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ABSTRACT 
 

Gut hormones are implicated in the regulation of energy balance. The studies in this 

thesis have examined the effects exercise on gut hormones (acylated ghrelin and peptide 

YY3-36), appetite and food intake, over extended durations. Sixty-nine young, healthy, 

predominantly Caucasian males were recruited to six studies. The age, height and body 

mass of the participants were: 22.4 ± 0.3 y, 1.80 ± 0.1 m, 76.2 ± 1.0 kg (mean ± SEM). 

 

In study one, 90 min of resistance exercise did not influence appetite or energy intake 

over 24 h of assessment, yet stimulated a latent preference for carbohydrate rich foods. 

Study two demonstrated that appetite was suppressed during 60 min of swimming but 

was elevated after consuming a post-exercise meal. Plasma acylated ghrelin was 

suppressed during swimming but was unaltered after. Energy/macronutrient intake 

remained unchanged. In study three, 60 min of brisk walking (45 ± 2% of 2OV max) 

did not influence appetite, energy/macronutrient intake or plasma concentrations of 

acylated ghrelin during an eight hour observation period. Study four showed that 90 

min of treadmill running (69 ± 1% of 2OV max) transiently suppressed appetite and 

acylated ghrelin but did not influence these variables, or energy/macronutrient intake 

within 22.5 h after exercise. The findings of study five suggest that the suppression and 

subsequent rebound in plasma acylated ghrelin after exercise may be related to a 

delayed voluntary decision to eat after. Finally, study six showed that appetite, food 

intake and circulating concentrations of acylated ghrelin and peptide YY3-36 are 

responsive to acute deficits in energy induced by food restriction but are not sensitive to 

equivalent energy deficits induced by exercise. 

 

This thesis has shown that exercise transiently alters circulating levels of acylated 

ghrelin and peptide YY3-36 in directions expected to inhibit appetite however no changes 

are seen after exercise. Conversely, food restriction elicits marked compensatory 

changes in circulating acylated ghrelin and peptide YY3-36. This thesis also 

demonstrates that resistance exercise, brisk walking and running do not stimulate 

appetite or energy intake over defined periods, even when the energy expenditure 

elicited is high. Swimming appears to increase appetite in the latter hours after exercise. 

. 
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CHAPTER I 

Introduction 

Throughout the world the prevalence of overweight and obesity is increasing at an 

alarming rate in both developed and developing countries (Kelly et al, 2008). Recent 

World Health Organisation estimates indicate that 1.6 billion adults are overweight 

(body mass index 25 – 29.9 kg·m-2) with an additional 400 million individuals 

qualifying as obese (body mass index ≥ 30 kg·m -2) (WHO, 2006). In the United 

Kingdom (UK) the situation is no different with rates of obesity having more than 

doubled in the last 25 years. In England 42% of men and 32% of women are overweight 

with a further 25% of men and women being classified as obese (National Health 

Service Information Centre, 2010). Based on recent trends it has been predicted that 

approximately 60% of the UK population will be obese by 2050 (Government Office 

for Science, 2007). Only time will tell if this prediction is accurate but it is an alarming 

prospect. 

 

Obesity develops when energy intake exceeds that expended over a defined period. 

Although hereditary may predispose certain individuals to becoming overweight or 

obese, the dramatic rate of increase in global prevalence during recent years indicates 

that genes are not the primary cause (Martinez et al, 2000; Farooqi and O’Rahilly, 

2006). Instead, changes within the environment, most notably diets denser in energy 

and fat, combined with a reduction in physical activity during work and leisure, are 

more firmly implicated in the aetiology of overweight and obesity (Hill, 1998). 

 

As the obesity epidemic has spread, concern about the significant health and economic 

ramifications has grown. Being overweight is associated with a range of adverse health 

outcomes such as heart disease, diabetes mellitus, hypertension, reproductive 

dysfunction, osteoarthritis, gall bladder disease and certain forms of cancer (Bray, 2004; 

Haslam and James, 2005). In England, the total costs attributed to overweight and 

obesity have been estimated at seven billion pounds annually, of which one billion is 

ascribed to the direct healthcare costs of treating associated health conditions 

(McCormick and Stone, 2007). Effective interventions are therefore needed to help 

individuals achieve and maintain a healthier body weight. 
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Bariatric surgery is the most effective long-term treatment for obesity however surgery 

should only be considered for individuals with a body mass index greater than 40 kg·m-

2 or 35 kg·m-2 when associated with severe obesity related comorbidities (Bult et al, 

2008). Furthermore, the defined risks associated with surgery, in addition to the 

expense endured, restricts its use only to those with the greatest need once all other 

therapeutic options have been exhausted. Consequently, bariatric surgery does not offer 

a viable therapeutic option for the majority of overweight or modestly obese individuals 

within any given population. 

 

Over the last 100 years numerous pharmacological weight loss agents have been made 

available however nearly all of these have since been removed from the commercial 

market due a lack of efficacy or admits safety concerns (Bray, 2008). Sales of 

rimonabant, a cannabinoid receptor antagonist, were halted in October 2008 in light of 

research showing an increased risk of psychiatric disorders. More recently, the centrally 

acting noradrenaline-serotonin reuptake inhibitor – sibutramine, was removed from the 

commercial market in January 2010 in response to findings showing a significantly 

augmented risk of non-fatal myocardial infarction and stroke (Williams, 2010). 

Consequently, at present orlistat remains the only licensed weight loss medication 

available within the UK. Orlistat is a gastrointestinal lipase inhibitor which impairs the 

digestion and absorption of fat so that fewer calories are available to the body. Over six 

months, a 6 – 10% reduction in body weight can be expected with reasonably good 

maintenance for up to two years with continued use (Sjostrom et al, 1998; Davidson et 

al, 1999). Predictably though, given its mechanism of action, unpleasant side-effects are 

common, such as flatus, oily stools and faecal urgency and may over time lead vitamin 

deficiencies (Perrio et al, 2007; Wilding, 2008a). It is these side effects, in addition to 

the seemingly impossible feat of developing safe yet chronically effective drugs, that 

has limited the usefulness of non-surgical pharmacological therapies to date (Neary and 

Batterham, 2009a). 

 

Dietary manipulation remains the most common method of weight control and a range 

of diets have been advocated including low calorie and fat restricted diets, and low 

carbohydrate diets (Malik and Hu, 2007). Although dietary interventions have the 

potential to induce short-term weight loss in determined individuals, weight regain 



 3 

occurs over time in the vast majority of persons, rendering such practices relatively 

ineffective at producing sustained weight loss (Donnelly and Smith, 2005). 

 

An increasing body of research suggests that physical activity is an important 

component of successful weight management (Donnelly and Smith, 2005; Donnelly et 

al, 2009). It has been explicitly stated that exercise on its own, regardless of dietary 

intervention, is an effective strategy for reducing obesity and its related health 

complications (Ross et al, 2000). Cross-sectional studies typically demonstrate an 

inverse relationship between body weight or body mass index and levels of physical 

activity across the lifespan i.e. greater amounts of physical activity are related to 

progressively lower body weight and/or body mass index (Martinez et al, 1999; Ball et 

al, 2001) and there is evidence indicating a dose-response relationship between these 

variables (McTiernan et al, 2007). These findings highlight an important role of 

physical activity in preventing weight gain.  

 

According to Donnelly and Smith (2005) more than half of individuals who lose weight 

regain it within a year, demonstrating a strong evolutionary drive to preserve body 

weight and thus an inherent resistance to weight loss. In addition to preventing weight 

gain, physical activity also appears to be a useful strategy which can facilitate 

successful weight loss maintenance (Catenacci and Wyatt, 2007; Donnelly et al, 2009). 

It has been suggested that an individual’s level of physical activity is the best predictor 

of weight maintenance after weight loss (Tate et al, 2007; Catenacci et al, 2008). 

Perhaps the best example of this comes from the National Weight Control Registry 

(NWCR) in the United States. The NWCR has a cohort of over 6000 individuals who 

have maintained a minimum 13.6 kg weight loss for at least a year. Reports from this 

study demonstrate that physical activity is an integral component of successful weight 

loss maintenance, with individuals typically expending more than 2600 kcal per week 

though various forms of physical activity (Klem et al, 1997; Catenacci et al, 2008). 

 

Although physical activity may attenuate initial weight gain and prevent weight regain 

after successful weight loss, the ability of physical activity to directly induce weight 

loss is more ambiguous (Donnelly and Smith, 2005). Some findings suggest that under 

strictly controlled conditions an increase in physical activity can induce significant 

weight loss (Ross et al, 2000; 2004) however if rigorous control is not imposed weight 
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loss may not occur. In this latter scenario it seems that failure to lose weight is due to 

the recruitment of adaptive metabolic and behavioural compensatory mechanisms 

which oppose weight loss, such as a reduction in exercise compliance, resting metabolic 

rate, and an increase in exercise efficiency (King et al, 2007). Each of these responses 

limit the potential for exercise to induce weight loss. In addition to this, the most 

important factor constraining weight loss appears to be a compensatory increase in 

energy intake to buffer that expended during exercise (King et al, 2008). 

 

This notion was illustrated in a recent study conducted by King and Co-workers (2008). 

Thirty-five overweight and obese, sedentary men and women completed a 12 week 

supervised exercise intervention, expending 500 kcal on five days each week through 

aerobic activity. Body composition, resting metabolism, appetite and daily energy 

intake were assessed at baseline and at the end of the investigation. Over the 12 weeks 

body weight decreased by 3.7 kg however closer scrutiny of the data revealed large 

inter-individual variation in weight change between individuals (-14.7 kg to +1.7 kg). In 

an attempt to identity the characteristics of those who did and did not lose weight, 

participants were divided into compensators and non-compensators. Participants were 

labelled compensators if their actual weight loss was less than their predicted weight 

loss and non-compensators if their weight loss was equal to or greater than expected 

weight loss. In this study exercise compliance could not explain the differential in 

response as exercise sessions were supervised, nor could changes in resting metabolism. 

Instead, the researchers found that compensators experienced greater hunger at the end 

of the study and this was associated with a significant increase in daily energy intake 

(268 kcal). Conversely, non-compensators exhibited a reduction in daily energy intake 

(-130 kcal). These findings indicate that individuals who do not lose weight in response 

to exercise are compensating for the energy expenditure by increasing their energy 

intake. These findings highlight the importance of understanding the impact of physical 

activity on appetite and food intake. 

 

Throughout the nineties researchers began to examine the influence of physical activity 

on appetite and energy intake. With specific regards to the influence on appetite, the 

most consistent effect reported from this work was that high intensity physical activity 

induces a transient suppression in appetite, a phenomena which has been termed 

‘exercise induced anorexia’ (King et al, 1994) however this does not appear to influence 
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subsequent energy intake (King and Blundell, 1995; King et al, 1996). Similarly, in 

contrast to expectation, there appears to be a rather loose coupling between the energy 

expended through physical activity and energy intake in the short-term thereafter. Thus, 

physical activity does not appear to stimulate energy intake in the immediate hours after 

exercise (for reviews see Blundell et al, 2003; Martins et al, 2008). 

 

Although the work highlighted above has provided a useful starting point for examining 

the influence of physical activity on appetite and food intake, there are notable 

limitations within this work and additional areas of enquiry yet to receive attention. On 

this latter point exercise mode is an important issue. Specifically, many forms of 

exercise are undertaken within the population yet studies that have examined the effects 

of physical activity on appetite and food intake have tended to use cycling and running 

as the exercise stimulus. Walking, swimming and resistance exercise are other popular 

forms of activity undertaken yet there is a lack of information about how these modes 

of activity influence appetite, food intake and energy homeostasis. The physiological 

and metabolic reactions to exercise are determined by the characteristics of the activity 

being performed e.g intensity, duration, muscle mass recruited – therefore it is possible 

that appetite and food intake responses may be specific to the mode of activity 

performed. 

 

A second limitation of this previous work cited above concerns the duration of time 

over which responses have been examined. Typically, appetite and energy intake have 

been examined over a relatively brief period of time, commonly in response to single 

meals. Any effects of physical activity on appetite and energy intake may occur over a 

longer duration, therefore observations in response to additional meals, over a longer 

period of time, are necessary (Bilski et al, 2009).  

 

A third issue concerns the meals from which energy intake responses have been 

examined. Meals have typically been provided to participants in a buffet format 

however the diversity of items presented has been severely limited, commonly to a 

handful of items (Kissileff et al, 1990; Verger et al, 1992; King et al, 1994; King et al, 

1996; Ballard et al, 2009). Not only does this lack ecological validity, it also prevents 

the assessment of effects of physical activity on macronutrient preferences. The 

macronutrient composition of the food that we consume is a strong determinant of 
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energy consumption therefore it is important to examine the effects of physical activity 

on this variable (King et al, 1994). Provision of meals of sufficient content and 

macronutrient diversity would be necessary to assess this issue in greater depth 

(Arvaniti et al, 2000). 

 

Until recently, attempts to understand the mechanisms responsible for changes in 

appetite and food intake after exercise have been limited to speculations based on 

circulating metabolites such as glucose, lactate and free fatty acids or stress hormones 

including corticotrophin releasing factor, adrenocorticotropic hormone, cortisol and the 

catecholamines (Scheurink et al, 1999). Over the last decade however, an increase in 

knowledge regarding the neuroendocrine regulation of appetite and food intake has 

promoted research interest within this area with more investigators examining the 

effects of physical activity on circulating peptides implicated in the regulation of 

appetite and feeding (Martins et al, 2008; Bilski et al, 2009).  

 

As knowledge within the area of appetite control has developed over recent years it has 

become apparent that a complex system of afferent signals and efferent effectors 

operating between peripheral tissues and the central nervous system work 

synergistically to regulate appetite and energy intake (Moreton et al, 2006; Karra and 

Batterham, 2010). Specifically, the gastrointestinal tract, pancreas and adipose tissue 

secrete a diverse range of peptides which act centrally to inform the brain of acute and 

chronic energy stores and nutrient requirements. These signals are integrated within 

neurons located in brain regions implicated in the regulation of energy homeostasis, 

most notably the hypothalamic arcuate nucleus. These signals are then relayed to higher 

order neurons which mediate appetite perceptions and feeding behaviour (Murphy and 

Bloom, 2006). 

 

Interest in this area was ignited by the discovery of leptin in the early nineties as a 

circulating factor responsible for informing the central nervous system of chronic 

energy reserves deposited within adipose tissue (Zhang et al, 1994). Since then, many 

peptides implicated in the regulation of appetite and feeding have received significant 

attention, most notably, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), 

pancreatic polypeptide, oxyntomodulin (OXN), ghrelin and peptide YY (PYY). In 

contrast to leptin, these peptides regulate appetite and food intake on an acute, meal to 
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meal basis, influencing the decision to start and stop eating (meal initiation and 

satiation) as well as the duration of time in between discrete meals (satiety). Of these 

peptides ghrelin remains conspicuous as a circulating factor which stimulates appetite 

and food intake, all other peptides cited above are secreted in response to nutrient 

ingestion and serve to inhibit appetite and feeding (Karra and Batterham, 2010). 

 

The last decade has observed an increase in research seeking to characterise the effects 

of exercise on peptides implicated in the regulation of appetite and food intake (Martins 

et al, 2008; Bilski et al, 2009). Within this, ghrelin has received explicit attention 

(Kraemer and Castracane, 2007). Ghrelin is a 28 amino acid peptide that was 

discovered as the natural endogenous ligand for the growth hormone secretagogue 

receptor (GHS-R) (Kojima et al, 1999). Soon after ghrelin’s discovery the appetite 

stimulating properties of ghrelin were uncovered (Arvat et al, 2001; Wren et al, 2001), 

and as the only known circulating orexigenic peptide, this characteristic has identified 

ghrelin as an attractive target for investigation.  

 

Within the circulation two forms of ghrelin exist, namely acylated and unacylated. 

Acylated ghrelin is made explicit by the post-translational addition of a medium chain 

fatty acid to its third amino acid residue. This modification is necessary in order for 

ghrelin to bind to the GHS-R and cross the blood-brain barrier, mechanisms which 

permit the role of ghrelin in the regulation of growth hormone release and energy 

metabolism (Kojima and Kangawa, 2005). Despite this, initial work examining the 

ghrelin response to exercise measured circulating concentrations of total ghrelin and 

primarily sought to examine the role of ghrelin in mediating exercise induced changes 

in growth hormone (GH) secretion. More recently, with an increase in knowledge 

regarding the neuroendocrine regulation of feeding, studies have sought to examine 

changes in ghrelin in response to exercise from an appetite regulatory perspective 

(Martins et al, 2008). Furthermore, with the development of commercially available 

assays specific for acylated ghrelin, investigators have begun to specifically measure 

acylated ghrelin (Broom et al, 2007; 2009; Marzullo et al, 2008; Ueda et al, 2009). 

Findings from these studies tend to show that circulating acylated ghrelin is suppressed 

by high intensity exercise however the physiological relevance of this remain unclear 

i.e. we do not know whether exercise-induced changes in acylated ghrelin influence 

food intake. The studies described in this thesis sought to examine this issue. 
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Peptide YY is a 36 amino acid peptide hormone that inhibits appetite and food intake 

(Batterham et al,  2002; 2003). Peptide YY is secreted from the distal intestine after 

nutrient ingestion in proportion to the caloric load and is an important determinant of 

satiation and satiety (Adrian et al, 1985a; Karra and Batterham, 2010). Two forms of 

PYY exist within the circulation, namely PYY1-36 and PYY3-36. The latter is a truncated 

34 amino acid peptide produced by cleavage of the N-terminal tyrosine and proline 

amino acid residues from PYY1-36 by the enzyme Dipeptidyl-peptidase IV (Mentlein et 

al, 1993) and is the main circulating form of PYY in both the fed and fasted state 

(Batterham et al, 2006). This structural modification is necessary for modulating 

digestive and feeding behaviour, as well as initiating satiety after a meal in response to 

an increase in circulating levels.  

 

Circulating concentrations of PYY are inversely related to multiple measures of 

adiposity (Batterham et al, 2003; Roth et al, 2005; Guo et al, 2006) and attenuated 

levels have been linked with reduced satiety in overweight individuals (Le Roux et al, 

2006). Consequently, the recognition that obese individuals remain sensitive to the 

anoretic effects of exogenous PYY (Batterham et al, 2003) has identified this hormone 

as an exciting therapeutic target. In 2007 Martins and co-workers were the first to 

publish findings regarding the effects of exercise on circulating levels of PYY. The 

researchers observed a significant increase in circulating levels immediately after 

exercise and since then other researchers have replicated this finding (Broom et al, 

2009; Ueda et al, 2009). Unfortunately, circulating concentrations of total PYY were 

measured in these studies rather than PYY3-36. Only one investigation has examined the 

PYY3-36.response to exercise (Cheng et al, 2009). Findings from this investigation 

suggest that PYY3-36 may not respond to exercise per se, but exercise may accentuate 

the PYY3-36 response to feeding. This would be a positive finding in the context of 

weight control, therefore further work is needed to better characterise the PYY3-36 

response to exercise. 

 

The primary rationales for conducting the studies described in this thesis were two-fold. 

The first objective was to characterise the effects of exercise mode (resistance exercise, 

swimming, walking and running) on appetite perceptions and ad libitum energy intake 

over a prolonged duration, rather than in response to single meals. The second aim was 

assess the effects of exercise on the gut peptides acylated ghrelin and PYY3-36. Within 
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this, the association between these peptides, perceptions of appetite and ad libitum food 

intake were explored to determine the physiological relevance of exercise-induced 

changes in the circulating concentrations of these regulatory peptides.  

 

The first study in this thesis (Chapter four) examined the effect of resistance exercise on 

appetite and ad libitum energy intake over an extended, 24 h period. Study two (Chapter 

five) sought to examine the influence of an acute bout of swimming on appetite, ad 

libitum energy intake and circulating concentrations of acylated ghrelin. Study three 

(Chapter six) assessed the effects of brisk walking on appetite, ad libitum energy intake 

and plasma acylated ghrelin concentrations. Study four (Chapter seven) examined 

appetite, ad libitum energy intake and circulating acylated ghrelin concentrations over 

24 h in response to a prolonged bout of treadmill running – sufficient to induce a severe 

energy deficit. Study five (Chapter eight) assessed the effects of treadmill running on 

feeding latency and examined the potential role of acylated ghrelin in mediating this. 

The final study reported in this thesis (Chapter nine) examined the PYY3-36 response to 

treadmill running and compared appetite, energy intake, acylated ghrelin and PYY3-36 

responses to energy deficits induced by exercise as compared with diet. 

 

It is clear that over the last three decades overweight and obesity have developed into 

significant health and economic problems for nations across the globe. So far there is no 

‘magic bullet’ which will halt the year on year increase in prevalence. Dietary, 

pharmacological and surgical therapies are available however it appears that these 

strategies are ineffective at controlling weight in the long-term. Studies show the 

potential of exercise to help in weight control however they also show that this can be 

undone through negative effects on appetite and food intake. Understanding the 

relationship between different types of exercise, appetite and food choices, and their 

mechanisms of regulation, may help us to optimise interventions to help individuals 

maintain a healthy body weight and composition.  
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CHAPTER II 

Review of literature 

 

2.1 Gastrointestinal regulation of appetite and energy intake 

The observation that body weight remains remarkably constant over long periods of 

time despite large fluctuations in daily energy intake and expenditure indicate the 

presence of a system regulating appetite and energy intake (Wynne et al, 2005c). A 

complex system composed of afferent signals and efferent effectors operating within 

the central nervous system and peripheral tissues work synergistically to regulate 

appetite and energy intake on both an acute (meal to meal) and chronic basis (Wynne et 

al, 2005c; Moreton et al, 2006). The arcuate nucleus in the hypothalamus is the key 

central nervous system region governing the homeostatic regulation of appetite and 

energy intake although other brain regions located within the brain stem such as the 

nucleus tractus solitaries and area postrema are also important (Williams et al, 2000; 

Badman and Flier, 2005). Figure 2.1 provides a simplified schematic representation of 

this system. 
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Figure 2.1: Peripherally derived hormones influencing energy homeostasis via the 
arcuate nucleus (adapted from Murphy and Bloom, 2004). Bold lines indicate 
stimulatory effects and dashed lines indicate inhibitory effects. AgRP, agouti-related 
peptide; CART, cocaine-and amphetamine-related transcript; GLP-1, glucagon-like-
peptide 1; αMSH, alpha-melanocyte-stimulating hormone; NPY, neuropeptide Y; 
MC3/4, melanocortin receptors; NPY Y1 and Y5 receptors; OXM, oxyntomodulin; 
POMC, pro-opiomelanocortin; PP, pancreatic polypeptide; PYY, peptide YY. 
 

The system responsible for regulating appetite and energy intake is composed of neural 

and endocrine components. Peptide hormones communicating both acute and chronic 

energy status are secreted into the circulation from peripheral structures such as the 

gastrointestinal tract, pancreas and adipose tissue and reach appetite regulatory centres 

within the brain via entry through a partially permeable blood-brain barrier (Badman 

and Flier, 2005). These peripheral signals may also reach these sites via neural 

connections between the gut and brain, most notably the vagus nerve which connects 

the gut to the brainstem (Berthoud, 2008). The arcuate nucleus within the hypothalamus 

is the site where these signals are integrated. In this area two primary neuronal 

populations are responsible for integrating afferent signals and regulating the expression 

of appetite stimulating/inhibiting neuropeptides. Neurons expressing neuropeptide Y 

(NPY) and agouti-related peptide (AgRP) stimulate higher order neurons which 
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promote appetite and energy intake whilst reducing energy expenditure. Conversely, 

neurons expressing pro-opiomelanocortin (POMC) and cocaine and amphetamine-

related transcript (CART) induce the expression of neuropeptides responsible for 

reducing appetite and food intake whilst increasing energy expenditure (Morton et al, 

2006).  

 

Kennedy (1953) first proposed the presence of a circulating factor responsible for 

informing the brain of adipose tissue reserves however at the time the exact mechanism 

remained unknown. In the early nineties this mechanism was elucidated with the 

discovery of leptin (Zhang et al, 1994). Leptin is a peptide derived primarily from white 

adipose tissue and is responsible for communicating information to the central nervous 

system regarding stored energy. Leptin is released into the circulation in direct 

proportion to levels of adiposity and operates as a long-term negative feedback signal, 

reducing appetite and increasing energy expenditure when circulating concentrations 

are elevated  (Friedman, 2002). The initial discovery of leptin was met with optimism 

as it was thought that low circulating levels may have been implicated in the aetiology 

of obesity. Paradoxically, circulating concentrations of leptin are elevated in most obese 

individuals indicating obesity as a state of leptin resistance (Considine et al, 1996). 

 

Insulin, produced by the beta cells of the pancreas, is a second factor which acts as an 

adiposity signal informing the brain of long-term energy reserves. Although circulating 

concentrations of insulin fluctuate in response to individual feeding episodes, over time, 

circulating levels directly represent adipose tissue mass (Wynne et al, 2005b). In 

rodents central administration of insulin reduced food intake and subsequently body 

weight (Ikeda et al, 1986). While both insulin and leptin are primarily thought of as 

long-term regulators of energy homeostasis these peptides may also have a subtle 

influence on the short-term control of feeding by mediating the sensitivity of the 

appetite regulatory system to gut peptides that are implicated in acute, meal to meal, 

control of appetite and food intake  (Moreton et al, 2006). 

 

In addition to chronic signals communicating information regarding long-term energy 

status, appetite and energy intake are also regulated in response to individual meals 

(Murphy and Bloom, 2006). Peptides secreted from the gastrointestinal tract and 

pancreas are important mediators of the acute (meal to meal) regulation of food intake. 
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Specifically, CCK, pancreatic polypeptide, GLP-1, oxyntomodulin and PYY are 

secreted in response to ingested nutrients and suppress appetite and feeding. 

Conversely, ghrelin remains the only known circulating gut peptide that stimulates 

appetite and feeding (Karra and Batterham, 2010). Figure 2.2 provides a schematic 

representation of the gastrointestinal tract illustrating where these hormones are 

concentrated  and their physiological functions. 

 

 
Figure 2.2: Schematic representation of the gastrointestinal tract illustrating the location 
and key functions of certain gut hormones implicated in the acute regulation of feeding. 
Adapted from Murphy and Bloom (2006).  
 

Cholecystokinin is a peptide hormone produced by I-cells located in the duodenum. 

Approximately 15 min after nutrient ingestion, most notably in response to fat and 

protein, circulating concentrations of cholecystokinin start to increase, peak at ~25 min 

and remain elevated for approximately three hours (Paik et al, 2007). Cholecystokinin 

was the first gut hormone found to inhibit food intake when injected intraperitoneally 

into rodents (Gibbs et al, 1973). The appetite inhibitory effect of CCK has since been 

documented in both lean and obese humans (Kissileff et al, 1981; Lieverse et al, 1995). 
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Administration of cholecystokinin before a meal reduces meal size but does not reduce 

the number of subsequent feeding episodes. This indicates that CCK is short-acting 

signal important in determining meal termination and hence, meal size. 

 

Pancreatic polypeptide is a 36 amino acid peptide produced by F-cells in the periphery 

of the pancreatic islets of Langerhans and also to a lesser extent in the colon (Ekblad 

and Sundler, 2002). Pancreatic polypeptide is released into the circulation after eating in 

proportion to the amount of energy consumed and remains elevated for up to six hours 

(Track et al, 1980). Peripheral administration of pancreatic polypeptide to rodents has 

been shown to reduce food intake (Asakawa et al, 1999). Moreover, intravenous 

infusion has been found to reduce appetite and food intake in humans (Batterham et al, 

2003; Jesudason et al, 2007).  

 

Glucagon-like peptide-1 and oxyntomodulin are both products of the preproglucagon 

gene which is expressed in the pancreas and intestine. In the pancreas, the 

preproglucagon gene product is post-translationally processed into the hormone 

glucagon whereas in the intestine GLP-1 and oxyntomodulin are produced (Murphy and 

Bloom, 2004). Glucagon-like-petide-1 is synthesised by intestinal L-cells located in the 

distal ileum and colon in two-forms: GLP-11-37 and GLP-11-36 amide, the latter being the 

major circulating form. Circulating GLP-1 concentrations increase ~10 min after 

nutrient ingestion, peak after ~30 min and remain elevated for several hours (Orskov et 

al, 1996). When secreted into the circulation GLP-1 is rapidly inactivated by the 

enzyme dipeptidyl-peptidase-4 (DPP4) yielding a half-life of approximately two min 

(Mentlein et al, 1993). Several studies have demonstrated appetite inhibiting effects of 

GLP-1. Both central and peripheral administration reduced food intake in rodents 

(Tang-Christiansen et al, 1996; Turton et al, 1996) whilst anorectic effects have also 

been seen with dose-dependant reductions in food intake in both lean and obese humans 

(Verdich et al, 2001). Glucagon-like-petide-1 is also a potent incretin, potentiating the 

production of insulin in response to elevations in blood glucose. Dipeptidyl-peptidase-4 

resistant GLP-1 receptor agonists are showing promise as a treatment for diabetes with 

part of this success attributed to the associated weight loss resulting from a reduction in 

appetite (Chaudhri et al, 2008). 
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Oxyntomodulin is a 37 amino acid peptide released from intestinal L-cells after food 

ingestion in proportion to caloric load (Le Quellec et al, 1992). Oxyntomodulin is 

released into the circulation ~10 min after meal initiation with levels peaking after 30 

min and remaining elevated for several hours (Le Quellec et al, 1992). Similar to GLP-

1, oxyntomodulin is also a substrate for the protease enzyme DPP4. Several studies 

have shown suppressed energy intake in rodents after oxyntomodulin administration 

(Dakin et al, 2001; 2004; Baggio et al, 2004). Similarly, in humans, acute 

oxyntomodulin administration reduced food intake in lean volunteers (Cohen et al, 

2003) and subcutaneous injection of oxyntomodulin induced weight loss over the 

course of four weeks in healthy overweight and obese individuals (Wynne et al, 2005b).  

 

The experimental work in this thesis has included measurement of the gut hormones 

ghrelin and PYY therefore the following sections in this review will describe the 

structure, function and mechanisms of regulation in greater detail with particular 

emphasis on their roles in the regulation of energy homeostasis. Research has 

consistently described important effects of ghrelin and PYY in the regulation of appetite 

and energy intake. Currently ghrelin is the only known circulating gut hormone that 

increases appetite and stimulates meal initiation (Cummings et al, 2006). Conversely, 

PYY potently inhibits appetite and food intake and is an important determinant of inter-

meal satiety (Batterham et al, 2002; Karra and Batterham, 2010). As a result of this both 

ghrelin and PYY have become significant targets for pharmaceutical development 

(Neary and Batterham, 2009a).   

 

2.2 Ghrelin 

2.2.1 Discovery of ghrelin 

The discovery of ghrelin was preceded by work with synthetic compounds, the growth 

hormone secretagogues, which were shown to stimulate GH and food intake (Kojima et 

al 2001). In 1996 the growth hormone secretagogue receptor was identified as a G 

protein coupled receptor in the hypothalamus and pituitary. In 1999 the endogenous 

ligand for this receptor was identified and purified from rat stomach (Kojima et al, 

1999). This ligand was named ‘ghrelin’- from the Indo-European route ghre meaning to 

grow (Kojima, 2008).  
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2.2.2 Structure, production and secretion 

Ghrelin is a 28 amino acid peptide formed by cleavage from its larger precursor, pre-

proghrelin (Kojima and Kangawa, 2005). Ghrelin producing cells are primarily located 

in the x/a like-cells of the stomach fundus however smaller amounts are produced in the 

bowel, pituitary, kidney, placenta and hypothalamus (Kojima et al, 2001). Two forms of 

ghrelin exist within the circulation, namely acylated and unacylated. Acylated ghrelin is 

made explicit by the post-translational addition of a medium chain fatty acid, typically 

octanoate, to its third amino acid residue (serine), a modification which is catalysed by 

the recently identified enzyme – ghrelin O acyltransferase (GOAT) (Yang et al, 2008). 

This modification is necessary in order for ghrelin to bind to the growth hormone 

secretagogue receptor (GHS-R) and cross the blood-brain barrier, mechanisms which 

permit the role of ghrelin in the regulation of GH release and energy metabolism 

(Kojima and Kangawa, 2005).  

 

Upon fasting, and/or low circulating levels of glucose and insulin, ghrelin is secreted 

into the circulation. Acylated ghrelin has a short circulating half-life (~25 min), being 

broken down by enzymes including butyrylcholinesterase and lysophospholipase 1 (De 

Vries et al, 2007). Consequently, in both the fed and fasted state the predominant form 

of ghrelin in the circulation is unacylated (75-90%) (Hosoda et al, 2004; Liu et al, 

2008). 

 

2.2.3 Physiological functions 

Ghrelin is a multifaceted hormone with diverse biological functions (Van der Lely et al, 

2004; Kojima and Kangawa, 2005). Both central and peripheral actions of ghrelin have 

been reported and include regulation of pancreatic function, gastric acid secretion and 

gastric motility (Masuda et al, 2000; Asakawa et al, 2001; Date et al, 2001), 

cardiovascular function (Nagaya et al, 2001; Sharma and McNeill, 2005), cell 

proliferation and apoptosis (Zhang et al, 2008), adipogenesis (Tschop et al, 2000) and 

sleep (Weikel et al, 2003). In addition, ghrelin was discovered as the endogenous ligand 

of the GHS-R and stimulates GH secretion. In rodents and humans intravenous ghrelin 

administration induces GH release with greater potency than GH releasing hormone 

(Takaya et al, 2000). Despite this, after the discovery of the orexigenic properties of 

ghrelin research interest shifted to investigating its role in energy homeostasis (Karra 

and Batterham, 2010).  
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2.2.4 Ghrelin, appetite and the acute regulation of energy intake 

To date, ghrelin is the only circulating hormone that is known to stimulate appetite and 

food intake – all other circulating hormones implicated in the acute control of appetite 

serve to induce satiation and satiety. The appetite stimulating properties of ghrelin were 

first identified when three out of four participants reported an increase in appetite after 

receiving ghrelin intravenously during an investigation examining the effects of ghrelin 

on GH secretion (Arvat et al, 2001). A number of studies have since reported enhanced 

appetite and/or increases in food intake after exogenous ghrelin administration. In 

rodents, both intracerebroventricular and peripheral ghrelin administration increased 

feeding in a dose-dependent manner and led to weight gain in response to repeated 

administration (Wren et al 2000, Nakazato et al, 2001; Shintani et al, 2001; Wren et al, 

2001b). These responses have also been observed at circulating concentrations typically 

observed when fasting, suggesting that these effects may be physiological meaningful 

(Wren et al, 2001b). Further evidence that ghrelin is orexigenic has been provided by 

studies which have induced diminished ghrelin action, by reducing peptide 

bioavailability or receptor activation (Nakazato et al, 2001; Asakawa et al, 2003). In 

these scenarios a decrease in food intake and body weight has been reported. 

 

Exogenous ghrelin also stimulates food intake in humans. In a cross-over design, Wren 

and co-workers (2001a) infused ghrelin (5 pmol·kg·min-1) or saline into nine healthy 

weight humans and recorded ratings of appetite and ad libitum food intake at a buffet 

meal provided towards the end of the infusion. Ratings of appetite were significantly 

higher during ghrelin infusion and this was associated with a 28% increase in energy 

intake at the buffet meal. Analysis of food diaries completed for 24 h after the infusion 

showed no evidence of compensatory under eating on the ghrelin trial. These results 

have been confirmed by other investigators in both lean and obese individuals (Druce et 

al, 2005; 2006). The orexigenic effect of ghrelin is not limited to healthy persons. 

Exogenous ghrelin enhanced appetite and food intake in patients with cancer cachexia 

(Neary et al, 2004), heart failure (Nagaya et al, 2004) and in malnourished patients on 

peritoneal dialysis (Wynne et al, 2005a). With further development ghrelin may 

therefore provide a useful therapeutic option in these circumstances. 

 

The stimulatory effects of ghrelin on appetite and food intake are mediated through 

specific appetite related neural pathways within the brain, most notably within the 
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hypothalamic arcuate nucleus. In the circulation ghrelin can access these brain areas 

through a partially-permeable blood-brain barrier (Kojima and Kangawa et al, 2005). It 

is also possible that ghrelin may signal to the brain via the vagus nerve (Berthoud, 

2008). In rodents, blockade of the gastric vagal afferent abolished ghrelin induced 

feeding and vagotomy abolished the typical rise in ghrelin in response to food 

deprivation (Date et al, 2002; Williams et al, 2003). Conversely, other work in rodents 

has shown that vagal afferents are not required to permit the eating-stimulatory action 

of ghrelin (Arnold et al, 2006) therefore uncertainty still surrounds the role of the vagus 

nerve in mediating the orexigenic action of ghrelin. 

 

Within the arcuate nucleus ghrelin stimulates NPY and AgRP neuronal populations.  

These neuropeptides are anabolic, promoting positive energy balance by increasing 

appetite and reducing energy expenditure. Systemic ghrelin administration induces c-fos 

(a marker of neuronal activation) within NPY/AgRP neurons (Nakazato et al, 2001). 

Moreover, antibodies to, and antagonists of NPY and AgRP abolished ghrelin induced 

feeding (Nakazato et al, 2001) and in mice lacking these neuronal populations the 

stimulatory effect of ghrelin on food intake is absent (Chen et al, 2004; Bewick et al, 

2005).  

 

Recently, Malik et al (2008) have published findings which suggest ghrelin may also 

promote food consumption by enhancing the hedonic aspect of feeding. During ghrelin 

infusion, functional magnetic resonance imaging showed that food related images 

triggered neural responses in the amygdala, orbitofrontal cortex, anterior insula and the 

striatum (areas of the brain associated with pleasure and reward processing). These 

findings suggest that ghrelin participates in both the homeostatic and hedonic control of 

feeding. 

 

2.2.5 Ghrelin and chronic energy homeostasis 

Ghrelin also satisfies the criteria as a regulator of long-term energy homeostasis 

(Cummings, 2006). In rodents, repeated administration of ghrelin induces hyperphagia 

(Wren et al, 2000) and leads to weight gain if continued (Tschop et al, 2000). 

Furthermore, ghrelin peptide and receptor knock-out mice have been shown to display a 

lean phenotype and are resistant to diet induced obesity (Wortley et al, 2005; Zigman et 

al, 2005). In humans, circulating concentrations of ghrelin are inversely associated with 
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multiple measures of adiposity (Shiiya et al, 2002). Circulating concentrations of 

ghrelin are reduced in obese individuals (Vendrall et al, 2004) and elevated in those 

with anorexia/bulimia nervosa (Tanaka et al, 2002; Dostálová and Haluzík, 2009). 

These findings indicate that ghrelin is not causally implicated in the development of 

obesity, an exception to this being in individuals with Prada-Willi syndrome where 

hyperghrelinism precedes the onset of obesity (Feigerlová et al, 2008). Changes in body 

weight resulting from modifications in diet or exercise lead to inverse changes in 

ghrelin (Leidy et al, 2004; Foster-Schubert et al, 2005) and it is possible that a 

compensatory increase in circulating concentrations of ghrelin may explain why many 

individuals find dieting hard and weight loss difficult to maintain. 

 

2.2.6 Regulation of ghrelin secretion 

Plasma ghrelin levels rise and fall over the course of the day in relation to food intake 

(Cummings et al 2001, 2002; Liu et al, 2008) (Figure 2.3). Circulating concentrations of 

ghrelin rise during fasting, peak immediately prior to meals and fall shortly after food 

ingestion (Cummings et al, 2001; Cummings et al, 2002). The premeal elevation in 

circulating ghrelin has been interpreted as evidence of a role for ghrelin in determining 

meal initiation. This contention is supported by knowledge that the diurnal rhythm of 

ghrelin closely resembles changes in hunger (Cummings et al, 2001; Pinkney and 

Williams, 2002). Food intake is the most important variable determining circulating 

ghrelin levels however the exact mechanisms of this are not entirely clear (Hosoda et al, 

2006; Yin et al, 2009). Mechanical distension of the gut does not appear to be important 

however (Shiiya et al, 2002).  
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Figure 2.3: ghrelin response to feeding across 24 h in lean (large circles) and obese 
(small circles) individuals. Adapted from Cummings et al (2002). 
 

Energy intake appears to be an important determinant of circulating ghrelin 

concentrations. The postprandial suppression of circulating ghrelin is directly 

proportional to the energy content of the ingested meal (Callahan et al, 2004; Leidy and 

Williams, 2006). Moreover, the meal related profile of ghrelin appears sensitive to the 

accumulation of calories across the day, with larger combined intakes at breakfast and 

lunch typically inducing a greater postprandial ghrelin suppression and subsequently 

leading to attenuated premeal ghrelin peaks before evening meals (Leidy and Williams, 

2006).  

 

Circulating concentrations of nutrients and hormones also influence levels of ghrelin 

(Yin et al, 2009). Each of the macronutrients suppress ghrelin although with variable 

efficacy. Overduin et al (2005) demonstrated that isocaloric intake of each 

macronutrient suppressed circulating ghrelin concentrations with carbohydrate having 

the most potent effect and fat the least. This response may contribute to the role of high 

fat diets in obesity. The idea that insulin and/or glucose suppress ghrelin has received 

Lean 

Obese 
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significant attention. Blood glucose may influence ghrelin levels as circulating 

concentrations of ghrelin rise during hypoglycaemia (Toshinai et al, 2001) and both oral 

and intravenous administration of glucose suppress ghrelin (Shiiya et al, 2002). An 

inhibitory effect of insulin may underlie the suppression of glucose on ghrelin (Yin et 

al, 2009). While maintaining euglycemia insulin infusion significantly decreased 

circulating ghrelin (Saad et al, 2002; Flanagan et al, 2003). It is possible that 

hyperinsulinaemia may be responsible for suppressed circulating ghrelin in obesity. 

