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Abstract

In a large vocabulary speech recognition system the broad phonetic classification

technique is used instead of detailed phonetic analysis to overcome the variability in the

acoustic realisation of utterances. The broad phonetic description of a word is used as a

means of lexical access, where the lexicon is structured into sets of words sharing the

same broad phonetic labelling.

This approach has been applied to a large vocabulary isolated word Arabic speech

recognition system. Statistical studies have been carried out on 10,000 Arabic words

(converted to phonemic form) involving different combinations of broad phonetic

classes. Some particular features of the Arabic language have been exploited. The results

show that vowels represent about 43% of the total number of phonemes. They also show

that about 38% of the words can uniquely be represented at this level by using eight

broad phonetic classes. When introducing detailed vowel identification the percentage of

uniquely specified words rises to 83%. These results suggest that a fully detailed

phonetic analysis of the speech signal is perhaps unnecessary.

In the adopted word recognition model, the consonants are classified into four broad

phonetic classes, while the vowels are described by their phonemic form. A set of 100

words uttered by several speakers has been used to test the performance of the

implemented approach.

In the implemented recognition model, three procedures have been developed, namely

voiced-unvoiced-silence segmentation, vowel detection and identification, and automatic

spectral transition detection between phonemes within a word. The accuracy of both the

V-UV-S and vowel recognition procedures is almost perfect. A broad phonetic

segmentation procedure has been implemented, which exploits information from the

above mentioned three procedures. Simple phonological constraints have been used to

improve the accuracy of the segmentation process. The resultant sequence of labels are

used for lexical access to retrieve the word or a small set of words sharing the same broad

phonetic labelling. For the case of having more than one word-candidates, a verification

procedure is used to choose the most likely one.
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Chapter 1

Introduction

1.1 Man-Machine communication by Speech

Speech communication between man and machine introduces a new range of

communication services which extend man's capabilities, serve his social needs and

increase his productivity.

Communication between people and machine includes automatic speech recognition and

automatic speech synthesis. In speech synthesis, the machine or computer takes the

speaker's role in generating speech from a pre-defined textual message, while in speech

recognition, the machine takes the listener's role in decoding speech waves into either the

underlying textual message or a hypothesis concerning the speaker's identity.

The current advances in the microelectronic devices (semi-conductor technology) with

the advent of digital signal processors (DSP), have facilitated the availability of complex

commercial speech synthesis and recognition systems.

Speech synthesis is a reasonably well established field if measured in terms of the range

of products currently in the market. Speech recognition is not so well developed as it is

inherently a much more difficult problem because of asymmetries in producing and

interpreting speech.

The design and implementation of voice interaction between man and machine requires

the involvement of a wide spectrum of disciplines, namely linguistics (i.e., phonetics,

phonology, prosody, and computational linguistics), computer science, ergonomics, and

speech processing. Therefore unrestricted speech synthesis or recognition is considered

as a language-dependent problem.
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The likely areas of application for man-machine speech communication are growing

rapidly. Such applications are listed below, where some of them are already commercially

available, especially the speech synthesis products.

a. Automatic information services

These are handled by maldng a speech link with a computer (e.g., through a

telephone line) and retrieving the requested information such as enquiries,

reservations, bank services, and computerised data banks.

b. Consumer products such as:

- Talking clocks, calculators, toys, warning systems and voice controlled

devices.

- Office automation systems such as automatic typewriter.

- In quality control tasks, automatic material handling and stock control, where

the operator's hands and eyes are fully occupied.

c. Services for the handicapped such as:

- Blind students can have access to computer assisted learning methods through

speech synthesis.

- Physically disabled persons who can not manipulate the buttons of a

computer's keyboard or any other devices, can use the computer through

speech recognition.

d. Security applications such as:

- Speaker verification based on speech can be used along with magnetic card or

badge reader to control entry to restricted areas such as classified record

storage, classified research laboratory, etc.

- Surveillance of communication channels, where listening to radio broadcasts or

any other narrow-bandwidth communication media is a time-consuming,

manpower-intensive, tedious task for operators. A potential solution to this

problem is the use of automatic speech recognition technology to automate part

of the listening process. This process can include:

- Message sorting through speaker identification.

- Word spotting, to recognise keyword or a set of keywords embedded in

the conversational speech.

- Language identification.
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1.2 Arabic Speech Processing

Speech processing for English, French, and many other languages has been the object of

much research in the last thirty years. Some of its problems have been successfully

solved, while others are still under research.

Text and speech processing for the Arabic language has been the object of much research

in the past ten years throughout the Arab world [1]. Research on Arabic speech

processing is growing slowly [2,3], while research on Arabic text processing (e.g., text

compression, computer aided translation, and natural language understanding) is growing

rapidly. Research on Arabic speech synthesis is advancing faster than that on speech

recognition, perhaps due to the inherent difficulties of the speech recognition task, and

the lack of modern studies on acoustic-phonetic, phonemics, and prosodic of Arabic.

1.2.1 Speech Synthesis

Research on Arabic speech synthesis has been carried out in many Arab countries,

especially at the Faculty of Sciences of Rabat University, MOROCCO, at the Kuwait

Institute for Scientific Research (KISR), KUWAIT, and at the Scientific Studies and

Research Centre (SSRC), Damascus, SYRIA. Apart from vocoding techniques, various

synthesis techniques have been employed such as:

- Synthesis by pre-analysed words [2].

- Synthesis by diphones [2,4].

- Synthesis by sub-syllabic sound units [5].

Recently research work is going on at SSRC to achieve text to speech synthesis

using articulatory parameters and rules, by exploiting a newly developed speech

production theory [6].

1.2.2 Speech Recognition

A few research works have been done on automatic Arabic speech recognition. Pattern

matching and hidden Markov modelling have been used to recognise a small set of

isolated words (e.g., the 10 digits, 8 words to control a wheelchair, and vowel

identification), [7,8,9]. These methods are actually language-independent methods.
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Therefore the lack of any particular research relating to Arabic speech recognition which

exploits features of the Arabic language, is actually the main motivation of this research.

Small vocabulary recognition systems in use today are limited in usefulness by the

restrictions they impose on the human user. Large vocabulary systems capable of

recognising thousands of words could meet many of the needs specified by the above

mentioned applications. In addition to the capability of handling a large vocabulary, the

speech recognition system must be capable of easily learning new words and updating its

internal database. It is also preferable that the system is capable of recognising words

spoken in continuous sentences, and is speaker independent.

This research is mainly concerned with a large vocabulary isolated word Arabic speech

recognition, to fulfil much of the above requirements. Research on isolated words was

chosen to simplify the recognition process, where it could be considered as a first step

towards further research on continuous speech recognition. Most of the work in this

thesis, such as the phonetic studies, and the developed recognition techniques, can be

carried over into continuous speech recognition.

An acoustic-phonetic approach is employed in this research work. In this approach,

detailed vowel recognition is performed, while consonant recognition is achieved

according to broad phonetic classes. The broad phonetic analysis of consonants is chosen

to overcome the variabilities in the acoustic realisation of utterances. Statistical studies

are carried out on a large vocabulary to investigate the effectiveness of this approach.

In order to tackle a large vocabulary, a knowledge of the Arabic phonetic system is

essential. Also, phonological and morphological knowledge are required in addition to

the speech processing techniques to facilitate and enforce the recognition process.

Therefore the Arabic phonetic system, phonology, and morphology of the Arabic

language, are presented in this thesis.

1.3 Database and Equipment

Two databases have been used in this research work, which are a lexical database and a

speech database.
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1.3.1 Lexical Database

In order to justify the use of detailed vowel recognition and broad phonetic consonant

classification to discriminate between words in a large vocabulary, statistical studies have

been carried out on a large vocabulary database. These studies also demonstrate the

distribution of vowels, different consonant classes, and different syllabic patterns.

The database has to satisfy two conditions. Firstly, it has to comprise a selection of

words that are commonly used in natural language (speech). Secondly, it has to include

various kinds of words and their derivatives (which are useful in the actual recognition

process to cover all possible patterns).

To comply with the above conditions, two lexicons have been chosen and included in this

database.

The first lexicon comprises the most common (frequently used) 3,000 Arabic words

reported in the literature [10]. These words were extracted from about one million words,

and represent about 84% of the total words. The size of the words in this lexicon varies

from 1 to 4 syllables, where the most frequent words are actually the shorter they are (in

terms of number of syllables).

The second lexicon comprises 10,000 randomly chosen words. However, it includes

almost all the words of the first lexicon besides other polysyllabic words (up to 7

syllables). Acoustically similar words and several derivatives of several words (according

to different morphological patterns) are also included in this lexicon.

The two lexicons are stored into data files. An orthographic to phonemic procedure

(programme) has been implemented to transfer the words in the two lexicons into

phonemic form according to the standard Arabic pronunciation (which is used in official

discourse, teaching, and literature throughout the Arab world).

1.3.2 Speech Database and Equipment

A speech database is used for the development and testing of all the recognition

algorithms presented in this thesis. The aim of the speech recognition experiment, which

uses this database, is to demonstrate the effectiveness of the proposed classification
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schemes, where a novel segmentation procedure has been developed during the research

work.

The speech database consists of a set of 100 words uttered mainly by three cooperative

male speakers. In addition to that, some words (up to 50 words of this set) uttered by

various speakers (male, and female) are also tested.

The speech data were recorded in different environments (i.e., in a laboratory room, in an

office, and in a house), at different time intervals, using a commercial cassette tape

recorder, and a head mounted noise-cancelling omnidirectional dynamic microphone

(Shure SM1OA). The speech signal was low-pass filtered to 10 KHz, sampled at 20

KHz, digitised through a 12 bit A/D converter and stored on disk. All speech data were

also digitally filtered to 4.8 KHz, down-sampled to 10 KHz, and then stored into data

files for later processing.

A Digital Sona-Graph has been used to make spectrograms for all the words in the speech

database, and for all possible combinations of consonant-vowel pairs. The spectrograms

were made with a broad-band analysis filter (300 Hz), which provides accurate timing

resolution. The spectrograms were made by using the Kay Sona-Graph model 7800.

The results presented in this thesis were obtained through simulation on a VAX-il 780

under the VMS 3.4 operating system.

1.4 Outline of the Thesis

This thesis presents a research work on a large vocabulary isolated Arabic words speech

recognition using an acoustic-phonetic approach. The thesis is organised as follows:

Chapter 2 presents a review of speech recognition categories and techniques. It first

introduces the various speech recognition categories. Then it demonstrates most of the

methods used for isolated word recognition, such as pattern matching using dynamic time

warping, vector quantisation, Markov modelling, and acoustic phonetic approaches. In

this context, various acoustic parameters employed in these methods are presented. It

also demonstrates some approaches for connected speech recognition, continuous speech

recognition, and speech understanding. The chapter ends with a brief description of

some techniques used in word spotting.
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Chapter 3 describes some of the linguistic aspects of the Arabic language which are

necessary for this research. The elements of the phonetic system (vowels and

consonants) are presented, and the pharyngealisation phenomenon related to some

consonants is demonstrated. Distributions of vowels and consonant clusters using the

lexical database are reported. This chapter also discusses the syllabic types and patterns

of the Arabic language and reveals some phonological constraints. It ends with a brief

description of the Arabic morphological system.

A model of lexical access for a large vocabulary recognition system is introduced in

Chapter 4 . Word discrimination in a large vocabulary using phonetic description is

investigated, where different phonetic classification schemes are used. The results of the

classification schemes using two lexicons are reported. This chapter demonstrates the

effect of detailed vowel recognition on the results of broad phonetic classifications. Next,

a proposal on how words can be structured in the lexicon of a recognition system is

introduced. The chapter ends with an outline of the proposed speech recognition model

which has been used in the recognition experiments throughout this work.

Two main procedures are introduced in Chapter 5. These are voice-unvoiced-silence

segmentation and vowel recognition. In the former procedure, the speech signal is

segmented reliably into voiced speech, unvoiced speech, and silence (no speech). The

vowel recognition procedure consists of two main phases, i.e., vowel detection and

vowel identification. The vowel detection phase describes how vowels are located, while

the identification phase determines vowel identities. Two different methods for vowel

identification are demonstrated in this chapter. These methods are vector quantisation,

and the formant method. The chapter ends by demonstrating some cues related to vowels

in pharyngealized consonantal context.

Chapter 6 describes the development of an automatic procedure for detecting transition

between adjacent phonemes. It starts with modelling the speech signal in terms of mel

frequency cepstral parameters. Then, it describes the computation of the spectral variation

contour along a word. This contour determines the transitional as well as the steady-state

regions along the spectrum of a certain word. This chapter discusses the usefulness of the

spectral variation contour for the segmentation process which is carried out in the

following chapter.
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In Chapter 7, the results of the voiced-unvoiced-silence segmentation, the vowel

recognition, and the transition detection, are employed to perform the broad phonetic

segmentation and labelling process. The resultant string of labels which describes a

certain input word is passed through an error correction procedure. This procedure

tackles all sorts of expected errors concerning vowels, consonants, and the syllabic

pattern as a whole for the input word, by utilising durational information and

phonological constraints.

The final chapter provides a recapitulation of both the novel recognition scheme proposed

in this thesis and the main results obtained experimentally by computer simulation.

Suggestions for further research works are also included in this chapter.
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Chapter 2

Review of Speech Recognition

2.1 Categories of Speech Recognition

Automatic speech Recognition tasks can be classified according to the following

categones:

- Isolated word recognition

- Connected word recognition

- Continuous speech recognition

- Speech understanding

- Word spotting

- Speaker identification and verification

- Language identification

In isolated word recognition, the words are spoken in isolation. Pauses between words

simplify recognition because they make it relatively easy to identify endpoints (i.e., the

start and end of each word), and they minimise coarticulation effects between words. In

addition, isolated words tend to be pronounced somewhat more carefully, sincethe need

to pause between words impedes fluency, which would otherwise tend to encourage a

more natural and hence more careless pronunciation. Isolated words are adequate for

many applications but are far from being a natural way of communication.

In connected word recognition, the spoken input is a sequence of isolated words from a

specified vocabulary and the recognition is based on recognising isolated words.

The recognition of continuous speech is an attempt to transcribe naturally spoken

utterances (i.e., without artificial pauses between phonemes, syllables, words, or

sentences) in accordance with the rules of language orthography. This implies the need

for some form of segmentation of the speech into linguistic units. The fluency of speech

in natural speech imposes co-articulation between adjacent phonemes and words in a
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phrase. This leads to neglecting some phonemes in a phrase, especially between words,

which makes the recognition process very difficult to achieve.

The goal of a speech understanding system is to identify the meaning of the speech

without constraining the speaker's sentence structure. In such a system, traditional

speech recognition techniques are integrated with artificial intelligence techniques to give

the extra power needed to deal with natural continuous speech. High-level knowledge

sources (i.e., morphological, syntactic, semantic, and pragmatic) are incorporated in this

system.

In word spotting, the speech recognition deals with detecting the occurrence of a given

word in continuous speech. In this case, all the speech is ignored until a keyword is

spoken. Therefore the system is tuned to recognise words which have high correlation to

one of the pre-specifled keywords.

In speaker identification and verification, the aim of the speech recognition here is not to

recognise what has been said but actually to highlight differences between speakers. In

speaker identification, an unknown speaker is to be recognised from a previously

specified group of speakers, while in speaker verification, the speech recognition

technique is used in addition to other identification systems (such as a magnetic card

reader) to verify the identity of the speaker.

In language identification, the speech understanding techniques are used to form some

sort of linguistic chains from the phonetic transcription of speech, and these are used as a

means of discrimination between different languages.

Two terms which are frequently used to describe a speech recognition system are

speaker-dependent and speaker-independent. In a speaker-dependent system, the system

is to be trained to the speech of each new speaker for the entire vocabulary. In a

speaker-independent or multi-speaker system, no training is required for the new

speaker. Actually, for a large vocabulary system and for continuous speech recognition,

instead of full training the system can adapt to a new speaker by some relatively simple

restricted procedures using a few words or sentences. The latter case is often called

speaker adaptation.

In the following sections, a brief history of automatic speech recognition and some of the
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techniques used in isolated word recognition are presented. Then a brief description of

connected speech, continuous speech and speech understanding systems are given. This

chapter ends with a brief introduction to word spotting. Speaker identification and

verification wifi not be discussed in this thesis.

2.2 A Brief History of Automatic Speech Recognition

Man has always been fascinated by his ability to speak. Without this advanced way of

communication the establishment of society as we know it would have been impossible.

Ideas would have not been readily communicated and man's superiority over other

animals would have been diminished. Attempts were made to model the human speech

production model two centuries ago [11].

a. The Early Work of the Pre-Sixties:

The introduction of the vocoder by Dudley in 1939 [12], and of the sound spectrograph

in 1947 [13], gave a better understanding of the information-bearing elements in a

speech signal. The spectrograph had shown that different spoken words gave rise to

different acoustic patterns. It was therefore believed that all the information required for

recognising speech resided in the acoustic signal.

The first attempt to build a recogniser based on acoustic patterns was by Davis et al at

Bell laboratories [14]. They devised an apparatus for recognising digits spoken in

isolation. Their method of analysis was based on dividing the frequency spectrum of the

speech signal into two bands, one above and one below 1000 Hz. The number of

zero-crossings in each band was then counted, giving an approximate measure of the first

and second formants frequencies. A matrix with 30 elements representing the F1-F2

plane was thus established. A reference pattern was formed for each digit using the

F1-F2 trajectory in this matrix. When a new digit was spoken the pattern produced was

cross-correlated with each of the stored reference patterns. This gave an approximate

measure of the probability that a particular digit had been spoken, and so enabled the

most likely digit to be chosen. Provided that the reference patterns were adjusted for a

particular speaker, it was reported that the digit spoken was correctly recognised in about

98% of cases. With a new speaker, however, with no adjustments, the recognition score

was often as low as 50%.
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Apart from its historical significance, the Davis recogniser introduced the technique of

reducing the input speech signal into a pattern and then comparing it with pre-stored

reference patterns, a method which is in force today.

Dudley and Balashek [15] developed a machine which performed a spectral analysis of

the speech signal with a bank of ten band-pass filters each 300 Hz wide. The output of

the filter bank was cross-correlated with stored patterns of spoken digits, and the best

match was selected. This system also produced good results with the speaker who

generated the patterns, but was less successful with other speakers.

Another early attempt at automatic speech recognition was the so-called 'phonetic

typewriter' of Olson and Belar [16]. This system also used a bank of 8 filters, but also

employed a compressor which attempted to adjust the mean level of the signal to about

the same intensity for both quiet and loud speakers to reduce some of the variability. The

outputs from the filter bank set relays every 40 msec if a threshold current had been

exceeded. The output was thus a crude spectrogram, which was decoded as one of the

ten syllables (used in the system), and hence into individual letters which actuated

typewriter keys. The machine was tested with sentences consisting of the pre-defined set

of 10 syllables in various permutations. With careful pronunciation it was claimed that an

accuracy of 99% was obtained.

A system based on distinctive feature theory was developed by Wiren and Stubbs [17].

In this recogniser, a binary classification was used. The voiced sound was separated

from voiceless. The voiceless sounds were then divided into fricatives and plosives. The

binary classification was repeated until a single phoneme was isolated. The decisions

were based on the acoustic features presented in the signal. Fairly good results were

achieved by this system.

The overall performance of these early recognisers, especially in a speaker-independent

mode, was not impressive. Nevertheless, These early attempts at recognition did

demonstrate the value of using the spectrograph as a useful tool in speech recognition.

b. The Work in the Sixties:

The use of the digital computer in speech recognition was first employed in the early

1960's. One of the earliest speech recognition systems to deal successfully with a number
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of different speakers was that of Forgie and Forgie [181. They noted that there is an

inverse relationship between the pitch of the voice and the size of the vocal tract, so the

fundamental frequency can be used to normalise formant frequencies. Their speech

recogniser consisted of a 35-channel filter bank connected to a computer. The formant

frequencies of an incoming speech signal were determined from the spectrum, and then

normalised. From these measurements the vowels in the context lb/-vowel-/ti words

were recognised. They reported an accuracy of 93% for ten vowels spoken by each of 21

male and female speakers with no adjustment for the speakers.

A similar speech recogniser was built by Denes and Mathews [19], where a 17-channel

spectrum analyser formed the input to a computer. Spectrum patterns were formed from

the spoken digits, and a number of utterances of each word were averaged and stored as

reference patterns. Unknown utterances were recognised by comparing them with the

stored patterns by a cross-correlation process. The novel feature of this system was that a

provision was made for the duration of the patterns to be normalised before classification.

The system was tested with one female and six male speakers. An error rate of 6% was

obtained with normalisation, and 12% without it.

Sakai and Doshita reported a more comprehensive recogniser [201. They used separate

circuits for segmenting the speech into vowels and consonants and for classifying the

segmented phonemes. Zero-crossing analysis was combined with measurements of the

variation of energy in various frequency regions. They claimed 70% correct recognition

on consonants and 90% on vowels, although it was pointed out that some phonemes

were not allowed as input.

The introduction of the Fast Fourier Transformation (FET) in the mid sixties by Cooly

and Tukey [21], made it possible to achieve complex mathematical analysis of speech

waveforms with reasonable computational effort and also paved the way for fully digital

speech recognition systems. This, along with the desire to market small scale recognition

products, led to the development of special purpose hardware.

c. The Work in the Early Seventies:

At the end of the sixties and beginning of the seventies, speech scientists had begun to

expand their domain to the recognition of continuous speech.
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There are many sources of linguistic knowledge which may be used in a speech

recogniser in order to improve its performance. In the early seventies it was felt that the

use of such sources of knowledge could be exploited to solve the problem of recognising

spoken sentences and longer periods of speech. In the USA a major effort, funded by

the Advanced Research Projects Agency (ARPA), was commenced, to tackle the

problems encountered in continuous speech, as opposed to isolated word recognition. A

five-year research programme was initiated [22], where different sources of knowledge

were integrated into a network. The ARPA project called for a system that would accept

continuous speech from any cooperative speaker. The language was limited to a

vocabulary of 1000 words and was allowed to have an artificial syntax appropriate to a

limited task situation, e.g., data management, chess playing, etc.

When the ARPA project ended in 1976, a number of task-dependent systems: HARPY

[23], HEARSAY [24], HWIM [25], which could understand spoken utterances within a

given context, had been developed. Many of the present day Continuous speech

recognition systems still employ the techniques investigated during the ARPA project.

Some speech recognition systems had used a probabilistic function of a Markov process

to model the speech signal [26]. Other algorithms based on stochastic modelling, to

model the linguistic knowledge sources necessary for continuous speech recognition,

gave encouraging results [27].

In conjunction with the above mentioned systems, two other major developments in the

early seventies had helped to accelerate the recognition research, especially for isolated

words. These were the introduction of linear prediction coding (LPC) and dynamic time

warping (l)TW) techniques, as we will see later on in this chapter.

Further developments in the speech recognition in the mid seventies and during the

eighties will be reported in the following sections, where various techniques used in the

recognition of isolated and continuous speech recognition will be presented.

2.3 Isolated Word Speech Recognition

Isolated word speech recognition can be dealt with using two main approaches: the

mathematical approach and the acoustic-phonetic approach. In the former approach,

pattern matching methods, stochastic modelling using hidden Markov models, and more
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recently neural networks, have been employed. These methods utilise little or no speech

specific knowledge. The acoustic-phonetic approach utilises linguistic knowledge such

as: phonetic, phonological, and morphological knowledge. Descriptions of these different

techniques are introduced in the following sections, but before going into that, the

acoustic parameters used in most of the speech recognition methods are described in the

next section.

2.3.1 Feature Measurement

A speech signal is a highly redundant signal. It carries linguistic messages as well as

other information about speakers, regarding their physiology, psychology, etc. Feature

measurement, some times called feature extraction, is basically a data reduction

technique. The digitised speech signal is transformed into a smaller set of features which

faithfully describe the salient properties of the acoustic waveform. Data reduction rates

(or compression ratios) of 10 to 100 are generally practical.

A number of different feature sets have been proposed ranging from simple sets such as

energy and zero-crossing rates to complex representation such as:

- Short-time spectrum (1)FI' or filter bank)

- Linear predictive coding

- Cepstral parameters (homomorphic model)

- Articulatory parameters

- Auditory model

The motivation for choosing one feature set over another is often dependent on the

constraints imposed on the system in terms of cost, speed, and recognition accuracy.

Before we discuss some of the feature sets used in the speech recognition systems, a

brief description of the speech production model is introduced.

a. Speech Production Model

In the speech production model, the speech signal is modelled as the output of a linear

time-varying system excited by either quasi-periodic pulses (for voiced sounds), or a

random noise signal (for voiceless or unvoiced sounds) as illustrated in Figure 2.1. The
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linear time-varying system represents the vocal tract, while the periodic pulses represent

the vocal cord vibration, and the random noise represents the air turbulence during

uttering voiceless sound [28]. The vocal tract could be considered as a linear system for a

short time, during which the speech signal is considered as stationary, while it is

non-stationary over a long time duration. From Figure 2.1 we can write

s(t)=g(t) *h(t)
	

(2.1)

where s(t) is the speech signal, g(t) is the source signal, and h(t) is the impulse response

of the vocal tract. In the Frequency domain, Eq. (2.1) becomes:

S(F) = 0(f) . H(f)	 (2.2)

where H(f) represents the transfer function of the vocal tract filter or the spectral envelope

of the speech signal. The resonances arising in this envelope are referred to as Pormant

frequencies' or simply 'Formants'. Figure 2.1 shows the signals of the speech

production model in the time and frequency domains for two cases; voiced sound and

voiceless sound. The vocal tract takes different shapes when pronouncing different

phonemes, and this actually leads to different transfer functions (spectral envelopes), and

hence to different formant frequencies. It is usual to find at least three formants below 4

KHz.

The source or excitation is typically represented in terms of the voicing decision, the

overall amplitude, and the fundamental frequency estimate (FO). Spectral information is

weighted much more heavily than the excitation data in speech recognition because

amplitude and FO are more influenced by higher-level linguistic phenomena rather than by

phonemics. Most recognisers use a set of features which model the spectral envelope as

we will see later on.

To provide an efficient feature representation of speech, three or four formants are

considered sufficient to model the spectral behaviour of the short time spectral envelope.

Usually the four formants are found below 4 KHz. Spectral details at frequencies above

F4 Contain phonemic information (e.g., equal-spaced harmonics indicate voiced speech,

high energy there suggests fricative sound). A wider bandwidth of up to 6.4 KHz can be

used to improve the recognition of some fricative consonants.
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b. Linear Prediction Parameters

Linear prediction coding coefficients can model the spectral envelope well, and are widely

used. The basic idea behind LPC is that a given speech sample can be approximated as a

linear combination of past speech samples [29]. For each sample a prediction error e(n),

is defined as follows:

e(n) = s(n) - (n)
	

(2.3)

(n) =
	

a(i) s(n-i)
	

(2.4)

H(z) =
	 (2.5)

1—	 a(i) z'

where 1(n) is the linearly predicted sample, s(n) is the actual sample, P is the degree of

the LPC model (filter), and a(i) where i=1 ,2,...,P are the filter predictor coefficients. By

minimising the mean-square prediction error e(n), over a finite interval, a unique set of

predictor coefficients can be determined. The LPC coefficients give good short-time

spectral estimation of the linear time varying system. H(z) in Eq. (2.5) represents the

z-transform of the transfer function of the vocal tract (all pole model).

For a short interval (M samples of speech), the LPC coefficients are computed to yield

an N-dimensional feature vector, where N equals P (the model's degree) which is

usually taken between 8 to 14 [30]. The time variation of these feature vectors defines a

pattern for the speech utterance.

Formant frequencies and their bandwidths can be extracted from the transfer function of

the vocal tract by a peak picking procedure. Computing the FFT over the set of LPC

parameters and taldng the inverse of the result, yields the transfer function of the vocal

tract (Eq. (2.5) ). Another way to fmd the formant frequencies and their bandwidths is to

solve the inverse of Eq. (2.5) and find its roots (complex pole-pairs) [30].
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c. Filter Bank Parameters

A popular set of features used in many speech recognition systems is the output of a

bank of filters. The speech signal is passed through a bank of bandpass filters covering

the speech bandwidth. The energy at the output of each channel is estimated from the

output of each particular filter [32]. The set of energy values at each interval of time

(frame) constitutes an N-dimensional feature vector. The time variation of these feature

vectors defines a pattern for the speech utterance. En general the bandpass filters are

linearly spaced at low frequencies (below 1000 Hz) and logarithmically spaced at high

frequencies. It was found [33], that 13 filters spaced along a critical-band frequency scale

(or bark scale), were enough for high recognition accuracy, and using 15 filters spaced

uniformly in frequency gave the same result as critical-band filters in a template matching

approach.

d. Cepstral Parameters

Three types of cepstral parameters have been used in speech recognition systems

(homomorphic model) [34], namely the linear frequency cepstral coefficient (LFCC)

[35], the mel-frequency cepsiral coefficients (MFCC) [36], and the LPC-derived cepstral

coefficients (LPCC) [31].

The LFCCs are computed from the log-magnitude discrete Fourier transform (DFT)

directly as follows:

K-i
ink

LFCC.=	 'k cos(---)

k=O

where i = 1,2,... ,N. K is the number of DFT log-magnitude coefficients k. and N is

the number of employed cepstral coefficients.

In mel-frequency scale, the DFT magnitude spectrum is frequency-warped to follow a

critical band scale (mel-scale) [36, 37] and amplitude-warped (logarithmic scale), before

computing the inverse DFT parameters. Therefore Q bandpass filters are used to cover

the required frequency range, and the MFCCs are computed as follows:

(2.6)
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MFCC.	 X cos [i (k - .) L
Q

(2.7)

where i = 1,2,...,N. N is number of cepstral coefficients used, and Xk represents the

log-energy output of the kth filter.

The LPCCs are obtained from the LPC parameters directly as follows:

(2.8)LPCC. = LPC. +
1	 1

LPCC1	 LPCk

where i= 1,2, ..., N. N is number of employed coefficients. For i greater than the

order of the LPC model, LPCj is taken equal to zero.

The set of N parameters (LFCCs, MFCCs, or LPCCs) constitutes an N-dimensional

feature vector. The time vaiiation of these feature vectors defines a pattern for the speech

utterance. It was found that 6 MFCCs gave better accuracy than any other 10 (or more)

cepstral coefficients [35].

e. Articulatory Parameters

Another set of features for describing speech sounds would be the parameters giving the

position of the tongue, lips, jaws and the velum as functions of time. These parameters

can be estimated from the speech signal [38]. A new speech production theory based on

distinctive regions along the vocal tract has been introduced [6, 39], which provides a

new concept in the acoustic-articulatory-phonetic relation. By performing

acoustic-articulatory inversion, the area function can be used as an articulatory parameter

for speech recognition.

f. Auditory Model Parameters

Another approach for feature measurements is the use of the auditory model [40]. The

psychophysical aspects of critical bandwidth, loudness, timbre, and subjective duration

have been used as feature measures [41]. Another design which tries to capture the
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time-varying nature of the auditory model by combining the psychophysical critical-band,

and loudness estimation with a firing-rate model, has improved the accuracy of the

speech recognition compared to previous filter-bank feature measures [42].

2.3.2 Pattern Matching Model

The classical way of solving isolated word recognition problem is to treat it as a pattern

recognition problem, where digital signal processing techniques can be applied to obtain a

pattern for each word.

Figure 2.2 displays the typical pattern matching model employed in the majority of

isolated word recognition systems. This model consists of three stages:

- Feature measurement

- Pattern comparison

- Decision rule

Feature	 Test	 Pattern
Measurement	 11Coiiion

Signal

I	 I	 I

Endpoint	 :	 i -
Detection

I	 I Training
I

Reference
Patterns

Decision
RJ7

Word

Fig. 2.2 Pattern recognition model

The endpoint detection stage, which locates the beginning and end points of a word, can

be included in the first stage. As we saw in the previous section, a short interval (frame)

of speech is represented by an N-dimensional feature vector (or as a point in an

N-dimensional feature space), and an utterance is represented by a sequence of vectors.
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These vectors define a pattern in an N-dimensional space. During the training phase, a

pattern is created for each reference word in the vocabulary. During the test phase,

similarity measurements are made to compare an unknown pattern with each reference

pattern. Then, a decision rule is used to choose the reference pattern which best matches

the unknown pattern (or word). Before going into details, a few comments can be made

regarding endpoints detection.

a. Endpoint Detection

Endpoint detection means finding the spoken word in the designated recognition interval:

in other words, separating the speech signal from background sounds or noise. Different

methods have been proposed for locating the first and last points of a word [43,44, 45]

where some feature measures like energy and zero-crossing rate have been used.

The endpoint detection is crucial in the recognition of isolated words for two reasons:

- Error in the endpoints location increases the probability of making recognition

errors.

- Proper location of the endpoints keeps the overall computation of the system

to a minimum.

The complexity of the word boundary detection depends on the speaking environment

(e.g., speaking in sound proof-booth, or in computer room, or via telephone line, etc.),

and on the transducer (e.g., telephone handset, high quality microphone, noise-cancelling

microphone, etc.).

Endpoints detection is a very simple procedure when using a close-talking

noise-cancelling head-mounted microphone, but becomes very difficult when the

recording conditions degrade, especially when a word starts or ends with a weak fricative

[46].

Apart from environment noise, the noise most harmful to the recogniser is often

generated by the speaker himself through breath noise, such as aspiration or exhalation

after speaking a word and quick inhalation or lip pops immediately before speaking.

Inhaling produces no significant direct air blast on the close-talking microphone, whereas

exhaling can produce signal levels comparable to speech levels.
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b. Pattern Similarity Measures

In the recognition system a comparison is carried out to determine the similarity measure

between a test (unknown) pattern or template, and all reference templates. One major

difficulty in this case is that the speech utterances are rarely of equal temporal length.

Their durations are dependent on the speaking rate, where we may have different

duration for the repetition of the same word by the same speaker and across speakers.

Therefore pattern similarity involves both time alignment (time warping) and distance

computation, where these are often achieved simultaneously.

i. Dynamic Time Warping

Time alignment means the process of non-linear warping of a template in an attempt to

align (synchronise) similar acoustic segments in the test and reference templates. This

procedure, called dynamic time warping (DTW), combines alignment and distance

computation through a dynamic programming procedure [47, 48]. Normalisation by

means of time warping is an exceptionally powerful device and has contributed greatly to

the accuracy of recognition systems.

Figure 2.3 shows an example of nonlinear time alignment of a test pattern T (n),

which has N frames or vectors, and a reference pattern R (m), which has M frames.

(a,)
I	 I	 I

I	 I	 I

I	 I	 I

Fig. 2.3 Example of DTW of a test and reference patterns
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DTW finds a warping function (or path) m = w(n), which maps the time axis n of the

test reference onto the time axis m of the reference pattern. Going frame by frame (or

vector by vector) through the test pattern, DTW searches for the best frame in the

reference pattern against which to compare each test frame. The warping curve is

determined as the solution to the optimisation problem:

D=min [
	

d( T(n) , R(w(n))) ]
	

(2.9)
w(n)

where d(T(n),R(w(n))) is the distance between frame n of the test pattern and frame m

of the reference pattern (which will be explained in the next paragraph). D is the

minimum distance measure corresponding to the best path w(n) through a grid of N*M

points.

Restrictions on the time warping function have been studied by many researchers [49,

50, 51]. The restriction is achieved by reducing the search area of the dynamic

progranmting and consequently the number of distances to be computed. Some of these

restrictions are:

- Endpoints constraints on the path.

- Local path continuity constraints (i.e., the possible types of motion such as

directions and slopes of the path).

- Global path constraints (i. e., the limitation on where the path can fall in the

(n , m) plane.

- Distance measure (i. e., the type of employed distance).

Figure 2.4 displays some global and local continuity constraints imposed on the DTW

path.

It is often difficult to locate word boundaries consistently, especially for isolated words

spoken in a background of noise. Special DTW procedures have been used to eliminate

the first few or last few frames from the total distance measure, by relaxing the test axis

and/or the reference axis at the endpoints and relaxing the local continuity constraints at

the endpoints [5211.
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DTW has recently been applied to the problem of training recognisers via automatic

gathering of statistics on natural speech. Extracting training data or templates for short

acoustic segments from continuous or connected speech requires tedious hand

segmentation and labelling. By relaxing local continuity constraints, DTW has been used

to align phones (e.g., phonemes, diphones, etc.) in unlabelled natural utterances with

both synthetic and previously labelled natural utterances [53, 54]. Labelled utterances

permit automatic extraction of sub-word templates from continuous speech.

Global constraints

m

MI	 -

Region of

possible

path

Local constraints

//
I ____________________________

N

Fig. 2.4 Global and local continuity constraints on the DTW path

ii. Distance Measure

In order to implement the optimisation of Eq. (2.9) (and also for other purposes), a

concept of distance (or distortion) between frames must be defined. Several possible

distance measures can be used, depending on the type of the feature Set [55].

Mahalanobis Distance

This distance, also called the covariance-weighted distance, is defined as:

d(T,R)= (T-R)	 w (T-R)	 (2.10)
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where d(T,R) is the distance between test and reference Frames. T and R are the

N-dimensional feature vectors representing test and reference frames respectively. W1

is the inverse of the autocorrelation matrix of the reference feature vector, and (T - R )t

is the transpose of of the vector (T - R). Despite the theoretical advantages of the

Mahalanobis distance, most recognisers use the Euclidian distance or the LPC distance

described below, because it is difficult to reliably estimate W i from limited training

data, and the latter two distances require less computation.

Euclidian Distance

The Eucidian distance is a result of setting the covariance matrix W 1 in Eq. (2.10) to

be the identity matrix I. Then the Euclidian distance becomes:

dE(T,R) =	 (T(n) - R(n) )2
	

(2.11)

where T(n) and R(n) are the nth components of the vectors T and R, respectively.

City-Block Distance

The City-block distance is defined as:

dcB (T,R) =
	 I T(n)-R(n) I 	 (2.12)

It was found that there is no significant difference in the perfomiance of an isolated word

recognition system using the City-block distance instead of the Eucidian distance [59].

