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ABSTRACT 

Polymeric composites are used widely in modern industry. The prediction 

of mechanical behaviour of these material under different loadings is 

therefore of vital importance in many applications. Mathematical 

modelling offers a robust and cost effective method to satisfy this 

objective. In this project a comprehensive finite element model for 

particulate and fibre reinforced composites is developed. 

The most significant features of this model are: 

" The inclusion of slip boundary conditions. 

" The inclusion of flux terms across the inter-phase boundaries to take 

the discontinuity of the material properties into account in the model. 

" The use of penalty method in conjunction with Stokes flow equations 

which allow the application of the developed model to solid elasticity 

analysis as well as creeping viscous flows. 

The predictions of this model are compared with available theoretical 

models and experimental data. These comparisons show that the 

developed model yields accurate and reliable data for composite 

deformation. 
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Chapter One 

INTRODUCTION 

Polymeric composites are amongst the most important new material resources. This is 

because of the relative low cost of manufacturing of these materials and the possibility 

of obtaining improved and unique properties from them. The bulk properties of 

polymeric composites obviously depend on their microstructure. Therefore the 

composite properties and their behaviour should be assessed and analysed considering 

microstructural responses of composites to external loading and conditions. 

The main objectives of this project have been the analysis of the micromechanical 

behaviour of different types of polymeric composites using mathematical modelling. 

We have considered continuous fibre reinforced composite, short fibre reinforced 

composite and composites with hard or soft particles. 

To understand the mechanical behaviour of composites, the mechanical behaviour of 

the constituent materials and the interactions of these constituents should be 

investigated. 

Mathematical modelling offers a powerful prediction tool to carry out such 
investigation. In recent years a number of mathematical models for the microstructural 
behaviour of composites have been proposed. Most of these models are formulated in 

terms of mathematical equations, which cannot be solved analytically. Therefore in 

most cases the use of a numerical technique for the quantitative analysis of composite 
behaviour is required. 



Chanter One Introduction 

Finite element method combines robustness with flexibility and hence it is the method 

of choice in most applications. In this project we have considered the finite element 

schemes based on the `displacement method' and the `weighted residual method'. It is 

especially important to note that using the latter method a mathematical model for the 

microstructural analysis of composites can be developed which is based on equations 

similar to the fundamental equations of fluid dynamics. This approach has the 

advantage of using a single model for the analysis of composites in liquid or solid state. 

This thesis consists of five chapters. The introductory chapter describes the outline of 

the thesis and includes a summary of the properties of various composites investigated 

in the present work. In chapter two a thorough literature survey is given and the 

background of the present project is presented. In chapter three the development of the 

working equations of the model and the domain geometry are described. This chapter 

also includes explanation regarding the finite element mesh, the boundary conditions 

and the postprocessing calculations used. Chapter four is devoted to the computational 

results and discussion and the comparison with the available experimental data and the 

results generated by other models. Chapter four consists of the following sections: 

In section one of this chapter the most important bulk property of composites, the 

modulus is studied. The effect of model assumptions and boundary conditions on the 

results obtained are discussed. 

In section two the mechanical behaviour of epoxy resin filled with hard glass particles 

is studied as a typical composite filled with rigid particles. The addition of rigid 

particles to epoxy resins can result in a significant improvement in the properties of the 

resin and a considerable reduction in cost. There is invariably an increase in the 

stiffness of the resin but the effect of the particles upon the fracture behaviour is 

complex. The fracture behaviour of multiphase polymers has been reviewed and there 

has been considerable interest over the years in crack propagation in brittle materials 

reinforced with rigid filler particles. It is found that, in general, both the critical stress 

intensity factor and fracture energy increase with the addition of rigid particles, at least 

for low volume fractions of filler. The most generally accepted explanation of this 
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Chapter One Introduction 

behaviour, using the analogy of a dislocation moving through a crystal, is that a crack 

in a body possesses "line tension" and that when it meets an array of a impenetrable 

obstacles it becomes pinned. In order to move past the obstacles the crack would have 

to bow out and this leads to an increase in fracture energy. The fracture energy reaches 

a maximum at a particular value of filler volume fraction and then falls with the further 

addition of particles, implying that there may be another mechanism which competes 

with crack front pinning at high volume fractions of filler. 

Particulate filled composites are used in applications ranging from everyday usage, like 

automobile tires, to specific, such as solid rocket propellants. These materials exhibit 

interesting failure properties. Phenomena such as cavitation (the appearance of voids) 

and debonding (adhesive failure between matrix and filler particles) lead to gross 

nonlinearities in their stress-strain behaviour. Particulate composites subjected to large 

strains generally exhibit large degrees of debonding. The parameters that affect this 

failure include particle size, filler concentration, surface treatments, matrix and filler 

properties, superimposed pressure, and strain rate. Debonding of filler particles 

appears to be the dominant factor influencing both stress-strain and volumetric 

behaviour of particulate materials. 

In section three the stress field in a composite with partially or fully debonded rigid 

particles is analysed. Bond degradation is often a critical factor in determining the 

ultimate strength of a composite material, as well as its fatigue resistance, impact 

resistance, and other important properties. The strength of the bonding between filler 

and matrix plays a major role in the ability of the composite to bridge cracks or deflect 

cracks along the interface and, thereby, contribute to composite fracture toughness. 

For such fracture toughening to occur, the filler matrix interface must exhibit just the 

right degree of bonding. If the bonding is too strong, the composite behaves like a 

monolithic material and cracks propagate through the material generally resulting in 

brittle fracture. 

3 
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Improving adhesion at the interface increases the fracture strength of the composite , it 

is not entirely clear how this affects crack propagation. There have been reports of 

improving adhesion at the interface both increasing and decreasing the fracture energy, 

for crack propagation in particle reinforced composites. 

With good adhesion it is found that the fracture strength of the composites is 

approximately the same as that of the unfilled matrices. On the other hand, with no 

surface pretreatments, or release agents, applied to the particles the strength decreases 

with increasing volume fractions of filler particles. 

In the fourth section of chapter four the effects of adding rubbery particles on the 

mechanical characteristic of a matrix material such as epoxy resin are studied. The 

improvement of the impact properties of polymers is possible through incorporation of 

rubbery phase domains into a brittle polymer matrix. The increase in the toughness of 

glassy polymers with addition of rubber particles is believed to be due to induced wide- 

spread energy absorbing deformation processes, such as crazing and shear yielding, in 

the matrix material during fracture. Shear yielding is important; firstly, it is the factor 

which limits the strength of the composite if brittle fracture can be suppressed. A 

composite must have a high yield stress in order to be strong and if bulk, homogeneous 

yielding does occur the polymer is likely to be tough. Secondly, recent evidence 

suggests that shear yielding, in the form of microshear bands, plays a key role in the 

initiation of cracks. Shear yielding and crazing, both involve localised, or 

inhomogeneous, plastic deformation of the material which arises from strain softening 

and geometric considerations. The difference between the mechanisms is that shear 

yielding occurs essentially at constant volume whereas crazing occurs with an increase 

in volume. Thus, unlike shear yielding, crazing is a cavitation process in which the 

initiation step requires the presence of a dilatational component to the stress tensor and 

may be inhibited by applying hydrostatic pressure but enhanced in the presence of 

triaxial tensile stresses. 

A craze is initiated when an applied tensile stress causes microvoids to nucleate at 

points of high stress concentrations in polymer. These microvoids are created by 
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scratches, flaws, cracks, dust particles, molecular heterogeneities. In general the 

microvoids develop in a plane perpendicular to the maximum principal stress but do 

not coalesce to form a true crack. Thus a microvoid is capable of transmitting loads 

across its faces. However, when cracks do initiate and grow they do so by means of 

the breakdown of the fibrillar structure in a craze. The importance of crazing is that it 

is frequently a precursor to brittle fracture. This is because, although considerable 

plastic deformation and local energy adsorption are involved in craze initiation, growth 

and breakdown, this micromechanism is often highly localised and confined to a very 

small volume of the material. However, it should be recognised that if stable crazes 

can be initiated in a comparatively large volume of the polymer, i. e. a multiple 

deformation mechanism is induced, then such multiple crazing may lead to a tough, 

and possibly even a ductile, material response. 

Crazes are formed at the rubber particles whereas shear yielding takes place between 

the modifier particles. 

The rubber inclusions cause a local stress magnification in the matrix material 

immediately surrounding the inclusions. This local stress magnification is believed to 

initiate crazing and shear yielding. A great deal of controversy still exists on the 

nature of the toughening mechanisms. Much of the dispute surrounds the issues of 

whether the rubber or the matrix absorbs most of the energy and whether the matrix 

undergoes massive crazing or simple voiding. Presumably, once the mechanisms 

responsible for the increased toughness are clearly identified, then the material 

parameters responsible for these mechanisms can be enhanced or modified to produce 

an optimal combination of properties. 

The behaviour of the continuous fibre reinforced composites under tensile and shear 

loading is studied in section five of chapter four. High specific strength and stiffness 

properties of fibre reinforced composite materials have resulted in their widespread use 

in load bearing structures. These structures have complex geometries and are often 

subjected to multiaxial loadings. Monolithic material mechanical behaviour can be 

adequately described by a limited number of material properties and strength criteria as 

these materials present simple failure modes under different loading and boundary 

5 



Chapter One Introduction 

conditions. Strength characterisation of composite laminate structures is more difficult 

to estimate because of the variety of failure modes and failure mode interactions. For a 

continuous fibre reinforced composite, the strength of the composite is derived from 

the strength of the fibres, but this strength is highly directional in nature. The 

longitudinal strength of the continuous fibre reinforced composites is much greater 

than the transverse strength. The compressive strengths associated with these 

directions may be different from the corresponding tensile strengths. 

Failure of composite materials are determined not only by their internal properties such 

as properties of constituents and microstructural parameters but also by external 

conditions such as geometric variables, type of loading and boundary conditions. 

Critical failure modes for each composite material system under various loading 

conditions must be identified and a failure criterion should be established for each 

failure mode. 

Finally the last section of chapter four presents the results of the analysis of the short 

fibre reinforced composites. Short fibre reinforced composites are not as strong or as 

stiff as continuous fibre reinforced composites and are not likely to be used in critical 

structural applications. However, short fibre composites do have several attractive 

characteristics that make them worthy of consideration for other applications. For 

example, in components having complex geometrical contours, continuous fibres may 

not be of practical use because they may not conform to the desired shape without 

being damaged or distorted from the desired pattern. On the other hand, short fibres 

can be easily mixed with the liquid matrix resin, and the resin/fibre mixture can be 

injection or compression moulded to produce parts having complex shapes. Such 

processing methods are also fast and inexpensive, which makes them very attractive for 

high volume applications. Composites having randomly oriented short fibre 

reinforcement are nearly isotropic, whereas unidirectional continuous fibre composites 

are highly anisotropic. In many applications the advantages of low cost, ease of 

fabricating geometrically complex parts, and isotropic behaviour are enough to make 

short fibre composites the material of choice. 
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Since the elastic modulus of the fibre is typically much larger than that of the matrix, 
the axial elastic displacements of the two components can be very different. In order to 

rationalise the design of reinforced materials, it is thus of primary importance to have a 
detailed knowledge of stress distribution induced by the applied load. Indeed, when 
discontinuous fibres are used, the attainment of good mechanical properties depends 

critically upon the efficiency of stress transfer between matrix and the fibres. That 

efficiency is often characterised by the critical length required of the fibre to build up a 

maximum stress equal to that of an infinitely long fibre. 

The effective properties of fibre reinforced composites strongly depend on the 

geometrical arrangement of the fibres within the matrix. This arrangement is 

characterised by the volume fraction of fibres, the fibre aspect ratio and the fibre 

spacing parameter. Analytical equations for the variation of stress along discontinuous 

fibres in a cylindrically symmetrical model have been derived by Cox. In this approach 

the adhesion across the end face of the fibres is neglected and the local stress 

concentration effects near fibre ends have not been taken into account. The importance 

of these assumptions has been demonstrated by finite element approaches. 

The overall conclusions of the present project are discussed in chapter five. The list of 

references quoted in the text is included at the end of the thesis. 

The main objectives of this project can be summarised as: 

  Developing a model to predict the mechanical properties of polymer composite 

  Developing a code that can be used for studying the behaviour of the polymer 

composites in the both solid and liquid states. 

  Including the boundary line integral terms in the model and investigating the effect 

of that on the final results of the computations for different shape of the fillers and 

composites. 
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  Imposing the slip boundary condition at the interface of the filler and matrix in 

order to simulate the level of adhesion at the boundary of a debonded filler particle. 

  Applying the developed model for different types of composites such as 

composites filled with hard particles or soft particles, composite reinforced with 

continuous or short fibres. Using the proper geometry model and boundary 

condition for each case. Validating the results of the computation by comparing 

with experimental data and other well established model in each case in order to 

evaluate our model in qualitative and quantitative analysis. 

ý 



Chapter Two 

LITERATURE REVIEW 

2.1 INTRODUCTION 

A composite material is a combination of at least two chemically distinct materials 

with a distinct interface separating the components. Composites can offer a 

combination of properties and a diversity of applications unobtainable with metals, 

ceramics or polymers alone. Composites are also used when it is necessary to 

substitute the traditional materials. Substitution can be the result of legislation, 

performance improvement, cost reduction and expansion of product demand. For 

example the trend of legislation on minor impact damage has provided motivation for 

widespread substitution of plastics with metals in automobile bumpers. Improvement 

of mechanical properties such as load bearing and transfer, creep, fatigue strength and 
high temperature strength is also regarded as an important reason for designing and 

manufacturing of polymer composites. The enhancement of heat, abrasion, oxidation, 

corrosion and wear resistance which can protect the objects confronting 

environmental attacks is another reason for the increased use of composite materials. 
Improved electrical, magnetic and thermal conductivity properties can also be 

considered as objectives of the design of composite materials. 

q CIL 



Chapter Two 

2.2 TYPES OF COMPOSITES 

Literature Review 

In polymeric composites the base or matrix is a polymer and the filler is an inorganic 

or organic material in either fibre or particulate form. 

The properties of an advanced composite are shaped not only by the kind of matrix 

and reinforcing materials it contains but also by another factor which is distinct from 

composition. This factor is the geometry of reinforcement. Geometrically, composites 

can be grouped roughly by the shape of the reinforcing elements as particulate, 

continuous fibre or short fibre composites. 

2.2.1 Polymeric composites filled with fibres 

Addition of fibres to a polymer matrix enhances its stiffness, strength, hardness, 

abrasion resistance, heat deflection temperature and lubricity while reducing its 

shrinkage and creep. The fibre aspect ratio (i. e. the ratio of the characteristic length L 

to the characteristic diameter D of a typical fibre) and the orientation of fibres have 

profound influence on the properties of the composites. The most effective 

reinforcing fillers are fibres which intrinsically have a high elastic modulus and tensile 

strength. A superior composite is a material which can effectively transfer the applied 

load to the fibres. 

Fibres can be made of organic material such as: Cellulose, Wood, Carbon / Graphite, 

Nylons and Polyester. At the present time however, for reasons of constitutional 

strength, stiffness, thermal stability, and sometimes cost, inorganic fibres are the most 

important reinforcement materials which are compounded with polymers. Recent 

developments in high modulus and thermally-resistant organic fibres are creating 

interest, especially where light weight materials are needed as in aerospace 

applications. Inorganic materials such as Asbestos, Glass, Boron, Ceramic, Metal 

filaments are commonly used in the production of fibres. Similar to organic fibres, 

these are produced using both natural and synthetic raw materials. 

2.2.2 Polymeric composites filled with particulate fillers 

This kind of filler embraces not only fillers with regular shapes, such as spheres, but 

also many of irregular shapes possibly having extensive convolution and porosity in 
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addition. However, the use of these types of fillers does not improve the ultimate 
tensile strength of the composites. In fact the tensile, flexural and impact strength of 

these composites are lowered, especially at higher filler contents. On the other hand 

hardness, heat deflection temperature and surface finish of particulate filled 

composites may be enhanced and their stiffness is mainly improved. Thermal 

expansion, mold shrinkage extendibility and creep are reduced too. The main 

advantage of using these fillers is that regardless of the bonding efficiency between 

particulate filler and matrix, the properties remain consistent. In addition the elastic 

modulus and the heat distortion temperature increases while structural strength 

decreases. 

Wood flour, Cork, Nutshell, Starch, Polymers, Carbon and Protein are some of the 

commonly used organic particulate fillers. 

Despite limited thermal stability, organic fillers have' an advantage of being of low 

density and many have a valuable role as a cheap extender for the more expensive 

base polymer, as well as providing some incidental property such as reduction of 

mould shrinkage which is important in polymer processing. 

Glass, Calcium carbonate, Alumina, Metal oxides, Silica and Metal powder are 

examples of the inorganic materials which are used as particulate fillers. 

This class of fillers constitutes the more important group of particulate fillers in view 

of their low price and ready availability. Thus providing a basis for reducing the cost 

of moulded articles made with particulate filled composites without too much loss, if 

any, of desired properties (Sheldon, 1982). 

2.3 MECHANICAL PROPERTIES OF POLYMERIC COMPOSITES 

In many respects the mechanical properties of different polymers are their most 

important characteristics. Since whatever may be the reason for the choice of a 

particular polymer for an application, (whether it be thermal, electrical or even 

aesthetic grounds), it must have certain characteristics of shape, rigidity and strength. 
For polymer composites, improvement of mechanical behaviour is a prime 

requirement. Since by definition the polymer constitutes the continuous phase, the 

filler acts essentially through a modification of the intrinsic mechanical properties of 
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the polymer. Factors such as concentration, type, shape and geometrical arrangement 

of the filler within the matrix are the main contributors to the modification of the 

mechanical properties of polymer composites. 

2.3.1 Mechanical properties of unfilled polymers 

The most common way of recording mechanical properties of polymers is to carry out 

stress-strain, or more precisely load-extension tests. For amorphous polymers the 

finite natural relaxation rate of polymer chains results in the viscoelastic behaviour of 

these materials. The viscoelasticity of the polymers is itself a varying quantity relevant 

to the spectrum of chain movements within a particular polymer. Results of stress- 

strain tests for various types of polymers are shown schematically in figure 2.1. 

Factors which affect the movement of polymer chains are responsible for changes in 

mechanical properties of polymers and can be listed as: 

" Molecular weight: The first parameter to be considered is the molecular 

weight, which reflects in many cases the method of polymerisation of polymer and 

its origin. A lower average molecular weight invariably results in a softer 

polymer. 

N 
fn 
ui 
cr 
F- 
N 

STRAIN 

Fig2.1 Stress-Strain behaviour of polymers: (a) hard, brittle; (b) hard, strong 

(c)hard, tough; (d) soft, tough; (e) soft, weak 
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" Branching or cross-linking: Any cross-linking between polymer chains will 

push up the transition temperature. 

" Crystallinity: Crystallinity in the polymer presents an intermediate case, with 

some of rigidity being retained through the stabilising effect of the crystalline 

regions which themselves only fail when the melting point is reached. The overall 

relaxation behaviour is affected by the restricted movement of those chains which 

are in crystalline regions, and a new type of time dependent response can arise 

through structural slippage within these regions. 

" Impurities: The presence of impurities or low molecular weight additives such 

as moisture or organic liquids, will produce a softening as well as a weakening 

effect. 

" Temperature: It is not exceptional for a polymer to transverse all five of the 

above classes of mechanical properties in a temperature range of no more than 

hundred degrees. For an amorphous polymer, the biggest transition in mechanical 

properties takes place at the glass transition temperature. 

" Strain rate: The response of a polymer is affected by the rate of applying 

strain especially just above the glass transition temperature, when an increase of 

deformation rate causes an increase in apparent modulus and also usually gives rise 

to a more brittle-like failure of the polymer. 

2.3.2 Mechanical properties of particulate filled polymers 

A filler may be primarily used as an inexpensive extender, pigment or UV stabiliser. 
The produced composite must still have suitable mechanical properties for its intended 

application. 

Based on a simple analysis it may be thought that the influence of a particulate filler on 

the deformability of a polymer may be purely hydrodynamic. This means that, it 

merely distorts the molecular flow pattern during the deformation of polymer, in 

practice however, specific interactions very often produce enhanced stiffening effects 
beyond what is expected from an unfilled polymer. 
Figure 2.2a shows the stress-strain curves for a filled elastomer, while figure 2.2b and 
2.2c show typical data for a particulate-filled composite having a rigid matrix. In 
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both cases, as expected, the modulus increases with increased filler concentration. This 

may not always be the case, since if fabrication is accompanied by extensive void 
formation then the modulus of the produced composite may decrease. It can be seen in 

figures 2.2a-2c that the modulus increases for both soft and rigid matrices, while the 

tensile strength and elongation at break do not follow the same relationship. The 

tensile strength, however, particularly for a rigid matrix with rigid filler decreases with 

the increase of filler concentration. This is attributed to an increased concentration 

effect as well as the formation of microcracks either at the interface or locally in the 

matrix. In the case of a soft elastomeric-based composite, which is capable of 

dispersing stress more effectively, the tensile strength may very well increase as a 

result of higher filler concentrations. A maximum will be reached in this latter case, if 

STRAIN 
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Fig. 2.2 Stress-strain behaviour of polymer-particulate filler composites 

(a) soft matrix, hard filler; (b) hard matrix, soft filler; (c) hard matrix, hard filler 
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for no other reason than that eventually the matrix continuity will be replaced by 

particle/particle contact. Thus mechanical coherence except for some agglomeration 

will be greatly reduced. On the latter point, it follows that improved dispersion can 

have an opposite effect on strength compared to modulus. Considering the other 

extreme property, i. e. elongation at break, it might be expected that this quantity will 

fall with increasing filler concentration. This is because proportionally, more strain is 

being applied to less polymer. However the use of soft fillers in a rigid matrix can 

give rise to an increase in elongation at break and also in impact strength. Part of this 

may be derived from the ability of some fillers to promote craze formation in deformed 

polymer prior to fracture. 

