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ABSTRACT

Computational Fluid Dynamics relies upon turbulence models for predicting most

engineering flows. Relatively accurate models exist but are computationally intensive;

simpler, more practical models, however, often return poor predictions. The new cubic,
eddy-viscosity turbulence model is a compromise of these extremes, employing a
nonlinear (cubic) stress-strain relationship. The primary objective of the current research
is to compare the cubic model against a range of other two-equation turbulence models,

for a variety of isothermal and combusting flows.

The TEACH research code is the main platform for the investigations of the new
turbulence model. Other, industry-standard models (standard k-e, ReNormalisation

Group k-¢ and Launder & Sharma low Reynolds-number models) are also implemented
for comparative purposes. The nonlinear model is found to be numerically unstable and

several remedies are required before any converged solutions can be obtained for the

complex flows investigated. The turbulent, isothermal test cases are: fully-developed

——

pipe flow, axisymmetric pipe expansi_o'n_* (@ee different flows) and strongly-swirling pipe
flow (for which a Reynolds ‘S;t_ress Mode_ll,_‘avrailable in a commercial CFD code, is also
utilised). In most cases, the nonlinear model provides the begt results relative to the other
two-equation models. - A detailed analysis is carried out to account for the different ways
in which the physics of the flows are represented by the various turbulence models.

A challenging, reacting flow is the bldff-body stabilised, nonpremixed flame.

Initial simulations, utilising the flame sheet combustion model, reveal that the accuracy of



the computed temperature and mixture fraction distributions depends largely upon the
predictions of the flow field. The nonlinear turbulence model gives slightly improved

results relative to the other, standard models. However, detailed velocity distributions are
required for further analysis of the cubic model. Since no flow-field data for confined,
bluff-body burners exists in the public domain, an experimental combustor is designed
and built on-site. An optical technique, Particle Image Velocimetry (PIV), is utilised to
obtain detailed profiles of the flow; temperatures are measured using a standard
thermcouple probe. After extensive processing, the experimental results are compared

with the simulation predictions. The nonlinear turbulence model captures all the flow -

features and 1s seen to significantly improve results compared to the other models.

Reasons for its relative success are presented.
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NOMENCLATURE

Roman Letters

Ay, A Anisotropic stress invariants.

citoc;  Constants in the nonlinear stress/strain relationship.
Ce1, Ce2 Constants in dissipation rate transport equation.

Ct Skin friction factor.

Ca1, Co2 Constants in the transport equation for mixture fraction variance.
Co Specific heat capacity.

Cu ~ Constant in the eddy-viscosity formula.

d, d, dy, ds,

dis, D, D{, D, Diameters in the various test cases.

E - Gradient production.

E, Roughness constant.

ey (X) Radially-averaged relative error for ¢ at location x
fwJufa " Damping functions.

f Mean mixture fraction.

H Step height (in pipe expansions).

k Turbulence energy.

l Turbulence length scale.

3, Length scale in the inertial boundary layer, defined by Equation 2.44.
m Mass fraction.

m, n Exponents in definition of B-pdf.

P,p Pressure.

Py Turbulence energy production.

Pe 7 Peclet number.

r Radial coordinate.

R r Radius.

R Parameter defined in Equation 2.18.

R = Turbulent Reynolds number.

Re Reynolds number

S;; Mean strain-rate tensor.

T Temperature.

u', v, w’ Fluctuating components of instantaneous velocities.
Up Wall friction velocity

W) Reynolds stress tensor.

Uv,w Mean velocities.

X Axial coordinate.

X; " Reattachment length.

y Perpendicular wall distance.

y' Dimensionless perpendicular wall distance, defined in section 2.1.3.1.

Y. Yap correction factor.



Greek Symbols:

Oij Kronecker delta.

€ Dissipation rate of k.

£ Isotropic dissipation rate.

T Strain-rate dependent parameter defined in Equation 2.19.
I’ Diffusive transport coefficient.

It False diffusion coefficient.

K Von-Karman constant.

R Turbulent dynamic viscosity.

\Y Kinematic viscosity.

\7 Turbulent kinematic viscosity.

p Density.

Ok Turbulent Prandtl number in the k equation.
O¢ Turbulent Prandtl number in the € equation.
Ot Turbulent Prandt] number.

T Reynolds stress tensor.

Tw Wall shear stress.

@  Netrate of species formation.
Q;  Mean vorticity tensor.

Abbreviations

ASM Algebraic Stress Model

BR Blockage Ratio.

CARS - Coherent Anti-Raman Spectroscopy.

CDR Confinement Diameter Ratio (defined in Chapter 6).

CDS Central Differencing Scheme.

CFD Computational Fluid Dynamics.

CR CRY turbulence model without the Yap correction term (defined by
Equation 2.42).

CRY Cubic, nonlinear turbulence model proposed by Craft et al (1996). Also
referred to as the cubic NLEVM or nonlinear LRN.

CR93 Precursor to the CRY model, developed by Craft et al (1993).

CR97 Subsequent development of the CRY model.

DNS Direct Numerical Simulation.

EBU Eddy Break-Up.

EDC Eddy Dissipation Concept.

EVM Eddy-Viscosity Model.

LDV Laser Doppler Velocimetry.

LES Large Eddy Simulation.

LIF Laser Induced Fluorescence.



LRN

LSY
NLEVM
PDF
PIV
RANS
RNG
RSM
SIMPLE
SMC-
TEACH
TSL
UPS

Low Reynolds Number.

Turbulence model proposed by Launder & Sharma (1974).

LS model with the addition of the Yap term (defined in Equation 2.42).
NonLinear Eddy-Viscosity Model.

Probability Density Function.

Particle Image Velocimetry.

Reynolds Averaged Navier Stokes.
ReNormalisation Group.

Reynolds Stress Model.

Semi Implicit Method for Pressure Linked Equations.
Second-Moment Closure.

Teaching Elliptic Axisymmetric Characteristics Heuristically.
Thin Shear Layer.

Upwind Scheme.
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CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

Complex fluid motion within combustors and furnaces is knoﬁm to profdundly

affect the burner performance and emissions levels. Modern burners seek to enhance
the combustion process by introducing swirl or by promoting highly turbulent
recirculation regions in bluff-body type geometries. Accurate predictive tools for
turbulent, non-premixed flames are essential from the design point of view.
Computational Fluid Dynamics (CFD) is acquiring a leading role in the design of
burners; it is used to gain a better understanding of the fundamental interactions
between turbulent flow fields and chemical reactions, and to quantify the effects and

influences of various parameters. The main limitation of CFD is turbulence closure, an

1ssue which is of vital importance.

There are currently four main methods of treating turbulence for incorporation in
CFD: eddy-viscosity models (EVM), second-moment closures (SMC), large eddy
simulations (LES) and direct numerical simulation (DNS). Although the last two
approaches are the most accurate, they are extremely resource-intensive and thus have
no immediate prospects in practical engineering environments. Both EVM’s and
SMC’s, on the other hand, are more viable avenues as far as industry is concerned.
These approaches embody a degree of commonality in that they are both treatments for
the Reynolds stresses encountered in the Reynolds-averaged Navier-Stokes (RANS)

equations. SMC’s involve the additional solution of a transport equation for each



Chapter 1: Introduction 1-2

Reynolds stress (the reader is referred to Launder, 1989, for a review of this family of
models), whilst EVM’s approximate the Reynolds stresses using relatively simple
relationships. Despite SMC’s having a greater potential to successfully predict complex
flows, they too often require excessive computational and temporal resources. This
leaves EVM’s as the most feasible method for treating practical turbulent flows.
EVM’s have developed considerably since their introduction in the form of zero-

equation models. However, the current family of so-called linear, two-equation models

is still not capable of accurately predicting many flow phenomena such as recirculation

vortices and highly swirling flows.

{

A new model, the cubic nonlinear EVM (denoted as cubic NLEVM) was
recently developed by Craft et al (1993, 1996) in order to address the shortcomings of
the linear two-equation models. The proposed function of this model is to bridge the

gap between linear EVM’s and SMC’s without incurring the computational burden

assoclated with the latter.

This thesis reports on the application of the cubic NLEVM in various isothermal
flows in order to assess the model’s capability of predicting recirculation and swirl, both
of which feature strong streamline curvature. It reports on the initial simulations of a
bluff-body combustor, and then describes the experimental work involved in obtaining
velocity measurements for such a burner. Finally, the cubic NLEVM is used to simulate
combustion within the experimental combustor. In all cases, the performance of the

nonlinear model is compared with that of ‘industry-standard’ linear EVM’’s.

The following literature survey briefly introduces the concept of eddy-viscosity
turbulence models and describes the general development of two-equation EVM’s. The
latter part of the survey describes recent exploits in this field regarding nonlinear
EVM’s, and introduces the cubic model. The survey reports on existing applications of
the cubic NLEVM to various flows and shows that axisymmetric pipe expansions,

highly-swirling and combusting flows have not yet been investigated using this model.

The chapter ends with an outline of the thesis in section 1.3.
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1.2 LITERATURE SURVEY

Drawing upon Newton’s law of viscosity, Boussinesq (1877) put forward an

analogous proposition in which the Reynolds stresses are directly linked to the mean

rates of fluid deformation via a scalar called the eddy viscosity, 4, :

— (@ éU!]
i J g:j 3‘

The problem of calculating Reynolds stresses was thus reduced to one of reckoning the
eddy, or turbulent, viscosity, which is proportional to a length scale and a turbulent

velocity scale. Based on thin shear layer (TSL) assumptions, zero-equation models

simply assumed that the turbulent velocity scale was a function of the length scale

which could in turn be prescribed algebraically. However, complex flows are
characterised by convection and diffusion, thereby challenging the TSL assumptions.
One-equation models attempted to account for this by incorporating a transport equation
for turbulence energy, which was suggested as a measure of the turbulent velocity scale.

Improvements over the zero-equation models, however, were not significant.

In recognition of the fact that the length scale characterising the large, energy-
containing eddies is subject to the same transport processes as the turbulence energy,
researchers proposed that a transport equation also be solved for the length scale or a
related quantity. This approach is known as two-equation modelling. Harlow &
Nakayama (1967) and Jones & Launder (1972), amongst others, advanced an equation
for the turbulence dissipation rate € «c &%/l (k- model); Spalding (1971) and Saffman
(1970) suggested the turbulence vorticity & (k- model); Rotta (1968) recommended
an equation for k! (k-kl model) and Kolmogorov (1942) put forward the frequency of
turbulent motion k%1, A detailed analysis (Launder & Spalding, 1974) of the k-kl, k-0
and k-¢ models concluded that whilst these three models are essentially the same (the
different length scale-related expressions can all be vﬁitten in terms.of each other), the
k-€¢ model is the most plausible (from a physical perspective) and also the simplest to

implement numerically. Physically correct transport equations can be derived for both



Chapter 1: Introduction 14

turbulence energy (k) and dissipation rate (g); however, these contain unknown
correlations which require further modelling. References for details of these

assumptions and simplifications can be found in Rodi (1980).

Utilising a single set of empirically evaluated constants, the k-€ model has been

applied with reasonable success to a large number of test cases, including recirculating

and jet flows as well as TSL flows. However, in instances where mediocre predictions

are obtained, different constants can be adopted to improve results. For example, Rodi
(1972) replaced the constants with simple functions such that the spreading rate of

axisymmetric jets in stagnant surroundings were no longer overpredicted. This
emphasises the fact that the approximated € equation is largely responsible for the k-¢

model’s lack of universality. A concise assessment of the performance of this model

and 1ts numerous variants is given in the review by Nallasamy (1987).

One of the limiting factors affecting one- and two-equation models is that they
are derived with the aid of assumptions which are strictly applicable to regions of flow
in which the Reynolds number is high. In wall-bounded flows, the standard k- model

may not be integrated directly to the wall because it is unable to account for the low

Reynolds number interactions between the turbulent flow field and the viscous sublayer.
Instead, so-called wall functions are employed; these relate the mean-velocity at a point
near the wall to the wall shear stress. Several different proposals for wall functions are
reviewed by Launder (1981) and Nallasamy (1987). They are based on assumptions
which are only valid for near-equilibrium conditions in the inertial sublayer (fully

turbulent region of boundary layer) of fully-developed flow over larger surfaces (e.g.

pipes, channels, plates). Further details are given in Chapter 2.

Wall functions do not perform correctly in flows where recirculation (or some
other complex phenomenon) exists in the proximity of solid boundaries. In order to

overcome this obstacle, Jones & Launder (1972,1973) developed a low Reynolds

number (LRN) &-€ model which requires integration to the wall and application of the

no-slip boundary condition. The steep gradients and viscous effects in the inertial

sublayer were resolved by employing damping functions, f, and f;, for the turbulent
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viscosity and the dissipation rate destruction term, respectively. Application of this
model to various flows led Jones & Launder (1972, 1973) to conclude that the simulated

near-wall gradients were markedly improved compared with those calculated by the

standard high Reynolds number k-€ model.

A number of LRN k-¢ models were subsequently proposed by various

researchers. The numerical study of several TSL’s by Patel et al (1985) concluded that
of the many LRN k-e models reviewed, that of Launder & Sharma (1974) returned the

best performance This model shared the basic structure of the J ones & Launder model,
but employed dlfferent damplng functlons Subsequent studles including DNS,

quantlﬁed the near-wall, asymptotic behavmur of the turbulence quantities, which
affected the limitinig behaviour of the damping functions. Numerous LRN k-¢ models

were proposed, amongst them those suggested by Nagano & Hishida (1987), Myong &
Kasagi (1990a), Nagano & Tagawa (1990), Abe et al (1994), Cho & Goldstein (1994)

and Kobayashi & Tagashi (1996). Nagano & Shimada (1995) reviewed several
different forms of the dissipation rate equation in LRN k-¢ models and reported that

some models were indeed able to correctly predict the near-wall trends for . However,

the damping functions in all the above models depend on either the wall distance y or
the friction velocity u, , or both. This causes difficulties to arise when the models are

applied to complex geometries or when separation/reattachment is present.

Since LRN k-g models are only applicable to wall-bounded flows, there exists a
requirement for turbulence models to cater for both wall-bounded and free-stream low
Reynolds number flows without the necessity of making case by case adjustments. One
approach is to use a multiple time-scale (MTS) turbulence model (e.g. Duncan et al,
1993, Nagano et al, 1994a). The MTS model was designed to explicitly represent the
energy cascade, thus enabling it to calculate wall and free flows. The review by Nagano
& Shimada (1995) reported that excellent results were obtained for 'simple free and
wall-bounded flows. Nallasamy (1987) reported that the MTS model of Hanjalic et al
(1979) accurately predicted the spreading rates of both plane and amsymmetnc free jets,

but no further computations were performed.



