expectations, he was discarded from the potential bidder list. The rest who passed the first dimension would proceed to the next. Typical decision criteria used in this model included:

- contractor's safety performance;
- prior experience;
- past performance;
- \rightarrow location of home office;
 - type of labour employed;
 - financial stability and
 - longevity.

2.2.6.4 PREQUALIFICATION FORMULA

One example was that the State Departments of Transportation in Ohio of U.S.A. used a formula to restrict the workload of contractor as follows:

"The maximum work volume must be smaller than the contractor's net current assets (from a current financial statement) multipled by 10."

2.3 SUMMARY

These early methods illustrate fairly useful approaches to the

subject of bid evaluation with the results demonstrating some systematic and structured overtures. However, all used subjective judgement, none of which could provide a quantitative model, in assessing or predicting contractor performance. This research thesis concentrates on this shortfall.

This research adopted a mathematical technique called Discriminant Analysis to develop a quantitative model in the form of a formula by which each contractor's predictive performance can be expressed in Z scores. The Z score is a linear scale transformed from multiattribute and multidimensional scales which collectively ascribe the performance behaviour. This approach is new and different from the early studies on contractor performance.

CHAPTER 3

THE TECHNIQUE OF DISCRIMINANT ANALYSIS

3.1 INTRODUCTION

Discriminant analysis , first introduced by Sir Ronald Fisher¹³, is a statistical technique designed to distinguish among several mutually exclusive groups based upon linear combinations of the independent, sometimes called predictor, variables.

As in real life, there may be a number of factors ascribing the outcomes of a problem in the social, behavioural and biological sciences. The contributions and the identification of the variables to the outcome is the information that most researchers look for.

The discriminant analysis technique is a useful tool for the assignment of observations from unknown groups or populations to mutually exclusive groups or populations and for finding out the predictive variables and arrange them in the order of importance. With two groups, it is possible to derive one discriminant function that maximizes the ratio of between to within groups sums of squares. Where there are three groups, two discriminant functions can be calculated. The first function, as in the two group case, has the largest ratio of between groups to within groups sums of squares. The second function is

- 24 -

uncorrelated with the first and has the next largest ratio. In general, if there are K groups, (K-1) discriminant functions can be computed. They are all uncorrelated with each other and maximize the ratio of between groups to within groups sums of squares, subject to the constraints of being uncorrelated.

3.2 APPLICATION OF THE DISCRIMINANT ANALYSIS IN CONSTRUCTION RELATED RESEARCH

To date the technique has generally not been applied in construction related research works, there being few references to previous research^{11,12,14,15}. However of notice, Mason and Abidali^{11,12} et al applied the technique in predicting company failure in the construction industry by taking financial ratios $\sqrt{}$ as the predictors.

Salomonsson and Flood¹⁵ et al also used the technique to classify building firms in Australia based upon the job area, job complexity, completion time and cost as the predictors.

Skitmore and Marsden¹⁴ et al used the method to investigate the decision making path for different procurement methods based upon the following predictors:

-Speed

-Certainty

-Flexibility

-Quality level

-Complexity

-Risk avoidance and responsibility

-Price competition

The reasons for this technique's lack of citation may be due to complexity and its very advanced nature. In contrast, Multiple Regression Analysis applications are more commonly reported, however, discriminant analysis is more powerful in discriminating two or more number of groups.

3.3 ASSUMPTIONS ABOUT THE DATA IN APPLYING DISCRIMINANT ANALYSIS

For the linear discriminant function to be "optimal", that is, / to provide a classification rule that minimizes the probability of misclassification, the following assumptions about the data must be met:

- In each group, the variables must be from multivariate | normal distributions.
- The population covariance matrices for all groups must all | be equal.

In testing the first assumption, a simple tactic is to examine first the distributions of each of the variables individually.

- 26 -

If the variables are jointly distributed as a multivariate normal, it follows that each is individually distributed normally. Therefore, if any of the variables have markedly non-normal distributions, there is reason to suspect that the multivariate normality assumption is violated. For the second assumption, the SPSS (Statistical Package for the Social Science) has provided a feature, that is the Box's M test to test the equality of the group covariance matrices. A small probability might lead to reject the null hypothesis that the covariance matrices are equal. The test is also sentitive to departures from multivariate normality. That is, matrices tend to be unequal if the normality assumption is violated.

These two assumptions are not always satisfied in practice. \parallel However, the technique has been found to be very robust implying \mid that the assumptions need not be strongly adhered to¹¹.

3.4 RELATIONSHIP TO MULTIPLE REGRESSION ANALYSIS

Two group linear discriminant analysis is closely related to multiple linear regression analysis. The binary grouping variables in the discriminant analysis can be treated as the dependent variable in multiple linear regression analysis and the predictor variables as the independent variables.

However, multiple regression analysis is less powerful than discriminant analysis in the case of binary groupings dependent

- 27 -

variables with only 'Yes' or 'No' alternatives. Multiple regression analysis is more suitable to cases where the dependent variable is a continuum¹⁶.

Nevertheless it is not unusual to obtain the same set of dependent variables both in the two group discriminant analysis and the multiple regression analysis and the two sets of coefficients are usually proportional.

3.5 THE GENERAL CONCEPT OF MULTIPLE DISCRIMINANT ANALYSIS

For a two group linear discriminant analysis, the prime objective is to derive a linear function having the significant variables that maximize the between group variation to the within group variation.

The discriminant function has the following form:

$$z = c_0 + c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

where Z = the discriminant score C_1 to $C_n =$ the weighting coeficients $C_0 = \text{constant}$ V_1 to $V_n =$ the discriminant variables

The first step in discriminant analysis is to select cases to be

included in the computations. Cases containing missing information have to be excluded. When all the cases are ready, the next step is to generate and examine the within groups correlation matrix since interdependencies among the variables will affect most multivariate analysis. The correlation matrix should show whether one variable is directly correlated with another, either negatively or positively. If a very strong correlation exists (over ± 0.90), it may be necessary to combine the two criteria, as they may essentially be measuring the same performance factor. A further difficulty with correlations of this magnitude is that any results may be distorted by the presence of multicollinearity.

The third step is going through a large amount of tedious calculation to arrive at the variables found to be significant and their discriminant coefficients, together with a constant.

Ultimately, the effectiveness of the function is measured by the following methods:

3.5.1 PERCENTAGE OF CASES CLASSIFIED CORRECTLY

The percentage of cases classified correctly is one indicator of the effectiveness of the discriminant function. Another indicator of effectiveness of the function is the actual discriminant scores in the group.

3.5.2 THE BETWEEN GROUPS AND WITHIN GROUPS VARIABILITIES

In fact, the coefficients of the discriminant function are chosen so that the ratio of the between groups sum of squares to the within groups sum of squares is as large as possible. Any other linear combination of the predictor variable will have a smaller ratio.

One way to measure the variabilities is the use of the Eigenvalue which is the ratio of the between groups to within groups sums of squares.

Eigenvalue = <u>Between groups sum of squares</u> Within groups sum of squares

Large Eigenvalues are associated with 'good' functions.

3.5.3 THE CANONICAL CORRELATION

This is a measure of the degree of association between the discriminant scores and the groups.

In the two groups situation, the canonical correlation is simply the usual Pearson correlation coefficient between the discriminant score and the group variable.

3.5.4 WILKS' LAMBDA

This is the ratio of the within groups sum of squares to the

- 30 -

total sum of squares. It is the proportion of the total variance in the discriminant scores not explained by differences among groups.

Small values of lambda are associated with functions that have much variability between groups and little variability within groups. A lambda of 1 occurs when the mean of the discriminant scores is the same in all groups and there is no between groups variability. However, this figure provides little information about the effectiveness of the discriminant function in classification, being mainly a test of the null hypothesis that the population means are equal. Small differences may be statistically significant but still not permit good discrimination among the groups.

3.6 SUMMARY

Using the discriminant analysis, it is able to derive a function which can maximize the groups' difference by means of an index expressed in Z-score. A cut off point is able to be established in the two groups. Thus the group membership can be assigned when the score is known.

The advantages of this approach in performance appraisal are as follows:

a) It is a multivariate approach which can consider the entire

- 31 -

profile of all the attributes that affect the dependent variable (in this research, the contractor performance).

- b) The interrelationship between attributes can be taken into consideration.
- c) The classification tool is a straight forward function which is easy to interpret and use.
- d) A quantitative approach is provided which can reduce the effect of subjective judgement in contractor evaluation.

CHAPTER 4

DECISION FACTORS AFFECTING PERFORMANCE AND THEIR QUANTIFICATION

4.1 INTRODUCTION

A builder's overall performance is generally perceived as being related to such factors as quality of workmanship, completion on time, within budget and the builder's attitude when dealing with the client¹⁵ although safety in construction could also be included^{22,23}. These factors provide the primary investigation in this study.

First of all, performance needs to be defined. In this research, performance is divided into two groups: good and poor in which 'fair' performance would be categorised into 'good' pool to avoid ambiguity. Clients were asked to classify the contractor performance into the two groups in interviews.

In order to unveil the clients' decision pattern, a set of variables of time, cost and quality was modelled using the Discriminant Analysis technique to generate the Z_1 model to determine if there was indeed any decision making structure and to ascertain the relative weightings of each factor. The study of these factors forms the first part of this chapter.

In the second part, the variables thought to affect contractor performance were investigated. It being believed that contractor performance is multidimensional and a function of a number of

- 33 -

attributes; for instance the ability of members in the project, the type of project, etc. Some of the attributes are conceived to be the intrinsic features of the contractor while the others may be the external traits which are out of the contractor's control. Indeed research carried out on bid evaluation has highlighted certain intrinsic factors; however, the external influences have seldom been discussed.

4.2 DATA SELECTION

Firstly, a sample of projects was selected based upon the following criteria:

- Different sizes.
- Different types; e.g. renovation works, foundation works to complicated hospital projects.
- i Range of contractors from sole proprietary owned firms to large public companies.

The data was designed according to the following objectives:

- The information must be relevant to the subject according to previous research works.
- Additional variables to be included if thought to be significant in the context of the Hong Kong environment.
- The information must be easily accessable in order not to cause too much inconvenience to the interviewees and thus to maintain the accuracy of data.

- 34 -

- The information must not be so sensitive to cause reluctance to disclose.

4.3 VARIABLES THAT MEASURE THE CLIENT'S SATISFACTION ON CONTRACTOR PERFORMANCE

Historically, project performance has been evaluated in terms of $|\cos t$, schedule and quality^{2,1}. In simple terms, the objectives are to complete the project within time, within budget and to the quality specified. Although some researchers also included safety as the fourth dimension²²; however, in the context of Hong Kong, there is no system in the private sector to penalize contractors although one of the public clients has started considering that a poor safety record might handicap contractors with respect to invitation to tender.

Some previous research reported by Might and Fisher¹⁸ involving a mail survey of 100 development projects in 30 different firms in the U.S.A. produced the following results relating to contractor performance:

Table 6	Relative	Weightings	of	the	Success	Criteria	in Might
and Fisher's Mail Survey				-			

Success Criteria	Relative Weight (%)
Technical Performance (Quality)	54
Cost Performance (Cost)	23
Scheduled Performance (Time)	22
	100

The result suggests that clients tend to be very concerned about quality (the highest weighting) with the weightings of cost and time being comparable in magnitude.

Indicators of this kind, i.e. the three criteria, seemed appropriate for modelling by the Discriminant Analysis method described in Chapter 6. After a full analysis the relative weightings of the 3 factors measured by the standardized discriminant coefficients were found to be:

Table 7 <u>The Standardized Discriminant Coefficients and their</u> <u>Relative weightings in the Z₁ Model</u>

Criteria	Stand. Discriminant Coefficients	Relative Weightings
Time Cost Quality	-0.41669 -0.26144 0.95613	25% 16% 59%
		100%

Comparing the two sets of research results evidently clients seem most concerned about the quality (in Might and Fisher's¹⁸ and this study, the weightings are 54% and 59% respectively). Indeed the weightings of all the three criteria are comparable, the difference being the reverse priority order of the weightings for time and cost factors (in Might and Fisher's¹⁸ and this study, the priorities for time factor are ranked 3 and 2 respectively). However, in Hong Kong the high cost of land rental charges would explain the clients' concern on the time criterion. The importance given by clients to the quality element may be related to the difficulty in projecting likely quality performance at the time the contract is awarded although the specifications might give some indications. In contrast, time and cost are stipulated precisely in contracts which can be known at the outset in spite of the fact that their exact extent cannot be valuated.

The methods adopted to quantify these three criteria are described in the following pages.

4.3.1 QUALITY

Quality is very difficult to define in the construction industry; for instance, if the specification calls for soil to be compacted to a given density but was not achieved in reality, quality would not be attained and the defect would not show up immediately. Further, there are many trades in a building project which could not be realistically expected to achieve a good quality. Thus ultimately the question is whether the completed work possesses the attributes desired by the owner and designer. These can only be measured subjectively by their comformity to the specifications established for the project².

In this study, quality was assessed by ordering clients perceptions on a ranked basis, namely:

<u>Quality of work</u> <u>Rank</u> Poor quality compared with the specifications. 1

```
- 37 -
```

Slightly poorer than average compared with the specifications.	2
Meet the requirements of the specifications.	3
Slightly better than average compared with the specifications.	4
Good quality compared with the specifications.	5

4.3.2 TIME

This factor was measured by the following ratio:

<u>Actual Completion Time</u> Estimated Contract Duration in the Tender

This measure is designed to determine the percentage delay of the project caused by the contractor. The accuracy of this factor may be affected by variations, consequently, projects with few variations were selected in order to minimize such effects.

4.3.3 COST

This was measured in the ratio of:

Final Cost of Contract Tender Price

The main objective here is to identify contractors with a tendency towards inflating prices through claims against the client.

While these last two criteria cannot be determined precisely without access to detailed project information, the crude figures facilitate an indication to be made of the clients' decision pattern in judging performance.

4.4 THE INTRINSIC TRAITS OF CONTRACTOR LIKELY TO AFFECT PERFORMANCE

Researchers^{4,7,8,10,22,23,24,25} have suggested a number of internal attributes of contractors thought to affect performance. In this study, nearly all, plus unique elements were included and discussed below.

4.4.1 STAFF TRAINING PROGRAMME

Companies which invest in human resources are normally well established and often appear to have better long term planning policies. Training in management skills may be one of the factors in improving their performance in managing projects and was thus included in the model as a variable defined by the following ratio:

Number of staff members taking management training Total no. of staff

4.4.2 PLANT OWNERSHIP POLICY

Both Mustafa et al⁷ and Russell et al²² suggested the

- 39 -

availability, quantity, quality and suitability of plant would affect contractor performance. Further, construction contracting is a risky business with flucuations of work commonly hindering contractors in the acquisition of fixed assets. Plant ownership trend can provide some indication of the long term planning policies and attitudes especially in fostering good relationships with clients. This factor is designed to measure the availability and quantity of company owned plant and was quantified as follows:

<u>Preceding year's total amount of plant owned</u> Preceding year's turnover

4.4.3 SIZE OF THE COMPANY

Large companies generally possess more resources and more sophisticated systems of management and because of size, have to live up to a particular public image, thus indirectly affecting performance.

Size in this context was quantified by the number of staff employed as human resources are the main assets of a construction firm. In contrast, works in hand are unreliable as a measure because of the possibility of short term overload. Fixed assets are difficult to include while the turnover of a year does not reflect the size of the company.

4.4.4 QUALITY OF MANAGEMENT TEAM - PROFESSIONAL QUALIFICATIONS

- 40 -

Nguyen and Russell et al mentioned in their works^{8,22} that management qualifications and expertise were the criteria for contractor selection. Giege and Selin²⁴ cited in their interview survey that competent personnel in management and organisation of the project was one of the most important factors for success. Moreover, Russell et al²² described that the capability of contractor's key site management and technical field personnel was one of the determinants of success.

In the building industry of Hong Kong, many senior management staff in construction firms are promoted from supervisory or trade foreman level and seldom receive professional management training. Some are less adaptive to changing technology than others and sometimes find it difficult to accept new ideas and changed skills. Thus the percentage of staff acquiring professional qualifications could affect the performance behaviour.

The ratio used to quantify this element was chosen to be:

<u>Number of professionally qualified staff</u> Total no. of staff

4.4.5 QUALITY OF MANAGEMENT TEAM - PROJECT LEADER'S EXPERIENCE

Jaselskis et al and Russell et al mentioned in their works^{23,22} that experience of contractor's key site management and technical field personnel was one of the determinants in contractor selection. Jaselskis²³ also specifically cited that

- 41 -

the project manager's number of years of experience could affect contractor performance.

A count of the number of years of experience of the project leader in construction contracting was thus selected as the measure in this case.

4.4.6 PAST PERFORMANCE OF THE PROJECT MANAGER

The past performance of the project manager in the eyes of his or her senior may reflect the quality of the project manager which may affect the contractor performance. This was obtained by asking the project manager's superior about the past performance and gauged as follows:

- 1. Slightly poorer than average
- 2. Fair
- 3. Better than average

4.4.7 CONTRACTOR'S EXPERIENCE IN THE TYPE OF JOB

Both Jaselskis et al and Mustafa et al specified in their works^{23,7} that the specific experience of the contractor suitable for undertaking the work was one of the criteria in determining success.

Contractors who are familiar with the type of project may manage that potential kind of work more efficiently and thus perform

- 42 -

better and this was gauged by the ratio:

<u>Number of similar jobs in a fixed period of time</u> Total no. of jobs in the same period

4.4.8 CONTRACTOR'S WORK LOAD

Both Jaselskis et al^{23} and Russell et al^{22} described that the allowable work volume for a contractor had to be limited in bid evaluation. If contractors are overloaded with work, resources and labour availability may be affected and this can be gauged as follows:

Total contract sum in hand Total no. of staff

In this approach, the workload relative to the staff establishment was used to define the real workload situation since staff is one of the most important resources in the construction industry and the staff establishment normally prescribes the size of a construction firm.

4.4.9 CONTRACTOR'S PAST PERFORMANCE OR IMAGE

Mustafa et al⁷ described that reputation and position in the market was one of the criteria in bid evaluation. Russell¹⁰ stated that past performance was important in contractor (selection.

Past performance may be one of the factors governing future

- 43 -

performance but is difficult to measure objectively. The method adopted in this research ranked the past performance of the contractor in the order from 5 to 1 representing very bad, bad, fair, good and very good respectively of which clients were asked to judge in interviews.

4.4.10 NUMBER OF YEARS IN THE HUSINESS

Longevity is one of the factors to be considered in contractor appraisal²³. Mustafa et al specifically stated that the number of years of experience in the related industry would be \langle considered in bid appraisal.

Contractors that have survived long in the market may be more reliable, possessing different marketing policies from competitors; e.g. more experience in controlling and managing the local works. Some attempt at gauging this aspect was included in the model as a variable for age of the firm.

4.4.11 ORIGIN OF THE COMPANY

Abdel Salam²⁵ cited that foreign contractors were faced with a general lack of information concerning both technical and administrative experience in the host country. In addition, most foreign contractors relied on compensating costs through claims. In order to maximize turnover and enter into the market, there was a tendency to tender below the true economic cost of the work. Then too much time and effort were expended on trying to

- 44 -

increase the financial return and avoid loss. There was no margin for small expenditures that might improve quality of process, which a good contractor executing work at adequate price would usually undertake, on his own responsibility, in the interest of a good job and his own reputation.

Foreign contractors normally obtained information from their own native embassy staff who mainly dealt with commercial and trade field probably had no practical experience of the construction industry. As a result, they might be unaware of matters that could cause local problems on major projects carried out in whole or in part by expatriates.

Further, overseas contractors may have different management skills compared with the local contractors whose business policies may be influenced by the Chinese culture and the Chinese way of running business. This variable was described by 3 classes; representing overseas contractors, overseas and local joint venture contractors and local contractors.

4.4.12 AMOUNT OF DIRECTLY EMPLOYED LABOUR

Russell et al^{22} stated that the type of labour employed was one of the decision factors in assessing the potential performance. Mustafa et al^7 mentioned that the availability of in-house skilled labour would affect contractor performance.

However, direct labour could be easier to manage and may produce

- 45 -

higher quality of work when compared with labour only subcontractors, particularly in booming conditions with severe labour shortages.

This effect was measured by the percentage of directly employed labour in the total workforce of the company. This was the ratio of the amount of direct labour over the estimated total number of labour working for the contractor at the moment of interview.

4.4.13 LISTED ON THE STOCK MARKET

Private companies may be very flexible while public companies may be more stable in policy and decision making and some quantification measure was therefore included in the model. This was gauged by 1 or 2 representing 'yes' or 'no'.

4.4.14 DECISION MAKING CENTRALISED IN HEAD OFFICE OR DE-CENTRALISED TO SITE

This factor was included in order to see whether types of company control affect performance and was gauged by 1, 3 and 2 for centralised, decentralised and mediocrity.

4.4.15 CONTRACTOR IS CLIENT'S SUBSIDIARY FIRM

In Hong Kong, most large developers have subsidiaries or part owned firms and the relationships of subsidiary contractors with clients can be quite close compared to general contractors and {

- 46 -

was thus included in the model.

This was gauged by 1 and 2 representing 'yes' and 'no'.

4.5 EXTERNAL FACTORS THOUGHT TO AFFECT CONTRACTOR PERFORMANCE

The above are internal attributes of contractors; however, there may be many external influences which were seldom discussed in previous research works which could affect contractor performance such as:

4.5.1 THE ARCHITECT'S PERFORMANCE

The quality of drawings, the number of drawing amendments, variations and the timely issuance of drawings may be important. Clearly these aspects are very difficult to quantify and can only be quantified by subjective ranking; e.g. on a scale 1 to 5 representing very poor to very good respectively.

4.5.2 ARCHITECT'S OR CLIENT'S SUPERVISION AND CONTROL ON QUALITY AND WORK PROGRESS

If the client or architect supervises and controls tightly the quality of work and work progress, contractors may perform better. Early signalling of the client's dissatisfaction on the work progress and the quality of works by issuing architectual instructions and warnings can reduce disputes at the end of the

- 47 -

contract.

Again this factor is very difficult to quantify and was measured in rank order 1 to 5 representing very loose to very tight control.

4.5.3 FUNCTUALITY OF PAYMENT BY THE CLIENT

Frequent delays of payments may cause discontent to the contractor resulting in disputes. This was gauged by 1 and 2 representing 'punctual' and 'unpunctual'.

4.5.4 COMPLEXITY OF THE PROJECT

Simple works require little management input while complicated works involve the coordination of complicated electrical and mechanical services and management of nominated specialist subcontractors and the client's requirement may be more stringent. That may affect contractors' performance.

A small survey was carried out in order to rank the levels of complexity. Firstly, six levels of work were derived arbitrarily by the author. Questionnaires were sent to clients asking them to gauge the complexity in ascending order and the Kendall Coefficient of Corcordance⁵² was used to test the judges' agreement and was proved to have a high concordance (for details please refer to Appendix 1).

This was quantified in the following manner:

- 48 -

Types of work

Foundation works, site formation, slope protection and similar simple civil engineering works which output relies on that of machine and contractors normally use directly employed labour without the trouble of coordinating subcontractors. No electrical and mechanical works are involved. 1 Renovation or alteration works. 2 Factory or domestic housing works which require a little amount of E&M services coordination. 3 Deluxe housing projects or office buildings which require more subcontracting and E&M coordination. 4 Hotel or high class office buildings. 5 Hospital or complicated structures or projects. 6

4.5.5 PROFITABILITY

If the contractor knows, at the outset of the project, that work will be profitable, a more cooperative spirit and willingness to spend a little more to achieve a better quality might prevail. However, on the contrary, contractors may seek every chance of claims and upset the client. This was gauged by the ratio:

Winning tender price Pre-tender estimate

Both the tender price and the pre-tender estimate were obtained through the interview with the clients.

4.6 SUMMARY

In the first part of this chapter, three variables were described which were thought important in evaluating performance, namely:

- Time
- Cost
- Quality

In the second part, twenty factors conceived affecting quilted performance were included, namely:

Internal Factors

- The staff training programme
- Plant ownership policy
- Size of company
- The percentage of professionally qualified staff
- Project leader's experience
- Past performance of the project manager
- Contractor's experience in the type of job
- Contractor's work load
- Contractor's past performance or image
- Number of years in the business
- Origin of the company
- Amount of directly employed labour
- Listed on the stock market or not
- Decision making centralised in head office or decentralised to site

- Whether the contractor is client's subsidiary firm

External Factors

- Architect's performance
- Architect's or client's supervision and control on the quality of work and work progress
- Punctuality of payment by the client
- -. Complexitty of the project
- Profitability of the project

The Discriminant Analysis model is intended to separate the two groups of performance by maximizing the differentiation among attributes. The list of variables is by no means exhaustive but the most important factors were included and considered in the model.

CHAPIER 5

DATA COLLECTION AND FORMATION OF DATA GROUPS

5.1 INTRODUCTION

This section concerns the methodology of data collection, data types and formation of the data groups used to develop and verify the discriminant model for contractor performance. The data type, the main features of project samples will be discussed in the following pages together with the types of projects chosen which were aimed to produce a fair representation of the population.

5.2 METHODOLOGY OF DATA COLLECTION

Cases were selected on the criteria that a wide spread of the M different characteristics of projects was included.

Once cases were selected, contacts were made to ascertain who would be best able to act as key informants about the details of projects. These individuals were then provided with the information outlining the research followed up by personal meetings to establish willingness to participate. Once access had been agreed, an indepth interview was arranged which was based on a structured questionnaire. The nomenclature and role of those interviewed varied considerably, as might be expected 1 structured? including managing directors, project managers, contract managers, property managers, chief architects, chief quantity

surveyors, management consultants.

5.3 FORMATION OF DATA GROUPS

In this study, four groups of project samples were chosen as shown in Table 8:

Table 8 Group Size of Projects in the Study

	Groups	Number of Cases
1 2	'Good Performance' Group 'Bad Performance' Group	24 9
	Total:	34
34	Test 'Good Performance' Group Test 'Bad Performance' Group	10 6
	Total:	16

3 a tor Groups one and two were used for modelling the discriminant function whilst Groups three and four were served for testing and verifying the model.

. , ' ۲ Jert.

Groups one and two consist of a total of 34 cases which were collected on a random basis. They were gathered in years of 1989 to 1990.

The test groups three and four were specially selected to include more 'bad' cases for examining the discriminant power of the model. The information required for the test groups were much simplified to contain the significant variables discovered in the discriminant model only. They were collected in year 1991.

5.4 DATA ANALYSIS

Since both the collection of the good and bad performance cases were at random, the 'prior probability' in the modelling which is an estimate of the likelihood that a case belongs to a particular group when no information about it is available, can be estimated by the observed proportions of cases in each group. In this study, nine out of the thirty-four cases belong to the 'bad' group. The prior probabilities of belonging to group 2 (bad) and group 1 (good) are then 0.26 and 0.74 respectively. In other words, the chance that clients can encounter good performance is 74% out of all projects and 26% for poor performance.

5.4.1 TYPES OF PROJECTS

The types of project in the sample groups are shown in Table 9. The modelling groups cases were designed to give a wide spread of different types in order to secure a fair representation of the population.

5.4.2 TYPES OF CONTRACTORS

The types of contractors in terms of their nationality in the sample groups are shown in Table 10. The percentage of foreign

- 54 -

contractors in the modelling groups represents more or less their market share in Hong Kong.

.

Table 9 Types of Projects in the Samples

Types of Project	Number of cases	
	Modelling Groups	Testing Groups
Foundation, site formation, slope protection and similar civil engineering projects.	4	0
Renovation or alteration projects.	4	3
Factory or domestic housing projects.	9	7
Deluxe housing projects or office buildings.	5	5
Hotel or high class office building projects.	7	1
Hospital or complicated structure projects.	5	0

Table 10 Types of Contractors in the Modelling Groups

ORIGIN	NUMBER		
	Modelling Groups	Testing Groups	
Foreign Contractors	5	1	
local Contractors	29	15	
Total:	34	16	

5.4.3 SIZE OF CONTRACTORS

•

The size of contractor was measured in terms of the number of

staff employed (refer to para. 4.4.3 of Chapter 4). Their sizes in the modelling groups are shown in Table 11 which spread over a very large range.

Table	11	Size_of	Company	in	the	Modelling Group	2

Number of staff employed	Number of cases		
15 or less 16 to 99 100 to 199 200 to 999 1000 or above	5 3 • 7 14 5		
Total:	34		

5.4.4 PROJECT SIZE

The sizes of project measured in terms of contract sums are shown in Table 12 which demonstrated that the spread is very extensive.

Table 12 Project Size in the Sample Groups /

SIZE	NUMBER OF CASES		
	Modelling Groups	Testing Groups	
1 Million or less (HK\$) Above 1 million up to 10 millions Above 10 millions up to 50 millions Above 50 millions up to 100 millions Above 100 millions up to 500 millions Above 500 millions	2 3 6 11 10 2	0 4 5 3 4 0	
Total:	34	16	

j2?

Attempts have been made to include different and a wide spread of types, sizes and other important features of project in the samples. The period of data collection has been confined to within two years for the modelling groups to avoid any changing conditions of the industry which could affect the consistency of the results.

The test groups were designed to obtain a balance in the number $\int_{\{m_{i}\}} h_{i} h_{m_{i}}$ of good and bad cases in order to demonstrate the predicting power of the model.

CHAPIER 6

RELATION BETWEEN PERFORMANCE AND TIME, COST & QUALITY

6.1 INTRODUCTION

This section concerns the formulation of the Z_1 model to portray clients' decision profile in determining contractor performance using variables such as time, cost and quality. As discussed in section 4.3 of Chapter 4, cost, schedule and quality were considered as the most important predictors in performance. These three variables were investigated in the model for their underlying structure in performance appraisal.

6.2 DATA ANALYSIS

There were forty-four cases adopted in the analysis. The ways to $\int \frac{dW_{y}}{dy} \frac{d4}{dy}$ quantify the variables have been described in Chapter 4. The
group means of the three variables, time, cost, and quality, are
shown in Table 13.

Group	Time	Cost	Quality
1	1.09584	1.04866	3.21875
2	1.60417	1.07392	1.91667
Total	1.23448	1.05555	2.86364

Table 13 Group Means of Time, Cost and Quality

Table 13 shows that the variable TIME overran by 9.6% in the 'good' group on average while that was 60.49% in the 'bad'

group. Also, the budget overran by 4.9% in the 'good' group but 7.4% in the 'bad' group. The quality was slightly above average in the 'good' group but slightly below the 'slightly poor' catagory in the 'bad' group.

The correlation of the three variables are shown in Table 14.

Table 14	Pooled	<u>Within</u>	Groups	Correlation	<u>Matrix</u>	in	the	<u>Z</u> 1
	<u>Model</u>		_					#

	Time	Cost	Quality
Time	1.00		
Cost	- 0.03588	1.00	
Quality	0.09256	0.14920	1.00

7 The small correlations infer that multicollinearity does not upset the model.

6.3 Z₁ MODEL DERIVED

(Details of computer generation of the model are described in Appendix 3.)

The standardized and unstandardized Discriminant Function Coefficients found are shown in Table 15. The magnitude of the unstandardized coefficients is not a good index of relative importance when the variables differ in the units in which they are measured. However, when the variables are standardized to adjust for the unequal means and standard deviations of independent variable, the relative importance can be measured more accurately. Therefore, the importance of an individual variable can be assessed according to the size of the

- 59 -

standardized canonical discriminant function coefficients in the priority order of quality, time and cost since the values are little distorted by small correlations. The actual signs of the coefficients are arbitrary which are determined by the way of quantification.

Table 15TheStandardizedandUnstandardizedCanonicalDiscriminant Function Coefficients in the Z1Model

	Standardized Discriminant Function Coefficients	Unstandardized Discriminant Function Coefficients	
Time	-0.41669	-0.7132566	
Cost	-0.26144	-2.932977	
Quality	0.95613	1.760698	

Table 7The Standardized Discriminant Coefficients and their
Relative weightings in the Z1 Model

Criteria	Stand. Discriminant Coefficients	Relative Weightings
Time Cost Quality	-0.41669 -0.26144 0.95613	25% 16% 59%
		100%

The Z_1 model function for time, cost and quality is as follows:

Z₁=1.760698*QUALITY - 0.7132566*CON_TIME - 2.932977*CON_COST - 1.065610

where QUALITY= Quality of work in the rank of:

1 - poor quality compared with the specification.

- 2 slightly poorer than average compared with the specification.
- 3 meet the requirement of the specification.
- 4 slightly better than average compared with the specification.
- 5 good quality compared with the specification.

CON_TIME= The ratio of:

<u>Actual completion time</u> Estimated contract duration in the tender

CON_COST= The ratio of:

Final cost of contract Tender price

6.3.1 PERCENTAGE OF CASES CLASSIFIED CORRECTLY

The classification power of the model can be gauged by the percentage of cases being assorted correctly. Table 16 illustrates the overall classification results of the model and Table 17 shows the individual classification of the cases and their discriminant scores.

Table 16
 Overall Classification Results of the Z1
 Model

Actual Group	Number of Cases	Predicted Group Membership	
		Group 1	Group 2
Group 1	32	31 (96.9%)	1 (3.1%)
Group 2	12	1 (8.3%)	11 (91.7%)

The distribution of the classified cases is illustrated in 1 whet. Full. Figure 2.

From the results, it demonstrates that the effectiveness of

Case				
Case	Actual	Discriminant	Classified	Classification
	Group	Scores	Group	
1	1	0.7446	1	Correct
2	1	-0.0464	1	Correct
3	1	2.0083	1	Correct
4	2	-3.8920	2	Correct
5	1	0.5703	1	Correct
6	1	-0.2597	1	Correct
7	2	-1.1294	2	Correct
8	1	2.2152	1	Correct
9	2	-1.2506	2	Correct
10	1	0.3967	1	Correct
11	ī	0.7667		Correct
12	1	0.3911	1	Correct
13	1	0.012	1	Correct
14	1	0.4236	i	Correct
15	1	1.9577	ī	Correct
16	1	0.1303	1	Correct
17	ī	0.2746		Correct
18	1	2.086	1	Correct
19	1	0.3425	1	Correct
20	1	0.5116	ī	Correct
21	1	1.8910	1	Correct
22	1	1.6873	1	Correct
23	1	-0.1091	1	Correct
24	2	-1.4663	2	Correct
25	1	1.8261	1	Correct
26	2	-3.3300	2	Correct
27	1	2.1796	1	Correct
28	2	-0.3770	1	Wrong
29	2	-1.4282	2	Correct
30	1	0.6670	1	Correct
31	1	0.5489	1	Correct
32	1	1.2689	2	Wrong
33	1	2.3309	1	Correct
34	1	0.2176	1	Correct
35	1	0.5371	1	Correct
36	1	0.5949	1	Correct
37	1	0.4197	1	Correct
38	1	0.0828	1	Correct
39	1	-0.9368	1	Correct
40	2	-2.0504	2	Correct
41	2	-4.1608	2	Correct
42	2	-2.1185	2	Correct
43	2	-1.1025	2	Correct
44	2	-1.5131	2	Correct

Table 17 <u>Classification Results and the Discriminant Scores of</u> <u>Cases in the Z₁ Model</u>

.

,

- 63 -

classification of the model is very high. The two groups are well separated by the discriminant model Z_1 .

6.3.2 THE BETWEEN GROUPS AND WITHIN GROUPS VARIABILITIES

This is scaled by eigenvalues as described in section 3.5.2 of Chapter 3. Large eigenvalues mean 'good' classification and the eigenvalue is gauged as:

what is large

Eigenvalue = <u>Between groups sum of squares</u> = 1.54778 Within groups sum of square

The value is fairly large and so the classification is considered as good and effective.

6.3.3 THE CANONICAL CORRELATION

This is the correlation which measures the association between the discriminant scores and the groups. The value is 0.779 which $M = \frac{1}{100} \frac{1}{77}$ is quite high and again this demonstrates that the classification is good.

6.4 SUMMARY AND CONCLUSION

Although there were two cases misclassified in the forty-four cases, the model was demonstrated to be effective in separating | the two groups. It is thus believed that clients' judgement on

contractor performance has an underlying decision structure. The priority order of importance in their perception is as follows:

- 1. Quality
- 2. Time
- 3. Cost

The relative importance of 'quality' is almost 2.4 times that of the second ranked variable, i.e. time while the relative importance of 'time' is almost 1.6 times that of the last, i.e. cost. The importance given by clients to the quality element may be related to the difficulty in projecting likely quality performance at the time the contract is awarded while the other two variables are stipulated precisely in contracts although their exact extent cannot be ascertained until the completion of ' a contract.

The magnitude and order of importance of the variables are comparable with the findings of Might and Fisher's¹⁸ mail survey as described in section 4.3 of Chapter 4. The matching of the two research results indicates that the clients' perception on performance is not the consequences of the random and unstructured projections. They share certain commonalities in performance appraisal. It concludes that clients' judgement on performance is trustworthy to be used as a performance indicator.

CHAPIER 7

THE DISCRIMINANT ANALYSIS MODEL

7.1 INTRODUCTION

This Chapter includes a description of the main discriminant model Z₂, and its constituent variables, together with the relationship between the variables and contribution of each variable to the model. The cut-off value for the model is also encompassed.

The derived model included all types of project in the building industry of Hong Kong as described in Table 9 of Chapter 5 which embodies renovation works, building related civil engineering works such as site formation, slope protection and foundation construction, and the construction of high rise buildings. In order to investigate the different effects of different types of project on the prediction model, two sub-models, comprising new works (Z_3 model) and building works (Z_4 model) cases only were also selected from the main model.

There are twenty variables studied namely:

- The staff training programme
- Plant ownership policy
- Size of company
- The percentage of professionally qualified staff
- Project leader's experience

- 66 -

- Past performance of the project manager
- Contractor's experience in the type of job
- Contractor's work load
- Contractor's past performance or image
- Number of years in the business
- Origin of the company
- Amount of directly employed labour
- Listed on the stock market or not
- Decision making centralised in head office or decentralised to site
- Whether the contractor is client's subsidiary firm
- Architect's performance
- Architect's or client's supervision and control on the quality of work and work progress
- Punctuality of payment by the client
- Complexity of the project
- Profitability of the project

The variables were classified into two groups, namely the internal attributes of contracting firms and the external influences of projects. The variables could be further subdivided into subject groups which measure the important characteristics of projects as shown in Figure 3.

The final prediction model produced in the research is made up uly only of six variables, measuring six distinct aspects of the project attributes, namely: the complexity of the project, the percentage of professional staff, the project leader's

6 out of 20

- 67 -

the Project Complexity Project Feature of the External Influences , G Figure 3 Subject Grouping of the 20 Variables in the \mathbb{Z}_2 Model Architect's Client's or Performance Architect's Supervision and control Payment is Punctual Influences Project Whether Team's of the client Organisation Making Centralised Whether the Is the Firm Firm is a Subsidiary Contractor Performance Decision a Public Company or not . Ownership ÷ Policy Asset Plant Size of Contracting Firms Internal Attributes Contractor's Experience in the type of job No. of years Company Experience, Types and Reputation Performance Origin of Business Company in the Past Workload Profita-Finance bility Qualification Performance Professional Experience Amount of Directly Employed Labour Resources Programme Staff Training Leader's Manager Project Project of the Human Past

- 68 -

.

experience, the past performance of the contractor, the origin of the firm and the architect's and the client's supervision and control on the progress and quality of the project.

7.2 THE RESULTANT MODEL Z2

(Details of computer generation of the model are described in Appendix 4.)

The following six variables linear function resulted:

Discrimin	ant functio	n = - 0.5616 (COMPLEX) + 11.9324 (PROF_STA) + 0.0949 (LEAD_EX) - 1.7845 (PAST_PER) + 0.8219 (ORIGIN) + 1.0364 (CONTROL) - 1.1408
where	COMPLEX :	The complexity of the project
	PROF_STA:	Percentage of professional qualified staff
	LEAD_EX :	Project leader's experience
	PAST_PER:	Contractor's past performance or image
	ORIGIN :	Origin of the company
	CONTROL :	Architect's or client's supervision and control on the quality of work and work progress

7.3 THE CONSTITUENT VARIABLES

The constituent variables in the developed model are described in the next few pages.

7.3.1 COMPLEXITY OF PROJECT

As described in Chapter 4, complicated works typically involve the coordination of complex electrical and mechanical services,

- 69 -

the management of nominated specialist subcontractors and furthermore clients' requirements are often more stringent. The more complicated the work, the more effort generally required, with increased likelihood of poor performance by all the parties involved.

Surprisingly this factor has hardly ever been pinpointed by researchers in bid evaluation but is inherent in many projects. An appreciation of the importance of complexity can help clients in exercising tighter supervision on the progress and quality of work.

The degree of importance of this variable should be revealed in that clients would choose experienced contractors for the complicated and large projects while keeping the simple and small scale work for small and new contracting firms together with better supervision by the architect or the client on complicated contracts. Evidence that this is the case can be seen in the relatively high correlation between the variables of complexity and the experience of the contractor in similar jobs and client's or architects' control, 0.50214 and 0.62167 respectively (refer to Table 18).

- 70 -

Table 18Pooled Within Group Correlation Matrix of Variables in
the Z2 Model

	COMPLEX	PROF_STA	LEAD_EX	PAST_PER	ORIGIN	CONTROL
COMPLEX	1.000	· · · · · · · · · · · · · · · · · · ·				
PROF_STA	-0.178	1.000				
lead_ex	0.039	-0.032	1.000			
PAST_PER	-0.322	0.561	0.346	1.000		
ORIGIN	-0.082	-0.701	0.050	-0.285	1.000	
CONTROL	0.622	-0.227	-0.214	-0.268	0.040	1.000
CONT_EX	-0.502	-0.100	-0.110	0.180	0.143	-0.175

Where COMPLEX: The complexity of project
PROF_STA: The percentage of professional staff
LEAD_EX: The project leader's experience
PAST_PER: The past performance of contractor
ORIGIN: The origin of the firm
CONTROL: The architects' or clients' control
and supervision on progress and
quality of work
CONT_EX: The experience of the contractor in
similar types of job

7.3.2 PERCENTAGE OF PROFESSIONAL STAFF

In Chapter 4, it was suggested that the competence of contractors' staff would influence their performance. Indeed the Z_2 model function indicates that firms with a higher percentage of professional staff have a better chance of achieving good performance, i.e. staff who have had professional training and experience may be more efficient and professional

in production and project management and thereby contribute to achieving completion dates, improved quality and cost savings from which clients would finally benefit.

The contribution of this factor to the function was the second most important in terms of standardized discriminant function coefficients (see Table 20). In contrast, however a higher percentage of professional staff may also mean that contractors could have more expertise in claims negotiation. As a result, this negative contribution has reduced the importance of this variable to the function.

Table 19 <u>Unstandardized Discriminant Function Coefficients for</u> <u>the Z₂ Model</u>

Variables	Unstandardized Discriminant Function Coefficients
COMPLEX	-0.5616
PROF_STA	11.9324
LEAD_EX	0.0949
PAST_PER	-1.7845
ORIGIN	0.8219
CONTROL	1.0364
Constant	-1.1408

Table 20 <u>Standardized Discriminant Function Coefficients and</u> their Priority Order of Contribution to the Z₂ Model

Variables	Standardized Discriminant Function Coefficients	Order of Contribution
COMPLEX	-0.8867	4
PROF_STA	0.9110	2
· LEAD_EX	0.6372	5
PAST_PER	-1.1000	1
ORIGIN	0.5184	6
CONTROL	0.8870	3

7.3.3 PROJECT LEADER'S EXPERIENCE

The model shows that the more experienced the project leader, the more likely the final outcome would be favourable. This verifies Jaslskis and Russell et al's findings that project leaders' experience correlated positively with the predictive performance.

Nevertheless, the contribution of this variable to the function is not high (see Table 20) in terms of standardized discriminant function coefficients which is quite understandable as only a small part of staff competence is measured.

7.3.4 PAST PERFORMANCE

Most previous research suggests that contractors' past performance to be a very important determinant of predictive performance. Likewise, this study also highlighted that this

- 73 -

factor's contribution to the function in terms of standardized discriminant function coefficients is high (see Table 20).

Thus past negative performance could be expected to be repeated with companies forming the habit of managing projects in a characteristic manner, e.g. hard attitude in dealing with clients trying to maximize profits irrespective of the relationship with clients, or standing very firm on claims, etc.

On the contrary, if the policy of a company is to care for quality and clients' relations, this would have a positive contribution to its performance.

7.3.5 ORIGIN OF CONTRACTOR

Local Chinese contractors have their own way of running business and generally prefer commercial settlements rather than bringing the case to arbitration or court. In contrast most overseas contractors in Hong Kong (especially those from the Western countries) are very claim conscious. Further such firms may have difficulties in managing local subcontractors; particularly the labour only employers.

Abdel Salam²⁵ cited that foreign contractors generally lack knowledge on local problems thereby affecting their performance.

The contribution of this factor to the function in terms of

- 74 -

standardized discriminant function coefficients is not very strong (see Table 20). Contractor origin is rarely mentioned in previous research works in bid evaluation, and may be only significant in the Hong Kong context where the society is intermixed with western and eastern cultures with the industrial market typical international where overseas contractors are not prejudiced.

7.3.6 ARCHITECTS' OR CLIENTS' CONTROL AND SUPERVISION

Surprisingly, this factor has also rarely been identified by previous researchers in bid evaluation, when in reality it is a variable which can be controlled by clients. For example where the predictive performance is considered likely to be poor, clients could intervene and try and tighten up supervision.

This factor is shown to be one of the important determinants in performance prediction in the Z_2 model in terms of standardized discriminant coefficients (see Table 20).

7.4 THE CUT-OFF VALUE BETWEEN GROUPS²⁶

The derivation of the cut-off value between the two groups is described in the following pages. The mathematical model was explained in Troy's work²⁶ and will not be discussed in this section.

In order to set the cut-off point mathematically, it is required to ascertain that the distributions of the groups are normal (see Figure 4). As Figure 5 reveals, the distributions of the two groups deviate very little from normality.

