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Abstract 

Optoelectronics manufacturers are under continuous pressure for 

miniaturisation of optoelectronic modules. One route to further miniaturisation 

is to reduce the spacing between the optical and optoelectronic components 

in the optical path adhesively mounted to ceramic carriers. Flow control of the 

adhesives over the ceramic surface is then imperative. Uncontrolled wetting 

can lead to an excessive adhesive footprint which interferes in the application 

of other adhesives for subsequent components. However, insufficient wetting 

can lead to low strength bonds vulnerable to thermal fatigue and shear failure. 

The goal of the work was to minimise the potential for uncontrolled wetting 

while maintaining unmodified bond properties. In addition positional stability of 

adhered parts on cure and in-service must not be detrimentally affected.  

Epoxy bleed and fillet size issues were experienced in the assembly 

processes of Oclaro plc. They approached Loughborough University and 

proposed a project be created to tackle these issues. This project was 

proposed by Oclaro plc and was funded by Oclaro and the EPSRC. 

The first step in the practical investigation was to characterise the surface 

properties of alumina and aluminium nitride ceramic plates variously 

processed by commercial suppliers. The surface conditions included lapped, 

polished, etched and as-fired. Initial characterisation was performed by XPS, 

contact angle, SEM and surface texture analysis, amongst others. 

Commercially available conductive and thermally conductive adhesives were 

applied to the ceramics and their wetting behaviour linked to the surface 

properties observed.  

Once the primary factors which affect wetting were identified the investigation 

focussed upon modification of these parameters to optimise wetting and 

adhesion. Chemical and physical modifications were studied, including 

adventitious carbon adsorption, laser micromachining and self assembled 

monolayer application. Each showed promising results but the use of self 

assembled monolayers stood out as a good candidate for a solution to the 

problem, which could be incorporated into the assembly line of Oclaro‘s 

operations.  
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1 Introduction 

 

Optoelectronics is a field of electronics which deals with the use of light within 

electronic devices. The optoelectronic devices employ electrical-to-optical or 

optical-to-electrical transducers in their operation for such applications as fibre 

optic communications. 

There is strong commercial pressure to reduce the overall cost and size of 

optoelectronic modules1, or include additional functionality within existing 

footprints, without compromising the yield against the already demanding 

performance requirements. One way of achieving this is through 

improvements in package design and processes. Typically, a telecoms, i.e. 

high data rate, high precision, laser package consists of a hermetically sealed 

composite Kovar/ ceramic / copper tungsten ―gold box‖, containing the 

semiconductor laser, other optical components and lenses, electronic driver 

and monitoring components, and thermoelectric cooler.  These components 

are mounted on ceramic substrates using adhesives.  The package is coupled 

to a fibre optic tail through a lens or an optical window in the package.  A 

typical module is illustrated in Figure 1-1.   

 

Figure 1-110Gbps optical transmitter in a 14 pin butterfly package 

 

The two major functional drivers in the package design, and assembly 

process are the requirement to maintain the laser at a constant temperature 

for wavelength stability, and the requirement to achieve high coupling 

efficiency of the laser output into the optical fibre. 
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The constant temperature requirement leads to the choice of AlN as the 

substrate for its good thermal conductivity and close expansion match to the 

InP-based laser chip, together with its rigidity, processability and electrically 

isolative properties. Additionally, good thermal interfaces are required 

between the laser, thermoelectric coolers and the AlN substrate, leading to 

the use of filled adhesives for bonding these components. 

The specification for high coupling efficiency places demands on the precision 

of the assembly of the optical components and the adhesive used to hold 

them in place. The laser spot size is around 1 micron and the alignment 

between the laser and a coupling lens typically has to be held at sub-micron 

accuracy. Since passive placement techniques are increasingly difficult to 

control below 10 micron accuracy2, a compensatory active alignment process 

is usually needed for the optical components. Having been placed and aligned 

the optical components are tacked in place by a UV cure of the adhesive.  

Modules are later baked in batches to complete the cure. There must be 

minimal movement of the part on curing.  Long term stability of the adhesive is 

also important to maintain the coupling efficiency over the operating lifetime of 

the module of 20 years or more. 

Potential improvements to the packaging centre around the behaviour of the 

adhesives on the ceramic substrates, particularly those used during the 

alignment procedure. Because the beam path optimisation procedure is 

sequential, with one optical component being placed, aligned and the 

adhesive UV tacked before the next component is placed, the spacing 

between components is in part constrained to be larger than is optically 

necessary by the size of the adhesive fillets around each component. The 

fillet size in turn is determined by the amount of adhesive dispensed and by 

the wetting interaction between the adhesive and the ceramic. The fillet size 

of an adhesive bond is depicted in Figure 1-2. 
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Figure 1-2 Fillet size and its dependence on the contact angle between adhesive and 
ceramic, low contact angle and large fillet (left), high contact angle and small fillet (right) 

A second adhesive-flow related problem is epoxy bleed, where a component 

of the adhesive bleeds across the surface of the substrate causing a 

contamination problem. This phenomenon is shown in Figure 1-3 where bleed 

can occur randomly on apparently identical substrates. At present some 

control of adhesive flow is achieved by mechanical cutting of trenches into the 

surface of the ceramic. This is an extra process step which adds cost to the 

package components.  

 

Figure 1-3 Epoxy bleed from thermally conductive boron nitride loaded epoxy, pronounced 
(left) and acceptable (right). 

Figure 1-4 shows a breakdown of the assembly processes for an 

optoelectronic module and their associated costs. The diagram does not take 

into account the yield due to adhesive spreading or the cost of redesign to 

accommodate the potential spreading. The diagram was produced by Oclaro 

plc who were the industrial partner in this research. 
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Figure 1-4 The assembly process and associated cost for a typical optoelectronic module 
(courtesy of P Firth,Oclaro plc) 

 

The aim of this work is to find methods to control epoxy bleed and fillet size 

which are implementable in the existing large scale manufacturing 

optoelectronics assembly line. The cost of any methods must not significantly 

increase the manufacturing costs of the modules and will preferably offer a 

cost reduction by increasing yields and removing design limitations. Other 

considerations for potential solutions are: 

 Solutions should be an isolated process not requiring changes to the 

entire assembly line 

 Solutions should not affect subsequent processes i.e. active alignment 

 Solutions must not affect the functionality of the modules 

The first step in the investigation was to identify those factors which affect the 

epoxy bleed and fillet size, and ascertain which ones can be controlled and 

which can only be quantified. In Section 5.2 Surface Parameter Effects on 

Epoxy Bleed epoxy bleed has been linked to substrate composition and 

contamination which directly affect surface energy3-4. The available literature, 

which is reviewed in Section 2 Literature Review, also suggests substrate 

surface roughness and texture could influence the behaviour of liquids on 

surfaces5. The literature thus shows the potential for solutions to be found 

from a surface engineering approach. In this work both physical modifications 



 26 

and chemical modifications were investigated for potential solutions. 

Investigations by other researchers into the development of bleed free 

adhesive formulations has been performed6-7 and this is reviewed in Section 2 

Literature Review. However, this approach could lead to a number of issues 

surrounding adhesives used for optoelectronics in that they are extensively 

characterised and tested at great cost before being marketed. Modifications to 

adhesives would have implications throughout the assembly line. This 

approach therefore fails to meet the conditions above and so is not 

investigated in any great depth in this work. It was considered preferable to 

undertake a surface engineering approach to finding discrete solutions. 

Following the review of the literature and the initial experimental 

characterisation of the adhesives and adherends to identify the key 

parameters of interest, a number of surface engineering approaches were 

taken to identify potential solutions to the adhesive control problem. The 

characterisations of as-received substrates had identified variations in  

chemical species on surfaces which had ostensibly undergone the same 

processing. The presence of these species directly affected the occurrence of 

epoxy bleed and so they were investigated in the work described in Section 

5.3 Identification and Removal of Contamination to identify their source and 

potential for controlling them. The implications of this contamination for 

module integrity are explored with both physical measurements of bond 

strength in Section 5.1 Characterisation of Surfaces and Adhesives and by a 

more theoretical approach in Section 5.4 Application of Wenzel and Cassie 

Theory to Experimental Data, by the application of theories described in the 

literature review. It was found that epoxy bleed could be controlled if there 

was sufficient build up of organic contaminants from environmental sources. 

However, this was seen to take an extended period of time making the 

practicality as a solution debateable. 

The conclusions drawn from the data gathered for Sections 5.1-5.4 justified 

the development of a capability for direct engineering of the substrate 

surfaces. The identification of surface energy as a key parameter affecting the 

behaviour of adhesives on surfaces lead to the consideration of chemical 

modification methods producing stable surface energies, namely the 
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application of self assembled monolayers (SAMs). The application and 

behaviour of these monolayers was the subject of much investigation 

described in Section 5.5 Self Assembled Monolayers. The application of 

different types of SAMs was extensively studied and their effectiveness was 

found to be linked to the chemical bond by which they were joined to the 

substrate. A method for chemical surface energy homogenisation of 

heterogeneous metal/ceramic surfaces through the multiple stage application 

of SAMs was also developed and is the subject of a patent application8.   

The experimental observation that roughness also affects the flow of the 

adhesives, contrary to some literature reports, lead to the investigation of 

physical surface engineering for the production of artefacts on the substrate 

surfaces with the aim of controlling adhesives. The resistance of the ceramic 

materials to heat, chemicals and abrasives left few potential methods for 

creating the desired features, however laser micromachining showed to be 

very promising and is described in Section 5.6 Laser Micromachining. Various 

methods of material removal via lasers were explored and characterised for 

their capabilities. This work also lead to the identification of potential 

applications for laser micromachining beyond control of epoxy bleed and fillet 

size in the field of optoelectronics manufacturing. The feasibility of further 

methods for the control of adhesives on ceramics, i.e. photolithographic 

patterning of SAMs, were also considered briefly as reported in Section 5.5 

Self Assembled Monolayers. 

Each of the solutions developed and the results of the extensive testing 

conducted was presented to the industrial sponsor (Oclaro plc) for 

assessment of suitability for implementation into the optoelectronics assembly 

line. As a result of their assessment Oclaro funded a currently pending US 

patent application8 covering the technique for SAM coating of heterogeneous 

surfaces, which is reproduced in Section 9.2 Appendix 2 – Patent Application. 
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2 Literature Review 

2.1  Optoelectronics Background 

The optoelectronics industry has been a multi billion dollar industry since the 

mid 90s1 and is continuing to grow. It is an area of extensive applications 

ranging from telecommunications and electromagnetic sensing to personal 

products such as home computers. The sector of the optoelectronics industry 

of interest in this work is primarily telecommunications, and in particular the 

optoelectronic modules used for fibre optic transmission and signal reception. 

The issues surrounding the current manufacturing methods of these 

optoelectronic modules are described in the Introduction of this work. The 

layout of the modules and assembly processes used are considered below. 

2.1.1  The Optoelectronic Module Assembly Processes 

The optoelectronic module assembly process includes such processes as: 

surface adhesive mounting, wire bonding, active alignment, solder paste 

application, reflow, adhesive full curing, adhesive snapping (UV tacking), die 

bonding and others. It also includes various intermediate steps, such as 

plasma cleaning, which tend to be specific to the particular manufacturer and 

dependent upon their specific methods.  

 

Figure 2.1-1 A typical optoelectronic carrier sled with metallisation pattern and areas for 
epoxy application highlighted (image courtesy of P. Firth, Oclaro). 

Figure 2.1-1 shows a typical optoelectronic assembly substrate metallised 

according to the pattern shown in the figure. The application positions for 

epoxy adhesives are shown. 
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In terms of epoxy adhesives a number of different epoxies are applied. In this 

study a thermally conductive boron nitride filled adhesive and an electrically 

conductive silver flake filled adhesive are used. However, others such as 

optical adhesives may be used in the assembly process2. Assembly of optical 

and other components with adhesives is a multiple stage process including a 

number of cure schedules in between. In active alignment processes 

adhesives are UV snapped (partially cured into tack properties to secure 

parts) before being cured into their final positions. Other adhesive or solder 

processes include the bonding of the laser diode to a heat sink and then to 

the ceramic carrier. Die attach techniques are used to achieve this2. 

Once the ceramic carrier or sled is fully assembled it is then inserted into a 

Kovar box which allows interconnection with exterior drive circuits and fibre 

optics. The ceramic carrier and Kovar box are baked at 150°C for 12 hours to 

remove any residual moisture and contaminants, before being hermetically 

sealed. This completes the assembly of the optoelectronic module which is 

then ready to be interconnected to exterior electronics and other 

optoelectronic assemblies.  

2.1.2 Optoelectronic Components and Materials 

Optoelectronic materials are chosen for their properties supporting the 

required functionality of the component. Disregarding materials used for 

optical  components (lenses, mirrors, beamsplitters and various others) which 

are not relevant to this work, materials used for assembly may fall into the 

categories of semiconductors, solders, adhesives, submounts, heatsinks and 

enclosures. For this work the categories of interest are submounts and 

adhesives. Submount materials currently in use are mainly aluminium oxide, 

and aluminium nitride. Both are used for their similarity to the CTE of silicon 

and reasonably good thermal conductivity (for ceramics). Where thermal 

conduction is of special importance aluminium nitride is used, and where 

thermal conduction is not imperative and cost is an issue, aluminium oxide is 

used which is cheaper than aluminium nitride. 

Boron nitride filled epoxies are used for their thermal conduction and electrical 

insulation combined with thermal stability and small shrinkage percentage. 
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Silver filled epoxies are used where good electrical conduction and/or good 

thermal conduction is required. The epoxy phenol novolac is used in the 

formulation of the silver filled epoxy for enhanced thermal stability. 

2.1.3 Surface Mounting of Components 

For the surface mounting of components with adhesives it is first necessary to 

apply the adhesive to the adherend material. This can be done in a number of 

ways such as stencil printing, pin transfer and syringing3. Stencil printing is 

similar to the solder paste application process whereby paste is pushed 

through a stencil and coats the areas adhesive is required. Pin transfer is a 

method which relies on the properties of the adhesive, such as surface 

tension and viscosity, for reliable application. A single pin, or an array of pins 

arranged in the pattern of the areas adhesive spots are needed can be used. 

The process relies upon the greater affinity the adhesive has for the adherend 

than the metallic pin, and gravity and the adhesive surface tension for 

consistent adhesive volumes4. Syringing of adhesives is the commonly used 

process with the most accuracy and reproducibility. Adhesives are forced 

though a hollow needle by a drive circuit which applies a precise pressure for 

a precise time to achieve a desired volume of adhesive. A syringe system can 

be typically programmed to dispense adhesives in the desired areas, to the 

movement accuracy of its X-Y table. 

2.1.3.1 Active Alignment 

Active alignment is a feedback driven process in which optical components 

are moved whilst laser light is applied to them and an output signal is 

measured, until the maximum light coupling efficiency is achieved. Active 

alignment is the process within optoelectronics assembly which has prevented 

the development of a fully automated assembly procedure5 and is therefore 

responsible for a considerable labour cost in the assembly process. Alignment 

of a laser beam with an optical component is defined with respect to the 

centre of the Gaussian power distribution of the laser beam6. It is a slow 

process which can contribute over 60% of the total labour cost in the 

assembly process. See Figure 1-4 for a fuller breakdown of labour costs. 

When used in conjunction with surface mount adhesives, components are 
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placed on pre-dispensed adhesive spots, active aligned and then UV snapped 

to hold the component in place until the adhesive is thermally cured. This 

process is undertaken for all components requiring high coupling efficiency 

and positional accuracy on the micron scale. 

2.1.3.2 Passive Alignment 

Passive alignment is the geometric positioning of objects which have multiple 

degrees of freedom by features in an assembly which remove some of these 

degrees of freedom. It is attractive by comparison with active alignment as it is 

an automatic alignment process which is the result of careful design, and not 

labour intensive. However, it is has only recently been used to achieve 

alignment of submicron accuracy in the lab7 for optical fibres, which have 

fewer degrees of freedom to begin with. Thus it is desirable to replace active 

with passive alignment where possible in optoelectronics assembly due to the 

labour and time saving it would offer. 

2.2 Material Properties 

2.2.1 Ceramics 

The ceramic materials of interest in this study are alumina and aluminium 

nitride. Material parameters of the samples are shown in Table 2.2-1 below8. 

Aluminum Oxide Aluminium Nitide

Formulae Al2O3
AlN

Knoop Hardness 2100 1225

Specific Gravity 4 3.26

Specific Heat kJ/kgK @20°C 0.82 1.7

Service Temperature °C 1650 1100

Thermal Conductivity W/K/m

@20°C 36 185

Resistivity Ohm m 20°C 10^16 10^11

Thermal Expansion x10-6 m/k 9.5 5.6

Modulus GPa @20°C 370-407 345

Tensile Strength GPa @20°C 1400-2100 6900
Stability Resistant to all but HFl Reacts with water  

Table 2.2-1 Properties of pure  aluminium oxide and aluminium nitride ceramics. 
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2.2.1.1 Preparation of Ceramics for Analysis 

Ceramic preparation guidelines were found in the literature in an article by  

Elssner et al9. All material preparation for this investigation was performed to 

these guidelines. 

2.2.2 Adhesives 

Two commercial epoxy adhesives were used in this study. Each were 

prepared by EPO-TEK®, an adhesive manufacturing firm. EPO-TEK® H20E is 

a silver loaded electrically conductive epoxy. It is designed specifically for 

conductive bonds in optoelectronic applications. EPO-TEK® 930-4 is a boron-

nitride fibre loaded thermally conductive epoxy. It is designed with high heat 

dissipation and electrical insulation properties for applications requiring high 

thermal conductivity and operating temperatures. Table 2.2-2 below shows 

important properties of the adhesives10,11. 

H20E 930-4

Glass Transition Temp °C >80 >90

Viscosity cPs 2200-3200 10500-15500

Thermal Expansion Below Tg °C x10-6 31 27

Thermal Expansion Above Tg °C x10-6 120 136

Lap Shear Stress MPa 10.34 >13.29

Die Shear Stress MPa >23.44 >35.16

Degradation Temp °C 410 425

Thermal Conductivity W/mK 2 1.67

Resistivity Ohm-cm <0.0004 >2x1013

Continuous Operating Temp °C 200 200

Pot Life /days 4 1

Cure time 175°C 45 seconds  ---

Cure time 150°C 5 minutes 10 minutes

Cure time 120°C 15 minutes --- 
Cure Time 100°C --- 4 hours  

Table 2.2-2 Properties of the commercial adhesives, EPO-TEK 930-4 and H20E investigated 
in this work 

2.2.3 Optoelectronic Interconnection Metallisations 

Optoelectronic metallisations used in the optoelectronic assemblies of interest 

consist of layers of titanium, platinum and gold or titanium, palladium and 

gold. Gold is used as the top and thickest layer (1-5μm) metallisation whilst 

titanium is used for its adhesion to the ceramics. The metallisations are 

applied via electroplating. 
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2.3 Theories of Adhesion 

The theories of adhesion are attempts to model interactions between an 

adhesive and an adherend12. As would be expected, different systems show 

different interactions, both physical and chemical. The set of theories of 

adhesion are not all relevant to every adhesive/adherend system13. However, 

all adhesive/adherend systems show evidence consistent with at least one of 

the current accepted theories. 

 

2.3.1 Mechanical Interlocking Theory 

Mechanical interlocking is the presence of an adhesive material in the surface 

texture of the adherend. Upon application the adhesive flows into any pores, 

holes and surface features. Once the adhesive hardens the adherends are 

held together mechanically by the adhesive being unable to leave the areas it 

flowed into when in its liquid state, without energy absorbing deformations14. 

For interlocking to occur the adhesive must displace any air remaining 

between itself and the adherend. Therefore the surface energy of the 

adherend must be sufficiently high for adhesive attraction, and the surface 

tension of the adhesive must be sufficiently low so wetting is not impeded15. 

This theory supposes the adherend surface to be non-uniform or rough. All 

surfaces have these characteristics to a varying degree. The roughness of a 

surface is generally considered beneficial to an adhesive bond due to the 

inherent increase in surface area12. Increasing the adherend surface area will 

increase the contact area between the adhesive and adherend, providing the 

surface energies are sufficient for wetting to occur. If intermolecular or 

interfacial attraction form the basis for adhesion in the system then an 

increase in surface area will result in an increase in the total surface 

interaction energy. 

2.3.2 Diffusion Theory 

Diffusion is the passage of one substance into an adjacent one, resulting in a 

mixture. Diffusion can apply to only part of a long chain molecule such as a 

polymer. In the context of an adhesive this means diffusion across the 

adhesive/adherend interface and  can result in single molecules lying on both 
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sides of the interface. This mechanism is thought to occur only when the 

materials are mutually soluble, for example with two polymers. It is therefore 

unlikely a ceramic and a polymer will exhibit this adhesion mechanism. 

 

2.3.3 Electrostatic Theory 

The electrostatic theory states that12: the work of adhesion Wa between 

adherend and adhesive is  





2

2h
Wa   

Equation 2.3-1 

Where Wa is the work of adhesion,  the surface charge density, h the 

distance between the surfaces and  the dielectric constant of the medium. 

The electrostatic contribution to the bond strength is thought to be very small 

except for specific cases unrelated to this work. 

 

2.3.4  Adsorption Theory 

This theorises that the bond strength arises from intermolecular forces such 

as van der Waals forces12. Intimate molecular contact is required for these 

forces to occur as the interaction range of van der Waals forces is 

approximately 0.4nm. For the occurrence of the necessary contact good 

wetting of the adhesive on the adherend is paramount. Any air bubbles or 

unfilled regions of the adherend topography can lead to both decrease of 

contact area and residual stresses at the small air bubbles15, both of which 

would result in a weaker bond.  

2.3.5 Chemical Bonding Theory 

This is the formation of covalent bonds across the adhesive/adherend 

interface13. For this to occur the adhesive and adherend must be mutually 

chemically reactive to produce the covalent bonds. Further to the necessity of 

reactivity, intimate contact between the adhesive and adherend is required. 
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The presence of a hydroxyl group proves beneficial for formation of covalent 

bonds, and is often found in abundance in epoxies.  

Surfaces and adhesives are frequently not mutually reactive. Coupling agents 

and adhesion promoters are available to act as an intermediate layer between 

non-reactive adhesive and adherend. These work by forming covalent bonds 

with both materials12,16. 

 

2.3.6 Work of Adhesion 

The work of adhesion is defined as the energy input required to form two new 

surfaces at an interface between two adhered materials12,17. If cohesive failure 

occurs, i.e. failure through a material, rather than at an interface, then the 

work of cohesion is described by: 

2CW  

Equation 2.3-2  

Where Wc is the work of cohesion and  is the surface free energy of the 

material. 

I.e.; the work that is required to create two new surfaces with surface energy 

. When dealing with a system where more than one material is present, such 

as an adhesive on an adherend, the work of adhesion is determined by the 

work to create the two new surfaces less the energy recovered by destroying 

the interface. Equation 2.3-2 above thus becomes the Dupré equation: 

1221  AW  

Equation 2.3-3  

Where WA is the work of adhesion, 1 and 2 are the respective surface 

energies of the materials and 12 is the interfacial energy. 
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Figure 2.3-1 Depiction of the work of adhesion. 

Figure 2.3-1 shows the energy expended upon failure of an adhesive should 

be the sum of the surface energies of the adhesive and adherend materials 

less the energy of the interface. 

The work of adhesion theory is a simplification which neglects to include 

energy absorbtion due to deformation of the materials.  Ahagon and Gent 

related practical adhesion to the theoretical work of adhesion12 by the 

inclusion of a term describing energy dissipations in a bond: 

 AAActual WfWW   

Equation 2.3-4  

Where  represents the viscoelastic properties of the adhesive and 

consequently represents energy absorption of the joint. If the adhesive and 

adherend materials are brittle then the bond failure energy is equivalent to the 

work of adhesion. If the adhesive or adherend exhibits deformation before 

failure a further energy component is introduced. 

Equation 2.3-3 above can also be written in terms of state interfaces18: 

 

slsvlvAW    

Equation 2.3-5  

Where lv is the liquid-vapour interfacial tension, sv is the solid-vapour 

interfacial tension and  sl is the solid-liquid interfacial tension. 

Young linked the contact angle of a liquid to the interfacial tensions: 
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svsllv  cos  

Equation 2.3-6  

Where  lv is the liquid/gas interfacial tension,  sl the solid/liquid interfacial 

tension,  sv the solid/gas interfacial tension and  is the contact angle at the 

solid/liquid/gas interface. 

The Young equation, Equation 2.3-6, can be substituted into the modified 

Dupré equation to form an expression incorporating easily measured 

parameters18: 

  cos1 lvAW  

Equation 2.3-7  

Where  is the equilibrium contact angle the liquid forms on the solid and lv is 

the liquid-vapour surface tension. 

Fowkes suggested that the surface energy of a solid or liquid is the sum of the 

effects of dispersion forces, polar interactions and hydrogen bonding19: 

hpd    

Equation 2.3-8  

Whereby the total work of adhesion becomes: 

h

A

p

A

d

AA WWWW   

Equation 2.3-9  

Owens and Wendt then suggested the hydrogen bonding interaction could be 

considered together with polar interactions19 . This simplifies Equation 2.3-8 

and Equation 2.3-9 to the polar and dispersion terms only, as the hydrogen 

bond term is considered together with the polar term. 

Fowkes theorised the dispersive forces in a system are more prevalent and 

therefore account for the larger fraction of the work of adhesion. He included 

the assumption that the rest of the work of adhesion was due entirely to acid-

base, and not polar interactions20. 

  ab

d

B

d

AA WW  2
1
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Equation 2.3-10  

Where Wab is the work of adhesion due to acid base interactions. 

By considering the polar and dispersive terms for the surface free energy, 

Owens and Wendt suggested the work of adhesion could be calculated from: 

    2
1

2
1

22 p

B

p

A

d

B

d

AAW    

Equation 2.3-11  

 

Where the components of the surface energy are calculated using the theory 

of fractional polarity19.  

The above relationships suggest that the maximum possible work of adhesion 

occurs when the contact angle of the system tends towards zero (for a 

partially wetting liquid). For this to occur the surface energy of the adherend 

and the surface tension of the adhesive must be compatible for a contact 

angle of zero. This means the attraction of the adhesive molecules to the 

adherend is greater than the mutual attraction of the adhesive molecules.  

2.4 Wetting, Contact angle and Surface energy 

2.4.1 Contact Angle 

Epoxy adhesives are applied to the adherend surfaces in their liquid state. 

Therefore the system can be described using interfacial tensions at the three 

interfaces formed between the liquid adhesive, the solid adherend and the 

gaseous atmosphere. The relationship of interfacial tensions at the different 

interfaces can be determined by considering the balance of surface forces at 

the line of contact of the three planes shown in Figure 2.4-1 below. The 

balance is expressed by the Young equation21, Equation 2.3-6. This can be 

arranged with respect to contact angle, which as defined in Figure 2.4-1: 

lv

slsv







cos  

Equation 2.4-1  
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Figure 2.4-1 The force balance of interfacial tensions of a liquid drop on a solid surface. 

For cases such as the one described in22 where the liquid wets the surface 

completely (contact angle of zero), the above equations Equation 2.3-6 and 

Equation 2.4-1 are not useful and it is more convenient to consider wetting. 

2.4.2 Surface Energy 

Surface energy can be defined as the quantification of the energy required to 

disrupt the intermolecular bonds of a material in order to create a new 

surface18. This is evident when considering that material in bulk form must be 

more energetically favourable than surfaces. If this were not so then material 

in bulk form would not be stable. Therefore there must be an associated 

energy input for the formation of a surface. 

As described in Equation 2.3-2 the surface energy of a material can be 

described as half the work of cohesion, or as explained above half the energy 

required to form two new surfaces. This equation applies under the conditions 

that the material is pure, defect free, and the surfaces are created in a 

vacuum21. 

The surface energy of a material is relevant to this investigation when 

considered in terms of contact angle and wetting. 

2.4.3 The Effect of Surface Roughness 

The above theories make the assumption that the surface is homogeneous 

and smooth. Surface roughness as a quantifiable parameter was first 

introduced to contact angle theory by Bikerman23 and was later refined by 

Wenzel. Surface roughness effects on the contact angle can be considered 

using the Wenzel equation24,25: 

truer r  coscos   
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Equation 2.4-2  

Where the roughness factor r is defined as the ratio of the true surface area to 

the apparent area. r is the apparent contact angle formed on the rough 

surface and true is the contact angle which would be formed on the same 

material if it were flat and homogeneous. 

The true surface area is the resultant area created by all of the deviations 

from the theoretical flat surface26. 

Equation 2.4-2 shows that if true is less than 90 the apparent contact angle 

will be decreased by the effects of roughness. However if true is more than 

90 then the roughness has the effect of increasing the apparent contact 

angle27. 

When considering Equation 2.4-2 at the microscopic level the apparent 

contact angle r on a rough surface is26: 

  truer  

Equation 2.4-3  

Where  is the slope of the roughness profile of the surface at the point of 

contact between the solid and liquid phases. 

Figure 2.4-2 below shows the formation of a droplet on an idealised rough 

surface and the associated effect of the roughness profile.  

Equation 2.4-3 above and Figure 2.4-2 are of disputable usefulness in 

practice. The roughness profiles of most surfaces are invisible without a 

microscope28. Profiles created by common manufacturing methods are 

usually on the micrometre scale. To view an image like Figure 2.8-1 in 

practice would require looking at the cross section of a liquid droplet with a 

microscope. This would be necessary to measure the angle  at any point on 

the interface. It is highly unlikely that the angle  would remain constant 

around the interface unless the surface had a radial surface pattern. 
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Figure 2.4-2 The microscopic effect of roughness upon contact angle. 

Some mechanical machining methods such as milling do produce a 

repeatable pattern over the surface such like the one in Figure 2.4-229. 

However, if this is considered in three dimensions one would see that Figure 

2.4-2 be present at the situation of one infinitesimally small slice.  

Johnson and Dettre considered this situation further and investigated a model 

to predict the behaviour of a liquid on an idealised rough surface30. This was 

supported with experimental data31. Although a number of assumptions were 

made in the work, i.e. surface is a constant sinusoid shape and there is no 

effect of gravity, they found a correlation between their theory and the 

experimental work. The investigation extended to contact angle hysteresis 

and composite surfaces. The models are too lengthy to be described in this 

thesis and so are given here only as references. Another model was proposed 

by Ruckenstein and Berim32, and a simplified one by Tamai and Aratani33. 

Both models require a large number of assumptions, mostly involving the 

representation of a rough surface, which do not represent well the random 

granular nature of ceramic surfaces. Therefore the Wenzel equation is the 

only model used in this work to describe the effects of roughness on wetting. 

true 

 
r 
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2.4.4 Heterogeneity 

The subject of heterogeneity is studied in Section 5.4 Application of Wenzel 

and Cassie Theory to Experimental Data. 

2.4.5 Wetting 

Wetting can be considered in terms of partial wetting and complete wetting. 

Complete wetting means that the contact angle between solid and liquid tends 

toward zero so that no stable droplet is formed but the droplet spreads over 

the surface. When   0 the Young equation, Equation 2.3-6, ceases to be 

applicable and the free energy change for the production of the solid/liquid 

interface is given the name spreading coefficient Sls, as shown in Equation 

2.4-4: 

lvslsvlsS    

Equation 2.4-4 

However, this definition is again based on a number of assumptions including 

that the surface has no roughness. A more practical version of Equation 2.4-4 

was derived by Hunstberger34 in which the Wenzel ratio r as defined in 

Section 2.4.3 The Effect of Surface Roughness is included: 

   cos1 rG lvsl   

Equation 2.4-5  

Where G is the free energy of formation of the solid/liquid interface, r is the 

Wenzel ratio and theta is the true contact angle. 

This Equation 2.4-5 shows that for any system in equilibrium with negligible 

roughness any liquid applied will wet the surface (form intimate contact 

between liquid/solid), but also that a rough surface will be wetted if the true 

surface contact angle of the liquid is below 90°. 

Figure 2.4-3 below shows a wetted and a non wetted or composite surface. 
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Figure 2.4-3 A – a non-wetted composite surface,  B – a wetted rough surface. 

The above Equation 2.4-5 makes the assumption that the surface is pure and 

free from contamination. 

When a liquid is unable to penetrate the roughness profile the surface is 

known as a composite surface26. When this occurs Equation 2.3-6 becomes 

Equation 2.4-626,35: 

lvsl  1coscos   

Equation 2.4-6  

Where Ωsl is the solid liquid interface area and Ωlv is the liquid vapour 

interface area. Equation 2.4-6 above reduces to Equation 2.3-6 when Ωsv = 0. 

This is believed to occur if the true contact angle is sufficiently high to prevent 

wetting into the surface texture. As described by the Young equation, 

Equation 2.3-6, the contact angle is determined by the surface energies. 

Therefore the extent of penetration into surface texture is determined by the 

surface energies, which are represented by the contact angle. It has also 

been observed that increasing the roughness of a surface can change a non-

composite surface into a composite surface31. 

Wetting is also affected by the direction of the surface texture. Furrows in the 

surface can cause wetting along their axis whilst random roughness creates a 
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uniform effect. When the furrows are considered the excessive wetting along 

their axis can be described  as capillary action: 

 
R

P slsv  


2
 

Equation 2.4-7  

Where P is the pressure drop along the furrow, and R is the average radii. 

However, if the true contact angle of the system is equal to zero then: 

R
P lv2  

Equation 2.4-8 

This suggests that to obtain a large P and so excessive wetting, sl should 

be as small as possible, which is consistent with experimental work22. 

2.4.6 Wetting and Spreading in Relation to Adhesion 

A requirement for good adhesion is intimate contact between adhesive and 

adherend. This is supported by the discussion of composite surfaces and the 

work of adhesion. 

All the theories of droplet formation presented above agree that a solid/liquid 

interface is formed when a liquid lies on a surface, and that the energy 

change on formation of this interface is determined by the properties of both 

the liquid and the solid36. 

Huntsberger34 proposed that the short time an adhesive spends as a liquid on 

the surface, and its high viscosity, promote creation of a composite bond, as 

insufficient time is given for penetration. An equation derived from a model for 

the dynamics of adhesive penetration into the roughness profile of a surface 

with respect to time, which incorporates viscosity is19: 

r

x
t
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2





 

Equation 2.4-9  
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Where  is the surface tension of the adhesive,  is the surface energy of the 

adherend,  is the true contact angle, t is the time for complete penetration, x 

is the distance moved and r is the radius of the capillary. 

This is of disputable usefulness in calculating penetration time for a real 

surface due to the assumption that the cavities to be penetrated are cylindrical 

and of constant radius. Such surfaces would have to be specifically 

manufactured for such a structure and would be considered porous. The 

ceramics used in this study are >99% dense, so no such porosity would be 

present in the surface structure. 

2.4.7 Estimation of Surface Energy Through Contact Angle 
Measurements 

The use of contact angles to measure surface energy is not a direct 

measurement method. The term surface energy estimation is used for the 

mathematical manipulation of the contact angles which yield the surface 

energies of the solid. In this work the method according to Owens and 

Wendt37 is considered along with the method according to Wu38. Both of these 

methods yield dispersive and polar components of surface energy. The 

difference between the two methods is that the Owens Wendt method uses 

the geometric mean of the surface tensions to yield results, where Wu uses 

the harmonic mean of the surface tensions. The equations and calculations 

surface energies according to these two methods are considered in Section 

9.3 Appendix 3 – Evaluation of Surface Energy Estimation Methods. 

2.4.8 Three Phase Contact Line 

Contrary to the assumptions in the theories presented above on the effect of 

roughness on wetting, and of those leading to the Young equation itself, 

Starov et al21 consider that there is no abrupt interface between the solid and 

the liquid, but instead a gradual transition zone between the liquid droplet and 

a thin film of liquid which forms on the solid surface. 
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Figure 2.4-4 The three phase contact line in Starov et al‘s theory 

Figure 2.4-4 above shows Starov‘s theorised three phase contact line where 

the numbers represent:  

1. Bulk liquid 

2. Boundary layers of the liquid-air and solid-air interfaces 

3. Boundary layer overlap region 

4. Flat thin equilibrium film 

The motivation for the theory is that wetting is in fact a non-equilibrium 

condition. Starov‘s work suggests that the length scale of this phenomenon is 

much smaller than the scale of epoxy bleed and so it is unlikely that this 

theory can be applied to this work. 

The supposition of a three phase contact line would make the Young 

equation, Equation 2.3-6, thermodynamically invalid. This is an area under 

dispute in the literature, with work both supporting the validity of the Young 

equation39 and disputing it21. For this work, as with many other studies, the 

Young equation will be considered valid. 

2.4.9 Calculating and Interpreting the Wetting Envelope 

The wetting envelope is a plot which describes a given surface. It is a contour 

line which represents the properties of all liquids which will give rise to a 

specified contact angle on the surface. It is calculated by reversing the Owens 

Wendt method. First the Owens Wendt equation: 
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Equation 2.4-10 
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Was combined with the Young equation, Equation 2.3-1, and the 

consideration that for complete wetting cos=1, to get: 

 P
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Equation 2.4-11 

In a wetting envelope plot the polar and dispersive components of the test 

liquid surface tension form the two axes of a coordinate system. Any particular 

liquid is then a coordinate on the plot, and the wetting parameter W of the 

liquid is the geometric quantity: 

   22 P

l

D
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Equation 2.4-12  

With an associated angle phi given by:  

D

lW  cos  

Equation 2.4-13 

and 

P

lW  sin  

Equation 2.4-14 

Inserting Equation 2.4-13 and Equation 2.4-14 into Equation 2.4-11 gives: 

 P

s

D

s WWWW   sincossincos  

Equation 2.4-15 

Resolving for W as a function of , Equation 2.4-15 can be evaluated over a 

range of  from 0 to 90° using: 
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Equation 2.4-16 

This allows plotting an isoline of constant, zero contact angle on the wetting 

envelope plot, as seen in Figure 2.4-5 for low density polyethylene. The 

wetting envelope can also be plotted for any particular non-zero contact 



 49 

angle. For example Figure 2.4-5 also shows the transition point to poor 

wetting, 90°. 

To plot a contact angle other than zero the W parameter must be multiplied by 

cos1

2


, where  is the desired wetting envelope contact angle. 
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Figure 2.4-5 The 0°and 90° wetting envelopes for low density polyethylene. 

Wetting envelopes can be useful for visually identifying regimes of behaviour 

of liquids on a particular surface. An example is the regime for expected 

formation of composite bonds, where air pockets are included at the interface, 

as this is believed to happen above a liquid contact angle of 90°. As the plot 

gives information on the effects of both the polar and dispersive components 

of the surface tension of the liquids, it can be applied in choice of adhesive 

and surface treatment to optimise adhesion. 

2.5 Adsorption  

Adsorption is the adhesion of molecules of gas, liquid, or dissolved solids to a 

surface which is a consequence of surface energy. Throughout the bulk of a 

material all of the bonding requirements of the constituent atoms are satisfied 

by other atoms of the material. However, atoms on the surface of the material 

are exposed and not fully surrounded by other atoms of the bulk material, 
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therefore they can attract adsorbates. The mechanism of the adhesion 

between the adsorbent and adsorbate depends on the properties of the 

surfaces and adsorbates present, but the adsorption process can be 

considered physisorption – the interactions of weak van der Waals forces, or 

chemisorption - the formation of covalent bonds between the adsorbent and 

adsorbate. In the situation considered in this chapter, physisorption is the 

likely mechanism for adsorption of adventitious carbon molecules bearing few 

functional groups onto the ceramic surfaces, however it is possible that 

chemisorption take place should the surface be exposed to fatty acids40. 

The process of adsorption is frequently described through isotherms, the 

derivations of which differ in the assumptions they apply to the description of 

the adsorption process. The process is usually described as the amount of 

adsorbate adsorbed onto the adsorbent as a function of the adsorbate 

concentration or partial pressure. 

The first reported application of an expression to predict adsorption was 

exclusively for the adsorption of gaseous adsorbates41  

nkP
m

x
1


 

Equation 2.5-1  

Where x is the quantity adsorbed, m is the mass of adsorbent, k and n are 

experimentally derived constants for a specific adsorbent/adsorbate 

combination at a specific temperature and P is the partial pressure of the 

adsorbate. 

In the case of this work this expression is of limited practicality unless 

extensive experimentation is first undergone to identify the adsorbates, their 

partial pressures, and quantify values of k and n. There is some usefulness to 

the expression, however, in offering details on the effects of concentration 

upon the amount of adsorbate adsorbed. 

The Langmuir isotherm (meaning the process occurs at constant temperature) 

was proposed in 1916 and, like the expression above, related the adsorption 
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of molecules, at constant temperature, onto a solid surface to concentration of 

the adsorbate in a liquid, or partial pressure of an adsorbate in a gas42:  

)1( 



 ck

t
a  

Equation 2.5-2 

Where ka is the rate constant, c is the concentration, t is time and  is the 

fractional coverage. The Langmuir model extends to desorption also: 
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Equation 2.5-3 

Where kd is the rate constant of desorption. 

When equilibrium is reached i.e. the adsorption rate is equivalent to the 

desorption rate, the surface coverage is given by Langmuir to be43: 
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Equation 2.5-4  

Where  is the coverage of the surface as a fraction, P is the partial pressure 

in the gas phase and K is the Langmuir adsorption constant which is equal to 

ka/kd. 

The assumptions of the work by Langmuir are: 

 Multilayers do not form, only monolayers, i.e.; layers of adsorbate are 

not adsorbed onto existing layers of adsorbate. 

 The surface is a series of receptive sites which are identical and can 

absorb only one atom 

 The adsorption of molecules is completely independent on the status of 

neighbouring sites, i.e.; adsorbed molecules do not affect adsorption of 

further molecules 
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It was proposed by Brunauer, Emmet and Teller that multilayers do form – 

that adsorbates do adsorb onto adsorbed adsorbates. This model, known at 

BET, is a modification of Langmuir‘s mechanism to incorporate the formation 

of multilayers44: 

cv
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Equation 2.5-5  

Where x is the pressure divided by the vapour pressure, v is the volume of 

adsorbed adsorbate, vmon is the volume of the amount of adsorbate necessary 

for complete coverage of the surface to create a monolayer and c is the 

equilibrium constant from the Langmuir isotherm multiplied by the vapour 

pressure of the adsorbate. 

In terms of application, the assumptions of the different models make them 

suitable for different situations. The Langmuir isotherm, due to the 

assumptions requiring one atom per receptive site and formation of only 

monolayers, is suited to chemisorption where the adsorbate reacts with the 

adsorbent. Contrarily BET is suited to predicting the behaviour of a 

physisorption situation where van der Waals forces are the predominant 

mechanism for adsorption and will ultimately lead to the formation of 

multilayers. 

Although the two well established theories are very relevant to this area of 

work, their direct application is not possible due to the number of unknowns in 

the situation being studied. A large amount of experimental work would be 

required to quantify the parameters used in the above expressions.  

 

2.6 Epoxy Bleed 

Epoxy bleed is the separation of adhesive components and their undesired 

spread across the substrate surface. This phenomena causes problems with 

contamination of components and interference with adjacent bonds. The 

degree of bleed has been linked to substrate composition, contamination and 

surface energy45,46, whilst the available literature also suggests substrate 
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surface roughness and texture could have an effect34,46. Adhesives which 

exhibit no bleed have been developed47, however, their details are not 

available for use in this work. Adhesives for optical applications where the 

bleed problem will not interfere with optical components due to their 

transparency have also been developed48. However they are not designed to 

be electrically or thermally conductive. 

Controlling epoxy bleed through substrate surface energy has had most 

attention in the literature, usually through the introduction of low energy 

organic coatings through vacuum baking49. Theoretical investigations have 

also been performed to find the most influential factors affecting resin bleed, 

which concluded surface energy and atom density were predominantly 

responsible50. 

The studies centred around the premise that high surface energy causes resin 

bleed concluded that the problem can be solved by the introduction of low 

energy organic films45,49. Although a slight reduction in bond strength was 

realised, the bonds were still within acceptable breaking shear stress limits. 

However, attention was not given to the film effects on bond resistance to 

thermal fatigue or bond conductivity. The presented solutions to the resin 

bleed phenomenon also required addition of process steps to the production 

line.  

Although the problem of resin bleed can be solved by the introduction of thin 

films, this is not an adequate solution due to the specialist equipment 

required. The literature suggests surface energy can be influenced in more 

ways than just the introduction of contaminants, of which the overall impact is 

not documented. The literature related to this issue shows there is much room 

for further investigation into this topic. 

In Section 2.4.8 Three Phase Contact Line, the hypothesis that a thin film is 

formed at the edge of a sessile drop was presented. The film formation could 

be related to the phenomenon epoxy bleed. However, evidence suggests that 

the bleed material is preferentially made up of components of the epoxy 

systems and not the complete system45. This suggests that the excessive 
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wetting of the bleed material is due to its lower surface tension than the 

adhesive bulk.  

2.7 Fillet Size 

To date the author has been unable to find any literature relating to the control 

of fillet size of adhesives for miniturisation of microelectronics or 

optoelectronics. However, fillet size is frequently of interest for structural 

adhesives, where fillet design can heavily influence the stress distribution and 

strength of bonds51.  

The fillet size and shape is the result of the relationship between the 

adherend, adhesive and adhered component. The contact angle of a fluid on 

a solid surface is directly related to the properties of the fluid and surface. It 

therefore stands to reason that the fillet shape will be related to the contact 

angle of the adhesive on the surface, and will only be affected by the 

properties of the component should the volume of adhesive be small enough 

that a fluid surface of complex shape is formed. The Lamella contact angle 

method relies on such an effect where the fillet size is a function of the wetting 

properties of the surface52.  

2.8 Surface Engineering 

Epoxy bleed is affected by surface properties and fillet size can be equally as 

sensitive. This section introduces some of the methods of surface preparation 

used in the work. The surface preparations are considered under two variants, 

physical and chemical. Each technique is discussed only briefly as surface 

preparation is a large subject in itself53. Further information can be found in 

the references. 

2.8.1 Physical 

2.8.1.1 Laser Machining 

This method has been used to reduce wetting over substrates. It could be 

considered a form of micromachining for material is physically removed from 

the surface. A detailed review of specific laser machining literature can be 

found in Section 5.6.2 Background. 
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2.8.1.2 Conventional Machining 

Traditional machining methods can be implemented to produce a desired 

surface finish on many materials. The machining parameters can be set to 

produce a specific Ra value29. However, conventional machining processes 

when applied to hard ceramic materials such as aluminium oxide, suffer 

extreme tool wear. Diamond impregnated resin is frequently used to cut or 

machine aluminium oxide and is used in current optoelectronic assembly 

methods to machine grooves and multiple levels in ceramic substrates. This is 

a costly method and has an associated yield, and so it is an undesirable part 

of the materials preparation and assembly process. 

Polishing methods are also used for aluminium oxide and aluminium nitride 

substrates, but these also can be lengthy54 and increase the cost of materials. 

