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Abstract 

 

This thesis presents fundamental research in the field of laser vibrometry for the 

application to vibration measurements. A key concern for laser vibrometry is the effect of 

laser speckle which appears when a coherent laser beam scatters from an optically rough 

surface. The laser vibrometer is sensitive to changes in laser speckle which result from 

surface motions not in the direction of the incident beam. This adds speckle noise to the 

vibrometer output which can be indistinguishable from the genuine surface vibrations. 

This has been termed ‘pseudo-vibration’ and requires careful data interpretation by the 

vibration engineer. This research has discovered that measurements from smooth 

surfaces, even when no identifiable speckle pattern is generated, can produce noise and 

therefore reference to speckle noise, in such circumstances, is inappropriate. This thesis 

has, therefore, adopted the more general term of pseudo-vibration to include noise 

generated from any surface roughness or treatment, i.e. including but not limited to 

speckle noise. 

 

This thesis develops and implements novel experimental methods to quantify pseudo-

vibration sensitivities (transverse, tilt and rotation sensitivity) with attention focussed on 

commercially available laser vibrometers and consideration is given to a range of surface 

roughnesses and treatments. It investigates, experimentally, the fundamental behaviour of 

speckles and attempts to formulate, for the first time, a relationship between changes in 

intensity to pseudo-vibration sensitivity levels. The thesis also develops and implements 

models for computational simulation of pseudo-vibrations using the fundamental 

behaviour of speckles. The combination of experimentation and simulation improves 

current understanding of the pseudo-vibration mechanisms and provides the vibration 

engineer with a valuable resource to improve data interpretation.  

 

Two experimental methods of quantifying pseudo-vibration sensitivity are developed and 

successfully applied in the evaluation of transverse, tilt and rotation sensitivity for two 

models of commercial laser vibrometer. These evaluations cover both single beam 

(translational vibration measurement) and parallel beam (for angular vibration 

measurement) modes. The first method presented requires correction of the vibrometer 

measurement with an independent measurement of genuine velocity to produce an 
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apparent velocity dominated by the required noise components. The second method 

requires a differential measurement using two vibrometers to cancel common components 

such as genuine velocity, leaving only uncorrelated noise from each measurement in the 

resulting apparent velocity. In each case, a third measurement is required of the surface 

motion component causing pseudo-vibration and this is used to normalise the apparent 

velocity. Pseudo-vibration sensitivity is then presented as a map showing the spectral 

shape of the noise, as a mean and standard deviation of harmonic peaks in the map and as 

a total rms level across a defined bandwidth. 

 

The simulations employ a novel and effective approach to modelling speckle evolution. 

Transverse and tilt sensitivity are predicted for the first time and are verified by the 

experimental study. They provide the vibration engineer with the potential to estimate 

pseudo-vibrations using a simple piece of software. 

 

The laser beam spot diameter has a large influence on the pseudo-vibration sensitivity. 

Transverse sensitivity has been quantified as around 0.03% and 0.01% (per order) of the 

transverse velocity of the surface for beam spot diameters of 100 µm and 600 µm 

respectively. Larger beam spots have been shown to significantly reduce transverse 

sensitivity and measurements from smoother surfaces have also shown a reduced level of 

transverse sensitivity. Tilt sensitivity has been quantified at about 0.1 µms
-1
/degs

-1
 and 0.3 

µms
-1
/degs

-1
 (per order) of angular velocity of the surface for beam spot diameters of 100 

µm and 600 µm respectively. Smaller beam spot diameters significantly reduce tilt 

sensitivity. The surface roughness or treatment has been shown to have little effect on the 

level of tilt sensitivity. Rotation sensitivity has been quantified at approximately 0.6 µms
-

1
/rads

-1
 and 1.9µms

-1
/rads

-1
 (per order) of rotation velocity of the rotor for 90 µm and 520 

µm. Smaller beam spot diameters have shown a significant reduction in rotation 

sensitivity and measurements on smoother surfaces have shown a reduced rotation 

sensitivity. Focussing the laser beam approximately on the rotation axis has also shown a 

significant reduction in rotation sensitivity. Parallel beam rotation sensitivity has been 

quantified at 0.016 degs
-1
/rads

-1
 and it is demonstrated that this can adequately be 

estimated using the single beam rotation sensitivity. 

 

KEYWORDS: Laser Vibrometer, Laser Doppler Vibrometry, laser speckle, vibration 

measurement, speckle noise, pseudo-vibration, transverse sensitivity, tilt sensitivity, 

rotation sensitivity. 
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1 Introduction 

The laser vibrometer is now well established as an effective, non-contact 

alternative to the use of a traditional contacting vibration transducer. Laser 

vibrometers are technically well suited to general application but offer special 

benefits where certain measurement constraints are imposed, for example by 

the context, which may demand high frequency operation, high spatial 

resolution or remote transducer operation, or by the structure itself, which may 

be hot, sensitive to mass loading or rotating. Despite all the capabilities laser 

vibrometry can offer, unresolved issues remain which cause uncertainty in a 

measurement and this thesis presents the study of a key concern associated 

with the laser speckle effect known as “speckle noise”. 

 

This introductory chapter opens with the principles of operation of the laser 

vibrometer, introducing the typical configurations commercially available and 

relevant to this thesis. This is followed by a description of the generation of 

laser speckle. Chapter 2 explains how laser speckle can cause significant levels 

of noise in a measurement with a laser vibrometer. It gives examples of 

situations where speckle noise can become a significant source of uncertainty 

(pseudo-vibration). This is the core motivation for the research examined in 

this thesis. It presents an experimental study of differential measurements, 

focussing on the novel measurement of dynamic backlash using two laser 

vibrometers. Attention is given to the significance of speckle noise which is 

always increased when differential measurements are required. 
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Chapter 3 examines literature, using the fundamental statistics of speckle 

intensity, to investigate the parameters used to describe laser speckle. Chapter 

4 continues the examination of the literature, using laser speckle statistics on 

the fluctuations of intensity, to study the relationship between particular 

surface motions and the resulting behaviour of the speckles. This proposes to 

analyse, statistically, the mechanisms which govern the generation of speckle 

noise in laser vibrometry. 

 

Using commercially available laser vibrometers, Chapter 5 presents detailed 

quantification of pseudo-vibration sensitivity produced from experimental 

analysis. This is a key novelty in this thesis. Pseudo-vibration sensitivity is the 

collective term (developed by this thesis) for the sensitivity to noise of a laser 

vibrometer from periodic surface motions which are not parallel with the 

optical axis. This is an important resource for data interpretation to the 

vibration engineer never before available to them. The chapter focuses on the 

most important sources of pseudo-vibration sensitivity: transverse sensitivity, 

tilt sensitivity and rotation sensitivity. The experimental study also examines 

the effect of surface roughness and treatment on the pseudo-vibration 

sensitivity.  

 

Chapter 6 uses the statistical tools, described in Chapter 3 and 4, to examine 

speckle behaviour using sequential images of speckle patterns in motion (using 

the actual speckle patterns generated). It presents the motion of the speckle 

pattern when the surface moves with the non-normal motions examined in 

Chapter 5. The chapter proposes to provide a relationship between the speckle 

motions and the pseudo-vibration sensitivity. The study of this association has 

never been examined before in laser vibrometry. 
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Pseudo-vibration sensitivities are estimated in Chapter 7 using numerical 

simulations, modelling speckles and their motions described in Chapters 3, 4 

and 6. The simulations verify the pseudo-vibration sensitivities measured 

experimentally in Chapter 5. The chapter concentrates on the simulation of 

pseudo-vibration sensitivities (transverse sensitivity and tilt sensitivity) never 

before studied numerically in laser vibrometry. 

 

Concluding remarks, summarising pseudo-vibration sensitivity in laser 

vibrometry together with practical means to minimise the effects of speckle 

noise, are made with recommendations for further research in Chapter 8. 

1.1 Principles of the laser vibrometer 

Laser vibrometry relies on the detection of a Doppler shift in the frequency of 

coherent light scattered from a moving surface. Light incident on a moving 

target undergoes a frequency shift proportional to the component of velocity in 

the direction of the laser beam. The scattered light is collected and the intensity 

is measured using a photodetector. Typically the electromagnetic wave, 

operating in the visible range in the spectrum, oscillates at 10
14

 Hz. The 

photodetector cannot respond fast enough to detect the Doppler shift in the 

target beam directly and therefore a reference beam is typically used to provide 

a carrier signal. Additionally, the reference beam is usually frequency pre-

shifted to avoid ambiguity of direction in the measured velocity. The scattered 

target beam is heterodyned with the reference beam on the photodetector, 

modulating the frequency. The fluctuating component of the intensity 

measured by the photodetector is usually referred to as the Doppler signal. 

Frequency demodulation of the Doppler signal yields a beat frequency which is 

the difference between the reference beam pre-shift frequency and the target 

beam Doppler shift frequency. A typical schematic arrangement is shown in 
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Figure 1.1. In this arrangement, the laser beam is amplitude divided into a 

reference and target beam by a beamsplitter. The target beam, Doppler shifted 

by fD, and the reference beam, frequency pre-shifted by fR, are mixed on the 

photodetector surface resulting in the beat frequency R Df f− . The signal is 

demodulated using an appropriate Doppler signal processor which produces a 

time-resolved signal analogue of the target vibration in the direction of the 

laser beam. 

 

 

Figure 1.1 - Typical vibrometer Configuration 

1.1.1 Derivation of the photodetector output 

The photodetector detects the intensity, I, of the target and reference beam 

mixed on the photodetector surface. The intensity is related to the time-average 

of the square of the total light amplitude and is given by 

 

 
2 2

( ) ( ) ( )R TI E t E t E t= = +  (1.1) 
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The reference beam contribution, ER(t), has amplitude, E0R, optical frequency, 

f, and phase, ФR, which has undergone a frequency pre-shift, fR. The target 

beam contribution, ET(t), has amplitude, E0T, optical frequency, f, and phase, 

ФT,  for a stationary target. The reference and target beam contributions, 

respectively, are as follows 

 

 ( ) ( )( )0 exp 2R R R RE t E j f f tπ = + +Φ   (1.2) 

 

 ( ) ( )( )0 exp 2 2T T D TE t E j ft f t dtπ π = + +Φ
 ∫  (1.3) 

 

When mixed on the photodetector surface the intensity is 

 

 ( ) ( )2 cos 2 2R T R T R D R TI I I I I f t f t dtπ π = + + − + Φ −Φ∫   (1.4) 

 

where 

 

 ( )
2

R RI E t=  (1.5a) 

and   

 ( )
2

T TI E t=  (1.5b) 

 

In this analysis IR+IT is constant. These terms are usually filtered either 

electronically or optically [1.1]. The higher frequency cosine term is the 

Doppler signal. Demodulation of this signal reveals the time derivative of the 

cosine argument which is related to the vibration velocity of the target as 

described in the next sub-section. 
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1.1.2 Doppler shift and target velocity 

 

 

Figure 1.2 - Doppler shift arrangement 

 

Figure 1.2 shows the arrangement of the laser beam and target by which the 

Doppler shift is calculated. If a beam of wavelength, λ, propagating through a 

medium of refractive index, µ, is incident on a solid surface which is vibrating 

with displacement in the direction of the beam of a(t), and the scattered beam 

is sensed at an angle, γS, then the Doppler shift frequency, fD, is given by [1.1] 

 

 
2 ( )

sin
2

S
D

da t
f

dt

γµ
λ

=  (1.6) 

 

The refractive index of air is usually considered as unity and the angle of the 

scattering direction is π for direct backscatter. Therefore the Doppler shift 

becomes 

 

 
2 ( )

D

da t
f

dtλ
=  (1.7) 
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Equation (1.4) can therefore be re-written as 

 

 [ ]2 cos 2 2 ( ) ( )R T R T R R TI I I I I f t ka tπ= + + − + Φ −Φ  (1.8) 

 

where k is the wavenumber. Frequency demodulation of the cosine term yields 

the beat frequency, fB, and it follows that 

 

 
( )2

B R R D

da t
f f f f

dtλ
= − = −  (1.9) 

1.1.3 Commercial laser vibrometers 

The principal operation is very similar for all laser vibrometers. This section 

describes a couple of optical configurations most commonly used, single beam 

and parallel beam configurations. Both these configurations are used in this 

thesis. Single beam laser vibrometers are suitable for measurements of surface 

translation. The optical configuration of a typical translational commercial 

laser vibrometer (Polytec OFV-302) is shown in Figure 1.3. A polarised laser 

beam is emitted from the laser. Beam splitter, BS1, transmits and reflects 

orthogonal polarisations of the beam which respectively become the target and 

reference beams. The target beam passes through beam splitter, BS2, quarter 

wave plate, QWP, and focusing lens before it is incident on the target. The 

QWP ensures the backscattered light is reflected at BS2 and directed towards 

beam splitter BS3. The reference beam is frequency pre-shifted by a Bragg cell 

(BC). The Doppler shifted target beam and frequency pre-shifted reference 

beam are combined at BS3. BS3 reflects and transmits the modulated signal 

directing the resulting two beams towards photodetectors PD1 and PD2. The 

reflected and transmitted signals are in anti-phase and the resulting two signals 

are combined using a differential pre-amp. The fundamental operation of this 
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vibrometer is the same as that shown in Figure 1.1 producing an output signal 

which is proportional to the velocity of the surface in the direction of the beam.  

 

 

Figure 1.3 - Polytec OFV-302 vibrometer Optical configuration 

 

Laser rotational vibrometers offer advantages for measuring angular vibrations 

on rotating targets by virtue of their capabilities for non-contact measurement, 

their insensitivities to whole body translational motions and also to target cross 

sectional profiles. Differential measurements, such as shaft torque, belt slip or 

backlash can be useful in the assessment of system and or component integrity. 

Difficulty in acquiring such measurements increases when the components 

under investigation are rotating. The laser rotational vibrometer is a prime 

candidate for acquiring such measurements. Often a measurement of the 

rotational velocity is required, whether it be the whole body angular velocity 

(DC component) or the torsional/angular vibration (AC component). Parallel 

beam vibrometers are suitable for measuring the angular velocity of a target 

surface. Figure 1.4 shows a typical application of a parallel beam vibrometer. 

The parallel beam arrangement offers an inherent insensitivity to the target 

shape and the translational motions of the target surface. The operation of the 

parallel beam vibrometer is in essence a differential measurement.  
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Figure 1.4 - Typical use of a parallel beam laser vibrometer 

 

Each laser beam is Doppler shifted by the component of velocity in the 

direction of the beam. The Doppler shift in each beam will often be a 

combination of the whole body translational motion and a component of the 

tangential velocity of the surface in the direction of the beam. The whole body 

translational motion, Doppler shifting both beams, is identical and this 

information is cancelled in the beat signal (either optically or electronically). 

The beat frequency is the modulus of the difference in the Doppler shifted 

beams leaving a Doppler frequency, similar to equation (1.7), which can be 

expressed as  

 

 ( )2
Df d t

λ
= Ω  (1.10) 

 

where d is the perpendicular distance between beams and Ω is the angular 

velocity of the target. The vibrometer’s output is proportional to the angular 

velocity of the target surface. 
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1.1.4 Gaussian beams 

Typically a laser vibrometer will use a He-Ne laser operating in the 

fundamental mode TEM00 producing a Gaussian electric field in the transverse 

plane of the beam. The optical power is therefore concentrated circularly 

symmetrically around the optical axis.  

 

 

Figure 1.5 - Gaussian beam profile 
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Figure 1.6 - Example of measured diameters of the propagation of a laser beam emitted from 

commercial laser vibrometer (Polytec OFV302) 
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As shown in Figure 1.5 and Figure 1.6, the beam diameter, D, is defined by the 

locus of intensity bound by exp[-2] of the value on the optical axis and is given 

as [1.2] 

 

 

1
2 2

0
0 2

0

4
1

z
D D

D

λ
π

  
 = +     

 (1.11) 

 

where D0 is the beam diameter at the beam waist, z0 is the propagation distance 

from the beam waist and λ is the wavelength of the beam. Figure 1.6 presents 

measurements of the diameter of a laser beam from a commercial laser 

vibrometer. The measurements are shown by the data points and are taken, 

using a beam profiler, at a range of displacements near the laser beam’s waist 

and along it’s trajectory. The line shows a fit to the data points, which 

highlights the boundary of the laser beam, identified by the normalised 

intensity exp[-2] criteria. A Gaussian beam has wavefronts which are spherical 

and the radii of curvature reach a minimum and increase with advancing 

propagation towards the beam waist. The curvature becomes planar at the beam 

waist. The radius of curvature, r, can be expressed as follows 

 

 

2
2

0
0

0

1
4

D
r z

z

π
λ

  
 = +     

 (1.12) 
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1.2 Laser Speckle 

1.2.1 History of laser speckle 

In the early 1960’s, the development of the continuous wave laser resulted in 

the first observations of laser speckle. The appearance of laser speckle was 

described as “granular or peppery” [1.3] and “sparkling” in nature [1.4]. 

However this was not the first occurrence of such a phenomenon. During the 

late nineteenth century a great deal of interest arose around the phenomenon of 

interference in scattered light such as that encountered with Newton’s diffusion 

rings [1.5] or Quételet’s fringes. In 1877, Exner sketched the radially granular 

speckle pattern observed when shining candle light through a glass plate on 

which he had breathed. Later in 1914, von Laue produced a photograph of 

Fraunhofer rings clearly showing a radial granular pattern akin to that seen by 

Exner [1.6]. In early work, the laser speckle phenomenon was not held in the 

highest regard, described by Gabor as “Enemy Number One of Holography” 

[1.7]. However the reputation this foe has in holography has since been re-

evaluated in such applications as the measurement of surface roughness [1.8], 

[1.9], [1.10], Electronic Speckle Pattern Interferometry (ESPI) [1.11], Stellar 

Speckle Interferometry [1.12] and shaft torque measurement [1.1], [1.13]. 

However, laser speckle remains a limiting factor in applications such as laser 

vibrometry with which this thesis is concerned. 

1.2.2 Laser speckle generation 

Typical target surfaces encountered by the vibration engineer are optically 

rough. The surfaces have sufficient roughness, which is comparable to the 

wavelength, and the lateral scale of the surface is exceeded by the laser beam. 

Illumination of a rough surface leads to diffuse reflection and the micro-scale 
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surface elements cause the coherent component wavelets to become de-phased. 

Propagation of these coherent but de-phased wavelets leads to interference and 

a chaotic distribution of intensity. This intensity distribution, full of light and 

dark regions caused by constructive and destructive interference respectively, 

is referred to as a speckle pattern. Diffuse scatter from an optically rough 

surface causes the phase distribution of the scattered component wavelets to 

occupy a 2π range resulting in a fully developed speckle pattern as shown in 

Figure 1.7.  

 

 

Figure 1.7 - Typical fully developed speckle pattern 

 

Illumination of smoother surfaces, whereby the scattered wavelet phases do not 

occupy a full 2π range, produces partially developed speckle patterns together 

with elements of specular reflection such as that shown in Figure 1.8. 
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Figure 1.8 - Typical partially developed speckle pattern 

 

Smooth, mirror-like surfaces cause specular reflection and no speckles are 

formed. A study of scatter from surfaces with different roughness is described 

in Chapter 6. 

1.3 Laser vibrometry 

The technique of laser vibrometry on solid surfaces was developed from non-

intrusive fluid flow measurements [1.14] and is now well established as a 

reliable non-contact alternative to traditional contacting transducers such as 

accelerometers. The range of applications where laser vibrometry is employed 

is vast, a few of which are in areas of mechanical engineering [1.15]; 

automotive and aeronautical engineering [1.16]; MEMS [1.17]; artwork; 

archaeology; civil engineering; the military and defence[1.18]; Bioacoustics 

and Biological systems [1.19], [1.20]. Development of the laser vibrometer has 

brought about many variations of the product including single point 

translational; rotational; continuous scanning and tracking; In-plane; 3D 

scanning; multi-beam and differential laser vibrometers. Fundamentally these 
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vibrometers operate in the same way and the limitations and uncertainties are 

applicable throughout. Speckle noise is a main source of uncertainty in a 

measurement with a laser vibrometer [1.21]. Some effort has been made to try 

and understand speckle noise [1.1], [1.18], [1.22], [1.23]. Parameters such as 

beam diameter, standoff distance; surface roughness and the surface vibration 

are expected to influence speckle noise but as of yet little is understood about 

how much they effect the signal or the fundamental mechanisms which 

generate it. This thesis addresses this deficiency. The following chapter 

describes how laser speckle can affect a measurement, and why speckle noise 

is of concern in laser vibrometry. 
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2 Laser speckle in laser vibrometry 

2.1 Laser speckle 

2.1.1 Diffuse scatter 

Laser vibrometers measure the component of target surface velocity in the 

direction of their incident beam. However it is not unusual in practical 

applications, due to limited space or access, for it to be impossible to measure 

the velocity component under scrutiny from a position normal to the surface. In 

these circumstances the inherent angular spread of the diffuse scatter can be 

used to benefit the technique and make an otherwise impossible measurement 

attainable. Diffuse scatter, inherent with speckle patterns, is typically required 

for measurements on rotors, where the surface normal can easily cause the 

reflected angles to deviate from the optical axis. Smooth surfaces producing 

principally specular reflection with little or no speckle can reflect the light 

away from the receiving aperture causing an unattainable vibration velocity. 

 

When light levels are too low from the diffuse scatter or when the specular 

reflection misses the receiving aperture it is not uncommon to treat the surface 

in some way, with paint, developer powder or more commonly retro-reflective 

tape to increase the backscattered returning light intensity. Retro-reflective tape 

increases the backscattered light intensity by concentrating the scattered light 

back along the optical axis. Figure 2.1 shows the surface of retro-reflective tape 
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at a microscopic level. The tape consists of many nominally spherical glass 

beads, approximately 50µm in diameter, embedded into a substrate. The 

substrate reflects the light and the bead refracts the scatter back towards the 

source. The spherical shape of the beads introduces, in essence, small circular 

apertures which when the light scatters from the surface produces an Airy disc 

in backscatter with its peak intensity on the optical axis. However the 

backscattered light still consists of many de-phased wavelets and superimposed 

on the Airy disc is a speckle pattern. The following section describes how the 

laser speckle effect affects a measurement in laser vibrometry. 

 

 

Figure 2.1 - Electron Micrograph of the surface 

of retro-reflective tape 

 

Figure 2.2 - Speckle pattern produced from 

retro-reflective tape 

2.1.2 Speckle noise 

Practical applications of laser vibrometry often encounter surfaces that are 

optically rough. More often than not a speckle pattern will form the target 

beam contribution to the Doppler signal. In certain circumstances the motion of 

the surface causes the speckle pattern to change over time and therefore 

modulation of the reference beam results in a Doppler signal which also has a 

time dependent amplitude, Ires(t), and, importantly, phase Фres(t). Equation 

(1.8) can be rewritten 
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( ) ( )2res R TI t I I t=

 

 ( ) ( ) [ ]cos 2 ( ) ( )R T res R resI I I t I t t ka t tω= + + − +Φ  (2.1) 

 

where   and . Demodulation of the 

cosine argument results in a beat frequency  

 

 
( )2 ( ) 1

2

res
B R

d tda t
f f

dt dtλ π
Φ

= − +  (2.2) 

 

and with the Doppler signal phase now a function of time, uncertainty is added 

to the measurement of the surface vibration velocity. This modulation occurs 

irrespective of the amplitude of the signal and can be a significant source of 

broadband noise known as speckle noise. 

 

The term ‘speckle noise’ is sometimes used to describe ‘drop outs’ in the 

output signal from the laser vibrometer [2.1], [2.2], [2.3]. This interpretation 

over-emphasises the importance of amplitude modulation in the generation of 

speckle noise. Speckle motions do cause amplitude and phase modulation and 

these will commonly occur in unison. Drop outs are attributed to low levels of 

Doppler signal amplitude which can be the result of low levels of returning 

light or an unfortunate summation of speckles. When the latter occurs, 

significant changes in phase also follow. Therefore, when the Doppler signal 

amplitude is low the likelihood of large phase changes is increased. However, 

phase changes can occur irrespective of the amplitude of the Doppler signal 

and speckle noise is present even when the amplitude is sufficient for accurate 

demodulation. 

 

Speckle noise is of particular concern if surface motions are periodic. This 

causes the speckle noise itself to be periodic, with the same fundamental 

( ) ( )res R Tt tΦ = Φ −Φ
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frequency as the surface vibration frequency. In fact, for periodic motions, 

speckle noise is pseudo-random with energy at many harmonics of the 

fundamental frequency and importantly this occurs even when surfaces are 

vibrating with a single frequency [2.4], [2.5], [2.6] as shown in Figure 2.3.  
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Figure 2.3 - Typical spectrum showing speckle harmonics.  

Speckle noise from target vibrating in-plane 

 

The concentration of energy at the frequencies likely to be of most interest to 

the vibration engineer is particularly problematic making speckle noise 

indistinguishable from the genuine vibration velocities. For this reason, the 

term “pseudo-vibration” [2.4] has been used. This noise is generally considered 

as low level but, as yet, it has not been adequately quantified. The implications 

of this are that a great deal of interpretation is required, particularly when low 

level genuine vibrations are concerned. Experimental data in Chapter 5 

together with simulated data in Chapter 7 attempt to address this deficiency by 

quantifying speckle noise levels for the first time for fundamental surface 

motions of in-plane, tilt and rotation. 
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2.2 Pseudo-vibration 

Pseudo-vibration is attributed to speckle motions on the photodetector. The 

terms ‘pseudo-vibration’ and ‘speckle noise’ have been used interchangeably 

but, as shown in Chapter 5, pseudo-vibration is apparent even when speckles 

are not such a prominent feature of the scatter, i.e. from smoother surfaces. 

This section looks at speckle noise in measurements from target surfaces 

moving transverse to the optical axis, tilting and rotating and shows why 

pseudo-vibration is of such concern. 

2.2.1 A surface translating transverse to the optical axis 

Figure 2.4 shows a measurement from a surface which is moving transversely 

to the optical axis of the beam, together with the transverse velocity of the 

target surface. The surface motion in the direction of the beam is nominally 

zero and yet the vibration engineer, assessing this data, sees the apparent 

velocity fluctuating with a distinctive repetition at the same period as the 

surface motion. The apparent velocity shown is collected under controlled 

experimental procedures and the data trace is, in this case, dominated by 

pseudo-vibration. Generally the vibration engineer will likely misinterpret the 

data. However, using knowledge of the vibration characteristics of the structure 

or that of speckle noise from an experienced vibrometer user, they may attempt 

to reconcile the inherent uncertainty.  
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Figure 2.4 - Typical data of the apparent and transverse velocity using a beam spot diameter of 

D=600µm on a surface with Ra 1.0µm. 

 

The vibration engineer can attempt to assess the uncertainty in the frequency 

domain and this is discussed in the next sub-section. Transverse sensitivity, 

quantified in Chapter 5, can be used to ascertain the uncertainty in a 

measurement, such as the one presented in Figure 2.4. 

2.2.2 A tilting surface 

Figure 2.5 shows a typical spectrum of a ‘measurement’ from a surface which 

is tilting and has nominally zero vibration in the direction of the beam. This 

spectrum shows distinct peaks across a very broad frequency range, 

characteristic of a signal which is dominated by pseudo-vibration. Pseudo-

vibration is broadband and can occupy hundreds of harmonics with the same 

fundamental frequency as the genuine surface motion.  
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Figure 2.5 – A typical spectrum of apparent velocity dominated by speckle noise from a tilting 

target. 

 

Depending on the laser vibrometer configuration and the surface motion, the 

amplitude of these harmonics do not diminish over many harmonics and they 

can be seen to sporadically increase or decrease as the harmonic order 

increases. It is not unusual for genuine vibrations to be sinusoidal with 

harmonic distortion but these genuine motions typically cover a smaller 

number of harmonics at a much lower band of frequencies, with the amplitude 

generally dropping as the harmonic order increases. With this knowledge of the 

vibration characteristics of the structure the vibration engineer can make a 

judgement by observing the amplitude of the peaks in the frequency domain as 

the harmonic order increases. However, this is not always the case and genuine 

vibrations of the structure can occupy broad frequency bands. Without 

knowledge of speckle noise, the vibration engineer, could misinterpret the data 

in Figure 2.5 as a genuine vibration, particularly if only observing a frequency 

range covering the first few orders. Chapter 5 quantifies tilt sensitivity and this 

information can be used, by the vibration engineer, to determine the expected 

amplitude, at each order, in data such as that presented in Figure 2.5. 
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2.2.3 A rotating surface 

Target rotation is another surface motion causing pseudo-vibration. Figure 2.6 

shows data from a radial vibration measurement [2.7] from a 4-stroke, 4-

cylinder, 2-litre diesel engine. The vibrometer’s laser beam is aligned on the 

circumferential surface of the flywheel, measuring the radial vibration of the 

engine’s crankshaft. 

 

 

(a) 
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(b) 

Figure 2.6 – Radial vibration of 4-stroke, 4-cylinder, 2-litre diesel engine (a) time and (b) 

frequency domain [2.7] 

 

Figure 2.6 (a) is the radial vibration measurement in the time domain showing 

higher frequency components superimposed on the lower frequency 

components. The higher frequency components may be genuine velocity, but 

the vibration engineer should be questioning this. The speckle pattern will 

repeat at the same frequency as the rotation and so one should expect pseudo-

vibration at the rotation frequency plus many harmonics. Figure 2.6 (b) shows 

the radial vibration measurement in the frequency domain presented in terms of 

rotation order. Many harmonic peaks can be seen with a fundamental ½ order 

rotation typical of 4-stroke engine vibration. Therefore, pseudo-vibration will 

coincide with the genuine vibration at integer harmonics and it is difficult to 

distinguish the pseudo-vibration from genuine vibration. Chapter 4 addresses 

this by quantifying rotation sensitivity. From this the vibration engineer can 

determine the level of noise expected at each harmonic order of the rotation 

frequency. 
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2.2.4 Parallel beam laser vibrometer configuration 

This particular measurement involves using a vibrometer which emits a pair of 

parallel laser beams, quantifying the rotation velocity through a difference in 

the velocity. This sort of measurement and, indeed, any differential 

measurement exacerbates the effects of speckle noise in the output of the 

vibrometer. Figure 2.7 shows a measurement of the rotation speed of the afore-

mentioned 4-cylinder diesel engine using a parallel beam vibrometer [2.7]. 

 

 

(a) 
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(b) 

Figure 2.7 – Rotation velocity of 4-stroke, 4-cylinder, 2-litre diesel engine (a) time and (b) 

frequency domain using parallel beam vibrometer [2.7] 

 

Figure 2.7 (a) is the temporal data of the rotation velocity and, on the scale 

shown, subtle fluctuations in the velocity can be seen. In the frequency domain, 

shown in Figure 2.7 (b), this can be seen as harmonic peaks with a ½ order 

fundamental. Some of this will likely be genuine torsional vibrations but 

pseudo-vibration is also affecting this data. The question can reasonably be 

raised, how much speckle noise can be expected on this measurement? This 

question can be answered using the rotation sensitivity for parallel beams 

quantified in Chapter 5. 

