

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

AN APPROACH TO ENACTING BUSINESS

-�'
.. eý

PROCESS MODELS IN SUPPORT OF THE LIFE
CYCLE OF INTEGRATED MANUFACTURING

SYSTEMS

by

Marcos Wilson Costa de Aguiar

A Doctoral Thesis submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy

of Loughborough University of Technology

Department of Manufacturing Engineering

February 1995

Acknowledgements

I wish to thank Prof. R. H. Weston for supervising and Prof. N. D. Bums for co-

supervising the work of this thesis; Dr. N. Schofield and Dr. J. M. Edwards for the

valuable comments made in my oral examination; and all colleagues of the

Manufacturing Systems Integration Research Institute, particularly I. A. Coutts and I.

S. Murgatroyd for their contribution and support to this research.

The assistance of D2D's skilled personnel, in particular S. Roberts should also be duly

acknowledged.
Thanks to CAPES in the Ministry of Education of Brazil are also due for sponsoring

my Ph. D. research.
Finally, my deepest acknowledgements are to my wife and my son for their patience

and support throughout the work which has taken many of the hours that should have

been dedicated exclusively to them.

This thesis is dedicated to

Daniel and Lucia, my partners in life.

Certificate of Originality

This is to certify that I am responsible for the work submitted in this thesis, that the

original work is my own except as specified in acknowledgements or in footnotes, and

that neither the thesis nor the original work contained therein has been submitted to this

or any other institution for a higher degree.

Synopsis

The complexity of enterprise engineering processes requires the application of
reference architectures as means of guiding the achievement of an adequate level of
business integration. This research aims to address important aspects of this
requirement by associating the formalism of reference architectures to various life cycle
phases of integrating manufacturing systems (IMS) and enabling their use in addressing
contemporary system engineering issues.

In pursuit of this aim, the following research activities were carried out: (1) to
devise a framework which supports key phases of the IMS life cycle and (2) to populate
part of this framework with an initial combination of architectures which can be

encapsulated into a computer-aided systems engineering environment. This has led to

the creation of a workbench capable of providing support for modelling, analysis,
simulation, rapid-prototyping, configuration and run-time operation of an IMS, based

on a consistent set of models associated with the engineering processes involved. The

research effort concentrated on selecting and investigating the use of appropriate
formalisms which underpin a selection of architectures and tools (i. e. CIM-OSA, Petri-

nets, object-oriented methods and CIM-BIOSYS), this by designing, implementing,

applying and testing the workbench.
The main contribution of this research is to demonstrate that it is possible to

retain an adequate level of formalism, via computational structures and models, which
extend through the IMS life cycle from a conceptual description of the system through

to actions that the system performs when operating. The underlying methodology

which supported this contribution is based on enacting models of system behaviour

which encode important coordination aspects of manufacturing systems. The strategy
for demonstrating the incorporation of formalism to the IMS life cycle was to enable
the aggregation into a workbench of knowledge of `what' the system is expected to

achieve (i. e. `problems' to be addressed) and `how' the system can achieve it (i. e
possible `solutions'). Within the workbench, such a knowledge is represented through
an amalgamation of business process modelling and object-oriented modelling
approaches which, when adequately manipulated, can lead to business integration.

V4

Table of Content

Acknowledgements ..
ii

Synopsis .. v

Table of Content .. vi

List of Figures ... x

List of Tables ... xiii
Chapter 1 -Introduction .. 1

I. I. Systems Theory 1
1.2. Enterprise Integration 3
1.3. Enterprise Modelling 7

1.3.1. Life cycle 8
1.3.2. Reference architectures 10

1.4. Research Requirements 15
1.5. Expected Benefits 16

Chapter 2 -Literature Review ... 18
2.1. Concepts and Definitions 18
2.2. The Formalism of Architectures 20

2.2.1. Early architectures 21
2.2.2. Modelling languages and architectures for CIM 22
2.2.3. Methods and techniques from software analysis and design 24
2.2.4. Artificial intelligence and federated architectures 24
2.2.5. Frameworks for integrating infrastructures 25
2.2.6. Consulting practitioners methods and OPENframework 28
2.2.7. Methods and tools for business analysis 30
2.2.8. Other models and architectures 31

2.3. Literature Surveys of Architectures 32
2.4. Amalgamation Efforts 33
2.5. Standardisation Efforts .. 34
2.6. Harmonisation Efforts 34
2.7. Tool Development and Application

35
2.8. Contemporary Practice .. 38
2.9. Summary of the State-of-the-Art 39
2.10. Concluding Remarks ... 40

Chapter 3 -Research Objectives and Plan .. 43
3.1. A Preliminary Framework for the IMS Life-Cycle 44
3.2. Research Methodology ... 47

3.2.1. Analysis of existing architectures ... 47
3.2.2. Selection of architectures ... 49
3.2.3. Model-building and model-enactment capabilities 50
3.2.4. SEW-OSA and the life-cycle support ... 51
3.2.5. Realisation of SEW-OSA ... 53

3.3. Structure for the Research Decisions Made .. 54
3.4. Concluding Remarks ... 59

Chapter 4- First Selection of Architectures and Associated Tools and Services.. 60
4.1. CIM-OSA .. 60

4.1.1. The CIM-OSA modelling framework .. 60
4.1.2. The CIM-OSA modelling methodology ... 62

vu

4.13. The CIM-OSA integrating infrastructure
...

71
4.1.4. CIM-OSA environments .. 72
4.15. Some of the limitations and deficiencies in CIM-OSA

........................ 73
4.2. CASE Tools .. 76
4.3. The CIM-BIOSYS Integrating Infrastructures ... 77

4.3.1. Distribution transparency ... 77
4.3.2. IIS entities ... 78

4.4. Petri-nets .. 79
4.5. Object-Oriented Design .. 80
4.6. IDEF and Design/IDEF .. 81
4.7. A Strategy for the Realisation of SEW-OSA .. 81
4.8. Structure for the Decisions Made in Realising SEW-OSA 83
4.9. Concluding Remarks ... 85

4.9.1. Model-building capability .. 85
4.92. Model-enactment capability ... 86

Chapter 5 -Model-Building Capability .. 88
5.1. Overview of the Design Methodology .. 88
5.2. Requirements Definition Modelling Level ... 92

5.2.1. Context diagram .. 92
5.22. Domain diagram ... 94
5.23. Structure diagram ... 97
5.2.4. Behaviour diagrams .. 99
5.2.5. Functional diagram ... 101
5.2.6. Changes and adjustments in the RDML ... 103

5.3. Design Specification Modelling Level (DSML) ... 106
5.3.1. Object diagram ... 106
5.3.2. Activity behaviour diagram .. 107
5.3.3. Entity behaviour diagram ... 110
5.3.4. Resource diagram ... 110
5.3.5. Configuration diagram .. 113
5.3.6. Structure of the modelling process ... 113

5.4. Realisation of the Model-Building Capability .. 113
5.5. Limitations .. 116
5.6. Contributions .. 120
5.7. Concluding Remarks ... 122

Chapter 6 -Model-Enactment for the Purpose of Simulation
.............................. 123

6.1. Simulation Methodology .. 123
6.2. From CIM-OSA Models to Petri-nets ... 124
6.3. Analysis and Simulation ... 132

6.3.1. Editing .. 132
6.3.2. Analysis .. 133
6.3.3. Simulation ... 133
6.3.4. Performance analysis .. 133

6.4. Simulation using the Model-Enactment Capability .. 135
6.5. Limitations .. 136
6.6. Concluding Remarks and Contribution .. 138

Chapter 7 -Model-Enactment for the Purpose of Rapid-Prototyping
.................. 139

7.1. Business Entity Components .. 139
7.1.1. Event Handler ... 142
7.1.2. Process Controller .. 143
7.1.3. Activity Controller .. 144
7.1.4. Resource Manager .. 145
7.1.5. Enterprise Activity

.. 147

rill

7.1.6. Active resource components ... 148
7.2. Business Entity Structure .. 149
7.3. Business Entity Implementation ... 153

7.3.1. Class 1: CIM-BIOSYS applications ... 154
7.3.2. Class 2: ran-CIM-BIOSYS applications .. 158

7.4. Rationale for the Approach Adopted to Realise the Business Entity 159
7.5. Limitations .. 162
7.6. Concluding Remarks and Contributions ... 163

Chapter 8 -Case Study on the Application of SEW-OSA 165
8.1. Context of the Case Study: Domain Definition .. 166
8.2. Case study activities .. 167
8.3. Overview of the PCB Assembly Strop-Floor .. 169

8.3.1. The complete shop-floor ... 169
8.3.2. A line segment .. 172

8.4. Aspects in Need of Improvement ... 172
8.5. SEW-OSA Models Produced .. 174

8.5.1. Coordination within an SMT assembly line 175
8.5.2. Design specification stage .. 178
8.5.3. Coordination amongst different line segments 181

8.6. Outline of a 'should-be' System ... 182
8.7. Benefits of the Case Study to D2D ... 184
8.8. Limitations .. 184
8.9. Contributions from the Case Study ... 185

Chapter 9 -'Run-Time' Execution of the Physical System 186
9.1. Support of System Execution in SEW-OSA ... 187

9.1.1. The implementation description modelling level in SEW-OSA 187
9.1.2. CIM-OSA-compliant active resource component 188
9.1.3. CIM-OSA-based coordination .. 189

9.2. Presentation Entity in SEW-OSA ... 191
9.3. Integration of Physical Resource Components in SEW-OSA 193

9.3.1. Machine functional entity ... 193
9.3.2. Human functional entities ... 194
9.3.3. Application functional entities ... 195

9.4. Current Implementation of Interactions with Active Resource Components in SEW-
OSA ...

198
9.4.1. Ideal active resource component .. 198
9.4.2. Proposed functional operations .. 199
9.4.3. Set-up for the demonstration of physical integration 200

9.5. Limitations ..
202

9.6. Concluding Remarks ...
203

Chapter 10 -SEW-OSA within the context of other "Model-Driven CIM" tools and
models ..

205
10.1. Methodology for Resource Component Specification 206

10.1.1. Resource model .. 208
10.1.2. Resource specification considerations .. 214
10.1.3. The importance of reference models .. 215

10.2. Integration Between Function and Information ..
216

10.3. Limitations
..

221

10.4. Concluding Remarks and Contributions ...
221

Chapter 11 -Analysis of Results ...
223

11.1. Case Study Results .. 223

ix

11.1.1. The Model-building stage ... 224
11.1.2. Simulation 224
11.1.3. The performance of SEW-OSA at the rapid-prototyping stage 238
11.1.4. Performance at run-time 249
11.1.5. Performance issues related to the engineering process 249

11.2. Deliverables 253
11.2.1. Proof of concept experiment 253
11.2.2. Summary of deliverables 254
11.2.3. The SEW-OSA workbench 255
11.2.4. CASE tool for requirements definition (i. e. RD tool) 256
11.2.5. CASE tool for design specification (i. e. DS tool) 256
11.2.6. Link to a GSTPN analyser and simulator 257
11.2.7. The business entity of SEW-OSA 257
11.2.8. Model of the SMT assembly line 257
11.2.9. Comments on the complexity of the workbench 258

11.3. Architectural Results 259
11.4. Concluding Remarks 260

Chapter 12 -Conclusions and Issues for Further Investigation 261
12.1. Summary of the Research Approach .. 261
12.2. Conclusions 262

12.2.1. Research findings .. 262
12.2.2. Concluding remarks .. 264

12.3. Issues for Future Investigation .. 266
12.3.1. Enhancements of SEW-OSA .. 266
12.3.2. Extension to SEW-OSA ... 266

List of References ... 268

List of Figures

Figure 1- Systems view of the enterprise engineering/integration problem 3
Figure 2- Integration levels in the manufacturing enterprise 5
Figure 3- Stages in the integrated manufacturing system life cycle 9
Figure 4- Modelling process and enterprise integration (ISO/IEC 1993] 10
Figure 5- Model-based enterprise engineering process 12
Figure 6- ODP support for standardisation 28
Figure 7- Model of an integrated manufacturing system life cycle 45
Figure 8- Overall research methodology 48
Figure 9- SEW-OSA_ system engineering workbench for CIM-OSA 51
Figure 10 - Research focus 55
Figure 11 - Structure for the research decisions made 56
Figure 12 - CIM-OSA reference architecture 61
Figure 13 - Relationships amongst genericity levels - enterprise activity example 64
Figure 14 - Enterprise level 65
Figure 15 - Process level at the requirements definition modelling level 66
Figure 16 - Process level at the design specification modelling level 67
Figure 17 - Relationship among views ... 70
Figure 18 - IPSYS-ToolBuilder meta-CASE tool 76
Figure 19 - A functional view of CIM-BIOSYS

.. 79
Figure 20 - Decisions as part of the "Workbench Development"

... .. 83
Figure 21 - Scope of the SEW-OSA CASE tool against the CIM-OSA cube 86
Figure 22 - SEW OSA model-building capability .. 89
Figure 23 - Example of a context diagram 93
Figure 24 - Example of a domain template ... 95
Figure 25 - Example of a domain diagram ... 96
Figure 26 - Example of a structure diagram ... 98
Figure 27 - Example of a behaviour diagram ... I00
Figure 28 - Example of a business process template .. 102
Figure 29 - Example of a functional diagram ... 104
Figure 30 - Example of an object diagram ... 108
Figure 31 - Example of an activity behaviour diagram .. 109
Figure 32 - Example of an entity behaviour diagram ... 110
Figure 33 - Example of a resource diagram .. 112
Figure 34 - Example of a configuration diagram .. 114
Figure 35 - Structural definition provided by SEW-OSA ... 115
Figure 36 - Simplified structure of the CASE tool at requirements definition 117
Figure 37 - Simplified structure of the CASE tool at design and implementation 119
Figure 38 - Overall methodology for modelling and simulation .. 124
Figure 39 - Example of a Petri-net for a fragment of a context diagram 130
Figure 40 - Example of a Petri-net for a fragment of a behaviour diagram 131
Figure 41 - Example of a functional operation template .. 132
Figure 42 - ARP syntax .. 133
Figure 43 - Manufacturing lead-time as a function of checking rate and time 134
Figure 44 Overall data flow in SEW-OSA ... 140
Figure 45 - Example of a Process Controller input file .. 142
Figure 46 - Example of a Process Controller log file ... 143
Figure 47 Event Handler interface

... 144

xi

Figure 48 - Process Controller interface ... 145
Figure 49 State-transtion diagram for the Process Controller .. 146
Figure 50 - Enterprise activity and active resource component interface 148
Figure 51 - Model example for describing business entity interactions 150
Figure 52 - Business entity of SEW-OSA 152
Figure 53 - Algorithm of the Event Handler ... 155
Figure 54 - Algorithm of the Process Controller .. 155
Figure 55 - Algorithm of the Activity Controller ... 156
Figure 56 - Algorithm of the Resource Manager ... 156
Figure 57 - Example of a Petri-net model processable by the Prolog interpreter 157
Figure 58 - Algorithm of a domain process and business process .. 160
Figure 58 - Overview of the printed circuit board assembly shop-floor 170
Figure 59 - Surface mount technology assembly line ... 171
Figure 60 - Cause-effect diagram: ̀ as-is' situation of D2D shop-floor 173
Figure 61 - Coordination within the SMT assembly line ... 176
Figure 62 - Fragment of the object diagram ... 179
Figure 63 - EA-3: behaviour diagram: print 180
Figure 64 - SMT assembly line integrated by SEW-OSA .. 183
Figure 65 - Impact of SEW-OSA architecture of system components 188
Figure 66 - Architecture of a generic presentation entity component 192
Figure 67 - Example of a script for a machine functional entity .. 194
Figure 68 - Example of a script for a human functional entity ... 195
Figure 69 - Proposed structure for an application functional entity ... 197
Figure 70 - Ideal functional entity .. 198
Figure 71 - Proposed human functional operation types ... 199
Figure 72 - Proposed machine functional operation types ... 200
Figure 73 - Interactions between the SEW-OSA entities and the animator 201
Figure 74 - Relationships among modelling tools .. 205
Figure 75 - Interface with a resource model ... 208
Figure 76 - Example of a resource model class hierarchy for a machine 209
Figure 77 - Example of a resource capability template .. 210
Figure 78 - Example of a functional entity template .. 211
Figure 79 - Example of an active resource component template .. 212
Figure 80 - A key role for reference models ... 216
Figure 81 - Reference models applied to the design and build process 217
Figure 82 - Relationships between function and information views .. 218
Figure 83 - Example of a list of object views ... 219
Figure 84 - Data transaction functional operations implemented ... 220
Figure 85 - Model-building process and model sizes (model) ... 225
Figure 86 - Key variables associated with the SMT assembly Line ... 225
Figure 87 - Level of utilisation of operatorl ... 230
Figure 88 - Level of utilisation of the printer as a function of checking rate and time............ 231
Figure 89 - Manufacturing lead-time as a function of inspection rate and time 232
Figure 90 - Level of utilisation of the printer as a function of inspection rate and time 233
Figure 91 - Work-in-progress profile vs inspection time .. 234
Figure 92 - Work-in-progress profile vs inspection rate ... 235
Figure 93 - Work-in-progress profile vs checking time .. 236
Figure 94 - Work-in-progress profile vs print rate .. 236
Figure 95 - Manufacturing lead-time as a function of the batch size 240
Figure 96 - Overhead as a function of batch size ... 242

xu

Figure 97 - Overhead for alternative system configurations ... 244
Figure 93 - SEW-OSA: System Engineering Wcrkbench for CIM-OSA 253
Figure 99 - The 'gap' between the modelling world and the physical world 263

xiU

List of Tables

Table I- CIM-OSA constructs ...
63

Table 2- Procedural rules implemented in SEW-OSA .. 101
Table 3- Syntax translation between CIM-OSA and Petri-nets ... 125
Table 4- Types and formats of the messages within the business entity 151
Table 5- Parameters associated with the SMT assembly line .. 226
Table 6- Alternative system configurations ...

241
Table 7- Contribution to overhead ...

247
Table 8- Main material deliverables ..

254

Chapter 1- Introduction

The ISO TC 184/SC5 "Framework for Enterprise Modelling" [ISO 19931 is
based on the postulate that systems theory and enterprise modelling can facilitate the

process of enterprise integration. The following sections discuss this notion as a

means of identifying the overall goals of this research.

I. I. Systems Theory

Systems theory emerged as a field of study from the biological and engineering
sciences after the second world war. Its application to other fields of study was
pioneered by Norbert Wiener in his early work on cybernetics [Wiener 1948]. Wiener

proposed that the same principles used to control engineering and biological systems
may be applied to the market mechanisms of economic systems, the decision-making

mechanisms of political systems, and the cognitive mechanisms of psychological
systems. He argued that (from [Roberts 1984]):

"all aspects of human behaviour, ranging from the economic to

the political to social and psychological, may be governed by a

single set of governing principles. " [i. e. systems thinking]

Although cybernetics has yet to prove such a claim, considerable progress has
been made in applying systems theory to organisations, notably in Beer's "Viable
System Model", Ashby's "law of requisite variety" (from [Espejo 1989]), Forester's
"system dynamics" (from [Roberts 1984]) and Checkland's "Soft-Systems

Methodology "[Checkland 1981].
The main features of general systems thinking on organisational dynamics, as

stated by Stacey [Stacey 1993], are that: organisations are open systems comprised of
interconnected parts which interact with one another and with their environment. The

system imports energy and information from its environment and exports the
transformed results. Imports and exports occur across the organisation's boundary.

According to Roberts [Roberts 1984],

"Systems thinking is concerned with connectedness and

wholeness. By its nature, a systems view of a problem cuts

across disciplinary boundaries as defined in many traditional

sciences, in a search to understand a problem from an
integrated vantage point. "

Such an integrated view of organisations represents a shift in the basis on which
organisations have traditionally been constructed. Wheatley [Wheatley 1192] contrasts
the systems approach with mechanistic thinking which served as the basis for the design

of traditional organisations, by stating that:

"In the machine model [by Isaac Newton], one must understand
parts. Things can be taken apart, dissected literally or

representationally (as we have done with business functions and

academic disciplines), and then put back together without any
significant loss. The assumption is that by comprehending the

workings of each piece, the whole can be understood. The

Newtonian model of the world is characterized by materialism

and reductionism -a focus on things rather than relationships
and a search, in physics, for the basic building blocks of matter.

In new sciences [i. e. quantum physics, chaos theory, dissipative

structures and self-organising systems], the underlying currents

are a movement toward holism, toward understanding the

system as a system and giving primary value to the

relationships that exist among seemingly discrete parts'. "

This view is reinforced by Waldrop [Waldrop 1994] when he argues that

"one should look at systems in terms of how they behave
instead of how they are made".

Thus, complexity in the behaviour of a system emerges in the form in which the

relationships among system components are manifest. In Stephen Wolfram's view
(from [Waldrop 1994]):

"The complexity is actually in the organization - the myriad

possible ways that the components of the system can interact. "

Systems theory provides an approach to unfolding the inherent complexity of a
system described as a web of relationships among its parts (i. e. sub-systems and sub-
systems components), as well as between the whole system and any other elements of
the environment with which the system interacts.

1. All emphasis and italics in the citations were added by the author (when the term "author"

is used in this document it always refers to the author of the thesis).

3

1.2. Enterprise Integration

Based on systems thinking [Checkland 1981] [ISO 1994] [Wu 1992], a

manufacturing enterprise can be represented as a system, according to the

representation depicted in Figure l. a. Such a system interacts with its environment by

means of a series of relationships with competitors, customers, suppliers and partners,

all subject to technological, social, political, economical and other factors inherent to
the environment where they operate.

Boundary
I

Analysis
(c)

x

Environment

Manufacturing Enterprise System

Sub-system 1)f-ý{ Sub-system 2

II'

Legend:

-"" Information Flow

.. GOP. Material Flow

...... It. Other Flows

Sub-system n "ll-

(a)

Relationships

Engineering/Integration Process

Ci Component "i" C1 C3 }f-ß(C4

IT Infrastructure I

(b)

Figure 1- Systems view of the enterprise engineering/integration problem

4

Coping with the complexity involved in engineering an enterprise systems

which is able to thrive in its environment embraces the task commonly referred to as
"enterprise integration"2. -

Essentially, enterprise integration is the task of engineering enterprises as

complex systems which operate in an even more complex environment. Wheatley

[Wheatley 1992] summarises the complexity involved in such a task in a few questions:

"How do we create organizational coherence, where activities

correspond to purpose? How do we create structures that move

with change, that are flexible and adaptive, even böundaryless,

that enable rather than constraint? How do we simplify things

without losing both control and differentiation? How do we

resolve personal needs for freedom and autonomy with

organizational needs for prediction and control? "

The ISO TC 184/SC5 "Framework for Manufacturing Enterprise Modelling"

[ISO 1993] refers to this task as "Integrated Manufacturing", whereby

"... enterprises align their structure, processes, information,

resources and responsibilities to the greatest extend possible

towards their common goals of manufacturing products. When

computers and information technology are central to the

realisation of this organisation, the process and result are called
Computer Integrated Manufacturing [i. e. CIM]3".

In this context, one aspect of enterprise integration (or CIM) is its focus on

1. According to IFIP/IFAC Task Force [Bemiss 1994], such an engineering process is: "a

highly sophisticated, multi-disciplinary management, design and implementation exercise
during which various forms of descriptions and models of the target enterprise need to be

created". In this thesis, terms such as enterprise system, enterprise, integrated enterprise and
integrated system are referred to as "integrated manufacturing system".

2. According to the Enterprise Integration Program (EIP) funded by ManTech [Petri 1992a]:

"Enterprise Integration is the task of improving the performance of such large complex

processes by managing the interactions among the participants". According to Fox [Fox

1993], "Enterprise Integration is concerned with how to improve the performance of

distributed organizations and markets. It focuses on the communication of information and

the coordination and optimization of enterprise decisions and processes in order to achieve

higher levels of productivity, flexibility and quality. "

3. The terms IMS, CIM system and integrated enterprise are used interchangeably in this

thesis, as are CIM, system integration and enterprise integration. The difference between the

use of these terms often lies in the scope or focus of their application.

5

understanding the behaviour of systems, sub-systems and components, emerging from

their inter-relationships (which can be represented at varying levels of abstraction, as
illustrated in Figure 1). The impact of information technology (i. e. IT) in improving the

performance of an enterprise can be understood as a means of achieving an adequate
design of the "parts" and "relationships" in the enterprise system. IT can function as
both an enabler and a mechanism for establishing these relationships (i. e. to realise
integration in a broad sense).

IT based integration implies that a system, such as that represented in abstract
form in Figure l. a, ends-up by having certain of its components integrated total or

partially by means of an IT infrastructure (as depicted in Figure l. b). System

components are the actual resources of the system and will be manifest in the form of
human beings, machines, application programs, etc.

The ESPRIT/AMICEI consortium [ESPRIT/AMICE 1993b] defined three
levels of IT based integration, namely: physical integration, application integration and
business integration (see Figure 2).

0

aý a. +
ýi

1ý1

d. %

3

BUSINESS INTEGRATION

APPLICATION INTEGRATION

PYSICAL INTEGRATION

1960 1975 1990 Evolution

Figure 2- Integration levels in the manufacturing enterprise

1. ESPRIT/AMICE stands for European Strategic Program of Research in Information

Technology/European CIM Architecture.

6

a. Physical integration [ESPRIT/AMICE 1993b] "is concerned with the
interconnection of manufacturing automation and data processing facilities to

permit interchange of information between the so called `islands of automation"'.

b. Application integration [ESPRIT/AMICE 1993b] is concerned with the
integration of software applications, thus considering issues of inter-operation
between software applications, human beings and machines and the provision of IT

support for transparent access to information.

c. Business integration [ESPRIT/AMICE 1993b] "is concerned with the integration

of those functions which manage, control and monitor business processes [...] and
in turn coordinate the day-to-day execution of activities at the application level.

Modelling business processes and their interrelations and [using it] for

decisions and operation support is key to business integration".

These levels of integration can be summarised in their concerns with,
respectively, physical integration of parts, interoperation of parts and coordination
of parts. The issues of business process integration (or simply `business integration')

are the major interest of this thesis.
According to Davenport and Short, a business process is (from [Childe 1993])

"the logical organisation of people, materials, energy,

equipment and procedures into work activities designed to

produce a specified result".

Hickman defines a business process as (from [Childe 1993])

"a logical series of dependent activities which use the resources

of the organisation to create, or result in, an observable or

measurable outcome, such as a product or service".

Therefore, business processes are abstractions which encapsulate high-level

descriptions of an enterprise system in terms of work activities. This, in turn, provides
the link between `what' the overall system is expected to do and `how' that translates
into the definition and coordination of the activities performed by the acting parts of the

system'. In this context, the importance of achieving business integration is

emphasized by Petrie [Petrie 1992a] in his statement that

1. "To reduce or at least hide complexity [... J requires a better understanding of the system

through a structured representation of its contents. Business process modelling [offers a]

solution to the structured representation of the operation" [Petrie 1992a].

7

"the enterprise integration hypothesis is that it is our ability to

manage the complex interactions among organizations and
people that currently limits large industrial endeavours. "

The importance of enterprise modelling in achieving IT supported business integration
is emphasised by Petrie [Petrie 1992a] when he argues that

"... just exactly what support computers can offer for such
coordination and control is still a matter for research and field
experiments. But modelling the interactions among elements
of an enterprise is the first step to providing a system that
improves enterprise integration. "

1.3. Enterprise Modelling

Part of the enterprise modelling challenge is that of enabling business
integration (through adequate application of information technology) in order to
construct highly dynamic systems capable of coping with their ever-changing
environment, which characterises today's manufacturing market. The ISO TC 184/SC5
[ISO 1994], "Framework for Enterprise Modelling", advocates the need for
formalism' in dealing with the inherent complexity of such a process, by employing
enterprise modelling2 and system theory [ISO 1993] [Petrie 1992a] [Williams 1993]
[CEN 1994a] [ESPRIT/AMICE 1993b].

According to the Enterprise Integration Program (EIP) [Petrie 1992a],

enterprise modelling is:

"used to clarify the interactions of enterprise components so
that these interactions can be rationalized and improved. "

1. According to ISO TC 184/SC5 [ISO 1993], formalism is "the formalised mode of

representation used for the elaboration of models. This representation is said to be formal

because it allows a common[ly] understood and non-ambiguous representation of all aspects

of an enterprise model. It is achieved by a formal language made of a syntax and a
dictionary. "

2. A model, according to Jorgenson [Jorgenson 1992], is "a structured representation of physical

objects, concepts, or a system that helps organise, clarify and unify knowledge; containing

a system of rules, data, and inferences presented as a formal logical description of a system

of objects and their states of affairs, or interactive behaviour; that will facilitate analysis,

experimentation, simulation, or comprehension". The ICEIMT's Working Group I

[Petrie 1992c] identifies "two central functions of models as they are currently used: to filter

out irrelevant detail and thereby display only information that is essential to the task at hand,

and to represent that information in a useful way. "

S

One of their recommendations is that [Petrie 1992a]

"Models have to provide answers to particular business

questions and have to be constructed with these questions in

mind. Models that are not used in running the business become

`shelfware' and quickly become inaccurate and completely

useless for any purpose. The consensus [in the EIP] was that

models should be used to control and monitor the business

itself, rather than only being used for analysis and decision

support. "

Thus, whilst systems theory may offer an adequate weltaschuungl, enterprise

modelling may provide the means (such as by providing a basis for creating tools) to
determine how enterprise integration should be achieved. However, for a combination
of systems theory and enterprise modelling to be generally applied to manufacturing
enterprise systems, there is a need to identify appropriate formalism.

1.3.1. Life cycle
As enterprise integration is a staged process, a central concept in understanding

the type of formalism associated with such a process is its life cycle. In the view of ISO

TC 184/SC5, the scope of application of enterprise modelling comprises three stages,

namely: Business Modelling (i. e. conceptual analysis), Technical System Design (i. e.
design) and Realisation (i. e. implementation). These stages take as input the definition

of business issues and deliver as output a usable system. The resulting five stages (this
including inputs and outputs to the scope covered by the ISO initiative, as depicted in

Figure 3)2 are described in the following [ISO 1994]:

" identifying business issues (i. e. strategy definition): this stage focuses on the
"boundary analysis"3 illustrated in Figure 1. c, whereby key strategic issues that
drive the performance of the enterprise in its environment are identified.

" defining what to do about business issues (i. e. conceptual analysis): this stage
embraces conceptual analysis of how the enterprise system should be organised in

order to address the business issues (this is illustrated by the sub-system models in

1. The German term for a `view of the world'.

2. Essentially, there is a consensus view in the modelling community that these five life cycle

phases commonly occur, although variations in their scope and denomination exist
[ESPRIT/AMICE 1993b] [Williams 1993] [Bemus 1994]. These stages will be referred to
henceforth in this thesis as the ̀ integrated manufacturing system (IMS) life cycle'.

9

Strategy Definition
; busincssissues)

Conceptual Analysis
(what to do)

formalism
o interest sign

(how to do it)

1 Implementation
(doing it)

--- ---------------

Operation and Maintenanc
(using it)

Figure 3- Stages in the integrated manufacturing system life cycle

Figure 1. a).

" defining how to do it (i. e. design): at this stage, the identification of system

components (which can either be of a manufacturing technology or information

technology nature) and the definition of how they inter-relate (i. e. how these

components are integrated) are addressed (this is illustrated by the components

models in Figure 1. b);

" doing it (i. e. implementation): at this stage, components and integration

mechanisms are physically realised to construct the system (this is illustrated by the

components integration in Figure 1. b).

" and using the resulting enterprise system (i. e. operation and maintenance).

3. The process of strategy definition is represented in Figure Ix by the boundary analysis or

static analysis [Stacey 1993], whereby the posture and the position of an organisation are

analysed. According to Stacey [Stacey 1993], "the posture of an organisation is a picture of

what it looks like, its shape and its capabilities. The posture of an organisation is what you

see when you stand at the organisational boundary and look inwards. Position, then, is a

picture of how an organisation relates to the people that are its environment. The position is

what you see when you stand at the organisational boundary and look outwards. The posture

and the position of the organisation are the result of the strategy [...] it has pursued. That

posture and position determine its performance [...]".

I0

The role of modelling in the life cycle is illustrated by the referenc. moiel for

open distributed processing (RM-ODP) when referring to enterprise integration as a
[ISO/IEC 1993] "process of creating and using an IT system to serve the needs of an
enterprise". This process involves three main elements (see Figure 4): (1) the
enterprise, constrained by its environment and, indirectly, by technological constraints;
(2) the models, constrained by modelling methods; and (3) the IT system constrained
by technology.

"Models developed in [the] idealisation process describe the IT requirements of
the enterprise", whereas "through the realisation process, models are used to implement

an IT system" [ISO/IEC 1993]. These models (which characterise the prime formalism

of interest in this research) can be related to the models manipulated at the "conceptual

analysis" and "design" stages which in the ISO framework.

Figure 4- Modelling process and enterprise integration [ISO/IEC 1993]

1.3.2. Reference architectures
Formalism to support the IMS life cycle is viewed by the IFIP/IFAC "Task force

on architectures for integrating manufacturing activities and enterprise"1 [Williams
1993], as being provided by an enterprise reference architecture which:

"... models the whole life history of an enterprise integration

project [i. e. the IMS life cycle] from its initial concept in the

1. Henceforth referred to as the "IFIP/IFAC Task Force"

II

eyes of the entrepreneurs who initially developed it, through its

definition, functional design or specification, detailed design,

physical implementation or construction, and finally operation

to obsolescence [i. e. the mapping across life cycle phases]. The

architecture becomes a [...] framework upon which all of the
functions and activities involved in the aforementioned phases

of the life of the enterprise integration project can be mapped. "

Hence, enterprise modelling and, more specifically, reference architectures are

viewed as a means of supporting the mapping between models across life cycle phases,
by encapsulating a level of formalism into enterprise integration processes. Such a
formalism is required to enable capturing knowledge about `problems' and `solutions'

(i. e. domain specific knowledge) and manipulate it adequately in the light of an

enterprise integration problem to which the formalism is being applied (as represented
in Figure 5).

As part of such a formalism, the IFIP/IFAC Task Force [Williams 1993]

"determined that the potential user of architectures vitally

needed instruction on "how" to design, develop, implement and

use manufacturing and enterprise integration [which should go
beyond] descriptions or merely designs for the related computer

system. [They should describe] both the integrated system and
its full life history of development and use. "

The IFIP/IFAC Task Force encapsulates the multitude of issues associated with

achieving enterprise integration by listing the main requirements of a reference

architecture, namely [Williams 1993]:

" "the best treatment of the enterprise scope from the system theoretic point of view"
(i. e. all activities which are "involved directly or indirectly in designing, operating

or improving the enterprise should be covered by the architecture");

" "the provision of a consistent modelling environment leading to executable code"
(i. e. a computer-aided systems engineering environment - henceforth in this thesis

referred to as CASSE1 environment or workbench);

" "the existence of a detailed methodology which enterprises can follow" which can

support the complete IMS life cycle;

1. The acronym CASSE is used to differentiate from CASE for software engineering.

12

Framework

i Strategy Definition
(business issues)

Concepwa. l Analysis
(what to do)

Desi
(how togdn o it)

Implementation
(doing it)

Operation and Maintenance
(using it)

Figure 5- Model-based enterprise engineering process

C0

Vý

3Qý

" "the adoption of good engineering practice for building reusable, tested, and

standard models";

" "the provision of a unifying perspective for products, processes, management,

enterprise development and strategic management" (i. e. it should provide means of

relating the enterprise integration initiative with the remaining operational activities

of the enterprise).

However, incorporating the formalism of architectures into the IMS life cycle
involves a complex process of bringing all these requirements together into an

organised whole, so that adequate support for the enterprise engineering process can be

achieved.

13

As part of such complexity, two issues are of particular interest in this research:

a. What level of formalism should be used in the framework of Figure 5 in order
to support and link the various IMS life cycle phases and hence the activities
performed by the designers and builders of such systems?

This embraces the need to adopt a `satisfactory' level of formalism from

specifications of reference architectures which seek to support the IMS life cycle.
Embodied in this study of the use of formalism of currently available reference

architectures is the question of devising what needs to be captured by the formalism

found in a reference architecture and what should be captured as domain specific
knowledge.

b. How effective can such a formalism be used to realise integration of real
manufacturing systems?
This implies the need to define a means of combining formalism with knowledge of
`problems' and `solutions' to enable their application to contemporary integration

problems. Embodied in such a study is the need to establish a compromise between

the requirement of general applicability of the adopted and the degree of

prescription with which methods and solutions should be imposed on system
designers and builders.

Concerning the capability embodied in such a formalism, the IFIP/IFAC Task

Force has identified some of the desirable features of an architecture, namely [Williams

1993]:

"Verification of completeness and consistency for all
described functions and objects at any detailing level;

simulation of the enterprise model at any detailing level; easy

and fast change of the model in case of changing business

processes, methods and tools; the use of the model to initiate,

monitor and control the execution of the enterprise's daily

operation. "

In regard to this embracing view of the application of modelling technology,
Mize [Mize 1992] points out that

"Robust modelling methods should be able to accommodate

both analytical and simulation approaches based on the

same descriptive model. Finally, any chosen modelling

method should accommodate mixed-level modelling,

14

permitting different system elements to be modelled at varying
degrees of detail. "

He also highlights that in order to attain such a condition, the following key

areas of research need to be addressed:

"(1) system design and modelling methodologies for

organisations experiencing continual change, (2) model

representation schemes and methodologies which support all

phases of a model's life cycle, (3) modelling approaches which
support hybrid modelling as well as multiple- and mixed-level

modelling".

Petrie [Petrie 1992a] illustrates a use of enterprise modelling within the context
of business integration, in the following example

"... eliminating unnecessary connections and paths among
organisations and processes is one way to improve

coordination. This usually requires a static model of the

enterprise that can be used to analyse the efficiency of the

existing structure or sequencing. Once a change has been

decided upon, one may need to use an executable model that

can simulate the enterprise to the extent that the effect or

proposed changes can be seen. "

Concerning the required means of enabling the application of modelling
technology to enterprise integration, Jorgenson [Jorgenson 19921 argues for the need
for formal modelling environmentsl, when he states that

"Formal modelling [...] technology environments provide
improved capabilities for modelling and for integration of

models as a means [of identifying] problems, simulate changes,
and give direction to managing change and integration. "

Based on these views (i. e. [Williams 1993] [Mize 1992] [Petrie 1992a]
[Jorgenson 1992]) one may argue that a CASSE environment which encapsulates the

1. A formal modelling environment is a model-repository-based computing system (e. g. CASE

technology) for retaining and managing enterprise process definitions and computing

automation design definitions and associated design history, being the enterprise definitions

and designs in model form [Jorgenson 19921.

formalism of architectures should provide facilities for modelling and analysis of an
IMS (thus, leading to model creation), simulation of such a model, as well as design,
implementation and operation of the IMS based on the same models. Testing such an

assumption is one of the motivations of this research.

Additionally, concerning the application of modelling concepts embodied in

frameworks for IT standards (and indeed in such a CASSE environment), the DISC

"Framework for User Requirements" [Millis 1992] argues that

"IT standards are a means to an end, and frameworks for IT

standards are a means to a means to an end [...] It would be

possible to do endless theoretical work without immediate

benefit. What we%need is some practical testing of value and

even better some exploitation yielding useful results. "

In summary, there is a need to apply architectures in support of the construction of
integrated manufacturing systems.

1.4. Research Requirements

The key issues raised in this chapter provide the background rationale to the
definition of the need for the research reported in this thesis. Such a background can be

summarised in the following statements:

" systems theory provides a basis for studying an enterprise system as a web of

relationships among its sub-systems and components;

" enterprise integration is a means of engineering an enterprise system by providing

adequate support for the interactions (i. e. the relationships) among its sub-systems

and components;

" information technology can function as an enabler for attaining adequate
interactions so that enterprise integration can be achieved;

" three levels of integration can be identified in the support for such interactions (as

depicted in Figure 2), namely: physical (integration of parts), application (i. e.
interoperation of parts) and business (i. e. coordination of parts), whereby business

integration is of particular interest.

" The life cycle stages (shown in Figure 3) represent a view into the multi-faceted

complexity of the enterprise integration process.

" Reference architectures for enterprise modelling can provide the formalism

required for coping with the complexity involved in such a life cycle.

16

" Benefits can be gained by using the formalism encapsualted into CASSE

environments to engineer contemporary enterprises with a view to enabling IT IT-

based business integration of its processes and components.

When incorporating the formalism of models and architectures into the IMS life

cycle, the framework shown in Figure 5 needs to be populated in a way which enables

system modelling, analysis and simulation at different levels of abstraction to be

performed on the same set of models which are used to generate the system to be

created or transformed in such a way that they can also help formally structure

and drive the system operation.
The issue then becomes one of defining how the above requirements can be

achieved through incorporating the formalism of currently available reference
architectures in a formal modelling environment (i. e. software tools that cover a broad

span of the life cycle). Thence, questions "a" and "b" on page 13 can be re-stated
respectively as:

" How can the formalism of models and architectures be amalgamated into a usable
whole?

" How can such an amalgamated formalism be organised so that it can be applied to
support the IMS life cycle?

Therefore, based on the assumption that the formalism of reference architectures
incorporated in a CASSE environment can provide a basis for supporting the activities
along a broad span of the IMS life cycle, this research aims to investigate the issues
involved in the realisation, application and evaluation of such an environment, thereby
testing such an assumption.

1.5. Expected Benefits

The provision of support for life cycle activities (via the formalism of models
and architectures encapsulated within a computer-aided systems engineering
environment) can bring about the following business benefits':

" improved consistency with respect to the link between what the manufacturing
system is required to perform and the way in which it is configured and the

components that it requires. This should be the result of the environment's
capability to: (1) describe the requirements of the IMS in a form that can be easily

1. This is not meant to be an exhaustive list of benefits. Additionally, the benefits are stated as
compared to current practice (as discussed later in this thesis).

I-

communicated among the people involved in realising such requirements (i. e. via

conceptual analysis models and by means of adequate modelling languages); (2)

map between conceptual analysis models, which will be manipulated when the

enterprise is being modelled, and actions that are performed by the system

components, once the enterprise system is being used; (3) support the specification

of adequate components, which will provide the system functionality identified in

the conceptual models; and (4) describe the interactions (required by the system
functionality) amongst system components (i. e. shaded area in Figure 3, which
illustrates formalisms of interest in this research).

" reduced system failure (resulting from design errors) and improved traceability

of design decisions. These benefits should result from the capability of the

environment to facilitate analysis and simulation on the same models at various
levels of abstractions, thereby enabling decisions to be made on alternative design

issues (e. g. alternative system configurations), before the system is deployed.

" shorter system design-to-build lead-times, due to the environment's capability to

rapidly generate prototypes of the system, this including prototypes of system

components, which can provide means of rapidly realising alternative solutions to

system requirements.

" lower costs, due to the environment's capability of re-use knowledge and

experience acquired when engineering previous systems, through re-use of models,
and system components and configurations.

" improved flexibility, due to the environment's capability to separate integration

issues from issues connected with specifics of system functionality (i. e. the actual

work that the system performs), this by capturing integration issues within models
that can be easily changed and specifying system functionality as modular
components that can be supplied by the market on an `off-the-shelf' basis.

is

Chapter 2- Literature Review

Chapter 1 identified the need to associate formalism to the IMS life-cycle, as

well as to enable the application of such a formalism to manufacturing system design

through adequate CASSE environments. The state-of-the-art associated with research

activities aimed at addressing this need is related to two main areas:

" efforts on the definition of models and architectures which can lend formalism to
the IMS life cycle;

" initiatives on the application of such formalism to contemporary manufacturing
systems integration problems, through case studies applications of CASSE

environments.

The study presented in this chapter covers the evolution of research effort
within these two main areas, with particular emphasis upon their evolution within the
period of this research (i. e. over the last three years).

2.1. Concepts and Definitions

Before introducing the architectures, it is important to clarify the definitions of
the terms adopted in this thesis. Where possible the recommendation of the DISC

"Framework for User Requirements" [Millis 1992] will be followed, namely:

"It is fruitless to redefine terms in common use, but it is helpful

to say what the usage is in a particular document. "

The need to adopt a selection of definitions stems from the fact that nearly every

architecture (referred to below) uses a different term to designate similar concepts or
the same terms for different concepts. One shall find terms such as: architectures and

reference architectures, models and reference models, frameworks and modelling
frameworks, modelling methodologies, modelling methods and modelling techniques.
Rather than trying to use every author's view of what his model is, this thesis has

adopted those definitions that appear to be more widely accepted.
As presented in Chapter 1, according the IFIP/IFAC Task Force [Williams

1993], an enterprise reference architecture

"... models the whole life history of an enterprise integration

project [i. e. the IMS life cycle] from its initial concept in the

eyes of the entrepreneurs who initially developed it, through its

definition, functional design or specification, detailed design,

physical implementation or construction, and finally operation

19

to obsolescence [i. e. the mapping across life cycle phases]. The

architecture becomes a [...] framewo: k upon which all of the,
functions and activities involved in the aforementioned phases

of the life of the enterprise integration project can be mapped. "

Where a framework is commonly used to mean [Fowler 1964] a

"structure upon or into which casing or contents can be put".

The DISC "Framework for User Requirements" [Millis 1992] extends such a
definition by stating that a framework is

"a structured collection of concepts and their relationships

which scopes a subject and enables the partitioning and

relationship of the topics relevant to that subject to be expressed
by a common means of description". -

According to the ISO/JEC reference model for open distributed processing
(ODP) [ISO/IEC 1993], a modelling technique (which in this thesis will also be used

as a synonym for modelling method)

"is any technique used to construct the supporting model for

a body of specification. As such, each modelling technique
corresponds to a language".

whereby a modelling language is

"a graphical or textual formalism which includes both a

semantic model and a syntax".

or, more generally [Ostler 1991],

"a method or style of expression; [a] system of symbols and

rules [...]".

A National Science Foundation study on design theory and methodology (from

[Boldyreff 1994]) defined (design) methodology as

"the collection of procedures, tools and techniques that the
designer can use in applying theory to design".

20

whereby a (design) theory consist of

"systematic statements of principles and experimentally
verified relationships that explain the [modelling] process and
provide the fundamental understanding necessary to create
useful methodology [for design]".

ODP defines theory as

"axioms to express the constraints of a particular logical

system".

A reference model or enterprise model is viewed by IFIP/IFAC Task Force
[Bernus 1994] as

"prototypical models which can subsequently modified to fit a
particular case; generic (abstract) models capturing
commonalities but leaving out specific details (i. e. `fill-in-the-

blank')".

This definition of enterprise model maps into what ESPRIT/AMICE refers to as partial
models [ESPRIT/AMICE 1991b] (i. e. partially instantiated descriptions of types of
enterprises).

This research will seek to use these terms according to definitions presented
here. Where a generic designation embracing more than one of these definitions is

required, the terms architecture or reference architecture will be used as a more
general concept.

2.2. The Formalism of Architectures

Reference models, architectures, frameworks, methods, techniques, tools,

models or any other modelling artifices are commonly used to reduce the complexity of
the engineering of the integrated enterprise [Bernus 1994].

The multi-disciplinary nature of such an engineering process accounts for the

variety of perspectives based on which architectures stem, involving, for example: the

perspective of a systems analyst, designer and integrator, the perspective of the

enterprise management; the perspective of IT suppliers, the perspective of researchers
investigating the issues of formalism from a variety of viewpoints; and the perspective
of standardisation bodies (such as ISO, IEC and CEN) and professional societies and

groups (such as IFIP/IFAC and OMG) which attempt to analyse, harmonise and

organise proposals flowing from the other perspectives.

21

The description presented in this section attempts to classify works developed

in this area largely based on their perspectives. However, such a classification should

not be viewed as definitive, but rather as an attempt to structure the information

presented in this chapter.

2.2.1. Early architectures
Early work on the definition of models and architectures for CIM started in the

1970's. Initiatives stemming from distinct perspectives of what such formalism should
embrace are manifest in frameworks which proposed models based on: (1) the
organisation of production control functions of an enterprise as a hierarchy of
controllers; (2) attempts to define models describing the main functions of an enterprise
system and the inter-relationships among such functions; and (3) methodologies to
guide the design of a particular enterprise system.

Exemplars of such architectures are': the NIST/MSI architecture [Jones 1989]

and DEC/Philips model [DEC 1987] [Biemans 1990] for production management;

models produced within one of the first ESPRIT project in CIM methodology in

Europe: "Design Rules for CIM Systems" [Yeomans 1984] (Yeomans); an early DIN
initiative on the definition of interfaces for CIM [DIN 1988]; Purdue CIM reference
model [Williams 1989]; early CAM-I (Computer Aided Manufacturing International)

[Boykin 1990] work on reference models for CIM; early work within the ISO TC184
SC5 WG1 on "reference models for manufacturing standards" [Graefe 1989] focusing

on the interactions among major flows of information, material and control within a
CIM system; the CIM model proposed by Thacker [Thacker 1989], as an enhancement

of the SME (Society of Manufacturing Engineers) wheel; and early methodologies
adopted by consulting firms and systems integrators (e. g. CIM-Plan [Hales 1989]

[Hales 1990]).
An integral part of early efforts on the definition of architectures are those

produced by major IT suppliers as a means of structuring the services and functions of
a CIM system which are encapsulated by the products supplied by them. These

architectures usually define how a system can be constructed with single-vendor IT

solutions. Examples of suppliers that provided some definition of architecture are IBM,
DEC and SIEMENS [Rembold 1991] [DEC 1991].

These early architectures focus on identifying (or defining) generic elements of
functionality, interfaces and structure of a CIM system. They usually provide a
descriptive model of how CIM functions should be organised. This model can be

viewed as a collection of static descriptions for reference in CIM systems engineering.

1. For the sake of conciseness, later references to these architectures will use the term that

appears in bold font in the text.

22

They are useful in as much as they provide an insight into components of technology

required to build a complete CIM system.
Among these early architectures, the Purdue CIM reference model (which

evolved into the Purdue enterprise reference architecture, or PERA [Williams 1994])

is still one of the most prominent. It provides useful guidance for the activities along a

greater span of the life cycle. Arguably, PERA is one of the first instances of a large

scope methodology for CIM implementation.

2.2.2. Modelling languages and architectures for CIM

Another perspective started to emerge with projects which focused on defining

modelling languages and architectures for guiding the CIM systems engineering

processes. Important representatives of such a perspective are:

" the IDEF architecture (U. S. Air Force ICAM - Integrated Computer Aided

Manufacturing DEFinition) which provides methods for describing a number of

modelling aspects (or views) of a CIM system, namely: function (IDEFO [Bravoco

1985a]), information (IDEF1 [Bravoco 1985b]), data (IDEFIX), and dynamics (or

simulation - IDEF2 [Bravoco 1985c]). IDEF has recently been extended with the

addition of a super-set of the Zachmann framework' [Zachmann 1986] [Zachmann

1987], and a second set of methods, which are under development, namely: process
description capture (IDEF3), object-oriented design (IDEF4), ontology description

capture (IDEF5), design rationale capture (IDEF6), user interface modelling
(IDEF8), scenario-driven information system design specification (IDEF9),
implementation architecture modelling (IDEF10), information artifact modelling
(IDEFI1), organisation modelling (IDEF12), three schema mapping design

(IDEF13) and network design (IDEF14) [Mayer 1991] [Mayer 1992].

"a method and framework proposed by the GRAI Laboratory of Bordeaux

University [Maloubier 1985] [GRAI 1984] [Akif 1991] to analyse and design

production management systems (i. e. GIM - GRAI integration methodology).
GRAI includes GRAI grid which relates planning horizons within a company with
the company's functions involved, their intersections being referred to as decision

centres; and GRAI nets which can be used to describe the flow of information/

material and the flow of decisions within a decision centre. GIM focuses on

1. The Zachman framework [Sowa 19921 relates (on a grid) the levels of description against
different description perspectives based on which the system is modelled. The levels of
description (which resemble the life cycle stages) include: scope, enterprise model, system

model, technology model, component and functioning system. The description perspectives
(which relate to modelling views) include: data, function, network, people, time and

motivation.

23

decision flow and adopts IDEF to model the remaining aspects of a system
[DDouineingts 1992].

" the CIM-OSA (Open Systems Architecture for CIM) architecture proposed by the
ESPRIT/AMICE consortium [ESPRIT/AMICE 1991b], which is now being

considered as a candidate to a European standard [CEN 1994a]. CIM-OSA

proposed a modelling framework for model-building [Kosanke 1992] which

embraces the definition of the modelling constructs required for modelling four

views (i. e. function, information, resource and organisation) [Jorysz 1990a] [Jorysz

1990b] [Russel 1991] [Vernadat 1992], along three modelling levels or stages (i. e.

requirements definition, design specification and implementation description) based

on three levels of generality or detail (i. e. generic, partial and particular). CIM-OSA

also provides the specification of an integrating infrastructure for model execution
[Querenet 1991].

" the combination of a process-oriented description akin to IDEFO (but modelling
flows of orders, information and resources) and object-oriented design (i. e.
MOOD), proposed by the IPK institute in Germany [Mertins 1992], which has

evolved into a candidate to DIN standard for enterprise modelling, as IEM (i. e.
Integrated Enterprise Modelling) [CEN 1994b], under the umbrella of QCIM

[Pirron 1994].

" the ARIS (Reference Architecture for Information Systems) proposed by Scheer

[Scheer 1992] which evolved from his work on information systems design [Scheer

1991]. ARIS defines the constructs of a modelling language and a modelling
framework akin to CIM-OSA, which embraces three modelling levels and four

modelling aspects, namely: information, organisation, resource and control.

A basic underlying thrust of the perspective represented by IDEF, GRAI and
CIM-OSA is that no unique archetype description or model (i. e. reference model) can
be obtained which can be generally applied to any enterprise. The complexity involved
in the integration process requires rather the application of languages which should

provide adequate constructs to describe the relevant aspects of a CIM system. These

descriptions can then be generalised to construct reference models. The result of the

application of such constructs (in order to create reference models) can then be used as
a reference for later designs (i. e. for modelling a particular enterprise through a process
called instantiation).

Among these architectures, CIM-OSA is, arguably, one of the first to propose a
framework for integrating (into an organised whole) the perspectives presented early in

the section, particularly those of users and suppliers of IT components.

2.2.3. Methods and techniques from software analysis and design
One of the basis upon which modelling languages were proposed is the software

analysis and design methods, which were themselves applied as languages for

designing CIM systems, notably:

" process oriented methods, such as: Yourdon/De Marco and SSADM [Longworth
1992] [Yourdon 1989] [Vervoort 1988] [Weymont 1987] [Maji 1988].

" Object-oriented design methods [Booch 1991] [Adiga 1993] [Bailin 1989] [Mize
1992] [Cox 1986] [Jochem 1989] [Schiel 1990] (A review of the object-oriented
methods from the viewpoint of their application to manufacturing is presented by
Nof [Nof 1994].).

" Petri-nets-based methods and their various extensions [Peterson 1981] [Boucher

1991] [Devapriya 1991] [Farines 1992] [Garnousset 1989] [Harhalakis 1989]

[Hatono 1989] [Tonshoff 1989] [Tzafestas 1989] [Bonney 1993] (A review of
Petri-nets and its extensions is presented by David [David 1994].).

" Data engineering methodologies [Verheijen 1982] [Leva 1987] [Hsu 1990] [Jain

1990] [Fritisch 1989] [Carswell 1987] [Boyle 1991] [Blinn 1991] which adopted

and extended the pioneering work of Chen [Chen 1976] on a language for data

modelling (A comprehensive review of data engineering methods is developed by

Hars [Hars 1991] within the scope of the ESPRIT/CODE project.).

2.2.4. Artificial intelligence and federated architectures
A contrasting view of enterprise modelling to that embodied in architectures

such as CIM-OSA is expressed by the artificial intelligence community view of CIM,

represented by federated architectures, such as: PACT/SHADE [Pan 1991)

[Tenembaum 1992], SIRIUS-BETA [Goranson 1992] and architectures for semantic

unification, such as: CARNOT [Huhns 1992], SUMM [Fulton 1992] and TOVE [Fox

1992].
PACT/SHADE is one the most prominent initiatives which seeks to define an

environment where intelligent agents cooperate through sharing knowledge, thus

enabling coordination of interaction among people as well as software interoperability

[Tenembaum 1992] (with particular emphasis to supporting product design

environments).
CIM-OSA, IDEF, GRAI as well as early reference models are mostly

descriptions or means of describing systems via the application of a homogeneous

modelling language. The federated architectures embody a `bottom-up' view of
integration. In such a view, no attempt is made to construct a system from models

created through the application of a unique language. Components, described in a

25

variety of heterogeneous modelling languages, are added to the system incrementally.

Each component is a new agent which brings in knowledge and uses knowledge already

available in the system. It is generally trusted in these architectures that [Petrie 1992a]
"... models play a unique role in the enterprise integration equation [in such a way] that

the technical leverage for enterprise integration will be found primarily through

considering issues of model integration... ". Thus, architectures such as CARNOT and
SUMM provide alternative means of integrating models (mostly information models)
described in different modelling languages, in order to achieve integration across
heterogeneous applications. SUMM is based on the semantic unification of models and
CARNOT on a global ontology' shared by the models being integrated.

2.2.5. Frameworks for integrating infrastructures

An additional perspective into the issues of integration is the definition of
frameworks for the organisation of IT infrastructural services and functions which can
be generally applied to any manufacturing system or indeed any system. In simple
terms, such an infrastructure should provide a level of IT services, so as to enable the
integration of system components (see Figure 1. b) in such a way that the details of
physical integration (see Figure 1) are encapsulated by the integrating infrastructure,

thereby hidden from the system components. Hence, components can be developed
independently from integration issues, thus enabling the configuration of a system
based on `off-the-shelf' components.

Pioneering academic initiatives in this area are: CONIC [Kramer 1990a]
[Kramer 1990b] [Magee 1989] and the CIM-BIOSYS integrating infrastructure

[Weston 1993] (the latter being particularly oriented to manufacturing systems
integration). A review of research works in the area of distributed computing is

presented in the conference proceedings edited by Kramer [Kramer 1992] and Meer
[Meer 1992]. A review of the main features of some proprietary integrating

infrastructures is presented by AMR [AMR 1991], which includes: DEC NAS and
BASEstar [DEC 1992], HP-OSF/DCE [Boswell 1992], IBM-DAE/Plantworks, ITP
MainStream and Savoir FLEXIS. Goodwin [Goodwin 1994] lists a number of products
that are emerging in the market which he classifies as `middleware', which provide an
operating system independent environment for applications to inter-operate and to

1. A global ontology is used to yield the appearance and effect of homogeneity among existing

models. Here, an ontology is viewed as consisting basically of a kind of knowledge base

which maps the semantic differences between models [Huhns 1992]. According to Fox [Fox

1994], ontology is a formal description of entities and their properties; it forms a shared

terminology for the objects of interest in a domain, along with definitions for the meaning

of each of the terms.

26

access data transparently (e. g. ICL-DAIS [ICL 1994]). Initiatives aiming at defining

commonly agreed services for an integrating infrastructure which may impact the
definition of such services are the Open Software Foundation (OSF) [Johnson 1991],

the ESPRIT CCE-CNMA project [Pleinevaux 1994], and Object Management Group

(OMG) [OMG 1991]. According to Brenner [Brenner 1987], the leading distributed

computing architectures are: OSF-DCE, UI-ATLAS framework, The X/Open XDCS

framework, OMG-CORBA (Common Object Request Broker Architecture), and ISO-

ODP.

Among these initiatives, OMG, which stems from the application of object-

oriented paradigm in distributed computing, has defined CORBA [OMG 1991],

embracing a language for integration of distributed software objects (i. e. IDL) which
interact with one another in order to perform a certain task. The basic underlying

objective behind CORBA is to define the specification of an Object Request Broker

which can serve as an enabling mechanism for integration of `off-the-shelf', multi-

vendor software components. Such components are envisaged to be marketed as
CORBA compliant software objects built regardless of the details of the platforms,

operating systems and networking infrastructures on which they run.

Distributed computing in itself is an area in which a large diversity of work

exists which this research is far from mastering. Thence, apart from the overview given

above, the interest of this research in distributed computing stems basically from the
impact that integrating infrastructures can have on the definition of architectures for

enterprise integration. This is strongly emphasised on the standardisation front with the

reference model for open distributed processing [Brenner 1987] [Kourie 1989]

[Kobayashi 1990] [Linigton 1991] [Hutchison 1991] (RM-ODP).

The RM-ODP is an on-going initiative to define a framework for the

standardisation of open distributed processing [ISO/IEC 1993], by

"creating an architecture within which support [for] distribution

inter-working and portability can be integrated".

The primary objective of the RM-ODP [ISO/IEC 1993]

"is to provide a framework which enables programmers to

construct distributed applications, without having to take [into]

account [...] the potential diversity of hardware, operating

systems and communications mechanisms in the underlying

computer network. The ISO work on ODP is about the

standardisation of ODP architecture and interfaces, so that

systems can be constructed from heterogeneous and re-usable
components. "

An ODP system is a system which can be "specified by using a viewpoint
language. To deal with the complexity of an ODP system, the system is considered from

different viewpoints" [ISO/IEC 1993] each of which represents a different abstraction

of the original system. The viewpoints defined by ODP1 are:

" enterprise viewpoint, for the "expression of purpose, policy and boundary";

" information viewpoint, for the "expression of information and information

processing functions in a distributed system";

" computational viewpoint, for the "expression of the functional decomposition of
an ODP system and of the inter-working and portability of ODP";

" engineering viewpoint, for the "expression of the infrastructure required to support
distributed processing";

" technology viewpoint, for the "expression of the suitability of technologies to

support aspects of ODP".

According to ODP [ISO/IEC 1993], "any existing language can, in principle be

used for specification of a system from a particular viewpoint, provided that those

specifications can be interpreted in terms of relevant viewpoint concepts". For that

matter, ODP specifies general requirements for each viewpoint language and strongly

recommends the use of an object-oriented basis.

By providing such a framework, the RM-ODP aims to support the generation of
the following categories of standards through the application of the viewpoint
languages (see Figure 6 [ISO/EEC 1993]): specific reference models for certain types of

enterprises, and standards for the realisation of common functions (such as generic

applications) and specific functions (such as specific applications).

The framework shown in Figure 6 is similar to the key concept embodied in the
CIM-OSA cube which relates its views, modelling levels and levels of generality (see
discussion later in this thesis). In either case the fundamental aim is to enable the

convergence of interests of users and suppliers of system components around a
common architectural understanding of the problem domain that the models are

1. According to ODP [ISO/IEC 1993], "the most significant of the ODP viewpoints from an
OSI [i. e. Open Systems Interconnection - ISO 1990] perspective have been identified as the

information, computational and engineering viewpoints".

2

RMM-ODP

Specific Reference Model Common Function Standard

Specific Function

Figure 6- ODP support for standardisation

representing.
The viewpoints can also be mapped into the traditional phases of system

development (assuming that the ODP system is implemented from `scratch'), namely
[ISO/IEC 1993]:

" Requirements analysis (i. e. part of the strategy definition stage in Figure 3):

enterprise viewpoint;

" Functional specification (i. e. part of the conceptual analysis stage in Figure 3):
information and computational viewpoints;

" Design: engineering viewpoint;

" Implementation: technology viewpoint.

2.2.6. Consulting practitioners methods and OPENframework

The main difficulty with analysing methods used by consulting practitioners
and systems integrators is to gain access to information. Information on methods is kept
in confidence and is usually made accessible only through a training process. During

the course of this research, the only method to which the author had access (through a
training course) was the OPENframework architecture [ICL/OFD 1994]

OPENframework emerged as a result of an effort initiated by a supplier of
computers and software (i. e. International Computers Limited - ICL) [Brunt 1992] and
is now becoming a method which is being applied on a world-wide scale.
OPENframework started as a vendor-independent technical architecture (i. e. a
specification of how the IT systems of an enterprise should be organised), embracing
the definition of:

" four perspectives associated with the description of an information system, namely

user, service provider, application developer and enterprise manager [Brunt 1992];

29

" five qualities which serve as metrics for qualifying technical architectures
developed for particular industries, namely: availability [Smethurst 1993], usability
[Hutt 1993a], performance [Sutcliffe 1993], security [Faithorne 1993] and potential
for change [Pratzen 1993];

" seven building blocks which encapsulate the concerns that are manifest in any
technical architecture, namely: user interface [Hutt 1993b], application

architecture, distributed application services [Brenner 1993], information

management [Kay 1993], application development [Brown 1993], systems

management [Gale 1993], networking services [Deignan 1993] and platforms
[McVitie 1993].

Over the last two years, OPENframework evolved a business architecture

which embraces the definition of [ICL, /OFD 1994]:

" four perspectives associated with the description of a business enterprise, namely:

customer, employees, trading partner and enterprise management;

" five qualities named as in the technical architecture, but applied as qualifiers for the
business architectures;

" seven building blocks which encapsulate the concerns that are manifest in any
business architecture, namely: strategy, organisation, process, information, systems,

assets and appraisal.

In addition to defining the content of perspectives, qualities and building blocks

as major elements for building business and technical architectures, OPENframework

has also introduced a set of methods [ICL/OFD 1993] for organising the information

related to these elements for a particular enterprise. Such methods support the
description of the three major systems of an enterprise, which OPENframework defines

as being: business system, social system and technical system. These descriptions aim
to cover the complete IMS life cycle leading to the definition of a system configuration
in terms of system components adequate to the enterprise under consideration.

A positive point of this architecture is its orientation towards aggregating most

of the perspectives previously mentioned in an organised whole. However, as in other

methods adopted by consultants and systems integrators, OPENframework is limited to

provide general guidelines as to how the process of developing architectures should be

performed (i. e. a methodology), without actually defining a modelling language or an

actual architecture (in the sense used in this thesis). Much of the knowledge required to

apply the methods as a coherent whole must be supplied by the practitioners who use

them.

30

2.2.7. Methods and tools for business analysis
From the perspective of strategic management, a manufacturing enterprise is

essentially a business.

With respect to the IMS life cycle, this perspective includes methods and
techniques which can be used to support enterprise engineering at the upper most level

of abstraction (i. e. the strategy definition stage shown in Figure 3). This includes the
definition of a business strategy which can serve as the basis upon which the activities

of the remaining life cycle stages can be performed.
Examples of methods and techniques which comprise current practice in

business analysis (as defined by Stacey [Stacey 1993])1 include: PEST analysis
[Johnson 1993], Boston Consulting Group (BCG) matrix, Shell directional policy

matrix, Porter's five forces, value chain and generic strategies [Porter 1985], strategic

group analysis [Johnson 1993], SWOT analysis, costing methods [Shararoun 1994],

Miller's configurations [Miller 1983] [Davis 1991], Beer's Viable System Model

[Espejo 1989] and the 7S framework [Stacey 1993]. Another well-known methodology

which is usually associated with business analysis, but not limited to, is the soft-systems

methodology proposed by Checkland [Checkland 1981] to address ill-defined

problems.
Stacey [Stacey 1993] analyses the current practice, its underlying assumptions

and postulates that much of what it advocates cannot be applied to organisations
working in a state of "bounded instability" (i. e. chaos). This a state on the boundary
between complete disorder and order, in which organisations are very creative and
innovative thereby becoming models of success. States of complete disorder or order
lead, respectively, to disintegration or stagnation ultimately leading to failure.
According to Stacey [Stacey 1993],

"organisations must operate in states of chaos if they are to

transform themselves and that the process of transformation is a

spontaneous self-organising one. These properties lead us to see
that the conventional wisdom on strategic management is a
limited special case applicable only to the short-term control of

an organisation or to the strategic development of organisations

required simply to repeat their past. In all other cases the

conventional wisdom cannot apply and thinking in those terms
is a harmful fantasy escape from reality. Instead we need to

think of an organisation as a learning community out of which
new strategic directions may emerge [spontaneously]. "

1. Stacey refers to "current practice" as the "conventional wisdom" in strategic management.

31

;n association with this line of thought, business process analysis and re-

engineering (BPR) have been the focus of research initiatives aiming at improving

business performance from a process perspective. Business re-engineering as defined

by Hammer [Hammer 1994] is a step change in the way the business is currently

working. This involves a view to completely re-defining business processes as if the

organisation were starting from `scratch'. One of the primary focuses in BPR is upon
improving the enterprise performance through re-organising it from a process

perspective, one of its primary focus being the role of human beings in an IT context
[Davenport 1994].

From a modelling perspective, BPR can be understood as the first level of
analysis shown in Figure 1. At this level, the complete enterprise system is analysed at
a high level of abstraction with a focus on the way in which its sub-systems inter-

operate.

An extensive review and comparison of methods and techniques for computer-

aided production management, which includes methods for business analysis, is

presented by Frizelle [Frizelle 1991]. A review of the methods and techniques

mentioned in this section was also developed by the author outside the scope of this

thesis, as part of a proposal for further research projects [Aguiar 1994m].

Finally, the DISC "Framework for User Requirements" [Millis 1992] (in the

context of the "framework of frameworks") is one of the few initiatives which, in its

review of existing architectures, lists some of the methods and techniques for business

analysis as part of a wide scope framework for enterprise engineering. Most reviews of

existing architectures do not include these methods and techniques.

2.2.8. Other models and architectures

Nearly every CIM project involves some level of definition of architectural

concepts which has led to the appearance of a variety of other models. A review of some

of these models, some of which related to the architectures discussed previously, was
developed by Doumeingts [Doumeingts 1992] chiefly based on work presented at the
CIM-CON conference [Jones 1990] and on projects developed within the ESPRIT

program. This review included the following additional architectures: (1) models for

shop and cell control levels, such as: MMCS (Manufacturing Management Control

System) developed within the ESPRIT Project 418 - Open CAM System; the PAC

(Production Activity Control) model developed within the ESPRIT Project 477 -
COMISA (Control system for Integrated Manufacturing); (2) the model for factory

supervision being developed in the ESPRIT Project 2434 - Real-Time Controllers for

32

Distributed Factory Supervision; (3) the model of IMPACS (Integrated Manufacturing

Planning And Control Systems) - ESPRIT Project 2338; (4) models developed by the
ESPRIT Project on factories of the future (one-of-a-kind production techniques); (5)

the methodology developed by the ESPRIT Project 2706 - MICIM (Methodology for

the Introduction of CIM); (6) the methodology for economic and technical evaluation
of various options of CIM solutions introduced in ESPRIT Project CIMSIM; (7) the
CIM architecture of the Sandia National Laboratories [Yoder 1990]; and (8) the RAMP

(Rapid Acquisition of Manufactured Parts) architecture [Litt 1990].

2.3. Literature Surveys of Architectures

A number of reviews of architectures has been developed over the last ten years
by various authors, notably: Parunak [Parunak 1987], Rembold [Rembold 1991], Maji
[Maji 1988], Mayer [Mayer 1991], Wiendahl [Wiendahl 1991], Rogers [Rogers 1989],
Frizelle [Frizelle 1991], Bohms [Bohms 1990], Mertins [Mertins 1992], Doumeingts
[Doumeingts 1992]; the IFIP/IFAC Task Force [Williams 1993] and the ManTech-

funded Enterprise Integration Program (EIP) [Petrie 1992a].

Most of the above comparisons focus on the descriptive power of architectures.
They are mainly interested on how complete an architecture is in order to be used to

represent a system. The four latter reviews analyse architectures for their capability to

support the IMS life cycle, as defined in Chapter 1. These reviews vary in the

methodology that they adopt for their analysis as well as in the final outcome of the

analysis. However, in most of these studies three main observations stand-out:

" no single architecture can provide the required support for all the issues involved in

the IMS life cycle;

" CIM-OSA stands out as one of the most comprehensive;

" an architecture resulting from a combination of the best features of the most
outstanding architectures is desirable.