The following formulae are abstracted from Troy's work²⁶:

 $Z_{c} = -b \pm / (b^{2} - 4ac) / 2a$

Where Z_{c} = The cut-off value between the two groups $a=(1/4\sigma_{2}^{2} - 1/4\sigma_{1}^{2})$ $b=(\mu_{1}/2\sigma_{1}^{2} - \mu_{2}/2\sigma_{2}^{2})$ $c=(\mu_{2}^{2}/4\sigma_{2}^{2} - \mu_{1}^{2}/4\sigma_{1}^{2} - \log_{10}\mu_{1} + \log_{10}\mu_{2})$ μ_{1}, μ_{2} = Means of Group 1 & 2 samples =1.0168, -2.8244 (see Table 21) σ_{1}, σ_{2} = Standard deviations of Group 1 & 2 samples =0.9901, 1.0290 (see Table 21)

Thus:

a = -0.0189 b = 1.8522 c = 1.6365 $Z_c = The cut-off value = -0.8757$

- 76 -

Case	Actual Group	Discriminant Scores	Classified Group	Classification
1	1	1.7270	1	Correct
2	1	0.6614	1	Correct
3	1	2.9198	1	Correct
4	2	-2.0789	2	Correct
5	1	1.8374	1	Correct
6	1	0.0420	1	Correct
7	2	-1.7774	2	Correct
8	1	-0.0765	1	Correct
9	2	-1.3102	2	Correct
10	1	0.4852	1	Correct
11	1	0.0104	1	Correct
12	1	0.6749	1	Correct
13	1	0.6749	1	Correct
14	1	1.9644	1	Correct
15	1	1.8972	1	Correct
16	1	0.6121	1	Correct
17	1	1.0022	1	Correct
18	1	2.8211	1	Correct
19	1	0.4621	1	Correct
20	1	0.6614	1.	Correct
21	1	1.4905	1,	Correct
22	1	1.8779	1	Correct
23	1	2.8437	1	Correct
24	2	-3.7487	2	Correct
25	1	0.1870	1	Correct
26	2	-4.3826	2	Correct
27	1	-0.0996	1	Correct
28	2	-3.8130	2	Correct
29	2	-2.7081	2	Correct
30	2	-2.4454	2	Correct
31	1	0.0060	1	Correct
32	2	-3.1556	2	Correct
33	1	1.1756	1	Correct
34	1	-0.4381	1	Correct

Table 21 <u>Classification Results and the Discriminant Scores of</u> <u>Cases in the Z₂ Model</u>

μ	= Mean of Group 1 sample = 1.0168
μ2	= Mean of Group 2 sample = -2.8244
σ1	= Standard deviation of Group 1 sample = $\sqrt{\{\Sigma(Z - Z_{mean})^2/(N-1)\}} = 0.9901$
σ2	= Standard deviation of Group 2 sample = $\sqrt{\{\Sigma(Z - Z_{mean})^2/(N-1)\}} = 1.0290$

- 78 -

•

.

7.5 CLASSIFICATION POWER

The classification power of the Z₂ model is gauged by the following methods:

7.5.1 PERCENTAGE OF CASES CLASSIFIED CORRECTLY

Table 22 illustrates the overall classification results of the model revealing that the overall classification is intact.

Table 22	Overall Classification Results of the Z2	<u>Model</u>

Actual Group	No. of Cases	Predicted Group Membersh	
		Group 1	Group 2
Group 1	25	25 . (100%)	0 (0%)
Group 2	9	0 (0%)	9 (100%)

The discriminant scores and the classification of the individual cases are shown in Table 21 and the distributions of frequency of the two groups are illustrated in Figure 5. The results demonstrate that the effectiveness of classification is high and the two groups are well separated by the discriminant model Z_2 .

7.5.2 THE BETWEEN GROUPS AND WITHIN GROUPS VARIABILITIES

This is scaled by Eigenvalues as described in Section 3.5.2 of Chapter 3. Large Eigenvalues mean 'good' classification and the

- 79 -

Eigenvalue is gauged as:

Eigenvalue = <u>Between Groups Sum of Squares</u> = 3.05139 Within Groups Sum of Squares

The value is large enough to be considered that the model is powerful in classification.

7.5.3 THE CANONICAL CORRELATION

This is the correlation which measures the association between the discriminant scores and the groups. The value is 0.868 which is high enough to be believed that classification is good and effective.

7.6 Z3 MODEL CONSISTING OF NEW WORKS ONLY

Thirty cases falling into the group of new building and new building related civil engineering works selected from the main Z_2 model were applied to generate a sub-model which excluded renovation and alteration works. The purpose of the sub-model is to investigate if there are any differences between the sub-model and the main model.

Table 23 Number of Cases by Group in the Z₂ Model

Performance	No. of Cases
1	22
2	8
Total:	30

7.6.1 THE RESULTANT Z3 MODEL

(Details of computer generation of the model are described in Appendix 5.)

In this Z_3 study, the six variables found in the Z_2 discriminant function were re-modelled and the following linear function resulted:

Discriminant	function	= -	0.6347	(COMPLEX)	
		+	9.6270	(PROF_STA)	
		+	0.0812	(LEAD_EX)	
		-	1.5578	(PAST_PER)	
		+	0.7796	(ORIGIN)	
		+	1.0709	(CONTROL)	- 1.0049

where COMPLEX : The complexity of the project

- PROF_STA: Percentage of professional qualified staff
- LEAD_EX : Project leader's experience
- PAST_PER: Contractor's past performance or image
- ORIGIN : Origin of the company
- CONTROL : Architect's or client's supervision and control on the quality of work and work progress

The standardized discriminant function coefficients and their priority order of contribution to the Z_3 and Z_2 discriminant functions are illustrated in Table 24.

From Table 24, it is noticed that the priority orders of COMPLEX and PROF_STA were exchanged. This infers that for new projects, the complexity of a project plays a more important role than when all types of building works are considered in determining contractor performance. Table 24 <u>Standardized Discriminant Function Coefficients and their</u> <u>Priority Order of Contribution to the Z₃ and Z₂ models</u>

	Z ₃ Model	L	Z ₂ Model	
Variables	Standardized Discriminant Function Coefficients	Order of Contri- bution	Standardized Discriminant Function Coefficients	Order of Contri- bution
COMPLEX	-0.98426	2	-0.8867	4
PROF_STA	0.76314	4	0.9110	2
LEAD_EX	0.54974	5	0.6372	5
PAST_PER	-0.98495	1	-1.1000	1
ORIGIN	0.50646	6	0.5184	6
CONTROL	0.96312	3	0.8870	3

The classification results, the frequency distribution and the discriminant scores of the cases in the Z_3 model are shown in Table 25 and Figure 6. Both indicate that the classification is good in separating the two groups.

7.6.2 PERCENTAGE OF CASES CLASSIFIED CORRECTLY

Table 26 illustrates the perfect overall classification results of the model.

7.7 Z4 MODEL CONSISTING OF BUILDING WORKS ONLY

Twenty-six cases falling into the group of building works only selected from the main Z_2 model were applied to generate a

- 82 -

Case	Actual Group	Discriminant Scores	Classified Group	Classification
1	1	2.9762	1	Correct
2	1	1.8598	1	Correct
3	1	0.1397	1	Correct
4	2	-1.7411	2	Correct
5	1	-0.0717	1	Correct
6	2	-1.1572	2	Correct
7	1	0.5630	1	Correct
8	1	0.1268	1	Correct
9	1	0.7253	1	Correct
10	1	0.7253	1	Correct
11	1 .	1.7045	1	Correct
12	1	0.9823	1	Correct
13	1	0.9461	1	Correct
14	1	2.9889	1	Correct
15	1	0.4601	1	Correct
16	1	0.6486	1	Correct
17	1	1.6484	1	Correct
18	1	1.8556	1	Correct
19	1	2.5455	1	Correct
20	2	-3.4364	2	Correct
21	1	0.2428	1.	Correct
22	2	-4.3456	2	Correct
23	1	-0.1747	1	Correct
24	2	-3.8283	2	Correct
25	2	-2.8234	2	Correct
26	2	-2.2573	2	Correct
27	1	0.1483	1	Correct
28	2	-2.7203	2	Correct
29	1	1.3547	1	Correct
30	1	-0.0858	1	Correct

Table 25 <u>Classification Results and the Discriminant Scores of</u> <u>Cases in the Z₃ Model</u>

.

.

.

٠

Actual Group	tual Group No. of Cases Predicted Group Me		oup Membership
		Group 1	Group 2
Group 1	22	22 (100%)	0 (0%)
Group 2	8	0 (0%)	8 (100%)

Table 26 Overall Classification Results of the Z, Model

- 84 -

sub-model which excluded renovation, alteration and civil engineering works. The purpose of the sub-model is to investigate if there are any difference between the sub-model and the main model.

Table 27 Number of Cases by Group in the Z4 Model

Performance	No. of Cases
1	18
2	8
Total:	26

7.7.1 THE RESULTANT ZA MODEL

(Details of computer generation of the model are described in Appendix 6.)

In this Z_4 study, the six variables found in the Z_2 discriminant function were re-modelled and the following linear function resulted:

Discriminant function = - 0.5626 (COMPLEX) +10.6218 (PROF_STA) + 0.0931 (LEAD_EX) - 1.7666 (PAST_PER) + 0.7885 (ORIGIN) + 1.0347 (CONTROL) - 0.7053

The standardized discriminant function coefficients and their priority order of contribution to the Z_4 and Z_2 discriminant functions are illustrated in Table 28.

Table 28 <u>Standardized Discriminant Function Coefficients and their</u> <u>Priority Order of Contribution to the Z_4 and Z_2 models</u>

	Z ₄ Model		Z ₂ Model	
Variables	Standardized Discriminant Function Coefficients	Order of Contri- bution	Standardized Discriminant Function Coefficients	Order of Contri- bution
COMPLEX	-0.6857	3	-0.8867	4
PROF_STA	0.5756	5	0.9110	2
LEAD_EX	0.6718	4	0.6372	5
PAST_PER	-1.04 36	1	-1.1000	1
ORIGIN	0.4552	6	0.5184	6
CONTROL	0.8874	2	0.8870	3

The results in Table 28 show that the importance of the percentage of professional staff has dropped from rank 2 to 5 while the priority orders of the complexity of project, project leader's experience and architects' or clients' supervision and control have escalated. This infers that for building works, the percentage of professional staff plays a less important role in determining contractor performance. This is perhaps due to the paradoxical nature of this variable that high percentage means better management quality and better claim expertise as explained in Section 7.3.2.

The classification results, the frequency distribution and the discriminant scores of the cases in the Z_4 model are shown in Table 29 and Figure 7. Both indicate that the classification is good in separating the two groups.

- 86 -

Case	Actual Group	Discriminant Scores	Classified Group	Classification
1	1	2.1629	1	Correct
2	1	0.3836	1	Correct
3	2	-1.5390	2	Correct
4	1	0.1540	1	Correct
5	2	-1.0627	2	Correct
6	1	0.7166	1	Correct
7	1	0.2445	1	correct .
8	1	0.9027	1	Correct
9	1	0.9027	1	Correct
10	1	1.9281	1	Correct
11	1	3.1121	1	Correct
12	1	0.7229	1	Correct
13	1	0.9521	1	Correct
14	1	1.7551	1	Correct
15	1	2.1300	1	Correct
16	1	3.0996	1	Correct
17	2	-3.5017	2	Correct
18	1	0.4867	1	Correct
19	2	-4.2062	2	Correct
20	1	0.1603	1	Correct
21	2	-3.6410	2 .	Correct
22	2	-2.4880	2	Correct
23	2	-2.1978	2	Correct
24	1	0.2305	1	Correct
25	2	-2.8514	2	Correct
26	1	1.4433	1	Correct

Table 29 <u>Classification Results and the Discriminant Scores of</u> <u>Cases in the Z₄ Model</u>

Actual Group	No. of Cases	Predicted Grou	p Membership
		Group 1	Group 2
Group 1	18	18 (100%)	0 (0%)
Group 2	8	0 (0%)	8 (100%)

.

7.7.2 PERCENTAGE OF CASES CLASSIFIED CORRECTLY

Table 30 illustrates the perfect overall classification results of the model.

7.8 COMPARING MODELS Z2, Z3 AND Z4

The above sections demonstrate that the three models are very similar in nature although having a small deviation in the priority order of some predictive variables. Table 31 shows the standardized discriminant function coefficients of the three models.

	Standardized I	Discriminant Fi	inction Coefficients
	Z ₂ Model	Z ₃ Model	Z ₄ Model
Types	All Projects	New Works Only	Building Works Only
No. of Cases	34 cases	30 cases	26 cases
Variables			
COMPLEX	-0.8867	-0.9843	-0.6857
PROF_STA	0.9110	0.7631	0.5756
LEAD_EX	0.6372	0.5497	0.6718
PAST_PER	-1.1000	-0.9850	-1.0436
ORIGIN	0.5184	0.5065	0.4552
CONTROL	0.8870	0.9631	0.8874

Table 31 <u>Standardized Discriminant Function Coefficients of $Z_{2^{\prime}}$ </u> Z_{3} <u>AND Z_{4} MODELS</u>

It is worth noting that the contribution of the percentage of professional staff drops enormously from model Z_2 to Z_4 . This is perhaps due to the paradoxical nature of this variable that high percentage means better management quality and better claim expertise as explained in Section 7.3.2.

Basically the contributions of the predictive variables of the three models follow a very close pattern and their classification results are ideal.

7.9 SUMMARY AND CONCLUSION

The results from applying the linear discriminant analysis technique produced a linear discriminant model made up of six variables measuring the aspects of the personnel characteristics, company reputation, origin of firms, special features of the job and the project team's influences on contracting firms and projects.

There was no misclassification in the model which demonstrated that separation of the two groups was effective. Further, it will be demonstrated in Chapter 10 that the percentage of 'grouped' cases correctly classified by applying the model Z_2 to a test group with 16 cases was found to be 87.5%. Having such a high classification power, it is believed that there is an underlying structure influencing contractor performance.

- 90 -

The priority order of contribution of each factor to the function is as follows:

- 1. Past Performance
- 2. Percentage of Professional Staff
- 3. Client's or architect's supervision and control
- 4. Complexity of the Project
- 5. Project Leader's Experience
- 6. Origin of the Contracting Firm

The results show that the factors, 'Project Leader's Experience' and 'Origin of the Contracting Firm' are the least discriminant of the variables while 'Past Performance' and 'Percentage of Professional Staff' are relatively more important than others.

The cut-off value of the Z_2 model was derived to be at -0.8757 below which performance is more likely to be poor. In the bid evaluation process, clients can consider the tender cost as well as the predictive performance arrived using the Z_2 model. Tenderers with poor predictive performance can be removed from shortlist as quality, time of completion and cost would most likely not meet clients' expectation.

Two sub-models of new works and building works only were also derived to investigate if there are any deviations from the main model. The results demonstrate that the divergence is very small and all the three models have a very good classification power.

- 91 -

The priority order of contribution of each factor to the Z_3 function (consists of new works only) is as follows:

1. Past Performance

- 2. Complexity of the Project
- 3. Client's or architect's supervision and control
- 4. Percentage of Professional Staff
- 5. Project Leader's Experience
- 6. Origin of the Contracting Firm

The priority order of contribution of each factor to the Z_4 function (consists of building works only) is as follows:

1. Past Performance

- 2. Client's or architect's supervision and control
- 3. Complexity of the Project
- 4. Project Leader's Experience
- 5. Percentage of Professional Staff
- 6. Origin of the Contracting Firm

The only point worth noting is the factor, the percentage of professional staff, whose contribution to the models drops significantly from Z_2 to Z_4 . The priorities of the variables, past performance of contractors and the origin of the company, remain unchanged throughout.

CHAPTER 8

INTERVIEW SURVEY TO STRUCTURE CLIENTS' UNSTRUCTURED

APPROACH IN CONTRACTOR SELECTION

8.1 INTRODUCTION

Although most clients do not have a structured approach in the contractor selection process, it is believed that there are some criteria relevant to the the selection process. In order to find out the ways that clients handle the process and verify the results with the discriminant model developed, an interview survey was conducted.

The purpose of the survey is to find out the criteria which clients consider in the selection process and the ways they measure the factors. The interviewees were selected amongst the largest clients in Hong Kong which includes the director of the largest public housing organisation which provides more than 50% of the total annual supply of housing in Hong Kong.

8.2 INTERVIEW

The study reported in this Chapter is derived from an interview survey of construction industry clients in Hong Kong, the aim of which was to find out clients' decision patterns and practices upon contractor selection and the ways they gauge the factors. The interview questions are shown in Figure 12.

Figure 12 Form of Interview Questions Used in the Interview Survey

CONTRACTOR SELECTION CRITERIA

-

	What are the criteria your organisation adopted in contractor selection besides bidding prices?
2.	How do you assess the past performance of contractors?
	Are there any additional screening procedures or requirements for complex projects? And what are they if any?
	·······
	Do you agree that staff quality will be attributable to contractor performance and if agree how do you measure it ?
	Do you agree that the experience of the project manager will be attributable to contractor performance and if agree how do you measure it?
6.	What action would you take if the contractor performance is likely to be poor? Will you exercise tighter project control?
7.	What do you mean by 'tighter' control?
8.	Will you treat overseas contractors differently? Why?
	· · · · · · · · · · · · · · · · · · ·

٠

Since interviewees are the representatives of the large developers, project management consultants and the largest public housing organisation in Hong Kong, they have much experience in the contractor selection process and can reflect clients' actual concern on the determinants of performance. The total number of interviewees in this survey is ten.

8.3 RESULTS

The survey results are summarised in Figure 13, 14, 15, 16, 17, 18, 19.

8.3.1 COMPARING THE SURVEY RESULTS WITH THE DISCRIMINANT MODEL

The discriminant model Z₂ has identified six variables with the strongest contribution to the scale of performance in the following priority order:

- Past performance
- Percentage of professional staff
- Clients' control
- Complexity of the project .
- Project leader's experience
- Origin of the contractor

Likewise, the survey discovers that the three most frequently highlighted criteria in contractor selection are past

10 σ 80 Frequency in the Survey ø + S M + 2 + + + + + Claims and Variations Records Relation/ Familarity with Contractors Past Performance/ Track Records 🖓 + + Current Workload + Size Organisation Structure No. of Staff Employed Relevant Job Reference Financial Stability Plant Availability

Criteria in Contractor Selection Other Than Bidding Prices Figure 13

- 96 -

Figure 14 Clients' Perception on Ouality of Staff and Its Importance

- 26 -

I - 98

- 66 -

5 σ 00 Frequency in the Survey All Respondents agreed G S + +++++++ M 2 + + + + + + + + • • ÷ More Site Supervisory Staff Improve Communication (such as more meetings More Frequent Feedback and Detailed Scrutiny of Reports Avoid Over-certification of Payments A Formal Communication Channel and a Com-Tighter Supervision and Control is the Remedial Action to **Close Monitoring Close Progress Control** Exert Pressure on Top Management of Contractor and improve the quality of drawings) plete Set of Documentation Improve the Likely Poor Performance

.

,

The Ways That Clients Define Tight Control Figure 17

Its Importance

And

- 100 -

				NTE	INTERVIEWEES	VEES				
	ы	~	 ۳	4	പ	9	7	8	6	10
CLIENTS' ATTITUDE IN DEALING WITH OVERSEAS		CONTRACTORS	rors							
Tighter Control and Supervision	#									
Communicate Formally and Keep Documentation Properly	#	ecuce	esuce			Lience	esuce	, tence	•3	• 3
Avoid Dealing with Overseas Contractors unless a Special Expertise is Required		No Expe	No Expe	#		No Expe	No Expe	No Expe	I*N	(*N
CLIENTS' PERCEPTION ON OVERSEAS CONTRACTORS	S									
Claims and Variations Conscious	#			#	*#	- əc	əc	əc		
Like to Play the Contract with Clients and Consultants	#	berien	Deriena	#	*	Serien	Serienc	oeriena	N.E.	.а.и
High Preliminary		No Ex	No Exl	#		No Ext	No Exi	IX3 ON	1	I
	*	It i: prej:	It is the prejudice		interviewee's overseas contu	lewe as co		policy actors	1	not to

.•

•

•

•

Figure 18 Clients' Attitude and Perception on Overseas Contractor

.

,

•

- 101 -

- 102 -

performance, quality of management staff and complexity of the project/ expertise required which corresponds to the model's findings (see Figure 13).

The survey also reveals that all the respondents agreed that the quality of management staff and experience of the project leader could affect contractor performance and the way to remedy the likely poor performance was to exercise tighter supervision and control.

As regards overseas contractors, only three out of the ten interviewees had experience in dealing with them and all the three respondents agreed that overseas contractors were more difficult to deal with as they were more claims and variations conscious and had the know-how to play the contract with clients. In dealing with them, clients would exercise tighter supervision and maintain a more formal communication channel and documentation.

In conclusion, the survey results basically match well with that of the discriminant model. That means that clients are concerned about the determinants of the predictive performance although they do not have a structured approach to assess them.

8.3.2 WAYS TO QUANTIFY VARIABLES

8.3.2.1 QUALITY OF MANAGEMENT STAFF AND THE PROJECT LEADER

The quality of management staff embraces a variety of constituents; however, most are difficult to quantify and collect. The survey shows that the education level is the most frequently highlighted constituent by the respondents and is the easy measurable variable and thus was adopted in building the discriminant model.

Similarly, the quality of the project leader is difficult to define and composed of many determinants. However, experience is most frequently highlighted by respondents in the survey and was adopted in building the discriminant model.

8.3.2.2 PAST PERFORMANCE

The survey shows that there were two out of the ten respondents totally relying on comprehensive performance appraisal systems to assess past performance, another two had rude scoring scales supplimented with human judgements, the rest relied purely on individuals' recommendations. It seems that there was not a unified approach in the assessment.

It is thus recommended, for the purpose of applying the discriminant model for organisations where no comprehensive performance appraisal system exists, that the average of the client's, the architect's and consultant's recommendations gauged in five ranges be adopted; that is good, better than average, fair, poorer than average, poor, is taken to be the assessment of past performance.

- 104 -

In cases where a comprehensive performance appraisal system exists, the five extents (good, better than average, fair, poorer than average, poor) are represented by mark ranges where each range embodies 20% of the total recorded cases.

8.3.2.3 CLIENT'S SUPERVISION AND CONTROL

The survey cannot evidence any systematic approaches to measure this factor; however, clients' perception on 'tighter control' was identified (see Figure 17).

It is thus recommended, for the purpose of applying the discriminant model, that the degree of control is gauged by the number of positive or negative responses to the actions described (refer to Figure 17) and then measured by the following rule:

· Action Taken	Type of Control
Most answers are positive	Tight
A few positive answers	Tighter than average
Most answers are neutual	Fair
A few negative answers	Looser than average
Most answers are negative	Loose

Actions:

-Close supervision -Communicate formally and maintain a complete set of documentation as evidence for future disputes -More site supervisory staff -More frequent feedback and detailed scrutiny of reports -Close progress control

-Exert pressure on the top management of the contractor

-Avoid over-certification of payments

8.3.3 ADDITIONAL SCREENING REQUIREMENTS FOR LARGE AND/ OR COMPLEX PROJECTS

Besides the general criteria described in the contractor selection process, the survey also identifies the additional screening requirements for large and/ or complex projects (see Figure 19). For these types of projects, clients should examine contractors in more detail.

8.4 SUMMARY AND CONCLUSION

This Chapter has described an interview survey which was aimed comparing the criteria that clients are currently exercising in contractor selection with the developed discriminant model, and to find ways to quantify the variables.

The results demonstrate that the current practice in contractor selection is very close to the factors that the discriminant model has investigated.

As regards the provision of a more quantitative system for evaluating the vaguely defined variables; past performance and the client's control and supervision, this Chapter has recommended the approaches which enable the discriminant model more easy to apply.

CHAPIER 9

COMPARING THE DISCRIMINANT ANALYSIS MODEL WITH

MULTIPLE REGRESSION ANALYSIS AND UNIDIMENSIONAL SCALING MODELS

9.1 INTRODUCTION

In this Chapter, two models other than the discriminant analysis approach were developed to verify with the discriminant analysis model namely:

- a) Multiple Regression Analysis Model; and
- b) Unidimensional Scaling Model.

These two models are less complicated than the discriminant model both in terms of mathematical theroies and computations. Multiple regression closely resembles discriminant analysis as explained in Section 3.4 of Chapter 3. The unidimensional scaling model was designed to scale persons, stimuli, or both persons and stimuli. The main shortfall of the scaling model is the neglect of interrelationship between the predictive variables. These two models will be discussed in the following pages.

9.2 MULTIPLE REGRESSION ANALYSIS MODEL

Researchers in the social sciences, business, policy studies and other areas rely heavily on the use of regression analysis²⁷. The frequency with which the technique is employed can be demonstrated by a review of articles in professional journals such as the American Econmics Review, Journal of Policy Analysis and Management, Journal of Marketing, etc.

Multiple linear regression analysis is a method for measuring the effects of several factors concurrently. There are numerous occasions where the use of multiple regression analysis is appropriate, as in social science, there normally are a number of factors determining the outcome of a dependent variable.

The concept of multiple regression analysis is identical to that of simple regression analysis except that two or more independent variables are used simultaneously to explain the dependent variables.

9.2.1 THE REGRESSION MODEL

The regression model is in the following form:

$$C = \alpha + B_1 X_1 + B_2 X_2 + \dots + B_n X_n$$

Where α is a constant.

 B_n is the coefficients for X_n .

 \boldsymbol{X}_n is the independent variable determining the outcome of C.

9.2.2 THE STANDARDIZED COEFFICIENTS

In multiple regression analysis, standardized coefficients

are also used as in the discriminant model and interpreted as indicators to measure the contribution of each independent variable to the model. Likewise, coefficients are standardized to a unity standard deviation and a zero mean.

Unlike the discriminant model, standardized coefficients are named as beta coefficients in multiple regression. The standardized coefficients measure the change in the dependent variable (measure in standard deviations) that results from a one-standard-deviation change in the independent variables²⁷.

Thus,

Beta Coefficient = $B_1 * (S_x/S_y)$

where B_1 is the regression coefficient

 $\mathbf{S}_{\mathbf{X}}$ is the standard deviation of the independent variable.

 S_v is the standard deviation of the dependent variable.

9.2.3 ASSUMPTIONS IN APPLYING THE MODEL

To draw inferences about population values based on sample results, the following assumptions are needed to be met. However, it has been demonstrated that regression analysis is generally robust in the presence of departures from assumptions³⁰.

9.2.3.1 NORMALITY AND EQUALITY OF VARIANCE

For any fixed value of the independent variable, the distributions of the dependent variables should be normal and have constant variances (see Figure 8).

9.2.3.2 INDEPENDENCE

The data set should be non-collinear or non-multicollinear. More precisely, a set of observations on a collection of independent variables is said to be non-collinear if no one variable is a linear combination of the others.

9.2.3.3 LINEARITY

The mean values of the dependent variable all lie on a straight line, which is the population regression line. An alternative way of stating this assumption is that the linear model is correct.

9.2.4 GOODNESS OF FIT

The coefficient of determination (the R square) is the most commonly used measure of the goodness of fit of a linear model. The R square statistic measures closeness as the percentage of total variation in the dependent variable explained by the regression line.

If the data points were all to lie directly on the regression model, the observed values of the dependent variable would be

- 110 -

- 111 -

equal to the predicted values, and the R square would be equal to 1. As the independent varaible explains less and less of the variation in the dependent variables, the value R square falls toward zero.

The sample R square tends to be an optimistic estimate of how well the model fits the population. The model usually does not fit the population as well as it fits the sample from which it is derived. The value of the coefficient of determination will never decrease when another variable is added to the regression. Although the additional variable may be of no use whatsoever in explaining variations in the dependent variable, it cannot reduce the explanatory value of the previously included Since including additional variables can never variables. decrease the value of R square and normally increase it, it is common to use the adjusted R square which is adjusted for the number of independent variables used in the regression. Thus it is possible that by adding another independent variable to the regression, the adjusted R square will decrease although R square actually increases. Hence, the statistic adjusted R square is to correct R square to more closely reflect the goodness of fit of the model in the population. The adjusted R square is derived as follows¹³:

$$R_a^2 = R^2 - \{p(1-R^2)/(N-p-1)\}$$

Where

N is the number of observations

p is the number of independent variables in the equation

For this reason, the adjusted R square is used to determine whether including another independent variable increases the explanatory power of the regression.

9.2.5 STEPWISE REGRESSION

Since decisions regarding which of numerous possible variables to include in a regression equation are difficult, stepwise regression techniques are used to remove the unsignificant variables. These techniques which are most commonly used¹³, allow the investigation of different combinations of independent variables. The selection criterion is usually based on the partial correlation coefficient, the coefficient of determination, R square and whether the inclusion of the variable would be significant which is tested by the F distribution.

In the stepwise regression, simple linear regressions using each of all the possible independent variables specified will be generated. The one having the largest partial correlation coefficient and producing the highest R square and meanwhile passing the F-distribution test will be selected. In step 2, the remaining independent variables together with the variable chosen in step 1 will be used to produce different regression results each with two independent variables. The one combination generating the highest R square will be selected. This process continues until all the variables are included in the equation or no remaining variable increases the R square statistic sufficiently to permit the inclusion of additional variables or combinations cannot pass the F-distribution test.

9.2.6 THE RESULTANT MODEL

(Details of computer generation of the model are described in Appendix 7.)

The selection method used in developing the model is the 'stepwise selection' which incorporates both the 'forward selection' and the 'backward elimination' approaches. The first variable is examined to see whether it should be removed according to the removal criterion and then variables not in the equation are examined for entry. The following model is developed:

 $PERFORM = + 0.36853 (PAST_PER) + 0.1355 (COMPLEX)$ $- 0.22549 (CONTROL) - 0.02055 (LEAD_EX)$ $- 1.42476 (PROF_STA) + 0.92865$

where COMPLEX : The complexity of the project

- PROF_STA: Quality of management team-Professional qualifications
- LEAD_EX : Quality of management team-Project leader's experience
- PAST_PER: Contractor's past performance or image
- CONTROL : Architect's or client's supervision and control on the quality of work and work progress

9.2.7 THE RELATIVE IMPORIANCE OR CONTRIBUTION OF VARIABLES TO THE MODEL

The order of contribution of variables to the model are shown in Table 33.

- 114 -

Varibles	Unstandardized Partial Regression Coefficients
COMPLEX	0.1355
PROF_STA	-1.42476
LEAD_EX	-0.02055
PAST_PER	0.36853
CONTROL	-0.22549
(constant)	0.92865

Table 32 Unstandardized Partial Regression Coefficients

Varibles	Beta Coefficients (Standardized Partial Regression Coefficients)	Order of Contribution
COMPLEX	0.48856	2
PROF_STA	-0.24559	5
LEAD_EX	-0.30394	4
PAST_PER	0.64489	1
CONTROL	-0.48198	3

The past performance of contractors is considered as the most important determinant in performance prediction. The complexity of projects is ranked the second and the percentage of professional staff has the least contribution to the model.

9.2.8 COMPARISON BEIWEEN THE DISCRIMINANT MODEL AND THE MULTIPLE RECRESSION MODEL

The number of variables in the multiple regression model is reduced from 6 to 5 and the variable ORIGIN is removed when compared with the discriminant model. Although ORIGIN has the next highest contribution to the regression model amongst the variables not falling into the equation, it cannot pass the F-distribution test and have a high probability of F-distribution to enter; i.e. 10.8% comparing with the criterion of 6%. This may be due to the fact that the distribution is highly skew towards the locals because there are only 5 overseas cases amongst the total 34 and the multiple regression model has more stringent criteria in variable selection than that of the discriminant model.

Comparing the two models' standardized coefficients, it reveals that the contribution of the variable PAST_PER is ranked the first in both models. However, PROF_STA falls from the second in the discriminant model to the last in the regression model. This may be due to the high correlation between PROF_STA and ORIGIN and the variable ORIGIN was removed from the regression model.

The contribution ranking of the complexity of projects in the regression model has risen from the fourth in the discriminant model to the second and thus this is considered more important in the regression model.

Meanwhile, it is worth noting that the variable PROF_STA (the percentage of professional staff in the company) has a positive effect on the contractor performance in both models; that is the higher the percentage, the better is the performance.

Table 34 Comparison of the Standardized Coefficients Between Discriminant Model and Multiple Regression Model

	Standard	lized Coef	fficients	
	Discriminant Model	Rank	Regression Model	Rank
COMPLEX	-0.8867	4	0.4886	2
PROF_STA	0.9110	2	-0.2456	5
LEAD_EX	0.6372	5	-0.3039	4
PAST_PER	-1.1000	1	0.6449	1
ORIGIN	0.5184	6		
CONTROL	0.8870	3	-0.4820	3

* The signs of the coefficients are arbitrary only.

The variables COMPLEX and CONTROL have the comparable magnitude in both the discriminant model and multiple regression model.

On the whole, the size and ranking of the coefficients in both models do not differentiate too much only with the exception of the variable: 'the percentage of professional staff'.

Table 35 compares the results of the two other discriminant models Z_3 (for new works only), Z_4 (for building works only,

- 117 -

Table 35 Results of The Discriminant Models $\overline{2}_3$ and $\overline{2}_4$ and the Regression Model

	Z ₃ Model		Z4 Model		Regression Model	odel
Variables	Standardized Ooefficients	Order of Contri- bution	Standardized Coefficients	Order of Contri- bution	Beta Coefficient	Order of Contrí- bution
COMPLEX	-0.9843	7	-0.6857	£	0.4886	2
PROF_STA	0.7631	4	0.5756	Q	-0.2456	2
IEAD_EX	0.5497	Ŋ	0.6718	4	-0.3039	4
PAST_PER	-0.9850	н	-1.0436	-1	0.6449	н
ORIGIN	0.5065	و	0.4552	و		
CONTROL	0.9631	m	0.8874		-0.4820	ო

- 118 -

see Chapter 7) and the regression model.

It can be noticed that the variable contribution pattern of the Z_4 discriminant model matches that of the regression model most. It thus is advisable to follow the regression model or the Z_4 discriminant model for building works only.

9.2.9 QUALITY OF CLASSIFICATION

Table 36 shows the results of the regression model for each individual cases of the sample. Since there are binary results only; i.e. '1' for 'good performance and '2' for 'poor performance' in the dependent variable PERFORM, the demarcation value for group 1 and 2 is set to be 1.5.

The overall classification results are summarised in Table 37.

Actual group	No. of cases	Predicted group membership		
		1	2	
Group 1	25	25 (100%)	0 (0%)	
Group 2	9	0 (0%)	9 (100%)	

Table 37 <u>The_overall_Classification_Results_of the Regression</u> <u>Model</u>

Percentage of "grouped" cases correctly classified is 100% which demonstrates that the classification of the model is effective

۰.

Table 36	Classification	Results	and	the	Regression	Scores of	
Cases in the Multiple Regression Model							

.

Case	Actual Group	Regression Scores	Classified Group	Classification
1	1	0.8293	1	Correct
2	1	1.1581	1	Correct
3	1	0.6740	1	Correct
4	2	1.6963	2	Correct
5	1	0.8459	1	Correct
6	1	1.2358	1	Correct
7	2	1.6846	2	Correct
8	1	1.3280	1	Correct
9	2	1.5824	2	Correct
10	1	1.1925	1	Correct
11	1 1	1.2825	11	Correct
12	1 1	1.1514	1	Correct
13	1	1.1514	1	Correct
14	1	0.8565	1	Correct
15	1	1.0920	1	Correct
16	1	1.1327	1	Correct
17	11	1.0453	1	Correct
18	1	0.6469	1	Correct
19	1	1.2225	1	Correct
20	1	1.1434	1	Correct
21	1	0.9720	1	Correct
22	1	0.9148	11	Correct
23	1	0.6835	11	Correct
24	2	1.8271	2	Correct
25	11	1.2461	11	Correct
26	2	2.0361	2	Correct
27	1	1.3580	1	Correct
28	2	1.9255	2	Correct
29	2	1.6474	2	Correct
30	2	1.8568	2	Correct
31	1	1.2981	1	Correct
32	2	1.9433	2	Correct
33	1	1.0083	1	Correct
34	1	1.3321	1	Correct

- 121 -

and good. The frequency distribution of individual cases are illustrated in Figure 9.

9.2.10 GOODNESS OF FIT

Table 38 shows the summary of the regression model.

Table 38	Summary	Table	<u>of the</u>	<u>e Regressic</u>	n <u>Statistics</u>

Step	Multiple Regression Coefficient	R square	Adjusted R square	Variable In
1	0.6324	0.3999	0.3812	PAST_PER
2	0.7064	0.4991	0.4667	COMPLEX
3	0.7917	0.6267	0.5894	CONTROL.
4	0.8302	0.6892	0:6463	LEAD_EX
5	0.8532	0.7279	0.6793	PROF_STA
<u> </u>	<u> </u>		<u></u>	

The complexity of project Where COMPLEX:

PROF_STA: The percentage of professional staff LEAD_EX: The project leader's experience PAST_PER: The past performance of contractor The architects' or clients' control and CONTROL: supervision on progress and quality of work

The regression statistic R square is 0.7279, indicating that $\int_{M_{1}}^{M_{1}} \int_{M_{2}}^{M_{1}} \int_{M_{2}}^{M_{2}} \int_{M_{2}}^{M_{2}} \int_{M_{2}}^{M_{2}} \int_{M_{1}}^{M_{2}} \int_{M_{2}}^{M_{2}} \int_{M_{1}}^{M_{2}} \int_{M_{2}}^{M_{2}} \int_{$ 72.79% of the variation in the performance behaviour is explained by variations in the predictive variables, PAST_PER, COMPLEX, CONTROL, LEAD_EX, and PROF_STA.

9.3 UNIDIMENSIONAL SCALING MODEL

9.3.1 INTRODUCTION TO UNIDIMENSIONAL SCALING

Unlike length, height and time which have the worldwide accepted, defined and measurable scales to measure, some social, political, psychological issues; such as attitudes, preferences and perceptions are very difficult to define and measure; for instance, the government's performance, the voters' preference in election, etc. Scaling is a set of mathematical techniques that enable a researcher to uncover the 'hidden structure' of data bases and form a standard by which the social concepts and psychological perceptions can be measured.

Scaling models may be employed for three related but distinct purposes^{31, 32}. First, scaling analysis may perform a (hypothesis that there is a single dimension, ideology (e.g., liberalism), that underlies voters' preferences for different political candidates. In this case, the scaling model is used as a criterion to evaluate the relative fit of a given set of observed data to a specific model. Second, scaling may be (employed for the purpose of simply describing a data structure, that is, for discovering the latent dimensions underliying a set of obtained observations. This would be the case, for example, if psychologists attempted to specify the dimensions underlying the perceived loudness of various sounds. No hypothesis is necessarily being tested here. Instead, the purpose of the analysis is mainly exploratory. Whether the primary purpose of the analysis is confirmatory (the testing of a specific hypothesis) or exploratory, the technique can be used to derive and construct a scale, in which case it is a scaling method. In this third instance the purpose of scaling is to develop a unidimensional scale on which individuals can be given scores. Their scores on the particular scale can then be related to other measure of interest. Sociologists, for example, may construct a scale for measuring socioeconomic status that can be correlated with a variety of attitudinal and behavioral measures. In this study, a scaling model with scores was derived to measure the performance scale of contractors.

There are a number of scaling models designed to scale persons, stimuli, or both persons and stimuli. In this research, Likert scaling²⁸ was used which was designed to scale subjects only. In Likert scaling, individuals are presented with a list of statements about a single topic (in this study, the performance of contractors) and are instructed to respond to each statement in terms of their degree of agreement or disagreement. Then the scale is obtained by adding together the response scores of its constituent items to form a 'summative' scale. Alternatively, the term 'linear composite' is used to designate such a scale.

The Likert approach to scaling consists of three interrelated tasks: (1) item construction, (2) item scoring, and (3) item selection. In this study, there are totally 20 independent variables, the first step to do is to derive a univariate correlation table between each variable and the dependent variable PERFORM. Variables having a high correlation, for the purpose of this study, correlation coefficients higher than 0.2, are chosen to form items of the scale. It makes little sense to combine unrelated items into a total sum since undifferentiating items contribute little useful information to the total. Indeed, they may actually decrease the reliability and /or validity of the scale²⁸.

Weightings are then assigned to each item or variable according to their degree of correlation with the dependent variable PERFORM. However, Sewell and Alwin et al^{33,34} arrived at the following conclusion regarding weightings:

"The problem of assigning weights to items in a scale is one which is rather annoying but not of great practical significance in light of the roughness of most sociometric devices at the present time. Several studies have shown that essentially the same final results are obtained with arbitrary common sense weighting as with more complicated, but still arbitrary, statistical techniques."

Nevertheless, in order to manipulate the scores of the model to fall into a scale of 0 to 100 for the ease of interpretation of the results, equal weightings were assigned.

Finally, for the item selection, the item-to-total correlations

- 125 -

were calculated and those having a low value were removed from the final scale because they failed to discriminate between groups. The following sections will describe the process of modelling item construction, item scoring and item selection.

9.3.2 ITEM CONSTRUCTION

In order to decide which variables among the twenty independent variables to be included in the model, it has to remove the unrelated or less related items which may decrease the reliability or validity of the scale. Univariate correlation coefficients between the predictive variables and the dependent variable PERFORM (performance) were used to measure their relativeness. Table 39 shows the coefficients.

In the preliminary screening, variables having a coefficient larger than 0.2 are selected and included in the model. From Table 39, it is noticed that ten variables among the twenty fulfil this requirement and they are COMPLEX (the complexity of project), TRAINING (amount of management training provided), PROF_STA (the percentage of professional staff), CONT_EX (the contractor's experience in similar jobs), PAST_PER (the past performance of the contractor), ORIGIN (the origin of the contractor), LISTED (whether the contractor is a public or private firm), CENTRAL (whether decision making is centralised or de-centralised), ARCH_PER (architect performance), and CONTROL (architect/ client's control and supervision).

Table 39 The Univariate Correlation Coefficients Between the
Dependent Variable PERFORM and Other Independent
Variables

.

_ <u></u>		
Independer	nt Variables	Correlation Coefficient with the dependent variable PERFORM
COMPLEX	(The complexity of projects)	0.27
TRAINING	(Amount of management training)	-0.252
PLANT	(Plant ownership policy)	-0.054
COM_SIZE	(Size of company)	0.09
PROF_STA	(Percentage of professional staff)	0.227
LEAD_EX	(Project leader's experience)	-0.05
CONT_EX	(Contractor's experi- ence in similar jobs)	-0.208
WORKLOAD	(Contractor's workload)	0.188
PAST_PER	(Contractor's past performance)	0.632
YEAR_BUS	(Number of years in business)	-0.178
ORIGIN	(Origin of contractors)	-0.504
DEL	(Amount of directly employed labour)	0.145
LISTED	(Public or private firm)	0.236
CENIRAL	(Decision centralised . or de-centralised)	0.455
SUBSID	(Subsidiary firm of the client or not)	0.095
ARCH_PER	(Architect performance)	-0.384
CONTROL	(Clients' control)	-0.474
PAYMENT	(Punctual payment or not)	0.133
PROFIT	(Profitability)	0.151
PAS_P_PM	(Past performance of the project manager)	0.016

.

·

As mentioned in Section 9.3.1, equal weightings of a maximum of 10% were allocated to the ten shortlisted independent variables yielding a maximum of 100% score.

In order to delineate the value of a variable to be good and bad, a cut off value (x value) is defined at which both the chances of falling into good and bad groups are the same as illustrated in Figure 10 with an assumption that all variables are normally distributed, and their means and standard deviations are used to estimate the x value.

The 10% weighting score was further subdivided according to the attainment level of each variable; for example, if the value of the variable 'TRAINING' is larger than or equal to 0.177 which is the mean of the 'good' group, 10% score will be assigned; if however, the value is between 0.117 to 0.079 which is the demarcation value between the two groups, 6.67% would be allotted and if the value is between 0.079 to 0.068 which is the mean of the 'bad' group, 3.33% would be apportioned; and finally 0% for value below or equal to 0.068 (see Figure 10 for details).

However, this does not apply to certain variables processing binary values; such as 'LISTED' (whether the company has been listed in the stock market) has only 'Yes' and 'No' options and in that case, either 10% or 0% will be assigned.

- 128 -

Means of Group 1 & 2 and the Demarcation Value of the Variable 'TRAINING'

The sums of score for each individual case are obtained by summing up the scores of the items. The results are presented in Table 40.

9.3.4 ITEM SELECTION

The next step is to check the item to total correlation to eliminate the undifferenting items which should have a low correlation. The correlations of each variable with the sum of score are shown in Table 41.

Table 41 Correlations of Items with the Total Sum of Score

Items	Correlations to Sum-of-Score
COMPLEX	0.1250
TRAINING	0.2726
PROF_STA	0.7167
CONT_EX	0.1435
PAST_PER	0.7966
ORIGIN	0.7607
LISTED	0.4217
CENIRAL	0.7037
ARCH_PER	0.6731
CONTROL	0.5261

Since none of the above is extremely low, all variables are selected and included in the model.

Case	Actual Group	Scaling Scores	Classified Group	Classification
1	1	90	1	Correct
2	1	71.67	1	Correct
3	1	71.67	1	Correct
4	2	45	2	Correct
5	1 1	53.33	1	Correct
6	1	75	11	Correct
7	2	55	1 1	Wrong
8] 1	50	1	Correct
9	2	55	1	Wrong
10	1	60	1	Correct
11	1	50	1	Correct
12	1	60	1	Correct
13	1	60	1	Correct
14	1	75	1	Correct
15	1	61.67	1 · ·	Correct
16	1	55	1	Correct
17	1	35	2	Wrong
18	1	95	1	Correct
19	1	70	1	Correct
20	1	80	1	Correct
21	1	78.33	1	Correct
22	1	65	1	Correct
23	1	75	1	Correct
24	2	18.33	2	Correct
25	1	78.33	1	Correct
26	2	6.67	2	Correct
27	1	65	1	Correct
28	2	21.67	2	Correct
29	2	13.33	2	Correct
30	2	41.67	2	Correct
31	1	51.67	11	Correct
32	2	40	2	Correct
33	1	50	1	Correct
34	1	50	1	Correct

Table 40ClassificationResults and the Scaling Scores of Casesin the Unidimensional Scaling Model

.

-

.

.

.