2.2.5 Differential measurements 

Any differential measurement exaggerates the effects of speckle noise. This is 

even more the case when performing a differential measurement using two 

parallel beam laser vibrometers. Figure 2.8 shows a differential velocity 
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measurement [2.8] between the crankshaft pulley and alternator pulley of a 

diesel engine. Two laser rotational vibrometers are used to measure the angular 

velocity of the two pulleys. A difference is calculated from the tangential 

velocities and the resulting spectrum is shown in Figure 2.8. 

 

 

Figure 2.8 – Differential velocity measurement across an alternator belt of a diesel engine [2.8] 

(n is rotation order) 

 

In this measurement Bell [2.8] highlights that the magnitude of the resulting 

velocity is typically large in comparison to the speckle noise levels. This was 

an assumption, a reasonable one by an experienced vibrometer user, but an 

assumption none the less. Bell raises the point that, without further progress, 

speckle noise is a limiting factor for other such measurements where 

differences in the measured velocities can be small such as in a measurement 

of shaft twist, requiring closely spaced measurements axially separated along 

the shaft. This deficiency is addressed from the experimental study shown in 

Chapter 5. 
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One situation where distinguishing the genuine differences in velocity 

fluctuations could by limited by speckle noise levels is in measurement of 

dynamic backlash in a gear train. The next section investigates the possibility 

of this novel measurement with particular consideration given to speckle noise. 

2.3 Pseudo-vibration in differential measurements: dynamic 

backlash  

Using two laser rotational vibrometers, it was proposed that a novel differential 

measurement can be performed to measure the dynamic backlash within a 

meshing pair of rotating gears. The individual measurements will contain 

speckle noise and the uncorrelated nature of the speckle patterns amplifies the 

effect of speckle noise in the differential measurement. For the purposes of 

verification, images of the mesh point were produced using a high speed digital 

camera. 

2.3.1 Experimental Configuration 

Figure 2.9 (a) shows the experimental setup. Two rotational vibrometers 

measure oscillations in rotational velocity on a meshing pair of rotating spur 

gears. The two pairs of beams were incident on the bosses of the respective 

gears and aligned parallel with each other and perpendicular to each rotational 

axis as shown in Figure 2.9 (b). The gears had pitch circle diameters (PCD) of 

72mm and 40mm with 90 teeth and 50 teeth respectively, with a circular pitch 

of 2.513mm. Drive was via direct coupling of a 12V DC motor to the 40PCD 

gear with the 72PCD gear unloaded. Each gear boss was treated with retro-

reflective tape. The meshing point of the gears was white light illuminated with 

a halogen lamp and imaged with a high speed digital camera which had a frame 

rate of 4.5kHz and a spatial resolution of approximately 28µm/pixel. The 
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motor was driven with a DC voltage on top of which a nominally sinusoidal 

oscillation can be induced. The variation in motor drive voltage promotes a 

fluctuation in rotational speed of the drive gear and sets up a dynamic backlash. 

 

 

 

(a) (b) 

Figure 2.9- Experimental set-up of dynamic backlash measurement 

 

Dynamic backlash is calculated using the relative tangential separation 

between a pair of meshing rotating spur gears over a time period. The relative 

tangential separation, s(t) is given by 
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where subscripts A and B denote relation to gears A and B respectively, rA and 

rB are the contact radii, θA(0) and θB(0) are the initial angular positions, 
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A A AΩ = Ω + ∆Ω and
B B BΩ = Ω + ∆Ω , ΩA and ΩB are the total angular velocities, 

AΩ and 
BΩ are the mean angular velocities and ∆ΩA(τ) and ∆ΩB(τ) are the 

alternating components of the angular velocities. The first bracketed term is the 

initial relative position. This cannot be extracted from the vibrometer data and, 

unless acquisition is taken from a known relative position which in general is 

impractical, this quantity will remain unknown. The second bracketed term is 

the mean component of the relative tangential displacement and is zero for 

meshing gears. The third term is the alternating component of the relative 

tangential displacement and is defined here as the dynamic backlash. 

 

The backlash in the gears is governed by the contact radius for each gear. It is 

entirely possible that the separation distance between centres of rotation may 

not be the sum of the pitch circle radii, in which case contact will not occur at 

the pitch circle radii. The contact radii are dictated by the number of gear teeth, 

the distance between the centres of rotation and the pitch circle radii but the 

tangential velocities of each gear are always equal at the contact position when 

there is contact and the ratio of mean angular velocities is always uniquely set 

by the ratio of the number teeth. Therefore, the following relationships apply 
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 (2.4) 

 

where NA and NB are the number of teeth on each gear, rAPCR and rBPCR are the 

pitch circle radii, and ∆rA and ∆rB are the distances from pitch circle radii to 

the point of tooth contact along a line between the axes of rotation of the gears. 

The pitch circle radii are known quantities and are convenient as a means for 

comparison between gear sets. However any relative tangential position can be 

measured as long as the radial positions conform to the ratio as seen in 

Equation (2.4). Therefore, dynamic backlash is further defined as the time 
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dependent tangential separation at the pitch circle radii using the third term in 

Equation (2.3). 

2.3.2 Verification using high speed digital camera 

Verification of the dynamic backlash is made by correlating data calculated 

from the vibrometers with measurements taken from video images. 

Verification is made at the pitch circle radii, but with knowledge of the 

separation it is possible to calculate the relative tangential displacement at the 

radial contact position. The video footage from the high speed camera is 

dissected into its individual frames. Pixel measurements of the circular pitch 

are made and a spatial resolution calculated. Pixel measurements are taken 

from between teeth at the pitch circle radii and converted into a backlash 

measurement. A backlash range can be found by measurements taken from 

subsequent tooth face impacts. 

 

Figure 2.10 shows an example of the method by which the measurements are 

taken to calculate the backlash range. A vertical broken line shows the position 

of the pitch circle radius of the bottom drive gear and a vertical solid line 

shows the position of the pitch circle radius of the top driven gear. In frame 

00180 at the pitch circle radii there is a tangential distance of 11 pixels which 

equates to a backlash measurement of -0.307mm, in frame 00218 the backlash 

measurement is 0.195mm, therefore the dynamic backlash range equates to 

0.5026mm. 
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Figure 2.10 - Backlash measurement on consecutive tooth face impacts. 

2.3.3 Dynamic backlash using two laser rotational vibrometers 

Experiments have been conducted with sinusoidal rotational excitation of the 

drive gear, with and without whole body rotation. With whole body rotation 

and sinusoidal oscillation, the gear undergoes a speed fluctuation about the 

mean rotational speed. With sinusoidal excitation, only, the gear oscillates 

angularly about a mean position. 

 

Figure 2.11 is an extract from video footage of a 60Hz sinusoidal oscillation of 

the drive gear in the absence of whole body rotation. The individual frames 

show the meshing process with 13 frame intervals. Imaged is the mesh point of 

a drive gear (bottom) and driven gear (top). For oscillating targets with or 

without whole body rotation, the motion of the gears can be described as 

follows: 

 

Frame 1: Teeth in contact, clockwise rotation of the drive gear and anti-

clockwise rotation of the driven gear. 
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Frames 2&3: After reaching the extreme of its oscillation cycle, the drive gear 

begins to rotate anti-clockwise, contact is lost and the driven gear continues to 

rotate anti-clockwise.  

Frame 4: Drive gear continues to rotate anti-clockwise until impact occurs 

between teeth. This rapidly decelerates the driven gear and causes it to rotate 

clockwise. 

Frames 5&6: After reaching the extreme of its oscillation cycle, the drive gear 

begins to rotate clockwise again, contact is lost and the driven gear continues to 

rotate clockwise. 

 

With whole body rotation, the behaviour of the gears is identical, the 

oscillations are simply superimposed on top of the mean rotations. 

 

 

Figure 2.11–Video footage showing gear motion with 60Hz sinusoidal excitation (no whole 

body rotation). Bottom gear is the drive gear and top gear is the driven gear. 

 

For the drive gear rotating at 217rpm (rotation speed is limited to 

approximately 280rpm when using the high speed video) with a 60Hz 

sinusoidal excitation, Figure 2.12 shows the dynamic backlash as calculated 

from Equation (2.3). Figure 2.13 displays the dynamic backlash at the pitch 

circle radii for a gear set with 60Hz sinusoidal oscillation but without whole 

body rotation. The dynamic backlash ranges and duration of events are 

consistent between Figure 2.12 and Figure 2.13. This confirms that this method 

can reliably evaluate backlash under rotating conditions. A periodic waveform 

of fundamental frequency 60Hz is observed and this is attributed to the 

sinusoidal modulation of the drive. Interpretation of the waveform is consistent 

1 2 3 4 5 6
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with the process described in Figure 2.11. The sections of virtually zero slope 

at (approximate) maxima and minima are the periods of tooth contact, on 

average of 2.3ms duration. This duration is consistent with the 2.4±0.2ms 

estimated from the relevant frames of the video footage. Within these regions 

of tooth contact are small oscillations. The magnitude of these oscillations is 

below 8µm which is below the resolution limit of the camera. These 

oscillations are likely to be a bounce [2.9]. The sections with a large change in 

dynamic backlash equate to periods where the driven gear is not in contact with 

the drive gear and this is the transition stage from one tooth face to another. 

The average duration of this transition is estimated to be 5.9ms which is a little 

larger than the 5.5±0.2ms estimated from the video footage. The dynamic 

backlash range on average is 0.51mm which, as described in Section 2.3.2, is 

consistent with that found from the video footage. 

 

 

Figure 2.12 - Backlash with sinusoidal excitation at 60Hz, with whole body rotation of the 

drive gear at 217rpm  
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Figure 2.13 - Backlash with sinusoidal excitation at 60Hz, without whole body rotation 

 

This limited rotational speed is not representative of typical industrial 

applications so experiments were conducted to observe any issues associated 

with a measurement at increased rotational speed. Figure 2.14 shows calculated 

backlash when the drive gear is rotating at 1800rpm with a periodic but 

harmonically distorted oscillation with a 50Hz fundamental frequency 

superimposed on the drive. This oscillation is a prominent feature of the 

waveform containing regions of tooth contact and also periods of tooth 

separation. In this experiment, a reduced gear separation of the centres has 

resulted in a slightly decreased peak dynamic backlash. 
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Figure 2.14 – Backlash, drive gear rotating at 1800rpm and oscillating with 50Hz fundamental 

frequency. 

 

Speckle noise is present in the data presented in Figures 2.12 to 2.14. However 

it is difficult to observe the specific influence speckle noise has on the dynamic 

backlash measurement and therefore this is to be investigated using simulation 

which is discussed in the next sub-section. 

2.3.4 Simulation of dynamic backlash 

The effect speckle noise has on the dynamic backlash measurement technique 

has been examined through simulation. The simulator begins with the user 

specified information regarding the acquisition, experimental information such 

as the number of gear teeth and also information about the signal waves. Two 

sine waves are created and then adjusted to replicate the motion of the gears. 

The gear set motion has been simplified and scaled appropriately to create two 

waveforms to represent the voltage outputs from the vibrometers as shown in 

Figure 2.14. In the simulation, the drive gear oscillates sinusoidally and the 
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driven gear remains at a constant velocity until tooth contact occurs. The drive 

gear sinusoidal motion has been clipped to make the angular velocity constant 

during periods of contact. The duration of contact is made equivalent (15% of 

period) to that observed in real vibrometer data and video footage. To simulate 

speckle noise, pseudo-random signals are created by a normally distributed 

random number generator. The signals repeat at the same frequency as rotation 

frequency and are scaled in accordance with an estimate from the noise seen on 

the real vibrometer data. 

 

 

Figure 2.15 - Simulated signals of vibrometer output without the addition of speckle noise 
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Figure 2.16 – Calculated dynamic backlash from simulated vibrometer outputs before and after 

the addition of noise. 

 

The influence speckle noise has on the time series is shown in Figure 2.16. The 

calculated dynamic backlash, with the addition of speckle noise, shows a drift 

across the data length in comparison to the dynamic backlash data without 

additional noise. This is due to the integration of low frequency information 

added by the influence of speckle noise. Small variations in the backlash can 

also be seen and this is also due to the influence of speckle noise. The pseudo-

random signals, created to simulate speckle noise, produce peaks at the 

fundamental frequency of simulated rotation and subsequent harmonics which 

maintain their amplitude up to a high order. The fundamental frequency of the 

drive sinusoidal oscillation is a dominant component within the spectrum.  
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Figure 2.17 - Backlash calculated with integration in time domain (black) and frequency 

domain (green, hanning windowed to reduce leakage). Drive gear rotating 1000rpm, oscillation 

at 60Hz 

 

 

Figure 2.18 – Pseudo-random signal harmonics (speckle harmonics) on backlash spectrum 

1st Driven gear 

harmonic (9.25Hz) 

1st Drive gear 

harmonic (16.67Hz) 
1st Harmonic from 

backlash (60Hz) 

1st Harmonic (60Hz) 

3rd Harmonic (180Hz) 

5th Harmonic (300Hz) 
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Figure 2.17 shows the 1
st
, 3

rd
 and 5

th
 harmonic of the oscillation frequency. The 

calculated backlash exhibits odd diminishing harmonics and is typical of the 

spectrum produced by a square wave. Evident are also the harmonics of the 

pseudo random signal simulating the speckle repetition, Figure 2.17. The 

simulation mimics the experimental data seen in Figure 2.12. Leakage is a 

significant factor for consideration in spectral analysis as it spreads the energy 

to adjacent frequencies and therefore diminishes the content at specific 

frequencies. Leakage adds low frequency content to the spectrum which is 

exaggerated by the integration. Visualisation in the time domain requires the 

inverse Fourier Transform function to be applied to the backlash data. On 

performing the inverse Fourier transform of the backlash, the lower frequency 

content caused by leakage is apparent. Windowing reduces the effect of 

leakage but on performing the inverse Fourier transform, the data becomes 

distorted at the extremities of the data length. It can be seen from Figure 2.17 

and Figure 2.18 that windowing and using the frequency domain integration 

retains lower level information. 

 

Figure 2.19 shows a comparison of the simulated backlash and the measured 

experimental backlash using frequency domain integration. The simulated 

backlash is scaled to the same level as that seen in the experimental data. 

Evident in both experimental and simulated backlash data are peaks associated 

with speckle periodicity. The speckle periodicity is apparent at both drive gear 

and driven gear rotation frequencies and is evident in the experimental and 

simulated backlash. 
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Figure 2.19 – Experimental (blue) and Simulated (red) backlash using frequency domain 

integration, drive gear rotating at 1300pm with 50Hz oscillation. 

 

If the gears were the same size then the influence of speckle noise from each 

gear would occur at the same frequency. This would amplify the affect of 

speckle noise, statistically, by a factor of about 2 . Additionally if the 

oscillation frequency of the drive gear operates at the same frequency as either 

of the rotation frequencies then speckle noise would be coincident with the 

genuine angular vibration and more difficulty would be found in interpreting 

the data. However, this research has shown that although speckle noise does 

influence the differential measurement, dynamic backlash can be measured 

successfully. 

1st Harmonic due to 

speckle noise (Driven 

gear, 12 Hz) 

1st Harmonic due to 

speckle noise (Drive 

gear, 21.7 Hz) 

1st Harmonic due to drive 

oscillation (50 Hz) 

2nd Harmonic (Driven 

gear, 24 Hz) 

3rd Harmonic (Driven 

gear, 36.1 Hz) 
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A novel measurement of dynamic backlash has been presented showing the 

influence speckle noise can have in a differential measurement. In the 

simulation of dynamic backlash an estimate was made of the level of speckle 

noise (from the experimental data). Although this estimate indicated the 

influence pseudo-vibration can have in a differential measurement it was not 

sufficient to predict the sensitivity. The rotation sensitivity for parallel beam 

vibrometers described in Chapter 5 is sufficient to predict the rotation 

sensitivity for each rotational vibrometer. Therefore if the frequency of the 

whole body rotation of one or both gears is coincident with the oscillation 

frequency the rotation sensitivity for parallel beam vibrometers can be used to 

better interpret the apparent dynamic backlash observed. 
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3 Properties of a stationary speckle 

In a laser vibrometer, the light incident on the photodetector surface consists of 

the contributions from a target beam and a reference beam. At least one of 

these and in some instances both will be in the form of a speckle pattern. As 

previously described, the speckle pattern is formed from the scattering of 

coherent light from an optically rough surface. The microscopic surface detail 

is unknown. So the speckle pattern formation is considered a stochastic process 

and statistics are used to describe the properties. First order statistics are used 

to describe the statistics at a single point in space and this chapter uses them to 

form characteristic properties of a speckle. 

3.1 Formation of a speckle 

As discussed in Section 1.2.1, the illumination of an optically rough surface 

causes diffuse scatter. Observation of the scatter, a distance away from the 

target surface, is the resultant of the field intensity of many elementary 

scattered field contributions. Each of the elementary contributions from the 

surface scatterers can be considered as a phasor. The resultant field is a 

summation of many phasors and is analogous with the classical problem of a 

random walk in a complex plane. 
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Figure 3.1 - Schematic of the coordinate system used in the statistical properties 

 

At any point on the observation plane (x,y,z), visualised in Figure 3.1, the 

complex field with amplitude, E0, and phase, Φ, can be written in terms of P 

elementary phasor contributions [3.1, 3.2, 3.3]. 
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Where ep and φp are the amplitude and phase of the p
th

 elementary phasor 

respectively. The sum shown in equation (3.1) can be represented as a two 

dimensional random walk as in Figure 3.2.  

 



 45 

 

Figure 3.2 - Random walk in a complex plane 

 

The target surface roughness is considered such that the phases are uniformly 

distributed between π and –π [3.1] and therefore the phasors shown in Figure 

3.2 have an equal probability of pointing in any given direction. If all phasor 

amplitudes are considered equal such that pe e= for all p, the summation of the 

real and imaginary parts allows the square of the amplitude of equation (3.1) to 

be written. 

 

 

2 2

2 2 2

0

1 1

cos sin
P P

p p

p p

E e eϕ ϕ
= =

   
= +   

   
∑ ∑  (3.2) 

 

which can be expanded to give 
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and it follows that 
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and the tangent of the phase can simply be written 
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Equations (3.4) and (3.5) are used in Chapter 7 in the formation of speckles in 

simulations for estimating speckle noise. Averaging the real and imaginary 

components for an ensemble of similar optically rough surfaces using equation 

(3.1), with uniformly distributed phases in the range -π to π yields [3.1] 
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where the angle brackets denote a mean value. Calculating the variance of the 

real and imaginary components, respectively, can be shown by [3.1] 
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This shows that the real and imaginary components of the phasor summation 

have zero mean and equal variances; the significance of this result is discussed 

in Section 3.2. 
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3.2 Speckle intensity and phase 

The process of creating a speckle is stochastic and therefore probability theory 

is used to ascertain the probable intensity and phase of a speckle. A simple way 

to represent a speckle is the resultant of the complex field shown in equation 

(3.1). As discussed in Section 3.1, the amplitude and phase of a speckle are the 

summation of many random phasor contributions. The Central Limit Theorem 

states that the sum of a large number of independent random variables with 

finite mean and variance will tend to a Gaussian distributed probability density 

function [3.4, 3.5]. As shown by Equations (3.6) to (3.11) the real and 

imaginary parts both have zero mean and identical variances and therefore the 

Central Limit Theorem applies. In a complex plane, this produces a circularly 

symmetric Gaussian density function whose mean and variance does not alter 

with time. From this, the joint probability density of the amplitude and phase 

takes the form [3.1, 3.2] 
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Intensity rather than amplitude is of more practical concern and therefore using 

the transformation of variables [3.2] it is possible to show the joint probability 

density function of the intensity and phase as  
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where I  is the mean intensity. Integrating the joint probability density 

between appropriate limits, the corresponding marginal densities of intensity  
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and phase 
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can be found. It can be seen that ( ) ( ) ( )P , P PI IΦ = Φ and therefore the 

probability density function of intensity is statistically independent from the 

phase [3.1]. Equation (3.17) shows the phase is uniformly distributed between  

- π and π. Equation (3.15) visualised in Figure 3.3 with a unit mean intensity 

shows the intensity distribution for a complex Gaussian process is a negative 



 50 

exponential [3.2, 3.6, 3.7, 3.8, 3.9, 3.10] with the most likely outcome of zero 

intensity. 
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Figure 3.3 - Probability density function of intensity for a speckle pattern with unit mean 

 

Experimentally this relationship has been well documented and perhaps the 

most comprehensive is that of McKechnie [3.10] who made 23,000 

measurements of intensity as shown in  Figure 3.4.  
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 Figure 3.4 - McKechnie's histogram based on 23,000 intensity measurements taken from a 

speckle pattern [3.10]. 

 

The statistics of intensity and phase are used in Chapter 7 in numerical 

simulations for the development of speckle behaviour encountered in laser 

vibrometry. 

3.3 Contrast 

Another notable quantity is a measure of the spread of the intensity relative to 

the average and is known as the contrast, C. This can be quantified using the 

ratio of the standard deviation to the mean intensity [3.3, 3.7, 3.8, 3.9]. 

 

 

22I I
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−
=  (3.18) 

 

The variance, for a fully developed speckle pattern, can be shown to equal the 

square of the mean intensity [3.8, 3.9]. Therefore, with this definition, it can be 
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seen that the contrast of a fully developed speckle pattern is always unity. 

However this result is not true if the surface roughness or the number of 

scatterers is reduced and the phase variations are not uniformly distributed in 

the full -π to π range [3.7, 3.8, 3.11, 3.12]. The contrast is used to quantify the 

degree of development in various speckle patterns observed in Chapter 6. 

3.4 Speckle Size 

The size of a speckle is formed from statistical parameters of the spatial 

distribution of the intensity. Evident from the speckle pattern images seen in 

Figures 1.7, 1.8 and 2.2 together with the probability density function seen in 

Section 3.1 the spatial structure of a speckle pattern is a chaotic distribution of 

intensity peaks and nulls. The size of a speckle not only aids in a description of 

the spatial structure, it also identifies the spatial extent resulting in a notable 

change in the field. The average speckle size is defined by the spatial 

autocorrelation function of intensity. This function quantifies the statistical 

relationship of two points in space based on their intensity and hence provides 

a method of quantifying the size of the speckle. The coordinate system used in 

the autocorrelation function can be visualised in Figure 3.1. The mean speckle 

size is defined by the spatial delay or width of the autocorrelation function. The 

width is characterised by the first minimum or by exp[-2] if the autocorrelation 

function has Gaussian form. Expressions for the size of a speckle differ 

depending on the geometry of the illuminating beam. For a uniform square 

illuminating beam of dimension LB the mean speckle size can be found from 

the autocorrelation function, Γ∆I,  [3.9] 
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Where X is the separation distance in the x direction on the observation plane, 

zS is the axial distance from target to observation plane and λ is the wavelength 

of the illuminating beam. The mean speckle size is taken as the average width 

and is defined by the value of X when the sinc
2
 term first falls to zero. At this 

point, LBX/λzS is equal to unity and therefore the average size of a speckle, 

0σ , can be expressed as 

 

 0
S

B

z

L

λ
σ =  (3.20) 

 

For a uniform circular illuminating beam with diameter Dc the expression for 

the autocorrelation function is as follows [3.10]: 
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Where J1 is a first order Bessel function and the minimum of this 

autocorrelation function first occurs when the argument (πDcX/λzS) of the 

Bessel function is equal to 1.22π. The speckle size can be expressed as 

 

 0

1.22 S
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D

λ
σ =  (3.22) 

 

Most appropriate for the many configurations in laser vibrometry, the 

expression for the normalised autocorrelation, γ∆I, with a Gaussian illumination 

and beam diameter, D, of exp[-2] [3.13]. 
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The width of the speckle can be characterised by the exp[-2] point of the 

autocorrelation function which can be expressed as 
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D

λ
σ
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=  (3.24) 

 

It can be seen from these three relationships that the speckle size is 

proportional to the wavelength of light and the distance from the target to the 

observation plane and inversely proportional to the width of the profile of the 

scattering spot. 

3.4.1 Autocorrelation from the power spectral density (Wiener-

Khinchin Theorem) 

Statistically, a speckle pattern is a stationary stochastic process where, by 

definition, the statistical parameters of the distribution, such as the mean and 

variance, do not change with time or space. With this in mind, the Wiener-

Khinchin theorem can be applied [3.2, 3.8, 3.14]. The Wiener-Khinchin 

theorem relates the power spectral density, S(X) of a stationary random process 

to its autocorrelation function, Γ∆I(X), in that they are a Fourier transform pair. 

For a single dimension, this expression can be written as follows 
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where X is the spatial width in x, seen in Figure 3.1. From this the inverse 

Fourier transform of the power spectral density is the autocorrelation function 

[3.5].  

 

 ( ) ( )1FT S I X
−

∆  = Γ X  (3.26) 

 

The delay bound by exp[-2] of the normalised amplitude is used to determine 

the average width of a speckle. This method is applied in Chapter 7 to estimate 

the average speckle size resulting from surfaces with various finishes. 
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4 Properties of a dynamic speckle 

The principle of laser vibrometry, as discussed in Chapter 1, relies on the 

detection of the Doppler shift of scattered light. The Doppler shift can also be 

considered as a time dependent change to the phase of the photodetector output 

resulting from summation of the many scattered elements as the surface moves 

in parallel with the optical axis. For a Gaussian beam, where the diameter alters 

with propagation distance, this means the speckle size, discussed in Section 3.4 

alters with time [4.1, 4.2]. This motion however is not a significant source of 

speckle noise in laser vibrometry due to the very small changes in the resulting 

speckle pattern. 

 

It is not uncommon, however, for measurements to be made in the presence of 

components of target velocity that are not parallel with the optical axis. Such 

surface motions change the phase of the elementary scattered phasors as a 

function of time and consequently the speckles exhibit motion. As described in 

Chapter 2, these motions can generate significant levels of speckle noise in 

laser vibrometry. A speckle’s behaviour is characterised by a description of 

how the time dependent intensity of the speckle changes in a 2D observation 

plane. Speckles are described, without exclusivity, to translate and evolve. The 

form of speckle motion is governed by the optical configuration and the 

particular movement of the surface. There are three fundamental surface 

motion types which cause speckle motions: transverse to the optical axis, tilt 

and rotation [4.3]. 
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This chapter uses literature to examine the behaviour of speckles to test the 

concept that an understanding of speckle noise generation (which is driven by 

changes in phase) can be found using correlations of intensity. This is also 

investigated experimentally in Chapter 6. The properties of a speckle in 

motion, known as dynamic speckle, can be described using the space-time 

correlation function of intensity. This function quantifies the statistical 

relationship between the intensities at two points in space separated by a 

temporal delay and this function together with its application for the primary 

surface motions types is described in Section 4.1.  

4.1 Space-Time Correlation Function 

The normalised space-time correlation function of the intensity fluctuations is a 

useful tool to quantify the properties of the motions of a dynamic speckle. A 

speckle pattern produced from a target surface moving perpendicular to the 

optical axis with a velocity of v in a plane ξ, η is observed on a plane x, y a 

distance zS away 

 

Figure 4.1 – Schematic of coordinate system for time varying speckles 
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The space-time correlation function describes the relation, on an observation 

plane, between the intensity at one point in space and time to the intensity at 

another point in space and time. The space-time correlation function is often 

expressed as a normalised quantity using the autocorrelation at the initial 

position and time of interrogation. The correlation function is restricted to 

observations which are made in the same direction as the surface motion. The 

component of velocity of the surface, v, and the spatial delay, X, are therefore 

parallel. The normalised space-time correlation function of the intensity 

fluctuation with a temporal delay, τ, can be written [4.4, 4.5] 
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where  
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Setting τ = 0 the normalised space correlation function is obtained which 

represents the space correlation function of the speckle intensity fluctuation for 

a stationary speckle pattern and hence the average size of the speckle  
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Characterising the average width by the spatial delay when the correlation 

function reduces to a value of exp[-2] 
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which is identical to equation (3.26). Therefore the space-time correlation 

function of speckle intensity fluctuation can be re-written in terms of the 

average size of the speckle 
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Equation (4.5) is the basis of much of the analysis of dynamic speckles. 

However, in addition to the normalised correlation function for point space 

statistics is the normalised space time correlation function for spatially 

integrated speckle intensity fluctuations. This function describes the 

relationship of an area at one instant in time to the same area located at another 

position in another instant in time. This theory is applicable in laser vibrometry 

as the surface detecting the intensity has finite size. The normalised space time 

correlation function of the spatially integrated speckle intensity fluctuations is 

written [4.5, 4.6, 4.7] 
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where Ld is an approximation to the diameter of the integrating aperture by the 

exp[-2] width of a Gaussian function, otherwise known as a Gaussian ‘soft 

aperture’. Reducing the aperture dimension to a negligible value, 

setting 0dL = , reduces the spatially integrated space-time correlation function 

to a point space statistical analysis and equation (4.6) tends to equation (4.5).  



 60 

Although this study is of interest and applicable in laser vibrometry, the results 

obtained are not used in estimations of speckle noise shown in Chapter 7. 

Equation (4.6) does show a dependence on the size of the detecting aperture 

and observation of this is made in Sections 4.1.1 to 4.1.3. 

4.1.1 Properties of dynamic speckles when a surface moves 

transverse to the optical axis 

The space time correlation function shown in equation (4.5) describes the 

correlation function for a surface which moves transverse to the optical axis of 

the beam. The time duration over which a point in space remains statistically 

similar or the time duration of the fluctuation of the intensity can be described 

by the normalised time correlation function and is useful to characterise 

statistically how long a speckle exists. The time correlation function can be 

found by setting X = 0 in equation (4.5). 
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where τC is the correlation time of the time varying speckle characterised by 

the time delay when the correlation function drops to exp[-2]. This describes 

the duration of correlation at a single point in space and can be written: 
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It can be seen from equation (4.8) that τC depends on the velocity of the target, 

the diameter of the Gaussian illuminating beam incident on the target, the 
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radius of the wave-front curvature and also the separation distance, zS. 

Equation (4.8) can be re-written in terms of the surface displacement required 

for decorrelation, aC, by simply applying C Ca v τ= . 
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Equation (4.9) shows statistically how far the surface must displace for the 

intensity of a single point in space observed at a distance zS away to become 

different. 

 

Intuitively to minimise speckle noise, the correlation time τC and hence Ca  

must be maximised. Observation of equation (4.8) and (4.9) suggests an 

optimum beam diameter, DOPT, at a separation distance, zS, or standoff distance 

which maximises Ca . DOPT can be evaluated by differentiation of equation 

(4.9) with respect to the beam diameter 
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which is half the beam diameter on the surface. This situation would be 

applicable in practical situations where the work space limits the positioning of 

the vibrometer. However if this restriction does not exist it is possible to further 
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increase the correlation time and this can be evaluated by differentiating 

equation (4.9) with respect to the standoff distance. 
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occurs when Sz r= − and when Sz →∞ . The surface displacement for speckle 

correlation takes its maximum possible value of 
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(4.12) 

 

and this occurs when Sz r= − and 0σ = . This shows that the maximum surface 

displacement for speckle correlation is only dependent on the beam diameter 

and therefore this suggests using the largest beam diameter as practically 

possible to reduce the influence of speckle noise. 