 

One recent proposition which requires acknowledgement is the contention that ghrelin 

is influenced by available lipids and may act as a nutrient sensor, rather than 

predominantly as an acute hunger signal (Kirchner et al, 2009). These researchers 

propose that ghrelin informs the central nervous system about the availability, rather 

than absence, of available nutrients. In rodents, the investigators demonstrated that the 

mRNA for the enzyme responsible for ghrelin acylation (ghrelin-o-acyltransferase) is 

decreased during fasting (36 h) and also that the mRNA for the ghrelin peptide tended 

to be reduced. Moreover, the researchers found no change in circulating acylated 

ghrelin concentrations in these conditions. These responses are counter-intuitive to the 

traditional understanding of ghrelin where upon fasting an up regulation in the 

expression of these genes, and an increase in circulating peptide would be anticipated to 

promote the restoration of energy balance. Additionally, the researchers showed that 

dietary lipids are necessary for ghrelin acylation and that mice unable to make ghrelin-

o-acyltransferase exhibited reduced body weight and fat mass. Conversely, mice over 

expressing ghrelin-o-acyltransferase demonstrated increased body weight and fat mass. 

These changes in body mass and composition were due to a reduction in energy 

expenditure and a decrease in the ability to oxidise lipid rather than to changes in food 

consumption. Collectively, these researchers suggest that ghrelin functions as a nutrient 

sensor, by using readily absorbable medium chain fatty acids to signal to the brain that 

high caloric food is available, leading to optimisation of nutrient partitioning and 

growth signals. Further research will shed more light on this issue. 
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2.3 Peptide YY 

2.3.1 Discovery of PYY 

Peptide YY was first isolated in 1980 from porcine intestinal mucosa (Tatemoto and 

Mutt, 1980). The porcine extract was named PYY due to the presence of tyrosine 

residues (the single letter amino acid code for tyrosine being Y) at the C- and N-termini 

of its amino acid structure (Karra et al, 2009). 

 

2.3.2 Structure, production and secretion 

Peptide YY is a 36 amino acid peptide hormone that is cleaved from its larger precursor 

pre-pro PYY. Peptide YY is structurally similar to pancreatic polypeptide and NPY and 

as a result, this collection of related peptides has been termed the PP-fold family 

(Vincent and Le Roux, 2008). Peptide YY is synthesised and secreted into the 

circulation from enteroendocrine L-cells located primarily in the distal intestine and 

colon (Adrian et al, 1985a). Two forms of PYY exist within the circulation, namely 

PYY1-36 and PYY3-36. Peptide YY3-36 is a truncated 34 amino acid peptide produced by 

cleavage of the N-terminal tyrosine and proline amino acid residues from PYY1-36 by 

the enzyme DPP4 (Mentlein et al, 1993) and is the main circulating form of PYY in 

both the fed and fasted state (Batterham et al, 2006). Removal of the N-terminal 

residues changes the three dimensional conformation of PYY which alters its receptor 

specificity and biological effects. Five receptors mediate the effects of the PP-fold 

proteins (Y-1, Y-2, Y-4, Y-5 and Y-6) and these receptors differ in location and 

function. PYY1-36 binds to all receptors, however PYY3-36 shows a high affinity for the 

Y-2 receptor and a lesser affinity for the Y-1 and Y-5 receptors (Neary and Batterham, 

2009b). This difference in receptor preference is necessary for modulating digestive and 

feeding behaviour. 

 

2.3.3 Physiological function 

The physiological effects of PYY are diverse. Peripheral infusion of PYY slows gastric 

emptying in humans (Allen et al, 1984). Moreover, postprandial administration of PYY 

inhibits secretions from the exocrine pancreas and stomach, and reduces the rate of gall 

bladder emptying (Adrian et al, 1985b; Hoentjen et al, 2001). Peptide YY is also an 

important mediator of the illeal break mechanism, slowing proximal gastrointestinal 

transit to facilitate the absorption of nutrients, fluid and electrolytes (Lin et al, 1996). 

Peptide YY may also have important effects on the cardiovascular system (Playford et 
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al, 1992). In addition to these functions, PYY has been shown to potently inhibit 

appetite and food intake, findings which stimulated interest concerning the role of PYY 

in the regulation of feeding (Batterham et al, 2002; 2003). 

 

2.3.4 Peptide YY, appetite and the acute regulation of energy intake 

Despite some initial contrasting results many researchers have now reproduced the 

finding that exogenously administered PYY reduces food intake in rodents (Batterham 

et al, 2002; Challis et al, 2003; Pittner et al, 2004; Abbot et al, 2005; Koda et al; 2005; 

Scott et al, 2005; Vrang et al, 2006; Unniappan and Kieffer, 2008). In humans, 

subsequent studies have also confirmed that appetite and food intake are suppressed in 

response to exogenous administration of PYY3-36 (Batterham et al, 2003; Degen et al, 

2005; Batterham et al, 2007; Sloth et al, 2007). In healthy weight men, intravenous 

infusion of PYY3-36 in an amount sufficient to elicit typical postprandial circulating 

levels was associated with a significant decrease in hunger and energy intake (36%) at a 

buffet meal provided 2 h later (Batterham et al, 2002). Moreover, in an identical study 

this finding was subsequently replicated in obese humans, as both lean and obese study 

participants exhibited suppressed ratings of hunger and consumed approximately 30% 

less energy at a buffet meal provided 2 h after the end of a 90 min intravenous infusion 

of PYY3-36 (Batterham et al, 2003). These results indicate that obesity is not associated 

with PYY3-36 resistance and have provided impetus for research into PYY3-36 as a viable 

therapeutic target for obesity pharmacotherapy. 

 

The anoretic effects of PYY3-36 are mediated through appetite regulatory neuronal 

populations within the hypothalamic arcuate nucleus (Batterham et al, 2002; Ortiz et al, 

2007). The blood-brain barrier is permeable to circulating PYY3-36 which allows PYY3-

36  to bind to Y-2 receptors located on NPY neurons and inhibit their orexigenic activity 

(Batterham et al, 2002). Specifically, electrophysiological studies have shown that 

PYY3-36 administration inhibits NPY neurons and reduces NPY mRNA expression 

(Batterham et al, 2002; Challis et al, 2003). Inhibition of NPY neurons also releases the 

tonic gama-aminobutyric acid mediated inhibition of anorexigenic pro-

opiomelanocortin neurons. Thus, within the hypothalamic arcuate nucleus PYY3-36 

directly inhibits orexigenic neurons and indirectly stimulates anorexigenic neurons.  
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Peptide YY may also influence feeding via a direct neural action. The Y-2 receptor is 

located on afferent terminals of the vagus nerve and it is possible that PYY3-36 

communicates nutritional status via this route (Koda et al, 2005). Evidence supporting 

this is provided by studies showing that subdiaphagmatic vagotomy and trans-

sectioning of brainstem-hypothalamic neuronal pathways abolished the anoretic effect 

of peripherally administered PYY3-36 (Abbott et al, 2005; Koda et al, 2005). In contrast 

to this, data from two studies in mice have not supported these findings as vagotomy  

(Halatchev and Cone, 2005) and pre-treatment with capsaicin (Talsania et al, 2005) did 

not inhibit the anorectic effects of PPY3-36 on food intake. Thus, uncertainty still 

surrounds the role of the vagus nerve in mediating the effects of PYY3-36 on food intake 

(Karra and Batterham, 2010). 

 

The role of PYY3-36  in the short-term regulation of energy homeostasis appears to be 

mediated through both homeostatic and hedonic mechanisms. In a novel study which 

combined exogenous PYY3-36 administration with functional magnetic resonance 

imaging, Batterham et al (2007) showed that PYY3-36 modulates neural activity in brain 

regions associated with cognition, emotion and reward, in addition to regions known to 

be implicated in the homeostatic control of food intake. In response to food related 

questions, the researchers found that in the presence of low circulating PYY3-36 (fasted 

participants receiving saline infusion) brain activity within hypothalamic areas 

(associated with homeostatic regulation of food intake) strongly predicted energy intake 

at a buffet meal. Conversely, in response to PYY3-36 infusion (mimicking typical 

postprandial levels) neural activity within the orbital frontal cortex (a brain region 

associated with reward processing) was the strongest predictor of energy intake. Thus, it 

appears that in the presence of elevated PYY3-36 the regulation of food intake switches 

from homeostatic to hedonic control mechanisms. These findings underscore the 

complexity of food intake regulation and highlight the interplay between physiological, 

psychological and behavioural influences governing feeding. 

 

2.3.5 Peptide YY and chronic energy homeostasis 

Mounting evidence suggests that PYY3-36 may contribute to the regulation of long-term 

energy balance. In both children and adults it has been observed that plasma 

concentrations of PYY3-36 correlate inversely with various measures of adiposity (Roth 

et al, 2005; Guo et al, 2006; Le Roux et al, 2006). In addition, investigations using 
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rodents demonstrated that chronic PYY3-36 administration attenuates gains in body 

weight and adiposity (Batterham et al, 2002; Pittner et al, 2004; Vrang et al, 2006). 

Moreover, a lack of PYY3-36 induces hyperphagia and weight gain (Batterham et al, 

2006). Specifically, Batterham and co-workers (2006) generated transgenic mice 

lacking PYY3-36. These PYY3-36 knock-out animals were hyperphagic and ate 

significantly more than their wild-type littermates when exposes to a fast re-feed 

protocol. Furthermore, these mice were heavier and exhibited increased levels of 

subcutaneous and visceral adiposity. These defective characteristics were reversed 

following exogenous PYY3-36 replacement. These findings suggest that PYY3-36 

deficiency causes weight gain and that exogenous replacement can ameliorate this.  

 

Although changes in body weight and adiposity in response to PYY3-36 administration 

are strongly determined by effects on appetite, PYY3-36 may also modulate chronic 

energy homeostasis by influencing thermogenesis and fuel partitioning. Transgenic 

mice over-expressing PYY3-36 exhibit increased body temperature suggesting that 

PYY3-36 stimulates thermogenesis (Boey et al, 2008). Moreover, in humans it has been 

demonstrated that peripheral PYY3-36 administration increases body temperature and fat 

oxidation (Sloth et al, 2007). Effects of PYY3-36 on fuel partitioning have also been 

suggested by others who found a significant inverse association between peak 

postprandial circulating PYY3-36 concentrations and 24 h respiratory quotient (Guo et al, 

2006). These researchers also found an inverse relationship between peak postprandial 

circulating PYY3-36 concentrations and body weight change over six months. Thus, it 

appears that PYY3-36 may be involved in the long-term regulation of energy 

homeostasis through effects on appetite, energy expenditure and lipid metabolism. 

 

Basal and postprandial circulating PYY3-36 concentrations have been reported to be 

reduced in obese individuals and this has been linked to reduced feelings of satiety 

(Batterham et al, 2003; Le Roux et al, 2006). The direction of this relationship remains 

unclear however i.e. are low circulating PYY3-36 levels implicated in weight gain or 

does weight gain cause a reduction in circulating concentrations. The former 

explanation is strengthened by recent evidence demonstrating that mice resistant to diet 

induced obesity exhibited significantly higher circulating PYY3-36 concentrations than 

those susceptible to weight gain (Rahardio et al, 2007). Nonetheless, obese individuals 

remain sensitive to the anorectic effects of exogenous PYY3-36 therefore identifying 
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PYY3-36 as a potential target for pharmacological intervention (Batterham et al, 2003; 

Sloth et al, 2007).  

 

2.3.6 Regulation of PYY secretion 

To date there is little data regarding the 24 h profile of circulating PYY (Karra et al, 

2009). Circulating PYY concentrations fluctuate in response to individual feeding 

episodes. Circulating values are low in the fasted state, increase within 15 min after 

nutrient ingestion, peak after 1-2 h and remain elevated for several hours (Adrian et al, 

1985a). This temporal profile, particularly the sustained elevation, identifies PYY as a 

determinant of inter-meal satiety, postponing the initiation of the next meal even more 

so than determining within meal satiation. 

 

The secretion of PYY is related to the energy content of meals and their macronutrient 

composition. Circulating concentrations of PYY increase in direct proportion to the 

energy content of ingested food. In 25 healthy weight humans, Adrian et al (1985a) 

examined PYY responses to meals of step-wise increasing caloric content and observed 

reciprocal elevations in circulating peptide levels. Studies examining the influence of 

the macronutrients on PYY release suggest that PYY is secreted in response to each 

nutrient however data comparing the relative potency has produced mixed findings. 

Initial reports suggested that fat stimulated PYY secretion with greater efficacy than 

either protein or carbohydrate (Lin and Chey, 2003) however more recent evidence has 

identified protein as the most potent stimulator of PYY (Batterham et al, 2006). 

Gastrointestinal peptides may also modulate PYY release. Circulating concentrations of 

PYY increase before nutrients reach the distal intestine and this is thought to be 

stimulated by CCK (McFadden et al, 1992). Moreover, vasoactive intestinal peptide has 

been shown to stimulate PYY (Ballantyne et al, 1993) release whilst gastrin inhibited 

PYY release (Greeley et al, 1989). Gastric distension and water ingestion has no 

influence (Pedersen-Bjergaard et al, 1996). 

 

2.4 Exercise, appetite and food intake 

Energy balance is the product of energy consumed and that expended. When in balance, 

body weight remains stable. Conversely, mismatches between these variables induce 

reciprocal changes in body mass and composition. It is known that exercise has an 

important influence on energy balance (Donnelly et al, 2009; Seagle et al, 2009). 
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Regular exercise increases energy expenditure and can therefore facilitate successful 

weight control. In addition to this, exercise may also have an indirect effect on energy 

balance by influencing appetite and subsequently, food intake. These effects are less 

well recognised and understood. The next section reviews studies which have sought to 

examine the effects of exercise on appetite and food intake. 

 

2.4.1 Appetite Assessment 

Before reviewing studies which have examined the effects of exercise on appetite, first 

it is necessary to define what is meant by ‘appetite’ and describe how it can be 

quantified. Blundell et al (2010) suggest that appetite refers to the sensory and 

qualitative aspects of eating and includes the responsiveness to both physiological and 

environmental influences. It has also been noted that appetite is a subjective construct 

and is therefore not open to direct measurement (Mattes et al, 2005). It is possible 

however to make an indirect assessment of appetite by using questionnaires. Visual 

analogue scales are the most common response format to assess subjective ratings of 

appetite. These questionnaires require participants to place a mark on a horizontal line, 

typically 100 or 150 mm in length, that are anchored at either end with descriptive 

statements (Raben et al, 1995; Flint et al, 2000). Initial questionnaires tended to focus 

on measurement of hunger however it has been suggested that this fails to recognise the 

multi-dimensional aspect of appetite (Hill and Blundell, 1982). Instead, a more valid 

assessment of appetite is likely to be gained from taking measurement of additional 

appetitive sensations, including fullness, satisfaction and prospective food consumption 

(Mattes et al, 2005). 

 

2.4.2 The effects of exercise on appetite 

Consciously restricting food intake leads to an increase in appetite and subsequently, 

food intake (Hubert et al, 1998). Although it would be logical to presume that the same 

response would be observed when energy is expended through exercise, the evidence 

available suggests that this does not occur (Blundell et al, 2003; Martins et al, 2008). 

Studies have shown that appetite does not increase in response to single bouts of 

exercise (Thompson et al, 1988; King et al, 1994; King and Blundell, 1995; King et al 

1996; 1997; Hubert et al, 1998; Martins et al, 2007). Paradoxically, a consistent finding 

is that high intensity exercise (> 60 % of 2OV max) induces a transient suppression of 
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appetite (Thompson et al, 1988; Kissileff et al, 1990; King et al, 1994, King and 

Blundell, 1995; Martins et al, 2007), an effect which has been termed ‘exercise induced 

anorexia’ (King et al, 1994). 

 

King et al (1994) examined appetite responses of 11 healthy males to acute bouts of 

high (27 min at 72% of 2OV max) and low (63 min at 36% of 2OV max) intensity 

cycling and made comparisons with responses on a sedentary control trial. The 

investigators established a suppressive effect of exercise on hunger during high, but not 

low intensity exercise. This effect was transient however as hunger ratings were not 

significantly different from values in the low intensity exercise and control trials 15 min 

after exercise. 

 

Exercise induced anorexia has since been reported during exercise of varying 

modalities including running (King and Blundell, 1995; Broom et al, 2007), cycling 

(Kissileff et al, 1990; King et al, 1994; Martins et al, 2007) and resistance exercise 

(Broom et al, 2009). Interestingly, exercise may not suppress appetite in females to the 

same degree as males (King et al, 1996). Specifically, in response to 50 min of high 

intensity cycling (70% of 2OV max) female participants did not exhibit a reduction in 

appetite. Instead, compared with responses during a sedentary control trial a post-

exercise meal was rated as more palatable after completing exercise. Its been suggested 

that this sex differential in appetite response may partly explain why exercise appears to 

be a less effective method for weight loss in females as compared with males (Hagobian 

et al, 2009). 

 

Although intense exercise may suppress appetite, findings suggest this effect is brief 

and does not subsequently influence energy intake (King et al, 1994; King and 

Blundell, 1995). Instead, a resistance to begin eating i.e. a delay until participants 

voluntarily request to eat after completing exercise, appears to be a more typical 

response. 

 

Although valuable information has been gathered from the studies cited in this section, 

a limitation of many of these studies is the somewhat brief period of observation. 

Typically, appetite ratings have been examined during exercise and then in a brief 
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period (i.e. one or two hours) leading up to a meal. Evidence from two recent studies 

suggest that changes in appetite may occur after an extended period. Malkova et al 

(2008) reported elevated subjective perceptions of hunger and desire to eat after a test 

meal that was consumed 2 h after a 60 min bout of moderate intensity cycling. 

Similarly, Broom et al (2007) observed that the AUC for hunger tended to be elevated 

over a 6 h period after a meal served 2 h post-exercise. Consequently, it has been 

suggested that additional work is needed to examine the more prolonged effects of 

exercise on appetite (Bilski et al, 2009). 

 

2.4.3 Acute energy intake responses to exercise 

Consistent with the majority of reports which have shown that single bouts of exercise 

do not increase appetite, the consensus of the available evidence suggests that exercise 

does not significantly alter energy intake (Jankowski and Foss, 1972; Reger et al, 1984; 

Thompson et al, 1988; King et al, 1994; King and Blundell, 1995; King et al, 1996; 

1997; Hubert et al, 1998; George and Morganstein, 2003; Tsofliou et al, 2003; Maraki 

et al, 2005). Exceptions to this have been reported however, where energy intake has 

been found to be augmented (Verger et al, 1992; 1994; Pomerleau et al, 2004; Martins 

et al, 2007) or reduced (Kissileff et al, 1990; Westerterp-Plantenga et al, 1997) in 

response to acute bouts of exercise. 

 

Jankowski and Foss (1972) submitted 14 middle aged, overweight men to three 

treatments: running one mile at 6.2 mph, running 440 yards at 6.2 mph or control. Food 

intake was assessed over the course of 24 h. The researchers observed no difference in 

energy intake between conditions, perhaps an expected response given the limited 

amount of exercise performed. In 11 healthy females Reger et al (1984) compared 

energy intake responses to three exercise protocols with that exhibited during a control 

trial. Long duration (60 min at 50% of 2OV max), short duration (30 min at 50% of 

2OV max) and mixed intensity exercise protocols were completed. There were no 

significant differences in energy intake at a buffet meal provided 15 min post-exercise. 

Thompson et al (1988) submitted 16 lean males to bouts of high intensity (68% of 

2OV max for 29 min) and low intensity (35% of 2OV max for 58 min) cycling and 

compared responses with control. Ad libitum energy intake was not significantly 

different between trials at a meal provided one hour after exercise. 
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A series of studies examining food intake responses to exercise have been conducted at 

the biopsychology department at the university of Leeds. Collectively, the findings 

from these studies also suggest that energy intake is not influenced by acute bouts of 

exercise. King et al (1994) reported findings from two investigations which assessed the 

influence of exercise intensity and exercise duration on energy intake. Free choice 

meals were offered 15 min after exercise in each study where participants were 

permitted to begin eating when desired. The researchers reported no significant changes 

in energy intake in either experiment. In separate experiments King and Blundell (1995) 

examined energy intake responses to single bouts of running and cycling in healthy 

male participants. In each experiment participants completed 50 min of exercise at 70% 

of 2OV max. Energy intake was assessed from ad libitum meals that were available 

immediately after exercise and also from that reported in food diaries during the 

remainder of trial days. The researchers observed no significant effects of exercise on 

energy intake in either the cycling or running trials. King et al (1996) repeated the 

cycling arm of the previous investigation using 13 healthy females. Again, no 

significant differences in energy intake occurred between the trials.  

 

As with many of the studies which have examined the effects of exercise on appetite, a 

limitation of many of the studies that have assessed the effects of exercise on energy 

intake is the brief duration of observation. Effects of exercise on energy intake have 

typically been assessed at a single meal provided after exercise. It is possible that any 

effects on energy intake may occur over a longer duration, in response to a second or 

third meal taken after exercise. King et (1997) explored this possibility in an 

investigation examining food intake responses to exercise over 48 h. In this study eight 

healthy males completed an exercise trial and a control trial in a random order. 

Participants performed 50 min of running (70% of maximum heart rate) in both the 

morning and afternoon during the first 24 h of the exercise trial and rested during the 

second 24 h. No exercise was performed during the control trial. Despite the length of 

observation and the substantial energy expenditure elicited (5020 kJ, 1200 kcal) there 

were no significant effects of exercise on energy intake. A limitation of this study 

however was the assessment of energy intake via self-reported diaries. These are 

notoriously unreliable and biased towards socially desirable foods (Mattes et al, 2005). 

Moreover, the act of collecting data in this way often distorts eating behaviour (Burke, 
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2006). Assessment of energy intake in more controlled conditions, over a greater period 

of time, with buffet meals of wide-ranging content, may help to overcome these issues. 

 

Imbeault et al (1997) examined the influence of exercise intensity on energy intake. 

Eleven young men completed a control trial and two exercise trials (low and high 

intensity). Participants either walked or ran on a treadmill for 72 min at 35% of 

maximum oxygen uptake in the low intensity trial whilst they ran for 34 min at 72% of 

maximum oxygen uptake on the high intensity trial. An ad libitum buffet was offered 

15 min post-exercise. The researchers found no significant difference in energy intake 

after exercise although energy intake tended to be lower after the high intensity run.  

 

Hubert et al (1998) compared appetite and energy intake responses to energy deficits 

induced by diet verses exercise. In their investigation 11 healthy females completed 

four day-long experimental trials in a random order. A 2 x 2 design was implemented 

with manipulations of exercise (or no-exercise) and breakfast (low energy or high 

energy). On trial days participants arrived at the laboratory and either cycled for 40 min 

at 70% of 2OV max or rested. Afterwards a standard breakfast of either low (268 kJ, 64 

kcal) or high (2092 kJ, 500 kcal) energy content was consumed. An ad libitum meal 

was provided at lunch. Exercise did not significantly alter energy intake, however 

consuming a low energy breakfast led to elevated perceptions of hunger and energy 

intake at lunch (mean of low energy breakfasts 720 kcal, mean of high energy breakfast 

600 kcal). These findings indicate that restricting energy intake stimulates appetite and 

food intake later on, responses not exhibited when energy deficits are induced through 

exercise. 

 

Two studies have assessed the effects of walking on energy intake (George and 

Morganstein, 2003; Tsofliou et al, 2003). In the study conducted by George and 

Morganstein (2003) 12 normal weight and 12 overweight females walked on a treadmill 

for 60 min at ~60% of their maximum heart rate. In the other investigation 20 obese 

women completed 20 min of brisk walking at approximately 72% of maximum heart 

rate (Tsofliou et al, 2003). In each experiment energy intake was examined at buffet 

meals provided after exercise. Neither study showed any significant effects of walking 

on energy intake. It is possible that the relatively low energy expenditure induced by 
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walking in these participants (120 – 200 kcal) may have provided an insufficient 

stimulus to influence energy intake. 

 

Maraki et al (2005) examined how the time of day during which exercise is undertaken 

influences post-exercise energy intake. Twelve healthy females completed four 

experimental trials, namely, morning control, morning exercise, evening control and 

evening exercise. As the exercise stimulus participants completed 60 min of exercise 

which included aerobic and resistance exercise components, sufficient to expend 1233 

kJ (295 kcal). Energy intake responses were examined using 24 h food diaries. The 

researchers observed no significant effects of exercise or time of day on energy intake. 

 

The aforementioned studies suggest that exercise does not influence energy intake 

however exceptions have been reported (Kissileff et al, 1990; Verger et al, 1992; 1994; 

Westerterp-Plantenga et al, 1997; Pomerleau et al, 2004; Martins et al, 2007; Erdmann 

et al, 2007). In a group of college students Verger et al (1992) examined energy intake 

responses after 2 h of ‘non-stop, various athletic activities’ (reported energy expenditure 

2092 kJ, 500 kcal) and observed a significant increase in energy intake. In this study 

participants completed a control trial and four exercise trials with the timing of meal 

presentation manipulated between trials (0, 30, 60 and 120 min post-exercise). 

Averaging the energy intake data across the exercise trials revealed a significantly 

higher energy intake after exercise as compared with control (1966 kJ, 470 kcal). 

Moreover, the researchers found a positive relationship between feeding latency and 

energy intake i.e. participants consumed more energy at meals provided later after 

completing exercise than at meals provided soon after exercise. These findings suggest 

that participants compensated energy intake for that expended during exercise. The 

extent of this is questionable though as energy expenditure was estimated using values 

taken from the French army handbook of ergonomy rather than being measured 

directly. 

 

A limitation of the previous investigation, and of many of the studies previously cited in 

this section, is the provision of a limited number of buffet items from which to 

determine energy intake responses to exercise. In the study of Verger et al (1992) only 

five items were available (semolina, gelled fruit, eggs, ham and cheese). In an effort to 

overcome this, a second study was completed by the same researchers (Verger et al, 
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1994). Fifty-eight young males were randomly assigned into an exercise group and a 

control group. In the exercise group participants completed 2 h of ‘non-stop, various 

athletic activities’ sufficient to expend 3347 kJ (800 kcal). Participants remained 

sedentary during the control trials. In each condition a comprehensive buffet meal 

(more than 50 items of varied macronutrient composition) was provided 30 min after 

exercise or rest. The findings from this study confirmed the researchers’ previous 

results, showing a significant increase in energy intake in the exercise trial as compared 

with control (1841 kJ, 440 kcal). The results of this latter study should be interpreted 

with caution however as an independent groups design was implemented. Large 

variations in energy intake occur between individuals therefore with this study design it 

is possible that the results may have been influenced by differences between individual 

participants.  

 

Pomerleau et al (2004) also reported data indicating an increase in energy intake in 

response to exercise. In a randomised fashion, 13 healthy females completed a control 

trial and exercise trials of high (69% of 2OV peak) and low (41% of 2OV peak) 

intensity with the duration being adjusted so that participants expended 1460kJ (350 

kcal). As compared with control, high intensity exercise stimulated an increase in 

energy intake (531 kJ, 127 kcal) at a buffet meal provided one hour after exercise 

however no changes occurred in response to low intensity exercise. A more recent 

investigation has also observed augmented energy intakes after exercise as compared 

with responses in a control trial (Martins et al, 2007). In this study participants cycled 

for 60 min at 66% of their maximum heart rate (energy expenditure 2059 kJ, 492 kcal) 

and food intake responses were examined at a buffet meal provided one hour later. 

Energy intake was significantly higher after exercise as compared with that consumed 

during a sedentary control trial (Δ 632 kJ, 151 kcal). 

 

Erdmann et al (2007) observed a significant increase in energy intake after prolonged 

low intensity cycling. In this study participants completed a sedentary control trial and 

three exercise trials in a random order. Herein, participants cycled at a low intensity (50 

watts) for 30, 60 or 120 min. Energy intake was assessed from a standard meal 

consisting of bread, butter and ham sandwiches - provided 15 min after exercise. As 

compared with the control trial, energy intake was significantly greater after the 120 
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bout of cycling (Δ 900 kJ, 215 kcal) but was no different after the 30 or 60 min exercise 

bouts. The energy expenditure elicited during the 120 min of cycling was not that 

extreme (1423 kJ, 340 kcal) therefore it is unlikely that the energy deficit induced was 

responsible for the augmented energy intake. Energy intake may have been elevated as 

a ‘reward’ for the prolonged effort. 

 

It has been suggested that energy intake responses to exercise can only be interpreted in 

relation to energy expenditure, a concept which has been described as ‘relative energy 

intake’ (King et al, 1994). In the studies identified above which have reported 

stimulatory effects of exercise on energy intake, participants have only partially 

compensated energy intake for that expended, that is, after accounting for the energy 

expended during exertion participants have remained in energy deficit after exercise. 

Consequently, in those circumstances it is misleading to say that exercise stimulated 

energy intake. Instead, these studies actually show that exercise induces a partial 

compensation in energy intake. 

 

Two investigations have observed decreases in energy intake in response to exercise. 

Kissileff et al (1990) reported a significant decrease in the amount of strawberry 

yoghurt consumed 15 min after a 40 min bout of moderate intensity cycling (control 

708 g, exercise 621 g). Westerterp-Plantenga et al (1997) also found a significant 

decrease in energy intake at a buffet meal provided 10 min after two hours of moderate 

intensity cycling (60% of maximum power output). In this study energy intake was 

3100 kJ (741 kcal) and 2300 kJ (550 kcal) in the control and exercise trials, 

respectively.  

 

It can be seen that the research literature is scattered with studies which have used 

diverse methodologies and participant groups through which to examine the effects of 

exercise on appetite and energy intake. Although the studies described in this section 

provide a useful starting point through which to examine the effects of exercise on food 

intake there are notable limitations of this work. Food provision is a significant issue. 

Buffet meals provided to participants have ranged extensively and in some instances 

energy intake has been assessed from single items such as strawberry yoghurt (Kissileff 

et al, 1990). A range of food items familiar to the study population would hold greater 

ecological validity and would permit investigators to more thoroughly assess the effects 
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of exercise on macronutrient intake. The period of observation is a second issue. Energy 

intake responses have typically been examined over a brief period of time, most often 

delineating energy intake responses to single meals. Changes in energy intake may 

occur over a longer duration, in response to latent exercise-induced changes in 

circulating hormones and metabolites. Consequently, assessment of responses to 

multiple meals requires examination.  

 

2.4.4 Energy intake responses to repeated bouts of exercise 

The first studies examining the effects of repeated bouts of exercise on energy intake 

were conducted in the 1980s (Woo et al, 1982a; 1982b; Woo and Pi-Sunyer et al, 1985). 

Taken collectively these studies showed that overweight women do not alter their food 

intake over the course of 52 days after starting an aerobic exercise program. 

Conversely, over 19 days healthy weight females compensated entirely for both mild 

and moderate elevations in daily energy expenditure (14% and 29% higher than on a 

sedentary day) induced through exercise. The authors speculated that the extra fuel 

reserves available in the obese subjects may be implicated in the lack of compensation 

in energy intake. 

 

More recent data indicates that over the course of seven days males do not appear to 

increase their energy intake in response to the initiation of an exercise program 

although females may begin to partially increase their energy intake over this time scale 

(Stubbs et al, 2002a; 2002b; 2004). Whybrow et al (2008) sought to examine energy 

intake and energy balance in response to imposed exercise over 14 days. Twelve 

healthy participants (six males and six females) were each studied three times during 14 

day protocols corresponding to prescriptions of no exercise (control), medium exercise 

and high exercise. In the medium exercise condition participants completed two, 40 min 

exercise sessions daily (cycling or running) whereas in the high exercise condition 

three, 40 min bouts were performed. Males expended 2.8 and 4.8 MJ·day-1 in the 

medium and high exercise conditions whilst females expended 2.0 and 3.8 MJ·day-1. A 

strength of this study was that energy intake was assessed accurately from meals 

consumed at the research facility (rather than from self-report diaries) and energy 

expenditure was measured using doubly labelled water. In both males and females, the 

researchers observed no significant changes in energy intake in response to exercise 

however a partial (non-significant) compensation in energy intake was apparent 
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(~30%). The researchers suggest that its possible that this reflects the initial stages of 

energy intake/energy expenditure matching in active individuals. This response is likely 

one of many behavioural and metabolic reactions that occur in order to restrict 

extensive changes in body mass and composition (King et al, 2007). This reaction may 

be more sensitive in females than males, possibly due to reproductive biology, and may 

explain why females find it harder to lose weight through exercise than males 

(Hagobian et al, 2009).  

 

2.4.5 Effects of exercise on macronutrient intake 

Energy intake is determined by the type of food consumed in addition to the absolute 

amount. Therefore, when considering the influence of exercise on energy intake the 

question of whether exercise alters macronutrient preference requires attention. A 

simple depletion hypothesis has been cited suggesting that individuals may be driven to 

replace the substrate predominantly oxidised during exercise (King, 1998). The 

consensus of evidence does not appear to support this notion however. Short-term 

intervention trials examining the acute effects of single bouts of exercise on 

macronutrient intake have shown mixed results yet most typically demonstrate a lack of 

change (Tremblay and Drapeau, 1999; Elder and Roberts, 2007). Healthy male 

participants did not demonstrate a significant difference in macronutrient selection after 

90 min of cycling (Alméras et al, 1995) or after two, 50 min running sessions (King et 

al, 1997). Similarly, in females, a lack of change in macronutrient selection has been 

reported in response to single bouts of walking (George and Morganstein, 2003; 

Tsofliou et al, 2003). More recently, Martins et al (2007) found no significant changes 

in macronutrient selection in response to 60 min of moderate intensity cycling. 

 

Other researchers have observed changes in macronutrient intake after exercise. After 2 

h of ‘non-stop, various athletic activities,’ Verger et al (1992) reported a significant 

increase in the percentage of energy derived from carbohydrate. Conversely, in 

response to a similar exercise stimulus, the same researchers did not observe any 

changes in carbohydrate intake but witnessed a significant increase in protein (Verger et 

al, 1994). At a buffet meal presented 60 min after high intensity treadmill exercise 

Pomerleau et al (2004) reported a significant increase in the amount of energy derived 

from fat and protein. Despite this, across the remainder of the day carbohydrate intake 

was elevated with the intake of fat and protein remaining no different to responses on a 



 37 

control trial. This latter finding may have been influenced by the provision of 

predominantly high carbohydrate containing snacks to participants after exercise.  

 

Westerterp-Plantenga et al (1997) also found an increase in carbohydrate preference 

after exercise. As compared with responses exhibited during a sedentary control trial 

the researchers observed a significant increase in the percentage of energy derived from 

carbohydrate after 2 h of moderate intensity cycling. In this study a buffet meal was 

provided 10 min after exercise. At this meal the researchers observed a significant 

increase in the percentage of energy derived from liquid source calories at the expense 

of solid food items. It is possible that this may explain the increase in carbohydrate 

intake as the beverages provided were juices high in carbohydrate. Another possible 

explanation is that participants opted for easily digestible foods at a meal presented 

soon after exercise, with high carbohydrate containing foods typically being easier to 

digest than foods high in fat and protein. 

 

Overall, the findings from short-term intervention studies do not demonstrate a 

consistent effect of exercise on macronutrient selection (Tremblay and Drapeau, 1999; 

Elder and Roberts, 2007). Cross-sectional studies show that carbohydrate intake may be 

elevated in athletic individuals (Burke, 2006) which raises the possibility that changes 

in dietary preferences may occur only in response to periods of exercise training. 

Notwithstanding, Elder and Roberts (2007) collated findings from studies which have 

examined this issue and concluded that there currently is no support for this suggestion. 

 

2.5 Effects of exercise on energy regulating hormones 

The first studies examining the influence of exercise on gastrointestinal peptides were 

conducted in the late 1970s and during the 1980s. Recently, advances in knowledge 

about the neuro-endocrine control of appetite and food intake has provided a stimulus 

for further research examining the specific influence of exercise on gastrointestinal 

peptides responsible for regulating appetite. The studies described in this thesis have 

included measurements of plasma acylated ghrelin and PYY3-36 therefore the ensuing 

sections of this review will focus on studies which have examined the impact of 

exercise on these hormones. Before this, studies which have examined the effects of 

exercise on other appetite regulatory peptides will be highlighted briefly. 
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Attempts have been made to assess the effects of exercise on pancreatic polypeptide, 

CCK, GLP-1, obestatin and leptin. The evidence suggests that circulating 

concentrations of pancreatic polypeptide increase during exercise (Gingerich et al, 

1979; Martins et al, 2007) and are elevated in both the fasting and postprandial state 

afterward (Hilstedt et al, 1980; Greenberg et al, 1986; Hurley et al, 1991). Similarly, 

exercise appears to stimulate increases in circulating concentrations of GLP-1 

(O’Connor et al, 1995; 2006; Martins et al, 2007; Ueda et al, 2009) and CKK (Bailey et 

al, 2001; Sliwowski et al, 2001). Acute bouts of exercise do not appear to influence 

circulating concentrations of obestatin (Ghanbari-Niaki et al, 2008a; 2008b; Wang et al, 

2008; Manshouri et al, 2008) or leptin (Kraemer et al, 2002) however some evidence 

suggests that circulating levels of leptin may be reduced in response to extreme exercise 

challenges that pose a severe threat to energy homeostasis (Kraemer et al, 2002). 

 

2.5.1 Acute effects of aerobic exercise on ghrelin 

Initial studies examining the influence of exercise on ghrelin were undertaken to 

determine the role of ghrelin in mediating increases in GH in response to exercise. 

Early findings indicated that neither cycling nor running influenced circulating total 

ghrelin concentrations (Kallio et al, 2001; Dall et al, 2002; Kraemer et al, 2004a; 

Schmidt et al, 2004: Zoladz et al, 2005). Unfortunately none of these studies 

implemented sedentary control groups therefore it is difficult to determine whether 

these results are due to exercise, diurnal variation or chance. 

 

Recently there has been a resurgence of interest regarding the influence of exercise on 

ghrelin. This second phase has evolved in response to work showing an important role 

of ghrelin in energy homeostasis. A central hypothesis to this inquiry was the 

expectation that exercise would augment circulating ghrelin concentrations as a 

compensatory mechanism to restore energy balance. Although an intuitive hypothesis, 

the results from investigations which have examined this have yielded inconsistent 

findings with some studies reporting that acute bouts of aerobic exercise increase 

circulating ghrelin (Christ et al, 2006; Jürimäe et al, 2007b; Erdmann et al, 2007; 

Jürimäe et al, 2009) whereas others have reported no change (Burns et al, 2007; Martins 

et al, 2007; Jürimäe et al, 2007a; Ueda et al, 2009; Shorten et al, 2009) and even 

decreases (Broom et al, 2007; Toshinai et al, 2007; Vestergaard et al, 2007; Marzullo et 

al, 2008; Broom et al, 2009). 
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Christ and associates (2006) examined whether a short-term dietary intervention would 

affect ghrelin before and during a single bout of cycling. Eleven trained athletes 

completed two experimental trials in a balanced fashion. Before completing exercise 

participants consumed a low fat diet (1.5 g/kg) for 24 h and then either maintained this 

for a further 36 h (energy balance trial – 2850 kcal·d-1) or increased the fat content of 

the diet to 3.5g/kg (overfeeding trial – 5000 kcal kcal·d-1). On the day after the dietary 

intervention participants cycled for 3 h at 50% of their maximum power output. Despite 

changes in diet the researchers observed no difference in pre-exercise total ghrelin 

levels between trials. During exercise, circulating concentrations of ghrelin increased in 

each condition with the highest levels observed during the last hour of exercise. This 

increase in ghrelin was significantly greater in the low-fat condition with the authors 

suggesting that this be related to differences in energy balance before exercise. Again, 

no control trial was employed in this study, weakening the strength of the findings. A 

meal was consumed three hours before exercise therefore the rise in ghrelin may simply 

represent a typical postprandial ghrelin response.  

 

Burns et al (2007) examined plasma total ghrelin responses to a continuous bout of 

treadmill running. Nine healthy men and women completed an exercise trial and a 

sedentary control trial in a randomised-balanced fashion. Participants ran for 60 min at 

74% of 2OV max or rested for the equivalent time. Plasma total ghrelin was determined 

from samples collected before, during and within two hours after exercise. The 

investigators observed no changes in plasma total ghrelin during or after exercise. 

These findings were confirmed by Martins et al (2007) who observed no change in 

circulating concentrations of total ghrelin in response to 60 min of moderate intensity 

cycling (65% of maximum heart rate).  

 

Jürimäe et al (2007a) examined total ghrelin responses to sculling in elite male rowers. 

The researchers thought that an exercise modality capable of recruiting a larger 

proportion of the musculature would induce a greater stimulus than either cycling or 

running. Nine male members of the Estonian national rowing team completed 30 min of 

sculling at an intensity marginally above, and on another occasion below, the individual 

anaerobic threshold (~79% of 2OV max). Plasma total ghrelin was determined before, 

immediately after exercise and then 30 min later. No significant changes in circulating 
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total ghrelin concentrations were found in either trial although in the higher intensity 

trial an increase (7.1% from pre-exercise levels) immediately after exercise approached 

significance (P = 0.051).  

 

Subsequent to this, the same researchers sought to impose an even more demanding 

stimulus (Jürimäe et al, 2007b). Eight trained male rowers completed a maximal 6000m 

rowing ergometer test (81% of 2OV max). Plasma total ghrelin levels were significantly 

higher (24%) immediately after exercise as compared with pre-exercise values however 

no difference was apparent 30 min later. The authors suggest that this study provides 

evidence indicating that an exertional bout of exercise with a correspondingly high level 

of energy expenditure (~1674 kJ, 400 kcal) is necessary to provoke an increase in 

circulating total ghrelin. Based on this reasoning it is unclear why changes in total 

ghrelin were not found in the studies of Burns et al (2007) and Martins et al (2007) 

where the gross energy expenditure of exertion was 895 kcal and 492 kcal, respectively. 

The intensity of exercise was especially high in the study of Jürimäe et al (2007b) 

which may indicate that ghrelin concentrations increase only in response to exercise of 

such an intensity. 