Debonding and crack formation generally lower the strength of composites. In certain 

cases however, where cross-linked low energy brittle plastics such as polyesters and 

epoxides are involved, the actual fracture energy which is distinct from strength, may 

be increased by the presence of filler. The fracture energy increases up to quite high 

concentrations of filler after which it decreases again. 

2.3.3 Non-linear behaviour of polymeric composites 

It is usually assumed that composites have a linear mechanical behaviour to avoid the 

complexities involved in non-linear analysis. This can hardly be observed even for a 

pure polymer. The non-linear behaviour of a material is normally due to the following 

factors: 

" Non linearity due to material behaviour: Although the first approximation of 

constitutive behaviour is usually based on a linear relationship between stress and 

strain, many common engineering thermoplastics exhibit a very non-linear stress- 

strain relationship. In order to define a non-linear stress-strain relationship, a finite 

set of stress-strain data generally provided by experiment, is considered. A 

mathematical software is then used to interpolate all other stress-strain values that 

are required during a broad analysis. 

" Non linearity due to large displacements: A customary assumption in most 

engineering analysis is that the displacements are small. The elastic moduli of 

polymers are, however, usually as much as two orders of magnitude less than 
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those of materials with simpler behaviour such as metals. Furthermore, plastics will 

undergo as much as an order of magnitude more strain before incurring damage. 

These phenomena can often result in larger rotations and displacements in plastic 

structures than in metals. 

" Non linearity due to the load-deformation interaction: A third type of non- 

linear behaviour is the result of the interaction of deformation with the application 

of load. Linear analysis assumes that the location and distribution of a load in a 

system do not change during its deformation. This assumption is not always valid, 

especially when deformations become large. 

2.4 THEORETICAL MODELS FOR DETERMINATION OF THE 

MODULUS OF COMPOSITES 

The micromechanical analysis of the mechanical behaviour in terms of the separate 

contributions of the two components(i. e. the polymeric matrix and inclusion) to 

mechanical properties is complicated. This complication arises not only from 

recognised complexities of the filler concentration, but also from uncertainties in the 

magnitude of interaction. Especially as the magnitude of interaction might itself vary 

as the polymer and filler are mechanically forced into greater contact during 

deformation. In addition there are uncertainties in filler size distribution, complicated 

by possible agglomeration, and the extent of void formation occurred during 

fabrication, and the related problem of imperfect interfacial contact between the 

matrix and filler. Nevertheless, theories which describe the mechanical properties of 

particulate filled polymers have been developed. Often one theory gives better account 

of one situation than other. Modulus of composites is a bulk property which depends 

primarily on the geometry, modulus, particle size distribution, and concentration of the 

filler and has been represented by a large number of theoretically derived equations. 
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2.4.1 Theories of rigid inclusions in a non-rigid matrix 

2.4.1.1 Einstein equation and its modifications 

Literature Review 

Einstein equation: One of the earliest theories for the description of the behaviour of 

a composite system was developed for elastomers and is based on Einstein's equation 
(Einstein, 1956) for the viscosity of a suspension of rigid spherical inclusions and is 

given by: 

"IC=llm(I+KEVP) (2.1) 

where 17, and r). are the viscosity of suspension and the matrix respectively. KE is 

known as the Einstein coefficient and its value depends on the shape of the filler (it 

equals 2.5 for spheres) and VP is the volume fraction of particulate filler. It has been 

assumed that a similar equation can be written for the shear modulus of composites 

(Smallwood, 1944; Hanson, 1965; Hashin, 1955). Thus we have: 

G, =Gm(1+2.5vP) (2.2) 

where G is the shear modulus and p, m and c refer to particle, matrix and composite, 

respectively. In the Einstein's equation, the stiffening action of a filler is assumed to be 

independent of its size. The equation also implies that it is the volume occupied by the 

filler, not its weight which is the important factor affecting the property of the 

composite. This equation is useful for low concentration of filler because it neglects 

the fact that by increasing the volume fraction of filler the flow or strain fields around 

particles interact. The difficulties associated with defining these interactions has led to 

several modifications of Einstein equation. 

Mooney equation: Mooney (Mooney, 1951) made use of a functional equation which 

must be satisfied if the final viscosity of a suspension to be independent of the 

sequence of stepwise additions of partial volume fractions of the spherical particles to 

the suspension. For a monodisperse system the solution of his functional equation is: 
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Gc=GmeXp( 
2.5 VP ý 

1-SVP (2.3) 

where S is the crowding factor that shows the volume occupied by the filler/true 

volume of the filler. 

Guth equation: Guth's equation (Guth, 1951) is an expansion of Einstein's equation 
to take into account the interparticle interactions at higher filler concentrations. 

G2) VP) (2.4) 

Thomas equation: Thomas's equation (Thomas, 1965) is an empirical relationship 
based on data generated with monodispersed spherical particles. The coefficients of 
different power series relating relative viscosity and volume fraction of solids were 
determined using a non-linear least square procedure. 

Gc=G, �(1+2.5Vp+10.05Vp+Aexp(BVp)) (2.5) 

where A= 0.00273 and B= 16.6. 

Quemada equation: Quemeda (Quemeda, 1977) introduces a variable coefficient to 

account for interparticle interactions and differences in particle geometry. Thus: 

G, =G,. (1-0.5K VP )-2 (2.6) 

where K is usually 2.5. 

Frankel and Acrivos equation: An asymptotic expansion technique was used by 

Frankel and Acrivos (Frankle and Acrivos, 1977) to derive the functional dependence 

of effective viscosity on concentration for a suspension of uniform solid spheres. The 

result containing no empirical constant, is intended to complement the classical 
Einstein formula which is valid only at infinite dilution and is given by: 
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where (P is the maximum packing fraction of filler. 

2.4.1.2 The Kerner equation and its modifications 

Literature Review 

(2.7) 

One of the most versatile and elaborate equations for determining modulus of a 

composite material consisting of spherical particles in a matrix, is due to Kerner. For 

Gp > G. , the Kerner equation (Kerner, 1956) simplifies to : 

11t=`jmýl 
ý VPl5(l-ym)` 

vm(8-lOvm) 
(2.8) 

Nielsen equation: Halpin and Tsai (Tsai, 1968; Halpin, 1969) have shown that 

most of the equations for the elastic moduli of composite materials can be put into an 

equation of the general form as: 

G=Gm(1+ABVpý 
1-BVP 

(2.9) 

where A and B are constants for any given composite. The constant A takes into 

account such factors as geometry of the filler size and the Poisson's ratio of the matrix. 

The constant B takes into account the relative moduli of the filler and matrix phases, 

and is defined as: 

B_ (GmlGp) -I 

(GmlGp) +A 
(2.10) 

Neilsen (Neilsen, 1970) has extended this equation to take the maximum packing 

volume fraction into account and to point out the relation between the constant A 

and the generalised Einstein coefficient k which depends on the Poisson's ratio. The 

equation that he finally derives is given as: 

18 



Chapter Two 

Gc =Gm(1+(k-1)BVP) 1-BVP 

2.4.2 Theories of non-rigid inclusions in a non-rigid matrix 

(2.11) 

The random distribution of the constituent phases in a filled system demands a 

statistical approach, but this requires a knowledge of the distribution of the individual 

phases. Consequently, the problem is usually simplified to a two phase model in which 

average stresses and strains are considered to govern the behaviour of each phase. 

The average behaviour of the composite is defined in terms of a representative 

volume element. When subjected to a gross uniform stress or strain, a uniform strain 

field is induced in the composite which can be used to estimate the elastic constant. 

The other approaches consist of the establishment of bounds for the moduli by the use 

of energy criteria in theory of elasticity. 

(a) 

(c) (a) 

Fig. 2.3 Models for particulate filled composites (a) Parallel model (b)series model 
(c) Hirsch's model (d) Counto's model 

2.4.2.1 Series and parallel models 

In the simplest case for a two-phase material, the arrangement of the phases is shown 

in figures 3. a and 3. b. For the parallel arrangement (case a), the uniform strain is 

(b) 

Literature Review 
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assumed in the two phase and the upper bound is given by (Broutman and Krock, 

1967): 

Gc= Gm Vm + GP VP ý2.12ý 

whereas in series arrangement (case b) the stress assumed to be uniform in the two 

phases. The lower bound is 

GP Gm 
G, 

GPVm+G. VP 
(2.13) 

In equation 2.12 it is assumed that the Poisson's ratios of constituent phases are equal. 

Whereas using equation 2.13 vv , the corresponding Poisson's ratio should be given 

by: 

(vpVPGm+ umVmGp) 

(VpGm+Vm Gp) 
(2.14) 

The upper and lower bounds obtained from equations 2.12 and 2.13 often do not 

represent the experimental data. This implies that the assumption of either a state of 

uniform strain or uniform stress in the individual phases of the filled system is not 

sufficient to describe the modulus. 

2.4.2.2 The Hashin and Shtrikman model 

Improved bounds for the modulus of two-phase media were obtained by Hashin and 

Shtrikman who took into account the Poisson contraction of the constituent phases. 

The overall response of the composite was assumed to be isotropic and linearly elastic. 

The equations for the lower and upper bounds of the composite modulus (Hashin, 

Shtrikman, 1963) are given, respectively, as: 

9(K. +(VKr-K. )+(3V. J(3 K. +4 G. ))xG'+TV(Gr-G. ))+(6(K. +2G. )VJS(3 K., +4G. )G. )) 
V, VP E, -3(K, 

+(VK, 
- Y K. )+(3V. 1(3K. +4G., )))+(G. +((Gr 

-G. ))+(6(K. +2G. )V. 15(3K. +4Gý)G. )) 

(2.15) 
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+ V. 
+ V. 9(K' (yK., -K, )+(3V, /(3K, +4G, )))(G, (i/(G, -G. ))+(6(j{, +2G, )VP/s(3K, +4G, )G, )) 

3(K,, + 
V. V) 

cyK. -K, )+(3V . l(3K. +4G, )))+(G, + (V(G, - G, )) +cýK, +2 G, )V, /s(3K. +4 G, ) G,, )., 
(2.16) 

where K and G are the bulk and shear moduli, respectively. The corresponding 
Poisson's ratio of the composite in this case is given by: 

V. - = 
3K, -2G, (2.17) 

- 2(G, +3K, ) 

The separation of the Hashin upper and lower bound is dependent upon the modular 

ratio of particle to the matrix(m= EP = E. ). When the moduli of the constituent 

phases are closely matched, the bounds predict values within 10%. 

2.4.2.3 The Hirsch model, 

Hirsch (Hirsch, 1962) proposed a relation for G, which is a summation of equations 

2.12 and 2.13 and is written as: 

Gt=X(GmVm+GPVP) +(1-X) 
GPGm 

GPVm+GmVP 
(2.18) 

The model is illustrated in figure 2.2. c. Parameters x and 1-x are the relative 

proportions of material conforming to the upper and lower bound solutions, 

respectively. When x=0 equation 2.18 reduces to equation 2.13 which can be 

identified with a poorly bonded filler. For the perfectly bonded filler, (i. e. when x=1) 

the equation reduces to equation 2.12. 

2.4.2.4 The Takayanagi model 

Takayanagi (Takayanagi et. al, 1964) combined equations 2.12 and 2.13 and proposed 

a series-parallel model given by: 
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Gc =(a+ 
(1- a) )-ý (1- P'Gm+ßGP GP 

(2.19) 

where parameters a and ß represent the state of parallel and series coupling in the 

composite, respectively. Equation 2.19 was developed to predict the modulus of a 

crystalline polymer. The basic problem with this model is the determination of values 

for a and P. The arrangement of the series and parallel element is, however, an 

inherent difficulty in all of the proceeding models and there are conceptual difficulties 

in relating these models to real systems. 

2.4.2.5 The Counto model 

A simpler model, for a two phase system is proposed by Counto (Counto, 1964) and 

assumes perfect bonding between the particle and the matrix. The modulus of the 

composite is given by: 

i _1-vý+ 1 
G, G, � (1-Vg)I VgG, �+Gr 

(2.20) 

This model predicts moduli which are in good agreement with a wide range of 

experimental data. It should be noted that when x takes a value of 0.5 in equation 

2.18 it coincides with the values predicted from equation 2.20. 

2.4.3 Limitations of the theoretical models 

Equations 2.12 and 2.13 assume that the individual phases are under uniform strain or 

stress. In practice, however, the filler particles may not be completely separated from 

one another and the reinforcement element may, on the microlevel, effectively be an 

aggregate of smaller particles. Thus in response to the applied load the stress will be 

distributed unevenly between the particles and aggregates and the assumption of either 

uniform strain or stress is clearly an oversimplification. To account for the complex 

stress and phase distribution, Hirsch and Takayanagi considered differing 

combinations of the upper and lower bounds of the laws of mixtures. All of these 

22 



Chapter Two Literature Review 

require an empirical factor which is determined by a curve fitting routine to furnish a 

phenomenological description of the experimental data. 

Theories which deal with filled systems indicate that the elastic modulus for a given 

particle and matrix depends only upon the volume fraction of filler and not the particle 

size. The modulus however, increases as the particle size decreases. 

The properties of the composites may also be affected by changes in particle shape. 

This effect is especially pronounced with larger or non-spherical particles where a 

preferred orientation can modify the particle deformation behaviour. 

The particle size distribution affects the maximum packing fraction 0'.. Mixtures of 

particles with differing sizes can pack more densely than monodispersed particles 

because the small ones can fill the space between the closely packed large particles to 

form an agglomerate. These aggregated particles may be able to carry a large 

proportion of the load than the primary particles to yield a higher modulus, at the same 

volume fraction. 

Most of the theories which explain the reinforcing action of a filler assume perfect 

adhesion between the filler and the polymer matrix. The case of imperfect adhesion 

was, however, discussed theoretically by Sato and Furukawa (Sato and Furukawa, 

1963). They assumed that the non-bonded particles act as holes and, therefore, 

predicted a decrease in modulus with increasing filler content. One can argue that the 

non-bonded particles do not act entirely as holes since they also restrain the matrix 

from collapsing. A change of the matrix-filler adhesion has a smaller effect on modulus 

than on strength. The latter is much more dependent on surface pretreatment. In fact, 

the degree of adhesion does not appear to be an important factor as long as the 

frictional forces between the phases are not exceeded by the applied stress. In most 

filled systems there is a mismatch in the coefficients of thermal expansion which is 

reflected as a mechanical bond resulting from thermally induced stresses. Brassell 

(Brassell and Wischmann, 1974) found that the degree of bonding between the phases 

does not appear to have any influence on mechanical properties at liquid nitrogen 

temperature and this was attributed to the compressive stresses on the filler particle. In 

most cases even if the adhesion between phases is poor the theories remain valid as 
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long as there is not a relative motion across the filler-matrix interface(no slip case) 

(Ahmed and Jones, 1990). 

2.5 MICROMECHANICAL ANALYSIS OF POLYMERIC COMPOSITES 

It would be an impossible task to analyse composite materials behaviour by keeping 

track of the strains, strain rates and strain gradients within and around each and every 

inclusion in the material. At the other end of the scale, we could simply assume that 

the individual phases do not exist, measure the macroscopic properties and proceed 

with the structural design task(macromechanical analysis). This approach, while 

practical, ignores the main opportunity and challenge of composite materials, namely 

to tailor the microscale features and characteristics to achieve desired and optimal 

macroscopic behaviour. Thus we are naturally led to the problem of averaging the 

microscale effects and characteristics to predict the macroscopic behaviour and to 

investigate the effects of microstructure, particle size, particle distribution and 

interface on the final properties (micromechanical analysis). 

The microscale geometry of composite materials involves both deterministic and 

statistical features. In proceeding with micromechanical analysis, a cell size is selected 

and averaging is done on this scale. The scales for different methods are 

approximately: 

atomic, molecular 10-8 -10-9 m 

microscale 10-5 m 

macroscale 10-1_10-2 m 

The microscale dimension reflects the typical filler diameters, as well as being 

characteristic of many particulate inclusion dimensions. The microscale is thus nearly 

equally spaced in between the atomic and the macroscale behaviour. Understanding 

the behaviour of composites on the microscale offers considerable promise for 

improving their bulk material properties. Obviously the cell size to be used in a volume 

averaging operation must be larger than the characteristic microscale dimension. An 

upper limit for the cell size must relate to the macroscopic strain gradients in the 

material. In particular, the cell size must be small compared with a dimension that is 
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characteristic of the inverse of the strain gradient. Averaging is done with regard to 

cell sizes on the scale of the inhomogeneity. Further to statistical averaging certain 

features of the composites such as isotropic behaviour of system with no preferred 

orientation are usually used to develop microstructural models (Christensen, 1982). 

2.5.1 Qualitative description of the microstructure 

2.5.1.1 Geometric models 

The procedure typically used to determine macroscopic properties involves the 

analysis of a representative cell or volume element of the material. Most of the cell 

geometries apply equally well to the cases of fibres or particulate inclusions when 

viewed in either cylindrical or spherical coordinates. The composite sphere model was 

introduced by Hashin and the corresponding composite cylinders models by Hashin 

and Rosen (Hashin and Rosen 1964). A gradation of sizes of cells is assumed such that 

a volume filling configuration is obtained. A fixed ratio of cylinders' radii is assumed 

such that the analysis of single sphere can be taken to be the representative of the 

entire composite system. 

There is a more complicated model known as self-consistent scheme. In this model, 

the average stress and strain in each phase are determined by solution of a separate 

problem. The material outside the inclusion is assumed to have the effectively 

unknown macroscopic properties. The solution of the problems shown in figure 

2.4. a then allows us to determine the macroscopic properties. 

A third major type of model is that of the three phase model, shown in figure 2.4. b, 

which involves taking the inclusion as a system to be surrounded by an annulus of 

matrix material in turn embedded in an infinite medium with unknown effective 

macroscopic properties. 

In a fourth model type a regular arrangement of inclusions is considered. In this case, 

single size cylindrical inclusions are taken as arranged in regular patterns, usually with 

either square or hexagonal packing. These models are usually used in finite element 

analysis. Although non-uniform distribution of particles has also been investigated by 

Guild and Davy (Davy and Guild, 1989) with application of a combination of finite 
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element and statistical calculations. The described geometrical models are usually used 

to formulate the finite element analysis of stress-strain behaviour of composites. 

(a) 

phase 
1 

(b) 
Fig. 2.4 (a) Self consistent model (b) Three phase model 

There is no limit in how many microscopic geometrical models can be designed for 

composite behaviour analysis. For example, results applicable to second order in 

volume fraction can be obtained by the analysis of just two interacting inclusions in an 

infinite medium. At dilute concentrations, ellipsoidal inclusions can be used to 

represent a variety of geometric shapes. Also, ellipsoidal inclusions are also directly 

related to the self-consistent scheme (Christensen, 1982). 

2.5.1.2 Geometric model used in finite element modelling of composites 

Although usually a periodic distribution of particles are chosen, there is possibility of 

studying nonuniform distribution through using statistical calculations such as the 

model due to Guild and Davy. In this model, spherical particles of equal diameter are 

assumed to be randomly distributed within an infinite matrix. Finite element analysis is 

performed for a cylinder of resin, radius equal half-height, R, containing a single 

sphere at its centre, radius r. This cylinder can be represented by the plane ABCD 

using axisymmetric elements (figure 2.5). 

phase 
2 
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The value of the sphere radius, r, was kept constant and cylinder radius was varied. 
The statistical model has been used in order to calculate the distribution of the 

distance from a sphere centre to boundary of its Voronoi cell which indicates the 

interparticle distance (Christensen 1982). 

A 

r 
Fig. 2.5 Guild-Davy model 

B 

C 

However in most of the finite element analysis, a specific packing geometry is assumed 

in formulating a micromechanical analysis, dictated by the necessity of establishing 

suitable boundary conditions on the region to be analysed. Two geometries typically 

assumed are indicated in figures 2.6. a and 2.6b, a square array and a hexagonal array 

being special cases of these two geometries. By utilising a regular periodic array, a 

typical repeating unit (such as that indicated by the dashed lines can be isolated for 

detailed analysis. In fact if symmetry with respect to both the x and y axes is 

maintained, only one quadrant (solid lines) of this repeating element needs to be 

analysed. Because of the complex boundary conditions which must be satisfied even 

when such symmetry is maintained, closed form analytical solutions are not suitable. 

Of the several numerical analysis procedures which are available, e. g., finite 

differences, finite elements, truncated series and boundary collacation, the finite 

element method has emerged as the most generally useful (Hashin and Rosen, 1964). 

The material region to be analysed is resolved into an array of subregions. According 

to the order of interpolation and the type of element considered the strain variation 

across an element can be modelled. 
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Fig. 2.6 packing geometries 

2.5.1.3 Structural descriptors 

Literature Review 

2a 

Various types of composite materials, ranging from aligned continuous fibre laminates 

to particulate filled systems, may be distinguished as special cases of microstructures 

described in terms of (i) aspect ratios (a, ) and (ii) the orientation of the reinforcing 

agents(f). The following comparison points out the relatively simple microstructure of 

continuous fibre laminates. For this special material system, the continuity ( a,, -4 co ) 

of the collimated (f= 1) fibres assures the simplifying condition that the strain 

parallel to the aligned fibres is essentially uniform. As a consequence the longitudinal 

properties may be predicted from the simple rule of mixtures; however, the variation 

of the fields transverse of the fibre direction must be taken into account to obtain 

relationships which predict the transverse properties and shear moduli. 

Particulate filled systems represent the next level of complexity because unlike fibres, 

particulate fillers have a low aspect ratios, often approximating those of spheres or 

plates. In most particulate filled composites, the reinforcing agents are spherical (or 

near spherical) so that the aspect ratio is unity. The marked discontinuity of particulate 

filled systems introduces significant fluctuations in the internal fields which complicate 

the analysis of properties. On the other hand, simple reinforcing geometry precludes a 

dependence on the orientation of the reinforcing agent so that the consideration of 

this structural feature is not required in the analysis of these materials. 
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particles 
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Orthotropic 
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Transversley 

Isotropic 

I< Aspect ratio< 
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Fig2.7 schematic definition of the structural features 

Short-fibre reinforced materials represent yet a higher level of complexity since 

variation in both the aspect ratio and fibre orientation must be taken into 

consideration. 'Short fibre systems can be further distinguished according to the 

microstructural features induced by fabrication procedures (Sato and Furukawa, 

1963). 