9.3.5 QUALITY OF CLASSIFICATION

The maximum score of the scale is 100%, and thus the mid value, 50%, is taken as the demarcation value between good and bad groups. Table 40 shows the scores and classification of each individual cases. The overall classification results are shown in Table 42. The frequency distribution of scores is illustrated in Figure 11.

Actual group	No. of cases	Predicted group membership		
		1	2	
Group 1	25	24 (96%)	1 (4%)	
Group 2	9	2 (22.22%)	7 (77.78%)	

Table 42TheOverallClassificationResultsoftheUnidimensionalScaling

9.3.6 COMPARISON BETWEEN THE DISCRIMINANT MODEL AND THE UNIDIMENSIONAL SCALING MODEL

The number of variables in the unidimensional scaling model has increased from 6 in the discriminant model to 10. The variables TRAINING, CONT_EX, LISTED, CENTRAL, and ARCH_PER were added and the variable LEAD_EX is removed when compared with the discriminant model. Table 43 compares the variables included in the discriminant and unidimensional models.

- 133 -

Variables	Discriminant Model	Unidimensional Scaling Model
COMPLEX	*	*
TRAINING	-	*
PROF_STA	*	*
CONT_EX	-	• *
PAST_PER	*	*
ORIGIN	*	*
LEAD_EX	*	-
LISTED	-	* *
CENIRAL	-	*
ARCH_PER	-	*
CONTROL	*	*

Table 43 <u>Variables</u> <u>Included</u> in the <u>Discriminant</u> and <u>Unidimensional Scaling Models</u>

* Included Variable

It can be noticed that the unidimensional scale is much inferior to the discriminant model and the regression model both in terms of the quality of classification and the variables embodied. The reasons would be the neglect of the interrelationship between the independent variables and the much simplified computation and mathematical concept of the unidimensional scale.

9.4. CONCLUSION AND SUMMARY

The discriminant analysis (D.A.), multiple regression analysis (MRA) and unidimensional scaling (A score) techniques were

- 134 -

employed to generate three models to classify contractor performance with the 34 cases. The results obtained from the D.A. and MRA are compatible to each other with a small difference in the number of variables selected. In the D.A. model six variables were found to be significant in classification while in the MRA five were obtained which eliminates the variable ORIGIN. This may be due to the fact that the sample was skew towards locals (5 out of 34 are overseas contractors).

In comparing the D.A. model and the unidimensional scale, the variations are large. Firstly, there were ten variables included in the unidimensional scaling model compared with only six in the D.A. model. Secondly the quality of classification of the ¹ unidimensional scaling is much inferior to D.A. and MRA. It is because the unidimensional scaling technique has ignored the interrelationship between variables. Each variable in the unidimensional scaling was considered independently but in D.A and MRA the interrelationship of variables was taken into consideration in the variable selection process.

As mentioned in Section 3.4, the D.A. model should have the stronger classification power in the case of binary grouping dependent variable when compared with the MRA model. The unidimensical scaling is proved to be the weakest amongst the three models due to its simplified approach.

- 135 -

CHAPIER 10

TESTING THE MODELS USING INDEPENDENT DATA

10.1 INTRODUCTION

A discriminant model usually fits the sample from which it is derived better than it will fit another sample from the same population¹³. Thus, the percentage of cases classified correctly by the model is an inflated estimate of the true performance in the population.

There are several ways to obtain a better estimate of the true misclassification rate. One technique is called the leaving-one -out method. It involves leaving out each of the cases in turn, calculating the function based on the remaining n-1 cases, and then classifying the left-out case. Since the case which is being classified is not included in the calculation of the function, the observed misclassification rate is a less biased estimate of the true one. However, as the function is made up of most cases in the sample, the estimate of the misclassification rate is not precise enough.

Another technique is to obtain a test group, then the model can be tested against the test group. Since the sample cases are not used for both estimating the function and testing it, the observed error rate in the 'test' sample should better reflect the function's effectiveness. This approach was adopted in this study.

- 136 -

Hitherto, three models; namely discriminant analysis, multiple regression analysis and unidimensional scaling models, have been described. However, as described in Chapter 9, the unidimensional scaling model has a very high percentage of misclassification and thus was excluded from testing. The test results of the Discriminant and Multiple Regression Models will be described in the following pages.

10.2 TEST DATA GROUPS

In order to prove the validity of the models for each group, two groups of test projects were collected. As described in Table 5 of Chapter 5, the number of cases in the test groups of 'Good Performance' and 'Poor Performance' are 10 and 6 respectively.

In the test groups, more 'Bad' cases were included to examine the discriminant power of the models. It is because when one of the groups is much smaller than the other, a highly correct classification rate can occur even when most of the 'minority' group cases are misclassified; for example, in judging everyone to be disease free in an AIDS screening program, the error rate will be very small since few people actually have infected with AIDS. Thus the 'Poor Performance' group was deliberately enlarged to test the actual validity of the models.

Jurtifing

10.3 VALIDATION OF THE DISCRIMINANT ANALYSIS MODEL

The discriminant analysis model developed is as follows:

- 137 -

Discriminant function = - 0.5616 (COMPLEX) + 11.9324 (PROF_STA) + 0.0949 (LEAD_EX) - 1.7845 (PAST_PER) + 0.8219 (ORIGIN) + 1.0364 (CONTROL) - 1.1408

where COMPLEX : The complexity of the project

PROF_STA: Percentage of professional qualified staff

- LEAD_EX : Project leader's experience
- PAST_PER: Contractor's past performance or image
- ORIGIN : Origin of the company
- CONTROL: Architect's or client's supervision and control on the quality of work and work progress

The results obtained from the independent data groups are shown in Table 44 and 45.

Table 44	Overall_	Classification	<u>Results of</u>	the Test	Data Groups
	in the D	iscriminant Analy	<u>ysis Model</u>		

Actual Group	No. of Cases	Predicted Group Membership		
		Group 1	Group 2	
Group 1	10	9 (90%)	1 (10%)	
Group 2	6	1 (16.7%)	5 (83.3%)	

Percent of 'grouped' cases correctly classified: 87.5%

Table	45	<u>Classific</u>	<u>cation</u>	<u>Resul</u>	ts_	and	the	<u>Discri</u>	<u>minant</u>	Scores	of
		the Test	Data	Groups	in_	the D)iscri	minant	Analys	sis Mod	el

Case	Actual Group	Discriminant Scores	Classified Group	Classification
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	-2.067 0.739 3.048 4.052 3.238 0.509 2.318 2.072 0.844 -0.384 0.139 -1.795 -3.473 -2.931 -2.369 -5.347	2 1 1 1 1 1 1 2 2 2 2 2 2 2 2	WRONG Correct Correct Correct Correct Correct Correct Correct Correct Correct WRONG Correct Correct Correct Correct Correct Correct Correct

In the Z_2 model development, there are 25 cases from the 'Good' group and 9 from the 'Bad' group. Thus, the prior probabilities of group 1 (good performance) and group 2 (bad performance) are 73.53% (25/34 * 100%) and 26.47% (9/34 * 100%) respectively. If the classification rate for the 'Good' group is lower than or equal to 74%, it would suspect that the outcome happens only accidentally and the performance is not better than chance. Similarly, if the classification rate for the 'Bad' group is lower than or equal to 26%, it would suspect that the outcome outcome just happens by chance.

In this study, the classification rates for the 'Good' and 'Bad' groups are 90% and 83.3% which are well above 74% and 26% and

- 139 -

thus the classification performance is very convincing. It demonstrates a satisfactory prediction power of the model.

1.000 mich

10.4 VALIDATION OF THE MULITIPLE REGRESSION ANALYSIS MODEL

The multiple regression analysis model developed is as follows:

PERFORM = + 0.36853 (PAST_PER) + 0.1355 (COMPLEX) - 0.22549 (CONTROL) - 0.02055 (LEAD_EX) - 1.42476 (PROF_STA) + 0.92865

where COMPLEX : The complexity of the project

- PROF_STA: Quality of management team-Professional qualifications
- LEAD_EX : Quality of management team-Project leader's experience
- PAST_PER: Contractor's past performance or image
- CONTROL : Architect's or client's supervision and control on the quality of work and work progress

The results obtained from the independent data group are summarised in Table 46 and 47.

Table 46 <u>Overall Classification Results of the Test Data Groups</u> in the Multiple Regression Analysis Model

Actual Group	No. of Cases	Predicted Group Membership		
		Group 1	Group 2	
Group 1	10	9 (90%)	1 (10%)	
Group 2	6	1 (16.7%)	5 (83.3%)	

Percent of 'grouped' cases correctly classified: 87.5%

Table 4	7 <u>Classif</u>	<u>Classification</u>		<u>esults</u>	and	<u>the M</u>	<u> fultip</u>	<u>le F</u>	Regression
	Scores	of	the	Test	Data	Groups	s in	the	Multiple
	Regression Analysis Model						-		

Case	Actual Group	Discriminant Scores	Classified Group	Classification	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	1.6969 1.1359 0.5421 0.6757 0.5010 1.1208 0.7533 0.8509 1.0901 1.3383 1.1561 1.6291 2.0514 1.8888 1.7533 2.1881	2 1 1 1 1 1 1 2 2 2 2 2 2 2 2	WRONG Correct Correct Correct Correct Correct Correct Correct Correct WRONG Correct Correct Correct Correct Correct Correct Correct Correct Correct	

The classification results obtained are same as that of the discriminant model. Thus it concludes that the prediction power of the multiple regression model is satisfactory which verifies the reliability of the discriminant model.

10.5 CONCLUSION AND SUMMARY

The discriminant model was extremely accurate in classifying 87.5% of the sample correctly. The Type I error (i.e. when the case is actually bad but classified into the 'Good' group) was proved to be 16.7% while the Type II error (i.e. when the case is actually good but classified into the 'Bad' group) was 10%. This is significantly better than a pure chance model. The

results, therefore, are encouraging.

The multiple regression analysis model has proved to be effective in discriminating between the 'Good' and 'Bad' groups which has counterproved the validity and reliability of the discriminant model.

CHAPIER 11

PERIPHERAL FACTORS NEEDED TO BE TAKEN

INTO ACCOUNT WHEN USING THE MODEL

11.1 INTRODUCTION

As revealed in the last Chapter, the test cases no.1 and 11 were found to be misclassified both by the Discriminant Analysis and the Multiple Regression Analysis models. This infers that the models correctly classified 87.5% of the sample projects. Despite of this high percentage of accuracy, the misclassifications highlighted that there were some uncertainties in prediction which could not be explained by the models.

It is the aim of this Chapter to investigate the underlying factors and provide recommendations in exercising the Discriminant Analysis Prediction Model.

11.2 METHODOLOGY

In order to unveil the hidden factors, detailed interviews with the contractors and/or the clients' representatives were intended for the two misclassified cases. However one of the contractors was not willing to disclose the information. The only misclassified case studied was categorized into the 'Bad' group by the models which, however in actual fact, belonged to the 'Good' group.

- 143 -

However, one single case is not adequate to provide a complete picture; thus, two more cases were found and collected over a four month period. In these two cases, the clients had expected a good performance but the contractor performance turned out to be poor. Consequently detailed investigations were carried out and two discriminant scores derived for the two projects. These cases should have fallen into the 'Good' group but in actual, its performance was poor.

11.3 CASE STUDIES

The following pages describe the findings from the detailed investigations of the three mis-catagorised cases.

11.3.1 CASE 1- 'GOOD PERFORMANCE' CASE CLASSIFIED AS 'BAD'

This case was one of the misclassified cases in the testing sample. The detailed interview was conducted in August, 1991 with the contracts manager of the company and the findings are presented as follows:

A) Brief history of the company:

The company was set up in 1985; by which time, it was a joint venture firm between a Japanese contractor and a local company. In 1988, the organisation was re-shuffled and the company re-organised and sub-divided. The joint venture was ended and

- 144 -

the company has become a 100% locally owned company. The past image of the contractor was very poor with some records of poorly constructed public housing projects bearing poor quality and delay in completion.

B) Change of management team after re-shuffle:

Since the re-shuffle, more professional staff have been recruited; the percentage of which has increased from 5% to 10%. A few unsatisfactory project managers were dismissed.

C) Change of management system and style:

In the past, they did not have a proper control system and everything was kept in mind rather than on paper. After the re-organisation, a management control system was introduced. Computers have also been adopted in management.

The decision making system was changed from strictly centralized in the past to a more flexible and de-centralized system.

D) <u>Change of subcontractors list</u>:

In the past, the subcontractors had a very close relation with the top management and usually recruited through negotiations rather than from proper competitive tendering. After the re-shuffle, the list of subcontractors was changed and subject to selection through tendering.

E) Workload:

Since the re-organisation, workload has nearly doubled.

F) Profitability:

Losses occurred in the past but profits were evident during the time of the interview.

G) Change in company strategy:

In the past, the objective was to maximise profit but recently more emphasis have been given to improving the quality of work and image.

H) Amount of plant owned:

This remained roughly the same before and after the re-organisation.

I) <u>Size of the company</u>:

The size has not changed.

11.3.1.1 SUMMARY

From the information obtained above, four factors are evident

which might affect the "PAST PERFORMANCE" variable used in the model; namely:

- Change of company policy in managing and running projects.
- Improvement in management both in terms of human resources and the system itself.
- Change of the company origin from an overseas and local joint venture to a wholly local firm.
- Improvement in profitability; thus the firm could afford more resources to improve management and quality of work.

11.3.2 CASE 2- 'BAD PERFORMANCE' CASE CLASSIFIED AS 'GOOD'

This is one of the two cases where the client had expected a good performance but the result turned out to be bad. The discriminant score of 0.4622 would, according to the Discriminant Model, fall in the 'Good' catagory; however, the client was not satisfied with performance. The interviews were conducted in January, 1992 with both the general manager of the contractor and the client's representative. The findings are presented as follows:

A) Brief history of the company:

The company was a subsidiary of a large construction firm which had been set up for more than 30 years. The firm had specialised in maintenance works before the split from its mother company in 1987 at which time the mother company went into a joint venture with a Dutch firm. After the split, the firm entered into the new works' market and expanded rapidly.

B) <u>Workload</u>:

The company expanded very fast in term of workload. In 1987, the total contract sum in hand was 200 million Hong Kong dollars but increased to 1000 million dollars in 1991.

C) <u>Delay payment to subcontractors</u>:

Because of rapid expansion, subcontractors' payments were delayed in order to save cash for expansion.

D) **Profitability:**

The marginal profit dropped due to the keener competition in the new works' market.

E) Project particulars:

The project in question was obtained through a negotiated form of contract. Although the contractor's resources had been fully committed at that time, the offer was accepted in order not to upset the client. Trying to avoid hiring new staff to manage the project, the works were wholly sublet to a third contractor but a few supervisiory staff were still maintained to oversee the project.

11.3.2.1 SUMMARY

From the above information, three possible reasons for reduction in performance are identified as follows:

- The contractor lacked experience in handling new works projects.
- The profitability of the company was falling which might subsequently lead to difficulties for the management.
- Iastly, but the most important, the over-expansion of the company caused in a difficult situation in terms of cash flow and human resources.

11.3.3 CASE 3- 'BAD PERFORMANCE' CASE CLASSIFIED AS 'GOOD'

This is the second case where the client had expected a good performance but the result turned out to be bad. The discriminant score was 0.7387 which, according to the Discriminant Model should fall under the 'Good' catagory; however, the client was not satisfied with this level of performance. The interviews were conducted in February, 1992 with both the contractor's chief quantity surveyor and the client's representative. The findings are presented as follows:

A) Brief history of the company:

- 149 -

The company was a very traditional Chinese contractor set up 30 years ago. The firm was taken over by a large developer and went public in 1990. Top management has also changed since then.

B) Overtrading:

In order to present a favourable image regarding the financial accounts before going public, the company tried to increase turnover in a fairly short period of time and actually won a number of projects in 1990. The high workload forced the company to promote some younger staff to manage projects. Secondly, payments to subcontractors were severely delayed; some of which had been delayed for more than four months and a few subcontractors were preparing legal actions at the time of interview.

C) <u>Project particulars</u>:

In this project, the client complained that the main problem contributing to the poor performance was the lack of experience of the project manager in tackling the waterproofing works which needed much remedial work. Further the confused management and communication systems irritated the client and the architect. The project was also delayed due to poor coordination of subcontractors.

11.3.3.1 SUMMARY

The root problems of the contractor's poor performance are summarised as follows:

- The change of the top management led to an alteration in the company strategy and policy.
- Over-expansion increased competition for resources; both in terms of financial and human. Although in the development of the Discriminant Model, workload was taken as one of the determinants; nevertheless, it is quite difficult to define 'overtrading' in terms of 'workload' since workload has to reach a certain point before overtrading is realized. Further, the maximum manageable workload may vary from company to company due to different structures, organisation and types of work that companies specialise in.

11.4 SUMMARY AND CONCLUSION

From the study of the three cases above, it is probable that the following factors would affect the accuracy in exercising the Discriminant Model; namely:

11.4.1 CHANGE IN COMPANY POLICY AND ATTITUDE

It is recognised both from Cases 1 and 3 that a change in company policy and top management may affect the predictive performance was not previously considered in the development of the model because of the difficulties in quantifying 'changes in attitude and policy'.

Thus in qualifying contractors, this factor needs to be considered by intervewing contractors regarding changes in the company strategy and top management.

11.4.2 CHANGE IN MANAGEMENT QUALITY

Cases 1 and 2 indicated that changes in staff quality and the management system could affect the predictive performance. Again this can be discovered through interviewing contractors and scrutinising the submitted project organisation chart.

The changes in management quality, company strategy and attitude may, in long run, change the 'PAST PERFORMANCE' factor used in the model.

11.4.3 PROFITABILITY

The profitability of the projects themselves was included in the development of the model. However, the overall profitability of companies was not included due to the difficulty and the sensitivity in collecting the information; especially from small private companies.

This factor was demonstrated to be affecting the predictive performance from Cases 1 and 2 as profitable contractors can

- 152 -

afford more resources and have more room to improve their quality of work and image while non-profitable contractors may be clinging to maximize the profit. This information can be obtained from the contractor pre-qualification interview.

11.4.4 OVERIRADING

Attempts were made to quantify this factor in the Discriminant Model using the variable 'WORKLOAD'; however the overtrading condition was difficult to determine as not normally be directly proportional to workloads and is usually a situation where the available resources are over-committed. This situation may vary according to different company structures, organisation and trading specialisms.

This factor was demonstrated to be affecting the predictive performance very much in Cases 2 and 3 and can only be revealed at a contractor pre-qualification interview.

In conclusion, the Discriminant Model should only be used as part of an overall assessment of contractors' predictive performance. Any predictions should be interpreted with caution as the model has some peripheral factors which are difficult to be quantified and included. However, the Discriminant Model can confidently be adopted as a quantitative tool in assessing contractor's predictive performance in order to exclude contractors from tender lists and consequently improve the bid evaluation process thereby leaving more time for the clients to concentrate on detailed analysis of the tender.

This Chapter highlighted some peripheral factors which need to be considered in exercising the Discriminant Model to assess contractor performance in the contractor pre-qualification stage.

CHAPIER 12

COMMENIS FROM THREE ORGANISATIONS ON THE DISCRIMINANT VARIABLES

12.1 INTRODUCTION

In order to compare the actual practices to the viability of the discriminant variables of the model, three interviews were $\|$ conducted with the representatives of the largest public housing client, one of the largest project management consultants and the estate offfice of a tertiary institution in Hong Kong.

In the model, there were six variables identified as significant in describing contractor performance; namely:

- 1. COMPLEX : The complexity of the project
- 2. PROF_STA: Percentage of professional qualified staff
- 3. LEAD_EX : Project leader's experience
- 4. PAST_PER: Contractor's past performance or image
- 5. ORIGIN : Origin of the company
- 6. CONTROL : Architect's or client's supervision and control on the quality of work and work progress

The findings of the interviews are presented in the following pages.

12.2 INTERVIEW 1- PUBLIC HOUSING CLIENT

In this interview, the deputy director mentioned that three extra factors were considered in addition to the bidding price in the contractor selection process; viz.:

12.2.1 PAST PERFORMANCE

A comprehensive past performance track recording system was adopted called PASS (the Performance Assessment Scoring System) described in details in Appendix 8. This system was used to provide an objective measurement of quality. Random sample checks carried out monthly throughout each contract period were administered. The checks contained either PASS or FAIL, without good, average or poor ratings. Full compliance gives a total of 100 points made up as follows:

Structural	35%
Building	35%
External	10%
General Conditions:	<u>_20</u> %
	100%

In this performance assessment system, quality was the only dimension measured whereas other factors such as the degree of claim consciousness, completion time and management attitude were not able to describe.

The discriminant variable 'PAST-PER' in the model, which measures more dimensions than just quality alone, can serve similar purposes in judging contractors' track records of quality.

- 156 -

12.2.2 MANAGEMENT CAPABILITY

The education levels of staff and the management organisation structure were the next aspects which assessed the management capability. Furthermore, ISO 9000 was going to be implemented | which asked for higher education levels of management staff. Only those contractors succeeding in obtaining accreditation of ISO 9000 would be allowed to tender.

This, to a certain extent, corresponds to the provision of the discriminant variable 'PROF-STA' in the model. It was also pointed out that the experience of project managers 'IEAD-EX' would be attributable to contractor performance but this was not measured directly in the selection process.

12.2.3 FINANCIAL STANDING

The captial liquidity, which may affect contractors' ability in funding the work, was also one of their main concerns.

The financial attribute included in developing the model was the profitability of the project. The liquidity information, however, was too sensitive and difficult to collect especially from small private contractors and thus was not included in the | model. Nevertheless, the information can be obtained from the contractor prequalification interview.

12.2.4 OTHER VARIABLES

12.2.4.1 CONTROL

It was agreed that more frequent feedback of reports on contract was required when the project ran into difficulties although this was not measured in the selection process.

12.2.4.2 COMPLEXITY

No attempt was designed to guage this variable in the organisation. This may be due to the standardisation of most public housing designs bearing a constant degree of complexity.

12.3.4.3 ORIGIN

No discrimination was made between local and overseas contractors. The reason behind may be that it was a government subvented organisation which beared public accountability and thus tried to avoid discrimination.

12.3 INTERVIEW 2- ESTATE OFFICE OF A TERTIARY INSTITUTION

The assistant estate officer mentioned in the interview that the following factors were considered on top of the bidding price in contractor selection.

1. Degree of familarity with the contractor. (This corresponds to Ward, Curtis and Chapman¹⁹ et al's findings regarding the quality of the relationships with the contractor concerning impressions of harmony, goodwill and trust or conversely, of arguments, distrust and conflict.)

- 2. Claim consciousness of contractors.
- 3. The technical requirements of the project.
- 4. The complexity of the job.

12.3.1 PAST_PER & COMPLEX

The first two factors correspond to the discriminant variable PAST-PER since these represent, to a certain extent, the track record of the contractor concerned. Besides that, they have a systematic approach in assessing contractors' track record on quality (refer to Appendix 9 for details) although the system was not as comprehensive as the PASS used by the last organisation.

The latter two correspond to the variable COMPLEX as they measure the complexity of a project.

12.3.2 ORIGIN

Besides the above four factors, it was pointed out that the use of overseas contractors was tried to avoid where possible unless a particular expertise, which was only available from them, was required. It was noted that these contractors were normally more claim conscious, having high preliminaries and the know-how to play with the contract.

12.3.3 PROF_STA & LEAD_EX

Although it was admitted that the staff quality and experience could affect contractor performance, they found it difficult to measure these two aspects. The cooperativeness of staff, familarity with the job, education levels, experience and attitude were considered important in describing staff quality.

12.4 INTERVIEW 3- PROJECT MANAGEMENT CONSULTANT

One of the partners in the consulting firm mentioned that the following factors were considered on top of the bidding price in contractor selection.

1. Past performance which was guaged by peers', other clients', architects' and consultants' recommendations.

This corresponds to the discriminant variable, PASI-PER, in the model.

2. Quality of management staff which included education levels, experience and types of job experience which were obtained through the pre-qualification interview.

This corresponds to the discriminant variables, PROF-STA and LEAD-EX, used in the model.

3. Contractors' expertise.

This is, to a certain extent, measured by the variable COMPLEX in the model although the former measures the contractors' ability to manage complex jobs while the latter measures the job's complexity itself.

As regards overseas contractors, there was no experience in dealing with them.

12.5 SUMMARY AND CONCLUSION

In Interview 1, two out the three assessment criteria adopted by the organisation were measured directly or indirectly by the three discriminant variables; viz. PAST-PER, PROF-STA and LEAD-EX. However, the variables, COMPLEX and ORIGIN were not adopted due to the special nature of the organisation.

In Interview 2, PAST-PER, COMPLEX and ORIGIN were considered, however, they did not measure the quality of management staff.

In Interview 3, PAST_PER, PROF-STA, LEAD-EX were assessed directly while COMPLEX was measured indirectly.

It is not surprising that clients' supervision and control (CONTROL) was not considered by the three organisations as this is a post contract measure. Notwithstanding this, this factor was viewed as a step to improve poor performance by the three organisations.

From the interviews, it reveals that there was not a unified approach in contractor selection in Hong Kong despite of a few common criteria. This infers that the selection processes were designed subjectively according to individuals' perception and organisations' own experience without any theoretical support.

CHAPIER 13

DISCUSSION AND CONCLUSIONS

13.1 INTRODUCTION

In the construction industry, most clients would hope that their projects could be finished on time, within budget, and up to the required quality. The competitive tendering system, however, cannot satisfy these assessment requirements. Some methods are apparently needed which will provide a quantitative indication of contractors' predictive performance to assist clients in making decision objectively and dispassionately.

The purpose of this dissertation was to investigate empirically the characteristics of contractor behaviour in performance and attempt to develop an accurate performance prediction model for the clients of the construction industry. Multiple discriminant analysis was utilized to accomplish this with contractor internal attributes and project characteristics serving as predictive variables.

The study encompassed essentially three parts. The first part included the development of the Discriminant Model. Secondly, the model was tested and verified with two other models; namely the Multiple Regression Analysis Model and the Unidimensional Scaling Model. Finally, a set of peripheral factors was (investigated and recommended to suppliment the inadequacy of the Discriminant Model.

- 163 -

13.2 THE DISCRIMINANT ANALYSIS MODEL

In the beginning of this study, the general concept and previous works on this subject were introduced. Based upon the previous studies, a list of decision factors were derived and investigated by the discriminant analysis technique. Two sets of data projects belonging to the two groups were collected and analysed by the model. Then the model produced a formula in the following form indicating the six most important factors in *i* deciding contractor performance: 1

Discriminant	function $= -$	0.5616	(COMPLEX)	
	+	11.9324	(PROF_STA)	
	+	0.0949	(LEAD_EX)	
	-	1.7845	(PAST_PER)	
	+	0.8219	(ORIGIN)	
	+	1.0364	(CONTROL) -	- 1.1408

- where COMPLEX : The complexity of the project
 - PROF_STA: Percentage of professional qualified staff
 - LEAD_EX : Project leader's experience
 - PAST_PER: Contractor's past performance or image
 - ORIGIN : Origin of the company
 - CONTROL : Architect's or client's supervision and control on the quality of work and work progress

13.3 VERIFICATION OF THE DISCRIMINANT MODEL USING MULTIPLE RECRESSION AND UNIDIMENSIONAL SCALING MODELS

In the second part of the study, two mathematical models were developed using the same set of data. Firstly, a Multiple

- 164 -

Regression Model was developed and its results were comparable to that of the Discriminant Model which demonstrated the validity of the discriminant analysis approach. Although the Multiple Regression Model is similar to the Discriminant Model, \ however; as mentioned in Chapter 3 and 9, the discriminant analysis approach has a stronger classification power than the multiple regression analysis approach in the case of binary grouping and thus was preferred.

The Unidimensional Scaling Model was then developed and its classification results were much inferior to those of both the Discriminant and Regression Models. It is because the unidimensional scaling approach has ignored the interrelationship between variables; for example, the percentage of professional staff may affect the past performance of a contractor. Although this approach did not produce any fruitful results, the model showed that there was an underlying structured approach in assessing contractor performance.

13.4 PERIPHERAL FACTORS IN EXERCISING THE DISCRIMINANT MODEL

As there were a few misclassifications, detailed investigation to the misclassified cases was carried out to study the side factors which could not be explained by the models.

The study discovered that the Discriminant Model should be used with care when the following signs appeared: (

- A) The contractor has a drastic change in company policy and attitude in running and managing projects.
- B) The contractor has an abrupt change in management quality both in terms of the staff quality and the management system itself.
- C) The profitability of the company is descending or the company is suffering a long period of loss.
- D) The company has a strong sign of over-trading.

13.5 RECOMMENDATIONS FOR IMPLEMENTING THE DISCRIMINANT MODEL

There were 34 cases, including 25 cases in the 'Good' group and 9 in the 'Bad' group, used to develop the Discriminant Model. However, the developer or project manager can include information of the newly completed projects in the model and strengthen the data employed in the model development. Consequently the model can grow and perfect itself as more and more project information are embodied.

13.6 SUGGESTION FOR FUTURE STUDY

In this study, all types of works and companies of all sizes (were examined. But in the actual construction environment, companies of different sizes or carrying different types and sizes of projects may exhibit different characteristics in performance. Hence, it is recommended that each catagory may be not investigated individually.

Further, the model, as mentioned in the last paragraph, can grow as more project information are available. It is possible to develop an expert system package in expanding the model and vetting contractors on tender lists.

REFERENCES

- → 1. Vermon Ireland B.E. The Role of Mangerial Action in the Cost, Time and Quality Performance of High Rise Commercial Building Projects. PhD Thesis University of Sydney, 1983
- -A 2. Maloney, W.F. Framework for Analysis of Performance. Journal of Construction Engineering and Management, Vol. 116, No. 3, pp. 399-415, September 1990.
 - 3. Arditi, D. Factors Affecting U.S. Contractors' Performance Overseas. Journal of Construction Engineering and Management, Vol. 117, No. 1, pp. 27-46, March 1991.
 - 4. Ofori, G. Programmes for Improving the Performance of Contracting firms in Developing Countries: A Review of Approaches and Appropriate Options. Construction Management and Economics, pp. 19-38, September 1991.
 - 5. Town Planning in Hong Kong, 1985. Hong Kong Government Printer.
 - 6. Smith, J. Outlook Favourable for Hong Kong Growth. Journal of Building Technology & Management, pp. 31-33, April/May 1989.
- 7. Mustafa, M.A. and Ruan, T.C. Decision Support for Bid Evaluation. Journal of Project Management, Vol.8, No. 4, pp. 230-235, November 1990.

- 168 -

- Nguyen, V.U. Tender Evaluation by Fuzzy Sets. Journal of Construction Engineering and Management, Vol. 3, No. 3, pp. 231-243, September 1985.
- 9. Diekmann, J.E. Cost-Plus Contractor Selection. Journal of the Technical Council, ASCE, Vol. 107, No. TC1, pp. 13-25, April 1981.
- 10. Russell, J.S. Model for Owner Prequalification of Contractors. Journal of Management in Engineering, Vol. 6, No. 1, pp. 59-75, January 1990.
- 11. Abidali, A.F. A Methodology for Predicting Company Failure in the Construction Industry. PhD Thesis, 1990, Lougborough University of Technology.
- 12. Mason, R.J. Bankruptcy Prediction by Discriminant Analysis. MSc Thesis, Loughborough University of Technology.
- 13. SPSS: Statistical Package for Social Science, Advanced Statistics Guide (V 2.0). SPSS Inc., Illinois, U.S.A.
- 14. Skitmore, R.M. and Marsden, D.E. Which Procurement system? Towards a Universal Procurement Selection Technique. Construction Management and Economics, Vol. 6, pp. 71-89, June 1988.
- \rightarrow 15. Salomonsson, G. and Flood, J. Operational Mode of Small

- 169 -

Builders in Housing Alterations and Additions: A Discriminant Analysis. Proceedings of CIB Building Economics & Construction Management, Vol. 6, pp. 429-437, 1990.

- 16. Altman, E.I. The Prediction of Corporate Bankruptcy: A Discriminant Analysis. New York: Garland, 1988.
- 17. Wit, A.D. Measurement of Project Success. International Journal of Project Management, Vol. 6, No. 3, August, 1988, pp. 164-170.
- 18. Might, R.J. and Fisher, W.A. The Role of Structural Factors in Determining Project Management Success. IEEE Transaction of Engineering Management, Vol. EM32, No. 2, May 1985, pp. 71-77.
 - 19. Ward, S.C., Ourtis, B. and Chapman, C.B. Objectives and Performance in Construction Projects. Construction Management and Economics, Vol. 9, pp.343-353, September 1991.
 - 20. Barnes, M. Construction Project Management. International Journal of Project Management, Vol. 6, No. 2, pp. 69-79, May 1988.
 - 21. Boucher, T.O. and MacStravic, E.L. Multiattribute Evaluation Within a Present Value Framework and Its Relation to the Analytic Hierarchy Process. The Engineering

- 170 -

Economist, Vol. 37, No. 1, Fall 1991, pp.1-32.

- 22. Russell, J.S. and Skibniewski, M.J. Decision Criteria in Contractor Prequalification. Journal of Management in Engineering, Vol. 4, No. 2, PP. 148-164, ASCE.
- 23. Jaselskis, E.J. and Russell, J.S. An Efficiently Structured Approach for Selection of Most Promising Construction Contractors. Project Management Journal, Vol. 22. No. 4, December 1991, pp. 31-38.
- 24. Giege, T. and Selin, G. Evaluation of a Plant Reconstruction and Extension Project. International Journal of Project Management, Vol. 5, No. 3, PP. 135-137, August 1987.
- 25. Abdel Salam, M.E. Client Viewpoint on Foreign Contracts. International Journal of Project Management, Vol.3, No. 3, pp. 183-184, August 1985.
- 26. Troy, D. PhD Thesis, Alabama University, U.S.A., 1968. The computations are taken from Hoel (pp. 181-182) and lecture notes from Dr. Paul M. Hummel's course on Mathematical Statistics at the University of Alabama.
- 27. Schroeder, L.D., Sjoquist, D.L., and Stephan, P.E. Understanding Regression Analysis - An Introductory Guide. A Sage University Paper, 1986.

- 171 -

- 28. McIver, J.P. and Carmines, E.G. Unidimensional Scaling. A Sage University Paper, 1981.
 - 29. Achen, C.H. Interpreting and Using Regression. A Sage University Paper, 1982.
- 30. Pedhazur, E.J. Multiple Regression in Behavioral Research. CBS Colledge Publishing, 2nd Edition, 1982.
 - 31. Coombs, C.H. A Theroy of Data. New York: Joh Wiley, 1964.
 - 32. Weisberg, H.F. Dimensionland: An Excursion into Spaces. American Journal of Political Science, 1974, No. 18, pp. 743-776.
- → 33. Sewell, W.H. The Development of a Sociometric Scale. Sociometry, No. 5, pp. 279-297, 1941.
- -> 34. Alwin, D.F. The Use of Factor Analysis in the Construction of Linear Composites in Social Research. Sociological Methods and Research, No. 2, pp. 191-214, 1973.
 - 35. Eye, A.V. Introduction to Configural Frequency Analysis: the Search for Types and Antitypes in Cross-Classifications. Cambridge: Cambridge University Press, 1990.
 - A 36. Goldstein, M. Discrete Discriminant Analysis. New York: Wiley, 1978.

- 172 -

- 37. Gordon, A.D. Classification: Methods for the Exploratory Analysis of Multivariate Data. London: Chapman and Hall, 1981.
 - 38. Hand, D.J. Discrimination and Classification. Chichester: J.Wiley, 1981.
- ->> 39. Hand, D.J. Kernel Discriminant Analysis. Chichester: Research Studies Press, 1982.
 - 40. James, M. Classification Algorithms. New York: Wiley, 1985.
 - 41. Klecka, W.R. Discriminant Analysis. Beverly Hills: Sage Publications, 1980.
 - 42. Statistical Method of Discrimination and Classification: Advances in Theory and Applications. New York: Pergamon, 1986.
 - → 43. Classification and Regression Trees. Belmont, Calif.: Wadsworth International Group, 1984.
 - 44. Classification Pattern Recognition and Reduction of Dimensionality. Amsterdam: North-Holland, 1982.
 - 45. Advances in Multivariate Statistical Analysis. Dordrecht, Holland: D. Reidel, 1987.

- 173 -

- 46. Anderson, T.W. An Introduction to Multivariate Statistical Analysis. New York: Wiley, 1984.
- 47. Arnold, S.F. The Theory of Linear Models and Multivariate Analysis. New York: Wiley, 1981.
- 48. Housing Authority Performance Assessment Scoring System (PASS). Housing Department, Hong Kong Government, July, 1991.
- 49. University's Panel of Contractors Monitoring of Contractor Performance. The Estate Office, The University of Hong Kong, April, 1992.
- 50. Jiang, C.Y. Introduction to Fuzzy Sets and their Applications in Construction Management. China Building Industry Publisher, 1986. (Chinese Book- Direct Translation of Book Title and Author's Name)
- 51. Bray, J.H. Multivariate Analysis of Variance. Beverly Hills: Sage, 1985.
- 52. Siegel S. Nonparametric Statistics For The Behavioral Sciences. McGraw-Hill Book Company, 1988.
- 53. Flury, B. Multivariate Statistics: A Practical Approach. London: Chapman and Hall, 1988.
- 54. Kleinbaum, D.G. Applied Regression Analysis and Other

- 174 -

Multivariate Methods. 2nd Edition, Boston, Mass.: PWS-Kent, 1988.

- 55. Birnie J. and Yates A. Cost Prediction Using Decision/ Risk Analysis Methodologies. Construction Management and Economics, Vol.9, 1991, pp. 171-186.
- 56. William Ibbs C. Innovative Contract Incentive Features for Construction. Construction Management and Economics. Vol.9, No.2, April 1991, pp. 157-169.
- 57. Russell J.R., Hancher D.E., and Skibniewski Contractor Prequalification Data for Construction Owners. Construction Management and Economics, Vol.10, No.1, 1992, pp.117-135.
- 58. Russell J.S. Decision Models for Analysis and Evaluation of Construction Contractors. Construction Management and Economics, No.10, No.2, 1992, pp. 185-202.
- 59. Tam C.M. and Harris F.C. Discriminant Analysis Technique for Contractor Performance Appraisal in Hong Kong. CIB'92 World Building Congress, Proceedings Section 5E, Vol. 2. May 1992.
- 60. Tam C.M. Structured Approach in Bid Evaluation. Proceedings of the International Project Management Conference. Guangzhou, PRC, November, 1992.

APPENDIX 1

Measuring the Degree of Concordance of Clients on the levels of Complexity of Work

.

<u>APPENDIX ONE</u>

MEASURING THE DECREE OF CONCORDANCE OF CLIENTS

ON THE LEVELS OF COMPLEXITY OF WORK

A1.1 INTRODUCTION

In order to unveil the levels of complexity of work, a survey was carried out for clients to rank the six pre-set groups of work according to their complexity. Nine replies were collected \emptyset and a non-parametric statistical technique called the Kendall Coefficient of Concordance was adopted to test the degree of agreement between the clientsees. The levels of complexity of work were then derived in ordinal approach.

A1.2 SURVEY

Twenty questionnaires had been sent out and nine were returned. The results of the survey are shown in Table A.1. From the results, it can be noticed that there is a clear pattern of ranking order as follows:

- 1- Foundation works, site formation, slope protection and similar simple civil engineering works.
- 2- Renovation or alteration works.
- 3- Factory or domestic housing works.
- 4- Deluxe housing projects or office buildings.
- 5- Hotel or high class office buildings.
- 6- Hospital or complicated structures or projects.

- 177 -

Table A.1 Results of Survey on the Levels of Complexity of Work

	7 8 9	2R1	1 1 1 12	2 2 2 16	3 3 26	4 4 4 36.5	5 5 44.5	6 6 54
	9		2	1	3	4	5	9
<u>cl ient</u>	2	Ranking		2	£	4	പ	9
	4	Ran	н	~	ς	4.5	4.5	v
	m		1.5	1.5	'n	4	<u>م</u>	v
	8		1.5	1.5	m	4	۵	ڡ
			N	N	2	4	ىر م	9
Types of work			Foundation works, site formation, slope protection and similar simple civil engineering works	Renovation or alteration works	Factory or domestic housing works	Deluxe housing projects or office buildings	Hotel or high class office buildings	Hospital or complicated

A1.3 KENDALL COEFFICIENT OF CONCORDANCE 52

A1.3.1 STEP 1

N = the number of entities to be ranked = 6. K = the number of judges assigning ranks = 9.

The sums of ranks assigned to each entity by K judges are shown in Table A.1 as R_i .

The mean of $R_i = (12 + 16 + 26 + 36.5 + 44.5 + 54)/6 = 31.5$ S= Sum of squares of the observed deviations from the mean of R_i : $(12 - 31.5)^2 + (16 - 31.5)^2 + (26 - 31$

 $(36.5 - 31.5)^2 + (44.5 - 31.5)^2 + (54 - 31.5)^2 = 1351$

A1.3.2 STEP 2

Adjustment for ties:

Client 1: $T_1 = \Sigma(t^3-t)/12 = (3^3-3) = 24$ Client 2: $T_2 = \Sigma(t^3-t)/12 = (2^3-2) = 6$ Client 3: $T_3 = \Sigma(t^3-t)/12 = (2^3-2) = 6$ Client 4: $T_4 = \Sigma(t^3-t)/12 = (2^3-2) = 6$

 $K\Sigma T = 9*(24+6+6+6) = 378$

Compute the Coefficient of Concordance

W = the Coefficient of Concordance = $S/{(1/12)K^2(N^3-N)-K\Sigma T}$

 $= 1351/\{0.083*81*(216-6)-378\}$

= 1.307

A1.3.3 STEP 3- Compute Chi-Square with a degree of freedom of (N-1)

Chi-Square = K(N-1)W

= 9*(6-1)*1.307

= 58.81

A1.4 CONCLUSION

From Chi-Square Tables, it can be found that probability that the value of Chi-Square is greater than or equal to 20.52 for a degree of freedom of 5 is 0.001. Thus having a Chi-Square value of 58.81, it can be concluded with considerable assurance that the agreement among the 9 judges is higher than it would be by chance.

APPENDIX 2

Raw Data of 34 Cases for Model Formulation and 16 Cases for Testing

. . 1

.

.

1.500		4 (~ 1	0	2.0	2	0.030	м	12	M	- 33	
1.000	~ ~	M ·	8	2	2.0	2	0.030	M	12	4	32	
0-949	-	4	4	2	2.0	-	0.133	м	15	4	31	
1.097	-	4	M	2	2.0	-	0.086	m	18	4	30	
1.300	-	Ņ	2	5	2.0	2	0.500	-	₩.	m	29	
0.950	-	м	2	2	2.0	2	0.130	-	13	4	28	
1.400		4	M	2	1.0		0.000	м	07	2	27	
0.937	-	2	2	2	2.0	2	0.150	-	13	4	26	
1.055	-	4	M	2	1.0	•	0.033	M	51	N	55	
1.170		m	m	2	2.0	2	0.150	-	34	4	24	
1.020	-	ŝ	m	~	1.5	-	0.033	m	51	2	23	
1.000	-	ŝ	m	-	1.0	-	0.000	Μ	40	2	22	
0.970	-	4	4	2	1.0	-	0.000	M	40	2	21	
0.981	-	4	4	2	1.5	-	0.033	м	51	0	50	
0.934		4	4	-	1.0		0.000	м	40	0	19	
1.000	-	S	Ś	-	1.5	-	0.033	r	51	N	18	
0.783		m .	2	2	2.0	2	0.565	-	12	4	17	
1.007	-	ñ	M	2	2.0	2	0.250	m	15	м	16	
0.878	-	4	™	2	1.5	2	0.150	ю	ю	M `	15	
1.000	-	м	4	7	1.0	-	0.000	M	40	N	2	
1.000	-	m	M	-	2.0	-	0.080	m	18	M	: E	.82
1.000	-	м	m	-	2.0	-	0.102	м	18	m	12	-
1.000	-	2	M	-	2.0	-	0.127	ю	18	м	11	
1.000	-	m	m		2.0		0.096	м	18	M	6	
1.000		2	M	-	2.0	•	0.084	. M	18	м	6	
1.000	-	ю	M	e	2.0	-	0.134	м	18	м	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
1.000		-	M	-	2.0	-	0.116	m	18	м	-	
1.070	-	4	M	2	1.0	2	0.000	ю	10	0	· •0	
0.869	-	Ś	-	2	1.0	2	0.050	м	15	· 7	- L A	
0.923	-	S	2	2	1.5	2	0.000	м	80	4	• 4	
0.950	-	m	4	2	1.0	2	0.200	m	20	2	m	
0.940	2	4	2	2	1.0	2	0.200	M	5	м	2	
1.070	-	4	4	7	1.0	2	0.150	M	м I	0 1	-	
,	PAYMENT	CONTROL	RCH_PER	SUBSID ARCH_PER	CENTRAL	LISTED	DEL	ORIGIN	EAR BUS	PAST PER YEAR BUS	Case	

000501	120000	100000	110000	6667000	400000	420108	420108	420108	420108	420108	420108	420108	4500000	2000000	300000	3500000	2286000	4500000	2286000	4500000	4500000	2286000	7925000	2286000	4000000	4500000	4000000	7925000	3000000	3000000	2450000	2450000	2450000
0.90	0.75	0.30	0.00	0.25	0.50	0.38	0.10	0.41	0.41	0.10	0.41	0.41	0.08	0.33	1.00	07-0	0.70	0.12	0.05	0.30	0.08	0.05	0.05	0.25	0.05	0.04	0,40	0.00	0.00	0.20	0.85	0.85	0.85
10	ŝ	5	10	18	5	20	22	14	22	22	24	24	15	11	12	12	12	\$	12	Ś	10	30	1	2	15	9	16	15	16	30	12	52	5
0.000	0.100	0.100	0.067	000.0	0.000	0.084	0.084	0.084	0.084	0.084	0.084	0.084	0.067	0.250	0.080	0.400	0.036	0.067	0.036	0.067	0.067	0.036	0.151	0.036	0.200	0.067	0.200	0.151	0.090	0.090	0.055	0.055	0.055
20	10	20,	15	15	12	190	190	190	190	190	190	190	600	. 12	50	200	002	009	200	009	6 00	200	530	200	400	009	400	530	1000	1000	1100	1100	1100
250 0.500	200 0.025	100 0.040	000 0.050	000 0.000	200 0.050		0.020	0.020	0.020	020.020	020.080	0.020	350 0.025		00 0.140	125 0.178	214 0.011	150 0.025	214 0.011	0.025	350 0.025	214 0.011	710.0 270	214 0.011	100 0.050	0.025	100 0.050	710.0 270	0.150	050 0.150	0.050	054 0.050	0.064 0.050
0	Ū.,		0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0		0.5	0.0	0.5	0.0	0.0	0.5	0.0	0.2	0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
2	2	-	2	Ś	ŝ	m	4	M	M	2	m	м	2	4	-	-	M	ŝ	ŝ	m	S	9	4	2	S	9	9	9	9	4	4	M	
M	ю	4	~	Μ	ю	2	4	2	m i	M	м	M	м	4	м	m	4	м	M	4	4	м	2	4	-	4	NA	м	2	m	2	m	4
0.96	1.13	1.11	1.26	1.00	1.30	0.95	1.02	0.97	1.03	0.92	1.01	0.96	1.05	1.03	1.15	1.04	1.03	1.11	1.02	1.15	1.20	1.20	1.06	1.07	1.10	1.02	NA	1.25	1.03	0.97	1.02	NA	1.00
	1.33	1.00	1.25	1.00	0.93	1.12	1.08	1.22	1.12	1.07	1.21	1.07	1.00	1.40	1.00	1.25	1.22	0.87	1.00	1.00	1.08	1.13	1.14	1.42	1.12	1.13	NA	1.30	1.21	1.00	NA	NA	1.00
-	• •		Š		• •	• ~	• •-	• ~	, ,	• •	• -	• -			• •	• •	-	-	-	-	-	-	• •		• •		• •	1 1		•	• •	•	-
	- ~	I M	• 4	· v	`	, 	. «		۲ م ۱	2 [: 2	i t	1 4	: <u>r</u>	2 2	; [18	10	20	21	22	5	2 1	1 X	2 8	27	5 8	3 8	30	31	32	1 22	34
	1 0.92 0.96 3 2 3.250 0.500 20 0.000 10 0.90	1 0.92 0.96 3 2 0.250 0.500 20 0.00 10 0.90 1 1.33 1.13 3 2 0.200 0.025 10 0.100 5 0.75	1 0.92 0.96 3 2 0.250 0.500 20 0.000 10 0.90 1 1.33 1.13 3 2 0.200 0.025 10 0.100 5 0.75 1 1.00 1.11 4 1 0.100 0.100 15 0.30	1 0.92 0.96 3 2 0.450 20 0.000 10 0.90 1 1.33 1.13 3 2 0.200 0.025 10 0.100 5 0.75 1 1.33 1.11 4 1 0.100 0.100 5 0.75 2 1.00 1.11 4 1 0.100 0.100 15 0.30 2 1.25 1.26 1 2 0.000 0.050 15 0.007 10 0.00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																										

•

•

.