 

A limitation of the previous studies conducted by Jürimäe et al (2007a; 2007b) is the 

failure to include sedentary control groups. To rectify this a third study was completed 

(Jürimäe et al, 2009). Nine national level rowers completed a 120 min rowing training 

session (87% of maximum heart rate, estimated energy expenditure 1200-1500 kcal) or 

rested for the equivalent time period on another occasion. Circulating total ghrelin 

concentrations remained unchanged immediately after exercise but were 15% greater 

than control 30 min afterwards. Moreover, the total distance covered during the session 

was positively correlated with total ghrelin (r = 0.75). These findings suggest that a 

significant challenge to energy balance is needed to perturb total ghrelin concentrations 

and that the metabolic reaction is determined by the absolute amount of work 

performed. 

 

Other investigators have reported findings indicating that exercise reduces circulating 

concentrations of total ghrelin (Toshinai et al, 2007; Vestergaard et al, 2007; Malkova 

et al, 2008). Toshinai et al (2007) submitted five healthy males to a 40 min bout of 
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graded intensity cycling. After an overnight fast participants cycled for 10 min at 50% 

of their lactate threshold, at the lactate threshold, at the onset of blood lactate 

accumulation (OBLA) and finally the OBLA peak (a midpoint between the OBLA and 

2OV max). Compared with baseline, circulating concentrations of total ghrelin were 

significantly reduced in an intensity dependant fashion. Significant inverse correlations 

were reported between changes in plasma ghrelin during exercise and adrenaline (r = -

0.533) and noradrenaline (r = -0.607). The authors speculate that sympathetically 

mediated reduction in gastric blood flow may be responsible for the suppression in 

circulating ghrelin.  

 

An increase in circulating GH during exercise has also been cited as a possible mediator 

of suppressed ghrelin (Vestergaard et al, 2007). Vestergaard and associates (2007) 

examined the total ghrelin response to a maximal exercise test in 29 elite athletes. Total 

ghrelin was determined from blood samples collected before, immediately after and 

frequently during two hours of recovery. As compared with pre-exercise values, a 

decrease in serum total ghrelin was found 30 min into recovery. A significant increase 

in circulating GH was reported to precede this change by 15 min. 

 

Malkova et al (2008) examined changes in ghrelin in response to exercise and a meal 

consumed afterwards. Eleven healthy men cycled at 90% of their lactate threshold for 

57 min or rested during the equivalent period in a sedentary control trial. Blood samples 

were collected immediately after exercise and then two hours later. Participants then 

consumed a standardised meal and postprandial blood was collected 30, 120 and 180 

min after meal consumption. The key finding reported was that the ghrelin AUC was 

significantly lower than control in the 180 min after meal consumption, indicating a 

greater meal related suppression of ghrelin after performing exercise. 

 

Up to this point the studies described in this section have measured circulating 

concentrations of total ghrelin. Total ghrelin is composed of acylated and unacylated 

moieties yet it is the acylated from that is recognised as being directly implicated in the 

regulation of appetite and energy intake. It is possible that assessment of total ghrelin 

may have masked important changes in acylated ghrelin. Since assays specific to 

acylated ghrelin have become available more recent studies have measured acylated 
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ghrelin, either preferentially or in addition to total ghrelin (Broom et al, 2007; 2009; 

Marzullo et al, 2008; Shorten et al, 2009; Ueda et al, 2009). 

 

Broom et al (2007) were the first to examine the effects of exercise on circulating 

concentrations of acylated ghrelin. In their investigation nine healthy males completed 

two experimental trials (exercise and control) in a randomised crossover design. After 

an overnight fast, participants ran on a treadmill for 60 min at 72% of 2OV max (or 

rested in the control trial) and then rested in the laboratory for eight hours. Participants 

consumed a standardised test meal three hours into trials. Plasma acylated ghrelin 

concentrations were significantly lower during exercise and immediately afterwards. 

Moreover, the acylated ghrelin AUC was 38% lower over the first three hours of the 

exercise trial and 35% lower over the full nine hours compared with control. 

Interestingly, hunger ratings were significantly reduced over the first three hours of the 

exercise trial and this was positively correlated with the acylated ghrelin AUC during 

the equivalent period (r = 0.699, P = 0.036). These findings suggest a possible role of 

acylated ghrelin in mediating suppressed hunger in response to high intensity running. 

 

Marzullo et al (2008) sought to compare acylated and total ghrelin responses to high 

intensity exercise in lean verses obese individuals. In fasting conditions, eight obese and 

eight lean participants completed a graded cycling test to volitional fatigue. The test 

began at 20 watts and was increased by the same amount at the end of each four min 

stage. Serum acylated and total ghrelin concentrations were assessed at baseline, peak 

exercise and then 20 and 40 min into recovery. The researchers described significantly 

lower fasting concentrations of acylated and total ghrelin in the obese individuals 

compared with the lean. Moreover, in each participant subgroup acylated ghrelin was 

suppressed at the point of peak exercise as compared with pre-exercise levels, with a 

significantly greater reduction apparent in the obese group (21% versus 36%). This was 

despite the obese sample achieving a lower exercise performance (140 vs. 90 watts). 

Interestingly, serum total ghrelin remained unchanged in response to exercise in both 

lean and obese participants. These findings provide evidence that acute exercise 

suppresses acylated ghrelin independent of adiposity and highlight marked differences 

in the acylated and total ghrelin responses to exercise.  
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Ueda et al (2009) also compared acylated ghrelin responses to exercise in obese 

individuals and healthy weight controls. In this study seven obese and seven lean young 

males completed two experimental trials (exercise and control) in a randomised, 

balanced fashion. Participants consumed a test meal 70 min before exercising on a 

recumbent ergometer for 60 min (50% of 2OV max). Acylated ghrelin was determined 

from blood samples collected before, during and at 30 min intervals throughout one 

hour of recovery. The investigators observed no significant changes in circulating levels 

of acylated ghrelin. It is possible that consumption of a substantial meal (2343 kJ, 560 

kcal) prior to exercise may have masked any changes in circulating acylated ghrelin. 

Furthermore, the intensity of exercise completed was lower than that of other studies 

which have shown changes in circulating acylated ghrelin in response to exercise, thus 

perhaps changes in acylated ghrelin occur only in response to high intensity exercise.  

 

Shorten et al (2009) recently examined the combined effect of exercise and 

environmental temperature on appetite regulatory hormones. Eleven active males 

completed a sedentary control trial and two exercise trials in a random order. In the 

exercise trials participants ran on a treadmill for 40 min (70% of 2OV max) either in the 

heat (36oC) or in a thermoneutral environment (25oC). Plasma acylated ghrelin was 

assessed before and 30 min after exercise. The researchers observed no significant 

changes in circulating acylated ghrelin although there was a tendency for acylated 

ghrelin to be suppressed by exercise when performed in the heat (P = 0.072). It is 

possible that the greater need to dissipate heat and consequently, a larger redistribution 

of blood from the splanchnic regions, may explain why acylated ghrelin tended to be 

lower only after exercise completed in the heat. 

 

In an investigation which the author was involved with, Broom et al (2009) confirmed 

that acylated ghrelin is suppressed by high intensity aerobic exercise and demonstrated 

that acylated ghrelin is also suppressed by resistance exercise. In this study eleven 

healthy males completed three, eight hour trials (aerobic exercise, resistance exercise 

and control) in a randomised crossover design. In the aerobic exercise trial participants 

ran on a treadmill for 60 min at 69% of 2OV max and rested in the laboratory for seven 

hours after. In the resistance exercise trial participants completed a 90 min free weight 

exercise session, performing 12 repetitions of 10 different whole body exercises at 80% 
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of their 12 repetition maximum, and then rested for 6.5 h. Plasma concentrations of 

acylated ghrelin were significantly reduced during both aerobic and resistance exercise. 

In addition, subjective hunger ratings were lower during aerobic exercise and for up to 

30 min after whilst hunger was suppressed at the end of the resistance exercise session. 

These findings confirm a transient suppression of appetite during and after aerobic and 

resistance exercise and suggest a possible mediating role of acylated ghrelin. 

Unfortunately, by  nature of the study design, these findings cannot tell us whether the 

changes in acylated ghrelin would have influenced food intake. The studies described 

within this thesis have sought to shed light on this issue. 

 

2.5.2 Acute effects of resistance exercise on ghrelin 

To date, five studies have examined the influence of resistance exercise on ghrelin 

(Kraemer et al, 2004b; Takano et al, 2005; Ghanbari-Niaki, 2006; Ballard et al, 2009; 

Broom et al, 2009). Findings from these studies tend to suggest that ghrelin is 

suppressed by resistance exercise (Kraemer et al, 2004b; Ghanbari-Niaki, 2006; Ballard 

et al, 2009; Broom et al, 2009) although one study reported no change in circulating 

total ghrelin (Takano et al, 2005) whilst another found a suppression prior to a delayed 

increase (Ghanbari-Niaki, 2006). 

 

Kraemer et al (2004b) reported that a resistance exercise session composed solely of 

concentric muscle contractions suppressed circulating total ghrelin levels measured 

immediately and 30 min after exercise. In this study nine healthy males performed four 

sets of four exercises (bench press, leg extension, military press and leg curls), each set 

comprising of 12 repetitions at 80% of each participant’s 10 repetition maximum. 

Interestingly, a similar session of eccentric exercise did not alter circulating total 

ghrelin. 

 

Takano et al (2005) observed no significant changes in circulating total ghrelin in 

response to a low intensity resistance exercise protocol where blood flow was partially 

occluded. In this study 11 healthy males performed 30 leg extension exercises at 20% 

of their one repetition-maximum with muscle blood flow partially occluded. After a 

short rest participants exercised until fatigue prevented them from continuing. Total 

ghrelin levels did not change throughout. 

 



 45 

Ghanbari-Niaki (2006) sought to impose a particularly strenuous resistance exercise 

stimulus through which to examine changes in circulating concentrations of total 

ghrelin.  Fourteen healthy males completed three circuits of 10 exercises, performing 

10-12 repetitions of each exercise at 60% of their one repetition maximum. Total 

ghrelin was suppressed immediately after exercise however plasma concentrations were 

significantly higher than baseline 24 h post-exercise. It is possible that resistance 

exercise induced a latent anabolic stimulus however not including a sedentary control 

trial makes it difficult to tell whether this effect was due to exercise per se. 

 

Ballard et al (2009) examined the interactive effects of resistance exercise and 

carbohydrate beverage consumption on circulating total ghrelin concentrations and 

post-exercise energy intake and found that a strenuous 80 min protocol (four sets of 

eight whole body exercises) suppressed circulating levels independent of whether a 

carbohydrate beverage was consumed before exercise.  

 

Broom and co-workers (2009) are the only researchers who have examined the effects 

of resistance exercise on circulating levels of acylated ghrelin. In response to a 

strenuous 90 min bout of resistance exercise circulating levels of acylated ghrelin were 

suppressed during and immediately after exercise but were no different from control in 

the 6.5 h after. It is possible that this decline in acylated ghrelin may be implicated in 

the reported suppression of hunger during exercise. 

 

2.5.3 Effects of exercise training on ghrelin 

Evidence regarding the influence of repeated bouts of exercise on circulating 

concentrations of ghrelin is available but the interpretation of findings from many of 

these studies is difficult due to changes in body weight confounding study outcomes 

(Leidy et al, 2004; Foster-Schubert et al, 2005; Garcia et al, 2006; Kelishadi et al, 

2008). Specifically, it is known that circulating concentrations of ghrelin increase in 

response to weight loss and decrease with weight gain. Notwithstanding, the findings  

from these particular studies suggest that ghrelin responds in a compensatory manner to 

chronic deficits in energy, regardless of whether this is induced through exercise or 

dietary means.  

 



 46 

Potentially more useful data are available from studies in which body weight has 

remained stable over the course of exercise interventions (Mackelvie et al, 2007; Jones 

et al, 2009; Hagobian et al, 2009). Mackelvie et al (2007) submitted 17 overweight and 

17 healthy weight adolescent boys to meal tolerance tests 36 h before and after five 

consecutive days of exercise. Participants performed 60 min of aerobic exercise at an 

intensity between 65-75% of maximal heart rate reserve on each day of the intervention. 

Fasting and meal related changes in circulating total ghrelin were no different after the 

intervention, however fasting levels of acylated ghrelin were elevated after the 

intervention in normal weight and overweight participants. Moreover, after the 

intervention the acylated ghrelin AUC during the four hours after the meal tolerance 

test was significantly higher in each group. Interestingly, changes in acylated ghrelin 

were positively related to changes in appetite. These results suggest that consecutive 

bouts of exercise elicit an increase in fasting and meal related changes in acylated 

ghrelin, possibly representing a counter measure in response to regular periods of 

elevated energy expenditure. Unfortunately, failure to include a sedentary control group 

and a lack of dietary control throughout this intervention make it difficult to determine 

whether these reported outcomes are due solely to exercise. 

 

In another study, Jones et al (2009) observed no significant changes in circulating 

acylated ghrelin concentrations in response to an eight month exercise intervention. In 

this study 12 overweight adolescents completed 60 min of supervised training three 

times per week. After accounting for a warm-up and cool down participants completed 

45 min of aerobic exercise during each session at an intensity between 60-85% of peak 

oxygen uptake. As compared with baseline, the researchers observed no significant 

difference in fasting acylated ghrelin concentrations after the intervention.  

 

Hagobian et al (2009) examined sex differences in energy regulating hormone and 

appetite responses to four consecutive days of exercise in previously sedentary, 

overweight/obese, men and women. In a counterbalanced order, on two occasions nine 

males and nine females completed four consecutive days of moderate intensity 

treadmill exercise (50-65% of 2OV peak) sufficient to expend 30% of total daily energy 

expenditure. On one occasion participants increased their energy intake to replace the 

energy expended during exercise whilst on the other occasion participants consumed a 
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diet sufficient for their pre-intervention energy requirements and therefore were in 

energy deficit. Before and after each intervention circulating concentrations of acylated 

ghrelin were measured in the fasting state and in response to a 120 min meal tolerance 

test. Fasting concentrations of acylated ghrelin remained unchanged in response to the 

intervention in both men and women. Acylated ghrelin responses to the meal tolerance 

test did not vary by condition in men. Conversely, in the females, within both exercise 

conditions an attenuated meal related suppression of acylated ghrelin was observed with 

subsequently higher values being apparent at the end of the meal tolerance test. 

Expressed as AUC, in the females acylated ghrelin was elevated from baseline by 32% 

after the energy deficit trial and 25% after the energy balance trial. These results 

indicate that in women, exercise perturbs acylated ghrelin in a direction expected to 

stimulate energy intake, regardless of energy status. These data suggest that the 

mechanisms controlling energy balance are more strictly regulated in females than 

males.  

 

2.5.4 Acute effects of exercise on PYY 

Martins et al (2007) were the first to report findings concerning the effects of exercise 

on circulating concentrations of PYY. As compared with responses on a sedentary 

control trial, the researchers observed significantly higher concentrations of total PYY 

during a 60 min bout of moderate intensity cycling (66% of maximum heart rate). 

Values were not significantly different from the control trial 30 min after though, 

indicating that the stimulatory effect of exercise is transient. Energy intake at a buffet 

meal one hour after exercise was significantly higher on the exercise trial (Δ 632 kJ, 

151 kcal), indicating that the acute changes in PYY did not influence energy intake. 

Ueda and co-workers (2009) confirmed the findings of Martins et al (2007). In a sample 

of lean and obese young males, the researchers demonstrated that circulating 

concentrations of total PYY were increased during a 60 min bout of recumbent cycling 

at 50% of 2OV max. Again, total PYY concentrations were not different from values 

exhibited in a control trial 30 min afterwards. 

 

Broom et al (2009) also observed heightened circulating concentrations of total PYY in 

response to aerobic, but not resistance exercise. In this study plasma total PYY 

concentrations increased significantly during continuous treadmill running (69% of 
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2OV max) and remained higher than values on a sedentary control trial, for 30 min 

after. Furthermore, the total PYY response to feeding was accentuated after participants 

had completed the 60 min of running. In this study it is possible that the more 

prolonged increase in total PYY was due to the greater exercise intensity. Moreover, the 

failure of resistance exercise to alter circulating total PYY may be related to the lower 

energy expenditure elicited and/or the lesser gastrointestinal distress imposed. 

 

Shorten et al (2009) measured total PYY responses to exercise in hot (36oC) and 

thermoneutral conditions (25oC) and made comparisons with a sedentary control trial. 

Running in the heat (70% of 2OV peak) significantly increased levels of total PYY 30 

min post-exercise however no changes were apparent when exercise was performed in a 

thermo-neutral environment. It is possible that the greater stress imposed during 

exercise in the heat may be implicated in the PYY response as it is known that stress 

increases circulating levels of PYY (Chandarana et al, 2009). 

 

A limitation of the studies cited in this section is that concentrations of total PYY have 

been measured, that is, assays have been used which detect concentrations of both 

PYY1-36 and PYY3-36. Effects of PYY on appetite are mediated specifically by PYY3-36 

therefore previous assays for total PYY will have been less sensitive to the 

physiologically relevant form of PYY.  

 

To date, only one investigation has examined the PYY3-36 response to acute exercise 

(Cheng et al, 2009). In this study 12 participants completed a control trial and two 

exercise trials. In the control trial participants consumed a high fat liquid meal and were 

then observed for several hours postprandially. Identical meals were consumed during 

exercise trials, however 50 min of moderate intensity cycling (60% of 2OV max) were 

completed either one hour before (exercise-meal trial) or two hours after the meal 

(meal-exercise trial). Two findings were notable in this study. Firstly, in the exercise-

meal trial, circulating PYY3-36 concentrations did not change during exercise (pre to 

post-exercise). Secondly, PYY3-36 tended to be lower after the meal in the control trial 

as compared with levels exhibited during trials where exercise was performed. These 

findings suggest that PYY3-36 does not respond to exercise per se, but exercise may 

potentiate the PYY3-36 response to feeding. 
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2.5.5 Effects of exercise training on PYY 

Jones et al (2009) reported findings from an investigation examining the effects of 

exercise training on hormones related to appetite control and insulin sensitivity. Twelve 

overweight adolescents completed 32 weeks of exercise training, performing one hour 

of aerobic based activity (~60-85% of 2OV max) on three days each week. Fasting 

concentrations of total PYY were measured before and after the intervention. Total 

PYY was significantly higher (23%) after the intervention, a response which would 

imply a beneficial effect on appetite in this population. This study does have notable 

limitations however. Only fasting concentrations of PYY were assessed however PYY 

is a postprandial satiety signal therefore examination of postprandial responses would 

provide more useful information than fasting values. Furthermore, no control group was 

used in this study therefore it cannot be established whether changes in PYY were due 

solely to the exercise intervention.  

 

In a recent investigation, Kelly et al (2009) randomly assigned 19 older aged obese men 

and women to an exercise intervention or a combined exercise and diet intervention, 

each lasting 12 weeks. In the former, participants completed 50-60 min of walking or 

cycling (75% of 2OV max) on five days each week. In the latter, participants also 

reduced their energy intake by ~700 kcal per day with a five percent decrease in fat 

contributing to the energy deficit. Circulating concentrations of PYY3-36 were assessed 

in the fasted state and during the course of an oral glucose tolerance test. In both 

conditions fasting PYY3-36 concentrations remained unchanged although responses to 

the oral glucose challenge (Δ 0-30 min) increased two-fold in the exercise group and 

1.5 times in the exercise-diet group. These findings suggest an improvement in PYY3-36 

sensitivity in response to these interventions. The implications of these findings 

regarding appetite and energy intake are not known. 

 

2.6 Summary 

The ever increasing global prevalence of overweight and obesity has prompted a need 

to better understand energy homeostasis and its associated mechanisms. In recent years 

the search for effective pharmacological targets has catalysed research examining the 

body’s own appetite regulating signals within the gastrointestinal tract (Neary and 

Batterham, 2009a). Exercise is an important component of daily energy balance and an 
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increasing body of research has began to characterise the influence of exercise on 

appetite regulating hormones. This work sits alongside an existing body of data 

regarding the influence of exercise on appetite and energy intake. The work presented 

in this thesis has sought to contribute to existing knowledge within each of these topical 

and related areas of research. 
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CHAPTER III 

General Methods 

 

This chapter describes the experimental methods used in the studies presented within 

this thesis as certain aspects of the methodology were common between studies. 

Loughborough University’s Ethical Advisory Committee approved each of the studies 

described in this thesis and written informed consent was gained from study participants 

before participating in these research investigations. 

 

3.1 Participants 

For the studies reported in this thesis participants were recruited from Loughborough 

University and the surrounding area by word of mouth, poster and email advertisement. 

Volunteers were given a participant information sheet describing the demands of the 

study and the associated risks and discomforts. Volunteers provided written informed 

consent (Appendix A) and completed a health screen questionnaire (Appendix B) 

before any experimental procedures began. Participants also completed questionnaires 

assessing physical activity (Appendix C) and dietary habits (Stunkard and Messick, 

1985) (Appendix D), the latter being used to ensure the absence of any individuals with 

atypical eating tendencies which could potentially confound study outcomes. Most of 

the participants recruited were students completing their studies at Loughborough 

University and were physically active. Prior training was not a pre-requisite for 

participation in these studies however the physical demands of the protocols ensured 

that all of the participants were reasonably fit. 

 

The inclusion criteria for the recruitment of study participants were as follows: 

• male 

• non-smokers 

• recreationally active 

• not taking any medication known to influence lipid or carbohydrate metabolism 

• not dieting and did not have any extreme dietary habits 

• weight stable within the last three months i.e. < 2.3 kg change in body weight 

(St Jeor et al, 1997) 

• sufficient ability to complete the study demands i.e. the exercise protocols 
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• no history of cardiovascular disease, metabolic disease or dyslipidaemia 

• resting arterial blood pressure < 140/90 mmHg 

• BMI < 30 kg· m-2  

• Tolerance for the food items presented at the ad libitum buffet meals 

 

3.2 Anthropometry 

Height was measured to the nearest 0.1 cm using a portable stadiometer (Seca Ltd, 

Germany) and body mass was measured to the nearest 0.1 kg using a digital scale (Seca 

Ltd, Germany). For measurements of height and body mass participants were bare foot 

and wearing light clothing. Participants’ body mass index was calculated as weight in 

kilograms divided by the square of their height in metres. Waist circumference was 

measured with an inelastic polyfibre tape measure (Hokanson, Washington, USA). The 

measurement was taken at the end of expiration at the narrowest part of the torso (above 

the umbilicus and below the xiphoid process). 

 

Measurements of subcutaneous fat were taken to estimate total body fatness. Skinfold 

thickness was measured using skinfold callipers (John Bull, British Indicators, West 

Sussex, UK) at four anatomical locations (biceps, triceps, subscapula, suprailiac) and 

body density was calculated using the predictive equations of Durnin and Womersley 

(1974). Percentage body fat was then estimated using the Siri equation (Siri, 1956). All 

measurements were made in duplicate on the right side of the body with the participant 

standing. If skinfold measurements were not within 1-2 mm the site was measured a 

third time. Measurements were made by rotating through the anatomical sites to allow 

the skin time to regain normal texture and thickness. 

 

3.3 Heart rate measurement 

Heart rate was measured during preliminary exercise tests and main trials using short-

range telemetry (Polar F4, Polar Electro, Kempele, Finland). 

 

3.4 Rating of perceived exertion 

The Borg scale was used to ascertain subjective perceptions of exercise intensity during 

preliminary exercise testing and main trials (Borg, 1973). This scale ranges from six (no 

exertion) to 20 (maximal exertion). 
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3.5 Arterial blood pressure measurement 

During preliminary screening arterial blood pressure was measured by auscultation 

using a sphygmomanometer (Hawksley MK. II, Hawksley and Sons Ltd, Sussex, UK) 

according to standard guidelines (Williams et al, 2009). Measurements were taken in 

duplicate after participants had been seated for five min. The mean of two 

measurements was the value used.   

 

3.6 Exercise tests 

3.6.1 Submaximal treadmill running test 

In studies four, five and six (Chapters seven, eight and nine) a 16 min submaximal 

treadmill running test was used to determine the relationship between running speed 

and oxygen consumption. The test was designed to exercise the participants through a 

range of intensities ranging from moderate to vigorous, but not maximum. The test was 

continuous in nature but was composed of four, four min stages. The test began at a 

suitable speed for the participant (typically between 7-8.5 km·h-1) and was increased by 

1-1.5 km.h-1 following each stage. In the final min of each stage a 60 second sample of 

expired air was collected into Douglass bags (Plysu Protection Systems, Milton Keynes, 

UK) for the determination of oxygen consumption and carbon dioxide production. 

Heart rate was monitored continuously during the test and ratings of perceived exertion 

were ascertained during the expired air collection time. Oxygen consumption was 

plotted against running speed at each stage to identify the relationship between 

submaximal running speed and oxygen consumption.  

 

3.6.2 Maximum oxygen uptake test 

Participants were given 15-20 min to recover from the submaximal treadmill running 

test before undertaking the maximum oxygen uptake test. Maximum oxygen uptake was 

assessed using an incremental treadmill run to exhaustion and was designed so that 

participants reached volitional fatigue within 10-12 min (Taylor et al, 1955). The 

treadmill speed remained constant and was determined by each participant’s 

performance in the submaximal test. The treadmill gradient began at 3.5o and was 

increased by 2.5o at three min intervals until participants reached exhaustion. Samples 

of expired air were collected for one min, 1.75 min into each three min stage i.e. 1:45-

2:45, 4:45-5:45 etc. A final expired air sample was collected when participants indicted 
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they were able to continue for one min only. Strong verbal encouragement was given to 

ensure that subjects completed this final collection. 

 

After the maximum oxygen uptake test, oxygen consumption and carbon dioxide 

production were determined from each expired air sample and the highest value attained 

was accepted as the maximum oxygen uptake. The following criteria were used to 

confirm attainment of a true maximal value: 1) a plateau in oxygen consumption, 2) 

heart rate within 10 beats·min-1 of age-predicted maximum heart rate, 3) a respiratory 

exchange ratio ≥ 1.15, 4) rating of perceived exertion of 19 or 20 (Cooke, 2001). 

 

Once maximum oxygen uptake had been determined this was used in combination with 

data regarding the individual relationship between submaximal running speed and 

oxygen consumption to determine the treadmill speed that was necessary to elicit the 

desired percentage of maximum oxygen uptake during main trials. In main trials 

participants began exercising at this speed however adjustments were made during 

exercise if necessary i.e. for cardiovascular drift. 

 

3.7 Expired air analysis 

Expired air samples were collected into Douglas Bags (Plysu Protection Systems, 

Milton Keynes, UK). Oxygen consumption and carbon dioxide production were 

determined using a paramagnetic oxygen analyser and an infra-red carbon dioxide 

analyser (Series 1400, Servomex, Crowborough, East Sussex, UK). Prior to sample 

analysis the analysers were calibrated with certified reference gases. Expired gas 

volumes were measured using a dry gas meter (Harvard Apparatus, Edenbridge, Kent, 

UK) and the expired air temperature was determined using a thermistor during 

evacuation (Edale, type 2984, Model C, Cambridge, UK). Barometric pressure was 

measured using a Fortin barometer (F.D. and company, Watford, UK). Expired air 

samples were corrected to standard temperature and pressure (dry). The dry gas meter 

was calibrated regularly using a three litre syringe (Series 5530, Hans Rudolph Inc, 

Kansas City, Missouri, USA). 

 

 3.8 Calculation of energy expenditure 

For expired air samples collected at rest and during exercise oxygen consumption and 

carbon dioxide production values were used to determine energy expenditure and 
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substrate oxidation using the equations described by Frayn (1983). The intermittent 

nature of weight lifting invalidates the typical assumptions of these equations as the 

respiratory exchange ratio is consistently equal to or great than 1.0. Consequently, for 

expired air samples collected during study one (Chapter four) energy expenditure was 

estimated as 21.1 kJ (5.05 kcal) per litre of oxygen consumed (McArdle et al, 1991). 

This reflects the assumption that energy was derived from carbohydrate rather than fat 

and assumes no contribution of protein during exercise. No attempt was made to 

quantify the energy contribution from anaerobic sources therefore this may have led to 

underestimations of the energy expended during resistance exercise.  

 

3.9 Physical activity and dietary control 

The energy and nutrient content of meals consumed on the evening prior to 

experimental trials affects appetite perceptions and gut hormone levels on the 

subsequent morning (Chandarana et al, 2009). Therefore, in the studies presented in this 

thesis, during the 24 h before main trials participants standardised their food intake, 

consuming identical food items at identical times during this period. To do this, before 

undertaking the first experimental trial of a study, participants completed a weighed 

food record of all items consumed during this period. Participants then replicated their 

intake during the 24 h before subsequent trials. In this period participants abstained 

from alcohol, caffeine and structured sessions of physical activity. After 23:00 on 

evenings prior to main trials participants refrained from eating. During this time water 

was permitted ad libitum and was encouraged to avoid dehydration. 

 

3.10 Assessment of appetite 

In each of the studies described in this thesis perceptions of appetite (hunger, fullness, 

satisfaction and prospective food consumption) were assessed periodically using 

previously validated visual analogue scales (Flint et al, 2000) (Appendix E). 

Participants rated their appetite perceptions by placing a mark on a 100 mm continuum 

with descriptors positioned at either end. Participants could not refer to their previous 

ratings when completing the appetite scales. The scales were analysed by measuring the 

horizontal distance from the left hand side to the point on the line indicated by the 

participant.  
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3.11 Breakfast snacks 

In studies one, two and five (Chapters four, five and eight) main trials commenced after 

consumption of a breakfast snack. The breakfast provided was standardised to body 

weight and consisted of a commercial cereal bar (Kellogg’s Nutri-grain®). Participants 

received 1.06 g per kilogram of body weight measured on the first trial visit. Identical 

amounts were consumed prior to subsequent main trials. For a 70 kg individual this 

provided 1092 kJ (260 kcal) of energy, 6 g of fat, 4 g of protein and 48 g of 

carbohydrate. The breakfast was consumed within 5 min in all trials. 

 

3.12 Ad libitum buffet meals 

During the main trials of each study participants were given access to buffet meals from 

which they were free to consume food ad libitum. Prior to main trials acceptability of 

the buffet food items was ensured by the completion of a food preference questionnaire 

(Appendix F). The questionnaire required participants to rate pre-selected food items on 

a Likert scale ranging from one (dislike extremely) to ten (like extremely). 

Questionnaires were examined to ensure that the foods presented at meals would be to 

the taste of each individual. Distaste for the buffet items (rating four items less than or 

equal to four) resulted in participant non-inclusion. 

  

In all studies a cold buffet meal was made available to participants at distinct time 

points during trials (Appendix G). The buffet meal provided diversity in protein, fat and 

carbohydrate content in order to facilitate the detection of macronutrient preferences. At 

these meals food was presented in excess of expected consumption and participants 

were told that additional food was available if desired. Participants were given 30 min 

to eat at buffet meals and were told to eat until satisfied. Participants consumed meals in 

isolation so that social influence did not constrain food selection. Food consumption 

was ascertained by examining the weighted difference in food items remaining 

compared with that initially presented. The energy and macronutrient content of the 

items consumed was ascertained using manufacturer values. In study four (Chapter 

seven) energy intake was examined over the course of 24 h therefore a hot buffet lunch 

(Appendix H) was also provided during main trials. 
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3.13 Time cues, environmental temperature and humidity 

In each of the studies described environmental temperature and relative humidity were 

assessed periodically throughout main trials using a hand-held hygrometer (Omega 

RH85, Manchester, UK). Participants were not devoid of time cues in the laboratory in 

each of the studies except for study five (Chapter eight) where a key outcome was to 

determine if exercise influenced feeding latency. In study five clocks were removed 

from the laboratory and participants were not allowed to bring mobile telephones into 

the laboratory.  

 

3.14 Blood sample collection 

Approximately 30 min before commencing main trials participants rested in a semi-

supine position whilst a cannula (Venflon, Becton Dickinson, Helsinborg, Sweden) was 

inserted into an antecubital vein (Chapters six, seven, eight and nine). A cannula cannot 

be in place during immersion in water, hence in the swimming study (Chapter five) a 

cannula was inserted 30 min after exercise had been completed and therefore the 

baseline, pre and post-exercise blood samples were taken via venepuncture of an 

antecubital vein. Samples collected after this were obtained via a cannula. Also, in 

study four (Chapter seven) to minimise participant discomfort on the second day of 

main trials a venepuncture was used to collect a single fasting blood sample.  

 

Venous blood samples were collected into pre-cooled 4.9 or 9 mL potassium-

ethlenediamine tetra-acetic acid (EDTA)-coated monovettes (Sarstedt, Leicester, UK) 

via a multi-adapter (Sarstedt, Leicester, UK). Patency of the cannula was maintained by 

flushing with 10 mL of non-heparinised saline (0.9% w/v sodium chloride, Baxter 

Healthcare Ltd, Norfolk, UK) after each sample collection. To avoid dilution of 

subsequent samples residual saline was drawn off immediately prior to collection using 

a 2 mL syringe. To control for postural changes in plasma volume participants lay in a 

semi-supine position approximately five min prior to each blood sample and remained 

in this position during the collection. Exceptions to this occurred when blood samples 

were taken during exercise (treadmill running). In this situation participants straddled 

the treadmill whilst blood samples were obtained and this procedure took no longer 

than one min.  
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Blood samples collected into 9 mL EDTA monovettes were centrifuged immediately at 

1681 g for 10 min in a refrigerated centrifuge (Heraeus Labofuge 400 R, Thermo Fisher 

Scientific Inc, Loughborough, UK) at four degrees Celsius. The plasma supernatant was 

then aliquoted into Eppendorf tubes (Sarstedt, Leicester, UK). Samples were stored at -

20oC for the analysis of glucose, triacylglycerol, insulin (Chapters six and seven) at a 

later date.  

 

Separate venous blood samples were collected into 4.9 mL monovettes for the 

determination of plasma acylated ghrelin concentrations. To prevent the degradation of 

acylated ghrelin by protease enzymes these monovettes contained EDTA and a 50 μL 

solution containing potassium phosphate buffer, P-hydroxymercuribenzoic acid and 

sodium hydroxide. These monovettes were spun immediately after sample collection at 

1287 g for 10 min in a refrigerated centrifuge (GS-15R Centrifuge, Beckman Coulter, 

Fullerton, USA) at four degrees Celsius. The supernatant was then aliquoted into plain 

storage tubes where 100 μL of hydrochloric acid (1 M) was added per mL of plasma. 

Samples were then spun again for 5 min at 1287 g to ensure thorough mixing. Samples 

were then stored at -20oC prior to analysis later.  

 

In study six (Chapter 9) addition 2 mL blood samples were taken periodically to 

measure circulating concentrations of PYY3-36. To maintain peptide integrity, samples 

were collected into pre-chilled syringes containing dipeptidyl-peptidase-4  inhibitor (10 

µL.mL-1) (Millipore Ltd, Watford, UK). After mixing by gentle inversion samples were 

then dispensed into pre-chilled EDTA tubes containing aprotinin (Nordic Pharma Ltd, 

Reading, UK) at a final concentration of 500 KIU.mL-1. These samples were spun at 

1681g for 10 mins in a refrigerated centrifuge at 4 oC. The plasma supernatant was then 

aliquoted into 2 mL Eppendorf tubes prior to storage (at -20 oC until frozen and then 

transferred to -80oC). In all studies frozen plasma samples were analysed within 3 

months of initial collection. 

 

At each sampling point, duplicate 20 μL blood samples were collected into 

micropipettes and triplicate blood samples were collected into heparinised micro 

haematocrit tubes for the determination of blood haemoglobin and haematocrit 

concentration, respectively.  
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3.15 Blood sample analysis 

3.15.1 Estimation of changes in plasma volume 

Blood concentrations of haemoglobin and haematocrit were used to estimate plasma 

volume and determine changes over time (Dill and Costill, 1974). Haematocrit was 

determined in triplicate using a microlitre-haematocrit centrifuge (MIKRO, 20, Andreas 

Hettich GmbH and Co.KG, Tuttlingen, Germany). Haemoglobin was determined in 

duplicate using the cyanmethaemoglobin method with the aid of an ultra-violet 

spectrophotometer (CECIL CE1011, Cecil Instruments Ltd., Cambridge, UK).  

 

3.15.2 Glucose and triacylglycerol 

Plasma glucose and triacylglycerol concentrations were determined by enzymatic 

colorimetric methods using an automated bench top analyser (Pentra 400, HORIBA 

ABX Diagnostics, Montpellier, France). To ensure precision of analysis internal quality 

controls exhibiting normal and pathological values were run prior to sample analysis. 

 

3.15.3 Insulin 

Plasma insulin concentrations were determined using a commercially available enzyme-

linked immuno sorbent assay kit (Mercodia, Sylveniusgatan, Uppsala, Sweden) with the 

aid of a plate reader to measure absorbance (Expert Plus, ASYS, Eugendorf, Austria). 

To ensure precision of analysis internal quality controls (Mercodia diabetic antigen 

control) exhibiting low and high values were assayed.  

 

3.15.4 PYY3-36 

Plasma PYY3-36 concentrations were determined using a commercially available 

radioimmunoassay kit (LINCO Research, Missouri, USA). Precision of analysis was 

ensured by the quantification of internal quality controls exhibiting high and low 

values. 

 

3.15.5 Acylated ghrelin 

Plasma acylated ghrelin concentrations were determined using a commercially available 

enzyme-linked immuno sorbent assay kit (SPI BIO, Montigny le Bretonneux, France) 

with the aid of a plate reader to measure absorbance (Expert Plus, ASYS, Eugendorf, 

Austria). To ensure precision of analysis an internal quality control (included within the 

kit) was assayed with each assay plate. 
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3.15.6 Precision of analysis 

To eliminate inter-assay variation, samples from each participant were analysed in the 

same run. The within batch coefficient of variation for each assay were calculated by 

repeated measurement of a single plasma sample 10 times. Values for each assay are 

displayed within the methods section of each experimental chapter. 

 

3.16 Statistical analysis 

Data were analysed using the Statistical Package for the Social Science (SPSS) software 

for Windows (SPSS Inc, Chicago, Il, USA) – version 16.0. All area under the curve 

values were calculated using the trapezoidal rule. Paired t-tests and one-way ANOVA 

(Chapter nine) were used to examine differences between fasting and AUC values. 

Repeated measured two-factor ANOVA was used to examine differences between trials 

over time for circulating acylated ghrelin, PYY3-36, insulin, glucose, triacylglycerol and 

appetite perceptions. Where appropriate, post-hoc pair wise comparisons were 

performed using the Bonferroni method. Adjustment of the alpha criterion value for 

multiple comparisons (Bonferroni adjustment) cannot be performed in SPSS when there 

are less than three comparisons. Consequently, for studies in this thesis composed of 

two main trials (all except Chapter nine), alpha was adjusted manually by dividing 

alpha (0.05) by the number of comparisons being made across the main trials. For the 

post-hoc analyses in study six which made comparisons between three main trials 

(Chapter nine) the automatic Bonferroni adjustment function within SPSS was used. 

The Pearson product moment correlation coefficient was used to examine relationships 

between variables. Results are presented as mean ± SEM. 

 

Power analysis can be used to calculate the minimal sample size required to accept the 

outcome of a statistical test with a particular level of confidence. However, for the 

studies presented in this thesis the exact sample size for each study was determined 

based upon practical reasons (e.g. to ensure efficient use of ELISA assays) after 

ensuring that the sample size was adequate to detect important differences. Specifically, 

in repeated measures designs eight participants are sufficient to detect significant 

appetite AUC differences ≥ 10% (Flint et al, 2000) and energy intake differences ≥ 240 

kcal (Gregersen et al, 2008). Moreover, significant differences in acylated ghrelin can 

be detected with a sample size of nine (Broom et al, 2007). 
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CHAPTER IV 

 

The influence of resistance exercise on appetite and energy/macronutrient intake 

 

4.1 Introduction 

Over the last three decades a significant body of research has accumulated regarding 

the influence of exercise on appetite, energy and macronutrient intake (Martins et al, 

2008; Bilski et al, 2009). Although this work has provided valuable data there are 

some limitations of this work and additional areas of enquiry that require further 

attention. 

 

One limitation of this research is that studies have predominantly examined the effects 

of aerobic exercise on appetite and food intake. Resistance exercise is now recognised 

as important for public health and weight control (Haskell et al, 2007; Donnelley et al, 

2009) yet data concerning the effects of resistance exercise on appetite, energy and 

macronutrient intake are lacking. Information about how resistance exercise 

influences consumptive behaviour therefore remains rudimentary and as a result, 

knowledge regarding how resistance exercise influences energy balance remains 

incomplete. The characteristics of resistance exercise differ to those of aerobic 

exercise making it possible that appetite and food intake responses may differ. 

Specifically, aerobic activities are continuous and typically elicit a substantial rate of 

energy expenditure. Conversely, resistance exercise is intermittent and anaerobic and 

therefore induces a relatively minor level of energy expenditure. Hence, distinct 

metabolic and hormonal responses are apparent and this may have consequences for 

appetite and food intake. 

 

In an investigation which the author was involved in the effects of resistance exercise 

on appetite and plasma concentrations of the appetite regulatory hormones, acylated 

ghrelin and total PYY were examined (Broom et al, 2009). As compared with 

responses during a control trial we observed a significant reduction in hunger during 

and immediately after a strenuous 90 min bout of resistance exercise. Circulating 

concentrations of the appetite stimulating hormone, acylated ghrelin were 

concomitantly reduced, highlighting a possible mediating role. Unfortunately the 

nature of this particular study did not allow us to examine the influence of resistance 
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exercise on food intake. It remains unknown how, or if, these reported changes in 

ghrelin influence food intake. 

 

A recently published study has since provided some preliminary data on this question 

(Ballard et al, 2009). Ballard and co-workers (2009) reported that perceptions of 

hunger and satiety, along with ad libitum energy intake, remained unchanged in 

response to an 80 min bout of resistance exercise (four sets of eight exercises selected 

to stress the major muscle groups). These preliminary findings therefore suggest that 

resistance exercise does not influence energy intake. Further work is needed though to 

confirm and extend this work. Specifically, the researchers only examined appetite 

responses at three points within 2.5 h after exercise. It is possible that changes in 

appetite may have been detected if assessments had been made over a longer period of 

time. Similarly, energy intake was examined at one feeding opportunity provided two 

hours after exercise. Effects of exercise on energy intake may not occur at the first 

meal taken after exercise, but in response to a second or third meal. Further work is 

therefore needed to examine appetite and energy intake responses over a longer 

duration. 

