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ABSTRACT 

MASS-SPRING MODELLING OF VAULT SPRINGBOARD CONTACT 

Michael John Harwood 

Loughborough University, 1999. 

Vaulting is a discipline in Men's and Women's Artistic Gymnastics. While the springboard 

contact is not judged, the success of the rest of the vault is underpinned by it. The purpose of 

this study was to develop an understanding of the mechanics of the springboard contact 

phase of gymnastic vaulting. 

An analysis of hopping in place, forward hopping and running jumps on a force platform 

showed that the force-mass centre displacement relationship during ground contact 

approximated that of a mass rebounding on a linear spring. Subsequently, two mass-spring 

models were developed using a symbolic mathematics package. Both models represented the 

gymnast as a rigid cylinder, with personalized linear and angular inertia characteristics, 

connected at its mass centre to a linear spring. A one spring model combined the springiness 

of the gymnast and the springboard in a single linear spring, while a two spring model 

treated them as separate linear springs. 

Handspring vaults performed by an elite male gymnast at a range of approach speeds and 

springboard settings were analysed to provide model inputs. Springboard properties were 

empirically determined and revealed that the springboard stiffness varied appreciably 

depending upon feet contact position. Given the touchdown kinematics and takeoff angle of 

the gymnast, the models estimated spring stiffness and linear and angular takeoff velocities, 

the spring stiffness and takeoff vertical velocity estimates showing some sensitivity to spring 

angle at touchdown. Simulations in which the touchdown kinematics and spring stiffnesses 

were systematically adjusted, identified their influence on takeoff kinematics and provided 

an insight into the mechanics of springboard. contact. 

Estimated (leg) spring stiffnesses were consistent with those reported in the literature for 

other activities and'simulation results showed that simple rebounds accounted for the 

majority of the takeoff velocities. Spring arigle`at'touchdown was found to be most effective 

at modifying each of the takeoff variables, however to produce a selective effect on takeoff 

required a combination of adjustments to the touchdown. In proposing strategies for 

gymnasts, their ability to control each of the touchdown variables has to be considered. 
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CHAPTER ONE 
INTRODUCTION 

1.1 THE AREA OF STUDY 
As one might expect of a sport which has its roots in ancient Egypt and Greece (Gajdos, 

1997), much has been written on the subject of artistic gymnastics. This is also true of the 

vault, which has been a competitive activity in a form which would be recognised today, 

including the springboard, since at least the 1870's (Gajdos, 1997). Springboard contact in 

gymnastic vaulting comes at the culmination of an approach run of up to 20 metres and sets 

up the entire vault. Following the final step of the run-up, the gymnast performs a low flight 

onto the springboard (known as the hurdle step) during which the feet are brought together 

for the landing on the springboard (or reuther board). The `gv mnast's momentum is altered 
during the board contact and the gymnast takes off from the board ý%ith the linear and 

angular momenta which go a long way to determining the success of the vault. AlthouOh the 

springboard contact and the flight from springboard to horse (known as the preflight) are not 

specifically scored by the judges, they are critical to the vault. Smith (1982, page 144) said: 
`... vault take-off is probably the most important 0.1 to 0.15 seconds in gymnastics. ' 

A survey of coaching literature (see Chapter Two, section 2.1) relating to vaulting, reveals 

that whilst many authors acknowledge the importance of the board contact phase, the advice 

to gymnasts can be imprecise and at times contradicts the results of quantitative studies. For 

example, the orientation of the body at touchdown with the board has been given as leaniM`-1 

back slightly (George, 1980; Sands, 1982), upright/vertical (Loken and Willoughby, 1977; 

Pflughoeft, 1989), and from leaning back to leaning forward depending on the required 

preflight (Stuart and Sommerville, 1980). Researchers have found that gymnasts typically 

contact the springboard with their bodies leaning back at about 30° to the vertical (e. g. 

Dillman, Cheetham and Smith, 1985; Takei, 1991). 

Researchers of the mechanics of the vault have on a number of occasions noted the 

importance of the board contact in producing a desirable preflight, but only a small amount 

of research has actually focused on the board contact phase specifically. Brüggemann (1994, 

page 88) said of the springboard contact phase: 

Although there are detailed biomechanical studies on the vault, 
this most important phase in which angular momentum and 
quantity and direction of linear momentum are determined from 

the run-up momentum has received little attention. 



As the quest for more difficult, and therefore potentially higher scoring, vaults continues. it 

is increasingly important to understand the mechanics of springboard contact, the 
foundation upon which the rest of the vault is built. The lack of consensus in the coaching 
literature on the subject of board contact technique leaves questions such as "How would a 
faster approach to the board affect preflight? ", or "When does an increase in approach 

velocity become detrimental to performance? ", and "If the touchdown velocity and the 
board stayed the same, what effect would an increased blocking angle have on preflight? " 

unanswered. 

1.2 MODELLING PHILOSOPHY 
Finding the answers to these questions by trial and error in the `-, %mnasium can be time 

consuming and runs the risk of injury; furthermore, precise control over the variables Xtould 
be very difficult to achieve, even with the most skilled gymnast. However, a modelling 

approach is ideally suited to answering such questions. A mathematical model allows 

control over each of the variables included in it, thereby enabling there to be adjusted 
independently and in combination. Identification of the influence of each v ariable is then 

possible, revealing the mechanical principles underpinning the activity and permitting 

specific questions to be addressed. It is important however, to evaluate the output of a model 

against real performances prior to its application, so that any limitations of the model 

predictions become apparent. 

Many types of mathematical model are possible, the choice of which to adopt being 

dependent on the activity to be modelled and the intended use of the model. The decision to 

use a mass-spring system as the basis for the model of springboard contact was founded on 

several factors. The most obvious was the nature of the springboard, but Stuart and 

Sommerville (1980) also lent support for the notion of treating springboard contact as a 

rebound when they said `The action [of the gymnast during board contact] is not of jumping. 

but of bouncing' (page 99). In addition, several studies have demonstrated similarities 

between aspects of the kinematics of human motion and that of mass-spring systems. For 

example, consideration of the mass centre kinetic and potential energ\ changes during 

running led Cavagna, Saibene and Margaria (1964) to propose a bouncing model of the 

human runner, and Ker, Bennett, Bibby, Kester and Alexander (1987) shoýýed that the 

arches of the feet compress and recoil like a spring due to the elastic properties of the 

ligaments in them. Furthermore, Cavagna (1970) found that the supporting structures of the 

body possessed a natural frequency of vibration which he modelled as a damped spring. aria 

in a later study he and his co-workers found that the force-mass centre displacement history 
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during ground contact in running was linear, like that of a Hookean spring (Cavagna, 

Franzetti, Heglund and Willems, 1988). 

Mass-spring models of the human body have in fact already been used, for example by 

McMahon and his co-workers to study running (e. g. McMahon, Valiant and Frederick, 

1987, McMahon and Cheng, 1990) and by Farley and her co-workers to study hopping (e. g. 
Farley, Blickhan, Saito and Taylor, 1991, Farley, Blickhan, and Taylor, 1985). However, 

these studies have generally been confined to the special case of rebounding activities ww here 

the path of the mass centre is symmetrical about the vertical, such that the body leaves the 

ground at the same speed at which contact was made and at the same angle past the vertical 

as the angle that it contacted before the vertical. This clearly is not the case in vault 

springboard contact, nor during the majority of rebound actions in sport and only 

approximately true for running. Blickhan, Friedrichs, Rebhan, Schmalz and Wank (1995) 

extended the mass-spring modelling approach to long jump takeoffs, but their model does 

not account for angular motion which is so important in gymnastic vaulting. 

None of the preceding remarks are meant to imply that the gymnast and board are simply 

coupled masses and springs, but rather that their combined motion could be considered to 

behave in a way similar to such a system, and that a mass-spring system might be an 

appropriate simplification of the real situation. The attraction of this approach was its 

conceptual simplicity, which it was hoped would result in an understanding of the 

mechanics of the activity and make the findings readily useful to gymnasts and coaches. 

Throughout the thesis, the term `rebound' or 'simple rebound' is used to indicate 

simulations of springboard contact in which the takeoff is solely the result of the motion of a 

mass-spring system on the basis of given touchdown conditions. 

Vaulting springboards are manufactured to conform with Federation Internationale de 

Gymnastique (FIG) specifications (FIG, 1994), but differences between the materials from 

which they are constructed, age and the ambient conditions at a specific venue and time, 

result in variations to which gymnasts have to adapt. Gymnasts subjectively assess the 

'springiness' of a board before using it, but in competition they are limited to a brief practice 

period. A model for vault springboard contact could lead to an improved comprehension of 

the interaction of gymnasts and springboards, enabling ways in which gymnasts might 

compensate for springboard variations to be predicted. The insight gained could also enable 

the identification ways of achieving specific enhancements to the takeoffs in order to 

improve vaults or to progress to more demanding vaults. 
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1.3 STATEMENT OF PURPOSE AND QUESTIONS 
The purpose of this study was to develop an understanding of the mechanics of the 

springboard contact phase of gymnastic vaulting. Using a combination of analysing real 

vaults and modelling of the springboard contact as a mass-spring system, the aim «was to 

explore the relationships between hurdle and preflight kinematics as modified by the 

springboard contact. With this knowledge it was anticipated that the strategies a gymnast 

might employ to achieve desired springboard takeoffs could be predicted. 

The following questions were addressed by conducting mass-spring model simulations 

using input data based on real vaults: 

What proportion of a gymnast's linear and angular velocities at takeoff from the 

springboard can be accounted for by a simple rebound? 

During springboard contact gymnasts extend at the ankles, knees and hips, and can use their 

arms to influence their takeoff. Nevertheless it was anticipated that most of the linear and 

angular velocities at takeoff would be produced as a result of the (predominantly horizontal) 

momentum of the approach run being modified by a simple rebound from the board. 

To what extent does springboard stiffness affect takeoff kinematics? 

Gymnasts subjectively assess, and have some control over, the stiffnesses of the 

springboards they use in training and competition. An evaluation of the possible magnitude 

of the effect of these stiffness alterations on the takeoff from the springboard was 

performed. 

How does changing the kinematics at springboard touchdown affect the takeoff from 

the board? 

By altering the approach to the springboard, gymnasts can alter their takeoff. The influence 

on takeoff of adjusting approach speed and blocking angle, independently and in 

combination, was investigated. 

What effect does the gymnast's stiffness during springboard contact have on the 

takeoff from the board? 

Research into running and hopping has shown that humans can adjust the overall stiffness of 
their legs. The extent to which the leg stiffness of the gymnast could affect the takeoff was 

assessed. 

How can gymnasts compensate for springboard stiffness differences? 

When vaulting from a springboard which has a different stiffness from those that a zv mnast 
is used to, some alteration to the approach or board contact may, be necessary in order to 
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achieve the desired takeoff from the board. Different mechanisms for achieving this 

compensation were explored. 

What modifications to a gymnast's approach to and contact with the springboard 

would be most effective for achieving specific changes to preflight? 

Whilst a number of methods for changing the takeoff from the springboard may be possible, 

the most effective for modifying each of the takeoff velocities was sought. The practical 
issues involved with these changes were also considered. 

1.4 ORGANIZATION OF THE CHAPTERS 
Chapter Two reviews the literature related to the theoretical and practical aspects of the 

study. 

Chapter Three details a study conducted to evaluate the suitability of using a linear spring 

to represent the lower limbs in a model of rebounding activities. 

Chapter Four describes the formulation of two mass-spring models: a one spring model in 

which the springiness of the gymnast and the springboard are treated as one, and a two 

spring model in which they are treated separately. 

Chapter Five concerns the collection and analysis of vaulting and springboard data, which 

were to be used in the simulations. 

Chapter Six describes the evaluation and application of the models. A series of 

simulations were performed to explore the mechanics of vault springboard contact and to 

enable the questions posed in Chapter One to be answered. 

Chapter Seven discusses and summarizes the results of the study and suggests some 
directions for future investigations. 
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CHAPTER TWO 
REVIEW OF LITERATURE 

This chapter is divided into four main sections. The first covers the literature in coaching and 

research publications which concerns the springboard contact phase of gymnastic vaulting. 
This also includes studies of the springboard itself and studies of vaulting in general which 

contain specific information about the board contact phase. The second section reviews the 

modelling of rebound activities, from the evidence which suggested a mass-spring approach 
for modelling these activities, to the models themselves and the results obtained from their 

use. In the third section, evidence concerning the accommodation by subjects to changes in 

surface stiffness is reviewed, before the final section considers the variety' of methods of 
investigation in use in biomechanics which relate to this study. 

2.1 VAULT SPRINGBOARD CONTACT 
Advice regarding springboard contact for vaults in coaching books and articles is based 

mainly on experience and observation. A brief summary of a selection from the coaching 
literature serves to highlight the major coaching points. These do not relate to specific vaults 

and span a number of years during which the scoring of vaults, regulations for run up, hand 

positions on the horse and flight, as well as the springboards themselves have changed 
(Takei, 1991). 

The consensus on the hurdle step to the board is that it should be low and fast (e. g. 
Readhead, 1987; George, 1980; Pflughoeft, 1989). Sands (1982) also specified that the body 

should be rising at contact. This last point is however contradicted by the results of studies of 

elite gymnasts, which have found that the mass centre is falling at the point of touchdown 

with the springboard at slightly more than 1 m. s-' (see for example Takei, 1988,1989; Takei 

and Kim, 1990). Foot contact position has received a variety of descriptions which 

apparently refer to a similar point: Warren (1972) and Loken and Willoughby (1977) talked 

of the point of maximum spring of the board, Sands (1982) referred to the 'sweet spot' and 

George (1971, page 22) elaborated a little more with `... the balls of the feet contact the 

"belly" of the reuter board (centre of oscillation) so that the maximum restitutional 

coefficient of the board can be realized'. However, neither precise details of the location of 

this point nor how it could be determined were given. Readhead (1987) made no mention of 

the point of contact with the springboard but he stressed the need to achieve consistenc\ in 

the hurdle step. 
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According to George (1980) and Sands (1982), at springboard touchdown, the body should 

be leaning back slightly, while Loken and Willoughby (1977) and Pflughoeft (1989) 

suggested a vertical position. Warren (1972) and Stuart and Sommerville (1980) explained 

that the body angle at contact with the springboard determines the shape of the preflight such 

that leaning back leads to a slow, high trajectory, while an upright or forward leaning 

position leads to a fast, low flight. Mechanically, touching down at or past the vertical seems 

unlikely to be adopted in practice as the possibility of generating vertical velocity would be 

very limited and no studies of elite male gymnasts have reported body angles at springboard 

touchdown which were vertical or past vertical. Dillman, Cheetham and Smith (1985) 

reported a mean of 27.5° before the vertical for both handspring (standard deviation 3.24°) 

and Tsukahara vaults (standard deviation 2.29°), while Takei (1991) found that gymnasts 

performing handspring and salto forward tucked vaults were leaning back at 33° before the 

vertical (standard deviation 3°). 

The patterns of arm swing and body action on the springboard seem to be fairly well agreed 

within the coaching literature. Arm swing should be forward and upward, although 

recommended timing varies, and any flexion at the ankle, knee and hip should be vigorously 

extended up to takeoff; Sands (1982) even suggested that the gymnast should anticipate 

contact and begin extension slightly before contact. Stuart and Sommerville (1980) and 

Pflughoeft (1989) emphasised a tensing of the body to receive the recoil of the springboard, 

while White (1989) advised a more active `jump with the recoil' of the board. This latter 

suggestion may be useful as a coaching point but the implied notion of waiting for the recoil 

and then jumping with it would be difficult to achieve in a contact which lasts only around 

0.10 to 0.14 seconds. Furthermore the extension of the body would increase the force applied 

by the gymnast to the board and hence would add to the compression or at least delay the 

recoil. Gymnasts could however pre-program their movements if they have knowledge of the 

board's performance. Good extension of the body at takeoff is generally recommended and 

Taylor, Bajin and Zivic (1972) found that takeoff usually occurred with the body at about ten 

degrees past the vertical, Takei (1991) reported approximately fifteen degrees past vertical 

for handspring and salto forward tucked vaults and in a study of handspring with full twist 

vaults (Takei, Blucker, Dunn, Myers, and Fortney, 1996) 30 to 35 degrees past vertical was 

common. 

Hay (1993, page 3 14) described takeoff from the springboard as the most critical phase of 

the vault' and Smith (1982, page 144) said '... vault takeoff is probably the most important 

0.1 to 0.15 seconds in gymnastics. ' yet little research into the mechanics of takeoff from 

springboard has been reported in the scientific research literature. 
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Kreighbaum (1974) analysed the interaction of vaulters with a springboard which had 

undergone a static load-deflection calibration. Cine-film from the side view and an electro- 

mechanically derived deflection-time traces were recorded for eight women vaulters 

performing sidehorse (horse at right angles to the direction of motion) handspring vaults. 

Kinematic and kinetic data were calculated including estimates of segmental angular 

velocities and accelerations and joint torques (though precise details of the methods used 

were not included). Means and ranges of kinematic parameters of the mass centre are 

presented and the kinematics of the body segments are discussed. The deflection-time traces 

showed an initial peak in the first half of contact which equated to vertical forces of between 

5262 and 9632 N, while second peaks were estimated to reflect forces of 2453 to 4682 N. A 

drawback of the study was that the estimated external forces from the board deflection traces 

were taken to act vertically and no estimates of the horizontal forces were made, therefore 

the accuracy of calculated joint torques and the total impulses must be in doubt. This is 

highlighted by the fact that the total impulses calculated were found not to be correlated to 

the vaulters' change in velocity during board contact. Furthermore the suggestion that the 

joint extensions should be completed prior to the maximum deflection of the springboard, 

ignores the fact that the joint extensions themselves contribute to the deflection of the board 

and contradicts the results of the study itself, which found that the gymnasts were at their 

lowest position at the peak deflection and that the submaximal peak coincided with extension 

of the hip, knee and ankle joints. 

In a second study Kreighbaum (1979) filmed at a rate of 400 frames per second to look in 

detail at the undulations of the board and the foot placements when one male and one female 

nationally ranked American gymnast performed handsprings. The difference between the 

mean board contact times of the two gymnasts was reported to be `approximately one tenth 

of a second' (page 26) which is rather imprecise, given the framing rate, and large, given the 

total springboard contact times of between 0.10 and 0.16 seconds reported in other studies 

for both men and women performing handspring type vaults (e. g. Nelson, Gross and Street. 

1985; Takei, 1989). Qualitative descriptions of the board deflection patterns for the variety 

of foot placements observed, illustrated the complex nature of the board's movements. 

especially when contact was not made in the centre of the board. A smooth deflection pattern 

was assumed to indicate more efficient [sic] board use and this was observed when an even 

foot placement in the mid-region of the board was achieved. However, it is clear from the 

study that neither gymnast seemed able to reproduce foot contact positions consistently. 

The Federation Internationale de Gymnastique (FIG) have developed a series testing 

procedures for gymnastic equipment to which manufacturers must subject their products 



9 

before they may be used in FIG competition (Schweizer, 1985; FIG, 1994). For the vault 

springboard the test consists of dropping a 20 kg testing body with a 0.10 m contact 
diameter, from a height of 0.80 m (or slightly more, in order to achieve an impact velocit` of 

-3.96 m. s-1, equivalent to a frictionless drop from 0.80 m) using a custom built testing rig. 

Ten drops are made in each of five locations on the mid-line of the board surface, 0.75 to 

0.95 m from the run-up (near) end of the board in 0.05 m intervals (positions 1 to 5). A 

further ten drops are made at each of two locations 0.15 m each side of the board's mid-line, 

0.95 m from the near end (positions 6 and 7). During the testing the ambient temperature 

must be 20 ± 2° Celsius. A Kistler accelerometer is attached to the test body and the 

springboard itself is placed on two Kistler force plates, however the precise mounting details 

and sampling information are not detailed. 

Three parameters are measured for the FIG norm test: the deformation of the board, the 

height of rebound of the test body and the maximum force during the impact. These are 

calculated from the accelerometer and the force plate records, although other than the fact 

that the mean values from drops 3 to 10 in each position are used, no details of the 

calculations are given. The results for each parameter from all seven positions must conform 

to set criteria and the results must not vary between positions by more than set amounts 

(Table 2.1). The three parameters are an attempt to quantify in a general way acceptable 
board stiffness and damping: the maximum force and deformation are facets of stiffness, 

while rebound height gives some information about damping. It is noted that for vaulting 

springboards a high rebound height is required (low damping), while the stiffness should be 

such that the stress on the gymnast is not great. While the norms do not quote stiffness in 

standard units, estimates can be made by dividing the maximum allowable impact force by 

the extremes of the range of allowable deformations; these calculations give a stiffness range 

of approximately 57 to 65 kN. m-1. A damping estimate is not so easily obtained but the range 

of acceptable rebound heights indicate a loss of energy of between 49 and 64%, which seems 

to be rather high. 

Kerwin & Littlechild (1989) examined the potential for energy storage and return by 

springboards using a static loading/unloading protocol. They devised a cantilever s. -" stem for 

producing loads up to 6000 N in 125 N increments while measuring the board deflection, in 

three different positions along the middle of the surface (0.75,0.85 and 0.95 m from the near 

edge of the springboard), similar to the FIG testing procedure (FIG, 1994). They found that 

approximately 300 J were stored at the full loading, though there was some hysteresis ýtfiich 

meant that not all of this energy was returned (20% lost for loading-unloading up to 5000 N. 

but not quantified for the 6000 N loadings). This is considerably' better than the FIG norms 
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Table 2.1. FIG springboard norm testing criteria (FIG, 1994). 

Deformation Rebound height Max. impact force 
(m) (m) (N) 

Norm for positions 0.070-0.080 0.285-0.405 < 4550 1-5 

Difference between 
< 0.015 < 0.120 --- positions 1-5 

Difference between 
< 0.004 

positions 6&7 < 0.025 < 150 

would suggest should be the case under dynamic conditions (FIG, 1994). They also found 

that the load-deflection curves were linear up to around 3500 N and showed some non- 

linearity above this load, though the degree was dependent on the loading position (only the 

loading position 0.95 m from the near end of the board demonstrated a substantial increase in 

slope). Estimates from their load-deflection graphs indicate board stiffness of around 60.00 

to 68.75 kN. m-1 which is in agreement with estimates from the FIG norms (FIG, 1994). 

Other studies into vaulting have not focused specifically on springboard contact but several 

have reported information on springboard touchdown and takeoff kinematics, and some of 

these have noted the importance of the springboard takeoff to overall success. The studies of 

Handspring and Handspring-based vaults by Takei (1988,1989 and 1991), Takei and Kim 

(1990) and Takei et al. (1996) are the most comprehensive yet into the kinematics of men's 

vaulting. Takei (1988,1989) and Takei and Kim (1990) developed a deterministic model of 

vaulting based on the method of Hay and Reid (1982) which was used to identify mechanical 

factors determining performance and these factors were then measured during competitions 

using film analysis. Correlations were then performed between each measured variable and 

the judged score of the vault. The later studies (Takei, 1991; Takei et al., 1996) compared 

the best and worst performers of the compulsory vault at the 1988 and 1992 Olympic Games 

respectively to determine which factors were significantly different between the groups. 

In all of these studies by Takei and his colleagues, the horizontal velocity of the gymnast's 

mass centre at board takeoff was found to be significantly correlated with score (Takei, 

1988,1989, Takei and Kim, 1990) or significantly higher for the higher scoring gymnasts 

(Takei, 1991, Takei et al., 1996). Horizontal velocity in the hurdle and angular momentum in 

preflight were also identified as being of importance in several of the studies. Takei et al. 

(1996) stated their belief that performance differences in the latter phases of the vaults \ý ere 



caused by differences in the technique used in the earlier phases. Brüggemann and Nissinen 

(1981, cited in Brüggemann, 1987) found that the horizontal velocity of the centre of mass 
during the approach was directly related to performance, as was high angular momentum at 
board takeoff and a short preflight. As part of his review of gymnastics research 
Brüggemann (1994, page 88) nicely summarized the importance of the springboard contact 
by stating: 

The takeoff from the board becomes the performance limiting 
instant in which the kinetic energy provided in the run-up is 
transformed into the linear and angular requirements. 

Care must however be exercised when interpreting the results of statistical studies within 

homogeneous groups and applying them to other groups. Important factors contributing to 

high scores within an elite group may be less important to less skilled gymnasts and the 

fundamental features of successful vaults should be so well established in the elite performer 

so as not to vary greatly within the elite group and therefore not correlate highly with score. 

This could be true of the studies by Takei (1988,1989) and Takei and Kim (1990), although 

they might argue that they studied the full range of abilities within a large (but still elite) 

population (41,40 and 51 gymnasts respectively in each of the studies). Brüggemann and 

Nissinen (1981, cited in Brüggemann, 1987) did not have this problem because they looked 

at the mean values of the measured variables of three groups of differing ability and 

compared them with the group's ranking. Another problem is that the overall score takes into 

account factors other than those that were measured in these studies, such as risk, originality 

and virtuosity. The studies by Takei and his colleagues mentioned this explicitly when 

developing their deterministic model of performance and Dainis (1979) took this into 

account by having the vaults studied scored independently only on the basis of variables 

which were measured. Other studies (e. g. Cheetham, 1982, Draper, 1981) performed 

correlations with postflight height and/or distance, which were assumed to indicate the 

overall score. 

Dainis (1981) developed a mathematical model for handspring vaulting covering the period 

from springboard takeoff to landing following the postflight. The model was evaluated using 

the results of an analysis of four vaults by advanced female gymnasts. The results of varying 

a range of selected parameters in the model indicated that the takeoff velocity from the 

springboard and preflight distance (springboard takeoff to horse touchdown) were the 

principal variables influencing the outcome of the vaults. 
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2.1.1 SUMMARY OF VAULT SPRINGBOARD CONTACT 
The advice found in coaching books and articles regarding springboard contact is rather 

vague and at times contradicts the findings published in scientific papers. This should not be 

that surprising since the duration of contact with the board is typically only 0.10 to 0.14 

seconds, making direct observation of the detail impossible. Few researchers have 

investigated the properties of springboards, though a protocol for the testing of springboards 
has been developed, and most studies of vaulting have focused on the preflight, horse contact 

and postflight rather than board contact. Nevertheless, several authors have noted the 
importance of the board contact phase to the overall success of the vault. 

2.2 MODELLING REBOUND ACTIVITIES 
The possibility of storage and recovery of elastic energy in the legs of animals during 

locomotion has been recognized for many years. This, along with the fact that the pattern of 

motion of the mass centre in running and hopping is like that of a bouncing ball (Cavagna, 

Saibene and Margaria, 1964), has led to the development of a number of models which 

represent the movement patterns of these activities as rebounding mass-spring systems. This 

section reviews the evidence that has led to the development of mass-spring models of 

rebound activities and the models themselves. 

2.2.1 EVIDENCE FOR MODELLING WITH SPRINGS 

2.2.1.1 Muscle and tendon studies 
Research into the operation of muscle and tendon in a variety of animals has suggested the 

sites for energy storage and given an indication of the magnitude of the energy stored and 

then returned. 

Alexander (1974) conducted a detailed study of the mechanics of jumping by a dog and 
Alexander and Vernon (1975) used similar techniques to study hopping by kangaroos and 

wallabies. By using dissection and X-radiography in conjunction with cine-film and force 

plate data they were able to perform inverse dynamics calculations of the force-length 

relationships of the plantaris and gastrocnemius muscle-tendon complexes during ground 

contact. These relationships were reasonably linear with the force the muscles exerted rising 

as the muscles and tendons lengthened and then falling as they shortened, in much the same 

way as a linear spring being stretched and allowed to recoil. Alexander and Vernon (1975) 

noted that the overall compliance of the muscle-tendon complex could be considered the sum 

of the compliance of the truly elastic materials (mainly tendon) and the 'pseudocompl lance' 

of the muscles as they actively lengthened and then shortened. Furthermore. Alexander and 
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Vernon (1975) estimated that the elastic recoil of the tendons could supply around 40% of 
the positive work required by a wallaby during the contact phase at 'moderate speeds'. 

Morgan, Proske and Warren (1978) attempted to determine directly whether the tendons and 

muscles involved in hopping (in this case by wallabies) behaved as elastic structures, as had 

previously been suggested (e. g. Alexander and Vernon, 1975). Using an anaesthetized 

wallaby they separated the medial head of the gastrocnemius muscle and tendon from the 

surrounding tissue to allow them to measure tension and length changes during a rapid 

stretches of the muscle while they stimulated it to tetanus. When measuring length changes 
involving the whole muscle-tendon complex, they estimated approximately eight times as 

much stretch in the tendon as in the muscle tissue for maximal isometric activity. The tendon 

length-tension relationship was linear over a wide range of forces, however they found that 

muscle tissue did not follow this pattern once the stretch of the muscle exceeded about 
1 mm. In fact they estimated approximately 40% energy dissipation due to forced cross- 
bridge detachment during the eccentric phase of the ground contact in their study. 

Drawing together results from previous studies Alexander and Bennet-Clark (1977) 

estimated that for humans running, the Achilles tendon could store five to ten times as much 

strain energy as the knee and ankle extensor muscles themselves (running at 3.9 m. s-'), and 

for wallabies hopping at 2.4 m. s-' the ratio was similar, at between six and thirteen to one. 

These estimates, however, assumed a linear length-tension relationship for both tendon and 

muscle which the results of Morgan et al. (1978) would not support for large stretches of the 

muscle. Alexander and Bennet-Clark (1977) were unable to estimate the storage in the 

human patellar tendon but expected it also to be substantial, thereby increasing the difference 

in energy storage between the tendons and muscles of the legs. However by 1988 Alexander 

had changed his mind about the role of the patellar tendon when he stated that he suspected 

that `it may be relatively unimportant' (Alexander, 1988, page 20). 

Ker, Bennett, Bibby, Kester and Alexander (1987) revised downward the estimate by 

Alexander and Bennet-Clark (1977) of the strain energy stored in the Achilles tendon during 

running (from 42 to 35 J per step), but Ker et al. 's results from studies of amputated human 

feet showed that the longitudinal arch had elastic properties which could contribute to the 

energy efficiency of locomotion. Combining the estimated energy storage in the arch of the 

foot (17 J) and the revised storage by the Achilles tendon gave a higher total than Alexander 

and Bennet-Clark's original estimate and amounted to approximately 52% of the energy 

required in each step (although the method of calculating the energy required per step could 

affect this figure; see section 2.2.1.2). 
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Griffiths (1989) studied the medial head of the gastrocnemius muscle and its tendon in freely 

hopping wallabies. He found the musculo-tendinous force-length graph to be linear Over a 

variety of hopping speeds in agreement with previous studies (e. g. Alexander and Vernon, 

1975; Morgan et al., 1978). However he calculated that while the amount of energy stored in 

the tendon increased as hopping speed increased, the proportion of the positive work 

performed by the return of stored elastic energy did not increase. Nevertheless a considerable 

amount of energy was stored and returned, estimated to be 41% in this case, comparable with 
the 39% estimated by Alexander and Vernon (1975). 

Roberts, Marsh, Weyand and Taylor (1997) measured directly the tendon force and muscle 
fibre length in the lateral gastrocnemius of turkeys during level running. They found that the 

muscle shortened little during ground contact, providing less than 40% of the positive work 
done by the muscle-tendon complex and deduced therefore that energy stored and then 

released by the tendon (including aponeurosis) did in excess of 60% of the work. This 

conclusion seems to fit very well with the estimate by Morgan et al. (1978) of 40% energy 
loss due to work being done on muscle during the eccentric phase of ground contact in 

hopping wallabies, although Alexander and Vernon (1975) and Griffiths (1989) estimated 

only about 40% return of stored energy for hopping wallabies. 

While the species, methodologies and absolute figures have varied in the above studies, a 

number of points of consensus emerge: 

" there is considerable scope for the storage and return of energy by muscle and 

tendon, though primarily by tendon; 

" this stored and returned energy could account for between 40% and 60% of the 

positive work done in a ground contact; 

" the force-length relationship of combined muscle and tendon is, in some muscles 

at least, linear over a range of speeds of locomotion. 

A question may be raised regarding whether human muscle and tendon can be assumed to 

behave as do those of other animals, but there are precedents for this assumption. A great 
deal of the research performed to elucidate the function of muscle and tendon has been 

conducted for example on frog, toad and cat tissue (e. g. Hill, 1950; Wilkie, 1956; Griffiths, 

1991), but the findings are still generalized to the performance of other vertebrates, including 

humans. Alexander (1984) clearly supports the idea for tendon similarity by stating, The 

properties of tendon are more or less the same in all mammals' (page 353). 
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Assuming a reasonable degree of similarity of the properties of muscle and tendon between 

vertebrates, a more important issue is the proportion of each type of tissue in the muscle- 

tendon units involved in locomotion. Given the preceding evidence for tendon being better 

able to store and return energy than muscle, muscle-tendon units which have relatively- short 

muscle fibres and long tendons are better able to store energy, providing that they are 

stretched during the first part of ground contact and recoil as the body rises to leave the 

ground (Alexander and Bennet-Clark, 1977). In humans the knee and ankle extensors do just 

this (Alexander, 1984), though as previously mentioned the potential of the knee extensors is 

debatable. The ligaments in the arches of the feet also contribute to storing and returning 

elastic energy. Morgan et al. (1978) artificially reduced the tendon length of the medial 

gastrocnemius in wallabies and found that muscle length changes accounted for 

proportionately more of the movement than tendon during stretching when compared with 

stretches of the normal length muscle-tendon complex. The result was greater energy 

dissipation by the muscle and therefore the longer the tendon in relation to the muscle, the 

greater the potential efficiency of locomotion. 

2.2.1.2 Efficiency studies 
Studies of the mechanical efficiency of humans and other animals have shown that the nature 

of the activity affects the efficiency of the subject. For example, humans are more efficient 

when they run normally than when they walk or cycle normally. Some researchers have 

concluded that this efficiency improvement is due to the storage and return of energy by 

elastic structures within the body which is only possible in certain activities. 

Cavagna, Saibene and Margaria (1964) calculated the mechanical efficiency of positive work 

in running at up to 5.6 m. s-1 to be between 0.4 and 0.5, compared with values of 0.25 found 

in earlier uphill walking studies (by Margaria). This led them to conclude that in running, up 

to half of the positive mechanical work was being contributed by the liberation of elastic 

strain energy. This energy is stored in the legs during the first part of the stance, when the 

hip, knee and ankle flex, and then released as the legs extend. 

Cavagna (1970) performed a study to calculate the amount of elastic energy stored in human 

legs when subjects made small jumps to land on the balls of their feet with stiff, straight legs 

and ankles plantarflexed. The subjects made one and two legged landings onto a force plate 

and the stiffness and damping of the hypothesized elastic structures were calculated from the 

vertical force traces, which were modelled as damped harmonic oscillations. The results of 

calculations when the load on the legs approximated those in running indicated that an 

appreciable part (anything from 43% to 75%) of the positive external work of level running 
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might be stored and returned by elasticity in the legs. However the force traces look similar 
to those which might be obtained in any landing, without being constrained in the stay that 
they were in this study. There is no indication that restrictions were placed on arm 

movements during landing and some of the oscillation would undoubtedly have been derived 
from the motion of the soft tissue of the body, not just the `springiness' of the elastic 

structures at the ankle. 

Thys, Faraggiana and Margaria (1972) measured the positive mechanical work done on the 

mass centre and the oxygen consumption when subjects performed a standing deep knee 

flexion-extension exercise. Two conditions were studied over continuous 6 minute periods: 

one in which extension immediately followed flexion (`rebound'), and one in which flexion 

and extension were separated by an interval of 1.5 seconds. A standing pause was necessary 
in the rebound condition so that the frequency of the movements was the same in both 

conditions (20 cycles per minute), and therefore the total amount of mechanical work done 

was approximately equivalent. Their results showed that the oxygen consumption was on 

average 22% less in the rebound condition, an average increase in efficiency of 37%, and the 

absolute efficiency values were 0.26 and 0.19 for the rebound and no rebound cases 

respectively. The rebound efficiency of 0.26 might have been expected to be higher in the 

light of the value of 0.4 to 0.5 found in running by Cavagna et al. (1964), but Thys et al. 
(1972) suggested that this difference was due to the range and rate of movement being less 

than optimal in their experiment. It is also likely that the oxygen expenditure during the 

pauses (approximately 70-80% of the duration of the cycle) would reduce the efficiency 

estimate as it increases the denominator in the calculation. Nevertheless, the improved 

efficiency in the rebound condition was interpreted as supporting the contention that some 

positive work was being derived from the release of energy stored in elastic structures of the 

leg when shortening immediately followed stretching. 

Dawson and Taylor (1973) investigated the energetic cost of locomotion by kangaroos at 

speeds up to 22 km. h-' (6.1 m. s-'), by measuring their rate of oxygen consumption while 

hopping on a motorized treadmill. The characteristic bipedal hopping commenced at 

between 6 and 7 km. h-' (1.7 to 1.9 m. s-') and oxygen consumption showed slight decreases 

as hopping speeds increased from 7 to 22 km. h-' (1.9 to 6.1 m. s-1). Since the oxygen 

consumptions rapidly reached constant levels at each speed and there was a lack of an 

appreciable oxygen debt following the runs, Dawson and Taylor (1973) assumed that steady 

state had been achieved and that all energy needs were being met aerobically. Over the range 

of speeds, the hopping frequency remained approximately constant, so the increases in speed 

were achieved by increasing the distance per hop. Therefore, despite the increased speed, the 
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energy cost per hop was nearly constant, and it was suggested that this was due to increasing 

amounts of energy storage and recovery in elastic structures at higher speeds. Similarly. 

Cavagna and Kaneko (1977) found that the efficiency of positive work increased with the 

speed when humans run. Their subjects ran over short distances at speeds up to 9.17 m. s"1 

and the efficiencies reached 0.70 to 0.80 at the highest speeds, which they took to suggest 
that most of the positive work was coming from the release of stored elastic energy. 
However, at these higher speeds it is inconceivable that the subjects would be deriving their 

energy requirements solely from aerobic metabolism (in any case, Cavagna and Kaneko only 

estimated the metabolic costs), which makes the efficiency calculation dubious. 

Alexander and Vernon (1975) suggested that the slight fall in oxygen consumption as 
hopping speed increased found by Dawson and Taylor (1973) might be explained by the fact 

that as the speed increases the muscle-tendon forces increase and the energy which can be 

stored in linearly elastic materials increases in proportion to the square of the force the 

materials are exerting. Therefore much more energy should be available from elastic storage 

at higher speeds of locomotion, limiting the rise in metabolic cost, or even reducing it. This 

hypothesis would also apply to the results of Cavagna and Kaneko (1977). However the 

discovery by Griffiths (1989) that, in the medial gastrocnemius of hopping wallabies at least, 

the proportion of the positive work performed by the return of stored elastic energy did not 

increase as hopping speed increased, even though the total amount of energy stored in the 

tendon did increase, casts doubts on this hypothesis. 

A problem with comparing mechanical efficiency studies is the variety of methods used for 

the calculations; both the numerator, mechanical work done, and the denominator, metabolic 

cost, have been calculated in different ways. Williams and Cavanagh (1983) provided a 

detailed review of the methods which had been used in various studies and calculated 

mechanical work and power in distance running using a selection of calculation methods and 

found efficiencies ranging between 0.31 and 1.97! In 1985, Cavanagh and Kram introduced 

a symposium of papers in Medicine and Science in Sports and Exercise on human efficiency 

estimation that identified the issues and some solutions to the problem (Volume 17, Number 

3). 

Many studies have estimated only the positive mechanical work done in the activity". Thvs. 

Faraggiana and Margaria (1972) in fact only measured the positive work done on the mass 

centre, thus neglecting any negative, internal and non-vertical positive work (though in their 

knee bend activity the latter two were likely to be small contributions). Studies by Cava`na 

and his colleagues (e. g. Cavagna, Saibene and Margaria, 1964, Cavagna and Kaneko, 19 7) 

also calculated only the positive mechanical work though they did estimate both external and 
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internal positive work. However their methods were not entirely rigorous in that the,. 

measured internal energy changes with respect to the proximal joints of the Iimbs rather than 

an inertia reference frame (Smith, 1975) and did not calculate metabolic cost concurrently, 
but used data from previous studies. 

The extent to which energy can flow between segments and thereby influence the estimate of 

the mechanical work done is also an issue. Cavagna, Saibene and Margaria (1964) did not 

consider the effect of allowing total transfer between segments to be appreciable (although it 

amounted to differences of 10 to 25%). Williams and Cavanagh (1983) however found that 

in a cycle of running allowing no energy transfer within or between segments gave a total 

mechanical work done nearly four and a half times greater than when complete energy 

transfer was allowed. Willems, Cavagna and Heglund (1995) considered that only energy 

transfer within segment and between segments of the same limb should be included when 

estimating total mechanical work done. 

Despite the difficulty of calculating mechanical efficiency accurately, where studies that 

have used the same methods reveal efficiency differences, the notion that an elastic 

mechanism might be the reason for the efficiency improvements in some activities is still 

attractive. However, the role of elastic elements has been questioned. Ingen Schenau (1984) 

stated that while he did not question the existence of elastic elements, he was not convinced 

of the significance of their contribution to performance. He proposed a model which saw the 

role of pre-stretch in an activity as being to take up any slack in the cross-bridges of the 

muscle rather than to store energy by stretching elastic tissues. The question of the role of 

elastic energy was debated at length in a target issue of the Journal of Applied Biomechanics 

(Volume 13, Number 4,1997). 

Although there is a debate over whether efficiency improvements are attributable to elastic 

energy storage and return, it is still the case that the studies which led to the proposal of this 

mechanism were behind the idea of mass-spring models for running and hopping. These 

models have subsequently proved useful in investigating the mechanics of these activities. 

2.2.1.3 Whole body studies 
Despite the evidence of an elastic mechanism based on energy expenditure studies, Cav agna, 

Franzetti, Heglund and Willems (1988, page 82) noted that, 'Although the bouncing 

mechanism of running is now widely accepted, it is poorly substantiated by experimental 

evidence. ' To attempt to rectify this situation they analysed men and other animals running, 

trotting or hopping over a force plate. Some doubt exists over the precision of their data 

since they admit to considerable noise in their force plate records and went through a rather 
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convoluted route to obtain their acceleration and displacement data. Bearing this in mind, 

they found the relationship between the mass centre vertical acceleration and vertical 
displacement during the `effective contact time' (the period between maximum downward 

vertical velocity and maximum upward vertical velocity) to be approximately linear, thereby' 

supporting the contention that the vertical stiffness of the body could be represented as a 

Hookean spring. The slope of the acceleration-displacement graph during the effective 

contact time they then termed the `effective vertical stiffness'. For humans running, the mean 

stiffness for the subjects was found to be approximately constant (very roughly 25 kN. m-', 

estimating from their graphs) up to about 11 km. h-' (3 m. s-1) and then to increase with speed 

(up to, again roughly, 75 kN. m-' at 7 m. s-1). 