2.5.1.4 Size of particles 

The use of smaller particles results in rapid increase in the value of modulus. This may 

be due to a greater total surface of interaction or to a change in the value of maximum 

packing fraction. Agglomeration of particles, arising from strong particle-particle 

interactions, might dissociate trapped polymer from the main polymer matrix and in so 

doing produce an effect Of increased stress for a given strain. 
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Larger particles give rise to greater stress concentrations and lower tensile strength, 
than the smaller particles. Where bonding is weak, then at some critical strain, 
debonding takes place and the composite exhibits opacity. But where a suitable 
bonding agent has been employed, a greater level of stress will be required to produce 
breakdown of interfacial adhesion. In fact, if the interaction is extremely strong, 
fracture of matrix or even filler may occur first. 

2.5.2 Interface-adhesion 

Recently, there has been much renewed interest regarding the role of the interface in 

composite material behaviour. This is due largely to the realisation that any interaction 

occurring between the primary constituents must propagate through a common 

interfacial boundary. Intuitively, it is reasonable to expect that a better understanding 

of the interfacial region could lead to the design - and preparation of improved 

composite structures. The interphase represents an interfacial region of finite volume 

wherein the material properties vary continuously between those of bulk matrix and 

bulk filler. Such an interface might be the result of processing conditions, for example, 

which impart the unique material properties to the region. Also the morphology of a 

matrix polymer or resin ' may be quite different in the region adjacent to the fibre. This 

can give an interphase region with properties quite different from that of the bulk 

matrix. Alternatively, an interphase may encompass an interlayer of some composition 

which is deliberately introduced into the composite structure in order to improve the 

load transfer properties of the interface (Brassell and Wischmann, 1974). An 

inconsistent interphase causes a poor distribution of stress concentration centres which 

results in the premature failure of the composite or growing of cracks. An optimal 

interphase coating maximises the composite strength. The level of bonding of 

inclusions to the matrix is also one of the dictating aspects in load transfer. 

Interfacial bonding in composites can be divided into three levels: weak, ideal, and 

strong. Factors leading to a good polymer-filler bonding are as follows: 

" Low viscosity of resin at time of its application. 

" Increased pressure to assist flow. 

" High viscosity after application. 

30 



Chapter Two Literature Review 

" Clean and dust free surface on filler. 

" Absence of cracks and pores on filler surface. 

" Moderate roughening of filler surface. 

" For impermeable filler solvent -based resins should be avoided 

" Use of resins less rigid than filler. 

" Similarity of the coefficient of thermal expansion of components. 

2.6 FINITE ELEMENT MODELLING OF THE MECHANICAL 

PROPERTIES OF COMPOSITES 

The finite element techniques which are commonly used in solid and fluid mechanics 

can be broadly categorised as: Least-square, Weighted residual and Variational 

methods. 

2.6.1 Finite element methods based on variational principles 

Generally in these techniques a variational principle characteristic of the system under 

study is formed and minimised to obtain a solution for the system unknowns. This is 

the oldest of the finite element methods and it is developed by the engineers who 

wanted to solve complex structural problems using a section by section approach. for 

a solid system simple variational principles can be formed on the basis of load or force 

displacement relationships. Depending on the form of the basic governing equation of 

a system equations different approaches can be derived. These are called: displacement 

(stiffness), force (flexibility) and hybrid (mixed) methods. 

Each of these approaches is equivalent to a variational principle that is, the 

minimisation of an appropriate system property. The three most commonly used 

variational principles are the principle of minimum potential energy (displacement 

method), the principle of complementary energy (force method) and the Reissner 

principle (mixed method). In all of these methods, it is necessary to identify the 
physical condition of the system. In any physical situation then, an expression for the 

total energy could be obtained and minimised to find the equilibrium solution. Now, 
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we consider different steps of displacement method as the most commonly used one 

in this category. A brief outline of the most important techniques based on 2-D 

domains is given in the following sections. 

2.6.1.1 Displacement method 

In the most commonly used form of this method a general two dimensional structure 

is divided into a number of 2-D, triangular finite elements and associated nodes. When 

a load is applied to the structure, all of the elements must deform in a fashion that 

guarantees equilibrium of forces between the elements. In addition, the deformation of 

the modelled structure must remain compatible in order to ensure that discontinuities 

in displacement do not develop at element boundaries. 

The first step in developing these equations is to establish the expression for element 

stiffness, relating forces and displacements at the nodes of an element. The sequence in 

this process is as follows: 

(i)Assume an approximate displacement function for the element. This function is 

defined in terms of the displacements at the nodes of the element and should 

ensure compatibility of displacements with neighbouring elements along its entire 

boundary. 

(ii)Apply the kinematic equations defining strain in terms of the approximate 

displacement functions. 

(iii)Use the constitutive relationship appropriate for the material to determine 

stresses in terms of strains. 

(iv)Develop equilibrium equations relating internal element nodal forces to 

externally applied nodal forces. 

Displacement function 

The displacement function characterises the displacements within an element as a 

function of space. The choice of displacement function affects the accuracy of the 

element in approximating actual displacement, strain, and stress behaviour over the 

volume of the element. Since strain is a first order derivative of displacements, a linear 

displacement function leads to the approximation of constant strains and stresses 
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within the element. Similarly, a quadratic displacement function simulates linear strain 

and stress fields within an element. For the three node, triangular element, we will 

designate the x axis to lie along one edge of the triangle. With displacements (Ui, vi) in 

two coordinate directions (x, y) at each node(i) there are a total of six nodal 

displacements (degrees of freedom) in terms of which the deformation field for the 

element can be defined. In order to define the displacements within the element in 

terms of these six nodal displacements, functions with a total of six coefficients are 

required. A natural set of choices for this element is 

u=a+bx+cy (2.21) 

v=d+ ex + fy (2.22). 

where a, b, c, d, e, and f are unknown constants. 

Element displacements in terms of nodal displacements 

Using equations 2.21 and 2.22 to evaluate the displacement at each node (i), 

Vk=d+eXk+f Yk 

Uk = a+bXk+cYk 

(k=1,2,3) 

(2.23) 

(2.24) 

where Xk, and Yk define known coordinate locations. A similar set of equations can 

be written to define the coefficients d, e, and f in terms of the nodal y displacements. 

Using matrix manipulation it is possible to represent the u and v displacements within 

an element in terms of nodal displacements as 

U; 

V; 
{u(xY)} 

_ (N] 
U1 

v(x, Y) Vi 

Uk 

Vk 

=[N]{S} (2.25) 
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where the [N] is the shape function matrix that can be formed by using equation 2.23 

and equation 2.24, and {8}is the vector of nodal displacements. 

Strain as a function of nodal displacements 

The two dimensional definitions of strain in terms of displacement are: 

4: 
ax 

ýy - 
9v 

dy 

au av 
Yxy = 

02y 
+ax 

(2.26) 

(2.27) 

(2.28) 

These relations are then used to calculate the strain within the element in terms of its 

nodal displacements. Using matrix notation again, this relationship can be expressed as 

r 41 

{4}- 4y =[B]{S} 
Yxy Yxy 

(2.29) 

Where [B] is a matrix that can be defined in terms of derivatives of the shape functions 

using equations 2.26,2.27 and 2.28. 

Stresses in terms of strains 
In order to relate stresses to strains, a material constitutive model is necessary. For 

simple linear elasticity, the plane-stress constitutive relations are 

Qx -1ý `ýx+ 
V7y) 

cry 

(2.30) 

(2.31) 
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_E Ylly Y 
2(l+ v) ý 

where E is the elastic modulus and v is Poisson's ratio. Using matrix notation, 

ax 

ay = [D] 4y = [D][B]{S } 

T xy 
4 

xy zXri 14 -Y 

where [D] is the material matrix formed using equations 2.30,2.31 and 2.32. 

(2.32) 

(2.33) 

Nodal forces in terms of displacements 

Load is transmitted from one element to another through forces at nodes of the 

elements, which can be represented as {F}. These nodal forces in two coordinate 

directions are related to the nodal displacements through a set of element equilibrium 

equations. These equilibrium equations can be defined by equating the external work 

accomplished by the nodal forces when subjected to an arbitrary set of nodal virtual 

displacements, d{S}, to the internal energy stored in the element's volume as its stress 

field subjected to the virtual strain field resulting from the same virtual nodal 

displacements. This relationship can be expressed as 

(d{8})T {F} = 
L, 

1df6j 
T {6}dVol (2.34) 

Since the virtual strains can be related to the virtual nodal displacements as 

d{e} = [B]d{8} (2.35) 

the element equilibrium equation 2.32 takes the form 

d 131T {F} =d 181T f1 [B]T [D][B]dVol (2.36) 
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equation 2.36 now takes the form of a relationship between the nodal forces {F} and 
the nodal displacements {S}, 

{F} = [K]e {S} (2.37) 

Where [K]e is the elemental stiffness matrix defined as: 

[K]e = fv", [B]T [D][B]dVol (2.38) 

Global equilibrium 

Equation 2.37 establishes the relationship between the nodal displacements of an 

element and the corresponding nodal forces. When individual elements are joined at 

common nodes to model a structure, global equilibrium must be ensured at each node. 

This requirement means that the summation of the forces associated with all elements 

attached to that node must be equal in magnitude and opposite in direction to the 

externally applied force at that node. 

To construct these equations, individual element stiffnesses are assembled using 

algebraic techniques into a global stiffness matrix representing the stiffness of the 

entire structure. This global set of equations relates all the nodal degrees of freedom in 

the structure to the externally applied nodal forces. If the externally applied nodal 

forces are known, a solution for the nodal degrees of freedom can be obtained using 
linear algebra once the required boundary conditions are applied. When the 

displacements of all the nodes are known, the state of deformation of each element is 

also defined. Thus the state of the stresses and strains can be calculated using 

equations 2.29 and 2.33. However, since equilibrium is only guaranteed at a finite 

number of nodal points in the structure, the finite element method is a numerical 

approximation rather than an exact solution. (McCullough, 1982) 
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2.6.2 Least-square and Weighted residual method 

In this approach, instead of fording the variational principle explicitly, we start with the 

governing partial differential equations derived from the conservation laws of physics. 
These equations are used to formulate a functional statement. In the least square 

method the functional is the least square of errors generated by the substitution of the 

unknown function in the governing equation with an approximation. In the weighted 

residual methods, on the other hand a more general approach based on projection 

methods is used to derive a functional as a weak statement. Generally these functional 

statements are obtained without directly determining an expression for the total energy 

of the system. The advantages of these methods over the simple variational techniques 

are: 

- The procedure can be considered as a mathematical technique independent of the 

physics of the problem under study. 

- It is more flexible and can deal with different conditions without being concerned 

about proving different physical relationships. Consequently, the non-isotherm 

condition and non-linear cases can be studied easily and in each case the 

corresponding equation will be added to the set of equations. 

2.6.2.1 A brief outline of Galerkin method 

The Galerkin method has been judged to be the most powerful technique for 

generating finite element representation of non-linear differential equations (Oden, 

1972). The method is a special case of the method of weighted residuals. Consider the 

non-linear equation, 

Y(f) =P (2.39) 

where (f) is a solution of equation 2.39 and Y represents a non-linear operator. The 

approximate solution of this non-linear equation is assumed to be a combination of 

trial functions, say 

r 
f= YO, f, , =, 

(2.40) 
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The substitution of f into equation 2.39 gives 

Literature Review 

(2.41) Y(f )-P= r(f) 

where r represents the error or residual due to the approximate solution. 

The method of weighted residuals involves the identification of a set of weight 

functions 

WW (f ). 
x, =,. _, P , so that r(f) vanishes in some weighted average sense over the 

solution domain 92. Generally the requirement is written 

fn W"' (. f )r(f )dSZ =0 (2.42) 

Galerkin suggested a rational choice of weight functions. In this method the weighting 

functions are chosen to be the same as the shape functions ( or trial functions). Thus, 

over each element equation 2.42 becomes 

P 

10; Y(ý o; f; ) -P de =0 (2.43) 
e i_1 

where 1=-1.... P. The system of P equations generated above are then solved to 

determine values of f; 
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DEVELOPMENT OF THE PREDICTIVE MODEL 

This chapter deals with the derivation of the working equations and different aspects of 

the development of a mathematical model to predict the behaviour of composites 

under various types of loadings. The main advantage of the penalty method which is 

used in this study is that it can cope with both fluid and solid state behaviour of 

composites. This is particularly important considering that polymeric composites are in 

liquid state under high stress and temperature condition. 

3.1 MODEL EQUATIONS 

3.1.1 Axisymmetric stress condition 

The problem of stress distribution in bodies of revolution (axisymmetric solids) under 

axisymmetric loading is of considerable practical interest. Axisymmetric formulation is 

expressed in terms of cylindrical coordinates, r the radial coordinate and z the axial 

coordinate and 0 the circumferential coordinate. 

The basic hypothesis of axisymmetry is that all functions under consideration are 
independent of 0. That is, they are functions of r and z only. 
Thus three dimensional problem is reduced to a two dimensional 
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one. (Zienkiewicz and Taylor, 1988) 

In this form of stress distribution any radial displacement automatically induces a strain 
in the circumferential direction, and as the stresses in this direction are certainly non- 

zero, this fourth component of strain and its associated stress need to be considered. 

Here lies the essential difference in the treatment of the axisymmetric situation. 

Equilibrium equations in r and z directions in axisymmetric case are: 

ßrr+aQrz+Qrr-(Tog 

=o ar dz r 

aa, =+aatt+az ar dz r 

The matrix equation which defines the stress and strain relations can be written as 
follows : 

6=DE 

where the stress matrix is defined as: 

Q= 

and 

Predictive Model 

6u 

Qn 

Coo 

ZR 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

VVO 
1' 

1-v' 1-v' 

D= 
E(1 - v) 

(1+v)(1-2v) 
1y, 0 

1-v (3.5) 
10 

1-2v 
2(1-v) 

and the strain matrix can be presented as follows: 
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f Ezz 
E? 

Ego 

YR 

t)V 

öz au 

0- 
u 
r au av 

az + ar 

(3.6) 

where v is the Poisson ratio, u and v are the displacement components in r and z 

directions. By substituting the stress terms in the equilibrium equations by the above 

constitutive relations the model equilibrium equations in terms of the strain in r and z 

directions are found as: 

a av, ý, avz a av, 2µ av, 2µv, av, avZ 
- +-+ +- 2µ +- - +- µ+ 

]=O 
(3.7) Tr 

(-aT 

r dz ar ar r 
Tr 

r2 dz dz ar 

, 
_a 

aVr + 
V,. 

+ 
aVt 

+a 21/ 
aVrl 

+µ-+ 
avl+ aµa Vr + 

2v')] 
= 0(3.8) 

( 

ar r dz rz 
l' 

ar l r(. 
ýOv' 

r dz J az dz ar rz l 

The Galerkin weighted residual method is used to write the weak formulation of the 

above equations and Green's theorem is applied in order to reduce the order of the 

integration. Then the weak forms are obtained in r direction as : 

f [)(NiNi +N1 
äNr+Nr aNf+aNj aNrý 

ai- 
0 r2 r dr r dr dr 

2Nj N; NJ aN; 
+aNjaN; )l U; rdrdz +µ( 

r2 
+ ar är az ai 

aNj äN, 1a Ni) aNj aNi 
+ýý« 

ar dz +r Ni dz +µýaz ar )I Vrrdrdz 
n 

(P rn, -ý, NiaNi rn, -AN, Nin, )Uiý 
r 

dz dr 

YR 
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aNf 
A 

aNJ ý(µN; 
ar rnZ -N; dz n, )V, ý'=0 

r 

and in z direction as below: 

(aNjaNi +1NjaN; 
aNiaNr 

dz ar r dz 
)+ µ( ar az 

)] V, rdrdz 

Predictive Model 

(3.9) 

aN aN! aNf aNr 

+ jýtc aZj ý 
)+ µ(2 

az ý)l Vr rdrdz 

n 
+f (µNraý jrnr-ýNraä jrnZ-ýNsNjn=)UrdI' 

r 

aNi aNf aNj 
+f (211 Ni rn=+iuN; rn, -, INr rnZ)Vrdl=O (3.10) 

a dr dz r 

In the above equations µ is shear modulus, X is penalty parameter, nZ, nr are components 

of unit vector, N1, Nj are the weight and shape functions. 

An equivalent formulation for the stress distribution can be derived starting from the 

Stokes flow equation for incompressible fluids in conjunction with so called Penalty 

method using appropriate penalty parameter. For steady state and axisymmetric flow the 

equations of motion and continuity are: 

aP laav, a2vt 
az 

+µ 
rar(r ar 

)+ 
az2 

+PgL=O 

aP alaa2v, 
ar+µ ar(rar(rv, 

))+ 
a2 j+Pgr Z 

avr+vr+avZ 

ar r dz 

(3.11) 

(3.1 Z) 

(3.13) 

where v,, v, are velocity components, P is the pressure, u represents fluid viscosity, p is 

fluid density and g,, g, are the components of body force vector. (Huebner and 

Thornton, 1982) 
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In a penalty method approach the pressure is eliminated as an unknown field variable 

through the use of a penalty parameter and modified momentum equations are solved for 

the velocity components. The pressure is represented by 

P--/1 aV+Vr+avZ 
Or r r}z 

(3.14) 

where A> 0 is a parameter. This means that the incompressibility condition (i. e. the 

continuity equation) can be treated as a constraint on the momentum equation. In a 

viscous flow if the parameter A is specified to have a large numerical value in the 

solution, the incompressibility condition will be satisfied. The main advantage of penalty 

formulation is that the additional variable P is eliminated and the working equation take 

a more compact form. The final matrix form can be written as: 

[[C]+[K]+A[L]] 
ivZ 

= 
Rv` 

vr Rv. 
(3.15) 

For an incompressible flow we must seek a solution to the above matrix equation as 

A. -ý ca. Since the matrices [C] and [K] are finite, as A becomes large the solution tends 

to . 

AjL] 
Vv, 

= Rv, 
(3.16) 

The special consideration that is required in the penalty function approach is that [L] 

must be a singular matrix. Most commonly used conforming elements produce a 

nonsingular [L] if the integrals are evaluated exactly. The procedure used to make [L] 

singular is to evaluate [L] approximately by using reduced Gauss integration. 

Now if we define the penalty parameter as follows, the equation of flow will result in 

the equations similar to the equations of equilibrium. 

ý =2vµl(1-2v) (3.17) 
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In our study we have based our model on Stokes flow equation and the penalty method. 
This gives us the flexibility to switch the model from the analysis of flow to solid 

material deformation under applied load. Since most composite materials are in fluid 

state at the processing time and are in solid state when they are used, this approach 

offers the advantage of the ability of predicting the material behaviour in both cases 

through one model. 

When establishing the element mesh for axisymmetric problems, care should be taken to 

avoid positioning elements in such a way that two nodes have the same or nearly the 

same radial coordinates. If two radial coordinates are close, the calculated difference 

between them may be grossly in error, and if r; = rj some of the integrals in equations 

2.9 and 2.10 become infinite. Another problem can arise in case where nodes he on the z 

axis, (i. e. r=0), because this result in the appearance of infinite terms in the working 

equations of the scheme. This can be avoided by introducing a small core hole along the 

axis and assigning low values to the radial coordiantes that would normally be zero. The 

radial displacements along the core are then set to be zero to simulate the actual 

condition of zero radial displacement at r=0. 

3.1.2 Plain strain condition 

In the plain strain problem the displacement field is uniquely given by the u and v 

displacements in directions of the, orthogonal Cartesian x and y axes. It should be noted 

that the only strains and stresses that have to be considered are the three components in 

the xy plane. The stress in a direction perpendicular to the xy plane is not zero. 

However, by definition, the strain in that direction is zero, and therefore no contribution 

to internal work is made by this stress, which if desired can in fact be explicitly evaluated 

from the three main stress components at the end of all computations. 

Equilibrium equations in x and y directions in plain strain case: 

aý 
+a6xy dy 

aý +aßyy dy 

(3.18) 

(3.19) 
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The matrix equation which defines the stress and strain relations can be written as 
follows 

6=De 

where the stress matrix can be defined as: 

Uzu 

6= 6yy, 

zz 

D- 
E(1- v) 

(1+v)(1-2v) 

(3.20) 

(3.21) 

1v0 
1-v 

v10 
1-v 

(3.22) 

00 1-2v 
2(1-v) 

and the strain matrix can be presented as follows: 

,=ý (3.23) 
dy 

au dv 
az jý 

By substituting the stress terms in the equilibrium equations by the above constitutive 

relations the model equilibrium equations in terms of the strain in x and y directions are 

resulted as: 

-a ýý+ vy +(2,4 ý+a lft(-a-vx 
+ý=0 (3.24) 

ý' ý' ý 

-A 
a ý" 

+ vy + 29 
a vy )+{x+x1 =o (3.25) 

aY aY ý' aY 
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The Galerkin weighted residual method is used to derive the weak formulation of the 

above equations and Green's theorem is applied in order to reduce the order of the 

integration. Thus the weak variational forms are obtained in x and y directions, 

respectively, as : 

f [(ý+2µ) 
ýJ. ý`+µaNJ. aN']V, 

dxdy 
n 

ay dy 

+J; t aNi äNr+ aNj aNrI 
Urdxdy 

n az ay u ay ax 

+f (11 NraNJny+2µN; 
ýJnx-A 

Ni 
ýJnx)UrdI' 

r 
ý' 

+ý(µNiaa 1 rnZ-, 1 n. )Vrý'=0 (3.26) 
r 

and 

Jµ dN' d Ni 
+ý 

d 
a] 

Vi dxdy 
ayN' 

aýN' 

ny 

-Iý(ý. lNtaNýrnr-ýNi 
ýýrnz)Uidr' 

r 
az 

VI vL 

f [ttaNi. 
ý'+(A, 

+2, u)aNJ 
aN']U; 

dxdy 
n 

ay ay 

PAM 
a1Vj 

rnz+µNiaNj 
aNj 

rý 
Trnr-ANi dz rnz)Vidi'=0 (3.27) 
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3.2 MODEL GEOMETRY AND BOUNDARY CONDITIONS 

3.2.1 Modelling of the particulate filled composites 

Predictive Model 

In the finite element approximation of axisymmetric solids, the continuous structure or 

medium is replaced by a system of axisymmetric elements interconnected at nodal 

points. It is assumed that the composites filled with particles( assumed to possess 

symmetry) could be approximated by a unit cell shown in figure 3.1. a. When this unit 

cell is rotated 360° around axis AD, a hemisphere embedded in a cylinder is produced. 