LPC Distance

For feature sets based on LPC parameters, an efficient distance measure was proposed by

Itakura [47], and is called the log-likelihood ratio, or simply the LPC distance:
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faR VTaR
d11,(T,R) = log	

Va
	 (2.13)

where a and a are the LPC feature vector of the reference and test frames,

respectively, and T is the matrix of autocorrelation coefficients of the test frame. This

distance is related to the spectral differences between two LPC modes. A different form

of the LPC distance, which simplifies the computation of Eq. (2.13), is as follows:

dLp(T,R) = log (
	

T()	 R 'R (n) )
	

(2.14)

where N is the degree of the LPC model (or the dimension of the feature vector), \T'T(n)

is the autocorrelation vector of the test frame normalised by the LPC error, and R(n) is

the autocorrelation of the reference vector.

c. Decision Rules for Recognition

The last major step in the pattern recognition model of Figure 2.2 is the decision rule,

which chooses the reference pattern (or patterns) that matches most closely the unknown

test pattern. Most isolated word recognition systems use the nearest neighbour rule (NN),

or the K-nearest neighbour rule (KNN). The NN rule chooses the pattern Ri* with

smallest average distance as the recognised pattern, according to the following equation:

i = argmin [ D']	 (2.15)

In some systems, where there are several stored reference templates for each vocabulary

word (corresponding to pronunciations of the word by several speakers, or several

repetitions of the word by one speakers), The KNN rule may be applied. This rule finds

the nearest K neighbours (among all templates) to the unknown and chooses the word

with the maximum number of entries among the K best matches [57]. In an alternative

modified KNN rule, the selected output corresponds to the word that minimises the

average distance between the test template and the best K matches for each vocabulary

word. The KNN rule (with K of 2 or 3) improves the recognition accuracy when the
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number of templates per word is above 6, but increases the necessary computational

requirement [58].

d. Creating Reference Templates

In the recognition system of Figure 2.2, a training phase is assumed before an actual

recognition can take place. The simplest speaker-dependent systems employ causal

training, in which each speaker utters every word in the vocabulary one or more times,

and a reference template is created. Since speakers tend to pronounce a given word

differently at different times or in different contexts (because of different articulatory

structure for different speakers), a few repetitions of each word are often used in training.

Most speaker-dependent systems use 1-3 templates per word, while speaker-independent

systems (multi-speaker systems) use 10-12 [59].

Reducing the number of templates for each reference word to a reasonable number (as

mentioned above) is necessary to reduce confusions and storage requirements in speech

recognition systems. Two methods are used for creating reference templates, namely

averaging and clustering.

In averaging, all the occurrences of a given word are averaged together, after some form

of time alignment. This gives a single reference template for a speaker-dependent system

[60]. For a speaker-independent system, averaging can create an unrepresentative pattern

if the templates differ substantially.

In a speaker-independent system, at least 100 speakers must provide multiple training

tokens for each word, which implies that a substantial clustering is necessary to merge

the tokens to a representative set of 10-12 templates for efficiency. The K-means

clustering method [61], and the unsupervised K-means clustering without averaging

method [62], have been used. In clustering, the N templates of each vocabulary word are

grouped together to form M clusters, using the nearest neighbour rule. For each such

cluster, a single template is created using averaging technique over the tokens of that

cluster.

d. Results of Pattern Matching Approaches in Isolated Word Systems

The accuracy of isolated word recognition systems using pattern matching techniques



29

varies from 90-100% [63, 64], according to the following factors:

- Vocabulary size

- Vocabulary complexity

- Speaker-independent or dependent

- Number of templates per word

The accuracy is actually a function of vocabulary complexity as much as or more than a

function of vocabulary size, especially when the vocabulary includes many similar

sounding words (i.e., acoustically similar words), such as the alphabet words (e.g., B,

1), E, G, P, T, V). The poor performance of acoustically similar words can be improved

by introducing a two-pass recognition method [65], where the first pass decides the

equivalent class of the unknown word, and the second pass looks for the equivalent word

within the specified class. A normal distance measure is used in the first pass and a

weighted distance is used in the second pass, which would help discriminating between

acoustically similar words. The two-pass approach has also been used in a large

vocabulary system [66]. In the initial pass, linear matching between the test word and the

reference using a few features (e. g., duration and two or three average spectra) can be

used. The aim of this initial pass is to reduce the number of candidates to be considered in

the detailed second pass which uses DTW.

e. Advantages and Disadvantages of the Pattern Matching Approach

i. Advantages

- The pattern or template matching model of Figure 2.2 can be used with any

word vocabulary.

- It can be used as either a speaker-dependent or a speaker-independent system.

- It is modular in its three main stages and alternative algorithms (i.e., new feature

sets, new DTW methods, etc.), can be readily employed and tested.

- It uses no speech specific knowledge.

ii. Disadvantages

- A large amount of storage is needed for storing reference templates.

- Heavy computation is required for time alignment between test and reference
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patterns (i.e., DTW and distance measures).

- The amounts of required storage and computation increase linearly with the

vocabulary size.

f. Other Techniques Employed in Template Matching Model

Several other techniques have been introduced to overcome the problem of high storage

and computational requirements without significant degradation in recognition

performance such as:

i. Trace Segmentation Method

In this method the number of frames of each utterance is reduced by exploiting the

stationarity of speech segments [56]. An utterance can be seen as a sequence of points

(trace) in an N-dimensional feature space. The stationary parts of the speech signal cause

a high point density along this trace, while the transitional parts (rapid spectral changes)

with short duration lead to points that are spaced far apart on this trace.

The idea of trace segmentation method is to represent a word by a fixed number of points

(segments) uniformly spaced along the trace, thereby replacing a time domain sampling

with a sampling in the N-dimensional space.

In this method two positive effects are obtained, namely a reduction in the number of

frames and better allocation of points along the trace (eliminating some redundancy).

Experiments showed that 99% accuracy had been achieved for a speaker-dependent

system of 31 words, using a 13-channel filter bank [56].

ii. Transient Matching Method

In this method, only the transient parts of the speech are used as recognition elements to

achieve reduction in storage and computation [67].

iii. Vector Quantisation Method (VQ)

In this method, a substantial cut in the storage and computation can be achieved. Each

vector in the speech template can be replaced by the address of the closest codeword in
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the codebook. The codebook is designed by minimising the average distance between the

designed codebook vectors and a large number of appropriate feature vectors. A

codeword represents an entry in the codebook.

If only the reference templates are quantised, the method is called single-split VQ, but if

both reference and test templates are quantised, the method is called double-split VQ. In

double-split VQ method, a pre-computation of the distance matrix of each codeword

vector to every other codeword vector reduces the problem of distance computation in the

time alignment algorithm to a simple table-lookup operation.

The performance degradation, due to the distortion introduced by vector quantisation,

was found small [68].

2.3.3 Recognition Without Time Alignments

Several methods were proposed to avoid the process of time alignment (DTW), and the

most important one is the use of a vector quantisation technique. In this case, a separate

VQ codebook was designed for each word in the vocabulary by using data containing

several repetitions of each word. An unknown test word is classified by quantising each

frame in the word using each available codebook (reference word). The average

distortion over all frames of the input word is then computed for each codebook and the

input is classified as the word corresponding to the codebook yielding the lowest average

distortion. The accuracy of such a recognition method was 99% for a small set of words

(20 words) [69]., using codebooks of 32 and 64 entries for a speaker-dependent system.

A speaker-independent experiment using 9 utterances per word, 9 different coclebooks,

gave an 87% accuracy by employing codebooks of 128 entries.

The performance of such methods was improved by incorporating some time sequence

information [70, 71]. In this case, words in the training and input sequences were

normalised linearly to the same length, and then divided into sections. A separate

codebook was then designed for each section of each vocabulary word. Each word was

thus represented by a time-dependent sequence of section-codebooks. New words were

classified by performing VQ and finding the multi-section codebook that achieves the

smallest average distortion. Results on 20 words for a speaker-independent test gave

97% recognition accuracy with small size codebooks (to achieve faster computation).
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2.3.4 Hidden Markov Modelling (HMM)

A probabilistic function of hidden Markov chain is a stochastic process generated by two

inter-related mechanisms: an underlying Markov chain having a fmite number of states,

and a set of random functions, one of which is associated with each state. At a given time

instance, the hidden Markov process is in a unique state and an observation is generated

by the random function associated with the state. This causes the underlying Markov

chain to change state in accordance with its transition probabilities. These states can not

be observed directly (hidden), but only the outputs of the random functions at each state

are seen.

It is quite reasonable to consider the speech signal as being generated by such process.

We can imagine the vocal tract as being in one of a finite number of articulatory

configurations or states. In each state, a short (in time) signal is produced that has one of

a finite number of prototypical spectra depending on the state. Thus, the power spectra of

short intervals of the speech signal are determined solely by the current state of the

model, while the variation of the spectral composition of the signal with time is governed

predominantly by the probabilistic state transition law of the underlying Markov chain.

In principle, the Markov chain may be of any order, and the outputs from its states may

be multivariate random processes having some continuous joint probability density

function. The most common network for automatic speech recognition is the first-order

Markov processes, i.e., for which the probability of transition to any state depends only

upon that state and its predecessor. Higher-order Markov processes could exploit

restrictions on which sounds may occur in sequence within words, but the computational

complexity of such models has thus far precluded their application to acoustic analysis in

automatic speech recognition.

Speech recognition uses processes whose observations are drawn from a discrete finite

alphabet according to discrete probability distribution functions associated with the states.

Let us assume that the underlying Markov chain has N states:

and the observations are drawn from an alphabet V, of M prototypical spectra
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(codebook of M codewords):

V1,V2,...,VM

The underlying Markov chain can then be specified in terms of an initial state probability

vector

itl,it2,.•,itN)

and a state transition matrix:

A=[ a.. ]	 1 ^i,j^N

Here it is defined as the probability of qj at some arbitrary time, t = 0, and ajj is the

probability of transiting to state qj given the current state, cli, that is:

ajj = prob ( qj at t + 1 I qj at t)

The random processes associated with the states can be collectively represented by

another stochastic matrix:

B= [ bJk]	 1^j^N and 1^k^M

where bjk is the probability of observing symbol vk given current state qj:

bjk = prob (vk at t I qj at t)

This hidden Markov model M, is identified with the parameter set (it, A, B).

In order to use hidden Markov modelling, two specific problems must be solved to

perform speech recognition:

- Observation sequence probability estimation, which will be used for

classification of an utterance.

- Model parameter estimation, which will serve as a procedure for training

models for each vocabulary word.
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Both problems proceed from a sequence 0, of observations:

where each O for 1 ^ t ^ T is some vk E V.

An efficient method for estimating parameter sets of hidden Markov models is given in

reference [72]. Figure 2.5 shows a five-state model [73]. In this left- to-right model, it

always begins in state q1 (i.e., the initial state probability is ir1 = 1, and 74 = 0 for

I ^ 1), and ends with state q5 without revisiting states which have been left.

In this model, three transitions are allowed from each state:

- A loop transition back to the same state (representing the insertion of an acoustic

segment).

- A transition to the next state (a substitution or a new segment).

- A skipping transition to the following state (corresponding to the deletion of the

acoustic segtient of the skipped state).

a 11	 a	 a33	 a	 a55

a13	 a	 a3

Fig 2. 5 Five- state left-to-right Markov model
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More general HMMs, allowing transition to any succeeding state (rather than limiting the

transition from state i to only states i, i+1, i+2) increase computation and do not

improve the recognition performance [73].

Isolated word recognition using HMM consists of two phases, training and recognition.

In the training phase, the training set of observations (feature vectors) is used to derive a

set of reference models, one for each word in the vocabulary. In the classification phase,

the probability of generating the test observation is computed for each reference model.

The test is classified as the word whose model gives the highest probability.

In the training phase, the alphabet V, or the set of spectral shapes, is generated by

performing a vector quantisation on a large number of training feature vectors, where an

N entries codebook can be designed. Then, the feature vectors of all training words are

described by indices of this coclebook. A Markov model for each word is generated from

a large number of repetitions of this word, resulting in a number of models equal to the

number of vocabulary words used in a particular recognition system.

In the recognition phase, assume a set of R words (W 1 , W2, . . .,WR) represented by

R models (M 1 , M2, . . . , MR), an unknown word is represented by an observation

sequence:

0=0 1 02
	

Ut € V, and 1 ^ t ^ T

The probability of 0 having been generated by model Mr is:

P (OIM)	 it.
r	 r '1

11,12,...L1.

b. (0 ) a.........b. (0 )	 a.
It	 1	 12	 T	 1T-1 1T

The unknown utterance is classified as Wr if, and only if r P where 1 ^ i ^ R

and r=1,2,. . ., R. The interpretation of the computation in the above equation is the

following. Initially (at time t-1) we are in state i 1 , with probability irs, and generate the

symbol U with probability b 1 (0i). We then make a transition to state i 2 with

probability a1 i2 and generate symbol °2 with probability b 2 (02). This process

continues until we make the last transition for state 1T..1 to state T with probability
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alTl 'T and generate symbol °T with probability blT (Or), where i 1 , i2.

form the optimal state sequence related to the observation sequence 0 1 02.. . Or. A
detailed and computationally efficient algorithm for evaluating the above equation is given

in [75, 76].

The training procedure for such a system is computationally expensive, but it needs to be

done only once. In the classification mode, a hidden Markov model with vector

quantisation requires 17 times less computation than the classical method using DTW,

and also 10 times less storage is needed. In a speaker-independent system using the 10

digits as vocabulary words, an average recognition accuracy of 96% was achieved [77].

Dynamic time warping can be considered as a special case of hidden Markov modelling

[78]. In the pattern matching approach, words are represented by a sequence of feature

vectors (frames), and the DTW looks for the optimal path between the test and reference

frames (Viterbi algorithm). If each frame is considered as a hidden Markov state, then the

DTW path is equivalent to the most likely state sequence (e.g., a Viterbi state sequence

for an observation sequence of length T, and N state hidden Markov model). HMM

requires much computation during the training phase when the model is built, but much

less so during classification, provided the number of states is much less than the number

of frames in the speech utterance.

2.3.5 Neural Networks

In recent years, the advent of new learning procedures and the availability of high speed

parallel supercomputers, have given rise to a renewed interest in parallel distributed

processing models known as artificial neural networks or simply neural nets. These

models attempt to achieve good performance via dense interconnection of simple

computational elements. The neural nets are particularly interesting for cognitive tasks

that require massive constraint satisfaction, i. e., the parallel evaluation of many clues and

facts, and their interpretation in the light of numerous interrelated constraints. Cognitive

tasks, such as vision, speech, and language processing, are also characterised by a high

degree of uncertainty and variability and it has proven difficult to achieve good

performance for these tasks using standard sequential programming methods. In general,

such constraints are too complex to be easily programmed and require the use of

automatic learning strategies, which are now available [78]. Learning or adaptation is a

major focus of neural nets research. The ability to adapt and continue learning is essential
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in areas such as speech recognition, where training data is limited and new talkers, new

words, new dialects, new phrases, and new environments are continuously encountered.

In pattern recognition systems, the major problems are the time axis distortion and

spectral pattern variation. The former problem has been mathematically well modelled and

solved by the use of DTW. On the other hand, the spectral variation, which is caused by

a complex mixture of several effects, is hard to treat. The neural net is quite a general

pattern recognition model which, by being fed training samples of given categories, can

learn to achieve a function to discriminate between the categories. Therefore, it is suitably

applicable to pattern recognition problems where an analytical approach is inapplicable.

This, in turn, implies the usefulness of the neural model in solving spectral pattern

variation problems.

Experiments on using the neural nets for speaker-independent recognition gave 95% for

20 isolated words [79], and 98% accuracy for 10 isolated words [80], using different

neural nets implementations. These results suggest that appropriately designed artificial

neural networks are well-suited for a speaker-independent recognition task.

2.3.6 Acoustic-Phonetic Approaches

The whole word pattern-matching methods described in the previous sections are usually

used with vocabulary sizes ranging from a dozen to a few hundred words. These

methods have some limitation concerning the vocabulary size, which are in brief:

- The amount of required storage and computation becomes excessive. Even with

present technology, this limitation is still important but is becoming less serious

with each year of technological developments.

- The time needed for the enrolment process of new speakers (uttering all words,

or generate stochastic models, etc.), would limit the use of these systems in

several applications.

- When the number of words is large (particularly for continuous speech),

variations in the pronunciation of one word will often exceed the measured

differences between repetitions of different words. Under these circumstances

recognition errors will be unavoidable (where a small irrelevant difference in

articulation of a phoneme may give a greater accumulated matchtn error).



38

For all the above reasons, most large vocabulary speech recognition systems are using

acoustic-phonetic approaches.

In acoustic-phonetic approaches, the recognition units are smaller than words

(sub-word), where some form of signal to symbol transformation is performed. These

units are either phonetic segments or acoustic homogeneity segments, such as phonemes,

diphones, demisyllables, syllables, or crude phonetic segments. Employing these units

as recognition units facilitates the utiuisation of linguistic information (or knowledge) to

manipulate the results of the acoustic-phonetic classification process in speech recognition

systems.

Figure 2.6 shows a simplified block diagram for a speech recognition model based on

the acoustic-phonetic approaches. In this model, the speech signal is divided into

segments according to specific acoustic-phonetic and phonological rules, and a labelling

scheme associates a phonetic symbol with each segmental unit. The choice of acoustic

features in the feature measurements stage is influenced by the segmentation strategy.

These could vary from parameters related to a speech production model, to parameters

related to the auditory physiology and psychophysics, as was demonstrated in the feature

measurement section (Section 2.3.1).

In this model, each vocabulary word is represented by a string of segmental labels and

stored in a lexicon. For an unknown word, there exists one (or more) word candidate. At

the last stage of the model, some decision rules are used to locate the most likely word

candidate.

Feature	
I Segmentation

-H Measurment	

1	
and	

(exica1 ac	 Rules
speech I	 Labeling
signal I 	 ___________	 ___________	 ___________

Fig. 2.6 General model for acoustic-phonetic approaches
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The model of Figure 2.6 can be extended to continuous speech recognition by

incorporating some knowledge sources, as we will see in the following sections. For

isolated words, it requires some acoustic-phonetic rules and phonological rules to

facilitate and enforce the recognition process where these rules depend on the type of the

recognition unit. However, the first step in a recognition system of this kind is to decide

which units are to be used. In the following paragraphs some of these recognition units

are described.

a. Phonemes

Different sets of phonemes are used in different languages, their number varies between

40-60 phonemes for English, Arabic and most of the other European languages.

However, phonemes have a number of contextual variations known as allophones and

there are some 100-200 of them, according to the specific language. The problem with

phoneme recognition units is segmentation, where generally, the acoustic manifestation

of each phoneme is modified by co-articulation effects. The successive phonemes

influence one another or even overlap. For this reason, phoneme segmentation is rather

difficult and inaccurate.

b. Diphones

A diphone (phone-pair) is defined as the interval from the middle of one phonetic

segment to the middle of the next. The transitions between adjacent phonemes are

included in the diphones. There are about 1200 to 1500 different diphones in English

[81], and about the same number in Arabic [4].

c. Syllables and Demisyllables

Coarticulation occurs mainly within a syllable, and also across syllable boundaries. This

has led to the idea, that preliminary segmentation of the speech signal should be syllabic

rather than phonemic. The syllable can be considered as an articulatory as well as

perceptual processing unit. It has been estimated that the number of syllables in English

is about 10,000 [82].

The number of syllabic units in a language can be considerably reduced by dividing each

syllable into two parts, one demisyllable containing the initial part of the syllable, and one
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demisyllable containing the final part of the syllable. The cutting point can lie within the

syllable nucleus (at the point of maximum intensity). The resulting inventories of initial

and fmal demisyllables contain in the order of 2000 elements for English [83], and the

number of demisyllables in other languages may be similar to this number [82].

A drastic reduction in the number of units is reached by dividing the syllable into three

parts: the syllable nucleus, the initial consonant cluster preceding the nucleus, and the

final consonant cluster following the nucleus. It was found, that 100 important

demisyllables out of the 200 available demisyllables (consisting of 47 initial consonant

clusters, 153 final consonant clusters which include vowels), are enough to describe the

majority of syllables for German language [84]. English has about 70 initial consonant

clusters, about 100 final ones, 12 vowels, and 9 diphthongs [82].

d. Acoustic Sub-Word Units

The major problem with using the above sub-word speech units is, that robust and

reliable algorithms for automatically determining the presence and/or identity of such

units do not yet exist. Those sub-word units have been defined based on a linguistic

description of the language. The acoustic sub-word units (ASUs) are derived acoustically

without any reference to linguistic content. A small set of ASUs can be created

acoustically from the speech signal over a wide range of training speech data [85, 8611.

The well-defined linguistic sub-word units make lexical decoding an easy task, since a

standard dictionary of pronunciation will generally provide a simple and straightforward

mapping between the chosen linguistic units and the word orthography. In contrast to

that, ASUs have no simple linguistic interpretation, and lead to great difficulties in lexical

decoding, since no simple and/or straightforward mapping to words is possible.

e. Broad Phonetic Classes (units)

Phonemes are the smallest set of linguistic units, but unfortunately, it is often difficult, if

not impossible (so far) to identify phonemes reliably from the acoustic speech signal.

Instead of that, phonemes are divided into sub-groups each of which contains a number

of phonemes sharing almost the same acoustic properties. These sub-groups are called

broad phonetic classes, e.g., vowels, plosives, fricatives, nasals, liquids, and

semivowels. These classes are related to the manner of articulation (see chapters 3 and 4
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for more details). In this case, a crude, but reliable, acoustic analysis is performed in

terms of broad phonetic classes [87].

Words in the lexicon are described according to their broad phonetic labels. Unlike the

use of acoustic sub-word units, linguistic knowledge is still appropriate to these

representations (with some inevitable modification).

An acoustic-phonetic approach, which uses a hybrid scheme of broad phonetic

classification for consonants and detailed vowel recognition, is investigated in Chapter 4.

In general, the process of segmentation and labelling is very error prone. The degree of

error depends on the actual recognition units. In the decision rules stage of Figure 2.6,

different strategies can be used to correct most of the errors made at the segmentation

level, through the use of different linguistic sources of knowledge.

2.3.7 Syntactic Pattern Recognition

Syntactic pattern recognition has been applied to connected and continuous speech

recognition [93]. It has also been applied to isolated word recognition [88]. Figure 2.7

shows a block diagram for such a system.

Words
Grammer

Fig. 2.7 Syntactic pattern recognition

In this method, each feature vector is assigned one symbol, and then a reduction process

is carried out to result in a string of symbols or primitives, which is a short characteristic
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representation of the utterance (represents the acoustically consistent region along a

word). Syntactic pattern analysis is then performed on the symbol string using a data

base of context-free grammars representing the word in the vocabulary.

Constructing a database of grammars for the vocabulary words is performed using

symbol strings generated from training word utterances, representing the set of

vocabulary words uttered by several speakers. This database of grammars contains one

context-free grammar for each vocabulary word. In the parser stage, when the final input

is accepted by a particular grammar, the input utterance is recognised to be the vocabulary

word corresponding to that grammar. Recognition accuracy of such systems is very high

for a small-vocabulary speaker-independent system [89].

2.4 Connected Word Recognition

In connected word recognition, the spoken input is a sequence of words from a specified

vocabulary, and the recognition is based on isolated word recognition. This is in contrast

with continuous speech recognition, which generally involves recognition from

linguistic units. Typical examples include connected digit siring, where the vocabulary is

the set of 10 digits (0-9), or connected letter recognition (e.g., for spelling words,

names, etc.), where the vocabulary is the set of the alphabet. A pattern recognition model

had been used for connected word recognition, as in Figure 2.8.

In this model, the patterns to be matched consist of a test utterance (a string of words),

containing a set of word templates. For a small number of words in the test utterance

and vocabulary (such as 2 or 3), it is possible to concatenate in all possible orders to form

a set of connected word templates, then to apply dynamic programming to determine the

sequence of templates which best match the test utterance. For large strings and bigger

vocabularies, the amount of computation involved with this approach rapidly becomes

prohibitive. Syntactic constraints on the appearance and order of words for a given

application may reduce the number of comparisons.

Several methods have been proposed to reduce the calculation of DTW. One is two-level

dynamic programming, which compares templates in two levels, one for individual

words and the other for the entire phrase [90].
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Fig. 2.8 Connected word recognition model

A more efficient algorithm, called 'level-building dynamic time warping', has been

proposed [91]. In this algorithm, matching is performed level by level, where each word

reference template R represents a level. At the first level, DTW is applied to compare

R1 for each word that may appear in the initial position of a test utterance against the

initial position of the test template T. For each comparison, distance scores are stored

for all allowable endpoints in T, subject to the normal continuity constraints. At level 2,

R for all possible second position words are compared against T, with paths starting

from the endpoints of the previous level and proceeding to allowed endpoints for second

word. This procedure continues until all levels have been processed. Figure 2.9

displays possible paths through a four-level phrase with a parallelogram warping

window. The endpoints e of the words in the connected phrase are determined by

backtracking.

Another method related to the level-building method is called the one-stage approach

[92]. This method requires much less warping memory, and for long utterances

significantly less computation, than the level building method. Each reference template is

matched against the first part of the test utterance (phrase) and the optimum path, yielding

the minimum distance score, is determined similarly as in isolated word recognition.

Each reference template is then matched against the test utterance starting at the point

where the last template match ended. Computation proceeds for all templates in parallel,

in one pass through the test utterance. This process continues until the end of the test

utterance is reached. At this point the test score corresponding to the word at the end of

the test utterance is selected. The sequence of reference templates which leads to this

score is chosen as the string of words in the input pattern.
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el	 e2	 e3	 e4

connected word phrase

Fig. 2.9 Possible paths through a four-level phrase
with a parallelogram warping window

It was shown that the one-stage algorithm requires only about 4% of the computation

required by the two-level algorithm, and about 25% of that of the level-building

algorithm [92]. In addition, the one-stage algorithm uses only about 10% of the storage

requirements of the other above mentioned algorithm, during DTW computation.

One of the advantages of both the one-stage algorithm and the two-level algorithm is that

syntactic constraints may easily be incorporated. The point in the test utterance where one

template changes to another is determined as a part of the optimisation process. If certain

word orders are unlikely, or prohibited, appropriate weights can be inserted in the

distance computation.
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2.5 Continuous Speech Recognition

In the production of continuous speech, the variation of the acoustic realisation of the

speech is more acute compared to the case of producing isolated words. In continuous

speech, pronunciation is less careful, the speaking rate is less constant, speaker

differences are underlined, coarticulation effects exist between words as well as within

them, and acoustic segments are commonly deleted, inserted, or substituted. Although

speech is perceived as a sequence of separate words, there is often little evidence of word

boundaries. In addition to that, the importance of a word in the message affects its stress

and intonation and hence its acoustical realisation.

In attempting to recognise continuous speech, the machine is presented with an input

message, which may be imprecise, and in which not all of the information necessary for

decoding is unambiguously or completely encoded. The listener uses his knowledge of

the language in order to decode the speech message. The spoken message will not be

understood unless the speaker and the listener use the same language. This means that

human listeners make use of linguistic cues and constraints in recognising continuous

speech. This leads to the importance of using sources of linguistic knowledge in

automatic continuous speech recognition. These sources are:

- Acoustic-phonetic knowledge

- Phonological knowledge

- Prosodic knowledge

- Lexical knowledge

- Syntactic knowledge

- Semantic knowledge

- Pragmatic knowledge

Before going into some details about these sources, we should clarify the difference

between continuous speech recognition and a speech understanding system.

2.5.1 Speech Understanding Concept

Continuous speech recognition attempts to transcribe speech onto orthographic form. The

inherent variability of naturally spoken speech makes continuous speech recognition so

difficult. Restrictions have been imposed on the continuous speech, where the utterances
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to be recognised are spoken in a well defined context (related to a specific task), so that

high-level knowledge sources such as syntax and semantics can be applied to support the

basic recognition processes. These systems are called simply speech understanding,

where the speech is first understood in order to be recognised through the incorporation

of some high-level knowledge sources. The speech understanding systems are

task-dependent systems. On the other hand, task-independent continuous speech

recognition will allow a change in topics from one utterance to the next and still correctly

identify the wording of the sentence.

2.5.2 Sources of Knowledge

A brief description of each source of knowledge is given below.

a. The Acoustic-Phonetic knowledge

To use acoustic-phonetic approaches in continuous speech recognition, it is necessary to

take into account the large number of different acoustic cues related to particular minimal

phonetic differences [84]. It is very difficult to formulate the rules for making some fine

phonetic distinctions. A method commonly adopted for this process is to accept that some

very skillful human beings (experts) can perform the interpretation task, through a

spectrogram reading experiment [93]. Those rules can be transferred into machine, and

stored into a knowledge base.

In a speech recognition system the acoustic-phonetic analyser extracts a set of acoustic

parameters from the speech signal (see Section 2.3.1). Those parameters are segmented

into linguistic units, and classified according to their structure, by exploiting specific

acoustic-phonetic cues or rules from the acoustic knowledge source, perhaps using some

form of 'expert systems'.

b. Phonological Knowledge

All languages are highly constrained, for example, by their phonetic inventory, which is

only a small sample of all possible speech sounds. They are also constrained in the

possible combination of these sounds through phonological rules. The presence of these

constraints acts to reduce the amount of uncertainty in the phonetic string (or strings)

which results from the acoustic-phonetic stage of a speech recogniser. On the other hand,
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the co-articulation effect and the fluency of continuous speech affect the phonetic

information in an utterance. Phonological rules express the systematic ways in which the

realisation of words or phonemes (or other linguistic units) may change with their

environment (and how these units deviate in 'defective' speech from the norm of the

language) [94].

Generally speaking, the more we can use the phonological structure of the language and

the more we can make use of this knowledge in a recognition system, the more

successful we should be in our work in automatic speech recognition.

An appropriate set of acoustic-phonetic parameters can be extracted from the speech

signal to provide a necessary and sufficient set of phonological features for further

processing. Any desired lexicon can have its entries efficiently represented in the most

useful phonological units, such as phonemes, allophones, diphones, demisyilables and

syllables. None of these units is truly ideal for recognition, and for that reason, it may be

well to consider the use of a combination of units in an automatic speech recognition.

c. Prosodic Knowledge

Prosodic or suprasegmental information, namely stress, intonation (variation of

fundamental frequency FO with time [9]), pauses, and timing structures, can be extracted

from the speech signal. This information offers an independent way of acoustically

detecting some aspects of the syntactic structure of the speech, without depending upon

the potentially errorful sequences of hypothesised words derived from the incoming

acoustic-phonetic information. For example:

- Prosodic information can provide a variety of secondary aids to phonetic

analysis, such as cues to voicing, location of syllable nuclei (vowels), guide for

efficient acoustic analysis, etc.

- From pauses and very large FO variations, discourses can be divided into

sentences, and sentences into clauses (boundary detection).

- Phrase categories can be determined from the aspects of stress patterns, general

slope of FO contour (intonation), or other prosodic information.

- Important words in the sentence are more stressed than other words.
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d. Lexical Knowledge

The lexicon, or vocabulary, allowed by each speech recognition or understanding system

is represented internally in terms of pronunciations (phonetic transcription) of the words.

Some systems encode all the multiple pronunciations of each word that arise from

contextual effects.

e. Syntactic Knowledge

Syntactic knowledge enables the recogniser to determine whether a particular sequence of

hypothesised words can occur within a grammatical sentence. In addition, syntax

provides a basis for predicting additional but unhypothesised fragments of the sentence.

The syntactic rules, or grammar, comprise a set of rules that specify legitimate linguistic

expressions, and allowable combinations of words from the pre-defined vocabulary in

the recognition system.

f. Semantic Knowledge

Semantic knowledge provides a capability to determine whether a syntactically correct

sentence is actuafly meaningful or not. Semantic information is also employed to choose

between words or sentences which seem equally likely on phonology, syntactic or other

grounds.

g. Pragmatic Knowledge

Pragmatic knowledge enables the recognition system to determine whether a meaningful

sentence is plausible and appropriate in the context of an ongoing dialogue. In a dialogue,

a speaker's response must not only be a meaningful sentence but also a reasonable reply

to what was said to him. The pragmatic knowledge can predictively constrain the types

of sentences that might meaningfully prolong an ongoing dialogue.

Each type of the above higher-level knowledge defines additional constraints, where

sentence interpretations must satisfy them. If properly exploited, these constraints can

eliminate unlikely interpretations from consideration. As a consequence, These actions

can reduce the number of incorrect hypotheses generated, extracted, or accepted.
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2.5.3 Speech Understanding Models

Speech understanding systems attempt to integrate traditional speech recognition

techniques with artificial intelligence (Al) techniques to give the extra power needed to

deal with natural speech.

The actual mapping of an input utterance into a representation of its meaning takes place

through a series of intermediate representations or levels. The translation from one level

to the next higher level is accomplished by applying knowledge from one or more

sources. Figure 2.10 shows one of the simplest arrangements for a speech understanding

system, the so-called hierarchical structure [96]. In this model, the input speech is first

analysed by the acoustic analyser to extract appropriate parameters, which provide the

necessary features to describe the already chosen phonological units (let us assume

phonemes). The acoustic analyser also provides sufficient parameters for prosodic feature

extraction. The segmentation and labelling (into phonemes) are accomplished in the

phonetic processor, through the use of acoustic parameters. The prosodic processor

extracts prosodic features from the acoustic parameters and detects those prosodic cues

related to the linguistic structure. The acoustic analyser, the phonetic processor, and the

prosodic processor (only the prosodic feature extraction), can be combined into one stage

as an acoustic-phonetic processor, sometimes called as the system front-end.

Because the acoustic-phonetic analysis is an inexact process, the output from the

acoustic-phonetic processor is not a simple string of phonemes (or any other units), but a

lattice of alternatives. This lattice is the first and lowest level of representation. The next

higher level of representation is a network of word hypotheses which are grouped into

syntactically legal phrase structures by the syntactic analyser to form the next level of

representation. Finally the semantic and pragmatic processes are employed to determine

the appropriate sentence which has the actual meaning.

In practice, the system may operate either in bottom-up mode, top-down mode, or a

mixture of both. In bottom-up mode each level is derived directly from the level below.

In top-down mode, each lower level is extended only when it is needed, in order to

extend the higher level above. Bottom-up is effectively just another name for straight

forward data-driven processing, where as top-down represents a hypothesis and test

paradigm.
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Fig. 2.10 Hierarchical speech understanding structure

The system of Figure 2.10 can be divided into two main parts, bottom-end processors

and top-end processors [23]. The bottom-end (front-end) processors are the

acoustic-phonetic processors, which are mainly task-independent, while the top-end

processors are the other linguistic processors. The top-end processors can provide the

bottom-end with constraints concerning what might be expected next.

The hierarchical structure is simple to implement, because interaction between knowledge

sources are limited to those which are adjacent in the hierarchy. This limitation may be
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unacceptable in practice, since more flexible interactions between knowledge sources will

often be needed. For this reason, more general architectures such as the blackboard

structure shown in Figure 2.11 are often employed. In this model, all data is kept in a

common memory area called the blackboard, which can be accessed by any knowledge

source [97J. The blackboard is a two-dimensional structure, with the dimensions being

time for the start of the utterance, and level. There are eight levels representing different

descriptions of the utterance according to the eight knowledge sources. However, whilst

more general architectures such as these are certainly more flexible, they are also much

more difficult to control. One of the advantages of this knowledge-base organisation is

that each knowledge source can be modified and extended independently.

Syntactic
	

Semantic
	

Lexical
Knowledge
	

Knowledge
	

Knowledge

Pragmatic
	

Acoustic
	

Phonetic
Knowledge	 Knowledge

	
Knowledge

Fig. 2.11 Blackboard speech understanding structure

2.5.4 Remarks on Continuous Speech Recognition

The change in terminology from speech recognition to speech understanding in the past

decade reflects a departure from the view that speech can be recognised by machine, and

the acceptance of the view that linguistic knowledge sources must be used to recognise an

utterance. The problem with knowledge-based understanding systems is that they are

task-dependent.
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It becomes increasingly evident that progress in task-independent continuous speech

recognition will depend on essentially a better acoustic-phonetic analysis at the front-end

of the recognition system. An almost error free bottom-up analysis is necessary for

unrestricted sentence recognition.

Spectrogram reading experiments have proven that the acoustic signal is the primary

information-bearer. The high scores obtained in sentence spectrogram reading (15% error

in a speaker-independent phoneme identification for expert reader [93]), suggest that

there exists a great deal more phonetic information in the speech signal than was

previously believed, and that such information is often explicit and can be captured by

rules. The performance of spectrogram reading can be improved by incorporating

suprasegmental information, which can be plotted on the same spectrogram. It is worth

mentioning that the spectrogram reader used a mixture of linguistic units for recognition,

which are phonemes, diphones, and sub-phonemic units [93]. This does not invalidate

the use of the syllable as a unit, but it seems to suggest that greater flexibility in the choice

of units may be beneficial.

2.6 Word Spotting

As its name implies, word spotting is the detection of occurrences of a given key word

(or words) in a stream of continuous speech . Most successful published efforts are built

around DTW used in the pattern matching model of isolated words.

Every word to be spotted is represented by a template, and the incoming speech stream is

compared with this template. This is done by sliding the input speech samples (feature

vectors) past the word template in a continuous fashion and the time-warping programme

tries to find paths which align the input samples with the template. Most of the time, the

paths (i.e., the possible warping functions), do not make it to the end of the template as

they are terminated because of excessive costs (accumulated distance measures). When a

successful match is made, the system reports the presence of the key word in the input

stream. It is clearly important to make the warping process independent of the endpoints,

since these are known only for the template. The process must regard every sample of

the incoming speech stream as a potential starting point and attempt to grow a path from it

[98] . Several templates may be used for each key word in such a system to allow for

intra-speaker and multiple-speaker variations (in pronunciation), and the matching is

carried Out over all templates in parallel [99].
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A word spotter usually operates on a noisy communication channel. Five feature sets

based on linear prediction, namely normalised autocorrelation coefficients, LPC

coefficients, cepsiral coefficients, area functions, and pseudo formants, have been used

in word spotting systems working on telephone-quality speech with wide band noise

added to test the system's performance on noisy speech [100]. It has been found that

pseudo-formants give the best detection probability at almost every noise level. Also, a

modified hidden Markov model recogniser has been used for word Spotting [101].

The best performance of a word spotter achieved an accuracy of 90 to 95% detection of a

single word in noisy speech, and almost perfect performance (no misses, or no false

alarms) was achieved in the absence of noise [99].

2.7 Summary

A review of speech recognition categories and techniques has been presented in this

chapter. In isolated word recognition, pattern recognition approaches or stochastic

modelling (based on the whole word templates or model) work very well for a small

vocabulary systems. For large vocabulary systems, the acoustic-phonetic approaches are

to be used. In these approaches, the recognition units are smaller than words, which are

either linguistic phonetic segments or acoustic homogeneity segments (i.e., broad

phonetic segments). The use of such recognition units facilitates the utilisation of

linguistic knowledge to manipulate the results of the acoustic-phonetic classification

process in the recognition systems. The acoustic-phonetic approaches are also used in

continuous speech recognition systems.