In a similar way Farley, Blickhan, Saito and Taylor (1991) investigated two-footed 

stationary hopping, two-footed stationary hopping at maximum height and two-footed 

forward hopping. They found that graphs of vertical ground reaction force against mass 

centre displacement during ground contact were approximately linear for hopping at and 

above their subjects' preferred frequency (all chose about 2.2 hops per second) and over the 

full range of forward hopping speeds (0.5 to 3.0 m. s-ý). Unlike Cavagna et al. (1988) they 

calculated the vertical stiffnesses, k, of the subjects by modelling them as linear mass-spring 

systems and using the vertical ground reaction force histories to determine the half period, 

T/2, of the oscillation (i. e. the time for which the force exceeded body weight, m. g): 

k=m. w2 
In 

where w= T 

Vertical stiffness increased with frequency in stationary hopping and with speed in forward 

hopping, the range in both cases being from around 18 kN. m-' to 50 kN. m-' at each 

frequency/speed of the activities. 

He, Kram and McMahon (1991) produced vertical force-displacement graphs for subjects 

running on a treadmill at speeds ranging from 2 to 6 m. s-' and at 3 m. s"' under simulated low 

gravity conditions (0.2 to 1.0 times normal gravity). Under all conditions, they found the 

force-displacement graphs to be approximately linear, particularly from mid-stance to 

takeoff. When the proportion of gravity was varied, the slopes of the graphs (i. e. the effecti\ e 

stiffness) remained reasonably constant, while as running speed was increased the slopes 

increased. Farley and Gonzalez (1996) presented vertical force-displacement graphs for 

subjects running on a treadmill at one speed (2.5 m. s-1) but a range of stride frequencies 
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(from 26% below to 36% above the subjects' preferred frequencies). which again were 

approximately linear, though the slopes (stiffnesses) increased as stride frequency increased. 

A number of studies have therefore presented data derived from the vertical motion of the 

whole body which supports the principle of representing at least the vertical component of 

human running and hopping as a mass bouncing on a linear spring. For hopping this model 

would seem only to be valid when the hopping frequency is above about 2 Hz (Farley et al., 

1991) and it is likely that if very slow running stride frequencies/speeds were investigated a 

similar deviation from the linear spring model would be observed (since the ground contacts 

would be unlike a pre-programmed rebound and more under conscious control). 

2.2.2 MASS-SPRING MODELS 
A number of studies have been conducted in which the mechanics of the whole body while 

hopping and/or running has been investigated with the aid of simple models. Based on the 

evidence presented above, most of these models have been simple mass-spring systems 

comprising a point mass representing the whole body mass and a massless linear spring 

representing the leg or legs in contact with the ground. In some models the spring has been 

considered only to act vertically (whether the mass moves forward or not) in which case the 

terms vertical spring and vertical stiffness have been used, while other models have had the 

spring act along a line from the mass to the point of contact with the ground, calling the 

spring in this case the leg spring and talking of the leg stiffness. Some studies have 

considered both the vertical and leg springs, while for stationary hopping the two are 

identical. 

Mass-spring models usually require estimates of the spring stiffness and a number of 

methods have been used to make these estimates. As previously mentioned, Cavagna et al. 

(1988) calculated the slope of the mass centre vertical displacement-acceleration graph 

during the effective contact time to estimate the vertical stiffness of the subjects, while 

Farley et al. (1991) used the force history to determine the natural half period of the assumed 

mass-spring system and calculated the vertical stiffness from this. 

Greene and McMahon (1979) calculated vertical stiffness values for human subjects over a 

range of fixed knee angles and while supporting additional loads on their shoulders. The 

subjects' stiffnesses were calculated by numerical solution of an equation representing the 

oscillation of a two mass, two spring system (the man being one mass-spring, and the board 

being the other), using input data obtained when subjects performed small amplitude 

oscillations while standing on spruce boards of known stiffness supported at each end. They 

found that while subject stiffness was independent of the stiffness of the supporting boards, it 
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decreased as the knees were bent more, and increased slightly with increasing load. However 

they noted that bouncing on boards at a relatively fixed knee angle was not necessarily 

comparable to running where the knee angle changes continuously. 

McMahon, Valiant and Frederick (1987) overcame this shortcoming by calculating vertical 

stiffness during running. They were interested in how man's vertical stiffness affected 

parameters such as foot contact time, step length and vertical ground reaction force at mid- 

stance. Subjects ran over a force plate at a variety of speeds and with varying amounts of 

maximum knee flexion. The amount of knee flexion, as measured by the maximum thigh 

angle (the angle between the thigh and the horizontal at mid-stance), was used in an attempt 

to control vertical stiffness. Stiffness estimates were obtained by numerical solution of 

equations of motion representing a mass-spring system, given the initial vertical landing 

velocity and time of ground contact which were obtained from the force history. They found 

that increasing the amount of knee flexion reduced the vertical stiffness of the body, but to 

get good agreement between the theoretical and the experimentally observed vertical 

stiffness-thigh angle relationship, the model was augmented with a constant stiffness spring 

at the hip, in series with the leg spring. This second spring accounted for the part of vertical 

stiffness not affected by thigh angle (also noted by Greene & McMahon, 1979). 

Siegler, Seliktar and Hyman (1982) proposed that the stiffness of the leg could be calculated 

by dividing the change in ground reaction force by the corresponding change in hip to foot 

distance. They were studying walking (not really a rebounding type of activity) and found 

this stiffness to vary throughout ground contact, so they calculated the average as a 

representative value. In a similar way Farley, Blickhan and Taylor (1985) used the peak 

ground reaction force-maximum mass centre displacement ratio to calculate what was 

essentially the vertical spring stiffness for a linear mass-spring model of human hopping in 

place. Where the force-displacement relationship is approximately linear (as in hopping, but 

less so in walking), this method is likely to give similar results to the linear regression 

method of Cavagna et al. (1988). Farley et al. (1991), Farley, Glasheen and McMahon 

(1993), and Farley and Gonzalez (1996) calculated leg stiffness in a similar way, by dividing 

the change in leg length from touchdown to mid-stance (when the hip is vertically above the 

point of contact) by peak vertical ground reaction force. 

McMahon and his co-workers have regularly used mass-spring models to investigate running 

gaits in man and other mammals. McMahon (1985) applied such a model to a number of 

patterns of biped and quadhuped locomotion. The model was used to make predictions 

regarding which gait should be preferred if criteria, for example improving smoothness of 

ride, travelling at a given speed, or reducing energy cost, were chosen. Although the model 
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contained a number of gross simplifications and only represented vertical motion, its 

predictions were not greatly affected when modifications were made to imitate more closely 

real conditions. 

McMahon and Cheng (1990) investigated the relationship between leg spring stiffness and 
forward running speed, using an undamped, linear mass-spring model. As with most models 

of running and hopping, their model assumed the ground contact to be symmetrical about 

mid-stance (i. e. at takeoff compared with touchdown: the mass centre vertical velocity wN as 

exactly reversed, the mass centre horizontal velocity was exactly the same and the mid-foot 

to mass centre line was as far past the vertical as it had been to the vertical). They explained 

that for given touchdown velocity and spring angle only one leg stiffness would result in the 

correct takeoff velocity and angle (too stiff and takeoff occurs too soon, too soft and takeoff 

occurs too late). The model equations of motion were solved numerically and the appropriate 

leg stiffness was found by iteration. Simulations based on an 'average' man illustrated the 

effects on one variable if another was systematically varied, while the others were fixed. The 

model predicted leg stiffness to be an approximately linear function of touchdown horizontal 

and vertical velocities when the touchdown and takeoff leg angle was held constant. 

However, a constant leg stiffness could account for the patterns of stride and step length 

changes as running speed increased, if other parameters (e. g. initial leg angle) were allowed 

to change. Alexander (1990a) also suggested that if suitable leg angles were chosen for a 

given speed, a constant tendon stiffness may be found which allowed leg muscles to act 

isometrically throughout ground contact. McMahon and Cheng (1990) evaluated their model 

by comparing predictions with the experimental results from the literature, showing that the 

model displayed `generally good agreement' with mass centre vertical acceleration- 

displacement graphs of Cavagna et al. (1988), and that the ground contact time predictions 

as knee flexion and vertical velocity at touchdown were altered were `in agreement with' the 

findings of McMahon et al. (1987). The level of agreement was not actually quantified. 

He, Kram and McMahon (1991) developed a crude method of simulating low gravity 

conditions (the trunk was partially supported, but the limbs were not) to see how leg spring 

stiffness changed as speed and `gravity' varied. They calculated the vertical leg stiffness b\ 

dividing the change in vertical force by the change in vertical mass centre displacement, and 

leg stiffness from the maximum vertical force divided by the change in leg length. In 

common with McMahon and Cheng (1990) they found leg stiffness to be roughly constant 

regardless of speed and they also found it to be unaffected by the fraction of 'gravity' acting, 

though as mentioned previously, the vertical stiffness was constant over different fractions 

of gravity but increased as running speed increased. Farley et al. (1993) also found leg 
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stiffness to be independent of speed for dogs, goats, horses and red kangaroos trotting or 
hopping. 

Several studies of human hopping and running have been conducted by Farley and her 

colleagues in which the body was modelled as a linear mass-spring system (Farley, Blickhan 

and Taylor, 1985; Farley et al., 1991; Farley and Gonzalez, 1996; Ferris and Farley, 1997). 

These studies have investigated the mechanics of hopping and running, and in particular howw 

hopping/stride frequency is dependent on the spring-like behaviour of the musculo-skeletal 

system of the legs. They also confirmed the ability of humans to alter appreciably their 

stiffness: over a range of about 18 to 50 kN. m-' in stationary and forward hopping (Farley et 

al., 1991), 7 to 16.3 kN. m-1 in running at different stride frequencies (Farley and Gonzalez, 

1996) and 20 to 55 kN. m-' when hopping at 2 Hz on a surface with variable stiffness (Ferris 

and Farley, 1997). In hopping at 3.2 Hz on a compliant surface Ferris and Farley (1997) 

found that leg stiffness could reach in excess of 120 kN. m-1 (see section2.3 below). While 

these studies modelled humans as mass-spring systems, they did not use the models to make 

predictions, only as a basis for the estimation of the stiffnesses. 

Blickhan (1989) used a simple mass-spring model of hopping and running to show that 

despite the variety of theoretically possible bouncing patterns, the constraints imposed by the 

human body (e. g. peak ground reaction forces, maximum vertical displacement of the mass 

centre during ground contact) make hopping and running only possible within quite a narrow 

parameter space. The model predictions were compared with data from the literature: for 

example for stationary hopping the contact time, peak ground reaction force, maximum mass 

centre displacement during contact and stiffness agreed to within 20% with the results of 

Farley et al. (1985), while for running the predicted stiffnesses are of the correct magnitude' 

when compared with McMahon et al. (1987) and the mass centre energetics are said to be 

predicted correctly (though this is not quantified). Blickhan (1989) makes the point that the 

predictions for hopping in place: 

... do not depend on finding a linear elastic spring in the musculo- 
skeletal system. It is sufficient that the control of the musculo- 
skeletal system results in a nearly spring-like behaviour during 
ground contact. (page 1222) 

Blickhan and his colleagues have more recently extended the application of mass-spring 

models to investigate long jumping (Blickhan, Friedrichs, Rebhan, Schmalz and Wank, 

1995; Seyfarth, Friedrichs, Wank and Blickhan, 1996). Blickhan et al. (1995) allowed the 

spring stiffness to vary during contact by making the natural length of the spring a function 

of leg angle, while Seyfarth et al. (1996) added a second mass which was connected to the 
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leg by a frictionless joint and non-linear damped spring element. The variable spring seems 
to have enabled the takeoff position of the mass centre to match that of real long jumpers 
better and the additional mass was included to improve the fit of the predicted ground 

reaction forces to observed data. These studies have only been published as abstracts, 
therefore details are incomplete. 

Alexander and Vernon (1975) developed a model to look at the energetics of hopping bN 

kangaroos in order to investigate hopping technique. Rather than calculating the spring 

stiffness from force plate data or by trial and error (e. g. Farley et al., 1991; McMahon and 
Cheng, 1990) they modelled the vertical ground reaction force as a sinusoidal function of 

time. This mimicked quite well actual force histories and stiffness could be calculated 
directly from the mass centre kinematics. Some evaluation of the model was attempted by 

comparing the predicted and actual mass centre accelerations graphically, and the positive 

energy changes during a hop numerically (from perfect agreement to a 33% discrepancy). 

The larger discrepancy was explained by the fact that the trunk of the animal is not rigid as 
had been assumed for modelling purposes. Luhtanen and Komi (1980) used Alexander and 
Vernon's model when investigating running, long jumping and triple jumping, though they 

calculated separate stiffnesses for the first (eccentric) and second (concentric) parts of the 

ground contacts to account for the lack of symmetry, particularly in the jumps. They found 

that while the concentric stiffnesses where approximately constant, the eccentric stiffnesses 
increased with speed and were always greater than those in the concentric phase. 

Table 2.2 summarizes the stiffnesses which have been calculated for humans in the studies 

above. In many cases these have been estimated from graphs in these papers and may 

represent mean rather than individual data. It is interesting to note that with one exception 

(the eccentric leg stiffness for long jumping calculated by Luhtanen and Komi, 1980) all 

stiffnesses are of about the same order of magnitude. 

The use of mass-spring models for rebounding activities has not been entirely restricted to 

modelling the whole body, they have also been used to represent the surfaces with which 

athletes interact. For example, McMahon and Greene (1979) modelled the running track as 

mass-spring system when looking at the influence of track stiffness on running performance. 

Empirical load-deflection graphs of the different tracks they constructed for the study wt ere 

non-linear so representative track stiffnesses were estimated by finding the slope of the 

curves at the estimated mean load during foot contact and at one body weight. The influence 

of track mass on the results of the study was theoretically demonstrated to be negligible and 

was therefore ignored. In this study the runners were also modelled as mass-spring systems 
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Table 2.2. Summary of leg and vertical stiffnesses reported in the literature. 

Stiffness Leg or Study Activity (kN. m) vertical 

McMahon & Greene (1979) running 56 to 112 vertical 

Luhtanen & Komi (1980) running A4.2 to 9.7 m. s-1 35 to 73 leg (ecc. ) 

Luhtanen & Komi (1980) 

Luhtanen & Komi (1980) 

Luhtanen & Komi (1980) 

McMahon et al. (1987) 

Cavagna et al. (1988) 

Cavagna et al. (1988) 

He et al. (1991) 

He et al. (1991) 

Farley et al. (1991) 

Farley & Gonzalez (l 996) 

running @ 4.2 to 9.7 m. s-' 10 to 11 leg (conc. ) 

long jump 

long jump 

running @ 2.5 to 4 m. s-' 

running @3m. s-' 

running @7m. s-' 

running @2 to 6 m. s-' 

running @2 to 6 m. s-' 

hopping (2 legs) 

running @ 2.5 m. s-' 

1087 leg (ecc. ) 

8 leg (conc. ) 

ca. 12 to 30 vertical 

ca. 25 vertical 

ca. 75 vertical 

ca. 22 to 45 vertical 

ca. 12 leg 

ca. 18 to 50 vertical 

7 to 16.3 leg 

Seyfarth et al. (1996) long jump 11 to 20 leg 

Ferris & Farley (1997) hopping (2 legs) ca. 20 to 120 leg 

N. B. The data from He et al. (1991) are those for normal gravity. 
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with the runners' stiffnesses assumed to be constant providing they were running at 

maximum effort, however this assumption was not investigated and it is possible that 

subjects adjust their stiffness to accommodate surface stiffness changes (see section 2.3). 

Vaughan (1980) modelled the trampolinist as a rigid body and the trampoline as a Hookean 

body (i. e. equivalent to a massless undamped linear spring) in an analysis of basic 

trampoline stunts. While he acknowledged that energy is dissipated by the trampoline during 

the rebound, he made the point that the trampolinist can compensate for this by extending at 

the ankles, knees and hips. Good agreement was found between predicted and actual 
displacement-, velocity- and acceleration-time graphs, showing that modelling the system in 

this way was effective, however it is not clear that this was an independent evaluation since 

the constants in the equations may well have been determined from the trial v ith which the 

predictions were compared. In a similar way, Sprigings and Watson (1985) modelled a 

diving springboard as a massless undamped linear spring in their search for the optimal 

timing of the arm-swing in diving. They modelled the diver as two rigid segments (arms and 

the rest of the body) between which a force could be exerted, but allowed for no contribution 

from the legs. 

In a later study, Sprigings, Stilling and Watson (1989) conducted a finite element analysis of 

a diving springboard and found that a single undamped linear spring model of the board was 

indeed adequate, but that an effective mass for the board should also be included. However 

their analyses were conducted on an unloaded springboard; once the mass of a diver is added 

to the system, the effective board mass might no longer be of importance. In fact the 

contribution of the inertial force from the board (the product of effective board mass and 

board acceleration) to the total force applied to a diver's feet by the board was estimated to 

be at least three orders of magnitude less than the spring force component, again suggesting 

that the effective board mass was of little practical significance. The board stiffness and 

effective mass were found to depend on both the point of loading along the board length and 

the position of the adjustable fulcrum of the board. 

In addition to the studies of running which have modelled the whole body as a mass-spring 

system, some studies have modelled the foot as a second mass-spring body. These have 

investigated only the impact peak (e. g. Bahlsen and Nigg, 1987; Ker, Bennett, Alexander 

and Kester, 1989; Kim, Voloshin and Johnson, 1994) not the general rebounding nature of 

the activity. 
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2.2.3 SUMMARY OF MODELLING REBOUND ACTIVITIES 
Evidence from studies of humans and other animals has been reviewed which provides 

support for the idea of modelling rebound activities as mass-spring systems. The mass-spring 

models which have subsequently been developed to represent whole body rebounding 

activities have been considered and the estimates made for leg spring stiffness have been 

summarized. The majority of these models have been used to investigate hopping and 

constant speed running, where a certain degree of kinematic symmetry about the middle of 
the stance phase has been assumed, and a few models of springy surfaces have been 

reported. However very little attention has been paid to activities like board contact in 

vaulting, in which takeoff does not mirror touchdown, and no models have been presented of 

this activity. Similarly no models which enable the investigation of subjects' interactions 

with springy surfaces have been presented, however the following section considers the 

evidence relating to the ways in which subjects may adjust to changes in surface. 

2.3 ACCOMMODATING SURFACE CHANGES 
Following their study of the control of stepping and hopping, Melvill Jones and Watt (1971) 

stressed the importance of pre-programming the muscular activity used to control landings. 

They found that the force produced by the gastrocnemius muscle in response to a stretch 

takes in excess of 150 ms to appear, far too long for it to be effective in halting the descent of 

the body in a landing. Therefore they concluded that the muscular response required in 

landing must be pre-programmed based on previous experience. Their study was conducted 
in such a way that no visual information was available to the subjects, but in normal 

conditions subjects would be able to use visual cues to anticipate landing and so help in the 

preparation of a suitable landing strategy. Nevertheless the stretch reflex would still be 

ineffective and when landing on a surface with an unusual or unexpected consistency 

modifications to the pattern of muscular force required would presumably take even longer 

than 150 ms to be effected. In ground contacts of around 150 ms or less, the pattern of motor 

activity for landings on a surface with an unexpected consistency should be the same as for 

landings on the expected surface. 

Studies of subjects' responses to drop landings onto different surfaces have shown that with 

practice they altered their leg joint kinematics but that the peak vertical ground reaction 
forces and time to this peak did not always change (e. g. Fukuda, Miyashita and Fukuoka, 

1987; McNitt-Gray, Yokoi and Millward, 1993; McNitt-Gray, Yokoi and Millward, 1994). 

McMahon and Greene (1979) found empirically and predicted using a mass-spring model, 

that foot contact time and average vertical ground reaction force were approximately 

constant for running on tracks as stiff as and stiffer than their subjects' own stiffnesses. 
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Similarly in some studies, running in shoes with different sole cushioning has been found not 
to affect vertical ground reaction forces significantly (e. g. Clarke, Frederick and Cooper. 

1982; Nigg, Herzog and Read, 1988) and it has been suggested that the lack of influence of 
sole cushioning may be due to compensatory adjustments to the body's kinematics (Gagnon 

and Bourassa, 1987; Clarke, Frederick and Cooper, 1983, cited in Frederick, 1986). 

Presumably the same process of adjustment might occur in other ground contact situations 

where the surface stiffness has been altered. In the case of drop landings, McNiff-Gray et al. 
(1994) found that when landing on stiffer surfaces the `stiffness index' (the ratio of peak 

vertical force to change in knee angle during landing) of the subjects decreased; this led them 

to suggest that `gymnasts may fix the combined stiffness of the body/surface system' (page 

247). Ferris and Farley (1997) also demonstrated that hopping humans modified their leg 

stiffness to compensate for surface stiffness changes, with the result that `many aspects of 

the hopping mechanics remained remarkably similar' (page 15), in particular the combined 

stiffness of the subject and surface was almost constant over more than a thousand-fold 

change in surface stiffness (35 000 kN. m-1 down to 26.1 kN. m-'). In their study the peak 

vertical force decreased gradually as surface stiffness decreased but the surface contact time 

remained the same. In part of their study they required the subjects to maintain the same 

hopping frequency (2 Hz) in all trials, which might have effectively forced the subjects to 

keep the combined stiffness constant regardless of the surface stiffness. However in the 

second part, subjects hopped at a range of frequencies (2.0,2.4,2.8 and 3.2 Hz) on two 

surfaces with different stiffnesses (35 000 kN. m"1 and 50.1 kN. m-') and at all frequencies the 

combined stiffness remained approximately the same between surfaces (though it increased 

with hopping frequency). 

It would appear that combined stiffness may be the factor which subjects are subconsciously 

controlling when accommodating surface alterations, though peak vertical reaction force and 

other factors may also be unchanged. For example, for a given peak vertical ground reaction 

force on two different surfaces, the combined stiffness would be the same providing the 

combined deflection was the same (the proportions of the deflection contributed by the 

surface and the subject would be different). 

Studies of maximal drop jumping from a stiff and a sprung surface (Sanders and Wilson. 

1992; Sanders and Allen, 1993) revealed that subjects reduced the flexion of their ankle, 

knee and hip joints and altered the timing of the joint torques in order to compensate for the 

switch to a sprung surface. The reduction in joint flexion again suggests an increased lower 

limb stiffness in response to a reduction in surface stiffness, though from the reported results 

it is not possible to say whether the combined stiffness actually remained constant. The 
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increase in peak vertical force and decrease in contact time would suggest that overall 

stiffness was not constant, but interestingly adjustments to accommodate to the reduced 

surface stiffness were still taking place after the 190 jumps the subjects were allowed on the 

softer surface, in line with the implications of the results of Melvill Jones and Watt (1971). 

This has potential implications for athletes in sports in which the playing surface stiffness 

can vary, although it is unlikely that the range of stiffnesses encountered in a sporting 

environment would be as great as in Sanders and Wilson (1992) and Sanders and Allen 

(1993) (their sprung surface had a stiffness of 22.95 kN. m-' and while they gave no stiffness 
for the force plate acting as their stiff surface, Ferris and Farley (1997) reported another 
force plate's stiffness to be 35 000 kN. m-1). 

Springboard diving is a good example of a sport where the surface stiffness can be changed 

deliberately by the competitor. Jones and Miller (1996) found that springboard divers altered 

their lower limb kinematics in response to alterations of the springboard fulcrum position, 

but found that they needed only four to six practices at the new fulcrum settings before they 

felt comfortable. They did not report the actual changes in springboard stiffness, but 

Sprigings, Stilling, Watson and Dorotich (1990) tested the same type of springboard and 

found a maximum range of stiffnesses of between approximately 5 and 17.5 kN. m-1, 

substantially less than the range used by Sanders and Wilson (1992) and Sanders and Allen 

(1993) for drop jumps, and perhaps explaining the small number of practices required at the 

new stiffnesses. Ferris and Farley (1997) allowed their subjects as much time as needed to 

achieve the required hopping frequency and good `balance' when switching to hopping on a 

compliant surface. 

2.3.1 SUMMARY OF ACCOMMODATING SURFACE CHANGES 
From the research reviewed in this section, it would seem that subjects do change their 

movement patterns when faced with a surface stiffness change. One possibility is that they 

might make these adjustments in order to keep the combined stiffness of their legs and the 

surface approximately constant. How long or how much practice subjects might need in 

order to make this accommodation is not clear and may vary depending upon the magnitude 

of the change in the surface stiffness. 

2.4 METHODS OF INVESTIGATION 
This section reviews the methods commonly used in the biomechanical analysis of sporting 

performance, focusing especially on those used in this study. These can be categorized as 

visual data capture and analysis, the determination of body segment inertia parameters, force 

data collection and analysis, and modelling and simulation. 
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2.4.1 VISUAL DATA CAPTURE AND ANALYSIS 

2.4.1.1 Data collection 
The collection and analysis of moving images of subjects is common in sport biomechanics 

(Yeadon and Challis, 1994). Increasingly video is replacing 16 mm cinefilm as the medium 
for recording the images owing to the relative cheapness and simplicity of the process, the 
improving quality of video images and the immediacy of the resulting record (Kennedy. 

Wright and Smith, 1989; Angulo and Dapena, 1992). Film is still used where higher picture 

rates than the 50/60 per second commonly recorded on video are required, but high-speed 

video is also now more readily available. The picture rate should 'ideally be 8 to 10 times the 
highest frequency expected in the sampled signal' (Challis, Bartlett and Yeadon, 1997, page 
11), with a minimum rate greater than twice the highest frequency content of the signal. 

Despite concerns over the resolution of video systems, a number of studies have found them 

almost as accurate as 16 mm film in practical terms. Kennedy et al. (1989) calculated the 

mean error (as a percentage of the calibrated field width) to be 0.29% for video and 0.24% 

for film. Angulo and Dapena (1992) calculated relative errors (as a percentage of surveyed 
lengths) for distances within and outside a calibrated volume of 0.3% and 1.3% respectively 
for video and 0.1% and 1.0% respectively for film. Kerwin (1994) reported a result of 0.2% 

error from video digitization using a custom built system with improved resolution of the 

frame grabber over the Peak Performance Technologies systems used in the previous studies. 

This was the same as results from film analysis, though this was a two-dimensional study of 

a planar array of landmarks as opposed to the three-dimensional studies of Kennedy el al. 

(1989) and Angulo and Dapena (1992), and the width of field was only 1.170 m which 

would be small for a sport biomechanics application. Video camera resolution also has an 

influence and Tan, Kerwin and Yeadon (1995) found Hi 8 recordings to reduce errors by up 

to 34% compared with VHS recordings. With the reduced cost and increased availability of 

digital video cameras, there should be further improvements in the quality of data from video 

recordings. 

Whether using video or cinefilm the basic steps in collecting and analysing the records are 

the same: 

0 the images must be obtained, paying due attention to the positioning of the 

camera(s), calibration, lighting and camera field of view, focusing, shutter speed 

and aperture 

" the images must be digitized to provide image-space coordinate data 
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0 the image-space coordinates are (usually) smoothed and then transformed to 

object-space (real world) coordinates (sometimes the data are transformed and 
then smoothed) 

0 the object-space coordinates can then be used in the analysis of the activity, either 
in isolation or in conjunction with other data (e. g. body segment inertia 

parameters, force data). 

Challis et al. (1997) presented a good summary of the practical issues involved in data 

collection. 

Where more than one camera is being used or other data are being recorded simultaneously 
(e. g. force data) all recording instruments must be synchronized, or a method for post- 

collection synchronization must have been considered. Cameras can often be synchronized 

physically by phase- or gen-locking, but where this is impossible common events in all 

cameras' fields of view can give nearest field/frame synchronization; better still a single 

timing device in all views allows more precise post-recording analytical synchronization by 

enabling data from other cameras to be interpolated over the timebase of a 'master' camera 
(Yeadon, 1990a). Yeadon (1989) devised a novel alternative method for synchronizing two 

cameras filming ski-jumping which was based on the point of intersection of a ray from one 

camera to the jumper's mass centre at one instant, with a line joining the positions of the 

mass centre in frames either side of this instant as determined from the other camera. 
Common-event synchronization is also often possible when other forms of data are being 

recorded, for example an LED switched on in the field(s) of view when force collection 

commences, though some form of mechanical or electrical synchronization is preferable. 

Methods of improving the synchronization of cameras with other data have been described 

which have recorded the vertical blanking pulse from a video camera (O'Connor, Yack and 

White, 1995) or the shutter pulse from a cine-camera (Rome, 1995) alongside the data from 

other instruments. 

2.4.1.2 Smoothing and differentiating 
Any data obtained from the digitization of a visual record contains some errors in addition to 

the true data. Experience and good practise can eliminate or reduce the magnitude of some 

systematic errors, while others (such as lens distortions) can be adjusted for during the data 

transformation. Undetectable or unremovable systematic errors may remain but these are 

likely to be small. Random errors are assumed to be a stationary, uncorrelated, normally 

distributed, zero mean addition to the true displacement data (Hatze, 1990). Random errors 

are spread across the frequency spectrum but their amplitude is usually small, therefore they 
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are generally insignificant in relation to the position data. However differentiation of this 
`noisy' data has the effect of preferentially amplifying the high frequencies so that they ma', 
mask the true data (Wood, 1982), which for human movement (excluding impacts) are 
generally low frequency. In order to reduce this problem some form of data filtering or 

smoothing is necessary prior to the determination of derivatives. 

Occasionally in biomechanics the nature of the digitized signal is known, for example while 

airborne mass centre horizontal velocity is constant and mass centre vertical velocity is a 

quadratic function of time (if air resistance is negligible). In such cases a straightforward 

approach such as least squares linear or quadratic curve fitting to the mass centre position 
data is appropriate (McLaughlin, Dillman and Lardner, 1977). Usually however, this is not 

the case and a more general approach to noise removal is required. The three main categories 

of noise removal technique are digital filtering, Fourier series truncation and spline fitting, 

(Challis et al., 1997). 

Digital filters selectively reject certain frequencies within the signal while, ideally, leaving 

the other frequencies unaltered (Winter, 1990). For the filtering of position data from human 

motion analysis this means rejecting frequencies higher than a specified cut-off. A recursive 

second order Butterworth filter has often been used, with a cut-off selected on the basis of an 

analysis of the frequency spectrum of the signal (Winter, Sidwall and Hobson, 1974) or 

residual analysis (Winter, 1990). Digital filters are best suited to cyclic signals and have the 

disadvantages of requiring equispaced data and distorting the signal close to the boundaries 

of the data set, though Smith (1989) found that `padding' the ends of the data set could 

overcome this last problem. A further drawback of digital filters is that they do not generate 

a function which can be differentiated analytically, therefore derivatives must be calculated 

separately, for example by the use of finite difference techniques or splines. However some 

finite difference techniques for determining derivatives also attenuate noise (Lees, 1980). 

Lees (1980) described the issues surrounding routines for filtering followed by 

differentiation, in particular the choice of an appropriate sampling frequency, and presented 

a method for the selection of routines. 

Fourier analysis models a set of data as a function comprising a series of sine and cosine 

waves with different frequencies and amplitudes. In Fourier series truncation, noise is 

removed by deleting the terms with frequencies higher than a prescribed cut-off, this cut-off 

being determined either subjectively, by systematic residual analysis (e. g. Jackson, 1979) or 

by means of optimal regularization (Hatze, 1981). The truncated Fourier series can be 

differentiated analytically but, as with digital filters, Fourier analysis requires equispaced 

data. In principle, Fourier analysis should only be used for cyclic data, though this is 
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sometimes ignored; alternatively it is possible to `detrend' the data to force it to appear 
cyclic, but this leads to zero endpoints in second derivatives (Challis et al., 1997). 

Spline functions are piecewise polynomials of degree n, with each piece joined at a knot and 
constrained such that the function and its first n-1 derivatives are continuous (Wold, 1974). 
The piecewise nature of the spline means that the fit to one part of the data set only 
influences the fit of the immediately neighbouring part of the data (due to the continuit` 

constraint), unlike fitting normal polynomials. Splines also have the advantage, like 

truncated Fourier series, of being analytically differentiable. Most spline fitting is currently 
done using natural splines based on the work of Reinsch (1967,1971) with knots at everr 
data point (Challis et al., 1997), the amount of smoothing being controlled by the value 

given to the smoothing parameter (based on the maximum acceptable least squares error and 
the estimated error in the data). Increasing the smoothing parameter results in a smoother fit 

and vice versa, while setting it to zero results in an interpolating spline (McLaughlin et al., 
1977). 

Cubic (n = 3) and quintic (n = 5) natural splines have both been used in biornechanics, but 

quintic splines have several advantages: 

" their derivatives are continuous up to the fourth derivative, rather than the second 

for cubics, 

" their first three derivatives are smooth, whereas the second and third derivatives 

of cubics consist of linear pieces (a step function in the case of the third 

derivative), 

0 the endpoints of only the third and higher derivatives are constrained to zero, as 

opposed to the second and third derivatives for cubics (Wood and Jennings, 

1979). 

Several authors have investigated solutions to the zero acceleration endpoint problem of 

cubic splines based on padding the data with dummy values at each end (Zernicke ei al.. 

1976; McLaughlin et al., 1977; Phillips and Roberts, 1983) but the use of quintic splines 

would seem to be the most sensible solution if accelerations are required. A number of 

methods for choosing an appropriate smoothing parameter have been proposed based on the 

estimated error present in the raw data (e. g. Reinsch, 1967) and/or a combination of 

subjective analysis of residuals and the smoothness of the second derivative of the spline 

(e. g. Zernicke et al., 1976). Objective methods for determining the degree of smoothing have 

been proposed based on the technique of cross validation (e. g. Wahba and Wold, 1975; 

Woltring, 1986) thereby removing any operator intervention or the need to estimate the error 

in the raw data. 
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All three of the main techniques have been used in biomechanics and have their devotees, 

but the case for using cross-validated (quintic) splines is strong. Challis and Kerwin (1988) 

compared cubic and quintic splines, truncated Fourier series and Butterworth digital filters 

for filtering a variety of mathematically derived data. The quintic splines performed best in 

most cases, with the truncated Fourier series also performing well with data to which it wwas 

particularly suited (i. e. cyclic functions). Challis, Yeadon and Kerwin (1991) also found the 

generalized cross validated quintic spline (Woltring, 1986) to be superior to a recursive 

second order Butterworth filter followed by finite difference differentiation when calculating 

second derivatives of a variety of noisy data sets. Vint and Hinrichs (1996) examined the 

effect of padding data sets on the endpoint problems associated with Butterworth digital 

filters, Fourier series and cubic and quintic splines. They found that quintic splines ýý ithout 

data padding performed consistently better than the other techniques. Splines also have the 

advantage of not requiring equispaced data; indeed the ability to perform interpolation «ith 

splines is another benefit which allows them to be used to make estimates for regions where 

data are missing (e. g. when markers become obscured during digitization of film or video). 

Wood (1982) advised that the main consideration when selecting a noise removal technique 

is to choose one which is valid for the data of the specific motion being analysed and both 

Hatze (1990) and Challis et al. (1997) recommended choosing a technique which provides 

an objective method for determining the optimal degree of smoothing. In most cases, cross- 

validated quintic splines meet these criteria. 

2.4.1.3 Data reconstruction 
All sports activities take place in a three-dimensional world, but very often they are treated 

as though they were two-dimensional. Studies of gymnastic vaults have usually ignored or 

considered to be negligible movements out of the vertical plane passing through the centre of 

the horse and the runway, therefore 2-D analysis techniques have been adopted (e. g. Dainis. 

1979; Dillman et al., 1985; Takei, 1991). Ideally this entails positioning the camera with its 

optical axis perpendicular to the movement plane and providing horizontal and vertical 

references which enable scaling of the image space coordinates to object space coordinates. 

Sometimes, particularly when filming in the field, such positioning of the camera is 

impossible, in which case a method such as the 2-D direct linear transformation (DLT) can 

be adopted (Challis et al., 1997); Challis and Kerwin (1989) found that the 2-D DLT was 

more accurate than direct scaling even when ideal camera positioning was possible. An 

alternative is to use a suitable 3-D reconstruction technique to determine the kinematics of 

motion in a particular plane (e. g. Kwon, Fortney and Shin, 1990; Kerwin, Harwood and 

Yeadon, 1993). 
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An approximately inverse relationship exists between computational and practical 
complexity with regards to methods of performing 3-D reconstruction, in that the simplest 
computationally require the most painstaking preparation for data collection (e. g. camera 
positioning, surveying) and vice versa. Martin and Pongratz (1974) presented a method 
based on the geometry of similar triangles which was computationally straightforward but 

which required two cameras to be positioned with their optical axes intersecting at ninety 
degrees and the camera to intersection distances to be known. Approaches which allowed 
more flexible camera positioning have been devised, though some of these have still required 
knowledge of camera position, focal length and/or that the optical axes of the cameras 
intersect (e. g. Bergemann, 1974; van Gheluwe, 1974). 

The most popular 3-D reconstruction method currently in use (Challis et al., 1997, Hinrichs 

and McLean, 1995) is the DLT, based on the work of Abdel-Aziz and Karara (1971). In this 

method camera positioning is almost entirely flexible, requiring only that a suitable 

arrangement of control points be recorded by all cameras and that the camera positions (and 

focal lengths) remain fixed during the data collection. At least six control points with known 

locations are required in order to determine the eleven parameters (per camera) necessary to 

enable the reconstruction, though Chen, Armstrong and Raftopoulos (1994) found that the 

mean reconstruction error halved as the number of control points increased from eight to 

sixteen. Ideally the control points should surround the movement volume thereby improving 

accuracy (Challis and Kerwin, 1992) and avoiding the need for the reconstruction of 

unknown points which lie outside the calibrated volume, which has been shown to increase 

the reconstruction error (Wood and Marshall, 1986; Hinrichs and McLean, 1995). Usually 

the control points are located on a rigid frame, however this can be impractical with 

relatively large movement volumes, such as in gymnastics, so several studies have used a 

series of calibration poles in measured positions surrounding the volume (e. g. Kew on, Fortney 

and Shin, 1990; Kerwin et al., 1993; Takei, Blucker, Dunn, Myers, and Fortney, 1996). 

Another DLT-based solution to calibrating larger volumes has been to record a (relatively) 

small calibration frame in several positions (e. g. Ball and Pierrynowski, 1988: Challis, 

1995). The calibration frame is first recorded in a position which defines the inertial 

reference frame for the calibration volume, then the frame is moved to and recorded in ne%L 

positions which encompass the movement volume. The control points in the new calibration 

frame positions are then determined in terms of the inertial reference frame, thereby 

providing a number of control points which cover the proposed movement volume. Using 

these control points (or a selection from them) enables DLT reconstruction to be performed 

as though a much larger calibration frame had been used. Other techniques for performing 



36 

3-D reconstruction in large volumes have also been proposed (e. g. Woltring. 1980; Dapena, 

Harman and Miller, 1982; Yeadon, 1989), but for gymnastic vaulting the DLT has been 

preferred. 

2.4.2 BODY SEGMENT INERTIA PARAMETERS 
The mass, mass centre location and moments of inertia of the whole body and individual 

segments are often required in biomechanical studies. Only the mass of the whole body is 

easily measured for the living subject (providing one has direct access to the subject), while 

the whole body mass centre location and moments of inertia are usually calculated from 

information about the separate segments. The segment inertia parameters can be determined 

by one or more of an array of methods, which may be broadly categorized as experimental, 

regression equation and geometric model. 

2.4.2.1 Experimental determination 
Much of the body segment inertia parameter (BSIP) data in use today are in some way based 

on the cadaver studies of Dempster (1955), Clauser, McConville and Young (1969), or 

Chandler, Clauser, McConville, Reynolds and Young (1975). Dempster (1955) dissected 

eight male Caucasian cadavers aged between 52 and 83 years from which mass, volume, 

density, mass centre position and moments of inertia were measured. However, the small 

number and age of the cadavers present a problem for the use of these data where accurate 

data are required for the subjects typically studied in sports biomechanics. Clauser et al. 

(1969) conducted a similar study of 13 male Caucasian cadavers aged between 24 and 78 

years, and included stepwise regression equations for predicting BSIP, but they did not 

determine the moments of inertia of the segments. Chandler et al. (1975) conducted a study 

to add detailed moment of inertia information to the other data already available. They 

studied six male Caucasian cadavers aged between 45 and 65 years, reporting principal 

moment of inertia data as well as other anthropometric data on the segments. 

There are a number of problems common to the data from cadaver studies such as the small, 

skewed sample (on the whole elderly Caucasian males), differences between the 

methodologies adopted (segment boundaries for example), differences between living and 

embalmed bodies and the fact that the BSIP of the cadavers and the causes of death might be 

related in some way (e. g. obesity, sedentary lifestyle). These issues make the results of 

extrapolating cadaver data to healthy, highly trained athletes, especially females and/or non- 

Caucasians, rather uncertain. A solution to these problems would clearly be to make 

measurements on the subjects directly, or at least a matched group. However those studies 

which have been conducted have generally been limited to measuring a few parameters each 
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and have been rather time consuming. For example measurements of whole body mass 

centre position (Swearingen, 1962) and principal moments of inertia (e. g. Santschi. DuBois 

and Omoto, 1963; Matsuo, Ozawa, Goda and Fukunaga, 1995) have been made on subjects 
in fixed positions, immersion techniques have been used to determine segment mass, mass 

centre locations (e. g. Plagenhoef, Evans and Abdelnour, 1983), and the `quick-release' 

method has been used to find the moment of inertia of the distal limb segments (e. g. Bouisset 

and Pertuzon, 1968; Cavanagh and Gregor, 1974). Drillis and Contini (1966) reviewed the 

range of experimental measurement techniques then available for use on living subjects and 

selected a battery of them to measure the BSIP of twenty males aged 20 to 40 years, which 

while quite thorough was again time consuming and complicated. 

Perhaps the most promising methods for determining subject specific BSIP are those which 

utilize Gamma radiation (Brooks and Jacobs, 1975; Zatsiorsky and Seluyanov, 1983; 

Zatsiorsky, Seluyanov and Chugunova, 1990), Computerized Tomography (CT) scanning 

(Huang and Wu, 1976; Huang and Suarez, 1983; Ackland, Henson and Bailey, 1988), or 

Magnetic Resonance Imaging (MRI; Martin, Mungiole, Marzke and Longhill, 1989; 

Mungiole and Martin, 1990). MRI seems to be the most promising method, being at least as 

accurate as CT and gamma scanning (Nigg, 1994a), offering better imaging than CT and not 

being based on irradiation, in contrast with both CT and gamma scanning (Mungiole and 

Martin, 1990). However all of these techniques require expensive equipment, are time 

consuming and are subject to strict controls which make them unlikely to be used directly in 

sports biomechanics in the near future. 