 

Equation (4.6) describes the spatially integrated speckle intensity fluctuations 

over time. When the surface moves in-plane to the optical axis consideration of 

the surface displacement for speckle correlation yields 
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and similarly to equation (4.9), equation (4.13) has a maximum of 
1

2
D when 

Sz r= − .  
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4.1.2 Properties of dynamic speckles when a surface tilts on the 

optical axis 

The properties of dynamic speckles when a surface tilts as shown in Figure 4.2 

can also be analysed using the space time correlation function ,. 

 

 

Figure 4.2 - Schematic of configuration for the autocorrelation for a surface which tilts 

 

The surface deviations are considered as small mirror-like facets and a rotation 

around the η axis with a velocity Ω results in a translation of the speckles in the 

observation plane by an amount 2 SX z τ= Ω [4.3, 4.8]. In this study 0v =  and 

the space time correlation function can be shown to be 
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The time required to reduce the space time correlation function to a value of 

exp[-2] is 
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and the angular displacement of the surface which decorrelates the intensity at 

a point in space, Cθ , to a value of exp[-2] is 
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Equation (4.16) shows that the angular displacement of the surface which 

decorrelates the intensity is independent of the standoff distance, zS. From 

equation (4.16) the correlation displacement in the observation plane, C2 Szθ , 

is equal to the average size of the speckle. 

 

A finite aperture, integrating the intensity spatially, for a tilting surface 

modifies equation (4.14) in the following way 
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(4.17) 

 

and the angular surface displacement for correlation is found from the exp[-2] 

value of this correlation function and shown to be 
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from which it can be seen that as 0dL σ≫  the translation distance in the 

observation plane, C2 Szθ , approaches 
1

2
dL . If 0dL σ≪  the translation 

distance approaches that found for point space statistics where  

C 02 Szθ σ→ . Additionally, it can be seen that, unlike equation (4.16), 

equation (4.18) does not show independence from zS. 

4.1.3 Properties of dynamic speckles when a cylindrical surface 

rotates 

A rotor of radius, R, which rotates at an angular velocity, Ω , and is illuminated 

by a Gaussian beam, as shown in Figure 4.3, produces similar speckle motions 

to those produced by a surface moving transverse to the beam but the 

cylindrical shape modifies the wavefront as shown by Figure 4.4. The rotor of 

radius R modifies the incident radius of curvature, r, producing an effective 

wavefront of curvature radius, r'. 
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Figure 4.3 – Schematic of configuration for autocorrelation function from a rotating cylindrical 

surface 

 

 

Figure 4.4 – Effective wavefront curvature from a cylindrical object surface 
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The space time correlation function for a rotating surface can be written [4.9, 

4.10, 4.11] 
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where 
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The time required to reduce the correlation to a value of exp[-2], where the 

spatial delay is again made zero, is 

 

 

1
2 22

0

2 2 2

0

1

Ω 2
C

D

R Dε

 σ
 τ =
 σ + σ 

 (4.21) 

 

This equates to an angular displacement of the surface of 
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which takes a maximum value of 
1

2

D

R
 when 0εσ = . This suggests that 

speckle noise is minimised when 
2

1S Sz z

R r
− = . From this it can be seen that 
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with consideration to standoff distance and radius of curvature speckle noise 

can be reduced.  

 

A spatial integration of the speckle intensity fluctuations when a surface rotates 

modifies the normalised space time correlation function in equation (4.19) as 

follows [4.5, 4.8, 4.11] 
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and the angular displacement for correlation characterised by the temporal 

delay when time correlation function drops to exp[-2]. 
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Equation (4.24) takes a maximum value of 
1

2

D

R
when 0εσ = . The tangential 

displacement of the surface is therefore 
1

2
D  showing similarity to the 

maximum transverse displacement shown by equation (4.9). 
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4.2 Speckle motions 

A dynamic speckle has two behaviour regimes which are used to describe its 

motion. One of these regimes is speckle translation; the speckle entity 

translates in space and does not change in size or shape. The second regime is 

often termed ‘boiling’; the speckle evolves over time, changing its size and 

shape. The speckle entities evolve independently of one another but the 

statistical parameters are temporally stationary. These regimes often occur 

together but one will generally dominate the decorrelation. For a surface 

moving transverse to the optical axis of the beam the speckles will exhibit both 

behaviours. Therefore Sub-sections 4.2.1 and 4.2.2 use this space-time 

correlation function to quantify speckle translation and speckle evolution 

respectively. Sub-section 4.2.3 determines which regime dominates the 

decorrelation. 

4.2.1 Speckle translation 

If a speckle translates, the peak of the normalised correlation function of 

speckle intensity fluctuation has a spatial delay as well as a temporal delay. 

Using a temporal delay of τ, speckle translation, determined by the spatial 

delay, X, can be found by the displacement of the peak value of the correlation 

function. It can be seen from equation (4.5) that the correlation function for an 

in-plane surface motion is at a maximum when X vσ τ=  [4.14, 4.15]. Speckle 

translation, XT, can therefore be expressed in terms of the surface displacement 

as ( )TX a tσ=   where the σ term, aptly referred to as the gearing term [4.16], 

defines the magnitude of the speckle translation as a factor of the surface 

displacement. 
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4.2.2 Speckle evolution 

Speckle evolution is a temporal variation in the size and shape of the speckle. 

The normalised space-time correlation function can be used as a tool to 

quantify the life-span of the speckle. Speckle evolution causes a reduction in 

the amplitude of the correlation function. A speckle will often translate and 

evolve and so, to isolate the speckle evolution, the spatial delay is matched 

with the amplitude of the speckle translation. Therefore inserting TX X= into 

equation (4.5) gives the peak value of 

 

 ( )
2 2

2
, exp 4I

v
X

D

τ
γ τ∆

 
= − 

  
 (4.25) 

 

The speckle is decorrelated when this function reduces to a value of exp[-2] 

which occurs when the surface has displaced by D
2

1
. This result in 

conjunction with the result obtained in equation (4.12) shows that the 

correlation time is maximised when pure boiling is present which occurs when 

Sz r= −  [4.12]. 

4.2.3 Dominant speckle motion 

All surface motions are likely to cause a speckle to translate and evolve. For a 

tilting surface, speckle translation is by far the dominant motion due to the 

limited alteration to the scattering surface elements over the angular motion. 

This section, therefore, focuses on the dominant speckle motions from a 

transverse surface motion and a rotating surface. Equation (4.9), the surface 

displacement for speckle correlation for a single point in space from a surface 
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which is moving transversely to the optical axis of the laser beam, can be re-

written 
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 (4.26) 

 

characterising the translation of the speckle, in the time it takes a speckle to 

evolve, as a function of the speckle size, where 
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similarly from equation (4.22), the surface tangential displacement for 

correlation, for a single point in space, from a rotating cylindrical surface can 

be re-written as  
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and 
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In equation (4.26) and equation (4.28) 
1

2
D is the maximum possible 

displacement of the surface before the speckle has decorrelated and this occurs 

when , 0T Tε =  i.e. when there is no speckle translation. The translation of 

the speckle can only ever reduce the surface displacement for speckle 

correlation and consequently increase speckle noise. When the absolute value 

of T is greater than unity the speckle has translated further than a speckles 

width and translation can be expected to dominate the decorrelation. When T is 

zero, boiling is the only regime present in the speckle motion. Speckles can 

translate in the same direction or the opposite direction to the surface motion 

and this depends on the sign of the gearing term, σ. T can, therefore, take 

positive or negative values. An estimation of which regime dominates is 

evaluated from the absolute value of T [4.12] and is illustrated in Table 4.1 and 

Figure 4.5  

 

T or Tε  Dominant motion Ca or C Rθ  

0  Pure Boiling 
1

2
D  

0

1

>

<
 Boiling 

1

2

1

2

D

D

>

<
 

1 Equal influence 
1

2
D  

1>  Translation 

0

1

2
D

≥

<
 

Table 4.1 - Indication of dominant speckle motion regime 
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For example, if you take the scenario where speckle boiling and speckle 

translation have equal influence on the decorrelation, it can be seen that the 

surface must displace half of the beam spot diameter for a speckle to fully 

evolve, during which time the speckle will have translated the same distance as 

its expected width. 

 

 

Figure 4.5 – Example of an indication of dominant speckle motion regime for a surface 

translating transverse to the optical axis. Beam waist diameter, D0=100µm 

 

Figure 4.5 gives an indication of whether translation or boiling dominates the 

decorrelation when the surface translates transverse to the optical axis of a laser 

beam with a waist diameter of 100µm. It shows the standoff distance, zS, 
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against surface location relative to the beam waist, z0. The radius of curvature 

of the beam at the range of surface locations is also shown. The threshold 

transition from blue to white indicates where 1T = , where boiling and 

translation have an equal influence on the decorrelation. Pure boiling is shown 

by the green line, which indicates when Sz r= − and 0T = . Often the laser 

beam is focussed on or near the surface and it can therefore be seen that boiling 

is more likely to be the dominant regime for the general application of the laser 

vibrometer for a surface moving transverse to the optical axis of the beam. 

When the laser beam is focussed on the surface of a rotating cylindrical shaft, 

however, this is not necessarily the case. This is a more complex scenario as 

the shaft radius becomes a significant parameter. Often speckle translation is 

expected to be the dominant regime [4.17] but for larger shaft diameters and, 

particularly, small beam diameters where speckles are large, 0Tε →  and 

evolution can dominate. It can also be seen by equation (4.21) that as the radius 

of the shaft increases, the correlation time reduces. The effect on speckle noise 

due to the shaft radius, beam diameter and also the point of focus (altering the 

radius of curvature) is investigated experimentally in chapter 5. 

Equation (4.26) and (4.28) are applicable at a point in space and when speckle 

translation dominates these correlations it does not mean it necessarily 

dominates the finite sized aperture correlations applicable to a laser vibrometer. 

For spatially integrated speckle correlations on a rotating shaft equation (4.24) 

can be re-written  
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where 

 

  

 
0

dL
M

σ
=  (4.31) 

 

It can be seen that evolution can dominate even if 1Tε >  when T Mε << . 

What this means is that if the size of the detector, in the direction of the speckle 

motion, is large in comparison to the speckle translation distance then the 

evolution of the region of the speckle pattern can dominate the decorrelation. 

This predicts that increasing the size of the detecting aperture can reduce the 

effects of speckle noise, but only when speckle translation is dominant. It can 

be seen from Equation (4.30) that, as 0Tε →  and evolution becomes 

dominant, the size of the detecting aperture becomes irrelevant as 

1

2
C R Dθ → . Therefore, if speckle evolution dominates the point space 

correlations, including a finite sized aperture into the analysis makes no 

difference. Increasing the aperture size seems to have potential to reduce 

speckle noise, when speckles translate. This is out the scope of the 

experimental study in this thesis but the simulations, detailed in Chapter 7, 

investigate this with the simulations of transverse sensitivity.  

 

The next chapter is an experimental study of speckle noise in laser vibrometry. 

It quantifies the transverse, tilt and rotation sensitivities due to pseudo-

vibration for commercial laser vibrometers, looking at the effects of beam 

diameter and target surface finish. Chapter 6 is an experimental study of the 

correlation of intensity of dynamic speckles using images of actual speckle 

patterns. It investigates the concept of a relationship between speckle noise 
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generation using the sensitivities evaluated in Chapter 5 and intensity 

correlations from experimentation. Chapter 7 uses dynamic speckle to model 

speckle behaviour and simulate transverse and tilt sensitivity. 
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5 Quantifying pseudo-vibration sensitivity by 

experimentation 

This chapter quantifies experimentally, for the first time, pseudo-vibration 

sensitivities (transverse sensitivity, tilt sensitivity and rotation sensitivity) 

typically encountered in laser vibrometry applications. It maps expected 

sensitivities for two beam spot sizes, produced from commercial laser 

vibrometers, from surfaces with a range of roughnesses and finishes. It is 

commonplace to provide transverse sensitivity information with traditional 

contacting transducers, such as accelerometers [5.1], but as of yet an equivalent 

practice has not yet been transferred to laser vibrometry. The sensitivities 

presented in this chapter will be a valuable tool for the vibration engineer, 

increasing confidence in measured data, which might otherwise require careful 

interpretation. The research provides a greater understanding of the 

mechanisms which generate speckle noise and an insight into methods of 

reducing its effects. This is important in terms of data quality and limits of 

uncertainty for any measurement undertaken using a laser vibrometer.  

 

Section 5.1 describes the typical signals apparent in these particular 

measurements, identifying speckle noise which ultimately is quantified. 

Section 5.2 presents the processing technique so the sensitivities can be 

presented in a useful, quantitative format to the vibration engineer. The 

different surface motions require particular approaches to quantify the 

sensitivities and Section 5.2 describes how speckle noise is isolated for each 
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surface motion. The chapter continues with Section 5.3 which maps out and 

presents the sensitivities, together with descriptions and explanations of the 

typical characteristics found in the measurements. 

5.1 Vibrometer signal features 

Transverse, tilt and rotation sensitivities have been observed from all surfaces, 

even those that are smooth and produce specular reflections. For the majority 

of the descriptions in this section and the sections following, the effect of the 

sensitivity in the measured data shall be termed ‘speckle noise’. This is done 

for the purposes of consistency but for smoother surfaces it is recognised that 

the term becomes less appropriate. This section describes typical signal 

features in the measurements. A particularly important feature is the way a 

single frequency vibration leads to broadband speckle noise and in a typical 

spectrum, such as was shown in Figure 2.3, energy appears at many orders.  

 

Speckle noise is proportional to the time dependent phase changes, due to 

speckle motions, and manifests itself in the output signal of the vibrometer. 

Speckle motions cause amplitude and phase modulations of the Doppler signal. 

There are two particular features which are manifest in the output signal from 

the vibrometer - signal dropouts and speckle noise. These features can be 

generated by the same mechanism and, not surprisingly, can often be confused 

as one and the same effect. Dropouts can occur when the Doppler signal 

amplitude drops so low that the vibrometer cannot accurately demodulate it 

and the apparent velocity cannot adequately be resolved. This occurs when the 

average intensity of the collected light is too low or when speckle additions 

over the photodetector result in a low Doppler signal amplitude. Often low 

Doppler signal amplitudes occur simultaneously with large Doppler signal 

phase changes. Therefore the mechanisms which produce speckle noise can 
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also generate dropouts. However, the interpretation that dropouts are speckle 

noise over-emphasises the effect of the amplitude modulation. Speckle noise is 

produced from the phase modulation of the Doppler signal and remains present 

in the output from the vibrometer even when the Doppler signal amplitude is 

adequate. This section attempts to distinguish the two effects which are both 

present in the output signals from laser vibrometers.  

5.1.1 Signal Dropouts 

Signal dropouts appear most frequent in measurements from a rough surface. 

This is believed to be principally due to low light intensity collected by the 

vibrometer. However, dropouts were witnessed in measurements from all 

surfaces, including a surface treated with retro-reflective tape. Figure 5.1(a) 

shows a signal from a tilting surface, with the laser beam aligned off the 

rotational axis of the surface, exhibiting broadband speckle noise and also 

significant periodic dropouts. With slight manipulation of the beam position 

relative to the surface, so the sampled region of the speckle pattern changes 

slightly, the signal dropouts seen in Figure 5.1(a) can progress into an unusable 

signal with high apparent velocities, shown in Figure 5.1(b). With modest 

manipulation of the beam location, the signal dropouts can also be made to 

disappear to enable high quality measurements. 
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(a) 

 

(b) 

Figure 5.1 - Vibrometer outputs showing (a) periodic dropouts (b) unusable  signal. Tilting 

surface with roughness Ra2.39 µm oscillating at 10Hz 

 

Figure 5.2 displays a closer analysis of the dropouts seen in Figure 5.1(a), 

clearly showing a significant reduction of the amplitude in the Doppler signal 

prior to the dropout.  

 

 

Figure 5.2 - Doppler signal (top) synchronised with the vibrometer output signal (bottom) 

showing a typical signal dropout from a tilting surface treated with retro-reflective tape 

oscillating at 30Hz on 200µs timescale 



 81 

The generation of such impulses has also been seen in simulations, described in 

Chapter 7, which show large phase changes occurring alongside large changes 

in Doppler signal amplitudes. These impulses contain significant energy and 

can raise the broadband noise to levels where a useful measurement becomes 

compromised. The data presented in Figure 5.2 is from a target treated with 

retro-reflective tape. Therefore, the use of retro-reflective tape, which does 

increase the intensity of the light in backscatter, does not guarantee a signal 

clear of dropouts. However, the signal can usually be cleared of such dropouts 

by slight adjustment of the measurement location on the test surface. This 

improves the signal by sampling a region of the speckle pattern from which 

higher Doppler signal amplitude is maintained without any sudden changes in 

that amplitude. 

5.1.2 Speckle noise 

Figure 5.3 shows vibrometer outputs from a measurement on a tilting target 

with the incident beam positioned such that the measured velocity is minimised 

i.e. the beam is positioned on the rotational axis. The apparent velocities, which 

are dominated by speckle noise, were acquired with vibration frequencies of 

10Hz and 30Hz. In particular, the measurements at each frequency were 

sampling similar (nominally identical) dynamic speckle patterns for two 

periods of sinusoidal motion with equal displacement amplitudes. The 

secondary plot shows the resulting phase in radians, calculated from the 

integral of the output signal.  
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Figure 5.3 – Apparent velocity (nominally speckle noise) in mm/s and phase in radians from 

two measurements sampling similar speckle patterns from a tilting target surface treated with 

retro-reflective tape oscillating at (a) 10Hz and (b)30Hz 

 

The distinguishing peaks, encircled in Figure 5.3, are prominent features in 

speckle noise. They negate and reflect about an instant in time corresponding 

to the extreme of the displacement cycle, i.e. mid-way between the peaks. This 
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is due to the phase change that can be seen in the speckle noise integral. As the 

target moves from one extreme of its displacement cycle to the other extreme, 

the phase of the resultant Doppler signal changes in a continuous sequence as 

the sampled speckle pattern changes. In the second half of the displacement 

cycle, the phase of the resultant Doppler signal passes through the same 

sequence of phases as the first half of the cycle but in reverse. Consequently, 

the changes in phase have the same magnitude in the second half of the cycle 

but have an opposite sign. Increasing the vibration frequency, while 

maintaining the amplitude of the angular displacement, shows an increased 

level of speckle noise. The speckle noise integral plots show that the phase 

change remains consistent regardless of the vibration frequency. Increasing the 

vibration frequency means the phase change occurs more quickly and 

consequently speckle noise levels increase in direct proportion to vibration 

frequency. This is typical temporal data from which speckle noise is quantified 

in this chapter. 

 

 

Figure 5.4 - Doppler Signal (top) synchronised with the vibrometer output (bottom) showing 

typical speckle noise peak. Tilting surface treated with retro-reflective tape oscillating at 30Hz 

on a 200µs timescale. 
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Closer assessment of these peaks, synchronised with the Doppler signal, is 

shown in Figure 5.4. The Doppler signal amplitude shows a significant 

variation prior to the peak shown in the vibrometer output. This is the result of 

a significant change in the summation of speckles on the photodetector, leading 

to both the amplitude modulation shown in the Doppler signal and the phase 

modulation appearing in the demodulated output. This shows how, even when 

the Doppler signal amplitude remains adequate and accurate demodulation is 

attainable, speckle changes still cause phase modulations and speckle noise 

appears in the output from the vibrometer. Three factors differentiate the 

signals seen in Figure 5.4 from those in Figure 5.2; the degree of Doppler 

signal amplitude modulation; the resulting speckle noise amplitude are much 

lower and the peaks occur continuously in Figure 5.4. Minor adjustment of the 

location of the beam modifies the peaks associated with speckle noise but it 

does not eliminate them from the signal and therefore does not reduce the noise 

levels. 

5.2 Processing and capturing speckle noise 

This section shows how a measurement exhibiting speckle noise is processed 

so that it can be presented in an appropriate and practical way. The section 

begins with a description of how speckle noise is processed to remove the 

effect of the vibration frequency and reduce the effect of the vibration 

amplitude. The section concludes by presenting the methods to quantify 

speckle noise for the particular periodic motions under scrutiny.  

 

Speckle noise is quantified by reducing the component of surface velocity in 

the direction of the beam to (nominally) zero, which results in a measurement 

dominated by speckle noise. This is done through the design of the rig and 

through appropriate alignment of the beam relative to the surface motion. 
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Speckle noise is quantified through the measurement of at least two parameters 

in unison. A measurement which attempts to capture speckle noise in some 

capacity is the measured velocity. This will often contain components of 

genuine surface velocities in the direction of the beam, despite every effort to 

remove them. Therefore a second measurement is taken which attempts to 

isolate the component of genuine velocity in the direction of the beam. 

Subtracting the genuine velocity from the measured velocity provides the best 

estimate of speckle noise and results in the best assessment of the sensitivities; 

the result of this calculation is termed the apparent velocity. The periodic 

motions are set up using specially designed mechanical rigs. In their design, 

these rigs minimise the components of genuine surface velocity in the direction 

of the beam and thereby cause speckle noise to dominate the measured 

velocity. Surface finish influences the degree of development of the speckle 

patterns created and therefore the effect of the surface finish is considered in 

the experimentation. 

 

The transverse and tilt motion investigations use 4 different surfaces. The 

surface roughnesses are Ra 11nm, 75nm and 1.0µm. This range provides a very 

smooth surface producing predominantly specular reflections (Ra 11nm), a 

rough surface producing speckle patterns which are considered fully developed 

(Ra 1.0µm) and surface which is in between (Ra 75nm). A fourth surface is 

used which is treated with retro reflective tape, a common surface treatment to 

increase signal amplitude.  

 

The rotation rig uses 5 different surfaces. Again they range in surface 

roughness from Ra 11nm to Ra 1.0µm as well as a surface treated with retro-

reflective tape, to provide a range of combinations of specular reflections and 

speckle patterns. Typically, with rotating targets, retro-reflective tape is used. 
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5.2.1 Processing speckle noise 

Isolation of speckle noise is dependent on the particular surface motion under 

scrutiny and this is discussed in the relevant subsections of Section 5.2. The 

apparent velocity which is dominated by speckle noise is isolated from the 

measured velocity and is Fourier transformed. A typical example of the 

spectrum of the apparent velocity is shown in Figure 5.5 (a). Figure 5.5 (a) 

shows the broadband characteristics of speckle noise, which maintains its 

amplitude over the 80 harmonics shown of the fundamental frequency of the 

surface vibration. Speckle noise influences many harmonics, sufficient to mask 

the genuine vibration velocity. Inspection of a few spectral peaks from a 

typical set of spectra for the measured velocity, genuine velocity and the 

resulting apparent velocity is shown in Figure 5.5 (b). This figure highlights the 

influence speckle noise can have on the measured velocity. It can be seen, by 

the peaks in Figure 5.5 (b), that depending on the amplitude and phase relative 

to the genuine velocity, speckle noise can increase, reduce or have very little 

influence on the amplitude of the measured velocity, as shown by the peaks 

identified in the figure by the markers. At 1020Hz, speckle noise has reduced 

the amplitude of the measured velocity well below the genuine velocity. At 

1080Hz, the amplitude of the measured velocity is much greater than the 

genuine velocity because of speckle noise. At 1140Hz, speckle noise has little 

influence on the measured velocity. 
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Figure 5.5 – (a) typical spectrum of apparent velocity dominated by speckle noise. (b) 

influence of speckle noise on the measured velocity 

 

 

To estimate the sensitivity to the surface motion, the peak value of each 

harmonic of the apparent velocity is quantified. The spectrum is discrete and 

therefore the harmonic frequencies do not necessarily coincide with a spectral 
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line. This so-called “picket fence” effect is therefore compensated for to 

improve estimates of the amplitudes of the speckle noise harmonics [5.2]. As 

described in Section 5.1 and evident from Figure 5.3, the vibration frequency 

linearly affects speckle noise. To remove the effect of the vibration frequency, 

the apparent velocity is normalised by the vibration velocity amplitude at the 

fundamental frequency. Figure 5.6 presents an example of the sensitivity to a 

tilting surface motion in terms of order which provides a functional 

presentation of the sensitivity, allowing extrapolation to any vibration 

frequency. The 50 order range shown in Figure 5.6 is beyond that typically of 

interest to the vibration engineer but provides a good indication of the spectral 

shape of speckle noise.  
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Figure 5.6 – Example of tilt sensitivity in units of µms
-1

 / degs
-1

 for a tilting surface with 

roughness Ra 190nm over a range of vibration frequencies from 10Hz to 30Hz. 

 

Each data point is the average of each order calculated from measurements at 

10 independent locations. The figure shows the mean sensitivity, +/- one 

standard deviation. In this case, measurements are from a tilting surface with 

roughness Ra 0.19µm vibrating at fundamental frequencies of 10Hz, 20Hz and 
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30Hz indicating the independence of the sensitivity to the fundamental 

vibration frequency. 

 

The sensitivities are quantified in two formats. The first is a mean level per 

order with a standard deviation and is calculated from the first 10 orders. 10 

orders is chosen as a typical bandwidth over which the vibration engineer is 

likely to be interested. The second format is the total rms of the sensitivity 

across 50 orders. 

5.2.2 Periodic transverse surface motion 

For a periodic transverse surface motion, the surface oscillates perpendicular to 

the optical axis of the laser beam. A transverse motion requires a pure 

translational motion, i.e. along the axis z shown in Figure 5.7. The 

measurement surface is attached to a high precision linear rail via a supporting 

carriage. A linear shaker excites the carriage through a stinger. The stinger is 

axially aligned with the centre of gravity of the carriage assembly to minimise 

eccentric forces. A nominally sinusoidal signal is applied to the shaker 

providing an axial motion of the carriage and measurement surface. An 

accelerometer is used to measure the velocity, zɺ , of the measurement surface. 
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Figure 5.7 - Schematic of transverse sensitivity measurement 

 

The origin of the measurement axes is coincident with the beam spot on the 

stationary surface; the z axis is defined parallel with the surface translation and 

the x-z plane is defined by the beam incidence vector. The sensed genuine 

velocity, Um, is given by [5.3] 

 

 [ ]cos sinm y zU x a zβ θ β = − − 
ɺɺ ɺ  (5.1) 
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The aim of the experiment is to reduce Um to zero, causing the effect of speckle 

noise to dominate the output of the vibrometer. The rig design minimises the 

components of angular velocity around the x, y and z axes. It also minimises 

the displacements in the x and y directions. Products of these small angular 

velocities and displacements are considered negligible and so have not been 

included in equation (5.1). The design of the rig minimises xɺ  and yθɺ , but due to 

manufacturing tolerances these velocities cannot be totally eliminated. 

However, zɺ is many times greater than the velocities in the first bracketed term 

and Equation (5.1) shows that by reducing the angle, β, the genuine velocity 

sensed by the vibrometer can be minimised. 

 

The following procedure describes the alignment and adjustment to minimise β 

for a speckle noise measurement on a target with a transverse motion. As 

illustrated in Figure 5.7, two vibrometers are used; vibrometer A is used to 

capture the measured velocity from the test surface, which is dominated by 

speckle noise, and vibrometer B is used to estimate the genuine velocity 

component in the measured velocity, shown by Equation (5.1). To quantify the 

genuine velocity, the light detected by vibrometer B needs to have minimal, 

ideally zero, speckle noise. This was achieved using a mirror, which was 

clamped to the required measurement surface. This mirror was also used to 

align both beams normal to the surface. For practicality reasons, the vibrometer 

used to measure the genuine velocity was aligned via a second mirror, mounted 

independently of the vibrating structure, preventing contamination in the 

genuine velocity measurement. The two beams are aligned parallel with each 

other and normal to the mirror clamped to the front of the measurement 

surface. With the beams incident on the mirror, speckle noise is considered to 

be at a minimum, and the vibration velocity in the direction of the beam was 

assessed. Angle β was adjusted, for the measurement surface and the attached 

mirror, the beams were realigned and the component of transverse velocity 
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contributing to the genuine velocity (the second term in equation (5.1)) was 

reassessed. This process was repeated until a minimal genuine velocity was 

achieved. The clamped mirror is then repositioned to expose the required 

measurement surface to vibrometer beam A while remaining the target surface 

for vibrometer beam B. Vibrometer beams A and B are parallel so the genuine 

velocity for beam A is measured from the mirror surface with beam B. The 

angle β and consequently the genuine velocity in the direction of the beam are 

considered minimised. Subtracting the genuine velocity measured by 

vibrometer beam B from the sensed velocity measured by vibrometer beam A 

results in an apparent velocity which is dominated by speckle noise. 

5.2.3 Periodic tilt surface motion 

Speckle noise is present in a measurement from a tilting surface. A mechanical 

rig has been specially designed to tilt a test surface, and cause speckle noise to 

dominate a vibrometer measurement. In this way, tilt sensitivity can be 

quantified for the first time. A test surface is subjected to a periodic angular 

vibration and the laser beam, which is used to measure the measured velocity, 

is positioned so the measured genuine velocity is minimised. This pure target 

motion requires all motions except a single angular velocity, zθɺ , to be zero, as 

shown in Figure 5.8. 
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Figure 5.8 - Schematic of tilt experimental configuration 

 

The surface angular oscillation was created using a lever mechanism attached 

to a linear shaker driven by a sinusoidal signal. The true angular surface motion 

is measured using an accelerometer at a known radial distance from the axis of 

rotation. The plane of the surface is coincident with the rotational axis of the 

tilt motion. The design of the rig minimises undesired surface motions, but 

again these cannot necessarily be eliminated.  The measurement axes are 

defined as being positioned on the surface with the rotational axis coincident 

with the z axis as shown by Figure 5.8. The laser beam is aligned normal to the 

test surface while it is stationary, using a mirror which minimises the angle β to 

nominally zero. With the least significant components disregarded, the sensed 

genuine velocity can be expressed as [5.3] 

 

 0m zU x y θ= − ɺɺ  (5.2) 
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This reduces the genuine velocity to a function which is dependent on the 

position of the beam relative to the rotational axis, denoted by the offset y0. The 

laser beam spot is positioned on the rotation axis and this occurs when y0 is 

zero. Experimentally, a micro-positioning device, attached to the vibrometer, 

controls y0. The offset y0 is minimised by assessing the measured velocity, in 

the time and frequency domains, and the measured velocity is then assumed to 

be dominated by speckle noise. A measurement of the genuine velocity is taken 

from the bearing housing using a second vibrometer which is aligned parallel 

with the measured velocity beam and in the same plane as the rotation axis. 

This is generally how measurements of radial vibrations are made on rotating 

devices using traditional contacting transducers. Subtracting the genuine 

velocity from the measured velocity allows tilt sensitivity to be quantified. 

5.2.4 Rotating surface 

A nominally circular shaft is rotated at a rotation speed, Ω, and speckle noise is 

quantified in a measurement of radial vibration. 