The results of these reviews were confirmed by a study developed by the author,
as part of an early review of the literature on architectures undertaken within the scope
of the Model-Driven CIM project [Aguiar 1992d] [Aguiar 1993e] [Aguiar 1993c]
[Aguiar 1994m]. This review considered the architectures known to the author at the
time of the survey and compared them against a number of parameters.

Among these surveys, one of the most important studies was conducted within
the Enterprise Integration Program, funded by ManTech. This study started in 1990 and

33

resulted in a consensus on a conceptual framework for enterprise integration. The

framework was used as the basis for discussion within a number of workshops that

culminated with the realization of the First ICEIMT (International Conference on
Enterprise Integration Modelling Technology) [Petrie 1992a] in which various more

recent architectures were discussed. A number of architectural definitions were

proposed from the ICEIMT's workshops.
One of the most important definitions was a meta-model for integration, based

on five components, namely: application architecture (i. e. the components of an
enterprise system), execution environment (i. e. integrating infrastructure), enterprise
characterization (i. e. models of an enterprise system), formal mechanisms (for binding

the three other components) and integration domain (where these four components are
actually integrated). Such a meta-model was then applied to evaluate what existing
architectures provide. One important outcome of such an application was the fact that
CIM-OSA could be directly associated with the separation of concerns implied by the
five components of this meta-model.

The EIP also proposed three types of approaches to the problem of syntactic and

semantic model integration, namely [Petrie 1992a]: master model (e. g. ESPRIT/CODE

Project [liars 1991]); unified model (e. g. CIM-OSA [ESPRIT/AMICE 1991b]) and
federated model (e. g. CARNOT [Huhns 1992]). An analysis of these approaches

resulted that the two latter ones stand out as the most promising. However, between

them a number of trade-offs stemming from their mutual advantages and disadvantages

were encountered which resulted in the recommendation that an amalgamation of these
two would be desirable.

2.4. Amalgamation Efforts

Exemplars of efforts on the combination of some of the architectures previously

presented are:

" the manufacturing systems integration methodology (MSI-UK) proposed by an
association of research groups in the UK [Carrie 1993], which combines Beer's
Viable System Model [Espejol989], Miller's configurations [Miller 1989], GRAI

grid [Doumeingts 1992], and data-flow diagrams [Yourdon 1989]

"a number of combinations of IDEFO and Petri-nets [Boucher 1990] [Meta 1990]

[Meta 1989]. An outstanding example of such combinations is Design/IDEF and
Design/CPN [Meta 1990], tools developed by MetaCASE Technology which
combine IDEFO for functional modelling associated with coloured Petri-nets for

behavioural modelling.

34

2.5. Standardisation Efforts

The main standardisation efforts are:

" the ISO TC184 SC5 WG1 - CD 14258, [ISO 1994] "Framework for Enterprise
Modelling", recently distributed for ballot. This document basically issues general
guidelines for enterprise modelling.

" the CEN TC 310/WG1 - ENV 40003, "Framework for Enterprise Modelling",

which is defining requirements for enterprise model execution and integration

services (i. e. an integrating infrastructure); and a suite of constructs to be used for

enterprise modelling. These two fronts of work make strong reference to the CIM-
OSA specifications, although they do not adopt CIM-OSA in its entirety.

" the DISC "Framework for User Requirements", developed by the Frameworks

group of the DISC Business Strategy Forum, which is now a BSI (i. e. British
Standard) draft for development, and is attracting interest and support worldwide.
This work was the main starting point for the framework of frameworks [Millis
1992].

" the momentum that the architecture for business process modelling proposed by
QCIM (i. e. the integrated enterprise modelling method, associated with QCIM
[Mertins 1994]) is gaining within a German standardisation initiative (i. e. DIN).

2.6. Harmonisation Efforts

Two main harmonisation efforts worth noting are:

" the mapping between the constructs used in QCIM and CIM-OSA [CEN 1994b].

" the effort invested by the IFIP/IFAC Task Force in devising a framework to classify
architectures (i. e. GERAM: Generic Enterprise Reference Architecture and
Methodology [Bernus 1994]) and applying it to major architectures.

In regard to the latter effort, the IFIP/IFAC Task Force have found

"that only three of the many architectures known to [them] were
suitable [...]. These were CIMOSA, the GRAI-GIM
Methodology, and the Purdue Enterprise Reference
Architecture and its associated Purdue Methodology. "

The IFIP/IFAC Task Force has also recently included TOVE [Fox 1992] as
another suitable architecture. TOVE (TOronto Virtual Enterprise) aims to create
generic representations of enterprise knowledge (i. e. ontology) which can be reused

35

across a variety of enterprises [Fox 1993].

2.7. Tool Development and Application

Three years ago (when this research started) most architectures were at a state
of specification with few architectures implemented as usable tools. Some of the most
commonly available tools were: CASE tools based on methods for software
development; IDEF-based modelling tools and Petri-net-based tools.

Examples of early attempts to encapsulate the formalism of some of the
architectures are:

" Computer-Aided GRAI [Akif 1991], a tool to support the creation of GRAI grids
and GRAI nets for a particular enterprise;

" CIM-OSA Demonstration [Emond 1988], an early attempt to build a tool to

partially support the creation of function view models at the requirements definition

modelling level, which evolved into the CIM-OSA Computer-Aided Enterprise
Engineering (CAEE) tool [ESPRIT/AMICE 1991f]. This was the result of an
attempt to build a CASE tool to fully support the creation of function view models
at the requirements definition modelling level.

Most of these tools covered a narrow scope of the IMS life cycle, few of which
extended further from supporting model building. Outstanding examples of tools that

supported a level of model-enactment' (usually related to a simulation capability), are:
Design/IDEF and Design/CPN [META 1990]; UNISSON [Bonney 1992] which
supported simulation and control of a system modelled on a Petri-net-based language;

and tools based on traditional discrete-event simulation languages [Pidd 1992].

Examples of early attempts to apply these architectures for modelling
manufacturing domains (some of which without the benefit of modelling tools) are:

"a case study on the application of CIM-OSA to a shop-floor domain within
Aerospatiale [ESPRIT/AMICE 1991d]. This was chiefly limited to applying the

constructs of function view at the requirements definition modelling level, and later

extended to fragments of models for the three other views of CIM-OSA. Based on
the models created in this case study, a number of fragments of models have been

extracted as examples used throughout the CIM-OSA specification.

" IDEF models of a number of industrial applications [Colquhounn 1991]

1. Model-enactment is used here to denote the process of executing a model description in a
computer.

36

[Jayaraman 1990] [Malhotra 1990] [Marechal 1987] [Ranky 1991a] [Ranky 1991b]

[Sarkis 1994] (a review of the state-of-the-art of IDEFO is presented by Colquhoun

[Colquhoun 1994]).

" Petri-net models of a number of applications, but particularly shop-floor control
applications [Boucher 1991] [Devapriya 1991] [Farines 1992] [Gamousset 1989]
[Harhalakis 1989] [Hatono 1989] [Tonshoff 1989] [Tzafestas 1989].

When this research started, no tool or application known to the author supported

the IMS life cycle so that the same models could be used for modelling, analysis,

simulation, rapid-prototyping of code for the system structure and its components,

configuration and operation of the deployed system. However, efforts in this direction

have been invested in a number of research projects, notably:

a. In the ESPRIT/AMICE - CIM-OSA project which ended in February 1994 with a

workshop [Kosanke 1994a) whereby the main deliverables of the project were
demonstrated. Two outstanding deliverables were:

" the pilot implementation of CIM-OSA developed by WZL-Aachen [Katzy 1993]

which consisted of: (1) using TeamWork (a CASE tool supplied by HP) to model a

mini-factory built in their laboratories. The modelling exercise supported by this
CASE tool was formalised in data-flow diagrams, state-transition diagrams and

entity-relationship-attribute diagrams as a means of partially emulating the

constructs of CIM-OSA; (2) applying a simulation tool developed `in-house' to

execute simulation on the models; (3) using code generated by the CASE tool to
drive the operation of the mini-factory.

Although this pilot-implementation is certainly the most embracing demonstration

of CIM-OSA, it presents the following limitations:

" One of the most outstanding features of CIM-OSA is its modelling constructs
(i. e. its modelling language). Although the pilot-implementation makes

reference to the CIM-OSA modelling framework, it does not adopt its modelling
language. The exercise of model-building and model-enactment consists
basically of generating a software application from a Yourdon-based model (re-

interpreted as if it were a CIM-OSA model) which controls the interactions

among the components in the mini-factory, thus playing the role of a cell

controller.

" The tools, models and systems used in the implementation were built to
demonstrate the concepts of CIM-OSA rather than to provide solutions in

themselves in regard to support for the IMS life cycle.

37

" The pilot-implementation adopted HP-DCE as the integrating infrastructure

which does not provide the complete functionality required in the integrating

infrastructure of CIM-OSA.

" the case-study application of CIM-OSA to model a gear-box shop-floor at FIAT

[FIAT 1994a] [FIAT 1994b] [Naccari 1994], which consists of using a Petri-net-
based tools in association with an object-oriented tools (i. e. Protob, Artifex and
Quid [Bruno 1994]) to model the main processes on the shop-floor.
Although this is arguably one of the most complete case studies on the application

of CIM-OSA to a real industrial domain, it presents the following limitations:

" in a similar way to the pilot-implementation, the CIM-OSA modelling language

was re-interpreted in the light of the languages supported by the modelling tools
adopted;

" the case study covered only the modelling stage.

b. In the ESPRIT VOICE project' [ESPRIT/VOICE 1992] [ESPRIT/VOICE 1993])

whose period of execution partially overlapped with that of this research. VOICE

aimed to validate and apply CIM-OSA to a number of industrial domains. The main
deliverables that resulted from this project were:

" the McCIM modelling tool [Didic 1992] [Didic 1993] which enables the creation of
Petri-net models under the front-end of a CIM-OSA-based graphical representation.
These models can be enacted for simulation purposes (using a SmallTalk-based

environment) and to drive the interactions governed by a cell controller;

" an effort to develop an integrating infrastructure for CIM-OSA, which has not been

completed yet [ESPRIT/VOICE 1992] [ESPRIT/VOICE 1993];

" case study applications of some of the tools in a car manufacturing shop-floor
[Didic 1993].

The work of VOICE project is focusing on providing means of integrating and
controlling machines on a shop-floor based on the application of CIM-OSA. Part of the

orientation of this project is to use Petri-nets as the basic language for model-building
and model-enactment, and interfacing with other tools available from the market in

order to cover the remaining modelling aspects of CIM-OSA.

1. Partial results of this project were also demonstrated at the workshops of the CIM-OSA club
[Kosanke 1994a] [Kosanke 1994b].

3S

c. At IWI, on the provision of a modelling tool to support the application of the ARIS

architecture to capture the requirements of a domain [Scheer 1992]. This tool is

limited to support model-building for the four views of ARIS, without actually

providing any capability for enacting models.

d. A few others tools and applications developed based on the CIM-OSA modelling
framework which, however, support only a limited scope of such a framework

[Siemens 1994] [Gaches 1994] [Naeger 1993] (The workshops of the CIM-OSA

club congregated most of the information on such tools and applications [Kosanke

1994a] [Kosanke 1994b]).

e. In a number of case studies covering the modelling stage of the life cycle, namely:

applications of IDEFO in association with the emerging IDEF methods, notably
IDEF3 [Colquhoun 1994]; the wide use of the GRAI method in France, as claimed
by Doumeingts [Doumeingts 1992]; the application of PERA by the industrial

members of its consortium, as noted by Williams [Williams 1993]; and the work

under development by Naeger [Naeger 19931 on the specification of resource

components based on the CIM-OSA constructs.

2.8. Contemporary Practice

In spite of the research effort illustrated in previous sections, contemporary
industrial practice in this area is still that of applying the formalism of methods and
tools to a narrow scope of activities within the IMS life cycle. A common feature of

most of these applications is that they embrace the use of architectures for modelling,

sometimes simulation, but rarely analysis, rapid-prototyping, system configuration and

system operation in an integrated manner. With the exception of CIM-OSA, no

application supports these stages based on the same models. Even the CIM-OSA-based

applications share models by simply adopting a strategy of interfacing tools available
in the market (in such a manner as to re-interpret the CIM-OSA concepts).

In most cases, tools and methods are used simply to facilitate communication or
formalise requirements, or as an aid to decision-making based on simulation. In regard
to evolving from modelling and simulation to system generation and execution, work-
flow systems, such as ProcessWise [ICL 1993], have been used. These systems provide

mechanisms for controlling a certain process in industry based on a model of its major
tasks. Typical applications for such systems have been in the automation of office

procedures. However, although such systems provide a level of connection between

system modelling and system operation, they do not embrace the level of description

required to support life cycle processes, as prescribed by the most well recognised

architectures (e. g. CIM-OSA, PERA, GRAI, ODP, etc.).

39

2.9. Summary of the State-of-the-Art

Accurately describing the state-of-the-art in so dynamic an area as this is not an
easy task. Devising a research need within this area of work to which a contribution can
be made over a period of about three years is even more challenging.

Over the period in question, the scenario has changed. The situation three years
ago can be briefly characterised by the following:

" major architectures were generally manifest in the form of partially defined

specifications (on paper);

" applications of these architectures to manufacturing were limited to modelling
(usually as a paper exercise), and modelling geared towards analysis and

simulation. In most cases, a barrier to application was the general lack of

understanding about what the architecture could provide or how it could be used;

" no integrating infrastructure was available which could readily be used for model
execution, thus leading to a requirement of adapting an existing infrastructure to

suit this purpose, this being a task whose viability depended upon the level of
openness for change that the supplier of the integrating infrastructure was able to
provide;

This scenario has evolved to a situation which can be briefly characterised by

the following:

" specifications of the main architectures can be considered as nearly complete,

although a number of issues mostly related to achieving implementation and

extending their coverage to include the "strategy definition" stage (in some of

them) are yet to be defined. This is particularly the case in CIM-OSA [ESPRIT/

AMICE 1993a];

" tools are available which can support part of the activities of the IMS life cycle

which implement aspects of an architecture or refer to their main guidelines when
`re-vamping' or `amalgamating' other tools and methods to support such

guidelines;

" additional case studies on the application of architectures have been developed

which, although in most cases are limited to describing requirements or simply

modelling, provide (if nothing else) guidance as to how architectures can be

applied;

" progress within the area of integrating infrastructures (such as in OMG-CORBA)

may cause a major impact in the way which integrating infrastructures are supplied

and software components are marketed. Nevertheless, in the case of OMG for

40

instance, only recently is a working group being formed to address manufacturing

software [Waskiewicz 1994];

" efforts on the amalgamation, harmonisation and standardisation of architectures are

still very much under development. The work done so far has re-inforced the need
for architectures, sought to use the best features of contemporary architectures,

notably in initiatives of the IFIP/IFAC Task Force and CEN.

In spite of the changes incurred in this scenario, the requirements identified in

Chapter 1 still persist as an important research need, namely: to encapsulate the
formalism of selected architectures in a form that can render them applicable to

contemporary IMS engineering processes. The scenario evolution may have even re-
inforced such a need.

The state-of-the-art in the area, as discussed in this chapter, has shown that a

considerable amount of work has been developed (especially over the last few years).
However, no single initiative has provided support to the IMS life cycle by embracing

an approach to the encapsulation of architectural concepts into a CASSE environment

capable of supporting modelling, analysis, simulation, rapid-prototyping (of code),

configuration and operation of an IMS, in an integrated manner.

The emphasis on scenario evolution presented here is important as a
background against which some of the decisions which have been made during the

course of this research can be judged. Essentially, the manner in which the research

need was addressed reflects the evolution of the state-of-the-art over the period in

question. Consequently, if some of the decisions on the research methodology had to be

made now, the research direction may have been different (e. g. the tools used in the
implementation effort may differ).

2.10. Concluding Remarks

The diversity of perspectives presented in this chapter may convey a message

of chaos due to the complementary and, sometimes, conflicting perspectives that

architectures represent. However, each and every architecture may have something to

offer with regard to support to the IMS life cycle. Outstanding features of some of the

architectures include:

"a mechanism for aggregating the perspectives of users and suppliers of IT

components into a coherent whole, tackling integration from a standardisation

viewpoint, offered by architectures, such as CIM-OSA and ODP;

" the comprehensiveness of the CIM-OSA framework, which offers a model for

41

using modelling technology consistently along a wide span of the IMS life cycle,

covering activities from system modelling to system execution and operation;

" the wide-spread acceptance of IDEF methods in industry, as a consequence of their

application to a number of case studies;

" the wide-spread availability of tools and applications based on Petri-nets and their

extensions;

" mechanisms for enabling reusability of models offered by object-oriented
modelling methods;

" support for describing the enterprise from a high-level of abstraction provided by

methodologies such as the MSI-UK and GRAI-grid;

" the multi-dimensional view of enterprise modelling, as encapsulated by the
Zachmann framework;

" the many forms in which descriptions of the main elements of the structure and
functionality of a manufacturing enterprise can be viewed, as provided by early

reference architectures;

" the structural description of IT services and functions provided by the
OPENframework technical architecture;

" the methodologies for CIM introduction which seek to cover technical and

managerial aspects of such a process, as expressed in: PERA; the SME wheel as

extended by Thacker; the DISC framework of frameworks; and the
OPENframework methods;

" the business strategy viewpoint associated with the enterprise engineering process,
provided by a series of methods and tools which, if nothing else, serve as catalysers
for the development of a strategic mind-set in the business modelling activity;

" the orientation towards enabling model integration embodied in the various
federated architectures so far conceived, based on the assumption that a large

diversity of legacy models and modelling languages will have to co-exist in an

enterprise. This feature sets the stage for a scenario in which the complexity of

enterprise integration is tackled by combining a variety of modelling tools and
languages;

" the pioneering effort to provide a vendor-independent integrating infrastructure

which can support flexible integration in manufacturing, as represented by CIM-

BIOSYS (Here, a key aspect is that the use of CIM-BIOSYS at the MSI Research

Institute has enabled its researchers to understand the key aspects and problems
involved in building an IMS.);

1,

" the possibilities that the application of the object-oriented paradigm offers to

achieve inter-operation of multi-vendor software components marketed as software

objects, opened up by initiatives such as: OMG-CORBA and ODP.

Hence, an issue of major importance is that of aggregating the features of such

architectures into a coherently organised whole, so that their formalism can actually be

used in (re-)engineering manufacturing enterprises. On-going efforts to compare,

contrast, amalgamate and harmonise these architectures reflect this need to combine

and use the most desirable features of outstanding architectures.

43

Chapter 3- Research Objectives and Plan

The discussion presented in Chapter 2, has shown that a considerable body of

work on formalism already exists, stemming from a variety of architectures, although

most of them have not been tested or delivered in implemented solutions. Among these

architectures, CIM-OSA stands out as the most comprehensive in terms of addressing

the several perspectives from which architectures have been proposed. Furthermore, a
desirable level of synergy can be obtained from the complementary perspectives of

architectures, hence overcoming some of their individual limitations by combining

them with one another in such a way that their best features can be used.
The complexity involved in realising an ideal combination of architectures is a

challenge that is far beyond the scope of this research. Nonetheless, this research aims

to make an incremental step towards such an objective and thereby in part meeting the

requirements identified in Chapter 1, by:

" structuring the framework represented in Figure 5 in order to populate the IMS life

cycle with formalisms of architectures. Such a structure is also meant to serve as a
basis for delineating the author's long term research aim in this area';

" beginning to populate such a framework with an initial combination of formalisms

of architectures (and added knowledge of `problems' and `solutions' as illustrated

in Figure 5) which can be encapsulated into a CASSE environment capable of

providing support for modelling, analysis, simulation, rapid-prototyping,

configuration and operation of an IMS, in an integrated manner. Implementation of
this environment will provide a basis for proving the concepts embodied in this

research.

" evaluating the environment by applying it to (re-)engineer a manufacturing domain.

This chapter focuses on describing the strategy and the methodology adopted in

order to achieve the above aims, by:

" introducing a preliminary framework for the IMS life cycle;

" detailing the methodology adopted to conduct this research;

" describing the main elements of the computer-aided systems engineering

environment proposed for implementation;

" outlining the thread of decisions which have been made as part of the proposed plan

1. Investigating the formalism associated with architectures to support the complete ß1S life

cycle is essentially the author's broad research objective.

44

of research, as well as highlighting alternative courses of action which could have
been taken.

3.1. A Preliminary Framework for the IMS Life-Cycle

Based on a simplified model of life cycle described by Figure 5, the life cycle
model shown in Figure 7 was proposed as a means of structuring major elements of
formalism with a view to achieving IT based system integration. In each life cycle

phase, certain design considerations will be dealt with, where deliverables and

parameters of phases are inter-related. Figure 7 represents a decomposition of the four

meta-phases', namely: strategy definition, conceptual analysis, design and
implementation, and operation and maintenance. Each meta-phase and the constructs
that are manipulated within it are defined below (the definition of each construct is

presented in Appendix 1):

a. Strategy definition. This embraces the activities of: developing corporate,
manufacturing and IT strategies, assessing the overall performance of an enterprise,
defining goals for improvement, and identifying and prioritising enterprise domains

to be tackled in order to achieve the required performance improvements.

b. Conceptual analysis. In this meta-phase, a formal system analysis is carried out
with regard to one or more enterprise domains. Here, the focus is on analysing both

present (i. e. `as-is') and potential (i. e. `should-be') scenarios in order to identify

means of achieving the improvement goals defined for the domain(s) under
consideration during the strategic definition stage. This process should lead to the

selection of a `to-be' scenario which provides means of achieving those goals.

c. Design and implementation. This meta-phase is concerned with realising a `to-be'

scenario. Hence, functional components (e. g. representations of people, machines,
application programs, databases and infrastructural resources) modelled in the

conceptual analysis meta-phase are implemented as physical entities that can be

either purchased `off-the-shelf', developed `in-house' or fulfilled by the legacy

components2 of the enterprise.

1. In the model shown in Figure 7, the phases of "design" and "implementation" (defined by

ISO TC 184/SC5 [ISO 1993] as shown in Figure 3) are combined into only one phase,

namely: "design and implementation".

2. According to the ICEIMT [Petrie 1992a] legacy systems consist of any sub-systems or

components which needs to be considered in an integration initiative, for it is already in

place when the integration process is initiated. Once the integration initiative is completed
it becomes the legacy for future integration initiatives and so forth.

45

STRATEGY DEFINITION
is-placed i Enterprise

Business applies_to Environment

Analysis
13tisttss

..
Tº b Enterprise has Enterprise

Motes' identifies System Resources

equi impact mpri _o °V b Strategic
Domain

ýo is an abstraction of
CONCEPTUAL ANALY SI S

Enterprise
uses. System applies-to is_a Area

Analysis

Sysl descnbed-b Ent is a Business
lytodels identifies D omain Process

Suitäb1e a1_
cenan has Functional

Components

DESIGN AND IMPLEM NTATION ö

h Physical
Restüi system specifies Components

>ödeS>`< Build

described_b system ums Infrastructural
performs Solution Components

Integrauön Cenän consist E Modeas.:;::.; Realisation ° embrac Integrating ö
y -oý Elements

OPERATION AND MAI TEN ANC
has Operational

maint i Eanages Component Me

Run Tine
SbOf! erational uses Infrastructural

Mode ystem Services

Reference Models pom perfo rm Actions

Legend: I1 Main constructs 11 Scope

r7IMain Activity ® Deliverables Models

Figure 7- Model of an integrated manufacturing system life cycle

sä

d. Operation and maintenance. This meta-phase corresponds to the working life of

the installed system, including stages during which evolutionary changes to system

operation occur.

It is important to note that the model presented in Figure 7 seeks to identify key

requirements, processes and outputs at each life cycle phase, and relationships among

the constructs involved in each phase'. Therefore, neither flow nor definitive

procedural relationships (between constructs within a meta-phase or constructs of
different meta-phases) should be implied by Figure 7. The model does not intend to

prescriptively structure the way in which system designers move on from one life cycle

process to another (e. g. it should not be viewed as a `water fall' model).
Additionally, the model is not meant to be complete so as to cover all issues of

the IMS life cycle. It should rather be viewed as a vehicle for comprehending the key

aspects of interest in this research. In this respect, the following features are worth

noting.

a. Orientation of the model

The life cycle model is oriented towards addressing the mapping between

enterprise models created at different levels of abstraction, leading to the construction

and operation of a system whose components are integrated via an adequate
information technology infrastructure (as illustrated in Figure 1). This embodies the

need for mapping models which describe "how the system performs its task" with

models that describe "how the system should be organised" so that it achieves its

purpose through the inter-operation of its components. These tasks will typically
involve the functionality content of each component (i. e. those that realise the

component's own individual purpose) and tasks related to achieving a collective

purpose through coordinating the execution of functionality of groups of components
(i. e. business integration), thereby realising a required system behaviour2.

b. Structure of the model
It should observed that the model structure has a similar pattern in each life

cycle phase, i. e. this model has a fractal structure3. Such a structure reflects the essential

elements that the author believes should be present at each phase, regardless of their

1. The notation used in this diagram is based on Backmann's entity-relationship model (from

[Kay 1993]).

2. According to the ESPRIT/AMICE consortium [ESPRIT/AMICE 1993a], enterprise

behaviour "is concerned with the flow of control or the way processes and activities are

employed over time in reaction to events and according to the enterprise state".
3. A self-similar structure [Parunak 1985].

47

level of abstraction. Characteristic properties of the elements are described below (with

examples being given for the strategy definition meta-phase of Figure 7):

" languages and frameworks required to support the activities carried out in the meta-

phase (e. g. business analysis). This is the element to which the formalism proposed
by contemporary architectures (such as those described in Chapter 2 can be more

readily associated.

"a scope for the analysis (e. g. enterprise system);

" the principal classes of constructs which require manipulation at an appropriate
level of abstraction, this reflecting the granularity of information processed at each
meta-phase (e. g. enterprise environment, enterprise resources and strategic
domains;

" the deliverable of each meta-phase (e. g. identification of required improvements);

" the essential knowledge required to carry out the activities at each meta-phase (i. e.
reference models, e. g. business models). Although the term reference model is used
here, knowledge in the form of formal models should not be viewed as mandatory'.
Such knowledge could stem from the experience of designers or managers (i. e.
knowledge of `problems' and `solutions' and how they inter-relate).

" an indication of the main types of agents involved during the execution of activities
associated with each meta-phase (e. g. top-level managers for strategy definition).

The remainder of this chapter describes how parts of this IMS life-cycle model
(related specifically to the three last phases, namely: conceptual analysis, design and
implementation, operation and maintenance) can be populated via a combination of
architectures.

3.2. Research Methodology

To accomplish the identified research objectives, the methodology shown in

Figure 8 was proposed. This figure represents the major stages of the research and their

associated deliverables. Indeed, this thesis is structured so that it reflects the form in

which the stages depicted in its methodology have been executed.

3.2.1. Analysis of existing architectures

A starting point for this research was a thorough analysis of what reference

1. This type of formal knowledge can be obtained (for example) from some of the early

reference models (see Section 2.2.1).

4S

Broad Research Areas:

----------------- ------------------------------

Figure 8- Overall research methodology

architectures can offer to help cope with the complexity of enterprise integration. Two

results emerged from such an analysis: an identification of some of the most relevant

research projects on the definition of architectures for enterprise integration and a list

of desirable features that an architecture should posses [Aguiar 1993e].

Subsequently, the results were used as a basis of an analysis which concluded
(as discussed in Chapter 2) that:

49

a. there still exist considerable gaps in the formalisms of architectures, so that no

single architecture can provide the required support for all the issues involved in the
IMS life cycle, although CIM-OSA stands out as one of the most comprehensive;

b. an architecture resulting from a combination of the best features of a number of

outstanding architectures is desirable.

Furthermore, as Chapter 2 has shown, a number of modelling tools, design tools

and simulation tools (which originated from a variety of architectures) exist that can

address isolated aspects of the IMS life cycle. However, in spite of the efforts of a

number of research groups, no single initiative has provided comprehensive support to

the IMS life cycle, nor embraced a methodology and its associated architectural

concepts into a CASSE environment capable of supporting the modelling, analysis,

simulation, rapid-prototyping, configuration and operation of an IMS in an integrated

manner.
Although CIM-OSA provides a very comprehensive specification of a

framework which can be used to realise key aspects of that purpose, it does not yet

provide solutions for all of them. For example, current deficiencies are particularly
evident for its function, resource and organisation views at the design specification and
implementation description modelling levels [ESPRIT/AMICE 1993a]1, as discussed

in detail later in this thesis.

3.2.2. Selection of architectures
Thence, two sets of architectures were selected for such a combination (as

indicated in Figure 8). The first set comprises those architectures required to address the

need for a CASSE environment to realise support of a wider scope of the life cycle than

previously achieved; this by combining CIM-OSA [ESPRIT/AMICE 1993a],

generalised stochastic time Petri-nets [Juanole 1989], predicate-action Petri-nets

[Peterson 1981], object-oriented design methods [Booch 1991], and the services of the
CIM-BIOSYS infrastructure [Weston 1993]. The second set consists of additional

architectures candidates for integration that could be used to support other analysis and
design considerations, such as architectures for business analysis. Consideration of
these architectures is beyond the scope of this research.

The first selection of architectures provides means of overcoming primary
limitations encountered in the CIM-OSA architecture, namely:

1. The modelling levels of CIM-OSA (i. e. requirements definition, design specification and
implementation description) relate to two meta-phases of the life cycle, namely: "conceptual

analysis" and "design and implementation".

so

" Petri-nets and object-oriented design were adopted to populate design specification

and implementation description modelling levels of CIM-OSA, thus enabling

complete support for model-building;

" Petri-nets were also adopted as a means of enabling analysis and simulation;

" CIM-BIOSYS was the only integrating infrastructure available (at the time that this

research started) which could be enhanced in order to support model-enactment,
thus enabling rapid-prototyping of an IMS.

3.2.3. Model-building and model-enactment capabilities

This first selection of architectures is envisaged to be encapsulated into a
CASSE environment. Such an environment is necessary in order to enable the
investigation of a plethora of integration `problems' and possible `solutions', by

providing means of. (1) describing each problem and defining possible solutions
through the application of a formal language; and (2) testing the solutions. These

requirements lead, respectively, to the proposition of the two main capabilities for such

an environment, namely: a model-building capability and a model-enactment

capability' (as shown in Figure 8). Basically, each class of capability is required to

support more than one modelling level of CIM-OSA [ESPRIT/AMICE 1993a], in a

way which bridges gaps that exists within and between these modelling levels. Such

capabilities are required to enable graceful migration from a modelling description of
`what' the system should do, to a description of `how' the system should do it, by means

of the actions executed by its components. Indeed, an important contribution envisaged
for these two capabilities is that of defining a method for the organised application of
the architectures, where their amalgamation would be under the framework defined by

CIM-OSA.

Essentially, the method proposed would be based on the application of a model-
building capability to generate models which formalise a possible relationship between

problem and solution, which could then be made available to a model-enactment

capability in order to test the relationship (see Figure 9). The integrated use of these two

capabilities is the fundamental support provided by the CASSE environment that this

research is aiming to construct for encapsulating the formalism of the first selection of

architectures.
Figure 9 presents a proposed structure for the CASSE environment, which

provides an indication of the major functional elements that it should embrace. This

environment will be referred to in this thesis as SEW-OSA2, a "system engineering

1. Model-enactment is viewed in this research as the ability to let a model evolve over time (i. e.

the evolution of its dynamic behaviour).

51

workbench centred on CIM-OSA" due to its orientation, namely:

" it aims to address the engineering of an enterprise from a systems perspective;

" its underlying framework is structured chiefly on the formalism of CIM-OSA;

" it aims to provide the level of life-cycle support of a workbench. According to
Brathwaite, a "workbench" consists of integrated tools for automating the entire
design process, which encapsulates: the steps to be followed during the process
(method); the constructs to be created and manipulated in order to formalise the
design; the considerations, analyses and decisions to be made in each step; and
associated documentation of design activities.

--
Model_BuildingCagability

__ i-

System I SEW-OSA Other tools
modelling domain I CASE tool nd models I

1

L-- ---------- ---_;

ign
It ations Syst omponents

r' S Business Model ,"t"

/Model-Enactment Capabilit
r- ---- -- ---- ------ ---

Business Entity Presentation Entity

Integrating Infrastructure

.4 Interactions

-ý- Design and build flow

Figure 9- SEW-OSA: system engineering workbench for CIM-OSA

3.2.4. SEW-OSA and the life-cycle support
By constructing, populating and applying SEW-OSA, support will be provided

to enable the mappings required between phases of the IMS life cycle (see Figure 7):

2. The terms CASSE environment, workbench, environment, tool-set and SEW-OSA are used
interchangeably, henceforth in this thesis.

52

a. Mapping between "design and implementation" and "operation and mainte-

nance":

This mapping includes enabling system models to be enacted in such a way that

they structure and control the operation of a real (or physical) system. Here,

mapping is required between abstract models manipulated by the upstream

activities of the life cycle and the integration process and physical entities

employed in the real system
The realisation and application of the model-enactment capability is viewed by the

author as the way of reflecting the CIM-OSA formalism within the CIM-BIOSYS

integrating infrastructure. This was conceived as a means of using models to

structure and enable rapid-prototyping, configuration and operation of an IMS.

However, this hypothesis needs to fleshed out and tested and the extent to which it

could be useful also needs to be established.

b. Mapping between "conceptual analysis" and "design and implementation":

This embraces further mappings between life-cycle processes (i. e. life cycle models

and activities) to enable the specification of a physical solution based on an
identified set of requirements.

This mapping includes enabling a "test" of the properties and the quality of models

which describe a relationship between a "problem" and a "solution" (i. e. the

relationship between system requirements and a possible system configuration). It

is envisaged that such models should be "produced" by a model-building capability

and "tested" with the aid of a model-enactment capability, this by means of an
integrated support for modelling, analysis, simulation and rapid-prototyping. It is

also envisaged that use should be made of a library of reference models (i. e. system

models and resource models - see Figure 7) that could encapsulate knowledge of:
(a) user requirements in the form of CIM-OSA-based models and (b) alternative

system components modelled in an object-oriented language, thereby integrating

two complementary descriptions of the system: a business process view and a

object-oriented view.

c. Mapping between "strategy definition" and "conceptual analysisi':
As discussed in Chapter 2, very few architectures have considered mapping issues

1. An illustration of this mapping can be found in the "Hamburger Bun" model proposed by

Schofield and Bishop [Bishop 1989]. This model presents the business strategy issues as the

top half of the "bun"; the integration and systems issues (related to the remaining life cycle

phases) as the bottom half of the "bun"; and the meat of the "hamburger" as the chain of

activities which add value to the product.

53

between strategy definition processes and the remaining phases of the life cycle, in

such a way that business. issues can be formally reflected within system design

models.
The author's conception of the CASSE environment is that it should enable the
incorporation of future architectures that address such issues which might itself

include the second selection of architectures (see Figure 8).

Therefore, realising, applying and evaluating the environment shown in

Figure 9 constitutes the main focus for this research. Once completed, this

environment should support part the activities of the IMS life cycle from the conceptual

analysis phase onwards, by:

" providing a systems engineering workbench to support the design activities

encapsulated in the functions termed as `system analysis' and `system build' in

Figure 7;

" providing a structure for populating the workbench with reference models (e. g.
`system models', `resource models', `integration models' and `run-time models' -
see Figure 7);

" providing the means of executing `run-time models', thus enabling `flexible

operation' (see Figure 7);

" making available instances of models which are generated whilst applying of the

workbench in manufacturing case studies;

" providing a wide scope workbench upon which additional elements of formalism

could be incorporated into the life cycle in future research initiatives.

It should be emphasised that this research approach does not seek to produce
fully compliant CIM-OSA solutions, nor does it seek to definitively appraise existing

architectures. Rather the aim is to take a "thin" slice through the IMS life cycle by

building on a selection of formalisms which exists as a part of contemporary

architectures.

3.2.5. Realisation of SEW-OSA

It is envisaged that realising SEW-OSA by implementing, applying and

evaluating both the model-building capability and the model-enactment capability as
depicted in Figure 9 would involve the following activities (discussed in forthcoming

chapters), namely:

54

a. Realisation of the model-building capability, by:

" realising a CASE' tool that encapsulates the formalisms of architectures into a

method which enables its application to IMS modelling; and

" establishing links to other tools and models which have been created within the
"Model-Driven CIM" research programme which address design aspects

complementary to those addressed by SEW-OSA, namely: information and

resource modelling (see Appendix 2 for an overview of "Model-Driven CIM").

b. Realisation of the model-enactment capability, by:

" establishing means of linking the SEW-OSA CASE tool to tools that enable

analysis and simulation of the behavioural aspects of the system based on the use of

a business model generated by the CASE tool;

" realising a business entity which functions as an engine that transforms the
formalism encapsulated in the business model-into interactions among system

components; and

" specifying a presentation entity for CIM-BIOSYS which can serve as a means of

relating the interactions generated by the business entity to the functionality

provided by the physical components of the system.

c. Application and evaluation of the model-building and model-enactment
capabilities, by:

" developing a case study application of SEW-OSA in an industrial site; and

" evaluating the results obtained.

These activities constitute the principal elements of work proposed to be

performed as part of this research plan.

3.3. Structure for the Research Decisions Made

An initial challenge faced by this research was to delineate a focus for the

research work as the scope depicted in Figure 10 is very wide indeed (see first stage in

the methodology depicted in Figure 8), particular in the context of a Ph. D.

In achieving that delineation, a series of decisions had to be made to constrain

the research without invalidating its conclusions. Figure 11 reflects the way in which

1. In this thesis the term "CASE (Computer Aided Software Engineering) tool" is used to
designate a tool which supports model-building and code-generation, as opposed to
"CASSE environment" which designates a set of tools which provide complete support for

the IMS life cycle activities of interest.

55

Figure 10 - Research focus

the scope of this research' was narrowed down from the broad areas represented in
Figure 10. Each node in this structure embodies a decision based upon an assumed
rationale. Corresponding to each course of action taken, a number of alternative
approaches were identified (as discussed below). By so doing, it is fully recognised that
this research plan represents but one approach to establishing new methods and
knowledge in the research areas involved.

The focus on manufacturing enterprises also reflects the scope of contemporary
reference architectures. Although other types of enterprises were not directly addressed
in this research, it is a thrust of most architectures that their concepts can be extended
to various types of enterprises.

The focus on IT stems from the orientation of the research within the MSI
Research Institute during the period of this thesis, with particular emphasis to the
"Model-Driven CIM" project. Alternative approaches could have focused on
organisational and human-related aspects of the enterprise engineering process.

Following from the IT focus comes an emphasis on applying a `hard-systems'

1. The "Workbench Development" box is represented in "bold" in this figure as it is considered
in more detail later in the thesis.

56

Rationale Thread of Decisions Alternatives

Research
to

application to
enterprise integratioarchitecturesn Areas

orientation of architectures
........

Manufacturing Other t ss of Enterprise enterprises

MSI orientation Focus on Other Focuses (e. g.
IT organisational perspective)

Super
fication

deal with complexity
....... ij.

`Hard-sostems'
`Soft-Approachsystems'

Approach

Need for `Ad-hoc' approaches
Formalism (e. g. consultancy)

formalism of interest
.......

Conceptual Analysisl Other life cycle scopes 1t 1 Onwards Iý

use of computer-aided
_-__-, _11.

A Model-Driven Other levels of automation
engineering tools Approach (e. g. check-list)

broad view of life cycle Unified Federated and Master
Model Models

comprehensiveness Selection of Alternative Architectures
documentation, etc: "..... Architectures

core of model-enactment Behaviour and Other aspects (e. g. information)
and business integration""----'' Interaction Other levels (e. g. application)

means to achieving a Workbench Other approaches (e. g. tool
`living' framework '"------ 1`Development usage, theoretical research, etc.)

collaborators priority and
, _. 411 Application to a Other application areas

domain adequacy'""" Shop-floor Process (e. g. product introduction)

Figure 11 - Structure for the research decisions made

57

approach' as supposed to a `soft-systems'2 one. As this research aims to cover much of
the IMS life cycle (leading to the definition of a configuration for the IMS), a

reductionist view of the problem (inherent in the `hard-systems' approach) is crucial.
However, this does not imply that a `soft-systems' approach cannot be used in

combination with the `hard-systems' one, in order to support the complete IMS life

cycle. In fact, Weaver, [Weaver 1994] advocates that

"the output from [a] soft-systems phase applied to the higher

levels of a process [can be (i. e. Figure 1. c)] used as the input to

the hard-systems phase at lower levels of detail [i. e. Figure 1. b].

The two approaches can therefore be regard as
`complementary' and form part of a single business process re-

engineering methodology".

The need for formalism to structure and support the IMS life-cycle process is a

prime driving factor for employing modelling technology as a means of coping with the
inherent complexity of enterprise integration. Alternative approaches can be

encountered in `ad-hoc' procedures traditionally employed by systems integrators and

consulting businesses, with occasional use of modelling methods (e. g. CIM-Plan

[Hales 1989] [Hales 1990)).
Focusing the study on the `conceptual analysis' processes onwards (rather than

attempting to cover the complete life cycle) was a necessary measure to reduce
complexity, whilst addressing key aspects of the enterprise engineering process.
However, other aspects of formalism could have been addressed.

Formalism in the form of a life-cycle-wide model-driven `approach would
establish a facility for enterprise engineering, which could be encapsulated into a
CASSE environment. However, varying degrees of formalism can be adopted and
introduced in a computer-aided manner. For example, formalism could be introduced

as a checklist of issues to be considered during engineering processes, such as that used

1. According to Trought (from [Weaver 1994]), the 'hard systems' approach "... assumes that

within the system there is access to all the relevant data, [that data] is also accurate, and that

all alternatives [...] choice and consequences are unambiguous".
2. According to Weaver [Weaver 1994], a 'soft systems' approach "starts from the perspective

that the problem situation or process is ill-defined and the process is stochastic in nature. It

would then attempt to create [a] "rich" picture of the problem situation and the systems
involved [... which] would then be compared with reality. Feasible and democratic changes

would be agreed upon through a debate and the changes implemented. " In such a process,
[...] properties that are only a result of interactions between all elements in a process

(emergent properties) can be considered more easily".

5s

by OPENframework [ICL/OFD 1993].
Within the context of a model-driven approach, a unified model was selected

(see recommendations of the Enterprise Integration Program mentioned in Chapter 2

[Petrie 1992a]). This consists of adopting a homogeneous set of languages to support

modelling activities along the complete IMS life cycle. Such an approach presents the

advantage of enabling the description of a broad view of the life cycle, and the
disadvantage of constraining modelling to the application of only a set of languages.

Alternative models are [Petrie 1992a]: the master model and the federated model.
A selection of architectures was necessary to establish a basis of formalism

upon which the life cycle activities could be fleshed out. The rationale for the definition

of such a selection is based on the survey of existing architectures presented in

Chapter 2, whereby issues of comprehensiveness and documentation among others

played a major role (see early studies by the author [Aguiar 1992d] [Aguiar 1993e]

[Aguiar 1993c] [Aguiar 1994m]). However, an alternative selection of architectures

could have been adopted as a starting point.
From the set of modelling viewsI provided by the selected architectures (which

can be related to function, information, structure, organisation and behaviour),
functional, resource and behavioural aspects were selected as views of particular
interest. This is chiefly due to the fact that these views play a central role in achieving
model-enactment, as well as in driving the dynamic interactions among system
components (i. e. "engineering" the relationships in Figure 1). This selection is also
associated with the level of integration that this research is interested in addressing,
namely: business integration, as supposed to application integration or physical
integration (see Figure 2).

The development of SEW-OSA as a CASSE environment for bringing together
the formalisms of architectures into a usable piece of software is viewed as being
fundamental in constructing a ̀ living' framework (i. e. a structure to which functionality

can be fleshed out as the formalism evolves or grows). Alternative approaches could be

to use available tools regardless of their limitations and fill the gaps with `patchy'

software fragments and paper-based models.
As the SEW-OSA workbench was conceived and advanced, its use was

appraised by conducting studies concerned with re-engineering issues connected with
shop-floor process. This application area was selected by considering mainly: the
interest of the collaborating company which provided the case-study information, as
well as the fact that it provided application scenarios which could utilise and test the

1. According to the ESPRIT/AMICE consortium [ESPRIT/AMICE 1993a], a modelling view
is "an abstraction viewpoint of one total view, which emphasises some particular aspects of

the model and disregards others for ease of analysis".

59

functionality of the workbench (i. e. its model-building and model-enactment
capabilities).

3.4. Concluding Remarks

Even after being limited by the constraints delineated in the previous section,
the research objectives proposed in this chapter are still fairly ambitious. Thence, it is
important to emphasise that the research activities proposed to be performed are
founded upon two complementary foundations: (1) a thorough study of the formalism

associated with the three latter phases of the life cycle and (2) a significant involvement
in systems integration threads by the author'.

These two factors combined (i. e. experience and formalism) can enable the
development of the research program outlined in this chapter within its limited time-

span (i. e. three years).

1. Such an experience embraces activities, such as: analysis of requirements of manufacturing

systems, specification of solutions in terms of integrated computer systems to address those

requirements and the development, implementation and integration of hardware and

software components in those systems for a number of manufacturing industries in Brazil.

60

Chapter 4- First Selection of Architectures and
Associated Tools and Services

This chapter introduces the first selection of architectures and presents a
description of their associated tools and services used to realise the research plan

proposed in Chapter 3. It also describes the strategy adopted for the realisation of SEW
ÖSA by combining these tools and services under the umbrella of the CIM-OSA

architecture.

4.1. CIM-OSA

Figure 12 depicts the two main deliverables of the CIM-OSA/AMICE

consortium, namely: a modelling framework and an integrating infrastructure. This

section briefly describes CIM-OSA and the state-of-the-art in regard to each of its two

main deliverables, based on the information supplied in its formal reference base

(FRB)' [ESPRIT/AMICE 1993a].

4.1.1. The CIM-OSA modelling framework

The CIM-OSA modelling framework embraces definitions of the complete

cube of Figure 12. It provides a framework for the definition of a CIM-OSA compliant
architecture for a particular enterprise, based on instantiations of the CIM-OSA

reference architecture (i. e. generic and partial genericity levels of the cube in

Figure 12). The three dimensions of the cube describe the modelling process as

envisaged in CIM-OSA. Progression along these three dimensions is achieved in a

manner which is referred to as: stepwise generation, stepwise derivation and stepwise
instantiation.

a. Stepwise generation:
Stepwise generation defines the modelling aspects (or views). It embraces a

description of function, information, resource and organisation. Function view

provides a hierarchically structured description of the functions of an enterprise, their
behaviour (dynamic aspects) and their functional content (static aspects), based on the

objectives of the enterprise and reflecting external constraints imposed upon it (in the
form of relevant inputs and outputs). Information view encompasses the description

of all pieces of data and knowledge identified from the needs of enterprise users and
applications. Resource view contains all relevant information on enterprise resources

1. An FRB is the most detailed documentation available about CIM-OSA. Its circulation was

initially limited to the members of the ESPRIT/AMICE consortium.

61

Human Front-End Socket
Machine Front-End Socket

Application Front-End Socket
Database Front-End Socket

Presentation Enti
System Management En.

Business Process Eni
0

Information Enti
Common Services Entity

V

v
organisation

3 resource
v

.ý informa
cn v function

ö0 requirements
04 > definition

design
specification

ä'g implementation
description

U

C c3
Ü

PL4

Stepwise Instantiation
(genericity levels)

Figure 12 - CIM-OSA reference architecture

integrating

infrastructure

required to support the execution of enterprise functions. Organisation view holds the
definition and identification of responsibilities and authority over functions and
resources within an enterprise, for the sake of human intervention and decision making
in situations where changes in requirements or exception handling are required.

b. Stepwise derivation:
Stepwise derivation is a life cycle view of the modelling process, structured

within various modelling levels. Derivation embraces the definition of three modelling
levels, namely: requirements definition, design specification and implementation
description, which imply a translation from a business description language into a
system description one.

At the requirements definition modelling level the business requirements of
an enterprise are identified. This modelling level describes the enterprise from a user's
point of view.

models

At the design specification modelling level the user requirements are

restructured, detailed and optimised based on a consistent model which simultaneously
takes into account business and technical constraints, in order to specify solutions for

those requirements.
At the implementation description modelling level means of executing the

enterprise model are defined by selecting information technology and manufacturing
technology components such as human resources, machines and application programst
required to support enterprise operation.

c. Stepwise instantiation:
Stepwise instantiation is related to the genericity levels, namely: generic,

partial and particular. The first two levels (i. e. generic and partial levels) constitute the
CIM-OSA reference architecture.

At the generic level, the CIM-OSA modelling constructs2 presented in Table 13

comprise its modelling language. It should be noted with respect to this table that

controversy still exists within the AMICE consortium as to whether the same constructs
manipulated in distinct modelling levels (sometimes in different ways) should be

named differently. In this table, the renaming process was adopted as a means of listing

the main constructs of interest at each modelling level (e. g. event, specified event and
implemented event). However, in this thesis, no distinction is made between these

constructs across modelling levels.

At the partial level, partial instantiations of these generic constructs and/or
combinations of constructs are used to describe modelling scenarios common to certain
types of enterprises (e. g. partial models of shop-floor in the aerospace industry).

However, it is at the particular level that an architecture is defined which is

suitable for a particular enterprise and is instantiated from the reference architecture.
Relationships among these levels are illustrated by Figure 13. In this figure, three levels

of genericity are associated with an enterprise activity and its related inputs and outputs.

4.1.2. The CIM-OSA modelling methodology

The following provides a description of the main elements of the modelling

methodology associated with the definition of a particular architecture (see Figure 12).

1. The terms application programs, software applications, application functional entities and

active resource components representing software applications are used interchangeably

through this thesis.
2. A construct is a generic building block which characterises an element of formalism for a

modelling method or language.

3. Definition of some of the terms listed in this table are presented later in this thesis, being a
detailed discussion of their meaning presented in [ESPRIT/AMICE 1993a].

63

O
c6

c

"j g 22 =: e0
G

`ý
=VE

"LL

U Gý
O+ V= ccg

. -
C) rJ

E2
G
E2 =

O
'"eý vc Cc-, eU

0
CO

C 'eÖ "m ß. 0

r= r=
m

_
6) = 3 "m

00C
tr

2 2 2
t "L

rJ w C 6ý 'C ý J 0 0 v Q :e
o E

E
C Ju

EEEEEE E
i

ý'', E E E c
t EE oc

a a,
eý vv

n. äaäää cý ä E3
c >, q

C)
a

C) ä C ä p
j

wo .:
p

aäa
111 E EEEEEE E coä S E E WEEEE

c ýý a
s

r U V ö
y

40
"ý týi

a *a 12 iz 9
"Z u C

.2Q
S >gc s .1 AP 0000

A ä
D dC C7 .O

ý bb
j
_

L 7a
`:

p0
2:. 9C ý 8

=
cn

` 1 `A y e
*M -0

G,

bo. 2 c i c _ ý
0

eýUceýý
ceýý
aU a

K
OC' C

C v
ýp
y , :C=M0

ý0
'ý"D

ý0 ý"0
a G4 C1

yr w vn vi U) vi u Udä cC -9 rJ 2
_ A OOOOr.

C y

C c

r C. ° Ei , ei i>O
- 40 58gmO ý y

.' V

-Co
O ^ý Ö

3"
Ö ö

u ö
0

ý 2
'ý

v
c
c3

cCy 'c
,> "C3 CC E" Ü9

7"
3) _

"

U
Ü

., C c4 'C,
&Ü C1 2 _>

O
"a tE

7

to -1
"ýi
C

4 t) u0 g)
n O O 5 Cl.

"c 10
O> 07C .a t)

"c o Ti ". 0 CJ o "0 ým aU
Z
O . c c.

c) oo.. »
C. O

... OU
O
v

+- 0

v,

c
0 O

O
3

l

c ý v
"

c o ý c

ila
c w O

H
U

C
O
U

Q

U

a)
.ä
E21

64

function view
--------------------------------- --------------------

object view - contro event

ect view -mu enterprise activity ot view - out u

urc ca abilit generic level

--

N Program PCB Assembled

Bare Board
Populate PCB Assembled

m nen

abilit to Assemb partial level

--------------------------------- -------------------

NC Proram S A3 A303 Assembled

Bare Board A
Populate PCB A303 Assemb ed BA

om onents ee A

to Assemble A3 particular level '

L---

Figure 13 - Relationships amongst genericity levels - enterprise activity example

a. Function view
The requirements definition modelling level in the function view is the most

complete and detailed in CIM-OSA. It describes the functional, behavioural and

structural aspects of an enterprise, by means of two levels of description [Kosanke

1992], namely: enterprise level and process level.

At the enterprise level, an enterprise is modelled as a set of loosely coupled

processes sharing common enterprise objects. Objects communicate with one another
by exchanging object views and events, as illustrated in Figure 14 [Kosanke 1992]. A

domain represents an area of the enterprise which can either be CIM-OSA-compliant

or non-compliant. A CIM-OSA-compliant domain possesses an internal structure

65

Figure 14 - Enterprise level

DM - Domain

OP " Domain Process

modelled by means of domain processes. A non-CIM-OSA-compliant domain can
represent sub-systems of the enterprise which are not going to be modelled by CIM-
OSA, although they may have to interact with CIM-OSA-compliant domains. Typical

non-CIM-OSA-compliant domains are legacy systems or ancient applications requiring
interaction with other domains, but whose internal organisation is not germane to the
integration process.

At the process level, the structure, behaviour and functionality of domain

processes belonging to CIM-OSA-compliant domains are completely defined. As
illustrated in Figure 15 [Kosanke 1992], the structure of a domain process is defined in

terms of its decomposition into business processes and enterprise activities'. Enterprise

I. In this thesis, the term process (when referring to a modelling constnsct) is used as a
generalisation of business process and domain process. The term function or enterprise
function (when referring to a modelling constnz t) is used as a generalisation of business

process and enterprise activity.

66

activities represent pure functionality (i. e. atomic functions capable of performing
transformation), namely: acting upon its inputs in order to produce desired outputs.
Business processes (and domain processes) capture behaviour; that is, the manner by
which the processes use their component processes and activities, in order to describe
their functional content by means of procedural rules (i. e. relationships of the type
"precedes").

BP

'1
de

`\'%_

ý1001

;, = Event t
Rasub

DP - Domain Process
BP - 8us4ýat Process
EA - Enterprise AcUrity

_Pl PR't - Procedural Rules

PR's Control
evert 1

result a Fund. - ý; Fund.

x2 r»Ab
Resource

Figure 15 - Process level at the requirements definition modelling level

Basically, domain processes are high-level processes of an enterprise which
cluster lower level processes and functions. They provide the most abstract
representation of a domain (i. e. they are at the top of its functional decomposition).
Domain processes are triggered by events and they are not recursive. Business

processes are used by domain processes which, in turn could use other business

processes or enterprise activities. Business processes and enterprise activities are of a
recursive nature. That is, they are considered to form a pool of functions which are
typically reused by different domain processes and business processes within and
without the same model.

The result of such a recursive decomposition is a network of enterprise activities
(i. e. transformation functions) connected by procedural rules (see Figure 15). Using

67

CIM-OSA terminology, this network is referred to as the business model.
At the design specification modelling level, the function view checks the

requirements definition model for consistency and redundancy, leading to the definition

of the `specified' constructs shown in Table 1). This view also defines functional

operations which are atomic units of work performed by the resources that the
enterprise activities utilise (in order to perform their functional transformations). These
functional transformations are described in terms of the internal behaviour of enterprise
activities when triggering their functional operations (see Figure 16).

At this level, a number of solutions are examined in terms of alternative
resources which can provide the functionality required by the enterprise activities, by

taking into account time and synchronisation issues, resource requirements and overall
system performance considerations. Although, CIM-OSA specifies the content of

rauft a

went 2 result b

EA .

rw b

teun b

FO - Functk" Opecatbns

Funcdonal Op«aöons

g IEM ®®B7®
0xx
Mx

xx
FE - Functional Entity

Figure 16 - Process level at the design specification modelling level

68

activities of this modelling level, it does not define how these activities should be

performed.
At the implementation description modelling level a description of how the

system will be configured and how it will work is detailed. Run-time information

related to the execution of the business model associated with this system must be

defined as must an executable form of functional operations (e. g. code for application

programs, scripts' for machines and code for human interfaces and database

transactions). Although there has been some research effort focused on populating this

modelling level [Hou 1993] [ESPRIT/AMICE 1993b], no consensus has yet been

reached within the CIM-OSA community as to how it should be implemented.

b. Information view
At the requirements definition modelling level, the information view

structures the inputs and outputs of enterprise activities and any additional information

items relevant to the system into classes (i. e. object views). It also creates an object-

oriented model to formalize high level semantic associations with that information. The

language to create such a model is based on constructs such as: enterprise objects,

object views (of an enterprise object), object relationships, information elements and
integrity rules (see Table 1).

At the design specification modelling level, the information view structures all

system information (based on the semantic data model defined at the previous

modelling level), this by using an entity-relationship-attribute (ERA) language (for the
description of the conceptual schema and of its external schemata). Database

transactions are described as operations performed on the conceptual schema to realise
data manipulation (i. e. they are concerned with the dynamics of data). Database

transactions can also be viewed as functional operations which are defined within the
information view but are used by the function view.

At the implementation description modelling level, the information view

utilises the relational data model to describe the internal schemata. This is done through

two successive schema derivation processes: the first resulting in the logical data model

and the second to produce an executable version of the data structure of the internal

schema. Moreover, implementation descriptions of the external schemata are provided

using a SQL-like data language. Final implementation of the data stores can use any

commercially available data model (e. g. flat files, relational models, hierarchical

structures and network models).

1. Scripts for machines consist of 'macros' which aggregate the commands (which a machine
is able to execute) into a functional operation that the related enterprise activity is able to

manipulate. A more detailed discussion of scripts is presented later in the thesis.

69

c. Resource view
The resource view is empty at the requirements definition modelling level.

However, requirements in terms of capability to be provided by the resources which

support business processes and enterprise activities are defined at this level within the
function view (see Table 1).

At the design specification modelling level, the resource view focuses on

providing a detailed specification of resources. Here, the notion is to allow alternative

solutions to be tested in respect to their expected capability, by means of simulation.
The main construct at this level is the resource which can appear as the following:

resource component, functional entity, resource cell and resource set. The precise use

of these constructs for resource component specification has yet to be defined by CIM-

OSA, although work in this direction is under development elsewhere [Naeger 1993] 1.

At the implementation description modelling level, the resource view

provides run-time information which describes the distribution of resources required to

execute enterprise activities and business processes. However, CIM-OSA has yet to

prescribe how such a definition can be realised.

d. Organisation view
At the requirements definition modelling level, the organisation view defines

requirements for the definition of an organisational structure for the enterprise, based

on organisational guidelines (i. e. objectives and constraints).
At the design specification modelling level, the organisation view assigns tasks

related to responsibility and authority to entities of the organisation view (e. g. people,
departments, divisions, etc.). Subsequently, this view defines an organisational

structure for the enterprise through establishing relationships among its entities. The

main constructs manipulated at this level are organisational elements (e. g. people),

organisational units, organisational cells (e. g. groupings of people) and organisational

relationships (i. e. relationships in terms of authority and responsibility).
The implementation description modelling level of the organisation view has

yet to be defined in CIM-OSA, although the constructs shown in Table 1 are envisaged.

An illustration of the relationships among some of the constructs manipulated
in the four views, across the genericity levels, is shown in Figure 17. this example

corresponds to a case study developed at Fiat [Naccari 1994] by the AMICE

consortium.

1. Definitions for these constructs and the manner in which they were used in SEW-OSA are

discussed later in this thesis.

70

U
U

I)

U
V

Üü

0

I

0u

I

4.0

v

I

8
(,
Ej

aý v

aý
QC
ü
v

u

N

u

00
0
9
N

0
*13
ca

. -r
u a

U

R:

71

4.1.3. The CIM-OSA integrating infrastructure

The models created within the context of the CIM-OSA modelling framework

capture information specific to a particular enterprise or type of enterprise. However,
CIM-OSA argues that certain functions are generic to any enterprise. Thus, the
integrating infrastructure (IIS) of CIM-OSA is proposed as a layer of software which

aggregates all the IT services and features that are common to all enterprises. As

pictorially represented in Figure 12, the HS is meant to operate as a mechanism for

dealing with integration issues associated with an enterprise system (which are

captured in models) and reusable, open-ended system components supplied by the

market on an `off-the-shelf' basis.

The US is functionally represented as being composed of five separate, but
interacting entities, namely: a business entity, an information entity, a presentation
entity, a common services entity and a system management entity. These entities are
implemented upon an IT infrastructure of programming environments, operating
systems, networks, hardware platforms, etc.

The business entity includes functions required to control the enterprise
operation as described in its business model (i. e. function, resource and organisation
models). This entity plays a key role in enabling business integration as represented in
Figure 2.

The information entity comprises of generic functions for data access, data
integration and data manipulation, as defined by the information model. Hence, it

provides support to the levels of business, application and physical integration (as
depicted in Figure 2).

The presentation entity provides means of integrating enterprise components
(including legacy components), thereby helping support the levels of application
integration. This entity maps the CIM-OSA internal protocol into protocols that are
understood by enterprise components (e. g. proprietary machine commands). This

provides the remaining entities of the CIM-OSA US with a uniform means of
interacting with heterogeneous system components. Such a mapping is defined based

on the models manipulated by the function and resource views.
The common services entity, as implied by its name, provides common

services to the remaining entities. Basically, these services provide an adequate level of
distribution transparency (e. g. message passing amongst the several instances of
entities, this in a way which is independent of the IT infrastructure upon which the ITS
is implemented). This entity helps support application and physical integration (see
Figure 2).

The system management entity offers generic facilities to configure, set up,
maintain and monitor the IT components of the enterprise.

72

In simple terms, the IIS operation can be explained as follows. The business

entity is an engine which executes the business model. As part of model execution,

procedural rules of domain processes and related business processes are executed, as is

the internal behaviour of enterprise activities. On executing their internal behaviour,

enterprise activities request the execution of functional operations. Functional

operations are either related to the functionality of resource components or to data-

transactions. In the former case, the execution of functional operations is performed

through interactions with system components governed by the presentation entity,
based on the business model (i. e. models of function and resource views). In the latter

case, data access is obtained via the information entity, based on the information model.
The ability to perform these interactions amongst the IIS entities and system

components across a distributed system (this regardless of the details of distribution) is

enabled by the common services entity.

4.1.4. CIM-OSA environments
CIM-OSA foresees the need for two environments to support enterprise

engineering and operation, respectively: the integrated enterprise engineering

environment (IEEE) and the integrated operation environment (IEO). The IEEE is

where the models supported by the modelling framework are created and tested (i. e. the

cube in Figure 12). Within this environment a complete enterprise solution is derived
in terms of. (1) the definition of integration issues captured in a variety of models and
(2) the specification of components to accomplish the enterprise functions. Once a
complete solution is obtained, it is made available to the IEO and put to work upon the
IIS.

The actual implementation of the final system comprises of:

" purchasing or developing the required resource components organised in such a

way as to comply with the IIS `modus operandi';

" configuring the system by plugging in its components and the resulting models in

their appropriate "sockets" (as illustrated in Figure 12);

" deploying the system for operation.

At the end of the modelling process, it is envisaged by CIM-OSA that the

system is structured in such a way that its functionality (i. e. what the system actually
does) is made independent of related integration issues. Referring back to Figure 1, this

means that the system components encapsulate all the functionality of the system

whereas the inter-relationships among system components is captured by models.

73

4.1.5. Some of the limitations and deficiencies in CIM-OSA

Although CIM-OSA provides a very comprehensive specification for the major

aspects that ought to be considered in enterprise modelling, it does not provide

solutions for all these aspects. This is particularly the case for function, resource and

organisation views at the design specification and implementation description

modelling levels and for the integrating infrastructure (see Figure 12).
Additionally, although there are various on-going initiatives (e. g. [Katzy 1994]

[Siemens 1994] [ESPRIT/VOICE 1992] [ESPRIT/VOICE 1993] [FIAT 1994a] [FIAT

1994b] [Naccari 1994] [Bruno 1994] [Didic 1992] [Didic 1993]), CIM-OSA has yet to

provide an organised method which implements all (or most of) its constructs into

wide-scope CASE tools. Wide-scope CASE tools should support a gradual progression

of the design process across its modelling levels leading to the generation of a system

running upon an integrating infrastructure.

Some of the limitations of CIM-OSA are discussed in the following sub-

sections, this as a means of introducing the tools discussed in the remainder of this

chapter'.

a. Lack of an organised method:
The derivation process provides the underlying structure for the definition of a

method. However, such a structure does not reach a level of completeness at which

gradual progression from requirements definition to physical specification can be

achieved. This is evident and is an open issue pointed out in the specifications of CIM-

OSA (i. e. [ESPRIT/AMICE 1993a] formal reference base BO-4100 v. 5.0 p. 1-27):

"A clear definition [of links] between requirements level and
design level is difficult to establish precisely and is still to be

stated [in] CIM-OSA. How complete a requirements definition

model should be in terms of functionality is still an open

question. "

b. Gaps in the modelling levels:

Although the modelling framework of CIM-OSA defines what should be
included in each view at each modelling level (i. e. constructs to be manipulated), it does

not define how certain tasks are to be performed, in terms of a formal design method.

1. Further observations about limitations and deficiencies of the CIM-OSA architecture were

analysed by the author in separate documents [Aguiar 1992a] [Aguiar 1992e] [Aguiar

1993a].

74

This deficiency is recognised by the AMICE consortium when they state that
([ESPRIT/AMICE 1993a] formal reference base BO-4300 v. 5.0 p. 1-31)

"The exact content of an implementation description model has

not yet been fully defined. "

Additionally, the form by which the design specification modelling level is to
be populated is also under investigation, as confirmed in ([ESPRIT/AMICE 1993a]

formal reference base B0-4200 v. 5.0 p. 1-29):

"No common agreement has been reached in the project as to
whether there are several design specification models at this
modelling level or just one. "

In this context, the status of CIM-OSA, in terms of methods and tools to support
the design process, can be illustrated in the following statement ([ESPRIT/AMICE

1993a] formal reference base B0-4200 v. 5.0 p. 1-29):

"The use of formal techniques and formal languages to support

computer processing of design specification models is under
investigation. The use of Petri-nets to analyse model behaviour

and predict system performance is also being investigated. "

In regard to the exact nature of the constructs to be manipulated at this modelling level,
([ESPRIT/AMICE 1993a] formal reference base B 12-1300 v. 3.0 p. 10-6):

"CIM-OSA defines an instantiated version of the requirements
definition model constructs at the design specification model
(e. g. specified domain process, specified business process, etc.).
However, `the added value between requirements definition and
design specification constructs are to be demonstrated [...] and
redundant constructs are expected to be deleted. "

c. Mapping between "design and implementation" and "operation and
maintenance":

As stated in previous chapters, enabling such a mapping represents one of the

most important objectives of this research. The need for such a mapping is stated by the
AMICE consortium in the following statement ([ESPRIT/AMICE 1993a] - Formal

Reference Base BO-4300 v. 5.0 p. 1-31):

75

"How [the] CIM-OSA integrating infrastructure uses the
implementation description model contents remains to be

defined in detail. "

In summary, the usability of CIM-OSA depends upon the availability of tools
for model-building (and code generation) across its three modelling levels, as well as

of services for the execution of such code across an integrating infrastructure. Neither

tools, services nor infrastructure were available at the time that this research started.
SEW-OSA is viewed by the author as the means by which tools, services and

infrastructure can be put together in order to overcome some of the limitations of CIM-

OSA. Therefore, as discussed in Chapter 3, this research selected the following tools

and technologies for the realisation of SEW-OSA:

" CASE technology in the form of a meta CASE tools for building tailored CASE

tools which amalgamate the architectures selected;

" the functionality of the CIM-BIOSYS integrating infrastructure to provide part of
the functionality envisaged at the level of application integration (as depicted in
Figure 2);

" Petri-nets as a formal basis to support modelling the behavioural aspect within
function view at the design specification and implementation description modelling
levels of CIM-OSA;

" object-oriented design methods to support the description of interactions among
system components in the function view at the design specification and
implementation description modelling levels of CIM-OSA;

" an IDEFO-based functional modelling tool to organise the functional aspects of the

case study data whilst the SEW-OSA CASE tool was being development (see
discussion later in this thesis).

The proprietary tools and services selected and used in this research to support
this activity included: CASE tool technology supplied in the form of the IPSYS-

ToolBuilder meta CASE tool, the BuilderXcessory interface generator for developing

software applications running in the X-Windows/Motif programming environment, the
ARP (an analysis and simulation tool for Petri-nets) and the Design/IDEF modelling
tool. A detailed explanation of the decisions related to the selection of these tools and

services is presented later in this chapter. Following is a brief description of the primary
features of the proprietary tools and technologies selected.

76

4.2. CASE Tools

Two CASE tools have been used to support the realisation of SEW-OSA, the
ToolBuilder meta-CASE tool and the BuilderXcessory interface generator. Details

about BuilderXcessory are included in the Appendix 3, whilst the meta-CASE is briefly

discussed as follows.

A meta CASE tool facilitates the process of capturing and formalising part of

the design process in software tools, by providing a highly reconfigurable CASE tool

environment used to develop other CASE tools [Endres 1991]. Based on an evaluation

of currently available meta CASE tool products (conducted by I. S. Murgatroyd),

ToolBuilder [Alderson 19911 was selected as the most suitable for the purpose of

encapsulating the formalism of the selected architecturesl.
ToolBuilder is comprised of the building blocks shown in Figure 18. A CASE

tool is built using ToolBuilder by defining data associated with each of those building

blocks. At the heart of a CASE tool so built is the CASE Tool Structure, formalised in

a Backmann diagram (from [Kay 1993])2. This structure defines the main constructs to
be manipulated in the model and the relationships among them. An entity in the
Backmann diagram can represent a CASE tool diagram, an object manipulated in a
diagram or in a hyper-text template, any of which can represent the CIM-OSA

constructs shown in Table 1. Relationships define how entities are related to one

another (i. e. how they are inter-linked or how navigations can be performed between

them).

Figure 18 - IPSYS-ToolBuilder meta-CASE tool

Based on such a structure, the descriptions of each construct or diagram are

1. This evaluation also considered a comparison (recently updated [Howard 1994]) performed
by an independent consultant which appointed ToolBuilder as the best meta-CASE tool in

the market
2. A Backmann diagram represents entity types and relationships of ownership among them

(of the type used to define the IMS life cycle in Figure 7).

77

fleshed out, so that the CASE Tool Code can be generated in a structured manner. A

detailed description of each of the remaining modules depicted in Figure 18 is

presented in the Appendix 3.

A CASE tool to amalgamate the selected architectures can be built by

populating the elements of the meta-CASE tool shown Figure 18 with constructs

extracted from the architectures. That is, the methods embodied in the architectures

need to be formally described within the meta-CASE tool. Further information on how

such a formalisation process occurs can be obtained from the appropriate ToolBuilder

manuals [Ipsys 1992a] [Ipsys 1992b] [Ipsys 1992c] [Ipsys 1992d] [Ipsys 1992e] [Ipsys

1992f] [Ipsys 1992g].