2.4.2.2 Regression equations 
The use of regression equations to estimate BSIP is long established, including a number of 

studies which have reported results simply as proportions of body mass, stature or segment 

length (e. g. Dempster, 1955; Plagenhoef et al. 1983; Zatsiorsky and Seluyanov, 1983). 

Barter (1957) re-analysed the results from the cadaver studies of Braune and Fischer (1889, 

cited by Barter, 1957), Fischer (1906, cited by Barter, 1957) and Dempster (1955) and 

calculated regression equations for the prediction of segment masses from whole body mass. 

This was problematic due to the different dissection methods used and the equations are not 

appropriate for use with young, healthy athletes, especially non-Caucasians and females, 

because of the small, skewed sample of cadavers. 

Clauser et al. (1969) presented equations for estimating segment masses, volumes and mass 

centre positions, and found that regression equations with three predictor variables were 

better than those with one or two. Chandler et al. (1975) produced two sets of regression 
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equations using single predictor variables, body mass or segment volume (the more accurate 
of the two), to estimate segment mass and moment of inertia. As noted in the previous 
section, these studies were also conducted on a small, skewed sample of cadavers which 
makes them of dubious validity for use with young athletic subjects, indeed Chandler et al. 
(1975) warned against using their data for estimating population parameters. Hinrichs (1985) 
revisited Chandler et al. 's data and produced further regression equations for predicting 
segment moments of inertia from anthropometric dimensions (e. g. segment lengths and 
circumferences). He added a caution against using his equations for predicting outside the 
range of anthropometric dimensions of the cadavers, not just their age and race. Hinrichs 
later (1990) adjusted the Clauser et al. (1969) segment mass centre position proportions to 
use joint centres rather than the original bony landmarks. Yeadon and Morlock (1989) and 
Challis (1996) also revisited the moment of inertia data of Chandler et al. (1975) and 
demonstrated that non-linear regression equations were superior to linear equations «hen 
estimating BSIP (Challis focussed on limb moments of inertia) for subjects wk ith segment 
dimensions both within and outside the range of anthropornetric dimensions of the original 
cadavers. 

Zatsiorsky and Seluyanov (1983,1985) presented regression equations based on the BSIP of 
100 young men (aged 23.8 ± 6.2 years) determined by a gamma scanning technique. These 

data are the only comprehensive results from a large scale study of young, health` subjects 

and as such are more suited to application to male athletes, even though the sample %ý as 

probably still skewed in terms of race (details not reported). Zatsiorsky and Seluyanov, 

(1983) gave both mean proportions and regression equations using body mass and stature as 

predictors, while in 1985 they published best predictive regression equations using three or 
four predictors which consisted of various anthropometric measures (e. g. perimeters, lengths, 

widths). A drawback to these studies is that the segmentation of the bodies followed the 

traditional cadaver dissection boundaries, rather than the joint centres which are typically 

digitized by researchers, and the 1985 study presented insufficient detail regarding where 

measurements should be taken. 

2.4.2.3 Geometric models 
A number of researchers have developed models of the human body which consist of a series 

of simple geometric solids. These models enable the determination of customized BSIP for 

individual subjects if the requisite measurements of the subject are made and segment 

densities are known. The differences between these models lie mainly in the %ýay that the 

body is segmented, the number of solids used and consequently the measurements required. 

Most models assume a uniform density within each segment, which has been supported by 
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direct measurements by Ackland, Henson and Bailey, (1988) using CT and ̀ lungiole and 
Martin (1990) using MRI. In addition, the results from Chandler et al. (1975) supported the 
assumption often made in geometric models that each limb segment can be considered 
symmetrical about its longitudinal axis. 

The Hanavan model (Hanavan, 1964, summarized by Nigg, 1994a) consisted of fifteen 

solids (circular ellipsoids, elliptical cylinders, frustra of circular cones and a sphere) and 
required 25 measurements to be made on the subject. Segment masses were determined from 
Barter's (1957) regression equations and the solids were used to determine the mass centre 

position within the segments and segment moments of inertia. The segment masses wt ere 

naturally affected by the shortcomings of the Barter regression equations, which `tiller and 
Morrison (1975) sought to address by calculating segment masses for Hanau an's model 

using the regression equations presented by Clauser et a!. (1969). Miller and Morrison found 

that the using the new equations led to an overestimate of the 'ti hole body mass of the 

subjects by 4.59% compared with an underestimate of 2.03% using the original equations. 
The BSIP were also at variance, but in the absence of a criterion Miller and Morrison had 

more confidence in the estimates using Clauser et al. 's equations because of the larger 

cadaver sample size and a dissection method which was not only the same for all cadavers 
but which more closely matched the segment boundaries of the Hanavan model. 
Nevertheless the shortcomings of Clauser et al. 's sample noted previously «ould also have 

an adverse affect if the model were used to predict BSIP for young athletes, furthermore 

Reid and Jensen (1990) considered the Hanavan model to oversimplify the segment shapes 

and not to be very accurate. 

Jensen (1978) proposed a model which divided the body into sixteen segments (later reg iced 

to fifteen by treating the head and neck as one segment; Jensen and Fletcher, 1994) each 

comprising a series of 2 cm thick elliptical zones. Measurements of the major and minor 

axes of the ellipses at each division were made from photographic records of the front and 

side views of the subject. This made the procedure very quick for the subjects 

(approximately 10 minutes) but it took the researcher up to 2 hours to digitize the images 

manually (the revised method reduced the time taken to 15 to 20 minutes: Jensen and 

Fletcher, 1994). Uniform segment densities were assumed, using the density data from 

Dempster (1955) (Clauser et al. 's density data (1969) were used for all but the trunk segment 

in some later applications), and the whole body mass was estimated to Ný ithin 2% of the 

measured values for three boys (aged 8 to 10 years). Jensen's model has been used in a 

number of studies by Jensen himself and co-workers (e. g. Jensen, 1986: Jensen and ti'a,, as. 

1988; Jensen and Fletcher, 1994) and by others (e. g. Yokoi, Shibukawwa, Ae. Ishijima and 
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Hashihari, 1985; Ackland, Blanksby and Bloomfield. 1988) particularly in investigating 
BSIP of children and adolescents, and more recently the elderly and pregnant. 

Hatze (1980) presented the most detailed geometric model, consisting of 17 segments, 
including the shoulders separately, and allowing segment density and shape to be varied to 

suit the subject. The penalty for this degree of customization was the 242 anthropometric 

measurements required directly from the subject, which Hatze (1980) and Sprigings. Burko. 

Watson and Laverty (1987) found to take an average of 80 minutes. However, Baca (1996) 

reported an automated method for determining 220 of the dimensions required for the Hatze 

model directly from video images of the subject and computing the remaining 22. It is worth 

noting that while segment density values may be customized in this model, the detailed 

density data must be available; typically this means using cadaver data %ý ith its associated 

problems, although in future an increase in the availability of such data from CT or \IRI 

would help. Researchers should also consider whether the effort required to obtain such 
highly individualized BSIP will be justified in the final analysis, but this can only be 

determined in the light of the precision and accuracy of other data collected and the purpose 

of the analysis. 

Yeadon (1990b) presented a geometric model primarily for the simulation of aerial 

movement consisting of 40 solids which defined 20 body segments, although t` picall\ 

several of these were combined to produce BSIP for an 11 segment model of the body. Thus 

while the head and neck, hands, and feet were modelled separately, it was assumed that no 

movement occurred at the neck, wrists and ankles (the ankles were treated as being 

plantarflexed, as is typically the case in aerial movements in gymnastics, diving and similar 

activities). A distinctive feature of Yeadon's model was the representation of the segments 

comprising the trunk as `stadium solids', that is solids bounded proximally and distally by 

parallel surfaces shaped like an athletic stadium (a rectangle wL ith semi-circles at each end of 

its width). The stadium shape was demonstrated to match the typical cross-section of the 

trunk better than an ellipse (as employed by Jensen, 1978 and Hatze, 1980). It was estimated 

that the 95 measurements required took between 20 and 30 minutes ith the subject. though 

Yeadon, Challis and Ng (1994) reported some success ý, w ith reducing this to 26 

measurements in combination with regression equations to generate the remaining 

dimensions. Density values from Dempster (1955) were used because they \\ere the only 

data available which corresponded to the segmentation of Yeadon's model. As with other 

uses of cadaver data this is a shortcoming, however Yeadon (1990b) noted that the BSIP 

were designed as inputs to a simulation model, so in the light of the fit of the simulation to 

actual performances adjustment of the inertia data was possible. 
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2.4.2.4 Selection of a method for BSIP determination 
Validation of the various methods for determining BSIP can at best be onl\ partial since fev 

of the parameters are directly measurable in living subjects (Cappozzo and Berme, 1990). 

Sprigings et al. (1987) compared the geometric model of Hatze (1980) and the ati erage 

segmental percentages of Dempster (1955) and Clauser et al. (1969) for calculating whole 
body mass centre position. They used each method to estimate subjects' mass centre 

positions during free fall, then calculated the mass centre accelerations and compared them 

with the expected value of 9.81 m. s-Z. Hatze's model proved to be the most accurate of the 

three. Kwon (1996) compared ten methods for determining BSIP and found that while the 

method chosen affected the estimated magnitude of angular momentum in full t\ý isting 

double back dismounts from high bar, each method produced angular momentum values 

which fluctuated by about the same amount (e. g. 7-8% of mean somersaulting angular 

momentum). No criterion was available but had one method produced estimates which were 

more nearly constant (as should be expected in flight) it might be presumed to be more 

accurate; as it was the fluctuations were more likely due to other experimental errors (Kwon, 

1996). 

The findings of Kwon (1996) and the demonstration by Challis (1996) that the influence of 

the accuracy of limb moment of inertia values on resultant joint moments can be small, 

suggests that the most complex method for determining BSIP might not be necessary to 

achieve acceptable results, especially if the accuracy or precision of other data is limited. 

Nevertheless, researchers will usually want to obtain the best estimates possible which, oiýen 

that a direct measurement technique such as MRI is unlikely to be readily available to most, 

probably means using a geometric model. 

Yeadon and Challis (1994) pointed out the difficulties of restricted access to subjects (e. g. at 

competition) which might make it impossible to take measurements from subjects, in %ý hich 

case regression equations might have to be used. Furthermore, if the subjects of a studs 

match (in terms of age, sex, race and anthropometry) those from whom regression equations 

or normative data have been derived the use of these methods might pro\ e preferable. 

However in general `because of individual differences it is preferable to use a mathematical 

model' (Reid and Jensen, 1990, page 237), a view supported by other surveys of available 

techniques (Cappozzo and Berme, 1990; Nigg, 1994a). 

2.4.3 FORCE DATA CAPTURE AND ANALYSIS 

The two most commonly used types of force transducer are based on piezoelectric or strain 

gauge technology (Nigg, 1994b), both working on the principle that a load xN ill cause 
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deformation of the transducer which in turn will result in a change of output (Berme. 1990). 
Ideally, force transducer systems should have minimal crosstalk, high linearity, low drift, 
high frequency response, high natural frequency, low hysteresis and low threshold. N. '120 
(1994b) summarized a selection of the main performance characteristics for different types 
of force transducers which showed that there is little to choose between piezoelectric and 
strain gauge transducers, with piezoelectric having a slight edge in terms of linearity. 
hysteresis and threshold, while strain gauge are cheaper and do not suffer from drift (making 
them better for longer duration recordings). 

Both piezoelectric and strain gauge transducers are capable of recording forces over a very 
large range of values. The analogue output from the transducer is usually converted to a 
digital signal using an analogue to digital converter (ADC) which can only resolve a discrete 

number of different levels (e. g. 4096 for a twelve-bit ADC). To maximise the accuracy of 
the recording system it is necessary to adjust its operating range to match as closely as 

possible the expected range of forces in a given trial (Bartlett, 1977). Failure to do this will 

result in inaccuracy either due to `overloading' the transducer (if a force is applied which is 

larger than anticipated) or low sensitivity (if only small forces are recorded when a large 

range has been set). 

Force plates incorporate one or more force transducers (typically four) supporting a rigid top 

plate (Winter, 1990). Where more than one transducer is used the output from each is usuall\ 

combined to provide three orthogonal components of a single resultant force and the point at 

which that force can be considered to act (centre of force, also known as centre of pressure 

or point of force application). Moments of force can also be determined. While force plates 

based on both strain gauge and piezoelectric technology are available, Bartlett, Messenger 

and Lindsay (1997) suggested that piezoelectric plates are sti II preferred for sport and 

exercise biomechanics owing to their ability to measure rapidly changing forces accurately . 
despite the recent improvements of strain gauge plates in this regard. 

Force plates are most often mounted in the ground. Care must be taken to mount the plate so 

as to minimize the effects of vibrations from the surrounding environment (Ker\\ in and 

Chapman, 1988a), which is usually achieved by attaching the plate to a large concrete block 

(Bartlett et al., 1997). Bartlett (1997) noted that strain gauge plates are considered to be 

easier to install while piezoelectric plates are less susceptible to changes in temperature and 

therefore need calibrating less frequently. Biewener and Full (1992) and Hall, Fleming, 

Dolan, Millbank and Paul (1996) described similar methods for calibrating force plates. Hall 

et al. particularly noted the difficulties of quantifying crosstalk, also making the point that 

even if plates perform to manufacturers specifications (e. g. <_ ±1%), the crosstalk from a 
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channel reading a large force (e. g. vertical force at mid-stance in running) can have a 
substantial effect on channels simultaneously reading small forces (e. g. medio-lateral forces). 

When suitably installed, calibrated and operated, force plates can yield very accurate force 

measurements, however centre of force estimation can be more problematic. Bobbert and 
Schamhardt (1990) evaluated the accuracy of this measure for a piezoelectric force plate and 
found errors of up to 20 mm at the plate edges. They developed correction algorithms ýý hich 

achieved reductions in these errors of at least 50% and, more typically, over 75%. They also 
demonstrated theoretically that the errors were due to slight (but necessary) bending of the 

top plate. The plates they were using had a larger surface than is typical, consequently the 

errors might be smaller for smaller plates (Challis, 1997). It should be noted that large errors 
in the location of the centre of force can occur on any force plate when the resultant vertical 
force approaches zero, as this value is a denominator in the equations for the calculation of 

centre of force (Nigg, 1994b; see page 217 for equations). 

Integration of force data with respect to time enables the calculation of changes in 

momentum and hence changes in velocity if divided by the subject mass. A further 

integration gives displacement, while knowledge of initial/final velocity and position alloýýs 

absolute velocity and position to be determined. Bartlett et al. (1997) noted that Simpson's 

rule or the trapezoidal rule can be used for numerical integration of force histories, or an 

analytic function could be fitted to the data which could then be integrated analytically. The 

trapezoidal rule effectively joins consecutive ordinates with a straight line and calculates the 

area of the trapezium formed, while Simpson's 1/3 rule effectively joins three consecutive 

ordinates with a quadratic and finds the bounded area (Simpson's 3/8 rule puts a cubic 

through four consecutive values). It has been shown (e. g. de Vahl Davis, 1986) that in 

general circumstances Simpson's rule is more accurate than the trapezoidal rule, however 

without modification it only gives integrals for double time steps (Bartlett et al., 1997). 

Furthermore, when the force is varying fairly slowly but a high sampling rate is being used 

(which, apart from impact transients, is usually the case in vertical and anterio-posterior 

ground reaction force records; Kerwin and Chapman, 1988b) the linear approximation used 

in the trapezoidal rule is likely to be adequate. 

2.4.4 MODELLING AND SIMULATION 

In general a model may be described as ̀ an attempt to represent reality' (Nigg, 1994c, page 

368), though for the purposes of this thesis, mathematical models are the specific interest. 

Giordano and Weir (1985) defined a mathematical model as 'a mathematical construct 

designed to study a particular real-world system or phenomenon' (page 32). Apart from 
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providing a definition, this quotation also indicates that the model is not the goal, but the tool 

with which to conduct a study. Vaughan (1984) made the useful distinction between a 
(computer) model and (computer) simulation, defining simulation as: the use of a validated 
computer model to carry out "experiments", under carefully controlled conditions' (page 
373). The use of the term `computer' is now largely redundant since using computers to 

perform mathematical modelling and simulation is the norm. 

The use of models in biomechanics enables the `what if? ' questions (Bratleu,. Fox and 
Schrage, 1987; Vaughan, 1984; Yeadon, 1994), and also the 'whyT questions (Yeadon, 

1994) to be addressed. Attempting to answer `what if? ' questions by asking athletes to 

modify their technique is fraught with ethical and practical problems. Furthermore, without 

some evidence to suggest that the modifications will be advantageous, the biomechanist is 

likely to be met with some reluctance and suspicion by the athletes and their coaches. The 

use of appropriate models to conduct simulations means that answers can be suggested 

without risking athlete safety, minimizing the time and cost involved, and perhaps arriving, at 

an optimized technique (or at least rejecting unpromising modifications) before athletes need 

to be involved (Vaughan, 1984). Models are useful for answering 'why? ' questions because 

they are simplifications which allow attention to be focused on the fundamental factors and 

enable a level of control of these factors which would rarely be possible in a traditional 

biomechanical study. However Vaughan (1984) also drew attention to some of the 

drawbacks of modelling and simulation: difficulty in validating (evaluating) models (see 

below), the level of mathematical knowledge required (or conversely the lack of Lno%ý ledge 

required if a `black box' approach is taken) and the difficulty sometimes encountered in 

making the results of simulations accessible to athletes and coaches. 

Numerous authors have described the stages involved in the development and use of 

mathematical models (e. g. Mihram, 1972, Giordano and Weir, 1985. Edýýards and Harrison, 

1989; Nigg, 1994c). Although their precise stages differ, a common general approach can be 

identified. Initially a study of the subject or activity to be modelled is necessary along with 

the questions or issues to be addressed. At this point, the type of model (e. g. deterministic or 

stochastic, inverse or direct dynamics) may be selected and some simplifying assumptions 

made. Formulation of the mathematical equations which make up the model and an attempt 

at their solution follows; increasingly this is done using simulation or symbolic mathematics 

packages (Meerschaert, 1993; Soest, Schwab, Bobbert and Ingen Schenau, 1992: Yeadon 

and Challis, 1994). Before making use of the model in simulations which attempt to answer 

the questions posed, the model should be verified (to ensure that the model program executes 

correctly) and evaluated (to ensure that what it does corresponds to reality). Once some 
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answers have been found it is then important that these be communicated appropriately to 
the intended audience. 

Modelling is an iterative process: at any point it may be necessary to go back to an earlier 
stage, perhaps to simplify a model which is too complex to formulate mathematically, or 
maybe to increase the complexity in the event of a poor evaluation. Miller (1975) suggested 
that the aim was to achieve an optimal combination of accuracy and simplicity', while 
Hubbard (1993) proposed the rule of thumb `always begin with the simplest possible model 
which captures the essence of the task being studied' (page 55). Alexander has often made a 
case for and demonstrated the benefits of simple models (e. g. Alexander, 1989,1990b, 
1991 a). In fact he devoted a paper (Alexander, 1992) to encouraging the use of models 
which are `as simple as is consistent with [their] task' (page 5) because they highlight basic 

principles. Hatze (1981) on the other hand presented one of the most complex models for the 
simulation of human motion, on the basis that this made it `more powerful in its predictive 
capabilities' (page 135). The penalty for such complexity is likely to be in a lack of ease of 
use and a difficulty in understanding the results: `The primary purpose of computer 

simulation is to increase the understanding of a particular phenomenon, not to simply 

replicate it. ' (Sprigings and Yeadon, 1997, page 518). 

Confusion arising from the numerous interpretations of the term `validation' led Nig`z 

(1994c) to propose using the term `evaluation' to mean the process of establishing whether a 

model is `strong and powerful for the purpose for which it was intended' (page 373). He 

identified three ways of evaluating a model: direct, indirect and trend measurements. Direct 

evaluation is the ideal, since the model results are compared with direct measurement of the 

variable of interest. However direct evaluation cannot always be performed since the 

variable may not be measurable in the real system, nevertheless it may be possible to 

compare other model results with corresponding real values, thereby indirectly evaluating 

the model. Trend measurement compares the general behaviour of the model with that of the 

real system, without great concern over the specific values predicted. 

Panjabi (1979) also stressed the need to evaluate (validate in his terms) models since 'a 

mathematical model is only a set of equations' (page 238). However he noted the key 

problem with the notion of evaluation, that is to say that while model results may compare 
favourably with real data, one of the main uses of models is to make predictions about 

situations for which no data exist. Therefore the predictions may not be as accurate as the 

evaluation would suggest. 
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It is possible that more than one model may be formulated and may prove to be adequate for 
the purpose based on whatever criteria are chosen. Murthy, Page and Rodin (1990) suggested 
that in this case the selection of a model to use may be made on the basis of parsimony (i. e. a 
model with fewer parameters is best) and/or parameter sensitivity (i. e. less sensitivit` is 
better). Sensitivity analysis establishes the influence of the uncertainty in the values used as 
inputs to the model on the model predictions. Where it is not possible to perform sensitivity 
analyses on all parameters, those about which there is most uncertainty should be focused 

upon (Meerschaert, 1993). 

Nigg (1994c) pointed out that a model might produce accurate results without the conceptual 

construction corresponding to reality. This situation may exist for models of humans as 

mass-spring systems, since there is no actual spring but a series of joints, muscles and 
ligaments which together act reasonably like a spring in some circumstances. Nevertheless 

the model may be adequate for the purpose for which it was developed. Another possibility 
is that a model might not be expected to match reality. For example Sprigings and Yeadon 

(1997) used a very simple model of horse contact in Hecht vaulting to determine ho\ý much 

reversal of rotation might be possible without the use of torques at the shoulder joint. That 

the model produced 70% of the actual change in angular velocity was seen as a positive 
indication, not as a shortcoming. Indeed demonstrating the limitations of a particular model 

may be useful, since it can stimulate the search for a better understanding of the system 
being modelled. 

2.4.5 SUMMARY OF METHODS OF INVESTIGATION 
This section was divided into four main areas: visual data capture and analysis, the 

determination of body segment inertia parameters, force data collection and analysis, and 

modelling and simulation. It was argued that video is now comparable to cinefilm in terms of 

the quality of the data which can be derived from it, that cross-validated quintic splines 

provide a good general method for smoothing and differentiating position data, and that the 

DLT provides a flexible method for reconstructing raw position data. From the array of 

techniques available for determining BSIP, geometric modelling based on anthropometric 

measurements made on the subject is usually the best technique available providing at least 

some access to the subject is possible. For measuring ground reaction forces piezoelectric 

force plates are the most common in sports biomechanics, providing accurate data if they are 

mounted, calibrated and operated carefully, though some care needs to be taken when 

estimating the centre of force position. For integrating force data, the trapezoidal rule has the 

advantage over Simpson's rule of providing integrals at every inten'al and it may be as 

accurate depending upon the nature of the data. The process of modelling and simulation has 
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been summarized, the idea that simple rather than complex models may be more revealing 
has been proposed and the importance, but difficulty of evaluating models before they are 

used for simulation has been noted. 

2.5 SUMMARY 
This chapter has reviewed literature relating to this study under four main headings: vault 

springboard contact, modelling rebound activities, accommodating surface changes and 

methods of investigation. Little research has focused directly upon the springboard contact in 

vaulting, but mass-spring modelling, to date used mainly to investigate running and hoppiºn`g. 

provides a promising route for developing the understanding of this activity, including the 

effects of springboard stiffness variations and how they might be accommodated. The re iew 

of methods of investigation has identified suitable approaches to collecting and analysing 

data for this study. 
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CHAPTER THREE 
INVESTIGATING THE SUITABILITY OF A LINEAR SPRING 

3.1 INTRODUCTION 
A number of researchers have used a simple mass on a linear spring system to model human 

activities such as hopping and running (e. g. Blickhan, 1989, Farley, Blickhan, Saito and 
Taylor, 1991; McMahon and Cheng, 1990). As discussed in the previous chapter, the 

rationale for adopting such a model comes in part from the roughly linear vertical ground 

reaction force-mass centre displacement relationships found in these activities, which match 

the force-displacement relationship for a linear spring (Cavagna, Franzetti, Heglund and 
Willems, 1988; Farley et al., 1991; Farley and Gonzalez, 1996, He, Kram and McMahon. 

1991). 

The main purpose of the study reported in this chapter was to evaluate further the suitability 

of a mass-linear spring model for rebounding activities. In particular the study progressed to 

an activity in which, unlike hopping and running, the mass centre motion was not 

symmetrical about the middle of the ground contact, in other words an activity more like the 

springboard contact in gymnastic vaulting. To achieve this the ground reaction force-mass 

centre displacement relationships of four activities were analysed. The four activities were: 

hopping in place at the subject's preferred frequency, hopping in place at a higher frequency, 

two-footed forward hopping, and a running two-footed jump up onto a raised platform. A 

secondary purpose of the study was to enable the comparison of the two-dimensional Direct 

Linear Transformation (2-D DLT) method with the three-dimensional DLT (3-D DLT) 

method for obtaining sagittal plane data and to investigate the effect of different body 

segment inertia parameter estimates on mass centre position and velocity. 

3.2 DATA COLLECTION 

3.2.1 SUBJECT PREPARATION 
A male athlete (mass 70.75 kg, height 1.79 m) agreed to be the subject and gave informed 

consent prior to the data collection (Appendix A. 1). Ninety-five anthropometric 

measurements were made using tapes and callipers and were then entered into the geometric 

solid model developed by Yeadon (1990b). These measurements consisted of lengths, 

widths and perimeters at various points on the body which defined a 14 segment model 

made up of geometric solids. The segments were the hands, forearms, upper arms, thighs, 

shanks and feet for both left and right sides of the body, the trunk and the head. The human 
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body segmental density data reported by Dempster (1955) are used in the model, assuming 
the density of each segment to be uniform. The model output provided body segment inertia 

parameters (BSIP) for the subject, from which the segment masses and proximal ratios 
(distances from proximal segment endpoints to segment mass centres as a proportion of 
segment length) were later used to find the whole body mass centre position. The forearm 

and hand segments were combined to form a single segment (assuming a wrist flexion angle 
of zero and using the wrist as the distal endpoint) in order to avoid having to estimate finger 

positions when digitizing the film as occasionally these were blurred. 

While the use of a geometric solid model such as Yeadon's is a way of tailoring BSIP 

estimations to the individual, if access to the subject is restricted (e. g. when only film data 

have been obtained at a sports competition) it is not always possible to make the 

anthropometric measurements required. In this case, a less sophisticated method of 

estimating BSIP must be used. To assess the influence of using perhaps the simplest method 

of mass centre position estimation, the ratio data of Dempster (1955) (as summarized in 

Winter, 1990) were also used. Appendix A. 2 contains the subject's BSIP derived from the 

geometric solid model and the ratio data. 

To aid the process of digitization the subject wore only swimming briefs and had 10 mm 

black adhesive tape placed around the perimeters of the metatarso-phalangeal joints, ankles, 

knees, hips, elbows, and wrists. These perimeters corresponded to the ends of the segments 

of the inertia model (Yeadon, 1990b) which were considered beneficial and practical to 

mark based on a pilot study. Taping perimeters was chosen since it provided guidance when 

digitizing segment extremities regardless of limb orientation or camera view. 

Before data collection the subject, who was familiar with the laboratory and the 

experimental protocol, was allowed to warm up and then practice the four trial conditions. 

All trials were completed bare footed. 

3.2.2 VISUAL DATA 
The DLT method of reconstruction was chosen for this study because of the flexibility with 

which cameras may be positioned, the modest volume in which the activities were to take 

place and the ability to perform both 2-D and 3-D DLTs. Two-dimensional reconstruction of 

position data from film requires only one view of the activity to be recorded, whilst three- 

dimensional reconstruction normally requires a minimum of two simultaneously recorded 

views of the activity. By suitably positioning two cameras, the 2-D DLT was performed by 

selecting one of the views, whilst both views were used for the 3-D DLT. 
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The cameras used were a Redlake Locam II (model 51) with a Schneider-Kreuznach 
13 972 262 Variogon 1.8 10-100 mm zoom lens running at 100 frames per second (fps) and 
a Bolex H16 EBM with a Switar 1: 1.8 16 mm H16 RX lens running at 50 fps. Both cameras 
were battery powered. The film exposure times were 1/300` second for the Locam (variable 

shutter opening set to 1/3) and 1/140`' second for the Bolex (fixed shutter) with Eastman 
Ektrachrome 7250 colour reversal high speed tungsten film (400 ASA tungsten rating) being 

used in both cameras. Daylight illumination was available through the laboratory windows 
but it was necessary to supplement this with 5 kW of flood lighting. Due to changes in the 
daylight illumination, light readings were taken frequently and lens apertures adjusted 
accordingly. Phase locking of the cameras was not possible so a high-rise LED timing light 

unit which displayed time down to milliseconds was positioned such that it could be clearly 
seen by both cameras. This enabled the synchronization of the resulting data from each view 
to be performed at the analysis stage (see below). 

A 1.0 x 0.6 x 1.0 m calibration object consisting of 12 mm diameter steel tubing painted 

matt black and with a total of fifty centrally drilled coloured golf balls positioned 
throughout the volume was used in this study. The locations of the balls were determined 

using a civil engineering laser surveying system. A root mean square error (RMSE) of 
0.8 mm was found for the consistency of locating the balls and a mean difference of 
0.58 mm (±0.45 mm) was determined for the accuracy of ball location. The arrangement of 
the balls on the calibration object was such that by careful selection, control points which 

satisfied the calibration requirements of both the 2-D and 3-D DLTs could be found (Figure 

3.1a). 

In order for the calibration to cover the volume of interest while using this calibration 

object, the multiphase DLT approach was used (Challis, 1995). Initially the calibration 

object was placed centrally on the force plate and filmed, then it was raised 0.725 m so that 

the bottom layer of balls lay within the original volume and filmed again (Figure 3.1 b). 

Preliminary calibration using only the object in the lower position enabled the positions of 

the bottom layer of control points of the object in its raised position to be determined and 
hence the position of all of the other control points in the raised position were determined. 

Calibration of the space for the activities was then performed using control points from the 

object in both positions, increasing the total volume covered by control points by 

approximately 75%. After filming the calibration object in the two positions with both 

cameras, the cameras were not moved, zoomed nor re-focused. 
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Figure 3. la. The calibration object. Empty circles represent those balls digitized for 3D 
calibration; filled circles are those balls digitized for 2D calibration. 
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Figure 3. l b. An illustration of the multiphase DLT calibration. The black figure is 
the original position of the frame, the dotted figure is the second position. 
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For the 3-D reconstruction of the data the five control points on each of the four corner 
uprights of the calibration object were chosen based on the recommendation of Challis and 
Kerwin (1992). This gave a total of forty control points when the two calibration object 

positions were combined. The 2-D DLT requires control points to be distributed in a 
'calibration plane', so the sixteen control points in the middle plane of the structure 
(approximately the plane of the activity) were chosen, giving thirty-two control points hen 

the two calibration object positions were combined. Figure 3. lb illustrates the calibration 

object control points selected for each of the reconstructions. 

A pilot study to establish suitable camera positions found that with both cameras on the 

same side of the subject and at an oblique angle to the sagittal plane of the actin it`, all 

necessary control points on the calibration object could be seen from both cameras. 
Furthermore, in the subsequent dynamic data collection, segment endpoints on both the near 

and far limbs of the subject could be seen by both cameras almost all of the time. The 2'-D 

DLT allows flexible positioning of the camera, so filming from an oblique angle to obtain 

the sagittal plane data of the activity was not problematic. The camera positions chosen 

were such that each camera was at an angle of approximately 53° to the sagittal plane, 

giving an angle of 74° between the optical axes of the cameras. Each camera ýý as mounted 

on a rigid tripod at a distance of 7.5 m from the centre of the force plate (reference origin) 

and the lens focal lengths were 18 mm for the Locam and 16 mm for the Bolex. Figure 3.2 

shows the arrangement of the cameras with respect to the force plate. The cameras ýý ere 

levelled and the centres of both camera lenses were 0.96 m above the force plate surface. 

Three markers were positioned horizontally at intervals of three metres on a all two metres 

to the far side of the plane of activity from the cameras, at approximately camera height to 

act as reference points. Two of these points were visible in each camera view and enabled 

any camera wobble to be corrected for within the reconstruction software. 

3.2.3 FORCE DATA 
Horizontal and vertical ground reaction forces (GRF) and the centre of force were measured 

with a Kistler 9281-B 12 force plate interfaced to an Acorn A440 Archimedes 

microcomputer via a CED 1401 analogue to digital converter. The vertical full scale 

deflection was set to 5 kN for all trials and the horizontal full scale deflection was set to 

1 kN for hopping in place and forward hopping trials, and to 2 kN for running two-footed 

jump trials (see section 3.2.4). Burst sampling was performed at a rate of I kHz for one 

second for all trials. 
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Direction of motion 

Figure 3.2. Plan view of camera positions relative to the force plate. 
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Nearest frame synchronization of film and force plate data is theoretically possible by 

noting plate contact and takeoff in both film and force data records. However in practice this 
can be problematic from the film records as the exact frames of contact and takeoff are often 
difficult to see clearly (a similar problem has also been demonstrated in the context of 
detecting loss of contact with the high bar in men's artistic gymnastics by Kerwin, Yeadon 

and Harwood, 1993). To improve on this, a high-rise LED in view of the Locam «as 
switched on by the same signal which triggered the force plate thereby clearly locating the 
commencement of the force data record in the timescale of the cameras. 

3.2.4 PROCEDURE 
Four trial conditions were investigated: 

1. Two footed hopping in place in the middle of the plate at preferred frequency 
. 

2. As 1 but at a subject-selected higher frequency. 

3. Two footed forward hopping at a subject-selected pace (subject contacted force plate 

after about four hops and continued hopping forwards after plate contact). 

4. Running two-footed jump from the force plate onto a 0.3 m high platform positioned 

approximately 0.6 m from the centre of the plate (the subject took 3 or 4 strides prior to 

plate contact). 

Arm movements were not restricted in any trial. 

Each trial was identified by a unique number that was displayed in the view of both cameras 

and incorporated into the filename of the force data record. In all trials the force plate was 

triggered after the cameras to allow the cameras time reach the desired frame rates. For 

hopping in place trials, the data were collected after the subject had achieved a steady 

rhythm. The forward hopping and running jump trials required the subject to start 

hopping/running forward on an audible cue. Filming commenced prior to the ground contact 

preceding contact with the plate and the force data collection then started shortly after the 

cameras started running. 

3.3 DATA ANALYSIS 

3.3.1 TRIAL SELECTION 
At least ten trials of each of the four activities were recorded. Where the force data capture 

had been successful (i. e. both feet completely on the plate, the whole contact period 
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recorded, and the plate not having been over-ranged), the film from each camera as 
inspected and possible trials to analyse were identified based on the following criteria: 

" the LED synchronization event from the force plate trigger occurred after the cameras 
were up to speed (judged from the millisecond timing lights), 

" the cameras were up to speed prior to the takeoff from the ground before the force plate 
contact of interest, 

0 both feet contacted the force plate approximately centrally, 

" the cameras were still running when the ground contact after the one of interest 

occurred. 

Despite the previously mentioned difficulty in locating the exact frames of touchdown and 
takeoff from visual records, it was found that for the trials which met the above criteria the 
duration of plate contact, as estimated from film and force data, corresponded to «ithin 
0.02 s. Inspection of the force data records revealed that within each group of trials there 

was very little variation in duration of contact with the plate (tc), peak vertical force (FzR�c), 

percentage of t,, to reach Fzma. (tFz,,, 
ax), vertical impulse (Imp, ), and horizontal impulse 

(Imps; only evaluated for the forward hopping and jumping trials), as shown in Table 3.1. 

This is illustrated in Figure 3.3 which shows the force histories from each of the trials. 

Therefore it was decided to select one trial at random from each of the four conditions to be 

analysed in detail. 

Table 3.1. Summary of force data for each group of trials. 

Trial tc 
(S) 

FZmax 
(N) 

tFZmax 
(%) 

Imp, 
(N. s) 

Imps 
(N. s) 

PREF mean 0.297 2235 53 192 - 

SD 0.016 145 2 7 - 

HIGH mean 0.185 2689 46 166 - 

SD 0.006 34 1 5 - 

FWD mean 0.207 2883 41 202 +5 

SD 0.005 87 2 8 6 

JUMP mean 0.174 3345 43 262 -65 

SD 0.008 155 ?72 
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Figure 3.3. Force histories for each of the trials: (a) two-footed hopping in place at preferred 
frequency, (b) two-footed hopping in place at higher frequency, (c) two-footed forward 
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3.3.2 IMAGE DATA ANALYSIS 
All digitization was performed by projecting the film using an NAC Anale sis Projector with 

a 50 mm lens onto a Terminal Display Systems HR48 tablet (active area 1.20 mx0.90 m. 

resolution 0.025 mm) which was interfaced to an Acorn A3000 microcomputer. Standard 

laboratory software logged the digitized coordinates from the film images and then spooled 

the data to an ASCII format file. Despite the fact that the projector had an internal fan to 

control its temperature, before digitization commenced the projector was allowed to warm 

up to reduce the risk of inaccuracies due to possible film distortion vý hen warming up. 

From both camera views, the film of the forty control points for the 3-D DLT reconstruction 

and two of the three reference points on the wall were digitized ten times. The Locam vieýN 

was used for the 2-D analysis and the thirty-two control points for the 2-D DLT 

reconstruction plus two reterence points were digitized ten times. The mean digitized 

coordinates were later used for the reconstruction. Since the film in the cameras had to be 

changed during the data collection, which may have moved the cameras slightly, the 

calibration object was positioned and filmed again. Therefore the control point digitization 

was repeated to enable new DLT parameters to be calculated for the trials filmed after the 

film change. 

To investigate the GRF-mass centre displacement relationship, the information required 

from film was the subject's mass centre position and velocity immediately before plate 

contact. Mass centre displacement during ground contact could then be estimated by 

combining these data with the GRF history. The mass centre velocity at touchdown was 

calculated using equations of constantly accelerated motion, therefore only the mass centre 

positions at each end of the airborne phase before plate contact and the duration of this 

phase were needed. In order to calculate the mass centre positions the image space 

coordinates of the subject's middle metatarso-phalangeal joints, ankles, knees, hips, elbo. ýs. 

shoulders and wrists and the centre of his head were required from both cameras. 

To reduce the random error inherent in raw digitized data, the use of the mean data from 

repeated digitizations was investigated. This process reduces the magnitude of the random 

error by a factor of the square root of the number of digitizations used, but is not normall" 

used owing to the time overhead when a large number of frames are to be digitized. In this 

study, the small number of frames digitized from each camera per trial meant that repeated 

digitization was viable. 
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To quantify the effect of repeated digitizations, one jump trial vas digitized ten times from 
the Locam view and a 2-D DLT reconstruction was performed on eac: i digitization. Mean 
values for the sagittal plane coordinates based on two, three, four, five, seven and all ten 
digitizations were calculated, then the precision with which these points could be located 
was estimated. This was achieved by determining the standard error for each point (Barford. 
1985). The standard error of the mass centre location was also calculated for each 
combination of digitizations since the mass centre location was the main interest rather than 
the individual segment endpoints. The results for the last frame in flight before contact vv ith 
the plate are summarized in Table 3.2. 

On the whole, increasing the number of digitizations only slightly improved the precision 
with which the points were located (to three decimal places) and the precision for each 
endpoint was 0.01 m or better even for two digitizations. Since the mass centre position (a 

weighted mean of fifteen points) was the main information required and the precision for 

this point was of the order of a few millimetres it was decided that it would be sufficient 

simply to digitize each trial once. 

The segment endpoints listed above and the reference points on the wall behind the plane of 

action were digitized from both camera views for the four selected trials. The time at 

exposure was read from the millisecond timer and entered manually for each frame 

digitized. This enabled synchronization of the two sets of film data by matching the Locam 

data (100 fps) as closely as possible to the Bolex data (50 fps), giving a synchronization 

error of no more than 0.005 s. 

The digitized data for each trial were reconstructed using both the 2-D and 3-D DLTs to 

obtain sagittal plane position data. The mass centre position in each frame digitized as 

then calculated using the segment mass and segment proximal ratio data obtained from both 

the geometric model of Yeadon (1990b) and standard ratio data of Dempster (1955). 

Equation 3.1 shows how they coordinate of the mass centre in a given frame was 

calculated; the calculation of the z coordinate has the same form. In this equation Y is the 
horizontal coordinate of the mass centre, M is the whole body mass, y,, and yý are the 

horizontal coordinates of the proximal and distal endpoints of segment i, r, and m, are the 

proximal ratio and the mass for segment i, and N is the number of segments comprising the 

body. 

Y=1 I(yn, 
+ (Ye,, - yp, ). rn 

)m1] 3.1 
M , _, 
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Table 3.2. Overall (combined horizontal and vertical) standard errors in metres for each 

of the points digitized and the mass centre, over two to ten digitizations. 

2 

Number of di 

34 

gitizations 

57 10 

Left toe 0.010 0.006 0.005 0.004 0.003 0.002 

Left ankle 0.003 0.002 0.002 0.002 0.001 0.001 

Left knee 0.002 0.003 0.003 0.002 0.003 0.002 

Left hip 0.008 0.006 0.004 0.004 0.003 0.002 

Left shoulder 0.003 0.002 0.002 0.002 0.002 0.001 

Left elbow 0.009 0.007 0.005 0.004 0.003 0.002 

Left wrist 0.003 0.002 0.002 0.001 0.001 0.001 

Right toe 0.002 0.002 0.002 0.003 0.002 0.002 

Right ankle 0.003 0.002 0.002 0.002 0.001 0.001 

Right knee 0.004 0.004 0.003 0.002 0.002 0.002 

Right hip 0.003 0.004 0.004 0.003 0.002 0.002 

Right shoulder 0.008 0.008 0.006 0.005 0.003 0.003 

Right elbow 0.003 0.003 0.002 0.002 0.001 0.001 

Right wrist 0.004 0.002 0.002 0.002 0.001 0.001 

Ear 0.004 0.003 0.003 0.003 0.002 0.002 

Mass Centre 0.001 0.002 0.002 0.001 0.001 0.001 
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For each of the four combinations of BSIP and reconstruction methods. touchdo«n 
velocities were calculated for each trial. This was done using the equations of uniformly 
accelerated motion and mass centre displacements during the flight phases preceding 
touchdown as follows: 

Horizontally, 
Sy 

vv= C 3.? 