(Zienkiewics and Taylor, 1989) 

The interparticle spacing is equal to 2(ri-r2). The volume fraction of the filler can be 

calculated from the ratio r2/r1. For a square or cubic array the relation of volume 

fraction and 

the ratio r2/rl is defined as: 

n r2 3 Vf= 6(rý) 

and for hexagonal array it is modified as: 

_n 
rz 3 Vf 

3ýýriý 

(3.28) 

(3.29) 

This form of axisymmetric representation of the composite only approximates its real 

packing and structure. These axisymmetric cells are not actual repetitive units but are 

related in their dimensions to the interparticle spacing. The maximum volume fraction 

for hexagonal and square array in this case is 0.74 and 0.52 respectively. (Agrawal and 

Broutman, 1973) 

For rod like particles, the unit cell is defined as shown in figure 3.2. a. When this unit cell 

is rotated 360° around axis AD, a cylinder embedded in a cylinder is produced. 

Different parameters used are: 
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If ,df, rf: length, diameter and radius of the fibre 

1m� dm, r, �: length, diameter and radius of the cell 

af 

Sf 

xI 

fibre aspect ratio: 

fibre tip spacing: 

fibre spacing parameter: 

af=lfld f 

l, �-if=sflf 

l, �-If=zfdf 

Predictive Model 

Then the dimensions of the cell are related to the volume fraction of the fibres in the 

composite through the expressions: (Berthelot et al, 1993) 

2_1 (rfr, �) 
V f(1+xf/af) 

(3.30) 

The boundary conditions imposed for analysing the tensile load applied on the 

particulate filled composite are as follows: (Christman et al, 1989) 

VZ =0 on Z=0 (3.31. a) 

VZ =V on Z=bo (3.31. b) 

Vr =U on r=Ro (3.31. c) 

Vr=O on r=0 (3.31. d) 

Here V is a prescribed constant while U is determined from the condition that the 

average lateral traction rate vanishes, i. e. 

b, 
Jo. dZ=O on r--R. 
0 

(3.32) 

These conditions can be applied to unit cell of spherical particulate and rod shape 

particulate filled composites shown in figure 3.1. a and figure 3.2. a respectively. In 

addition to the boundary conditions 3.31. a-d, there is the requirement that displacement 

components vanish on the surface of the rigid fibre. 
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In some calculations, a second set of boundary conditions is employed consisting of 

3.31. a and 3.31. b, but with 3.31. c and 3.31. d replaced by aR =0 on r=R,. So that every 

point along r=Ro is stress free. Under these conditions the outer sidewall of the cell does 

not remain straight and vertical. Of course, for the entire tension specimen, aR =0 on the 

outer boundary of the specimen. Relaxing boundary conditions 3.31. c and 3.31. d 

permits, in a highly approximate manner, consequences of deviations from this highly 

constrained fibre distribution to be explored. Predictions based on 3.31. c and 3.31 .d are 

referred to as result "with constraint" and predictions based on art =0 on r=Ro are 

referred to as results "without constraint". 

To satisfy the first set of boundary conditions (with constraint) , the following 

procedure is used. 

1) The stress and displacement distribution is found such that: 

vz, =0 on Z--0 (3.33. a) 

vzt =1 on Z--b. (3.33. b) 

vr, =0 on r=Ro (3.33. c) 

vr1= 0 on r=0 (3.33. d) 

2) The stress and displacement is found such that : 

vz2 =0 on Z--0 (3.34. a) 

vz2 =0 on Z-- bo (3.34. b) 

vr2 =1 on r=Ro (3.34. c) 

Vr2 =0 on r=0 (3.34. d) 

3) These stress and displacement distributions are superimposed to obtain 

6=a, +k 62 (3.35) 
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and 
v=Vl+kV2 (3.36) 

where k is determined such that the net force in the r direction along be is zero. 

(Agrawal et al , 1971) thus 

(Fr) BC -f (a,, +k (Tr2)dZ = IBCJ(6º1 +k ar2) BC =0 
BC 

so that 
r1 k=(2 

Qr2 BC 

The stress on AB is thus 

\QL/AB 
- l6zIJAB - 

ßrl 
(6z2)AB 

ar2 BC 

and the displacement is 

(uz)AB 
- 

(uz1)AB ßrl2 

BC 

(UZ2)AB 
- 

(UZI)AB 

Qr 

since (UZ2)AB =0. 

3.2.2 Fibre reinforced composite 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

The plain strain analysis can be used for the fibre reinforced composite. Figure 3.3. a 

shows the unit cell for the cubic array configuration of fibre reinforced composite. The 

following expression defines the relation between the unit cell dimensions and the 

volume fraction: 

Vf= 7i 
4r 

r2 

l 
(3.41) 

Figure 3.4. a shows the unit cell employed for 'the hexagonal array configuration. 

Numerous choices exist for the unit cell geometry. The unit cell tested is rectangular in 

Predictive Model 
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shape with dimension 2L1*2L2, with L2 = NF3 L1. Then the volume fraction of the fibres 

is related to the cell geometry according to 

nR3 Vf=V(L) (3.42) 

The maximum volume fractions for the square and hexagonal array in the fibre 

reinforced composite analysis are 0.907 and 0.785 respectively. (Gibson, 1994) 

Using the square array and hexagonal unit cells the composite response to transverse 

tensile and shear loading is examined. 

2.2.1.1 Tensile loading 

The boundary conditions imposed for analysing the tensile load applied on the fibre 

reinforced composite are as follows: 

vy =0 on y=0 (3.43. a) 

vy =V on y--Yo (3.43. b) 

Vx =U on x=Xo (3.43. c) 

Vx =0 on x=0 (3.43. d) 

Here V is a prescribed constant while U is determined from the condition that the 

average lateral traction rate vanishes, i. e. 

b. 
1 Qxxdy =0 on x=Xo (3.44) 
0 

These conditions can be applied to unit cell of square and hexagonal array of fibre 

reinforced composites shown infgure 3.3. a and figure 3.4. a. 
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In addition to the boundary conditions 3.31. a-d, there is the requirement that 

displacement components vanish on the surface of the rigid fibre. 

3.2.2.2 Shear loading 

The response of the fibre reinforced composite to transverse shear load is simulated with 

the following boundary conditions imposed on the unit cells shown in figure 3.3. a or 

figure 3.4. a: 

vy=o 
vx_0 

on y=0 (3.45. a) 

vx =V on y--Yo (3.45. b) 

Vr=0 on x=Xý (3.45. c) 

vy =0 on x=0 (3.45. d) 

Here V is a prescribed constant in addition to the boundary conditions 3.31 . a-d, there is 

the requirement that displacement components vanish on the surface of the rigid 

fibre. (Eischen and Torquato, 1993) 

3.2.3 Slip boundary conditions 

When there is no slip at the interface of the matrix and filler, the relative displacement of 

the two phases is the same as zero. Whereas in the case of slip the relative displacement 

of the two phase is not zero and the boundary condition is described by Naviers slip 

relation, which is a third kind (Robin or convective) boundary condition: 

(ßr. n+v). t= 0 (3.46) 

Complementary with the above boundary condition is the following relation which 

ensures there is no relative radial displacement of the two phase. 

vn=0 (3.47) 

I. 
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Where: 

ß= slip coefficient 

ti = stress tensor 

n= Unit vector normal to the interface 

t= Unit vector tangential to the interface 

v= relative displacement of the two phase 

Predictive Model 

From the slip boundary equations and the usual stress and velocity relations the 

components of the slip velocity are obtained as follows: 

19v1 
_ 

av2 avl - av2 v1=-µßn2[2(ax1 ax2)n1n2+(ax2 + ax1)in2-nl)] 

_ 
avl 

_ 
av2 avl av2 v2 - µßnl[2(axl ax2)nln2+(ax2 + axl)(n2 -nl )l 

(3.48) 

(3.49) 

We discretise the domain and write the weak formulation of the slip velocity relations. 

The interpolation points are chosen inside the elements adjacent to the slip boundary. 

The resulting stiffness matrices are assembled with other elemental matrices obtained 

from the flow equations, to form the global stiffness matrix representing the entire 

domain. 

The matrix representation of these equations for an element located at the slip 

boundary results in the following equation: 

aIl a12 v1j 0 

aql aY2 v2j 0 

The members of the above stiffness matrix are given as: 

(3.50) 
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aV1 =ýNINjdS2+2n1n2 f, ußNiNj, 1dS2 
Q 

Predictive Model 

+(n 2- ný)1 uQ Ni N j, 2 dSZ 

aV2=-2n1n2 JußNiNl, 2dS2 
S2 

+(n2-ni)n2 JµßNiNj, 1dSZ 
S2 

ay1=-2n2n1 f µ/3NjN. j, 1dS2 

-(n2-ni)n1 JµßNiNj, 2dS2 
S2 

aZ2 =ýNiNjdS2+2n2n1 ýµßNiNj, 

'(n2'ni)jýßNiN. 1,1dS2 (3.51) 
92 
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3.3 CALCULATIONS 

3.3.1 Composite modulus of elasticity and Poisson's ratio 

To calculate the stiffness or modulus of elasticity of the filled composite, the average 

stress on the boundary AB is calculated: (Agrawal et al., 1971) 

Ja=d4 A 
Q= =A= (Q: )Aa (3.52) 

where A is the area of the top of the cylinder in the finite element analysis and the 

integral is replaced as a summation as follows: 

rl e 
f QZdA=2n f ßZrdr=2nE 1/2(ri-rr-1)Q: 
A0 ! =1 

(3.53) 

where r; and r1.1 are the radii to the nodal circles that define the elements on the top of 

the cylinder, n is the number of such circles, and aZ is the corresponding normal stress in 

each element. 

The modulus is defined as E=aZ/e. where the strain used is calculated from the specified 

boundary displacement, sZ = (UZ)AB BC I. Poisson's ratio was calculated from the 

displacements using the equation u= ul + ku2. The displacement of boundary AB is 

(uZ)AB = (uz1)AB , and the displacement of boundary BC is (Ur)BC = (url)BC+ k(u, 2)BC , but 

(ur, )Bc= 0; thus, (Ur)BC= k (ui2)BC. Poisson's ratio can be written as 

v= 
I (Ur)BCI l AB 

_I M(Ur2)BCBC 
l(UZ)ABI l BC (uzl)AB AB 

(3.54) 

and since (un) _ (uZI)AB =I 
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v- (ký 
AB - Jkj(BC = AB) 

3.3.2 Composite strength 

Predictive Model 

(3.55) 

In order to calculate the composite strength, it was assumed that the composite would 

fracture as soon as an element of the matrix reached a large enough value of stress to 

cause fracture of the matrix. Since the matrix is subjected to combined stresses (triaxial) 

a suitable failure criterion has to be used in order to predict matrix failure under 

combined stresses. The Von Mises failure criterion or distortion energy theory was 

selected. (Sahu and Broutman, 1972) 

This criterion is then applied by determining which element has the maximum value of 

distortion energy for the applied stress. This value'of energy may not exceed the value 

needed to fail the matrix material (a') and thus the composite strength is calculated 

from 

Sc =6Z 
ßys 

v2 (Uý) 
(3.56) 

where U is the maximum value of distortion energy determined for the arbitrary 

specified displacement which produces the average stress a and S, is the composite 

strength. The accuracy of the strength results is particularly affected by the assumption 

that composite failure occurs by the first matrix failure. 

3.3.3 Stress calculations( Variational recovery) 

The displacement formulation has frequently resulted in an unrealistic stress prediction, 

giving interelement stress jumps even if the true stresses were continuous. Resort to 

nodal averaging of element stresses is frequently made in practice to make the results 

more meaningful to the user. However, it is possible to obtain a better stress picture by a 

projection or variational recovery process which in itself is another way of applying a 

mixed formulation. 
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In this method we obtain displacements u by an irreducible formulation. The stresses a 

are approximated, (Zienkiewicz and Taylor, 1989) 

6= DBu (3.57) 

We compute a set that is interpolated by 

a= NQ a (3.58) 

which in the weak sense approximates to a. We write this approximation as 

faN f -Q)di2=0 

or 

(3.59) 

(JnNäNQdS )6=(fýNQDBu)dfl. (3.60) 

It is interesting to note that the projection of the above equation is equivalent to the least 

square fit or minimisation of 

II - 
fn(Q -Q)2dS2 (3.61) 

The fact that smoothed and thus more accurate, stresses are a least square fit of 

computed stresses provides a clue as to the location of points at which the sampling or 

evaluation of stress is optimal. 

Stresses at the interface of the spherical filler and continous fibre are calculated from the 

following equations: 

CFO = QzCOS20 +a, sin20 -T, z sin 20 (hoop stress) 

a� = aZ sin 20+ Cr cost 0+ zR sin 20 (radial stress) 

T 
rO = 'Crt cos 20 -2 (o 

- Qz) sin 20 (shear stress) 

6Wm = a'# (tangentail stress) 
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RESULTS AND DISCUSSION 

INTRODUCTION 

In this chapter the numerical analysis results are presented and the following topics are 

discussed: 

" Modulus of composites 

A general review of modulus of composites found by numerical analysis and other 

methods is presented. The strengths, weaknesses and assumptions made in different 

methods are discussed and compared. 

" Composites filled with rigid particles 

The imposition of the tensile load on a composite filled with particles much stiffer than 

the matrix is simulated. The modulus, stress distribution and the strength of these types 

of composites are predicted. The tensile stress obtained by our model is compared 

with the Papanicolaou model which includes the effects of taking the particle diameter 
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into account. The tensile strengths predicted by different models are compared with the 

outcome of our model. 

" Composites filled with debonded rigid particles 
Composites with a weak interface between the filler and matrix which are susceptible 

to interfacial crack formation are studied. This condition can be distinguished as 

partially bonded inclusion. Another case arises when there is no bonding between the 

inclusion and the matrix. In this latter case the slip boundary condition is imposed on 

the section of the interface which remains closed. The state of stress and displacement 

fields are obtained for both cases. The location of any further deformation through 

crazing or shear band formation is identified as a crack tip. Completely unbonded 

inclusion with the partial slip at a section of the interface reduces the concentration of 

the stress at the crack tip. 

The effect of debonding on the strength of the composite is studied. 

" Composites filled with soft particle 

The behaviour of the rubber filled composites under the tensile load is studied. The 

effect and the importance of the use of different filler properties on the outcome of 

the numerical analyses are discussed. Two types of toughening mechanisms, namely 

shear banding and cavitation, are identified and the fracture behaviour of the 

composites is studied. 

" Continuous fibre reinforced composites 

The responses of the fibre reinforced composites under tensile and shear loads are 

investigated. The Young's modulus and shear modulus are calculated. The stress 

distribution at interface and throughout the matrix is analysed. Different failure modes 

are defined and discussed. 

" Short fibre reinforced composite 

The effect of different geometrical parameters such as aspect ratio and fibre spacing on 

the modulus of the short fibre reinforced composites is examined. The critical fibre 
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length for achieving the maximum reinforcement is described. The interfacial shear and 

tensile stress are predicted and compared with the shear lag and modified shear lag 

models. The model equations are modified by considering the boundary flux terms. 

The model predictions for the composite properties and stress fields are obtained with 

and without boundary fluxes. The possibility of the composite failure either by 

interfacial debonding and fibre breakage is investigated. 
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4.1 MODULUS 

4.1.1 Equal stress and equal strain bounds 

Modulus is a bulk property of composites that depends primarily on the geometry, 

modulus, particle size distribution, and concentration of the filler. 

The Hashin's bounds and rule of mixture bounds are compared with our prediction in 

figures 4.1 a-c for a particulate filled composite. The rule of mixture bounds predict 

that the modulus of a two phase composite should fall between the upper bound of. 

E, =VmEm+VfEf 

and the lower bound of. 

E, � Ef 
E, _ 

V, �Ef+VfE, � 

(4.1) 

(4.2) 

The epoxy matrix and glass beads (filler) properties, which are used in our model, are 

given in table 4.1. 

Input Properties 

Phase E (GPa) Poisson's Ratio, v 

Matrix 3.01 0.35 

Glass Sphere 76.0 0.21 

Table 4.1. Elastic Material Properties Used in the Predictive Models 

The modulus predictions agree well at low filler volume fractions. At higher filler 

volume fractions the Hashin's bound and rule of mixture bounds become widely 

spaced, and therefore they are of limited predictive value. However, these bounds can 

still serve as a useful test for the approximate theories, since any solution outside these 

bounds must be regarded as invalid. From a mechanical viewpoint, the upper bound 

represents the situation in a two phase material in which both phases strain equally. 
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The lower bounds represent the case in which the phases are stressed equally under an 

applied load. This situation is typified by particles in a matrix, with no hydrostatic 

stress present. The relative position of the modulus values in the bounds depends on 

the relative properties of the particle and the matrix. When a two-phase particulate 

filled composite is deformed under an applied load, the matrix, which is usually softer 

than the particulate reinforcement, tends to deform at lower stresses than the dispersed 

particles. However, since the matrix is rigidly bonded to the harder particles, it cannot 

deform in the same manner as it would in the absence of the filler. 

The restriction of matrix deformation imposed by the hard reinforcing particles results 

in the generation of a hydrostatic state of stress in the matrix. The magnitude of this 

hydrostatic constraint and the determination of whether the generated stress is purely 

hydrostatic depends on the relative clast properties of the two phases (i. e. elastic 

modulus and Poisson's ratio of phases). As the disparity between hardness and the 

strength of the two phases in these composites becomes greater, the hydrostatic 

constraint factor cannot be extended as much as it does in the composites with phases 

having closer properties. Therefore a greater relative modulus of particles and matrix 

results in a composite modulus closer to the lower bound, ie; equal stress prediction. 

In figures 4.1 a-c the modulus of composite has been predicted by the finite element 

model for three different relative moduli of particle and matrix. It can be seen that as 

the relative value increases from 2.14 in figure 4.1 a to 25 in figure 4.1 c., the modulus 

values at the range of filler volume fraction shift from the upper equal-strain bound to 

the lower equal-stress bound. The bounds are more widely spaced when the relative 

modulus rises. However, in all cases the Hashin bounds are spaced closer than rule of 

mixture bounds. 

The advantage of the finite element prediction is that it can be used for any shape of 

particles and interface conditions. 

The lower and upper bound assume that individual phases are under uniform stress or 

strain. In practice, however, the filler particles may not be completely separated from 

one another and the reinforcement element may, on the microlevel, effectively be an 

aggregate of smaller particles. Thus in response to the applied load the stress will be 
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distributed unevenly between the particles and aggregates and the assumption of either 

uniform stress or strain (uniform particle size and distribution) will be an over- 

simplification. 

4.1.2 Model predictions and experimental results 

Accurately measured values of Young's modulus for epoxy resin reinforced with glass 

spheres are available from literature. These experimental results agree well with our 

finite element predictions as shown in figure 4.2. The differences can be attributed to 

the assumptions that have been made in the model. The discrepancy between model 

predictions and the experimental results may be due to ignoring the following factors 

in the model. 

4.1.2.1 Agglomeration 

The filler particles may aggregate to form agglomerates much larger than the filler 

particles. Agglomerates tend to contain voids and air filled spaces so that their 

apparent volume is considerably greater than the true volume of the filler material. 

If the agglomerates are hard and have appreciable mechanical strength, they will not 

easily be broken and considering the weight of material added as filler, the filled 

material can have a modulus greater than expected. Because the volume of the 

aggregates in this case is larger than the true volume of the filler particles. Soft and 

easily disintegrating aggregates, on the other hand, would be expected to give rise to 

an opposite effect. The agglomeration of particles have a considerable effect at higher 

volume fractions of filler and therefore this factor become more significant at higher 

volume fractions. 

4.1.2.2 Dewetting 

At high concentration of fillers, all the individual particles might not be wetted by 

matrix phase resulting in a poorer dispersion of the filler within the composite. 

Instead, the particles tend to aggregate. Dewetting and poor dispersion are amongst 
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the reasons that make the production of composites with very high filler volume 
fractions impractical. 

4.1.2.3 Adhesion and bonding 

In theoretical analysis of the behaviour of the composites it is generally assumed that 

the adhesion between the filler and the polymer matrix is perfect. By perfect adhesion it 

is meant that there is no relative movement of the phases across the interface under the 

applied loads. At higher applied stresses, however, the interfacial bond may break, and 

the adhesion is no longer perfect. Thus, the magnitude of the applied stresses often 

determines whether there is a perfect adhesion or not. In reality, the degree of 

adhesion does not appear to be an important factor as long as the frictional forces 

between the phases are not exceeded by the applied stress. In most filled systems there 

is a mismatch between thermal expansion coefficients of the phases which results in a 

mechanical bond due to thermally induced stresses. 

In many practical cases it cannot be assumed that there is a perfect adhesion between 

the filler and the matrix. In extreme cases of debonded particles it can be assumed that 

the particles act as holes and, therefore can seriously decrease the composite modulus 

with increasing filler content. It can be argued that the unbonded particles do not act 

entirely as holes, since they also restrain the matrix from collapsing. 

If the bond or adhesion between filler and polymer is weak, the bond may break when 

a load is applied. The polymer will then deform more than the filler so that 

unsymmetrical cavities and voids develop around each filler particle. 

A change of the matrix-filler adhesion has a smaller effect on composite modulus than 

its strength. The latter is much more dependent on the pre-treatment of the filler 

surface. Thus the filler is less efficient as a reinforcing agent, and in extreme cases the 

modulus of the composite can be reduced rather than being increased by the addition 

of filler. 