• ,

: .

•

•

•

.

•

•

.

- 183 -

WORKLOAD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	AN	NA	NA	NA	AN	AN	NA	AN	AN	AN	AN	AN	NA	AN	NA
CONT																
LEAD_EX CONT_EX	12	8	13	15	15	6	18	2	8	80	23	10	8	15	15	11
PROF_STA	0.075	0.067	0.00	0.289	0.00	0.000	0.033	0.060	0.036	0.020	0.00	0.051	0.100	0.050	0.050	0.151
	AN	NA	NA	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA	NA	NA
COM SIZE	1			•	•											
PLANT	AN	AN	AN	NA	NA	AN	NA	NA	NA	NA	AN	AN	NA	NA	NA	NA
	AN	AN	AN	AN	NA	AN	AN	NA	AN	NA	AN	AN	AN	AN	AN	NA
TRAIN																
COMPLEX TRAINING	M	M	N	ŝ	2	4	M	4	4	4	2	M	M	4	M	ŝ
DUALITY			M 1	NA	M	м	M	м	M	2	2		2	2	0	2
CON COST C		00 1	NA NA	AN '	1-04	0.99	0.98	1.01	1.12	0.95	1.05	NA	1.04	1_10	0.97	1.11
			NA V	AN NA	1.33	1.10	1-06	1.17	1.19	0.85	2.00	1.36	5.00	1 80		1.00
DEPENDW CON TIME							• •				- ~	л V	1		1 0	5
e o c j		- r	4 <i>V</i>	• •	r ư	`	, ,	- a		, t	2 5	: :	រ ដ	2 \$	t t	2 2

PROF1T	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.957	NA	NA	NA	NA								
PAYMENT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	MA								
CONTROL	ŝ	m	ŝ	м	2	4	4	ŝ	4	m	m	4	2	M	M	•	J							
SUBSID ARCH_PER	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		ç							
DISBUS	NA	AN	NA	NA	NA	N	N A	NA	N	N	NA	NA	NA.	AN	NA		2							
CENTRAL	NA	NA	AN	AN	NA	NA	NA	NA	NA	NA	AN	NA	NA	NA	NA		AN							
LISTED	NA	NA	NA	NA	NA	MA	NA	NA	AN	NA	NA	NA	NA	NA	A N		4	•						
DEL	NA	NA	NA	MA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.			AN							
ORIGIN	M) M	M 1	א ר	א ו	~	M	i M	n N	M	~			N N	M R	n	-							
FAR BUS	NA	V.						AN	NA	NA	MA					NA	N							
DACT DEP YFAR BUS		, (יי	ч (л с	л <i>с</i>	7 0	1 0	1 ~			n ~	•	+ +	4 -	4	4							
ese j	-	- (V 1	n .	st u		0 1	- α	. 0	, 6	2;	= ;	<u>7</u>	2;	4 i	5	16							

••

.

.

.

.

.

.

- 185 -

•

.

•

APPENDIX 3

SPSS(pc) Computer Printout of the Stepwise Procedures in Computing the Z₁ Discriminant Analysis Model DSCRIMINANT / GROUPS PERFORM (1,2) / VARIABLES CON TIME CON COST QUALITY / SELECT INCLUDE (1) /METHOD WILKS /PRIORS SIZE /STATISTICS=all. Since ANALYSIS= was omitted for the first analysis all variables on the VARIABLES= list will be entered at level 1. This Discriminant Analysis requires 1364 (1.3K) BYTES of workspace, Page 4 SPSS/PC+ DISCRIMINANT ANALYSIS ----On groups defined by PERFORM CONTRACTOR'S PERFORMANCE 50 (unweighted) cases were processed. 6 of these were excluded from the analysis. 0 had missing or out-of-range group codes. 6 had at least one missing discriminating variable. 0 were excluded by the SELECT= variable. 44 (unweighted) cases will be used in the analysis. Number of Cases by Group Number of Cases Unweighted Weighted Label PERFORM 32 · 32.0 1 12 2 12.0 44 44.0 Total _____ -----Page 5 . SPSS/PC+ Group Means PERFORM CON TIME CON COST QUALITY 1.09584 1 1.04866 3.21875 2 1.60417 1.07392 1.91667 1.23448 Total 1.05555 2.86364 Group Standard Deviations PERFORM CON_TIME CON COST QUALITY 1 .14246 .08500 .55267 1.11621 2 .09987 .51493

.62113 .08883 .79507 Total 42 degrees of freedom Pooled Within-Groups Covariance Matrix with CON_COST . CON_TIME QUALITY CON_TIME .3412959 CON_COST -.1868442E-02 .7945479E-02 QUALITY .2936334E-01 .7221974E-02 .2948909 ____ _____ SPSS/PC+ Page 6 Pooled Within-Groups Correlation Matrix CON_TIME CON_COST QUALITY CON_TIME 1.00000 CON_COST -.03588 1.00000 QUALITY .09256 .14920 1.00000 Correlations which cannot be computed are printed as '.' Wilks' Lambda (U-statistic) and univariate F-ratio 42 degrees of freedom with 1 and Variable Wilks' Lambda F Significance -----..... 6.607 .0138 CON_TIME .86407 .4072 .98359 .7009 CON_COST .0000 QUALITY .45565 50.18 _____ ----Page 7 SPSS/PC+ Covariance Matrix for Group 1, CON_TIME CON_COST QUALITY CON_TIME .2029472E-01 CON COST .1606865E-03 .7225330E-02 QUALITY .2255141E-01 .1094859E-01 .3054435 Covariance Matrix for Group 2, * CON_COST CON_TIME QUALITY CON_TIME 1.245936 CON COST -.7586894E-02 .9974992E-02 QUALITY .4856061E-01 -.3280303E-02 .2651515

43 degrees of freedom Total Covariance Matrix with CON_COST QUALITY CON_TIME CON_TIME .3858020 CON COST .7811057E-03 .7890207E-02 QUALITY -.1056543 .6321353 .3784355E-03 . -----Page 8 SPSS/PC+ ----- DISCRIMINANT ANALYSIS ----On groups defined by PERFORM CONTRACTOR'S PERFORMANCE Analysis number 1 Stepwise variable selection Selection rule: Minimize Wilks' Lambda Maximum number of steps..... 6 Minimum Tolerance Level..... .00100 Minimum F to enter..... 1.0000 Maximum F to remove..... 1.0000 Canonical Discriminant Functions Maximum number of functions..... 1 Minimum cumulative percent of variance... 100.00 Maximum significance of Wilks' Lambda.... 1.0000 Page 9 SPSS/PC+ Prior Probabilities Group Prior Label 1 .72727 2 .27273 Total 1.00000 ----- Variables not in the analysis after step 0 -----Minimum Variable Tolerance Tolerance F to enter Wilks' Lambda .86407 CON_TIME 1.0000000 1.0000000 6.6073 CON_COST 1.0000000 1.0000000 .70087 .98359 QUALITY 1.0000000 1.0000000 50.176 .45565 ____ -----

Page 10

SPSS/PC+

At step 1, QUALITY was included in the analysis.

Degrees of Freedom Signif. Between Groups Wilks' Lambda 42.0 .45565 1 1 Equivalent F 50.1759 1 42.0 .0000 ----- Variables in the analysis after step 1 -----Variable Tolerance F to remove Wilks' Lambda QUALITY 1.0000000 50.176 ----- Variables not in the analysis after step 1 -----Minimum Variable Tolerance Tolerance F to enter Wilks' Lambda CON_TIME .9914332 .9914332 4.6694 .40906 .43821 CON_COST .9777397 .9777397 1.6320 _ . _ . _ _ _ _ _ _ Page 11 SPSS/PC+ F statistics and significances between pairs of groups after step 1 Each F statistic has 1 and 42.0 degrees of freedom. Group 1 Group 50.176 2 .0000 Page 12 SPSS/PC+ At step 2, CON_TIME was included in the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda .40906 1 42.0 2 2 41.0 Equivalent F 29.6145 .0000 ------ Variables in the analysis after step 2 ------Variable Tolerance F to remove Wilks' Lambda CON_TIME .9914332 4.6694 .45565 45.604 .86407 QUALITY .9914332

----- Variables not in the analysis after step 2 ------Minimum Variable Tolerance Tolerance F to enter Wilks' Lambda .39250 CON_COST .9752493 .9681410 1.6882 ------Page 13 SPSS/PC+ F statistics and significances between pairs of groups after step 2 Each F statistic has 2 and 41.0 degrees of freedom. Group 1 Group 2 29.614 .0000 ****** Page 14 SPSS/PC+ At step 3, CON_COST was included in the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda .39250 3 ·1 4Z.0 Equivalent F 3 40.0 20.6371 .0000 ----- Variables in the analysis after step 3 -----Variable Tolerance F to+remove Wilks' Lambda CON_TIME .9889079 4.6583 .43821 CON COST .9752493 1.6882 .40906 QUALITY .9681410 46.519 .84896 _____ Page 15 SPSS/PC+ F statistics and significances between pairs of groups after step 3 Each F statistic has 3 and 40.0 degrees of freedom. Group 1 Group 2 20.637 .0000

F level or tolerance or VIN insufficient for further computation.

Summary Table

.

· .

.

-

- --

•	٨	tion	Vare	Wilks		
Sten		i Removed		Lambda		l abel
•	QUALITY		1	.45565	•	QUALITY OF WORK
	CON_TIM		2			RATIO OF ACTUAL AND EST. CONTRACT DURATI
	CON_COS		3			RATIO OF FINAL AND TENDER PRICE
Page	16	•••••			SPSS/PC+	
Clas	sificat	ion Functi	ion Co	efficie	nts	u la
		inear Disc				
PERF	ORM =	1			2	
CON	TIME	3.25433	2	5.200	973	
-	COST	125.923		133.9		
QUAL	. I T Y	7.50710	7	2.701		
(cor	nstant)	-80.2084	3	-79.9 7	385	
					c	Canonical Discriminant Functions
			Perce	ent of	Cumulativ	ve Canonical : After
Fun	ction	Eigenvalue	e Va	iance	Percer	nt Correlation : Function Wilks' Lambda Chi-squared D.F. Significance : 0 .3924986 37.877 3 .0000
	1*	1.54778	3 10	0.00	100.0	
	* marks	the 1	canoni	cal dis	criminant	functions remaining in the analysis.
Pag	e 17	*******	*****		SPSS/PC	;+
Sta	ndardiz	ed Canoni	cal Di	scrimir	ant Funct	tion Coefficients
		51010				
CO1	TIME	FUNC 4166				
	I_TIME	2614				
	ALITY	.9561				
St	ructure	Matrix:				
Po	oled-wi	thin-group	os cori	relatio	ns betwee	n discriminating variables
					and ca	nonical discriminant functions
(۷	ariable	s ordered	by si	ze of c	orrelatio	on within function)

•

.

•

FUNC 1 .87855 QUALITY CON_TIME -.31881 CON COST -.10383 -----. Page 18 SPSS/PC+ Unstandardized Canonical Discriminant Function Coefficients FUNC 1 CON TIME -.7132566 CON_COST -2.932977 QUALITY 1.760698 (constant) -1.065610 Canonical Discriminant Functions evaluated at Group Means (Group Centroids) FUNC 1 Group .74434 1 2 -1.98489 Page 19 SPSS/PC+ Test of equality of group covariance matrices using Box's M The ranks and natural logarithms of determinants printed are those of the group covariance matrices. Group Label Rank Log Determinant 1. -10,158298 3 2 3 -5.730461 Pooled Within-Groups Covariance Matrix 3 -7.164973 Box's M Approximate F Degrees of freedom Significance 77.013 11.425 6, 2686.6 .0000 ----. SPSS/PC+ Page 20 Case Mis Actual Highest Probability 2nd Highest Discriminant Group P(G/D) Scores... Number Val Sel Group P(D/G) P(G/D) Group z .0090 1 .9998 .9910 .7446 1 Yes 1 2.0726 Ζ Yes 1 1 .4291 .9274 -.0464 1 1 .2062 .9997 2 .0003 3 Yes 2.0083 1 .0004 2 2 .0565 .9996 -3.8920 4 Yes

	•		••		•••					
5		Yes	1	1	.8618	.9857	2	.0143	.5703	
•6		Yes	1.		.3154	.8771	2	.1229	2597	
7		Yes	2	2		.6008	- 1	.3992	-1.1294	
8		Yes	1	1	.1413	.9998	z	.0002	2.2152	
9		Yes	2	2	.4628	.6769	1	.3231	-1.2506	
10		Yes	1	. 1	.7281	.9772	2	.0228	.3967	
11		Yes	1	1	.9822	.9916	2	.0084	.7667	
12		Yes	1	1	.7239	.9768	2	.0232	.3911	
13		Yes	1	1	.9150	.9880	2	.0120	.6376	
14		Yes	1	1	.7484	.9787	Z	.0213	.4236	
15		Yes	1	1	.2250	· . 9997	Z	.0003	1.9577	
16		Yes	1	1	.5392	.9539	2	.0461	. 1303	
17		Yes	1	1	.6386	.9684	2	.0316	.2746	
18		Yes	1	1	.1797	.9998	2	.0002	2.0860	
19		Yes	1	1	.6878	.9736	2	.0264	.3425	
20		Yes	1	1	.8160	.9832	2	.0168	.5116	
21		Yes	1	1	.2515	.9996	2	.0004	1.8910	
⁻	1			SPSS	./DC+					
ge z	'			0.00	7-6-					
	Mis		Actual	Highest		bility	2nd Hi	ghest	Discriminant	
ase mber		Sel	Actual Group	Highest	: Probat P(D/G)	P(G/D)	2nd Hi Group	P(G/D)	Scores	
ase mber 22	Mis	•		Highest	: Probat P(D/G) .3457	P(G/D) .9993		P(G/D) .0007		
ase mber 22 23	Mis	Sel Yes Yes	Group 1 1	Highest Group 1 1	Probat P(D/G) .3457 .3934	P(G/D) .9993 .9150	Group 2 2	P(G/D) .0007 .0850	Scores 1.6873 1091	
ase mber 22 23 24	Mis	Sel Yes Yes Yes	Group 1 1 2	Highest Group 1 1 2	Probat P(D/G) .3457 .3934 .6040	P(G/D) .9993 .9150 .7905	Group 2 2 1	P(G/D) .0007 .0850 .2095	Scores 1.6873 1091 1.4663	
ase mber 22 23 24 25	Mis	Sel Yes Yes Yes Yes	Group 1 1 2 1	Highest Group 1 1 2 1	Probat P(D/G) .3457 .3934 .6040 .2794	P(G/D) .9993 .9150 .7905 .9995	Group 2 2 1 2	P(G/D) .0007 .0850 .2095 .0005	Scores 1.6873 1091 -1.4663 1.8261	
ase mber 22 23 24 25 26	Mis	Sel Yes Yes Yes Yes Yes	Group 1 1 2 1 2	Highest Group 1 1 2 1 2	Probat P(D/G) .3457 .3934 .6040 .2794 .1786	P(G/D) .9993 .9150 .7905 .9995 .9984	Group 2 1 2 1	P(G/D) .0007 .0850 .2095 .0005 .0016	Scores 1.6873 1091 .1.4663 1.8261 -3.3300	
ase mber 22 23 24 25 26 27	Mis	Sel Yes Yes Yes Yes Yes Yes	Group 1 2 1 2 1	Highest Group 1 1 2 1 2 1	Probat P(D/G) .3457 .3934 .6040 .2794 .1786 .1512	P(G/D) .9993 .9150 .7905 .9995 .9984 .9998	Group 2 2 1 2 1 2	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796	
ase mber 22 23 24 25 26 27 29	Mis	Sel Yes Yes Yes Yes Yes Yes Yes	Group 1 2 1 2 1 2	Highest Group 1 2 1 2 1 4	Probab P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622	P(G/D) .9993 .9150 .7905 .9995 .9984 .9998 .8382	Group 2 1 2 1 2 2 2 2	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770	
ase mber 22 23 24 25 26 27 29 30	Mis	Sel Yes Yes Yes Yes Yes Yes Yes Yes	Group 1 2 1 2 1 2 *	Highest Group 1 2 1 2 1 4 2 1 2 2 2	Probat P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622 .5778	P(G/D) .9993 .9150 .7905 .9995 .9984 .9998 .8382 .7728	Group 2 1 2 1 2 2 1 2 1	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618 .2272	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770 -1.4282	
ase mber 22 23 24 25 26 27 29 30 31	Mis	Sel Yes Yes Yes Yes Yes Yes Yes Yes Yes	Group 1 2 1 2 1 2 *	Highest Group 1 2 1 2 1 * 1 2 1 1 2 1	Probab P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622 .5778 .9384	P(G/D) .9993 .9150 .7905 .9995 .9984 .9998 .8382 .7728 .9890	Group 2 1 2 1 2 1 2 2 1 2	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618 .2272 .0110	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770 -1.4282 .6670	
ase mber 22 23 24 25 26 27 29 30 31 32	Mis	Sel Yes Yes Yes Yes Yes Yes Yes Yes Yes	Group 1 2 1 2 1 2 * 2 1 1 1	Highest Group 1 2 1 2 1 * 1 2 1 1 2 1 1	Probat P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622 .5778 .9384 .8450	P(G/D) .9993 .9150 .7905 .9995 .9984 .9998 .8382 .7728 .9890 .9848	Group 2 1 2 1 2 2 1 2 2 2 2	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618 .2272 .0110 .0152	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770 -1.4282 .6670 .5489	
ase mber 22 23 24 25 26 27 29 30 31 32 33	Mis	Sel Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Group 1 2 1 2 1 2 * 2 1 1 1 1	Highest Group 1 2 1 * 1 * 1 1 * 2 1 1 * 2	Probab P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622 .5778 .9384 .8450 .4740	P(G/D) .9993 .9150 .7905 .9995 .9984 .9998 .8382 .7728 .9890 .9848 .6877	Group 2 1 2 1 2 1 2 2 1 2 1	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618 .2272 .0110 .0152 .3123	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770 -1.4282 .6670 .5489 -1.2689	
ase mber 22 23 24 25 26 27 29 30 31 32 33 38	Mis	Sel Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Group 1 2 1 2 1 2 * 2 1 1 1 1 1	Highest Group 1 2 1 2 1 4 1 2 1 1 2 1 1 2 1 1 2 1 1 1	Probab P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622 .5778 .9384 .8450 .4740 .1126	P(G/D) .9993 .9150 .7905 .9995 .9984 .9998 .8382 .7728 .9890 .9848 .6877 .9999	Group 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618 .2272 .0110 .0152 .3123 .0001	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770 -1.4282 .6670 .5489 -1.2689 2.3309	
ase mber 22 23 24 25 26 27 29 30 31 32 33 38 38 39	Mis	Sel Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Group 1 2 1 2 1 2 * 2 1 1 1 1 1	Highest Group 1 2 1 2 1 4 1 2 1 1 2 1 1 2 1 1 1 1 1	Probat P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622 .5778 .9384 .8450 .4740 .1126 .5983	P(G/D) .9993 .9150 .7905 .9995 .9984 .8382 .7728 .9890 .9848 .6877 .9999 .9633	Group 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618 .2272 .0110 .0152 .3123 .0001 .0367	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770 -1.4282 .6670 .5489 -1.2689 2.3309 .2176	
ase mber 22 23 24 25 26 27 29 30 31 32 33 38 39 40	Mis	Sel Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Group 1 2 1 2 1 2 * 2 1 1 1 1 1 1	Highest Group 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1	Probat P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622 .5778 .9384 .8450 .4740 .1126 .5983 .8358	P(G/D) .9993 .9150 .7905 .9995 .9984 .8382 .7728 .9890 .9848 .6877 .9999 .9633 .9843	Group 2 1 2 1 2 1 2 2 1 2 2 2 2 2	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618 .2272 .0110 .0152 .3123 .0001 .0367 .0157	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770 -1.4282 .6670 .5489 -1.2689 2.3309 .2176 .5371	
ase mber 22 23 24 25 26 27 29 30 31 32 33 38 39 40 41	Mis	Sel Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Group 1 1 2 1 2 1 2 1 1 1 1 1 1	Highest Group 1 2 1 2 1 3 * 1 7 7 7 7 7 7 1 1 1 1 1	Probab P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622 .5778 .9384 .8450 .4740 .1126 .5983 .8358 .8812	P(G/D) .9993 .9150 .7905 .9995 .9984 .8382 .7728 .9890 .9848 .6877 .9999 .9633 .9843 .9843 .9866	Group 2 1 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618 .2272 .0110 .0152 .3123 .0001 .0367 .0157 .0134	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770 -1.4282 .6670 .5489 -1.2689 2.3309 .2176 .5371 .5949	
ase mber 22 23 24 25 26 27 29 30 31 32 33 38 39 40 41 42	Mis	Sel Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Group 1 1 2 1 2 * 2 * 1 1 1 1 1 1	Highest Group 1 2 1 * 1 1 * 1 1 * 2 1 1 1 1 1 1	Probab P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622 .5778 .9384 .8450 .4740 .1126 .5983 .8358 .8358 .8812 .7454	P(G/D) .9993 .9150 .7905 .9995 .9984 .8382 .7728 .9890 .9848 .6877 .9999 .9633 .9843 .9866 .9785	Group 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618 .2272 .0110 .0152 .3123 .0001 .0367 .0157 .0134 .0215	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770 -1.4282 .6670 .5489 -1.2689 2.3309 .2176 .5371 .5949 .4197	
ase mber 22 23 24 25 26 27 29 30 31 32 33 38 39 40 41 42 43	Mis	Sel Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Group 1 2 1 2 1 2 * 1 1 1 1 1 1 1	Highest Group 1 2 1 2 1 4 1 2 1 1 2 1 1 1 1 1 1 1 1 1	Probab P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622 .5778 .9384 .8450 .4740 .1126 .5983 .8358 .8812 .7454 .5083	P(G/D) .9993 .9150 .7905 .9984 .9998 .8382 .7728 .9890 .9848 .6877 .9999 .9633 .9843 .9866 .9785 .9478	Group 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618 .2272 .0110 .0152 .3123 .0001 .0367 .0157 .0134 .0215 .0522	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770 -1.4282 .6670 .5489 -1.2689 2.3309 .2176 .5371 .5949 .4197 .0828	
ase mber 22 23 24 25 26 27 29 30 31 32 33 38 39 40 41 42 43 44	Mis	Sel Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Group 1 2 1 2 1 2 * 2 * 1 1 1 1 1 1 1 1 1	Highest Group 1 2 1 2 1 1 * 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Probat P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622 .5778 .9384 .8450 .4740 .1126 .5983 .8358 .8812 .7454 .5083 .0927	P(G/D) .9993 .9150 .7905 .9995 .9984 .8382 .7728 .9890 .9848 .6877 .9999 .9633 .9843 .9866 .9785 .9478 .5292	Group 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618 .2272 .0110 .0152 .3123 .0001 .0367 .0157 .0134 .0215 .0522 .4708	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770 -1.4282 .6670 .5489 -1.2689 2.3309 .2176 .5371 .5949 .4197 .0828 9368	
ase mber 22 23 24 25 26 27 29 30 31 32 33 38 39 40 41 42 43 44 5	Mis	Sel Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Group 1 2 1 2 1 2 1 1 1 1 1 1 1 1 2	Highest Group 1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1	Probat P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622 .5778 .9384 .8450 .4740 .1126 .5983 .8358 .8812 .7454 .5083 .0927 .9478	P(G/D) .9993 .9150 .9995 .9984 .9998 .8382 .7728 .9890 .9848 .6877 .9999 .9633 .9843 .9866 .9785 .9478 .5292 .9489	Group 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 1	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618 .2272 .0110 .0152 .3123 .0001 .0367 .0157 .0134 .0215 .0522 .4708 .0511	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770 -1.4282 .6670 .5489 -1.2689 2.3309 .2176 .5371 .5949 .4197 .0828 9368 -2.0504	
23 24 25 26 27 29 30 31 32 33 38 39 40 41 42 43 44	Mis	Sel Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Group 1 2 1 2 1 2 * 2 * 1 1 1 1 1 1 1 1 1	Highest Group 1 2 1 2 1 1 * 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Probat P(D/G) .3457 .3934 .6040 .2794 .1786 .1512 .2622 .5778 .9384 .8450 .4740 .1126 .5983 .8358 .8812 .7454 .5083 .0927 .9478 .0296	P(G/D) .9993 .9150 .7905 .9995 .9984 .8382 .7728 .9890 .9848 .6877 .9999 .9633 .9843 .9866 .9785 .9478 .5292 .9489 .5292	Group 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 1	P(G/D) .0007 .0850 .2095 .0005 .0016 .0002 .1618 .2272 .0110 .0152 .3123 .0001 .0367 .0157 .0134 .0215 .0522 .4708 .0511 .0002	Scores 1.6873 1091 -1.4663 1.8261 -3.3300 2.1796 3770 -1.4282 .6670 .5489 -1.2689 2.3309 .2176 .5371 .5949 .4197 .0828 9368	

•

.

.

.

- 194 -

.

·

Highest Probability Actual 2nd Highest Discriminant Case Mis Group P(D/G) P(G/D) Group P(G/D) Scores... Number Val Sel Group 2 .3775 .5830 1 .4170 -1.1025 49 Yes 2 50 2 2 .6371 .8109 1 .1891 -1.5131 Yes Symbols used in Plots Symbol Group Label -----1 1 2 2 -----SPSS/PC+ Page 23 Histogram for Group 1 Canonical Discriminant Function 1 16 + ł 4 12 + 1 1 1 1 1 8 + 1 1 4 + 111 1 111 111 11 111111 111 ---+---X Out -6.0 -4.0 -2.0 .0 2.0 4.0 6.0 Out Centroids 1 ----. Page 24 SPSS/PC+ Histogram for Group 2 **Canonical Discriminant Function 1** 4 +

X----+---+-
 X----+
 X----- X-----+
 X------ X----- X------ X----- X------ X------ X------ X------ X------ X------ X------- X-------- X--------- X---------- X----------- X---------------- X------------------</t Class Centroids 2 1 _____ ______ _____ Page 52 SPSS/PC+ Classification Results for cases selected for use in the analysis -No. of Predicted Group Membership Actual Group Cases 1 2 ---------__ ----------Group 32 31 1 1 96.9% / 3.1% Group 2 11 12 1 8.3% 91.7% Percent of "grouped" cases correctly classified: 95.45% ____ ---------------------Page 53 SPSS/PC+ Classification Results for cases not selected for use in the analysis -No. of Predicted Group Membership Actual Group Cases 1 2 _____ ___ ___ Group 1 0 0 n .0% .0% Group 2 0 0 0 .08 .0% Percent of "grouped" cases correctly classified: .00% Classification Processing Summary 50 Cases were processed. 0 Cases were excluded for missing or out-of-range group codes. 6 Cases had at least one missing discriminating variable. 44 Cases were used for printed output. ____ Page 54 SPSS/PC+ This procedure was completed at 15:33:37 • _____ Page 55' SPSS/PC+ FINISH.

End of Include file.

APPENDIX 4

SPSS(pc) Computer Printout of the Stepwise Procedures in Computing the Z₂ Discriminant Analysis Model DSCRIMINANT /GROUPS PERFORM (1,2) /VARIABLES COMPLEX TO PROFIT PAS_P_PM /METHOD WILKS /PRIORS SIZE /STATISTICS=all.

Since ANALYSIS= was omitted for the first analysis all variables on the VARIABLES= list will be entered at level 1.

This Discriminant Analysis requires14568 (14.2K) BYTES of workspace.Page4SPSS/PC+7/13/91

----- DISCRIMINANT ANALYSIS -----

On groups defined by PERFORM CONTRACTOR'S PERFORMANCE

34 (unweighted) cases were processed.

0 of these were excluded from the analysis.

.

34 (unweighted) cases will be used in the analysis.

Number of Cases by Group

Number of Cases							
PERFORM	Unweighted	Weighted	Label				
1	25	25.0					
2	9	9.0					
Total	34	34.0					

Group Means

		•		
PERFORM	COMPLEX	TRAINING	PLANT	COM_SIZE
1	3.36000	•11704	.05808	411.56000
2	4.33333	-06778	.04711	483.88889
Total	3.61765	- 10400	.05518	430.70588
PERFORM	PROF_STA	LEAD_EX		
1	.08116	15.08000	CONT_EX	WORKLOAD
2	.12022	14.33333		2445461.60000
Total	.09150	14.88235	•== -	3361135.11111
			.34100	2687845.76471
PERFORM	PAST_PER	YEAR_BUS		
1	2.56000	24.64000	ORIGIN	DEL
2	3.66667	18.66667	2.92000	.09714
Total	2.85294	23,05882	2.11111	.13844
		105882	2.70588	.10807
PERFORM	LISTED	CENTRAL		
1	1.40000	1 (BODD	SUBSID	ARCH_PER
2	1.66667	1.48000	1.68000	3.16000
Total	1.47059	1.94444	1.77778	2.44444
		1.60294	1.70588	2.97059
PERFORM	CONTROL	PANN		
1	3.68000	PAYMENT	PROF1T	PAS_P_PM
2	2.66667	1.04000	.99906	2.20000
Total	3.41176	1,11111	1.04189	2.22222
		1.05882	1.01040	2.20588
Group Standar	d Deviations			
PERFORM	COMPLEX			
1	1.60416	TRAINING	PLANT	COM SIZE
2	1,50000	.09793	.10303	363.42538
Total	1.61461	.02926	.04169	363.47092
iotat	1.01401	.08757	.09037	359.35047
			10/001	057105041
PERFORM	PROF_STA	LEAD_EX	CONT_EX	WORKLOAD
1	.08198	7.55491	.30068	
2	.05618	3.04138	.29417	
Total	.07719	6.62303	.30109	
		100		

age 5		SPSS/PC+			7/13/9
PERFORM	PAST_PER	YEAR_BUS	ORIGIN	DEL	
1	.65064	16.45165	.40000	.12200	
2.	.50000	9.31397	1.05409	.14500	
Total	.78363	15.00089	.71898	.12753	
PERFORM	LISTED	CENTRAL	SUBSID	ARCH_PER	
1	.50000	.46726	.47610	.85049	
2	.50000	.16667	.44096	.52705	
Total	,50664	.45692	.46250	.83431	
PERFORM	CONTROL	PAYMENT	PROFIT	PAS_P_PM	
1	.85245	.20000	,12851	.64550	
2	.86603	.33333	.12496	.66667	
Total	.95719	.23883	. 12714	.64099	

32 degrees of freedom

Pooled Within-Groups Covariance Matrix with

COM_SIZE COMPLEX TRAINING PLANT COMPLEX 2.492500 TRAINING .2575958E-01 ,7406266E-02 PLANT -.3700167E-01 .1028317E-02 .8396523E-02 COM_SIZE 171.5717 -3.989149 -2.885438 132086.3 PROF_STA -.2147208E-01 .1406259E-02 .1729518E-03 -5.391813 LEAD_EX .4150000 -.1130129 -.4404667E-01 273.1942 CONT_EX -.2370842 .2328318E-02 .9993650E-02 -.2216078 WORKLOAD 1615882. -30407.05 -31533.83 .2304657E+09 PAST_PER -.3137500 -.5975833E-02 .9131667E-02 12.55708 YEAR_BUS 11.00750 -.2419708E-01 -.5362796 2347.710 ORIGIN -.8166667E-01 -.5428056E-02 -.4092222E-02 17.94472 DEL -14.32466 -.5398729E-01 .1126102E-02 .3201524E-02 LISTED -.2375000 .8029167E-02 .1261042E-01 -47.02917 CENTRAL -.1610417 -.4345139E-03 -.5877847E-02 23.49139 SUBSID .4833333E-01 .1118319E-01 32.19556 .8808611E-02 ARCH_PER -.8666667E-01 .1077278E-01 .1035111E-01 60.25639 CONTROL .8400000 .1758292E-01 .2811667E-02 80.59833 PAYMENT -.5291667E-01 .2474444E-02 -.9434722E-03 6.704722 PROFIT .7749354E-01 -.8114932E-03 -.1245340E-04 11.32974 PAS_P_PM .2979167 .6007639E-02 .4699306E-02 -10.89306

PROF_STA	PROF_STA .5829154E-02	LEAD_EX	CONT_EX	WORKLOAD	
LEAD_EX	1634333E-01	45.12000			
CONT_EX	2282668E-02	2211379	.8943762E-01		
WORKLOAD	18502.74	-3517108.	-193506.5	.4736614E+13	
PAST_PER	.2641958E-01	1.433750	.3311792E-01	-243679.2	
YEAR_BUS	2706217	-14.60250 +	-2.219947	.1297196E+08	
ORIGIN	3374694E-01	.2133333	.2690528E-01	-716249.9	
DEL	.6944564E-02	.4343396E-01	.2941669E-02	32926.28	
LISTED	.1034583E-01	8687500	.7106042E-01	193142.9	
CENTRAL	.1036535E-01	1.834583	.2803361E-01	-212201.0	
SUBSID	.4116389E-02	8341667	.1123569E-01	376850.2	
ARCH_PER	1414153E-01	- 24579167	2411264E-01	-228192.8	
CONTROL	1481417E-01	-1,230000	4482333E-01	768910.2	
PAYMENT	1449444E-02	3879167	.3074528E-01	-101143.6	
PROFIT	2996876E-02	2560271E-01	3819998E-02	73534.04	
PAS_P_PM	.2302361E-01	.9166667E-01	3576319E-01	466106.9	
Page 6		SPSS/F	·		7/13/91

	PAST_PER	YEAR_BUS	ORIGIN	DEL
PAST_PER	.3800000			
YEAR_BUS	-5.248750	224.6800		
ORIGIN	1108333	4183333	.3977778	

1

DEL	.2969917E-01	4857940	5275514E-01	.1642012E-01
LISTED			1208333	.2446667E-01
	.1754167		4638889E-01	.1796226E-01
SUBSID	.2541667E-01	7045833	7555556E-01	.8812778E-02
ARCH_PER	1533333	5.211667	.1211111	2561993E-01
CONTROL			.2166667E-01	2539208E-01
PAYMENT	.2416667E-01	8220833	.3027778E-01	1745139E-03
PROFIT	2409917E-01	.6064283	.1663472E-02	1284977E-02
PAS_P_PM	.5833333E-01	.1395833	1819444	.3509097E-01
	LISTED	CENTRAL	SUBS1D	ARCH_PER
LISTED	.2500000			
CENTRAL	1458333E-01	.1706944		
SUBSID	.1416667	5534722E-01	.2186111	
ARCH_PER	1958333	3743056E-01	8847222E-01	.6119444
CONTROL	.6250000E-02	1664583	.1179167	1208333E-01
PAYMENT	.2916667E-01	1326389E-01	.1694444E-01	5013889E-01
PROFIT	9185417E-02	4680486E-02	.4461181E-02	.6115764E-02
PAS_P_PM	.2083333E-01	.3784722E-01	.1388889E-02	.9722222E-02
	CONTROL	PAYMENT	PROFIT	PAS_P_PM
CONTROL	.7325000			
PAYMENT	.2041667E-01	.5777778E-01		•
PROFIT	.2578583E-01	31546538-02	.1629019E-01	
PAS_P_PM	.7083333E-01	1319444E-01 [°]	4361806E-02	.4236111

.

Pooled Within-Groups Correlation Matrix

	COMPLEX	TRAINING	OLANT	COM SIZE	DROF STA	I FAD FY	CONT FX
COMPLEX	1.00000			00120122			
TRAINING		1.00000			•		
PLANT		.13040	1.00000				
COM_SIZE				1.00000			
PROF_STA			.02472		1.00000		
	.03913			.11191		1.00000	
CONT_EX			.36468				1.00000
WORKLOAD			15812				
PAST_PER	32238			.05605			
YEAR_BUS	.46515			.43096		14503	49522
ORIGIN	-,08202		07081				
DEL	- ,26686	,10212	.27266	30759	.70983	.05046	.07676
LISTED	-,30087	.18660	.27524	25880	.27101	25867	.47522
CENTRAL	24689	16531	01148	.15645	.32860	.66106	.22689
SUBSID	.06548	.21891	.26102	.18947	.11531	26560	.08035
ARCH_PER	07017	.16002	.14440	.21194	23678	08715	10307
CONTROL		.23872			22671	21395	17512
PAYMENT	13944				07898	24026	.42770
PROFIT	38458	- 07388	00106	.24425	30754	02986	10008
	100400	101300	100100				
PAS_P_PM	.28993			04605			
				04605			
			.07880	04605			
PAS_P_PM	.28993	.10726	.07880 SPS	04605 5/PC+	.46333	.02097	18374 7/13/91
PAS_P_PM Page 7	.28993 WORKLOAD	.10726 PAST_PER	.07880 SPS	04605 5/PC+	.46333		18374 7/13/91
PAS_P_PM Page 7 WORKLOAD	.28993 WORKLOAD 1.00000	.10726 PAST_PER	.07880 SPS	04605 5/PC+	.46333	.02097	18374 7/13/91
PAS_P_PM Page 7 WORKLOAD PAST_PER	.28993 WORKLOAD 1.00000 18163	.10726 PAST_PER 1.00000	.07880 SPS YEAR_BUS	04605 5/PC+ ORIGIN	.46333	.02097	18374 7/13/91
PAS_P_PM Page 7 WORKLOAD PAST_PER YEAR_BUS	.28993 WORKLOAD 1.00000 18163 .39764	.10726 PAST_PER 1.00000 56804	.07880 SPS: YEAR_BUS 1.00000	04605 5/PC+ ORIGIN	.46333 DEL	.02097	18374 7/13/91
PAS_P_PM Page 7 WORKLOAD PAST_PER	.28993 WORKLOAD 1.00000 18163	.10726 PAST_PER 1.00000 56804 28507	.07880 SPS: YEAR_BUS 1.00000 04425	04605 5/PC+ ORIGIN 1.00000	.46333 DEL	.02097	18374 7/13/91
PAS_P_PM Page 7 WORKLOAD PAST_PER YEAR_BUS	.28993 WORKLOAD 1.00000 18163 .39764 52181 .11806	.10726 PAST_PER 1.00000 56804 28507 .37598	.07880 SPS: YEAR_BUS 1.00000 04425 25292	04605 5/PC+ ORIGIN 1.00000 65276	.46333 DEL 1.00000	.02097 LISTED	18374 7/13/91 CENTRAL
PAS_P_PM Page 7 WORKLOAD PAST_PER YEAR_BUS ORIGIN	.28993 WORKLOAD 1.00000 18163 .39764 52181 .11806 .17749	.10726 PAST_PER 1.00000 56804 28507 .37598 .24333	.07880 SPS: YEAR_BUS 1.00000 04425 25292 57291	04605 5/PC+ ORIGIN 1.00000 65276 38317	.46333 DEL 1.00000 .38187	.02097 LISTED	18374 7/13/91 CENTRAL
PAS_P_PM Page 7 WorkLoad PAST_PER YEAR_BUS ORIGIN DEL	.28993 WORKLOAD 1.00000 18163 .39764 52181 .11806 .17749 23600	.10726 PAST_PER 1.00000 56804 28507 .37598 .24333 .68876	.07880 SPS: YEAR_BUS 1.00000 04425 25292 57291 28433	04605 5/PC+ ORIGIN 1.00000 65276 38317 17803	.46333 DEL 1.00000 .38187 .33928	.02097 LISTED 1.00000 07060	18374 7/13/91 CENTRAL 1.00000
PAS_P_PM Page 7 WorkLoad PAST_PER YEAR_BUS ORIGIN DEL LISTED	.28993 WORKLOAD 1.00000 18163 .39764 52181 .11806 .17749 23600 .37034	.10726 PAST_PER 1.00000 56804 28507 .37598 .24333 .68876 .08818	.07880 SPS: YEAR_BUS 1.00000 04425 25292 57291 28433 10053	04605 5/PC+ ORIGIN 1.00000 65276 38317 17803 25622	.46333 DEL 1.00000 .38187 .33928 .14709	.02097 LISTED 1.00000 07060 .60598	18374 7/13/91 CENTRAL 1.00000 28652
PAS_P_PM Page 7 WORKLOAD PAST_PER YEAR_BUS ORIGIN DEL LISTED CENTRAL	.28993 WORKLOAD 1.00000 18163 .39764 52181 .11806 .17749 23600	.10726 PAST_PER 1.00000 56804 28507 .37598 .24333 .68876 .08818 31797	.07880 SPS: YEAR_BUS 1.00000 04425 25292 57291 28433 10053 .44447	04605 S/PC+ ORIGIN 1.00000 65276 38317 17803 25622 .24548	.46333 DEL 1.00000 .38187 .33928 .14709 25558	.02097 LISTED 1.00000 07060 .60598 50068	18374 7/13/91 CENTRAL 1.00000 28652 11581
PAS_P_PM Page 7 WORKLOAD PAST_PER YEAR_BUS ORIGIN DEL LISTED CENTRAL SUBSID	.28993 WORKLOAD 1.00000 18163 .39764 52181 .11806 .17749 23600 .37034	.10726 PAST_PER 1.00000 56804 28507 .37598 .24333 .68876 .08818 31797	.07880 SPS: YEAR_BUS 1.00000 04425 25292 57291 28433 10053	04605 5/PC+ ORIGIN 1.00000 65276 38317 17803 25622 .24548 .04014	.46333 DEL 1.00000 .38187 .33928 .14709 25558 23153	.02097 LISTED 1.00000 07060 .60598 50068 .01461	18374 7/13/91 CENTRAL 1.00000 28652 11581 47075
PAS_P_PM Page 7 WORKLOAD PAST_PER YEAR_BUS ORIGIN DEL LISTED CENTRAL SUBSID ARCH_PER	.28993 WORKLOAD 1.00000 18163 .39764 52181 .11806 .17749 23600 .37034 13403	.10726 PAST_PER 1.00000 56804 28507 .37598 .24333 .68876 .08818 31797 26773	.07880 SPS: YEAR_BUS 1.00000 04425 25292 57291 28433 10053 .44447 .34619	04605 5/PC+ ORIGIN 1.00000 65276 38317 17803 25622 .24548 .04014 .19972	.46333 DEL 1.00000 .38187 .33928 .14709 25558 23153 00567	.02097 LISTED 1.00000 -07060 .60598 -50068 .01461 .24268	18374 7/13/91 CENTRAL 1.00000 28652 11581 47075 13356
PAS_P_PM Page 7 WORKLOAD PAST_PER YEAR_BUS ORIGIN DEL LISTED CENTRAL SUBSID ARCH_PER CONTROL	.28993 WORKLOAD 1.00000 18163 .39764 52181 .11806 .17749 23600 .37034 13403 .41280	.10726 PAST_PER 1.00000 56804 28507 .37598 .24333 .68876 .08818 31797 26773 .16310	.07880 SPS: YEAR_BUS 1.00000 04425 25292 57291 28433 10053 .44447 .34619 22817	04605 5/PC+ ORIGIN 1.00000 65276 38317 17803 25622 .24548 .04014 .19972 .02066	.46333 DEL 1.00000 .38187 .33928 .14709 25558 23153 00567 07857	.02097 LISTED 1.000000 07060 .60598 50068 .01461 .24268 14393	18374 7/13/91 CENTRAL 1.00000 28652 11581 47075 13356 08876
PAS_P_PM Page 7 WORKLOAD PAST_PER YEAR_BUS ORIGIN DEL LISTED CENTRAL SUBSID ARCH_PER CONTROL PAYMENT	.28993 WORKLOAD 1.00000 18163 .39764 52181 .11806 .17749 23600 .37034 13403 .41280 19334	.10726 PAST_PER 1.00000 56804 28507 .37598 .24333 .68876 .08818 31797 26773 .16310 30630	.07880 SPS: YEAR_BUS 1.00000 04425 25292 57291 28433 10053 .44447 .34619 22817 .31698	04605 5/PC+ ORIGIN 1.00000 65276 38317 17803 25622 .24548 .04014 .19972 .02066	.46333 DEL 1.00000 .38187 .33928 .14709 25558 23153 00567 07857	.02097 LISTED 1.000000 07060 .60598 50068 .01461 .24268 14393	18374 7/13/91 CENTRAL 1.00000 28652 11581 47075 13356 08876

.