Vertically, 

u_=v - a_. t 3.3 

S: =u_. t+'2. a`. t2 
3.4 

Substituting from 3.3 into 3.4, 

Sý =V .t-a12+ ! Z-Q_ . t2 
Sý =V-. t- %2. Q,. t2 

and rearranging, 

s, + I,. a.. t2 

t 

In the above equations u_ is the mass centre vertical velocity at the beginning of the airborne 

phase, vy and v, are respectively the horizontal and vertical mass centre velocities at the end 

of the airborne phase, s, and s: are respectively the horizontal and vertical mass centre 
displacements during the airborne phase, a: is the acceleration due to gravity and t is the 

duration of the airborne phase. 

Table 3.3 summarizes the mass centre positions and velocities at touchdown for each of the 

four trials and four combinations of methods, and gives the root mean squared difference for 

each variable. Only small differences were found between methods for both mass centre 

positions and velocity estimates for a given trial. Closer comparison of the mass centre 

position data calculated from the ratio data and geometric model based data revealed a 

systematic difference of approaching 0.05 m in the vertical direction. This is approximately 

only five percent of the mass centre displacement from the ground and is not propagated to 

the velocity data (being a systematic difference). Therefore it was unlikely to have much 

influence on the investigation of the GRF-mass centre displacement relationship. Without a 
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Table 3.3. Horizontal and vertical mass centre position and velocity at touchdown for 

each of the four trial conditions (PREF, HIGH, FWD, JUMP) and combinations of 

reconstruction (2D, 3D) and BSIP (Dempster, D, and Yeadon, Y). 

Position 

y (m) z (m) 

VeIoci 

v, (m. s"') v_ (m. s-') 

PREF2DD 1.422 1.131 0.00 -1.08 
PREF2DY 1.417 1.082 0.00 -1.08 
PREF3DD 1.420 1.126 0.05 -1.12 
PREF3DY 1.414 1.077 0.05 -1.13 

RMSD 0.003 0.028 0.03 0.03 

HIGH2DD 1.376 1.090 0.01 -1.14 
HIGH2DY 1.369 1.041 0.00 -1.14 
HIGH3DD 1.395 1.088 0.05 -1.09 
HIGH3DY 1.389 1.038 0.05 -1.08 
RMSD 0.012 0.029 0.03 0.03 

FWD2DD 1.254 1.075 1.72 -1.53 

FWD2DY 1.250 1.024 1.73 -1.52 

FWD3DD 1.286 1.067 1.76 -1.48 

F WD3 DY 1.281 1.018 1.75 -1.47 

RMSD 0.018 0.029 0.02 0.03 

JUMP2DD 1.064 1.027 2.95 -1.62 

JUMP2DY 1.066 0.980 2.95 -1.62 

JUMP3DD 1.069 1.040 2.94 -1.57 

JUMP3DY 1.072 0.992 2.95 -1.57 

RMSD 0.004 0.028 0.01 0.03 

N. B. `RMSD' indicates the root mean squared deviations from the mean of the four 

estimates. 
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clear case for or against any one of the four methods of obtaining mass centre position data, 
it was decided that the simplest of the four methods, i. e. the 2-D reconstruction and standard 
BSIP, was satisfactory for the analyses which followed. 

3.3.3 FORCE DATA ANALYSIS 
For each of the four trials, the subject's vertical mass centre velocity and displacement 
during force plate contact were calculated by combining the force and visual data as 
follows: 

9 for every force sample the subject's body weight was subtracted from the ý ertical 
force (FZ), 

" these were then divided by the subject's body mass to give the net vertical 

acceleration of the mass centre, 

" the acceleration history was then integrated twice from touchdown to takeoff, 

using the mass centre positions and velocities just prior to touchdown obtained 
from the visual data as initial conditions. 

Three methods of performing the numerical integration were tried on the trials. These 

methods were rectangle rule (simply treating each data point as a rectangle with the vv idth of 
the inter-sample period, i. e. 0.001 s), trapezoidal rule, and Simpson's 1/3 rule. Table 3.4 

shows the effect on the vertical mass centre position at takeoff of these different methods of 
integration. None of the three integration methods resulted in more than a 0.002 in 
difference in mass centre position at takeoff. Therefore it was decided that the rectangle rule 

was the most suitable of the three since it does not suffer from the loss of data at the ends of 

the sequence, as do the other methods. 

Also shown in Table 3.4 are the effects on the vertical mass centre position at takeoff of 

over- and under-estimating the touchdown vertical velocity by 0.05 m. s-1 (the largest 

variation between touchdown velocities calculated for any trial by the four different 

combinations of reconstruction method and BSIP). The largest difference caused by this 

perturbation was 0.016 m, less than two percent of the vertical mass centre displacement. 

For the forward hopping and jumping trials, the sagittal plane horizontal force data (F, ) 

were divided by the subject's mass and numerically integrated twice using the rectangle rule, 

to generate the mass centre displacement histories for each of the trials during plate Contact. 

The horizontal mass centre positions and velocities just prior to touchdown, as determined 

from the visual data, were again used as the initial conditions for the integrations. 
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Table 3.4. The vertical mass centre displacement at takeoff as calculated by each of the 

three integration methods and the effect on this displacement of a vertical velocit\ 

perturbation of 0.05 m. s"'. 

Integration method 
Velocit- 

perturbation 
Rectangle Trapezium Simpson's ± 0.05 m. s-' 

PREF 1.187 m 1.188 m 1.188 m ± 0.016 m 

HIGH 1.105 m 1.106 m 1.106 m ± 0.009 m 

FWD 1.160m 1.161 m 1.162m ±0.010m 

JUMP 1.122 m 1.122 m 1.121 m ± 0.009 m 

Perturbation of the horizontal mass centre velocities by ±0.05 m. s-1 (more than the largest 

variation between horizontal touchdown velocities calculated for any trial between the four 

different combinations of reconstruction method and BSIP) resulted in a change of mass 

centre position at takeoff from the plate of ±0.01 m in both trials. This was approximately 3 

percent of the mass centre horizontal displacement during plate contact and as such was 

unlikely to affect the outcome of the subsequent investigation. 

The distance between the mass centre and the mid metatarso-phalangeal joint (called the 

`spring length') was calculated throughout force plate contact for each trial. The angle 

between a line joining these two points and the vertical (called the 'spring angle') was also 

calculated for the forward hopping and running jump trials, as was the angle of the resultant 

GRF vector to the vertical (called the `force angle'). 

3.4 LINEAR SPRING SUITABILITY 
Despite the overall complexity of the structures involved in supporting the body during 

various activities, evidence from Cavagna, Franzetti, Heglund and Willems (1988) and that 

of studies of the musculo-tendinous system of the lower limbs (e. g. Ker, Bennett, Bibb. 

Kester and Alexander, 1987, Alexander, 1991 b), suggested that a single linear supporting 

spring may be a suitable model for these structures, at least for the vertical component of the 

motion. Following the work of Cavagna et al. (1988), this study used the shape of the force- 

mass centre displacement graphs during ground contact to establish empirically the 

suitability of using a linear spring model. In this study howwever, this investigation ýýas 

conducted not only on the vertical component of the motion but also on the overall sagittal 

plane motion, thereby adding the forward component. 



65 

3.4.1 VERTICAL MOTION 
The vertical GRF-mass centre displacement graphs during ground contact in all four 

activities (Figures 3.4 a-d) show reasonable linearity, supporting the use of a linear spring 
for modelling the vertical motion. The graph of the preferred frequency hopping trial sho« s 
that the loading (from touchdown to minimum displacement) and unloading (from 

minimum displacement to takeoff) phases do not overlap which is contrary to the results of 
Farley, Blickhan, Saito and Taylor (1991), who found that at the preferred frequency there 

was a very good overlap of these phases of the graphs. However, the preferred frequency in 

that study was around 2.2 hops. s', whereas the subject in this study preferred a lo\ýer 
frequency of 1.7 hops. s'. At this frequency it is possible that rather than simply 
`rebounding' the subject may have been hopping more like a series of small, slow jumps. in 

which case the legs may not act in a very spring-like way. The most linear of the graphs are 
for the higher frequency hopping in place (Figure 3.4b) and the forward hopping, trial 
(Figure 3.4c), where the hopping frequencies were 2.4 and 2.1 hops. s-', in better agreement 

with Farley et al. (1991). 

In the jumping trial (Figure 3.4d), the GRF-mass centre displacement relationship is 

markedly affected by the spike in the vertical force record due to the initial impact with the 

plate. All trials took place with the force plate uncovered by any protective material and 

with the subject in bare feet; it is possible that if the subject had worn running shoes or i t' the 

plate had been covered by even a thin crumb gymnastic mat that this spike would have been 

attenuated and the graph may have appeared more like that of an ideal linear spring. 
However this would also have had other effects on the force-displacement history ýýhich 

would have been undesirable for this study, since it would insert a damping element 
between the `leg spring' and the ground. 

Linear least squares fits to each of the four sets of data resulted in correlation coefficients 
(r values displayed in Figures 3.4 a-d) of between -0.89 for the running two-footed jump and 

-0.99 for the high frequency hopping, indicating that for all four activities, a linear spring 

would be a reasonable approximation. Linear least squares fits to the data limited to the 

period of'effective contact' (Cavagna, Franzetti, Heglund and \Villems, 1988), that is when 

the vertical GRF is greater than body weight, resulted in correlation coefficients (r(e) values 

displayed in Figures 3.4 a-d) which were of similar or slightly lower magnitude than for the 

complete data sets. Where the correlation coefficients were lower, this might be explained 

by the greater influence of the initial impact peaks on the shortened data sets. 
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Figure 3.4. Vertical force-mass centre displacement relationships during force plate contact 
for (a) preferred frequency two-footed hopping in place, (b) high frequency two-footed 
hopping in place, (c) forward two-footed hopping and (d) running two-footed jump. 

N. B. Arrows indicate the loading and unloading portions of the curve. Linear correlation 
coefficients are for the whole contact period (r) and the effective contact period (r(e)). 
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3.4.2 FORWARD MOTION 

In previous studies (Blickhan, 1989; McMahon and Cheng; 1990), the suitability of a linear 

`leg spring' for models of forward motion appears to have been assumed based on the 

evidence from studying the vertical motion of the mass centre during running and hopping 

activities, or because the use of a linear leg spring in a model produces reasonable 

agreement with the real world. In these models the spring runs from the mass centre to the 

`foot' of the model and contacts the ground at some non-zero angle before the vertical, then 

leaves the ground at the same angle past the vertical (Figure 3.5). The magnitudes of the 

mass centre velocity at touchdown and takeoff were also the same, so the ground contact 

could be termed symmetrical. An implicit assumption is that in the real performance the 

GRF vector acts from the point of contact through the mass centre. In this study, the 

suitability of a linear spring for modelling forward motion was investigated explicitly. 

The spring angle for the forward hopping trial was 8.8° before the vertical at touchdown and 

8.2° past the vertical at takeoff, while the magnitude of the mass centre velocity at these 

times was 2.30 and 2.26 m. s-1 respectively. The spring angles at the corresponding instants 

for the running jump trial were 19.1 ° before the vertical and 2.7° past, and the magnitude of 

the mass centre velocity at these times was 3.36 and 2.83 m. s-I respectively. The ver` close 

Figure 3.5. Symmetrical ground contact. 

N. B. Btd = 6,0 and I Vtd I= Vt0 . 
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similarity between the touchdown and takeoff angles and speeds for the forward hopping, 

particularly when compared with the marked differences in the running jump, support the 

categorization of the forward hopping trial as a symmetrical ground contact. The jump trial 

was therefore considered to be an asymmetrical ground contact. 

Considering the spring angle and the force angles (i. e. the angle of the resultant GRF). the 

difference between the two was less than fifteen degrees for 96% of ground contact for 

forward hopping and 90% for the running jump. The greatest difference between the two 

angles was 17.9° for the forward hopping trial and 19.4° for the jump trial, v ith the root 

mean squared differences being 6.24° and 7.94° respectively. Thus for these activities the 

GRF was indeed acting close to the mid-toe to mass centre line during ground contact. 

To assess the linearity of the GRF-mass centre relationship in these trials, the magnitude of 

the GRF was plotted against the spring length and, as with the vertical motion, linear least 

squares fits to the data were calculated (Figures 3.6 a& b). The correlation coefficients ýýere 

-0.99 for the forward hopping and -0.94 for the jump, again justifying the adoption of a 

linear spring to model this type of activity. It was found that calculating the component of 

the GRF acting directly along the mid-toe to mass centre line and performing least squares 

fits with these force data resulted in negligible differences in the correlation coefficients. 
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Figure 3.6. Resultant GRF magnitude-spring length relationship during force plate contact 
for: (a) forward two-footed hopping and (b) running two-footed jump. 

N. B. Arrows indicate the loading and unloading portions of the curve. Linear correlation 

coefficient (r) is for the whole contact period. 
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3.5 SUMMARY 
The main purpose of the study reported in this chapter was to evaluate further the suitabiliti 
of using a linear spring for a mass-spring representation of human rebounding activities, 
including those where the mass centre motion was not symmetrical about the middle of the 
ground contact. This was achieved by recording four different types of rebounding activity 
using cine film and a force plate, then investigating the derived GRF-mass centre 
displacement relationships. 

The vertical GRF-mass centre displacement graphs during the ground contact phase of a 
subject hopping and performing a running two-footed jump were found to be reasonably 
linear, thereby supporting the use of a linear spring for modelling the vertical motion of the 

mass centre in such activities. This finding was in agreement with that of CaN agna et a! 
(1988), Farley, Blickhan, Saito and Taylor (1991), Farley and Gonzalez (1996) and He, 
Kram and McMahon (1991). It was also found that for the for«ard hopping and running 
jump trials, the GRF-spring length graphs (i. e. not just the vertical components and not just 

symmetrical ground contacts) were sufficiently linear to support the use of a linear spring in 

a simple mass-spring model of this type of activity. 

The secondary purpose of the study was to enable the comparison of the 2-D and 3-D DLT 

methods for obtaining sagittal plane data and to investigate the effect of different body 

segment inertia parameter estimates on mass centre position and velocity. For reconstructini2 

the sagittal plane position data, the 2-D DLT was found to compare very favourably ý% ith the 

3-D DLT. The difference in the whole body mass centre position when calculated using 
Dempster's (1955) ratio data compared with its position when using BSIP obtained using 

the geometric solid model of Yeadon (1990b) was found to be less than 0.01 m in the 

horizontal direction and a systematic 0.05 m vertically. Consequently, the differences in the 

mass centre velocities were also negligibly different. The four combinations of the two 

reconstruction methods and the two BSIP estimates for calculating whole body mass centre 

position and velocity, resulted in values which were sufficiently similar for the decision to 

be made to use the 2-D DLT with the BSIP from Dempster's ratio data for the anal` ses in 

this chapter. 

Whilst the linearity of the GRF-mass centre displacement relationships in this studs were 

not perfect, it must be remembered that the nature of a model is that it is a simplification of 

the system involved. Therefore the use of a linear spring would appear to be appropriate in 

the search for an adequate model of human rebounding activities like vault springboard 

takeoff which are asymmetrical in the ground contact phase. The following chapter 

describes the development of two such models. 
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CHAPTER FOUR 
MODEL DEVELOPMENT 

4.1 INTRODUCTION 
The springboard takeoff in gymnastic vaulting can be affected by a number of 
biomechanical variables such as approach speed, body angle at contact with the board 

(commonly known as the blocking angle) and lower limb muscle activity. A s} stematic 
investigation of the influence of these variables requires either that they be under the control 

of the investigator, or that a very large sample of vaults be analysed in the hope of finding 

springboard contacts where some variables are (virtually) unchanged while one variable 

alters. Given that it is very difficult for even the most skilled and willing gymnasts to alter 
just one aspect of technique to order and that analysing a large number of vaults in the hope 

that the desired variety had been performed is unrealistic, this type of problem is ideally 

suited to a modelling approach. 

This chapter describes the formulation of two mass-spring models and the methods used to 

program and solve the resulting equations. The decision to use a mass-spring model ww as 
based on the rebounding nature of the activity, the spring-like surface and the successful use 
by other researchers of mass-spring systems to model the kinematics of hopping, running 

and long jumping. The results of the previous chapter supported the adoption of a linear 

spring to represent the lower limbs. There were two modes of operation for each model: 

" parameter estimation- determining a model leg stiffness value which satisfied given 

touchdown and takeoff conditions; 

0 simulation- calculating linear and angular velocities at springboard takeoff in 

response to given touchdown conditions, when the model leg stiffness was kno,. k n. 

The ability to determine leg stiffness from actual vault data was necessary in order to 

establish the likely range of stiffnesses which may be adopted by Gymnasts during vaulting. 

Although a number of methods for estimating leg stiffness have been proposed in the 

literature (see Chapter Two, section 2.2.2), they have usually assumed a symmetrical ground 

contact and required ground reaction force information (e. g. Siegler, Seliktar and Hyman. 

1982; Cavagna, Franzetti, Heglund and Willems, 1988; Farley and Gonzalez, 1996; He, 

Kram and McMahon, 1991). However the method used by McMahon and Chen-p- (1990), 

where the model's leg stiffness was adjusted iteratively until the desired takeoff conditions 

were produced could be used. 
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With an estimate of the range of leg spring stiffnesses adopted in vaulting, it would then be 

possible to explore systematically the effect of variations to leg spring stiffness, board 

spring stiffness and initial conditions (such as approach speed and blocking angle) by a 
series of simulations. This would allow the mechanics of springboard contact to be 
investigated and a better understanding of the interrelationships among the key variables to 
be sought. This application of the models is described in Chapter Six. 

4.2 THE MODELS 
The simplest form of mass-spring model is a point mass attached to a massless linear spring 

and such an arrangement has formed the basis of models used previously to investigate 

hopping, running and jumping (e. g. Blickhan, 1989; Blickhan, Friedrichs, Rebhan, Schmalz 

and Wank, 1995; Farley and Gonzalez, 1996; Farley, Blickhan, Saito and Taylor, 1991, 

McMahon and Cheng, 1990). Most of these models assumed that the ground contact weis 

symmetrical about the mid-point, in other words, that the takeoff speed equalled touchdown 

speed, and that angles before the vertical of the leg spring and velocity vector at touchdown 

were the same as the angles past the vertical at takeoff. This is not the case in vault takcotis 

and furthermore, point mass on a spring models only consider the linear motion of the mass 

centre, ignoring the rotational motion of the system which is an important factor in 

gymnastic vaulting (Readhead, 1987). The asymmetry of the ground contact and the 

rotational motion of the system were therefore addressed in this study. 

To include angular motion in the model some account had to be taken of the rotational 

inertia of the system. A straightforward way to achieve this was to model the gymnast as a 

uniform rigid cylinder inside which ran a massless spring, attached at the mass centre of the 

cylinder and projecting slightly from the'foot' end of the cylinder (Figure 4.1). The inside of 

the cylinder was considered to be smooth, therefore there was no friction between the spring 

and the cylinder. This cylinder and spring arrangement formed the basis of the two models 

that were developed. 

The asymmetry of the ground contact was quite easily modelled. For a forward hopping 

mass-spring model to achieve perfect symmetry at a given speed of progression and 

touchdown angle, only one spring stiffness will suffice. That is to say, should the spring be 

too stiff the model will takeoff before the spring reaches the desired angle, or if too soft it 

will takeoff when the spring has passed the desired angle (or not takeoff at all). This 

principle was used by McMahon and Cheng (1990) for symmetrical ground contact, but the 

principle that only one stiffness will do applies to any other takeoff angle required. 

Therefore if the touchdown kinematics and takeoff spring angle are known, a unique spring 



Figure 4.1. Schematic illustration of the one spring model. 
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stiffness can be found to satisfy these conditions. In the mode of operation where the leg 

spring stiffness was estimated for a particular vault trial this logic was applied. In other 

words, given the linear and angular velocities, body angle and transverse moment of inertia 

at springboard touchdown, and the corresponding body angle at springboard takeoff, 

iterations were performed with different stiffnesses until the model spring angle at takeoff 

matched the criterion. When using the models in the mode where the leg spring stiffness 

was specified the takeoff angle was not constrained. 

4.2.1 GENERAL SIMPLIFYING ASSUMPTIONS 
The major simplifying assumptions were that the gymnast's legs and springboard could be 

considered to act like massless linear springs. The former assumption was supported by the 

literature (see Chapter Two) and empirically (see Chapter Three), and the latter was 

investigated directly, the results of which are reported in Chapter Five. In the one spring 

model it was assumed that one linear spring could represent both the gymnast and the 

springboard. 

It was assumed that the inertia characteristics of the gymnast could be represented by a 

single rigid cylinder, thereby ignoring moment of inertia variations and the increase in mass 

centre to feet distance between touchdown and takeoff as gymnasts raise their arms and 

extend their legs. 

4.2.2 NOMENCLATURE 
The following symbols are used in the development of the model equations which follows: 

m= cylinder mass/(cylinder - feet) mass in two spring model 

mf= feet mass 

g= acceleration due to gravity 
L= natural length of the leg spring 

x= change in leg spring length 

y= change in board spring - damper length 

6= angle the leg spring makes with the horizontal 

K, = stiffness coefficient of the leg spring 

Kh = stiffness coefficient of the board spring - damper 

C,, = damping coefficient of the board spring - damper 
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R, = transverse component of the ground/board reaction force 

(excluding the transverse board spring - damper component) 

R, = radial component of the ground/board reaction force 

Rz = vertical component of the ground/board reaction force 

IG = moment of inertia about cylinder mass centre 

TG = torque about the cylinder mass centre 

First and second derivatives with respect to time were denoted using the standard single and 
double dot notation. 

4.2.3 THE ONE SPRING MODEL 
While the gymnast-springbcard system suggests the existence of two springs, spring theory 

demonstrates that linear springs in series can be represented by a single spring. The stiffness 

of the single spring, say k3, can be calculated from the stiffnesses of the series of springs, 

say k, and k2, using the following relationship (note that the reciprocal of stiffness is called 

compliance): 

III 
k3 k, k2 

Therefore 
k,. k2 

k3 _ k, + k, 
4.1 

A cylinder model was formulated which had only one linear spring to represent both the 

gymnast and the springboard. The base of the spring (BoS) was assumed to be at the lowest 

point that the gymnast's feet reached during board contact, which therefore required 

knowledge of the motion of the gymnast's feet during board contact. 

The magnitude of the force exerted by the spring was equal to the product of the spring 

stiffness and the change in spring length, in accordance with Hooke's Law. The convention 

adopted for both the one and two spring models was that shortening (i. e. compression) of a 

spring was treated as a negative change in length. Therefore the force exerted by a spring 

while it was shortened was directed positively, i. e. F= -k. x where k is the spring stiffness 

coefficient and x is the change in length. 

The forces acting on the model were weight, m. g, and the ground reaction force, vv ith radial 

and transverse components R, and R, respectively (see Figure 4.2). Note that the positive 

senses of Rr and Rt were in the direction of the arrows in Figure 4.2 and the positive sense 
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of the angle, 0, was taken to be clockwise. The radial component of the ground reaction 
force was equal to the force in the leg spring, -K, -x. 

Medley (1982, pages 49 and 50) showed that the transverse and radial components of the 

acceleration (a, and a) of a point with polar coordinates (r, 9), rotating in a plane are 

a, = 2. rs + r13 and ar =r -r 
62 

. For the mass centre of the model rotating in a plane 

while attached to the origin by the spring, the displacement of the mass from the origin, r, is 

given by r=L+x. Note that L is a constant, so differentiating r gives r=x and a second 
differentiation givesr =z. Therefore, substituting for r, r and r in the expressions for a, 

and a, gives a, = 2. i + (L + x)band a,. =x- (L + x)8 2. 

Applying Newton's Second Law, the equations of motion for the model were as follows- 

Angularly (about the mass centre): 

Tc. =d(I(, s) 
dt 

-R,. (L+x)=(Iý; 8 +Iý; 8) 

R, = -(IGs+IG J) 4.2 

Transversely: 

(L + x) 

F, = m. a, 

R, - m. g. cosO = m. 
(2.. x6 + (L + x)6 

Radially: 

F'ý = ! n. ar 

Rr -m. g. sin0 = m. 
(x-(L+x)D'2 

-K,. x-m. g. sin6 = m. 
(z-(L+x)s 2 

4.3 

x= (L+x). 62 _ 
K,. x 

_g. sine 4.4 
m 
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Substituting 4.2 into 4.3 and rearranging: 

- 
(ic; ý. 

-m. g. cos6 =m. 
(2. i +(L+x)9) 

(L+x) 

(IG ý +IGä)=-m. (L+x)(2. zý +(L+x)ä +g. cos6) 

IG D+m. (L + x)2 _ -m. (L + x)(2. z6 + g. cos9) - IG 6 

e--m. (L + x)(2A + g. cosh) -'G' 
6 

4.5 
IG + m. (L + x)2 

Takeoff occurs when the vertical ground reaction force falls to zero. This was determined 

from the following: 

Rý = R,. cos9 + R,. sin0 

= m. 
(2. x6 + (L + _x). 

O + g. cosO) cosh - K,. x. sin 0 4.6 

R 

Figure 4.2. Free body diagram for the one spring model. 

N. B. Rr and R, are the radial and transverse components respectively of the ground 

reaction force and m. g is the weight of the cylinder. 
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4.2.4 THE TWO SPRING MODEL 
The second model incorporated a separate element to represent the springboard. This was 

modelled as a spring constrained to move vertically and coupled in parallel to a linear 

damper to form a spring-damper. The damper exerted an additional force proportional, but 

in the opposite direction, to the velocity of the spring length change. The overall force of the 
board spring-damper was therefore - Kb 

.y- 
Ch 

.y, where Kb is the stiffness coefficient, C,, 

is the damping coefficient, y is the change (increase) in length and y is the velocit` of the 

length change. The gymnast was again represented by the cylinder and spring arrangement 

described previously. Figure 4.3 illustrates the two spring model. 

The addition of the board spring-damper introduced a further degree of freedom to the 

system (only one since it was constrained to move vertically). There was also the additional 

force of the board spring-damper and mass at the feet to be considered (Figure 4.4). A total 

of four equations of motion were needed to specify the model. 

The equation of angular motion for the cylinder (about its mass centre) was similar to 

Equation 4.2 but with the addition of the torque due to the board spring-damper: 

(I+G) 
R, +(-Kn. y-Ch. y). cos6 =- G 

(L+x) 
4.7 

The equation of transverse motion of the cylinder mass centre included an acceleration and 

a force term due to the board spring-damper, but was similar to Equation 4.3: 

R, + (- Kn 
.y- Ch . y). Cosa - m. g. cose = m. 

(2. z6 + (L + z)s* + y. cose) 4.8 

Radially there was an additional acceleration term due to the effect of the acceleration of 

the base of the leg spring but there was no explicit additional force term since any radial 

force component from the board manifested itself implicitly in the force in the leg spring. 

The equation of motion of the cylinder mass centre therefore became: 

Y=(L+x)! 92 -K,. 
x 

-g. sine -y. sine 4.9 
m 

The equation of vertical motion for the feet mass was: 

ý-Kh. y-Cn. y)-(-K,. x. sinO)-(R, +(-Kh. v-Ch. y). cos6). cos0 -MJ. g=mJ. i' 4.10 
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Figure 4.3. Schematic illustration of the two spring model. 
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R_ 

A +R- cosO 
Rr 

Figure 4.4. Free body diagrams for the two spring model. 
N. B. R. is the board spring-damper force, R, is the component of the board reaction force 

acting radially along the leg spring, R, is the transverse component of the board reaction 
force excluding the component due to R_, mpg is the weight of the feet and m. g is the 

weight of the cylinder excluding rn,. 

&+R_. cosh 



80 

Substituting Equation 4.7 into Equation 4.8 and rearranging: 

(IG ý* + 'G 0--m. 

g. cos0 = m. 
(2.. k + (L + x> + y. cosh 

) 
(L+x) 

(IG"+1G)_g. 

cose - 2. x! 9 - 
(L + secO 4.11 

m. (L+x) 

Substituting Equation 4.7 into Equation 4.10 and rearranging: 

-Kh. y-Ch. yý- -K,. x. sin6)+ 
(I+1)(ý(L+xý 

. cosh -mf. g=mf. i, 
ji) 

(IG S +'G 
O 

cosh =(Kh. y+Ch. y)-K,. x. sin9 +mf. (g+ 1 (L+x) 

e. _ 
(L+x). secO. 

(Kh. 
y+Ch. y-K,. x. sin0 +mf. (g+ 1(; D 

4.12 
1(, 

The force exerted by the board spring-damper was a Newton's Third La« reaction to the 

force acting down on the spring-damper from the feet mass (which in turn vv as affected b" 

the force in the leg spring). Takeoff occurred when the spring-damper force fell to zero 

which was therefore when the force exerted on the feet mass by the board spring-damper 

became zero. In an undamped spring this would be when the spring returned to its natural 

(unextended/uncompressed) length. When damping is present, the force from the spring- 

damper will reach zero before the natural length is regained. This is due to the fact that once 

the spring-damper has passed the point of maximum compression, the force component 

from the damper has the opposite sign to that from the spring, i. e. the spring force is positi\c 

because the spring is still compressed but since the change in length velocity is then 

positive, the damper force is negative. 

The point of takeoff was therefore determined from the equation for the force in the spring- 

damper: 

R_ -_xh. y-Ch. y 4.13 
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4.3 MODEL IMPLEMENTATION 

4.3.1 MODEL CODING AND SOLUTION 
The one and two spring models were each programmed using the MapleTM V symbolic 

mathematics package (Waterloo Maple Software) running on an IBM compatible personal 

computer. This package allowed the equations of motion derived in sections 4.2.3 and 4.2.4 

to be defined and solved subject to the initial conditions and other inputs outlined in section 
4.3.2. For both models two modes of operation were coded: one which calculated the 

appropriate leg spring stiffness value to satisfy specified touchdown and takeoff conditions, 

and another which calculated the takeoff conditions given specific touchdown kinematics 

and leg spring stiffness. (Inputs other than leg spring stiffness, including the board stiffness 

and damping, were determined as described in Chapter Five). The procedures described 

below were the same for both the one and two spring models. All procedures ýýere custom 

written in the Maple programming language, with the exception of the procedure to solve 

differential equations, dsolve, which is part of the Maple library of procedures. 

The system of simultaneous differential equations for each model was non-linear and exact 

solutions were not possible, therefore a numerical solution method was required. The 

numerical solution of the differential equations was achieved using the Maple 

implementation of a subroutine based on the Fehlberg fourth-fifth order Runge-Kutta 

method, RKF45 (Forsythe, Malcolm and Moler, 1977). This method incorporates automatic 

step-size control, requiring only an error tolerance to be set; the Maple default value for the 

error tolerance was used in all cases as reducing the error tolerance was found only to affect 

the output of the model beyond the precision of the empirical data reported in Chapter Five. 1 

When the leg spring stiffness was preset this constituted a straightforward initial value 

problem. In other words, the conditions at touchdown were all known and the differential 

equations could be solved forwards in time without reference to the takeoff conditions. 

Once solved, the time of takeoff was determined (when the ground reaction 

force/springboard force fell below one newton) and the takeoff kinematics were calculated. 

Figure 4.5 is a flow diagram that represents the main steps in the model. The procedure for 

finding the point of takeoff was the same for both modes of operation and is described in 

more detail below. 

The RKF45 implementation in Maple includes full warning and error flagging (for example if the 

method is having to work very hard to achieve the requested accuracy). However, in the simulations 

performed none of these errors or warnings occurred. 
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Sta rt 

Define equations 
of motion 

Define 
procedures 

kssign parameter 
values and 

initial conditions 

Solve equations 
of motion 

Calculate time 
of takeoff 

Output takeoff 
conditions 

End 

Figure 4.5. The main steps in the model when the leg spring stiffness is know n. 
The procedure to calculate the time of takeoff is expanded upon in Figure 4.8. 
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When the leg spring stiffness was being sought the situation was slightly different in that 
reference to the takeoff conditions was necessary to assess the suitability of the stiffness 
estimate. If the spring was too stiff takeoff occurred before the required takeoff angle had 
been reached (this was defined as a negative angle error), while if it was too soft takeoff 
occurred past the required takeoff angle or not at all (a positive angle error). Figure 4.6 

shows a flow diagram of the main steps in the model. The leg spring stiffness was found by 

an iterative procedure (Findk) which used the gymnast's body angle at takeoff from the 

springboard as the criterion. An initial stiffness estimate and a search interval were passed 
to the procedure from where the Bisection method was used to find the stiffness which 
resulted in an angle error of less than 0.0005 radians. The name of this method comes from 

the way in which the interval containing the required value is successively halved until the 

solution is found. Figure 4.7 illustrates the procedure Findk. 

The Bisection technique is an example of a simple shooting method. Shooting methods are 
ways of calculating the roots of an equation, i. e. where the function equals zero. In this case, 
the problem was to find the stiffness value that resulted in an angle error of zero (or more 

precisely within 0.0005 radians of zero). These techniques can be compared on the basis of 
their speed to find a solution, but some of the faster algorithms can suffer from divergence 

problems, that is to say in certain circumstances successive estimates rapidly get further 

from the solution rather than converging towards it. Methods which converge more rapidly 

also require more information about the function, in particular its derivative at the point of 

each estimate, which may not be readily available. Bisection methods are robust, having the 

advantage that they will always find a solution once an interval containing one is identified, 

but they can take longer to find the solution than other methods. However in this study the 

length of time for one simulation to run rarely exceeded a few minutes, including the time 

for each solution of the differential equations, so this shortcoming was not considered 

critical. The same stiffness values were estimated by the program regardless of the starting 

point and step size for the search. The shooting method known as secant iteration is a faster 

converging technique which is often used, but when tried in this particular application it as 

found to suffer from divergence. More information on these numerical methods is available 

in many texts, for example Borse (1991) and de Vahl Davis (1986). 
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Figure 4.6. The main steps in the model when the leg spring stiffness is not known. 

The procedure to find the spring stiffness (Findk) is expanded upon in Figure 4.7. 
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Within the procedure Findk another procedure, Angerr, solved the differential equations 

and calculated the angle error for each stiffness estimate. Angerr calls the Maple differential 

equation solver and then procedure Takeoffs to determine the time of takeoff. Equations 4.6 

and 4.13 were used to calculate the ground/board reaction force (RZ) at the base of the leg 

spring for the one and two spring models respectively. Takeoff was deemed to have 

occurred when RZ fell to below one newton and the time when this happened was found 

using secant iteration to adjust the initial time estimate passed from Angerr. (Secant 

iteration proved to be successful in this situation, not suffering from the divergence 

problems experienced when used to find the leg spring stiffness). The time at takeoff was 

used in calculating the takeoff angle error in the search for the correct leg spring stiffness 

and in calculating the model output. Figure 4.8 outlines the procedure to calculate the angle 

error and incorporates the flow diagram for the process of finding the time at takeoff. 

Output from both the one and two spring models consisted of the radial and angular 

velocities of the cylinder, the leg spring change in length and angle at takeoff, and when 

required, the calculated leg spring stiffness. The board spring-damper length change and 

rate of length change were also output by the two spring model. The cylinder mass centre 

horizontal and vertical velocities were then calculated using the following equations: 

Vertically: 

=. z. sine + (L + x. cose 

v,, =i. sine+(L+x)! 9. cose+y 

and horizontally 

Vh =(L+x). 9. sin8 - X. cosO 

for the one spring model, or 

for the two spring model 

Appendix B contains listings of the Maple programs. 
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Enter 

Solve dequs 
for stiffness K 

Takeoffs 

Calculate FO 
i. e. GRF @ t0 

Is Yes, return t0 
F0=<l N? -I 

No 

Calculate tl 
(=tO+dtO) 

Calculate angle 
error at takeoff 

Calculate new ýI Calculate F1 
tl (=t1 +dtl) i. e. GRF @ t1 

Calculate dtl Is 
using secant F1=<O ? 

method No Yes, return tl 

Return 
aerr 

Figure 4.8. Flow diagram for the procedure Angerr which calculates the angle error at 

takeoff and incorporates the procedure Takeoffs. 

K, tO and dtO are initial estimates, FO, F1, t1, and dtl are local variables, and aerr is the 

angle error returned by the procedure. 
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4.3.2 MODEL INPUTS 
For both models the information required to specify the touchdown conditions (i. e. the 
initial conditions for the equations of motion) was: 

" the mass centre to BoS distance (i. e. the natural length of the spring), 

" initial extension/compression of the spring (always considered to be zero). 

9 the cylinder/spring angle with respect to the horizontal, 

" the mass centre radial velocity, 

" and the cylinder angular velocity. 

The two spring model also required the initial extension/compression of the board spring- 
damper (again, always considered to be zero) and the initial velocity of the board 

spring-damper to be known. Three ways of modelling the initial board velocity were 
considered: 

If there is no mass at the base of the leg spring the initial board velocity is zero, 

since there is no force exerted by the leg spring until it has begun to compress; 

2. If there is a foot mass and a board mass there will be an impact and the conservation 

of momentum must be applied to determine the initial board velocity; 

3. If there is a foot mass but no board mass, the board's initial velocity will be that of 

the vertical component of the velocity of the foot mass. 

The first option was not sufficiently realistic since inspection of video of vaulting suggests 

that the contact between feet and board clearly involves an impulsive acceleration of the 

board. Option two would allow for this but would demand that the effective board mass be 

determined in some way. McMahon and Greene (1979) demonstrated that the effective mass 

of the running track could be ignored in their mass-spring model of running and while 

Sprigings, Stilling and Watson (1989) modelled a diving springboard with mass, the inertial 

force from the board was found to be three orders of magnitude less than the spring force 

component (see Chapter Two, section 2.2.2). It was therefore assumed that the effectiý e 

mass of the vaulting springboard was unlikely to have a large effect on the system, so the 

third option offered the best solution. 
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A number of other values were required as inputs to the models: 

" cylinder mass (the mass of the gymnast, minus the mass of his feet in the two 
spring model), 

" cylinder moment of inertia (the gymnast's transverse moment of inertia at 
touchdown), 

" foot mass (for two spring model only), 

" leg spring stiffness (when this was known in advance), 

" board spring-damper stiffness and damping (for two spring model only). 

When using the models to establish suitable leg spring stiffness values, the takeoff angle 
was also needed as a criterion. 

The determination of these data is described and the values reported in Chapter Five. 

4.4 SUMMARY 
The principles behind and the development of one spring and two spring models for 

gymnastic springboard takeoffs have been described in this chapter. The models allo%ý the 

determination of a leg spring stiffness where both the touchdown and takeoff kinematics are 
known, and the determination of the takeoff kinematics if the touchdown kinematics and leg 

spring stiffness are given. The distinct difference between these models and previous 

models of human rebounding is their ability to represent the angular motion of the body, 

which is a key feature of vaulting. 

Also in this chapter, the derivation of the equations defining the motion of the systems was 

explained, along with a description of the computer methods used for their solution and the 

production of the required output data. 

The following chapter details the collection and analysis of springboard and vaulting data 

which formed the input for the models and provided a basis for the evaluation and 

application of the models. 
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CHAPTER FIVE 
DETERMINATION OF VAULTING AND SPRINGBOARD DATA 

5.1. INTRODUCTION 
In order to evaluate and apply the models described in Chapter Four it was necessary to 

record and analyse a number of vaults and to examine the springboard from which the 

gymnast vaulted. This chapter details the methods and presents the results of three studies 

performed to provide the required model inputs. In the first, kinematic data at touchdo« n 
and takeoff from the springboard for a series of handspring vaults by an elite male gymnast 

were collected, along with anthropometric data which were used to estimate his body 

segment inertia parameters. The second and third were studies of the springboard, to 
determine its stiffness and damping characteristics. 

5.2. VAULTING 
The aim was to collect data on trials performed by a single gymnast at a range of approach 

speeds and springboard settings. A Gymnova model 2170 adjustable springboard was 

generously loaned by the manufacturers for the study. Springboard adjustment was achieved 
by varying the position of a pair of steel springs under the wooden top leaf of the board and 
holding them in this position using a grub screw tightened using a knurled knob. The range 

of adjustment was designed to cover the full performance range of the company's other 

springboards, from `initiation to competition', i. e. softer for training and beginners, to stiffer 
for competition. The data collection was performed at the Lilleshall National Sports Centre 

with the cooperation of the British Gymnastics Association. 

5.2.1. VIDEO RECORDING 
Before videoing the vaults, three 2.3 m poles each with three control points marked clearly' 

at one metre intervals (0.13,1.13 and 2.13 m from the bottom of the base) were positioned 
in the plane of motion. Their locations were measured and they were then videoed. The 

position of all three poles coincided with the middle of the runway and the long axis of the 

vaulting horse; one at each end of the horse and the third 2.82 m along the runwa` from the 

pole at the near end of the horse (Figure 5.1). These poles provided nine calibration points 

for the subsequent performance of a 2D DLT on the digitized data. As viewed from the 

camera, the origin was chosen to be the inside (right) edge of the left horse leg base, with 

the positive Y-axis from left to right and the positive Z-axis vertically upward. Once the 
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Figure 5.1. Side elevation of the calibration pole arrangement in relation to the 

springboard and vaulting horse, also showing the reference frame orientation. 
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poles had been recorded in position they were removed. No camera adjustments were made 
following the recording of the calibration poles. 

Twelve handspring vaults were videoed as performed by one elite British male gymnast, 
who had given informed consent (Appendix C. 1). Five were performed at the gymnast's 
preferred run up speed, and notionally at the 'competition' springboard setting. Hov ever, it 

was subsequently found that in the course of trials 4 to 9 the springboard setting changed 
slightly. Trials 6 through 9 were performed at a range of slower approach speeds, including 
the slowest at which the gymnast felt comfortable, effectively with an intermediate 

springboard setting due to the unintended board setting change. The last three trials xýere 
performed with the springboard at its 'initiation' setting, one at three-quarter pace and two at 
normal speed. 

All trials were recorded using a Sony Hyper HAD Hi-8 video camera positioned on a 
balcony approximately 20 m from the plane of motion and 4.8 m above the gymnasium 
floor. This camera recorded 50 fields per second with an exposure of 1/250th s. Inspection of 
the video showed that the minimum number of fields recorded during the hurdle (flight onto 
the springboard) or preflight (between leaving the springboard and contact with the horse) 

was eight, with ten or eleven being more usual. 

The anthropometric measurements required for the inertia model of Yeadon (1990b) were 

made of the subject using tapes and callipers. The model provided estimates of the 

gymnast's body segment inertia parameters (BSIP) based on a 14 segment model of the 

human body. These segments were the hands, forearms, upper arms, thighs, shanks and feet 

for both left and right sides of the body, the trunk and the head. The BSIP can be found in 

Appendix C. 2. 