4.3. The CIM-BIOSYS Integrating Infrastructures

The implementation of the environment depicted in Figure 9 has its basis on
CIM-BIOSYS (CIM Building Integrated Open SYStems), an integrating infrastructure

developed by the MSI Research Institute, which provides means of building integrated

manufacturing systems.
Basically, the CIM-BIOSYS infrastructure was selected to overcome the

unavailability of an integrating infrastructure for CIM-OSA, as: (1) it provides a

minimum level of distribution transparency required for concentrating the research on

the issues of business integration; and (2) it already implements part of the functionality

of some of the entities of the CIM-OSA integrating infrastructure.

4.3.1. Distribution transparency
Brenner [Brenner 1993] defines seven kinds of distribution transparency,

namely:

" Access transparency: concealing the access mechanism (e. g. communication

network) involved in the interactions among system components;

" Location transparency: concealing detail about location of components (e. g. host

computer);

" Migration transparency: concealing dynamic relocation of components (i. e. a
dynamic kind of location transparency);

" Liveliness transparency: concealing the form by which the components reside (i. e.

migration between an active form in memory and a passive form on data stores;

" Replication transparency: concealing the existence of replicas of components as

well as the mechanism to support replication and synchronisation;

" Concurrence transparency: concealing the sharing of services among

78

components, by avoiding mutual interference;

" Failure transparency: concealing partial completion of transactions through all-
or-nothing mechanisms (i. e. atomic transaction).

The CIM-BIOSYS infrastructure provides access transparency and location

transparency which are considered by the author to be sufficient to support model-

enactment at the current stager.

4.3.2. HS entities
CIM-BIOSYS provides an open approach to resolving issues of data

fragmentation, inter-process communication and interaction in manufacturing

environments, which typically comprise a distributed and heterogeneous set of process.
Essentially, the CIM-BIOSYS infrastructure provides integration services to

(support) software applications in an "open" manner. Here, applications only need to
have knowledge of how to use CIM-BIOSYS services, with the integrating

infrastructure taking responsibility for dealing with configuration issues.

CIM-BIOSYS can be used with a family of system build services, which
includes: templates to deal with proprietary (non-conformant) manufacturing machines
(i. e. device drivers) and software packages (i. e. alien applications); this providing

means of interacting with legacy components.
Figure 19 [Coutts 1992] depicts an overview of the functionality of the CIM-

BIOSYS integrating infrastructure2. This figure details the four principal functional

elements or managers of CIM-BIOSYS, namely: the service manager, the driver

manager, the run-time manager and the configuration manager. Details about these

elements are also included in Appendix 3.

Basically, the service manager provides the services termed in the CIM-OSA

IIS as the common services entity, in addition to embracing some of the functions of the
information entity. The driver manager contributes with part of the functionality of the

presentation entity. The run-time and the configuration managers populate part of the

system management entity. Although the CIM-BIOSYS infrastructure supports a

considerable amount of the functionality of the CIM-OSA IIS, it does not yet support
the services of the business entity. Neither does it completely populate the presentation
and information entities. Thus, this research seeks to provide complementary services

1. It is important to notice that the motivation for the realisation of the CIM-BIOSYS

infrastructure was not purely to provide these levels of transparencies.
2. Much richer descriptions of CIM-BIOSYS and some of its applications are developed by

Shaharoun [Shaharoun 1994], Edwards [Edwards 1993], Singh [Singh 1994], Coutts

[Coutts 1992], Gascoigne [Gascoigne 1992] and Gilders [Gilders 1991a] [Gilders 1991b].

79

Manufacturing
Functions /

Applications

Configuration
Files SERVICE MANAGER

CONFIGURATION RUNTIME
MANAGER MANAGER CIM-BIOSYS

DRIVER MANAGER

Alien Application
Handlers / Device

Drivers

Figure 19 -A functional view of CIM-BIOSYS

for the CIM-BIOSYS infrastructure by adding to it elements of the CIM-OSA IIS

entities.

4.4. Petri-nets

According to David [David 1994], Petri-nets present two interesting features:

"Firstly, they make it possible to model and visualise behaviour

comprising concurrence, synchronisation and resource sharing.
Secondly, the theoretical results concerning them are plentiful.
The tool enables qualitative analysis and its numerous

applications have been still further added to by a number of

research works to enable more condensed descriptions,

including where the time factor intervenes. "

Petri-nets have a number of extensions [Peterson 19811. Two extensions of

particular interest in this research are: generalised stochastic time Petri-net and

predicate-action Petri-nets. An introduction to Petri-nets and their extensions is

presented in Appendix 4.

Petri-nets are proposed to be used in the model-building capability as a
language to describe the internal behaviour of enterprise activities. The adoption of

80

Petri-nets is also proposed as one of the means by which model-enactment is to be

achieved'. Petri-nets can be viewed as a kind of `assembly' language of modelling.
Most modelling languages represent static descriptions that cannot be enacted directly.

Petri-nets offer a means by which these static descriptions can be enacted.
Generating Petri-net models has also enabled the association of SEW-OSA with

available tools capable of analysing, simulating and executing Petri-nets. A number of

software tools available in the market or from academic institutions incorporate an

engine for Petri-net execution to support this capability. For reasons of availability, the

tool named ARP was adopted to be linked to SEW-OSA.

ARP2 is a software tool developed by the LCMI/UFSC ("Laboratorio de

Controle Microinformatica da Universidade Federal de Santa Catarina", Brazil) [LCMI

1989]. Use of this tool has enabled: (1) editing the business model generated by SEW-

OSA (so that minor changes in the model can be made to suit simulation tests without

re-generating the Petri-net model); (2) analysis of the basic properties of a Petri-net (i. e.
limitation, conservation, livelihood, multi-sensibilisation, re-initialisation, live-locks

and deadlocks); (3) analysis of invariants (of places and transitions); (4) step-by-step

simulation of the Petri-net state evolution; and (5) performance analysis of certain

parameters of the system, based on its execution in simulated time (i. e. dynamic

simulation of its state evolution).

4.5. Object-Oriented Design

According to Adiga [Adiga 19931, object-orientation is a new computing

paradigm which encapsulates data and procedures in the form of an "object" (where an

object is an entity that exists at a level of abstraction higher than data and procedures).
Data and procedures encapsulated by an object can only be accessed by external objects
by means of messages exchanged between them. The benefits of object-orientation

stem from the concepts of class (enabling inheritance of object features from parent

objects), encapsulation (enabling information hiding) and polymorphism (enabling
dynamic binding of data and procedures).

A decision to adopt concepts of object-orientation within SEW-OSA was made

as a means of populating its design specification and implementation description

modelling levels. It was envisaged that object descriptions could be used to model

system resources and enable resource selection based on functional requirements, this

to facilitate mapping between the conceptual analysis and design and implementation

1. The other means by which model-enactment was achieved was through direct interpretation

of the CIM-OSA models by a business entity component (discussed later in this thesis).
2. ARP stands for Petri-net Analyser and Simulator (in Portuguese).

8I

phases of the IMS life cycle.
No particular method was adopted and used to realise the object descriptions

supported by SEW-OSA. However, the Booch [Booch 1991] method was adopted as

the basis of another "Model-Driven CIM" tool with which the SEW-OSA CASE tool

was designed to interact (i. e. a resource modelling tool developed by I. S. Murgatroyd

[Murgatroyd 1993]).

4.6. IDEF and Design/IDEF

IDEFO is a modelling language that evolved from SADT (Structured Analysis

and Design Technique) which was developed by SofTech [SofTech 1976] as part of a

commission by the US Air Force [Bravoco 1985a]. IDEFO consists of a functional

modelling language which enables modelling a system based on a structured
decomposition of its functions. Such a functional decomposition can be used to capture

the flows of information, material and control through the functions, as well as the

resource requirements associated with each function.

In this research, it was envisaged that IDEFO would be used as a substitute for

the SEW-OSA functional modelling facilities. Indeed, this option was taken during the
data gathering processes of the case study application of SEW-OSA (whilst the SEW-

OSA CASE tool was being developed). Thus, IDEFO models of the shop-floor were

created as an intermediate step towards creating SEW-OSA-based models.
Design/IDEF, which is a tool for IDEFO modelling supplied by Meta Case

Technology, was chosen and used to create these models. Design/IDEF enables the

creation of models using the following languages [Meta 1990]: IDEFO, IDEF1,

IDEFIX and entity-relationship-attribute descriptions. Design/IDEF also possess a
facility that enables models created in IDEFO to be fed into Design/CPN, a tool capable

of enacting IDEFO models by associating its functional blocks with transitions of a

coloured Petri-net (CPN).

4.7. A Strategy for the Realisation of SEW-OSA

The strategy adopted for realising the structure proposed in Figure 9 for SEW-

OSA involved the following sets of activities:

a. Realisation of a CASE tool for SEW-OSA, which is envisaged to involve:

"a thorough study and review of the specifications of the CIM-OSA architecture and

adoption of alternative solutions for those parts of CIM-OSA that have yet to be

defined;

" the implementation of part of the CIM-OSA modelling methodology in

82

combination with predicate-action Petri-nets and an object-oriented representation
in a CASE tool, through the use of a meta CASE tool.

b. Establishment of links between the SEW-OSA CASE tool and other "Model-
Driven CIM" tools and services, which is envisaged to involve:

" the provision of interfaces with a set of information modelling tools which structure
the information shared by system components;

" the use of an object-oriented resource model to facilitate the specification of system

components.

c. Establishment of a link between the SEW-OSA CASE tool and a simulation
tool, which is envisaged to involve:

" resolution of syntactic differences between CIM-OSA and a generalised stochastic
time Petri-nets (GSTPN) through a mapping between these two languages;

" incorporation of such a mapping in the SEW-OSA CASE tool, so that code in a
GSTPN format can be generated from a CIM-OSA model;

" use of this code to feed ARP (i. e. the simulation tool) which enables analysis,

simulation and performance evaluation of the model.

d. Development of a business entity for CIM-BIOSYS, which is envisaged to
involve:

" the realisation of a model-enactment capability for driving the interactions between

system components;

" provision of a capability for the generation of rapid-prototypes of system structure

and its components.

e. Specification of a presentation entity for CIM-BIOSYS, which is envisaged to
involve:

" definition of how system components should be organised in order to be integrated

to the system structure generated by SEW-OSA;

" the definition of interfaces associated with the various forms of system components,

namely: device drivers (for machines), application enablers (for application

programs) and human interfaces (for human beings)

83

4.8. Structure for the Decisions Made in Realising SEW-OSA

Figure 20 illustrates the main decisions made within the context of the
"Workbench Development" box depicted in Figure 11. Basically, six primary decisions

were made which led to the realisation of SEW-OSA. Their rationale and alternative

courses of action which could have been taken are briefly explained below.

Rationale Thread of Decisions Alternatives

1---------------I
11
11

flexibility to CASE Tool
change and expand ---- Development

11
11

familiarity with
---, --;

Petri-net Simulator Other CASE
tool and method 1- Usage i tools

11
1

unavailability in the I Business Entity I Other simulation tools
market -----' Development 1 and languages

11
State-of-the-art

,-
i- CIM-BIOSYS

Work-flow
systems

at the time--' Usage

time constraints and 1
[ficationi

resentation Entity Other integrating
tailored presentation entity---"-' infrastructures

integrability to SEW-OSA---,
--til.

Model-Driven CIM I Implementing the
Tools usage Presentation Entity

Workbench
Development I Other modelling

11 tools

Figure 20 - Decisions as part of the "Workbench Development"

The realisation of a CASE tool to encapsulate the selected architectures was

proposed due to the unavailability of alternative tools from the market. However, it was

also understood that the author would access important pre-requisite knowledge related
to mappings between life-cycle processes through achieving a consolidation and

extension of existing architectures in a CASSE environment. Additionally, the use of a

meta-CASE tool for such a realisation adds the essential flexibility required to
incorporate future changes in the architectures, as well as for adding formalism from

s4

other architectures. This could not have been achieved through acquiring CASE tools
in the market.

The particular Petri-net simulator adopted was selected based on its availability,

as well as on the familiarity that the author had with the tool (due to using it within the

context of his M. Sc. dissertation [Aguiar 1989]). Other Petri-net engines or, indeed,

other types of simulators could have been used. However, Petri-nets provide a unique
feature not available in other simulation tools, namely: the support for qualitative
analysis of systems (e. g. existence of deadlocks, livelocks, etc.).

The development of a business entity for CIM-BIOSYS was required as
software was not yet available in the market to realise its purpose. Work-flow systems
have improved their functionality over the last three years and now provide part of the
functionality of the business entity (e. g. the ProcessWise integrator [ICL 1993]).
However, achieving their integrated use with the CIM-BIOSYS infrastructure would
present other problems that still remain to be solved.

In regard to the development of the business entity, the enabling tools used were
the programming utilities traditionally used in the MSI Research Institute (e. g. X-
Windows Motif [Heller 1991], BuilderXcessory [ICS 1991a] [ICS 1991b], Unix

programming tools [Back 1986], etc.). A formal description technique (EDT) (e. g.
Estelle [ISO 1988]) was not used to implement the business entity, because no EDT was
available at the time that the research started which could generate code for the CIM-
BIOSYS infrastructure. As a result of the work developed in the "Model-Driven CIM"

project, an Estelle-based tool is now available which can be used for that purpose (i. e.
the tool developed by P. Gilders [Gilders 1995] based on the environment provided by
NIST [Sijelmassi 1991a] [Sijelmassi 1991b]).

CIM-BIOSYS was adopted as the integrating infrastructure because it was the

most comprehensive available at the time that this research started, thus comprising the

state-of-the-art in the area [Singh 1994]. Subsequently, a number of alternative forms

of integrating infrastructures emerged which could be used as a replacement for CIM-
BIOSYS, but technical problems of a similar nature to those tackled in the study would
likely have arisen. In this respect, the CIM-BIOSYS infrastructure was `accessible' to

modification and well understood by other MSI researchers, whereas other integrating
infrastructures have yet to prove sufficiently comprehensive or stable to be used in this
type of work. Some of these alternative forms of integrating infrastructures are
mentioned in Section 2.2.5.

A presentation entity was proposed to be specified in this research, although not
implemented, due to time constraints and because other research groups known to the

author [ESPRIT/VOICE 1992] [Didic 1992] were dedicating effort in this particular
area. Hence, the issues dealt with in the presentation entity specification were those

required to achieve integration among system components within the context addressed

85

by this research.
Other tools produced by other MSI researchers within the "Model-Driven CIM"

project were used in association with SEW-OSA, in order to model aspects of a system

which are not covered by SEW-OSA. These tools were used due to the possibility of

completely integrating them into SEW-OSA at a later stage, thereby constructing a

wider scope workbench.

4.9. Concluding Remarks

Figure 21 shows the areas of the CIM-OSA cube that have been covered in
SEW-OSA by using the architectures, tools and services discussed in this chapter.
Basically, efforts were concentrated in providing a working structure for CIM-OSA's

function and resource views. It should be noted from this figure that SEW-OSA does

cover completely all constructs and recommendations of CIM-OSA at the design

specification and implementation description modelling levels. Such a constraint stems
from the fact that the specifications of CIM-OSA define the relevant constructs and
functions of each view at each modelling level, but they do not define how they should
or could be implemented, thus, requiring solutions alternative to CIM-OSA. Therefore,

the CIM-OSA definitions were enhanced by SEW-OSA with the introduction of
constructs borrowed from object-orientation and Petri-nets.

An overview of where each solution adopted fits in each view at each modelling
level is presented as follows.

4.9.1. Model-building capability

The model-building capability of SEW-OSA is envisaged to aggregate the

constructs of CIM-OSA with object-orientation and Petri-nets in order to support the

modelling process at the requirements definition and design implementation modelling
levels. This support can be achieved as follows.

a. Requirements definition modelling level:

The function view is proposed to be completely implemented based on the CIM-
OSA specifications available to the author [ESPRIT/AMICE 1993a].

b. Design specification modelling level:

The function and resource views at this modelling level is envisaged to combine
CIM-OSA with an object-oriented description to define the interactions between

enterprise activities and the active resource components (i. e. system components)
that provide the functionality modelled in the enterprise activities.

For the resource view at this modelling level, models of alternative solutions in

96

VIEWS

Information Function Resource Organisation

Requirements CIM-0SA
Definition Compliant

bbl
Design

Pete Nets
Reesöure

Specification Model

Irate
d

P hs
i

mnlementation

ro

and
ot ons S

gn
_

Figure 21 - Scope of the SEW-OSA CASE tool against the CIM-OSA cube

terms of active resource components available from a library of partial models (i. e.
resource models), are envisaged to be used to configure a system.

4.9.2. Model-enactment capability

Basically, the information formalised in the business model with the use of the
SEW-OSA CASE tool should then be passed to the model-enactment capability which

should manipulate it by means of simulation and rapid prototyping (in order to test it).

This is envisaged to be achieved through populating the design specification and
implementation description modelling levels of CIM-OSA with the following facilities.

a. Design specification modelling level:

This modelling level is envisaged to embrace a two-staged process, namely:

" analysis of the business model; simulation of its dynamic behaviour; and evaluation

of the system performance, in order to obtain metrics from the models (i. e. average,

maximum and minimum time values, queue sizes, etc.).

" rapid-prototyping of the system and its (emulated) components' (i. e. code

generation for the system structure and for its components), in a form that can be

1. The term "emulated component" is used to mean an executable specification of the internal

behaviour of the component which excludes any detail of its actual functionality.

S7

executed by the integrating infrastructure, this in order to test a particular solution
in terms of system configuration (see Figure 9).

b. Implementation description modelling level:
This level should involve the configuration of the physical system. This is envisaged to
be accomplished by gradually replacing its (emulated) components by the physical

ones (i. e. machines, application programs and human beings).

Although the strategy for populating views and modelling levels may convey
the idea that the design process is to occur in a `water fall' manner, SEW-OSA should

offer support for iterating through modelling, analysis, simulation, rapid-prototyping,
configuration and operation of an IMS (i. e. iterations between model-building and
model-enactment) a number of times before a complete system is finally deployed. In

this respect, an extremely valuable contribution of SEW-OSA is expected to come from

facilitating the execution of these iterations in a consistent manner.
The remaining chapters of this thesis describe the development, application and

evaluation of a workbench embracing a model-building capability and a model-
enactment capability. These capabilities are materialised within SEW-OSA. Hence,
SEW-OSA is a provider of facilities for modelling, analysis, simulation, rapid-
prototyping, configuration and operation of an IMS, this as a first step towards an
incremental approach to formalising the activities across different phases of the IMS
life cycle.

A similar organisation is followed in each chapter which describes: how related
capabilities of SEW-OSA support these facilities, how these capabilities were
implemented and what their main limitations and contributions are (in the light of
related contemporary research work).

8S

Chapter 5- Model-Building Capability

This chapter describes the implementation of the CASE tool as the core element

of the model-building capability of SEW-OSA. The structure of the CASE tool is

presented by means of a top-down description of the method embedded in it to carry

out the modelling process.
The method is illustrated through samples of diagrams, templates, reports and

code generated (which use part of the data gathered in the case study application of
SEW-OSA discussed later in the thesis).

Although a considerable level of detail was included in this chapter, the
importance of this detail is twofold:

" it defines clearly how the CIM-OSA constructs were used within SEW-OSA; and

" it presents the essential modelling concepts realised by SEW-OSA which will be

used to explain the research activities described in the forthcoming chapters.

5.1. Overview of the Design Methodology

A valuable contribution of this research work is the definition of an organised

method for the application of CIM-OSA. Basically, as discussed in Chapter 3, SEW-

OSA implements such a definition by providing two classes of capability associated

with its design methodology: the model-building capability and the model-

enactment capability. Each of these capabilities supports more than one modelling
level of CIM-OSA. At each modelling level, a number of constructs are manipulated in

the form of diagrams and templates which are used to capture the information relevant

to the design process. Essentially SEW-OSA enables the application of the model-
building capability depicted by Figure 22 to generate models which can be used by the

model-enactment capability illustrated in Figure 9.

Following is an overview of the model-building capability. Correspondence

between the acronyms used in the text below and the constructs manipulated in each
diagram of the SEW-OSA CASE tool is indicated in the model example represented in

Figure 22.

a. Requirements definition modelling level:

" Context diagram. This diagram defines the domains (i. e. main areas of an

enterprise) under consideration, and the relationships between the domains. One

context diagram is created for each individual enterprise model.

" Domain diagram. This diagram defines the major domain processes of a domain.

1r i zy

u rra

RtG

Mý

ro ý

z
0

.; 4

ý.. y

Q
w
O ýn E coo

' ý n
C f6

, ýý. ý .
fit'

ý

cs

an

11.11

. ca
äý

cri
0

W
cri

to
U.

90

One domain diagram is created for each CIM-OSA-compliant domain'.

" Structure diagram. This diagram defines the functional decomposition of a
domain process2 in terms of enterprise activities and business processes3 in a
structured manner. One structure diagram is created for each domain process.

" Behaviour diagrams. These diagrams define the flow of control used to execute
the functionality of a domain process and its business processes. Behaviour
diagrams can also be referred to as process diagrams. One behaviour diagram is

created for each domain process and subsequently for business processes within the
domain process structure.

" Functional diagram. This diagram defines flows of material, information and
control through the atomic building blocks of the domain process (i. e. enterprise
activities4). One functional diagram is created for each domain process.

b. Design specification modelling level:

" Object diagram. This diagram defines the flow of messages between functional

entities5, the business entity (i. e. enterprise activities) and the information entity of
CIM-OSA. One object diagram is created for each CIM-OSA-compliant domain.

" Activity behaviour diagram. This diagram defines how the enterprise activity uses

1. According to the ESPRIT/AMICE consortium [ESPRIT/AMICE 1993a], domains "identify

well-defined, totally integrated, functional areas of the enterprise". A domain maps into the
concept of "enterprise domain", illustrated in Figure 7. Domains are modelled either as
CIM-OSA-compliant domains or non-CIM-OSA-compliant domains. A CIM-OSA-

compliant domain identifies the area to be engineered within the enterprise. A non-CIM-
OSA-compliant domain identifies other areas with which the area to be engineered interacts.

2. According to the ESPRIT/AMICE consortium [ESPRIT/AMICE 1993a], domain processes
(or DP's) "are high-level processes [...] triggered by some events and producing a defined

end result (function output). Domain processes are at the level of functional decomposition

of domains. They must be triggered by nothing else than events" [ESPRIT/AMICE 1993a].

Domain processes can also be viewed as objects which communicate via exchange of
information, material and events.

3. According to the ESPRIT/AMICE consortium [ESPRIT/AMICE 1993a], a business process
(or BP) "is a sub-process of a domain process. It cannot be directly triggered by events and
is always called by a parent process. " A business process works as an intermediate construct
between domain processes and enterprise activities.

4. According to the ESPRIT/AMICE consortium [ESPRIT/AMICE 1993a], enterprise

activities (or EA's) "describe [the] basic enterprise functionality (i. e. things to be done).

They are defined by their function input, function output, control input, control output,

resource input, resource output and ending status and have no behaviour defined at the

requirements definition modelling level. They are always called by a parent process. "

91

(via message exchanges) the integrated operation environment (i. e. a grouping of
functional entities, or FE's), in order to perform its basic functionality (i. e.
functional operations'). One activity behaviour diagram is created for each

enterprise activity.

" Entity behaviour diagram. This diagram defines the expected external behaviour

of a functional entity as perceived by the enterprise activities. Such a description is

used to emulate the behaviour of an active resource component during the rapid-
prototyping stage of a system. One entity behaviour diagram is created for each
functional entity.

" Resource diagram. This diagram specifies instances of active and passive resource
components (i. e. ARC and PRC)2 associated with the classes specified by their
functional entities which are able to execute the functional operations required by

an enterprise activity. These functional operations are related to the capability
required by the enterprise activity; the resource capability being defined in the
functional diagram (see Figure 22). One resource diagram is created for each
integrated operation environment associated with a particular domain (stemming
from the IOE construct, as illustrated in Figure 22).

" Configuration diagram. This diagram defines the computer configuration of the

system (i. e. where each active resource component will be executed or interfaced

with). One configuration diagram is created for each segment of the IIS which
serves a particular enterprise domain.

A hyper-text template is associated to each symbol represented in the diagrams

5. According to the ESPRIT/AMICE consortium [ESPRIT/AMICE 1993a], a functional entity
"is a resource able to perform, completely on its own, a (class of) functional operation(s)".
functional entities are viewed in this thesis as functional representations of active resources

components required to fulfil the capability associated with enterprise activities identified in

the functional diagram.

1. According to the ESPRIT/AMICE consortium [ESPRIT/AMICE 1993a], a functional

operation "is a basic unit of work defined at the design specification modelling level (i. e.
lowest level of granularity in the function view). At run-time, [a functional operation is]

fully executed or not at all. "

2. An active resource component identifies a component of a system which is able to execute
functional operation(s) on its own. It can also be a modelling description which characterises

either a human being, an application program or a machine that possess a computerised

controller (i. e. human functional entity, application functional entity and machine functional

entity [ESPRIT/AMICE 1993a]). A passive resource component is an object used by the

active resource component when performing functional operations.

92

of Figure 22 which enables the user to define all its attributes.

In the next sections, the modelling method implemented in the SEW-OSA
CASE tool is described, as if the designer were modelling a system for a "green-field"

site (i. e. design from `scratch'). This consists of populating the particular level in the
CIM-OSA modelling framework which, in this case, will be done regardless of the
instantiation dimension (see Figure 12). The sequence of design steps (i. e. diagrams

and templates to be completed) as illustrated in Figure 22, defines the path through

which the CASE tool guides the design process.

5.2. Requirements Definition Modelling Level

A new design would usually start with the user' browsing through a library of

reference models (i. e. "system models" in Figure 7), in order to find previously created
designs that can be instantiated for the particular problem that is being addressed.
However, the description presented here will assume that no reference model is

available to be instantiated. Therefore, the model-building process starts with the
definition of a context diagram.

5.2.1. Context diagram
The context diagram contains the information described in Section 4.1.2, as the

"enterprise level". A context diagram represents the major domains of concern in an
enterprise model, as well as key relationships between those domains. Relationships

characterise the interface between domains by defining the type of constructs

exchanged between them. These constructs can be events (EV's) and object views
(OV's), in the form of information OV's or physical OV's (e. g. material flow).

Figure 23 shows an example of a context diagram2. Whilst at the stage of defining a
context diagram, the SEW-OSA CASE tool offers a user the following options:

" to add domains, with a choice of CIM-OSA-compliant or non-compliant;

9 to add major (physical and information) object views and events that flow amongst
domains;

" to add relationships between domains which summarize the meaning of the

I. The term "user" is used here to refer to the person who is using SEW-OSA to formalise

requirements. The term "designer", which appears later in the thesis, refers to the person

who is using SEW-OSA to design a system (in order to address these-requirements). These

two perspectives are represented in Figure 22 by the two `bubbles'.

2. The diagrams and templates presented in this chapter were printed directly from the SEW-
OSA CASE tool.

.1 c
8
cis

w 0
u

9
vi
M
N

b4

94

interactions between them.

For each construct, additional information about the construct's attributes can
be included by selecting an object-operation' on the object representing the construct.
Such an object-operation triggers the CASE tool to display the construct template (i. e.
its hyper-text description). An example of a domain template is shown in Figure 24.

This option is not only available in the context diagram but in all diagrams. Indeed, text

templates are the main means by which the formalism of CIM-OSA was incorporated

into the CASE tool.
Text templates are extremely important as means of documenting the design

process. However, SEW-OSA has implemented these templates in such a way that only

a minimum amount of information is required in order to enable model-enactment. This

information consists basically of the attribute "IDENTIFIER" (e. g. DM-1 in Figure 24)

which is, in any case, generated automatically by the CASE tool when the construct is

created. The attribute "NAME" is also desirable for improved readability during the

model debugging process. This means that a model can be created in SEW-OSA simply
by manipulating graphical descriptions.

Hyper-text templates also enable the execution of navigations2 between

diagrams and templates, or any other object-operation to be triggered by selecting the

appropriate field in the template (i. e. context sensitive fields). For instance, by selecting
the name of an objective or construct in the domain template (see Figure 24), the user

may navigate to the objective or constraint template. Additionally, the hyper-text

template presents the user with the relevant data that has already been entered

elsewhere in the model or any data that can be extracted or deducted from a
diagrammatic description.

Once this diagram is complete (with all constructs and their attributes defined)

the user may proceed to define a domain diagram associated with each CIM-OSA-

compliant domain. At this point, the `process level' model can be created (see

Section 4.1.2).

5.2.2. Domain diagram

A domain diagram represents the domain processes (DP) contained within a
CIM-OSA-compliant domain. This diagram also describes the relationships between

1. The term "object-operation" is used by ToolBuilder to denote the actions that are available
in a "pop-up" menu associated with each object represented in a diagram, when the operator

selects it with the computer `mouse'.

2. In database terminology, a navigation consists of moving the context of processing from one
entity to another along a relationship.

95

DOMAIN TEMPLATE
Part 1:
TYPE:

IDENTIFIER:

NAME:

DESIGN AUTHORITY:

DOMAIN DESCRIPTION:

CIMOSA COMPLIANT:

Part 2:
DOMAIN OBJECTIVES:

DOMAIN CONSTRAINTS:

DOMAIN PROCESSES:

BOUNDARY:
OBJECT VIEWS:

EVENTS:

DOMAIN DESCRIPTION
<select from lisv

DM-1

PCB Assembly

<authorised person

<short textual description

yes

DOMAIN COMPONENTS
lead time
utilisation
work-in-progress

cost
resources

Shop Supervision
Assembly and Test

Process Plan
Bare-Boards
Raw Material
Production Plan
Finished PCBs
Engineering Rep.
Production Rep.
Logistic Rep.

PCB Orders
PCB Assembly St.

Figure 24 - Example of a domain template

DP's, in terms of flows of events and object views. A domain diagram is created from

an object-operation selected from a CIM-OSA-compliant domain in the context
diagram (see Figure 23)1. When a domain diagram is created, the images of the
domain's related constructs (i. e. event and object view inputs and outputs of the
domain) are automatically inherited by the domain diagram (i. e. bold OV's and EV's in
Figure 25 which shows an example of a domain diagram)2. In a domain diagram, a user

1. Figure 22 depicts how each diagram is created by representing the relationship between

object-operations executed on some key constructs and their associated diagrams by dashed

lines.

96

has the options to add domain processes and physical and information object views and
events'. Object views and events are processed and generated within the scope of the
domain cs inputs End outputs to domain presses.

Dauain Diagram: rr It"

Lr-I

Figure 25 - Example of a domain diagram

Here, one should notice that a domain process is merely a functional

representation of a class of tasks required to be executed within a certain domain. In
Figure 25, for example, a domain process does not represent a physical assembly line

or segment of line. It rather denotes types of functionality required to be performed by

resources. The functionality of an occurrence of a domain process at run time can end
up being provided by a number of physical assembly lines. Conversely, a number of
occurrences of a domain process can be generated at run-time and compete for the
resources made available by a limited number of assembly lines.

Similarly to the context diagram, once the domain diagram is complete the user
may proceed to the definition of structure diagrams associated with each domain

processes

2. This domain diagram is a simplification of the domain diagram created from the context
diagram shown in Figure 23. This domain diagram was extracted from a model of the

surface mount technology (i. e. SNM assembly line, whilst the context diagram was
extracted from a model of the complete shop-floor. The remaining diagrams presented in this

chapter relate to the model of the SMT assembly line.
1. Domain processes also require the definition of objectives, constraints and declarative rules

(the latter aggregates objectives and constraints into logical equations which define when
and how they are applied). SEW-OSA enables a domain process to inherit some a all
objectives and constraints that have been defined for the domain that it belongs to. The

objectives and constraints of a domain must be distributed amongst the domain processes
that are contained within the domain, in such a way that objectives and constraints that are
assigned to domain processes are defined in accordance with objectives and constraints
assigned for the domain as a whole.

97

5.2.3. Structure diagram

A structure diagram represents the structural decomposition of the functionality

of each domain process. A domain process consists basically of a hierarchy of business

processes and enterprise activities. Business processes encapsulate behaviour whereas

enterprise activities contain only functionality (at the level of granularity required by

this modelling level).

The structure diagram inherits the name of its parent domain process. When this
diagram is created, a graphical image of its parent domain process is automatically

copied into the top of the hierarchy of functions represented by the structure diagram.

Figure 26 shows an example of a structure diagram which enables the user to':

" add business processes and enterprise activities;

" define hierarchical relationships between business processes, enterprise activities

and the domain process. The relationships are of the type "used-by" and identify

those functions that are required by the domain process or a business process to
describe its functional content.

It is important to notice that in the hierarchical relationships described in this
diagram, lower level functions can be used by and shared between more than one higher

level function. Moreover, as it can be seen in Figure 26, a lower level function may use
functions which are at the same hierarchical level or even at a higher hierarchical level

than that of its own. The only structural relationship that this diagram does not allow is

the representation of a function using itself directly or indirectly. Direct use (i. e. a
function calling itself in a recursive manner) has no structural meaning (i. e. a function

is always composed of itself!). However multiple executions of its own functionality

(i. e. recursive triggering) is dealt with in the behaviour diagram, by means of an

appropriate procedural rule (i. e. "loop"). Indirect use (i. e. a function using a higher

level function which, in turn, uses the function in question) is neither addressed by

SEW-OSA nor supported by CIM-OSA. The author envisages that such a situation,
despite of being relatively rare, could be handled by SEW-OSA if appropriate ending-

status for the functions are used as a means of "breaking the loop".

From the structure diagram the user may proceed to define either the
behavioural or the functional content of each domain process and its subordinate

1. This diagram also enables the user to define which objectives, constraints and declarative

rules of a certain process (i. e. domain process or business process) are inherited by the

functions that it uses (i. e. business process or enterprise activity). Therefore, in addition to

defining hierarchical relationships in terms of functional content, this diagram also

represents the structure based on which metrics can be associated with functions.

98

I
9 N
ta

W
O
u
a I

ý1o N

.1 I4

? ý)

functions. Although no sequence of definitions is imposed by SEW-OSA, the author

recommends the definition of the behaviour description before the functional

description for, whilst developing the former, the user is more likely (than whilst
developing the latter) to change the structure of the domain process.

5.2.4. Behaviour diagrams

Behaviour diagrams are hierarchical sets of diagrams which describe the

behavioural content of each domain process. The hierarchy followed by this set of

diagrams is based on the inherent hierarchy defined in the structure diagram (see

Figure 26). When the top-level behaviour diagram is created, all event inputs associated

with the domain process are copied into the diagram. Furthermore, the functions "used-

by" the domain process, as defined in the structure diagram, are inherited by the

appropriate behaviour diagram. Figure 27 shows a behaviour diagram associated with

the structure diagram of Figure 26. In this diagram, the options available to the user are

tot:

" add business processes and enterprise activities that are used by the function, as
defined in the structure diagram. This means that additional functions that have not
been previously foreseen in the structure diagram can be added;

" link business processes, enterprise activities and events by means of procedural

rules;

" change the "ending status" of functions with respect to their procedural rules.

The procedural rules implemented in SEW-OSA are presented in Table 2. This

table also defines how different types of procedural rules apply to the constructs of the
behaviour diagram (i. e. a condition which is not defined in CIM-OSA). Additionally,

when implementing these rules, it was identified that the rule named "conditional"

prescribed by CIM-OSA was redundant. Hence, this rule was excluded from behaviour

diagrams.

The options available to the user in `child' diagrams are similar to those at the

top-level behaviour diagram, except for the inexistence of events (used to mark the start

of the execution of the behavioural description of a diagram). Hence, threads of
behavioural execution described by behaviour diagrams belonging to business

processes are triggered by events internal to the domain process (i. e. the event `Start',

1. From a top-level behaviour diagram, 'child' diagrams can be created from object-operations

on business processes. Recursively, 'grand-child' diagrams can be created from 'child ones',

up to the point where every domain process and business process has a child diagram

associated with it.

too

I
Ö I .y

0

s

1

U
'i N
S

y

"

t

0

4

º I

I Y

Y

101

as indicated in Table 2). Both types of diagrams (i. e. those belonging to domain

processes and those belonging to business processes) are terminated by internal events,

namely: FINISH (normal conclusion) and TERMINATE (abnormal conclusion), as

shown in Table 2. In the current implementation of SEW-OSA, abnormal conclusions

are not used. This, in principle, does not affect the description power of the model-
building capability.

Table 2- Procedural rules implemented in SEW-OSA

Procedural Rule Permitted Inputs from Permitted Outputs to
FORCED (FRC) event event

enterprise function enterprise function
Internal event "Start" internal event "Finish"

internal event "Terminate"

GO/NOGO (GNG) event event
enterprise function enterprise function

internal event ("Finish")
internal event ("Terminate")

SPAWN (SP) event event
enterprise function enterprise function
internal event ("Start")

RENDEZVOUS (RE) event event
enterprise function enterprise function

internal event ("Finish")
internal event ('"Terminate")

LOOP (LP) enterprise function enterprise function

External events that are generated by a domain process (as illustrated in

Figure 25) are defined in the functional diagram. In SEW-OSA, these events are only

generated by enterprise activities.
Figure 28 shows an example of a business process template, with its associated

behavioural description in the form of procedural rules obtained from its behaviour

diagram (see the bottom part of the figure).

Once all behaviour diagrams are complete, the user may proceed to define the
functional diagram.

5.2.5. Functional diagram
A functional diagram represents the functional content of a domain process.

This diagram describes the flow of object views and events through the enterprise

activities of a domain process, as well as resource requirements associated with each

enterprise activity. This is done by formalising the three types of inputs and outputs of

each enterprise activity contained within a domain process. The three types of inputs

are: main inputs (i. e. information and physical object views - to be transformed),

secondary inputs (i. e. controls, statuses, and information and physical object views -

102

BUSINESS PROCESS TEMPLATE

TYPE: <select from list>

IDENTIFIER: BP-2

NAME: Populate board

DESIGN AUTHORITY: <authorised person>

DESCRIPTION: <short textual description>

OBJECTIVE:

CONSTRAINT:

DECLARATIVE RULE:

COMPRISES: place components
move into conveyor
inspect
move to finishing

BEHAVIOUR:

ON (START) DO place components
ON (ES(place components) = done) DO move into conveyor
ON (ES(move into conveyor) = no) DO move to finishing
ON (ES(move into conveyor) = insp) DO inspect
ON (ES(inspect) = done) DO move to finishing
ON (ES(move to finishing) = done) DO FINISH

Figure 28 - Example of a business process template

used in the transformation) and tertiary inputs (i. e. the resource capability -
requirements upon the objects required to perform the transformation). Hence,

enterprise activities resemble functional boxes in IDEFO [Bravoco 1985a]. However, in

a manner which is dissimilar to that in IDEFO, the functional content of a domain

process is represented in just one diagram. This is due to the fact that in a domain

process only enterprise activities actually possess functionality. An alternative
solution' would be to create a hierarchy of functional diagrams, defined according to
the structure used in the behaviour diagrams, whereby business processes would posses
the three types of inputs and outputs, similarly to enterprise activities. Although this

may improve the readability of the models produced, it may convey the misleading idea

1. This issue proved to be controversial up to the latest meetings of the CIM-OSA consortium
[ESPRIT/AMICE 1993a]. See Figure 15 for the CIM-OSA representation adopted.

103

that business processes actually process objects when in fact they do not.
Likewise in the behaviour diagram, the functional diagram inherits the inputs

and outputs (defined in the domain diagram, as depicted Figure 25) and enterprise

activities of its parent domain process (defined in the structure diagram shown in

Figure 26). Figure 29 shows an example of this type of diagram, created by:

" adding enterprise activities that are used by the domain process (as defined in the
structure diagram);

" adding object views internal to the domain process;

" defining the resource capability required by each enterprise activity; and

" inter-connecting enterprise activities by means of a flow of internal object views

and external object views and events. External object views and events are the
interface between the domain process and its external environment.

5.2.6. Changes and adjustments in the RDML

Completion of the functional diagram marks the end of requirements definition

modelling (see Figure 22). It is important to notice that the complete business model (at

this modelling level) describes a few domains and a number of domain processes'. To

each domain process is associated one structure diagram, one functional diagram and a
set of as many behaviour diagrams as there are business processes in each domain

process. Therefore, it is quite important to enable the user to navigate between diagrams

and change them in such a way that the model remains consistent. To an extent, SEW-
OSA allows these changes to be made at any stage in the modelling process. For
instance, new constructs can be added in any part of the model and appropriate updates

will be propagated to the remainder of the model. Some of the features that enable

consistent change of models are:

" the ability to navigate directly from a certain stage in the model to any other

stage, as long as there is a logical path between them. For instance, from the

structure diagram to a particular behaviour diagram belonging to a certain business

process (represented in the structure diagram); from a behaviour diagram to any of
its parents2 as well as to children of business processes described in the diagram;

from a bottom-level to a top-level behaviour diagram and vice-versa.

1. CINI-OSA-compliant domains do not share with other domains instantiations of their

component constructs (i. e. their function, structure and behaviour). However, their

component constructs may have been instantiated from the same partial models (i. e.

reference models).
2. Multi-parenthood is accepted and encouraged in CIM-OSA.

104

I 'a
0
C)

cis

0
u
a

N

u

p4

105

" propagation of changes from a diagram to the rest of the model. When a
construct (e. g. an object view) is added or deleted on a diagram, its corresponding
images in lower level diagrams are respectively added or deleted. Similar

propagations are also realised for attribute changes.

" unique identification of constructs. SEW-OSA automatically creates and
maintains the attribute "IDENTIFIER" associated with each modelling constructs
(e. g. EA-1 in Figure 29). Such a facility also keeps track of all previously defined
identifiers in order to provide a unique identification for each construct instance.

That is, every time a new construct instance (e. g. domain, event, object view, etc.)
is created or deleted, the identifiers of all related constructs in the model are
updated.

" consistent naming scheme. This includes a scheme by which diagram names
always take the name of the entity from which they have been created (see
Figure 22). In turn, the context diagram inherits the name of the model to which it

relates.

Additionally, inherent features that the SEW-OSA CASE tool provides (which

turned out to be quite important for documentation purposes) are:

" to check the existence, adequacy and consistency of logical links between

constructs previous to the creation of such links;

" to distinguish between external constructs (i. e. those defined at a higher level in the
model) from internal ones;

" to position links adequately in relation to the object which represents the construct
graphically (e. g. primary inputs should always come into the box that represents an
enterprise activity through its left hand side border; this convention being borrowed
from the IDEFO modelling language) [Bravoco 1985a].

The requirements definition model, completed in the manner described in the
foregoing, is a description of what the system is expected to accomplish. However,
how the system is going to accomplish its task, with repercussions to the definition of
system configuration and its components, is not defined at this stage. For instance,

examples depicted in Figures 23 to 29 describe the functions to be performed by the

shop-floor. However, those descriptions provide no insight about how these functions

will be performed in terms of the specification, number and capacity of the components
that they may require and the manner by which they are organised.

106

5.3. Design Specification Modelling Level (DSML)

The design specification modelling level starts by working upon what was
delivered from the requirements definition modelling level, as implemented by SEW-

OSA, namely:

"a complete function view model;

" the definition of resource capabilities (to be used by the resource view);

" the identification of physical and information object views to be used by the
information view.

The requirements definition modelling level is fairly well defined by CIM-OSA.

Thus, apart from transforming those recommendations and specifications into an

organised modelling method implemented in a CASE tool, the activities described in

Section 5.2 primarily represent enhancements to existing recommendations of CIM-
OSA. However, some of these enhancements involved the definition of certain issues

left undefined in CIM-OSA and reviewing and validating issues whose need had not

even been validated.
However, the design specification modelling level is still fairly open, this in

regard to the specification of its design activities and the way these activities should be
formally supported. Basically, the design specification modelling level is where
requirements captured by the requirements definition model are transformed into

system specifications (also captured by models).
The design specification model in SEW-OSA consists basically of a set of

descriptions derived for each domain identified in the context diagram (see Figure 23),

each of which comprises the following diagrams (represented in Figure 22), namely: an

object diagram, a resource diagram, a configuration diagram, a set of activity behaviour
diagrams, and a set of entity behaviour diagrams (described as follows).

5.3.1. Object diagram

An object diagram is used to define interactions between the integrating

infrastructure and the integrating operation environment (i. e. a functional

representation of all active resource components within a domain). Such interactions

are described in terms of messages exchanged among three parties, namely:

representations of active resource components in the form of functional entities, the

enterprise activities defined in the functional diagram and the information entity (see
Figure 30). All messages (i. e. functional operations) presented in Figure 30 represent
how enterprise activities implement their transfer function defined in the functional

diagram. Basically, each occurrence of an enterprise activity executes an algorithm (i. e.

107

the transfer function) which utilises fragments of functionality resident in functional

entities and in the information entity.
It is important to notice that functional entities represent the external behaviour,

as perceived by the integrating infrastructure, expected from the types of resources

required by the system. Functional entities represent types of resource rather than
individual instances of resources. Messages exchanged in the object diagram are

associated either with functional operations to be executed by functional entities or data

transactions with the information entity (see Figure 30).

The object diagram inherits the enterprise activities (defined in the functional

diagram shown in Figure 29) and defines the two interacting environments of interest

(i. e. the IIS and the IOE). The information presented in Figure 30 is formalised by using
facilities to: (1) add functional entities; and (2) link enterprise activities, functional

entities and the information entity by means of functional operations (i. e. messages that

can be exchanged amongst these three elements, as depicted in Figure 30).

Having completed the object diagram, a designer needs to define the internal

behaviour of enterprise activity objects and functional entities, whilst responding to the

external interactions depicted on the object diagram. This is accomplished by defining

a behaviour diagram (i. e. a form of state-transition diagram) for each enterprise activity
and functional entity depicted in Figure 30.

5.3.2. Activity behaviour diagram

This diagram defines the internal behaviour of an enterprise activity object by

means of predicate-action Petri-nets. Predicates and actions represent either functional

operations (which describe the interactions with functional entities and the information

entity) or internal conditions and actions. Internal conditions and actions represent
activity processing which is not captured by the Petri-net formalism, although it must
be considered for the sake of decision making within the enterprise activity. An activity
behaviour diagram is created from an object-operation selected from an enterprise
activity in an object diagram. The activity diagram pre-defines a start and an ending
transition which represent, respectively, the triggering and the completion of the

enterprise activity within the context of its procedural rule execution (see Figure 27).

Both start and ending transitions are "fired"1 only once at run time, namely: when the

enterprise activity is created and when it is completed. An example of such a diagram
is shown in Figure 31, whereby the following options were available for the designer

in order to create the diagram, namely:

1. The reader should refer to Appendix 4 for a explanation about Petri-nets and their associated

terminology.

los

Pý

I e

M

S
Qj

M

S
8

C

x
I

C

Y

w
Ä
9
Y
M

y
Y

r M

Y
C

M

f
c

0

i

3

if
L

s 3

i

ti

3

t

ä

3

s

Y

a

3

I

a

y

4 M
g
Fi

a

y d

"
y
C
H

O

a1
O
u
a

M

.1 VL4

1 C09

LA-6: Behaviour Diagram: now* into conveyor

cra-s s
crU-t 3 r. +d lnq-f: ý: uf

Figure 31 - Example of an activity behaviour diagram

" to add transitions and places;

" to link places to transitions (and vice-versa) by means of arcs;

" to assign predicates and actions to transitions;

" to assign tokens to places;

" to assign weights to arcs (the default weight value is one);

" to define the content of internal conditions and actions;

" to change the ending status of the enterprise activity (the default status is "done").
Ending statuses are the means by which the internal processing of enterprise
activities are linked to the decision flow captured by process behaviour diagrams
(exemplified in Figure 27).

110

5.3.3. Entity behaviour diagram

This diagram is used to emulate the behaviour of active resource components
during the rapid-prototyping of a system. As with the previous diagram, it defines the
internal behaviour of a functional entity object by means of a predicate-action Petri-net.
This diagram is-created from an object-operation selected on a functional entity in an
object diagram (see Figure 30). The entity behaviour diagram pre-defines only the
(initial) idle state of the functional entity. An example of such a diagram is shown in
Figure 32, which offers the designer the same options available in the activity diagram

except for the option related to the ending-status of an enterprise activity, which has no
meaning for a functional entity.

li-4: Behaviour Diagrat: InspConvey r

Ln-4.

Figure 32 - Example of an entity behaviour diagram

Lo-u

Once behaviour diagrams for every activity and entity in the object diagram are

complete, the designer is at a stage in which the functional decomposition of a model
is defined to the finest level of granularity (i. e. functional operations). However, up to

this stage, the business model does not define either what physical resources will be

required to provide such a functional composition nor how they are organised.

5.3.4. Resource diagram

A resource diagram defines the mapping between the functionality of the

system and the resources which should provide that functionality. This is accomplished
by providing means of relating the resource capabilities defined in the functional

diagram (see Figure 29) with the external behaviour of functional entities defined in the

object diagram (see Figure 30), in order to identify possible candidates to active

resource components. These candidates must both fulfil the capabilities defined at the

requirements definition modelling level and provide means of interaction which are

III

compatible to those defined for its associated functional entity. The identification of

candidates to physical resource components should also be a model-driven process,
based on models of resources (the manner in which this process has been implemented

is explained later in the thesis). Additionally, the resource diagram also defines how

resources are organised for the sake of scheduling.
The resource diagram inherits the resource capabilities defined in the functional

diagram for each enterprise activity belonging to the domain under consideration (see

Figure 29) and the functional entities defined in the object diagram (see Figure 30).

Figure 33 shows an examples of this type of diagram, created by using facilities to:

" add active and passive resource components associated with functional entities;

" define which resource components (active and passive) fulfil given resource
capabilities; and

" to group resource components into resource cells and resource sets. Here, a

practical definition of resource cells and sets was devised. A resource set defines a

grouping of resources which contain physical inter-dependencies between them
(e. g. an assembly line is a resource set, for when a job is assigned to the first

machine on the line, it is implied that the job will have to be processed by the

remaining downstream resources of that line). A resource cell defines a pool of

resources which can be interchangeably used to process the same types of jobs. It is

important to note that resource cells can also group resource sets and vice-versa.
This enables complex inter-relationships among resources to be captured.

An important message emerging from the diagram in Figure 33 is that of

adopting a late-binding philosophy (as opposed to an early-binding one) for the

allocation of resources to functions. This means that the actual allocation of a certain

active resource component to perform a functional operation triggered by an enterprise
activity is to occur only at run-time. The active resource component will be allocated
from the pool of resources from its pertaining functional entity (represented as dotted

boxes in Figure 33).

The completion of the resource diagram means that each and every function in

the business model has a candidate resource to perform it. However, as these resources

will be integrated by means of a computer infrastructure, a configuration for such an
infrastructure must be defined (e. g. the addresses of resources on a networking

environment). This is the type of definition supported by the configuration diagram.

112

cis
w 0
u
a

M
M

113

5.3.5. Configuration diagram

The configuration diagram (1) inherits the definitions of the resource diagram,
in terms of specified active resource component types (i. e. human, machine or

application software - see Figure 33), (2) associates an appropriate icon to each type,

and (3) defines an initial topological configuration for the computer environment (see

Figure 34). This initial configuration consists of assigning the business entity

components to the host in which the SEW-OSA CASE tool is executing. Figure 34

shows an example of this type of diagram which provides the following facilities to a
designer, namely:

" to add hosts (i. e. computer stations on which a process representing an active

resource component or a business entity component can be executed);

" to assign processes to hosts;

" to change the initial configuration (defined by the CASE tool) in order to re-
distribute the business entity across the system.

Completion of the configuration diagram marks the end of the modelling
process. A design specification model so completed, can then be tested by enacting it

via the model-enactment capabilities of SEW-OSA.

5.3.6. Structure of the modelling process
In broad terms, the functionality provided by the model-building capability

enables the derivation of a system specification (i. e. an object-oriented description)
based on a process-oriented description of what the system is expected to achieve. The

constructs manipulated between these two descriptions are presented in Figure 35. This

diagram also represents the information refinement process involved in creating a
business model. This process extends from the identification of domains to the
definition of their content in terms of domain processes, business processes, enterprise

activities and functional operations.
As shown in Figure 35, functional entities and active resource components,

represented by models, are selected based on the capability required by the enterprise

activities they support, as discussed later in the thesis.

5.4. Realisation of the Model-Building Capability

Figures 36 and 37 present the backbone structure of the SEW-OSA CASE tool.
As outlined in Figure 18, the CASE Tool Structure consists of an entity-relationship

representation which is used to implement the method in the meta-CASE tool. The

model shown in Figures 36 and 37 (which is a simplified version of the CASE Tool

114

ýb

O C

8
ad

4. 0
u
C6

v en
u

a.

115

domains domain f business I enterprise I functional I funaional enablers/
II

Processes l e: activities rations entities drivers resources drivers ven hosts

Figure 35 - Structural definition provided by SEW-OSA

Structure) is a representation of two of the dimensions of the CIM-OSA cube,
implemented in the SEW-OSA CASE tool, namely: instantiation and derivation (see
Figure 12). Along the instantiation dimension, the CASE tool provides:

a. An overall description of the basic building blocks of CIM-OSA and how they

relate to one another (i. e. the generic level in Figure 12).

The SEW-OSA CASE tool was built in such a way that the nature of the CIM-OSA

building blocks is embedded in the constructs handled during the design of a
particular enterprise case. That is, the meaning of each construct is inherited by its
images manipulated in each diagram of the model-building capability.

b. A structure for the separation of libraries of system models and resource
models (as part of the reference models shown in Figure 7), inter-related via
connectance models (discussed later in the thesis).

In regard to system models, whenever the designer needs to create a new design, a
library of reference models of previously created designs should be available for

him to browse and retrieve (i. e. copy) instances of models'. These instances should
then be placed (i. e. pasted) into an appropriate area of a particular design (thus,

embracing one or more diagrams in Figure 22) and adapted to adjust to the

116

particularities of the design.

In respect to resource models, SEW-OSA is envisaged to interface with a resource

modelling tool with which it would share a resource model. This would enable the

specification of possible solutions candidate to address an identified capability

required by an enterprise activity. Such an interface is also discussed later in the

thesis.

c. Means of creating a complete particular model which basically implements the

methodology described in Section 5.3.6.

Along the derivation dimension (at the particular level), the method described in

Section 5.3.6 guides the design process by means of navigations along the entity-

relationship diagram, as depicted in Figures 36 and 37.

In each diagram, the constructs mentioned in Section 5.3.6 are formalised by

defining their semantic and syntactic functions (i. e. by assigning an entity in the model
to a construct defining its attributes and fragments of code associated with operations

executed upon them).
The formalisation of constructs, diagrams and their inter-relationships in an

organised method consisted of the main effort of realisation of the SEW-OSA CASE

tool. This involved the implementation of the CASE Tool Structure based summarised
by Figures 36 and 37. These figures represent only a simplification of the constructs that

constitute the backbone of the SEW-OSA CASE tool, for they possess the main

relationships required for navigations across the CASE tool constructs. However, such

a structure by no means reflects the complexity involved in the implementation' of the
CASE tool structure. In this respect, Chapter 11 presents a synopsis of the size and

complexity of the CASE tool.

5.5. Limitations

Two major factors have limited the process of understanding, reviewing and
implementing the specifications of CIM-OSA:

i. The fact that the author was not participating directly in the activities of the
ESPRIT/AMICE consortium which partially overlapped with the activities of this

research. This factor augmented considerably the effort required to study the

specifications which were being made available to the author, initially by D2D

1. As indicated previously, SEW-OSA provides the structure for such a process to occur, but it

does not incorporate any reference models as yet.
1. The complete CASE Tool structure is presented in an internal report [Aguiar 1994i].

117

SEW-OSA
CASE TOOL

embrace

descnbed_by a system comprise 0I
design

use Generic Le ; Part jai Level Particular Level
SEW-OSA generic partial particular

building blocks models model

comprise_of has

context
Definition and inter-

models of
dial

relationships
amongst the requirements has

constructs of CIM- has CIM-OSA OSA, object- ; domain
nApntod /iPC. Rn and . - va avu aw

-
Petri-nets a

1 C)

1ý

'a link to 1C-

E
1C o

IC
1 ý)

1

1G connectance model U

1v
1 .º
1

Q.

1

link to

has

behaviour
diagram

has has

business
process

domain
diagram

has

domain
process

has

structure
diagram

A has

domain
Process

has

functional
diagram

has

'------------------- - -------- -`

enterprise
activity

har -"ý

D , object iodels of ente rise activit
resources ;; i diagram i behaviour dia ramm

Figure 36 - Simplified structure of the CASE tool at requirements definition

118

(which was participating in the ESPRIT/AMICE consortium during the first year of
this research) and subsequently by a research institute at the University of
Karlsruhe, Germany. The specifications were extracted at first from publicly

available documents [Beeckman 1989] [Clark 1989] [ESPRIT/AMICE 1987a]

[ESPRIT/AMICE 1987b] [ESPRIT/AMICE 19891 [ESPRIT/AMICE 1991a]

[ESPRIT/AMICE 1991b] [ESPRIT/AMICE 1991c] [ESPRIT/AMICE 1991d]

[ESPRIT/AMICE 1991e] and then from the formal reference base [ESPRIT/

AMICE 1992a] [ESPRIT/AMICE 1992b] [ESPRIT/AMICE 1993a]. The FRB on

which this implementation is based was released in January 1993 [ESPRIT/AMICE

1993a] and constitutes the "frozen" version adopted by this research. The use of
CIM-OSA in the context of SEW-OSA should be viewed as the author's
interpretation of content of FRB's. and other documents about CIM-OSA. Few

opportunities occurred for an in-depth discussion of such an interpretation with

members of the ESPRIT/AMICE consortium knowledgeable about CIM-OSA.

ii. The changing nature of the CIM-OSA specifications, where at times there were

considerable discrepancies and contradictions between documents separately
published by different members of the consortium.

iii. A lack of publicly available software tools' from which to extract guidelines for the
implementation of CIM-OSA, as interpreted by the AMICE consortium.

These factors coupled with limitations of time and resources contributed, in

turn, to certain limitations in respect to the functionality embodied within the SEW-
OSA CASE tool. These limitations include:

a. Compliance with CIM-OSA:

A major limitation with respect to compliance with CIM-OSA, as clearly indicated in

Figure 21, is that no part of the information and organisation views has been

implemented. Although function and resource views are at the centre of the definition

of a system structure, the four views are not independent. Analysis and manipulation of
constructs of information and organisation views can help create a more adequate
function and resource views' model (due to the introduction of additional checkpoints
in the design process).
Some minor limitations are listed as follows:

"A structure has been implemented in SEW-OSA for the definition of objectives,

1. An exception here was the Demonstration tool [Emond 19881, which was produced in 1988.

However its functionality was limited to support the behaviour and functional diagrams.

119

- ------------------------ ----------------------- -
requirements definition modelling level

i resource enterprise N
capability i activity

-

-:::::;:

ý:

'::
=

� odellinglevork design -
-

object activity/entity
diagram behaviour diagram use

models of spawn use
resources

resource
has

active resource functional
diagram omponent mode operation

support
en messulat

spawn represent

configuration physical resourc resource
diagram component protocol

define interact via

resource
topology

----entationdescripti__---
i-- v_

________________________ ^;

Figure 37 - Simplified structure of the CASE tool at design and implementation

constraints and declarative rules, as well as for their inheritance across the
functional decomposition from the level of a CIM-OSA-compliant domain down to

enterprise activities. However, declarative rules do not play an active role in the

execution of the functionality of enterprise activities at run-time (i. e. declarative

rules are not enacted). These constructs are used in SEW-OSA for documentation

purposes only.

" CIM-OSA advocates that business processes and enterprise activities should be re-
used through a model. At the current stage, instantiated business processes and
enterprise activities can only be shared among the functions defined within the

context of a domain process.

" It is envisaged that the ending-status of a business process be generated through the
logical combination of ending-statuses of the functions it uses. The SEW-OSA
CASE tool does not support the definition of such a logical combination.

" Support for using partially instantiated system models is limited in SEW-OSA to

the reuse of complete models from previous designs. Facilities for reuse of

120

constructs or fragments of system models have not been included in the SEW-OSA

CASE tcol.

b. Features of the SEW-OSA CASE tool:
Although an effort was made in this research to realise the SEW-OSA CASE

tool as a usable product, a considerable product engineering effort is still required if the

tool is to be commercially exploited, namely:

" Transformation of constructs. This consists, for example, of translating a domain

process into a business process and re-using it without losing all the definitions that
have already been included in it when the construct was a domain process.

" Improved consistency check. The consistency checking function implemented in

the SEW-OSA CASE tool is limited to guarantee the uniqueness of identification of

every construct in the business model.

5.6. Contributions

The main contribution of the SEW-OSA model-building capability is the

realisation of a modelling method which associates business process and object-

oriented descriptions in order to produce a complete business model. Such a method

captures the essential definitions of the CIM-OSA modelling constructs, organises them
into a usable form and enhances them with additional constructs from object-oriented
formalisms and Petri-nets. In order to achieve such a method, two major tasks have

been accomplished, namely: (1) to review CIM-OSA (by analysing, correcting and

complementing those parts that were not well defined) particularly in regard to design

specification and implementation description modelling levels and (2) to enhance
CIM-OSA with modelling constructs from the other architectures. As a result of these

tasks, a number of incremental contributions (in their own right) have been made. Some

of these contributions are exemplified as follows.

i. Review of CIM-OSA:

" the definition of a diagrammatic representation for each CIM-OSA construct, whilst
CIM-OSA is limited to defining text templates';

" the definition of an appropriate meaning for terms introduced by CIM-OSA (such

as functional entity);

1. Standardisation of the graphical representations of the CIM-OSA constructs is in discussion

at the European standardisation level [CEN 1994a]. When such a standard becomes

available, the flexibility provided by the "Graphical Representation Catalogue" of the meta-
CASE tool (see Figure 18) allows the SEW-OSA CASE tool to easily comply with it.

121

" the definition of the actual effect of concepts used in the modelling process such as
resource sets and cells, events and enterprise activities at run-time. to name just a
few;

" the proposition of an implementation for the mechanism of inheritance of

objectives, constraints and declarative rules, associated with processes and
functions in the function view.

ii. Enhancement of CIM-OSA, associated with the realisation of:

" the object diagram (see Figure 30), as a turning point in the modelling process,
linking descriptions at the requirements definition modelling level, which are
inherently process-oriented, with intrinsic object-oriented descriptions of the

remaining modelling levels;

" the resource diagram (see Figure 33), as a tool for: (1) selecting alternative resource
components to address certain functional capabilities and, hence, coupling the
functional content of a system with the functionality to be provided by its

components; and (2) defining how components are to be allocated to function at
run-time, by means of a late-binding strategy (discussed later in the thesis);

" the configuration diagram (see Figure 34), as a means of rapidly configuring CIM-
BIOSYS. Before the introduction of this definition, the configuration of CIM-
BIOSYS was a tedious process (as demonstrated by Gilders [Gilders 1991a]
[Gilders 1991b]) that required the generation of a number of files containing
fragments of information. This information can now be generated automatically by

the CASE tool;.

" the activity behaviour diagram (see Figure 31), which provides a graphical
description of decisions within enterprise activities. In CIM-OSA, it was envisaged
that this would be described in a text form;

" the entity behaviour diagram (see Figure 32), as a means of describing the expected
behaviour of a selected resource element. This notion was not considered in CIM-
OSA.

Another important feature of the SEW-OSA CASE tool is its potential for

change, as it was implemented with a meta-CASE tool. Here, new constructs can be

added, relationships between constructs can be changed or attributes of existing
constructs re-defined. Such changes can be made without writing code, e. g. by simply
editing the diagram represented by the CASE Tool structure (shown in Figures 36 and
37).

122

5.7. Concluding Remarks

This chapter described the SEW-OSA CASE tool from a top-down perspective,

whereby all the details of the model had to be defined. The details of some of the
diagrams described in this chapter (e. g. the activity behaviour diagram shown
Figure 31) may convey the idea that the model-building process requires a considerable

effort to be completed. That may be the case for designs that start from scratch.
Nonetheless, if partially instantiated models of resources and systems are used, the

effort required to populate requirements definition and design specification diagrams

can be reduced considerably.

123

Chapter 6- Model-Enactment for the Purpose of
Simulation

This chapter describes the use of Petri-nets for modelling, analysis, simulation

and performance evaluation, as a first step towards model-enactment. The main focus

of this chapter is on describing the transformation process incorporated in the SEW-

OSA CASE tool which enabled the automatic generation of a Petri-net from a SEW-

OSA business model.

6.1. Simulation Methodology

In this study, simulation' has a twofold objective: to validate the model
delivered by the model-building capability of SEW-OSA and to serve as a means of
testing alternative configurations embedded in the business model (i. e. to support
contingency analysis).

Figure 38 depicts the methodology adopted to support simulation. Here, the
behavioural aspects of a complete business model was converted (or mapped)

automatically by SEW-OSA into a generalised stochastic time Petri-net (GSTPN)

representation. Such a representation captured the elements of information formalised

in the templates and diagrams discussed in Chapter 5, which are required to describe

the overall behaviour of a system.
The SEW-OSA CASE tool enabled the generation of code in the form of a

structured text description, in a format compatible with the input format of ARP (Petri-

Net Analyser and Simulator introduced in Section 4.4). Once accessible by the ARP,

the GSTPN models can be manipulated so that analysis and simulation can be carried

out and performance parameters obtained. The following sections describe each step of
the simulation methodology presented in Figure 38 and how they fit into the model-

enactment capability of SEW-OSA.

1. According to Roberts [Roberts 1984], "a simulation model is a model that produces
behaviour over some period of time; it is dynamic instead of static"; for Roberts, simulation

means to imitate. According to Pidd [Pidd 1992], "computer simulation involves

experimentation on a computer-based model of some system. The model is used as a vehicle
for experimentation, often in a `trial and error' way to demonstrate the likely effects of

various policies. " He also describes the main advantages of simulation over direct

experimentation as being: cost, time, replication and safety.

124

= CIM-OSA models

SEW-
OSA Petri-Net models

Modelling Data TOOL

Modelling Simulation 'i
y

<<: Data Simulator
ýs

Assessment
Analysis/

of Results Simulation
Results

00,
Invariants: Properties:
- Places - Reachability
- Transitions - Livelihood
State Generation - Live-locks
State Evolution - Deadlocks

Simulation Results

Figure 38 - Overall methodology for modelling and simulation

6.2. From CIM-OSA Models to Petri-nets

The concept of gracefully moving between modelling to simulation requires the
dynamic aspects of the modelled system to be visible. In CIM-OSA, the dynamic

properties of the modelled system are described by the behaviour model (which carries
the "time-glue" that links other system models with the sequence of run-time
happenings of system evolution). Execution of the behaviour model is a central aspect
of simulation, whereas the remaining modelling aspects (i. e. information, organisation
and resource, which are static representations in nature) can be gradually attached to the

central description provided by the behaviour model; this in order to define all elements

of a system. However, software tools are required to manipulate the models and,
therefore, refine them in order to flesh out a complete system definition. This is the

major role of the model-enactment capability of SEW-OSA.

As a first stage in the model-enactment process, a means of transforming
behavioural aspects of a CIM-OSA model into a Petri-net representation were
incorporated into the functionality of SEW-OSA [Aguiar 1993a]. As previously
discussed, this transformation was required to take advantage of existing software tools

which are capable of processing Petri-net models (e. g. ARP). As shown in Figure 38,

such a transformation acts upon a business model created by using the model-building

125

capability described in previous chapters. The parts of the business model that are

utilised in this transformation are constructs related to behavioural aspects of the

function view, namely: domains, domain processes, business processes, enterprise

activities, events, procedural rules, functional entities and functional operations.
An extension of ordinary Petri-nets, known as a generalised stochastic time

Petri-net (GSTPN) [Juanole 1989], was selected as the simulation model (as discussed

in Section 4.4). A process which translates from a CIM-OSA model to a GSTPN was
implemented by associating a fragment of a GSTPN model (defined in terms of macro-
Petri-nets) to each CIM-OSA construct relevant to the behavioural model. The nature

of these macros changes according to where they are used in the modelling process.
Table 3 shows the relationship between each CIM-OSA construct of interest and its

equivalent GSTPN-macro. One should notice from Table 3 that the SEW-OSA CASE

tool automatically handles the different configurations in which constructs are

submitted within a model. For instance an event can be represented in three different

ways, according to its position in relation to the domains that either produce or consume
it. A similar consideration is valid for domains which work only as producers or

consumers of events (i. e. they work as starters and terminators of activities).

Table 3- Syntax translation between CIM-OSA and Petri-nets

(row) Construct CIM-OSA Petri net

(1)
EV - Enterprise

.............
a

Event (
(without any ý""

... "' a
EV-n

"1'. PEV-n EV-n poEV-n
triggering output) b

.......... "'0

(2)
EV - Enterprise '" i pEV-n EV-n
Event
(without any ý'" 'ý

l .

`
triggering input)

EV-n "".....

'

.

(3) s
EV - Enterprise

,, "" "" .. ý ý a
Event ,ý ý

--tý" (Propagating
.....

a
EV-n ""' "...........

[",,

*pEV- n EV-n
between Domains) b

...... b

I26

Table 3- Syntax translation between CIM-OSA and Petri-nets
(roe.) Construct CIMM-OSA Petri-tut

(4)
DM - Domain
(that does not
generate any event)

DM-n '" DM-n "

/ piDM-n poDM-n

(5)
DM - Domain

DM-n DM-n ; fir' (that is not
triggered by any

O

event) ""t1.
pDM-n poDM-n

(6)
DM - Domain

,_- DM-n -% """ DM-n fir (producer and 1
consumer of
events) -'' piDM-n poDM-nit'

(7)
BP - Business

BP-n i
' Process ýt N

(represented in a piBP-n poBP-n
structure diagram)

BP-n`s behaviour
diagram

(8)
BP - Business BP-n piBP-n_i poBP-n_i
Process
(represented in a

BLm BLn
-- -- F -1 04e,,

070
behaviour diagram)

BP-n_i s. ,

poBP-n

127

Table 3- Syntax translation between CIM-OSA and Petri-nets
(row) Construct CIM-OSA Petri-net

(9)
EA - Enterprise
Activity EA-n

(represented in a piEA-n poEA-n
structure diagram)

EA-n`s activity
behaviour diagram

(10)
EA - Enterprise EA-n piEA-n i poEA-n_i Activity
(represented in a

BLm BLn
..

behaviour diagram)
_i

EA-nj

poEA-n

(11)
. Procedural Rules BLn tBLn `Forced' (FRC),

." 'Go/NoGo' `0100- ; ý.. 1ý . {t.
(GNG) and 'Loop' `

i piEF-n i poEF-n (LP) _ _

(12)
Procedural Rule
Spawning (SP)

BLn O

EF- BLq EF-o tBLq piEF-n

O

EF-p po_q piEF-o

0
piEF-p

(13)
Procedural Rule
Rendezvous (RE)

EF-x EF-n

BLy

O

oEF-x SLY

0

-
EF EF-o p p I

EF-z EF-p poEF- piEF-o

a poEF-z piEF-p

IZs

Table 3- Syntax translation between CIM-OSA and Petri-nets

(row) Construct CINI-OSA Petri-net

(14)
Internal Events lEn tiEn
(i. e. Start, Finish
or Terminate) EF-

ýJ
EF-z " " " y _ ,

pEF-y pEF-x

(15)
Functional
Operation 1 FE -X

jFE-X '1
O-Y

FO-Y
EA-n

lEA-n1

(16)
Functional Entity
and Active FE-X
Resource

Components

___ - ___ ,-a

ARC-n C- 1 FE-X

---------- ARC-n
tARC-m

The CIM-OSA constructs described in Table 3 relate to the following parts of
the model-building capability:

" the first six rows relate constructs manipulated in the context diagram (shown in

Figure 23), namely: events and non-CIM-OSA-compliant domains. CIM-OSA

compliant domains are not directly represented, for they are decomposed into

domain processes which are, in turn, represented by the functions that they contain
(i. e. business processes and enterprise activities);

" domain processes are represented directly by their behaviour diagrams (depicted in

Figure 27);

" business processes and enterprise activities that appear in a structure diagram

represented by Figure 26 (i. e. rows 7 and 9 in Table 3) comprise of the pool of
functions which can be triggered by their parents and are described by procedural

rules, internal events and other enterprise functions;

" business processes and enterprise activities that appear in a behaviour diagram

exemplified by Figure 27 (i. e. rows 8 and 10 in Table 3) comprise of representations

1.9

of the parent utilisers of their functionality. An enterprise activity is a parent of an

activity behaviour diagram (see Figure 31), whereas a business process is a parent

of a process behaviour diagram (see Figure 27);

" rows 11 to 14 relate to the elements manipulated in the behaviour diagrams. In

these rows, "EF" identifies either an enterprise activity or a business process being

used by its parent (represented by the identifier BP-1EA-2);

" functional operations exchanged between enterprise activities and functional

entities (as described in the object diagram shown in Figure 30) are represented by

shared places (i. e. a communication channel) through which tokens (i. e. messages)

can flow, as represented in row 15 in Table 3;

" active resource components, with which an enterprise activity occurrence interacts,

are allocated every time the occurrence is triggered, provided that they are available
to perform its functional operations. The allocation of a limited number of active

resource components (defined in the diagram of Figure 33) to an `a priori'

unlimited number of occurrences of enterprise activities is represented in the

manner indicated in row 16 in Table 3. Here, the number of tokens in the place "FE-

X" indicates the number of active resource components available within the pool of

resources represented by "FE-X' ;

" enterprise activities and active resource components are already represented in a

predicate-action Petri-net form (as shown in Figures 31 and 32). In the translation

process between predicate-action Petri-net to GSTPN, the predicates which are

related to internal processing of the enterprise activities and active resource

components have been disregarded.