 

In the study conducted by Ballard et al (2009) a homogenous pasta meal was provided 

from which energy intake was deduced. A limitation with using a single item meal in 

this situation is that it precludes the ability to determine effects of exercise on 

macronutrient preferences (Arvaniti et al, 2000). The macronutrient content of foods 

consumed at a meal are an important determinant of energy intake and therefore 

understanding how exercise influences this variable is important.  

 

To detect differences in macronutrient selection it is necessary that a buffet meal 

containing a variety of foods is provided for study participants (Arvaniti et al, 2000). 

Because one of the key aims of the studies presented in this thesis was to examine 

how exercise influences ad libitum energy and macronutrient intake, a buffet meal 

was developed containing a variety of foods and was provided to participants in this 

study. Therefore, an aim of the present study was to assess the feasibility of providing 

this particular meal to participants and to examine the validity of energy and 

macronutrient intake responses. It has been noted that the types of foods offered and 

the way these are presented to participants can potentially affect how much is 
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consumed at buffet meals provided in the laboratory (Benelam, 2009). Thus, 

particular attention was given to examining energy and macronutrient intake 

responses from the meals consumed in this study, with comparisons being made with 

estimated energy requirements and macronutrient intakes from this specific group of 

participants. Furthermore, specific attention was given to the relationship between 

subjective appetite ratings before meals and subsequent energy intake in order to 

confirm that participants were eating to their appetite with this particular meal, rather 

than overeating in response to the diversity of items presented (Larsen et al, 1995).  

 

The purpose of the present investigation was two-fold. The first aim was to examine 

appetite, energy and macronutrient intake responses for an extended period of time 

after an acute bout of resistance exercise. The second aim was to assess the feasibility 

of assessing ad libitum energy and macronutrient intake from a buffet meal containing 

a variety of food items familiar to the study participants.  
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4.2 Methods 

4.2.1 Participants 

After gaining Loughborough University ethical advisory committee approval 10 

healthy males (21–28 y) gave their written informed consent to participate. Table 4.1 

describes the participant characteristics. 

 

Table 4.1 Characteristics of the study participants 

Characteristic Mean ± SEM 

Age (y) 23.8 ± 0.8 

BMI (kg·m-2) 23.6 ± 0.7 

Body Mass (kg) 76.9 ± 3.0 

Body Fat (%) 16.2 ± 0.8 

(n = 10) 

 

4.2.2 Study design 

Prior to taking part in main trials participants completed two preliminary exercise 

sessions. In the first session each participant’s 12-repetition maximum for 10 

resistance exercises were determined. The second session was a familiarisation 

session whereby participants completed a 90 min resistance exercise protocol, 

identical to that performed in the resistance exercise main trial. In subsequent weeks 

participants completed two main trials (resistance exercise and control) in a 

randomised, counterbalanced order. Each main trial was separated by at least one-

week. 

 

To standardise diet and physical activity before main trials participants completed a 

weighed food record of all items consumed within the 24 h preceding their first main 

trial and this feeding pattern was replicated prior to their second main trial. Alcohol, 

caffeine and structured physical activity were not permitted in the 24 h before main 

trials or in the hours after leaving the laboratory on the first trial day, before returning 

to the laboratory on the second day of each main trial (for the 24 h appetite 

assessment). To minimise physical exertion on the morning of main trials participants 

were asked to walk slowly to the laboratory if they lived within 0.5 km of the research 
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laboratory. Participants that lived further away arrived by motorised transport. 

Participants arrived at the laboratory in the fasted state. 

 

4.2.3 12-repetition maximum test 

A 12-repetition maximum test was completed for each of the 10 resistance exercises 

employed in the study. The 12-repetion maximum values were determined by adding 

and removing weight as necessary with participants having as much recovery time as 

required in between attempts.  The order in which each exercise was performed was 

squat, dumbbell lateral raise, bench press, upright row, lunges, bicep curl, barbell 

pullover, seated shoulder press, triceps extension, and bent over row.   

 

4.2.4 Resistance exercise familiarisation session 

On a separate visit participants completed a 90 min familiarisation session in which 

they completed the full weight lifting session which was to be performed during the 

resistance exercise main trial: three sets of 12-repetions of 10 different exercises at 

80% of 12 repetition maximum. The purpose of this session was to verify that 

participants could complete the protocol and to confirm fatigue from overload by the 

end. 

 

4.2.5 Main trials 

An interval of at least one-week separated the familiarisation session and each 

participant’s first main trial. Each main trial began in the morning between 08:30 and 

09:00 and lasted 24 h. Within the 24 h participants remained within the laboratory 

from 0 - 8 h and returned the next morning to  provide information on overnight food 

consumption and to complete a final visual analogue scale (24 h assessment). Figure 

4.1 provides a schematic illustration of the main trial protocol. 

 

The resistance exercise trial began when participants were provided with a breakfast 

snack. This was consumed within five min. Participants then rested for the remainder 

of the first trial hour. At the beginning of the second hour participants began a 90 min 

free weights session. This session was identical to that performed during the 

familiarisation session (3 sets of 12 repetitions of 10 different exercises at 80% of 12 

repetition maximum). Participants were given three min to complete each set. On 

completion of the 12 repetitions, participants rested for the remainder of the three 
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mins. Exercises were completed in the order described for the preliminary tests.  All 

sets for each exercise were completed before moving onto the next exercise. To 

estimate energy expenditure an expired air sample was taken for three min during the 

third set of each exercise. After the resistance exercise session participants rested 

within the laboratory for a further 5.5 h. At the end of this period (16:30 – 17:00) 

participants left the laboratory and returned the next morning to complete final 

appetite assessments. 

 

Identical procedures were completed in the control trial with the exception that no 

exercise was performed. Participants therefore rested throughout the entire trial. To 

permit the estimation of net energy expenditure during resistance exercise (1 - 2.5 h) 

(gross energy expenditure of exercise – resting energy expenditure) resting samples of 

expired air were collected in the semi-supine position throughout the equivalent 

period in the control trial. 
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Figure 4.1: Schematic representation of the main trial protocol 
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4.2.6 Appetite assessment 

During main trials 100 mm visual analogue scales were completed to assess 

perceptions of appetite (hunger, fullness, satisfaction and prospective food 

consumption) (Flint et al, 2000). Scales were completed at baseline and then at 30 min 

intervals throughout the laboratory phase of trials. A single appetite questionnaire was 

also completed on the morning of the second trial day (24 h assessment). 

 

4.2.7 Breakfast and ad libitum buffet meals 

The breakfast provided was standardised to body weight and consisted of a 

commercial cereal bar (Kellogg’s Nutri-grain®). Participants received 1.06 g per 

kilogram of body weight measured on the first trial visit. Identical amounts were 

consumed across trials. For a 70 kg individual this provided 1092 kJ (260 kcal) of 

energy, 6 g of fat, 4 g of protein and 48 g of carbohydrate.  

 

At two points during the laboratory phase of main trials (3.5 – 4 h & 7.5 – 8 h) 

participants were provided with a buffet meal from which they could consume food 

ad libitum. Additionally, at the end of the first trial day participants were able to select 

items from the buffet to take away from the laboratory and consume ad libitum that 

evening prior to fasting at 23:00. The buffet meal provided diversity in protein, fat 

and carbohydrate content in order to facilitate the detection of macronutrient 

preferences (Appendix G). The food items provided were selected so that they would 

be familiar to study participants. Food was presented in excess of expected 

consumption. Participants were told to eat until satisfied and that additional food was 

available if desired. Participants consumed meals in isolation so that social influence 

did not constrain food selection. Food consumption was ascertained by examining the 

weighted difference in food items remaining compared with that initially presented. 

The energy and macronutrient content of the items consumed was ascertained using 

manufacturer values.  

 

4.2.8 Calculation of energy expenditure 

The short duration intermittent nature of weight lifting invalidates the assumptions of 

indirect calorimetry as the respiratory exchange ratio is consistently equal to or 

greater than 1.0. Energy expenditure was therefore calculated as 21.1 kJ (5.047 kcal) 

per litre of oxygen consumed. This reflects the assumption that energy was derived 
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from carbohydrate rather than fat and assumes no protein contribution to energy 

provision during exercise (McArdle et al, 1991). 

 

4.2.9 Statistical analysis 

Data was analyzed using the Statistical Package for the Social Sciences (SPSS) 

software version 16.0 for Windows (SPSS Inc, Chicago, IL, USA). Area under the 

concentration verses time curve calculations were performed using the trapezoidal 

method. Student’s t-tests for correlated data were used to assess differences between 

fasting and AUC values for appetite perceptions between the control and resistance 

exercise trials. Repeated measures, two-factor ANOVA was used to examine 

differences between the resistance exercise and control trials over time for appetite 

perceptions and energy/macronutrient intake. The Pearson product moment 

correlation coefficient was used to examine relationships between variables. 

Statistical significance was accepted at the 5% level. Results are presented as mean ± 

SEM. 
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4.3 Results 

4.3.1 Exercise responses 

The total weight lifted during the 90 min resistance exercise session was 10,758 ± 621 

kg. The net energy expenditure (exercise minus resting) induced by exercise was 1007 

± 92 kJ (241 ± 22 kcal). 

 

4.3.2 Appetite responses 

Baseline appetite ratings were not significantly different in the resistance exercise and 

control trials (Table 4.2). 

 

Table 4.2: Baseline appetite perceptions in the resistance exercise and control trials  

 Control Exercise P 

Hunger (0-100) 67 ± 4 58 ± 7 0.270 
Satisfaction (0-100) 27 ± 7 19 ± 3 0.419 

Fullness (0-100) 16 ± 3 15 ± 3 0.833 
PFC (0-100) 73 ± 2 75 ± 5 0.646 

 (n = 10). PFC = prospective food consumption. 

 

Figure 4.2 shows the appetite responses (hunger, fullness, satisfaction and prospective 

food consumption) in the resistance exercise and control trials. Two-factor ANOVA 

revealed a main effect of time for each appetite perception assessed (all P < 0.001) 

signifying changes in appetite in response to the buffet meals. Two-factor ANOVA 

did not show any significant trial or interaction (trial x time) main effects (all P > 

0.05) indicating that changes over time were not significantly different between the 

resistance exercise and control trials.  

 

. 
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Figure 4.2: Ratings of hunger (a), fullness (b), satisfaction (c) and prospective food 
consumption (d) in the resistance exercise (○) and control (●) trials. Values are mean 
± SEM (n = 10). Grey rectangle indicates a breakfast snack. Black rectangle indicates 
exercise. Diagonal rectangles indicate buffet meals.  
 

Between trial differences in appetite ratings were also evaluated using AUC values for 

the 3.5 h before the morning buffet meal (0 - 3.5 h) and for the remaining 4 h of the 

laboratory phase of trials (4 - 8 h). These analyses confirmed that there were no 

significant differences in appetite between the resistance exercise and control trials 

(student’s t-test, all P > 0.05).  

 

4.3.3 Energy and macronutrient intake 

Two-factor ANOVA showed significant differences in energy intake between the 

individual meals consumed during main trials (main effect of time, P = 0.001) with 

higher intakes being apparent at the morning buffet meal (3.5 - 4 h) compared with 

the afternoon meal (7.5 - 8 h) and that consumed overnight (8 - 14 h) (Table 4.3). 

Two-factor ANOVA did not show any trial (P = 0.228) or interaction (trial x time) (P 

= 0.541) main effects, indicating that no significant differences existed in energy 

intake between the resistance exercise and control trials. Examination of the relative 

energy intake (energy intake – (resistance exercise energy expenditure – resting 
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energy expenditure)) showed that there were no significant differences between the 

resistance exercise (12535 ± 652 kJ, 2996 ± 156 kcal) and control trials (12418 ± 

1047 kJ, 2968 ± 250 kcal) (P = 0.913).  

 

Table 4.3: Energy intake in the resistance exercise and control trials  

 Control Resistance exercise 

Morning meal 

(3.5 – 4 h) 

5323 ± 405 5762 ± 362 

(1272 ± 97) (1377 ± 86) 

Afternoon meal 

(7.5 – 8 h) 
3880 ± 805 3738 ± 386 

(927 ± 192) (894 ± 92) 

Overnight 

(8 – 14 h) 
3215 ± 407 4043 ± 341 

(768 ± 97) (966 ± 81) 

Total trial 
(0 – 24 h) 

12418 ± 1147 13543 ± 738 

(2967 ± 274) (3237 ± 176) 
Values are kJ (kcal) (n = 10). 

 

Two-factor ANOVA was used to examine macronutrient intake (absolute and percent) 

across the morning and afternoon meals during the resistance exercise and control 

trials (Table 4.4). There was a significant main effect of time for the absolute intake 

(grams) of each of the macronutrients, indicating differences in intake at the 

individual meals during main trials. No significant trial or interaction (trial x time) 

main effects were apparent therefore there were no significant differences in the 

absolute intake of the macronutrients between the resistance exercise and control 

trials. 

 

For the percentage of energy derived from the macronutrients two-factor ANOVA 

revealed a significant interaction effect (trial x time) for the percentage intake of 

carbohydrate (P = 0.024) and protein (P = 0.022). Post hoc analysis showed that in 

comparison with the control trial, the percentage intake of carbohydrate was 

significantly higher at the afternoon buffet meal in the exercise trial (Student’s t-test, 

P = 0.032) whilst the percentage intake of protein was significantly reduced 

(Student’s t-test, P = 0.020). 
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Table 4.4: Macronutrient intake in the resistance exercise and control trials  
 

Control Trial Fat Carbohydrate Protein 

Morning meal (3.5 – 4 h) 47 ± 4 
(33.3) 

159 ± 17 
(49.3) 

55 ± 4 
(17.4) 

Afternoon meal (7.5 – 8 h) 33 ± 7 
(32.1) 

118 ± 28 
(51.3) 

40 ± 10 
(16.6) 

Overnight (8 – 14 h) 25 ± 5 
(26.7) 

105 ± 11 
(57.5) 

36 ± 6 
(15.8) 

 
Total Trial (0 – 24 h) 

 

105 ± 11 
(31.6) 

382 ± 41 
(51.3) 

131 ± 16 
(17.1) 

Exercise Trial Fat Carbohydrate Protein 

Morning meal (3.5 – 4 h) 50 ± 5 
(32.7) 

167 ± 10 
(49.1) 

64 ± 7 
(18.2) 

Afternoon meal (7.5 – 8 h) 31 ± 7 
(28.4) 

131 ± 13 
(60.4) 

26 ± 4 
(11.2) 

Overnight (8 – 14 h) 34 ± 4 
(31.7) 

120 ± 12 
(50.0) 

46 ± 5 
(18.3) 

Total Trial (0 – 24 h) 115 ± 13 
(31.3) 

418 ± 22 
(52.2) 

136 ± 10 
(16.5) 

Values are gram and (%) (n = 10) 
 
 
4.3.4 Correlations between appetite and energy intake 

Examination of the relationships between ratings of appetite prior to the buffet meals 

provided within the laboratory and subsequent energy intake at the meals revealed 

many significant correlations (Tables 4.5 and 4.6).  

 

4.3.5 Water intake and environmental conditions 

There were no significant differences in water intake (control 1255 ± 307, resistance 

exercise 1580 ± 276 mL; P = 0.265), laboratory temperature (control 22.3 ± 0.2, 

resistance exercise 21.9 ± 0.2 oC; P = 0.098) or relative humidity (control 53 ± 3, 

resistance exercise 54 ± 2%; P = 0.768) between the resistance exercise and control  

trials. 
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Table 4.5: Correlations between appetite ratings immediately prior to ad libitum buffet meals and energy intake at the subsequent meal 

 Morning meal (3.5 – 4 h) Afternoon meal (7.5 – 8 h) 

 Control Resistance exercise Control Resistance exercise 

 r P r P r P r P 

Hunger 0.744 0.014* 0.538 0.105 0.672 0.033* 0.920 <0.001** 

Fullness -0.568 0.075 -0.590 0.072 -0.498 0.143 -0.928 <0.001** 

Satisfaction -0.646 0.044* -0.763 0.010* -0.604 0.065 -0.910 <0.001** 

PFC 0.580 0.079 0.651 0.042* 0.401 0.251 0.759 0.011* 

 

* = P < 0.05, ** = P < 0.001, PFC = prospective food consumption 

 

 

 

 

 



 75 

 

 

 
Table 4.6: Correlations between appetite area under the curve one hour prior to ad libitum buffet meals and energy intake at the subsequent 
meal 
 

 Morning meal (3.5 – 4 h) Afternoon meal (7.5 – 8 h) 

 Control Resistance exercise Control Resistance exercise 

 r P r P r P r P 

Hunger 0.716 0.020* 0.460 0.181 0.401 0.246 0.766 0.010* 

Fullness -0.708 0.022* -0.262 0.464 -0.293 0.411 -0.868 <0.001** 

Satisfaction -0.729 0.017* -0.657 0.039* -0.453 0.183 -0.961 <0.001** 

PFC 0.543 0.105 0.306 0.390 0.488 0.153 0.777 0.008* 

 

* = P < 0.05, ** = P < 0.001, PFC = prospective food consumption 
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4.4 Discussion 

The present study is the first to examine appetite, energy and macronutrient intake 

responses to resistance exercise over an extended 24 h period. The novel findings 

arising from this study were that a single session of resistance exercise did not perturb 

subjective appetite perceptions or ad libitum energy intake during this period although 

resistance exercise did stimulate a preference for foods high in carbohydrate.  

 

In a previous investigation which the author was involved in subjective ratings of 

hunger were significantly reduced during and at the end of a 90 min bout of resistance 

exercise (Broom et al, 2009). This particular investigation was the first to demonstrate a 

transient suppression of appetite during resistance exercise, consistent with the presence 

of exercise induced anorexia which is a phenomenon that has repeatably been observed 

in response to high intensity bouts of aerobic exercise (King et al, 1994; King and 

Blundell, 1995). In the present study four markers of appetite (hunger, fullness, 

satisfaction and prospective food consumption) were examined in response to the same 

resistance exercise protocol as that employed by Broom et al (2009). It is therefore 

surprising that none of the appetite markers examined were significantly influenced by 

exercise, either during or in the hours afterwards. Differences in pre-exercise feeding 

status are the most likely explanation for this discrepancy. Specifically, in the study 

conducted by Broom et al (2009) participants completed exercise having not eaten since 

the prior evening whereas in the present study participants consumed a breakfast snack 

one hour before exercise. Consequently, in the present study appetite ratings would 

have been less extreme to begin and therefore less amenable to change in response to 

the exercise stimulus. This notion is supported by recent data which also reported a lack 

of change in subjective appetite ratings in response to a strenuous 80 min bout of 

resistance exercise. In this latter study the participants consumed a somewhat larger 

breakfast (25% of daily energy intake) 2.5 h before exercise (Ballard et al, 2009).  

 

In the present investigation resistance exercise did not alter subjective ratings of 

appetite in the hours of observation after exercise. That is, resistance exercise did not 

stimulate any latent changes in appetite. Some recent work has been published 

suggesting that appetite may be stimulated by exercise in the later hours of recovery 

(Broom et al, 2007; Malkova et al, 2008). In these studies aerobic exercise was 

performed for a prolonged duration and therefore the amount of energy expended was 
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considerable (500 – 930 kcal). Due to the anaerobic nature of resistance exercise the 

amount of energy expended in the present study was considerably lower (comparable 

gross expenditure 373 kcal) than in the studies of Broom et al (2007) and Malkova et al 

(2008). Resistance exercise may therefore have provided an insufficient stimulus to 

evoke any latent changes in appetite. 

 

Consistent with no change in appetite, the present study found no significant effects of 

resistance exercise on energy intake. When the present study was conducted there were 

no other data available regarding the effects of resistance exercise on energy intake 

although one recently published study has since provided some preliminary data 

(Ballard et al, 2009). In this latter study 20 healthy young males completed three 

experimental trials. On two occasions an 80 min bout of resistance exercise (four sets of 

eight exercises designed to stress the major muscle groups) was completed with 

participants consuming 150 mL of either a carbohydrate or placebo beverage 

immediately before and after exercise. On another occasion participants rested and 

consumed the carbohydrate beverage at equivalent time points (control). Energy intake 

was determined from a homogenous pasta meal provided two hours after exercise. The 

researchers observed no significant difference in energy intake between the 

experimental trials (control 5234 kJ, exercise carbohydrate beverage 5427 kJ, exercise 

placebo beverage 5720 kJ).  

 

The findings from the present study support those of Ballard et al (2009) and extend 

them by showing that there are no latent changes in energy intake at the subsequent 

meals after. In the present study energy intake was higher at the morning buffet meals 

compared with the afternoon meals and that consumed overnight however this was 

consistent between trials. Although there were no significant differences in energy 

intake between the resistance exercise and control trials energy intake was 1130 kJ (270 

kcal) higher across the 24 h in the resistance exercise trial. Large variation in responses 

were apparent however, making it difficult to delineate any clear effect. Specifically, as 

compared with that consumed on the control trial, seven participants increased their 

energy intake on the exercise trial whilst three participants reduced their energy intake.  

Despite this, these results indicate that within the 24 h after an acute bout of resistance 

exercise participants may begin to compensate their energy intake for the relatively 

minor amount of energy expended during an acute bout of resistance exercise. Further 
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research with a larger number of study participants is needed to provide further clarity 

on this issue.  

 

An interesting finding in the present study was that resistance exercise significantly 

altered macronutrient intake. Specifically, in the resistance exercise trial the percentage 

of energy derived from carbohydrate increased at the afternoon buffet meal whilst the 

intake of protein decreased. This finding is in contrast to consensus of research on this 

issue which has failed to demonstrate any consistent effect of exercise on macronutrient 

preferences (Besile, 1999; Tremblay and Drapeau, 1999; Elder and Roberts, 2007). The 

present findings suggest that exercise stimulated a latent preference for food items high 

in carbohydrate however the mechanism responsible for this is not clear. It has been 

suggested that the substrate oxidised during exercise has a role in determining food 

choices thereafter (Besile, 1999). Carbohydrate is the primary fuel source for high 

intensity resistance exercise therefore it is possible that an increase in carbohydrate 

oxidation may have stimulated a preference for carbohydrate rich foods. This is only 

speculation however and there is no way to examine this issue further from the data 

collected during this study.  

 

One of the principal aims of this study was to develop an ad libitum buffet meal which 

was feasible to provide to participants during studies presented in this thesis. The buffet 

meal developed was extensive and contained a variety of items of varied macronutrient 

content in order to enable the examination of macronutrient preferences, in addition to 

permitting the assessment of energy intake. Appendix G lists the food items presented 

at the buffet meals. One of the risks that comes with providing a diverse range of food 

items from which to assess energy/macronutrient intake is that this may lead to 

atypically high intakes (Larsen et al, 1995). Moreover, it is possible that macronutrient 

selection may change as participants consume items that are novel rather than those 

reflecting their habitual food intake patterns. To examine these issues, in the present 

investigation a comparison was made between energy and macronutrient intakes during 

the control trial (no intervention) with estimated energy requirements for each 

individual – determined using validated equations (Mifflin et al, 1990). The percentage 

of energy derived from the macronutrients was also compared to that typically 

consumed in a Western diet i.e. ~35% fat, ~15% protein and ~50% carbohydrate 

(Cordain et al, 2005). The findings revealed no significant differences in 24 h energy 
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intake in the control trial as compared with predicted daily energy requirements for 

each study participant (student’s t-test P = 0.432). Furthermore, the distribution of 

energy from the macronutrients closely resembled a typical Western diet (see Table 

4.4). These outcomes indicate two important points regarding ad libitum energy and 

macronutrient intake from the buffet meal. First, participants did not increase their 

energy intake over their daily needs i.e. the array of items available did not lead to 

overconsumption. Second, the diversity of items available did not skew macronutrient 

intake.  

 

Flint et al (2000) correlated energy intake at an ad libitum buffet meal with subjective 

ratings of appetite as a means of assessing the validity of the data derived from the 

appetite scales. If this is reversed, a corollary is that we can look at the relationship 

between appetite ratings and energy intake to get an indication of the validity of the 

documented  energy intakes. Tables 4.5 and 4.6 show that in the present study many 

highly significant correlations were found between energy intake at the morning and 

afternoon buffet meals and ratings of appetite, both immediately before meals and also 

within the preceding hour (assessed using AUC values). These findings suggest that 

participants were eating to their appetite, rather than their intakes being driven by 

external factors. This finding, along with the data regarding energy and macronutrient 

intake, suggest that this particular buffet meal can be used as a valid method for 

assessing energy and macronutrient intake responses to interventions.  

 

This present study has notable strengths and limitations. A key strength is that energy 

intake was assessed accurately under controlled conditions with a buffet meal of wide 

ranging content. Moreover, energy intake was assessed at three points across a 24 h 

period of observation, rather than in response to a single meal. A limitation of this work 

is that the participants were young, healthy, males therefore it is unclear whether these 

findings can be generalised to other populations including females and older adults. 

Additionally, responses to a single bout of resistance exercise were examined yet it is 

possible that changes in energy or macronutrient intake may occur over a longer 

duration, in response to a period of resistance exercise training. Finally, a greater 

number of study participants may have been needed to detect significant differences in 

various study outcomes. 
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In conclusion, this study has shown that an acute bout of resistance exercise does not 

influence appetite during exercise or in the 21.5 h after. Furthermore, resistance 

exercise does not alter ad libitum energy intake at meals consumed throughout the day 

on which exercise is performed. Resistance exercise stimulated a delayed preference for 

foods high in carbohydrate however further research is needed to confirm this and to 

identify the responsible mechanisms. This data adds to knowledge regarding the 

specific influence of resistance exercise on energy homeostasis. 
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CHAPTER V 

The acute effects of swimming on appetite, energy/macronutrient intake and 
plasma acylated ghrelin 

 

5.1 Introduction 

The benefits of aerobic exercise for promoting good health and successful weight 

control are well documented (Haskell et al, 2007; Donnelley et al, 2009). Swimming is 

a popular form of aerobic exercise, partly due to the reduced musculo-skeletal stresses 

imposed as compared with land-based activities such as running and cycling. Such 

benefits make swimming an especially attractive exercise modality for those who are 

overweight and/or obese (Sheldahl et al, 1982), individuals who may have taken up 

swimming in an effort to more successfully regulate their body weight.  

 

Despite the attractiveness of swimming as a form of physical activity, whether 

swimming favourably influences body weight and body composition is contentious. 

Studies which have compared the influence of swimming interventions on indices of 

body weight and composition have found swimming to be less effective than other 

land-based exercise modalities (Gwinup et al, 1987; Tanaka et al, 1997). It has been 

suggested that the most logical explanation for these findings is that swimming 

stimulates a compensatory increase in energy intake (White et al, 2005). This notion is 

consistent with anecdotal reports of swimming stimulating appetite. Specifically, it has 

been stated that individuals often feel like ‘eating a horse’ after an acute bout of 

swimming (Burke et al, 2006). This suggestion is consistent with the findings from a 

limited base of empirical research which has described elevations in energy intake after 

immersed cycling performed on a modified ergometer in cold water (Dressendorfer, 

1993; White et al, 2005). Unfortunately there remains a lack of empirical research 

which has examined the precise effects of swimming on appetite and food intake and 

further research is needed to examine this. 

 

The mechanisms by which exercise influences appetite have recently begun to receive 

explicit interest with direct attention being given to gut peptides implicated in the 

neuroendocrine regulation of feeding (Martins et al, 2008; Bilski et al, 2009). Ghrelin is 

an acylated peptide secreted primarily from the stomach and remains unique as the only 

known circulating hormone that stimulates appetite (Karra and Batterham, 2010). 
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Defined roles of ghrelin in both the short and long-term regulation of feeding have been 

uncovered and more recently investigators have sought to determine how exercise 

influences circulating concentrations of acylated ghrelin (Broom et al, 2007; Marzullo 

et al, 2008; Broom et al, 2009; Ueda et al, 2009). These studies suggest that intense 

exercise induces a transient suppression in circulating acylated ghrelin concentrations. 

Concomitant suppressions in hunger have been reported by Broom and colleagues 

(2007) raising the possibility that acylated ghrelin may be important in determining 

changes in appetite in response to exercise.  

 

This study had two primary objectives. The first was to examine the influence of an 

acute bout of swimming on appetite, energy and macronutrient intake – in order to 

empirically test anecdotal suggestions that swimming increases appetite and food 

intake. The second aim of this study was to explore the potential role of acylated ghrelin 

as a mediator of appetite and food intake, during and after a typical bout of moderate 

intensity, recreational swimming. In this study the buffet meal piloted in the previous 

chapter were employed to examine the effects of swimming on ad libitum 

energy/macronutrient intake. 
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5.2 Methods 

5.2.1 Participants 

After gaining Loughborough University Ethical Advisory Committee approval 14 

healthy male volunteers (18 - 26 y) gave their written informed consent to participate. 

Table 5.1 describes the participant characteristics. 

 
Table 5.1: Characteristics of the study participants 
 

Characteristic Mean ± SEM 

Age (y) 21.7 ± 0.6 

BMI (kg·m-2) 23.2 ± 0.6 

Body Mass (kg) 76.6 ± 2.1 

Body Fat (%) 17.2 ± 1.2 

(n = 14) 
 
 
5.2.2 Study design 

Before taking part in main trials participants visited the laboratory in order to 

familiarise them with the environment. At this visit participants completed the 

necessary screening questionnaires and anthropometric measurements were taken. 

Participants were also taken to the university swimming pool to confirm swimming 

competence. At the pool the participants completed a 60 min intermittent swimming set 

of moderate intensity, the same protocol which was to be performed during main trials 

at a later date. In this session participants were made accustomed to wearing heart rate 

monitors in the pool and taking recordings periodically and were familiarised with the 

RPE scale. 

 

In subsequent weeks participants completed two main trials (swimming and control) in 

a randomised, counterbalanced order. Each main trial was separated by at least one-

week. To standardise diet and physical activity before main trials participants 

completed a weighed food record of all items consumed within the 24 h preceding their 

first main trial and this feeding pattern was replicated prior to their second main trial. 

Alcohol, caffeine and physical activity were not permitted in the 24 h before main trials. 

To minimise physical exertion on the morning of main trials participants were asked to 
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walk slowly to the laboratory if they lived within 0.5 km of the research laboratory. 

Participants living further away arrived by motorised transport. Participants arrived at 

the laboratory in the fasted state. 

 

5.2.3 Main trials 

An interval of at least one-week separated the familiarisation session and each 

participant’s first main trial. Each main trial began in the morning between 08:30 and 

09:00 and lasted 8 h.  Main trials commenced when participants began eating a 

breakfast snack. This was consumed within 5 min. On the swimming trial participants 

rested within the laboratory for the first 40 min. They were then escorted to the 

University swimming pool by motorised transport, in time to commence swimming at 

the beginning of the second trial hour. At the start of the second trial hour participants 

began a 60 min intermittent swimming set. The set was composed of six, 10 min blocks. 

In each block participants swam continuously for the first seven min using their 

preferred stroke and then rested for the final three min. The speed of swimming was 

ultimately determined by the participant although they were instructed to swim at a 

moderate intensity, defined as a rating of perceived exertion between 12 and 14. During 

exercise the stroke used and distance completed was recorded in order to estimate 

energy expenditure during exercise using equations based on metabolic equivalents 

(Ainsworth et al, 2000). Heart rate was assessed continuously throughout each 

swimming block. Upon completion of each block participants rested on the pool side 

with their legs immersed in the water. Ratings of perceived exertion were then assessed. 

After completing the swimming protocol participants were escorted back to the research 

laboratory where they rested for a further six hours (sitting reading, writing, working at 

a computer or watching television).  

 

Identical procedures were completed in the control trial except no exercise was 

performed. Participants therefore rested in the research laboratory for the entire duration 

of the trial. During the second trial hour resting expired air samples were collected in 

the semi-supine position in order to estimate resting oxygen consumption. This 

permitted the calculation of net energy expenditure (gross energy expenditure of 

exercise minus resting energy expenditure) during exercise. Figure 5.1 provides a 

schematic illustration of the study protocol. 
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Figure 5.1: Schematic representation of the main trial protocol 
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5.2.4 Appetite assessment 

During main trials 100 mm visual analogue scales were completed to assess perceptions 

of appetite (hunger, fullness, satisfaction and prospective food consumption). Scales 

were completed at baseline and then at 30 min intervals throughout. 

 

5.2.5 Breakfast and ad libitum buffet meals 

The breakfast provided to participants at the beginning of main trials was standardised 

to body weight and consisted of a commercial cereal bar (Kellogg’s Nutri-grain®). 

Participants received 1.06 g per kilogram of body weight measured on the first trial 

visit. Identical amounts were consumed across trials. For a 70 kg individual this 

provided 1092 kJ (260 kcal) of energy, 6 g of fat, 4 g of protein and 48 g of 

carbohydrate. The breakfast snack was consumed within 5 min on all trials. 

 

At two points during main trials (3 – 3.5 h & 7.5 – 8 h) participants were provided with 

a buffet meal for 30 min from which they could consume food ad libitum (Appendix 

G). Section 3.12 provides details on the format of the buffet meal. 

 

5.2.6 Environmental conditions 

The environmental temperature and relative humidity of the laboratory and swimming 

pool were monitored throughout main trials using a handheld hygrometer. The 

temperature of the water in the swimming pool was assessed using a glass thermometer. 

 

5.2.7 Blood sampling 

Due to the expense of measuring acylated ghrelin, blood was analysed for 10 of the 14 

participants. In both the swimming and control trials baseline blood samples and the 

equivalent pre- and post-exercise blood samples were taken via venepuncture of an 

antecubital vein. Thereafter, the remaining samples (3, 4, 6, and 7.5 h) were collected 

via a cannula inserted into an antecubital vein. Patency of the cannula was maintained 

by flushing with non-heparinised saline (0.9 % w/v sodium chloride) after sample 

collection. Dilution of subsequent samples was prevented by discarding the first 2 mL 

of sample prior to collection. 

 

Venous samples were collected into pre-chilled 4.9 mL EDTA monovettes for the 

determination of plasma acylated ghrelin (see section 3.14 for details on acylated 



 87 

ghrelin sample processing). Additional samples were collected into pre-chilled 9 mL 

EDTA monovettes for the determination of plasma glucose and triacylglycerol. These 

samples were spun at 1,681g for 10 min in a refrigerated centrifuge at 4 oC. The plasma 

supernatant was then aliquoted into 2 mL Eppendorf tubes prior to storage for analysis 

later.  

 

To estimates plasma volume changes, at each blood sampling point duplicate 20 µL 

blood samples were collected into micropipettes and triplicate 20 μL samples were 

collected into heparinised microhaematocrit tubes to determine blood haemoglobin and 

haematocrit concentrations. 

 

5.2.8 Biochemical analysis 

An enzyme immunoassay was used to determine concentrations of plasma acylated 

ghrelin. Plasma glucose and triacylglycerol concentrations were determined 

spectrophotometrically using an automated bench top analyzer. To eliminate inter-assay 

variation samples from each participant were analyzed in the same run. The within 

batch coefficients of variation for the assays were as follows: acylated ghrelin 7.8%, 

glucose 0.4% and triacylglycerol 1.63%.  

 

5.2.9 Statistical analysis 

All data were analyzed using the Statistical Package for the Social Sciences (SPSS) 

software version 16.0 for Windows. Area under the concentration verses time curve 

calculations were performed using the trapezoidal method. Student’s t-tests for 

correlated data were used to assess differences between fasting and AUC values for 

acylated ghrelin, glucose, triacylglycerol, temperature, humidity and appetite between 

the swimming and control trials. Repeated measures, two-factor ANOVA was used to 

examine differences between the swimming and control trials over time for appetite, 

energy and macronutrient intake, acylated ghrelin, glucose and triacylglycerol. The 

Pearson product moment correlation coefficient was used to examine relationships 

between variables. Correction of values for changes in plasma volume did not alter the 

statistical significance of findings therefore for simplicity the unadjusted values are 

presented. Statistical significance was accepted at the 5% level. Results are presented as 

mean ± SEM. 
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5.3 Results 

5.3.1 Exercise responses 

During the 42 min of swimming (6 x 7 min intervals) the mean distance completed was 

1875 ± 156 m. The mean swimming speed performed was 0.74 ± 0.1 m.s-1 and this 

elicited an estimated net energy expenditure (exercise minus resting) of 1921 ± 83 kJ 

(459 ± 20 kcal). The corresponding mean heart rate and RPE values during the 

swimming sessions were 155 ± 5 beats.min-1 (78 ± 2 % of age predicted maximum 

heart rate) and 14 ± 0. To complete the swimming session four participants swam 

breaststroke for all of the intervals whilst three participants used only front crawl and 

two participants used only backstroke. Three participants used a combination of front 

crawl and breast stroke whilst two participants alternated between breaststroke and 

backstroke. 

 

5.3.2 Appetite responses 

Baseline appetite ratings were not significantly different in the swimming and control 

trials (Table 5.2).  

 

Table 5.2: Baseline appetite perceptions in the swimming and control trials 

 Control Swimming P 

Hunger (0-100) 66 ± 4 63 ± 5 0.547 
Satisfaction (0-100) 24 ± 4 26 ± 5 0.723 

Fullness (0-100) 21 ± 5 23 ± 4 0.783 
PFC (0-100) 71 ± 4 76 ± 3 0.881 

 (n = 14). PFC = prospective food consumption  
 

Figure 5.2 shows the appetite responses in the swimming and control trials. Two-factor 

ANOVA revealed significant time (all P < 0.001) and interaction (trial x time) main 

effects for hunger, satisfaction, fullness and prospective food consumption (all P < 

0.014) indicating that appetite responses differed significantly over time between the 

swimming and control trials. Post hoc analysis identified significantly higher ratings of 

hunger in the swimming trial compared with the control trial at 5, 5.5 and 6.5 h. 

Perceived rating of fullness were significantly lower on the swimming trial at 5 and 7 h 

whilst ratings of satisfaction were lower on the swimming trial at 6.5 h. Ratings of 
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prospective food consumption were significantly lower in the swimming trial at 1.5 h 

yet were higher than values on the control trial at 5 and 7 h. After correcting for 

multiple comparisons using the Bonferroni method not all of these differences remained 

(see Figure 5.2). 

 

Between trial differences in appetite ratings were also evaluated using AUC values 

calculated from baseline to the morning buffet meal (0 - 3 h), for the 4.5 h after the 

morning buffet meal (3.5 – 8 h) and over the total trial (0 – 8 h). Analysis of the hunger 

AUC data confirmed that ratings of hunger were significantly higher in the swimming 

trial than the control trial after the morning buffet meal (3.5 – 8 h) (swimming 177.7 ± 

20.0, control 152.3 ± 18.5; P = 0.028). From baseline to consumption of the morning 

buffet meal (0 – 3 h) the fullness AUC was significantly higher in the swimming trial as 

compared with control (swimming 74.0 ± 11.7, control 54.4 ± 8; P = 0.025). 

Conversely, after consuming the morning buffet meal ratings of fullness tended to be 

reduced in the swimming trial as compared with control (swimming 227.3 ± 21.1, 

control 243.2 ± 17.0; P = 0.052). Before the morning buffet meal the prospective food 

consumption AUC was lower on the swimming trial as compared with the control trial 

(swimming 220.7 ± 12.0, control 230.5 ± 11.1; P = 0.049).  
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Figure 5.2: Ratings of hunger (a), fullness (b), satisfaction (c) and prospective food 
consumption (d) in the swimming (○) and control (●) trials. Values are mean ± SEM  (n = 14). 
Grey rectangle indicates a breakfast snack. Black rectangle indicates swimming. 
Diagonal rectangles indicate buffet meals. * = significantly different from control after 
correcting for multiple comparisons using the Bonferroni method.  
 
 
5.3.3 Energy and macronutrient intake 

For energy intake two-factor ANOVA revealed a main effect of time (P = 0.003) 

indicating that energy intake at the morning buffet meals was significantly higher than 

at the afternoon meals (Table 5.3). No significant trial (P = 0.208) or interaction (trial x 

time, P = 0.811) main effects were found therefore there were no significant differences 

in energy intake between the swimming and control trials. Examination of the relative 

energy intake (energy intake – net exercise energy expenditure) showed that the 

swimming trial (7825 ± 776 kJ, 1871 ± 185 kcal)  induced an energy deficit relative to 

control (9161 ± 719, 2190 ±  172) (P = 0.008). 
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Table 5.3: Energy intake in the swimming and control trials 
 

 Control Swimming 

Morning meal 

(3-3.5 h) 

5517 ± 434 5856 ± 403 

(1319 ± 104) (1400 ± 96) 

Afternoon meal 

(7.5-8 h) 
3644 ± 459 3893 ± 577 

(871 ± 138) (931 ± 138) 

Total Trial 

(0 – 8 h) 
9161 ± 719 9749 ± 809 

(2190 ± 203) (2331 ± 229) 
Values are kJ (kcal) (n = 14) 

Two-factor ANOVA was used to examine macronutrient intake (absolute and percent) 

across the morning and afternoon meals during the swimming and control trials (Table 

5.4). For absolute intake (grams) there was a significant main effect of time for each 

macronutrient (all P < 0.015) however no significant trial or interaction (trial x time) 

main effects were apparent (all P > 0.05). This indicates that the absolute intake of each 

macronutrient varied between the morning and afternoon buffet meals yet was not 

significantly different between the swimming and control trials. Analyses of the 

percentage of energy derived from the macronutrients did not show any significant 

main effects.  
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Table 5.4: Macronutrient intake in the swimming and control trials 
 

Control Trial Fat Carbohydrate Protein 

Morning meal (3-3.5 h) 
54 ± 5 
(34.1) 

156 ± 11 
(49.1) 

59 ± 9 
(16.8) 

Afternoon meal (7.5 – 8 h) 33 ± 5 
(33.8) 

107 ± 15 
(49.9) 

38 ± 8 
(16.3) 

Total Trial (0 – 8 h) 
 

87 ± 8 
(34.9) 

263 ± 21 
(49.1) 

97 ± 16 
(16.0) 

Swimming Trial Fat Carbohydrate Protein 

Morning meal (3-3.5 h) 55 ± 5 
(34.0) 

164 ± 12 
(49.3) 

60 ± 8 
(16.7) 

Afternoon meal (7.5 – 8 h) 
35 ± 5 
(33.1) 

117 ± 20 
(50.2) 

38 ± 7 
(16.7) 

Total Trial (0 – 8 h) 
 

90 ± 9 
(34.2) 

281 ± 26 
(49.4) 

98 ± 14 
(16.4) 

Values are gram and (%) (n = 14) 
 

5.3.4 Acylated ghrelin 

Acylated ghrelin was analysed with data from 10 participants however upon closer 

inspection of the data one participant was a clear outlier exhibiting fasting values on 

both trials which were approximately nine times (26 standard deviations) higher than 

the mean fasting values of the other nine participants (949 ± 30 pg·mL-1 for the outlier 

verses 108 ± 10 pg·mL-1 for the mean of the other nine participants). Data from this 

participant was therefore removed and the analyses repeated with data from the other 

nine participants.  