2.8.1.3 Chemical Etching 

Etching can be used to add microscopic texture to a surface, it can reveal the 

crystal structure or create porosity. It can also be used as a method of 

cleaning a surface by removing any impurities and loose particles. Surface 

heterogeneity and texture have both been related to adhesion and wetting in 

previous sections. 

Chemical etching could be employed to create complex surface features on 

the ceramic materials. Etching of aluminium oxide is challenging, but, along 

with aluminium nitride, can reportedly be achieved at a sufficient rate with 

concentrated potassium hydroxide55,56. Other etching methods for the 

ceramics include etching with molten salts, which was not practical to use in 

this work. 

 

2.8.1.4 Surface micromachining 

A number of forms of surface micromachining exist57. There are chemical 

based methods which can form a shaped surface29 either by removal or 

deposition of material. Using these methods features could be produced on 

the ceramic surfaces to physically block adhesive bleed. These methods are 
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currently finding their way into optoelectronics manufacture for formation of 

surface features58. 

 

2.8.2 Chemical 

2.8.2.1 Self Assembled Monolayers 

Self assembled monolayers are single molecule thick coatings which form 

spontaneously on a suitable surface. They have been seen previously to 

reduce the surface energy of high energy surfaces to low levels14,59. SAMs 

have been successfully ink-jet printed60 making accurate application and 

patterning possible. Patterning a defined region of low energy areas could be 

used to contain epoxy bleed.  

A self assembled monolayer (SAM) is an organised, single molecule thick 

layer of amphiphilic (having a hydrophilic end and a hydrophobic end in the 

same molecule) molecules in which the functional head group of the molecule 

shows an affinity for a desired substrate material and reacts spontaneously to 

form a stable bond upon introduction of a suitable substrate to a suitable 

monolayer system. SAM molecules also have a tail with a functional group, 

Figure 2.8-1, at the opposite end of the molecule, which can be chosen based 

on the desired resultant properties of the surface following treatment. 

The application of a SAM occurs in two stages61, an initial fast adsorption 

stage whereby the SAM molecules bond to the surface with some 

randomness. This can happen in a number of minutes and can result in a 

SAM of about 80% of its final density. The second stage is a slow ordering of 

the molecules through the interaction of the chains via van der Waals forces, 

and the constraint of the SAM/surface covalent bond which forms a specific 

angle to the surface dependent on the system. 
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Figure 2.8-1 Structure and organisation of a SAM molecule on a suitable surface 

The stability of a self assembled monolayer is defined by the strength of the 

covalent bond to the coated surface. For alkanethiols on metal surfaces this 

can be as high as 100kJ/mol, and for fatty acids on aluminium oxide 

~38.5kJ/mol62. An ordered monolayer is favoured by the SAM systems due to 

the ordering resulting in a reduction of the  free energy of the new surface, 

meaning that a crystalline or semicrystalline structure is thermodynamically 

more stable than a disordered one. 

It has been suggested that the formation of self assembled monolayers on 

surfaces can be thought of as a surface-site filling mechanism where the 

adsorption and desorption of molecules work against each other. It has been 

proposed that since the solution concentration is much higher than the 

surface concentration, the adsorption of molecules on the surface is the rate 

determining step. An expression for the surface coverage rate can then be 

written as: 
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Equation 2.8-1  

Where  is the amount of surface coverage as a fraction, t is the time for 

adsorption and ka and kd are the adsorption and desorption rate constants, N0 

is the surface adsorbate concentration at total coverage and c is the 

concentration of the solution containing the adsorbate. 
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Integration of Equation 2.8-1 with respect to the initial condition that the 

surface coverage is 0 at time equal to zero yields: 
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Equation 2.8-2  

Which reduces to the Langmuir adsorption isotherm at equilibrium16: 
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Equation 2.8-3  
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Equation 2.8-4  

Where ΔG0
a is the free energy of adsorption at infinite dilution. 

The above is valid for systems where interchain reactions can be neglected 

from the initial deposition adsorption. 

In addition to the use of SAMs for a reduction in the surface energy of a 

substrate, SAMs in the form of silanes are frequently documented for their use 

as adhesion promoters15,63. Correct selection of a silane material will allow the 

formation of a self assembled monolayer on the adherend surface, which also 

bonds covalently to the adhesive, creating a strong bond by adding a further 

adhesion mechanism. Sufficient wetting and suitable surface texture are also 

required for these to be used at their optimum conditions. Silane based 

adhesion promotion monolayers could be useful if adhesion is detrimentally 

affected by any other surface preparation procedures investigated in this 

work. Silane adhesion promoters have been proven to improve adhesion to 

alumina63. 
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2.8.2.2 Cleaning 

A number of methods exist for the removal of free particles and contamination 

from material surfaces and can be considered chemical modifications: 

 Plasma treatment64,65 

 Ozone cleaning66 

 Flame treatment53 

These methods have been shown to improve adhesion, but also to favour 

epoxy bleed. Of these methods plasma treatment showed the greatest 

practicality due to it being used currently in optoelectronic assembly 

processes*. Its effectiveness and use for cleaning the particular samples in 

this study is considered in Section 5.3 Identification and Removal of 

Contamination. 

 

2.9 Surface Texture Measurement 

The measurement and definition of surface texture is a large subject in 

itself28,29,67 and so what follows is a brief summary of information relevant to 

this work. 

The measurement of surface texture is an attempt to quantify small deviations 

from a perfect surface29. No real manufactured part is perfect, but the degree 

of perfection is a useful measurement as it can affect the performance of 

parts. The connection between surface texture and adhesion strength, surface 

energy and wetting has been discussed in this work as well as many other 

publications68,69. The relationship of surface texture to adhesion is 

documented not only in adhesion literature, but also surface texture 

literature25,29. 

There are many ways to define surface texture, as well as many methods to 

measure it. Some parameters and measurement methods of interest are 

given below. 

                                            
*
 Communication from Paul Firth of Oclaro plc. 
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2.9.1 Contact Measurement Methods 

Contact methods of surface texture analysis incorporate a stylus which is 

drawn across a surface while remaining (in theory) in contact with the sample 

surface. The vertical movement of the stylus is plotted against the constant 

horizontal movement, resulting in a two dimensional profile which is a direct 

representation of the peaks and troughs of the surface. Major issues 

determining the accuracy and resolution of the system are29,70: 

 Tip dimensions 

 Tip shape 

 Contact force 

 Stylus dynamics and damping 

 Material characteristics 

The tip shape and dimensions limit the surface features detectable by the 

stylus. Its radii and point angle limit the steepness and radius of surface 

features detectable. The contact force and material characteristics can affect 

the stylus‘s effect on the sample. A large force on a soft sample could cause 

deformation of the surface and erroneous results. Contact force and dynamics 

can affect the method‘s sensitivity to sharp changes in surface texture If the 

stylus leaves the surface or ―bounces‖ at any point the results will not 

represent the surface. Just as if the stylus deforms when it meets sharp 

changes, the surface will not be truly represented71. 

There are many limitations and considerations to be taken into account when 

using this method of measurement, including that the output consists only of 

two dimensional profiles. 

Machines for contact measurement vary in size, ranging from portable hand 

held equipment to lab based equipment. As would be expected the lab based 

equipment produces superior resolution and accuracy. 

A number of advanced surface analysis machines also exist, such as Atomic 

Force Microscopy (AFM). This utilises an extremely fine stylus with a tip radii 

in the region of 15nm. Combined with certain software variables such as 

contact force, AFM overcomes many of the described limitations. This has 
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given rise to AFM having higher resolution and accuracy than many other 

stylus methods, but at the cost of measurement length which is limited70. 

 

2.9.2 Non-Contact Measurement Methods 

Non contact measurement methods utilise reflected light off sample surfaces 

to judge the height of the reflection point above a theoretical base line. 

Although specific machines measure the distance in different ways (optical 

followers, optical triangulation) the general principles remain the same 

throughout the technology70. 

Non-contact is frequently chosen over contact methods for the following 

reasons: 

 Delicate surfaces 

 Ductile surfaces 

 Wide ranging topography 

 Higher resolution, accuracy and precision 

 Aerial measurements 

Some surfaces are not suited to optical measurement. The method relies on 

reflection of the light to the sensor. Should the nature of the material or 

surface be such that light is not reflected to the sensor then the measurement 

could be erroneous. Steep sided features are one texture which can cause 

problems. 

It should also be noted that all of the above methods are incapable of 

detecting overhangs and porosity, and any other features which might be 

shielded by material above it in the profile. 

Porosity is another quality72 which is difficult to measure on ceramics. Given 

that the density of typically prepared ceramics is close to 100% (see review of 

literature on ceramics production earlier in this chapter), it can be concluded 

that measurement of  the porosity is unnecessary. However, surface porosity 

created by manufacturing methods or etching could still be present in the 
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samples used in this study. In fact SEM inspection of sample fracture sections 

showed no evidence of porosity, just of multi-crystalline micro-structure. 

 

Surface Texture Parameters 

Many parameters for surface texture representation exist73, ranging from 

direct measurements such as the maximum peak to trough height Rt, to more 

statistical representations such as the widely used Ra value – the arithmetic 

mean of the modulus deviation from the derived centre line. These exist in 

both two dimensional and three dimensional forms. 

The parameters used in this body of work were Ra and Rt, whilst the ratio of 

actual to apparent surface area as defined by Wenzel24 was also considered. 

The definition of Ra is as follows: 
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Equation 2.9-1  

Where N is the number of samples points and Z is the distance from the mean 

line. 

The A/A0
 parameter described by Wenzel is equivalent to the Sdr areal 

roughness parameter74: 

 
Equation 2.9-2  

Where: 

 
Equation 2.9-3. 
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3 Methodology 

3.1 Industrial Perspective 

The epoxy bleed phenomenon has caused issues in both the assembly and 

design stage of the industrial partner Oclaro‘s operations for manufacture of 

optoelectronic modules. Process yields below 100%, caused by the 

uncontrolled flow of adhesives, has lead to redesign of sled layouts which 

must make provision for this occurrence. In the continual drive towards 

miniaturisation, this design requirement has become one of the limiting factors 

to package shrinkage. Optical components are frequently assembled at 

pitches which are greater than optically necessary, due to the unpredictability 

of the adhesives used for surface mounting. 

The material which spreads from the edge of an adhesive droplet can 

interfere with subsequent bonding sites, wire bonding pads and optical 

components. Reworking and removal of this material is made challenging by 

the chemical and thermal stability of a cured epoxy and excellent adhesion to 

the ceramics and metallisations used as substrate materials. These properties 

make the epoxies a favourable choice for surface mounting components, as 

well as creating issues when their behaviour is unpredictable.  

The industrial nature of the problem put limitations upon the solutions which 

were to be explored in this work, i.e.; solutions must be implementable in the 

existing large scale optoelectronics assembly line. The cost of any methods 

must not significantly increase the manufacturing costs of the modules and 

will preferably offer a cost reduction by increasing yields and removing design 

limitations. Consequently, any proposed solution, to be industrially viable, 

should affect the current module design and assembly process as little as 

possible. This constrains solutions to methods which do not require excessive 

time, expensive equipment or a complex set of chemical treatments.  

The ceramic sleds used in Oclaro‘s assembly line, which are similar to those 

used by other manufacturers, are either AlN or Al2O3 ceramics with 

conductive metallisation patterns with a tolerance of ~0.0125mm. The top 
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layer of the metallisation is usually gold. It is when components are surface 

mounted to these substrates that the epoxy bleed phenomenon causes 

issues. For this reason, solutions suited to substrates such as the one shown 

in Figure 3.1-1 are the focus of this work. 

 

Figure 3.1-1 A typical optoelectronic carrier sled with metallisation pattern and areas for 
epoxy application highlighted. Image supplied by, Oclaro plc. 

It can be seen from Figure 3.1-1 that epoxies are applied to both metallisation 

areas as well as ceramic areas. This means that any complete solutions 

developed must be applicable to heterogeneous surfaces formed of gold, and 

AlN or Al2O3. 

3.2 Proposed Experimental Areas and Justification 

The available literature on the subject of epoxy bleed was found to be limited 

and frequently contradictory. It was not clear if the disagreement upon the 

effects of surface parameters was due to poor investigative techniques, or the 

varying effects due to different substrate materials. Because of this the 

experimentation in this work began with extensive characterisation of 

industrially used ceramic materials so the effects of the parameters on 

adhesion could be studied. 
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Figure 3.2-1The proposed approach to characterisation and modification works. Where solid 
arrows represent follow through experimental results which would affect subsequent methods. 
(diagram produced May 2008). 

Figure 3.2-1 shows the approach to characterisation work as initially 

conceived and the way in which the work linked to interpretation and 

justification for future methods. The first proposed modification method is also 

included on the diagram, self assembled monolayer application. 

3.2.1 As-Received Surface Characterisation 

The literature suggested that the reasons for the occurrence of epoxy bleed 

were not fully understood. A series of physical and chemical characterisation 

methods were employed to develop an understanding of the state of the 

substrate materials in the condition in which they would enter the production 

line. The characterisation approach was based upon determining the 

substrate surface properties which theory and literature suggested could 

affect the wetting behaviour of adhesives. The methods used were: XPS for 

chemical characterisation of the surfaces, contact angle for data on the 

wetting properties of the surfaces, surface metrology to determine the surface 

textures of the surfaces and tensile testing to ascertain the adhesion strength 

of joints formed by industrially used adhesives with the substrate materials. 

The results of each of the analyses were compared to epoxy bleed distance, 

as measured with SEM, to determine the surface properties which exacerbate 
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the bleed. Figure 3.2-1 shows how the results of these analyses were used for 

the next steps of the work which focussed upon surface cleaning. 

Oclaro plc, the industrial sponsor and optoelectronic module manufacturer, 

uses a variety of different substrates in the manufacture of their modules for a 

variety of reasons. The surface properties of these substrates on receipt at 

the factory, such as roughness and chemical composition, vary considerably. 

Representative samples were supplied for the preliminary study and are 

shown in Table 3.2-1.  

Sample Preparation Material SJ-400 Ra (mm)

1 Polished and light etch AlN 0.06

2  Polished and heavy etch AlN 0.08

3  Polished AlN 0.04

4  Fired AlN 0.17

5  Fired AlN 0.61

6  Fired AlN 0.85

7 Lapped AlN 0.75

8  Fired Al2O3 0.05

9  Polished Al2O3 0.02

10  Lapped Al2O3 0.45  

Table 3.2-1 As received materials and information supplied with them. 

Samples were supplied in both aluminium nitride and aluminium oxide as they 

are both used as optoelectronic substrates. Aluminium nitride is the higher 

cost material but is used when good thermal conductivity is essential. The 

variety of surface preparations supplied were selected to allow study of the 

range of adhesive behaviour witnessed on the production line. Polished 

surfaces were supplied because Oclaro‘s experience is that polished surfaces 

resist bleed more frequently than preparations yielding a higher surface 

roughness. It should be noted that polishing is a time consuming process 

which adds undesirable cost to substrate materials, so is avoided where 

possible and the problem of epoxy bleed is addressed through design of the 

layout of adhesives and sensitive components. Different as-fired materials 

were supplied due to their different inherent roughnesses (which was found to 

be due to the different grain sizes of the constituent ceramic powders).  

Ceramics purchased by Oclaro for manufacturing are specified only 

geometrically, and no compositional constraints are applied to the materials 

other than bulk purity which does not guarantee the surface composition. For 
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this reason, and considering the link of epoxy bleed to surface composition 

reported in the literature, chemical compositional analysis of the as-received 

surfaces was considered imperative. 

3.2.2 Surface Cleaning 

Surface cleaning was adopted to homogenise chemical surface properties. 

Plasma cleaning was the method chosen for this study. The areas that 

surface cleaning is applicable to are shown in Figure 3.2-1. By removing 

variation between samples by equalising surface properties across sample 

sets, the study of the individual effect of each surface property variable on 

spreading of adhesive materials was made possible. This in turn facilitated 

study of surface modification techniques to find a solution to the industrial 

problem. A second sample set was introduced to the experimental method in 

this section of work. These samples were purchased as as-fired tiles and 

were laser diced and cleaned in the lab, this allowed the homogenisation of 

roughness and surface chemistry. The lab-prepared sample set removed the 

unknown factors which were present with the commercially prepared samples. 

After the initial characterisation of surfaces and separation of variables as 

shown in Figure 3.2-1, the second sample set was used for all 

experimentation where roughness was not a variable. 

3.2.3 Surface Modification 

Once the characterisation work of as-received substrates had been completed  

methods of modification were considered and are summarised in Figure 3.2-2. 
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Figure 3.2-2 Possible techniques for surface modification as found from an extensive 
literature search, where those in red are areas which were selected for  further study, and 
those in blue were deemed impractical. (Diagram produced October 2008) 

Figure 3.2-2 shows the initial breakdown of potential chemical and physical 

modification methods which according to the literature, preliminary trials, and 

theory could potentially solve the epoxy bleed issue. Some areas were 

eliminated from the work programme, such as plasma deposition, due to 

expensive equipment being required, and some such as ink-jet printing due to 

the impracticality of implementing the method into a production line, in 

contravention to the desired characteristics of a solution as set out in Section 

1 Introduction. The potential modification methods were classified into 

physical modifications and chemical modifications. The physical modifications 

focus on changing the structure/topology of the ceramic substrates to create 

either physical barriers to bleed material flow, or to drain it away harmlessly. 

The chemical modifications considered were aimed at modifying the surface 

energy of the high energy substrates to inhibit uncontrollable spreading of 

adhesive. 

3.3 Formulation of a Home Made Adhesive 

The effects of filler material on the performance of an adhesive can be quite 

complex1 and the ingredients which go into an epoxy adhesive formulation are 

usually a commercial secret. However, some results in this work, such as the 

failure surface of the silver filled epoxy being through the silver flake/epoxy 

interface, and that a reaction occurs between the adhesive curing agents and 



 72 

self assembled monolayers, are clearly directly linked to the ingredients of the 

adhesives. It was therefore important to have an adhesive, the constituents of 

which were known, so adequate information was available to interpret results. 

To achieve this a home made adhesive was formulated based on the epoxy 

polymer constituent and curing agent of the EPO-TEK 930-4 boron nitride 

filled epoxy. This adhesive was used extensively during this work in addition 

to the commercial ones. The formulation of this adhesive can be found in 

Section 5.1 Characterisation of Surfaces and Adhesives. 

3.4 References 

                                            
1
 Petrie, Edward M.    Epoxy adhesive formulations /    New York ;   London :   McGraw-Hill, 

  2006. 
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4 Experimental Procedures 

4.1 Ceramic Sample Preparation 

For this study two batches of ceramic were used. The first was industry 

prepared optoelectronic quality aluminium oxide and aluminium nitride 

ceramic substrates, and the second unprocessed ceramic tiles. For the 

industry prepared samples, because the as-received properties of the 

substrates were the features of interest, no post-receipt processing was 

undertaken to prepare the samples for analysis. The industrially prepared 

ceramic substrates had undergone the following preparations prior to 

delivery2: 

Firing  Mechanical/Chemical surface preparation  Diamond saw dicing  

Aqueous washing  Firing  Packing 

The final firing step has the purpose of cleaning the ceramic surfaces by the 

evaporation of contamination which has formed in the previous processing 

steps. The packaging used for storage of prepared ceramic substrates was 

polycarbonate waffle packs containing lint free paper and an anti static 

polyethylene sheet. 

More extensive preparations were required for the unprocessed as-fired 

ceramic tiles. These were supplied as 75mm x 75mm x 1mm tiles with an as-

fired granular surface texture. The preparation method upon delivery and 

before experimentation was: 

CO2 laser dicing  2 min rinse in DI water  5 min ultrasonics  1 min 

solvent rinse  10 min drying  Plasma cleaning  Packaging 

CO2 laser dicing was performed to cut the tiles to 14mm x 5mm sized 

substrates. The method was determined experimentally to offer maximum 

yield and minimum heat-induced material changes. The laser parameters 

used are given in Table 4.1-1. 

                                            
2
 Information supplied by Paul Firth of Oclaro plc and Andrew Walker of LEW Techniques 

(ceramic material supplier). 
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Variable Al2O3 AlN

Pulse Width (μs) 500 500

Pulse Period (μs) 50 75

Spot Size (μm) 300 300

Feedrate (mm/s) 300 300

Runs 45 20  

Table 4.1-1 Laser parameters used for dicing ceramic tiles. 

The parameters used were sufficient to cut half way through the thickness of 

the ceramic tiles. The tiles were then snapped along the score lines into small 

substrates. The ceramics were not cut through completely due to the desire to 

not affect the adhesion surface. Snapping the ceramics ensured that only the 

reverse side of the substrates contained laser affected areas. 

Following laser processing it was necessary to remove redeposited and 

loosely attached melted material to ensure that the surfaces were uniform and 

free from detritus which could affect highly surface sensitive experimentation. 

The first cleaning step was performed with an aggressive jet of DI water to 

remove larger pieces of loose material. The ceramics were then drained, 

placed into clean DI water, and subjected to ultrasound for five minutes for the 

purpose of removing further loosely attached material and also fragile melted 

areas. Following this step the ceramics were washed again with DI water to 

thoroughly remove the particle loaded ultrasonic liquid. The final liquid clean 

was a solvent clean used to ensure fast drying and to stop contamination from 

water impurities due to the liquid evaporation. Propan-2-ol solvent was used 

for its immiscibility with water and volatility. The solvent was sprayed onto the 

ceramic substrates and agitated, then the ceramics were removed and placed 

in a 60°C air flow to dry. 

Plasma cleaning was used frequently throughout these investigations. Unless 

otherwise stated it was performed with an Oxford Instruments Plasmalab with 

the following parameters: 
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Variable Setting

Frequency (MHz) 13.56

Pressure (torr) 0.05

Gas O2

Flow rate (s
-1

ccm) 100

Power (W) 300

Time (s) 60  

Table 4.1-2 Plasma treatment parameters for general substrate cleaning 

Following the initial plasma clean the samples were sealed in tin foil pouches 

and were used for experimentation within twenty four hours to ensure 

retention of cleanliness. 

4.2 Copper Surface Preparations 

The copper used for experimentation was in the form of 2mm sheet prior to 

processing. Processing involved cutting, cleaning, mounting, mechanical 

surface preparations, chemical surface preparations and coating. 

4.2.1 Cutting 

The copper sheet was cut into suitably sized samples with a high speed 

cutting disc. Samples were deburred with sand paper and thoroughly cleaned 

to remove any remaining debris. 

4.2.2 Mounting 

Where it was necessary for samples to be flat, e.g. for contact angle 

experimentation, copper samples were mounted in carbon loaded conductive 

phenolic polymer under 20kN of pressure at 150°C for 8 minutes. The top 

surface of the copper was exposed, flush with the top of the mounting; whilst 

the bottom was completely contained within the mounting material, thus the 

mounting material compensated any irregularities in the copper producing flat, 

surfaces for experimentation. 

4.2.3 Mechanical Surface Preparations 

Some mounted samples were mechanically treated to enable study of the 

effect of roughness. The mechanical surface preparation was carried out 

using the following order of sand paper grit sizes: 

240  400  600  800  1200  6μm cloth  1μm cloth 
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Each treatment was performed for 2 minutes, or until scratches were uniform 

and consistent with the current grit type. Samples which were prepared to an 

intermediate finish were abraded by following the sequence until the desired 

finish was reached. Samples were washed thoroughly with deionised water 

throughout the preparations and frequently inspected with a microscope to 

ensure quality. Following mechanical preparations samples were etched with 

HCl, as described below, for the removal of oxides and hydroxides which 

formed on the surfaces. 

4.2.4 Copper Oxide Removal 

Oxides, hydroxides and carbonates form spontaneously on copper surfaces 

exposed to air or water. The surface preparations the copper underwent were 

not performed in the absence of water and air and so it was necessary to 

remove the oxides to avoid their affecting the subsequent surface sensitive 

experimentation. 

Dilute hydrochloric acid was used as an oxide removal etchant. The 

electrochemical series suggests hydrochloric acid will react only slowly with 

copper at high enough concentrations and temperature. Due to the higher 

reactivity of hydrogen, the oxygen in both oxides of copper is displaced and 

removed by the hydrogen ions. When hydrochloric acid is added to water it 

undergoes  the following dissociation1: 

HCl(g) + H2O(l)  H3O
+

(aq) Cl-(aq) 

This takes place for up to 90% of all molecules, creating an acid of low pH. 

Upon exposure of an oxidised copper surface consisting of copper (II) oxide, 

copper (I) oxide, copper (II) hydroxide and copper carbonate to hydrochloric 

acid the following reactions are exploited for the conversion of insoluble 

oxides and carbonates to water soluble chlorides, allowing the removal of the 

solid impurities: 

First for copper (II) oxide: 

CuO(s) + 2HCl(aq)    CuCl2(aq)  + H2O(l) 

This can be broken into: 

CuO(s)  + 2H+
(aq)  Cu2+

(aq) + H2O(l) 
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Followed by: 

Cu2+
(aq) +2Cl-(aq)   CuCl2(aq) 

And for copper (I) oxide: 

Cu2O(s)  + 2HCl(aq)    2CuCl(aq) + H2O(l) 

This can be broken into: 

Cu2O(s)  + 2H+
(aq)  H2O(l) + 2Cu2+

(aq) 

Followed by: 

2Cu+
(aq) + 2Cl-(aq)  2CuCl(aq) 

For copper carbonate:  

2HCl(aq) + CuCO3(s)   CuCl2(aq) + H2O(l)  + CO2(g) 

Which can be broken into: 

CuCO3(s)  + 2H+
(aq)  Cu2+

(aq) + H2O(l)
 + CO2(g) 

And then: 

Cu2+
(aq) +2Cl-(aq)   CuCl2(aq) 

 

 

The above reactions show the effectiveness of a HCl etch for the removal of 

copper oxides and carbonates. The suitability of HCl as an oxide removal 

etchant is enhanced by its non reactivity with copper metal. This ensures that 

the dilute HCl etch solution will not affect the underlying copper surface, but 

will only produce an oxide free surface as desired. 

Dilute HCl ~ 10% was prepared from concentrated HCl solution and deionised 

water. Copper samples were placed into the HCl solution for twenty minutes 

to ensure complete removal of surface species. Following this reagent grade 

propan-2-ol was used to thoroughly wash the samples, and a brief air dry was 

used to evaporate the remaining propan-2-ol. Samples were used 

immediately after drying to minimise the reformation of the oxides. 
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4.2.5 Ferric Chloride Etching 

Iron(III)chloride is used in industry as a fast copper etchant2. Etching a 

metallic surface quickly can produce a granular type surface texture, which 

was desirable for some experiments where surface texture was important. 

The ability to produce a surface texture similar to that of the granular ceramics 

was imperative for experimentation, and the degree of similarity achieved was 

verified with AFM surface texture profiling, reported in Section 5.5.7 Effects of 

SAMs on Electrical Conductivity.  

Iron(III)chloride when mixed with water produces an exothermic reaction 

following the scheme shown here: 

FeCl3(s)   Fe3+
(aq)   + 3Cl-(aq)

 

H2O(l)  H+
(aq)  + OH-

(aq) 

Fe3+
(aq) + 3OH-

(aq)  Fe(OH)3(aq) 

The iron then oxidises the copper: 

FeCl3(aq)  + Cu(s)   FeCl2(aq)  + CuCl(aq) 

Or:          

Fe3+
(aq)+ Cu(s)  Fe2+

(aq) +Cu+
(aq) 

And then:        

Cu+
(aq)+ Cl-(aq)   CuCl(aq) 

And then oxidises it again: 

FeCl3(aq)  + CuCl(aq)   FeCl2(aq)  + CuCl2(aq) 

Or        

Fe3+
(aq) +Cu+

(aq) Fe2++Cu2+ 

And then:     

Cu2+
(aq)+ 2Cl-(aq)   CuCl2(aq) 

The above reactions show that a finite amount of etching can be done with a 

given amount of iron (III) chloride. It also shows that the products of the 

reactions are water soluble chlorides of iron and copper meaning that no 
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etching residue is left on the etched copper surface. This is imperative for 

experiments where clean copper surfaces are needed. 

For aggressive etching of copper a 1M solution of iron (III) chloride was 

prepared. 

1. 100ml of deionised water was measured into a beaker. 

2. 16.2g of iron (III) chloride powder was measured into another beaker. 

3. The iron (III) chloride powder was added slowly to the water stirring 

constantly. 

4. The mixture was stirred continuously until all iron(III)chloride was 

dissolved. 

5. Copper samples were added to the solution with the surface to be 

experimented on facing away from the beaker sides. 

6. Samples were left for 10 minutes (which was determined 

experimentally to produce the desired roughness). 

7. Samples were washed thoroughly with deionised water after etching. 

8. A dilute HCl etch was used afterwards to ensure the surfaces were 

chemically identical to the surfaces which underwent a HCl etch only. 

After the above preparations the copper was ready for either experimentation 

or for coating with SAMs (Section 4.7). 

4.3 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) was used extensively for elemental 

and compound analysis of surfaces. The method is very surface sensitive 

(due to the ~10nm escape depth of photoelectrons) and so was ideal for 

isolating and analysing the surface conditions which affect surface energy, 

wetting and contact angle. Two sets of XPS apparatus were used for 

experiments, a VG ESCALAB Mk I with an Al X-ray source and 3-10mm2 

analysis area and a Kratos AXIS ULTRA with an Al X-ray source and a 

300x700μm or a 110x110μm analysis area. The procedures followed for XPS 

were closely tied to the particular experiment and results, and so are not 

described here. 



 80 

The Kratos AXIS ULTRA had a mono-chromated Al kα X-ray source 

(1486.6eV)  operated at 3mA emission current and 12kV anode potential. The 

ULTRA was used in fixed analyser transmission mode, with pass energy of 

80eV for wide scans and pass energy 20eV for high resolution scans. 

The magnetic immersion lens system allowed the area of analysis to be 

defined by apertures, a ‗slot‘ aperture of 300x700 μm was used for wide scans 

and a 110μm aperture was be used for high resolution scans. As the analysis 

areas were small and changes over a length were of interest, the 110μm 

aperture was used for high resolution scans of O, C, N, Al and B and Ag 

where applicable. Wide scans for the output of relative elemental percentages 

were performed with both the slot aperture and the 110μm aperture and 

compared. The take off angle for the photoelectron analyser was 90 degrees 

and acceptance angle of 30 degrees in magnetic lens mode. 

As the samples were non-conducting a charge neutraliser filament above the 

sample surface was used to give a flux of low energy electrons providing 

uniform charge neutralisation. 

The analysis was typically performed with a chamber pressure of 1 x 10-8 torr 

Element Electron Binding Energy (eV)

C 1s 285

O 1s 531

Al 2p 74

B 1s 191

N 1s 398

F 1s 686

Si 2s 153

Ag 3d 368

Na 1s 1072

Ca 2p 347  
Table 4.3-1 Elemental binding energies for elements present on samples analysed, to 1eV

3
. 

Elemental peaks were identified using the data in Table 4.3-1 which was 

populated from the literature. The wide scans were charge corrected to the 

main C1s peak at 285.00eV and then quantified to compare the amounts of 

each element present, using appropriate sensitivity factors for the XPS 

apparatus used4. Components were fitted under the peaks to give chemical 

bonding information. The interpretation of these peaks was performed with the 

aid of an extensive literature search of previous XPS analyses of organic and 

inorganic samples. 
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The probable reaction products formed during the curing stage of the 

adhesive application were identified by consideration of the known chemistry 

of epoxy systems. The peak positions expected in high resolution XPS 

spectra associated with the bond types in the products were then also 

identified from the literature. Table 4.3-2 shows the possible bond types along 

with their binding energy positions. The positions of nearby elemental peaks is 

also given to aid identification. 

 

Carbon Bond Type BE Oxygen Bond Type BE Nitrogen Bond Type BE

C1s 285.00 O1s 531.00 N1s 398.4

C-O-C 286.45 C-O-C 532.64

N-C 285.94 N-C 400

N=C 285.96 N=C 400.17

Epoxide 287.02 Epoxide 533.13

C-OH 286.55 C-OH 532.89

O-C-O 287.93 O-C-O 533.15

BN 398.4

Pyridine 401.5

 
Table 4.3-2 Possible present bond types with their respective binding energies where BE is 
binding energy in electron volts (eV) with reference to the C1s peak at 285.00eV

3,5,6,7,8,9
. 

 
Accuracy 

The accuracy of elemental relative compositions evaluated from XPS data 

was determined by the use of the correct relative sensitivity factors, signal to 

noise ratio, peak fitting accuracy and the sensitivity of the XPS apparatus. For 

the VG ESCALAB Mk I the quoted detection limit was 1%, with the total 

accuracy ~±3%. For the Kratos AXIS ULTRA the detection limit was 0.1% with 

total accuracy of ~±1%. . When peak fitting for bond type analysis on high 

resolution scans was performed the accuracy of the VG ESCALAB Mk I was 

within ~±5% and the Kratos AXIS ULTRA ~±3%. However, the accuracy of all 

XPS quantifications is dependant on correct interpretation of spectral peaks 

 

4.4 Contact Angle 

Contact angle testing was performed as a means of estimating surface energy 

and wetting of liquids on as-received and modified surfaces. For consistent 

results to be gained a preparation, storage and testing method was developed 

to limit the influence of unpredictable factors such as adsorption of 
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contaminants from the environment. All samples were stored in tin foil 

pouches (unless effect of storage media was the control variable being tested) 

before testing and were always tested within twenty four hours of sample 

preparation unless otherwise stated in specific experiments. Samples were 

probed for surface energy estimation using water and diiodomethane test 

liquids with a Dataphysics OCA20 contact angle goniometer. Contact angles 

were measured for three different droplet volumes in at least two different 

areas on each sample for each liquid using Dataphysics proprietary image 

capture and analysis software in its semi-automated mode, with the droplets 

applied from motorised syringes controlled by the software. More 

measurements were done if the sample size allowed it. At least two samples 

of each preparation were tested and mean results were taken when the 

measurements were not grossly dissimilar. Where they were this is noted. 

Surface energy estimation calculations were performed with the Owens et al 

method and compared with the Wu method. Various other theories/methods 

were also applied to the contact angle data,  which work is described in 

Section 9.3 Appendix 3 – Evaluation of Surface Energy Estimation Methods. 

Where dynamic wetting of adhesives was being investigated the functionality 

of the equipment data capture and control software was exploited to track the 

change in contact angle over time. Here the contact angle was measured with 

the software as with static drops at intervals of thirty seconds until wetting had 

ceased or slowed to negligibility. For these experiments, due to their viscosity, 

the liquids could not be applied automatically by the motor driven syringes 

and so were applied by hand. Extreme care was taken so that uniform 

droplets were formed. The liquids and surfaces used for this experimentation 

is described in detail along with the results in Section 5.5.5.5 Adhesive 

Wetting on SAM Coated Ceramics. 

Accuracy 

The measurement of a contact angle by image analysis software has an 

inherent accuracy with contributions from the image analysis method and the 

resolution of the live video feed. Contact angles in this work are therefore 

quoted with a measurement accuracy of ±1°. A further source of inaccuracy is 
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the averaging of contact angles from both the left and right of the droplet. 

Averaging is standard procedure for contact angle measurements which 

improves accuracy and consistency providing sufficient measurements are 

taken and drops are of sufficient volume. The homogeneity of the surfaces 

measured in this study resulted in excellent reproducibility and consistency 

among measurements. In this work the error in averaged contact angles for a 

given surface is taken to be ±5° of which ±1° can be attributed to actual 

measurement error. The propagation of this estimated error through to the 

estimate of error in surface energy was different depending on the liquid it 

applied to and the contact angles they formed. For this reason a global value 

for the estimated error in surface energy cannot be given. Instead the 

estimated error in the contact angles should be sufficiently representative. 

 

4.5 Surface Metrology 

Atomic force microscopy (AFM) was used extensively for the physical 

characterisation of surfaces. It was chosen over other surface metrology 

methods due to the repeatability of the results and versatility of the output 

data. The microscope used for analysis was a Veeco Instruments DI3100 

instrument. Imaging was carried out in tapping mode using TESP (tapping 

etched silicon probes) probes over an area of 10μm x 10μm. 256 data points 

were measured for each pass of 256 lines. This gave 65536 data points 

outputted by the software, with a spacing  of 0.04μm in both the y and x 

directions. Each pass was repeated in the return direction automatically by the 

software. Parameters such as the tip pressure on the surface were adjusted 

manually to ensure good tracking between the outward and return runs of the 

tip. 

The data was a map of height data points which were joined together with 

triangles to form an approximation of the surface with an algorithm inside the 

software. From this data a number of manipulations could be made to 

summarise the surface texture in different ways. These included areal (S) and 

linear (R) surface texture parameters,  bearing ratio curves, and three 
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dimensional representations of the surface topography. More details of these 

parameters  can be found in the literature review. 

Measurements were taken in three different areas of each sample and each 

data set was considered together with the others, either by averaging the 

results or to characterise the variation across the surfaces. 

 

4.6 FCOOH Coating 

Fluorinated carboxylic acids (FCOOH acids) were found to bond to 

hydroxylated aluminium oxide surfaces and form a self assembled monolayer 

(SAM). It was possible to bond these species to both aluminium oxide and 

aluminium nitride due to the tendency of aluminium nitride to form a stable 

aluminium oxide layer a number of nanometres thick on its surface, see 

Section 5.1 Characterisation of Surfaces and Adhesives. These were 

experimented with extensively for their effectiveness in reducing the surface 

energy of substrates. The application method was as follows: 

1. The ceramics were prepared using the method outlined in Section 

4.1. 

2. The required mass of the selected fluorinated carboxylic acid 

having the formula CF3(CF2)nCOOH was weighed out to 0.001g 

accuracy. 

3. The acid was dissolved in deionised water with the aid of 

ultrasonics, typically at 60°C to make an approximately 0.01M 

solution. 

4. Al2O3 and/or AlN specimens were immersed in the solution. The 

exposure was at approximately 60°C for one hour. 

5. The ceramics were removed from the treatment solution and 

washed thoroughly with deionised water. 

6. The coated samples were dried in a room temperature air flow for 5 

minutes. 
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The mass of SAM substance required to give the selected molarity was 

calculated with the molar mass constant: 

molgmolkgxMu /1/101 3  
 

And the concentration expression:  

V

n
c   

Where the molar concentration c is equal to the number of moles n in solution 

divided by the volume of liquid V. 

For 10ml of solution the above expressions yielded the masses listed in  

Table 4.6-1,  for the different FCOOH substances used. 

Substance Formula Molecular Weight Mass in g for 0.01M solution

Perfluoropropionic acid CF3CF2COOH 164.03 0.0164

Perfluorooctanoic acid CF3(CF2)6COOH 414.07 0.0414

Perfluorododecanoic acid CF3(CF2)10COOH 614.10 0.0614

Perfluorooctadecanoic acid CF3(CF2)16COOH 914.14 0.0914

 
Table 4.6-1 Mass requirements for 10ml FCOOH solutions 

Following coating all samples were stored in tin foil pouches to maintain 

cleanliness, before experimentation took place. Other SAMs identified which 

would be suitable for ceramic surface coating have the formula 

CA3(CB2)nCOOH, where A and B are hydrogen, chlorine or fluorine, and n is 

an integer from 1-21. However, not all members of this family may dissolve 

satisfactorily in water and so it were not investigated. 

 

4.7 Thiol Coating 

Organosulphides, especially alkanethiols, have been found to bond to clean, 

pure FCC structure metallic surfaces and form a self assembled monolayer. 

Metals they are known to bond to include gold and copper, gold being 

extensively used in optoelectronics for interconnections and metallisation. 

SAM substances exhibiting bonding are those with the chemical formulas HS-

R or R-S-S-A where R and A are alkyl or aryl chains which could be partially 

or totally fluorinated or chlorinated. The hydrocarbon chains terminate in a 
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methyl, ethylene, fluorinated methyl or chlorinated methyl tail group. In the 

current work alkanethiols were experimented with extensively to determine 

their effectiveness in reducing the surface energy of optoelectronic 

metallisations. Copper was used in experimentation as a cheap model for 

gold, which is generally the metallisation found in optoelectronic modules. An 

additional justification for the use of copper as a proxy material is that there is 

interest in the industry in switching to copper to reduce costs. The application 

method was as follows: 

 

1. The organosulphide was dissolved into propan-2-ol, or another 

suitable solvent, typically a hydroxylic solvent for a concentration of 

0.01M at room temperature. 

2. Surfaces were prepared for the acceptance of the SAM as 

described in Section 1.2. 

3. The metal surface was immersed in the coating solution. The 

surface was exposed to the solution for a period of approximately 

one hour at room temperature. 

4. The metal was removed from the treatment solution and washed 

thoroughly with fresh solvent (typically propan-2-ol). 

5. Samples were dried in a room temperature air flow for 5 minutes. 

6. Samples were stored in tin foil pouches to maintain cleanliness 

before experimentation. 

The mass of SAM substance used and the particular SAMs experimented with 

are shown in Table 4.7-1 below. 

Substance Molecular Formula Molecular Weight Mass for 0.01M solution

1-Pentanethiol CH3(CH2)3CH2SH 104.21 0.0104

1-Dodecanethiol CH3(CH2)10CH2SH 202.40 0.0202

1-Octadecanethiol CH3(CH2)16CH2SH 286.56 0.0287  

Table 4.7-1 Thiol substances used for experimentation and the calculated masses in grams 
required to make solutions of 0.01M. 



 87 

4.8 Silane Coating 

Silanes were used for their ability to coat the ceramic substrates with a self 

assembled monolayer, with each molecule attaching itself with a strong 

covalent bond. As with the fluorinated carboxylic acid, the silane is capable of 

bonding to both the aluminium oxide and aluminium oxide substrates. SAM 

substances suited to this were those with a silane group and general formula 

R-SiA3 where A can be hydrogen, chlorine or fluorine and R is a linear or 

branched alkyl or aryl chain of length 1-21 carbon atoms which may be 

partially or totally chlorinated or fluorinated. 

The silanes were applied using the following method. 

1. A solution of silane was prepared to a concentration of 0.01M, in 

cyclohexane. The silanes were in the liquid phase so were 

dispensed into a beaker using a pipette and the mixture stirred. 

2. The Al2O3 or AlN ceramic was immersed in the solution. The 

exposure was at approximately 20°C for one hour. The vessel was 

sealed to ensure the volatile cyclohexane did not evaporate. 

3. The ceramics were removed from their treatment solution and were 

washed thoroughly with cyclohexane. The coated substrates were 

then exposed to ultrasound for two minutes whilst in clean 

cyclohexane to remove any SAM molecules not directly attached to 

the surface. 

4. Ceramics were removed from the cyclohexane and left to dry in a 

room temperature air flow for five minutes. 

5. Samples were stored in new tin foil pouches immediately after 

preparation, to await experimentation. 

Silanes used for experimentation were octadecyltrichlorosilane 

(CH3(CH2)17SiCl3) and hexyltrichlorosilane (C6H13SiCl3), both  of which were 

liquid at room temperature. Due to their volatility and sensitivity to water the 

substances were handled in a fume cupboard only, and so could not be 

accurately weighed on a balance. It was therefore ensured that an excess of 

SAM substance was used to make a solution of at least 0.01M. The ultrasonic 
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step was inserted to ensure that this higher concentration did not leave 

excessive silane on the ceramic surfaces, i.e. that anything which was not 

covalently bonded was removed. 

4.9  Electrical Testing 

It is important that any organic coatings (i.e SAMs) applied to ceramic or 

metallic surfaces on optoelectronic substrates should not affect the bond 

properties of electrically and thermally conductive adhesives that are 

subsequently applied. Experiments were therefore devised to verify that there 

is no effect. In addition to the effect of the SAM on adhesion, a conjectured 

effect of the surface texture of the adherend surface was of interest. It was 

thought that a rougher surface may result in a reduced number of surface to 

filler particle point contacts, and hence a reduced electrical or thermal joint 

conductance. A four point probe test was used to measure electrical 

conductivity through a joint formed between two SAM coated copper strips 

and the conductive adhesive used in this work, as shown in Figure 4.9-1 

below. 

 

Figure 4.9-1 Arrangement of parts and sensors for the four point probe test of adhesive 
bonds. 
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To ensure that a consistent area of adhesive was applied, structured  

photoresist was applied to one of the copper test pieces. The pattern 

consisted of sufficient area of photoresist to isolate the two copper test pieces 

from each other, with a 4mm2 recess in the middle of the photoresist into 

which electrically conductive adhesive could be filled. The arrangement 

ensured the copper strips were  completely isolated from each other and the 

only conductive path was through the adhesive. It also ensured that the bond 

thickness was consistent, being equal to the thickness of the photoresist 

which was ~30μm. The method for the application of photoresist was: 

1. Multiple copper strips were super glued onto acetate, aligned to a 

grid which was printed on paper and showed through the acetate 

2. Dry film photoresist was cut to size and taped over the samples 

3. The photoresist was laminated onto the samples using a dry film 

laminator set to a temperature of 115°C 

4. The mask artwork was aligned with the coated samples using the 

grid showing through the acetate and held in place by a vacuum 

5. The photoresist was exposed to ultraviolet light for 8 seconds 

6. The photoresist‘s protective outer coating was removed 

7. The samples were passed through 1% potassium carbonate to 

develop the photoresist (i.e.; to remove all areas exposed to the 

ultraviolet light) 

8. Samples were washed and dried ready for further processing. 

The experimental protocols for preparation of the copper strips and four point 

probe specimen assembly used were: 

1. 2mm thick sheet copper was cut into 7.5mm x 40mm strips 

2. Strips were de-burred using wet and dry paper 

3. Those to be polished were prepared using the method outlined in 

section 4.2 

4. Those to be etched were treated with the ferric chloride method 

described in section 4.2 
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5. Half of the samples were coated with photoresist using the method 

described previously 

6. All samples were etched with HCl in accordance to the method in 

section 4.2 

7. Samples were washed with propan-1-ol and were dried in a room 

temperature air flow for two minutes 

8. Electrically conductive adhesive was applied in the photoresist 

recesses using a doctor blade method with a scalpel blade to 

ensure the volume of adhesive was equal to the volume of the 

photoresist recess 

9. Copper of the same surface preparation was placed on top of the 

square of adhesive, perpendicular to the orientation of the copper 

bearing the  adhesive 

10. Light pressure was applied to the bond until the top piece of copper 

was tacked to the bottom 

11. Samples were cured in an oven at 150°C for 30 minutes 

12. Samples were removed from the oven and left to cool 

13. As shown in Figure 4.9-1 wires were mechanically attached to the 

exposed legs of the four point probe specimen  

14. A micro ohmmeter with built in ammeter and voltmeter measured 

the voltage across and current through the adhesive bond and 

outputted the electrical resistance in ohms. 

The experiment was conducted with polished uncoated, etched uncoated, 

polished and SAM coated, and etched and SAM coated copper. 