.

Correlations which cannot be computed are printed as '.'

Wilks' Lambda (U-statistic) and univariate F-ratio with 1 and 32 degrees of freedom

Variable	Wilks' Lambda	F	Significance	
	***********		•••••	
COMPLEX	.92712	2.515	.1226	
TRAINING	.93654	2.168	. 1506	
PLANT	.99705	.9483E-01	.7601	
COM_SIZE	.99188	.2621	.6122	
PROF_STA	.94865	1.732	.1975	
LEAD_EX	.99745	.8177E-01	.7768	
CONT_EX	.95669	1.449	.2376	
WORKLOAD	.96469	1.171	.2872	
PAST_PER	.60006	21.33	.0001	
YEAR_BUS	.96820	1.051	.3130	
ORIGIN	.74618	10.89	.0024	
DEL	.97897	.6876	.4131	
LISTED	.94444	1.882	.1796	
CENTRAL	.79281	8.363	.0068	
SUBSID	.99104	.2894	.5943	
ARCH_PER	.85249	5.537	.0249	
CONTROL	.77525	9.277	.0046	•
PAYMENT	.98222	.5792	.4522	
PROFIT	.97724	.7452	.3944	
PAS_P_PM	.99976	.7715E-02	9306	
	••••			

Page 8

SPSS/PC+

7/13/91

Covariance Matrix for Group _____1,

	COMPLEX	TRAINING	PLANT	COM_SIZE
COMPLEX	2.573333			
TRAINING	.2473500E-01	.9589623E-02		
PLANT	5778000E-01	.1423913E-02	.1061608E-01	
COM_SIZE	128.8317	-6.175857	-6.605630	132078.0
PROF_STA	4610167E-01	.1472577E-02	.3506117E-03	-6.352302
LEAD_EX	.5333333E-01	1651283	6267333E-01	382.2450
CONT_EX	2887233	.2611665E-02	.1412691E-01	-10.92865
WORKLOAD	1208410.	-54392.41	-35342.31	.1898272E+09
PAST_PER	4600000	7648333E-02	.8661667E-02	-5.826667
YEAR_BUS	13.21833	5765167E-01	6717617	2992.502
ORIGIN	.1966667	6633333E-03	9993333E-02	17.63000
DEL	1122608	.9606817E-03	.4904134E-02	-19.54014
LISTED	3583333	.1040000E-01	.1884167E-01	-65.69167
CENTRAL	2633333	9249167E-02	5191667E-03	21.55333
SUBSID	4666667E-01	.1176333E-01	.1265167E-01	18.43667
ARCH_PER	6000000E-01	.1436833E-01	.1302833E-01	81.40667
CONTROL	.9116667	.2513833E-01	3806667E-02	45.72833
PAYMENT	5666667E-01	.3456667E-02	1378333E-02	-16.73167
PROFIT	.7585250E-01	1257732E-02	.1800992E-03	10.21803
PAS_P_PM	. 1333333	.2200000E-02	.7400000E-02	-28.99167
PROF_STA	PROF_STA .6720223E-02	LEAD_EX	CONT_EX	WORKLOAD

PROF_STA .6720223E-02 LEAD_EX -.3193000E-01 57.07667

CONT EY	1096715E-02	- 3181700	.9040579E-01		
-	-10300.51	-4241446,	-150049.6	.3344495E+13	
	.3349000E-01		.4743500E-01	-379830.1	
_		-19.59500	-2.627485		
	2657000E-01		1830000E-02		•
	.7986789E-02		.9149161E-02		
		8666667	.9802500E-01	-2609.000	
CENTRAL		2.355833	.3241750E-01	-350666.6	
	.2470000E-02		_2818000E-01	257381.4	
	1586000E-01		2759000E-01	-234285.3	
_		-1.223333	3861167E-01	699251.9	
	.7850000E-03			-96894.23	
			7425858E-03		
		 .1833333 		242612.2	
PAS_P_PM	.2055000E-01	~. 1033333	-140371072-01	242012.2	
	PAST_PER	YEAR_BUS	ORIGIN	DEL	
DAST DEP	.4233333				
_		270.6567			
	1200000	1.053333	.1600000		
			3898833E-01	.1488491E-01	
		9806142		· · · · · · ·	
	.5833333E-01		5000000E-01	.2723333E-01	
		-2.570000	43333333E-01		
	2166667E-01			.8546667E-02	
-	1766667		.9666667E-01	-,2925250E-01	
CONTROL	2716667		-5666667E-01	3532833E-01	
	.1833333E-01		.33333338-02	.4285833E-02	
PROFIT	2486833E-01	-		6534071E-02	
PAS_P_PM	.9166667E-01	4250000	6666667E-01	.2582500E-01	
			-		*******
Page 9		SPSS/P	·C+		7/13/91

LISTED CENTRAL SUBSID ARCH_PER .2500000 LISTED -.1250000E-01 .2183333 CENTRAL SUBSID .1333333 -.6916667E-01 .2266667 ARCH_PER -. 1916667 -.5916667E-01 -.7166667E-01 .7233333 CONTROL -.33333338-01 -.2150000 .6000000E-01 .1166667E-01 .2500000E-01 -.2000000E-01 PAYMENT .1333333E-01 -.4833333E-01 PROFIT -.1344167E-01 -.8717500E-02 .2457500E-02 .4010833E-02 .0000000 PAS_P_PM .2500000E-01 -.1666667E-01 .5000000E-01 CONTROL PAYMENT PROFIT PAS_P_PM CONTROL .7266667

PAYMENT	.1333333E-01	.4000000E-01		
PROFIT	.2247833E-01	2460833E-02	.1651547E-01	
PAS_P_PM	.1083333	833333338-02	1332500E-01	.4166667

2,

Covariance Matrix for Group

	COMPLEX	TRAINING	PLANT	COM_SIZE
COMPLEX	2.250000			
TRAINING	.2883333E-01	.8561944E-03		
PLANT	.2533333E-01	1584722E-03	.1737861E-02	
COM_SIZE	299.7917	2.570972	8.275139	132111.1
PROF_STA	.5241667E-01	.1207306E-02	3600278E-03	-2.510347
LEAD_EX	1.500000	.4333333E-01	.1183333E-01	-53.95833
CONT_EX	8216667E-01	.1478278E-02	2406139E-02	31.89951
WORKLOAD	2838297.	41549.03	-20108.37	.3523810E+09
PAST_PER	.1250000	9583333E-03	.1054167E-01	67.70833
YEAR_BUS	4.375000	.7616667E-01	- 1298333	413.3333
ORIGIN	9166667	1972222E-01	.1361111E-01	18.88889
DEL	.1208333	.1622361E-02	1906306E-02	1.321806
LISTED	.1250000	.9166667E-03	6083333E-02	8.958333
CENTRAL	.1458333	.4236111E-02	1805556E-03	29.30556
SUBSID	.3333333	5555556E-04	.6777778E-02	73.47222
ARCH_PER	1666667	1388889E-04	.2319444E-02	-3.194444

				445 0007	
CONTROL	.6250000	5083333E-02	.2266667E-01	185.2083	
PAYMENT	4166667E-01		.3611111E-03	77.01389	
PROFIT	.8241667E-01		5901111E-03		
PAS_P_PM	.7916667	.1743056E-01	3402778E-02	43.40278	
			· · · · ·		
	PROF_STA	LEAD_EX	CONT_EX	WORKLOAD	
	.3155944E-02				
	.3041667E-01				
CONT_EX	5840528E-02	.6995833E-01	.8653311E-01		
WORKLOAD	104912.5	-1344095.	-323877.1	.8912971E+13	
PAST_PER		7500000	9833333E-02	164773.7	
YEAR_BUS	.1388333	.3750000	9973333	.2220415E+08	
ORIGIN	5527778E-01	.8333333E-01	.1131111	-2601365.	
DEL	.3817889E-02	.1065833	1568081E-01	312349.7	
LISTED	.1283333E-01	8750000	9833333E-02	780398.7	
CENTRAL	.3326389E-02	.2708333	.1488194E-01	203195.9	
SUBSID	.9055556E-02	6666667	3959722E-01	735256.8	
ARCH_PER	8986111E-02	.4583333	1368056E-01	-209915.6	
CONTROL	1666667E-03	-1.250000	6345833E-01	977885.2	
PAYMENT	8152778E-02	2916667	.7648611E-01		
PROFIT		.4166667E-03			
	.3044444E-01		3277778E-02		
Page 10		SPSS/P	·C+		7/13/91
		01 0077	•		17 (27)1
	PAST_PER	YEAR_BUS	ORIGIN	DEL	
PAST PER	.2500000		,		
-	-1.750000	86.75000			
ORIGIN	83333333E-01		1.111111		
DEL	3558333E-01		9405556E-01	.2102578E-01	
LISTED	.1250000	.2500000	3333333	.1616667E-01	
CENTRAL	2083333E-01		5555556E-01		
SUBSID	.1666667		2222222	.9611111E-02	
		.1666667			
	83333338-01	1.666667	. 1944444	1472222E-01	
	.2500000	.8750000	8333333E-01		
PAYMENT			.1111111	1355556E-01	
PROFIT	2179167E-01	1.075458		.1446231E-01	
PAS_P_PM	4166667E-01	1.833333	5277778	.6288889E-01	
	•				
	LISTED	CENTRAL	SUBSID	ARCH_PER	
LISTED	.2500000				
CENTRAL		.2777778E-01			
SUBSID	.1666667	1388889E-01	.1944444		
ARCH_PER	2083333	.2777778E-01	1388889	.2777778	
CONTROL	.1250000	2083333E-01	.2916667	8333333E-01	
PAYMENT	.4166667E-01	.6944444E-02	.2777778E-01	5555556E-01	
PROFIT	.3583333E-02	.7430556E-02	.1047222E-01	.1243056E-01	
PAS_P_PM	.8333333E-01	.7638889E-01	.55555568-01	1111111	
	CONTROL	PAYMENT	PROFIT	PAS_P_PM	
CONTROL	.7500000			_	
	.4166667E-01	.1111111			
		5236111E-02	.1561436E-01		
		2777778E-01			
Total Cova	riance Matrix W	ith 33	degrees of free	dom	
	COMPLEX	TRAINING	PLANT	COM_SIZE	
COMPLEX	2.606952			-	
		.7668485E-02			
		.1105515E-02			
		-4.582788			
	1001770L				
PKUP_SIA	_ 17104078-04	07775748-07	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	•6 661868	
	1319697E-01	.9777576E-03	.81/8/882-04	-4.001848	
LEAD_EX	.2566845	.9777576E-03 1022121 .3640091E-02	4106952E-01	254.0856	

.

- 204 - · ·

-38531.37

.3640091E-02 .9998606E-02 -2.244485

-32592.41

-.2572121

1745644.

CONT_EX

WORKLOAD

.2367632E+09

	8823529E-01 9.508021	1672727E-01 .3554545E-01	.6420677E-02 5068895	28.22816 2189.927		
ORIGIN	2370766	.2727273E-02				
DEL	4428922E-01					
LISTED	1782531	.5151515E-02		•		
CENTRAL SUBSID	6550802E-01 .6595365E-01	.7575758E-02				
	·.2237077	.1751515E-01				
CONTROL	.6167558	.2706061E-01				
PAYMENT	3743316E-01			7.532977		
PROFIT	.8350490E-01	1210000E-02	1062843E-03	11.60762		
PAS_P_PM	.2932264	.5606061E-02	.4508021E-02	-10.24064		
Page 11		SPSS/F	°C+		7/13/91	
	PROF_STA	LEAD_EX	CONT_EX	WORKLOAD		
PROF STA	.5958500E-02					
-	2169697E-01	43.86453				
_	3309606E-02		.9065388E-01			
	25114.83	-3547636.	-213337.0	.4761221E+13		
PAST_PER	.3428788E-01	1.224599	.1060606E-02	-33083.98		
_	3092121	-13.26560	-1.985061	.1148202E+08		
ORIGIN	3906061E-01		.4878788E-01			
DEL		.3593316E-01				
LISTED	.12121212-01		-6142424E-01		••	
CENTRAL SUBSID	.1368939E-01 .4757576E-02	1.709447 8235294	.1415152E-01 .8151515E-02			
		3368984				
CONTROL	2230303E-01					
PAYMENT		3868093	.2781818E-01			
PROFIT	2570568E-02	3123975E-01	•			
PAS_P_PM	.2250000E-01	.8556150E-01	3530303E-01			
	PAST_PER	YEAR_BUS	ORIGIN	DEL		
PAST_PER	.6140820					
YEAR_BUS	-6.415330	225.0267				
ORIGIN	2869875	.5632799	.5169340			
DEL	.3796569E-01	5205499	5785651E-01	.1626467E-01		
LISTED	.1319073	-4,483066	1604278	.2593405E-01		
CENTRAL	.2731729	-2.263815	1203209	2126493E-01		
SUBSID	.4634581E-01	8003565	8912656E-01	.9355615E-02		
ARCH_PER		5.910873	.2335116	3077050E-01		
CONTROL	3618538	5.520499	.1853832	3301604E-01		
PAYMENT	.3921569E-01	8823529	.1782531E-01			
PROFIT	1386408E-01	.5367487	~.5334225E-02		.	
PAS_P_PM	.6149733E-01	.1087344	1800357	.3421168E-01	-	
	LISTED	CENTRAL	SUBSID	ARCH_PER		
LISTED	.2566845					
CENTRAL	.1069519E-01	.2087790				
SUBSID	.1426025	4456328E-01	.2139037			
-	2281640	1029412	9982175E-01			
CONTROL	4812834E-01	2557932	.9447415E-01	.1336898		•
PAYMENT	.3208556E-01	6238859E-02	.1782531E-01			
PROFIT		5496881E-03		2152406E-03		
PAS_P_PM	.2139037E-01	.3877005E-01	.1782531E-02	.6238859E-02		
	CONTROL	PAYMENT	PROFIT	PAS_P_PM		
CONTROL	.9162210					
PAYMENT	.5347594E-02	.5704100E-01				
PROFIT	.1630125E-01	2448307E-02	.1616439E-01	(400		
PAS_P_PM	.6417112E-01	1247772E-01	4038770E-02	.4108734		
Page 12		SPSS/P	C+		7/13/91	
-						

.

On groups defined by PERFORM CONTRACTOR'S PERFORMANCE

1

Analysis number

Stepwise variable selection

Selection rule: Minimize Wilks' Lambda	
Maximum number of steps	40
Minimum Tolerance Level	
Minimum F to enter	1.0000
Maximum F to remove	1.0000

Canonical Discriminant Functions

Maximum number of functions	· 1
Minimum cumulative percent of variance	100.00
Maximum significance of Wilks' Lambda	1.0000

Prior Probabilities

.

Group Prior Label 1 .73529 2 .26471 Total 1.00000

----- Variables not in the analysis after step 0 ------

		Minimum			
Variable	Tolerance	Tolerance	F to enter	Wilks! Lambda	
COMPLEX	1.0000000	1.0000000	2.5153	.92712	
TRAINING	1.0000000	1.0000000	2.1684	.93654	
PLANT	1.0000000	1.0000000	.94826E-01	.99705	
COM_SIZE	1.0000000	1.0000000	.26210	.99188	
PROF_STA	1.0000000	1.0000000	1.7323	.94865	
LEAD_EX	1.0000000	1.0000000	.81769E-01	.99745	
CONT_EX	1.0000000	1.0000000	1.4488	.95669	
WORKLOAD	1.0000000	1.0000000	1.1714	.96469	
PAST_PER	1.0000000	1.0000000	21.328	.60006	
YEAR_BUS		1.0000000	1.0509	.96820	
ORIGIN	1.0000000	1.0000000	10,885	.74618	
DEL	1.0000000	1.0000000	.68758	.97897	
LISTED	1.0000000	1,0000000	1.8824	.94444	
CENTRAL	1.0000000	1.0000000	8.3628	.79281	
SUBSID	1.0000000	1.0000000	.28941	.99104	
ARCH_PER	1.0000000	1.0000000	5.5370	.85249	
CONTROL	1.0000000	1.0000000	9.2769	.77525	
PAYMENT	1,0000000	1.0000000	.57919	.98222	
PROFIT	1,0000000	1.0000000	.74516	.97724	
PAS_P_PM		1.0000000	.77146E-02	.99976	
			CDCC /0C+	••••	 7/17/
Page 13			SPSS/PC+		7/13/

At step 1, PAST_PER was included in the analysis.

Wilks' Lambda	.60006	Degrees	of Freedom 32.0	Signif.	Between Groups
Equivalent F	21.3282	1		.0001	
Va	riables in the	analysis	after step	1	
Variable Tolerance		Wilks'	Lambda		
PAST_PER 1.0000000	21.328				
Va	riables not in	the anal	ysis after :	step 1 -	

Minimum

.

Variable	Tolerance	Tolerance	F to enter	Wilks' Lambda
COMPLEX	.8960681	.8960681	6.1334	.50094
TRAINING	.9873114	.9873114	.53397	.58990
PLANT	.9738653	.9738653	.66379	.58748
COM_SIZE	.9968585	.9968585	.37359E-01	.59934
PROF_STA	.6848895	.6848895	1,3825	.57444
LEAD_EX	.8801069	.8801069	2.3470	.55783
CONT_EX	.9677283	.9677283	2.4834	.55555
WORKLOAD	.9670098	9670098	2.2187	.55998
YEAR_BUS	.6773262	.6773262	2.1922	.56043
ORIGIN	.9187325	.9187325	2.4874	.55549
DEL	.8586394	.8586394	.55714	.58946
LISTED	.9407895	.9407895	.38071E-01	.59932
CENTRAL	.5256065	.5256065	.92385E-01	.59828
SUBSID	.9922236	.9922236	.10010E-01	.59986
ARCH_PER	.8988939	.8988939	.50607	.59042
CONTROL	.9283220	.9283220	2.0500	.56284
PAYMENT	.9733995	.9733995	.36550E-04	.60006
PROFIT	.9061802	.9061802	3.3283	.54188
PAS_P_PM	.9788611	.9788611	.20228	.59617
F statist	ics and sig	nificances	between pairs	of groups after

F statistics and significances between pairs of groups after step 1 Each F statistic has 1 and 32.0 degrees of freedom.

1

Group

Group

2 21.328 .0001 Page 14 SPSS/PC+ 7/13/91

At step 2, COMPLEX was included in the analysis.

		Degre	es of	Freedom	Signif.	Between Groups
Wilks' Lambda	.50094	2	1	32.0		
Equivalent F	15.4415		2	31.0	.0000	

----- Variables in the analysis after step 2 ------

Variable	Tolerance	F to remove	Wilks' Lambda
COMPLEX	.8960681	6.1334	.60006
PAST_PER	.8960681	26.373	.92712

...... Variables not in the analysis after step 2 -----

		Minimum		
Variable	Tolerance	Tolerance	F to enter	Wilks' Lambda
TRAINING	.9610922	.8722720	1.0679	.48373
PLANT	.9275793	.8534797	.64058E-01	.49988
COM_SIZE	.8846514	.7952061	.37011	.49484
PROF_STA	.6848806	.6338123	1.1340	.48270
LEAD_EX	.8547418	.7670816	3.1711	.45306
CONT_EX	.7475033	.6921508	.16273	.49824
WORKLOAD	.7778294	.7207664	.15601	.49835
YEAR_BUS	.5885678	.5885678	.31719	.49570
ORIGIN	.8849755	.7983689	1.0193	-48448
DEL	.8349645	.8055525	.93339E-01	.49939
LISTED	.8855802	.8434832	.54253	.49205
CENTRAL	.5249175	.5008948	.37144E-01	.50033
SUBSID	.9823822	.8840717	.17536E-01	.50065
ARCH_PER	.8656155	.7794891	.46280E-01	.50017
CONTROL	.6084737	.5873327	10.262	.37326
PAYMENT	.9649793	.8818337	.45538E-01	.50019
PROFIT	.8150043	.8059096	.96931	.48527
PAS_P_PM	.8522681	.7801825	1.6671	.47457

F statistics and significances between pairs of groups after step 2 Each F statistic has 2 and 31.0 degrees of freedom.

Group 1 Group 2 15.442 .0000 ------Page 15 SPSS/PC+ 7/13/91 At step 3, CONTROL was included in the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda .37326 · 3 1 32.0 Equivalent F 16.7910 3 30.0 .0000 ------ Variables in the analysis after step 3 ------Variable Tolerance F to remove Wilks' Lambda COMPLEX .5873327 15.237 .56284 PAST PER .8886833 12.156 .52451 CONTROL .6084737 10.262 .50094 ------ Variables not in the analysis after step 3 ------Minimum Variable Tolerance Tolerance F to enter Wilks' Lambda TRAINING .9386005 .5861746 .21771 .37048 PLANT .8613095 .5230740 .28220 .36966 COM_SIZE .8728676 .5597290 .41571E-01 .37273 PROF_STA .6748524 .5840906 1.5423 .35441 .7813500 .5309825 LEAD EX .31081 5.8271 CONT EX .7160344 .4425231 .48470E-01 .37264 WORKLOAD .7548743 .5379633 .66322 .36491 YEAR BUS .5874889 .5419057 .35394 .36876 .8774373 .5617956 ORIGIN .37031 .36855 DEL .8318044 .5814706 .18263 .37092 .8112717 .5101906 LISTED 2.1784 .34718 .34031 CENTRAL .4037693 .4037693 2.8081 .5385057 .74053 SUBSID .8694187 .36397 ARCH_PER .8656155 .5728975 .33345E-01 .37283 PAYMENT .9026121 .5572143 .81347 .36307 PROFIT .8145448 .5432659 .59480 .36576 PAS_P_PM .8502391 .5261285 1.5127 .35475 F statistics and significances between pairs of groups after step 3 Each F statistic has 3 and 30.0 degrees of freedom. Group 1 Group 2 16.791 .0000 Page 16 SPSS/PC+ 7/13/91 At step 4, LEAD_EX was included in the analysis. . . Degrees of Freedom Signif. Between Groups .31081 Wilks' Lambda 4 1 32.0 16.0764 Equivalent F 4 29.0 -0000 ----- Variables in the analysis after step 4 ------

		•		
Variable	Tolerance	F to remove	Wilks' Lan	bda
COMPLEX	5309825	19.110	.5156	
LEAD_EX			.3732	-
PAST_PER	-	16.898	.4919	
CONTROL	.5562275	13.273	.4530	
	····· Var	iables not in	the analysi	s after step 4
		Minimum		
Variable	Tolerance		to enter	Wilks' Lambda
TRAINING	.9129192	.5262526	.61974	.30408
PLANT	.8606007	.4803946	.17173	.30891
COM_SIZE	.8668520	.5132124	.98718E-05	.31081
PROF_STA	.5923844	.4825447	3.9845	.27209
CONT_EX	.7129001	.4164008	.29506E-02	.31077
WORKLOAD	.7006056	.4623777	.24201E-01	.31054
YEAR_BUS	.5872690		.33111	.30717
ORIGIN	.8252934	.4906048	.34413E-03	.31080
DEL	.8254527		.33008	.30719
LISTED	.7425928		.52563	.30508
CENTRAL	.2623073		.75450E-01	.30997
SUBSID	.8069761		.39526E-01	.31037
ARCH_PER			.72456E-03	.31080
PAYMENT	.8437490		.70090E-01	.31003
PROFIT	.8139085		.56597	.30465
PAS_P_PM	.8378861	.4687735	1.8871	.29118
Each F st	atistic has: Grou		29.0 degre	es of freedom.
6				
Group		A/ 07/		
2		16.076 .0000		
Page 17			SPSS/PC+	7/13/91
At step	5, PROF_ST	A was include	d in the ana	lysis.
			Degrees of	Freedom Signif. Between Groups
Wilks' La	mioda	.27209	51	32.0
Equivalen	it F	14.9815	5	28.0 .0000
	var	ladles in the	analysis af	ter step 5
Variable	Tolerance	F to remove	Wilks' Lam	bda
OMPLEX	.5122598		.4664	1
-	.5923844		.3108	1
_	.6858678		.3544	1
PAST_PER			.4881	5
CONTROL	.5274149	15.017	-41802	2
	Var [;]	iables not in		after step 5
		Minimum		
/ariable	Tolerance		to enter	Wilks' Lambda
RAINING	.8109538	.4645754	.13715E-01	.27195
LANT	.8568320		.67574E-01	.27141
-			· · · · ·	
OM SIZE		.4462241	.26803	.26941
-	.8035577		.26803	.26941 .26925
X3_THO	.8035577 .6469050	.4160424	.28450	.26925
ONT_EX	.8035577 .6469050 .6572375	.4160424 .4585087	.28450 .38277	.26925 .26829
CONT_EX FORKLOAD	.8035577 .6469050 .6572375 .5738811	.4160424 .4585087 .3786970	.28450 .38277 .66412	.26925 .26829 .26556
CONT_EX FORKLOAD	.8035577 .6469050 .6572375	.4160424 .4585087 .3786970 .3292789	.28450 .38277	.26925 .26829

.

•

•

•

.83737 - 209 -

.26390

.7297675 .4661655

LISTED

۰

.33045E-01 .27176 .2619172 CENTRAL .2619172 .65318E-01 .27143 .4678539 .8057077 SUBSID .27192 .8593382 .4500598 .16837E-01 ARCH PER .27100 .7657723 .4161170 .10884 PAYMENT .4703480 .12283 .27086 PROFIT .7847592 .17604 .27033 .6378709 .4509740 PAS_P_PM F statistics and significances between pairs of groups after step 5 28.0 degrees of freedom. Each F statistic has 5 and Group 1 Group 14.982 2 .0000 7/13/91 SPSS/PC+ Page 18 At step 6, ORIGIN was included in the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda 1 32.0 .24683 6 6 27.0 .0000 13.7312 Equivalent F ----- Variables in the analysis after step 6 -----Variable Tolerance F to remove Wilks' Lambda 11.056 .34790 .4906048 COMPLEX 6.9980 .31080 PROF_STA .3292789 .31235 LEAD_EX .6858599 7.1670 .43740 PAST PER .4780581 20.846 .27209 ORIGIN .4587421 2.7630 .35903 CONTROL .5273377 12.273 ----- Variables not in the analysis after step 6 -----Minimum Variable Tolerance Tolerance F to enter Wilks' Lambda .34441E-01 .24650 TRAINING .7823584 .2845318 .24681 .24564E-02 PLANT .8266384 .3191984 COM_SIZE .8023391 .3119939 .29681 .24404 CONT_EX .6413423 .3018862 .41651 ,24294 WORKLOAD .4233616 .2955002 .18857 .24505 .3292789 .25374 .24444 YEAR_BUS .5571406 .24597 DEL .3803947 .2735525 .91026E-01 .24646 .5910761 .3149880 .39113E-01 LISTED .24594 CENTRAL .2599279 .2599279 .93921E-01 SUBSID , .7474988 .3215280 .34427E-01 .24650 .3288040 .44421E-02 .24679 ARCH_PER .8468296 .24679 .3234794 .39329E-02 PAYMENT .7465063 PROFIT .7541791 .3052177 .45363E-03 .24682 .2889594 .24770 .24450 PAS_P_PM .6349894 F statistics and significances between pairs of groups after step 6 27.0 degrees of freedom. Each F statistic has 6 and Group 1 Group

13.731

2

F level or tolerance or VIN insufficient for further computation.

Summary Table

		*		
		ars Wilks'		
	d Removed			
1 PAST_PI			CONTRACTOR'S PAST PERFORMANCE OR I	MA
2 COMPLE			COMPLEXITY OF PROJECT	
3 CONTROL			ARCHITECT OR CLIENT SUPERVISION AN	D
4 LEAD_E			PROJECT LEADER'S EXPERIENCE	
5 PROF_S			MANAGEMENT TEAM'S QUALITY-PROFESSI	ON
6 ORIGIN		6 .24683 .0000	ORIGIN OF THE COMPANY	
Page 19		SPSS/P(·91
Classificat	ion Function	Coefficients		
		ninant Functions)		
		<u> </u>		
PERFORM =	1	2		
		•		
COMPLEX	1.532383	3.689788		
PROF_STA	113.3637	67.52847		
LEADEX	.2260276	1383812		
—	7.275977	14.13054		
DRIGIN	18.80951	15.65250		
CONTROL	6.785520	2.804390		
(constant)	-58.44693	-58.55843		
	Ca	anonical Discrimin	nant Functions	
		Cum Canonical		_
FCN Eigenv	alue Varianco	e Pct Corr	Fon Lambda Chisquare DF Sig	-
1* 3.	0514 100.00	100.00 .8679	: 0 .2468 40.573 6 .00	JUU
	0514 100.00	100100 .0077	•	
* marks	the 1 canoi	nical discriminant	t functions remaining in the analysis	5.
			· · · · · · · · · · · ·	
Standardize	d Canonical I	Discriminant Funci	tion coefficients	
	FUNC 1			
COMPLEX	88670	•		
PROF_STA	.91103			
LEAD_EX	.63724	•		
PAST_PER	-1.10002			
DRIGIN	.51835			
CONTROL	.88703			
Page 20		SPSS/PG	;+ 7/13/	/91
Structure M	atrix:			
Pooled-with	in-groups cou	relations between	n discriminating variables	
		and car	nonical discriminant functions	
(Variables	ordered by si	ize of correlation	a within function)	
	FUNC 1			
PAST_PER	46736			
	77790			

.

•

.

٠

•

FONG I
46736
.33389
32796
.30823
.25199
.18871
.18611
17338
16209
16050
13319
10448
09851

.

Ņ

.

.

SUBSID	09069
PAYMENT	08926
PROFIT	-,08318
DEL	04186
LEAD_EX	.02894
PLANT	.02098
CONT_EX	.00501
-	

Unstandardized Canonical Discriminant Function Coefficients

	FUNC 1
COMPLEX	5616425
PROF_STA	11.93241
LEAD_EX	.9486742E-01
PAST_PER	-1.784466
ORIGIN	.8218719
CONTROL	1.036417
(constant)	-1.140765

.

Canonical Discriminant Functions evaluated at Group Means (Group Centroids)

Gro	up	FUNC 1		
	1	1.01680		
	2	-2.82444		
Page			SPSS/PC+	7/13/91

Test of equality of group covariance matrices using Box's M

The ranks and natural logarithms of determinants printed are those of the group covariance matrices.

Group Label	Rank	Log Determinant
1	6	-6.076040
2	6	-10.344742
Pooled Within-Groups		
Covariance Matrix	6	-4.779148

Box's M Approximate F Degrees of freedom Significance 75.650 2.4802 21, 855.4 .0003

Page 22		SPSS/PC+		7/13/91
Case Mis	Actual	Highest Probability	2nd Highest	Discrim
Number Val	Sel Group	Group P(D/G) P(G/D)	Group P(G/D)	Scores
1	1	1 .4776 1.0000	2.0000	1.7270
2	1 *	1 .7223 .9991	2.0009	.6614
3	.1	1 .0570 1.0000	2.0000	2,9198
4	2	2.4559.9705	1 .0295	-2.0789
5	1.	1 .4119 1.0000	2.0000	1.8374
6	1	1 .3297 .9906	2.0094	.0420
7	2	2 .2951 .9116	1.0884	-1.7774
8	1	1 .2743 .9852	2.0148	0765
9	2	2 .1300 .6316	1.3684	-1.3102
10	1	1.5950.9983	2 .0017	.4852
11	1	1 .3142 .9894	2.0106	.0104
12	1	1 .7324 .9992	2.0008	.6749
13	1	1 .7324 .9992	2.0008	.6749
14	1	1 .3433 1.0000	2.0000	1.9644
15	1	1 .3786 1.0000	2.0000	1.8972
16	1	168579989	2.0011	.6121
17	1	1 .9884 .9998	2.0002	1.0022
18	1	1 .0712 1.0000	2 .0000	2.8211
19	1	1 .5791 .9981	2 .0019	.4621
20	• 1	1 .7223 .9991	2,0009	.6614
21	1	1 .6357 1.0000	2.0000	1.4905

.

-2.0

X----

.

-4.0

Out

.0 2.0

4.0

Out

Actua	l Group	No. of Cases	Predicted 1	Group Membershij 2
••••••				
Group	1	25	25	0
			100.0%	.0%
Group	2	9	0	9
			.0%	100.0%

Percent of "grouped" cases correctly classified: 100.00%

Classification Processing Summary

- 34 Cases were processed.
- O Cases were excluded for missing or out-of-range group codes.
- O Cases had at least one missing discriminating variable.
- 34 Cases were used for printed output.

APPENDIX 5

SPSS(pc) Computer Printout of the Stepwise Procedures in Computing the Z₃ Discriminant Analysis Model

DSCRIMINANT / GROUPS PERFORM (1,2) / VARIABLES COMPLEX PROF STA LEAD EX PAST PER ORIGIN CONTROL /METHOD WILKS /PRIORS SIZE /STATISTICS=all. Since ANALYSIS= was omitted for the first analysis all variables on the VARIABLES= list will be entered at level 1. This Discriminant Analysis requires 1904 (1.9K) BYTES of workspace. Page 4 SPSS/PC+ ---- DISCRIMINANT ANALYSIS -----On groups defined by PERFORM CONTRACTOR'S PERFORMANCE 30 (unweighted) cases were processed. 0 of these were excluded from the analysis. 30 (unweighted) cases will be used in the analysis. Number of Cases by Group Number of Cases * PERFORM Unweighted Weighted Label 22 22.0 1 8 8.0 2 30 Total 30.0 Group Means COMPLEX PAST_PER CONTROL PERFORM PROF_STA LEAD_EX ORIGIN 2.90909 3.68182 3.54545 2.59091 1 .08464 15.77273 4.62500 2.00000 2.62500 2 .12688 14.87500 3.62500 3.83333 3.40000 Total .09590 15.53333 2.86667 2.66667 Group Standard Deviations PERFORM COMPLEX ORIGIN CONTROL PROF_STA · PAST_PER LEAD_EX 1.62502 1 .42640 .89370 .08560 7.65899 .66613 2 1.30247 .91613 .05614 2.74838 .51755 1.06904 Total 1.59921 .08017 .77608 .75810 1.00344 6.66816 Page 5 SPSS/PC+

Pooled Within-Groups Covariance Matrix with

28 degrees of freedom

	COMPLEX	PROF_STA	LEAD_EX	PAST_PER	ORIGIN	CONTROL
COMPLEX	2.404627					
PROF_STA	3375041E-01	.6283499E-02				
LEAD_EX	7731331	3781940E-01	45.88352			
PAST_PER	3648539	.2861972E-01	1.734984	.3997565		
ORIGIN	.3246753E-02	3641883E-01	.4480519	1363636	.4220779	
CONTROL	.9890422	1585430E-01	-1.177354	1781656	.1298701E-01	.8088474

Pooled Within-Groups Correlation Matrix

	COMPLEX	PROF_STA	LEAD_EX	PAST_PER	ORIGIN	CONTROL
COMPLEX	1.00000					
PROF_STA	27457	1.00000				
LEAD_EX	07360	07043	1.00000			
PAST_PER	37213	.57104	.40511	1.00000		
ORIGIN	.00322	70718	.10181	33197	1.00000	
CONTROL	.70918	22239	19326	31332	.02223	1.00000

Correlations which cannot be computed are printed as '.'

Wilks' Lambda (U-statistic) and univariate F-ratiowith 1 and28 degrees of freedom

Variable	Wilks' Lambda	F	Significance
		••••	•••••
COMPLEX	.90781	2.843	.1029
PROF_STA	.94385	1.666	.2074
LEAD_EX	.99633	.1030	.7506
PAST_PER	.64083	15.69	.0005
ORIGIN	.70909	11.49	.0021
CONTROL	.77561	8.101	.0082

```
Page 6
```

SPSS/PC+

Covariance Matrix for Group 1,

	COMPLEX	PROF_STA	LEAD_EX	PAST_PER	ORIGIN	CONTROL
COMPLEX	2.640693					
PROF_STA	5831602E-01	.7327481E-02				
LEAD_EX	-1.060606	4965801E-01	58.66017			

_	.2424242	.3522511E-01 3003463E-01 2202597E-01	.3593074	1341991	.1818182 .6493506E-01	.7987013				
Covarianc	e Matrix for Gr	oup 2,								
COMPLEX	COMPLEX 1.696429	PROF_STA	LEAD_EX	PAST_PER	ORIGIN	Control				
PROF STA	-3994643E-01	.3151554E-02								
		2303571E-02	7.553571							
		.8803571E-02		.2678571						
ORIGIN		5557143E-01		1428571	1.142857					
CONTROL		.2660714E-02		.2678571	1428571	.8392857				
Total Cova	riance Matrix W	eith 29	degrees of fr	reedom						
COMPLEX	COMPLEX 2.557471	PROF_STA	LEAD_EX	PAST_PER	ORIGIN	CONTROL				
		.6427748E-02								
-	9425287		44,46437							
_		.3646897E-01		.6022989						
_		4293103E-01			.5747126					
		2433793E-01				1.006897				
Page 7		SPSS/F	′ └ +			3				
			- DISC	RIMINANT	ANALYSI	s				
On groups	defined by PER	FORM CONTRACT	DR'S PERFORMA	NCE						
Analysis	number 1									
Stepwise variable selection										
Sele	ction rule: Mi	inimize Wilks' L	ambda							
		steps		12		•				
		.evel								
	Minimum F to enter 1.0000 Maximum F to remove									
Canonical	. Discriminant (Functions				•				

•

.

.

.

.

Minimum cumulative percent of variance... 100.00 Maximum significance of Wilks' Lambda.... 1.0000 **Prior Probabilities** Group Prior Label .73333 1 2 .26667 1.00000 Total Page 8 SPSS/PC+ ----- Variables not in the analysis after step 0 ------Minimum Variable Tolerance Tolerance F to enter Wilks' Lambda COMPLEX 1.0000000 1.0000000 2.8433 .90781 PROF STA 1.0000000 1.0000000 .94385 1.6657 LEAD_EX 1.0000000 1.0000000 .10304 .99633 PAST_PER 1.0000000 1.0000000 15.693 .64083 ORIGIN 1.0000000 1.0000000 11.487 .70909 CONTROL 1.0000000 1.0000000 8.1008 .77561 - - . . At step 1, PAST_PER was included in the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda .64083 1 1 28.0 15.6933 Equivalent F 1 28.0 .0005 ------ Variables in the analysis after step 1 -----Variable Tolerance F to remove Wilks' Lambda PAST_PER 1.0000000 15.693 ----- Variables not in the analysis after step 1 ------Minimum •. Variable Tolerance Tolerance F to enter Wilks' Lambda COMPLEX .8615175 .50645 .8615175 7.1643 PROF_STA .6739127 .6739127 .86547 .62093 LEAD_EX .8358887 .8358887 2.7418 .58176 ORIGIN .8897930 .8897930 2.9878 .57698

.

.9018285 .9018285 .60151 CONTROL 1.7650 Page 9 SPSS/PC+ F statistics and significances between pairs of groups after step 1 Each F statistic has 1 and 28.0 degrees of freedom. Group 1 Group 2 15.693 .0005 * At step 2, COMPLEX was included in the analysis. "Degrees of Freedom Signif. Between Groups Wilks' Lambda .50645 2 1 28.0 Equivalent F 2 27.0 .0001 13.1562 ----- Variables in the analysis after step 2 -----Variable Tolerance F to remove Wilks' Lambda COMPLEX .8615175 7.1643 .64083 PAST_PER .8615175 21.398 .90781 . ----- Variables not in the analysis after step 2 -----Minimum . Variable Tolerance Tolerance F to enter Wilks' Lambda PROF_STA .6694410 .6237599 .38867 .49899 .8289799 2.7678 .45772 LEAD_EX .7180710 ORIGIN .8729903 1.4362 .47994 .7521043 CONTROL .4942267 .4721352 13.587 .33262 Page 10 SPSS/PC+ F statistics and significances between pairs of groups after step 2 Each F statistic has 2 and 27.0 degrees of freedom. Group 1

Group 2 13.156 .0001 At step 3, CONTROL was included in the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda - 3 28.0 1 .33262 Equivalent F 17.3888 3 26.0 .0000 ----- Variables in the analysis after step 3 -----Variable Tolerance F to remove Wilks' Lambda COMPLEX .4721352 21.018 .60151 PAST PER .8566052 8.3523 .43948 CONTROL .4942267 13.587 .50645 ------ Variables not in the analysis after step 3 ------Minimum Variable Tolerance Tolerance F to enter Wilks' Lambda PROF_STA .32934 .6694398 .4704642 .24938 LEAD_EX .29058 · .8001350 .4545938 3.6171 ORIGIN .89875 .8729884 .4671124 .32108 Page 11 SPSS/PC+ F statistics and significances between pairs of groups after step 3 Each F statistic has 3 and 26.0 degrees of freedom. Group 1 Group 2 17.389 .0000 At step 4, LEAD_EX was included in the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda .29058 28.0 1 25.0 Equivalent F 15.2587 .0000 ----- Variables in the analysis after step 4 -----Variable Tolerance F to remove Wilks' Lambda .54288 .4545938 21.707 COMPLEX .8001350 .33262 LEAD_EX 3.6171 11.720 .42680 PAST_PER .7180347 CONTROL .4770297 14.380 .45772 ------ Variables not in the analysis after step 4 ------Minimum Wilks' Lambda Variable Tolerance Tolerance F to enter PROF_STA .5596452 .4401812 1.6171 .27224 ORIGIN .7965507 .4423698 .13642 .28894 _____ _ _ _ _ _ _ _ _ _ Page 12 SPSS/PC+ F statistics and significances between pairs of groups after step 4 25.0 degrees of freedom. Each F statistic has 4 and Group 1 Group 15.259 2 .0000 At step 5, PROF STA was included in the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda .27224 5 1 28.0 24.0 Equivalent F 12.8316 5 .0000 ----- Variables in the analysis after step 5 Wilks' Lambda Variable Tolerance F to remove .48818 COMPLEX .4543854 19.037 PROF_STA .5596452 1.6171 .29058 5.0339 .32934 .6689051 LEAD_EX

4

PAST_PER .4401812 12.450 .41346 CONTROL .4736817 13.777 .42851 ----- Variables not in the analysis after step 5 ------Minimum Variable Tolerance Tolerance F to enter Wilks' Lambda ORIGIN .4589571 .3224567 2.2334 .24814 ----------------Page 13 SPSS/PC+ F statistics and significances between pairs of groups after step 5 Each F statistic has 5 and 24.0 degrees of freedom. Group 1 Group 2 12.832 .0000 * * * * * * * * * * * * * * At step 6, ORIGIN was included in the analysis. · Degrees of Freedom Signif. Between Groups Wilks' Lambda .24814 6 1 28.0 Equivalent F 11.6148 23.0 6 .0000 ----- Variables in the analysis after step 6 -----Variable Tolerance F to remove Wilks' Lambda COMPLEX .4368113 10.732 .36393 PROF_STA .3224567 3.7814 .28894 LEAD EX .6684600 4.1190 .29258 PAST_PER .4398088 10.863 .36534 ORIGIN .4589571 2.2334 .27224 CONTROL 11.346 .4736647 .37055 F statistics and significances between pairs of groups after step 6 Each F statistic has 6 and 23.0 degrees of freedom.

Group 1

- --- -

Group

2

11.615 .0000

F level or tolerance or VIN insufficient for further computation.

.....

Page 14

SPSS/PC+

Summary Table

	Action	Vars	Wilks'		
Step	Entered Removed	In	Lambda	Sig.	Label
1	PAST_PER	1	.64083	.0005	CONTRACTOR'S PAST PERFORMANCE OR IMAGE
2	COMPLEX	2	.50645	.0001	COMPLEXITY OF PROJECT
3	CONTROL	3	.33262	.0000	ARCHITECT OR CLIENT SUPERVISION AND CONT
4	LEAD_EX	4	.29058	.0000	PROJECT LEADER'S EXPERIENCE
5	PROF_STA	5	.27224	.0000	MANAGEMENT TEAM'S QUALITY-PROFESSIONAL Q
6	ORIGIN	6	.24814	.0000	ORIGIN OF THE COMPANY

Classification Function Coefficients (Fisher's Linear Discriminant Functions)

1	2		
1.769996	4,183717		
104.8577	68.24728		
.8377672E-01	2248458		
9.427000	15.35105		
18.68790	15.72341		
6.341327	2.268965		
-59.61441	-60.17896		
	.8377672E-01 9.427000 18.68790 6.341327		

Canonical Discriminant Functions

Function	Eigenvalue		Cumulative Percent	Canonical Correlation	:		Wilks' Lambda .2481417	Chi-squared 34.844	-
1*	3.02996	100.00	100.00	.8670976	:				
* mari	(s the 1 c	anonical di	scriminant fur	nctions remain	nin:	g in the a	analysis.		

Page 15

SPSS/PC+

Standardized Canonical Discriminant Function Coefficients

	FUNC 1
COMPLEX	98426
PROF_STA	.76314
LEAD_EX	.54974
PAST_PER	98495
ORIGIN	.50646
CONTROL	.96312

Structure Matrix:

Pooled-within-groups correlations between discriminating variables and canonical discriminant functions (Variables ordered by size of correlation within function)

	FUNC 1
PAST_PER	43009
ORIGIN	.36797
CONTROL	.30901
COMPLEX	18307
PROF_STA	14012
LEAD_EX	.03485

Unstandardized Canonical Discriminant Function Coefficients

FUNC 1 COMPLEX -.6347252 PROF_STA 9.627276 LEAD_EX .8115704E-01 PAST_PER -1.557821 ORIGIN .7795574 CONTROL 1.070890 (constant) -1.004874

SPSS/PC+

Canonical Discriminant Functions evaluated at Group Means (Group Centroids)

Group	FUNC	1
1	1.01	408
2	-2.78	871

Page 16

Test of equality of group covariance matrices using Box's M

.