Chapter 1: Introduction | 1-6

A further limitation of two-equation eddy-viscosity models 1s the fact that the.

constant C, (=0.09) was derived for flows close to local equilibrium, where the

production ( A,) and dissipation (g) rates of turbulence energy are approximately equal.

This condition only applies to thin shear layers, but not in weak shear flows. Launder &

Spalding (1972) therefore recommended that functional forms of C, be investigated.
Rodi (1972) created an empirical formula for C, based on £, and €; this improved weak

shear flow predictions but was only a case-specific procedure. A different avenue was

afforded by the DNS work of Lee et al (1990). Their study revealed that there existed a

dimensionless parameter (the strain invariant S) which had an element of universality
embedded in it. This was concluded from their observation that, given comparable
levels of S, a homogeneous shear flow and an inhomogeneous channel flow possessed

very similar turbulence structures and statistical correlations. Based on this

information, Cotton et al (1993) suggested that C, be a function of S. The strain

invariant was also implemented to good effect by Yakhot et al (1992); however, rather

than altering C,, it was used as a modification to the € equation of the ReNormalisation

Group Theory (RNG) model of Yakhot & Orszag (1986). As pointed out by Speziale & |
Thangam (1992), the original RNG k-¢ model was no better than the standard k-e

model, but the improved version is capable of accurately predicting the reattachment

length of flow over a backward facing step (Thangam & Speziale, 1992). However,
Lien & Leschziner (1994) reported that the strain invariant parameter in the RNG &-¢

model is actually detrimental in other turbulent flows, e.g. plane and round jet flows and

flows across a staggered tube-bank assembly.

Unlike thin shear layers, practical engineering flows often exhibit complex mean
strains associated with any of the following, amongst others, phenomena: streamline
curvature, separation, swirl, strong streamwise pressure gradients and impingement.
These features are susceptible to the nature of the turbulence structure, in particular
anisotropy. A major shortcoming of the linear eddy viscosity model is the isotropic
assumption, i.e. the turbulent viscosity is identical for all the Reynolds stresses. As
discussed by Speziale (1987) and Thangam & Speziale (1992), this leads to the

predictions 7, =7, =7, =2k in plane channel flow and r_,+r, =27, in flow over
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backward facing steps, which contradicts experimental results. Furthermore, Thangam _

& Speziale (1992) demonstrated that the normal stress difterence 7, -7, 1S non-zero

and contributes directly to the prediction of the mean velocity field. Speziale (1987)
proved that in order to reproduce secondary flows in square ducts, the streamwise mean
velocity must cause a non-zero cross-stream normal stress difference; a forecast clearly
unresolvable by linear EVM’s. In order to overcome these limitations, nonlinear
EVM’s were introduced. In these models, the Boussinesq approximation is extended
such that the Reynolds stress also becomes a function of higher-order terms involving

mean-velocity gradients. The function of the nonlinear terms is to mimic the response

of turbulence to complex strains. These models are also referred to as being anisotropic

because their effect is to promote unequal normal Reynolds stresses.

According to the review of Speziale (1991), Lumley (1970) and Saffman (1977)
appeared to be amongst the first to propose such a relationship. Yoshizawa (1984)

derived a quadratic stress/strain relation using a Direct Interaction Approximation (DIA)
method. The values of the additional constants were derived from purely theoretical
considerations; Speziale (1991) reported that unfortunately these constants required
empirical adjustments when applied to channel and Couette flows. Results for this
model’s performance in a backward facing step configuration are discussed by
Kobayashi & Togashi (1996). Speziale (1987) created a quadratic model by assuming
that the effect of turbulence on mean flow could be represented by a non-Newtonian
stress/strain relationship. He applied this model to channel flow, square duct flow and
back-facing step flows; significant improvements were achieved in all cases.
Rubinstein & Barton (1990) derived a quadratic model using RNG theory. This method
was selected because the RNG theory is valid for both high and low Reynolds number
flows, and the anisotropy of certain flows (e.g. in noncircular ducts) arises in the low
Reynolds number regime. A mathematical comparison with previous nonlinear models
is made, ‘but no numerical calculation is performed. Several other quadratic models
were suggested, including those of Myong & Kasagi (1990b) and Shih et al (1993). A
review by Lien & Leschziner (1994) concluded that many quadratic NLEVM’s returned
poor representations of anisotropy. It should also be noted that these models, with the
exception of that of Rubinstein & Barton (1990), are high Reynolds number models and

thus require the application of viscous damping in wall-bounded flows. Furthermore,



Chapter 1: Introduction 1-8

unlike most linear EVM’s, many anisotropic models are not intrinsically realisable (1.e._
the production of turbulence energy is not unconditionally positive). An oft-quoted

observation in favour of nonlinear models is the fact that all the quadratic models
discussed are of similar form, regardless of the method of derivation. However, the

model constants vary considerably, reflecting the fact that they were obtained
empirically from a variety of flows. Craft et al (1993) and Apsley & Leschziner (1998)

stated that whilst quadratic expressions allow normal-stress anisotropy to be captured,
third-order terms are required so as to sensitise the Reynolds stresses to streamline
curvature and swirl effects. Sharif & Wong (1995) conducted simulations of rotating
pipe flows utilising the quadratic model of Speziale (1987); their report that the

quadratic model was not able to overcome the defects of the standard k-& model

supports the conclusion that cubic terms are necessary,

Craft et al (1993) proposed a third order nonlinear EVM (CR93) in which the

turbulence production rate was a function of dimensionless strain and vorticity

parameters (S and Q ); the model constants were calibrated over a wider range of flows
(homogeneous shear flow, fully-developed swirling pipe flow and curved channel flow)
which theoretically bestowed upon the model a greater element of universality. Slightly
modified versions of the damping functions of Launder & Sharma (1974) were
employed. In the flows studied,i the nonlinear model returned better results than the
LRN eddy-viscosity model of Launder & Sharma (1974); nevertheless, further
modifications were recommended. Rabbitt (1997) utilised this model, in conjunction

with wall functions, to simulate flow through pipe expansions and contractions.

However, the predictions barely improved upon those of the standard k- model and the

normal Reynolds stresses were found to be inaccurate. In Rabbitt’s c€asc, the

unexceptional performance of the nonlinear model is at least partly due to the fact that
complex strains often arise in the vicinity of walls (i.e. v =0 but #* and w* are non-
zero); Apsley & Leschziner (1998) stated that in this case wall functions are simply not
adequate, and integration to the viscous sublayer is necessary. Chen & Leschziner

(1999a) applied the LS and CR93 models to the unsteady flow through the inlet guide

vanes and one rotor-stator stage of an axial compressor. Whilst the LS model failed to

capture the vortex shedding and wake unsteadiness at the trailing edge of the blade, the
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nonlinear model returned a significant (although not entirely accurate) shedding
frequency. Magagnato (1999) reported similar behaviour for flow past a turbine blade.
Chen & Leschziner (1999b) also compared the performance of the LS and CR93 models
with that of an SMC model, for flow over various blade profiles (a turbine blade and
two compressor vanes). Although the nonlinear model matched the RSM results for the

turbine blade computations, it was unable to predict the suction-side separation

occurring along on of the compressor profiles.

In a later version of the CR93 cubic NLEVM, Craft et al (1996) retuned the
model coefficients (CR96). It was pointed out that, in common with the CR93 model, a

damping term f, was still required for near-wall flows, but that its influence was

significantly diminished compared to when used in linear EVM’s. This was attributed

to the functional form of C, (which depends on S and Q) contributing considerably to

near-wall strain-related damping. Relatively good results, especially for weakly-
swirling flows, were obtained for a number of different cases (not including
recirculation), at a computational cost only marginally greater than for linear EVM’s.
However, in a further application of CR96 to transitional pipe and channel ﬂm#s, Craft
et al (1997) found that the CR96 model predicted turbulence intensities which were too

similar to each other. Specifically, the Reynolds stress normal to the wall (v?) was
incorrectly predicted; it is upon this component that the accurate calculation of heat
fluxes rests. In an effort to enable the model to simulate flows which were far from
equilibrium (includiné transitional ‘ﬂov\}s), Craft et al (1997) drew uponlthe work of

Suga (1995) and sensitised the normal stresses to a term known as the stress anisotropy

Invariant ( 4, ), for which a complete transport equation is additionally solved. The new

model (CR97) was able to improve the resolution of near-wall normal Reynolds
stresses. A further improvement was incorporated in the cubic model of Apsley &
Leschziner (1998) whereby the coefficients of the various nonlinear terms are modified
by different low Reynolds number damping functions. This allows the different
behaviour of the individual stresses to be captured and enhanced. In simulations of flow
over airfoils and through diffusers, the Apsley & Lesc;hziner (1998) model has been
shown to out-perform the quadratic model of Speziale (1987) and the cubic model of

Lien et al (1996) (the latter is a LRN cubic extension of the quadratic high Reynolds
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number model of Shih et al, 1993). However, less satisfactory results were obtained in_

the case of strongly separated flow over a backward facing step.

This section has demonstrated that within the eddy-viscosity framework of
turbulence closure, the cubic, nonlinear models are the most promising. The literature
survey has also summarised the latest developments in nonlinear EVM’s. Of the cubic

models reviewed, the CR96 model apparently offers the best compromise between
accuracy and complexity; despite this, the literature review reveals that the model has
not been extensively validated, particularly for recirculating and strongly-swirling flows,

nor has it been utilised in combusting cases. We are thus presented with the need for a

more thorough validation of this auspicious turbulence model.

1.3 THESIS OUTLINE

Chapter 2 states the aim of turbulence and combustion modelling and presents
the models employed. The issue of variable-density effects is discussed and it is shown

that no modifications are required for bluff-body combustor simulations.

The third chapter is devoted to describing the CFD code, listing guidelines with
which to obtain meaningful, converged solutions, and prescribing the various boundary

conditions. The last part of Chapter 3 reports on special numerical considerations

regarding the nonlinear turbulence model.

Chapter 4 is a comprehensive description of simulations of three different
geometries: fully-developed pipe flow, axisymmetric pipe expansion flow (three
different cases) and highly-swirling pipe flow. The performance of the nonlinear
turbulence model is compared to the standard k-, RNG and LS models, and reasons for

the relative success or failure of the various models are discussed.

Turbulent diffusion flames are introduced in Chapter 5, and further evidence of

the suitability of the flame-sheet model is presented. The flow characteristics of bluff-
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body combustors are summarised and the effects of confinement on such flows are_
discussed. Simulations of a bluff-body combustor are then performed. Two turbulence
parameters affecting combustion predictions are examined, and the performance of the

nonlinear turbulence model is reported on.

Chapter 6 defines the modelling requirements for an experimental confined,

bluff-body combustor. The salient design features of the experimental combustor are
h'ighliﬁghted*. ’Application of the optical diagnostics technique, Particle Image
Velocimetry (PIV), to the experimental rig is discussed, and the general procedure,
including causes of error, is described. The experimental results are then compared

with the CFD predictions for this geometry, and the performance of the turbulence
models, particularly the cubic EVM, is discussed.

The final chapter begins with a closing discussion which summarises the
performance of the various turbulence models in the flows investigated, and notes the
numerical problems and remedies involving the nonlinear model. The conclusions are

presented and the contributions of the thesis are listed. Finally, recommendations for

further work are made.



CHAPTER 2: TURBULENCE AND
COMBUSTION MODELS

Turbulent combustion is a complex phenomenon involving the interaction
between flow and thermo-chemical fields. As such, accurate mathematical descriptions
are only possible when using the transport equations in their original, complete form.
The solution of these equations is known as a Direct Numerical Simulation (DNS).' For
DNS in non-reacting, turbulent flows, one needs to resolve the computational grid down
to the Kolmogorov micro-scale, and the time steps must be correspondingly small. The
necessary grd density is intensified 1by a factor of three as the Reynoids number

increases. Combustion scales in chemical reactions are even smaller than the
Kolmogorov scales, which signifies that the magnitude of DNS computations is further

compounded. Hence a more feasible approach is to employ turbulence and combustion

models.

The present chapter describes in some detail the various turbulence (EVM) and
combustion (flame sheet) models utilised during the current research. Three of the four
turbulence models are commonly used in commercial CFD codes, whilst the cubic

nonlinear model 1s a recent development and is therefore the focus of the current

investigation'. The combustion model is relatively unsophisticated but reasonably

effective; more complex combustion models were avoided because-they require more

' The latest releases of the commercial CFD codes STAR-CD and FIDAP make use of this cubic model.

Commercial 1ssues, however, precluded the publication of the relevant validation and performance
studies.
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resources and the incremental improvements are overshadowed by the effects of using_

different turbulence models. The final section assesses the effects of varnable-density

flows on turbulence modelling.

2.1 TURBULENCE MODELLING

To put turbulence modelling into context, it should be noted that all flows obey

the general conservation laws for mass and momentum.

. e _q_o_ pPu, _
Continuity: = o 0 (2.1)
Momentum: p-%i = i_;ﬂ + pg, (2.2)
J

where 1;; are the stresses and g; are external (body) forces. In laminar cases, Newton’s
law of viscosity is invoked and simply substituted into equation (2.2), resulting in the
Navier-Stokes equation. However, the RANS approach in turbulent flows decomposes

the instantaneous velocity #; into mean (U;) and fluctuating (u') components. Upon

substitution into equation (2.2) and time averaging the various terms (and assuming

constant dynamic viscosity p), the following equations are obtained

Continuity: P, ApU) =0 (2.3)
a &
pbuU & o &) 81 —
Momentum: AN AP (/A I o 2.4
o p2e 2,2 ¢ &J}f%( o) + 25, 2.4)

All terms in these equations contain only mean quantities, with the exception of the so-

called Reynolds stresses -puu! in the Reynolds Averaged Navier Stokes (RANS)

equation. The aim of classical turbulence modelling is to close the set of transport

equations by finding expressions for these Reynolds stresses.

The standard k- model is probably the most widely used turbulence model in
engineering applications. Although it is thoroughly reviewed in the public literature, a

brief outline of its derivation will currently be given in light of the fact that the various
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other turbulence models under consideration possess similar fundamental structures.
The ReNormalisation Group (RNG) theory and the popular Launder & Sharma low

Reynolds number models are also depicted, and finally the cubic nonlinear model of

Craft et al (1996), upon which rests the bulk of the research, is presented.

2.1.1 Standard k-e, RNG and Launder & Sharma Models

As with all eddy-viscosity models (EVM’s), Boussinesq’s (1877) representation
of the Reynolds stresses is drawn upon. Its applicability is extended to normal Reynolds

stresses (i.e. when i =) by the addition of a term involving the Kronecker delta (;):

—— au, ;) 2
—pUuu; =y,[-—ac—-+-gc—-] —;ké‘ (2.5)

As suggested by Jones & Launder (1972), the eddy viscosity is defined by

| i
- oG, = (2.6)

where k& is the turbulence (i.e. kinetic) energy and € is the dissipation rate. Complete

transport equations for k and £ are derived from the Navier Stokes equation.

