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Summary 

Whilst the metabolic responses to submaximal exercise are relatively well documented, nlyt, 
little information is available relating to recovery and further exercise performance. Thus, 

the principal aim of this research was to investigate the influence of nutrition on recovery 
from prolonged, constant pace running. 

In the first study (Chapter 4), the influence of increased carbohydrate intake on endurance 

capacity was investigated following a bout of prolonged, constant pace running and a 22.5-h 

recovery. Sixteen male subjects were divided into two matched groups, which were rand- 

omly assigned to either a control (CON) or a carbohydrate (CHO) condition. Both groups 

ran at 70% VO2max on a level treadmill for 90 min, or until volitional fatigue, which ever 

came first (R1). Subjects ran at the same %VO2max for as long as possible 22.5-h later, as an 

assessement of endurance capacity (R2). During the recovery, the carbohydrate intake of 

the CHO group was increased from 5.8 (±0.5) to 8.8 (±0.1) g"kg-lbody wt (mean±SE). An iso- 

caloric diet was prescribed for the CON group, providing additional energy in the form of 
dietary fat and protein. Run times for Rl did not differ between the groups. However, R2 

run time of the CON group was reduced by 15.6 min (p<0.05), whilst the CHO group 

matched their R1 performance (CON - 70.7 (±7.2) min; CHO - 91.9 (± 9.0) min). Thus, a 
high carbohydrate diet restored endurance capacity within 22.5-h, whereas an isocaloric ý- 
diet without additional carbohydrate did not result in the same restoration of exercise 
capacity. 

Exercise-induced dehydration impinges upon both exercise capacity and the capacity of the 

body to recover. The second study (Chapter 5), investigated the influence of water ingestion 

on endurance capacity during constant pace running. Four men and four women completed two 

randomly assigned treadmill runs at 70% VO2max to volitional fatigue. During one trial, 

no fluid was ingested during exercise (NF). Whereas, during the fluid replacement (FR) 

trial a single water bolus equivalent to 3.0 ml"kg-lbody wt was provided pre-exercise, 
followed by serial feedings equivalent to 2.0 ml-kg-lbody wt-15 min-1 during exercise. Run 

time during the NF-trial was 77.7 (±7.7) min, compared to 103.0 (±12.4) min during the FR- 

trial (p<0.01). Fluid ingestion during exercise was associated with increased endurance 

capacity, whilst the NF-trial was accompanied by enhanced carbohydrate oxidation and 

suppressed fat oxidation. Thus, fluid ingestion during exercise plays a role in improving 

performance, and may also hold benefits for optimising post-exercise recovery. 

The third study (Chapter 6), investigated the influence of ingesting either water or a 

carbohydrate-electrolyte solution during post-exercise recovery, on performance 4-h later. 

Twelve men and four women were divided into two matched groups, which were randomly 

assigned to either a control (P) or a carbohydrate (CHO) trial. Both groups ran at 70% 
VO2max on a level treadmill for 90 min, or until volitional fatigue, which ever came first 

(RI). Four hours later, subjects ran at the same %VO2max for as long as possible (R2). The 



CHO group ingested 1.0 g-CHOkg-ibody wt (6.9% solution) immediately after R1, and 2-h 

later. Whilst the P group ingested equal volumes of a placebo solution. Run times during R1 
did not differ between the groups, whereas the CHO group ran 22.2 (±3.5) min longer than 

the P group during R2 (p<0.05). Blood glucose was equally well maintained throughout- 

exercise in both groups. Blood lactate was elevated in the CHO group at the start of R2 (p< Er-- 

0.05). Whilst plasma FFA and glycerol concentrations were elevated in the P group (p< 

0.01). Neither group restored pre-R1 body weight during the recovery. Percentage rehydra- 

tion was 65.9 (±6.3)% in the P group and 62.6 (±7.3)% in the CHO group (NS). Thus, inges- 

tion of a carbohydrate solution during 4-h recovery from prolonged, constant pace running c 

facilitated rehydration as effectively as water, whilst endurance capacity was enhanced 
during subsequent exercise. 

The fourth study (Chapter 7), investigated the influence of increasing carbohydrate intake 

from 1.0 (D-trial) to 3.0 (C-trial) g"CHQkg-lbody wt-2 h-1 during 4-h recovery on subsequent 

exercise performance. Nine men and eight women completed two trials in a counter- 
balanced design. Each trial consisted of a 90 min run at 70% VO2max (R1), followed by a 4- 

h recovery (REC), and a further exhaustive run at 70% VO2max (R2). Two feedings were f, 

prescribed during REC as either a 6.9% glucose-polymer (GP) solution (D-trial), or as a 
19.3% GP solution (C-trial). Mean R2 run times were 58.5 (±5.2) min and 57.6 (±6.3) min for 

the D and C trials respectively (NS). There were no differences in R2 run times of the male 

and female subjects. Blood glucose was equally well maintained over R1 in both trials. 

Whilst more stable concentrations were maintained during REC in the C-trial, remaining 
elevated in comparison with the D-trial after 210 min (p<0.01). This was despite higher 

plasma insulin concentrations in the C-trial prior to R2 (C-22.21±4.17 mU"1-1; D-5.42±0.85 

mU1-1) (p<O. 01). There was evidence of enhanced carbohydrate oxidation and suppressed - 
fat oxidation during REC and R2 in the C-trial. In conclusion, excessive carbohydrate inges- 
tion does not further improve the recovery process, or endurance capacity 4-h later. It was 

speculated from indirect evidence that one rate-limiting step in the repletion of cellular 
carbohydrate stores is the conversion of glucose to glycogen. Enhanced oxidation appears to 

be a major avenue of free glucose disposal aside from incorporation into muscle and liver 

glycogen, with elevated lipogenesis initially playing a relatively minor role. 
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Chapter 11 

Introduction 

'There's an almost primitive belief that there's something, 
somewhere, that you can eat in order to perform better - that 
there's just got to be some secret. ' 

- Peter Jokl, MD (1976) 
(Cited: Coleman, 1988) 

Sports performers are constantly looking for that special something that 

will make them different from the rest, that will raise them above the rest. 
As the body is honed and finely tuned, careful preparation and attention 
to detail will maximise any training advantage. For at the highest level, 

where performers are on a physical and technical par, the difference 
between a winner and a loser is less than the blink of an eye. 

Over the last twenty years, the importance of nutrition in this process of 
fine tuning has become increasingly evident. 

'Diet significantly influences athletic performance. An adequate 
diet, in terms of quantity and quality, before, during and after 
training and competition will maximise performance. ' 

- Devlin and Williams (Eds) Proceedings of an 
IOC International Scientific Consensus, 

4-6 February 1991, Lausanne, Switzerland. 

Despite a general acceptance of the importance of appropriate nutrition for 

health and well-being, as well as for performance, the concept of 'optimal 

nutritition' remains a confusing and contradictory issue (Wootton, 1988). 

In a quest for that 'winning edge', athletes are susceptible to commercially 
driven fadism on the one hand, or folk lore and myth perpetuated 
through the traditions of their sport on the other. Both serve to confound 
the principals underlying a well balanced and healthy diet. 

The postitive effects of appropriate nutrition is no more evident than 
during the recovery from prolonged, constant pace running. At a time 
when endogenous fuel reserves are relatively low, the benefits of c 
providing exogenous fuel become rapidly apparent. Exercise represents a 
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severe challenge to metabolism. Fatigue ensues during repeated bouts of 
muscular activity when energy metabolism fails to rise to this challenge. 
However, the precise cause of a subsequent decline in performance still 
remains elusive (Green, 1991). The recovery process is concerned with re- 
instating a normal physiological balance, such that further activity is made < 
possible. Redressing this balance following exercise takes place in a hier- 

archial order, with disturbances representing the greatest threat to normal 
physiological functioning being alleviated first. 

The ability to sustain prolonged, constant pace running is limited by 

several factors. The main limitation is the availability of an appropriate ý-- 

energy supply (Ahlborg, Bergstrom, Brohult, Ekelund, Hultman and 
Maschio, 1967a). Adenosine triphosphate (ATP) is the only fuel for 

muscular contractile activity (Newsholme and Leech, 1983). The body 

regenerates ATP through various metabolic pathways. These pathways are 
fuelled during submaximal exercise by a combination of carbohydrates and 
fats. Protein may also contribute to the provision of energy (Felig and 
Wahren, 1975). However, it could be argued that the primary metabolic 
role of protein is the anaplerotic replacement of pathway intermediates 
during increased oxidative phosphorylation, rather than fuel provision 

per se (Green, 1991). 

The re-introduction of the needle biopsy technique in the early 1960's 
(Bergstrom, 1962), allowed this inter-play between the different fuels for 

energy metabolism to be examined at a muscle tissue level. Endogenous 

carbohydrate reserves were found to be finite, and represented only a frac- 

tion of the potential energy store of fat. As a consequence, a reduction in 

the body's reserves compromised carbohydrate availability during exercise, 

and contributed to the onset of fatigue (Ahlborg, Bergstrom, Ekelund and 
Hultman, 1967b; Bergstrom and Hultman, 1966b; Hermansen, Hultman 

and Saltin, 1967; Hultman, 1967). Thus, maintaining adequate carbo- 
hydrate reserves is an important factor in ensuring successful endurance 

performances (Hultman, 1967; Karlsson and Saltin, 1971). Similarly, 

replenishing these reserves following exercise is essential if the capacity to 

perform endurance exercise is to be restored. 
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The early work of Christensen and Hansen (1939)1 firmly established a link 

between a high carbohydrate diet and improvements in the capacity to 

perform endurance exercise. Various feeding strategies have subsequently ý-- 
been found to influence the physiological availability of carbohydrates 
during exercise (Coyle, 1991). Exogenous supplies of carbohydrate have 

been provided both before and during exercise, as well as combinations 
thereof. It is suggested that the onset of fatigue may be delayed through 

such feeding strategies by decreasing the utilisation rate of limited endog- 

enous reserves (Coyle and Coggan, 1984). Moreover, there is evidence of 

muscle glycogen resynthesis -taking place during low intensity exercise 

when an- adequate carbohydrate availability is maintained (Constable, 

Young, Higuchi and Holloszy, 1984). In addition, it might be argued that 

decreasing disturbances in the body's energy balance during activity may 
hold soiree benefit-for- enhancing-post-exercise recovery. 

As mentioned previously, the, ecovery process, is concerned with reinstat- . - 
ing a normal physiological balane 6-allow further activity. There has 

been considerable recent interest in the replenishment of carbohydrate 

stores post-exercise through dietary manipulation. The return of liver and 

muscle glycogen reserves to normal levels following exercise is- deter- 

mined by a number of inter-related factors. Such factors include: the 

extent_ of prior depletion; the timing of carbohydrate ingestion; the 

amount of carbohydrate per feeding (ie. the rate of ingestion); the type of 

carbohydrate consumed; and, the form in which the carbohydrate is 

administered (Blom, 1989a). -The -recoveryprocess is further influenced by 

the prevalence of muscle damage, which may be incurred. during a prior 
bout of. exercise (O'Reilly, Warhol, Fielding, Frontera, Meredith and Evans, 
1987; Sherman, Costill, Fink, Hagerman, Armstrong- and Murray, 1983). 

This can retgrd_ 
_the_ 

recovery-. -process - as -a consequence of the inherent 

energy_ demands of tissue repair (Costill, Pascoe, Fink, Robergs, Barr and 
Pearson, 1990), as well as through an associated-reduction- in-the efficiency 

of carbohydrate storage (Kirwan, Hickner, Yarasheski, Kohrt and Wiethop, 

1992; Lash, Sherman and Bloomfield, 1987). However, few studies investi- 

gating this repletion of endogenous carbohydrate reserves have progressed 
to examine whether exercise capacity is also restored. Furthermore, 

-the -- 
majority of work has been based upon cycling-as-the -mode of exercise, with 

a paucity of studies examining the responses to constant pace treadmill 

' Cited Astrand (1%7) 
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running. This has resulted in much of the current sports nutrition advice 
being based upon cycling research, as opposed to studies investigating the 

more fundamental whole body activity of running. 

Thus, the principal aim of the present thesis was to investigate if 

increasing carbohydrate provision during the immediate post-exercise 

period returns an individual to an optimum state of fitness, and enables 

previous running performances to be reproduced. Implicit in this aim 

was a desire to bridge what remains a rather grey area between accepted 
theory and its practical application. An experimental procedure was used 
for quantitatively assessing recovery. This procedure involved a stand- 

ardised endurance run (ie. 90 min constant pace run at 70% VO2max) 

followed by a prescribed recovery and a further run to exhaustion (ie. 

open-ended constant pace run at 70% '1O2max). The return of endurance 

capacity, and hence the efficacy of a prescribed recovery, was reflected in 

terms of run time to fatigue during the second exercise bout. This 

procedure provided a reliable measure of recovery from prolonged, con- 

stant pace running. 

1.1 Thesis overview 

This thesis is sub-divided and presented in an order that progresses 
from a consideration of recovery on a day-to-day basis, to the more 
immediate concerns for optimising short-term recovery. The Review 

of Literature (Chapter 2) initially addresses the relationship between 

energy metabolism and constant pace running. Possible causes of fati- 

gue are identified, where a failure of thermoregulatory processes may 

play a significant role. A link between diet and exercise performance 
is established, before the review concentrates on our current under- 

standing of the main physiological adjustments with respect to 

recovery during the immediate post-exercise period. These adjust- 

ments, in association with appropriate dietary manipulation, result 
in the rcplenishment of endogenous carbohydrate reserves, and 
hence, a possible restoration of functional capacity. 

The first study (Chapter 4) examined the influence of increasing 

dietary carbohydrate intake on functional capacity after a recovery 

period of 22.5-h. A need to recover from intense daily training 
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sessions is a very real problem for dedicated sports performers. 
Increasing carbohydrate intake from -4.0 to -8.0 g"kg"lbody wt"24h-1 is 

reported to restore muscle glycogen levels to normal resting values 
(Costill, Sherman, Fink, Maresh, Witten and Miller, 1981). Thus, the 

aim of this study was to assess whether functional capacity can 

similarly be restored over this period of recovery. 