The ranks and natural logarithms of determinants printed are those of the group covariance matrices.

Group Lat		Rank Log Determinant		
1 1		6 -6.164931		
2		6 -10.725307		
_	Within-Groups	5 10.125501		
	ance Matrix	6 -4.793984		
Box's M	Approximate F	Degrees of freedom Sig	gnificance	
70.309	2.1427	21, 654.9	.0022	
Page 17		SPSS/PC+		
Case Mis	Actual	Highest Probability	2nd Highest	Discriminant
Number Val	Sel Group	Group P(D/G) P(G/D)	Group P(G/D)	Scores
1	1	1 .0498 1.0000	2 .0000	2.9762
2	1	1 .3977 1.0000	2 .0000	1.8598
3	1	1 .3819 .9927	2 .0073	.1397
4	2	2 .2948 .9034	1 .0966	-1.7411
5	1	1 .2776 .9839	2 .0161	0717
, 6	2	2 .1028 .5036	1 .4964	-1.1572
7	1	1 .6519 .9985	2 .0015	.5630
8	1	1 .3749 .9924	2 .0076	.1268
9	1	1 .7727 .9992	2.0008	.7253
10	1	1 .7727 .9992	2 .0008	.7253
11	1	1 .4899 1.0000	2 .0000	1.7045
12	1	1 .9747 .9997	2 .0003	.9823
13	1	1 .9458 .9997	2 .0003	.9461
14	1	1 .0483 1.0000	2 .0000	2.9889
15	1	1 .5796 .9978	2 .0022	.4601
16	1	1 .7147 .9989	2 .0011	.6486
17	. 1	1 .5259 1.0000	2 .0000	1.6484
18	1	1 .4001 1.0000	2.0000	1.8556
19	1	1 .1257 1.0000	z .0000	2.5455
20	2	2 .5172 .9998	1 .0002	-3.4364
21	1	1 .4405 .9951	2.0049	.2428
22	2	2 .1195 1.0000	1 .0000	-4.3456
23	1	1 .2345 .9764	2 .0236	- 1747
24	2	2 .2985 1.0000	1 .0000	-3.8283

*

.

.

Page 18		SPSS/PC+					••••••
30	1	1 .271	4 .9830	2	.0170	0858	
29	, 1	1.733	4 .9999	2	.0001	1.3547	
28	2	2.945	5.9974	1	.0026	-2.7203	
27	1	1.386	6.9930	2	.0070	.1483	
26	2	2.595	1.9852	1	.0148	-2.2573	
25	2	2.972	3.9983	1	.0017	-2.8234	

```
SPSS/PC+
```

Symbols used in Plots

Symbol Group Label -----1 1 2 2

Histogram for Group 1

Canonical Discriminant Function 1 8 + 1 6 + 1 1 1 1 1 1 1 1 4 11. 111 111 2 + 111 11 1 111 11 1 11111111 11111111 X----+----X Out -6.0 -4.0 -2.0 .0 2.0 4.0 6.0 Out Centroids 1 -----. Page 19 SPSS/PC+ Histogram for Group 2

Canonical Discriminant Function 1

Centroids 2 1 Page 21 SPSS/PC+ Classification Results -No. of Predicted Group Membership 1 2 Actual Group Cases --------------Group 1 22 22 0 100.0% .0% 0 Group 2 8 8 .0% 100.0% Percent of "grouped" cases correctly classified: 100.00% Classification Processing Summary 30 Cases were processed. O Cases were excluded for missing or out-of-range group codes. O Cases had at least one missing discriminating variable. 30 Cases were used for printed output. Page 22 SPSS/PC+ This procedure was completed at 17:18:21 _____ Page 23 SPSS/PC+ FINISH.

End of Include file.

APPENDIX 6

SPSS(pc) Computer Printout of the Stepwise Procedures in Computing the Z₄ Discriminant Analysis Model

DSCRIMINANT

/GROUPS PERFORM (1,2) /VARIABLES COMPLEX PROF_STA LEAD_EX PAST_PER ORIGIN CONTROL /METHOD WILKS /PRIORS SIZE /STATISTICS=all.

.

Since ANALYSIS= was omitted for the first analysis all variables on the VARIABLES= list will be entered at level 1.

This Discriminant Analysis requires 1904 (1.9K) BYTES of workspace. Page 42 SPSS/PC+

----- DISCRIMINANT ANALYSIS -----

.

On groups defined by PERFORM CONTRACTOR'S PERFORMANCE

26 (unweighted) cases were processed.

- 0 of these were excluded from the analysis.
- 26 (unweighted) cases will be used in the analysis.

Number of Cases by Group 🔹

Number of Cases								
PERFORM	Unweighted	Weighted	Label					
1	18	18.0						
2	8	8.0						
Total	26 [†]	26.0						

Group Means

PERFORM	COMPLEX	PROF_STA	LEAD_EX	PAST_PER	ORIGIN	CONTROL
1	4.11111	.06817	16.27778	2.50000	3.00000	3.88889
2	4.62500	.12688	14.87500	3.62500	2.00000	2.62500
Total	4.26923	.08623	15.84615	2.84615	2.69231	3.50000
Group Standard	d Deviations		•			
PERFORM	COMPLEX	PROF_STA	LEAD_EX	PAST_PER	ORIGIN	CONTROL
1	1.18266	.05336	8.39331	.61835	.00000	.83235
2	1.30247	.05614	2.74838	.51755	1.06904	, 91613
	1,21845	.05985	7,10320	.78446	.73589	1.02956

)

Page 43 SPSS/PC+ Pooled Within-Groups Covariance Matrix with 24 degrees of freedom PAST PER COMPLEX PROF_STA LEAD EX ORIGIN CONTROL COMPLEX 1.485532 PROF_STA -.9461806E-03 .2936057E-02 LEAD_EX -2.080440 .1050174E-01 52.10359 .3489583 PAST_PER -.2135417 .1471354E-01 2.338542 ORIGIN -.2083333 -.1620833E-01 .2083333 -.4166667E-01 .3333333 CONTROL .6707176 -.8751736E-02 -1.742477 -.1302083 -.4166667E-01 .7355324 Pooled Within-Groups Correlation Matrix COMPLEX PROF_STA LEAD_EX PAST_PER ORIGIN CONTROL COMPLEX 1.00000 PROF STA -.01433 1.00000 LEAD EX -.23647 .02685 1.00000 PAST_PER -.29659 .45967 .54843 1.00000 ORIGIN -.29606 -.51810 .04999 -.12217 1.00000 CONTROL .64165 -.18833 -.28147 -.25701 -.08415 1.00000 Correlations which cannot be computed are printed as '.' Wilks' Lambda (U-statistic) and univariate F-ratio with 1 and 24 degrees of freedom Variable Wilks' Lambda F Significance -----..... -----COMPLEX .96059 .9846 .3310 .78684 PROF_STA 6.502 .0176 LEAD EX .99136 .2092 .6515 PAST_PER .54437 20.09 .0002 .0004 ORIGIN .59091 16.62 CONTROL .66614 12.03 .0020 . Page 44 SPSS/PC+ Covariance Matrix for Group 1. COMPLEX PROF_STA LEAD_EX PAST_PER ORIGIN CONTROL COMPLEX 1.398693 PROF_STA -.1778431E-01 .2847324E-02

LEAD_EX	-2.973856	.1577451E-01	70.44771			
PAST_PER	4117647	.1714706E-01	3.558824	.3823529		
ORIGIN	.0000000	.1306145E-16	.0000000	.0000000	.0000000	
CONTROL	.6013072	1345098E-01	-1.967320	2941176	.0000000	.6928105
Covarîanc	e Matrix for Gr	oup 2,				
	COMPLEX	PROF_STA	LEAD_EX	PAST_PER	ORIGIN	CONTROL
COMPLEX	1.696429					
PROF_STA	.3994643E-01	.3151554E-02				
LEAD_EX	.8928571E-01	2303571E-02	7.553571			
PAST_PER	.2678571	.8803571E-02	6250000	.2678571		
ORIGIN	7142857	5557143E-01	.7142857	1428571	1.142857	
CONTROL	.8392857	.2660714E-02	-1.196429	.2678571	1428571	.8392857
Total Cova	ariance Matrix (with 25	degrees of fr	eedom		
	COMPLEX	PROF_STA	LEAD_EX	PAST_PER	ORIGIN	CONTROL
COMPLEX	1.484615					
-		.3582185E-02				
-	-2.156923	8163077E-02				• .
-		.2875692E-01		.6153846		
ORIGIN	3138462	2856615E-01		2892308	.5415385	
CONTROL	.5000000	2484000E-01	-1.280000	4400000	.2400000	1.060000
Page 45		SPSS/	PC+			
			- DISC	RIMINANT	ANALYS	
		•				5
On groups	defined by PER	FORM CONTRACT	OR'S PERFORMA	NCE		
Analysis	number 1					
Stepwise	variable_select	ion				
Sele	ection rule: Mi	inimize Wilks' L	ambda			
Maxi	imum number of s	steps	••••	12		
Mini	imum Tolerance L	.evel		00		
Mini	imum F to enter.		1.00	00		
Maxi	imum F to remove	2	1.00	00		
						• .

.

.

.

Canonical Discriminant Functions

,

.

.

\$

Maximum number of functions..... 1 Minimum cumulative percent of variance... 100.00 Maximum significance of Wilks' Lambda.... 1.0000 Prior Probabilities Prior Group Label 1 .69231 2 .30769 Total 1.00000 -----................ Page 46 SPSS/PC+ ------ Variables not in the analysis after step 0 -----Minimum Wilks' Lambda Variable Tolerance Tolerance F to enter COMPLEX 1.0000000 1.0000000 ,98457 .96059 PROF_STA 1.0000000 1.0000000 6.5017 .78684 1.0000000 1.0000000 .20917 .99136 LEAD_EX PAST_PER 1.0000000 1.0000000 .54437 20.087 1.0000000 1.0000000 16.615 .59091 ORIGIN 1.0000000 1.0000000 CONTROL 12.028 .66614 * * * * At step 1, PAST_PER was included in the analysis. Degrees of Freedom Signif. Between Groups .54437 1 24.0 Wilks' Lambda 1 20.0873 1 24.0 .0002 Equivalent F ------ Variables in the analysis after step 1 ------Variable Tolerance F to remove + Wilks' Lambda 20.087 PAST PER 1.0000000 ----- Variables not in the analysis after step 1 ------Minimum Variable Tolerance Tolerance F to enter Wilks' Lambda .9120351 3.0828 .48003 .9120351 COMPLEX .15858 .54065 .7887015 PROF_STA .7887015 .6992200 6.3414 .42672 .6992200 LEAD_EX

ORIGIN .9850746 6.5942 .42308 .9850746 CONTROL .48162 .9339455 .9339455 2.9970 Page 47 SPSS/PC+ F statistics and significances between pairs of groups after step 1 Each F statistic has 1 and 24.0 degrees of freedom. Group 1 Group 2 20.087 .0002 At step 2, ORIGIN was included in the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda .42308 2 1 24.0 Equivalent F 15.6818 2 23.0 .0001 ----- Variables in the analysis after step 2 -----Variable Tolerance F to remove Wilks' Lambda PAST_PER .9850746 9,1240 .59091 ORIGIN .9850746 . 6.5942 .54437 ----- Variables not in the analysis after step 2 -----Minimum Wilks' Lambda Variable Tolerance 'Tolerance F to enter .7999433 .7999433 COMPLEX .41147 .62039 PROF_STA .5720743 .5720743 .92025 .40609 LEAD EX .6853254 .6767880 3.5263 .36463 .37022 CONTROL .9203920 .9131206 3,1409 ... _ _ _ _ _ _ _ _ _ _ _ _ Page 48 SPSS/PC+ F statistics and significances between pairs of groups after step 2 Each F statistic has 2 and 23.0 degrees of freedom. Group 1

Group 15.682 2 .0001 At step 3, LEAD_EX was included in the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda 3 24.0 .36463 1 12.7783 3 22.0 Equivalent F .0000 3 ---------- Variables in the analysis after step Wilks' Lambda Variable Tolerance F to remove .42308 LEAD_EX .6853254 3.5263 PAST_PER .6767880 13.596 .58997 3.7462 .42672 .9654997 ORIGIN ------ Variables not in the analysis after step 3 ------Minimum Variable Tolerance Tolerance F to enter Wilks' Lambda .35774 COMPLEX .7982218 .6259238 .40460 PROF_STA .4919228 1.9207 .33408 .5297124 .31096 CONTROL .8969336 .6628083 3.6244 ----Page 49 · SPSS/PC+ F statistics and significances between pairs of groups after step 3 22.0 degrees of freedom. Each F statistic has 3 and Group 1 Group 12.778 2 .0000 At step 4, CONTROL was included in the analysis.

Degrees of Freedom Signif. Between Groups Wilks' Lambda .31096 4 1 24.0 Equivalent F 11.6331 4 21.0 .0000 ----- Variables in the analysis after step 4 -----Variable Tolerance F to remove Wilks' Lambda LEAD EX .6678582 4.0020 .37022 PAST_PER .6628083 7.3692 .42008 .36618 ORIGIN .9561471 3.7288 CONTROL .8969336 3.6244 .36463 ----- Variables not in the analysis after step 4 -----Minimum Variable Tolerance Tolerance F to enter Wilks' Lambda 4.2590 COMPLEX .4966453 .25637 .4966453 PROF_STA .5026165 .27248 .4919065 2.8244 Page 50 SPSS/PC+ F statistics and significances between pairs of groups after step 4 Each F statistic has 4 and 21.0 degrees of freedom. · Group 1 Group 2 11.633 .0000 At step 5, COMPLEX was included in the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda .25637 5 1 24.0 Equivalent F 20.0 11.6026 5 .0000 ------ Variables in the analysis after step 5 ------Variable Tolerance F to remove Wilks' Lambda COMPLEX .4966453 4.2590 .31096 LEAD_EX .6649367 3.5918 .30241

.6250881 8.6452 .36719 PAST PER ORIGIN .8337800 .66473 .26489 .35774 .5580627 7.9082 CONTROL ----- Variables not in the analysis after step 5 -----Minimum Variable Tolerance Tolerance F to enter "Wilks' Lambda PROF STA .4979703 .4603865 .22353 2.7911 Page 51 SPSS/PC+ F statistics and significances between pairs of groups after step 5 Each F statistic has 5 and 20.0 degrees of freedom. Group 1 Group 2 11.603 .0000 At step 6, ORIGIN was removed from the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda .26489 24.0 4 1 Equivalent F 14.5696 21.0 .0000 4 ----- Variables in the analysis after step 6 -----Variable Tolerance F to remove Wilks' Lambda COMPLEX .5695338 8.0299 .36618 LEAD_EX .6778561 4.6523 .32357 PAST PER .6697130 13.584 .43623 CONTROL .5704559 10.332 .39521 ------ Variables not in the analysis after step 6 ------Minimum Variable Tolerance Tolerance F to enter Wilks' Lambda PROF_STA .6516212 .4618141 1.2705 .24907 ORIGIN .8337800 .4966453 .66473 .25637

SPSS/PC+ Page 52 F statistics and significances between pairs of groups after step 6 21.0 degrees of freedom. Each F statistic has 4 and 1 Group Group 14.570 2 .0000 . At step 7, PROF_STA was included in the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda .24907 5 24.0 1 20.0 Equivalent F 12.0600 5 .0000 ----- Variables in the analysis after step 7 ------Wilks' Lambda Variable Tolerance F to remove COMPLEX .5290974 8,9806 .36090 1.2705 .26489 PROF_STA .6516212 LEAD_EX .32019 .6001996 5.7110 PAST_PER .4618141 13.936 .42261 .39113 11.408 CONTROL .5269143 ----- Variables not in the analysis after step 7 ------Minimum Wilks' Lambda Variable Tolerance Tolerance F to enter .4603865 2.1704 .22353 ORIGIN .6371765 -----SPSS/PC+ Page 53 F statistics and significances between pairs of groups after step 7 20.0 degrees of freedom. Each F statistic has 5 and 1 Group

Group

2 12.060 .0000 At step 8, ORIGIN was included in the analysis. Degrees of Freedom Signif. Between Groups Wilks' Lambda .22353 6 1 24.0 Equivalent F 10.9999 19.0 6 .0000 ----- Variables in the analysis after step 8 -----Variable Tolerance F to remove Wilks' Lambda COMPLEX ,4920543 4.1607 .27248 PROF_STA .4979703 2.7911 .25637 LEAD EX .5993354 5.0523 .28297 PAST_PER .4603865 12.112 .36603 ORIGIN .6371765 .24907 2.1704 CONTROL .5268576 9.0303 .32977 F statistics and significances between pairs of groups after step 8 Each F statistic has 6 and 19.0 degrees of freedom. 1 Group Group Z 11.000 .0000 F level or tolerance or VIN insufficient for further computation. Page 54 SPSS/PC+ Summary Table Action · Vars Wilks' Step Entered Removed In Lambda Sig. Label 1 PAST_PER 1 .54437 .0002 CONTRACTOR'S PAST PERFORMANCE OR IMAGE 2 .42308 .0001 ORIGIN OF THE COMPANY 2 ORIGIN 3 LEAD_EX 3 .36463 .0000 PROJECT LEADER'S EXPERIENCE 4 CONTROL 4 .31096 .0000 ARCHITECT OR CLIENT SUPERVISION AND CONT 5 .25637 .0000 COMPLEXITY OF PROJECT 5 COMPLEX

6	ORIGIN	4	.26489	.0000	ORIGIN OF THE COMPANY
7	PROF_STA	· 5	.24907	.0000	MANAGEMENT TEAM'S QUALITY-PROFESSIONAL Q
8	ORIGIN	6	.22353	.0000	ORIGIN OF THE COMPANY

Classification Function Coefficients

(Fisher's Linear Discriminant Functions)

PERFORM =	1	2
COMPLEX	4.459446	6.642191
PROF_STA	96.03139	54.82136
LEAD_EX	.1847489	1763594
PAST_PER	8.776058	15.63000
ORIGIN	18,11079	15.05179
CONTROL	5.380530	1.366030
(constant)	-62.90948	-63.87885

Canonical Discriminant Functions

		Percent of	Cumulative	Canonical :		After					
Function	Eigenvalue	Variance	Percent	Correlation	:	Function	Wilks' Lambda	Chi-squared	D.F.	Significance	
					:	0	.2235317	31.462	6	.0000	
1*	3.47364	100.00	100.00	.8811744	:						
•					•					•	

* marks the 1 canonical discriminant functions remaining in the analysis.

Page 55 SPSS/PC+

Standardized Canonical Discriminant Function Coefficients

FUNC 1 COMPLEX -.68571 PROF_STA .57555 LEAD_EX .67184 PAST_PER -1.04358 ORIGIN .45521 CONTROL .88742

Structure Matrix:

Pooled-within-groups correlations between discriminating variables and canonical discriminant functions

(Variables ordered by size of correlation within function)

	FUNC 1
PAST_PER	49087
ORIGIN	.44643
CONTROL	.37984
PROF_STA	27926
COMPLEX	10867
LEAD_EX	.05009

Unstandardized Canonical Discriminant Function Coefficients

Page 56		SPSS/PC+		
(constant)	7052658			
CONTROL	1.034732			
ORIGIN	.7884532		·	
PAST_PER	-1.766595		, ·	`
LEAD_EX	.9307522E-01			
PROF_STA	10.62183			
COMPLEX	5625999			
	FUNC 1			

Canonical Discriminant Functions evaluated at Group Means (Group Centroids)

Group	FUNC 1	
1	1.19377	
2	-2.68598	

Test of equality of group covariance matrices using Box's M

. . .

The ranks and natural logarithms of determinants printed are those of the group covariance matrices.

Group Label	Rank	Log Determinant
1	5	(singular)
2	6	-10.725307
Pooled Within-Groups		
Covariance Matrix	6	-5.839023

NOTE 10473

NOT ENOUGH NON-SINGULAR GROUP COVARIANCE MATRICES FOR DSC--At least two are required for a test to be performed.

Page 57	SPSS/PC+

•

Case	Mis		Actual	Highest	Probab	oility	2nd Hi	ahest	Discrimin	ant
Number	Val	Sel	Group	Group I		•	Group		Scores	
1			1	1		1.0000	2	.0000	2.1629	
2			1	1	.4178	.9945	. 2	.0055	.3836	
3			2	2	.2514	.9060	1	.0940	-1.5390	
4			1	1	.2984	.9867	2	.0133	. 1540	
5			2	` 2	.1045	.6029	1	.3971	-1.0627	
6			1	1	.6332	.9985	2	.0015	.7166	
7			1	1	.3425	.9906	2	.0094	.2445	
8			1	1	.7710	.9993	2	.0007	.9027	
9			1	1	.7710	.9993	2	.0007	.9027	
10			1	1	.4627	1.0000	2	.0000	1.9281	
11			1	1	.0551	1.0000	2	.0000	3.1121	
12			1	1	.6378	.9985	2	.0015	.7229	
13			1	1	.8091	.9994	2	.0006	.9521	
14			1	1	.5746	1.0000	2	.0000	1.7551	
15			1	1	.3492	1.0000	2	.0000	2.1300	
16			1	1	.0567	1.0000	2	.0000	3.0996	
17			2	2	.4147	.9999	1	.0001	-3.5017	
18			1	1	.4796	.9963	2	.0037	.4867	
19			· 2	2	.1284	1.0000	1	.0000	-4.2062	•
20			1	1	.3014	.9870	2	.0130	. 1603	
21			. 2	2	.3396	1.0000	1	.0000	-3.6410	
22	2		2	· 2	.8430	.9974	- 1	.0026	-2.4880	
23	i		2	່ 2	.6254	.9920	1	.0080	-2.1978	
24	•		1	1	.3354	.9900	2	.0100	.2305	
25	j		2	2	.8686	.9994	1	.0006	-2.8514	
26	b		1	1	.8030	.9999	2	.0001	1.4433	

```
Symbols used in Plots
```

.

• .

• .

.

.

.

.

Symbo	l Group	Label			
		••••••			
1	1				
2	2				
	•••••	••••••		 	
Page	58		SPSS/PC+		
	Histogra	m for Group	1		

.

.

- 244 -

	: -6.0 -4.0 -2.0 . 2222222222222222222222222222222222			Out 11	
Centroids	2				
Page 60		SPSS/	·		
	All-groups sta				
	Canonical Discr	iminant Fu	unction 1		
8 +				+	
				I	
ļ					
				I	
6 +				+	
1				ļ	
1		1		4	
4 +		11			
		11		+	
1		11 1			
		11 1			
2 +	2		1	+	
	2	111 11	1	I	
	2 2 22222		1	i	•
	2 2 22222	111 11	1	i	
-3	X++	-++	++	·-x	
01	ut -6.0 -4.0 -2.0	.0 2.0	4.0 6.0	Out	
Class	222222222222222222222222222222222222222	2111111111	1111111111	111	•
Centroids	2	1			
Page 61		SPSS	/PC+		

.

•

· ·

Classification Results -

•

.

.

Actual	Group	No. of Cases	Predicted 1	Group Membership 2	
Group	1	18	18 100.0%	0 _0%	
Group	2	8	0 .0%	8 100.0%	

Percent of "grouped" cases correctly classified: 100.00%

Classification Processing Summary 26 Cases were processed. 0 Cases were excluded for missing or out-of-range group codes. 0 Cases had at least one missing discriminating variable. 26 Cases were used for printed output. Page 62 SPSS/PC+ This procedure was completed at 17:09:29

Page 63

SPSS/PC+

1

FINISH.

End of Include file.

APPENDIX 7

SPSS(pc) Computer Printout of the Stepwise Procedures in Computing the Multiple Regression Analysis Model SET /MORE OFF. REGRESSION /VARIABLES PERFORM COMPLEX TO PROFIT PAS_P_PM /DESCRIPTIVES=all /SELECT INCLUDE EQ 1 /STATISTICS=all /CRITERIA pin(0.06) /DEPENDENT PERFORM /METHOD STEPWISE.

**** MULTIPLE REGRESSION ****

Listwise Deletion of Missing Data Selecting only Cases for which INCLUDE EQ 1

				•
	Mean	Std Deviati	Variance	Label
PERFORM	1.265	.448	.201	CONTRACTOR'S PERFORMANCE
COMPLEX	3.618	1.615	2.607	COMPLEXITY OF PROJECT
TRAINING	.104	.088	.008	STAFF TRAINING PROGRAMME
PLANT	.055	.090	.008	PLANT OWNERSHIP POLICY
COM_SIZE	430.706	359.350	129132.759	SIZE OF THE COMPANY
PROF_STA	.092	.077	.006	MANAGEMENT TEAM'S QUALITY-PROFESSIONAL Q
LEAD_EX	14.882	6.623	43.865	PROJECT LEADER'S EXPERIENCE
CONT_EX	.341	.301	.091	CONTRACTOR'S EXPERIENCE IN THE TYPE OF J
WORKLOAD	2687845.765	2182022.123	4761220547176.9	CONTRACTOR'S WORK LOAD
PAST_PER	2.853	.784	.614	CONTRACTOR'S PAST PERFORMANCE OR IMAGE
YEAR_BUS	23.059	15.001	225.027	NUMBER OF YEARS IN THE BUSINESS
ORIGIN	2.706	.719	.517	ORIGIN OF THE COMPANY
DEL	.108	.128	.016	AMOUNT OF DIRECTLY EMPLOYED LABOUR
LISTED	1.471	.507	.257	LISTED IN THE STOCK MARKET
CENTRAL	1.603	. 457	.209	CENTRALISED OR DECENTRALISED DECISION MA
SUBSID	1.706	.462	.214	WHETHER THE CONTRACTOR IS THE CLIENT'S S
ARCH_PER	2.971	.834	.696	ARCHITECT'S PERFORMANCE
CONTROL	3.412	.957	.916	ARCHITECT OR CLIENT SUPERVISION AND CONT
PAYMENT	1.059	.239	.057	PUNCTUALITY OF PAYMENT BY CLIENT
PROFIT	1.010	.127	.016	RATIO OF TENDER PRICE OVER PRE-TENDER ES
PAS_P_PM	2.206	.641	.411	PAST PERFORMANCE OF PROJECT MANAGER
N of Cases	s = 34			
Page 4		S	PSS/PC+	
			**** MUL	TIPLE REGRESSION ****

- 248 -

	PERFORM	COMPLEX	TRAINING	PLANT	COM_SIZE	PROF_STA	LEAD_EX
PERFORM	1.000	.270	252	054	.090	.227	050
	.201	.195	010	002	14.504	.008	150
	.999	.061	.075	.380	.306	.099	.388
	6.618	. 6.441	326	073	478.647	.258	-4.941
COMPLEX	.270	1.000	.109	261	.311	106	.024
	. 195	2.607	.015	038	180.490	013	.257
	.061	.999	.270	.068	.037	.276	.446
	6.441	86.029	.507	-1.255	5956.176	436	8.471
TRAINING	252	.109	1.000	.140	146	145	176
	010	.015	.008	.001	-4.583	.001	- 102
	.075	.270	.999	.215	.206	.207	.159
	326	.507	.253	.036	-151.232	.032	-3.373
PLANT	054	261	.140	1.000	091	.012	069
	002	038	.001	.008	-2.957	.000	041
	.380	.068	.215	.999	.304	.474	.350
	073	-1.255	.036	.269	-97.584	.003	-1.355
· COM_SIZE	.090	.311	146	091	1.000	168	.107
	14.504	180.490	-4.583	-2.957	129132.759	-4.662	254.086
	.306	.037	.206	.304	.999	.171	.274
	478.647	5956.176	-151.232	-97.584	4261381.059	-153.841	8384.824
PROF_STA	.227	106	. 145	.012	168	1.000	042
	.008	013	.001	.000	-4.662	.006	022
	.099	.276	.207	.474	.171	.999	.406
	.258	436	.032	.003	-153.841	. 197	716
LEAD_EX	050	.024	176	069	. 107	042	1.000
	150	.257	102	041	254.086	022	43.865
	.388	.446	. 159	.350	.274	.406	.999
	-4.941	8.471	-3.373	-1.355	8384.824	716	1447.529
CONT_EX	208	529	.138	.367	021	142	097
	028	257	.004	.010	-2.244	003	193
	.119	.001	.218	.016	.454	.211	,293
	926	-8.488	- 120	.330	-74.068	109	-6.385

Correlation, Covariance, 1-tailed Sig, Cross-Product:

٤

SPSS/PC+

.

.

.

.

Page 5

•

**** MULTIPLE REGRESSION ****

.

•

•

•

.

•

	PERFORM	COMPLEX	TRAINING	PLANT	COM_SIZE	PROF_STA	LEAD_EX
WORKLOAD	.188	.495	202	165	.302	. 149	245
	183624.367	1745643.604	-38531.370	-32592.410	236763189.747	25114.828	-3547635.544
	. 144	.001	- 126	.175	.041	.200	.081
	6059604.118	57606238.941	-1271535.216	-1075549.535	7813185261.647	828789.330	-117071972.941
PAST_PER	.632	070	244	.091	.100	.567	.236
	.222	088	017	.006	28.228	.034	1.225
	.000	.348	.082	.305	.286	.000	.090
	7.324	-2.912	552	.212	931,529	1.132	40.412
		ن					
YEAR_BUS	178	.393	.027	374	.406	267	. 134
	-1.198	9.508	.036	507	2189.927	309	-13.266
	. 156	.011	.440	.015	.009	.063	.226
	-39.529	313.765	1.173	-16.727	72267.588	-10.204	-437.765
ORIGIN	504	204	.043	034	.022	704	-069
	162	237 ·	.003	002	5.668	039	.328
	.001	.123	.404	.425	.451	.000	.349
	-5.353	-7.824	.090	072	187.059	-1.289	10.824
DEL	.145	215	.061	.261	290	.717	.043
	.008	044	.001	.003	-13.291	.007	.036
	.207	.111	.365	.068	.048	.000	.406
	.273	-1.462	.023	.099	-438.619	.233	1.186
LISTED	.236	218	.116	.254	229	.310	263
	.053	178	.005	.012	-41.736	.012	882
	.090	.108	.257	.073	.096	.037	.066
	1.765	-5.882	.170	.384	-1377.294	.400	-29.118
CENTRAL	.455	089	257	035	.180	.388	.565
-	.093	066	010	001	29.516	.014	1.709
	.003	.309	071	.422	. 155	.012	.000
	3.074	-2.162	•.340	048		.452	56.412

.

•

.095	.088	.187	.254	. 196	133	269
.020	.066	.008	.011	32.638	.005	824
.297	.310	.145	.073	.133	.226	.062
.647	2.176	.250	.351	1077.059	.157	-27.176
384	166	.240	.154	. 160	300	061
143	224	.018	.012	48.052	019	337
.012	. 174	.086	.192	. 183	.042	.366
-4.735	-7.382	.578	.383	1585.706	637	-11.118
	.020 .297 .647 384 143 .012	.020 .066 .297 .310 .647 2.176 384166 143224 .012 .174	.020 .066 .008 .297 .310 .145 .647 2.176 .250 384166 .240 143224 .018 .012 .174 .086	.020 .066 .008 .011 .297 .310 .145 .073 .647 2.176 .250 .351 384 166 .240 .154 143 224 .018 .012 .012 .174 .086 .192	.020 .066 .008 .011 32.638 .297 .310 .145 .073 .133 .647 2.176 .250 .351 1077.059 384 166 .240 .154 .160 143 224 .018 .012 48.052 .012 .174 .086 .192 .183	.020 .066 .008 .011 32.638 .005 .297 .310 .145 .073 .133 .226 .647 2.176 .250 .351 1077.059 .157 384 166 .240 .154 .160 300 143 224 .018 .012 48.052 019 .012 .174 .086 .192 .183 .042

Page 6

SPSS/PC+

.

**** MULTIPLE REGRESSION ****

.

LEAD_EX	PROF_STA	COM_SIZE	PLANT	TRAINING	COMPLEX	PERFORM	
164	302	.184	.057	.323	.399	474	CONTROL
-1.041	022	63.458	.005	.027	.617	203	
.177	.041	.148	.374	.031	.010	.002	
-34.353	736	2094.118	.164	.893	20.353	-6.706	
245	046	.088	050	.081	097	.133	PAYMENT
387	001	7.533	001	.002	037	.014	
.082	.398	.311	.390	.324	.292	.226	
-12.765	028	248.588	035	.056	-1.235	.471	
037	262	.254	009	109	.407	· . 151	PROFIT
031	003	11.608	000	001	.084	.009	
.417	.067	.074	.479	.270	.008	197	
-1.031	085	383.051	004	040	2.756	.283	
.020	.455	044	.078	.100	.283	.016	PAS_P_PM
.086	.023	-10.241	.005	.006	. 293	.004	
.455	.003	.401	.331	.287	.052	.465	
2.824	.743	-337.941	. 149	. 185	9.676	. 147	

••••••

Page 7

SPSS/PC+

.

**** MULTIPLE REGRESSION ****

-

CONT_EX WORKLOAD PAST_PER YEAR_BUS ORIGIN DEL LISTED

.

PERFORM	208	- 188	.632	178	504	. 145	.236
FERIORH	028	183624.367	.222	-1.198	162	.008	.053
	.119	.144	.000	. 156	.001	.207	.090
	926	6059604.118	7.324	-39.529	-5.353	.273	1.765
COMPLEX	529	.495	070	.393	204	215	218
COMPLEX	257	1745643.604	088	9.508	237	044	178
	.001	.001	.348	.011	.123	.111	.108
	-8.488	57606238.941	-2.912	313.765	-7.824	-1.462	-5.882
TRAINING	.138	202	244	.027	.043	.061	.116
	.004	-38531.370	017	.036	.003	.001	.005
	.218	. 126	.082	.440	.404	.365	.257
	.120	-1271535.216	552	1.173	.090	.023	.170
PLANT	.367	165	.091	374	034	.261	.254
	.010	-32592.410	.006	507	002	.003	.012
	.016	.175	.305	.015	.425	.068	.073
	.330	-1075549.535	.212	-16.727	072	.099	.384
COM_SIZE	021	.302	.100	.406	.022	290	229
CON_3122	-2.244	236763189.747	28.228	2189.927	5.668	-13.291	-41.736
	.454	.041	.286	.009	.451	.048	.096
	-74.068	7813185261.647	931.529	72267.588	187.059	-438.619	-1377.294
PROF_STA	142	. 149	.567	267	704	.717	.310
PROF_STA	003	25114.828	.034	309	039	.007	.012
	.211	.200	.000	.063	.000	.000	.037
	109	828789.330	1.132	- 10.204	-1.289	.233	.400
	097	245'	.236	134	.069	.043	263
LEAD_EX	193	-3547635.544	1.225	-13.266	.328	.036	882
	.193	.081	.090	.226	.349	.406	.066
	-6.385		40.412	-437.765	10-824	1,186	-29.118
					225		.403
CONT_EX	1.000	325	.004	440	.225	.044	
	.091	-213337.023	.001	-1.985	.049	.002	.061
	.999		.490	.005	. 100	.402	.009
	2.992	-7040121.768	.035	-65.507	1.610	, 056 ,	2.027
WORKLOAD	325		019	.351	537	.142	.214
	-213337.023	476122054717 6.9	-33083.975	11482016.014	-843077.041	39513.017	236256.599

. .

.

.

. .

• ,

.

.030 -7040121.768 15	.999	.457 -1091771.176	.021 378906528.471	.001 -27821542.353	.212 1303929.550	.112 7796467.765
	SPSS/PC+					
	-	.			••	
	***	* NULTI	PLE REGRI	SSIUN		
CONT_EX	WORKLOAD	PAST_PER	YEAR_BUS	ORIGIN	DEL	LISTED
.004	019	1.000	546	509	.380	.332
.001	-33083.975	-614	-6.415	287	.038	.132
.490	.457	.999	.000	.001	.013	.027
.035	-1091771.176	20.265	-211.706	-9.471	1.253	4.353
440	.351	546	1.000	.052	272	590
-1.985	11482016.014	-6.415	225.027	.563		-4.483
.005	.021	.000	.999	.385	.060	.000
-65.507	378906528.471	-211.706	7425.882	18.588	-17.178	-147.941
.225	537	-,509	.052	1.000	631	440
.049		287	.563	.517	058	160
.100		.001		.999	.000	.005
1.610	-27821542.353	-9.471	18.588	17.059	-1.909	-5.294
.044	.142		272	631	1.000	401
.002		.038	521	058	.016	.026
			.060	.000	.999	.009
.056	1303929.550	1.253	-17.178	-1.909	.537	.856
.403	.214	.332	590	440	.401	1.000
					.026	.257
					.009	.999
2.027	7796467.765	4.353	-147.941	-5.294	.856	8.471
. 103	- 121	.763	330	366	.365	.046
			-		.021	.011
						.398
.467	-3976082.176	9.015	-74.706	-3.971	702	.353
.059	. 380	. 128	115	268	.159	.609
				089	.009	.143
				.063	.185	.000
.269	12651701.647			-2.941		4.706
	-7040121.768 19 CONT_EX .004 .001 .490 .035 440 -1.985 .005 -65.507 .225 .049 .100 1.610 .044 .002 .402 .056 .403 .061 .009 2.027 .103 .014 .281 .467 .059 .008 .371	-7040121.768 157120278056838 SPSS/PC+ * * * CONT_EX WORKLOAD .004019 .001 -33083.975 .490 .457 .035 -1091771.176 440 .351 -1.985 11482016.014 .005 .021 -65.507 378906528.471 .225 .537 .049 -843077.041 .100 .001 1.610 -27821542.353 .044 .142 .002 39513.017 .402 .212 .056 1303929.550 .403 .214 .661 236256.599 .009 .112 2.027 7796467.765 .103121 .014 -120487.339 .281 .248 .467 -3976082.176 .059 .380 .008 383384.898 .371 .013	-7040121.768 157120278056838 -1091771.176 SPSS/PC+ * * * * M U L T I F CONT_EX WORKLOAD PAST_PER .004019 1.000 .001 -33083.975 .614 .490 .457 .999 .035 -1091771.176 20.265 440 .351546 -1.985 11482016.014 -6.415 .005 .021 .000 -65.507 378906528.471 -211.706 .225537509 .049 -843077.041287 .100 .001 .001 1.610 -27821542.353 -9.471 .044 .142 .380 .002 39513.017 .038 .402 .212 .013 .056 1303929.550 1.253 .403 .214 .332 .061 236256.599 .132 .009 .112 .027 2.027 7796467.765 4.353 .103121 .763 .014 -120487.339 .273 .281 .248 .000 .467 -3976082.176 9.015 .059 .380 .128 .008 383384.898 .046 .371 .013 .236	-7040121.768 157120278056838 -1091771.176 378906528.471 SPSS/PC+ **** NULTIPLE REGRI CONT_EX WORKLOAD PAST_PER YEAR_BUS .004019 1.000546 .001 -33083.975 .614 -6.415 .490 .457 .999 .000 .035 -1091771.176 20.265 -211.706 440 .351546 1.000 .1.985 11482016.014 -6.415 225.027 .005 .021 .000 .999 -65.507 378906528.471 -211.706 7425.882 .225 .537509 .052 .049 -843077.041287 .563 .100 .001 .001 .385 1.610 -27821542.353 -9.471 18.588 .044 .142 .380272 .002 39513.017 .038521 .402 .212 .013 .060 .056 1303929.550 1.253 -17.178 .403 .214 .332590 .061 236256.599 .132 -4.483 .009 .112 .027 .000 2.027 7796467.765 4.353 -147.941 .103121 .763330 .014 -120487.339 .273 -2.264 .281 .248 .000 .028 .467 -3976082.176 9.015 -74.706 .059 .380 .128115 .008 383384.898 .046800 .371 .013 .236 .258	-7040121.768 15712027805683 -1091771.176 378906528.471 -27821542.353 SPSS/PC+ **** HULTIPLE REGRESSION ** CONT_EX MORKLOAD PAST_PER YEAR_BUS ORIGIN .004019 1.000546509 .001 -33083.975 .614 -6.415287 .490 .457 .999 .000 .001 .035 -1091771.176 20.265 -211.706 -9.471 440 .351546 1.000 .052 -1.985 11482016.014 -6.415 225.027 .563 .005 .021 .000 .999 .385 -65.507 378906528.471 -211.706 7425.882 18.588 .225 .537509 .052 1.000 .049 -843077.041287 .563 .517 .100 .001 .001 .385 .999 1.610 -27821542.353 -9.471 18.588 17.059 .044 .142 .380272631 .002 39513.017 .038521058 .402 .212 .013 .060 .000 .056 1303929.550 1.253 -17.178 -1.909 .403 .214 .332590440 .061 256256.599 .132 -4.483160 .009 .112 .027 .000 .005 2.027 7796467.765 4.353 -147.941 -5.294 .103121 .763330366 .014 -120487.359 .273 -2.264 .107 .467 -3976082.176 9.015 -74.706 -3.971 .059 .380 .128115 -268 .008 383384.898 .046800089 .371 .013 .236 .258 .063	-7040121.768 157120278056838 -1091771.176 378906528.471 -27821542.353 1303929.550 SPSS/PC+ **** NULTIPLE REGRESSION **** CONT_EX WORKLOAD PAST_PER YEAR_BUS ORIGIN DEL .004019 1.000546509 .380 .001 -33083.975 .614 -6.415287 .038 .490457 .999 .000 .001 .013 .035 -1091771.176 20.265 -211.706 -9.471 1.253 440 .351546 1.000 .052272 -1.985 11482016.014 -6.415 225.027 .563521 .005 .021 .000 .999 .385 .060 -65.507 378906528.471 -211.706 7425.882 18.588 -177.178 .225 .537 .509 .052 1.000 .631 .044 .142 .380 .272 .633 .117 .058 .100 .001 .001 .385 .999 .000 1.610 -27821542.353 .9.471 18.588 17.059 .1000 .044 .142 .380 .272 .631 1.000 .022 39513.017 .038 .521 .058 .016 .402 .212 .013 .066 .000 .999 .056 1303929.550 1.253 .177 .1.909 .044 .142 .380 .272 .631 1.000 .001 .001 .385 .999 .000 1.610 .27821542.353 .9.471 18.588 17.059 .1.909 .044 .142 .380 .272 .631 1.000 .002 .39513.017 .038 .521 .058 .016 .403 .214 .332 .590 .440 .401 .061 .23625.6599 .132 .4683 .160 .000 .999 .056 1303929.550 1.253 .174.178 .1.909 .537 .403 .214 .332 .590 .440 .401 .061 .23625.6599 .132 .4.70 .590 .028 .016 .009 .112 .027 .000 .005 .009 2.027 .7796467.765 .4.353 .147.941 .5.294 .856 .103121 .763330366 .365 .014 .120487.339 .273 .2.264 .120 .021 .281 .248 .000 .028 .017 .017 .467 .3976082.176 9.015 .74.706 .3.971702 .059 .380 .128115268 .159 .008 .38384.898 .044800 .089 .009 .371 .013 .236 .258 .043 .185

-

.

ų

ARCH_PER	013	194	·470	.472	.389	289	540
	003	-352671.340	307	5.911	.234	031	228
	.471	.136	.003	.002	.011	.049	.000
	109	-11638154.235	-10,147	195.059	7.706	-1.015	-7.529
CONTROL	052	.268	482	.384	.269	270	099
	015	559537.191	362	5.520	. 185	033	048
	.385	.063	.002	.012	.062	.061	.288
	496	18464727.294	-11.941	182.176	6.118	-1.090	-1.588

SPSS/PC+

* * * * MULTIPLE REGRESSION * * * *

	CONT_EX	WORKLOAD	PAST_PER	YEAR_BUS	ORIGIN	DEL	LISTED
PAYMENT	.387	163	.210	246	. 104	.014	.265
	.028	-85020,955	.039	882	.018	.000	.032
	.012	.178	.117	.080	.280	.469	.065
	.918	-2805691.529	1.294	-29.118	.588	.014	1.059
PROFIT	128	.285	139	.281	058	055	103
	005	79170.167	014	.537	005	001	007
	.235 ·	.051	.216	.053	.372	.379	.282
	162	2612615.522	458	17.713	176	029	218
PAS_P_PN	183	.326	. 122	.011	391	.419	.066
	035	456063.020	.061	.109	180	.034	.021
	. 150	.030	.245	.475	.011	.007	.356
	-1.165	15050079.647	2.029	3.588	-5.941	1.129	.706

· · · SPSS/PC+ Page 10

.

* * * * MULTIPLE REGRESSION * * *

	CENTRAL	SUBSID	ARCH_PER	CONTROL	PAYMENT	PROFIT	PAS_P_PM
PERFORM	.455	.095	384	474	.133	. 151	.016
	.093	.020	143	203	.014	.009	.004
	.003	.297	.012	.002	.226	.197	.465

	3.074	.647	-4.735	-6.706	.471	.283	.14
MPLEX	089	.088	166	.399	097	.407	.28
	066	.066	224	.617	037	.084	.29
	.309	.310	.174	.010	.292	.008	05
	-2.162	2.176	-7.382	20.353	-1.235	2.756	9.67
RAINING	257	.187	.240	.323	.081	109	.10
	010	.008	.018	.027	.002	001	.00
	.071	.145	.086	.031	.324	.270	.28
	340	.250	.578	.893	.056	040	.18
LANT	035	.254	. 154	.057	050	009	.07
	001	.011	.012	.005	001	000	.00
	.422	.073	. 192	.374	.390	.479	.33
	048	.351	.383	.164	035	004	. 14
COM_SIZE	.180	.196	.160	. 184	.088	.254	04
_	29.516	32.638	48.052	63.458	7.533	11.608	-10.24
	.155	. 133	. 183	. 148	.311	.074	.40
	974.029	1077.059	1585.706	2094.118	248.588	383.051	-337.94
PROF_STA	.388	. 133	300	302	046	262	.45
	.014	.005	019.	022	001	003	.02
•	.012	.226	.042	041	.398	.067	.00
	.452	. 157	637	736	028	085	.74
LEAD_EX	.565	269	061	164	245	037	.02
	1.709	824	337	-1.041	387	031	.08
	.000	.062	.366	.177	.082	.417	.45
``	56.412	-27.176	-11.118	-34.353	-12.765	-1.031	2.82
CONT_EX	.103	.059	013	052	.387	128	18
	.014	.008	003	015	.028	005	03
	.281	.371	.471	.385	.012	.235	.15
	.467	.269	109	496	.918	162	-1.16
WORKLOAD	121	.380	194	.268	163	.285	.32
	-120487.339	383384.898	-352671.340	559537.191	-85020.955	79170.167	456063.02
	.248	.013	. 136	.063	.178	.051	.03
	-3976082.176	12651701.647	-11638154.235	18464727.294	-2805691.529	2612615.522	15050079.64

.