The rationale behind these macros implies certain implementation decisions.

For example, events linked to a number of domains, such as in Figure 39, should be

interpreted as if an occurrence of EV-n could be generated independently by either of
the producer domains (i. e. DM-1 and DM-2), whereas any occurrence of EV-n

propagates to both its consumer domains (i. e. DM-3 and DM-4). However, whether an

occurrence of EV-n propagated to a domain actually triggers functions within that
domain, depends upon the following conditions:

" if the domain is non-CIMOSA compliant, whatever functions that domain

embraces, a triggering condition should occur;

" if the domain is CIM-OSA compliant, the occurrence of EV-n is latched (i. e.

memorised) within the domain and submitted to logical combinations of conditions

that may exist between EV-n and any other event or ending-status of a function

belonging to that domain. For example, if a procedural rule condition requires EV-n

130

DM-1)a A. DM-3
E

DM-2 DM-4

- EV

DM-1 a DM-3

pEv. EV n
FQ

pDM-1

®iý1+n

piDM-3 poDM-3

DM-2
DM-4

" pEV-m EV m piDM4 poDM-4
pDM-2 p)M-2

C

Figure 39 - Example of a Petri-net for a fragment of a context diagram

and EV-m to occur in order to trigger a function, any occurrence of either EV-n or
EV-m will be latched in order to await for its counterpart to occur (so that a thread
of functional execution may start). A number of occurrences can be latched to be

combined with their event counter-parts.

Another important feature incorporated in the facilities for constructing CIM-
OSA models (which further complicated the transformation process) concerns the
sharing of enterprise functions by distinct procedural rule sets (i. e. the sharing of
functions in the description provided by behaviour diagrams, as represented by
Figure 27). As these functions can execute concurrently, they may compete for the
same resources. Enterprise functions are represented as a "pool" of models that are used
by the distinct procedural rule sets by means of shared places. Figure 40 illustrates how

such a feature is implemented in SEW-OSA. Here, the model of a business process or
enterprise activity is referred in the behavioural description of the enterprise function

and uses them as sub-nets (i. e. child Petri-nets). The same sub-nets can be used in
behaviour diagrams of other enterprise functions. The fact that the same model is

shared by the procedural rule sets of distinct enterprise functions enables the designer

to assess issues of utilisation level of certain enterprise functions which, ultimately, lead

to means of determining the utilisation of the resources associated with them.

131

...
ti BP-2

BP-2_BP-1 1Bl

poBP-2_BP-1

behaviour diagram: BP-1

BLn
EA-2

BP-3
8ý Bil

... EA-3

EA-2`s activity
behaviour diagram

piEA-2 poEA-2

7 EA-2_BP- poEA-2_BP-1

"2_6-1
- tBLx

BP-3-BP-1

piBP-3_BP-r

V4
piBP-n pOB

BP-3's behaviour
diagram

EA-3-BP-1

piEA-3_BP-1

P-3_BP-1

Figure 40 - Example of a Petri-net for a fragment of a behaviour diagram

Petri-net macros presented in Table 3 summarise qualitative information

associated with the transformation process. However, GSTPN also incorporates data

about time and probability functions associated with transitions (as explained in

Appendix 4). Here, relevant data about time is extracted from attributes defined in the

templates of functional operations (as exemplified by Figure 41). However, all

132

remaining constructs that are not decomposed down to functional operations (e. g. non-
CIM-OSA compliant domains and events) have their time intervals set to zero. When

no data is input by the designer in the "Simulation Data" attributes of a functional

operation template, a null time interval is assumed by the SEW-OSA CASE tool. The

same criterion applies to all other constructs that hold information relevant to the
GSTPN models which have not been defined when the model is generated.

FUNCTIONAL OPERATION TEMPLATE:

TYPE: Manufacturing

IDENTIFIER: FO-8

NAME: Populate PCB

I DESIGN AUTHORITY: Marcos Aguiar

IDESCRIPTION: Commands the placement machine to populate a batch of PCB

Simulation Data:

Execution Data:

- Time Interval: [64,72]

- Probability Distribution: NORMAL

make(PCB)

Figure 41 - Example of a functional operation template

6.3. Analysis and Simulation

Based on the method implemented for transforming CIM-OSA models into

GSTPN descriptions, code is generated in a format interpretable by ARP (see

Figure 38). As stated in Section 4.4, this particular tool allows: editing of the model

generated by SENV-OSA (so that minor changes can be made to suit simulation tests

without re-generating the Petri-Net model), analysis of the basic properties of a Petri-

net; analysis of invariants (of places and transitions); step-by-step simulation of the
Petri-net's state evolution; and performance analysis of certain parameters of the

system, based on its execution in simulated time (i. e. dynamic simulation of its state

evolution).

6.3.1. Editing

A Petri-net model is generated by the SEW-OSA CASE tool in a structured text
form (rather than graphically). This text defines places, transitions and how they are

133

inter-linked. The syntax that the ARP is able to interpret is shown in Figure 42. An

example of such a description populated with data from a case study is presented in

Appendix 5. New or altered nets require compilation (i. e. an internal ARP operation

that checks the net for syntax errors) before any of the operations described in the
following subsections can be performed on the net.

NET net name; (comments are allowed between brackets)

CONST

NODES

constantl, constant2,... = value;

name I, name2.... : TRANSITION [[Turin, Tmax]) (DISTRIBUTION (1000));
name I, name2,...: PLACE ((initial number of tokens));

STRUCTURE (input) (output)
trans-name: (place, weight*place....), (place, weight*place,...);

ENDNET.

Figure 42 - ARP syntax

6.3.2. Analysis

ARP is able to perform the following analyses on a Petri-net: analysis of
invariants of places and transitions; analysis of properties (i. e. limitation, conservation,
livelihood, multi-sensibilisation, re-initialisation, livelocks and deadlocks); and

analysis of state (i. e. generation of the table of markings associated with the net

evolution). These analyses can be a powerful aid to checking the dynamic behaviour of

a Petri-net for undesirable features. As an illustration, livelihood gives an indication as
to whether all transitions can be triggered in a model. That is, a non-live transition
indicates that a certain event in a system never occurs which could point to modelling

error. Livelocks and deadlocks identify confined states in a system (which are

essentially undesirable). Re-initialisation reflects the ability of the net to return to its

initial state (after processing an incoming event).

6.3.3. Simulation

ARP also provides means of executing a Petri-net on a step-by-step basis. The

simulation option enables the user to check for minor deviations in the behaviour of the

system by controlling the execution of a net on a transition-by-transition basis.

6.3.4. Performance analysis
One of ARP's most important features is its capability to support performance

analysis. This is based on computing the time the net takes to evolve from the

134

occurrence of an initial event to the occurrence of one or more final events. This allows
certain dynamic characteristics of a manufacturing solution to be studied (e. g. lead-

time, production rate, etc.). Additionally, by computing the average number of tokens
in each place (during a simulation) ARP enables study of variables such as work-in-

progress and level of utilisation of resources.
Figure 43 depicts an example of the type of results obtained from using this

performance analysis capability. Here, the impact upon the manufacturing lead-time (of

an assembly line) of two parameters (namely checking time and rate of PCB produced)
is illustrated to provide a flavour of the issues that can be investigated. These results

were obtained in an early study of D2D's shop-floor [Aguiar 1993a]. A more extensive
discussion of results obtained from this case study is included later in this thesis.

16,000.00

14.000.00

12,000.00

ä

E
41

v 10,000.00

w

8,000.00

4

chock tine
.........

: -ý-159

-*-104s

6,000.00

4,000.00

2,000.00
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 60.00 90.00 100.00

Rate of check (%)

Figure 43 - Manufacturing lead-time as a function of checking rate and time

Corresponding to each point in Figure 43, a report is generated by ARP, thereby
documenting simulation results for a particular configuration of the model. Example of

oor :

reports are presented in Appendix 6.

135

6.4. Simulation using the Model-Enactment Capability

This section describes how ARP features were utilised to support design

decisions within the design and implementation phases of the IMS life cycle. As

discussed in previous chapters, model-enactment is proposed to be achieved by SEW-

OSA in a gradual manner, the first step being the ability to perform simulation based on

use of the models. In respect to simulation, this gradual process should be supported by

an iterative process, which embraces:

" validation of requirements definition and design specification models, this includes

support for evaluating performance considerations associated with the selection of

candidate solutions (in terms of system configuration and its components);

" execution of the overall system model through simulation;

" assessment of performance results obtained from executions undertaken on

alternative system components and configurations (i. e. alternative ways of

organising the interactions amongst system components).

Such a process implies the execution of two levels of analyses on the business

model, namely: analysis of behaviour and analysis of system configuration.

a. Analysis of behaviour

This stage consists of transforming the business model of a system and its

components into a single Petri-net. The aim here is to analyse the behaviour of the

system from a static perspective (by examining the properties of a Petri-net model),

as well as from a dynamic viewpoint (by means of discrete event simulation). As

part of the behaviour analysis, time constraints and concurrency issues are

analysed.

This analysis is performed by creating simulated scenarios which are determined

by: (1) how events that trigger activities in the business model are generated; (2) the

values of particular time parameters associated with functional operations (see

Figure 41); (3) the number and configuration of system components; and (4) the

structure of the actual business model. When all scenarios of interest have been

evaluated by ARP, the design specification model can be considered to be valid.

Analysis of behaviour is supported by the simulation features described in this

chapter. Such features are particularly relevant at the early stages of the IMS life

cycle, where emphasis is on gaining an understanding about how the system works
based on the manipulation of its model.

136

b. Analysis of system configuration
The aim of this stage is to derive a robust business model, as well as an adequate

specification of system components.

At this stage, the business model is executed in such a way as to interact with

prototypes of system components distributed across an integrating infrastructure (as

illustrated in Figure 9).

Thus, the business model is no longer described in a unique Petri-net. Rather the

model contains refinements of the model manipulated during simulation (whereas

models of system components are selected according to a methodology discussed

later in the thesis). From the perspective of the business model, system components
described by models should behave in the same way as actual physical components,
in regard to: object view consumption and production, resource utilisation and

execution time of functional operations.

Nevertheless, the overall behaviour of the business model should be the same as in

the previous stage (i. e. analysis of behaviour). This allows execution of similar tests

to those performed in the previous stage, as a means of comparing performance
issues.

The main objectives of these two stages are to check the model for design errors

and assess design decisions embedded in the model. Based on the results of these tests,

changes in the model may arise which, in turn, may require further iterations between

modelling and simulation. Iterations between model-building and model-enactment are

repeated until satisfactory results are obtained. Simulation in the context of the model-

enactment capability, is limited to support of the behaviour analysis stage. Analysis of

system configuration is supported by the capabilities described in the next chapter.

6.5. Limitations

The limitations encountered in using the methodology depicted in Figure 38 for

a behaviour analysis of the business model have two primary roots, namely:

a. CIM-OSA/Petri-net model transformation:

Some of the limitations inherent in the transformation macros proposed in

Table 3 are as follows:

" no equivalent GSTPN representation was constructed for representing different

"ending-statuses" of termination of enterprise functions.

Basically, enterprise functions are modelled as if only one "ending-status" is

possible. Such a limitation implies that decisions that are taken based upon

137

"ending-statuses" are not captured by the Petri-net models. In models where
"ending-statuses" are intensively used, the Petri-net model may not reflect the

actual behaviour of the system. Such a limitation is intrinsic of the type of Petri-net

used in this model. In order to overcome this limitation, more powerful extensions

of an ordinary Petri-nets should be used (e. g. Coloured-Petri-nets).

However, this limitation is not relevant to the analyses and simulations executed by

the ARP, for one of its features is to enable descriptions of the probability of a

certain ending status to occur (i. e. association of probabilities between the firing of
transitions that are in conflict).

" passive resource components were not represented in the transformations, although
they can be included in a similar manner to active resource components.

" the over-head introduced by an integrating infrastructure was not included in the
Petri-net models, for they may vary considerably according to system configuration
decisions and integrating infrastructure used. Indeed, studies of the impact of the

over-head upon system performance is one of the issues that this thesis aims to
investigate.

b. Simulation Tool

Certain limitations which are intrinsic to the tool adopted for simulation (i. e.
ARP) are discussed as follows.

" Lack of model animation. Currently, only a text-based interface can be used to

obtain results from ARP.

" Loose integration between the simulator and the SEW-OSA CASE tool. Interaction

between the SEW-OSA CASE tool and the simulation tool is via file transfer
between a Unix platform (on which the CASE tool is run) to an MS-Windows

platform (on which the ARP is run). This limits the synergy that can be realised by

combining the environments. This limitation could be overcome by re-
implementing ARP on a Unix platform (or SEW-OSA on a MS-Windows

platform).

" Although ARP suits the requirements of this research (specially in regard to

qualitative analysis of systems, e. g. deadlocks, livelocks, etc.), it does not provide

various facilities typically offered by discrete event simulators used for

manufacturing system simulation (e. g. animation).

" The translation process incorporated into SEW-OSA generates large Petri-net

models from fairly small CIM-OSA models. However, ARP was initially conceived
to execute small Petri-nets (i. e. Petri-nets containing a maximum of 150 places and
150 transitions). Thus, the simulation exercises which were carried out had to use

i_s

models of limited size.

All these limitations can be readily overcome if SEW-OSA is interfaced with more

powerful tools. These tools could either be more sophisticated Petri-net simulators
(e. g. Unisson [Bonney 1992]) or simulation tools traditionally applied to logistic

analysis of manufacturing systems. In either case, the code generated by SEW-OSA

would have to be re-implemented in order to comply with the particular syntax used
by these tools.

6.6. Concluding Remarks and Contribution

Arguably, the activities reported in this chapter, which were developed within
the first of year of the author's Ph. D., comprise one of the first instance of an application
of CIM-OSA to a problem of real industrial interest. They show how CIM-OSA models
can be used to analyse and simulate issues which are relevant to design decisions in

manufacturing systems. The results of these activities were published in a conference
paper and a journal paper, the latter being awarded the "1993 Donald Julius Groen
Prize" (i. e. "article of the year" in the area of "communication and control") by the
Institute of Mechanical Engineers (see Appendix 7).

This work has also demonstrated how Petri-nets could be used in conjunction
with CIM-OSA, by implementing and applying their formalism within a CASE tool.
This was achieved by proposing and validating the use of a detailed mapping between

the behavioural modelling constructs of function view and generalised stochastic time
Petri-nets. Such a comprehensive mapping is both a novel and relevant approach to

enabling modelling and simulation.

139

Chapter 7- Model-Enactment for the Purpose of
Rapid-Prototyping

This chapter describes the way in which the business entity of SEW-OSA was
implemented and how it works. The business entity incorporates an associated model
debugger as an aid to model-enactment. The most relevant features of the business

entity are presented, highlighting the importance of supporting the rapid-prototypingl

of manufacturing systems from model-based descriptions.

7.1. Business Entity Components

Once a business model is considered to be satisfactorily well tested through

analysis and simulation runs, the rapid prototyping phase can start. At this stage, the

same model used to generate Petri-nets for analysis and simulation purposes can be

used to generate the various fragments of code required to define a system configuration
and its components. Such fragments are then made available in an interpretable form to
the business entity of SEW-OSA. The business entity is a layer of domain specific
services sitting upon the CIM-BIOSYS integrating infrastructure which, in addition to

executing the business model, serves as a model debugger (this structure is represented
in Figure 9).

In order to understand the complexity embodied within the business entity, the
following is worth noting. The business model encapsulates a description of the types

of functions that need to be executed by the identified resources. However, at run-time,
a number of occurrences of such function types may be executed concurrently.
Execution of these occurrences (also referred to in this thesis as threads of the business

model) must be managed so that they maintain their identity whilst being executed by

a limited number of resources. The function of the business entity is to provide such a
level of management, namely: to execute a number of threads of the business model
simultaneously and to allocate system components to perform the functions captured in

the business model.
Figure 44 presents the overall data flow of SEW-OSA which emphasises the set

1. Rapid-prototyping characterises the engineering process by which a design description is

rapidly realised in order for it to be tested. In regard to the software development process,
Brown [Brown 1993] proposes the "V" model to describe such a process, in which

requirements definition and design/specification activities constitute one leg of the "V" and

realisation and maintenance activities the other leg. Rapid-prototyping is characterised by

Brown as cutting the "V" transversally, by enabling the progression from specification to

implementation directly, thereby skipping tedious processes of generation and validation of

paper specifications.

140

of models that are generated by the CASE tool. These fragments of models contain both

the various facets of the business model that will be used to control the interactions

among system components, and the code structure for the core functionality of the

components. As depicted in Figure 44, the CASE tool generates five sets of models:

CASE '"' FcTra+sfa

tod t 19. Messaffe Exchange

&uin«s Model

PC ac Al:

Event
Handles

_ .;
tint

ýev log ýý .
`pCdog

ae Iog ýý
....

.?
- .i Occuaenca

-- ----- ----- --

CM"BIOSYS

Figure 44 - Overall data flow in SEW-OSA

" ev: describes all events (i. e. asynchronous happenings) in the system.

" pc: lists all functions (i. e. domains, domain processes, business process and
enterprise activities) and defines the procedural rule sets which inter-relate these
functions according to the information formalised in behaviour diagrams (as
defined in Figure 27).

" ac: lists all enterprise activities and functional operations used by them. This file

also holds the code structure of enterprise activities generated from activity
behaviour diagrams (as defined in Figure 31).

" rc: lists all active resource components and functional operations that they are able
to execute. This file also contains the code structure of active resource components
generated from entity behaviour diagrams (as defined in Figure 32).

" cf: consists of information required to configure CIM-BIOSYS in order to interact

with applications associated with the business entity and those representing active

resource components (as defined in Figure 34).

" EAi and ARCj is the code describing the internal behaviour of enterprise activities

and active resource components.

141

An instance of pe is shown in Figure 45. This figure shows the information

extracted from behaviour diagrams and converted to a format that can be interpreted by

the business entity. This information is used to configure the components of the
business entity of SEW-OSA which ultimately will run as CIM-BIOSYS applications'
(as illustrated by the interactions in Figure 44). Each component is responsible for

certain functions of the business entity which are associated with the normal operation

of the modelled system.
As part of the debugging functions provided by SEW-OSA, each component

interacts with the designer through appropriate interfaces. These interfaces provide
functions which are standard for all four major components of the business entity (i. e.
the Event Handler, the Process Controller, the Activity Controller and the Resource

Manager), thereby including a capability to:

" check the list of constructs present in fragments of the model handled by the

component (e. g. the fragment of the model is presented to the user as a list of events
in the Event Handler and functions in the Process Controller);

" set the component to automatic mode so that its functions are executed without
interference from the designer, although he (or she) can still monitor occurrences.
The monitoring process in the debugging interface consist of scrolling lists of
happenings, i. e. events that are continually updated;

" set the component to manual mode where the designer is able to intervene with

processing functions of the business entity. Examples of such interventions are the

generation of external events in the Event Handler, or enabling step-by-step

execution of model occurrences in the Process Controller, Activity Controller and
Resource Manager;

" generate a log of happenings concerning model execution at each business entity

component (see Figure 44). Log files contain records of all happenings that occur

within the component (i. e. all messages issued to the designer concerning major

steps of model execution and control messages exchanged with the remaining
business entity components). A time stamp (to the resolution of a micro-second)

and an occurrence identifier are associated with each thread of execution of the
business model. The record of time figures and occurrence identifiers obtained for

each component can then be used to assess the overall performance of the system.

The differences between time figures obtained here with the log files and those

1. A CIM-BIOSYS application designates a software process which uses the services provided
by the CIM-BIOSYS infrastructure.

142

CIM-OSA Design:

Process Model:

DM-6/PCB Assembly
DP-1/Unique Line Type

BP-I/Preparation
BP-2/Populating
BP-3/Finishing
EA-1/Print
EA-2/Monitor
EA-3/Place
EA-4/lnspect
EA-5/Refow Solder
EA-6/Washoff

DP-1 (

ON (EV 1) DO BP-1
ON (ES(BP-3) = "any") DO EV-2
ON (ES(BP-1) = "done") DO BP-2
ON (ES(BP-2) = "done") DO BP-3

}

BP-1

ON (START) DO EA-1 & EA-2
ON (ES(EA-1) = "done" & ES(EA-2) _ "done") DO FINISH

}

Figure 45 - Example of a Process Controller input file

obtained through the simulation runs described in Chapter 6 are that: (1) the former

represents `real time' whilst the latter relates to simulated time; (2) the latter does

not consider the overhead imposed by the integrating infrastructure concerning
message exchange and processing time whilst the former does; and (3) the former
individualises each occurrence of model execution (even though it supports the

execution of a number of occurrences simultaneously), whilst the latter cannot
provide performance information about individual occurrences.

A sample log for the Event Handler is presented in Figure 46.

7.1.1. Event Handler

The Event Handler is responsible for initiating a thread of business model

execution, this by channelling event occurrences (e. g. order release) initiated from

143

events generated by application 'pc':

I8,05/1994-17: 02: 55.803 > DP-1/Unique Line Type triggered by: EV 10

18/05/1994-17: 02: 56.137 > Function(s) BP-1 ' triggered

18/05/1994-17: 02: 59.322 > Function(s) EA-1 EA-2' triggered

18/05/1994-17: 03: 18.819 > Killing Process Performed

18/05/1994-17: 03: 18.825 > Reset process performed

Figure 46 - Example of a Process Controller log file

outside the scope of the business model as well as monitoring event occurrences

generated within the business model. A unique number is assigned to an event or a

combination of events. Thereby, identification of a thread of model execution (i. e. an

occurrence) is propagated to the rest of the business entity, so that the thread of model

execution can be individualised even when it is competing with a number of other

concurrent occurrences.
As an additional debugging feature, the Event Handler interacts with the

designer through the interface depicted in Figure 47. This interface enables the designer

to generate events in a "manual triggering mode" (these events being selected from the
list at the top of the X-Windows user interface depicted in Figure 47). Events that are

accessible to the designer are those that trigger a thread of model execution (i. e. events
internal to a CIM-OSA-compliant domain, events generated by non-CIM-OSA-

compliant domains or events that have no producers, only consumers).

7.1.2. Process Controller

The Process Controller is responsible for executing occurrences of domain

processes, this based on underlying procedural rule sets of its component processes.
The Process Controller is able to cope with concurrent execution of several occurrences

of the domain process. This is achieved by the Process Controller through its spawning

of local processes (i. e. Unix-based processes which do not communicate via the CIM-

BIOSYS infrastructure) representing domain processes, which are responsible for the

execution of their individual sets of procedural rules. In turn, these domain processes

may spawn other processes (representing their component business processes,

according to the structure defined in Figure 26) to execute their particular sets of

procedural rules (as defined in their behaviour diagrams, as defined in Figure 27). All

those processes are part of the Process Controller and they communicate with one

144

another via local communication sockets (i. e. Unix sockets), in order to coherently

execute several occurrences of process models.
As part of its additional debugging functions, the Process Controller interacts

with the designer through the interface depicted in Figure 48. This interface enables the

designer to: interrupt the process model execution while running in automatic mode;

resume execution of the model; or start step-by-step execution from the interrupting

point onwards. A formal specification of possible states associated with the control of
debugging functions is shown in Figure 491.

7.1.3. Activity Controller

The Activity Controller is responsible for coordinating the execution of
occurrences of enterprise activities. Like the Process Controller, the Activity Controller

1. In this figure, bubbles indicate states and bars crossed by arrows indicate state transitions.

Figure 47 - Event Handler interface

141

can deal with the execution of several concurrent occurrences of enterprise activities.
This is achieved through activating processes which represent enterprise activity

occurrences and communicate via the CIM-BIOSYS infrastructure. In this way, they

may share the same code structure described in activity behaviour diagrams (as
depicted in Figure 31). The Activity Controller and enterprise activity occurrences
communicate with one another via CIM-BIOSYS application services, this in order to

coherently execute several occurrences of activity models.
As part of its additional debugging functions, the Activity Controller interacts

with the designer through a similar interface to the one defined by the Process

Controller (depicted in Figure 48).

7.1.4. Resource Manager

The Resource Manager is responsible for controlling the allocation of active

resource components to execute threads of the business model (i. e. performs a task
dispatching function). In the Resource Manager, the unfolding of a business model is

constrained by the resources allocated to execute the model. However, the actual

resource scheduling function is not supposed to be provided by the Resource Manager.
In fact, the Resource Manager operates as a bridge amongst the three parties involved

in resource allocation, namely: the remaining components of the business entity (i. e.
Process Controller, Event Handler and Activity Controller); active resource

components that need to be scheduled; and a special type of active resource component

Figure 48 - Process Controller interface

146

E aý g ý Üw

s ; ;! ý ý

H

C
IIi I'll

r'II

-1 W
WN

N N

r.
c O U
H
0

w
E
ön
v

. r.

c3

C_A
Lt.

147

(which provide the scheduling functionality). As for other components of the business

entity, the Resource Manager can handle the concurrent execution of several

occurrences of model threads. At the rapid-prototyping stage, the Resource Manager

interacts with active resource components represented as CIM-BIOSYS applications.
These applications are similar in nature to those representing occurrences of enterprise

activities.
As part of its debugging facility, the Resource Manager interacts with the

designer through a similar interface to the one defined by the Process Controller

(depicted in Figure 48)

In addition to its four main components, the business entity also enables the user
to view internal events occurring within two other classes of components, namely:

enterprise activities and active resource components.

7.1.5. Enterprise Activity

Run-time occurrences of enterprise activities are mapped onto CIM-BIOSYS

applications, each of which is initiated dynamically every time an enterprise activity is

triggered by procedural rules (executed by the Process Controller). Achieving control

over creation and interaction between processes is a function of the Activity Controller.

The Activity Controller also creates a file from which each enterprise activity obtains
its fragments of code (represented by EAi in Figure 44). This code is then interpreted

by a Petri-net engine, which is constructed specifically to execute its functionality.

This code is generated from a Petri-net model (created using activity behaviour

diagrams exemplified in Figure 31). The transition at the top of Figure 31 (i. e. trans-in)
is triggered when the enterprise activity is created by the Activity Controller, whilst

when the transition at the bottom of the diagram (i. e. trans_out) is fired, it triggers the

enterprise activity termination procedure. An enterprise activity has a transitory life. It

is created at run time every time its functionality is required and it lasts for as long as
"trans-out" is not triggered. When "trans-out" is triggered the enterprise activity ceases

to exist.
A number of occurrences of enterprise activities (that share the same description

defined in the activity behaviour diagram) may exist at same time. However, they are

uniquely identified by an identifier generated by the Activity Controller. Such an
identifier is related to the thread of model execution in which the enterprise activity is

used. For example, at a particular time, the second occurrence of the enterprise activity
EA-I will cause the creation of a CIM-BIOSYS application named EA1.2, which will
be executed simultaneously with application EA 1.1 (which was previously created).

An enterprise activity occurrence does not provide the standard debugging

functions present in the four other components of the business entity. Its means of

148

interacting with the designer is through a shell tool [Back 1986] on which information

associated with the firing of each transition are displayed (see Figure 50)1. This enables

a designer to monitor the evolution of a Petri-net associated with the enterprise activity

and to assess repercussions with respect to the remainder of the business model. In this

way, designers can identify any consistency in a model.

CIM-BI05Y5 C-Prolog version 1.5+
[Restoring file /hose2/sandra/rarcos/exec/petri/petri. save l
when -1

?- ['/houe2/sandra/rarcos/rodels/ARC1', '/ho. e2/sandra/iarcos/exec/petri/run'].
/ho~ e2/sandra/Marcos/models/ARC1 consulted 1856 bytes 9.93411e-10 sec.

FO-1/Input BB - triggered

Firing transition tFE1_1

FO-2/Print 88 - triggered

Firing transition tFEI-2
Firing transition tFE1_3
Response to request number 1 arrived

FO-3/B8 Printed - triggered

11

Figure 50 - Enterprise activity and active resource component interface

7.1.6. Active resource components

As previously indicated, at the design specification modelling level the
behaviour of active resources components is emulated by a Petri-net model (which
itself is defined by an entity behaviour diagram, as shown in Figure 32). Likewise for

an enterprise activity, a model is generated by the SEW-OSA CASE tool and passed to

the active resource component engine by the Resource Manager as a file (i. e. ARCj in

Figure 44). This model is executed by the active resource component, which exists as

an independent CIM-BIOSYS application, and interacts with enterprise activity

occurrences through message exchange. These messages are not exchanged directly

between enterprise activities and active resources, but via use of a communication

protocol established between the Resource Manager (which interacts with active

resource components) and the Activity Controller (which interacts with enterprise

activities).
Similarly to an enterprise activity occurrence, an active resource component

1.
.
This interface was built upon an interpreter developed by the University of Edinburgh

[Pereira 1982].

149

interacts with the designer through a shell-tool similar to the one used by the enterprise

activity (see Figure 50).

7.2. Business Entity Structure

For the business entity to execute a model, co-operation is required between the

components discussed in the previous section. Each component provides certain

services required for model execution, this by acting upon a certain view or fragment

of the business model. Execution of a complete model is achieved via a communication

protocol developed to use the application services of the CIM-BIOSYS infrastructure.

This layer of protocol allows components to offer their services to remaining sections

of the business entity, thereby facilitating cooperation through message exchange.
The type and format of the messages defined to be exchanged by the

components of the business entity are listed in Table 4. These messages include

interactions between the Event Handler, the Process Controller, the Activity Controller

and the Resource Manager, as well as interactions between processes local to the
Process Controller (i. e. occurrences of domain processes and business processes).

It is not a trivial task to gain an understanding of how the components of the
business entity interact. However, this is necessary to ensure that the model correctly

reflects properties of the real system. Much of the complexity involved in this process

stems from the considerable number and types of messages required to enact multiple
occurrences of a model.

In order to illustrate how a model is executed by the business entity, a business

model example will be examined. Figure 51 illustrates a very simple business model.
This model consists of a single domain process (DP-1), triggered by an event EV-1

which, on its completion, generates an event EV-2. The domain process comprises a
single business process (BP-1) which, in turn, uses only one enterprise activity (EA-1).

The enterprise activity uses two functional operations (FO-1 and FO-2) provided by

one active resource component (ARCj). Furthermore, in this example functional

operations are to be executed sequentially (i. e. FO-1 first then FO-2).

Figure 52 shows a scenario diagram of the business entity. This diagram

illustrates how execution of the example model depicted in Figure 51 is achieved. The

round boxes in Figure 52 represent CIM-BIOSYS applications whereas square boxes

represent Unix application processes (which do not communicate via the CIM-BIOSYS

application services). All these applications communicate through exchanging
messages, as defined in Table 4. The messages are numbered sequentially, according to

the order at which they occur (this number being displayed between parenthesis in

Figure 52). The fields transmitted in the message appear in the order depicted by their
labels in Figure 521.

150

t-----------------------ý

DP-I EV- -- -ý

Procedural Rule Set of DP-1:
ON EV-1 DO BP-1
ON ES(BP-1) = "done" DO FINISH

BP-1 Procedural Rule Set of BP-1:
ON START DO EA-1
ON ES(EA-1) = "done" DO FINISH

EA-1

FO-1 II FO-2

ARCj

Figure 51 - Model example for describing business entity interactions

A step-by-step description of the scenario diagram shown in Figure 52 is

presented in Appendix 8. This includes a description of the meaning of each message
and its fields. However, the following points are worth highlighting:

" for the example of Figure 51, the execution of a thread of the business model starts

when EV-1 is generated, which triggers DP-1 and, in turn, BP-1 and EA-1. EA-1

requests the execution of the operations FO-1 and FO-2, and these are executed by

ARCj. On completion, EA-1 generates EV-2 which marks the end of a thread of this
business model;

" the separation between functionality and behaviour is evident in Figure 52 through

the interactions between ARCj and EA-1. These interactions occur via the Activity

Controller and the Resource Manager, so that neither ARCj nor EAI. i are visible to

one another;

" ARCj is allocated to serve EAU as long as EAU exists. That is, ARCj will not

execute functional operations of an enterprise activity occurrence other than the one

1. Fields in square brackets are not transmitted, but implied by the context in which each

message occurs.

151

i

C., 1

fJ7

C)

t/f

.0
V

a+

an
cs

z
«r
0

cs

w
b
cs
ti

F>-,

ýt
aý
.a
Eý

b v v V V V - ý C7 V V -

a >
v

U U Li
v

"
E v A V

V c 'd
A A w w

1-0 ; ;
v ý

p
ý ý

p
ä

- v v
-I

u

a F w x v N W
v l

W
aý aý ý w

f i ý ý N ri ý ä
uý`i w Ä Ä

a
ýa w

0
Ü

(X)

y W
C

I

g s
) c

O
1. i
U 7 v)

r+
U

C
U C O

CC ý"

4) ^ "
"O C U Ü C 0
7

C
b X >

0 _ C C v j

C o0 U D
pp
C 8

p `e 3 Ü Ü
. 1C

G
"

ö
C
CS

C
ý

K U
ý

ý. .
U 7j

ý
U

..
Q X

ß^! S
ý
G cl °4 LV U

p
G

2 a0 v
c`ý c C cC

1 o pp " "

.

v
ý7 U

Ü Ü
V U Cý tý

c Ü p l, p cs
ä

c G t C .

' p
¢

p
ä ä a w w

ý F m ä ý a x >t
'

6c]I v iI
I

a
, VI

wý WI ji

U. A o w 0
w C4 1ä

ä4

-ö
aý cA
aý J

aý ö

y
W

w
O

O

U

O

O
'b
cd

c. -. 0
V
U

tUý
O

O

L
V

0
V

U

V

h

ti
'ä

L-d

E

0
V

U

.
-a

'0
. r.

O

U

dar

LOD

C. '

W

'b

'i7

V

V

w
U

.n E

0
U

U

Y

U

U

'b

>
U

3
0

0
4.

0

O
I.

.0 E

4.:

152

f I-dH Ada 16Q OI ý

too

:
U QId AdH 00 (11) ö
O

"dHQhIH d3ýdH (£

lt CC ýq tq it
W

ci
° oG y

I- z a w
ui

co

Q
N

v
ý ~v ihr

C/i

O
4 O

W

1 /v
C

Q

y

ý

V. C

p

H

ý

ü

ýa

r

v

v

u -0
0

r,
wx

ýi rý

N

>t
.. 7 1
ä1 ö

1
1
t
1

6

0

Rý O

O

Ü

f) QQ> ü

vc

A\ .,. 4

ýU

Q
CA 0

0,
0

c v
N

V4

153

it is currently serving. This means that when an enterprise activity finishes

executing its functionality, it must report its completion to the Resource Manager.

" finally, Figure 52 depicted the execution of a very simple business model which,

nevertheless, makes use of all messages defined in the business entity protocol (see

Table 4). More complex situations arise when the relationships between the

components are based on larger and more complex models, with repercussions to

the number, content and sequence of the messages exchanged amongst

components. For instance, if BP-1 in Figure 51 owned another business process, an

additional sequence of messages similar to the ones defined for itself would be

required for the execution of procedural rules of the new business process. This

business process could, in turn, own another business process and so forth.

A possible situation which is not illustrated by Figure 52 can occur when a domain

process owns an enterprise activity. In this case, the same set of messages used by

bp to execute the enterprise activity can be used by dp. The only difference

between a domain process and a business process at run time is that domain

processes are triggered by the Process Controller directly (via events) whereas
business processes are triggered either by domain processes or by other business

processes.

7.3. Business Entity Implementation

Essentially, the business entity functions as an interpreter of the models
generated by the CASE tool. Each of its component is responsible for interpreting and

executing a segment of the model (e. g. the Event Handler manipulates all the events and
the Process Controller all the process descriptions).

Two classes of components were produced to enable the creation of a business

entity, dependant on the way in which they would need to be executed. The two classes

produced are: (1) components that are executed as CIM-BIOSYS applications (and,

thus, are capable of accessing the CIM-BIOSYS application services) and (2)

components that are executed directly as Unix applications (in which case interactions

with other processes are via local sockets). Components included within the first class

were: the Process Controller, the Activity Controller, the Resource Manager, the Event
Handler, and `run-time' occurrences of active resource components and enterprise

activities. This class of component is represented by round boxes in Figure 52. 'Run-

time'-occurrences of domain processes and business processes comprise a second class

of components. The second class of components is represented as square boxes in

Figure 52. Within the first class, another subdivision exists between (I a) processes that
interpret the CIM-OSA models directly (e. g. Event Handler, Process Controller,

Activity Controller and Resource Manager) and (lb) those that interpret models

154

represented in a Petri-net form (e. g. `run-time' occurrences of enterprise activities and
active resource components).

A brief description of how each of these components was implemented is

presented below. In each case, the following building blocks of functionality were used:
user interface element, model interpreter, communication element, data logging

element and core functionality element.

7.3.1. Class 1: CIM-BIOSYS applications
l. a. CIM-OSA Models
Components within this class share the following features:

" Their user interfaces have been built through using the BuilderXcessory interface

generator (discussed in Appendix 3);

" They interpret models in a common way. That is, a model (in an structured text
form) is read in by means of yacc and lex tools [Sun 1990b] and transformed into a
"C" structure which is manipulated directly by the functionality of the component;

" They use a common layer of functions devised and developed to interact with CIM-
BIOSYS application services (i. e. the library of services produced by I. A. Coutts
[Coutts 1994]);

" They include a capability to display information about the status of the component
and to record such information in a log file (as shown in Figure 44) in order to
facilitate subsequent analysis;

" Much of their code has been written in "C" [Sun 1990a] and incorporates a number
of library functions produced or purchased by the MSI Research Institute (e. g.
libraries of list manipulation, event handling, local socket communication and the
CIM-BIOSYS application process interface).

The different capabilities of particular components are realised via use of different

algorithms within their core functionality. Indeed, the algorithms devised and
implemented by the author for each component are illustrated by Figures 53 through
56.

1. b. Petri-Net Models

This class of components is very similar to those of (1. a), except that a greater
(than class (La)) proportion of their functionality is defined by the business models.
Their core functionality demonstrates the following properties:

155

" Waiting for an event to occur (i. e. a button pressed by a designer or an incoming

message from the Activity Controller) - see Figure 52;

" When an event is generated, the Event Handler checks whether the event should
trigger a domain process;

" If so, the Event Handler generates a business model occurrence and an event
identifier, and sends the event identifier to the Process Controller,

" If not, the Event Handier passes the event to the external world (i. e. to non-
CIM-OSA-compliant domains - Figure 23);

" Handling any request associated with the display of information to the designer via its

appropriate interface (see Figure 47).

Figure 53 - Algorithm of the Event Handler

" Waiting for an asynchronous occurrence (e. g. incoming message from CIM-BIOSYS

applications or incoming message from dp and/or bp);

" When an event is received from the Event Handler, the Process Controller

searches for domain processes that are triggered by the event and spawn them;

" When a STEP_REQ is received from a dp/bp, the Process Controller sends back

an STEP_REL if it is in 'idle state' or 'execution state' or when commanded by
the designer (i. e. pressing of one of the following buttons, namely: <execute>,
<auto> or <resume>, as shown in Figure 48, according to Process Controller
internal state);

" When a RES_REQ is received from dp/bp, the Process Controller forwards it to
the Resource Manager,

9 When a RES_REL is received from the Resource Manager, the Process Controller
forwards it to the appropriate occurrence of dplbp;

" When an EA_EXEC is received from dp/bp, the Process Controller forwards it to
the Activity Controller;

" When an EF_END is received from AC, the Process Controller forwards it to dp/
bp;

" When an EF STATUS, EF_END or DP END is received from dp, the Process

Controller updates appropriate the information in its interface;

" Handling any request associated with the display of information to the designer via its

appropriate interface (see Figure 48).

Figure 54 - Algorithm of the Process Controller

156

" Waiting for an asynchronous occurrence (e. g. incoming message from CIM-BIOSYS

applications);

" When an EA EXEC is received, the Activity Controller spawns the
corresponding enterprise activity occurrence;

" When a request to execute a functional operation is received from the enterprise
activity occurrence, the Activity Controller forwards it to the Resource Manager,

" When a report of execution of a functional operation is received from the
Resource Manager, the Activity Controller forwards it to the appropriate
occurrence of the enterprise activity;

" When an event is received from the enterprise activity, the Activity Controller

forwards it to the Event Handler,

" When an ending status is received from the enterprise activity, the Activity
Controller updates its internal variables and forwards it to the Resource Manager

and the Process Controller,

" Handling any request associated with the display of information to the designer via its

appropriate interface.

Figure 55 - Algorithm of the Activity Controller

" Waiting for an asynchronous occurrence (e. g. incoming message from CIM-BIOSYS

applications);

" When an RES_REQ is received from the Process Controller, the Resource
Manager checks the pertaining scheduling information and sends a RES_REL
back to PC;

" When a request to execute a functional operation is received from the Activity

Controller, the Resource Manager checks the status and capability of active

resource components and forwards the functional operation to an ARC capable of

executing it;

" When a functional operation is received from an active resource component, the
Resource Manager forwards it to the Activity Controller;

" When an ending status is received from the Activity Controller, the Resource
Manager updates its internal variables and releases the appropriate active resource

component;

" Handling any request associated with the display of information to the designer via its

appropriate interface.

Figure 56 - Algorithm of the Resource Manager

157

" Their user interfaces are very simple, consisting basically of a shell-tool [Back

1946] with information reported to the designer on scrolled windows (as depicted

by Figure 50);

" They use the same means of interpreting a model as that for (l. a) components.
Hence, a model stored in a file identified by a name derived from the component's

name is read in and continually scanned by a Petri-Net engine;

" They use the same layer of functions as (1. a) components to interact with the
application services of CIM-BIOSYS;

" They can display information about their internal status, although they do not
include a capability to record such information in log files. This limitation is

inherent to the Petri-net engine adopted;

" They have been programmed by implementing a surface syntax [Aguiar 1994b] in
Prolog, in order to develop a predicate-action Petri-net engine, whose usage is
described in the following.

Figure 57 shows an example of the type of syntax that these components

support. In this Petri-net description, a variable is assigned to every place, transition or

actual internal variable manipulated in the predicates and actions of the net. Basically,

two types of predicates are acceptable: variable() and transitionO.

variable() is used to initialise variables and define the initial marking of the Petri-net.

The first argument of this predicate is the variable name and the second is its value.

Activities belonging to: DM-6
Behaviour of. EA-1 [

variable(ptrans_in, 1).
variable(pEA 1

_I
3,0).

variable(pEAI _14,0). variable(pEA1 _15,0). variable(pEAl _16,0).
transition(trans_in, (ptrans_in = 1), (p1AI_13 is pEAI_13 +1@ ptrans_in is ptrans_in - 1)).
transition(tEAl 7, (pEAI_13 = 1), (pEA1_14 is pEAl_14 +I@ pEA1_13 is pEA1_13 -1@
send app(ac, "FO-1"))).
transition(tEA1_8, (pEAl_14 = 1), (pEAI_15 is pEAI_15 +I@ pEAl_14 is pEAI_14 -1@
send_app(ac, "FO-2"))).
transition(tEAl_9, (pEAl_15 =1& recv_app(ac, "FO-3")), (pEAl_16 is pEAl_16 +1@
pEAl_15 is pEAl_15 - 1)).
transition(trans_out, (pEAI_16 = 1), (pEAI_16 is pEAI_16 -I@ send_app(ac, "done") @ halt)).

Figure 57 - Example of a Petri-net model processable by the Prolog interpreter

15S

transition() defines conditions that must be met for the transition to be enabled, as well

as actions that will be taken when the transition is fired. This predicate has three

arguments. The first is the transition name or identifier. The second is a list of enabling

conditions for the transition, this includes the number of tokens that must be present in

the input places of the transition. The third argument is a list of actions that will be

executed when the transition is fired.

Predicates and actions are either associated with internal and external
happenings. An internal happening consists of any operation on variables (e. g.

comparisons, arithmetic operations, updates, etc.), including the progressive updates of
Petri-net markings. An external happening is any operation that involves interactions

with other components of the business entity. For instance, in Figure 57, the transition

trans_EA1_9 requires a message to be received from the Activity Controller (i. e. ac)

with the content set to FO-3 in order for it to be enabled. Likewise, the triggering of
transition trans_EA1_7 activates the sending of the message FO-1 to the Activity
Controller.

The surface syntax consists of a set of pre-fabricated predicates which are used
to build the predicates variable() and transitionO. Such a set was built using Prolog to

manipulate facts (i. e. elements of knowledge in a Prolog knowledge base), and "C" to
implement the functions which enable the component to interact with CIM-BIOSYS.

Further information on how such a surface syntax was created is presented by Aguiar

and Coutts [Aguiar 1994b].

7.3.2. Class 2: non-CIM-BIOSYS applications

The components of this class share the following features:

" They do not possess a user interface. Their user interface is indirectly provided by

the Process Controller which filters the relevant information that they provide;

" They use the same means of model interpretation as Class l. a components. Hence,

the model is generated in a structured text form, parsed by yacc and lex tools and
transformed into a "C" structure which is manipulated directly by the functionality

of the component;

" They do not interact with CIM-BIOSYS. Unix sockets are their basic means of

communicating with their child processes (i. e. processes that have been spawn by

them) and with the Process Controller, which is the only CIM-BIOSYS process that
interacts with them;

" They do not possess the ability of either displaying information about what is

occurring within the component or recording such information. Again, this function

is indirectly performed by the Process Controller based on status reports that it

159

receives from these components;

" They have been programmed purely in "C" and incorporate some of the library

functions used by the CIM-BIOSYS applications (e. g. libraries of list manipulation,

event handling and local socket communication).

The elements of this class of components practically implement the same

algorithm, differing only in the way their processes interact. That is, these elements can

either represent domain processes or business processes. Their differences arise from

the inherent particularities of these two processes.
Once these processes have been spawned by either the Process Controller or a

parent process, the algorithm that they execute is basically related to the execution of
the procedural rule set of its functions. That is, one component is required for the

execution of each procedural rule set, where each rule follows the format: "ON

(condition) DO (functions)". The algorithm for such component consists basically of
the steps shown in Figure 58.

Implementing these components was perhaps one of the most complex

activities involved in the SEW-OSA implementation. Even for very simple models (as

the one illustrated in Figure 52), a number of occurrences of domain processes and
business processes may be initiated which compete for system resources. The model

execution process then involves the exchange of a considerable volume of messages

among these occurrences and the Process Controller, in such a way that debugging their

algorithms becomes very complex.

A common feature of all components of the business entity is their maintenance

of state variables associated with every interaction that they execute in association with
their peer components. That is, to every identifier or message exchanged between the

components, variables identifying the message are stored in internal state tables, so that

when a response to a certain command or request arrives, the component has a record

of what caused the request in the first place. Hence, it can determine what to do next.
These occurrences generate a considerable volume of data which in most cases must be

dealt with as separate threads of business model execution.

7.4. Rationale for the Approach Adopted to Realise the Business
Entity

This chapter described the approach taken to realise the business entity, as well

as an explanation of how it works. Following is a brief discussion of considerations

which led to the adoption of this approach.
As explained in Section 4.8, the rationale for the development of the business

160

i. to find the first rule (i. e. the one identified by the condition START or the one
triggered by the events indicated by the Process Controller) in the procedural rule set
(i. e. the enabled rule);

ii. to send a STEP_REQ to the Process Controller when the enabled rule is found, in

order to request permission from the Process Controller to execute the functions listed
in the rule (see Figure 45);

iii. to send a RES_REQ to the Process Controller, when a STEP REL is received from it;

iv. to spawn processes in the list of functions and/or request the execution of activities to
the Process Controller (EA_EXEC), when a RES_REL is received from the Process
Controller;

V. to indicate the completion of a function to the designer via a appropriate interface, by

storing its identifier on a list of completed functions and test the list against the
conditions of every procedural rule ("condition" part of the procedural rule), when an
EF END is received from either the Process Controller (this relating to execution of
enterprise activities) or a child process (this relating to execution of business

processes);

vi. to enable a procedural rule, when its condition matches the ending statuses of some of
or all the functions on the list of completed functions; to go back to step "(ii)" and
carry on executing the algorithm, If the list of functions to be triggered is not equal to
FINISH or TERMINATE; otherwise, to finish executing procedural rules, find its

ending status, report it back to its parent or Process Controller, and terminate.

Figure 58 - Algorithm of a domain process and business process

entity is that software was not yet available in the market to realise its purpose. In the
context of its development, a number of design decisions were made which could have
led to the selection of alternative solutions. The most relevant decisions include:

a. Business entity structure

The business entity was constructed with reference to a general specification of
an integrating infrastructure, as provided by CIM-OSA [ESPRIT/AMICE 1993a]. This

specification was limited to defining (at a very high level of abstraction) the interfaces
between the entities of the integrating infrastructure, as well as the behaviour of some
of these entities. With respect to the business entity, this specification (1) identified the
need for a Process Controller, an Activity Controller and a Resource Manager; and (2)
broadly suggested what they should do, without detailing either their functionality or
how they should be implemented.

161

As these definitions were not sufficiently detailed to realise a working business

entity, this research had to extend the specification to yield the solutions discussed in

this chapter. Prime additions to the specification emerging from this research involved

the detailed design of the business entity, based on an implementation of the two classes

of components previously defined.

Pre-requisite properties which shaped the design of component classes in the
current version of the business entity were:

" class 1: components that can be easily distributed across the CIM-BIOSYS

infrastructure (as CIM-BIOSYS applications), where: (1) class l. a describes

components which are: permanent constituents in the business entity (i. e. they

always exist, regardless of the system configuration) and have a fixed number of
occurrences; and (2) class l. b describes enterprise activity occurrences and active

resource components which are not permanent constituents nor do they occur on a
pre-defined and fixed number of times;

" class 2: components that relate uniquely to the Process Controller and therefore can
be realised as spawned local Unix processes.

The motivation for implementing these classes of component was the need to

rapidly realise a working solution for the business entity. In principle, if debugging
functions of the business entity components are not implemented and various instances

of permanent components are generated at run-time for each computer host in the

system, the business entity can be implemented completely using only components of
class 1. In this case, processes that represent occurrences of domain processes and
business processes are also realised as CIM-BIOSYS applications, facilitating their
distribution across the integrating infrastructure.

Finally the use of interpreted code (as opposed to compiled code) was adopted
to facilitate the debugging of the first prototype of the business entity. Discussions

within the "Model-Driven CIM" project are leading to future versions of the business

entity being OMG compliant [OMG 1991] and based on compiled code.

b. Development tools
As previously discussed, development of the business entity was realised using

programming utilities commonly used in the MSI Research Institute (e. g. X-Windows
Motif [Heller 1991], BuilderXcessory [ICS 1991a] [ICS 1991b], Unix programming
tools [Back 1986], etc.). This context also determined the choice of programming
languages (i. e "C" and "Prolog").

Alternative approaches which could have been used include use of a formal

description language to specify business entity protocols and object-oriented utilities to

realise it. However, their use was ruled out by their unavailability and the author's lack

162

of experience with them.

7.5. Limitations

Constructing the business entity of SEW-OSA was quite a complex process and
required a considerable implementation effort. Even then, the implementation realised
is only a sub-set of the business entity envisaged by CIM-OSA. In this respect, the
resulting business entity presents certain limitations, namely:

a. Interruptions

CIM-OSA specifies that the execution of an individual thread of the business

model should be allowed to be interrupted either by a human functional entity or
through the conclusion of the procedural rule set of a business process with a
TERMINATE event.

In the current version of SEW-OSA, the only interruptions allowed are ones

generated manually by a designer through the interfaces provided by each of the

components of the business entity. These interruptions stop execution of all threads of
the business model (being dealt with in that component). Each interruption is generated
locally and separately in each component. This implies that aspects of the model that

are dealt with in each of the business entity components cannot be interrupted at the

same time.
Although, the type of interruption implemented in SEW-OSA was not specified

in CIM-OSA, interruptions prescribed by CIM-OSA can only be emulated in SEW-
OSA by incorporating points of interruption in the models (i. e. adding alternative

ending statuses to the processes involved).

b. Secure communication
The level of communication security assumed by the protocol of the business

entity is the one provided by CIM-BIOSYS (i. e. no acknowledgement protocol at the

application level is assumed [Gilders 1991a] [Gilders 1991b]). Additionally, the layer

of services provided by the SEW-OSA business entity is not secure against losses of

messages exchanged between its components (such as in the scenario illustrated in

Figure 52).

Such a limitation can cause dead-locks in the business entity, which could be

overcome by incorporating a secure message passing protocol into CIM-BIOSYS at the

application level. Efforts in this direction are under way [Coutts 1994].

c. Ending-status
Ending-statuses are used by the business model to decide what the next process

or activity must be triggered based on the ending-status of previous processes or

161

activities. Ending statuses of activities are determined by their behaviour diagram

execution. Ending-statuses of processes should be obtained as a logical combination of
the ending-statuses of other processes and activities that they use.

In the current implementation of the business entity, only two ending-statuses

are allowed for processes: "done" and "any", whereas any status is allowed in an

enterprise activity. Therefore, coordination decisions made on the basis of ending-

statuses must be concentrated within enterprise activities.

d. Interface with information view
At the rapid-prototyping stage, the decision points in the business model are

purely based on the flow of execution within the function and resource views. Decisions

based on the value of an information element stored in a data-base or manipulated by a
functional operation are not included at the rapid-prototyping stage. These decisions

can only be considered at the system execution stage (discussed later in the thesis).

e. Communication between enterprise activities
Enterprise activities occurrences may communicate with one another at `run-

time', for the sake of synchronisation or data exchange. The current implementation of
the business entity does not support this form of cross communication. However, means
of including such a facility exists which, nonetheless, would have to be constrained to

communications between enterprise activities belonging to the same thread of the
business model.

In summary, fully implementing the complete functionality of the business

entity, which is the most complex entity in the CIM-OSA integrating infrastructure,

requires a great deal more effort and resources than this research project possessed.
However, experiencing the complexity of such implementation was extremely useful in

understanding the limitations involved in building tools to realise model-enactment.

7.6. Concluding Remarks and Contributions

The key contribution of the business entity of SEW-OSA is the provision of an
instance of a model interpreter that enables the transformation of business models into

service transactions executed by the CIM-BIOSYS integrating infrastructure. In other

words, the implemented business entity is a key component in enabling model-

enactment.
In addition, debugging facilities associated with the business entity play an

essential role in checking the business model for any errors not identified at the

modelling, analysis and simulation stages. The business entity associated with the
SEW-OSA CASE tool also provides the first instance of an integrated enterprise

164

engineering environment [ESPRIT/AMICE 1993a] which actually works upon an
industrially proved integrating infrastnicture (i. e. the CIM-BIOSYS infrastructure).

It is a major thrust of this research that these two elements (i. e. the SEW-OSA
CASE tool and the business entity) establish a stable basis for incorporating services of
the remaining entities of CIM-OSA into the CIM-BIOSYS infrastructure. The outcome
of such an incorporation is the realisation of a complete engineering environment for

enterprise integration.

165

Chapter 8- Case Study on the Application of SEW-
OSA

This chapter brings together the SEW-OSA capabilities discussed in previous

chapters and applies them in a case study of an industrial system. Hence the case study
involved modelling, analysis, simulation, rapid-prototyping. configuration and

execution with focus on a specific shop-floor system at D2D1. The case study

embraced:

a. Case study activities, these included:

" an overall description of all activities performed within the case study boundary;

"a description of the `as-is' situation and issues identified for improvement;

"a proposal for tackling integration problems and coordination issues between the

resources involved in D2D shop-floor activities, this as a means of improving

performance;

a description of the model resultant from the application of SEW-OSA;

" the specification of a `should-be' system based on the combined application of
CIM-BIOSYS and SEW-OSA, this in order to realise integration and coordination2.

b. Relationship between the case study system and other D2D systems of concern.
This included a preliminary analysis of how a SEW-OSA-based shop-floor control
system could be integrated with information systems in current use at D2D, with

particular emphasis on an ongoing company project under the banner of SPEAR

(Strategic Planning Environment for Assembly Routes). SPEAR is an initiative

aimed to develop systems to support automated process planning.

Case study activities (described in this chapter) focus on the application of
SEW-OSA. The relationship between the case study system and other systems at D2D
is described in some detail in Appendix 9. This appendix is included to illustrate the

context in which the case study was carried out.

I. Design to Distribution (former ICL, International Computers Ltd.), a major UK computer

manufacturer. Prime focus of the case study work was on their printed circuit board

manufacturing plant.
2. Quantitative results associated with the enactment of 'should-be' models are discussed in

Chapter 11.

166

8.1. Context of the Case Study: Domain Definition

An evaluation of the applicability of SEW-OSA was envisaged with respect to

three classes of domain within D2D. They would serve as the test-bed for much of the

work of this thesis and, indeed, for the work of the "Model-Driven CIM" project.

a. Model based integration of the shop-floor:

This initiative tackles integration issues related to a manufacturing shop-floor. In

the case study, models of how the shop-floor is currently organised (i. e. `as-is'

situation) within the target company were produced, in association with on-going

modelling initiatives aimed at improving the current situation (i. e. identification of

possible `to-be' scenarios).

b. Software inter-operability:
This initiative sought to address problems faced by D2D when integrating

heterogeneous software packages, focusing on the means of realising structured
interaction between threads of functionality embedded within these software

packages. The software packages involved are used as an integral part of the
"product introduction business process" of D2D.

c. Business analysis:
This initiative sought to investigate means of comparing alternative strategies by

which improvements in enterprise performance could be realised, this within the

context of helping to develop an IT strategy for D2D.

As part of this research, early attempts were made to apply CIM-OSA to certain

modelling domains, this prior to the realisation of SEW-OSA'. The final application
domain was defined having conducted this early work and identifying the following

requirements:

"a domain which would facilitate experimentation over different phases of the IMS
life cycle, through system modelling to system operation;

"a well understood domain which would enable the research to concentrate on

evaluating architectural issues, rather than investigating re-engineering issues

connected with the domain;

" addressing an area of interest to D2D, as important resource inputs would be

1. Such an early study embraced a modelling and simulation exercise documented in three

articles [Aguiar 1992e] [Aguiar 1993a] [Aguiar 1993b] and three internal reports [Aguiar

1992a] [Aguiar 1992b] [Aguiar 1992c].

167

required from their personnel in order to obtain case study data.

Although prime focus was defined to be the integration of the shop-floor domain
(item "a" above), in due course, SEW-OSA can also provide support to address the two
other fields of application (i. e. software interoperability and business analysis). Indeed,
the author will take this opportunity in his forthcoming research.

8.2. Case study activities'

In December 1991, an effort was initiated to gather and organise data associated
with the PCB assembly shop-floor. Initial focus of attention was on SMT assembly
lines, and with particular emphasis on assembly lines 2 and 3 as (at that time) they

represented typical SMT processes. This effort required a number of interviews with
D2D personnel knowledgeable about the shop-floor processes. However, due to their
limited availability, initial case study activities which required their direct involvement
had to be constrained to around forty man-hours. Forced to cope with such limitations

and in view of the fact that the case study was instrumental rather than central to the

research objectives, the following strategy formed:

a. Detailed study of available documents provided by D2D about their manufac-
luring processes:
Before time was spent attempting to understand the electronic manufacturing
processes more generally, a thorough study was undertaken of documents
describing D2D processes [BSL1991] [Roberts 1991] [Longman 1990] [ICL 1988]

and SMT technology in general [Pawling 1987] [Siemens 1987] [Hinch 1988].

b. Preparation of documents to structure contacts with D2D personnel:
These documents aimed to structure interviewing processes, so that best use could
be made of the available time of D2D personnel. These documents provided:

" templates identifying key data items (see [Aguiar 1992b] for further detail).
These templates were particularly useful during the first interviews in clarifying
the type of data required for model-building.

" tables to be filled in by D2D personnel. These tables are organised in a top-down

manner and list relevant data. At the top level, data about the whole shop-floor is

organised, thereby identifying its structural organisation (into lines or segments
of lines). Then, a table for each assembly line (or segment of line) provides more

1. The activities described in this section were performed in a joint effort which involved I. S.

Murgatroyd in the gathering and analysis of data obtained of D2D shop-floor.

16S

information about its processes. Finally, more detailed data about each process is

organised into separate tables. Sets of these tables were distributed in a form

which could be filled out by people in different areas of D2D. Subsequently

these were compared to identify inconsistencies.

" questionnaires used during interviews, this in order to gather data that could not
be captured in templates or tables which was, nevertheless, relevant to gaining
an understanding of certain activities on the shop-floor.

c. Actual data gathering through interviews with engineering and production
personnel, and tours through the shop-floor:
About seven visits were made to the D2D plant, during which the documents

prepared in previous phases were used intensively. The majority of data gathered
was through use of these documents. Additionally, samples of the order book and
the SPEAR database were obtained, which provided data about manufacturing
processes for each PCB type (such as: sequence of operations, time and motion
data, etc.). This data was essential for simulation studies.

d. Processing of the data gathered through modelling, analysis and simulation:
The data gathered was formalised in models for a twofold purpose. On the one
hand, these models were used to visualise static aspects of the system. On the other
hand, simulation was performed in order to study system behaviour. At the early
stages of the research, SEW-OSA was not available to create and enact models.
Thus, an IDEFO representation of the assembly line was developed and enacted by

translating it manually to a Petri-net model. The tools used for such an exercise
were Design/IDEF [Meta 1990] for model-building and ARP [LCMI 1989] and for

model-enactment. This exercise and the results generated with it are discussed in a
separate set of documents [Aguiar 1992e] [Aguiar 1993a] [Aguiar 1993b] [Aguiar
1992a] [Aguiar 1992b] [Aguiar 1992c]. These documents present samples of
IDEFO models; an equivalent model of a segment of the SMT assembly line using
the CIM-OSA functional syntax; and a translation of such a syntax to GSTPN. In

this early study, these models were used as a means of illustrating the usefulness of
model-enactment (i. e. simulation) geared towards identifying means of improving

certain aspects of the assembly line.

e. Checking the accuracy of the models built based on the data collected, this
through feedback interviews with D2D personnel:
These activities enabled a review of the data gathered from D2D personnel, as well
as provided valuable experience with difficulties in communicating the information

manipulated by the modelling tools to the average engineer on the shop-floor. Thus,
in some cases, in order to obtain any feedback on the accuracy of the models, a

1.9

simplification of the models created had to be made, so that the engineers could
understand them and participate in the validation process.

f. Populating SEW-OSA with part of the data gathered at D2D:

After the functionality of SEW-OSA presented in previous chapters was made

available, the SEW OSA CASE tool was populated with part of the case study data.

The development of SEW-OSA took place in parallel with the work described in

previous phases. Therefore, model-building in SEW-OSA could only start when the
data gathering phase of the case study was already completed. Although, this

parallelism of activities limited the kind of models that could be produced in the

early stages of the study, it provided a great deal of information about requirements
to be addressed, particularly as a tool for modelling and simulation.

g. Analysis of the results obtained with the creation and enactment of the models:
This phase sought to attempt to re-engineer part of the D2D shop-floor, so that it

could operate in a model-driven manner (i. e. to realise the design of a 'to-be'

system), in order to overcome the limitations encountered in the current shop-floor

configuration (i. e. the `as-is' system). The aim of this phase was to evaluate the way
in which the shop-floor was operating and to specify necessary changes in order to
improve its performance. It was understood that the level of detail of such a

specification should be sufficient to outline the architecture of the proposed ('to-

be') system.

Details of the activities and findings of phases "f' and "g" (which constitute the essence

of the case study) are discussed as follows, in terms of. an overview of D2D shop-floor,

aspects in need of improvement, SEW-OSA models produced and an outline of a
`should-be' system.

8.3. Overview of the PCB Assembly Shop-Floor

The D2D manufacturing cycle is comprised of three stages: (1) Printed Circuit

Board (PCB) manufacturing, (2) PCB assembly and (3) final product (computer)

assembly. Resources to perform the first two of these stages are located at Kidsgrove.

The latter stage takes place at Ashton. The case study concentrates on activities and

processes involved in the second stage.

8.3.1. The complete shop-floor
When the case study started, the PCB assembly shop-floor comprised of seven

production lines composed of manufacturing devices, such as placement machines,

printers, reflow-solder, etc., these operated and supervised by some fifty people.

170

Figure 58 depicts a simplified view of the PCB assembly shop. This highlights possible
flows of PCB types through line segments required to produce them. In terms of the
domain under consideration, a line segment comprises a set of manufacturing process

whose basic operations do not change drastically from one PCB type to another. Line

segments may also encompass a number of stages in the manufacturing cycle (such as,
SMT assembly, manual assembly, track side assembly, test, etc., as shown in

Figure 58).

Figure 59 shows an example of a SMT line segment in which a printer, a
placement machine, reflow solder and wash-off machines are physically inter-linked by

a conveyor and buffers. This means that normally when a job is allocated to the printer,
it is also automatically allocated to the remaining downstream operations of that

particular assembly line. Hence, no major diversion of flow occurs within a line

segment, and this fact can be implied for scheduling purposes.

Figure 58 - Overview of the printed circuit board assembly shop-floor

A number of possibilities exist in regard to material flow amongst line

segments, according to the type of PCB that need to be produced (as illustrated in
Figure 58), namely:

" single-sided PCB's may require only one pass through the SMT stage;

" certain double-sided PCB's may require one pass through the SMT stage and

171

buffer status

bare-board pri ted PCB
input buffer buffer

PCB 4

paste check

I

conveyor st: ýitus

in tion finished PCB
conveyor output buffer

machine
ý rc8ow ash-o

Ii
mach, mach.

placement
inspection

--Om-material flow

operator 2 -op- control flow

Figure 59 - Surface mount technology assembly line

another through the track side assembly;

" other double-sided PCB's may require two passes through the SMT stage and one
through the track-side assembly. Track-sided components usually require use of to

wave-solder technology, specially if through-hole components are used on the
board;

" the manufacture of most PCB's requires some form of manual assembly stage
between SMT and track-side assembly stages. This requires the configuration of
two sub-types of the three main types of flows (i. e. with and without an
intermediate manual assembly stage);

" all PCB's must go through a test stage.

Each line segment needs to provide distinct capabilities. For example, certain

types of PCB may require the capability provided by the line segment "SMT1" (see

Figure 58) or may require the capabilities provided by a certain combination of line

segments (e. g. SMT1, then Manual1, then TrackI and then Testm, as indicated by one

of the black flows of material in Figure 58). When allocating a job to a certain

combination of line segments, these requirements need to be considered during the

process planning stage, and should reflect: (1) the use of recommended process routes,
this to assemble certain PCB types with minimum cycle times and set-up times'; and
(2) the use of a recommended sequence of jobs to minimise change-over times.

In principle, many different flows are possible between the line segments
indicated in Figure 58. The range of choices of a line segment to serve a particular flow

(at a certain stage in the manufacturing cycle on the shop-floor) is represented in

Figure 58 by cells or lines (such as, the SMT cell and assembly line "a"). In the case of

1. One of the aims of SPEAR is to generate these process routes.

172

lines, if the use of either assembly line "a", "b" or "c" is required to produce a given
PCB batch, the complete assembly line must be allos atcd to assemble thet batch. In that

case, physical constraints apply (e. g. assembly line "a" is a fully conveyorised and
dedicated to assemble only PCB's for Sun Workstation).

In the case of cells, line segments (within them) can be selected, according to
the technical considerations (1) and (2) above, as well as considering scheduling
constraints. For instance, a PCB assembled by the line segment "SMT1", which also

requires manual assembly, could pass through one of the two line segments available

within the manual cell (represented in Figure 58). A decision concerning the allocation
of a particular line segment (within the manual cell) is currently the responsibility of a

shop-floor supervisor.
Another important feature of D2D shop-floor is an intended separation of lines

dedicated to produce boards in different batch sizes, that is (see Figure 58): (1) at high-

volume with a reduced product mix, and (2) at low-volume with a high product mix.
This separation is useful as certain problems faced by each of these classifications are
distinctive in nature. In the high-volume area, stability is a major concern, whereas for
high-mix, production flexibility is essential. Stability can lead to an improvement in the

ability to repeatedly produce products more quickly and with improved quality, this in

terms of avoiding rework and scrap which can impact significantly on throughput and
cost. Flexibility results in an ability to re-schedule and rapidly re-allocate resources in

order to cope with frequent changes in product types, although quality issues may also

constrain opportunities in this respect.
This study was initially concerned with the problems faced in the high-mix area.

8.3.2. A line segment
Figure 59 shows example flows of material and control which are encountered

in a typical SMT line segment. This figure highlights the form of interactions amongst
components of the line segment for it to realise inspection, quality control, and buffer

size control functions. One should notice that the interactions are performed in a "hard-

wired" manner, in as much that links between components are implemented directly

through establishing direct physical connections between components.

8.4. Aspects in Need of Improvement

In addition to surveying details of how existing D2D manufacturing processes

are organised, the case study also identified (in conjunction with the D2D personnel)

potential aspects in the shop-floor organisation which can be improved. A summary of
the resultant findings is presented in the cause-effect diagram in Figure 60. Here, a

chain of causes and their effect leads to sub-optimal utilisation of available shop-floor

173

capacity and longer lead-times than could be achieved. It was found that the list of
causes includes two primary ones, namely: the effect of recession and limited business
integration' (i. e. coordination of the activities on shop-floor).

Limited Intermediate Causes/effects Inefficient
Busess

Integration g Lack of Overall Shop-Floor Use of
Scheduling Available

CPactty
Loose Connection Between "
Process Planning, Production
Planning and Control and Shop-
floor

" Limited Synchronisation with
:

The effect of
Supporting Areas Long

Recession " Unsatisfactory Job Sequencing Lead-Times

Figure 60 - Cause-effect diagram: `as-is' situation of D2D shop-floor

It is difficult to assess the effect of recession upon the overall performance of
the shop-floor. Improvements in this area would likely reduce redundancies, improve

morale and ultimately enhance the overall productivity of the shop-floor. However, it is

not clear whether the current economic scenario represents a temporary situation or is

one driven by the environment in which manufacturing enterprises (such as D2D) must
learn to survive. In either event, it was established that improved coordination of

processes should substantially impact on the intermediate factors depicted in Figure 60.