 

 

Figure 5.9 – Radial vibration measurement from a rotating shaft 
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The measurement axes are defined such that the z axis is coincident with the 

rotation axis of the shaft. A radial vibration measurement requires that the 

beam is aligned so its trajectory intersects the rotational axis of the rotor 

normally. Therefore the x axis is defined on a line which coincides with the 

trajectory of the beam as shown in Figure 5.9. The genuine velocity sensed by 

the vibrometer measuring the radial vibration can be written in the following 

form 

 

where the components sensitive to angular motions, other than the shaft 

rotation itself, are considered insignificant [5.3]. The design of the rig 

minimises the vibration displacements in the x and y directions which should 

reduce Um to a quantity which is dominated by speckle noise. However, the 

velocity sensed by the vibrometer depends on the location from which the 

collected light originates. When surfaces are smooth and specular reflections 

are present, the shape of the surface, the roundness in particular, changes the 

origin of the collected light. This causes the effective centre of the beam to 

dither about the rotation axis, varying the sensed velocity. For the purposes of 

the Um calculation, a pseudo y displacement amplitude, yaɶ , is introduced, 

representing the distance of the effective centre of the beam from the rotation 

axis of the shaft. yaɶ  differs from any genuine y displacement in a manner that 

is difficult to quantify. 

 

 m yU x a= +Ωɺ ɶ  (5.4) 

 

It has been found that on smoother surfaces, the effect of shaft out-of-

roundness can be significant, particularly at low orders, affecting rotation 

 m yU x a= +Ωɺ  (5.3) 
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sensitivity and the assessment of genuine vibration velocity. When specular 

reflections are not present and fully developed speckle patterns are produced 

from the surface, such as from the Ra 1.0µm surface or the surface treated with 

retro-reflective tape, shaft out-of-roundness does not affect the measurement. 

This is because each speckle is a combination of wavelets scattered from all 

regions illuminated by the beam spot. Therefore, despite changes to the local 

orientation of the surface, the effective centre of the beam does not change. 

Figure 5.10 shows the effect of the shaft out-of-roundness on the sensitivity of 

a radial vibration measurement. 
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Figure 5.10 – Effect of shaft out-of-roundness on a measurement using beam diameters of 

520µm 

  

The triangular markers show the sensitivity using a single beam on a smooth 

surface with Ra 11nm. The circles show the sensitivity from an adjacent 

location on the same shaft but treated with retro-reflective tape (The diamond 

markers present an approach which uses two beams to quantify the sensitivity 

and is discussed later in this section). It can be seen that the first 10-20 orders 

of the rotation frequency are affected significantly on the smooth surface and 
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this is believed to be due to the out-of-roundness as shown in Figure 5.11. 

Figure 5.11 presents a roundness measurement on the shaft with Ra 11nm at a 

position close to the location of the measurements shown in Figure 5.10. 

 

Figure 5.11 – Roundness measurement from the surface with Ra11nm 

 

Rotation sensitivity is quantified from the difference in measured velocities 

using two vibrometers. The vibrometer beams are aligned as illustrated in 

Figure 5.12. The beams are parallel with each other and aligned to measure the 

radial vibration of the shaft. 
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Figure 5.12 - Schematic of rotation sensitivity measurement 

 

The beam spots are positioned close to each other (along the z-axis) so that the 

measured velocities are affected by similar (nominally the same) out-of-

roundness and genuine velocity components, but distinct from each other to 

produce independent speckle patterns. This allows the out-of-roundness 

components and genuine velocity components to be cancelled leaving speckle 

noise to dominate the differential measurement. 

 

 
1

2

A B
m

d d
U

k dt dt

∆Φ ∆Φ ∆ ≈ − 
 

 (5.5) 

 

Statistically, the rms of the difference or sum of uncorrelated noises, each with 

identical statistical parameters, is 2  of either of the individual rms levels. 

Sensitivity is calculated from the difference in measured velocities. This is 

divided by 2 to estimate the rotation sensitivity. This method is supported by 

Figure 5.13 for a surface treated with retro-reflective tape which shows rotation 

sensitivity calculation based on a single beam and on two beams. This figure 

shows similar sensitivities from the two methods validating the calculation of 
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rotation sensitivity based on two beams with a 2 correction applied. Total 

rms using a single beam is 3.86 µms
-1

 / rads
-1

 and total rms using two beams is 

3.81 µms
-1

 / rads
-1

. Each individual measured velocity is susceptible to radial 

vibrations but the low orders, in Figure 5.13, are of a similar magnitude for 

both methods which suggests that the genuine velocity, yx a+Ωɺ , is low and has 

little influence in Um for the test rig used here. 
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Figure 5.13 – Rotation sensitivity from a surface treated with retro-reflective tape using a 

single beam and two beams (with 2  correction) indicating the statistical relationship between 

the two approaches. Beam diameters are 90µm.  

 

The data set (marked with diamonds) shown earlier in Figure 5.10 was the 

adjusted rotation sensitivity for the surface with Ra 11nm, illustrating the 

effectiveness of this dual beam measurement approach. Therefore, the speckle 

noise from a single beam measurement is estimated from this dual beam 

measurement in order to minimise the influence of the genuine velocity (for all 

measurements) and shaft out-of-roundness (for smoother surfaces). 

 



 100 

5.3 Pseudo-vibration sensitivities to surface motions 

This section presents estimations of the sensitivities for each surface motion 

using experimental configurations. The data are processed and analysed as 

described in Section 5.2. Two commercial vibrometers are used, one producing 

a beam spot diameter on the surface which is nominally 100µm and the other 

producing a beam spot diameter which is nominally 600µm. The vibrometers 

are positioned at their recommended stand off distances which are 600mm and 

400mm respectively. The beams are focussed at these distances and therefore 

both beams are considered to have planar wavefronts on the surface. 

5.3.1 Transverse sensitivity 

The test surfaces are oscillated sinusoidally at a frequency of 60Hz with a 

translational displacement of 420µm rms providing at least one whole beam 

spot diameter translation for the configurations being tested. Figure 5.14 shows 

typical captured data from a surface moving perpendicular to the optical axis. 

Figure 5.15 shows the speckle noise which is calculated from the difference 

between the measured velocity and the genuine velocity. 
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Figure 5.14 - Typical data of measured velocity, genuine velocity and transverse velocity. 

Beam diameter, D=600µm. Surface roughness, Ra 1.0µm. 
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Figure 5.15 - Typical data of the apparent and transverse velocity using a beam spot diameter 

of D=600µm on a surface with Ra 1.0µm. 

 

The sinusoidal motion of the surface causes speckle noise to appear to reflect 

and negate around the instances in time when the surface is stationary. The 

more prominent peaks of speckle noise occur in the temporal vicinity of 
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maximum surface velocity and this is not uncommon in measurements of 

speckle noise. The increased velocity of the surface causes the speckles, which 

evolve and translate, to change at a greater rate on the photodetector surface 

resulting in more rapid changes in the phase of the Doppler signal. This feature 

is also present in simulations of speckle noise described later in Section 7.1.4. 

 

Data such as that shown in Figure 5.15 is processed as described in Section 

5.2.1 where it is Fourier transformed, normalised by the transverse velocity at 

the fundamental frequency and presented in terms of order. A statistical 

average is produced for each test surface and beam diameter configuration and 

the mean +/- one standard deviation of speckle noise presented as a percentage 

of the transverse velocity, as shown for 50 orders in Figure 5.16. 
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Figure 5.16 – Transverse sensitivity map for a surface with a displacement of 420µm rms. (a)  

transverse sensitivity using 600µm beam spot diameter. (b) transverse sensitivity using 100µm 

beam spot diameter.  

 

The configurations with the 600µm and 100µm beam spot diameter are shown 

in Figure 5.16 (a) and (b) respectively. The various surface finishes can be 

identified by the styles shown within the keys. The baseline noise levels differ 

because the configurations use two different vibrometer models. Table 5.1 and 

Table 5.2 show the transverse sensitivities for the beam diameters of 600µm 

and 100µm respectively. These tables present the first quantification of 

transverse sensitivity for laser vibrometers.  Figure 5.16 and Table 5.1 together 

with Table 5.2 show clear evidence that increasing the beam spot diameter on 

the surface can reduce the transverse sensitivity. Increasing the beam spot 

diameter reduces the rate of change of the resultant phase because the speckles 

remain correlated for a longer period of time as discussed in Section 4.1.1.  
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D = 600µm 
Transverse sensitivity: apparent velocity per unit transverse velocity (%) 

Surface finish 
Retro- 

reflective 

 tape 

Ra 1.0µm 

(1.6λ) 

Ra 75nm 

 (0.12λ) 

Ra 11nm 

 (0.02λ) 

Typical 

scattered light 

patterns 

    

Mean level  

by order 

(orders 1-10) 

0.011 0.0077 0.011 0.0090 

Standard  

deviation 

(orders 1-10) 

0.0070 0.0055 0.0080 0.0081 

Total RMS  

level across  

50 orders 

0.044 0.030 0.047 0.039 

Table 5.1 - Transverse sensitivity for a target with a displacement of 420µm rms using beam 

diameter of 600µm 

 

Transverse sensitivity is quantified at a mean level of approximately 0.01% to 

0.03% over the first 10 orders for the beam spot diameters of 600µm and 

100µm respectively. The total level over 50 orders is about 0.05% for a 600µm 

beam spot diameter and less than 0.2% for a 100µm beam spot diameter. In 

general, the surface roughness appears to make little difference to sensitivities 

except for the smoothest surface (Ra 11nm) with the 100µm beam spot 

diameter which appears to reduce transverse sensitivity. Transverse 

sensitivities for the Ra 75nm surface, which produces a partially developed 

speckle pattern, appear to be comparable with sensitivities from the rougher 

surfaces which produce fully developed speckle patterns. This suggests the 

underlying, partially developed speckle pattern is a significant component in 

the collected light from which the measurement is taken. 
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D = 100µm  
Transverse sensitivity: apparent velocity per unit transverse velocity (%) 

Surface finish 
Retro- 

reflective 

 tape 

Ra 1.0µm 

(1.6λ) 

Ra 75nm 

 (0.12λ) 

Ra 11nm 

 (0.02λ) 

Typical 

scattered light 

patterns 

    

Mean level  

by order 

(orders 1-10) 

0.025 0.032 0.029 0.0073 

Standard  

deviation 

(orders 1-10) 

0.018 0.020 0.021 0.0026 

Total RMS  

level across  

50 orders 

0.16 0.17 0.19 0.055 

Table 5.2 - Transverse sensitivity for a target with a displacement of 420µm rms using beam 

diameter of 100µm 

 

As an additional note, it was observed that sensitivities can be affected by 

curvatures to surfaces, particularly for focussed beams on smooth surfaces 

producing predominantly specular reflections. The curvature causes the 

scattering angle, γS, shown in equation (1.6) to change as a function of time. 

Although these angles are small, components of the surface velocity become 

present in the sensed velocity and observations have suggested that they can be 

significant enough to dominate the measurements. This is evident as an 

increased 1
st
 order component in the data and is observed as an alteration to the 

angle of the reflected light from the surface as it moves. In this study, it was 

necessary to keep the effect of this to a minimum for the Ra 11nm surface. This 

was achieved by localising the measurements to regions where the tangent to 
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the surface remained relatively constant and perpendicular to the incident 

beam. In these locations 1
st
 order components in the data are reduced and the 

light reflected from the surface appears on the vibrometer aperture and remains 

relatively unperturbed by surface translations. 

 

The results presented in Table 5.1 and Table 5.2 show transverse sensitivities 

for four surface finishes. Data suggest that Ra 11nm with 100µm beam spot 

results in lower sensitivity than all other surfaces for that beam spot diameter, 

but further analysis can be made to see whether these differences are 

significant. This analysis is performed using ANOVA which is a statistical test 

to check whether the means of several groups are all equal. The one-way 

ANOVA test is made using a 95% level of confidence and hypothesising that 

there are no differences between the means. This means that when the 

hypothesis is determined to be true it is expected to be a correct decision 95% 

of the time. 

 

Table 5.3 – ANOVA test results for the significance in the mean sensitivities from the various 

surface finishes when using beam spot diameters of 600µm and 100µm. 

Vibration displacement 420µm. 

  

Source of  

Variation 

Sum of 

squares 

Degrees of 

freedom 
Variance 

F  

Ratio 

Probability 

value 

Critical  

F ratio 

D=600µm 

Between  

Groups 
7.5x10

-09
 3 2.5x10

-09
 2.59 0.068 2.87 

Within  

Groups 
3.5x10

-08
 36 9.7x10

-10
    

Total 4.2x10
-08

 39     

D=100µm 

Between  

Groups 
3.6x10

-07
 3 1.2x10

-07
 27.6 1.9x10

-09
 2.87 

Within  

Groups 
1.6x10

-07
 36 4.3x10

-09
    

Total 5.1x10
-07

 39     
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The results are shown in Table 5.3. The hypothesis is deemed true if the ‘F 

ratio’ is less than the critical F ratio. The F ratio is found from the ratio of the 

variance between groups to that from within the groups and the critical F ratio 

is determined from the number of degrees of freedom in the samples 

 

For the 600µm beam spot diameter configurations it was found that this 

hypothesis is true. An F ratio of 2.59 against a critical F ratio of 2.87 indicates 

there is no significant difference between the mean levels of transverse 

sensitivity with a 95% level of confidence. For the beam spot diameter of 

100µm, the ANOVA test produces an F ratio of 27.6 against a critical F ratio of 

2.87 so the differences in the mean transverse sensitivities are significantly 

different with a probability of 1.9x10
-9

% that this difference is purely by 

chance. The ANOVA test only highlights when there is a significant difference 

between sample means in the group. It does not highlight which particular 

sample means are significantly different. To determine which surfaces have 

significantly different mean transverse sensitivities, Tukey’s test is used. This 

is a multiple comparison statistical test, comparing all possible pairs of means. 

Tukey’s test, as shown in Table 5.4, highlights that the mean transverse 

sensitivity for the surface with Ra 11nm is significantly different from the rest. 

It also shows that the other surfaces are not significantly different from each 

other falling within the critical parameter of 3.81 set out by Tukey’s test. 

 

Surface finish 
Retro-reflective 

tape Ra 1.0µm Ra 75nm Ra 11nm 

Retro-reflective 

tape 
- 3.44 2.06 8.28 

Ra 1.0µm 3.44 - 1.39 11.73 

Ra 75nm 2.06 1.39 - 10.34 

Ra 11nm 8.28 11.73 10.34 - 

     

Table 5.4 – Results of Tukey’s test for beam diameter of 100µm configurations identifying 

which surfaces are significantly different. Vibration displacement 420µm rms. 
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It has already been shown, in Section 5.2.1, that vibration frequency appears to 

affect sensitivities linearly, and transverse sensitivity has been quantified and 

presented so it can be extrapolated to any vibration frequency. The 420µm 

vibration amplitude was chosen so as to decorrelate the speckles at least once 

during an entire cycle. Further understanding of speckle noise comes when 

observing transverse sensitivity while reducing the vibration amplitude. Figure 

5.17 shows the transverse sensitivity from a surface with Ra 1.0µm which 

vibrates at a frequency of 60Hz but the vibration displacement amplitude is 

reduced by a factor of two, three times over. The standard deviation bars are 

not presented for clarity on presentation. It can be seen that the spectral shape 

changes as the vibration displacement amplitude is altered. As the vibration 

displacement is reduced it can be seen that the low order harmonics of 

transverse sensitivity increase while the higher orders reduce albeit with a 

small variation. This means speckle noise appears to have a slightly non-linear 

relation to the displacement amplitude. 
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Figure 5.17 – Transverse sensitivity while varying the vibration displacement amplitude using 

a beam diameter of 100µm and a surface Ra 1.0µm. 
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Table 5.5 shows the transverse sensitivities and presents evidence that, as the 

vibration displacement reduces, apparent transverse sensitivity increases 

slightly. This is because speckle noise does not reduce proportionally with the 

vibration displacement amplitude. This alters the appearance of the spectral 

shape. The transverse sensitivity at lower orders is increased and the higher 

orders reduce because there are fewer speckle decorrelations in the time period. 

 

D = 100µm 

 Transverse sensitivity: apparent velocity per unit transverse velocity (%) 

Surface 

displacement 

amplitude 

420µm rms 210µm rms 105µm rms 52.5µm rms 

Mean level  

by order 

(orders 1-10) 

0.032 0.034 0.046 0.057 

Standard  

deviation 

(orders 1-10) 

0.020 0.023 0.028 0.038 

Total RMS  

level across  

50 orders 

0.17 0.18 0.20 0.22 

Table 5.5 - Transverse sensitivity while varying the vibration displacement amplitude using a 

beam diameter of 100µm and a surface Ra 1.0µm. 

 

The ANOVA test shows that there is a significant difference in the mean 

transverse sensitivities for the different displacement amplitudes and the results 

of Tukey’s test are shown in Table 5.6. With a critical parameter of 3.81, Table 

5.6 shows evidence that the significant differences lie between 52.5µm rms and 

420µm rms, and 52.5µm rms and 210µm rms. Therefore, the transverse 

sensitivities presented in Table 5.2 are adequate for vibration displacements, 

which are greater than the beam diameter. The difference has been identified 

with a statistical significance and can be seen that it is separated by a factor of 

approximately two. However, it is important to note that the difference is small 
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in a practical sense showing only about 0.025% difference in transverse 

sensitivity for the first 10 orders. 

 

Surface 
displacement 
amplitude 

420µm rms 

(4.2D) 
210µm rms 

(2.1D) 
105µm rms 

(1.05D) 
52.5µm rms 

(0.525D) 

420µm rms 

(4.2D) 
- 0.47 3.7 6.6 

210µm rms 

(2.1D) 
0.47 - 3.2 6.1 

105µm rms 

(1.05D) 
3.7 3.2 - 2.9 

52.5µm rms 

(0.525D) 
6.6 6.1 2.9 - 

     

Table 5.6 –Tukey’s test for beam diameter of 100µm configurations. 

 

Figure 5.18 presents the transverse sensitivities for the 100µm beam spot 

diameter for the surface vibration displacements of 420µm rms and 52.5µm 

rms and also the transverse sensitivity for the 600µm beam for a surface 

displacement of 420µm. It shows the similarity of the spectral shapes between 

the transverse sensitivities produced when using 100µm beam diameter for a 

surface displacement of 52.5µm rms and the 600µm beam diameter for a 

surface displacement of 420µm rms. In both these cases the surface displaces 

by approximately the same proportion of the beam diameter. Figure 5.18 

therefore verifies the spectral shape for transverse sensitivity when surface 

displacements are smaller than the beam diameter. The transverse sensitivities 

presented in Table 5.1 therefore slightly over-estimate the sensitivities for 

surface displacement amplitudes which are greater than the beam diameter, 

particularly for the mean sensitivities over orders 1 to 10. However, it must be 

emphasised that the expected levels of transverse sensitivity will not, generally, 

be appreciably different in a practical sense. 
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Figure 5.18 – Comparison of transverse sensitivity for 100µm beam spot diameter and 600µm 

beam spot diameter  

 

The data presented in this section have provided a greater understanding of 

speckle noise generation. Increasing the beam diameter has the greatest 

significance in lowering the transverse sensitivity. Therefore methods to alter 

the beam diameter are of value for the vibration engineer. One of the simplest 

methods is to defocus the beam. If defocus is not practical, a simple alternative 

method can be to introduce an aperture into the path of the laser beam as it is 

emitted from the laser vibrometer. The aperture has two effects on the optical 

configuration; it diffracts the beam and it also causes a reduced receiving 

aperture to the vibrometer. The latter effect has little consequence on the 

transverse sensitivity and this is shown in simulations presented in Section 

7.1.4.2. 
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(a) (b) 

Figure 5.19 – (a) beam spot on surface with no additional aperture in the laser beam path, (b) 

beam spot with an additional vertical 1mm wide aperture in the laser beam path.  

( (a) and (b) not to the same scale) 

 

The first effect does have a significant effect on the transverse sensitivities. 

The diffraction increases the beam spot diameter on the surface but it is only 

necessary to increase the beam spot dimension in the direction in which the 

surface is moving to reduce speckle noise levels. Figure 5.19 shows images of 

the beam spots created when (a) there is no additional aperture introduced into 

the beam path and (b) when a 1mm wide vertical slit aperture is introduced into 

the beam path. Figure 5.20 and Table 5.7 present transverse sensitivity from a 

surface treated with retro-reflective tape, showing the effect of introducing a 

vertical aperture 1mm wide. The increased beam spot dimension in the 

direction of the surface translation causes the speckles to decorrelate over a 

greater time and with fewer decorrelations in the cycle period. This ultimately 

reduces speckle noise and it can be seen that the simple addition of an aperture 

can reduce transverse sensitivity levels by approximately half. 
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Figure 5.20 – The effect of introducing an additional vertical 1mm wide aperture into the 

vibrometer beam path, using an undisturbed beam spot diameter of 100µm on a surface treated 

with retro-reflective tape, vibration displacement 420µm. 

 

Table 5.7 – Transverse sensitivities showing the effect of introducing an aperture into the laser 

beam path. Vibration displacement 420µm. 

 

Transverse sensitivity: apparent velocity per unit transverse velocity (%) 

Configuration 
No additional aperture  

(D=100µm) 

Additional 1mm wide vertical  

aperture (D=385µm) 

Retro-reflective tape 

Mean level by order 

(orders 1-10) 
0.025 0.014 

Standard deviation 

(orders 1-10) 
0.018 0.0093 

Total level across  

50 orders 
0.16 0.063 
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5.3.2 Tilt sensitivity 

The test surfaces are oscillated sinusoidally at a frequency of 60Hz with an 

angular displacement of 0.78˚ rms. As discussed in Section 4.1.2, the speckles 

are expected to translate predominantly. This angular displacement results in 

speckle translation distances of 45mm at 600mm and 30mm at 400mm which 

exceed the vibrometer receiving aperture dimensions. Figure 5.21 shows a 

typical plot of speckle noise together with the angular velocity of the surface. 

This particular plot is taken from tests with a beam diameter of 100µm and the 

surface has a roughness of Ra 1.0µm. As described in Section 5.1.2, speckle 

noise again appears to reflect and negate around the instances in time when the 

surface is stationary. 
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Figure 5.21 - Typical data of speckle noise and angular velocity from tilting target surface. 

Beam diameter, D=100µm. Surface roughness, Ra 1.0µm. 

 

The more prominent peaks of speckle noise occur in the temporal vicinity of 

maximum surface velocity and this is not uncommon in measurements of 

speckle noise. The increased velocity of the surface causes the speckles to 
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move with a greater velocity resulting in more rapid changes in the resultant 

phase of the Doppler signal which manifest in the apparent velocity. This 

feature of speckle noise is also evident in simulations shown later in Section 

7.2.4. Data such as that presented in Figure 5.21 is captured for each test 

surface and beam diameter configuration and is processed as described in 

Section 5.2.1. Figures 5.22 (a) and (b) map the tilt sensitivity for beam 

diameters of 600µm and 100µm respectively. They present the statistical mean 

+/- one standard deviation normalised by the angular velocity at the 

fundamental frequency with units of µms
-1

 / degs
-1

 in terms of order. 
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Figure 5.22 –Tilt sensitivity map for a surface with angular displacement 0.78˚ rms. (a) tilt 

sensitivity using 600µm beam spot diameter. (b) tilt sensitivity using 100µm beam spot 

diameter. 

 

Figures 5.22 (a) and (b), show that reducing the beam diameter can 

significantly reduce tilt sensitivity, particularly at higher order harmonics. The 

sensitivity rolls-off as the harmonic order increases and this roll-off is slightly 

greater for the beam diameter of 100µm. A smaller laser spot diameter on the 

surface increases the size of the speckle. Larger speckles cause phase variations 

to occur over a greater time and therefore reduce the tilt sensitivity. Figures 

5.22 (a) and (b) suggest that surface finish does not make a significant 

difference to the tilt sensitivities. Table 5.8 shows tilt sensitivity is quantified at 

a mean level of approximately 0.1 µms
-1

/degs
-1

 to 0.3 µms
-1

/degs
-1

 over the 

first 10 orders for the beam spot diameters of 100µm and 600µm respectively. 

The total level over 50 orders is about 0.4 µms
-1

/degs
-1 

for a 100µm beam spot 

diameter and 1.3 µms
-1

/degs
-1

 for a 600µm beam spot diameter. 
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Tilt sensitivity: apparent velocity per unit angular velocity µms
-1

 / degs
-1

 

Surface finish 
Retro- 

reflective 

 tape 

Ra 1.0µm 

(1.6λ) 

Ra 75nm 

 (0.1λ) 

Ra 11nm 

 (0.02λ) 

D = 600µm 

Mean level  

by order 

(orders 1-10) 

0.28 0.28 0.24 0.25 

Standard  

deviation 

(orders 1-10) 

0.15 0.16 0.17 0.17 

Total level  

across  

50 orders 

1.7 1.7 1.7 1.7 

D = 100µm 

Mean level  

by order 

(orders 1-10) 

0.057 0.078 0.073 0.097 

Standard  

deviation 

(orders 1-10) 

0.042 0.064 0.053 0.063 

Total level  

across  

50 orders 

0.43 0.44 0.40 0.50 

Table 5.8 - Tilt sensitivity (µms
-1

 / degs
-1

)
 
for a target with an angular displacement of 0.78˚ 

rms. 

 

The ANOVA tests show the configurations using the 600µm beam spot 

diameter produce an F ratio of 0.625 and the configurations using the 100µm 

beam spot diameter produce an F ratio of 3.17. With a critical F ratio of 3.23, 

the ANOVA tests show quantifiable evidence that the surface finish makes no 

significant difference to the tilt sensitivities. Despite being the smoothest, the 

Ra 11nm surface shows noise levels which are as large as speckle noise. Figure 
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5.23 (a) and (b) show typical time histories of the apparent velocity from a 

surface with Ra 1.0µm and Ra 11nm respectively, over two oscillations of the 

surface. These figures show a similarity in the apparent velocity produced from 

an optically rough surface and a smooth surface. 
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(b) 

Figure 5.23 - Typical data of the apparent velocity from tilting target surface with roughness of 

(a) Ra 1.0µm and (b) Ra 11nm. Beam diameter, D=600µm. 
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The results, from a tilting target, suggest focussing the beam whenever possible 

to reduce tilt sensitivity. This is in fundamental accord with Drain [5.4], who 

remarked ‘increasing the spot size...increases sensitivity to tilt of the surface’. 

This is consistent with conventional wisdom on minimising frequency 

broadenings by minimising the range of Doppler shifts across the finite extent 

of the incident laser beam. 

5.3.3 Rotation sensitivity 

The test surfaces have diameters of 15mm and are rotated nominally at 35Hz 

for the rotation sensitivity maps. The configurations used are 90µm beam spot 

diameter at 600mm standoff distance and 520µm at 400mm standoff distance 
∗
.  
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∗
 These configurations show different beam spot diameters compared to those used in the transverse and 

tilt sensitivity measurements. The differences are due to an improved instrument to measure the spot 

diameters prior to these sensitivity experiments. Therefore, although values shown are different, the 

configurations are considered the same. 
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(c) 

Figure 5.24 – Typical measured velocities from (a) vibrometer A (b) vibrometer B and (c) the 

calculated differential velocity from a rotor with surface roughness Ra 1.0µm using beam spot 

diameters of 90µm 

 

Figures 5.24 (a) and (b) show typical data, from the two vibrometers, over two 

rotations of a shaft with a roughness of Ra 1.0µm. Figure 5.24 (c) is a trace of 

the difference between these measured velocities. The distinctive peaks 

highlighted by the circles in Figure 5.24 (c) illustrate the repetition of speckle 

noise caused by the speckle motions repeating as the surface rotates. It can be 
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seen by the rms levels displayed in Figures 5.24 (a)-(c) that the measured 

velocities, which are dominated by speckle noise, are uncorrelated as the rms 

of the difference is approximately 2  of either of the individual rms levels. It 

is important that the noise on each measurement is uncorrelated so that when 

the difference is calculated, to give the apparent velocity, the rotation 

sensitivity can be estimated using the 2  factor. 
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Figure 5.25 – Rotation sensitivity map for a shaft 15mm in diameter (a) rotation sensitivity 

using a 520µm beam spot diameter (b) rotation sensitivity using a 90µm beam spot diameter. 

BL= Baseline 

 

Figures 5.25 (a) and (b) show the rotation sensitivities, based on the difference 

calculation and the 2  correction, of a target 15mm in diameter for different 

surface finishes using beam spot diameters of 520µm and 90µm respectively. 

Table 5.9 and Table 5.10 present the corresponding rotation sensitivities. 

Figures 5.25 (a) and (b) and Table 5.9 together with Table 5.10 suggest 

reducing the beam spot diameter where possible to minimise sensitivity. This 

evidence together with visual observations shows speckle translation is the 

dominant speckle motion for the target rotation. Smaller beam diameter means 

a larger speckle size, which increases the correlation time and in turn reduces 

the rotation sensitivity. 
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D = 520µm  
Rotation sensitivity: apparent velocity per unit rotational velocity (µms

-1
 / rads

-1
) 

Surface finish 
Retro- 

reflective 

 tape 

Ra 1.0µm 

(1.6λ) 

Ra 270nm 

 (0.4λ) 

Ra 65nm 

 (0.1λ) 

Ra 11nm 

 (0.02λ) 

Typical 

scattered light 

patterns 

     

Mean level  

by order 

(orders 1-10) 
1.87 1.77 1.26 1.82 0.321 

Standard  

deviation 

(orders 1-10) 
1.89 1.73 1.23 1.75 0.274 

Mean level  

by order  

(orders 41-50) 
1.44 0.981 0.907 0.566 0.188 

Standard  

deviation  

(orders 41-50) 
0.942 0.727 0.498 0.516 0.0993 

Total level  

across  

50 orders 
12.25 9.84 7.90 7.91 1.68 

Table 5.9 - Rotation sensitivity (µms
-1

 / rads
-1

) using a beam diameter of 520µm. Shaft 

diameter = 15mm 

 

Rotation sensitivity is expected to reduce as surfaces become smoother. The 

more mirror-like the surface, the less diffuse the scatter and the correlation 

time increases. However, the 2
nd

 smoothest surface with Ra 65nm, which is 

approximately one tenth of the wavelength of the light (0.1λ), has produced 

sensitivities which are greater than that produced from rougher surfaces. The 

manufacture of the test shafts, which had the capability to vary the surface 

roughness, had less control of the roundness. The out-of-roundness for the 
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surface with Ra 65nm is particularly large, quantified at 27µm (other shafts in 

the range of 1-7µm). 