5.2.2. VIDEO DIGITIZATION AND TRANSFORMATION 
A Peak Performance Technologies Inc. 'Peak 5' video digitizer was used to generate raw 2'D 

data files which were exported to be processed in custom written software. This software 

used the mean of ten digitizations of the control points to perform 2D Direct Linear 

Transformations (DLT) on the raw data. The DLT calibration check assessed the 

transformation accuracy and found that the average root mean squared error was 4.5 mm 

horizontally and 5.1 mm vertically. 

One trial was digitized four times to estimate the uncertainty involved in digitizing the 

gymnast. In every field the wrists, elbows, shoulders, hips, knees, ankles, mid-metatarso- 

phalangeal joints, mid-neck and top of the head were digitized (16 points). Both sides of the 
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body were digitized in order to account for any asymmetries in the limb movements: this 

was mainly relevant to the arms, shanks and feet during the first part of the hurdle phase. 
Combined hand and forearm segments were constructed which assumed a zero wrist flexion 

angle and used the wrist as the distal endpoint, thus avoiding having to estimate the fingertip 

points which were occasionally blurred. Otherwise the points digitized coincided with 

segment endpoints used in the inertia model (Yeadon, 1990b). 

The transformed data from each digitization of this trial were combined with the segment 

masses and proximal ratios determined from the inertia model, to calculate the mass centre 

locations of each segment throughout the vault. The whole body mass centre position was 

then calculated for every field in each digitization. Equation 5.1 summarizes this calculation 

for the y coordinate of the mass centre in any given field; the calculation of the z coordinate 

has the same form. In this equation Y is the horizontal coordinate of the mass centre, Al is 

the whole body mass, yy, and yd, are the horizontal coordinates of the proximal and distal 

endpoints of segment i, rP, and m; are the proximal ratio and the mass for segment i, and Nis 

the number of segments comprising the body. 

+ (Yd, - yn; ). rn 
)mi ý 

M ; _ý 

5.1 

Standard errors of the mass centre and segment endpoint locations were calculated for two, 

three and four digitizations. The results indicated that there was little benefit in digitizing 

the trials more than twice (see section 5.4.1 below), therefore two digitizations were 

performed on each of the remaining 11 trials and the digitized coordinates were then 

transformed using a 2D DLT. 

5.2.3. ANALYSIS 
The purpose of analysing the vaults was to provide the data which were required for model 

evaluation and use. These were the mass centre velocity, whole body angular velocity and 

moment of inertia about the transverse axis through the mass centre, spring length and 

spring angle. These data were required at springboard touchdown and takeoff. For the two o 

spring model, an estimate of the vertical velocity of the feet at touchdown was also needed. 

The last instant before the feet contacted the springboard and the first instant after they left 

the springboard were used to define touchdown and takeoff respectively. To improve the 

precision with which these times were determined, the mean of the two digitizations of the 
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mid-metatarso-phalangeal joints of both feet were interpolated over a 250 Hz timebase 

using a generalized cross validated quintic spline (GCVQS). The effect of the springboard 
contact on the spline interpolation was assessed by comparing the raw and interpolated 

vertical coordinates throughout a trial. It was found that the difference between the two 

estimates was slightly greater immediately before and after impact than the root mean 

square (RMS) difference over the whole trial (0.011 m compared with 0.007 m). This 
discrepancy was of the same order of magnitude as the uncertainty in locating the mid- 
metatarso-phalangeal joints, therefore the interpolated data were considered to be reliable. 
Using these data, the times of springboard touchdown and takeoff were determined by 
locating the last and first times respectively when the mean of the two mid-metatarso- 

phalangeal joint vertical coordinates were above the level of the springboard (the board 
height with respect to the ground having been measured during data collection). 

Calculations on the transformed data from each of the two digitizations and the subject's 
BSIP were performed using Microsoft Excel. Two estimates of the segment and whole body 

mass centre locations, segment orientation angles and segment mass centre to 'whole body 

mass centre angles were computed. The mass centre locations were calculated as described 

above and coordinate geometry was used to determine the angles. The mean and standard 

error values for each of these variables and for the segment endpoint locations were then 

calculated. 

Mass centre linear positions and velocities 
A least squares quadratic curve and a least squares straight line were fitted to the Vertical 

and horizontal whole body mass centre position data respectively for each hurdle and 

preflight separately. The whole body mass centre position at springboard touchdown and 

takeoff was then calculated by evaluating these equations at the times of touchdown and 

takeoff. Touchdown and takeoff velocities were calculated by evaluating the first 

derivatives of the equations at the times of touchdown and takeoff. 

Moment of inertia and angular velocity 
The segment endpoint positions at springboard touchdown and takeoff were determined, 

using a GCVQS to interpolate the mean of the two digitizations of each trial over the same 

250 Hz timebase previously used to find the times of touchdown and takeoff. The indk ideal 

segment mass centre to whole body mass centre distances were calculated using the 

subject's BSIP in conjunction with these segment endpoint positions (Equations 5.2 and 

5.3). 
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Y= yp +Vdyp 
)rp 

5.2 

Here yc is the horizontal coordinate of the mass centre of the segment, yp and yd are the 
proximal and distal horizontal coordinates of the segment endpoints and rp is the proximal 
ratio for the segment. The vertical coordinate of the mass centre (zr) was found in the same 
way. 

d=j(Yc-Y)2+(zc_Z)2 -n 

Here Y and Z are the horizontal and vertical coordinates of the whole body mass centre.. VC 
and zc are as previously defined, and d is the distance between the segment mass centre and 
the whole body mass centre. 

The moment of inertia for each segment about its principal transverse axis was given 
directly by the inertia model. The parallel axis theorem was then used to find each 

segment's moment of inertia relative to the whole body mass centre and these were summed 
for all segments to find the whole body moment of inertia about the transverse axis throu,, h 

the mass centre at touchdown and takeoff. 

The whole body angular momentum about the transverse axis through the mass centre was 
determined throughout hurdle and preflight phases by summing the local and remote 

angular momentum terms for all of the body segments about the whole body mass centre, 

Equation 5.4 (Hay, Wilson, Dapena and Woodworth, 1977). The segment angular velocities 

and the angular velocities of the segment mass centres about the whole body mass centre 

used in this calculation were given by the first derivatives of a GCVQS fitted to the segment 

orientation angles and segment mass centre to whole body mass centre angles (mean angles 

from the two digitizations). 

L= 
.d(;. 

w; +m;. d; ý ý; i(, 
i=I 

5.4 

Here L is the whole body angular momentum, I, is the moment of inertia of segment i, caw, is 

its angular velocity, m; is the segment mass, d, is the distance of the segment mass centre to 

the whole body mass centre and cw, G is the angular velocity of the segment's mass centre 

about the whole body mass centre. N is the total number of segments comprising the body. 

Whole body angular velocity about the transverse axis through the mass centre at 

springboard touchdown was determined by dividing the mean hole body angular 

momentum about the transverse axis during the hurdle by the body's moment of inertia 
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about this axis at touchdown. The angular velocity at springboard takeoff was calculated in 

a similar fashion, using the mean angular momentum during preflight and the takeoff 

moment of inertia. 

Leg spring length and angle 
For the two spring model the leg spring length was taken to be the whole body mass centre 
to mid-metatarso-phalangeal joint distance at touchdown, and the leg spring angles at 
touchdown and takeoff were taken to be the angle that a line joining these two points at 
these times made with the left horizontal (negative Y) axis. 

In order to estimate a point that represented the base of the spring (BoS) for the one spring 

model, the mid-points of the left and right mid-metatarso-phalangeal joint digitizations were 

calculated during the springboard contact phase. These data were interpolated using a 

quintic spline to provide three intermediate points between pictures (i. e. number of samples 

increased by a factor of four) and then a GCVQS was fitted. The point with the smallest 

vertical cocoordinate was taken to be the base of the spring for the spring length and spring 

angle calculations. These values were then calculated (at touchdown and takeoff) using 

geometry, on the assumption that the spring in the one spring model connected the mass 

centre of the gymnast to the BoS. 

Error analysis 
Estimates of the uncertainty in the kinematic data were calculated to determine the 

confidence which could be placed in them and to provide data with which model sensitivity 

could be estimated. The estimates were made as follows: 

Position- From multiple digitization, the standard error for each digitized landmark and the 

calculated mass centre position were calculated. 

Mass centre velocity- The estimated error in mass centre position was added to the 

measured displacements and new velocity values calculated. Mean relative error values over 

all trials were calculated for the touchdown and takeoff velocities separately. 

Spring length and angle- Estimated errors in the mass centre and BoS position \\ ere 

combined using error propagation formulae (Barford, 1985) to determine the mean relative 

error over all trials. 

Moment of inertia- The mean relative error from multiple digitization of the springboard 

contact phase of trial I was calculated. 
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Angular momentum- Assuming constant angular momentum during the airborne phases. the 
standard error of the angular momentum estimates in the hurdle and preflight phases for 

each trial were calculated. The mean values for hurdle and preflight over all trials were then 
calculated. 

Angular velocity- Uncertainties in the moment of inertia and angular momentum estimates 
were combined using error propagation formulae (Barford, 1985) to determine the standard 
errors at touchdown and takeoff. 

5.2.4. MODEL INPUTS 
The input data required were the mass and touchdown moment of inertia, leg spring length 

and angle, mass centre radial velocity (i. e. the initial rate of shortening of the leg spring) and 

system angular velocity. The two spring model additionally required the mass allocated to 

the feet, the initial vertical velocity of this mass and the board stiffness and damping values. 
Inertia parameters were available directly from the inertia model (Yeadon, 1990b) and the 

spring length and angle values were calculated directly from the video data analysis as 
described previously, assuming that the length and angle values would not change during 

the instant of impact. Mass centre radial velocity, feet mass velocity and system angular 

velocity immediately after impact required additional calculation (see below), while the 

board data were determined in a series of tests described in section 5.3. 

In both the one and two spring models, the mass of the system (excluding the mass of the 

feet in the two spring model) had its radial motion constrained by the leg spring. Since this 

spring was modelled to be at its natural length at the point of impact and the impact was 

considered to be instantaneous, there was no impulse applied radially on the mass during the 

impact and hence the initial radial velocity was unchanged. For the one spring model its 

value was calculated as follows: 

Vr = -Vh. COSO+ i,,,. sinO ý. J 

where vr, vh and v, are the radial, horizontal and vertical components of the mass centre 

velocity respectively and 0 is the mass centre to BoS angle, all at the last moment in the 

hurdle. For the two spring model the radial velocity was calculated with respect to the feet 

mass. This mass was assumed to have been brought to rest in the horizontal direction 

instantly upon impact with the board spring-damper (which was constrained to mov e 

vertically), while in the vertical direction, the assumption that the board spring-damper was 

massless meant that the vertical velocity of the feet mass was unchanged. Hence: 
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Vr -Vh. COSB + 
(v, 

-yJsine 5.6 

where y is the vertical velocity of the board spring-damper/feet mass, calculated from the 
vertical velocity of the mass centre and the angular velocity of the system using the 
equation: 

y=v,, -L6. pose 5.7 

where 0 is the angular velocity and other symbols are as previously defined. In the two 
spring model the combined mass of the gymnast's feet (1.6 kg) was used for the feet mass 
value. 

The assumed instantaneous nature of the impact meant that there was negligible torque 

acting about the mass centre of the gymnast. Hence the angular velocity of the body at 
touchdown was calculated by applying the principle of conservation of angular momentum: 

IG so +m. v, o. L = I(;. 01 +m. v,,. L 

= IGb. I +m. L2. , 

. '. 
8= 

IG o+m. v, o .L 
i I(; + m. L2 

5.8 

where subscripts 0 and I indicate instants immediately before and after impact respectively, 

m is the gymnast's body mass, I(; is the transverse moment of inertia through the mass 

centre, L is the mass centre to feet distance and v, is the transverse velocity of the mass 

centre (other symbols are as previously defined). The transverse velocity of the mass centre 

was calculated as follows: 

v, = v1,. sin9 + v,,. cosO 

5.3. SPRINGBOARD TESTING 

5.9 

For the two spring model, estimates of the board stiffness and damping were required. It 

was anticipated that the point of contact with the springboard as well as the springboard 

adjustment would affect the stiffness and damping characteristics of the springboard. 

Therefore, to decide upon the details for the springboard calibration, the video of the vault 

trials was analysed. In the first field where springboard contact occurred in each trial, four 

points were digitized five times each. These points were the near and far ends of the 

vaulting area of the springboard surface, the middle of the metatarso-phalangeal joints, and 

the adjustment knob position (see Figures 5.2a and 5.2b). Mean values for these points were 
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then calculated and transformed using a 2D DLT, and the foot contact position and 

adjustment knob position with respect to the near end of the springboard (i. e. the end from 

which the gymnast approached) were calculated. 

On the basis of these data three foot contact points and three springboard adjustment knob 

positions were chosen at which to conduct the calibration tests, giving a total of nine test 

conditions. The contact positions chosen were at 0.75,0.90 and 1.05 m and the adjuster 

positions were at 0.96,1.04 and 1.28 m (Figures 5.2a and 5.2b). The first and last of these 

adjuster positions corresponded approximately to the manufacturer's description of stiffest 
(competition) and softest settings respectively. The vaulting area lengths calculated from the 

transformed points were compared with the measured length in order to estimate the 

transformation accuracy. 1 

In order to estimate the stiffness and damping values two tests of the springboard were 

conducted. One was based closely on Federation Internationale de Gymnastique (FIG) 

testing procedures (FIG, 1994) and entailed dropping a mass onto the springboard (Drop 

test), from which the velocity of the mass at touchdown and takeoff, and the duration of 

contact with the board were calculated. These data enabled the calculation of springboard 

stiffness and damping estimates using a simple mathematical mass-spring model. The 

second springboard test involved the use of a servo jacking rig, which measured the load 

applied to the springboard and the deflection of its surface, enabling stiffness to be 

calculated (Servo jack test). 

5.3.1. DROP TEST 

Video recording 
Prior to testing, three calibration poles were positioned 0.6 m apart in the plane that would 

correspond to the long axis of the springboard. The three control points on each pole were 

0.13,0.63 and 1.13 m above the ground. A spirit level was used to level the pole stands, thus 

making the poles vertical. The control points were identified by white squares in the centre 

of black squares positioned on the poles with their diagonals pointing vertically and 

horizontally. The poles were videoed using a Sony Hyper HAD Hi-8 camera recording on 

I For safety the springboard used had overall surface dimensions of 1.50 x 0.75 m while the actual 

vaulting area was the standard 1.20 x 0.60 m, thus giving a 0.30 m border at the far end and a 

0.075 m border at each side of the springboard. The borders were coloured to contrast strongl} with 

the vaulting area, as indicated in Figure 5.2b. 
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0.96 m 

Figure 5.2a. Side elevation of the springboard showing the adjuster 0.96 m from the near 

end of the board, one of the three test positions. 

1.05 m 

Figure 5.2b. Plan elevation of the springboard showing the three foot contact points 

tested. 
N. B. The white area is the standard vaulting area, while the shaded area indicates the 

additional border that was present on the springboard tested. 

0.75 m 
0.90m 
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sVHS videotape, positioned 4.5 m from the plane of the poles, with the optical axis of the 
camera approximately perpendicular to the axis down which the mass would be dropped. 
The poles were then removed and the springboard put into position. The camera «as not 
moved nor adjusted following the recording of the calibration poles. 

The FIG springboard testing procedures (FIG, 1994) consist of dropping a 20 kg mass from 

a height of 0.8 m onto the springboards using a custom built rig. For this study a similar 
testing method was designed in which a 20.45 kg barbell disc was suspended by a rope 
which passed through a karabiner attached to a roof joist in the laboratory. The disc was 
raised to 0.8 m above the surface of the springboard, steadied, then released and allowed to 

rebound from the board. Ten repeats at each of the nine combinations of the three board 

contact positions and three board adjustment settings previousl`, identified were conducted. 
Contact with the springboard was always along its long axis. 

Digitization and transformation 
As for the vaulting digitization, a Peak 5 video digitizer (Peak Performance Technologies 

Inc. ) was used. The mean of sixteen digitizations of the nine calibration points were used in 

order to perform a 2D DLT on the raw digitized coordinate data of the drop test. The mean 
RMS error for the calibration check was 0.9 mm horizontally and 1.5 mm vertically. 

Initially trial I was digitized to establish the best digitizing procedure for the other trials. 

The top, centre and bottom of the disc were digitized throughout the trial (43 fields, from 

release to past the peak of the rebound) and the differences in position between the mean of 

the top and bottom points and the centre of the disc were calculated. There was little 

difference: RMS difference of 3.8 mm horizontally (maximum 7.4 mm) and 2.3 mm 

vertically (maximum 5.6 mm). In practice the disc centre was more difficult to locate than 

the top and bottom, and since taking the mean of the two points to represent the centre 

reduces the error, it was decided to omit the disc centre from future digitizations and to rely 

on the top and bottom points. In some trials the disc tended to rotate about the horizontal 

axis perpendicular to the camera's optical axis during the rebound; taking the mean of these 

two points reduced the problem that this rotation might have introduced. 

A total of 78 trials out of the 90 were digitized: all ten trials of three conditions and eight 

trials of the remaining six conditions. Twelve trials could not be digitized due to difficulties 

with the video frame grabbing in those trials. Approximately 15 fields were digitized before 

disc impact with the springboard (ensuring that release of the disc had occurred before 

digitization commenced), and approximately 12 fields after the disc left the board (stopping 

before the disc had been arrested by the rope). 
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Analysis 
For each trial two separate quadratic curves were fitted by the method of least squares to the 
disc centre vertical position data: one during the drop (before touchdown) and one during 
the rebound (after takeoff). The curve fitting smoothed the position data and the first 
derivatives of the equations of the curves were used to estimate the disc velocities 
immediately after the point of release and approaching the peak of the rebound. The disc 
velocities at touchdown and takeoff from the board could not be calculated in the same wway- 
because the times of touchdown and takeoff were unknown. Therefore the position and 
velocity data at the beginning of the drops and the positions of the disc centre at springboard 
touchdown (measured height of the board surface plus disc radius, not from digitization), 

were substituted into equations of constantly accelerated motion to calculate the times of 
first contact with the board and then the disc velocities at springboard touchdown. A similar 
process was used to calculate times at springboard takeoff and the disc velocities. From 

these data, the durations of contact with the springboard were determined for each trial. 

The disc-board interaction was modelled as a simple one dimensional mass-spring-damper 
system. The equation of motion for such a system is: 

k. z - c. z) 
-g 

m 

where z is the spring length change (compression taken to be negative), ± and - are 

respectively the first and second derivatives of z with respect to time, k is the spring 

stiffness coefficient, c is the damping coefficient, m is the mass of the disc and g is the 

acceleration due to gravity. 

5.10 

A program was written in Maple TM V (Waterloo Maple Software; Appendix C. 3) to solve 
Equation 5.10 and hence to find the stiffness and damping values which satisfied the 

touchdown and takeoff velocity, and time of contact data. In doing this, the time of contact 

was used as the criterion for the stiffness estimate (too stiff and the mass leaves the spring, ` 
too soon and vice versa) and the disc velocity at takeoff was used as the criterion for the 

damping estimate (too much damping leads to a low takeoff velocity and vice versa). 

The stiffness and damping were calculated for each trial digitized, from which the mean and 

standard deviation of the two values were calculated for each of the nine combinations of 

springboard contact positions and springboard adjustment knob positions. 
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5.3.2. SERVO JACK TEST 
An estimate of the mean vertical forces involved during vaulting and in the drop tests was 
made using the impulse-momentum relationship: 

F=M. 
(v-u) 

tc 5.11 

Here F is the mean vertical force, Mthe gymnast's mass, t, is the duration of contact with 
the springboard, and v and u are the mass centre vertical velocities at springboard takeoff 
and touchdown respectively. 

From the first five vaulting trials analysed (normal approach speed and the stiffest 
springboard setting) the mean change in vertical momentum and the mean springboard 
contact time were approximately 350 kg. m. s-I and 0.121 s respectively, which indicated a 
mean force of approximately 2890 N. This is in agreement with the results of a study by 
Takei (1989) who found a mean vertical force of 2970 N for the same style of vault, using 
the same type of estimation procedure, for elite male gymnasts with a mean body mass of 
61.93 kg. Modelling the force history as the positive half of a sinusoid (a good 
approximation to the vertical GRF in activities like running and jumping, see for example 
Chapter Three, Figure 3.3) gave a peak force of approximately 4540 N (Appendix C. 4). An 
identical analysis of the trials from the softest springboard setting gave a mean force 

estimate of 2590 N, suggesting a peak force of 4070 N. Using the same technique, data from 

the drop tests suggested peak forces of 2610 N at the stiffest setting and 2 140 N at the 

softest setting. Kreighbaum (1974) used a calibrated springboard and estimated the initial 

peak vertical forces during handspring vaults by eight women gymnasts to be between 5260 

and 9630 N and the secondary peak vertical forces to be between 2450 and 4680 N. These 

secondary peak figures agree with the estimates from this study, while the initial peak 

values are somewhat higher, but this was expected since the method of estimating peak 
forces used here would not reproduce any initial transient forces. 

From these data it appeared that the forces applied to the springboard during the tests using 

the FIG protocol would not have been representative of the forces applied during vaults. The 

servo jack test on the springboard was an attempt to apply forces more like those estimated 

to have been applied during the vaulting. 

In the Department of Civil and Building Engineering at Loughborough University a servo 
jacking system (R. D. P. -Howden Ltd) was arranged so that the piston of the system was 

positioned over the mid-longitudinal axis of the springboard which was placed flat on a 

solid concrete floor. The control unit for the servo jacking system enabled the excursion of 

the piston to be pre-set, up to a maximum of 100 mm, and the position over time to be 



104 

output to a recording system. Between the piston and the springboard surface was a 10 kN 
f. s. d. load cell (W. H. Mayes & Son (Windsor) Ltd) which was wired through a bridge 

circuit to provide a2 mV/kN output. The load cell rested on a 100 mm plywood disc to 
provide a contact area the same as used in the FIG springboard testing procedures (FIG. 
1994), and was coupled to the piston through a steel ball and cup arrangement. Figure 5.3 

shows the testing rig set up. 

The outputs from the servo jack and the load cell were recorded on a chart recorder 
displaying the load-deflection graph. The system was calibrated by the workshop technician 

and the scaling arranged so that there were 0.5 mm springboard deflection and 50 N 

compressive load per millimetre on the graph. A pilot test revealed that at the stiffest 

springboard setting, 100 mm compression resulted in a load of between 5 and 6.8 kN 

depending upon the load position along the longitudinal axis of the springboard. Similarly at 
the softest springboard setting 100 mm compression resulted in a load of between 3.5 and 
4.4 kN. These forces were comparable with those estimated for the vaulting trials. 

The piston control allowed a variety of load-unload rates but it was found that the fastest 

rate at which the full 100 mm excursion could be achieved without a noticeable judder of 

the piston was six seconds per cycle. Comparing tests at cycle lengths of between six and 

twenty seconds revealed less than a 1% change in peak load-deflection ratio. The fastest rate 

was chosen for the subsequent testing. 

Ten repeated cycles at the same position and setting revealed a variation between any mo 

cycles of no more than 100 N at any point in the cycle and so it was decided only to repeat 

each setting three times. The tests were conducted using the same nine combinations of load 

application point and springboard adjustment setting as in the drop testing (section 5.3.1), 

and finally two of the combinations conducted at the beginning of testing were repeated to 

assess whether any springboard fatigue was evident. This showed a change of less than 3% 

in the peak load-deflection ratio, suggesting that the order of testing was unlikely to have 

affected the results. 

The results from a typical test can be seen in Figure 5.4 (an example from each of the nine 

test combinations is in Appendix C. 5). The graphs were slightly non-linear, showing a 

gradual increase in slope and therefore stiffness. Given the lack of a sudden change in slope, 

an estimate of the average or overall stiffness for each trial was made by dividing the peak 

load by the springboard deflection at that load. These values were determined by scaling 

measures taken manually from the graphs. The resulting uncertainty in the stiffness 

estimates was calculated based on the resolution of the readings taken from the graphs. 



Figure 5.3. The servo jack springboard testing rig. 
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Figure 5.4. An example load-deflection graph from the servo jack springboard testing. 

N. B. Reduced in size from the original by 60% such that 6 mm (one bold division) 

represents 5 mm springboard deflection (horizontal axis) and 500 N compressive load 

(vertical axis). 
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5.4. RESULTS AND DISCUSSION 

5.4.1. VAULTING 
Table 5.1 contains the details of the digitization of the springboard adjustment knob position 
and gymnast's foot contact point on the springboard's surface, along with the calculated 
lengths of the vaulting area on the springboard. The foot contact position and adjuster 
position are given with respect to the near end of the springboard. The gymnast's contact 
point with the board displays some variability but is always within 60 to 90 percent of the 

vaulting area's length (from the near end) corresponding to the flatter, higher part of the 

surface. The adjuster position can be seen to have moved gradually between trials 3 and 9 
before it was positioned at the softest setting for vaults 10,11 and 12. From these data the 

contact and adjuster positions for the springboard testing were chosen to be 0.75,0.90 and 
1.05 m (contact) and 0.96,1.04 and 1.28 m (adjuster). Comparing the actual vaulting area 
length (1.20 m) with the calculated values a transformation accuracy of 7 mm was 

estimated, which is of the same order of magnitude as the RMS error of the DLT calibration 

check (approximately 5 mm; see section 5.2.2 above). 

Based on the repeated digitization of one trial, the standard errors of the mass centre and 

segment endpoint locations in Table 5.2 showed little improvement in precision as a result 

of increasing the number of digitizations from 2 to 3 to 4. The precision with which segment 

endpoints on the right side of the body were located was up to 3 mm better than on the left 

side. This was probably due to the unobstructed view of the right side of the gymnast's body 

throughout the trials. The precision of the mass centre location was the same (to three 

decimal places) regardless of the number of digitizations and it was better than that with 

which the segment endpoints could be located due to the fact that it is the result of a 

weighted mean of all the segment endpoints. The accuracies calculated were also of the 

same order of magnitude as the transformation accuracy. 

The estimated uncertainties in the kinematic data obtained from the analysis of the video 

were small. At touchdown the mean relative error in mass centre velocity was 0.2% 

horizontally and 1.3% vertically; while at takeoff it was 0.2% horizontally and 0.3% 

vertically. For trials one to five these approximated to 0.0 16 m. s-I horizontally and 

0.017 m. s-I vertically at touchdown, and 0.011 m. s-1 horizontally and 0.012 m. s-1 vertically 

at takeoff. The mean relative error in both the spring length and angle was 0.5%, and for the 

whole body moment of inertia it was 0.9%. Errors in the angular momentum and angular 

velocity were calculated in absolute terms since the very small angular momentum and 

velocity at springboard touchdown made relative errors rather meaningless. The standard 
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Table 5.1. Vaulting area length, foot contact position and springboard adjuster position 

with respect to the near end of the springboard at foot-board contact (m). 

Trial Vaulting area 
length 

Foot position Adjuster position 

1 1.206 0.707 0.952 

2 1.204 0.965 0.962 

3 1.205 0.912 0.963 

4 1.208 0.848 0.989 

5 1.206 0.781 1.012 

6 1.210 1.019 1.030 

7 1.210 1.105 1.040 

8 1.213 0.966 1.057 

9 1.205 0.879 1.081 

10 1.201 0.796 1.274 

11 1.209 0.905 1.280 

12 1.208 0.721 1.291 

RMSE 0.0069 --- --- 
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Table 5.2. Standard error estimates for the mass centre and all digitized landmarks, 
calculated from two, three and four digitizations (m). 

2 Digitizations 3 Digitizations 4 Digitizations 

y z y z y z 

left wrist 0.006 0.004 0.006 0.004 0.004 0.003 

left elbow 0.010 0.005 0.009 0.005 0.006 0.004 

left shoulder 0.006 0.005 0.006 0.004 0.005 0.003 

left hip 0.007 0.006 0.006 0.005 0.005 0.004 

left knee 0.007 0.007 0.006 0.006 0.006 0.005 

left ankle 0.006 0.005 0.005 0.005 0.004 0.004 

left toes 0.009 0.007 0.007 0.007 0.007 0.005 

right wrist 0.007 0.004 0.006 0.003 0.005 0.003 

right elbow 0.007 0.005 0.007 0.004 0.006 0.004 

right shoulder 0.007 0.004 0.007 0.003 0.005 0.003 

right hip 0.005 0.004 0.005 0.004 0.004 0.003 

right knee 0.005 0.005 0.004 0.004 0.004 0.003 

right ankle 0.005 0.005 0.004 0.004 0.004 0.004 

right toes 0.008 0.006 0.007 0.006 0.006 0.004 

neck 0.005 0.005 0.005 0.004 0.004 0.004 

top of head 0.005 0.005 0.004 0.004 0.004 0.003 

mass centre 0.002 0.002 0.002 0.002 0.002 0.002 
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error in angular momentum was 0.79 kg. m2. s'1 in hurdle and 1.01 kg. m2. s-1 in preflight, and 
for the angular velocity it was 0.09 rad. s'I at both touchdown and takeoff from the board. 

Tables 5.3 and 5.4 contain the model input values for the one spring and two spring models 
respectively, calculated from the video data as described in section 5.2.4 (Appendix C. 6 
contains the data from which the model input velocities were calculated). Note that the 
angle and angular velocity were measured clockwise from the negative horizontal such that 
they increase from touchdown to takeoff. Trials 1 to 5,11 and 12 were performed at what 
the gymnast considered to be his normal approach speed which was calculated from the 
video analysis to be 7.91 ± 0.12 m. s-1. This corresponded closely with Takei (1989) who 
found a mean and standard deviation of 7.50 ± 0.51 m. s-I in a study of 40 elite gymnasts 
performing handspring vaults in competition. The values for the other variables in these 
trials showed good consistency. Trials 6 and 7 were performed with progressively sloýýer 
approaches (6.21 and 5.55 m. s-1 respectively), trial 7 being the slowest at which the 

gymnast was comfortable. At these slow speeds the gymnast adopted a more upright body 

position and reduced his moment of inertia at touchdown. As expected there were 
corresponding reductions in the radial and angular velocities. The differences in body 

orientation and configuration between the normal approach speed and the intermediate 

approach speeds in trials 8,9 and 10 (6.57,7.14 and 7.36 m. s-I respectively) were less 

pronounced, however the radial and angular velocities were lower at the intermediate 

approach speeds than at the normal approach speed. The feet mass velocities (Table 5.4) did 

not vary in a systematic way as the approach speed changed because there was no 

systematic variation in the mass centre vertical velocity and the angular velocity 
immediately before touchdown. 

Table 5.5 contains the kinematic data at springboard takeoff that formed the criteria against 

which the output of both models were later evaluated. The takeoff angles showed no 

systematic variation dependent upon the approach speed, while the horizontal and angular 

velocities were lower for the slower approach speeds. Vertical velocity at takeoff was less 

clearly related to the approach speed, but there is some indication that slower approaches 

resulted in lower vertical velocities at takeoff. 

5.4.2. SPRINGBOARD TESTING 
In the drop tests, the least squares quadratic curves fitted the vertical position data very 

closely. In only one trial was the mean coefficient of determination (r2) less than 1.000 and 

even then it was 0.998. The greatest standard error of the position estimate «as 0.003 m 

with the mean being 0.001 m. The time of springboard contact and touchdown and takeoff 



Table 5.3. Touchdown input values for the one spring model. 

Trial Approach 
speed 

IG 
(kg. m2) 

L 
(m) 

0 
(rad) 

v, 
(M. s-1) 

i1, 
(m. s'1) 

e1 
(rad. s-1) 

1 Normal 9.64 1.049 1.151 6.48 -4.36 5.44 

2 Normal 8.95 1.010 1.124 6.57 -4.69 5.73 

3 Normal 9.20 1.044 1.100 6.40 -4.75 5.12 

4 Normal 9.64 1.059 1.114 6.50 -4.79 5.43 

5 Normal 9.46 1.067 1.085 6.47 -4.76 5.35 

6 Slow 8.86 0.990 1.209 5.28 -3.58 4.66 

7 Slow 8.30 0.973 1.245 4.80 -3.14 4.30 

8 Intermed. 9.19 1.033 1.176 5.45 -3.98 4.65 

9 Intermed. 9.11 1.057 1.117 5.82 -4.36 4.90 

10 Intermed. 9.04 1.042 1.125 6.11 -4.30 5.20 

11 Normal 9.50 1.078 1.091 6.34 -4.82 5.23 

12 Normal 9.06 1.091 1.085 6.59 -4.84 5.43 

N. B. IG is the moment of inertia of the system about its mass centre, L and 0 are the 

spring length and angle, yr is the mass centre radial velocity, and 01 is the angular 

velocity of the system. v, is the mass centre transverse velocity immediately before 

touchdown and is not actually a model input but it is included for completeness as it is 

used in the calculation of 61 
.) 
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Table 5.4. Touchdown input values for the two spring model. 

Trial Approach 
speed 

IG 
(kg. m2) 

L 
(m) 

0 
(rad) 

v/ 
(m. s-1) 

v, 
(m. s-1) 

y 
(m. s-1) 

0I 
(rad. s-1) 

1 Normal 9.64 0.888 1.147 6.46 -3.21 -1.29 6.12 

2 Normal 8.95 0.888 1.123 6.56 -3.45 -1.39 6.30 

3 Normal 9.20 0.901 1.096 6.38 -3.63 -1.28 6.03 

4 Normal 9.64 0.881 1.175 6.78 -3.07 -1.43 6.48 

5 Normal 9.46 0.912 1.105 6.56 -3.68 -1.07 6.09 

6 Slow 8.86 0.880 1.196 5.24 -2.36 -1.38 5.03 

7 Slow 8.30 0.858 1.261 4.85 -1.80 -1.33 4.76 

8 Intermed. 9.19 0.876 1.172 5.44 -2.61 -1.52 5.22 

9 Intermed. 9.11 0.889 1.170 6.04 -2.78 -1.38 5.79 

10 Intermed. 9.04 0.888 1.127 6.12 -3.17 -1.24 5.87 

11 Normal 9.50 0.910 1.108 6.42 -3.51 -1.34 6.00 

12 Normal 9.06 0.897 1.106 6.69 -3.60 -1.23 6.39 

N. B. IG is the moment of inertia of the system about its mass centre, L and 6 are the 

spring length and angle, yr is the mass centre radial velocity, y is the vertical velocity 

of the feet mass and 61 is the angular velocity of the system. v, is the mass centre 

transverse velocity immediately before touchdown and is not actually a model input but 

it is included for completeness as it is used in the calculation of 0. 
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Table 5.5. Takeoff criteria for both the one and two spring models. 

Trial Approach 0 one 0 two Vh vv 0 
speed (rad) (rad) (m. s'1) (m. s-1) (rad. s-1) 

1 Normal 1.820 1.894 5.43 3.89 6.09 

2 Normal 1.766 1.809 5.29 4.10 6.72 

3 Normal 1.749 1.789 5.11 4.16 6.59 

4 Normal 1.784 1.907 5.39 3.96 6.14 

5 Normal 1.790 1.852 5.51 3.94 6.21 

6 Slow 1.753 1.792 4.23 4.01 5.35 

7 Slow 1.806 1.841 4.20 3.80 4.38 

8 Intermed. 1.774 1.852 4.50 3.82 5.49 

9 Intermed. 1.801 1.876 5.13 3.92 5.74 

10 Intermed. 1.785 1.857 5.38 3.97 5.46 

11 Normal 1.803 1.883 5.48 3.94 6.19 

12 Normal 1.825 1.905 5.86 3.89 5.93 

N. B. Only the takeoff angles (9 one and 6 t, vo) are different between the two models 

owing to the different definitions for the base of the spring. Vh and v,, are the mass 

centre horizontal and vertical velocities, and 0 is the system angular velocity. 
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velocity estimates for each of the trials in the nine combinations of springboard contact 
position and springboard adjustment are summarized in Table 5.6. The mean and standard 
deviation of the stiffness and damping values calculated by the Maple TM V model for each 
trial are presented in Table 5.7. 

The uncertainty in the stiffness estimates from the servo jack tests was calculated as 
follows: 

1. The graphs could be read to the nearest 0.5 mm, therefore the largest error in any 
reading was 0.25 mm, which equated to 25 N and 0.25x10-3 m in the load and 
deflection dimensions respectively. 

2. This gave a relative deflection error of 0.25x10-3 m per 0.1 m (maximum deflection of 
the springboard) which is 0.25%. 

3. The relative load error was 25 N in 3500 N at the softest springboard setting which is 
0.71%, and 25 N in 6800 N or 0.37% at the stiffest setting. 

4. The combined relative error in the calculated stiffness was therefore 0.75% 
(equivalent to 263 N. m-1) at the softest setting and 0.44% (equivalent to 302 N. m-1) at 
the stiffest setting. 

Hence confidence in the calculated stiffness values was better than 500 N. m-1. (It %%as not 

possible to estimate springboard damping using this equipment). Table 5.8 summarizes the 

results of the servo jack tests of the springboard stiffness. 

In both drop and servo jack tests the springboard stiffness increased as the contact position 

moved towards the far end of the board and as the adjuster position moved towards the near 

end of the board. As can be seen in Figure 5.5, the stiffness estimates from the servo jack 

test (filled symbols) were consistently greater than those from the drop test (open symbols). 
On average the difference was 66%, ranging from 48% to 94%. However the results from 

both tests conformed to the expectations that the 'competition' setting (adjuster 0.96 m from 

the near end) would be the stiffest, regardless of springboard contact point and vice versa. 

Since the servo jack test was estimated to have reproduced more closely the magnitude of 

the typical peak forces applied to the springboard during the vaulting (see section 5.3.2 

above), it was decided that the stiffness estimates derived from these tests would be most 

suitable as model inputs. 
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Table 5.6. A summary of the springboard contact times (Ta), touchdown velocities (Vtd) 

and takeoff velocities (Vto) in the drop test (mean ± sd). 

Contact position 

Adjuster position 0.75 0.90 1.05 

Tc (s) 0.079±0.0007 0.077±0.0009 0.075±0.0008 

0.96 Vtd (m. s-1) -3.698±0.018 -3.685±0.057 -3.694±0.027 

Vto (m. s-1) 2.621±0.020 2.691±0.028 2.765±0.031 

Tc (s) 0.083±0.0014 0.080±0.0008 0.077±0.0009 

1.04 Vtd (M. s-1) -3.677±0.018 -3.677±0.022 -3.701±0.026 

Vt0 (m. s-1) 2.533±0.020 2.679±0.017 2.776±0.015 

Tc (s) 0.094±0.0005 0.092±0.0011 0.088±0.0011 

1.28 Vtd (M. s- -3.687±0.023 -3.679±0.027 -3.676±0.027 

Vto (m. s- 2.581±0.025 2.550±0.039 2.4)8±0.034 
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Table 5.7. Drop test stiffness and damping estimates for each contact and springboard 

adjuster combination (mean ± sd). 

Contact position 

Adjuster position 0.75 0.90 1.05 

0.96 stiffness (kN. m-1) 

damping (N. s. m-1) 

31.1±0.612 

163±4 

32.6±0.804 

156±3 

35.1±0.741 

153+4 

1.04 stiffness (kN. m-1) 28.1±0.929 30.5±0.583 33.3±0.839 

damping (N. s. m-3) 170±3 152±3 147±4 

1.28 stiffness (kN. m-1) 22.3±0.224 23.2±0.512 24.7±0.583 

damping (N. s. m-1) 142±4 156±4 184±6 

Table 5.8. Servo jack test stiffness parameter estimates for each contact and springboard 

adjuster combination (mean ± sd). 

Contact position 

Adjuster position 0.75 0.90 1.05 

0.96 stiffness (kN. m-1) 49.2±0.251 56.4±0.274 68.2±0.222 

1.04 stiffness (kN. m-1) 41.6±0.000 47.7±0.078 60.4±0.181 

1.28 stiffness (kN. m-1) 34.5±0.130 35.7±0.051 42.3±0.063 
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Figure 5.5. Springboard stiffness estimates from the drop test and servo jack test at each 

of the three board adjuster positions. 
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Figure 5.6 illustrates the springboard damping estimated from the drop test. In general. the 
damping did not vary greatly between springboard settings and test locations, with the 

greatest variation being for the softest springboard setting (adjuster 1.28 m from the near 
end of the board). In damped mass-spring systems the degree of damping is characterized by 

the relationship between the damping, c, the mass, m, and the stiffness, k, in particular, if 

c2 < 4. m. k the system is described as underdamped (Bolton, 1994). In the case of the drop 

test data (m = 20 kg), even taking the greatest damping estimate (184 N. s. m-1) and the 

corresponding stiffness (24.7 kN. m-1), c2 was less than 2% of 4. m. k, suggesting that the 

effect of the damping would be negligible over one half of an oscillation (equivalent to the 

foot contact phase). However, the inability to calculate the damping at higher loads and the 

uncertainty over the precise equivalent mass of the springboard-feet component of the 

model meant that this estimate was subject to some doubt. Further investigation of the effect 

of springboard damping was therefore necessary as part of the model evaluation (Chapter 

Six). 
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Figure 5.6. Springboard damping estimates from the drop test at each of the three board 

adjuster positions. 
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The foot contact positions with the springboard in the vaulting did not correspond exactly 
with the tested springboard positions. In order to estimate the springboard stiffness and 
damping values for each specific contact position, linear regressions were calculated using 
Microsoft Excel for stiffness and damping against springboard contact position at each of 
the springboard adjuster settings, based on the measured values from the springboard 

testing. Only the data from the servo jack test were used for the stiffness regressions. While 

these stiffness estimates appeared (Figure 5.5) to increase in a less linear fashion than the 

stiffness and damping estimates from the drop test, linear approximation does not differ 

from the actual results by more than 5% (mean 2.6%). The regression lines were of the form 

y=a. x+c where a was the slope, c the intercept and x the foot contact position with 

respect to the near end of the springboard. Table 5.9 summarizes the regression equation 

results. 

Table 5.9. Linear regression parameters for stiffness and damping calculation on the 

basis of foot contact position. 