 

Fasting plasma acylated ghrelin concentrations did not differ (P = 0.348) between the 

swimming and control trials (112 ± 13 verses 105 ± 10 pg∙mL-1). For circulating 

concentrations of acylated ghrelin two factor ANOVA yielded significant time (P < 

0.001) and interaction (trial x time) (P < 0.001) main effects, indicating that acylated 

ghrelin responses differed significantly over time between the swimming and control 

trials (Figure 5.3). After correcting for multiple comparisons using the Bonferroni 

method post hoc analysis showed that circulating acylated ghrelin concentrations were 
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significantly lower in the swimming trial than the control trial at the end of exercise (2 

h) (P < 0.001). 

 

Between trial differences in acylated ghrelin were also evaluated using AUC values 

calculated for the hours before the morning buffet meal (0 – 3 h), over the remainder of 

the trial (3 – 8 h) and across the entire trial duration (0 – 8 h). This analyses confirmed 

suppressed concentrations of acylated ghrelin prior to the first buffet meal (0 – 3 h) on 

the swimming trial (swimming 476 ± 232, control 505 ± 217 pg·mL-1· 3h) (P < 0.001) 

however no other differences were apparent. 
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Figure 5.3: Plasma concentrations of acylated ghrelin in the swimming (○) and control 
(●) trials. Values are mean ± SEM (n = 9). Grey rectangle indicates a breakfast snack. 
Black rectangle indicates swimming. Diagonal rectangles indicate buffet meals. * = 
significantly different from control trial after adjusting for multiple comparisons using 
the Bonferroni method. 
 

3.3.5 Glucose and triacylglycerol 

Fasting plasma glucose concentrations did not differ (P = 0.133) between the swimming 

and control trials (4.93 ± 0.1 verses 4.79 ± 0.1 mmol·L-1). Two-factor ANOVA revealed 

a main effect of time for plasma glucose (P < 0.001) however no trial or interaction 

(trial x time) main effects were found.  

 

Fasting plasma triacylglycerol concentrations did not differ (P = 0.782) between the 

swimming and control trials (1.13 ± 0.1 verses 1.11 ± 0.1 mmol·L-1). For plasma 

triacylglycerol concentrations two-factor ANOVA yielded a significant main effect of 

time (P = 0.013) but no trial or interaction (trial x time) effects were found (Figure 5.4). 
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Figure 5.4: Plasma concentrations of triacylglycerol (a) and glucose (b) in the 
swimming (○) and control (●) trials. Values are mean ± SEM (n = 10). Grey rectangle 
indicates a breakfast snack. Black rectangle indicates swimming. Diagonal rectangles 
indicate buffet meals.  
 

5.3.6 Correlations between plasma metabolites, appetite and energy intake 

During the control trial plasma acylated ghrelin was inversely related to plasma glucose 

at 2 h (r = -0.667, P = 0.05). Moreover, after consumption of the morning buffet meal 
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the acylated ghrelin and glucose AUC were inversely correlated (r = - 0.673, P =0.047). 

In the swimming trial plasma acylated ghrelin was inversely correlated with plasma 

glucose immediately after exercise (2 h) (r = - 0.936, P < 0.001). Furthermore, acylated 

ghrelin and glucose AUC values were inversely related both after the morning meal (r = 

-0.718, P = 0.029) and over the course of the entire trial (r = - 0.786, P = 0.012). In the 

swimming trial ratings of hunger immediately before the afternoon meal were 

positively associated with subsequent energy intake (r = 0.533, P = 0.049).  

 

5.3.7 Water intake and environmental conditions 

There were no significant differences between the swimming and control trials in water 

intake (control 1402 ± 219, swimming 1302 ± 226 mL, P = 0.398), laboratory 

atmospheric temperature (control 21.6 ± 0.3, swimming 21.4 ± 0.3 oC, P = 0.350) and 

relative humidity (control 37.8 ± 4.1, swimming 37.8 ± 4.1%, P = 0.537). The 

atmospheric temperature and relative humidity at the swimming pool were 26.4 ± 0.8 
oC and 50.9 ± 1.7%, respectively. The temperature of the swimming pool water was 

28.1 ± 0.1 oC.  
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5.4 Discussion 

The main findings arising from this investigation are three-fold. Firstly, moderate 

intensity swimming exhibited a bi-phasic influence on appetite with an inhibition 

during exercise and a later stimulation in the hours thereafter. Secondly, swimming did 

not influence ad libitum energy or macronutrient intake. Finally, swimming transiently 

suppressed circulating concentrations of acylated ghrelin however no effects were 

apparent after exercise. This outcome indicates that acylated ghrelin does not mediate 

the reported stimulation of appetite after swimming. 

 

The suppression of appetite (decreased hunger and prospective food 

consumption/elevated satisfaction and fullness) observed during swimming is a novel 

finding yet is consistent with previous research showing a transient inhibition of 

appetite resulting from land-based exercise modalities such as running and cycling 

(King and Blundell, 1995; Blundell and King, 2000). This phenomena has been termed 

exercise induced anorexia (King et al, 1994) and has been consistently observed during 

land-based activities performed at moderate intensities or higher (> 60% of 2OV max). 

Broom et al (2007) reported suppressed hunger and plasma acylated ghrelin during 

treadmill running and suggested a potential role of acylated ghrelin in determining 

suppressed appetite during exercise. Supporting this notion, the findings from the 

present study confirm that acylated ghrelin and appetite are concomitantly suppressed 

during swimming however the absence of any significant correlations between these 

variables immediately after swimming questions the strength of this relationship.  

 

In the hours after consumption of the morning buffet meal, ratings of hunger and 

prospective food consumption were higher in the swimming trial than the control trial, 

whilst ratings of fullness were reduced. These findings indicate that swimming 

stimulated a delayed increase in appetite. This response is contrary to research which 

has examined appetite responses to land-based activities which have typically shown no 

acute compensation in appetite after performing exercise, even when significant 

amounts of energy are expended (King and Blundell, 1995; King et al, 1997). The 

mechanism responsible for these discrepant findings is not immediately clear. It has 

been suggested that changes in body temperature may be important (White et al, 2005; 

Burke, 2006) however this is unlikely in the present study as appetite was not 
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stimulated until more than two hours after swimming. By this time core temperature 

would almost certainly have normalised. White et al (2005) speculate that the cooling 

and then subsequent reheating of the body may be associated with the release of ‘certain 

hormones’ which stimulate the appetite. In the present study we measured circulating 

concentrations of acylated ghrelin, a peptide responsible for stimulating appetite and 

food intake (Wren et al, 2001; Kojima and Kangawa, 2005). The present findings 

suggest that acylated ghrelin is not responsible for the augmented appetite response 

after swimming as circulating concentrations were no different from control values after 

the morning buffet meal. Appetite is regulated on an acute basis by many gut peptides 

including peptide YY, pancreatic polypeptide and glucagon-like peptide-1 (Karra and 

Batterham, 2010) therefore it is possible that changes in these peptides may have 

influenced the appetite response to swimming. 

 

Some research indicates that swimming may be less effective than land-based activities 

for inducing weight loss or reductions in body fat (Gwinup et al, 1987; Tanaka et al, 

1997). Furthermore, it has been observed that levels of adiposity are typically higher in 

swimmers than equal calibre runners (Novak et al, 1977; Jang et al, 1987). It has been 

suggested that an unparalleled stimulation of appetite and energy intake after swimming 

may explain these findings (Burke, 2006). Despite the changes in appetite observed, the 

present investigation did not find any significant differences in energy or macronutrient 

intake between the swimming and control trials, either during the morning or afternoon 

meals. These findings are difficult to reconcile. It is known that food intake is 

influenced by a host of physiological, environmental, psychological and social factors, 

some of which are learned over time and are resistant to change (Besile, 1999). In this 

study it seems that the factors influencing appetite were insufficient to overcome other 

competing forces governing food intake. Nonetheless, as a consequence of the lack of 

change in energy intake, participants therefore failed to compensate for the energy 

expended during exercise and relative energy intake was subsequently lower on the 

swimming trial than the control trial (swimming 7828 ± 774 kJ, control 9163 ± 720, P = 

0.008). This outcome contradicts the suggestion that energy intake is augmented by 

swimming and therefore does not support the notion that swimming is an ineffective 

exercise modality for successful body weight control.  
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When comparing the present findings to previous data water temperature emerges as an 

important variable influencing food intake responses to exercise performed in water. 

White and Colleagues (2005) examined energy intake responses in healthy participants 

who performed cycling exercise while immersed in either cold water (20 oC) or neutral 

water (33oC) and compared these responses to control responses (i.e. while resting in a 

dry environment). Energy intake was significantly higher after exercise in cold water 

(873 kcal) as compared with the neutral water (608 kcal) and the resting trial (618 kcal), 

indicating that exercise in cold water stimulates energy intake. In similar fashion, 

Dressendorfer (1993) submitted six trained males to 30 min of modified cycling in cold 

water (22 oC), warm water (34 oC), cycling on land and a resting control trial. 

Participants consumed significantly more energy in the cold water trial than all other 

trials at a buffet meal provided immediately after exercise. Furthermore, energy intake 

was significantly reduced in the warm water trial. Collectively, these findings suggest 

that water temperature, and possibly subsequent core body temperature, are important 

determinants of feeding responses after exercise. Despite these established findings, no 

study has previously examined the specific effects of swimming (rather than modified 

cycling) on appetite and food intake. Our findings appear to support the notion that 

exercise only in cold water stimulates food intake as in the present study the water 

temperature was modest (28-28.5 oC) and no change in energy intake was observed. 

Unfortunately core temperature was not assessed in the present study, therefore the 

exact relationship between this variable and energy intake cannot be explored. Further 

work is therefore needed to examine this issue. 

 

This investigation has two notable limitations. Firstly, an immersed, resting control trial 

was not included therefore making it difficult to determine whether the reported 

increase in appetite was due to immersion in water or the physical work completed. 

Secondly, participants were young, healthy males and it is impossible to tell whether 

these findings would generalise to other populations such as females, older adults and 

the overweight/obese. The structure of the swimming session used in this study was 

selected to resemble a typical recreational session and the freedom for participants to 

select the stroke and speed of swimming (within guidelines) was thought to improve the 

validity of this. It is possible that the sessions completed by other populations would not 

be the same in terms of intensity and duration. Additional work is therefore required to 



 100 

examine these issues, particularly in overweight individuals as it is within this 

population that findings hold the most clinical importance. 

 

In conclusion, this investigation has shown that an acute bout of moderate intensity 

swimming suppresses appetite during exercise before leading to an increase later on in 

the day. Despite this, energy intake and macronutrient selection appear resistant to 

change over the duration of time examined. Circulating concentrations of acylated 

ghrelin were suppressed during swimming and this may possibly have contributed to 

the reduction in appetite observed. Nonetheless, acylated ghrelin does not appear to 

mediate the reported increase in appetite in the hours after exercise. These findings 

provide novel information regarding the influence of swimming on the acute regulation 

of energy homeostasis. 
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Chapter VI 
 
Influence of brisk walking on appetite, energy intake and plasma acylated ghrelin 

 

6.1 Introduction 

The objectives of the studies described in the two previous chapters (Chapters four and 

five) were to gain a better understanding of the effects of popular modes of physical 

activity (resistance exercise and swimming) on appetite, energy intake and in Chapter 

five, circulating concentrations of acylated ghrelin. Continuing on this theme, across the 

population walking remains the commonest mode of physical activity undertaken 

(Simpson et al, 2003; NHS Information Centre, 2008). A significant amount of research 

has examined the effects of walking on numerous health related outcomes (for a review 

see Morris and Hardman, 1997). This work has shown that walking can yield many 

health benefits, particularly in relation to lessening the risk of developing 

cardiovascular disease and type 2 diabetes mellitus (Caspersen and Fulton, 2008; Lee 

and Buchner, 2008). Unfortunately less attention has been directed at examining the 

effects of walking on energy balance and weight control. This is a concern given the 

rising prevalence of overweight and obesity. Further work is therefore necessary to 

provide a better understanding of the effects of walking on energy homeostasis (Morris 

and Hardman, 1997).  

 

As with all forms of physical exertion walking expends energy. The extent of this is 

directly related to the intensity performed and the body weight of the individual. Thus, 

if performed regularly, walking should make an important contribution to successful 

energy balance. This account may be too simplistic however as the consensus of 

evidence does not demonstrate a consistent effect of walking on indices of weight 

control. It has been suggested that this may be related to changes in appetite and energy 

intake (Morris and Hardman, 1997). 

 

Studies that have examined the effects of exercise on appetite and energy intake have 

typically observed a lack of influence in the short-term (Martins et al, 2008; Bilski et al, 

2009). With specific regards to walking, no change in appetite (Imbeault et al, 1997) or 

energy intake (Imbeault et al, 1997; George and Morganstein, 2003; Pomerleau et al, 

2004) are also common findings, although one report has described a suppression of 

hunger after 20 min of brisk walking in a sample of obese women (Tsofliou et al, 2003). 
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The regulation of appetite and energy intake is under complex neuroendocrine control 

involving both centrally and peripherally mediated systems (Murphy and Bloom, 2006). 

Gut peptides within the enteric endocrine system are integral to this process and efforts 

seeking to define how these peptides respond to exercise have recently begun (Martins 

et al, 2008; Bilski et al, 2009). Ghrelin is an acylated peptide released from the stomach 

and stimulates appetite and feeding (Kojima et al, 1999; Wren et al, 2001). Recent work 

has sought to characterise the effect of exercise on acylated ghrelin (Broom et al, 2007; 

Broom et al, 2009; Ueda et al, 2009). Unfortunately this research has primarily 

examined the influence of high intensity bouts of exercise. Whether low intensity 

exercise, such as walking, influences acylated ghrelin is not known. 

 

The purpose of this study was to examine appetite, energy intake and plasma acylated 

ghrelin responses over an extended period of time after an acute bout of brisk walking. 

The aim was to assess both the immediate and prolonged effects of walking on acylated 

ghrelin, appetite and energy intake. These findings may have implications concerning 

the promotion of walking for successful weight management. 
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6.2 Methods 

6.2.1 Participants 

After gaining Loughborough University Ethical Advisory Committee approval 14 

healthy males (18 – 26 y) gave their written informed consent to participate. Table 6.1 

describes the participant characteristics. 

 
Table 6.1: Characteristics of the study participants 
 

Characteristic Mean ± SEM 

Age (y) 21.9 ± 0.5 

BMI (kg·m-2) 23.4 ± 0.6 

Body Mass (kg) 76.8 ± 2.5 

Body Fat (%) 19.2 ± 1.2 

2OV max (mL∙ kg-1 ∙ min-1)  
 

55.9 ± 1.8 

 (n = 14) 
 
 
6.2.2 Study design 

Before taking part in main trials participants visited the laboratory in order to 

familiarise themselves with the environment and to enable the collection of the 

necessary anthropometric and preliminary exercise test data. After being made aware of 

the protocol, participants were health screened and then gave their written informed 

consent to participate. Anthropometric data was then collected after which participants 

completed two preliminary exercise tests: 1) a five min submaximal treadmill walking 

test, 2) a maximum oxygen uptake ( 2OV max) treadmill running test. There was a 15 to 

20 min interval between tests. 

 

The submaximal treadmill walking test was completed to ascertain the brisk walking 

speed that participants would walk at during the brisk walking main trial. Participants 

were told that brisk walking was defined as an exercise intensity yielding a mild 

shortening of breath yet still enabling the individual to converse (Miyashita et al, 2008). 

During the test the treadmill speed was initially adjusted until a suitable pace was 
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determined. Participants then maintained this speed for five min. In the final min of the 

test heart rate and RPE were recorded. 

 

In subsequent weeks participants completed two main trials (brisk walking and control) 

in a randomised, counterbalanced order. Each main trial was separated by at least one-

week. In order to standardise diet and physical activity before these trials participants 

completed a weighed food record of all items consumed within the 24 h preceding their 

first main trial and this feeding pattern was replicated before their second main trial. 

Alcohol, caffeine and physical activity were not permitted during this period.  On the 

morning of trial days participants arrived at the laboratory having fasted overnight. To 

minimise physical exertion on the morning of trials participants were asked to walk 

slowly to the laboratory if they lived within 0.5 km of the research laboratory. 

Participants living further away arrived by motorised transport.  

 

6.2.3 Main trials 

An interval of at least one-week separated the preliminary session and each 

participant’s first main trial. Trials began in the morning between 08:30 and 09:00 and 

lasted eight hours. The brisk walking trial commenced when participants began a 60 

min subjectively paced brisk walk on a level motorised treadmill. The initial walking 

pace was that ascertained in the preliminary laboratory visit although adjustments were 

made if discomfort was experienced. Samples of expired air were collected at 15 min 

intervals throughout to estimate energy expenditure and substrate oxidation. Heart rate 

and RPE were also assessed at these times. After completing the walk participants 

rested for 7 h within the laboratory (sitting reading, writing, working at a computer or 

watching television).  

 

Identical procedures were completed in the control trial except no exercise was 

performed. Participants therefore rested for the entire duration of the trial. In order to 

estimate the net energy expenditure of brisk walking (gross energy expenditure of 

exercise minus resting energy expenditure), during the first hour of the control trial 

samples of expired air were collected in the semi-supine position to estimate resting 

oxygen consumption. Figure 6.1 provides a schematic illustration of the main trial 

protocol. 
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6.2.4 Appetite and energy intake assessment 

During main trials 100 mm visual analogue scales were completed to assess perceptions 

of appetite (hunger, fullness, satisfaction and prospective food consumption). Scales 

were completed at baseline and then at 30 min intervals throughout.  

 

At two points during main trials (1.5 – 2 h & 5 – 5.5 h) participants were provided with 

a buffet meal (Appendix G) for 30 min from which they could consume food ad 

libitum. The buffet meal was identical to that provided in the previous studies described 

in this thesis. Section 3.12 provides details on the format of the buffet meal. 

 

6.2.5 Blood sampling 

 A cannula was inserted into an antecubital vein while participants lay in a semi-supine 

position ~30 min before main trials commenced. Venous blood samples were taken into 

pre-chilled 4.9 mL monovettes at baseline, 0.5, 1, 1.5, 2, 2.5, 5, 5.5, 6, 7, and 8 h to 

measure plasma acylated ghrelin (see section 3.14 for details on acylated ghrelin sample 

processing). Additional blood samples were collected into pre-chilled 9 mL EDTA 

monovettes at baseline, 0.5, 1, 1.5, 2, 2.25, 2.5, 3, 3.5, 5, 5.5, 5.75, 6, 6.5, 7 and 8 h for 

the determination of plasma glucose and triacylglycerol. Plasma insulin was determined 

from collections at 0, 1, 1.5, 2, 2.25, 2.5, 3.5, 5, 5.5, 5.75, 6, 7 and 8 h. These 

monovettes were spun at 1,681g for 10 min in a refrigerated centrifuge at 4 oC. The 

plasma supernatant was then aliquoted into 2 mL Eppendorf tubes prior to storage for 

analysis later. 

 

All blood samples were taken in the semi-supine position except for 0.5 h collections 

during the brisk walking trial where participants straddled the treadmill. During trials 

patency of the cannula was maintained by flushing with non-heparinised saline (0.9 % 

w/v sodium chloride) after each sample collection. Dilution of subsequent samples was 

avoided by discarding residual saline before collections.  

 

To estimates changes in plasma volume, at each blood sampling point duplicate 20 µL 

blood samples were collected into micropipettes and triplicate 20 μL samples were 

collected into heparinised microhaematocrit tubes to determine blood haemoglobin and 

haematocrit concentrations. 
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6.2.6 Biochemical analysis 

 Enzyme immunoassays were used to determine concentrations of plasma acylated 

ghrelin and insulin. Plasma glucose and triacylglycerol concentrations were determined 

spectrophotometrically using an automated bench top analyzer. To eliminate inter-assay 

variation samples from each participant were analyzed in the same run. The within 

batch coefficients of variation for the assays were as follows: acylated ghrelin 7.8%, 

insulin 6.3%, glucose 0.4% and triacylglycerol 2.7%. 

 

6.2.7 Statistical analysis 

Data was analyzed using the Statistical Package for the social Sciences (SPSS) software 

version 16.0 for Windows. Area under the concentration verses time curve calculations 

were performed using the trapezoidal method. Student’s t-tests for correlated data were 

used to assess differences between fasting and AUC values for acylated ghrelin, 

glucose, insulin, triacylglycerol, environmental temperature, humidity and appetite 

between the brisk walking and control trials. Repeated measures, two-factor ANOVA 

was used to examine differences between the brisk walking and control trials over time 

for appetite, energy and macronutrient intake, acylated ghrelin, glucose, insulin and 

triacylglycerol. The Pearson product moment correlation coefficient was used to 

examine relationships between variables. Correction of values for changes in plasma 

volume did not alter the statistical significance of findings therefore for simplicity the 

unadjusted values are presented. Statistical significance was accepted at the 5% level. 

Results are presented as mean ± SEM. 
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6.3 Results 

6.3.1 Exercise responses 

Participants completed the 60 min brisk walk at 7.0 ± 0.1 km.h-1. This elicited a mean 

oxygen consumption equivalent to 45.2 ± 2% of 2OV max and generated an average 

heart rate and net (exercise minus resting) energy expenditure of 137 ± 6 beats.min-1 

and 2008 ± 134 kJ (480 ± 32 kcal), respectively. A mean non-protein respiratory 

quotient of 0.89 ± 0.01 reflected the proportional contributions of carbohydrate and fat 

(61± 3% and 39 ± 3%) to energy provision. A median RPE value of 11 indicated that 

the intensity of the walk was perceived as ‘fairly light’. 

 

6.3.2 Appetite responses 

There were no significant differences in baseline ratings of appetite (hunger, fullness, 

satisfaction and prospective food consumption) between the brisk walking and control 

trials (Table 6.2). 

 

Table 6.2: Baseline appetite perceptions in the brisk walking and control trials 
 

 Control Brisk walking P 

Hunger (0-100) 67 ± 4 58 ± 7 0.270 
Satisfaction (0-100) 27 ± 7 19 ± 3 0.419 

Fullness (0-100) 16 ± 3 15 ± 3 0.833 
PFC (0-100) 73 ± 2 75 ± 5 0.646 

Values are mean ± SEM (n = 14). PFC = Prospective food consumption 
 

Two-factor ANOVA revealed significant main effects of time for each appetite 

perception assessed (all P < 0.001) indicating changes in appetite in response to the 

buffet meals consumed during main trials. No significant trial or interaction (trial x 

time) effects were found therefore appetite responses did not differ between the brisk 

walking and control trials (Figure 6.2). 
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Figure 6.2: Ratings of hunger (a), fullness (b), satisfaction (c) and prospective food 
consumption (d) in the brisk walking (○) and control (●) trials. Values are mean ± SEM (n = 
14). Black rectangle indicates brisk walking. Diagonal rectangles indicate buffet meals.  
 

6.3.3 Energy and macronutrient intake 

Two-factor ANOVA showed no significant trial, time or interaction (trial x time) main 

effects for energy intake (all P > 0.05) indicating that energy intake was not 

significantly different between the brisk walking and control trials (Table 6.3). 

Examination of the relative energy intake (energy intake – net energy expenditure of 

exercise) showed that brisk walking (7376 ±  657 kJ, 1763 ± 157 kcal) induced a 

relative energy deficit as compared with the control trial (9213 ± 590 kJ, 2202 ± 141 

kcal) (P = 0.001). 
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Table 6.3: Energy intake in the brisk walking and control trials 
 

 Control Brisk walking 

Morning meal 

(1.5 – 2 h) 

4483 ± 378 4520 ± 436 

(1072 ± 90) (1080 ± 104) 

Afternoon meal 

(5 – 5.5 h) 
4729 ± 348 4864 ± 490 

(1130 ± 83) (1163 ± 117) 

Total Trial 

(0 – 8 h) 
9212 ± 588 9384 ± 659 

(2202 ± 141) (2243 ± 157) 
Values are kJ (kcal) (n = 14) 
 

 
Two-factor ANOVA was used to examine macronutrient intake (absolute and percent) 

across the morning and afternoon meals during the brisk walking and control trials 

(Table 6.4). There were no significant trial, time or interaction (trial x time) main 

effects for the absolute intake of fat, protein or carbohydrate (all P > 0.05). Analyses of 

the percentage intake of the macronutrients revealed significant main effects of time for 

fat (P = 0.009) and carbohydrate (P = 0.010) indicating that the intake of fat was higher 

at the afternoon meals than in the morning meals whereas the percentage intake of 

carbohydrate was lower at the afternoon meals than in the morning meals. No 

significant trial or interaction (trial x time) main effects were apparent therefore these 

changes over time were not significantly different between the brisk walking and 

control trials.  
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Table 6.4: Macronutrient intake in the brisk walking and control trials 
 

Control Fat Carbohydrate Protein 

Morning meal (1.5 – 2 h) 
38 ± 5 
(30.5) 

144 ± 8 
(56.0) 

40 ± 9 
(13.5) 

Afternoon meal (5 – 5.5 h) 46 ± 5 
(36.7) 

137 ± 16 
(48.6) 

43 ± 7 
(14.7) 

Total Trial (0 – 8 h) 
 

84 ± 8 
(34.0) 

281 ± 20 
(51.7) 

83 ± 15 
(14.3) 

Brisk walking Fat Carbohydrate Protein 

Morning meal (1.5-2 h) 35 ± 4 
(29.0) 

149 ± 14 
(56.4) 

42 ± 9 
(14.6) 

Afternoon meal (5 – 5.5 h) 
44 ± 6 
(34.2) 

141 ± 14 
(50.1) 

50 ± 10 
(15.7) 

Total Trial (0 – 8 h) 
 

79 ± 8 
(32.6) 

290 ± 19 
(51.9) 

92 ± 16 
(15.5) 

Values are gram and (%) (n = 14) 
 
 

6.3.4 Acylated ghrelin 

Fasting plasma acylated ghrelin concentrations did not differ (P = 0.507) between the 

brisk walking and control trials (89 ± 9 verses 93 ± 22 pg∙mL -1). For plasma 

concentrations of acylated ghrelin two-factor ANOVA revealed a significant main 

effect of time (P = 0.003) indicating that circulating concentrations of acylated ghrelin 

changed across time in response to the meals consumed during main trials (Figure 6.3). 

No significant trial or interaction main effects were found indicating that acylated 

ghrelin responses were not significantly different between the brisk walking and control 

trials. 
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Figure 6.3: Plasma concentrations of acylated ghrelin in the brisk walking (○) and 
control (●) trials. Values are mean ± SEM ( n = 14). Black rectangle indicates brisk 
walking. Diagonal rectangles indicate buffet meals.  
 

6.3.5 Insulin, glucose and triacylglycerol 

Fasting plasma concentrations of insulin (brisk walking 30.1 ± 5.0, control 27.5 ± 5.2 

pmol∙L-1, P = 0.671), glucose (brisk walking 4.41 ± 0.20, control 4.49 ± 0.24 mmol∙L-1, 

P = 0.520) and triacylglycerol (brisk walking 0.82 ± 0.1, control 0.78 ± 0.1 mmol∙L-1, P 

= 0.671) did not differ significantly between the brisk walking and control trials. 

Plasma insulin, glucose and triacylglycerol concentrations changed significantly over 

time (main effect of time, P < 0.001 for each) however no trial or interaction main 

effects were found (all P > 0.05). Figure 6.4 shows the plasma insulin, glucose and 

triacylglycerol responses in the brisk walking and control trials. 
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Figure 6.4: Plasma concentrations of triacylglycerol (a), insulin (b) and glucose (c) in 
the brisk walking (○) and control (●) trials. Values are mean ± SEM (n = 14). Black 
rectangle indicates brisk walking. Diagonal rectangles indicate buffet meals. 
 

6.3.6 Correlations between acylated ghrelin and other variables 

In the brisk walking trial acylated ghrelin and prospective food consumption AUC were 

positively correlated during the intermeal interval (1.5 - 5 h) (r = 0.723, P = 0.028) 

whilst acylated ghrelin and plasma triacylglycerol AUC were negatively correlated 

during the intermeal interval (1.5 - 5 h) (r = -0.827, P = 0.006) and across the total trial 

(0 - 8 h) (r = -0.694, P = 0.038). The acylated ghrelin and insulin AUC values  tended 

to be inversely correlated across the total trial (0 - 8 h) (r = -0.660, P = 0.053).  
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When examining correlations at individual time points many significant relationships 

emerged (P < 0.05). At 1 and 2 h during the control trial acylated ghrelin was positively 

correlated with hunger and prospective food consumption. Correlation coefficients 

ranged from 0.672 to 0.809. During the control trial acylated ghrelin was negatively 

correlated with fullness at 1 and 2 h and with satisfaction at 1, 2 and 5.5 h. Correlation 

coefficients ranged from -0.716 to -0.898. Inverse correlations were observed between 

acylated ghrelin and plasma triacylglycerol at 2.5 h in the brisk walking trial (r = -

0.714, P = 0.031) and with plasma insulin at 5 h in the brisk walking trial (r = -0.744, P 

= 0.022). 

 

In both the brisk walking and control trials no significant correlations were found 

between circulating acylated ghrelin concentrations immediately before buffet meals 

and ad libitum energy intake at the meals. Additionally, no significant correlations were 

found between energy intake at the buffet meals and the percentage change in 

circulating acylated ghrelin 30 min after eating. 

 

6.3.7 Water intake, temperature and humidity 

There were no significant differences in water intake (brisk walking 1582 ± 249, control 

1247 ± 217 mL, P = 0.095), laboratory environmental temperature (brisk walking 22.8 

± 0.2,  control 22.7 ± 0.2 oC, P = 0.590) or relative humidity (brisk walking 34.4 ± 1.5, 

control, 32.1 ± 1.2 %, P = 0.224) between the brisk walking and control trials.  
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6.4 Discussion 

The purpose of this investigation was to examine appetite, energy intake and plasma 

acylated ghrelin responses during and for several hours after a 60 min bout of brisk 

walking. The main finding arising from this study is that despite inducing a moderate 

energy deficit, an acute bout of brisk walking did not modify appetite, energy intake or 

circulating concentrations of acylated ghrelin. These findings can be looked upon 

favourably in terms of the potential for brisk walking to facilitate successful weight 

control. 

 

The finding of no difference in appetite (hunger, satisfaction, fullness and prospective 

food consumption) between the brisk walking and control trials can perhaps be 

explained by the relatively moderate intensity of exertion and subsequent energy 

expenditure elicited through walking. Previous work has consistently observed a 

suppression of appetite during and briefly after intense bouts of activity (> 60% of 

2OV max) (King et al, 1994; King and Blundell, 1995; Martins et al, 2008). This 

response may therefore have been unanticipated in the present study as brisk walking 

provided a much lesser physiological challenge to the relatively fit sample of 

participants examined. 

 

Consistent with no change in appetite, brisk walking also failed to influence energy 

intake. At both the morning and afternoon buffet meals energy intake was highly 

congruent between trials. This observation confirms previous findings which have 

typically shown no difference in energy intake in the short term (1 – 2 days) once 

individuals have completed an acute bout of exercise (King et al, 1994; 1996; 1997; 

King and Blundell, 1995). Consequently, in the present investigation the participants 

failed to compensate for the exercise-induced energy expenditure. King and co-workers 

(1994) have suggested that the relative post-exercise energy intake response (absolute 

energy intake adjusted for the net exercise induced energy expenditure) is of greater 

importance than the absolute amount of energy consumed. Using this formula, brisk 

walking induced a relative deficit in energy in comparison with control (1836 kJ, 439 

kcal). This finding suggests that brisk walking does not elicit an automatic 

compensation in energy intake in the immediate hours after completing a single bout of 
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brisk walking. Although a more delayed response remains a possibility, this initial 

finding lends support for the utility of brisk walking in successful body weight control.  

In the present study brisk walking did not perturb food preferences i.e. there were no 

differences in the macronutrient composition of the food items consumed between the 

brisk walking and control trials. In both the morning and afternoon meals the 

distribution of energy was typical of a Western diet (Cordain et al, 2005). This 

observation confirms results from the majority of previous laboratory interventions 

which have failed to show any consistent effect of exercise on food preferences 

(Tremblay and Drapeau, 1999; Elder and Roberts, 2007). In the present study, within 

each trial the percentage of energy derived from carbohydrate was higher at the 

morning buffet meals whilst that of fat was higher in the afternoon meals. At the 

morning meals the selection of high carbohydrate, breakfast type items such as cereals 

and milk most likely explains the greater proportion of energy derived from 

carbohydrate. Moreover, at the afternoon meals, consumption of typical lunch items 

familiar to the study participants (sandwiches, crisps, chocolate, cookies etc) most 

likely accounts for the higher percentage intake of fat. In this investigation no change in 

macronutrient selection contributed to the lack of difference in energy intake observed 

between trials. Previous work has shown that switching from low-fat to high-fat food 

options completely reverses the energy deficit induced by prior exercise (King and 

Blundell, 1995; King et al 1996). It is therefore appealing that brisk walking did not 

stimulate an appetite for foods with a higher content of fat and therefore energy. 

 

This study is the first to examine the acylated ghrelin response to low intensity exercise. 

Therefore, a novel finding is that plasma acylated ghrelin concentrations are not 

affected during or for several hours after an acute bout of brisk walking. This finding is 

consistent with the lack of difference in appetite and energy intake observed between 

trials. Previously, a concomitant suppression of plasma acylated ghrelin and hunger has 

been observed during and briefly after an intense bout of treadmill running (Broom et 

al, 2007). Similarly, in Chapter five of this thesis (study two) a concomitant suppression 

of acylated ghrelin and hunger were found during a single bout of swimming. Brisk 

walking did not affect hunger in the present study therefore given the role of ghrelin in 

appetite regulation no change in acylated ghrelin is a logical outcome. The reduced 

physiological challenge imposed by walking compared with running may account for 

the difference in findings between studies. Specifically, the lower energy expenditure 
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elicited, gastrointestinal disturbance and/or redistribution of splanchnic blood volume 

may be implicative. 

  

This study has two notable limitations. Firstly, the sample of participants was composed 

of a relatively homogenous population of young, healthy males therefore these findings 

may not generalize to clinical populations where brisk walking may provide a greater 

physiological challenge. Secondly, appetite, energy intake and acylated ghrelin 

responses were observed merely for several hours after walking. Assessment of these 

variables over an even greater period of time may be necessary in order to detect any 

possible compensation. 

 

In conclusion, this study demonstrates that an acute bout of brisk walking does not 

increase appetite, energy intake or plasma acylated ghrelin concentrations, despite 

inducing a moderate deficit in energy. These findings lend support for a role of brisk 

walking in successful weight management. 
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Chapter VII 
 

Influence of prolonged treadmill running on appetite, energy intake and 
circulating concentrations of acylated ghrelin 

 

7.1 Introduction 

Ghrelin is an appetite stimulating hormone with a defined role in the acute regulation of 

energy homeostasis (Cummings et al, 2006). Circulating concentrations of ghrelin rise 

before meals and fall thereafter, evidence which has been interpreted as indicating a 

role of ghrelin in meal initiation (Cummings et al, 2001; 2004). In both the short and 

long-term, the diurnal profile of ghrelin is sensitive to changes in energy flux. A 

positive relationship exists between the energy content of meals and the subsequent 

suppression of ghrelin postprandially (Callahan et al, 2004). Moreover, an inverse 

relationship exists between the energy content of meals and the subsequent rise in 

ghrelin prior to the next meal (Leidy and Williams, 2006). These findings imply that 

ghrelin is sensitive to dietary manipulations in energy balance. 

 

Less is known regarding how exercise-induced changes in energy flux impact on 

circulating levels of ghrelin. In the study presented in the previous chapter (Chapter 6) 

circulating acylated ghrelin concentrations remained unchanged during and for several 

hours after an acute bout of brisk walking. It is possible that the perturbation to energy 

balance induced by 60 min of brisk walking was insufficient to elicit changes in 

circulating acylated ghrelin. The limited evidence available, including the findings 

presented in Chapter five of this thesis, suggest that bouts of exercise completed at 

moderate intensities or higher induce a transient suppression in circulating 

concentrations of acylated ghrelin (Broom et al, 2007; Marzullo et al, 2008; Broom et 

al, 2009). Despite this, in none of these previous studies have circulating acylated 

ghrelin concentrations been stimulated after exercise, a response that may be anticipated 

if acylated ghrelin were sensitive to changes in energy expenditure resulting from 

exercise. It remains possible that the energy deficit induced in these previous 

interventions was not severe enough to elicit a compensatory increase in circulating 

levels of acylated ghrelin. 

 

Over the last two decades research that has examined the influence of exercise on 

appetite and energy intake has tended to show a lack of influence in the short-tem 
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(Martins et al, 2008; Bilski et al, 2009). A limitation of this previous work is the brief 

period over which appetite and energy intake have tended to be examined, typically 

during exercise and then leading up to a meal provided shortly after. It is possible that 

changes may occur over a longer duration, at a second, third or fourth meal taken after 

completing exercise (Broom et al, 2007; Malkova et al, 2008). Thus, a longer duration 

of observation, under strictly controlled conditions, may be necessary to detect changes 

in appetite and/or energy intake after completing exercise (Bilski et al, 2009). Changes 

may also occur, only after significant challenges to energy homeostasis. 

 

This study sought to examine prolonged appetite, energy intake and acylated ghrelin 

responses to an acute bout of exercise which was sufficient to induce a substantial 

energy deficit. Its known that ghrelin is sensitive to acute changes in energy balance in 

response to dietary manipulation however it is not known whether such a coupling 

exists between exercise induced changes in energy balance and acylated ghrelin. It was 

anticipated that a large perturbation to energy balance would be associated with a 

compensatory increase in circulating concentrations of acylated ghrelin as a signal to 

augment appetite and subsequent energy intake. 
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7.2 Methods 

7.2.1 Participants 

After gaining Loughborough University Ethical Advisory Committee approval nine 

healthy male volunteers (18 – 27 y) gave their written informed consent to participate. 

Table 7.1 describes the characteristics of the study participants. 

 
Table 7.1: Characteristics of the study participants 
 

Characteristic Mean ± SEM 

Age (y) 22.2 ± 0.8 

BMI (kg·m-2) 23.6 ± 0.4 

Body Mass (kg) 77.5 ± 2.3 

Body Fat (%) 17.8 ± 1.7 

2OV max (mL∙ kg-1 ∙ min-1)  
 

60.5 ± 1.5 

 (n = 9)  
 
 
7.2.2 Study design 

Before taking part in main trials participants visited the laboratory in order to 

familiarise themselves with the environment and to enable the collection of the 

necessary anthropometric and preliminary exercise test data. After being made aware of 

the protocol, participants were health screened and gave their written informed consent 

to participate. Anthropometric data was then collected after which participants 

completed two preliminary exercise tests: 1) a submaximal-incremental treadmill 

running test, 2) a maximum oxygen uptake ( 2OV  max) treadmill running test. There 

was a 15 to 20 min interval between tests. 

 

7.2.3 Main trials 

In subsequent weeks participants completed two, 24 h trials (exercise and control) in a 

randomised, counterbalanced fashion with trials being separated by at least one-week. 

Main trials began in the morning of day one between 08:30 - 09:00 and participants 

were confined to the laboratory for the subsequent 10 h. Participants left the laboratory 

at this point and returned the next morning (day two) to provide a fasting blood sample 
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and to complete a final visual analogue scale (24 h measurements). To standardise diet 

and physical activity before main trials participants completed a weighed food record of 

all items consumed within the 24 h preceding their first main trial and this feeding 

pattern was replicated before their second main trial. Alcohol, caffeine and physical 

activity were not permitted during this period (or in the time spent away from the 

laboratory between trial days). 

 

On the morning of main trials participants arrived at the laboratory having fasted 

overnight. To minimise physical exertion on the morning of trials participants were 

asked to walk slowly to the laboratory if they lived within 0.5 km of the research 

laboratory. Participants living further away arrived by motorised transport. The exercise 

trial commenced when participants began a 90 min run on a level treadmill at a speed 

predicted to elicit 70% of maximum oxygen uptake. During the run samples of expired 

air were collected at 15 min intervals to monitor the intensity and adjustments were 

made to the speed of the treadmill if necessary. On completion of the run participants 

rested within the laboratory for 8.5 h (sitting reading, working at a computer or 

watching television). Identical procedures were completed during the control trial 

except participants rested within the laboratory for the entire duration. In the first 90 

min of the control trial samples of expired air were collected in the semi-supine position 

in order to estimate resting oxygen consumption. This permitted the estimation of net 

energy expenditure during exercise (exercise energy expenditure minus resting energy 

expenditure). Figure 7.1 provides a schematic illustration of the main trial protocol. 
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Acylated ghrelin samples 

Figure 7.1: Schematic representation of the main trial protocol 
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7.2.4 Appetite assessment 

During main trials 100 mm visual analogue scales were completed to assess perceptions 

of appetite (hunger, fullness, satisfaction and prospective food consumption). Scales 

were completed at baseline and then at 30 min intervals throughout the laboratory phase 

of trials. Final visual analogue scales were completed on the morning of the second trial 

day (24 h measurement). 