In this research work, an acoustic-phonetic approach, which uses a hybrid scheme of

broad phonetic units for consonants and detailed phonetic units for vowels, is

investigated. This approach is applied to a large vocabulary isolated word Arabic speech

recognition system, as explained in the following chapters. The Arabic phonetic system is

introduced in Chapter 3. Chapter 4 presents the statistical results of applying different

broad phonetic classification schemes to a large vocabulary lexicon. Also, it introduces

the proposed recognition model. The subsequent chapters discuss the implementation of

the proposed approach.
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Chapter 3

Arabic Phonetic System, Phonology
and Morphology

3.1 Introduction

Arabic is a Semitic language, and it is one of the oldest living languages in the world

today. It is the fifth widely used language. Arabic is the mother (spoken) language

throughout the Arab world(i.e., SYRIA, JORDAN, SAUDI ARABIA, EGYPT,

MOROCCO, SUDAN, etc.). Arabic alphabets (and to some extent its syllabic types,

morphological and syntactic structure), are used in several languages, such as Persian,

Urdu and Malay.

Standard Arabic is the language of communication in official discourse, teaching,

religious activities, and literature. Standard Arabic has basically 35 phonemes, of which

six are vowels, and twenty-nine are consonants. Before going into details of the Arabic

phonetic system, a brief description of the vocal mechanism is provided.

3.2 The Human Vocal Mechanism

Figure 3.1 illustrates a schematic cross-sectional view of the human vocal system. The

vocal tract is a non-uniform tube in cross-sectional area. It extends from the glottis (i.e.,

the opening between the vocal cords) to the lips, and varies in shape as a function of

time. In the average male, the total length of the vocal tract is about 17 cm. The

cross-sectional area of the vocal tract varies along its length, from a compete closure to

about 20 cm2, as determined by the movement of the lips, jaw, tongue, and velum [11,

102]. The nasal cavity which begins at the velum and terminates at the nostrils can be

coupled to the vocal tract by the action of the velum to produce nasal sounds. During the

generation of non-nasal sounds, the velum seals off the vocal tract from the nasal cavity.

Speech sounds can be classified into three distinct classes according to their mode of

excitation, namely voiced, unvoiced (voiceless), and plosive sounds. Voiced sounds are
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produced by forcing air through the glottis with the tension of the vocal cords adjusted so

they vibrate in a relaxation oscillation, thereby producing quasi-periodic pulses of the air

which excite the vocal tract. Vowels are an example of voiced sounds. Unvoiced sounds

are generated by forming a constriction at some point in the vocal tract (usually towards

the mouth end), and forcing air through the constriction to produce turbulence flow. This

creates a broad spectrum noise source to excite the vocal tract. Plosive sounds results

from making a complete closure, building up pressure behind the closure, and abruptly

releasing it.

11

14

12
	 56

(a)
	

(b)

Fig. 3.1 A Schematic cross-sectional view of the human vocal system
(a) Speech Articulators: 1) vocal cords, 2) pharynx, 3) velum, 4) soft palate, 5) hard

palate 6) alveolar ridge, 7) teeth, 9) tongue tip, 10) tongue, 11) nasal cavity, 12) oral

cavity, 13) trachea, 14) nostrils, ) Lips

(b) Places of Articulation: 1) bilabial, 2) labiodental, 3) interdental, 4) alveodental, 5)

alveolar, 6) palatal, 7) velar, 8) uvular, 9) pharyngeal, 10) glottal.
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The resonant frequencies of the vocal tract tube are called formant frequencies or simply

formants (see Figure 2.1). Formants depend upon the shape and dimension of the vocal

tract. Different sounds are formed by varying the shape of the vocal tract. Thus, the

spectral properties of the speech sounds vary with time as the vocal tract shape varies.

The time-varying spectral characteristics of the speech signal can be graphically displayed

through the use of the sound spectrograph [13]. The spectrograph produces a

two-dimensional pattern called a spectrogram, in which the vertical dimension

corresponds to frequency and the horizontal dimension to time. The darkness of the

pattern is proportional to signal energy, therefore we could call it a three-dimensional

pattern (see Figure 3.2).

3.3 Articulatory Phonetics

The goal of articulatory phonetics is to describe speech sounds in terms of the positions

of the vocal organs, and to provide a common notation for linguists.

Most languages, including Arabic, can be described in terms of a set of distinctive

sounds, or phonemes. The conventional division of phonemes is into vowels and

consonants.

a. Consonants

Consonants are relatively easy to define in anatomical terms. Most consonants are

describable by a few recognised features, principally:

- Point of articulation

- Manner of articulation

- Voicing

i. Point of Articulation

The point of articulation is the location of the principal constriction in the vocal tract,

defined usually in terms of participating organs. Table 3.1 gives a list of the principal

points of articulation (relating to Arabic consonants), and the names given to the

corresponding consonant.
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Name
	

Description

Bilabial

labiodental

Interdental

Alveodental

Alveolar

Palatal

Velar

Uvular

Pharyngeal

Glottal

Between lips.

Between lower lip and upper teeth.

Tip of tongue between teeth.

Tip of tongue on gums.

Tip of tongue on alveolar ridge.

Middle of tongue in contact with the hard palate.

Back of tongue on soft palate.

Back of tongue touches or is near to the velum.

Root of tongue constricting oral pharynx.

Between vocal cords.

Table 3.1
	

Principal points of articulation

Name

Plosive

Fricative

Nasal

Semivowel

Trill

Lateral

Table 3.2

Description

Vocal tract shut off at point of articulation.

This is also called 'Stop'.

Vocal tract partly open at points of articulation,

and turbulent noise created at point of articulation.

Vocal tract closed at point of articulation and

velum open.

Vocal tract partly open at point of articulation

without turbulence.

Oscillatory opening and closure at point of

articulation.

Vocal tract closed at point of articulation but

open at sides.

Principal categories of articulation
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ii. Manner of Articulation

Manner of articulation re$ ers to the degree of constriction at the point of articulation, and

the manner of release into the following sounds. Table 3.2 gives the principal manner of

articulation categories of Arabic consonants and their names. Affricate consonants (such

as ItS!) do not exist in the Arabic language, and are not included in Table 3.2. Usually

the trill and lateral categories are called 'Liquid', since they are similar to vowels but are

usually a few decibels weaker.

iii. Voicing

This indicates the presence or absence of vibration of vocal cords, and it is also called

'Phonation'.

b. Vowels

The mouth cavity is usually wide when pronouncing vowels, while when uttering

consonants, there is often a constriction or even a closure at some point along the vocal

tract. When making vowel sounds, the tongue never touches another organ, hence there

is no place of articulation. Vowels are described in terms of position as follows:

- Tongue high or low (i.e., degree of constriction)

- Tongue front, back, or central.

- Lips rounded or unrounded.

- Nasalised or unnasalised.

'High or low' and 'front or back' refer roughly to the highest position of the tongue (i.e.,

tongue hump position). Some authors use the terms 'closed' or 'open' (to describe the

mouth cavity), instead of 'high' or 'low' respectively. 'Front' is towards the lips and

'back' is towards the pharynx. In nasalised vowels, the velum is open, so that sound

passes through the nasal cavity as well as the mouth, while in unnasalised vowels, the

velum is shut and the sound passes through the mouth only.
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3.4 Vowels

The Arabic language has six vowels, consisting of three short* l vowels:

-1W a short low central unrounded vowel

- lul a short high back rounded vowel

- ['1 a short high front unrounded vowel

which contrast phonetically with their long*2 counterparts IaaI, /uu/, and hi!, where

phonemic length is indicated by writing the vowel twice. The duration of long vowels

seem to be twice (or more) the length of short vowels, because they are usually stressed

and carefully uttered in a speech sequence.

Figure 3.2 displays spectrograms of the six vowels. In this Figure, vowels are recorded

as isolated utterances in order to have steady-state formants without consonant-vowel

transitions. However, it is observed that almost all vowels in isolation seem to have some

sort of abrupt initiation (the amount of which varies from one vowel to another).

The frequencies of the first two formants (Fl and F2), of both short and long vowels

were measured as pronounced by the author. Figure 3.3 indicates the location of the

vowels according to their formant measurements. Two triangles have been constructed to

enclose the short and long vowels, in accordance with the classical concept of the vowel

triangle [102]. The broken triangle corresponds to the short vowels and the solid triangle

to the long vowels. In fact, for vowels uttered within a consonantal context, the

differences between formants for short and long vowels are undistinguishable.

* 1	 In Arabic (and in general for all semitic languages), the three short vowels are not written as

separate letters, but they are actually written as diacritic marks below or above a consonant.

Usually diacritics (short vowels) are not written in normal writing, and they are identified from

the contextual and grammatical structure of the sentence. The vowels /a/, Jul. and /it are called

in Arabic Patha', 'Damma', and 'Kasra' respectively.

*2	 The three long vowels /aa/, /uu/, and Jul are written as separate letters, and called 'Alif

maddiyah, 'Waw maddiyah', and "fa? maddiyah', respectively.
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Fig. 3.2 Vowel spectrograms (short and long)
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Fig. 3.3	 Vowel triangle

3.5 Consonants

Arabic has basically 29 consonants. Table 3.3 shows a tentative chart of the standard

Arabic phonetic system (excluding vowels) [2, 103, 104]. In this table, consonants are

categorised according to their place of articulation, manner of articulation, voiced or

unvoiced, and pharyngealised or non-pharyngealised. The Arabic consonantal system

differs from the Latin one, primarily to the presence of pharyngealised (or emphatic),

uvular, pharyngeal, and glottal phonemes. The international phonetic alphabet (EPA) has

been used to describe most of the consonants in this table [105]. IPA uses the

superimposed Tilde I—I, to indicate pharyngealization. To facilitate printing the symbol

I—I has been replaced by underlining the pharyngealised consonants comparable with their

plain counterparts as follows:
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flOfl-pharyngealjsj (IPA)
	

d, k , 1, s , t ,

	pharyngeaiisej (IPA)
	

t, ±, .& , - ,

	in Table 3.3
	

k1' £ ,	 ,

tjt-4
.	 -	 <	 -

Table 3.3 The Arabic phonetic system (consonants)
('vo': voiced, 'uv': unvoiced, 'ph': pharyngealised)

In general phonetic terms, pharyngealization or emphasis has been described as a

rearward movement of the back of the tongue towards the back wall of the pharynx. The

result of this movement is a vocal tract shape with an increased oral cavity (between the

surface of the tongue and hard palate), and a reduced pharyngeal cavity above the

epiglottis compared to non-pharyngealized counterparts. Whenever a pharyngealised

consonant occurs within a syllable, the whole syllable, phonetically, is pharyngealised.

Also, the pharyngealization phenomenon is not confined within the syllable boundary but
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it may (or may not) have an influence on the neighbouring syllables. This puts the

consonantal phonemes immediately preceding and following such a consonant in free

variation (i.e., pharyngealised or non-pharyngealized). The consonant IL' is used only in

one word in the standard Arabic language, which is "lajjaah' (God), therefore, by

avoiding this word we could confine the pharyngealised consonants to the five

consonants (/J, lu, //, /kJ, and /j/).

Regarding the voiced and unvoiced description of consonants in Table 3.3, we should

mention here that voiced consonants at word-final position are in free variation (i.e.,

voiced or unvoiced). Unvoiced consonants, intervocalic, are also in free variation [103].

3.5.1 Consonant Classes

In Table 3.3, consonants are divided into five classes according to their manner of

articulation, namely plosives, fricatives, nasals, liquids, and semivowels. Each class

may be divided into two sub-classes: voiced and unvoiced, and each sub-class may also

be divided into two branches: pharyngealised and non-pharyngealized.

The speech sound appears on the spectrogram as follows:

- Voiced plosives appear as a voice bar along the baseline followed by a sudden

burst noise.

- Unvoiced plosives appear as a gap followed by a sudden burst noise.

-Uvoiced fricatives usually possess a high frequency random noise.

- Voiced fricatives usually possess weak resonance structures appearing as

shadows of weak formants with little noise intervening. The strongest of these

formant structures, indicating the voicing, appears along the baseline.

- Nasals appear as voice bars along the baseline (which differentiate the nasals

from the vowels and other vowel-like sounds), and possess weak resonances

that appear as formant structures.

- Liquids are sonorant consonants and have spectra very similar to vowels. The

fr sometimes, shows distinct formant structures, interrupted by a vertical

sharp gap with short duration (Trill).

- Semivowels possess acoustical characteristics more similar to those of the

vowels than any other consonantal groups. They possess vowel-like formant

structures.
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Spectrograms of all possible combinations for consonant-vowel pairs (29 consonants

and three long vowels) are shown in Figures 3.4 to 3.6 and in appendix B.

3.5.2 Vowel in Pharyngealized Context

This section demonstrates some of the acoustical properties of vowels when they are next

to pharyngealised consonants. Figures 3.4 to 3.6 display spectrograms for all

combinations of the five pharyngealised consonants and their non-pharyngealised

counterparts with the three vowel types.

Figure 3.4 displays spectrograms for the vowel 1W next to the consonants Id!, /11, Is!,

/k!, and //, and their pharyngealised counterparts. When pronouncing the front vowel

hi!, the hump of the tongue is toward the lips, but when uttering a pharyngealised

consonant, the whole body of the tongue is in a backward movement and the back of the

tongue is close to the back wall of the pharynx. When Iii! (or hI) comes next to

pharyngealised consonants, this means that the tongue has to move from its back position

to its front position. This phenomenon is translated acoustically by longer transitional

time for the second formant (F2) in the vowel part, as is illustrated in all cases of Figure

3.4. This transition takes about one-third of vowel's duration for the vowel IV and about

one-fifth for the vowel Jul. Also, we notice that the onsets of Fl and F2 for the vowel [ii!

are influenced by the pharyngealised consonants, where the onset of F2 is lowered and

the onset of Fl is raised compared to those in the non-pharyngealised context.

Figure 3.5 displays spectrograms for the vowel !aa/ next to the consonant /dJ, It/, Is!, 1k!,

and Th7, and their phaiyngealised counterparts. From these spectrograms, we notice that

not only the onsets of formants are affected, but also the formant steady states. In general

Fl and F2 for the vowel laW (or Ia/) move closer to each other in the pharyngealised

context compared to the non-pharyngealized context. We also notice, that F3 and F4

move slightly closer to each other (see Figure 3.5).

Figure 3.6 shows spectrograms for the vowel IuuI next to the consonants Id!, It!, Is!,

/ki', and //, and their pharyngealised counterparts. These spectrograms show that the

vowel's formant onsets as well as its formant frequencies are influenced in a

pharyngealised context. This influence is not as clear as in the case of the vowel IaaI.
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Fig. 3.4 Consonant-vowel spectrograms (vowel hi!)
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3.6 Distribution of Vowel and Consonant Classes

Statistical studies have been carried out to investigate the distribution of vowel and

consonant classes using the lexical database mentioned in Chapter 1. This database

contains two lexicon, the first one contains the most common 3,000 words in the Arabic

language and the second contains 10,000 randomly chosen words. Words are described

in phonemic forms.

3.6.1 Distribution of Vowels

Table 3.4 displays the frequencies of occurrence of the six vowels for the first lexicon,

and Table 3.5 shows the results for the second lexicon [1061.

%of	 %of

phoneme vowels

	

21.65	 53.48	 a
	4.14	 10.22	 u
	5.34	 13.20	 j

	

6.76	 16.69

	

0.93	 2.30	 uu

	

1.66	 4.11	 jj

	

40.48	 100.	 vowels

59.52 consonants

total no. of

phonemes

Table 3.4 Distribution of vowels 	 Table 3.5 Distribution of vowels
for the 3,000-word lexicon	 for the 10,000-word lexicon

Table 3.5 shows that the six vowels represent about 43% of the total number of

phonemes, while the 29 consonants represent about 57%. The short vowel ía! has the

highest percentage (47%) among the six vowels, and the vowels Ia! and laW together
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represent about 60% of the total number of vowels. The vowels /u/, /i,1 and laW have

almost similar frequencies of occurrence.

Table 3.4 gives slightly different results, where the amount of data used here is less than

that of Table 3.5. The importance of Table 3.4 is, that it gives results for the most

common 3,000 words in the language, which were extracted from about one million

words, and they represent about 84% of all words [10]. Unfortunately, we did not load

the frequencies of occurrence of these 3,000 words into our computer, otherwise we

would have had a wider range of statistical results covering about one million words.

Nevertheless, the results are quite impressive, especially the frequency of occurrences for

the vowels /aJ and laW.

3.6.2 Distribution of Consonant Classes

The consonant classes, in terms of manner of articulation as introduced in Section 3.5,

have been considered in this statistical study.

Tables 3.6 and 3.7 report the distribution of consonant classes over the two lexicons in

the lexical database. By comparing the two tables, we notice that there is no substantial

difference between the statistical results of the two sets of words, apart from the decrease

in the percentage of the fricative consonants by about 5% (from 32.5% to 27.83% with

respect to the total number of consonants), and the increase of nasals by about 4.5%

(from 15.52% to 19%). Regarding voicing, about 76% of the total number of phonemes

are voiced and 24% are unvoiced (for the 10,000 word lexicon), whereas about 58% of

the consonants are voiced consonants.

It is believed, that this study is the first of its type concerning Arabic speech processing,

since all previous statistical studies [107, 108] have concentrated on the written

aspects of the Arabic language. Two studies have dealt with the frequencies of occurrence

for vowels and consonants [109, 110]. The difference between these studies and the

current work lie in the databases. Words occur only once in the lexicon in our data base

while the other studies used normal text, i.e., words may occur more than once in the

data base. Nevertheless, the statistical results for vowels are somewhat similar in the

three studies.
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Plosives

Fiicatives

no. of	 no. of
%of	 %of	 %of	 %of

occur-	 occur-
phoneme class	 phoneme class

rence	 rence

vo	 1185	 6.53	 10.96 -

3461 19.06 32.02 - ___ ___ ___ -

uv	 2276	 12.53	 21.06

	

1150	 6.34	 10.64

3513 19.35 32.50 - ______ ______ ______ -

uv	 2363	 13.01	 21.86 .P.!

no. of
%of	 %of

occur-
phoneme class

rence

138	 0.76	 1.28

1047	 5.77	 9.68

643	 3.54	 5.95

1633	 8.99	 15.11

70	 0.39	 0.65

1080	 5.95	 9.99

211	 1.16	 1.95

2152	 11.85	 19.91

Nasals	 1678	 9.24	 15.52

Liquids	 1588	 8.74	 14.69

Semivowels	 569	 3.13	 5.27

10809	 59.52	 100.

Table 3.6 Distribution of consonant classes for the 3,000-word lexicon
('vo': voiced and 'uv': unvoiced)

	

no. of	 no. of
%of	 %of	 %of	 %of

	

occur-	 occur-
phoneme class	 phoneme class

	

rence	 rence

y	 4139	 5.46	 9.56

	

Plosives14436	 19.03	 33.33 - _______ _______ ______

uv	 1(1297	 13.57	 23.72

vo	 4094	 5.39	 9.45

	

Fiicatives12051	 15.88	 27.83 - ______ ______ ______

uv	 7957	 10.49	 18.38

Nasals	 8226	 10.84	 19.00

Liquids	 5637	 7.43	 13.02

Semivowels	 2955	 3.89	 6.82

43305	 57.08	 100.

no. of
%of	 %of

occur-
phoneme class

rence

500	 0.66	 1.16

3639	 4.80	 8.40

2398	 3.16	 5.53

7899	 10.41	 18.24

268	 0.35	 0.62

3826	 5.04	 8.83

698	 0.92	 1.62

7259	 9.57	 16.76

Table 3.7 Distribution of consonant classes for the 10,000-word lexicon
('vo': voiced and 'uv': unvoiced)
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3.7 Syllabic Types and Structure (phonology)

Every language has its own syllabic system that characterises it from other languages.

For many European languages such as English, French, and German, the nucleus of a

syllable is necessarily a vowel. Arabic has also the same property. In English, the vowel

may be preceded by a cluster of consonants (which is called the leading consonant

cluster), and followed by a cluster of consonants (which is called the trailing consonant

cluster). For example, the words 'stop' and 'street' are monosyllabic words; in the first

word the leading or initial consonant cluster has two consonants, while in the second

word it has three consonants. In some cases, a leading or trailing cluster may contain a

single consonant or even no consonant at all. The latter case applies to syllables starting

or ending with a vowel or diphthong, e.g., 'in' and 'to'. In the Arabic language, the

vowel must be preceded by only one consonant and it may be followed by two

consonants or one consonant, or no consonant at all.

3.7.1 Syllabic Types

Arabic language uses three main syllabic types (or patterns), namely: CV, CVC, and

CVCC, where IC! refers to a consonant and /V/ refers to a vowel. Some linguists

distinguish between syllable types on the basis of having a long or a short vowel [1111,

therefore they define five syllable types:

1) CV	 3) CVC	 5) CVCC

2) CVV	 4) CVVC

where IVY! refers to a long vowel. Note that the last type which has two trailing

consonants does not have a long vowel. The first three types may occur at word-initial,

word-medial, or word-final position, and they are more frequent in Arabic words. The

fourth type occurs mainly at the word-final position, but it may occur at the word-initial

or word-medial position only when the trailing consonant of this syllable /CVVCI is

geminated (i.e., the same consonant appears as a trailing consonant of the current syllable

and as a leading consonant for the following syllable in a word). For example, in the

word:

'maaddah'	 /CVVC-CVC/	 (substance)

which has two syllables, the consonant /d/is geminated, i.e., the first /d! belongs to the
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first syllable, while the second Id! belongs to the second syllable. The fifth syllabic type

occurs only at the word-final position or in isolation (monosyllabic words). Examples of

monosyllabic words are as follows:

'nahf	 /CVCC/	 (river)

jawm'	 /CVCC/	 (day)

Two-consonant clusters may appear at the word-medial position, and only before a

pause at the word-final position.

Arabic words are constructed mostly from three and/or four syllables, and infrequently

words are made of five syllables or more. However, Arabic is characterised by a

well-defined syllabic structure.

3.7.2 Phonological Constraints

Some phonological constraints regarding the syllable types and their occurrences are

summarised as follows:

- Each syllable must have a leading consonant in Arabic, so words always start

with a consonant.

- Whenever a long vowel occurs in the word-initial or word-medial position, the

related syllable (containing this vowel) must be an open syllable (of the type

/CVVJ), unless the trailing consonant is geminated.

- The maximum allowable number of consonants in a consonant cluster is only

two. This may appear in the word-medial position or in the word-final position.

In the former case, the first consonant is considered as the trailing consonant of

the current syllable and the second consonant is considered as the leading

consonant of the following syllable. In the latter case, both consonants belong

to the current syllable (type: /CVCC/).

These simple phonological constraints are very important. They have been exploited in

the segmentation procedure in the recognition system as will be shown in Chapter 7.

Another important phonological constraint is the allowable consonant structure, or in

other words, the consonant association and dissociation. There are cacophonous
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constraints imposed on consonant association, but some consonantal combinations are

not used in the language 11112]. The cacophonous constraints are related to those

consonants having identical or adjacent place of articulation. For instance:

- The pharyngeal consonant /IiI can not associate (in the same consonant cluster

and maybe in the same word) with the pharyngeal consonant id, or with the

glottal consonant /h/.

- The uvular /çf can not associate with the velar /k!.

- The interdental iei can not associate with the alveolar Is!, //, and //.

Table 3.8 shows those consonants which may not be combined in one consonant cluster

or may not even occur in the same syllable or in the word [113].

3.7.3 Gemination

Gemination involves a longer closure of the plosive consonant and prolongation of other

consonants. All consonants in Arabic have both short and long (geminated) phonetic

realisations. For example, the following words have geminated consonants:

'mattana'	 /C VC-CV-C V/	 (cause to be strong)

'kattala'	 /CVC-CV-CV/	 (he slaughtered)

'maaddah'	 /CVVC-CVC/	 (Substance)

"yassaala'	 /CVC-CVV-CV/	 (washing machine)

As far as the syllable boundaries are concerned, the first consonant is the wailing

consonant of the preceding syllable and the second consonant is the leading consonant of

the following syllable.

For geminated plosive consonants, the closure is longer than that for the case of normal

plosive consonants. For other geniinated consonants, the first consonant is not released

until the second consonant is uttered, resulting in a longer duration.

In writing, a geminated consonant is written as a single consonant, and a special diacritic

mark (called 'Jadda') is superimposed on the consonant. However in printing, the

iadda' is not printed, as well as other diacritic marks, and the reader has to extract the

actual pronunciation from the syntactic structure of the sentence.
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phoneme	 phonemes which can not associate with
(follow) the phoneme in the first column

7
b	 f
t
e

3	 t,t ,k,'r
ti	 e,y,h,x

x
	

? ,y,T1,h ,k
d

t , 0 , z , s ,I	 d ,

r	 cJ

z
	

o

S
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d
S
	

o

d
	

o,s,J ,	 ,	 ,	 , t ,
t

t,8 , 3 ,ti,x ,d ,	 ,z, s	 ,h

S
	

7 ,h,x,y
? ,h, 3, x , c , k
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b
k
	

3 ,k
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t,k
m
	

b,f
h
	

11,x,

Table 3.8 ifiegal consonant clusters (combination) [113]
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3.7.4 Distribution of Syllabic Patterns

The distribution of the five syllabic types has been investigated using the lexical database.

Each syllabic type can take three different vowels, yielding three different syllabic

patterns. So we have 15 different syllabic patterns for the five syllabic types.

Tables 3.9 and 3.10 display the frequencies of occurrence of the fifteen syllabic patterns

using the two lexicons in our database [106].

	

no.of	 %of	 %of
pattern	 each

occurence each type 	 pattern

ca	 2426	 33.01

cu	 301	 4.10 cv	 42.38

ci	 388	 5.28

cac	 1421	 19.33

cuc	 434	 5.91 cvc	 32.85

cic	 559	 7.61

cacc	 84	 1.14

cucc	 16	 0.21	 cvcc	 1.67

cicc	 23	 0.31

ca.a	 765	 10.14

cuu	 36	 0.49 CVV	 12.23

cii	 98	 1.33

caac	 462	 6.29

CUUC	 133	 1.81	 cvvc	 10.87

cue	 204	 2.77

Table 3.9 Distribution of syllabic patterns for the 3,000-word lexicon

The results for both sets of words are somewhat similar, especially for the two syllabic

types /CVCCI and /CVVC/. The differences come from the fact that the syllable /CVVC/

occurs mainly in isolation (monosyllabic words), and the total number of these

monosyllabic words is 123 in both lexicons (3,000 and 10,000 words). Also, the
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syllable /CVVC/ occurs 799 times in the 3,000-word lexicon and 963 times in the

10,000-word lexicon. The increase in the number of words from 3,000 in the first

lexicon to 10,000 in the second lexicon did not coincide with increases in the number of

these syllabic types (JCVCCI and /CVVCI). The monosyllabic words are limited in the

language, and the syllable /CVCCI is less frequent in the Arabic language, because it

occurs mainly at the word-final position.

Table 3.10 gives better statistical estimation of the frequencies of occurrence of 15

syllabic patterns (where the total number of syllables under investigation is 32570).

From this table, we notice that the syllables ICY! and ICVC/ are much more frequent than

others, and then comes the type /CVV/. The Type /CV/ represents about 50% of the total

number of syllables, while the type /CVC/ represents about 29%. The two open syllables

ICY! and /CVV/ represent 67% of the total number of syllables. The two patterns /Ca/ and

/Caa/ represent about 40% of the total number of syllables and about 60% of the total

number of the syllabic types ICV/ and /CVV/.

	

no.of	 %of	 %of
pattern	 each

occurence each type	 pattern

ca	 9187	 28.20

cu	 3303	 10.14	 cv	 50.05

ci	 3813	 11.71

cac	 6146	 18.87

cuc	 1425	 4.38 cvc	 29.25

cic	 1955	 6.00

cacc	 84	 0.26

CUCC	 16	 0.05	 cvcc	 0.38

CiCC	 23	 0.07

caa	 3859	 11.85

cuu	 903	 2.77 CVV	 17.36

cii	 893	 2.74

caac	 558	 1.71

CUUC	 155	 0.48 CVVC	 2.96

CiiC	 250	 0.77

Table 3.10 Distribution of syllabic patterns for the 10,000-word lexicon
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3.8 A Brief Description of the Arabic Morphological System

The Arabic language, like all other semitic languages, has a very systematic

morphological structure, compared with Latin languages. There exist strict morphological

rules which control the vocabulary structure.

a. Roots

Arabic words are morphologically derived from a shorter set of generative roots. Arabic

has 11347 roots [113]. They are basically triradical, quadriradical and five-radical roots,

e.g., the triradical root is made of three consonants (letters). As we mentioned earlier in

this chapter, short vowels are written as diacritic marks, and are not counted in Arabic

roots, therefore, triradical roots may appear in four valid syllabic structures, namely

/CV-CV-CV/, /CV-CVC/, /CVC-CV/, /CVCC/. Long vowels are not used with roots, but

they are used in their derivatives. The triradical roots are used much more frequently than

quadriradical or five-radical ones, and they represent about 63% of all roots. The

following are examples of words constructed from a triradical root:

'kataba'	 /CV-CV-CV/	 (he wrote)

'faeala'	 /CV-C V-C V/	 (he did)

the first word has three consonants: 1k!, It!, and/b!, and three vowels (diacritic marks) /aJ,

and the second word has three consonants If!, Ic!, and /1/. Each root can be used to

generate hundreds of words according to some specific patterns.

b. Morphological Patterns

Arabic words are classified into three main categories, namely verb, noun, and tool.

Examples of the last category are pronouns, preposition, and affixes. Each one of the two

other categories (i.e., verb and noun) has its own sub-categories. Verb, for example,

consists of two main categories: three-letter verbs and four-letter verbs, and each

category contains two sub-categories, namely active verbs and passive verbs. Moreover,

each sub-category also has three branches according to the tense of the verb (i.e., past,

present, and imperative). Finally, each tense may have two sub-branches, namely

'mujarrad', and 'maziid', where 'maziid' means that some phonemes (one, two, or three

phonemes from a pre-specified set of 10 phonemes, namely /s/, /?!, /1/, /t!, /m/, /uu/, /n/,
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/j/, flil, and /aaj), are added to the original verb to extract a new morphological pattern,

while 'mujarrad' means that no extra letters are added to a verb. At each final branch of

the verbal categories, a list of morphological patterns may exist. Figure 3.7 shows a

simplified diagram for verbal categories. Examples of three-letter active past verbs are:

'haraba'	 /CV-CY-CV/	 'he escaped'

'kasara'	 /CV-CV-CV/	 'he broke'

'saraiç.a'	 /CV-CV-CV/	 'he stole'

'sarakat'	 /CV-CV-CVC/	 'she stole'

'sarakuu'	 /CV-CV-C\'V/	 'they stole'

The two last example are 'maziid' verbs, where the consonant It! is added at the end of

the word 'saraka', to indicate feminine, and the vowel Ia! is replaced by the vowel Iuu/ to

indicate plural. The syllabic pattern /CaCaCa/ is called a morphological pattern or balance

(morphological balance, or simply balance, is the classical term used by Arab

grammarians to refer to the morphological pattern). This pattern defines the syllabic

structure and the actual vowels used in a word. In the balance /CaCaCa/, the consonant

IC! could be any of the 29 Arabic consonants, but the sequence of consonants is subject

to phonological rules or constraints.

Apart from the morphological balances for nouns, there is a list of balances for names

derived from verbs such as: present and past participle, place names, adverbs of time,

machine names, comparison names (of adjectives), etc., for example:

'laciba'

'malcab'

"yasala'

'ma'ysal'

'yassaala'

/Ca-Ci-Ca/

/CaC-CaC/

/Ca-Ca-Ca/

/CaC-CaC/

/CaC-Caa-CaJ

'he played'

'playing field'

'he wash'

'wash room'

'washing machine'

Nouns also have similar categorical descriptions. For example, three-letter nouns are

divided into two categories, namely male and female, and each of these is divided into

three categories, namely singular, dual, and plural nouns. Each final branch has its own

list of morphological patterns.
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verb

4
three-letter verb	 four-letter verb

4	 4
active	 passive

4	 '1r	 4	 4	 4
past	 present imperative past 	 present imperative

mu ma mu ma mu ma mu ma mu ma mu ma

a list of
	 a list of

balances
	 balances

Fig. 3.7 Verb categories
('mu': 'mujarrad', and 'ma': 'maziid')

As a result, each word in the language (except for some non-inflectional words like

pronouns, prepositions, etc.), has a morphological pattern or balance. Thus, there exist

balances for all the derivatives of each root. By having a certain root and the set of

balances, the derivatives of that root can easily be extracted according to certain synthesis

rules. Also, the original root of a certain word can be extracted from that word according

to certain analysis rules. Both analysis and synthesis rules are based on the

morphological pattern.

The morphological balance can be considered as a vital tool in speech recognition, where

detecting the balance is the basic step towards grammatical, syntactic and semantic

analysis for the Arabic language.
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3.9 Prosodic Features

Prosodic features or suprasegmental features provide information beyond phoneme

boundaries and span groups of syllables or words. Prosodic information usually

encompasses stress, duration, and intonation.

3.9.1 Stress

Stress reflects the degree of emphasis with which a word or a syllable is spoken.

Stressed sounds are usually louder, but they are also longer and more tense. Stress tends

to move vowels out toward the vertices of the vowel triangle (see Figure 3.3).

Unstressed vowels tend to be pronounced closer to the neutral position (centralised

formants, or vowel reduction phenomenon). Stress tends to raise pitch variation. It is

quantised to three levels, namely primary stress I'!, secondary stress J'Y, and weak

(unmarked).

Stress is applied to syllables, words and to longer units of speech. Individual words

normally have one syllable which is stressed. Phonetically every word has an

inherently-stressable syllable. This syllable receives the primary stress. Its location and

distribution are affected by the number and types of syllables contained in a word. A

monosyllabic word, in isolation, receives the primary stress. Disyllabic and polysyllabic

words receive secondary and weak stresses in addition to the primary stress [103].

Some rules which govern lexical item stress in Arabic are as follows:

- When a word is made up of a string of /CV/ type syllables, the first syllable

receives the primary stress, and the remaining syllables receive weak stress,

such as:

'kataba'	 IC V-CV-C V/
	

'he wrote'

'drasa'	 /CV-CV-CV/
	

'he studied'

- When a word contains only one long syllable, this syllable receives the primary

stress and the rest go unmarked, receiving weak stresses such as:

'katib'	 /CVV-CVC/	 'writer'

'mueallimuhu' /CV-CVC-CV-CV-CV/ 'his teacher'
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- When a word contains two or more long syllables, the long syllable nearest to

the end of the word (the very last syllable does not count) receives the primary

stress, and in most cases the one closest to the beginning receives the secondary

stress.

S	 -

'ra?iisuhunna'

'mustawdaEaatuhum'

'cv.crv-cv-c,c-cv'	 (their chief)

(for feminine plural)

/CVC-CVC-CV-CVV-CV-CVC/ (their deposits)

(for masculine plural)

3.9.2 Duration

The duration of a sound is the actual time taken to produce it. The relative duration of

certain phonemes depends on several factors such as speaking rate, speaking style

(reading versus conversation), stress, the location of pauses and of word and syllable

boundaries, the place and manner of articulation, and the rhythm.

Duration is significant in the Arabic language and a difference in the length of a vowel or

consonant, makes a difference in meaning.

The three short vowels in Arabic may be prolonged to their long counterparts. The

difference between short and long vowels is approximately double or more. Increasing

the vowel duration may change the meaning of the carrier word. For example:

sin'

'sun'

'kataba'

'kaataba'

'katala'

'kaatala'

/cvc/

/cyvc/

/cv-cv-cv/

/cvv-cv-cv/

/cv-cv-cv/

/cvv-cv-cv/

(tooth)

(the letter 's')

(he wrote)

(he exchanges letters with some body)

(he kifled)

(he fought)

The duration of the short vowels is from 100-160 msec, with the long vowels it is from

200-350 msec.

The duration of consonants depends upon whether they occur initially, medially or

finally. It also depends on other conditions, namely on the manner of articulation, voiced
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or unvoiced, and single or geminated. The duration of consonants varies from 40-375

msec [103].

3.9.3 Intonation

In Arabic as well as in many European languages, intonation is used to convey

grammatical form. The acoustical correlate of the intonation contour is the fundamental

frequency (FO) of the vocal cords (excitation source), as a function of time. The pitch or

FO ranges between 80-160 Hz for male speakers, and between 160-400 Hz for female

speakers, therefore the changes in FO are more important than its absolute values.

FO trends (directions of changes) may change several times in a single phone and thus

may signal stress or syntactic information via both its relative values and its slopes. Most

phones have a simple rising or falling FO pattern, but a single phone may contain a

rise-fall-rise contour. As a result, there are global changes in FO over a sentence and local

changes over a phone. The shapes of the intonation pattern depends on the sentence type

(i.e., declaration, commands, question, etc.) [114].

3.10 Summary

The Arabic language has 6 vowels and 29 consonants. The Arabic consonantal system

differs from the Latin one, primarily to the presence of the pharyngealised and glottal

phonemes. The consonants can be classified mainly into 11 broad phonetic classes. The

Arabic language uses only three syllabic types (i.e., ICY!, /CVC/, and /CVCC/).

The statistical results show that the six vowels represent about 43% of the total number of

phonemes, while the 29 consonants represent 57%, (using 75875 phonemes). The vowel

1W has the highest percentage (47%) among the six vowels. The results also show that the

syllable ICY! represents about 67% of the 75875 checked syllables.

Arabic words are categorised according to their morphological patterns (balances). The

balance shows the syllabic structure and the actual vowels of a word. The language uses

a limited number of balances to describe verbs, while it uses a large number of balances

for nouns. These balances can be considered as a vital tool in Arabic speech recognition,

where the morphological pattern of a word gives grammatical, syntactic, and semantic

information about that word.



83

Chapter 4

A Model of Lexical Access for a Large
Vocabulary Speech Recognition System

4.1 Introduction

Isolated word speech recognition can be achieved using either a mathematical or an

acoustic-phonetic approach.

In the mathematical approach, pattern matching and stochastic modelling using hidden

Markov models are used. An unknown word is matched against all vocabulary reference

patterns or models (using whole word templates or models). Generally speaking, these

methods utilise little or no speech-specific knowledge, and the storage requirement and

computation both increase almost linearly with the vocabulary size. The introduction of

some speech compression techniques such as vector quantisation, has led to drastic cuts

in storage and computation (see chapter 1).

The extension of these techniques to multiple speakers, large vocabularies, and br

continuous speech is highly questionable. Even if the computational and storage costs

are not an issue, the drawback of these techniques is the amount of work that must be

done for the creation of the reference templates and their updating for

speaker-independent systems. Also, the performance of these techniques would surely

deteriorate for a large vocabulary system, mainly due to the increase in the probability of

the existence of acoustically similar words.