Dehydration represents a further limitation to prolonged exercise 
(Armstrong, Costill and Fink, 1985), influencing both cardiovascular 

activity and temperature regulation (Costill and Sparks, 1973). 

Peripheral circulation is restricted as the body attempts to maintain 

central blood pressure in the face of a declining blood volume 
(Fortney, Wenger, Bove and Nadel, 1983). A compensatory decrease 

in the rate of sweating further compromises heat dissipation and 

results in a rapid increase in core temperature (Gisolfi and Copping, 

1974; Sawka, Young, Francesconi, Muza and Pandolf, 1985). Fluid 

ingestion during exercise can attenuate this rise in body temperature 

(Costill, Kammer and Fisher, 1970). 

As well as adversely affecting exercise capacity, dehydration may also 
impinge upon the body's recovery capacity. This may not necessarily 
be evident in impaired replenishment of muscle fuel reserves 
(Neufer, Sawka, Young, Quigley, Latzka and Levine, 1991). Rather, 

this may be a more insidious effect with whole-body implications. As 

such, implementing strategies to maintain fluid balance during an 

exercise bout may offer additional benefits over the immediate post- 

exercise period. 

The second study (Chapter 5) examined whether fluid provision 
during constant pace running can limit dehydration. Performance 
benefits of drinking water throughout constant pace running were 

assessed in terms of exercise time to fatigue. Post-exercise physio- 
logical responses were determined in order to establish the nature 

and extent of metabolic disturbances arising from a bout of prolonged 

running. These disturbances must then be promptly redressed if a 
rapid recovery is to be ensured. 
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Energy and fluid deficits may be alleviated during a short recovery 
period through ingestion of carbohydrate-electrolyte (CE) beverages 
(Carter and Gisolfi, 1989). Thus, the immediate needs for both fluid 

and carbohydrate may be accommodated. 

The third study (Chapter 6) examined the influence of ingesting a 
carbohydrate-rich drink on functional capacity after a recovery period 
of 4-h. Ingestion of a CE beverage during exercise has been observed 
to enhance performance (Maughan, Fenn and Leiper, 1989; Tsintzas, 

Liu, Williams, Campbell and Gaitanos, 1993a), whilst reducing the 

effects of dehydration (Carter and Gisolfi, 1989). However, it was still 
to be determined whether ingestion of such beverages during short- 
term post-exercise recovery could similarly promote rehydration and 

carbohydrate availability, such that functional capacity would be 

restored during a later exercise bout. As such, this study represented 
the practical application of dietary recommendations for optimising 

short-term recovery (Blom, Hostmark, Vaage, Kardel and Maehlum, 

1987; Ivy, Lee, Brozinick and Reed, 1988b; Brouns, 1991a; Gisolfi and 
Duchman, 1992; Maughan, 1991). Such strategies would be of partic- 

ular interest to sports performers involved in repeated bouts of 
intense activity on the same day. 

An adequate carbohydrate intake is essential for maintaining an, ý'ý 
optimal rate of glycogen resynthesis throughout the recovery period 
(Ahlborg et al, 1967a; Bergstrom, Hermansen, Hultman and Saltin, 

1967). Fasting or delaying carbohydrate ingestion following exercised 

restricts this process (Maehlum and Hermansen, 1978; Ivy, Katz, 

Cutler, Sherman and Coyle, 1988a), whereas increasing post-exercise 

carbohydrate intake to 1.5 g"kg-lbody wt"2h-1 enhances muscle glyco- 

gen synthesis (Blom et al, 1987b; Ivy et al, 1988b). Further increases do 

not appear to yield any additional benefit at a muscle tissue level 

(Blom et al, 1987b; Ivy et al, 1988b). The third study examined the ý 
functional advantage of ingesting 1.0 g"kg-lbody wt-2h-1 of carbohyd- 

rate during 4-h recovery from prolonged running. However, the fate 

of carbohydrate ingested in excess of this recommended amount still 

remained unclear. 
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The fourth study (Chapter 7) was designed to expand on the findings 

of previous time-course studies (see Blom et al, 1987b; Ivy et al, 1988b; 
Piehl, 1974) by examining the influence of increasing carbohydrate 
intake during 4-h recovery on metabolism and subsequent constant 
pace running performance. Providing a high carbohydrate feeding 
following exercise will optimise both muscle and blood reserves. It 

was further speculated that excess carbohydrate may be stored in the 
liver, and as such could provide additional fuel during a later exercise 
bout. It was hypothesised that this might be reflected in a perform- 

ance study by a more favourable energy balance during subsequent 

exercise, and a delaying of fatigue. 

Finally, the general discussion (Chapter 8) draws together the findings 

of the studies reported in this thesis and those reported in the 
literature. The question is then addressed as to what are the limita- 

tions of the recovery process? For despite the provision of adequate 
dietary carbohydrate during the immediate post-exercise period, 
individuals are generally unable to reproduce their previous perfor- 
mance. 
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Review of Literature 

2.1 Overview 
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The ability to sustain prolonged exercise is limited by several factors. t 
One such limitation is exercise-induced dehydration (Armstrong et 
al, 1985), which adversely effects cardiovascular functioning and 
temperature regulation (Costill and Sparks, 1973). Another limita- 

tion is carbohydrate availability (Ahlborg et al, 1967a). Prolonged 

exercise at 60 to 80% of maximal oxygen uptake (VO2max) reduces the 

carbohydrate reserves of the body, and contributes to the onset of 
fatigue (Ahlborg et al, 1967b; Bergstrom and Hultman, 1966b; 

Hermansen et al, 1967; Hultman, 1967). 

This thesis examines if the provision of adequate carbohydrate and 
fluid during the immediate post-exercise period facilitates the 

recovery process, such that an individual is returned to a normal 

state of fitness. This will be refered to as the 'functional capacity' of an 
individual, as reflected by an ability to reproduced their previous 

running performance. The reason for examining this question is the 

lack of previous research linking the replenishment of endogenous 

carbohydrate reserves and the restoration of endurance running 

capacity. Furthermore, a current understanding of recovery, whilst 
focussing upon redressing an energy imbalance, does not satisfactorily 

examine the possible limitations of this process. 

The review initially considers energy metabolism during constant 
pace running. Thermoregulatory factors play an influential role 
where failure to effectively regulate temperature, primarily as a con- 
sequence of exercise-induced dehydration, may be associated with the 

onset of fatigue. Further causes of fatigue which may limit physical 
activity are examined. The links between diet and exercise perfor- 
mance are discussed, where optimum feeding strategies implemented 
before and during exercise may offer some benefit in alleviating the 

symptons of fatigue. 
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The review then considers the main physiological adjustments 
during the immediate post-exercise period. These adjustments, in 

conjunction with appropriate dietary manipulation, will result in the 

replenishment of endogenous carbohydrate reserves. Current under- 

standing would suggest that this is but one factor associated with the 

restoration of functional capacity. 

2.2 Energy metabolism during constant pace running 

Carbohydrates and fats are the primary fuels for prolonged exercise. ý-- 
Their degradation through anaerobic and aerobic metabolism yields 

adenosine triphosphate (ATP), which is the immediate energy source 
of muscular contractile activity. The carbohydrate stores of the body 

in muscle, liver and blood amount to less than 2000 kcal (8 MJ), 

whereas fat stores exceed 100 000 kcal-(420 MJ) or 80-85% of body fuel. 

Structural protein theoretically represents 15-20% of body fuel (Felig 

and Wahren, 1975). Thus, carbohydrate stores limit endurance cap- 

acity, and need to be optimised for successful endurance performances 
(Sherman and Costill, 1984). 

The relative utilisation of carbohydrate and fat is primarily influ- 

enced by the nature and intensity of activity (Costill, Sparks, Gregor 

and Turner, 1971b; Costill, Gollnick, Janson, Saltin and Stein, 1973b; 

Romijn, Coyle, Sidossis, Gastaldelli, Horowitz, Endert and Wolfe, 

1993a). In addition, diet, training status and health have parts to play 
(Costill and Miller, 1980; Essen, 1977; Gollnick, 1985). Christensen and 
Hansen (1939)2 examined the contribution of carbohydrate and fat to 

energy metabolism during exercise of varying intensities. This was 

assessed from respiratory exchange ratio (R) values estimated from 

pulmonary ventilation. Subjects on a normal diet engaged in aerobic 

activity obtained 50 to 60% of their energy from fat. As exercise dura- 

tion was extended to 3-h, R-values decreased as dependency upon fat 

increased. On the other hand, elevated R-values during heavy exer- . ý- 
cise were consistent with an increased dependency on carbohydrate. 
Hultman (1967) similarly observed a decrease in R-values during 

prolonged activity, where low-intensity exercise was associated with a 

greater reduction. This was true up to a critical load equivalent to 

2 Cited Astrand and Rodahl (1986) 
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-75% VO2max, beyond which R values remained constant or 
increased. The provision of oxygen to active muscle at high relative 

exercise intensities becomes increasingly inadequate to satisfy the rate 

of energy demand (Hultman and Sjoholm, 1983). This necessitates 

enhanced anaerobic metabolism of high energy phosphates, muscle 
glycogen and cellular free glucose, whilst the aerobic contribution 
from fat metabolism declines (Saltin and Karlsson, 1971; Walker, 

Mickle, Tanner, Harding and Romaschin, 1984). This gives rise to an 

exponential relationship between exercise intensity and the rate of 

muscle glycogen utilisation (Ahlborg et al, 1967a). 

2.2.1 Metabolism of carbohydrate 

Glycogen depots in muscle and liver are the main carbohydrate 

stores in the body, with blood glucose providing a small tran- 

sient reserve. As well as a high potassium content, glycogen 
has a high water content being deposited in a one part glycogen 
to three parts water ratio (Fenn, 1939; Olsson and Saltin, 1970). 

Liberation of this bound water under conditions of thermal 
distress may assist in the maintenance of blood volume (Plyley, 

Costill and Fink, 1980). 
-Granules 

of glycogen also contain the 

enzymes phosphorylase and glycogen synthase, which are 

respectively involved in the degradation and synthesis of 

glycogen. 

The three carbohydrate pools are in a continuous state of flux, 

operating in concert to meet the energy demands of active 
tissue. The relative importance of each pool with respect to ý. - 
limiting endurance capacity depends upon work load and 

previous diet (Pruett 1970a). For simplicity, each pool will be 

discussed independently as well as considering their combined 

activities. This discussion will introduce 'secondary' carbohyd- 

rate sources, which also play important roles in energy metab- 

olism during constant pace running. For example, incomplete 

glucose degradation produces lactate, which is either metab- 

olised directly or is converted back to glucose via gluconeo- 

genesis. Other gluconeogenic precursors which may also be 

regarded as secondary sources of glucose include pyru- 
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vate, glycerol, and the branched-chain amino acids (BCAA) 
leucine, isoleucine and valine (Wahren, 1977). 

Muscle glycogen provides an immediate fuel for energy prod- 
uction via glycolysis and oxidative phosphorylation (Reichard, 
Issekutz, Kimbel, Putnam, Hochella and Weinhouse, 1961). 
Individuals on a mixed diet will normally have muscle glyco- 
gen concentrations of -80 mmol. kg-iwet wt (Hultman and 
Sjoholm, 1983). Assuming an average total muscle mass of 

-25-30 kg, this would allow -350g of carbohydrate to be stored 
as muscle glycogen (Essen, 1977). The absolute content varies 
with diet and exercise, and an underlying diurnal variation 
may also exist (Conlee, Rennie and Winder, 1976), though this 
has not consistently been demonstrated in humans (Hultman, 
Bergstrom and Roch-Norlund, 1971). As will be discussed later, 

a further -90g of carbohydrate is stored in the liver (Hultman 

and Nilsson; 1971). Thus, Newsholme (1983) estimated that 
total body carbohydrate stores are of the order of 440g. 

Mobilisation of muscle glycogen during prolonged, constant 
pace running is tri-phasic: an initial fast phase of rapid glyco- 
genolysis (15-20 min) is accompanied by a relatively high level 

of lactate production; this is followed by a steady state period in 

which mobilisation remains stable; finally, low glycogen levels 

over the latter stages of exercise result in slower rates of 
mobilisation (Bergstrom and Hultman, 1967; Hultman, 1967). 
The high demand for energy at the onset of exercise coincides 
with a period of limited cellular glucose transport (Jansson and 
Kaijser, 1982a; Reichard et al, 1961). Blood borne glucose supply 

and cellular transport are enhanced as exercise continues (Felig 

and Wahren, 1975), whereas muscle glycogen utilisation 
invariably plateaus and starts to decrease. A point is reached 
during prolonged exercise when the total rate of carbohydrate 
supply is insufficient to meet the rate of energy demand. 
Muscle content is low and cellular glucose transport becomes 
limiting. At this point the rate of energy demand, and there- 
fore the intensity of work, must be reduced if exercise is to 

continue (Davies and Thompson, 1979). 
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Local muscle glycogen stores influence the relative contribu- 
tion of carbohydrate and fat to energy metabolism (Costill, 

Bowers, Branam and Sparks, 1971a; Gollnick, Pernow, Essen, 

Jansson and Saltin, 1981). Elevating pre-exercise muscle glyco- 

gen stores allows carbohydrate metabolism to be maintained at 

a relatively high level (Bosch, Dennis and Noakes, 1993). In 

contrast, Costill et al (1971a) observed a compensatory increase 

in lipid metabolism in response to reduced carbohydrate avail- 

ability during three successive days of running 16.1 km at 80% 
VO2max. Muscle low in glycogen extracts more lactate and 

glucose from blood, and oxidises fat to a greater extent than 

normally stocked muscle (Gollnick et al, 1981). 