4.1.2.4 Arrangement 

In practice the arrangement of the filler particles in a composite can never be uniform 

and the interparticle spacing varies in different parts of the composite. It has been 
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shown that when particles are distributed randomly, a lower composite modulus is 

obtained. A combination of finite element modelling and spatial statistical techniques 

has been used in the simulation of composites with randomly distributed filler 

particles. 

In this project two different types of particle arrangements in the form of square and 

hexagonal arrays are examined to show the effect of the particle distribution on the 

final physical properties of the composite. The results are shown in figure 4.4 for a 

particulate filled composite. The same comparison of the effect of the arrangement of 

reinforcing phase can be seen in figure 4.5 for a fibre reinforced composite. In both 

cases the hexagonal array gives lower composite modulus for the same filler volume 

fraction and the hexagonal array gives a higher volume fraction for the same particle 

spacing. The hexagonal array can be considered to be a more random arrangement 

compared to the square array. 

4.1.2.5 Filler particle shape 

In our model we assume that the particles are spherical and of the same size. 

Practically the filler particles are not uniform in size and only a few fillers are 

spherical in shape. However, since most particles have nearly the same dimensions 

in all directions, they can be approximated by sphere. Deviations of experimental 

results from the model may be caused by more important factors than small 

deviations of the particles from spherical shapes. 

Despite the described simplifying assumptions our model predictions compare closely 

with the experimental results. The agreement between model predictions and 

experimental results is more obvious when unconstrained boundary conditions is 

imposed and hexagonal packing is chosen to show the distribution of the particles. 

It can be shown that the addition of particles produces a substantial increase in 

composite modulus. However, asfigure 4.3 indicates the effect of increase in particle 

modulus gradually diminishes becoming asymptotic to the modulus of an infinitely 

rigid particle. 
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4.2.3 Boundary conditions used in the finite element model 

The conditions at the boundary of the cell which is perpendicular to the boundary 

under tensile load can affect the result of the analysis. When boundary conditions with '. 

constraint are imposed, for each point of the modulus-volume fraction curve we need 

to follow two steps of loading. The results of these steps are superimposed and the 

total and final point is calculated. Under this set of boundary conditions we enforce 

geometric compatibility and therefore the outer sidewall of the cell remains straight. 
When the unconstrained boundary conditions is employed, every point along the 

sidewall is stress free. However, since the constraints are released, the sidewalls do not 

remain straight. The results obtained for these sets of boundary conditions are 

compared for both particulate and fibre reinforced composites and are shown in figure 

4.6. The results predicted using unconstrained boundary condition are lower than the 

results found for the constrained boundary conditions. 
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4.2 COMPOSITES FILLED WITH RIGID PARTICLES 

In this section the response of epoxy resin filled with glass particles to tensile and 

compressive loading is studied. The physical properties of the epoxy resin and glass 

filler used as the input values for the finite element program are presented in table 4.1. 

4.2.1 Young's modulus 

The predicted values of the Young's modulus for composites filled with hard particles 

are compared with experimental data in figure 4.4. The theoretical models which are 

used to explain the variations of the modulus of polymer composites with volume 

fraction do not normally include the effect of filler particle size. However, experimental 

observations of Spanoudakis and Young (Spanöudakis and Young, 1984) show that 

there is a clear reduction in the modulus of a composite with increasing particle size for 

a given volume fraction of particles. 

Relatively low values of Young's modulus for large particle sizes have been attributed 

to the "skin" effect. Lewis and Neilsen suggested that in the moduli measurements, 

the properties of the surface are emphasised at the expense of the interior of the 

composite. This leads to a higher error for larger particles where the surface "skin" is 

depleted of particles. This could explain the drop in modulus with increasing particle 

size. The error due to "skin" effect can be removed by the extrapolation of measured 

values for particles with zero size (i. e. points). 

4.2.2 Stress distribution 

4.2.2.1 Concentration of direct stress 

The maximum direct stress concentration which is the maximum principle stress is 

found to be in the resin above the pole of the sphere. The precise position and value of 

the maximum stress concentration of the applied stress vary with the volume fraction 

of the filler. The magnitude of the stress concentration of applied stress increases with 

volume fraction of added glass particles which is due to increasing interactions 
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between the stress fields around the filler particles as their separation decreases. 

Stress concentration in this work is defined as the stress value normalised by the stress 

applied to the composite and the relative position is the distance from the pole 

normalised by the pole-edge distance. 

The position of maximum stress concentration factor of the applied stress varies in the 

studied cases. This is shown in figure 4.7. At high filler volume fractions the position 

is at the edge of the grid, which is the midway between the particles. At lower volume 

fractions the position is relatively closer to the particle in the cylinder under analysis, 

which is further away from its adjacent particles. Taking into account that the distances 

between adjacent particles for different volume fractions is variable, the maximum 

distance between the position of stress concentration and adjacent particle was 

calculated. This distance decreases rapidly with increasing filler volume fraction. 

4.2.2.2 Stresses at the interface 

Stresses around the interface are transformed to polar coordinates. Radial and shear 

stresses on either side of the interface, in the glass and resin are identical. It is found 

that the stress transferred to the glass sphere is substantial. This leads to a sharp 

increase in the stiffness with increasing volume fraction of particles. 

As figure 4.8a shows the maximum radial stress is at the pole of the particle sphere 

for all volume fractions. The variations of the value of this stress concentration with 

filler volume fraction is similar to that of the maximum stress concentration. Radial 

stress is tensile at the pole and compressive at the equator for a spherical particle. At 

position 0= 22° the stress is zero for all volume fractions. The variation of the 

tangential stress in the matrix at the interface is shown in figure 4.8b. 

There is a maximum in radial-tangential shear stress as it can be seen in figure 4.8c. 

Both the value and the position of this stress concentration vary with volume fraction. 

The absolute value of the stress concentration factor decreases with increasing volume 

fraction. This decrease is explained by considering the source of this stress 

concentration, which is the difference between the moduli of the particle and its 

surrounding material. As the volume fraction of spheres increases this difference 

decreases, and hence the rate of this decrease becomes significantly (- 4 times) smaller 
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than the rate of the increase of the concentration of applied stress. Figure 4.9 indicates 

that at higher volume fractions the site of this maximum concentration of shear stress 

moves closer to the pole of the sphere. 

Stresses around the interfaces of spherical particles have previously been considered by 

Dekkers and Heikens ( Dekkers and Heikens, 1983). For a poorly bonded interface 

they postulate that a crack will form around the interface because of the tensile radial 

stress. Using the constituent material properties very close to those we have used, 

they predicted that the interfacial crack should grow up to an angle of 0= 68° to 70°, 

depending on the remaining friction of the debonded interface. The magnitude of the 

radial stress concentration at the pole is not much smaller than the maximum 

concentration of the applied stress. Therefore for the tensile loading, debonding from 

the pole is expected. Under tensile applied stress the radial stress at the equator is 

compressive. 

4.2.3 Compression 

The radial stress would be tensile at the equator of the particle interface if the applied 

stress is compressive. Figure 4.10 shows the distribution of the stresses at the particle 

and matrix interface. Although the absolute value of this stress at the equator is almost 

an order of magnitude smaller than its value at the pole it may however be sufficient to 

cause debonding from the equator of the sphere under the condition of the applied 

compression. 

4.2.4 Concentration of yield stress 

The contour diagrams of the Von Mises stress, direct stress and shear stress 

concentrations are shown in figures 4.11a-c. In the contour diagram of the Von Mises 

stress two positions where Von Mises stress reaches its maximum are found: the first 

point is in the resin above the pole of the sphere in the close vicinity of the position of 

the maximum direct stress concentration; the second point is near to the position of the 

maximum shear stress at the interface. The values of these stress concentration factors 

vary with volume fraction as is shown in figure 4.12. Their positions vary in the same 

directions as the positions of the associated concentrations of the direct stresses. 

Figure 4.13 shows that the magnitudes of the maximum concentrations of 
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the Von Mises stress vary with volume fraction in the same way as the associated 

stress concentrations, although the range of the variation of Von Mises stress is very 

small. The stress peak located above the pole is greater at higher volume fractions of 

the filler, but at volume fractions below about 15% the maximum located at the 

interface is greater. Dekkers and Heikens (Dekkers and Heikens, 1983) studied the 

shear band formation for very low volume fractions of glass beads in various polymer 

matrices. They found shear band formation at the interface, at 0= 45°. The results of 

our finite element analysis for similar composites are given in figure 4.14 which show 

that at low volume fractions the maximum concentration of Von Mises stress is at the 

interface, at 0= 40°. 

The Von Mises stress at which yield occurs is dependent on the hydrostatic stress as 

explained earlier in this chapter. The hydrostatic stress values corresponding to the 

points of maximum Von Mises stress were calculated. Under the application of tensile 

stress the hydrostatic stress is tensile. The hydrostatic stress concentration remains 

almost constant up to around 20% volume fraction of filler, but it increases rapidly for 

higher volume fractions. The maximum hydrostatic stress concentration occurs at the 

pole of the particle. 

4.2.5 Fracture behaviour 

Crack growth is generally considered to move in the direction of the position of 

maximum direct stress. Our model predicts that the position of maximum direct stress 

is above the pole. These predictions correspond with the experimental observations 

(Spanoudakis and Young, 1984). 

For a well bonded sphere, at low volume fractions, crack growth is developed towards 

the resin above the pole of the sphere. Smearing of resin around the pole of the sphere 

is observed. This type of fracture appearance contrasts with the observed crack growth 

in epoxy resin containing poorly bonded glass particles which is found to be attracted 

to the equator of the sphere. The stress distribution in composite with poorly bonded 

filler particle is similar to that of a composite containing holes. The site of the 

maximum stress concentration is found to be at the equator of the sphere. 

pw 
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The amount of resin smearing around the pole of a well bonded sphere would be 

dependent on the position of the crack with respect to the sphere. Our results show 
,w 

that at low volume fractions the maximum distance is much further away from the 

sphere than for high volume fractions. Thus the model predicts that more smearing 

would occur if there are no spheres visible in the fracture surface. Greater smearing at 

low volume fractions has been observed. (Spanoudakis and Young, 1984) 

It is found that besides matrix properties, strain rate and temperature, the degree of 

interfacial adhesion has a profound effect on the competition between craze and shear 

band formation. In cases where the beads adhesion are perfect craze formation is 

favoured, whereas for poorly adhering beads shear band formation is dominant. This 

effect is caused by the difference in local stress situation, craze formation becomes the 

controlling factor under a triaxial stress state and shear band formation becomes the 

dominant factor under a biaxial stress state. In the case of an excellently adhering glass 

bead, the crazes form near the pole. Stress analysis shows that these are regions of 

maximum dilatation and maximum principle stress. At a perfectly bonded glass bead 

experimental observations show that the shear bands form near the surface of the bead 

at 45° from the poles which are defined by the axis of symmetry maximum principal 

shear stress and the density of maximum distortion energy. Our results confirm these 

observations. 

In the case of poor interfacial adhesion between glass beads and matrix, both craze and 

shear band are preceded by dewetting along the interface between bead and matrix. At 

dewetting a curvilinear interfacial crack is formed, starting at the pole and propagating 

in the direction of the equator until, at an angle of about 60° from the pole, a craze or 

shear band originates at the tip of the interfacial crack. 

Neilsen suggested a very simple model based on the assumption of Hookean behaviour 

up to breaking strains. In this case the following relation can be written: 

Q, = EE, (4.3) 
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where E is the tensile modulus and c is the elongation at breaking point, and c may be 

expressed as: 

Ec=Em(1-V f 
1/3 

) (4.4) 

where c,,, is the elongation at the breaking point of the matrix. Using the above 

relations the relative strength of the composite is found as: 

Eý v3 
ßnr=-(1-V ) 

Em 
f (4.5) 

The ratio Ec/Em can be calculated by the finite element model. 

There are other theoretical models which predict the strength of the filled composites 

and a few of them are brought to attention for comparison with the results of our finite 

element model. The constants in the following models are given for the glass filled 

epoxy composite. 

1. Leidner and Woodham (Leidner and Woodham, 1978): 

Qc=0.83paVf+Kam(1-Vf) 

where pa=1540 psi, K=0.8 or 0.9. 

2. Piggot and Leidner (Piggot and Leidner, 1974): 

6c=am(1-0.5Vj6) 

3. Nicolais and Mashelkar (Nicolais and Mashelkar, 1976): 

(4.6) 

(4.7) 

Q, =6m-f%Vb (4.8) 

with b=1.21 and n=0.66 

86 



Chapter Four 

1.8 

I °ýýý-ý 
1.5 

Tensile Stress Along Particle Diameter 
FEM-Papanicolaou Models 

-a- 0 
1.2 FEM(30% Vo1. Frac. ) 

C43 
-ý- 
FEM(50% Vo1. Frac. ) 

0.9 -ý- 
u Papanicolaou Model 

0.6 . -ý-ý-. -ý Cl) 1 
0.3 

Results And Discussion 

0 
0 0.2 0.4 0.6 0.8 1 

Relative Diameter Position 
Fig. 4.16: Tensile stress along particle diameter predicted by FEM and Papanicolaou models. 

Tensile Strength 
FEM-Experimental Data 

1 

0.8 
0 
.., 
cl ý 0.6 

u 
0 u 
,, 0.4 
W c, c, 

Cl) 

0.2 

0 
0 10 20 30 

Filler Volume Fraction(%) 
40 50 

Fig. 4.17: Relative tensile strength by FEM and experimental results for different particle diameters. 

87 



Chapter Four Results And Discussion 

4. Schrager (Schrager, 1978): 

Qý = Qm exp(-2.66 Vb) (4.9) 
, I. 

The results obtained using the above equations are given in figure 4.15 and are 

compared with the results of our model. All of these models except the Neilsen's 

model show a decrease in the strength of the composite with increasing volume 

fraction of the filler. The Neilsen's predictions depend strongly on the model which is 

used to obtain the modulus of the composite at different filler volume fractions. 

The finite element model gives rather low tensile strengths for cases corresponding to 

the described models. In the finite element analysis, it is assumed that composite failure 

occurs when the first element fails. A more realistic. assumption would be that 

composite failure does not occur until several of the highly stressed elements fail. This 

allows for `crack arrest' by neighbouring inclusions and also takes into account the 

statistical increase in the strength for the small volume of material which is subjected 

to the stress concentration. The use of this averaging technique will results in an 

increase in the theoretical strength of the composite. 

Papanicolaou et al (Papanicolaou and Bakos, 1992) have proposed a model for the 

prediction of the tensile strength of the particulate filled polymers. They have used a 

modified Cox model to find the stress distribution along a particle diameter. The load 

which is carried by the inclusions is calculated and used to estimate the tensile strength 

of the composite. The variations of the tensile stress concentration along the particle 

diameter of the inclusion are presented in figure 4.16. The trend of model predicted 

variations is similar to that obtained by Papaicolaou. Although the curve predicted by 

the finite element model shows a shift to higher values compared to the curve found 

using modified Cox model (Cox, 1952). 

The experimental results show that the strength of the composite depends on the size 

of the filler particles (London et al, 1977). In figure 4.17 the experimental results for 

four different particle diameters, 216 µm, 147 µm, 77 µm and 21 µm are compared 
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with our model. It can be seen that for the range of particle diameters studied the 

composite strength diminishes at higher volume fractions. The results also indicate 

that smaller particles show higher strength. The reason for this phenomenon is not 

entirely clear, but the increase in interfacial area per unit volume of filler for smaller 

particles must be an important factor. A second factor which may also be important, is 

that the stress fields near a particle are independent of the size of the particle, 

nevertheless the volume of polymer that experiences a given stress concentration 

increases with particle size. Therefore the probability of finding a large flaw within this 

volume increases. If a large flaw exists within an area of stress concentration, the 

tensile strength will be reduced according to Griffith's theory. In most of the 

aforementioned theoretical models, the effect of particle size cannot be investigated. In 

our finite element model we also assume that the composite is flawless and hence it 

predicts the strength of the composite through the stress fields which are independent 

of the particle size. Figure 4.17 confirms once again that our finite element model 

provides a somewhat conservative prediction of the strength for the composite. 
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4.3 COMPOSITES FILLED WITH DEBONDED RIGID 

PARTICLES 

Rigid spherical inclusions in glassy polymers induce inhomogeneous stress fields and 

thus act as stress concentrators. Consequently, plastic deformation processes such as 

craze and shear band are formed at these inclusions. The mechanisms of craze 

formation and shear band formation are investigated for small glass spheres 

embedded in matrices subjected to uniaxial tension. These microscopic studies have 

revealed the profound effect of the degree of interfacial adhesion on the mechanism of 

craze (Wellinghoff and Baer, 1978; Donald and Kramer, 1982) and shear band 

formation (Kinloch and Young, 1983). In the cases where the adhesion of glass sphere 

and polystyrene matrix is perfect, the crazes are found near the poles of the sphere. 

From stress analysis around a completely bonded sphere it appears that these are 

regions of maximum dilatation and of maximum principal stress. For perfectly adhering 

glass spheres in a polycarbonate matrix the shear bands are found to form around the 

surface of the sphere at an angle of 45° from the poles defined by the axis of symmetry 

of the stressed sphere. These are regions of maximum distortional strain energy density 

and maximum principal shear stress. In the case of poor interfacial adhesion between 

the glass sphere and the polymer matrix, both craze and shear band formation are 

found to be preceded by dewetting along the interface between sphere and matrix. 

During dewetting a curvilinear interfacial crack is formed, starting at the pole and 

propagating along the interface in the direction of the equator until, at an angle of 

about 60° from the pole, a craze or shear band originates at the tip of this crack. The 

results of these studies prompted us to analyse the stress conditions near the tip of a 

curvilinear interfacial crack between a glass sphere and a polymer matrix. 

4.3.1 Boundary conditions at the interface 

Figure 4.8a indicates that for all volume fractions of the filler the normal stress has 

negative value and is compressive in the part of the interface which starts from the 

equator and ends at about 0 =22°. At this point the normal stress is about zero and 

from this point towards the pole of the particle it continues to rise to its maximum 
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value at the pole. From this analysis it can be concluded that in the case of debonded 

filler or when dewetting occurs in a bonded filler, from the pole up to a length of the 

unbonded region represented by 0 =22°, the entire unbonded region may be regarded 

as an interfacial crack. 

Here we consider two cases. In the first case the remainder of the interface is bonded 

and there is no relative displacement of the matrix. In the second case we investigate 

the situation in which all the interface is debonded and from 0 =22° to the equator of 

the particle there can be a relative tangential displacement of the matrix depending on 

the frictional force at the interface. If the frictional force acting on the interface is high 

enough it can prevent the particle and matrix to have relative tangential movement. 

Therefore under this condition the model will be similar to the first case. If the 

frictional force is weak the tangential displacement occurs and hence slip boundary 

condition is imposed for this case. The slip coefficient controls the extent of relative 

movement of the matrix and the filler particle. 

4.3.2 Displacement 

Figure 4.18 shows the normal displacement of the filler and the matrix at the interface. 

The radial displacement of the matrix and the filler from the equator to 0 =22° is 

negative and much smaller than the displacement of the other segment of the 

interface(nearly zero). This negative value confirms that even in the case of debonding 

of the filler at this part, the two phases remain in contact and the stress can be 

transferred from the matrix to the filler. From the point of 8=22° to the pole the radial 

displacement of the matrix is positive and increases to its maximum at the pole. The 

filler displacement in this part is nearly zero. 

4.3.3 Interfacial stresses 

The interfacial radial stress concentration in matrix and filler is shown in figure 4.19 

for volume fraction of 10%. The results indicate that the normal stress is negative and 

compressive at the interface from the equator (i. e. 0=0) to 0=22°. In higher volume 

fractions this stress become closer to zero. The normal stress concentration has its 
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maximum value at the tip of the crack or unbonded region. This stress is nearly zero in 

both matrix and filler at the other part of the interface from the crack tip to the pole. 

The frictional force is proportional to the normal stress acting on the interface. 

Therefore in the segment closer to the pole, it is equal to zero which shows that no 

stress transfer occurs. In the other segment which experiences a compressive stress, 

the frictional force rises. This frictional force acts in the opposite direction to the 

tangential stress and is proportional to the normal stress so that: 

Ft = J. LF. (4.10) 

The value of frictional force determines whether there is any relative tangential 

displacement between filler and matrix or not. 

The tangential stress concentration distribution is shown in figure 4.20. The maximum 

stress is at the crack tip and the value is much higher than the normal stress. The 

tangential stress of cracked segment is zero close. to the crack tip and shows a small 

negative value close to the pole. 

In figure 4.21 the variation of Von Mises stress concentration is presented. The 

maximum of this stress is found at the crack tip. The stress concentration distribution 

at the interface shows the maximum values for direct and Von Mises stress at the crack 

tip. This confirms that any further plastic deformation through crazing or shear band 

formation starts from the crack tip. 

Figures 4.22 and 4.23 show the radial displacement and radial stress concentration for 

an epoxy composite 30% filled with glass beads. The radial displacements have 

positive values very near to zero in the bonded region. These values are negative for 

filler volume fractions up to 12% (figure 4.19). As it can be seen in figure 4.23 the 

radial stresses at this part are also positive. Therefore there can be a possibility for the 

growing of a crack towards the equator for higher volume fraction of glass beads. The 

negative values of displacement and compressive stresses at lower volume fractions 

95 



Chapter 1=our Itrsulls And I )iscUSsilln 

I 0.3121? 7 

2 0.2x51i7 
3 0.2KI1? 7 

4 0.27GV17 

5 0.1051? 5 

(, O. 5251; 4 

7 O. 1H2i? 7 

K -0.121F. 6 
l) 

-0.1341`7 

L 

Fig. 4.24a: Contour diagram of the direct stress field of the partly debonded composite with 
30% of hard filler particles 

96 



Chapter-Four Results And Discussion 

9 

1 -0.1(171{4 
2 -U. G441; 3 

3 -U. 2191; C, 

4 t1.4471? 5 

5 0.102F5 
6 0.2201; 7 

7 -0. KK9F6 
8 0.1 Rfi1? C, 
1% 

-(). 1o"11: K 

Fig. 4.24b: Contour diagram of the shear stress field of the partly debonded composite with 
30% of hard filler particles 

97 



Chapter Foul. 