A suitable alternative to the mathematical approach, for recognition of utterances from

large vocabularies, is the use of the acoustic-phonetic approach. In this approach, the

speech acoustic signal is mapped (segmented and labelled) into a sequence of linguistic

units such as phonemes, diphones, demisyllables, or syllables. The resulting string of

units (labels) is used for lexical and syntactic analysis. Words in the lexicon are

represented in terms of phonemic spellings.
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The major problem with this method is our inability to extract phonetic information

reliably from the speech signal due to the variability in the acoustic realisation of

utterances. This variability can come from diverse sources, such as the speaking

environment, the position and characteristics of the transducer, and inter-speaker

variabilities. The latter variabilities can result from changes in the speaking rate,

differences in voice quality according to the speaker's physiological and psychological

state, and differences across-speakers (i.e., in vocal tract size and shape, socialinguistic

background, and dialect).

The acoustic realisation of the speech signal conveys linguistics and extra linguistic

information (e.g., acoustic environment, identity of the speaker, his physiological and

psychological states, etc.). Successful speech recognition is possible only if we can

extract the linguistic information while discarding other irrelevant information. An

alternative to detailed acoustic-phonetic analysis is the use of broad phonetic analysis.

4.2 Broad Phonetic Classification and Lexical Access

One way of discriminating between words in a large vocabulary is through the use of

broad phonetic classes. In this case, the speech signal is segmented by coarse reliable

acoustic analysis in terms of broad phonetic classes [115, 116, 117]. The broad phonetic

description of a word is used as a means of lexical access. The lexicon is structured into

sets of words sharing the same broad phonetic labelling, which are called 'cohorts'. In

this way, a substantial reduction in the number of possible word candidates which match

an unknown word, can be obtained for a large vocabulary recognition system.

Figure 4.1 shows a block diagram of a word recognition system based on the broad

phonetic approach. This model includes three stages, namely classification of the acoustic

signal, lexical access, and verification. The classification and lexical access can be done

in a bottom-up phase and the verification in a top-down phase. In the bottom-up phase,

the sequence of broad phonetic classes is extracted from the acoustical signal and used to

retrieve a set of word candidates from a large lexicon. In the top-down phase, the

constraints imposed by the phonemic structure of the chosen Set of words, select and

schedule the verification process. In this process, context-dependent procedures which

are most appropriate for performing detailed phoneme verification analyses, in delimited

signal intervals, are used to determine among the word candidates the most likely spoken

one.
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Fig. 4.1 Word recognition system

This recognition model has two major features. First, the classification of the speech

signal is in terms of broad phonetic units instead of linguistic ones. Second, there is no

attempt to perform detailed recognition of the acoustic signal until after lexical access,

when phonetic context can be used to aid the recognition. That is, detailed analysis is

only performed in answering specific recognition hypotheses during verification.

The choice of specific broad phonetic classes greatly affects the performance of the

recognition system. If very broad classes are extracted from the acoustic signal, then the

error rate in recognising these classes will be very low. However, a large number of

words will match any sequence of the broad classes. If the classes are detailed, the error

rate will be higher, but fewer words will match any sequence. Thus, the problem is one

of finding a representation which is broad enough to have a low error rate and narrow

enough for a class sequence to match a small number of words.

The representation of broad phonetic classes (BPCs) is based on manner of articulation

classes [1151, where manner-of-articulation differences tend to be relatively invariant

across different speakers and different phonetic contexts.

A number of investigations on the consequences of using broad phonetic classification

have been conducted for different languages, e.g. for English, Dutch, and Italian . These

studies focus on the influence of different choices of BPC on the size and number of
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'cohorts'. By using six BPCs, namely vowel, plosive, nasal, liquid, strong fricative, and

weak fricative, with a database consisting of 20,000 words of American English, it was

found that the maximum cohort size was 223 words (about 1% of the lexicon size), and

almost one-third (32%) of the words were uniquely represented at this broad phonetic

level [115]. In another study (on Dutch), five BPCs were used to classify a lexicon of

11644 words. It was found, that the maximum cohort size was 16, and about 12% of the

words were uniquely represented at this level [118]. Also, using a lexicon of 12266

Italian words (roots), the maximum cohort size was 15 and 68% of the words were

uniquely represented by employing nine BPCs [119]. In the following sections, the

results of performing several classification schemes on the Arabic language are reported.

These results show that the sound patterns of a given language are limited not by only the

inventory of basic sound units, but also by the allowable combinations of these sound

units.

4.3 Discrimination of Words

Broad phonetic classification has been applied to large vocabulary lexicons. The lexical

database, which contains two lexicons (the phonemic form of 3,000 words, and 10,000

words, see chapter 1), has been used.

Our aim in this study is to try as much as possible to use a set of BPCs which can

identify most (or all) of the words uniquely with a minimum of detailed acoustic

information. Such a set is going to be an optimal interaction between the properties of the

lexicon and the possibilities of acoustic analysis.

In the previous chapter, we have seen the importance of the morphological pattern or

balance in the Arabic language. This balance describes basically the syllabic structure and

the actual vowels used in a word. For example, take the case of monosyllabic words,

where we may have up to 15 different balances as illustrated in the diagram of Figure

4.2. In this diagram, there are 6 branches at the first level which conespond to the six

vowels. Each short vowel may fall into one of three different syllabic patterns, and each

long vowel may fall into one of two different syllabic patterns, resulting in a total of 15

possible balances for the monosyllabic words.
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monosyllabic word

	

ca 

a
	

Cu U

	

4

	

cac	 Cuc	 cic	 caac	 cuuc	 ciic
cacc	 cucc	 cicc

Fig. 4.2 Possible balances for monosyllabic words

On the same basis, for disyllabic words we may have up to 180 possible balances, where

the second syllable has 15 possible patterns, as in the case of monosyllabic word and the

first syllable can take only 12 possible patterns (the pattern /CVCC/ does not occur in

word-initial position). For n-syllable words, we may have:

- (6)i possible vowel combinations (branches) at the first level

- 15. (12)n-1 possible balances at the second level

From the above demonstration, we notice that by just looking at the sequence of vowels

and the syllabic structure of a word, we can have a large number of possible balances and

hence a large number of possible 'cohorts'.

Identifying the morphological balance in a bottom-up procedure in an Arabic recognition

system, facilitates the use of linguistic knowledge in a top-down recognition phase,

where a morphological analyser based on the root-balance, can identify the syntactic

structure of a word and give an indication of its meaning. The morphological balance is

therefore a key factor in an Arabic speech recognition system.

The Arabic language uses hundreds of morphological balances, (where Arabic words are

already categorised according to morphological balances). The verbs can take just a few

hundred balances (about 400 balances are used for describing the verbs [122]), and
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nouns take a large number of balances [120, 121]. By considering the most frequent

balances, it was found that less than 1000 patterns (balances) are enough to be used in a

morphological compression procedure for Arabic text [123].

The consonants of each morphological balance can be classified according to broad

phonetic classes. Different classification schemes are given in the next section.

4.3.1 Classification Schemes

Ten different classification schemes are considered in this study [124]. These schemes

can be divided into two similar groups. In the first group, vowels are replaced with the

symbol /V/, while in the second group vowels retain their phonetic symbol (i.e.,

/aJ,/u/,Ji/, laW, /uu/, and /iif). These schemes are as follows:

First group: in this group vowels are replaced by the symbol AT!

1) C/V	 Consonants are replaced by the symbol IC!.

2) 4BPC/V Consonants are classified according to four BPC: voiced

plosive, unvoiced plosive, unvoiced fricative, and other voiced

consonants.

3) 5BPC/V Consonants are classified according to five BPC: plosive,

fricative, nasal, liquid, and semivowel.

4) 7BPC/V Consonants are classified according to seven BPC: voiced

plosive, unvoiced plosive, voiced fricative, unvoiced fricative,

nasal, liquid, and semivowel.

5) 11BPC/V Consonants are classified according to eleven BPC:

pharyngealised voiced plosive, non-pharyngealised voiced

plosive, pharyngealised unvoiced plosive, non-pharyngealised

unvoiced plosive, pharyngealised voiced fricative,

non-pharyngealised voiced fricative, pharyngealised unvoiced

fricative, non-pharyngealised unvoiced fricative, nasal, liquid, and

semivowel. Details of these BPC are given in Table 3.3.

Second group: in this group vowels are classified according to one of the six Arabic

vowels, and consonants are classified as in the first group, giving the following schemes:
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6)C/6V

7) 4BPC/6V

8) 5BPC/6V

9) 7BPC/6V

10) 11BPC/6V

The sixth classification scheme (in the second group C/6V), represents a classification

according to morphological balances.

4.3.2 Statistical Results

The results of using the ten classification schemes are summarised in tables 4.1 and 4.2.

Table 4.1 shows the results for the 3000-word lexicon, while Table 4.2 gives the results

for the 10,000-word lexicon.

From Table 4.1, we notice that on one hand, the number of unique word cohorts (i.e.,

cohorts having just one word), increases with the number of BPCs, while on the other

hand, the maximum cohort size (maximum number of words in a cohort), decreases as

the number of BPCs increases. For the C/V classification scheme, the 3000 words are

grouped in just 31 cohorts, while using the C/6V scheme they are grouped in 286

cohorts (morphological balances). The percentage of uniquely represented words rises

from about 55% for 1 1BPC/V scheme to about 82% for the 1 1BPCI6V scheme. In the

latter case, the maximum cohort size is 5 and the average cohort size is just 1.11.

The classification results of the second lexicon (10,000 words) given in Table 4.2, are

almost similar to that of the first lexicon. However in this table, there is a rise in the

percentage of unique word cohorts for all the classification schemes compared with that

of Table 4.1. This is mainly due to the increase in the number of polysyllabic words in

the second lexicon.

The percentage of uniquely represented words has also risen here from about 48% when

using 1 1BPC/V scheme, to about 89% when employing the 1 1BPC/6V. Even for simple

classification scheme (i.e., comparable with other schemes) such as the 4BPC/6V, the

percentage of uniquely represented words (about 54%) is high, the maximum cohort size

is 17 words, and the average cohort size is 1.44 word.
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Vowel	 6 Vowels ____
C 4BPC 5BPC 7BPC 11BPC C 4BPC 5BPC 7BPC 11BPC

no. of

	

31	 868 1079 1835 2156 286 1762 1972 2558 2714
cohorts

no. of unique
3 420 527 1244 1651 134 1210 1432 2226 2479

word cohorts

madmum

	

599	 66	 39	 19	 15 174	 16	 13	 6	 5
cohort size

average
96.77 3.46 2.78	 1.63 1.39 10.49 1.70 1.52 1.17 1.11

cohort size

% of uniquely
represented	 0.1	 14. 17.56 41.46 55.03 4.46 40.33 47.73 74.20 82.63

words_____ _____ _____ _____ _____ _____ _____ _____ _____ _____

Table 4.1	 Classification results for the 3000-word lexicon

____ ____ Vowel	 6 Vowels ____
C 4BPC 5BPC 7BPC 11BP( C 4BPC 5BPC 7BPC 11BP(

no. of
72 2981 3722 5810 6654 1437 6922 7579 9043 9384

cohorts

no. of unique'	
9 1518 2048 3862 4785 683 5365 6180 8317 8876

word cohorts

maximum
1022 89	 54	 28	 22 197	 17	 15	 6	 5

cohort size

average
138.8 3.35 2.69	 1.72	 1.50 6.96 1.44 1.32	 1.11 1.07

cohort size

% of uniquely
represented 0.09 15.18 20.48 38.62 47.85 6.83 53.65 61.80 83.17 88.76

words_____ _____ _____ _____ _____ _____ _____ _____ _____ _____

Table 4.2 Classification results for the 10,000-word lexicon.
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In general, the detailed vowel classification has almost doubled the number of uniquely

represented words (e.g., from 38% for the 7BPCJV scheme to 83% for the 7BPC/6V

scheme), and has led also to specifying the morphological balance of a word.

4.3.3 Effect of Syllabic Structure on the Classification Results

Words in the two lexicons vary in their size from 1 to 7 syllables as follows:

no of syllables in a word

1
	

2	 3	 4	 5	 67

lexicon

1
	

191 1505 1077	 217	 10	 -	 -

2
	

193 2096 3971 2624 924 188 4

Tables 4.3 to 4.8 Show the classification results with respect to the the number of

syllables in a word for the second lexicon.

Table 4.3 displays the results for monosyllabic words (193 words). It shows that the

percentage of uniquely represented words goes up to 77% of the total number of words

for the 1 1BPC/6V scheme. None of the words is uniquely represented using the C/V

scheme.

Table 4.4 displays the results on disyllabic words (2096 words). It shows that the

percentage of uniquely represented words can reach up to 80% of the total number of

words for the 1 1BPC/6V scheme, which is higher than that of monosyllabic words.

Table 4.5 shows the results for trisyllabic words (3971 words). It shows that the

percentage of uniquely represented words reaches about 87% of the total number of

words for the 1 1BPC/6V scheme. Only 2.64% of the total words are uniquely

represented by the C/6V scheme (balances). Trisyllabic words are the most common

words in the language.
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Vowel	 6 Vowels
C 4BPC 5BPC 7BPC 11BPC C 4BPC 5BPC 7BPC 11BP(

no. of
cohorts	 53	 75	 122	 136	 13	 102	 128 162 168

no. of unique

	

word cohorts 0	 18	 27	 75	 95	 3	 66	 91	 140 150

maximum

	

cohort size	 123	 18	 10	 8	 7	 84	 15	 9	 4	 4

% of uniquely

	

represented	 0	 9.32 13.98 38.86 49.22 1.55 34.19 47.15 72.53 77.72
words______ ______ _______ _______ _______ ______ ______ _______ _______ _______

Table 4.3 Classification results for 193 monosyllabic words

Vowel	 6 Vowels
C 4BPC 5BPC 7BPC 11BPC C 4BPC 5BPC 7BPC 11BPC

no. of
283	 427 913 1168 89	 1069 1288 1726 1866cohorts

no. of unique
word cohorts	 1	 67	 121 454	 698	 15	 629 878 1446 1680

maximum

	

cohortsize 859	 80	 49	 19	 15	 192	 16	 13	 6	 5

% of uniquely
represented 0.04 3.19 5.77 21.66 33.03 0.07 30.00 41.88 68.98 80.15

words______ ______ _______ _______ _______ ______ ______ _______ _______ _______

Table 4.4 Classification results for 2096 disyllabic words

Vowel	 6 Vowels
C 4BPC 5BPC 7BPC 11BPC C 4BPC 5BPC 7BPC 11BP(

no.of
cohorts	 9	 851 1085 2008 2425 338 2637 2865 3544 3687

no. of unique	
1	 326 471 1207 1651 105 1966 2232 3234 3454word cohorts

maximum
cohortsize 1022 89	 54	 28	 22	 197	 17	 15	 5	 4

% of uniquely
represented	 0.02 8.20 11.86 30.39 41.57 2.64 49.50 56.20 81.44 86.98

words_____ _____ _____ _____ _____ 	 _____ _____ _____ ______

Table 4.5	 Classification results for 3971 trisyllabic words
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Vowel	 6 Vowels _____
C 4BPC 5BPC 7BPC 11BPC C 4BPC 5BPC 7BPC 11BPC

no.of
cohorts	 16 1055 1292 1830 1976 540 2109 2253 2509 2556

no. of unique
word cohorts	 1	 569 770 1333 1535 255 1786 1991 2408 2494

madmum
cohort size	 759	 33	 15	 10	 9	 124	 9	 6	 4	 4

% of uniquely
represented 0.03 21.68 29.34 50.80 58.49 9.71 68.06 75.87 91.76 95.04

words______ ______ _______ _______ _______	 _______ _______ ______ _______

Table 4.6 Classification results for 2624 quadrisyllabic words

Vowel	 6 Vowels
C 4BPC 5BPC 7BPC 11BPC C 4BPC 5BPC 7BPC 11BPC

no. of
cohorts	 21	 578	 670 759 771 350 817 858 910 915

no. of unique

	

word cohorts 4	 401 503 628 641 232 734 806 897 906

maximum

	

cohort size 262	 14	 7	 5	 4	 48	 6	 4	 3	 2

% of uniquely
represented	 0.4 43.39 54.43 67.96 69.37 25.10 79.43 87.22 97.07 98.05

words______ ______ ______ ______ ______ ______ ______ ______ ______ ______

Table 4.7 Classification results for 924 five-syllable words

____ ____ Vowel	 ____	 6 Vowels ____
C 4BPC 5BPC 7BPC 11BPC C 4BPC 5BPC 7BPC 11BP(

no.of
cohorts	 17	 157	 169 174	 174 106	 184 183 188	 188

no. of unique	
2	 133	 152 161	 161	 73	 180	 178 188	 188word cohorts

maximum	 4	 3	 3	 3	 11	 2	 2	 1	 1cohort size
% of uniquely

	

represented 1.06 70.74 80.85 85.63 85.63 38.82 95.75 97.34 100	 100
words_____ _____ _____ _____ _____	 _____ _____ _____ _____

Table 4.8 Classification results for 188 six-syllable words
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Table 4.6 displays the results for quadrisyllabic words (2624 words). It shows that the

percentage of uniquely represented words reaches about 95% of the total number of

words for the 1 1BPC/6V scheme. 9.7% of the words are uniquely represented using the

C/6V scheme.

Tables 4.7 and 4.8 show the classification results for the five-syllable words (924

words), and for the six-syllable words (188 words), respectively. The percentages of

uniquely represented words are about 98% for the five-syllable words, and 100% for the

six syllable words, using the 1 1BPC/6V scheme.

For seven-syllable words (only 4 words), all are uniquely represented by all the schemes

except the two schemes C/V and C/6V.

As a result, the increase in the number of syllables in a word has led to a higher

percentage of unique word cohorts. Polysyllabic words are more likely to be classified in

a unique word cohort, because of the limitation imposed by the number of allowable or

used combinations in the language itself (phonological limitations).

4.3.4 Discussion

The use of the above mentioned classification schemes leads to drastic cuts in the number

of word-candidates at the lexical level for a specific pattern. Using broad phonetic

classification for consonants and detailed vowel classification has led to a powerful

lexical access for the Arabic language. It has also given at the same time some

information about the morphological balance of a word, which is very important for

higher level sources of knowledge, especially in continuous speech recognition or speech

understanding systems.

These findings about phonological constraints have important implications for speech

recognition. They suggest that a complete and detailed phonetic analysis of the speech

signal is not only undesirable from an error propagation standpoint, but may indeed be

unnecessary.

We have seen that the maximum cohort size is 5 for the 1 1BPC/6V scheme. Prosodic

information such as stress position, and duration of different phonetic segments could

also be very important potential cues for reducing the cohort size.
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4.4 Structure of the Lexicon

In a recognition system based on broad phonetic analysis, words are usually stored in the

lexicon into tables according to their broad phonetic description (sequence of labels).

Therefore a simple table look-up produces the set of words matching a given sequence of

broad phonetic classes.

For the Arabic language, we suggest that the lexicon is structured into a hierarchical form

(tree form) as follows:

- Number of syllables in a word

- Sequence of Vowels

- Morphological balance (syllabic structure)

- Hierarchical broad phonetic description for consonants, where the

last branch contains the set of words sharing the same labelling.

In this hierarchical arrangement, words can easily be looked-up at a given phonetic

description. This description can begin with a very simple one such as the number of

syllables in a word, and can end with the broad phonetic descriptions of consonants and

actual vowels. The hierarchical broad phonetic description for consonants is illustrated in

Figure 4.3.

other voiced consonants

A
nasal	 sonorant

A
liquid semivowel

first level
	

plosive

A
second level voiced	 unvoiced

AA
third level ph non-ph ph non-ph

fricative

A
voiced	 unvoiced

AA
ph non-ph ph non-ph

Fig. 4.3 Hierarchical description of consonants

(ph: refers to pharyngealised)
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According to the above lexical structure, different speech recognition systems (i.e.,

small, medium, and large vocabulary systems) can use this lexicon.

The proposed structure and organisation of the lexicon are designed for speeding up the

retrieval of a small sub-set of words. In some cases, where the acoustic realisations of

some consonants are ambiguous (or some acoustical events are deleted or missed), one

can stay at an upper level in this tree and employ extra linguistic knowledge to assist in

recovering the missing information (in a continuous speech recognition system).

4.5 An Automatic Speech Recognition Model

The proposed model for a large vocabulary isolated word speech recognition system is

given in Figure 4.4. In this model the speech signal is first transformed into acoustic

parameters through the feature measurement stage. The parameter complexity depends

on the employed set of BPCs in the broad phonetic segmentation stage. These

parameters are used in the vowel recognition stage and in the segmentation stage. The

output of the vowel recognition stage is fed to the segmentation stage, which gives at its

output a sequence of phonetic labels which are used for lexical access (bottom-up phase).

The result of the lexical access is a small set of word candidates (or more likely a single

word candidate), sharing the same phonetic labelling. In the last stage of this model,

differential diagnostic techniques are used, in conjunction with detailed acoustic cues

from the speech signal, to select the most likely word candidate (top-down phase).

This model relies on the fact that the constraints imposed by the language on possible

sound patterns should significantly reduce the number of word candidates. It is also

computationally efficient, since detailed acoustic knowledge is applied in a top-down

verification mode just when it is needed.

In Section 4.3.1 different classification schemes have been presented. A recognition

system based on a hierarchical classification can start with detailed vowel recognition and

a simple set of broad phonetic classes. The resultant sequence of labels is used for lexical

access. If the number of word candidates is more than one, the system goes back to the

segmentation process and wide% the set of BPCs until it reaches the minimum possible

number of word candidates. Then the verifier starts its process, if the number of word

candidates exceeds one.
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Vowel
Recognition

I Feature
	

Broad	 J Lexical
Segmentation	 I Access

Detailed
VeJ

candidate

Fig. 4.4 A speech recognition model

4.6 Speech Recognition Experiment

An experiment has been carried out to investigate the possibility of performing broad

phonetic segmentation for consonants and detailed vowel recognition according to the

model of Figure 4.4 . In this experiment, a basic speech database consisting of one

hundred words uttered by three male speakers has been used. Some words i this

set uttered by different speakers (i.e., male and female), have also been tested.

The processes of the bottom-up phase of Figure 4.4 are addressed in the following

chapters of this thesis. The verification stage is not addressed in this thesis.

Figure 4.5 shows the processes performed in the bottom-up phase of the speech

recognition model considered in this research work. Five main procedures have been

developed during this phase, i.e.:

- Voiced-unvoiced-silence segmentation (V-UV-S).

- Vowel recognition.

- Spectral variation (transition) detection.

- Broad phonetic segmentation procedure (according to scheme number 7 given in
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Section 4.3.1).

- Error correction procedure.

The first two procedures are addressed in chapter 5. The third one is introduced in

chapter 6, while the fourth and fifth procedures are demonstrated in chapter 7. The last

chapter summarises the whole research work starting from the classification scheme

passing through the above five procedures and ending with a discussion and some

suggestions for further research.

speech

V-IJV-S Segmentation	 Vowel Recognition	 Transition Detection

1
IBroad Phonetic Segmentation for Consonants

Error Criction Procedure According to Phonological
and Prosodic Rules

phonetic description of a word for lexical access

Fig. 4.5 Processes of the bottom-up phase
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4.7 Summary

Word discrimination according to broad phonetic classes has been presented in this

chapter. Different sets of classification schemes are used to describe large vocabulary

lexicons. The phonetic description in these schemes varies from 2 to 17 phonetic classes.

The statistical results show that about 89% of the 10,000 tested words can be uniquely

represented by using 11 broad phonetic classes for consonants and six classes for

vowels. In this case, the maximum number of words having the same phonetic labelling

is 5.

A word recognition model has been proposed in this chapter. This model performs

detailed vowel recognition and broad phonetic analysis for consonants. The resultant

string of labels of an unknown input word is used for lexical access to retrieve the word

(or the set of words) having the same phonetic description of the input word. Finally, the

verifier in this recognition model is activated if the number of word candidates exceeds

one. The verification stage in not addressed in this thesis. The vowel recognition,

segmentation and labelling processes are described in the following chapters.
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Chapter 5

Preliminary Segmentation
and

Vowel Recognition

5.1 Introduction

Two stages from the speech recognition system of Figure 4.5, namely V-UV-S

segmentation and vowel recognition procedures, are demonstrated in this chapter (see

Figure 5.1).

speech

V-UV-S contour	 vowel location, estimated duration, and identity

Fig. 5.1 Prellminaiy V-UV-S segmentation and vowel recognition

Preliminary segmentation is carried Out on the speech signal, where a given speech frame

is classified as voiced speech (V), unvoiced speech (UV), or silence (S) (absence of

speech). A string of adjacent frames sharing the same labelling are grouped together and

called a voiced segment, an unvoiced segment, or a silence segment. A special smoothing
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algorithm is applied on the resultant decision to remove any spurious frame (or frames)

between different segments. The outcome of this preliminary segmentation is the V-TJV-S

contour which is employed in the segmentation procedure presented in Chapter 7. The

detection of word boundaries (endpoints) is performed through the

voiced-unvoiced-silence detection process.

The aim of the vowel recognition procedure is to recognise the six Arabic vowels, i.e.,

the three short vowels 1W, /u/, and/V. and their three long counterparts /aa/, /uu/, [ii!. This

procedure consists of two main phases, namely vowel detection and vowel identification.

Vowel locations are spotted within voiced regions in the vowel detection phase, while

vowel identities are determined in the identification phase.

5.2 Voiced-Unvoiced-Silence Segmentation

A variety of approaches have been described in the speech literature for making the

voiced-unvoiced-silence (V-UV-S) decision [125- 126. The complexity of the

voiced-unvoiced algorithm depends on the bandwidth of the input speech signal. For a

wide band speech signal (up to 8 KiHz), this decision could be easily measured for a

short-time speech signal (frame) by taking the ratio of the signal energy below 1 KHz to

that above 5 KHz. If this ratio exceeds a certain level, the frame is tagged as a voiced

frame, otherwise it is tagged as an unvoiced frame [127]. For a telephone speech signal

(up to 3.4 KHz), several parameters such as energy, zero-crossing rate, some LPC

coefficients, autocorrelation coefficients, etc. [126], were employed for the V-UV-S

decision. In our system, several algorithms have been tested, and the adopted algorithm

performs V-UV-S detection in conjunction with pitch analysis.

The speech signal (in the speech database) is lowpass filtered to 4800 Hz, sampled at 10

1(1Hz, and each sample is quantised with an accuracy of 12 bits. Then, the speech signal

is highpass filtered at 60 Hz to remove any dc, low-frequency hum, or noise

components which might be present in the speech signal. The resultant speech signal is

grouped into blocks of size N= 256 samples (25.6 msec) for the pitch computation to

allow for at least two pitch periods to be present in one block. For the computation of

other parameters such as energy and zero-crossing rate, a block of 128 samples (12.8

msec) is used. All parameters are computed at every 6.4 msec (i.e., about 156 times per

second), with 50% overlap for energy blocks and 75% for pitch blocks.
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The following measurements have been used in the V-UV-S segmentation procedure:

1) Energy of the signal s(n) in the range 60-4800 Hz.

2) Energy of the signal sh(n) in the range 300-4800 Hz.

3) Normalised autocorrelation coefficient at unit sample delay.

4) Zero-crossing rate of the signal.

5) Pitch value.

Figure 5.2 shows a block diagram of the processes involved in the V-UV-S decision.

These processes are explained in the following sections.

speech

60-4 800 Hz

300 Hz HPF
	

Pitch Detection

Initial
	

Initial

Silence Decision
	

Voiced-Unvoiced Decision

Weak Fricative

Detection.

Smoothing

V-UV-S decision

Fig. 5.2 Block diagram of the V-UV-S decision
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5.2.1 Initial Silence Detection

Initial silence detection is based on the momentary speech signal energy. Energy is

defined as:

N

Eh = .	 s(n)	 (5.1)
n= 1

where N is the number of samples in the analysis block. The Sh(fl) is the digitised speech

signal, where the subscript h refers to the highpass filtered version in the range

300-4800 Hz. The reason for employing the energy above 300 Hz in detecting the silence

is to allow voiced plosive sounds, which might have a low frequency voice bar, to be

detected as silence. If the pitch detector indicates the presence of voicing throughout the

duration of a silence segment, the segment is tagged as a voiced silence, or voice bar as

wifi be explained in Chapter 7, in the plosive detection section.

If Eh falls below a certain threshold, the speech frame (6.4 msec) is tagged as a silence

frame. This threshold is called the silence threshold (Sth), and it is chosen to be about

6 dB higher than the average value of the background noise level on the input analogue

tape (where the original speech was recorded). In our case Sth is taken equal to 400

(linear scale). The background noise can be measured for each word (or for the entire

recording session), where there is no speech in the first few msec of the recording

interval before the beginning of each word. In our case, a noise cancelling microphone

has been used, where the background noise is very low and actually equals the noise

introduced by the tape recorder.

The endpoints of a word are automatically detected by locating the silence segments at the

word boundaries. In general, about 200 msec of silence before the beginning and after

the end of a word are stored for voiced plosive detection.

5.2.2 Pitch Detection

Because of the importance of pitch detection (e.g., for vocoder, for speaker recognition,

etc.), a wide variety of algorithms for pitch detection have been proposed in the speech

processing literature. A comparative performance study of some pitch detection
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algorithms is given in [128]. Two pitch detection algorithms have been implemented and

tested in this study, namely the autocorrelation method [129], and the cepstral method

[130]. A pilot experiment has shown more reliable results by the former method than by

the latter. For this reason, the autocorrelation method has been maintained for all later

experiments.

Figure 5.3 shows a block diagram of the autocorrelation pitch detector. In this method

the speech signal is lowpass filtered to 900 Hz. A 37-point linear phase finite impulse

response (FIR) filter has been used. This filter has normalised transition width M = 0.1,

and 60 dB attenuation in the stop band [131]. The pitch period computation is performed

at each 6.4 msec, using a block of 25.6 msec. The first stage of processing is the

computation of the clipping level C1 for the current 256 samples of speech. The clipping

level is set at a value which is 50 percent of the smaller of the peak absolute sample

values in the first (TPK1) and the last (TPK2) 8.5 msec portions of the block. Following

that, the entire block (256 samples) is centre clipped, and then infinite peak clipped,

resulting in a signal which assumes one of three possible values, +1 if the sample

exceeds the positive clipping level, -1 if the sample falls below the negative clipping

level, and 0 otherwise.

Following the clippings the autocorrelation function for the block is computed over a

range of lags from 30 samples to 150 samples (i.e., from 3 msec to 15 msec period). The

results are normalised by the autocorrelation at zero delay. The normalised

autocorrelation function is then searched for its maximum value, and the position (IPOS)

and value of the maximum value or the pitch peak (PPK) are sent to the V-UV detector.

In general, if PPK exceeds a certain value, the block is classified as voiced and IPOS is

taken as the pitch period, otherwise it is classified as unvoiced.

5.2.3 Initial Voiced-Unvoiced Classification

With silence segments removed from consideration (Section 5.2.1), the remainder of the

utterance is segmented into voiced and unvoiced portions. The energy, the

normalised first shift autocorrelation coefficient, and the pitch are computed for each

frame of 6.4 msec. The energy is given as:
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N
1

E=
n= 1
	 (52)

The normalised first shift autocorrelation coefficient is given as:

RN 

=	 s(n) s(n+1)	

(5.3)

The pitch detector (given in Section 5.2.2) provides the maximum normalised value

PPK, and the position of the peak IPOS.

The decision algorithm is summarised in the chart of Figure 5.4 . The algorithm

distinguishes between two main cases according to the energy value, E, of the frame. If

E exceeds a certain threshold Vth (voiced threshold), the frame has a high chance of

being tagged as voiced rather than unvoiced, but it has to satisfy certain further

conditions. So, if the value of the normalised first autocorrelation coefficient RN is

greater than or equal to 0.6, or PPK is greater than or equal to 0.45, then the frame is

tagged voiced, otherwise it is tagged unvoiced. This is actually the case of vowels and

semivowels. Now, if E is below Vth, the frame is more likely to be unvoiced, unless it

passes one of the following tests:

- RN ^ 0.9 and PPK ^ 0.3

-RN^0.8 and PP1<^0.45

The first condition is actually used for nasals and liquids, while the second is meant for

voiced fricatives where fricative sounds might have high values for RN, but they can not

have high peaks in the pitch detector. The Vth is taken equal to 10000. All the above

thresholds are chosen empirically from observations of results from a large number of

speech frames.

The V-UV-S decision is coded by the values: 1, 2, and 3 for voiced, unvoiced, and

silence respectively.
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Fig. 5.4 Flow chart of the initial voiced-unvoiced decision
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5.2.4 Weak Fricative Detection

As has been demonstrated in the initial silence detection (Section 5.2.1), a simple energy

measure is used. This measure is not sufficient for separating weak fricatives (such as:

If!, tnt, iei, and /h/), from the background noise especially at word boundaries (i.e.,the

first or the last phoneme in a word). A simple procedure is proposed to deal with this

problem [43].

The implemented algorithm is described as follows. The energy Eh, in the range

300-4800 Hz (see Section 5.2.1), and the zero-crossing rate ZCR are used to detect the

frames related to weak fricative phonemes. Thus a silence frame is checked, if its energy

Eh exceeds a certain noise threshold Nth, and at the same time if its ZCR exceeds a

certain threshold Zth, the frame is relabelled as unvoiced frame. This test is applied to all

silence frames along a word, and to the first 30 frames before the beginning and after the

end of a word. Thus, the endpoints of a word are readjusted again according to the

presence of weak fricatives.

The Nth and Zth are computed as follows. Statistical measurements are taken during 50

frames of silence before speech to estimate the average energy of the background noise

(Ebn), the mean zero-crossing rate (ZCm) and the standard deviation of the zero crossing

rate (a) during silence. The zero-crossing threshold and the noise threshold are defmed

as follows:

Zth mm { 20, ZCm +2 zc }	 (5.4)

Nth= 2.Ebfl
	 (5.5)

The Zth has taken the value 20 all the time in our experiments, and Nth has taken the

value 200.

5.2.5 Editing V-UV-S Decision

Considerable editing is done on the preliminary V-UV-S decision to eliminate any

spurious decision which may occur within a specific segment. This is achieved by using

a nonlinear smoothing method. This method uses what is called the median smoother

[132].
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In a 3-point median smoother, the output y(n) is taken as the 3-point median of x(n-1),

x(n), and x(n+1), i.e., the middle value when these three inputs are ordered in value.

As mentioned earlier, voiced, unvoiced, and silence frames are labelled or coded by the

value '1', '2', and '3' respectively. A 3-point median can be, for example, applied to

remove any voiced or unvoiced frame surrounded by silence frames, to remove any

voiced or silence frame surrounded by unvoiced frames, or to remove any unvoiced or

silence frame surrounded by voiced frames. Table 5.1 illustrates all possible cases

encountered by the 3-point median. The last two lines (separated from other lines) in this

table shows that the median smoother has failed to remove the unvoiced frame at time n

surrounded by two voiced and silence segments (where a segment represents a string of

similar frames). These two cases are tackled later on.

inputs	 outputs

n-2 n-i n n+1 n+2
	

n-2 n-i n n+i n+2

3 3 1 3 3
	

3 3 3 3 3
3 3 2 3 3
	

3 3 3 3 3
2 2 1 2 2
	

2 2 2 2 2
2 2 3 2 2
	

2 2 2 2 2
1
	

1
	

2
	

1
	

1
	

1
	

1
	

I
	

I
	

1
1
	

1
	

3
	

1
	

1
	

1
	

1
	

1
	

1
	

1
1 1 3 2 2
	

1 1 2 2 2
2 2 3 1 1
	

2 2 2 1 1
2 2 1 3 3
	

2 2 2 3 3
3 3 1 2 2
	

3 3 2 2 2

11233
	

11233
33211
	

33211

Table 5.1 Inputs and outputs of 3-point median

The V-UV-S decision along a word gives what is called the V-UV-S contour, which

shows three levels '1', '2', and '3'. The V-UV-S contour is smoothed by running a

3-point, 5-point, and 7-point median. The 3-point median removes spurious segments of

one frame duration, 5-point median remove spurious segments of two frames duration,
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while the 7-point median remove spurious segments of three frames duration.

In all the above smoothers, the cases of having an unvoiced segment of one, two, or

three frames duration surrounded by voiced and silence segments are not smoothed as is

seen in the last two cases of Table 5.1. Actually the following case:

..33333 22 11111...	 (silence-unvoiced-voiced)

represents the state of having a plosive phoneme followed by a voiced phoneme, where

the plosive phoneme is represented by a silence gap followed by a short unvoiced

segment representing the burst noise associated with such a phoneme. Fortunately, this

case is not smoothed by the median smoothers. The other case:

11111 22 33333...	 (voiced-unvoiced-silence)

occurs within the transition period between either a voiced phoneme and a plosive one, or

at the end of the word caused by the breathing noise.

Post-editing or post-processing is carried out in order to tackle some spurious segments

which have not been removed by the median smoothers, and to handle those spurious

segments having a duration of more than 3 frames. The following cases are dealt with by

the post-editing process:

- An unvoiced segment of less than 5 frames' duration is relabelled as silence, if

it is preceded by a voiced segment and followed by a silence segment

- An unvoiced segment of less than 5 frames' duration is relabelled as voiced, if

it is surrounded by voiced segments.

- A voiced segment of less than 5 frames' duration is relabelled as unvoiced, if it

is surrounded by unvoiced segments.

- A silence segment of less than 7 frames' duration is relabelled as unvoiced, if it

is not surrounded by voiced segments (i.e., between two unvoiced segments, or

between voiced and unvoiced segments).

Figures 5.5 to 5.7 display a) the speech signal and b) the smoothed V-UV-S contour for

three different words. The horizontal axes of both (a) and (b) graphs in each figure show

the time along the word given in frame numbers (each frame equals to 6.4 msec). The
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vertical axis of graph (a) shows the level of the speech samples which varies from -2048

to 2048 (12-bit), while the vertical axis of graph (b) shows three levels, i.e., 1, 2, and 3

relating to voiced, unvoiced, and silence decision respectively.

Figure 5.5b shows the V-UV-S contour for the word 'fatatia', where the word starts at

frame number 27 and ends at frame number 138. This word has 7 segments which are in

the following ranges (first frame-last frame):

27 - 47 unvoiced segment related to the phoneme/f/.

48 - 65 voiced segment related to the phoneme 1W.