Plasma catecholamine levels influence glycogen availability 
(Banister and Griffiths, 1972). Adrenaline stimulates muscle 

glycogenolysis through interaction with 3,5' cyclic adenosine 

monophosphate (cAMP) (Jansson, Hjemdahl and Kaijser, 1986; 

Richter, Galbo and Christensen, 1981). Adenyl cyclase activa- 
tion is increased by cAMP, which in turn stimulates phos- 

phorylase activity by converting the 'less active' b-form to the 

'more active' a-form (Chasiotis, Sahlin and Hultman, 1983; 

Drummond, Harwood and Powell, 1969). Contractile activity 

also stimulates glycogenolysis (Kjaer, Secher, Bach, Sheikh and 
Galbo, 1989; Richter et al, 1981), with calcium ions activating 

phosphorylase kinase to trigger the dephosphorylation of phos- 

phorylase-b (Drummond et al, 1969; Entman, Keslensky, Chu 

and Van Winkle, 1980). Thus, muscle glycogen mobilisation is 

jointly regulated by adrenaline and muscular contraction 
(Richter, Ruderman, Gavras, Belur and Galbo, 1982b), though 

the latter represents a more transient stimulus having its 

greatest effect over the initial stages (Coulee, McLane, Rennie, 

Winder and Holloszy, 1979). The relative importance of 

adrenaline and contractile activity in stimulating muscle 

glycogenolysis depends upon exercise intensity and duration, 

muscle fibre recruitment, the adequacy of blood flow (Richter 

et al, 1982b), and local glycogen levels (Constable, Favier and 
Holloszy, 1986). The influence of both of these mechanisms is 
blunted following exhaustive exercise (Constable et al, 1986). 
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The inital 5-10 min of submaximal exercise is associated with a 
burst of glycogenolysis (Bergstrom, Guarnieri and Hultman, 
1971). This is accompanied by a rapid increase in muscle lactate 

concentration (Rowell, Kraning, Evans, Kennedy, Blackmon 

and Kusumi, 1966), which reflects an imbalance between glyco- 
lysis and the subsequent oxidation of pyruvate (Wahren, 1977). 
There appears to be a maximal rate at which lactate is released 
from muscle equivalent to -5.0 mmol-min-1 (Jorfeldt, Juhlin- 
Dannfelt and Karlsson, 1978). 

Blood lactate concentrations correlate with the rate of lactate 
disappearance, indicating that a 'mass action effect' is operating 
in this process (Issekutz, Shaw and Issekutz, 1976). Trace 

amounts of lactate are lost in sweat and urine, but the major 
routes of removal are via oxidation in cardiac and non-active 

muscle, gluconeogenesis in the liver and kidneys, and possibly 
glyconeogenesis in skeletal muscle (Bangsbo, Gollnick, Graham 

and Saltin, 1991; Issekutz et al, 1976; Rowell et al, 1966). An 
increasing proportion of lactate production during prolonged'. 
constant pace running will result from glycogenolysis in non- 
active muscle, possibly in response to elevated plasma adren- 

aline concentrations (Ahlborg and Felig, 1982; Ahlborg, 1985). 

Blood glucose remains relatively stable during prolonged E-. 
running. Studies using the continuous isotope infusion tech- 

nique have demonstrated that blood glucose is actively metab- 

olised, and that a powerful homeostatic mechanism operates to 

maintain systemic concentrations (Issekutz, Issekutz and Nash, 

1970; Issekutz and Vranic, 1980; Vranic, Kawamori, Pek, 
Kovacevic and Wrenshall, 1976). In addition, extracellular 
glucose temporarily buffers imbalances in demand and supply 
(Coggan, 1991). The brain is a major consumer of blood borne 

glucose under resting conditions (Reichard et al, 1961; Wahren, 

1977). Cerebral glucose utilisation as a proportion of total glu- 
cose turnover decreases during exercise though absolute levels 

remain unchanged (Ahlborg and Wahren, 1972; Wahren, Felig, 
Ahlborg and Jorfeldt, 1971), whilst peripheral uptake increases 
(Keul, Doll and Keppler, 1967; Romijn et al, 1993a). Rates of 
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plasma glucose appearance (Ra) and disappearance (Rd) inc- 

rease within 10 min of the onset of exercise, to accommodate 
an increasing metabolic role (Miles, Finegood, Lickley and 
Vranic, 1992). 

Muscle glucose uptake may be enhanced twenty-fold (Galbo, 
Kjaer, Mikines, Christensen, Tronier, Sonne, Hilsted and 
Richter, 1983) through an insulin-independent transport 

process, which is influenced by muscle fibre glycogen content 
(Hespel and Richter, 1990; Ploug, Galbo and Richter, 1984; 

Wallberg-Henriksson and Holloszy, 1984). Once in the mucle 

cell, 5-10% of free glucose is converted to lactate. Aerobic oxi- 
dation of free glucose covers an increasing fraction (28-37%) of 
the total cellular energy requirement, and an increasing 

fraction (75-90%) of the carbohydrate component of this requir- 

ement (Wahren et al, 1971). Cellular transport peaks after 90 

min of moderate leg exercise and remains stable, before declin- 

ing as Ra falls (Wahren, 1977). This transport mechanism will 
be discussed in Section 2.8.1. 

The primary role of the liver is in the homeostatic control of C-_- 
blood glucose. There is an underlying diurnal variation to 

liver glycogen content which is modulated by activity levels 

and diet (Fuller and Diller, 1970; Hultman and Nilsson, 1971; 

Sollberger, 1964). Starvation or a low-carbohydrate diet reduces 

this energy store even under resting conditions (Hultman and 
Nilsson, 1971; Nilsson and Hultman, 1973). At rest, the release 

of lipid from the splanchnic bed represents less than 5% of the 
body's total energy expenditure, triglyceride release may contri- 
bute 2-5%, and ketone body release 1-3% (Rowell, Masoro and 
Spencer, 1965). In contrast, glucose release may account for 

20%, increasing six-fold during heavy exercise despite reduced 

splanchnic blood flow (Ahlborg and Felig, 1982; Hultman, 1967; 

Rowell, 1971; Wahren et al, 1971). 

The rapid increase and decrease in hepatic glucose production 
at the onset and cessation of exercise, suggests that factors inti- 

mately associated with motor activity in the central nervous 
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system (CNS) are involved in the control pathway (Sonne and C-" 

Galbo, 1985). The sympathetic nervous system may also play a 
part, with noradrenaline acting as a potent gluco-regulator 
(Hoelzer, Dalsky, Schwartz, Clutter, Shah, Holloszy and Cryer, 

1986). Mobilisation of hepatic glucose appears to be a primary 
(ie. feed-forward) event, rather than a secondary (ie. feed-back) 

event in response to increased muscular demand (Kjaer, Secher, 

Bach and Galbo, 1987; Vissing, Sonne and Galbo, 1988). Thus, 
blood glucose concentrations are not accurately balanced on a 

moment-to-moment basis (Kjaer, Farrel, Christensen and 
Galbo, 1986), such that hyperglycaemia per se - does not consis- 
tently inhibit further glucose production (Muller, Acheson, 

Burger and Jequier, 1990). 

Initially, -75% of augmented hepatic glucose production results 
from glycogenolysis, with gluconeogenesis accounting for 

-25% (Wahren, 1977). As exercise continues, the contribution 

of gluconeogenesis may increase three-fold to cover -40% of an 

elevated total glucose production. Both active (pyruvate, 

alanine, glycerol and BCAA), and non-active (lactate) muscle 

provide gluconeogenic substrates (Bonen, McDermott and 
Hutber, 1989). Fractional extraction of these precursors from 

blood is enhanced during prolonged exercise (Ahlborg, Felig, 

Hagenfeldt, Hendler and Wahren, 1974; Holm, Bjorntorp and 
Jagenburg, 1978; Rowell et al, 1966). 

Elevated glycogenolysis and gluconeogenesis may be due to 
increased glucagon secretion in the face of decreasing circula- 
tory insulin concentrations (Felig and Wahren, 1979; Issekutz 

and Vranic, 1980; Pruett, 1971; Wasserman, Spalding, Brooks 
Lacy, Colburn, Goldstein and Cherrington, 1989). A decrease in 
blood glucose concentration directly stimulates glucagon secre- 
tion (Richter et al, 1981). Nevertheless, an exercise-induced 
increase in plasma glucagon in association with increases in 

blood glucose and plasma alanine may also be evident (Felig, 

Wahren, Hendler and Ahlborg, 1972; Muller, Faloona and 
Unger, 1971). Hyperalaninaemia appears to play a direct role in E. 
the regulation of glucagon secretion (Felig et al, 1972), whereas 
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increases in adrenaline and noradrenaline play indirect roles L 

via insulin suppression (Porte, 1967; Porte and Williams, 1966; 

Richter et al, 1981). When insulin concentrations are low, 

glucose-sensitive cells in the CNS and the pancreas respond to 

small changes in systemic glucose levels (Galbo, Holst, 

Christensen and Hilsted, 1976). Thus, increasing plasma gluca- (.. 

gon concentrations parallel a decline in blood glucose levels. 

This results in a glucagon-to-insulin ratio favouring glucose 

production and lipid mobilisation (Galbo et a1,1976; Miles et al, 
1992). Moates, Brooks Lacy, Goldstein, Cherrington and 
Wasserman (1988) suggest that glucagon and insulin are the 

primary regulators during the early stages, whereas adrenaline 

plays a critical role over the later stages of prolonged exercise. 

Dohm and Newsholme (1983) suggest that glucagon, noradren- 

aline and adrenaline influence gluconeogenesis by increasing 

liver cAMP content. Increased gluconeogenic flux is mediated 
through enhanced activation of pyruvate carboxylase, fructose 

1,6-bisphosphatase and glucose 6-phosphatase, and reduced 

activation of pyruvate kinase and phosphofructokinase (PFK). 

Weber, Hird-Convery, Lea and Stamm (1966) observed a rapid 

gluconeogenic effect of elevated FFA concentrations. This was 

partly explained by an inhibitory effect of FFA on the glycolytic 

enzymes glucokinase, hexokinase, PFK and pyruvate kinase. 

Thus, the rate limiting reactions of glycolysis are inhibited as 

the 'by-passing' reactions of gluconeogenesis are enhanced. 

Gluconeogenesis cannot supply carbohydrate at a rate comm- 

ensurate with peripheral demand, such that blood glucose 

progressively declines as endogenous carbohydrate stores are 

reduced (Ahlborg and Felig, 1982). Hypoglycaemia per se may 

cause exercise cessation in rats (Arogyasami, Sellers, Wilson, 

Jones, Duan and Winder, 1992), but is not thought to be a major 
limiting factor in humans (Felig, Cherif, Minagawa and 
Wahren, 1982), and is rarely observed (Wahren, 1977). A fall in 

blood glucose necessitates a reversion to a primary dependency 

upon muscle glycogen, which in turn accelerates the onset of 
fatigue (Costill, 1988). 
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2.2.2 Metabolism of fat 

It has been mentioned previously that carbohydrates are not 
the only source of energy. Indeed, fat is an important fuel for 

prolonged, constant pace running. Fatty acids are the energy 
molecules of fat (Fritz, Davis, Holtrop and Dundee, 1958). They 

are stored as triglycerides, where three fatty acid carbon chains 
form uncharged esters with glycerol (Stryer, 1988). Intra- 

muscular stores vary with fibre type; type-I fibres, with a high 

aerobic activity, contain 2-3 times the triglyceride stores of 

glycolytic type-II fibres (Essen, jansson, Henriksson, Taylor and 
Saltin, 1975). Triglycerides are mainly stored in the cytoplasm 

of adipocytes, where cellular organelles are displaced in order 
to maximise storage capacity. These fat cells are congregated 
into adipose tissue, which is deposited at various functional 

sites around the body. A temporary store in blood in the form 

of triglycerides, lipoproteins and chylomicrons provides a third 

storage site of fat (Bjorntorp, 1991). 

Mobilisation of fat is initiated by sympathetic nervous activity, 

and is mediated via the action of lipoprotein lipase (Oscai, Essig 

and Palmer, 1990). Transport of FFA into the muscle cell from 

plasma is thought to be regulated by 'mass action' (Armstrong, 

Steele, Altszuler, Dunn, Bishop and DeBodo, 1961). Thus, 

changes in FFA mobilisation determine both systemic FFA con- 

centrations and cellular uptake (Havel, Pernow and Jones, 

1967; Costill, Fink, Getchell, Ivy, Witzmann, 1979). Mobilisa- 

tion is dependent upon relative exercise intensity (Romijn et 

al, 1993a), as increasing blood lactate concentrations associated 

with intense activity exert an inhibitory effect (Boyd, Giamber, 

Mager and Lebovitz, 1974; Issekutz, Shaw and Issekutz, 1975; 

Pruett, 1970b). Other factors such as plasma adrenaline and 

growth hormone concentrations are also implicated (Klein, 

Holland and Wolfe, 1990; Pruett, 1970b; Savard, Despres, 

Marcotte, Theriault, Tremblay and Bouchard, 1987). 

Havel, Carlson, Ekelund and Holmgren (1964) examined FFA 

turnover during 2-h of moderate cycling. Oxidation of plasma 
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FFA accounted for -50% of exercise lipid metabolism. Intra- 

muscular triglyceride stores are believed to supply fatty acids 
directly to muscle fibres to account for the remaining -50% 
(Havel et al, 1967). Increases in plasma glycerol concentration 

closely follow changes in plasma FFA but are greater in 

magnitude (Havel et al, 1964; Wolfe, Klein, Carraro and Weber, 

1990). The liberation of glycerol from triglycerides provides 

gluconeogenic precursors for carbohydrate synthesis (Paul and 
Holmes, 1975). A similar pattern of FFA and glycerol mobilisa- 
tion was observed following 60 min of treadmill running at 
70% VO2max (Costill et al, 1979). Moreover, Romijn, Klein, 

Coyle, Sidossis and Wolfe (1993b) concluded that strenuous 

endurance training has a potentiating effect on fatty acid -. 
oxidation through enhancing basal FFA and glycerol turnover 

rates during exercise. Thus, triglyceride-fatty acid cycling plays 

an instrumental role in the rapid response of fatty acid metab- 

olism in meeting the increased energy demands of submaxi- 

mal exercise (Wolfe et al, 1990). 