Here, the term coordination is used to imply the control of the interactions and
relationships amongst the entities involved in realising shop-floor production.

Defining how better integration (and, as a result, improved coordination) can be

achieved is by no means a simple task. Improvements could arise simply by changing
the way the shop-floor is organised and managed. For instance, typically supervisors

are required to control the work of individual assembly lines, whereas during the period
of the case study three supervisors were independently charged with controlling the

work of eight assembly lines. However, as previously discussed (see Figure 58),

operation of the assembly lines is not independent so that organisation and management
issues traverse the complete shop-floor.

Additionally, when scheduling the use of shop-floor resources, all combinations

of possible line segments that could be used to produce a certain batch of PCB's should
be considered before releasing the batch for production. To date, however, no overall

1. The term business integration is used here as defined in Chapter 1 and illustrated by
Figure 2.

174

shop-floor scheduling system is employed at D2D. Consequently, technical

recommendations with respect to job sequcnchg made during prc: ess planning are not

always considered when a job is released to a particular assembly line, this quite

commonly leading to unnecessarily long change-over times.
Another issue identified is the need to synchronise the shop-floor with respect

to its supporting areas, such as ware-houses. For example, when a line segment is made

available, following the completion of previous jobs, components and materials

required to set up the line segment should already be in place. This may not occur when

an operator or an assembly line supervisor fails to fetch the material in advance of job

completion.
Staff training is of great importance in respect of realising any change in

scenario. This research does not challenge such a premise. However, the extent to

which training in itself can lead to significant improvements is not clear. In fact, an

adequate combination of initiatives of an organisational and an information technology

nature is a topic that transcends the scope of this research.
In any case, the aim of this research is to assess use of SEW-OSA in facilitating

a re-engineering effort on the shop-floor, this in order to determine whether benefits can

actually be drawn from IT based integration and hence improve coordination. Stated

differently, the aim is to investigate whether an improved level of business integration

can bring about significant improvements on the shop-floor.

8.5. SEW-OSA Models Produced

The application of SEW-OSA consisted of modelling the current D2D shop-
floor situation, making the assumption that every resource component on the shop-floor

conforms to the basic CIM-OSA paradigm (i. e. it operates as a server of functionality

to the business model). The primary aim was to improve coordination by capturing

within business models the means of overcoming problems which caused poor

coordination. Part of the approach would be the use of CIM-BIOSYS as a means of

realising integration of the active resource components on the shop-floor, so that

enactment of the business model could be achieved. A basic assumption here is that

opportunity for improvement would arise if all relevant interactions among shop-floor

entities became driven by models.
The modelling exercise required the application of the SEW-OSA model-

building capability to a domain termed as "smt line" (as shown in Figure 25). Examples

of diagrams and templates produced as part of this exercise were presented earlier in

this thesis, whereas a more complete description of the models produced, is contained
in an internal report [Aguiar 1994h]. Indeed, these models were later used as a basis for

assessing the features of modelling, analysis, simulation, rapid-prototyping,

175

configuration and operation of the re-engineered system on the shop-floor.
Basically, the SE\V-OSA model-building started by defining the boundaries of

the model (i. e. the context diagram shown Figure 23). Here, the context diagram

identified "PCB assembly", as the only CIM-OSA compliant domain, which is required
to interface with other D2D domains through the exchange of object views and events.
The other domains can be either internal or external to the Kidsgrove site or indeed to
D2D itself.

The "PCB assembly" domain comprises a number of domain processes which

characterise the types of functions that can be asynchronously started in this domain.

However, a simplified version of a domain diagram (shown in Figure 25) limited the

scope of this domain to one of the SMT lines'. In Figure 25, it is important to emphasise
that it is not within the scope of this diagram to define whether a certain domain process

represents the work of a particular assembly line. One should also note in Figure 25 that

a number of occurrences of the domain process "produce board" may occur in

association with one occurrence of the domain process "prepare line" (the cardinality

of relationships being defined later on during the modelling process).
At the'model-building stage, two levels of abstraction were introduced into the

modelling process, namely:

i. A line segment domain, embracing the coordination amongst component elements

within an SMT assembly line (i. e. a line segment embracing the scope illustrated in

Figure 25).

ii. The complete shop-floor domain, embracing the coordination amongst different

line segments on the shop-floor (see Figure 58).

8.5.1. Coordination within an SMT assembly line (i. e. line segment domain)

Coordination within the scope of an SMT assembly line involved the
development of models (at the requirements definition modelling level) represented in

a simplified form in Figure 612. In this model, the level of granularity of the
functionality coincides with that required to control interactions amongst machines and

people within the scope of an assembly line. That is, functionality is described to a level

at which functional operations can be individually executed by a component of the

assembly line (i. e. without having to interact with any other component).
The behaviour associated with the domain process "assemble" (in Figure 61)

1. A complete version of the "PCB assembly" domain is presented in an internal report [Aguiar

1994h].

2. Shorter names were given to the constructs in this figure (in relation to those used in the
diagrams presented in Chapter 5) to improve its readability.

sossaaoid unewoP sasswoid ssoUl sacitýnae sutix iuý

x
i

t
fi

I

I
f

t

*

t

rx<

. x
,

.w

x

M
t

1
t

1
t
T

ýf

t
i

Y
t

s
r

i

.:
". + ý

Grj t
ýý i

L:.

r

ýý

Y

1

1

t

1
}

f

1

u

c
.ý 0 3

U
w.

as

0

a)
th
ýL

177

was described as a hierarchy of behaviour diagrams. Hence, each diagram encodes a
description of how a process uses its component business processes or enterprise

activities. The business processes "populate" and "prepare" (in Figure 61) are of

particular interest as they encapsulate control considerations requiring tighter

coordination. -

a. Business process "populate"

In the business process "populate", a decision is related to the frequency of
inspection of PCB's, these being inspections based on: a programmed frequency of
inspection or on the results of previous inspections (i. e. use of a statistical process

control algorithm). Usually, the former approach is used at D2D with one in every ten
boards inspected.

In respect to synchronisation of operations, when an inspection is triggered, the
inspection conveyor belt (shown in Figure 59) is stopped so that an inspector can

retrieve a PCB or inspect it on the conveyor. Meanwhile, upstream and downstream

operations carry on. Upstream operations will only stop if there is no space left in a set
of internal slots which are located between the placement machine and the inspection

conveyor. Downstream operations will only stop when they run out of PCB's. When the
inspector completes an inspection operation, he (or she) will inform the business model

and the conveyor will be reactivated, re-enabling upstream and downstream operations
(should they be stopped). Inspection operations will impact on manufacturing lead

times, particularly if the inspector takes a significant time to perform them.

b. Business process "prepare"

In the business process "prepare", two functions are of particular importance,

namely: (1) quality control of the printing process and (2) management of the buffer

that separates printing and placement machines. These functions are relevant as
typically there is an unbalance between the printing process and the placement process.
The former usually requires shorter cycle times than the latter. At D2D, this unbalance
is managed by the operator of the printer. This is done by printing a sufficient number
of boards to keep the placement processes busy, when the interface buffer with the

placement process is nearly empty (see Figure 59). Hence, the level of work-in-

progress in the buffer is determined by the manner by which the operator manages the

punting process.
Additionally, the operator continually monitors the quality of the printing

process, by checking one in five PCB's for paste height and shape. In extreme cases,

when a defect occurs, it may be necessary to re-set up the printer and wash-off of mis-

printed boards. This exceptional case was not modelled in the case study. In the case of
defects that affect only one PCB, the operator can wash it off and place it back on the

178

input conveyor. This operation is represented by the enterprise activity "rework" in

Figure 61.

The examples emphasised by the two business processes described above
represent only a sample of the types of control that can be exerted by SEW-OSA on the
SMT assembly line. A variety of other coordination decisions are also required,
namely: coordination between functions performed by the operator and those carried
out in the supporting areas to provide components (i. e. paste, components in reels and
sticks, etc.) and bare-boards.

Analysis of the effect that a particular configuration of the integrated system
(envisaged to control the assembly line) can have upon the performance of the line is
demonstrated later in the thesis.

8.5.2. Design specification stage
The design of the domain "smt line" was based on the functional decomposition

of the domain formalised in functional diagrams, which led to the definition of an object
diagram (such as the one depicted in Figure 62). Enterprise activities identified in the
functional diagram are executed by means of interactions with active resource

components via an integrating infrastructure. These, interactions are modelled as

messages exchanged between objects representing enterprise activities, functional

entities and the information entity. Here, enterprise activities (identified within
Figure 61) realise a functional transformation (i. e. act on their information and material
inputs, in order to produce desired outputs), by requesting the execution of functional

operations (i. e. FO's) which are carried out by the functional entities (i. e. classes of

components) of the system. Functional operations can also relate to data access

operations (see Figure 62).

The internal behaviour of enterprise activities is described by predicate-action
Petri-nets. Figure 63 shows an example of such a description for the enterprise activity
"print". Here the top and bottom transitions respectively represent initialisation and
termination of a run-time occurrence of the enterprise activity. At initialisation, the
Petri-net is enabled, i. e. a token is included in pEA-3_1 which enables tEA-3_21. When

tEA-3_2 is fired, the functional operation FO-5 is transmitted to FE-2 (see Figure 62).

Then, EA-3 waits for the receipt of FO-6.

FO-21 and FO-22 represent an operation in which data is read from a data-base.

This particular piece of data is a variable which records the number of PCB's produced
between inspections (i. e. number of executions of the enterprise activity "check" in

1. The reader should refer to Appendix 4 for a description of how a Petri-net describes system

evolution.

179

/11

FE-1 FE-2

Integrating
Operational

operator 1
R-4

Environment

----- - --- -------------- ---------
FO-17 -2 1 7\ O-8 FO -3' O. 6

EA-1 -L --Z EA-4 i---ý EA-2 EA-3

set-up check I move print

FO-22 I+ JJ- FO-21

Information Entity

Integrating Infrastructure

Figure 62 - Fragment of the object diagram

Figure 61). Conditions tEA-3_3 and tEA-3_4 in Figure 63 indicate alternative ending

statuses for this enterprise activity. This status condition is used to make a decision as
to whether to check the PCB or to finish executing the procedural rules of the business

process "prepare" (hence, implementing the frequency of checking previously
discussed). Similar behavioural descriptions have been defined for all remaining

processes and activities in the business model. Once the business model is complete,
interpreted code can be generated for the system (i. e. model-enactment can be

facilitated to enable rapid-prototyping of the system) in order to test the solution
designed. This code along with other code fragments for the remaining constructs of the
business model can then be executed by the business entity to coordinate interactions

amongst system components.
At this stage, the functional definition of the system being designed is complete.

However, two issues remain, namely: (1) the specification of physical resources to

provide such a functional content; and (2) the definition of an appropriate topology for

the computer system to integrate those physical resources. The resource diagram

(depicted in Figure 33) shows a resource specification for the domain processes "set-

up" and "operation". This specification was produced through using the resource

modelling facility (described later in Chapter 10). Additionally, the configuration
diagram (see Figure 34) shows how the active resource components of the assembly
line are integrated via a network of computers.

iso

1

pEA-3_ 1

1
tEA-3_2

1r FO-5
-- Predicate-Action Definitions

Associated to Each Transition -
pEA-3 2 LEA-3_1

_ Predicate: FO-6
1 Action:

tEA-3 1
_

FO-6 tEA-3 2
Predicate:

1 Action: FO-5
LEA-3-3

pEA-3 5 Predicate: tEA-3_3_condition: n <= 4
_ Action: tEA-13_163_ending-status:

1 ending-status = no-inspection
tEA-3 4

tEA-3_5 F -FO-21 Predicate: tEA-3 4 condition: n>4
1 Action: IEA-13 164 ending-status:

ending-status = inspection

pEA-3 6 ý
_ Predicate:

1 Action: FO-21

tEA-3_6 t_E4-22
tEA-3_6

Predicate: FO-22
1 Action:

pEA-3_3

1/\1
tEA-3 4

i tEA-3_4_condition tEA-3_3 itEA-3_3_condition
r tEA-13_164_ending-status r tEA-13_163_ending-status

11

pEA-3_4

Figure 63 - EA-3: behaviour diagram: print

Having populated SEW-OSA with data from the D2D assembly line, simulation

runs were carried to study the performance of the system under various operating
conditions. More detailed information about these studies is presented later in
Chapter 11.

Based on findings of the simulation study, an assembly line configuration in

terms of resource components was prototyped using the SEW-OSA model-enactment

capability. The replacement of emulated components by physical ones was also
demonstrated by integrating SEW-OSA with a separate simulation model of the

181

assembly line (i. e. a shop-floor animator developed by I. S. Murgatroyd and discussed

later in Chapter 9). In the animator, assembly line components behaved towards the
business model in a similar manner as would physical components. Details of the

results obtained at the rapid-prototyping stage are presented later in Chapter 11.

8.5.3. Coordination amongst different line segments (i. e. the complete shop-floor
domain)

In order to provide support for coordination amongst different line segments on
the shop-floor, the level of granularity of the functionality modelled was defined to

coincide with the scope of functions provided by each line segment shown in Figure 58.

Hence, Each line segment was made to relate to enterprise activity classes, being each
type of material flow indicated in Figure 58 related to one enterprise activity instance.

Similar diagrams to those obtained in for the "line segment domain" were also obtained
for the "complete shop-floor domain". However, constructs associated with each
domain process (i. e. enterprise activities, functional entities and active resource
components) were defined so that they encapsulate tasks performed by a given line

segment, as opposed to task performed by each component of a line segment.
The difference in purpose between the models obtained for the "line segment

domain" and for the "complete shop-floor domain" is the fact that, in the latter,

modelling was carried out only for the purpose of studying the organisation and

associated performance of the system whereas, in the former case the aim was to

generate a prototype of a system configuration and study its performance. This
difference led to the creation of models at different levels of granularity, whereby the
"line segment domain" represents a more detailed description of functionality, as
compared to the model of the "complete shop-floor domain".

These two levels of granularity were defined to facilitate the execution of
simulation with models of the "complete shop-floor domain". A more detailed model

of the shop-floor to the same level of granularity of the model of the "line segment
domain" could have been obtained. However, the number of constructs in the model
would have been so large that simulation runs would have required excessive computer

power to enact the model (see later discussion on this issue in Chapter 11).
Furthermore, additional detail would not have provided information that was not
already encapsulated in the domain processes of the "complete shop-floor domain".

In regard to coordination issues on the shop-floor, motivation for the simulation

study included: (1) identification of critically constrained resources (i. e. bottlenecks);

and (2) tests of the impact of different shop-floor configurations (and associated

scheduling strategies) upon performance metrics, such as: throughput, level of work-in-

progress and level of utilisation of the line segments. However, as explained later in

Chapter 11, limitations in the simulation tool did not allow simulation studies to be

182

performed.

8.6. Outline of a `should-be' System

An outline of a ̀ should-be' system was proposed based on the application of the
model-building and model-enactment capabilities to the "line segment domain".

Figure 64 depicts the computer architecture proposed for integrating existing
components of the SMT assembly line. Each machine component is physically linked

to a CIM-BIOSYS host by means of the interface and protocols provided by its

controller. These protocols can be implemented by appropriate device drivers and
related functional operations, according to the methodology described in the two next
chapters. An interface is assigned to each operator to enable he (or she) to receive
instructions from the business model, as well as to allow them to feed back data and
status.

With regard to extending this configuration to the complete shop-floor, it should
be noticed that there should be an instance of SEW-OSA model-enactment services

serving each line segment. This would confine coordination of activities within the

scope of a line segment, whilst providing a link to the remaining line segments via a
line segment scheduler.

Any scheduling decisions required within the scope of a line segment, are
assigned by the business entity of SEW-OSA to this line segment scheduler. The line

segment scheduler does not operate as a cell controller. Essentially, CIM-OSA

eliminates the need for conventional cell controllers as such'. Indeed, this function is

performed by the business entity when it executes a business model. However, as

previously discussed, CIM-OSA requires an external scheduler (and associated a
scheduling algorithm) which make decisions about the allocation of physical resource
components. A discussion of scheduling issues is presented in Appendix 9.

Associated with the system outlined in Figure 64, a considerable amount of
implementation issues must still be added by further work (e. g. realisation of hardware

and software interfaces and software development for functional operations). These
implementation issues are beyond the scope of this research.

1. A cell controller is an element responsible for coordinating the interactions amongst

manufacturing devices within a manufacturing cell by dispatching jobs to be executed by

these devices.

IS3

O

A

cS

Q

C

.Ü

W
t/1
h

C"ý

;z
2

cn
w

184

8.7. Benefits of the Case Study to D2D

The case study involved understanding the wider-picture of Dl's systems and
processes, modelling D2D shop-floor and enacting models of one of its assembly lines.

These activities have led to attaining the following benefits (by D2D):

" reports (by an external and independent person, working as a consultant) on an
evaluation of some of their systems and processes, with particular emphasis to their
shop-floor;

" the proposition and evaluation of a `should-be' system derived from model-
enactment exercises, the results of which can offer the basis for decisions as to
whether further investments can be made on a model-driven operation of the shop-
floor,

" the availability of models over which further studies can be carried out;

" an understanding of how a model-driven approach could be used to support
changes in the manner by which current systems and processes are organised;

" transfer of knowledge (from the MSI Institute) about methods and architectures.
This is now motivating them to apply modelling technology to other problems
within the company, such as the definition of business and IT architectures for the

whole organisation.

8.8. Limitations

Unfortunately, it did not prove practical to realise an implementation of SEW-
OSA-driven solutions on the D2D shop-floor. The results did reach a level of initial

specification (as to how the shop-floor should be organised), but without realising a
physical implementation it is clear that validation was at best, partially achieved.
Implementation would have required a level of resource, effort and time that was not
available during the period of this research, either to MSI or D2D.

Indeed, any decision by D2D to apportion resources to support implementation
depends upon preliminary results from SEW-OSA modelling and analysis work.
Additionally, certain aspects of detailed work necessary to realise a commercially
viable and practical solution may not have added value to the research results obtained.

A further limitation of this case study is related to the fact that the quality and
quantity of the results obtained will be constrained by the data gathered to support it.
Here, time and resource constraints at D2D, allied to the dynamic nature of D2D shop-
floor operations, limited the accuracy of the `as-is' description. In this respect, the

quality of the data gathered in the case study can also be a measure of the effectiveness
of the methodology proposed in Section 8.2 (to overcome such limitations).

iss

8.9. Contributions from the Case Study

Three primary contributions of knowledge have come from this case study

work, as follows.

(1) This is the first case study (known to the author) on the application of CIM-OSA in

an electronic manufacturing company. It is also one of the most complete CIM-

OSA case studies carried out in the sense that it sought to validate the use of a
CASSE environment for systems engineering (i. e. SEW-OSA).

(2) The case study has also demonstrated the usefulness of CIM-OSA (when realised

as part of SEW-OSA) in addressing contemporary manufacturing systems design

issues. At D2D, this made the importance of a model-driven approach to tackling

systems design well known to key staff of the company and, in addition, enabled

them to understand the concepts of CIM-OSA.

(3) Finally, as a result of the modelling, simulation, analysis, rapid-prototyping and

configuration activities, possible improvement scenarios have been identified for

the D2D shop-floor.

186

Chapter 9- 'Run-Time' Execution of the Physical
System

This chapter outlines how a business model refined from a rapid-prototyping
exercise can be put to work to coordinate activities of actual physical components. This
is achieved by supporting a methodology which structures the processes involved in

producing simulated and emulated descriptions of a system, as well as producing a

more complete description of the physical system.
Three aspects of enabling `run-time' execution' of a physical system are

discussed in this chapter, namely:

" the organisation of functionality and behaviour required from the system in order to

comply with a SEW-OSA environment (Section 9.1);

"a preliminary specification of a presentation entity for SEW-OSA (Section 9.2);

" observations in respect to the manner in which coordination issues impact on the
structure of active resource components (in order for them to be integrated into the
SEW-OSA environment) - Section 9.3; and

" the strategy to overcome the inexistence of either a presentation entity or a physical
implementation of CIM-OSA-compliant resource components (within the context
of the "Model-Driven CIM" project - Section 9.4).

Here, it is important to note that, although CIM-OSA defines an overall
specification of a presentation entity, it does not define how active resource components
should be structured. The absence of this definition was one of the main motivation for
including the discussions presented in this chapter. Hence, this chapter seeks to make

observations and recommendations (which have yet to be formally proven) regarding
the organisation and integration of resource components within the CIM-OSA

architecture (as adopted in SEW-OSA).

Hence, this and the next chapter present the author's interpretation of the impact

of using SEW-OSA on: (1) the structure of resource components and (2) a framework

for integrating modelling tools and services produced by other researchers working in

the "Model-Driven CIM project". In this context, whilst previous chapters (and
Chapter 11) characterise the essence of this Ph. D (i. e. its body of proven research), this

and the next chapters do not directly add to the body of the author's research. Rather

they help clarify the context of the study. They also illustrate the impact of underlying

1. The term "system execution" means the execution of a business model in support of the

operation of a physical system.

187

architectural definitions of SEW-OSA on supporting tools for system integration, as

well as on the final product resulting from applying these tools.

9.1. Support of System Execution in SEW-OSA

Key issues involved in supporting the execution of a physical system include:

"a view of the way in which SEW-OSA supports the implementation description

modelling level of CIM-OSA;

" the proposition of a structure, with which active resource components should

comply, in order to enable integration into a SEW-OSA compliant environment;

" an analysis of the impact that such a structure imposes upon coordination issues

within the environment;

"a discussion of repercussions arising from coordination issues in respect to the level

of granularity with which the functionality of active resource components should be
defined.

9.1.1. The implementation description modelling level in SEW-OSA

As previously discussed, associated with each model of an active resource
component (handled during the rapid prototyping stage) there should be a physical
implementation of the resource component which can be physically integrated. Thus,

activities involved in the implementation description modelling level should be focused

on replacing emulated models of resources by their physical counterparts. This process

should also correspond to the last phase in the design process, so that a system emerges
out of the design activities of modelling, analysis, simulation, rapid-prototyping
(including use of emulated components), and the gradual replacement of emulated

components by physical ones. Hence, as later described in Chapter 10, from this

process emerges a need for a library of models which represent physical components.
Models of resource components from this library can then be selected and integrated
into the SEW-OSA environment and tested.

Once the designer is satisfied with the performance of a certain configuration of

resource models, instances of physical resources can replace their counterpart models
and be tested in site by means of a refined version of the system prototype. This final

stage will, henceforth, be referred to as "system execution". The replacement process

should be performed gradually (i. e. on a component-by-component basis), if physical

considerations permit (i. e. certain physical resource components may depend upon one

another for proper operation). Should instances of physical resource components not be

available, tests on the models can provide a more rational basis for decisions regarding
the acquisition of physical instances. Within this context, models provide a strong basis

Iss

for the decision making process.

9.1.2. CIM-OSA-compliant active resource component

Further to the provision of models which describe how components work, also
required is the provision of CIM-OSA-compliant resource components. As can be

observed from Figure 65, CIM-OSA-compliant active resource components operate as

servers of functionality to the level of granularity required by their client (i. e. in the
form of functional operations). Here, the client is the business model executed by the
business entity. In this respect, the business model is the only decision maker with

regard to coordinating the execution of functionality. If the level of granularity at which

an active resource component is defined coincides to that of an individual human being,

a machine or an application program, each atomic piece of functionality provided by

such a component must be related to the work that the component is capable of

executing without interacting with other components (i. e. in such cases interactions can
be encapsulated by the business model).

Legend:
E: Functional Entity (or Active Resource Component)
B: Behaviour
F. Functionality
F/e: Precedent/Next
e: Event
': System Build
-: Interaction

Event (el (e3)

Overall System Behaviour:
-el-F2-F3/F1-F4-e3-
-e2-F1-F2-F4/F3-e4-

B integrating infrastructure

(a) SEW-OSA Approach

integrating infrastructure

(b) Common Practice

Figure 65 - Impact of SEW-OSA architecture of system components

Figure 65 also highlights a separation between functionality and behaviour

which is inherent in the CIM-OSA approach to modelling. This strongly impacts on the
final organisation of a system. For instance, the generic system shown in Figure 65 is

made up of entities (Ei) which interact with one another in order to transform
information and material inputs into their respective outputs. System start-up and

189

termination are defined by events (ei). Enterprise modelling focuses on engineering the

relationships among its components in order to enable the system to achieve its goals.
Such an engineering process includes the definition of an adequate selection of

components and an appropriate design for the interactions among them (see Figure 65).

Regardless of the separation between functionality and behaviour, when CIM

systems are built (i. e. as in Figure 65. b) entities are modelled as monolithic elements.
Coordination among the elements of functionality (i. e. system behaviour) may be either
intrinsically designed in the components or implemented via human interaction. That

is, aspects of the system behaviour are embedded within the functionality of its

elements (e. g. such as within software code or as part of the operations performed by a

person).
In SEW-OSA, overall system behaviour is captured by the business model (as

illustrated in Figure 65. a). Subsequently, "centralised"' execution of that model drives

the system operation. Any change required in system behaviour needs to be reflected in

this unique model at engineering time, in order for it to be effected at run-time in a

consistent way.
Figure 65 also highlights that the CIM-OSA approach offers improved

flexibility over conventional practice, in respect of making changes to the way the

system operates (i. e. changes in behaviour or functionality, because they are de-

coupled). In the CIM-OSA approach, decisions regarding the coordination of system
functions are captured in the business model. In the traditional approaches, these
decisions are distributed among applications that perform system functions. Thus,
difficulties arise when changing either the various elements of system functionality or
behaviour, due to the need to re-implement hard-coded hidden coordination functions

contained inside each application.
The idea of extracting coordination decisions from the components stems

basically from the fact that essentially those decisions characterise the manner in which

an enterprise is organised at the level of business integration (as early illustrated in

Figure 2) and hence there is an implicit need to facilitate their change.

9.1.3. CIM-OSA-based coordination

Model-based coordination of the interactions among system components

requires:

" access to the operations (i. e. the functionality) of system components;

1. Here, the term centralised does not necessarily mean that model execution takes place on
just one computer host. Centralisation is related to the existence of a unique model for the

complete system, which can be executed across a number of computer hosts.

190

" predictability of all possible outcomes of the execution of such operations.

Therefore, in the context of a CIM-OSA modelling approach, ideally system
components should be developed in such a way that:

a. they operate as servers of functionality which can be encapsulated into functional

operations;

b. when they operate as clients, their requests can be transformed into events which
trigger the execution of appropriate threads of the business model, this to process
the request;

c. they do not directly access information elements relevant to integration (as
identified in the information view), for this type of information access should be

encapsulated by the business model and performed as part of the occurrence of an
enterprise activity.

Hence, it is quite straightforward to envisage a CIM-OSA-compliant

component when dealing with shop-floor machines. After all, a business model does

precisely what traditional cell controllers are expected to provide, in terms of

coordinating the execution of jobs on the shop-floor. Human beings when playing the

role of mere executers of decisions (made elsewhere) can also be made to comply with
requirements of a CIM-OSA business model. However, re-engineering legacy

software, so that they can inter-operate with the remaining components of the system
may be far more complex.

Commonly, legacy software is not developed to provide ready access to internal
functional operations, so that they can be triggered by a business entity. Likewise, as
human beings commonly function as creative components of a system, they are not

easily encapsulated as a CIM-OSA-compliant component. Indeed, a prime difficulty

with such an encapsulation is that it requires the ability to associate and establish a
defined level of predictability and causality in the relationships among system

components.
Two alternative approaches can be used to facilitate modelling (and hence

integration) of components which do not readily comply with requirements "a", "b" and
"c" above, namely:

(1) To model such components as non-CIM-OSA-compliant domains;

(2) To encapsulate the functionality of such components within a single functional

operation.

Both approaches facilitate integration of components by providing adequate

191

interfaces for their constituent components to interact with a CIM-OSA-compliant

environment. These interfaces can be provided by creating "wrappers"' for the
functionality concerned.

In the case of approach (1), components represented as a non-CIM-OSA-

compliant domain (see Figure 23) interact with other components by exchanging object

views and events, in the form of message exchange or data sharing. In this case,

components interact with the rest of the system in a completely asynchronous manner.
For the approach (2), component interfaces with the rest of the system must

comply with requirements "a", "b" and "c" above. If adequate "wrappers" are
developed to encapsulate components, requirement "c" is the one that imposes the

greatest constraint. Indeed, requirements "a" and "b" can be emulated by event

exchanges between domains defined via approach (1).

Based on the assumption that system components will offer their functionality

by complying with requirements "a", "b" and "c", next sections present a discussion of
the issues involved in the integration of the three classes of active resource components
(i. e. machines, human beings and application programs).

9.2. Presentation Entity in SEW-OSA

Interaction with physical resource components as opposed to emulated ones

requires important changes in the operation of SEW-OSA. At the rapid-prototyping

stage, the Resource Manager is required to interact with application shells which

emulated the internal behaviour of active resource component. When physical
instances of active resource components are used, the Resource Manager will interact

with three basic classes of component belonging to the presentation entity, namely:

" machine drivers, to facilitate interaction with machine functional entities2;

" user interfaces, to facilitate interaction with human functional entities;

" application enablers, to facilitate interaction with application functional entities.

As previously stated, the main purpose of the presentation entity is to provide

remaining entities of CIM-OSA with a uniform means of interacting with inherently

heterogeneous resource components. If resource components were to provide their

1. According to the working group 3 of the ICEIMT workshop III [Petrie 1992b], a wrapper is

"a [set of] instructions that conform to a defined interaction protocol".
2. The term "functional entity" when referring to a physical instance of a resource (coined by

the ESPRIT/AMICE consortium [ESPRIT/AMICE 1989]) is used here as a synonym for

active resource component.

192

functionality directly in the form of functional operations, there would be no need for

the presentation entity. However, that is not the case.
CIM-OSA does not prescribe a detailed structure for implementing the

presentation entity. Within the context of this research, it is envisaged that SEW-OSA

should support the automatic generation of an occurrence of a presentation entity (PE)

component to interact with each active resource component in the system. Figure 66

shows the structure of a PE component proposed in this research. Such a component

works as a translator between a language understood by active resource components
(which is technology dependent) and that of CIM-OSA (which is technology
independent). In order to perform this function, the PE component uses a script file

which relates each command in the technology independent language into a sets

commands in the technology dependent one (see Figure 66).

Technology Dependent Active
PE script:

guage
Resource FO-1(a, arg-b):

); cmdl(ar Component "
cmd2(ar&b);

FO-2(arg_c):

Integrated Operation emd 1(arg_c);
cmd2;

Environment FO-30:
Integrating Infrastructure cmdl 0;

Interface

Presentation Script
Entity

Technology Independent Component

Configuration

Resource
Manager

Business Entity

Resource Model

Figure 66 - Architecture of a generic presentation entity component

Here, an underlying assumption is made that the level of detail encapsulated by

the technology independent language is less or equal to that of the technology
dependent one.

193

In SEW-OSA, it is envisaged that a component would be selected from a
resource model (as discussed later in this thesis), which encapsulates information about
the component configuration, namely:

" the interface required by the PE component in order for it to interact with the active
resource component (such as the functionality of a CIM-BIOSYS device-driver,

enabling it to interact with a CNC-machine);

" the identifier of a script (i. e. a translation table) which enables mapping of
technology dependent commands (used by the active resource component) into the
functional operations that are manipulated by the business entity.

SEW-OSA was conceived so that when rapid-prototyping with physical
resource components is carried out an occurrence of a PE component is started. The

occurrence of this PE component is automatically configured so that it can execute on
an identified host and be shared with the active resource component, this according to
the data represented in the configuration diagram (as illustrated in Figure 34).

9.3. Integration of Physical Resource Components in SEW-OSA

The structure depicted in Figure 66 implies that at run-time a CIM-BIOSYS

process is generated to carry out the role of the PE component, whereas another entity
implements the functionality of an active resource component (where this entity can be

either a CIM-BIOSYS application or an alien application [Weston 1993]). It was
proposed that this architecture should be adopted for every type of resource component
(i. e. machine, application program or human being)'. Nonetheless, variations occur due

to the particularities of each resource component, as discussed in the following sub-

sections.

9.3.1. Machine functional entity
The structure depicted in Figure 66 can be adopted to facilitate interfacing with

machine functional entities. This is specially so as in this type of resource the separation
of technologies implied in Figure 66 coincides with a physical separation between the
integrated operation environment and the integrating infrastructure.

Thus, the structure shown in Figure 66 can be populated with a device driver in

the PE interface, which implements the protocol engine to converse with the machine
via a physical interface (e. g. an RS-232 serial link). An example of a script file which
relates the technology independent commands for. machines and technology dependent

1. The types of resource components are referred in this thesis as functional entities, as coined
in the CIM-OSA terminology.

194

commands for a CNC machine is shown in Figure 67. Here, whenever a functional

operation make(Part_A) is received from the Resource Manager, the PE component
executes the sequence of commands listed in Figure 67, namely: down-load program
"Part A. program" followed by "start" [program]. In order for this to occur, the PE

component reads the program stored in a database (via the information entity services);

starts the program; and monitors program termination.

FO-1: make(Part A):
download(Part_A);
start;

FO-2: made(Pari_A);
end_of_program(Part_A);

Figure 67 - Example of a script for a machine functional entity

"Part_A. program" is an CNC program built and tested (in advance of modelling
activities) by the engineering area of the enterprise. The only relationship between
"Part_A. program" and SEW-OSA is through the identification of "Part_A. program" as
a necessary information object view, required to execute the functional operation
make(Part A), referred to in the business model.

When the program is completed, the machine will feed back a status report (i. e.
"end_of program") this being translated into the functional operation made(Part_A)
and transmitted back to the Resource Manager.

One should observe that if interactions are performed using a machine that
facilitates control of a finer level of granularity (at which operations hard-coded in the

program "Part_A. program" are formally defined in the script, e. g. move part to the

assembly envelope, place component A on position x, etc.), a greater level of flexibility

would be allowed. However, conversely, an undesirable level of detail would have to
be dealt with.

Finally, it is important to notice that, although it is envisaged that SEW-OSA

controls logical connections between the software components involved, appropriate
hardware connections should be in place to interact with physical components (which

may reside in hosts alien to CIM-BIOSYS). For example, in order to integrate to the

placement machine, all hardware connections between it and the PE component host

are assumed to be realised.

9.3.2. Human functional entities
The structure depicted in Figure 66 can be directly applied to human interfaces.

Here, separation of technologies coincides with a physical separation between the
integrated operation environment and the integrating infrastructure.

195

The basic requirement of a CIM-OSA resource component (i. e. to operate as a

senver of functionality structured as independently accessible elements) requires that

the tasks and decisions performed by human beings in the system are structured so that

they can be triggered by events captured by the business model and that they are

executed independently by each human functional entity. Hence, cooperation between

human function entities is encapsulated in the business model. Exceptions can be made

where a group of people interact directly among themselves and interact with the rest

of the system modelled by CIM-OSA via a single instance of a human functional entity.
However, in this case, coordination issues related to the tightly coupled group are not
included within the business model.

Hence, the structure in Figure 66 can be populated with a human interface

which implements a protocol engine and translates functional operations into

instructions in a language or format that can be understood by a human being. Likewise,

responses and instructions from the operator should be transformed into defined

functional operations. An example of a script file that illustrates this concept is shown
in Figure 68. Here, whenever a functional operation do(task B) is received from the
Resource Manager, the PE component changes the colour of a widget on the interface,

this serves to tell the operator that the task represented by such an event needs be

performed. When the operator completes the task, he (or she) informs the interface and

a functional operation done(task_B) is passed back to the Resource Manager. The script
file could also incorporate more sophisticated means of interfacing (e. g. voice and
image recognition and generation, animation, etc.). However, one should notice that

this class of interactions with human beings is of a mechanistic nature. This is

evidenced by the finite nature of the script. That is, the operator is not allowed to

respond in a form that has not been foreseen by the model.

FO-1: do(task_B):
change widget(list);

FO-2: done(task_B);
cal lback_buttom_done(task_B);

Figure 68 - Example of a script for a human functional entity

9.3.3. Application functional entities

Integrating existing application functional entities (i. e. legacy software) to the
CIM-OSA architecture presents many challenging problems. As previously discussed,

contemporary application functional entities seldom comply with the basic features of

a CIM-OSA-compliant resource component. Commonly, therefore, they will not

operate as a server of functionality within a system, and their functionality may be

196

partly structured with their component building blocks quite inter-dependent of one
another. Additionally, it may be that a large proportion of the code of existing
applications is devoted to coordinating the execution of pieces of functionality. A
further complicating factor is that CIM-OSA seeks a major separation between the core
functionality of applications and their user interface. Indeed, CIM-OSA-compliant

application functional entities do not possess a user interface. The functionality

provided by a CIM-OSA application functional entity comprises purely of computer
processing which is executed without human assistance. This complies with the

principle of atomicity which says that a functional operation is a piece of functionality

that the resource component should be able to execute on its own, without interacting

with other resource components [ESPRIT/AMICE 1993a).
Even when application functionality and human interface functions are grouped

into one entity (i. e. system component), other sources of complexity arise from
integrating heterogeneous software applications. Among the various sources of
complexity', the issues of coordination are of particular interest in this research.

Coordination issues comprise of the coordination tasks embedded in software

applications for controlling the synchronisation and sequencing of pieces of
functionality, in a form that does not take into consideration overall system

coordination issues. That is, complexity arises from the convoluted manner in which
two basic sets of coordination issues coexist in a software application, namely: tasks

that applications accomplish and assumptions they make about the functionality that

other system components. Therefore, addressing the conflict between coordination
decisions coded within software applications and those embodied in the business model
is essential to achieving coherent overall system coordination. If these conflicts cannot
be resolved, software applications will need to be re-structured, so as to comply with
the mode of operation discussed in Section 9.1.

By considering the requirements imposed by CIM-OSA upon the mode of

operation of its functional entities, a way of re-structuring applications could be realised
by adopting the structure proposed by Figure 69. Such a structure implies the re-

organisation of existing software applications into two sets of functions: (1) those

related to tasks performed by the software application of the system (i. e. its actual
functional components) and (2) those related to decisions about what the software

application should do next (i. e. its local coordination functions). Generally speaking,
functionality encompasses tasks performed by functional modules (or group of

1. Some other issues are: the heterogeneous nature of the infrastructures, operating systems,
programming environments, networks and hardware platforms upon which software applications are
developed; and the proprietary nature of the protocols used by software applications to interact with
other system components;

197

Local 7's
Functionality

Eoni

Local
Coordination

Engine

Technology Dependent Language

Presentation Entity Component

Operator

Internal
Functions

Figure 69 - Proposed structure for an application functional entity

functional modules) contained within software applications and those that are
supported and/or executed by the operator of the software application. Within local

coordination functions are decisions related to the execution of local functionality and
decisions related to external functionality (i. e. the functionality provided by other
system components).

The structure depicted in Figure 69 complies with the form in which active

resource components are modelled in Chapter 5. Building software applications based

on this structure consist of populating the active resource components described by

entity behaviour diagrams (see Figure 32) with their relevant functionality described as
functional operations. That is, predicate-action Petri-nets populate the local

coordination engine of applications, whereby local functions are triggered by the firing

of transitions (see Figure 69).

19S

9.4. Current Implementation of Interactions with Active Resource
Compo ints in SEW-OSA

Three issues summarise the current status of this research with respect to the
realisation of interactions between SEW-OSA and active resource components,
namely:

" the idealised structure of an active resource component which was assumed for

modelling purposes;

" associated functional operations to be supported in SEW-OSA;

" the strategy adopted (and realised within the context of the "Model-Driven CIM"

project) for demonstrating these interactions.

9.4.1. Ideal active resource component
Ideally, a CIM-OSA compliant resource component should interact with the

integrating infrastructure via PE components (see Figure 66), this by implementing the
specified structure of a functional entity shown in Figure 70. According to this

c Local\
Functionality

Function 1

Function 2
Local

Coordination

Engine Function 3

JFunction
n

Technology Dependent Language

Presentation Entity Component

Figure 70 - Ideal functional entity

199

structure, the local coordination engine receives functional operations (or equivalent

commands generated by PE components from a script), and selects appropriate
functional building blocks to execute them. Likewise, relevant statuses must be

encapsulated into functional operations and reported back to enterprise activities.
Ideally, scripts should be created so as to provide null transformations or very simple

ones. A null transformation implies that the resource component is able to directly

recognise functional operations. Simple transformations mean nearly one-to-one

mappings between functional operations and the commands recognised by resource

components. Unfortunately, such an ideal situation requires a level of definition of
functional operations that CIM-OSA has yet to provide. CIM-OSA partial models
define types of functional operations which are not meant to be complete or closed. A

considerable amount of work remains to be done in order to define functional

operations that can be generally applied to all occurrences of resource component.

9.4.2. Proposed functional operations
Based on an enhancement of definitions provided in the latest frozen

specification from the ESPRIT/AMICE consortium [ESPRIT/AMICE 1993a], Figures
71 and 721 show the set of functional operations adopted in this research for machines
and human functional entities, respectively.

requests responses
do(task) done(task, status)
verify(part) verified(part, status)
inspect(part) inspected(part, status)
insert(part) inserted(part, status)
store(part) stored(part, status)
check(process) checked(process, status)
validate(task) validated(task, status)
set-up(process) set(process, status)
monitor(process) monitored(process, status)

Figure 71 - Proposed human functional operation types

The rationale underlying the definition of functional operations shown in

Figures 71 and 72 is as follows:

(1) the use of generic operations for single operation machines [such as make(part) or

move(part)] or operators [such as do(task)]. Here, the context in which the

operation is requested partly determines the task to be executed;

(2) the use of specific operations for multi-operation resource components (e. g.

1. In these figures, bold functional operations consist of classes representing the functional

operation instances below them (e. g. class "do" contains instances "verify", "inspect", etc.).

200

requests responses
make(part) made(pan)
machine(part) machined(part)
asseinble(p irt) assembled(part)
prin) printed(part)
wash) washed(part)
reflow(part) reflowed(part)
populate(part) populated(part)
clean(part) cleaned(part)

move(part) moved(part)
push(part)
flip(part) flipped(part)
rotate(part) rotated(part)
store(part) stored(part)

control(device) report(status)
stop(machine) stopped(status)
start(machine) started(status)
open p) openned(status)
close (grip) closed(status)
read(sensor) value(value)
write(actuator) written(status)

Figure 72 - Proposed machine functional operation types

print(PCB)), whereby a specific task needs to be identified;

(3) the association of a response to a functional operation (as appropriate);

(4) the indication of details associated with the manner in which a functional operation

should be executed via appropriate functional operation parameters (e. g.

make(part, part_number), move(part, part_number, from-A, to-B), or
inspected(part, part-number, status).

This initial specification was proposed for the following reasons: (1) to define a
`first cut' set of operations that could be readily implemented, so as to allow the

application of SEW-OSA; and (2) to test the means of interactions between SEW-OSA

and the remaining tools and services produced within the "Model-Driven CIM project".
The definition of truly generic functional operations, valid for certain domains in

certain types of enterprises, depends upon the identification of reference models.

9.4.3. Set-up for the demonstration of physical integration
The identified functional operations' realise a means of interaction between

certain components of the business entity (i. e. enterprise activities, the Activity

1. Functional operations exchanged between the business entity and the information entity are
discussed in the next chapter.

201

Controller and the Resource Manager) and with active resource components through
their associated PE components (as shown in Figure 731). The structure depicted in

Figure 73 was adopted in order to test some of the propositions presented in this chapter
and to support the system execution stage. In this structure, execution of functional

operations is emulated by a shop-floor animator (see Figure 73).

Active Shop
I Resource Floor
I Components Animator

Unix sockets
1
1

Presentation
Entity

>Business Entity

make(part) Resource
move(part) Manager
control(device)

Enterprise
Activity An ity

Occurrences Coy oller

made(part)
moved(part)
report(status)

obtain-many(data)
obtain(data, identifier)
submit(data, value, identifier)

Information
Entity

value(data. identifier. val

Figure 73 - Interactions between the SEW-OSA entities and the animator

The shop-floor animator is an application program developed in SmailTalk

[ParcPlace 1990] by I. S. Murgatroyd (another researcher of the MSI Institute), which

1. The integration of the system configuration represented in this figure was a key result of a

team effort involving all researchers working in the "Model-Driven CIM" project. Merits on

the realisation of individual component are as follows: the "shop-floor animator" was

realised by I. S. Murgatroyd, a simplified version of the "presentation entity" was realised
by I. A. Courts and the "information entity" was realised by P. Clements.

202

defines one SmallTalk object for each resource components of interest on the shop-
floor. The :e objects:

" interface with the presentation entity via internet sockets shared with the PE

components (see Figure 73);

" are able to execute some of the functional operations shown in Figures 71 and 72
directly, without the need for scripts (shown in Figure 66) associated with the PE

components;

" interact with one another, in order to describe an animation of the physical actions
that occur on the shop-floor (e. g. material movement and transformation) as a result
of model-enactment.

The main difference between the configuration with emulated components and
the one with the animator is that, for the emulated configuration, no movement of
objects actually occurs, whereas in the case of theanimated solution movements are
represented as SmallTalk objects moving on a screen.

Hence, the primary function of the animator is to provide a tool which helps

visualise model execution which should be particularly valuable to non-IT specialists.
The animator provides a graphical interface which mimics model execution from the

view-point of physical resources being used, this by highlighting material movement

and information flow (relevant to state transitions in the system).

9.5. Limitations

It should be emphasised that the following limitations are associated with the

activities underlying the description presented in this chapter:

a. Implementation

No implementation of device drivers, application enablers or human interfaces

was undertaken within the scope of this research. Certain aspects of these issues have

been investigated by other MSI researchers within the scope of the "Model-Driven

CIM" project and others are to be tackled in forthcoming research work. Additionally,

modelling of interactions between machine functional entities is one of the main issues

addressed within the scope of the ESPRIT/VOICE project [Didic 1993] which this

research did not attempt to duplicate.

b. Usability

Model-based specifications can only be experienced when resource models
(which exist as a form of reference model, as illustrated in Figure 7) are available and

reasonably well populated. Currently, SEW-OSA is populated with a sub-set of the

203

resource models required by the shop-floor of D2D. Such models include references to
information about configuration and interfacing as required by a PE Component.
Although such a level of population is sufficient to demonstrate the concepts proposed
in this research, more completely populated models are required if SEW-OSA is to be
broadly used for resource specification.

c. Interpretation of the business model
When moving from a rapid-prototyping stage (described in Chapter 7) to a

system execution stage, possible modifications in the business model may be required.
These modifications are required to adapt the model to particular situations in terms of

component interactions that may change when tested with physical components rather
than with emulated ones. The shape of the business model and the way in which it is

executed should remain the same (i. e. the model continues to be executed in an
interpreted form).

An option that may be considered in future versions of SEW-OSA is to replace
the interpreted form of the business model by a compiled one (in "C" or "C++") for the

sake of improved run-time performance. However, realising such an option is beyond

the scope of this research.

d. Event generation
Relationships between an event and a happening in the physical system are

defined in two forms, namely: (1) by associating an event occurrence with an action
which can be captured by the presentation entity and channelled to the Event Handler

(see Figure 52) - e. g. the arrival of a batch on the shop-floor, or the expiration of a time-

out, etc.; (2) by defining triggering conditions to information object views held on data-
bases, which are transformed into events when certain operations are executed upon the

object views (e. g. creation, deletion, update, etc.). Although SEW-OSA provides means
of easily incorporating these two forms of event generation, they have not been
included in its current implementation.

9.6. Concluding Remarks

This chapter concentrated on analysing (albeit not proving) the impact of the
CIM-OSA architecture upon the configuration and execution of a physical system.
From this perspective, the main contributions made from this analysis are as follows:

" the definition of a generic structure for implementing the components of a

presentation entity (as shown in Figure 66), this being required to facilitate

interaction in an homogeneous manner with inherently heterogeneous resource

components;

203

" specifying how the generic structure of a PE component can be used to handle
interactions with three types of functional entities (i. e. application programs,
machines and human beings);

" defining and implementing a suite of functional operation types, this at a certain
level of granularity with respect to the atomic pieces of functionality handled by the
business model;

In so doing, this research has examined the issues involved in evolving from a
purely SEW-OSA-based system, in which the inherent heterogeneity of active resource
components is abstracted through using emulated components, to a scenario in which
instances of the three types of physical resource components are an integral part of the

system.

205

Chapter 10 - SEW-OSA within the context of other
"Model-Driven CIM" tools and models

Chapter 5 described the model-building capability packaged as the SEW-OSA
CASE tool. However, a comprehensive capability for supporting model-building
requires additional CASE tool elements, as illustrated in Figure 9. Although these

additional elements are outside the scope of this Ph. D. study, they impact directly on
it. Indeed, other MSI researchers working on the "Model-Driven CIM" project" (see
Appendix 2) produced versions of such tools as indicated in Figure 74. These elements
comprised of (see Figure 74): a resource modelling CASE tool based on the Booch

object-oriented software design method [Booch 1991], produced by L S. Murgatroyd
[Murgatroyd 1993], CASE tools for modelling systems from a ̀ bottom-up' perspective,
produced by I. S. Murgatroyd [Murgatroyd 1993] and P. Gilders [Gilders 1995] using
the support of infrastructural services realised by I. A. Coutts [Coutts 1994] and a
CASE tool for information modelling, produced by P. Clements and I. S. Murgatroyd
[Clements 1993] which also uses infrastructural services realised by I. A. Coutts

[Coutts 1994].

Conversion from Scope of the Thesis
'Bottom-up' and 'Top-down'

Modelling

Bottom-up' nption Oct Views

ottom-u SEW- nformation
odelling OSA formati n Eleme Welling
cols---® TOO Tool --®

I egUirements

Methodology for mow'
Resource Component MO IIII:;

Resource
Modelling
Tool - qw

Figure 74 - Relationships among modelling tools

Indeed, many of the ideas presented in this chapter carry a strong contribution
of conceptual thinking from these researchers which the author duely acknowledges.
On the other hand, this chapter seeks to outline the author's view as to how such
elements can be integrated with the model-building capability of SEW-OSA. Indeed,

any inconsistencies or limitations in expressing such a view are the responsibility of the

author.

206

At the time when initial writing of the thesis began, the author's view of a
unified set of modelling tools had not been tested. However, during th. writing up
period, the task of integrating these modelling tools has been carried out as part of the
ACME funded "Model-Driven CIM" project as a joint effort of MSI researchers
(including the author). Hence, the discussion presented here is germane to this thesis as
it clarifies the scope of SEW-OSA with respect to the "Model-Driven CIM" project (see
Figure 74). It also describes potential uses of the concepts introduced in previous
chapters (e. g. concerning the use of resource models, reference models and the need to

separate models of functionality and behaviour).

Outstanding activities involved in achieving an integration of the modelling
tools are depicted by the ellipses in Figure 74. These design and implementation

activities include:

" identification and use of a methodology for resource component specification. This

will provide an "interface" between SEW-OSA and a resource modelling tool;

" methods and mechanisms for integrating functional and information modelling
perspectives, based on an "interface" between SEW-OSA and an information

modelling tool;

" identification and use of an approach for mapping between `bottom-up'
descriptions of a system (which, to encourage re-use, should be an object-oriented-
based model) and `top-down descriptions of systems (i. e. CIM-OSA-based

models), thus, realising an "interface" between SEW-OSA and a object-oriented
modelling tool.

Possible solutions which meet the needs of the first two "interfaces" are
discussed in the following sections. For reasons of conciseness, a proposal related to
the third "interface" is presented in an internal report [Aguiar 1995a].

10.1. Methodology for Resource Component Specification

A key issue at the design specification modelling level is the need to specify
system components, based on functional requirements identified at the requirements
definition modelling level. The approach proposed here recognises certain
characteristic properties of integrated manufacturing systems, which include':

" relationships between resource components, which prove to be appropriate for

addressing certain requirements, should be documented by the designer based on

1. It is important to notice that the approach taken is geared towards the definition of active

resources as supposed to passive resources (see the resource diagram shown in Figure 33).

207

experience gained from carrying out previous designs. It is likely that models of

resource components and their inter-relationships will be domain specific (i. e. they

are likely to only be valid for certain types of businesses, certain areas of a business

or certain classes of resource).

" when selecting a resource (within the context of the resource diagram shown in
Figure 33), it is envisaged that support will be provided in a form which identifies

candidate active resource components (which have the capabilities to meet
requirements defined by the user).

Therefore, models of resource components should encapsulate the following

information:

" attributes which classify them in a "catalogue of resources", i. e. as a resource model

which is selected and used when creating resource and object diagrams (similar to
those shown in Figures 30 and 33) to facilitate resource selection;

"a description of their internal dynamic behaviour, in response to requests from

enterprise activities to execute functional operations on their behalf (i. e.
information that is captured by entity behaviour diagrams similar to that of
Figure 32, which is shared with the resource model, as depicted in Figure 75);

"a binding between model representations involving an instance of physical resource

components and required means of accessing them (i. e. device drivers, application

enablers, user interfaces, etc.). This binding should be inherited as part of resource

selection operations performed when creating the resource diagram. This binding,

to a physical instance of a resource component, should enable automatic

replacement of an emulated component by a physical component; this as a key step

towards progressing from design specification to implementation description in

SEW-OSA. However, such an operation is only possible if the selected resource

component and the means by which it is accessed are made available in some form

of database. This implies that the resource should have previously been procured on

an `off-the-shelf' basis or developed `in-house'.

In this context, the process of resource component selection will consist of:

" searching through a library of models of physical resource components, in order to

select certain resource models from a suite of options;

" testing the options through simulation and rapid-prototyping of the system;

" analysing the results in terms of the impact of choosing certain options upon the

overall performance of the system.

20S

10.1.1. Resource model
To facilitate selection of the resource components of a system, a resource

modelling capability needs to be incorporated within SEW-OSA. As part of the
"Model-Driven CIM" project, parallel study [Murgatroyd 1993] had proven the

potential use of an object-oriented CASE tool in respect of resource modelling. Hence

it was decided that such a tool should be related to SEW-OSA, according to the diagram

depicted in Figure 75. Indeed, the object-oriented design tool was produced in

prototype form by I. S. Murgatroyd, based on the Booch methodology.
In the scheme shown in Figure 75, the information encapsulated by the resource

model can be used as an integral part of the modelling method described in Chapter 5.

The composition of the cloud labelled "requirements definition of SEW-OSA" (in

Figure 75) is shown in greater detail in the upper part of Figure 22.

DEF MI7I0N EW- 0S...: ..:..
i.; -. sj,

:'

Figure 75 - Interface with a resource model

209

Essentially, a resource model organises data about currently available resources
into a class diagram (according to the Booch methodology [Booch 1991]), as shown by

Figure 76 (extracted from [Murgatroyd 1993]).

other
in thi

other objects
in this class

Figure 76 - Example of a resource model class hierarchy for a machine

Any new instance of a resource can be catalogued in this model by defining its

place in the class hierarchy, its attributes and its expected internal behaviour (this by

means of a Petri-net). As illustrated in Figure 76, the model should facilitate the

cataloguing of new resources in the form of active resource components representing
(but not limited to) machines, application programs and people (working in a given

role). Attributes of resources are expected to embrace relevant data about their features,

as well as defining means by which their integration can be achieved (upon an
integrating infrastructure).

In this scheme, the internal behaviour of a resource can be represented by

information captured in a entity behaviour diagram (similar to that of Figure 32). In the

context of the model-building capability, this diagram is assumed to represent the
behaviour of a functional entity (i. e. an entity behaviour diagram, as shown in

Figure 22). Within the modelling process described in Chapter 5, this diagram is

210

assumed to be inherited by the SEW-OSA business model from the resource model, as
illustrated in Figure 75. Subsequently, information contained in this diagram can be

used to generate a prototype of the system.
The resource selection process starts with the definition of the resource

capability construct used in the functional diagram (shown in Figure 29). An example

of a resource capability template is shown in Figure 771 which is associated with the

constructs identified as "RC" in the functional diagram. The resource capability

construct must capture characteristic properties of a resource, described from the

viewpoint of the user. One should notice that this template provides an abstract
definition of the overall requirements of a resource without defining details of physical

resource components used to realise such a capability.

RESOURCE CAPABILITY TEMPLATE:

TYPE: Manufacturing

IDENTIFIER: RC-2

NAME: Placement Capability

DESIGN AUTHORITY: Marcos Aguiar

DESCRIPTION: Capability to populate boards

CAPABILITY ATTRIBUTES:

Activity: Active

Type of Activity: mechanical and repetitive

Figure 77 - Example of a resource capability template

As one progresses to the design specification stage in Figure 22, resource

components are expected to be defined with respect to representations of their
functional (i. e. functional entity) and physical (i. e. active resource components)

properties. A functional entity construct can be used to represent the class of
interactions that a resource should support (this being related to the types of functional

operations that the resource can provide). Figure 78 shows a typical functional entity
template which was conceived by the author to summarise its attributes of interest.

1. Construct templates presented in this chapter have not yet been incorporated into SEW-OSA

in a form which can enable integration with a resource model. Therefore, their current

attributes should be viewed as the author's recommendation with regard to their definition.

211

Here, it should be noticed that its attributes define, the type of functional operations

supported, a more specific definition of its type (e. g. a machine) and the internal

behaviour that it is expected to demonstrate (e. g. a link to an entity behaviour diagram

identified as FE-2_Behaviour diagram).

FUNCTIONAL ENTITY TEMPLATE:

TYPE: Manufacturing

IDENTIFIER: FE-2

NAME: Placement Entity

DESIGN AUTHORITY: Marcos Aguiar

DESCRIPTION: Functionality to populate boards

ATTRIBUTES:

Functional Operations: make(PCB)
made(PCB)

Behaviour diagram: FE-2_Behaviour_diagram

Type of Resource: Machine

Figure 78 - Example of a functional entity template

The model of an active resource component needs to include a description of
the information required by the integrating infrastructure to interact with the resource.
Here, it was realised that an active resource component can either be represented in an

emulated form or in its final physical form. An example of such a description conceived
for this purpose is presented in Figure 79. It should be noted that the attributes

associated with the "integration features" of such a resource define: a link to a device

driver which can be used by CIM-BIOSYS to enable communication with a particular

machine (e. g. SMT_dvc); any object-views (e. g. OV) required for the integration to

occur (e. g. in this case, "Siemens_integ" identifies information elements that need to be

used to accomplish the integration); the name of the CIM-BIOSYS process which

manages the integration (e. g. SIEMENS); the host computer to which the machine is

attached (e. g. derek), the type of hardware interface required by the machine (e. g. RS-

232), and a script which enables it to be integrated into SEW-OSA. Arguably, such a
template defines all necessary attributes to realise the integration of a resource into a

system.

212

ACTIVE RESOURCE COMPONENT TEMPLATE:

TYPE: Manufacturing

IDENTIFIER: ARC-3

NAME: Siemens Placement Machine

DESIGN AUTHORITY: Marcos Aguiar

DESCRIPTION: Placement machine, make Siemens,
model SM-456, number 4579-49386

MODEL FEATURES

Behaviour Model ARC-3_Behaviour_diagram

INTEGRATION FEATURES

Device Driver. SMT dvc

Integration OV: Siemensjnteg

CIM-BIOSYS Process: SIEMENS

Usual Host Derek

Hardware Interface: RS-232

Script: Siemens-script

Figure 79 - Example of an active resource component template

These three templates which define the resource capability, the functional entity

and the active resource component are being incorporated into the model-building

capability of SEW-OSA. Indeed, current effort in MSI is in establishing a link between

SEW-OSA and a resource modelling capability, in order to provide a means of

gradually refining the specification of a resource through the use of information

provided by these templates. Currently, SEW OSA supports system performance tests
based on a selection of alternative resources. However, it does not support the process

of refining the specification of a resource, so that a physical instance of a resource can
be defined from its requirements.

In this research, it is envisaged that this level of support should be encapsulated
in the resource model (i. e. within a reference model of resource components).
Structuring and populating such reference models is beyond the scope of this research.
However, this research has identified necessary constituents of these models, namely:

213

"a library of resource models with attributes corresponding to the templates shown
in Figures 77 to 79;

" means of creating relationships between these models so that the experience

acquired in previous designs, with regard to the process of refining a resource

specification, can be formally captured in models (i. e. relationships between

requirements definition and design specification). These relationships are referred
to in Figure 36 as "connectance models"1.

The resource specification process consists of establishing relationships
between attributes associated with a resource capability and associated functional

entities and active resource components. In this manner, alternative specifications of

resources retrieved from the resource model can be input automatically to the SEW-

OSA CASE tool. The relationships represented in the connectance models are likely to

possess many-to-many cardinality (i. e. there may be. many active resource components

capable of providing a certain resource capability and vice-versa). Hence, the

modelling process associated with the selection of resource components is envisaged to

embrace the following steps:

" definition of resource capabilities (at the requirements definition modelling level)

attached to each enterprise activity (via the functional diagram shown in Figure 29);

" retrieving of representations of resources in the form of functional entities and

active resource components (at the design specification modelling level), which
encapsulate the internal behaviour of the resource, and form a basis for refining the
information required to facilitate appropriate selection of resources from the class
hierarchy (illustrated in Figure 76). It is anticipated that such a refinement process

will be carried out partially by defining both object and resource diagrams (as

shown in Figure 75) of the SEW-OSA CASE tool. From the viewpoint of SEW-

OSA, such a process consists of obtaining a static model of a candidate solution
(e. g. the list of attributes of the type shown in Figures 78 and 77), as well as a
dynamic model of its behaviour based on the use of Petri-nets.

" testing of dynamic aspects of the resource through simulation and rapid

prototyping. Some of the dynamic issues involved are associated with the metrics

1. According to Kwikkers [Kwikkers 1992], connectance models describe connections in a

particular field of knowledge. Connectance models consist of generalisations of point

solutions encountered in particular designs. Kwikkers uses connectance models to retrieve

a particular model from a library of reference models. Work on the definition of connectance

models is being carried out at Karlsruhe University [Naeger 1993], with which the MSI

institute has collaborative research links.

214

embodied in the Petri-net model. Additionally, simulation runs are required, for a

resource may serve many occurrences of enterprise activities with which it is

associated. Hence, there may occur resource utilisation constraints that have to be

considered when multiple occurrences of enterprise activities compete for the same

resource component. Timing considerations associated with the way functional

operations are executed will strongly impact on these dynamic issues;

" review of the specification and re-execution of previous steps, until a satisfactory

solution is achieved. There may be more than one resource to address the same set
of requirements. In this case, simulation and rapid-prototyping can help in

assessing performance considerations which, weighted against the cost of
alternative resources, provide the basis for the decision making with regard to

resource selection;

" replacing a resource model by the actual physical resource (at the implementation

description modelling level) on a component-by-component basis. Such a
replacement should be facilitated by the definition of integration aspects already
embodied in the modelled resource components (i. e. attributes shown in Figure 79).

It should be noted that the proposed methodology validates a resource selection
based on its performance from an integration perspective. That is, it should test whether
timing and interaction considerations amongst system components are being performed

according to what is expected. However, this methodology does not provide any means
of testing whether the functionality provided by a resource effectively addresses the

needs identified in the modelling process.

10.1.2. Resource specification considerations
It may be unreasonable to expect that a designer would have available (in a local

library) instances of all marketed implementations of resource components that he may

require for his design. However, it may not be so unreasonable to envisage that he could
have models describing most of these resources to the level of detail that he requires in

order to make a decision regarding selection of a particular resource. Essentially this is

a primary reason why models can play an important role in the process of selecting a
physical resource.

Such an approach also implies a more forward looking view of the necessary

provision of information by suppliers about their resource components. In such a

scheme, suppliers would be required to provide testable models of the resource

components they supply, rather than merely catalogues with data about features and
behaviour of resource components which cannot be tested. Modules of resource

components associated with such models are expected to be available in the market on

215

an `off-the-shelf' basis (e. g. software objects generated via the OMG initiative).

Modularity, in this case, implies a twofold requirement, namely: provision of well
established interfaces between the modules that comprise a resource component and its

external environment; and provision of models that describe the form in which the

resource component behaves internally.

10.1.3. The importance of reference models
In previous sections, the way in which SEW-OSA is used to support resource

component selection is described. The approach is based on the selection of resource

models which enable a link to be established between activities and models created
during the conceptual analysis and design and implementation phases of the IMS life

cycle (this being a requirement on this research study as highlighted in Section 3.2.4).
Resource models associated with system models (i. e. models of requirements)

constitute the reference models required to support activities of these life cycle phases
(as shown in Figure 7). At the interface between these two phases, reference models
produced under the umbrella of an architecture play an important role in bringing

together: (a) the requirements associated with a particular problem domain (i. e. the

world of IT usage), (b) the solutions that can be used to address those requirements (i. e.
the world of IT supply), and (c) the means by which solutions can be put to work (i. e.
the world of integrating infrastructures). Such a role for a reference model is illustrated
in Figure 80.

As an integral part of the design and build process, reference models should be

used as a re
erence

for decisions upon: (1) how to describe the requirements of a certain
domain (through using system models) and (2) what resources to select in order to
address those requirements (through resource models). This combined use of system
models and resource models is illustrated in Figure 81.

Although this section has concentrated discussion on resource models, it is

envisaged that a similar approach can be used to define a library of system models. Such

a library is expected to contain partially instantiated models of enterprise activities,
business processes, domain processes, etc., as well as models of complete domains of
certain types of enterprises (described at various levels of abstraction).

As represented pictorially in Figure 81, libraries of system models could be

used to facilitate a description of requirements for a particular enterprise (i. e. a
particular domain). Once requirements are captured, a library of resource models could
be used to specify a particular selection of resource components configured to address
those requirements. Notice in Figure 81, once again, the envisaged role of connectance
models in linking a refined form of requirements to a solution in terms of resource
specifications. Assuming that this process occurs under the support of a workbench
(such as SEW-OSA), a selected system configuration can be tested and put to work

216

World of Modelling Technology

Refemncc /
Architectures

(e. g. CIM-OSA)

ö Domain t i Application y g
Specific DOMAIN

SPECIFIC Software ö
Requirements REFERENCE (e. g. MCS vý (e. g. shop - MODEL _ systems) V)

ö control ö

0 0

Integrating
" `ý

Infrastructures `.
(e. g. CIM-
BIOSYS)

World of Integrating Infrastructures

Figure 80 -A key role for reference models

automatically via'simulation and rapid-prototyping.
This move from requirements definition to design specification characterises a

`top-down' approach to modelling (i. e. "forward engineering" in Figure 81). However,

in some cases, an existing system needs to be changed and re-engineered (i. e. "reverse

engineering" in Figure 81). This may require a `bottom-up' approach to modelling
(which is also foreseen in Figure 74).

10.2. Integration Between Function and Information

A crucial limitation of contemporary modelling methods and tools is a lack of
integration between two major modelling views of systems, namely: function and
information [Mayer 1992] [Coad 1990]. This research does not aim to resolve such a
limitation in a generalised manner, but it does aim to provide facilities for realising a
link between SEW-OSA functional modelling and an information modelling tool. This

section briefly describes such a link and relates this to the model-building capability of
SEW-OSA.

Central constructs of SEW-OSA from which relationships between function

217

Domain Specific Reference Models

mill

000®1
00011

00000
00000

II
H

Coranciarice Models

oe urc
is

Active Resource Components:
®- Application Programs

- Machines

eermg - People

hing SYSWD---------
i

r .«r rr

Integrating Infrastructure

Figure 81 - Reference models applied to the design and build process

and information views can be defined are the enterprise activity and the functional

operation. Based on these relationships, an integration process can be achieved

according to the methodology illustrated by Figure 821, which summarises the main
design and build activities performed at the interface between these views.

From a top-down stand-point, the integration process embedded in SEW-OSA

can be realised by the following method:

a. Once the requirements definition model is completed (by use of the method
described in Chapter 5) a list of identified object views is generated by the SEW-

OSA CASE tool (i. e. the function view). These object views are related to objects

manipulated within an information modelling tool (i. e. the information view). An

example list of such object views is shown in Figure 83. These object views are

mostly identified as part of design definitions encapsulated by the functional

diagram (shown in Figure 29), which identifies enterprise activities as consumers

and producers of object views.

b. With the help of an information modelling tool, the identified object views are

analysed and related to information elements (i. e. atomic pieces of data), as part of

the activities supported by the tool at the requirements definition modelling level.

1. This figure was developed in a joint effort which involved I. A. Coutts, I. S. Murgatroyd, P.

Clements, P. Gilders and the author.

21S

Information View

0
cä Ää

Analysis of Information

ap Requirements: maps j
Object Views into
Information Elements

. 0, p 0

Information Elements (e. g. A, B, P, V, etc.)

c

a ,c

onoö

C

C.
.Ly

Aa
CC

Cö

as cý.
B

S

d. aarnt (1 z. "b[ovti):
baýune C}Hne.

Information, in form of
Database, File etc.

Function View

ov 1 ov2 ova

Al A2 3

Functional diagram: identifies
enterprise activities and their
information requirements

Entity Al 2

Relationship
Model A3 E_
e. g. express Object diagram: EA data access identification

Predicate (g (S. P. x) Structure Action Petri Use of notation determined
net used to specified by for
model the entity information Information relationship

elements Access model

View Provider

Information
Access
Aggregation
Presentation

'C' Code Func
Petri net Ops

support functions

etri net model
ompiled into
C' code then
inked with

interface to
Integration
Infrastructure

Figure 82 - Relationships between function and information views

Here, it is important to note that an object view (as its name implies) is simply a
view into a set of information elements. Therefore, an object view can be mapped
into one or a combination of information elements.

c. The information elements can then be mapped into entities or attributes, identified

219

CIM-OSA Design: smt

List of Object Views:

OV 1/Batch BB/P
OV-2/PCB/P
OV 3/released BB/P
OV-4keady to print/P
OV 5/printed/P
OV 6/populated/P
OV-7/checked/P
OV-8/ready to insp/P
OV 9finspected/P
OV 1Q/finished/P
OV 11/ready to reflow/P

Figure 83 - Example of a list of object views

and structured through the use of an entity-relationship-attribute (ERA) diagram.
This diagram is used to formalise the conceptual design of a data-base structure

which will hold the information element. This is the central activity supported by

the information modelling tool, at the design specification modelling level.

As a result of this modelling step, a list of parameters (which can be used to

construct transactions to provide access to these information elements) is supplied
as input to SEW-OSA (at the design specification modelling level) by the
information modelling tool (see Figure 82).

d. By referring to such a list, functional operations can be defined which can be used
by enterprise activities to access information elements. These information elements

are related to the object views that are consumed and produced by enterprise
activities, as defined at the requirements definition modelling level.

Functional operations of the type "data transaction" are modelled in the object
diagram by means of message exchange. Figure 30 provides an example of
transactions between enterprise activities and the information entity. The definition

of parameters of these functional operations, as well as the processing performed

upon information elements retrieved through their use, are modelled in activity
behaviour diagrams.

Data processing internal to an enterprise activity object can either be through direct

manipulation of the values held by the information elements or through passing

such values as parameters to functional operations. Functional operations, in turn,

220

can execute some defined task on behalf of the enterprise activity (e. g. a functional

operation representing a collection of "C" functions which require input

parameters). The direct processing can be by means of checking conditions, defined

by the predicate part of the Petri-net, or by using the value in operations, defined in

the action part of the Petri-net. Examples of both cases are shown in Figure 31.