4.10  Adhesive Preparation and Curing 

Where the cure conditions of epoxies were not themselves the subject of 

experimentation, the manufacturer‘s instructions were followed for adhesive 

preparation10,11. Adhesives were mixed as and when required and were 

always used within one hour of preparation. The liquid components were 

weighed out into the correct ratios using a balance accurate to 0.0001g. Once 



 91 

weighed they were thoroughly mixed together for 5 minutes to ensure good 

distribution of epoxy and curing agent. Occasionally it was necessary to cure 

the adhesives at a different temperature to those given by the manufacturers. 

In these cases the cure times were adjusted as follows. Exponential curves 

were fitted to plots of the manufacturers‘ cure conditions for the electrically 

conductive and thermally conductive adhesives. These are shown in Figure 

4.10-1 and Figure 4.10-2. 
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Figure 4.10-1 Cure schedule for 930-4 thermally conductive boron nitride loaded epoxy 
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Figure 4.10-2 Cure schedule for H20E electrically conductive silver flake loaded epoxy 
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Where specific cure time for an intermediate temperature was required the 

equations of the exponential fitted curves were used to calculate the correct 

time. Adhesives were cured using an oven with feedback governed 

temperature control, controlled to ±1.5°C around the specified cure 

temperature. The oven was preheated for over 30 minutes prior to being used 

to cure adhesives and was only used once the temperature was stable. The 

time taken for samples to reach the cure temperature after being placed in the 

oven was not considered. 

Specific application methods and uses for the adhesives are explored more in 

the results section of this work. 

For some experimentation a ―home-made‖ unfilled epoxy adhesive was used 

to exclude the influence of phenomena due to the presence of fillers. The 

chemicals shown below were used in the formulation of the home made 

adhesive. The materials were chosen due to the epoxy and curing agent 

being used in the silver flake filled epoxy (H20E) used in this study. 

 

 
Figure 4.10-3 Poly[(phenyl glycidyl ether)-co-formaldehyde], the epoxy constituent. 

 
Figure 4.10-4 2-Ethyl-4-methylimidazole, the curing agent 

 
Figure 4.10-5 1,2-Propanediol, solvent used to dissolve the solid curing agent 
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The solvent and curing agent were first combined in a 1:1 weight ratio and 

stirred until the curing agent was completely dissolved. If necessary the 

solvent was heated to 35°C to promote dissolution. The curing component 

and epoxy component were then mixed in a 6.6:100 ratio. Subsequently the 

home made adhesive was mixed and used by the same methods as the 

commercial adhesives. 

 

4.11  Tensile Testing 

Tensile test pieces were prepared with ceramic samples in a single lap joint 

configuration using the commercial silver filled H20E and boron nitride loaded 

930-4 adhesives and unfilled epoxy home made adhesive. Tensile testing was 

used extensively throughout this work to identify the effects of such 

parameters as contamination, roughness and surface energy on the adhesive 

strength of bonds. It was found not practical to employ the adhesive lap shear 

testing12 method defined by industry standards due to the limitation in 

volumes of adhesives and size of ceramic pieces available for this work. 

Therefore a bespoke test was developed. Ceramic lap shear specimens were 

prepared using a jig milled from aluminium alloy billet shown in Figure 4.11-1. 

 

Figure 4.11-1 Lap shear joint jig for ceramic pieces with 5mm overlap. Note that the different 
recess depths allow use with different thicknesses of  samples. 

Preliminary experimentation with micrometer driven gas syringes highlighted 

the difficulty of using this method to repeatedly apply small volumes of 
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adhesives. It was therefore mutually agreed with the industrial sponsor that a 

dip and place approach with a needle was valid and sufficiently repeatable for 

experimentation. The adhesives were therefore applied using a cylindrical 

needle 0.56mm in diameter. It was found that the volume of adhesive applied 

by dipping was reasonably consistent, as the amount loaded onto the needle 

was governed by the wetting properties of the needle and adhesive. Variation 

in the applied volume was accounted for by measurement of the final bond 

area on fracture surfaces. 

The adhesive joints between ceramic parts were tested to the point of failure 

under shear loading using the compression function of micro tensile test 

equipment. The compression was controlled at a constant rate of 0.001mm/s 

whilst the applied load and extension were recorded. The joint fracture 

surfaces were examined by scanning electron microscopy (SEM) and profiled 

with a Talysurf CLS 2000 to determine the failure mode. The joint areas for 

shear stress calculation were taken from the diameters of the fracture 

surfaces on the SEM images. The joint diameters were measured  using the 

SEM image processing software but it was found necessary to apply a 

correction factor obtained from a measurement of a reference artefact to the 

values obtained. The reason for this was that the measurement facility in the 

SEM software was not calibrated. Figure 4.11-2 shows the method adopted 

for the measurement and correction of the diameter of the failed adhesive 

spots. The correction factor was taken to be the ratio of the measured sled 

width to its known width (5.5mm). The measured adhesive spot diameter was 

then multiplied by this ratio to get a corrected diameter. This corrected 

diameter was then used to calculate the area of the failed spot and thus the 

shear force at failure. 
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Figure 4.11-2 SEM image showing the measurement method and correction factor derivation 

for assessment of adhesive joint areas from fracture surfaces. 

Copper lap joints were prepared and tested in tensile mode due to the 

different reaction of the softer and more ductile copper to the application of 

the load. Copper was cut to 15mm x 80mm x 2mm pieces and a 15mm x 

15mm piece of copper was adhered and cured to the end of the copper test 

pieces to reduce the turning moment on the lap joints in the tensile test. Parts 

were then subjected to any necessary surface preparations in accordance to 

the methods described previously. Following treatment pieces were placed on 

an alignment grid before having 20mm of the end coated in a thin layer of the 

adhesive. The mating piece to complete the lap joint was placed using the 

grid as a guide to give 15mm of overlap and a joint area of approximately 

15mm x 15mm. No pressure was applied to the parts during cure as the 

interactions between adhesive and adherend was usually of interest, and any 

excessive pressure could have directly affected the bond line.  

Copper lap joints were tested under extension at 0.4mm/m until failure. The 

failure mode was judged by the distribution of adhesive following testing. 

Further analysis was not necessary due to the larger size of the samples 
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making visual inspection sufficient. Applied load and extension were also 

recorded and plotted. 

4.12  Thermal Cycling 

In an optoelectronic module assemblies are subjected to temperature cycles 

during service. Consequently the resistance of adhesive joints to this and any 

detrimental effects on the bond strength was of interest. To assess such 

effects thermal cycling of lap joints was performed with both commercial 

adhesives and most of the commercially prepared samples. Bonds were 

subjected to thermal cycling from -40°C to +80°C, with a twenty minute 

transition and ten minute dwell time, for two days. The thermal cycling curve is 

shown in Figure 4.12-1 below. Samples underwent lap shear testing 

immediately following cycling. 
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Figure 4.12-1 Graph showing the thermal cycling curve. The vertical lines represent the start 
and end of the repeat loop. 

 

4.13  Epoxy Bleed Measurements 

The epoxy bleed distance was measured using SEM. It was taken to be the 

distance from the edge of the adhesive spot to the edge of the bleed along a 
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line normal to the tangent to the edge of the adhesive spot. A correction to the 

distances measured was applied as described in Section 4.11 Tensile Testing 

above. 
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5 Experimental Results

5.1 Characterisation of Surfaces and Adhesives 

 

5.1.1 Introduction 

The aim of this research was to address process problems experienced in an 

optoelectronics manufacturing line. Therefore an initial programme of 

materials surface characterisation was conducted on commercially sourced 

ceramic sleds and adhesives used in optoelectronic manufacture, in the as-

received state, in order to aid understanding of the materials and bond 

system. The surfaces of commercially sourced aluminium oxide and 

aluminium nitride ceramic sleds were analysed in terms of their physical and 

chemical properties. The composition of commercially sourced adhesives 

were also investigated to the greatest extent possible, however, problems 

arose with the chemical analysis due to the secrecy of the adhesive 

formulation. 

5.1.2 Background Information 

The literature suggests that the phenomenon of epoxy bleed is a condition 

caused by the combined effects of the properties of the adherend and the 

properties of the adhesive used in the bond system1,2. However, the literature 

was found to be contradictive or incomplete when considering which specific 

adhesive and adherend properties were responsible for causing epoxy bleed. 

The biggest discrepancy in the literature was the effect of surface roughness 

on epoxy bleed, a factor long known to have implications in the wetting of 

surfaces3. Conclusions of experimental work performed by other researches 

stated that there was no correlation between surface roughness and the 

appearance of epoxy bleed2, this appeared to be in contravention of 

established theories4. As described in Section 2 Literature Review, surface 

energy, surface roughness and surface composition can all have direct effects 

upon each other and the adhesive strength of the adhesive to the adherend. 
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For the epoxies and bleed material to be analysed it was necessary to identify 

the possible bond types in the substances so the XPS data could be 

interpreted. For this to be done the reactions between the epoxies and curing 

agents needed to be known, for the home made adhesive and the boron 

nitride filled adhesive this was possible, as the epoxies and curing agents 

were known, however, for the silver filled epoxy only the epoxy type was 

known, the curing agent was not. The home made epoxy was the only 

adhesive of which all of the ingredients were known, numerous additives are 

probably present in the commercial adhesives, unfortunately their ingredients 

are kept a secret by the manufacturers. The epoxy/polymer constituents of the 

adhesive systems made up 93% of the home made adhesive, 35-55% of the 

boron nitride 930-4 adhesive and 30-50% of the silver flake filled H20E 

adhesive. This component is the adhesive component, the carrier for the filler 

material and that which gives the system its function.  

The epoxy materials are defined by the epoxide group shown in Figure 5.1-1 

below. 

 

Figure 5.1-1 Epoxide group consisting of an oxygen atom bonded to 2 carbon atoms which 
are bonded to each other and 2 other unspecified groups. 

This epoxide group is highly strained due to its atomic orientation and bond 

angles, this makes is susceptible to nucleophilic ring opening and bond 

formation and subsequent polymerisation if suitable reagents are present. 

 
Figure 5.1-2 Poly[(phenyl glycidyl ether)-co-formaldehyde], the epoxy/polymer constituent in 
the home made epoxy and commercial boron nitride filled epoxy. 

 



 100 

 
 
Figure 5.1-3 Poly[(o-cresyl glycidyl ether)-co-formaldehyde], the epoxy/polymer constituent in 
the silver flake filled epoxy. 

Figure 5.1-2 and Figure 5.1-3 show the polymerised phenolic monomers of 

bisphenol f (DGEBF) and cresol novolac respectively, each showing the 

characteristic epoxide bond at their zenith. Figure 5.1-2 shows the 

polymer/epoxy constituent of the commercial and boron nitride filled 

adhesives, which differs from the epoxy used for the silver filled epoxy, Figure 

5.1-3, by a methyl group on carbon 2 in the aromatic ring. Each of the 

monomers is joined by CH2 groups, with the remaining 2 carbon atom bonds 

joined to the aromatic rings of the monomers.  

 
Figure 5.1-4 2-Ethyl-4-methylimidazole, the curing agent used in the boron nitride filled and 
home made epoxies. 

Figure 5.1-4 is the curing agent used to crosslink the polymer chains to form a 

thermosetting polymer, imidazoles are frequently used as curing agents and 

react nucleophilically to form part of the resulting thermoset network1. The 

curing agent for the silver filled H20E epoxy, as mentioned, was unknown. 

 
Figure 5.1-5 1,2-Propanediol, solvent used to dissolve the solid curing agent for the home 
made epoxy. 
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Figure 5.1-5 shows 1,2-Propanediol, a known solvent for 2-ethyl-4-

methylimidazole5 which is solid at room temperature.  

Figure 5.1-2 and Figure 5.1-4 show the basic building blocks of the epoxies 

which were analysed with XPS, before the analysis could be fully interpreted 

the way in which the basic blocks react together to make the thermosetting 

polymer had to be identified. 

 

Figure 5.1-6 Probable initial reaction of the curing agent with the polymer
6
. 

Figure 5.1-6 shows the probable reaction between a simplified polymer chain 

and the 2-ethyl-4-methylimidazole curing agent, the nitrogen at ring position 3 

donates its hydrogen atom to the broken epoxide bond to satisfy the oxidised 

oxygen, the free bond in the carbon of the epoxide bond then reacts with the 

nitrogen at ring position 3 to form a strong covalent C-N bond. 
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Figure 5.1-7 Reaction of the product in Figure 5.1-6 with further polymer molecules. 

Figure 5.1-7 shows the further cross linking due to the reaction of the nitrogen 

at ring position 1 with a further broken epoxide bond, here the nitrogen is 

saturated with 4 bonds. 

 

Figure 5.1-8 Cross linking reaction between polymer chains. 

Figure 5.1-8 shows the esterification of the product of the reaction between 

the curing agent and the polymer chains by further polymer epoxide groups. 

 

5.1.3 Methodology 

All ceramic materials were supplied by LEW Techniques and all adhesives 

were supplied by Epo-Tek. The ceramics were supplied with different surface 

preparations to give an adequate cross section of conditions which are used 

in industry. Table 5.1-1 below shows the samples supplied along with the 

details they were supplied with. 
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Sample Preparation Material SJ-400 Ra (mm)

1 Polished and light etch AlN 0.06

2  Polished and heavy etch AlN 0.08

3  Polished AlN 0.04

4  Fired AlN 0.17

5  Fired AlN 0.61

6  Fired AlN 0.85

7 Lapped AlN 0.75

10  Fired Al2O3 0.05

11  Polished Al2O3 0.02

12  Lapped Al2O3 0.45  

Table 5.1-1 Information received with commercial ceramic samples, where SJ-400 Ra is the 
Ra value as measured with a portable, stylus surface texture measuring machine in 
micrometres. 

The commercially sourced adhesives of interest were Epo-Tek H20E, a silver 

loaded electrically conductive adhesive, and Epo-Tek 930-4 a boron nitride 

loaded thermally conductive and electrically insulative adhesive. These 

adhesives were recommended by Oclaro plc as they are used for the 

assembly of their optoelectronic products. Properties of the adhesives can be 

found in the literature review section of this work. 

When considering the wetting of a liquid droplet on a surface there are a 

number of properties independent to the liquid which can have a dramatic 

effect on the interaction between the two materials. Table 5.1-1 shows the 

wide range of surface conditions the unchanging adhesives are used upon. 

Established theories of adhesion predict that the primary adhesion 

mechanism between the materials used would be the thermodynamic 

attraction of the materials to one another, due to the high surface free energy 

of the adherend and the low surface tension of an epoxy. Mechanical 

interlocking would also contribute some adhesion strength to this bond 

system, unless a composite bond was formed. The production of a composite 

bond is one with more than one state interface, usually due to the inclusion of 

gas bubbles. Liquid/gas and solid/gas interfaces would form if the gas bubbles 

remained between the adhesive and adherend, creating a series of 

interfaces7 inside the bond itself. This means that the formation of a 

composite surface can be predicted using the general rule that a system with 

a contact angle above 90° will produce a composite surface and one with an 

intrinsic contact angle below this figure will create a bond with a single 
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solid/liquid interface. This occurs above 90 because at this point the liquid 

has more attraction to itself than to the surface, and so wetting forces into the 

roughness profile are not sufficient to displace trapped air. For this affect to be 

apparent the surface must also exhibit high enough roughness for the gas to 

remain in the profile8, and not be displaced just by the force arising from the 

mass of the adhesive. The 90° contact angle figure is used with consideration 

to the roughness of the surface, it has been observed that an increase of 

roughness can promote the production of a composite surface9, so the 

contact angle of a solid/liquid system with no roughness would not adequately 

predict the interface condition of a rough surface. 

The adhesive/adherend system of interest here is further complicated by a 

number of factors. Classical wetting analysis assumes thermodynamic 

equilibrium. In reality, high viscosity of a liquid can retard its penetration into a 

roughness profile, creating a transient composite surface behaviour. The 

fillers of the adhesive could be of a size such that they will not enter into the 

roughness profile. Temperatures can have an affect on surface energy, 

contact angle and viscosity. The curing of the adhesives could produce a 

change of properties with temperature and time, this would certainly occur 

with the viscosity as the adhesives polymerise and cure. 

To predict the undesirable formation of composite bonds the surface tension 

of the adhesives needed to be known along with the roughnesses, surface 

energies and chemical compositions. The surface tension of a liquid can be 

calculated using the pendant drop method10 which was calculated using 

Dataphysics software and a contact angle goniometer. However, the 

adhesives of interest are a mixture of liquid components with a suspension of 

solid particles, therefore the surface tension of the system can be measured 

only, and not the properties of the individual components. This is especially 

problematic when considering epoxy bleed, which will be explored in a future 

chapter. 

The experimental work undertaken focussed upon the characterisation of the 

ceramic surfaces and adhesive chemistry. The first step taken was an in 

depth roughness analysis of the surfaces of various preparations. Both 

contact (AFM, Surftest) and a non-contact method WLI (White Light 
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Interferometry) were employed and compared to find the most suitable one. It 

was deemed necessary to explore a number of measurement methods due to 

the different limitations of each, these limitations are discussed in more depth 

in the literature review section of this work. WLI and AFM were used to 

measure the surface in terms of roughness, and to produce 3D images to give 

further information on the morphology. An array of different roughness 

parameters could be derived and compared to wetting, contact angle and 

shear strength, allowing the correct parameter(s) to be chosen for the best 

indication of adhesion strength. Scanning electron microscopy (SEM) was 

used to show qualitatively, at micron scale, the effect of processing on the 

morphology of the surfaces and to relate this later to the shear test results, 

contact angles and surface roughness measurements.  

Chemical analysis was performed to identify any contamination presence and 

to allow the affects of it to be quantified, only the top few atomic layers of a 

surface (assuming no absorption) determine the adhesion interactions in a 

bond system so it was necessary for only the top, and not the bulk of the 

material, to be analysed. This was done using XPS by the methods described 

in Section 4.3 X-ray Photoelectron Spectroscopy. 

The wetting behaviour of a system is governed by the properties of the 

surface, the liquid in contact and the vapour. The commercial nature of the 

adhesives meant that their surface tensions was unknown and so had to be 

measured, this was done with the pendant drop method. 

5.1.4 Results and Discussion 

5.1.4.1 Ceramic Sample Surface Chemical Characterisation 

Surface chemical characterisation of the sleds was carried out by XPS, while 

the wetting characteristics were determined by contact angle measurement. 

The XPS elemental quantifications from broad scans are listed in Table 5.1-2. 

The major constituents of the AlN surface signal after aluminium and nitrogen 

were primarily carbon and oxygen, suggesting the presence of organic 

molecules, probably atmospheric or other contamination. High energy, clean 

surfaces such as the ceramics studied have a tendency to adsorb organic 

films upon exposure to air3, the composition of which is determined by the 
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atmosphere the surfaces are subjected to. The spectra of the Al2O3 indicated 

the presence of trace amounts of group 1 and 2 metals (calcium, sodium, 

magnesium) along with up to 14% silicon. The silicon is present on the 

surface regardless of surface preparation method, while the ―as fired‖ samples 

exhibit a comparable surface composition of trace elements to those which 

have undergone further processing. It is difficult to determine the origin of 

these elements due to the commercial nature of the samples. The magnitude 

of the signal from the group 1 and 2 metals is closely related to the purity of 

the samples as reported by the suppliers; those which were over 99% pure 

have only trace amounts of these elements  present, whilst those 96% pure 

showed presence of up to 3%. The correlation with purity and insensitivity to 

surface treatment suggests that the trace elements form part of the material 

composition. 

Figure 5.1-9 shows a plot of surface carbon percentage against r, showing 

that there is evidently no correlation. The two very high carbon percentage 

data points are for the etched AlN sleds, suggesting that either the chemical 

etch provides a clean high energy surface for the adsorption of higher levels 

of organic contamination, or that it leaves behind residues on the substrate 

surface after drying. There is also no evident correlation between the surface 

energy calculated from the contact angle measurements and r, as can be 

seen in Figure 5.1-10. The very high energy AlN surface (72 mJ/m2) in Figure 

5.1-10 is the lapped sample (number 7). The surface carbon content of this 

sample is not particularly low at 21.1%, so the low contact angles seen may 

be due to the high roughness (r of 1.63). 

The lack of correlation between the surface energy calculated by wetting 

measurements and surface roughness is surprising in view of the well known 

effects of roughness on contact angles11. However, there is a clear correlation 

between surface energy and surface carbon visible in Figure 5.1-9, with 

surface energy decreasing with increasing carbon content for both AlN and 

Al2O3, apart from the anomalous result for sample 7 already noted, as seen in 

other work2.  Since in principle both roughness and surface contamination 

affect wetting, it would therefore appear that the variation in carbon content is 

large enough to mask any effect of roughness on the contact angles in Figure 
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5.1-10 apart from the very rough lapped AlN (sample 7), while the roughness 

variation is not large enough to disturb the trend seen with carbon percentage 

in Figure 5.1-11, again excepting sample 7. It is worth noting that the Ra value 

given by the supplier of 0.75 µm for sample 7 was not the highest in the 

sample set, while the value of r determined by AFM was the highest by some 

margin (next highest sample 5, r 1.35, Ra 0.61µm; highest Ra value sample 6 

at 0.85 µm but r only 1.23). Wenzel‘s parameter r is therefore a better 

predictor of wetting than Ra with this sample set. 

Sample Al O N C Si Mg Ca Na

1 23.5 37.0 4.0 35.6 0.0 0.0 0.0 0.0

2 28.6 25.3 13.7 32.5 0.0 0.0 0.0 0.0

3 31.7 39.2 9.0 20.1 0.0 0.0 0.0 0.0

4 28.9 42.4 6.2 22.6 0.0 0.0 0.0 0.0

5 30.4 42.5 5.5 21.6 0.0 0.0 0.0 0.0

6 33.4 44.6 5.2 16.8 0.0 0.0 0.0 0.0

7 30.1 42.8 6.0 21.1 0.0 0.0 0.0 0.0

8 23.1 44.0 0.0 18.2 12.3 0.9 0.5 1.0

9 28.0 40.2 0.0 21.2 8.8 1.2 0.0 0.6

10 20.1 39.4 0.0 21.0 14.2 3.2 2.2 0.0

Relative atomic percentage

 

Table 5.1-2 Relative atomic percentages of the elements present on the ceramic substrates, 
measured using XPS. 
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Figure 5.1-9 Comparison of Wenzel ratio to relative carbon percentage as measured with 
XPS. Circle highlights the samples which underwent mechanical polishing and chemical 
etching (1 and 2). 
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Figure 5.1-10 Plot of apparent surface energy (according to Owens-Wendt) against the 
Wenzel ratio. 
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Figure 5.1-11 Plot of surface energy (according to Owens-Wendt) against relative atomic 
carbon percentage as by XPS. 

5.1.4.2 AFM Surface Texture Characterisation 

The industrial surface preparation methods used to modify the surfaces of the 

samples used for this study fall under two categories, chemical preparations 

and mechanical preparations. As-fired, lapped, polished and chemically 

etched surface preparations were all used for this characterisation work, just 

Lapped 
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as they are all used in industry. The methods used to treat the samples are 

described in more detail in the literature review section of this work. 

The heavy and light etches used to treat samples 1 and 2 (Table 5.1-1) were 

both potassium hydroxide (KOH). The main material removal mechanism of 

this method is via defect and grain boundary attack12, however, KOH does 

attack AlN crystals from certain directions13.  

As-fired ceramics have undergone no further processing to their surfaces 

following manufacture. Lapping and polishing of surfaces involves their 

abrasion via shear forces arising from contact from a spinning disc parallel to 

the plane of the surface, addition of slurries, a suspension of ultra hard 

materials in a lubricant, and the grit size of the abrasive discs defines the final 

roughness of the surface. 

Given the knowledge of the material removal methods gained from the 

literature it was deemed important to assess the conditions of the surfaces in 

their as-received state. AFM was used to investigate the surface topology and 

assess the affects of the processing on the commercial samples. 

Consideration was given to the feature sizes and physical damage to the 

surfaces, both of which could affect the strength of an adhesive bond to the 

surface. Figure 5.1-12 to Figure 5.1-22 shown below show the results of the 

AFM investigation of the surfaces. Note that the z-axis (heights) scale differs 

between figures. The Ra values quoted are from Table 5.1-1. 

 

 
 
 
 
 
 
 

 

Figure 5.1-12 3d morphology representation (left) and 2d representation of 3d morphology 
(right) of sample 1( AlN, polish + light etch, Ra 0.06µm). Circle highlights flat area due to 
mechanical polishing. 
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Figure 5.1-13 3d morphology representation (left) and 2d representation of 3d morphology 
(right) of sample 2 (AlN, polish plus heavy etch, Ra 0.08µm) Circle highlights flat area due to 
mechanical polishing. 

 

 
 
 
 
 
 
 

 

Figure 5.1-14 3d morphology representation (left) and 2d representation of 3d morphology 
(right) of sample 3 (AlN, polish only, Ra 0.04µm). 
 

 
 

 
 
 
 
 

 
Figure 5.1-15 3d morphology representation (left) and 2d representation of 3d morphology 
(right) of sample 3 in an area which appears as a hole in the surface (AlN, polish only, Ra 
0.04µm). 
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Figure 5.1-16 3d morphology representation (left) and 2d representation of 3d morphology 
(right) of sample 4 (AlN, as-fired, Ra 0.17μm). 

 

 
 

 
 
 
 
 

 
Figure 5.1-17 3d morphology representation (left) and 2d representation of 3d morphology 
(right) of sample 5 (AlN, as-fired, Ra 0.61μm) 
 

 
 
 

 
 
 

 
Figure 5.1-18 3d morphology representation (left) and 2d representation of 3d morphology 
(right) of sample 6 (AlN, as-fired, Ra 0.85μm) 
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Figure 5.1-19 3d morphology representation (left) and 2d representation of 3d morphology 
(right) of sample 7 (AlN, lapped,  Ra 0.75μm) 

 

 
 
 

 
 
 

 
Figure 5.1-20 3d morphology representation (left) and 2d representation of 3d morphology 
(right) of sample 8 (Al2O3, as-fired, Ra 0.05μm) 
 

 
 
 
 
 
 

 
Figure 5.1-21 3d morphology representation (left) and 2d representation of 3d morphology 
(right) of sample 9 (Al2O3, polished, Ra 0.02μm). 
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Figure 5.1-22 3d morphology representation (left) and 2d representation of 3d morphology 
(right) of sample 10 (Al2O3, lapped, Ra 0.45μm)  

 

It can be seen in Figure 5.1-12 and Figure 5.1-13 that the effect of the etching 

is a slight roughening of the surface as whole crystals are removed leaving 

defects. Samples 1 and 2, both of which underwent chemical etching show 

recesses in an otherwise smooth polished surface (shown in the circles). 

However, if sample 3 is considered along with this it can be seen in Figure 

5.1-14 that polishing also has the affect of removing whole crystals from the 

surfaces. Figure 5.1-14 shows the uniform polished surface of sample 3 whilst 

Figure 5.1-15 shows a different area of the same sample where either the 

mechanical polishing procedure has torn out whole grains along their 

boundaries which is the weakest part of the material. It is also possible that 

the mechanical polishing has removed the peaks of the roughness profile, 

leaving the deepest valleys one of which is shown in Figure 5.1-13. This 

shows a potential combined material removal mechanism for polishing, shear 

failure of grains and removal of grains at the grain boundary. Further analysis 

via SEM confirmed these findings with the appearance of a pitted, but 

otherwise smooth surface, Figure 5.1-23. 
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Figure 5.1-23 500x SEM image of sample 3 surface. 

 

It was found that the effect of the etching was to increase the size of these 

recesses in the sample surfaces, increasing the mean roughness of the 

samples. 

Samples 4,5,6 and 8 were all received in the condition of as-fired. 

Interestingly all samples showed very different surface conditions, even 

though the same processing had been used in their manufacture. The above 

Figure 5.1-16 to Figure 5.1-19 show markedly different grain sizes of the 

ceramics ranging from 2-3μm for samples 4 and 5 to 5+ micrometres for 

sample 6 and less than one micron for sample 8. These ceramics were 

produced by different manufacturers, each of whom have opted to produce 

ceramics with different grain sizes, this is something which is easily controlled 

in the manufacture of ceramics, as described in the literature review section of 

this work. The effects of the different grain sizes are plainly a large array of 

surface topographies. Surface topography could become an important factor 

in this work if bonds formed to surfaces fail at the ceramic/adhesive interface. 
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Lapping is a method performed similarly to polishing, which are performed 

with a similar method to the one described in Section 4.2.3 Mechanical 

Surface Preparations. Polishing and lapping are performed with discs of 

different grit sizes, lapping without the presence of a polishing slurry. The 

material removal method of lapping is predominantly by the removal of whole 

grains, this is an aggressive process which usually has the effect of 

roughening the surface. However, greater geometric accuracy can be gained 

using this process, with properties such as flatness being readily controllable. 

The effect of lapping on the samples analysed in this work appears to be a 

large amount of damage to the surfaces, samples 7 and 10 shown in Figure 

5.1-19 and Figure 5.1-22 above give examples the effects of lapping, each 

shows a large z axis variability on a ceramic with large grains. The result of 

this is a surface of high roughness. Lapping can be implemented to produce 

surfaces of incredibly smooth surface finish and low roughness, however for 

these samples it appears that the manufacturer has purposefully created a 

rough surface through the use of a coarse abrasive. 

Considerations to be taken from these results are the effects of the roughness 

on the wetting and surface energy of the surfaces, as well as the weakening 

of the surfaces through the mechanical forces subjected to them. 

The AFM surface maps show the effects of processing on the surface 

morphologies of the Al2O3 substrates. Figure 5.1-20 shows the as-fired 

surface where the separate crystals are clearly visible as grains of various 

sizes.  Figure 5.1-21 shows the polished surface as both a 3D rendering and 

2D height plot.  In the height plot, the crystals and their boundaries can be 

clearly seen, but in the 3D rendering the grooves in the surface caused by the 

polishing abrasive are much more apparent than the crystals themselves. 

Figure 5.1-21 also indicates different hardnesses of the material across the 

surface, this could have implications with the cohesion strength of the 

ceramic. Unfortunately the scale of these features is such that their hardness 

is not measureable, even with nanoindentation.  Material from between the 

crystals has been removed to a greater depth than the crystals have been 

abraded, suggesting heterogeneous material hardnesses. 



 116 

5.1.4.3 Surface Texture Parameter Measurement 

From Table 5.1-1 it can be seen that as fired samples (4-6 and 8) show a 

large range of roughness (0.05 mm  Ra  0.85 mm), probably due to variation 

in the grain size of the ceramic in the green state prior to sintering. The 

granular texture of the as fired surfaces can be seen in the 3D AFM plot in 

Figure 5.1-20 for sample 8 (A2O3 as-fired, Ra 0.05 mm). The large variation in 

as-fired surface textures is one reason for a manufacturer to specify a 

mechanical or mechanical chemical surface preparation to the sleds to reduce 

manufacturing variations due to surface texture variation. To attempt to 

determine whether Ra gives sufficient information to allow this source of 

manufacturing variation to be controlled, white light interferometry and an 

AFM were also used to characterise the surface textures. The AFM gives the 

additional capability of producing a value for the Wenzel roughness ratio r. A 

comparison of Ra measured by the different methods plotted versus r is given 

in Figure 5.1-24. 
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Figure 5.1-24 Comparison of Ra roughness values produced by AFM, WLI and stylus profiling 
to the Wenzel ratio produced by AFM. 

 

On average (mean of the ratios) Ra by WLI is twice that by AFM. This is 

probably due to measurement artefacts in the WLI data. The 3D surface plots 

show multiple steep sided fissures which are not visible in AFM. The artefacts 
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are probably caused by multiple reflections from the surface features which 

increase the length of the light path. Evidence for this suggestion is provided 

by the high frequency of the occurrence of the fissures in the profiles and their 

equal depth. In addition there is a high frequency of missing data in the 

profiles, Figure 5.1-25, probably due to the incident light angles being such 

that the light is not returned to the sensor. These issues have been 

documented in the literature14 

The mean ratio of Ra by the stylus instrument (Surftest SJ-400) to that by AFM 

is around 1.3 (single anomalous data point at very low Ra ignored, stylus: 

AFM value of 25 at r=1.002). Since both methods are surface contact the 

closer correlation is unsurprising. However, there are reasons to prefer the 

AFM measurements. In Figure 5.1-24 it can be seen that Ra by any method is 

not strongly correlated with r until Ra>0.2 mm. This shows that the AFM is 

picking up structure relevant to wetting in the surface texture at low Ra that is 

not reflected by that index. The major limitation of the AFM for assessing 

surface texture application is its inability to analyse large areas, and so 

properties such as flatness cannot be determined. However, for adhesive flow 

micro and nanoscale roughness is likely to be more important. Other reasons 

for preferring the AFM are that profiles are measured along an outwards and 

a return stroke along the same line of travel. This gives added reliability to the 

measurements because the tracking of the two directions can be compared. 

The AFM used in tapping mode allows precise control of the pressure the tip 

exerts on the surface. 

A potential reason for the anomalous Ra ratio obtained with the stylus 

instrument at low roughness (stylus: AFM value of 25 at r=1.002) is the nature 

of the situations in which the measurement methods are performed. The AFM 

is insulated against vibration and air flow whilst the portable stylus instrument 

has no means of filtering background vibration and atmospheric effects. The 

vulnerability of the stylus instrument to vibration could define its measurement 

limit, the point at which the effect of the surface upon the stylus is exceeded 

by the effect of noise. 

An interesting result obtained with the AFM can be seen in Figure 5.1-21 for a 

polished Al2O3 surface (sample 9), which shows a 2D height plot. Despite the 
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polishing a grain structure is still apparent. This is probably due to different 

hardnesses of the material across the surface. Intergranular material and 

grains with different crystalline orientations have been removed differing 

extents. This implies sharp height boundaries which may provide good keying 

features for adhesive joint formation. The Ra and Rt values for the stylus, non-

contact and AFM roughness measuring methods are given in Table 5.1-3. 

 

 

Figure 5.1-25 WLI z axis contour plot of sample 7 with large areas of missing data 
highlighted. Areas where there is an interface between a dark blue area (0μm) and white area 
(10μm) indicate 10μm vertical faces on the surface which were not seen with SEM or AFM 
and so were concluded to be due to the inadequacies of the WLI method. 

Sample Ra1 Rt1 Ra2 Rt2 Ra3 Rt3 r

1 0.156 5.8 0.06 1.3 0.1673 1.025 1.208

2 0.161 5.66 0.08 2.7 0.208 1.672 1.216

3 0.029 5.19 0.04 1.9 0.0107 0.098 1.002

4 0.289 7.55 0.17 2.1 0.1452 1.079 1.078

5 0.869 7.55 0.61 4.9 0.6257 4.117 1.375

6 1.125 9.79 0.85 7.2 0.3321 2.522 1.227

7 1.0584 9.85 0.75 8.2 0.58951 4.46 1.63

8 0.257 8.36 0.05 0.5 0.0942 0.791 1.125

9 0.0029 0.05 0.02 0.4 0.0008 0.084 1.002

10 0.673 7.26 0.45 4.0 0.4165 2.772 1.315  

Table 5.1-3 Measured surface texture parameters, subscript 1 denotes WLI, 2 Mitotoyo 
Surftest SJ-400 with a 5μm tip radius, 3 AFM in tapping mode with a 15nm tip radius. r is the 
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Wenzel roughness factor, as measured with the AFM. All roughness parameter units are μm, 
r is unitless. 

 
 

5.1.4.4 Adhesive Characterisation 

Using the pendant drop method the surface tensions of the two adhesive 

systems were measured, and are shown in Table 5.1-4  below. The 

measurements are a representation of the aggregate effects of all of the 

adhesive components. 

Adhesive Surface Tension mJ/m
2 

930-4 52.43

H20E 47.81  

Table 5.1-4 Mean surface tensions of the epoxy adhesives as calculated using the pendant 
drop method, measurements have an estimated error of ±2mJ/m

2
. 

 

The data in the above table is higher than expected for an epoxy adhesive. 

However other work15 has shown that a filler material can have the influence 

of increasing the surface tension of a filled polymer. 

It was deemed important to identify the size of the filler material particles in 

the adhesives, this was attempted with SEM. The particle size of the 930-4 

boron nitride filled adhesive was given on the data sheet as 20μm, this was 

taken to be accurate due to the strict limitations imparted on the manufacture 

of the adhesive. The size of the silver flakes in the H20E adhesive was not 

given, images were taken to verify their sizes, Figure 5.1-26 below shows the 

silver flakes in an adhesive spot. The flakes were found to have maximum 

dimensions of 15μm, a figure much above the feature sizes found by AFM 

investigation, Section 5.1.4.2 AFM Surface Texture Characterisation. The 

implications of this will be explored in later chapters. 
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Figure 5.1-26 SEM image of the silver flakes in the H20E adhesive. 

 

5.1.4.5 Analysis of Adhesives and Epoxy Bleed With XPS 

XPS analysis was employed for the analysis of the commercial adhesives, 

homemade adhesive and their respective bleed materials. The aim of this 

analysis was to determine the chemical properties of the material which had 

bled from the bulk adhesive and how it differed from the adhesive itself. 

 

Figure 5.1-27 Adhesive samples on aluminium oxide analysed with XPS, home made 
adhesive (left) silver filled H20E adhesive (middle) boron nitride filled 930-4 adhesive (right) 
each with characteristic halo of bleed material. 

Figure 5.1-27 shows the samples which were analysed, the analysis method 

was to align the aperture with the bare ceramic close to the sample and 

analyse every 300μm from the outer edge towards the centre of the spot, the 

bleed material spread sufficiently to guarantee that it would be caught in at 
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least one of the analysis areas. For each area a wide scan and high resolution 

scan for each element found to be present from the wide scan, was 

performed. Analyses were made with the Kratos AXIS ULTRA as described in 

Section 4.3 X-ray Photoelectron Spectroscopy.  

 

 

Figure 5.1-28 Relative atomic percentage plot for oxygen, carbon, nitrogen, aluminium and 
silver from aluminium oxide sled (positions 1 and 2) epoxy bleed (position 3) and bulk H20E 
adhesive (positions 4, 5 and 6) 

Figure 5.1-28 shows the results of the series of wide scan XPS spectra across 

the surface of the ceramic carrying the silver filled adhesive, the bleed from 

the adhesive and the bulk adhesive also. The graph shows the data in terms 

of relative elemental composition. It can be seen that the composition of the 

surface of the aluminium oxide substrate consisted primarily of oxygen 

(46.5%), aluminium (24.4%) and carbon (21.9%), which is typical of as-

received materials. The similarity in composition between positions 1 and 2 

show the uniformity of the composition of the surface and contaminants 

adsorbed onto it. Tracing the relative percentage of the aluminum shows that 

the presence is significantly reduced (6.6% from 21.9%) once the bleed area 

is reached, this suggests that the thickness of the bleed material is sufficient 

to reduce the aluminium signal, suggesting multiple layers of molecules and 
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not monolayers. Once the analysis is fully within the bounds of the intended 

analysis area of the bleed and bulk adhesive the signal from the aluminium is 

almost zero, this is to be expected due to the highly surface sensitive nature 

of XPS.  The nitrogen data shows that the curing agent used for the silver 

filled adhesive probably has a high presence of nitrogen such as the 2-ethyl-

4-methylimidazole. The nitrogen is present in higher quantities as the bulk 

adhesive is reached, at position 3 it is clear that the analysis area is almost 

entirely within the bleed material (due to lower aluminium, 6.6% and oxygen, 

22.9% and significant increase in carbon 67.7%), however the nitrogen signal 

is very low (0.6%) compared to the bulk adhesive value of 7.6%, suggesting a 

lack of curing agent. This result could begin to suggest the mechanism for 

bleed to occur during the curing process, the bleed material could be polymer 

which has not been crosslinked into the thermoset network, possibly due to its 

lower molecular weight. The molecular weight of the epoxy polymers has 

been linked to epoxy bleed in previous work16. It can be noted from Figure 

5.1-28 that the filler material is not present in the bleed material. Figure 5.1-29 

shows the series of high resolution scans and a plot of the silver signal from 

the high resolution scans. The emergence of the silver signal conforms to the 

proximity to the bulk adhesive, it is clear in image (a) that no silver is present 

and considering this with Figure 5.1-28 it can be surmised that this area is 

within the bleed material, but the action of the bleed has not taken filler 

material with it. Two peaks are present in the silver area, these are 

representative of the 3d3 (at 374eV) and 3d5 (at 368eV) electrons which have 

undergone interaction with the X-rays3 and produced a signal. The maximum 

silver contribution to the total composition of the bulk adhesive according to 

the XPS analyses is 6.6%, when the analysis area is fully within the bulk 

material. It is known from the MSDS of the two components of the silver 

adhesive that the silver flakes make up 60-83% by weight of the epoxy when 

the two components are combined in the right fractions. The reason for the 

lower XPS silver signal than the known composition of the adhesive material 

is that the carrier epoxy wets the silver flakes, giving them a surface of cured 

epoxy resin and not uniform silver. XPS data is also given in atomic 

percentage, so the high density of silver and comparatively low density of 
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epoxy also accounts for the difference in silver content by weight and 

observed atomic percentage. 

 

 
 
Figure 5.1-29 XPS high resolution spectra of silver for H20E adhesive, of epoxy bleed (a) and 
bulk adhesive (b), (c) and (d). Plot of relative atomic percentages from wide scans. (e). 

The bond types present across the different areas of analysis were analysed, 

it was found with the oxygen that the peaks change as the analysis passes 

from ceramic to bleed area to bulk adhesive suggesting different bond types. 

On the ceramic material the majority of the oxygen signal (82-83%) is from the 

O1s signal and Al2O3 bond signal, which both appear in the same binding 
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energy areas. Considering the oxygen high resolution scan with the carbon 

high resolution scan the second oxygen peak found on the ceramic surfaced 

can be identified as a C-O-C bond giving a peak for carbon at 286.4eV and 

532.4eV for oxygen. This is attributable to organic contaminants adsorbed 

onto the surface. All analyses from the ceramic materials show the same two 

peaks which can be seen in Figure 5.1-30 (a). This shows consistency over 

different samples as well homogeneity over individual samples. Once the 

bleed material is reached the oxygen peaks corresponding to Al2O3 and C-O-

C are reduced dramatically with the C-O-C peak absent entirely, Figure 

5.1-30(b). Instead, a new peak is seen at 533.13eV which is attributable to an 

epoxide group. The new peak contributes 60.27% to the total oxygen 

presence, with the remaining peak still consistent with the O1s position. For 

the high resolution carbon spectra a peak is present at 287.0eV which 

confirms the high presence of epoxide groups. The remaining groups for the 

carbon peak area are difficult to identify due to their respective oxygen peaks 

being very close to the epoxide peak, possibly making them indistinguishable. 

An example of this is the carbon peak at 286.3eV which could indicate the 

presence of C-OH groups from the 1,2-propanediol, however, the 

corresponding oxygen peak has been seen to appear as high as 533.09eV5 

and could be indistinguishable from the epoxide peak at 533.13eV. Once the 

bulk adhesive is reached the majority (85-90%) of the signal is seen to be 

from epoxide groups, Figure 5.1-30 (c). 
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Figure 5.1-30 High resolution XPS spectra of oxygen binding energy area. (a) on ceramic 
material (b) on silver filled epoxy bleed material (c) on silver filled epoxy bulk material. 

 

For the analysis of the  bulk adhesive region the ratio of bond types is 

different to the bleed material as well as the original surface condition. The 

O1s peak is reduced from 40% of the total signal in the bleed material to 

~12% in the bulk material, the remainder (60%) of oxygen bond types is again 

made up of epoxide groups at 533.13eV. The amount of nitrogen increases 

also, to a maximum of 7.6% of the total composition. As the curing agent was 

unknown, it was concluded that it contained a high degree of nitrogen and that 

this was the source of the signal, more could not be concluded from the data 

due to the high number of possible curing agents used in the composition17. 

Three peaks were seen, Figure 5.1-31, in the high resolution nitrogen spectra 

at 398.4eV, 400.17eV and 401.5eV, these were attributable to N1s, C-N/C=N 

and pyridine respectively, again suggesting similarity of the curing agent to 

those used in the other epoxies studied. 

(c) 
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Figure 5.1-31 High resolution nitrogen spectra showing 3 distinct peaks attributable to N1s C-
N/C=N and pyridine (nitrogen included in an aromatic ring). 
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Figure 5.1-32 Relative atomic percentage plot for oxygen, carbon, nitrogen, aluminium and 
boron from aluminium oxide sled (position 1) epoxy bleed (positions 2, 3 and 4) and bulk 930-
4 adhesive (positions 5 and 6) 

Much the same trends were seen with the boron nitride filled adhesive as 

were seen with the silver filled adhesive. It can be seen from Figure 5.1-32 

that the behaviour of the aluminium, carbon and oxygen is much the same, as 

is the markedly higher fraction of nitrogen when the bulk adhesive is reached. 

Ceramic Bleed Adhesive 
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A close correlation between the nitrogen signal and the boron signal can be 

seen, not least because they are bonded together as boron nitride. As 

expected the nitrogen signal is also slightly higher than the boron signal due 

to the signal from the curing agent. The high resolution scan of the nitrogen 

on the bulk boron nitride filled adhesive, Figure 5.1-33, reveals three distinct 

peaks which represent the same bond types as with the silver filled epoxy. 

However, in this formulation the N1s/BN peak contributes significantly more to 

the signal than in the previous case, Figure 5.1-31. The binding energies for 

the BN and N1s peaks are in the same place, making them indistinguishable, 

this is also apparent with the C-N and C=N bond. 
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Figure 5.1-33 High resolution spectra of the nitrogen binding energy area showing 3 distinct 
peaks attributable to N1s/BN, C-N/C=N and pyridine. 

 

Figure 5.1-34 shows the variation in the narrow scan boron peak and change 

in the relative atomic percentage of boron from broad scan across the surface 

of the adhesive spot. It is clear that one single peak is present representing 

boron nitride. However, in this analysis, unlike the analysis of the silver filled 

adhesive, it is apparent that some boron signal is seen in the epoxy bleed 

area. This would suggest that the action of the bleed has not only taken lighter 
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fractions of the carrier material, but also some of the filler material. The 

particle size quoted for the filler boron nitride powder is  20μm, but no lower 

value is quoted. It is possible that some of the smaller particles, which were 

not apparent though inspection with SEM, of BN powder have been carried 

with the bleed material, and it is they which are responsible for the boron 

signal on the epoxy bleed area, Figure 5.1-34.  