.

.

•

•

.

.

.

.

.

.

.

	CENTRAL	SUBSID	ARCH_PER	CONTROL	PAYMENT	PROFIT	PAS_P_PM
PAST_PER	.763	.128	470	482	.210	139	.122
	.273	.046	307	362	.039	•014	.061
	.000	.236	.003	.002	.117	.216	.245
	9.015	1.529	-10.147	-11.941	1.294	458	2.029
YEAR_BUS	330	115	.472	.384	246	.281	.011
	-2.264	800	5.911	5.520	882	.537	.109
	.028	.258	.002	.012	.080	.053	.475
	-74.706	-26.412	195.059	182.176	-29.118	17.713	3.588
ORIGIN	366	268	.389	.269	. 104	058	391
	120	089	.234	. 185	.018	005	180
	.017	.063	.011	.062	.280	.372	.011
	-3.971	-2.941	7.706	6.118	.588	176	-5.941
DEL	.365	.159	289	270	.014	055	.419
	.021	.009	031	033	.000	001	.034
	.017	. 185	.049	.061	.469	.379	.007
	.702	.309	-1.015	-1.090	.014	029	1.129
LISTED	.046	.609	540	099	.265	103	.066
	.011	. 143	228	048	.032	007	.021
	.398	.000	.000	.288	.065	.282	.356
	.353	4.706	-7.529	-1.588	1.059	218	.706
CENTRAL	1.000	211	270	585	057	009	.132
	.209	045	103	256	006	001	.039
	.999	. 116	.061	.000	.374	.479	.228
	6.890	-1.471	-3.397	-8.441	-,206	018	1.279
SUBSID	211	1.000	259	.213	. 161	.088	.006
	045	.214	100	.094	.018	.005	.002
	.116	.999	.070	.113	. 181	.311	.487
	-1.471	7.059	-3.294	3.118	.588	.170	.059
ARCH_PER	270	259	1.000	. 167	295	002	.012
-	103	100	. 696	. 134	059	000	.006
•	.061	.070	.999	.172	.045	.495	.474

**** MULTIPLE REGRESSION ****

.

-

.

si.

	-3.397	-3.294	22.971	4.412	-1.941	007	.206
CONTROL	585	.213	.167	1.000	.023	.134	.105
	256	.094	.134	.916	.005	.016	.064
	.000	.113	.172	.999	.448	.225	.278
	-8.441	3.118	4.412	30.235	.176	.538	2.118

Page 12

SPSS/PC+

**** MULTIPLE REGRESSION ****

	CENTRAL	SUBSID	ARCH_PER	CONTROL	PAYMENT	PROFIT	PAS_P_PM
PAYMENT	057	. 161 ,	295	.023	1.000	-,081	082
	006	.018	059	.005	.057	002	012
	.374	. 181	.045	.448	.999	.325	.323
	206	.588	-1.941	.176	1.882	081	412
PROFIT	009	.088	002	.134	081	1.000	050
	001	.005	000	.016	002	.016	004
	.479	.311	.495	.225	.325	.999	.390
	018	.170	007	.538	081	.533	133
PAS_P_PM	. 132	.006	.012	.105	082	050	1.000
	.039 ·	.002	,006	.064	012 ·	004	.411
	.228	,487 [°]	.474	.278	.323	.390	.999
	1.279	.059	.206	2.118	412	133	13.559

Page 13

**** MULTIPLE REGRESSION ****

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

SPSS/PC+

Beginning Block Number 1. Method: Stepwise

Variable(s) Entered on Step Number 1.. PAST_PER CONTRACTOR'S PAST PERFORMANCE OR IMAGE

Multiple R

.63241

Analysis of Variance

R Square Adjusted R Square Standard Error	.39994 .38119 .35227	R Square Change F Change Signif F Change	21.32817	Regression Residual	DF 1 32	Sum of Squares 2.64667 3.97097	Mean Square 2.64667 .12409
				F = 21.32817		Signif F = .0001	
Condition number b	ounds: 1.0	00, 1.000					
Var-Covar Matrix o Below Diagonal: C	-	efficients (B) ove: Correlation					
PAST_P	ER						
PAST_PER .006	12						
Page 14		SPSS/PC+					4/22/92
		**** MUL	TIPLE R	EGRESSION *	* * *		
Equation Number 1	Dependent Va	riable PERFORM	CONTRACTOR'S	PERFORMANCE			

.

XTX Matrix

	PAST_PER	PERFORM	COMPLEX	TRAINING	PLANT	COM_SIZE	PROF_STA	LEAD_EX	CONT_EX	WORKLOAD
PAST_PER	1.00000	63241	.06974	.24376	09067	10024	56684	•.23595	00450	.01935
PERFORM	.63241	60006	.31406	09776	11170	.02674	13186	19970	21096	.20016
COMPLEX	06974	.31406	.99514	.09166	25426	.31807	06636	.04046	52878	.49414
TRAINING	24376	09776	.09166	.94058	.16180	12120	.28282	11872	.13915	20637
PLANT	.09067	11170	25426	.16180	.99178	10015	03967	09001	.36707	16354
COM_SIZE	.10024	.02674	.31807	12120	10015	.98995	22488	.08311	02120	.30389
PROF_STA	.56684	13186	06636	.28282	03967	22488	.67869	17619	14495	.16008
LEAD_EX	.23595	19970	.04046	11872	09001	.08311	17619	.94433	09809	24092
CONTEX	.00450	21096	52878	.13915	.36707	02120	14495	09809	.99998	32464
WORKLOAD	01935	.20016	.49414	20637	16354	.30389	.16008	24092	32464	.99963
YEAR_BUS	54574	. 16682	.35450	10597	32444	.46096	.04231	00475	43705	.34023
ORIGIN	50937	18168	23974	08085	.01249	.07300	41508	.18906	.22766	54725

258

DEL	.37989	09521	18859	.15384	.22705	32810	.50158	04709	.04240	. 14934
LISTED	.33224	.02559	19474	. 19710	.22415	26255	.12161	34135	.40117	.22014
CENTRAL	.76292	02730	03559	07115	10412	.10328	04433	.38487	-09944	10609
SUBSID	.12788	.01380	.09724	.21822	.24273	.18356	.06078	29902	.05796	.38237
ARCH PER	47031	08664	19887	.12509	. 19665	.20742	03337	.05000	01103	20282
CONTROL	48241	- 16899	.36543	.20524	.10103	.23285	02840	05038	04998	.25856
PAYMENT	.20953	8.224E-04	08246	.13221	06864	.06677	16480	29398	.38591	15909
PROFIT	13915	.23886	.39708	14260	.00337	.26801	18305	00427	12754	.28269
PAS_P_PM	.12243	06190	.29186	.12972	.06672	05673	.38534	00873	18347	.32844

Page 15

SPSS/PC+

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

**** MULTIPLE REGRESSION ****

XTX Matrix

• .. • .. •

· · ·

	YEAR_BUS	ORIGIN	DEL	LISTED	CENTRAL	SUBSID	ARCH_PER	CONTROL	PAYMENT	PROFIT
PAST_PER	.54574	.50937	37989	33224	76292	12788	.47031	.48241	20953	. 13915
PERFORM	. 16682	18168	09521	.02559	02730	.01380	08664	16899	8.224E-04	.23886
COMPLEX	.35450	23974	18859	19474	03559	.09724	19887	.36543	08246	.39708
TRAINING	10597	08085	. 15384	.19710	07115	.21822	.12509	.20524	.13221	14260
PLANT	32444	.01249	.22705	.22415	10412	.24273	. 19665	.10103	06864	.00337
COM_SIZE	.46096	.07300	32810	26255	.10328	.18356	.20742	.23285	.06677	.26801
PROF_STA	.04231	41508	.50158	.12161	04433	.06078	03337	02840	16480	- 18305
LEAD_EX	00475	.18906	04709	34135	.38487	29902	.05000	05038	29398	00427
CONTEX	43705	.22766	.04240	.40117	.09944	.05796	01103	04998	.38591	12754
WORKLOAD	.34023	54725	. 14934	.22014	10609	.38237	20282	.25856	15909	.28269
YEAR BUS	.70216	22576	06477	40855	.08608	04557	.21562	.12119	13193	.20549
ORIGIN	22576	.74054	43747	27118	.02236	20289	.14972	.02365	.21054	12924
DEL	06477	43747	.85569	.27516	.07509	.11004	11052	08720	06582	00211
LISTED	40855	27118	.27516	.88961	20728	.56609	38352	.06104	. 19555	05649
CENTRAL	.08608	.02236	.07509	20728	.41795	30843	.08878	21681	21703	.09670
SUBSID	04557	-,20289	,11004	.56609	30843	.98365	-,19855	.27509	.13458	10565
ARCH PER	.21562	.14972	11052	38352	.08878	19855	,77881	05948	- 19666	06748
CONTROL	.12119	.02365	08720	.06104	21681	.27509	05948	.76728	. 12447	.06682
PAYMENT	13193	.21054	06582	.19555	21703	. 13458	19666	.12447	.95610	05147
PROFIT	.20549	-,12924	00211	05649	.09670	. 10565	06748	.06682	05147	.98064
PAS_P_PM	.07812	32829	.37199	.02519	.03897	00964	.06925	.16365	10716	03252

.

•

.

• • • •

.

. • •

SPSS/PC+ 4/22/92 Page 16 **** MULTIPLE REGRESSION **** Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE XTX Matrix PAS_P_PM PAST_PER -.12243 ******************* PERFORM -.06190 -----COMPLEX .29186 .12972 TRAINING PLANT .06672 COM_SIZE -.05673 PROF_STA .38534 -.00873 LEAD_EX CONT_EX -.18347 WORKLOAD .32844 YEAR_BUS .07812 ORIGIN -.32829 DEL .37199 LISTED .02519 CENTRAL .03897 SUBSID -.00964 ARCH_PER .06925

				Variables i	in the Equa	tion					
Variable	8	SE B	95% Confidnce	Intrvl B	Beta	SE Beta	Correl	Part Cor	Partial	Tolerance	۲
PAST_PER	.36139	.07825	.20200	.52079	.63241	- 13694	.63241	.63241	.63241	1.00000	4.61
(Constant)	.23367	.23128	23743	.70478							1.01

CONTROL

PAYMENT

PROFIT PAS_P_PM .16365

-.10716 -.03252

· · · . 260 -..

Page 17		SP	SS/PC+						4/22/92
			**** #	ULTI	PLE RE	GRESSI	ON *	* * *	
Equation Nu	mber 1 De	ependent Varia	ble PERF	ORM CON	TRACTOR'S F	ERFORMANCE			
in -			Va	riables r	ot in the E	quation		•••••	
Variable	Sig T	Variable	Beta in	Partial	1oleranc e	Min Toler	ť	Sig T	
PAST_PER	.0001	COMPLEX	.31559	.40641	.99514	.99514	2.477	.0189	
(Constant)	.3199	TRAINING	10394	13013	.94058	.94058	731	.4704	
		PLANT	11262	14479	.99178	.99178	815	.4214	
		COM_SIZE	.02701	.03469	. 98995	.98995	. 193	.8480	
		PROF_STA	19429	20663	.67869	.67869	-1.176	.2486	
		LEAD_EX	21148	26529	.94433	.94433	-1.532	. 1357	
		CONT_EX	21096	27234	.99998	.99998	-1.576	.1252	
		WORKLOAD	.20023	.25844	.99963	.99963	1.490	. 1465	
		YEAR_BUS	.23757	.25699	.70216	.70216	1.481	.1488	
		ORIGIN	24533	27254	.74054	.74054	-1.577	.1249	
		DEL	11127	13287	.85569	.85569	746	.4610	
		LISTED	.02876	.03502	.88961	-88961	. 195	.8466	
		CENTRAL	06531	05451	.41795	.41795	304	.7632	
	. •	SUBSID	.01403	.01797	.98365	.98365	. 100	.9210	
		ARCH_PER	11125	-,12674	.77881	.77881	711	.4822	
		CONTROL	22025	24905	,76728	.76728	-1.432	.1622	
		PAYMENT	8.6022E-04	00109	.95610	.95610	.006	.9952	
		PROFIT	.24357	.31138	.98064	.98064	1.824	.0778	
		PAS_P_PM	06284	08052	.98501	.98501	450	.6560	
Page 18		SP	SS/PC+						 4/22/9
			**** #	ULTI	PLE RE	GRESSI	ON *	* * *	
				·					
Equation Nu	mber 1 De	ependent Varia	ble PERF	ORM CON	TRACTOR'S P	ERFORMANCE			
Variable(s)	Entered on	Step Number	2 COMPL	EX COMP	LEXITY OF P	ROJECT			
						فحمامه	s of Varia		
Multiple R	.7	0644				Analysis	S OT VALUE	nce	

•

. .

.

.

•

.

.

.

.

,

tandard Err	•	6674 2701	F Change Signif F Ch	6.133 ange .018		Regressio Residual		2 31	3.30257 3.31507		1.65
						F =	15.44154	Signif	F≃ .0000		
Condition nu	umber bounds	: 1.005	, 4.020								
	atrix of Reg nal: Covari	-	ificients (B) /e: Correlati	ion							
	PAST_PER	COMPLEX									
PAST_PER COMPLEX 1	.00530 .7948E-04	.06974 .00125									
Page 19			SPSS/PC+								4/22
Equation Nu	umber 1 D	lependent Var	iable PER	FORM CONTR	ACTOR'S PER	FORMANCE		•			
·		ependent Var	iable PER	FORM CONTR	ACTOR'S PER	RFORMANCE				•	
Equation Nu XTX Matrix							PROF STA		LUNI EX	VORKI OAD	
XTX Matrix	PAST_PER	COMPLEX	PERFORM	TRAINING	PLANT	COM_SIZE	PROF_STA	LEAD_EX	CONT_EX	WORKLOAD	
XTX Matrix PAST_PER	PAST_PER 1.00489	COMPLEX	PERFORM 65442	TRAINING	PLANT	COM_SIZE	56219	- 23879	- .03256	01528	
XTX Matrix	PAST_PER	COMPLEX	PERFORM	TRAINING	PLANT	COM_SIZE	-	-	-		
XTX Matrix PAST_PER	PAST_PER 1.00489	COMPLEX	PERFORM 65442 31559	TRAINING	PLANT	COM_SIZE	56219	- 23879	- .03256	01528 49655 .04421	
XTX Matrix PAST_PER COMPLEX	PAST_PER 1.00489 .07008	COMPLEX .07008 1.00489	PERFORM 65442 31559	TRAINING .23733 09211	PLANT 07285 .25551	COM_SIZE 12253 31962	56219 .06668	23879 04066	.03256 .53136	01528 49655	
XTX Matrix PAST_PER COMPLEX PERFORM	PAST_PER 1.00489 .07008 .65442	COMPLEX .07008 1.00489 .31559	PERFORM 65442 31559	TRAINING .23733 09211 12669	PLANT 07285 .25551 03145	COM_SIZE 12253 31962 07364	56219 .06668 11092	23879 04066 21247		01528 49655 .04421	
XTX Matrix PAST_PER COMPLEX PERFORM TRAINING	PAST_PER 1.00489 .07008 .65442 23733	COMPLEX .07008 1.00489 .31559 .09211	PERFORM 65442 31559 .50094 12669	TRAINING 23733 09211 12669	PLANT 07285 .25551 03145 .18522	COM_SIZE 12253 31962 07364 15049	56219 .06668 11092 .28893	23879 04066 21247 12245	.03256 .53136 04408 .18786	01528 49655 .04421 25188	
XTX Matrix PAST_PER COMPLEX PERFORM TRAINING PLANT	PAST_PER 1.00489 .07008 .65442 23733 .07285	COMPLEX .07008 1.00489 .31559 .09211 25551	PERFORM 65442 31559 .50094 12669 03145	TRAINING 23733 09211 12669 .93214 .18522	PLANT 07285 .25551 03145 .18522 .92681	COM_SIZE 12253 31962 07364 15049 01888	56219 .06668 11092 .28893 05662	23879 04066 21247 12245 07968	.03256 .53136 04408 .18786 .23197	01528 49655 .04421 25188 03728	
XTX Matrix PAST_PER COMPLEX PERFORM TRAINING PLANT COM_SIZE	PAST_PER 1.00489 .07008 .65442 23733 .07285 .12253 .56219 .23879	COMPLEX .07008 1.00489 .31559 .09211 25551 .31962 06668 .04066	PERFORM6544231559 .500941266903145073641109221247	TRAINING 23733 09211 12669 .93214 .18522 15049 .28893 12245	PLANT 07285 .25551 03145 .18522 .92681 01888 05662 07968	COM_SIZE 12253 31962 07364 15049 01888 .88829 20367 .07018	56219 .06668 11092 .28893 05662 20367 .67427 17349	23879 04066 21247 12245 07968 .07018 17349 .94268	.03256 .53136 04408 .18786 .23197 .14781 18021 07659	01528 49655 .04421 25188 03728 .14595 .19303 26101	
XTX Matrix PAST_PER COMPLEX PERFORM TRAINING PLANT COM_SIZE PROF_STA LEAD_EX CONT_EX	PAST_PER 1.00489 .07008 .65442 23733 .07285 .12253 .56219 .23879 03256	COMPLEX .07008 1.00489 .31559 .09211 25551 .31962 06668 .04066 53136	PERFORM6544231559 .50094126690314507364110922124704408	TRAINING 23733 09211 12669 .93214 1.18522 15049 .28893 12245 .18786	PLANT 07285 .25551 03145 .18522 .92681 01888 05662 07968 .23197	COM_SIZE 12253 31962 07364 15049 01888 .88829 20367 .07018 .14781	56219 .06668 11092 .28893 05662 20367 .67427 17349 18021	23879 04066 21247 12245 07968 .07018 17349 .94268 07659	.03256 .53136 04408 .18786 .23197 .14781 18021 07659 .71901	01528 49655 .04421 25188 03728 .14595 .19303 26101 06207	
XTX Matrix PAST_PER COMPLEX PERFORM TRAINING PLANT COM_SIZE PROF_STA LEAD_EX	PAST_PER 1.00489 .07008 .65442 23733 .07285 .12253 .56219 .23879	COMPLEX .07008 1.00489 .31559 .09211 25551 .31962 06668 .04066	PERFORM6544231559 .500941266903145073641109221247	TRAINING 23733 09211 12669 .93214 .18522 15049 .28893 12245	PLANT 07285 .25551 03145 .18522 .92681 01888 05662 07968	COM_SIZE 12253 31962 07364 15049 01888 .88829 20367 .07018	56219 .06668 11092 .28893 05662 20367 .67427 17349	23879 04066 21247 12245 07968 .07018 17349 .94268	.03256 .53136 04408 .18786 .23197 .14781 18021 07659	01528 49655 .04421 25188 03728 .14595 .19303 26101	

.

· .

.

•

.

.

•

.

.

18601	i									
	9569	.08705		.21504	.17440	20030	.10863	33343	.29770	.31684
60430	3576	01607	i	06787	11321	.11466	04670	.38631	.08052	08841
3469 .0	9771	01688	i	.20927	.26757	.15248	.06726	30298	.10963	.33409
84251	9984	02388	i	.14341	.14584	.27098	04663	.05809	11670	10408
5681 .3	6721 İ	28432	i	.17159	. 19440	.11605	00404	06524	.14419	.07711
.03750	8286	.02685	i	.13981	08970	.09312	17029	29063	.34209	11815
1133 .3	9902 İ	.11354	Í.	17918	.10482	.14110	15657	02041	.08346	.08552
4288 .2	9329 j	15401	i	.10283	.14130	15002	.40480	02060	02839	.18352
	13469 .0' 484251' 45681 .3: 203750: 11133 .3:	13469 .09771 4842519984 45681 .36721 2037508286 11133 .39902	13469 .09771 01688 4842519984 02388 45681 .36721 28432 2037508286 .02685 11133 .39902 .11354	13469 .09771 01688 4842519984 02388 45681 .36721 28432 2037508286 .02685 11133 .39902 .11354	13469 .09771 01688 .20927 48425 19984 02388 .14341 45681 .36721 28432 .17159 20375 08286 .02685 .13981 11133 .39902 .11354 17918	13469 .09771 01688 .20927 .26757 48425 19984 02388 .14341 .14584 45681 .36721 28432 .17159 .19440 20375 08286 .02685 .13981 08970 11133 .39902 .11354 17918 .10482	13469 .09771 01688 .20927 .26757 .15248 48425 19984 02388 .14341 .14584 .27098 45681 .36721 28432 .17159 .19440 .11605 20375 08286 .02685 .13981 08970 .09312 11133 .39902 .11354 17918 .10482 .14110	13469 .09771 01688 .20927 .26757 .15248 .06726 48425 19984 02388 .14341 .14584 .27098 04663 45681 .36721 28432 .17159 .19440 .11605 00404 20375 08286 .02685 .13981 08970 .09312 17029 11133 .39902 .11354 17918 .10482 .14110 15657	13469 .09771 01688 .20927 .26757 .15248 .06726 30298 48425 19984 02388 .14341 .14584 .27098 04663 .05809 45681 .36721 28432 .17159 .19440 .11605 00404 06524 20375 08286 .02685 .13981 08970 .09312 17029 29063 11133 .39902 .11354 17918 .10482 .14110 15657 02041	13469 .09771 01688 .20927 .26757 .15248 .06726 30298 .10963 48425 19984 02388 .14341 .14584 .27098 04663 .05809 11670 45681 .36721 28432 .17159 .19440 .11605 00404 06524 .14419 20375 08286 .02685 .13981 08970 .09312 17029 29063 .34209 11133 .39902 .11354 17918 .10482 .14110 15657 02041 .08346

Page 20

SPSS/PC+

**** MULTIPLE REGRESSION ****

.

.

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix

	YEAR_BUS	ORIGIN	DEL	LISTED	CENTRAL	SUBSID	ARCH_PER	CONTROL	PAYMENT	PROFIT
PAST_PER	.52090	.52617	36667	31860	76043	13469	.48425	.45681	20375	.11133
COMPLEX	35623	.24092	. 18951	. 19569	.03576	09771	.19984	36721	.08286	39902
PERFORM	.05494	10602	03569	.08705	01607	01688	•.02388	28432	.02685	.11354
TRAINING	13862	05876	. 17121	.21504	06787	.20927	.14341	.17159	.13981	17918
PLANT	23387	04876	.17886	.17440	11321	.26757	. 14584	. 19440	08970	.10482
COM_SIZE	.34765	.14963	26783	20030	.11466	.15248	.27098	.11605	.09312	.14110
PROF_STA	.06595	43106	.48901	.10863	04670	.06726	04663	00404	17029	15657
LEAD_EX	01917	.19881	03943	33343	.38631	30298	.05809	06524	29063	02041
CONT_EX	24868	.10027	05782	.29770	.08052	. 10963	11670	.14419	.34209	.08346
WORKLOAD	.16420	42820	.24299	.31684	08841	.33409	10408	.07711	11815	.08552
YEAR_BUS	.57588	14035	.00241	33918	.09876	08021	.28646	00898	10255	.06404
ORIGIN	14035	.68279	48291	31810	.01378	17947	.10181	.11168	. 19067	03357
DEL	.00241	48291	.81994	.23825	.06835	.12846	14821	01794	08144	.07315
LISTED	33918	31810	.23825	.85151	21424	.58512	42244	.13255	.17941	.02122
CENTRAL	.09876	.01378	.06835	21424	.41667	30496	.08167	20374	21998	.11090
SUBSID	08021	17947	.12846	.58512	30496	.97415	17912	.23939	.14264	.06685
ARCH_PER	.28646	.10181	14821	42244	.08167	17912	.73907	.01355	21314	.01188
CONTROL	00898	.11168	01794	.13255	20374	.23939	.01355	.63309	.15475	07899
PAYMENT	10255	. 19067	08144	.17941	21998	. 14264	21314	.15475	.94926	01857
PROFIT	.06404	03357	.07315	.02122	.11090	.06685	.01188	07899	01857	.82219
PAS_P_PM	02585	25797	.42730	.08230	.04941	03816	.12757	.05648	08297	- 14898
	•									

•

Page 21 SPSS/PC+ 4/22/92

.

.

**** MULTIPLE REGRESSION ****

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

.

XTX Matrix

.

.

PAS_P_PM

.

.

14288
29329
15401
.10283
. 14 130
15002
.40480
02060
02839
.18352
02585
25797
.42730
.08230
.04941
,03816
,03816 .12757
,03816
,03816 .12757
,03816 .12757 .05648 08297
,03816 .12757 .05648 08297 14898
,03816 .12757 .05648 08297

Variables in the Equation										
Variable	B	SE B	95% Confdace	Intrvl B	Beta	SE Beta	Correl Part Cor	Partial	Tolerance	T
PAST_PER COMPLEX (Constant)	.37397 .08753 11886	.07282 .03534 .25760	.22545 .01545 64424	.52249 .15961 .40652	.65442 .31559	• 12743 • 12743	.63241 .65282 .26995 .31482	.67800 .40641	.99514 .99514	5.135 2.477 461

r

Page 22		SPSS	/PC+						4/2	22/9
		•	*** M	υιτι	PLE RE	GRESSI	ON *	* * *		
Equation Nu	mber 1	Dependent Variabl	e PERF	ORM CON	TRACTOR'S P	ERFORMANCE				
in -			Va	riables n	ot in the E	quation				
Variable	Sig T	Variable	Beta in	Partial	Tolerance	Min Toler	T	Sig T		
PAST_PER	.0000	TRAINING	13591	18540	.93214	.93214	-1.033	.3097		
COMPLEX	.0189	PLANT	03394	04616	.92681	.92681	253	.8019		
(Constant)	.6477	COM_S1ZE	08290	11039	.88829	.88829	608	.5475		
		PROF_STA	16450	19085	.67427	.67427	-1.065	.2954		
		LEAD_EX	22539	30919	.94268	.93864	-1.781	.0851		
		CONT_EX	06131	07345	.71901	.71552	403	.6895		
		WORKLOAD	.05862	.07193	.75426	.75088	. 395	.6956		
		YEAR_BUS	.09540	.10229	.57588	.\$7588	.563	.5775		
		ORIGIN	15527	18128	.68279	-68279	-1.010	.3207		
		DEL	04353	05569	.81994	-81994	306	.7621		
		LISTED	.10223	.13328	.85151	-85151	.737	.4671		
		CENTRAL		03517	.41667	.41667	193	.8485		
	•	SUBSID		-,02417		97415	132	.8955		
		ARCH_PER		03925	.73907	.73907	215	.8311		
		CONTROL		50487	.63309	.63309	-3.204	.0032		
		PAYMENT	.02828	.03893	.94926		.213			
		PROFIT	. 13809	. 17692	.82219		. 985			
		PAS_P_PM	17123	22944	.89941	.89941	-1.291	.2065		

.

•

.

.

Variable(s) Entered on Step Number 3.. CONTROL ARCHITECT OR CLIENT SUPERVISION AND CONT

Multiple R	.79167			Analysis of Var	iance		
R Square	.62674	R Square Change	. 12769		DF	Sum of Squares	Mean Square
Adjusted R Square	.58941	F Change	10.26246	Regression	3	4,14755	1.38252
Standard Error	.28694	Signif F Change	.0032	Residual	30	2.47010	.08234

F = 16.79103 Signif F = .0000

	tion number bounds:	1.580,	12.396
Page		SPSS/P	

**** MULTIPLE REGRESSION ****

. . . .

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

Var-Covar Matrix of Regression Coefficients (B) Below Diagonal: Covariance Above: Correlation

	PAST_PER	COMPLEX	CONTROL
PAST_PER	.00542	15287	.49698
COMPLEX	-3.843E-04	.00117	41820
CONTROL	.00240	-9.364E-04	.00430

لواجع الالوادية الشوار جورد المدمة بعط والانات والوار والاستهماء

XTX Matrix

	PAST_PER	COMPLEX	CONTROL)	PERFORM	TRAINING	PLANT	COM_SIZE	PROF_STA	LEAD_EX	CONT_EX
PAST_PER	1.33450	19488	.72155)	44927	(] .11353	- ,21312	20627	55928	19172	07148
COMPLEX	19488	1.21788	58003	48050	00742	.36826	.25231	.06434	07850	.61500
CONTROL	.72155	58003	1.57956	.44910	27103	30706	18331	.00637	.10305	22776
PERFORM	.44927	.48050	44910	.37326	04963	.05585	02152	11273	24177	.02067
TRAINING	11353	00742	.27103	04963	.88563	.13253	18195	.29002	10476	.14878
PLANT	.21312	36826	.30706	.05585	.13253	.86712	05452	0553B	05964	.18769
COM_SIZE	.20627	.25231	.18331	02152	18195	- 05452	.86702	20294	.08213	.12138
PROF_STA	.55928	06434	00637	11273	.29002	-,05538	20294	.67424	17390	17929
LEAD EX	.19172	.07850	10305	24177	- 10476	05964	.08213	17390	.93596	06173
CONT_EX	.07148	61500	.22776	.02067	.14878	.18769	.12138	17929	06173	.68617
WORKLOAD	.07092	.45182	.12180	.07884	- 27278	06096	. 13182	. 19352	25306	07963
YEAR_BUS	52738	.36144	01419	.05090	13619	23111	.34930	.06589	02009	24664
ORIGIN	44558	30570	.17641	05586	08903	08306	. 12916	43035	.21032	.07483

DEL	.35372	17911	02834	ł	04375	ł	.17608	. 18437	26454	.48889	04128	05373
LISTED	.41423	27257	.20936	Ì	.14657	ł	.17911	.13370	22460	.10947	31978	.26751
CENTRAL	.61342	.08241	32181	Ì	10756	Ì	01265	05065	.15201	04800	,36532	.12693
SUBSID	.30742	04114	.37812	1	.09062	Ì	.14439	. 19407	.10860	.06879	27831	.05511
ARCH PER	47447	20770	.02140	i	01780	i	.13974	.14168	.26850	04655	.05948	11979
PAYMENT	.31542	17263	.24444	i	.09635	i	.09787	13722	.06476	16931	27468	.30684
PROFIT	16833	.44484	12478	Ì	.07806	Ì	15777	.12908	. 15558	15707	02855	.10145
PAS_P_PM	. 18363	.26053	.08921	Ì	12865	i	.08753	.12396	16037	.40516	01478	04125

Page 24			SPSS/PC+									

MULTIPLE REGRESSION **** * * * *

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix

.

.

1	WORKLOAD	YEAR_BUS	ORIGIN	DEL	LISTED	CENTRAL	SUBSID	ARCH_PER	PAYMENT	PROFIT	
PAST_PER	07092	.52738	.44558	35372	41423	61342	30742	.47447	31542	. 16833	
-	45182										
COMPLEX		36144	.30570	.17911	.27257	08241	.04114	.20770	.17263	44484	
CONTROL	12180	.01419	17641	.02834	20936	.32181	37812	02140	24444	.12478	
PERFORM	.07884	.05090	05586	04375	. 14657	10756	.09062	01780	.09635	.07806	
TRAINING	27278	13619	08903	.17608	.17911	01265	,14439	.13974	.09787	15777	
PLANT	06096	23111	08306	.18437	.13370	05065	. 19407	.14168	13722	.12908	
COM_SIZE	.13182	.34930	.12916	26454	22460	.15201	.10860	.26850	.06476	.15558	
PROF_STA	. 19352	.06589	43035	.48889	.10947	04800	.06879	04655	16931	15707	
LEAO_EX	25306	02009	.21032	04128	31978	.36532	27831	.05948	27468	02855	
CONT_EX	07963	24664	.07483	05373	.26751	. 12693	.05511	- 11979	.30684	.10145	
WORKLOAD	.74487	.16529	44180	.24517	.30069	06360	.30493	10573	13699	.09514	
YEAR_BUS	.16529	.57575	13877	.00215	33730	.09587	07682	.28665	10036	.06291	
ORIGIN	44180	13877	.66308	47974	34148	.04972	22170	.09942	. 16337	01964	
DEL	.24517	.00215	47974	.81944	.24201	.06258	, 13525	14783	07706	.07091	
LISTED	.30069	33730	34148	.24201	.82376	17159	.53500	42528	.14701	.03775	
CENTRAL	06360	.09587	.04972	.06258	17159	.35111	22792	.08602	17017	.08548	
SUBSID	.30493	07682	22170	.13525	.53500	22792	.88363	18424	.08412	.09671	
ARCH_PER	10573	.28665	.09942	14783	42528	.08602	18424	.73878	21645	.01357	
PAYMENT	13699	10036	. 16337	07706	.14701	17017	.08412	21645	.91143	7.413E-04	
PROFIT	.09514	.06291	01964	.07091	.03775 ·	.08548	.09671	.01357	7.413E-04	.81234	
PAS_P_PM	.17664	02505	26794	.42890	.07048	.06758	05952	.12636	09678	14193	

.

.

SPSS/PC+

.

*** MULTIPLE REGRESSION ****

.

Equation Number 1 Dependent Variable. PERFORM CONTRACTOR'S PERFORMANCE

.

XTX Matrix

	PAS_P_PM	
PAST_PER	18363	
COMPLEX	26053	
CONTROL	08921	
••••••		
PERFORM	- 12865	
TRAINING	.08753	
PLANT	.12396	
COM_SIZE	16037	
PROF_STA	.40516 01478	
LEAD_EX	04125	
CONT_EX	.17664	
WORKLOAD	02505	
YEAR_BUS · ORIGIN	26794	
DEL	.42890	\$
LISTED	.07048	
CENTRAL	.06758	
SUBSID	05952	
ARCH_PER	.12636	
PAYMENT	09678	
PROFIT	14193	
PAS_P_PM	.89437	
Page 26		SPSS/PC+

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

. ------ Variables in the Equation -----

	B	SE B	¥	dnce intr			Beta Con	rel Part Co		forei ance	
PAST_PER	.25674	.07364	. 10635	.4	.0712 .4	4927	12886 .63	.3889 [.]	.53700	.74935	
COMPLEX	.13327	.03414	.06354	.2	.0299 .4	8050	12310 .20	.4354 .4354 ·	.58037	.82110	
CONTROL	21010	.06559	34405	0	76164	4910	1401947	4073573	550487	.63309	
(Constant)	.76696 ,	.35715	.03757	' 1.4	9635						
•••••• in -			Va	riables r	ot in the E	quation					
Variable	Sig T	Variable	Beta in	Partial	Tolerance	• Min Toler	т	Sig T			
PAST_PER	.0015	TRAINING	05604	08632	.88563	.60150	467	.6443			
COMPLEX	.0005	PLANT	.06441	.09817	.86712	.59231		.5993			
CONTROL	.0032	COM_SIZE	02482	03783	.86702	.61793	204	.8399			
(Constant)	.0400	PROF_STA	16720	22472	.67424	.55605	-1.242	.2242			
		LEAD_EX	25831	40904	.93596	.62857	-2.414	.0223			
		CONT_EX	.03013	.04085	.68617	.56526	.220	.8273			
		WORKLOAD	. 10585	.14953	.74487	.62520	.814	.4221		•	
		YEAR_BUS	.08841	.10981	.57575	.55018	.595	.5565			
		ORIGIN	08425	11229	.66308	.61202	609	.5476			
		DEL	05339	07911	.81944	.63270	427	.6723			
		LISTED	. 17793	.26433	.82376	.61246	1.476	. 1507			
		CENTRAL	30635	29712	.35111	.35111	-1.676	.1045			
		SUBSID	: 10256	.15780	.88363	.57426	.861	.3965	•		
		ARCH_PER	02409	03389	.73878	.61005	183	.8564			
		PAYMENT	.10571	.16518	.91143	.60786	.902	.3745			
		PROFIT	.09610	.14177	.81234	.62550	.771	.4468			
		PAS_P_PM	14384	22266	.89437	.62954	-1.230	.2286			•••
Page 27		SPS	S/PC+								
•		•	• * * * . M	ΙΟΓΙ	PLE RE	GRESS	1 O N *	* * *			
Equation Nu	umber 1 Dep	endent Variab	le PERF	ORM COM	ITRACTOR'S	PERFORMANCE					
Variable(s)	Entered on St	tep Number 4	LEAD	EX PRO.	IECT LEADER	S EXPERIEN	CE				

.

.

•

.

Multiple R	.83018			Analysis of Var	iance		•
R Square	.68919	R Square Change	.06245		DF	Sum of Squares	Mean Square
Adjusted R Square	.64632	F Change	5.82713	Regression	4	4.56083	1.14021

.

- 269 -

. .

.

•

ان المراجع المراجع المراجع المراجع . المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع

itandard Erro	.266	32	Signif F C	nange	.0223	5	Residual		29	2.05681	.07092
							F =	16.07636	Signif f	= .0000	
Condition num	mber bounds:	1.591,	, 21.030								
	itrix of Regre nal: Covarian		ficients (B) e: Correlat								
-				LEAD_EX							
		1770/	/ 77 00	14007							
PAST_PER		13786		16907							
	3-037E-04	.00101		07332 .08445							
CONTROL	.00201 -8. 8.482E-05 -1.		.00373								
LEAD_EX -	0.4025-03 -1.	.000E-03 3.		.3472-03							
Page 28			SPSS/PC+								4/22/92
			* * * *	MULT	1 P	LE RE	GRESS	10N **	* *		
Equation N	umber 1 De	pendent Var	iable. P	ERFORM	CONTR	ACTOR'S PE	RFORMANCE				
			•								
XTX Matrix	c							-			
	PAST_PER	COMPLEX	CONTROL	LEAD_EX	ļ	PERFORM	TRAININ	G PLAN	T COM_SIZE	PROF_STA	CONT_EX
	1 77777	17881	.70044	20483		49879	l .0920	7 •.2253	4 - 18944	59490	08412
PAST_PER	1.37377 17881	1.22446	58867	08387		50078	0013			.04976	.60982
COMPLEX	•. I/00 l	1.22440	3669/		1			4			-

.

.

.

•

COMPLEX	17881	1.22446	58867	08387	50078	00137	.36326	24542	.04976	.60982
CONTROL	.70044	58867	1.59090	.11010	.47571	25949	30050	- 19235	.02552	22096
LEAD_EX	20483	08387	.11010	1.06842	.25831	.11193	.06373	-,08775	.18580	.06596
PERFORM	.49879	.50078	47571	25831	.31081	07669	.04044	-3.07E-04	15765	.00473
TRAINING	09207	.00137	.25949	11193	07669	.87391	.12586	17275	.27056	.14187
PLANT	.22534	36326	.30050	06373	.04044	.12586	.86332	04928	06647	.18376
COM SIZE	. 18944	.24542	. 19235	.08775	-3.07E-04	17275	04928	.85981	- 18767	.12680
PROF STA	.59490	- 04976	02552	18580	15765	.27056	06647	18767	.64193	19076
CONT EX	.08412	60982	.22096	06596	.00473	.14187	.18376	.12680	19076	.68209
WORKLOAD	.12276	.47305	.09394	27038	.01347	30111	07709	. 15403	. 14650	09633

- 270 -

4

			4									
YEAR_BUS	52327	.36313	01640	02147	1	.04571	1	13844	23239	.35106	.06216	24796
ORIGIN	48867	32333	. 19957	.22471	1	00153	1	06549	06965	.11070	39127	.08871
DEL	.36218	17564	03289	04410	i	05441	İ	.17146	.18174	26091	.48123	05645
LISTED	.47973	24575	. 17416	34166	i	.06397	İ	.14332	.11332	19654	.05006	.24642
CENTRAL	.53859	.05177	28159	.39031	i	01320	i	.02824	02737	.11995	.01988	.15102
SUBSID	.36443	01780	.34748	29735	i	.01873	i	.11323	.17633	.13302	.01708	.03675
ARCH PER	48665	21268	.02795	.06355	i	00243	i	.14640	.14547	.26328	03550	11587
PAYMENT	.37168	14959	.21420	29347	i	.02539	i	.06712	15473	.08886	22034	.28873
PROFIT	16248	.44724	12792	03050	i	.07069	i	16096	.12726	.15808	- 16238	.09957
PAS_P_PM	.18666	.26177	.08758	01579	i	13246	i.	.08587	.12301	15907	.40241	04223

SPSS/PC+

**** MULTIPLE REGRESSION ****

.

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix

	WORKLOAD	YEAR_BUS	ORIGIN	DEL	LISTED	CENTRAL	SUBSID	ARCH_PER	PAYMENT	PROFIT
PAST_PER	12276	.52327	.48867	36218	47973	53859	36443	- 48665	37168	.16248
COMPLEX	47305	36313	.32333	.17564	.24575	05177	.01780	.21268	.14959	44724
CONTROL	09394	.01640	19957	.03289	17416	.28159	34748	02795	21420	.12792
LEAD_EX	.27038	.02147	22471	.04410	. 34166 [.]	39031	.29735	06355	.29347	.03050
PERFORM	.01347	.04571	00153	05441	.06397	01320	.01873	00243	.02539	.07069
•••••		• • • • • • • • • • • • • • • • • • • •			•••-•	•••••				•••••
TRAINING	30111	13844	06549	.17146	.14332	.02824	.11323	.14640	.06712	16096
PLANT	07709	23239	06965	.18174	.11332	02737	.17633	. 14547	15473	.12726
COM_SIZE	.15403	.35106	.11070	26091	19654	.11995	·.13302	.26328	.08886	.15808
PROF_STA	.14650	.06216	39127	.48123	.05006	.01988	.01708	03550	22034	16238
CONT_EX	09633	24796	.08871	05645	.24642	.15102	.03675	11587	.28873	.09957
WORKLOAD	.67645	.15986	38494	.23401	.21423	.03518	.22968	08964	21126	.08742
YEAR_BUS	- 15986	.57532	- , 13425	.00127	34416	.10371	08279	.28793	10626	.06230
ORIGIN	38494	13425	.61582	47047	26962	03237	15916	.08605	.22509	01322
DEL	.23401	.00127	47047	.81762	.22791	.07869	. 12297	14521	08917	.06965
LISTED	.21423	34416	26962	.22791	.71450	04677	.43992	40495	.05317	.02800
CENTRAL	.03518	.10371	03237	.07869	04677	.20852	11929	.06281	06296	.09663
SUBSID	.22968	08279	15916	.12297	.43992	11929	.80087	16656	.00244	.08823
ARCH_PER	08964	,28793	.08605	- 14521	40495	.06281	16656	.73500	19900	.01538
PAYMENT	21126	10626	.22509	08917	.05317	-,06296	.00244	19900	.83082	00764
PROFIT	.08742	.06230	01322	.06965	.02800	.09663	.08823	.01538	00764	.81146

• •

Page 30			SPSS/PC+			•••••		• • • • • • • • •		•••
-										
			* * *	* MULT	IPLE R	EGRES	SION *	* * *		
Equation Nu	mber 1	Dependent	Variable	PERFORM	CONTRACTOR'S	PERFORMANC	E			
XTX Matrix										
	PAS_P_PM									
PAST_PER	18666									
COMPLEX	26177									
CONTROL	08758									
LEAD_EX	.01579									
•••••	•••••									
PERFORM	13246									
TRAINING	.08587									
PLANT	.12301									
COM_SIZE	15907									
PROF_STA	.40241									
CONT_EX	04223									
WORKLOAD	.17264			•					•	
YEAR_BUS	02536									
ORIGIN	26461									
DEL	.42825									
LISTED	.06543									
CENTRAL	.07335									
SUBSID	06391									
ARCH_PER	.12730									
PAYMENT	10112									
PROFIT	14238									
PAS_P_PM	.89414	•								

.

.

**** MULTIPLE REGRESSION ****

.

.

.

.