 

7.2.5 Ad libitum buffet meals 

During the laboratory phase on the first day of trials participants consumed food from 

ad libitum buffet meals provided at three time points throughout. The cold buffet meal, 

which was provided in Chapters four, five and six of this thesis, was provided at 2.5 and 

9 h (Appendix G). Due to the length of the trial days a hot buffet meal was also made 

available at 5.5 h (Appendix H). Food was available for 30 min at each meal. In the 

time spent away from the laboratory in-between laboratory visits on days one and two 

participants were free to select, and subsequently consume if desired, any items 

presented at the cold buffet meal. Participants were permitted to consume these items 

after leaving the laboratory on day one until 23:00 prior to fasting. Section 3.12 

provides details on the format of the buffet meals. 

 

7.2.6 Blood sampling 

On the first day of each main trial venous blood was collected via a cannula inserted 

into an antecubital vein. Venepuncture was used to collect the 24 h blood sample on the 

second trial day. Blood samples were taken into pre-chilled 4.9 mL monovettes at 

baseline, 0.75, 1.5, 2, 2.5, 3.5, 5.5, 6.5, 7.5, 9, 10 and 24 h to measure plasma acylated 

ghrelin (see section 3.14 for details on acylated ghrelin sample processing).  

 

For the determination of plasma insulin, glucose and triacylglycerol additional samples 

were collected into pre-chilled 9 mL EDTA monovettes at baseline, 0, 1.5, 2.5, 3, 3.5, 

5.5, 6, 6.5, 9, 9.5, 10 and 24 h. The EDTA monovettes were spun at 1681g for 10 mins 

in a refrigerated centrifuge at 4 oC. The plasma supernatant was then aliquoted into 2 

mL Eppendorf tubes prior to storage for analysis later. All samples were collected in the 

semi-supine position except for the 0.75 h sample during exercise whereby participants 

straddled the treadmill. For samples collected using a cannula, patency was maintained 

by flushing with non-heparinised saline (0.9 % w/v sodium chloride) after each 
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collection. To avoid the dilution of subsequent samples residual saline was discarded 

using a 2 mL syringe before sample collection.  

 

To estimates changes in plasma volume, at each blood sampling point duplicate 20 µL 

blood samples were collected into micropipettes and triplicate 20 μL samples were 

collected into heparinised microhaematocrit tubes to determine blood haemoglobin and 

haematocrit concentrations. 

 

7.2.7 Biochemical analysis 

Enzyme immunoassays were used to determine plasma concentrations of acylated 

ghrelin and insulin. Plasma glucose and triacylglycerol concentrations were determined 

spectrophotometrically using an automated bench top analyzer. To eliminate inter-assay 

variation, samples from each participant were analyzed in the same run. The within 

batch coefficients of variation for the assays were as follows: acylated ghrelin 7.8%, 

insulin 2.5%, glucose 0.4% and triacylglycerol 2.7%. 

 

7.2.8 Statistical analysis 

Data was analyzed using the Statistical Package for the Social Sciences (SPSS) 

software version 16.0 for Windows. All area under the concentration verses time curve 

calculations were performed using the trapezoidal method. Student’s t-tests for 

correlated data were used to assess differences between fasting and AUC values for 

acylated ghrelin, glucose, insulin, triacylglycerol and appetite perceptions between the 

control and exercise trials. Repeated measures, two-factor ANOVA was used to 

examine differences between the exercise and control trials over time for appetite, 

energy and macronutrient intake, acylated ghrelin, glucose, insulin and triacylglycerol. 

The Pearson product moment correlation coefficient was used to examine relationships 

between variables. Correction of values for changes in plasma volume did not alter the 

statistical significance of findings therefore for simplicity the unadjusted values are 

presented. Statistical significance was accepted at the 5% level. Results are presented as 

mean ± SEM. 
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7.3 Results 

7.3.1 Exercise responses 

Participants completed the 90 min run at 10.3 ± 0.3 km·h-1. This elicited a mean oxygen 

consumption equivalent to 68.8 ± 0.8% of maximum oxygen uptake and generated a 

mean heart rate and net (exercise minus resting) energy expenditure of 173 ± 3 

beats·min-1 and 5326 ± 186 kJ (1273 ± 45 kcal), respectively. A mean non-protein 

respiratory quotient of 0.89 ± 0.01 reflected the proportional contributions of 

carbohydrate and fat (64 ± 5% and 36 ± 5%) to energy provision. A median RPE value 

of 15 indicated that the participants perceived the intensity of the run to be ‘hard.’ 

 

7.3.2 Appetite responses 

There were no significant differences in baseline ratings of appetite (hunger, fullness, 

satisfaction and prospective food consumption) between the exercise and control trials 

(Table 7.2). 

 

Table 7.2: Baseline appetite perceptions in the exercise and control trials 
 

 Control Exercise P 

Hunger (0-100) 65 ± 8 74 ± 5 0.169 
Satisfaction (0-100) 22 ± 5 19 ± 5 0.405 

Fullness (0-100) 17 ± 6 16 ± 4 0.765 
PFC (0-100) 77 ± 7 78 ± 5 0.858 

(n = 9). PFC = prospective food consumption 
 

Two-factor ANOVA revealed a significant main effect of time (all P < 0.001) and a 

significant trial x time interaction effect (all P < 0.023) for each appetite perception 

assessed (hunger, fullness, satisfaction and prospective food consumption) indicating 

that responses differed over time between the exercise and control trials (Figure 7.2). 

Post-hoc analysis revealed significant differences in hunger and prospective food 

consumption at 0.5, 1 and 1.5 h indicating suppressed hunger and prospective food 

consumption during exercise. Significant differences in ratings of fullness and 

satisfaction were apparent at 0.5 and 1 h demonstrating elevated perceptions during 

exercise. After adjusting for multiple comparisons using the Bonferroni method none of 

these differences remained significant. 
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Figure 7.2: Ratings of hunger (a), fullness (b), satisfaction (c) and prospective food 
consumption (d) in the exercise (○) and control (●) trials. Values are mean ± SEM (n = 9). 
Black rectangles indicate exercise. Diagonal rectangles indicate cold buffet meals. 
Crossed rectangles indicate hot buffet meals. 
 

7.3.3 Energy and macronutrient intake 

For energy intake two-factor ANOVA revealed a significant main effect of time (P < 

0.001) signifying that energy intake was higher at the morning cold buffet meals than at 

the meals consumed later in the day. No significant trial (P = 0.532) or interaction (trial 

x time, P = 0.450) main effects were apparent, therefore energy intake did not differ 

significantly between the exercise and control trials (Table 7.3). Analyses of the relative 

energy intake (energy intake – net exercise energy expenditure) showed that exercise 

(12282 ± 1252 kJ, 2935 ± 299 kcal) induced an energy deficit relative to the control 

trial (17191 ± 1144 kJ, 4109 ± 273 kcal) (P < 0.001). 
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Table 7.3: Energy intake in the exercise and control trials 
 

 Control Exercise 

Cold meal (morning) 

(2.5 – 3 h) 

6879 ± 700 6165 ± 700 

(1644 ± 167) (1474 ± 167) 

Hot meal 

(5.5 – 6 h) 
4553 ± 621 4928 ± 618 

(1088 ± 148) (1178 ± 148) 

Cold meal (evening) 

 (9 – 9.5 h) 
4694 ± 341 5214 ± 623 

(1122 ± 82) (1246 ± 149) 

Overnight 
 (10 – 14 h) 

1065 ± 275 1299 ± 299 

(255 ± 66) (310 ± 71) 

Total trial 
(0 – 24 h) 

17191 ± 1144 17606 ± 1384 

(4109 ± 273) (4208 ± 331) 
Values are kJ and (kcal) (n = 9) 
 

Two-factor ANOVA was used to examine macronutrient intake (absolute and percent) 

across the buffet meals during the exercise and control trials (Table 7.4). For the 

absolute intake (grams) two-factor ANOVA revealed significant main effects of time (P 

< 0.001) for each of the macronutrients (protein, fat and carbohydrate) indicating 

differences between the individual meals consumed during main trials. A significant 

main effect of trial was observed for protein (P = 0.007) demonstrating a consistently 

higher intake of protein in the exercise trial than the control trial.  

 

Two-factor ANOVA revealed significant main effects of time (all P < 0.001) for the 

percentage intake of each of the macronutrients however no trial or interaction (trial x 

time) main effects were apparent (all P > 0.05). Thus, there were no significant 

differences in the percentage of energy derived from fat, carbohydrate or protein 

between the exercise and control trials.  
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Table 7.4: Macronutrient intake in the exercise and control trials 
 

Control trial Fat Carbohydrate Protein 

Cold meal (morning) (2.5 – 3 h) 
56 ± 7 
(30.7) 

220 ± 30 
(53.6) 

65 ± 12 
(15.7) 

Hot meal (5.5 – 6 h) 
12 ± 2 
(9.9) 

221 ± 31 
(81.2) 

24 ± 4 
(8.9) 

Cold meal (evening) (9 – 9.5 h) 
40 ± 5 
(31.5) 

140 ± 12 
(50.0) 

50 ± 5 
(18.5) 

Overnight (10 – 14 h) 5 ± 2 
(17.0) 

49 ± 12 
(78.5) 

3 ± 1 
(4.5) 

Total Trial (0 – 24 h) 
 

113 ± 10 
(24.7) 

630 ± 49 
(61.3) 

142 ± 16 
(14.0) 

Exercise  trial Fat Carbohydrate Protein 

Cold meal (morning) (2.5 – 3 h) 
46 ± 7 
(28.1) 

205 ± 27 
(55.3) 

59 ± 7 
(16.6) 

Hot meal (5.5 – 6 h) 
15  ± 3 
(11.1) 

232 ± 29 
(78.9) 

29 ± 4 
(10.0) 

Cold meal (evening) (9 – 9.5 h) 
45  ± 6 
(32.6) 

150 ± 22 
(48.1) 

60 ± 10 
(19.3) 

Overnight (10 – 14 h) 8  ± 2 
(22.4) 

56 ± 13 
(72.7) 

4 ± 1 
(4.9) 

Total Trial (0 – 24 h) 
 

114  ± 12 
(24.1) 

643 ± 56 
(61.2) 

152 ± 14 
(14.7) 

Values are gram and (%) (n = 9) 
 
 
7.3.4 Acylated ghrelin 

Fasting plasma acylated ghrelin concentrations did not differ (P = 0.103) between the 

exercise and control trials (130 ± 15 verses 147 ± 20 pg∙mL -1). Two-factor ANOVA 

revealed a significant main effect of trial (P = 0.009), time (P < 0.001) and a significant 

interaction effect (trial x time, P < 0.001) indicating that acylated ghrelin responses 

differed over time between the exercise and control trials.  

 

Post-hoc analysis using the Bonferroni method demonstrated between trial differences 

at 0.75 and 1.5 h indicating suppressed acylated ghrelin during and immediately after 

exercise. Between trial differences in acylated ghrelin were also evaluated using AUC 
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values calculated for the time before morning buffet meal (0 – 2.5 h), the time after the 

first buffet meal (3.5 – 10 h) and for the total duration within the laboratory on day one 

(0 – 10 h). The acylated ghrelin AUC was significantly lower over the first 2.5 h of the 

exercise trial relative to control (control 347 ± 47, exercise 209 ± 35 pg·mL-1· 2.5 h) (P 

= 0.002) and for the total 10 h (control 934 ± 129, exercise 697 ± 115 pg·mL-1·10 h) (P 

= 0.011). The acylated ghrelin AUC was not significantly different (P = 0.114) between 

trials after consumption of the first meal (3.5 – 10 h) (control 490 ± 75, exercise 418 ± 

74 pg·mL-1·6.5 h). 
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Figure 7.3: Plasma concentration of acylated ghrelin in the exercise (○) and control (●)  
trials. Values are mean ± SEM (n = 9). Black rectangle indicates exercise, diagonally 
shaded rectangles indicate cold meals, hatched shaded rectangle indicates the hot meal. 
*Significantly different from control after correcting for multiple comparisons using the 
Bonferroni method. 
 

7.3.5 Insulin, glucose and triacylglycerol 

Fasting plasma insulin concentrations did not differ (P = 0.403) between the exercise 

and control trials (29.5 ± 5.4 verses 24.3 ± 2.5 pmol·L-1). Two-factor ANOVA 

identified a significant main effect of time (P < 0.001) however no significant trial (P = 

0.103) or interaction (trial x time, P = 0.102) main effects were found. 

 

Fasting plasma glucose concentrations did not differ (P = 0.403) between the exercise 

and control trials (5.07 ± 0.12 verses 5.10 ± 0.05 pmol·L-1). Two-factor ANOVA 
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revealed a significant main effect of time (P < 0.001) and a significant interaction effect 

(trial x time, P < 0.001) indicating that glucose responses differed over time between 

the exercise and control trials. Post-hoc analysis identified between trial differences at 

2.5 and 6 h highlighting lower and then subsequently higher circulating concentrations 

of glucose in the exercise trial than in the control trial. These differences did not remain 

after Bonferroni adjustment. 

 

Fasting plasma triacylglycerol concentrations did not differ (P = 0.200) between the 

exercise and control trials (0.79 ± 0.08 verses 0.90 ± 0.11 mmol·L-1). Two-factor 

ANOVA yielded  significant main effects of trial (P = 0.036), time (P < 0.001) and a 

significant interaction (trial x time, P < 0.001) effect. Thus, circulating triacylglycerol 

responses were significantly different over time in the exercise and control trials. Post-

hoc analysis indicated between trial differences at 1.5, 5.5, 6, 6.5, 9 and 9.5 h, denoting 

an increase in circulating triacylglycerol during exercise before falling and remaining 

below control values in the time thereafter. After correcting for multiple comparisons 

the only difference to remain significant was at 1.5 h. Figure 7.4 shows the plasma 

insulin, glucose and triacylglycerol responses in the exercise and control trials. 
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Figure 7.4: Plasma concentrations of triacylglycerol (a), insulin (b) and glucose (c) in 
the exercise (○) and control (●) trials. Values are mean ± SEM  (n = 9). * Significantly 
different from control after Bonferroni adjustment. Black rectangle indicates running, 
diagonally shaded rectangles indicate cold meals, hatched shaded rectangle indicates 
the hot meal.  
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7.3.6 Correlations between acylated ghrelin and other variables 

Fasting concentrations of plasma acylated ghrelin were inversely correlated with body 

weight (r = -0.720, P = 0.029) and tended to be negatively correlated with BMI (r = -

0.611, P = 0.081). A significant inverse association was observed between insulin and 

acylated ghrelin AUC on the exercise trial in between the first and second meals (2.5 – 

5.5 h) (r = -0.851, P = 0.031). A tendency towards a significant inverse relationship was 

observed between plasma triacylglycerol and acylated ghrelin values in the exercise 

trial in-between the second and third meal (5.5 – 9 h) (r = -0.663, P = 0.052). At 

individual time points during the exercise trial acylated ghrelin was inversely related 

with triacylglycerol at 6.5 h (r = -0.675, P = 0.046) and tended to be inversely related 

with insulin at 1.5 h (r = -0.808, P = 0.052). On both the control and exercise trials no 

significant correlations were observed between plasma acylated ghrelin concentrations 

immediately prior to ad libitum meals and subsequent energy consumption. Moreover, 

no relationships were found between energy intake at each meal and the percentage 

change in plasma acylated ghrelin.  
 

7.3.7 Water intake, temperature and humidity 

Water intake was significantly higher during the exercise trial compared with the 

control trial (2795 ± 258 mL vs. 1553 ± 303 mL, P = 0.003). There were no significant 

differences in the mean environmental temperature (control 24.1 ± 0.2, exercise 25.0 ± 

0.3oC, P = 0.792) or relative humidity (control 41.4 ± 2.3, exercise 40.6 ± 1.9%, P = 

0.209) within the laboratory during the exercise and control trials. 
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7.4 Discussion 

The purpose of this investigation was to examine appetite, energy intake and plasma 

acylated ghrelin concentrations during and for an extended period after a prolonged 

bout of treadmill running which was sufficient to induce a substantial energy deficit. 

The primary findings are that exercise induced a brief suppression of appetite and 

plasma acylated ghrelin yet did not influence appetite, acylated ghrelin or ad libitum 

energy/macronutrient intake in the 22.5 h after. 

 

During exercise perceptions of hunger and prospective food consumption were 

transiently suppressed while ratings of satisfaction and fullness were increased. These 

responses indicate an inhibition of appetite during exercise and this outcome is 

consistent with previous reports of exercise induced anorexia resulting from bouts of 

activity performed at moderate intensities or higher (> 60% of 2OV max) (King et al, 

1994; King & Blundell, 1995). The mechanisms responsible for changes in appetite as a 

consequence of exercise are not well defined however the role of circulating 

concentrations of gut hormones have began to receive attention (Broom et al, 2007; 

Martins et al, 2007; Martins et al, 2008). Broom et al (2007) reported data supporting a 

role of acylated ghrelin in determining suppressed ratings of hunger during one hour of 

intense treadmill running. The data from the present investigation support this notion as 

circulating concentrations of acylated ghrelin were significantly lower during and at the 

end of exercise although the absence of any significant correlations between acylated 

ghrelin and markers of appetite during exercise questions this hypothesis.  

 

Changes in appetite diminished soon after exercise, remaining no different from control 

values over the course of the trial. This outcome was unexpected given the extreme 

energy deficit induced during exercise. It was thought that ratings of appetite would be 

higher at some point within the hours after exercise in an effort to stimulate a 

compensatory increase in energy intake. Heightened perceptions of hunger and desire to 

eat have been reported in two previous investigations which have examined the appetite 

response to exercise over an extended duration (Broom et al, 2007; Malkova et al, 

2008). The energy expenditure induced by exercise was greater in the present study 

therefore it remains unclear why a compensatory appetite response was not observed.  
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Ghrelin is an appetite stimulating hormone with an important role in the acute 

regulation of energy homeostasis (Cummings, 2006). Circulating concentrations ghrelin 

rise before meals and fall thereafter, evidence suggesting a role in determining meal 

initiation (Cummings et al, 2001; Cummings et al, 2004). In both the short and long-

term the diurnal profile of ghrelin is sensitive to changes in energy flux. An inverse 

relationship exists between the energy content of meals and the subsequent pre-prandial 

rise in ghrelin (Leidy & Williams, 2006). Moreover, chronic energy restriction through 

diet and exercise induces heightened circulating concentrations of ghrelin during the 

nocturnal period and at meal related ghrelin peaks (Leidy et al, 2007). Based on this, in 

the present study it was postulated that the large energy deficit induced by exercise 

would stimulate a compensatory increase in acylated ghrelin in the hours after as a 

stimulus to increase appetite and energy intake. It is unclear why circulating acylated 

ghrelin concentrations were not elevated in the hours after exercise. Surprisingly, 

although not statistically different, values actually appeared lower after exercise 

compared with those observed during control and it is possible that this may have been 

implicated in the lack of compensation in appetite and energy intake. Differences in 

feeding responses are unlikely to be implicated as both energy and macronutrient 

intakes were very similar between the exercise and control trials. It is possible that 

some exercise related factor may interfere in the metabolism of acylated ghrelin 

however the associated mechanisms are not known. 

 

Despite exercise inducing a transient suppression of appetite and acylated ghrelin 

energy intake at the first buffet meal after exercise was not significantly different 

between the exercise and control trials. Moreover, energy intake was also no different at 

any of the three other feeding opportunities provided during this investigation. This 

response confirms previous findings which have observed no change in energy intake 

during meals consumed within the hours after exercise (King et al, 1994; King & 

Blundell, 1995) or on the day afterwards (King et al, 1997). Despite this, no previous 

investigation has induced such an energy deficit during a single bout of exercise. It was 

thought that this stimulus may invoke a response in energy intake that had not been 

observed by previous researchers. It is possible that a delayed response may occur 

(King, 1998) however a longer period of observation would be needed to test this. 
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 It has been shown that missing a meal or consuming a meal of reduced energy content 

results in elevated hunger and energy intake at the next opportunity (Hubert et al, 1998). 

For the participants in this study the energy expended during exercise would have been 

greater than the energy content of a typical meal therefore it appears that a different 

homeostatic response is elicited when energy deficits are induced by dietary means as 

compared with exercise i.e. energy leaving the system verses a restriction on energy 

entering the system. This disparity highlights the potential usefulness of exercise in 

weight loss programs. 

 

This study has two notable limitations. Firstly, the exercise protocol used in this study 

was designed to be physically challenging to invoke a high level of energy expenditure. 

Consequently, the outcomes reported may not transfer to situations where typical 

volumes of exercise are performed. Secondly, as previously mentioned, the 24 h 

observation period may not have been long enough to detect more delayed responses in 

the variables assessed. Further work is therefore required to scrutinise these responses 

over a longer duration of time. 

 

In conclusion, this study has shown that a 90 min bout of treadmill running induces a 

transient suppression of appetite and plasma acylated ghrelin, yet does not influence 

short-term energy/macronutrient intake – despite inducing a substantial energy deficit. 

These outcomes contribute knowledge regarding the role of exercise in energy 

homeostasis. These findings indicate that exercise can induce substantial deficits in 

energy without eliciting compensatory responses in acylated ghrelin, appetite and 

energy intake.  
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Chapter VIII 
 

The influence of treadmill running on feeding latency, plasma acylated ghrelin and 
ad libitum energy/macronutrient intake 

 

8.1 Introduction 

It has repeatedly been observed that exercise performed at moderate intensities or 

higher (> 60% of 2OV max) suppresses appetite (King et al, 1994; King and Blundell, 

1995). This effect has been termed exercise-induced anorexia (King et al, 1994). The 

appetite suppressive effect of exercise appears to be a transient event however and does 

not appear to subsequently influence food intake. Instead, it has been suggested that 

exercise-induced anorexia may manifest as a resistance to commence feeding after 

undertaking exercise (King et al, 1994; 1996; King and Blundell, 1995).   

 

King et al (1994) examined appetite and energy intake responses to bouts of short (26 

min) and long duration (56 min), high intensity cycling (~75% of 2OV max) and 

reported that participants requested an ad libitum lunch approximately 5 min later in 

each trial, as compared with responses on a sedentary control trial. Similar findings 

have been observed by the same researchers in other investigations with running as the 

exercise stimulus (King and Blundell, 1995) and also in female participants (King et al, 

1996). In spite of these findings the mechanisms responsible for mediating a reduction 

in appetite and a resistance to begin eating after exercise are not well understood. It is 

possible that appetite regulatory peptides such as acylated ghrelin may be important 

(Broom et al, 2007).  

 

Broom et al (2007) reported that subjective ratings of hunger and circulating 

concentrations of acylated ghrelin were concomitantly reduced in response to a high 

intensity bout of treadmill running. These responses were positively correlated leading 

the researchers to suggest a possible role of acylated ghrelin in determining suppressed 

hunger during exercise. It is known that circulating concentrations of ghrelin exhibit a 

diurnal rhythm across the day, with levels rising prior to meals and falling thereafter in 

close proximity to changes in appetite (Cummings et al, 2001; 2004). This evidence has 

been interpreted as identifying ghrelin as a meal initiation signal. Considering these 

findings collectively it is possible that ghrelin may have a role in determining changes 
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in appetite in response to exercise and the subsequent decision to eat afterwards. At 

least three investigations have shown that high intensity exercise suppresses levels of 

ghrelin within the circulation (Broom et al, 2007; Marzullo et al, 2008; Broom et al, 

2009) therefore it is possible that this suppression and subsequent recovery may be 

significant. 

 

Another consistent finding within the research literature is that energy intake remains 

unchanged at meals consumed shortly after performing exercise (Blundell et al, 2003; 

Martins et al, 2008; Bilski et al, 2009). A limitation of the majority of studies which 

have examined the acute influence of exercise on food intake is that meals have been 

provided to participants on a  predetermined schedule (Thompson et al, 1988; Kissileff 

et al, 1990; Verger et al, 1994; Imbeault et al, 1997; Westerterp-Plantenga et al, 1997; 

Hubert et al, 1998; George and Morganstein, 2003; Tsofliou et al, 2003; Pomerleau et 

al, 2004; Martins et al, 2007). This type of protocol restricts participants’ eating 

behaviour to discrete intervals and may have influenced amounts eaten in past studies 

as people eat in expectation of appetite rather than eating to their appetite at that 

particular moment in time. An alternative to this protocol is to allow participants 

complete ad libitum access to foods after a bout of exercise so that participants are free 

to determine the timing, frequency, duration and content of meals and this may provide 

a more valid assessment of the effect of exercise on food intake.  

 

The objective of this investigation was two-fold. The first aim was to assess the 

influence of an acute bout of exercise on feeding latency and to explore the potential 

role of acylated ghrelin in determining this. The second aim was to examine the 

influence of an acute bout of exercise on food intake when participants were provided 

with complete free access to food during main trials.  
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8.2 Methods 

8.2.1 Participants 

After gaining Loughborough University Ethical Advisory Committee approval 10 

healthy males (19 – 22 years) gave their written informed consent to participate. Table 

8.1 describes the characteristics of the study participants. 

 

Table 8.1: Characteristics of the study participants 

Characteristic Mean ± SEM 

Age (y) 21.3 ± 0.7 

BMI (kg·m-2) 23.9 ± 0.7 

Body Mass (kg) 78.7 ± 2.7 

Body Fat (%) 14.9 ± 1.0 

2OV  max (mL∙ kg-1 ∙ min-1)  

 

65.1 ± 1.5 

(n = 10) 

8.2.2 Study design 

Before taking part in main trials participants visited the laboratory in order to 

familiarise themselves with the environment and to enable the collection of the 

necessary anthropometric and preliminary exercise test data. After being made aware of 

the protocol, participants were health screened and gave their written informed consent 

to participate. Anthropometric data was then collected after which participants 

completed two preliminary exercise tests: 1) a submaximal-incremental treadmill 

running test, 2) a maximum oxygen uptake ( 2OV  max) treadmill running test. There 

was a 15 to 20 min interval between tests. 

 

8.2.3 Main trials 

In subsequent weeks each participant completed two, eight hour trials (exercise and 

control) in a randomised, counterbalanced fashion with trials being separated by at least 

one-week. To standardise diet and physical activity prior to main trials participants 

completed a weighed food record of all items consumed within the 24 h preceding their 
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first main trial and this feeding pattern was replicated prior to their second main trial. 

Alcohol, caffeine and physical activity were not permitted during this period.  

 

Main trials began in the morning between 08:30 - 09:00. On the morning of trials 

participants arrived at the laboratory having fasted overnight. To minimise physical 

exertion on the morning of trials participants were asked to walk slowly to the 

laboratory if they lived within 0.5 km of the research laboratory. Participants living 

further away arrived by motorised transport. The exercise trial commenced when 

participants were provided with a breakfast snack. This was consumed within five min. 

Participants then rested for the remainder of the first trial hour. In the second trial hour 

participants ran on a treadmill at a speed predicted to elicit 70% of maximum oxygen 

uptake. During the run samples of expired air were collected at 15 min intervals to 

monitor the intensity and adjustments were made to the speed of the treadmill if 

necessary. After completing the run participants rested within the laboratory for a 

further six hours (sitting reading, working at a computer or watching television). Upon 

completion of the run participants were told that an ad libitum lunch was available on 

request and that after lunch food would remain available throughout the remainder of 

the trial. When lunch was voluntarily requested a blood sample was immediately 

collected before participants selected their lunch from the buffet. When participants had 

finished their meal a clock was started and blood samples were collected 30 and 60 min 

after. Within this hour participants were not permitted to eat. After the 60 min sample 

the cannula was removed and participants rested within the laboratory until the end of 

the trial. During this time ad libitum food intake was monitored. To avoid participants 

becoming aware that the purpose of the remainder of the trial was to monitor food 

intake an expired air sample was taken during the final 5 min of the trial and 

participants were told that this was to examine latent changes in metabolism after 

exercise.  

 

Identical procedures were completed during the control trial except participants rested 

within the laboratory for the entire duration. During the second trial hour samples of 

expired air were collected in the semi-supine position in order to estimate resting 

oxygen consumption. This permitted the estimation of net energy expenditure during 

exercise (exercise energy expenditure minus resting energy expenditure). Two hours 

into the trial (synonymous with the end of exercise in the exercise trial) participants 
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were told that an ad libitum lunch was available on request and that food would also 

remain available for the rest of the trial.  

 

8.2.4 Appetite assessment 

During main trials 100 mm visual analogue scales were completed to assess perceptions 

of appetite (hunger, fullness, satisfaction and prospective food consumption). Scales 

were completed at 30 min intervals throughout the first two hours of trials, at the point 

when participants requested lunch and then immediately prior to blood sample 

collections 30 and 60 min after lunch.  

 

8.2.5 Breakfast and ad libitum buffet meals  

Main trials commenced with the consumption of a breakfast snack. The breakfast 

provided was standardised to body weight and consisted of a commercial cereal bar 

(Kellogg’s Nutri-grain®). Participants received 1.06 g per kilogram of body weight 

measured on the first trial visit. Identical amounts were consumed across trials. For a 70 

kg individual this provided 1092 kJ (260 kcal) of energy, 6 g of fat, 4 g of protein and 

48 g of carbohydrate. The breakfast snack was consumed within 5 min on all trials. 

 

During main trials a buffet meal (Appendix G) was made available to the participants 

immediately after the run on the exercise trial and after the respective time point on the 

control trial (see section 3.12 for details on the buffet meal). At this point participants 

were told that a buffet lunch was available upon their request and that the buffet would 

remain available throughout the remainder of each trial. An exception to this was during 

the 60 min immediately after consuming lunch which permitted the collection of blood 

samples taken 30 and 60 min after eating. The buffet was presented in the research 

kitchen and participants were free to select items from the buffet when desired. Food 

consumption was ascertained by weighing the food items before and after each eating 

episode.  

 

8.2.6 Blood sampling 

A cannula was inserted into an antecubital vein while participants lay in a semi-supine 

position approximately 30 min before main trials commenced. To determine plasma 

acylated ghrelin concentrations venous blood samples were collected into pre-chilled 

4.9 mL monovettes at baseline, 0.5, 1, 1.5, 2 h, upon lunch request and at 30 and 60 min 
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after lunch (see section 3.14 for details on acylated ghrelin sample processing). 

Additional 9 mL samples were collected at these time points into pre-chilled EDTA 

monovettes to determine plasma glucose and triacylglycerol concentrations. These 

monovettes were spun at 1,681 g for 10 min in a refrigerated centrifuge at 4oC. The 

plasma supernatant was then aliquoted into 2 mL Eppendorf tubes prior to storage for 

analysis later. All blood samples were collected in the semi-supine position except for 

the 1.5 h collection during the exercise trial where participants straddled the treadmill. 

Patency of the cannula was maintained during trials by flushing with non-heparinised 

saline (0.9% w/v sodium chloride) after sample collection. To avoid dilution of samples 

2 mL of residual saline was discarded prior to each collection.  

 

To estimate changes in plasma volume, at each blood sampling point duplicate 20 µL 

blood samples were collected into micropipettes and triplicate 20 μL samples were 

collected into heparinised microhaematocrit tubes to determine blood haemoglobin and 

haematocrit concentrations. 

 

8.2.7 Biochemical analysis 

An enzyme immunoassay was used to determine plasma concentrations of plasma 

acylated ghrelin with the aid of a plate reader. Plasma glucose and triacylglycerol 

concentrations were determined spectrophotometrically using a bench top analyser. To 

eliminate inter-assay variation samples from each participant were analysed in the same 

run. The within batch coefficients of variation for the assays were as follows: acylated 

ghrelin: 9.9%, glucose: 0.42% and triacylglycerol: 1.63%.  

 

8.2.8 Statistical analysis 

Data were analyzed using the Statistical Package for the Social Sciences (SPSS) 

software version 16.0 for Windows. Area under the concentration verses time curve 

calculations were performed using the trapezoidal method. Repeated measures, two-

factor ANOVA was used to examine differences between the exercise and control trials 

over time for appetite perceptions, energy and macronutrient intake, acylated ghrelin, 

glucose and triacylglycerol. Student’s t-tests were used to assess differences between 

fasting and AUC values for acylated ghrelin, glucose, triacylglycerol, temperature, 

humidity and appetite perceptions between the exercise and control trials. The Pearson 

product moment correlation coefficient was used to examine relationships between 
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variables. For analysis of the energy/macronutrient intake, data was grouped as that 

consumed at the freely requested lunch and then as subsequent intake throughout the 

remainder of each trial. Significant decreases in plasma volume were apparent at 1.5 

and 2 h in the exercise trial therefore plasma acylated ghrelin, glucose and 

triacylglycerol concentrations were corrected accordingly at these points. Statistical 

significance was accepted at the 5% level. Results are presented as mean ± SEM. 
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8.3 Results 

8.3.1 Exercise responses 

Participants completed the 60 min run at 10.6 ± 0.3 km.h-1. This elicited a mean oxygen 

consumption equivalent to 71.8 ± 1.3% of 2OV  max and generated an average heart 

rate and net (exercise minus resting) energy expenditure of 165 ± 3 beats·min-1 and 

4117 ± 117 kJ (984 ± 28 kcal), respectively. A mean non-protein respiratory quotient of 

0.92 ± 0.01 reflected the proportional contributions of carbohydrate and fat (74 ± 2% 

and 26 ± 2%) to energy provision. A median RPE value of 13 indicated that the 

participants perceived the intensity of the run to be ‘fairly hard.’ 

 

8.3.2 Appetite responses 

There were no significant differences in baseline ratings of appetite (hunger, fullness, 

satisfaction and prospective food consumption) between the exercise and control trials 

(Table 8.2). 

 

Table 8.2: Baseline appetite perceptions in the exercise and control trials 
 

 Control Exercise P 

Hunger (0-100) 59 ± 9 52 ± 9 0.198 
Satisfaction (0-100) 24 ± 5 25 ± 6 0.802 

Fullness (0-100) 22 ± 8 25 ± 7 0.793 
PFC (0-100) 66 ± 8 65 ± 7 0.814 

(n = 10). PFC = prospective food consumption 
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Figure 8.1: Ratings of hunger (a), fullness (b), satisfaction (c) and prospective food 
consumption (d) in the exercise (○) and control (●) trials. Values are mean ± SEM (n = 
10). Grey rectangle indicates a breakfast snack, black rectangle indicates exercise. Samples 
after exercise (2 h) represent pre-lunch, 30 and 60 min post-lunch. N.B: samples upon lunch 
request were collected at different times between trials (exercise 3.35 ± 0.22 h, control 2.77 ± 
0.27 h). *Significantly different from control after correcting for multiple comparisons 
using the Bonferroni method. 
 
 
 
For subjective ratings of hunger two-factor ANOVA revealed a significant main effect 

of trial (P = 0.024), time (P = 0.002) and a significant interaction effect (trial x time, P 

=0.001). Post-hoc analysis identified between trial differences at 1.5 and 2 h however 

after correcting for multiple comparisons the only difference to remain was at 2 h. A 

significant main effect of time (P < 0.001 for each) and a significant interaction effect 

(trial x time, P < 0.003 for each) were apparent for ratings of fullness and prospective 

food consumption. Post hoc analysis revealed significant differences between trials at 

1.5 h for ratings of fullness and at 1.5 and 2 h for prospective food consumption (P < 

0.014 for each) however these differences did not remain significant after correcting for 

multiple comparisons using the Bonferroni method. For subjective ratings of 

satisfaction two-factor ANOVA revealed a significant main effects of time (P = 0.001) 

yet no trial (P = 0.663) or interaction effects (P = 0.106) were apparent (Figure 8.1).  
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8.3.3 Energy and macronutrient intake 

There was a significant difference in the timing of the requested lunch between the 

control and exercise trials (P = 0.009). In the exercise trial participants requested to eat 

81 ± 14 min after exercise completion. This was a 35 ± 10 min delay in the spontaneous 

request of lunch  compared with control. Therefore, the lunch request in the exercise 

trial was at 3.35 h (3 h 21 min) and in the control trial at 2.77 h (2 h 46 min).  

 

Two-factor ANOVA revealed a significant main effect of time (P < 0.001), indicating 

that energy intake was significantly higher at the freely requested lunch than that 

consumed over the remainder of trials. No significant trial (P = 0.993) or interaction 

(trial x time, P = 0.138) main effects were found, thus energy intake was not 

significantly different between the exercise and control trials (Table 8.3). 

 

Table 8.3: Energy intake in the exercise and control trials 
 

 Control Exercise 

Requested Lunch 4778 ± 464 5385 ± 537 
(1142 ± 111) (1287 ± 128) 

Subsequent intake 2648 ± 761 2033 ± 540 
(633 ± 182) (486 ± 129) 

Total Trial 7426 ± 1004 7418 ± 905 
(1775 ± 240) (1773 ± 684) 

Values are kJ and (kcal) (n = 10) 
 
 
Two-factor ANOVA was used to examine macronutrient intake (absolute and percent) 

across the buffet meals during the exercise and control trials (Table 8.4). For the 

absolute intake (grams) there were no significant trial or interaction main effects (all P 

> 0.05), indicating that there were no between trial differences in macronutrient 

consumption within the exercise and control trials. A significant main effect of time 

were found for fat, protein and carbohydrate, (all P < 0.003), indicating that more grams 

of these macronutrients were consumed at the freely requested lunch than the 

subsequent intake over the remainder of each trial.  
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For the percentage intake of fat and carbohydrate no significant main effects were 

found (all P > 0.05). For protein, two-factor ANOVA revealed a significant main effect 

of time (P = 0.004) however no trial (P = 0.320) or interaction (P = 0.164) effects were 

found. Thus, the percentage intake of protein was higher at the freely requested lunch 

than over the remainder of each trial. 

 

Table 8.4: Macronutrient intake in the exercise and control trials 
 

Control Trial Fat Carbohydrate Protein 

Requested Lunch 51 ± 6 
(39.8) 

125 ± 15 
(43.7) 

48 ± 5 
(16.5) 

Subsequent intake 28 ± 9 
(39.9) 

79 ± 22 
(49.9) 

16 ± 7 
(10.2) 

Total trial 79 ± 11 
(40.0) 

204 ± 32 
(45.7) 

64 ± 8 
(14.3) 

Exercise Fat Carbohydrate Protein 

Requested Lunch 60 ± 7 
(41.9) 

134 ± 14 
(41.6) 

53 ± 5 
(16.5) 

Subsequent intake 20 ± 6 
(37.0) 

60 ± 16 
(49.2) 

17 ± 6 
(13.8) 

Total Trial 
 

80 ± 11 
(40.4) 

194 ± 26 
(43.6) 

70 ± 9 
(16.0) 

Values are gram and (%) (n = 10) 
 

No significant correlations were found between any of the appetite measurements at the 

point of lunch request with subsequent energy intake at the ad libitum buffet lunch. In 

the exercise trial a positive association was found between energy intake at the ad 

libitum lunch and the percentage change in hunger 30 min after the meal ( r = 0.661, P 

= 0.037). 

 

8.3.4 Acylated ghrelin 

Fasting plasma acylated ghrelin concentrations did not differ (P = 0.755) between the 

exercise and control trials (98 ± 16 verses 102 ± 13 pg∙mL -1). For circulating 

concentrations of acylated ghrelin two-factor ANOVA revealed a significant main 

effect of time (P < 0.001) and main effect of trial approached significance (P = 0.056) 
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(Figure 8.2). Post hoc analysis showed that plasma acylated ghrelin concentrations were 

significantly lower on the exercise trial than the control trial at 1.5 and 2 h (P < 0.05 for 

each) however after correcting for multiple comparisons these difference did not remain 

significant. Analysis of the acylated ghrelin AUC during exercise (1-2 h) demonstrated 

suppressed plasma acylated ghrelin concentrations as compared with control (exercise 

53 ± 18, control 85 ± 8 pg.mL· 1h) (P = 0.014). 

 

Figure 8.2: Plasma concentrations of acylated ghrelin in the control (●) and exercise (○) 
trials. Values are mean ± SEM (n = 10). Grey rectangle indicate a breakfast snack, 
black rectangle indicates exercise. Samples after exercise (2 h) represent pre-lunch, 30 and 
60 min post-lunch. N.B: samples at lunch request were collected at different times between 
trials (exercise 3.35 ± 0.22 h, control 2.77 ± 0.27 h). 
 
 
From baseline concentrations of plasma acylated ghrelin decreased ~25% in both the 

exercise and control trials one hour after consuming the breakfast snack. Thereafter, in 

the control trial circulating acylated ghrelin concentrations steadily increased over the 

next two hours prior to the spontaneous lunch request. At this point acylated ghrelin 

concentrations were 10% higher than fasting values. In the exercise trial plasma 

acylated ghrelin was suppressed during exercise with values approximating 47% of 

fasting at the end of exercise. At the spontaneous meal request acylated ghrelin values 

were 9% higher than those observed during fasting. At the time of the lunch request 

there was no significant difference between trials (P = 0.697) in circulating acylated 

ghrelin concentrations (exercise 106 ± 14, control 111 ± 13 pg.mL-1). In both trials 
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consumption of the ad libitum meal led to a rapid decline in circulating acylated ghrelin 

30 min after the meal and values remained suppressed one hour  after consumption.  

 

8.3.5 Glucose and triacylglycerol 

Figure 8.3 shows the plasma glucose and triacylglycerol responses during the exercise 

and control trials. For plasma glucose two-factor ANOVA revealed a significant main 

effect of trial (P = 0.004) and a main effect of time (P = 0.001) indicating higher 

glucose concentrations on the exercise trial. For plasma triacylglycerol two factor 

ANOVA revealed a significant main effect of time (P < 0.001) however no trial (P = 

0.180) or interaction (trial x time, P = 0.240) main effects were found. 
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Figure 8.3: Plasma glucose (a) and triacylglycerol (b) responses in the exercise (○) and 
control (●) trials. Grey rectangle indicate a breakfast snack, black rectangle indicates 
exercise. Samples after exercise (2 h) represent pre-lunch, 30 and 60 min post-lunch. N.B: 
samples at lunch request were collected at different times between trials (exercise 3.35 ± 0.22 h, 
control 2.77 ± 0.27 h). 
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positively associated with ratings of hunger (r = 0.699, P = 0.025) and prospective food 

consumption (r = 0.588, P = 0.074). During the control trial acylated ghrelin was 

positively associated with hunger (r = 0.785, P = 0.007) and prospective food 

consumption (r = 0.587, P = 0.074) 60 min after the voluntarily requested lunch and 

inversely related at this point with ratings of satisfaction (r = - 0.646, P = 0.043). Thirty 

min after the voluntarily requested lunch acylated ghrelin was inversely related with 

plasma glucose concentrations (r = - 0.680, P = 0.030). Acylated ghrelin and 

triacylglycerol AUC were inversely related during exercise (r = - 0.745, P = 0.013).  