66 - 77 silence segment related to the silence gap associated with the plosive

phoneme N.
78 - 80 unvoiced segment related to the burst associated with the plosive

phoneme N.
81 - 102 voiced segment related to the phoneme fa!.

103 - 120 unvoiced segment related to the phoneme/h!.

121 - 138 voiced segment related to the phoneme Ia!.

The V-UV-S contour of this particular word gives most of the necessary information for

the segmentation process, but unfortunately this is not always the case for most words.

Figure 5.6b shows the V-UV-S contour for the word 'kataba'. This word has 7 segments

given as follows:

18 - 23 unvoiced segment related to the burst associated with the plosive

phoneme /k!.

24 - 41 voiced segment related to the phoneme /a!.

42 - 49 silence segment related to the silence gap associated with the plosive

phoneme It!.

50 - 54 unvoiced segment related to the burst associated with the plosive

phoneme it.!.

55 - 76 voiced segment related to the phoneme Ia!

77 - 81 silence segment related to the silence gap associated with the plosive

phoneme ibl.

82 - 109 voiced segment related to the phoneme La!.
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Fig. 5.5 The word 'fataha', a) the speech signal, b) the V-TJV-S contour
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Fig. 5.6 The word 'kataba', a) the speech signal, b)the V-UV-S contour
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Fig. 5.7 The word 'ealaaoa', a) the speech signal, b) the V-ISV-S contour
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Note that the V-UV-S contour indicates the level '3' or silence (silence segment between

frames 77-81) for the voiced plosive /b/. The unvoiced segment related to the burst which

is associated with plosive phonemes did not occur in this case, because this phoneme is

surrounded by two vowels.

Figure 5.7b shows the V-UV-S contour for the word 'Oaiaa8a'. This word contains two

weak fricative phonemes and and four voiced phonemes. This word has four segments

given as follows:

18 - 29 unvoiced segment related to the phoneme /0/.

30- 89 voiced segment related to the phonemes Ia!, /11, faa!.

90- 104 unvoiced segment related to the phoneme /0/.

105 - 129 voiced segment related to the phoneme /aJ.

Other V-UV-S contours for different words can be seen later on in the vowel recognition

section and in Chapters 6 and 7.

5.3 Vowel Detection

It is well known that in most cases, vowels have more power than their adjacent

consonants. The presence of vowels can be determined by looking for a local maximum

of the log-energy contour, or of the loudness contour of the carrier word [41, 133].

The aim of this detection procedure is to determine the vowel steady-state regions, and to

select reliable representative frames which are passed to the vowel identification

procedure. The detection algorithm also has to define an estimated duration for each

vowel, in order to distinguish between short and long vowels. This duration is also used

in the segmentation procedure in Chapter 7.

5.3.1 Energy Peak Detection

The short-time energy (i.e., for a block of N samples) of the speech signal provides a

convenient representation that reflects the amplitude variations of the speech signal. For

the purpose of vowel detection, the energy is defmed as:
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1
N

ES=(, s2(n))2
1

where ES represents the square root of the energy over a block of N samples, and for

simplicity it will henceforth be called energy. ES is computed every 6.4 msec, using a

block of 128 samples (i.e., 12.8 msec) with 50% overlap over time for each word. The

variation of ES over time gives the ES contour for each word. ES (square root of the

energy) representation has actually given better results for vowel detection than were

obtained using energy representation (on a linear or logarithmic scale).

The ES contour of each word is heavily smoothed (7 passes) in the time domain via a

3-point Hanning window (linear smoothing). The impulse response of this window (or

filter) is:

h(n)=0.5	 for n=0
	

(5.7)

0.25	 for Inl=1

0	 for InI>1

The local peaks and valleys of an ES contour are then determined via a simple

peak-picking algorithm. It has been noticed that most of the ES contour's peaks

correspond to the vowel central regions. Post-editing is carried out to discard false and/or

spurious peaks, and to detect clearly those prominent peak points which represent the

vowel steady-state regions.

a) Initial Peak Detection

After some preliminary experimentation, it has been found that peaks are to be neglected

if they satisfy any of the following conditions (see Figure 5.8):

- Peak within unvoiced or silence regions (segments)

-If y(P) <ESth

- If [y(P1) - y(V1)] < (ESth /2)

- If [y(P1) - y(V2)} < (ESth /4)

(5.6)
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- If y(Pl) <(2 ESth) and [y(P1)-y(V2)] <ESth

- If f [y(P1)-y(Vl)] / [x(Pl)-x(Vl)] } <(ESth / 20)

where the threshold ESth is equal to 10% of the maximum value (ESmax) over the ES

contour of each word.

(ES)y

x(P1) x(V2) x(P2)

Fig. 5.8 Example of peaks and valleys along the energy contour (ES)

The first condition implies that only peaks in voiced regions are counted as candidates for

vowel detection. The second condition leads to neglecting any peak whose value is less

than ESth. When the difference between the energy of a certain peak and the energy of

the preceding valley is less than half ESth, that peak is neglected according to the third

condition. When the difference between the energy of a certain peak and the energy of the

following valley is less than quarter ESth, that peak is neglected according to the forth

condition. The fifth condition leads to discarding any peak which has an absolute energy

less than twice ESth and at the same time the difference between its energy and the energy

of the following valley is less than ESth. The last condition is used to eliminate those

peaks which might occur within the trailing consonants in the syllabic pattern /CVC/ (at

the syllable boundary). Figure 5.9 Displays graphs for the word 'masalla', where a)

shows the speech signal, b) the V-UV-S contour, c) the ES contour, and d) the loudness

contour. The loudness contour is explained later on.
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Fig. 5.9 Graphs for the word tmasat

a) the speech signal, b) the V-ISV-S contour

c) the ES contour, d) the LO con tour
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b) Vowel Estimated Duration

The vowel estimated duration VED is defined as the duration of a vowel peak at 0.7 of

its amplitude (i.e., at half the power). When the VED for a certain peak exceeds a certain

threshold (VEDth), this peak is associated with a long vowel; otherwise it is associated

with a short vowel. VEDth is taken as 22 frames or 140.8 msec. This threshold has been

obtained statistically from an analysis results of the speech database, where VED took the

values:

- 6-20 frames for short vowels (38.4-128 msec)

- 22- 60 frames for long vowels (140.8-384 msec)

Actually, VEDs are related to the speaking rate. However, the VEDth could be estimated

on-line from the relative duration of other short vowels in the same word. In this case, If

the VED of a given vowel peak is more than 25 frames, the vowel is considered as a long

vowel. But if it is less than or equal to 25 frames, we look at the VED of the preceding

vowel (or at the VED of the following vowel if a preceding vowel does not exist), and the

threshold is computed as:

VEDth= 1.6 VED
	

(5.8)

For example, when the VED of the preceding vowel is 15 frames, the threshold VEDth is

equal to 24 frames, but when it is 13 frames, the threshold VEDth is equal to 20 frames.

As was shown in Chapter 3, the duration of the Arabic vowel is very important, since

increasing the duration of a vowel (while speaking) may lead (in most cases) to a word

which has completely different meaning.

c) Eliminating False Peaks

Further processing is performed to remove false peaks in the ES contour. Figure 5.10

shows graphs for the word 'jafealuuna', where a) displays the speech signal, b) the

V-UV-S contour, and c) the ES contour. The second peak of the ES contour at frame 68

is a false peak, since it occurs within the duration of the voiced consonant /gI. The fourth

and fifth peaks are related to the long vowel 'uu'; such cases are discussed in the next

section.
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Such a false peak is eliminated by passing the ES contour through the following test (see

Figure 5.8):

[x(P2) - x(P1) < 20 frames and y(V2) > 0.75 . mm (y(P1), y(P2)}

This condition states that, if the duration between two successive peaks is less than 20

frames, and at the same time the energy of the valley between them is more than three

quarter of the energy of the lower peak, then the peak which has the lower value is

neglected. Such false peaks have occurred in many cases, and for both consonants in the

syllabic type ICVC/.

The first part of the above condition could be satisfied by two genuine successive peaks

(i.e., where the duration between the centre of two vowels, or V-C-V, is less than 20

frames which could be called the minimum syllabic duration). But the second part of the

condition is included to rule out such cases. For two genuine successive peaks, it was

found that the amplitude of the valley between the two peaks (i.e., the consonant

amplitude) always below 75% of the lower amplitude of the adjacent peaks (i.e., the

vowel amplitudes), when the duration between the two peaks is less than 20 frames.

d) Long Vowel Detection

Figure 5.11 shows graphs for the word 'nuuhiiiaa' (the only word in Arabic which

contains the three long vowels together), where a) displays the speech signal, b) the

V-UV-S contour, and c) the ES contour. Here, the ES contour contains two peaks for

each long vowel. Such a phenomenon is frequently associated with long vowels (see

Figure 5.lOc, where the fourth and the fifth peaks along the ES contour belong to the

long vowel IuuI). Therefore, after detecting the prominent peaks, the possibility of having

two adjacent peaks related to one long vowel is checked. In this respect, two cases are

distinguished (see Figure 5.8):
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1) If two successive peaks P1, P2 and the valley between them V2 satisfy the

following condition:

VEDs of both P1 and P2 < 22 frames

and [x(P2) - x(P1)]	 > 20 frames

and y(V2)	 > 0.75 max (y(P1), y(P2)}

then both peaks belong to one long vowel, and are replaced by a new peak

situated at the centre of the duration between the two peaks as follows:

x(P)=[x(P2)-x(P1)]/2

This case occurs mainly for the long vowel /aal.

2) If two successive peaks P1, P2 and the valley between them V2 satisfy the

following condition:

VEDs of both P1 and P2 < 22 frames

and [x(P2) - x(P1)]	 E [21 - 60] frames

and both y(P1) & y(P2) < a ESmax

and y(V2)	 > 0.5 mm {y(P1), y(P2)}

and Iy(P1) - y(P2)I	 < 0.6 max (y(Pl), y(P2))

then both peaks belong to one long vowel, and are replaced by a new peak

situated at the centre of the duration between the two peaks as follows:

x(P)=[x(P2) -x(P1)]/2

This case occurs mainly for the long vowels luul and Jill.

cx is taken as 0.75 if ESmax is more than a certain threshold (400),

otherwise cx = 1 (this is the case when the test word does not contain any

of the vowels /aJ or /aaJ).

The above-mentioned conditions were found heuristically, and the thresholds were

estimated (statistically) from observations of many ES contours of several words.

Finally, it can be seen from Figure 5.1 ic that the variation in energy along the vowels 1W

and Juul is higher than that along the vowel laW.

The VED of a long vowel which has two peaks is taken from the point (before the left

peak) which has a value equal to 0.7 of the left peak value, to the point (after the right

peak) which has a value equal to 0.7 of the right peak value.
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e) Representative Frame Selection

Each vowel is represented by a single frame. This frame has to be present within the

vowel's steady-state region where formant frequencies are almost at their nominal values

for that vowel. The vowel representative frames (VRFs) are chosen initially at the

location of the energy peaks along an ES contour.

Figure 5.12 display graphs for the word 'jamsallu', where a) shows the speech

spectrogram of this word, b) the speech waveform, c) the V-UV-S contour, and d) the

ES contour. The syllabic structure of this word is /CVC-CV-CV/. Thefirstpeak of the ES

contour refers to the first vowel /a/in the syllable /CVC/, the second peak refers to the

second vowel fat in the syllable /CV/, and the third peak refers to the third vowel /u/in the

syllable ICV/. It can be seen that the ES contour displays three different shapes (bell

shapes) for these three vowels. The shape related to the second vowel in the word is

almost symmetric around the second peak, while the other two shapes are not symmetric.

The slope of leading edge of the bell shape related to the third vowel is sharper than that

of its trailing edge, and the vowel peak is situated at the beginning of the vowel, and

almost within the transitional portion between the two successive phonemes 1iW (see the

spectrogram of this word in Figure 5.12a). In this case an error would occur during the

vowel identification phase if the vowel representative frame is taken at this peak. Instead

of that, the representative frame is chosen at the middle of the vowel estimated duraciorz

VED. The peak point related to the second vowel on the ES contour coincides with the

central point of the vowel estimated duration (VED). From the bell shape of the first

vowel, it can be seen that the slope of its leading edge is lower than that of the trailing

edge. The spectrogram of this word shows that if the VRF is taken at the middle of the

YED of the first vowel, an error would occur. The first vowel /a! is preceded by

a semivowel /j/, and the second formant F2 moves from above 2000 Hz within the

duration of the phoneme hi towards the nominal value (1500 Hz) of the vowel fat, and it

almost reaches this value at the end of the vowel duration where it coincides with the peak

location of this vowel on the ES contour. For this reason, the VRF of such a shape is

taken exactly at the peak of the ES contour which is related to this vowel. For the second

and the third shapes (related to the second and the third vowels), the VRFs are taken at

the middle of the VEDs.
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Fig. 5.12 Graphs for the word 'jamsariu'

a) the speech spectrogram, b) the speech signal

c) the V-UV-S contour, d) the ES contour
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As can be seen, the ES contour of the word 'jamsáhu' displays three different shapes for

the three vowels in this word. The first shape usually occurs when a vowel is preceded

by a semivowel. The third shape occurs in the realisation of the vowels hi and /u/, which

usually have low energy compared with the vowel lal, and whose peaks on the ES

contour are towards the preceding consonant in their carrier syllables.

The VED is recalculated at 0.7 of the amplitude at the location of the VRF for both short

and long vowels having only one peak.

5.3.2 Loudness Peak Detection

Loudness is defined as that attribute of auditoiy sensation in terms of which sound may

be ordered on a scale extending from soft to loud. The loudness contour along a word

was used to locate the syllable nucleus or the vowel [41]. The total loudness is obtained

as the summation of specific loudness, extending over a bank of filters. The specific

loudness is computed as follows.

The speech signal is passed through a bank of K filters which are linearly spaced below

1 KRz and logarithmically spaced above 1 1(1Hz (up to 4.8 KHz). The computation of

the filter bank parameters and of the energy in each channel is explained in detail in

Chapter 6. The output energies of the K channels are weighted by an equal-loudness

curve which approximates the auditory response over mid-range intensity levels (the

weighting curve is actually the inverse of the hearing sensitivity curve at mid-range

intensity level). This equal-loudness curve has a slope of +10 dB/oct in the range

0.1-0.4 KHz, flat in the range 0.4-1.2 KHz, +6 dB/oct in the range 1.2-3.1 KHz, and

flat in the range 3.1-5 KHz. Then the cube root (Stevens' power law [134]) of the

weighted energy for each channel is taken to obtain the specific loudness. The total

loudness is given as the summation of the specific loudness along the K channels of the

filter bank.

The total loudness is computed along each word to yield the loudness (LO) contour.

Smoothing and editing are also carried out on the LO contour, as in the case of the ES

contour. Figures 5.9d shows the LO contour for the word 'masaha'. This contour

shows no significant differences compared to the ES contour in Figure 5.9c, as far as the

vowels are concerned. In the LO contour, consonants have relatively higher amplitude

than in the ES contour because of the cube root operation applied to the energy of each
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channel in the filter bank. Both contours have given almost the same results (for several

test words), where different thresholds were used in the peak-picking and editing

processes of the two contours.

However, the ES contour is considered for vowel detection in this research work, since

it requires simpler and faster computation.

5.2.3 Results of the Vowel Detection

The vowel detection algorithm introduced in the previous section has been quite

successful. However, there were specific cases in which the detection algorithm failed.

For example, Figure 5.13 displays graphs for the word jusaawii', where a) shows the

speech signal, b) the V-T.JV-S contour, c) the ES contour, and d) shows what is called the

spectral variation contour (SV). The SY contour displays peaks at the transition between

successive sub-word units. The SV contour is explained in detail in Chapter 6. The ES

contour of this word shows no prominent peak (or peaks) for the long vowel fiji at the

end of the word. This vowel has energy less than the preceding consonant. The SY

contour shows peaks at the transition between adjacent phonemes in this word, and the

last two peaks refer to the boundaries of the vowel hi!. By combining information from

the V-UV-S contour, the ES contour, the SY Contour, durational information, and

phonological constraints (such as allowable syllabic structures), the missing vowel can be

recovered as it is demonstrated in Chapter 7. For another example, the ES contour of the

word iarbaea' shows no peak related to the last vowel in this word (see Figure 7.18 in

Chapter 7), This occurs because the voiced consonant 'e' has a relatively higher energy

than the following vowel ha!. This problem is also dealt with in the segmentation and

error correction procedures given in Chapter 7.

Most of the errors occur mainly when a low energy vowel such as hi or/u/ appears after

or before voiced consonants such as In!, /mI, 1w!, Ic!, etc., where the energies of these

consonants are of the same order as the energy of the vowel.

Some of the errors were made by the speakers themselves, where an artificial pause was

encountered between the consonant and the vowel of the syllable ICVI, leading to two

distinct peaks in the ES contour. This case is also avoidable by asking the speaker to

speak fluently (not artificially) with normal speed.
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A set of 100 different words [see appendix A] has been used to test the performance of

the implemented algorithms in the proposed speech recognition model. The 100 words or

a subset of them were uttered by five speakers are as follows:

- speaker (male) MZ 200 words (two repetition of the 100 words)

- speaker (male) YM 200 words (two repetition of the 100 words)

- speaker (male) HT 100 words (the set of 100 words)

- speaker (male) MB 50 words (50 words out of the set of 100 words)

- speaker (female) HK 20 words (20 words out of the set of 100 words)

Thus, the speech database used to test the vowel detection procedure comprises 570

words. Only 300 words uttered by three speakers (MZ, YM, HT, 100 words each) have

been used for the extraction of the system parameters and thresholds.

The set of 100 words contains 272 vowels distributed as follows:

1W: 162
	

laW: 141

Iu/: 22
	

/uu/: 7

ILl : 30
	

[ii!: 10

The 570 test words contains 1551 vowels distributed as follows:

Ia!: 927	 IaaJ: 231

/u/: 120	 /uu/: 44

fi/:170	 [ii!: 59

The mispronunciation error rate was about 2%, and could be removed by proper

pronunciation, while the unavoidable error rate (due to the structure of the test words,

e.g., having a high energy voiced consonant followed by a low energy vowel at the

word-final position) was about 1%. Some of these errors are tackled in the segmentation

and error correction procedures given in Chapter 7, where a simple linguistic knowledge

is employed.

Finally, the output of the detection stage is a representative frame of 256 samples for each

detected vowel, which is passed to the identification stage. Also, this stage provides the

vowel estimated duration VED. This VED is used later on to decide whether the vowel is

short or long, and to aid in the vowel correction algorithm as will be explained in Chapter

7.
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5.3 Vowel Identification

The aim of the vowel identification is to determine the vowel type using a single

representative frame which is the output of the vowel detection stage. Also, the VED is

used to decide whether the vowel is short or long. Vowel identification is achieved by

two techniques, i.e., vector quantisation and formant methods.

5.3.1 Vector Quantisation Method (VQ)

In this method, the speech samples of the vowel representative frame are pre-emphasised

using a first-order filter with transfer function:

H(z) = 1 - 0.95 14	 (5.9)

passed through a Hamming window, and a 16th order LPC analysis is performed using

the autocorrelation method [30]. Then, 18-LPC-derived cepstral parameters are computed

as follows:

LPCC1 = LPC + 2' 
k 1 

LPCC - k	 LPCk	 (5.10)

where N is the number of cepstral parameters and i = 1,2,. . ., N. K is the LPC model's

order and k 1, 2, . . . , K. Any LPC coefficient whose index is above the model's

order, is taken as zero. As a result, each vowel is represented by a vector of N

LPC-derived cepstral parameters.

The idea of this method is to design a codebook for the training vectors of each vowel

type. An unknown vowel vector is handJ.ec.. by each vowel vector quantiser and the

minimum VQ distance for each codebook is computed. The recognised vowel is chosen

as the one whose VQ distance is minimum.

The design of a vector quantiser is summarised as follows. Assume that a training set

T) = { T 1 , T2, . . ., TJ ) of K cepsiral vectors is given. It is desired to create a codebook

of M vectors such that the average distance of a vector in (T) from the closest codebook

entry (codeword) is minimised. Thus, we wish to find a set [R) = {R 1 , R2,. . ., R}
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of reference vectors that minimises the average distance given by:

mm	 [d(Ti,Rm)1 ]
	

(5.11)
1^m^M

where d (J, Rm) is the Euclidian distance between a training vector T and a codebook

entry R. The optimum codebook is generated by minimising the distortion expressed in

Eq. (5.11) over a large number of training vectors through an iterative process. This

equation can be solved efficiently by the so called binary-split algorithm [135-137].

a) The Binary-Split Algorithm

This algorithm begins by fmding an optimum solution for a codebook with two entries

(i.e., M = 2), starting with an initial guess of two vectors (or using the centroid of the

entire training set). The optimal solution (optimal codeword) is reached when the rate of

decrease in the average distortion DK(M) of the K training vectors satisfies a

predetermined threshold. Then, each optimal codeword is split into two (M =2. M), and

used as an initial guess for the design of a codebook of 4 entries. The binary split

continues until the number of entries is equal to the desired codebook size.

The algorithm can be described in the following steps:

step 1:

- Compute the ceniroid C of the entire training sequence (T}.

- Split this centroid into two close vectors, i.e., R 1 = C. (1 - a) and

= C. (1 - a), where a is a fixed perturbation vector.

- Set M =2 and set the initial average distortion (DOld) of the training

vectors to a large value.

step 2:

- Given M codewords, the training vectors {T)are grouped into

M clusters, where each training vector is assigned to the codeword

closest to it by computing the Euclidian distance between this vector

and T1 and the codeword Rm as follows:
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d (T,Rm) =
	

(T1(n) - Rm(ri) 
)2	

(5.12)

- Compute the average distortion DK(M) of the training K vectors which have

been assigned to M clusters according to the following equation:

K

DK(M) =	 mm	 d (T1 , Rm)
i=1 1^m^M

(5.13)

step 4:

- If the percent change in the distortion (i.e., DIST = I DK(M) - L)old I I Dold) is
not less than a preset value c then:

- Set Dold = DK(M)

- Update the centroids of the M clusters (R 1 , R2, . . ., R,j).

- Go to step 3

This process is iterated until DIST is less than e.

Step 5:

- If M is less than the desired size, split each centroid into two close vectors by

multiplying each centroid with the values (1 - a) and (1 + a), where a is a fixed

perturbation vector. M becomes double the previous M. Then, the entire process

is repeated until M becomes equal to the desired codebook size.

The centroid vector of a given cluster is computed as the average of the cepsiral

coefficients of all the vectors in that cluster. The flow chart given in Figure 5.14

summarises the binary-split algorithm. The above described algorithm is actually called

the full search binary-split VQ algorithm, where each vector in the training set is

compared with every coclebook entry. The result of this algorithm is a codebook of M

entries (or codewords) which represents the centroids of the M clusters.

In our implementation, c was chosen as 0.5 per cent (or 0.005), and a is taken as 0.01.
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- set a = 0.01, c = 0.005

- set codebook sizeM*

- set Dold =00

[R)	
compute

centroids (R)

D old=D K

(1)

- compute the centroid C of the K training vectors (1)

- generate two initial vectors

R1=C.(1- a)

R2=C.(1+ a)
-setM=2

classify training set (1) into M clusters

computeDK(M)

<C>

M <M*	 M=2.M

Fig. 5.14 Flow chart of the full search binary-split VQ algorithm
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b) Experimental Results

As shown earlier, Arabic has six vowels divided into two sets, i.e., three short 1W, /u/,

and /i/, and three long faa!, /uu/, and [ii!. Ignoring the vowel length, we can say that we

have three vowel types or groups, i.e. /a/, /u/ and Ti!.

The training Set used in the codebook design consists of 816 cepstral vectors, where each

vector is derived from the vowel representative frame (during the vowel detection phase).

816 vowels (272 x 3) are extracted from the speech database of 100 words uttered by 3

male speakers. These vowels are distributed as follows:

Ia! :486	 /u/: 66	 Ti!: 90

/aa/: 123	 /uu/: 21	 [ii!: 30

609	 87	 120

The following two tests have been performed:

- In the first test, the six vowels were represented by six different codebooks of

size 16. In a series of recognition experiments the error rate was about 20 %.

This error occurred mainly between the short and long vowels of the same type

(e.g., vowels of the type laW assigned to the type 1W and visa versa).

- In the second test, the training data of short and long vowels of the same type

(e.g., faa! and /a!), are grouped together to yield three different groups

coresponding to the three vowel types. Then, codebooks of 8, 16, and 32

entries per vowel have been designed. The recognition results are summarised in

Table 5.2.

Table 5.2 shows that the error rate is relatively small. The error rate went down from 4%

to 1% when using a codebook of 32 entries for the vowels /at and laW. The remaining

1% of the errors occur mainly when the vowel/a! is in association with the consonant /j/

in the syllable fiat (due to the coarticulation effect). The phoneme lit has a high second

formant frequency (2400 Hz), and the vowel duration is not enough to allow F2 to go

down to its nominal value for the vowel/a! (about 1500 Hz) (see Figure 5.12a).
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It is believed that in a multi-speaker system (used by a large number of male and female

speakers), the error rate will increase because of the overlap between vowel parameters of

the three vowel clusters across speakers. For this reason, vowel identification is

performed by using another method which is based on the vowel formant frequencies.

V Q codebook size

8	 I	 16	 I	 32

/aJ, /aa/ I	 4%	 I	 4%	 I	 1%

/u/,/uu/ I	 0	 I	 0	 I	 0

/i/,/iil I	 1%	 I	 0	 I	 0

Table 5.2 Vowel identification error rate

5.3.2 Formant Method

In this method, vowels are represented by the first two formants Fl and F2. These

formant frequencies are extracted from the vowel representative frame. Figure 5.15

displays a scatter plot for the six Arabic vowels in the F1-F2 plane (272 vowels by

speaker MZ), where short vowels are represented by the symbol 'a', 'u', and 'i' and their

long counterparts by the symbol IA!, JIJ/ and /1/. The figure shows an overlap between

the short and the long vowel of the three vowel groups, whereas it is easy to discriminate

between the three vowel groups (or clusters).

Figure 5.16 illustrates a flow chart of the vowel identification according to Fl and F2.

Figure 5.17 shows the boundaries between the vowel areas in the F1-F2 plane (which

are considered in the decision algorithm of Figure 5.16) for male speakers, (the numbers

in brackets are for female speakers). This decision algorithm has given perfect accuracy

for vowel identification in the speech of four male speakers (1496 vowels which are

included in the 550 test words uttered by the four male speakers).
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Fig. 5.16 Flow chart of the vowel identification using Fl and F2
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Fig. 5.17 The boundaries between the vowel areas in the F1-F2 plane
(the numbers in brackets are for female speaker, while the other numbers are for male speaker)
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The vowel recognition algorithm (both the detection and identification phases) was tested

using 55 vowels (in 20 words) uttered by a female speaker. The vowel detection phase

gave correct results, while in the vowel identification phase different thresholds for Fl

and F2 are used in the decision algorithm of Figure 5.16. These thresholds are taken

from Figure 5.18 (the numbers in brackets).

a) Formant Normalisation

For multi-speaker systems (a large number of male and female speakers), the values of

Fl and F2 may vary considerably across speakers, therefore formants should be

normalised to account for these differences. One normalisation method is to normalise

formants by the estimated vocal tract length of each vowel [1381. In this method, formant

frequencies of the normalised vocal tract shape are computed by multiplying the

normalised formant frequencies by the length factor LILR , where LR is a reference

length, and L is the estimated vocal tract length.

Vocal tract length computation is based on the idea that higher formant frequencies tend to

be regularly spaced. By assuming that those higher formant frequencies do not deviate

much from those of a uniform tube having the same length, the length L is estimated from

the formant frequency F1 as:

where C is the sound velocity (340 m/sec). F could be the fourth formant frequency or

any other higher formant frequency. For example, if F4 3400 Hz, L is equal to

17.5 cm. In this case LR could be chosen as 17.5 cm.

It has been reported that this normalisation method has improved the accuracy of vowel

identification process [1381.

b) Formant Estimation

One way of estimating the formant frequencies of the speech signal over a short-time is

through LPC analysis. The LPC analysis determines the coefficients (a n's) of the
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autoregressive model (all-pole model) whose transfer function is given as:

1
H(z) =

	

	 (5.15)
P

1-f-	 aZ
n= 1

where P is the order of the prediction filter. A direct method for extracting formants is to

determine the poles of the transfer function of Eq. (5.15). This involves solving the roots

of a Pth degree polynomial, which is computationally very tedious and requires high

precision complex arithmetic. Another method often used is to locate the peaks of the

LPC log-magnitude spectrum [301.

In our recognition system, a method based on the linear prediction phase spectrum has

been implemented [139]. The log-magnitude spectrum of the LPC model (log ([H(f)I)),

shows peaks at resonant frequencies (forrnants). It has been shown [139] that a plot of

the derivative of the phase spectrum (DPS) (i.e., the negative of the group delay function

NGDF) of a resonance, closely resembles the shape of its magnitude spectrum. Hence,

the frequency of a resonance can be estimated from the position of the peak of the

NGDF, and the bandwidth of the resonance is proportional to the inverse of the height of

the peak in the NGDF. An all-pole model can be regarded as a cascade of resonators. The

overall phase spectrum of a cascade of resonances is a summation of individual phase

spectra, hence each resonance curve will have very little influence on the shapes of other

resonance curves. On the other hand, the overall magnitude spectrum is the product of

individual magnitude spectra. This property makes the detection of closely spaced

formants with different bandwidths easier from the NGDF (or DPS) rather than from the

magnitude spectrum.

The NGDF is computed as follows:

- The speech signal of each vowel representative frame VRF (256 samples) is

pre-emphasised by using a first order filter given in Eq. (5.9), is passed through

a Hamming window, and then a Pth-order LPC analysis is performed using the

autocorrelation method [30].

- Compute 512-point DFT of the sequence (1, aj, a2,.. ., api appended with

appropriate number of zeros using FFT algorithm.
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- obtain the phase of the DFT components using the arctan function modulo-2it.

- Find the NGDF by computing the difference in phase between the successive

points in the frequency domain. The absolute value of this difference is in the

range [-it , itj.

This NGDF will show peaks at the resonance frequencies (formants), due to

the abrupt changes in the phase spectrum, since the arctan function gives only

the principal value of the angle (i.e., modulo 2it).

- Formants are extracted by locating the peaks of the smoothed IGDF.

Figure 5.18 shows the NGDFs for the three vowels Ia!, /ul, and lit, where each curve has

been smoothed by passing it through a 3-point Hanning window.

The choice of the LPC model's order determines the level and quantity of the spectral

detail. If the model order is insufficient, then certain formants will not be adequately

modelled into the spectrum, particularly in the case of closely spaced formants.

Conversely, a model order which is excessive will deteriorate the signal-to-noise

performance of the LPC-based spectral estimator. This is demonstrated by the presence

of spurious spectral peaks from which it is then difficult to choose formant candidates.

Choosing a model order P as 18 has led to the presence of some spurious peaks in the

NGDF of vowels. When reducing P to 14, the algorithm fails to resolve the case of

having two closely spaced formants for some VRFs of the vowel Lu! (in these cases Fl

and F2 are close to each other). Finally P has been set equal to 16, where adequate

accuracy has been achieved. In the latter case, the problem of two closely spaced

formants has been resolved, whereas some spurious peaks in the NGDF curve are to be

eliminated by post-editing.

The input to the formant estimation algorithm is the vowel representative frames. The

frames are supposed to be chosen in the vowel steady-state region. Thus, the NGDF's

curve for such a VRF is expected to show prominent peaks relating to the vowel

formants. In the post-editing, all peaks whose values are below 20% of the maximum

value along the NGDF, are eliminated. The height of the peak in the NGDF can be

shown to be inversely proportional to the bandwidth of the formant. Eliminating small

peaks means eliminating peaks related to formants with wider bandwidths.
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Fig. 5.18 The NGDFs of the three vowel types



140

5.4.3 Vowels in Pharyngealised Context

Arabic language has five pharyngealised consonants i.e., , , , , and k. The

effects of the pharyngealised consonant on the neighbouring vowels are demonstrated

graphically in Chapter 3 by the speech spectrograms of the pharyngealised

consonant-vowel pairs. It was found that in general, Fl and F2 along the vowel move

closer to each other in pharyngealised context compared to the same vowel in plain (non-

pharyngealised context).

After formant extraction, it is now possible to monitor the formant frequencies in plain

and pharyngealised context. For example, the two words 'sabca and afäha' start with

the consonant 1sf and its pharyngealised counterpart // respectively. The formant

frequencies of the vowel representative frames of the first vowel in the syllables isa! and

/a/ are given as follows:

isa!	 Fl = 605 Hz	 F2 = 1445 Hz	 Af = 840 Hz

/aJ	 F1=586Hz	 F2=1035Hz	 Af= 449Hz

other examples are as follows:

'kataba' , 'kara?a' , 'kaana' , 'kaala' , 'niaam', 'araba'

/ka/	 F1=625Hz	 F2=1738Hz	 Af=lll3Hz

/ka/	 F1=645Hz	 F2=1035Hz	 Af= 390Hz
/kaaJ	 Fl = 684 Hz	 F2 = 1602 Hz	 Af = 918 Hz

/icaa/	 F1=625Hz	 F2= 977Hz	 Af= 352Hz

/aa/	 Fl = 645 Hz	 F2 = 957 Hz	 Af = 312 Hz
Lda/	 F1=605Hz	 F21035Hz	 Af= 430Hz

The effect of the presence of a pharyngealised consonant on the formant frequencies of

the following vowel is very clear. This pharyngealisation effect is not only confined to

the neighbouring vowel, but it may extend over an entire word (to all vowels in the word)

due to the coarticulation effect. The vowel of the syllable which contains a pharyngealised

consonant in a certain word is definitely affected by the presence of the pharyngealised

consonant, but other vowels in that word may be affected according to the place of the

pharyngealised consonant within that word. For example, the word 'kaala' has the
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syllabic structure /VV-CV/, where the underlined consonant Q. refers to a

pharyngealised consonant, and the formant frequencies of its vowels are:

/kaa/	 Fl = 625 Hz 	F2 = 977 Hz	 M = 352 Hz
F1=684Hz	 F2=1543Hz	 M= 859Hz

It can be seen that the effect of the pharyngealisation did not extend to the second vowel

in this word. Another example is the word '?aiçaama' has the syllabic structure

/CV-CVV-CV/, and the formant frequencies of its vowel are:

[Ia!
	

Fl =723Hz
	 F2= 1133Hz
	

M= 410Hz

/kaa/
	

Fl =586Hz	 F2= 977Hz
	 M= 391Hz

ha/
	

Fl =605Hz	 F2= 1230Hz	 Af= 625Hz

It is clear that the effect of pharyngealisation has extended over the first vowel and

slightly spread to the third vowel. The word '?aw .aa' has the syllabic structure

/CVC-_CVV/ and the formant frequencies of its vowels are:

flaw!	 F1=645Hz	 F2=1094Hz	 M= 349Hz

/saaJ	 F1=586Hz	 F2= 938Hz	 M= 352Hz

both vowels are affected in this word by the presence of the pharyngealised consonant

!J. It is worth to mention here that the consonant In may be pharyngealised in some

context, for example in the word '?araada' where the formant frequencies of its vowels

[Ia!
	

Fl =605Hz
	 F2= 1339 Hz	 M= 734Hz

/raa/
	

Fl =686Hz
	 F2= 996Hz
	

Af= 310Hz

Ida!
	

Fl =605Hz
	

F2= 1387 Hz
	

M= 782Hz

in this case, only the vowel following the pharyngealised consonant is affected.

As a result, in the pattern IVCV/, the phaiyngealisation effect is confined to the vowel

following the pharyngealised consonant, and does not extend to the other vowel in the

word. In the patterns /CVQV/, /CVCCV/, and /CVCV/, the pharyngealisation effect

extends over the vowel preceding the phaiyngealised consonant to the vowel following
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it.

The previous study concerns the vowels Ia! and laW. Actually we could not extend this

study to the other vowels (i.e., /u/, /uu/, IV, and hiT). This is because the changes in the

formant frequencies of a vowel near to a pharyngealised consonant compared to their

values for a vowel near to a plain consonant, is not as noticeable as in the case of the

vowels Ia! and /aa/. Such differences do exist, but they are not large enough to be

distinguishable over different realisations of those vowels in different contexts.

Returning to the results for the vowels ía! and laW, it can be concluded that detecting a

pharyngealised vowel (according to its formant frequencies) leads to the prediction of the

relative location of the pharyngealised consonant in that word. Also any syllable which

contains a pharyngealised vowel can be labelled as a pharyngealised syllable.

5.5 Summary

In this chapter, two main procedures have been introduced, i.e., voiced-unvoiced-silence

segmentation and vowel recognition.

The first procedure segments the speech signal into voiced speech segments, unvoiced

speech segments and silence (no speech) segments. Parameters such as energy,

zero-crossing rate, autocorrelation coefficients, and some parameters from the pitch

detection algorithm have been employed in this procedure. Smoothing and editing have

been carried out on the V-UV-S contour of a word in order to reach final accurate

segmentations. The accuracy of this preliminary segmentation must be very high, because

errors made at this level will spread to the final segmentation process and might affect the

final recognition accuracy.

The vowel recognition procedure consists of two main parts, i.e., the vowel detection

phase and the vowel identification phase. In the vowel detection phase, the peaks of the

energy contour are used to locate the vowel steady-state regions, where vowel

representative frames (VRFs) are chosen to be used in the vowel identification phase.

Heavy smoothing and editing are performed on the energy Contour in order to eliminate

false and spurious peaks. Durational information is used at this level to distinguish

between short and long vowels. The concept of the vowel estimated duration (VED) has

been introduced in this chapter. The VRP and the VED are going to be employed in the
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final segmentation and error correcting processes.

In the vowel identification phase, two techniques have been implemented to identify the

vowel type, i.e., the vector quantisation (VOJ method and the formant method. The

implemented VQ method is based on the full search binary-split algorithm. The VQ

method is actually based on pattern matching approach, and gave high recognition

accuracy. The formant method is based on the extraction of the first two formants for

each vowel and uses them for vowel identification through a decision tree algorithm. The

formant method gives more freedom than the vector quantisation method, especially for

multi-speaker systems. In a multi-speaker system, it is preferable to adopt a formant

normalisation algorithm to account for speaker variations, or to use some sort of speaker

adaptation by asking each new speaker to utter a few words from which the system can

adjust the boundaries between the vowel regions in the F1-F2 plane. Also the formant

method gives extra information about vowels in pharyngealised context. Formant

frequencies are extracted from the derivatives of the phase spectra (or the negative of the

group delay function) of the vowel representative frame.