4

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

riable	В	SE B	95% CONT	dnce Intr	VLB	Beta S	E Beta	Corr	el Part Cor	Partial	Tolerance	
ST_PER	.28504	.06934	.44322	.4	2685 .4	9879	.12134	.632	41 .42556	.60676	.72793	4.11
MPLEX	, 13889	.03177	.07391	.2	.0387 .5	0078	11456	.269	95 .45256	.63025	.81668	4.37
NTROL	22256	.06109	34750	0	97624	7571	.13058	474	0737716	56034	.62857	-3.64
AD_EX	01747	7.23529E-03	03226	-2,66776	E-032	5831	.10701	050	4924990	40904	.93596	-2.41
onstant)	.96829	.34180	.26922	1.6	6736							2.83
in -			Va	riables n	ot in the E	iquation -						
riable	Sig T	Variable	Beta In	Partial	Tolerance	Min Tole	r	T	Sig T			
ST_PER	.0003	TRAINING	08776	14715	.87391	.5995	4 -	.787	.4378			
MPLEX	.0001	PLANT	.04685	.07808	.86332	.5898	0	.414	.6817			
NTROL	.0010	COM_SIZE	-3.570E-04	00059	.85981	.6120	2 -	.003	.9975			
AD_EX	.0223	PROF_STA	24559	35295	.64193	.5194	6 -1	. 996	.0557			
constant)	.0083	CONT_EX	6.9291E-03	.01026	.68209	.5650	8	.054	.9571			
		WORKLOAD	.01992	.02939	.67645	.6234	6	.156	.8775			
		YEAR_BUS	.07946	.10811	.57532	.5406	3	.575	.5696	•		
		ORIGIN	-2.491E-03	00351	.61582	.5676	- 9	.019	.9853			
		DEL	06655	10794	.81762	.6280	- 15	.575	.5702			
•		· LISTED	.08953	.13575	.71450	.5896	57	.725	.4745			
		CENTRAL		05184	.20852	-2085		.275	.7856			
		SUBSID	.02339	.03755	.80087	.5741	6	. 199	.8438			
		ARCH_PER	-3.308E-03		.73500	.5896	53 -	.027	.9787			
		PAYMENT	.03056	.04997	.83082	.6074	9	.265	.7931			
		PROFIT	•	.14076	.81146		1	.752	.4581			
		PAS_P_PH	-,14815	25128	,89414	6252 <i>,</i>	20 -1	.374	.1804			
age 32		SP	SS/PC+									4/22/9

Variable(s) Entered on Step Number 5.. PROF_STA MANAGEMENT TEAM'S QUALITY-PROFESSIONAL Q

273

Multiple R

.85318

Analysis of Variance

Adjusted Standard	•	.72791 .67932 .25359	F Chan	ire Change ige F Change	.03872 3.98445 .0557	Regress Residua		DF 5 28	Sum	of	Squares 4.81706 1.80059	Mean Square .96341 .06431
						F =	14.98154		Signif I	Fz	.0000	
Condition	number bour	nds; 1.	925, 37	127								
	Mad-lu af 1											
	matrix of P gonal: Cova	Regression (Ariance /	bove: Corr									
	PAST_PER	COMPLEX	CONTROL	LEAD_EX	PROF_STA							
PAST_PER	.00611	14626	.38661	25651	53515							
COMPLEX	-3.464E-04	9.1816E-04	41956	05917	.05603							
CONTROL	.00176	-7.398E-04	,00339	.08790	.02525							
LEAD_EX	-1.416E-04	-1.266E-05	3.6113E-05	4.9854E-05	.21891							
ODOE CTA	02985	.00121	.00105	.00110	.50947							
PROF_STA					**********							
Page 33			SP\$\$/PC+									4/22/92

Equation Number 1 Dependent Variable. PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix

	PAST_PER	COMPLEX	CONTROL	LEAD_EX	PROF_STA	PERFORM	TRAINING	PLANT	COM_SIZE	CONT_EX
PAST_PER	1.92507	22492	.67679	37702	92673	64489	.34280	28693	36337	26091
COMPLEX	22492	1.22832	58670	06947	.07751	48856	02234	.36841	23088	.62461
CONTROL	.67679	58670	1.59192	.11748	.03976	.48198	27025	29785	18489	21338
LEAD_EX	37702	06947	.11748	1.12220	.28944	.30394	.03362	.08296	03343	.12117
PROF_STA	92673	.07751	.03976	.28944	1.55780	.24559	42147	.10354	.29236	.29717
PERFORM	.64489	.48856	48198	30394	24559	.27209	+ 01025	.02412	04640	04212
TRAINING	34280	.02234	.27025	03362	.42147 }	01025	.75988	. 15387	09365	.22227
PLANT	.28693	36841	.29785	08296	10354	.02412	.15387	.85644	06871	.16401

Page 34			SPSS/PC+						•.			
PAS_P_PN	18627	.29296	. 10358	. 10069	.62688	1	03363		08373	.16468	04142	.07736
PROFIT	01200	.43465	13437	07750	25295	I	.03081	1	09252	.11045	.11061	.05131
PAYMENT	.57588	16667	.20544	35725	34325	1	02872	1	. 15999	17754	.02444	.22325
ARCH_PER	45376	21544	,02654	.05328	05530	1	01115	1	.16136	.14180	.25290	12642
SUBSID	.34860	01647	.34816	29241	.02660	I	.02293		.10604	.17810	.13802	.04183
CENTRAL	.52017	.05331	28080	.39607	.03096	1	00832	1	.01986	02531	.12576	. 15693
LISTED	.43335	24187	.17615	32717	.07798		.07626	1	.12222	.11850	18191	.26129
DEL	08379	13835	01375	09519	.74965	1	.06377	1	03137	.23157	12022	.08655
ORIGIN	12606	35366	.18401	.11146	60952	1	09763	Ι	.09942	11017	00369	02757
YEAR_BUS	58087	.36795	01393	00347	.09683	1	.06098	1	16464	22595	.36923	22949
WORKLOAD	-,01301	.48440	.09977	22797	.22821		.04945		36285	06192	.19686	05279
CONT_EX	.26091	62461	.21338	12117	29717		04212	I.	.22227	.16401	.07103	.62541
COM_SIZE	.36337	.23088	.18489	.03343	29236	i	04640		09365	06871	.80494	.07103

۰.

* * * * MULTIPLE REGRESSION * * .

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

.

XTX Matrix

	WORKLOAD	YEAR_BUS	ORIGIN	DEL	LISTED	CENTRAL	SUBSID	ARCH_PER	PAYMENT	PROFIT
PAST_PER	.01301	.58087	.12606	.08379	43335	52017	34860	.45376	57588	.01200
COMPLEX	48440	36795	.35366	.13835	.24187	05331 -	.01647	.21544	. 16667	43465
CONTROL	09977	.01393	18401	.01375	17615	.28080	34816	02654	20544	. 13437
LEAD_EX	.22797	.00347	11146	09519	.32717	39607	.29241	05328	.35725	.07750
PROF_STA	22821	09683	.60952	74965	07798	03096	02660	.05530	.34325	.25295
PERFORM	.04945	.06098	•.09763	.06377	.07626	00832	.02293	01115	02872	.03081
TRAINING	36285	16464	.09942	03137	. 12222	.01986	.10604	. 16136	. 15999	09252
PLANT	06192	22595	11017	.23157	.11850	02531	.17810	.14180	17754	.11045
COM_SIZE	. 19686	.36923	00369	12022	18191	.12576	.13802	.25290	.02444	.11061
CONT_EX	05279	22949	02757	.08655	.26129	.15693	.04183	12642	.22325	.05131
WORKLOAD	.64302	. 14567	29565	.12419	.20281	.03064	.22578	08154	- , 16098	.12448
YEAR BUS	.14567	.56930	09637	04533	34901	.10179	08444	.29137	08492	.07803
ORIGIN	29565	09637	.37733	17715	23911	02025	14875	.06442	.09079	11220
DEL	.12419	04533	17715	.45686	.19038	.06378	. 11017	11860	.07601	. 19138
LISTED	.20281	34901	23911	. 19038	.71060	04832	.43859	40219	.07035	.04066
CENTRAL	.03064	.10179	02025	.06378	04832	.20790	11982	.06391	05614	.10165
SUBSID	.22578	08444	-,14875	.11017	.43859	11982	.80042	16561	.00831	.09254

ARCH_PER	08154	.29137	.06442	11860	40219	.06391	16561	.73304	21118	.00640
PAYMENT	16098	08492	.09079	.07601	.07035	05614	.00831	21118	.75519	06337
PROFIT	.12448	.07803	11220	. 19138	.04066	.10165	.09254	.00640	06337	.77039
PAS_P_PM	.08080	06433	01933	.12658	.03405	.06089	07462	. 14955	.03701	04059
•••••••		•••••						•••••		
Page 35			SPSS/PC+							

MULTIPLE REGRESSION * * * *

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

XTX Matrix

PAS_P_PM

PAST_PER	.18627
COMPLEX	29296
CONTROL	- 10358
LEAD_EX	10069
PROF_STA	62688
•••••	
PERFORM	03363
•••••	
TRAINING	08373
PLANT	.16468
COM_SIZE	04142
CONT_EX	.07736
WORKLOAD	.08080
YEAR_BUS	06433
ORIGIN	01933
DEL	.12658
LISTED	.03405
CENTRAL	.06089
SUBSID	07462
ARCH_PER	.14955
PAYMENT	.03701
PROFIT	04059
PAS_P_PM	.64187

Page 36

SPSS/PC+

MULTIPLE REGRESSION ****

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

••••••				Variables	in the Equa	ation					
Variable	В	SE B	95% Confe	dnce Intrvl B	Beta	SE Beta	Correl	Part Cor	Partial	Tolerance	т
PAST_PER	.36853	.07816	.20843	.52863	.64489	.13677	.63241	.46480	.66527	.51946	4.715
COMPLEX	.13550	.03030	.07343	. 19757	.48856	.10925	. 26995	.44082	.64547	.81412	4.472
CONTROL	22549	.05819	34468	10630	48198	.12438	47407	38201	59084	.62817	-3.875
LEAD_EX	02055	7.06073E-03	03501	-6.08772E-03	30394	.10443	05049	28692	48195	.89110	-2.911
PROF_STA	-1.42476	.71377	-2.88685	.03733	24559	.12304	.22661	19677	35295	.64193	-1.996
(Constant)	.92865	.32607	.26072	1.59658							2.848

in ·			Va	riables n	ot in the E	quation		
Variable	Sig T	Variable	v Beta In	Partial	Tolerance	Min Toler	т	Sig T
PAST_PER	.0001	TRAINING	01348	02253	.75988	.48083	117	.9076
COMPLEX	.0001	PLANT	.02816	.04997	.85644	.49475	.260	.7969
CONTROL	.0006	COM_SIZE	05764	09914	.80494	.47867	518	.6089
LEAD_EX	.0070	CONT_EX	06735	10211	.62541	.49166	533	.5981
PROF_STA	.0557	WORKLOAD	.07691	.11823	.64302	.51939	.619	.5413
(Constant)	.0082	YEAR_BUS	.10711	.15494	.56930	· .39718	.815	.4222
		ORIGIN .	25873	30469	.37733	.37733	-1.662	.1080
		DEL	.13959	.18088	.45686	.35870	.956	.3477
	•	LISTED	.10732	.17344	.71060	.45676	.915	.3683
		CENTRAL	04000	03496	.20790	.20790	182	.8571
		SUBSID	.02864	.04913	.80042	.48149	.256	.8002
		ARCH_PER	01521	02496	.73304	.45332	130	.8977
		PAYMENT	03803	06336	.75519	.42297	330	.7440
		PROFIT	.03999	.06729	,77039	.51941	.350	.7287
		PAS_P_PM	05240	08048	.64187	.46082	420	.6781

End Block Number		.060 Limits reached.	
Page 37	 ,		22/92

MULTIPLE REGRESSION **** * * * *

.

•

:

۰.

Equation Number 1 Dependent Variable.. PERFORM CONTRACTOR'S PERFORMANCE

.

·.

- 277 -

Summary table

•

Step	MultR	Rsq	AdjRsq	F(Eqn)	SigF	RsqCh	FCh	SigCh		Variable	Betain	Correl	
1	.6324	.3999	.3812	21.328	.000	.3999	21.328	.000	In:	PAST_PER	.6324	.6324	CONTRACTOR'S PAST PERFORMANCE
2	.7064	.4991	.4667	15.442	.000	.0991	6.133	.019	In:	COMPLEX	.3156	.2700	COMPLEXITY OF PROJECT
3	.7917	.6267	.5894	16,791	.000	.1277	10.262	.003	In:	CONTROL	4491	4741	ARCHITECT OR CLIENT SUPERVISI
4	.8302	.6892	.6463	16.076	.000	.0625	5.827	.022	In:	LEAD_EX	2583	0505	PROJECT LEADER'S EXPERIENCE
5	.8532	.7279	.6793	14.982	.000	.0387	3.984	.056	In:	PROF_STA	2456	.2266	MANAGEMENT TEAM'S QUALITY-PRO
Page	Page 38 SPSS/PC+												4/22/92
This	This procedure was completed at 15:17:18												
Page	39			SPSS	PC+								4/22/92

.

......

.

.

FINISH.

.

End of Include file.

APPENDIX 8

Introduction to the Performance Assessment Scoring System (PASS) of the Hong Kong Housing Authority⁴⁸

ntroduction	PART

1/1 INTRODUCTION

- 1/1.1 Housing Authority introduced its own independent list of Building Contractors in April 1990.
- 1/1.2 In managing the Authority's list, the main principle to be followed is that Contractors who perform to the required standard, will have more tendering opportunities than those who do not. This requires the establishment of an objective means of assessing performance standards.
- 1/1.3 For many years, Housing Department has operated a performance assessment system which is based on the project staff's rating of the contractor's level of achievement under the headings of materials, structure, labour, progress, safety etc. Although the system has served well, it does not measure attainment against a common scale of preset standards.
- 1/1.4 A new Performance Assessment Scoring System (PASS) has been developed to measure performance output directly against defined standards and to provide a fair means of comparing the performance of individual contractors.
- 1/1.5 At the Building Committee meeting of 16th February 1990, PASS was approved for use on Housing Authority Contracts.
- 1/1.6 PASS will also be used to guide contractors on aspects which require improvement and will be a practical continuous assessment tool in persuading, training and instructing contractors to improve their performance.
- 1/1.7 It is considered that the assessment of a contractor's overall performance should be based not only on his PASS score but also on some measure of his management capability and capacity.
- 1/1.8 Management capability relates to the contractor's organisational input on his contracts. It is useful to monitor input for deciding the contractor's capacity in undertaking the additional work-load which would arise out of new contracts as well as for diagnostic purposes.
- 1/1.9 Management input aspects will eventually be covered by the contractor's Quality Management Schedule (QM Sch) and will in time be assessed objectively by the HK Quality Assurance Agency (HKQAA) in their half-yearly routine surveillance visits following a contractor's certification to ISO 9002. However, the Contractor's management input at the site level will be assessed by the project team on a quarterly basis on individual contracts.
- 1/1.10 It is considered that the output scores and input rating should not be combined due to their different natures.

1/1.11 The overall performance reports, considering both PASS Output and Management Input, will be used as an aid in deciding whether or not to promote or downgrade a company and also in awarding preferential tendering opportunities.

PART 1

1/2 ABOUT PASS

- 1/2.1 The Singapore Construction Industry Development Board's quality assessment scheme, which has been in successful operation for several years, has been the principal source of reference.
- 1/2.2 PASS classifies a building's construction in terms of four main aspects : structural work; architectural work, other obligations and external works. The system, focusing on quality, scores performance against predetermined standards and tolerance levels which are assessed at several sample locations. The scores are then added up to give a total. The maximum possible score is 100 points.
- 1/2.3 At a particular sampling location, the construction work which is to be assessed, is judged as complying or not complying with the stated standards. The assessment is a simple yes/ no exercise. There is no provision for partial attainment of standards. To give a fair assessment, several locations are sampled to give an even measure of the overall standard.
- 1/2.4 In addition to an objective measure of workmanship and quality, there is a need to monitor progress accurately and fairly. Delays to individual contracts must be identified so that timely corrective action can be taken. A system which identifies contractors who consistently fail to meet established programmes will enable the CPRC to recommend appropriate disciplinary action and provide a further tool for the LMC in deciding tendering eligibility, as part of the overall assessment of a contractor. Such a system will be introduced during the next financial year.
- 1/2.5 The system is better than the existing performance assessment system in several respects. It is particularly good in directly assessing compliance against standards rather than representing an overall impression. It is therefore directly related to site supervisory functions. It has the added advantage of allowing the contractor to be informed immediately of good or bad performance.
- 1/2.6 It should be noted that PASS is not intended to replace the normal checks, inspections and tests to be carried out by the "Architect" or to reduce his overall authority or powers under the contract. PASS is, nevertheless, seen as a complementary, but limited, checking system for the various aspects.

GD/3/1.7.1991

^{に接て}整め 探しておし なきかしゃう とうよう いめい にはない アイやめの たたし いための よう ちょう

Aspects of PASS

PASS PART 1

1/3 ASPECTS OF PASS

1/3.1 Monthly Assessment

The PASS Monthly Assessment is divided into four aspects, plus a separate assessment of progress.

- (a) Structural Work is allotted 35 percent of the total score. The factors included in this aspect are falsework, formwork, reinforcement, concrete practice, concrete quality and finished concrete. The quality standards and tolerances are given in Part 2.
- (b) Architectural Work deals mainly with components and finishes. The 35 percent allotted to architectural work is distributed among several factors, including floor, wall, windows, installation of components, plumbing installation, structural window openings and application of spatterdash. The quality standards and tolerances are given in Part 3.
- (c) External Works is given 10 percent of the total assessment. The factor covered by this aspect is drainage. The quality standards and tolerances are given in Part 4.
- (d) General Obligations are the contractors's duties and responsibilities under the contract. The 20 percent allowed for this aspect is assessed with respect to the factors of safety and general obligations. The quality standards are given in Part 5.

1/3.2 Substantial Completion Assessment

At Substantial Completion, all projects will be checked by a Substantial Completion Assessment (SCA) as a round up of the previous monthly assessments. Details of SCA will be issued later.

1/3.3 <u>Maintenance Assessment</u>

A Maintenance Assessment (MA) will be carried out during the Maintenance Period. This assessment aims at checking how the building functions after occupation. Details of MA will be issued later.

1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,199

PART 1

Practical Details of PASS Monthly Assessment

PRACTICAL DETAILS OF PASS MONTHLY ASSESSMENT

1/4.1 When to carry out the Assessment

Assessment to be conducted monthly. Assessment dates for 1991 are shown in the Schedule at item 1/4.11.

1/4.2 <u>Resources</u>

1/4

Introduction of PASS will make some increased demands on project staff time. This may be compensated by the fact that the system is more directly related to the ongoing site supervision functions and this checking would have to be carried out in any event.

1/4.3 Who is to carry out the Assessment

The assessment will be done by the project team members, with the assistance of the site staff and in the presence of the contractor's authorised representative.

1/4.4 Locations

- (a) The system is wholly based on the principle of examining workmanship at random sampling locations. The concept of a location as an identifiable discrete area of the building is essential to an understanding of the scheme.
- (b) To improve consistency and to encourage a systematic assessment, locations are further subdivided into spots which are themselves constituent parts (walls, ceilings etc.) of the location. Spots are therefore usually defined as particular elements or areas within the location.
- (c) The main aspects of work (e.g. structural, architectural, etc.) are broken down into factors which are assessed in turn at each spot. They have to be broken down into discrete items which have definite standards. These standards are based on specification standards. Very important items are marked *.
- (d) The total number of sampling locations for all aspects are to be doubled for contracts with more than 4 standard blocks.

1/4.5 <u>Method of Assessment</u>

- (a) Particular locations are selected on the day of assessment. There should <u>not</u> be any advance notice of the sampling locations. However, half a day's advance notice may be given to the Contractor's representative to ensure that he could make himself available during the assessment. For details, please refer to item 1/6 showing assessment checklist for PASS monthly assessment.
- (b) The records of test results such as those on concrete and some other tests are also used in the assessment.
- (c) The assessment team will usually be concentrating on a particular aspect (e.g. Architectural work) and will proceed to the first sampling location.
- (d) On reaching the sampling location the team will examine each factor that is included in the aspect being assessed. If the assessment standards are satisfied, that factor will be given a positive tick (√) on the standard assessment form. If not, a cross (X) is entered.

Practical Details of PASS Monthly A	ssessment	PART 1

(e) The team then moves on to cover the other sampling locations. The overall score will be an expression of how many factors complying with standards out of the total number sampled. This is explained in more detail below.

1/4.6 <u>Choice of Sample Locations</u>

- (a) For structural work, falsework formwork, reinforcement, concreting procedures and finished concrete, locations at various stages of work will be selected at random. Concrete quality and practice is assessed for the assessment period as a whole.
- (b) Sample locations for Architectural Work will be selected to cover different areas of the domestic blocks and a wide range of construction activities will be assessed.
- (c) For assessment of external works and other obligations, the assessment team will walk around the site stopping at pre-selected random locations in areas of activity in order to assess the situation against preset standards.

For consistency of documentation, project teams shall complete the "Sampling Location Record" shown in item 1/7.

1/4.7 <u>Unperformed Aspects/Factor of Work</u>

There will be stages of the work when the full range of all aspects/factors of work cannot be assessed because the work is not in progress at the time of assessment. In order to ensure that PASS measure the performance of the contractor direct, only those works assessed will be used to determine the overall PASS score.

1/4.8 Range of Sample and Assessment of Sequential Work in Progress

For structural aspects, other obligations and external works, the range of the samples is comparatively easy to assess. For Architectural finishes, work in progress at a particular location is sequential, e.g. concreting \Rightarrow door frames \Rightarrow blockwork \Rightarrow fittings \Rightarrow plastering \Rightarrow tiling \Rightarrow glazing \Rightarrow doors \Rightarrow painting \Rightarrow cleaning and the whole process can extend over a significant period - often exceeding one year for an individual flat. For this reason, the Architectural sample location will be spread on a random basis throughout a range of floors where work is in progress. Each month different sample locations will be chosen at random. To determine the available range of floors for sampling locations for architectural assessment, a "progress record" shown in item 1/8 shall be completed prior to selection of locations.

1/4.9 <u>Completion of Forms</u>

On completion of an inspection, the forms will be completed and initialled by members of the project team and the contractor's authorised representative. After each site assessment, the forms will be despatched to HAHQ for entry into a computerised data base.

1/4.10 Use of Instruments

PASS involves the use of levels and other site equipment such as auto plumb, straight edges, plumb-lines and alignment strings. For details, please refer to item 1/6.4 on GD/14/1.7.1991.

- 284 -

了你就像那些你们的,我们还是这些我们不能能能是我们的我们就是我们的人们的。""你们,你是一次说道,你是你们,你就要说了。"

Practical Details of PASS Monthly Assessment

PART 1

1/4.11 Proposed Schedule of PASS Assessment / Score Processing / HDCPRC (NW) and LMC Dates

Month during which assessment	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
takes place	<u> </u>	j ₹ 4 @ [Λhι	141ª X	JU1]	101	~~~	Sep		1104	
PASS assessments on site (last full working week in general)	Between 25/2/91 to 1/3/91	Between 25/3/91 to 28/3/91	Between 29/4/91 · to 3/5/91	Between 27/5/91 to 31/5/91	Between 24/6/91 to 28/6/91	Between 29/7/91 to 2/8/91	Between 27/8/91 to 30/8/91	Between 30/9/91 to 4/10/91	28/10/91 to	Between 25/11/91 10 29/11/91	Between 30/12/91 to 3/1/92
Last date for forwarding PASS or quarterly old format(*) reports to TS unit	4/3/91 (*)	2/4/91	6/5/91	3/6/91 (*)	1/7/91	5/8/91	2/9/91 (*)	7/10/91	4/11/91	2/12/91 (*)	6/1/92
Month during which PRE-PRC (or LMC) actions take place	Mar	Apr	May	Jun	Jบl	Aug	Sep	Oci	Nov	Dec	Jan
TS unit enters raw scores into database	5/3/91 to 6/3/91	3/4/91 to 4/4/91	7/5/91 to 8/5/91	4/6/91 to 5/6/91	2/7/91 to 3/7/91	6/8/91 to 7/8/91	3/9/91 to 4/9/91	8/10/91 to 9/10/91	5/11/91 to 6/11/91	3/12/91 to 4/12/91	7/1/92 to 8/1/92
Triggered reports from TS unit to CA's and consultants for comments 'not adverse' reports from TS unit to CA's for information	6/3/91	10/4/91	8/5/91	5/6/91	3/7/91	7/8/91	4/9/91	10/10/91	6/11/91	4/12/91	
Last date for consultants to return comments to CA/6	9/3/91	13/4/91	11/5/91	8/6/91	6/7/91	10/8/91	7/9/91	13/10/91	9/11/91	7/12/91	
Last date for CA's to forward comments to TS unit Issue PRC agenda	13/3/91	17/4/91	15/5/91	12/6/91	10/7/91	14/8/91	11/9/91	17/10/91	13/11/91	11/12/91	
PRC(NW) meeting consider reports from previous month Add PRC's rating to reports and score-league	(Feb. scores) 22/3/91 9:30am	(Mar. scores) 26/4/91 9:30am	(Apr. scores) 24/5/91 9:30em	(May scores) 21/6/91 9:30am	(Jun. scores) 19/7/91 9:30am	(Jul. scores) 23/8/91 9:30am	(Aug. scores) 20/9/91 9:30am	(Sep. scores) 25/10/91 9:30am	(Oct scores) 22/11/91 9:30am	(Nov. scores) 20/12/91 9:30am	
Score-league to LMC (and issue LMC agenda where appropriate)	20/3/91	29/4/91	27/5/91	2/7/91	22/7/91	27/8/91	1/10/91	28/10/91	25/11/91	31/12/91	
LMC meeting	4/4/91 3:00pm			5/7/91 2:30pm			4/10/91 2:30pm			3/1/92 2:30pm	

(NEW PAGE)

19

GD/7/1.7.1991

• •

Scoring System

PART 1

1/5 <u>SCORING SYSTEM</u>

- 1/5.1 As indicated previously, for the assessment system to be objective and systematic, the whole process has to be broken down into specific blocks or items which can be assessed against pre-determined standards. This breakdown is further illustrated in the glossary diagrams in Part 10 but can be typically summarised as follows :-
 - (a) The assessment is by aspect of work.
 - (b) At pre-selected parts of the building called locations.
 - (c) Location scores are built up by assessments of factors.
 - (d) Spots, which are discrete elements within each location are chosen for factor assessments.
 - (e) Each factor is broken down into specific items which have definite predetermined standards.

				SPOTS						
			. 1	2	3	4				
F A C T O R 1	F A	Item 1								
	C T	Item 2	<u> </u>							
	O R	Item 3								
	1	Item 4								
2										

1/5.2 The breakdown can be modelled like this :-

1/5.3

An understanding of this model helps an appreciation of the scoring system as a whole.

人名克德特 经增加股票 金衣板 网络卡拉 人名法法法 法法律法律法律法律法 法法律法 法法律法 医子宫的 计正式分词 化磷酸

- 286 -

Scoring System

PART 1

1/5.4

For each factor, spot failure is usually marked by :-

•			SPO	ОТ		
F A C T O R	Items	1 2 3	√ × ×	F	a)	failure of 2 items
O R		4	~	,		
			SPO	тс		
F A C T O	Items	1* 2*	X(*) √	F	· b)	failure of a * item
O R		3	~			
			SP			
F		1	, JF			an itom failing
A C T O	Items	2	~	F	(c)	an item failing its tolerance by more than twice its MPD
T O		3	X(2)	r		
R		4	~			
			SP	OT		
F		1	NA	[d)	failure of one
A C	Items	2	X			item which is
Ċ	ltems			וקן		the only
A C T O R	ltems	3	NA	F		the only assessed item amongst N/A

System	PART 1							
differe	criteria permits some degree of scoring tolerance which is necessary for entiating different levels of performance. This scoring is reflected by a <u>Scoring</u> <u>A</u> which is defined as :-							
(a)	(a) For Structural Work, Architectural Work and External Works :-							
	No. of spots passed							
	No. of spots assessed							
(b)	For Other Obligations a slightly different approach is adopted :-							
	No. of locations passed							
	No. of locations assessed							
discrin	scoring approach alone was found in early trials to be not sufficiently ninating. Another parallel was introduced and known as <u>Scoring Index B</u> which ned as :-							
	No. of items passed							
	No. of items assessed							
	s necessary to pick up patterns of item failure which are not covered by spot ment alone :-							
(a)	A particular item fails consistently at all spots.							
(b)	Over-failure of the failed spot (e.g. failed spot with more than 2 failed items).							
/5.7 Theref	ore, the overall factor score is calculated by the following formula.							
Factor	Factor Score = Allotted Points x Scoring Index A x Scoring Index B.							
	Storing Index D.							

- 288 -

PART 1

; : ;

 \otimes

·F

~

P

Collection

~

Ρ

to determine overall performance across all items.

Factor Score = Allotted Point x Scoring Index A x Scoring Index B

 \checkmark

Ρ

= Allotted Point x (
$$\frac{P}{P+F}$$
) x ($\frac{\sqrt{}}{\sqrt{}}$ + X

Scoring System

1/5.10 <u>Example</u>

Factor : Allotted Point = 7										
Lo	Location		1		2		3		4	
1	Item / Standard	1	x		X		\checkmark		\checkmark	
	Υ.	2	X	F	~	Р	X	Ρ	~	P
		3	~		~		. ~		X	
2	Item / Standard	1	x		X		X		Х	
		2	X	F	~	Р	~	P	\checkmark	P
		3	~		~		~		√	
3	Item / Standard	1	\checkmark		~		~		~	
		2	\checkmark	P	~	Р	\checkmark	Р	\checkmark	Р
		3	~		~		~		~	
4	Item / Standard	1	~		~		~		~	
		2	~	Р	\checkmark	Р	N/A	Ρ	\checkmark	P
		· 3	\checkmark		~		~		\checkmark	
5	Item / Standard	1	\checkmark		~		\checkmark		~	
		2	~	Р	N/A	Р	~	P	\checkmark	P
		3	\checkmark		~		\checkmark		~	

Factor Score = Allotted Point x
$$\left(\frac{P}{P+F}\right) x \left(\frac{\sqrt{}}{\sqrt{+X}}\right)$$

= 7 x $\frac{18}{20}$ x $\frac{48}{58}$
= 6.3 x $\frac{48}{58}$
= 5.2

N/A entries represent items not being performed by contractor and hence are not assessed.

2.

- 290 -

.

PART 1

.

sse	ssment C	Checklist fo	or PASS Monthly Assessment PA	IRT 1					
6	ASSESSI	MENT CHE	CKLIST FOR PASS MONTHLY ASSESSMENT						
	1/6.1 Assessment Procedure								
		1/6.1.1	 Preparation in Office (i) PA and SE to observe assessment date stipulated by TS/1 (ii) PA and/or SE to give notification of date and time of assessment to the Contractor's Authorized Representative 						
			no more than half a day before the assessment						
			Person Contacted Date Time	, 					
			•						
		•	(iii) PA to liaise with SE, BSI & COW						
		1/6.1.2	Preparation on Site (i) PA or SE to check preparation work by COW & check presence of COW						
		 (ii) PA or SE to check presence of Contractor's Authorized Representative (iii) PA to check presence of SE & BSI for OO Assessment (iv) PA or SE to check availability of Assessment Equipment (v) PA or SE to select assessment location and keep records (a) By drawing lot: or 							
			(b) By computer(vi) PA to check availability of specification references						
	1/6.1.3	 Assessment (i) Assess "General Obligations" by record check (PA, SE, BSI & COW) (ii) Assess "General Site Safety" (PA, SE, BSI & COW) (iii) Assess "Block Related Safety" (PA, SE, BSI & COW) (iv) Assess "External Works (Drainage)" (PA & COW) (v) Assess Structural Works (SE & COW) (vi) Assess Architectural Works (PA & COW) (vii) Enter Scores immediately at the assessment spot (PA/SE) (a) By manual method (b) By hand-held computer 							
	1/6 <u>.1.</u> 4	 <u>Completion (by PA except for Structural Works;</u> <u>by SE for Structural Works</u>) (i) Complete Monthly Score Sheet (ii) Complete Comment Sheet (iii) Sign Score Sheets and Comment Sheets (iv) Send Score Sheets and comment sheets through PC on site to the headquarter to TS/1 for Data Processing before the due date of each month. 							

.

٠.

.

.

.

. .

ί.

۰.,

.

. •

- 291 -

·

PART 1

. •

Assessment Checklist

1/6.2 <u>Assessment</u> Assessment of the following aspects :-,
[] Structural

- [] Architectural
- [] External Works
- [] Other Obligations

will be carried out on works as found on site. Works in progress but not yet completed will be assessed on the basis of the works carried out so far.

1/6.3 Equipment

[] Laser Leveller	[] Score Sheets
[] Digital Measurement Probe	Į] Straight Edge
[] String and Plumbline	ſ] Feeler Gauge
[] Measuring Tape	[] Steel Set Square
[] 600mm Long Spirit Level	[] Mirror
[] 1200mm Long Spirit Level]] Binoculars
[) Wire Brush	[] Screw Driver
[] Coins (\$5.00 and 10¢ Coins)		
[] Hand-held Computer	·	

All equipment for PASS, except coins, hand-held computer and equipment for air/ water test, can be obtained from SLS/C.

GD/14/1.7.1991

Sampling Location Record

1/7	SAMPLING LO	CATION					
	Name of Project	•			Date	:	
	Contractor	• ·	• .				
	Block Type	•					

1/7.1 Structural Assessment (Working Floor) :-

[Location	1.	2	3	4
	Block				
	Floor	/F	/F	/F	/F
Į	Flat No.	Flat	Flat	Flat	Flat

1/7.2 Structural Assessment (Finishing Floor) :-

Block No. :

Location	1	2	3	4
Floor	/F	/F	/F	/F
Flat No.	Flat	Flat "	Flat	Flat

1/7.3

Architectural Assessment :- .

Block No. :

Location	1 Flat	2 Flat	3 Flat	4 Stair- case	5 Corridor	6 Structural Window Opening	7 Applic of Spatter	
Floor · ·	/F	/F	ſF	/F	/F	/F	/F	/F
Flat/Wing	Fl/	Fl/	Fl/	W/	W/	W/	W/ •	W/

1/7.4

External Works Assessment (Drainage) :-

	Location	1	2	3	4	5	
ł	Between						

(NEW PAGE)

. . :

۰.

PART 1

PART 1

Sampling Location Record

1/7.5 <u>General Site Safety</u> :-

Location	1	2	3	4	5
Point					

1/7.6 Block Related Safety* :-

Block No. :

	Lou	ver Zon	e	N	iddle Z	one		Higher	Zone
Location	l Ground Floor	2	3	4	5	6	7	8	9 (Working Floor)
Floor	G/F	/F	١F	/F	/F	/F	/F	/F	/F
Wing	W/	W/	W/	W/	W/	W/	W/	W/	W/

* Each location for Block Related Safety shall preferably be on a different floor where such choice exists. At least one location in each zone shall include a wing with a temporary refuse chute.

(NEW PAGE)

- 294 -

. . . .

•

PASS

PART 1

Progress Record- Architectural Factors

1.8 PROGRESS RECORD - ARCHITECTURAL FACTORS

Name of Project :

Contractor

Block Type

COW shall complete the Progress Record to determine the available range of floors for Sampling Locations.

Location 1 - Flat (Kitchen)

- 1. Check floor and internal walls in kitchen
- 2. Check balcony door and walls
- 3. Check 2 nos. windows and external walls outside those windows
- 4. Check plumbing installation
- 5. Check cooking bench and sink unit

Location 2 - Flat (Bathroom)

- 1. Check floor and internal walls in bathroom .
- 2. Check 3 nos. windows and external walls outside those windows
- 3. Check plumbing installation
- 4. Check 2 items of sanitary ware

Location 3 - Flat (Living Room)

- 1. Check floor and internal walls in living room
- 2. Check 3 nos. windows and external walls outside the windows
- 3. Check 2 nos. door and frame
- 4. Check plumbing installation

Date

+

Block No.:

Progress Record

Completed floors available for checking for each factor

:

from	/F	to	/F
from	/F	to	/F
from	/F	to	/F
from	/F	to	/F
from	/F	to	/F

from	/F	tọ	/F
from	/F	to	/F
from	/F	to	/F
from	/F	. to	/F

from /F /F to from /F /F to /F from to /F from /F to /F

PART 1

Progress Record- Architectural Factors

1.8 PROGRESS RECORD - ARCHITECTURAL FACTORS

Name of Project :

Contractor

Block Type

COW shall complete the Progress Record to determine the available range of floors for Sampling Locations.

:

Location 1 - Flat (Kitchen)

- 1. Check floor and internal walls in kitchen
- 2. Check balcony door and walls
- Check 2 nos. windows and external walls outside those windows
- 4. Check plumbing installation
- 5. Check cooking bench and sink unit

Location 2 - Flat (Bathroom)

- 1. Check floor and internal walls in bathroom
- 2. Check 3 nos, windows and external walls outside those windows
- 3. Check plumbing installation
- 4. Check 2 items of sanitary ware

Location 3 - Flat (Living Room)

- 1. Check floor and internal walls in living room
- 2. Check 3 nos. windows and external walls outside the windows
- 3. Check 2 nos. door and frame
- 4. Check plumbing installation

Date

Block No.:

Progress Record

Completed floors available for checking for each factor

:

from	/F	to	/F
from	/F	to	ЛF
from	ЛF	to	/F
from	/F	to	/F
from	ſF	to	/F

from	/F	to	/F
from	/F	to	/F
from	/F	to	/F
from	/F	to•	/F

from	/F	to	/F
from	/F	to	/F
from	/F	to	/F
from	/F	to	/F

APPENDIX 9

.

University's Panel of Contractors- Monitoring of Contractors' Performance⁴⁹

ESTATES OFFICE

<u>University's Panel of Contractors</u> <u>Monitoring of Contractors' Performance</u>

Summary notes of meeting held on 2nd April 1992 at 3.30 p.m. involving MM/AJK/HSS/KW

The meeting was called to discuss the decision of University's Tenders Board of 27th June 1991 which proposed actions as follows:-

"Guidelines for Delisting of Contractors

It was agreed that the guidelines should be prepared by the Estates Officer before the end of 1991. Members supported the Estates Officer's emphasis on safety in the drawing up of these guidelines and agreed that these safety measures in construction works are very important and should be taken up by the Estates Officer with the Environmental Health and Safety Committee. It was also recommended that more training in this respect should be given to all appropriate personnel within the University."

NOTED that the current monitoring format used by both Building Maintenance and Development Divisions are based on ICAC's recommendations of many years past i.e. Building Maintenance's Annex D and Development Division's Annex A & Annex B are in accordance with ICAC's recommendations.

AGREED that Development Division's Annex B is probably slightly more appropriate and should now be used for all reporting by Building Maintenance, E & M and Development Divisions on the <u>University's Panel of</u> <u>Contractors</u>. However, to this standard format should be added a further category, namely, 'Adherence to Safety and Health Requirements'.

<u>Minor Works</u> - this is intended to refer to works generally falling under \$0.75 Million in line with U.P.G.C.'s requirement that any works above this figure require the appointment of quantity surveyor consultants.

<u>Major Works</u> - this is intended to refer to individual contracts exceeding \$0.75 Million in value and in accordance with A.S.D.'s list (category A) not exceeding \$6 Million per contract.

For anything larger than the above, i.e. major development projects undertaken by Development Division and development section of E & M Division, the formal reporting on the contractor's performance would be the responsibility of the architect involved i.e. architect consultants employed by the University or by the Estates Office Development Division where the architectural consultancy is done in-house.

 \mathbf{x}

The standard format to be used for major works should be Development Division's Annex A but it was not felt necessary to include the wealth of detail shown on page 2 of Annex A. In similar fashion to Annex B agreed this Annex A should also include a section on 'Adherence to Safety and Health Requirements'.

Frequency of Reporting

It was felt that there should be a differentiation in frequency of reporting between maintenance works and new works and probably also a differentiation according to the size of contract value. Small maintenance contracts for example in the region of \$50,000 to \$100,000 may require a reporting form to be filled in weekly as the contract period may only be a matter of few weeks whereas for larger-scale projects it would probably suffice to report on a 3-monthly basis.

Issuance of Warnings to Contractors

In line with what is done in the Housing Authority it was felt that the procedures should be along the following lines i.e. to issue the first warning with a time limit for compliance followed by a second warning again with a time limit; failure to comply would result in the contractor being summoned to the Estates Office to explain/justify his lack of response or improvement.

Suspension

AGREED that there is merit in adopting a system of suspension in similar way as the Housing Authority and other major employers of contractors. In this system, the contractor who is not performing is not totally removed from the List or Panel of Contractors but is barred for a specific time period from tender. A suspension period is normally 3 to 6 months after which the contractor automatically rejoins the List/Panel perhaps with his subsequent performance being more carefully scrutinised to ensure compliance.

Interview of Contractors

For warning and suspension procedures, felt that it is ultimately up to the Division Heads to set out guidelines for who should be responsible for interview of contractors. Again, the value of the contract should determine the appropriate level of staff required but in general terms it was felt that at least two Estates Office staff members need to be involved both in the issuance of warnings and in the interview of contractors e.g. a proposal to issue a warning would have to be part of a recommendation upward for approval. Similarly the interview of a contractor should be the person involved with the job <u>plus</u> his immediate superior officer.

.../3

Summary/Conclusion

These proposals for monitoring of contractors' performance would be reported back as required to Tenders Board for approval. Assuming that Tenders Board are in agreement then such monitoring procedures to be put in place for review of contractors' performance for 1992/93 commencing from 1st July 1992.

Division Heads are therefore required to ensure that adequate administration procedures are to be in place for routine review with these routine reviews forming part of the annual review of contractors' performance for submission to the Estates Officer and onward submission to Tenders Board for deletion or addition of contractors to existing lists.

T

Contract Completion Report

Name of Contractor

Contract No.

Brief Description of Work

î

PART I (To be completed by Inspecting Officer)

Assessment of Contractors Performance

Standard of Workmanship Rate of Progress Adherence to Contractual Obligations/Instructions

Contractors Organisation .

Overall Assessment .

Very Good	Good	Fair	Poor	Bad
		•		
· · · ·		· ·		· ·
· ·				

General Comment on Contractors Performance

Certification

• ..

I certify that I have inspected the works on.______ and that they have been completed to my satisfaction.

Signed	 •
Date	 •

.

PART II (To be completed by Officer in charge of the Project)

						l
	Very Good	Good	Fair	Poor	Bad	
Overall Assessment of Contractor's Work					•	

General Comments Certification

I certify that I have inspected the above works on ______ and that they have been completed to my satisfaction.

Signed _____

Date

<u> </u>	REPORT ON CONTRAC	TOR	5 P	FQF			 F (6				RE	STRICTED	ADMIN.		 -
	STATES OFFICE .								nens)				(//////////////////////////////////////		_
	NIVERSITY OF HONG KO	NG								FROM	1		TO	•	
A								COM	MENCE	MENT_DATE					
ļ				·	-	ROU	-			PORT	אסוז	CURRENT D	UE DATE	ESTIDATED DA	DE.
	NO.											FOR COMPL	ETION	FOR COMPLETIN	ж
	CONTRACT NO. & TITLE		_						· · · · · · · · · · · · · · · · · · ·	}					
5	<u> </u>	;							·		· ·				
	CATEGORY OF WORK			•		·	<u></u>			WHOL	6				
										<u> </u>			and the second statement of the second statement of the second statement of the second statement of the second	and the second se	
B	CONTRACT SUM S									•					
	Estimated Value of Work Estimated Value of Work							[as	t Repo		SM				
	Estimated Value of Work	c 0	uts	Land	ling			_			SM-		•1, ••		
.	Other Matters Allowed	τo:	r ()	ז נ י	τ.	Fin	al _. I	Cont	, Sum		SM _				4
6	ASPECTS OF PERFORMANCE	VG	G	5	٨.	P	Ivs	5		ims.	NO.	. LET ATMED	ASSESS		_
1	ORGANISATION								<u>]</u> :				,	OR UNRESOLY	EQ.
2	GENERAL OBLIGATION			 					OF LA PERIOO			SM-	SM	SW	
) 	Other Obligations							THI	S PERI	00.		SM	SM	SM	
3	RESOURCES	 	ļ	ļ	-:	┝╼═	4				Ŀ		<u> </u>		
	Plant ·		+ - -	 ,			+	I COM	MENTS:	-		•		•,	
	Materials			· .] ·							
4	WORKMANSHIP			ļ]			·			•	
•	Services	ļ	┼╍╧	<u>↓</u>				· •				۰.	• •	• •	
	Finishes	<u>}</u>	1	┥┍╍╸	┤╾┯╼	·	╬╼╼	1			•	• •		•	
5	PROGRESS		+		<u> </u>		1-	t				••			•
			<u> </u>	<u> </u>	ļ		·	4			•			۰.	
	OVERALL ASSESSMENT											•			~
D	REMARKS: -					•'		•	• .				•		
					•									•	
	This Report *NOT ADVER	SE/	AD	VER	SE										•
PRE	PARED BY			•••								ENDORSED	. 8Y -		
,				4						•					
	HITECT/CONSULTANTS		-												~~~
	PERVISING OFFICER)	•				•	•					`	•)
OAT	, ,		· .							•		DATE	<u></u>		
			•		~										

1.0 STANDARD OF ORGANISATION

- 1.1 adequacy and management ability of site supervisory staff
- 1.2 adequacy of planning
- 1.3 adequacy of supervision 1.4 degree of co-operation
- 1.5 technical knowledge of site supervisory staff
- 1.6 adequacy of site staff's executive authority
- 1.7 support provided by head office to overcome any deficiency 1.8 control over sub-contractors
- 1.9 attention to reasonment matters/adequacy of records and accounts

.2.0 COMPLIANCE WITH GENERAL OBLIGATIONS

- 2.1 attention to safety
- 2.2 cleanliness of site
- 2.3 care of the works
- 2.4 avoidance of nuisance/damage to general public & neighbours
- 2.5 compliance with insurance requirements
- 2.6 cooperation with utilities and care of utility apparatus
- 2.7 cooperation with other authorised contractors 2.8. compliance with instructions

- 2.9 compliance with enactments e.g. noise 2.10 submission of the porary works design
- 2.11 adequacy/submission of operational and maintenanca-manuals 2.12 adequacy of notice for examination of works
- 2.74 payment of nominated sub-contractors
- 2.15 compliance with particulars related to sub-letting

3.0 ADEQUACY OF RESOURCES

- 3.1 adequacy of labour
 - 3.2 skill of personnel
 - 3.3 adequacy of materials
 - 3.4 standard of materials
- $\cdot 3.5$ storage of materials
- 3.6 adequacy of plant
- 3.7 suitability and state of plant

4.0 WORKMANSHIP

- 4.1 'standard of terporary works
- 4.2 standard of workmanship, earthworks
- 4.3 standard of workmanship, structural
- standard of workmenship, finishes 4.4
- 4.5 standard of workmanship (others)

5.0 PROGRESS

- adequacy of programe 5.1
- acherence to programe 5,2
- 5.3 updating of programme
- 5.4 suitability of rethod and sequence of working
- achievement in period 5.5
- action taken to mitigate delay/catch up with programme 5.6

YG	G.	\$ A	P	· ¥8
	·	 -		
		 -		
		 L		
_				
	·		·	

	•				
ÝG	G	Ś	Α.	Ρ.	. ۲
	·	•			
			•	·	
·					•
	•				
	·	•		•	
				· ·	
	•	1			

VG	G	S.	Α'	9	YR .
					· · ·
	·				

	٩G	G	2	A	P.	¥8
			• .			•
1				•		
				 		

YG.	G	ŝ	. A. ¹	P	٧8
		•	:		
	, ,				

Annex D

EA I

Inspection Report (to be completed weekly)

Name of Contractor:	·
	Brief Description of Work
Date of this Report	•
•	
Total Value of Contract	
Estimated Valua of Work complete	d to date

Report on Contractor's Performance since last Report

	Very Good	Good	Fair	Poor	Bad
Standard of Workmanship	·) . 		
Rate of Progress Adherence to Contractual Obligation/Instruction					
Contractor Organisation					

N.B. A 'bad' in any of above would normally necessitate a written warning to Contractor from the Estates Officer.

General Comments/Instructions to Contractor

Signed Date S.E.A. . Not id by Date M.O.