 

D = 90µm 

Rotation sensitivity: apparent velocity per unit rotational velocity (µms
-1

 / rads
-1

) 

Surface finish 

Retro- 

reflective 

 tape 

Ra 1.0µm 

(1.6λ) 

Ra 270nm 

 (0.4λ) 

Ra 65nm 

 (0.1λ) 

Ra 11nm 

 (0.02λ) 

Typical 

scattered light 

patterns 

     

Mean level  

by order 

(orders 1-10) 

0.542 0.821 0.664 1.09 0.206 

Standard  

deviation 

(orders 1-10) 

0.572 0.841 0.658 1.04 0.188 

Mean level  

by order  

(orders 41-50) 

0.533 0.586 0.588 0.384 0.112 

Standard  

deviation  

(orders 41-50) 

0.252 0.279 0.290 0.193 0.0575 

Total level  

across  

50 orders 

3.81 5.02 4.58 5.19 1.15 

Table 5.10 - Rotation sensitivity (µms
-1

 / rads
-1

) using a beam diameter of 90µm. Shaft 

diameter = 15mm 
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Figure 5.26– Typical measured velocities from (a) vibrometer A & vibrometer B and (b) the 

calculated difference velocity from a rotor with surface roughness Ra 65nm using beam spot 

diameters of 90µm 

 

Figures 5.26 (a) shows typical data for the measured velocities produced from 

the surface with Ra 65nm over two rotations. The measured velocities show a 

high degree of similarity and this is the result of the out-of roundness. Figure 
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5.26 (b) shows the calculated difference of the apparent velocities shown in 

Figure 5.26 (a). The effect of the out-of-roundness is reduced in the difference 

calculation and ‘speckle noise’ is more evident. It can be seen by the rms levels 

displayed in Figures 5.26 (a) and (b) that the measured velocity signals are 

correlated as the rms of the difference is considerably less than 2  of either of 

the individual signals. This can also be seen in the spectrum. Figure 5.27 shows 

typical spectra of the two measured velocities from vibrometers A and B 

together with the calculated difference. Although the beams are parallel and the 

spots are as close to one another as possible to cancel the genuine velocity and 

any shaft out-of-roundness, lower orders still dominate the measurement, and 

these are believed to result from out-of-roundness. 
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Figure 5.27 – Spectra of measured velocities A and B and calculated difference velocity from 

surface with Ra 65nm, D=90µm. 

 

The out-of-roundness affecting the low orders was also seen in Figure 5.10 in 

the single beam measurement on the surface with Ra 11nm. Pseudo-vibration 

retains its amplitude over an extremely large bandwidth, affecting the 
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amplitude of high orders nearly as much as low orders. Shaft out-of-roundness 

affects low orders of the sensitivity and therefore to provide a more appropriate 

comparison of the surfaces the mean rotation sensitivities and the standard 

deviation for higher orders (41-50) are shown in Table 5.9 and Table 5.10 

where out-of-roundness has little effect. The sensitivities at higher orders 

shown in Table 5.9 and Table 5.10 are more consistent with expected 

sensitivities i.e. rotation sensitivity reduces as roughness reduces.  

 

Table 5.9 shows a mean rotation sensitivity of up to approximately 1.4 µms
-1

 / 

rads
-1

 over orders 41 to 50 and a total rms over 50 orders of approximately 12 

µm s
-1

 / rad s
-1

 for a beam spot diameter of 520µm. A smaller beam diameter of 

90µm, shown in Table 5.10, produces mean rotation sensitivity over orders 41 

to 50 of approximately 0.6 µms
-1

 / rads
-1

 and a total rms of 5 µms
-1

 / rads
-1

 over 

50 orders. 

 

The ANOVA tests show that there is a significant difference in the mean 

sensitivities over orders 41 to 50 in the group of surface finishes for both the 

larger beam diameter and the smaller beam diameter. Therefore, to see where 

the significant differences lie, Tukey tests are performed for the groups of 

surface finishes. The results of the Tukey tests are shown in Tables 5.11 and 

5.12 for the 520µm and 90µm beam spot diameters respectively. 

 

For a 95% confidence level, a critical value of 4.01 exists and the significant 

differences have been highlighted in the respective tables. The results from 

Tukey’s test produced from the beam spot diameter of 520µm show the mean 

rotation sensitivities from all surfaces are significantly different, except those 

between the surface with Ra 1.0µm and Ra 270nm. Table 5.12 shows that the 

smoothest surfaces, with Ra 65nm and Ra 11nm, produce distinct mean 

rotation sensitivities from all other surfaces. 
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Surface finish 
Retro-

reflective 

tape Ra 1.0µm Ra 270nm Ra 65nm Ra 11nm 

Retro-reflective 

tape 
- 5.64 8.28 12.94 20.03 

Ra 1.0µm 
5.64 - 2.64 7.30 14.39 

Ra 270nm 
8.28 2.64 - 4.66 11.75 

Ra 65nm 
12.94 7.30 4.66 - 7.08 

Ra 11nm 
20.03 14.39 11.75 7.08 - 

      

Table 5.11 – Results of Tukey’s test for the surfaces when using a beam diameter of 520µm 

using orders 41-50. Shaft diameter = 15mm 

 

Surface finish 
Retro-

reflective 

tape Ra 1.0µm Ra 270nm Ra 65nm Ra 11nm 

Retro-reflective 

tape 
- 2.46 2.54 6.83 19.30 

Ra 1.0µm 
2.46 - 0.09 9.29 21.76 

Ra 270nm 
2.54 0.09 - 9.38 21.85 

Ra 65nm 
6.83 9.29 9.38 - 12.47 

Ra 11nm 
19.30 21.76 21.85 12.47 - 

      

Table 5.12 – Results of Tukey’s test for the surfaces when using a beam diameter of 90µm 

using orders 41-50. Shaft diameter = 15mm 

 

The rotation sensitivities shown in Figures 5.25 (a) and (b) are produced from a 

target shaft with a diameter of 15mm. The cross-correlations shown in Section 

4.1.3 predict that the radius of the target shaft can affect the sensitivity, 

particularly when using smaller beam spot diameters. Figure 5.28 (a) shows the 

effect on the rotation sensitivity from an increased shaft diameter. Using three 

targets of diameter 15mm, 40mm and 110mm it shows the rotation sensitivity 
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when using a beam spot diameter of 90µm. The target shafts are treated with 

retro-reflective tape to remove any effect of the out-of-roundness. Vibration at 

lower orders was evident for the larger shaft diameters and this was because a 

different experimental rig was used. Of particular note, it was found that 

altering the focal point can affect the rotation sensitivity and Figure 5.28 (b) 

presents results obtained by focussing the beam at the rotational axis as well as 

on the shaft surface. 
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Figure 5.28 – Rotation sensitivity showing (a) the effect of an increased shaft diameter and (b) 

changing the focal point. (§ - focussed on the rotation axis) 

 

D = 90µm 
Rotation sensitivity: apparent velocity per unit rotational velocity (µm s

-1
 / rad s

-1
) 

Shaft diameter 15mm 40mm  40mm § 110mm 110mm § 

Mean level  

by order  

(orders 41-50) 

0.533 0.682 0.618 1.07 0.625 

Standard  

deviation  

(orders 41-50) 

0.252 0.344 0.221 0.466 0.314 

Table 5.13 – Rotation sensitivity  of orders 41-50 with various shaft diameters treated with 

retro-reflective tape and also showing the effect of focussing on the rotation axis of the shaft. 

(§ - focussed on the rotation axis) 

 

Table 5.13 presents the rotation sensitivities based on orders 41-50 from the 

three shafts examined, including the results when focussing the beam near the 
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rotation axis rather than the shaft surface. The largest difference in rotation 

sensitivity can be seen for the largest shaft diameter of 110mm. Focussing the 

beam near the rotation axis shows a noticeable difference to focussing on the 

surface, particularly for the larger shaft diameter. The rotation sensitivity using 

a shaft diameter of the 15mm and 40mm while focussing on the shaft surface 

and also 40mm and 110mm while focussing on the rotation axis all show a 

noticeable similarity. When shaft diameters are small, there is little physical 

difference whether the beam is focussed on the surface or near the centre of 

rotation. As the diameter of the shaft is increased the correlation time is 

expected to reduce and this can be seen in Figure 5.29, which shows the 

expected correlation times, using equation (4.24), for the speckle pattern when 

the shaft rotates at 35Hz.  
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Figure 5.29 – Expected correlation times for a shaft rotating at 35Hz when using a 90µm beam, 

either focussing on the shaft surface or focussing on the rotation axis. The three shafts used in 

this study are identified by the data points presented in the plot. 

 

This is reflected in Figure 5.28 and Table 5.13 by the increase in rotation 

sensitivity when the diameter is increased to 110mm. However when 
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measurements are required on larger diameter shafts, the sensitivities can be 

reduced by changing the focal point. Focussing the beam near the rotation axis 

brings the greatest reduction in the rotation sensitivity. It must be noted 

however that the cross-correlations of intensity predict that the correlation 

times continue to increase the further the focal point is beyond the surface, 

suggesting a reduction in rotation sensitivity. It was found that this is not the 

case and focussing on the rotational axis has the greatest effect in reducing 

sensitivities. Speckle noise is driven by the derivative of the phase change with 

respect to time. Focussing near to the rotation axis reduces the broadening of 

the Doppler frequency. This shows a greatest reduction in rotation sensitivity. 

Observation of the speckle motions has revealed a predominant translation 

when measurements are taken from the two shafts with smaller diameters 

(15mm and 40mm) and also when the beam is focussed on the rotation axis on 

the larger diameter shaft (110mm). However when focussing the beam onto the 

surface of the larger shaft, speckle evolution appears to dominate. These 

observations are supported by the cross correlations of intensity shown in 

Section 4.2.3.  

 

Shaft diameter 15mm 40mm 40mm § 110mm  110mm § 

15mm - 1.73 2.94 5.62 2.81 

40mm 1.73 - 1.22 7.34 1.09 

40mm § 2.94 1.22 - 8.56 0.13 

110mm 5.62 7.34 8.56 - 8.43 

110mm § 2.81 1.09 0.13 8.43 - 

      

Table 5.14 – Tukey’s test for various shaft diameters. (§ - focussed on the rotation axis) 

 

Tukey’s test, presented in Table 5.14, shows that the rotation sensitivity from 

the 110mm diameter shaft, when focussed on the surface, is significantly 
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different from all other rotation sensitivities. This gives evidence that the 

increased rotation sensitivity caused by a large shaft diameter can be remedied, 

by simply re-focussing the beam on the rotational axis of the shaft. Therefore 

in addition to a small beam waist it is recommended that the beam is focussed 

to the rotational axis when radial measurements are required on rotating 

targets. 

 

Evident in Tables 5.9 and 5.10, using the shaft with a 15mm diameter and 

focussing the beam on the surface of the shaft, the smaller beam diameter 

(90µm) has a reduced rotation sensitivity, three times less than the larger beam 

(520µm). Using this factor and Table 5.13, the rotation sensitivity for a beam 

diameter of 520µm on a 110mm diameter shaft might be around 3 µms
-1

 /   

rads
-1

. This estimation suggests that a smaller beam diameter (focussed on the 

rotation axis) may provide a great advantage over using a larger beam diameter 

(focussed on the surface), potentially reducing the rotation sensitivity by a 

factor of five. 

5.3.4 Parallel beam rotation sensitivity 

Pseudo-vibration sensitivities are also important for parallel beam vibrometers 

and equivalent investigations to those presented in this chapter can be 

performed. Rotation sensitivity is perhaps the most important of these and is 

the subject of this section. As described in Section 1.1.2, parallel beam 

vibrometers measure the angular velocity of a surface. Typically, rotational 

vibrometers are used to measure torsional vibrations in rotating shafts. This 

section studies the rotation sensitivity for a parallel beam vibrometer on a 

rotating shaft. Often the shafts are treated with retro-reflective tape to 

maximise backscattered light. If the surface is left untreated the localised 
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surface orientation reflects the beam away from the receiving aperture of the 

vibrometer and this was observed the experimentation presented here. 

 

A shaft is treated with retro-reflective tape and is rotated at 30Hz. Figure 5.30 

shows the configuration to quantify the rotation sensitivity for a parallel beam 

vibrometer. 

 

 

Figure 5.30 - Parallel beam rotation sensitivity arrangement 

 

A rotational vibrometer is located 400mm from the shaft and is orientated to 

measure the angular vibration of the rotating shaft. The pair of beams are 

aligned perpendicular to the rotation axis. The beam spots, 520µm in diameter, 

are positioned equidistant from the rotation axis. The pair of beams from a 

second rotational vibrometer are aligned parallel with the first and the beam 

spots are positioned as close as practically possible (one to a few millimetres 

apart) with no overlap. The measured velocities output from each of the two 
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vibrometers contain components of nominally the same angular velocity but 

also components of unrelated noise. As using the approach established in 

Section 5.3.3, the rotation sensitivity is calculated from the difference in 

measured velocities divided by 2 . 
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Figure 5.31 - Parallel beam rotation sensitivity for a shaft 15mm in diameter, D=520µm. 

RRT – Retro-reflective tape 

 

Figure 5.31 shows the calculated rotation sensitivity for the parallel beam 

arrangement together with the single beam rotation sensitivity, from Section 

5.3.3, which has been converted to an equivalent rotation sensitivity for two 

beams. 

 

It can be seen that the spectral shape of the parallel beam configuration 

maintains its amplitude across the broad frequency range presented (50 orders). 

The amplitude and spectral shape of the rotation sensitivity for parallel beam 

rotation sensitivity is markedly similar to the equivalent rotation sensitivity 

calculated from the single beam measurements. Table 5.15 presents the rotation 
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sensitivity for parallel beam vibrometers and also the equivalent rotation 

sensitivity calculated from a single beam, shown previously in Table 5.9. The 

rotation sensitivity for single beam laser vibrometers which has the same 

configuration (i.e. the same beam diameter and standoff-distance) can, 

conveniently, be used to estimate the rotation sensitivity for parallel beam laser 

vibrometers. Using equation (1.7) and (1.10) the factor 6
10

180
2

dπ

− (where d is the 

beam separation distance) can be found to convert from the rotation sensitivity 

in µms
-1

/rads
-1

 to an equivalent for parallel beams with the differential rotation 

sensitivity in degs
-1

/rads
-1

. 

 

Rotation sensitivity: apparent velocity per unit angular velocity 

 degs
-1

 / rads
-1

 

configuration Parallel beam 
Single beam 

(converted) 

Mean level  

by order 

(orders 1-10) 

0.016 0.019 

Standard  

deviation 

(orders 1-10) 

0.008 0.009 

Total level  

across  

50 orders 

0.134 0.124 

Table 5.15 - Rotation sensitivity (degs
-1

 / rads
-1

) using beam diameters of 520µm. Shaft 

diameter = 15mm, D=520µm. Surface is treated with retro-reflective tape. 

 

The apparent velocity per unit angular velocity is expressed as degs
-1

 / rads
-1

 as 

this is appropriate for the output velocity used by rotational vibrometers. In 

Section 5.3.3 orders 41-50 were used to estimate the mean rotation sensitivity 

per order for single beam laser vibrometers and this was because the out-of-

roundness from smooth surfaces affects lower orders of rotation sensitivity. 
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However, these experiments were performed using retro-reflective tape and 

therefore the mean level can appropriately calculated using the first 10 orders. 

The parallel beam rotation sensitivity is quantified as 0.016 degs
-1

 / rads
-1

 per 

order over the first 10 orders and a total rms of 0.134 degs
-1

 / rads
-1

 over the 

first 50 orders. This shows that single beam rotation sensitivity can adequately 

be used to quantify parallel beam rotation sensitivity, despite the beam spot 

positions being in slightly different locations on the shaft. 

 

This chapter has presented two methods of quantifying pseudo-vibration 

sensitivity. The first method presented, used in Sections 5.3.1 and 5.3.2, 

requires correction of the vibrometer measurement with an independent 

measurement of genuine velocity to produce an apparent velocity dominated by 

the required noise components. The second method, used in Section 5.3.3 and 

5.3.4, requires a differential measurement using two identical vibrometers to 

cancel common components such as genuine velocity, leaving only 

uncorrelated noise from each measurement in the resulting apparent velocity. 

Method one is convenient if one vibrometer is available and a reliable 

measurement of the genuine velocity can be made. Method two requires two 

identical vibrometers and is a robust method to quantify pseudo-vibration 

sensitivity. 
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6 Observation of dynamic speckle 

This chapter presents observations of speckle patterns and speckle motions for 

a variety of surface finishes, including roughness levels ranging from Ra 11nm 

(≈λ/60) to 1µm (≈1.6λ) and a surface treated with retro-reflective tape, with 

two vibrometers producing beam spot diameters of 90µm and 520µm. Speckle 

patterns are described as translating or evolving, or some combination of these 

two behaviours. Using high resolution sequential images, this chapter observes 

the changes to the intensity distributions of speckle patterns. It uses Cross-

correlation, of these sequential images, as a tool to observe the speckle pattern 

changes qualitatively for transverse, tilt and rotation surface motions ultimately 

attempting to relate these to laser vibrometer pseudo-vibration sensitivities. 

6.1 Speckle patterns 

Figures 6.1 (a) to (h) show typical intensity distributions from surfaces treated 

with retro-reflective tape and a range of surface roughness producing fully and 

partially developed speckle patterns which are to be examined in this chapter. 

A surface treated with retro-reflective tape produces an intensity pattern which 

can be interpreted as the superposition of two intensity distributions caused by 

two effects. The retro-reflective optics produce an overall Airy disc intensity 

distribution while the microscale deviations in the depth of the surface produce 

the speckle pattern. 

 



 139 

Beam spot diameter =520µm Beam spot diameter =90µm 

  
(a) Retro-reflective tape (b) 

  
(c) Ra 1.0µm (d) 

  
(e) Ra 75nm (f) 

 
 

 

(g) Ra 11nm (h) 

Figure 6.1 - Speckle patterns from a variety of surfaces using  

beam spot diameters of 520µm and 90µm 
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The speckle pattern formed when using the smaller beam diameter of 90µm on 

the retro-reflective tape, Figure 6.1 (b), appears to have a regularity in its 

speckles. The retro-reflective tape is composed of approximately 50µm 

diameter glass beads embedded into the surface of the tape as shown 

previously in Figure 2.1. From this it is easy to see how a beam spot diameter 

of 90µm scatters from only a few glass beads which in turn produces a finite 

number of phase varied Airy disc intensity distributions and hence a degree of 

regularity to the observed intensity pattern. 

 

A progression from the fully developed speckle pattern produced from the 

roughest surface (Ra 1.0µm) through the combination of partially developed 

speckle pattern and specular reflection (Ra 75nm) to the specular reflection 

produced from the smooth surface (Ra 11nm) can also be observed in the 

figures. Further observation of these images shows a distinct effect of 

orientation to the scatter, from the surfaces without tape. This is as a 

consequence of the features on the surface produced by the machining 

direction. The surface finish is dominated by corrugations parallel with the 

machine finish direction. Consequently, the beam scatters more prominently 

perpendicular to this direction producing a band of speckles. The band of 

speckles is seen in a horizontal direction for the range of surface roughness 

finishes Ra 1.0µm to 75nm shown in Figures 6.1  (c) to (f). The Ra 11nm 

surface produces an intensity distribution comparable with a mirror-like 

reflection. This roughness is approximately 1/60
th

 of the wavelength of the 

light, (He-Ne λ =632.8nm). 
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6.1.1 Speckle size 

Using the images of the speckle patterns, the average speckle size in the image 

can be measured. Statistically, the average speckle size in a fully developed 

speckle pattern was shown by equation (3.24). The auto-correlation function is 

therefore required. A two-dimensional auto-correlation can be used, either 

directly or by applying the two-dimensional Weiner-Khinchin theorem shown 

in Section 3.4.1. The Weiner-Khinchin method has proven to be a 

computationally less intensive operation, providing the auto-correlation 

function through the inverse Fourier transform of the power spectral density. 

The exp[-2] width of a two-dimensional Gaussian fit to the auto-correlation 

function is measured producing the average width of the speckle in the image. 

The contrast of a speckle pattern, calculated by the ratio of the standard 

deviation to the average of the intensity, shown by equation (3.18) can be used 

as an indication of how well developed the speckle pattern is. For a fully 

developed speckle pattern, the contrast is unity. 

 

Speckle pattern 

surface 

Figure 6.1. 

reference 

Expected 

speckle size 

( 0σ ,µm) 

Measured 

speckle size 

(σx, µm) 

Measured 

speckle size 

(σy, µm) 

Contrast 

Retro-reflective tape (a) 418 498 1.36 

Ra 1.0µm (c) 301 350 0.94 

Ra 75nm (e) 559 696 1.59 

Ra 11nm (g) 

235 

(D = 520µm) 

NA NA 3.97 

Retro-reflective tape (b) 859 1055 1.36 

Ra 1.0µm (d) 870 1010 0.84 

Ra 75nm (f) 843 1083 1.34 

Ra 11nm (h) 

898 

(D = 90µm) 

NA NA 2.87 

Table 6.1- Expected speckle sizes, measured speckle sizes and contrasts of speckle patterns 

 

Table 6.1 shows predicted speckle sizes, measured speckle sizes (σx, σy) and the 

contrast for the speckle patterns shown in Figure 6.1. The best match to the 

predictions, from the statistics, is expected from the Ra 1.0µm surface because 

this surface should generate a fully developed speckle pattern. As expected, 
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speckles are larger for the smaller beam spot diameter. The measured speckle 

sizes are larger than that predicted by classical statistics for fully developed 

speckle patterns. The mirror-like reflection produced by the Ra 11nm surface 

produces a contrast far removed from that of a fully developed speckle pattern. 

As expected, the combination of specular reflection and a speckle pattern 

observed in Figures 6.1 (e) & (f) and produced by the Ra 75nm surface 

produces contrast results suggesting a partially developed speckle pattern. 

Interestingly, the contrasts calculated for the speckle patterns produced when 

using retro-reflective tape, for both beam spot diameters, are comparable with 

the contrasts produced by a smooth surface with Ra 75nm. Classical speckle 

statistics do not include superposition of the overall Airy disc intensity 

distributions produced by retro-reflective tape, and therefore it is not surprising 

to see non-conformance. 

 

Measurement and observation of the speckle size can be related to measured 

pseudo-vibration sensitivities. Measurements of tilt sensitivity, presented in 

Section 5.3.2, have shown that using a smaller beam diameter can reduce levels 

of noise. Increasing the speckle size reduces the rate of change of phase caused 

by the speckle motion, reducing speckle noise measured by the vibrometer. 

6.2 Qualitative observation of speckle behaviour 

As described previously in Chapter 4, speckles can translate or evolve 

(sometimes called ‘boiling’) and can exhibit both behaviours. In this section, 

the behaviour of speckles produced from transverse and tilt target surface 

motions is to be examined. Incremental transverse and tilt target surface 

displacements are produced using displacement stages with resolutions of 

10µm and 0.1° respectively, and sequential images (1200x1024 pixels, 

resolution of 6.45µm square) are generated. 
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6.2.1 Speckle translation during surface tilt 

Illumination of a surface which is tilting produces a speckle motion in the 

intensity patterns which is dominated by translation. For this study, the test 

surfaces were set in a plane containing the axis of rotation and the beam was 

aligned to illuminate the surface on the rotational axis. For a tilting surface, the 

speckles are predicted to translate on the observation plane by amount 2θzS 

where θ is the angular displacement (rads) as explained in section 4.1.2.
 

 

A region of the pattern on the CCD is used later in the quantitative analysis, 

described in Section 5.2. The angular increment of the surface (0.1°) would 

produce speckle translation distance on the CCD of 0.75mm and 0.5mm for the 

beam spot diameters of 520µm and 90µm respectively. 

 

Figure 6.2 shows example speckle patterns and corresponding sectional 

profiles as the surface is angularly displaced over 0.4° in 0.1° increments, 

causing the speckle pattern to translate from the right to the left in the images. 

An example of the translation can be seen in the sectional profiles produced 

from the Ra 1.0µm surface, Figure 6.2 (a)(ii)-(vi). The same bright speckle in 

each sequential profile is tracked, emphasising the direction of the speckle 

translational motion. The speckles do not significantly alter in amplitude or 

shape and the speckles are considered to be dominated by the translational 

motion. At this point it is worth noting that as the surface tilts, relative to the 

beam, the beam spot elongates and becomes elliptical. This illuminates new 

surface features and will modify the speckle pattern, but the effects of this 

appear insignificant for the angular scales observed. 
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 (a) (b) (c) 

 (i) 

0.0° 

   

(ii)  

0.0° 

(iii) 

 0.1° 

(iv) 

 0.2° 

(v) 

 0.3° 

(vi)  

0.4° 

   

Figure 6.2 – Speckle pattern sectional profiles as the surface tilts at incremental displacements of 0.1° 

 Ra 1.0µm (D=520µm) Retro-reflective tape (D=90µm) Retro-reflective tape (D=520µm) 

 

Speckle translation also exists in the speckle motions when using retro-

reflective tape. However, the Airy disc intensity distribution causes the 

intensity of the speckles to alter as they translate. This is clearer in the sectional 

profiles of the transitions when using the smaller beam diameter of 90µm, 

where the speckles are relatively large, Figures 6.2 (b). A speckle identifiable 

in Figure 6.2 (b)(ii) as having the greatest intensity can be seen to translate, in 
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Figures 6.2 (b)(ii)-(vi), as the angular displacement of the surface increases. 

However, its intensity diminishes as it translates and approaches the first 

minima of the Airy profile. Concurrently, a second speckle in the speckle 

pattern, with a significantly lower intensity in Figure 6.2 (b)(ii) also translates 

across the Airy profile but its intensity increases. This transition can also be 

seen in the sectional profiles in Figures 6.2 (c) from speckle patterns produced 

from the increased beam spot diameter of 520µm and retro-reflective tape 

6.2.2 Speckle evolution during surface translation 

Speckle evolution occurs when there is a significant change to the population 

of illuminated surface features. This can be the dominant speckle behaviour 

when the surface translates in a direction transverse to the beam. For this study, 

the beam is aligned to be nominally parallel with the surface normal. Figures 

6.3 (a)-(f) show speckle patterns and their corresponding sectional profiles 

when a surface with Ra 1.0µm is translated, with increments of 1/5 of the beam 

diameter, over a total range of one beam spot diameter (90µm).  
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 (a) 

0.00mm 

(b) 

0.02mm 

(c) 

0.04mm 

(d) 

0.06mm 

(e) 

0.08mm 

(f) 

0.10mm 
 

 

 Figure 6.3 – Speckle patterns and sectional profiles from a 

Ra 1.0µm surface using D=90µm showing speckle 

evolution 

 

Figures 6.3 (a)-(f) show fluctuations in the intensity of the speckles, as well as 

a slight translation as the surface moves. This change in intensity and shape is 

the result of the change to the population of illuminated surface scatterers. 

 

 

 

Surface motion 
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(a) 

0.00mm 

(b) 

0.12mm 

(c) 

0.24mm 

(d) 

0.36mm 

(e) 

0.48mm 

(f) 

0.60mm 
 

 

Figure 6.4 – Speckle patterns and a region of a speckle 

pattern from a Ra 1.0µm surface using D=520µm showing 

speckle evolution 

 

Figures 6.4 (a)-(f) present evolution of a region of the speckle pattern from a 

surface with Ra 1.0µm as the surface is displaced in increments of 1/5 of the 

beam spot diameter (D=520µm). A region of the speckle pattern is tracked at 

the same increment as the surface displacement and enlarged. This largely 

eliminates the effect of translation in the images and concentrates attention 

solely on the evolution of the speckle pattern. The speckles can be seen to alter 

in shape and intensity as the surface moves. From the images, the speckles 

Surface motion 
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appear to have decorrelated after the surface has translated by 0.36mm. For 

specific configurations, it is predicted that a surface can translate up to a 

maximum of 1

2
D , by which point the speckles will always be uncorrelated. 

The decorrelation of the speckle pattern is dependent on the surface motion as 

a proportion of the beam diameter. For a larger beam diameter, the surface is 

likely to translate further before the correlation is lost and this has been shown 

to reduce the influence of speckle noise. Quantitative analysis of this speckle 

behaviour would provide a useful description of this motion and this is the 

subject of the next section. 

6.3 Quantitative analysis of speckle behaviour 

Quantification of speckle behaviours would facilitate a valuable analysis of the 

mechanisms behind speckle noise. It is proposed to use cross-correlations of 

the images, in the nominal direction of the speckle translational motion, to 

quantify the amount of translation and evolution of the speckles. This is a novel 

approach which attempts to determine a relationship between speckle pattern 

intensity changes and speckle noise in laser vibrometry. The changes in 

intensity, ultimately, are to be related to speckle noise levels but speckle noise 

is generated principally by phase change, which is not so easily observed. This 

analysis therefore relies on the relationship between the measured intensity and 

its phase, in that the mechanism that causes a change to the intensity will also 

drive a change in phase. The analysis will examine how far observations based 

on intensity can be related to a noise generation driven by phase change. 
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6.3.1 Cross-correlation analysis 

Sequential images of speckle patterns produced from incrementally displacing 

the surfaces are used to quantify the translation and the evolution of the 

speckles. An example of the process used is shown in Figures 6.4 to 6.6 using a 

sequence of speckle patterns produced from a tilting surface which is treated 

with retro-reflective tape and illuminated with a beam spot diameter of 520µm.  

 

A region of the speckle pattern, comparable (in the direction of the speckle 

motion) to that collected on the vibrometer aperture and located centrally in the 

initial image, see Figure 6.4(a), is selected as the interrogation region. This 

region is correlated with the entire image as shown in Figures 6.4(b) and (c) 

and a normalised auto-correlation, shown in Figure 6.4(d), is produced. In the 

next stage, this interrogation region from the initial image, is cross-correlated 

with sequential speckle pattern images produced from the incremental angular 

displacements, as shown in Figures 6.5. These cross-correlations are 

normalised against the peak of the auto-correlation and presented in Figure 6.6 

as a function of delay expressed in terms of aperture width. 
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(d) 

Figure 6.5 - Normalised auto-correlation of surface treated with retro-reflective tape (0.0°) 

 

The average peak spatial delays and corresponding cross-correlation 

amplitudes can be used to quantify speckle translations and the degree of 

evolution respectively. A pure speckle translation produces a spatial delay of 

the peak of the normalised cross-correlations without change in the amplitude. 

Pure evolution produces no spatial delay to the peak of the normalised cross-

correlations and only a change to the amplitude. A combination of the two 
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speckle motions will produce not only a spatial delay but also a change to the 

amplitude of the peak of the normalised cross-correlation. However the change 

in normalised correlation amplitude is also affected by Airy disc intensity 

distribution when using retro-reflective tape on a surface which is tilting. 
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(b)  

Figure 6.6 - Normalised cross-correlations for (a) 0.1° and (b) 0.2° 
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Figure 6.7 - Normalised cross-correlation for tilting surface treated  

with Retro-Reflective Tape using a beam spot diameter of 520µm 

 

The normalised cross-correlations of intensity are observed for the typical 

speckle patterns encountered in Chapter 5 from which pseudo-vibration 

sensitivity is quantified. The following sections describe the quantification of 

speckle motions for the three surface motions: transverse to the optical axis, a 

tilt and a rotation. 