H 

Kxsulis And 1 )isCussi0n 

I 3.121 '06 

2 2. x51'+06 

3 2. x5I'+05 

4 2.851 '106 

5 5.251'+05 
6 6.771'+06 

7 2,241,1+06 

x 4. x11'+05 

3.2nI". M7 

Fig. 4.24c: Contour diagram of the Von Mises stress field of the partly debonded composite 
with 30% of hard filler particles 

98 



Chapter Four 

Radial Stress Concentration 
Slip At The Interface(V-10%) 

0.5 

0.34- 

0.1 -ý 

a 

m 

0 

Results And Discussion 

0 
Matrix 
0 

Filler 

. 

ýý 'ý -apr. v C] v lJ vv... --- -i 
ýo 

oýdýr 
-ý. 1 ý 

ab 

-0.3 -ý 

-0.5 
0 

0 000000 

0 20 40 60 80 
Angle(Degree) 

Fig. 4.25: Radial displacement of the matrix and filler at the interface of the partly debonded particle with 
slip condition at the closed segment of the interface 

Tangential stress concentration 
Slip At The Interface(Vf=10%) 

5 

4.5- 

4- 

3.5 
0 w3 
ý 2.5 

u2 

1.5 

1 
C; 

r 0.5 -4 

0 
Matrix 
x 

Filler 

fo C) n 

-0.5 t _°OOo 

ii iý 
0 20 40 60 80 100 

Angle(Degree) 

Fig. 4.26: Tangential stress concentration at the interface of partly debonded particle with slip 
condition at the closed segment of the interface 

CRI 

0 

0 

o 
ý0 

0 

99 



Chapter Four Results And Discussion 

VonMises Stress Concentration 
Slip At The Interface(Vf=10ßö) 

5-- 

4.5-- 

4-- 

3.5-- 

3-- 

2.5-- 

2-- 

1 

0.5 

0 

-0ý5 } 

1 

0 

0 

0 

0 

0 
ca 0 

0 
0 

ý 
ý ý 

x 

O 

O 
0 

0 
Matrix 
x 

Filler 

-0000 ýo 
00 

0 20 40 60 80 100 
Angle(Degree) 

Fig. 4.27: VonMises stress concentration at the interface of partly debonded partilce with slip condition at 
the closed segment of the interface. 

1E-03 

ý 6E-04 

d» 

Matrix 
A 

5 
u 
cl 
a ý .., A 2E-04 + 

Filler 

Interfacial Radial Displacement 
Slip At Interface(Vf=10%) 

0 

e 
10 0 

. 40 

0 

40 
0 

0 
0 

4D 
0 

a a 
0 

0 0 00 

49 Ift Ift IN N 

-2E-04 
0 20 40 60 

Angle(Degree) 
80 

Fig. 4.28: Radial displacement of the matrix and filler at the interface of the partly debonded particle 
with slip condition at the closed segment of the interface 

100 



Chapter Four 

0.5 

0 
0 

0.3 

.., .r 

m 

ý 0.1 ý 
--' . Fi - --- 

Results And Discussion 

0 
Matrix 

Filler 

,o --- ---m m u 19 
o 

N 
-0.1 ý 

to) a) &. 
En 

-0.3-F 0 

Radial Stress Concentration 
Slip at the interface(Vf=30%) 

0 

-0.5 -ý ---I IIIII 

0 20 40 60 80 
Angle(Degree) 

Fig. 4.29: Radial displacement of the matrix and filler at the interface of the partly debonded particle 
with slip condition at the closed segment of the interface 

Modulus of Composite with 
Debonded Filler Particle or Void 

3.5E+09 -i 

3.0E+09 

ä, 2.5E+09 
v 
h 

0 
b 2.0E+09 
0 

1.5E+09 
0 

E 
ul 1.0E+09 -a- 

} Debonded particle filled composite 

5.0E+08 
-0- 

Porous Composite 

O. 0E+00 I --ý--+ 
0 10 

ý -}- 
20 30 

f 

Volume Fraction(%) 

Fig. 4.30: Modulus of composite filled with debonded filler particle or void 

H- 
40 

4 

50 

Iw 

101 
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exclude the possibility of growing or opening of the crack further than 0 =22° towards 

the equator. 

The contour diagrams of the direct stress, shear stress and Von Mises stress 

concentrations are shown in figure 4.24a-c. Maximum stress concentration in all of 

the above cases can be found at the crack tip. 

4.3.3 Slipping of the particle at part of the interface 

Figures 4.25-28 show the stress and displacement variations at the interface for epoxy 

composite filled with 10% of glass beads while slip condition is imposed on the 

segment of the particle from 0 =22° to the equator. Since a low slip coefficient is 

used, the stress and displacement fields follow more or less the same trend as the no 

slip case. However, the maximum radial, tangential and Von Mises stresses decrease 

compared to the non slip case. Using the same slip coefficient in a composite with 30% 

volume fraction of filler the results are shown in figure 4.29. The stress concentrations 

shows noticeable decrease at this volume fraction. 

In figure 4.30 the modulus of the composite filled with the unbonded particles and the 

composite containing voids are compared for the range of volume fractions. 

4.3.4 Strength 

The tensile strength of the composites with perfectly bonded and unbonded interfaces 

and composites with voids are calculated using finite element model. The results are 

compared in figure 4.31. The decrease of the tensile strength with increasing volume 

fraction can be observed in all cases. The graph shows the strength of composite with 

unbonded interface is between the upper bound curve which is for the bonded 

interface and the lower bound curve which represents the composites with voids. 

In figure 4.32 the strength predicted by the finite element analysis is compared with the 

following models proposed by Neilsen and Nicloais&Narkis. 

Different theoretical models are suggested for the unbonded or no adhesion case. A 

commonly reported model is due to Nicolais and Narkis (Nicolais and Narkis, 1971) 

which is based on the assumption that the unbonded particle cannot carry any of the 
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load and the yielding occurs in the minimum cross section of the continuous phase. 

They presented the following equation for the yield stress of the composite. 

6c =am(1-1.21Vf) (4.11) 

Another model suggested by Neilsen ( Neilsen, 1966) gives the yield stress in a 

composite assuming no adhesion between polymer and filler, expressed as : 

6c = Q. (1- V f')S (4.12) 

where S is the stress concentration function which can be determined by the finite 

element analysis. The Neilsen's prediction is very close to the finite element prediction 

for voided composites and it is also closer to the unbonded composite. But the 

Nicolasis and Narkis's model gives a much higher values for the strength. 
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4.4 COMPOSITES FILLED WITH SOFT PARTICLES 

4.4.1 Material properties 

The results presented in this section include the linear-elastic behaviour of the rubbery 

phase and the epoxy matrix. The input values used to obtain stress concentrations and 

the composite toughness via a linear elasticity model are shown in table 4.2. 

Input Properties Derived Properties 

Phase E (GPa) Poisson's Ratio, v K (GPa) G (GPa) 

Epoxy 3.0 0.35 3.333 1.119 

Rubber 0.0004 0.490-0.4999 0.006-0.667 0.000134-0.00026 

Table 4.2. Elastic Material Properties Used in the Predictive Models 

Material properties for typical epoxy type polymer are well-known. However, the 

value of E for the rubbery phase is more difficult to establish; A sensible range of 

values of v was selected for the rubber. The upper value chosen for v is very close to 

the maximum theoretical value of 0.5. It should be noted that the finite element 

analysis package that was employed fails if v=0.5 is used. However, the maximum 

value of v used in the present work is 0.4999. Such relatively high values may now be 

used because of improved precision of the finite element code. 

The most important advantage of being able to use values of the Poisson's ratio close 

to 0.5 is that in this way we can substitute high values of K(i. e. bulk modulus of the 

rubber particle). Indeed, the input values E 0.4 MPa and v 0.4999 imply a value of 

K of about 0.667 GPa, which is of the order expected for a rubbery polymer 

(Brandrup and Immergut, 1989). 

4.4.2 Young's modulus 

As it is shown in figure 4.33 the relationship between the modulus of the composite 

and volume fraction of the filler is nearly linear. The measured Young's modulus for 
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epoxy resin reinforced with 15% volume fraction of rubber spheres is also included. 

The measured value is significantly higher than the predicted range by our model. The 

lack of precise agreement between experimental and numerical results could arise 
from the inaccuracy in description of the rubber properties and the assumption that the 

phases are perfectly separated. Beyond a volume fraction of about 0.2, there are no 

experimental data available for comparison, because when higher concentrations of 

rubber are used, phase inversion of the multiphase polymer normally occurs. 

Figure 4.34 shows predictions of our model for the Young's modulus of the 

multiphase rubber-toughened epoxy as a function of log(Em/Er), where Ep and Em 

are the Young's modulus of the rubber and epoxy respectively. A volume fraction of 

20% has been assumed for the rubber phase. In the calculations, the Poisson's ratio of 

the rubber is considered to be 0.49. Initially the Young's modulus of the two phase 

material decreases sharply with an increase in the value of log(Em/Er). When this 

value approaches 3.0, the Young's modulus has a constant lower bound of 1.87 GPa. 

The predicted values of the overall modulus are relatively insensitive to the changes of 

the value of the rubber modulus. 

The predicted overall modulus is found to increase by 5% at 20% volume fraction and 

7% at 30% of volume fraction if the Poisson's ratio of the rubber is increased from the 

value used 0.49 to 0.4999 as is shown in figure 4.35. Therefore the properties of 

rubber could probably be best described using a Poisson's ratio of 0.5, but this causes 

a problem for the finite element analysis. 

The experimental values reported for rubber filled composites are in comparison higher 

than our model predictions, this is probably because of some stiffening of the rubber 

via the epoxy, the inadequate description of the Poisson's ratio of the rubber in the 

model, and incomplete phase separation leading to a lower rubber volume fraction than 

the expected theoretical value. The onset of plasticity during the experimental 

measurements as well as any experimental errors can also cause some discrepancy 

between the measured and the predicted values. In some cases the reason for the 
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experimental value to be higher than the predicted results can be the skin effect. The 

restrictions imposed by the walls of molds, leads to an excess polymer at the surface of 

the test specimens. Thus, in torsion or flexural tests where the maximum stress is at 

the surface, the properties of the surface is dominant and determine the behaviour of 
rw 

the whole sample. This error can be corrected by using thicker specimens which can be 

extrapolated to infinite thickness, or by using particles of smaller size and extrapolation 

to zero particle size. The skin effect can produce errors as large as ten to twenty 

percent depending on the thinness of the specimen. 

Despite the discrepancy between the experimental and the model results, it should be 

noted that almost linear relationship between Young's modulus and volume fraction is 

very similar to the relationship measured experimentally by Yee and Pearson. 

4.4.3 Stress distribution 

4.4.3.1 Concentration of direct stress 

The contour diagrams of the direct stress, shear stress and Von Mises stress 

concentrations are given infgures 4.37a-c. 

The contour diagram for the concentration of the applied stress indicates that the 

maximum stress concentration is found at the interface at the equator of the sphere. 

The examination of other contour diagrams confirms that this is the maximum principle 

stress predicted in the system. The position of maximum stress concentration, at the 

equator of the sphere, is in agreement with previous theoretical predictions and 

experimental results (Spanoudakis and Young, 1984). As it can be seen in figure 4.36 

the values of the maximum stress concentration, varies sharply with the volume 

fraction of rubber spheres. The stress concentration decreases with increasing Poisson 

ratio of rubber, since the effect of the difference between matrix and physical 

properties of the particle is diminished. In figure 4.36 the direct stress concentration 

versus volume fraction can be compared for rubber Poisson's ratios, of 0.49 and 

0.4999. 
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4.4.3.2 Stresses at the interface 

Stresses around the interface of the matrix and filler are converted to polar 

coordinates. The shear stresses in both the resin matrix and the rubber sphere are zero, 

The only high stress is the tangential stress in the resin matrix, which has its maximum 

at the equator of the rubber sphere. Figure 4.38 shows the concentration of different 

stresses at the interface for a composite with 20% rubber volume fraction. The radial 

stresses in the resin and rubber are equal and constant around the interface; the 

tangential stresses are also identical in the matrix and rubber particle. We note that the 

radial stress at the interface for the soft particles is far smaller than that found for the 

hard particles. This indicates that there is no tendency for debonding at the interface in 

the composites, which is in contrast to the tendency for debonding in the glass filled 

material. The low value of stress transmitted to the rubber, shows that the rubber 

sphere is acting like a hole. The concentration of stresses at the interface is compared 

in figure 4.39 for the matrix filled with 30% of rubber and matrix having 30% of 

voidage. The similarity of the behaviour of the composites filled with rubber or voids 

is confirmed by the values of matrix maximum stress concentration, at the equator for 

epoxy resin containing holes or rubber spheres. The values are hardly changed by the 

presence of rubber. 

4.4.3.3 Hydrostatic stress in the rubber particle 

Examination of the stresses in the rubber shows that the whole particle is in uniform 

pure hydrostatic tension. The variation of the hydrostatic stress concentration factor 

with volume fraction is shown in figure 4.40. The magnitude of this stress is uniform 

throughout the sphere within accuracy of the prediction. Although the value of this 

stress concentration is about two orders of magnitudes smaller than the maximum 

stress concentration in the resin, it may still be significant since the difference in 

moduli of two phases is around five orders of magnitude. The magnitude of hydrostatic 

stress concentration in rubber increases with its volume fraction. Initially there is a 

little increase by increasing volume fraction up to around 20% and then it increases by 

a factor of 2 between 20% and 50% of filler volume fraction. The Poisson's ratio of 

the rubber has a significant effect on the predicted values of the 

"w 
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hydrostatic stress in the rubber. The variation of the hydrostatic stress concentrations 

as a function of the volume fraction of the rubber phase for two values of Poisson's 

ratio, 0.49 and 0.4999 are presented in figure 4.41. These values of the Poisson's 

ratios gives the bulk modulus of the rubber as 0.006 GPa and 0.667 GPa at the same 

Young's modulus. 

4.4.3.4 Concentration of yield stress 

As it is shown in figure 4.37c the maximum Von Mises stress is found at the interface, 

at the equator of the sphere, which is the identical position to the maximum direct 

stress. The position of the maximum Von Mises stress remains unchanged for different 

volume fractions but the magnitude of the stress concentration factor increases sharply 

with increased volume fraction as can be seen in f gure 4.42. 

As it is mentioned earlier in this chapter the magnitude of the hydrostatic stress at the 

equator is less dependent on the volume fraction. We can compare the change in 

applied stress required for yield between 10% and 20% volume fraction of rubber. Our 

predictions show an increase in stress concentration from 1.50 to 2.00 over this range. 

Assuming that yield occurs when the stress within the material reaches a given level, 

and bearing in mind that hydrostatic stress over this range changes slowly, this increase 

in stress concentration predicts that applied stress at 20% rubber volume fraction 

should be 85% of the applied stress at 10% rubber volume fraction; ' the measured 

reduction is found to be from 55 to 50 MPa i. e. 91% (Yee and Pearson, 1986). Shear 

bands in the resin are expected to grow from the point of maximum concentration of 

Von Mises stress, which is predicted to be at the equator of the sphere. 

4.4.3.5 Stresses in the matrix 

The stresses in the matrix on the lower side of the cell from the equator to the edge of 

the grid are shown in figure 4.43a. The stress concentrations for direct stress and Von 

Mises stress reach maximum at the equator and decrease towards the edge of the cell. 

The shear stress on the other hand is almost zero. The variation of stress concentration 
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on the diagonal of the cell follows an opposite trend and decreases from the particle 

surface towards the upper right corner edge of the cell, as it can be seen in figure 

4.43b. 

4.4.4 Fracture behaviour 

Two important toughening mechanisms have been identified for the two phase material 

under study which consists of a rubbery phase dispersed in a matrix of cross-linked 

polymer. The first mechanism is localised shear yielding, or shear banding, which occur 

between rubber particles at an angle of approximately 45° to the direction of the 

maximum principal tensile stress. Owing to the large number of particles involved, the 

volume of thermoset matrix material which can undergo plastic yielding is effectively 

increased compared to the single-phase polymer, consequently, far more irreversible 

energy dissipation is involved and the toughness of the material is improved. The 

second mechanism is internal cavitation or interfacial debonding of the rubbery 

particles. The mechanism enables the subsequent growth of the voids formed by plastic 

deformation of the epoxy matrix. This irreversible hole-growth in the epoxy matrix in 

turn dissipates energy and therefore contributes to the enhancement in the fracture 

toughness of the composite. 

Gent and Lindley (Gent and Lindley, 1959) have shown that cavitation of rubber can 

occur at relatively low stresses. Their analysis was later extended to include surface 

energy effects for small holes. Surface energy effects are important for initial holes 

smaller than 0.1 µm radius. The hydrostatic stress required for cavitation from an 

initial hole with radius greater than about 0.1 µm has been shown to be approximately 

close to the modulus of the rubber that is about 0.4 MPa. For an initial hole of radius 

0.01 µm the stress required for cavitation increases by a factor of 40. 

Internal cavitation of the rubbery particles or debonding of the particles from the 

matrix leads to voids (cavities) being formed. By neglecting any plastic void growth at 

this stage, the void can be treated as a particle with zero modulus, and a similar 

analysis to the one that is described above can therefore be done to calculate the stress 

concentration around the voids and the Young's moduli of the voided epoxy polymer. 

The formation of voids due to internal cavitation of the rubbery particles or debonding 
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of the particles from the matrix does not significantly change the level of the stress 

concentration in the epoxy matrix. 

The described mechanisms are triggered by the different types of stress concentrations 

that act within the overall stress field in the two-phase material. For example, initiation 

and growth of the shear bands are largely governed by the concentration of Von Mises 

stress in the matrix, whereas cavitation, or interfacial debonding, of the rubber particles 

is largely controlled by the hydrostatic (dilatational) tensile stresses. To analyse the 

stress field accurately, it is necessary to employ a numerical technique such as the finite 

element method. 

The yielding of the glassy polymers is usually dependent on the hydrostatic stress 

component, and therefore the simple Von Mises criterion is not strictly satisfied. 

Instead the Von Mises criterion should be modified as: 

Zvm = Ty - µm P (4.13) 

where r,,,. is the Von Mises shear stress, as defined in equation 4.14, 'ry is the yield 

stress under pure shear, µm is a material constant and P is the hydrostatic stress, Thus 

r 

L(QI-Q2) 
2+ (o'2-Q3)2 + (Q3-61)2 

=2 Qvm2 =6 zvm2 (4.14) 

and 

P= 
3(o'I 

+(7s+Q3) (4.15) 

where a,,,,, is the Von Mises tensile stress and the value of µm has been reported to be 

between 0.175 and 0.225. In this study this value is taken to be 0.2. It is obvious from 

equation 4.13 that the stress required for the material to shear yield under tensile 

loading is reduced compared to the prediction of the unmodified Von Mises criteria. 

Hence, the relative size of the plastic zone will be increased. The tensile strength of the 

rubber toughened epoxy is shown in figure 4.44. 

119 



Chapter Four 

Stress Concentration 
Cell Diagon 

2 

o. 5+ 

0 

-0. s 
1 1.1 1.2 1.3 

Diagonal Distance 
Fig. 4.43b: Stress Concentration on the diagonal line of the cell in the matrix. 

Tensile Strength-Volume fraction 
Rubber filled composite 

6.0E+07 

5.0E+07 

. -. cC 
a: ' 4.0E+07 

00 
ý 3.0E+07 

2.0E+07 
H 

1.0E+07 

Results And Discussion 

--«- 
Shear 

Von Mises 

0.0E+00 
0 10 20 30 40 

Rubber Volume fraction(%) 
Fig. 4.44: Tensile strength prediction using Von Mises stress comcentration criteria. 

1.4 

50 

120 



Chanter Four Results And Discussion 

Schwier et al (Schwier et al , 1985) in their experimental investigation of polystyrene 
filled with polybutadiene rubber spheres, concluded that intrinsic cavitation of rubber 

spheres occurred at about an overall hydrostatic tension of 60 MPa. 

Our results predict that for 20% volume fraction of rubber the concentration factor of 
hydrostatic tension in the rubber is about 0.025. Shear band formation probably occurs 

at about 30 MPa stress for epoxy resins. Keeping the average applied tensile stress at 

this level would subject the rubber spheres to a further 1 MPa hydrostatic tension. 

Cavitation of rubber particles on fracture surfaces is generally found to start from the 

centre of the sphere. Our predictions do not indicate a preferred point of initiation but 

clearly show that the imposition of an overall tensile stress of the order of the matrix 

yield stress places the rubber particles in sufficient hydrostatic tension to initiate 

cavitations from small flaws. These flaws may be areas of rubber which are not fully 

polymerised and cannot be observed by conventional microscopic techniques. There is 

some argument as to whether or not the cavitation of the rubber particles is necessary 

for shear bands to form. The exact stress levels for shear band formation and cavitation 

will depend on the values of stress required to form matrix shear bands and cause 

rubber cavitation for the system under study. 

Epoxy resin reinforced with rubber spheres may be described as an inherently tough 

material since the position of maximum stress concentration, where a crack would be 

likely to develop, is at the equator of the sphere. The sphere acts as a barrier to any 

further growth of the crack. However, the maximum stress concentration rise sharply 

at high volume fractions. A simple description of toughness could be that yield is the 

preferred mechanism to the growth of the crack. Considering the very high stress 

concentration of applied stress at high volume fraction, crack growth could become 

more dominant at high volume fractions leading to the decreased toughness of 

composites filled with rubber particles. This effect was noted by Kunz (Kunz et al, 

1982) who found a rapid increase in toughness until around 5 pbw (parts by weight) 

rubber, around 10% volume fraction, followed by a plateau. A similar effect is found 

by Spanoudakis and Young (Spanoudakis and Young, 1984) for epoxy resin reinforced 

with glass spheres treated with a release agent; the sphere must be behaving as a stable 

hole, and stress distribution in the resin must be similar to our prediction here; the 

I. 
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observed crack growth for glass spheres treated with a release agent supported the 

expected maximum stress concentration at the equator of the sphere. They found that 

fracture toughness decreased with volume fraction above 30% for this material. 
Although for glass spheres coupled to the resin matrix the toughness increased 

throughout the range of filler volume fraction. 