 
 
Figure 5.1-34 XPS high resolution spectra of boron for 930-4 adhesive, of epoxy bleed (a) 
and (b) and bulk adhesive (c) and (d). Plot of atomic percentages (e). 
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Figure 5.1-35 Relative atomic percentage plot for oxygen, carbon, nitrogen and aluminium 
from aluminium oxide sled (positions 1 and 2) epoxy bleed (position 3 and 4) and bulk home 
made DGEBF adhesive (positions 5 and 6) 

The XPS analysis of the home made adhesive was easier to interpret than the 

commercial adhesives due to all of the ingredients, and their fractions, being 

known. The analysis also let the behaviour of a filler-free adhesive to be 

compared to those with the fillers. Figure 5.1-35 shows the results of the 

series of wide scans over the ceramic, bleed area and bulk adhesive 

surfaces, the relative atomic percentages are given. As with the boron nitride 

and silver filled adhesives the aluminium and oxygen signals show a high 

decrease as the analysis moves almost fully onto the epoxy bleed area, due 

to the surface sensitivity of the XPS method. This adhesive showed a much 

lower tendency to bleed than the commercial ones, possibly due to its higher 

molecular weight and greater viscosity, therefore it was difficult to induce 

bleed sufficient for a full area for analysis. In Figure 5.1-35 it can be seen that 

the first area quoted as being epoxy bleed is probably not entirely within the 

bleed area, but some bare ceramic is still present. 

Tracing the carbon and oxygen peaks reveals that the majority of oxygen is 

bonded in an epoxide group at 533.13eV in the bulk adhesive, an increase in 

the O1s/Al2O3 peak is seen when the bleed area is reached, and then once 

the bare ceramic is reached the O1s/Al2O3 peak fraction increases to 84% 

Ceramic Bleed Adhesive 



 130 

and the epoxide group is no longer present, but a C-O peak is. This is 

consistent with other data from the nature of the contaminants on the bare 

ceramic.  

The nitrogen bonds present were known from the curing agent and probable 

reaction between the curing agent and the polymer. Only the predicted peaks 

were found in the bulk adhesive, showing peaks on the high resolution scan at 

398.4eV (N1s), 400-400.17eV (N-C/N=C) and 401.5eV (pyridine). As with the 

commercial adhesives the nitrogen signal increased up to 3 times the bleed 

area amount when the bulk material was analysed. However, this was to a 

much lower degree than with the commercial adhesives (due to the boron 

nitride presence in the 930-4, and an unknown reason in the silver filled 

adhesive). Nitrogen was seen to contribute only 3% to the total composition in 

the bulk adhesive, and 1% in the epoxy bleed. Interestingly, as the analysis 

moved further into the adhesive the amount of nitrogen increased, suggesting 

that regardless of bleed occurring, the spreading of the epoxy during the 

curing process can be linked to the cross linking reactions between the 

polymer and the curing agent i.e. polymer chains which have crosslinked to a 

lesser degree have a higher tendency to spread over the surface. The 

presence of nitrogen in the home made adhesive system is comparable to the 

boron nitride filled epoxy, which includes the same curing agent and epoxy in 

its formulation, once the nitrogen signal due to the boron nitride is subtracted 

from the nitrogen signal the total nitrogen presence tends to be ~1% and less 

when the epoxy bleed is analysed. The silver filled epoxy contains up to 7.6% 

nitrogen, this suggests that either a much higher amount of curing agent is 

used in its formulation (which is probable due to the mix ratio of 1:1 when one 

of the constituents does not contain epoxy polymer), or additional additives in 

the formulation contain nitrogen. This is a reasonable assumption to make 

when considering the MSDS of the material, which quotes no epoxy material 

in the second component, even though it is liquid and the two components are 

combined in equal parts. The higher presence of curing agent in the silver 

filled epoxy could also affect the bleed distance, which was greater for the 

boron nitride filled adhesive than the silver filled adhesive. 
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One disadvantage of the XPS method is the inability to determine the length 

of polymer chains, it is probable that the lighter fractions/shorter chain 

polymers in the adhesive have a higher tendency to bleed due to their lower 

tendency to crosslink with other polymer chains and be included in the bulk 

adhesive macromolecule.  

5.1.5 Conclusions 

The level of carbon based contamination was found to be a much stronger 

influence on wetting of the ceramics than surface texture with as-received 

samples. It seems that to witness the direct effects of roughness on wetting, 

the contamination will have to be removed first. 

The effects of processing of the ceramics tended to be damage to the surface 

structure by a variety of mechanisms, this will be considered in later work 

should the cohesion of the ceramic material become important. 

Portable hand-held surface roughness measuring machines are not, in this 

case, particularly suited to giving an accurate representation of a ceramic 

surface, due to the feature size being such that it is not penetrable by the 

probe. For a smooth surface this is especially apparent as the surface has 

been machined to give the smallest feature size possible. A number of other 

factors can introduce errors into the measurements of portable surface texture 

equipment, namely vibrations. If the measurements are made in a production 

line then the samples should be removed to an area isolated from the 

vibrations before measurements are made. The effect of vibrations on the 

accuracy of roughness measurements is indicated by the fact the AFM and 

Zygo are mounted on vibration damping equipment, and even wit the use of 

this loud noise could have effects on the measurements sufficient to be visual 

on the method output. 

Light based methods of surface measurement are also not suitable for these 

ceramic samples, for the crystal angles and steep angles of the topography 

create missing data points due to the incident angle being such that the light 

is not returned to the sensor. Steep fissures also appear to be present using 

this method, but their nature and absence with other analysis methods 
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suggest this is a phenomenon of the method and not an actual surface 

feature. 

The composition of the epoxy bleed is similar to that of the bulk adhesive, 

showing only an increase in the presence of curing agents in the bulk 

material, this suggests that the molecules which were not quickly incorporated 

into the adhesive thermoset polymer system, had a greater tendency to 

spread across the surface. To solve this issue an epoxy with extremely high 

molecular weight could be used in formulations, the home made adhesive 

implemented one of high viscosity and molecular weight and showed 

markedly less epoxy bleed, however, this would create an epoxy of extreme 

viscosity when fillers are added, which could be impossible to dispense. For 

the silver filled epoxy the filler was not seen to migrate with the bleed material, 

however this was not so with the boron nitride filled epoxy where analysis 

showed trace amounts of boron nitride present in the bleed material. This was 

probably due to a population of smaller boron particles mixed in which are 

more susceptible to being carried by the bleed flow. It is also possible that 

silver flakes have  a larger surface area and are less susceptible to bleed flow 

due to higher drag, or a reaction of the adhesive constituents to the silver 

surface incorporating it into the adhesive network. 
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5.2  Surface Parameter Effects on Epoxy Bleed and Bonding 

5.2.1  Introduction 

In this section of work the relationship between surface properties, epoxy 

bleed and bonding was studied.  In addition to bleed control it is important for 

the optoelectronic assembly process that the bonds formed between the 

substrates and optoelectronic components have sufficient shear strength and 

resistance to thermal fatigue. 

It has been seen that the effect of surface roughness is masked by the effects 

of the contamination on the as received samples. It is, therefore, important to 

attempt to separate the effects of the surface roughness and chemistry. To do 

this a method had to be found which would homogenise surface chemistry, 

but leave the surface profile unchanged. Aluminium oxide and aluminium 

nitride are both chemically stable. The predominantly adventitious carbon 

contamination; see Section 5.1.4.1 Ceramic Sample Surface Chemical 

Characterisation, is easily oxidised into carbon dioxide and water. Thus 

oxidative cleaning methods are suitable. A number of highly oxidative 

cleaning methods were considered. Plasma cleaning was chosen due to it 

being a dry cleaning method which needs no further processing. It is also 

already used in the assembly line of optoelectronics manufacturers. A method 

was also needed for the comparison of the epoxy bleed on different surfaces. 

There is no standard way of measuring epoxy bleed so a bespoke method 

was devised.  

Bonding was studied by tensile testing of lap joints and analysis of the failure 

location of the adhesives. A particular concern was to investigate whether the 

reduction of the surface energy due to the presence of carbon contamination 

causes the formation of a composite gas/adherend surface during wetting by 

the adhesive. This would tend to reduce the degree of mechanical interlocking 

adhesion due to the introduction of liquid/gas interfaces which would 

otherwise be solid/liquid adhesive bond interfaces. If the adventitious carbon 

caused this effect then it would have the potential to produce a bond of 

unacceptably low breaking shear stress.  
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The behaviour of the epoxies was also studied on copper surfaces. Copper 

was used as a cheap substitute for gold, which is a common metallisation 

material. Epoxy bleed is just as much an issue on metallisations as it is on 

ceramics. 

5.2.2 Background Information 

Past researchers investigating the epoxy bleed phenomenon have come to a 

number of different, often contradictory, conclusions as to the primary causes 

of resin bleed. The discrepancies arise from the effect of surface properties 

such as roughness and composition. By contrast there is general agreement 

regarding which properties of the adhesives favour resin bleed, although it is 

sometimes concluded that the  properties of the resin have no effect at all. 

A study by Ireland1 into commercial epoxies, including the H20E (silver filled 

epoxy) used in this study, concluded that the cleanliness of adherend 

surfaces was the primary cause of resin bleed. Ireland offers the first solution 

to prevent bleed present in the literature, one which has been the subject of 

other studies2,3. The presented solution involves the vacuum baking of  parts 

to induce deposition of organic contaminants, reducing the surface free 

energy and hence wetting by adhesives placed on inherently highly wettable 

surfaces. However, one of these studies has suggested that this process can 

damage gold metallisations and detrimentally affect subsequent wire bonding 

processes2.  

Ireland identified that different adhesive formulations exhibit different bleed 

behaviour, but does not investigate the reasons for this. Ireland‘s work was 

also limited in scope by not including detailed surface analysis to identify the 

properties which affect bleed, although the conclusion is drawn that the 

surface parameters are the driving force of the phenomenon. In 1994 a more 

detailed experimental study was performed into the phenomenon which 

focussed upon both the properties of the adhesive and the surface 

parameters2. This investigation concluded that it is more effective to modify 

the adhesive formulation than the adherend surface. This was done by 

formulating the adhesive from molecules with higher attraction to each other, 

making the adhesive more cohesive. This investigation was also the first to 
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identify the stages in the adhesive application process in which the bleed 

occurs. It reported up to 250μm of bleed before curing commenced, although 

it does not link this to an increase in surface energy with increasing 

temperature, which is possible4.  

In other works which have offered solutions to the epoxy bleed phenomenon 

through surface modifications, the use of plasma deposition for the application 

of a thin hydrophobic film5 has been proposed. However, these methods 

require masking of sensitive areas, and relatively expensive plasma 

deposition machines. It is thus not a general process which can be applied to 

any substrate design without previous development of a mask. The work also 

offers no detailed analyses of the solutions it presents, and the mechanisms 

by which the solutions work are not discussed.  

One experimental investigation which did cover  surface property effects on 

epoxy bleed was performed in 2002 by Hsiung6. Whilst this work offers the 

most detailed investigation into the surface property effects found in the 

literature, the authors fail to definitively separate out the effects of surface 

energy and roughness parameters on the bleed and study only the cumulative 

effect. While  the reasons roughness can affect epoxy bleed are discussed, it 

is disregarded as a contributor to epoxy bleed on the basis of calculations of 

the correlation coefficient. It may be objected that the authors consider only 

Ra as a roughness measure without advancing a justification, a point that the 

authors themselves acknowledge. In fact Ra is just one of hundreds 

available7.  

The literature thus shows scope for a detailed investigation into the factors 

affecting epoxy bleed. It is also apparent from the literature that a suitable 

epoxy bleed control method has not yet been developed.  

5.2.3 Methodology 

This section of work set out to identify the contributing factors to the 

apparently random occurrence of high degrees of epoxy bleed seen on the 

optoelectronics assembly line. The surface properties identified as potential 

contributors were surface roughness, surface chemical composition and 

surface energy. The literature did not offer a study of these parameters 
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singularly and so the work in this chapter had the aim of separating the 

parameters for individual study. 

It was seen from XPS data, Section 5.1.4.1 Ceramic Sample Surface 

Chemical Characterisation, that adventitious carbon from an unknown source 

was present on all commercially prepared samples. To ensure homogeneity 

of samples this had to be removed, in order to allow the effect of 

contamination to be separated from the other surface properties, i.e. surface 

texture. Oxygen plasma cleaning was chosen for this purpose as it is dry, 

quick and used already in the optoelectronics assembly line. 

The literature suggests an extremely slow etch rate of aluminium oxide and 

aluminium nitride with an oxygen plasma8. In fact Al2O3 and AlN are both used 

as plasma etch resists when etching different materials9. However, a slow 

etch rate still has the potential to etch weak points on the surface, such as the 

grain boundaries identified as being weaker in Section 5.1.4.2 AFM Surface 

Texture Characterisation. A short programme of preliminary experiments was 

therefore carried out to verify that oxygen plasma cleaning did not change the 

ceramic substrate surface texture while successfully removing the 

contaminants. 

The breaking shear stress of the adhesive bonds between uncleaned and 

cleaned commercial ceramic samples of the same finish and batch was 

measured. This was done to ascertain whether the high contamination 

presence on some samples (and resultant low surface energy) was sufficient 

to induce adhesive failure. These measurements were also made for 

reference purposes so the effect of surface modifications in subsequent 

investigations could be seen. 

Finally the occurrence of epoxy bleed was studied on copper and ceramic 

surfaces. The distance the bleed material spread across the surface was the 

experimental variable of interest. The maximum distance was chosen as the 

characteristic quantity due to this being the design limitation on feature 

spacing to limit the frequency of contamination. The distance was taken to be 

the maximum distance the material spread normal to a tangent to the 

adhesive droplet. The epoxy bleed distance was compared to the surface 
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roughness characterised by the Wenzel ratio and to the components of 

surface energy. Wenzel ratio was chosen due to its good correlation to epoxy 

bleed distance measurements, it was not, however, the only parameter 

considered. 

5.2.4  Results 

5.2.4.1  Preliminary Effect of Plasma Treatment Study 

Plasma treatments were performed for 1 minute, 5 minutes and 10 minutes 

and the samples were measured with the AFM and contact angle goniometer. 

The methods and machine set up can be found in Section 4 Experimental 

Procedures. To assess if the ceramics had been etched, specific changes 

were looked for on the surface – increases in roughness, attack of high 

surface area to volume ratio features, deepening of weak areas found with the 

initial AFM study.  

Figure 5.2-1 - Figure 5.2-4 below show AFM surface maps for a progression 

of increasing time of  plasma treatment from no treatment, Figure 5.2-1, to a 

ten minute treatment, Figure 5.2-4, on a polished sample. It can be seen from 

the figures that there is no indication that  plasma etching has attacked the 

weak areas between the crystals. Darker coloured lines representing deeper 

areas would be seen between the grains should etching have removed 

material. The deep areas created by the grinding and polishing, shown as 

small dark areas, have also not increased in size. This suggests that there 

has been no further weakening of the surface structure. 

Table 5.2-1 shows the AFM Ra values of the plasma etched samples. Included 

in the table are the values of the surfaces with no treatment for reference. It 

can be seen that there is no increase in roughness for any of the samples, 

with all of the figures falling within the range of values measured in the original 

AFM measurements of the surfaces.  
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Figure 5.2-1 2d 3d morphology representation AFM height plot of sample 9, analysis area 
10μm square. 

 

 

Figure 5.2-2 2d 3d morphology representation AFM height plot of sample 9 following 1 
minute oxygen plasma treatment, analysis area 10μm square. 
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Figure 5.2-3 2d 3d morphology representation AFM height plot of sample 9 following 5 
minute oxygen plasma treatment, analysis area 10μm square. 

 

 

Figure 5.2-4 2D 3D morphology representation AFM height plot of sample 9 following 10 
minute oxygen plasma treatment, analysis area 10μm square. 

 

Treatment None 1 min 5 mins 10 mins

Sample Ra Ra Ra Ra

1 0.1673 0.13154 0.174 0.1406

3 0.0107 0.0116 0.0117 0.0106

8 0.0942 0.0819 0.0875 0.0763

9 0.008 0.0068 0.007 0.0075

10 0.4165 0.40638 0.4365 0.4112  
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Table 5.2-1 Mean AFM Ra values of plasma etched samples where the treatment times are 
oxygen plasma exposure times and the Ra value is in μm. 

 

 

Figure 5.2-5 3D AFM representation of sample 8 surface, analysis area 10μm square. 

 

Figure 5.2-6 3D AFM representation of sample 8 surface following 10 minute plasma 
treatment, analysis area 10μm square. 

 

Figure 5.2-5 above when compared to Figure 5.2-6 shows that on a rough 

surface which has high surface area to volume ratio features, plasma etching 

again has no perceivable effect on the surface topology. Table 5.2-1 supports 
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this conclusion with Ra values which fall in the region of the results which 

were measured originally.  

The above results show that plasma etching does not affect the ceramic 

surface in a detrimental way. However, this is not a useful result unless the 

oxygen plasma also oxidised and removed the organic contamination. To 

verify this the two liquid contact angle method was used to estimate a new 

figure for effective surface energy. 

Table 5.2-2 shows surface free energy and contact angle data for plasma 

cleaned ceramics. The figures are high due to a high polar fraction of surface 

free energy, however, higher figures can be found in the literature using the 

same two liquid contact angle method on ceramics10. 

 

Sample Treatment Water CA Diiodomethane CA SE

1 1 min 13.6 37.8 70.81

3 1 min 12.0 48.0 71.95

7 1 min 10.0 41.0 71.88

8 1 min 21.7 43.6 67.81

9 1 min 10.6 42.2 71.79

10 1 min 10.6 48.7 72.44

1 5 min 14.5 40.0 70.59

3 5 min 6.3 42.4 72.67

7 5 min 8.8 39.9 72.07

8 5 min 6.9 41.1 72.49

9 5 min 9.9 41.4 71.92

10 5 min 6.1 42.9 72.74

1 10 min 3.0 45.9 73.36

3 10 min 11.4 41.7 71.57

7 10 min 8.9 41.0 72.12

8 10 min 5.6 40.3 72.63

9 10 min 13.5 51.1 71.91

10 10 min 13.0 39.0 71.01  

Table 5.2-2 Contact angle (CA) measurements and effective surface energy (SE) estimations 
of the plasma cleaned samples where contact angle is in degrees and surface energy in 
mJ/m

2
.  
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Figure 5.2-7 Graph to show the effect of the plasma cleaning on the effective surface energy. 

 

Table 5.2-2 and Figure 5.2-7 show the effects of the oxygen plasma cleaning 

upon the effective surface energy of the ceramic surfaces. It is clear that the 

surfaces have been homogenised to give very similar surface energy values. 

The surface energy values are still not true and can only be considered 

effective surface energy values as they are much lower than the values for 

pure ceramic. Despite the much increased surface energies it is also likely 

that some small amounts of contamination are still present. The high energy 

nature of the surfaces would mean that the instant they are removed from the 

plasma cleaner contamination will begin to build up. As it is not practical to 

store the ceramics in hermetically sealed storage apparatus, tin foil was used 

as a storage media after testing since it is commonly held in the surface 

analysis field to be a effective for maintaining cleanliness.  

The treatment time seems to have little effect on the surface energy. This 

supports the conclusion that contamination is quick to deposit on the surface 

following treatment. The speed of this deposition could be a useful parameter 

to allow derivation of a settling time, a time taken for the surface energy to 

reduce to a point such that bleed does not occur on the surface. This will be 



 144 

explored in later chapters of this work, Section 5.3 Identification and Removal 

of Contamination. 

5.2.4.2  Bond Strength Analysis 

Cohesive failure is the failure of a bond through the adhesive and is 

considered the failure mode which occurs in an ideal bond, for it constitutes 

evidence that the adhesive has adhered to the adherend and that this is not 

the weakest interface in the bond11. The indicator of cohesive failure in this 

case is that there are equal amounts of adhesive remaining on the two 

adherend surfaces following shear failure, as can be seen in . Figure 5.2-8 for 

a rough sample. Figure 5.2-9 shows a similar cohesive failure occurred on a 

polished surface. 

 

 

Figure 5.2-8 Talysurf profile of a failed adhesive spot on an Al2O3 surface, sample 10 AFM Ra 
0.4165μm. 
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Figure 5.2-9 Talysurf profile of a failed boron nitride adhesive spot on an Al2O3 surface, 
sample 9 AFM Ra 0.00084μm. 

Adhesive joints were formed from all the sample types in Table 5.1-1 and 

following shear testing it was seen that all bonds underwent cohesive failure 

in the adhesive. Therefore no inferences can be drawn as to the effects of the 

surface energies and textures on bond strength.   

Further evidence for cohesive failure comes from the proportional relationship 

observed between the measured shear strength and measured bond area.  In 

Figure 5.2-10 it can be seen that the constant of proportionality is dependent 

on the choice of adhesive, and independent of surface type or treatment.  
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Figure 5.2-10 Comparison of bond area to shear force. lines are least square best fits with 
intercept constrained to 0 

 

Figure 5.2-11 shows a typical load vs. extension curve seen in the tensile 

tests. The near constant slope and instantaneous failure suggests the joint 

underwent elastic deformation followed by brittle fracture. SEM images,  

Figure 5.2-12, of the failed adhesive surfaces support this. They show no 

signs of plastic deformation and the topography of the adhesive consists of 

sharp jagged profiles typical of brittle failure. The jagged nature of the surface 

topography in the SEM images is consistent with the Talysurf profiles in 

Figure 5.2-8 and Figure 5.2-9 . The SEM images of the failed bonds show 

failure occurred entirely though the adhesive.  
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Figure 5.2-11 Strength test load curve of polished AlN lap joint prepared with boron nitride 
filled adhesive, sample 3 

 

Figure 5.2-12 SEM image of failed boron nitride filled adhesive spot 

 

The bond strengths were not detrimentally affected by thermal cycling, 

Section 4.12 Thermal Cycling. Figure 5.2-13 shows the same correlation 

between shear force and bond area as seen with the samples which were not 

cycled, along with comparable shear force values. The failure modes are also 

comparable to those of the uncycled samples. Figure 5.2-13 also shows the 

silver filled adhesive has become stronger after thermal cycling. A possible 

reason for this is that the adhesive continued to cure at the elevated 

temperatures in the cycles. The adhesive data sheet gives a cure time of 90 

minutes at 80°C for the silver filled epoxy. The upper temperature for the 

thermal cycling was 80°C which could allow further curing to take place. The 

curing time at this temperature for the boron nitride filled adhesive was 6 

hours. This lower curing rate could explain why the silver filled epoxies shear 

stress increased more than the boron nitride filled epoxy. 
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Figure 5.2-13 Comparison of bond area to shear force for thermally cycled samples. 

Higher magnification SEM images of the failed silver filled epoxy bonds 

showed the failure occurred along the boundaries between the epoxy 

adhesive polymer and the silver flakes. The images suggested that the weak 

interface is that between the components of the adhesives, and as the other 

evidence supports, not between the adhesive and the ceramic surfaces. This 

can be clearly seen in Figure 5.2-14. 

 

Figure 5.2-14 SEM image of the failure surface in the silver flake filled adhesive showing 
exposed silver flakes indicating failure at the silver/epoxy boundary. 
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5.2.4.3 Epoxy Bleed 

5.2.4.3.1 Ceramics 

The resin bleed phenomenon appears not to be exclusively determined  to the 

contaminants found to be present. Figure 5.2-15 shows examples of minimal 

and pronounced bleed respectively on surfaces which were found to have an 

equal degree (21%) of carbon contamination. The pronounced bleed occurs 

on the lapped surface (Ra 0.75μm by AFM), rather than the polished surface 

(Ra 0.01μm) . It was therefore hypothesised that the bleed materials wetting 

performance might be sensitive to both topography and composition. Of the 

samples listed in Table 3.2-1 and Table 5.1-3, significant epoxy bleed visible 

with no magnification was witnessed on 3 samples all of which had 

comparatively low carbon contamination and comparatively high surface 

roughness, samples 5, 6 and 7. 

 

 
Figure 5.2-15 Top: minimal epoxy bleed on an AlN polished surface with 20.1% carbon 
contamination, sample 3. Bottom: pronounced epoxy bleed on an AlN lapped surface with 
21.1% carbon contamination, sample 7. Sled lengths are 16mm. Adhesives are boron nitride 
filled in both cases. 

The epoxy bleed is highly visible in SEM secondary electron (SE) images. 

Figure 5.2-16(a) and Figure 5.2-16(b) show a dark band surrounding the bulk 

adhesive with high contrast to the surrounding area. The bleed can be clearly 

identified by the lack of filler content. At lower magnification the bleed can be 

identified from contrast (it appears darker than the bulk adhesive or ceramic 

surface) as can be seen in Figure 5.2-16(c) and Figure 5.2-16(d).  Since 

excessive spreading of the bleed material leads to invisibility in visible light 

due to the decreased thickness, SEM examination was chosen as the 

standard method to assess the extent of bleed in the work described below.  
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The topic of contrast in SE images is a complex one.  However, it seems likely 

the contrast between the bleed and bulk is due to the higher atomic number of 

the filler in the bulk increasing the secondary electron yield from that region.  

See for example Sakai et al12. 

 

Figure 5.2-16 (a) SEM image of moderate epoxy bleed on an as-fired AlN surface with 21.6% 
carbon contamination, sample 5. (b) SEM image of limited epoxy bleed on a polished AlN 
surface with 21.2% carbon, sample 3. (c) SEM Image of maximum bleed seen with the silver 

(f) 

(a) (b) 

(c) (d) 

(e) 
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filled adhesive on AlN surface with 21.1% carbon, sample 7. (d) SEM image of maximum 
witnessed bleed of the boron filled adhesive on AlN, sample 7. (e) Epoxy bleed of a sessile 
drop on sample 5 surface.  (f) SEM image of a failed lap joint with epoxy bleed, showing the 
epoxy bleed measurement method, sample 5. 

 

Figure 5.2-16(c) and (d) show SEM images of the maximum extent of bleed 

witnessed for each adhesive. The maximum extent of epoxy bleed was 

measured as 2.25mm on sample 7, lapped AlN, with the boron nitride filled 

adhesive, Figure 5.2-16(d). Figure 5.2-16(b), by contrast, shows a minimal 

bleed distance of ~30μm from the edge of the adhesive spot on a polished 

AlN sled. Instances of bleed not occurring were also recorded on sample 9, 

polished alumina, with the boron nitride filled adhesive. 

Bleed also occurred when the ceramics were bonded into lap joints, although 

this was only evident upon analysis after failure. Figure 5.2-16(e) and Figure 

5.2-16(f) compare the bleed distance for a failed lap joint and sessile drop on 

identical material surfaces. It is clear that the bleed distance is double when 

there is only one surface involved. This was witnessed for a number of 

samples and suggests there is a finite amount of bleed material 

thermodynamically available which is shared between the two surfaces in the 

lap joint.  

Insight into the effectiveness of the plasma clean can be gained by analysing 

the contributions of the polar and dispersive components of the apparent 

surface energies. The dispersive component remained unchanged following 

the plasma treatment for all samples, whilst the polar component increased to 

~50mN/m for all samples. This suggests that the sample surfaces underwent 

a chemical change which reduced the hydrophobicity of the surfaces, i.e. the 

reduction of carbon based contamination. In this picture the unchanged 

dispersive component represents the effects of the inherent surface properties 

of the materials, since the polar component is considered to arise from  

permanent dipole Van der Waals forces, such as those between a polar liquid 

and carbon based hydrocarbon molecule.  

The polar component of the apparent surface energy (mJ/m2) was 

approximately equal for all surfaces (standard deviation 1.03) following 

plasma treatment, however, the surfaces showed vastly different bleed 
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distances. Bleed was visible to the naked eye with all of the sessile drops 

except with the silver filled adhesive on samples 9, shown in Figure 5.2-16, 

and sample 3, both of which have a polished surface. Figure 5.2-17 shows 

bleed distance plotted versus the AFM measured Ra value for both substrate 

and adhesive materials and a roughly linear correlation can be seen.  The 

Al2O3 data points show more scatter about the linear trend line. It can also be 

seen that the boron nitride filled adhesive consistently bleeds further at each 

roughness value for both ceramic types than the silver filled adhesive. This 

shows that the bleed distance is partly affected by the adhesive formulation, 

probably because different adhesive additives or the filler properties either 

inhibit or encourage epoxy bleed. Further investigation of the effects of 

adhesive composition was beyond the scope of this work, partly because the 

commercial nature of the adhesives used in this work means the ingredients 

were not identified.  However, at least for the three adhesives used, the 

influence of the ceramic surface on the bleed distance, was found to be far 

stronger than that of adhesive type.  
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Figure 5.2-17 Graph showing the relationship between epoxy bleed distance and AFM Ra 
value for cleaned AlN and Alumina with the boron filled and silver filled adhesives. 

 

It can be seen in Figure 5.2-18 and by comparison with Figure 5.2-17, that 

although the dispersive component of the apparent surface energy is strongly 
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linearly correlated to the roughness, irrespective of surface material, the mean 

variation in the dispersive component of surface energy (2%) is much smaller 

than the observed mean variation in bleed distance (68%).  It therefore seems 

likely that the bleed distances are indeed being determined solely by the 

ceramic surface texture after plasma cleaning, for each epoxy type. 
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Figure 5.2-18 A graph to show the relationship between AFM Ra value and the dispersive 
component of apparent surface energy for 1 minute plasma cleaned AlN and Al2O3 samples. 

 

5.2.4.3.2 Copper 

Copper coupons were prepared using the methods in Section 4.2 Copper 

Surface Preparations. Mechanical surface preparations were performed with 

varying grades of sand paper to achieve different surface roughnesses. All 

copper samples were cleaned using a dilute HCl etch before adhesives were 

applied. Plasma cleaning was seen as unnecessary due to the effectiveness 

of a HCl etch at producing an oxide free copper surface. 

Table 5.2-3 shows the maximum bleed distances measured on copper 

surfaces of the given AFM Ra values. It can be seen that a similar correlation 

is seen with copper as with ceramics. This suggests that the relationship 

between roughness and epoxy bleed distance is consistent over different 

materials. 

(a) 
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Finish Ra Bleed (μm)

P240 0.3322 >1000

P600 0.0554 760

P1200 0.0267 65

6 Micron 0.0191 65

1 Micron 0.0061 20  

Table 5.2-3 Boron nitride epoxy bleed distances compared to AFM Ra values are in microns 
and were measured using an AFM. ‗Finish‘ is the final grade of sand paper or polishing cloth 
used. 

. 

 

Figure 5.2-19 Epoxy bleed of the silver flake filled epoxy on a P1200 finish copper coupon, 
2000X. 

 
Figure 5.2-20 Epoxy bleed of the boron nitride filled epoxy adhesive on a P600 finish copper 
coupon surface, 200X. 
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Figure 5.2-19 and Figure 5.2-20 show the epoxy bleed material spreading 

along surface grooves away from the edge of the adhesive. It is clear from 

these images that capillary action is the main mechanism causing the spread. 

The material removal mechanism of the copper surface preparation is the 

cause of the directional groove pattern which results in a preferential direction 

of bleed.  

5.2.5 Conclusions 

For the adhesive/adherend systems investigated all joints failed cohesively. 

The mechanical surface preparation and surface chemistry had no influence 

on measured bond strength. This means that there is scope for engineering 

the surfaces in the study to reduce bleed without affecting bond strength or 

thermal fatigue resistance.  

Apparent surface energy alone is not sufficient information to determine the 

degree of epoxy bleed on a surface. This chapter has highlighted that 

surfaces of very low roughness and high surface energy can still resist epoxy 

bleed, and that surfaces of equal apparent surface energy but different 

roughnesses show different bleed behaviour. If the components of apparent 

surface energy are considered separately a clear linear correlation can be 

seen between the dispersive component and the bleed distance. The bleed 

distance is also linearly correlated with the AFM Ra value, indicating that the 

surface texture is directly linked to the dispersive component of surface 

energy. It can therefore be concluded that surface texture does have a direct 

effect upon the bleed distance, once contamination is removed. This gives 

rise to the possibility of varying surface texture as a means of epoxy bleed 

control. Copper surfaces have also shown a similar link between roughness 

and epoxy bleed distance, with the mechanism of spreading likely to be 

capillary action on all ground finish materials. The bleed material showed a 

tendency to follow grooves on a copper surface, a result which could be 

exploitable. 

Plasma cleaning is a highly effective method of removing organic 

contamination from the ceramic surfaces. It has shown to have no effect on 
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the surface topology of the ceramics whilst effectively removing the organic 

contamination. 
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5.3  Identification and Removal of Contamination 

 

5.3.1  Introduction 

It has been seen in the work described in previous chapters that the carbon 

based contamination of ceramic surfaces reduces surface free energy and 

inhibits epoxy bleed, see Section 5.1.4.1 Ceramic Sample Surface Chemical 

Characterisation. The origin of this contamination can be from a number of 

sources including atmosphere, handling, surface treatments and outgassing 

from storage media. Whilst allowing contamination to remain on the surface 

can be an effective means of inhibiting the epoxy bleed, it is likely not to be a 

reliable solution for a manufacturing process due to lack of controllability. 

A study of environmentally derived contamination was carried out, to evaluate 

the likely magnitudes of its effects on adhesive flow. The first aim of this 

section of the work was to identify and quantify sources of contamination in 

the factory environment. Storage methods used in industry were recreated for 

the purpose of this study with storage of samples in tin foil used for 

comparison. Samples were stored in commercial polymer waffle packs in a 

variety of atmospheres which they might experience in industry, on an 

industrial site, for one month. 

A second aim was to qualify the effectiveness of industrial cleaning methods 

that could be used by an optoelectronics assembler to remove contamination 

and homogenise surfaces part-to-part after receipt.  Of particular interest was 

whether there are present substances which are not readily removed by 

established cleaning methods used in the industry. Substances which may  

originate from the waffle packs themselves by outgassing and chemical 

species whose presence do not produce the advantageous effect of lowering 

the surface energy of the ceramics were also of interest. 

For this work different samples to those in Section 5.1 and 5.2 were used. 

Aluminium oxide and aluminium nitride were supplied in a single batch as 

75mm x 75mm tiles with the surface preparation of as fired only. Since the 
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effects of roughness had been previously quantified, it was not felt necessary 

to include this as an experimental variable in this stage of the work. 

XPS measurements were made following cleaning and storage to identify the 

composition of the storage related contamination and its source. Both the 

degree of carbon contamination, and the functional group constituents of any 

adsorbed species are known to affect surface energy and epoxy bleed. 

Therefore narrow band XPS spectra for carbon were analysed for all samples 

for chemical identification. The adhesive bleed performance on the samples 

was measured to enable the assessment of the practical effects of the carbon 

presence. 

Of the many methods which could be employed to remove the surface 

contamination, solvent, plasma cleaning and firing were chosen to be studied 

for their effectiveness at removing organics and due to their availability to 

industry. XPS was again performed on samples following cleaning.  

Finally the origin of the contaminants from the different parts of the storage 

media and rate of adsorption was identified by storing samples for 28 days 

and measuring their contact angles with water and diiodomethane after 1 day, 

2 days, 7 days, 14 days and 28 days. The samples were stored under a 

variety of conditions with the design of experiment focussed around the 

industry standard waffle pack with polyethylene and lint free paper inserts. 

The effectiveness of tin foil at preventing contamination build-up was also 

studied. The time taken for epoxy bleed resistance to develop due to sufficient 

surface loading of  adventitious carbon was measured.  

 

5.3.2  Background Information 

The adsorption of contamination onto high energy aluminium oxide and 

aluminium nitride surfaces can be detrimental to the quality and reliability of 

optoelectronic assemblies. Assemblies are frequently hermetically sealed, 

before being baked for 12 hours at 150°C, to remove all traces of water and 

other contaminants which could affect the in service performance. Throughout 

the production line a number of other cleaning processes are also 

implemented to ensure cleanliness prior to delivery to the customer. However, 
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in some instances contamination can lead to beneficial results arising from the 

surface property changes resulting from the adsorption. An example of the 

advantageous effects of the contamination is its effects on the epoxy bleed 

phenomenon. The presence of carbon based contamination can lead to a 

lowering of surface free energy, which is one driving force of epoxy bleed1. 

The origin of this contamination can be from a number of sources, namely: 

atmosphere, handling, surface treatments and outgassing from storage 

media2. Contamination arising from handling and surface treatments can be 

straightforwardly controlled or avoided, but that which originates from storage 

media or the atmosphere is more difficult to manage. Depending on this 

contamination for the control of epoxy bleed is likely not to be a viable solution 

because of the potentially random nature of the contamination composition 

and quantity. In this chapter the variation is quantified through study of  

adsorption of contamination from the atmosphere and from storage media, 

and measurement of its performance in the inhibition of epoxy bleed.  

The removal of storage contamination may also be important for quality of 

optoelectronic assemblies. The work described in Section 5.2.4.2 Bond 

Strength Analysis did not show a weakening of the adhesive/adherend bond 

due to contamination, but there could still be implications for other assembly 

processes such as the application and adhesion of conductive metal tracks. 

The presence of contamination on the surfaces could also affect any steps 

taken to control the epoxy bleed. The work reported in Section 5.2 Surface 

Parameter Effects on Epoxy Bleed showed that the carbon loading due to 

adsorption was sufficient to control bleed in some cases, where adsorption 

gave sufficient coverage to reduce the effective surface energy to <30mJ/m2. 

However the variability over sample sets, due to the ceramics being 

commercially sourced with no chemical specifications defined by the supplier 

or customer, meant adsorption was inconsistent.  

Adsorption is the adhesion of molecules of gas, liquid, or dissolved solids to a 

surface. In the case studied in this instance adsorption is taken to be the 

adhesion of adventitious carbon (carbon based organics such as alkanes, 

alkenes, ketones, alcohols etc originating from the atmosphere or expelled by 

polymeric materials used to store substrates) onto ceramic surfaces which 
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would otherwise consist of aluminium and oxygen (2:3 ratio in Al2O3) with 

trace bulk contaminants or aluminium and nitrogen (1:1 ratio in AlN) with trace 

bulk contaminants. The presence of hydroxyl groups on the surfaces is also 

likely, as aluminium oxide forms a hydroxyl layer upon exposure to moisture. 

The process of adsorption creates a film of the adsorbate (adventitious 

carbon) on the surface of the adsorbent (ceramic), initially by van der Waals 

interactions. The presence of this layer can affect the adhesion properties of 

the surface, as the layers of atoms involved in the adhesion processes can be 

completely replaced by adsorbate material, changing the properties of the 

surface which could be inherently of high energy, to being low energy and non 

wettable. 

5.3.3 Methodology 

The purpose of the investigation outlined in this chapter was to identify the 

source of organic, surface energy reducing, contaminants which were found 

to be present on the commercial samples analysed. This work also had the 

aim  of assessing the possibility of exploiting the adsorbed thin films for epoxy 

bleed control in the assembly line. To cover the likelihood that such 

exploitation should not be possible, cleaning methods were investigated to 

ensure that the process of adsorption could be reversed to a sufficient degree 

to ensure consistency of surface chemical character for production, whilst 

leaving the ceramic material unchanged. 

For this investigation the effects the build up of contamination had on the 

distance the epoxy bleed spread was of interest. The reason for this was that 

experience in industry is of the seemingly random occurrence of bleed on 

ceramic tiles which are apparently identical. It was theorised that the reason 

for the random occurrence was variation in the lengths of the time the 

ceramics had spent in environments in which contamination could 

accumulate. The cleaner and newer parts are, the more likely the bleed will 

spread uncontrollably and interfere with the product. This investigation had 

the aim of finding out if a storage time of one month would be sufficient to stop 

the bleed occurring. Samples were therefore stored in conditions replicating 

those that might be experienced during production. Identical samples were 

sourced from a single supplier, prepared, and stored in waffle packs, the 
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standard storage method for samples in industry. To replicate different typical 

storage atmospheres the samples were shipped to an industrial site and 

stored for varying amounts of time before being recovered and analysed. 

The conditions the waffle packs are likely to encounter once shipped are 

variable. Since temperature, humidity and atmospheric composition of the 

storage area could all have an effect on the composition and amount of 

contamination build up on the ceramic surfaces, the samples were stored at 

the industrial site and in a laboratory under a number of different storage 

conditions to assess the effects of these variables. 

 

5.3.4  Experimental Details 

Aluminium oxide and aluminium nitride tiles of 1mm thickness were diced into 

5mm x 14mm samples using a CO2 laser. The laser processing of ceramics is 

investigated in more depth in other sections of this work. The diced samples 

were then put into deionised water and treated with ultrasonics for five 

minutes to remove any residue from the laser cutting process. Following the 

sonic treatment the samples were rinsed in IPA to begin organics removal and 

to aid drying. Samples were then dried in a flow of air at 60°C for ten minutes. 

When the samples were dry they underwent one minute of treatment in a 300 

W oxygen RF (13.56 MHz) plasma at a flow rate of 100sccm. Oxygen plasma 

was used for its effectiveness at organic molecule oxidation3,4, since organic 

molecules had been seen to form the majority of surface contamination in 

previous work1. Following plasma treatment the samples were transferred to 

the storage media. To reduce particulate contamination in the short time 

between plasma cleaning and sealing of the storage media the process was 

undertaken in a class ten thousand (ISO 7) clean room. 

The storage conditions studied included: storage in a clean room in 

Shenzhen, China with uncontrolled temperature, storage in a nitrogen cabinet 

in Shenzhen, China with uncontrolled temperature, storage at 100% humidity 

at 25°C controlled to ±1°C in an environmental chamber at Loughborough 

University and storage in tin foil in a class ten thousand (ISO 7) clean room at 

Loughborough University. All samples were stored for thirty days before being 
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analysed with XPS, contact angle measurements and bleed distance 

measurements. During shipping all polymer waffle packs were sealed in 

polythene bags to protect them from any uncontrollable conditions in transit. 

The waffle packs used in the study were polycarbonate with added carbon 

powder and were manufactured by Entegris. 

The cleaning methods implemented were: oxygen plasma cleaning, firing and 

a combination of solvent cleaning and oxygen plasma cleaning. The plasma 

cleaning method used had the same parameters, 300 W oxygen RF (13.56 

MHz) plasma at a flow rate of 100sccm, as the initial cleaning of the surfaces 

before storage. Plasma cleaning was done for one minute and five minutes. 

Two times were used to assess the time variable, since although the results of 

the previous work reported in Section 5.1 Characterisation of Surfaces and 

Adhesives involving plasma cleaning suggested that a treatment longer than 1 

minute had a negligible further effect on the effective surface energy, a 

chemical change in the surface is still possible. Plasma cleaning was used on 

its own as well as coupled with a solvent clean. The plasma treatment was 

done for one minute following an IPA wash and air dry where the solvent was 

involved. The solvent was used for two reasons; firstly IPA is highly effective 

at dissolving organics and could complement the plasma cleaning method, 

and secondly using IPA allows for a much shorter drying time and so less 

exposure to air in the drying process. The firing was performed using a 

sample dryer with an air flow at 400°C, which is said to be the minimum 

temperature for successful removal of organics. Samples were exposed to the 

air flow for 5 minutes. Following cleaning, samples were not returned to waffle 

packs but were sealed into tin foil pouches until further analysis took place 

within 24 hours. 

Samples were analysed using XPS, contact angle measurements and bleed 

distance measurements. XPS wide scans of three regions on the surface of 

each stored sample were recorded. A narrow band scan around the carbon 

binding energy area was also made for each sample. All XPS analyses were 

performed with the Kratos AXIS ULTRA by the methods described in Section 

4.3 X-ray Photoelectron Spectroscopy. Contact angle measurements and 

apparent surface energy estimations were made on the stored samples as 
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well as on cleaned samples. The surfaces were tested with diiodomethane 

and water and an estimation of the surface energy was made using the 

Owens Wendt method. 

Bleed distance was measured using scanning electron microscopy according 

to the method described in Section 4.13 Epoxy Bleed Measurements. 

5.3.5 Results and Discussion 

5.3.5.1 Storage Results 

The degree of adsorption of organic contamination onto the ceramic surfaces 

post storage was consistent with that observed on the commercial samples 

studied previously, Section 5.1.4.1 Ceramic Sample Surface Chemical 

Characterisation. It can be concluded that its presence is not due to bad 

practice or equipment related contamination, but that the contamination has 

another source. 

 

Storage Conditions/Material No. O Al Si C N F Na K Ca

Foil AlN 1 53.7 19.5 4.5 12.6 4.4 4.4 0.3 0.6 0.2

Nitrogen AlN 2 45.6 18.0 2.9 26.0 3.1 1.7 1.4 1.1 0.2

100% humidity 25°C AlN 3 44.7 15.5 3.5 29.2 3.3 1.1 0.8 1.7 0.3

Clean Room AlN 4 44.8 18.6 2.6 27.9 4.1 1.5 0.5 0.4 0.2

Foil Al2O3 5 46.4 19.1 4.1 19.2 0.4 8.0 1.8 1.5 0.2

Nitrogen Al2O3 6 44.2 17.6 5.3 29.7 0.6 1.2 0.6 0.8 0.2

100% humidity 25°C Al2O3 7 40.0 12.5 9.4 36.4 0.5 1.2 0.6 0.1 0.1

Clean Room Al2O3 8 45.4 17.8 4.6 29.4 0.5 1.1 0.8 0.6 0.2

 

Table 5.3-1 Relative atomic composition percentage of stored ceramics, mean values of three 
measurements made with XPS. Foil means stored in foil. All other samples stored in waffle 
packs 

 

Table 5.3-1 above gives the relative atomic percentages of all of the elements 

detected on the stored sample surfaces. The detection of any element with a 

presence higher than 0.1 relative atomic percentage was recorded. As before 

it can be concluded that the presence of group 1 and 2 metals can be 

associated with the purity of the as received ceramics, see Section 5.1.4.1 

Ceramic Sample Surface Chemical Characterisation. The presence of silicon 

on the surfaces once again cannot be attributed to any specific source.  Mould 
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release agents from the injected moulded waffle packs could explain its 

presence on the samples stored in waffle packs, but not those stored in the tin 

foil. The presence of the aluminium, oxygen and nitrogen can all be attributed 

to the ceramic materials, AlN clearly shows a higher percentage of nitrogen 

on the surfaces than the alumina, which was to be expected. Both  of the 

ceramics show a high degree of oxygen on the surfaces. This supports the 

hypothesis of a presence of an aluminium oxide layer on the aluminium nitride 

surfaces. This also explains the lower than expected nitrogen value for the 

AlN, which should be in a 1:1 ratio to the aluminium signal, should no other 

aluminium compound be present. The oxygen is present at a higher 

concentration than the 2:3 aluminium to oxygen ratio that would be expected 

for Al2O3 It can therefore be concluded that the oxygen signal can be partially 

attributed to the organic contamination.  

A statistical measure, the correlation coefficient r was calculated using 

Equation 5.3-1 below for pairs of elements in Table 5.3-2: 
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Equation 5.3-1 

The element combinations which gave an absolute value higher than 0.7, 

which denotes some element of correlation, are shown in Table 5.3-2 below. 

The data analysis technique proved to be moderately useful for highlighting 

potential correlations between elements but offers no interpretation as to why 

the correlation identified exist.  