: Dk —a alal
k equation: e d —pu'y et L L 27
q TR oW (2.7)
—— e
) I)k pg
| &) 8 —m\ O p
d = —| p— || pu'k |~ ——| pu' & 2.8
- 4 &, (ﬂ &J & (P":k) &, (P”:p ( )
& 4 I
€ equation: p%f. =d +P. +, (2.9)
7 o)l O aulal'l o b ai;,
d =—|py—|-= hitad Mol B} S K, WYt sipcind & 2.10
&, (ﬂ &J ZA (‘Wk &; &, @fx[ ”63‘: &, (210
Nt et
d* 7k dr
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(2.11)
ar il ai,

e, &, &,

Fed

7 . N2
(D: = —2[;; ézu’ ] (2.12)

These exact equations contain numerous unknown terms involving higher-order
correlations of fluctuating velocities. In the % equation, P is the production of
turbulence energy. The dissipation of & is brought about by the smallest eddies working
against viscous stresses. At elevated Reynolds numbers, the viscous transport (by

diffusion) term 4 is small compared to the turbulent diffusion d, and is thus neglected.

An analogy of the gradient diffusion concept is used to model the turbulent transport of

k. The pressure diffusion (4?) is often deemed to be negligible, but is nevertheless

assumed to be adequately accounted for in the gradient diffusion term (Tennekes &
Lumley, 1972, state that the pressure-work term, as it is also known, is of the same
order of magnitude as the production and dissipation rates, but cannot be properly
modelled due to insufficient knowledge). Hence the diffusion term in the k equation 1s

modelled as

oy & *
d = | L2 2.13
y @Cj(ak &1) ( )

where o, is an empirical constant, and the complete k equation becomes

d = _.?_[_é‘.:_ff_] | | | - (2.15)
o, &, |
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Of the terms in equation (2.11), the mixed production (7,) and production by mean_
velocity gradients (P,) terms are.supposed to be small relative to the turbulent
production (P, ) term. As Rodi (1980) noted, the dissipation production and destruction
terms, P. and @, respectively, cannot be modelled individually; rather, only their
difference can be approximated. Furthermore, the gradient production term F,, is only

of significance in viscous layers (i.e. near a wall). Thus Hanjalic & Launder (1972)

modelled equafiori (2.1 1) as

2

P = Clka C,p-};— (2.16)

and the complete € equation becomes

De_ & [p 5&‘} ’ &
p—= | Lo |+ Cyp= P, = Cop— (2.17)
Dt &\ o, &, k Tk

The empirical constants given in table 2.1 take on the values prescribed by Launder &
Spalding (1974).

Table 2.1; Constants in the turbulence transport equations.

All the simplifications made whilst modelling the k and € equations hinged upon the

assumption of high Reynolds number flows. This implies that the standard k- model 1s
not applicable to low Reynolds number regions. In fact, when employed in wall-
bounded flows, the k- model cannot be integrated directly to the wall; rather,

empirically-derived wall functions must be adopted in place of the no-slip boundary

condition. The nature of these boundary conditions is described in section 2.1.3.

Starting from fundamental principles and using ReNormalisation Group theory,
Yakhot & Orszag (1986) derived a set of equations for k and €. In_the high Reynolds
number limit, these matched the corresponding equations in the standard k- model, but
the constants (also calculated explicitly rather than empirically) were somewhat different

(see table 2.2). The fact that the equations in the two models were the same, yet
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yet constructed from different approaches, leant them an element of credibility with
regard to physical validity. Yakhot et al (1992) subsequently implemented several
corrections to the constants, made by Yakhot & Smith (1992), and further introduced a

strain-dependent modification to the constant C,, which is influential in highly-strained

flows.

Ctl Cﬂ

1.063 1.72
1.42-R

s & o
Yakhot & Orszag (1986 .
Yakhot et al (1992) .

Table 2.2: Constants in RNG model.

oo
N P
SR

_ n(1-n/438)
where R= 1300127 (2.18)
- .
s=(4s,5,)" | (2.20)

where S, is the mean strain rate as defined in Appendix A.

An attractive feature of the RNG model, as noted by Speziale (1991), 1s the fact
that 1t automatically accounts for viscous effects on buffer layer turbulence as a wall is
approached, thereby eliminating the need for empirical wall functions or damping
functions. However, Rubinstein & Barton (1990) explained that whilst the RNG theory
i1s valid for both high and low Reynolds number flows, it is not applicable to viscosity
dominated regions (e.g. viscous sublayers). Thus the RNG model can be applied up to
the boundary between inertial and viscous sublayers, which in practice implie§ that wall

functions are employed (as done by Speziale & Thangam (1992), Yakhot et al (1992)
and Lien & Leschziner (1994)).

In an effort to remove the dependence upon empirical wall functions, Jones &

Launder (1972) proposed a low Reynolds number version of the k-€¢ model which was

designed to take into account viscous effects:

Dk d i, | ok
P a}l[;ﬁ t] J]HJ; pE (2.21)
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2
. - - =2 U, -
De V7 Hy o E & [
—— | S— —— | S— —P —C —+2 2.22
Dt (‘Ha ]éc. *CalPy 2/2P7 ”u‘{@c.& J (222)
J £/ 4 Jk
b__w———l
pE
d(”z 2
where c=g=-20 £ (2.23)
J
D
k2
ﬂ‘ =FCF ﬂ? (2.24)

A transport equation for the isotropic dissipation rate, Z, is solved because the value of

¢ at the wall is zero, thereby simplifying the implementation of boundary conditions.

The gradient production term P, in equation (2.11) is also included due to its non-zero

value in viscous regions; it is denoted as £ in equation (2.22) and serves to control near-
wall levels of k. Damping functions are used to bridge the viscous and turbulent

boundary layers. The turbulent Reynolds number (Ry) dependent functions proposed by
Launder & Sharma (1974) are

-34
= I S 2.25
/s exP[(HR, /50)’] (2.25)
£ =10 (2.26)
f; =10-03exp(-R}) (2.27)
R =X (2.28)
91

and the constants are as given in table 2.1. Savill (1993) concluded in his review of
modelling transitional phenomena, that “of all the low Reynolds number model
treatments examined to date, the Launder-Sharma type damping factor is recommended
for the most accurate predictions of mean-flow quantities;” this is evidenced by the

relatively extensive use of the LS model and its inclusion in certain commercial codes
(e.g. CFX4).
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2.1.2 Cubic Nonlinear Model

Speziale (1991) summed up the major deficiencies of linear two-equation eddy-

viscosity models as a) the inability to properly account for streamline curvature,
rotational strains and other body-force effects, and b) the neglect of non-local and
history effects on the Reynolds-stress anisotropies. These problems are potentially
overcome by second-moment closures because a separate transport equation is solved
for each Reynolds stress; this indicates that these models are inherently superior to their
two-equation counterparts. However, Lumley (1978) stated that there exists a viable

alternative to second moment modelling. He noted that the information contained in the

six components of the Reynolds stresses can be reduced to three parameters: the

turbulence energy, &, and two anisotropic stress invariants, 4, and 43, defined as

Az = aja; (2.29)
Az = azauay; (2.30)

where the anisotropic stress is

ay =—==—0, (2.31)

Suga (1995) therefore developed an eddy-viscosity model which tackled the above
shortcomings by a) utilising a nonlinear stress-strain equation, and b) sensitising the
damping functions to- the anisotropic stress invariant A,, for which an additional
transport equation is solved. A cubic stress-strain relationship was adopted because
quadratic formulations lack generality. For example, Suga (1995) demonstrated that ax
contains both linear and cubic terrr;s which are important in swirling flows; in quadratic
models, a,; contains only the linear term. The three-equation, non-linear model is an
extension of the cubic two-equation model described by Craft (1996); Sug}a (1995)
reported that both yielded significant improvements over the Launder & Sharma model
but that the differences between the two- and three-equation versions were minor. Thus

the cubic two-equation model, from now on denoted as CRY, theoretically improves

upon linear EVM’s without incurring large computational penalties. =
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The distinguishing aspect of the CRY model is the cubic stress-strain formulation_

(allowing for variable-density flows) employed instead of the Boussinesq relationship:

(2.32)

ki
~CsH; :'E?(Q,,Q,,,,S,,, +5,Q,Q,, - 2/38*"0""0"’5")

k? k?
- 06}1, E;SySHSH - C,ﬂ, 'ngz-SyQHQH

The individual stress-strain relations are written out in full in the thesis of Suga (1995).
The constants in equation (2.32) are given in table 2.3. They were calculated by Suga
(1995) and Craft et al (1996) using DNS solutions as well as the properties of

homogeneous shear flows, fully-developed swirling pipe flows and curved channel flows.

o o [ [ [

Table 2.3: Constants in the cubic stress-strain relation.

The k and ¢ transport equations used in the CRY model are as follows:

b_ll‘._f_[(mi‘;_)%} P pe (2.33)

Dt &, o) &,

~ ~ ~2

De 0§ He | O £ £

P“b?“%" (ﬂ ""';_:)E— +C81f1p7c'Pk -C£2f2PT+PE+pYC (2'34)
J

These are similar'to the equations in the Launder & Sharma low Reynolds number

model, and the eddy-viscosity is as defined in equation 2.24. The constants are given In
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table 2.1. Unlike in the LS model, C, attains a functional form dependent upon the

strain invariant:

C = sl exp| — 20 (2.35)
H l+0'35ME.ﬁ expi—OJSME,ﬁ)

where M - = max(”,ﬁ) and the dimensionless strain and vorticity invariants are

~ k
S =§1,%SI}SU (2.36)
G==I00, (2.37)

The mean strain and vorticity rates, S, and Q, respectively, are given in Appendix A.

Figure 2.1 illustrates the dependence of Cyupon M 55 Ihe damping functions are

R’r 1/2 RT 2
fi=1- CXP[ 90) -(2-66) ] (2.38)
h=10 - (2.39)
f, =10-03exp(-R;) | - (2.40)

The gradient production term in the dissipation rate equation is modelled as:

2 2 2

Su Kk 2 2

E =0.0022— o ;j -t 'a'—;'{' . fOfRT<250 - -
HEINE -

E=0 forRy>250 | (241)

The Yap term found in the dissipation rate equation (2.34) of the nonlinear model is

defined as:

| ka e km* 2 )
Y. =max| 0. 83-——(—-—__—- -1 — | O (2.42)
k \ 2.5€ey 2.5¢€y
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Yc acts to augment the production term in the dissipation rate equation and was first ‘
introduced by Yap (1987) in an attempt to correct the overprediction of the turbulence
length scale in separated flows. The functional form of this correction term ensures that

the turbulence budgets are manipulated in regions where y is small and & 1s large. The

term k%7 / (ZSE;}) can be explained as a ratio of turbulent and inertial length scales,

respectively given as:

k3!2 k3/ y)

It — C;M —-— 0.16-—:—- (2-43)
£ &
ly=xy=04y (2.44)

The latter scale 1s derived for that part of the inertial boundary layer which is in local

equilibrium; i.e. when the assumption “production = dissipation” holds true. Thus the

Yap term only contributes to the destruction of & in the event that //Z, = 1 in the vicinity
of a nigid boundary.

In order to examine the specific role of the nonlinear terms in the cubic model
independently of the Yap term, it was decided to run the nonlinear model with and
without this corrective measure. To assess the effect of Y¢ in a second context it was
also decided to run the Launder & Sharma model with the Yap correction. Details of all
the turbulence models described can be found in the references in table 2.4. The

abbreviations used to denote these models are also tabulated.

Turbulence model

Standard %k - £ model Launder & Spalding (1974)

ReNormalisation Group model Yakhot et al (1992)
Launder & Sharma low Re model Launder & Sharma (1974)
Launder & Sharma mode! with Yap term non-standard

Craft et al cubic non-linear model Craft et al (1996)

Craft et al model without Yap term non-standard

Table 2.4: Abbreviations used for the various turbulence models.

.
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Figure 2.1: Dependence of C, upon M 5o
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2.1.3 Near-Wall Treatment

Numerical solution of the momentum and turbulence equations requires the

input of additional information in the guise of boundary conditions. Whilst the
specification of boundary values is discussed in Chapter 3, the current section briefly

describes two methods of near-wall treatment required for the momentum and

turbulence transport equations.

2.1.3.1_Wall Functions

Since the k-€ and RNG models are not valid in regions dominated by viscosity,
wall functions are utilised to bridge the gap between turbulent and laminar boundary‘
layers. Generally, a Couette flow is assumed to occur in the vicinity of the walls and 1t

is characterised by constant total shear stress ( 7, = constant) and negligible streamwise

velocity gradients. Such a situation is described by a one-dimensional, ordinary

differential equation which can be cast into dimensionless form to provide a
relationship between U* (=U/fu,) and y* (=yu,/v). Launder (1981) reviewed

several different proposals for this relationship and found that in the case of a uniform-
stress wall layer in local equilibrium, all the reviewed formulae are equivalent,
significant differences, however, arise as separation is approached. A common
simplification in the description of near-wall flows is to neglect the buffer layer and
assume that the velocity profile undergoes an abrupt transition from the viscous
sublayer to the fully-developed turbulent layer (although three-layer models also exist,
see the review of Nallasamy, 1987, for details). In the TEACH code, this transition

point is taken at y” = 11.63 and the near-wall velocity is given as:

U'=y* for y* <11.63 (2.45)
U’ =-i—ln(Ery*) for y* 21163 (2.46)

where the friction velocity is defined as

wp= = R YY)
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The von Karman constant x and the constant of integration E,_ (also known as the

roughness constant) are of an empirical nature; their values for simple flows attached

to smooth walls are 0.4187 and 9.0, respectively.

Application of wall functions also supposes the shear stress in the boundary
layer to be constant. Furthermore, the equation for turbulence energy can, upon

assuming that local equilibrium holds true in the inertial sublayer (30<y*<400), be
simplified to:

UV —=¢ (2.48)

Further manipulation yields an expression for the shear stress in the inertial boundary

layer (equal to the wall shear stress):
r, =pCl%k (2.49)

Recalling that the friction velocity is a function of wall shear stress, equation 2.49 can

be rewrnitten as

r, =pC, k" (2.50)

U+
which is applied to the momentum equations parallel to the wall, in the boundary layer.

Due to the staggered grid (see Chapter 3), no special consideration is required for the

velocity normal to the wall, nor for the pressure.