Elevating plasma FFA concentrations by feeding corn oil and 

subcutaneously injecting heparin spared muscle and liver 

glycogen during treadmill running in rats (Hickson, Rennie, 

Conlee, Winder and Holloszy, 1977; Rennie, Winder and 
Holloszy, 1976). This effect was limited to type I and IIa fibres 

and was accompanied by elevated citrate levels and a blunted 

glucagon response. Citrate inhibits PFK activity and results in 

glucose-6-phosphate (G-6-P) accumulation (Garland, Randle 

and Newsholme, 1963; Garland and Randle, 1964; Randle, 

Newsholme and Garland, 1964), which in turn inhibits hexo- 

kinase to reduce glucose uptake (Garland, Newsholme and 
Randle, 1964). 

Ferrannini, Barrett, Bevilacqua and DeFronzo (1983) demon- 

strated a similar effect in man. Elevated plasma FFA levels 

inhibited insulin-stimulated glucose metabolism through 

competition with blood glucose for cellular uptake. Costill, 

Coyle, Dalsky, Evans, Fink, and Hoopes (1977) increased plasma 
FFA concentrations in humans with a high-fat meal and 
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heparin infusion. Subjects then performed a 30 min treadmill 

run at 68% VO2max. Increasing FFA availability reduced 
skeletal muscle carbohydrate utilisation in comparison with a 
carbohydrate-fed condition. Thus, there is evidence of a 
glucose-fatty acid cycle (Randle, Garland, Hales and News- 

holme, 1963) operating in rat and human skeletal muscle 
(Costill et al, 1977; Ferrannini et al, 1983; Hickson et al, 1977; 

Rennie et al, 1976; Rennie and Holloszy, 1977). 

Hargreaves, Kiens and Richter (1991) suggest that a sparing of 

endogenous carbohydrate may be mediated through a direct 

action of lipid metabolites on the cellular glucose transporter 

mechanism, as opposed to the classical glucose-fatty acid cycle 

theory. One hour of dynamic knee extensions were performed 

at 80% of knee-extensor maximum work capacity. The energy 

requirement was equally shared between carbohydrate and fat 

metabolism. Increasing arterial FFA concentrations by Intra- 

lipid infusion did not spare muscle glycogen, but cellular 

glucose uptake at rest and during work was decreased. This 

reduced transport was not associated with G-6-P accumulation 

or increased leg citrate release, as would be consistent with the 

classical theory. The possiblity that this divergence from earlier 
investigations may be due to differences in experimental 

methodology and design cannot be excluded. 

2.2.3 Metabolism of amino acids 

Amino acids are the building blocks of protein, and outside of 

their functional roles, they are not stored as a fuel for exercise. 

The actual contribution of protein is estimated to be -4-10% of 

the body's energy expenditure during prolonged exercise 
(Dohm, Williams, Kasperek and Van Rij, 1982), this value 
being influenced by carbohydrate availability (Brouns, Beckers, 

Wagenmakers and Saris, 1990; Wagenmakers, Beckers, Brouns, 

Kuipers, Soeters, Van Der Vusse and Saris, 1991). 

The majority of amino acids in the body are incorporated into 

muscle tissue (Brodan, Kuhn, Pechar and Tomkova, 1976). 
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Absolute muscle content is stable under resting conditions, 
though levels of individual amino acids are in a state of flux 
(Cahill, 1971; Dohm, Tapscott and Kasperek, 1987). Exercise 
increases amino acid metabolism, such that tissue demand will 

exceed the available supply provided by a circulatory 'free pool' 
(Dohm, Kasperek, Tapscott and Barakat, 1985). Thus, amino 

acid availability is reduced over the early stages of prolonged 

exercise (Haralambie and Berg, 1976), necessitating an increase 

in protein turnover (Lemon and Mullin, 1980; Lemon and 
Nagle, 1981). 

Contractile activity accelerates amino acid cycling, possibly 
through a direct action of calcium ions on protein degradation 

(Lundholme, Edstrom, Ekman, Karlberg, Walker and 
Schersten, 1981). This exercise effect on protein turnover is 

well documented (Haralmbie and Berg, 1976; Refsum, Gjessing 

and Stromme, 1979; Refsum and Stromme, 1974; Rennie, 

Edwards, Krywawych, Davies, Halliday, Waterlow and 
Millward, 1981; White and Brooks, 1981). Amino acid avail- 

ability is enhanced through increased protein degradation and 
decreased protein synthesis (Dohm, Beecher, Warren and 
Williams, 1981; Rennie et al, 1981). 

Muscle amino acid cycling during exercise is characterised by a 

greater uptake of circulating amino acids, and a simultaneous 

efflux of notably alanine and glutamine (Ahlborg et al, 1974; 

Bergstrom, Furst and Hultman, 1985; Felig and Wahren, 1971; 

Felig, Pozefsky, Marliss and Cahill, 1970). Enhanced BCAA 

metabolism appears to be the major event in elevated protein 

turnover during exercise (Kasperek and Snider, 1987). The 

liver is the main source of BCAA, and muscle tissue is the 

principal site of oxidation (Ahlborg et al, 1974; Felig and 
Wahren, 1975). Decreased plasma insulin, (and possibly testo- 

sterone), and increased plasma glucagon (Ahlborg et al, 1974), 

catecholamine and cortisol (Galbo, Richter, Hilsted, Holst and 
Christensen, 1977b) levels enhance BCAA mobilisation. 
Elevated BCAA concentrations inhibit oxidation of pyruvate 
(Chang and Goldberg, 1978c), resulting in increased muscle 
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efflux of lactate and pyruvate (Ahlborg et al, 1974). This libera- 

tion of gluconeogenic precursors may indirectly contribute to a 
'carbohydrate sparing effect'. Thus, hepatic BCAA provide an 

alternative source of carbon skeletons for respiration in muscle 
tissue (Odessey, Khairallah and Goldberg, 1974). This pathway 
between the liver and muscle forms one arm of the 'glucose- 

alanine cycle' (Felig et al, 1970; Felig and Wahren, 1971). 

Alanine and glutamine account for less than 15% of muscle 

contractile protein, so their increased efflux during exercise is 

believed to result from ' cdc °novo synthesis (Babij, Mathews, 

Wolman, Halliday, Millward, Mathews and Rennie, 1983b; 

Odessey et al, 1974). This process involves transamination of 

the amino acids aspartate, asparagine, arginine, proline, and 

the BCAA (Chang and Goldberg, 1978a; Odessey et al, 1974). 

Aminotransferase enzymes of the cytosol catalyse transfer of 

the amino group to a-ketoglutarate (Goldberg and Chang, 

1978), to yield a-keto acids, glutamate, and ammonia. 

The a-keto acids are either oxidised in the mitochondria or are 

released into the systemic circulation. The rate-limiting step in 

BCAA metabolism is the decarboxylation of a-keto acids by 

branched chain a-keto acid dehydrogenase (Stryer, 1988). This 

enzyme complex is largely inactive in resting muscle 
(Wagenmakers, Brookes, Coakley, Reilly and Edwards, 1989b), 

being activated by contractile activity (Kasperek and Snider, 

1987; Wagenmakers et al, 1989b) and increases in a-keto acids 

and insulin (Odessey et al, 1974). This activation appears to be 

maximal during prolonged exercise when glycogen levels are 
low (Decombaz, Reinhardt, Anantharaman, Von Glutz and 

Poortmans, 1979). Whereas, low BCAA levels reduce a-keto 

acid availability and inhibit activation. Amino acid oxidation 
is speculated to have a negative feedback effect upon exercise 

capacity, limiting activity levels in order to prevent permanent 
tissue damage (Wagenmakers et al, 1989b). 
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The fates of glutamate are four-fold. First, it may donate 

amino groups to pyruvate under the action of alanine amino- 
transferase to yield alanine (Chang and Goldberg, 1978a; Felig 

and Wahren, 1975). Second, amidation of glutamate through 

glutamine synthase yields glutamine (Bergstrom et al, 1985; 
Chang and Goldberg, 1978b), whilst also facilitating the safe 
removal of ammonia from the muscle cell (Banister, Allen, 
Mekjavic, Singh, Legge and Mutch, 1983). Though notably, 
release of glutamine into the general circulation represents a 
substrate drain from the glucose-alanine cycle (Goldberg and 
Chang, 1978; Wagenmakers, Coakley and Edwards, 1990). A 

third fate of glutamate is transamination to aspartate, 

providing an important urea cycle precursor (Babij et al, 1983b). 
Aspartate may combine with citrulline to form arginino- 

succinate, to provide an avenue for substrate re-entry into the 
TCA cycle (Stryer, 1988). Finally, recycling of glutamate within 
the muscle cell through glutamate dehydrogenase activity 

maintains a-ketoglutarate availability for both glucose-alanine 

and TCA cycling. 

Alanine is transported in the blood primarily to the liver (Felig 

et al, 1970; Haralambie and Berg, 1976). Subsequent deamina- 

tion liberates carbon skeletons for gluconeogenesis (Favier, 

Koubi, Mayet, Sempore, Simi and Flandrois, 1987), whilst the 

amino groups enter the urea cycle (Stryer, 1988). Alanine pro- 
duction is linearly correlated with glucose utilisation (Felig and 
Wahren, 1971), though the two processes are functionally 

independent. The major fraction of circulatory glutamine is 

extracted by the kidneys (Babij et al, 1983b). The ammonia 
fraction is removed and excreted from the body in urine (Van 

Slyke, Phillips, Hamilton, Arhchibald, Futcher and Hiller, 

1943), whilst the remaining carbon skeleton is either oxidised 

or directed into gluconeogenesis (Goldberg and Chang, 1978). 

Rates of both alanine and glutamine synthesis are governed by 

the availability of amino acid precursors (Chang and Golberg, 
1978a), whilst their relative levels of production appear to 
depend upon ambient ammonia concentrations (Goldberg and 
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Chang, 1978). Plasma ammonia levels reflect exercise intensity 

and duration (Babij, Mathews and Rennie, 1983a), such that 

concentrations increase during the course of prolonged exercise 
(Broberg and Sahlin, 1988; Eriksson, Broberg, Bjorkman and 
Wahren, 1985; Graham, Pedersen and Saltin, 1987). Ammonia 

is produced through amino acid catabolism, as well as during 

AMP deamination via the purine nucleotide cycle (PNC) 

(Lowenstein, 1972). Usually associated with high intensity 

exercise and recruitment of type-II muscle fibres (Dudley, 

Staron, Murray, Hagerman and Luginbuhl, 1983; Meyer, Dudley 

and Terjung, 1980; Meyer and Terjung, 1979), PNC activity is 

also enhanced over the later stages of prolonged exercise 
(Broberg and Sahlin, 1989; MacLean, Spriet, Hultman and 
Graham, 1991). As glycogen becomes low in type-I fibres, type- 

II fibres play an increasing role in force generation (Gollnick, 

Armstrong, Saubert, Sembrowich, Shepherd and Saltin, 1973). 

Operation of the PNC plays an indirect regulatory role in glyco- 
lysis, as changes in AMP and ammonia levels influence PFK 

activity (Buono, Clancy and Cook, 1984; Goodman and 
Lowenstein, 1977; Tornheim and Lowenstein, 1975). 

Increased BCAA metabolism provides substrates for anapler- 

otic reactions, whereby reserves of pathway intermediates are 

replenished (Lee and Davis, 1979; Wagenmakers et al, 1990). In 

addition to aspartate and glutamate recycling, enhanced oxida- 

tion of valine and isoleucine supplies succinyl Co-A to the 

TCA cycle (Kasperek and Snider, 1987). However, acceleration 

of BCAA oxidation reduces TCA cycle flux and impedes aerobic 

oxidation of glucose and FFA (Wagenmakers et al, 1990). Thus, 

complex physiological inter-relationships exist between the 

metabolic degradation of BCAA, FFA and carbohydrates. 

2.3 Fluid balance and thermoregulation 

A prerequisite of energy metabolism during constant pace running is C= 

an optimal milieu in which physiological processes may take place. 
This is not only dependent upon energy availability, but is also influ- 

enced by pH, fluid balance and temperature regulation. The human 
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body is -20% efficient, such that a relatively high proportion of 
energy generated during exercise is in the form of heat (Harrison, 

1986). Failure to dissipate heat will result in a rapid increase in body 

temperature (Nadel, 1977). However, core temperature rarely rises 
above 400C during prolonged running (Pugh, Corbett and Johnson, 

1967). This is mainly due to a transfer of heat from the principle sites 
of production (ie. working muscle) to the site of elimination (ie. skin) 

via the vascular system (Gisolfi and Wenger, 1984). 

On reaching the cutaneous circulation, metabolic heat is removed 
through conduction, convection and radiation, as well as evaporation 
of sweat from the skin surface and water from respiratory surfaces 
(Gisolfi and Wenger, 1984). Changes in sweating rate are linearly 

related to increases in deep body temperature (Nielsen and Nielsen, 
1962), such that evaporative heat loss represents the dominant 

cooling mechanism (Gisolfi and Wenger, 1984). As a consequence, 
temperature regulation during constant pace running will be influ- 

enced by body fluid balance, which in turn is jointly determined by 
fluid and electrolyte levels (Nielsen, 1974; Senay, 1979). 

The sweating response represents an avenue of high fluid loss during 

submaximal steady state exercise. In comparison, respiratory fluid 

losses amount to -2.0-5.0 ml-min-1 (Mitchell, Nadel and Stolwijk, 

1972), which is equivalent to -0.12-0.30 1"h-1. Whereas, in excess of 1.0 

1"h-1 is lost through sweating (Carter and Gisolfi, 1989; Costill et al, 
1970). A movement of vascular fluid into sweat glands and subse- 

quently out of the body reduces blood volume and elevates plasma 

osmolality (Sawka, 1992). This movement ultimately compromises 
both temperature regulation and cardiovascular functioning (Fortney, 

Nadel, Wenger and Bove, 1981a). Thus, competition for a limited 

fluid supply between the metabolic demands of active tissue and a 

whole body need to dissipate heat accompanies prolonged exercise 
(Costill, 1972). 