The accuracy of the V-UV-S segmentation is almost perfect. Error occurs in the form of

adding a short segment, or extending the segment at the end of a word, due to the

presence of breathing noise. This error is tackled in the editing process, and could also be

avoided by adjusting the position of the microphone and training the speaker to avoid as

much as possible generating such noise.

The accuracy of the vowel detection phase is about 99%. The remaining 1% errors are

unavoidable in this algorithm, since they occur when low intensity vowels appear

adjacent to relatively high intensity voiced consonants. The accuracy of the vowel

identification phase is also about 99% for the VQ method (for the used speech database).

The accuracy of the formant method is perfect. The formant method also gave perfect

accuracy for female speaker, after modifying the boundaries between the three vowel

regions in the F1-F2 plane.The 1% errors made in the vowel recognition procedure are

tackled in the final error correcting procedure described in Chapter 7.

Finally, recalling some statistical results from Chapter 3, vowels represent about 43% of

the total number of phonemes in the lexical database (10,000 words containing 75875

vowels). The vowel Ia! represents about 47% of the total number of vowels, and laW

about 13%, i.e. both of them represent 60%. The other four vowels (i.e., /u/, fuuI, IV,
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and hi!) represent 40%. Thus, having vowels equal to 43% of the total number of

phonemes makes the vowel recognition task very vital in aiy large vocabulary Arabic

speech recognition system. Improving the accuracy of the vowel recognition algorithm

will surely improve the accuracy of the recognition system.

The following chapter presents the spectral transition detection stage in the speech

recognition model of Figure 4.5. The results of this stage are used in the segmentation

and labelling processes presented in Chapter 7.
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Chapter 6

Spectral Variation Contour
and

its Application to Speech Segmentation

6.1 Introduction

Speech segmentation is often defmed to be the process of dividing the speech waveform

into a series of discrete acoustic states which are related to a phonemic transcription of the

utterance (an utterance is made of a concatenation of several phonemes).

Speech consists of sustained sound segments where the acoustic characteristics of the

sound are similar, and of transitional sound segments, where the acoustic characteristics

vary with time. Thus the spectrum of an utterance is composed of alternating steady-state

and transition regions.

In the previous chapter, the steady-state regions for vowels, where the labelling is most

reliable, have been located through the use of the energy contour. In this chapter, an

automatic method for detecting the boundaries between adjacent phonemes, including

vowels, is introduced. The outcome of this method along with the result of the

preliminary V-UV-S segmentation and vowel recognition, are all employed for word

segmentation in the next chapter.

For the purpose of segmentation, the spectral variation along a word is to be extracted

from the speech signal. Conventional methods for extracting spectral movement

information are mainly based on formant trajectory estimation. However, tracking

formant trajectories is usually difficult and error-prone. Therefore, it is desirable to

extract spectral variation without resorting to formant tracking.

An alternative method is the extraction of a spectral variation contour along a word. This

contour should manifest the transition between sub-word units (these units should be

single phonemes).
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6.2 Spectral Variation Contour

The spectral variation function represents a time-varying signal which is evaluated at

equally spaced points of time. The speech signal of a word can be divided into a sequence

of equally spaced frames. Each frame is represented by an N-dimensional vector. This

vector represents the spectral envelope, which is a close approximation of the vocal tract

transfer function. The sequence of vectors represent a curve in an N-dimensional space.

The spectral variation function is calculated at each point (frame) of this curve as the

average spectral distance between this point and the neighbouring points (frames) which

lie within a window of 2L+1 points. This function is defined as:

L

sv(n)=—i—	 d(V,V)
2L j=-L

where sv(n) is the value of the spectral variation function at frame n, V and V j are the

spectral vectors (parametric representation of the spectrum) of frames n and n+j

respectively, j is in the range [-L, L], and d is the distortion measure between a pair of

spectral vectors. Each speech frame is represented by an N-dimensional vector as:

v= { C(1), C(2),. . . , C(N) }	 (6.2)

where C(i) is the 1± parameter. The distance d is the Euclidian distance between two

vectors a and b and defined as:

d( Va, Vb ) = [	 1 ( Ca (i) - 
Cb (i) )2]	

(6.3)

For the purpose of spectral variation function calculation, the mel-frequency cepstral

coefficients are employed as a parametric representation of the speech signal.

The sequence [sv(n)] along a word is called the spectral variation contour (SV contour).

This contour is used to extract the transitional information which is associated with the

phonemic boundaries as will be shown later on.

(6.1)
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6.3 Parametric Representation

The selection of the best parametric representation of the acoustic data is an important task

in the design of any speech recognition system. In Section 2.3.1, several parametric

representations of the speech signal have been presented, such as LPC parameters, filter

bank parameters, and cepstral parameters. The objectives of these parametric

representations are to compress the speech data by eliminating information not pertinent

to the phonetic analysis of the data and to enhance those aspects of the signal that

contribute significantly to the detection of phonetic differences. Cepstrum parameters are

chosen in this study as a spectral representation of the speech signal. The cepstrum

parameters provide a compact (low dimensional) representation of the vocal tract transfer

function. They also allow the use of a simple distance measure in the computation of the

spectral variation contour.

6.3.1 Cepstrum Parameters

According to the simplified model of speech production (see Figure 2.1), the speech

signal s(n) is given as the convolution between the source signal g(n) and the vocal tract

impulse response h(n) (for a short-time signal) as:

s(n) = g(n) * h(n)
	

(6.4)

In the Z-domain Eq. (6.4) is written as:

S(z) = 0(z) H(z)
	

(6.5)

where S(z), G(z), and H(z) are the transfer functions of the speech signal, the source

signal, and the vocal tract model (filter), respectively. The transfer function of the vocal

tract takes different shapes when pronouncing different phonemes. The source transfer

function is more influenced by higher-level linguistic phenomena rather than by

phonemics. One way of resolving the convolution in Eq. (6.4) and the multiplication in

(6.5) is to use the logarithm in the frequency or the Z-domain. Thus Eq. (6.5) becomes:

log (S(z)) = log (0(z)) + log (H(z)) 	 (6.6)
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where the multiplication is converted to addition. If log (S(z)) is converted back to the

time domain, the resultant signal is drastically different from the original time-domain

signal. A sequence is obtained in which the impulse response and the source signal are

superimposed in an additive way, and are therefore expected to be much more easily

separated than in the original signal.

For speech signals, and especially for signal frames (short-time signals), Eq. (6.6) is

valid when evaluated at the unit circle, i.e., for z=eJ wT, and it can be rewritten in terms

of the discrete Fourier transform (L)FT) as:

log (S(m)) log (G(m)) + log (H(m))	 (6.7)

where S(m) is the discrete spectrum at sample m in the frequency domain. The inverse

Fourier transform of log (S(m)) is called the complex cepstrum X (n), which is a special

case of the homomorphic processing [33]. For speech processing, further simplification

is possible, where Eq. (6.7) is likewise valid for the power or the amplitude spectrum of

the speech as:

logIS(m)I=loglG(m)I+logIH(m)I	 (6.8)

Taking the inverse DFT of Eq. (6.8) yields:

C5 (n) = Cg (n) + Ch (n)
	

(6.9)

where Cs (n) is called the power cepstrum or simply the cepsirum. The cepstrum C5 (n) is

equal to the even part (real part) of the complex cepstrum X 5 (n).

The cepstral components related to the vocal tract are selected by the cepstrum window

1(n) which is of the form:

l(n)=1,	 InkzN	 (6.10)

=0,	 InI^N

where N is chosen to be less than the pitch (fundamental frequency FO) period. Also, FO

can be extracted from C (n) by remembering that the G(m) of a voiced signal is a pulse

train, and it is transferred to the cepstrum domain into another pulse train with no inherent

information other than its periodicity [128].
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The coefficients of Eq. (6.9) are called linear frequency cepstral coefficients (LFCCs).

The LFCCs for a frame of 2K speech samples are calculated according to the following

steps:

- Hamming windowing (2K points).

- FFT Computation (2K points).

- Log-magnitude of the DFT coefficient (K points).

- Cosine transform of the K log-magnitude components (inverse DFT).

Since the magnitude spectrum is a real even function, the inverse DFT can be achieved by

the cosine transform (real Fourier transform). Thus the ith component is given as:

K

LFCC1 =	 Y	 cos(- . )	 (6.11)

where k is the log-magnitude of the kth DFT coefficient, and K is the number of DFT

coefficients within half the sampling frequency range. The first N LFCCs are used to

represent the vocal tract, where N is less than the minimum expected pitch period.

6.3.2 Mel-Frequency Cepstral Parameters

The cochlea in the human inner ear is thought to perform a continuous broad-band

analysis of the sound which enters the ear, and transmits the results to the brain. The

frequency range over which the human ear is able to perceive sounds is often divided

according to the concept of critical bands (see appendix C). A critical band can be viewed

as a bandpass filter whose frequency response corresponds roughly to the tuning curves

of auditory neurons. Thus, the linear frequency scale can be warped to follow either the

Bark scale (one Bark unit covers one critical bandwidth), or to follow the mel scale (the

mel is the unit of pitch, where one bark corresponds roughly to a pitch interval of 100

mels). The mel scale is essentially linear at low frequencies below 1KHz and logarithmic

at higher frequencies above 1KHz [102]; see Appendix C for more details.
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The mel-frequency cepstral coefficients (MFCCs) result from replacing the linear
frequency scale by a mel scale, where the frequency range (of the input signal) is divided
into a bank of bandpass filters. These filters are linearly spaced at low frequencies and

logarithmically at high frequencies. The MFCCs are computed as the result of a cosine
transform of the logarithm of the short-time energy spectrum of the filter bank outputs.
Thus the ith MFCC is given as:

K

MFCC1 =	 E cos [i (k -	 iL1
K

k=1

(6.12)

where i=1,2,...,N and k=1,2,...,K. N is the number of required MFCCs and K is the

number of filters in the filter bank which cover the frequency range of the input signal. Ek

represents the logarithm of the energy output of the kth filter.

For the computation of MFCCs, a bank of 22 triangular bandpass filters have been

simulated as shown in Figure 6.1 [35] . Table 6.1 displays the centre frequencies and

bandwidth of the filters in the filter bank [140]. This bank of bandpass filters separates

the frequency spectrum of interest into various frequency bands according to the mel
scale (see appendix C for more details). The spacing of the filters is implemented in such

a way that they are continuous over the frequency spectrum and the composite spectrum

(transfer function) of the overall filter bank is essentially flat, i.e. no sharp valleys
between adjacent filters.

Returning to Eq. (6.12), the coefficient MIFCCØ represents the average energy in the
speech frame and is discarded as a form of amplitude normalisation. This can be

explained by normalising the log-energy of each channel by MFCC 0. Thus, the

normalised 0th coefficient becomes equal to zero, and the normalised log-energy of each

channel becomes equal to (Ek - MFCC0). Substituting the latter value in Eq. (6.12)

yields exactly the same equation, where the cosine transform of a fixed value (MFCC0) is

zero.

As in the case of the linear frequency cepstral coefficients, the first N mel-frequency

cepstral coefficients are associated with the impulse response of the vocal tract.
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Fig. 6.1	 Bank	 of 22 tringular filters

Filter No. Centre Frequency Bandwidth
Hz	 Hz

	

1
	

100
	

100

	

2
	

200
	

100

	

3
	

300
	

100

	

4
	

400
	

100

	

5
	

500
	

100

	

6
	

600
	

100

	

7
	

700
	

100

	

8
	

800
	

100

	

9
	

900
	

100

	

10
	

1000
	

118

	

11
	

1137
	

146

	

12
	

1292
	

166

	

13
	

1469
	

189

	

14
	

1671
	

215
	15

	
1899
	

244

	

16
	

2159
	

278

	

17
	

2455
	

316

	

18
	

2791
	

359
	19

	
3173
	

408

	

20
	

3607
	

464

	

21
	

4101
	

527
	22

	
4662
	

599

Table 6.1 Filter bank centre frequencies and bandwidths (mel scale)
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In some speech recognition experiments based on the template matching approach [35,

141], it has been reported that using the first six MFCCs gives better recognition

accuracy than any other set of the following parameters: DFT coefficients, LFCCs, filter

bank parameters, LPC parameters, and LPC-derived cepstral parameters (LPCCs)

(see Section 2.3.1).

These results have been confirmed by our own experience, where at the beginning of this

research work, a recognition experiment based on template matching (using DTW) has

been conducted. In this experiment, two tests have been performed. In the first test, a set

of 50 English words (comprising the alpha-digits and a few other words) uttered by three

native speakers, has been used as a speech database. In the second test, 10 Arabic words

(the 10 digits) uttered 10 times by the one speaker, have been used as a database. Both

tests have shown that six MFCCs give better accuracy than 16-LPC parameters. These

results indicate superior performance of the MFCC when compared with other parametric

representations, and the first six MFCCs succeed in capturing the significant acoustic

information. This compact representation is also more successful than other parametric

representations in indicating the phonetic significance of the difference between a pair of

spectra by computing a distortion or distance measure between their representative

vectors.

6.3.3 MFCCs Computation

As stated in Chapter 5, the speech signal is band limited to the range 60-4800 Hz,

sampled at 10 KHz, and coded with 12 bits.

Figure 6.2 shows a block diagram for the processes involved in computing the MFCCs.

In this diagram, a vector of N-MFCC is computed for each frame of 6.4 msec length

using a block of 25.6 msec with 75% overlapping for each analysis block. A spectral

analysis is performed through a bank of K filters, to yield a K-dimensional energy

vector. Then, a cosine transform according to Eq. (6.12) is performed, and a vector of N

MFCCs is given for each frame. K is taken equal to 22, and N is chosen equal to 6.
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digitized speech

blocking into blocks of 256

samples each with 75% overlap

spectral analysis through

a bank of K filters

MFCCs calculation using

cosine transform

vectors of N-MFCC

Fig. 6.2 MFCCs Computation

a) Filter Bank

The spectral analysis has been achieved by using an FFT-based Filter bank. Figure 6.3
displays a block diagram for computing the K-dimensional log-energy vector.The

spectral analysis for each block is performed by a short-time discrete Fourier transform

(DFT) according to following equation:

M	 -jim

X(m) =	 x(i)	
M

e	 (6.13)
1=0

where x(i), i=1,2,...,M are the speech samples in the analysis block. X(m) is the
mth component (sample) in the frequency domain, where m=1,2,...,M. The DFT can be
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a block of 256 samples

Hamming window
256 points

FF1'

256 points

coefficients of the	 mel-frequency
K filters	 channel filtering

weighting
(pre-emphasis)

smoothing

log-energy

vector of K-energy parameters

Fig. 6.3 Mel-frequency channel filtering
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efficiently computed by an FFT algorithm. Hamming windowing is applied to the speech

block before the DFT, in order to reduce the noise in the spectrum which would have

occuned ii the block was left without Hamming windowing (the rectangular window has

relatively higher side lobes in its spectrum compared with the Hamming window, and

produces a ragged or noisy spectrum). The Hamming window is given as:

where 0 ^ i ^ M-1 . Then the magnitude (IX(m)l) of the first 128 DFT coefficients,

which represent the spectral components in the range 0-5000 Hz, is computed.

The coefficients of the 22 triangular filters of Figure 6.1 are calculated as follows. From

Figure 6.4, the coefficients of a filter k are given as:

coefficients at the leading edge of the filter:

Fm F1
ak (m)= F F	 Fi^Fm^F2

coefficients at the trailing edge of the filter:

F3 - Fm

	

ak (m) 
= F F	

F2 < Fm ^ F
3	 2

where Fm is the frequency at the mth component which is given as:

F - sampling frequency m - l0000m
- number of DFT points - 256

(6.15)

(6.16)

(6.17)

where 1 ^ m ^ 128. The resolution or the spacing between the frequency components is

about 40Hz. Thus, the coefficients of the 22 filters given in Figure 6.1 are computed in

the same way, and each filter has a number of coefficients (non zero value) according to

its bandwidth.



A

1

0

156

Fl Fm F2	 F3 f

Fig. 6.4 Triangular filter

In general, the energy at the output of a filter k is given as follows:

M /2
E(k)=W(k)
	

(ak(m) IX(m)I)2
	

(6.18)

where ak(m) is equal to zero for m outside the frequency range of the kth filter. W(k) is a

weighting function. The energies at the filter outputs are weighted by an equal-loudness

curve. This fixed curve approximates the auditory response over a mid-range intensity

level (it is actually a scaled version of the inverse of the hearing sensitivity curve; see

Appendix C). This curve has a slope of +10 dB/oct in the range of 0.1-0.4 KHz, flat in

the range of 0.4-1.2 KHz, +6 dB/oct in the range of 1.2-3.1 KHz, and flat in the range

of 3.1-5 KHz [142]. This weighting process is almost equivalent to the pre-emphasis

process. Thus, the log-energy Ek is computed as the logarithm of E(k) given in Eq.

(6.18). The final result is a vector of K parameters for each speech frame.

In general, the energy contours will fluctuate very rapidly depending on the exact details

of the speech waveform (i.e., depending on the placement of the analysis window and

the fraction of pitch periods within the window). Linear smoothing is carried out on the

energy contour over time for each channel in order to remove fluctuations over time

which result from the short-time analysis of the speech signal. Linear smoothing is

achieved by using a 5-point Hanning window, which has the following impulse

isponse:



157

	Wh (n) 319
	

n =0
	 (6.19)

	

2/9
	

ml = 1

	

1/9
	

ml =2

	

0
	

In! ^ 3

Smoothing is actually applied to the linear energy contour of each channel (E(k)).

b) Cepstral Parameters

Six mel-frequency cepstral parameters are calculated according to Eq. (6.12) by

employing the vector of K-log-energy parameters. Thus each speech frame j (6.4 msec)

is described by a vector of six MFCCs as follows:

v3 = { C (1), C (2), C (3), C (4), C (5), C (6) } 	 (6.20)

The time variation of the Vj vectors defines a pattern in a 6-dimensional space for a given

word. The resultant cepstral parameters are also smoothed over time using a 3-point

lianning window followed by a 5-point window. The smoothing is performed on each

parameter C(i) over time (where i is in the range of 1-6).

6.4 Transition Detection and Segmentation

The spectral variation (SV) contour given in equation (6.1) is calculated over each word

as the average spectral distortion between a frame n and the neighbouring frames within a

window of 2L+1 frames. The resulting SV contour is smoothed through a 3-point

Hanning window to remove unwanted fluctuation along this contour.

Figure 6.5 shows graphs for the word 'markazu', where a) represents the speech

spectrogram for this word, b) the speech signal, c) the V-UV-S contour, d) the energy

ES contour, and e) the SV contour. It can be seen from these figures that regions with

high sv(n) values are usually associated with transient sounds, while regions with low

sv(n) values are usually associated with steady-state sounds. By comparing the SV

contour with the speech spectrogram of this word, it can be clearly seen that the peaks of

the SV contour are situated within the transitional region between two adjacent
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phonemes. These peak points can be taken as rough estimates of the phoneme

boundaries. A simple peak-picking algorithm can be employed to detect these peak points

along the SV contour. Figure 6.5e indicates that this word has seven segments or

sub-word units which in this case represent the phonemes of the word 'markazu'. The

distance between any two successive peak points represents the length or the duration of

that segment (or phoneme). As a result, information from the SV contour can be

employed to automatically segment the speech signal into phonemic units regardless of

their phonemic identity.

By combining information from the V-UV-S and ES contour with the results of the

vowel identification procedure and the SV contour, it can be concluded that the word

'markazu' consists of seven phonemes. Three of these phonemes are the vowels fa!, fat,

and /u/, and the other four are consonants. The syllabic pattern of this word is

/cvc-cv-cv/.

The segmentation process is actually more complicated than in the above case, and it is

explained in detail in the next chapter. In the rest of this chapter, it is demonstrated how

transition information can be reliably extracted from SV contours.

In calculating the window of the sv(n) function, it is empirically found that L=2 (2L+1 =

5 frames or 32.5 msec) gives better results than other values. It is noticed that some of

the SY contours' peaks are removed (or smoothed) when L is taken greater than 2,

especially those peaks associated with the transition between two voiced phonemes where

one of them may have a short duration (as low as 6 frames).

In fact, the SV contour of Figure 6.5e is very clean (i.e., not fuzzy), but this is not

always the case for all words. Two major problems are confronted in this respect, i.e.,

- detecting spurious peaks along the SV contour

- missing some peaks which are related to the transition between phonemes

False or spurious peaks along SV contour are eliminated via two steps. The first step is to

set a transition threshold (SVth), and to discard all peaks whose sv(n) values fall below

this threshold. The second step is to tackle the false peaks which pass the first test and
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Fig. 6.5 Graphs for the word 'markazu'

a) the speech spectrogram, b) the speech signal

c) the V-Uy-S contour,	 d) the ES contour, e) the SV contour



160

are taken as genuine peaks by using phonological constraints. The latter case, and the

problem of missing peaks, are handled by a special procedure which corrects the

segmentation error, as will be explained in the next chapter.

A seif-normalised transition threshold SYth is calculated from the function sv(n) of each

word. The SVth has been chosen as equal to the mean value of the sv(n) function along a

word. It has been noticed from the observation of many SV contours for many words,

that, a constant threshold may be used for most of the words. This is because of the use

of mel-frequency cepstral parameters, which are considered as normalised parameters

and less sensitive to the voice level. However, the mean value of sv(n) over a word is

adopted as a transitional threshold. The use of this threshold has led almost to correct

results for all the test words in the speech database. It is believed that there are some

relations between the value of the transitional threshold SVth on one hand, and the mean

value of sv(n) along the sv contour, the maximum value, and the duration information

(such as the speaking rate and the length of the relevant phonemes) on the other hand.

Figure 6.6 shows graphs for the word '8amaanija', where a) shows the speech

spectrogram, b) the speech signal, c) the V-UV-S contour, d) the ES contour, and e) the

SY contour. The SV contour displays 7 prominent peaks (their values are above SVth),

which implies that it has 6 segments. These peaks are located at the following frame

numbers along the word:

peak	 P1 P2 P3 P4 P5 P6 P7

frame	 37	 50 65 103 112 138 154

These peaks indicate the phoneme boundaries. The. segments associated with the

phonemes of this word are given as follows:

segment 1 P1 - P2 for the phoneme 	 /a/

segment 2 P2- P3 for the phoneme 	 /m/

segment 3 P3 - P4 for the phoneme 	 laW

segment 4 P4- P5 for the phoneme	 ml
segment 5 P5 - P6 for the phonemes /1/ - /j/

segment 6 P6- P7 for the phoneme 	 /
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Fig. 6.6 Graphs for the word 'Bamaanija'
a) the speech spectrogram, b) the speech signal

c) the V-UV-S contour,	 d) the ES contour, e) the SV contour
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This word comprises 8 phonemes, four vowels and four consonants. The first phoneme

/0/is unvoiced, while the rest are all voiced. It can be seen from the above information

that two peaks are missing along the SV contour. The first peak should be at the

beginning of the word and the second peak should be between P5 and P6 to indicate the

border between the phonemes hi and lit.

The first missing peak at the beginning of the word should be at frame 28 to mark the

boundary between the silence and the phoneme /0/. This peak did not occur because /0/is

a weak unvoiced fricative and was hardly detected through the weak fricative detection

algorithm of Section 5.2.4. Thus, this peak has been recovered from the V-UV-S contour

which determines the word's endpoints.

By looking at the spectrogram in Figure 6.6a, it can be seen that there is no major spectral

transition or discontinuity between the vowel /it and the semivowel /j/, since both of them

have almost the same formant structure (of course in the steady-state region). For this

reason, the SV function was not able to detect any transition between these two

phonemes. However, this problem can be solved by comparing the estimated duration of

the vowel Ill (which results from the vowel detection procedure) with the length of

segment 5 (in the range P5-P6) which contains this vowel. As a result of this

comparison, it can be assumed that a voiced consonant with the same spectral structure as

the previous vowel should be present after the vowel within the boundaries P5-P6. This

case and others are dealt with later, in Chapter 7.

In Figure 6.6e, the peak P4 at frame 103 would be smoothed out if the sv(n) calculation

window (2L+1) was larger than 5 frames. Sometimes such peaks might be removed

because of the smoothing process which is applied to the energy and MFCC parameters.

Smoothing is very important to obtain a clean SV contour, but it may cause some errors,

because it removes some weak transitional peaks along the SV contour.

Figure 6.7 shows graphs for the word ' . afatia', where a) shows the speech signal, b) the

V-TJV-S contour, c) the ES contour, and d) the SV contour. This word contains three

vowels (three ha!) and three unvoiced consonants (J/, /f!, Iti!). It can be seen from figures

6.5e, 6.6e, and 6.7d that these SV contours show prominent peaks at the transition

between voiced and unvoiced phonemes. This type of transition always leads to

prominent peaks along the SV contours, as can be seen clearly from the

spectrograms of the consonant-vowel pairs given in Chapter 3 and Appendix B.
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a) the speech signal, b) the V-UV-S contour
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Figure 6.8 shows graphs for the word 'jataaffa1iu', where a) shows the speech signal,

b) the V-UV-S contour, c) the ES contour, and d) the SV contour. In Figure 6.8d, all the

peaks between frames 120-155 are spurious peaks and they are discarded because their

sv(n) values are below the SVth of this word. These peaks occur along the geminated

consonant If!, which is regarded as one sub-word unit, according to the SV contour, with

a duration of 40 frames. This latter problem is resolved during the segmentation process

where the duration is consulted to decide whether a certain consonant is single or

geminated. This is explained later, in Chapter 7.

Figure 6.9 shows graphs for the word 'walbutiuu8i', where a) shows the speech signal,

b) the V-UV-S contour, c) the ES contour, and d) the SV contour. In Figure 6.9d, all the

spurious peaks which occur between the peak pairs P2-P3, P6-P7, and P8-P9 are

ignored because they all have sv(n) values below the SVth for this word. Unfortunately,

the peak at frame 40 which is associated with the transition between the phonemes Ia! and

/1/ is also discarded for the same reason. Nevertheless, the boundary between ía! and 11/

is predicted later on in the error correction process described in Chapter 7, by employing

durational information from the ES and SV contours.

Figure 6.10 shows graphs for the word 'maktabatan', where a) shows the speech signal,

b) the V-UV-S contour, c) the ES contour, and d) the SV contour. The SY contour of

this word shows some spurious peaks before frame number 20 and after frame number

212. Those peaks are neglected because they are in the silence regions outside the word

boundaries according to the V-UV-S contour. As a result, all peaks outside the word

endpoints are neglected regardless of their sv(n) values. It should be mentioned here that

the above-mentioned peaks in Figure 6. lOd all have sv(n) values below the SYth of their

word.

Figure 6.11 shows graphs for the word 'jahsub', where a) shows the speech signal, b)

the Y-UV-S contour, c) the ES contour, and d) the SV contour. The SV contour displays

peak (P4) at frame number 62 which is related to the transition between the two unvoiced

phonemes fbi and Is!. Thus, the SV contour shows 7 segments associated with the six

phonemes in this word, where the last two segments are associated with the plosive

phoneme to!.
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Fig. 6.11 Graphs for the word 'jalisub'

a) the speech signal, b) the V-UV-S contour
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Figure 6.12 shows graphs for the word 'laakinna', where a) shows the speech signal, b)

the V-UV-S contour, c) the ES contour, and d) the SV contour. This word contains a

geminated voiced consonant in!. The SV contour of this word does not show any peak

along the duration of this consonant. This problem is also resolved by employing

durational information in the error correction process described in the next chapter.

6.5 Summary

The concept of the spectral variation function is introduced in this chapter. This function

is computed by using the mel-frequency cepstral parameters. The extraction of these

parameters from the speech signal is also demonstrated. Six mel-frequency cepstral

parameters are used in the computation of the spectral variation function along each word.

It has been shown that the spectral variation contour of a certain word displays peaks

corresponding to the transitional regions between adjacent sub-word units in that word.

These units are mainly single phonemes, but they may comprise more than one phoneme.

The peak points of the SV contour of a certain word determine the boundaries of the

segments contained in that word. Thus, the SV contour provides a tool for an automatic

segmentation algorithm. In this algorithm the segments of a certain word are determined

regardless of their content or identity.

The SV contour may sometimes fail to locate the boundaries between adjacent phonemes

due to:

- non-existence of a clear or prominent transition in the spectrum

- the duration of a phoneme being too small for the computation of the sv(n)

function and performing the smoothing process.

The problems of missing boundaries and/or the presence of extra peaks which refer to

false boundaries, are tackled in the segmentation and error correction procedure presented

in Chapter 7, where durational information and phonological constraints are employed.
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Chapter 7

Segmentation and Error Correction

7.1 Introduction

Segmenting and labelling the speech signal in terms of broad phonetic classes (for

consonants) according to the classification scheme number 7 (see Section 4.3.1), are

described in this chapter. In this scheme, the consonants are classified into four

categories, namely:

- Voiced plosive 'VP'

- Unvoiced plosive 'UP'

- Unvoiced fricative IJF'

- Voiced consonant 'YC'

The vowels are also classified into six vowels (three short and three long), and they are

labelled according to their phonetic symbol as follows:

'aa' , 'uu' , and 'ii'

This leads to a set of 10 different labels. Thus, each word is to be described by a string of

labels selected from this set.

Up to this stage, the following steps are achieved:

- V-UV-S segmentation

- Vowel recognition

- Vowel representative frame (VRF)

- Vowel estimated duration (VED)

- Vowel identity (vowel label)

- The SY contour which gives the boundaries between adjacent sub-word units

(mainly phonemes)
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It can be seen that most of the information which is necessary to proceed with the

segmentation and labelling processes is available.

Before carrying on with the labelling process, plosive detection is performed by using

both the result of the V-IJV-S segmentation and the pitch detection algorithm. In this

respect, the silence and unvoiced segments associated with plosive phonemes are detected

and given special codes to be used later on in the labelling process.

The initial segmentation results are passed through a special error correcting procedure in

order to finalise these results. In this procedure, durational information in addition to

some phonological constraints are used to reach an acceptable or legitimate syllabic

structure as explained in the coming sections.

7.2 Plosive Detection

As shown in Chapter 3, the spectrogram of the voiced plosive phoneme (or voiced stop)

is characterised by a voice bar along the base line followed by a sudden burst noise. An

unvoiced plosive phoneme is characterised by a silence gap followed by a sudden burst

noise (see Figure 3.4). In the V-UV-S segmentation procedure (see Section 5.2), the

speech signal is highpass-filtered to 300 Hz which is above the limit of the voice bar

associated with voiced plosive sounds. All plosive sounds are then shown on the

V-UV-S contour by a silence segment followed generally by a short unvoiced segment.

This latter segment represents the burst noise associated with plosive sounds.

The first step in the plosive detection algorithm is to analyse the region immediately

following each silence segment on the V-UV-S contour, to determine the presence and

location of a burst. Then, an initial decision is made, based on duration, as to whether an

unvoiced segment following the silence is a fricative, or simply the burst (or aspiration)

following the silence gap. The next step is to determine whether the silence gap belongs

to a voiced or an unvoiced plosive. This is achieved by checking the presence of voicing

at a low frequency using the results of the pitch detection algorithm.

a) Burst Detection

Burst detection is accomplished by analysing the energy of a few frames near the end

of the silence segment. The speech signal is first pre-emphasised (see Eq. (5.9)) by
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a first-order filter, then the energy is computed for non-overlapping frames of 64

samples each (the overlapping is avoided in order not to obliterate the burst). Then, the

second derivative of the energy function is calculated and called Eb. The values of Eb for

the first and the second unvoiced frames following the silence are checked. If either of

them exceeds a certain burst threshold Bth, the location of the relevant frame is selected

as the burst pointer. Bth is chosen empirically equal to 500. If the unvoiced segment

following the silence exceeds 12 frames or 76 msec (16 frames for silence segment at

word-final position), the segment is considered as a fricative segment. The entire

sequence of silence and burst represents plosive sound.

Burst detection is carried out on all unvoiced segments following silence segments

including the silence at word-initial position, where a word may start with a plosive

phoneme. Sometimes the silence segment related to a plosive phoneme is not followed by

an unvoiced segment related to the plosive's burst. This is actually the case of an

unreleased burst (not pronounced) which occurs especially at word-final position. This

will not create a problem for plosive detection when a plosive occurs at word-medial

position, unlike the cases at word-initial or word-final positions. Such words which have

a plosive at word-final position can be represented by two entries in the lexicon (i.e.,

with and without the final plosive phoneme).

b) Voiced Plosive Detection

Silence segments along a word are tested to determine the presence of voicing at low

frequencies below 300 Hz. The presence of voicing is determined by checking two

already available measures, namely the energy E in the range 60-4800 Hz (see Eq. (5.2)

in Section 5.2.3), and the value of the pitch peak PPK which is measured in the pitch

detection algorithm (see Section 5.2.2). Any silence frames.whose E values exceed twice

the energy of the background noise, and whose PPK exceed 0.45, are relabelled as

voiced frames. If the number of frames (within a silence segment) satisfying this

condition exceeds a certain threshold VPth, the whole silence segment is then considered

as voiced segment. VPth is chosen equal to:

- 4 frames in the case of having a silence segment surrounded by two voiced

segments (i.e., plosive phoneme surrounded by two vowels).

- 6 frames in the case of having a segment (or plosive phoneme) at word-initial

or word-medial position.
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- 10 frames in the case of having a silence segment at word-final position (where

the burst of the plosive phoneme might be unreleased).

c) Results

In the V-UV-S segmentation process, silence, unvoiced, and voiced segments are given

the codes '3', '2', and '1' respectively. The silence and unvoiced segments associated

with plosive sounds are recoded as follows:

- '4' for silence segment associated with unvoiced plosive phoneme.

- '5' for silence segment associated with voiced plosive phoneme.

- '6' for unvoiced segment related to the burst associated with plosive phoneme.

Finally, any short unvoiced segment (less than 5 frames) at word-initial position (at the

beginning of a word) followed by a voiced segment is eliminated if it does not pass the

burst test. This segment is relabelled as a voiced segment and added to the following

voiced segment. Such segments might have been generated by breathing noise.

7.3 Segmentation and Labelling

Figure 7.1 shows a block diagram of the processes involved in the segmentation and

labelling procedure.

- SV contour
- V-UV-S contour
- Vowel information

Endpoints adjustment

Labeling

a string of labels

Fig. 7.1 Segmentation and labelling procedure



label

S
UI'

V

S

Uv

V

S

code

3

2

1

3

2

1

3

between frames

1 - 22

23 - 58

59 - 108

109 - 126

127 - 131

132 - 155

156 - 168

updated code

3

2

1

4 silence segment of unvoiced plosive

6 burst noise of unvoiced plosive

1

3

175

The first block in this diagram contains all the initial processes necessary for the

segmentation. The results of these processes are supplied to the labelling algorithm.

These results contain the VRFs, VEDs, vowel identities, the boundaries between

sub-word units, and the updated version of the V-UV-S segmentation results which

include any available plosive information.

Before labeffing, the endpoints of the SV contour and the V-UV-S contour of each word

are aligned to each other. Then, the labeffing process is carried out according to the

chosen classification scheme. The initial labelling results are checked to verify their

correctness by using durational and phonological information as explained in Section 7.4.

7.3.1 Endpoint Adjustment

In this stage, a special process is performed to align between the beginning and the end of

both the V-UV-S contour and the SV contour. Figure 7.2 displays graphs for the word

'saaça', where a) shows the speech signal, b) the V-UV-S contour, c) the ES contour,

and d) the SV contour. The SV contour of this word shows five peaks at the following

frame numbers:

P1 P2 P3 P4 P5

15	 58	 111 131 150

and the V-IJV-S contour gives the following segments:

According to the V-UV-S contour this word begins at frame 23, while the SV contour

shows a peak at frame 15. The reason for this mismatch between the edges of the two

contours is due to the presence of an unvoiced fricative is! at the word-initial position.
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Sometimes, it is difficult to detect the exact beginning point of a word if it begins with a

weak fricative. The same problem arises at the end of this word, where the SV contour

shows a peak at frame 150, while the last silence segment starts at frame 156. This latter

case occurs due to the breathing noise which is present at the end of this word.

Nevertheless, general rules are applied to each word to determine the exact endpoints of

that word. Two cases are distinguished as illustrated in Figure 7.3. In this figure both

the cases (a) and (b) have A frames (A = IX(IB) - X(P1)I) between the first peak of the

SY contour and the beginning point (TB) at the V-UV-S contour. When A is less than or

equal to 4 frames, the beginning point of a word is taken at P1 for the case (a) and at

(IB) for the case (b). When A is more than 4 frames, the beginning point is taken at (TB)

on the V-UV-S contour for the case (a) and a new peak is added before the first peak on

the SV contour, while for the case (b) the first peak on the SV contour (P1) is shifted to

a new position which coincides with the point (TB) on the V-UV-S contour. The same

rules are applied at the end of a word.

V-UV-S contour

SV contour

(a)
	

(b)

Fig. 7.3 Endpoint adjustment

For the word 'saaka', the beginning point is taken at frame 23, and the end point at

frame 150, (see Figure 7.2). Figures 6.6 and 6.7 in Chapter 6 display similar cases,

where the starting point of each word is taken at the edge of the first silence segment,

and a new peak is created at this point on the SV contour.
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In general, differences (As) between the peak points of the SV contour and their

counterparts the transitional points on the V-UV-S contour (i.e., the boundaries of the

segments on the V-UV-S contour) may occur due to the following reasons:

- smoothing both the energy outputs of the filter bank and the mel-frequency

cepstral parameters

- inaccuracy in the V-UV-S decision or due to some error which might occur as a

result of the non-linear smoothing applied to the V-UV-S contour

- the inherent limitation of the defined SV function and its computation over a

window of 2L+1 frames

However, differences up to 3 frames are tolerated where L is taken equal to 2 frames and

the smoothing is carried out mainly over 3 frames.

7.3.2 Labelling

The labelling process is explained by the demonstration of several examples. A special

table is created for each word and called the segmentation result table. This table contains

the previously obtained results from the vowel recognition procedure, the V-UV-S

segmentation procedure, the plosive detection process, and the segments of the SV

contour. The results of the labelling process are also added to this table.

Table 7.1 shows the segmentation results of the word 'saajça'. The results are given

graphically in Figure 7.2. This table has 5 main columns. The first one contains the

serial number of the segments along the SV contour, while the second main column

contains the boundaries (i.e., the peak points of the SV contour given by their frame

numbers) and the length of those segments (given by the number of frames between the

two peaks of each segment). The third main column has four sub-columns which

contains the results of the vowel recognition procedure. The first sub-column (which is

called Cdl) displays the code '1' if a VRF lies within the boundaries of that segment,

and such segment is called a vowel segment. The other three sub-columns display the

location of the vowel representative frame, the vowel estimated duration (in frames), and

the vowel identity if the current segment is a vowel segment. It is assumed that each

segment along the SV contour may associate with one or two segments along the

V-UV-S contour, therefore the fourth main column contains two sub-columns (which

are called Cd2 and Cd3) to indicate the V-UV-S decision. The fifth main column
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displays the labelling result based on the information given in the preceding three main

columns.