 

AlN Al2O3

Element 1 Element 2 r Element 1 Element 2 r

F O 1.00 Al O 0.99

F C -1.00 Si O 0.99

C O -1.00 Si Al 0.99

Si O 0.89 F C 0.88

Si C -0.85 C O -0.87

Al C -0.71 Al C -0.86

C N -0.70 Si C 0.83

N F -0.83  
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Table 5.3-2 Relative atomic composition percentage correlations for AlN and Al2O3 on stored 
samples.  

The correlation between the substances of low relative percentage are not 

considered in this table. This is because the quantification resolution of the 

method is ~1% so correlations between substances of relative presence <1% 

cannot be considered significant.  The important conclusions which can be 

drawn from the correlation data are the negative correlations between carbon 

and oxygen. This suggests that the contaminants may be inhibiting the signal 

from the oxide, perhaps due to the increased depth of the ceramic surface. 

The data also suggests that the silicon is not associated with the carbon, 

since the AlN shows a negative correlation and aluminium oxide positive.  
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Figure 5.3-1 Relative carbon atomic percentage for all stored samples showing the effect of 
storage on the build up of contamination following the initial clean. 

 

Figure 5.3-1 shows the variation of carbon adsorption with respect to storage 

method. The unstored parts are ones which had been subjected to plasma 

cleaning only and analysed within 24h. Interestingly the tin foil wrapped 

samples show little or no contamination build up compared to the other 

storage methods. Tin foil is widely regarded to be effective at protecting 

samples from airborne contaminants5. This could be for a number of reasons 

including its manufacturing method including a corona discharge cleaning 
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stage, it being tightly rolled excluding air between the layers, and tin foil 

having a greater affinity for contamination build up than the ceramics stored in 

it. 

It could also be surmised from Figure 5.3-1 that a source for the 

contamination is the waffle packs used for storage and as this source was not 

present in the tin foil the ceramics did not absorb the same degree of 

contamination. The waffle pack stored samples are mostly within the range of 

25-30% relative carbon coverage. The high mean value for the aluminium 

oxide stored under high humidity of 37% is due to a single high result of 49% 

from the three measurements, the other two being within the 25%-30% range. 

This suggests that the distribution of contamination on the surfaces is not 

completely uniform. 
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Figure 5.3-2 Narrow scan spectra of carbon peaks for sample 1, corrected to 285eV. Where 
the purple peak is the C1s peak, the green peak the C-O peak and the red peak the COOR 
peak. 

 

Figure 5.3-2 shows the peaks fitted to the XPS narrow scan spectrum from 

sample 1 (Foil stored AlN) whilst Figure 5.3-3 below shows the peaks fitted to 

the spectrum from sample 8 (Al2O3 stored in a clean room). 
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Figure 5.3-3 Narrow scan spectra of carbon peaks for sample 8, corrected to 285.00eV. 

 

It can be seen that although the amount of carbon measured to be on the 

surface and listed in Table 5.3-1 is very different, the narrow band spectra 

which provide the best method of identifying the bond types present are very 

similar suggesting similar functional groups. It can also be seen from the 

figures that the counts per second (CPS) value is over double the value for 

sample 8 when compared to sample 1. This is due to the higher percentage 

presence of carbon on sample 8 (29.4 at %) than sample 1 (12.6 at%). 

However, it should also be noted that the ratios of the peak magnitudes are 

almost identical, suggesting that the chemical nature of the contamination is 



 169 

very similar. The fitted bond type peak ratios are shown in Table 5.3-3 below. 

The peaks were placed for fitting  at the positions listed in Section 4.3 X-ray 

Photoelectron Spectroscopy. 

 

Sample No. C1s C-O O-C=O

Foil AlN 1 70.15 20.46 9.39

Nitrogen AlN 2 78.64 15.94 5.42

Humid AlN 3 82.19 11.90 5.91

Clean Room AlN 4 76.00 20.09 3.91

Foil Al2O3 5 78.28 15.51 6.21

Nitrogen Al2O3 6 70.47 24.45 5.08

Humid Al2O3 7 75.17 24.83 0.00

Clean Room Al2O3 8 73.52 19.48 7.00  

Table 5.3-3 Relative bond type percentages from XPS spectra of all stored samples. 

 

It can be seen from Table 5.3-3 that 70-80% of the carbon bonds are C-C and 

C-H bonds, 10-25% are C-O bonds and the remainder are carboxylic acid 

COOR bonds. The data suggests that the composition of the organic 

contamination was principally carbon, oxygen and hydrogen with no presence 

of other elements. The nature of the contamination suggests that it either 

came from the atmosphere and not the polycarbonate waffle packs, or that 

the compositions of atmospheric adventitious carbon is similar to that which 

might be outgassed from polymers. Reasons for this are the similarity of the 

distribution of bond types of the foil stored samples and the waffle pack stored 

samples, as noted in the comparison of samples 1 and 8 above. Further 

evidence to suggest that the polycarbonate has not outgassed monomers or 

oligomers onto the surface is the lack of evidence of a carbonate group, i.e. a 

C=O peak at 287.8eV is not seen in any of the XPS spectra, which would be 

expected from polycarbonate. There is still the possibility of the source of the 

contamination being other constituents of the waffle packs, such as outgassed 

polymer additives and leached carbon filler. A study aimed at identifying the 

source of the storage contamination is described in Section 5.3.5.3 

Contamination Rate and Source. An important finding from this work is that 

the waffle packs do not offer contamination protection. 
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The results of contact angle measurements on the storage samples  are 

summarised in Table 5.3-4 below. 

Sample Carbon % Water CA Diiodomethane CA SE

Foil AlN 12.6 55.3 54.6 45.34

Foil Al2O3 19.2 53.8 48.2 50.65

Nitrogen AlN 26.0 104.7 65.6 25.9

Nitrogen Al2O3 29.7 100.3 62.7 27.05

Clean Room AlN 27.9 102.3 72.1 21.44

Humid AlN 29.2 104.2 69.9 22.99  

Table 5.3-4 Contact angle and surface energy data of stored samples. CA = contact angle 
(degrees), SE = surface energy (mJ/m

2
). 

 

The table shows a correlation between effective surface energy and carbon 

percentage, similarly to that reported in Section 5.1.4.1 Ceramic Sample 

Surface Chemical Characterisation. Correlation was not seen between the 

effective surface energy and the bond types found in the carbon high 

resolution narrow band scan. However, correlation was seen between the 

relative atomic percentage of oxygen and carbon and the effective surface 

energies (r = 0.99 and -1.00 respectively). The negative correlation between 

the surface energies and the relative atomic percentage of carbon was 

consistent with data acquired from commercial samples. 
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Figure 5.3-4 Epoxy bleed distance of the 930-4 epoxy compared to relative atomic carbon 
percentage on stored AlN surfaces. 
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Figure 5.3-4 above shows the results of the maximum epoxy bleed distance 

measurements on the aluminium nitride stored samples. A correlation 

between the amount of organic contamination present and the bleed distance 

can be seen. The correlation is similar for aluminium oxide (results not 

shown). As the bleed distance for all the waffle pack stored samples is 

negligible at <50μm, it seems that the storage of samples in waffle packs for 

one month is sufficient to stop the bleed occurring. However, ceramic sleds 

experience cleaning steps during manufacture which may remove the bleed 

resistance. This is considered in the following section. 

5.3.5.2 Cleaning Results 

A number of samples stored under all conditions were cleaned using a variety 

of methods described given in the experimental procedure section of this 

chapter. Table 5.3-5 and Figure 5.3-5 show the relative atomic composition 

percentages obtained from XPS spectra from the cleaned samples. 

Cleaning method/material No. O Al Si C N F Na K Ca

1 Min Oxygen Plasma AlN 9 52.1 16.7 5.8 15.2 5.2 4.6 0.2 0.0 0.3

5 Min Oxygen Plasma AlN 10 54.7 18.0 5.8 13.3 4.4 3.6 0.2 0.0 0.2

IPA + Oxygen Plasma AlN 11 54.8 18.7 5.9 12.2 4.5 3.6 0.2 0.0 0.0

Fired AlN 12 53.9 19.6 4.1 15.4 5.4 0.0 0.7 0.7 0.3

1 Min Oxygen Plasma Al2O3 13 56.6 19.7 5.4 12.7 1.0 4.6 0.1 0.0 0.2

5 Min Oxygen Plasma Al2O3 14 56.8 20.3 5.6 12.0 0.5 3.7 0.5 0.6 0.4

IPA + 1 Min Oxygen Plasma Al2O3 15 56.4 19.8 6.0 12.9 0.9 3.2 0.4 0.2 0.2

Fired Al2O3 16 54.6 22.1 3.5 16.3 0.3 0.5 1.2 1.3 0.2

1 Min Oxygen Plasma Al2O3 17 55.6 19.7 5.5 13.4 0.9 4.8 0.0 0.1 0.1

5 Min Oxygen Plasma Al2O3 18 57.6 20.4 5.9 12.5 0.7 2.9 0.0 0.0 0.0

IPA + 1 Min Oxygen Plasma Al2O3 19 57.5 20.4 6.0 12.1 0.8 3.3 0.0 0.0 0.0

Firing Al2O3 20 57.1 21.2 5.1 14.9 0.3 0.5 0.4 0.5 0.2

 

Table 5.3-5 Relative atomic composition percentage of cleaned ceramic surfaces, mean 
values of three measurements made with XPS. Samples 17-20 had not undergone storage. 



 172 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

9 10 11 12 13 14 15 16 17 18 19 20

Sample Number

R
e
la

ti
v
e
 A

to
m

ic
 %

Aluminium

Carbon

Oxygen

 

Figure 5.3-5 Relative atomic percentages of aluminium, carbon and oxygen on all cleaned 
AlN and Al2O3 surfaces. 

 

It can be seen by comparing Table 5.3-5 and Figure 5.3-5 to Table 5.3-1 that 

the carbon percentage has been significantly reduced by all of the forms of 

cleaning. However, some carbon still remains suggesting that either the 

contamination is readsorbing before XPS measurement or that it was not 

completely removed. Table 5.3-5 also shows the increased effectiveness of 

the plasma cleaning when the process time is increased from one minute to 

five minutes. This suggests that all of the carbon was not removed under 

cleaning and hence that the processes are not 100% effective. However, for a 

five-fold increase in process time only 1-2 at % extra carbon is removed, 

which is a negligible difference from the point of view of wetting and epoxy 

bleed. It should be noted that all cleaned samples showed an effective 

surface energy in excess of 70mJ/m2 and an epoxy bleed distance consistent 

with this surface energy and the sample roughnesses. Samples 17-20 had not 

undergone any storage. Instead these were prepared freshly for the XPS 

study. It can be seen that there is very little difference between the 

composition of the stored and unstored cleaned samples, suggesting that the 

extra contamination which arose from the storage conditions was completely 

removed by cleaning. 
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Oxygen plasma cleaning also seems to be effective at removing fluorine 

contamination. It can be seen in Table 5.3-5 that the fluorine detected is 

further reduced by around 1 at % by the extended processing time. 

As the silicon signal is unchanged after cleaning, it would appear that the 

silicon is not linked to any other of the elements detected and could be a bulk 

constituent. 

All samples show an increased signal from the aluminium following cleaning, 

by on average 10%, corresponding to an average increased signal of 2.5 at%. 

The reduction in the quantity of carbon is accompanied by an increased 

detection of oxygen. An associated change in bond type distribution is seen in 

the narrow band carbon spectra shown in Figure 5.3-6 and Figure 5.3-7. As 

shown in Table 5.3-6 the quantities of carbon-oxygen bonds have increased 

dramatically. 

As with the as received aluminium oxide, there was a consistent presence of 

silicon in the XPS data which could not be explained. It was not found to have 

any influence on the wetting behaviour of the ceramics and so its presence 

was not pursued any further. 
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Figure 5.3-6 Narrow scan spectra of carbon peaks for sample 18 (unstored 5 min oxygen 
plasma cleaned Al2O3), corrected to 285.00eV. 
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Figure 5.3-7 Narrow scan spectra of carbon peaks for sample 12 (fired AlN which had been 
stored in a waffle pack in a clean room), corrected to 285.00eV. Peaks outside the area 
highlighted in blue can be attributed to trace potassium. 
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Sample No. C1s C-O O-C=O

1 Min Oxygen Plasma AlN 9 70.1 23.1 6.8

5 Min Oxygen Plasma AlN 10 61.7 28.9 9.4

IPA + Oxygen Plasma AlN 11 63.7 29.8 6.6

Firing AlN 12 64.5 26.8 8.7

1 Min Oxygen Plasma Al2O3 13 59.2 31.8 9.1

5 Min Oxygen Plasma Al2O3 14 58.9 36.5 4.6

IPA + 1 Min Oxygen Plasma Al2O3 15 69.0 23.9 7.1

Fired Al2O3 16 64.4 25.1 10.5

1 Min Oxygen Plasma Al2O3 17 62.7 32.4 5.0

5 Min Oxygen Plasma Al2O3 18 57.8 30.9 11.4

IPA + 1 Min Oxygen Plasma Al2O3 19 51.9 39.9 8.2

Firing Al2O3 20 59.5 30.0 10.5
 

Table 5.3-6 Relative bond type percentages from XPS spectra fitting for cleaned samples. 

 

In fact the relative percentage of C-O bonds has increased from 10-25% in 

Table 5.3-3 to 23-40%. This result indicates that the plasma has probably 

oxidised the organic contamination. A further conclusion is that the 

contamination which is present after cleaning is not entirely due to 

readsorption. More evidence for this is that the contaminant composition 

following cleaning is not similar to the tin foil stored samples, but is more 

heavily oxidised. This suggests that the composition of the contamination on a 

ceramic surface stored in tin foil changes over time, but does not increase by 

a large amount. The cleaned samples were stored in tin foil before analysis.  

The relative percentages of carbon bond types were multiplied by the total 

carbon signal to get figures for atomic surface percentages for three AlN 

samples. These were the nitrogen stored AlN, and the 1 minute and 5 minute 

plasma cleaned AlN, samples 2, 9 and 10 respectively (all of which were 

nitrogen stored to allow comparison). The total carbon atomic percentages 

were 26, 15.2 and 13.3 respectively which showed a decrease in carbon on 

the surface due to cleaning. There was shown to be an accompanying slight 

decrease in the total presence of each of the C-O and COOR groups, which 

was significantly less than the reduction of the C-C/C-H percentage. This 

could be due to oxidation of the carbon contaminants (although one would 

expect an increase in their prevalence), or it could be due to the increased 

resistance of the COOR groups to removal due to chemisorption6, or a 



 177 

resistance to further oxidation. This relationship is seen continually when 

similarly stored samples are compared following different cleaning methods, 

samples 8, 13 and 16 show the same pattern, as do samples 7, 14 and 15. 

The hypothesis of remnant carbon which is more difficult to remove due to the 

combined effects of chemisorption and high oxygen content, as opposed to 

the physical adsorption of saturated hydrocarbons, could explain the 

incomplete removal of carbon contamination by plasma cleaning.  However, 

due to the affinity of the ceramics for adventitious carbon, readsorption is 

almost certainly responsible for some of the detected presence following 

cleaning. 

The effective surface energy measurements of the cleaned ceramics show a 

linear correlation to surface carbon content as seen in Section 5.1.4.1 

Ceramic Sample Surface Chemical Characterisation and Table 5.3-4. 

Extrapolating a least squares linear fit to the data in Figure 5.3-8 yields a zero 

carbon surface energy for the ceramics of approximately 50mJ/m2. Figure 

5.3-8 also suggests that the surface energy does not vary linearly with carbon 

concentration at low carbon concentration. In fact the surface energy of pure 

aluminium nitride is not 50mJ/m2 as the extrapolated best fit line suggests, but 

estimates in the literature for both AlN and alumina lie in the range of 1J/m2 

which is significantly higher7,8. This would fit with theories of the effect of 

heterogeneity on the contact angle of a system9, the Cassie Baxter wetting 

regime, a speculation explored in greater detail in Section 5.4 Application of 

Wenzel and Cassie Theory to Experimental Data. 

The surface energy estimations for the plasma cleaned samples suggest that 

the oxidation of the organic contamination/higher relative prevalence of 

oxygen containing species, reduces its hydrophobicity. This can be seen in 

Figure 5.3-8 where the effective surface energy of the point representing the 

averaged cleaned sample data lies far above that for the trendline for the 

contaminated samples (71 mJ/m2 as against 40 mJ/m2 extrapolated value). 

This oxidation effect is consistent with data collected upon the surface energy 

effects of plasma treatment on polymer surfaces10. 
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Figure 5.3-8 Carbon % compared to effective surface energy for all contaminated samples 
and the mean value of cleaned samples. The line is a linear fit to the contaminated sample 
data. 

 

Table 5.3-7 compares values of correlation coefficient for pairs of elements 

before the samples were cleaned and following cleaning. It can be seen that 

the correlation coefficient was unchanged only for Si-O in Al2O3. There is still 

a high absolute value of r for carbon and oxygen post-clean, although it is 

reduced probably due to the extra ceramic surface exposed and the oxygen 

associated with this. Correlation was not found between effective surface 

energy and the presence of any of the non-bulk elements, excluding carbon. 

There was also no correlation found between the percentage distribution of 

the carbon bond types, which showed variation, and the effective surface 

energy, which was consistently >70mJ/m2. This shows the effectiveness of 

the cleaning methods to equalise the surfaces in terms of effective surface 

energy. 

Cleaned 
samples 
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AlN

Element 1 Element 2 r Pre Clean r Post Clean

F O 1.00 -0.23

F C -1.00 -0.41

C O -1.00 -0.77

Si O 0.89 0.03

Si C -0.85 -0.62

Al C -0.71 -0.10

C N -0.70 0.92

Al2O3

Element 1 Element 2 r Pre Clean r Post Clean

Al O 0.99 -0.40

Si O 0.99 0.79

Si Al 0.99 -0.82

F C 0.88 -0.78

C O -0.87 -0.70

Al C -0.86 0.80

Si C 0.83 -0.90

N F -0.83 0.89  

Table 5.3-7 Relative atomic composition percentage correlation coefficients (r) for AlN and 
Al2O3 on stored and cleaned samples. 

 

5.3.5.3 Contamination Rate and Source 

The contamination rate and source was determined experimentally by storing 

samples and conducting measurements after 24h, 48h, 1 week, 2 weeks and 

4 weeks. The storage conditions investigated were:  

1. Open to the atmosphere in a clean room (air) 

2. Stored in carbon loaded polycarbonate waffle packs with supplied 

inserts in a clean room (polythene and lint free paper), (Waf/Ins) 

3. Stored in waffle packs with no inserts in a clean room, (Waf) 

4. Stored in a waffle pack sealed in tin foil in a clean room, (Waf/Foil) 

5. Stored in a waffle pack containing both inserts, wrapped in tin foil, in a 

clean room, (Waf/Foil/Ins) 

6. Stored in a sealed tin foil pouch in a clean room (Foil) 

7. Stored in a waffle pack with only the paper insert, wrapped in tin foil, in 

a clean room (Waf/Foil/Paper). 
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Storage Condition Material Sample Number

Air AlN 21

Air Al2O3 22

Waf/Ins Al2O3 23

Waf/Ins AlN 24

Waf Al2O3 25

Waf AlN 26

Waf/Foil Al2O3 27

Waf/Foil AlN 28

Waf/Foil/Ins Al2O3 29

Waf/Foil/Ins AlN 30

Foil AlN 31

Waf/Foil/Paper AlN 32

Waf/Foil/Paper Al2O3 33  

Table 5.3-8 Storage conditions for samples in rate of contamination study. Waf = waffle pack, 
ins = lint free paper and polyethylene insert, Foil = tin foil storage, Air = storage in open air, 
and paper = storage with just lint free paper insert. 
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Figure 5.3-9 Graph showing the change in apparent surface energy over compared to time 
spent stored under various conditions. The samples fall into two clear groups, Samples 25-28 
and 31 with relatively high surface energies, and the remaining samples. 
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Sample 1 day 2 days 7 days 14 days 28 days

21 48.0 60.4 72.8 72.9 98.2

22 51.3 52.9 61.6 87.7 91.5

23 53.1 61.4 85.7 103.0 108.4

24 51.6 62.8 85.9 99.8 99.3

25 16.2 21.1 43.7 36.9 49.4

26 15.0 31.8 37.2 42.6 49.4

27 5.3 11.0 33.4 35.5 39.5

28 7.7 30.9 35.2 40.5 44.3

29 60.0 74.3 91.6 102.5 113.3

30 61.0 71.0 95.3 100.3 93.0

31 4.9 4.5 20.9 21.1 34.9

32 35.5 55.7 68.8 75.7 75.0

33 62.3 65.3 96.7 72.1 80.4  

Table 5.3-9 Water contact angles (°) for samples measured at the given time intervals. 

It can be seen from Table 5.3-9 and Figure 5.3-9 that for all stored samples 

the general trend was for the water contact angle to increase with time and 

hence the apparent surface energy to decrease with time. This is attributed to 

the adsorption of hydrophobic organic contaminants explored in the previous 

part of this chapter. 

One of the obvious conclusions to draw from the above data is the 

effectiveness of tin foil as a storage medium which will maintain cleanliness. It 

can be seen in Figure 5.3-9 that the samples fall into two clear groups, 

samples 25-28 and 31 with relatively high surface energies, and the remaining 

samples. The high surface energy group consists of foil wrapped samples 

without the polymer insert from the waffle packs.  

Table 5.3-9 shows that the foil stored sample 31 shows a moderate change in 

contact angle over the 4 week storage period from 4.9° to 34.9°, which is a 

fraction of the change exhibited by other samples, such as sample 30 

(Waf/Ins/Foil, AlN) which showed a contact angle of 61° after just 24 hours, 

and samples 23 and 29 (Waf/Ins, Waf/Foil/Ins Al2O3) which showed water 

contact angles of over 100° after a month of storage.  

The question of the source of the majority of contaminants appears to be 

answered by the results for samples 27-30, where 27 and 28 were stored 

without inserts and exhibit a much smaller change in surface energy than and 

29 and 30 which were  stored with both polymer and lint free paper inserts. 

The polymer insert and lint free paper therefore appear to be the source of the 

majority of contaminants. However, the results for samples 25-28 and sample 
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31 highlight another potential source for the contaminants. The tin foil stored 

sample number 31 exhibits a consistently lower contact angle than the 

samples stored in the plain waffle packs, which in turn exhibit  a consistently 

higher contact angle than those stored in waffle packs and tin foil. This could 

mean that the tin foil offers enhanced protection from the atmosphere, that the 

waffle packs outgas slightly (but less than the polymer insert and lint free 

paper) or that the tin foil itself adsorbs contaminants leaving less to be 

adsorbed onto the surfaces. The results suggest that all of these possibilities 

are responsible for the contaminants to a certain degree. The waffle pack 

probably outgases, because sample 31 (tin foil, AlN) always exhibits a lower 

contact angle than samples 25-28 (25 – Waf Al2O3, 26 - Waf AlN, 27 - 

Waf/Foil Al2O3, 28 - Waf/Foil AlN). The aluminium foil probably offers good 

protection from adventitious carbon from the atmosphere, because samples 

31 (Tin foil AlN) and 27-28 (27 - Waf/Foil Al2O3, 28 - Waf/Foil AlN) show lower 

contact angles than samples 25 and 26 (25 – Waf Al2O3, 26 Waf AlN).  

Figure 5.3-9 and Table 5.3-8 shows that the industry method of storing the 

samples in waffle packs with polymer and lint free paper inserts is equivalent 

to leaving samples open to the atmosphere of a class 10,000 clean room, in 

terms of organic contamination. The rate of contamination of a sample stored 

in the industrially adopted method is faster than the adsorption rate of 

adventitious carbon from the atmosphere. Sample 22 (Air Al2O3) shows a 

consistently lower surface energy than the measurements made with sample 

23 (Waf/Ins Al2O3), the same was seen with AlN, samples 21 (Air AlN) and 24 

(Waf/Ins AlN). 

Figure 5.3-9 shows that the adsorption rates of the samples which adsorbed 

adventitious carbon at a lower rate (25-28 and 31) over the time were 

relatively constant during the measurement periods. It is likely that that the 

surface loadings of contamination would eventually reach that seen on the 

highly contaminated samples. By contrast the contamination loadings on the 

highly contaminated samples 21-27, 29-30 and 32-33, levelled off after an 

initial high adsorption rate period, suggesting the equilibrium position of 

adsorption rate matching desorption rate was reached after 28 days. 
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To separate the effects of the two different insert types, lint free paper inserts 

were used alone with waffle packs and tin foil for samples 32 and 33. It was 

observed that the contamination rate and magnitude were less with only 

paper than when polyethylene inserts are included, but more than the rate 

and magnitudes observed with waffle packs only or packing with tin foil. It can 

therefore be concluded that both the lint free paper inserts and polyethylene 

inserts are responsible for outgassing and the subsequent adsorption onto the 

ceramic surfaces. 

Interestingly the samples which showed the highest degree of contamination, 

as inferred from contact angles, were those stored by the industry 

recommended method, with lint free paper and polyethylene inserts. However, 

the apparent surface free energies reached by these samples, 26.19mJ/m2 

and 24.31 mJ/m2 for aluminium oxide and aluminium nitride respectively, lie 

only slightly inside the surface energy threshold value (30mJ/m2) below which 

the degree of epoxy bleed is considered to be acceptable. Thus if storage 

were to be used as a method of controlling epoxy bleed it is possible that 

heterogeneity over samples and between batches could still result in epoxy 

bleed due to natural variation in the sample conditions and tendency to 

adsorb contaminants (and also varying partial pressure of contaminants and 

temperature of storage conditions). 

5.3.6 Conclusions 

The aim of this section of the work was to test the hypothesis that while 

storing ceramics for an extended period of time will allow build up of sufficient 

contamination to stop bleed occurring, samples fresh from suppliers will not 

have built up sufficient contamination to reduce the surface free energy to a 

degree such that bleed will not occur. 

Following the cleaning of samples and storage under different conditions it 

was found that the composition of the contamination on the surfaces was not 

linked to their storage method, but that the quantity of contamination was. 

Storing ceramics in polymer waffle packs does not protect them from build up 

of carbon contamination regardless of storage atmosphere. The use of tin foil 

for storage can reduce the degree of contamination significantly, but not 
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prevent build up entirely. A high degree of bleed was seen in both samples 

cleaned but not stored, as well as in samples cleaned after storage, showing 

the effects of storage contamination are easily reversed.  

The surface carbon concentration was found to be a good predictor of the 

degree of bleed.  It was also found that a moderate degree of contamination, 

around 30 at% of carbon, reduces bleed to a insignificant level. However, 

relying on environmental exposure to produce the required level of carbon on 

ceramic surfaces is a risky strategy for an OEM because it introduces a poorly 

controlled parameter into the production process 

To deal with this two strategies are suggested.  One is to use contact angle 

measurement as a screening procedure.  The other is to put the ceramic 

surfaces into a known state, by routinely cleaning on receipt followed by a 

suitable treatment to reduce the surface energy. The use of surface 

treatments will be addressed in later sections of this work. 

The effective surface energy was found to vary non-linearly with degree of 

carbon contamination. A theoretical explanation of this observation is given in 

Section 5.4 Application of Wenzel and Cassie Theory to Experimental Data. 

The cleaning methods used in this investigation successfully achieved the 

intended result of increasing the effective surface energy. The main sources 

of the contaminants when ceramics are stored in waffle packs appears to be 

the inserts, polyethylene sheet and lint free paper sheet, at approximately 

equal fractions. When stored with inserts the ceramics were observed to 

adsorb organics at a higher rate than if they were exposed to the atmosphere. 

It was found that excluding the inserts from the waffle packs offers better 

protection from organic contaminants during storage, although some build up 

still occurs.  

It seems that the adsorption of contaminants accounts for the observed 

variability3 in industrial experience across batches of seemingly identical 

parts, and the random occurrence of epoxy bleed. It was found that storing 

samples for an extended period allows sufficient contamination to adsorb to 

give rise for marginal conditions for epoxy bleed inhibition. Although epoxy 

                                            
3
 Communication from Paul Firth of Oclaro plc 
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bleed was controlled by storage related contamination in this study, 

heterogeneity over surfaces could still cause problems in the production line 

were this contamination to be relied on to prevent bleed. In addition the length 

of time required to build up such levels is at least 28 days, which is probably 

not economically viable. 
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5.4 Application of Wenzel and Cassie Theory to Experimental 
Data 

5.4.1 Introduction 

In this work, and extensively in the literature, application of the Young 

equation and related expressions is not directly meaningful due to the 

assumptions it makes. Surface texture and chemical heterogeneity are not 

taken into account in the early surface energy works. Such effects were 

considered by  later authors such as in the work by Wenzel on the effect of 

roughness upon contact angle1, or the work by Cassie on the effect of 

roughness and chemical heterogeneity combined2. 

Wenzel and Cassie models were also used to interpret the experimental data 

and were studied to determine their validity for this work. A modification to the 

Cassie model to cover the case of a heterogeneous surface consisting of fully 

wetting and partially wetting micro-regions is also proposed.  

In this work the effects of the surface properties of roughness and chemical 

heterogeneity upon epoxy bleed have been experimentally determined, 

Section 5.2 Surface Parameter Effects on Epoxy Bleed. However the 

predictions of models for rough and chemically heterogeneous surfaces have 

not yet been correlated with experimental results. This section of work aims to 

analyse experimental results from previous chapters using the Wenzel and 

Cassie theories. 

5.4.2 The Cassie Model 

The theory widely adopted to predict the effects of chemical heterogeneity on 

the contact angle of a solid/liquid system was first described by Cassie in 

19522 in the form of the equation: 

2211 coscoscos  ff   

Equation 5.4-1 

Where f1 is one fraction of interface, and f2 is another.  

Cassie‘s equation represents the weighted averaging of the surface tensions 

on the two surface types in the system. It was later proposed by Israelachvil3 
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that the forces be averaged and not the surface tensions, leading to the 

expression: 

2

22

2

11

2 )cos1()cos1()cos1(   ff  

Equation 5.4-2 

It is evident from the equations that the models proposed by Cassie and 

Israelachvil only treat situations in which all surface fractions yield non zero 

contact angles, i.e. are partially wetting.  

To address the problem of treating inhomogeneous compound surfaces 

consisting of completely wetting and partially wetting components Equation 

5.4-3 is proposed. It is derived by substituting interfacial tensions and not 

contact angles, in the Young equation. 
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Equation 5.4-3  

The resultant contact angle for the composite surface is then given by: 
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Equation 5.4-4  

Applying this equation to experimental data, along with the Owens Wendt 

model, yields surface energies for bare ceramic in the region of 80mJ/m2. This 

value is much lower than expected as pure clean ceramics can have a 

surface energy4 ~1J/m2. However, surface energies derived from Owens 

Wendt equation have a maximum value which is related to surface tensions of 

test liquids used, giving the surface energy estimation an upper limit. It may 

also be that because of the high affinity for adsorbates the ceramics have, 

that contact angle methods cannot be used to measure the true surface 

energy of aluminium oxide and aluminium nitride. This is because the speed 

at which contamination adsorbs makes measuring an uncontaminated sample 

impossible. Thus test liquid methods are useful for measuring and predicting 

the properties of the practical surfaces in this study, which will always be 
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contaminated to some degree, but for measuring the actual properties of 

clean ceramics it is not useful.  

5.4.3 The Wenzel Model 

The contact angle data was also analysed using the Wenzel equation, Section 

2.4.3 The Effect of Surface Roughness,  to attempt to account for the effect of 

roughness upon the contact angle. Applying the Wenzel model to extract the 

expected contact angle for a flat surface from samples with different 

roughnesses but the same surface chemistry, should yield equal contact 

angles. However, it was found that the Wenzel theory produced varied contact 

angles where it should have made them equal. 

Sample Liquid CA A/Ao CA

1 Water 8.9 1.20778 35.1

1 Diiodomethane 41.0 1.20778 51.3

3 Water 10.6 1.00235 11.3

3 Diiodomethane 42.0 1.00235 42.2

7 Water 13.0 1.63006 53.3

7 Diiodomethane 39.6 1.63006 61.8

8 Water 10.1 1.12520 28.9

8 Diiodomethane 41.4 1.12520 48.2

9 Water 10.6 1.00208 11.2

9 Diiodomethane 42.2 1.00208 42.3

10 Water 10.6 1.31494 41.6

10 Diiodomethane 48.7 1.31494 59.9  
Table 5.4-1 Original measured contact angle (CA left column)and the expected flat surface 
contact angle extracted using the Wenzel equation (right column CA). Where the sample 
number is as in Section 5.1 Characterisation of Surfaces and Adhesives, CA is contact angle 
in °, and A/Ao is the Wenzel roughness factor. 

However, it was seen in this work that there is a strong correlation between 

the Wenzel roughness factor measurement and the distance of epoxy bleed, 

Section 5.2.4.3.1 Ceramics. So although the Wenzel theory does not explain 

the variation in contact angle seen in this work, his method of defining 

roughness appears to be useful. 

5.4.4 Conclusions 

A method suitable for analysing chemically heterogeneous surfaces of at least 

one inherently wettable constituent has been shown. Using this method it has 

been shown that 15% saturated hydrocarbon coverage is not sufficient to 

induce the total surface energy reduction of the ceramics which has been 

seen in experimental work, and that some other adsorbate is probably 

involved. 
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The Wenzel model is not a suitable model for predicting the effect of 

roughness on the contact angles of liquids on ceramics. 
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5.5 Self Assembled Monolayers 

5.5.1 Introduction 

The work described in previous chapters, 5.2 and 5.3, and work by others has 

identified the effectiveness of surface energy manipulation for the control of 

epoxy bleed. It has been shown in the background chapter that existing 

literature dealing with thin film technologies for surface energy manipulation 

usually includes treatment in a vacuum oven1, or requires plasma deposition 

apparatus, the literature describing which originates from the manufacturer2. 

The use of self assembled monolayers (SAMs) to treat optoelectronic 

substrates, however, has not been described. Possible reasons for this are 

that SAMs are known to act as anti-adhesion layers3, and the potential 

complexity of including an aqueous/wet treatment in the assembly process. 

Work has been described in which the use of SAMs is proposed for the 

treatment of surfaces in electronics applications, such as the use of 

alkanethiols for the oxidation protection of copper to allow fluxless 

soldering4,5.  

The use of surface energy modification methods always carries the risk of the 

reduction of adhesion levels to an unacceptably low level. Because of this, 

careful consideration must be given to the SAM chemistry chosen. Ideally the 

SAM will not survive the thermal curing process and will break down under 

elevated temperature so as to not affect adhesion to a great degree. If a 

thermal breakdown mechanism is not possible then the alternative is 

optimisation by balancing adhesion strength with bleed control. 

In this section alkanethiol, fatty acid and trichlorosilane SAMs are considered 

for the coating of ceramic substrates and interconnection metallisations. Their 

presence was confirmed and their effects upon the properties of the ceramic 

substrates was characterised with the use of contact angle and adhesive 

behaviour measurements. The SAMs are studied with special attention to 

their potential ability to minimise epoxy bleed. The effect of the coatings on 

adhesion was determined by lap shear tensile testing. The practical limitations 

of the SAMs for use in optoelectronic assembly was also of interest. 
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Consequently their response to the cure temperatures of the adhesives and 

stability over time was assessed and is described in this chapter. 

To determine any effect on the properties of electrically conducting bonds, the 

conductivity of silver flake filled epoxy adhesive joints on organic monolayer 

treated surfaces was also studied. Finally a method for SAM coating 

heterogeneous surfaces consisting of ceramic and metallisations was 

developed and tested. The method is the subject of a patent application6.  

 

5.5.2 Background  

A general introduction to the formation and structure of self assembled 

monolayers can be found in the literature review in Section 2 Literature 

Review. In this section specific details of SAM molecules which would be 

expected to bond to the material surfaces considered in this work. The 

surfaces on which it would be required to form SAM layers for optoelectronics 

are Al2O3, AlN, copper, and gold, and suitable candidates were identified from 

the literature. 

Monolayers which form stably on aluminium oxide are silanes7,8,9,10 carboxylic 

acids8,11,12,13,14 and phosphonic acids14,15
 and those which form on copper and 

gold are alkanethiols13,16 and variants which form the same bond type. In 

terms of wettability the literature quotes varying figures for the surface 

energies and contact angles of SAM modified surfaces. In general the surface 

energy is highly dependent on the terminating end groups of the SAM 

molecule and the chain length. However, providing the chain length is higher 

than 8 carbons and the terminating end groups is a methyl or containing 

fluorine or chlorine, then the contact angles of water reported are always 

>90°.  

Both XPS data of AlN from this study, and reports in the literature suggest that 

AlN forms a thin layer of aluminium oxide on its surface17. It is therefore 

probable that monolayers suited to bonding to aluminium oxide may also be 

used for the treatment of aluminium nitride. This is especially the case for 

optoelectronics manufacturing since steps are not taken to remove oxide 

layers from aluminium nitride materials. 
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5.5.2.1 Fatty Acid Monolayers on Ceramic Surfaces 

The bonding mechanism between a carboxylic acid and aluminium oxide, 

shown in Figure 5.5-1, requires the aluminium oxide to first be hydroxylated. 

This happens spontaneously due to the surface energy of the material for 

both aluminium oxide and aluminium nitride, and the presence of water 

vapour in the atmosphere. Fatty acid monolayers can also be applied from an 

aqueous solution12, which encourages the hydroxylation of the surface in-situ. 

 

Figure 5.5-1 Reaction between aluminium oxide surface and carboxylic acid, where R is a 
carbon chain which can be saturated with hydrogen, fluorine or chlorine. 

A fatty acid molecule bonded to an aluminium oxide surface is reported to 

have a tilt angle close to zero13, allowing it to form close packed, potentially 

more ordered monolayers on aluminium oxide than on other surfaces18. 

Highly ordered, stable monolayers of fatty acids reportedly form on aluminium 

oxide at low concentrations (0.01mM) and at high speed16. This makes them 

attractive for use in an optoelectronics assembly line since the treatment time 

would be small, and the apparatus required relatively simple. 

In addition to the ease of application the predicted stability of the monolayers 

is also good, with the free energy of adsorption calculated to be -38.5kJ/mol 

for stearic acid (CH3(CH2)16COOH) on aluminium oxide19. In terms of the 

practical change in surface conditions caused by the adsorption of fatty acid 

monolayers, as measured by contact angles, the results vary widely12,16 and 

are highly sensitive to application methods and initial surface conditions. 

5.5.2.2 Organosulphur Monolayers on FCC Metallic Surfaces 

Organosulphur monolayers applied to gold surfaces are perhaps the most 

widely studied self assembled monolayers. The organosulphur molecules 

which form stable SAMs on gold surfaces can take the form of alkanethiols, 
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dialkyl disulphides, dialkyl sulphides, alkyl xanthates and 

dialkylthicarbamates13, amongst others. Alkanethiols are the most widely 

studied monolayer upon gold, and are known to bond to other coinage 

metals20, amongst other substances not of interest to this study13. The 

bonding mechanism between an alkanethiol and gold surface is usually 

described by the reaction: 

2

00

2
1 HAuAuSRAuHSR nn  

 

This is an oxidative/reductive reaction consisting of the oxidation of the S-H 

group producing a bond to the gold surface and the reductive elimination of 

hydrogen which produces hydrogen molecules. The reaction requires a clean, 

oxide free surface which is easy to obtain with gold and hence perhaps the 

reason gold has been studied in such depth. A similar reaction occurs when 

alkanethiols are exposed to silver21 and copper22, producing chemisorbed 

monolayers with similar structures but different tilt angles20. The wetting 

properties of the resultant coatings are very similar, with both polar and 

dispersive components of surface energy being similar for monolayers on the 

three different metal surfaces20. However increased attention to detail is 

required for the application of alkanethiols to silver and copper due to the 

presence of a native oxide layer. This is especially problematic in the case of 

copper. Once the oxide is removed SAMs are even used as a method of 

impeding its reformation4,5. Quoted values20 for polar and dispersive liquid 

contact angles suggest that application of alkanethiols will reduce the 

apparent surface energy of a surface sufficiently to stop epoxy bleed, and that 

the difference in surface energy between octadecanethiol coated copper, 

silver and gold surfaces is <1mJ/m2 (values calculated using the Owens 

Wendt method, being 19.59, 18.67 and 19.26mJ/m2 for copper, silver and 

gold respectively). 

5.5.2.3 Silane Monolayers on Ceramic Surfaces 

In this work the silanes used consisted of organic long chain molecules with a 

terminating group containing a silicon atom which is saturated with hydrogen 

(a methylsilane), chlorine (a chlorosilane) or another molecule. The main 
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group of silanes used were trichlorosilanes of the form CH3(CH2)nSiCl3. 

Trichlorosilanes are known to bond to hydroxylated aluminium oxide, silicon 

dioxide and copper (II) oxide with a strong, covalent Si-O bond23. Monolayers 

bond strongly to hydroxylated ceramic surfaces with enthalpies higher than 

those of alkanethiols and fatty acids16. Reported contact angle values24 for 

octadecyltrichlorosilane give a figure of 19.57mJ/m2 for apparent surface 

energy, which is sufficient for epoxy bleed control. However, the stability 

reported in the same work suggests that surface bonded 

octadecyltrichlorosilane has extraordinary resistance to thermal processing, 

which could lead to adhesion issues. It is possible that 

octadecyltrichlorosilane would  be useful in optoelectronic assembly only for 

patterning processes where SAMs are used as a wetting barrier, and not as a 

homogeneous surface coating. 

5.5.3 Methodology 

Epoxy bleed has been referred to numerous times as a phenomenon relating 

to the interaction between surface energy and surface tension, both in this 

work, and in the literature. Thus the key parameter to evaluate when working 

with SAMs for bleed control is the apparent surface energy, that being the 

measurable surface energy determined by contact angle methods which do 

not destroy the applied monolayers. This measurement method is particularly 

appropriate as both it, the phenomenon to be controlled (bleed), and adhesion 

involve wetting processes controlled by the top few angstroms of a surface. 

For these reasons contact angle analysis is used extensively throughout this 

work. 

The identification of a large presence of organic contaminants on the as-

received surfaces suggested a cleaning process would first be needed to 

remove contaminants which may interfere with chemisorption of SAM 

molecules. Plasma cleaning was therefore used to remove the majority of 

organic contaminants from the ceramics and a dilute HCl etch was used to 

remove the native oxide layer from copper samples. 

The first step in this section was the application and verification of formation of 

monolayers to the ceramic surfaces. Verification was judged by the change in 
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surface energy before and after application, measured by the two liquid 

contact angle method. The effect of chain length on the change in surface free 

energy was also identified by contact angle measurements.  

As with the previous chapters, adhesive joint strength testing, failure mode 

analysis and epoxy bleed measurements were performed where necessary  

to determine the effects of the monolayers upon the properties of bonding 

bleed. 

Gold is the top layer metallisation material of choice in Oclaro‘s optoelectronic 

assembly interconnections. Copper is used as a proxy material in this work, 

the justification for this can be found in Section 3 Methodology. 

For the coatings to be a successful solution to the epoxy bleed phenomenon 

they had to show effectiveness in consistently resisting bleed surfaces 

encountered in optoelectronic manufacture, i.e. aluminium oxide and 

aluminium nitride, and sample surface roughnesses over the range Ra value 

0.00084-0.58951μm). Therefore samples over this range of roughness were 

coated and analysed. 

The 90° wetting envelope of a surface (see Section 2.4.9 Calculating and 

Interpreting the Wetting Envelope) was used to interpret the surface energy 

results. The wetting envelope can be used to predict the formation of a 

composite bond. Adhesion studies frequently cite as a the general rule that 

poor adhesion results from an adhesive contact angle of >90, the wetting 

envelope line represents the range of liquid parameters which will form a 90° 

contact angle, where below this line the contact angle will be <90° and above 

it >90°.  

In this study SAM coated samples were generally used within two hours of 

coating. In an optoelectronics assembly line, such efficiency is not always 

possible and ceramic substrates may be stored for up to a month prior to 

use4. The implications of this potential storage time for the effectiveness of the 

coatings were therefore assessed by contact angle and epoxy bleed 

measurements. 

                                            
4
 Communication from Paul Firth of Oclaro plc (optoelectronics manufacturer) 
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Optoelectronic substrates surfaces do not consist of a single material, but 

instead carry metallisation patterns for interconnections. Epoxy bleed is a 

problem on both the ceramic and metallisation surfaces. Consequently a 

multi-stage coating method to produce a uniform surface energy on ceramics 

with gold or copper metallisations was developed and tested. The method is 

was the subject of a patent application, Section 9.2 Appendix 2 – Patent 

Application. 

The Epo-Tek H20E conductive epoxy loaded with silver used in this work is 

used in optoelectronic assemblies to form an electrically conductive bond 

between components and metallisations, where solder is not a suitable 

alternative. It was surmised that using a surface modification technique, which 

introduces an intermediate organic electrically insulative layer in the bond, 

could cause issues with conductivity. To test for this an experiment was 

devised to measure the resistance on bonds formed between modified and 

unmodified copper coupons. A four point probe test was used to measure this 

to mΩ resolution. Also of interest in this experiment was the effect of 

roughness upon the electrical conductivity. It has been shown previously that 

the silver flakes in the adhesives are larger than the peak-to-peak distance of 

the roughness profiles of the samples used in this study. It was theorised that 

the flakes would not penetrate effectively into the roughness profile, reducing 

the contact between silver and copper and increasing the interfacial 

resistance. Therefore some samples were prepared with a granular surface 

finish simulating that of an as-fired ceramic, as well as a polished finish. 

Finally octadecyltrichlorosilane monolayers are tested for their effectiveness 

as wetting barriers. These monolayers were applied to ceramics before being 

selectively removed with an oxygen plasma. 

 

5.5.4 Materials and Methods 

SAM compounds were sourced from Sigma Aldrich and Alfa Aesar and were 

purchased in the highest purity available, Table 5.5-1. Different chain lengths 

of each chemical family were purchased to allow study of the effect of chain 

length.  
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Compound Structure CAS number Source Purity

Perfluoropropionic acid CF3CF2COOH 422-64-0 Sigma Aldrich 97%

Perfluorooctanoic acid CF3(CF2)6COOH 335-67-1 Sigma Aldrich 96%

Perfluorododecanoic acid CF3(CF2)10COOH 307-55-1 Sigma Aldrich 95%

Perfluorooctadecanoic acid CF3(CF2)16COOH 16517-11-6 Alfa Aesar 97%

Hexyltrichlorosilane CH3(CH2)5SiCl3 213-178-1 Sigma Aldrich 97%

Octadecyltrichlorosilane CH3(CH2)17SiCl3 112-04-9 Sigma Aldrich 90%

Pentanethiol CH3(CH2)3CH2SH 110-66-7 Sigma Aldrich 98%

Octadecanethiol CH3(CH2)16CH2SH 2885-00-9 Sigma Aldrich 98%

 
Table 5.5-1 Compounds used for SAMs, their structures and source. 