The functional operations implemented in SEW-OSA for data transactions are
shown in Figure 84, where the parameter "identifier" relates to a thread of business

model execution.

o tain_many(data)
obtain(data, identifier)
submit(data, value, identifier)
value(data, identifier, value)

Figure 84 - Data transaction functional operations implemented

e. The structure defined in an entity-relationship diagram (as referred to in item "c") is

then used to generate code in the Express syntax [Boyle 1991] which, in turn, is

used to populate the data-bases where the related information elements will be

maintained [Clements 1993].

Here, one should note that these data can be distributed among a number of
heterogeneous data-bases. The information services of CIM-BIOSYS enable
transparent access these data, allowing simple reference to them by their names
[Coutts 1994].

f. At run time, the transactions defined at the design specification modelling level are

executed by the model-enactment capability of SEW-OSA which passes them to

the CIM-BIOSYS integrating infrastructure, where they are transformed into

appropriate data-base transactions (e. g. SQL statements). This is accomplished
through the CIM-BIOSYS view provision facility, which provides the information

element to the enterprise activities in the format required; this being independent of
details about the location and format of the data [Coutts 1994].

As illustrated in Figure 74, integration between SEW-OSA and the information

modelling tools has been implemented in the form of files which transfer a list of object

views from SEW-OSA to the information modelling tool and models of the information

structure from the information modelling tool to SEW-OSA.

221

10.3. Limitations

A limitation common to the three links discussed in this chapter consists of the
lack of a tight integration' between SEW-OSA and these tools. Currently, they

constitute completely separate CASE tools which can share data through transferring
files with the data in it. A closer integration between these tools would facilitate

consistency checking across the complete model (i. e. embracing function, resource and
information views). In this respect, consideration must be given to efforts to standardise
interfaces and reference models related to the inter-operation of tools (e. g. "Portable

Common Tools Environment (PCTE), CASE Data Interchange Format (CDIF) and ̀ de-
facto' standards, namely: HP Softbench, Microsoft Data Exchange (DDE) and Object

Linking and Embedding (OLE) [Brown 1993]).
Other limitations associated with the proposals for each link concerns the

following factors:

a. Methodology for Resource Specification

Here, a limitation is related to the fact that as yet only a limited amount of
information about different types of resources and their requirements has been
formalised in the CASE tools. In other words, not enough reference models are
currently available, so that full advantage can be taken of the method proposed.

b. Integration Between Function and Information
Here, limitations of time and resources have constrained the implementation of

only part of the CIM-OSA specifications, leading to:

" no support being given to formal analysis of information requirements at the

requirements definition modelling level (see Figure 82);

" the transactions implemented at the design specification modelling level were of a
simple nature (see Figure 84), namely: read and write operations.

10.4. Concluding Remarks and Contributions

The main contributions to knowledge made by conceiving and developing the

methods and tools described in this chapter, include:

a. Methodology for resource specification

This methodology provides an essential link between the "conceptual analysis"

1. The term "tight integration" is used to indicate a level of interaction between the tools which

would allow exchange of data and, hence, the propagation of model changes between their

different modelling perspectives.

22

and "design and implementation" phases of the IMS life cycle. Indeed, the approach

proposed and partially implemented in this chapter helps clarify how reference models
(in the form of resource models and system models) can be used to aid associated
integration processes.

b. Integration Between Function and Information
Through using the method described in this thesis, a useful level of integration

between functional and information modelling can be achieved. Although "tighter
integration" could not be provided, a working solution was realised which provides an
initial level of support to systems design and modelling activities.

223

Chapter 11 - Analysis of Results

Previous chapters described the conception and development of SEW-OSA and
how it was applied. This chapter describes and discusses results obtained with the

purpose of evaluating various properties of SEW-OSA. It also seeks to provide a unified
view of the deliverables obtained from this research. These results are classified,

respectively, as "case study results", "implementation results" (in terms of material
deliverables) and architectural results (as initially classified in Figure 8)1.

11.1. Case Study Results

This includes results obtained from case study work when engineering an
integrated shop-floor system for D2D. These results also constitute an evaluation of
SEW-OSA with regard to the following issues:

(1) Application. This concerns the types of analysis supported by SEW-OSA during

modelling and simulation stages. It includes an exploratory analysis of
improvements in terms of integration and coordination.

(2) Workbench Performance. This centres on an analysis of the performance of the

workbench, when supporting model-building and model-enactment. Prime focus is

on the overhead imposed by the workbench during model-enactment.

(3) Engineering Process. This concerns the benefits that can be obtained when using
SEW-OSA to support the re-engineering of certain domains.

The case study work provided an opportunity to benchmark the industrial

application of SEW-OSA during various phases of the engineering cycle, i. e. from

modelling through to analysis, simulation and rapid prototyping. As discussed in
Chapter 8, two sets of models were created corresponding to two different levels of
abstraction, namely: (1) models that represent the complete D2D shop-floor; and (2)

models of a single D2D SMT assembly line (i. e. "line segment domain"). The

engineering process associated with creating the first set of models was limited to using
the model-building capability of SEW-OSA. This limitation stemmed from an
implementation constraint imposed by the current version of SEW-OSA, which limited

the maximum size of models that can be manipulated at simulation and rapid-
prototyping stages. As later identified, these limitations centred on implementation
issues related to the analysis and simulation tool (i. e. ARP) and the CIM-BIOSYS

infrastructure. This will be exemplified later in this chapter.

1. The "research findings" shown in this figure are discussed in the next chapter.

224

Conversely, the second set of models was evaluated through analysis,

simulation and rapid-prototyping phases, thereby providing a way of evaluating SEVW-

OSA as a whole.

11.1.1. The Model-building stage
The SEW-OSA cycle of model-building and code generation was tested

following its use when producing three sets of models. The first two sets are mentioned

above whereas the third was a simplified representation of the production process of the
MSI Research Institute. These modelling exercises provided data on relationships
between: (1) the size of a model (in terms of number of constructs) and the amount of

code generated for the purpose of simulation and rapid-prototyping and (2) the size of

a model and the lead-time involved in the model-building to code generation cycle.
Figure 85 illustrates these relationships for each of the three models. The meaning

attached to the information represented in Figure 8.5 (i. e. number of constructs in the

model, code generated during simulation, code generated during rapid-prototyping and
the model-building to code generation lead-time) is described in greater detail in

Appendix 10.

As one might have expected, the plots in Figure 85 show that as the model size
is increased, there is a linear correspondence between the amount of code generated and
the lead-time involved in creating the model. Arguably, the plots can then be

extrapolated and used in other applications to estimate the effort involved in model
formalisation during the model-building process, this based on an estimate of the

complexity of the models concerned.
As discussed later in this chapter, the size and complexity of the code generated

from a model also directly impacts on the overhead faced when it is enacted. This can

provide an indirect estimate of system performance before implementation decisions

are taken. Such indications could be very valuable in support of investment decisions.

11.1.2. Simulation

Models that emerged from the modelling stage were used during subsequent

analysis and simulation stages. The case study was limited to use models of one of the
SMT assembly lines (i. e. a "line segment domain", as explained in the previous
chapter). Analysis and simulation studies of the SMT assembly line concentrated on

system performance issues related to a series of variables associated with the

configuration and operation of the line. Figure 86 provides a pictorial representation of
these variables represented in the bubbles (which are associated with the various

operational stages of the SMT assembly line).

225

1,200.00

graph typ. 1,000.00 ----- ------- -f- sknulatbn cod*
-G- rapid-prorotypinq cods
-A- modal-0uiWing bad-tirrw

E

800.00 --------.. }

600.00 ------.. -. .. ------ --------- --.. --..

I
400.00 --.....................

200.0 1---- "---..

0.
W

1.00 1.50 2.00 2.50 3.00

Numbw of constructs

Figure 85 - Model-building process and model sizes (model)

bare-board Printe inspection finished PCB
speed printed PCB conveyor output buffer input buffer (Ps) buffer

lacemen reiiow ash-o {-ý
00, printer machine mach. mach. u batch

size lacement
(BS) PCB

4
rint chec Inspection p

paste check rate rate inspection
(Cr) (jr) -°-1, -material flow

Aerator 1 operator 2-- control flow

check
time

.
(It). (Ii)

Figure 86 - Key variables associated with the SMT assembly Line

22

a. Simulation data

The SMT assembly line configuration depicted in Figure 86 was modelled

using the parameters and assumptions listed in Table 5, thereby assigning values to

each process and activity modelled. The parameters and assumptions were based on
time and motion data supplied by D2D. Here, lower and upper limits were placed on
time intervals associated with each process operation and a probability distribution was

associated with the interval. The way in which parameters are assigned (to the
functional operations identified in the models) was discussed in the previous chapters.

In some simulation studies, certain of the parameters were treated as
independent variables (i. e. variables shown in Figure 86). However, where this was not
the case, default values were chosen according to Table 5. It may be deduced from this
table that: (1) the values correspond to a relatively simple PCB; and (2) "set-up" time
does not include time to carry out "kitting" operationsl.

Table 5- Parameters associated with the SMT assembly line

Operation minimum
time (s)

maximum
time (s)

probability distribution

set-up 30 60 exponential

move to printer 1 2 exponential

print 18 22 normal

check of paste 60 120 normal

placement 64 72 normal
move into conveyor 3 4 exponential

move out of conveyor 3 4 exponential
inspection 160 380 normal
finishing 50 60 normal

Other assumptions made and conditions assumed for the simulation study
include:

"a batch size of fifty PCB's. A small batch size (in respect to D2D's practice) was

adopted to limit the time consumed during simulation.

"a checking rate at the printing process (i. e. the parameter Cr in Figure 86) of twenty

percent (i. e. one board in five is checked), this being the default rate used at D2D.

" an inspection rate (i. e. the parameter Ir in Figure 86) of ten percent, this also being

the default rate used at D2D.

"a percentage of defective boards of zero, as encountered at the "check paste" and

1. These can be the most time consuming operation, but are only of interest when job sequences

are examined, such as when aiming to minimise change-over times.

227

"inspection" points.

the existence of 6 slots on the conveyor which takes boards through the reflow and

wash-off machines; 3 slots on the inspection conveyor, 3 slots inside the placement

machine and buffers (i. e. input, output and print buffers, as depicted in Figure 86).

A study of the impact of different slot values upon manufacturing (i. e. assembly)
lead time is presented in Appendix 10;

" the existence of a buffer between the printer and the placement machine which is

capable of storing a complete batch (i. e. 50 PCB's).

b. Analysis carried out on the Petri-net tool (i. e. ARP tool)
Petri-net models generated by the SEW-OSA CASE tool were submitted to an

analysis stage which included:

" verification of Petri-net properties. As a result of this analysis, the model was found

to be free of deadlocks and livelocks. Appendix 6 presents a report generated by the
ARP on such a verification. If undesirable problems had occurred in the model,
ARP would have identified them, the region in the model where they occurred and

an indication of the changes required in the model.

"a step-by-step execution of the model was carried out to check for inconsistencies

in the operation of the system (a fragment of an ARP report on this analysis is also

presented in Appendix 6). No inconsistencies were found and the model behaved in

a manner expected at the modelling stage. If any inconsistencies had been found,

ARP would have pointed the source of inconsistency.

Following this analysis, a thorough evaluation of performance was conducted

with respect to a number of performance metrics which served to qualify the model
(and the system being modelled). This evaluation consisted of monitoring certain

parameters of the line as the net evolved from an initial event to a final event. These

events were established, respectively, as being "a request to assemble a batch of boards"

and "the issue of a status indicating completion of a batch". The parameters monitored
during net evolution were:

" manufacturing (or assembly) lead-time (i. e. the total time to produce a complete
batch of boards). This measure is germane to any definition of throughput (i. e.

number of boards produced in a unit time);

" levels of work-in-progress at several stages along the SMT assembly line; and

" levels of utilisation of various resources included in the SMT assembly line.

These performance measures were derived from the following information

22S

generated via ARP reports (refer to Appendix 6 for an example of an ARP report on
performance):

" average time that the net took to evolve between initial and final events, this to

calculate the manufacturing lead-time;

" the average marking of places, this in order to obtain an estimate of levels of work-
in-progress and utilisation.

Averages were obtained from a number of simulation runs. Essentially, ARP
continuously executes simulation runs, whilst accumulating values from each run,
calculating an average value and comparing values with previous values. If the
difference between values is less than a specified level of precision, ARP stops the

simulation automatically and issues a report. A simulation can also be stopped by the

user striking a key. For the particular SMT assembly line model investigated, ARP

executed 52 simulation runs per minute (on a 486; 66MHz machine).
Prime focus of the simulation studies was on assessing:

a. manufacturing lead-time; level of utilisation of operator 1; level of utilisation of the

printer; and profile of work-in-progress - each as a function of batch size and
various inspection and printer checking rates.

b. manufacturing lead-time; and work-in-progress - both as a function of the speed of
the printer.

These performance measures so derived should provide sufficient data to

support decisions about how the line should be configured and operated. Issues of
importance which underlie these decisions are:

" identification of critical resource constraints (i. e. bottleneck operations [Goldratt
1984]);

" control over operations for which execution time can vary considerably (e. g. printer
checking and inspection operations);

" definition of a strategy for balancing the line, so that a uniform distribution of work-
in-progress along the line can be achieved;

" evaluation of the levels of utilisation of resources so that decisions on possible
capacity increases can be made;

" verification of the impact that certain configuration decisions can have upon
manufacturing lead-time, thereby influencing the throughput of the shop-floor.

2N

The performance data obtained and a brief discussion of the decisions that can
he made based on these results is presented below.

c. Manual operations carried out during the "preparation" process
From the operations listed in Table 5, "check" (of the printing process) and

"inspection" (on the inspection conveyor) are the only ones not carried out for every
board (see behaviour models of Figure 61). During production periods they are also the

only operations performed by human beings. To evaluate the impact that manual

operations can have upon the performance of the SMT assembly line, studies were

carried out to assess the impact of the time that operators take to perform their
functions.

Figure 43 depicts changes in manufacturing lead-time as a function of various

checking rates associated with the printing process. The values of checking rate plotted
in this figure range from an extremely low value (i. e. 5 boards in every 100 boards

printed) to one hundred percent. Each plot corresponds to a different time that operator1
takes to conduct a check of paste size and distribution for a single PCB. The extreme

values assigned range from 5s to 5 minutes. As emphasized earlier in this section, this

study was conducted using the default values presented in Table 5 and the conditions
defined on page 226.

The family of plots indicates that for values of checking time above 100s the

checking rate becomes an important consideration, with respect to limiting lead-time.

For instance, with a checking time of 100 s, the lead-time grows rapidly if the checking

rate is increased beyond the default value used at D2D (i. e. 20%). This is a good

example of where simulation results confirmed empirical values (of good practice)

which were assigned based on D2D's practical experience of the process. This study
was the first simulation exercise conducted in this area at D2D.

The effect that these conditions have upon the level of utilisation of operatorl
and the printer can be observed from plots of Figures 87 and 88. Here, as one would
expect, when checking time and checking rate are increased, the level of utilisation of
operatorl increases dramatically. Indeed, this increase in the level of utilisation of

operatorl causes an increase in the manufacturing lead-time, following a corresponding
increase in the volume of boards waiting for a print check (see discussion about work-
in-progress later in this section).

Figure 87 also indicates the point at which additional operators may be required
to supervise the printing process, should a high checking rate and checking time be

necessary to enable operation of the line.

As indicated by Figure 88 utilisation of the printer remains at a level between

40 to 45 percent for values of checking time below 100s. This level of utilisation
decreases considerably when the values of checking time and checking rate are

230

1o. 00

90.00 .. -""..

so. oo

ch. ch tkm.
70.00

-R-so.
1008

60.00 3000

50.00 --. - -"- ---

40.00 "- --- -- -

30.00 -.

20.00 :...
....'..........

10.00: -..: : ': .

0.00
0.00 10.00 20.00 30.00 40.00 30.00 60.00 70.00 80.00 90.00 100.00

Rate of chalk (%)

Figure 87 - Level of utilisation of operatorl

increased. In a situation in which all boards are checked with a unit checking time of
300 s, the level of utilisation of the printer can be as low as 5%.

The data on resource consumption, for a certain configuration for the assembly
line, can also be an input to an analysis of cost associated with alternative modes of
operation (e. g. through the use of "Activity-Based Costing" [Shaharoun 1994]).

d. Manual operations involved in the "populating" process
A similar performance study was conducted for the operations performed by

operator2, who inspected populated boards. In this study, inspection rate and inspection

time were varied whilst other parameters of the SMT assembly line were kept constant.
The plots of Figure 89 show how manufacturing lead-times vary for various

inspection rates. It can be observed from this figure that, as with the printing process,
the manufacturing lead time is significantly affected by a simultaneous increase in

inspection times beyond 100 s, and inspection rates beyond 20%. However, these

values (of inspection time and inspection rate) have a weaker effect upon the lead-time

231

100.00

95.00 --.. :.....

90.00

................" -- ..

80.00
: check Nrtr . _..:....:.. :. _. _

-©- 3s
75.00 :_....:....: -if--150:

-A- "908
. 70.00 -4- 100s

--0-300i

60.00

ö 55.00

45. E --': "

......... 45.00 -
_ý . -a-.,... . _.

° 40.00

35.00 --

15.00 -. .. - -- --

5.00
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Ratte of ch. dc (%)

Figure 88 - Level of utilisation of the printer as a function of checking rate and time

than corresponding factors for the printing process. This fact is clearly visible when the

maximum values of lead-time are compared with each other. Even though a higher

maximum inspection time was used in the latter case (i. e. 500 s as opposed to 300 s), a
lower worst-case lead time was obtained (i. e. 10,240.91 s as opposed to 15,224.92 s).
This difference can be attributed to the fact that the print process stops when a checking
is being performed. Conversely, the placement process only stops when the inspection

takes so long that the available PCB's slots on the inspection conveyor are filled up.
During the analysis of the printing process, it was found that the influence that

checking time and checking rate had upon the placement process was negligible.
However, the same cannot be said in regard to the influence that inspection time and
inspection rate had upon the printing process. Figure 90 illustrates such an influence by

depicting the level of utilisation of the printer, as variations occur in the inspection time

and inspection rate. It can be observed from this figure, that the range of printer

utilisation (which in the default conditions range from 40 to 45%) decreases as the

232

11,000. DO

10,000.00

9,000.00

8,000.00

7

I
L? 7,000.00

t s

'1
6,000.00

5,000.00

4,000.00

amnrift

....
{nsp. ason wn.

..

-A- 1008
2008

0.00 10.00 20A0 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Rate of inspection (%)

Figure 89 - Manufacturing lead-time as a function of inspection rate and time

inspection rate increases (for inspection times beyond 100 s). This also influenced the

work-in-progress levels, as explained later in this section, and indicated that the

placement process constitutes the bottleneck operation in the SMT assembly line.

e. A profile of work-in-progress
Related to the identification of bottleneck operations is the study of the profile

of work-in-progress along the SMT assembly line. The level of work-in-progress was
investigated at three points along the SMT assembly line (these points being related to

control points of the business processes depicted in Figure 61), namely:

" at the preparation stage. This includes any boards in the printer or ones being

checked by operatorl.

" on the buffer between the printer and the placement machine.

9 at the population stage. This includes any boards in the placement machine or on

233

7

CL

ö

ö

100.00

95.00

90.00

95.00

80.00

75.00

70.00

65.00

60.00

53.00

50.00
45.00

40.00

35.00

30.00

25.00

20.00

15.00

ý:.... Inspection time ..:.....:.....:... .

......... -13- We ;...

-ß-100s
0 2009

.....

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00
in m

rate of Insp. d on (%)

Figure 90 - Level of utilisation of the printer as a function of inspection rate and time

the inspection conveyor.

" at the finishing stage. This includes any boards in the reflow solder machine or in

the wash-off machine.

Figure 91 depicts a profile of work-in-progress along the SMT assembly line for

the default operating conditions discussed earlier in this section. Values attached to the

vertical axis represent the average number of boards at each stage of the line. The

simulations demonstrated that these values always total about 25 boards, with the

remaining 25 boards being located at input and output buffers.

Figure 911 clearly indicates that the placement machine is the bottleneck

operation, as the greatest proportion of the work-in-progress is concentrated before it.

The second slowest operation is the printer, followed by the reflow solder and wash-off

machines.

234

16 16

14 14
?lý>: 12

12

10
10

8
8

6
6

4
42

Buffer
300s

loos Preparation Stage

50s Populating Stage
inspection time (s) 15S

5s Finishing Stage

Figure 91 - Work-in-progress profile vs inspection time

One can also observe in this figure that the inspection time does not affect the

profile of work-in-progress in the line for the default inspection rate (i. e. 10%).

However, when the inspection rate is made to vary (for a fixed inspection time of 200s),

the profile of work-in-progress does change as indicated by Figure 92. As the
inspection rate is increased, the work-in-progress at the preparation stage decreases,

whereas the average number of boards at the remaining stages decrease to compensate
for it. As the populating stage is slowed, in relative terms, the preparation stage is

completed much earlier than the downstream operations.
Further results were obtained from a study of changes on parameters associated

with the preparation stage. In this case, it was observed that the checking time does not

affect the level of work-in-progress in the line (for the default checking rate of 20%).

However, for higher checking rates (i. e. 70% and greater), the checking time had a

much greater influence, as depicted by Figure 93. As one could expect, as the checking

time continues to increase, the level of work-in-progress increases leading to an

emptying of remaining stages.
The differences in behaviour between the preparation and populating stages, in

regard to the effect upon work-in-progress as a function of checking and inspection

1. It should be noted that the order of the stages along the line was changed in this figure to
improve the visibility of the results. This was due to a greater quantity of boards being stored
in the buffer compared to the preparation stage.

235

18

16

rate of inspection (%)
20p/c

10p/c
5p/c

lp/c

Figure 92 - Work-in-progress profile vs inspection rate

18

16

14

12

times, respectively, can be attributed to their different speed and the different capacity
of their associated buffers. A profile variation similar to the one depicted in Figure 92

was also observed for variations in checking rate for a checking time of 100s.
The results obtained in this study of work-in-progress can be used to establish

suitable operating conditions which could improve line balancing. Bearing in mind the

philosophy of bottleneck management proposed by Goldratt [Goldratt 19841, which
seeks to synchronise shop-floor operations based on bottleneck operations, a further

study was conducted. Here, it was observed that control of work-in-progress profile can
be obtained by controlling the rate at which boards are printed. As shown in Figure 94,

an approximate print rate of 50 s (between boards) provides a uniform distribution of
boards along the assembly line.

Control of the printer in order to synchronise its operation with the placement machine
leads to a well balanced line. This can be achieved in a system prototype by including

a time parameter as an attribute in the transfer function of the enterprise activity "print"
(this enterprise activity is part of the model depicted in Figure 61).

f. Discussion of simulation results
The simulation results and their analysis simply illustrate the type of

evaluations that can be performed by using the functionality provided by the simulation

capability of SEW-OSA. These evaluations can serve as a basis to support decisions on
the selection of alternative system configurations. Generally speaking, this can allow

236

25

20

10

5

300s
100s

50s

check time (s)

25

20

10

5

Figure 93 - Work-in-progress profile vs checking time

30

25

20

15

10

5

30

25

20

15

10

5

Preparation Stage 300s
200s Buffer

50S
25s Placement Stage

rate of print (s) 15s
5s

1s
Finishing Stage

Figure 94 - Work-in-progress profile vs print rate

237

the following:

an analysis of system operation through a verification of the Petri-net properties and
step-by-step simulation;

" the verification of appropriateness of configuration parameters, which typically are
empirically defined and taken for granted during system operation (e. g. which
typically are checking and inspection rates);

" the effect of process parameters (e. g. printing rate) upon system performance (e. g.
manufacturing lead time) and operation (e. g. line balancing);

" an evaluation of the effect that configuration parameters can have upon system
performance (i. e. level of utilisation of the system components; system throughput;
and distribution of work flows through the system, e. g. work-in-progress). Costing
data can also be added to these measures (e. g. through ABC [Shaharoun 1994]) to
provide an indication of system performance based on metrics such as those
recommended by Goldratz [Goldratt 1984], e. g. throughput, work-in-progress and
cost.

It should be emphasized that these measures are not limited to shop-floor
systems. Throughput, work distribution and level of utilisation are metrics which can
be applied to any system. Very importantly, the ability to control factors which
determine the results obtained, provides a basis for justifying the introduction of model-
driven operation. In the case of the SMT assembly line, this can be manifest by
introducing model-driven cell controllers. In an office system, it would likely require
the use of work-flow systems.

Similar results and analyses can be realised from models of primary elements
of D2D shop-floor. These could be used to define shop-floor configurations which have

a capacity to produce projected orders over a period of time. These could lead to an
identification of:

" the need for additional lines in order to cope with the throughput required from the

shop-floor;

" the need for better lines, in order to smooth the distribution of work-in-progress,
improve throughput or achieve better quality levels.

The above examples of manufacturing considerations can impact upon the
shop-floor as a whole. Nonetheless, certain of these considerations depend upon factors

(and associated variables) which are localised within a single assembly line. For

example, simulation results for a single assembly line can enable investigation of the

23S

impact of "micro-decisions" (e. g. those taken within the context of one line) upon the

performance of the shop-floor as a whole. This also illustrates the idea of inter-relating

analysis carried out upon models created at different levels of abstraction.

11.1.3. The performance of SEW-OSA at the rapid-prototyping stage
The simulation results discussed in the previous section only take into

consideration manufacturing process parameters (e. g. process cycle times). They do not
account for the overhead introduced by the model-enactment capability whilst
controlling the interactions among system components and hence system operation.
This overhead is considered to include the effect (in terms of time delay) of:

" internal processing within each business entity component;

" communication protocol among these components (implemented to achieve model-

enactment);

" use of the CIM-BIOSYS integrating infrastructure (by the communication
protocol); and

" use of the underlying computer infrastructure, by both CIM-BIOSYS and the

communication protocol (i. e. X-Windows programming environment, Unix

operating system, TCP/IP and the Ethernet stack of protocols).

In any study of overhead, two issues are of particular importance:

" the value of overhead and how it relates to changes in the operating conditions of
the system (e. g. configuration of the computer infrastructure);

" an identification of key contributors to this value of overhead.

To investigate these issues, the following study activities were conducted:

"a set of tests were carried out to measure overhead (in terms of time) for a number
of different configurations;

"a theoretical study of the time values was conducted to identify major contributors

to overhead.

a. Overhead determination

The overhead, measured as a function of the total manufacturing lead-time can
be expressed as follows:

OH (%)=(LTA-LTS)x 1OO/LTS(1)

2,39

where,

+ OH is the overhead as a percent of an ideal value of manufacturing lead-time (i. e.

without overhead);

" LTA is the lead time measured through the log files of the business entity;

" LT. is the lead time measured through simulation runs.

In SEW-OSA, the difference (LT,. p - LTS) constitutes the time-delay overhead in

seconds (OHS), added by the model-enactment capability to the actual manufacturing
lead-time. LTA, is the time between the two event occurrences, registered by the Event

Handler, which mark the beginning and end of a given set of model occurrences. In the

case of the SMT assembly line, this is the time between EV- 1 and EV-2 (defined in the
domain diagram shown in Figure 25) which set the time limits for the start and the end

of production of a batch of boards.

In order to determine the level of overhead imposed by the model-enactment

capability, a number of prototypes were generated and enacted. A series of values of
LTrp were obtained by subtracting the time-stamped events EV-2 from EV-1. The

overhead (OH) was calculated according to equation (1), where LTS was measured
through simulation runs.

The elements which influence performance, over which a designer has more
direct control, are related to the system configuration (i. e. the definitions encapsulated
in the configuration diagram shown in Figure 34). Some studies (by the author) of this
influence which have been investigated are:

" the number and type of hosts used in a given configuration;

" the number of software processes allocated for execution on each host;

" the number of threads of business model execution competing for resources (this

related to the batch size).

The study concentrated on two conditions: (1) the behaviour of overhead as a
function of the batch-size and (2) the level of overhead for alternative system

configurations. For both conditions, the values of LTS were extracted from Figure 95,

which describes the behaviour of the manufacturing lead-time as a function of the batch

size. In order to limit variations in the measures of LTp, rates of inspection and

checking of 0% were adopted in this study (for they are the nearest to the default

operating conditions of the assembly line).

The overhead was measured with respect to the system configuration

summarised in Table 6. These configurations relate to alternative ways of distributing

both the components of the business entity and the active resource components of a

240

14,000.00

12O . oo

10.000.00

w

9 Y 8.000.00
V 4
S

3

6.000.00

4.000.00

Insp. Vc1 ack rate
v Op/e

.
$1o-20p/o
-pte 1 oop%e

....
7

.... ...

2000.00

0.00
0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00

Batch stzt (number of boards)

Figure 95 - Manufacturing lead-time as a function of the batch size

system solution (across the most powerful Sun workstations available at the MSI

Research Institute). Some important underlying conditions associated with tests

performed on the model-enactment capability were as follows:

(1) The tests were performed by seeking to maximise the speed of operation of the

model-enactment capability, whilst providing a reliable service. This includes

minimising the time-delay between firings of two consecutive transitions of the
Prolog engine. A minimum time delay existed due to a problem of deadlock in

data-base transactions between the Prolog engine and the functions that provided

access to the CIM-BIOSYS integrating infrastructure;

(2) CIM-BIOSYS provides two methods of transferring messages, namely: expedited

and secure. The latter provides confirmation of message transferred between CIM-

BIOSYS and its applications, whilst the former does not. Thus, whilst the former

provides the best message transferring speed, it can deteriorate the level of

reliability of the infrastructure for situations of very high traffic. Tests were

241

conducted in both situations which have led to a recommendation to adopt the
latter method, due to an unacceptable level of message loss in the former method,
in respect of the traffic required by the business entity.

(3) An inherent overhead associated with the debugging capabilities of the business

entity is included as is an overhead concerned with registering events in the log
files.

(4) Tests were performed with the associated hosts fully dedicated to serving the
processes depicted in Table 61. That is, no additional Unix process was being

executed when the model-enactment capability was tested.

Table 6- Alternative system configurations

n. hosts configuration'
1 I BE+ARCs -> Sparcl0
2 2 BE -> Sparcl0, ARCS > Sparcl0
3 3 BE -> Sparc10,1f2ARCs -> Sparcl0,1/2ARCs -> Sparcl+
4 2 EV + AC + EAs -> Sparcl0, PC + RM + ARCs -> Sparcl0
5 2 EV + PC -> Sparcl0, AC + RM + ARCs + EAs -> SparclO
6 5 EV + AC + EAs -> Sparcl0, PC + RM -> Sparc 10, I/3ARCs -> Sparc2,1/3ARCs ->

Sparcl+, 1(3ARCs-> SparcClassic,
7 4 EV + PC -> Sparc 10, AC + RM + EAs -> Sparc10,1/2ARCs -> Sparcl+, l f2ARCs ->

Sparc2
8 4 EV + PC + RM + AC -> Sparcl0, EAs -> Sparc10,1/22ARCs -> Sparcl+, 1/2ARCs ->

Sparc2
9 2 EV+PC+RM+AC->Sparcl0, ARCS+EAs->Sparc l0
10 5 EV + PC -> Sparc 10, AC + RM -> Sparcl0, EAs -> Sparcl+, 1/2ARCs -> Sparc2,1/

2ARCs -> SparcClassic

a. Legend:
BE: all business entity components (i. e. EV + PC + RM + AC + EAs);
ARCs: all active resource components;
EV: Event Handler;

PC: Process Controller;

AC: Activity Controller,

RM: Resource Manager;

EAs: enterprise activity occurrences.

The values of overhead obtained by applying these conditions are shown in
Figures 96 and 97. Figure 96 depicts how the overhead behaves with an increase in the

number of threads of the business model, each competing for active resource

1. The current version of SEW-OSA allows distribution of the business entity to the level of

granularity of a component. It is envisaged that future versions will support the distribution

of several instances of each component to a number of computer hosts.

242

components. These plots were obtained for configuration 1, as defined in Table 6. A

maximum batch size of six boards was used in the tests, as this was found to be the
maximum number of threads of the business model that the business entity and its

supporting software could execute without losing messages. For a larger number of
threads in the business model messages can be lost.

This limitation can be caused by limits in the size of the internal buffers of the
CIM-BIOSYS infrastructure which are used to store the messages processed on each
host'. Basically, the business entity generates messages at a rate (i. e. above five

messages per second) with which the CIM-BIOSYS infrastructure is unable to cope
(i. e. it is unable to process all the messages before its internal buffers are filled up).

" rnodo of operation
s*CUM

80.00 -_-.
expedited

70.00

60.00 ... -.... .. -.. ...

50.00

40.00 -- . -- - -- - ---

30.00
1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00

Batch size (number of boards)

Figure 96 - Overhead as a function of batch size

Notwithstanding this limitation on batch size, the plots shown in Figure 96

1. Although it should be stated that it is a relatively easy matter to change the size of the CIM-

BIOSYS internal buffers, this was not done here as the author was keen to maintain
experimental conditions in as a stable a state as possible.

243

provide an interesting indication of how the overhead behaves following increases in

the number of threads of business model execution. The behavioural pattern obtained

with these plots came somewhat as a surprise, for it challenged an intuitive judgement

made beforehand. That is, one might expect the overhead to increase with the increase

in batch size. However, apparently, the overhead decreases as the batch size increases.

The phenomena demonstrated in Figure 96 may be a direct result of the way in

which the CIM-BIOSYS infrastructure handles its buffers. Messages passed via the
CIM-BIOSYS infrastructures are firstly stored in a buffer at the time of their arrival.
These messages are passed to appropriate applications via a polling process which is

activated periodically. Thus, message passing is performed as a batch thereby, saving
time.

It is also clear from Figure 96 that the level of overhead imposed by the business

entity as a whole is quite considerable (i. e. above 50% for the secure mode and above
30% for the expedited mode). Strategies for reducing this overhead need to be identified

and adopted in order to practically implement SEW-OSA-based model-driven control

of systems.
In seeking further data to define such a strategy, the results depicted by

Figure 97 were obtained. Here, the overhead associated with a batch size of one board

was measured for each of the configurations shown in Table 6.
Once again, probably contrary to intuitive judgement, the overhead generally

increases, as the number of host computers is increased, so that the processes are more
distributed across the computer infrastructure. Indeed, the lower overhead corresponds
to a configuration in which the complete system is executed on a single host (i. e.

configuration 1 in Table 6), whereas the worse case is for the configuration in which the

processes are distributed among five hosts (i. e. configuration 10 in Table 6). Once

again, possibly this result can be explained by the fact that message waiting time (in the
CIM-BIOSYS buffer) is the determinant factor in the overhead for each of these

configurations. Distribution might be expected to reduce CPU load albeit that, for this

evaluation work, the CPU load was not very high (i. e. less than 20%). In such

circumstances, apparently, distribution is only adding to the overhead related to waiting
time.

Other interesting observations made from the evaluations were as follows:

" even though configurations 4 and 5 use two hosts (similarly to configuration 2),

their performance is poorer than that of configuration 3 (see Figure 97) which uses
three hosts. This may well be due to a separation of business entity components into

two hosts. These components are tightly coupled, so that they exchange a large

number of messages (adding communication network overheads). This problem is

also apparent from the results obtained with configuration 10, whereby the business

entity is distributed over three hosts, one of them being a relatively slow computer

244

130.00

125.00

120.00

115.00

110.00

105.00

100.00

95.00

configurations

Figure 97 - Overhead for alternative system configurations

(i. e. a Sparc 1+).

" if distribution of the business entity is a requirement, a clustering of certain

processes into the same host is imperative, as some components are more tightly

coupled than others (e. g. the Activity Controller and enterprise activity occurrences

are very tightly coupled).

In order to recommend design improvements for the business entity (or any of
its supporting infrastructural services) which could lead to a reduction in the levels of

overhead, an analysis of contributions of a number of factors to the total overhead must
be performed. This analysis is developed as follows.

b. Overhead contribution
A mathematical analysis of factors which contribute to LTA is summarised in

the Appendix 11. This analysis has led to the definition of a general set of equations

which combines the most important factors contributing to overhead. Results obtained

1234S6789 10

245

from applying this set of equations can be used to estimate the overhead produced when
enacting a particular SEW-OSA model. These estimates can provide important

measures of performance to be used in conjunction with practical measurements

reported in previous section, in order to support design decisions.

It should be noted that the overhead contribution of certain factors will depend

upon:

" features of the model being executed;

" run-time happenings associated with model execution (e. g. number of procedural
rules and functions used by a process, number of events generated and functional

operations used by an enterprise activity, etc.) which may vary with alternative
threads in the flow of model execution; and

" variations in the processing loads of CPU's and the computer configuration over

which the business entity processes and the active resource components are
distributed.

Therefore, any calculation of overhead based on these relations should be

viewed as an estimate, and refer to particular conditions of operation. However,

estimates can provide an indication of relative contributions to overhead.
The equations derived from Appendix 11 were applied to the model of the SMT

assembly line, this resulting in the following formula:

OHS = 5. tsp + 101. ts + 96. tCBS + 16. tpR + 8. taloc + 8. tli,, k + 48. tu

This equation basically combines major time factors' which contribute to overhead. The

conditions for which this formula provides a valid model are discussed in the

1. These time values are defined as follows: tsp is the time required in the Unix operating

system to spawn a new process representing a domain process (or business process)

occurrence; ta, a is the time that the Resource Manager can take to bind an active resource

component to an enterprise activity occurrence; tii�k accounts for the time taken by the CIM-

BIOSYS infrastructure to start an application and establish a link (i. e. a connection) between

that application and any other applications wishing to communicate with it (i. e. the

application protocol of the CIM-BIOSYS infrastructure is connection oriented); t. is the

elapsed time between two consecutive firings of transitions within an enterprise activity

occurrence or active resource component; tpR is the average time that a domain process or

a business process occurrence takes to execute one of its procedural rules; is is the

transmission time of a message between two Unix processes communicating via local

sockets; and tcBS is the transmission time of a message between two software applications

communicating via the CIM-BIOSYS infrastructure.

246

Appendix 11, as is a detailed explanation of each of its terms.
The equation was populated with time values obtained from log files, having

established the said operating conditions with configuration I (listed in Table 6). The

resultant time contributions were estimated as follows:

" tsp = 0.320 s;

" taloc =0s (this assumption is acceptable for the established operating conditions,
i. e. batch size of 1 PCB);

" t1i�k = 1.026 s (for the secure communication model);

" ttr 0.977 s;

" tpR = O. OIO s;

" tS = 0.006 s;

" tCBS = 1.018 s (for the secure communication mode).

OH$ = 155.198 s

which implies an overhead (in percentage) of.

OH(%) = 81.56%

When this value of percentage overhead is compared to the value of overhead in

Figure 96, for the same configuration2, an error of 18.3% was obtained. Considering the

necessary simplifications embedded in the mathematical approach, this error may be

considered to be acceptably small.
In any case, the relative contribution of the factors contained in the equation is

more important than the total value of overhead. Table 7 illustrates the percentual

contribution of these factors as estimated mathematically.
Table 7 indicates that the greatest proportion of contribution (i. e. 63%) stems

from a communication overhead introduced as the business entity needs to draw very
frequently upon the application services of the CIM-BIOSYS infrastructure (i. e.

services which enable application-to-application communication). The second largest

overhead contribution is imposed by the Prolog engine, which executes the behavioural

models of enterprise activity occurrences and active resource components. The third
largest is the process of starting a CIM-BIOSYS application in the event of an

enterprise activity occurrence. This overhead occurs largely from the need to establish

1. As previously indicated, the "secure communication" mode was adopted due to reliability
be an essential requirement of the business entity.

2. The value of overhead is 99.80% for the secure communication mode.

247

links with a CIM-BIOSYS application before any communication can occur.

Table 7- Contribution to overhead
factor value (s) contribution (%) source of overhead

5. tsp 1.6 1.0 Process Controller
8. t, ß 0 0.0 Resource Manager

8. t1 8.208 5.3 CIM-BIOSYS infrastructure and Activity Controller

48. tu 46.896 30.2 Prolog engines
16. tpR 0.16 0.1 Process Controller

101. ts 0.606 0.4 Process Controller
96. tCBS 97.728 63.0 CIM-BIOSYS infrastructure

OH1 155.198 100.0 Total business entity

The overhead imposed by the structure of the Process Controller (i. e. 1.5%)

stems from the complexity of the strategy adopted for executing process behaviour (i. e.
communication between Unix processes representing business processes and domain

processes, as illustrated by Figure 52).

c. Recommendations about overhead reduction
The results presented in this section provide a basis upon which design and

implementation improvements can be made to various elements contained in or used by

the business entity. Areas which might be addressed in pursuing such improvements

are:

i. The Prolog engine used to produce active resource components and enterprise
activity occurrences:

This engine can execute interpreted code compliant with the surface syntax built in

Prolog. Although interpreted code enables immediate execution, it also imposes

significant time constraints and processing loads upon the host CPU. An alternative
that is being considered for implementation by I. A. Coutts (the MSI researcher
responsible for the realisation of this module) is to eliminate the Prolog engine and
directly enact models in compiled code. That is, the syntax which currently

represents active resource components and enterprise activity occurrences would be

replaced by "C" programs.

Such initiatives can be expected to considerably reduce the overhead introduced by
this component.

ii. The CIM-BIOSYS infrastructure:

Arguably, the greatest reduction in overhead could be realised by re-designing and

re-implementing the services provided by the infrastructure, so that it specifically

24S

meets requirements to enact SEW-OSA models. In meeting those requirements,
two issues are of particular interest: (1) to reduce the time to transfer messages
between applications and (2) the need to reduce the overhead associated with
establishing links with applications', before communications can take place
between them (such as the establishment of a connectionless service for

application-to-application communication).

It is important to emphasise that the recommended improvements should not be

viewed as a criticism of the capability provided by the CIM-BIOSYS infrastructure.

Furthermore, the CIM-BIOSYS infrastructure was not initially designed to serve
time critical interactions such as those required by the business entity. The author

also expects that similar limitations would have emerged other integrating

infrastructure, if alternatives to CIM-BIOSYS had been available. Indeed, in spite

of its different underlying concepts and resultant overhead limitations, the CIM-

BIOSYS infrastructure provided a level of location transparency which enabled the
business entity to be developed in the first place.

Here, it is important to note that: (1) neither CIM-BIOSYS nor SEW-OSA were
designed to meet requirements or optimise the performance of the other; (2) either

of them could be tuned or upgraded to improve the performance of the whole; and
(3) both may need radical re-design or use of different enabling technologies for the
SEW-OSA approach to work generally in practical situations.

Some minor changes to the CIM-BIOSYS infrastructure are being carried out by J.
Gascoigne [Gascoigne 1992] (the MSI researcher responsible for its realisation) to
improve its performance when enacting SEW-OSA models.

Some improvements can be made by tackling key problem areas identified by

this study which introduced significant overhead. However, the author recognises that

the issue of providing adequate IT services to enable model-enactment at an acceptable
level of performance is a complex one. In the case of SEW-OSA, this complexity is re-
enforced by the level of functional requirements that the business entity meets, such as:

" to transform a static description of types of processes and activities into actions and
transactions within the business entity in a manner which reflects the behaviour of
instances of processes and activities being executed;

" to achieve such a transformation by binding functions and resources at the latest

1. Here, it should be noted that CIM-BIOSYS was not conceived to facilitate high speed
interaction, but to enable non-time critical interaction between manufacturing applications
in a highly flexible (configurable and extendible) manner. The way in which CIM-BIOSYS

establishes links between applications reflects its different emphasis and intended purpose.

249

possible stage of system run-time, with a view to achieve complete separation
between behaviour and functionality. This should facilitate use of standard

elements of functionality supplied in the market on an `off-the-shelf' basis.

One might argue that model-enactment can be achieved at better performance
levels through designing solutions which do not emphasise these issues. This research
does not refute this claim. However, as discussed throughout this thesis, these among
other key concepts constitute means by which the complexity of an integrated

manufacturing system can be handled by a CIM-OSA-based approach, whilst creating

solutions which can be flexibly modified.

11.1.4. Performance at run-time
One of the main reasons for building a system prototype from SEW-OSA

models is to enable analysis and evaluation, examples of which are given in previous
sections. The external behaviour of a prototype should resemble as closely as possible
the behaviour of the final system. If this requirement is realised, then performance
measures obtained from a prototype can be used as a performance indicator for the final

system. These considerations allied to the limited resources to carry out a physical
implementation were the main reasons for not carrying out an overhead study of a
physical SMT assembly line.

Nevertheless, a qualitative performance evaluation of the run-time system was
carried out for a system configuration in which active resource components are
emulated by a shop-floor animator, as discussed in Section 9.4.

The main qualitative result obtained, involving all members of the "Model-
Driven CIM" project team is to use the model-enactment capabilities of SEW-OSA to
demonstrate a fully operational system with the business entity integrated to the

animator. This helped prove the feasibility of many concepts, including concepts
described in this thesis.

Further quantitative analysis of system performance associated with this
demonstration solution have not yet been attempted, as the animator (which represents
all active resource components) is executed upon only one host. Therefore, measures
of overhead would have led to very similar results to those obtained with configurations

which clustered all active resource components into one host (as listed in Table 6).

11.1.5. Performance issues related to the engineering process
These issues seek to qualify aspects of the process of engineering a certain

enterprise domain with the support of SEW-OSA. Absolute measures of "quality"

associated with such a process are difficult to establish. However, by comparing

engineering processes conducted in different ways it is possible to obtain an indication

250

of the relative merit of a given approach. Ideally, comparisons should be based upon the

use, application and evaluation of the approaches under well defined experimental

conditions, i. e. by engineering solutions under equivalent conditions and comparing the

resulting performance of the solutions (also) under equivalent conditions. Examples of

approaches which could be compared are: (1) SEW-OSA against current practice and
(2) SEW-OSA against other emerging environments for enterprise integration (as

discussed in Chapter 2). Such a comparison should then be based on:

" process metricsl. This should related to relevant features of the actual engineering
cycle (e. g. lead-time, complexity, reusability of results, etc.);

" system metrics: This is related to the quality of the product (i. e. the integrated

system), in terms of fitness to purpose, delivered by the engineering process (i. e.
performance, level of flexibility, usability, etc.)

However, it is important to note that inevitably such comparisons will have

inherent limitations, stemming from:

(1) the different levels of familiarity (and vested interest) that those conducting
experiments will have with the approaches used (e. g. SEW-OSA will always be

more familiar to the author than any other approach);

(2) the fact that these tests can never be conducted under identical conditions. That is

once the engineering exercise has been completed for one approach, those
conducting the experiment will know more about the application, which will add a
positive bias to later approaches.

In any case, experiments of the order of magnitude of building a complete integrated

system cannot easily be controlled. Although enabling and performing experiments is

germane to assessing benefits of a certain approach and should justify or otherwise

underlie model-driven approaches, a proper execution of such experiments is well
beyond the time and resources apportioned to this Ph. D. research study. Hence,

evaluation here is limited to considering how some of the results discussed in this thesis

could be related to process metrics and system metrics.

a. Process metrics:

With respect to the concepts and methodologies developed in this research, process

metrics can be related to architectural metrics and workbench performance metrics.

Architectural metrics measure the quality of the architectures utilised to support

1. A metric is viewed here a fixed parameters against which performance can be measured.

S1

the engineering process. These metrics should be related to desirable features of an
architecture as postulated by the IFIP/IFAC Task Force (and discussed in
Chapter 1). Examples of such metrics are those associated with dimensions

proposed by Bohms [Bohms 1990] and extended by the author [Aguiar 1993e], in

order to compare the architectures discussed in Chapter 2, namely: degree of
completeness, character, life cycle support covered, degree of prescription, degree

of openness, level of heterogeneity, modelling aspects covered, type of framework
description, scope of functions embraced, degree of applicability, approach to
design, model executability, availability of supporting tools, level of documentation

and stand-points embraced. An initial analysis of architectures based upon metrics
constitutes one of the pillars of this research. An early study of currently available
architectures developed by the author is presented in [Aguiar 1993e].

Workbench performance metrics measure the quality of the CASSE environment
developed to support the utilisation of the architecture. They basically qualify the

process of using the theoretical formalism of the architecture to address an
engineering problem in the real world. Some of the metrics that could be used to

compare these environments are: potential for change (i. e. flexibility to adapt to
different architectures), consistency within the formalism adopted, usability,
comprehensiveness of the implementation, level of support of the implemented
facilities (e. g. graphical user interfaces, animation, simulation, report generation,
code generation, rapid-prototyping, system configuration, operation, etc.),

availability of supporting reference models, reliability and observed design to build
lead-time (when applied to a certain problem domain).

b. System metrics.
System metrics measure the quality of the resultant system solution engineered by
having applied the architectural formalism through using the workbench. Here,
important metrics include:

(1) the ability of the approach to cope with system complexity. Here, complexity
can be defined in terms of number and characteristics of system elements (i. e.
components and processes), number and character of relationships between

elements (i. e. predictable, deterministic, probabilistic or chaotic, homogeneous or
heterogeneous), number of system states (i. e. small or large, bound or unbounded
and predictable or unpredictable).

(2) the performance of the final system measured in terms of particular features of
interest, namely: throughput, lead-time, work-in-progress, level of utilisation of
resources and cost, all considering the overhead added by the workbench.

(3) the flexibility engineered in the system in order to enable it to adapt to changes.

252

When these metrics are examined in the light of the implementation, application

and evaluation activities associated with the realisation of SEW-OSA, it can be

demonstrated (but not proven) that SEW-OSA enhances the engineering process in

relation to current practice.
With regard to the metrics stemming from process metrics, it should be noted

that:

" architectural metrics. The formalism introduced in the configuration of D2D

shop-floor by reference architecture-based models provides a means of organising
all the issues pertaining to such a configuration. However, the quality of these
models in relation to models which could have been produced through the use of
other architectures is arguable.

" workbench metrics: the most outstanding feature of SEW-OSA is its ability of
support modelling, analysis, simulation, rapid-prototyping, configuration and
operation of a system in an integrated manner. The metrics that were obtained to
qualify SEW-OSA are those discussed in this chapter.

With regard to the system metrics, it should be noted that:

" In spite of its current limitations in terms of maximum size of a model, SEW-OSA

provides a means of approaching complexity in a structured manner. The models
discussed in Chapter 8, illustrate the manner in which SEW-OSA can encapsulate
the complexity and details embedded in a certain construct, this in order to handle

sizeable models. However, in order to actually measure the level of complexity

with which SEW-OSA could cope, considerably more complex domains need to be

modelled at a very fine level of detail.

" As illustrated by earlier results presented in this chapter, SEW-OSA can provide the

support required to perform a range of performance evaluations related to a model.
However, the impact that SEW-OSA can have upon the performance of an

engineered systems (as compared to other approaches or to current practice) has yet
to be proven.

" Finally, although an in depth analysis of flexibility has not been conducted, the

ability to change a model and immediately propagate the change to the
implemented system is an outstanding feature (i. e. the core competence) of SEW-

OSA. This support is particularly strong as a result of a separation of behaviour and
functionality and the ability to bind resources to function as late as possible in the
life cycle of a system.

253

11.2. Deliverables

This section briefly summarises what has actually been implemented as a result

of activities associated with conceiving and developing SEW-OSA. Where appropriate

performance metrics are introduced (e. g. number of lines of code).

11.2.1. Proof of concept experiment
The deliverables produced by this research can be pictorially related to the proof

of concept experiment shown in Figure 98. This diagrammatic representation also
summarises relationships between the activities of this research and those of other MSI

researchers working on the Model-Driven CIM project. The elements inside the shaded
bubble were produced as a result of research effort by other MSI researchers, whereas
the remaining elements were produced within the scope of this research.

r

a
a

U
B

r

a

s
'ü

Each element produced by this research is identified in Figure 98 by a tag

number (referred to in the text below), namely:

(1) the SEW-OSA CASE tool, the model-building capability which is discussed in

Chapter 5.

(2) a link to a Petri-net analyser and simulator, the main features of which are

presented in Chapter 6.

(3) a realisation of a business entity for SE\V-OSA, as discussed in Chapter 7.

(4) links to other methods, tools and infrastructural elements created within the

Figure 98 - SEW-OSA: System Engineering Workbench for CIM-OSA

254

"Model-Driven CIM" project (as discussed in Chapter 10), for information and

resource modelling which address complementary design issues to those tackled

by SEW-OSA.

(5) an outline methodology for replacing emulated resource components by physical

ones, this through the specification of a presentation entity for SEW-OSA and an

adequate structure for such components (these specifications are presented in

Chapters 9 and 10).

(6) a case study of modelling, analysis, simulation and rapid-prototyping, this to
investigate the issues related to the coordination of resource components on an

electronics manufacturing shop-floor (the activities performed in this case study

are discussed in Chapter 8).

(7) an evaluation of the above deliverables, based on performance tests.

Figure 98 is a populated version of the conceptual diagram introduced in
Chapter 3 (i. e. Figure 9), based on which the areas of investigation associated with the
realisation of SEW-OSA are delineated.

11.2.2. Summary of deliverables

A number of material deliverables have been produced in this study, in the form

of modelling tools (i. e. the SEW-OSA CASE tool), infrastructiiral support elements
(i. e. the business entity) and models (i. e. the shop-floor models).

Table 8 summarises the main features of each deliverable, in terms of its scope

of life cycle coverage, effort required to build it, and size of its resulting
implementation 1.

Table 8- Main material deliverablesa

Deliverable Life-Cycle
Coverage

Development
status

Effort (man-
weeks [%])

Size (LSC or
NC)

workbench integration CA->OM a-release 41 [27] -
SEW-OSA CASE tool CA/DI (X-release 57 [38] 30221

business entity DI-OM (X-release 34 [23] 37332

D2D's models CA-DI proof of concept 19 [12] 393

a. Legend:
" LSC or NC: lines of source code (for the CASE tool and business entity) or number of constructs

(for D2D's models);
" CA, DI and OMI: life cycle phases of "conceptual analysis", "design and implementation" and

"operation and maintenance", respectively (see Figure 7).

1. Here, it is important to now that the CASE tool size was limited by the maximum number

of relationships between constructs and their graphical representations supported by

ToolBuilder.

255

Following is a description of each of these elements.

11.2.3. The SEW-OSA workbench

The SEW-OSA workbench integrates the following elements:

" the SEW-OSA CASE tool, which includes:

"a CASE tool for modelling the function view, at the requirements definition

modelling level;

"a CASE tool for modelling function and resource views, at the design

specification modelling level, and generation of interpreted code for the business

entity of SEW-OSA. This tool also incorporates a CASE tool for modelling
behaviour with predicate-action Petri-nets based on which code can be

generated for a predicate-action execution environment;

" code generation for a generalised-stochastic time Petri-net analyser and
simulator from SEW-OSA models;

"a business entity for SEW-OSA.

The implementation results associated with tools and infrastructural services
that comprise SEW OSA have been discussed in earlier sections. With the exception of
the strategy definition phase, the SEW OSA workbench supports all life-cycle phases

of an integrated manufacturing system by formalising key aspects of model-building

and model-enactment at each phase; this leading to the generation of executable models

which drive (and hence coordinate) system operation upon the CIM-BIOSYS

infrastructure.
The SEW-OSA workbench is described as a unified whole to emphasise the

effort taken with regard to its conception and integration. Therefore, the figures

presented in the "Effort" field in Table 8 refer only to such efforts (i. e. they do not add

up the man-power required to develop each individual element of SEW-OSA).

In the author's knowledge, SEW-OSA is the first instance of a comprehensive
integrated enterprise engineering environment which provides the basis for a model-
driven approach to enterprise integration. SEW-OSA provides a framework into which
functionality is expected to be continually added in order to embrace analysis and
design aspects of an increasing proportion of the issues involved in the life cycle of an
integrated manufacturing system, as shown in Figure 7. Its main tools, infrastructure

elements and models, produced as part of this research study are briefly summarised in

the following subsections.

256

11.2.4. CASE tool for requirements definition (i. e. RD tool)
This is a CASE tool for modelling the function view at the requirements

definition modelling level (this refers to the upper part of Figure 22). This tool
formalises the CIM-OSA recommendations into an organised method that allows users
to create models in a graphical and interactive manner. This is in fact the most

comprehensive CASE tool available based on the CIM-OSA architecture (this

statement has been confirmed by the people involved in the development and validation

of CIM-OSA).

Part of the solutions adopted in implementing the method encapsulated in this

tool are completely novel. Compared to other tools developed in parallel with this

research, this tool is one of the most comprehensive, as well as the most faithful, in

terms of conforming to CIM-OSA specifications. The flexibility that resulted from

using a meta CASE tool, to develop this tool, also helped in maintaining a potential for

change and conformance with the European standards which are likely to emerge based

on CIM-OSA specifications.

11.2.5. CASE tool for design specification (i. e. DS tool)

This is a CASE tool for modelling the function and resource views at the design

specification modelling level (this refers to the lower part of Figure 22), leading to the
automated generation of interpreted code for the business entity.

This tool inherits models produced by the RD Tool. It also operates as a link

between that tool and the resource model discussed in Chapter 10, allowing: resource

selection and specification; definition of parameters for simulation; and definition of the
CIM-BIOSYS configuration.

The majority of the solutions adopted in this tool are completely novel and

represent a significant extension of the CIM-OSA methods. The modelling scope

covered by this tool embraces the main gaps in CIM-OSA to which SEW-OSA has

provided formal support, particularly in terms of associating models of requirements

with models of resources.
The DS tool also embraces a CASE tool for modelling behaviour with Petri-

nets. This CASE tool enables the generation of code for enterprise activity occurrences

and active resource components. It also enables the creation of predicate-action Petri-

net models, association of information which transform such a model into a GSTPN

and generation of code used by a Petri-net analyser and simulator. This tool can also be

viewed as a graphical front-end for the Petri-net analyser and simulator used in this

research.
The primary novelty added by the DS tool is in its utilisation to describe the

internal behaviour of communicating objects within the context of a CIM system, and
its ability to generate code that can actually execute over an integrating infrastructure.

257

11.2.6. Link to a GSTPN analyser and simulator

The GSTPN simulator is a product developed at the "Laboratory of Control and
Micro-Computers/University of Santa Catarina - Brazil", this being produced in part by

the author's research work as part of his M. Sc. dissertation [Aguiar 1989]. What this

research has added to this tool was an ability to translate a model, built in the CIM-OSA

language, into a processable Petri-net that can be interpreted by a simulator. In this

respect, SEW-OSA works as a front-end used by the system modeller to overcome the

work of tediously modelling directly with Petri-nets. In the author's knowledge, this

mapping between CIM-OSA and Petri-nets is the most comprehensive study performed
to date on the behavioural constructs of CIM-OSA. Additionally, extensive use of this

mapping through case study work has also contributed to validating the approach.

11.2.7. The business entity of SEW-OSA

The business entity of SEW-OSA is a layer of services running upon the CIM-
BIOSYS infrastructure which enables the enactment of business models. It is a
simplified but original solution (in relation to the specifications of CIM-OSA),

providing an implementation of the services required (but not yet fully specified) for

the business entity of CIM-OSA. In addition to being able to execute a business model,
the business entity operates as a model debugger and performance analyser, enabling
the user to check whether run time interactions are working according to that was
expected at the modelling stage. This is the first instance of a business entity (known to
the author) which is implemented based on the CIM-OSA specifications and runs upon
an industrially tested integrating infrastructure.

11.2.8. Model of the SMT assembly line
This model, described in Chapter 8 and evaluated in Section 11.1, consists of a

SEW-OSA description of the functional, behavioural and resource aspects of D2D

shop-floor with particular emphasis on one of its SMT assembly lines. As it stands, the

model can be used to illustrate the use of the SEW-OSA constructs. It can also be used

as an input into a reference model, this following a number of additional case studies

of other electronic manufacturing companies, so that a generalisation of findings can be

carried out.
To date, four published case studies (known to the author) on the application of

parts of the CIM-OSA methodology have been developed by a number institutions

across Europe. Main distinguishing features of this study (in relation to the others) are
that it is the first developed for the electronics manufacturing sector (covering function

and resource views) and is the most complete in regard to its modelling facilities, which
include: modelling, analysis, simulation, rapid-prototyping, configuration and

operation of an integrated system.

25 s

11.2.9. Comments on the complexity of the workbench
This section provides an indication of the complexity of the major elements of

SEW-OSA, this with respect to "Size" and "Effort" metrics as listed Table 8. It should
be noticed from these columns that:

" even though the figure included for the number of lines of source code (i. e. LSC) of
the CASE tool also includes support for model-building and generation of various
types of code, it is approximately 70 percent larger than the average size of CASE

tools previously built at MSI with the Ipsys/ToolBuilder.

" with respect to the implementation effort of about 151 man-weeks, the greatest

proportion was dedicated to the realisation of the CASE tool, followed by effort

required to integrate all the elements depicted in Figure 98, followed by the

realisation of the business entity and finally by conducting the case study activities
(which led to the creation of the D2D models). Notwithstanding the greater effort
involved in producing the CASE tool, the business entity is the largest software

component produced (in terms of lines of codes). However, it should also be

noticed that the measure of LSC has been applied for code produced using different

modelling languages, as well as code produced via use of tools such as
BuilderXcessory [ICS 1991a] [ICS 1991b].

" D2D models do not include intermediate models in other modelling languages.

Further data about the major elements of the SEW-OSA CASE tool and its

business entity are presented in Appendix 10. Additionally, thorough documentation of
these deliverables as well as the research activities associated with their realisation is

presented in a series of articles and internal reports generated by the author (see

Appendix 12)1.

It is important to note that the `size and `effort' measures are lQresented here to

provide a indication of the complexity of the deliverables produced by this research,
and a nominal basis on which to compare the elements of SEW-OSA with each another.
It is not the intention to use these metrics as a measure of programming productivity or

quality of SEW-OSA elements.

1. This documentation consists of three journal publications (additional journal publications

are still being written) [Aguiar 1993a] [Aguiar 1993e] [Aguiar 1994b], eleven conference

publications [Aguiar 1992e] [Aguiar 1993b] [Aguiar 1993c] [Aguiar 1993d] [Aguiar 1994a]

[Aguiar 1994a] [Aguiar 1994c] [Aguiar 1994d] [Aguiar 1994e] [Aguiar 1994f] [Aguiar

1994g] and twelve internal reports [Aguiar 1991a] [Aguiar 1992a] [Aguiar 1992b] [Aguiar

1992c] [Aguiar 1992d] [Aguiar 1992f] [Aguiar 1994h] [Aguiar 1994i] [Aguiar 1994j]

[Aguiar 19941] [Aguiar 1994m] [Aguiar 1995a].

259

11.3. Architectural Results

The results presented hitherto in this chapter constitute physical instances of

results related to achievements represented in the form of architectural results.
Architectural results were obtained through analysis and design activities associated

with the realisation of SEW-OSA. The main findings which emerged from these

activities, are summarised in the following list of contributions to knowledge:

" realisation of a model-building capability, the application of which can lead to the

production of a complete business model. Outstanding features of this capability

are to: (1) to capture essential definitions of CIM-OSA modelling constructs, (2)

organise them in a usable method and (3) enhance them with additional constructs
defined by this research.

" the proposition of a methodology for resource specification which enables SEW-

OSA to address the gap between conceptual analysis and design and
implementation phases of the life cycle of integrated manufacturing systems.

" the provision of a working solution, in which an initial level of integration is

realised between function and information.

" the first instance of an application of CIM-OSA which analyses and simulates

relevant design issues of a manufacturing system, thereby demonstrating the
integrated use of modelling and simulation as a basis for making design decisions.

" the provision of adequate support for executing simulations, by incorporating a

syntax mapping between CIM-OSA and Petri-nets (in the code generation facilities

of a CASE tool).

" the first instance of an implementation of a (CIM-OSA-based) business entity

capable of enacting business models upon the CIM-BIOSYS integrating

infrastructure, thereby enabling the generation of a system prototype based on

models common to those used for simulation.

"a consideration of the issues involved in integrating resource components to the
SEW-OSA architecture, by (1) defining an adequate structure for the presentation

entity of SEW-OSA and (2) investigating how the functionality of active resource

components should be organised in order to comply with such a structure.

" the first case study on the application of CIM-OSA in an electronic manufacturing

company, and also one of the most complete case studies developed (aimed at

validating an engineering environment, whilst providing some insights into how

D2D shop-floor improvements can be engineered).

2h.

11.4. Concluding Remarks

The portion of D2D shop-floor (i. e. the SMT assembly line) that has been

modelled, analysed, simulated, prototyped and configured through the application of
the implementation results discussed in this chapter is the centrepiece of case study

results. These results represent an evaluation of the deliverables from this research, as

well as an indication of how SEW-OSA can be used with benefit to address engineering

processes. This is evidenced in the types of evaluations that SEW-OSA supports, based

on an application of its facilities for:

" analysis and simulation, which provide supporting data for a number of design

decisions upon possible system configurations;

" rapid-prototyping and its associated features of debugging and performance

evaluation, which enable the rapid testing of how the system will actually perform

when its components are fully integrated.

261

Chapter 12 - Conclusions and Issues for Further
Investigation

12.1. Summary of the Research Approach'

The starting point for this research was a requirement to support enterprise

engineering with the aid of modelling technology, in order to enable business
integration, this with a view to using IT engineering environments and infrastructures

to support integration during downstream life cycle engineering processes. This
definition of the problem space was achieved by outlining basic assumptions about the

need to attach the formalism of architectures to the life cycle of integrated

manufacturing systems.
With respect to this, state-of-the-art architectures and their application were

reviewed, leading to: (1) an identification of the need for CASSE environments to

support the life cycle of integrated manufacturing systems, and (2) the amalgamation

and incorporation of architectures into such environments, as a strategy for fleshing out
their formalism.

Possible solutions which address these needs were proposed which embodied
the following:

"a structure for the life cycle of integrated manufacturing systems;

" an organisation for the CASSE environment proposed;

"a methodology for realising and evaluating the environment; and

" the materialisation of these issues into a usable workbench.

The organisation of the CASSE environment was based on the adoption of a selection
of architectures centred on CIM-OSA. These provided a framework for organising the

modelling formalism of the workbench.
Within the structure provided by CIM-OSA, other architectures were

introduced to flesh out formalism not supported by CIM-OSA, as well as to provide a

means of applying such a formalism to problems found in contemporary manufacturing
integration projects. Tools and services associated with these architectures were
introduced, as was the rationale for their selection.

Based on the collection of architectures selected, the model-building and

model-enactment capabilities of SEW-OSA were realised and applied to a case study
in a particular manufacturing industry. Relationships between SEW-OSA and a

1. The research described in this thesis was carried out according to the methodology depicted
in Figure 8.

262

collection of sister tools being developed within the "Model-Driven CIM" project

evolved and have been defined in this thesis, leading to an identification of a set of

requirements for further research.
An evaluation of SEW-OSA was conducted and results obtained, with respect

to: (1) performance measures which qualified properties of the workbench, (2) metrics
associated with the engineering process supported by the workbench and (3) an analysis
of the material deliverables produced.

12.2. Conclusions

12.2.1. Research findings

The research findings which emerged from these activities characterise an
examination of primary research issues classified into three classes of objectives,
namely: "addressing the research need", "achieving the expected benefits" (for
industry) and "enabling the engineering facilities" (in the workbench).

a. Addressing the research need:

Two issues raised (in Chapter 1) were:

" How can the formalism of models and architectures be amalgamated into a

usable whole?

" How can such an amalgamated formalism be organised, so that it can be applied
to support the life cycle of integrated manufacturing systems?

In seeking answers to these questions, this research has proposed: (1) a structure to

organise life cycle processes; (2) the adoption of a selection of architectures to

address formalism of part of such processes; and (3) the encapsulation of these

architectures into capabilities for model-building and model-enactment.

The research has also tested these proposals by: (1) realising a workbench which

provides the capabilities required and (2) evaluating the workbench through case

study work. A key architectural result obtained was a combination of CIM-OSA,

object-oriented concepts, Petri-nets and the services of the CIM-BIOSYS

integrating infrastructure. Collectively, when implemented into an appropriate

engineering environment (i. e. SEW-OSA), they can bring closer to industrial reality
the use of model-driven formalisms and, hence, help bridge the gap between the

modelling (theoretical) and the physical worlds (see Figure 99).

In proving these proposals, this research has addressed some of the major

requirements of a reference architecture (listed in Chapter 1) identified by a number

of authors (namely: [Williams 1993] [Mize 1992] [Petrie 1992a] [Jorgenson 1992]).

2&1

Figure 99 - The ̀ gap' between the modelling world and the physical world

b. Achieving the expected benefits:
Associated with `bridging this gap', this research identified a set of anticipated
benefits which should be achieved with the introduction of a workbench to support
the life cycle of integrated manufacturing systems. Such benefits are: improved

consistency; reduced system failure through improved traceability of design

decisions; shorter system design-to-build lead-times; and lower costs of integration

projects and improved flexibility.

Although these benefits can only be proven through use of the workbench in a

number of engineering projects in industry, the potential of SEW-OSA to realise
those benefits has been demonstrated by the results obtained.

c. Enabling engineering facilities:
Such facilities were envisaged to consist of the integrated support for modelling,

analysis, simulation, rapid-prototyping, configuration and operation of an
integrated manufacturing system. Meeting this requirement stands out as an

outstanding feature of the SEW-OSA workbench.

Indeed, a primary contribution of this research is to demonstrate that it is possible to

retain an adequate level of formalism, via computational structures and models,

which extend through the IMS life cycle from a conceptual description of the

system through to actions that the system performs when operating. The underlying

methodology which supported this contribution is based on enacting models of

2fA

system behaviour which encode important coordination aspects of manufacturing
systems. The strategy for demonstrating the incorporation of formalism to the IMS
life cycle was to enable the aggregation into a workbench of knowledge of `what'

the system is expected to achieve (i. e. `problems' to be addressed) and `how' the
system can achieve it (i. e possible `solutions'). Within the workbench, such a
knowledge is represented through an amalgamation of business process modelling
and object-oriented modelling approaches which, when adequately manipulated,

can lead to business integration.

However, the approach adopted to filling such a `gap' (as most likely for any
approach) can only be expected to partially succeed, due to inherent limitations in
our understanding of systems which are as complex as manufacturing enterprises.
In a sense, the approach taken in this research implies that attempts to bridge the
`gap' can only be made on an incremental basis and the success of any bridge-head
is likely to depend strongly on how well we understand the complexity involved in
the classes of systems that need to be supported. A continuous motivation for the
author's research is to unravel such complexity.

12.2.2. Concluding remarks
The body of activities developed in this thesis were based on an approach which

reflects the strategy adopted to tackling the complexity of enterprise integration.
Certain of the assumptions which characterise this approach are:

"a life cycle approach. This reflects a view that complexity can be tackled by
approaching integration at different levels of abstraction. This is achieved in a
manner as to enable the solution to emerge from design decisions made by

gradually progressing to lower levels of abstraction.

" the integrated use of modelling and simulation to support design decisions.

" the use of the same models that characterise the system for the purpose of
simulation to derive the system structure and prototype its components.

" the characterisation process is a centre-piece in mapping descriptions of "what"

the system is expected to do and "how" it does it. In the case of SEW-OSA, such a
process is based on a combination of business process and object-oriented models.

" the use of CASSE environments to support this process, thereby capturing the
formalism in which the process is expected to be conducted. This implies an
assumption that the enterprise (or the integration issues of interest to it) can actually
be characterised by models.