Near-wall treatment of the k-equation involves recasting the source terms using

the above relations. The boundary value for the dissipation rate is given as:

Czl4k3f2
Ky

g == ~(2.51)

which is simply a combination of the definition of turbulent length scale with the value

for said quantity in the inertial sublayer (see equations 2.43 and 2.44).
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2.1.3.2 Damping Functions

The wall boundary conditions in low Reynélds number turbulence models
which solve the ¢ -equation are U=V =k =¢=0. Damping functions are employed
in the near-wall region so as to mitigate the excessive production of turbulence energy
which would otherwise be predicted by the high Reynolds number equations, given the

same boundary conditions. A role of the damping functions is to ensure that the

calculated variable distributions mimic the asymptotic variation of their experimental

counterparts. At the wall, the limiting behaviour (as y — 0) of the variables is:

kcy®, exy’, pcy’, -dvVeay’, Fcy’ (2.52)

The damping function f, is of greater consequence than f, because it

simulates the direct effect of the molecular viscosity on the turbulence energy and total
shear stress. Patel et al (1985) showed that a dimensional analysis of the eddy-

viscosity formula (equation 2.24) allows one to deduce that if C, is constant or not

directly dependent on y, then f, should vary as y™' or y', respectively, depending on
whether the £ or z equation is adopted. Examination of the f, expressions for the

LS and CRY models (equations 2.25 and 2.38) reveals that their asymptotic behaviour

is f,cy’ and f, cy', respectively (see table 2.5). Thus the formulation in the

Launder & Sharma model is inconsistent with the eddy-viscosity relation, whilst that of
the cubic EVM is correct. This has repercussions upon near-wall gradients; Chang et

al (1995) stated that the correct prediction of the near-wall f, distribution is a

prerequisite for the attainment of accurate heat and mass transfer rates at the boundary.

| s | CRY

Rocs 0 fu—> 0.03337 fo—0

s —>» 1.0 »—> 1.0

Table 2.5: Asymptotic behaviour of damping functions.
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2.2 COMBUSTION MODELLING

2.2.1 Background

Combustion is a process involving multiple species, each of which must be
represented. The conservation of molecular species equation, as given in equation
(2.53), is essentially a form of continuity for each species; upon addition of all the

individiual species equations, the overall mass continuity (equation 2.1) is obtained.

— ——(mi. Vi j) =0, (2.53)

where m; 1s the mass of species i’, V;:; is the mass diffusion velocity of species i’ in the
direction j and ®; is the net rate of mass production of species i# due to chemical
reaction. The unknown quantity V;;; can be found by solving the physically-correct
multi-component diffusion equation (Kuo, 1986), which states that the concentration
gradients depend on diffusion velocities, pressure gradients, differences in the body force
per unit mass on molecules of different species, and thermal-diffusion (Soret) and
diffusion-thermometric (Dufour) effects. Upon making certain simplifying assumptions,
this equation reduces to Fick’s law (an analogy of the gradient diffusion hypothesis) for a

binary system; this provides the following relationship between V;:; and the mass fraction

(Yir) of each species:
v, ==t ' ‘ (2.54)

where D; is the multi-component diffusion coefficient of species i’ with regard to the

rest of the mixture. Hence the simplified species transport can be written as:

Dm, o (. om, ? ey
— T —— r"-_lr ’ 2‘55
Dt ac,[‘ ac,]”‘" “ (2:55)

where I is the diffusion coefficient of species i’.
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The full energy conservation equation describes the transport of the stagnation
enthalpy. Ifit is assumed that thermal diffusion obeys Fourier’s law (again an analogy of
the gradient diffusion hypothesis), then the energy transport equation can be simplified to

Dh_ d (. &
222 ir 2lis 2.56
Dt éx,[ "ac,]+ " (2:29)

where A is the static enthalpy, I'}, is the diffusion coefficient and S}, is a source term which

can include radiation heat transfer, pressure work and viscous energy dissipation. The

static enthalpy of the mixture is the sum of the enthalpies of all the species:

T
h=)Y, (h; + ICpi.dT J ] (2.57)
: 4

i

where A, is the enthalpy of formation of species i’ and the second term on the right in

the parenthesis is the sensible enthalpy of species i".

In turbulent reacting flows where significant density vanations occur, the scalars

are also decomposed into mean and fluctuating components. However, the ensemble

averaging approach leads to the additional terms p'yj and p'¢’ being present in the

transport equations, for which no models are available. In order to circumvent this

problem, Favre, or mass-weighted, averaging is used for the variables, where

$=@+¢". Substituting these decomposed variables into their respective transport

equations and subsequently employing time averaging techniques, results in mean

transport equations which are identical in form to the onginal ones (i.e. 2.3, 2.4, 2.55,
2.56), except that the ensemble-averaged means are replaced by the density-weighted
means. Although Favre-averaging is an artificial technique used in aiding the closure of
variable-density transport equations for turbulent flows, Favre-averaged variables, whilst

physically of little meaning, are accepted as being sufficiently near in value to their

ensemble-averaged counterparts.
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The Favre-averaged scalar transport equations are still not closed, however,

because they involve the following unknown quantities:

" " n u

o Turbulent diffusion fluxes, pu, m, and pu, h , which are normally much larger

than the corresponding laminar fluxes and

e Mean reactionrate @, .

In the first instance, eddy-diffusivity (i.e. gradient transport) analogies of Fick’s and

Fourier’s laws are commonly used for the turbulent species and energy equations,

respectively:

" " H, &ﬁ‘, * "
pu, m, =-——-—"L (2.58)
P Sc, &,
" 1" a-;
pu, h ='§f5’ (2.59)
{ {

where Sc; is the turbulent Schmidt number and Pr, is the turbulent Prandtl number.
These dimensionless quantities are assumed to be constant and near unity in high
Reynolds number flows. A more accurate alternative to the eddy-diffusivity concept is
the General Gradient Diffusion Hypothesis (GGDH) of Daly & Harlow (1970).
However, it is commonly used with second moment closures since it requires accurate
knowledge of the Reynolds stresses. Craft et al (1997) used the GGDH for heat transfer

In conjunction with their cubic nonlinear model, but did not report on its contribution.

The final unknown is the mean reaction rate @, , the quantifying of which is the

essence of combustion modelling. In laminar cases, reactions occur over a finite period
of time and phenomenological chemical-kinetic expressions (based on the Arrhenius
model and using mean quantities) are employed. The reaction rate is a highly nonlinear
function of temperature and concentration (Jones & Whitelaw, 1982; Kuo, 1986; Libby
& Williams, 1980; Warnatz et al, 1996). This is significant in turbulent combustion,
where reactions can proceed at different rates depending on the local nature of the flow
field. Areas dominated by finite-rate chemistry can still be adequately described by the
Arrhenius-type models. However, in regions where combustion occurs sufficiently

rapidly and the turbulent mixing rates are high, (i.e. zones of extensive
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turbulence/chemistry interaction), Jones & Whitelaw (1982) reckoned the errors_

resulting from the application of an Arrhenius-type model to be up to three orders of

magnitude. It is clear that in the context of turbulent combustion, the reaction rate -af

is a strong function of turbulent and chemical time scales, and that laminar tools are not

suitable.

Two common modelling approaches can be taken in order to overcome this

hurdle. The first is the Eddy Break-Up (EBU) model of Spalding (1976), which was
improved and renamed as the Eddy Dissipation Concept (EDC) by Magnussen &

Hjertager (1976). Essentially, the reaction rate Z)T is related to the turbulent mixing

time scale &£ which controls combustion. The second approach is sometimes known as
the mixed-is-burned method, which is described in the next section. Gran & Magnussen
(1996) reported that in the case of fast chemistry situations, the conserved-scalar, flame-
sheet model (also known as the mixed-is-burned method), in conjunction with a ‘[
probability density function (described later), yields better predictions for species
concentrations than the EDC. Lau (1995) also found that the EDC concentration
predictions could be in error by orders of magnitude. Thus the flame-sheet approach

was selected for use in the combustion simulations for two reasons:

e Fortran subroutines for this method already existed.

e The EDC approach is computationally intensive and was reported as not yielding

significantly better results (Gran & Magnussen, 1996).

This decision was further justified by a comparison of the two different approaches as

applied to a bluff-body cdmﬁustof; the results are presented Appendix B.
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2.2.2 Flame-Sheet Model

A popular modelling approach for non-premixed flames is the the flame-sheet

model developed by Pun & Spalding (1967). It avoids the issue regarding the

determination of the reaction rate 5:_ by considering the transport of a conserved

scalar, for which there are no source terms. The mean mixture fraction f is normally

selected as the conserved scalar, and the associated transport equation is:

(2.60)

where o, 1s the turbulent Prandtl number, normally assigned the value 0.7.

Also known as the Simple Chemical Reacting System (SCRS), the flame-sheet
method treats combustion as a one-step reaction (although a different, chemical-
equilibrium approach does permit intermediate reactions within the conserved scalar
framework; further information is available in the Fluent 4.3 manual and in the review
by Jones & Kakhi, 1996). It is assumed that fuel and oxidant cannot coexist in a given

location; thus combustion occurs stoichiometrically and infinitely quickly as soon as fuel

and oxidant are transported to a point. Hence the mean mixture fraction f is defined as:

TR

where the meaning of subscripts is:

s 18 the stoichiometric oxygen/fuel ratio,

fu refers to fuel,

bx refers to oxidiser,

I refers to the fuel inlet and

0 refers to the oxidiser inlet.
This equation yields information rcgafdin'g the mass fractions of fuel, oxidant and
products at a point. Further linear relationships are used to compute the mass fractions
of individual species. The limits of the mixture fraction ? ére 0 and 1, depending on

whether the mixture at a point contains only oxidant or only fuel. Assuming that no
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oxidant is present in the fuel inlet and that no fuel is present in the air inlet, the

stoichiometric mixture fraction is defined as:

p P — (2.62)

Sm g, | +tm,,
By definition, fast chemistry requires that no fuel be present in the products of reaction

in the case of excess oxidant. Similarly, if there is an excess of fuel, then no oxidant will

be present in the products.

In an adiabatic system, the enthalpy and temperature are linear functions of the

mean mixture fraction and are defined as:

h=h,+ f(h - h,) (2.63)
h—
Cp,mix

where my is the local mass fraction of fuel, H is the calorific value of the fuel and Cpmix
is the specific heat of the local gas mixture (this is temperature dependent and is

calculated from empirical formulae). The density is calculated from the equation of state

P

— (2.65)
RTY —~
2,

D=

where W; is the atomic mass of species i and R is the universal gas constant.

The flame-sheet model is adequate for predicting flame lengths and yields
acceptable spatial variations of major species (i.e. fuel and oxidant). However, the
temperature field is a direct function of mean mixture fraction only and is not affected by
the actual transport of enthalpy, which is a significant factor in turbulent flows. In other
words, there is no mechanism within the model to account for the interaction between
turbulence and chemistry. Jones & Whitelaw (1982) expressed this-problem in a more
fundamental manner by stating that the main fault of the flame-sheet model is its inability

to account for the fluctuations in mixture fraction, caused by the highly non-linear
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relationship between reaction rates and concentration and temperature levels. This

problem can be remedied by adopting a probability density function (pdf).

The probability density function p(f) describes the fraction of time that the
ﬂucfuatiﬁg variable (instantaneous mixture fraction f) takes on a value between fand f +

Af . Figure 2.2 demonstrates this concept in a graphical manner.

Figure 2.2: Graphical description of probability density function (Fluent 4.3 manual)

In a given period of time T (variable not to be confused with temperature), the

fluctuating variable f has a value in the band Af for a certain fraction of the period T

under consideration. The pdfis a curve plotted such that the area under it in the band Af

i1s equal to the time fraction that f is in this range. Expressed mathematically,

p(NHASf = lim -l-z T, (2.66)

T—+mT 7

where 7, is the fraction of time that fis in the f + Af region. The nature of the function

p(f) depends on the turbulent fluctuations of /. Ideally, p(f) curves should exactly match

experimental results.

The time averaged values of all the scalars which depend on mixture fraction f

can be calculated using the probability density function. Thus, mean density, species

LI

concentration and temperature are computed from |
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Ll

b =[pnendf | (2.67)

It should be noted that during this integration, the incremental scalar ¢,(f) is found

using the linear relationships involving f; in the case of temperature and density, for

instance, relations 2.64 and 2.65 are used.

Probability distributions tend to be functions of the mean mixture fraction f and

its variance f'*, the latter being found from a transport equation:

D" _ 2 (m 317" AN
P Dt _&j [Ut &j )-I-Cglpt[a;- - gzp'};f (268)

oF

where the constants take on the values Cy; = 2.86 and C;z = 2.0. The best distributions

are those which most closely resemble experimental observations of species
concentrations. The clipped-Gaussian and B profiles are the most successful (Jones &

Whitelaw, 1982). The B-pdfis defined as follows:

[/ -0)""df

m= j-{-{(-}——;—.-f-)-— ] (2.70)

n=(1- f)[-{(-:-_-_{-)-- ] (2.71)

The variance must comply with the condition

02 f1- - (2.72)

thereby implying that m > 0 and n > 0. Furthermore, the upp;er limit of 7—’? is 0.25.

The exact shape of the B-pdf is seen to depend on the values of ax;d n; this is clearly

demonstrated in figure 2.3.
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m=n=|l

Figure 2.3: Variation of B-pdf with the parameters m and n (Libby & Williams, 1994).

Singularities occur when f =0 or 1; these are generally avoided by simply reverting to

the standard flame-sheet model for asymptotic values of mean mixture fraction.

The major assumptions pertaining to the conserved-scalar approach are listed
below (Kuo, 1986).

* Infinitely fast chemistry.

o Simple, one-step, forward, irreversible reaction.
e Jdeal gas law.

e Equal mass diffusivities of all species.

e Fick’s law of diffusion is valid.

e Schmidt (Sc) and Prandtl (Pr) numbers are near unity.

e Lewis number (Le = Sc¢/Pr) is unity (i.e rate of energy transport equals rate of mass

transport). ~
e Dufour and Soret effects are negligible.

o Negligible combustion-generated turbulence.
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The issue of combustion-generated turbulence is also touched upon in the following

section which examines variable-density effects.

2.2.3 Variable-Density Effects

Variable-density flowfields can raise issues which are not specifically addressed
by the turbulence and combustion models described previously. However, 1t has been
shown that in certain cases variable-density effects can be safely assumed to be

negligible. This section outlines the key issues and explains why the turbulence and

combustion models require no modification for the bluff-body combustor case.