6.3.2 Transverse surface motion 

The surfaces used in Section 5.3.1 of Chapter 5 are translated with an 

incremental displacement of 1/10
th

 of the beam diameter. The laser beam spot 

diameters are 520µm and 90µm, the same as those used in the experimental 

study of pseudo-vibration sensitivities, presented in Chapter 5. The beam is 

aligned perpendicular to the translation direction. Sequential images of the 

resulting scatter are captured at each displacement increment and the average 

normalised cross-correlation is calculated. Figure 6.8 shows the average 

normalised cross-correlation when using a beam diameter of 520µm, including 

one standard deviation of the spatial delay and the normalised cross-correlation 
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amplitude. Figure 6.8 shows reasonable agreement with the theory, previously 

shown in Section 4.1.1, although spatial delays appear slightly smaller than 

expected. This is more likely a combination of the tolerances in the translation 

stage and the difficulty in the peak location of the cross-correlation. 
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Figure 6.8 – Normalised cross-correlation peaks of speckle motions from a surface moving 

transverse to the optical axis, using a beam diameter of 520µm. 

 

As the surface roughness reduces, cross-correlation becomes less able to 

characterise the motion of partially developed speckle patterns as the specular 

reflection is too dominant. Figure 6.9 shows an example of the normalised 

cross-correlation from a Ra 75nm surface where, although speckles are present, 

the intensity of the specular reflection is the prominent feature of the scatter. 

The specular reflection dominates the cross-correlation and the speckle 

motions are indistinguishable. 
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Figure 6.9 – Example normalised cross-correlation from a surface with Ra 75nm moving 

transverse to the optical axis (D=520µm) 

 

Figure 6.10 shows the normalised cross-correlation amplitude and 

corresponding spatial delays when using a beam diameter of 90µm for Ra 

1.0µm and a surface treated with retro-reflective tape. The spatial results show 

significant difference from that expected by theory, shown by the solid line on 

the right half of the plot. This data illustrates an interesting and initially 

counter-intuitive behaviour of the speckles. 
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Figure 6.10 – Normalised cross-correlation amplitude from a surface moving transverse to the 

optical axis using a beam spot diameter of 90µm.  

 

The measured spatial delays are negative and slightly greater than expected. 

This means that, in this test, the speckles are actually moving in the opposite 

direction to the surface motion. Figure 6.10 also shows a dashed line (in the left 

half of the plot, NCC (σ)) which is a recalculated normalised cross-correlation, 

using a refined estimate of the gearing term, shown by equation (4.2), from the 

best fit presented in Figure 6.11. Figure 6.11 is a plot of the actual speckle 

translation against the expected speckle translation. From this an estimation of 

the gearing term is calculated using the best linear fit crossing through zero. A 

negative gearing term suggests the beam has been focussed beyond the surface 

developing a negative radius of curvature. Using the estimated gearing term 

and equation (4.2) an estimate of r is found to be approximately -31mm. Using 

equation (1.12) and this estimation of the radius of curvature the location 

beyond the surface which the beam appears to be focussed to is approximately 

3.7mm. This estimation shows that the beam was likely focussed a few 

millimetres beyond the surface. It is worth noting that this will not happen for 

the larger beam spot diameter (520µm). This is because the minimum radius of 
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curvature does not become comparable with the standoff distances, in this test, 

and the gearing term will never be negative. Larger beam spot diameters are 

unlikely to develop negative gearing terms in most applications of the laser 

vibrometer. 
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Figure 6.11 – Estimated gearing term using the measured spatial delays and the expected 

spatial delays using data from Ra 1.0µm surface located at the camera 

 

With the refined gearing term the fit to theory is improved but, in Figure 6.10, 

it can still be seen that the measured cross-correlation amplitudes remain 

higher than expected. Figure 6.12 shows the full normalised cross-correlations 

of the speckles from a Ra 1.0µm surface. It can be seen that the cross-

correlations based on measured data do not fall to zero as theory suggests and 

as observed in Figure 6.9 for the larger beam. They remain at a high level, 

irrespective of the spatial delay, and this prevents the peak amplitudes reducing 

to levels suggested theoretically in Figure 6.10. 
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Figure 6.12 - Example normalised cross-correlation from a surface with Ra 1.0µm moving 

transverse to the optical axis. D=90µm 

 

The normalised cross-correlation of the speckle motions from retro reflective 

tape has a limited capacity. The Airy disc intensity profile created in the scatter 

from retro-reflective tape dominates the spatial delay of the cross-correlation of 

the speckles.  

 

It can be seen by Figure 6.8 that for transverse surface motion evolution 

dominates the cross-correlation amplitude in the region of the vibrometer 

aperture because the cross-correlation amplitude falls to a low level for a 

spatial delay which is much smaller than the vibrometer aperture. This is also 

the expected case for that seen in Figure 6.10. Figure 6.10 indicates how 

manipulation of the focal point relative to the surface position (ultimately the 

radius of curvature on the surface), can affect not just the magnitude of speckle 

translation but also its direction. The effect of modifying the radius of 

curvature is investigated further in Chapter 7 through simulation. Section 5.3.1 

suggests that there is no significant difference in transverse sensitivity for the 

surfaces examined in this section, with Ra 1.0µm and a surface treated with 
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retro-reflective tape. For both beam diameters, the cross-correlations, shown in 

Figures 6.8 and 6.10, support this notion for the transverse sensitivity. 

6.3.3 Tilt surface motion 

Figure 6.13 shows average peaks of the normalised cross-correlations for the 

roughest surface, Ra 1.0µm, the smoothest surface, Ra11nm, and a surface 

treated with retro-reflective tape. Figure 6.13 (a) and (b) present data from 

520µm and 90µm beam spot diameters respectively. The data points represent 

the normalised cross-correlation peaks when the surface tilts at 0.1° 

increments. The spatial delay and normalised cross-correlation amplitude error 

bars represent one standard deviation of each respectively. 

 

The data presented in Figure 6.13 shows that, for the individual beam 

diameters, all surfaces show similar spatial delays and, other than retro-

reflective tape, similar cross-correlation amplitudes. This observation is 

reflected in Section 5.3.2 which showed that surface finish and treatment made 

little difference to the tilt sensitivity. Increasing the beam diameter has been 

shown to increase the tilt sensitivity and this is reflected in the speckle motions, 

observed in Figure 6.13. The cross-correlations from the Ra 1.0µm surface fit 

well to theory. Translation is the dominant motion, so much so that the data 

looks the same as the Ra 11nm surface, which is dominated by specular 

reflection. The Ra 75nm surface is not included in Figures 6.13 (a) and (b) for 

clarity as this also produces the same cross-correlations. 
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(b) 

Figure 6.13 – Normalised cross-correlation of the speckle motions from a tilting target using 

(a) D=520µm and (b) D=90µm.  

 

The cross-correlations from retro-reflective tape show a difference in cross-

correlation amplitude as the speckles translate across the vibrometer aperture. 

Figure 6.13 shows clear evidence of the effect, on the normalised cross-

correlation amplitude, of the Airy disc profile. The intensity drops to around 
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20-30% of the peak intensity as the speckles translate to the boundaries of the 

vibrometer aperture but the phase of the speckle should not be affected by the 

transition. The photodetector output is the result of a phasor summation over 

all the collected speckles, with changes in resultant phase appearing as speckle 

noise. When the speckle pattern behaviour generating speckle noise is 

dominated by translation, the changing phase of the photodetector output is 

governed by new speckles entering the collected region while existing speckles 

leave. This appears to be the dominant feature for the surfaces without retro-

reflective tape but, when tape is used, the summation is affected by the 

relatively low amplitudes of the new speckles entering and the existing 

speckles leaving the region sampled. Additionally, the speckles that continue to 

contribute to the phasor summation change in amplitude as they translate 

across the Airy disc profile. The normalised cross-correlation amplitudes imply 

that, although the fundamental mechanism generating speckle noise the same 

for every surface, additional factors appear for a surface treated with retro-

reflective tape. 

 

The spatial delays, per increment of surface displacement, are greater for the 

larger beam diameter (520µm). This causes a quicker decorrelation because the 

speckle pattern is changing more rapidly on the photodetector which in turn 

suggests the tilt sensitivity will increase. However, the differences in spatial 

delay do not appear to reflect the difference, proportionally, in the tilt 

sensitivity. This suggests that the cross-correlation of intensity provides a good 

indication of fundamental speckle behaviour, suitable for implementation in 

simulation, but the differences in pseudo-vibration sensitivity between, for 

example, beam diameter cannot be picked out from intensity correlations. 
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6.3.4 Rotating surface 

The shafts used in Chapter 5 are rotated with an incremental displacement of 

0.1°. The vibrometers are located 400mm and 600mm from the rotor surface 

with beam spot diameters of 520µm and 90µm respectively. The beam is 

aligned so its trajectory intersects the axis of rotation normally. Sequential 

images of the resulting scatter are captured at each displacement increment and 

the average cross-correlation is calculated. 

 

Figure 6.14 shows the average normalised cross-correlation when using a beam 

diameter of 520µm, including the standard deviation of the spatial delay and 

the normalised cross-correlation amplitude. The trace labelled as ‘NCC’ in 

Figure 6.14 represents the expected normalised cross-correlation for fully 

developed speckle patterns, calculated using equation 3.32. 
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Figure 6.14 – Normalised cross-correlation of speckle motions from a rotating cylindrical 

surface using a beam spot diameter of 520µm. 
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The normalised cross-correlations of the Ra 1.0µm surface show an increased 

spatial delay and a increase in amplitude across the vibrometer aperture, in 

comparison to the Ra 270nm surface. The reduced spatial delay and cross-

correlation amplitude are attributed to the nominal scatter producing an 

intensity profile generated by the Ra 270nm surface. The surface produces a 

band of speckles which reduce in intensity towards the edge. The reduction in 

intensity causes the cross-correlation amplitude to decrease and also a slight 

reduction in the spatial delay. This is evident in the image shown in Table 5.9. 

Table 5.11 showed that, for a 520µm beam spot diameter, retro-reflective tape 

produced statistically different rotation sensitivity to the Ra 1.0µm and Ra 

270nm surfaces, with the latter two surfaces having sensitivities that are 

statistically similar. Therefore this suggests there is little significance in the 

difference in the cross-correlation amplitudes for the Ra 1.0µm and Ra 270nm 

surfaces observed in Figure 6.14. Table 5.9 showed that the rotation sensitivity 

for retro-reflective tape was greater than that produced from both the Ra 1.0µm 

and the Ra 270nm surface. This is supported by the cross-correlations observed 

in Figure 6.14 as retro-reflective tape has a reduced speckle correlation 

distance. With the exception of retro-reflective tape, Figure 6.14 shows the 

dominance of speckle translation across the vibrometer aperture. The speckle 

motions when using retro-reflective tape show a reduced spatial delay and, 

from the reduction in amplitude, an apparent increased rate of evolution. 

However, as discussed in Section 6.3.2, special consideration needs to be given 

when observing speckle motions from retro-reflective tape. This apparent 

increased rate of speckle evolution is more likely a result of the Airy disc 

intensity distribution. When considering speckles which translate outwardly 

from the centre of the Airy disc, they translate into less intense regions which 

reduces the cross-correlation amplitude. This means the speckles in the outer 

region of the aperture have less influence in the intensity cross-correlations 
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than the speckles in the centre of the aperture, but this may not hold for the 

mechanism producing speckle noise. 

 

The cross-correlations for retro-reflective tape are affected by the Airy disc 

intensity profile, which not only reduces the intensity, giving the impression of 

an increased rate of evolution but it also limits the number of data points that 

can be plotted. An example of the normalised cross-correlation from a surface 

treated with retro-reflective tape is shown in Figure 6.15. A great deal of 

interpretation is required to distinguish the genuine speckle motion correlation 

peaks from the fluctuations in correlation amplitude. The Airy disc not only 

appears to influence the correlation amplitude it also appears to skew the 

apparent translation distance of the speckles resulting in a reduced spatial 

delay.  

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Spatial delay (vibrometer aperture)

N
o
rm
a
li
s
e
d
 c
ro
s
s
-c
o
rr
e
la
ti
o
n
 a
m
p
li
tu
d
e

0.0 deg 0.1 deg 0.2 deg 0.3 deg 0.4 deg 0.5 deg
 

Figure 6.15– Example normalised cross-correlation from a surface treated with retro-reflective 

tape 
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When the normalised cross-correlation is calculated using the scatter which has 

a predominant specular reflection the speckle motions are unidentifiable. 

Figure 6.16 shows an example of the normalised cross-correlation from a 

surface with a roughness Ra11nm. The specular reflection caused by the 

smooth surfaces dominates the cross-correlation. The spatial delay of the 

specular reflection is very small and does not represent the motion of the 

speckles, even in partially developed speckle patterns where both specular 

reflection and speckles are present. Therefore the speckle motions from the 

smoother surfaces, with roughness Ra65nm and Ra11nm are not included in 

the quantification of the speckle motions shown in Figures 6.14 or 6.17. 
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Figure 6.16 – Example normalised cross-correlation from a surface with Ra11nm 

 

Figure 6.17 shows the normalised cross-correlation of intensity of the speckles 

from a rotating surface when using a beam spot diameter of 90µm. The spatial 

delays show a speckle translation that crosses the entire aperture width and the 

reduction of the normalised cross-correlation amplitude shows that there is also 

evolution during the transition. 
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Figure 6.17 - Normalised cross-correlation of speckle motions from a rotating cylindrical 

surface using a beam spot diameter of 90µm 

 

Similarly to the 520µm beam spot diameter, the cross-correlations for surfaces 

treated with retro-reflective tape show a reduced spatial delay and a greater 

reduction in correlation amplitude, compared to the other surfaces. The spatial 

delays of the speckles from Ra 270nm are also slightly reduced compared to 

those from the Ra 1.0µm surface. This is attributed to the narrower band of 

speckles created by the Ra 270nm surface. This was evident in the image of the 

speckle pattern generated by the Ra 270nm surface and shown in Table 5.10. 

Figure 6.17 shows very little difference in the cross-correlation amplitude 

between the Ra 1.0µm surface and the Ra 270nm surface. Table 5.12 shows 

there is no significant difference in the rotation sensitivities produced from any 

of these three surfaces. This therefore suggests there is no significance to the 

variations in the spatial delays or the cross-correlation amplitudes seen by 

using retro-reflective tape as far as speckle noise is concerned.  

 

As the speckles translate across the vibrometer aperture, for the smaller beam 

diameter (90µm), the normalised cross-correlation amplitude reduces to 
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approximately 0.3 at the vibrometer apertures extent. With this magnitude of 

decorrelation, it is difficult to confirm whether speckle translation or speckle 

evolution dominates the changes on the vibrometer aperture. However the 

increased evolution, in comparison to the observations with the larger  beam 

spot diameter (520µm), suggests a different speckle behaviour in the 

mechanism generating speckle noise. 

 

Both Figures 6.14 and 6.17 suggests that the mechanism producing speckle 

noise generated from retro-reflective tape are different to the other surfaces 

presented. All other surfaces presented show little variation. The most 

significant variation in rotation sensitivity, shown in Section 5.3.3, appears to 

come from a change to the beam spot diameter. The speckle translation 

distance, shown by the spatial delays in Figures 6.16 and 6.17, are very similar 

for each beam diameter. Speckle translation and speckle evolution are the only 

components in the mechanism generating speckle noise. If the speckle 

translations are similar for each beam spot diameter, as is the case, then the 

most significant variation in the rotation sensitivity is attributed to the 

difference in speckle evolution. The speckles evolve more when using the 

smaller beam spot diameter. If this is significant in the mechanism producing 

speckle noise it would suggest an increased rotation sensitivity. This is because 

the region of the speckle pattern in the vibrometer aperture decorrelates in a 

shorter time period. Section 5.3.3 showed, however, that the smaller beam 

diameter reduces the rotation sensitivity which suggests that evolution is not a 

significant component of the mechanism. 
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6.4 Summary of dynamic speckle 

The observations of dynamic speckle have helped to see speckle motions in 

practice for transverse, tilt and rotating surface motions. It has shown that the 

speckle motions compare well with statistical theory based on intensity. 

Speckle noise is generated by a complex mechanism which includes speckles 

that often translate and evolve simultaneously. The normalised cross-

correlation by intensity has proven to be a useful tool in analysing speckle 

motions but speckle noise is primarily governed by changes in phase. While 

the mechanism that drives a change in intensity also drives a change in phase, 

the analysis using cross-correlation of intensity has provided limited 

understanding of the relationship between intensity changes and pseudo-

vibration sensitivities. The observations of dynamic speckle, therefore, haven’t 

confirmed the differences in sensitivity, such as those related to different beam 

diameters, but it does provide confidence in the speckle behaviours used to 

simulate speckle noise and predict pseudo-vibration sensitivities. The next 

chapter models the speckle motions from that observed in this chapter and what 

has been understood from Chapters 3 and 4, using numerical simulations to 

quantify transverse sensitivity and tilt sensitivity. 
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7 Estimating pseudo-vibration sensitivity by 

simulation 

Numerical simulators can be used to estimate levels of pseudo-vibration 

sensitivity. The intention of the simulations presented in this chapter is to 

model speckle behaviours in a simple way, concentrating on the key aspects of 

the mechanisms generating speckle noise. This assists in identifying significant 

features of the speckle behaviour, provides a greater understanding of the 

processes involved in producing speckle noise and can offer methods to help 

minimise speckle noise. 

 

Previous numerical models have concentrated on estimations of speckle noise 

from rotating targets [7.1]. This chapter extends those investigations by 

presenting estimations of pseudo-vibration sensitivity from a target surface 

which moves transverse to the optical axis or tilts. The novel numerical 

simulations model speckle motions estimating transverse sensitivity and tilt 

sensitivity. The data produced by these simulations are analysed in the same 

way as those from the experimental examinations presented in Chapter 5, 

allowing a direct comparison and a verification of the simulations. 

 

The two numerical simulations to be discussed in this chapter both use the 

same fundamental statistics examined in Chapter 3 and Chapter 4 to model the 

simulated speckles and their dynamics. However, the difference in the speckle 

behaviours for the two surface motions encourages a different approach in the 
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implementation of these statistics and each approach is discussed in the 

relevant sections. 

7.1 Transverse sensitivity simulator 

The simulation is written to model speckle noise that results when a target 

beam is incident on a surface which is optically rough and moves perpendicular 

to the optical axis with a sinusoidal motion. The in-plane surface motion causes 

speckles to translate, evolve or, more commonly, they will exhibit a behaviour 

which is some combination of the two regimes. The time for a speckle to 

evolve and the distance a speckle will translate depends on the particular 

optical configuration and the surface motion. As the surface moves the beam 

illuminates a changing population of surface elements and the amplitude and 

phase of the scattered E-field components alter. This change to the E-field 

components causes a change to the composition of the speckle, evolving and 

translating it over time. A speckle is modelled by the resultant of a summation 

of phasor contributions. Speckle boiling is modelled by modifying the 

summation over time. A change to the summation causes the speckles to vary 

independently from one another and provides a basis for the model of the 

evolution regime. To the author’s knowledge, this is the first time the 

mechanism of speckle evolution using numerical simulation in the context of 

laser vibrometry has been modelled. 
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7.1.1 Formation of a simulated speckle 

A simulated speckle must be a reliable representation of a ‘real’ speckle. Their 

suitability is evaluated by examination of their conformity to the statistics of 

‘real’ speckles, in a fully developed state, discussed in Chapter 3. The extent of 

the simplification for the structure of the simulated speckle is also dictated by 

their dynamic behaviour. The evolutionary behaviour of the speckles for a 

transverse surface motion requires the simulated speckles to be constructed by 

a summation of phasor contributions with appropriate amplitudes and phases, 

shown by equation (3.1). The reasons for this are discussed further in Section 

7.1.3.1, where modelling the speckle evolution regime is examined in more 

detail. Modelling the simulated speckles using a summation of phasors 

represents the addition of E-fields scattered from a surface, which interfere and 

form a speckle, as shown by equation (3.1). This raises the question, how many 

phasors must be summed for the simulated speckles to be a reasonable 

representation of a speckle? A program created to produce 25,000 speckles 

each built from a finite number of summed phasors is used to assess the 

consistency with the statistical distributions discussed in Chapter 3. 25,000 

speckles is considered more than sufficient as a population of speckles to 

provide an adequate distribution for statistical representation. Each phasor has 

the same amplitude and its phase is produced from a uniformly distributed 

random number operating between the limits of -π to π. As shown in Chapter 3, 

the statistics of the intensity of the speckles should have negative exponential 

distribution and the phase should be uniformly distributed over a 2π range.  
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(a) (d) 

 

(b) (e) 

  

(c) (f) 

Figure 7.1 – Statistical distribution of 25,000 simulated speckles (black) together with the 

expected probability density functions (red). Summing 2 phasors per speckle (a) Intensity 

distribution; (b) Phase distribution; (c) Amplitude distribution. When summing 15 phasors per 

speckle (d) Intensity distribution; (e) Phase distribution; (f) Amplitude distribution. 

 

Figures 7.1(a)-(f) present the histograms of simulated speckles when two 

phasors and fifteen phasors are summed, together with red traces showing the 
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probability density functions expected by speckle statistics shown in Section 

3.2. Figures 7.1(a) and (d) show the resulting intensity distributions of the 

simulated speckles, Figures 7.1(b) and (e) show the resulting phase 

distributions and Figures 7.1(c) and (f) present the distribution of the amplitude 

of the resulting speckle. Figures 7.1(a)-(c) illustrate the non-conformity to 

speckle statistics, particularly for the intensity and the amplitude, when fewer 

phasors are summed than required. Figures 7.1(d)-(f) present evidence that 

fifteen phasors are sufficient for satisfactory distribution of intensity and phase. 

The simulated speckles for the transverse sensitivity simulator must, therefore, 

adhere to this criterion. 

7.1.2 Modelling a speckle pattern 

Figure 7.2 illustrates the simulation process and shows how it is related to 

physical scattering. A surface moves in-plane to the laser beam which has a 

Gaussian intensity profile. The scattered beam in reality produces a speckle 

pattern like that identified by a real speckle pattern which is a cross-section of 

the speckle pattern image shown in Figure 7.3 (a). The model assumes a 

simplification of the continuous profile of the real speckle pattern, modelling 

discrete speckles shown by Figure 7.3 (b). The speckle pattern is collected by a 

receiving aperture, in the form of a lens or a photodetector, and the intensity is 

measured. Figure 7.3(a) is an image of a real speckle pattern, showing the 

irregular distribution of speckles which vary in size, shape, intensity and phase. 

The intention of the simulator is to concentrate on the core mechanisms which 

ultimately produce speckle noise. Figure 7.3(b) is an example of a speckle 

matrix used in the simulator. The complexity of a speckle pattern is reduced to 

an ordered pattern of simulated speckles. The simulated speckles have 

statistically appropriate intensities and phases as shown by Section 7.1.1 and 
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every simulated speckle in the matrix is an equal size, governed by the 

expected size shown in equation (3.24), and is a square shape. 

 

 

Figure 7.2 – Profile of a speckle pattern and a model of a simulated speckle pattern 

 

 

(a) 
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(b) 

Figure 7.3 – (a) portion of an image of a ‘real’ speckle pattern (b) example of a simulated 

speckle pattern 

 

The simulation begins by taking optical parameters, (beam diameter; receiving 

aperture width; radius of curvature at the surface; standoff distance), 

measurement parameters (number of points per oscillation; number of 

oscillations) and target parameters (vibration frequency; displacement 

amplitude). Using these parameters, the simulation determines the dimensions 

of the simulated speckle pattern to be created, sufficient in size for the whole 

cycle of the surface motion being investigated. 

7.1.2.1 Speckle size 

Section 7.1.1 showed how the amplitude and phase of each speckle can be 

appropriately represented. The simulated speckles must also be the correct size 

to adequately represent the spatial characteristics of real speckles. The primary 

simplification of the simulation is that the simulated speckles in each study are 

assumed to be equal in size, be of a regular shape and have a uniform intensity 

and phase across their extent. The laser beam is assumed to have a wavelength 

of 633nm and the illumination spot has a Gaussian intensity profile, both 

typical of He-Ne lasers used in vibrometry. The simulation takes user inputted 

optical parameters such as the beam diameter and the standoff distance, 
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particular to the study being investigated, and a speckle width is calculated 

using 0

2 2 Sz

D

λ
σ

π
=  (equation (3.24)). The average speckle size is defined by 

the exp[-2] width of the spatial autocorrelation function with Gaussian beam 

illumination, and is the expected width of  a speckle using a beam diameter of 

D at a distance zS away from the surface. This provides an appropriate size to 

each speckle given the physical parameters being represented. The number of 

speckles to create is determined by the number of speckles collected at any one 

time, and that is found using the size of the detector which is discussed in the 

next section. 

7.1.2.2 Detector size 

As described in Section 1.1.1, a vibrometer uses a photodetector to measure the 

light intensity of the backscattered light from a target surface. The detector 

dimension is considered as square, but for consideration of the practicalities of 

the simulation, its dimension is dependent on the optical apparatus in the 

vibrometer being considered. A simplified schematic of a vibrometer is 

illustrated in Figure 7.4, showing the returning beam for a vibrometer without a 

focussing lens. The speckle pattern entering the vibrometer is mixed with the 

reference beam at the beamsplitter and the resulting intensity of the 

interference is measured by the photodetector. The detector dimension, for this 

optical apparatus, is considered as the detector dimension itself.  This is easily 

measured together with the additional propagation distance required by the 

internal geometry of the vibrometer. Often a lens is incorporated into a 

vibrometer to focus the beam and a schematic of the returning component 

beams considered by the simulation for a vibrometer with a lens is shown in 

Figure 7.5. The lens modifies the geometry of the returning light, which is in 

the form of a speckle pattern. The speckle pattern then mixes with the reference 

beam at the beam splitter and the intensity is measured by the photodetector. 
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The profile of the propagation geometry, including reference beam is quite 

complex, and speckle width is not easily known between the lens system and 

the photodetector. As long as the interference dimension, ie the reference beam 

width, remains constant relative to the speckle width, however it does not 

matter where in the path the intensity is measured. For practical reasons it is 

simplest to consider the interference at the front surface of the lens system. In 

this way, if the vibrometer has a lens, the detector aperture dimension is 

considered to be the beam size as it emerges from the lens. 

 

 

Figure 7.4 – Schematic of returning beam components for a vibrometer without a lens 

 

 

Figure 7.5 - Schematic of returning beam components for a vibrometer with a lens 

 

Both a lens and a photodetector isolate a portion of the backscattered light and 

act as receiving apertures in the beam path. The number of speckles in the 
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detector dimension, M, is determined by the ratio of the receiving aperture 

width to the speckle size. In a vibrometer, the intensity is measured and the 

Doppler signal is created from the fluctuating component. The next section 

describes how the simulator creates the Doppler signal. 

7.1.2.3 Simulating the Doppler signal 

As described above, the vibrometer receives a portion of the resulting speckle 

pattern through an aperture. Illustrated in Figure 7.6, by the region bordered in 

blue, the receiving aperture is a constant size and maps out the portion of the 

speckle matrix which forms the target speckle pattern component of the 

instantaneous Doppler signal. The variation of the row positions shown in 

Figure 7.6 disrupts the regular pattern presented to the detecting aperture and 

this is discussed further in Section 7.1.3.2. 

 

 

Figure 7.6 – Speckle pattern matrix and an example of the detecting aperture positioning 

 

The target beam, composed of a speckle pattern, is mixed with a reference 

beam on a surface measuring the total light intensity and the fluctuating 

component is the Doppler signal. As discussed in Section 1.1.1, the total light 

intensity is the time average of the square of the total light amplitude which is a 
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summation of complex amplitudes of the incident E-fields. The complex 

summation can be represented as a phasor addition, an example of which is 

illustrated in Figure 7.7. The target speckle pattern is represented by a random 

walk of black phasors, which when combined with the reference beam, shown 

by the red phasor, produces the resultant shown in blue which represents the 

total light amplitude on the detector. 

 

 

Figure 7.7 - Example Argand diagram of total light amplitude on a simulated detector 

 

Concentrating on the effects of speckle motions, with no surface motion in the 

direction of the beam, parallel with the optical axis, and recalling equation 

(2.1), the total light intensity is expressed as 

 

 ( ) ( ) [ ]cos ( )R T res R resI I I t I t t tω= + + +Φ  (7.1) 
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where the simulated Doppler signal amplitude TRres III 2= and phase 

TRres Φ−Φ=Φ . If S speckles are mixed with a uniform reference beam, 

which are incident on the detecting aperture, the instantaneous amplitude of the 

Doppler signal can be calculated by summing the incident speckles as follows 
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where Es and Eu are the amplitudes and Φs and Φu are the phases of speckle s 

and speckle u respectively. As and Au are factors for the area of speckle s and 

speckle u on the detector, to be discussed further in Section 7.1.3.2. The 

instantaneous phase, Φres, of the Doppler signal can be expressed as  
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and  
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When Фres is made a function of time, speckle noise is calculated using 

( )1

2

resd t

k dt

Φ
 shown by equation (2.2). Фres is made a function of time by 

changing the weighting of the individual phasors in the summation for speckle 

s. This models an evolving speckle and is described in the next subsection. 

Simultaneously translating the speckles across receiving aperture causes As to 

be a function of time. The next section describes how the simulated speckles 

evolve. 

7.1.3 Simulating speckle dynamics 

When a surface moves perpendicular to the optical axis (of the laser beams 

considered), speckles exhibit both an evolution as well as a translation. Both 

these motions are modelled in the simulation. Section 7.1.3.1 deals with 

modelling of the evolution and provides the necessary parameters to evolve a 

simulated speckle over time. The parameters required to translate a simulated 

speckle are discussed in Section 7.1.3.2. 

7.1.3.1 Modelling speckle evolution 

Each speckle is formed by the summation of the complex amplitude of a 

sufficient number of phasors as discussed in Section 7.1.1. A full set of phasors 

for each dynamic speckle is created, sufficient in number for the whole cycle of 

the transverse surface motion under consideration. Each phasor takes the form 

of [ ]expe jϕ  and at any instant in time a speckle is formed by summing a set 

of the phasors as shown by equation (3.1). 
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Figure 7.8 – Surface displacement and convolution routine 

 

In a vibrometer, the beam typically has a Gaussian intensity profile and this has 

to be accounted for during the evolution. A normalised Gaussian function is 

convolved with the set of phasors, as a function of the surface displacement, 

modelling the evolution of the speckle.  