This competition is inherently debilitating, such that dehydration 

limits aerobic work capacity (Astrand and Saltin, 1964; Kozlowski and 
Saltin, 1964). Fluid loss equivalent to a -2.0% decrease in body weight 
results in impaired submaximal exercise performance (Armstrong et 
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al, 1985; Craig and Cummings, 1966). For each 1.0% decrease in body 

weight there is an increase in core temperature of between 0.1 to 0.4°C 
(Ekblom, Greenleaf, Greenleaf and Hermansen, 1970; Greenleaf and 
Castle, 1971; Sawka et a1,1985). A reduction in body weight of 1.0% is 

also associated with a -2.4% decrease in plasma water and a-1.2% 
decrease in muscle water (Costill, Cote and Fink, 1976). Resultant 

increases in serum osmolality, specifically through changes in magne- 

sium, sodium and potassium levels, may be involved in a reduced 

sweating response (Costill et al, 1976; Greenleaf and Castle, 1971; 

Nielsen, 1974). These changes may operate locally by decreasing the 

sensitivity of sweat glands to neural innovation or by interfering 

with the glandular secretory mechanism (Nielsen, 1974). Alterna- 

tively, increased osmolality may operate centrally through an effect 

upon hypothalamic thermoregulatory centres (Ekblom et al, 1970; 

Greenleaf and Castle, 1971). As such, deep body temperature will con- 
tinue to increase in the face of reduced SBF (Horstman and Horvarth, 

1972), and declining sweat gland stimulation (Ekblom et al, 1970). 

Saltin and Stenberg (1964) observed that stroke volume (VS) decreased 

-15% during 3-h cycling or running (75% VO2max), in which body 

weight was reduced by -4%. With only a small compensatory inc- 

rease in cardiac output (Q), mean arterial blood pressure decreased by 

-10%. Thus, exercise-induced dehydration resulted in a decreased V, 

and increased heart rate (HR), such that Q remained relatively con- 

stant. The magnitude of cardiovascular adjustments correlate with 
the degree of hydratory distress, which in turn is reflected in body 

weight and blood volume reductions (Saltin, 1964b). 

A negative fluid balance depresses Q due to a reduction in Vs and an 
inadequate increase in HR (Fortney et al, 1983; Nadel, Fortney and 
Wenger, 1980). Decreasing arterial blood pressure stimulates peri- 

pheral vasoconstriction (ie. baroreceptor reflex) such that SBF is 

reduced in order to maintain cardiac filling pressure and deep muscle 
blood flow (Fortney et al, 1983; Nadel, Fortney and Wenger, 1980). 

Decreases in Q and SBF are proportional to absolute changes in blood 

volume (Fortney et al, 1981a; Montain and Coyle, 1992b). Blood 

volume in turn influences the sweating response, independent of 

plasma osmolality modulation (Fortney, Nadel, Wenger and Bove, 
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1981b. Both hypovolaemia and hyperosmolarity delay the onset of 
sweating by elevating the internal threshold temperature for 

cutaneous vasodilation (Fortney, Wenger, Bove and Nadel, 1984; 
Nadel et al, 1980). This in turn decreases core-to-skin heat transfer 

and increases core temperature. Fluid replacement during exercise 
attenuates hyperthermia largely by maintaining SBF (Montain and 
Coyle, 1992a). This is achieved through a lowering of serum osmo- 
lality, especially serum sodium concentration, rather than through 
increases in blood volume (Fortney et al, 1981b; Montain and Coyle, 

1992a; Sawka, Hubbard, Francesconi and Horstman, 1983). Never- 

theless, small adjustments to blood volume may improve cardio- 

vascular functioning (Fortney et al, 1981a; Montain and Coyle, 1992a). 

Fortney, Vroman, Beckett, Permutt and LaFrance (1988) suggest that 

the greatest change in plasma volume occurs during the initial 6-10 

min of exercise. This early change contributing to an elevated HR 

primarily reflects postural adjustments and transient vasodilatory 

responses associated with the rest-to-exercise transition (Gore, Scroop, 

Marker and Catcheside, 1992; Harrison, 1985). Gore et al (1992) suggest 
that there is a lower limit to plasma volume reductions, with further 

decreases in total body water being drawn from the extra-vascular 

space. A later 'secondary rise' in HR, or cardiovascular drift, may be 

due to a progressive decrease in cardiac filling (Nielsen, Sjogaard and 
Bond-Petersen, 1984). This is partly due to thermoregulatory factors, 

and partly due to enhanced sympathetic nervous activity (Hamilton, 

Gonzalez-Alonso, Montain and Coyle, 1991; Kalis, Freund, Joyner, 

Jilka, Nittolo and Wilmore, 1988; Nose, Mack, Shi, Morimoto and 
Nadel, 1990). 

Mobilisation of endogenous energy reserves elevates muscle solute 

content. A resultant change in osmotic forces draws in extracellular 
fluid to increase muscle water content (Nielsen, Sjogaard, Ugelvig, 

Knudsen and Dohlmain, 1986). This in turn will elevate osmolality 
in the extracellular and vascular compartments. Increases in core 
temperature during exercise are observed to correlate with changes in 

plasma osmolality (Greenleaf, Kozlowski, Nazar, Kaciuba-Uscilko, 

Brzezinska and Ziemba, 1976; Harrison, Edwards and Fennessy, 1978). 
However, elevated plasma osmolality is not always associated with 
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decreases in vascular volume (Montain and Coyle, 1992b), such that 
increasing initial plasma volume does not consistently prevent an 
upward drift in exercise HR (Nielsen et al, 1986). Changes specifically 
in sodium ion concentrations appears to represent an important non- 
thermal input in temperature regulation (Greenleaf et al, 1976), 

providing an index of osmotic pressure which reflects total body 

water volume rather than transient fluctuations in compartmental 

water volumes. Osmotic pressure in turn provides an index of fluid 
balance, which may act synergistically with thermoreceptor inputs in 

the regulation of deep body temperature. 

Nose, Morita, Yawata and Morimoto (1986) examined fluid intake 

and changes in blood volume during recovery from thermal dehyd- 

ration. Water and 0.45% NaCl. solution were provided ad libitum 

during a 6-h rehydration period. Ingestion of water inhibited the 

stimulus to drink, (ie. reduced dipsogenic drive), whereby a rapid 
decrease in circulatory osmolality superceded blood volume regula- 
tion. Plasma hyposmolality blunts the thirst stimulus in order to 

prevent further reductions in osmolality and ensuing cellular hyper- 

hydration. Recovery of -80% blood volume appears to inactivate the 

volume-dependent thirst mechanism. A continuing involuntary 

dehydration, or a delayed rehydration, results from a rapid decrease 

in dipsogenic drive (Nose, Mack, Shi and Nadel, 1988b). A transient 

rise in plasma volume following exercise is due to a rapid efflux of 

water from muscle (Nielsen et al, 1986). This is in response to electro- 
lyte deficits from intra- and extracellular spaces (Nose, Mack, Shi and 
Nadel, 1988a), which artificially suppress the thirst drive. However, 

subsequent fluid and osmotic equilibration between body compart- 

ments unmasks a fluid deficit and evokes a desire to drink. Thus, 

total body water balance is determined by the proportional distribu- 

tion of fluid and electrolytes between fluid compartments (Nose et al, 
1988a; Nose et al, 1988b). 

As discussed previously, peripheral displacement of central blood 

volume during submaximal exercise reduces V. (MacDougall, 

Reddan, Layton and Dempsey, 1974). The total oxygen cost of exercise 

gradually increases due to the greater metabolic cost of, amongst other 
concerns, maintaining a stable core temperature (Hamilton et al, 
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1991). Hamilton et al (1991) speculated that impaired cardiovascular 
functioning may reduce muscle cell phosphorylative efficiency. Fink, 
Costill and Van Handel (1975) observed that muscle blood flow was 
compromised during exercise in the heat, resulting in a decrease in 

oxygen supply and an increase in muscle glycogenolysis. Nadel, 

Fortney and Wenger, (1980) suggest that decreasing cardiovascular 

efficiency is compensated for by either an increase in tissue oxygen 

extraction or enhanced anaerobic metabolism, or both, in an attempt 
to maintain the required energy flux. Elevated lactic acid production 
during a 30 min dehydrating exercise bout was regarded as sympto- 

matic of accelerated anaerobic glycolysis (Nadel et al, 1980). 

Exercise hyperthermia has been associated with lactate accumulation 

and a more rapid rate of glycogen depletion, which might ultimately 

contribute to localised muscle fatigue (Kozlowski, Brzezinska, Kruk, 

Kaciuba-Uscilko, Greenleaf and Nazar, 1985). However, Nielsen, 

Savard, Richter, Hargreaves and Saltin (1990) observed that compro- 

mised muscle blood flow, and altered cellular metabolism, did not 
limit performance during uphill walking in the heat. Leg blood flow, 

femoral arteriovenous oxygen difference, (and hence oxygen extrac- 
tion), glycogen utilization, muscle uptake of glucose and FFA, and 

production of lactic acid, did not differ between exercise in a cool 

environment and exercise in a hot environment. In contrast with 

previous arguments, Nielsen et al (1990) suggest that rather than a 

peripheral effect limiting exercise performance, elevated core temp- 

erature may operate centrally to reduce motor drive. Though notably, 
the 'cool' condition was experienced over the initial 30 min of exer- 

cise and the 'hot' condition over the latter 60 min of exercise. Section 

2.2 discussed the processes underlying a shift in energy metabolism 
during prolonged exercise, where the early phase is associated with a 

greater dependency upon carbohydrate metabolism, whilst the later 

phase is associated with a greäter dependency upon fat metabolism. 
A high environmental temperature may have inhibited this normal 
exercise-dependent shift in energy metabolism. Thus, the evidence 
provided by Nielsen et al (1990) does not, conclusively negate the 

possibility of a temperature effect on metabolism in skeletal muscle. 



Chapter 2 29 

Cardiovascular integrity takes precedence over temperature regula- 
tion when thermo-hydratory conditions exceed the control of normal 
homeostatic mechansims (Nadel, Cafarelli, Roberts and Wenger, 

1979). During exercise of increasing intensity in the heat, Q and Vs are 

maintained at the expense of a regulated deep body temperature. The 

threat to venous return is three-fold: hydrostatic and osmotic press- 

ures result in a filtration of fluid out of the vascular volume; thermo- 

regulatory increases in SBF increase cutaneous venous volume; and, 

evaporative water losses through sweating and respiration 

progressively decrease total body fluid. The most important factor 

contributing to reduced cardiac filling pressure is the pooling of blood 

in peripheral veins, which becomes more significant than plasma 

volume losses (Fortney et al, 1983). 

In contrast with submaximal exercise performance, dehydration does 

not appear to reduce the ability of muscle to maximally contract 
(Craig and Cummings, 1966; Saltin, 1964a). Nerve impulse propaga- 
tion and the responsiveness of muscle fibres is not impaired by 

dehydration (Saltin, 1964a). Costill et al (1976) observed that water 

and electrolyte losses following exercise-induced dehydration did not 

alter muscle cell membrane excitability, even though total maximal 

work time and cumulative blood lactate concentrations were reduced 
(Saltin, 1964a; Saltin, 1964b). This suggests that a dehydratory limita- 

tion to performance lies within the muscle cell (Kozlowski and 
Saltin, 1964; Saltin, 1964a; Saltin, 1964b). 

2.4 Causes of fatigue during constant pace running 

Prolonged muscular activity is inevitably accompanied by fatigue and 

a progressive decline in performance (Green, 1991). There does not 

appear to be a simple deffinative cause un& rpinn ng_this.. decline, 

rather a whole spectrum of events occur which differentiall combine 
to limit exercise cap aci (Roberts and Smith, 1989. The interaction 

of these events is determined by characteristics defining the nature of 
activity. However, a point is reached within this matrix of metabolic ý"' 

and non-metabolic processes where one or more factors become 

incapacitating (Edwards, 1983). 
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As mentioned previously, the ability to sustain prolonged exercise is 

principally limited b fluid balance (Armstrong et ah_, 19854and 0<ý. 
carbohydrate availability (Ahlborg et al, 1967a). The former, which 

was addressed in Section 2.3, exerts a relatively global influence over 
physiological processes. In contrast, the latter may arise more dis- 

cretely, such that exercise cessation is associated with local decrease 

in muscle glycogen. Though notably, absolute glycogen concentrp-- 
tions never reach zero (C, onlee 1987" Tsintzas 

_1 
)� Low muscle 

glycogen levels ultimately result in an 'energy deficit' at the adenine ine 

nucleotide level, with an inability to re generate ATP at the required 
rate (Sahlin, 1992). Reduced carbQydrate.. suppli,. litnit er}ergy 
production via gl lysishilst a subsequent reduction in the supply 
of TCA cycle precursors will imRair oxidat, ý ve phoýýhor Tation. 

Muscle fibre glycogen depletion is selective, reflecting the nature and E--_ 
intensity of exercise (Costill et al, 1973b; Costill, Jansson, Gollnick and 
Saltin, 1974; Gollnick et al, 1973; Gollnick, Piehl and Saltin, 1974; 
Tsintzas, 1993; Vollestad and Blom, 1985). This is partially due to the 
higher oxidative potential of type-I fibres, and the higher glycolytic 

potential of type-II fibres (Essen et al, 1975; Gollnick, Armstrong, 

Saubert, Piehl and Saltin, 1972a; Greenhaff, Ren, Soderlund and 
Hultman, 1991). Baldwin, Reitman, Terjung, Winder and Holloszy 

(1973) examined substrate utilisation of different fibres in running 

rats. Glycogen depletion patterns suggested a minimal recruitment of 
type-IIb (fast twitch, glycolytic) fibres, with type-I (slow twitch, 

oxidative) and intermediary type-IIa (fast twitch, oxidative-glycolytic) 
fibres performing most of the work. A substantial recruitment of 

type-IIb fibres was only apparent over the later stages of exercise as 
type-I and IIa fibres became fatigued. 

A similar pattern occurs in humans during 60 min of cycling at 50- 

60% VO2max (Essen, 1978). Resting muscle glycogen concentrations 

were greater in type-Ha and IIb fibres, than type-I fibres. Continuous 

exercise resulted in a greater glycogen reduction in type-I fibres, whilst 
intense intermittent exercise resulted in similar reductions in all fibre 

types. Vollestad, Vaage and Hermansen (1984) undertook histo- 

chemical examinations of muscle glycogen depletion patterns during 

both exhaustive cycling and running at 75% VO2max. Type I and IIa 
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fibres were recruited at the start of exercise. Type lib and inter- 

mediate Hab fibres were not recruited until 20 min of exercise, or later. 