(1)	 (2)	 (3)	 (4)	 (5)

segment

	

	 updated
vowels

seg.	 boundaries	 v-uv-s	 label

no. begin end length Cdl VRF VED ID Cd2 Cd3

1	 23	 57	 35	 0	 -	 -	 -	 2	 2	 UF

2	 58	 110	 43	 1	 81	 44	 /aaJ	 1	 1	 aa

3	 111	 130	 20	 0	 -	 -	 -	 4	 6	 UP

4	 131	 150	 20	 1	 141	 12	 /aJ	 1	 1	 a

Table 7.1	 Segmentation results for the word 'saaica'

In Table 7.1, the peak points of the SV contour of Figure 7.2d and the duration (in

frames) between two successive peaks are filled in the second main column. The third

column is filled with the vowel representative frames which are detected from the ES

contour of Figure 7.2c, the estimated duration of each vowel, and the vowel identities.

The fourth column is filled with codes which are taken from the V-UV-S contour of

Figure 7.2b along with the results of the plosive detection process.

The first segment in Table 7.1 is given the code '2' in both Cd2 and Cd3 columns (the

fourth main column) meaning that this segment is completely an unvoiced segment,

where the segment's boundaries on the SV contour match its boundaries on the V-UV-S

contour. As we said earlier any differences (A) between the location of the peak points

on the SV contour and their counterparts the transitional points (between two segments)

along the V-UV-S contour, of less than or equal to 4 frames are tolerated. Thus, This

segment is assigned the label 'UF.

The second segment in this table is given the code '1' for both Cd2 and Cd3 columns

(voiced segment) and considered as a vowel segment (column Cdl shows the code '1'

for this segment), because the vowel representative frame lies between its boundaries,

and is almost at the centre of this segment (at frame 81). Thus, this segment is assigned
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the label 'aa' which is equivalent to the vowel identity given in column (ID) by the vowel

recognition procedure.

The third segment in the table is given the code '4' in the Cd2 column and the code '6' in

the Cd3 column. This means that the silence in the first part is related to the gap

associated with the unvoiced plosive phoneme /ç/, while the unvoiced segment in the

second part is related to the burst noise associated with the plosive phoneme /1.çf. Thus,

this segment is assigned the label 'UP'. The SV contour of this word (Figure 7.2d) did

not display any peaks between the silence and unvoiced segments associated with the

plosive phoneme 1k!.

The fourth segment in the table is given the code '1' in both Cc12 and Cd3 columns and

the Cdl column has the code '1' (i.e., vowel segment). Thus, this segment is assigned

the label Ia! which is equivalent to the vowel identity given in column (11)) by the vowel

recognition procedure.

As a result, the word 'sa4ça' is described by the following string of labels:

UF-aa-UP-a	 its syllabic pattern	 /CVV-CVI

This syllabic pattern contains a legitimate syllabic structure according to the phonological

rules given in Section 3.7.2. Nevertheless, the above string of labels is considered as an

initial result. The final string of labels describing a certain word results after passing the

initial results through a special correction procedure as will be explained in Section 7.4.

Another example is the segmentation results of the word 'malaaliba'. Table 7.2 illustrates

the segmentation results of this word, and these results are given graphically in Figure

7.4. In the same way as in the previous example, Table 7.2 is filled with the peak points

of the SV contour of Figure 7.4d, the results of the vowel recognition procedure

(extracted from the ES contour of Figure 7.4c), and the updated V-UV-S segmentation

results (which include the results of the plosive detection). Actually, filling the results in

the fourth main column in the segmentation result table is the most difficult and critical

process of the segmentation and labelling procedure. In this case, errors might occur due

to the misalingment between the SV contour's peaks and their counterparts, the

transitional points on the V-UV-S contour. This can occur especially at the transition

between an unvoiced segment related to a plosive phoneme and the following voiced
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segment related to a vowel or other voiced phoneme. This can be resolved by tolerating

this kind of jitter. Column 5 of Table 7.2 gives the following string of labels for the

word 'malaaliba':

VC-a-UP-aa-VC-i-VP-a	 its syllabic pattern	 /CV-CVV-CV-CVI

and the resultant syllabic pattern is legitimate according to the rules given in Section

3.7.2.

segment	
vowels	

updated

seg.	 boundaries	 V-UV-S	 label

no. begin end length Cdl VRF VED ID Cd2 Cd3

1	 15	 33	 19	 0	 -	 -	 -	 1	 1	 VC

2	 34	 49	 16	 1	 41	 13	 /aJ	 1	 1	 a

3	 50	 66	 17	 0	 -	 -	 -	 4	 6	 UP

4	 67	 100 34	 1	 83	 29	 /aW	 1	 1	 an

5	 101	 108	 8	 0	 -	 -	 -	 1	 1	 YC

6	 109	 121	 13	 1	 117	 13	 N	 1	 1	 i

7	 122 136	 15	 0	 -	 -	 -	 5	 5	 VP

8	 137	 162	 26	 1	 145	 14	 Ia!	 1	 1	 a

Table 7.2 Segmentation results for the word 'ma.taaliba'

The initial labelling algorithm is based on the codes given in the third and fourth main

columns of the segmentation result table of a certain word. Figure 7.5 illustrates a flow

chart of the labelling algorithm. In this algorithm, the codes Cdl, Cd2, Cd3, and the

vowel identity of each segment in the segmentation result table are tested to determine the

label of that segment. So, if Cdl is greater than zero, this means that the current segment

is a vowel segment and it is labelled according to the vowel identity given in column

(ID) in the result table. But if Cdl is equal to zero, then both codes Cd2 and Cd3 are

checked. If both codes are '1' the segment is assigned the label 'VC' (voiced consonant),

while if both codes are '2' the segment is assigned the label 'UF (unvoiced fricative).

When Cd2 is '4' the segment is tagged as 'UP' (unvoiced plosive phoneme), or if it is
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Fig. 7.5 Flow chart of the labelling algorithm

'5' the segment is tagged as 'VP' (voiced plosive). When Cd2 is neither '4' nor '5' then

Cd3 is checked: if it is '6' the segment is labelled as burst segment 'BU' otherwise the

algorithm shows a state of error. The last case occurs when the SV contour displays a

peak between the silence and the unvoiced segments associated with a plosive phoneme.

The previous two examples have shown almost perfect segmentation and labelling

results. This is not always the case, since some errors may occur due to the following

reasons:
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- the presence of a geminated consonant, and the SV contour shows one segment

for this consonant

- missing a glottal phoneme at word-initial position.

- the SV contour shows two segments for a plosive phoneme

- missing voiced consonant segments

- the SV contour displays two segments relating to one vowel

The following paragraphs demonstrate such types of errors that arise during the

segmentation procedure, and highlight some parameters which are useful for correcting

these errors.

The first example is the segmentation of the word "laddiraasaati'. Table 7.3 shows the

segmentation results for this word, and these results are given graphically in Figure 7.6.

Table 7.3 shows that this word has 9 segments according to the SV contour of Figure

7.6d. This contour displays a peak at frame 191 related to the transition between silence

and unvoiced parts of the unvoiced plosive phoneme it!, and hence this phoneme is

represented by two segments in the result table. These two segments are combined

together into one segment, as will be explained, in the plosive correction algorithm

(Section 7.4.2).

segment

	

	 updated
vowels

seg.	 boundaries	 V-UV-S	 label

no. begin end length Cdl VRF VED ID Cd2 Cd3

1	 13	 25	 13	 1	 19	 8	 /aJ	 1	 1	 a

2	 26	 60	 35	 0	 -	 -	 -	 5	 6	 VP

3	 61	 78	 18	 1	 72	 16	 /1/	 1	 1	 i

4	 79	 117	 39	 1	 95	 32	 faa!	 1	 1	 an

5	 118 137	 20	 0	 -	 -	 -	 2	 2	 UF

6	 138 179	 42	 1	 156 29	 /aaJ	 1	 1	 an

7	 180 191	 12	 0	 -	 -	 -	 4	 4	 UP

8	 192 200	 9	 0	 -	 -	 -	 6	 6	 BU

9	 201 225	 25	 1	 210 20	 N	 1	 1	 i

Table 7.3 segmentation results for the word "Iaddiraasaati'
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However, this word is described by the following string of labels (after removing the

burst segment):

a-VP-i-aa-UF-aa-UP-i 	 its syllabic pattern	 [V-CV-VV-CVV-CV/

The actual phonetic description of this word is as follows:

UP-a-VP-VP-i-VC-aa-UF-aa-UP-i its syllabic pattern /CVC-CV-CVV-CVV-CV/

By comparing the actual string of labels with the result of the labeffing process we notice

that 3 labels are missing. Those labels and their related phonemes are as follows:

- 'UP' related to unvoiced plosive or glottal phoneme I?! which is the leading

consonant of the first syllable.

- 'VP' related to the voiced plosive phoneme Id!, which is the trailing consonant

of the first syllable.

- 'VC' related to the voiced consonant In, which is the leading consonant of the

third syllable.

These results arise because the SV contour of Figure 7.6d failed to display peaks (or

transitions) related to the above missing three segments.

Actually, those missing labels (or segments) can be recovered by the correction procedure

which uses durational information given in the result table. The segmentation errors of

the word '?addiraasaati' are described in the following paragraphs. Also some

parameters which are useful in the correction procedure are highlighted.

The duration or the length (in frames) of each segment is given in the column 'length' of

the result table. By looking at the duration of the consonantal segments (i.e., non-vowel

segments) in Table 7.3, we notice the following. The second segment which is labelled

as 'VP' has a duration of 35 frames (224 msec), while segments 7 and 8 which are

labelled as 'UP' & 'BU' both have a duration of less than 20 frames. Also, none of the

other consonants in this word has a duration of more than 20 frames. This leads to the

assumption that the 'VP' consonant is a geminated consonant (see Section 3.7.3). Thus,

the second segment is split into two segments each of which has the same 'VP' label, and

the modified string of labels becomes as follows:
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a-VP-VP-i-aa-UF-aa-UP-i
	

its syllabic pattern	 /VC-CV-VV-CVV-CV/

The first phoneme of this word is the glottal phoneme i'll. This phoneme is described as

an unvoiced plosive phoneme. The phoneme occurs mainly in word-initial position, and

often it is not stressed during pronunciation. Thus, the burst relating to plosive phonemes

often does not occur at the beginning of the V-UV-S contour of such words that start

with a glottal phoneme. As explained in Section 3.7.1, any syllable in the Arabic

language must start with a single consonant, therefore whenever we have a string of

labels for a certain word which starts with a vowel, an unvoiced plosive label should be

added before the first vowel label. For the word under discussion, Figure 7.6a shows a

very short burst segment at the beginning of this word, but the V-UV-S detection

algorithm failed to detect this burst. Thus, an unvoiced plosive label 'UP' is added before

the first vowel. The string of labels describing this word becomes:

UP-a-VP-VP-i-aa-UF-aa-UP-i	 its syllabic pattern	 /CVC-CV-VV-CVV-CV/

It can be seen that the third syllable of this word has no initial consonant, and this results

in an unacceptable syllabic structure. This has lead to the idea of correcting this structure

by adding a voiced consonant label 'VC' between the two vowel lu and laW. Then, the

string of labels of this word becomes:

UP-a-VP- VP-i-VC-aa-UF-aa-UP-i its syllabic pattern /CVC-CV-CVV-CVV-CV/

It can be seen from the SV contour of Figure 7.6d that the bell shape at frame 79 is wider

(more flat) than other shapes at other peaks, because this shape combines the two peaks,

one at frame 79 and the other at frame 72. This latter peak has been smeared out by the

smoothing processes which are applied to the system's parameters. Note that the

consonant In has a very short duration in this word, as is usually the case when it occurs

in intervocalic location.

In the above example, it is shown that three correction processes should be can-led out on

the original segmentation results in order to reach the fmal acceptable (legitimate) syllabic

structure. Thus, so far three correction processes must be designed, namely geminated

consonant correction, plosive correction and correction according to the syllabic pattern.

Another necessary correction process is demonstrated in the following example.
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Table 7.4 shows the segmentation results for the word 'jafcaluuna', and these results are

given graphically in Figure 7.7. According to this table, this word has eight segments, so

the labelling algorithm gives a string of eight labels as follows:

VC-a-UF-a-VC-uu-VC-a	 its syllabic pattern	 ICV-CV-CVV-CV/

segment	
vowels	

updated

seg.	 boundaries	 V-UV-S	 label

no. begin end length Cdl VRF VEE) It) Cd2 Cd3

1	 18	 32	 15	 0	 -	 -	 -	 1	 1	 VC

2	 33	 44	 12	 1	 36	 11	 /a!	 1	 1	 a

3	 45	 71	 17	 0	 -	 -	 -	 2	 2	 UF

4	 72	 100	 29	 1	 93	 16	 Ia!	 1	 1	 a

5	 101	 112	 12	 0	 -	 -	 -	 1	 1	 VC

6	 113	 153	 41	 1	 127	 43	 /uu/	 1	 1	 uu

7	 154 160	 7	 0	 -	 -	 -	 1	 1	 VC

8	 161	 182	 22	 1	 170	 15	 Ia!	 1	 1	 a

Table 7.4 Segmentation results for the word 'jafealuuna'

The resultant syllabic pattern appears to be a legitimate structure, but this does not mean

that the segmentation result is correct, (where the actual syllabic pattern is

/CVC-CV-CVV-CV/). From Table 7.4, we notice that the lengths of all the consonantal

segments are within the normal limit (i.e., less than 20 frames in this word). For the

vowel segments, we can write the following information:

vowel	 Ia!	 Ia!	 /uuJ	 IaJ

length	 12	 29	 41	 22

\'ED	 11	 16	 43	 15

\TED - length	 -1	 -13	 2	 -7

The last line above displays the difference between the defmed vowel estimated duration

from the ES contour (see Section 5.3.la) and the segment length according to the SV
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contour. This difference is equal to -1, -13, 2, and -7 frames for the first, the second, the

third, and the fourth vowel in this word, respectively. The difference of -13 frames

related to the second vowel is actually below a certain limit (e.g.,-7 frames). This leads to

the assumption that the fourth segment contains a vowel and a voiced consonant. It can

be clearly seen from Figure 7.7c and 7.7d, that the VRF (on the ES contour) of the

second vowel lies in the right half of the fourth segment (on the SV contour). This leads

to the conclusion that the assumed (missing) voiced consonant should precede this

vowel. Then, the string of labels describing this word becomes:

VC-a-UF-VC-a-VC-uu-VC-a 	 its syllabic pattern 	 /CVC-CV-CVV-CV/

The difference (VED-length) for the third vowel is 2 frames, which means that the VED

is longer than the related segment by just 2 frames. If this difference was above a certain

limit (e.g., 5 frames for long vowel), the preceding (or the following, according to a

certain rule) voiced consonant segment 'VC' would have to be added to the vowel

segment. If we assume that this was the case for the long vowel /uu/ in the word

'jafcaluuna', this would have led to the syllabic pattern /CVC-CV-VV-CV/. The latter

pattern is an illegitimate syllabic structure and could be corrected by adding a voiced

consonant before the third vowel in this structure. Such a state is demonstrated in the

following example.

Table 7.5 illustrates the segmentation results for the word 'tamsaliiina'. These results are

given graphically in Figure 7.8.

According to this table, this word has 10 segments and is therefore described by a string

of ten labels by the labeffing algorithm as follows:

UP-a-VC-UF-a-UF-VC-ii-VC-a	 its syllabic pattern	 /CVC-CVC-CVV-CV/

The resultant syllabic pattern has an acceptable structure, but this does not mean that the

segmentation result is correct, (where the actual syllabic pattern is /CVC-CV-C\'V-CV/).

It can be seen from Table 7.5 that the difference (VED-length = 45-35) for the third

vowel hi! in this word is equal to 10 frames. This difference is above the allowed

limit. This leads to the assumption that an extra peak (at frame 128) has been spotted on

the SV contour along the vowel segment and has led to a false segment (the seventh

segment in Table 7.5).
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segment	
vowels	

updated

seg.	 boundaries	 V-UV-S	 label

no. begin end length Cdl VRF VEJ) ID Cd2 Cd3

	

1	 1	 19	 19	 0	 -	 -	 -	 4	 6	 UP

	

2	 20	 33	 14	 1	 27	 10	 Ia!	 1	 1	 a

	

3	 34	 62	 29	 0	 -	 -	 -	 1	 1	 VC

	

4	 63	 85	 23	 0	 -	 -	 -	 2	 2	 UF

	

5	 86	 101	 16	 1	 93	 10	 Ia!	 1	 1	 a

	

6	 102 115	 14	 0	 -	 -	 -	 2	 2	 UF

	

7	 116	 127	 12	 0	 -	 -	 -	 1	 1	 VC

	

8	 128	 162	 35	 1	 138	 45	 lu!	 1	 1	 ii

	

9	 163	 170	 8	 0	 -	 -	 -	 1	 1	 VC

10	 171	 195	 25	 1	 180	 15	 Ia!	 1	 1	 a

Table 7.5	 Segmentation results for the word 'tamsahiina'

According to a certain rule which is explained in the correction algorithms (Section

7.4.3), the voiced consonant preceding the vowel till has to be added to the vowel

segment to yield the following string of labels:

UP-a-VC-UF-a-UF-ii-VC-a	 its syllabic pattern	 IC VC-CV-CVV-C VI

Now this word has only 9 segments, where segments 7 and 8 are combined together

under the label 'ii', with a new length equal to 47 frames (12^35). The difference

(VED-length) for this new vowel segment is now equal to -2 frames.

Another case of error is shown in the following example. Table 7.6 illustrates the

segmentation results for the word 'araba'. These results are given graphically in Figure

7.9. This tables indicates that this word has four segments, and its string of labels is as

follows:

VP-a-VP-a	 its syllabic pattern	 /CV-CV/
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Fig. 7.9 Graphs for the word 'araba'
a) the speech signal, b) the V-UV-S contour

c) the ES contour, d) the SV contour
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segment

	

	 updated
vowels

seg.	 boundaries	 V-IJV-S	 label

no. begin end length Cdl VRF VED ID Cd2 Cd3

1	 11	 38	 28	 0	 -	 -	 -	 5	 6	 VP

2	 39	 92	 54	 2	 59, 81 21, 22 /a/,/a/	 1	 1	 a

3	 93	 109	 17	 0	 -	 -	 -	 5	 5	 VP

4	 110	 137	 28	 1	 120	 16	 Ia,!	 1	 1	 a

Table 7.6 Segmentation results for the word 'araba'

This pattern shows a legitimate syllabic structure, but this does not mean that the

segmentation results are correct, (where the actual syllabic pattern is IC V-C V-C V/). It can

be seen that the SV contour of this word (Figure 7.9d) displays a weak peak at frame 65,

but this peak was discarded because its value is below the SVth (threshold of the SV

contour) of this word. The ES contour of Figure 7.9c displays three peaks, and the

vowel recognition procedure has given three vowels. According to the segmentation

result table, both VRFs of the first and the second vowel (frames 59 and 81) lie within

the boundaries of the second segment of this word. Therefore, Cdl of the second

segment in the result table (which refers to the presence of vowels) has been given the

code '2' (during the labeffing process), which refers to the presence of two vowels

within this segment. The vowel representative frames and their estimated duration are

also given in the neighbouring columns (this has been implemented by creating a second

dimension in the result table or array).

However, the above mentioned case is dealt with in the vowel correction algorithm,

where the second segment in Table 7.6 which contains two vowels is replaced by two

vowel segments. Thus, the resultant string of labels for this word becomes:

VP-a-a-VP-a	 it syllabic pattern	 ICV-V-C Vt

This pattern is illegitimate, and can be corrected by adding a voiced consonant between

the first two vowels to yield the correct pattern:

VP-a-VC-a-VP-a	 it syllabic pattern	 ICV-CV-CV/
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7.4 Error Correction Procedure

In the previous section, the types of errors which may occur during the segmentation and

labelling process have been demonstrated. The aim of the error correction procedure is to

overcome such errors which are caused by the limitation of the implemented algorithms

(i.e., their impact on the initial segmentation results). The final segmentation results are

expected to be an accurate estimation of the phonetic description of the speech signal at

the input of the recognition system.

Figure 7.10 illustrates a block diagram of the implemented error correction procedure.

The initial segmentation result table is provided at the input of the error correction

procedure.

initial segmentation results

Detection of Geminated Consonants

Plosive and Glottal Correction

Vowel Correction

Syllabic Pattern Correction

the final string of labels

Fig. 7.10 A block diagram of the correction procedure
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The first step in this procedure is to check the duration or length of each consonantal

segment in the result table and to decide whether it belongs to a single or a germinated

consonant. The second step, plosive correction, is carried out to overcome the case of

having a plosive phoneme represented by separate silence and unvoiced (or burst)

segments. Also, the presence of a glottal phoneme I?! at word-initial position is checked.

The third step is to check the length of the vowel segments to decide whether each such

segment comprises a vowel, a vowel and a voiced consonant, or part of a vowel, and to

perform the necessary correction. The last step in the correction procedure is to check the

syllabic pattern of a word and to adjust it to become a legitimate structure according to the

phonological rules given in Section 3.7.2. The final string of labels is used for lexical

access to locate the word (or the set of words) which shares the same labelling with the

input word. The correction algorithms of Figure 7.10 are described in the following

sections.

7.4.1 Detection of Geminated Consonants

In the implemented labelling scheme, consonants are given four labels, i.e., unvoiced

plosive, voiced plosive, unvoiced fricative and voiced consonant. As explained in Section

3.7.3, geminated consonants occur only in word-medial positions, which means that the

first and last consonant of any word must be a single consonant. Thus, a geminated

consonant represents the leading consonant of the current syllable and the trailing

consonant of the previous syllable. For example, the word "yassaan' has two syllables

ICVC-CVVC/, where the bold consonants refer to the geminated consonant/s/.

Figure 7.11 shows a flow chart of the geminated consonant detection and correction

algorithm. This algorithm uses an array which contains the segmentation result table of

the word under test, where the table contains N lines related to N segments. The

algorithm checks the length and the label of each segment, (the chart of Figure 7.11

checks the geminated unvoiced fricative). If the segment length of certain consonants

(i.e., 'UF, 'VC','UP', or 'VP') is above a certain threshold (LENth) the consonant is

considered as a geminated consonant. In this case, a new segment is created following

the geminated consonant segment, and this new segment has the same label as the

previous segment. The length of the geminated segment is divided between the original

and the new segment.
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array contains the segmentation result

table of a word which has N segments

S(1), S(2),. .. S(N)

1=1

for segment I

if its label is 'UF'
and

> LENthits length

Y
1=1

N

I:=I+l
create a new segment having the same label
- for K = N down to I

shift the prameters of the	 ______
segment K to the segment k+1	 /	 \ N
or [S(K+1) := S(K)] 	 I = N

-N=:N+1	 _____
-lastframeofS(I):=thecentralframeofthe 	 IY

original segment	 _______
- first frame of S(I+1) := the last frame of SW	 C end

plus one frame

I:=I+2

'fry

end

Fig. 7.11 Flow chart of geminated consonant detection and correction
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For example, the segmentation results of the word 'yassaan' are given in Table 7.7,and

these results are given graphically in Figure 7.12.

segment

	

	 updated
vowels

seg.	 boundanes	 V-UV-S	 label

no. begin end length Cdl VRF VED ID Cd2 Cd3

1	 14	 23	 10	 0	 -	 -	 -	 1	 1	 VC

2	 24	 34	 11	 1	 32	 8	 /aJ	 1	 1	 a

3	 35	 78	 44	 0	 -	 -	 -	 2	 2	 UF

4	 79	 128	 50	 1	 98	 42	 /aa/	 1	 1	 aa

5	 129	 143	 15	 0	 -	 -	 -	 I	 I	 VC

Table 7.7 The initial segmentation results for the word 'yassaan'

segment

	

	 updated
vowels

seg.	 boundaries	 v-uv-s	 label

no begin end length Cdl VRF VED ID Cd2 Cd3

1	 14	 23	 10	 0	 -	 -	 -	 1	 1	 VC

2	 24	 34	 11	 1	 32	 9	 /a!	 1	 1	 a

3	 35	 56	 22	 0	 -	 -	 -	 2	 2	 UF

4	 57	 78	 22	 0	 -	 -	 -	 2	 2	 UF

5	 79	 128	 50	 1	 98	 44	 /aW	 1	 1	 aa

6	 129	 143	 15	 0	 -	 -	 -	 1	 1	 VC

Table 7.8 The modified segmentation results for the word "ssaan'

The above algorithm is repeated three times to detect the presence of geminated voiced

consonants, geminated unvoiced fricative consonants, and geminated plosive consonants

in the word. In checking the geminated unvoiced fricative in the word 'yassaan' the third

segment passes this test where its length is 44 frames, which is longer than the threshold

LENth for unvoiced fricative consonants. Then the correction is made, and the modified

results are given in Table 7.8.
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Fig. 7.12 Graphs for the word 'ssaan'
a) the speech signal, b) the V-UV-S contour

c) the ES contour, d) the SY contour
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This correction algorithm is run three times, and each time is supplied with a different

consonant label and the length threshold LENth for such label. LENth is taken equal to

30 frames (192 msec) for both 'VC' and 'UF, while it is taken equal to 20 frames (128

msec) for the plosive consonants (both 'VP' and 'UP'). Examples of other tminated

consonants are given in Figures 6.8, 6.12, and 7.6. Figure 6.8 (in Chapter 6) shows

graphs for the word 'jatasaffahu' which contains the geminated unvoiced fricative If!.

Figure 6.12 shows graphs for the word 'laakinna' which contains the geminated

consonant In!. Figure 7.6 shows graphs for the word '?addiraasaati' which contains the

geminated voiced plosive consonant Id!. The initial segmentation results of this word are

given in Table 7.3.

7.4.2 Plosive and Glottal Correction

In general, the SV contour does not display a peak at the boundaries between the silence

and unvoiced (burst) segments associated with the plosive phonemes. However, when

such a peak occurs, both segments are combined together in one segment which

maintains the label of the silence segment (i.e., either 'VP' or 'Up'). An example of such

a case is given by the SV contour of the word '?addiraasaati' in Figure 7.4d, where it

shows a peak between the silence and burst segments associated with the phoneme /t!.

Table 7.3 shows that this peak is located at frame 192.

The glottal phoneme is categorised under the unvoiced plosive class (see Section 3.5.1).

Many Arabic words start with the glottal phoneme. Normally, it is very difficult to detect

the presence of this phoneme using a simple method. This phoneme is treated as an

unvoiced plosive phoneme, where the V-UV-S contour of a certain word which starts

with the glottal phoneme, may show a burst segment at the beginning, as in the word

'?akaama' given in Figure 7.13. Sometimes, the V-TJV-S contour of such word shows

no burst segment as in the word '?afal' given in Figure 7.14. In the latter case, the

presence of the glottal phoneme has to be estimated from the forrnant structures at the

beginning of such a word.

However, a simple rule is applied in our system, that whenever a word starts with a

vowel segment, a glottal or unvoiced plosive phoneme should be added before that

vowel. This rule (or the whole plosive correction process) is applied after vowel

correction, because the first vowel segment in a certain word might comprise a voiced

consonant followed by a vowel.
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Fig. 7.13 Graphs for the word '?aaama'
a) the speech signal, b) the V-ISV-S contour

c) the ES contour, d) the SV contour
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Fig. 7.14 Graphs for the word '?afa1'
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7.4.3 Vowel Correction

In the vowel correction procedure a comparison is made between the vowel estimated

durations (VEDs) which are estimated from the ES contour and the length of the related

vowel segment measured on the SV contour. Despite the title of this section, this

algorithm handles only the following cases:

- VED of a certain vowel is longer than the length of its related segment on the SV

contour (or VED> vowel segment length).

- VED of a certain vowel is shorter than the length of its related segment on the

SV contour (VED <vowel segment length).

- Two vowel representative frames (VRFs) lie within the boundaries of one

segment on the SV contour.

Other cases such as missing vowels are tackled in the syllabic pattern correction algorithm

which is explained in the following sections.

Figure 7.15 illustrates the cases of errors which is tackled in this section. Figures 7.15a

and 7.15b show the the case of having a VED longer than the vowel segment length.

Figures 7.15c and 7.15d show the case of having a VED shorter than the vowel segment.

Figure 7. 15e shows the case where two vowel representative frames lie within the

boundaries of the same vowel segment.

The vowel correction algorithm which deals with the first two cases is given in Figure

7.16. In this algorithm, the difference A between the vowel estimated duration (VED) of

a certain vowel and the related vowel segment length (VSL) on the SV contour (which

includes that vowel), is tested. When A is greater than a certain threshold (Uth) or it is

less than another threshold (Lth), the vowel segment length is modified as explained in

the following paragraphs.

When A is greater than Uth, we distinguish two cases. In the first case, the VED of the

vowel under test extends over the vowel segment (which contains the VRF) and the

following segment. This is shown in Figure 7.15a, where the vowel segment is bounded

by P1 and P2 on the SV contour (the VRF lies between P1 and P2), and the VED

[X(E)-X(B)] is longer than the duration [X(P2)-X(Pl)} and expands over the next

segment which is determined between P2 and P3. In the second case, the VED of the
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vowel under test extends over the vowel segment (which contains the VRF) and the

preceding segment. This is shown in Figure 7.15b, where the vowel segment is

bounded by P1 and P2 (the \'RF lies between P1 and P2), and VED [X(E) -X(B)] is

longer than the duration [X(P2) - X(P1)J and extends over the preceding segment

between P-i and P1. Thus, the boundaries of the vowel segment are modified by

appending the following voiced segment in the first case, or the preceding voiced

segment in the second case (see the algorithm in Figure 7.16).

When t\ is less than Lth, we also distinguish two cases. In the first case, the vowel

segment contains the vowel and the following voiced segment. This is shown in Figure

7.l5c, where the VRF lies in the left half of the vowel segment, and VED [X(E)-X(B)]

is shorter than the duration [X(P2)-X(P1)]. In the second case, the vowel segment

contains the vowel and the preceding voiced segment. This is shown in Figure 7.15d,

where the VRF lies in the right half of the vowel segment, and VED [X(E)-X(B)] is

shorter than the duration [X(P2)-X(P1)]. Thus, the boundaries of the vowel segment are

modified by creating a new voiced segment which follows the vowel in the first case, or

precedes the vowel in the second case (see the algorithm in Figure 7.16).

The case of having two vowels within one vowel segment on the SV contour (see Figure

7.15e), is tackled either by replacing this segment by two vowels, where the missing

consonant between vowels is added during the syllabic pattern correction, or by replacing

this segment by three segments, i.e., vowel, voiced consonant, and vowel. In the latter

solution, the boundaries between the three segments are given as follows:

- the first vowel segment is taken between frames X(Pl) and X(E1).

- the second vowel segment is taken between frames X(B2) and X(P2).

- the voiced consonant segment is taken between frames X(E1)+1 and X(B2)-1.

The values of the thresholds Lth and Uth are empirically chosen as follows:

- Uth is taken equal to 2 for short vowels, and equal to 5 for long vowels.

- Lth is taken equal -14 for vowels at word-final position, and equal to -7

elsewhere.

Finally, the segmentation result table is updated after each modification.



206

for a certain vowel segment

X(Pl), X(P2), VED, VRF

X(B) = X(VRF) - (VED/2)

X(E) = X(VRE) - (VED/2)

VSL X(P2) - X(P1)

A =VED-VSL

N
A>

dl X(B) - X(P1)

d2 = X(E) - X(P2)

N
d2> dl

Y

the following N

segment is 'V

Y
end

append the following

segment to the current

vowel segment

the preceding N

'V

append the preceding

segment to the current

vowel segment

(A <Lth)-L

dl = X(VRF) - X(P1)
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(d2>d

1Y

- create new segment witi

the label VC' between

[X(E)^2, X(P2)]

- modify the length of the

vowel segment to

[X(Pl) , X(E)+1]

end

- create new segment will

the label 'VC' between

[X(P1), X(B)-2]

- modify the length of the

vowel segment to

[X(B)-1 , X(P2) I

update the segmentaiion result table
	

update the segmentation result table

end
	

end

Fig. 7.16 Vowel correction algorithm
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Figure 7.7d (the SV contour of the word 'jafcaluuna') shows an example of VED shorter

than the vowel segment length. The SY contour does not display a peak between the

consonant 1W and the following vowel Ia!. Thus, a voiced consonant is to be added before

the vowel within the boundaries of the vowel segment (P4 , P5). Table 7.4 illustrates the

initial segmentation results for this word. The length of the fourth segment (vowel

segment 'a') in this table is 29 frames, while the \'ED of the vowel which lies within this

segment is 13 frames. Therefore, a voiced consonant is to be created before the vowel,

because the \TRF (frame 93) lies in the left half of the vowel segment. The original vowel

segment is replaced by the following two segments:

- 'VC' between frames 72-82

- 'a' between frames 83-100

Figure 7.8d (the SV contour of the word 'tamsaliiina') shows an example of a VED

longer than the vowel segment length. The SV contour has an extra peak along the vowel

/ii/ and this has led to dividing the vowel into a voiced segment and a vowel segment.

This voiced segment is then appended to the vowel segment. Table 7.5 illustrates the

initial segmentation results for this word. The difference between the length of the eighth

segment (vowel segment) in this table and the related vowel is 10 frames which is greater

than Uth. Thus, the vowel segment should extend over the range 116-161 according to

the VRF and the VED. The preceding voiced segment (the seventh segment in the table)

is simply added to the vowel segment.

Table 7.9 shows the segmentation results for the word 'tamsatiaani', and these results are

given graphically in Figure 7.17. The seventh segment in this table is a vowel segment.

The difference between the VED of the vowel which lies within this segment and its

length is -14 frames, which is less than Lth. Thus, the vowel segment is split into two

segments, a vowel segment followed by a voiced consonant segment. The vowel

segment extends over the range 117-163 according to its VRF and VED, and the voiced

consonant segment extends over the range 164-176 as illustrated in the modified result

table (Table 7.10). Actually, the SV contour of this word (Figure 7. 17d) shows a

smoothed peak at frame 166 which is very near to the estimated boundaries of the new

segment.
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segment	 vowels	 updated
seg.	 boundaries	 V-UV-S	 label
no. begin end length Cdl VRF VED ID CL2 Cd3

1	 1	 20	 20	 0	 -	 -	 -	 4	 6	 UP
2	 21	 34	 14	 1	 29	 11	 Ia!	 1	 1	 a
3	 35	 62	 28	 0	 -	 -	 -	 1	 1	 VC
4	 63	 84	 22	 0	 -	 -	 -	 2	 2	 UF
5	 85	 99	 15	 1	 90	 10	 /a!	 1	 1	 a
6	 100 116	 17	 0	 -	 -	 -	 2	 2	 UF
7	 117	 175	 59	 1	 139	 45	 /aa/	 1	 1	 aa
8	 176	 194	 19	 1	 180	 11	 N	 1	 1	 i

Table 7.9 The initial segmentation results for the word 'tamsatiaani'

segment	 vowels	
updated

seg.	 boundaries	 V-UV-S	 label

no. begin end length Cdl VRF VEI) ID Cd2 Cd3
1	 1	 20	 20	 0	 -	 -	 -	 4	 6	 UP
2	 21	 34	 14	 1	 29	 11	 Ia!	 1	 1	 a
3	 35	 62	 28	 0	 -	 -	 -	 1	 1	 VC
4	 63	 84	 22	 0	 -	 -	 -	 2	 2	 UF

5	 85	 99	 15	 1	 90	 10	 /a!	 1	 1	 a
6	 100 116	 17	 0	 -	 -	 -	 2	 2	 UF

7	 117	 163	 47	 1	 139	 45	 /aa/	 1	 1	 aa

8	 164	 176	 13	 0	 -	 -	 -	 1	 1	 VC
9	 176	 194	 19	 1	 180	 11	 N	 1	 1	 i

Table 7.10 The modified segmentation results for the word 'tamsahaarii'
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7.4.4 Syllabic Pattern Correction

Up to this stage, the following corrections have been performed on the initial

segmentation results:

- geminated consonant correction

- plosive correction

- vowel correction

The segmentation result table is updated after each correction process. We still have to

tackle two more problems, which are the case of missing consonants and the case of

having extra consonants even after vowel correction. The question which arises here, is

how to decide that one of these problems is present. This is done by employing some

phonological constraints (see Section 3.7.2).

The Arabic language uses five syllabic types (i.e., CV, CVV, CVC, CVVC, and CVCC)

as explained in Section 3.7.1. Some of the phonological constraints (related to syllabic

structures) are summarised as follows, (see Section 3.7.2):

- any syllable must have only one leading consonant

- the syllabic type /CVCC/ occurs only at word-final position

- the maximum allowable number of consonants in any consonant cluster in any

word is two consonants

- the syllabic type /CVVCI, which has a long vowel, occurs mainly at word- final

position, and it may occur at word-initial or word-medial position if its leading

consonant is geminated

Thus, the syllabic structure or pattern of each word is checked to verify that it is not

violating the above mentioned constraints or conditions. The following patterns show the

likely error cases:

a) a pattern starts with two consonants /CCV...../

b) a pattern contains a cluster of three consonants /CVC-CCV...../

c) a pattern of the form /....CVVC-CV.....I

d) a pattern ends with three consonants /...CVCCC/

e) a pattern of the form I.. ..CVVCCI

1) a pattern of the form /....CV-VV..... I
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If any of the above errors occur in a certain syllabic pattern, it is considered as illegitimate

pattern according to the above mentioned constraints.

a) The First Case

In this case, the syllabic pattern has two consonants in the leading consonant cluster of

the first syllable. For example, assume that the segmentation and labelling process for a

certain word has led to the following string of labels:

VC-VC-a-UF-aa-VC	 its syllabic pattern	 ICCV-CVYC/

This pattern is illegitimate and the first two voiced consonants must be combined together

to form one segment. In this example these two consonants have the same labels (i.e.,

'YC' and 'VC'). But if these consonants have different labels (e.g., 'UF and 'VC'), the

label belonging to the longer segment is maintained over the new segment. This latter

case may occur when a word starts with a fricative consonant such as /3/. This consonant

is of a mixed excitation nature, therefore it could be voiced, unvoiced or mixed according

to its position along a word. Table 7.11 illustrates the segmentation results for the word

/3anuub/ (after applying plosive correction), and Figure 7.18 shows these results

graphically. The V-UV-S contour (Figure 7.18b) shows two voiced and unvoiced

segments related to the first consonant /3/, and their lengths are given in the result table.