 

 ( )
( )( )2

, , 2
exp exp 2s s p s p

p

p D a t
E a e j

D
ϕ

 ∆ −
  = −   
 

∑  (7.6) 

 

where the surface displacement, a, takes a sinusoidal form 

 

 ( ) ( )0 sin 2 aa t a f tπ=  (7.7) 

 

and p is the phasor index to the set of phasors created for the whole cycle. The 

second exponential function in the summation of equation (7.6) is the 

normalised Gaussian function which dictates the weight of each phasor in the 

sum of phasors for speckle s. The Normalised Gaussian function, weighting the 

phasors, is representative of the Gaussian laser beam illuminating discrete 

scattering elements on the surface. The phasors are uniformly distributed 

within the range of the displacement cycle. The phasor separation distance, 

∆D, is the target displacement corresponding to one phasor exchange in the 

simulation. This value together with the total number of phasors in the cycle 
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range is governed by the desired number of samples per cycle or the time 

increment in equation (7.7). ∆D is chosen to be equivalent to the smallest target 

displacement occurring during the fixed increment of time, which limits the 

minimum phasor step to 1. Normal operation of the Gaussian function should 

extend the tails to infinity but this is impossible within the limitations of a 

numerical simulation. Practically, the Gaussian function must have a boundary 

limit. This boundary is set by the exp[-2] width and therefore only the phasors 

bound by this value in the Gaussian function are summed. As stipulated by 

Section 7.1.1, the number of phasors within this boundary must be at least 

fifteen. Figure 7.8 illustrates the displacement cycle of the surface and shows 

the convolution. As the surface moves and time progresses, the Gaussian 

function transits through the set of phasors, modifying the summation and 

evolving the speckle.  

 

The evolution of the simulated speckle needs to be consistent with that 

observed with real speckles. Evaluation of the evolution is made using the 

cross correlation of the simulated speckles as they evolve during the surface 

motion. Figure 7.9 shows the normalised cross correlation amplitude of the 

intensity against the surface displacement in units of beam diameter. The 

surface moves with a uniform velocity and is therefore comparable to the 

statistics shown in Chapter 4. The peak value of the average of 10 normalised 

cross correlations of a matrix of 40x40 speckles is used to evaluate the 

evolution. The black trace shows the normalised cross correlation amplitude of 

the simulated speckles, the red trace indicates the limit of the correlation which 

is set at exp[-2] and the blue trace is the correlation expected by theoretical real 

speckles. When the red trace intersects the black and blue traces, the simulated 

and real speckles have evolved respectively.  

 



 183 

 

Figure 7.9 – Cross correlation of patterns of 40x40 speckles, purely evolving with speckles at 

surface displacement = 0. Simulated speckles - black, real speckles – blue and limit of 

correlation at exp[-2] - red.  

 

The cross correlation of the simulated speckles can be seen to take a Gaussian 

like decay and is similar to that which is to be expected. There is a slight 

distortion of the Gaussian decay because of the practical limitations of the 

Gaussian function required by the simulation. The distance required to evolve 

the simulated speckles, can be seen to be approximately 0.7D, intersecting the 

red trace at the same point as the blue trace. Observation of the cross 

correlation for the fluctuating intensity seen in Chapter 4,  shown by equation 

(4.12) and equation (4.13) when the speckles are in pure evolution, shows the 

surface displacement for speckle correlation is 
1

2
Ca D= , which is 

consistent with the approximate value of 0.7D observed in the cross 

correlations. This means the simulated speckles are expected to take the same 

time to evolve as real speckles. The speckles not only evolve they also translate 

and the next section discusses the simulated speckle translation. 
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7.1.3.2 Modelling speckle translation 

The motion of the surface also causes the speckles to translate. The speckle 

translation distance is found from the spatial delay of the peak of the 

normalised cross correlation ( )TX a tσ= , as descibed in Section 4.2.1. The 

distance a speckle can translate is restricted by the evolution of the speckle and 

quantified by the reduction of the correlation peak. The peak of the normalised 

cross correlation reduces to exp[-2] when the surface has translated 
1

2
D . In 

other words, in the time it takes for the speckle to evolve completely the 

speckle will have translated Dσ
2

1
, where σ is the speckle translation gearing 

term. The speckles translate in the width of the speckle pattern matrix. The 

cumulative speckle translation distance is used to determine the width of the 

speckle pattern matrix. 

 

 

Figure 7.10 – Speckle translation 

 

The unregimented pattern of speckles presented to the receiving aperture, 

shown in Figure 7.10, allows the speckles to leave the detector at different 
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moments and represents more appropriate Doppler signal transitions when the 

number of speckles in the detector dimension, 1M > . The offset rows and 

height of the matrix means a speckle can overlap the border of the receiving 

aperture and not contribute in its entirety to the resultant Doppler signal.  

 

Previous work has found that the rate of change of phase can be significantly 

underestimated if considered as constant throughout a single speckle transition 

[7.1]. This was overcome by subdividing the speckle into an appropriate 

number of partial speckles. However in previous work it was not necessary to 

model the boiling motion of the speckle which, under the proposed model, can 

require significantly more computational resources. The simulator uses an 

alternative to sub-dividing the speckle. Using a factor which is proportional to 

the speckles area on the receiving aperture an appropriate contribution to the 

Doppler signal can be calculated. The factor for the area of speckle s, As, 

whether the speckle is partially or fully on the receiving aperture can be 

calculated using the following 

 

 ( ) ( ) ( ) ( )( ),0 ,1 ,0 ,11 1s s s s sA a h h w a w a   = − + − +     (7.8) 

 

The factors ws,0 and hs,0, shown in equation (7.8) and illustrated in Figure 7.11, 

are used for the quantity of speckle s off of the receiving aperture. The factor 

ws,0 is defined in the horizontal direction from the left most edge and hs,0 is 

defined in vertical directions from the top most edge of the speckle. The factors 

ws,0 and hs,0 are initially generated by sets of independent uniformly distributed 

random numbers operating between 0 and 1 and they control the random 

positioning of the receiving aperture. The factors ws,1 and hs,1 depend on the 

quantity of the speckle off of the receiving aperture from the right most edge 

and the bottom most edge of each speckle, and are only ever non-zero for the 
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right most speckles and bottom most speckles on the receiving aperture 

respectively. 

 

 

Figure 7.11 - An example of the area of a speckle incident on the receiving aperture showing 

the appropriate dimension parameters 

 

The area factor of each speckle is used in equation (7.2) and equation (7.5) to 

calculate the Doppler signal amplitude and phase, respectively, allowing an 

estimate of speckle noise to be produced. The next section describes the 

estimation of speckle noise using the simulator. Section 7.1.4.1 verifies the 

simulator using experimental estimates while Section 7.1.4.2 studies ways in 

which speckle noise is affected by the optical parameters and investigates ways 

to reduce the levels. 

7.1.4 Transverse sensitivity using the simulator 

An example of a typical simulated speckle pattern on the receiving aperture is 

shown in Figure 7.12 with the dimensions in number of speckles. In this 

instance the aperture is approximately 1.5 by 1.5 speckles square, which is 

applicable for the vibrometer configuration with a beam diameter of 600µm on 

the surface. The appropriate weighting factor for the area, calculated from 

equation (7.8), is applied to each speckle and the Doppler signal amplitude and 

phase are calculated from equation (7.2) and equation (7.5) respectively. The 

Doppler signal components are calculated for one whole period of target 
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oscillation. Figures 7.13 (a) to (d) show typical results from the simulation for 

one period of sinusoidal in-plane surface displacement of 420µm rms with a 

beam of diameter 600µm and an infinite radius of curvature at the surface. The 

receiving aperture is positioned 700mm from the surface and the speckles 

translate as well as evolve.  

 

 

Figure 7.12 - Speckles incident on the receiving aperture 

 

Figures 7.13 (a) and (b) show a sequence of changes in Doppler signal 

amplitude and phase as the speckle pattern motion influences the data 

respectively. As the target moves from one extreme to another in the 

displacement cycle, the Doppler signal changes in a continuous sequence. In 

the second half of the displacement cycle, the phase of the resultant Doppler 

signal passes through the same sequence of phases as the first but in reverse. 

Consequently the speckle noise appears to reflect and negate about any instant 

in time corresponding to zero velocity in the surface motion cycle. The most 

significant changes in phase, evident in Figure 7.13 (c), occur simultaneously 

with low Doppler signal amplitude and occur most often near instants in time 

where the surface speed is highest, shown in Figure 7.13 (d). Also evident is 

that these phase changes are not as a consequence of low light amplitude 

shown by the average intensity in Figure 7.13 (a). The average intensity is 

calculated from the intensity of the speckles incident on the receiving aperture 

and is used as an indicator to the quality of the signal as a result of the light 
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levels. This means the more rapid changes in phase and low Doppler signal 

amplitude are more likely as a consequence of an unfavourable collection of 

speckles rather than the level of light. This indicates that irrespective of the 

light levels which can be increased with higher laser power or surface 

treatments, like retro-reflective tape, low Doppler signal amplitudes and rapid 

changes in phase still occur. Changes to the speckle pattern result in a change 

to the resultant amplitude and the resultant phase. When the resultant amplitude 

is relatively low, a small change in speckle collection can result in a rapid 

alteration to the phase of the resultant phasor. The faster these phase changes 

occur the greater the level of speckle noise. This means speckle noise peaks are 

likely to be close to the time when the surface velocity is greatest. Figure 7.14 

shows the sampled resultant phasor path over time with the red phasor 

representing the resultant at one point of maximum surface displacement and 

the green phasor representing the resultant at the other point of maximum 

surface displacement. From this plot it can be seen how the phase and 

amplitude change as the simulation transits through the dynamic speckle 

pattern. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7.13 – (a) Doppler signal amplitude and the average intensity for one whole cycle, (b) 

Unwrapped phase of the Doppler signal for one whole cycle, (c)  Apparent velocity for one 

whole cycle, (d) In-plane surface velocity for one whole cycle 
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Figure 7.14 - Polar plot of the path (locus) of the resultant from the target speckle pattern. 

Green phasor (time step 43) to red phasor (time step 129) is the same duration as the peak to 

peak range of the surface displacement 

 

7.1.4.1 Verification of the simulator 

The simulator is verified by producing equivalent quantitative data to those 

seen in Chapter 5 where pseudo-vibration sensitivities were quantified from 

experimentation. The optical parameters, measurement parameters and target 

parameters for the simulation are matched to the experimental arrangement. 

The commercial vibrometer which produces a beam diameter of 600µm has a 

detecting surface about 1mm wide which is approximately 700mm from the 
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surface (vibrometer standoff distance plus the path length inside the vibrometer 

head). The other commercial vibrometer in this study uses a lens to focus the 

beam to a diameter of 100µm. The lens acts as a collecting aperture and as such 

the speckle motions for this vibrometer are considered at the front of the lens 

which is 600mm away from the surface and the beam size as it emerges from 

the lens is approximately 12mm wide. The speckle pattern is still mixed with a 

reference beam, except it is considered as occurring on the front of the lens. 

 

The resulting data is produced and analysed in the same manner as the 

experimental data. The estimations of transverse sensitivity are made from 

averages of 50 simulations with the same controlling parameters allowing a 

statistical comparison. Matching the experimental configuration requires 96 

whole periods of oscillation of data such as that seen in Figure 7.13 (c) to be 

Fourier transformed. Whilst eliminating the ‘picket fence’ effect, the peak 

values of the first 50 orders of the vibration frequency are found and an 

average is calculated for each order. Figure 7.15 shows the average peak values 

of the first 50 orders of speckles noise which are shown as a percentage of the 

transverse surface velocity at the fundamental frequency. Figure 7.15 also 

shows the equivalent experimental data presented in the same way for 

comparison. Figure 7.15 shows that the simulation produces comparable results 

to the experimental estimates. The simulations suggest that the 100µm beam 

diameter produces higher levels of speckle noise compared to the 600µm beam 

diameter and this is confirmed by experimentation. The spectral shape 

produced by the simulations over the 50 orders is also comparable with the 

experimentation. Table 7.1 shows a comparison of the quantitative data 

produced from the values in Figure 7.15. The experimental values presented in 

Table 7.1 are produced from a surface with Ra 1.0µm which should produce a 

fully developed speckle pattern, matching that modelled by the simulator. The 

values are presented in two ways, one showing speckle noise estimates over the 
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first 10 orders, likely to be of interest to the vibration engineer, the second 

showing the total rms for the first 50 orders. Table 7.1 shows the remarkable 

similarity of the estimations of transverse sensitivity produced by the 

simulations with those produced experimentally, especially for the larger 

600µm beam diameter. 
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Figure 7.15 –Comparison of simulated and experimental transverse sensitivity  
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Transverse sensitivity: apparent velocity per unit transverse velocity (%) 

Surface finish Simulation Experimentation 

D = 600µm 

Mean level  

by order 

(orders 1-10) 

0.0060 0.0077 

Standard  

deviation 

(orders 1-10) 

0.0052 0.0055 

Total level  

across  

50 orders 

0.025 0.030 

D = 100µm 

Mean level  

by order 

(orders 1-10) 

0.026 0.032 

Standard  

deviation 

(orders 1-10) 

0.020 0.020 

Total level  

across  

50 orders 

0.13 0.17 

Table 7.1 – Comparison of simulated estimates to experimental estimates of 

speckle noise. Experimental transverse sensitivity is taken from Ra 1.0 µm 

surface, as shown in Tables 5.1 and 5.2. 

 

The simulators estimate transverse sensitivity at around 0.006%, per order, for 

the first 10 orders or 0.025% for the total rms over 50 orders for a beam 

diameter of 600µm. For a beam diameter of 100µm, transverse sensitivity is 

estimated as 0.026%, per order, for the first 10 orders and approximately 

0.13% for the total rms over 50 orders. Despite the marginally larger speckle 

noise estimates from the experimental levels for a beam diameter of 100µm, 



 194 

the simulated estimates are suitably confirmed. Further verification of the 

simulations comes from estimations of speckle noise produced when altering 

the vibration amplitude of the surface. Figure 7.16 and 7.17 show the simulated 

and the experimental estimates of transverse sensitivity using a beam diameter 

of 100µm for surface vibration displacement amplitudes of 52.5µm rms and 

210µm rms respectively. Figure 7.16 and 7.17 show the similarity of the 

spectral shapes of the simulated data to the experimental. However the roll-off 

for the simulated estimates in Figure 7.16 is not as pronounced as the 

experimental data. Table 7.2 shows the simulated and experimental transverse 

sensitivity for the reduced vibration displacement amplitudes including 105µm 

rms surface vibration. Both simulated and experimental transverse sensitivity 

appears to increase as the vibration amplitude reduces. This is because 

transverse sensitivity does not reduce proportionally with the vibration 

displacement amplitude. Generally the transverse sensitivity estimates for the 

simulation are marginally lower. Figure 7.16 shows that for lower orders 

(orders 1 to 20) the estimations of transverse sensitivity, for a surface vibration 

amplitude which is less than the beam diameter, appear much less than the 

experimental.  
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Figure 7.16 – Simulated and experimental estimates of transverse sensitivity. Surface vibration 

displacement amplitude is 52.5µm and D=100µm 
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Figure 7.17 – Simulated and experimental estimates of transverse sensitivity. Surface vibration 

displacement amplitude is 210µm and D=100µm 
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Transverse sensitivity: apparent velocity per unit transverse velocity (%) 

D = 100µm 

Simulated (Experimental) 

Surface 

displacement 

amplitude 

210µm rms 105µm rms 52.5µm rms 

Mean level  

by order 

(orders 1-10) 

0.034 (0.034) 0.039 (0.046) 0.030 (0.057) 

Standard  

deviation 

(orders 1-10) 

0.025 (0.023)  0.032 (0.028)  0.029 (0.038)  

Total RMS  

level across  

50 orders 

0.16 (0.18)  0.16 (0.20)  0.13 (0.22)  

Table 7.2 - Simulated and experimental (Ra 1.0 µm) transverse sensitivities for various 

vibration amplitudes 

 

The simulator for transverse surface motion has shown that it can adequately 

estimate transverse sensitivity for different optical configurations and also for 

different target vibration amplitudes, although this is limited. 

7.1.4.2 Speckle noise reduction 

Section 7.1.4.1 has verified the simulator using experimental data. This section 

looks at using the transverse sensitivity simulator to investigate ways to reduce 

speckle noise. 

 

Figure 7.18 and Table 7.3 shows the transverse sensitivity for a beam diameter 

of 100µm and constant speckle translation distance, but where the aperture is 

varied in size from approximately 0.2 speckles up to near to 10 speckles. 

Altering M, the ratio of aperture dimension to the speckle size, is comparable 
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with altering the aperture dimension itself. The rationale behind this is that as 

more speckles are collected the change in phase occurs more slowly and 

reduces speckle noise. When the beam is focussed on the surface it can be seen 

that altering M does not affect the levels of transverse sensitivity throughout 

the entire 50 orders, maintaining the spectral shape and level. This is because 

boiling is the dominant speckle motion and the correlation time is independent 

of the number of speckles collected. This is also evident in equation (4.13) 

when the speckle translation term, σD, is much less than the aperture 

dimension in the direction of the speckle translation Ld. Often the beam will be 

focussed, or near to being focussed, on the surface under scrutiny. The radius 

of curvature will therefore, in general, be large and speckle boiling will more 

often than not dominate the decorrelation. 
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Figure 7.18 – Transverse sensitivity when altering the aperture to speckle size ratio, M 
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D = 100µm, Simulated (T=0.02) 

Transverse sensitivity: apparent velocity per unit transverse velocity (%) 

Aperture to 

speckle size 

ratio, M 

M=0.26 M=3.19 M=9.57 

Mean level  

by order 

(orders 1-10) 

0.027 0.026 0.027 

Standard  

deviation 

(orders 1-10) 

0.020 0.020 0.021 

Total RMS  

level across  

50 orders 

0.13 0.14 0.13 

Table 7.3 – Transverse sensitivity estimations for various aperture dimensions for the laser 

vibrometer with a 100µm beam diameter. The speckle translation distance is maintained at 

T=0.02 

 

The simulation also offers the ability to observe what happens to the expected 

levels of transverse sensitivity when speckle translation dominates the 

decorrelation. This can occur if the radius of curvature is small comparably 

with the standoff distance. Figure 7.19 and Table 7.4 present evidence for 

estimations of speckle noise when translation becomes dominant. The beam 

diameter on the surface is maintained at 100µm. The aperture dimension is kept 

constant, at 0.26M = (1mm), and the radius of curvature is altered. Altering 

the radius of curvature changes the distance of the speckle translation by 

altering the speckle gearing term, σ. Realistically, the beam diameter would 

likely alter as the radius of curvature is changed but, for the purposes of this 

analysis, the beam diameter is kept constant. The radius of curvature takes 

values of -600mm, 660mm, 5mm and 1mm causing the speckle translation 

term T to take values of 0, 0.02, 2.5 and 12.4 respectively. When speckle 

translation dominates, speckles enter and leave the aperture without 



 199 

decorrelating. This causes speckle translation to dominate the decorrelation on 

the photodetector. It can be seen that as the speckle translation term increases, 

the expected level of speckle noise also increases. When T is small ( 0T = and 

0.02T = ), boiling remains the dominant speckle motions for the decorrelation. 

When 2.5T =  or 12.4T =  speckle translation dominates and speckle noise 

increases. This is consistent with the theory presented in Chapter 4. 

Observation of equation (4.13) shows that when speckle translation increases, 

the correlation time will reduce and, therefore, speckle noise is expected to 

increase. The radius of curvature required to achieve a value of 12.5 for T is 

1mm. This radius of curvature, being so small, is generally beyond realistic 

possibility but it is used here to illustrate the maximum transverse sensitivity 

that might be expected for an optically rough surface. 
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Figure 7.19 – Transverse sensitivity estimations for various speckle translation distances, 

varying T while M remains constant at 0.26 
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D = 100µm, Simulated (M=0.26) 

Transverse sensitivity: apparent velocity per unit transverse velocity (%) 

Speckle 

translation to 

speckle size 

ratio, T 

T=0 T=0.02 T=2.5 T=12.4 

Mean level  

by order 

(orders 1-10) 

0.026 0.026 0.038 0.047 

Standard  

deviation 

(orders 1-10) 

0.020 0.020 0.030 0.036 

Total RMS  

level across  

50 orders 

0.14 0.13 0.22 0.30 

Table 7.4 –Speckle noise estimations for various speckle translation distances while 

maintaining the aperture size at M=0.26 

 

The speckle translation distance, governed by the beam diameter and the radius 

of curvature, will always be limited by the beam geometry. Equation (4.13) 

suggests that, as the speckle translation distance continues to increase, the 

correlation time and consequently, speckle noise can be limited by the aperture 

dimension. Figure 7.20 and Table 7.5 present evidence that, if the aperture 

dimension were increased so translation no longer dominates, speckle noise 

can be reduced. The aperture dimension is set at 3.19M = and the speckle 

translation is controlled to take the same values as those presented in Figure 

7.19. For this scenario 2.5T =  means speckle boiling dominates and the 

resulting speckle noise is reduced. Comparing Figure 7.20 to Figure 7.19 

shows that increasing the aperture dimension beyond the speckle translation 

distance can reduce speckle noise levels. 
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Figure 7.20 – Transverse sensitivity estimations for various speckle translation distances, 

varying T while M remains constant at 3.19 

 

 

D = 100µm, Simulated (M=3.19) 

Transverse sensitivity: apparent velocity per unit transverse velocity (%) 

Speckle 

translation to 

speckle size 

ratio, T 

T=0 T=0.02 T=2.5 T=12.4 

Mean level  

by order 

(orders 1-10) 

0.025 0.026 0.029 0.043 

Standard  

deviation 

(orders 1-10) 

0.018 0.020 0.021 0.038 

Total RMS  

level across  

50 orders 

0.14 0.13 0.16 0.28 

Table 7.5 - Speckle noise estimations for various speckle translation distances while 

maintaining the aperture size at M=3.19 
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The speckle translation, presented in Tables 7.4 and 7.5, of 12.4 speckles, is 

beyond that likely to be encountered in a practical situation. Therefore, from 

this, it is reasonable that the transverse sensitivity can be expected to fall below 

0.04% for a beam diameter of 100µm. If speckle translation dominates the 

decorrelation, increasing the aperture size can cause speckle boiling to 

dominate the decorrelation which reduces transverse sensitivity. Section 7.1.4.1 

showed that speckle noise can be significantly reduced if a larger beam 

diameter is used. However increasing the beam diameter reduces the total light 

intensity collected and could make a measurement impractical. The beam 

diameter can be increased by defocusing the beam on the surface. Defocusing 

the beam will change the speckle translational characteristics and if the 

translation becomes significant speckle noise levels could potentially increase. 

If defocus is necessary then it would be recommended to focus the beam 

beyond the surface so the beam is convergent. This illuminates the surface with 

a beam that has a negative radius of curvature which gives a little more 

tolerance for keeping transverse sensitivity at a lower level. 

7.2 Tilt sensitivity simulator 

The simulator is written to model speckle noise from a laser vibrometer when a 

‘measurement’ is taken from an optically rough surface which tilts around an 

axis perpendicular and intersecting the optical axis. The tilting motion causes 

the speckles to predominantly translate across the receiving aperture. The 

changing population of speckles in the aperture alters the amplitude and phase 

of the Doppler signal which ultimately manifests in the output of the laser 

vibrometer as speckle noise. The behaviour of the speckles concentrate on the 

key aspects of the mechanism producing speckle noise in a laser vibrometer. 

The translation is modelled by translating the receiving aperture across a 

matrix of simulated speckles.  
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7.2.1 Formation of a simulated speckle 

Unlike section 7.1.1 where speckle evolution was required, translation is the 

only speckle motion considered and the structure and composition of the 

simulated speckle remain fixed during the surface motion. The intensity and 

phase of each speckle are therefore developed from the appropriate properties 

of a stationary speckle discussed in Section 2.2 rather than by combination of 

individual random phasors. The normalised intensity of a speckle, I I  is 

produced using a random number, rnd#, distributed uniformly between 10
-10

 

and 1 in the form 

 

 [ ]ln #
I

rnd
I
= −  (7.9) 

 

where I  is the mean intensity. The lower limit of the random number 

generator, 10
-10

, prevents the evaluation of ln[0] and limits the distortion of the 

probability distribution. The phase of each simulated speckle is generated using 

a separate random number generator operating uniformly between -π and π. A 

program is used to create 25,000 simulated speckles to confirm the statistical 

distribution of the intensity, phase and for completeness the amplitude. Figure 

7.21 (a) shows the histogram of the intensity together with the expected 

probability distribution shown in red. Figure 7.21 (b) shows the phase 

distribution and Figure 7.21 (c) shows the amplitude. Figure 7.21 (a) to (c) 

present evidence that the simulated speckles conform to the appropriate 

statistics discussed in Section 3.2.  
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(a) (b) 

 

(c) 

Figure 7.21- Statistical distribution of 25,000 simulated speckles (black) together with the 

expected probability density functions (red). (a) Intensity distribution; (b) Phase distribution; 

(c) Amplitude distribution 

 

7.2.2 Modelling a speckle pattern 

Figure 7.22 illustrates the relation between the process of physical scattering to 

the model of a speckle pattern in the simulation. An optically rough surface 

tilts about an axis which is perpendicular to and intersects the optical axis. The 

incident laser beam has a Gaussian intensity profile. The scattered beam, in 

reality, produces a speckle pattern like that identified by the real speckle 

pattern. The real speckle pattern is a profile taken from an image of a speckle 

pattern. As in Section 7.1.2, the model simplifies the continuous profile that 
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would be created by a real speckle pattern by splitting it up into discrete 

regions or speckles. An example of a discretised version of the real speckle 

pattern is illustrated by the simulated speckle pattern. The speckle pattern is 

collected by a receiving aperture whether that is in the form of a lens or a 

photodetector and the intensity is measured. 

 

 

Figure 7.22 – Modelling the speckle pattern 

 

7.2.2.1 Speckle size 

The simulated speckles must also be of an appropriate size, as discussed 

previously in Section 7.1.2.1. The intensity and phase of each speckle is 

uniform across its extent. The speckles maintain a regular shape and size with a 

constant amplitude and phase across their extent. Their shape is square and the 

size of each simulated speckle is calculated using the average speckle size, as 

shown by equation (3.24). 
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7.2.2.2 The detector size 

As in Section 7.1.2.2, the detector is square and its width depends on the 

vibrometer configuration under scrutiny. When the vibrometer has no 

focussing lens the detector size is taken directly as the physical dimension of 

the photodetector. When the vibrometer has a lens, the detector dimension is 

taken as the width of the beam emerging from the lens. The number of speckles 

in the aperture, M, depends on the speckle size at that standoff distance and the 

physical dimension of the aperture. 

7.2.2.3 Simulating the Doppler signal 

The simulation takes user inputted optical parameters, (beam diameter; 

receiving aperture width; standoff distance), measurement parameters (number 

of points per oscillation; number of oscillations) and target parameters 

(vibration frequency; angular displacement amplitude). Using these parameters 

the simulation determines the dimensions of a matrix of simulated speckles to 

be created. The matrix is sufficient in size to accommodate the whole number 

of speckles expected in the size of the receiving aperture and the speckle 

translation distance for the whole cycle of the surface motion. In the same 

manner as that shown in Section 7.1.2 and as illustrated in Figure 7.6, the 

speckle positions are disrupted in their presentation to the receiving aperture. 

The irregular positioning of the speckles disrupts the otherwise regular 

presentation of the simulated speckles to the receiving aperture. As the 

receiving aperture translates across the simulated speckle pattern matrix the 

resultant phase and amplitude of the Doppler signal change. The Doppler 

signal characteristic are again calculated using equation (7.2), equation (7.5) 

and equation (7.8). The simulated speckle noise is found from the change in the 
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resultant phase over time in accordance with
( )1

2

resd t

k dt

Φ
 as discussed in 

Section 7.1.2.3. 

7.2.3 Simulating speckle dynamics 

When a surface tilts about an axis which is perpendicular to and intersects the 

optical axis, the speckles at the detector exhibit translation with negligible 

evolution. Evolution would exist because the profile of the beam transits from 

an elliptical shape through to circular and therefore would modify the surface 

scattering. However the angular motion is generally less than a few degrees 

and the change to the scattering elements being illuminated is negligible. This 

is confirmed in chapter 6 and it is, therefore, reasonable to assume the speckle 

translation is the dominant speckle motion. A speckle translates by an amount 

4θzS in a plane a distance zS away when the surface tilts through an angle 2θ 

[7.2] as seen in Section 4.1.2. 

7.2.4 Tilt sensitivity using the simulator 

Estimations of tilt sensitivity from the simulator are made using the same 

configurations as those for the experimental estimations discussed in Chapter 

5. The target surface vibration parameters and the measurement parameters are 

kept constant throughout the simulations. The optical parameters vary 

depending on the particular vibrometer configuration being investigated. The 

two configurations being investigated vary the beam diameter from 100µm to 

600µm, the standoff distance from 600mm to 700mm and the receiving 

aperture from 12mm to 1mm respectively. The surface tilts by 0.78˚ rms which 

causes the speckles to translate about 45mm and 54mm at the receiving 

apertures for the different configurations respectively. Figures 7.23 (a) to (d) 
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show examples of the temporal data produced by the simulation for one period 

of oscillation of the surface. Figures 7.23 (a) and (b) show the sequence of 

changes in Doppler signal amplitude and phase as a result of the speckle 

motion. The target is modelled to move in a sinusoidal form, which causes the 

speckles to translate back and forth over the receiving aperture. As discussed in 

Section 7.1.4, the periodic motion causes the sequence of amplitude and phase 

changes to appear to reflect and change sign about instances in time when the 

surface and hence speckles are stationary. Figure 7.23 (c) shows the resulting 

apparent velocity over the period of oscillation caused by the changes in phase 

shown in Figure 7.23 (b). In a similar fashion to that shown in Section 7.1.4, 

the most significant changes in phase, evident by the larger speckle noise peaks 

in Figure 7.23 (c), occur simultaneously with rapid changes in Doppler signal 

amplitude from a low level. These large speckle noise peaks occur most often 

around periods in time where the surface speed is highest, shown in Figure 

7.23 (d). It is also evident that these peaks due to speckle noise are not as a 

consequence of low light amplitude. Figure 7.23 (a) also presents a trace of the 

average light intensity providing an indication of the quality of the simulated 

light signal level. At the time instances around these peaks the average light 

intensity is not significantly altered. This shows that speckle noise is not a 

signal quality issue and the more rapid changes in phase and low Doppler 

signal amplitude are more likely due to an unfavourable collection of speckles. 

This indicates that irrespective of the average light levels received, which can 

be increased with higher laser power or by applying treatments to the surface,  

speckle noise will still be a significant problem. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7.23 – (a) Doppler signal amplitude and the average intensity for one whole cycle, (b) 

Unwrapped phase of the Doppler signal for one whole cycle, (c)  Apparent velocity for one 

whole cycle, (d) Tilt surface velocity for one whole cycle 
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The simulator is used to estimate tilt sensitivity, for comparison with 

experimental data presented in Chapter 5. The optical parameters, 

measurement parameters and target parameters for the simulation are matched 

to the experimental arrangement. The resulting data is analysed in the same 

manner as the experimental data. The estimations of tilt sensitivity are shown 

in Figure 7.24 and Table 7.7. The data points of the tilt sensitivity, for the 

simulator, are made from averages of 50 simulations allowing a statistical 

comparison. The temporal speckle noise data are produced for direct 

comparison with experimental data. The appropriate frequency bandwidth is 

chosen, the data are Fourier transformed and the ‘picket fence’ effect is 

compensated for. The peak values of the first 50 orders of the vibration 

frequency are found and an average is calculated for each order. Standard 

deviations are also calculated but not shown in Figure 7.24 for clarity of 

presentation. 
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Figure 7.24 – Comparison of simulated estimates to experimental estimates of speckle noise 

 



 211 

Table 7.7 shows a simplified comparison of the data in Figure 7.24. The values 

are presented in two ways, one showing the tilt sensitivity (per order) from the 

mean of the first 10 orders (likely to be of interest to the vibration engineer) the 

second showing the total rms for the first 50 orders. The estimations of tilt 

sensitivity produced by the simulations presented in Table 7.7  show good 

agreement with the estimations of tilt sensitivity produced by the experiments. 