Adjuster 

position 
slope (a) intercept (b) r2 SE,, 

0.96 stiffness 

damping 

63.333 

-33 

0.933 

187 

0.98 

0.95 

1.878 

1.63 

1.04 stiffness 62.667 -6.500 0.96 2.694 

damping -77 225 0.90 5.31 

1.28 stiffness 26.000 14.100 0.86 2.205 

damping 140 35 0.96 5.72 

N. B. For the stiffness the slope has units of kN. M-2 and the intercept and standard error of 

the estimate have units of kN. m"'. For damping the slope has units of N. s. m"2 and the 

intercept and standard error of the estimate have units of N. s. m-'. 
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5.5 SUMMARY 
This chapter described the determination of kinematic data relating to the inputs to the 

models developed in Chapter Four, and the uncertainties associated with these data. Video 

of an elite British male gymnast performing a series of 12 handspring vaults from an 

adjustable springboard was collected and analysed to provide kinematic data on the 

gymnasts performances. These data were the mass centre velocity, whole body angular 

velocity and moment of inertia about a transverse axis through the mass centre, spring 
length and spring angle. These data were required at springboard touchdown and takeoff. 
For the two spring model, an estimate of the vertical velocity of the feet at touchdown ww as 

also needed. The springboard was subjected to a drop test and a servo jack test over a range 

of contact positions and board adjustments. The drop test was based on FIG testing 

procedures and, in conjunction with a mass-spring model, enabled the estimation of 

springboard stiffness and damping. However, the estimated peak vertical forces applied 
during the drop test were substantially lower than those estimated to have been applied 
during the actual vaults by the gymnast. The servo jack test applied forces more consistent 

with the vault trials and allowed the springboard stiffness to be calculated but did not enable 

the calculation of springboard damping. From the drop test data, it was estimated that the 

damping during one half of a cycle would be negligible, but it was felt that further 

investigation was warranted during model evaluation. Altogether, the results from the 

studies described in this chapter enable the models developed in Chapter Four to be 

evaluated and applied. 
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CHAPTER SIX 
MODEL EVALUATION AND APPLICATION 

6.1 INTRODUCTION 
As described in Chapter Four, both the one spring and two spring models were formulated 

with two modes of operation: where the spring stiffness is unknown the models will 
determine a stiffness which ensures that the angle of the spring at takeoff matches a specified 

takeoff angle, while a second mode predicts the takeoff velocities and spring angle if the 

spring stiffness is provided. This chapter describes the evaluation and application of the 

models, and explores the utility of the models as a means of understanding the mechanics of 

vault takeoffs and of answering the questions posed in Chapter One. The analysis of the 

handspring vaults described in Chapter Five provided the input data for the simulations of 

specific vaults. Mean values from the first five vaults, those where the gymnast approached 

the springboard in his usual way and where the springboard was at its competition setting 

(hereafter known as the normal approach trials) were used where an average vault was 

required. These data, in conjunction with values from the literature, also provided 

information on the realistic ranges for the model inputs for other simulations. 

6.2 METHOD 

6.2.1 STIFFNESS ESTIMATION AND MODEL EVALUATION 
The models predict takeoff velocities based on the assumption of a simple rebound. In order 

to determine what proportion of the gymnast's takeoff linear and angular velocities can be 

accounted for by a simple rebound, the models were used to determine the spring stiffness 

required to achieve the correct takeoff angle and then to output the takeoff velocities. The 

twelve vaults discussed in Chapter Five were simulated with both models and the outputs 

were compared with the results of the video analysis by calculating the percentage of the 

actual takeoff velocities the models predicted. The calculated spring stiffnesses were noted 

for each simulation to provide a basis for further simulations and for comparison with other 

studies that have used mass-spring systems to investigate human locomotion. The durations 

of the rebounds were also calculated and compared with the times of contact of the gymnast 

with the springboard from the analyses of the actual vaults. Since the time of contact of the 

gymnast with the springboard was not used in the models, this comparison provided an 

indirect but independent evaluation of the fit of the models to the vaults. 
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To determine how sensitive the spring stiffness estimates and predicted takeoff velocities 
were to the uncertainty in the input data, a sensitivity analysis was conducted on both 

models. One at a time, each model input (with the exception of the moment of inertia) from 

trial one was increased by twice the standard error estimated from the video analysis 
(Chapter Five, section 5.4.1) and a new simulation executed. For the two spring model the 
board parameters were also perturbed by twice the uncertainty estimated from the board tests 
(Chapter Five, section 5.4.2) and the feet mass proportion was doubled. Doubling the feet 

mass was chosen as a rigorous test since it was not possible to be precise with the estimate of 
how much mass to apportion to the base of the spring. Since the moment of inertia of the 

gymnast increased from springboard touchdown to takeoff (by 39%), the sensitivity of both 

models to using the takeoff value rather than the touchdown value was also determined. 

Where sensitivity to an increase in an input was noted, a further simulation was performed 

with that input reduced by the same amount. The takeoff angle was held constant in these 

simulations. The outputs from these simulations were compared with the outputs from the 

original simulation to determine the differences the perturbations had caused. 

6.2.2 BOARD STIFFNESS VARIATIONS 
A series of simulations using the two spring model was performed in order to determine the 

extent to which board stiffness variations affected the model outputs. The mean values from 

the five normal approach trials were used as inputs, including a representative leg spring 

stiffness of 125 kN. m-1. The board damping was set to 155 N. s. m-', representing a mid-board 

contact, while the board stiffness was varied from 35 to 75 kN. m-1, covering a range of 

realistic values (calculated using the regression equations and actual board contact positions 

determined in Chapter Five, section 5.4.2). With the leg spring stiffness being preset, the 

model calculated the takeoff velocities and leg spring angle for each board stiffness. 

To determine whether a gymnast might be able to compensate for springboard stiffness 

variations by adjusting his leg stiffness, a series of simulations were performed using the tw o 

spring model. These simulations demonstrated how the leg spring stiffness would need to 

vary as the board stiffness was altered, whilst the touchdown conditions and takeoff angle 

were held constant. The mean values from the five normal approach trials were used as 

inputs, including the desired spring takeoff angle, while the leg spring stiffness was 

recalculated for each of the board stiffnesses. Again the board stiffness «as varied over a 

range of realistic values and the board damping set at 155 N. s. m-ý. Board damping was not 

varied as the board testing had shown that this value did not change greatly between board 

settings and contact positions (always between 142 and 184 N. s. m-': see Chapter Five, 

section 5.4.2). Furthermore, preliminary simulations had shown that this range of dampiný-I 
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variations made a negligible difference to the outcomes, which was also supported b. ),, the 
sensitivity analyses. 

To investigate compensating for springboard stiffness variations in some way other than by 

changing leg stiffness, a series of simulations were conducted in which the leg spring 

stiffness was held constant, the board stiffness was altered and the touchdown horizontal 

velocity or touchdown spring angle was adjusted. Using the regression equations determined 

from the board testing (Chapter Five, section 5.4.2), a stiff board setting of 58 kN. m-' \ as 
calculated, equivalent to board contact 0.90 m from the near end with the stiffest board 

adjustment, and similarly a soft setting of 37.5 kN. m-' was calculated, equivalent to board 

contact at the same place but with the softest board adjustment. Two scenarios «ere 

analysed: one in which the board stiffness was changed from being stiff to soft and one 

where the change was in the opposite direction. In each case an initial simulation using the 

mean inputs and takeoff spring angle from the five normal approach trials was executed in 

order to calculate the required leg spring stiffness. The board stiffness was then changed (to 

either the stiffer or softer value) while the leg spring stiffness was kept at the previously 

calculated value and simulations were then conducted in which the touchdown horizontal 

velocity or spring angle was systematically adjusted. Each new simulation was compared 

with the original board stiffness simulation by calculating the square root of the mean 

squared differences between the takeoff spring angle and velocities. 

6.2.3 APPROACH AND CONTACT STRATEGIES 
One of the issues raised in Chapter One concerned suggesting strategies which gymnasts 

could adopt in order to achieve a particular takeoff. To investigate this, the horizontal 

touchdown velocity, touchdown spring angle and (leg) spring stiffness were each separately 

varied over a range of realistic values, while the other touchdown variables were kept to the 

mean values from the five normal approach trials. 

The range of horizontal velocities investigated was from 6.30 to 8.67 m. s-' and the range of 

touchdown spring angles was from 0.90 to 1.24 radians for the two spring model and 0.89 to 

1.23 radians for the one spring model. ' These ranges approximately covered the range of 

approach speeds and touchdown body angles found by Takei (1988,1989,1991) and Takei 

1 Note that all angles are given with respect to the left (negative) horizontal and in a clockwise 

direction, matching the gymnast's direction of rotation. Positive horizontal velocity is from lett to 

right and positive vertical velocity is upwards. 
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and Kim (1990) for Handspring and Handspring Salto Forward Tucked vaults by national 
and international competitors, and included all but the slowest two vaults anal,. sed in 
Chapter Five (trials six and seven). For these simulations with the one spring model the 
stiffness was set at 41.523 kN. m"1, the predicted stiffness for the mean touchdown and 
takeoff inputs. For the two spring model simulations the board stiffness was set at 
58.000 kN. m"' and the damping at 155 N. s. m-1, representing the gymnast contacting the 
board 0.90 m from the near end with the stiffest board adjustment. The leg spring stiffness 
was held at 103.125 kN. m"', the predicted stiffness for the mean touchdown and takeoff 
inputs with these board settings. Further simulations were conducted to explore the effects of 
altering the touchdown spring angle and horizontal velocity simultaneously. 

Where the spring stiffness was varied, the range of stiffnesses for the one spring model wwas 
30 to 50 kN. m-1 and for the two spring model the range of leg spring stiffnesses was 80 t, 
290 kN. m"'. Thus the range of predicted stiffnesses for the twelve analysed trials was 

covered. The board stiffness and damping were again set to 58 kN. m-, and 155 N. s. m"' for 

the two spring model simulations (the influence of board stiffness variations due to feet 

contact position and board adjustment had already been investigated). 

6.3 RESULTS 

6.3.1 STIFFNESS ESTIMATION AND MODEL EVALUATION 
A summary of the results of the simulations of the twelve analysed trials are presented for 

the one and two spring models in Tables 6.1 and 6.2 respectively (the raw model output can 
be found in Appendix D. l and D. 2). These simulations calculated the spring stiffness 

required to produce the criterion takeoff spring angle given the measured touchdoýý n inputs. 

Each table contains the estimated spring stiffnesses, the rebound durations as a percentage oi' 

the gymnast's contact times with the springboard and the percentage of the measured takeoff 

velocities accounted for by the simulations. 

The simple rebound of the one spring model lasted an average of 87% of the actual contact 

time and accounted for the majority of the takeoff velocities, though the model 

underestimated the angular and mass centre vertical velocities at takeoff, while 

overestimating the mass centre horizontal velocity at takeoff (Table 6.1). The mean 

percentage of the angular velocity accounted for was 87% (range 81-97%), of the vertical 

velocity was 78% (range 54-88%) and of the horizontal velocity was 119% (range 113- 

123%). Simulations of trials 6 and 7, the slowest approach speeds, produced the poorest 
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Table 6.1. Estimates of spring stiffness, percentage of contact time and the percentage of 
takeoff velocities accounted for by one spring model simulations. 

Trial K 
_ý (kN. m ) (%) 

9 
(%) 

v 
(%o) 

vv 
(a) 

1 38.945 86 88 120 72 

2 48.906 86 84 123 84 

3 44.102 86 81 123 88 

4 40.938 85 87 122 87 

5 35.547 90 85 118 86 

6 47.969 86 86 121 67 

7 39.063 88 97 113 54 

8 40.234 85 83 121 76 

9 33.086 90 84 116 77 

10 38.125 88 94 114 76 

11 34.023 87 83 119 85 

12 32.031 87 90 117 81 

mean - 87 87 119 78 

r2 - 0.85 0.80 0.94 0.46 

p - <0.001 <0.001 <0.001 0.015 

N. B. Inputs to the simulations were from the analysis of the twelve vault trials in Chapter 

Five (Table 5.3) and outputs were compared with the takeoff data from the same trials 

(Table 5.5). Spring stiffnesses were estimated by the model using the measured takeoff 

angle as the criterion. r2 indicates the coefficient of determination between the model 

output and the criterion values from Chapter Five, andp the probability of this being by 

chance. 
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Table 6.2. Estimates of leg spring stiffness, percentage of contact time and the percentage 
of takeoff velocities accounted for by two spring model simulations. 

Trial K 
(kN. m-1 ) 

tc 
(%) 

0 
(%) 

Vh 
(%) ,, 

(%) 

1 110.156 90 107 108 57 

2 135.156 90 95 110 73 

3 121.094 88 92 111 76 

4 111.719 84 112 115 53 

5 139.063 89 105 108 64 

6 121.875 91 94 107 60 

7 94.531 88 110 103 48 

8 79.688 92 96 108 65 

9 106.250 86 105 107 55 

10 293.750 92 116 102 55 

11 129.688 89 104 107 62 

12 242.969 86 119 105 55 

mean - 89 105 108 60 

r2 - 0.68 0.51 0.92 0.67 

p - 0.001 0.009 <0.001 0.001 

N. B. Inputs to the simulations were from the analysis of the twelve vault trials in Chapter 

Five (Table 5.4) and outputs were compared with the takeoff data from the same trials 

(Table 5.5). Leg spring stiffnesses were estimated by the model using the measured 

takeoff angle as the criterion. r2 indicates the coefficient of determination between the 

model output and the criterion values from Chapter Five, and p the probability of this 

being by chance. 
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agreement with the vertical velocity at takeoff, but otherwise the proportions of the takeoff 
velocities accounted for were reasonably consistent. There did not appear to be a particular 
trend in the spring stiffness estimates, though those from the three trials at the softest board 
setting (trials ten to twelve) were lower than for most of the other trials, reflecting the 
influence of the board on the overall stiffness. 

Using the two spring model the rebound duration was an average of 89% of the actual 
contact time. The results of the simulations again showed a good degree of consistency in the 
proportion of the takeoff velocities accounted for by a simple rebound (Table 6.2) and 
demonstrated that a simple rebounding model is able to account for the majority of the actual 
takeoff velocities. The mean percentage of the angular velocity predicted was 105% with a 
range from 92 to 119% and for the horizontal velocity the mean was 108% (range 102- 
115%). The proportion of the vertical velocity accounted for was 60% on average ww ith a 
range from 48 to 76%, still generally more than half but not as good as for the other 
velocities. As with the one spring model, the simulation of the slowest approach speed trial 
(trial 7) generated the smallest proportion of the vertical takeoff velocity. Leg spring 

stiffness estimates did not show a very clear pattern, indeed the estimates for trials 11 and 
12, both with normal approach speeds but the softest board setting, were almost at the two 

extremes of the range of stiffnesses found (the board stiffnesses were very similar despite 
different feet contact points). 

Tables 6.3 and 6.4 summarize the results of the sensitivity analyses performed on the one 

and two spring models respectively. Each table shows the percentage difference between the 

outputs using the perturbed inputs and the original simulation results from trial one, and 
indicates the amount by which each input was perturbed (equivalent to twice the estimated 

uncertainty in each case except the moment of inertia, where the takeoff value was used, and 

the feet mass, which was doubled). Generally the takeoff velocity estimates from neither 

model were particularly sensitive to input uncertainties: both models showed some 

sensitivity to the uncertainty in the horizontal velocity at touchdown, but the sensitivities of 

the vertical velocities at takeoff to the spring angles at touchdown were greatest. Similarly, 

the spring stiffness estimates were most sensitive to the touchdown angle of the system, with 

some degree of sensitivity also to the touchdown horizontal velocity and spring length at 

touchdown. The two spring model results showed that the leg spring stiffness estimate was 

somewhat sensitive to the board stiffness, but distinctly insensitive to the board damping and 

feet mass parameters (which was helpful since it was not possible to estimate these 

parameters with as much confidence as the other inputs). While the velocity changes in 
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Table 6.3. Sensitivity of outputs from the one spring model simulation of trial 1 to 
perturbations of model inputs. 

Input e Vh vv K 
(perturbation) (% diff. ) (% diff. ) (% diff. ) (% diff. ) 

vh (0.4%) 1 1 0 1 

v,, (2.6%) 0 0 1 0 

0 (± 1.0%) 1/-l 1 /0 -3/3 4/-4 

L (1.0%) -1 0 0 -2 

IG (39%) -4 -4 6 -4 

0 (0.18 rad. s-1) 0 0 0 0 

N. B. Differences are by comparison with the results of the original trial one simulation. 

Table 6.4. Sensitivity of outputs from the two spring model simulation of trial 1 to 

perturbations of model inputs. 

Input e Vh vv K 
(perturbation) (% diff. ) (% diff. ) (% diff. ) (% diff. ) 

vh (0.4%) 1 0 0 2 

v, (2.6%) 0 0 1 1 

0 (± 1.0%) 1/-l 0/0 -4/4 +12/-9 

L (1.0%) -1 0 0 -4 

1G (39%) -7 -6 10 -4 

0 (0.18 rad. s-I) 0 0 0 0 

Kb (±8.1 %) -1/1 0/0 2/-3 -12/+21 

Cb (2.0%) 0 0 0 0 

Feet mass (100%) -1 0 -2 -5 

N. B. Differences are by comparison with the results of the original trial one simulation. 
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response to the perturbation of the moment of inertia may seem quite large, the 39% increase 
in the moment of inertia to bring these about puts them into perspective. Both models were 
insensitive to the uncertainties in the vertical velocity and angular velocity at touchdown. 

6.3.2 BOARD STIFFNESS VARIATIONS 

The effects of altering the board stiffness in the two spring model, while all the other inputs 

were held constant is illustrated in Figure 6.1. For consistency, the range on the ordinate of 
each of the graphs is from 70% to 130% of the value of the dependent variable at a board 

stiffness of 55 kN. m"'. The results showed that each of the takeoff variables were affected: 
over the full range of board stiffness perturbation the vertical velocity varied from 1.99 to 
3.12 m. s-', the angular velocity from 6.87 to 6.19 rad. s"', the horizontal velocity from 6.07 to 
5.75 m. s-' and the takeoff angle from 1.94 to 1.78 radians. These ranges are comparable ýt ith 

or greater than the variations in the takeoff values from the five trials which were used to 

calculate the mean inputs (Chapter Five section 5.4.1 and Table 6.5 below) and the 
differences between means of the eleven best and eleven worst handspring and for« and salto 

performances reported by Takei (1991), which indicated that the effect of board stiffness 

variation was likely to be of importance. The increase in vertical velocity was particularly 

great, this being due mainly to the takeoff angle getting closer to vertical, thereby reducing 
the negative contribution of the angular velocity and increasing the positive contribution of 
the mass centre's radial velocity. 

Simulations in which the leg spring stiffness was recalculated to compensate for board 

stiffness variations (while other inputs remained unchanged) showed that as the board 

stiffness was increased the estimated leg spring stiffness reduced in a non-linear fashion 

(Figure 6.2). For the inputs used in these simulations the leg spring stiffness reached a 

stiffness of about 77 kN. m-1 at the top end of the feasible board stiffness range; it should be 

remembered though that the actual required leg spring stiffnesses are dependent on the 

individual inputs to the simulation, so the leg spring stiffness would not always tend towards 

77 kN. m-1. No account was taken of the variations in takeoff velocities induced by these 

stiffness changes but over the whole range the angular, horizontal and vertical takeoff 

velocities only varied by ±3.3%, ±1.0% and ±7.5% from the mean respectively (the leg 

spring angle at takeoff was used as the criterion in the selection of the leg spring stiffness 

and so did not vary). 

Altering something other than the leg stiffness in order to compensate for board stiffness 

variations was also investigated. Figures 6.3 and 6.4 summarize the results of simulations 

exploring the effects of altering the horizontal velocity and spring angle at touchdown. 

Adjusting the board stiffness from a stiff to soft value while keeping the leg spring stiffness 
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Figure 6.1. The effect of altering board stiffness on the takeoff conditions of the two spring 
model. 
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the same as was required for the stiff board setting meant that in order to approach the same 
takeoff conditions a reduction in the touchdown horizontal velocity or spring angle was 
necessary. In a similar manner, increasing the board stiffness (from soft to stiff) required an 
increase in the touchdown velocity or angle to reduce the difference between the takeoffs. 
Figures 6.3 and 6.4 clearly illustrate that altering the touchdown spring angle has a much 
more marked effect on the takeoff conditions than alterations to the touchdown horizontal 
velocity. In both cases altering the touchdown spring angle by 5% resulted in the root mean 
squared difference (between these and the original simulation takeoff conditions) being 
reduced to less than 2%, while altering the touchdown horizontal velocity had only a minor 
effect. The comparatively small influence of touchdown velocity alterations meant that in 
any combined alteration of touchdown angle and velocity, the angle effect would dominate 
and therefore the findings would not differ substantially from those when only the angle was 
altered. 

6.3.3 APPROACH AND CONTACT STRATEGIES 
The approach and contact strategies which could be adopted by gymnasts were investigated 
for both the one and two spring models. The effects of adjusting the horizontal velocity at 
touchdown (from 6.30 to 8.67 m. s"'), the spring angle at touchdown (from 0.89 to 
1.23 radians for the one spring model and 0.90 to 1.24 radians for the two spring model) and 
the (leg) spring stiffness (from 30 to 50 kN. m-1 for the one spring model and 80 to 
290 kN. m-' for the two spring model) are summarized in Figures 6.5 to 6.10. In each case 
inputs other than the one of interest were held constant (at the mean values from trials one to 
five), including the board stiffness (58 kN. m"') and damping (155 N. s. m-1) for the two spring 

model. To assist comparisons between the same dependent variable in each different figure, 

the scaling of the ordinate of the graphs is consistent for each dependent variable. With the 

exception of Figures 6.6c and 6.9c, the range on the ordinate of each of the graphs is (to one 
decimal place) from 50% to 100% of the maximum value found across all six sets of data for 

each dependent variable. For example the maximum takeoff angular velocity was 7.29 rad. s-' 

(in Figure 6.8a) so the range on all six angular velocity graphs is from 3.6 to 7.3 rad. s-'. 

Figures 6.6c and 6.9c are exceptions due to the much greater variation in the vertical velocity 

at takeoff as a result of touchdown spring angle adjustments, therefore three times the range 

of the other vertical velocity graphs was used. 

Comparing the effects of the adjustments between the one and two spring models it wwas 

immediately apparent that the influence of each input was broadly similar whether the one or 

two spring model was used (compare Figures 6.5 and 6.8,6.6 and 6.9,6.7 and 6.10). The 
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Figure 6.5. The effect of varying the touchdown horizontal velocity on the takeoff conditions 
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Figure 6.8. The effect of varying the touchdown horizontal velocit`, on the takeoff conditions 
of the two spring model. 

6.50 7.00 7.50 8.00 8.50 9.00 

Horizontal touchdown velocity (ms-1) 

6.50 7.00 7.50 8.00 8.50 9.00 

Horizontal touchdown velocity (ms-1) 

6.50 7.00 7.50 8.00 8.50 9.00 

Horizontal touchdown velocity (m. s-1) 

6.50 7.00 7.50 8.00 8.50 9.00 

Horizontal touchdown velocity (ms-1) 



138 

(a) 
0 7.10 

6.60 
6.10 

.55.60 
7 5.10 

4.60 
4.10 

Q 3.60 
0.85 

(b) 
ö 7.20 

6.70 
6.20 

'-ý 5.70 
`) 5.20 

4.70 ýo 
4.20 
3.70 

0 
= 0.85 

(c) 

0 5.40 
a) ä 4.40 

`° U) 3.40 
öE 2.40 

1.40 

0.40 
0.85 

(d) 
2.00 

Y 1.80 

1.60 
a) 0 
c=1.40 
m 
rn 1.20 
CL 
Co 1.00 4- 

0.85 

Figure 6.9. The effect of varying the touchdown spring angle on the takeoff conditions of the 
two spring model. 
N. B. In relation to the other graphs, the ordinate scale in graph (c) is three times larger. 
A larger spring angle at touchdown indicates a more upright position. 

0.95 1.05 1.15 1.25 
Touchdown spring angle (rad) 

0.95 1.05 1.15 1.25 
Touchdown spring angle (rad) 

0.95 1.05 1.15 1.25 

Touchdown spring angle (rad) 

0.95 1.05 1.15 1.25 

Touchdown spring angle (rad) 



139 

(a) 

7.10 

a, 6.60 
=°- 6.10 

5.60 
5.10- 
4.60- 
4.10- 
3.60 c 

70 

(b) 

7.20 

aa) 6.70 
Y 

=°- 6.20 
5.7 0 

ö ü, 5.20 
4.70 
4.20 
3.70 

= 70 

(c) 

3.70 

3.40 

3.10 
ca 

N 2.80 
Ü 

ýw - 2.50 

2.20 
U_ 

1.90 
70 

(d) 
2.00 

0 
1.80 

io 
- 

1.60 
aý V 

1.40 
rn 

1.20 
n 
Co 

1 

1.00 
70 115 160 205 250 295 

Leg stiffness (kN. rrrl) 

Figure 6.10. The effect of varying the leg spring stiffness on the takeoff conditions of the 
two spring model. 

115 160 205 250 295 
Leg stiffness (kN. rrr1) 

115 160 205 250 295 
Leg stiffness (kN. mi) 

115 160 205 250 295 
Leg stiffness (kN. rrrl) 



140 

direction, rate and general magnitudes of the effects of the variations were remarkabl\ 
similar between models. The vertical velocity at takeoff began to plateau at high leg 

stiffnesses in the two spring model, otherwise the differences between models were in the 
precise magnitudes of the angular and linear velocities at takeoff: the one spring model 
produced greater horizontal and vertical velocities, while the two spring model produced 
greater angular velocities. 

For both models, altering the (leg) spring stiffness produced the smallest effects of the three 
inputs on the takeoff conditions, with only vertical velocity of the one spring model at 
takeoff showing a really noticeable change (Figure 6.7c). Even then, the size of the increase 
in vertical velocity was not as great as when the touchdown spring angle was altered, vertical 
velocity being greatest for the smallest touchdown spring angles (Figure 6.6c). This inverse 

relationship between touchdown spring angle and vertical velocity at takeoff was also 

apparent in the two spring model simulations (Figure 6.9c). Increases to the horizontal 

velocity and touchdown spring angle markedly increased both the angular and horizontal 

velocities at takeoff for the one spring and two spring models alike (graphs a and b in 

Figures 6.5,6.6,6.8 and 6.9). Only the touchdown spring angle had a very noticeable effect 

on the takeoff spring angle, but for neither model was this as great as the effect on other 

variables (Figures 6.6d and 6.9d). 

Having found that the horizontal velocity and spring angle at touchdown showed the `greatest 

potential for modifying takeoff, the effects of varying these inputs simultaneously was 

examined. The touchdown spring angle was again varied from 0.90 to 1.21 radians for the 

two spring model and 0.89 to 1.23 radians for the one spring model, and three touchdown 

horizontal velocities were used: 7.88 m. s-', 7.09 m. s-' (7.88-10%) and 8.67 m. s-1 

(7.88+10%). In Figures 6.11 and 6.12, the takeoff variables are plotted against the 

touchdown spring angle, with the results for each of the three touchdown horizontal 

velocities represented on each graph. The range on the ordinate of each of the graphs is (to 

one decimal place) from 15% to 100% of the maximum value found across the results from 

both models for each dependent variable. Once again great similarity was apparent between 

the results of the one and two spring model simulations and again the magnitudes of the 

takeoff angular velocities were slightly greater for the two spring model while the takeoff 

linear velocities were slightly greater for the one spring model. For both models the takeoff 

horizontal velocity was on average 17-18% different for each 10% change in touchdo« n 

horizontal velocity over the range of touchdown spring angles (Figures 6.11 b and 6.12b). 

This was almost matched by the average 16% changes in takeoff angular velocity for the mo 

spring model (Figure 6.12a), but for the one spring model the changes averaged 12% (Figure 
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6.11 a). Graphs c and d in Figures 6.11 and 6.12 illustrate the effects on takeoff vertical 
velocity and spring angle: for each 10% change in touchdown horizontal velocity, vertical 
velocity was on average 6-7% different for the one spring model and 10% different for the 
two spring model, while altering the touchdown horizontal velocity made only an average 
3-4% difference to the takeoff spring angle for both models. 

A further strategy which gymnasts might be able to adopt was suggested by the results 

presented previously in Figure 6.1. This related to simulations where the approach speed, 
touchdown angle and leg spring stiffness were kept the same while the board spring stiffness 

was varied. While the stiffness of the springboard used for the data collection in Chapter 

Five was mechanically adjustable, the results of the board tests (section 5.4.2) showed that 

the contact point on the board surface also affected the board stiffness. With the springboard 

adjuster set to the stiffest position, contacting the board 0.70 m from the near end `, a\ ea 

stiffness of 45 kN. m-', while contacting 1.10 m from the near end resulted in a stiffness of 

71 kN. m-l. At these two extremes, simulations showed that the takeoff angle, angular 

velocity and horizontal velocity were only slightly affected (reduced by 8%, 7% and 4° o 

respectively), but that at the stiffer position the vertical velocity at takeoff was increased by 

38%, from 2.21 to 3.04 m. s-1. 

6.4 DISCUSSION 

6.4.1 STIFFNESS ESTIMATION AND MODEL EVALUATION 
The results of the simulations of the twelve vaults analysed in Chapter Five gave an 

indication of the fit of the models to the actual performances. The rebound durations ýk ere 

slightly underestimated by the models, averaging 87% (range 85-90%) and 89% (range 84- 

92%) of the gymnast's contact times with the springboard for the one and two spring models 

respectively. The fact that the models underestimated the contact times is consistent with the 

nature of the models in that they do not account for any net extension of the legs and arms 

(i. e. beyond that at springboard touchdown). This extension by the gymnast increases the 

depression of the board and hence the contact time (compared with a vault ý, vithout this 

extension), though whether all of the difference between the models and reality would be 

accounted for by this is not clear. 

The results from both models showed that a simple rebound can produce the majority of the 

linear and angular velocities required at takeoff from the board in handspring vaulting. The 

two spring model matched the takeoff horizontal and angular velocities more closely than the 

one spring model, however the one spring model showed better agreement with the vertical 

velocity at takeoff. 
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When considering the ability of the models to account for the vertical velocity at takeoff it 

can be tempting to be heartened by the findings of Takei (1988,1989) and Takei and Kim 
(1990). In none of these papers was the vertical velocity at takeoff from board found to be 

significantly correlated with score. However this should not be taken to indicate that vertical 
velocity at springboard takeoff was unimportant to achieving success and therefore perhaps 
that the poorer ability of the models to predict vertical velocity at takeoff is inconsequential. 

Nevertheless it is likely that vertical velocity is less important than horizontal velocity at 

springboard takeoff since gymnasts are able to increase their vertical velocity during horse 

contact, but their horizontal velocity is reduced (e. g. Takei, 1988,1989; Takei and Kim, 

1990). 

The vertical velocity which a simple rebounding model cannot represent is probably due to 

the extension of the hips, knees and ankles, and to some extent the shoulders, during 

springboard contact. Figures 6.13 a and b illustrate the points of touchdo« n and takeoff from 

the springboard respectively in a typical vault analysed in Chapter Five and show the net 

extension during contact. It is worth noting that at touchdown the arms are already 

substantially extended at the shoulder, having been swung forward and upward during the 

hurdle step, prior to springboard contact. Therefore the contribution of the arms to the 

vertical velocity at takeoff was not as great as might be imagined, or has been implied in the 

coaching literature (e. g. Readhead, 1987), and was unlikely to have approached the 12.7% 

contribution to vertical momentum found by Lees and Barton (1996) for vertical jumping. 

Kreighbaum (1974) also observed that the contribution of the arms to springboard takeoff 

`appeared to be negligible' (page 142). 

The leg spring stiffnesses calculated for the two spring model over the twelve vaults 

analysed in Chapter Five ranged from 79.69 to 293.75 kN. m-', with ten of the twelve falling 

between 94 and 140 kN. m-'. Ferris and Farley (1997) reported leg stiffness values up to 

about 120 kN. m-' for two footed hopping in place at 3.2 Hz on a compliant surface (stiffness 

26.1 kN. m"'). Their activity has some obvious similarities with vault springboard takeoffs 

but the `effective' frequency, forces and surface stiffness for vault takeoffs are higher than 

for hopping. The higher frequency and forces would indicate that greater leg stiffnesses 

would be required, while a stiffer surface would indicate that a lower leg stiffness would be 

appropriate, so overall all that can be said is that their results indicate that the stiffnesses 

found in this study are reasonable. 
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Figure 6.13a. Touchdown with the springboard for a typical vault. 
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Figure 6.13b. Takeoff from the springboard for a typical vault. 
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The majority of the other stiffness estimates found in the literature range bet' een 7 and 
112 kN. m"1 (see Chapter Two, Table 2.2) but comparisons with these data are not 
straightforward for a number of reasons. For example, stiffnesses calculated for running are 
obviously for one leg not two, but it might be assumed that the legs act as two parallel 
springs with the same stiffness, so the stiffness of both legs together would be double that of 
a single leg. However, Cavagna (1970) and Greene and McMahon (1979). for example. 

estimated two-legged stiffness only to be an average of 153% and 123% of one-legged 

stiffness respectively in a given situation; this may be related to the bilateral deficit noted in 

one versus two limb strength comparisons (e. g. Howard and Enoka, 1991). Another 

difficulty when comparing stiffness estimates is that most studies have estimated vertical 

stiffnesses not leg stiffnesses: vertical stiffness should be greater than leg stiffness since for 

the same peak force in the leg spring the vertical deflection is less than the change in length 

of the leg spring (the exception is hopping in place where these stiffnesses are identical since 
the mass centre motion is assumed to be one dimensional). Other factors confounding 

comparisons include the nature of the surface (most studies are of locomotion on ver` stiff 

surfaces) and the nature of the activity (e. g. running at different speeds, hopping at different 

frequencies). Nevertheless, while the stiffnesses estimated in this study are higher than most 
in the literature they are certainly feasible. 

In the simulations which were conducted in order to estimate the spring stiffnesses, the 

takeoff angle of the gymnast's body was used as the criterion (as also adopted by : McMahon 

and Cheng (1990) for their model for running). In this way the spring angle at takeoff is 

always correct in those simulations, while the takeoff velocities are unconstrained and 

generally do not match the values calculated from the recorded vaults. In principle, any of 

the takeoff velocities could have been chosen instead as the criterion, or a combination of the 

outputs could have been used. The spring angle was chosen principally because of the 

intrinsic logic of associating the takeoff angle with the stiffness, i. e. too soft and the takeoff 

occurs past the desired angle, too stiff and takeoff occurs before it. The choice was 

reinforced by conducting a number of simulations in which the takeoff spring angle was not 

constrained and the `correct' stiffness was chosen on the basis of an error score based on a 

variety of combinations from the four outputs. For the two spring model these simulations 

failed to find optima: increasing the leg stiffness kept reducing the error score while the 

rebound duration became progressively shorter, leading to what were deemed to be 

unrealistic stiffnesses and rebound durations. The one spring model simulations found an 

optimum for some trials but again produced very short rebound durations, high stiffnesse; 

and takeoff angles that were very close to vertical. 
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6.4.2 BOARD STIFFNESS VARIATIONS 
The results of the simulations with the two spring model clearly showed that different 

springboard stiffnesses did affect the takeoff (Figure 6.1) and therefore to achieve the same 
takeoff the gymnast would need to effect some sort of compensation. One way in which 
compensation could be achieved is by altering the leg stiffness. This stiffness would have to 
be predetermined by the gymnast since springboard contact lasts less than 150 ms (e. g. 
Takei, 1988,1989; Takei and Kim, 1990), too brief to enable modification to the mop ement 
to take place during contact (Melvill Jones and Watt, 1971). For a fixed approach, but ýý ith a 
variety of springboard stiffnesses, it was speculated that in order to produce the same 
takeoff, the combined stiffness of the gymnast and the springboard would remain constant. 

The results of the simulations in which the leg spring stiffness of the model was recalculated 
to accommodate board stiffness variations, showed the leg spring stiffness decreasing non- 
linearly as the board stiffness was increased linearly (Figure 6.2). Ferris and Farley (1997) 

found a similar relationship for leg stiffness as the surface stiffness was increased ýýhile 
hopping in place at a fixed frequency. The non-linear relationship can be explained by 

considering the theoretical interaction of springs in series. When springs are arranged 
linearly in series, the overall stiffness is the reciprocal of the sum of the compliances of the 

individual springs, compliance being the reciprocal of stiffness. This is shown in Equation 

6.1, where k0� k, and k, are the overall, leg spring and surface stiffnesses respectively. 

Equation 6.1 can be rearranged to enable the leg spring stiffness to be predicted (Equation 

6.2) and from this equation it can be seen that if the overall stiffness in a two spring system 

is held constant while the stiffnesses of the two springs are varied, a non-linear relationship 

between the two spring stiffnesses results. 

1_l+1 6.1 
k� k, k,. 

k1 = 
k° . k,. 6.21 

k,. - k� 

Figure 6.14 shows the model calculated leg spring stiffnesses against board stiffness data (as 

in Figure 6.2) along with the theoretical leg spring stiffnesses calculated based the 

assumption that the combined stiffness of the two springs was 37.122 kN. m-' (for the mean 

touchdown conditions and takeoff angle for trials one to five, and based on a representative 

board stiffness of 58 kN. m-' with a corresponding leg spring stiffness of 103.125 kN. m-1 ). 

This graph shows that, except for the softest board setting, the theoretical relationship is %* er\' 

close to that found in the simulations, despite the fact that the springs in the two spring 
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model are not arranged in a straight line. In other words it does appear that the leg and board 
springs combine to produce an overall stiffness which is approximately constant for all but 
the softest board stiffness. 
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Figure 6.14. Model calculated and theoretically predicted changes to leg spring stiffness in 
order to compensate for board stiffness alterations. 

The discrepancy between the model calculated and theoretical leg spring stiffnesses at the 

softer board stiffnesses may indicate that for softer board settings the non-aligned 

arrangement of the two springs has a greater effect. At the stiffer board settings, the levelling 

off of the graphs gives an indication of the leg spring stiffness that would be expected for the 

same vault from a very stiff surface (if it were possible). For example, for the same inputs, 

assuming a surface stiffness of 35 000 kN. m-' (as estimated for a force plate by Ferris and 

Farley, 1997) produces a leg spring stiffness of just over 37 kN. m"'. This value is 

approximately the same as the overall stiffness used in the simulation and would tend 

towards the overall stiffness if the surface stiffness was increased further (this is clear from 

Equation 6.2 since the surface stiffness is in the numerator and the denominator). 

The possibility of compensating for springboard stiffness changes by adjusting the 

touchdown horizontal velocity or spring angle rather than the leg spring stiffness sho« ed that 

touchdown spring angle adjustments were most effective. This is consistent with the findings 

that the models tended to be most sensitive to spring angle. The alterations in leg spring 

stiffness required to make the same compensations were also much greater in relative 

magnitude than the spring angle adjustments. 

35 45 55 65 75 
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This raises the issue of what gymnasts should do or should be advised to do when faced with 
a springboard that is stiffer or softer than that to which they are accustomed. Compensating 
by making small changes to touchdown angle seemed to be effective but Figures 6.3 and 6.4 
show quite sharp minima, which mean that if the gymnast does not have an ability to modif% 
touchdown angle precisely the result could be overcompensation. Modifying the horizontal 
velocity at touchdown had only a small compensatory effect. Using leg spring stiffness 
adjustment to compensate required a larger relative change (particularly w hen compensating 
for a reduction in board stiffness, see Figure 6.2) but it was more effective than modifying 
horizontal velocity and less sensitive than adjusting touchdown angle. Adjusting touchdown 
angle or leg stiffness would appear to be the most promising methods of coping with 
springboard stiffness variations, but deciding which would be most effective in practice is 

not straightforward. The answer would depend upon a gymnast's ability to achieve either 
precise, small changes in touchdown angle, or large changes in leg stiffness, but without the 

need to be so precise. The coaching literature does not address this topic and discussions 

with gymnasts and coaches have not identified any consensus 

In order to be able to establish which of the possible methods of compensation for board 

changes gymnasts actually adopt, it would be necessary to have vaults for which the board 

stiffness varies while the takeoff kinematics remain the same. It would then be possible to 

see which of the inputs were altered. The vaults analysed in this study did not ho«ever result 
in any trials where all of the takeoff velocities and the takeoff angle were the same and 
furthermore it was usually the case that the gymnast had changed more than one touchdown 

variable at a time, which complicates the attempt to identify his strategy. Alternatively it 

may be that adjusting more than one touchdown parameter is necessary in some 

circumstances. For example, when vaulting from the springboard at its softest setting, if no 

other input was varied the two spring model would predict a takeoff with slightly increased 

angular and horizontal velocities but greatly reduced vertical velocity. To maintain vertical 

velocity at takeoff the results of the simulations showed that reducing the spring angle at 

touchdown would be the most effective strategy (Figure 6.9); however this in turn reduces 

the horizontal and angular velocities at takeoff. A possible solution would be to increase the 

horizontal velocity and reduce the spring angle at touchdown to help to maintain all three 

velocities despite the reduction in board stiffness (Figure 6.12). Furthermore. an increase in 

leg spring stiffness would help to maintain the vertical velocity at takeoff, while not being 

too detrimental to the horizontal and angular velocities at takeoff (Figure 6.10). 

Table 6.5 draws together the leg spring stiffness estimates from the simulations of the m eI\ e 

vault trials and key data from the analysis of these trials, as described in Chapter Five. In 
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trials 11 and 12 (where the springboard was at its softest setting and the gymnast approached 
it at his preferred speed), the gymnast had a reduced touchdown angle in comparison with 
most of the normal stiffness and approach speed trials (trials Ito 5). In trial 12 his horizontal 
velocity at touchdown was greater and his leg spring stiffness was also estimated to have 
increased, all of which conforms with the strategy suggested above. The takeoff velocities 
achieved in trial 12 were close to those in trials 1 to 5, so the gymnast did seem to 
compensate for the board changes in a way that could be proposed using the model. 

Trials 5 and 11 come closest to having the same takeoff kinematics, but while the board 

setting in each of these vaults was different, the effect of the point of contact «ith the board 

on its stiffness resulted in quite similar board stiffnesses for the two trials. This may account 
for the lack evidence of a clear strategy having been adopted to achieve the similar takeoff. 
However in comparison with trial 5, the slightly larger angle and lower angular and 

Table 6.5. Key data for the twelve vault trials. 