Also the SV contour of this word (Figure 7.18d) shows two segments related to this

consonant. The resultant syllabic pattern is /CCV-CVVC/ which is illegitimate. The result

table shows that the unvoiced segment of this consonant is longer than the voiced

segment. Thus, both the segments are combined together in one new segment, which is

labelled as 'UF. It is preferable to maintain an indication that such a case has occurred

which may be useful in the verification stage of the speech recognition system (see Figure

4.4).

b) The Second Case

In this case, a cluster of three consonants occurs at word-medial position 1.. .VCCCV...!.

Then, the two segments which have the same label are combined together in one

segment. For example, Table 7.12 illustrates the segmentation results for the word

'xamsa', where theses results are given graphically in Figure 7.19.
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segment	
vowels	

updated

seg.	 boundaries	 V-UV-S	 label

no. begin end length Cdl \'RF VEI) ID Cd2 Cd3

1	 15	 24	 10	 0	 -	 -	 -	 1	 1	 VC

2	 25	 39	 15	 0	 -	 -	 -	 2	 2	 UF

3	 40	 53	 14	 1	 47	 11	 LW	 1	 1	 a

4	 54	 66	 13	 0	 -	 -	 -	 1	 1	 VC

5	 67	 116	 50	 1	 89	 49	 /uu/	 1	 1	 uu

6	 117	 162	 46	 0	 -	 -	 -	 4	 6	 Vp

Table 7.11 The segmentation results for the word '3anuub'

segment

	

	 updated
vowels

seg.	 boundaries	 v-uv-s	 label

no. begin end length Cdl VRF VED ID Cd2 Cd3

1	 16	 27	 12	 0	 -	 -	 -	 2	 2	 UF

2	 28	 37	 10	 0	 -	 -	 -	 2	 2	 UP

3	 38	 52	 15	 1	 45	 12	 /a!	 1	 1	 a

4	 53	 79	 27	 0	 -	 -	 -	 1	 1	 VC

5	 80	 88	 9	 0	 -	 -	 -	 2	 2	 UF

6	 89	 102	 14	 0	 -	 -	 -	 2	 2	 UF

7	 103	 127	 25	 1	 113	 15	 LW	 1	 1	 a

Table 7.12 The initial segmentation results for the word 'xamsa'

The SY contour of this word (Figure 7.19d) shows two segments for the first phoneme

lxi and also for the fourth phoneme Is! in this word. This is shown in Table 7.12 as well,

where the first and the second 'UF' segments belong to the first phoneme lxi, while the

fifth and the sixth 'UF segments belong to the phoneme Is!.
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The resultant syllabic pattern is /CCVC-CCV/ which is an illegitimate pattern. This

pattern can be corrected by combining the first and the second segment of Table 7.12

into one new segment which is labelled as 'UF, and combining the fifth and the sixth

segments together into one segment which is labelled as 'UF. The final string of labels

is:

UF-a-VC-UF-a	 its syllabic pattern	 /CVC-C Vt

c) The Third Case

In this case, the syllable /CVVC/ occurs at word-initial or word-medial positions and its

trailing consonant is not geminated, i.e., the pattern /CVVC-CV...../ is not a legitimate

pattern unless the two bold consonants are related to one geminated consonant, if they are

not geminated, they are combined into one consonant which is the leading consonant of

the second syllable. This case has not been encountered in our speech database.

d) The Fourth Case

In this case, the syllabic pattern of a certain word has three consonants in the trailing

consonant cluster of the last syllable, such as /. ...CVCCC/. In this respect, the three

consonants are combined together if they share the same label to yield the pattern

/...CVC/. But if they are not the same, the two similar consonants are combined together

and the other one is left as it is, therefore the resultant pattern is /...CVCC/. The latter

case has not been encountered in our speech database.

e) The Fifth Case

In this case (as in the pattern 1.... CV-VV. ../), the leading consonant of the second

syllable is missing. This consonant may have not been recovered by the vowel correction

algorithm due to its very short length. In this case, a voiced consonant should be created

before the second vowel to yield the pattern I... . CV-CVV. ../.

I) The Sixth Case

In this case (as in the pattern /...CVVCC/), the last syllable has a long vowel, therefore

the syllable is not allowed to have more than one trailing consonant. In this respect, three

cases are distinguished:
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- both consonants are unvoiced fricative, then they are grouped together under

one 'VC' label

- both consonants are voiced consonants and their combined length is less than

30 frames, then they are grouped together under one 'VC' label

- both consonants are voiced consonants and their combined length is more than

30 frames. Then, the second consonant is relabelled as a vowel, and its identity

can be found by calling the vowel identification procedure (the VRF is taken at

the centre of that segment)

For example, the word 'jusaawii' has three vowels. The vowel detection procedure failed

to detect the third vowel /ii/ (see Section 5.2.3), as illustrated in Figure 5.13 (in Chapter

5). This is demonstrated in the segmentation result table (Table 7.13) of this word. In this

table, the last segment which is supposed to be the last vowel segment has been labelled

as a voiced consonant segment 'VC', where the code Cdl is '0' for this segment. The

resultant syllabic pattern of this word is /CV-CVVCC/, which is an illegitimate pattern.

Both consonants at the end of this word are voiced consonants, and their combined

length is 69 frames. According to the above conditions, the second consonants is

relabelled as a vowel, where its identity (the vowel li!) is found by passing frame

number 147 to the vowel identification procedure. The length of this vowel segment is 53

frames, therefore the vowel is labelled as the long vowel 'ii'. Thus, the resultant string of

labels is

VC-u-UF-aa-VC-ü	 its syllabic pattern	 /CY-CVV-CVV/

segment	
vowels	

updated

seg.	 boundaries	 V-UV-S	 label

no. begin end length Cdl VRF YE!) ID Cd2 Cd3

1	 10	 27	 18	 0	 -	 -	 -	 1	 1	 VC

2	 28	 41	 14	 1	 33	 14	 1W	 1	 1	 u

3	 42	 62	 21	 0	 -	 -	 -	 2	 2	 UF

4	 63	 104	 42	 1	 85	 39	 /a/	 1	 1	 aa

5	 105	 120	 16	 0	 -	 -	 -	 1	 1	 YC

6	 121	 173	 53	 0	 -	 -	 -	 1	 1	 VC

Table 7.13 The initial segmentation results for the word 'jusaawii'
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Actually, the case of having missing vowels is very difficult to tackle. Sometimes the

missing vowel can not be recovered, and the correction procedure may lead to modified

phonetic descriptions of certain words. For example, the segmentation results of the

word "larbaca' are given in Table 7.14, and these results are given graphically in Figure

7.20.

segment	
vowels	

updated

seg.	 boundaries	 v-uv-s	 label

no. begin end length Cdl VRF VED ID Cd2 Cd3

1	 9	 24	 16	 1	 17	 12	 /aJ	 1	 1	 a

2	 •25	 36	 12	 0	 -	 -	 -	 1	 1	 VC

3	 37	 49	 13	 0	 -	 -	 -	 5	 5	 VP

4	 50	 99	 50	 1	 61	 18	 /a!	 1	 1	 a

Table 7.14 The initial segmentation results for the word '?arbasa'

____ -	 segment	
vowels	

updated

seg.	 boundanes	 V-UV-S	 label

no. begin end length Cdl VRF VED ID Cd2 Cd3

1	 1	 8	 7	 0	 -	 -	 -	 4	 4	 UP

2	 9	 24	 16	 1	 17	 12	 Ia!	 1	 1	 a

3	 25	 36	 12	 0	 -	 -	 -	 1	 1	 VC

4	 37	 49	 13	 0	 -	 -	 -	 5	 5	 VP

5	 50	 70	 21	 1	 61	 18	 /31	 1	 1	 a

6	 71	 99	 29	 0	 -	 -	 -	 1	 1	 VC

Table 7.15 The modified segmentation results for the word '7arbaea'

The initial syllabic pattern is /VC-CV/. Then during the correction procedure, an unvoiced

plosive label is added before the first vowel by the plosive correction algorithm, and the

vowel correction algorithm divides the last vowel into vowel and voiced consonant as
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illustrated in the modified results given in Table 7.15. From this table, the resultant

syllabic pattern is /CVC-CVC/. As we notice, the vowel and the consonant of the last

syllable in the word '?arbaEa' (i.e., /eaf have been combined into one voiced consonant

segment, and the correction procedure has failed to recover the missing vowel. Note that

the SV contour of this word (Figure 7.20d) displays a low peak at frame 84, which is

neglected because its value falls below the SVth of this word. If this peak is detected as a

valid peak, the resultant syllabic pattern would be /CVC-CVC/, and after vowel

correction it would become /CVC-CVCC/. Nevertheless, the case of a missing vowel at

word-fmal position still requires more study.

Another example is the word 'sabea'. The segmentation results of this word are shown in

Table 7.16, and these results are shown graphically in Figure 7.21. Table 7.17 illustrates

the modified results after vowel correction. In this case, the last vowel segment in Table

7.16 is divided into a vowel segment and a voiced consonant segment as shown in Table

7.17. Then, the resultant syllabic structure is /CV-CVC/, while the actual syllabic

structure of this word is /CVC-CV/. This difference occurs because of the consonant id

whose energy is relatively higher than the following vowel IaJ. It can be noticed that both

words "Iarbaea', and 'sabea' have the voiced consonant Id! as the leading consonant of

the last syllable. The presence of this consonant leads to syllabic patterns which are

different from the actual patterns of both words. Such cases (i.e., the presence of the

consonant leT), and other similar cases, can be taken into consideration in the lexicon,

where a different phonetic description of such words could be used.

segment	
vowels	

updated

seg.	 boundaries	 v-uv-s	 label

no. begin end length Cdl VRF VED ID Cd2 Cd3

1	 19	 44	 26	 0	 -	 -	 -	 2	 2	 UF

2	 45	 61	 17	 1	 57	 11	 Ia!	 1	 1	 a

3	 62	 76	 15	 0	 -	 -	 -	 5	 6	 VP

4	 77	 129	 53	 1	 89	 17	 /d	 1	 1	 a

Table 7.16 The initial segmentation results for the word 'sabea'
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segment

	

	 updated
vowels

seg.	 boundaries	 v-u-v-s	 label
no.

begin end length Cdl VRF VED II) Cd2 Cd3

1	 19	 44	 25	 0	 -	 -	 -	 2	 2	 UF

2	 45	 61	 17	 1	 57	 11	 Ia!	 1	 1	 a

3	 62	 76	 15	 0	 -	 -	 -	 5	 6	 VP

4	 77	 94	 18	 1	 89	 17	 Ia!	 1	 1	 a

5	 95	 129	 35	 0	 -	 -	 -	 1	 1	 VC

Table 7.17 The modified segmentation results for the word 'sabea'

7.5 Results and Discussion

The segmentation and error correction algorithms have been applied to a set of 570

words. These words comprise the repetition of the basic one hundred words uttered by 5

speakers (4 males, and 1 female) as described in Section 5.2.3. The basic set of 100

words contains monosyllabic and polysyllabic words (see Appendix A).

Table 7.18 illustrates the syllabic structures which are found in this set. The first column

displays the number of syllables in each pattern. The second column shows the syllabic

structures. The third column gives the number of words sharing the same syllabic

structure. The fourth column gives the number of different morphological balances under

each syllabic structure, while column five shows the number of different patterns or

strings of labels according to the implemented classification scheme (scheme number 7,

see Section 4.3.1). It can be seen from this table, that the basic set of 100 words

contains 4 monosyllabic words, 39 disyllabic words, 41 trisyllabic words, 13

quadrisyllabic words, and three five-syllabic words. The table shows also that this set

has 30 different syllabic structures, 50 different morphological balances, and 96 different

strings of labels or patterns according to the used classification scheme. These 30

different syllabic structures are about 42% of those structures (72 structures) found in the

10,000 words lexical database (see Section 4.3.2).

The error rate made by each speaker is given in Table 7.19, where the average error

rate for the 570 test words is about 5%. These errors are mainly originated by the vowel
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number	 number number number

	

of	 syllabic structure	 of	 of	 of
syllables	 words balances patterns

1	 CVV	 2	 2	 2

1	 CYC	 1	 1	 1

1	 CVCC	 1	 1	 1

	

2	 CV-CV	 1	 1	 1

	

2	 CV-CVV	 2	 2	 2

	

2	 CV-CVC	 1	 1	 1

	

2	 cv-cvvc	 8	 4	 7

	

2	 CVV-CV	 5	 1	 4

	

2	 CVV-CVC	 4	 1	 4
	2	 cvc-cv	 4	 2	 4
	2	 CVC-CVV	 2	 1	 2

	

2	 CVC-CVC	 8	 2	 8

	

2	 CVC-CVVC	 4	 3	 4

	

3	 CV-CV-CV	 18	 1	 16

	

3	 CV-CVV-CV	 6	 3	 6

	

3	 CV-CVV-CVV	 1	 1	 1

	

3	 CVV-CVV-CVV	 1	 1	 1

	

3	 CVV-CVC-CV	 1	 1	 1

	

3	 CVC-CV-CV	 10	 5	 10

	

3	 CVC-CV-CVV	 2	 2	 2

	

3	 CVC-CVV-CV	 2	 1	 2

	

4	 CV-CVV-CV-CV	 2	 2	 2

	

4	 CV-CVV-CV-CVV	 1	 1	 1

	

4	 CVV-CV-CV-CVV	 1	 1	 1

	

4	 CVC-CV-CVV-CV	 7	 4	 7
	4	 CVC-Cv-CV-Cvc	 1	 1	 1

	

4	 CVC-CV-CV-CV	 1	 1	 1

	

5	 Cv-cv-cvC-cv-Cv	 1	 1	 1

	

5	 CVC-CVC-CV-CV-CV	 1	 1	 1

	

5	 CVC-Cv-CVV-CVV-CV	 1	 1	 1

Table 7.18	 syllabic patterns for the test set
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detection procedure. As it has been shown in Section 5.3, the vowel detection procedure

leads to two types of errors.

speaker
	

MZ	 YM
	

Hr	 MB
	

HK

no. of words
	

200	 200
	

100	 50
	

20

error rate
	

3%	 7%
	

5%	 6%
	

5%

Table 7.19
	

Error rates

The first type is the presence of weak peaks along the ES contour related to some weak

vowels. For example, for the words '?addiraasaati' and 'zaa'lid' uttered by speaker YM,

the peaks related to the vowel hi in the syllables /di/ and [lid! have been ignored because

they were very weak and their values fell below the thresholds (ESth for each word) of

the vowel detection algorithm. Such cases have not been seen in the realisation of the

same words by other speakers.

The second type of error is the case of having a missing vowel peak and/or having a

vowel peak within the boundaries of the preceding voiced consonant segment. These two

cases are clearly shown in the previous section for the word "larbaca' (Figure 7.18) and

for the word 'sabea' (Figure 7.19). The ES contour of the first word (see Figure 7.18c)

shows no peak related to the third vowel, because of the voiced consonant tel. So, the

resultant string of labels for this word is /UP-a-VC-VP-a-VC/ where the actual string of

labels is IUP-a-VC-VP-a-VC-a/. In the second word 'sabea', the ES contour (Figure

7.19c) shows a peak within the boundaries of the voiced consonant segment let. Thus,

the segmentation result is the following string of labels IUF-a-VP-a-VC/ where the actual

string of labels is IIJF-a-VP-VC-aJ. These two cases, besides similar cases, must be

taken into consideration by altering the phonetic description of these words in the lexicon.

Another source of errors is the different realisation of consonants, especially at

word-final position. For example, the words 'waahid' and 'zaa'lid' are terminated by the

voiced plosive phoneme Id!. Such phoneme at word-final position is in free variation,

i.e., voiced or unvoiced, released or unreleased (pronounced or not pronounced). The

phoneme tdi at word-final position is mostly unreleased. Another example is the word
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ifr', where the phoneme In is mostly unvoiced when it occurs in word-final position.

Such cases can be dealt with when building the lexicon by having multiple entries in the

lexicon for the same word.

As a result, the accuracy of the segmentation and labelling procedure depends heavily on

the accuracy of the vowel detection procedure.

The result of the segmentation process for each word is a string of labels, which is used

later on for lexical access to retrieve the word or the set of words sharing the same

phonetic description. Also, the syllabic structure and the morphological balance of the

test-word is determined at the end of the segmentation and labelling procedure. These

results are very useful in speech understanding systems.

Finally, the set of 100 words used to test the system has 96 different patterns according

to the implemented classification scheme (scheme number 7, see Section 4.3.1). The

statistical results given in Section 4.3.2 have shown that 53.65% of the 10,000 words in

the lexical database, are uniquely represented by this scheme, where the maximum

number of words sharing the same string of labels is 17. Thus, these results show that

even with this relatively simple classification scheme the number of words to be handled

in the detailed verifier stage of the the proposed recognition system (see Section 4.5), is

relatively small.

7.6 Summary

The segmentation and error correction procedures have been demonstrated in this chapter.

The results of the voiced-unvoiced-silence segmentation procedure (given in Chapter 5),

have been modified in this chapter to account for the presence of both voiced and

unvoiced plosive phonemes.

The results of the modified voiced-unvoiced-silence segmentation procedure, the vowel

recognition procedure, and the spectral variation function of each word (given in Chapter

6), have been employed in the labelling and error correction processes. The error

correction procedure has employed durational information (prosodic feature) in addition

to some phonological constraints of the Arabic language. The accuracy of segmentation

results according to the relatively simple classification scheme is about 95%. This

accuracy can be improved by improving the accuracy of the vowel detection procedure.
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Chapter 8

Conclusions
and

Suggestions for Further Work

8.1 Introduction

This chapter provides an overview of the work as a whole and refers to the most

important results. Also, it highlights those points which require further research.

In this thesis, an acoustic-phonetic approach to large-vocabulary Arabic word speech

recognition has been demonstrated. In this approach a broad phonetic classification

technique is used instead of detailed phonetic analysis to overcome the variabilities in the

acoustic realisation of utterances. The broad phonetic description of a word is used as a

means of lexical access, where the lexicon is structured into sets of words sharing the

same broad phonetic labelling. The phonetic structure of the chosen set of words selects

and schedules the context-dependent procedures which are most appropriate for

performing detailed verification analyses in order to determine the most likely spoken one

among the word candidates. Our aim is to try as much as possible to identify all words

uniquely by broad phonetic representation without detailed acoustic analysis.

The work in this thesis can be divided into two main parts. The first part investigates the

efficiency of the broad phonetic classification technique, and the effectiveness of different

classification schemes on the number of words sharing the same phonetic labelling using

a lexicon of 10,000 words[Chapter 4]. The second part concerns the implementation of a

speech recognition system based on the proposed broad phonetic segmentation technique

[Chapters 5,6 and 7]. Novel procedures have been developed in different parts of the

speech recognition system. The performance of the implemented procedures has been

evaluated by using 570 words which comprise the repetition of 100 Arabic words uttered

by several speakers.
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8.2 Phonetic Classification Schemes

Ten different phonetic classification schemes have been investigated using two lexicons.

The first lexicon comprises the most frequent 3000 words in the Arabic language, and the

second lexicon contains the first lexicon plus some of the derivatives of its words and

other randomly chosen words. In each classification scheme, different sets of broad

phonetic classes are employed. The ten classification schemes are divided into two similar

groups . In one group, the six vowels (used in the Arabic language) are classified into

one class, while in the other group the vowels are classified according to their phonemic

forms. The 29 consonants (used in the Arabic language) in the two classification groups

are classffied into one, four, five, seven, or eleven classes. Thus, the broad phonetic

description varies from a very rough one (only 2 classes, i.e., vowel and consonant) to

one close to the phonemic form (17 classes).

The statistical results show that about 38% of the tested 10,000 words can be uniquely

represented by using 8 broad phonetic classes (i.e., 7 classes for consonants and one

class for vowels). In this case, the maximum set-size (i.e., the maximum number of

words sharing the same labelling) in the lexicon was 28 words. When detailed vowel

classification (according to their phonemic forms) is introduced yielding a total of 13

phonetic classes, the percentage of uniquely represented words rises to 83%. In this case,

the maximum set-size was 6 words [Chapter 4]. An 88% of the words are uniquely

represented when using 17 phonetic labels (6 for vowels and 11 for consonants), where

the maximum set-size was 5 words. These results suggest that a fully detailed phonetic

analysis of the speech signal is perhaps unnecessary.

The statistical studies also show the following results. The six vowels represent about

43% of the total number of phonemes, while the 29 consonants represent 57%. The

vowels /aJ and laW represent about 60% of the total number of vowels. With regards to

the syllabic types used in the language, the results show that the syllable

/consonant-vowel/ represents about 67% of the total number of syllables in the 10,000

words lexicon. This mean, that the probability of having a consonant cluster comprising

more than one consonant is about 0.33.

The statistical studies which are reported in this thesis regarding the discrimination of

words in a large vocabulary lexicon according to different broad phonetic classification

schemes are the first and only studies applied to the Arabic language so far.
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8.3 The Word Recognition Model

In the adopted word recognition model [Chapter 4], the speech signal of a word is

segmented according to one of the proposed phonetic classification schemes. In the

implemented scheme, consonants are classified into four broad phonetic classes, i.e.,

voiced plosive, unvoiced plosive, unvoiced fricative, and other voiced consonants. The

vowels are described by their phonemic form, i.e., 'a', 'aa', 'u', 'uu', 'i', and 'ii'.

An unknown word at the input of the recognition system is described by a string of broad

phonetic labels. This has been achieved by five main procedures which are:

- Voiced-unvoiced-silence (V-UV-S) segmentation.

- Vowel detection and identification.

- Spectral transition detection.

- Initial segmentation and labelling.

- Segmentation error correction.

The V-UV-S segmentation procedure gives almost perfect results due to the

post-processing (editing) performed on the initial results. In the post-processing,

spurious segments are removed by a non-linear smoothing process.

In the vowel detection process, two concepts have been introduced, i.e., the vowel

estimated duration and the vowel representative frame. Also, a heuristic method has been

developed to distinguish between short and long vowels. The accuracy of the detection

process is about 99%. Unfortunately, this 1% error rate leads to a higher percentage of

errors at the end of the segmentation process. Thus, the accuracy of the vowel detection

algorithm is very important. This 1% error is caused by the failure of the detection

algorithm to detect those vowels which have relatively less total energy than some

adjacent voiced consonants. However, further 'research is required to develop a special

algorithm to detect such vowels. This algorithm may use the energy in selected frequency

bands or other parameters.

The vowel identification process determines the vowel identity using the vowel

representative frame. Two methods were applied, i.e., vector quantisation and formant

methods. The accuracy of the vector quantisation method is 99%, while the formant

method has given almost perfect accuracy. It is preferable to use the formant method
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because of the following reasons:

- It gives extra information about vowels in pharyngealised Context leading to

extra cues for further consonant classification.

- It gives more freedom in a multi-speaker system after incorporating a formant

normalisation algorithm.

Thus, in this respect two aspects require further work. The first one is the implementation

of a formant normalisation algorithm. The second aspect is on improving the formant

estimation algorithm to detect higher formants for the purpose of normalisation. The

implemented formant estimation method is based on the phase spectrum of the LPC

model. The choice of the LPC model's order determines the level and the quantity of the

spectral details. To resolve the case of two closely spaced formants, the model's order

should be high, but this will lead to the presence of spurious spectral peaks. These

spurious peaks make the choice of the actual formants very difficult to achieve. Recently,

a new approach has been proposed [143] to estimate the formant frequencies without

modelling the speech signal, hence avoiding the above-mentioned problem related to the

model's order. In this approach, formants are extracted from the phase spectrum of the

speech signal after converting the speech signal (in the frame under analysis) to a

minimum phase signal. The length of the analysis window for format extraction is then

chosen less than the pitch period in order to maintain a smooth frequency response

devoid of fluctuation. Thus, this method can be incorporated in our system, and further

work is needed to select the length of the analysis window which leads to better results.

The spectral transition detection procedure seems to work well [Chapter 6]. The results of

the transition detection are reflected in the spectral variation contour of each word. This

contour displays almost all the transitions which can be noticed in the speech spectrogram

of a certain word. If a transition is not clear in the speech spectrogram of a word, it will

not be reflected on the spectral variation contour of that word. The only problem in the

transition detection is the case of having some missing peaks (transitional points) along

the spectral variation contour due to the smoothing process which is applied to the

spectral parameters. Although such peaks are recovered during the correction procedure,

special attention should be given to such cases. Another point which requires some

further study is the possibility of using a fixed threshold for all words to detect the

prominent peaks (transitional points) of the spectral variation contour. The current

threshold is taken as the mean value of the spectral variation function of each word.
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Having a fixed threshold leads to faster processing where there will be no need to wait

until the word ends to compute the mean value of the spectral variation function. Also,

the availability of such a fixed threshold will facilitate the application of the transition

detection algorithm to continuous speech.

The results of the V-UV-S segmentation, the vowel detection and identification, and the

transition detection are organised into a special table called the segmentation result table

[Chapter 7]. Differences of less than a certain limit between the transitional points of the

V-UV-S contour and the spectral variation contour are tolerated. Subject to the content of

the result table, the segments on the spectral variation contour are labelled according to

the considered classffication scheme.

Most of the errors which are caused by the previous procedures are detected and

corrected during the error correcting procedure. This procedure employs durational

information (such as the vowel estimated duration and the segment length) in addition to

some phonological constraints. The correction procedure deals with all the detected and

expected errors, and the segmentation result table is updated after each correction step. As

for the unforeseen errors at this stage, a special correction algorithm can be designed to

account for any newly discovered error and can easily be incorporated in the system.

Such an algorithm uses the information in the result table at its input and updates this

table after any modification.

The above five procedures are designed in such a way that modifying one procedure will

not affect the others, provided that the required information is filled at the end in the result

table of each word. For example, modifying the vowel detection and identification

procedure to improve its performance will not affect the performance of other procedures,

provided that the modified procedure will supply the result table of a certain word with

the vowel estimated durations, the vowel representative frames and the vowel identities of

that word.

8.4 Further Consonant Classification

The implemented labelling scheme uses four labels for consonant description. Further

labelling is also possible where the class 'voiced consonant' comprises nasal, semivowel,

liquid, and voiced fricative consonants. In addition, the plosive and fricative classes can

be split into pharyngealised or plain (non-pharyngealised) classes [Chapters 3 and 4]. In
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the implemented recognition system, the segment boundaries are already determined and

given in the segmentation result table. Also, the segment identity (vowel or consonant) is

known and given in the result table. Thus further consonant labelling can be achieved by

introducing two special procedures. One of them can be called the voiced consonant

procedure, and is used to split voiced consonant segments into different possible classes.

The other one can be called the pharyngealised consonant procedure, and is used to

decide whether aplosive or fricative consonant segment is pharyngealised or plain. It has

been shown [Chapter 5] that the difference between the formant frequencies (Fl and F2)

of a certain vowel can give an indication of the presence of a pharyngealised consonant

in its carrier word.

The purpose of this further consonant classification is to reduce the number of word

candidates which share the same phonetic labelling with the input or the test word. This

will reduce the amount of detailed phonetic analysis at the verification stage of the

recognition system [Chapter 4] to select the most likely word candidate. However, the

system can start with performing vowel recognition and consonant classification

according to the implemented scheme (4 labels for consonants). The resultant string of

labels is used for lexical access. If the number of word candidates is more than one, the

system calls the voiced consonant procedure. Then, the modified string of labels is

reused for lexical access. If the number of word candidates is still more than one, the

system calls the pharyngealised consonant procedure. In this case, if the number of word

candidates exceeds one, the verification process is to be carried out. An alternative

solution is to maintain the lexical access at the implemented classification scheme, and

further consonant classification can be achieved directly in the verification stage of the

recognition model only when it is required. In the latter case, the verifier may use

mathematical approaches such as hidden Markov modelling or template matching for

further consonant classification.

In this thesis, the physical correlates of the prosodic features, i.e., energy, pitch, and

duration, have been measured and used in different parts of the speech recognition

system. They can also be used to extract other features (such as stress). These features,

besides other phonological constraints (such as consonant dissociation), can be used in

the verification stage in order to avoid as much as possible the detailed consonant

analysis. The extraction of such reliable features requires further research.
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8.5 Closing Remarks

The accuracy of the segmentation and labelling process in the proposed speech

recognition model is relatively high (95%). Improving the accuracy of the vowel

recognition procedure will surely improve the accuracy of the whole system.

Those points which require further work are summarised as follows:

- Improving the performance of the vowel detection and vowel identification

processes.

- Investigating the possibility of using a fixed threshold in the detection of the

prominent peaks (the transitional points) on the spectral variation contour of all

words.

- Developing a special procedure to split the voiced consonant segments into

further detailed classes.

- Developing a special procedure to distinguish between pharyngealised and

non-pharyngealised consonants.

- Developing the verification stage in the recognition model.

In addition to the above points, further work is needed to test the performance of the

developed algorithms using speech degraded by noise, telephone bandwidth speech, and

speech uttered by uncooperative speakers.

Most of the developed procedures for the word recognition system may be modified and

used in the acoustic-phonetic processor of a continuous speech recognition system.

The developed recognition method can be implemented almost in real time (where some

decisions are delayed until after the end of the test word), using the already available

digital signal processing chips.
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Appendix A

A List of the words in the speech database

In this appendix a list of the 100 words which have been used in the speech database.

The list shows the following for each word:

- The phonemic description

- The syllabic pattern

- The phonetic description according to the implemented classification scheme

(i.e., four labels 'VP', 'UP', 'UP', and 'VC' are used for consonants, and six

labels according to their phonemic form are used for vowels).

- The English equivelant or meaning

- The Arabic script

We should mention here, that each word may have different meaning according to the

context. In this list, we have chosen the most common meaning of each word.
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Appendix B

Spectrograms of the Consonant-Vowel Pairs

The spectrograms of the consonants /d!, It!, Is!, 1k!, and /3/, and their counterparts the

pharyngealised consonants //, /t/, I./, IkJ, and /J with the three vowels /aa/, Iuu/, and

hi!, are given in Figures 3.4 to 3.6 in Chapter 3. In this appendix the spectrograms of the

rest of all possible consonant-vowel pairs (long vowels) are given in Figures B.l to B-7.

Figures B-i and B-2 display the spectrograms of 16 consonants followed by the vowel

laW. Figures B-3 and B-4 display the spectrograms of 16 consonants followed by the

vowel /uu!. Figures B-5 and B-6 display the spectrograms of 16 consonants followed by

the vowel LU.'. Figures B-i displays the spectrograms of the consonant /1/ and its

pharyngealised counterpart /1] followed by the three vowels laW, /uu! and [ii,1.
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Appendix C

Mel Scale and Critical Bands

C.1 Threshold of Hearing

The absolute sensitivity of the human ear is measured as the smallest sound pressure (SP)

which leads to the sensation of hearing. The threshold of hearing depends on the

frequency of the sound. Figure C. 1 displays this threshold as a function of frequency for

a typical young adult [96].

The human ear is most sensitive between 1000 and 3000 Hz with the threshold rising

from lower and higher frequencies. If the threshold at 1000 Hz is taken as a reference

(see Figure C.1), the signal is to be increased a hundred times to reach the threshold at

100 Hz and 15,000 Hz, and a thousand times to reach the threshold at 18,000 Hz. The

threshold of pain occurs more or less uniformly at sound intensity equal to 140 dB.

The frequency limits of hearing are generally considered to lie between 20 and 20,000

Hz.

C.2 Pitch and Mel Scale

Pitch is the subjective attribute of a sound which corresponds to the physical attribute of

frequency. Although the pitch of a pure tone is monotically related to its frequency, a

linear relationship does not hold. The unit of pitch is the 'mel'. The mel scale has been

constructed on the basis of subjective pitch evaluations. This involves the determination

of the frequency corresponding to halving and doubling of the pitch and equal increments

of the pitch by naive listeners. A tone with a frequency of 1000 Hz is defined as having a

pitch of 1000 mels. A tone with a pitch of 500 mels sounds half as high as one with a

pitch of 1000 mels. However, its frequency will be 400 Hz. Similarly a tone with a pitch

of 2000 mels will sound twice as high as one with a pitch of 1000 mels, yet its frequency

will be 3000 Hz rather than 2000 Hz. Figure C.2 illustrates the relationship between the

pitch scale and the frequency scale for pure tone of 40 dB intensity [96].
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The mel scale is essentially linear at low frequencies and logarithmic at higher

frequencies. A technically useful approximation to the mel scale is of the form [102]:

y=k log (1+f/ 1000)	 (C.l)

where f is the frequency in Hz, k is a constant. The constant k is computed with the

consideration that a tone with a frequency of 1000 Hz is defined as having a pitch of

1000 mels. Thus, k is equal to 3322. A conversion of a frequency to a mel scale is

roughly identical with an estimate of the spatial position of the conesponding point of

maximum excitation on the basilar membrane in the cochlea (in the inner ear).

The cochlea, a liquid-filled tube located in the inner ear, performs a continuous

broad-band analysis of the sound which enters the ear, and transmits the results to the

brain through the neural fibre outputs of the cochlea. The basilar membrane in the

cochlea, which performs this spectral analysis, has different frequency response along its

length. Each location along the basilar membrane has a characteristic frequency, at which

it vibrates maximally for a given input sound. For a specific location, the response curve

as a function of the vibration frequency at the input of the cochlea is that of a bandpass

filter with almost constant Q (fixed ratio of centre frequency to bandwidth). Because of

this constant-percentage bandwidth, frequency resolution along the basilar membrane is

best at low frequencies. For every input frequency, there is a point on the basilar

membrane of maximal vibration.

According to the mel scale, the frequency range over which the human ear is able to

perceive sounds can be divided into a bank of bandpass filters. These filters are linearly

spaced below 1000 Hz and logarithmically spaced above 1000 Hz. The filters under 1000

Hz have fixed bandwidths and are taken equal to 100 Hz. The filters at and above 1000

Hz follow a logarithmic distribution according to Eq. (C.l), and these filters are assumed

to have constant Q which is given as follows:

Q=f0 IBW
	

(C.2)

where f0 and BW are the filter's centre frequency and bandwidth respectively. From Eq.

(C.1), the frequency f is given as a function of its value y at mel scale as follows:

f= iO ( bY/k -1)	 (C.3)
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For a bandpass filter with f0 1000 Hz, Yo = 1000 mels and a bandwidth equals to 100

mels, Q is computed by substituting Eq. (C.3) in Eq. (C.2) to yield Q = 7.3. In order to

have a flat composite spectrum over the whole frequency range of the filter bank, the

centre frequency of a filter i is computed as follows:

= f11 + BW.. 1 = f (1 + 1/Q) = 1.137 fj	(C.4)

For f.. 1 = 1000 Hz, the centre frequency of the following filter is at 1137 Hz. Table C. 1

illustrates values of the centre frequency and bandwidth of a bank of 22 filters covering

the range 50-4980 Hz [140], where the centre frequencies above 1000 Hz follow Eq.

(C.4).

Filter No. Centre Frequency Bandwidth
Hz	 Hz

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

100
200
300
400
500
600
700
800
900

1000
1137
1292
1469
1671
1899
2159
2455
2791
3173
3607
4101
4662

100
100
100
100
100
100
100
100
100
118
146
166
189
215
244
278
316
359
408
464
527
599

Table C. 1 Filter bank centre frequencies and bandwidths (mel scale)
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C.3 Critical Bands

When a weak tone is heard in the presence of an adjacent tone, the threshold for hearing

the first tone is raised. This phenomenon is known as 'masking'. It was found that the

threshold is raised only when the tones are close to each other in the frequency. If they

are more than a critical distance apart, the second tone (whose intensity is above the

hearing threshold) has no effect on the threshold for hearing the first tone[96]. This has

led to the concept of the critical band. Signals within the critical band influence the

perception of each other.

Critical bands are measured throughout the frequency range of hearing by listening to

tones mixed with band-limited noise. The tone is set at the centre frequency of the band

of noise. As the bandwidth of the noise is increased, the intensity at which the tone was

just perceived is also increased until the bandwidth of the noise is equal to the critical

band. Thereafter, the intensity for hearing the tone remains constant. It has been found

that critical bandwidth increases as the centre frequency is raised. The critical bandwidth

for a centre frequency of 200 Hz is found to be about 100 Hz, and for 5000 Hz about

1000 Hz [96].

In the cochlea, the point of maximum vibration moves along the basilar membrane as the

frequency of excitation is increased. The critical bandwidths correspond approximately

to fixed spacings (1.5 mm spacing) along the basilar membrane, suggesting that a set of

24 bandpass filters would model the basilar membrane well. A perceptual measure,

called the 'Bark' scale [36] or 'critical-band rate', relates acoustical frequency to

perceptual frequency resolution, in which one Bark covers one critical bandwidth over

the whole frequency range, and corresponds nearly to a pitch interval of 100 mels. Table

C.2 gives the values for preferred frequencies defining the limits of auditory critical

bands [36].

An analytical expression [37] mapping the frequency f into critical-band rate Z, and

another expression for critical bandwidth CB are given as follows:

Z1 = 13 arctan (0.76 f) + 3.5 arctan (f/7.5)2	(C.5)

CB=25+75 (1+ 1.4 f 2 )O.69	 (C.6)
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where f is taken in KHz. These expressions approximate the tabulated data with an

accuracy of ±10%. From Table C.2, we notice that the critical bandwidth is constant at

low frequencies but increases with the logarithm of frequency at high frequencies. Also

the critical-band rate is proportional to frequency at low frequencies, but at medium and

high frequencies it is proportional to the logarithm of frequency. The critical bands have

a certain width, but that their position on the frequency scale is not fixed.

Critical
	

Centre Frequency
	

Critical
Band Rate
	

Bandwidth
Bark
	

Hz
	

Hz

	

1
	

50
	

100

	

2
	

150
	

100

	

3
	

250
	

100

	

4
	

350
	

100

	

5
	

450
	

110

	

6
	

570
	

120

	

7
	

700
	

140

	

8
	

840
	

150

	

9
	

1000
	

160

	

10
	

1170
	

190

	

11
	

1370
	

210

	

12
	

1600
	

240

	

13
	

1850
	

280

	

14
	

2150
	

320

	

15
	

2500
	

380

	

16
	

2900
	

450

	

17
	

3400
	

550

	

18
	

4000
	

700

	

19
	

4800
	

900

	

20
	

5800
	

1100

	

21
	

7000
	

1300

	

22
	

8500
	

1800

	

23
	

10500
	

2500

	

24
	

13500
	

3500

Table C.2 Values of critical band rate and critical bandwidth as
a function of frequency
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