The range of hypotheses tested in this section of the work required a number 

of different ceramic substrate types of varying surface properties. In the 

description of the experimental work in this chapter, substrates labelled 

‗commercial samples‘ are those which were prepared and diced by LEW 

Techniques (see Section 5.1 Characterisation of Surfaces and Adhesives). 

These substrates were used primarily when studying the effects of roughness. 

The lab prepared substrates (see Section 5.3 Identification and Removal of 

Contamination) were also used in this work and were labelled ‗lab prepared‘ 

5.5.5 Results and Discussion 

The application of SAMs from solutions and the preparations of surfaces was 

performed according to the methods in Section 4 Experimental Procedures.   

5.5.5.1 Characterisation of SAM Coated Ceramics 

5.5.5.1.1 Study of Chain Length 
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Sample Batch SAM Material Water CA Diiodomethane CA SE

1 1 3 Al2O3 9.2 74.2 81.33

2 1 8 Al2O3 79.7 86.8 25.35

3 1 12 Al2O3 91.0 94.0 17.55

4 1 3 AlN 52.4 102.4 61.94

5 1 8 AlN 75.6 95.1 30.09

6 1 12 AlN 106.9 101.8 9.76

7 2 12 Al2O3 118.0 107.4 6.46

8 2 3 AlN 35.2 70.7 63.73

9 2 8 AlN 98.9 105.3 13.08

10 2 12 AlN 105.7 103.3 9.98

11 3 3 AlN 48.4 66.4 50.93

12 3 3 Al2O3 35.8 61.4 60.78

13 3 8 AlN 83.6 87.2 22.51

14 3 8 Al2O3 96.4 99.3 14.35

15 3 12 AlN 114.5 108.9 6.79

16 3 12 Al2O3 103.1 111.5 11.08

17 4 18 Al2O3 112.4 107.8 7.42

18 4 18 Al2O3 121.4 113.1 5.00

19 4 18 AlN 122.1 110.8 5.35

20 4 18 AlN 122.2 111.4 5.22  
 

Table 5.5-2 Initial contact angle measurements of carboxylic acid coated aluminium oxide 
and aluminium nitride, where CA is contact angle in degrees and SE is surface energy in 
mJ/m

2
. SAM refers to the carbon chain length where 3 is perfluoropropionic acid, 8 is 

perfluorooctanoic acid, 12 is perfluorododecanoic acid and 18 is perfluorooctadecanoic acid. 
The batches were prepared on separate days. 

Table 5.5-2 shows the results of contact angle measurements on fluorinated 

carboxylic acid coatings on aluminium nitride and aluminium oxide. Each 

batch was prepared separately on different days to test for preparation 

sensitivity. All samples were tested following coating within 2 hours of coating 

completion. 

It can be seen from Table 5.5-2 that perfluoropropionic acid (chain length 3) 

does not yield consistent performance on either of the ceramic surfaces. The 

SAMs do appear to be more oleophobic than hydrophobic, suggesting 

modifications affected the dispersive component of surface energy whilst 

leaving the polar component relatively unchanged (e.g. for sample 1 the 

values are 6.55 and 75.08mJ/m2 for the dispersive and polar components of 

surface energy respectively). The reasons for this are not apparent. However, 

the lack of hydrophobicity means the coating would not be fully effective for 

prevention of epoxy bleed unless the bleed material is highly non-polar. 
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Coatings of perfluorooctanoic acid (chain length 8), samples 2, 5, 9, 13 and 

14 show a range of values for apparent surface free energy from 13.08mJ/m2 

to 30.09mJ/m2 which are independent of the bulk substrate material. This 

result shows that the fatty acid molecules do indeed chemisorb onto 

hydroxylated aluminium nitride probably due to the native aluminium oxide 

layer. The range of values measured for perfluorooctanoic acid means that 

consistency in controlling epoxy bleed could be an issue as one of the 

measurements lies outside the safe surface energy of 30mJ/m2. However, the 

two highest values of surface energy for this SAM were exhibited by samples 

2 and 5, both of which are from batch one. One explanation of the variation 

observed is that there was a particular problem with this batch caused by lack 

of experience with the application method or human error contributing to a 

lesser quality coating. This suggestion is made more likely by the fact that the 

surface energy obtained for sample 3 of batch 1 was the highest seen for 

perfluorododecanoic acid, at 17.55mJ/m2.  

The contact angles measured were yet higher (>100° for water, excluding 

batch 1), and the values more consistent batch to batch, for 

perfluorododecanoic acid (12 carbon chain). Surface heterogeneity therefore 

seems to affect the longer chain molecules less, possibly because they are 

able to extend across surface sites where there is no SAM attachment. 

Defects are extremely difficult to avoid in any SAM, however longer chain 

molecules seem to be more effective coatings when defects are present, this 

view is also supported by the literature25. 

Such defects may be related to the contamination previously seen by XPS on 

cleaned samples consisting of  quantities of contamination in the form of 

group 1 and 2 metals and organic contaminants, see Section 5.3 Identification 

and Removal of Contamination. Whilst it is likely that the SAM bonding 

displaces some weakly physisorbed organic contaminants, the XPS results 

reported in Section 5.3 suggest that plasma cleaning might encourage 

chemisorption of organics so that some contamination would not be 

displaced, and the SAM would consequently be expected not to bond or bond 

weakly. Group 1 and 2 metals would also interrupt the uniformity of the 

coating because of the associated presence of other metal oxides or other 
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metal species could create sites which are incompatible with the fatty acid 

group. Increasing the chain length again, with perfluorooctadecanoic acid 

(chain length 18), results in increased contact angles, decreased surface 

energy and a further increase in batch to batch reproducibility of 

hydrophobicity and oleophobicity. From the point of view of bleed resistance, 

both perfluorododecanoic acid and  perfluorooctadecanoic acid produce 

modified surfaces of sufficiently low apparent surface energy, with great 

enough consistency, to be potential candidates for use in manufacture. 
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Figure 5.5-2 Graph showing the relationship between fatty acid SAM molecule chain length 
and average apparent surface energy. 

Figure 5.5-2 shows the relationship between the carbon molecular chain 

length and the average measured apparent surface free energy. It can be 

seen that longer chain molecules are more effective at reducing the surface 

energy. Whilst it has been shown in the literature16 that monolayer chain 

length below can affect its contact angle only below 8 carbon atom chain. The 

current study shows a continued decrease of surface energy with increasing 

carbon chain length >8. However, the study in the literature was for thiols on 

gold surfaces, and monolayers of other types might show different properties. 

In the current study using fatty acid monolayers on commercial aluminium 

oxide and aluminium nitride, the best explanation for the observed results 

appears to be defects and the ability for longer chain molecules to protect 

these defects from penetration of the probe liquids. 
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Figure 5.5-3 shows the region near the carbon response peak of an XPS 

spectrum for perfluorooctadecanoic acid on aluminium oxide. Two peaks can 

clearly be seen which correspond to C1s and CF2
26. Although a peak for CF3 

would also be expected in  the spectrum at ~293eV27, it may either be hidden 

by the noise in the signal or the CF3 fraction present in the sample may have 

been reduced due to the sensitivity to damage of fluorinated polymeric 

materials to X-rays28. The bond area ratio of the CF2 to the C1s peak is 

approximately 48:52 which favours the C1s peak more than expected. This 

suggests that organic contaminants may still be present in high quantities on 

the surface, as a signal primarily from CF2 with trace COOR and CF3 would 

be expected from a uniformly coated surface29. 
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Figure 5.5-3 XPS carbon peak area for aluminium oxide coated with perfluorooctadecanoic 
acid. 

5.5.5.1.2 Study of Roughness 
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Figure 5.5-4 Contact angle data for perfluorooctadecanoic acid (18 carbon chain) and 
perfluorododecanoic acid (12 carbon chain) coated commercial samples. 

Figure 5.5-4 shows the contact angle data for commercial samples coated 

with fluorinated fatty acid monolayers. The roughness values are from the 

AFM measurements reported in Section 5.1.4.3 Surface Texture Parameter 

Measurement. 

It can be seen from the figure that there is a general trend for roughness to 

increase contact angles of both liquids, and as a result of this the calculations 

of surface energy are also lower. Sample 9, (polished Al2O3), exhibited 

consistently lower contact angles. It was thought this may be a side effect of 

polishing induced surface damage. However, as sample 3 (polished AlN) did 

not show the same effect, and the exact processing of sample 9 was not 

known, and given that only this sample produced this effect, it was considered 

unnecessary to explore this any further.   



 204 

40.0

60.0

80.0

100.0

120.0

140.0

1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70

Wenzel Roughness Factor

W
a

te
r 

C
o

n
ta

c
t 

A
n

g
le

 (
°)

18 C

12 C

 
Figure 5.5-5 Plot of water contact angles against AFM Wenzel Roughness Factor value for 
perfluorooctadecanoic acid (18C chain) and perfluorododecanoic acid (12C chain) coated 
commercial aluminium oxide and aluminium nitride samples.  

Figure 5.5-5 shows the general trend for the water contact angle to increase is 

also there when the Wenzel roughness factor is used as a measure of 

roughness. This correlation was also seen for diiodomethane contact angles 

with both roughness parameters. 

 

Figure 5.5-6 Water (right) and diiodomethane (left) droplets on a perfluorododecanoic acid 
treated AlN surface with high roughness Ra 0.589μm. Contact angles for both liquids >140°, 
sample surface energy 0.9mJ/m

2
. 

Figure 5.5-6 above demonstrates the hydrophobicity and oleophobicity of a 

perfluorododecanoic acid modified surface. The contact angles shown are 
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both in excess of 140°, and the effective surface energy calculated from the 

contact angles was 0.9mJ/m2. The high contact angles are due to the 

combined effect of the SAM coating and of the high roughness of the sample. 

Results such as this caused concern for the magnitude of the adhesion 

strengths which might be expected to be obtained for joints formed on fatty 

acid SAM treated surfaces. since it is generally accepted that good wetting is 

imperative for good adhesion30. 

5.5.5.1.3 Adhesive Joint Strength Testing 

 

Figure 5.5-7 Tensile testing curve for perfluorododecanoic acid coated sample 1. Single lap 
shear joint bonded with home made adhesive. 

 
Figure 5.5-8 Tensile testing curve for perfluorooctadecanoic acid coated sample 3. Single lap 
shear joint bonded with the home made adhesive. 

Single lap shear joints were prepared and tested until failure according to the 

methods given in Section 4.11 Tensile Testing. Joints were prepared with 
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both commercial adhesives and the home made adhesive, with commercial 

ceramic samples and with the lab prepared samples. The home made 

adhesive was used to avoid the filler material inducing cohesive failure in lap 

joints, as observed in Section 5.2.4.2 Bond Strength Analysis. Surprisingly in 

view of the low surface energies, cohesive failure was observed for all the 

samples tested. In addition the chain length of self assembled monolayer 

used had no effect on adhesion strength, and neither did roughness. This was 

not expected as it appears to contradict adhesion theory31. Figure 5.5-7 and 

Figure 5.5-8 show some representative results from the tensile testing 

investigation. It is clear that extremely strong bonds are formed between 

samples which have an effective surface energy lower than 13.9mJ/m2. Bond 

areas were in the region of 16mm2 and load-at-failure >1200N, giving 

breaking shear stresses >75N/mm2. This is more than the observed 60N/mm2 

of the as-received samples and the unfilled adhesive seen previously. Thus it 

appears use of the fatty acid SAMs allows surface energy to be reduced with 

no detrimental affect on adhesion. The reasons for this are explored in 

Section 5.5.5.5 Adhesive Wetting on SAM Coated Ceramics below. 

5.5.5.1.4 Epoxy Bleed Control 

Epoxy bleed was measured on fatty acid (carbon chain lengths 3, 8, 12 and 

18) coated surfaces using the adhesives H20E, 930-4 and the home made 

adhesive, using the method described in 4.13 Epoxy Bleed Measurements. In 

contrast to the previous results, Section 5.2.4.3 Epoxy Bleed, the 930-4 boron 

nitride filled adhesive was not seen to bleed a greater distance than the other 

adhesives. The adhesive bleed distance was found to be determined by the 

substrate modification and not the adhesive. Figure 5.5-9 below shows the 

results of the epoxy bleed measurements on different fluorinated fatty acid 

SAM coated Al2O3 lab prepared samples, with boron nitride filled 930-4 

adhesive. 
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Figure 5.5-9 Graph showing the relationship between the chain length of a fluorinated fatty 
acid SAM and the maximum bleed distance (930-4 epoxy) witnessed following coating, 
application of adhesive and curing. 

The coatings are highly effective at reducing bleed with a maximum   

reduction from 1400 microns to 25 microns, which was seen with the longest 

chain SAM.  It is clear from Figure 5.5-9 that a longer chain molecule used for 

the SAM will reduce bleed more effectively than a SAM prepared from a 

shorter chain. This is probably due to the defect related mechanism discussed 

in Section 5.5.5.1.1 Study of Chain Length. 

 

Figure 5.5-10 SEM image of epoxy bleed from silver filled epoxy (H20E) on a 
perfluoropropionic acid coated aluminium nitride surface. 
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Figure 5.5-10 shows an SEM image of epoxy bleed from H20E (silver filled) 

adhesive on a CF3CF2COOH (perfluoropropionic acid) modified aluminium 

nitride surface. It is clear that while the very short chain coating has not 

completely stopped bleed, it has reduced it markedly from the distance spread 

on an unmodified surface. Table 5.5-3 shows that the perfluoropropionic acid 

coating reduced mainly the dispersive component of surface energy. Thus the 

reduction in the epoxy bleed distance as a result of the perfluoropropionic acid 

modification would suggest that the bleed material is largely non-polar. 

 

Figure 5.5-11 SEM image of epoxy bleed from silver filled epoxy (H20E) on a 
perfluorooctanoic acid coated aluminium nitride surface. 

Figure 5.5-11 shows the maximum epoxy bleed distance from silver filled 

(H20E) adhesive is slightly less with the longer perfluorooctanoic acid (8 

carbon atoms) (105μm) than with perfluoropropionic acid (3 carbon atoms) 

(122μm). This is consistent with the surface energy measurements obtained 

with the two modifications. Figure 5.5-12 shows the correlation between the 

dispersive component of apparent surface energy and the distance epoxy 

bleed has spread. There is also a correlation seen between bleed distance 

and the polar component of surface energy for the SAM coated surfaces. 

However, unlike for the dispersive component, the bleed distance does not 

tend towards that for an untreated surface with reducing chain length 

(increasing SE). It is unclear why this should be the case. This relationship 
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between bleed and the dispersive component of surface energy has been 

seen on unmodified ceramic surfaces in Section 5.2.4.3 Epoxy Bleed. 

SAM Polar SE Dispersive SE

3 54.8 9.0

8 14.9 6.1

12 5.3 5.0

18 1.5 4.3  

Table 5.5-3 Mean dispersive and polar components contributions to total surface energy of 
SAM modified ceramics where SAM number refers to carbon chain length of fatty acid. Polar 
SE is the polar component of surface energy (mJ/m

2
) and dispersive SE is the dispersive 

component of surface energy (mJ/m
2
). 
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Figure 5.5-12 Plot of dispersive component of apparent surface energy against maximum 
epoxy bleed distance for fatty acid SAM modified surfaces, and an untreated surface. 

 

Untreated 

Al2O3 
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Figure 5.5-13 Plot of polar component of apparent surface energy against maximum epoxy 
bleed distance for fatty acid SAM modified surfaces, and untreated surface. 

 

Figure 5.5-14 SEM image of epoxy bleed from silver filled epoxy (H20E) on a 
perfluorododecanoic acid coated aluminium nitride surface. 
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Figure 5.5-15 SEM image of epoxy bleed from silver filled epoxy (H20E) on a 
perfluorododecanoic acid coated aluminium oxide surface. 

Figure 5.5-14 and Figure 5.5-15 show the more consistent performance of the 

higher chain length SAM (perfluorododecanoic acid, 12 carbon atoms) at 

inhibiting epoxy bleed, when compared with  Figure 5.5-10 and Figure 5.5-11 

for the short chain SAM coatings. For the short chain coatings although the 

majority of the circumference of the adhesive spot shows limited bleed of 

~30μm, there were discrete areas where bleed occurred to an unacceptable 

amount of >100μm. The longer chain SAMs, whilst not stopping bleed 

completely, demonstrate higher consistency at repelling the bleed (~30μm 

halo for perfluorododecanoic acid, ~20μm halo for perfluorooctadecanoic 

acid) with no discrete areas of more extensive bleed. The more constant 

bleed distance around the circumference suggests enhanced homogeneity of 

the coating over the shorter chain molecules. This result supports the 

previous conclusion that the lower surface energy achieved with longer chain 

length is due to enhanced homogeneity in the structure of the SAM, and not a 

direct effect of the chain length itself.  

It can be also be seen that the substrate bulk material does not have an effect 

on the bleed distance, with similar results produced for both AlN and Al2O3. 

The discussion above has treated the occurrence of epoxy bleed as an 

expected result. In fact it is unexpected that a liquid with a surface tension 

above 10mN/m should spread over surfaces with such low apparent surface 
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energies, <1mJ/m2 for sample 7 treated with perfluorododecanoic acid and 

consistently < 6mJ/m2 for samples treated with perfluorooctadecanoic acid.  

5.5.5.2 Stability of SAMs Over Time 

Figure 5.5-16 shows the water contact angle measurements for aluminium 

oxide and aluminium nitride coated with three different fatty acid monolayers 

at differing lengths of time after preparation.  

It is clear from the data that the monolayers formed by perfluoropropionic acid 

(chain length 3) are not stable and homogenous. There is extremely large 

variation between sample sets with no general trend. Therefore this SAM 

should be ruled out as a potential solution to epoxy bleed because it fails to 

provide any of the properties required. The perfluorooctanoic acid and 

perfluorododecanoic acid show a general trend for increasing contact angle 

over the first 48 hours which then stabilises, and remains stable to the end of 

the experiment at 28 days. 
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Figure 5.5-16 Plot of the change in water contact angles for perfluoropropionic acid (3C), 
perfluorooctanoic acid (8C) and perfluorododecanoic acid (12C) coated aluminium nitride and 
aluminium oxide over 28 days. 

It is possible that the increase in contact angle is due to contaminants 

adsorbing. However, this would only account for a small increase since the 

absorption rates are small (as measured with tin foil wrapped samples in 

Section 5.3 Identification and Removal of Contamination). It seems that 



 213 

increased ordering of the SAMs in the time after application is more likely to 

be the cause. The increased water and diiodomethane contact angles would 

be due to their increased exposure to CF3 groups as the chains become more 

ordered and the CF2 backbone is less exposed. 

The results suggest that in industrial use the SAMs should consistently repel 

bleed up to and exceeding 28 days after application of the monolayer. Tests 

with the commercial and home made adhesives confirmed that the coatings 

were equally as effective at inhibiting bleed after 28 days as they have been 

shown to be immediately after application. 

5.5.5.3 Thiol Coating of Copper 

Gold is a frequently used top layer metallisation material for interconnects in 

optoelectronic assemblies. As explained previously, copper is used in this 

work as a cheap substitute for gold. 

Octadecanethiol was chosen as a copper coating agent as extensive work 

has been done with this particular SAM, and it was known to be stable and 

durable. Copper samples were first polished, mounted and etched. 

Octadecanethiol SAMs were then applied using the methods outlined in 

Section 4 Experimental Procedures. Pentanethiol was also tested in the same 

experiments so the effect of chain length could be probed. 

The octadecanethiol coated samples yielded mean contact angles of 126.6° 

and 96.3° for water and diiodomethane. These values equate to an apparent 

surface energy of 11.04mJ/m2 which was lower than reported in the 

literature20, and were regarded as indicating an acceptable quality of coating. 

The mean pentanethiol contact angles were 105.9° and 65.4° which were 

equivalent to an apparent surface energy of 26.36mJ/m2. 

Epoxy bleed measurements were also made for copper using the same 

method as with the fatty acid monolayers. It was found that epoxy bleed was 

controlled to within 25μm of the edge of the droplet with an octadecanethiol 

self assembled monolayer, and 40μm of the edge of the droplet with 

pentanethiol. The effect of roughness seen with untreated copper, Section 

5.2.4.3.2 Copper, was not seen with monolayer treated copper, i.e. the bleed 

material did not spread along the scratches. 
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Lap shear joints were prepared between copper coupons as described in 

Section 4.2 Copper Surface Preparations. Unlike the fatty acid monolayers, a 

change in shear strength was seen between treated and untreated surfaces. 

In addition there was an effect of chain length. 

 

Figure 5.5-17 Load vs. extension plot for pentanethiol coated copper single lap joint prepared 
with home made adhesive, showing a breaking shear force of  808.82N. 
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Figure 5.5-18 Chart to show the effect of SAM chain length upon mean breaking shear force 
of copper lap joint samples prepared with home made adhesive. Chain length 5 denotes 
pentanethiol and 18 octadecanethiol treatment. 
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Figure 5.5-17 shows a typical force versus extension plot for a bond prepared 

with the home-made adhesive between two copper coupons both coated with 

pentanethiol. It can be seen in Figure 5.5-18 that the breaking shear force is 

on average (at least 5 joints prepared for each condition) 30% weaker than a 

bond produced from untreated copper pieces with the same adhesive. Unlike 

with the fatty acid monolayers, this result is consistent with the measured 

surface energy changes. Figure 5.5-19 shows the 90° wetting envelope for a 

copper surface modified with pentanethiol. It can be seen that there is only a 

small range of tensions over which the contact angle of the adhesive on the 

surface would be expected to be <90°. Only if the surface tension 

components of the adhesive fall within this region would it be expected that 

the SAM would cause no reduction in shear force. In fact it is probable that 

the actual adhesive properties lie slightly outside of the wetting envelope for 

this coating, consistent with the measured adhesion strength being 30% 

lower. This conclusion suggests that the adhesive has predominantly 

dispersive components of surface tension, for if this were not the case no 

reduction in breaking shear stress should be seen as the point on Figure 

5.5-19 corresponding to the adhesive properties would then lay far outside of 

the 90° wetting envelope. However, this assumption is supported by evidence 

from the epoxy bleed measurements.  

Figure 5.5-20 shows the wetting envelope for octadecanethiol coated copper. 

It can be seen that not only is there no intersection between the adhesive 

properties line and the wetting envelope, but also that the lines do not even 

pass close to each other. This is consistent with the reduced adhesion 

strength over the pentanethiol in Figure 5.5-18. 
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Figure 5.5-19 90° wetting envelope for a copper sample modified with pentanethiol with a plot 
for the possible adhesive properties of the home made adhesive (of total surface tension 
50.09mN/m) 
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Figure 5.5-20 90° wetting envelope for a copper sample modified with octadecanethiol with a 
plot for the possible adhesive properties of the home made adhesive (of total surface tension 
50.09mN/m) 

Finally the stability of the surface energy of the coatings over time was 

determined. Figure 5.5-21 shows that unlike the fatty acid monolayers, 

octadecanethiol has a slight trend for the increase of surface energy over 

time. This is likely due to the penetration of oxygen through the monolayer4 
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and oxidation of the underlying copper, weakening the crystallinity of the 

coating and the homogeneity seen by the test liquids. 
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Figure 5.5-21 Results of storage contact angle experiment on thiol treated copper. 

5.5.5.4 OTS Coating of Ceramics 

A similar series of experiments was undertaken with octadecyltrichlorosilane 

(chain length 18) and hexyltrichlorosilane (chain length 6) as with the thiols. 

The data for the contact angle and surface energy properties of the surfaces 

is given in Table 5.5-4. Interestingly lower dispersive components of surface 

energy are seen for hexyltrichlorosilane than octadecyltrichlorosilane, this 

trend was not seen with other SAM types. The lower dispersive component of 

surface energy translates into a lower calculated surface energy. However the 

hexyltrichlorosilane does show a lower hydrophobicity than the 

octadecyltrichlorosilane. 

SAM Material Water CA Diiodomethane CA Pol Disp SE

18 AlN 110.7 84.3 0.31 14.88 15.19

18 Al2O3 115.7 84.2 0.00 15.91 15.91

6 AlN 98.1 89.7 5.03 9.77 14.79

6 Al2O3 100.6 88.1 3.51 10.98 14.48  

Table 5.5-4 Contact angle and surface energy data for silane modified aluminium oxide and 
aluminium nitride where CA is contact angle in °, Pol is polar component of surface energy in 
mJ/m

2
, Disp is dispersive component of surface energy in mJ/m

2
 and SE is total surface 
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energy in mJ/m
2
, those labelled 18 are octadecyltrichlorosilane (18 C chain) treated samples 

and those labelled 6 are hexyltrichlorosilane (6 C chain) treated samples. 

For the first time in this work epoxy bleed was seen to be completely 

eradicated by the treatments. No visible bleed was present with the home 

made adhesive or either of the two commercial adhesives. The reason for this 

is investigated in Section 5.5.5.5 Adhesive Wetting on SAM Coated Ceramics. 

Coating Home Made BN Sil

6 327.96 350.47 80.97

18 120.345 59.68 6.89  
Table 5.5-5 Mean breaking shear force (in N) data for octadecyltrichlorosilane (18 C chain) 
and hexyltrichlorosilane (6 C chain) with home made adhesive boron nitride filled adhesive 
(BN) and silver filled adhesive (Sil). 

Table 5.5-5 shows the breaking shear force data for single lap shear joints 

prepared between the different adhesives and the ceramic adherends. For the 

home made adhesive both of the coatings show a large decrease from the 

untreated surface breaking shear force of 714N. However, unlike with the 

thiols, no correlation is seen between surface energy and breaking shear 

force. But there is a correlation with chain length. 

 
Figure 5.5-22 Plot of 90° contact angles for octadecyltrichlorosilane modified surfaces 
(labelled 18) and hexyltrichlorosilane modified surfaces (labelled 6). Linear line represents 
possible adhesive properties for the home made adhesive with a surface tension of 
50.09mN/m. 

Figure 5.5-22 shows the 90° wetting envelopes for the two different silane 

coatings on the two different materials. It is clear that all samples would be 

expected to give a contact angle >90° consistent with the observed reduction 
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in shear force over an untreated surface. However, despite the similar surface 

energies calculated for the two coatings the joints prepared with 

octadecyltrichlorosilane and hexyltrichlorosilane fail at different shear forces. 

The reason for this is explored in Section 5.5.5.5 Adhesive Wetting on SAM 

Coated Ceramics. 

The stability of the silane monolayers was studied as with the fatty acid SAMs 

and thiol SAMs. Table 5.5-6 and Table 5.5-7 show that there was some 

variability over time, but no general trends of increasing or decreasing contact 

angles or surface energy are seen. The coatings were stable up to 28 days, 

and bleed measurement performed at 28 days continued to yield a zero bleed 

distance. 

Time (days) Water CA Diiodomethane CA SE

2 128.9 89.4 15.91

7 138.7 72.0 36.15

14 141.6 95.6 15.75

28 130.4 95.9 12.11  
Table 5.5-6 Results of storage contact angle experiment on octadecyltrichlorosilane treated 
AlN where CA is contact angle in ° and SE is apparent surface energy in mJ/m

2
. 

Time (days) Water CA Diiodomethane CA SE

2 132.2 89.5 16.93

7 129.1 85.0 19.28

14 130.5 93.1 13.93

28 133.3 93.8 14.26  
Table 5.5-7 Results of storage contact angle experiment on octadecyltrichlorosilane treated 
Al2O3 where CA is contact angle in ° and SE is apparent surface energy in mJ/m

2
. 

 

5.5.5.5 Adhesive Wetting on SAM Coated Ceramics 

In the work reported in this section the reasons for the discrepancies 

observed between surface wetting measurements and adhesive behaviour for 

the fatty acid SAMs were explored. In particular the dynamic wetting 

behaviour of the adhesives was studied to see if the adhesive contact angles 

could be correlated with shear force data, even though contact angle 

measurements with water and diiodomethane could not. 

One of the simplest explanations for the behaviour of the adhesive was that 

under cure conditions at 150°C the fatty acid coatings undergo a breakdown 

which allows the adhesive to adhere to the underlying ceramic. To test this 

hypothesis ceramics were coated with fatty acid monolayers and then 
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underwent a typical temperature treatment for adhesive cure, 150°C for 30 

minutes. 

SAM Material Water CA Diiodomethane CA SE

3 Al2O3 78.9 64 29.31

3 AlN 55.9 69.4 44.59

Mean 3 Both 36.2 75.02 63.7

8 Al2O3 99.2 81.5 17.01

8 AlN 105.2 81.4 16.54

Mean 8 Both 86.8 94.7 21.1

12 Al2O3 133.6 115.2 4.24

12 AlN 128 112.4 4.79

Mean 12 Both 106.5 104.5 10.3  
Table 5.5-8 Surface energy and contact angle data for perfluoropropionic acid (3 C chain), 
perfluorooctanoic acid (8 C chain) and perfluorododecanoic acid (12 C chain) coated AlN and 
Al2O3 surfaces following an adhesive cure schedule of 150°C for 30 minutes. Where CA is 
contact angle in ° and SE is apparent surface energy in mJ/m

2
. Those labelled ‗Mean‘ are 

mean values from the original treatments which were not heat treated, included for 
comparison. 

Table 5.5-8 shows that the coatings are stable after exposure to elevated 

temperatures. The water and diiodomethane contact angles are similar to 

those measured when no thermal treatment was applied, Table 5.5-2. These 

measurements suggest that the unexplained bond strength is not due to 

thermal breakdown of the coating. 

Using the contact angle goniometer, Section 4.4 Contact Angle, time resolved 

measurement of the contact angles of the adhesives on the fatty acid modified 

surfaces was attempted. This was found to be problematic with the silver 

adhesive due to its thixotropic nature and resistance to forming an equilibrium 

sessile drop shape. 
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Figure 5.5-23 Wetting of the thixotropic silver filled adhesive on a perfluorooctadecanoic acid 
treated aluminium oxide surface after (a) 10 minutes (b) 20 minutes (c) 30 minutes (d) 60 
minutes. 

However, it was noticed, whilst attempting to measure the contact angle, that 

the adhesive footprint was slowly growing in area on the modified surface, 

suggesting wetting of the adhesive despite the unfavourable difference in 

surface energy/tension. Figure 5.5-23 shows the slow migration of the three 

phase interface of the adhesive across the surface of perfluorooctadecanoic 

acid coated aluminium oxide over an hour long period. 

The experiment was repeated for boron nitride filled adhesive (930-4) which 

formed an equilibrium sessile droplet shape, allowing the contact angle to be 

measured. This is due to the boron nitride filled adhesive being shear thinning 

and not shear thickening as with the silver filled (H20E) adhesive. Figure 

5.5-24 shows the migration of the three phase interface of a droplet of the 

adhesive across perfluorododecanoic acid coated aluminium nitride. 

(a) 

(a) 

(b) 

(b) 

(c) 

(c) 

(d) 

(d) 
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Figure 5.5-24 Wetting of boron nitride loaded epoxy (930-4) on a perfluorododecanoic acid 
coated aluminium nitride surface after (a) 30 minutes (b) 60 minutes (c) 120 minutes 
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Figure 5.5-25 Plot of the change of contact angles of boron nitride filled adhesive on 
aluminium nitride and aluminium oxide surfaces coated with perfluorododecanoic acid (12C) 
and perfluorooctadecanoic acid (18C). 

Figure 5.5-25 shows the change in contact angle over time for the boron 

nitride filled adhesive over aluminium oxide and aluminium nitride surfaces 

modified with the two long chain fatty acid SAMs, perfluorododecanoic acid 

and perfluorooctadecanoic acid. It can be seen that both systems reduce in 

contact angle quickly after application from >90° to ~70° before an almost 

constant rate of contact angle reduction is reached after 10 minutes. 

Interestingly the perfluorododecanoic acid produced consistently higher 

contact angles for both aluminium oxide and aluminium nitride. The reason for 

(a) (b) 

(c) 
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this is not clear. The above graph shows the adhesive does in fact wet the 

coated surfaces, despite the apparently unfavourable surface 

energies/tensions. Good wetting is consistent with good adhesion, but the 

reason why the wetting itself occurs is not clear.  
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Figure 5.5-26 Plot of the change of contact angle of home made adhesive on aluminium 
oxide coated with perfluorooctadecanoic acid 

The experiment was repeated for the home made adhesive and yielded much 

the same result, Figure 5.5-26. For comparative purposes the home made 

adhesive was also applied to clean aluminium oxide and aluminium nitride 

samples and the change in contact angle was recorded over 3 hours. Figure 

5.5-27 shows the results of this experiment. Here the adhesive behaves 

differently. After an initial wetting phase which is time dependent due to the 

viscosity of the adhesive, the contact angle stabilises at around 50°.  
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Figure 5.5-27 Plot of the dynamic contact angles of the home made adhesive on untreated 
aluminium nitride and aluminium oxide surfaces 

It was hypothesised that particular constituents of the adhesive could be 

causing the time dependent wetting behaviour seen with the epoxy adhesives 

on the fatty acid modified surfaces. To test this an experiment was devised 

where the behaviour of the different components of the home made adhesive 

were measured separately. Lab prepared ceramics were coated with fatty 

acid monolayers and wetting measurements performed with the 3 

components of the home made adhesive, 1,2-propanediol (solvent), 2-ethyl-4-

methylimidazole (curing agent) and poly[(phenyl glycidyl ether)-co-

formaldehyde] (plastic component). 
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Figure 5.5-28 Contact angles over time for the curing agent and solvent components of the 
adhesive on perfluorooctadecanoic acid coated aluminium oxide.  

Figure 5.5-28 shows a plot of the contact angles of the curing agent dissolved 

in 1,2-propanediol, the polymer constituent of the adhesive and 1,2-

propanediol. It can be seen in Figure 5.5-28 that the curing agent solution did 

not form a stable contact angle on the surface and that the solvent by itself 

does not show the same behaviour. It therefore seems probable that the 

wetting behaviour is due to the reactive curing agent stripping off the fatty acid 

monolayer and that it has the same effect when mixed in to the adhesive. 

Due to the covalent bond between the SAM material and the hydroxylated 

aluminium oxide surfaces, it was theorised that the behaviour of the curing 

agent could be a property of the liquid and not a surface phenomenon. 

Contact angles were plotted in the same way for the boron nitride filled 

adhesive on a clean Teflon surface. This was done for comparative purposes 

as a Teflon surface is chemically equivalent to a homogenously coated 

fluorinated fatty acid surface. Each consists of saturated fluorocarbons. This 

result was compared with a plot of the behaviour of the adhesive on an 

octadecanethiol coated copper surface, a perfluorooctadecanoic coated 

surface and a perfluorododecanoic acid coated surface as shown in Figure 

5.5-29. 
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Figure 5.5-29 Dynamic Contact angles of boron nitride filled adhesive on Teflon, 
octadecanethiol (18C) coated copper surface, perfluorododecanoic (12C) acid coated 
aluminium nitride surface and perfluorooctadecanoic acid (18 C) coated aluminium nitride. 

The boron nitride filled adhesive formed a stable contact angle on the Teflon 

surface. However, similar behaviours of gradually reducing contact angle 

were seen with the SAM coated surfaces. Although decrease for the 

octadecanethiol is initially slower than that for the fatty acid spreading, the 

rates are approximately equivalent after 20 minutes. 
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Figure 5.5-30 Plot of change in contact angles of curing agent and boron nitride filled 
adhesive on a Teflon surface over 90 minutes. 
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To confirm that the curing agent shows no unexpected wetting behaviour on a 

Teflon surface the curing agent solution was also applied to Teflon, as shown 

in Figure 5.5-30, along with the boron nitride data from the previous figure for 

comparison. A stable contact angle was also formed by the curing agent. The 

results shown in the two figures suggest that there is indeed an interaction 

between the curing agent and the fatty acid coated ceramics and that the 

reduction of the contact angle is not a physical equilibration phenomenon. 
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Figure 5.5-31 Plot of the contact angle change of the curing agent on an octadecanethiol 
coated copper surface, Teflon, perfluorooctadecanoic acid and octadecyltrichlorosilane 
coated aluminium nitride and aluminium oxide. 

Plots of the changing contact angle of the curing agent in solution behaviour 

on SAM modified surfaces are shown in Figure 5.5-31. It seems from the 

results that the rate of wetting is proportional to the strength of the covalent 

bond formed between the SAM molecule and the substrate16. Only Teflon is 

seen to have a stable contact angle for the curing agent over time. The 

interpretation of Figure 5.5-31 explains the higher than expected shear forces 

for the bonds seen in Section 5.5.5.1.3 Adhesive Joint Strength Testing. The 

curing agent seems to displace, or remove the low surface energy effects of, 

the underlying self assembled monolayer. This is consistent with the 

correlation observed between the wetting rate and the bleed resistance 

efficacy of the SAM on the wetted surface. The slower wetting rate and hence 

reduced rate of displacement seen with the octadecyltrichlorosilane is 
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probably due to its strong Si-O covalent bond and the inter-chain Si-O-Si 

bonds which are known to form in the presence of sufficient water16. The 

tenacity of this monolayer probably inhibits the contact between adhesive and 

ceramic, resulting in only weak attraction between monolayer and adhesive 

and therefore a weak adhesive bond. 

Adhesives and the curing agent were left on surfaces for up to 24 hours to 

see if the contact angle changed consistently over this time. The contact 

angles continued to decrease, especially for the curing agent as shown in 

Figure 5.5-32. The adhesives continued to spread, but because they were 

complete formulations they slowly cured as the experiment progressed, with 

wetting stopping after approximately 7 hours. 

              
Figure 5.5-32 Change in contact angle of 2-ethyl-4-methylimidazole (dissolved in 1,2-
propanediol) over 20 hours on a octadecanethiol treated copper surface. 

The effect of roughness upon the wetting of adhesives on the fatty acid 

coatings was also studied as roughness has been seen to increase bleed 

distance, Section 5.2.4.3 Epoxy Bleed. 
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Figure 5.5-33 Plot of boron nitride adhesive contact angles on a rough (sample 7 from the 
commercially prepared sample set, lapped AlN, Ra 0.59μm) and polished (sample 3 from the 
commercially prepared sample set, polished AlN, Ra 0.01μm) surface coated with 
perfluorooctadecanoic acid (18 C chain). 

Figure 5.5-33 shows a small difference in wetting behaviour of the boron 

nitride filled adhesive on perfluorooctadecanoic acid (18 C chain) coated 

surfaces of different roughness. After 30 minutes the rough surface (AFM Ra 

0.58951μm) showed a slightly higher wetting rate than the polished surface 

(AFM Ra 0.01074μm). The difference is too small for there to be any likely 

effect on bonding strength. 

5.5.5.5.1 Behaviour of Adhesives on Adventitious Carbon 
Contaminated Ceramics 

The behaviour of the curing agent was also measured for AlN and Al2O3 

samples with adventitious carbon contamination, the characterisation of which 

is reported in Section 5.3 Identification and Removal of Contamination (Ra 

~0.2μm, as-fired, stored in polymer waffle packs in a clean room for one 

month). The samples exhibited approximately 30% adventitious carbon signal 

and an apparent surface energy of 23mJ/m2. The results of this experiment 

are shown in Figure 5.5-34. The same gradual wetting behaviour is seen as 

with the fatty acid coatings. A noticeable difference is in the initial wetting 

period which is qualitatively different for a fatty acid coating. In the first 10 

minutes the contact angle on the fatty acid coating drops quickly, following 
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which the wetting rate slows, and becomes approximately equivalent to the 

adventitious carbon wetting behaviour, as can be seen in Figure 5.5-34 below. 
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Figure 5.5-34 Wetting of the curing agent solution on adventitious carbon contaminated 
aluminium oxide and aluminium nitride samples. Included for comparison is the wetting 
behaviour of BN epoxy on perfluorododecanoic acid (12 carbon chain) coated AlN. 

5.5.6 Analysis of Interaction of Curing Agent with SAM Coated 
Surfaces 

5.5.6.1 Experimental Procedures 

A number of different experiments were devised to investigate mechanisms of 

removal or the penetration of SAMs by the curing agent. Firstly a test was 

done to verify that the SAMs were chemisorbed onto the ceramic surfaces 

and not physisorbed. The test consisted of contact angle measurements 

made after exposure of SAM coated surfaces to ultrasonics in 60°C deionised 

water for 2 minutes followed by 5 minutes of rinsing with 60°C deionised 

water. As is described in Section 4.6 FCOOH Coating, deionised water at this 

temperature is the solvent used for application of the monolayers and  would 

therefore be expected to dissolve the monolayer, should it be only weakly 

attached to the ceramic surface, upon agitation with ultrasonics. One would 

expect the molecules to diffuse to equalise the concentrations of the surface 

and the solvent. This is desorption which is the reverse of adsorption. At 

equilibrium physisorption the processes occur at equivalent rates. By putting 
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the samples in a system which is not in equilibrium (in a solvent of adsorbate 

concentration of zero) some desorption should be seen should physisorption 

be the adsorption process. 

The second experiment was devised to test for the removal of the SAMs by 

the adhesives. Ceramic samples were treated as usual, Section 4.6 FCOOH 

Coating, to coat them with fatty acid SAMs. They were then exposed to both 

the home made and commercial adhesives for 18 hours. After this exposure 

the samples were thoroughly cleaned with acetone for 5 minutes each to 

remove all traces of adhesive and dried in a room temperature air flow for 5 

minutes. Following this XPS analysis was performed. There were 5 samples: 

sample 1 was a control sample to ensure the acetone clean did not remove 

the coating (rinsed with acetone following coating only). Sample 2 was 

perfluorooctadecanoic acid (18 C chain) treated aluminium nitride exposed to 

the home made adhesive. Sample 3 was perfluorooctadecanoic acid (18 C 

chain) treated aluminium nitride exposed to silver filled adhesive. Sample 4 

was perfluorooctadecanoic acid (18 C chain) treated aluminium nitride 

exposed to boron nitride filled adhesive and sample 5 was 

perfluorododecanoic acid (12 C chain) coated aluminium nitride exposed to 

the silver filled adhesive. 

Finally XPS analysis of the adhesive curing agent (2-ethyl-4-methylimidazole) 

was performed along with analysis of a lab prepared ceramic sample which 

had been exposed to the compound for 24 hours. 

5.5.6.2 Results and Discussion 

The contact angle measurements following the physisorption test treatment 

are given in Table 5.5-9. It can be seen that the contact angles measured are 

not decreased by the treatment but are consistent with previous results, Table 

5.5-2. Hence it can be concluded that the coatings are indeed chemisorbed. 

SAM Material Water CA Diiodomethane CA SE

12 Al2O3 111.5 101.3 8.77

12 AlN 107.3 107.2 9.06

18 Al2O3 123.1 111.5 4.37

18 AlN 129.7 119.6 3.27  
Table 5.5-9 Contact angle and surface energy measurements for perfluorododecanoic acid 
and perfluorooctadecanoic acid coated AlN and Al2O3 surfaces following thorough wash with 



 232 

DI water at 60°C for 5 minutes. Where CA is contact angle in ° and SE is surface energy in 
mJ/m

2.
 

 

Sample C O F Al B N S Na Si

1 23.2 11.9 25 19.3 1.1 19.7 0 0 0

2 40.5 24 1.2 15.2 3.1 16 0 0 0

3 66.1 15.3 2.3 5.8 0 5.6 1.4 1.1 2.4

4 36.3 18 3.8 21.6 2 18.3 0 0 0

5 52.7 20.4 5 11.4 0 7.2 1.3 2 0  
Table 5.5-10 Relative atomic compositions of aluminium nitride surfaces from XPS following 
adhesive exposure for 18h. 

Table 5.5-10 shows the relative atomic compositions for the elements found 

on the treated surfaces after the adhesive had been removed. The key 

measurement in this study was the abundance of fluorine. Presence of 

fluorine on the samples in high percentages indicates that the fatty acid 

monolayer is still present. Sample 1 (control) shows similar  atomic 

percentages of fluorine and carbon. Analysis of the carbon peak revealed that 

the bond type ratio of C1s and CF2 was approximately 50:50, Figure 5.5-35, 

as seen in previous analysis of good quality coatings, Figure 5.5-3. A 

proportion of the signal is also attributable to the underlying bulk material, 

showing ~20% of aluminium and nitrogen from the aluminium nitride. This 

shows that the 25% reading for fluorine does not represent a 25% surface 

coverage, just 25% of the signal from the three dimensional area sampled by 

the beam. 
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Figure 5.5-35 Carbon peak area for perfluorooctadecanoic acid treated aluminium nitride 
before cleaning with acetone to test for removal 

Sample 2 (perfluorooctadecanoic acid) shows an increase in the carbon and 

oxygen signals, and large reduction of the fluorine signal (25%  1%) due to 

the adhesive treatment. The occurrence of aluminium and nitrogen in the 

spectra confirms that the bulk material is still contributing some signal, which 

means any residual adhesive remaining on the surface is not simply masking 

the fluorine signal. Analysis of the carbon peak area, Figure 5.5-36, shows the 

disappearance of the CF2 peak and broadening of the C1s peak. Three peaks 

can be seen in the spectrum in the same positions as seen with the adhesive 

analysis, Section 5.3 Identification and Removal of Contamination, C1s, C-O-

C and epoxide. This suggests that there is some residual adhesive on the 

surface, which is not unexpected due to the affinity of the adhesive groups for 

a hydroxylated surface32. Similar results are obtained with the other 

adhesive/SAM combinations Figure 5.5-37, Figure 5.5-38 and Figure 5.5-39.  
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Figure 5.5-36 Carbon peak area for perfluorooctadecanoic acid treated aluminium nitride 
after coating with home made adhesive for 18h to test for removal 

 



 234 

0

500

1000

1500

2000

2500

3000

270 275 280 285 290 295 300

Binding Energy (eV)

C
o

u
n

ts

 
Figure 5.5-37 Carbon peak area for perfluorooctadecanoic acid treated aluminium nitride 
after coating with silver filled adhesive for 24h to test for removal. 
 

 
Figure 5.5-38 Carbon peak area for perfluorooctadecanoic acid treated aluminium nitride 
after coating with boron nitride filled adhesive for 24h to test for removal 
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Figure 5.5-39 Carbon peak area for perfluorododecanoic acid treated aluminium nitride after 
coating with silver filled adhesive for 24h to test for removal. 

 

It can be concluded form these results that the fluorinated fatty acid coatings 

are indeed being stripped off by the adhesive curing agents.  

When attempting to obtain bulk XPS spectra for the curing agent so that it 

could be seen if the curing agent was bonded to the surfaces in place of the 

fluorinated fatty acids, the 2-ethyl-4-methylimidazole proved to be too volatile 

to allow this and evaporated in the XPS chamber. As an alternative a sample 

which had been exposed to the curing agent solution for a number of hours 

was analysed. However, the narrow scan spectrum was too noisy to allow 

detection of peak shape changes due to nitrogen mediated bonding to the 

surface, Figure 5.5-40. 
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Figure 5.5-40 Nitrogen peak area for aluminium oxide exposed to 2-ethyl-4-methylimidazole 
dissolved in 1,2-propanediol for 2 hours. 