A standard practice in turbulent combustion modelling is to simply utilise the
isothermal transport equations and exchange the ensemble-mean variables with their
Favre-averaged equivalents. This is confirmed in the reviews by Jones & Whitelaw
(1982) and Borghi (1988), in which it is also noted that the turbulence model constants
are not altered. However, it is recognised that variable-density flows do have an effect
on scalar transport. This is manifested by the tendency of lower-density eddies to be
more strongly accelerated when subjected to a pressure gradient, than those of higher
density. This differential acceleration results in the motion of eddies relative to each
other, thereby effectively enhancing turbulence generation and the non-gradient transport

of scalars. Starner & Bilger (1980) were the first to experimentally investigate diffusion
flames subjected to mean pressure gradients (achieved by placing the flame in a

converging passage). They revealed that the pressure-density interactions strongly
influence the turbulence fluctuations and that the flame is susceptible to shortening of up
to 25% in moderate pressure gradients. Faced with these possible consequences, 1t 1s
expedient to assess how variable-density and Favre-averaging effects bear upon the
modelled scalar transport equations and the auxiliary thermodynamic relations.

~ Turbulent diffusion fluxes of any scalar in variable-density flows are not only due
to gradients of the scalar; rather, significant contributions are made by. pressure gradients
between zones of variable density (known as non-gradient diffusion). In the review of

Borghi (1988), it is noted that the isothermal gradient diffusion is applicable to rapid,



Chapter 2: Turbulence and Combustion Models 2-26

single-step combustion. Jones & Whitelaw (1982) make the same observation, and_
assume that the influence of density variations is entirely taken into account by the use of
density-weighted averaging. The influence of combustion on pressure-driven scalar
transport is manifested by a modification of the diffusion cqefﬁcients; Pry and Sc; are
assumed to be less than unity (they are also equivalent). Values of 0.7 and 0.9 are
| commonlsr used for the turbulent diffusion coefficient in, respectively, free ﬂpws and

near-wall flows (Jones & Kakhi, 1996).

Variable-density effects are also apparent in the turbulence equations. If the
original k and € equations are derived whilst employing Favre-averaging techniques, then
additional terms containing products of fluctuating quantities and mean gradients are

obtained. In the &k equation, these terms are interpreted as turbulence generation due to

thermal effects, and are commonly modelled as

bo=f -~ - (273)

where Py is the standard turbulence generation term (Jones & Whitelaw, v1982?). The
corresponding source term in the € equation is also modified accordingly. Chomiak &
Nésbitt (1995) reviewed vafious ;n;)dels for these pressure-related terms, and proposed
several of their own. However, they noted that in the ébsence of significant axial

gradients, the variable-density effects on turbulence generation can be ignored.

Dilatation effects on the equations were also surveyed. Velocity divergence, as it
is also known, is attributable to heat release causing an expansion of the flow, and results

In a decrease in turbulence energy. It is often accounted for by adding the term

U
C.,pe —~- 2.74)
:3p &j (
in the € equation, where the value of the constant C,; depends on the specific
application. Chomiak & Nesbitt (1995) validated the variable-density and dilatation

models in the k-¢ framework by comparison with the standard 4-e model and also with
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the experimental diffusion flame data of Starner & Bilger (1980). It was found that

dilatation is negligible and hence need not be accounted for.

Once Favre-averaging has been adopted, it should be applied to all the auxiliary
thermodynamic relations (e.g. sensible enthalpy equation for each species, ideal gas
law) as well as to the transport equations. In practice, this introduces further

comphcatlons due to the existence of correlations between mass fractions and

fluctuating temperature (Chung, 1993). An error analysm by Brizuela (1995) reveals

that when an assumed B-pdf profile is used, the errors associated with density and
temperature at low mean mixture fractions can be significant (order of 1% and 7.5%,

respectively, for a premixed methane flame). These errors become smaller, but remain
significant, for the temperature as the mean mixture fraction is increased. As per

common practice, though, this issue is not specifically treated.

This section has explained the subtleties of variable-density flows which

generally need to be accounted for by turbulence and combustion models. .Listed below

1s a summary of actions taken:
e Pri<1 andSc <1 to account for non-gradient diffusion.
e No modifications required for the turbulence production term.

o Dilatation effects are ignored.

e Standard averaging is used for all auxiliary thermodynamic relations.

b



CHAPTER 3: NUMERICAL METHODOLOGY

The present chapter examines the CFD tools and methodology utilised in order
to perform successful simulations. A general description of the TEACH research code
is given, which is then followed by a catalogue of all the major modifications made to
the code as regards implementing turbulence models and incorporating new physics.
Guidelines are prescribed concerning discretisation schemes, grid quality and
convergence criteria. Boundary conditions are listed and their influences are quantified.
Finally, stability considerations particular to the nonlinear turbulence model are

discussed, as well as the remedial measures taken.

3.1 CFD CODE

3.1.1 General Description

The TEACH (Teaching Elliptic Axisymmetric Characteristics Heuristically)
code was originally written by Gosman & Pun (1974) at Imperial College for research
purposes. It i1s based on finite volume methodology and employs a staggered,
structured, orthogonal computational grid, thereby restricting the flow geometries to
those with simple, smooth surfaces. A staggered grid is used so as to avoid a so-called
checkerboard solution. The SIMPLE solution algorithm of Patankar & Spalding (1972)
is employed. TEACH only caters for uniform radial and nonuniform axial grd
generation; thus non-uniform, orthogonal meshes were generated using the pre-

processing facilities of Fluent. The hybrid (first-order upwind (UPS), second-order
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central differencing (CDYS)) discretisation scheme of Spalding (1972) is employed so as _

to avoid the unphysical oscillations which can arise as a result of the convection terms

being discretised with CDS.

3.1.2 Code Development
The original TEACH algorithm was designed with steady, turbulent, two-

dimensional (plane and axisymmetric), incompressible flow in mind, although its
architecture allowed for relatively straightforward implementation of new physics. The

standard k-€ model accounted for turbulence effects; the original test case was the pipe

expansion of Back & Roschke (1972). In order to achieve the research aims described

in Chapter 1, the code required modification in the following areas:

e Geometry (to cater for various test cases).

e Turbulence Modelling (implementation of established and new models).
o Swirl (introduction of relevant equations so as to enable prediction of
swirling flows).

o Combustion Modelling (introduction of combustion model).

The discretised partial differential equations in the TEACH code are based on
Cartesian/cylindrical coordinates, thereby requiring that the flow geometries
Investigated consist of straight boundaries. Introducing new geometries necessitated

many changes in the code; thus the only configurations examined were straight pipes,

pipe expansions and coaxial combustors.

Several turbulence models were added to the TEACH code. The first, the RNG

model, simply required a different value for the constant C,, and the addition of a strain
related source term (via C,,) to the dissipation rate equation. The Launder & Sharma

(1974) low Reynolds number model was implemented for the simple reason that its
basic structure is similar to that of the nonlinear model, hence allowing for facilitated,
step-wise coding and testing of the cubic model. Furthermore, it isTarguably the most
popular low Reynolds number model in use and therefore serves as a benchmark with

which to compare the nonlinear model. A new subroutine solving the isotropic
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dissipation rate equation (equations 2.22 and 2.34 for the LS and CRY models,
respectively) was introduced, as well as a subroutine which calculated all the strain
rates, damping functions, turbulence generation and higher-order terms in the nonlinear
stress-strain relations. The nonlinear elements of the Reynolds stresses were
incorporated in the momentum equations by inclusion in the source terms. Direct
Integration to the solid boundaries was required by the low Reynolds number models;

thus the wall treatment described in section 2.1.3.2 was also added to the code.

The capability for simulating swirling flows was achieved by implementing a
transport equation for tangential momentum. This was somewhat simplified by the

assumption of axisymmetry, but still contained convection and diffusion terms with

both axial and radial gradients. Again, the equation had to be integrated directly to the

wall for use with the low Reynolds number models. Many of the existing subroutines

required the addition of swirl-related terms. The momentum transport equations
describing swirling flows are written out in Appendix A. Confirmation that the swirl-
related modifications were correctly implemented is available in Appendix C, which

briefly compares the TEACH and Fluent code predictions for a swirling pipe flow.

Subroutines accounting for combustion (i.e. solution of the transport equatlons
2. 60 and 2.68 for mixture fraction mean and variance) were obtained from a suitably
modified version of the TEACH code. The only necessary changes were those
concerning chemistry definition and the appropriate modifications in the common
variable blocks of all tﬁe relevant subroutines. Modifications were also made to cater
for fuels which contained non-combusible components. Whilst the relevant inlet

conditions (discussed in section 3.3.1) still hold true in these cases, the linear

relationships between mean mixture fraction, species mass fraction and enthalpy needed

to be reformulated to reflect this.
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3.2 SIMULATION GUIDELINES

3.2.1 Minimising and Quantifying False Diffusion

The upwind component of the hybrid discretisation scheme is only first-order
accurate and thus tends to introduce numerical diffusion which can be in excess of
actual turbulent diffusion. Details of the precise generation mechanism are given by

Leschziner (1980). The purpose of this section is to briefly describe the situations in

which this phenomenon arises and then to provide guidelines on:

e Quantifying the extent of numerical diffusion.

e Generating computational grids in which false diffusion is minimised.

Within a 2-D system, the false diffusion coefficient I', for first-order upwinding

can be computed from the formula derived by Vahl-Davis & Mallinson (1976)‘:

pU AxAysin(26)

= 4(11\ysin3 0 + Ax cos® 9)

(3.1)
where 6 is the angle made by the resultant velocity U, with the grid lines. The

magnitude of I, is seen to depend on cell size and on the skewness of the tlow with

respect to the computational grid. Thus false diffusion is minimised in flows ﬁvhich are
predominantly aligned with fine grids. To give an idea of the effects of artificial
diffusion, Launder (1981) showed that in the case of flow over a backward-facing step,
the false diffusion due to employing only first-order upwinding could affect the

computed reattachment length by 0.3 step heights (the predicted and experimental
reattachment lengths were 5.5H and 7.5H, respectively).

The hyBrid discretisation scheme only employs upwinding when the magnitude

of the Peclet number, or cell Reynolds number (Pe = pU,Ax, [y, ), is greater than 2.

For smaller values, central-differencing is used and no numerical diffusion arises. Thus

an ideal computational grid is one in which |Pe| < 2 everywhere. Clearly, this 1s an

* .

uneconomical approach resulting in excessively large meshes.
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An alternative is to concentrate the mesh in areas where diffusion 1s most
important and where the flow is not aligned with the grid.. For example, in pipe
expansion flows, diffusion in the radial direction is as significant as convection within
the recirculation region, and is dominant elsewhere. In light of this, the radial grid is
refined such that |Pe| < 2 in this orientation. Convection is the dominant process in the
axial direction, so the density of the longitudinal grid is not as critical, particularly since
the axial flow is mostly aligned with the grid. Ramos (1993) and Jones (1994) stated

that numerical diffusion caused by first-order upwinding is negligible at high cell

Reynolds numbers mainly because the second derivatives, on which diffusion is based,

become insignificant.

A comparison of the TEACH and Fluent codes for a pipe expansion case

indicates that false diffusion effects become small when an adequate grid is utilised (see

Appendix D for details).

In the present work, computational grids were created according to the two

guidelines below, which permit the extent of false diffusion to be minimised and

thereafter quantified:

* Grids are selectively refined so as to promote the use of central differencing where

diffusion is important. |
e Equation 3.1 is used to quantify false diffusion for a given grid. It should be noted

that the result is a worst-case estimate because this formula was derived for

upwinding only.

3.2.2 Grid Quality and Independence

The quality of a CFD solution is a strong function of the associated
computational grid. In order to resolve complex flows, meshes must be refined in areas
of steep gradients, thereby necessitating the use of non-uniform grids. This is
particularly true near solid boundaries in wall-bounded flows, although the exact

gridding employed depends on the turbulence model. This issue is resolved in section
3.3.3.
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Numerical predictions are only meaningful if they can be shown to be

independent of the grid. Proving a solution to be thus can be achieved by comparing

skin friction factors

| T
C, =— (3.2)
1 1pU;

for succeésively larger grids (as recommended by McGuirk, 1998). In recirculating
flows, the reattachment length provides a further measure. For flows in which the walls

are far removed from any important flow features, profiles of U and k which bisect these

features are better indicators than the skin friction factor. In the case of the low

Reynolds number turbulence models, grid independence was ascertained using the

nonlinear model. This is due to the fact that the cubic model tends to decrease turbulent
viscosity, thcrebyﬁ increasing cell Peclet numbers for a given grici and potentially
increasing velocities too. Since grid-independence is affected by velocity magnitudes,
then if the CRY model is shown to be grid independent, the LS model certainly is so
too. It was thought that the same procedure could be used for the high Reynolds

number models (since the RNG model diminishes turbulence energy in recirculating

flows), but it was found that in some cases a given grid was sufficiently dense for the

RNG model but not so for the k- model. Hence grid independence for computations

using high Reynolds number models was checked using both the k-& and RNG models.

3.2.3 Convergence Criteria

During each simulation, normalised residuals were reported for the momentum
and continuity equations. The documentation accompanying the TEACH code
(Gosman & Pun, 1974) asserts that convergence is attained when the residuals are of the
order 107 relative to the reference values (i.e. inlet mass and momentum flow rates).
However, in the case of the low Reynolds number turbulence models, solutions to a
turbulent pipe flow simulation which met the above criterion were found to be not
entirely correct. This was deduced by taking a force balance along a fully-developed

section of said pipe and applying computed pressure gradients and wall shear stresses to

the following equation, where it was found that the two sides of equation 3.3 were
distinctly unequal.
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=t (3.3)

This fundamental force balance was only satisfied once the normalised pressure

residuals had dropped to O(10™*). This, therefore, was the adopted convergence

criterion. Launder (1981) also found that 10® was not always sufficient as a
convergence criterion for recirculating flows, stating that the predicted reattachment

lengths could vary according to the final residual level.

Residuals for the turbulence quantities k and € were also computed, but their
absolute nature meant that convergence could not be judged by them. No specific

residual levels were aimed for with the turbulence quantities because the final residuals
were seen to depend on grid size (denser grids resulted in higher final residuals for k and
€), but it was generally found that the final residuals were about five orders of
magnitude smaller than the intial levels. The values of all the variables were monitored
at a key location (e.g. near the wall or in the recirculation zone, depending on the flow);
as an additional convergence test, these values were checked for invariance with
iteration number. In combusting flows, the desired level for the final residuals of mean

mixture fraction and variance was of the order 10° (Fluent 4.3 Manual).
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3.3 BOUNDARY CONDITIONS

The purpose of this section is to present guidelines regarding the specification of

Inlet, exit and wall boundary conditions, particularly with reference to the turbulence

models used and the various flows which were simulated.

3.3.1 Inlet Conditions

. Inlet levels for velocities, turbulence energy and dissipation rate are case-

dependent, whilst inlet values for the combustion quantities are always those shown in

the table: | |
A

Fuelstream | 1 | 0

Oxidantstream | 0 | 0

Table 4.1 : Inlet conditions for combustion quantities.

The 1inlet value of the velocity is normally readily available, but this is not usuallytthe
case for the turbulence quantities k and € (or &) which must therefore be estimated.