This resulted in sequential reductions of carbohydrate reserves in 

different muscle fibre groups. Costill et al (1971b) report that absolute 
decreases in muscle glycogen concentration during running at -80% 
VO2max were less than during cycling of a similar intensity, with 

substantial glycogen reserves remaining in muscle following an 

exhaustive run. Costill et al (1971b) concluded that running permits 
longer periods of intense, submaximal work in comparison with 

cycling, and that fatigue is less localised. This may be a contributory 
factor in the less exact perception of exhaustion during prolonged 

running (Sherman and Costill, 1984). However, the findings of 
Costill et al (1971b) may have reflected inherent differences in 

sampling site and muscle fibre recruitment with respect to the activi- 
ties undertaken. Thus, there is a need for caution when generalising 
from studies involving different species and different exercise modes. 

More recently, single fibres from the m. vastus lateralis were analysed 
before and after exhaustive running at 70% VO2max (Tsintzas, 1993). 

Glycogen concentrations in type-I fibres decreased from 317.0 (t 34.2) 

to 31.6 (±10.3) mmol"kg-ldry wt, and in type-II fibres from 443.4 (f 44.9) 

to 103.9 (± 29.2) mmol"kg-ldry wt. Tsintzas (1993) concluded that 

compromised carbohydrate availability specifically in type-I fibres is 

associated with fatigue during prolonged, constant pace running. 

Despite a reduction in muscle glycogen levels during constant pace 

running, blood glucose and cellular ATP levels remain approximately 

constant (Broberg and Sahlin, 1989; Norman, Sollevi, Kaijser and 
Jansson, 1987). Not withstanding the possibility that changes in ATP 

concentrations too subtle to detect may influence functional capacity, 

this would suggest that further physiological mechanisms are opera- 

ting to precipitate fatigue which results in exercise cessation. 

Low blood glucose levels may not necessarily exert their reatest effect 

upon peripheral processes. Reduced systemic carbohydrate availaý 
bility may result in a decline in central drive from higher motor 
centres, or indire X influences ci ý la o y,, ý gntrati-Q a-of- ieum; 
transmitters (Greens 9, 

ýj),, � 
A decrease in muscle contractile activity 
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would accompany any reduction in a-motoneuron output. However, 

changes in catecholaminergic and serotonergic transmitter levels 
have not consistently been associated with low carbohydrate availa- 
bility (Green 1991). Furthermore, restoration of normal blood lg. ucose 
levels neither alleviates central symptons of fatigue, nor results in a 
return of exercise capacity (Bergstrom and Hultman, 1967). 

Elevated plasma FFA levels are associated with impaired glucose 
tolerance by impinging upon the sensitivity of tissue to insulin (Paul 

and Holmes, 1975; Schalch and Kipnis, 1965). Furthermore, plasma 
FFA may directly reduce cellular glucose uptake, at a time when 
muscle glycogen concentrations are increasingly limited (Rennie and 
Holloszy, 1977). Oxidation of FFA gives rise to citrate, which inhibits 
PFK activity and results in G-6-P accumulation (Randle et al, 1963). 
Hexokinase is in turn inhibited by G-6-P such that cellular glucose 
transport is compromised, further limiting carbohydrate availability 
in the muscle fibre. 

Exercise is accompanied ly anJncrease. _. 
in_BCAA_metabolism_ 

(Kasperek and Snider, 1987). Elevated muscle BCAA concentrations 
mad! impair py_ruvate-oxidation, (Chang and Goldberg, 1978c), such 
that pyruvate and lactate efflux from muscle is increased (Ahlborg et 
al, 1974). Thus, high BCAA cycling ma reduc . 

jCEicycle flux and 
limit oxidation. nLglucose.. and. FJA-(Wagenmakers et al, 1990). As 
discussed previously, this negative feedback effect of amino acid 
metabolism on exercise capacity may provide a safety mechanism to 
limit physical activity in order to prevent permanent tissue damage 
(Wagenmakers et al, 1989b). 

Changes in muscle BCAA metabolism ma_y_alsoýp9ttepc, $ pjop ara 
metabolism in the brain (Newsholme, Blomstrand, Hassmen and 
Ekblom, 1991). Trýptophan is a precursor of the brain neurotrans- 
mitter 5-hydroxytryptamine,.. (5 UD, (also known as serotonin), which 
is invol týiiLihe coýlrol of sleep, food intake, 

, mQgp. Aj 
tivi and pituitarýhormoýe)ý Newsholme and Leech, 1983). 
Tryptophan is transported bound to albumin, but is displaced by inc- 

reasing lasma concentrations of FFA and large neutral amino acids 
such as Blutamine (Curzon, Friedel and Knott, 1973; Newsholme and 
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Leech, 1983). Enhanced competition for albumin binding sites during 

prolonged exercise resuItsin elevated p asma free tryptophan concen- 
trations, and it is in this 'free' form that tryptophan is carried across 
the blood brain barrier. The same-carrier molecule-is-inyQlved in the 
transport of BCAA_(Newsholme and Leech, 1983).. ý Increased muscle 
BCAA utilisation reduces plasma BCAA concentrations Decombaz et 
al, 1979). Thus, decreased competition fromBCAA will enhance the 
transport of tryptophan_into. the brain.. Subsequent hydroxylation of 
tryptophan results in 5-HT synthesis (Newsholme and Leech, 1983). 
Elevated 5 ̂H'- levels_in. specific_areas_of the brain are speculated as 
playing a role in the.. onset. of fatigue (Newsholme et al, 1991; Parry- 
Billings, Blomstrand, McAndrew and Newsholme, 1990). 

Mobilisation of muscle and liver glycogen is associated with a cellular 
efflux of potassium ions (Hultman, 1967; Sjogaard, 1986; Sjogaard, 

1989), resulting in increased concentrations in plasma (Bergstrom and 
Hultman, 1966b; Laurell and Pernow, 1966). A decrease in muscle cell 
potassium has been implicated in reduced contractility, as processes 
involved in normal excitation-contraction coupling are disturbed 
(Sjogaard, 1990). Whether this disturbance is of sufficient magnitude 
to compromise muscle function during voluntary activity remains a 
matter for debate (Ahlborg et al, 1967b; Vollestad and Sejersted, 1988). 
Changes in intracellular potassium levels may disrupt membrane 
integrit of thq_sarcoplasmic-re clum; which=would-effect cälcium 
ion_transpoxl_((ollestad. andýSejersted,. 1988).. Low muscle glycogen 
concentrations have been linked with decreases in calcium re-uptake 
and diminished calcium ATPase activity (Byrd, Bode and Klug, 1989). 
Thus, muscle relaxation would become retarded, resulting in a persis- 
tent state of semi-rigor. Carbohydrate ingestion may indirectly buffer 

potassium ions through potassium incorporation into glycogen 
granuels (Hultman, 1967). 

2.5 Diet and exercise performance 

A close association between diet and performance was evident in the 

early work of Christensen and Hansen (1939)'. Subjects on high- 

carbohydrate diets had an improved capacity for prolonged work, 

Cited Astrand (1%7) 
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whereas consuming fat-protein diets low in carbohydrate reduced 
exercise tolerance. Fat-rich, carbohydrate-deficient diets are associated 
with increased lipid oxidation and decreased carbohydrate oxidation 
during submaximal cycling and constant pace running (Gollnick, 
Piehl, Saubert, Armstrong and Saltin, 1972b; Galbo, Holst and 
Christensen, 1979; Jansson and Kaijser, 1982a; Jansson and Kaijser, 
1982b). This is reflected in elevated plasma concentrations of FFA, 

glycerol and 0-hydroxybutyrate, whilst glucose and lactate concentra- 
tions in plasma and a-glycerophosphate in muscle are reduced 
(Jansson and Kaijser, 1982a). This shift in energy metabolism is partly : 5, -- 

mediated through substrate inhibition of carbohydate metabolism 
(Costill et al, 1977; Ferrannini et al, 1983; Rennie and Holloszy, 1977), 

and partly through changes in hormonal secretions (Galbo, 
Christensen and Holst, 1977a; Galbo et al, 1979; Janson, Hjemdahl 

and Kaijser, 1982). The net result is a reduction in both muscle glyco- 
genolysis and hepatic glucose output (Janson and Kaijser, 1982b). In 

contrast, a high-carbohydrate diet elicits a contra-shift in energy 
metabolism, whereby plasma FFA and glycerol concentrations are 
suppressed whilst blood lactate is elevated (Kelman, Maughan and 
Williams, 1975). 

The re-introduction of the needle biopsy technique in the 1960's 

allowed closer examination of the mechanisms underlying shifts in 

substrate utilisation (Bergstrom, 1962). Consuming a fat-protein diet 
following exhaustive exercise resulted in slower rates of muscle C 
glycogen resynthesis, whereas a high carbohydrate diet was associated 
with a rapid rate of resynthesis (Ahlborg et al, 1967a). Bergstrom et al 
(1967) varied muscle glycogen concentrations through a combination 
of exercise and dietary manipulation. Prescribed diets were ingested 
for 72-h prior to exhaustive cycling at 75% VO2max. A normal 
mixed-diet resulted in pre-exercise glycogen concentrations of 97 

mmol"kg-1wet wt in the m. vastus lateralis and an exercise time to 

exhaustion of 114 min. A fat-protein diet resulted in muscle glycogen 
concentrations of 35 mmol"kg-lwet wt and an exercise time of 57 min. 
Whilst a high-carbohydrate diet resulted in 184 mmol"kg-lwet wt of 
glycogen and an exercise time of 167 min. Thus, local muscle glyco- 
gen stores appear to be a primary determinant of endurance capacity 
(Ahlborg et al, 1967b), and these stores may be increased through 
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dietary manipulation (Bergstrom et al, 1967; Hultman and Bergstrom, 
1967). 

Karlsson and Saltin (1971) demonstrated the practical implications of 
this relationship between diet and exercise performance during a 30 
km running race. Elevating pre-exercise muscle glycogen concentra- 
tions through diet and exercise (Astrand, 1967), improved the ability 
of runners to maintain an optimal running speed. Williams, Brewer 

and Walker (1992) supplemented the normal diet of runners with 
additional carbohydrate during 7-d recovery from a 30 km treadmill 
time trial. When subjects repeated the time trial, a faster pace was 
maintained over the last 5 km compared to their first trial perfor- 
mance. A similar improvement was not evident in a control group 
prescribed an isocaloric diet in which additional energy was provided 
in the form of fat and protein. 

Sherman, Costill, Fink and Miller (1981) elevated muscle glycogen 
levels through a regimen of increased dietary carbohydrate intake and 
training taper. A strenuous bout of depletory exercise as prescribed in 
Astrand's (1967) classical 7-d 'super-compensating' regimen was not 
performed. This has been shown to be unneccessary for eliciting a 
carbohydrate loading effect (Blom, Costill and Vollestad, 1987a). How- 

ever, there is some evidence that muscle glycogen per se is not the 

only factor determining exercise capacity. Despite elevating muscle 
glycogen concentrations, endurance capacity in trained runners was 
not improved (Madsen, Pedersen, Rose and Richter, 1990). Madsen et 
al (1990) were unable to offer a satisfactory explanation for exercise 
cessation in carbohydrate 'super-compensated' highly trained endur- 
ance runners after 77 (± 13) min at 75-80% VO2max. Blood glucose 
concentrations were maintained during exercise and blood lactate 

concentrations were not exceptionally high, whilst substantial stores 
of glycogen remained in muscle at the end of exercise. A high esti- 
mated rate of liver glycogen utilisation may have compromised 
carbohydrate availability late in exercise, though this was not evident 
from the maintenance of blood glucose homeostasis. Madsen et al 
(1990) speculated that an imbalance between intra- and extra-cellular 
potassium concentrations may have been associated with the onset of 
fatigue (Sjogaard, 1986), whilst interference of excitation-contraction 
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coupling might also have played a part (Belcastro, Maclean and 
Gilchrist, 1985), though data in support of such contentions was not 
provided. 

2.5.1 Gastric emptying and intestinal absorption of carbohydrates 

The efficacy of dietary manipulation primarily depends upon 
the rate at which food is made available to active tissue. This is 
determined in the first instance by the transit time of ingesta 

along the gastro-intestinal (G-I) tract. Whilst the rate of intes- 
tinal absorption represents a second determinant factor. A 

single 300 ml feeding of a 10.6% carbohydrate solution may 
appear as serum glucose -5-7 min following ingestion (Costill, 
Bennet, Branam and Eddy, 1973a). This serves to illustrate the 
relative rapidity of gastric emptying and intestinal absorption, 
which is still apparent even under the duress of exercise. 

Gastric motor activity is controlled by a combination of neural 
and humoral feed-back mechanisms (Murray, 1987). Receptors 
located in the walls of the duodenum and jejunum are 

sensitive to changes in volume, energy density, osmolality, pH, 
temperature, fat and amino acid levels. The effects of physical 

activity overlie these stimuli, where the nature and intenstiy 

of activity are speculated to differentially influence G-I transit. 
Exercise of moderate intensity (ie. <70% VO2max) did not effect 
gastric emptying and intestinal absorption of a 13.3% glucose 

solution (Fordtran and Saltin, 1967), but more intense activity 
(ie. >70% VO2max) elicited an inhibitory effect (Costill and 
Saltin, 1974). This may be in response to elevated plasma 
catecholamines or endogenous opioids which inhibit both 

splanchnic blood flow and gastric motility. Gastric emptying of 
water and carbohydrate solutions (ie. 5.0-7.1% maltodextrin- 
glucose) was enhanced during moderate running (ie. 50-70% 
VO2max) in comparison with a resting condition (Neufer, 
Costill, Fink, Kirwan, Fielding and Flynn, 1986). Contractile 

activity of the abdominal muscles as part of the upper-body 
component to the running action may increase intragastric 
pressure (Neufer, Young and Sawka, 1989b). At rest, intra- 
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gastric pressure is generated by rhythmical contractions of the 
proximal stomach wall whilst the pyloric sphincter muscle 
occludes the distal exit. Upper body movement during cycling 
is minimal in comparison to running. However, recent 
studies of cycling and running have found gastric emptying 
and intestinal absorption of isotonic and hypertonic carbohy- 
drate solutions to be independent of exercise mode (Houmard, 
Egan, Johns, Neufer, Chenier and Israel, 1991; Rehrer, Brouns, 
Beckers, Ten Hoor and Saris, 1990b). 