Trial 
Kb 

(kN. m"1) 

Kleg 

(kN. m"') 

0 
td 

(rad) 
Vhtd 

(m. s-I) 

0 
tof 

(rad) 
Vhtof 

(m. s-I) 
titot 

(m. s-') 

0 
tof 

(rad. s-1) 

1 45.9 110.156 1.15 7.70 1.89 5.43 3.89 6.09 

2 62.4 135.156 1.12 7.95 1.81 5.29 4.10 6.72 

3 58.6 121.094 1.10 7.86 1.79 5.11 4.16 6.59 

4 54.8 111.719 1.18 7.95 1.91 5.39 3.96 6.14 

5 42.4 139.063 1.11 7.94 1.85 5.51 3.94 6.21 

6 57.4 121.875 1.20 6.21 1.79 4.23 4.01 5.35 

7 62.4 94.531 1.26 5.55 1.84 4.20 3.80 4.38 

8 54.3 79.688 1.17 6.57 1.86 4.50 3.82 5.49 

9 48.6 106.250 1.17 7.14 1.88 5.13 3.92 5.74 

10 34.9 293.750 1.13 7.36 1.91 5.38 3.97 5.46 

11 37.8 129.688 1.11 7.85 1.88 5.48 3.94 6.19 

12 32.8 242.969 1.11 8.09 1.91 5.86 3.89 5.93 

N. B. Kb and Kieg are the board stiffness and the calculated leg spring stiffness 

respectively. 0 td and Vhtd are the spring angle and mass centre horizontal velocity at 

touchdown. 0 tof, Vhtof, vvtof and 6 
tof are the takeoff spring angle and the takeoff horizontal. 

vertical and angular velocities respectively. Kieg values were calculated using the model, 

while the other data were determined from the analyses in Chapter Five. 
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horizontal velocities at takeoff in trial 11 are consistent with the model predictions for lo%Ler 

board and leg stiffnesses, along with the slower approach (Figures 6.8 and 6.10). Similarly. 

Figures 6.8 and 6.10 illustrate that lower horizontal velocity at touchdown and lower leg 

stiffness have opposite effects on vertical velocity at takeoff, so the combination of the t« o 

could result in the same vertical velocity, as was found in trial 11 compared with trial 5. 

The fact that board stiffness varies quite appreciably due to foot contact position could have 

important implications for gymnasts. Trials I to 5 were conducted with the board at the same 

stiffness setting, yet Table 6.5 shows that the board stiffness varied appreciably between 

trials. The results from the board stiffness testing (Chapter Five, section 5.4.2) combined 

with the actual range of foot contact positions found in the vaults analysed revealed that the 

board stiffness can vary by 32% (32.3 to 42.7 kN. m-1) with the board at its softest setting and 

56% (45.3 to 70.6 kN. m-) with the board at its stiffest setting. If gymnasts are aware of this 

variability and are able to control their approach such that they can contact the board at a 

precise point on its surface, they may have another way in which the takeoff can be 

controlled and possibly a method of compensating for board variations between venues. 

Conversely, if gymnasts are unaware of this variability and do not achieve consistency of 

foot placement this could adversely affect their performance. 

An indication of the consistency of foot placement that might be achievable comes from 

studies of long jumping. In terms of assessing this aspect, perhaps the most important 

difference between long jump and vault takeoffs is the fact that long jumpers have up to six 

jumps, only the best of which counts. Therefore they may try to get at least one legal jump 

(takeoff behind the board) early in the competition with the takeoff foot well behind the 

board, thus `artificially' increasing the apparent variability of the final foot placement. 

Despite this, the majority of the elite long jumpers analysed by Hay (1988; 20 women, 18 

men) and Lees, Graham-Smith and Fowler (1994; 7 men) achieved standard deviations of 

the position of the foot at takeoff of 0.05 m or less. Of the six women long jumpers analysed 

by Lees, Fowler and Derby (1993) only two had standard deviations of less than 0.05 m. but 

all were less than 0.07 m (though only the best three or four jumps per athlete were 

reported). These figures compare with a standard deviation for foot placement on the 

springboard of 0.10 m for the first five trials by the gymnast analysed in Chapter Five, 

which, if the gymnast was not consciously changing his foot placement, would indicate that 

greater consistency is achievable. 
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6.4.3 APPROACH AND CONTACT STRATEGIES 
The results from simulations in which inputs were changed systematically to assess the 
effects on the takeoff conditions showed that the touchdown spring angle and horizontal 

velocity were much more influential than spring stiffness. Increasing either the spring angle 
or the horizontal velocity resulted in increased angular and horizontal velocities at takeoff, 
while increasing the spring angle also led to a large reduction in vertical velocity- at takeoff. 
This last finding can be explained by considering the spring angle at takeoff: 

0 only the touchdown spring angle had a really noticeable effect on the takeoff 
spring angle in that a larger angle at contact (i. e. closer to vertical) resulted in a 
spring angle at takeoff which was further past vertical, 

0 the vertical velocity at takeoff is the sum of the vertical components of the spring 

extension rate and the transverse velocity of the mass centre (plus the board 

spring extension rate in the two spring model), 

" if the takeoff occurs further past vertical then the vertical components of both the 

spring extension rate and the transverse velocity of the mass centre are reduced. 

Thus in order to increase the vertical velocity at takeoff, both models indicated that smaller 

touchdown spring angles were required, but this also reduced the horizontal and angular 

velocity at takeoff. The men's artistic gymnastics Code of Points (FIG, 1997) indicates that 

gymnasts should strive for both postflight horizontal distance and height. Postflight 

horizontal distance is due to horizontal velocity and time in the air (which in turn is largely 

due to vertical velocity at horse takeoff). Since gymnasts performing continuous rotation 

vaults like handsprings generally gain vertical velocity but lose horizontal velocity during 

contact with the horse (Dillman, Cheetham and Smith, 1985; Takei, 1988,1989; Takei and 

Kim, 1990; Takei, Blucker, Dunn, Myers and Fortney, 1996) it is necessary for them to 

achieve a high horizontal velocity during their approach to the springboard and not to lose 

too much of it during the springboard and horse contacts if they are to maximize their 

postflight distance. Hence, it could be argued that during springboard contact the 

maintenance of horizontal velocity is more important than gaining vertical velocity . 
When 

greater pre- and postflight angular velocity is also required (in handspring and forward salto 

vaults for example) it would make even more sense to sacrifice gaining vertical ý elocity 

during springboard contact. Some of the loss in vertical velocity might be offset by making 

the legs stiffer or contacting a stiffer part of the board, although these changes would also 

tend to reduce the takeoff horizontal and angular vclocities slightly. 
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Altering both the horizontal velocity and the spring angle at touchdown produced takeoff 
angle and vertical velocity results which were virtually identical to those from simulations 
where only the spring angle was changed. This was anticipated due to the minimal influence 

of the horizontal velocity on these two takeoff variables as already noted. The effect on the 
takeoff horizontal and angular velocities of increasing the horizontal velocity as well as the 
spring angle at touchdown was also as expected: increasing the horizontal velocity at 
touchdown shifted the curves up by consistent amounts 

The effects of board stiffness variation over the length of the board surface were explored in 

a series of simulations using the two spring model (see Figure 6.1) and found to affect all of 
the takeoff velocities but to have least effect on horizontal velocity. The effect on takeoff 

vertical velocity was the most notable. At the higher board stiffnesses the takeoff v ertical 

velocity was increased, which can be ascribed once again to the influence of spring angle at 
takeoff: a stiffer board meant that the model lost board contact sooner (not so far past the 

vertical), therefore the vertical component of the leg spring extension velocity was greater 

and the negative contribution of the mass centre transverse velocity was reduced. Under 

conditions in which the predicted vertical velocity at takeoff was low (large touchdokkn 

spring angles), the effect on vertical velocity of contacting the board in different places could 

approach 60%, though typically it was around 20%. 

In trials 6,7 and 8 the gymnast was required to approach the board more slowly than normal 

but still to perform the same handspring vault. The simulation results indicated that this 

would lead to lower angular and horizontal velocities at takeoff, therefore to compensate a 

larger touchdown angle (more upright at contact) should be used. This was indeed found to 

be the case, although the gymnast still did not manage to achieve the same takeoff velocities 

as in the normal approach trials. The drawback of increasing the touchdown angle is that the 

vertical velocity at takeoff is predicted to be reduced, however, as noted above, it may be 

possible for gymnasts to achieve adequate vertical velocity by contacting a stiffer part of the 

springboard or making their legs stiffer. Alternatively, gymnasts might adopt a more jump- 

like takeoff to increase vertical velocity, for example by using arm swing and greater than 

normal hip, knee and ankle extension. The results from the trials analysed for this study' and 

inspection of the video do not lead to a clear conclusion as to whether one or more of these 

options were chosen by the gymnast. 

Looking at handspring and forward salto vaults, Takei (1991) found that the best vaulters 

approached the springboard with high horizontal velocity (a mean of 8.19 m. s-1 for the best 

11 of 51 gymnasts compared with 7.69 m. s"' for the worst 11) but otherwise their touchdoNN n 

kinematics were very similar to the poorer vaulters. From this, the models «vou, J predict 
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greater takeoff horizontal and angular velocities for the better vaulters, however Take, 
(1991) found that only their horizontal velocity was substantially greater. This does not 
necessarily detract from the model predictions since it is possible that by running up faster 

the better vaulters do not achieve (and presumably do not need) greater angular Velocity in 

preflight, but they get more of their angular velocity from the simple rebound. Simulations 

using inputs estimated from Takei's data supported this suggestion and reiterated the ability 

of the models to account for the majority of the velocities at springboard takeoff. 

Since both touchdown horizontal velocity and spring angle had similar effects on takeoff 

(with the exception of vertical velocity at takeoff) it would be of interest to discover «hether 

adjusting one is preferable to the other. Takei (1991) found that horizontal velocity at 

springboard contact, not touchdown angle, was different between the best and worst vaulters. 

Takei stressed the importance of the approach speed by stating that 'gymnasts should 

develop a large horizontal velocity in the hurdle and preflight by vigorously sprinting the 

approach run' (p. 74). In his 1989 paper, Takei presented information for handspring , aultý 

which when compared with his 1991 paper on handspring and forward salto vaults sho, ýed 

that gymnasts had much greater horizontal velocities at board touchdown for the latter vault. 

In preflight, the major difference between the two vaults was the greater angular momentum 

for the handspring and forward salto. Unfortunately Takei (1989) did not report body angles 

at touchdown, but the difference between horizontal velocities at board touchdown does 

provide some support for the notion that this was the preferred input to adjust in order to 

increase takeoff angular momentum. Further support for the contention that horizontal 

velocity may be the best input to vary, comes from the simulations which sho%ýed that to 

increase angular velocity at board takeoff by increasing the touchdown angle, would result in 

an accompanying reduction in vertical velocity, which would be unhelpful to the gymnast. 

This problem could be alleviated to some extent by increasing the leg spring stiffness and'or 

the board stiffness. While altering two or three variables as opposed to just one is more 

complex, the results from the analysed vaults did show that more than one input at a time 

was varied. 

The discussion has concentrated on handspring type vaults but it is interesting to assess 

whether the models might work for other types of vault. Brüggemann (1994) stated that 

vaults with twists are essentially the same at springboard takeoff as those without twists, 

which implies that the models should be suitable for these vaults. However, Brü`gemann 

was presumably considering only continuous rotation vaults rather than Hecht vaults, in 

which the direction of rotation of the body is reversed during horse contact and therefore Ie; s 

angular momentum at springboard takeoff would be expected. Few data have been published 
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on the kinematics of the Hecht, but sufficient are available to enable a simple evaluation. 
Sprigings and Yeadon (1997) suggested that mass centre horizontal velocities at takeoff from 
the springboard in excess of 5.6 m. s-' would be optimal, which was supported by King 
(1998) who found horizontal velocities between 5.73 and 6.28 m. s-'. These velocities are 
greater than all but one of the handspring trials analysed in this study and the great majority 
of the handspring and handspring and forward salto vaults reported by Takei (1988,1989, 
1991) and Takei and Kim (1990). The results of the simulations with the models indicated 

that achieving high horizontal velocities at springboard takeoff could be achieved by 

approaching the board faster and/or contacting the board at a larger angle. Both of these 

strategies also result in low vertical velocities and high angular velocities at takeoff. The 
latter would be particularly detrimental to the reversal of rotation necessary during horse 

contact (angular velocities of around 3 to 4 rad. s-' have been suggested by Sprigings and 
Yeadon (1997) and found by King (1998), compared with values in excess of 6 rad. s-' for the 
five normal approach handspring vaults analysed in Chapter Five, see Table 6.7). Again by 

comparison with the normal approach handspring vaults, the Hecht vaults analysed by King( 

(1998) did reveal larger touchdown angles, but lower horizontal velocities at touchdown. At 

takeoff the vertical velocities were lower than for the handspring vaults, but so too were the 

angular velocities. In the light of this it can be seen that the models developed in this study 

give some indication of suitable approach strategies for gymnasts performing Hecht vaults, 
but that springboard contact for the Hecht vault involves more than a simple rebound from 

the springboard, in order to limit the gain of angular velocity. 

6.4.4 MODEL SELECTION 
Both models have shown that, for the trials analysed, the majority of the angular and linear 

velocities at springboard takeoff can be accounted for by a simple rebound. The two spring 

model gave angular and horizontal velocities which were always within 20% of the 

measured values and in the majority of cases predicted them to within 10%, however it 

predicted the takeoff vertical velocity much less well. The one spring model generally did 

not get as close to the measured angular and horizontal velocities, but was better able to 

account for the vertical velocity. Little difference was found between the models in terms of 

rebound durations as a percentage of the gymnast's actual contact time with the springboard. 

Therefore, based on the closeness of fit to the analysed vaults it is difficult to choose 

between the models. The sensitivity of the models to the uncertainties in the input estimates 

was also very similar, with only the sensitivity to the touchdown spring angle being of note. 

This sensitivity to the spring angle data must be kept in mind when using the models, 

particularly when trying to utilize kinematic data reported in the literature since the way in 

which body angle at touchdown is defined would affect the simulation results. 
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One way in which the results of the two models noticeably differed wk as in their estimates of 
spring stiffness; for the same vaults the two spring model predicted considerably greater 
stiffnesses than the one spring model. This can be explained if the two spring model is 

approximated as a two spring system with the springs constrained to move in a straight line 
(as mentioned previously, the combined stiffness of the two springs can be calculated by 

adding the compliances of the two springs and taking the reciprocal). For any trial, if the one 
spring model stiffness is assumed to be the same as the combined stiffness of the two springs 
in the two spring model and given that the directly measured springboard stiffnesses 
(Chapter Five) are similar in magnitude to the estimated stiffnesses from the one spring 
model simulations, the leg spring would need to be much stiffer than the one spring model 
stiffness. For example, if the one spring model stiffness was 40 kN. m-' and the board spring 

stiffness was 55 kN. m"', the leg spring stiffness would be approximatel'. 146.7 kN. m-'. With 

the springs not arranged linearly the actual values are naturally different but a similar pattern 

emerges. The geometry of the two spring system means that the touchdown angle is smaller 

and the takeoff angle greater than the one spring simulation, therefore the actual leg spring 

stiffnesses predicted by the two spring model are somewhat lower than the approximation 

above would suggest, but still much greater than the one spring model stiffness estimates. In 

addition, the trends in stiffness estimates did not match exactly, for example the trial'ýhich 

produced the stiffest spring estimate for the one spring model did not result in the stiffest leg 

spring estimate with the two spring model. 

When using the models to identify possible strategies which gymnasts might use in their 

approach to and contact with the springboard, both models produced remarkably similar 

results. The magnitudes of the takeoff velocities and spring angle were slightly different, but 

the trends in the data were consistent. However, one distinct advantage of the two spring 

model is its ability to enable the effects of the stiffness of the surface to be investigated 

directly. In the simulations performed in this study, the board stiffness affected the vertical 

velocity at takeoff more than the other velocities (Figure 6.1) and it had a considerable 

influence on the leg spring stiffness estimates. The leg spring stiffness was affected more at 

lower board stiffnesses, which suggests that the benefit of having a two spring model is 

greatest for relatively soft surfaces. 

Both models are simple to use and the additional complexity of the two spring model dots 

not add substantially to the computation time of the simulations. However obtaining the 

inputs for the two spring model is somewhat simpler since it does not require detailed 

knowledge of the feet position during springboard contact; the one spring model requires a 

`base of the spring' point to be determined (which was taken to be the mean position of the 



157 

mid-metatarso-phalangeal joints of the two feet at the lowest point during board contact). In 
addition, the spring angle in the two spring model matches more closely what g` mnasts and 
coaches would understand as ̀ blocking angle' which adds to the attractiveness of the two 
spring model. 

To summarize model selection, the one spring model is adequate for the tasks it can perform 
(it cannot be used to investigate surface and leg stiffnesses separately) and in those cases 
produces similar results to those of the two spring model. On balance hog; ever, the two 
spring model has a wider range of uses, making it the preferred model for the majority of the 
analyses in this study. 

6.5 SUMMARY 
In this chapter it was demonstrated that both the one and two spring models fit the analysed 

vaults in terms of the duration of the rebound and that the majority of the takeoff velocities 

can be accounted for by simple rebounds. The spring stiffness values estimated by the 

models show reasonably good agreement with the stiffnesses found by other investigators, 

although it was highlighted that direct comparisons are not always possible. On balance the 

two spring model was more useful than the one spring model, owing to its ability to model 

surface stiffness separately from the leg spring stiffness, though otherwise the models' 

predictions agreed very closely. 

The influence of springboard stiffness on takeoffs from the board was appreciable and a 

number of ways of accommodating board stiffness changes were suggested, including 

adjusting the leg spring stiffness. Furthermore, agreement between model derived strategies 

and actual performances was found. Although adjusting leg spring stiffness to cope ww ith 

changes in springboard stiffness was shown to be feasible, it was suggested that a 

combination of modifications to the approach and board contact might be required. It wwas 

also demonstrated that the models enable strategies to be suggested which could be used to 

achieve particular changes to springboard takeoff. Although the takeoff velocities predicted 

by the models do not exactly match the actual data from the vaults analysed, it was possible 

to investigate the influence of different approach variables and springboard stiffnesses on the 

subsequent takeoff. Hence, an insight into the mechanisms operating during board contact 

was gained. 
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CHAPTER SEVEN 
DISCUSSION AND SUMMARY 

7.1 INTRODUCTION 
While the springboard contact in gymnastic vaulting is not judged in competition, it 

underpins the rest of the vault. The research literature supports its importance, but the 

coaching literature lacks a consensus on the subject and sometimes contradicts detailed 

analyses of the activity. In addition to the approach to the springboard and the way the body 

is controlled during contact with the springboard, conversations with gymnasts suggested 

that springboards also vary in their response to the gymnast's contact, though no mention is 

made of this in the literature. Even with skilled and willing subjects, systematically 
investigating the influence of each of the variables involved in springboard contact by direct 

intervention would be unlikely to be successful, particularly since springboard contact is 

physically very demanding, so the number of vaults a gymnast could perform would be 

limited. Using a suitable mathematical model however, offered a means of investigation. 

The purpose of this study was to develop an understanding of the mechanics of the 

springboard contact phase of gymnastic vaulting. The method adopted to achieve this 

involved analysing real vaults and modelling the gymnast-springboard contact using a 

mass-spring system. The aim was to explore the relationships between hurdle and preflight 

kinematics as modified by the springboard contact, and to determine the strategies a gymnast 

might employ to achieve the desired springboard takeoff conditions. To provide a focus for 

the study the following questions were raised: 

" What proportion of a gymnast's linear and angular velocities at takeoff from the 

springboard can be accounted for by a simple rebound? 

0 To what extent does springboard stiffness affect takeoff kinematics? 

" How does changing the kinematics at springboard touchdown affect the takeoff 

from the board? 

" What effect does the gymnast's stiffness during springboard contact have on the 

takeoff from the board? 

0 How can gymnasts compensate for springboard stiffness differences? 
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" What modifications to a gymnast's approach to and contact vk ith the springboard 
are most effective for achieving specific changes to preflight? 

This chapter reviews the two models developed and the results from the investigations 

performed, leading to the answers to these questions. The chapter concludes with 
suggestions for future studies. 

7.2 THE MODELS 
Previous mass-spring models of human hopping, running and jumping have been concerned 

solely with the linear motion of the mass centre and the duration of ground contact, and have 

therefore been able to treat the body as a point mass on a spring (e. g. Blickhan, Friedrichs, 

Rebhan, Schmalz and Wank, 1995; Farley, Blickhan, Saito and Taylor, 1991; McMahon and 
Cheng, 1990). To be able to investigate the angular motion of the gymnast in vault 

springboard contacts, the two models developed for this thesis treated the body as a uniform, 

rigid cylinder supported by a spring constrained to maintain alignment with the cylinder. The 

cylinder was defined as having the same mass as the gymnast being modelled (less the mass 

of the feet for the two spring model) and a fixed moment of inertia equivalent to the moment 

of inertia of the gymnast at springboard touchdown. In reality, a gymnast's moment of 

inertia increases up to the point of takeoff from the springboard, but the lack of sensitivity of 

the simulation results to moment of inertia perturbations was taken as an indication that 

using a constant value for each simulation was reasonable. The two spring model wwas also 

insensitive to the feet mass between the leg and board springs, and it was argued, on the 

basis of previous research (McMahon and Greene, 1979; Sprigings, Stilling and Watson, 

1989), that no mass representing the effective mass of the springboard was required since its 

influence was likely to be negligible. 

Results from the hopping and running jump study reported in Chapter Three indicated that 

using a linear spring to represent the legs was a good approximation. Linear springs have 

previously been used for mass-spring models of human hopping and running (e. g. Blickhan, 

1989; McMahon and Cheng, 1990), but in these cases the ground contact was assumed to be 

symmetrical whereas in vaulting it clearly is not (for example the horizontal velocity is much 

lower at takeoff from the springboard than at touchdown). The vertical ground reaction 

force-mass centre displacement graphs presented by Cavagna, Franzetti, Heglund and 

Willems (1988) were used by McMahon and Cheng (1990) to justify using a linear spring for 

hopping and running; the running jump analysis in Chapter Three of this thesis used the 

same type of analysis to extend the leg spring linearity justification to asymmetrical ground 



160 

contacts. Tests conducted on the springboard (Chapter Five, sections 5.3 and 5.4.2) showed 
that the board could also be modelled as a linear spring and that the board damping was Iow. 

The one spring model treated the springboard and the gymnast's legs as a single spring, 
while the two spring model kept them separate and constrained the spring representing the 
springboard to move vertically. Both models could be used in two ways: either to estimate 
the spring stiffness required to best fit a particular vault, or to predict the takeoff kinematics 

given the touchdown kinematics and spring stiffness. The first of these modes of operation 
required a criterion against which the fit of the model (and therefore the suitability of the 

stiffness) could be judged. The angle of the line joining the middle of the feet to the mass 
centre of the gymnast at takeoff from the springboard (takeoff angle) was used. %lctitahon 

and Cheng (1990) had used this method of choosing the spring stiffness in their model of 

running and hopping, although because they assumed perfect symmetry of ground contact, 
the takeoff velocity of their model also fitted exactly. While forcing the takeoff angle to be 

correct might appear to favour that variable arbitrarily over the takeoff velocities, there is an 

appealing logic to associating the takeoff angle with spring stiffness. That is to say, a spring 

which is too stiff causes takeoff to occur too close to vertical, while a spring «hich is too soft 

causes takeoff to occur too far past vertical or not at all. Furthermore, simulations in which 

the spring stiffness was sought on the basis of optimizing a combination of the takeoff 

variables (without constraining the spring angle), either did not manage to find an optimum, 

or resulted in unrealistically high spring stiffnesses and short contact times. The leg spring 

stiffness estimates found using the two spring model were somewhat higher than the 

majority of the previously published stiffness estimates but, given the difficulty of making 

exact comparisons between estimates from different activities and methods of estimation. 

they were sensible. 

In order to estimate the leg spring stiffness with the two spring model it was necessary to 

determine the stiffness of the springboard. Springboard tests (Chapter Five, sections 5.3 and 

5.4.2) found that board stiffness varied not just in response to adjustments to the board 

setting but also to the point of contact with the board. However springboard damping ýý as 

low and did not vary greatly from one contact point to another, or between board settings. 

Subsequent sensitivity analyses (Chapter Six, section 6.3.1) found that the two spring model 

leg stiffness estimates were only slightly sensitive to board stiffness, but other« ise the model 

was insensitive to both board stiffness and damping. Being able to alter the board and leg 

spring stiffnesses separately is a distinctive feature of the two spring model and enabled 

strategies involving board and leg spring stiffnesses to be investigated independently. 
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7.3 RESEARCH QUESTIONS 
The results of the simulations conducted in which the approach and board contact variables 
were systematically adjusted to see their effects on the board takeoff are summarized as the 
questions posed in Chapter One are addressed. 

What proportion of a gymnast's linear and angular velocities at takeoff from the 
springboard can be accounted for by a simple rebound? 

Both models showed that a simple rebound can produce the majority of the linear and 
angular velocities required at takeoff from the board in handspring vaulting. The two spring 
model matched the takeoff horizontal and angular velocities calculated from the vaults 
analysed in Chapter Five more closely than the one spring model, however the one spring 
model showed better agreement with the vertical velocity at takeoff. The vaults analysed 

were all handsprings, but simulations using inputs estimated from data on handspring and 
front salto vaults (Takei, 1991) indicated that the majority of the takeoff velocities were still 

accounted for using the one and two spring models. Comparing the Hecht vault data 

presented by King (1998) with the normal approach handspring vaults analysed in this stud', 

showed that the approach to the springboard for Hecht vaults was slower than for the 
handspring vaults, but that the Hecht touchdown angles were larger (closer to vertical). At 

takeoff from the board however, the horizontal velocity was greater for Hechts than 

handsprings while the Hecht angular and vertical velocities were lower. The simulation 

results in Chapter Six showed that the models would indicate increasing the touchdown 

angle to limit the loss of horizontal velocity during springboard contact and that this would 

also reduce the vertical velocity at takeoff, thereby matching the general pattern for Hecht 

vaults. However the simulations also showed that achieving a high horizontal velocity in 

preflight would be accompanied by high angular momentum, which is not found in Hecht 

vaults, therefore gymnasts performing Hechts cannot just rebound from the springboard but 

must be doing something to limit the angular momentum. 

The proportion of vertical velocity at takeoff produced by both models was lower than for 

the horizontal and angular velocities. In a real vault the mass centre of the gymnast is further 

from the feet at takeoff than at touchdown, because of flexion of the shoulders and the 

extension of the ankles, knees, and hips. This movement mainly contributes to the vertical 

velocity because the body angle at takeoff is only just past vertical. The models in this stud} 

were deliberately kept straightforward to explore the simple rebound influence and therefore 

do not include this additional component of vertical velocity. To improve the fit of the 

models while retaining a mass-spring structure would entail contrivances such as variable 
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stiffnesses or negative damping, thus adding to their complexity, making their use and 
interpretation more difficult (e. g. Blickhan, Friedrichs, Rebhan, Schmalz and Wank, 1995) 

It is interesting to note that Alexander (1992) has criticized mass-spring models of jumping 

on the basis that models with springy legs would jump too high. This is contrary to the 

finding that the models in this study take off with less vertical velocity than the gymnast. 
However, Alexander does not consider a number of important factors: the initial impact with 

the ground, rotational kinetic energy and the possible upper limit to leg stiffness. In 

calculating the initial conditions for the models in this study, an instantaneous impact was 

assumed, one consequence of which was the generation of angular momentum. Thus not all 

of the linear kinetic energy of the approach can be converted into potential energy following 

takeoff, since much has been transferred to rotational kinetic energy. Furthermore, 

Alexander (1992, page 7) states that `a model with a spring instead of a muscle would 

suggest falsely that high jumpers should run up as fast as possible', which ignores the fact 

that in order to maximize vertical velocity at takeoff, the model would need to be vertical. 

This would demand increasing leg stiffness as the horizontal velocity of the approach 

increased (see Figures 6.5d and 6.7d) and it seems reasonable to assume a physical upper 

limit to leg stiffness (e. g. Blickhan, 1989) which would mean that running up faster would at 

some point fail to increase the height achieved (as predicted by Alexander (I 990b) and found 

empirically by Greig, Yeadon and Kerwin (1996)). Seen in this light, mass-spring models 

would be useful for the investigation of the mechanics of jumping. 

To what extent does springboard stiffness affect takeoff kinematics? 

In Chapter Five it was found that by a combination of foot contact position and adjustment 

of the springboard, the springboard stiffness ranged from approximately 35 to 75 kN. m-'. 

Results from the two spring model simulations in which the leg spring stiffness was held 

constant while the board spring stiffness was increased throughout this range, showed that 

each of the takeoff variables were affected, with the vertical velocity being affected most. 

The vertical velocity varied from 1.99 to 3.12 m. s-', the angular velocity from 6.87 to 

6.19 rad. s-', the horizontal velocity from 6.07 to 5.75 m. s-' and the takeoff angle from 1.94 to 

1.78 radians. Comparison of these variations with the data on handspring ý aults in Chapter 

Five and with data in the literature indicated that the effect of board stiffness variation v as 

likely to be of importance. 

The fact that the point of contact with the springboard surface varied the board's stiffness (in 

fact by a similar amount to when the springboard adjuster was moved through its full range 

for a fixed point of contact) has implications for the way in which `gymnasts should practise 
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their approach to the springboard. Gymnasts need to appreciate the influence on springboard 
stiffness of the contact point with the board and it would be sensible for them to aim to be as 
precise as possible with their foot placement. Gymnasts vaulting without being aware of this 
could have to make adjustments during preflight and horse contact if the point of contact, 
and therefore the board stiffness, varies from vault to vault. Conversely, a gymnast v ho 
understands the effect of foot placement on the springboard's characteristics and who can 
strike the board precisely, could use this to adjust the takeoff. 

Kreighbaum (1979) highlighted the fact that gymnasts' foot placements on the springboard 
were inconsistent and the results in Chapter Five (Table 5.1) confirmed this: ho« ever it is 
possible that these variations in foot placement were deliberate. In discussion, gymnasts have 
commented that while they target a certain region of the springboard, they do not think about 
where to contact the board during the approach, especially for more difficult vaults. The 

variability in the foot placements would therefore seem unlikely to be deliberate attempts to 
utilize the differences in springboard stiffness. On the other hand, observations reveal that 

gymnasts can modify their vaults to accommodate unexpected takeoff conditions: for 
example at the 1991 World Student Games a gymnast missed the springboard but vaulted 
successfully from the foam safety pad surrounding the board. However, not contacting in a 
favourable position would be a bigger problem for more difficult vaults. 

How does changing the kinematics at springboard touchdown affect the takeoff from 

the board? 

In Chapter Six simulations were reported in which the horizontal velocity and the spring 

angle at springboard touchdown were varied, separately and in combination, over a range of 

realistic values. Other inputs were held constant during these trials. The results from the one 

and two spring models were remarkably similar, so no distinction between models needs to 

be made when addressing the question. 

Increasing the horizontal velocity or the spring angle at touchdown increased appreciably 
both the angular and horizontal velocities at takeoff. Only the increase in touchdown spring 

angle had much of an effect on the spring angle at takeoff, causing it to increase, but not to 

the extent to which the angular and horizontal velocities had been increased. The touchdown 

spring angle had a much greater effect than the touchdown horizontal velocity on the vertical 

velocity at takeoff; though increases in each led to reductions in vertical velocity at takeoff. 

The very similar influences on the takeoff horizontal and angular velocities of increasing the 

horizontal velocity or the spring angle at touchdown, led to a combined effect %% hich vas to 

amplify consistently the increases either one on its own produced. For example in addition to 
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the increase in horizontal velocity at takeoff due to increasing the touchdoNk n spring angle. a 
ten percent increase in touchdown horizontal velocity resulted in an average further increase 
in horizontal velocity at takeoff of 17-18%. The smaller effect of the horizontal velocity' at 
touchdown on the vertical velocity and spring angle at takeoff, meant that when both the 
horizontal velocity and the spring angle at touchdown were altered, the results were virtually 
identical to those when only the touchdown angle was changed. 

What effect does the gymnast's stiffness during springboard contact have on the 
takeoff from the board? 

The results of two spring model simulations in which the leg stiffness was adjusted to cover 
a range of realistic values showed that only the vertical velocity at takeoff «as appreciably 

altered. Increasing the leg stiffness tends to make the takeoff occur earlier ýk hen the spring 

angle is not so far past the vertical and therefore the contribution to vertical velocity of the 

radial velocity of the mass centre is increased, while the negative contribution of the angular 

velocity of the model is reduced. The net result is therefore that stiffer legs produce a higher 

vertical velocity at takeoff. 

Although the effect of leg stiffness variation on vertical velocity at takeoff is relatively small 
by comparison with the influence other inputs have on takeoff, it could still have a role. High 

horizontal and angular velocities at takeoff from the springboard are desirable for handspring 

type vaults and can be achieved by increasing the horizontal velocity and/or spring angle at 

touchdown, however these both reduce vertical velocity at takeoff. Increasing the leg 

stiffness can help to maintain vertical velocity and combining this v, ith using a stiff 

springboard setting and contacting at a stiff part of the board would help further. This would 

be likely to increase the stress on the gymnasts' legs, but in competition gymnasts do not 

perform many vaults and if they are well conditioned this is unlikely to be a great concern. 

How can gymnasts compensate for springboard stiffness differences? 

Evidence was presented in Chapter Six which showed that for the same approach to the 

board, changes in board stiffness could be compensated for by alterations to leg spring 

stiffness, such that at takeoff the angular, horizontal and vertical velocities were within 3.3%, 

1.0% and 7.5% respectively of the original values. The relationship between board and le`' 

spring stiffnesses was non-linear, with the leg spring stiffness reducing as the board spring 

stiffness was increased. Others (e. g. Ferris and Farley, 1997) have also found that humans 

compensate for surface stiffness changes by altering their leg stiffness to produce an o% eral 

stiffness of leg and surface which is constant. However it has been pointed out (Alexander, 

1997; Ferris and Farley, 1997) that this is only likely to be feasible when surface and subject 
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stiffnesses are ̀ similar' (due to the fact that the overall stiffness is the reciprocal of the sum 
of the constituent compliances, therefore the most compliant component will dominate the 
result if there is much difference between components). Results from this study show that 
this is the case in vault springboard contacts. 

Modifying the horizontal velocity or spring angle at touchdown, instead of the leg spring 
stiffness, were also investigated as possible ways of achieving nearly the same takeoff from 
the board if the board stiffness was altered. Only the spring angle at touchdown proved to be 

effective, with a lower board stiffness requiring a reduced spring angle, while a higher board 

stiffness required an increased spring angle. However the results showed quite sharp minima 
(at a 5% change to spring angle) for the root mean squared differences between the original 
and board adjusted simulations. This means that gymnasts would have to have precise 
control over their body angle at touchdown in order to make use of this method of 

compensation. 

Leg spring stiffness or spring angle adjustments were therefore found to be the effective 

ways to compensate for board spring stiffness changes. To compensate for the same board 

stiffness alteration, large leg spring stiffness changes were necessary compared with small 

spring angle adjustments. The ability to achieve small, precise changes to spring angle, or 
large changes to leg stiffness, might determine which would be the preferred strategy. While 

changes to horizontal velocity were not as effective, the possibility that adjusting more than 

one input at a time could be a useful strategy meant that horizontal velocity alterations could 

still have a function. An example of how a combination of adjustments could be used was 

proposed and results from the trials analysed in Chapter Five provided evidence that this 

strategy had been adopted. 

What modifications to a gymnast's approach to and contact with the springboard are 

most effective for achieving specific changes to preflight? 

Considering each of the takeoff variables, the results from Chapter Six (section 6.3.3) 

revealed that: 

" increases to angular velocity and horizontal velocity at takeoff vi ere produced 

most effectively by increasing either the spring angle or the horizontal velocity at 

touchdown, or both; 

" vertical velocity at takeoff was increased most effectively by reducing the spring 

angle at touchdown (i. e. leaning back more); increasing board stiffness (by' board 

adjustment or point of contact with the board) was also effective; 
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" increasing the spring angle at takeoff (i. e. taking off with a greater forward lean) 
was best achieved by increasing the spring angle at touchdown. 

In deciding upon the input to alter in order to achieve a particular change to takeoff, the other 
effects of alterations to that input must be considered. For example, if more angular velocity 
at takeoff is desired, increasing either the horizontal velocity or spring angle at touchdown 

would be effective. However (to achieve the same increase in angular velocit`) increasing 

the spring angle at touchdown leads to a much greater reduction in vertical velocity at 
takeoff than increasing horizontal velocity at touchdown. Horizontal velocity increases still 
lead to slight reductions in vertical velocity, but this could be compensated for by striking a 
stiffer part of the springboard and/or making the leg spring stiffer. This is another example 
(see also Chapter Six, section 6.4.2) which indicates that a combination of adjustments may 
be a preferable strategy. 

In addition to looking at the effectiveness of a particular input in altering some aspect of the 

takeoff, consideration must also be given to the ability of a gymnast to control each variable. 
Adjusting the spring angle at touchdown may be effective in principle, but the simulations 

show that the takeoff is quite sensitive to this input, therefore the ability of the gymnast to 

make small modifications to the angle would be critical. Similarly, the variation in 

springboard stiffness, as a function of the point of contact with its surface, could be used to 

alter the takeoff if the point of contact could be accurately controlled. This possibility has not 

been discussed in the coaching literature, though some gymnasts have reported taking it into 

consideration. Adjustments to horizontal velocity at touchdown and leg spring stiffness 

would not require such precision and so may be more useful in practice. Evidence from the 

literature which lent some support to the use of horizontal velocity to alter the angular 

velocity at takeoff was discussed in Chapter Six. 

The identification of several ways in which to alter the takeoff from the springboard has 

implications for training and conditioning. To make use of the influence of the touchdo'ý n 

angle or foot contact position, gymnasts would clearly have to train to achieve the necessary 

control over these factors. Furthermore, although achieving approach speeds higher than 7.5 

to 8 m. s"' should be relatively straightforward, maintaining control of the other inputs at the 

same time is more difficult. This and other studies (e. g. Ferris and Farley. 1997) have found 

that humans can change their leg stiffnesses, but it has not been established that leg stiffness 

is consciously controlled. Farley and Gonzalez (1996) suggested that leg stiffness may be 

adjusted through limb posture changes (e. g. McMahon and Greene, 1979: NlcNlahon, Valiant 

and Frederick, 1987) and by changing the activation of muscles acting about the leg, joints. 

Komi (1983) also expected training to influence viscoelastic beha\ lour of muscle. Therefore 
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appropriate conditioning should enable gymnasts to achieve greater leg stiffnesses and to 
increase their awareness of and control over this factor. 

7.4 FUTURE STUDIES 
Having developed the models, the most obvious direction for the future is to extend the 

application of the models. As discussed in Chapter Six, the way in which two springs in 

series combine to act like a single spring, means that where the two springs have very 
different stiffnesses, the influence of the softer spring will dominate. Although the springs in 

the two spring model are not constrained to be in line, the same general principle of 
combined stiffness was demonstrated. The implication is that the two spring model %ý ould be 

more beneficial for exploring the mechanics of rebounds from relatively low stiffness 

surfaces such as tumbling, than it would for investigating running on hard surfaces, for 

example, where the one spring model would be adequate. 

The results of the simulations in Chapter Six led to a number of strategies for altering the 

springboard contact being identified. However, it was also noted that to be able to use some 

of these strategies gymnasts would have to be able to adjust their approach to and contact 

with the springboard precisely. It would therefore be informative to explore the approach and 

contact to determine consistency and the precision with which adjustments can be made (e. g. 

to contact point with the springboard). This would identify those inputs which could be 

utilized and indicate the effects on takeoff of any inconsistencies found. Using a difficult 

vault would encourage the subjects to be as consistent as possible. 

This and other studies have shown that leg stiffness varies (e. g. when asked to hop at 

different frequencies, on different surfaces or run with varying amounts of knee flexion) but 

the ability of subjects specifically to control leg stiffnesses has not been explored. If leg, 

stiffness cannot be controlled consciously, then it cannot be used as a direct vvay to alter 

springboard contact or any other surface interaction. This could be investigated for an 

activity, such as stationary hopping, which has a minimum number of extraneous factors for 

the subject(s) to consider. 

Allied to the ability to change leg stiffness is the question of the source of the stiffness. 

Alexander and Vernon (1975) differentiated between the true elasticity of materials such as 

tendon and the way that muscles can act like elastic structures ('pseudoelasticit), '), while 

others have suggested that joint angles and muscle activation may be used to affect leg 

stiffness (e. g. Blickhan, 1989, Farley and Gonzalez, 1996; Greene and McMahon, 1979), 

Calculating leg stiffness for subjects performing small oscillations over a constrained range 
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of joint angles at a specified frequency while carrying varying additional loads (similar to 
Greene and McMahon, 1979) would enable the true elastic and pseudoelastic components of 
stiffness to be investigated. Similarly, comparing one legged and two legged stiffnesses for 
the same activities would also shed light on the sources of the stiffness. In these situations 
the stiffness component due just to (linearly) elastic materials should vary in a predictable 
way whereas the pseudo-elastic components probably would not. For example the 
component due to linearly elastic materials should be doubled for two legs, whereas 
pseudoelastic components might not double, in the way that two legs together are not 
normally twice as strong as an individual leg (Howard and Enoka, 1991). 

An indication of the range of leg stiffnesses which are possible was identified in this study 

and by others (see Tables 2.2 and 6.2). The extent to which the range might be extended 
through conditioning, would help to determine practical limits to the changes the simulations 
indicated would be achievable. Leg stiffness limitations affect not only changes %ý hich the 

stiffness itself can bring about, but also the effectiveness of other alterations (e. g. increasing 

horizontal velocity at touchdown beyond the point where leg stiffness can produce a takeoff 

at the correct angle). The influence of conditioning on leg stiffness depends to some extent 

on the source of leg stiffness, for example increased muscle strength would imply an 

increase in the number of actin-myosin cross-bridges used, with each one contributing to the 

overall stiffness of the muscle. 

7.5 SUMMARY 
This study investigated the mechanics of the springboard contact phase of gymnastic 

vaulting by using mathematical models in combination with data from vaults performed by 

an elite gymnast. It has demonstrated the utility of mass-spring models which incorporate 

angular motion for exploring the influence of touchdown kinematics and spring stiffnesses 

on the takeoff from the springboard. In addition to improving the mechanical understanding 

of springboard contact, the results of the study may be useful for identifying performance 

strategies for gymnasts. Possible avenues for future research involving the application of the 

mass-spring models and the investigation of the physical underpinning of the leg spring 

stiffness have been identified. 
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APPENDIX A 

This appendix contains information related to the hopping and running jump study reported 
in Chapter Three. 

Appendix A. I Informed consent. 

Appendix A. 2 Subject segment masses and proximal ratios derived from Yeadon's (1990b) 

geometric solid model and Dempster's (1955) ratio data (summarized by 

Winter, 1990). 
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APPENDIX A. 1 

Loughborough University of Technology 
INFORMED CONSENT FORM 

PURPOSE To obtain anthropometric, kinematic and kinetic data of a subject 
during hopping and jumping, in order to determine the ground 

reaction force-mass centre displacement relationship. 