 

In the exercise trial there was a positive association which approached significance 

between acylated ghrelin at the point of voluntary lunch request and subsequent energy 

intake at the buffet lunch (r = 0.558, P = 0.094). No such relationship was found in the 

control trial. In the control trial energy intake was significantly related with the 

percentage change in acylated ghrelin 30 min after lunch (r = 0.853, P = 0.002). In the 

exercise trial the percentage change in acylated ghrelin and the percentage change in 

hunger 30 min after lunch were significantly related (r = 0.774, P= 0.009). Sixty min 

after lunch in the control trial there was a positive relationship between the percentage 

change in acylated ghrelin and the percentage change in hunger (r = 0.669, P = 0.034). 

In the exercise trial there was a positive relationship between percentage changes in 

acylated ghrelin and prospective food consumption 60 min after lunch (r = 0.664, P = 

0.036).  

 

8.3.7 Water intake, temperature and humidity 

Water intake was significantly higher on the exercise trial than the control trial 

(exercise 1627 ± 210, control 1005 ± 202, P = 0.042). There were no significant 

differences in laboratory temperature (exercise 21.2 ± 0.3, control 20.8 ± 0.1 oC, P = 

0.078) or relative humidity (exercise 30.4 ± 2.2, control 31.4 ± 2.8%, P = 0.614) 

between the exercise and control trials.  

 

 

 

 

 



 

 151 

Discussion 

The main findings arising from this investigation are that a high intensity bout of 

treadmill running delayed the decision to eat after exercise. Moreover, when 

participants voluntarily requested a meal after completing exercise, circulating acylated 

ghrelin concentrations were 10% higher than fasting values and this was no different 

from values exhibited on the control trial. This investigation has also shown no 

difference in post-exercise energy or macronutrient intake when participants were given 

complete free access to food. 

 

Previous research has shown the existence of a short delay to the onset of feeding after 

an acute bout of high intensity exercise (King et al, 1994; 1996; King and Blundell, 

1995). King et al (1994) found that participants requested an ad libitum lunch 

approximately five min later after completing a high intensity bout of cycling as 

compared with responses on a control trial. This brief resistance to commence feeding 

after exercise has subsequently been confirmed by the same research group with 

running as an exercise stimulus (King and Blundell, 1995) and in female participants 

(King et al, 1996). The results from the present investigation confirm these findings 

although a greater delay to the onset of feeding was apparent. In the present study 

participants chose to eat approximately 35 min later after exercise as compared with 

control. It is not entirely clear why a greater delay was found in the present study as the 

exercise duration and relative intensity completed were similar to that performed in the 

previous studies. It is possible that the greater absolute intensity of exercise completed 

by the comparatively fitter subjects in this investigation may have been influential due 

to the greater absolute level of stress imposed. 

 

The mechanisms responsible for inducing a delay to feeding after exercise remain 

unknown. Ghrelin is a hormone that stimulates appetite and the initiation of meals 

(Cummings et al, 2001; Wren et al, 2001). Across the day circulating concentrations of 

ghrelin rise prior to meals and decline postprandially, a sequence that relates closely to 

subjective appetite perceptions (Cummings et al, 2004). It is known that high intensity 

exercise suppresses acylated ghrelin and appetite (Broom et al, 2007; 2009; Marzullo et 

al, 2008) therefore it was thought that circulating concentrations of acylated ghrelin 

may be important in determining the latency to feeding after an acute bout of exercise. 

In this study exercise suppressed acylated ghrelin to approximately 50% of fasting 
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levels yet at the point of spontaneous meal request values had returned to those 

exhibited in the control trial. At this point circulating acylated ghrelin concentrations 

were approximately 10% higher than fasting values within both the control and exercise 

trials. These findings provide preliminary evidence indicating a possible role of 

acylated ghrelin in mediating the spontaneous decision to eat after exercise. This idea is 

supported by research which has shown increases in circulating ghrelin prior to both 

scheduled (Cummings et al, 2001) and freely requested meals (Cummings et al, 2004; 

Blom et al, 2009). Specifically, Blom et al (2009) reported mean circulating ghrelin 

values 5% higher than fasting immediately prior to a voluntarily requested meal and 

this outcome is consistent with the values reported here.  

 

A limitation of this study is that singular assessment of acylated ghrelin before lunch 

constrains the ability to determine whether changes in acylated ghrelin were directly 

influential in determining the decision to request lunch after exercise. A greater 

sampling frequency in the time after exercise until the voluntary requested meal would 

have been needed to examine this more closely. Nonetheless, the present findings can 

be judged in reference to fasting acylated ghrelin concentrations and those reported at 

the voluntary requested meal on the control trial. Specifically, a threshold level in 

relation to fasting has been proposed as important in determining the decision to initiate 

feeding rather than a preprandial rise in ghrelin levels per se (Cummings et al, 2004; 

Blom et al, 2009). Moreover, when participants voluntarily requested lunch acylated 

ghrelin values were very similar between the exercise and control trials despite 

dissimilar sampling times. Collectively, these findings offer preliminary evidence 

suggesting that changes in acylated ghrelin may influence the decision to eat after 

performing exercise. 

 

A second aim of this investigation was to examine the influence of exercise on energy 

and macronutrient intake. The majority of previous research which has assessed the 

influence of exercise on food intake has provided meals to participants on a 

predetermined schedule (Thompson et al, 1988; Kissileff et al, 1990; Verger et al, 1994; 

Imbeault et al, 1997; Westerterp-Plantenga et al, 1997; Hubert et al, 1998; George and 

Morganstein, 2003; Tsofliou et al, 2003; Pomerleau et al, 2004; Martins et al, 2007). 

This protocol places a restriction on participants’ eating behaviour and it is possible that 

this may have influenced the research findings in past studies. The present investigation 
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sought to examine the influence of exercise on food intake when participants are given 

complete free access to food for an extended period of time after exercise. In this 

situation participants are able to consume food whenever desired without a time limit 

on each eating episode or a restriction on the number of eating episodes across trials. 

Despite the difference in protocol the results from this investigation support those of 

previous studies which have shown no change in energy or macronutrient intake in 

response to an acute bout of exercise (Blundell and King, 2000; Martins et al, 2008). At 

the voluntarily requested meal participants consumed 611 kJ (146 kcal) more on the 

exercise trial than the control trial however during the remainder of trials participants 

compensated for this and the total trial energy intake was within 6 kJ (1.4 kcal) on the 

exercise and control trials. Furthermore, no difference in the percentage of energy 

derived from the macronutrients was found. These outcomes therefore confirm the 

findings from previous studies which have shown no difference in energy/macronutrient 

intake after single bouts of exercise.  

 

In this investigation a number of significant associations were found. Of particular 

interest, in the control trial energy intake at the voluntarily requested lunch was 

significantly related to the percentage change in acylated ghrelin 30 minutes after the 

meal. This finding confirms previous data which has shown associations between the 

energy content of meals and postprandial changes in circulating ghrelin (Callahan et al, 

2004; Le Roux et al, 2005; Leidy and Williams, 2006). Moreover, in the exercise trial a 

positive association between premeal acylated ghrelin values and subsequent ad libitum 

energy intake approached significance. These outcomes supports the role of acylated 

ghrelin as a regulator of acute energy homeostasis.  

 

This study has two notable limitations. Firstly, the participants were young healthy 

males therefore these findings may not generalise to other populations including 

females, overweight individuals and older adults. Secondly, singular assessment of 

acylated ghrelin immediately prior to the voluntarily requested lunch limits the ability 

to precisely determine the exact importance of acylated ghrelin in regards to post-

exercise feeding latency. Further work is needed with more frequent blood sampling in 

order to shed more light on this issue. 
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In conclusion, this investigation has shown that a high intensity bout of running induces 

a resistance to commence eating after exercise and provides preliminary evidence 

suggesting a role of acylated ghrelin in determining this feeding latency. Findings have 

also confirmed that a high intensity bout of exercise does not affect energy intake in the 

hours after even when participants are provided with complete ad libitum access to 

food. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 155 

Chapter IX 
 

Differential acylated ghrelin, peptide YY3-36, appetite and food intake responses to 
equivalent energy deficits induced by exercise and food restriction 

 

9.1 Introduction 

The findings reported in studies four and five within this thesis (Chapters seven and 

eight) suggest that acylated ghrelin, appetite and energy intake are not stimulated by 

acute energy deficits induced through exercise. This lack of response is exhibited even 

when the deficits in energy are severe and when participants are permitted to feed ad 

libitum across trial days. Contrary to this, missing a meal or consuming a meal of 

reduced energy content leads to an increase in hunger and subsequent energy intake at 

the next eating opportunity (Lawton et al, 1993; Green et al, 1994; Hubert et al, 1998). 

Thus, it appears that two methods of inducing a short-term energy deficit have 

markedly different effects on appetite and food intake i.e. a different response is elicited 

when there is a restriction on energy entering the body (mouth and gastrointestinal 

tract) as compared with the situation where there is an increase in energy leaving the 

body (through muscular work). The associated mechanisms mediating these disparate 

appetite and food intake responses have not been fully determined yet it is possible that 

circulating gut hormones may be implicated (Borer et al, 2005). 

 

The studies reported within this thesis have included measurements of plasma acylated 

ghrelin. Besides the transient suppression that occurs during exercise, these studies have 

shown that acylated ghrelin is not influenced by exercise in the hours after. Conversely, 

it has been shown that ghrelin is sensitive to acute perturbations in energy intake 

resulting from dietary manipulation (Callahan et al, 2004; Leidy and Williams, 2006). It 

is therefore possible that disparate acylated ghrelin responses may contribute to the 

paradoxical differences in the reaction of appetite and food intake to energy deficits 

induced through diet as compared with exercise. A direct comparison of acylated 

ghrelin responses to equivalent energy deficits induced by diet and exercise would be 

needed to test this hypothesis. 

 

Many gut peptides are implicated in the acute regulation of energy homeostasis 

(Murphy and Bloom, 2006). At present, ghrelin is the only known circulating gut 

peptide which stimulates appetite and food intake. Conversely, several circulating gut 
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peptides exist which suppress appetite and food intake. Peptide YY is an appetite 

inhibiting peptide with a defined role in the acute regulation of energy homeostasis 

(Neary and Batterham, 2009b). Circulating concentrations of PYY increase in direct 

proportion to ingested nutrients and heightened levels inhibit appetite and feeding 

(Batterham et al, 2002; 2003). Peptide YY is therefore an important mediator of within 

meal satiation, and perhaps even more so, intermeal satiety. Two forms of PYY exist 

within the circulation, namely PYY1-36 and PYY3-36. The latter is a truncated 34 amino 

acid peptide produced by cleavage of the N-terminal tyrosine and proline amino acid 

residues from PYY1-36 and is the major circulating form (Batterham et al, 2006).  

 

The influence of exercise on PYY has been examined in a handful of studies with data 

suggesting that single bouts of aerobic exercise stimulate an increase in circulating PYY 

(Martins et al, 2007; Broom et al, 2009; Ueda et al, 2009). Unfortunately in these 

investigations measurements of circulating total PYY were made, that is the assays used 

have not been able to distinguish PYY1-36 and PYY3-36. The inhibitory effect of PYY on 

appetite and food intake is thought to be specific to PYY3-36 therefore measurements 

taken in previous studies may have suffered from a lack of sensitivity. To date, only one 

study has examined the PYY3-36 response to exercise with findings suggesting that 

PYY3-36 does not respond to exercise per se, yet exercise may potentiate the PYY3-36 

response to feeding (Cheng et al, 2009). Further work is required to confirm and extend 

these preliminary findings. 

 

The present study had two primary objectives. The first aim was to compare gut 

hormone (acylated ghrelin and PYY3-36), appetite and energy intake responses to 

equivalent energy deficits induced through acute dietary restriction as compared with 

exercise. The second aim was to examine PYY3-36 responses to exercise and feeding in 

order to extend knowledge regarding how exercise influences circulating levels of 

PYY3-36.  
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9.2 Methods 

9.2.1 Participants 

After gaining Loughborough University Ethical Advisory Committee approval 12 

healthy male volunteers (20 – 30 y) gave their written informed consent to participate. 

Table 1 describes the characteristics of the study participants. 

 
Table 9.1: Characteristics of the study participants 
 

Characteristic Mean ± SEM 

Age (y) 23.4 ± 1.0 

BMI (kg·m-2) 22.8 ± 0.4 

Body Mass (kg) 71.6 ± 1.7 

Body Fat (%) 15.4 ± 0.7 

2OV max (mL∙ kg-1 ∙ min-1)  
 

57.3 ± 1.2 

 (n = 12)  
 
 
9.2.2 Study design 

Before taking part in main trials participants visited the laboratory twice in order to 

familiarise themselves with the environment and to enable the collection of the 

necessary anthropometric and preliminary exercise test data. On their first laboratory 

visit participants were made aware of the protocol before giving their written informed 

consent to participate. After this, participants were health screened and anthropometric 

measurements were taken. Participants then completed two preliminary exercise tests: 

1) a submaximal-incremental treadmill running test, 2) a maximum oxygen uptake 

( 2OV  max) treadmill running test. There was a 15 to 20 min interval between tests. 

 

On the second laboratory visit participants ran on treadmill for 90 min at a speed 

predicted to elicit 70% of their maximum oxygen uptake. During the run expired air 

samples were collected at 15 min intervals to determine energy expenditure and 

substrate oxidation. This session served two purposes. Firstly, it confirmed participants 

could complete the 90 min run which would later be undertaken during main trials. 

Secondly, it permitted an accurate estimation of energy expenditure from the run which 
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was necessary in order to calculate the amount of food to be provided at the test meals 

during main trials (section 9.2.5). 

 

9.2.3 Main trials 

In subsequent weeks participants completed three main trials in a randomised-

counterbalanced fashion with each trial being separated by at least one-week: 

 

1. control trial – participants rested throughout the trial and were provided with 

sufficient food across the day to meet their estimated individual energy 

requirements. 

2. exercise-induced energy deficit (Ex-Def) – at the start of the trial participants 

completed a 90 min run (at 70% of 2OV  max). Throughout the remainder of the 

trial sufficient food was provided across the day to meet participants’ daily 

energy requirements (same amount as provided in the control trial). 

3. food-restriction induced energy deficit (Food-Def) – participants remained 

sedentary during the trial but were provided with a restricted amount of food 

across the day in order to evoke an energy deficit through dietary means 

equivalent to the deficit invoked through exercise in the Ex-Def trial.  

 

Each main trial began at 08:00 and lasted nine hours. To standardise diet and physical 

activity before main trials participants completed a weighed food record of all items 

consumed within the 24 h preceding their first main trial and this feeding pattern was 

replicated prior to subsequent trials. Alcohol, caffeine and structured physical activity 

were not permitted during this period. To minimise physical exertion on the morning of 

main trials participants were asked to walk slowly to the research laboratory if they 

lived within 0.5 km. Participants living further away arrived by motorised transport. 

Participants arrived at the laboratory in the fasted state having consumed only water 

since 23:00 on the prior evening. 

 

Figure 9.1 provides a schematic representation of the main trial protocol. On the control 

trial participants rested for the entire duration (sitting reading, writing, working at a 

computer). At two points (2 and 4.75 h) participants were provided with test meals 

which were of sufficient energy content for each participant’s individually estimated 
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energy requirements. At 8 h a buffet meal was offered to participants from which they 

were free to consume food ad libitum. 

 

The Ex-Def trial commenced when participants began a 90 min run on a level treadmill. 

The speed of the treadmill was identical to that completed during preliminary testing 

and was set to elicit 70% of maximum oxygen uptake. Expired air samples were 

collected at 15 min intervals throughout the run to monitor the intensity and 

adjustments were made to the speed of the treadmill if necessary. After the run 

participants rested within the laboratory for 7.5 h. At 2 h and 4.75 h participants 

consumed test meals which were identical to those provided in the control trial i.e. were 

of sufficient energy content for each participant’s individual energy needs. At 8 h a 

buffet meal was offered to participants from which they were free to consume food ad 

libitum 

 

On the Food-Def trial participants remained sedentary throughout. Test meals were 

provided at 2 h and 4.75 h however the amount provided was restricted so that an 

energy deficit was induced relative to control. The energy deficit was identical to that 

elicited by exercise in the Ex-Def trial. This permitted a comparison of responses to 

identical energy deficits induced through diet as compared with exercise. At 8 h a buffet 

meal was offered to participants from which they were free to consume food ad libitum. 
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Figure 9.1: Schematic representation of the main trial protocol 
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9.2.4 Appetite assessment 

During main trials 100 mm visual analogue scales were completed to assess perceptions 

of appetite (hunger, fullness, satisfaction and prospective food consumption). Scales 

were completed at baseline and then at 30 min intervals throughout. 

 

9.2.5 Test meals 

During main trials test meals were provided to participants at 2 and 4.75 h. Each meal 

was consumed within 15 min. The test meals consisted of a tuna and mayonnaise 

sandwich, salted crisps, chocolate muffin and green apple. The macronutrient content of 

the meal was balanced (fat 34%, protein 18%, carbohydrate 48%) and remained 

consistent at all test meals across main trials. 

 

The energy content of the test meals were identical in the control and Ex-Def trials and 

was calculated to be sufficient to meet each participant’s individual energy 

requirements. To calculate the amount to be provided for each participant resting daily 

energy requirements were estimated using validated predictive equations (Mifflin et al, 

1990). This amount was then multiplied by a physical activity level of 1.4 (an amount 

deemed sufficient to meet the energy needs of individuals across a resting day). 

Participants received 70% of this amount divided equally across two identical test 

meals. The rationale for providing this amount was based on pilot work which showed 

that provision of this amount during a resting day was sufficient to induce a comfortable 

level of satiation. 

 

In the Food-Def trial participants received a restricted amount of food at the test meals. 

The amount provided was calculated by deducting the net estimated energy expenditure 

of exercise from the energy provided at the meals in the control and Ex-Def trials. The 

total amount deducted was divided equally across the two test meals. Consequently, as 

compared with control, after the second test meal in the Food-Def trial participants were 

in an identical state of energy deficit in the Ex-Def and Food-Def trials, the only 

difference being the cause of the deficit (exercise verses food restriction). 
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9.2.6 Ad libitum buffet meals 

Eight hours into main trials participants were given access to a buffet meal from which 

they were free to consume food ad libitum. The buffet meal was identical to that 

described in the previous studies in this thesis (Appendix G). Participants were given 30 

min to select and consume food items from the buffet. At each meal food was presented 

in excess of expected consumption. Participants were told to eat until satisfied and that 

additional food was available if desired. Meals were consumed in isolation so that 

social influence did not affect food selection. Food consumption was ascertained by 

examining the weighted difference in food items remaining compared to that initially 

presented. The energy and macronutrient content of the items consumed was 

ascertained using manufacturer values.  

 

9.2.7 Blood sampling 

During main trials venous blood samples were collected via a cannula inserted into an 

antecubital vein. The baseline sample on the Ex-Def trial was an exception to this 

whereby blood samples were taken via venepuncture of an antecubital vein. In the Ex-

Def trial a cannula was inserted after the completion of exercise. 

 

Blood samples were collected into 4.9 mL EDTA monovettes at baseline, 2, 3, 4.75, 6, 

7, 8 and 9 h to measure circulating concentrations of acylated ghrelin (see section 3.14 

for details on acylated ghrelin sample processing) and into 9 mL EDTA monovettes to 

measure circulating glucose and triacylglycerol concentrations. Additional 2 mL 

samples were also collected at these times to measure circulating concentrations of 

PYY3-36. To maintain the integrity of the PYY3-36 samples, blood was collected into pre-

chilled syringes containing dipeptidyl-peptidase-4 inhibitor (10 µL.mL-1). After mixing 

by gentle inversion samples were then dispensed into pre-chilled EDTA tubes 

containing aprotinin at a final concentration of 500 KIU.mL-1. These samples were spun 

at 1681g for 10 min in a refrigerated centrifuge at 4 oC. The plasma supernatant was 

then aliquoted into 2 mL Eppendorf tubes prior to storage at -80 oC.  

 

All blood samples were collected in the semi-supine position. For samples collected 

using a cannula patency was maintained by flushing with non-heparinised saline (0.9 % 

w/v sodium chloride). To avoid subsequent sample dilution residual saline was 

discarded using a 2 mL syringe before sample collection. To estimate changes in 
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plasma volume, at each blood sampling point duplicate 20 µL blood samples were 

collected into micropipettes and triplicate 20 μL blood samples were collected into 

heparinised microhaematocrit tubes to determine blood haemoglobin and haematocrit 

concentrations, respectively. 

 

9.2.8 Biochemical analysis 

An enzyme immunoassay was used to determine plasma concentrations of acylated 

ghrelin. Plasma concentrations of PYY3-36 were determined using a radio-immunoassay 

kit. Plasma glucose and triacylglycerol concentrations were determined 

spectrophotometrically using an automated bench top analyzer. To eliminate inter-assay 

variation, samples from each participant were analyzed in the same run. The within 

batch coefficients of variation for the assays were as follows: acylated ghrelin 7.8%, 

PYY3-36 8.7%, glucose 0.59%, triacylglycerol 2.7%.  

 

9.2.9 Statistical analysis 

Data was analyzed using the Statistical Package for the Social Sciences (SPSS) 

software version 16.0 for Windows. All area under the concentration verses time curve 

calculations were performed using the trapezoidal method. One-way repeated measures 

ANOVA was used to assess differences between trials in fasting and AUC values for 

acylated ghrelin, PYY3-36, glucose, triacylglycerol, appetite perceptions and buffet meal 

energy and macronutrient intake. Repeated measures, two-factor ANOVA was used to 

examine differences between trials over time for appetite perceptions, acylated ghrelin, 

PYY3-36, glucose and triacylglycerol. Where significant main effects were found post-

hoc analysis was performed using the Bonferroni correction for multiple comparisons. 

The Pearson product moment correlation coefficient was used to examine relationships 

between variables. Correction of values for changes in plasma volume did not alter the 

statistical significance of findings therefore for simplicity the unadjusted values are 

presented. Statistical significance was accepted at the 5% level. Results are presented as 

mean ± SEM. 
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9.3 Results 

9.3.1 Exercise responses 

Participants completed the 90 min run at 9.6 ± 0.2 km·h-1. This elicited a mean oxygen 

consumption equivalent to 69.8 ± 0.9% of maximum oxygen uptake and generated a 

mean heart rate and net (exercise minus resting) energy expenditure of 173 ± 3 

beats·min-1 and 4715 ± 113 kJ (1127 ± 27 kcal), respectively. A mean non-protein 

respiratory quotient of 0.92 ± 0.01 reflected the proportional contributions of 

carbohydrate and fat (72 ± 3% and 28 ± 3%) to energy provision. A mean RPE value of 

14 ± 1 indicated that the participants perceived the intensity of the run to be ‘somewhat 

hard.’ The mean difference between estimated energy expenditure during the 

familiarisation session and the run in the Ex-Def main trial was 46 kJ (11 kcal).  

 

9.3.2 Appetite responses 

Fasting appetite ratings (hunger, fullness, satisfaction and prospective food 

consumption) did not differ significantly between the control, Ex-Def and Food-Def 

trials (Table 9.2). 

 

Table 9.2: Baseline appetite perceptions in the control, Ex-Def and Food-Def trials 

 Control Ex-Def Food-Def P 

Hunger 
(0-100) 61 ± 6 59 ± 5 52 ± 6 0.490 

Satisfaction 
(0-100) 31 ± 6 27 ± 4 29 ± 6 0.796 

Fullness 
(0-100) 26 ± 7 22 ± 4 25 ± 6 0.769 

PFC 
(0-100) 64 ± 5 66 ± 4 58 ± 4 0.351 

Values are mean ± SEM (n = 12). PFC = prospective food consumption 

 

For each appetite perception examined (hunger, fullness, satisfaction and prospective 

food consumption) two-factor ANOVA revealed significant trial, time and interaction 

(trial x time) main effects (all P <0.001) indicating that appetite responses differed over 

time between the main experimental trials (Figure 9.2). For each appetite marker 
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examined, post hoc analysis revealed trial differences between the Food-Def and 

control trial (P <0.001) and the Food-Def and Ex-Def trial (P <0.001) demonstrating 

significantly higher ratings of hunger and prospective food consumption and 

significantly reduced ratings of satisfaction and fullness in the Food-Def trial. At 

individual time points post-hoc analysis identified differences between the Food-Def 

and control trial (all P < 0.004) and the Food-Def and Ex-Def trial (all P < 0.006) at 

2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5 and 8 h. 
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Figure 9.2: Ratings of hunger (a), fullness (b), satisfaction (c) and prospective food 
consumption (d) in the control (●), Ex -Def (○) and Food -Def (▼) trials. Values are mean ± 
SEM (n = 12). Black rectangle indicates exercise, diagonal rectangles indicate test 
meals, hatched rectangle represents the buffet meal. aFood-Def different from control P 
< 0.05; bFood-Def different from Ex-Def P < 0.05. 
 
 
Appetite data were also examined by calculating the AUC for the total trial (0 – 9 h), 

preprandially (0 – 2 h), between the test-meals (2.5 – 4.5 h) and after the test meals (4.5 

– 9 h) (Table 9.3). This analysis revealed significant differences in ratings of appetite 

between the Food-Def and control trials and between the Food-Def and Ex-Def trials 

(all P < 0.001) for the total trial, inter test-meals, post-test meals but not preprandially. 
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Table 9.3: Appetite area under the curve in the control, Ex-Def and Food-Def trials 

 

 Preprandial 
(0-2 h) 

Inter-test 
meal 

(2.5-4.5 h) 

Post-test 
meals 

(4.5-9 h) 

Total trial 
(0-9 h) 

 units 2 h units 2 h units 4.5 h units 9 h 
Hunger     

Control 131 ± 12 76 ± 12 110 ± 20 317 ± 40 
Ex-Def 115 ± 12 84 ± 12 112 ± 18 312 ± 33 

Food-Def 135 ± 6 156 ± 7 a,b 262 ± 17 a,b 553 ± 25 a,b 
Satisfaction             

Control 53 ± 12 167 ± 11 326 ± 22 546 ± 39 
Ex-Def 48 ± 8 143 ± 11 321 ± 21 512 ± 31 

Food-Def 39 ± 7 72 ± 9 a,b 158 ± 19 a,b 269 ± 32 a,b 
Fullness  ±           

Control 48 ± 12 162 ± 12 319 ± 24 529 ± 43 
Ex-Def 41 ± 7 145 ± 10 324 ± 19 509 ± 26 

Food-Def 36 ± 8 66 ± 10 a,b 146 ± 18 a,b 248 ± 34 a,b 
PFC             

Control 138 ± 10 82 ± 13 121 ± 22 342 ± 40 
Ex-Def 116 ± 12 88 ± 12 120 ± 20 324 ± 31 

Food-Def 136 ± 6 166 ± 5 a,b 276 ± 16 a,b 579 ± 22 a,b 
Values are mean ± SEM (n = 12) 
adifferent from control ( P < 0.001) 
bdifferent from Ex-Def ( P < 0.001) 
 
 
9.3.3 Energy and macronutrient intake 

At the test meals (combined intake of the 1st and 2nd meal) participants consumed 7021 

± 92 kJ (1678 ± 22 kcal) in the control and Ex-Def trials and 2200 ± 142 kJ (526 ± 34 

kcal) in the Food-Def trial. Consequently, the energy deficit induced by restricting food 

intake in the Food-Def trial was 4820 ± 151 kJ (1152 ± 36 kcal). This was comparable 

with the energy deficit induced through exercise in the Ex-Def trial where the net 

expenditure was 4715 ± 113 kJ (1127 ± 27 kcal).  

 

Table 9.4 displays the energy and macronutrient intake data at the ad libitum buffet 

meal. For energy intake one-factor ANOVA revealed a significant main effect of trial 

(P < 0.002). Post hoc analysis showed that energy intake was significantly higher on the 

Food-Def trial than the control trial (P < 0.001) whilst energy intake tended to be higher 

on the Food-Def trial than the Ex-Def trial (P = 0.058). 
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Table 9.4: Ad libitum energy and macronutrient intake in the control, Ex-Def and Food-
Def trials 
 

 Control Ex-Def Food-Def 

Energy 
kJ & (kcal) 

4004 ± 427 4343 ± 653 6167 ± 318a 
(957 ± 102) (1038 ± 156) (1474 ± 76)a 

Fat 
grams & (%) 

34 ± 5 38 ± 5 63 ± 5a,b 
(30.7 ± 3.3) (33.4 ± 2.0) (38.3 ± 1.7)a,b 

Protein 
grams & (%) 

40 ± 10 47 ± 15 67 ± 9a 
(14.7 ± 2.1) (15.0 ± 2.5) (17.9 ± 1.8) 

Carbohydrate 
grams & (%) 

124 ± 12 129 ± 17 159 ± 10a 
(54.6 ± 4.4) (51.6 ± 3.1) (43.8 ± 2.5)a,b 

Values are mean ± SEM (n = 12) 
adifferent from control (P < 0.05) 
bFood-Def  different from Ex-Def (P < 0.05) 
 

Both the absolute amount (grams) and percentage of energy derived from the 

macronutrients was compared across main trials. One-factor ANOVA showed a 

significant difference (P < 0.001) in the absolute amount of fat consumed with a 

significantly higher intake apparent in the Food-Def trial than the control and Ex-Def 

trials. Moreover, the percentage of energy derived from fat was significantly higher on 

the Food-Def trial than the control and Ex-Def trials. For protein intake, one-factor 

ANOVA revealed a significant difference in the absolute intake between trials (P = 

0.016) with intakes being significantly higher on the Food-Def trial than the control 

trial. There was no significant difference in the percentage of energy derived from 

protein. For absolute carbohydrate intake, one-factor ANOVA revealed a significant 

main effect of trial (P = 0.045) with higher intakes apparent in the Food-Def trial than 

the control trial. Additionally, one-factor ANOVA revealed a significant difference 

between trials in the percentage of energy derived from carbohydrate (P = 0.006), with 

the percentage intake being significantly lower on the Food-Def trial than both the 

control and Ex-Def trials.  

 

9.3.4 Acylated ghrelin 

Figure 9.3 (top section) shows circulating acylated ghrelin responses during the main 

trials. Fasting plasma acylated ghrelin concentrations did not differ (P = 0.226) between 
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the control (162 ± 37 pg·mL-1), Ex-Def (162 ± 35 pg·mL-1) and Food-Def (175 ± 37 

pg·mL-1) trials. Two-factor ANOVA revealed significant trial, time and interaction (trial 

x time) main effects (all P < 0.001) indicating that acylated ghrelin responses differed 

over time between trials. Across trials, post-hoc analysis identified significantly higher 

circulating acylated ghrelin concentrations in the Food-Def trial as compared with the 

control (P = 0.002) and Ex-Def (P < 0.001) trials. At individual time points post hoc 

analysis identified significant differences between trials at 2, 4.75, 6, 7 and 8 h (all P < 

0.05). 

 

Between trial differences in acylated ghrelin were also evaluated using AUC (Table 9.5 

upper panel). Preprandially (0 – 2 h), acylated ghrelin was significantly lower in the Ex-

Def trial than the control (P = 0.015) and Food-Def (P < 0.001) trials, indicating a 

suppressive effect of exercise. Postprandially (2 – 9 h), the acylated ghrelin AUC was 

significantly higher in the Food-Def trial than the control (P = 0.003) and Ex-Def ( P < 

0.001) trials.  
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Figure 9.3: Plasma concentrations of acylated ghrelin (top) and PYY3-36 (bottom) in the 
control (●), Ex-Def (○) and Food -Def (▼) trials. Values are mean ± SEM  (n = 12). Black 
rectangle indicates exercise, diagonal rectangles indicate test meals, hatched rectangle 
represents the buffet meal. aFood-Def different from Control P < 0.05; bEx-Def 
different from Control P < 0.05; cFood-Def different from Ex-Def P < 0.05.  
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Table 9.5: Acylated ghrelin and PYY3-36 AUC in the control, Ex-Def and Food-Def 
trials 
 

 Preprandial 
(0-2 h) 

Postprandial 
(2-9 h) 

Total trial 
(0-9 h) 

 units 2 h units 7 h units 9 h 
Acylated ghrelin    

Control 327 ± 70 729 ± 209 1055 ± 276 
Ex-Def 284 ± 65a 677 ± 190 961 ± 254a 

Food-Def 331 ± 69b 1040 ± 195a,b 1371 ± 262b 
PYY3-36          
Control 73 ± 6 318 ± 17 391 ± 22 
Ex-Def 84 ± 7a 354 ± 25 438 ± 31a 

Food-Def 73 ± 6b 237 ± 28a,b 310 ± 34a,b 
Values are mean ± SEM (n = 12) 
aDifferent from control P < 0.05; bdifferent from Ex-Def P < 0.05 
 
 
9.3.5 Peptide YY 3-36 

Figure 9.3 (bottom section) shows circulating PYY3-36 responses during the main trials. 

Fasting plasma PYY3-36 concentrations did not differ (P = 0.908) between the control 

(36 ± 3 pmol.L-1), Ex-Def (36 ± 3 pmol.L-1) and Food-Def (37 ± 3 pmol.L-1) trials. 

Two-factor ANOVA revealed significant trial, time and interaction (trial x time) main 

effects (all P ≤ 0.001) indicating that PYY3-36 responses differed over time between 

trials. Across trials, post-hoc analysis identified significantly lower circulating PYY3-36 

concentrations in the Food-Def trial as compared with the control trial (P = 0.004) and 

Ex-Def (P < 0.001) trials. At individual time points post hoc analysis identified 

significant differences between trials at 2, 4.75, 6, 7 and 8 h (all P < 0.05). 

 

Preprandially, the PYY3-36 AUC was significantly greater on the Ex-Def trial as 

compared with the control (P = 0.029) and Food-Def (P = 0.028) trials highlighting a 

stimulatory effect of exercise. Postprandially (2 – 9 h), the PYY3-36 AUC was lower on 

the Food-Def trial than the control (P = 0.001) and Ex-Def (P < 0.001) trials. 

 

9.3.6 Glucose and triacylglycerol 

Figure 9.4 shows plasma glucose and triacylglycerol responses during the main trials. 

Fasting plasma glucose concentrations did not differ (P = 0.221) between the control 

(4.96 ± 0.10 mmol.L-1), Ex-Def (5.05 ± 0.08 mmol.L-1) and Food-Def (4.87 ± 0.09 

mmol.L-1) trials. For plasma glucose two-factor ANOVA revealed significant time (P = 
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0.003) and interaction (trial x time, P = 0.011) main effects, indicating differences in 

responses over time during the main trials. Post hoc analysis identified significantly 

higher plasma glucose concentrations in the Ex-Def trial than the Food-Def trial at 7 h 

(P = 0.022). 

 

Fasting plasma triacylglycerol concentrations did not differ (P = 0.264) between the 

control (1.14 ± 0.14 mmol.L-1), Ex-Def (1.15 ± 0.14 mmol.L-1) and Food-Def (0.96 ± 

0.10 mmol.L-1) trials. For plasma triacylglycerol, two-factor ANOVA revealed 

significant trial (P < 0.001), time (P < 0.001) and interaction (trial x time, P < 0.001) 

main effects. Across trials, post hoc analysis identified significantly lower circulating 

triacylglycerol levels in the Food-Def trial than both the control (P = 0.002) and Ex-Def 

trials (P = 0.001). At individual time points post hoc analysis identified significant 

differences between trials at 4.75, 6, 7 and 8 h (all P < 0.05). The triacylglycerol AUC 

was significantly lower on the Food-Def trial (7.3 ± 0.7 units· 7 h) than the control (10.2 

± 0.8 units· 7 h, P = 0.003) and Ex-Def trials (10.5 ± 1.2 units· 7 h, P = 0.001) after the 

completion of exercise (2 – 9 h) but no differences occurred before (0 – 2 h): Control 

2.1 ± 0.2, Ex-Def 2.2 ± 0.3, Food-Def 1.8 ± 0.2 units· 2 h, P = 0.191) .  
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Figure 9.4: Plasma concentrations of triacylglycerol (top) and glucose (bottom) in the 
control (●), Ex-Def (○) and Food -Def (▼) trials. Values are mean ± SEM  (n = 12). Black 
rectangle indicates exercise, diagonal rectangles indicate test meals, hatched rectangle 
represents the buffet meal. aFood-Def different from Control P < 0.05; bEx-Def 
different from Control P < 0.05; cFood-Def different from Ex-Def P < 0.05.  
 

9.3.7 Acylated ghrelin and peptide YY3-36 correlations 

Circulating acylated ghrelin and PYY3-36 concentrations were not significantly 

correlated with subjective appetite ratings (hunger, fullness, satisfaction or prospective 

food consumption) or with circulating glucose or triacylglycerol levels. There were no 

significant correlations between acylated ghrelin values immediately before buffet 
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meals and ad libitum energy intake. Peptide YY3-36 concentrations immediately before 

meals were inversely related to energy intake in the control (P = 0.319, r = - 0.315) and 

Food-Def (P = 0.530, r = - 0.201) trials however this was only statistically significant in 

the Ex-Def trial (P = 0.046, r = - 0.584). 

 

9.3.8 Water intake, temperature and humidity 

Water intake was significantly higher in the Ex-Def trial than in both the control and 

Food-Def trials: Control 802 ± 145, Ex-Def 1804 ± 181, Food-Def 1007 ± 129 mL, 

one-factor ANOVA P < 0.001). The mean temperature of the laboratory was not 

significantly different (P = 0.967) between the experimental trials (control 22.4 ± 0.2, 

Ex-Def 22.5 ± 0.2, Food-Def 22.5 ± 0.1 oC). There were no differences (P = 0.870) 

between trials in the mean relative humidity within the laboratory (control 36.2 ± 5.1, 

Ex-Def 37.8 ± 4.1, Food-Def 38.3 ± 3.9 %).  
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9.4 Discussion 

This study was designed to compare acylated ghrelin, PYY3-36, appetite and energy 

intake responses to equivalent energy deficits induced through acute dietary restriction 

as compared with exercise. Two key findings have emerged from this work. Firstly, 

appetite and energy intake increase in response to an acute deficit in energy induced by 

food restriction but remain unchanged in response to an identical energy deficit induced 

by exercise. Secondly, acylated ghrelin and PYY3-36 responses to these interventions are 

consistent with the reported effects of food restriction and exercise on appetite and 

energy intake. These findings suggest a role for acylated ghrelin and PYY3-36 in 

mediating the divergent effects of food restriction and exercise on appetite and energy 

intake. 

 

This study has shown that appetite and energy intake increase in a compensatory 

fashion to acute deficits in energy induced by restricting food intake i.e. the intake of 

smaller meals with reduced energy content. Conversely, when an equivalent energy 

deficit is induced through exercise, appetite and energy intake do not change. It is 

therefore apparent that two methods of inducing an acute energy deficit have markedly 

different influences on appetite and subsequent energy intake. These findings confirm 

those reported in study four (Chapter seven) and other previously established work 

which has shown that exercise does not stimulate appetite and energy intake, even when 

levels of energy expenditure are large (King et al, 1994; King and Blundell, 1995; King 

et al, 1997). The present findings are also consistent with other research which has 

shown that acute food restriction leads to an increase in appetite and subsequent food 

intake (Lawton et al, 1993; Green et al, 1994; Hubert et al, 1998). From a practical 

perspective these data provide an indication of why dieting is often so difficult and 

typically unsuccessful. Equally, this work underscores the potential for exercise to 

facilitate successful weight control. 

 

In an investigation that was published more than a decade ago, Hubert et al (1998) 

made a direct comparison of appetite and ad libitum energy intake responses to acute 

food restriction as compared with exercise. In this study 11 healthy females completed 

four main trials in a crossover fashion with manipulations of exercise (40 min of 

cycling at 70% of 2OV max or rest) and diet (500 kcal breakfast or 64 kcal breakfast). 
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The researchers observed that exercise did not alter subjective ratings of hunger or 

subsequent ad libitum energy intake at a meal provided four hours after exercise. 

Conversely, food restriction led to a rapid increase in hunger and a significantly higher 

energy intake (~20%) at the ad libitum meal. The researchers proposed that the increase 

in appetite observed in response to food restriction may be related to weakened post-

ingestive satiety signals although the researchers did not outline the precise 

mechanisms. The findings from the present study support this hypothesis and suggest 

an important mediating role of acylated ghrelin and PYY3-36. 

 

The studies within this thesis have made measurements of circulating acylated ghrelin. 

These studies have shown that exercise does not increase circulating levels of acylated 

ghrelin after exercise, even when the energy deficit induced is severe. This lack of 

change in acylated ghrelin in response to exercise may be one reason why exercise does 

not cause compensatory appetite and energy intake responses. In contrast to this, it has 

been shown that ghrelin is sensitive to acute perturbations in energy balance resulting 

from dietary manipulation (Callahan et al, 2004; Leidy and Williams, 2006; Borer et al, 

2009). Consequently, it was thought that disparate appetite and energy intake responses 

to exercise compared with food restriction may be associated with disparate changes in 

circulating levels of acylated ghrelin. 