The experimental values are taken from the surface with Ra 1.0µm, which is 

expected to produce a fully developed speckle pattern. 

 

Tilt sensitivity: apparent velocity per unit angular velocity (µms
-1

 / degs
-1

) 

Surface finish Simulation Experimentation 

D = 600µm 

Mean level  

by order 

(orders 1-10) 

0.22 0.28 

Standard  

deviation 

(orders 1-10) 

0.17 0.16 

Total level  

across  

50 orders 

1.3 1.7 

D = 100µm 

Mean level  

by order 

(orders 1-10) 

0.069 0.078 

Standard  

deviation 

(orders 1-10) 

0.053 0.064 

Total level  

across  

50 orders 

0.31 0.44 

Table 7.6 – Speckle noise estimations, comparing those produced by the simulation with those 

produced through experimentation 
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Experimental estimations predict tilt sensitivity harmonics to be around 0.28 

µm/s per deg/s and the simulator estimates tilt sensitivity to be 0.22 µm/s per 

deg/s for 600 µm beam over the first 10 orders. The total rms level for 600 µm 

beam diameter has been predicted at 1.7 µm/s per deg/s by the experimental 

evaluations and 1.3 µm/s per deg/s by the simulator. For 100 µm beam, the 

experimental predictions estimate the harmonic levels to be around 0.078 µm/s 

per deg/s and the simulation predicts 0.069 µm/s per deg/s over the first 10 

orders. The total rms level for 100 µm beam diameter has been predicted as 

0.38 µm/s per deg/s by the experimental evaluations and 0.27 µm/s per deg/s 

by the simulator. The simulator predicts marginally lower values but shows 

good consistency with the experimental results. The simulator shows 

consistency for the different beam diameters predicting lower tilt sensitivity 

levels for the smaller beam configuration falling in line with results observed in 

the experiments. Tilt sensitivity reduces as the vibration order increases and 

illustrates a spectral roll off which is comparable to the experimental. 

7.3 Understanding gained from the simulations 

The simulations have confirmed that when a surface tilts, speckle translation 

needs only to be considered in the motion of speckles. When a surface moves 

transverse to the optical axis of the beam, speckles evolve and translate. The 

simulations showed a novel approach to modelling speckle evolution. This was 

successful and verified with the experimental results detailed in Chapter 5. The 

rate of speckle decorrelation, when modelling speckle evolution, can be 

considered from the width of the beam (in the direction of the surface motion) 

relative to the surface motion. Modelling speckle evolution requires changing a 

summation of a population of phasors. A simple interpolation routine was 

investigated but it was found that this introduced artefacts into the speckle 



 213 

noise data. This was evident by sudden changes in the Doppler signal at 

instances of transition from the predefined speckles. The Gaussian profile of 

the beam should be considered in a speckle evolution routine. This provides 

more appropriate transition times when exchanging phasors in the summation. 

The rate of speckle translation (for the life of a correlated speckle and when the 

beam is focussed on the surface) can simply be equated to that of the surface 

motion. The simulations have shown that speckles can be modelled in a simple 

way. They can be made the same size, which is in accordance with the 

expected size from statistics, and can be considered as square entities. This 

shows that the variations in size and shape of speckles in a real speckle pattern 

are insignificant when simulating pseudo-vibration. The transition across 

speckle entities is performed using a routine which integrates over a region of a 

speckle pattern. For the transverse sensitivity simulator the speckle pattern also 

evolves at a rate which is in accordance with the statistics detailed in Chapter 4 

and allows partial phasor exchanges. These factors generate speckle transitions 

which concentrate on the fundamental mechanisms of speckle dynamics and 

have shown good agreement with experimental data.   

 

The simulations have shown their ability to predict pseudo-vibration 

sensitivities for different sized laser beam spots and these compare well with 

experimental results. The difference in transverse sensitivity, modelled by the 

simulation, for the different beam spot sizes is consistent with that found by 

experimentation showing a difference by a factor of about 4 over the first 10 

orders. The estimations of tilt sensitivity have predicted a difference by a factor 

of approximately 3.2 (for the first 10 orders) for the two beam spot sizes 

investigated. This is consistent with experimentation which estimates the same 

factor as approximately 3.6.  
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The simulator (for transverse sensitivity) has shown that the number of 

speckles collected in the aperture of the vibrometer does not make a difference 

to transverse sensitivity because speckle evolution, generally, is the dominant 

speckle motion. The simulator has demonstrated that if speckle translation is 

the dominant speckle behaviour (within the confines of the vibrometer 

aperture) then an increased aperture can reduce transverse sensitivity. 

 

The simulations modelled the speckle intensity using the expected statistical 

distributions shown in Chapter 3. The dynamics of the speckles, in the 

simulations, have been modelled using the statistics, based on intensity, 

detailed in Chapter 4 and experimentally investigated in Chapter 6. Modelling 

the speckle dynamics 

 

The simulators have shown that large changes in speckle noise are driven by 

large changes in phase which often occur simultaneously with large changes in 

the Doppler signal amplitude from a low level. It has been demonstrated that 

low Doppler signal amplitude is more often as a result of the summation of 

speckles on the photodetector rather than low mean light levels. 
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8 Conclusions and recommendations for further work 

8.1 Introduction 

This thesis has addressed the uncertainty in laser vibrometry due to the 

phenomenon known as speckle noise. Speckle noise is generated from the 

motion of laser speckle on the photodetector of a laser vibrometer. This motion 

can take on two forms, translation or evolution, but is more generally a 

combination of the two. The speckle motion phase-modulates the Doppler 

signal ultimately adding what is termed ‘speckle noise’ to the vibrometer 

output signal. Speckle noise occupies a broad frequency range. When target 

motions are periodic (as is often the case in vibration measurements) speckle 

noise is pseudo-random. This causes noise components at frequencies generally 

of interest to the vibration engineer (fundamental target motion frequency and 

many harmonics) and has historically been termed ‘pseudo-vibration’. Pseudo 

vibration can be indistinguishable from genuine surface vibrations, which 

necessitates careful data interpretation by the vibration engineer. Until now 

little was known quantitatively about the uncertainty due to pseudo-vibration. 

 

The surface motions of greatest interest are transverse (translation oscillation in 

a direction perpendicular to the laser beam direction), tilt (angular oscillation 

around an axis in a direction perpendicular to the laser beam direction) and 

rotation (continuous motion around an axis perpendicular to the laser beam 

direction). Pseudo-vibration is known to originate from motions of optically 
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rough surfaces. This thesis has shown that noise is present in the vibrometer 

output, even in measurements from optically smooth surfaces where the term 

speckle noise becomes inappropriate. Pseudo-vibration, historically, was solely 

associated with speckle noise, but this thesis has extended the definition of 

pseudo-vibration to encompass noise generated from all surfaces (including 

optically smooth surfaces). Users of piezo-electric accelerometers will be 

familiar with the term ‘transverse sensitivity’ which is enshrined in standards 

and the equivalent terminology for laser vibrometers has been developed in this 

thesis. Collectively, the sensitivities to all the motion types (transverse, tilt and 

rotation) for any surface roughness or treatment are now referred to as ‘pseudo-

vibration sensitivities’. 

 

The early part of this thesis described speckle noise, from a user’s perspective, 

identifying how it generates uncertainty in measurements with a laser 

vibrometer. Chapter 2 presented the novel measurement of dynamic backlash 

using two laser rotational vibrometers. Despite the inherent speckle noise 

content, exacerbated by the differential technique, the measurement was made 

successfully. Understanding the fundamentals of the formation and the 

behaviour of speckles in response to the particular surface motions was 

investigated using published literature.  

 

Pseudo-vibration sensitivities have been quantified by experimentation. 

Specially designed experimental rigs were produced (isolating specific target 

surface motions: transverse, tilt and rotation) and procedures developed to 

measure pseudo-vibration. The first of two methods to calculate pseudo-

vibration sensitivities included an independent simultaneous measurement of 

genuine velocity. This was subtracted from the measured velocity to produce 

an apparent velocity, dominated by noise, from which pseudo-vibration 

sensitivities are calculated. The second method was developed for situations 
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where the measurement of genuine velocity cannot be obtained. In this case, 

two laser vibrometer measurements are made simultaneously using identical 

instruments. The laser beams have identical alignment and are positioned as 

close together as possible without overlap. Subtraction of their outputs cancels 

common components such as genuine vibration and, for rotor measurements on 

smoother surfaces, shaft out-of-roundness and leaves only uncorrelated noise 

components. As a result of the subtraction, the resulting signal takes an rms 

level that is 2  times either of the individual rms levels. Scaling then 

produces the apparent velocity from which pseudo-vibration sensitivities are 

calculated. The processing techniques and appropriate methods for presentation 

were developed. Pseudo-vibration was normalised by the amplitude of the 

surface vibration velocity to give transverse and tilt sensitivities, and the 

rotation velocity to give rotation sensitivity. The pseudo-vibration sensitivities 

are presented as a map showing the spectral shape of the noise, as the mean and 

standard deviation of each harmonic peak in the map, and as a mean level per 

order and a total rms level across a defined bandwidth. A variety of surface 

finishes were used ranging from optically rough surfaces (Ra 1.0µm) to smooth 

mirror-like surfaces (Ra 11nm) and also a surface treated with retro-reflective 

tape. Two laser beam spot diameters (90/100µm and 520/600µm) from 

commercial laser vibrometers were used. The effect of changes in vibration 

velocity amplitude and changes in vibration displacement amplitude were also 

investigated. The prime novelty in this investigation was the quantification of 

the pseudo-vibration sensitivities, which are immediately useful as a resource 

to the vibration engineer. 

 

After developing the methods and quantifying the pseudo-vibration 

sensitivities, the thesis continued by explaining more about the mechanism 

generating speckle noise. Actual speckle patterns and their behaviours for 

particular surface motions were observed and analysed. Relationships between 
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the motions of the speckles (based on intensity) and the pseudo-vibration 

sensitivities were also investigated. 

 

Numerical simulations of pseudo-vibrations were developed and transverse 

sensitivity and tilt sensitivity were quantified. The simulations modelled the 

formation of speckles and their dynamic behaviour in a simple way, using 

statistics of fully developed speckle patterns. The motions of the speckles were 

modelled to replicate those expected and observed in the experimental study. 

Reflecting the experimental study, two laser beam spot diameters (100µm and 

600µm) were investigated in the simulations. Novelty in the simulations 

included modelling of the sinusoidal motion of speckles, the modelling of 

speckle evolution in the context of laser vibrometry and the development of 

partial speckle transition steps without the need to sub-divide speckles into 

arrays. The same processing techniques, developed for the experimental study, 

were employed in the simulations. The simulated pseudo-vibration sensitivities 

were verified by the experimental investigation. 

8.2 Transverse surface motion and transverse sensitivity 

Speckle evolution is generally the dominant speckle motion generating speckle 

noise. Speckle translation is apparent but generally less significant. The 

magnitude and direction of speckle translation can change by altering the focal 

point relative to the surface, but speckle evolution generally remains the 

dominant mechanism. Pseudo-vibration sensitivity has been shown to be 

directly proportional to the amplitude of surface vibration velocity (for a fixed 

displacement amplitude) but it increases with decreasing surface vibration 

displacement. The laser beam spot diameter has the greatest effect on the 

transverse sensitivity. Larger beam spot diameters lower the transverse 

sensitivity. The spectral shape of transverse sensitivity is generally flat with a 
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marginal roll-off across 50 orders. Transverse sensitivity has been quantified as 

approximately 0.01% (per order for the first 10 orders) for a 600µm beam spot 

diameter and for 100µm beam spot diameter at about 0.03% (per order for the 

first 10 orders). In the range of surfaces investigated this difference varies by a 

factor of about 0.8 to 4. This also represents a marked superiority of the laser 

vibrometer over an accelerometer for transverse sensitivity which is often 

quoted as in the region of a few percent (<4-5%). 

 

If the amplitude of the surface vibration displacement is less than the beam 

spot diameter, however, lower orders of the transverse sensitivity increase and 

the spectral roll-off also increases. A reduction in surface displacement 

amplitude by a factor of
 
8 has been shown to increase the transverse sensitivity 

(over the first 10 orders) by a factor of 2. Surface finish does not make a great 

deal of difference to the transverse sensitivity. Measurements from optically 

smoother surfaces (Ra 75nm) creating partially developed speckle patterns 

show similar transverse sensitivity to fully developed speckle patterns (Ra 

1.0µm and retro-reflective tape). However, for a smaller beam, optically 

smooth surfaces (Ra 11nm) have been shown to reduce transverse sensitivity 

by a factor of 3 to 4, in comparison to optically rougher surfaces. Increasing the 

beam diameter (specifically in the direction of the surface motion) has been 

shown to reduce transverse sensitivity. The method employed introduced an 

aperture in the laser beam path, which caused a reduction in sensitivity by ½. 

The simulations of pseudo-vibration from a transverse surface motion have 

shown that speckles and their behaviour can be modelled in a simple way, 

agreeing well with experimental results. Simulations have shown that, because 

speckle evolution is dominant, any change to the size of the photodetector or 

number of speckles collected will make no difference to transverse sensitivity. 

Only when speckle translation is comparable to the photodetector size is 



 220 

transverse sensitivity increased, but this is unlikely in general application with 

transverse surface motion. 

8.3 Tilt surface motion and tilt sensitivity 

Speckles predominantly translate with negligible evolution. The laser beam 

spot diameter has the greatest effect on the transverse sensitivity. Smaller beam 

spot diameters lower the transverse sensitivity. The spectral shape of tilt 

sensitivity is reasonably flat but less so for smaller beam spot diameters. The 

small beam diameter increases the size of the speckles. This causes slower 

phase changes which reduces speckle noise levels particularly at higher orders. 

Surface finish makes no significant difference to the tilt sensitivity. Retro-

reflective tape has shown a modified speckle effect (based on intensity) to 

other optically rough surfaces, with more emphasis on the speckles in the 

central region of the Airy disc. Ultimately the mechanism generating speckle 

noise is unchanged and, therefore, this has resulted in little effect on the tilt 

sensitivity. Tilt sensitivity has been quantified as 0.1 µms
-1
 / degs

-1
 (per order 

for the first 10 orders) for 100µm beam spot diameter, 1/3
rd
 of the tilt 

sensitivity from using a beam spot diameter of 600µm which has been 

quantified as 0.3 µms
-1
 / degs

-1
 (per order for the first 10 orders).  Simulations 

of tilt sensitivity have showed good agreement with experimental results. They 

have confirmed that speckle translation is the dominant speckle behaviour and 

tilt sensitivity can be estimated by modelling this speckle motion. 

8.4 Rotation and rotation sensitivity 

Speckle translation has been observed as the dominant regime, consistently 

with the larger beam and with small shaft diameters and when focussing on the 
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rotation axis with the small beam. However, qualitative observations have 

shown a significant evolution when the shaft diameter is increased and the 

smaller beam is focussed on the surface. 

 

The laser beam spot diameter has the greatest effect on the rotation sensitivity. 

Smaller beam spot diameters lower the rotation sensitivity. Spectral shapes are 

generally flat but do have a marginal roll-off as the order increases. Shaft out-

of-roundness has been shown to be a source of uncertainty in measurements of 

rotation sensitivity. This has been shown to affect lower orders of the spectrum 

of pseudo-vibration. The mean rotation sensitivity is therefore calculated from 

higher orders (41-50) which are not influenced by shaft out-of-roundness, 

utilising the flat spectral shape. 

 

Rotation sensitivity increases with increasing shaft diameter, but is not directly 

proportional to it. Increasing the shaft diameter from 15mm to 110mm (whilst 

focussing the beam on the surface) has shown an increase in rotation sensitivity 

by a factor of approximately 2. For a 15mm diameter shaft, rotation sensitivity 

has been quantified at approximately 0.5  µms
-1
 / rads

-1
 and for a 110mm 

diameter shaft rotation sensitivity has been quantified at approximately 1.0  

µms
-1
 / rads

-1
. Focussing the laser beam to near to the rotation axis of the shaft, 

rather than on its surface, has shown a reduction in rotation sensitivity, with a 

greater effect observed with measurements from larger shaft diameters. 

Focussing the smaller beam on the rotation axis of a 110mm diameter shaft 

presents a great advantage over using a larger beam focussed on the surface of 

the same shaft with an estimated reduction in rotation sensitivity by a factor of 

approximately 5. This reduction is likely to continue to increase as the shaft 

diameter increases further. 
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Surface finish affects rotation sensitivity and, generally, measurements on 

optically smoother surfaces show lower rotation sensitivity. An optically 

smooth surface (Ra 11nm) has shown a reduction by a factor of over 5 to that 

from a surface with Ra 1.0µm or to more than 7 of that from retro-reflective 

tape. 

 

Rotation sensitivity in a measurement using a beam spot diameter of 90µm has 

been quantified up at to 0.6 µms
-1
 / rads

-1
 which is less than ½ of that from a 

520µm beam spot diameter which has been quantified at as much as 1.4 µms
-1
 / 

rads
-1
. 

 

The principles used in the single beam measurements can readily be employed 

to quantify rotation sensitivity for parallel beam vibrometer arrangements. 

Measurements of rotation sensitivity were only possible on surfaces with retro-

reflective tape. Rotation sensitivity for a torsional measurement using beam 

spot diameters of 520µm has been quantified as 0.016 degs
-1
 / rads

-1
 per order. 

 

Table 8.1 provides a quick reference summarising the pseudo-vibration 

sensitivities, observed methods which modify the magnitude and their 

associated factors. This table is immediately useful to the vibration engineer. 
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Pseudo-vibration 

sensitivity 
D = 100µm 

D = 600µm  

(factor of  

D = 100µm) 

Observations and effect on pseudo-

vibration sensitivity 

Transverse 

sensitivity 
0.03 % 3 

Smooth surface (Ra 11nm) – 1/3 

1mm aperture – 1/2 

Tilt  

sensitivity 
0.1 µms

-1
 / degs

-1 1/3 - 

Rotation 

sensitivity 
0.6 µms

-1
 / rads

-1 2 1/3 

Smooth surface (Ra 11nm) – 1/7 

Shaft diameter – 2 

Focus to rotation axis instead of surface  

(110mm shaft diameter) – 3/5 

Parallel beam 

Rotation 

sensitivity 

- 
0.016 degs

-1
 / 

rads
-1

 
- 

Table 8.1 - Quick reference for pseudo-vibration sensitivities 

 

8.5 Recommendations for further work 

This thesis has tackled important issues in laser vibrometry. The following sub-

sections highlight areas of research to take this work forward. Chapter 6 

analysed dynamic speckle based on intensity and this work can be taken further 

to improve understanding of the fundamental mechanisms generating speckle 

noise. The procedures and techniques to quantify pseudo-vibration can easily 

be extended to other configurations (parallel beam vibrometers and scanning 

laser vibrometers). The pseudo-vibration sensitivities, presented in this thesis, 

are immediately useful, but an estimate of noise levels alongside a 

measurement would also be of great benefit to the vibration engineer. This 

study can be extended towards formulation of Standards having developed 

successful techniques and drawn out key issues. 
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8.5.1 Wavefront analysis of dynamic speckle  

Chapter 6 observed speckle patterns and dynamic speckle using the intensity of 

the speckle field and the changes that occur as the surfaces move. Speckle 

noise is primarily due to phase changes in the region being measured by the 

photodetector. Therefore observation of the phase field would be more 

appropriate but this is far more challenging to measure. A Shack-Hartmann 

sensor may be able to do this. It uses a lens array and sensor array to quantify 

variations in wavefront by measuring displacements of focussed regions of the 

field. The lens array focuses regions of the field onto an array of sensors. If the 

wavefront is flat a spot is found in the centre of the sensor array. Angular 

variation in the wavefront at the lens causes the focus to deviate from the 

centre of the sensor array. Processing the data from the Shack-Hartmann sensor 

provides a discretised view of the wavefront field. It would be interesting to see 

whether this could provide a detailed view of the phase distribution of a 

speckle pattern. The size of the lenses would have to be less than the size of a 

speckle. This can be achieved by locating the sensor at a sufficient distance 

from the surface generating the speckle pattern. Using similar methods and 

tools adopted in Chapter 6, this could also provide valuable information about 

the mechanism generating speckle noise never before observed. 

8.5.2 Pseudo-vibration sensitivities for parallel beam vibrometers 

This thesis has concentrated on the pseudo-vibration sensitivities using a single 

beam laser vibrometer. It has also calculated the rotation sensitivity for a 

parallel beam laser vibrometer making a torsional vibration measurement, 

which is the most appropriate pseudo-vibration sensitivity of concern for a 

vibrometer with this configuration. This is because parallel beam laser 

vibrometers are generally used to measure torsional oscillation in rotating 
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shafts. However, parallel beam laser vibrometers can be used to measure any 

angular motion. Pseudo-vibration is present in measurements using parallel 

beam laser vibrometers and further work is required to measure in-plane 

rotation sensitivity (continuous motion around an axis parallel with the laser 

beam direction) and tilt sensitivity (angular oscillation around an axis 

perpendicular to the laser beam direction).  

 

 

Figure 8.1 – Set-up for measurement of in-plane rotation sensitivity using parallel beam laser 

vibrometer 

 

Figure 8.1 shows the set-up proposed to measure in-plane rotation sensitivity 

using parallel beam laser vibrometers. In-plane rotation sensitivity is applicable 

when a pitch or yaw measurement is required from the end of a shaft. In this 

case the pairs of beams are positioned centrally on the end of the shaft surface, 

aligned parallel and equidistant from the rotation axis of the shaft. Figure 8.2 

shows the set-up to measure tilt sensitivity using parallel beam laser 

vibrometers. Tilt sensitivity is applicable in an angular measurement on a 

tilting surface. The pair of beams are generally positioned either side of the 

rotation axis. An important note is that, unlike all other pseudo-vibration 

sensitivities, tilt sensitivity (for parallel beam vibrometers) is coupled with the 

same motion it is intended to measure. 
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Figure 8.2 – Set-up for measurement of tilt sensitivity using parallel beam laser vibrometer 

 

The procedures, outlined in this thesis (most appropriately the second method, 

using the difference in measured velocity from two laser vibrometers to 

calculate the apparent velocity), can be applied to quantify in-plane rotation 

sensitivity and tilt sensitivity. 

8.5.3 Continuous scanning laser vibrometers 

Scanning laser vibrometers can be used in a continuous scan mode to measure 

the vibration characteristics of a surface producing a continuous time resolved 

velocity measurement. However, the scanning of the surface will also cause 

speckle noise (and pseudo-vibration if the scan is periodic). Continuous scans 

are in the plane of the surface with the beam nominally perpendicular. 

Therefore, it is likely the speckle motions will be similar to that exhibited from 

a transverse surface motion. However, typical scan distances over the surface 

are likely to be much greater than the beam spot diameter and many more 

speckle decorrelations occur in the scan period than occur in the procedure for 

calculation of the transverse sensitivity presented in this thesis. When 
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comparing to transverse sensitivity (for laser vibrometers), this increased 

number of speckle decorrelation per period is likely to increase the spectral 

bandwidth and also increase the pseudo-vibration sensitivity. Pseudo-vibration 

will appear at the same frequency as the scan rate of the vibrometer and will 

also occupy many harmonics of that scan frequency. Scan frequency can be 

controlled so that it does not coincide with genuine vibration frequencies. It 

must be noted that the techniques used to scan the laser beam can also cause 

uncertainty at scan frequencies but this is not as a consequence of speckle 

noise. Scanning techniques involve the mechanical actuation of optical 

components. Either through slight laser beam misalignment with the optics or 

inherent design, Doppler shift of the laser beam occurs at the optics causing 

additional velocity components at scan frequencies. This is a topic of current 

research and would have to be accounted for or overcome in quantifying in-

plane scanning sensitivity. One procedure to overcome this would be to move 

the surface rather than scan the beam and then either of the two experimental 

methods, described in this thesis, to quantify pseudo-vibration sensitivities 

could be employed. Scan distances would have be taken into consideration as it 

has been shown that transverse sensitivity is not directly proportional to the 

displacement amplitude. As the scan distance increases, more speckle 

transitions would occur and the in-plane scanning sensitivity would increase. 

 

Continuous scanning laser vibrometers can be used to track surface motions, 

for example scanning a turbine blade as it rotates. This can be done at a point 

or with a scan path across the surface. For tracking a point on the surface, 

pseudo-vibration is insignificant and the uncertainty that remains is due to 

Doppler shifts in the optical components. However, if the laser beam is 

scanned on a path across the surface as the blade rotates then pseudo-vibration 

can be a source of uncertainty especially if multiples of scan frequency 

coincide with rotation frequency. Components of pseudo-vibration and the 
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uncertainty due to the optical scan equipment as well as genuine vibrations 

(which often coincide with rotation frequencies) will all occur at the same 

frequencies. Evaluation of in-plane scanning sensitivity can address this issue 

by providing typical values associated with the scan distances required. 

8.5.4 In-situ estimate of noise 

Modification to a laser vibrometer’s optical configuration to provide an in-situ 

estimate of speckle noise would provide an invaluable aid in data interpretation 

to the vibration engineer. By incorporating multiple photodetectors (at least 

two) which interrogate uncorrelated regions of the speckle field such an 

estimate can be made. The demodulated signals from these photodetectors will 

contain the same vibration velocity but uncorrelated noise components. 

Subtracting two of these signals will result in an estimate of RMS noise which 

is 2 of the RMS noise on either of the signals. This provides an estimate of 

the uncorrelated noise level in either demodulated signal. The resulting signal 

is not suitable for subtraction from either of the demodulated signals to leave 

genuine velocity, but the noise level estimate would indicate the level of noise 

in a measurement.  

 

It is important for the speckle noise to be uncorrelated. For this to occur the 

photodetectors must be separated enough so they do not measure the same 

region of a speckle pattern and positioned so they are not coincident with the 

direction of speckle translation. Speckle size increases with stand-off distance 

and speckle translations can be in any direction in the plane of the photo-

detector. Therefore the separation distance and position of the photodetectors 

should be adaptable to compensate for this change and preclude measurements 

with correlated noise. The ramifications of introducing additional components 

and electronic hardware will increase manufacturing costs of the vibrometer. 
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However, incorporating an in-situ estimate of noise levels (and effectively 

pseudo-vibration sensitivities) is a feature that is not available in instruments 

that compete with laser vibrometers, such as accelerometers. 

8.5.5 Standardising pseudo-vibration sensitivity for commercial 

laser vibrometers 

It is common-place for transverse sensitivity to be quoted for accelerometers 

and International Standards are well established for manufacturers of 

accelerometers to produce such information [8.1]. It would be appropriate to 

make it standard practice for all laser vibrometer manufacturers to supply 

equivalent pseudo-vibration sensitivities with their instruments. As of yet, no 

equivalent International Standard is available or in development for laser 

vibrometers. Single beam translational laser vibrometers would require 3 

pseudo-vibration sensitivities: transverse sensitivity; tilt sensitivity and rotation 

sensitivity. Parallel beam vibrometers can also be used in single beam mode 

and therefore would require the same pseudo-vibration sensitivities for single 

beam plus 3 more for their parallel beam mode (in-plane sensitivity, tilt 

sensitivity and rotation sensitivity). 

 

This thesis has developed the procedures, processing techniques and methods 

of presentation to successfully quantify pseudo-vibration sensitivities. The 

methods employed could be further developed so manufacturers can provide 

equivalent information for their commercial laser vibrometers in a standardised 

way. This thesis has raised the key parameters to be considered in the 

measurement of pseudo-vibration sensitivity and these would need to be 

standardised. The design of the pseudo-vibration rig and tolerances on genuine 

velocities would have to be standardised. For transverse sensitivity and tilt 

sensitivity, displacement amplitude and surface flatness would need to be 
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standardised. The location of the laser beams focus position relative to the 

surface. For rotation sensitivity, it would be preferable to have a low shaft out-

of-roundness (less than approximately 10µm) so lower orders can be used to 

quantify rotation sensitivity (despite the techniques that have been developed to 

minimise its effects in the rotation sensitivity). The location of the focal point 

of the laser beam relative to the rotation axis needs to be considered. For all 

pseudo-vibration sensitivities, parameters such as standoff distance, range of 

surface roughness, surface treatments, vibration frequencies and number of 

independent measurements should be standardised. In the processing and 

calculation of pseudo-vibration sensitivities the bandwidth and orders used to 

quantify mean sensitivity should be standardised. 

 

The information offered by an International Standard on pseudo-vibration 

sensitivities would be useful to manufacturers and users. It would provide a 

greater understanding of the capabilities of the instrumentation and further 

means for comparison and promotion of the product in the commercial market. 

The customer would be able to make a more informed decision on the purchase 

of the equipment necessary to meet their needs. With a greater understanding 

of the capabilities of the laser vibrometer, the user can better assess the 

viability of data collection and its subsequent interpretation. 
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Appendix A 

 

Algorithm overview 

 

1. User inputted parameters are used to calculate the speckle size; the 

speckle translation distance and the total number of phasors to be 

created.  

a. The speckle size is calculated using Equation (3.24) 

b. The speckle translation distance is calculated using XT in 

Section 4.2.1. 

c. Total number of phasors is calculated from the sampling 

parameters ensuring at least one phasor is exchanged during the 

minimum surface displacement increment. 

d. Size of the speckle matrix is calculated from the above 

parameters which specify the size of the speckle matrix in terms 

of time and space. 

2. Using the parameters calculated in step 1. a triple nested loop generates 

the speckle matrix. Each phasor takes the form of an element shown by 

Equation (3.1). 

3. A displacement function is generated for the convolution routine. 

4. Speckle dynamics - evolution: Using Equation (7.6) the set of phasors 

is convolved with the displacement function which models the 

evolution. 

5. Speckle dynamics - translation: The speckle translation is modelled by 

translating the photodetector across the evolving speckle pattern matrix 

using the speckle translation distance. At this point the speckle area 
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factor (calculated using Equation (7.8)) is also applied for every 

speckle. 

6. Calculating the Doppler signal: The Doppler signal amplitude and 

phase are calculated by summing the speckles incident on the 

photodetector. These can also be calculated using Equations (7.2) to 

(7.5). 

7. The apparent velocity is calculated from the derivative of the Doppler 

signal phase shown by Equation (2.2) 

8. The Doppler signal amplitude; average intensity; Doppler signal phase; 

apparent velocity and surface velocity are output by the simulator. 

9. Sensitivity is calculated from the spectrum of Apparent velocity as 

detailed in Section 5.2.1. 
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