Stress distribution in the matrix for resin containing rubber spheres has been found to 

be very similar to that of a resin containing holes. Shear band formation in the resin 

would occur in a similar way for the two materials. However, epoxy resin containing 

holes is known to be a very poor material. We therefore can postulate that shear band 

formation is not the only important fracture mechanism for this material. Our results 

have shown that cavitation of the rubber particles is likely to occur, in agreement with 

experimental observations; after cavitation the rubber may be stretched. It appears that 

the process of rubber cavitation and stretching may make important contributions to 

the overall fracture energy. The magnitude of these contributions is dependent on the 

modulus of the rubber. Further contributions to the fracture energy of epoxy resin 

containing rubber spheres may arise from the physical presence of the rubber which 

would act as a crack stopper to a growing crack attracted to the equator of the sphere 

by either the concentration of direct stress or the initiation of shear bands. 
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4.5 FIBRE REINFORCED COMPOSITES 

In this section the response of epoxy resin reinforced with glass fibres to transverse 

tensile and shear loading is studied. The physical properties of the epoxy resin and 

glass fibres are presented in table 4.1. 

4.5.1 Transverse tensile loading 

4.5.1.1 Modulus 

A tensile loading in the transverse direction of the fibres is applied to the composite. 

The modulus of particulate filled composites is compared with the moduli of transverse 

and longitudinal fibre reinforced composite having the same constituents in figure 4.6. 

As expected the longitudinal modulus of the fibre composite is much higher than that 

of the particulate composite, while the transverse modulus is lower. Maximum volume 

fractions of the fibres are 0.785 and 0.907 for square array and hexagonal array, 

respectively. These values reduce to 0.57 and 0.74 for square and hexagonal array in 

particulate composites. Therefore a higher volume fraction and modulus can be 

reached in fibre composites. 

It is observed that the addition of fibres produces a substantial increase in the 

transverse modulus of the binder material; however, the effect of an increase in fibre 

modulus is a gradually diminishing one becoming asymptotic to the value obtained for 

the infinitely rigid fibre. Therefore, at high values of the fibre modulus, The ratio of 

transverse Young's modulus to longitudinal Young's modulus becomes relatively small 

which is one of the significant structural problems associated with the use of high 

modulus filaments in composite structures. If multiple oriented fibre arrays are 

utilised to solve the problem of low stiffness in the transverse direction, a decrease in 

the major stiffness of the fibrous composite follows. 

4.5.1.2 Concentration of applied stress 

Contours of the direct stress and Von Mises stress are obtained for fibre reinforced 

composites as shown in figures 4.45a-b. These contour diagrams indicate that the 
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concentration of applied stress in the matrix for a typical fibre reinforced composite is 

very similar to that of a particulate filled composite. Figure 4.46 indicates that the 

maximum concentration of the applied stress is in the matrix above the pole. The 

precise position of maximum concentration varies for different fibre volume fractions. 

For higher volume fractions of fibre the position of the maximum is at the edge of the 

grid, centred between neighbouring fibres. However this maximum is not much higher 

than the stress concentration at the pole. Since the failure strength of the interface is 

expected to be lower than failure strength of the resin, the stress concentration at the 

interface is considered to be more important for the study of the fracture behaviour 

than the stress concentration above the pole. The stress distribution 'in the fibre is 

almost constant for all volume fractions. The stress concentration reaches a small 

maximum at the pole. The concentration of stress may lead to failure via the failure of 

the fibres in the transverse direction. 

The values of the stress concentration increase with increasing volume fraction of 

fibres for both matrix and fibre. This result is expected and may be attributed to 

increasing interactions between the stress fields as the inter-fibre separation decreases. 

It means that increasing disorder increases the stress concentration. 

4.5.1.3 Stresses at interface 

Stresses in the xy plane around the interface within the fibre and matrix were extracted 

and transformed to polar coordinates. The results for 30% volume fraction of fibres 

are shown in figure 4.47. 

The trend of these results is a stringent check of the accuracy of the finite element 

analysis. Figure 4.47 shows that the necessary conditions are, in general, well satisfied. 

Shear stress is zero at the pole and equator. The maximum stress at the interface is the 

radial stress at the pole. The results shown in figure 4.47 are comparable with the 

results obtained for composites filled with spherical particles. 

The variations of Von Mises stress at the interface for different volume fractions of 

fibres are shown in figure 4.48. The value of the maximum Von Mises stress 

concentration increases slightly for the range of the volume fraction studied and is 
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almost constant. However, the position of the maximum at the interface moves from 

about 40° at low volume fraction towards the pole for the higher volume fractions. 

4.5.1.4 Fracture strength 

The overall stress distribution for the matrix and fibre may be used to deduce the 

failure mechanisms of this type of composites. It is assumed that failure is essentially 

brittle, and takes place when local stress reaches a critical level. The concentration of 

the stress in the fibre may lead to failure via transverse splitting of the fibres. The 

concentration of applied stress in the radial direction at the interface may lead to tensile 

failure of the interface. The radial stress variations at the interface are shown for 

different volume fractions in figure 4.49. The position of the maximum is at the pole 

over the range of the volume fraction. The increasing values of stress concentration 

with volume fraction imply a reduction in overall applied stress required for failure. 

Thus the fracture strength of the material is predicted to fall with increasing fibre 

volume fraction. Although the rise of the maximum stress concentration is relatively 

slow. 

The transverse strength of the glass fibres is about 2758 MPa which is much higher 

than that of the epoxy resin which is about 60 MPa (Gibson, 1994). Since the 

concentration of applied stress at the pole is the same in the fibre and the matrix at the 

interface, failure is predicted to occur at the interface at the pole via- failure of the 

matrix. Assuming the strength of the interface equals the strength of the resin (i. e. 

assuming good bonding), the overall applied stress for which the interface failure is 

expected can be calculated from the concentration of the radial stress at the pole. 

The initiation of a fibre/matrix debond is analysed using an interfacial failure criterion, 

proposed by Sun and Zhou (Sun and Zhou, 1988) for free edge delamination of 

composite laminates, which here is modified to accommodate the cylindrical geometry 

of the fibre matrix interface, 

22 
Cr Tre 

I- 1+ - =1 RS 
(4.16) 
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where Cyr and rro are the normal (radial) and shear interfacial stresses, respectively, 

and R and S are the corresponding interfacial strengths with respect to tension and 

shear. Debond failure resulting from any combination of stresses is thus expected to 

occur when the left hand side of equation 4.16 is equal to or greater than unity. Since 

the values of R and S are not available, in order to define the failure criterion ideal 

bonding is assumed by taking the values of R and S as the tensile and shear strength of 

the matrix. 

A failure hypothesis may be defined by assuming that the ultimate transverse failure of 

the composite occurs in response to an externally applied stress once an interfacial 

debond forms. A debond initiating stress, is the tensile stress necessary to make the left 

hand side of the interfacial failure criterion equal to unity. The maximum interfacial 

radial stress occurs in the direction of the applied stress at the pole, while the 

interfacial shear stress is zero at this angle. Since the maximum interfacial shear stress 

is less than the maximum interfacial radial stress and the interface is expected to be 

weaker in tension than in shear, the radial stress will govern the initiation of a debond. 

The applied stress capable of initiating interface debonding for different fibre volume 

fractions are calculated and presented in figure 4.50. As it can be seen in this figure the 

applied stress required to initiate debonding decreases with increasing volume fraction 

of fibres. 

In composites with a weak interface and/or ductile matrix, the transverse strength of 

the composite is expected to be more closely linked to the strength of the matrix. This 

is specially true if the failure of the matrix is analysed using Von Mises failure theory 

which is based on the definition of Von Mises stress expressed as: 

11/2 
6c = r- 

[(QI-62)2 
+ (Q2-Q3)2 + (O'3-0ý1)2J 

= Qm (4.17) 

where a is the effective stress, a, (1=1,2,3) are the principal stresses, 'and am is the 

tensile strength of the matrix. The Maximum Von Mises stress and the tensile strength 

of the matrix are used to calculate the strength of the composite for the range of 

volume fraction of the fibre. These results are shown in figure 4.51. In figure 4.51 a 
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comparison of the applied stresses initiating the debond failure and the stresses 

calculated from the Von Mises criterion are made. The stress initiating the debonding 

calculated using equation 4.16 is less than the stress obtained by Von Mises criteria fo,; 

all volume fractions. 

Transverse failure stresses are also calculated using Cooper-Kelly model (CKM) 

(Cooper and Kelly, 1969) developed for the prediction of transverse strength of the 

composite. For a composite with a weak interface, the matrix will fail at the minimum 

matrix cross section at the equator in response to an external stress given by the 

following equation: 

. 
Sc = vm 1- 4VI 

n 
(4.18a) 

I 

where SC is the transverse strength of the composite, Vf is the volume fraction of the 

fibres and am is the tensile strength of the matrix. If the fibre/matrix interface strength 

is taken into account, the CKM is modified to . 

ST =Qm 1- 4Vt +O'r 4V 
ný 

(4.18b) 

where a, is the average tensile stress necessary to separate the fibre from the matrix. It 

should be noted that in the limit when a, = am equation 4.18b can be considered to 

be the upper limit of the transverse strength of the composite. 

In figure 4.52 the strength of the composite obtained by Cooper-Kelly model can be 

compared with the results of our model for debonding failure and Von Mises failure. 

The curve obtained from equation 4.18a lies much lower than the other predictions on 

the same graph. When the value a, = 0.5 am is used, the results of the equation 4.18b 

is close to the interface debonding curve. Raising the interfacial strength value to 

a, = 0.85 am via equation 4.18b gives a variation which is in good agreement with the 

prediction of our model based on Von Mises criteria. 

The experimental transverse tensile strength at the 53% volume fraction is 37± 4.6 

MPa (Pomies, 1992). The transverse tensile strength is predicted by our model at 50% 
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volume fraction as 35MPa for interface debonding and 56 MPa for matrix yielding. 
Our model predictions using interface debonding mechanism is in perfect agreement 

with the experimental results. This confirms that the interface debonding and brittle 

failure are the dominant mechanism governing the failure of the fibre reinforced 

composite in this case. 

4.5.2 Transverse shear loading 

4.5.2.1 Modulus 

A shear loading in the transverse direction of the fibre is applied to the composite. The 

transverse shear modulus of continuous glass fibre reinforced epoxy is given in figure 

4.53. Both square and hexagonal arrays are examined. The results of square array are 

in close agreement with the results calculated from Halpin-Tsai model (Halpin and 

Tsai, 1969). In the case of hexagonal array, both constrained and unconstrained 

boundary conditions are investigated. The hexagonal array shows less reinforcement at 

the same volume fraction compared to the square array. The unconstrained boundary 

condition gives lower values for the transverse shear modulus. 

4.5.2.2 Stress distribution and strength 

The stress distribution at the interface of the fibre and matrix is shown in figure 4.54 

for the 30% volume fraction of continuous fibres. The maximums of the shear and Von 

Mises stress concentrations are found at the pole of the fibre. The maximum of the 

radial stress is at 45°. 

The distribution of Von Mises stress concentration is presented in figure 4.55 for 

different volume fractions. The maximum of the Von Mises stress concentration 

occurs at the pole. The Von Mises stress distributions found for different volume 

fractions are very close to each other and a slight decrease in the maximum value is 

observed as the volume fraction increases. 
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The distribution of the radial stress concentrations at the interface of the fibre and 

matrix for different volume fractions is shown in figure 4.56. In this case the maximum 

stress concentration occurs at about 45° of the pole for all the volume fractions. As the 

fibre volume fraction increases, the stress concentration at the interface becomes 

smaller. The variation of the interfacial shear stress concentration with volume 

fraction, shown in figure 4.57, indicates an insignificant increase of the stress 

concentration with increasing volume fraction of fibre. 

The shear strength of composite obtained for different volume fractions is shown in 

figure 4.58. These values are calculated using the maximum Von Mises concentrations 

in the matrix. Although good quantitative predictions are not obtained for shear 

strength by our model, still it can give a prediction for the variation of the strength 

with the volume fraction qualitatively. As it can be seen in figure 4.58 the shear 

strength of the composite hardly changes with the volume fraction. 

There is a considerable resistance to shear fracture of the fibres. Hence this mode of 

fracture is unlikely to occur and matrix failure can be blunted by fibres. 

"w 

138 



Chapter Four Results And Discussion 

4.6 SHORT FIBRE REINFORCED COMPOSITES 

4.6.1 Modulus 

The model results obtained for Young's modulus of fibre reinforced composites show 

that it strongly depends on the geometrical arrangement of the fibres within the matrix. 

This arrangement is characterised by the volume fraction of fibres, the fibre aspect 

ratio and the fibre spacing parameter. Here we assume that the fibres are distributed 

uniformly in the matrix and there is no overlapping of the fibre ends. Under this 

condition the tensile load is transferred between cells only through the end sections of 

the cells. 

In figure 4.59 the Young's modulus of glass-epoxy composite obtained using the finite 

element analysis is compared with the values calculated from the shear lag model over 

a range of the volume fraction. The aspect ratios of the glass fibres and cell are equal 

to 5 in these calculations. 

In the shear lag model it is assumed that the stress is transferred from matrix to fibre 

via the interfacial shear stresses. In modified shear lag model the transfer of normal 

stress across fibre ends is also considered and the force balance equation is modified. 

The shear lag model gives an estimate for the tensile stress in the fibres as: 

6; = Ei E3c [1- cosh(nz / r) sec h(ns)] (4.19) 

and the shear stress at the interface is given using this model as: 

z, =n 
E3c E; sinh( nz ) sec h(ns) 
2 ro 

(4.20) 

where E3c is the overall composite strain and n is a dimensional constant defined as: 

2 Em 
1/2 

E; (1 + vm) In(1 / f) 
(4.21) 

where s is the aspect ratio, f is the volume fraction of the fibre, z is the distance from 

the fibre centre and r is the radial distance. 
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The shear lag model gives much lower values for modulus. The values of moduli found 

by modified shear lag model are closer to the finite element results. 

In implementing the finite element analysis first the boundary tractions at the interface 

of the fibre and matrix are ignored. Then the calculations are repeated and the 

boundary flux terms are considered in the field equations. The moduli values found in 

the latter analysis are lower than the results obtained from the no boundary traction 

case. This comparison is shown in figure 4.60. 

The effect of different fibre aspect ratios at constant fibre spacing on the composite 

modulus is investigated. In figure 4.61 the variations of the modulus of glass epoxy 

composite for the aspect ratios of 5,10 and 20 are shown. The fibre spacing is 6 in all 

of these cases. A relative increase of the modulus can be. observed with the increase of 

the aspect ratio. The upper limit is the longitudinal modulus of the continuous fibres 

that can be achieved by using fibres with high aspect ratio. 

The modulus of the composites filled with rod shape particles also depends on the fibre 

spacing. The variations of the modulus for three different fibre spacing of 2,6 and 10 

at constant aspect ratio of 5 is shown in figure 4.62. There is a decrease in modulus as 

the fibre spacing increases. 

The boundary condition on the side wall of the cell can be with constraint. In this case 

the final stress distribution and effective properties of the composite should be 

calculated by superimposing the results of the two steps are described in the chapter 

3. The unconstrained boundary condition is also modelled. The results of the two sets 

of the boundary conditions are compared in figures 4.63a-c. A remarkable difference 

can be observed between the two cases. The imposition of unconstrained boundary 

condition results in much lower values of the modulus. 

The Poisson's ratio values are given in figure 4.64 for both cases of with and without 

flux terms in the model equations. 
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Chapter Four Results And Discussion 

4.6.2 Stress distribution 

4.6.2.1 Interfacial shear stress distribution 

The normalised shear stress distributions at the interface of the fibre and matrix are 

shown for different volume fractions in figure 4.65. It indicates that the shear stress 

decreases from the fibre end to the fibre centre where the stress is nearly zero. In 

figure 4.66 the finite element results for the interfacial shear stress are compared with 

the results of the shear lag and modified shear lag model. The shear lag analysis gives 

much higher shear interfacial stress. The difference between shear lag model and finite 

element results increases with volume fraction. 

4.6.2.2 Interfacial tensile stress distribution 

The tensile stress concentration at the interface is maximum at the fibre end. A 

decrease of interfacial tensile stress concentration can be seen in figure 4.67 as the 

volume fraction increases. In figure 4.68 the interfacial tensile stress concentration 

resulted from the finite element analyses with and without interfacial flux terms are 

compared. These comparisons are made for the volume fractions of 10% and 40% 

respectively. The stresses from the analysis considering flux terms are higher for both 

volume fractions. The shear stress concentration distribution at the interface of the 

matrix and the filler does not change by including the flux terms in the field equations. 

The comparison is presented in figure 4.69 for the volume fractions of 10% and 40% . 

4.6.2.3 Tensile stress in the fibre 

The tensile stress distributions in the fibre are shown in figures 4.70a-b for different 

volume fractions. The results of the finite element computations are compared with the 

tensile stress distribution in the fibre calculated by the shear lag model and the modified 

shear lag model. 

A comparison of the tensile stress distribution resulted from the finite element model 

with and without the flux boundary terms is made in figure 4.71. 

The modified shear lag model which considers the tensile stress transferred by the end 

of fibres gives higher values. The simple shear lag model that assumes the transfer of 

ýw 
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tensile stress to the fibres is only via shear stress at the interface of the fibre and the 

matrix gives the lower values for the tensile stress in fibres. 

At low volume fractions up to 20% of filler the tensile stress in the fibre found by the 

finite element model is higher than the shear lag model prediction all over the length of 

the fibres as it is clear in figure 4.72a for 10% fibre volume fraction . Figure 4.72b 

indicates that at the 20% volume fraction of the fibres the finite element results are in 

close agreement with the modified shear lag model predictions. When the volume 

fraction rises to 30% the tensile stress distribution of fibres obtained from our model is 

located between the simple shear lag and modified shear lag models as shown in figure 

4.72c. For the higher volume fractions the result of our model for, tensile stress 

distribution conforms with the results of the modified shear lag model at the end fibre 

segment where the tensile stress increases continuously. However it then moves 

towards the simple shear lag model predictions and reaches a plateau at the central 

segment of the fibre. 

The tensile stress increases from the fibre ends towards the centre of the fibre. For 

each volume fraction at a certain point along the length of the fibre the tensile stress 

reaches its maximum and remains almost constant for the rest of the length of the 

fibre. The point at which the tensile stress reaches its maximum value depends on the 

volume fraction of the fibres. The higher the volume fraction the closer the peak point 

is to the fibre end. 

4.6.3 Critical length 

The minimum length of the fibre at each volume fraction through which the stress rises 

to its maximum is called the critical length. The critical length plays a great role in 

characterising the short fibres in order to provide the maximum strength or 

reinforcement in composite. There are different theoretical approaches for the 

estimation of the critical fibre length. The definition of the critical length might change 

from one theory to another. The model proposed by Rosen ( Rosen, 1964) defines the 

critical length as the minimum fibre length or aspect ratio required to reach 0.9 times 

the maximum fibre strain, about each fibre end in a long fibre. Rosen gives the critical 

fibre length as: 

ý. 
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Ef(1+vm) V2 Vf2 1/2 
lý =dE Vv2 mf 

(4.22) 

where d is the fibre diameter, Ef and Vf are fibre Young's modulus and volume 

fraction, v�, and E. are matrix Poisson's ratio and Young's modulus. 

Equation 4.22 shows that the critical fibre length depends on the fibre diameter, the 

square root of the ratio of the tensile moduli and on a term representing the fibre 

volume fraction. The critical lengths of fibres obtained by the finite element model and 

Rosen model are compared in figure 4.73 for a range of filler volume fractions. Our 

model shows that the tensile stress in the fibre rises to its peak in a shorter length of 

the fibre. Termonia (Termonia, 1990) concluded that the critical fibre length is a 

unique function of the fibre and matrix modulus' ratio. But our results show that the 

critical length also depends on the volume fraction. Another model which descirbes 

the critical length is developed by Kelly as: 

11 = a. r d 
2zw 

where d is the diameter of fibre, T. is the shear strength of the interface or of the 

matrix and a, is the tensile strength of the fibre. 

4.6.4 Strength of short fibre composites 

Prediction of the strength of short fibre reinforced thermoplastics is a complex but 

industrially crucial problem. In the case of a composite containing short fibres, the 

existence of a non uniform stress along the fibre implies that the average stress carried 

by the fibres at the point of failure will be less than fibre ultimate tensile strength. 

Failure occurs by a different mechanism in the short fibre composite which depends on 

the mechanical properties of the constituents and the tensile and shear strength of the 

interfacial bonding of the fibres and the matrix. Another deterministic factor in the 

failure mechanism in short fibre reinforced composites is the fibre aspect ratio or fibre 

length. There is the possibility of failure in the fibre, in the matrix phase or at the 
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fibre/matrix interface. A combination of these mechanisms can lead to the catastrophic 

failure in the composite. 

The significant stress on the lateral interface of the fibre/matrix along the fibre length is 

the shear stress. Even when the shear stress on this face exceeds the shear strength of 

the bonding, the compressive forces normal to this interface retain the fibre and 

matrix closed. The compressive forces are the result of the lateral contraction of the 

matrix. 

Figure 4.74 shows the normal stress distribution at the upper interface of the fibre 

and the matrix . The normal stresses at this face are tensile and as can be seen in this 

figure the concentration of these stresses increases from the axis towards the edge of 

the fibre. The concentration of the tensile stress reduces as the volume fraction 

increases. 

The debonding of the interface occurs when the tensile stress reaches the tensile 

strength of the interfacial bonding. The debonding stresses obtained by the finite 

element model are presented in figure 4.75. The debonding stresses for the aspect 

ratios of 5 and 20 are given for the range of the volume fraction. The debonding 

stress rises as the volume fraction increases. At the aspect ratio of 5 the increase is 

more significant than the aspect ratio of 20. 