 

In a recent study, Borer et al (2009) compared appetite, energy intake and circulating 

total ghrelin responses to energy deficits induced by food restriction and on another 

occasion, exercise. The researchers showed that circulating levels of total ghrelin 

exhibited a compensatory increase in response to food restriction and also to a lesser 

extent, exercise. A key limitation of this work however was that the energy deficit 

induced by exercise was approximately 40% larger as compared with that induced by 

food restriction, thus confounding the interpretation of the results. Moreover, 

circulating total ghrelin concentrations were measured. Acylation of ghrelin is thought 

to be necessary for ghrelin to exert effects on appetite therefore assessment of total 

ghrelin may have masked important effects of acylated ghrelin (Liu et al, 2008). Hence, 

the present study sought to specifically examine acylated ghrelin responses to 

equivalent energy deficits induced by exercise and diet. Within this, a central aspect 

was to precisely match the energy deficits induced by each intervention. 
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The findings of the present study demonstrate that exercise does not alter circulating 

levels of acylated ghrelin in the 7.5 h after. These findings confirm those reported in 

study four (Chapter seven) where plasma acylated ghrelin concentrations did not 

change in the 8.5 h after exercise (90 min of treadmill running) or on the morning after 

(22.5 h after exercise). Conversely, in the present study, food restriction which induced 

an energy deficit equal to that elicited by exercise was associated with significantly 

higher acylated ghrelin concentrations throughout the trial. After the first test meal 

provided two hours into trials the acylated ghrelin AUC was 42% higher on the Food-

Def trial than the control trial and 54% higher than the Ex-Def trial. Thus, in the Food-

Def trial circulating levels of acylated ghrelin were perturbed in a direction expected to 

stimulate appetite and feeding. These heightened levels of plasma acylated ghrelin are 

likely to have been related to the reported increase in appetite and energy intake.  

 

In the present study circulating concentrations of PYY3-36 were also measured. 

Circulating concentrations of PYY increase in response to nutrient ingestion and serve 

to promote within-meal satiation and inter-meal satiety (Neary and Batterham, 2009b). 

In the circulation PYY exists in two forms, namely PYY1-36 and PYY3-36. Peptide YY3-

36 is the major circulating form and is chiefly responsible for determining the appetite 

suppressing action of PYY (Batterham et al, 2006; Karra et al, 2009). A handful of 

studies suggest that circulating levels of total PYY increase transiently in response to 

single bouts of exercise (Martins et al, 2007; Broom et al, 2009; Shorten et al, 2009; 

Ueda et al, 2009). At present, only one study has examined acute PYY3-36 responses to 

exercise (Cheng et al, 2009). The results from this investigation suggest that exercise 

(60 min of cycling at 50% of 2OV max) does not alter circulating levels of PYY3-36 per 

se, however exercise may potentiate the PYY3-36 response to feeding. 

 

In the present investigation, circulating PYY3-36 concentrations were 27% higher than 

control when measured 30 min after the end of exercise. Thus, exercise stimulated 

circulating levels of PYY3-36 and therefore this finding contradicts that reported by 

Cheng et al (2009). In the present study the intensity and duration of exercise was 

greater therefore it is possible that only intense and/or prolonged exercise stimulates an 

increase in circulating PYY3-36. 
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In the present study, PYY3-36 responses to feeding were also examined. Interestingly, 

although the differences were not quite statistically significant, levels of PYY3-36 were 

notably higher after the test meals on the Ex-Def trial compared with control. Thus, 

exercise appeared to potentiate increases in PYY3-36 after eating. These findings support 

the observations of others who have shown that both total PYY and PYY3-36 responses 

to meals are augmented after exercise (Broom et al, 2009; Cheng et al, 2009). These 

outcomes suggest a beneficial effect of exercise on appetite regulation. It is possible 

that an accentuated PYY3-36 response to exercise is implicated in the lack of change in 

appetite and energy intake observed afterwards. 

 

Despite the induction of an equivalent energy deficit, changes in circulating levels of 

PYY3-36 were markedly different in response to food restriction as compared with 

exercise. On the Food-Def trial, after consumption of the first test meal, circulating 

levels of PYY3-36 were significantly lower than on the control trial and remained so 

throughout the remaining seven hours of the trial. This finding is consistent with the 

idea proposed by Hubert et al (1998) who suggested that the rapid compensatory 

increase in appetite witnessed after restricted meals is related to weakened post-

ingestive satiety signals. In the present study, in addition to the aforementioned effects 

of food restriction on PYY3-36, after the first test meal the postprandial suppression of 

plasma acylated ghrelin was less prolonged in the Food-Def trial compared with the 

control and Ex-Def trials. Moreover, circulating levels of acylated ghrelin became 

higher in the Food-Def trial prior to the second test meal and remained so throughout 

the final hours of the trials. Thus, compared with the control and Ex-Def trials, 

postprandial acylated ghrelin and PYY3-36 responses were attenuated in the Food-Def 

main trials. These changes may therefore have been implicated in the heightened energy 

intake response observed at the ad libitum meal in the Food-Def trial. 

 

 Within each main trial circulating concentrations of acylated ghrelin and PYY3-36 were 

not consistently correlated with any of the appetite markers assessed (hunger, fullness, 

satisfaction and prospective food consumption). It is possible that the relatively low 

number of homogenous participants included in this study may have prevented the 

detection of significant correlations however it is also possible that there may not have 

been a direct link between these gut peptides and appetite. For instance, gastric 

emptying has been intricately linked with subjective ratings of hunger and satiety 
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(Bergman et al, 1992). It is possible that acylated ghrelin and PYY3-36 may have 

influenced appetite indirectly, by modulating gastric emptying. Further work is needed 

however to explore this possibility. In the present study acylated ghrelin and PYY3-36 

were also not significantly correlated with plasma glucose or triacylglycerol 

concentrations. These data indicate that the reported changes in  acylated ghrelin and 

PYY3-36 were not mediated by these metabolites. 

 

In summary, this study has shown that equivalent energy deficits induced by food 

restriction and exercise have markedly different effects on appetite and energy intake. 

Food restriction elicits a rapid increase in appetite and energy intake and these 

responses appear to be related to an attenuated postprandial PYY3-36 response and to a 

more transient postprandial suppression of circulating acylated ghrelin. In contrast to 

this, acute energy deficits induced by exercise do not alter appetite or energy intake and 

the results of this study suggest that this may be related to the failure of exercise to 

induce compensatory acylated ghrelin and PYY3-36 responses. Further research is 

needed to examine other appetite regulating peptides such as CCK and GLP-1 to see 

whether their reactions to the present interventions are consistent with those of acylated 

ghrelin and PYY3-36. It may also be important to compare responses in overweight 

individuals as it is here that findings may hold the most practical significance. 
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Chapter X 
 

General discussion 
 

10.1 Introduction 

Over the last decade there has been a rapid expansion in our understanding of the 

physiological regulation of energy homeostasis. One specific area where knowledge has 

developed substantially is the role that gut hormones occupy in the regulation of energy 

balance. Exercise is an important determinant of energy balance therefore recent work 

has sought to characterise the effects of exercise on gut hormones. This novel work sits 

alongside an established body of research which has examined the effects of exercise on 

appetite and food intake. The studies presented within this thesis have endeavoured to 

extend knowledge within each of these related areas of enquiry, by examining appetite, 

food intake and gut hormone (acylated ghrelin and PYY3-36) responses to various forms 

of exercise. An integral feature of these studies was to examine the aforementioned 

responses over a prolonged duration of time so that both the immediate and latent 

effects of exercise could be examined. The purpose of this chapter is to reflect upon and 

collectively discuss the findings presented within the experimental chapters of this 

thesis. Table 10.1 provides a summary of the study protocols and variables examined 

within each experimental chapter.  
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Table 10.1: Summary of the study protocols presented within the experimental chapters of this thesis 

Study 
(Chapter) Trials Exercise 

mode 
Intensity 

 
Exercise 
Duration 

Net energy 
expenditure 
kJ & (kcal) 

Measurements 

1 
(4) 

Resistance Ex 
 

Control 

Free weights 
 

Rest 

79.9 ± 0.3 % of 
12- RM 

90 min 
 
- 

1007 ± 92 
(241± 22) 

Appetite 
Energy/macronutrient intake 

2 
(5) 

Swimming 
 

Control 

Intermittent swim 
 

Rest 

78 ± 2 % of 
 heart rate max 

60 min 
(intermittent) 

- 

1921 ± 83 
(459 ± 20) 

Appetite 
Energy/macronutrient intake 

Acylated ghrelin 
Glucose and TAG 

3 
(6) 

Brisk walking 
 

Control 

Brisk Walking 
 

Rest 

45.2 ± 2.0% of 
2OV max 

60 min 
 
- 

2008 ± 134 
(480 ± 32) 

Appetite 
Energy/macronutrient intake 

Acylated ghrelin 
Insulin, glucose and TAG 

4 
(7) 

Prolonged Run 
 

Control 

Treadmill running 
 

Rest 

68.8 ± 0.8% of 
2OV max 

90 min 
 
 
- 

5326 ± 186 
(1273 ± 45) 

Appetite 
Energy/macronutrient intake 

Acylated ghrelin 
Insulin, glucose and TAG 

5 
(8) 

Running 
 

Control 

Treadmill running 
 

Rest 

71.8 ± 1.3% of 
2OV max 

60 min 
 
 
- 

4117 ± 117 
(984 ± 28) 

Appetite 
Energy/macronutrient intake 

Acylated ghrelin 
Glucose and TAG 

6 
(9) 

Ex-Def 
 

Food-Def 
 

Control 

Treadmill running 
 
- 
 

Rest 

69.8 ± 0.9% of 
2OV max 

90 min 
 
- 
 
- 

4715 ± 113 
(1127 ± 27) 

Appetite 
Energy/macronutrient intake 

Acylated ghrelin 
PYY3-36 

Glucose and TAG 
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10.2 Exercise and appetite 

One aim of the studies presented in this thesis was to characterise the effects of exercise 

on appetite. Before undertaking this work the author was aware of a significant body of 

research which has previously investigated appetite responses to exercise however the 

studies described here have sought to add to this established work by characterising the 

effects of novel modes of exercise (resistance exercise and swimming) and by also 

examining responses over a prolonged duration of time within the laboratory. 

 

Several studies have shown that exercise suppresses appetite when performed at 

moderate intensities or higher, an effect that has been termed exercise-induced anorexia 

(King et al, 1994). Exercise induced anorexia has previously been described in response 

to acute bouts of running (King and Blundell 1995), cycling (Martins et al, 2007) and 

resistance exercise (Broom et al, 2009). Study two (Chapter five) has now shown that 

appetite may also be suppressed during a typical recreational bout of swimming. 

Similar to other modes of exercise, the appetite suppressing effect of swimming is brief 

and does not influence energy intake at meals consumed  afterwards. It has previously 

been suggested that ‘gut disturbance’ may contribute to the inhibition of appetite during 

exercise (Broom et al, 2009) however the fact that swimming reduces appetite indicates 

that this may not be important as the non-weight bearing nature of swimming means 

there is a lack of gastrointestinal distress. 

 

The findings within this thesis confirm that exercise intensity is an important 

determinant of exercise induced anorexia as 60 min of brisk walking (45% of 

2OV max) in study three (Chapter six) did not influence appetite whereas high intensity 

running (70% of 2OV  max) in studies four and five (Chapters seven and eight) 

markedly suppressed appetite. The findings from study four (Chapter seven) also 

confirm that the appetite inhibitory effect of exercise is transient as no differences in 

appetite were seen 30 min after exercise. 

 

Previous research has shown that exercise induced anorexia does not influence energy 

intake at the next feeding opportunity after exercise, yet may induce a delay until the 

voluntary request of a meal (King et al, 1994; King and Blundell, 1995; King et al, 

1996). The findings from studies two and four (Chapters five and seven) are consistent 
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with this as 60 min of swimming and 90 min of running did not alter energy intake at 

buffet meals made available 60 min after exercise, despite marked reductions in 

appetite being apparent. The notion that exercise induced anorexia manifests as a 

resistance to begin eating after exercise is supported by the findings in study five 

(Chapter eight). After 60 min of high intensity running (71.8 ± 1.3% of 2OV  max) 

participants requested lunch 35 min later (1 h 21 min after exercise) than on a control 

trial. Energy intake was not significantly different between trials at this spontaneously 

requested meal. 

 

Many studies that have assessed the effects of exercise on appetite have examined 

responses over a brief period of time, commonly during exercise and then leading up to 

a meal consumed shortly afterwards (Thompson et al, 1988; Verger et al, 1992; King et 

al, 1994; King and Blundell, 1995; King et al, 1996; Imbeault et al, 1997; Westerterp-

Plantenga et al, 1997; Erdmann et al, 2007; Martins et al, 2007; Shorten et al, 2009). It 

was thought possible however that a more prolonged period of observation may be 

needed to detect changes in appetite after exercise. Thus, the studies in this thesis 

assessed appetite responses to exercise over a prolonged duration of time, in response to 

multiple meals, within a strictly controlled laboratory setting. The findings derived from 

the studies presented in this thesis show that appetite is not stimulated in the hours after 

completing exercise (on land), even when large amounts of energy are expended (up to 

5324 kJ, 1273 kcal) and observations are made for up to 22.5 hours after exercise. Thus, 

it seems that energy deficits induced by exercise are not consciously detected. An 

exception to this occurred in study two where 60 min of swimming led to an increase in 

appetite in the later hours of recovery after exercise (60 – 90 min after a post-exercise 

meal). These changes did not influence energy intake however. 

 

10.3 Energy intake responses to exercise 

Before undertaking the work in this thesis the consensus of evidence suggested that 

energy intake does not change in response to acute bouts of exercise (Martins et al, 

2008; Bilski et al, 2009). However, a limitation of many previous studies is that energy 

intake has been determined within the laboratory from food consumed at single meals 

provided shortly after exercise (Kissileff et al, 1990; Verger et al, 1992; 1994; Imbeault 

et al, 1997; Hubert et al, 1998; George and Morganstein, 2003; Erdmann et al, 2007; 
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Martins et al, 2007; Shorten et al, 2009). It was thought possible that a longer period of 

observation may have been needed to detect changes in energy intake after exercise as 

differences may be seen not at the first meal after exercise, but at a second or third 

meal. Hence, the studies presented in this thesis sought to examine energy intake 

responses over a prolonged duration of time i.e. at multiple meals taken after 

completing exercise. Furthermore, these studies examined the effects of resistance 

exercise and swimming on energy intake, each popular modes of exercise which had 

not previously received attention. The influence of high levels of energy expenditure on 

energy intake was also examined to see whether this would stimulate a compensatory 

increase in energy intake. 

 

The findings presented in this thesis show that energy intake does not change after 

exercise, regardless of the modality and the extended period of observation. 

Specifically, energy intake did not change significantly in response to exercise 

(walking, running, swimming, resistance exercise) in any of the six studies reported in 

this thesis. This is despite participants expending amounts of energy equating to half of 

their daily requirements and with assessments of energy intake being made at up to four 

eating opportunities over the course of the day after exercise (and on the next morning 

in studies one and four). Conversely, in study six (Chapter nine), food restriction which 

induced an energy deficit in an identical amount to that expended during 90 min of high 

intensity running, significantly increased ad libitum energy intake by more than 50% of 

that consumed on the control trial. These findings highlight a marked difference in 

energy intake responses to acute deficits in energy when induced by exercise compared 

with diet i.e. when there is a restriction on energy entering the body compared with an 

increase in energy leaving the body. These findings demonstrate why weight loss 

strategies based solely on restricting food intake are so difficult and typically 

unsuccessful. Moreover, these findings underscore the potential for exercise to facilitate 

weight management. 

 

10.4 Effects of exercise on macronutrient intake 

Energy intake is determined by the type of food consumed in addition to the absolute 

amount. Therefore, when considering the influence of exercise on energy intake the 

question of whether exercise alters macronutrient selection requires attention. To 

examine macronutrient intake responses to exercise it is necessary that foods of 
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sufficient diversity are made available so that any preferences can be delineated 

(Arvaniti et al, 2000). To permit the assessment of this outcome, in the studies 

described in this thesis a buffet meal was developed in study one and was provided to 

participants at defined eating opportunities within each investigation. Although there 

are limitations of this methodology (e.g may promote increased consumption and/or 

delay satiation), this protocol permits the assessment of macronutrient intake even if 

energy intake remains the same between experimental treatments (Blundell et al, 2010).  

 

Short-term intervention trials that have examined the influence of exercise on 

macronutrient intake have revealed mixed findings although the most consistent 

outcome has been for macronutrient intake to remain unchanged (Tremblay and 

Drapeau, 1999; Elder and Roberts, 2007). The studies in this thesis have contributed to 

these established findings by assessing macronutrient intake responses to previously 

unstudied modes of exercise (resistance exercise and swimming) and by characterising 

responses to multiple meals provided after exercise. Notwithstanding, the findings from 

five of the six studies presented in this thesis (studies two, three, four, five and six) are 

consistent with the established consensus which has described a lack of change in 

macronutrient intake in response to acute bouts of exercise. Based on these findings it 

would appear that exercise does not stimulate a drive to seek out any particular 

macronutrient. It remains possible however that any physiological drive induced by 

exercise may be masked by the stubbornness of an individual’s food intake choices, 

ultimately a behavioural act based on learned preferences which have developed over 

years (Stubbs et al, 1998). Scrutiny of macronutrient intake responses to more 

provocative exercise stimuli, such as to repeated bouts, may be needed to tease out any 

explicit effect of exercise. In such studies it may be necessary to recruit participants 

who do not have significant knowledge regarding nutrition and/or exercise physiology 

so that such information does not influence food choices. 

 

The aforementioned discussion focused on studies that have examined the effects of 

aerobic type exercise on macronutrient intake. In the first study presented in this thesis 

(Chapter four) the effects of resistance exercise on macronutrient intake was examined. 

Interestingly, in this study an increase in the percentage of energy derived from 

carbohydrate was observed at a buffet meal consumed five hours after completing a 90 

min free weights session. The reason for this difference is not clear. Resistance exercise 



 

 185 

is predominantly an anaerobic form of exercise that is fuelled primarily by the 

anaerobic metabolism of carbohydrate. It has been suggested that individuals may seek 

to replace the substrate principally utilised during exercise so that there is a matching 

between the respiratory quotient generated and the food quotient of the meal consumed 

afterwards (King, 1998). It is therefore possible that this increased preference for 

carbohydrate rich foods after resistance exercise may reflect a drive to seek out this 

macronutrient. This explanation is perhaps unlikely given that no changes in 

carbohydrate preference were seen at a meal consumed one hour after exercise when 

presumably the drive to consume carbohydrate would be strongest.  Additional work is 

needed to test the reproducibility of this initial finding within a larger group of study 

participants. 

 

10.5 Acylated ghrelin responses to exercise 

Within the last decade many studies have examined the effects of exercise on ghrelin 

however in the majority of these investigations circulating total ghrelin was measured, 

that is, the assays which were used did not distinguish between acylated ghrelin and 

unacylated ghrelin (for a review see Kraemer and Castracane, 2007). It is now believed 

that acylated ghrelin is chiefly responsible for the appetite stimulating effects of ghrelin, 

therefore more recent investigations have began to evaluate the effect of exercise on 

acylated ghrelin (Broom et al, 2007; Marzullo et al, 2008; Hagobian et al 2009). The 

studies in this thesis sought to extend this work by characterising acylated ghrelin 

responses to various exercise challenges over extended periods of observation. 

Interactions, between acylated ghrelin, appetite and energy intake were also examined. 

 

The findings in this thesis show that moderate-high intensity aerobic exercise 

transiently suppresses circulating levels of acylated ghrelin. These data therefore 

confirm the previous observations of others (Broom et al, 2007; Marzullo et al, 2008; 

Broom et al, 2009). The physiological significance of this decline in circulating levels 

of acylated ghrelin during exercise is still not entirely clear. The findings in study five 

suggest that the return of acylated ghrelin to pre-exercise levels may be necessary 

before individuals choose to eat afterwards. Broom et al (2007) previously suggested a 

role of acylated ghrelin as a determinant of exercise induced anorexia during high 

intensity running as they found a significant positive correlation between subjective 

ratings of hunger and acylated ghrelin during exercise. The studies in this thesis have 
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not reproduced this finding however, as no significant relationships between acylated 

ghrelin and any of the appetite markers examined were found during exercise (Table 

10.2). A lack of statistical power does not appear to explain these outcomes either as no 

significant relationships were found between acylated ghrelin and appetite AUC during 

exercise when data was combined for the four studies identified in Table 10.2 (n = 40). 

Correlation between acylated ghrelin and; hunger P = 0.131, r = 0.419; satisfaction P = 

0.317, r = -0.162; fullness P = 0.140, r = -0.238; prospective food consumption P = 

0.982, r = 0.004. These findings may therefore suggest that the effect of acylated 

ghrelin on appetite is indirect. 

 

At present the mechanisms responsible for suppressed circulating concentrations of 

acylated ghrelin during high intensity exercise remain unclear. Circulating levels of 

insulin and glucose have been implicated in the regulation of ghrelin however the data 

presented in this thesis suggest that insulin and glucose are not responsible for the 

suppression of acylated ghrelin during exercise as circulating levels of glucose and 

insulin were not elevated during exercise at times when marked reductions in acylated 

ghrelin were apparent. Instead it is possible that the reduction in acylated ghrelin is 

related to exercise related changes in gut perfusion (Burns et al, 2007) or to the 

activation of the sympathetic nervous system (Toshinai et al, 2001). 
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Table 10.2: Correlations between acylated ghrelin and appetite AUC calculated during exercise. No significant relationships were 
observed. 
 

 Study 2 (Chapter 5) Study 4 (Chapter 7) Study 5 (Chapter 8) Study 6 (Chapter 9) 

 
60 min intermittent swim 
(78% of heart rate max) 

n = 14 

90 min run 
 (~69% 2OV max) 

n = 9 

60 min run 
 (~72% 2OV max) 

n = 10 

90 min run 
 (~70% 2OV max) 

n = 12 

 P r P r P r P r 
Hunger 0.396 0.323 0.254 0.425 0.870 0.06 0.461 -0.236 
Fullness 0.867 -0.065 0.051 -0.527 0.961 0.018 0.572 -0.182 

Satisfaction 0.252 0.427 0.061 -0.645 0.671 0.154 0.496 -0.218 
PFC 0.784 -0.107 0.330 0.368 0.406 0.296 0.387 -0.275 

N.B. acylated ghrelin not measured in study one (Chapter four) and no suppression was observed in study three (Chapter six) 
PFC = prospective food consumption 
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An additional objective of the studies in this thesis was to examine the latent effects of 

exercise on acylated ghrelin. Previous studies have shown that high intensity exercise 

acutely suppresses circulating acylated ghrelin (Broom et al, 2007; 2009) however in 

these studies no changes in acylated ghrelin were evident in the hours of observation 

afterward, despite participants remaining in energy deficit after exercise. Given the role 

of ghrelin in the acute regulation of food intake, these findings were unexpected as it 

was thought that at some point after exercise acylated ghrelin levels would be higher to 

promote the restoration of energy balance.  

 

In studies two and three (Chapters five and six) plasma acylated ghrelin concentrations 

remained no different to control in the six/seven hours of observation after completing 

acute bouts of swimming or brisk walking. It was initially thought that in each of these 

instances the disruption of energy balance may have been insufficient to provoke a 

compensatory increase in circulating levels of acylated ghrelin. Therefore, in study four 

(Chapter seven), to purposefully induce a high level of energy expenditure participants 

completed 90 min of treadmill running at 68.8 ± 0.8% of 2OV max (energy expenditure 

5324 kJ, 1273 kcal). Despite this considerable challenge, circulating concentrations of 

acylated ghrelin were no different to control in the 8.5 h after exercise or on the 

morning after (24 h measurement). This finding was reproduced in study six where an 

identical bout of running did not alter circulating levels of acylated ghrelin in the 7.5 h 

after exercise. This latter finding was in stark contrast to acylated ghrelin responses to 

an equivalent energy deficit invoked by restricting food intake. In this instance 

circulating acylated ghrelin was consistently elevated throughout the extended period of 

observation as the postprandial suppression in response to each test meal was severely 

weakened after consuming meals of restricted energy/nutrient content. 

 

The data reported within this thesis therefore show that acylated ghrelin is not sensitive 

to acute changes in energy expenditure resulting from exercise. Conversely, acylated 

ghrelin is sensitive to food/nutrients passing through the mouth and gastrointestinal 

tract. It remains possible that changes in circulating acylated ghrelin may have been 

seen if participants had completed repeated bouts of exercise. Hagobian et al (2009) 

recently showed that circulating acylated ghrelin responses to test meals were 

significantly attenuated i.e. the postprandial suppression was less marked, after four 
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consecutive days of exercise in a group of overweight females. This response was 

independent of the energy deficit induced by exercise as this response was still apparent 

when participants increased their energy intake to buffer that expended during exercise. 

Thus, exercise on its own perturbed acylated ghrelin in a direction expected to increase 

appetite and energy intake. Interestingly, this intervention did not alter levels of 

acylated ghrelin in a group of males, possibly representing a stronger biological 

imperative to defend body fat stores in females. It is therefore possible that in males, 

acylated ghrelin levels may only respond to more demanding exercise challenges when 

energy homeostasis is severely perturbed over several days. 

 

10.6 Peptide YY3-36 responses to exercise and reduced food intake 

In the final study presented within this thesis circulating concentrations of PYY3-36 were 

measured. The decision to measure PYY3-36 rather than other appetite regulating gut 

hormones was based on an expanding body of literature regarding the central role of 

PYY in appetite regulation (Ueno et al, 2008; Neary and Batterham, 2009b) and yet a 

dearth of research which has examined the influence of exercise on PYY. At present 

only a handful of studies have examined total PYY responses to exercise (Martins et al, 

2007; Broom et al, 2009; Shorten et al, 2009; Ueda et al, 2009). Moreover, only one 

investigation has made measurements of circulating PYY3-36 (Cheng et al, 2009), the 

peptide variant chiefly responsible for determining the appetite suppressive action of 

PYY. In study six (Chapter nine), circulating PYY3-36 levels were 27% higher than 

control 30 min after completing 90 min of high intensity treadmill running (69.8 ± 0.9% 

of 2OV max). Circulating concentrations of PYY3-36 also remained visibly higher (2 – 9 

h AUC, 11%) within the seven hours after exercise although this difference was not 

quite statistically significant. Enhanced circulating levels of PYY3-36 after exercise may 

represent a beneficial effect for appetite control. Circulating levels of PYY3-36 are lower 

in overweight than lean individuals and this has been linked to impaired perceptions of 

satiety (Le Roux et al, 2006). Future research may therefore seek to examine the effects 

of exercise on PYY3-36 in overweight individuals as the findings may be of clinical 

relevance. 
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10.7 Limitations and future directions 

There are some notable limitations of the studies presented in this thesis and these have 

been identified within each experimental chapter. Two limitations which are common 

across studies are the low number of study participants and their homogeneity in terms 

of their physical characteristics and demographics. Assessment of a larger number of 

more diverse participants may have increased the ability to detect important 

relationships between variables and enhanced the ability to extrapolate findings to 

wider populations. Notwithstanding, future studies are needed to characterise gut 

hormone, appetite and food intake responses to exercise in other important participant 

groups such as overweight/obese, the elderly and those who are completely sedentary. 

Furthermore, recent work has unveiled differences in gut hormone and appetite 

responses to exercise in males versus females (Hagobian et al, 2009) therefore it would 

be interesting to investigate these initial findings further. Studies seeking to provide a 

mechanistic understanding for the findings presented here are also welcomed. 
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APPENDIX A 
 
 

 

INFORMED CONSENT FORM 

(to be completed after the participant information sheet has 
been read) 

 
 

The purpose and details of this study have been explained to me.  I understand that this 
study is designed to further scientific knowledge and that all procedures have been 
approved by the Loughborough University Ethical Advisory Committee. 
 
I have read and understood the information sheet and this consent form. 
 
I have had an opportunity to ask questions about my participation. 
 
I understand that I am under no obligation to take part in the study. 
 
I understand that I have the right to withdraw from this study at any stage for any 
reason, and that I will not be required to explain my reasons for withdrawing. 
 
I understand that all the information I provide will be treated in strict confidence. 
 
I agree to participate in this study. 
 
 
 
                    Your name 
 
 
 
              Your signature 
 
 
 
Signature of investigator 
 
 
 
                               Date 
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APPENDIX B 

 
 

HEALTH SCREEN QUESTIONNAIRE FOR STUDY VOLUNTEERS  Name/Number 
 

• As a volunteer participating in a research study, it is important that you are currently in good health and have had no 
significant medical problems in the past.  This is (i) to ensure your own continuing well-being and (ii) to avoid the 
possibility of individual health issues confounding study outcomes. 

 
Please complete this brief questionnaire to confirm your fitness to participate: 
 

1. At present, do you have any health problem for which you are: 

(a) on medication, prescribed or otherwise ..................................................  Yes 
 

No  

(b) attending your general practitioner .........................................................  Yes  No  

(c) on a hospital waiting list ........................................................................  Yes  No  
 

2. In the past two years, have you had any illness which required you to: 

(a) consult your GP .....................................................................................  Yes 
 

No  

(b) attend a hospital outpatient department ..................................................  Yes  No  

(c) be admitted to hospital  ..........................................................................  Yes  No  
 

3. Have you ever had any of the following: 

(a) Convulsions/epilepsy  ..............................................................................  Yes 
 

No  

(b) Asthma  ....................................................................................................  Yes  No  

(c) Eczema ....................................................................................................  Yes  No  

(d) Diabetes  ..................................................................................................  Yes  No  

(e) A blood disorder  .....................................................................................  Yes  No  

(f) Head injury  .............................................................................................  Yes  No  

(g) Digestive problems  .................................................................................  Yes  No  

(h) Heart problems  ........................................................................................  Yes  No  

(i) Problems with bones or joints     ..............................................................  Yes  No  

(j) Disturbance of balance/coordination  .......................................................  Yes  No  

(k) Numbness in hands or feet  ......................................................................  Yes  No  

(l) Disturbance of vision  ..............................................................................  Yes  No  

(m) Ear / hearing problems  ............................................................................  Yes  No  

(n) Thyroid problems  ....................................................................................  Yes  No  

(o) Kidney or liver problems  ........................................................................  Yes  No  

(p) Allergy to nuts  ........................................................................................  Yes  No  

(q) High cholesterol………………………………………... Yes  No  

(r) High triacylgycerol or any other form of 
dyslipidaemia…………………………………………... 

Yes  No  

(s) Food allergies of any kind……………………………. Yes  No  
 
4. Has any, otherwise healthy, member of your family under the 

age of 35 died suddenly during or soon after exercise?  ......................................  Yes  No  
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APPENDIX C 
 

LOUGHBOROUGH UNIVERSITY, SCHOOL OF SPORT AND EXERCISE SCIENCES 
 
 

PHYSICAL ACTIVITY QUESTIONNAIRE 
 

During one week, how many times on average do you do the following kinds of 
exercise for more than 15 minutes? 
 

(a) Strenuous exercise (heart beats rapidly) 
For example; running, jogging, squash, hockey, football, volleyball, 
vigorous swimming, vigorous long distance cycling. 
 
______times per week. 

 
(b) Moderate exercise (not exhausting) 

For example; fast walking, tennis, easy cycling, badminton, easy swimming, 
dancing. 
 
______ times per week. 

 
(c) Mild exercise (minimal effort) 

For example; yoga, archery, fishing, bowling, golf, easy walking. 
 
______ times per week. 
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APPENDIX D 
 
Part 1: please answer true/false 
 

1. When I smell a sizzling steak or see a juicy piece of meat, I find it very difficult to keep 
from eating, even if I have just finished a meal 

 
True □  False □ 

 
2. I usually eat too much at social occasions, like parties and picnics 

 
True □  False □ 

 
3. I am usually so hungry that I eat more than three times a day 

 
True □  False □ 

 
4. When I have eaten my quota of calories, I am usually good about not eating any more 

 
True □  False □ 

 
5. Dieting is too hard for me because I just get too hungry 

 
 

True □  False □ 
 

6. I deliberately take small helpings as a means of controlling my weight 
 
 

True □  False □ 
 

7. Sometimes things just taste so good that I keep on eating even when I am no longer hungry 
 

True □  False □ 
 
 

8. Since I am often hungry, I sometimes wish that while I am eating, an expert would tell me 
that I have had enough or that I can have something more to eat 

 
True □  False □ 

 
 

9. When I am anxious, I find myself eating 
 

True □  False □ 
 

10. Life is too short to worry about dieting 
 

True □  False □ 
 

11. Since my weight goes up and down, I have been on weight reducing diets more than once 
True □  False □ 

 
12. I often feel so hungry that I just have to eat something 

 
True □  False □ 

 
13. When I am with someone who is overeating, I usually overeat too 

 
True □  False □ 
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14. I have a pretty good idea of the number of calories in common food 

 
True □  False □ 

 
15. Sometimes when I start eating, I just can’t seam to stop 

 
True □  False □ 

 
16. It is not difficult for me to leave something on my plate 

 
True □  False □ 

 
17. At certain times of the day, I get hungry because I have gotten used to eating then 

 
True □  False □ 

 
18. While on a diet, if I eat food that is not allowed, I consciously eat less for a period of time 

to make up for it 
 

True □  False □ 
 

19. Being with someone who is eating often makes me hungry enough to eat also  
 

True □  False □ 
 

20. When I feel blue, I often overeat 
 

True □  False □ 
 

21. I enjoy eating too much to spoil it by counting calories or watching my weight 
 

True □  False □ 
 

22. When I see a real delicacy I often get so hungry that I have to eat it right away 
 

True □  False □ 
 

23. I often stop eating when I am not really full as a conscious means of limiting what I eat 
 

True □  False □ 
 

24. I get so hungry that my stomach often feels like a bottomless pit 
 

True □  False □ 
 

25. My weight has hardly changed at all in the last ten years 
 

True □  False □ 
 

26. I am always hungry so it is hard for me to stop eating before I finish all the food on my 
plate 

 
True □  False □ 

 
27. When I feel lonely, I console myself by eating 

 
True □  False □ 

 
28. I consciously hold back at meals in order not to gain weight 
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True □  False □ 

 
29. I sometimes get very hungry late in the evening or at night 

 
True □  False □ 

 
30. I eat anything I want, anytime I want 

 
True □  False □ 

 
31. Without even thinking about it I take a long time to eat 

 
True □  False □ 

 
32. I count calories as a conscious means of controlling my weight 

 
True □  False □ 

 
33. I do not eat some foods because they make me fat 

 
True □  False □ 

 
 

34. I am always hungry enough to eat at any time 
 

True □  False □ 
 

35. I pay a great deal of attention to changes in my figure 
 

True □  False □ 
 

36. While on a diet, if I eat a food that is not allowed, I often then splurge and eat other high 
calorie foods 

 
True □  False □ 

Part 2: 
 

37. How often are you dieting in a conscious effort to control your weight? 
 

1 (rarely)   2(sometimes)   3(Usually)   4(always) 
 

38. Would a weight fluctuation of 5lbs affect the way you live your life? 
 

1(not at all)   2(slightly)   3(moderately)   4(very much) 
 

39. How often do you feel hungry? 
 

1(only at meal times)   2(sometimes between meals)   3(often between meals)   4(almost always) 
 

40. Do your feelings of guilt about overeating help you to control your food intake? 
 

1(never)   2(rarely)   3(often)   4(always) 
 

41. How difficult would it be for you to stop eating half way through dinner and not eat again 
for four hours? 

 
1(easy)   2(slightly difficult)   3( moderately difficult)  4(very difficult) 

 
42. How conscious are you of what you are eating? 
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1(not at all)   2(slightly)   3(moderately)   4(extremely) 

 
43. How frequently do you avoid ‘stocking up’ on tempting foods? 

 
1 (almost never)   2(seldom)   3(usually)   4(almost always) 

 
44. How likely are you to shop for low calories foods? 

 
1(unlikely)   2(slightly unlikely)  3(moderately likely)   4(very likely) 

 
45. Do you eat sensibly in front of others and splurge alone? 

 
1(never)   2(rarely)   3(often)   4(always) 

 
46. How likely are you to consciously eat slowly in order to cut down on what you eat? 

 
1(unlikely)   2(slightly likely)   3(moderately likely)   4(very likely) 

 
47. How frequently do you skip desert because you are no longer hungry? 

 
1(almost never)   2(seldom)   3(at least once a week)   4(almost every day) 

 
48. How likely are you to consciously eat less that you want? 

 
1(unlikely)   2(slightly likely)   3(moderately likely)   4(very likely) 

 
49. Do you go on eating binges though you are not hungry? 

 
1(never)   2(rarely)   3(sometimes)   4(at least once a week) 

 
50. On a scale of 0-5, where 0 means no restraint in eating (eating whatever you want, 

whenever you want it) and 5 means total restraint (constantly limiting food intake and 
never ‘giving in’), what number would you give yourself? 

0 
Eat whatever you want, whenever you want it 

 
1 

Usually eat whatever you want, whenever you want it 
 

2 
Often eat whatever you want, whenever you want it 

 
3 

Often limit food intake, but often ‘give in’ 
 

4 
Usually limit food intake, rarely ‘give in’ 

 
5 

Constantly limiting food intake, never ‘give in’ 
 

51. To what extent does this statement describe your eating behaviour? ‘I start dieting in the 
morning, but because of a number of things that happen during the day, by evening I have 
given up and eat what I want, promising myself to start dieting again tomorrow.’ 

 
1(not like me)   2(little like me)   3(pretty good description of me)   4( describes me perfectly) 
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Scoring 
 
One point is given for each item in Part 1 and each item in part 2. The correct item for 
the true/false section is in brackets next to the respective question number within the 
section below. The direction of the questions in part 2 is determined by splitting 
responses at the middle. If the item is labelled ‘(+)’, those responses above the middle 
are given zero. Vice versa occurs for those with a ‘(-)’.  
 
Question numbers refer to the following factors: 
 
Dietary restraint: 4(T), 6(T), 10(F), 14(T), 18(T), 21(F), 23(T), 28(T), 30(F), 32(T), 
33(T), 35(T), 37(+), 38(+), 40(+), 42(+), 43(+), 44(+), 46(+), 48(+), 50(+) 
 
Disinhibited eating: 1(T), 2(T), 7(T), 9(T), 11(T), 13(T), 15(T), 16(F), 20(T), 25(F), 
27(T), 31(F), 36(T), 45(+), 49(+), 51(+) 
 
Hunger: 3(T), 5(T), 8(T), 12(T), 17(T), 19(T), 22(T), 24(T), 26(T), 29(T), 34(T), 
39(+), 41(+), 47(-) 
 
 
Suggested cut-points 
 
Dietary restraint: 0-10 = low restraint, 11-13 = high restraint, 14-21 = clinical 
range 
 
Disinhibited eating: 0-8 = low disinhibition, 9-11 = high disinhibition, 12-16 = 
clinical range 
 
Hunger: 0-7 = low susceptibility to hunger, 8-10 = high susceptibility to hunger, 
11-14 = clinical range 
 
 
 
Source 
 
 Stunkard AJ, Messick SM. The three-factor eating questionnaire to measure dietary 
restraint, disinhibition and hunger. Journal of psychometric research. 1985. 29(1): 71-
83. 
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Visual Analogue Scale 
Time: 

How hungry do you feel? 
I am not 
hungry 
   

I have never 
been 

   

How satisfied do you feel? 
I am 

completely 
  

I cannot 
eat 
  

 How full do you feel? 
Not at all 

 
Totally 

 

How much do you think you can eat? 
Nothing at 

 
A 

 

Place a mark on the horizontal lines below after considering the 
  

    
Humidity (%) Temperature (oC) 

Subject Number:______ Trial__________          Date:_______ 

APPENDIX E 
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APPENDIX F 
 

Food Preferences Questionnaire 
 

To complete, please assign each food item a rating on each 10 point scale after considering the 
following anchors: 1= dislike extremely; 10 like extremely 
 
Please indicate your selection by circling the relevant option 
 

Coco-pops 

 
 

Cornflakes 

1   2   3   4   5   6   7   8   9  10 

 

Frosties 

1   2   3   4   5   6   7   8   9  10 

 

Nutri-grain bars 

1   2   3   4   5   6   7   8   9  10 

 

White bread 

1   2   3   4   5   6   7   8   9  10 

 

Brown bread 

1   2   3   4   5   6   7   8   9  10 

 

Ham 

1   2   3   4   5   6   7   8   9  10 

 

Tuna 

1   2   3   4   5   6   7   8   9  10 

 

Cheese 

1   2   3   4   5   6   7   8   9  10 

 

 1   2   3   4   5   6   7   8   9  10 



 

 223 

Butter 

1   2   3   4   5   6   7   8   9  10 

 

Mayonnaise 

1   2   3   4   5   6   7   8   9  10 

 

Margarine 

   1   2   3   4   5   6   7   8   9  10 

 

Crisps (ready salted) 

1   2   3   4   5   6   7   8   9  10 

 

Apple 

1   2   3   4   5   6   7   8   9  10 

 

Orange 

1   2   3   4   5   6   7   8   9  10 

 

Banana 

1   2   3   4   5   6   7   8   9  10 

 

Muffins 

1   2   3   4   5   6   7   8   9  10 

 

Cookies 

1   2   3   4   5   6   7   8   9  10 

 

Chocolate rolls 

1   2   3   4   5   6   7   8   9  10 

 

Milk 

1   2   3   4   5   6   7   8   9  10 

 

NB: rating four or more items less than four resulted in participant non-inclusion 
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APPENDIX G 
 

Buffet items available at the cold buffet meals. 
(used in all studies) 

 
Cereals (3 varieties) 

Milk 
White Bread 
Brown Bread 

Cheddar Cheese 
Ham 
Tuna 

Salted Crisps 
Mayonnaise 

Butter 
Margarine 

Apple 
Orange 
Banana 

Chocolate Rolls 
Muffins 
Cookies 

Nutri-grain bars 
Chocolate bar 
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APPENDIX H 
 

Buffet items available at hot buffet meals 
(used in study four/Chapter  seven) 

 
Rice or Pasta 

Sweet & Sour Sauce – Tomato Sauce – Curry Sauce 
Naan bread or Bread Rolls 

Ice cream – Yoghurt – Tinned Mixed Fruit 
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