PROCEDURES Cine cameras and a force plate will be used to collect information 

while performing two footed stationary and forward hopping and 

two footed running jumps. A number of trials will be requested, with 

suitable breaks to minimize fatigue and boredom. 

Anthropometric data will be collected using tape measures and 

specialist anthropometers. 

QUESTIONS The researcher will be pleased to answer any questions which you 

may have at any time. 

WITHDRAWAL You are free to withdraw from the study at any time for whatever 

reason without prejudice. 

CONFIDENTIALITY Your identity will remain confidential in any material resulting from 

this work. 

I have read and understood the information on this form and agree to participate in this 

study. As far as I am aware I do not have any injury nor infirmity which would be affected by 

the procedures outlined. 

Name 

Signed (subject) 

In the presence of: 

Name 

Signed 

Date 
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APPENDIX A. 2 
Subject segment masses and proximal ratios derived from Yeadon's (1990b) geometric solid 

model and Dempster's (1955) ratio data (summarized by Winter, 1990). 

Model Ratio 

Mass (kg) Proximal Mass (kg) Proximal 
ratio ratio 

Head 4.187 0.84 5.702 1.000 

Trunk 33.027 0.51 34.989 0.500 

Upper arm 1.911 0.44 1.971 0.436 

F'arm & hand 1.618 0.64 1.549 0.682 

Thigh 8.616 0.44 7.040 0.433 

Shank 4.616 0.44 3.274 0.433 

Foot 0.807 0.35 1.021 0.500 

Whole Body 72.35 70.40 

Actual 70.40 
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APPENDIX B 

Appendix B. 1 Maple code to determine spring stiffness using the one spring model. 

Appendix B. 2 Maple code to determine the takeoff kinematics using the one spring model. 

Appendix B. 3 Maple code to determine leg spring stiffness using the two spring model. 

Appendix B. 4 Maple code to determine the takeoff kinematics using the two spring model. 
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APPENDIX B. 1 
Maple code to determine spring stiffness using the one spring model. 
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> #Iterating one spring model. All mass at mass centre. 

> #Finds stiffness using spring angle at takeoff as criterion. 

> #Takeoff is when vertical contact force falls to <1 N. 

> radial: =diff(diff(x(t), t), t)=(L+x(t))*diff(theta(t), t)"2-(k/m)*x(t)-g*sin(theta(t)); 

a2 .2 k x(t ) 
radial: = 2x(t)=(L+x(t))'atO(t) -m (8(t)) 

at 
> angular: =diff(diff(theta(t), t), t)=(-m*(L+x(t))*(2*diff(x(t), t)*diff(theta(t), t)+g*cos(theta(t)))-i 
> dot* diff(theta(t), t))/(MI+m*(L+x(t))"2); 

angular :_ 

2 -m (L+x(t))21 x(t) e(t) +gcos(6(t)) - idot 6(t) 
a e(t) at at t 
at2 MI+ m (L + x(t))2 

> dequs: ={radial, angular}: 

> 

> alpha: =proc(tee) 

> #Calculate angular acceleration 

> local t; 

> t: =tee; 

> (-m*(L+fx(t))*(2*fxdot(t)*fthetadot(t)+g*cos(ftheta(t)))-idot*fthetadot(t))/(Ml+m`(L+fx(t)) 
> A2); 

> end: 

> 

> Rz: =proc(tee) 

> #Calculate vertical reaction force 

> local t; 

> t: =tee; 

> (m*(2*fxdot(t)*fthetadot(t)+(L+fx(t))*alpha(t)+g*cos(ftheta(t))))*cos(ftheta(t))-k*fx(t)*si 
> n(ftheta(t)); 

> end: 

> 
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> takeoffs: =proc(tee, intvl, I MAX) 

> #Uses secant iteration to find time of takeoff based on Rz falling to within Rztol(eranc 
> e) of zero 

> local t0, dtO, F0, I, ti, dtl, F1; 

> t0: =tee: dtO: =intvl: FO: =Rz(tO): print ('toffs'); 

> if abs(FO)<Rztol then RETURN (eval (t0)) fi; 

> for I from I to IMAX do 

tl: =tO+dtO: F1: =Rz(tl ): 

if abs(F1)<Rztol then RETURN (eval(tl)) fi; 

> dtl : =(dtO*F1)/(FO-F1): 

> if abs(dtl)>(2*intvl) then ERROR(' Probably diverging') 

> elif abs(dtl)>(2*abs(dtO)) then ERROR('dt values not decreasing'); 

else t0: =t1: dtO: =dt1: F0: =F1 

> fi: 

> od: 

> ERROR('Takeoff time solution not found'); 

> end: 

> 

> takeoffb: =proc(tee, intvl, IMAX) 

> #Uses bisection method to find time of takeoff based on Rz falling to within Rztol(eran 
> ce) of zero 

> local I, dt, tl, t2, t3, F1, F2, F3, count; 

> tl: =tee: dt: =intvl: F1: =Rz(tl): count: =0: print ('toffb'); 

> t3: =t1+dt: 

> F3: =Rz(t3): 

> while (F3*F1)>O do 

> print('No root in force interval- adjusting interval'); 

> if F1>O then t3: =t3+dt: F3: =Rz(t3): else tl: =t1-dt: F1: =Rz(tl): fi: 
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count: =count+1: print(count); 

> od; 

> for I from 1 to IMAX do 

> print(F3, F1); 

> if abs(F1)<Rztol then RETURN (eval(tl)); 

> elif abs(F3)<Rztol then RETURN (eval(t3)); 

> else 

> t2: =0.5*(tl+t3): 

> F2: =Rz(t2): 

> if F1*F2<0 then t3: =t2: F3: =F2: 

else t1: =t2: F1: =F2 fi: 

> fi: 

> od; 

> ERROR ('Takeoff time solution not found'); 

> end: 

> 

> angerr: =proc(ky) 

> #Calculates the difference between the spring angle at takeoff and takeoff angle criteri 
> on 

> global k, f1, fx, fxdot, ftheta, fthetadot, toffl; 

> k: ='k': toffl: ='toffl': fl: ='fl': fx: ='fx': fxdot: =fxdot': ftheta: ='ftheta': fthetadot: ='ft 
> hetadot': 

> k: =ky: print ('aerr ); 

> f1: = dsolve(dequs union initcons, {x(t), theta(t)}, type=numeric, output=listprocedure) 
>: 

> fx: =subs(fl, x(t)): fxdot: =subs(fl, diff(x(t), t)): ftheta: =subs(fl, theta(t)): fthetadot: =su 
> bs(fl, diff(theta(t), t)): 

> toffl: =takeoffs(0.09,0.04,20): 
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ftheta(toffl)-thetaoff; 

> end: 

> 

> findk: =proc(kay, intvl, IMAX) 

> #Finds k using the spring angle at takeoff as a criterion 

> #Uses bisection method because of divergence problems with secant & regula falsi m > ethods 

> local I, dk, k1, k2, k3, angerrl, angerr2, angerr3, count; 

> kl: =kay: dk: =intvl: angerrl: =angerr(kl): count: =O: print ('fndk'); 

> if abs(angerrl)<angtol then RETURN (eval(kl )) fi; 

> k3: =k1+dk: 

> angerr3: =angerr(k3): 

> if abs(angerr3)<angtol then RETURN (eval(k3)) fi; 

> while (angerr3*angerrl)>O do 

> print('No root in angerr interval- adjusting interval'); 

> if angerrl>O then k3: =k3+dk: angerr3: =angerr(k3): else kl: =k1-dk: angerrl: =ange 
> rr(kl): fi: 

> count: =count+1: print(count); 

> od; 

for I from I to IMAX do 

> print ('in loop'); print(angerr3, angerrl); 

> if abs(angerrl)<angtol then RETURN (eval(kl)); 

> elif abs(angerr3)<angtol then RETURN (eval(k3)); 

> else. 

> k2: =0.5*(kl+k3): 

angerr2: =angerr(k2): 

if angerrl*angerr2<0 then k3: =k2: angerr3: =angerr2: 

> else kl : =k2: angerrl: =angerr2 fi: 
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> fi: 

> od; 

> ERROR ('No stiffness solution found'); 

> end: 

> 

> ###ASSIGN PARAMETERS, TOUCHDOWN VARIABLES AND TAKEOFF CRITERIA### 

># Data from Trial 1 

m: =65.8: L: =1.049: MI: =9.64: g: =9.81: 

initcons: = {x(O)=O, theta(O)=1.151, D(x)(0)=-4.36, D(theta)(0)=5.44}: 

> xdotoff: =1: thetaoff: =1.820: Rztol: =1: angtol: =0.0005: 

> #######MAIN PROGRAM####### 

> #Can choose between secant and bisection methods in takeoff time calculation, 
> #need to alter call in angerr to 'takeoffs' or'takeoffb' respectively. 

> t: ='t': k: ='k': idot: ='idot': k: =25000: idot: =0: 

> k: =findk(k, 15000,15); 

> print('Final stiffness estimate is', k); 

> fI (toffl ); 

> restart; 

> 
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APPENDIX B. 2 
Maple code to determine the takeoff kinematics using the one spring model. 
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> #One spring model. All mass at mass centre. 

> #Finds takeoff conditions if spring stiffness is known. 

> #Takeoff is when vertical contact force falls to <1 N. 

> radial: =diff(diff(x(t), t), t)=(L+x(t))*diff(theta(t), t)A2-(klm)*x(t)-g*sin(theta(t)); 

a2 a2k x(t ) radials= 2x(t)=(L+x(t)) at -- -gsin(O(t)) 
at 

> angular: =diff(diff(theta(t), t), t)=(-m*(L+x(t))*(2*dill(x(t), t)*diff(theta(t), t)+g*cos(theta(t)))-i 
> dot*diff(theta(t), t))/(MI+m*(L+x(t))^2); 

angular := 

a2 -2e(t) 

at 
> dequs: ={radial, angular}: 

> 

> alpha: =proc(tee) 

> #Calculate angular acceleration 

> local t; 

> t: =tee; 

MI+m(L+x(t))2 

O(t) 
cr 

> (-m*(L+fx(t))*(2*fxdot(t)*fthetadot(t)+g*cos(ftheta(t)))-idot*fthetadot(t))/(MI+m*(L+fx(t)) 
> A2); 

> end: 

> 

> Rz: =proc(tee) 

> #Calculate vertical reaction force 

> local t; 

> t: =tee; 

> (m*(2*fxdot(t)*fthetadot(t)+(L+fx(t))*alpha(t)+g*cos(ftheta(t))))'cos(ftheta(t))-k'fx(t)'si 
> n(ftheta(t)); 

> end: 

-m(L+x(t)), 2 x(t) 9(t) +gcos(O(t)) -idot at at 

> 
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> takeoffs: =proc(tee, intvl, I MAX) 

> #Uses secant iteration to find time of takeoff based on Rz falling to within Rztol(eranc > e) of zero 

> local t0, dt0, FO, I, t1, dtl, F1; 

> t0: =tee: dtO: =intvl: FO: =Rz(t0): print ('toffs'); 

> if abs(FO)<Rztol then RETURN (eval (t0)) fi; 

> for I from I to IMAX do 

> t1: =t0+dtO: F1: =Rz(tl ): 

if abs(F1)<Rztol then RETURN (eval(tl)) fi; 

dtl : =(dtO*F1)/(FO-F1): 

> if abs(dtl)>(2*intvl) then ERROR('Probably diverging') 

> elif abs(dtl)>(2*abs(dtO)) then ERROR('dt values not decreasing'); 

> else t0: =t1: dt0: =dtl : FO: =F1 

> fi: 

> od: 

> ERROR('Takeoff time solution not found'); 

> end: 

> 

> takeoffb: =proc(tee, intvl, IMAX) 

> #Uses bisection method to find time of takeoff based on Rz falling to within Rztol(eran 
> ce) of zero 

> local I, dt, tl, t2, t3, F1, F2, F3, count; 

> tl: =tee: dt: =intvl: F1: =Rz(tl): count: =0: print ('toffb'); 

> t3: =t1+dt: 

> F3: =Rz(t3): 

> while (F3*F1)>O do 

> print('No root in force interval- adjusting interval'); 

> if F1>O then t3: =t3+dt: F3: =Rz(t3): else tl: =t1-dt: F1: =Rz(tl): fi: 
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count: =count+1: print(count); 

> od; 

for I from 1 to IMAX do 

> print(F3, F1); 

> if abs(F1)<Rztol then RETURN (eval(ti)); 

> elif abs(F3)<Rztol then RETURN (eval(t3)); 

> else 

> t2: =0.5*(tl+t3): 

> F2: =Rz(t2): 

> if F1*F2<0 then t3: =t2: F3: =F2: 

> else t1: =t2: F1: =F2 fi: 

> fi: 

> od; 

> ERROR ('Takeoff time solution not found'); 

> end: 

> 

> ###ASSIGN PARAMETERS, TOUCHDOWN VARIABLES AND TAKEOFF CRITERIA### 

># Data from 'average trial' 

> m: =65.8: L: =1.046: MI: =9.38: g: =9.81: 

> initcons: = {x(0)=0, theta(0)=1.227, D(x)(0)=-4.19, D(theta)(0)=6.51}: 

> Rztol: =1: 

> ####### MAIN PROGRAM####### 

> #Can choose between secant and bisection methods in takeoff time calculation, need 
> to alter call in velerr and angerr to 'takeoffs' or takeoffb' respectively 

> t: ='t': k: ='k': idot: ='idot': k: =41523: idot: =0: 

> f1: = dsolve(dequs union initcons, {x(t), theta(t)}, type=numeric, output=listprocedure): 

> fx: =subs(fl, x(t)): fxdot: =subs(fl, diff(x(t), t)): ftheta: =subs(fl, theta(t)): fthetadot: =subs(f 
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> 1, diff(theta(t), t)): 

> toffl: =takeoffs(0.09,0.04,20): 

> fl (toffl ); 

> Rz(toff1); 

> restart; 
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APPENDIX B. 3 
Maple code to determine leg spring stiffness using the two spring model. 
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> #Iterating two spring two mass model. One mass at mass centre, second at feet. 

> #Require stiffness and damping in board. 

> #Finds Kleg using spring angle at takeoff as criterion. 

> #Takeoff is when vertical contact force falls to <1 N. 

> radial: =diff(diff(x(t), t), t)=(L+x(t))*diff(theta(t), t)A2-(KI/m)*x(t)-g*sin(theta(t))-diff(diff(y(t), t 
> ), t)*sin(theta(t)); 

radial :_ 

a2 
'a2 

KI x(t) a2 
2x(t)=(L+x(t))atO(t) -- m -gsin(O(t))- y(t) sin(6(t)) 

at ct 
> angular: =dill(diff(theta(t), t), t)=((L+x(t))*sec(theta(t))*(Kb*y(t)+Cb*diff(y(t), t)-KI*x(t)*sin(t 
> heta(t))+Mf (diff(dill(y(t), t), t)+g))-idot*diff(theta(t), t))/MI; 

a2 angular := 6(t) = 
at2 

(L+x(t))sec(9(t))Kby(t)+Cb ýty(t) -Klx(t)sin(6(t))+Mf ýy(t) +g 
at-- 

- idot 
a 

e(t) /MI 
at 

> vertical: =diff(dill(y(t), t), t)=(-2*diff(x(t), t)*diff(theta(t), t)-(L+x(t))*diff(diff(th eta(t), t), t)-g*co 

> s(theta(t))-(M I*diff(diff(theta(t), t), t)+idot*diff(theta(t), t))/(m*(L+x(t))))*sec(theta(t)); 

a2 a2 a, ýa 
vertical y(t) -2 x(t )' e(t) 

'- 
(L + x(t)) 2 6(t) -g cos(9(t) ) 

ate at at at 
2 

MI O(r + odor e(r) ar e at cec(A(t 11 
m (L + x(t)) 

> dequs: =(radial, angular, vertical): 

> 

> alpha: =proc(tee) 

> #Calculate angular acceleration 

> local t; 

"ý\ "\" 

> t: =tee; 
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> -(sin(ftheta(t))*KI*(fx(t)^2)*cos(ftheta(t))*m-fx(t)*Kb*fy(t)*cos(ftheta(t))*m+2*fx(t)*Mf'fx 
> dot(t)*fthetadot(t)*m-fx(t)*Cb*fydot(t)*cos(ftheta(t))*m+L*sin(ftheta(t))*KI*fx(t)*cos(fthet 
> a(t))*m-L*Kb*fy(t)*cos(ftheta(t))*m-L*Cb*fydot(t)*cos(ftheta(t))*m+idot*fthetadot(t)*(cos 
> (ftheta(t))"2)*m+2*L*Mf*fxdot(t)*fthetadot(t)*m+Mf* i dot*fthetadot(t))/(Mf (L"2)*m+2*L*M 
> rfx(t)*m+Ml*m*(cos(ftheta(t))"2)+Mf (fx(t)"2)*m+Mf MI); 

> end: 

> 

> Rz: =proc(tee) 

> #Calculate vertical reaction force 

> local t; 

> t: =tee; 

> -KI*fx(t)*sin(ftheta(t))+((-MI*alpha(t)/(L+fx(t)))-(-Kb*fy(t)-Cb*fydot(t))*cos(ftheta(t)))*co 
> s(ftheta(t)); 

> end: 

> 

> takeoffs: =proc(tee, intvl, IMAX) 

> #Uses secant iteration to find time of takeoff based on Rz falling to within Rztol(eranc 
> e) of zero 

> local t0, dtO, FO, I, t1, dtl, Fl; 

> t0: =tee: dtO: =intvl: FO: =Rz(tO): 

> if abs(FO)<Rztol then RETURN (eval(tO)) fi; 

> for I from I to IMAX do 

> t1: =tO+dtO: Fl: =Rz(tl): print(' FO, Fl', FO, Fl, I); 

> if abs(F1)<Rztol then RETURN (eval(tl)) fi; 

> dtl : =(dtO*F1)/(FO-F1): 

if abs(dtl)>(2*intvl) then ERROR('Probably diverging') 

> elif abs(dtl)>(2*abs(dtO)) then ERROR('dt values not decreasing'); 

> else t0: =t1: dtO: =dtl: F0: =F1 

> fi: 

> od: 
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> ERROR('Takeoff time solution not found'); 

> end: 

> 

> takeoffb: =proc(tee, intvl, IMAX) 

> #Uses bisection method to find time of takeoff based on Rz falling to within Rztol(eran 
> ce) of zero 

> local I, dt, tl, t2, t3, F1, F2, F3, count; 

> t1: =tee: dt: =intvl: F1: =Rz(t1): count: =O: 

> t3: =t1+dt: 

> F3: =Rz(t3): 

> while (F3*F1)>O do 

> print('No root in force interval- adjusting interval'); 

> if F1>O then t3: =t3+(2*dt): F3: =Rz(t3): else tl: =t1-(2*dt): F1: =Rz(tl): fi: 

> count: =count+1: 

> od; 

> for I from 1 to IMAX do 

> print(F3, F1); 

> if abs(F1)<Rztol then RETURN (eval(tl)); 

> elif abs(F3)<Rztol then RETURN (eval(t3)); 

> else 

> t2: =0.5*(tl+t3): 

> F2: =Rz(t2): 

> if F1*F2<0 then t3: =t2: F3: =F2: 

else tl: =t2: F1: =F2 fi: 

> fi: 

> od; 

> ERROR ('Takeoff time solution not found'); 
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> end: 

> 

> angerr: =proc(kleg) 

> #Calculates the difference between the spring angle at takeoff and takeoff angle criteri 
> on 

> global KI, f1, fx, fxdot, ftheta, fthetadot, fy, fydot, toffl; 

> KI: ='KI': toff1: ='toffl': fl: ='fl': fx: ='fx': fxdot: ='fxdot': ftheta: ='ftheta': fthetadot: = 
> 'fthetadot': fy: ='fy': fydot: ='fydot': 

Kl: =kleg: print('aerr'); 

> f1: = dsolve(dequs union initcons, {x(t), y(t), theta(t)}, type=numeric, output=listproced 
> ure): 

> fx: =subs(fl, x(t)): fxdot: =subs(fl, diff(x(t), t)): fy: =subs(fl, y(t)): fydot: =subs(fl, diff 
> (y(t), t)): ftheta: =subs(fl, theta(t)): fthetadot: =subs(fl, diff(theta(t), t)): 

> toff1: =takeoffs(0.10,0.04,20): 

ftheta(toffl )-thetaoff; 

> end: 

> 

> findk: =proc(kay, intvl, IMAX) 

> #Finds k using the spring angle at takeoff as a criterion 

> #Uses bisection method because of divergence problems with secant & regula falsi m 
> ethods 

> #See Borse pages 141-145 

> local I, dk, k1, k2, k3, angerrl, angerr2, angerr3, count; 

k1: =kay: dk: =intvl: angerrl: =angerr(kl): count: =0: print('fndk'); 

> if abs(angerrl)<angtol then RETURN (eval(kl)) fi; 

k3: =k1+dk: 

angerr3: =angerr(k3): 

if abs(angerr3)<angtol then RETURN (eval(k3)) fi; 
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> while (angerr3*angerrl)>0 do 

> print('No root in angerr interval- adjusting interval'); 

> if angerrl>O then k3: =k3+dk: angerr3: =angerr(k3): else kl: =kl-dk: angerrl: =ange > rr(kl): fi: 

count: =count+1: print(count); 

> OCR; 

for I from I to IMAX do 

> print(angerr3, angerrl); 

> if abs(angerrl)<angtol then RETURN (eval(kl)); 

> elif abs(angerr3)<angtol then RETURN (eval(k3)); 

> else 

> k2: =0.5*(kl+k3): 

> angerr2: =angerr(k2): 

> if angerrl*angerr2<0 then k3: =k2: angerr3: =angerr2: 

> else kl : =k2: angerrl : =angerr2 fi: 

> fi: 

> od; 

> ERROR ('No stiffness solution found'); 

> end: 

> 

> ###ASSIGN PARAMETERS, TOUCHDOWN VARIABLES AND TAKEOFF CRITERIA### 

># Data from 'average' trial 

> m: =64.2: L: =0.894: MI: =9.38: g: =9.81: Mf: =1.6: 

> initcons: = {x(0)=0, y(O)=O, theta(0)=1.129, D(x)(O)=-3.24, D(y)(0)=-1.30 , D(theta)(0)= 

> 5.86): 

> thetaoff: =1.850: Rztol: =1: angtol: =0.0005: 

> ####### MAIN PROGRAM ####### 

> #Can choose between secant and bisection methods in takeoff time calculation, 
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> #need to alter call in angerr to 'takeoffs' or 'takeoffb' respectively. 

> t: ='t': KI: ='KI': idot: ='idot': KI: =100000: Kb: =50000: Cb: =155: idot: =0: 

> Kl: =findk(KI, 25000,15); 

> print('Final leg stiffness estimate is', Kl); 

> fl (toffl ); 

> Rz(toffl); 

> restart; 
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APPENDIX B. 4 
Maple code to determine the takeoff kinematics using the two spring model. 
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> #Two spring two mass model. One mass at mass centre, second at feet. 

> Winds takeoff condtions if Kleg known. 

> #Require stiffness and damping in board. 

> #Takeoff is when vertical contact force falls to <1 N. 

> radial: =diff(diff(x(t), t), t)=(L+x(t))*diff(theta(t), t)A2-(KI/m)*x(t)-g*sin(theta(t))-diff(diff(y(t), t 
> ), t)*sin(theta(t)); 

radial :_ 

ä2 ä2 Kl x(t) ö2 
- x(t) = (L + x(t)) - e(t) -m -gsin(O(t))- 

at2 
y(t) sin(O(t) 

at 2 

> angular: =diff(diff(theta(t), t), t)=((L+x(t))*sec(theta(t))*(Kb*y(t)+Cb*diff(y(t), t)-KI*x(t)*sin(t 
> heta(t))+Mf (diff(diff(y(t), t), t)+g))-idot*diff(theta(t), t))/MI; 

a2 angular := 9(t) _ 
at2 

(L+x(t))sec(9(t))iKby(t)+Cb 
a 
aty(t) -Klx(t)sin(O(t))+Mf )v(t) +g 

. ct 

- idot O(t) /Ml at 
> vertical: =diff(dill(y(t), t), t)=(-2*diff(x(t), t)*diff(theta(t), t)-(L+x(t))*diff(diff (theta(t), t), t)-g*co 

> s(theta(t))-(MI*diff(diff(th eta(t), t), t)+idot*diff(theta(t), t))/(m*(L+x(t))))*sec(theta (t)); 

22 
vertical :=a y(t) = -2 x(t) 6(t) - (L + x(t)) 

a 
9(t) -g cos(8(t) ) 

at2 at at at2 
'a2 a Mr 

2 
9(t) + idot;: - 0(t)., 

- 
at 

sec(6(t) ) 
m (L + x(t)) 

> dequs: ={radial, angular, vertical): 

> 

> alpha: =proc(tee) 

> #Calculate angular acceleration 

> local t; 

> t: =tee; 
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> -(sin(ftheta(t))*KI*(fx(t)"2)*cos(ftheta(t))*m-fx(t)*Kb*fy(t)*cos(ftheta(t))*m+2*fx(t)*Mf'fx 
> dot(t)*fthetadot(t)*m-fx(t)*Cb*fydot(t)*cos(ftheta(t))*m+L*sin(ftheta(t))*KI*fx(t)*cos(fthet 
> a(t))*m-L*Kb*fy(t)*cos(ftheta(t))*m-L*Cb*fydot(t)*cos(ftheta(t))*m+idot*fthetadot(t)*(cos 
> (ftheta(t))A2)*m+2*L*Mf*fxdot(t)*fthetadot(t)*m+Mf*idot*fthetadot(t))/(Mf*(LA2)*m+2*L'M 
> fl fx(t)*m+MI*m*(cos(ftheta(t))"2)+Mf (fx(t)"2)*m+Mf MI); 

> end: 

> 

> Rz: =proc(tee) 

> #Calculate vertical reaction force 

> local t; 

> t: =tee; 

> -KI*fx(t)*sin(ftheta(t))+((-MI*alpha(t)/(L+fx(t)))-(-Kb*fy(t)-Cb*fydot(t))*cos(ftheta(t)))*co 
> s(ftheta(t)); 

> end: 

> 

> takeoffs: =proc(tee, intvl, IMAX) 

> #Uses secant iteration to find time of takeoff based on Rz falling to within Rztol(eranc 
> e) of zero 

> local t0, dtO, FO, I, t1, dtl, Fl; 

> t0: =tee: dtO: =intvl: FO: =Rz(tO): 

> if abs(FO)<Rztol then RETURN (eval(tO)) fi; 

> for I from 1 to IMAX do 

> t1: =t0+dtO: Fl: =Rz(tl): print('FO, F1', FO, Fl, I); 

> if abs(F1)<Rztol then RETURN (eval(tl)) fi; 

> dtl : =(dtO*F1)/(FO-F1): 

> if abs(dtl)>(2*intvl) then ERROR('Probably diverging') 

> elif abs(dtl)>(2*abs(dtO)) then ERROR('dt values not decreasing'); 

> else t0: =t1: dtO: =dtl: F0: =F1 

> fi: 

> od: 
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> ERROR('Takeoff time solution not found'); 

> end: 

> 

> takeoffb: =proc(tee, intvl, IMAX) 

> #Uses bisection method to find time of takeoff based on Rz falling to within Rztol(eran 
> ce) of zero 

> local I, dt, tl, t2, t3, F1, F2, F3, count; 

> tl: =tee: dt: =intvl: F1: =Rz(tl ): count: =0: 

> t3: =t1+dt: 

> F3: =Rz(t3): 

> while (F3*F1)>O do 

> print('No root in force interval- adjusting interval'); 

> if F1>0 then t3: =t3+(2*dt): F3: =Rz(t3): else t1: =t1-(2*dt): F1: =Rz(tl): fi: 

> count: =count+1: 

> od; 

> for I from 1 to IMAX do 

> print(F3, F1); 

> if abs(F1)<Rztol then RETURN (eval(tl )); 

> elif abs(F3)<Rztol then RETURN (eval(t3)); 

> else 

> t2: =0.5*(tl+t3): 

> F2: =Rz(t2): 

> if F1*F2<0 then t3: =t2: F3: =F2: 

else tl: =t2: F1: =F2 fi: 

> fi: 

> od; 

> ERROR ('Takeoff time solution not found'); 



214 

> end: 

> 

> ###ASSIGN PARAMETERS, TOUCHDOWN VARIABLES AND TAKEOFF CRITERIA### 

># Data from trial 12 

> m: =64.2: L: =0.897: MI: =9.06: g: =9.81: Mf: =1.6: 

> initcons: = {x(0)=0, y(O)=O, theta(O)=1.106, D(x)(O)=-3.60, D(y)(O)=-1.23, D(theta)(0)=6 
> . 39): 

> Rztol: =1: 

> #######MAIN PROGRAM####### 

> #Can choose between secant and bisection methods in takeoff time calculation, 
> #need to alter call to 'takeoffs' or 'takeoffb' respectively 

> t: ='t': KI: ='KI': idot: ='idot': KI: =500000: Kb: =32800: Cb: =136: idot: =O: 

> f1: = dsolve(dequs union initcons, {x(t), y(t), theta(t)), type=numeric, output=listproced 
> ure): 

> fx: =subs(fl, x(t)): fxdot: =subs(fl, diff(x(t), t)): fy: =subs(fl, y(t)): fydot: =subs(fl, diff 
> (y(t), t)): ftheta: =subs(fl, theta(t)): fthetadot: =subs(fl, diff(theta(t), t)): 

> toff1: =takeoffs(0.10,0.03,20): 

> fl (toffI ); 

> Rz(toffl); 

> restart; 
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APPENDIX C. 1 

Loughborough University of Technology 
INFORMED CONSENT FORM 

PURPOSE To obtain anthropometric and kinematic data of a gymnast during 

the hurdle step, springboard contact and pre-flight of long horse 

vaulting, in order to develop and evaluate a mathematica; model of 
this activity. 

PROCEDURES Video cameras will be used to collect information during the 

performance of handspring long horse vaults from a Gymnova 

'super springboard' using a variety of run up speeds and from two 

board stiffness settings. A number of vaults will be requested, with 

suitable breaks to minimize fatigue and boredom. 

Anthropometric data will be collected using tape measures and 

specialist anthropometers. 

QUESTIONS The researcher will be pleased to answer any questions which you 

may have at any time. 

WITHDRAWAL You are free to withdraw from the study at any time for whatever 

reason without prejudice. 

CONFIDENTIALITY Your identity will remain confidential in any material resulting from 

this work. 

I have read and understood the information on this form and agree to participate in this 

study. As far as I am aware I do not have any injury nor infirmity which would be affected by 

the procedures outlined. 

Name 

Signed 

In the presence of: 

(gymnast) 

Name 

Date 

Signed (coach) 
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APPENDIX C. 2 
Subject segment masses, proximal ratios, transverse moment of inertias and segment lengths 
derived from Yeadon's (1990b) geometric solid model. 

Mass (kg) Proximal MI Segment 
ratio (kg. m2) length (m) 

Left forearm 1.778 0.624 0.023 0.259 

Left upper arm 2.064 0.432 0.012 0.250 

Left thigh 7.488 0.423 0.099 0.395 

Left shank 3.185 0.425 0.038 0.400 

Left foot 0.792 0.376 0.002 0.202 

Right forearm 1.798 0.611 0.023 0.262 

Right upper arm 2.156 0.442 0.014 0.258 

Right thigh 7.924 0.426 0.113 0.411 

Right shank 3.347 0.425 0.038 0.394 

Right foot 0.800 0.376 0.002 0.202 

Trunk 28.920 0.515 0.829 0.555 

Head & neck 5.530 0.500 0.034 0.268 

Whole body 65.780 
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APPENDIX C. 3 
Maple springboard stiffness and damping estimation program. 
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># Calculates board stiffness and damping. 

># Uses duration of contact and touchdown and takeoff velocities from drop tests as in 
> puts. 

># Iterates to find the stiffness and damping which, after the known duration, result in a 

># spring-damper force of less than 0.5 N and the correct takeoff velocity. 

> vmotion: =diff(dill(y(t), t), t)=-(k/20)*y(t)-(c/20)*diff(y(t), t)-g; 

motion := 
a2 

at2 
Y(t) _-1 20 

k y(t) -1 20 
a 
at y(t) g 

> #Defines equation of motion. 

> 

> ypos: =dsolve({vmotion, y(0)=O, D(y)(0)=-3.698}, y(t)); 

> #A function defining the mass position at time 't', given the initial conditions. 

> 

> ydot: =diff(ypos, t); 

> #Defines the mass velocity at time T. 

> 

> velerr: =proc(ce) 

> #Substitutes known takeoff time and current stiffness and damping estimates 

># into 'ydot' to determine velocity. 

> #Calculates difference between this velocity and criterion takeoff velocity. 

> local vel; 

> subs(k=kay, c=ce, g=9.8l, t=tee, rhs(ydot)): 

> vel: =evalf("): 

> vel-voff; 

> end: 

> force: =proc(kay, ce) 

> #Determines the spring-damper force at known takeoff time using current 
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># stiffness and damping estimates. 

> local vel, pos; 

> subs(k=kay, c=ce, g=9.81, t=tee, rhs(ydot)): 

> vel: =evalf("): 

> subs(k=kay, c=ce, g=9.81, t=tee, rhs(ypos)): 

> pos: =evalf("): 

> -kay*pos-ce*vel; 

> end: 

> findc: =proc(ce) 

> #Uses bisection method to find the damping value which gives a velocity 

># error of less than the tolerance, vtol. 

> local cl, c2, c3, velerr1, velerr2, velerr3, I; 

> cl: =ce: c3: =ce+25: 

> velerr1: =velerr(cl ): velerr3: =velerr(c3): 

> while (velerrl*velerr3)>O do 

print('No root in velerr interval-adjusting'); 

> if velerrl>O then c3: =c3+25: velerr3: =velerr(c3): else cl: =c1-25: velerrl: =velerr(cl): 
> fi: 

> od; 

> for i from 1 to 20 do 

if abs(velerrl)<vtol then RETURN (eval(cl)); 

> elif abs(velerr3)<vtol then RETURN (eval(c3)); 

> else 

> c2: =0.5*(cl+c3): velerr2: =velerr(c2): 

> if velerrl*velerr2<0 then c3: =c2: velerr3: =velerr2: 

> else cl: =c2: velerrl: =velerr2 fi: 
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> fi : 

> od; 

> ERROR ('No damping solution found'); 

> end: 

> 

> findk: =proc(ky) 

> #Uses bisection method to find the stiffness value which gives a spring-damper 

># force of less than the tolerance, Rztol. 

> local k1, k2, k3, f1, f2, f3, I; 

> k1: =ky: k3: =ky+5000: 

> f1: =force(kl, cee): f3: =force(k3, cee): 

> while (fl*f3)>O do 

> print('No root in force interval-adjusting'); 

> if f1>O then k3: =k3+5000: f3: =force(k3, cee): else k1: =k1-5000: fl: =force(kl, cee): fi: 

> od; 

> for I from 1 to 20 do 

> if abs(fl)<Rztol then RETURN (eval(kl)); 

> elif abs(f3)<Rztol then RETURN (eval(k3)); 

> else 

> k2: =0.5*(kl+k3): f2: =force(k2, cee): 

> if fl *f2<0 then k3: =k2: f3: =f2: 

> else kl: =k2: fl: =f2 fi: 

> fi: 

> od; 

> ERROR ('No stiffness solution found'); 

> end: 
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> 

># Set tolerances 

> vtol: =0.0005: Rztol: =0.5: 

># Set set takeoff velocity and contact duration criteria (from drop test) 

> voff: =2.681: tee: =0.0789: 

> #Give initial estimates for stiffness and damping 

> kay: =30000: cee: =160: 

> 

> MAIN PROGRAM 

># First finds damping, then stiffness. If the new stiffness estimate increases the 

># velocity error beyond the tolerance, the process repeats until the correct velocity 

># and zero force are found at the known time of takeoff. 

> for n from 1 to 10 do 

> cee: =findc(cee); 

> kay: =findk(kay); 

> if abs(velerr(cee))<vtol then break fi; 

>OCR; 

> print ('Stiffness estimate', kay); print('Damping estimate , cee); 

> #Final checks on position, velocity and force. 

> subs(k=kay, c=cee, g=9.81, t=tee, rhs(ypos)): pos: =evalf("); 

> subs(k=kay, c=cee, g=9.81, t=tee, rhs(ydot)): vel: = evalf("); 

> Rz: =-kay*pos-cee*vel; 

> restart; 
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APPENDIX C. 4 
Method to estimate peak springboard forces. 

The mean vertical force exerted by the springboard can be estimated using the impulse- 

momentum relationship, as described in Chapter 5, section 5.3.2. In the absence of a force 

history, an estimate of the peak vertical force exerted by the springboard can be made by 

modelling the force history using a known function (in this case a sine wave) with the same 

mean force and duration of force (i. e. time of contact) as calculated from the actual trial. 

Equating the integral of the function over the time of contact to the calculated known change 
in momentum enables the peak force to be estimated as follows. 

The equation for a sine wave is: F(t) = Finax . sin((A. t) 

where Fma., is the amplitude, w is the angular velocity and t is the time. 

The duration of contact is equivalent to the first half of the sine wave, from t=0 to t=t,, i. e. 

the duration of contact, t, is equal to the half period (T/2) of the sine wave: 

Since 

w=2. n. f 
and 

TI 
tc 

2 2. f 

it follows that 

n 
w=- 

IC 

Equating the integral of the sine function to the change in momentum from the actual trial, 

M. v-m. u: 
1, 

JF(t). dt = m. v - m. u 

1=0 
/, 
fFmax 

. sin(w . t). 
dt = m. v - m. u 

i=0 

- cos(c). t) 
lc 

= MY - m. u F 
max (1) 0 

2 
- "inax = m. ti' - m. U 
CD 

n (m. vv - m. u) 
Therefore Fm =2t 

Hence the peak force is equal to the mean force multiplied by t `2. 
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APPENDIX C. 5 
An example of the load-deflection graphs from each of the nine combinations of load 

application point and springboard adjustment setting. 

(a) Load applied 0.75 m from near end, springboard at stiffest setting (adjuster 0.96 m from 

near end). 

(b) Load applied 0.75 m from near end, springboard at intermediate setting (adjuster 1.04 m 
from near end). 

(c) Load applied 0.75 m from near end, springboard at softest setting (adjuster 1.28 m fron 

near end). 

(d) Load applied 0.90 m from near end, springboard at stiffest setting (adjuster 0.96 m from 

near end). 

(e) Load applied 0.90 m from near end, springboard at intermediate setting (adjuster 1.04 m 
from near end). 

(f) Load applied 0.90 m from near end, springboard at softest setting (adjuster 1.28 m from 

near end). 

(g) Load applied 1.05 m from near end, springboard at stiffest setting (adjuster 0.96 m from 

near end). 

(h) Load applied 1.05 m from near end, springboard at intermediate setting (adjuster 1.04 in 

from near end). 

(i) Load applied 1.05 m from near end, springboard at softest setting (adjuster 1.28 m from 

near end). 

These graphs have been reduced in size from the originals by 60%. Originally each 

millimetre on the graph represented 0.5 mm springboard deflection (horizontal axis) and 

50 N compressive load (vertical axis). On the reduced graphs 6 mm (one bold di" ision) 

represents 5 mm springboard deflection (horizontal axis) and 500 N compressive load 

(vertical axis). 
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APPENDIX C. 6 
Touchdown position and velocity data from which model inputs were calculated. 

The models require transverse and radial velocities rather than horizontal and vertical 

velocities as inputs. They also require the angular velocity immediately following 

springboard contact rather than immediately before contact as was calculated from the % ideo. 

The two spring model requires the initial vertical velocity of the board. The equations for 

these calculations were presented in Chapter Five section 5.2.4 and the resulting data in 

section 5.3.1. The following table presents the original horizontal (vh), vertical (v, ) and 

angular velocities (6 ) from which the inputs were calculated. 

Trial Vh vv e 
(m. s-l) (m. s-1) (rad. s-1) 

1 7.70 -1.34 -0.13 

2 7.95 -1.39 -0.02 

3 7.86 -1.33 -0.11 

4 7.95 -1.43 0.00 

5 7.94 -1.19 -0.31 

6 6.21 -1.48 -0.30 

7 5.55 -1.44 -0.43 

8 6.57 -1.58 -0.19 

9 7.14 -1.37 0.02 

10 7.36 -1.24 -0.01 

11 7.85 -1.35 -0.03 

12 8.09 -1.20 0.08 
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APPENDIX D 

Appendix D. 1 Time of contact and takeoff velocity outputs from the one spring model 

simulations of vaults one to twelve, the basis for Table 6.1. 

Appendix D. 1 Time of contact and takeoff velocity outputs from the two spring model 

simulations of vaults one to twelve, the basis for Table 6.2. 



n, 0 

APPENDIX D. 1 
Time of contact and takeoff velocity outputs from the one spring model simulations (f'. aaIt, 

one to twelve, the basis for Table 6.1. 

Trial tc 
(s) 

e 
(rad. s-1) 

Vh 
(m. s-1) 

V,, 
(m. s-' ) 

1 0.106 5.39 6.54 2.79 

2 0.097 5.65 6.50 3.45 

3 0.103 5.32 6.30 3.64 

4 0.105 5.36 6.55 3.43 

5 0.112 5.26 6.50 3.37 

6 0.104 4.59 5.11 2.67 

7 0.116 4.27 4.77 2.06 

8 0.112 4.58 5.43 2.90 

9 0.119 4.82 5.94 3.03 

10 0.110 5.12 6.12 3.02 

11 0.115 5.15 6.50 3.35 

12 0.115 5.36 6.86 3.16 
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APPENDIX D. 2 
Time of contact and takeoff velocity outputs from the two spring model simulations of vaults 

one to twelve, the basis for Table 6.2. 

vv Trial tc eVh 
(s) (rad. s-1) (m. s"') (m. s') 

1 0.112 6.52 5.88 2.21 

2 0.101 6.41 5.85 3.00 

3 0.106 6.08 5.65 3.18 

4 0.104 6.87 6.19 2.11 

5 0.111 6.50 5.97 2.50 

6 0.113 5.01 4.54 2.42 

7 0.116 4.83 4.31 1.81 

8 0.122 5.26 4.86 2.49 

9 0.113 6.05 5.49 2.15 

10 0.115 6.31 5.50 2.20 

11 0.117 6.43 5.87 2.44 

12 0.113 7.06 6.19 2.13 