" the ultimate deliverable of the enterprise engineering process is an integrated

manufacturing system structured in such a way that relevant relationships among

265

its components are captured in models, with the functionality of the components
(i. e. the tasks that each of them performs in isolation) separated from it. This
implies an assumption that systems can be built from `off-the-shelf', reusable and
inter-changeable components (produced based on agreed ̀ standards').

" the physical detail of communication interfaces and the inherent heterogeneity of
computer platforms and infrastructures can be encapsulated and handled by an
integrating infrastructure, thereby hiding implementation specific details from

more abstract enterprise characterisation processes (i. e. focus can be on business
integration).

" business integration requirements can be achieved by enabling coordination of
system activities, this being realised at an appropriate level of granularity as defined
by a trade-off between the system wide coordination required (to safeguard the

achievement of enterprise goals), and the level at which sub-systems and their

components can be directly controlled.

" reference models can provide suitable indications of the level of coordination
appropriate to a certain type of enterprise. This implies that enterprises can be

categorised into types about which generalisations can be made (an issue not fully

addressed in this thesis, however).

Alternative perspectives exist within the academic community as to how the

complexity of enterprise integration process should be tackled. Two important

viewpoints relate to: the IT perspective whereby integration is viewed from a systems
engineering standpoint; and the organisational perspective, whereby integration is

viewed as the process of aligning the dominant culture of an organisation with its goals.
Although, this research has focused on IT issues, clearly optimal solutions will require
consideration of both issues.

Although this thesis has in part fulfilled the requirements established in
Chapter 1, the realisation, application and evaluation of SEW-OSA indicates that the
complexity of enterprise integration problems may be orders of magnitude greater than

can be handled by the formalism of architectures or CASSE environments (which seek
to encapsulate such formalisms)'. Issues of formalism, coordination and change
management are important aspects of realising control over complex systems. In reality,
the inherent complexity of the very systems we seek to control can resist our control.

1. This is illustrated by the many limitations presented by the (already very) complex tools

utilised in this research(e. g. maximum complexity of a CASE tool built with ToolBuilder

and maximum model size supported by CIM-BIOSYS and ARP).

266

Emerging ideas on complexity (and chaos theory) are demonstrating our inability to

control certain natural and man-made systems, integrated manufacturing enterprises
being typical examples of largely man-made systems.

Perhaps, the approach defined and developed in this thesis for enacting business

process models in support of the integrated manufacturing system life cycle is yet
another attempt to establish control over inherently uncontrollable systems. However,
if it leads to improvement over current practice (and hence a competitive advantage for

enlightened manufacturers), it may well prove to be an important step forward.

12.3. Issues for Future Investigation

Two sets of issues are considered here: (1) enhancements to SEW-OSA, in order
to overcome certain limitations identified in previous chapters; and (2) extensions of
SEW-OSA, by incorporating in it a second selection of architectures.

12.3.1. Enhancements of SEW-OSA

a. Implementation issues

This future effort would address limitations of SEW-OSA which can be

overcome through additional implementation effort. Such limitations are primarily due

to: (1) simplifications with respect to the CIM-OSA specifications in order to make their

realisation viable within the resources and time-scales available; (2) additional

programming effort required to make the workbench more robust and improve its

usability.

b. Case study issues

This concerns various factors that should be considered if. (1) an industrial

implementation of the approach is to be carried out by D2D, based on the

recommendations proposed by this research; and (2) further simulation and rapid-
prototyping tests are required.

c. Architectural issues

Architectural issues are related to: (1) certain limitations listed in the previous
chapters; and (2) the study of how links to other architectures can be realised.

12.3.2. Extension to SEW-OSA

Extending SEW-OSA could embrace two different sets of activities. The first

set would focus on extending its life-cycle coverage. The second set would add certain

capabilities to SEW-OSA, in order to expand its natural domains.

, 47

a. Extending SEW-OSA

Investigating underlying formalism which can traverse different life cycle

phases of integrated manufacturing systems represents an area for long term research,
to which the author wishes to actively contribute. One of the prime challenges
connected to this task is expected to arise at the interface between strategy definition

and conceptual analysis, as well as within the strategy definition phase itself, where
difficulties of encoding intuitive processes exist.

b. Expanding SEW-OSA
Research areas identified during this research with respect to expanding SEW-

OSA include:

" Incorporation of cost models into SEW-OSA: This activity would combine
methods such as "Activity Based Costing" [Shaharoun 1994] [Turney 1991] with
the SEW-OSA business models to provide powerful tools for metric-based decision

support (applied at different levels of abstraction within an enterprise).

" Integration of organisational and IT issues: Here, investigation is required of the

research issues associated with enterprise design from an organisational perspective
and integration of such issues with those connected with IT perspectives.

" Reference models for SEW-OSA: Activity is required to populate SEW-OSA with
reference models of requirements (i. e. system models) and solutions (i. e. resource
models), thereby enabling the creation of a more complete design environment for

systems design which can take full advantage of the reusability of resources and
models. Here, a crucial factor is to structure reference models in a form which can
render them widely applicable.

" Application of SEW-OSA in other domains: The application of SEW-OSA needs
to be proven in other domains. For example, it 'could be used to facilitate the
functional re-organisation of a number of inter-related software packages and
applied to particular business processes (e. g. the PI process) as a means of
achieving software interoperability.

" Combination of SEW-OSA with alternative federated architectures: As earlier
discussed, the federated architectures approach to enterprise integration is distinct
from that adopted by CIM-OSA (and, consequently, SEW-OSA). A research topic

strongly advocated within the work of the US/Europe Enterprise Integration

Initiative concerns integration between unified and federated architectures.

26s

List of References

[Adiga 1993] ADIGA, S. Object-oriented software for manufacturing systems. Chapman
& Hall, USA, 1993.

[Aguiar 19891 AGUTAR, M. W. C. Comparative performance analysis of FIP and PROFI-
BUS, candidates to afield-bus standard, using generalised stochastic time
petri-nets. Universidade Federal de Santa Catarina, Brazil, 1989.

[Aguiar 1991a) AGUTAR, M. W. C. On the Life Cycle oflntegrated Manufacnsring Systems

- Research Plan Outline. Document no. 1, version 1.1, Loughborough
University, England, 1991.

[Aguiar 1992a] AGUTAR, M. W. C. First Exercise on the Application of the CIM-OSA
Modelling Methodology - Working Group 3- ICLILUT-SIG Joint Work On
CIM-OSA. Document no. 2. version 1 . 0, Loughborough University,
England, 1992.

[Aguiar 1992b] AGUTAR, M. W. C. Data Collection on the SMD Assembly Line - Working
Group 3- ICL/LUT-SIG Joint Work On CIM-OSA. Document no. 3, version
1.0, Loughborough University, England, 1992.

[Aguiar 1992c] AGUTAR, M. W. C. Data Gathering on the SMD Assembly Line - Third
Interview- Working Group 3- ICULUT-SIG Joint Work On CIM-OSA.
Document no. 4, version 1.0, Loughborough University, England, 1992.

[Aguiar 1992d] AGUIAR, M. W. C. Study on Reference Architectures for CIM Systems
Design and Building Based on Executable Models. Master of Philosophy
Report, Loughborough University, England, 1992.

[Aguiar 1992e] AGUIAR, M. W. C. Case study on the application of the CIM-OSA
methodology for manufacturing process modelling. Proceedings of the
European Simulation Symposium. Germany, 1992.

[Aguiar 1992f] AGUTAR, M. W. C. Petri-net Case Tool Documentation. Document no. S,
version 1.0, Loughborough University, England, 1992.

[Aguiar 1993a] AGUIAR, M. W. C.; WESTON, R. H. CIM-OSA and stochastic time petri
nets for behavioural modelling and model handling in CIM systems design
and building. Proceedings of the Institution of Mechanical Engineers Part
b- Journal of Engineering Manufacture, 1993, vol. 207, no, 3, pp. 147-158,
England.

[Aguiar 1993b) AGUIAR, M. W. C.; WESTON, R. H. CIM-OSA and time petri nets for
CIM systems modelling and simulation. Proceedings of the International
Conference on Factory Automation and Information Management - FAIMI
93. Ireland, 1993.

[Aguiar 1993c] AGUIAR, M. W. C.; WESTON, R. H. Reference architectures for
enterprise integration. Proceedings of the International Conference on
Computer Aided Manufacturing, Robotics and Factories of the Future
CARS-FOF193. USA, 1993.

[Aguiar 1993d] AGUTAR, M. W. C.; WESTON, R. H. Model based approach supporting
the life cycle of integrated manufacturing enterprises enterprise integration.
Proceedings of the International Conference on Computer Integrated
Manufacturing - ICCIM193. Singapore, 1993.

[Aguiar 1993e] AGUIAR, M. W. C. And Weston, R. H. A model driven approach to
enterprise integration. International Journal of CIM. England, 1993.

[Aguiar 1994a) AGUIAR, M. W. C.; WESTON, R. H.; COUTTS, 1. C. Manufacturing
systems design and implementation based on formal modelling methods and
tools. Proceedings of the 27th International Symposium on Automotive
Technology and Automation (ISATA). Germany, 1994.

(Aguiar 1994b] AGUIAR, M. W. C.; COUTTS, I.; WESTON, R. H. Rapid prototyping of

269

open software systems. Proceedings of the European Simulation Multi-
conference. Spain, 1994.

[Aguiar 1994c] AGUTAR, M. W. C.; COUTTS, I.; WESTON, R. H. Workbench for rapid
prototyping of open software systems. Submitted to the International
Journal of Manufacturing Systems Design. England, 1994.

[Aguiar 1994d] AGUTAR, M. W. C.; WESTON, R. H. SEW-OSA - Systems Engineering
Workbench centred on CIM-OSA. Proceedings of the 10th International
Conference on Computer Aided Manufacturing, Robotics and Factories of
the Future CARS-FOF194. Canada, 1994.

[Aguiar 1994e] AGUIAR, M. W. C.; WESTON, R. H. The business entity of SEW-OSA -
Systems Engineering Workbench centred on CIM-OSA. Proceedings of the
10th National Conference on Manufacturing Research. England, 1994.

[Aguiar 19940 AGUTAR, M. W. C.; WESTON, R. H. Petri-Nets in SEW-OSA - Systems
Engineering Workbench centred on CIM-OSA. Proceedings of the 1994
International Conference on Systems, Management and Cybernetics. USA,
1994.

[Aguiar 1994g] AGUIAR, M. W. C.; COUTTS, I.; WESTON, R. H. Petri-Nets in SEW-
OSA - Systems Engineering Workbench centred on CIM-OSA.
Proceedings of the First IMSE. France. 1994.

[Aguiar 1994h] AGUIAR, M. W. C. Notes from the case study application of SEW-OSA to
D2D shop-floor. Internal Report, MSI Research Institute. England, 1994.

[Aguiar 1994i] AGUIAR, M. W. C. SEW-OSA (Systems Engineering Workbench centred
on CIM-OSA) Integrated CASE Tools - Printout of the tools developed with
IPSYSIToolBuilder. Internal Report, MSI Research Institute,
Loughborough University, England, 1994.

[Aguiar 1994j] AGUIAR, M. W. C. SEW-OSA (Systems Engineering Workbench centred
on CIM-OSA) Business Entity - Printout of the software code. Internal
Report, MSI Research Institute, Loughborough University, England, 1994.

[Aguiar 199411 AGUIAR, M. W. C. Collection of five reports to CAPES on the progress of
the PhD research work - issued between 1991 and 1994. England, 1994.

[Aguiar 1994m] AGUIAR, M. W. C. Preliminary review of methods and techniques to
support business strategy development - working paper, Loughborough
University, England, 1994.

[Aguiar 1995a] AGUIAR, M. W. C. A proposal for linking SEW-OSA with a bottom-up
modelling tool. Internal Report, MSI Research Institute, Loughborough
University, England, 1995.

[Akif 1991] AKIF, H. C.; Doumeings, G. Computer aided GRAI method (C. A. GRAI)

. Proceedings of the Conference in Advances in Production Management
Systems - IFIP/91. Netherlands: Elsevier Science Publishers B. V., 1991,

pp. 283-292.

[AMR 1991] ADVANCED MANUFACTURING RESEARCH. Manufacturing
application source book - Application enabler. Internal Report, AMR,
Singapore, 1991.

[Alderson 1991] ALDERSON, A. Meta-CASE technology. Lecture Notes in Computer
Science Software Development Environments and CASE Technology.
Proceedings of European Symposyum. pp. 81-91. Springer-Verlag.
Germany. 1991.

[Back 1986] Back, M. J. The design of the UNIX operating system. USA: Prentice Hall,
1986. ISBN 0-13-201757-1025.

[Bailin 1989] BAILIN, S. C. An object-oriented requirements specification method.
Communications of the ACM, 1989, vol. 32, no. 5, pp. 608-623.

[Beeckman 1989] BEECKMAN, D. CIM-OSA: computer integrated manufacturing - open

270

system architecture. International journal of CIM, 1989, vol. 2, no. 2, pp. 94-
105.

[Bernus 1994] BERNDS, P.; NEMES, L. A framework to define a generic enterprise
reference architecture and methodology. Proceedings of ICARV94.
Singapore, 1994.

[Biemans 1990] BIEMANS, F. Manufacturing planning and control -a reference model.
Netherlands: Elsevier Science Publishers B. V., 1990.

[Bishop 1989] BISHOP, T.; SCHOFIELD, N. Unlocking the potential for CIM -a
management guide. P. A. Consutling Services. UK, 1989.

[Blinn 1991] BLINN, T.; MAYER, R. J. CULLINANE, T. A service based approach to
information integration in concurrent engineering environments.
Proceedings of Autofact 91. USA, 1991, pp. 7.27-7.38.

[Bohms 1990] BOHMS, H. M. RIA: Reference Model for Industrial Automation.
Proceedings of CIMCON'90. USA: NIST special publication 785,1990.

[Boldyreff 1994] BOLDYREFF, C. Software engineering design: a paradigm case of CSCW
- Design issues in CSCW, Springer-Verlag, pp. 140,1994.

[Bonney 1992] BONNEY, M. C.; BARSONN, RJ.; HEAD, M. A. et a]. UNISON -A tool
for enterprise integration. Internal report. Department of Manufacturing
Engineering & Operations Management. University of Nottingham, UK,
1992.

[Booch 1991] BOOCH, G. Object Oriented Design with Applications. USA: Benjamin/
Cummins, 1991.

[Boswell 1992] BOSWELL, L. Experiences with building a multimedia mail system
prototype on the OSF DCE platform. Proceedings of the International
Conference on Enterprise Integration Modelling (ICEIMT 92). USA, 1992.

[Boucher 1990] BOUCHER, T. 0.; JAFARI, M. A. The design of a petri net controller from
an IDEFO specification. Proceedings of the Conference on Factory
Automation and Information Management - FAIM/90. Ireland: CRC Press,
1990.

[Boucher 19911 BOUCHER, T. 0.; JAFARI, M. A. The design of a petri net controller from
an IDEFO specification. The Automated Factory Handbook - Technology
and Management. USA: TAB Professional and Reference books, 1991, pp.
804-815.

[Boykin 1990] BOYKIN, R. E. 1990, CAM-I CIM reference model - historical reflection.
Proceedings of the 1990 CIM Conference - CIMCON 90 . USA: NIST, 1990,
pp. 35-41.

[Boyle 1991] BOYLE, A. Express usage guide - external representation of product
definition data - ISO TC184/SC4/WG5. Internal Document, 1991.

[Brathwaite 1990] BRATHWAITE, K. S. Applications development using CASE tools. USA:
Academic Press, Inc. 1990.

[Bravoco 1985a] BRAVOCO, R. R.; YADAV, S. B. A methodology to model the functional
structure of an organisation. Computers in Industry, 1985, vol. 6, pp. 345-
361.

[Bravoco 1985b] BRAVOCO, R. R.; YADAV, S. B. A methodology to model the
information structure of an organisation. The Journal of Systems and
Software, 1985 vol. 5, pp. 59-7 1.

[Bravoco 1985c] BRAVOCO, R. R.; YADAV, S. B. A methodology to model the dynamic
structure of an organisation. Information Systems, 1985, vol. 10, no. 3, pp.
299-317.

[Brenner 1987] BRENNER, J. B. Open distributed processing. ICL Technical Journal,
1987, vol. 5, no. 4, pp. 613-637.

[Brown 1993] BROWN, G. H. Application Development - OPENframework Systems

271

Architecture. England: Prentice Hall, 1993.

(Bruno 19941 BRUNO, G. et al. Making CIMOSA operational. Submitted to the
Proceedings of the First IMSE. France, 1994.

[Brunt 19921 BRUNT, R.; HUTT, A. ed. OPENframework - The systems architecture: an
introduction - International Computers Limited. USA: Prentice Hall, 1992.

[BSL 19911 BUSINESS SERVICES LTD. New Product Introduction into Manufacture
at ICL Ashton and ICL Kidsgrove Manufacturing Facilities - Final Draft
Report. University of Salford. July 1991.

[Buckanan 1994] BUCKANAN, D. Business process analysis and business process re-
engineering: Loughborough University of Technology - EPSRC innovative
manufacturing initiative. Position Statement, England, 1994.

[Carrie 1993] CARRIE, A. et. al. Linking strategy to production management structures
and systems. Proceedings of the Conference on Managing Integrated
Manufacturing - Organization, Strategy & Technology. England: KAMG -
Keele University, 1993, pp. 51-68.

[Carswell 1987] CARSWELL J. L. JR.; NAVATHE, S. B. SA-ER: a methodology that links
structured analysis and entity-relationship modelling for database design.
Proceedings of the Conference on Entity-Relationship Approach.
Netherlands: Elsevier Science Bulisher, 1987, pp. 381-396.

[CEN 1994a] CEN%TC 310/WG 1. CIMOSA Document R0493/0. Denmark, 1993.

[CEN 1994b) CENJTC 3101WG 1. Contribudonsfrom QCJM and CIM-OSA - Comparison
CIM-OSA - JEM Modelling Constructs. Document no. 41. Denmark, 1994.

[Checkland 19811 CHECKLAND, P. Systems thinking, systems practice. UK: John Wiley &
sons, 1981. ISBN 0-471-27911-0 [003 CHE].

[Chen 19761 CHEN, P. P: S. The entity-relationship model - toward a unified view of
data. ACM Transactions on Database Systems, 1976, vol. 1, no. 1, pp. 9-36.

[Childe 1993] CHILDE, S.; BENNETT, J.; MAULL, R. Manufacturing re-engineering
around business processes. The International Conference on Managing
Integrated Manufacturing - Organization, Strategy & Technology. England:
KAMG - Keele University, 1993.

[Clark 1989] CLARK, G. M. ; WITHERS, D. H. Architecture for an Integrated
Simulation/CIM Systems. Proceedings of the 1989 Winter Simulation
conference. USA: IEEE, 1989, pp. 942-948.

[Clements 1993] CLEMENTS, P.; COUTTS, I.; WESTON, R. H. A life-cycle support
environment comprising open systems manufacturing modelling methods
and the CIM-BIOSYS infrastructure tools. MAPLE'93 - Symposium on
Manufacturing Automation Programming Language Environments.
Ottawa, 1993.

[Coad 1990] COAD, P.; YOURDON, E. Object-oriented analysis. USA: Prentice-Hall,
1990.

[Colquhounn 1991] COLQUHOUNN, G. J.; BAINES, R. W. A generic IDEFo model of process
planning. Int. J. Prod. Res., 1991, vol. 29, no. 11, pp. 2239-2257.

[Colquhoun 1994] COLQUHOUN, G. J.; BAINES, R. W. A "process description" approach to
manufacturing system modelling. Proceedings of the Tenth National
Conference on Manufacturing Research. England: Taylor & Francis, 1994,
p360-364.

[Coutts 1992] COUTTS, I. A.; WESTON, R. H.; MURGATROYD, I. S.; GASCOIGNE,
J. D., "Open Applications within Soft Integrated Manufacturing Systems",
Proceedings of the International Conference on Manufacturing
Automation, Hong Kong 1992.

[Coutts 1994] COUTTS, I. A. MSI application generation libraries vol. 02 - Internal
Document. England, 1994.

272

[Cox 19861 COX, B. J. Object-oriented programming: an evolutionary approach. USA:
Addison Wesley, 1986.

[Davenport 1994] DAVENPORT, T. H. Saving IT's soul: human-centred information
management. Harvard Business Review, March-April 1994, pp. 119-131.

[David 1994] DAVID, R. AND ALLA, H. Petri-nets for modeling of dynamic systems -
a survey. Automatica. 1994, vol. 30, no. 2, pp. 175-202.

[Davis 19911 DAVIS, L. Manufacturing systems integration project: Organisational
aspects of information systems design. Loughborough University, 1991.

[DEC 1987] DEC (Digital Equipment Incorporation); PHILIPS (Netherlands Philips
Bedrijven BV). Reference model of production systems version 1.0. CFT
Report 13/87. Netherlands: Philips, 1987.

[DEC 1991] DEC (Digital Equipment Incorporation). Open Systems Handbook: a guide
to building open systems DEC. USA, 1991.

[DEC 1992] DEC (Digital Equipment Incorporation). Network Application Support
(NAS): an open system for application integration, support documentation,
1992.

[Deignam 1993] DEIGNAN, F.; HOLLINGSWORTH, D. Networking Services -
OPENframework Systems Architecture. England: Prentice Hall, 1993.

[Devapriya 1991) DEVAPRIYA, D. S.; DESCOTES-GENON, B.; LADET, P. A Petri Net
based blackboard type architecture for FMS control (ESCOPE).
Proceedings of the Conference on Advances in Production Management
Systems - IFIP 91. Netherlands: Elsevier Science Publishers B. V., 1991,
pp. 531-541.

[Didic 1992] DIDIC, M. Rapid prototyping for MAP/MMS based CIM-OSA
enviroments. Proceedings of the 3rd Int. Workshop on Rapid System
Prototyping. USA: IEEE, 1992, pp. 221-233.

[Didic 1993] DIDIC, M.; NEUSCHELER, F.; BOGDANOWICZ, L. et al. McCIM:
Execution of CIMOSA models. CIM Europe 93.

[DIN 1988] DIN. The standardisation of interfaces for CIM- current state of
development and future requirements - DIN Technical Report no. 15.
German Standards Institute (DIN). Germany, 1988.

[Doumeingts 1992] DOUMEINGTS, G.; CHEN, D.; MARCOTTE, F. Concepts, models and
methods for the design of production management systems. Computers in
Industry, 1992, vol. 19, pp. 89-111.

[Edwards 1993] EDWARDS, J. A reference architecture for flexibly integrating machine
vision within manufacturing systems. PhD Thesis. Loughborough
University, England, 1993.

[Emond 1988] EMOND, J. C. CIM-OSA: Key concepts overview and
DEMONSTRATION. Proceedings of the ESPRIT '88 Conference.
Amsterdam: North-Holland, 1988, vol. 2, pp. 1509-1527.

[Endres 1991] ENDRES, A.; WEBER, H. eds. Lecture notes in computer science.
Proceedings of the European Symposium on Software Development
Enviroments and CASE Technology. Espringer-Verlag, 1991, pp. 1-255.

[Espejo 1989] ESPEJO, R; HARNDEN, R. ed. The viable system model - interpretations
and applications of Stafford Beer's VSM. UK: John Wiley & Sons, 1989.
ISBN 0471-92288-9 [003 VIA].

[ESPRIT/AMICE 1987a] ESPRIT/AMICE. CIM-OSA: a primer on key concepts and purpose -
Project 688. USA: AMICE & APT, 1987.

[ESPRIT/AMICE 1987b] ESPRIT/AMICE. CIM-OSA: strategic management and design issues -
Project 688. USA: AMICE, 1987.

[ESPRIT/AMICE 1989] ESPRIT/AMICE. CIM-OSA research reports, project 688, volume 1. Open
system architecture for CIM. Springer-Verlag, Netherlands, 1989.

273

[ESPRIT/AMICE 1991a] ESPRIT/AMICE. Integrated manufacturing -a challenge for the 1990s.
Computing & Control Engineering Journal, 1991, vol. May, pp. 101-125.

[ESPRIT/AMICE 1991b] ESPRIT/AMICE. CIM-OSA Architecture Description, AD 1.0. Belgium:
ESPRIT Consortium AMICE, 1991.

[ESPRIT/AMICE 1991c] ESPRIT/AMICE. CIM-OSA releases: project proposal - Project 5288.
Belgium, 1991.

[ESPRIT/AMICE 1991d] ESPRIT/AMICE. CIM-OSA: aerospatiale F. M. S. case study. Function view
at requirements definition modeling level - Project 5288. Belgium, 1991.

[ESPRIT/AMICE 1991e] ESPRIT/AMICE. CIM-OSA seminar. IMechE - Computing and Data
Communications Group. 1991.

[ESPRIT/AMICE 19911] ESPRIT/AMICE. Computer-Aided Enterprise Engineering (CAEE) tool -
user guide. Document R0320/0 - version 2.1.1991.

[ESPRIT/AMICE 1992a] ESPRIT/AMICE. CIM-OSA user guide - system requirements definition -
Project 5288.1992.

[ESPRIT/AMICE 1992b] ESPRIT/AMICE. CIM-OSA formal reference base. version 0.3.1992.

[ESPRIT/AMICE 1993a] ESPRIT/AMICE. CIM-OSA formal reference base. 1993.

[ESPRIT/AMICE 1993b] ESPRIT/AMICE. CIM-OSA research reports, project 688, volume 1. Open
system architecture for CIM. Springer-Verlag, 1983.

[ESPRIT/VOICE 1992] ESPRIT/VOICE. Validating OSA in industrial CIM enviroments. Objetives
and results - EP 5510.1992.

[ESPRIT/VOICE 1993] ESPRIT/VOICE. Validation of CIM-OSA (Open Systems Architecture) -A
joint ESPRIT projects report. 1993.

[Fairthome 1993] FAIRTHORNE, B. Security - OPENframework Systems Architecture.
England: Prentice Hall, 1993.

[Farines 1992] FARINES, J. M.; CURY, J. E. R.; CARDOSO, J. Um sistema de
coordenaräo para ambientes fabris baseado no modelo rede de Petri. Anais
do 9° Comgresso Brasileiro de Automdtica. Vitdria - ES, setembro de 1992.

[FIAT 1994a] FIAT. CIMOSA-WPI: The model of a gearbox production system. Fiat
Internal Paper, 1994.

[FIAT 1994b] FIAT. WPI: An industrial application of CIMOSA: Fiat gearbox
production system. Copies of overheads, 1994.

[Fowler 1964] FOWLER, H. W.; FOWLER, F. G. The concise Oxford dictionary of
current english. 5ed., England, 1964.

[Fox 1992] FOX, M. S. The TOVE project: towards a common-sense model of the
enterprise. Proceedings of the International Conference on Enterprise
Integration Modelling (ICEIMT 92). USA, 1992.

[Fox 1993] FOX, M. S. and Gruninger, M. Ontologies for enterprise integration.
Proceedings of the Second Conference on Cooperative Information
Systems. Canada, 1994.

[Fritsch 1989] FRITSCH, C. A. Information dynamics for computer integrated product
realization. In: S. Y. NOF and C. L. MOODIE, ed. Advanced Information
Technology for Industrial Material Flow Systems. Germany: Springer-
Verlag, 1989.

[Frizelle 1991] FRIZELLE, G. D. M. Deriving a methodology for implementing CAPM
systems. International Journal of Operations and Production Management,
1991, vol. 11, no. 7, pp. 6-26.

[Fulton 1992] FULTON, J. A. Enterprise integration using the semantic unification meta-
model. Proceedings of the International Conference on Enterprise
Integration Modelling (ICEIMT 92). USA, 1992.

[Gaches 1994] GACHES, R. CIMtool presentation. Cim tool overview. Catalog, 1994.

[Gale 1993] GALE, T. Systems Management - OPENframework Systems Architecture.

274

England: Prentice Hall, 1993.

[Gamousset 1989] GARNOUSSET, H. E.; FARINES, J. M.; CANTU, E. Efficient tools for
analysis and implementation of manufacturing systems modelled by Petri
Net with objects: a production rules compilation-based approach.
Proceedings of IECOM 89. IEEE Publisher, 1989, pp. 543-549.

[Gascoigne 1992] GASCOIGNE, J. D. CIM-BIOSYS, its purpose and functional overview, St
Group Internal Document, available from Manufacturing Eng. Dept.,
Loughborough University of Technology, England, England, 1992.

[Gilders 1991a] GILDERS, P.; LOMAS, A. Requirements specification for production
planning and control demonstration system - internal report version 1.
Loughborough University of Technology, England, 1991.

[Gilders 1991a] GILDERS, P. Guide to writing CIM-BIOSYS system applications - internal
report vl. Loughborough University of Technology. England. 1991.

[Gilders 1995) GILDERS, PJ., WESTON, R. H. A mechanism for the rapid generation of
Interaction Functionality for CIM Systems based on Estelle. (To be
submitted to the) Computing and Control Engineering Journal, 1995.

[Goldrau 1984] GOLDRATT, E. The goal - the process of on going improvement. USA,
1984.

[Goodwin 19941 GOODWIN, C. Mapping middleware. Unix News. England, 1994.

[Goranson 1992] GORANSON, H. T. Services in the SIRIUS-BETA inter-integration
domain. Proceedings of the International Conference on Enterprise
Integration Modelling (ICEIMT 92). USA, 1992.

[Graefe 1989] GRAEFE, U.; THOMSON, V. A reference model for production control.
Int. J. Computer Integrated Manufacturing, 1989, vol. 2, no. 2, pp. 86-93.

[GRAI 1984] GRAI Laboratory. Study of the conceptual information model for an
advanced factory management system defined for two work centres:
inspection and tooling. Final Report - R-84-FM-01. France, 1984.

[Hales 1989] HALES, H. L. CIMPLAN The Systematic Approach of Factory Automation.
CIM Strategies. Cutter Information Corp., USA, 1989.

[Hales 1990] HALES, H. L. CIM Strategy for Implementation. SME Course. USA, 1990.

[Hammer 1994] HAMMER, M.; CHAMPY, J. Re-engineering the corporation -a manifesto
for business revolution. England: Nicholas Brealey Publishing, 1994.

[Harhalakis 1989] HARHALAKIS, G., LIN, C. P., MARK, L. A knowledge-based prototype
of a factory level CIM system. Computer Integrated Manufacturing
Systems, 1989, vol. 2, no. 1, pp. 11-20.

[Hars 1991] HARS, A., et al. Concept of current data modelling methodologies. Report
on CODE - ESPRIT Project. Germany, 1991.

[Hatono 1989] HATONO, I.; KATOH, N.; YAMAGATA, K. et al. Modeling of FMS
under uncertainty using stochastic Petri Nets - An application to rule-based
on-line scheduling. Proceedings of the 3rd. International Workshop Petri
Nets and Performance Models - PNPM 89. IEEE Publisher, 1989, pp. 122-
129.

[Heller 1991] HELLER, D. Motif programming manual. The definitive guides to the X
Windows System vol. 4. USA: OReilly & Associates, Inc., 1991. ISBN 0-
937175-70-6.

[flinch 1988] HINCH, S. W. Handbook of surface mount technology. England: Longman
Scientific & Technical, 1988.

[Hou 1993] HOU, W-N.; TRAUBOTH, H. An approach to the development of the
machine front-end services in a CIM-OSA enviroment. Proceedings of the
3rd. Joint Int. FAIM'93 Conf. Ireland, 1993.

[Howard 1994] HOWARD, P.; POTTER, C. CASE and methods based development tools:
an evaluation and comparison. Ovuum and Butler Bloor (independent

275

consultants), England, 1994.
[Hsu 1990] HSU, C.; RATTNER, L. Information modelling for computerized

manufacturing. IEE Transactions on Systems, Management and
Cybernetics, 1990, vol. 20, no. 4, pp. 758-776.

[Huhns 1992] HUHNS, M. N. et. al. Enterprise information modeling and model
integration in CARNOT. Proceedings of the International Conference on
Enterprise Integration Modelling (ICEIMT 92). USA, 1992.

[Hutchison 1991] HITfCHISON, D. DTI/SERC open distributed systems architecture
research programme. Computing and Control Engineering Journal, 1991,
vol. 2, no. 6, pp. 250-252.

[Hutt 1993a] HUTT, A. Usability - OPENframework Systems Architecture. England:
Prentice Hall, 1993.

[Hutt 1993b] HUTT, A. User Interface - OPENframework Systems Architecture.
England: Prentice Hall, 1993.

[ICL 1988] ICL. Kidsgrove Manufacturing Operations Systems Strategy - Issue no. 3-
Revised. February 1988.

[ICL 1993] ICL. ProcessWise. Technical catalogues. 1993.

[ICL 1994] ICL. DAIS. Technical catalogues. 1994.

[ICL/OFD 1993] ICL)OPEN FRAMEWORK DIVISION. OPENframework - overview of
methods - issue 1.2. England, 1993.

[ICLIOFD 1994] ICL/OPEN FRAMEWORK DIVISION. OPENframewodc General
Practicitioners Course - handouts. England, 1994.

[ICS 1991a] INTEGRATED COMPUTER SOLUTIONS, INC. The Builder Xcessory
User's Guide. version 2.0. USA, 1991.

[ICS 1991b] INTEGRATED COMPUTER SOLUTIONS, INC. The Builder Xcessory
Reference. version 2.0. USA, 1991.

[Ipsys 1992a] IPSYS SOFTWARE P. C. IPSYS ToolBuilder version 1.3'- Methods and
Concepts Manual. England, 1992.

[Ipsys 1992b] IPSYS SOFTWARE P. C. IPSYS ToolBuilder versio. 13 - Instruction
Manual. England, 1992.

[Ipsys 1992c] IPSYS SOFTWARE P. C. IPSYS ToolBuilder version!. 3 - Implementor's
Reference Manual. England, 1992.

[Ipsys 1992d] IPSYS SOFTWARE P. C. IPSYS ToolBuilder version 1.3 - Guide to a
Generated Tool. England, 1992.

[Ipsys 1992e] IPSYS SOFTWARE P. C. IPSYS ToolBuilder version 13 - Handbook.
England, 1992.

[Ipsys 1992f] IPSYS SOFTWARE P. C. IPSYS ToolBuilder version 1.3 - Data
Transformation Reference Manual. England, 1992.

[Ipsys 1992g] IPSYS SOFTWARE P. C.]PSYS ToolBuilder version 13 - Migration
Guide. England, 1992.

[ISO 19881 ISO 9074. Estelle: A Formal Description Technique Based on an Extended
State Transition Model. 1988

[ISO 1993] ISO. Framework for enterprise modeling - ISO TC184 SC5 WGI. 1993.

[ISO 1994] ISO. Framework for enterprise modeling - ISO TC184 SC5 WGI. 1994.

[ISO11EC 19931 ISO/IEC JTC]/SC21/WG7. Reference Model for Open Distributed
Processing - Project 21.34 - Draft recommendation X. 901 - Document
N838.1993.

[Jain 1990] JAIN, H. K.; BU-HULAIGA, M. I. E-R approach to distributed
heterogeneous database systems for integrated manufacturing. Information
Resources Management Journal, 1990, vol. 3, no. 1, pp. 29-40.

2'6

[Jayaraman 19901 JAYARAMAN, S. Design and development of an architecture for
computer-integrated manufacturing in apparel industry. Part 1: Basic
concepts and methodology selection. Ladle Research Jounul, 1990,
vol. 60, no. 5, pp. 247-254.

[Jochem 19891 JOCHEM, R.; RABE, M.; SUSSENGUTH, W. et al. An object oriented
analysis and design methodology for computer integrated manufacturing
systems. Proceedings of Tools 89.1989, pp. 75-84.

[Jones 1989] JONES, A.; BARKMEYER, E; DAVIS, W. Issues in design and
implementation of a system architecture for computer integrated
manufacturing. International Journal of Computer Integrated
Manufacturing, 1989, vol. 2, no. 2, pp. 65-76.

[Jones 19901 JONES, A. ed. Proceedings of CIMCOM' 90. USA: NIST Special
Publication 785,1990,

[Johnson 1991] JOHNSON, B. C. A distributed computing enviroment framework: an OSF
perspective. Proceedings of The European Forum for Open Systems. 1991,
pp. 69.87.

[Jorgenson 1992] JORGENSON, B. R. Model repository technology for model integration.
Proceedings of the International Conference on Enterprise Integration
Modelling (1CEIMT 92). USA, 1992.

[Johnson 1993] JOHNSON, G. B.; SCHOLES, H. K. Exploring corporate strategy. 3rd. ed.
London: Prentice-Hall International Inc., 1993.

[Jorysz 1990a] JORYSZ, H. R.; VERNADAT, F. B. CIM-OSA Part 1: total enterprise
modelling and function view. International Journal of Computer Integrated
Manufacturing, 1990, vol. 3, no. 3-4, pp. 144-156.

[Jorysz 1990b] JORYSZ, H. R. &VERNADAT, F. B. CIM-OSA Part 2: information view.
International Journal of Computer Integrated Manufacturing, 1990, vol. 3,
no. 3-4, pp. 157-167.

[Juanole 1989] JUANOLE, G.; ROUX, J. L. On the pertinence of the extended time Petri
Net model for analysing communication activities. Proceedings of the 3rd.
International Workshop Petri Nets and Performance Models - PNPM 89.
IEEE Publisher, 1989, pp. 230-235.

[Kay 1993] KAY, M. H. Information Management - OPENframework Systems
Architecture. England: Prentice Hall, 1993.

[Kobayashi 1990] KOBAYASHI, Y. A perspective of OSI standardization - object oriented
architecture for distributed processing. Proceedings of the INFOJAPAN.
Tokyo: IPSJ, 1990, pp. 513-520.

[Kosanke 1992] KOSANKE, K.; VERNADAT, F. CIM-OSA: a reference architecture for
CIM. Proceedings of the 8th International IFIP WG 5.3 Conference
PROLAMAT ̀ 92. Japan, 1992.

[Kosanke 1994a] KOSANKE, K. ed. Workshop on Business Re-engineering at ADITEC.
Germany, 1994.

[Kosanke 1994b) KOSANKE, K. ed. Proceedings of the Workshop on CIM-OSA. CIM-OSA
Club. Germany, 1994.

[Kourie 19891 KOURIE, D. G.; VAN DEN HEEVER, R. J. Distribuited systems in ISO-
context. Proceedins of The Int. Sympp. on Parallel Processing. Amsterdam,
1989, p100-112.

[Kramer 1990a] KRAMER, J. Configuration programming -a framework for development
of distributable systems. Proceedings of the Conf. on Distributed Computing
Systems, 1990.

[Kramer 1990b] KRAMER, J.; MAGEE, J.; FINKELSTEIN, A. A construtive approach to
the design of distributed systems. Proceedings of the Conf. on Distributed
Computing Systems, 1990.

277

[Kramer 1992] KRAMER, J.; SLOMAN, M. Proceedings of The International Workshop

on Configurable Distributed Systems. England: IEE, 1992.

[Kwikkers 1992] KWIKKERS, R. AND WORTMANN, J. C. The FOF modelling
framework. Proceedings of the International Conference on Enterprise
Integration Modelling (ICEIMT 92). USA, 1992. p 259-265.

[Leva 1987] LEVA, A. D.; VERNADAT, F.; BIZIER, D. Information system analysis
and conceptual databese design in production enviroment with M*.
Computers in Industry, 1987, vol. 9, no. 3, pp. 183-217.

[LCMI 1989) LCMI (Laboratorio de Controle e Microinformatica). ARP (Petri-Net
Analyser). Brazil, 1989.

.
[Linington 1991] LININGTON, P. F. Open distributed processing and open management.

Proceedings of The Symposium on Integrated Network Management.
Amsterdam: Elsevier Science Publishers B. V. , 1991, p553-56,.

[Litt 1990] LITT. The development of a CIM architecture for the RAMP program.
Proceedings of CIMCON'90. USA: NIST special publication 785,1990.

[Longman 19901 LONGMAN, T. Route Map - Line 3. Slides with a general description of
ICL's Line 3.1990.

[Longworth 1992] LONGWORTH, G. Introducing SSADM v. 4. Oxford: NCC Blackwell,
1992.

[Magee 1989] MAGEE J.; KRAMER J.; SLOMAN M., Constructing Distributed Systems
in Conic. IEEE Transactions on Software Engineering, 1989, vol 15, no 6.

pp. 663-675.
[Maji 19881 MAJ!, R. K.; STEVENSON, I. A. Design methodologiesfor CIM. Kingston

Pollytecnic, United Kingdom, 1988.

[Malhotra 19901 MALHOTRA, R.; JAYARAMAN, S. Design and development of an
architecture for computer-integrated manufacturing in apparel industry.
Textile Research Journal, 1990, vol. 60, no. 6, pp. 351-360.

[Maloubier 1985] MALOUBIER, H.; et al. Use of GRAI method to analyse and design
production management system. Proceedings of the Conference on
Advances in Production Management Systems-IFIP/84. Netherlands:
Elsevier Science Publisher B. V., 1984, pp. 127-140.

[Marechal 19871 MARECHAL, P. Method for systems modelization: The benefits of using
IDEFO in the development of a software to program tape laying machines.
Proceedings of L'Automa: que la producique 87. Paris: Giipra, 1987, pp. 27-
32.

[Mayer 1991] MAYER, R. J.; PAINTER, M. K. Roadmap for enterprise integration.
Proceedings of Autofact 91. USA, 1991, pp. 7.1-7.26.

[Mayer 1992] MAYER, R. J.; PAINTER, M. K.; DEWITTE, P. S. Appendix A- IDEF
family of methods overview and pratical guidelines for IDEF use (internal
report).

[McVitie 1993] McVITIE, D. Platforms - OPENframework Systems Architecture. England:

Prentice Hall, 1993.
[Meer 1992] MEER, J.; HEYMER, V.; ROTH, R. ed. Proceedings of the IFIP TC61

WG6.4 International Workshop on Open Distributed Processing.
Amsterdam: North-Holland, 1992.

[Mertins 1992] MERTINS, K.; ALBRECHT, R.; STEINBERGER, V. et al. Flexible
software system for production-adequate control. Production Planning &
Control, 1992, vol. 3, no. 2, pp. 183-198.

[Mertins 19941 MERTINS, K; JOCHEM, R.; HOFMANN, M. J. Methodology of business
process modelling - QCIM arbeitskreis QUM. Contribution of QCIM

project to ISO TC 1841SC41WG8. Germany, 1994.

[META 1990] META Software Corporation. Design/IDEF User's Manual. USA. 1990.

27S

[Miller 19831 MILLER, D. Configurations of strategy and structure: towards a synthesis.
Strategic Management Journal, 1983, vol. 7, pp. 233-249.

[Millis 1992] MILLIS, B. G. Towards an overall information technology standartization
framework or framework of framework. Internal document of the UK DISC
Business Strategy Forum - Framework Working group, draft 0.2,1992.

[Mize 1992] MIZE, J. H.; BHUSKUTE, H. C.; PRATt, D. B. et al. Modeling of
integrated manufacturing systems using an object-oriented approach. IIE
Transactions, 1992, vol. 24, no. 3, pp. 14-26.

(MSI 1994] MSI Research Institute. Methods to structure business architecture and I. T.
strategy development in manufacturing enterprises - application project A2.
Case for support submitted to CDP. 1994.

[Murgatroyd 1993] MURGATROYD, S.; EDWARDS, J.; WESTON, R. H. Tools to support the
design of integrated manufacturing systems: an object oriented approach.
Proceedings of IEPM `93. Mons, Belgium

[Naccari 1994]b NACCARI, F. et al. Business re-engineering at FIAT. Workshop on
Business Re-engineering at ADITEC. Germany, 1994.

[Naeger 1993] NAEGER, G. An integrated approach to software systems planning and
selection base on CIMOSA-models. Department of Computer Science,
University of Karlsruhe, Internal Paper, 1993.

[Nof 1994] NOF, S. Y. Critiquing the potential of object orientation in manufacturing.
Int. J. Computer Integrated Manufacturing, 1994, vol. 7, no. 1, pp. 3-16.

[OMG 19911 OBJECT MANAGEMENT GROUP (OMG). The Common Object Request
Broker: Architecture and Specification. OMG Document number 91.12.1. -
Revision 1.1. USA 1991.

[Ostler 1991] OSTLER, G. ed. The little Oxford dictionary of current English. 6 ed.,
England: Clarendon Press, 1991.

[Pan 1991) PAN, J. Y. C.; TENENBAUM, J. M. An intelligent agent framework for
enterprise integration. IEEE Transactions on Systems, Man, and
Cybernetics, 1991, vol. 21, no. 6, pp. 1391-1407.

[ParcPlace 1990] ParcPlace Systems. Objectworks/Smalltalk release 4- user's guide. USA,
1990.

[Parunak 1987] Parunak, H. V . D.; WHITE, J. F. A synthesis of factory reference models.
IEEE Workshop on Languages for Automation. USA: IEEE Computer
Society Press, 1987, pp. 109-112.

[Pawling 1987) PAWLING, J. F. Surface Mounted Assemblies. Electrochemical
Publications Ltd. 1987.

[Pereira 1982] PEREIRA, F. C Prolog System. EdCAAD, Dept of Architecture, University
of Edinburgh, Scotland 1982.

[Peterson 1981] PETERSON, J. L. Petri net theory and the modelling of systems. USA:
Prentice Hall, 1981.

[Petrie 1992a] PETRIE Jr., C. J. (editor). Enterprise integration modeling. Proceedings of
the First International Conference on Scientific and Engineering
Computation Series. USA: The MIT Press, 1992.

[Petrie 1992b] PETRIE Jr., C. J. (editor) The Working Group 3 of the ICEIMT Workshop
III - Execution environment framework integration. Proceedings of the
International Conference on Enterprise Integration Modelling (ICEIMT
92). USA, 1992, pp. 72-77.

[Petrie 1992c] PETRIE Jr., C. J. (editor) The Working Group lof the ICEIMT Workshop I

- the notion of a model. Proceedings of the International Conference on
Enterprise Integration Modelling (ICEIMT 92). USA, 1992, pp. 72-77.

[Pidd 1992] PIDD, M. Computer similation in management science. 3rd. cd.,
Chichester: John Wiley & Sons, 1992. ISBN 0-471-93462-3.

279

[Pirron 1994] PIRRON, J. Product and process quality through CIM: 'QCIM' -a German
reserach project. Proceedings of the 10th International Conference on CADI
CAM. Robotics and Factories of the Future. Canada, 1994.

[Pleinevaux 1994] PLEINEVAUX, P. Integration of industrial applications: the CCE-CNMA
approach. Submitted to the Proceedings of the First IMSE. France, 1994.

[Porter 1985] PORTER, M. E. Competitive advantage - creating and sustaining superior
performance. USA: The Fee Press, 1985.

[Pratten 1993] PRATTEN, G. Potential for Change - OPENframework Systems
Architecture. England: Prentice Hall, 1993.

[Querenet 1991] QUERENET, B. The CIM-OSA integrating infrastructure. Computing &
Control Engineering Journal, 1991, vol. May, pp. 118-125.

[Ranky 1991a] RANKY, P. G. A general solution to the FMS design problem within CIM.
Factory Automation and Information Management, 1991, pp. 158-171.

[Ranky 1991b] RANKY, Pp. G. A systematic approach to the FMS design problem with
CIM. The Journal of Applied Manufacturing Systems, 1991, vol. 4, no. 2,
pp. 39-45.

[Rembold 1991] REMBOLD, U.; NNAJI, B. The role of manufacturing models for
information technology of the factory of the 1990s. Journal of Design and
Manufacturing, 1991, vol. 1, pp. 67-87.

[Roberts 19841 ROBERTS, E. B. Managerial application of system dynamics. USA: The
MIT Press, 1984. ISBN - 0-262-68035-1.

[Roberts 1991] ROBERTS, S. SPEAR-Module Specification: Process Planning. ICL.

February 1991.

[Rogers 1989] ROGERS, P. Object-oriented modelling of flexible manufacturing cells.
Ph. D. Thesis, University of Cambridge, 1989, pp. 7-18.

[Russel 19911 Russel, Peter. Modelling with CIMOSA. Computing & Control
Engineering Journal, 1991, vol. May, pp. 109-117.

[Sarkis 1994] SARKIS, J.; LIN, L. An IDEFo functional planning model for the strategic
implementation of CIM systems. Int. J. Computer Integrated
Manufacturing, 1994, vol. 7, no. 2, pp. 100-115.

[Scheer 1991] SCHEER, A-W.; HARS, A. Enterprise modelling: basis for information

systems designo. Proceedings of The Conference of The GFQL. Salzburg,
1991.

[Scheer 1992] SC1HEER, A-W. Architecture of integrated information systems:
Foundations of enterprise-modelling. Germany: Springer-Verlag, 1992.

[Schiel 19901 SCHIEL, U.; MISTRIK, I. Using object-oriented analysis and design for
integrated systems. Proceedings of the First International Conference on
Systems Integration. USA: IEEE, 1990, pp. 125-134.

[Shaharoun 1994] SHAHAROUN, A. M. A new approach to the life-cycle support of costing
systems for advanced manufacturing environments. PhD Thesis.
Loughborough University, England, 1994.

[Siemens 1987] SIEMENS. An Introduction to Surface Mounting. Product Catalogue. 1987.

[Siemens 1994] SIEMENS. CIMOSAIReMo - Tool for enterprise modeling on requirements
level. Siemens Catalog, 1994.

[Sijelmassi 1991a] SIJELMASSI, R., STRAUSSER, B. The Portable Estelle Translater: An
overview and user guide. N/ST Technical Report, 1991.

[Sijelmassi 1991b] SUELMASSI, R., STRAUSSER, B. The Distributed Implementation
Generator: An overview and user guide. NIST Technical Report, 1991.

[Singh 1994] SINGH, V. Software Interoperability within Manufacturing Control

Systems. PhD Thesis. Loughborough University, England. 1994.

[Smethurst 1993] SMETHURST, R.; Wharton, P. Availability - OPENframework Systems

2S0

Architecture. England: Prentice Hall, 1993.

[SofTech 1976] SOFTECH Inc. SADT: structured analysis & design technique - Reader
course. 1976.

[Stacey 1993] STACEY, R. D. Strategic management and organisational dynamics.
England: Pitman Publishing, 1993.

[Sun 1990a] SUN MICROSYSTEMS. SunOS Reference Manual version 2. Part 2-
System Calls and Part 3 Library Functions. USA, 1990.

[Sun 1990b] SUN MICROSYSTEMS. Programmer's Overview Utilities & Libraries.
Part 2- Programming Utilities & Libraries. USA, 1990.

[Sutcliffe 1993] SUTCLIFFE, S. ed. Performance - OPENframework Systems Architecture.
England: Prentice Hall, 1993.

[Tenembaum 1992] TENEMBAUM, J. M.; WEBER, J. C. Enterprise integration: lessons from
SHADE and PACT. Proceedings of the International Conference on
Enterprise Integration Modelling (ICEIMT 92). USA, 1992.

[Thacker 1989] THACKER, R. M. A new CIM model -A blueprint for the computer-
integrated manufacturing enterprise. USA: Society of Manufacturing
Engineers, 1989. ISBN 0-87263-337-3.

[Tonshoff 1989] TONSHOFF, H. K.; HORNS, A.; SCHAELE, M. Integrated model
hierarchy for factory automation. Proceedings of the Conference on
Software for Factory Automation. Netherlands: Elsevier Science Publishers
B. V. , 1989, pp. 207-232.

[Tumey 1991] TURNEY, P. B. B. Common cents - The ABC performance breakthrough.
USA: Cost Technology, 1991. ISBN 0-9629576-0-7

[Tzafestas 1989] TZAFESTAS, S. Petri-net and knowledge-based metodologies in

manufacturing systems modelling simulation and control. Proceedings of
5th CIM European Conference. Belgium: ECSC-EAEC Publishers, 1989,
pp. 39-50.

[Verheijen 1982] VERHEIJEN, G. M. A.; VAN BEKKUM, J. NIAM: an information
analysis method. Proceedings of The Confernece on Information Systems
Design Methodologies: A comparative Review, IFIP 82. Netherlands:
North-Holland, 1982, pp. 539-587.

[Vemadat 1992] VERNADAT, F. CIM-OSA -a European development for enterprise
integration part 2: enterprise modelling. Proceedings of the International
Conference on Enterprise Integration Modelling (ICEIMT 92). USA, 1992.

[Vervoort 1988) VERVOORT, W. A. Evaluation of the YOURDON methodology used to
design a CIM system. Proceedings of ISCIS III. Third International
Symposium on Computer and Information Sciences. Turkey, 1988, pp. 697-

703.
[Waldrop 1994] WALDROP, M. M. Complexity - The emerging science at the edge of order

and chaos. UK: Penguin Books, 1994. ISBN 0-1401-7968-2.

[Waskiewicz 1994] Waskiewicz, F. (editor) OMG manufacturing SIG minutes (held in October
1994 in Nshua/NH), USA, 1994.

[Weaver 1994] WEAVER, A. et al. A soft systems approach to manufacturing re-design.
Proceedings of the Tenth National Conference on Manufacturing Research.
England: Taylor & Francis, 1994, p360-364.

[Weston 1993]# WESTON, R. H. Steps towards enterprise-wide integration: a definition of
need and first generation open solutions. International Journal of
Production Research, 1993

[Weymont 1987] WEYMONT, N. P.; HONEYAGER, J. S. Developing a CIM Architecture.
Proceedings of the Digital Equipment Computer Users Society. USA:
Anaheim, 1987, pp. 45-65.

[Wheatley 1992] WHEATLEY, M. J. Leadership and the new science: learning about

2St

organization from ordely universe. San Francisco: Berrett-Kohker
Publishers, 1992. ISBN 1-881052-O1-X.

[Wiendahl 19911 WIENDAHL, H. -P.; GARLICHS, R. Trends in CIM. Future Generation
Computer Systems, 1991, vol. 7, pp. 97-107.

[Wiener 1948) WIENER, N. Cybernetics. Paris: Herman & Cie, 1948.

[Williams 1989] WILLIAMS, T. J. ISA. A reference model for CIM implementation -a
description from the viewpoint of industrial automation. USA: Instrument
Society of America, 1989.

[Williams 1993] WILLIAMS, T. ed. Architectures for integrating manufacturing activities
and enterprises. IFAC/IFIP Task Force on Architectures for Integrating
Manufacturing Activities and Enterprises. USA: IFAC/IFTP, 1993.

[Williams 1994] WILLIAMS, T. J. Contributions of the Purdue Enterprise Reference
architecture and Methodology (PERA) to the development of a General
Enterprise Reference Architecture and Methodology (GERAM). (submitted
to the) IFIPIIFAC Task Force on Architectures for Enterprise Integration.
USA, 1994.

[Wu 1992] WU, B. Manufacturing systems design and analysis. Germany: Chapman &
Hall, 1992. ISBN 0-412-40840-6.

[Yeomans 1984] YEOMANS, R. W. Design rules for computer integrated manufacturing
systems. Proceedings of the ESPRIT'84: Status Report of Ongoing Work.
Netherlands: Elsevier Science Publishers B. V., 1985, pp. 457-493.

[Yoder 1990] YODER. Toward a new CIM architecture for Sandia laboratories.
Proceedings of C! MCON 90. USA: NIST special publication 785,1990.

[Yourdon 1989] YORDON, E. Modern structured analysis. Yourdon Press computing series.
Englewood Cliffs. USA, 1989.

[Zachman 19861 ZACHMAN, J. A. A frameworkk for information systems architecture. IBM
Los Angeles Scientific Center, G320-2785,1986.

[Zachman 1987] ZACHMAN, J. A. A framework for information systems architecture. IBM
Systems Journal, 1987, vol. 26, no. 3, pp. 276-292.

ýý-y

List of Appendices

Appendix 1- Definition of the constructs used in the life-cycle model A-2

Appendix 2- Overview of Model-Driven CIM
A-5

Appendix 3- Details on Tools and Technologies A-8

Appendix 4- General Introduction to Petri-Nets ... A-11

Appendix S- Example of a Petri-Net Model in the ARP Syntax A-13

Appendix 6- Example of ARP Reports ..
A-14

Appendix 7- "1993 Donald Julius Groen Prize" for the article of the year in the area
of communications and control, awarded by the IMechE A-19

Appendix 8- Description of the Business Entity Scenario Diagram A-20

Appendix 9- Relationship of SEW-OSA with Other D2D Systems A-27

Appendix 10 - Data Associated with Modelling and Simulation Studies A-33

Appendix 11 - Mathematical Study of Overhead .. A-39

Appendix 12 - List of Publications ..
A-47

A-2

Appendix 1: Definition of the constructs used in the
iiie-cycle model

" Business analysis. Strategy definition is achieved using methods and techniques to

guide and support an analysis of strategic factors. Some of these methods include

those discussed in Section 2.2.7.

" Enterprise system. This defines the overall scope of the system under
consideration in respect of the activities which need to be considered when carrying
out business analysis. Such a system can be described as embracing all functions or
business processes of the enterprise (i. e. its strategic domains). Business analysis
will normally be achieved by viewing the enterprise as a system whose composition
can be described as macro-resources (i. e. enterprise resources, e. g. manufacturing
resources, human resources, financial resources, etc.) which the enterprise requires
to operate within the system environment (i. e. within the enterprise environment,
comprising for example of customers, suppliers and competitors, each of which
will be subject to social, political and economic factors).

" Business models. These collectively represent the business knowledge required to
accomplish business analysis; they include business rules (if they exist) and the
accumulated experience of those performing the analysis.

" Required improvements. These are achieved as a result of the business analysis,
and identify key issues for improvement, so that the enterprise system can more
successfully cope with the demands of its environment. The issues raised can be

associated with one or more enterprise domains.

" System analysis. This can be structured and supported using the languages and
frameworks discussed in Chapter 2 (e. g. CIM-OSA, IDEF, GRAI, Yourdon, etc.).

" Enterprise domain. Here, the scope can be that of a sub-system within the

enterprise system (see Figure 1), where modelling is achieved to a level of
granularity that identifies key functional components. The boundaries of an

enterprise domain are defined according to specifics of the enterprise under
consideration, in as much that they will be chosen to reflect issues requiring
attention to realise identified improvements. Typically, enterprise domains are either
a business process (e. g. production introduction process, order-flow process, etc.)

or an enterprise area (e. g. shop-floor, engineering, etc.).

" System models. These represent knowledge of the way domains are currently

organised or should be organised to achieve improved performance. Additionally,

these models encapsulate the experience of system analysts, and can include

archetype descriptions of how systems pertaining to a given type of industry are

A"3

typically organised (e. g. system models can be viewed as partial models in CIM-
OSA terms [ESPRIT/AMICE 1993a]).

" Suitable scenarios. These represent the result of the conceptual analysis meta-

phase, and identify alternative ways of organising the domain (i. e. `should-be'

scenarios), as well as more constrained solutions which might prove to be more

suitable to address the domain under consideration (i. e. `to-be' scenarios).

" System build. This comprises design and implementation processes which may be

structured and supported via the application of formalised methods and techniques.
Such methods should embody empirical knowledge required to transform a

requirements specification into a physical implementation, along with system
design methods to guide the process (e. g. the use of CIM-OSA and object-oriented
design methods as a means of manipulating the designer's knowledge of available
technological resource components)

" System solution. This corresponds to the scope of a working system which can

realise the `to-be' scenario identified for a certain domain during conceptual
analysis. A system here is viewed as typically comprising: physical components
that could either be active (i. e. machines, human beings, application programs) or

passive (i. e. jigs and fixtures, tools, data elements, etc.); infrastructural

components (i. e. those IT service elements of the system that are generic to all

enterprises, e. g. an integrating infrastructure), integrating elements (i. e. those

elements of the system that `glue' together physical components' and
infrastructural elements, which can usually take the form of a model.

" Resource models. These models capture information describing resources and
their possible inter-relationships which will be required to realise a physical system;
this should include information typically considered by a system designer when
deciding to select a certain resource to perform a defined function in a system.

" Integration models. These models encapsulate information about how the various

component elements of a system should be put together (i. e. how integration among

system components can be achieved using infrastructural elements).

" Scenario realisation. The result of the processes carried out in the design and
implementation meta-phase will be a system ready to be deployed. Here, it is

important to note that before any system solution is deployed, it should be tested

within the context of the enterprise system as a whole (i. e. this is an essential part of

1. The terms "system components", "resource components", "physical components",
"physical resources" and "active resource components" are used interchangeably in this

thesis.

A-4

the support required from a CASSE environment).

" Enterprise management. This includes management of the operational activities
of an enterprise.

" Operational system. The scope of this meta-phase is the whole enterprise system
at work, comprising operational components which use infrastructural services
in order to perform actions (i. e. atomic transactions, e. g. data access, material
movement and transformation, etc.) which, as a coordinated whole, lead to the
achievement of the system's objectives.

" Run-time models. These models encapsulate information concerning the way in

which the system works; this includes operational procedures defining task

execution and data which supports those tasks and the actual code generated for the

components and elements manipulated in the previous phase.

" Flexible operation. The deliverable of this meta-phase is an working system which
has inherent flexibility to enable maintenance and change during its working life.

AS

Appendix 2: Overview of Model-Driven CIM
"Model-Driven CIM" (a framework and toolset for the design, implementation

and management of open CIM systems) is a research grant funded by ACME-SERC
Directorate, which aims at providing a collection of tools to support the life cycle of
integrated manufacturing systems, by addressing their functional, information and
resource aspects.

A main research thrust of the MSI Research Institute, in which this grant is

place, has been to seek ways of "bridging the gaps" in formalism and support for the
Integrated Manufacturing System life cycle. Here, particular emphasis has been on the
gap between the "modelling" and "physical" worlds. Means of filling the "gap" have
been realised through study of ways of achieving "model-enactment" (i. e. model
execution). Means of filling such a gap will inevitably be related to the models, methods
and tools used in the modelling and physical worlds. At MSI the research methodology
adopted has been as follows:
(I) Assess the public domain literature on established and evolving models, methods

and tools commonly used in each world.
(H) Select potentially cognate groupings of models and methods and to seek means of

extending and unifying them to support the various life-cycle phases of an IMS.

(III) Create software tools which support the life-cycle by unifying and underpinning

the operation of chosen sets of models and methods.
(IV) Use and evaluation of the software tools created in (III).

Figure A-1 categorises the main research thrusts to-date, where project activity
has been organised within 6 workpackages.

Workpackages I and 2 have their centre of gravity in the modelling world and

seek to extend state of the art generally applicable IMS design and modelling methods,
by building respectively on (i) the use of a collection of architectures centred on the
CIM-OSA reference architecture and (ii) Object-oriented design methods (originally

conceived to enable and structure the creation of software). Much of the "extension" of
these methodologies is focused on establishing means of enacting the various models

created using the two approaches, thereby beginning to fill the "gap" in a top to bottom

direction. Both approaches have led to the creation of new prototype modelling tools

where implementation of the underlying methodologies has been facilitated via a Meta

CASE tool.
Workpackage 1, which coincides with the scope of the author's research,

"Reference Architecture Based Modelling Tool", is implementing and extending a

combination of state-of-the-art Reference Architectures centred on CIM-OSA. This

workpackage is providing means of rapidly prototyping a system through the integrated

A-6

pliom j311aioaup 10 2ugppocu

b rid

eý c to ., oA

GO) Ü Ä Ä t
sag]

9
0
ýa

0 w

aý V

0

z
0
V

d

V
4J

.
ý'r to
ýO

Qý H

V

. -r

w 10

pjionn j n»-eio p otsXgd
Aw-

0

E3 E ý u !; u
i Li

uc
"ý

V

v i (i
W

CF ýs
eqd aPLa-a3Tz

O

= it .. i V

H QV

slool
SutllapO

.I

stool, SJOOj
peng auras, -un-g

.ý 0
u
w

LY.

Ü
a aý

A

L'
an

A"7

use of a modelling, analysis, simulation, rapid-prototyping, configuration and operation

of an IMS driven by models. Particular emphasis to date has been placed on enabling

analysis of functional properties of both static and dynamic nature of integrated

manufacturing systems. The work embraces the development of SEW-OSA - System

Engineering Workbench for CIM-OSA which will be used to realise the structure of an
IMS so that it can run across an integrating infrastructure.

Workpackage 2, which is conducted by I. S. Murgatroyd [Murgatroyd 1993] is

focused on the extension of state-of-the-art Object Oriented design methods. The work

consists of developing a CASE tool based on the Booch method which can be used to

model and build the components of an IMS.

The tools of workpackages 1 and 2 have been created in an interactive manner,

with the use of successively enhanced versions being evaluated through the case study

modelling of "as-is" integrated manufacturing systems.
Workpackage 3, which is conducted by I. Coutts [Coutts 1994], has focused on

defining and implementing tools to support a standard interface between software

applications and an integrating infrastructure such as Misses CIM-BIOSYS, IBM's

DAE and OSF/DCE].

The research of workpackage 4, which is conducted by P. Clements [Clements

1993], focuses on information issues by creating a unified software toolset which
supports various forms of abstract modelling of manufacturing information, through

automatically manipulating information and populating different forms of data storage
device, to the provision of consistent and configurable information support services
during system run time.

Workpackage 5, which is conducted by M. Leech, embraces methods and tools

which have been derived to deal with legacy systems, where the. tools produced enable
the integration of current and previous generations of "closed" manufacturing system

components. Such components have invariably been designed in a proprietary stand-

alone manner, without reference to a "big picture" of what is required to achieve inter-

working with other system components.
Finally, workpackage 6, which is conducted by P. Gilders [Gilders 1995],

focuses on the development of an environment for modelling the interactions amongst

system components from a `bottom-up' perspective, based on the Estelle language.

A"S

Appendix 3: Details on Tools and Technologies

A-3.1. CASE Tools

CASE (computer-aided software system engineering) is an approach to the
design of software systems in which the design method is formalised in a software tool.
There exist a number of categories of CASE tools. According to Brathwaite

[Brathwaite 1990], "an individual CASE tool automates one small focused step in the
life cycle process [...] and individual tools fall into the following general categories:

" "Diagramming tools for pictorially representing system specifications;

" "Screen and report painters for creating system specifications and for simple

prototyping;

" "Dictionaries, information management systems, and facilities to store, report, and
query technical and project-management system information;

" "Specification-checking tools to detect incomplete, syntactically incorrect, and
inconsistent system specifications;

" "Code generators to be able to generate executable code from pictorial system

specifications;

" "Documentation generators to produce technical and user documentation required
by structured methodologies.

A-3.1.1. ToolBuilder Meta-CASE tool
The modules of the ToolBuilder Meta-CASE tool depicted in Figure 18 are

defined as follows:

a. Data Model:

This is a detailed description of attributes, rules and updates associated with each

construct or diagram. Here, in addition to refining the definition of entities and

relationships identified in the CASE Tool Structure, segments of code associated

with operations to be executed when an entity, attribute or relationship is created,

updated or deleted are defined.

b. Frames Model:

This is the definition of the content of each diagram or hyper-text template created

to enable the CASE tool user to input his (or her) model. Navigations between

diagrams and templates are also defined. The constructs used in each template or
diagram are defined and related to their representation which can be on a text or

graphical format.

A-9

c. Graphic Catalogue:

This catalogue defines the shape and style of each object' manipulated in the
diagrams. That is, the catalogue is a drawing tool to create icons which represent

constructs manipulated in the diagrams.

d. Catalogue of Subsections and Objects:
This is a library of functions and text objects used to define the content of each text
template and its associated hypertext operations.

e. User/External Library:
The definitions of each building block in Figure 18 is ultimately converted into

fragments of code. The language adopted by ToolBuilder for the description of that

code is called Easel (i. e. a high-level interpreted language resembling Pascal). The

library of functions are also written in Easel by the user and linked to the main code

generated by the tool. This library is used to define the code of operations on

constructs and diagrams which are triggered when they are involved in specified

constructs. Examples of such operations are to: tide a diagram up, update attributes,

create additional entities, etc.

f. Document Configuration:

The Document Configuration is a report generator. It enables to create the

operations required to generate code based on information extracted from diagrams

and constructs defined in the Data Model. These reports are created with a separate
tool, the Publisher (see Figure 18) which may also make use of the User/External

Library in order to manipulated the Data Model for the sake of code generation.

A-3.1.2. BuilderXcessory

CASE technology was also used to aid the development of a business entity for

SEW-OSA (see Figure 9), namely BuilderXcessory (BX) [ICS 1991a] [ICS 1991b] a

user interface generator (i. e. a `screen painter' in Brathwaite's terminology [Brathwaite

1990]). BX enables rapid definition of user interfaces for X-Windows/Motif

environment, by providing a graphical tool for the construction of user interfaces. BX

comprises of:

"a catalogue of widgets (i. e. text windows, scrolled lists, buttons, etc.) which can be

used and combined to construct a particular user interface;

"a resource interface for customising each widget and defining its associated call

1. In ToolBuilder terminology, an object is a graphical or text representation of a modelling

construct.

A-10

back functions;

"a main interface from which the structure of the user interface can be visualised and

changed.
BX enables rapid prototyping of an application program, with generation of "C"

code organised in three files:

" creation-c. c. This is where the interface definition is held;

" callbacks-c. c. This is where call-back functions, associated with actions performed
by the user through the interface, are placed. BX generates the function definition

and X-Windows commands required for gracefully executing these functions.

Software code for the tasks associated with those actions must be defined by the

user in this file;

" main-c. c. This is the main program which contains user-interface initialisations.

A-3.1.3. The CIM-BIOSYS infrastructure

The main elements of the CIM-BIOSYS integrating infrastructure depicted in

Figure 19 are defined as follows:

" the service manager provides a consistent interaction mechanism which enables
transparent application interaction (i. e. application services) and information access
(i. e. information services). Typical application services include (1) "to establish a
link with another application" and (2) "to pass a message to an application". A

typical information service is "to open a file in a logical file store";

" the driver manager provides facilities similar to the service manager, in the form

of a consistent interaction mechanism for device drivers to provide communication
between CIM-BIOSYS and remote non-compliant devices (e. g a robot, a placement

machine, or any active device which is unable to comply with the access

mechanism provided by CIM-BIOSYS);

" the run-time manager supports the integration services, by controlling the

processed external to and registered with CIM-BIOSYS which use its services. It

also monitors error conditions within the infrastructure and provides human
interface facilities through an Engineers Interface. This interface enables full

manual control of the Run-time Manager, if required;

" the configuration manager maintains all internal system configuration data and

external configuration files via an Administration Interface.

1. A CIM-BIOSYS process is a run-time occurrence of a Clbi-BIOSYS application or device

driver.