The turbulence energy can be related to the mean velocity by means of the turbulence

intensity T;, which is typically of the order of several percent:

T,

k='1—016U2 K (3.4)

The dissipation rate is commonly estimated from a rearrangement of the definition of
turbulent length scale: *

1’;312 |

L

where L is a characteristic dimension of the flow geometry in question. A generally

£ (3.5)

accepted formula is

C3/4 k3f2
£=—= 6
0.07L .- B30)
‘but Nallasamy (1987) recommended that the formula -
| C k3f2 " .
£=—= 3.7)

0.03R,
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be used for flow in a pipé expansion (Where R; is the inlet pipe radius).

It is of course important that the nature of the numerical conditions reflect, as
far as possible, those actually encountered in the flow. For example, if the actual inlet
flow is fullil;dcvcioped, then such a profile should also be used for the numerical inlet
conditions. A numerical study for a pipe expansion: (see Appendix E) demonstrates that

when the actual flow 1s indeed fully-developed at the inlet, then the best predictions are

obtained by using fully-developed profiles for U, k; and € (or € ), rather than just for the

mean velocity.

In the presenf work, the éasés in\‘folvilq‘ltg furlly-dge;feeloped inlet flows generally
had experimental inlet profiles for both the mean velocity and the turbulence energy. In
such instances, the experimental inlet profiles were mapped onto the inlet section of the
computational grid by using interpolation functions in MATLAB. The dissipation rate
was found by applying a reiation of the form given by Equation 3.5 fo each discrete
point along the inlet profile. When the isotropic dissipation rate was reéuired, it was 1

generally assumed that € = ¢ justification for this simplification is given in the various

cases 1n Chapter 4 where this assumption was indeed made.

Various formulae exist for specifying inlet dissipation rate, even for one type of
flow. Relations 3.6 and 3.7 are just two examples of such formulae which are applied to %
pipe expansion flows. A numerical study for a pipe expansion (carried out in Appendix
F) assesses the sensitivity of certain predicted parameters to the application of various
Inlet specifications for dissipation rate (equations 3.6 and 3.7). It is found that the
computed reattachment was not in fact a strong function of the inlet dissipation rate.

Data from the literature is also presented; it confirms this finding for a wider range of

Inlet specifications.

‘The degree of development of the inlet boundary layer can have significant

effects on the flow further downstream. The frequent practice of assuming flat (plug)

profiles is only valid when the inlet bouhdary layer is relatively thin. In the presence of
a significantly-developed boundary layer, flat inlet profiles can only be assumed if

certain measures are taken. For example, in the case of a pipe expansion, the flat inlet
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profiles should be specified 5 step heights upstream of the expansion (Thangam &
Speziale, 1992) in order to permit the development of a boundary layer.

3.3.2 Exit Conditions
Several types of exit boundary treatments exist; the method used by TEACH

applies zero axial gradients at the exit (for all variables bar pressure). This assumption

1s valid provided that the exit is located far downstream from any major flow features.

The redevelopment length in a pipe is taken as 80d (Durst et al, 1993), so the
exit condition in the fully-developed pipe flow is placed that distance downstream of the

inlet. The situation regarding highly swirling flow is somewhat more complex and is

thus discussed specifically in section 4.5.

Launder (1981) found that reattachment lengths in backward-facing steps are
atfected by the location of the outlet if the computational domain is shorter than 25 step
heights (H). Similarly, Thangam & Speziale (1992) recommend 30H whilst Eaton &

Johnston (1980) specify SOH. These guidelines are used for the pipe expansion cases
studied in the present thesis.

In the reacting cases, the issue of outlet condition placement is discussed in the

relevant sections in Chapters 5 and 6.

3.3.3 Solid Boundaries

The treatment of the momentum and turbulence transport equations in the

vicinity of a wall was discussed in Chapter 2. The purpose of the current section is
threefold:

1. To establish the location of near-wall nodes.

2. To provide guidelines for the treatment of side walls.

A adlle

3. To give the wall boundary conditions for the combustion-related variables.
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'~ When wall functions are utilised in conjunction with the k-€ and RNG models, _
the near-wall nodes should be placed in the inertial sublayer (30 <y* <400). Opinions
vary somewhat regarding the location of the solid-boundary nodes when utilising low

Reynolds number models. McGuirk (1996) recommended utilising at least five nodes

within the viscous sublayer when using the Launder & Sharma model. Craft et al

(1997) placéd the near-wall node at y' <0.3 for transitional flow over a flat plate,
whilst Apsley & Leschziner (1998) used y; =1 for a back-step case. At the expense of

erring on the side of caution, all the low Reynolds number simulations performed in the

present research work employed grids such that y; <0.3.

In geometries involving a solid boundary which is perpendicular to’ the main
flow (i.e..in pipe expansions and bluff-body combustors), the momentum and
turbulence transport equations for the low Reynolds number models (LS and. CRY)
should ideally be integrated directly to the side walls too. This poses the problem of
having to use a separate set of damping functions for each.wall. Furthermore,
integration to-the side walls would necessitate very dense, nonuniform axial grids,
thereby causing an unacceptable increase in computing requirements. For this reason,
wall functions are also applied to the side walls when low Reynolds number models are
used. In the pipe expansion geometry, the main flow is a strong jet that is almost
parallel to the pipe wall, and the velocities near the vertical wall are at least an order of
magnitude smaller. The effects of using standard wall functions at the side wall, on
flow predictions is likely to be small. Gran & Magnussen (1997) also adopted this
technique during their application of the Launder & Sharma (LS) model in a bluff-body

burner; they found that the results were not compromised by this practice.

- In cases involving combustion, the mean mixture fraction and variance were

both simply set to zero at the walls.
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3.4 NUMERICAL PRACTICES REGARDING THE NONLINEAR MODEL

Obtaining a stable, converged solution with the nonlinear turbulence model
proved to be an intricate proposition. The main difficulty lay in the stability of the
solution; in the absence of special treatment, the simulation would diverge or crash.

Three causes for this behaviour were found; the necessary remedies are described 1n the

following sections.

i~

3.4.1 Turbulence Generation

Introduction of third-order terms in the nonlinear model is required for resolving
complex flow features, but also results in the realisability criterion not being met.
Whilst the k-, RNG and LS models predict unconditionally positive values for
turbulence generation Py, the cubic model can yield negative normal stresses (Rabbitt,
1997, Apsley & Leschziner, 1998). This results in‘negative values for turbulence
energy and causes the TEACH program to crash. From the point of view of stability,
this problem was rectified by recalculating Py, in the event that Py should be negative
when computed with the nonlinear contributions, using the LS methodology. The
purpose of the stability measure is thus to avoid significant negative contributions from
any of the Reynolds stresses in the developing stages of a simulation. ' In other words,

negative values for Py only arise when a simulation is first started and the initial flow

field estimates yield excessive velocity gradients.

Theoretically, this stability measure should affect the final solution. In practice,
however, this was not found to be the case. The Tropea et al (1989) pipe expansion
flow was simulated using the nonlinear turbulence model, with the above stability
measure in place. Upon convergence, this artificial device was removed and'it was

possible to obtain a second converged solution. Several aspects of the two predicted

flow fields were compared. The reattachment lengths were virtually identical

(X/H=1.87 and 1:89), as were the respective radial profiles of U, kand #/ v at six axial
locations (graphs of these are not shown because the respective curves are almost
indistinguishable from one another). Skin friction factor plots proved to be nearly the

same (figure 3.1). The slight discrepancies encountered are probably relatéd to small
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variations in degrees of convergence; inspection of the residuals of the two solutions

revealed differences of 6%, 5.9% and 3.3% between the axial momentum, radial
momentum and mass residuals, respectively. The stability measure described does not

interfere with the final solution and is therefore a valuable tool for ensuring that

meaningful, converged solutions are obtained.

3.4.2 Gradient Production Term

A second area of numerical concern with the nonlinear model was the form of

the gradient production term E (see equation 2.41). In complex flows such as those

involving recirculation, it was found that the condition E = 0 for Rt > 250 would lead to

instability. The role of this constraint was examined in the simpler turbulent pipe flow,

for which stable solutions could be obtained both with and without the above constraint
for E. A radial plot of E for these two solutions is shown in figure 3.2; it reveals that
the condition £ = 0 for Ry > 250 imposes a discontinuity in an otherwise smooth
distribution of E, which appears to be the cause of numerical instability in more
complex flows. The graph indicates that if the E = 0 constraint is removed, the value of
E as the centreline is approached is small compared to the peak near the wall, where
gradient production is expected to have the largest effect. Furthermore, in both cases

the value of E was always at least an order of magnitude smaller than the main source

terms in the £ equation. The effect on U and k of lifting the constraint on E, is not

detectable because radial profiles for these quantities were the same for the two cases.

Whilst this investigation showed that lifting the constraint on E in a fully-
developed pipe flow simulation had no effect on the results, it did not yield information
pertaining to this issue in complex flows. It was initially thought that the occurrence of
this instability in the pipe expansion case could be due to the fact that the nonlinear
model had not been calibrated for recirculating flow. To test this hypothesis, an annular
mixing layer (two concentric air jets of differing velocities) was simulated, but the
above problem persisted. This seemed to indicate that instabilities occurred whenever
the abrupt behaviour of the E term coincided with a flow feature in which high gradients

are involved. Thus it was not possible to quantify the effect of the constrained E in a

complex flow. However, the above evidence (for a pipe flow) suggests that removing
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the constraint should not matter. Based on this reasoning, the constraint was lifted in all

the simulations of complex flows.

3.4.3 Under-Relaxation

The last numerical issue involving specifically the nonlinear model is the matter
of under-relaxation; for the main variables these factors had to be smaller than those of
the high Reynolds number turbulence models. Additional under-relaxation was also
required for the nonlinear contributions to the Reynolds stresses; the factors had to take
on values of 0.05 or smaller in order to avoid instabilities. This resulted in the

computations requiring significantly more time to reach a fully-converged solution

which met the criteria set out in section 3.2.2.
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Effect of stability factor on Skin Friction
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Figﬁre 3.2; Effect of constraint on the term E, for the fully-developed
pipe flow of Durst et al (1993).



CHAPTER 4: VALIDATION SIMULATIONS

The main flow features in the bluff-body combustor described in Chépter 6 are
recirculation and swirl. Prior to the application of the cubic turbulence model to the
burner, it was necessary to assess the performance of this model in several cases which
isolate these individual flow ﬁhenorriena. This would give an indication of the potential

effectiveness of the nonlinear model in the combustor environment. Furthermore, the

performance of the cubic model could be compared to three commonly used EVM’s (-
€, RNG, LS). The test cases selected for comparison and validation purposes are fully-
developed, turbulent pipe flow, pipe expansion flow and finally highly-swirling pipe
flow. At the time of writing, nowhere in the public domain was there any

documentation concerning the application of the nonlinear model to the last two flows.

4.1 PIPE FLOW - DURST et al (1993,1995)

Although not a complex flow, the fully-developed pipe flow of Durst et al
(1993, 1995) was selected to ensure that the LS and CRY models had been correctly
implemented in the TEACH code. Several noteworthy conclusions were drawn despite
the simplicity of this case. The working fluid is oil (kinematic viscosity 4.3x10® m?s,
density 860 kg/m’) which flows through a D=50mm diameter pipe of 4.0m length.
Experimental profiles (obtained using laser doppler velocimetry, LDV) for mean axial
velocity and normal Reynolds stresses were available for two different Reynolds
numbers, Re~20500 and Re~7500, which correspond to mean inlet velocities of 1.85m/s
and 0.64m/s, respectively (the paper reported a flow rate of 1.79m/s;.but integration of
the experimental profiles yielded the figure of 1.85m/s). Both cases were simulated

assuming flat inlet prdﬁles for U, k and €, using equations 3.4 and 3.7 (where T; = 3%).
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Since the inlet profile was flat, the assumption € = ¢ is valid. Various computational
grids were utilised; grid independence was assessed by comparing the radial turbulence

energy distributions (in the fully-developed area) for the different meshes. It emerged
that a 500x40 mesh was sufficiently dense to support a valid solution obtained with the
LS model (the coarser grid, 200x30, yielded identical results so that grid independence

was also ensured for the nonlinear model). In order to reduce the computational effort,
the pipe length was reduced to 60D and the grid was scaled down accordingly (375x40);
the results hardly changed. The radial distribution of cells located the near wall node at
y* < 0.3 for the higher flow rate. A 325x25 grid was utilised for the high Reynolds
number models such that y,” > 13 (again, based on the higher flow rate). Convergence
was judged by the criteria set out in Chapter 3. No amount of numerical manipulation,

though, would diminish the relative axial momentum residual below 5x10~ for the

Re~7500 case (using the CRY model). However, tests showed that the force balance of

equation 3.3 could still be satisfied by ensuring that the pressure residual was of the

order 1074,

4.1.1 Results

Global characterizations of pipe flow are given by axial pressure gradients and
friction velocities. Table 4.1 compares these experimental and computed quantities for

the various turbulence models, at the two flow rates considered by Durst et al (1993,

1995). The predicted friction velocities are found from

e a0 | (4.1)

where the wall shear stresses for the low and high Reynolds number models are,

respectively,

A
= 42
T = u-—-—@ ( )

Tw = pC:;n kw "':.‘; (4.3)
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Durst et al (1993, 1995) computed friction velocities based on near-wall LDA_
measurements; experimental pressure gradients were thus obtained from the force

balance in equation 3.3. Predicted pressure gradients were computed from the

simulated pressure field. Agreement between experimental and predicted values is

generally good; in fact the CR model gives the best results for both flow rates.

Introduction of the Yap factor in the nonlinear model, however, is seen to cause a
deterioration in predicted pressure gradient and friction velocity. A third, less common

parameter 1n pipe flows, is the dimensionless wall dissipation rate:

g, =— (4.4)

Patel et al (1985) suggested that this parameter could be described by ¢) =24" where

A" is based on pipe experiments. Myong & Kasagi (1990) report details on the variation
of 4" with Reynolds number; the values of 4 for Re=20500 and Re=7500 are

approximately 0.043 and 0.035, respectively. The CFD predictions for &, are

compared to the empirically-derived values. " Table 4.1 indicates that all the low

Reynolds number models significantly underpredict £, with the nonlinear model

w?

improving somewhat over the LS model. This underprediction was also reported by

Myong & Kasagi (1990) in their application of the LS model to the pipe flow of Laufer
(1954). Suga (1995) obtained similar trends when applying the nonlinear model to

channel flow.