 

5.5.7 Effects of SAMs on Electrical Conductivity 

It has been proposed in this work that thiol SAMs be used beneath adhesives 

on copper and gold surfaces to stop adhesive bleeding. An investigation was 

carried out to determine the magnitude of any series resistance introduced by 

the coatings to conductive adhesive joints. Three mechanisms whereby an 

increase of resistance could be created were identified and the experiment 

was designed to test these. 
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Figure 5.5-41 Equivalent circuit model for test electrical joint showing series resistances 
potentially introduced due to inclusion of an intermediate layer between adhesive and 
adherend. 

The total resistance through an electrical joint would be the sum of the track 

resistance, the adhesive resistance and the interfacial resistances at the 

adhesive/adherend interface, as shown in Figure 5.5-41. The interfacial 

resistances may include some contribution due to the presence of the SAM 

organic layer. In addition reduction of wetting due to this low energy organic 

layer could have a further effect on the bond conductance by inhibiting 

intimate contact between adhesive and adherend. The third potential source 

of resistance was hypothesised to be reduction of contacts between the silver 

particles filling the adhesive and the adherend surface due to surface 

roughness, see Figure 5.5-42. Previous work, Section 5.1.4.2 AFM Surface 

Texture Characterisation, has shown that the silver particle size exceeds the 

surface texture feature size, which makes lack of contact a real possibility.  

 
Figure 5.5-42 Conceptual model of conductive pathways of a silver filled adhesive on (a) a 
polished surface, (b) on a rough surface. 

Rough copper surfaces with a granular surface texture were prepared by 

aggressive ferric chloride etching, Section 4.2.5 Ferric Chloride Etching. The 

roughness achieved is given in Table 5.5-11. The roughness of an as-

received copper coupon subjected only to an oxide removal HCl etch is also 

included. 

Etch Ra (μm) Wenzel Roughness Factor Texture

FeCl3 0.2873 1.2835 Granular

HCl 0.0489 1.0442 Polished  

Table 5.5-11 Mean AFM surface texture data for HCl and FeCl3 etched copper surfaces. 

Conductive bonds between the prepared surfaces were prepared as 

described in Section 4.9 Electrical Testing.  The SAM used was 

(a) (b) 
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octadecanethiol. A four point probe test was used to measure joint 

resistances. Table 5.5-12 shows the resistances measured. 

Treatment Rough Copper Polished Copper Rough SAM Polished SAM

Resistance (mΩ) 1.55 1.61 3.59 3.92

Standard Deviation 0.72 0.78 2.83 2.95

 
Table 5.5-12 Mean electrical resistance values of 4mm

2
 40μm thick conductive adhesive 

bonds formed between copper samples of the given surface preparations (10 prepared of 
each). 

The quoted resistivity of the H20E silver filled adhesive is a maximum of 

0.0004Ωcm33.  

A

l
R   

Equation 5.5-1 Formula for the calculation of resistance given resistivity, , of the conductor 
is known, the length, l is known and the cross sectional area A is known. 

Using Equation 5.5-1 the calculation of the expected resistance of the 

conduction path through the conductive adhesive is therefore 400 mohm. This 

is significantly higher than the measured results. This is possibly due to the 

conductive pathways being composed of almost entirely silver with little 

inclusion of epoxy, made possible by the small bond line thickness on the 

same order of magnitude as the silver flakes.  

The effect of roughness on the conductivity is the reverse of the expected 

affect. It is seen to slightly decrease the interfacial resistance of the bond, 

presumably increasing the number of flake to surface contacts due to the 

increased surface area of the etched sample. The effect of the SAM is to 

approximately double the mean interfacial resistance of the adhesive bonds. 

However, there is large overlap in the ranges of the sets of measurements. It 

can be therefore be concluded that effect of the octadecanethiol intermediate 

layer on the resistance of the adhesive bonds is not significant. 

5.5.8 Multi Stage Coating of Ceramic/Metal Heterogeneous surface 

The efficacy of the concept for multistage coating of heterogeneous surfaces, 

as described in the introductory section was tested.  
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5.5.8.1 Sample Preparation 

Full details of the preparation methods for the samples are given in Section 4 

Experimental Procedures. In summary, samples were plasma cleaned, half 

coated with 20nm of copper by evaporation, and then treated with 

octadecanethiol by full immersion, washed and treated with either 

perfluorododecanoic acid fatty acid or perfluorooctadecanoic acid fatty acid by 

full immersion. The test sample configuration and desired result of coating is 

shown in Figure 5.5-43.  

 

Figure 5.5-43 Test sample configuration and desired result of multistage coating method. 

5.5.8.2 Initial Tests 

Samples were first tested for selectivity of the coatings. A sample was fully 

immersed in thiol to show that it bonded only to the copper. It was found that 

the ceramic maintained its high surface energy of >60mJ/m2 while the copper 

surface energy was reduced to the level expected for a thiol coated surface. 

Next a different sample was fully immersed in the fatty acid. The copper 

showed a small decrease in surface energy probably due to oxidation of the 

surface and adsorption of some fatty acid monolayer. However, the resultant 

surface energy change of the copper was much lower than seen on the 

ceramic, showing that the fatty acid coating was sporadic and not structured 

and homogenous on the copper as it was on the hydroxylated aluminium 

oxide. 

5.5.8.3 Multi – Stage Coating Tests 

The results of contact angle measurements on multi-stage coated samples 

are shown in Table 5.5-13. Spatially uniform surface energies and contact 

angles were achieved. Epoxy bleed measurements also demonstrated that 
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the combined coatings were  equally as effective at resisting bleed as seen 

previously with each of the fatty acids on ceramic only surfaces. 

Material/Treatment Water CA Diiodomethane CA SE

AlN 12C 114.5 108.9 6.79

AlN Cu 18C 119.7 114.1 5.12

Al2O3 12C 103.1 111.5 11.08

Al3O3 Cu 18C 94.8 111.9 16.74  

Table 5.5-13 Contact angle and surface energy data for samples which had undergone fatty 
acid coating on the ceramic end and thiol coating on the copper coated end. Where CA is 
contact angle in ° and SE is apparent surface energy in mJ/m

2
. 12C represents a 

perfluorododecanoic acid coating. 18C represents a perfluorooctadecanoic acid coating. 

 

5.5.8.4 XPS Analysis of Multi-stage Coated Surfaces 

Sample Treatment Material

1 Untreated Cu end Al2O3

2 Untreated Ceramic end Al2O3

3 Untreated Cu end AlN

4 Untreated Ceramic end AlN

5 ODT Only Cu Al2O3

6 ODT Only Ceramic Al2O3

7 FA Only Cu Al2O3

8 FA Only Ceramic Al2O3

9 FA+ODT Cu Al2O3

10 FA+ODT Ceramic Al2O3

11 FA+ODT Cu AlN

12 FA+ODT Ceramic AlN  

Table 5.5-14 Sample preparations for multi stage coating experiment. Where FA denotes 
perfluorooctadecanoic acid treatment and ODT denotes octadecanethiol treatment. Cu 
denotes analysis of the of the copper coated end, ceramic denotes analysis of the ceramic 
end of the sample. 

Sample Ceramic Analysis C O Cu Al Si F Na Ca N B Mg

1 Al2O3 Cu 43.6 33.8 22.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 Al2O3 Ceramic 30.9 34.2 0.5 23.9 4.3 5.7 0.7 0.0 0.0 0.0 0.0

3 AlN Cu 45.8 34.0 20.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 AlN Ceramic 18.6 36.1 0.5 22.4 4.8 7.9 1.2 0.5 5.9 2.0 0.0

5 Al2O3 Cu 68.6 15.7 15.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 Al2O3 Ceramic 39.1 32.4 0.5 21.2 4.6 2.2 0.0 0.0 0.0 0.0 0.0

7 Al2O3 Cu 43.2 16.4 7.9 0.0 0.0 42.5 0.0 0.0 0.0 0.0 0.0

8 Al2O3 Ceramic 23.6 31.1 0.0 21.1 0.0 23.4 0.0 0.0 0.0 0.0 0.8

9 Al2O3 Cu 47.2 12.3 10.3 0.0 0.0 30.3 0.0 0.0 0.0 0.0 0.0

10 Al2O3 Ceramic 17.7 31.4 0.0 22.6 1.9 26.4 0.0 0.0 0.0 0.0 0.0

11 AlN Cu 46.9 8.0 7.0 0.0 0.0 38.0 0.0 0.0 0.0 0.0 0.0

12 AlN Ceramic 28.7 9.8 0.2 15.9 0.0 30.5 0.0 0.0 13.0 1.9 0.0
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Table 5.5-15 Relative atomic percentage compositions obtained from XPS for samples 
treated as shown in Table 5.5-14. 

The XPS results shown in Table 5.5-15 confirm the presence of both 

monolayer types simultaneously present bonded to their respective ends of 

the samples with samples 5-8. It can be seen, however, that a high presence 

of fluorine is seen on samples 7, 9 and 11 which suggests that the fatty acid 

monolayer has bonded to the copper metallisation. Although fatty acid 

monolayers are known to bond to hydroxylated copper oxide surfaces, it was 

expected that the copper surface would be oxide free due to the preparation 

method which in the literature is reported to remove oxide from copper foils 

and protect from re-oxidation4. Deposition with an imperfect vacuum could 

result in an amount of copper oxide included in the bulk copper. The presence 

of CF2 peaks on a copper analysis area is shown in Figure 5.5-44. 
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Figure 5.5-44 Carbon peak for ceramic/copper hybrid surface coated with 
perfluorooctadecanoic acid only, sample 7 copper end. Peaks visible are C1s and CF2. 
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Figure 5.5-45 Carbon peaks of copper area on sample subjected to octadecanethiol 
treatment only, sample 5. 

Figure 5.5-45 shows an XPS scan carbon peak area for octadecanethiol 

coated copper, sample 5. Interestingly from the broad scan spectra of sample 

5 a 15% copper oxide signal can be seen, suggesting defects in the 

monolayer, again possibly due to the copper deposition method.. This would 

also explain the appearance of fatty acid monolayers in regions which have 

been coated with octadecanethiol, since fatty acid molecules will bond to 

copper oxide, but a thiol molecule will only bond to copper metal. In principle 

perfluorooctadecanoic acid should not adhere to the thiol.  

That the fatty acid is detected means implies that the multi-stage method is 

highly defect tolerant, as any defects in the octadecanethiol monolayer will be 

filled with perfluorooctadecanoic molecules. This suggested mechanism is 

possible because the solvent used to apply the fatty acid is water, which 

would readily hydroxylate any exposed copper oxide. Figure 5.5-46 supports 

this suggested mechanism as it can be seen that the carbon peak area 

heavily favours C-H C-C bonds which are abundant in an octadecanethiol 

monolayer. That expected from a quality fatty acid is a ratio between the 

peaks for C-H/C-C and CF2 of 50:50, as has been seen consistently in this 

work and which is seen again in Figure 5.5-47. 
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Figure 5.5-46 XPS carbon peaks of copper area on AlN sample which has been double 
treated with ODT and FA. 
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Figure 5.5-47 XPS carbon peaks of aluminium nitride which has been double treated with 
ODT and FA. 

5.5.9 Patterning of OTS for Adhesive Spreading Control 

Due to the resilience of octadecyltrichlorosilane as a coating and its observed 

resistance to removal by the curing agent, it was investigated briefly for use 

as an adhesive wetting barrier. Additive patterning of monolayers has been 

investigated in some depth previously by the author34, and be the method 

micro contact printing, ink jet printing or another, the coating quality was found  
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to be inferior to that achieved by dip coating or by dip coatings followed by 

selective removal. For this reason the patterning method chosen was 

selective removal of octadecyltrichlorosilane with an oxygen plasma clean. 

The monolayer was applied, half of it was masked and then the plasma 

removal performed. Adhesives were then applied to the surfaces and cured, 

and their wetting behaviour observed with SEM and optical microscopy. 

Figure 5.5-48 shows an optical microscope image (x50) of one single spot of 

boron nitride filled adhesive on a sample half coated in 

octadecyltrichlorosilane (coating on the right). It is clear epoxy and bleed 

material do not wet the coated area, as seen in Figure 5.5-48 and Figure 

5.5-49. The investigation was not pursued further because it was considered 

that the integration of the plasma patterning method into the optoelectronics 

assembly line would be prohibitively complex and expensive. 

 

Figure 5.5-48 Change in wetting behaviour on an octadecyltrichlorosilane patterned AlN 
surface. Optical microscope image x50. Dashed line shows the interface between the 
uncoated area (left hand side) and coated area. 

1mm 
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Figure 5.5-49 Octadecyltrichlorosilane as a wetting barrier on aluminium oxide, with boron 
nitride filled 930-4 epoxy adhesive. The straight edge to the bottom part of the adhesive spot 
indicates the edge of the uncoated region. 

5.5.10 Conclusions 

It has been shown that self assembled monolayers successfully control epoxy 

bleed, due to their reducing the surface energy of the substrate materials, 

especially the dispersive component of surface energy. Roughness was not 

seen to interfere with the use of self assembled monolayers as a solution to 

the epoxy bleed issue. 

The self assembled monolayers were all shown to be stable over time, with 

possible increased ordering of fatty acid monolayers over the two days after 

application. Fatty acid, thiol and silane monolayers all showed resistance to 

the elevated temperatures witnessed in adhesive cure schedules. 

The fatty acid self assembled monolayers used were seen to be stripped off 

the surface slowly by the adhesive, which meant that there was no reduction 

in adhesion strength of the systems studied. This was an important result for 

this study as it was shown that epoxy bleed could be controlled with no 

detrimental effect on the bond strength. For the same reason epoxy bleed 

was also not reduced to zero, but was reduced to an acceptably short 

distance. The curing agent of the adhesive was seen to be responsible for the 

stripping of the fatty acid monolayers, with a currently unknown mechanism.  
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The curing agent of the adhesives was also seen to strip thiol and silane 

monolayers, but at a much slower rate than the fatty acid SAMs. A positive 

correlation was seen between the free energy of adsorption of the different 

monolayers on the given surfaces, and the speed at which the curing agent 

stripped off the molecules. This relationship extended to adhesion strength, 

i.e. a positive correlation between rate of wetting of the curing agent and 

breaking stress of lap shear samples. The curing agent was also seen to wet 

across an adventitious carbon contaminated sample, explaining the unusual 

adhesion strength seen in Section 5.2.4.2 Bond Strength Analysis. 

Octadecanethiol monolayers increase the interfacial electrical resistance of 

bonds formed with conductive adhesives by a negligible amount. Thus thiol 

monolayers may be considered as suitable for use in coating electrical 

contacts in optoelectronic assemblies. 

A method for coating heterogeneous metal/ceramic surfaces was successfully 

developed. It was shown that a heterogeneous surface could be homogenised 

in terms of surface energy, making the whole substrate epoxy bleed resistant. 

The method consisted of two subsequent coatings of a thiol targeted at 

coating the metallisations and a fatty acid monolayer which coated the 

hydroxylated ceramic surfaces. The method was found to tolerant to pinhole 

defects in metal layers. Although demonstrated with copper metallisations, the 

process is predicted to also work with gold metallisations. In fact copper is 

notoriously more difficult to work with, in terms of self assembled monolayers, 

than gold. 

OTS patterning across ceramic substrates by plasma treatment has been 

demonstrated, along with its ability to act as a wetting barrier. 
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5.6 Laser Micromachining 

5.6.1 Introduction 

Laser technology is rapidly expanding in the manufacturing sector. Where 

previously the technology was limited to crude cutting and welding 

applications, advances have allowed the applications to expand to 

microelectronics manufacturing and laser micromachining. Due to the 

exemplary control of a modern laser system, the diversity of applications is 

impressive. However, the parameter range for the various applications such 

as cutting, drilling, micromachining and surface modification can be quite 

narrow. While lasers can be used in the manufacture of optoelectronic 

modules for the dicing and drilling of ceramics, these are delicate operations 

because of the properties of the materials. This difficulty has lead to the 

industry relying on more robust methods, such as diamond saw cutting and 

milling, to cut and shape the ceramic tiles. The limitations of such 

conventional machining methods are their inability to produce complex three 

dimensional structures. Much like the capabilities of a bench saw, only a two 

dimensional extruded profile is possible. This limitation can be seen in the 

design of the optoelectronic sleds, in which the substrate carries no surface 

geometries which can aid in locating components.  

Components in optoelectronic circuits are frequently actively aligned in the 

assembly process and have inherent variation in their dimensions. This 

means that some components must be shaped or ground to match steps in 

the substrate material, and that all assemblies must undergo a time 

consuming active alignment process. Laser machining could offer a solution 

to both substrate shaping and the active alignment issues in the design and 

assembly of optoelectronic packages. A further limitation of optoelectronic 

manufacture is the epoxy bleed phenomenon, i.e. the separation of adhesive 

components and their wetting across a substrate onto sensitive areas. Laser 

machining could offer a solution to this issue by the creation of barriers to the 

spread, or selectively polishing areas to make epoxy bleed less favourable1.  
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Examples of 3D surface geometric features which could machined into 

ceramic surfaces to improve the optoelectronic assembly process are shown 

in Figure 5.6-1. These are: the machining of bleed control features, three 

dimensional structuring of the sleds for presenting components at the correct 

height for beam paths, and machining of passive alignment features for a 

reduction in the active alignment process time. The work reported here 

focussed on the problem of epoxy bleed, however the feasibility of three 

dimensional structuring and passive alignment features production is 

considered briefly in the discussion below. 

As shown in the figure bleed control/lens alignment features could 

simultaneously offer passive alignment and bleed control properties. These 

could be recesses which position ball lenses in two dimensions and prevent 

the spread of lens mounting adhesive due to near vertical side walls. Other 

passive alignment features can be machined to match dimensional variation 

in component parts5, such as the planar material removal area which allows 

alignment of the laser diode with the ball lens. V-grooves laser machined into 

the optoelectronic substrate could be implemented for passive alignment, 

reducing the passive alignment time required. 

 
Figure 5.6-1 Applications of laser machining in optoelectronics‘ manufacturing. (a) laser 
machined lens alignment and bleed control circular recess with vertical side walls, (b) laser 

                                            
5
 Communication from Paul Firth of Oclaro plc. Lenses have an inherent variability in their 

dimensions which must be accounted for in the assembly process. 
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machined v-groove for optical fibre passive alignment, (c) laser machined planar material 
removal for dimensional variation tolerance or bleed control, (d) laser beam, (e) optical fibre. 

 

Figure 5.6-2 Epoxy bleed control by a laser machined barrier. 

 

Figure 5.6-2 shows in more detail the concept of laser machined flow stops for 

epoxy bleed control. The high spreading tendency of epoxy bleed would be 

counteracted by a vertical wall which would act as a flow stop since it is 

thermodynamically unfavourable for the liquid to climb the wall. 

Laser surface modification is a further method which could be employed, 

primarily for features to control epoxy bleed. It differs from laser machining 

insofar as the objective is to induce chemical, physical or crystallographic 

changes rather than the manufacture of physical artefacts. Both increase of 

roughness and polishing can be achieved with the correct parameters. The 

work reported in Section 5.2 showed that high quality polishing of surfaces 

reduced the tendency for epoxy bleed to spread a large distance. Although it 

was not inhibited entirely its occurrence was controlled to a distance 

consistently  <50μm.  

The literature survey produced few examples of laser machining ceramics 

with CO2 lasers. The work undertaken began with a preliminary study 

focussed upon finding the optimum parameters for CO2 laser induced material 

removal. Firstly, single tracks were machined and characterised quantitatively 

and physically with an SEM and a Talysurf machine. The most effective laser 

parameters were then applied to create more complex machined areas 

through multiple overlapping laser passes. The usefulness of some of these 

features for epoxy bleed control, and passive alignment processes was 

considered. Bulk material changes induced by the laser processing were 

explored with X-ray diffraction (XRD) and nanoindentation. 
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Excimer laser processing of ceramics is widely reported in the literature, 

however, the range of parameters quoted for effective machining of aluminium 

oxide and aluminium nitride is wide. This range of parameters was 

investigated on the polycrystalline substrates used throughout this work. 

Features were machined with passive alignment and epoxy bleed functionality 

in mind, which differed from the objectives of the work published in the 

literature. Features were characterised quantitatively and physically with an 

InfiniteFocus surface texture measurement machine and an SEM. 

It was found that near vertical walled features could block the flow of epoxy 

bleed. However, the machined areas produced were not of adequate 

dimensional accuracy for direct usage as passive alignment features for sub 

micron component placement. 

5.6.2 Background  

Lasers offer a non contact process capable of delivering specified amounts of 

photon energy to a highly localised area. The interaction between laser and 

target is dependent on the properties of the target material and the beam 

properties. Power, frequency, duty cycle and target area are all controllable to 

some degree with modern lasers, although changing the wavelength of the 

laser usually involves changing the type of laser being used. For the purpose 

of this investigation a CO2 laser and excimer laser were used, each offering 

different material removal mechanisms and greatly different wavelengths. 

CO2 laser processing is an example of a thermal process where thermal 

energy is used to melt and vaporise material. Alternatively the laser material 

removal mechanism can be  ablation – the breaking of chemical bonds and 

resultant vaporisation of the material. Excimer laser processing is an example 

of this. 

 Al2O3 and AlN are notoriously difficult to machine using conventional laser 

machining methods. This is largely the result of their brittle nature and high 

hardness which leads to fractures in the event of localised heating2. There is 

little evidence of efforts made to micromachine these materials using CO2 

lasers with the aim of 3D structuring of the surfaces. However drilling and 

cutting using a CO2 laser is well documented for green Al2O3
3
 and sintered 
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AlN4. Excimer lasers have the advantage that only a small amount of heat is 

transferred to the substrate in the machining process. The disadvantage of an 

excimer laser is the material removal rate. The process is a precision one 

making it unsuitable for large scale machining. Although Increasing excimer 

laser fluence is seen to increase ablation rate, a threshold value is then 

reached above which the ablation rate decreases5. A maximum ablation rate 

of 0.2μm/pulse is reported for AlN. Excimer laser machining has been 

successfully used for the surface treatment of Al2O3 to both reduce and 

increase surface roughness6. Increase of surface roughness as an effect of 

excimer laser machining of AlN is well documented7. Close to vertical side 

walls for excimer machined features have also been reported in literature8, 

which are desirable for this application. 

5.6.2.1 The CO2 Laser 

A CO2 laser is typically of 9.4-10.6μm wavelength, lying in the infrared part of 

the electromagnetic spectrum. CO2 lasers can be used in continuous wave 

mode or pulsed mode. For this work a pulsed CO2 laser was used to limit the 

energy input into the sample, as shown schematically in Figure 5.6-3. 

 

Figure 5.6-3 Energy intensity over time for a pulsed CO2 laser. 

The generated infrared beam of a CO2 laser produces a Gaussian intensity 

distribution across the diameter of the spot incident on a surface, which can 

be described by: 
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Equation 5.6-1 Energy intensity from a CO2 laser. Where Io is the intensity in the centre of the 
spot, d is the Gaussian beam radius and r is the radial distance from the centre of the spot. 
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The energy intensity can also be considered in terms of depth into the 

material z: 
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Equation 5.6-2 Beam intensity for a given depth into a material. Where Io is the laser beam 

intensity at the surface (z=0),  is the wavelength of the laser, k‘ is the material extinction 
coefficient and n is the material refractive index. 

In Equation 5.6-2 the term nk '
4




is the absorption coefficient () for the 

material considered, where the skin depth, or depth to which the laser affects 

the material is given by 1/. 

For the CO2 laser the primary mechanism of material/laser interaction is 

Fresnel absorption. This is when the photons of the laser beam interact with 

the electrons of the material inducing vibrations, and because of this, heat. 

Infrared lasers have a comparatively long wavelength (10.6μm for a CO2 laser 

compared to 248nm for a KrF excimer laser) which means that the photons 

are  of low energy, so that more are needed to be absorbed by the material in 

order to remove it. For a laser of low photon energy, heating, melting, boiling 

and vaporisation all occur as the cumulative amount of energy delivered to the 

material increases. This makes CO2 laser machining a photo-thermal process.  

5.6.2.2 The Excimer Laser 

The excimer laser, due to the wavelength being similar to the excitation 

energy of the material bonds, has the ability to break bonds directly without 

having to rely on the same heating melting boiling vapourisation 

mechanisms of a thermal process such as the CO2 laser. The mechanism is 

known as scission and is a photo-chemical process which ablates small areas 

of material with each pulse accompanied by relatively small thermal energy 

input into the bulk material. In excimer laser processing attenuators (electro-

optical circuits), are used to vary the throughput of laser energy to the optics 

without changing the temporal or spatial beam profile11. 

The threshold in fluence seen in excimer ablation rate occurs because of the 

formation of a plasma above the surface which absorbs some of the incident 
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energy, and because of the re-ablation of deposited debris left by previous 

pulses5. The debris deposited on the surface can also make accurate 

measurement of the processing depth difficult.  

Higher energy densities can also lead to thermal affects effects such as 

increased melt phases, increased deposits in adjacent regions to the 

irradiated area and an increase in breakouts in the structure all of which can 

hinder the creation of smaller features9. From the results presented later in 

this chapter it appears that these thermal effects limit the ideal processing 

fluence, or energy density, for creating high quality structures to about 

10J/cm2.  

The fluence can be used to control the sidewall angle of the features. Lower 

fluences often cause a reduction in effective feature size with increasing 

depth, resulting in an angle >90°. Higher fluences are prone to causing 

undercut and producing a sidewall angle <0°. Fluence must therefore be 

optimised to produce side walls of the usually desired 0° angle.  

Ablation rates up to 0.2 μm/pulse have been achieved when laser machining 

AlN with a KrF excimer laser with a fluence of 30J/cm2,10. However, this was 

performed in a vacuum and a fluence about 50% higher than one would 

expect in air.  

Excimer lasers which produce shorter wavelength laser light offer the best 

processing capabilities in terms of removal rate. In processing a variety of 

ceramics, including Al2O3, it has been shown that the threshold fluence is 

lower when processing with shorter wavelength lasers11. This is due to the 

shorter wavelength giving more effective excitation of the molecular bonds 

and so faster ablation.  

It has been shown12 that a decrease in pulse width also leads to an increased 

ablation rate of alumina and other ceramics. This is due to a higher intensity 

impulse favouring localised material excitation and vaporisation over thermal 

transmission. Due to this excimer laser machining with shorter pulse widths 

reduces the threshold fluence for a material. 

An initial linear correlation exists between the number of pulses and the depth 

of the machined area. This relationship has been demonstrated in several 
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works13. However, previous work5 has shown that the ablation rate can 

remain constant with depth only to a few microns into the material. One 

reason is the aforementioned plasma formation interfering with subsequent 

pulses. A second is that the material surface may move out of the focal plane 

of the laser. For this reason movement of the sample during processing to 

maintain focal plane alignment with the surface may be necessary. 

It is shown in previous work9 that the ablation rate (μm/pulse) of Al2O3 is 

affected by the size (and possibly shape) of the laser profile on the substrate 

surface. The reason for this is the escape mechanism of the plasma formed 

upon irradiation, i.e., a large feature allows plasma to expand unimpeded. A 

smaller feature can create a higher pressure due to the limited space for the 

plasma to expand into, resulting in the plasma leaving the surface parallel to 

the laser path.  

It has also been shown that the surface roughness of the irradiated area can 

affect the ablation rate. A rougher surface has a greater tendency to absorb 

laser energy11. 

Some workers have reported9 that when machining Al2O3 the ablation rate 

decreases with increasing pulse repetition frequency, possibly due to the 

escape of plasma impeding ablation at high frequencies. This is disputed by 

other authors5 who have suggested that repetition rate has little influence on 

the processing of ceramic material. This seems more probable as the 

laser/material interaction period for a typical nanosecond laser is so short 

compared to the inter pulse spacing that each individual pulse and its 

interaction with the surface can be considered separate events. 

Previous reports have shown that surface texture of the excimer laser 

irradiated area which remains following ablation is affected by the fluence and 

number of pulses. It is possible to use the excimer laser radiation to control 

surface roughness to desired amounts. This has been demonstrated14on 

Al2O3 where the effect of a fluence slightly above the threshold for the 

material yielded a large increase in roughness. Reduction in the surface 

roughness is believed to occur from the melting and re-solidification of the 

surface material during irradiation15 . In the work reported here it was found 
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that increasing the number of pulses above 50 has the effect of increasing 

roughness, after an initial reduction in roughness for less than 50 pulses. 

Other work16 which studied the effect of fluence on the surface texture has 

shown that for a constant number of pulses, low enough fluences will merely 

clean the surface and will not affect the topography of the ceramic material. It 

has been reported that excimer laser machining of Al2O3 by fluences of 

150mJ/cm2 and 300mJ/cm2 produced no measureable change to the physical 

surface properties. Increasing the fluence to 500mJ/cm2 led to reduction of 

the surface texture profile depth (peak to valley height, Rt value), which was 

attributed to the melt and solidification mechanism previously described. For 

fluences of 1.5J/cm2 and above ablation and not just surface modification 

occurred. These trends are seen consistently in similar work17.  

Work has been carried out to establish the capability of the excimer laser for 

physical surface modification rather than micromachining13. This work 

identified a limit of around 0.15μm in Ra to the polishing capability of an 

excimer laser.  

Previous work5 has shown that ablated material redeposits on the substrate 

surface regardless of processing parameters. The work also highlighted that 

redeposited material is easily removed with a solvent clean, or with 

ultrasonics. 

Work has been carried out to assess the effects of excimer radiation on the 

bulk material properties of Al2O3
18. The fracture toughness of pure 

polycrystalline sintered ceramics is generally poor but it can be improved by 

laser polishing as this removes areas of high stress concentration which act 

as crack initiators. Increased fracture toughness seen in excimer laser 

irradiated Al2O3 is also due to the formation of γ-Al2O3. This introduces a 

compressive stress in the surface which increases the fracture toughness due 

to any externally applied force having first to overcome the counteracting 

compressive residual stress to cause failure. The new phase was detected 

using X-ray Diffraction (XRD), where a peak which corresponded to γ-Al2O3 

was reported at 2θ = 45.70°. The combined effects of the modified surface 

texture and crystal orientation resulted in a 40% increase in fracture 
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toughness. Further XRD studies of excimer laser processed Al2O3 (7J/cm2 

100 pulses) showed peaks corresponding to α-Al2O3, θ-Al2O3 and γ-Al2O3. 

Spectra of the unprocessed materials exhibited peaks for only the α and θ 

phases6. This is consistently reported throughout the literature16. 

5.6.3 Methodology 

The aim of the work in this chapter was to determine the feasibility of 3D 

functionality into the optoelectronic ceramic substrate materials using lasers. 

For CO2 laser machining, relevant literature was limited. With regards to 

excimer laser machining, dimensional accuracy, repeatability and machining 

features for a specific application were not found to be tackled in the literature.  

Firstly, preliminary studies were performed with the CO2 laser to find the 

optimum parameters for material removal. Then machining of defined features 

was attempted. The goal was vertical, i.e. 0° side walls as defined in Figure 

5.6-4, and roughness comparable to the unprocessed ceramics of 0.25μm 

Ra value. These were desired due to the effect of roughness on epoxy bleed, 

Section 5.2 Surface Parameter Effects on Epoxy Bleed, the increase of 

geometric inaccuracy with increasing roughness, and the assumption that a 

near vertical sidewall would stop the spreading of the bleed material. 

 
Figure 5.6-4 A diagram depicting a cross sectional view to define the sidewall angle of a 
machined feature. The grey area is the bulk material. 

Excimer laser machining was performed with the intention of increasing the 

dimensional accuracy of CO2 laser machined areas, and reducing their 

roughness. The KrF laser was also implemented as a single process with the 

same aims as the CO2 laser method. 

Characterisation was carried out to assess the machined artefacts for 

effectiveness in the applications indentified in Section 5.6.1 Introduction. 
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Methods implemented included qualitative: SEM, surface profiling, and stereo 

microscopy, and quantitative: surface profiling, XRD and nanoindentation. 

XRD and nanoindentation were performed to investigate bulk material 

changes which could detrimentally affect the substrate materials‘ functionality. 

5.6.4 Experimental setup 

The materials tested were 99.6% Al2O3 and 99% AlN which were supplied as 

75mm square tiles 1mm thick, as used for the work described in Section 5.3 

Identification and Removal of Contamination. The tiles were processed 

similarly to Section 5.3 Identification and Removal of Contamination, being 

diced using a CO2 laser and thoroughly cleaned before processing, as 

described in Section 4.1 Ceramic Sample Preparation. Initial characterisation 

revealed the samples to have a granular surface finish with Ra values 

between 0.2-0.25μm. 

All CO2 laser machining was done with a 150W 10.6μm infra red laser 

produced by Coherent with a fixed, nominal beam width of 300μm. Pulse 

width, traverse speed and pulse period were all controllable manually. For the 

experiments The pulse width (interval between laser energisations ) was fixed 

at 500μs and the pulse period (duration of the laser energisation) was varied 

from 1μs to 250μs. The duty cycle, the percentage duration of the pulse 

period with respect to the pulse width (i.e. 50% duty cycle = 500μs pulse width 

and 250μs pulse period), is the variable quoted in the results section. The 

laser spot position was fixed and the sample was placed on an x-y table to 

provide the lateral machining movements. The traverse speed used was in 

the region of 100mm/s to 400mm/s, due to cracking occurring at slower 

speeds, and separation of melt pools at higher speeds, as reported below. 

The laser operation and x-y table movements were controlled by CNC 

instructions. 

Excimer laser machining was carried out by mask projection processing using 

a KrF 248nm laser source. The mask sizes and shapes used were a 1mm 

diameter circular hole, a 5mm on a side square and a 15mm on a side 

square. The optics were fixed at 10x reduction giving a machined area 1/10 of 

the mask size. Samples were kept stationary during irradiation. The pulse 
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energy at the mask was fixed at 250mJ/pulse and the repetition rate at 15Hz 

unless otherwise stated. The fluence incident on the sample was adjusted via 

an attenuator. The position of the attenuator is quoted in this work as fluence 

measurement equipment was not available. A higher attenuator number 

corresponds to a lower attenuation, i.e. higher fluence. 

5.6.4.1 Evaluation and Analysis 

SEM  

Due to the insulative properties of the ceramics all samples had to be given a 

metallic coating prior to SEM analysis. This was done via vacuum coating of 

gold. 

Surface metrology  

The Talysurf CLS 2000 was used for non-contact profiling of machined 

features. Features were analysed in a number of areas with multiple profiles 

measured for each to show heterogeneity of the geometries. Features were 

also analysed using the InfiniteFocus 3D surface measurement equipment 

which allows the imaging and measurement of vertical features. For more 

details see the experimental methods chapter, Section 4 Experimental 

Procedures. 

X-ray diffraction  

X-ray diffraction (XRD) was performed with a Bruker D8 X-ray diffractometer 

on CO2 laser processed samples to identify any crystallographic changes. 

Al2O3 was analysed from 15-80° and AlN from 20-90°. The samples analysed 

had undergone planar material removal for a 10mm wide section across their 

surface using the CO2 laser. The machining was done with a beam offset of 

90μm, a duty cycle of 10% and a traverse speed of 100mm/s. The area 

analysed was the surface which underwent the laser treatment. 

Nanoindentation 

Nanoindentation was performed on cross sections of CO2 laser machined 

ceramics in order to gauge changes in the mechanical properties of the bulk 

material as a result of laser machining. At least 6 indentations were performed 

on each section, which had been previously mounted and polished to expose 
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the crystal structure. Al2O3 was indented at 3mN/s to a maximum load of 

200mN, with a dwell time set at 90s before unloading at 3mN/s. AlN was 

indented at 2mN/s to a peak load of 50mN. The dwell time was again set at 

90s and the unloading rate was equivalent to the loading rate. All indentations 

were performed with a pyramidal Berkovich indenter. 

5.6.5 Results 

5.6.5.1 CO2 Laser Machining 

The optimal settings for surface machining to achieve planar material removal 

were found experimentally, as no data had been located in the literature . The 

variables considered were traverse speed and duty cycle. Figure 5.6-5 below 

shows the effect of traverse speed on the machined channel topography. 

100mm/s was judged to be the best result and was adopted for all future 

machining. 

 

 

Figure 5.6-5 Traverse speed effect upon machining Al2O3. 400mm/s, 300mm/s and 100mm/s 
shown at 50x magnification, machined with a 10% duty cycle. 

 

The offset between traverses for rastering was next optimised. At a traverse 

speed of 100mm/s the machined channel width produced is 150μm. The 

optimised offset was found to be a large fraction of this at 90μm. A shorter 

offset was found to create excessively deep and inconsistent channels whilst 

a longer offset left ridges of unaffected material in areas at the edge of the 

100mm/s 

300mm/s 

400mm/s 
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channel, where the energy density of the beam was too low to induce 

effective removal. 

The SEM image in Figure 5.6-6 illustrates the effectiveness of the CO2 laser 

for planar material removal on Al2O3 using the identified parameters. The 

feature widths are 1mm, 1.25mm and 1.4mm. A crust was formed on the 

Al2O3 during machining which was loosely attached to the machined area 

beneath. This is shown in more detail in Figure 5.6-7. 

 

 

Figure 5.6-6 SEM image of planar material removal with a CO2 laser on Al2O3. 90μm spacing 
between laser tracks, 25x magnification. 

 

 

Figure 5.6-7 SEM image of the crust formed on Al2O3 during CO2 laser machining. 
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Planar material removal on AlN was also achieved with the same parameters, 

producing features similar in quality and roughness to Al2O3. The depth of 

machining for a single pass process was 60μm for AlN and 40μm for Al2O3 

(once the machined material was removed). Multi pass (i.e.; repeat rasters 

over previously treated material) areas were also machined for both AlN and 

Al2O3, which saw an increase of depth proportional to the number of passes 

as expected. 

The same parameters were used to machine discrete, limited area features. 

Different laser paths were tested and are shown in Figure 5.6-8. 

 

Figure 5.6-8 Laser machining paths used for CO2 machining discreet areas of AlN and Al2O3. 
All laser tracks have a 90μm offset. 

Excessive energy input into small areas of the ceramic materials was seen to 

induce fracture during the machining process, especially on Al2O3 for patterns 

1, 4 and 6 shown in Figure 5.6-8. Of the different spot movement patterns 

used to machine a discreet circular feature, a series of parallel lines, method 3 

in Figure 5.6-8, consistently produced the best results. Figure 5.6-9 shows a 

1.25mm diameter laser machined circle using pattern 3 in an Al2O3 surface. 

The same weakly adhered crust is seen with this feature as with the planar 

material removal. Figure 5.6-10 shows the same feature/pattern machined 

into an AlN surface with the CO2 laser. 
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Figure 5.6-9 SEM image of a CO2 laser machined 1.25mm diameter circle in an Al2O3 
surface. 

 

 

Figure 5.6-10 SEM image of a CO2 laser machined 1.25mm diameter circle in an AlN 
surface. 

The depths of machined features were consistent with the large area 

treatments (40 and 60μm), as was the roughness of the laser affected area. 

The laser processing was seen to increase the roughness by a large amount, 

as measured with the Talysurf. The unprocessed materials had a maximum 

roughness of 0.25μm Ra, and the laser machined areas 4.5μm Ra. 

Nanoindentation measurements were used to measure changes in the 

material properties due to the effect of the infrared energy input, see Table 

5.6-1. These were done on cross sections of the material due to the excessive 

roughness of the planar surface.  
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Material Al2O3 AlN

Hardness (GPa) 17.29±0.78 11.25±1.73

Reduced Modulus (GPa) 196.32±6.87 186.70±23.37

Plastic Depth (nm) 860.68±17.57 407.38±29.27

Material Laser Al2O3 Laser AlN

Hardness (GPa) 15.21±1.32 7.86±2.23

Reduced Modulus (GPa) 188.22±8.36 173.27±41.2

Plastic Depth (nm) 715.15±33.17 505.54±85.54  

Table 5.6-1 Nanoindentation results for unprocessed and laser processed ceramic cross 
sections. 

The X-ray diffraction spectra of unprocessed CO2 laser processed AlN and 

Al2O3 are shown in Figure 5.6-11 and Figure 5.6-12. 
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Figure 5.6-11 XRD spectra of unprocessed Al2O3 
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Figure 5.6-12 XRD spectra of CO2 laser processed Al2O3 (10% duty cycle, 100mm/s traverse 
speed) 

Figure 5.6-11 and Figure 5.6-12 show a change in peak ratios following laser 

processing. The AlN spectra showed a decrease in the peak intensity at a 

diffraction angle of 27° following laser processing, but also the appearance of 

small peaks at 31.9°, 36.9° and 38.5°. These peaks increased in intensity with 

increased laser power used for machining, Figure 5.6-13. 
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Figure 5.6-13 XRD spectra for 21-40° area showing small peaks for an AlN sample 
processed at high power at 31.9°, 36.9° and 38.5°. 

Epo-Tek 930-4 and H20E adhesives were applied to 1.4 mm width linear laser 

machined areas on Al2O3. Bleed was seen along the direction of the laser 

path, but the side walls of the features stopped bleed perpendicular to the 

laser path, Figure 5.6-14. 

 

 

Figure 5.6-14 Epoxy bleed control from a silver filled epoxy adhesive on an Al2O3 surface 
machined by CO2 laser. 1.4mm width planar material removal with 90μm beam path spacing 
and 10% duty cycle. 

 

1.4mm 
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5.6.5.2 Excimer Laser Machining 

Excimer laser machining was undertaken with the aim of producing localised 

polishing of surfaces and machining of repeatable features. Columnar 

topographies were seen to be created at fluences just above the threshold 

fluence of the materials. This is consistent with findings reported in the 

literature6. The attenuator setting corresponding to the threshold fluence of 

the materials was 0.4 for Al2O3 and 0.5 for AlN. Below these no visible effects 

on the materials due to laser irradiation was apparent. Figure 5.6-15 shows an 

area of an Al2O3 sample which was excimer laser machined with the aim of 

polishing the surface with minimal material removal. It was prepared with 30 

pulses at 10Hz with an attenuator setting of 0.7. The machined feature had an 

average depth of 4μm as measured with the InfiniteFocus. The polishing  

effect (considered to be a measured decrease in Ra value) was seen 

consistently on Al2O3 surfaces with 30 pulses and AlN surfaces with 180 

pulses. Varying the fluence over attenuator settings of 0.4-0.7 did not change 

the surface texture, but the machined depth increased with increasing fluence. 

The roughness of the machined area decreased with increasing depth, until 

the processing depth went beyond the depth of the roughness profile, as for 

example in Figure 5.6-15. 

 

Figure 5.6-15 Excimer laser polished area of an Al2O3 surface, diameter 100μm. 

It was found not possible to use AFM to assess the surface roughness of the 

machined area, because of debris on and around the surface of the machined 

areas interfered with the measurements.  
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Figure 5.6-16 Depth of machined features compared to processing parameters. 

 

Figure 5.6-17 Excimer laser machined circular hole machined into Al2O3. 1080 pulses with 
attenuator setting of 0.7. 

Figure 5.6-16 shows the machined feature depth as measured with the 

InfiniteFocus, compared to the attenuator setting and the number of pulses. 

The relationship among the variables is consistent with the literature. Figure 

5.6-17 and Figure 5.6-18 show excimer laser machining of AlN. The features 

created are very similar in depth and topography to the Al2O3 features. 
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Figure 5.6-18 Excimer laser machined circular hole machined into AlN, 1080 pulses, 
attenuator setting 0.7. 

5.6.5.3 Combined Laser Machining 

The excimer laser was used on CO2 laser processed samples to attempt to 

simultaneously exploit the high material removal rate of the CO2 laser and the 

precision and polishing properties of the excimer laser. Figure 5.6-19 shows 

the results of differing amounts of excimer laser polishing on a CO2 laser 

processed rough area. 

 

 

Figure 5.6-19 Polishing of a CO2 laser produced rough surface by excimer laser machining, 
(a) 50 pulses (b) 150 pulses (c) 300 pulses (d) 1000 pulses. Attenuator 0.6. 

(a) (c) 

(b) (d) 
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Much data was gathered on the repeatability of the machining processes. 

There was found to be less than 5% variation in the machining depth for 

excimer laser machining. It was found not possible to obtain a figure for the 

repeatability of the CO2 laser processing due to the excessive roughness. 

5.6.6 Discussion  

As might be expected clear correlations were seen between the energy 

delivered  into the sample and the amount of material removed with both 

lasers. The lower the traverse speed and the higher the duty cycle the higher 

rate of material removal. 

The CO2 laser material removal mechanisms were clearly different between 

AlN and Al2O3. The Al2O3 appeared to melt upon irradiation and migrate to 

form ridges at the edge of the melt pools. The resolidified ceramic was then 

loosely attached to the underlying material and easily broke off. Figure 5.6-7 

shows the remnants of this crust, and the cracks in it. This crust became an 

issue when machining smaller features such as in Figure 5.6-9. Here the crust 

was not easily removed leaving the machined feature uncompleted. The 

formation of this crust is probably due to the high vaporisation energy of the 

material. The heat due to the laser irradiation was sufficient only to melt the 

material and not to ‗burn‘ it away. This crust if not removed could be 

detrimental to the reliability and functionability of optoelectronic modules. For 

example poor adhesion of the crust could induce failure of adhesive bonds 

due to the delamination of the underlying material. Discontinuity in the bulk 

material could also affect the thermal conductivity due to the inclusion of a thin 

layer of air under the melted crust. Figure 5.6-9 shows this layer of air to be a 

number of microns thick, below a crust of 35μm thickness. No crust was seen 

to form during the machining of AlN, suggesting the material had vaporised. 

However some redeposition over the surface was seen. It may be that 

masking the surface prior to machining would be beneficial. Using the CO2 

laser it was possible to achieve high speed planar material removal on both of 

the ceramics. However the Al2O3 does require post processing to remove the 

crust which formed. 
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Numerous attempts were made to modify the CO2 machining parameters and 

movement patterns to improve the machined surface quality, but all were 

unsuccessful. This is due to the gaussian profile produced by each laser pass 

in the material surface, so that even with multiple passes a minimum Ra value 

of 4.5μm was produced. This is too great for optical  assemblies which require 

sub-micron height accuracy. The Rt value (maximum peak to height distance) 

for all CO2 laser machined surfaces was ~30μm, showing a large amount of 

variability created in the surfaces by the machining. It therefore seems 

unlikely that any further improvement in machined surface quality could be 

achieved with the CO2 laser process, at least with the equipment used 

The XRD results, Figure 5.6-11 and Figure 5.6-12, show changes in the peak 

intensity ratios following laser machining of the Al2O3. Although this suggests 

some reorientation of some of the crystals, because all of the peaks 

correspond to α-Al2O3 both before and after laser machining, there is no 

evidence that major crystallographic changes have taken place, in contrast to 

previous reports6. The results for AlN show additional small peaks following 

CO2 laser machining at 31.9°, 36.9° and 38.5°. The 31.9° and 38.5° peak 

correspond to (220) and (111) FCC aluminium nitride crystals, where all other 

peaks correspond to hexagonal crystal structure. However, the peak heights 

are so small, Figure 5.6-13, that any effects on the properties of the bulk 

material are highly unlikely. The peak appearing at 36.9° does not appear for 

aluminium nitride in the XRD database19 and is of unknown origin. 