A-11

Appendix 4: General Introduction to Petri-Nets
A Petri-net is a bipartite graph [David 1994]. That is, it comprises two types of

nodes, namely: places and transitions. Arcs link places and transitions alternately on a

path made up of consecutive arcs. A Petri-net is marked, in the sense that an integer

number (positive or zero) of tokens is assigned to every place. The union of marks of
all places in a net defines the net marking. That is, the system state is defined by a given

configuration of tokens distributed among places (marking). The flow of tokens (i. e.
transitions from input places to output places) defines the state transition (or event) and,
consequently, the system dynamics. Arcs can be weighted (this configuring a
"generalised Petri-net"), which define the number of tokens that they carry when their

associated transition is fired. This process can be illustrated with the example shown in

Figure A-1.

pl

p4

pl

p4

P2 p2
""

"r
r p3 p1 "" " p3

firing
t1

o t2
tl t2

p5 p4 " p5
(a) fi . (b)

tl

; p24 p2
P3 pt p3

ti i2 tl [ý,
iPc, l condition

action
"" p5 p4 p5

(c) (d)

Figure A-1 - Example of Petri-net evolution

Here, the initial state of the net (see Figure A-1. a) is one in which the transitions
tl and t2 are enabled (i. e. they are able to "fire", this to provoke a change of state in the

net). This is the case because, for example, in order for t1 to fire, it requires two tokens
in p1 and one token in p2 (this is determined by the weight of its input arcs - see
Figure A-1). The firing of t2 provokes the extraction of one token from p2, another
from p3, and the inclusion of two tokens in p5 (see Figure A-1. b). Notice that when no

weight is associated to an arc, a weight of one is assumed. In the state described in

Figure A-1. b, tl is still enabled whereas tl is not (i. e. there is no token left in p3). If

there were, tl and t2 would be both enabled and competing for the only remaining

A-t:

token in p2 (i. e. the situation of a conflict). When tl fires, two tokens are extracted from

p1, one token from p2, and one token is added to p4.
A generalised stochastic time Petri-net (GSTPN) [Juanole 1989] is an extension

of the ordinary Petri-net [Peterson 1981] which associates a time interval to the firing

of each transition and a probability distribution function relating to each time interval

(see transition tl in Figure A-1. d). In addition to inheriting the properties of an ordinary
Petri Net, a GSTPN allows timing considerations to be attached to system models to
facilitate description of the evolution of states. Here, the time interval associated with

each transition defines the lower and the upper time limit at which that particular event
in the system is to occur. The stochastic nature of GSTPN allows the definition of a

probability distribution to each time interval, which makes GSTPN particularly
appropriate for simulation, when seeking to determine average values of system

parameters (performance measures).
A predicate-action Petri-net (also termed as "interpreted Petri-net" [David

1994]) is an extension of an ordinary Petri-net which associates the firing of a transition

with the occurrence of events external to the system which the Petri-net is modelling.
Such events can be a condition to enable the firing of a transition or an action that is

taken when an transition is fired (see transition t2 in Figure A- 1. d). Predicate-action

Petri-nets are quite useful to model relationships and dependencies between the internal

behaviour of a system and its external environment.

A-13

Appendix 5: Example of a Petri-Net Model in the ARP
Syntax

NET smt;

NODES

EV-1 : TRANSTTION[O, 0] NORAMAL410);

pEV-1 : PLACE (1);

pib3 : PLACE (0);

EV-2 : TRANSTTION[0,0] NORMAL(10);

pEV 2: PLACE (0);

poEV-2: PLACE (0);

.

ARC-6pFE-6_1 : PLACE (1);
ARC-6pFE-6_2 : PLACE (0);

ARC-6tFE-6_1 : TRANSITTON [0,01 NORMAL(10);
ARC-6tFE-62: TRANSITION [50,601 NORMAL(10);

placem : PLACE (3);

convey : PLACE (3);
finish : PLACE (6);

STRUCTURE
EV-3 : (1*pEV-3), (1*pib5);
b3: (1*pib3), (1*piEA-1,1*piDP-1EA-1);
b4: (1*poDP-1EA-1), (1*piFn1);
Fnl : (1*piFnl), (1*pFnl);

S
.

ARC-5tFE-5_1 : (1*ARC-5pFE-5_1,1*pFO-15), (1*ARC-5pFE-5_2);
ARC-5tFE-5_2: (1*ARC-5pFE-5_2), (1*ARC-5pFE-5_1,1*pFO-16);
ARC-5tFE-5 3: (1*ARC-5pFE-5_1,1*pFO-19), (1*ARC-5pFE-5_3);
ARC-5tFE-5_4 : (1*ARC-5pFE-5 3), (1*ARC-5pFE-5_1,1*pFO-20);
ARC-6tFE-6_1 : (1*ARC-6pFE-6_1,1*pFO-17), (1*ARC-6pFE-6_2);

ARC-6tFE-6_2 : (1*ARC-6pFE-6_2), (1*ARC-6pFE-6_1,1*pFO-18);
EV-1 : (1*pEV-1), (1*pib3);
EV-2: (50*pEV-2), (1*poEV-2);

ENDNET.

A-14

Appendix 6: Example of ARP Reports

A-6.1. Report on a Performance Evaluation Run

Performance Evaluation Oriented to EVENTS of Net smt.

Inicial Marking : (pEV-1, FE-1, FE-2, FE-3, FE-4, FE-5, FE-6, ARC-1pFE-1_1,
ARC-2pFE-2_264, ARC-3pFE-3_137, ARC4pFE-4_1,
ARC-5pFE-5_1, ARC-6pFE-6_1,3* placem, 3* convey,
6* finish)

Desired Precision : 0.10 %

Max. of Fires : 10000
Num. of Reaching : 518

Improdutive Interac.: 0(0.00 %)

"---'

Fire probability attributed to conflict groups:

Groupl : (b12: 20%) (b13: 80%)
Group2: (b16: 90%) (bl7: 10%)

Average number of fires from cycle transitions :
(EV-1: 1.00) (EV-2: 1.00) (EV-3: 50.00) (b3: 1.00) (b4: 1.00)
(Fnl: 1.00) (ºDP-lEA-1: 1.00) (tin_EA-1: 1.00) (tout_EA-1: 1.00)
(tEA-1 81: 1.00) (tEA-1 82 1.00) (tEA-1_83: 50.00)(b5: 50.00)
(b6: 50.00) (b7: 50.00) (b8: 49.01) (Fn2: 49.01) (iDP-2BP-1: 50.00)

(iDP-2BP-2: 50.00) (iDP-2BP-3: 49.03) (b9: 50.00) (b10: 50.00) (bl l: 10.06)
(b12: 10.06) (b13: 39.94) (Stl: 50.00) (Fn3: 50.00) (iBP-lEA-2: 50.00)
(IBP-IEA-3: 50.00) (iBP-1EA-4: 10.06) (b14: 50.00) (bl5: 50.00) (b16: 44.96)
(b17: 5.04) (bl8: 5.04) (b19: 50.00) (St2: 50.00) (Fn4: 50.00)
(iBP-2EA-5: 50.00) (iBP-2EA-6: 50.00) (iBP-2EA-7: 5.04) (iBP-2EA-8: 50.00)

(b20: 50.00) (b21: 50.00) (b22: 49.11) (St3: 50.00) (Fn5: 49.06)
(iBP-3EA-9: 50.00) (iBP-3EA-10: 49.23) (tin

_EA-2:
50.00) (tout_EA-2: 50.00)

(tEA-2_86: 50.00) (tEA-2_87: 50.00) (tin_EA-3: 50.00) (tout-EA-3: 50.00)
(tEA-3_100: 50.00) (tEA-3_101: 50.00) (tEA-3_102: 50.00) (LEA-3_103: 0.00)
(tin_EA-4: 10.06) (tout_EA. 4: 10.06) (tEA-4_106: 10.06) (tEA-4_107: 10.06)
(tin_EA-5: 50.00) (tout_EA-5: 50.00) (tEA-5_110: 50.00) (tEA-5_111: 50.00)
(tin_EA-6: 50.00) (tout_EA-6: 50.00) (tEA-6_124: 50.00) (LEA-6_125: 50.00)
(tEA-6_126: 50.00) (tEA-6_127: 0.00) (tin-EA-7: 5.04) (tout-EA-7: 5.04)
(tEA-7_130: 5.04) (tEA-7_131: 5.04) (tin_EA-8: 50.00) (tout

_EA-8:
50.00)

(tEA-8_134: 50.00) (LEA-8_135: 50.00) (tin_EA-9: 50.00) (tout-EA-9: 50.00)
(tEA-9_138: 50.00) (tEA-9_139: 50.00) (tin_EA-10: 50.00) (tout

_EA-10:
49.49)

(tEA-10_146: 50.00) (tEA-10_147: 50.00) (tEA-10 148: 50.00)
(ARC-ItFE-1_l: 1.00) (ARC-1tFE-1_2: 1.00) (ARC-itFE-1_3: 10.06)
(ARC-1 tFE-1 4: 10.06) (ARC-2tFE-2_161: 50.00) (ARC-2LFE-2_162: 50.00)

(ARC-2tFE-2_163: 50.00) (ARC-2tFE-2_164: 50.00) (ARC-3tFE-3 83: 50.00)
(ARC-3EFE-3_84: 50.00) (ARC4tFE-4_1: 50.00) (ARC-4tFE-4_2: 50.00)

(ARC-4tFE-4_3: 50.00) (ARC-4tFE-4_4: 50.00) (ARC-5tFE-5_l: 5.04)

A-15

(ARC-StFE-S 2: 5.04) (ARC-5tFE-5_3: 50.00) (ARC-5tFE-5_4: 50.00)
(ARC-6tFE-6_1: 50.00) (ARC-6! FE-6_2: 50.00)

Average time of fire :
(ARC-1 tFE-1 _2:

39.75) (ARC-1 tFE-1 4: 15.00) (ARC-2tFE-2_162: 132)
(ARC-2tFE-2_164: 20.00) (ARC-3tFE-3_84: 67.99) (ARC-4tFE-4_2: 3.32)
(ARC-4tFE-4_4: 3.32) (ARC-5tFE-5 2: 27156) (ARC-6tFE-6_2: 55.01)

Average marking in places :

(pEV-2: 23.14) (pFnl: 0.99) (piDP-lEA-1: 0.01) (pEA-1_132: 0.01)
(pFn2: 23.14) (piDP-2BP-1: 7.80) (poDP-2BP-1: 1430) (piDP-2BP-2: 3.12)
(piDP-2BP-3: 1.12) (piBP-1EA-2: 5.64) (piBP-1EA-3: 2.13)
(piBP-1EA-4: 0.02) (piBP-2EA-5: 2.81) (piBP-2EA-6: 0.05)
(piBP-2EA-7: 0.22) (piBP-2EA-8: 0.05) (piB P-3 EA-9: 0.86)

(piBP-3EA-10: 0.25) (piEA-2: 5.63) (pEA-2 142: 0.02) (piEA-3: 1.85)
(pEA-3_157: 0.28) (pEA-4_167: 0.02) (piEA-5: 1.85) (pEA-5_176: 0.96)
(pEA-6_191: 0.05) (pEA-7_201: 0.22) (pEA-8_210: 0.05) (piEA-9: 0.09)
(pEA-9_219: 0.78) (piEA-10: 0.25) (FE-1: 0.95) (FE-2: 0.56)
(ARC-1pFE-1_1: 0.95) (ARC-1pFE-1_2: 0.01) (ARC-IpFE-1_3: 0.03)
(ARC-2pFE-2 264: 0.56) (ARC-2pFE-2265: 0.03) (ARC-2pFE-2_266: 0.41)
(ARC-SpFE-5 2: 7.05)
t--

Initial Event: EV-1

Ed 1: EV"2
Average Time: 3698.89 Deviation: 196.42 Probab: 100.00 % Reach: 518

Minimum time of reaching : 3485.89 Maximum time of reaching : 4715.45

*

A-6.2. Report on a Verification of the Petri-net Properties

* ---------------- ------------------ -------- ------------ ------ --------- *

State Enumeration : net smt (103 reachable states).

Verified properties :
* ----------------------
Net under analisys is limited.

Null places (NI = 0): (piFnl, pFnl, poDP-lEA-1, poEA-1, poBP-1EA-4, poEA-4,
pEA-4_166, pEA-4_167, pEA-4_168, pFO-7, pFO-8,
ARC-IpFE-1_3)

Binaryplaces : (pEV-1, pib3, pEV-2, poEV-2, pEV-3, pib5, piDP-lEA-1,
piEA-1, pEA-1_131, pEA-1_132, pEA-1_133, pEA-1_134,
piFn2, pFn2, piDP-2BP-1, poDP-2BP-1, piDP-2BP-2,
poDP-2BP-2, piDP-2BP-3, poDP-2BP-3, piBP-1, poBP-1,
poStl, piFn3, piBP-1EA-2, poBP-lEA-2, piBP-1EA-3,
poBP-1EA-3, piBP-IEA-4, piBP-2, poBP-2, poSt2, piFn4,
piBP-2EA-5, poBP-2EA-5, piBP-2EA-6, poBP-2EA-6,

A"16

piBP-2EA-7, poBP-2EA-7, piBP-2EA-8, poBP-2EA-8,
piBP-3, poBP-3, poSt3, piFn5, piBP-3EA-9. poBP-3EA-9,
piiBP-3EA-10, poBP-3EA-10, piEA-2, poEA-2, pEA-2_141,
pEA-2_142, pEA-2_143, piEA-3, poEA-3, pEA-3_156,
pEA-3_157, pEA-3_158, pEA-3_159, piEA-4, piEA-5,
poEA-5, pEA-5_175, pEA-5_176, pEA-5_177, piEA-6,
poEA-6, pEA-6_190, pEA-6_191, pEA-6_192, pEA-6_193,
piEA-7, poEA-7, PEA-7_200, pEA-7_201, pEA-7 202,

piEA-8, poEA-8, PEA-8_209, pEA-8 210, pEA-8 211,

piEA-9, poEA-9, PEA-9_218, pEA-9 219, pEA-9 220,

piEA-10, poEA-10, pEA-10233, pEA-10_234, pEA-10_235,
pEA-10236, pFO-1, pFO-2, pFO-3, pFO-4, pFO-5, pFO-6,
pFO-9, pFO-10, pFO-11, pFO-12, pFO-13, pFO-14,
pFO-15, pFO-16, pFO-17, pFO-18, pFO-19, pFO-20, FE-1,
FE-2, FE-3, FE-4, FE-5. FE-6, ARC-1pFE-1_1,
ARC-IpFE-1 2, ARC-2pFE-2 264, ARC-2pFE-2_265,
ARC-2pFE"2 266, ARC-3pFE-3_137, ARC-3pFE-3_138,
ARC-4pFE-4_1, ARC-4pFE-4_2, ARC-4pFE-4j,
ARC-5pFE-5_1, ARC-5pFE-5_2, ARC-5pFE-5_3,
ARC-6pFE-6_1, ARC-6pFE-6_2)

k-Bounded places : (3' placem, 3* convey, 6t finish)
Unbounded places : ()

Net under analisys is not strictly conservative.

Mulct-enabled Tr.: (j

Net under analisys is not live.

Live Tr. :(}

"Almost-live" Tr. : (EV-1, EV-2, EV-3, b3, tin_EA-1, tEA-1 81,
tEA-1 82, tEA-1_83, b5, b6, b7, b8, Fn2,

iDP-2BP-1, iDP-2BP-2, iDP-2BP-3, b9, b10, b12,

b13, Stl, Fn3, iBP-IEA-2, iBP-1EA-3, b14, b15,

b16, b17, M. b19, St2, Fn4, iBP-2EA-5,

iBP-2EA-6, iBP-2EA-7, iBP-2EA-8, b20, b21, b22,

St3, Fn5, iBP-3EA-9, iBP-3EA-10, tin_EA-2,

tout-EA-2, tEA-2_86, tEA-2_87, tin_EA-3,

tout_EA-3, tEA-3_100, tEA-3_101, tEA-3_102,

tin_EA-5, tout_EA-5, tEA-5_110, tEA-5_111,

tin_EA-6, tout_EA-6, tEA-6_124, tEA-6_125,

tEA-6_126, tin EA-7, tout_EA-7, tEA-7_130,

tEA-7_131, tin_EA-8, tout_EA-8, tEA-8_134,

tEA-8_135, tim_EA-9, tout_EA-9, tEA-9_138,

LEA-9_139, tin EA-10, tout-EA-10, tEA-10 146,

tEA-10_147, tEA-10_148, ARC-1tFE-1_1.

ARC-1 tFE-1_2, ARC-2tFE-2_161, ARC-2tFE-2_162,
ARC-2tFE-2_163, ARC-2tFE-2_164, ARC-3tFE-3_83,
ARC-3tFE-3_84, ARC-4tFE-4_1, ARC-4tFE-4_2,
ARC-4tFE-4_3, ARC-4tFE-4_4, ARC-5tFE-5_1,
ARC-StFE-5_2, ARC-5tFE-5 3, ARC-StFE-5 4,

A-17

ARC-6tFE-6_1, ARC-6tFE-6_2)
Non"SredTr.: IN, Fnl, iDP-IEA-:, tout_PA-1, b11, iBP-IEA-4. tEA-3_103.

tm_EA-0. tout_EA-d, tEA-4_106, tEA-4_107, tEA-6_127,
ARC-1tFE-1 3, ARC-1tFE-1 4)

None state can have another beginning.

No "live-locks" detected.

States (and fire sequencies) in 'dead-lock". -
C29 : EV-1 b3 tin-EA-1 tEA-1 81 ARC-1tFE-1_1 ARC-1tFE-1_2 tEA-1_82

tEA-1_83 EV-3 b5 Stl b9 tin_EA-2 tEA-2_87 ARC-2tFE-2_161

ARC-2tFE-2_162 tEA-286 tout_EA-2 iBP-IEA-2 b10 tin_EA-3 tEA-3_101
ARC-2LFE-2_163 ARC-2tFE-2_164 tEA-3_100 tEA-3_102 tout-EA-3
iBP-IEA-3 b12

C87 : EV-1 b3 tin_EA-1 tEA-1_81 ARC-1tFE-1_1 ARC-1tFE-1_2 tEA-1_82

tEA-1_83 EV-3 b5 Stl b9 tin_EA-2 tEA-2_87 ARC-2tFE-2_161

ARC-2tFE-2_162 tEA-2_86 tout-EA-2 iBP-1EA-2 b10 tin_EA-3 tEA-3_101
ARC-2tFE-2_163 ARC-2tFE-2_164 tEA-3_100 tEA-3_102 tout_EA-3
iBP-1EA-3 b13 Fn3 iDP-2BP-1 b6 St2 b14 tin_EA-5 tEA-5_111
ARC-3cFE-383 ARC-3tFE-3_84 tEA-5_110 touc_EA-5 iBP-2EA-5 bi 5

tin_EA-6 tEA-6_125 ARC-4tFE-4_1 ARC-4tFE-4_2 tEA-6_124 tEA-6_126
tout_EA-6 iBP-2EA"6 b16 tin_EA-8 tEA-8_135 ARC-4tFE-4_3 ARC-4tFE-4 4

tEA-8_134 tout EA-8 iBP-2EA-8 b19 Fn4 iDP-2BP-2 b7 SO b2O tin-EA-9

tEA-9_139 ARC-6tFE-6_1 ARC-6tFE-6_2 tEA-9_138 tout_EA-9 iBP-3EA-9
b21 tin-EA-10 tEA-10_147 ARC-StFE-5_3 ARC-5tFE-5 4 tEA-10_146

tEA-10 148 EV-2 tout-EA-10 iBP-3EA-10 b22 Fn5 iDP-2BP-3 b8 Fn2
*--_______.

--«--
*

A-6.3. Report on a Step-by-Step Execution (for batch-size =1)
Evolution Register of Net Simulation smt.

----> Register on.
Depth :0 (Memorized as Inicial State).

Marking : (pEV-1, FE-1, FE-2, FE-3, FE-4. FE-5, FE-6, ARC-1pFE-1_1,
ARC-2pFE-2_261, ARC-3pFE-3_137, ARC-4pFE-4_1, ARC-SpFE-5_1,

ARC-6pFE-6_1,3* placem, 3* convey, 6* finish)
Bounds : (EV-1)

-> EV-1 fire at t=0.

Depth : 1.
Marking : (pib3, FE-1, FE-2, FE-3, FE-4, FE-5, FE-6, ARC-IpFE-1_1,

ARC-2pFE-2 264, ARC-3pFE-3_137, ARC-4pFE-4_1, ARC-5pFE-5_1,

ARC-6pFE-6_1,3* placem, 3* convey, 6* finish)
Bounds : (b3)

->b3fire att=0.

A-IS

Depth : 2.
Marking : (piDP-IEA-1, piEA-1, FE-1, FE-2, FE-3, FE-4, FE-5, FE-6,

ARC-IpFE-1_1, ARC-2pFE-2_264, ARC-3pFE-3_137, ARC-4pFE-4_1.
ARC-5pFE-5_1, ARC-6pFE-6_1,3* placem, 3* convey, 6* finish)

Bounds : (tin-EA-1)

-> tin EA-1 fire at t=0.
Depth : 3.

Marking : (piDP-1EA-1, pEA-1_131, FE-2, FE-3, FE-0, FE-5, FE-6,
ARC-1pFE-1_1, ARC-2pFE-2_264, ARC-3pFE-3_137, ARC 4pFE-4_1,
ARC-5pFE-5_1, ARC-6pFE-6_1,3* placem, 3' convey, 6* finish)

Bounds : (tEA-1_81)

0

-> ARC-1tFE-1 2 fire at t= 30.
Depth : 6.
Marking : (piDP-1EA-1, pEA-1_132, pFO-2, FE-2, FE-3, FE-4, FE-5, FE-6,

ARC-1pFE-1_1, ARC-2pFE-2 264, ARC-3pFE-3_137, ARC-4pFE-4_1,
ARC-5pFE-5_1, ARC-6pFE-6_1,3* placem, 3* convey. 6* finish)

Bounds : (tEA-1 82)

-> tEA-1 82 fire at t=0.
Depth : 7.
Marking : (piDP-IEA-1, pEA-1_133, FE-2, FE-3. FE-4, FE-5, FE-6,

ARC-IpFE-1_1, ARC-2pFE-2_264, ARC-3pFE-3_137, ARC-4pFE4_1,
ARC-5pFE-5_1, ARC-6pFE-6_1,3* placem, 3* convey, 6* finish)

Bounds : (tEA-1_83)

-> tEA-1 83 fire at t=0.
Depth : 8.
Marking : {pEV-3, piDP-lEA-1, pEA-1_134, FE-2, FE-3, FE-4. FE-5, FE-6,

ARC-IpFE-1_1, ARC-2pFE-2_264, ARC-3pFE-3_137, ARC-4pFE-4_1,

ARC-5pFE-5_1, ARC-6pFE-6_l, 3* placem, 3* convey, 6* finish)

Bounds : {EV-3)

-> EV-3 fire att=0.
Depth : 9.
Marking : (pib5, piDP-1EA-1, pEA-1_134, FE-2, FE-3, FE-4, FE-5, FE-6,

ARC-IpFE-1_1, ARC-2pFE-2_264. ARC-3pFE-3_137, ARC-4pFE-4_1,

ARC-5pFE-5_1, ARC-6pFE-6_1,3* placem, 3* convey, 6* finish)

Bounds : (b5)

i
i
i

A-19

Appendix 7: "1993 Donald Julius Groen Prize" for the
article of the year hi the area of communications and

control, awarded by the IMechE

The ki94 A* n of Mechanc. Enaneers

Computing and Data
Communications Group

Donald Julius Groen Prize

We hereby certify that the 1993 Doaa5 Jaltas Or*" Prhe ras

awarded by the Computing and Data Communications Group of the

Institution to

MWC Agular and Dr RH Weston

for their paper entitled

CIM-W and Stochastic rime Petri Nets for
Behavioural Modelling and Model Handling In CIM
Systems Design and Building

which was published in the Proceedings Volume 207.1993

President

A0, p/, *. ýu
Director General
and Secretary

I MECH E

IOFMCP
04 BEW&f of
Chairman
Computing

and Data
Communications
Group

22 April 1994

A-20

Appendix 8: Description of the Business Entity
Scenario Diagram

The following description details the execution of the model shown in Figure 51
by the business entity, according to the scenario diagram depicted in Figure 52.

In Figure 52 a thread of business model execution starts when EV-1 is

generated. EV 1 can be either generated from an exhogenous happening coming from

an external domain (e. g. a change in a certain object stored on a database) or simulated
by the designer (i. e. Event Handler in manual mode at debugging time) through the
interface depicted in Figure 47. In which case, the Event Handler generates an
occurrence number (i. e. field oc in Figure 52) and a sequence number associated with
the event (e. g. EV 1 1); composes a message and sends it across to the Process

Controller (i. e. message number 1). Here, it is important to emphasise that more than

one event can be sent by the Event Handler to the Process Controller at the same time
(regardless to whether they have been generated automatically or by the designer) and
they comprise a single thread of the business model (i. e. a single "oc" number), but they

are identified by unique numbers (e. g. EV 11 and EV 13). Another related feature of
the business entity at this stage is its ability to generate unique identifiers (which are

never duplicated) for occurrences of events and threads of executions of the business

model.
The event received from the Event Handler is queued up by the Process

Controller and examined in conjunction with events already in the queue, in order to
identify domain processes that are triggered by any event or combination of events
already latched in the queue. Event occurrences remain in the queue until they have

triggered each and every domain process that consumes them. Here, it is important to

observe that a certain event may be consumed by two or more domain processes in

different ways. For example, in Figure A-2, EV-3 triggers two domain process. DP-3

can be triggered by a simple occurrence of EV-3, whereas DP-4 is only triggered by a
combination of EV-3 and EV-4 (in this case, it is assumed that they are combined by an
AND logical operation). However OR operations are also possible). This means that
EV-3 will remain in the queue until EV-4 occurs, so that for the same occurrence of EV-
3 two domain process are triggered.

Coming back to the scenario in Figure 52, by scanning the process model, the
Process Controller identifies that DP-1 can be triggered. Then, it spawns a local process

and configures it to execute the procedural rule set of DP-1. The Process Controller

assigns a unique identifier to this local process (which is generated by the process itself)

and communicates with it via a Unix socket. Message number 2 characterises the

spawning process performed by the Process Controller on the process termed dp. A dp

process identifies a class of processes which are able to execute a procedural rule set of

A-21

a domain process. In message 2, dp is identified between square brackets because it is

not a field that is formally passed by the Process Controller to dp but is simply implied
by the way dp is spawn (i. e. through a command "popen()" in Q. The remaining fields

convey the following information:

" oc: occurrence number for the thread of execution of the business model;

" PC: socket name to which the DP-1 process will have to write in order to send
messages to the Process Controller,

" DP-1: identifier of the domain process to be executed;

" m: row of the procedural rule set matrix which was enabled by an event (or
combination of events). Here, it is important to notice that the actual event
identification that caused the domain process to be triggered is not formally passed
to the dp process. Due to PC and dp share the same file in which the matrix that
describes the procedural rules of DP-1 are defined (see Figure 51), dp only needs to
know which of the procedural rules was triggered, therefore, shortening this
message. In this case, the value I is assigned to m is set to 1 (see Figure 51);

" sch: boolean variable indicating whether DP-1 has already been scheduled for

execution (sch is usually set to 0, but it was left as a variable in this case, as a
provision for a more flexible mode of operation).

EV-4

Figure A-2 - Illustration of Event Queuing Up

On creation, dp reads its procedural rules from the file named pc (see
Figure 44), generates its unique identifier (based on the Unix process identification: pid
[Back 1986]) and returns such an identification to the Process Controller (message

number 3: "Report PID" - PID - see Figure 52), where:

A-22

" DPxx is the unique identifier which individualises this particular occurrence of DP-
I within the business entity; and

" PID is the message identification (see Table 7.1).

Then, dp starts executing its procedural rule set. The first rule to be executed is

m=1, which means that the triggering of BP-1 (i. e. "DO" part of the first procedural
rule of DP-1- see Figure 51). Before BP-1 can be triggered by dp, dp has to check with
the Process Controller whether this step of the business model can be executed. This is
done through message number 4: "Step Request" (STEP_REQ - see Figure 52), where:

"n is the number of Enterprise Functions that are about to be triggered followed by a
list of their identifiers. In this case, only one Enterprise Function is about to be

triggered: BP-1, thus, n is set to 1;

" STEP REQ is the message identification (see Table 4 on page 151).

On receipt of a STEP_REQ, the Process Controller checks its operating status.
If it is in automatic mode and not interrupted (see Figures 48 and 49), it sends back to
dp the message number 5: "Step Release" (STEP_REL). Otherwise, it waits for a
command from the designer (see Figure 49) to either: execute the function (if it is in

step-by-step model) or resume execution (if the execution was interrupt). The pair of
messages, STEP_REQ and STEP_REL, is the basic means by which the debugging

functions of the Process Controller are implemented. These messages are required in

order to allow the Process Controller to interrupt the execution of a procedural rule set

of its children processes.
On receipt of a STEP_REL, dp checks whether the functions that are about to

be triggered require scheduling (i. e. whether the variable sch is set to "0"). If so, dp

sends a "Resource Request" to the Process Controller (message number 6- RES_REQ

- see Figure 52). The Process Controller, in turn, forwards this request to the Resource
Manager (message number 7- Figure 52). The Resource Manager then access its

scheduling functionality to check whether it can allocate the resources for the whole
duration of the function (or functions) about to be executed. If it can, a "Resource

Release" (message number 8- RES_REL - Figure 52) is issued by the Resource

Manager to the Process Controller with its sch variable set to 1. Otherwise, sch is set to
0. The RES_REL information is passed back to dp by the Process Controller.

sch indicates whether there is a need to schedule the functions contained within

a certain function. For example, a sch set to 1 means that the functions contained within
DP-1 do not need to request resource allocation to the Resource Manager, in the same

way that in the description above dp had request resource allocation for DP-1. sch set
to 0 implies the allocation of resources by the Resource Manager was postponed. It is

A-23

important to notice in Figure 52 that messages 6 to 9 all carry the same related
information in its fields, concerning the identification of the dp occurrence (i. e. DPxx)

and the functions are being scheduled (i. e. BP-1).
In this example, sch =0 is passed down to bp, when dp ultimately spawns BP-

1 (message number 10). bp, likewise dp in the above description, reads in its procedural

rule set from the pc file (see Figure 44) and starts executing it by the rule beginning with
"ON START" (see Figure 51), which provokes the triggering of EA-1. The same
procedure described for dp applies to bp, in regard to the execution of a step in the
business model and the functional scheduling (i. e. messages 12 to 17 in Figure 52) for

the function EA-1. This time sch is set to 0, which means that the execution of EA-1

will be subject to the availability of resources to execute its Functional Operations. In
fact, in this implementation, the Resource Manager always returns sch set to 0 because

no scheduler is attached to it, in order to make a definite decision about functional

scheduling. Therefore, the decision about whether. a function will be actually executed
is only made when the finest level of granularity is reached (i. e. Functional Operations),
based on the availability of an active resource component able to execute them.

Having received the RES_REL message for EA-1, bp issues a request for the

execution of EA-I to the Process Controller (i. e. "EA execute" - message number 18 -
EA_EXEC - Figure 52), which is then passed by the Process Controller to the Activity
Controller (i. e. message number 19 - Figure 52).

The Activity Controller then spawns an occurrence of EA-1 (i. e. EAI. i, where
i identifies the occurrence number), by triggering a CIM-BIOSYS application to

execute its functional content (i. e. message 20 - Figure 52). Message 20 consists
basically of a command of the CIM-BIOSYS infrastructure to start a CIM-BIOSYS

application by establishing a link with it. Once triggered, EAU starts executing its

behavioural description, as defined in the activity behaviour diagram (see Figure 31).

EA Li executes the internal processing associated with the progressive execution of its

predicate-action Petri-net and interacts with the remaining processes of the business

entity via message exchanges attached to predicates and actions (see Object diagram in

Figure 30). Message 21 is an instance of such interaction, whereby EAU requests the

execution of the operation FO- I to be passed to an available active resource component.
On receipt of message 21, the Activity Controller forwards it to the Resource Manager,

and updates its internal variables (i. e. oc and EAU identifier - message number 22). On

receipt of a request to execute a functional operation from Activity Controller, the
Resource Manager checks whether there an active resource component (ARC) is

available which is able to execute it, based on the information defined in the Resource

diagram (see Figure 33). If no ARC is available, the functional operation is queued up

until an ARC is released. If an ARC exists which can be allocated for executing the
functional operation, the Resource Manager passes the functional operation identifier

A-24

to the active resource component (message number 23 - Figure 52).
One should notice here that there is only a limited number of active resource

components to serve enterprise activities whose quantity are, ̀ a priori', only limited by

the maximum number of occurrences of the business model. Such a number is
dependent upon run-time occurrences which can be unlimited. The manner by which
active resource components can cope with the number of enterprise activities that they
expected to execute is defined by their schedule. Additionally, it is envisaged that active
resource components may be able to support the execution of functional operations
issued by competing enterprise activities in the following alternative ways:

(1) Constraint on functional operations:

a. execution of only one functional operation at a time (i. e. the Resource Manager is

only allowed to request the active resource component to execute a functional

operation when the previous operation was already completed;

b. simultaneous execution of functional operations of different type at the same time
(i. e. the Resource Manager is allowed to request the active resource component to

execute one or more functional operations without waiting for a previous functional

operation to be completed, as long as they all are of different types);

c. simultaneous execution of functional operations regardless of any restriction of
type. This is a super-set of the previous one in which, in addition to supporting

simultaneous execution of functional operations of different type, the execution of

occurrences of functional operations of the same type are also supported by the

active resource component.

(2) Constraint on enterprise activities:

a. execution of functional operations issued by the same enterprise activity to which
the resource is currently allocated. That is an active resource component will not

execute functional operations of an enterprise activity occurrence other than the one
that it is currently serving. This means that when an enterprise activity finishes

executing its functionality, it must report its completion to the Resource Manager;

b. no constraints on the execution of functional operations issued by distinct

Enterprise activity occurrences which, therefore, can use the active resource

component at the same time. Here, a further distinction could be made such that an

active resource component could execute functional operations of enterprise

activity occurrences of different types or of the same type.

Combinations of these two sets of constraints are also envisaged, in which

A25

constraints on enterprise activities superimpose constraints on functional operations.
Although, these options have not been foreseen in the CIM-OSA specifications, it is a
thrust of this research that they should be part of the business entity, for they impose

important restrictions in the way system works. Nonetheless, in this implementation it

was decided to adopt only constraints on enterprise activities of the type (2. a) above.

Therefore, coming back to the scenario shown in Figure 52, on receipt of

message 23 (i. e. FO-1), the activity resource component executes the functional

operation according to the model defined in the entity behaviour diagram (see

Figure 32). In this particular case, the cyclic behaviour of ARCj consists of waiting for

a command FO-1 and issuing a response FO-2 (i. e. message 24 in Figure 52).
Conversely, the behaviour of its enterprise activity counterpart consists of issuing a
command FO-1 and waiting for a response FO-2. Such a protocol can be observed in

messages 21,23,24 and 26 (see Figure 52). In these messages, fields between square
brackets (i. e. ARCj and EA1. i) identify particular occurrences of enterprise activities
and active resource components. These identifiers are not visible by their counterparts.
That is, the enterprise activity occurrence has no knowledge of which active resource
component is executing its functionality. Likewise, the active resource component has

no knowledge of which enterprise activity it is interacting with. This clearly illustrates

the separation between functional and resource models, whose relationships are
captured in the business model and jointly managed by the Activity Controller and the
Resource Manager.

Once EA ld has received FO-2 (message number 26 in Figure 52), it completes
its internal processing, generates an occurrence of the event EV-2 (message 27), and
terminates (message number 28). Events generated by the enterprise actividesl are

passed to the Event Handler (message number 29 in Figure 52). Termination of EA Li

is manifest through issuing an ending status (message number 28) and disappearance

from the business entity. The ending status is calculated according to the state variables

perceived by the internal behaviour of the enterprise activity (see Figure 31). Its default

value is "done"2. On receipt of message 28, the Activity Controller updates its internal

controls (which keeps track of all the information associated with the enterprise activity

occurrence that has just been terminated), passes the ending status to the Resource

Controller (i. e. message number 30 in Figure 52), which enables it to update its internal

information as well, and reports the ending status to the Process Controller (message

1. Enterprise activities are the only constructs allowed to generate events within the Business

Entity.

2. Here, one should observe that enterprise activities are the only constructs in the business

entity which are able to generate an ending status other than "done".

A26

number 31 in Figure 52). The Process Controller, in turn, forwards the ending status to
bp (message number 32). bp then executes another step of its procedural rule which

causes it to finish its procedural rule execution (see Figure 51). This is done when bp

reports the ending status of BP-1 to its parent function (i. e. DP-1) via an "Enterprise

Function Ends" (message number 33 - EF_END) and terminates itself. dp, in turn,

passes the status of BP-1 to the Process Controller, in order to report it to the designer

(message number 34: "enterprise function status" - EF_STATUS) and executes another

step of its own procedural rule. This causes dp to complete its procedural rule execution

with the issue of ending status, which is also passed back to the Process Controller

(message number 35 - "domain process ends" - DP_END). dp then terminates itself.

On receipt of a DP_END, the Process Controller updates its information about running
domain processes.

On receipt of message 29, the Event Handler then checks whether EV-2 happens

to trigger any domain process. If so, another occurrence of the business model is

generated (i. e. field new oe in message number 36 in Figure 52) and passed back to the
Process Controller. If not, EV-2 is forwarded to the external world (i. e. non-CIM-OSA

compliant domains. This is illustrated by the message number 35a which is an

alternative to message 35 - see Figure 52).

A-27

Appendix 9: Relationship of SEW-OSA with Other
D2D Systems

The discussion presented in Chapter 8, associated with the quantitative results
discussed in Chapter 11, constitute the activities performed within the case study
application of SEW-OSA to D2D shop-floor. This section aims to:

" situate the domain addressed in the case study in the context of other information

systems of D2D;

" present some general (but unproven) ideas about how SEW-OSA can be an integral

part of a wider-scope model-driven system at D2D.

The motivation for this section was to illustrate the role that SEW-OSA can play
within the "big-picture" of D2D manufacturing operations.

A-9.1. Shop-Floor Scheduling

The architecture shown in Figure 64 does not itself address wider scope shop-
floor scheduling issues. For that purpose, a hierarchy of schedulers could be used whose
scope of decision might coincide with the groupings of line segments shown in
Figure 58 (i. e. lines, cells and areas). Indeed, the four layer hierarchy shown in

Figure A-3 is suggested by the author. The line segment schedulers shown in Figure 64

operate at the bottom level of this hierarchy. The second layer is responsible for either
deciding which line segment of a cell should be allocated to a certain job (i. e. cell
schedulers) or controlling the operation of a line (i. e. operate as a line controller). One

should notice here that no scheduling decision is required within the scope of a line.

Arguably, in this case line segments could be merged into a unique line segment.
Cell schedulers can then be integrated to an area scheduler whose scope

coincides with the physical division of the shop-floor into areas (such as for high-

volume production and high-mix production, as depicted in Figure 58). Finally, area
schedulers are integrated to a shop-floor scheduler whose scope of control embraces the

complete shop-floor.
The CIM-BIOSYS integrating infrastructure can realise a physical integration

of the components of such a hierarchy of schedulers and it is not necessarily for this to
be achieved via SEW-OSA. As the scheduling function is not included in the CIM-OSA

modelling process, it does not account for interactions which occur within the scope of
line segment schedulers with which it interacts. An architecture for hierarchical factory

control usually envisages that their components operate as serves and clients during

their life cycle. Indeed, if the communication protocols prescribed in such architectures

use CIM-BIOSYS application services for their implementation, this being

A28

Ü

V

Shop
Floor

Mix lum
Flows of control Area Area

and status \

1L

SMT Manual Track Line Line Line
Cell Cell Cell abc

-q- 53 - ýI m .2 j2 - :9 iz .2
ý- , f2 A9s ti 9gwg3
:5 :5>gm5gM ýO, 59ýmý95 v2 j) cn Gn >>"" GO > CO > U- in 2

Figure A-3 - Hierarchical scheduling of the shop-floor

Q OD
O

2

1e N

C

7

L

lýý luto

V

EU 7

G_

independent of SEW-OSA's entities, then the overall stack of services required should
be organised in the manner shown in Figure A-4. Here, an essentially flat computer

architecture would exist, in which every element of Figure A-3 will utilise similar

services to communicate with peers, subordinates and supervisors. However, the

resultant effect will need to be transformed by the internal functionality of each element

as part of an organised hierarchy which provides scheduling services in a distributed

manner.
In this context, these two types of architectures (i. e. the CIM-OSA and factory

control architectures), which are of an inherently different nature and origin, can
interoperate, as the line segment schedulers can function as the only actual interface

between them at run-time. From the viewpoint of SEW-OSA, the scheduling services

are provided locally by the line segment schedulers. From the view of the hierarchy of

schedulers, the scheduling decisions are being used to directly control a shop-floor.

A-9.2. Integration of Shop-Floor, Process Planning and Production
Planning and Control

Another thrust of this research was to investigate the use of SEW-OSA can as a
bridge amongst the functions of process planning (i. e. SPEAR), production planning

and control and shop-floor. This section considers how this form of integration can be

A"29

Business inc scgrreni .
High -Mix Hi-Volum. Resource Rcwurce

Model Components Area Area Set-SMT1 ýýýý Set-SMTc
Scheduler Scheduler Scheduler Scheduler

Business II Presentation II`1 `ý `ý
Enti Entity Scheduling Architecture Protocol

CIM-BIOSYS Infrastructure

Figure A-4 - Organisation of services for integrating the architectures

achieved for current systems used by D2D.
Figure A-5 illustrates a relationship between SEW-OSA and these enterprise

functions. SEW-OSA can import data from production planning about production

orders (such as those issued by an Orders Book for a given production period). This

could include data about due dates, production quantities, priorities, and time and

motion information. From process planning, SEW-OSA can input manufacturing data

associated with each PCB type. This could include data on: viable routes, resource
capability, resource set-ups, etc. By combining these two sets of data a very useful
model of the shop-floor can be constructed and tested within SEW-OSA (by means of
model-enactment), before possible solutions are deployed on the shop-floor. The SEW-

OSA studies could include analyses of.

" alternative allocations of line segments to produce certain PCB's;

" alternative configurations of line segments;

" various scheduling scenarios.

In order to support study of various scheduling scenarios, the hierarchy of

schedulers must have access to information required for scheduling decisions. This

could then be as delivered by the model-building capability of SEW-OSA, via the
business model.

However, a more generalised discussion of how integration between the
functions of Process Planning and Process Control can be unified to produce model-
driven solutions is beyond the scope of this research.

1. SPEAR is a major D2D project which focuses on formalising process planning activities in

the enterprise to enable the development of information systems which support an integrated

design-to-manufacturing approach to product introduction, thereby reducing product
introduction lead times.

A-30

Process Planning Production Planning

(e. g. SPEAR) (e. g. Orders Book)

Cost Model

Shop Floor
Supervisors

simulation
SEW-OSA

Business Model Preliminary Schedule

Figure A-5 - Integration to process planning, and production planning and control

D2D has progressively moved towards acting as a sub-contract manufacturer of
PCB's. Hence, a greater proportion of their production is on assembling boards

designed by other parties. As a result of much wider range of designs need to be

manufactured and the shop-floor needs to be configured more frequently. This trend

obviates a need for improved systems analysis and means of achieving flexible

integration (and hence improved coordination of manufacturing processes), through

use of an approach such as SEW-OSA.

Another opportunity indicated in Figure A-5 stems from the possibility to link

models manipulated by SEW-OSA to cost information. The rationale for such a link

stems from the need to rapidly respond to request from customers to produce new or

existing designs of PCB's. At D2D such a response consists of informing a customer

whether a design can be manufactured within the required time-scales and, if so, the

effort (in terms of cost) required to design and manufacture the board. It has been

observed that traditional ways of costing products often do not accurately account for

the resources used and overhead consumed when in production [Shaharoun 1994]

[Turney 1991].

Therefore, as part of this research, the author has considered (but not yet

A-31

implemented) ways of combining SEW OSA with Activity Based Costing (ABC)

methodologies for assessing cost related effort when producing a product. ABC
facilitates a consideration of factors often disregarded in the traditional cost accounting

practice. Indeed, it can be particularly useful when considering:

" the cost of specials' (e. g. when elaborate test procedures or specialised
components);

" the impact on cost of producing a board in the context of a certain product mix (e. g.
the cost of re-scheduling).

The use of ABC can provide a useful means of obtaining performance metrics
from simulation models, which could be used to assess the merits of different shop-floor
configurations. As a result, changes in the models manipulated by SEW-OSA could be

analysed.

Combining the considerations outlined in this appendix would result in the

configuration presented in Figure A-6.

1. Products which require special treatment.

A-32

Process Production
Pldnnir: Planning
SPEAK (Orders Boaic)

Cost Model

Shop Floor
SÜj}CjYt9Q[S

sin Tation
SEW-OSA

(d) Workbench for op-floor configuration

Line Segment
ass waa

iV C
üta cr a cyot b

Wi b
Ami

Puu cifýit p
gyp

ý' Ivw ra
cts cen can e

Line Seg Ät

' Schell SEW-OSA End
CIM-BIOSYS Links r Integrating (c) Hierarchical scheduling of the shop-flor

lifl S Cots nfrastructure

OSA-based integr lion (h) C ý-

.

anua] Trackb Testy

anual Trackc

igh-Volume Are!

(a) Printed circuit board assembly shop-floor

Figure A-6 - Model-based integration of D2D shop-floor

A"33

Appendix 10: Data Associated with Modelling and
Simulation Studies

A-10.1. Definition of the Metrics Associated with Results of the Model-

Building Work

The following definitions refer to the curves presented in Figure 85:

a. Number of constructs in the model.
This consists of the sum of the main constructs of interest at the requirements
definition modelling level (i. e. domains, domain processes, business processes,

enterprise activities, object views and events) with those at the design specification

modelling level (i. e. functional entities, active resource components, functional

operations and Petri-net transitions and places). This measure is a simplified
representation of the complexity of a model, for it does not include the details about
how the constructs are inter related. Additionally, since the number of constructs at
the design specification modelling level depends upon the number at the

requirements definition modelling level, the latter could have also been used as a

measure of complexity of a model. In this respect, the count of constructs at the
design specification modelling level includes two levels of constructs, namely:
functional entities, active resource components and functional operations, at a
higher level and details of activity and entity behaviour diagrams (i. e. transitions

and places) at a lower level. Table A-1 presents these values and the form in which
they have been aggregated. It can be noticed from this Table that the different sets

of measures of model complexity are related to one another in direct proportion,

such that any of the proposed measures could have been used as an indication of

complexity of a model.

Table A-1 - Number of constructs in a model

Models Total Requirements
Definition

Design
Specification

FEs, FOs
and ARCs

transitions
and places

MSI Institute 42 11 34 10 24

SMT assembly line 140 30 1l1 32 79
1321) shop-floor 253 68 185 58 127

b. Code for simulation:
This is a measure of the size of a Petri-net representing the behavioural aspects of a

model in the ARP syntax (see Figure 41). This measure is directly related to the

size and complexity of the models formalised in the behaviour diagrams (see

Figure 27) and activity/entity behaviour diagrams (see Figures 31 and 32). This

measure is also an indication of the number of relationships that exist between the

A-34

constructs manipulated in these diagrams. Therefore, this measure complements the

previous one, which did not capture relationships between constructs.

As discussed in Chapter 6, simulation is enabled by transforming the models into a
Petri-net. An indication of size and complexity of a Petri-net is directly related to its

number of places and transitions. Table A-2 summarised these metrics for the three

models in question. Here, one should notice that the model of the SMT assembly
line is near the limit of maximum number of places supported by the ARP (i. e. 150

places), whereas the model of the D2D shop-floor is well beyond this limit. This

limitation and the limitation of stemming from the overhead imposed by the
business entity (discussed in Chapter 11) were the main reasons why the model-

enactment capability was only tested with the model of the SMT assembly line.

Table A-2 - Code generated for simulation
Models LSC transitions places

MSI Institute 102 27 39

SMT assembly line 373 110 144

D2D shop-floor 253 235 277

c. Code for rapid-prototyping:
This is a simplified measure of the size of a system prototype produced with the
SEW-OSA CASE tool. This measure consists of adding the number of lines of code

and structured text produced by the CASE tool, namely: list of events (ev), list of

object views (ov), process behavioural definition (pr), activity behavioural

definition (ac), resource definition (rc) and the configuration of the CIM-BIOSYS

infrastructure (cf) - see Figure 44. Table A-3 presents the values obtained for these
fragments of code.

Table A-3 - Code generated for rapid-prototyping
Models' Total ev ov pr ac rc cf

MSIInstitute 213 6 7 18 57 82 43
SMT assembly line 603 7 15 79 231 138 133

132D shop-floor 1150 19 29 65 378 433 226

a. all units are in lines of code and structured text definition.

d. Model-building to code generation lead-time:

This is an indication of the usability of the CASE tool. Usability is of interest for it

can impact the complexity of the model-building process. The values indicated in

Figure 85 were obtained by measuring the total time required to input these models
into the CASE tool. This time does not include any data gathering activity at D2D

and assumes a considerable familiarity by the user with the SEW-OSA method

encapsulated by its CASE tool'.

A-35

In any case, it is important to note that these values include the definition of all
diagrams of the SEW-OSA In; thod (at the requirements definition and design

specification stages - see Figure 22), being approximately half the total lead-time

spent in each modelling level. This reinforces the argument presented in Chapter 10
in favour of reference models to support the model-building process, particularly
the definition of functional entities, enterprise activities and their behaviour
diagrams, in order to reduce considerably the total lead-time.

A-10.2. Impact of Number of Slots in the SMT Assembly Line

A study of the impact that different values of number of slots have upon the

manufacturing (i. e. assembly lead time) for the parameters presented above is

shown in Table A-4. The percent difference shown in this Table is calculated by

having a distribution of infinite slots (i. e. first row) as a reference'. As one can

observe the impact of this distribution is fairly small, although its consideration is
important in order to reflect a physical constraint of the line.

Table A-4 - Code generated for rapid-prototyping
Distribution of slots Lead-Time Difference (%)

infinite capacity 3631.57 0
3 placement, 3 conveyor and 6 finishing 3709.84 2
3 placement, 3 conveyor and 3 finishing 3836.82 6

A-10.3. Details on the Complexity of SEW-OSA

Table A-5 presents a detailed analysis of the main content of the SEW-OSA
CASE tool. In this Table, it is important to notice that:

" nearly half the size of the CASE tool contains libraries produced by ToolBuilder

with functions common to all CASE tools;

" from the other half (i. e. the constructs of the SEW-OSA method - 15751 LSC), the

greatest proportion of the code is dedicated to the requirements definition

modelling level (i. e. 56%), being the domain diagram and the behaviour diagram

the largest in the tool. This is the case due to the complexity of the CIM-OSA

constructs formalised at this modelling level.

1. These measures were obtained with the author serving as the user.
1. Difference = [lead-time - (reference lead-time)] x 100/(reference lead-time).

A-36

Table A-5 - Size of the SEW-OSA CASE toola

CASE tool modules LSC %

Complete CASE tool 30221

ToolBuilder libraries 14500 -
SEW-OSA constructs 15751 100
General modules 1575 10

Requirements definition tool 8821 56

- context diagram 1575 10

- domain diagram 2205 14

- structure diagram 788 5

behaviour diagram F 2205 14
functional diagram 2048 13

Design specification tool 5355 34

- object diagram 1418- 9

- resource diagram 945 6

- configuration diagram 1575 10

- entity/activity behaviour diagram 1418 9

a. The values of LSC were calculated as a percentage of the
number of entities in the CASE tool data model.

Table A-6 summarises the main components of the business entity of SEW-
OSA along with indications of their size in terms of number of lines of source code
(LSC) as well as the size of their resulting executable code. It is important to note in

this table that the total size of the business entity includes functions that are shared
among components. These functions amount about 5429 LSC (i. e. 13% of the business

entity). Hence, the total size of the business entity, excluding the functions shared

among components, is 42761. As a measure of comparison the CIM-BIOSYS
infrastructure contains 26427 lines of source code (i. e. 62% of the business entity)

which result in 688kbyte of executable code.
In regard to a comparison amongst the business entity components (see

Figure 52), it can be observed in Table A-61 that, with the exception of the Prolog based

component (i. e. the enterprise activity occurrences and the active resource

components), the remaining components possess a similar degree of complexity.
However, if we consider the domain process and business process occurrences as an
integral part of the process controller, this component becomes the largest of them all.
In fact, the size resulting from the aggregation of these components reflects the

1. This table used the total size of the business entity, inclusive of shared functions, in order to

enable the sum of percentages to total 100%.

A-37

complexity involved in the process of enacting behaviour diagrams (see Figure 52)

which is the key functionality provided by this component.

Table A-6 - Size of the business entity components

Element Executable code
(kilobyte)*

LSC % of LSC of the
business entity

Complete Business Entity - 42761 100

Event Handler 295 4177 10
Process Controller 360 7583 18
Activity Controller 311 5329 12

Resource Manager 311 5153 12
domain process occurrence 147 4623 11
business process occurrence 123 4657 11

enterprise activity/resource component 483 11239 26

a. With the exception of enterprise activity occurrences and active resource components,
the size of executable code presented here is for components that use dynamic links to
other "C" libraries.

As introduced in Chapter 7, the business entity components can be organised
based on the types of functions that they contain, according to the modules presented
in Table A-7. This table also provides an indication of the percentage of contribution
the total size of a component (as shown in Table A-6) of each of its major building
blocks. It should be noted in this table that:

Table A-7 - Content of the business entity components (%)

Functions/
Interfaces

Event
Handler

Process
Control-
1er

Activity
Control-
ter

Resource
Manager

Activity/
Resource

domain
process

business
process

Total 100 100 100 100 100 100 100
Core function 9 20 17 16 80 29 29

CIM-BIOSYS 24 13 20 20 20 - -
X-Windows 34 20 25 26 - - -
Model input 33 40 38 38 - 39 39

Unix comm. - 7 - - - 32 32

" not all components contain all the modules, namely: functions for inter-process

communication in Unix are only used by between the Process Controller and its

processes; domain and business processes do not communicate via CIM-BIOSYS

and do not possess a user interface; and enterprise activity occurrences and active

resource components do not possess a sophisticated user interface (see Figure 50)

and aggregate model-input functions into their core functionality.

A"3S

" X-Windows interface (or Unix communication) and model-input functions account
for the greatest proportion of code in the component. Model-input comprise the
functions required to transform the code generated by the case tool into "C"

structures manipulated by the functionality of the component.

The modules that comprise enterprise activity occurrences and active resource

components are developed in Prolog and "C'. However, the greatest proportion of the
code (i. e. 93%) is written in "C" (see Table A-8).

Table A-8 - Languages of enterprise activity occurrences and active resource
components

Language LSC 96

Total 11239 100

Prolog 771 7

"C" 10468 93

A-39

Appendix 11: Mathematical Study of Overhead
A mathematical model for LTp was obtained by examining all the happenings

executed by the business entity in order to enact a model. This exam was based on the
description presented in Chapter 7, specially with regard to the transactions depicted in

Figure 52.

Basically, the actions and transactions required to execute each construct major
construct formalised in the model were identified, as follows:

a. For each functional operation send by an enterprise activity occurrence to an
active resource component:

"1 CIM-BIOSYS message' from the enterprise activity occurrence to the Activity

Controller (tCBS);

"1 CIM-BIOSYS message from the Activity Controller to the Resource Manager
(tcBS);

" delay in the Resource Manager due to resource allocation (taloc);

"I CIM-BIOSYS message from the Resource Manager to the active resource

component (tcßs);

" delay in the active resource component due to emulation of the manufacturing

process time (TM);

" delays in the active resource component related to the required time interval

between transitions due to limitations in the Prolog engine (ntrj. ttr);

b. For each functional operation send by an active resource component to an
enterprise activity occurrence:

" delay in the active resource component due to emulation of the manufacturing

process time (TM);

" delays in the active resource component related to the required time interval

between transitions due to limitations in the Prolog engine (ntrj. tLr);

"1 CIM-BIOSYS message from the active resource component to the Resource

Manager (tCBS);

"1 CIM-BIOSYS message from the Resource Manager to the Activity Controller
(tcBS);

"1 CIM-BIOSYS message from the Activity Controller to the enterprise activity

occurrence (tCBS);

1. A CIM-BIOSYS message is a message exchanged between two CIM-BIOSYS applications.

A-40

c. For each functional operation send by an active resource component to an
enterprise activity occurrence:

"1 Unix message' (i. e. EA_EXEC - see Figure 52) from a domain process or a
business process occurrence to the Process Controller (ts);

"1 CIM-BIOSYS message (i. e. EA-EXEC) from the Process Controller to the
Activity Controller (tCBS);

"1 CIM-BIOSYS message (i. e. EI? END) from the Activity Controller to the
Resource Manager (tCB5);

"1 CIM-BIOSYS message (i. e. EF_END) from the Activity Controller to the
Process Controller (toss);

" nEV CIM-BIOSYS messages (i. e. event generation) from the Activity Controller to
the Event Handler (nEV. tcBS);

"1 Unix message (i. e. EI? END) from the Process Controller to a domain process or
a business process occurrence (ts);

" procedure to start a CIM-BIOSYS application representing the enterprise activity
occurrence and establishing a link with it (tt; nk);

" delays in the enterprise activity occurrence related to the required time interval
between transitions due to limitations in the Prolog engine (ntrl. tü);

d. For each business process occurrence:

" procedure to start a Unix process representing the business process occurrence
(tsp);

"1 Unix message (i. e. PID) from the business process occurrence to the Process
Controller (ts);

" prBpi times the following set of actions and transactions:

" procedure to trigger a procedural rule (tprBp;);

"1 Unix message (i. e. STEP_REQ) from the business process occurrence to the
Process Controller (ts);

"1 Unix message (i. e. STEP_REL) from the Process Controller to the business

process occurrence (ts);

"1 Unix message (i. e. RES_REQ) from the business process occurrence to the
Process Controller (ts);

1. A Unix message is a message transferred between two Unix processes communicating via
local sockets.

A-41

"1 CIM-BIOSYS message (i. e. RES_REOJ from the Process Controller to the
Resource Manager (togs);

"1 CIM-BIOSYS message (i. e. RES_REL) from the Resource Manager to the
Process Controller (tcBS);

"1 Unix message (i. e. RES_REL) from the Process Controller to the business

process occurrence (ts);

" nEFBPi Unix messages (i. e. EF END) from the business process occurrence to the
Process Controller (ts);

"1 Unix message (i. e. EF_END for its own) from the business process occurrence to
the Process Controller (ts);

e. For each domain process occurrence:

"1 CIM-BIOSYS message (i. e. event) from the Event Handler to the Process
Controller (tcBs);

" procedure to start a Unix process representing the domain process occurrence (tsp);

"1 Unix message (i. e. PID) from the domain process occurrence to the Process

Controller (ts);

" prDp; times the following set of actions and transactions:

" procedure to trigger a procedural rule (tpR);

"1 Unix message (i. e. STEP_REQ) from the domain process occurrence to the
Process Controller (ts);

"1 Unix message (i. e. STEP_REL) from the Process Controller to the domain

process occurrence (ts);

"1 Unix message (i. e. RES_REQ) from the domain process occurrence to the
Process Controller (ts);

"1 CIM-BIOSYS message (i. e. RES_REQ) from the Process Controller to the
Resource Manager (tCBS);

"1 CIM-BIOSYS message (i. e. RES_REL) from the Resource Manager to the
Process Controller (tcBs);

"1 Unix message (i. e. RES_REL) from the Process Controller to the domain

process occurrence (ts);

" nEFDPi Unix messages (i. e. EI? END) from the domain process occurrence to the
Process Controller (ts);

"1 Unix message (i. e. EF_END for its own) from the business process occurrence to

A-42

the Process Controller (ts);

"1 Unix message (i. e. DP_END for its own) from the domain process occurrence to

the Process Controller (ts).

The equation obtained for LTA, by organising these factors is:

LTA = k. F., (nOCDPi" tDPi) (2ý

where:

" nocDP; is the number of occurrences of the domain process DPi which have been

generated in a particular thread of model execution.

"k is a coefficient whose value is a fraction of 1 (i. e. k belongs within the interval [0;
1]) which reduces the total sum Ei (nocDp;. tDpi), in order to account for a level of
parallelism in the execution of the all nOCDpj occurrences of any DPI. In a situation
in which there is no parallelism, k=1.

" tDpi, the time to execute a complete occurrence of the domain process DPi, is given
by:

tDPi = tSP + (2 + 4. prDpi + nEFDpi). tS + 2. nEFDPi"tCBS + prDPi"tPR + kDPi"ZDPi (tEM) (3)

where:

" tsp is the time required in the Unix operating system to spawn a new process

representing a domain process (or business process) occurrence. This time is related
to the first messages sent by the Process Controller to a domain process occurrence

or by any domain process or business process to its child business process, in order

to activate it (see messages number 2 and 10 in Figure 52).

" nEFDpi is the number of enterprise functions used by the domain process at run-
time, in order to describe its internal behaviour (see Figure 27). nEFDpj varies

according to the decisions that are made at run-time by the business entity with

regard to the number of functions that are actually triggered by the procedural rules

of a process. This, in turn, depends upon the ending-status of these functions. The

same definition applies for nEFBp;.

To illustrate this definition, one could examine the behaviour diagram shown in

Figure 27. In this diagram, if no inspection is executed in a certain occurrence of
BP-2, nEFBP2 = 3, otherwise, nEFBP2 = 4.

" is is the transmission time of a message between two Unix processes

communicating via local sockets. This time relates to the communications between

A-43

the Process Controller and its domain processes, as well as between domain

processes, business processes and their child business processes (see Figure 52).

' tCBS is the transmission time of a message between two software applications
communicating via the CIM-BIOSYS infrastructure. This is typically the
transmission time of messages between the four components of the business entity,
enterprise activity occurrences and active resource components (see Figure 52).
tCBS is a measure of how efficient the CIM-BIOSYS infrastructure is in transferring

messages between its applications.

" prDPi is the number of procedural rules executed by the domain process DPi at run
time. The same remarks made for nEFDN with regard to the number of procedural
rules that are actually executed at run-time apply to prDpt. Likewise, the same
definition also applies to prBJ;.

" tpR is the average time that a domain process or a business process occurrence
takes to execute one of its procedural rules. This includes the time to process the
ending-status received from its function, in order to select the next function to be
triggered.

" kDpi is a coefficient similar to k, which accounts for occurrences of functions used
by DPi which are executed in parallel. A similar coefficient is also defined for
business processes (i. e. kgp;).

' 'DM (tE, Fi) is the sum of the execution times of all functions used by DPi, where
tEF;, is the time to execute a complete occurrence of the enterprise function EFi.
This can be the time to execute either a business process (i. e. tBP;) or an enterprise
activity (i. e. tEA;) belonging to DPi. tEF; is given by:

tBPi = tsp + (2 + 4. prBPi + nEFBPi). ts + 2. nEFBPi"tCBS + PrBPi. tPR + k. EBPi OEM) (4)

or

tEAi = 2. ts + talc + tlink + kEAI. (ntrEAi + ZARCj (ntrj)). t1. + (3. nFOEAi +3+
nEVEAi)"tCBS + Y-EAi (TMi) (5)

where,

" taloc is the time that the Resource Manager can take to bind an active resource
component to an enterprise activity occurrence. This time can vary considerably,
for it depends on the availability of active resource components to serve the

enterprise activity occurrence. In a situation where active resource components are

readily available, taloc - 0.

A-44

" ttink accounts for the time taken by the CIM-BIOSYS infrastructure to start an

application and establish a link (i. e. a connection) between that application and any

other applications wishing to communicate with it (i. e. the application protocol of
the CIM-BIOSYS infrastructure is connection oriented). This time is only relevant
for enterprise activity occurrences for their occurrences are represented by CIM-

BIOSYS applications activated dynamically at run-time.

" ntrEM is the number of relevant transitions contained in a particular enterprise
activity which are required to describe its behaviour (see Figure 31). This number
includes only the transitions that are actually executed by a enterprise activity
occurrence at run-time. Thus, the same remarks made with regard with the

procedural rules for process apply to transitions for enterprise activities.

' YARCJ (ntrj) is the sum of the relevant transitions executed by the active resource

components (i. e. ntrj) with which the enterprise activity interacts, in order to

perform its functionality. The same considerations made for ntri apply to this
factor.

" kEAI is a coefficient similar to k, which accounts for any parallelism in the

execution of the transitions of an enterprise activity occurrence and its associated

active resource components.

" nFOEAI is the number of functional operations exchanged between the enterprise

activity, its active resource components and the information entity (see Figure 30).

As the models developed in this thesis concentrated on the functional and resource

aspects, functional operations related to the information entity are not considered.

" nEVEA1 is the number of events generated by the enterprise activity at run-time. In

the case of the SMT assembly line models nEVF, t = BS (i. e. within EA-1, one

occurrence of EV 3/Produce PCB is generated for each PCB in a batch of BS

boards).

" ttr is the elapsed time between two consecutive firings of transitions within an

enterprise activity occurrence or active resource component. This is a design

parameter whose minimum value is limited by the speed of the Prolog engine used

to construct these components.

' EEM (TM;) is the sum of the manufacturing process time intervals (i. e. TM;)

associated with the functional operations (see Table A-5). Here, it should noticed

that:

Us = kmodel"Emodel [ZEAi (TMi)]

where,

A45

' Zmodel is the sum of the manufacturing process times associated with functional

operations used by the enterprise activities of a model; and

" kmodet is, once again, a coefficient used similarly to k, in order to account for

operations in the manufacturing processes which are executed in parallel.

then,

OHS = LTA - LTS (6)

where LT, p is given by equation (2), which aggregates equations (3), (4) and (5).

Even though the equations that lead to the determination of OHS may seem quite

complex, in fact, they constitute a simplification of the universe of factors which

contribute to overhead. Some of the factors which have not been included in these

relations are:

" the internal processing of the business entity components (e. g. the time for the
Process Controller to respond to an event occurrence sent by the Event Handler -
see Figure 52);

" the processing time related to the debugging functions of the business entity (e. g.
data update on interfaces such as the one shown in Figure 48 and generation of log

files).

Based on these considerations, the deducted equations were applied to the

model of the SMT assembly line, which resulted in the following equations (these

equations only compute overhead, i. e. they do not include the factor TM;):

tEAi = 2. tS + taloc + think + 6. tt + 10. tCBS + IEAI (TM1)

tEA2 = 2. ts + taloc + flink + 6. t .+9. tCBS + EEA2 (TM2)

1EA3 - tEA4 ' tEAS = tEA6 - tEA7 - tEA8 = tEA9 - tEA2

tBPI = tSp + 20. tS + 22. tCBS + 3. tpR +2. taloc + 2. t1i1 + 12. t .

tB)n = tsp + 27. ts + 33. tCBS + 4. tPR + 3. taloc + 3. tiink + 18. t .

tBP3 = tsp + 20. ts + 23. tCBS + 3. tpR + 2. tajn + 2. tlink + 12. tä

A-ä

tDpl = tsp + 13. ts + 12. tCBS + 2. tpR + taloc + trink + 6. tu

tDP2 = 4. tsp + 83. ts + 84. tCBS + 14. tpR + 7. taloc + 7. t11 + 42. t .

where OHs is given by:

OHS = k. Et (nocDPi" tDPi)

OHS = 5. tsp + 101. tS + 96. tCBS + 16. tpR + 8. tayoc + 8. tt; nk + 48. ttr

These equations were obtained for the following conditions:

' kmodel= k= kDPi = kDPi = kDpi = 1. That is, no parallelism is assumed to occur for
the execution of a model occurrence. This is the case for BS =1 and 0% inspection
and check.

" nFO =2 (i. e. two functional operations per enterprise activity);

" nEVEA1= BS = 1;

" ntrEA, = BS +2=3, ntrEpj =3 (for j=2 to 10);

ntrARCj =3 for all active resource components;

41 prBPl = 3, prap2 = 4, prBP3 = 3, nEFBP1 = 2, nEFBP2 =3 and nEFBP3 = 2. These

values stem from a condition in which 0% of the boards produced are either
checked of inspected. This condition was selected for two reasons: (1) they enable
the establishment of deterministic values to the parameters in question; and (2) they

are nearest to value of lead-time obtained for the default operating conditions of the
SMT assembly line.

PrDPI = 2, PrDP2 = 4, nEFDPI =1 and nEFDP2 = 3.

A-47

Appendix 12: List of Publications

A-12.1. Journal Publications

Workbench for rapid prototyping of open software systems. Submitted to the
International Journal of Manufacturing Systems Design. England. 1994.

A Model-driven approach to enterprise integration. Submitted to the International
Journal of CIM. England. 1993.
CIM-OSA and stochastic time petri nets for behavioural modelling and model
handling in CIM systems design and building. Published in the Proceedings of the
IMechE Journal. England. 1993 (Winner of the 1993 Donald Julius Groen Prize)

A-12.2. Conference Publications

`Model-Driven CIM' - Frameworks, Methods and Architectures to Support the
CIM System Life Cycle. Published in the Proceedings of the 2nd Workshop on CIM-
OSA. Germany. 1994.

Model Enactment as a Basis for Rapid Prototyping of Manufacturing Systems.
Submitted to the Proceedings of the First IMSE. France. 1994.
Manufacturing Systems Design and Implementation Based on Formal Modelling

methods and Tools. Published in the Proceedings of the 27th International Symposium

on Automotive Technology and Automation (ISATA). Germany. 1994.

Rapid prototyping of open software systems. Published in the Proceedings of the
European Simulation Multi-conference. Spain. 1994.
Petri-nets in SEW-OSA - Systems Engineering Workbench centred on CIM-OSA.
Published in the Proceedings of the IEEE Conference on Systems, Management and
Cybernetics. USA. 1994.
The Business Entity of SEW-OSA - Systems Engineering Workbench for CIM-

OSA. Published in the Proceedings of the 10th National Conference on Manufacturing
Research. England. 1994.
Systems Engineering Workbench centred on CIM-OSA. Submitted to the
Proceedings of the 10th International Conference on Computer Aided Manufacturing,
Robotics and Factories of the Future CARS-FOF/94. Canada. 1994.
Model based approach supporting the life cycle of integrated manufacturing
enterprises. Published in the Proceedings of the International Conference on
Computer Integrated Manufacturing ICCIM. Singapore. 1993.

Reference architectures for enterprise integration. Published in the Proceedings of
the International Conference on Computer Aided Manufacturing, Robotics and
Factories of the Future CARS-FOF/93. USA. 1993.

CIM-OSA and time petri nets for CIM systems modelling and simulation.

A48

Published in the Proceedings of the International Conference on Factory Automation

and Integrated Manufacturing - FAlA1/93. Ireland. 1993.
Case study on the application of the CIM-OSA methodology for manufacturing

process modelling. Published in the Proceedings of the European Simulation

Symposium. Germany. 1992.

A-12.3. Internal Reports

A proposal for linking SEW-OSA with a bottom-up modelling tool. Document n. 9

v. 1.0.1995.
Preliminary review of methods and techniques to support business strategy
development - internal report. England. 1994.

Notes from the case study on the application of SEW-OSA to D2D shop-floor.
Document n. 8-v. 1.0.1994.

SEW-OSA (Systems Engineering Workbench centred on CIM-OSA) - CASE Tool
documentation. Document n. 7-v. 1.0.1994
SEW-OSA (Systems Engineering Workbench centred on CIM-OSA) Business

Entity - Printout of the software code. Document n. 6-v. 1.01994.

Collection of five reports to CAPES on the progress of the PhD research work -
isseud between 1991 and 1994.1994.
Petri-net Case Tool Documentation. Document n. 5-v. 1.0. October 1992.

Study on Reference Architectures for CIM Systems Design and Building Based on
Executable Models. Master of Philosophy Report - Loughborough University of
Technology. 1992.

Data Gathering on the SMD Assembly Line - Third Interview - Working Group 3-
ICL/LUT-SIG Joint Work On CIM-OSA. Document n. 4-Y. 1.0. May 1992.
Data Collection on the SMD Assembly Line - Working Group 3- ICL/LUT-SIG Joint
Work On CIM-OSA. Document n. 3-v. 1.0. March 1992.
First Exercise on the Application of the CIM-OSA Modelling Methodology -
Working Group 3- ICL/LUT-SIG Joint Work On CIM-OSA. Document n. 2-v. 1.0.

January 1992.
On the Life Cycle of Integrated Manufacturing Systems - Research Plan Outline.

Document n. I-v. 1.1. November 1991.