0
o
|
G
o
o

Re = 20500

4

2
&
=

t

T +
5
.
S

n

3

Pa/m m/s

73

Experimental

040
0.040
0.0405
0.0403
0.0409
0.0399

Il"u
il

<y (Y |
S ENE IS,
=
o
ESS

hh [O0 O

3

a3
™

ANAAHE
OO0 10U frm Jowe fee JON
NI JOOIDNIO |4~

<

Y

o

D

NI

0.0092
0.0090
0.0223
0.0160

LSY
CR
CRY

-
~J

0.0999 | 0.0209

il i

Table 4.1: Comparison of pressure gradients, friction velotities
and asymptotic values of dissipation rate.



Chapter 4: Validation Simulations 4-4

No values of ‘¢, are given for the high Rejmoids number models because of the.

relétively large distance of the near-wall node from the solid boundary.

The computed radial profiles for mean ax1al velocity U, U" (=U/u, ), turbulence

energy k, normahsed Reynolds shear stress ~u'v / u, and normalised normal stresses

u' /u,., and _v"/u, are plotted in figures 4.1 to 4.6 for the case Re = 20500. The

respective curves for the smaller flow rate are depicted in figures 4.7 to 4.12; these

match the trends of their higher Reynolds number counterparts. Figure 4.1 indicates
that all the models slightly underpredict the centreline mean velomty, especially the k-€

model The predictions for U™ are shown by figure 42 to possess the same tendencies

as the mean velocity.

The data for turbulence enefgy (obtéined by corhbining the experimental normal
stresses k=L1u'u') exhibits a sharp near-wall peak in figure 4.3, which is not quite

matched by the computed values. The simulations also overpredict the centreline values
of k. As regards the maximum level of k, the CR model yields the highest whereas the
LS, LSY, k¢ and RNG models all predict similar, lower values. Additional
confirmation that the LS model was correctly implemented in the TEACH code is
provided by the fact that the above profiles obtained with this model exhibit the same
tendencies as those in a simulation by Myong & Kasagi (who also used the LS model),
of the Laufer (1954) pipe flow (Re=50000). Furthermore, the k profiles for turbulent
channel flow obtained by Craft et al (1996) with the CRY model are very similar to

those calculated presently. Suga (1995) reported identical trends in his application of
the CRY model to the pipe flow of Laufer (1954). As well as diminishing &P/& , u,

and ¢, , employment of the Yap factor by the nonlinear model also causes a reduced

peak for k.

The predicted profiles of Reynolds shear stress at Re=20500 are plotted in figure
4.4. Durst et al (1993) did not provide experimental data for this parameter. The main
difference between high and low Reynolds number models is the level of peak Reynolds

shear stress near the wall. Only the k-€ and RNG models return a normalised value of
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unity. This apparent discrepancy is even more marked in the case of the lower flow rate
(Re=7500).

The cubic model distinguishes itself from the linear EVM’s when a comparison

1s made of the normal stresses (figures 4.5, 4.6, 4.11 and 4.12). Whilst the LS, %&-€ and

RING models predict values which are several orders of magnitude smaller than those of

CRY, the nonlinear model is in closer agreement with the experimental profiles of u'* .

Although still severely underpredicting the axial normal stresses, the nonlinear model

does correctly locate the point at which the maximum value of u'? occurs. Despite this

improvement over the linear EVM’s, the nonlinear model computes negative v'*
profiles, which is not physically realistic. It is alarming to note that Craft et al (1996)
predicted positive profiles for all normal stresses in a turbulent channel flow; Suga

(1995) did likewise for the Laufer (1954) Re=50000 pipe flow. The cause of this

anomaly, and its potential effects in other flows, is considered in the following section.
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Durst et al (1993) Pipe Flow: Re=20500
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Durst et al (1993) Pipe Flow: Re=7500

O O

10°

Figure 4.11: Comparison of normal Reynolds stress (axial). Note that the linear EVM
predictions are at least three orders of magnitude smaller.
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Figure 4.15: Radial distribution of the Yap correction term Y.. Note that
the LSY curve Is zero for all y*.
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4.1.2 Discussion

An overview of the results reveals that the turbulence models generally yielded
similar results for the pipe flow, which tended to agree with experimental trends. The
sole major difference occurred in the normal stresses. Only the nonlinear model was

able to predict unequal stresses, although negative normal stresses in the radial direction

were calculated. One of the main concerns of the present discussion is to resolve this
issue and to determine how other simulations can be affected. The remainder of the

section is devoted to explaining the differences in predictions between the various

turbulence models.

A thorough examination of the numerical methodology adopted by Suga (1995)
revealed that the tangential normal stress was not calculated explicitly as in the TEACH

code; rather, the following relationship was used:

w2 =2k-u"?-v'* r (4.5)

This formulation provides a closer link between turbulence energy and normal stresses,

and seems to prevent negative normal stresses from arising. In fully-developed pipe and:

channel flows, the only important Reynolds stress in momentum equations (see

Appendix A) is Tyy because the terms 8;72-/311 and 3;'7/8)! are zero. Thus the normal

stresses do not contribute to the predictions of U, k and u’v’ and the negative values of

v’? are not problematic in simple flows. Similarly, in more complex flows the

gradients of normal stresses are 31gn1ﬁcantly smaller than the gradients of shear stresses,
thereby indicating that the normal stresses themselves do not directly affect results.
Supporting evidence for this is given by an order-of-magnitude analysis of the axial

momentum equation in the case of swirling pipe flow (described later in this Chapter).

Results indicated that the high Reynolds number turbulence models éécuraiéiy
predicted the shear stress in the turbulent boundary layer whilst the low Reynolds

number models returned smaller values.. The correct predictions by the k-€ and RNG

models is not surprising in light of the fact that the derivation of wall functions is based

on thin shear layer considerations which are valid in pipe flows. At the same radial
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location (y© ~ 42) the LS and CRY models return W/ u®=0.85. Since this point s

close to the wall, viscous effects can be significant. The normalised, laminar shear

stress for the CRY model was computed as approximately 0.07 (at Re=20500), resulting

in a total shear stress of (uéU/é'+;¢_"v_')/u3 = (0.92. Thus consideration of viscous

effects brings the low Reynolds number model predictions in line with the correct near-

wall behaviour.

Comparison of the radial distributions of the damping function (figures 4.13 and
4.14) with U" (figures 4.2 and 4.8) reveals that the entire boundary layer is influenced
by the effects of f,. Thus the near-wall differences (notably in k) between the LS and
CRY models is mainly due to the differing damping functions (equations 2.25 and
2.38). This observation is closely linked to the detrimental influence of the Yap factor
on the cubic model but not on the LS model. Inspection of the radial profile in figure
4.15 (for the Re = 20500 case) reveals that Y, = 0 along the éntire radius in the case of
the LSY model, whereas the CRY model predicts a sharp, non-zero peak in the buffer
layer at y* = 10.5. Further analysis shows that the maximum values of the quantity I/
(see equations 2.42 to 2.44) are 0.962 and 1.121 for the LSY and CRY models,
respectively. As documented in section 2.1.2, the Yap term is only included if this ratio
1s larger than unity. In the present case, only the CRY model ‘triggers’ the Yap
correction, which brings about a reduction in turbulence energy. The reduced peak for &
In the LS and LSY models is caused by the excessive damping of the eddy viscosity,
and hence turbulence production P;, which is brought about by the fact that the damping

function f, remains at its near-wall asymptotic value until well into the buffer layer

(see figures 4.13 and 4.14), causing I/l to be smaller than unity. This explains why the
Yap factor produces no difference between the LS and LSY results. A consequence of
the non-zero Yap correction in the CRY model is the modification of near-wall
gradients, resulting in the underpredicted quantities in table 4.1. This poses interesting
questions as regards the suitability of the CRY model for general purpose computations.

The Yap term could be adjusted for pipe flow if the coefficient 0. 83 in equation 2.42 is

retuned, but this could have negative repercussions when applied to other flows.
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The main findings and conclusions of the fully-developed pipe flow

investigation are as follows:

e The nonlinear model can predict negative values for v’? because all three normal

stresses are computed explicitly rather than using equation 4.5.

— This has no bearing on the pipe flow predictions (and thin shear layers in

general).

— It is expected to:have little effect in more complex flows. Supporting
evidence is supplied in the investigation of highly-swirling pipe flow (section

4.5).
e - Damping functions are influential in near-wall regions. This case did not provide

much scope for testing the contributions of the nonlinear terms. The main purpose,

though, was to confirm that the cubic model was correctly implemented in the
TEACH code.

o The Yap correction term has a detrimental effect on the near-wall predictions of the

nonlinear model in this particular flow.
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4.2 PIPE EXPANSION - TROPEA et al (1989)

In order to test the performance of the turbulence models for recirculating flow,

the pipe expansion studied by Tropea et al was selected. High quality LDV data was
provided in the form of detailed radial distributions at various axial locations. This data

was available on the well-known ERCOFTAC web site. The inlet and exit diameters
are D1=50mm and D,=80mm, respectively, and the domain length is 0.7m. The fluid is
an oil mixture of density 863.5 kg/m> and kinematic viscosity 6.3x10° m%s. The

Reynolds number of 15600 is based on D; and the inlet centreline velocity (2.51 m/s),
where the flow is fully developed. Figure 4.16 shows the geometry.

L=47H

DI'-SOmm

HﬂlSmml

| Figure 4.16: Schematic representation of the pipe expansion.

Inlet flow 1s ﬁl"y-dCVClOpCd, D; =80 mm
Centreline axial velocity: 2.51 m/s.

i

Experimental inlet profiles were available for the mean velocity U and for the

normal stresses u;? ; inlet values of k were computed with k= Luu! and an entry
profile for € was obtained from relation 3.6 where L=D,. It was assumed that ¢, =¢,,,

despite the fully-developed nature of the inlet flow implying that SJk/@#0. In

similar computations Chang et al (1995) found that the assumed profiles of k and & do
not significantly affect the flow field calculations for pipe expansions, except in the
presence of high turbulence intensity and in a very short region immediately behind the

step. This is further supported by the study in .Appendix F which shows that the

reattachment length did not change when a different formulation was.used for the inlet

dissipation rate.
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All the computational meshes used were sufficiently dense so as to provide a

solution independent of the grid. The radial meshes were refined near the top wall and
the axial grid was refined near the step. Grid independence was ascertained by
comparing skin friction plots and reattachment lengths for progressively larger meshes.
The simulations with the standard k-€¢ and RNG models utilised a 200x39 mesh to
ensure that the near-wall nodes were placed in the inertial sublayer (52% of near-wall
nodes were located at y* > 30 whilst 98% were located at y* > 13). The grid for the

high Reynolds number models is depicted in figure 4.17.
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Figure 4.17: The 200x39 computational grid as used by the high
Reynolds number turbulence models.

Figure 4.18 proves that 39 radial nodes are sufficient. The simulations involving low

Reynolds number models were performed on a 200x70 grid. Figure 4.19 shows that the
low Reynolds number model results are grid independent. The boundary layer was
further resolved with many more radial nodes (100 in total, whilst maintaining the same
characteristics as the smaller grid), but this made no difference. The radial distributions

of nodes ensured that the maximum Peclet numbers in the radial direction were less
than 2 (0.124 and 0.734 for the CRY and k- models, respectively). The largest axial

Peclet number was approximately 10; it occurred at the centreline near the inlet. Some

concern existed as to the effect of numerical diffusion in the free shear layer, where the
streamlines are at an angle to the grid and the axial Peclet number is greater than 2.

However, figures 4.20 and 4.21, which are contour plots of ', /u,, for the k-€ and
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CRY solutions (where I'r is the false diffusion as computed with equation 3.1),.
respectively, reveal that this area of the flow is virtually free from error. The high
values of this ratio near the back of the step are due to very low values of effective

viscosity rather than excessively large numerical errors.
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Skin friction factors (high Reynolds number models)
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Figure 4.18: Demonstrating that the 200*39 mesh yields grid independence
for the high Reynolds number models.

| Skin friction factors (low Reynolds number models)
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Flgure 4.19: Demonstrating that the 200*70 mesh YIelds grid Iﬁ"&épehdence
for the CRY model (and hence also for the LS model).
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Pipe Expansion: Numerical Diffusion (k-¢ model)
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Figure 4.20: k-e model: ratio of numerical diffusion and effective
viscosity (Tropea et al (1989) case).

Pipe Expansion: Numerical Diffusion (CRY model)
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Figure 4.21: CRY model: ratio of numerical diffusion and oj"i'-fectlve
viscosity (Tropea et al (1989) case).
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4.2.1 Resulits

The most common parameter used in determining the success of CFD
simulations of the backward-facing step and the pipe expansion is the reattachment

length Xr. Table 4.2 compares the measured and computed values of the reattachment

length non-dimensionalised with respect to the exit diameter D?.

mental
X2 ----
e EME T TS

Table 4.2: Experimental and computed reattachment lengths.

The table highlights the substantial differences between the various turbulence models.

The standard k-€ model underpredicts the reattachment length by 36.5% and the LS
model underpredicts by 33%. The RNG, LSY and CR models all give reasonable
agreement with the measured reattachment length. The RNG prediction is somewhat
less accurate than those reported by other workers for similar flows. The Craft model

with the Yap correction (CRY) gives a near-perfect match of the reattachment length,
which is possibly somewhat fortuitous.

The comparison between the experimental and computed values of mean

velocity U, turbulent kinetic energy k, Reynolds shear stress # vV and normal stresses

u'* and v'?. (normalised with the maximum inlet experimental values Up and ko) 15
presented in the form of a series of radial profiles in Figures 4.22 to 4.26. These show
that the RNG and CRY models most closely match the experimental curves, and that the
standard k-¢ model is always the worst. Although the reattachment lengths are
significantly different, the radial profiles are very similar when comparing the LS results
with those for the LSY model and the CR. results with those for the CRY model (the

LSY and CR results are not plotted). Hence, the Yap correction term does not appear to

have a large effect on the main flow features in this case.

O
u W
"

The velocity profiles in Figure 4.22 show that the RNG model most closely

matches the experimental curve, except right behind the step (X=5mm). Downstream of
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X=80mm, CRY significantly overpredicts the mean velocity at the centreline, but
underpredicts nearer the wall. The LS model, on the other hand, underpredicts the

centreline velocity and overpredicts the mean velocity closer to the wall. The k- model

substantially underpredicts the centreline velocity downstream of X=80mm.

Figure 4.23 reveals that the RNG model also provides the best match with the

experimental results for turbulent kinetic energy k, except at X=5mm where none of the
profiles are particularly close to Tropea’s data. The CRY model yields profiles which
are nearly as good as those of the RNG model, except far downstream (X=200mm)
where the centreline k is underpredicted.” The LS and standard k-€ models generally

overpredict k with excessive peak values in the shear layer and high centreline k values

in the region far downstream.