In contrast to the equivocal indirect effects of exercise, osmo- 
lality, energy density and volume exert more direct influences 

over G-I events (Murray, 1987; Rehrer, Beckers, Brouns, Ten 
Hoor and Saris, 1989). This is via activation of duodenal and 
jejunal receptors (Hunt and Pathak, 1960). The majority of 
solutes entering the intestine do not penetrate the receptor 
membrane, such that an osmotic gradient develops between 
the intestinal lumen and receptor vesicle. This draws fluid out 
of the receptor vesicles and surrounding tissue, and into the 
lumen (Barker, Cochrane, Corbett, Hunt and Kemp Roberts, 
1974; Leiper and Maughan, 1986; Maughan, Fenn, Gleeson and 
Leiper, 1987; Rehrer, Beckers, Brouns, Saris and Ten Hoor, 
1993). Dehydration of the receptors triggers inhibition of gastric 
emptying. Thus, hypertonic solutions maintain the vesicles in 

a shrunken state and impair G-I transit (Barker et al, 1974). 
Such solutions may gain in volume during their passage along 
the G-I tract through increases in gastric secretion (Barker et al, 
1974; Coyle, Costill, Fink and Hoopes, 1978). 

Solutes which penetrate the receptors, (ie. sodium, urea and 
glycerol), reverse the osmotic gradient to favour a fluid move- 
ment into the vesicles (Hunt and Pathak, 1960). The reduced 
neural drive of enlarged vesicles allows gastric emptying to be 

accelerated. Isotonic glucose solutions enhance receptor trans- 

port of sodium and indirectly promote G-I transit (Hunt and 
Pathak, 1960; Leiper and Maughan, 1986). The access of pene- 
trating solutes into the receptor depends upon their intestinal 

concentration (Hunt and Pathak, 1960). Low concentrations are 
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actively transported into the vesicle and provide for facilitated 

receptor rehydration. Whereas, high concentrations must rely 
upon membrane diffusion, making reversal of receptor- 
inhibition a slower process. 

Increasing the glucose content, and consequently the osmo- 
lality, of a solution slows G-I transit (Coyle et al, 1978). It was 

speculated that glucose polymers (GP) may reduce this inhibi- 

tory effect, as polymerised glucose has a higher molecular 

weight and lower osmolality (Murray 1987). Foster, Costill and 
Fink (1980) measured gastric emptying rates of glucose and GP 

solutions. A 5.0% glucose solution emptied at -10 ml-min-1, 

whereas a 5.0% GP solution emptied at -17 m l-m i n-1. Thus, 

Foster et al (1980) suggested that reducing osmolality through 

polymerisation may be advantageous for G-I transit. However, 

the advantage is probably not as great as originally anticipated, 

as calculations of emptying rates did not account for gastric 

secretions. 

Hunt and Stubbs (1975) identified energy density as a primary 
determinant of gastric emptying, such that isocaloric portions 

of carbohydrate, fat and protein elicited similar G-I inhibitory 

effects. Energy-deficient saline meals empty from the stomach 

more rapidly than energy-rich carbohydrate meals (McHugh 

and Moran, 1979). The former empty exponentially, whereas 
the latter empty linearly over most of their time-course (Hunt 

and Spurrell, 1951; McHugh and Moran, 1979). However, con- 

centrated feedings maintain a faster rate of energy delivery to 

the duodenum in comparison with less concentrated feedings, 

despite retarding gastric emptying (Hunt, Smith and Jiang, 

1985; Hunt and Stubbs, 1975; Mitchell, Costill, Houmard, Fink, 

Robergs and Davis, 1989b). 

Brener, Hendrix and McHugh (1983) proposed a two-phase 

model of gastric emptying. An initial exponentially rapid 

phase is controlled by an 'open-loop' mechanism. Feeding 

volume and intragastric pressure interact to deliver -2.13 kcal 

min71 to the duodenum. This is followed by a slow phase, 
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characterised by a relatively constant emptying rate under feed- 

back regulation. An energy dependent 'closed-loop' system 
inhibits gastric emptying at a rate of -0.46 min-kcal-1. Thus, a 

reciprocal control mechanism is proposed which assumes a 

steady balance between duodenal delivery and gastric empty- 
ing. Hunt et al (1985) similarly report a two-phase mechanism 

where duodenal energy delivery may be enhanced by increas- 

ing initial volume and energy density. Gastric emptying was 

equivalent to -5.3 kcal-min-1 over 30 min proceeding ingestion 

of 600m1 of a GP solution, although this declined to -2.6 kcal 

min-1 by 120 min post-absorption. 

Mitchell, Costill, Houmard, Flynn, Fink and Beltz (1988) 

examined the influence of serial carbohydrate feedings on 

gastric emptying and intermittent exercise performance. 
Carbohydrate drinks, (ie. 5.0 to 7.5 % solutions), were ingested 

at a rate of 8.5 ml"kg-lbody wt"h-1 during each rest period of an 
interval session. The intestinal fluid delivery of low concen- 
tration carbohydrate solutions did not differ from water. 
Exercise capacity during a final 12 min performance ride was 
improved, possibly due to enhanced blood glucose availability. 
In a subsequent study, Mitchell et al (1989b) employed a similar 
intermittent exercise model but failed to observe the regulated 
G-I energy flow proposed by Brener et al (1983). Mitchell et al 
(1989b) reported a greater energy delivery with solutions of 

equal volume but increasing concentration. 

Rehrer et al (1989), and Sole and Noakes (1989), report findings 

which are further anomalous with an 'energy control' model. 
A stable relationship between energy density and a delay in 

gastric emptying was not observed during single bolus or serial 
feedings. Energy delivery was increased through manipulation 

of feeding size and solution content. An initial fast emptying 

phase was evident, the characteristics of which reflected inital 

bolus size (Rehrer et al, 1989). 

Increasing the volume of a feeding improves G-I transit 
(Costill and Saltin, 1974; Mitchell and Voss, 1991). Costill and 
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Saltin (1974) suggested a threshold of -600 ml for a single 
feeding, whereas serial feedings may maintain high gastric 

emptying rates of -10 to 15 mim i n-1(ie. 0.6 to 0.91-h-4) through- 

out their course (Mitchell et al, 1989b; Ryan, Bleiler, Carter and 
Gisolfi, 1989). Distension of the stomach during filling inc- 

reases intragastric pressure, whilst stimulation of mechano- 

receptors sited in the stomach wall accelerates gastric emptying 
(Murray, 1987). This 'volume effect' appears to be the most 
important regulatory determinant immediately following 

ingestion. The G-I flow is maintained in order to minimise 

possible mechanical damage of the tract. Flow rates rapidly 

reach maximal following ingestion of a single bolus and then 

decline exponentially. Serial feedings prevent this exponential 
decline by maintaining a constant G-I flow (Noakes, Rehrer 

and Maughan, 1991). Under such circumstances, neither 

gastric emptying nor intestinal absorption are limiting (Rehrer, 

Wagenmakers, Beckers, Halliday, Leiper, Brouns, Maughan, 

Westerterp and Saris, 1992). 

A further point to consider is the influence of ambient temp- 

erature, where high temperatures inhibit gastric emptying. 
This effect was observed during constant pace running (65% 

VO2max) in a warm (35°C) environment, in comparison with 

a neutral (25°C) environment (Owen, Kregel, Wall and Gisolfi, 

1986). The magnitude of this inhibition is dependent upon the 

severity of the exercise or heat-induced thermal stress, as well 

as physiological fluid status (Neufer, Young and Sawka, 1989a). 

Elevated core temperature may contribute to a reduced splan- 

chnic blood flow or elevated plasma ! 3-endorphin levels, or 
both, which in turn inhibit G-I motility (Owen et al, 1986). 

This phenomenon is implicated in the greater incidence of G-I 

disturbances in warmer environments (Rehrer, Beckers, 

Brouns, Ten Hoor and Saris, 1990a). 

The composition of a solution on reaching the intestine influ- 

ences subsequent absorption. Movement of fluid and solutes 

across the luminal mucosa and into splanchnic capillaries is 

either via simple diffusion, or via an active transport or carrier 
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system. Glucose and sodium are actively co-transported, and 
this movement facilitates the passive absorption of water by 

osmosis (Schedl and Clifton, 1963; Sladen and Dawson, 1969). 

The active transport of glucose and sodium increases markedly 

with intestinal content, despite a prevailing concentration 

gradient favouring gastric secretion (Schedl and Clifton, 1963). 

Cycling at moderate intensities has been observed to reduce 
intestinal electrolyte (ie. sodium, chloride and potassium ions) 

and water absorption (Barclay and Turnberg, 1988). This may 
be associated with exercise-induced increases in autonomic 

nervous activity (Barclay and Turnberg, 1988). However, any 
inhibitory effect rapidly diminishes after exercise cessation, 

except for a small residual effect restricting the uptake of pota- 

ssium (Barclay and Turnberg, 1988). Thus, of importance with 

regards to the present thesis, post-exercise intestinal absorption 
is largely limited by solute and fluid supply. 

2.5.2 Pre-exercise carbohydrate feeding 

The influence of pre-exercise carbohydrate feeding within the 

context of the present thesis will assume increasing importance 

as the duration of the recovery period is reduced. Pre-exercise 

feeding will be considered over the 4-h preceding exercise, 

where ingestion during the final 60 min has received the 

greatest attention. This is one area of sports nutrition that is 

still not clearly defined with respect to the performer. 

Pre-exercise carbohydrate ingestion increases blood glucose 
concentrations, which in turn stimulates insulin release and ý.. 
inhibits glucagon secretion (Ahlborg and Felig, 1977). There is 

a shift in energy metabolism to favour carbohydrate oxidation, 

whilst lipolysis and gluconeogenesis are suppressed (Ahlborg 

and Bjorkman, 1987). Despite changes in hormonal balance, 

muscle glycogen utilization during light exercise is not inc- 

reased (Hughes, Edwards, Meredith, Evans, Martin and Young, 

1984). Indeed, glucose ingested prior to low intensity exercise 

may elicit a glycogen sparing effect (Ahlborg and Bjorkman, 

1987). 'Glycogen sparing' refers to a reduction in the degrada- 
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tion rate of endogenous carbohydrate stores. As such, -exercise 
may be maintained for a longer period as utilisation of finite 

endogenous reserves is reduced. Thus, any intervention elicit- 
ing a 'glycogen sparing effect' may: shift the nature of energy 
metabolism towards a greater dependency upon fuels other 
than glycogen, (eg. FFA); or alternatively, provide exogenous 
carbohydrate of an appropriate form and at an appropriate rate 
to supplement endogenous reserves. 

Costill et al (1977) observed a reduction in blood glucose early C 
in exercise when glucose was consumed 45 min before tread- 

mill running (-68% VO2max). This was associated with a 
decrease in FFA availability and a compensatory increase in 

muscle glycogen utilisation. Hargreaves, Costill, Katz and Fink 

(1985) similarly report a decline in blood glucose and a slight 
increase in muscle glycogen utilisation following pre-exercise 

glucose ingestion. Foster, Costill and Fink (1979) provided 75 g 

of glucose 30 min prior to intensive cycling (84% VO2max). 

Elevated plasma insulin levels early in exercise precipitated 
hypoglycaemia. However, this was a transient response and of 

negligible functional significance, though an anti-lipolytic 

effect of insulin was implicated in a reduced exercise time. 

Fielding, Costill, Fink, King, Kovaleski and Kirwan (1987) 

report that carbohydrate supplements ingested 30-45 min G 

before exercise do not accelerate muscle glycogen utilisation, 
despite eliciting a rapid decline in blood glucose. Similarly, 

endurance cycling capacity was not found to be impaired by 

pre-exercise carbohydrate provision (Hargreaves, Costill, Fink, 

King and Fielding, 1987; Koivisto, Karonen and Nikkla, 1981). 

Gleeson, Maughan and Greenhaff (1986) found that glucose 
feeding 45 min prior to exhaustive cycling (-73% VO2max) did 

not adversely effect performance. Exercise in a glucose pre-fed 
group relative to a placebo group was accompanied by elevated 
R values and enhanced carbohydrate oxidation, whilst plasma 
FFA and ß-hydroxybutyrate levels were reduced. In contrast to, 

previous reports, hypoglycaemia was not evident either before 

or during exercise. Moreover, Chryssanthopoulos, Hennessy 
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and Williams (1994) observed that providing 75g of glucose in 
300 ml of water 30 min before an exhaustive bout of constant 
pace running at 70% VO2max elevated pre-exercise blood 

glucose concentrations but did not impair endurance capacity. 
Thus, pre-exercise carbohydrate feedings possibly enhances 
oxidation of endogenous reserves, though this may in turn be 

compensated for through exogenous provision (Jandrain, 

Krzentowski, Pirnay, Mosora, Lacroix and Luyckx, 1984). 

Physiological responses to carbohydrate ingestion are influ- Af- 

enced by the nature of the supplement with respect to the 

glycaemic index (GI) (Coyle, 1991; Guezennec, Satabin, Duforez, 

Koziet and Antoine, 1993). This is a measure of the rate at 

which carbohydrates become metabolically available as blood 

borne glucose (Jenkins, Thomas, Wolever, Taylor, Barker, 

Fielden, Baldwin, Bowling, Newman, Jenkins and Goff, 1981). 