The tensile stress required to be applied to the composite to bring the fibres to their 

failure tensile stress is given in figure 4.76. The applied stress to break the fibres is 

higher for aspect ratio of 5 compared to the values of the aspect ratio of 20. An 

increase in the stress to breaking point can be observed at higher volume fractions. The 

stresses at the breaking point are much higher than the debonding stresses for the fibre 

glass and epoxy matrix. These differences are more remarkable at lower fibre aspect 

ratios. 

Therefore it can be predicted that at low aspect ratios the debonding of the fibres acts 

as the initiation mechanism for the failure and it is followed by the failure of the matrix 

near the fibre ends. Since the aspect ratio of short fibre is low, the concentration of the 

fibre ends is high and then the local cracks merge transversely from the direction of 

the applied load. 
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The catastrophic failure of the short fibre filled composite can occur without any 

breaking of the fibres. At higher aspect ratio, since the breaking stress of the fibres is 

lower, the failure occurs in two steps. In the first step the interface debonding and 
Iw 

tensile failure of the matrix at the fibre ends is observed. However, in contrast to the 

low fibre aspect ratio case, growing matrix cracks at fibre ends are quickly blunted by 

neighbouring fibres and hence no catastrophic failure occurs. Because of the cracks 

and interfacial debonding the modulus of composite drops significantly. 

Our model shows that the breaking stress of the fibres reduces at low modulus. 

Therefore in the second step which corresponds to a decreased modulus the tensile 

stress in the fibres can easily exceed the failure stress of the fibres leading to the 

breakage of the fibres. 

4 
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Chapter Five 

CONCLUSION 

5.1 CONCLUSIONS OF THE PRESENT WORK 

The developed finite element model has proved to be a flexible and cost effective tool 

for the prediction of properties of polymer composites. The stiffness, stress 

concentration field, failure mode and strength of different types of composites are 

studied. The stiffness predictions are in general more accurate than strength values 

obtained. 

5.1.1 Modulus Of Particulate Filled Composites 

It has been demonstrated that the modulus of elasticity of a spherical particle 

reinforced polymer can be accurately predicted using a finite element stress analysis 

technique. The strength of the composite can also be predicted, but further study is 

required to account for interfacial bonding effects. The model used to calculate the 

composite strength may also be extended to simulate fracture mechanism. The degree 

of bonding influences the strength but not the modulus of elasticity, unless high volume 

concentrations of particles are present. 4 

The experimental results for effective modulus of the particulate composites agree well 

with the finite element predictions. The differences can be attributed to the 

assumptions that have been made in the model, such as agglomeration, dewetting, 
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adhesion, arrangement and filler particle shape. Another reason for the discrepancy 

between experimental results and the model predictions can be due to skin effect, 

which gives higher experimental values of modulus for soft particulate filled 

composites. The same effect can result in lower experimental modulus values for 

composites filled with hard particles. 

5.1.2 Composite Filled with Hard particles 

Our predictive model for particulate filled composite materials containing hard 

particles has produced interesting and useful results. The finite element model has been 

validated by the excellent agreement in values of stiffness between our predictions and 

careful experimental measurements. The predicted stress distributions are validated by 

exact matching of stresses around the interface. predicted stress distributions for epoxy 

resin filled with glass spheres have been successfully correlated with previous models 

and experimental observations. The successful description of the fracture appearance 

of these materials under various conditions leads to better understanding of their 

fracture behaviour, which will allow more confident use of these materials under 

different conditions. 

The position and magnitude of the maximum direct stress concentration is found and 

this can be used to predict the fracture behaviour and the direction and amount of 

crack growth in the resin. For a well bonded sphere, at low volume fractions, crack 

growth is attracted to the resin above the pole of the sphere. Smearing of resin around 

the pole of the sphere is observed. 

The amount of resin smearing around the pole of a well bonded sphere would be 

dependent on the position of the crack with respect to the sphere. Our results show 

that at low volume fractions the maximum distance is much further away from the 

sphere than for high volume fractions. Thus the model predicts that more smearing 

would occur if no spheres are visible in the fracture surface. Greater smearing at low 

volume fractions has been observed. 
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The concentration of the radial stress at the interface indicates the possibility of 
debonding at the interface and the extend of the opening up of the crack at the 

interface of the matrix and filler particle. 

Under compression loading, the absolute value of the 

radial stress at the equator is almost an order of magnitude smaller than its value at the 

pole it may however be sufficient to cause debonding from the equator of the sphere 

under the condition of the applied compression. 

The concentration of the Von Mises stresses shows the position of the formation of 

shear bands. The state of the stress determines the governing mechanism of plastic 

deformation. The degree of interfacial adhesion has- a profound effect on the 

competition between craze and shear band formation. In cases where the beads 

adhesion are perfect craze formation is favoured, whereas for poorly adhering beads 

shear band formation is dominant. This effect is caused by the difference in local stress 

situation, craze formation becomes controlling under a triaxial stress state and shear 

band formation is governing under a biaxial stress state. In the case of an excellently 

adhering glass bead, the crazes form near the pole. Stress analysis shows that these are 

regions of maximum dilatation and maximum principle stress. At a perfectly bonded 

glass bead experimental observations show that the shear bands form near the surface 

of the bead at 45° from the poles defined by the symmetry axis of maximum principal 

shear stress and of maximum distortion energy density. Our results confirm these 

observations. 

The tensile strengths predicted by the finite element model and Von Mises criteria are 

compared with other models. All the models show a decrease in the strength with 

increasing filler volume fraction. However, since it is assumed that composite failure 

occurs when the first element fails, the prediction of strength by our model is rather 

conservative. A more realistic assumption would be that composite failure does not 

occur until several of the highly stressed elements fail. This allows for crack arrest by 

neighbouring inclusions and also takes into account the statistical increase in the 

strength for the small volume of material which is subjected to the stress concentration. 
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The experimental results show that the strength of the composite depends on the size 

of the filler particles. In our finite element model, we assume the composite is flawless 

and hence it predicts the strength of the composite through the stress fields which are 

independent of the particle size. 

5.1.3 Composite Filled with Partially Bonded Particles 

An interesting result of the present study is that besides matrix properties, deformation 

rate and temperature, the nature of the stress concentrating heterogeneities also 

determines the mode of tensile deformation; the biaxial stress state induced by poorly 

adhering glass beads promotes ductile shear deformation at the expense of brittle 

crazing. This insight may be of interest in the development of new composite materials. 

By avoiding a triaxial stress state at the stress concentrators, a ductile response to 

tensile deformation might be achieved under test conditions that otherwise would yield 

a brittle response. 

The present study provides a good insight into the factors that determine the stress 

state near the tip of a curvilinear interfacial crack between a rigid spherical inclusion 

and a polymer matrix. The maximum stress concentration near the tip of a curvilinear 

interfacial crack at a further bonded sphere does not simply increase with increasing 

crack length, but is also determined by the orientation of the crack tip with regard to 

the applied tension direction. The analyses for a completely unbonded sphere have 

shown that an interfacial crack at a completely unbonded sphere cannot become larger 

than a critical length represented by 0= 68° to 70°. The stress state near the tip is 

biaxial and strongly determined by the extent of interfacial slip along that part of the 

unbonded interface that remains closed. The values of the elastic failure criteria that 

rule craze formation substantially increases as the extent of interfacial slip reduces. 

When relative tangential displacement of the particle and matrix is permitted and 

partial slip is imposed at the interface of the filler and matrix, the predicted stress 

concentrations are decreased . 
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Comparison of the results of the completely unbonded sphere with the physical reality 

of craze and shear band formation at poorly adhering glass spheres has shown 

reasonable agreement with respect to the critical interfacial crack length that can 

maximally be reached until a craze or shear band forms at the tip. Definite conclusion 

on whether craze and shear band formation occur more easily at the sphere than at an 

excellently adhering glass sphere could not be made because the extent and character 

of the interfacial slip between a poorly adhering glass sphere and a polymer matrix are 

not precisely known. 

For a debonded rigid particle the maximum values for direct and Von Mises stress are 

at the crack tip. This confirms that any further plastic deformation through crazing or 

shear band formation starts at the crack tip. 

Debonding of filler particles reduces the strength of the composite, but the debonded 

particles still can keep the composite from failure. This'results in higher strength of the 

composite filled with debonded particles compared to that of the porous composite. 

5.1.4 Composite Filled With Soft Particles 

Comparison of our predictions with experimental results for epoxy resin reinforced 

with soft particles provides valuable insight into the mechanical behaviour of these 

materials. The design of optimum particulate reinforced materials in terms of the 

desired volume fraction of filler and constituent material properties 'may now be 

considered. 
a 

The experimental values of composite modulus are in comparison higher than our 

model predictions, this is probably because of some stiffening of the rubber via the 

epoxy, the inadequate description of the Poisson's ratio of the rubber in the model, and 

incomplete phase separation leading to a lower rubber volume fraction than the 

expected theoretical value. The onset of plasticity during the experimental 

measurements as well as any experimental errors can also cause some discrepancy 

between the measured and the predicted values. In cases when the experjmental value 

is higher than the predicted results can be due to the skin effect. The restrictions 

imposed by the walls of molds, leads to an excess polymer at the surface of the test 

specimens. Thus, in torsion or flexural tests where the maximum stress is at the 

1" 
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surface, the properties of the surface is dominant and determinant the behaviour of the 

whole sample. This error can be corrected by using thicker specimens which can be 

extrapolated to infinite thickness, or by using particles of smaller size and extrapolation 

to zero particle size. The skin effect can produce errors as large as ten to twenty 

percent depending on the thinness of the specimen. 

The effect of the accuracy of the rubber material properties such as the Poisson's 

ratio, which is used as input for the finite element code, on the result of the 

calculations is shown. 

Linear relationship between Young's modulus and volume fraction is found which is 

similar to the results of experimental measurements. 

The maximum direct and Von Mises stress concentrations are found at the equator of 

the spherical filler particle. 

Shear bands in the resin are expected to grow from the point of the maximum 

concentration of Von Mises stress, which is predicted to be at the equator of the 

sphere. 

Initiation and growth of the shear bands are largely governed by the concentration of 

Von Mises stress in the matrix, whereas cavitation, or interfacial debonding, of the 

rubber particles is largely controlled by the hydrostatic (dilatational) tensile stresses. 

To analyse the stress field accurately, it is necessary to employ a numerical technique 

such as the finite element method. 

The radial stress at the interface for the soft particles is far smaller than that found for 

the hard particles. This indicates that there is no tendency for debonding at the 

interface in composites, which is in contrast to the tendency for debonding in the glass 

filled material. 

Stress distribution in the matrix for resin containing rubber spheres has been found to 

be very similar to that of a resin containing holes. The values of matrix maximum 

stress concentration, at the equator for the epoxy resin containing holes or rubber 

spheres are very close. Shear band formation in the resin would occur in a similar 
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way for the two materials. However, epoxy resin containing holes is known to be a 

very poor material. We therefore can postulate that shear band formation is not the 

only important fracture mechanism for this material. Our results have shown that 

cavitation of the rubber particles is likely to occur, in agreement with experimental 

observations; after cavitation the rubber may be stretched. It appears that the process 

of rubber cavitation and stretching may make important contributions to the overall 

fracture energy. The magnitude of these contributions is dependent on the modulus of 

the rubber. Further contributions to the fracture energy of epoxy resin containing 

rubber spheres may arise from the physical presence of the rubber which would act as a 

crack stopper to a growing crack attracted to the equator of the sphere by either the 

concentration of direct stress or the initiation of shear bands. 

Cavitation of rubber particles on fracture surfaces is generally found to start from the 

centre of the sphere. Our predictions do not indicate a preferred point of initiation but 

clearly show that the imposition of an overall tensile stress of the order of the matrix 

yield stress places the rubber particles in sufficient hydrostatic tension to initiate 

cavitations from small flaws. These flaws may be areas of rubber which are not fully 

polymerised and can not be observed by conventional microscopic techniques. There is 

some argument as to whether or not the cavitation of the rubber particles is necessary 

for shear bands to form. The exact stress levels for shear band formation and cavitation 

will depend upon the values of stress required to form matrix shear bands and cause 

rubber cavitation for the system under study. 

5.1.5 Composites Reinforced With Continuous Fibres 

It is observed that the addition of fibres produces a substantial increase in the 

transverse modulus of the binder material; however, the effect of an increase in fibre 

modulus is a gradually diminishing one becoming asymptotic to the value obtained for 

the infinitely rigid fibre. Therefore, at high values of the fibre modulus, The ratio of 

transverse Young's modulus to longitudinal Young's modulus becomes relatively small 

which is one of the significant structural problems associated with the use of high 

modulus filaments in composite structures. If multiple oriented fibre arrays are 

165 



Chapter Five Conclusion 

utilised to solve the problem of low stiffness in the transverse direction, a decrease in 

the major stiffness of the fibrous composite follows. 

Contours of the direct stress and Von Mises stress for a typical fibre reinforced 

composite are very similar to that of a particulate filled composite. The maximum 

concentration of the applied stress is in the matrix above the pole for rigid glass fibre 

in epoxy resin. 

The maximum stress at the interface is the radial stress at the pole. The position of the 

maximum at the interface moves from about 40° at low volume fraction towards the 

pole for the higher volume fractions. 

Since the failure strength of the interface is expected to be lower than failure strength 

of the resin, the stress concentration at the interface is considered to be more important 

for the study of the fracture behaviour than the stress concentration above the pole. 

The stress distribution in the fibre is almost constant for all volume fractions. The 

stress concentration reaches a slight maximum at the pole. The concentration of stress 

may lead to failure via the failure of the fibres in the transverse direction. 

The concentration of the stress in the fibre may lead to failure via transverse splitting of 

the fibres. The concentration of applied stress in the radial direction at the interface 

may lead to tensile failure of the interface. The fracture strength of the material is 

predicted to fall with increasing fibre volume fraction. 

Interfacial debonding was approached by a quadratic failure criterion based on the 

magnitudes of the interfacial radial and shear stresses computed by finite element 

method and the corresponding interfacial strength. The Cooper-Kelly model (CKM) 

with weak fibre/matrix interface is generally overconservative. 

The applied stress needed to cause the debonding of the fibre and matrix is significantly 

lower than the tensile stress necessary to cause shear failure of the matrix in this case. 

Our model predictions using interface debonding mechanism is in perfect agreement 

with the experimental results. This confirms that the interface debonding and brittle 
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failure are the dominant mechanism governing the failure of the fibre reinforced 

composite in this case. 

The limited accuracy of the strength predictions is partly attributed to the simplified 

assumption of a regular microstructure. The sensitivity of the failure predictions to the 

fibre volume fraction indicates that failure may initiate locally in a region of closely 

packed fibres. To increase the accuracy of the strength prediction, appropriate strength 

data for the matrix and interface is needed. 

5.1.6 Composites Reinforced With Short Fibre 

The stress and strain distribution in unidirectional discontinuous fibre composites have 

been studied according to a fibre distribution without overlapping of fibres. The stress 

distributions obtained show that the tensile load applied io the cell is borne essentially 

by the fibre. Load is transferred between fibres by lateral shear of matrix. The shear 

load is localised at the fibre and inducing a stress concentration. 

The results obtained for young's modulus show that modulus depends strongly on the 

geometrical arrangement of fibres. Without overlapping of fibres, the tensile load 

applied to composite is borne by alternate layers of matrix and matrix-fibre, following a 

scheme of stress equality. So the effective moduli are strongly dependent on the 

thickness of the matrix layers. 

Although shear lag model is very appealing in this task because of its- simplicity and 

also because of its ability to take into account critical factors, such as the 

reinforcement volume fraction and aspect ratio, it is based on several crude 

simplifications. the models based on finite element analyses shows that the shear stress 

is not constant along the reinforcement and matrix interface. The model also takes into 

account the importance of the stress concentration near fibre ends. 

The brittle fracture stress of short glass fibre reinforced composite increases as the 

adhesion at the fibre-matrix interface increases. Competitive deformation processes 

between interfacial debonding and matrix cracking at fibre ends is proposed. The 

increase of interfacial shear strength by coupling prevents early failure at the interface, 

thus increasing the tensile failure stress of short fibre composites. 
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The deformation behaviour which shows a sharp drop in stress due to interfacial 

debonding followed by matrix yielding, is absent in the composites with good coupling 

at the fibre-matrix interface. The fracture strain after upper shear yielding is higher for 

the composites with poor coupling. 

The model results obtained for Young's modulus of fibre reinforced composites show 

that it strongly depends on the geometrical arrangement of the fibres within the matrix. 

This arrangement is characterised by the volume fraction of fibres, the fibre aspect 

ratio and the fibre spacing parameter. 

the finite element results for the interfacial shear stress are compared with the results of 

the shear lag and modified shear lag model. The shear lag analysis gives much higher 

shear interfacial stress. The difference between shear lag model and finite element 

results increases with volume fraction. 

The tensile stresses from the analysis considering flux terms are higher for both 

volume fractions. The shear stress concentration distribution at the interface of the 

matrix and the filler does not change by including the flux terms in the field equations. 

The tensile stress increases from the fibre ends towards the centre of the fibre. For 

each volume fraction at a certain point along the length of the fibre the tensile stress 

reaches its maximum and remains almost constant for the rest of the length of the 

fibre. The point at which the tensile stress reaches its maximum value depends on the 

volume fraction of the fibres. The higher the volume fraction the closer the peak point 

is to the fibre end. 

The fibre critical lengths obtained by finite element model and Rosen model are 

compared for a range of filler volume fractions. Our model shows that the tensile 

stress in the fibre rises to its peak in shorter length of the fibre. Our results show that 

the critical length also depends on volume fraction. 

An increase in the stress to breaking point can be observed at higher volume fractions. 

The stresses at the breaking point are much higher than the debonding stresses for the 

fibre glass and epoxy matrix. These differences are more remarkable at lower fibre 

aspect ratios. 
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Therefore it can be predicted that at low aspect ratios the debonding of the fibres acts 

as the initiation mechanism for the failure and it is followed by the failure of the matrix 

near the fibre ends. Since the aspect ratio is low, the concentration of the fibre ends is 

high and then the local cracks merge transversely from the direction of the applied 

load. 

Catastrophic failure of the composite then occurs without any breaking of the fibres. 

At higher aspect ratio, since the breaking stress of the fibres is lower, the failure occurs 

in two steps. In the first step the interface debonding and tensile failure of the matrix at 

the fibre ends is observed. 

However, in contrast to the low fibre aspect ratio case, growing matrix cracks at fibre 

ends are quickly blunted by neighbouring fibres and hence no catastrophic failure 

occurs. Because of the cracks and interfacial debonding the modulus of composite 

drops significantly. 

Our model shows that the breaking stress of the fibres reduces at low modulus. 

Therefore in the second step which corresponds to a the decreased modulus the tensile 

stress in the fibres can easily exceed the failure stress of the fibres leading to the 

breakage of the fibres. 

5.2 SUGGESTIONS FOR FURTHER WORK 

One basic assumption made in this analysis is that both the filaments and the matrix are 

linearly elastic and that no plastic or viscoelastic behaviour occurs. In an actual 

composite material, localised yielding undoubtedly does occur in the typically weak 

matrix material, permitting a redistribution of the high localised stresses. Depending on 

the type of matrix material being considered, either non-linear elastic, inelastic, or 

viscoelastic behaviour may occur. Thus, a logical extension of the present analysis will 

be to study this nonconservative material behaviour. 

Because strength is affected more than stiffness by material and geometric 

nonhomogen eity and the resulting local perturbations in the stress and strain 

distributions. The effects of such local stress and strain perturbations on stiffness are 

reduced due to the smoothing effect of integration in the effective modulus theories. 
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On the other hand, material failure is often initiated at the sites of such stress and strain 

concentrations, so the effect on strength is much greater. The variability of strength in 

reinforcing fibres alone may be quite significant, and statistical methods must be used 

for accurate analysis. 

The theoretical results obtained for Young's modulus of short fibre reinforced 

composites depend strongly on the geometrical arrangement of fibres, thus Young's 

modulus of discontinuous fibre composites cannot be derived from an isolated cell 

scheme. In our model we have ignored the effect of the overlapping fibres. In order to 

consider this effect a hexagonal arrangement of fibre should be 

modelled. 

The real arrangement of filler particles or fibres throughout the matrix is normally 

random. A statistical technique is needed to consider the effect of the random 

distribution of fibre in the matrix. In our model we assumed that particles and the 

diameter of fibres are of the same size. Whereas in practice the filler particles and fibre 

diameters is not the same. This means that in order to get closer to the real 

microstructure of the composite a unit cell is not enough. and a model geometry 

containing several particles of different sizes is needed 

The findings of the project can be summarised as: 

 A FORTRAN code is developed that can be used for studying the behaviour of the 

polymer composites in the both solid and liquid states. A convenient penalty 

parameter is used in order to obtain the equilibrium solid mechanic equations 

starting from the Stokes flow equations. 

  The boundary line integral terms are included in the model. Further investigation 

shows that these terms do not have much effect on the computational result in the 

case of the particulate filled composites. But for the short fibre composites taking 

these terms into account can affect the displacements and stresses values 

considerably. 

170 



Chapter Five Conclusion 

  The slip boundary condition is imposed at the interface of the filler and matrix in 

order to simulate the level of adhesion at the boundary of a debonded filler particle 

and the stress field at the interface is studied. The result are used to predict the 

further crack propagation in the composite 

  The developed model is applied for different types of composites such as 

composites filled with hard particles or soft particles, composite reinforced with 

continuous or short fibres. The results are validated by comparing with 

experimental data and other well established model. The modulus values can be 

predicted closely and the strength values are generally underestimated. In each case 

the calculated stress fields are used to predict the failure mechanism. The dominant 

mechanism of the toughening is predicted in the case of soft particles. For the short 

fibre composites the critical length is found from the calculations and the effect of 

fibre aspect ratio and spacing is studied. The crack propagation is predicted for 

debonded filled composites. 

i 
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