The RNG and CRY models best predict the Reynolds shear stress (see Figure
4.24). 1t is interesting to note that the non-linear CRY model accurately predicts the
radial location of the peak value of the normalised stress, at all axial locations. The
other models are not so good at predicting this location (especially at X=5mm). The
standard k-¢ and LS models predict a higher peak closer to the centreline, downstream
of X=80mm. It is worth noting that in the recirculation zone (from step to X=120mm)
the models which take streamline curvature into account (i.e. RNG and CRY) yield
superior Reynolds shear stress predictions. The difference is smaller in the flow

redevelopment region downstream from the reattachment point, where anisotropic

effects are less important.

The normal stresses '’ and v'? are plotted in figures 4.25 and 4.26.

Significantly, only the nonlinear model is able to predict axial fluctuations which

resemble the experimental data, although the peak values are underpredicted by 40%.

All models returned poor representations of v'* . In their simulation of a back-step

flow using a modified cubic model, Apsley & Leschziner (1998) noted that the severely

underpredicted normal stresses had no effect on the shear stress. This implies that only

the latter is of consequence in the current flow.
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One last result deserving attention is the ability (or otherwise) of the various_
turbulence models to predict corner-eddy length. Table 4.3 reveals that neither high
Reynolds number model is capable of resolving the pocket of secondary recirculation
which occurs just behind the step; confirmation of this is obtained from the simulations
carrted out in Fluent. Lien & Leschziner (1994) also note that their predictions for the
Driver & Seegmiller (1985) back-step flow yielded no secondary vortex with the k-€
model and only a very small region of secondary recirculation, using the RNG model.
Although Tropea et al (1989) did not take measurements in this area, Driver &
Seegmiller (1985) reported that the corner eddy behind the step was roughly one step
height (1H) in length. The CRY model is thus in rather good agreement, but removal of

the Yap correction diminishes the secondary vortex significantly. The same trend is
observed with the LS and LSY models.

| ke |RNG| LS | LSY | CR | CRY
_TEACH | none | none | 0.32 | 0.78 | 0.53 | 0.95
| Fluent |none| none | wa | na | na | na

Table 4.3: Computed corner eddy lengths X,/H.
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Figure 4.22: Radial distributions of axial velocity, Tropea et aI (1989)
pipe expansion.
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Figure 4.23: Radial distributions of turbulence energy, Tropea et al (1989)
pipe expansion.
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Figure 4.24: Radial distributions of Reynolds shear stress, Tropea et al (1989)
pipe expansion.
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Figure 4.25: Radial distributions of normal (axial) Reynolds.stress,
Tropea et al (1989) pipe expansion.
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Figure 4.26: Radial distributions of normal (radial) Heynold; stress,
Tropea et al (1989) pipe expansion.
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4.2.2 Error Analysis

The reattachment length 1s a sensitive indicator of the success or failure of the
simulation of a flow with recirculation and it is usually implied that a satisfactory match
of the reattachment length corresponds to a successful simulation of the whole flow
development in a recirculating flow. However, the possibility of a freak result must not
be ruled out a priori. In order to quantify the deviation between experimental and

computed values we tabulate, for each axial location X, the following overall relative

CITOr measure.

Z' Piccp (X)=1.co0 (X)I x 27T, A,

%)< | “" 4.6)
W) Y bep(X)x2mag (3:6)
. 1

Relative velocity error e[ J(X)

'y

e
r
+
L

5 ] 0121 | 0063 | 0081 | 0.057 | 0.078 | 0.055
40 | 0123 | 0048 | 0.092 | 0.111 | 0.092 | 0.106
80 | 0184 | 0027 | 0.127 | 0.108 | 0.106 | 0.100
120 | 0176 [ 0.020 | 0.120 | 0.099 | 0.104 | 0.096
160 | 0175 | 0.024 | 0.128 | 0.098 | 0.115 | 0.093
200 | 0.168 | 0023 | 0.125 | o101 | 0.112 | 0.092

Relative turbulence kinetic energy error e}(X)

5 12532 | 1194 | 1868 | 8254 | 1643 | 8372 | - .
40 | 0803 | 0.142 | 0453 | 0255 | 0374 | 0.251 |
8 | 0370 | 0.063 | 0265 | 0.142 | 0223 | 0.134
120 | 0283 | 0.063 | 0223 | 0.130 | 0.185 | 0.115
160 | 0.177 | 0.067 | 0.180 | 0.122 | 0.109 | 0.111
200 | 0.161 | 0.076 | 0.177 | 0.175 | 0.103 | 0.134
Relative Reynolds shear stress error e==(X)

40 | 1.190 | 0204 | 0.568 | 0335 | 0.534 | 0334 | -
80 | 0597 | 0.143 | 0.402 | 0.163 | 0365 | 0.157 |
160 | 0.245 | 0.136
0.184 | 0.161 | 0254 | 0278 | 0.182 | 0.187

Table 4.4: Overall relative errors.

7 .

The summation is taken over all the experimental points in a radial profile so e

(X) is a radially averaged relative error for variable ¢ at axial location X, Table 4.4 gives



Chapter 4: Validation Simulations 4-31

this measure of the relative error for the mean velocity, the turbulent kinetic energy and..

for the Reynolds shear stress.

.

The smallest overall error at each axial location is highlighted in bold typeface
in each of the tables. The tabulated overall error measures confirm the impressions

gained from inspection of Figures 4.22 to 4.26. The RNG model performs best in terms
of the quantities for which measured data was available and the CRY model comes a

close second in terms of the overall error measure.

The overall uncertainty in the comparison between experiments and CFD is, of
course, influenced by the uncertainty in the experimental measurements. Tropea et al
(1989) noted that an element of swirl was present in the experimental flow; this was
estimated to be 6% and 1% of the inlet axial velocity at, respectively, the inlet and
~ elsewhere. They further reported that the volumetric flow rate at each axial location
" varied by up to 5% relative to the inlet flow rate. Table 4.4 shows that the typical
expeﬁrﬁental uncertainty is an order of magnitude smaller than the uncertainty due to
‘the turbulence models. Since the experimental uncertainty makes a negligible
contribution, the errors reported in Tables 4.2 and 4.4 can be taken as a good indication

of the overall uncertainty in the CFD work. The following discussion will look in more

detail at the influence of the turbulence model.

4.2.3 Discussion

The flow through the pipe expansion is characterised by the following features:
strong streamline curvature, recirculation, reattachment and flow redevelopment. Many
early studies have focused on reattachment length predictions. The failure of the
~ standard k-¢ model in the case of the 2D backv@rd-facing step is well documented in the
literature. For example, Sindir and Launder - referenced in Driver and Seegmiller
(1985) - used the model in the TEACH code for the Kim et al case (1980) and severely
underpredicted the reattachment length. Sindir (1982) reports computations of a back-
step flow and predicted a reattachmént length Xy/h that was 33% below the measured

value. However, in both cases the computational grid was probably too coarse. Early

simulations were affected by numerical details such as the number and distribution of
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the grid cells and the location of the downstream outlet boundary. The influence of
these subtle effects is now better understood. Speziale and Thangam (1992)
investigated the back-step configuration of Eaton and Johnston (1980) and found that

the reattachment length predicted by the standard k- model was about 12% less than
the experimental value for a grid-independent solution. Nallasamy (1987) reviewed the
reattachment lengths obtained with the standard k-& model for three different pipe
eXpansionS and found that the' results were all within the margins of experimental
uncertainty. Moon & Rudinger (1977) even dverprédicted the reattachment length for a
very high Reynolds number case; however, no numerical details were given so it was
not possible to judge the accuracy of the simulation. In our calculations the ‘
performance of the standard k-¢ and LS models is remarkably poor; fﬁey underestimate
the reattachment length by 36% and 32%, respectively. The similarity between these
two simulated results is consistent with the statement of Chieng & Launder (1980,
quoted in Nallasamy, 1987) that mbdifyihg near-wall treatments does not change the
reattachment region but only improves heat transfer predictions. Thangam & Speziale

(1992) note that low Reynolds number models only slightly improve the reattachment
length. | |

A likely éxpléﬁétion for the discrepancy between the current calculated
reattachment lengths and those reported for similar separated flows, lies in the
observation that the predicted results from the literature were all for much higher
Reynolds number flows. For example, Qin (1984, referred to in Nallasamy, 1987) used
Re = 50000 whilst Moon & ‘Rudinger (1977) investigated a pipe expansion of Re =
2.8x10°. The back-step flows of Eaton & Johnston (1980) and Driver & Seegmiller
(1985) had Reynolds numbers of 9.5x10* and 3.06x10°, réspectively (all these
dimensionless quantities are derived using the same parameters). On the other hand, the
Tropea axisymmetric expansion has a flow corresponding to Re = 15600, which is very
low compared to the above cases. It is a well known fact that the extent of the energy
cascade, by which turbulence energy is passed from the largest to the smallest eddies, °
depends on Reynolds number. Only beyond a certain point does this range become

approximately constant; it is for this regime that the k and ¢ equations were formulated.

This would account for the excessive underprediction of the k-€¢ model. The LS model
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suffers from the same deficiency; even though it is a low Reynolds number model, this

description simply refers to the provision of viscous damping for near-wall flows. Even
though the RNG and CRY models are based on the k and £ (or £) equations, the

deficiencies are moderated by the use of strain-dependent treatments.

Yakhot et al (1992) used the RNG model and found that the predicted
reattachment length was only 6% below the experimental value for the back-step

geometry of Eaton and Johnston. Lien and Leschziner (1994) also used the RNG
model and underpredicted the experimental value by 8.5% for a stepped diffuser
consisting of a backward-facing step followed by a 6 degree expansion (Driver and
Seegmiller, 1985). Table 4.3 shows that the current results obtained with the RNG
model are a little worse than those reported by Yakhot et.al (1992) and Lien &
Leschziner (1994) for similar flows. On close inspection the difference appears to be

mainly due to the location of the near-wall node. In the results reported in table 4.3,

care was taken to locate the near-wall nodes in the inertial sublayer. In subsequent

simulations a 200x45 grid was employed, which more closely resembles the one used by

Lien and Leschziner. The near-wall nodes were now placed inside the viscous sublayer
without application of wall functions. Interestingly, this improved the predictions of

the reattachment length to Xy/D2 = 1.71, only 8.6% less than the experimental value; the
main flow hardly changed. It is also worth noting that this practice did not influence the
results obtained with the k-¢ model. The RNG model appears to be sensitive to this
issue in complex flows because the modification in the dissipation rate equation is a
function of strain rate, &k and ¢, all of which exhibit steep gradients in the buffer layer.

Reasonable predictions of the reattachment length were obtained using the CR and LSY
models. The Craft et al model with the Yap correction (CRY) gives a near-perfect

match with experiments.

Table 4.2 shows that the Yap correction term Y¢ is responsible for a major

improvement in the predictions of reattachment length. The effect of this term,
introduced in Chapter 2, is examined. As a function which manipulates the turbulence
budgets where y 1s small and k& is large, Yc acts near reattachment points in the context

of separated flows. The term yields improved reattachment length predictions without
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influencing the solution in the bulk of the flow. - Figures 4.27 and 4.28 show the effect.

of the Yap term on the near-wall mean velocity and turbulence kinetic energy. IY¢

reduces the peak level of & at the wall by two orders of magnitude (figure 4.28), which
in turn reduces shear layer spreading and shifts the reattachment point downstream
(figure 4.27). Figure 4.29 gives a contour plot of the Yap correction term relative to the
production and dissipation terms in the € equation for the CRY model calculations

which confirms that the Yap term is close to zero in most of the flow field.

Correct resolution of the free shear layer in the pipe expansion 1s the key to
successful prediction of the entire flow field. The standard k- model and its low
Reynolds number variants (such as the LS model) perform poorly in free shear layer
flows due to problems that were originally attributed to deficiencies in the € (or €)
equation in flows with high strain rates. These can sometimes be overcome by minor

adjustments to the model constants. For example, in the case of a free jet flow the

constant Cg, in the e-equation (of the standard k-€ model) can be changed from 1.42 to

1.6 (Masri, 1998). This gives an improved match between experiments and
computations in this particular case, but the validity of such case-by-case adjustments is
restricted. Further evidence of this is supplied by Moon & Rudinger (1977) who
reported that individual flow features could be correctly predicted by manipulating the

constants C¢; and Cez; however, this had negative effects on other aspects of the flow,

¢

Lien and Leschziner (1994) note that the turbulence anisotropy in a free shear
layer has a substantial impact on the mean-flow field. This is due.to (i) the strong
relationship between the turbulent normal stresses and the strain rates caused by

streamline. curvature and (ii) the sensitivity of the turbulent shear stresses to the

anisotropy of the normal stresses. In light of this, attention should be drawn to the

vastly different predictions of u'? by the CRY and RNG models (see figure 4.25).

The RNG and CRY models contain devices which are used to sensitise the k and

€ (or €) equations to strain rate dependent and anisotropy effects. Figure 4.30

llustrates the effect of these devices. The diagrams show contour plots of the Reynolds

shear stress o/ v, as predicted by (a) the standard k-¢ model, (b) the RNG model and (c)
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the CRY model. Figure 4.30(a) shows that the standard k-€ model predicts very high

Reynolds shear stresses, which cause excessive spreading of the shear layer and

premature reattachment. The RNG model clearly yields a major improvement in the

representation of the shear layer (figure 4.30(b)). Figure 4.30(c) gives the Reynolds

shear stress contours for the CRY model and reveals an even narrower shear layer and

longer recirculation zone. Figures 4.30 (b) and 4.30(c) clearly show that the RNG and
CRY models substantially alter the predictions of the free shear layer, which is much

thinner and the recirculation zone is also larger than in the case of the standard k-€

model.

The RNG model was designed to be applicable to a wide variety of flows and

uses a strain-rate dependent modification R to the constant C¢, in the e-equation, as
described in Chapter 2. In the presence of high strain rates S;; in the free shear layer, n

becomes large, thereby causing R to attain negative values. This increases e-production,
which in turn reduces the levels of turbulence energy and the Reynolds shear stress.

The effect of R is investigated in figure 4.31, which gives the ratio of R to Cg;. The

diagram shows that R modifies the e-production term by up to +50%. However, along

the free shear layer (which is partly outlined by contour 6 in figure 4.31) it is seen that
the ratio R/ Ce; small; thus the value of R in this region is nearly zero. It seems,

therefore, that the reduced value of the constant Cey plays a significant role in

moderating the shear stresses.

The non-linear CRY model accounts for anisotropy by means of a cubic
relationship between Reynolds stresses and mean strain-rate and vorticity. In addition,
the constant C,; and source term E in the dissipation rate equation are also strain-rate
dependent in the CRY model. Since the non-linear terms and the other strain-rate
dependent adjustments are inextricably linked together, it is not possible to isolate the

effects of each on the outcome of the simulations. Nevertheless, we can get an

indication of the likely importance of the effects by comparing figures 4.30(c) and
4.30(d). -
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