The nanoindentation results shown in Table 5.6-1 show a reduction in the 

hardness and reduced modulus of both of the ceramics after CO2 laser 

machining. This suggests damage extending deeper into the bulk than the 

directly laser machined regions. 

The effect of excimer laser machining of AlN was consistent with that reported 

in the literature5,8. Similar ablation rates were achieved and feature 

geometries created, along with the formation of an aluminium metal film over 

all irradiated surfaces (assumed to be this as it is seen in the literature5) on 

the machined areas. Polishing of small areas up to 0.5mm diameter was 

achieved  with good repeatability. However, processing of larger areas >1mm 

diameter was not achieved as a single process with a large mask size. It was 
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seen that with a large mask size the process produced features of poor 

machined depth homogeneity, possibly due to the lack of a beam 

homogeniser on the setup used. Al2O3 was consistently machined at a higher 

ablation rate than AlN at lower fluence and pulse number, possibly due to the 

higher thermal conductivity of the material. At higher fluences and pulse 

number the ablation rate was seen to be similar for both materials, suggesting 

that with deeper features the machining is limited by feature geometry rather 

than material properties. The depth of machined featured after 1080 pulses at 

an attenuator setting of 0.7 was 43μm for both materials, Figure 5.6-17 shows 

that the ablation rate reduces with increased number of pulses, probably due 

to the mechanisms associated with increased escape depth described in the 

background section. Tapered side walls are also seen in Figure 5.6-16 and 

Figure 5.6-18. This is probably due to the focal plane of the laser being fixed 

at the original surface of the ceramics. Thus as the ablation depth increases 

the laser spot becomes less focused, decreasing its effectiveness. This side 

wall taper angle was seen to remain unchanged when the machining area 

was increased. Both 100μm and 0.5mm diameter features resulted in a 

sidewall angle of 25° on AlN. When the machined area was increased on 

Al2O3 a columnar topography was formed, which was not seen for the same 

machining parameters for 100μm diameter features. This indicates that 

different parameters are needed when increasing the machined area on 

Al2O3. The columnar topography was seen to grow with increasing numbers of 

laser pulses. Small features were seen of a diameter of ~10μm at 180 pulses 

(attenuator 0.5 and 0.7) which grew to ~50μm after 1080 pulses. Although 

these features are undesirable for the applications considered here, their 

formation is very consistent. Thus it would seem to be feasible to reliably 

remove them using an appropriate process. 

Figure 5.6-19 shows the result of excimer laser post-machining on an AlN 

surface which had previously been machined with a CO2 laser. The step-wise 

evolution of a smooth surface from one which was previously extremely rough 

is apparent in the figure. In principle a smooth surface is only achievable once 

the ablation depth has exceeded the peak to valley depth of the roughness 

profile. This was measured to be ~30μm using the Talysurf. Figure 5.6-19 
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shows that the peaks of the roughness profile are affected by the excimer 

laser before the troughs. This is because the peaks lay within the laser‘s focal 

plane giving more effective machining. Consequently the roughness can be 

machined away effectively with the excimer laser. The same post-machining 

approach was repeated on Al2O3 whilst the crust was still present. The results 

were much the same as with the AlN but columnar topographies were formed 

once the crust was penetrated by the machining and the bulk Al2O3 was 

reached. In addition the excimer laser machining was seen to induce flaking 

of the crust, highlighting the importance of the removal of this crust prior to 

further processing.  

5.6.7 Conclusions 

Planar material removal using an infrared 10.6μm CO2 laser was achieved on 

both AlN and Al2O3 ceramics. However, the usefulness of the process for 

optoelectronic application is likely to be limited by the extreme surface 

roughness created by the machining. XRD and nanoindentation results show 

some machining induced changes to the bulk material properties for both 

materials. Epoxy bleed was successfully controlled using laser CO2 laser 

machined features. A depth of 50μm and close to vertical side walls were 

found to be a requirement for successful control. 

Excimer laser machining was shown to be a repeatable process with the 

capabilities of machining controlled, precise geometries and surface 

roughnesses. However in this work attempts to machine large areas >1mm 

diameter were unsuccessful. This problem would limit the usefulness of the 

technique for optoelectronic application, if not overcome. 

Combining the material removal speed of CO2 laser processing, with the 

precision of excimer laser post-processing produced some promising results. 

Excimer laser machining was seen to remove the excessive roughness 

caused by CO2 laser processing. 

The geometries created in this work were not of adequate quality for use in 

the manufacture of optoelectronics, largely due to the redeposition of material 

following ablation. However, there is clearly scope for process improvements 

and high quality features would seem to be achievable. For example while this 
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work was limited to static sample processing with an excimer laser, dynamic 

processing (i.e. moving the laser spot) could be used to improve feature 

geometry, and masking and post-processing could be used to remove 

redeposited material. 

 

5.6.8 References 

                                            
1
. Williams, O. Liu, C. Webb, D.P. Firth, P. Epoxy adhesion strength to ceramic surfaces in 

commercial optoelectronic assemblies. Electronic Components and Technology Conference, 
2008. ECTC 2008. 58th , vol., no., pp.1673-1678, 27-30 May 2008 
2
. Pereles-Santiago, V. Washington, M. Brugan, P. Cai, G. Akarapu, R. Pulford, S. Segall, 

A.E. Faster and damage-reduced laser cutting of thick ceramics using a simultaneous 
prescore approach, J. Laser Appl. 17, 219 (2005), DOI:10.2351/1.2080547 
3
. Imen, K. Allen, S.D. Pulse CO2 laser drilling of green alumina ceramic, Advanced 

Packaging, IEEE Transactions on , vol.22, no.4, pp.620-623, Nov 1999 
4
. Leonard R. Migliore and Arzu Ozkan, Laser cutting of aluminum nitride, Proc. SPIE 5063, 

505 (2003) 
5
. Lumpp, J.K. Allen, I. Susan, D, Excimer laser ablation of aluminum nitride, Journal of 

Materials Research. Vol. 12, no. 1, pp. 218-225. Jan. 1997 
6
. Oliveira, V.Conde, O. Vilar, R. UV Laser Micromachining of Ceramic Materials: Formation 

of Columnar Topographies, Advanced Engineering Materials, Vol 3, Iss1-2, Pg 75-81, 2001 
7
. Yaghdjian, L. Vacquier, G. Fabre, A. Autric, M.L. Excimer laser surface processing of Si3N4 

and AlN Proc. SPIE 4070, 226 (2000) 
8
. Lumpp, J.K. Excimer laser machining and metallization of vias in aluminium nitride, 

Materials Science and Engineering B, Volume 45, Issues 1-3, March 1997, Pages 208-212 
9
 Goller, M. Lutz, N. Geiger, M. Micromachining of ceramics with excimer laser radiation, 

Journal of the European Ceramic Society, Volume 12, Issue 4, 1993, Pages 315-321 
10

 Lumpp, J.K. Coretsopoulos, N. Allen, D. Fluence Dependence of Excimer Laser Ablation of 
AlN, Materials Research Society, 1994. 
11

 Ihlemann, J. Scholl, A.  Schmidt, H.  Wolff-Rottke, B. Nanosecond and femtosecond 
excimer-laser ablation of oxide ceramics. Applied Physics A: Materials Science & Processing. 
Volume 60 Issue  - 4. 411 - 417 
12

 Ihlemann, J. Wolff-Rottke, B. Excimer laser micro machining of inorganic dielectrics, 
Applied Surface Science, Volume 106, Proceedings of the Second International Conference 
on Photo-Excited Processes and Applications, 2 October 1996, Pages 282-286 
13

 Sciti, D. Melandri, C. Bellosi, A. Excimer laser-induced microstructural changes of alumina 
and silicon carbide, Journal of Materials Science, Volume 35 Issue  - 15, 3799 - 3810 
14

 Thomas, D.W. Williams, C.F. Rumbsby, P.T. Gower, M.C. Surface modification of polymers 
and ceramics induced by excimer laser radiation. In: Laser Ablation of Electronics Materials 
Basic Mechanisms and Applications Elsevier (1992). 
15

 Oliveira, V. Conde, O. Vilar, R. UV Laser Micromachining of Ceramic Materials: Formation 
of Columnar Topographies. Advanced Engineering Materials. Vol 3 Iss 1-2 Pg75-81 
16

Laude, L.D. Kolev, K. Brunel, M. Deleter, P. Surface properties of excimer-laser-irradiated 
sintered alumina, Applied Surface Science, Volume 86, Issues 1-4, February 1995, Pages 
368-381 
17

 Tonshoff, H.K. Hesse, D. Mommsen, J. Micromachining Using Excimer Lasers, CIRP 
Annals - Manufacturing Technology, Volume 42, Issue 1, 1993, Pages 247-251 
18

Wu, Y. Feng, Z.  Liang, J.. Surface modification of ceramic materials using excimer laser. 
Journal of Materials Science and Technology. 2000 Vol. 16 (04): 401-40 
19

 Powder diffraction file 2009    Swarthmore :   JCPDS International Centre for Diffraction 
Data. 



 275 

6 Evaluation 

This work has shown the effects of surface properties on epoxy bleed and 

examined methods of preventing or inhibiting it on metallised and 

unmetallised ceramic materials used in optoelectronic manufacture. The 

chemistry of the surfaces has been seen to be the principal factor determining 

the occurrence of epoxy bleed through the effect it has on surface energy. It 

has been seen that roughness exacerbates the problem on surfaces which 

are chemically similar. A highly polished surface was seen to inhibit the 

spreading of epoxy material. This was thought to be due to capillary action 

being the mechanism of spreading on a rough surface. 

Standard models for wetting of rough (Wenzel) and chemically 

inhomogeneous (Cassie) surfaces do not correctly predict observed variation 

of contact angle due to roughness and degrees of surface contamination. An 

extension to the Cassie model for chemically inhomogeneous surfaces was 

proposed to allow calculation of contact angle on a mixed completely 

wetting/partially wetting surface.  

Adsorption of adventitious carbon from the atmosphere was shown to produce 

marginal results when the aim was inhibiting epoxy bleed. The extended 

periods of time (~28 days) required to reach this time rendered this as an 

industrial solution to the problem unfavourable. However, it seemed that the 

seemingly random occurrence of epoxy bleed reported by an optoelectronics 

manufacturer was due to the time between manufacture of substrate materials 

and when they were used in the assembly line. The primary source of this 

contamination was found to be the industry standard storage method of 

polymer waffle packs containing protective lint free paper and polyethylene 

inserts. 

The first successful and industrially feasible solution for inhibiting epoxy bleed 

found was the use of self assembled monolayers to modify the surface energy 

of the ceramic and metallisation materials. Adhesion strength was maintained 

using a fluorinated carboxylic acid monolayer on the ceramic materials due to 

the curing agent of the adhesive stripping off the SAM molecules. A 

multistage SAM coating method was developed and tested in the laboratory 
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for treating industrial optoelectronic substrates consisting of both ceramic and 

metal surfaces, and is currently being tested on the assembly line at Oclaro 

plc. 

The control of epoxy bleed has also shown to be possible with the use of laser 

machined features on the ceramic surfaces. Although laser machining of 

ceramic is covered in the literature, a novel feature of this work was to attempt 

to combine the high removal rates of thermal CO2 laser processing ,with the 

fine feature and low damage ablation machining of slower excimer laser 

processing. Although the machining process was shown to damage the bulk 

of the ceramic materials, the results show promise for extension of laser 

machining to other potential applications in the assembly/manufacture of 

optoelectronic substrates. These include the machining of passive alignment 

features and replacing conventional machining methods in the structuring of 

ceramic substrate surfaces. 

6.1 Further work 

Surface texture of ceramics was studied in depth in this work. It was also 

demonstrated that a polished copper surface can inhibit epoxy bleed as well 

as a polished ceramic surface. Further work could focus upon the deposition 

of metallisation patterns of very low roughness so adhesives which are 

applied do not have the tendency to bleed. 

The method proposed for the multi-stage coating of heterogeneous surfaces 

was shown to work as a lab process. Much further work could be done to turn 

this into a viable large scale industrial process. Aspects which have not been 

considered in this work are the resilience of the coating to the many 

processes undergone in the assembly line, the optimum point in the assembly 

process for application, and whether multiple applications could be necessary. 

The applications of laser machining to the optoelectronic assembly process 

do not end at epoxy bleed control. The potential for machined features to be 

used as active alignment features was studied briefly in this work. So far the 

features have not been machined to acceptable accuracy for this purpose. 

However this is an area of follow up research thorough an MSc research 

project, which aims to determine the feasibility of incorporating laser 
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machined features into the optoelectronic substrate assembly process as 

passive alignment features.
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9.2 Appendix 2 – Patent Application 

 
         OCL/0945 
 

PROVISIONAL PATENT SPECIFICATION 
 
 

 
Surface treatments and coatings to reduce adhesive spread 

 
Abstract 
Treatments and coatings are disclosed that reduce the spread of liquid 
adhesive on ceramic and metal surfaces during the period before curing of the 
adhesive.  The treatments and coatings are particularly suitable for mixed 
ceramic and metal surfaces to which epoxy adhesive is applied during the 
manufacture of electronic and optoelectronic components.   
 
Background 
This invention is in the field of the manufacturing of electronic and 
optoelectronic device where liquid adhesive is used.  Such an adhesive is 
typically an epoxy adhesive which may be cured using UV light or thermally. 
 
Liquid adhesives are widely used in the manufacture of electronic and 
optoelectronic components.   Epoxy adhesives are commonly used because 
they are strong and have long life-times in harsh or otherwise demanding 
environments.   As components have become smaller, adhesive management 
has become more important.  The control of the flow of adhesive can be 
achieved by control of parameters such as viscosity, temperature and cure 
time.   The less adhesive spreads from the area of the joint between the 
materials to be joined, the less adhesive is used and the less interference will 
there be between one affixed component and the adjacent items in the 
product.   One known way to affect the spreading of a liquid over a surface is 
the modification of the surface energy of the surface and one way to do this is 
to treat the surface so that a layer or coating is placed upon the surface in 
order to alter its surface energy. 
 
Materials that are commonly used in electronics and optoelectronics are 
ceramics (such as alumina and aluminium nitride (AlN)) and metals (such as 
copper and gold).    The surfaces of such materials may differ from the bulk 
composition of the material. For example, copper and AlN my have oxide 
surface coatings through aerial oxidation.   Thus any treatments used to 
modify the surface properties of the ceramics or metals need to take account 
of the surface compositions of materials as used in industry. 
 
The wetting properties of metallised ceramic substrates for use in 
optoelectronic assemblies are not specified or controlled by suppliers or 
optoelectronic module manufacturer customers. The wetting properties of 
aluminium oxide and aluminium nitride substrate materials in the as received 
state have been shown to vary widely. Variation has also been shown to 
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depend on storage and handling procedures implemented by the suppliers 
and customers. Variation in the composition of the surfaces leads to poor 
process control of material interactions in assembly processes, such as the 
adhesion of metal tracks and the flow behaviour of adhesives for 
interconnections1. Ceramics and metals have intrinsic high surface energies 
which favour low equilibrium contact angles for epoxy adhesives used for 
component mounting and interconnection. In extreme cases separation of 
epoxy components and bleed across the surface occurs, interfering with 
nearby components and contaminating sensitive areas such as wire bonding 
pads. Surface contamination of ceramic substrates tends to restrict spreading 
due to wetting by reducing the effective surface energy. However, the 
variability of surface contamination levels of as-received surfaces has so far 
made this an unreliable solution. 
 
A self assembled monolayer is a single molecule thick chemical layer which 
forms spontaneously on a given surface, the surface properties change from 
those of the bulk material to those of the SAM chemical following coating. 
Molecules of an amphiphilic substance (molecules having a hydrophilic head 
and a hydrophobic tail) are chemisorbed on a suitable solid surface, the 
hydrophilic end typically to the solid surface, leaving a hydrophobic tail 
exposed as a new surface. The exposure of the hydrophobic tail groups as a 
new surface and the uniform coverage of the solid surface reduces the 
apparent surface energy of a hydrophilic solid surface. The surface energy is 
an effect of the chemical and physical properties of the surface of the solid, 
the region where liquid/solid interactions take place. The reduction of this 
surface energy can increase the contact angle of liquids on the surface and 
thus reduce wetting.  A well-known SAM is made from silane – for example 
treatment of a surface with trimethylchlorosilane.  The treatment is sometimes 
known a silanisation. 
 
An important practical point is that surfaces to be prepared for bonding are 
frequently composed of more than one material.  For example, a surface may 
be made up of a ceramic with an embedded copper track and epoxy bonding 
may be required to both the ceramic and the metal surfaces. 
 
There is thus a need for means and methods of preparing the complex 
surfaces of materials to be bonded in the manufacture of optoelectronic 
devices so that adhesive bleed is reduced and minimised.   Preferably the 
whole complex surface composed of a variety of materials must be 
homogenised in surface energy so that the whole surface gives minimal 
adhesive bleed. 
 
Description of the invention 
 
A material made up of at least one ceramic material is treated with a solution 
of an alkanoic acid,  a phosphonic acid or silane, preferably a fluoroalkanoic 
acid. After washing and drying a component or device is bonded to the 
surface using an adhesive, preferably an epoxy adhesive.  The bleed of 
adhesive is thus greatly reduced with no significant effect of the bond strength 
achieved between the component or device and the ceramic substrate, in the 
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case of the alkanoic acid. Silane and phosphonic acid monolayers can be 
used where bond strength is not imperative. 
In a further embodiment of the invention, a material made up of at least one 
ceramic  and at least one metal, having a surface with exposed ceramic and 
exposed metal is treated with an alkanethiol, followed by one of the ceramic 
treatments mentioned above  to reduce the surface energy across the surface 
so that the spread of uncured and curing adhesive is reduced.   
Preferably, a longer chain length SAM chemical will reduce bleed more 
effectively than a shorter one. Any chain length can be used providing it can 
be dissolved in a solvent which does not interfere with the chemisorption 
process. 
 
Technique for coating ceramic with alkanoic acid: 

1. Dissolve CA3(CB2)nCOOH* in deionised water or another suitable 
solvent, typically at 60°C to make an approximately 0.01M solution 

2. Expose the ceramic (typically Al2O3 or AlN) to the solution. The 
exposure is at approximately 60°C for up to approximately one hour but 
other conditions may be suitable depending upon the solid substrate 
and the alkanoic acid. 

3. Remove the ceramics from the treatment solution and wash with 
thoroughly with deionised water. 

4. Dry. 
*Where A and B are hydrogen, chlorine or fluorine, n is an integer from 1-
21. Aqueous solution may not be suitable for all, tested for A=F, B=F, n = 
1-16. 

 
Technique for coating metal (or a surface containing a metal and a ceramic)*: 

1. Dissolve organosulphide into isopropylalcohol (propan-2-ol, or another 
suitable solvent, typically a hydroxylic solvent) for a concentration of 
10mM 

2. Preparation of surfaces for SAM treatment:  For copper only, etch with 
dilute (~5%) HCl for 10 minutes to remove oxide layer. The SAM 
solution is preferably acidified with 40ml/l of acetic acid. Gold needs no 
preparative treatment. 

3. Add metal surface to the coating solution (from 1 or as modified for 
copper). Leave the surface exposed to the solution for a period up to 
approximately one hour. This operation is typically effected at room 
temperature. 

4. Remove metal from treatment solution and wash thoroughly with 
solvent (typically isopropylalcohol). 

5. Dry 
6. Where the surface also contains a ceramic requiring reduced bleed 

characteristics, the alkanoic acid treatment is the applied as above, or 
the silane and phosphonic acid treatment as below. 

* SAM substances suited to this are those with the chemical formulas HS-R or 
R-S-S-A where R and A are alkyl or aryl chains  which could be partially or 
totally fluorinated or chlorinated. The hydrocarbon chains will terminate in a 
methyl, ethylene, fluorinated methyl or chlorinated methyl tail group. 
 
Technique for coating ceramic with silane* or phosphonic# acid SAMs 
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1. Prepare a solution of phosphonic acid or silane to a concentration of 
0.01M, solvents preferred are ethanol for phosphonic acid and 
cyclohexane for silanes. 

2. Expose the ceramic (typically Al2O3 or AlN) to the solution. The 
exposure is at approximately 20°C for up to approximately one hour but 
other conditions may be suitable depending upon the solid substrate 
and the SAM substance used. 

3. Remove the ceramics from the treatment solution and wash with 
thoroughly with their respective solvent. 

4. Dry. 
* SAM substances suited to this are those with a silane group and general 
formula R-SiA3 where A can be hydrogen, chlorine or fluorine and R is a linear 
or branched alkyl or aryl chain of length 1-21 carbon atoms which could be 
partially or totally chlorinated of fluorinated. 
# SAM substances suited to this are those with a phosphoric acid group of the 
form C-PO(OR)2 where R is an alkyl or aryl chain which could be partially or 
totally chlorinated of fluorinated. 
 
The performance of the treatments is assessed by measuring the distance the 
adhesive spreads away from the base of the item to be adhered to the test 
surface.  For an untreated surface in ceramic the spread is typically 2mm.  For 
an untreated metal it is typically 1mm.  After treatments described above the 
bleed is reduced to approximately 30μm for ceramic or metal using the thiol 
and alkanoic acid treatments. 
 
The SAM treatments produce monolayers, and such monolayers are resistant 
to removal by solvent cleaning processes.  The presence of SAM monolayers 
on ceramics and metals treated as above has been confirmed with XPS both 
before and after solvent cleaning. The protection of the metal from alkanoic 
acid by the alkanethiol monolayer has also been shown with XPS. 
 
The adhesives used in the tests were 1) Epo-Tek 930-4 (boron nitride loaded 
thermally conductive/electrically insulative), 2) H20E (silver loaded electrically 
conductive) and 3) a home made one prepared from 2-ethyl-4-
methylimidazole (curing agent dissolved in 1,2-propanediol) and poly((phenyl 
glycidyl ether)-co-formaldehyde).  
  
Surprisingly, the shear strength of epoxy bonds to the ceramics was not 
affected by the coatings, with joints failing cohesively for both coated and 
uncoated samples. The SAMs were shown to be thermally stable, being 

unaffected by heat soaking at 150 C for 12 hours, augmenting their suitability 
as a solution to the problem of bleed. 
 
The measured shear strengths of the commercial adhesives (on the 
ceramics) were 34.6N/mm2 and 23.9N/mm2 respectively, both before and 
after the ceramics were treated. The adhesives always underwent cohesive 
failure, showing that there was no strength reduction at the interface. This has 
been done repeatedly with 4 lengths of fluorinated carboxylic acid, with all 3 
epoxies. Using a silane SAM (stronger bond) the shear strength is reduced to 
almost zero and the failure mode changes to adhesive failure (in fact these 



 295 

bonds are so weak that the adhesive spots can be pushed off with a gentle 
prod of a finger), the surface energy is however higher than the fluorinated 
carboxylic acid SAM coated surfaces. 
  
Using well-known SAMs such as silanes a large drop in strength due to the 
reduction in surface energy (lower less Van Der Waals forces, less wetting, 
less contact between adherend/adhesive).   It is believed that the reason this 
does not occur in the present invention is that the carboxylic acid SAM 
molecules are displaced by the reactive curing agent in the adhesive and this 
has been shown to occur by XPS data.  This displacement happens 
sufficiently slowly that bleed does not occur significantly at the three phase 
line (the line between the adhesive the SAM and the solid surface) but bond 
strength is regained at the interface under the adhesive bulk. This is the 
reason the bleed distance is not zero. 
 
 
Description of figures 
 
Figure 1 illustrates bleed on a ceramic material as received from the 
manufacturer and having a measured surface energy of 70mN/m. 
Figure 2 shows the bleed on the same ceramic after treatment with 
perfluorooctanoic acid giving a measured surface energy of 30mM/m. 
Figure 3 give the relationship between the bleed distance and carbon chain 
length for a ceramic treated with linear fluoroalkanoic acids. 
Figure 4 gives the relationship between the surface energy of a ceramic 
surface treated with fluoroalkanoic acid and the carbon chain length for linear 
fluoroalkanoic acids. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 
 

Figure 1 
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Figure 2 

 
 
 

Figure 3 
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Bleed distance vs fluorinated carboxylic acid SAM chain length
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Figure 4 

Surface energy vs fluoroalkanoic acid SAM chain length
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Claims. 
 
1) A treatment for a ceramic surface to be bonded with adhesive, the 
treatment consisting of a solution of an alkanoic acid. 
2) A treatment of claim 1 in which the surface energy is reduced by 
50Newtons per cm. 
3) A treatment as in claim 1 where the alkanoic acid has a linear carbon 
chain. 
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4) A treatment as in claim 1 where the alkanoic acid has a branched carbon 
chain. 
5) A treatment as in claim 1 where the alkanoic acid has the formula 
CnH(2n+1)COOH. 
6) A treatment as in claim 1 where the alkanoic acid is a fluoroalkanoic acid of 
the formula CnF(2n+1)COOH. 
7) A treatment for a surface consisting of ceramic and metal areas, the 
treatment consisting of at least one alkane thiol for the metal and at least one 
alkanoic acid for the ceramic. 
8) A treatment as in claim 7 where the alkane thiol has a branched chain. 
9) A treatment as in claim 7 where the alkane thiol has the formula 
CnH(2n+1)SH.    
10) A surface coating of an electronic or optoelectronic ceramic substrate 
consisting of at least one alkanoic acid 
11) A surface coating of an electronic or optoelectronic surface containing 
ceramic and metallic areas, the treatment consisting of at least one alkanoic 
acid and at least one alkane thiol.   
12) A treatment to homogenise to a low level the surface energy of a solid 
surface comprised of a mixture of ceramic and metal areas. 
13) Treatments and coatings of the preceding claims where the alkanoic acid 
preferable has 8 to 21 carbon atoms. 
14) Treatments and coatings of the proceeding claims where the alkane thiol 
has 5 to 21 carbon atoms and more preferably 5 to 12 carbon atoms. 
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9.3 Appendix 3 – Evaluation of Surface Energy Estimation 
Methods 

9.3.1 Introduction 

There are a range of methods for estimating the surface energy of a solid, as 

covered in Section 2.4 Wetting, Contact angle and Surface energy. One of the 

simplest ways is indirectly by measuring the contact angle formed by a liquid 

of known properties, on a surface of unknown properties. This can be done 

with one (Fowkes method) or more liquids and the contact angles are 

manipulated mathematically along with the surface tensions of the liquids, to 

yield an estimation of surface energy for the solid. The first to link contact 

angle to interfacial tensions was Young1 whose work is the area is usually 

summarised by citing the Young equation: 

svsllv  cos  

Equation 9.3-1  

Where  lv is the liquid/gas interfacial tension,  sl the solid/liquid interfacial 

tension,  sv the solid/gas interfacial tension and  is the contact angle at the 

solid/liquid/gas interface. 

However this equation is difficult to use in practice due to the difficulty of 

measuring the values of sl and sv. It is only practical to measure lv and cos2. 

Therefore, starting with the work of Fowkes3, many expressions have been 

derived to link the contact angle and liquid surface tensions to the polar and 

dispersive energies of solid surfaces. 

Owens and Wendt introduced a method for calculating both the polar and 

dispersive fractions of surface energy from wetting data, in an expression 

especially suited to low energy solids4. A further method was described by 

Wu6 which reportedly gives more accurate data at higher surface energies. 

Due to these methods being effective at opposite ends of the surface energy 

scale, they are both used in this work for surface energy estimations. 

In this appendix the surface energies calculated with the Owens Wendt and 

Wu methods are compared. This was done to aid in the interpretation of 
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experimental data from previous chapters. In particular the sensitivity of the 

calculated surface energies to changes of contact angle was studied.  

9.3.2 The Owens Wendt Method 

Owens and Wendt theorised that the polar and hydrogen bonding 

contributions to surface tension can be considered together and so the 

surface tension and surface energy could be written as the sum of the 

dispersive and polar components4: 

D

l

P

ll    

Equation 9.3-2 The surface tension of a liquid as the sum of the polar and dispersive 
components. 

And: 

D

s

P

ss    

Equation 9.3-3 The surface energy of a solid as the sum of the polar and dispersive 
components. 

Where l is the surface tension of a liquid with P and D denoting polar and 

dispersive components, and s is the surface energy of a solid with P and D 

denoting polar and dispersive components. 

Owens and Wendt hypothesised that the interfacial liquid/solid term in the 

Young equation, Equation 2.3-6, can be calculated from the polar and 

dispersive components of the interacting pair as follows:  

 P

l

P

s

D

l

D

slssl   2  

Equation 9.3-4  

Note that the two interaction terms on the right hand side are the geometric 

means of the dispersive (polar) components of the interaction pair. Inserting 

5.4-4 into the Young equation they obtained: 
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Equation 9.3-5 The Owens Wendt equation as derived from the Fowkes equation to include 
both polar and dispersive forces. 

Equation 9.3-5 may be rewritten in the format of the equation for a straight 

line: 

  D

sD

l

P

lP

s
D

l

l 












2

cos1
 

Equation 9.3-6 The Owens Wendt equation in the form of the equation of a straight line, 
Y=MX+C, following contributions by Kaelble

5
 and Rabel. 

Equation 9.3-6 can be used as the basis of a method for measuring the 

surface energy of a solid. Two liquids are needed which contribute two points 

which define a straight line. The gradient of the line is then the square root of 

the polar component of the solid surface energy, while the Y-intercept is the 

square root of the dispersive component of the surface energy of the solid. 

To evaluate the Owens Wendt equations for a range of contact angles a 

Matlab program was written and is shown in Section 9.4 Appendix 4 – Matlab 

Programs. 

The surface energies for the corresponding contact angles were calculated 

first by using diiodomethane as a fixed value and plotting values of surface 

energy for contact angles of water 0-150°. A plot for equal water and 

diiodomethane contact angles is also shown in Figure 9.3-1. Contact angles 

were calculated for the following values for the dispersive and polar 

components of surface tension. Water total: 72.8mJ/m2 polar: 46.8mJ/m2 and 

dispersive: 26mJ/m2. Diiodomethane total: 50mJ/m2 polar: 2.6mJ/m2 and 

dispersive: 47.4mJ/m2. 
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Figure 9.3-1 The affect of varying water contact angle on the total surface energy for fixed 
values of diiodomethane contact angle (see legend). CA=CA represents a plot for equal 
values of water and diiodomethane contact angles. 

It can be seen from the CA=CA plot in Figure 9.3-1 that the total surface 

energy for equal contact angles for water and diiodomethane is not a linear 

plot. This is an interesting result as it shows that the resolution of the 

calculated surface energy value can be expected to change with the 

measured contact angles. The steepest gradient in the equal contact angles 

line is seen from 40° to 80° which means that small deviations in contact 

angle will produce larger deviations in surface energy than if the contact 

angles were outside of this range. From Figure 9.3-1 it can also be seen that 

for each fixed value of diiodomethane contact angle, there is a value of water 

contact angle for continued increase of water contact angle produces an 

increase in calculated surface energy. The reason for this is that the 

dispersive component is increasing due to a low dispersive liquid 

(diiodomethane) contact angle, and a high polar liquid (water) contact angle. 

However, for water contact angles much beyond this point the solutions to the 

expression are not real, i.e. no longer physical. As one would expect this 

happens at a higher water contact angle as the diiodomethane contact angle 

is increased. Thus if measured contact angles are seen to fall into this range 

of values (low polar component of surface energy and high dispersive 

component of surface energy) then any surface energy measurements which 
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are produced by contact angle goniometer software should be treated as 

questionable. A similar effect is seen when the water contact angle is fixed 

and the diiodomethane contact angle is varied, Figure 9.3-2. Here the surface 

energy values rise implausibly high. It can also be seen from Figure 9.3-2 that 

the sensitivity of the surface energy to diiodomethane contact angle is small 

compared to water, probably due to the higher surface tension of water which 

is composed of both polar and dispersive components whereas 

diiodomethane is almost entirely dispersive. Thus even a change in 

diiodomethane contact angle of ±10° makes a very small difference to the 

total surface energy. 

However closer inspection reveals a transition point of a change in the nature 

of the solid surface from predominantly dispersive to polar, without affecting 

the total surface energy beyond experimental error. For example for water 

contact angle of 60° and diiodomethane of 50° the polar and dispersive 

components of the surface are 18.34 mJ/m2 and 24.62 mJ/m2 respectively, 

giving a total of 42.96 mJ/m2, whereas for  water 60° and diiodomethane 70° 

the polar and dispersive components are 27.76 mJ/m2 and 13.24mJ/m2 giving 

a total of 41.00 mJ/m2. This result strongly highlights the limited value of a 

surface energy estimation alone, without considering its respective 

components. This is particularly relevant to this work because an adhesive 

system can be highly non-polar and changes to the distribution of surface 

energies between the two components could mean the difference between 

epoxy bleed occurring, and not occurring. 
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Figure 9.3-2 Plots of the affect of varying diiodomethane contact angles for fixed values of 
water contact angle (see legend). 

9.3.3 The Method According to Wu 

Wu followed Owens and Wendt but calculated the interaction terms between 

liquid and solid using the harmonic mean of the surface tension/energy 

components rather than the geometric mean6 yielding first order non-linear 

equations of the form: 

        0111111111111  cbaacbabcacb P

s

D

s

P

s
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Equation 9.3-7 Wu Equation 1 where sigma represents surface energies of liquids (l) and 
solids (s) as defined by the subscript letters l and s. 
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Equation 9.3-8  
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Equation 9.3-9 Wu identities for Equation 9.3-7 
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Equation 9.3-10 Wu identities for Equation 9.3-8 

Equations 9 and 10 are first order non-linear equations of the form: 

0 DCyBxAxy  

Equation 9.3-11 General form of Equation 9.3-7 and Equation 9.3-8 

Where: 
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Equation 9.3-12 Source of the values of the dispersive component of surface energy and the 
polar component of surface energy from the Wu equations. 

Each equation has two unknowns and there are two equations so the system 

must be solved simultaneously. This was done with a Matlab program which 

can be found in Section 9.4 Appendix 4 – Matlab Programs. 

Solutions to the Wu equation were plotted as with the Owens Wendt equation. 

The expressions gave less real answers to contact angle combinations than 

the Owens Wendt equation, but was simultaneously less useful for low energy 

surfaces. The Wu equations produce two sets of values for dispersive and 

polar components of surface energy. The physical solution is usually readily 

apparent as one set of solutions is frequently negative or has imaginary parts 

(however in some instances small negative answers may simply reflect 

experimental measurement error). Occasionally however both sets are of 

similar magnitude and apparently equally valid. Interestingly some real 

surface energy component solutions to the Wu equations were returned by 

the Dataphysics OCA20 contact angle machine software, for pairs of angles 

yielding imaginary solutions when the maths was processed with Matlab. The 

algorithm used by the Dataphysics software to find solutions to the equations 

therefore appears to be different to that implemented for this work. The Wu 
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equation was found to be sensitive to contact angles which were widely 

different, i.e. for a surface which is highly polar or highly non-polar, frequently 

returning no valid answers when inputted with contact angles greater than or 

equal to 20° apart. 
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Figure 9.3-3 Plot of the varying surface energy for changing water contact angle against 
constant diiodomethane contact angles as calculated with the Wu method. CA=CA represents 
equal contact angles. 

Figure 9.3-3 shows surface energy plots for varying water contact angles with 

diiodomethane angles fixed at 30° and 100°. The equal contact angle line 

CA=CA is also shown where water contact angles are equal to diiodomethane 

contact angles. The high angle limits to the lines are those beyond which no 

physical solutions are obtained, e.g. for 30° contact angle with diiodomethane 

there are no water contact angles higher than 95° giving a physical solution. 

The lines are of similar shape to those of the Owens Wendt fixed water 

contact angle plot, Figure 9.3-1, which suggests that the Wu equation has a 

similar sensitivity to the varying contact angles of water and diiodomethane. 

Figure 9.3-4 shows the total surface energy variation with diiodomethane 

contact angle with fixed water contact angles at 30° and 100°. The same 

insensitivity of the surface energy to the diiodomethane contact angle is seen 

as with the Owens Wendt method. Interestingly the Wu method shows an 

inability to return surface energy estimations for diiodomethane contact angles 
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below 55° when the water contact angle is 100°. This suggests that the 

method is not suitable for surfaces with low polar components and high 

dispersive components of surface energy. The same implausible high 

diiodomethane contact angle rise in surface energy seen for the 30° water plot 

as with the Owens Wendt plots. 
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Figure 9.3-4 Plot of varying surface energy for steady water contact angles and varying 
diiodomethane contact angles as calculated with the Wu method. 

The insensitivity of the surface energy to  the varying diiodomethane contact 

angle was explored by plotting the total surface energy along with its polar 

and dispersive components, Figure 9.3-5. The transition between 

predominantly dispersive and predominantly polar surface character and 

relative stability of the total surface energy can be seen. A minimum in the 

total surface energy is seen near where the lines of the component plots 

cross. This figure shows that it is only the total surface energy that is 

insensitive to change in the diiodomethane contact angle. 
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Figure 9.3-5 The changing contributions of the polar and dispersive components of surface 
energy for a fixed water contact angle at 100° and diiodomethane contact angle varying from 
55-145°. 

Finally, the surface energy calculated for equal contact angles using both the 

Owens Wendt method and the Wu method were plotted together and are 

shown in Figure 9.3-6. It can be seen that the models return very similar 

results, however the Owens Wendt values are consistently lower than the Wu 

Values. 

It is clear from the data that the estimation of surface energy from contact 

angles is not a simple task. It is quite apparent that contact angles, 

components of surface energy, surface energy totals and knowledge of the 

sensitivity and suitability of the two methods is needed for the full 

interpretation of data. 
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Figure 9.3-6 Comparison of the Owens Wendt and Wu methods for equivalent contact angles 
for water and diiodomethane. 

9.3.4 Conclusions 

The total surface energies produced by the Owens Wendt and Wu equations 

must be considered along with their respective components, the contact 

angles of the liquids and also the charts in this chapter for accurate 

interpretation to be made. It has been seen with both methods that the 

surface energies calculated have varying sensitivity to changes in contact 

angle.

                                            
1
 Young, T. "An Essay on the Cohesion of Fluids". Phil. Trans. R. Soc. Lond. 95: 65–87 1805 

2
 Adamson, Arthur W. (Arthur Wilson)    Gast, Alice P. (Alice Petry), 1958- Physical chemistry 

of surfaces /    New York ;   Chichester :   Wiley,   c1997 
3
Frederick M. Fowkes. ATTRACTIVE FORCES AT INTERFACES, Industrial & Engineering 

Chemistry 1964 56 (12), 40-52 
4
 D. K. Owens, R. C. Wendt, Estimation of the surface free energy of polymers, Journal of 

Applied Polymer Science, Volume 13,  Issue 8, 1969, Pages 1741-1747. 
5
 D. H. Kaelble, Dispersion-Polar Surface Tension Properties of Organic Solids, The Journal 

of Adhesion, Volume 2, Issue 2 April 1970 , pages 66 - 81 
6
 Souheng Wu, Kenneth J. Brzozowski, Surface free energy and polarity of organic pigments, 

Journal of Colloid and Interface Science, Volume 37, Issue 4, December 1971, Pages 686-
690, 

 

 
 
 
 



 310 

9.4 Appendix 4 – Matlab Programs 

9.4.1 Wu Programs 

First program to output solutions to the equations: 
 
Theta2 = input('Diiodomethane Contact Angle?'); %user input contact 

angle values 
Theta1 = input('Water Contact Angle?'); 
Theta1 = Theta1*(pi/180); 
Theta2 = Theta2*(pi/180); 
sigma_l_disp_1 = 26; % sets values of the components of surface 

tension 
sigma_l_disp_2 = 47.4 ;% 1 = water, 2 = diiodomethane 
sigma_l_pol_1 = 46.8; 
sigma_l_pol_2 = 2.6; 
a1 = 0.25*(sigma_l_disp_1 + sigma_l_pol_1)*(cos (Theta1) +1); % 

introduces WU variables 
b1 = sigma_l_disp_1; 
c1 = sigma_l_pol_1; 
a2 = 0.25*(sigma_l_disp_2 + sigma_l_pol_2)*(cos (Theta2) +1); % 

introduces second set of WU variables 
b2 = sigma_l_disp_2; 
c2 = sigma_l_pol_2; 
A1 = b1+c1-a1; 
B1 = (c1*(b1-a1)); 
C1 = (b1*(c1-a1)); 
D1 = a1*b1*c1; 
A2 = b2+c2-a2; 
B2 = (c2*(b2-a2)); 
C2 = (b2*(c2-a2)); 
D2 = a2*b2*c2; 
eqs = '((A1 * x * y) + (B1 * x) + (C1 * y) - D1), ((A2 * x * y) + (B2 

* x) + (C2 * y) - D2)'; 
[x,y] = solve (eqs); 
y 
x 

 

Second program to solve the equations: 

Theta2 = input('Diiodomethane Contact Angle?'); %user input contact 

angle values 
Theta1 = input('Water Contact Angle?'); 
Theta1 = Theta1*(pi/180); 
Theta2 = Theta2*(pi/180); 
sigma_l_disp_1 = 26; % sets values of the components of surface 

tension 
sigma_l_disp_2 = 47.4 ;% 1 = water, 2 = diiodomethane 
sigma_l_pol_1 = 46.8; 
sigma_l_pol_2 = 2.6; 
a1 = 0.25*(sigma_l_disp_1 + sigma_l_pol_1)*(cos (Theta1) +1); % 

introduces WU variables 
b1 = sigma_l_disp_1; 
c1 = sigma_l_pol_1; 
a2 = 0.25*(sigma_l_disp_2 + sigma_l_pol_2)*(cos (Theta2) +1); % 

introduces second set of WU variables 
b2 = sigma_l_disp_2; 
c2 = sigma_l_pol_2; 
A1 = b1+c1-a1; 
B1 = (c1*(b1-a1)); 
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C1 = (b1*(c1-a1)); 
D1 = a1*b1*c1; 
A2 = b2+c2-a2; 
B2 = (c2*(b2-a2)); 
C2 = (b2*(c2-a2)); 
D2 = a2*b2*c2; 
Y1 = 1/2/(A1*C2-C1*A2)*(A1*D2-B1*C2+C1*B2-

D1*A2+(A1^2*D2^2+2*A1*D2*B1*C2+2*A1*D2*C1*B2-2*A1*D2*D1*A2+B1^2*C2^2-

2*B1*C2*C1*B2+2*B1*C2*D1*A2+C1^2*B2^2+2*C1*B2*D1*A2+D1^2*A2^2-

4*A1*C2*D1*B2-4*C1*A2*B1*D2)^(1/2)); 
Y2 = 1/2/(A1*C2-C1*A2)*(A1*D2-B1*C2+C1*B2-D1*A2-

(A1^2*D2^2+2*A1*D2*B1*C2+2*A1*D2*C1*B2-2*A1*D2*D1*A2+B1^2*C2^2-

2*B1*C2*C1*B2+2*B1*C2*D1*A2+C1^2*B2^2+2*C1*B2*D1*A2+D1^2*A2^2-

4*A1*C2*D1*B2-4*C1*A2*B1*D2)^(1/2)); 
X1 = -(1/2*C2/(A1*C2-C1*A2)*(A1*D2-B1*C2+C1*B2-

D1*A2+(A1^2*D2^2+2*A1*D2*B1*C2+2*A1*D2*C1*B2-2*A1*D2*D1*A2+B1^2*C2^2-

2*B1*C2*C1*B2+2*B1*C2*D1*A2+C1^2*B2^2+2*C1*B2*D1*A2+D1^2*A2^2-

4*A1*C2*D1*B2-4*C1*A2*B1*D2)^(1/2))-D2)/(1/2*A2/(A1*C2-C1*A2)*(A1*D2-

B1*C2+C1*B2-D1*A2+(A1^2*D2^2+2*A1*D2*B1*C2+2*A1*D2*C1*B2-

2*A1*D2*D1*A2+B1^2*C2^2-

2*B1*C2*C1*B2+2*B1*C2*D1*A2+C1^2*B2^2+2*C1*B2*D1*A2+D1^2*A2^2-

4*A1*C2*D1*B2-4*C1*A2*B1*D2)^(1/2))+B2); 
X2 = -(1/2*C2/(A1*C2-C1*A2)*(A1*D2-B1*C2+C1*B2-D1*A2-

(A1^2*D2^2+2*A1*D2*B1*C2+2*A1*D2*C1*B2-2*A1*D2*D1*A2+B1^2*C2^2-

2*B1*C2*C1*B2+2*B1*C2*D1*A2+C1^2*B2^2+2*C1*B2*D1*A2+D1^2*A2^2-

4*A1*C2*D1*B2-4*C1*A2*B1*D2)^(1/2))-D2)/(1/2*A2/(A1*C2-C1*A2)*(A1*D2-

B1*C2+C1*B2-D1*A2-(A1^2*D2^2+2*A1*D2*B1*C2+2*A1*D2*C1*B2-

2*A1*D2*D1*A2+B1^2*C2^2-

2*B1*C2*C1*B2+2*B1*C2*D1*A2+C1^2*B2^2+2*C1*B2*D1*A2+D1^2*A2^2-

4*A1*C2*D1*B2-4*C1*A2*B1*D2)^(1/2))+B2); 

9.4.2 Owens Wendt Program 
Theta1 = input('Water Contact Angle?'); %user input contact angle 

values 
Theta2 = input('Diiodomethane Contact Angle?'); 
Theta1 = Theta1*(pi/180); 
Theta2 = Theta2*(pi/180); 
sigma_l_disp_w = 26; % sets values of the components of surface 

tension 
sigma_l_disp_d = 47.4 ;% 1 = water, 2 = diiodomethane 
sigma_l_pol_w = 46.8; 
sigma_l_pol_d = 2.6; 
sigma_l_w = 72.8; 
sigma_l_d = 50; 
Y1 = (((1+ cos (Theta1)) * sigma_l_w)/(2*(sqrt (sigma_l_disp_w)))); 
X1 = (sqrt (sigma_l_pol_w / sigma_l_disp_w)); 
Y2 = (((1+ cos (Theta2)) * sigma_l_d)/(2*(sqrt (sigma_l_disp_d)))); 
X2 = (sqrt (sigma_l_pol_d / sigma_l_disp_d)); 
M = (Y2 - Y1)/(X2 - X1); 
C = Y1 - (M * X1); 
sigma_s_pol = M^2; 
sigma_s_disp = C^2; 
sigma_s_pol = sigma_s_pol 
sigma_s_disp = sigma_s_disp 

 