Glucose and potatoes elicit higher blood glucose and insulin 

responses than rice or pasta; whereas fructose elicits a higher 

blood lactate response (Calles-Escandon, Devlin, Whitcomb 

and Horton, 1991; Guezennec et al, 1993; Hargreaves et al, 1985; 

Koivisto et al, 1981; McMurray, Wilson and Kitchell, 1983), 

though fluctuations in blood glucose and insulin are blunted 

(Koivisto et al, 1981; Levine, Evans, Cadarette, Fisher and 
Bullen, 1983). Despite smaller disturbances in plasma glucose 

and insulin concentrations, fructose is no more effective than 

other sugars in sparing muscle and liver glycogen (Koivisto, 

Harkonen, Karonen, Groop, Elovainio, Ferrannini, Sacca and 
DeFronzo, 1985). Such differences in response are partly due to 

variations in G-I transit, digestion and absorption, which 

ultimately determine physiological availability (Levine et al, 
1983). A longer transit time between ingestion and absorption 

of fructose and fibre-rich carbohydrates delays physiological 

availability, but is also implicated in greater G-I disturbances 

(Levine et al, 1983; Rehrer, Van Kemenade, Meester, Saris and 
Brouns, 1990c). 

Exercise performance and substrate utilisation are similar .. 
regardless of whether a pre-exercise meal is consumed 4 or 8-h 
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prior to an event (Flynn, Michaud, Rodriguez-Zayas, Lambert, 
Boone and Moleski, 1989). Transient increases in blood glucose 

and plasma insulin proceded ingestion of 100 to 312 g of carbo- 
hydrate (Coyle, Coggan, Hemmert, Lowe and Walters, 1985; 
jandrain et al, 1984; Sherman, Brodowicz, Wright, Allen, 
Simonsen and Derbach, 1989). Coyle et al (1985) observed that 

these responses were associated with a 42% increase in the 

glycogen content of m. vastus lateralis. Normal blood glucose 

concentrations were restored prior to exercise, and were then 

maintained. Exercise performed 3 to 4-h later was associated 

with enhanced carbohydrate metabolism, whilst fat oxidation 

was suppressed (Coyle et al, 1985; Sherman et al, 1989). It is 

possible that this shift in energy metabolism was accommo- 
dated by the rapid availability of exogenous substrate (Jandrain 

et al, 1984), such that post-exercise muscle glycogen levels were 

similar in the fasted and fed state (Coyle et al, 1985). 

Pre-exercise carbohydrate feeding following a 3-d diet and 
training regimen which elevated muscle glycogen content has 

also been examined (Levine et al, 1983). A light breakfast, (-80 

g of carbohydrate), was provided 4-h before each trial to replen- 
ish hepatic glucose reserves. Fructose, glucose or water was 

subsequently ingested 45 min prior to a treadmill run (-75% 
VO2max). Carbohydrate oxidation was elevated but was not 

associated with hypoglycaemia. In contrast, Neufer, Costill, 

Flynn, Kirwan, Mitchell and Houmard (1987) provided carbo- 
hydrate supplements 5 min before exercise in the 4-h post- 

absorptive state. This dietary combination improved sub- 

maximal cycling performance, apparently due to maintaining 
high carbohydrate oxidation rates. Brouns, Rehrer, Saris, 

Beckers and Ten Hoor (1989) provided carbohydrate during a7 

min rest separating a 20 min standardised warm-up from 45 

min of moderate cycling. Both exercise sessions stimulated 

catecholamine release and suppressed insulin secretion, 

whereas carbohydrate ingestion reversed this response and 
improved blood glucose availability. 
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Wright and Sherman (1989) compared the efficacy of pre- 
exercise carbohydrate ingestion, with further supplementation 
during exercise. Intermittent cycling performance was 
enhanced following carbohydrate ingestion either before or 
during exercise, with further improvements being achieved by 

combining the two treatments. Similarly, endurance capacity 
was improved during steady state cycling (70% VO2max) with a 
combination of pre-exercise and during exercise feedings 
(Wright, Sherman and Dernbach, 1991). It is speculated that 
the benefits of such dietary strategies arise from enhanced 
carbohydrate availability, especially over the later stages of 
exercise, such that carbohydrate oxidation is maintained. 

Thus, pre-exercise carbohydrate ingestion shifts energy metab- 
olism to favour its enhanced oxidation. Hepatic glycogen is of 
increasing importance for maintaining blood glucose stablility 
during exercise, ultimately determining net systemic concen- 
trations. If liver glycogen reserves are low, hypoglycaemia and 
hyperinsulinaemia may accompany the onset of exercise after 
pre-exercise carbohydrate ingestion, though normal concentra- 
tions are quickly restored (Sherman et al, 1989). The available 

evidence suggests that pre-exercise carbohydrate ingestion 
improves endurance exercise performance, whilst further 
feedings during exercise will maximise the effect (Coyle, 1991). 

2.5.3 Carbohydrate feeding during exercise 

Carbohydrate ingestion during exercise has been reported to 
have no effect on performance (Burgess, Davis, Bartoli and 
Woods, 1991). However, the weight of available evidence 

supports a performance enhancing effect (Coyle, Hagberg, 
Hurley, Martin, Ehsani and Holloszy, 1983; Fenn, Leiper, Light 

and Maughan, 1983; Murray, Eddy, Murray, Seifert, Paul and 
Halaby, 1987; Tsintzas et al, 1993a; Tsintzas, Williams, Boobis 

and Wilson, 1993b; Wilber and Moffat, 1992). 

The efficacy of supplementation is influenced by the type of 
carbohydrate provided (Massicotte, Peronnet, Allah, Hillaire- 
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Marcel, Ledoux and Brisson, 1986; Murray, Paul, Seifert, Eddy 

and Halaby, 1989). The rate of ingestion is also of importance, 

reflecting the pattern of feeding and individual feeding 

volumes. Ingestion of a 1.8% carbohydrate-electrolyte beverage 

providing 13 g CHO"h-1, was insufficient to maintain plasma 
glucose or influence performance during 165 min of moderate 
cycling (Burgess et al, 1991). Similarly, Mitchell, Costill, 

Houmard, Fink, Pascoe and Pearson (1989a) report that 37 g 
CHoh-1 does not influence isokinetic work output, whilst a 

positive effect resulted from increasing intake to 74 g"CHO"h-1. 
Thus, a rate of ingestion between -43 and 84 g"CHO"h-1 during 

exercise appears to elicit a performance enhancing effect (Coyle 

et al, 1983; Coyle, Coggan, Hemmert and Ivy, 1986; Hargreaves, 

Costill, Coggan, Fink and Nishibata, 1984; Pallikarakis, 

Jandrain, Pirnay, Mosora, Lacroix, Luyckx and Lefevre, 1986). 

The principal theses underlying the case for supplementation 
include: relieving CNS dysfunctioning by alleviating hypo- 

glycaemia; providing an alternate carbohydrate source, and 
hence spare endogenous reserves; maintaining blood glucose 

availability when liver and muscle glycogen levels are low and 
blood glucose uptake is increased. Ultimately, tolerance to pro- 
longed exercise is enhanced and the onset of fatigue is delayed. 

Christensen and Hansen (1939)4 suggested that 'frank hypo- 

glycaemia' (ie. blood glucose <2.5 mmol"1-1), was associated 

with CNS dysfunctioning, the symptoms of which included 

lightheadedness, general weakness and nausea. Ingesting 200 g 

of glucose at the point of fatigue from endurance exercise 

alleviated these hypoglycaemic symptons and allowed activity 
to continue for a further 60 min. As R values had not 
decreased before fatigue, nor increased following glucose inges- 
tion, Christensen and Hansen (1939) speculated that low blood 

glucose concentrations led to fatigue through an effect on 
'higher processing centres'. In the studies reported in the 

present thesis, fatigue during constant pace running was not 
accompanied by hypoglyceamia, though subjective responses of 
the runners did include lightheadedness, general weakness 

Cited Astrand and Rodahl (1986) 
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and nausea. This indicates that a causal link between these 

subjective responses and blood glucose availability may not be 

as simple as Christensen and Hansen (1939) would suggest. 

More recently Felig et al (1982) observed that blood glucose con- 

centrations of less than 2.5 mmol-1-1 are not always associated 

with exercise cessation. Hypoglycaemia was measured in 7 out 

of 10 subjects during exhaustive submaximal cycling, never- 
theless performance was maintained. Glucose ingestion at 

rates of 40 or 81 g-h-1 stablised blood levels whilst suppressing 

plasma adrenaline concentrations. Similarly, endurance cap- 

acity was improved when GP was ingested at 30 min intervals 

during exhaustive walking (Ivy, Miller, Dover, Goodyear, 

Sherman, Farrell and Williams, 1983). Blood glucose 

availability was maintained and exercise cessation was not 

associated with hypoglycaemia nor CNS dysfunctioning. Thus, 

hypoglycaemia per se does not appear to limit endurance 

performance, such that its prevention by supplementation 
does not consistently delay fatigue. 

Pirnay, Lacroix, Mosora, Luyckx and Lefebvre (1977a) provided 

a 400 ml (25%) glucose feeding after 15 min of walking (-50% 

VO2max). The oral glucose feeding increasingly contributed to 

energy metabolism, progressively replacing the contributions 

of fat and protein. Total carbohydrate and fat oxidation, the 

contribution of exogenous glucose, and work intensity were 
linearly related during low-intensity exercise (ie. 22-51% 
VO2max). At higher exercise intensities (ie. 51-64% VO2max) 

fat and exogenous glucose oxidation tended to plateau as endo- 

genous carbohydrate oxidation continued to increase (Pirnay, 

Crielaard, Pallikarakis, Lacroix, Mosora, Krezentowski, Luyckx 

and Lefebvre, 1982). A maximum contribution of exogenous 

glucose to energy metabolism was reached within -60 min of 
ingestion and declined after -90 min (Pirnay et al, 1977a). 

Notably, this oxidation pattern of a single bolus appears to be 

independent of the timing of ingestion during exercise 
(Krezentowski, Jandrain, Pirnay, Mosora, Lacroix, Luyckx and 
Lefebvre, 1984). Glucose feeding increased total carbohydrate 
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utilisation, but this increase was more than accommodated by 

exogenous provision. Thus, supplementation maintained 
blood glucose levels, whilst endogenous carbohydrate reserves 
appeared to be spared (Pirnay et al, 1977a; Pirnay, Lacroix, 
Mosora, Luyckx and Lefebvre, 1977b). 

Providing carbohydrate during prolonged exercise elevates 
plasma insulin and blood glucose (Coyle et al, 1983; Hargreaves 

et al, 1984), and is associated with increased peripheral carbo- 
hydrate oxidation (Coyle et al, 1983; Pallikarakis et al, 1986). 
Whilst plasma FFA and glycerol concentrations are suppressed 
(Ahlborg and Felig, 1976; Hargreaves et al, 1984). Splanchnic 

glucose escape increases in the face of reduced hepatic glyco- 
genolysis and gluconeogenesis, suggesting an increased contri- 
bution of exogenous carbohydrate to systemic glucose concen- 
trations (Ahlborg and Felig, 1976). This may be associated with 
a sparing of muscle glycogen (Coyle et a1,1983; Hargreaves et al, 
1984; Tsintzas, Williams and Wilson, 1992; Tsintzas et al, 1993b), 

though this is not a consistent observation (Coyle et al, 1986; 
Flynn, Costill, Hawley, Fink, Neufer, Fielding and Sleeper, 

1987). Tsintzas (1993) observed glycogen sparing in type-I 

muscle fibres when a 6.9% carbohydrate-electrolyte solution 

was ingested during constant pace running (70% VO2max). 

This resulted in a -28% reduction in muscle glycogen utilisa- 
tion over the initial 60 min of exercise. 

The provision of carbohydrate during exercise may delay 

fatigue by maintaining blood glucose availability (Costill et al, 
1970), such that total carbohydrate oxidation is not compro- 

mised (Coyle et al, 1986; Hargreaves and Briggs, 1988; Mitchell 

et al, 1989a), especially when muscle glycogen reserves are low 
(Coggan and Coyle, 1987). Coggan and Coyle (1987,1989) 

provided a single feeding late in exercise, which reversed a 
decline in carbohydrate oxidation and restored euglycaemia (ie. 

normal blood glucose concentrations), such that fatigue from 

strenuous cycling was delayed. Similarly, the capacity to sus- 
tain a higher running speed is associated with improved blood 

glucose availability (Williams, Nute, Broadbank and Vinall, 
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1990). Widrick, Costill, Fink, Hickey, McConnell and Tanaka 
(1993) found that optimising carbohydrate availability through 

supplementation, as well as through prior elevation of endog- 

enous reserves, enabled self-paced submaximal cycling perfor- 

mance to be maintained. In contrast, reduced exercise capacity 
in the face of falling plasma glucose levels and carbohydrate 

oxidation rates is consistent with a thesis whereby fatigue 

results from inadequate substrate supply to working muscle. 

Ingestion of carbohydrate during prolonged cycling or running 
inhibits the normal gluco-regulatory hormonal response 
(Deuster, Singh, Hofman, Moses and Chrousos, 1992; Mitchell, 

Costill, Houmard, Flynn, Fink and Beltz, 1990). Lower plasma 

cortisol concentrations and a reduced glucagon-to-insulin ratio 

may suppress hepatic glucose release, possibly eliciting a liver 

glycogen sparing effect. Thus, carbohydrate ingestion may delay 

fatigue by reducing mobilisation of glycogen in the liver (Bosch 

et al, 1991; Van Handel, Fink, Branam and Costill, 1980). In 

agreement, Coyle, Hamilton, Gonzalez Alonso, Montain and 
Ivy (1991) observed that hyperglycaemia does not influence the 

rate of muscle glycogen degradation, but appeared to elicit a 

sparing of liver glycogen. 

2.6 Replenishment of carbohydrate reserves during exercise 

Glycogenolysis and glycogenesis occur concomitantly in muscle 
(Hutber and Bonen, 1989), although the latter is a much slower pro- 

cess with a maximal rate in man of -1% of the former (Hultman et al, 

1971). A subtle physiological balance determines whether net glyco- 

gen breakdown or net glycogen accumulation prevails. This balance 

is influenced by the rate of energy demand, the prevailing hormonal 

milieu, as well as current nutritional status (Constable et al, 1984). 

Constable et al (1984) hypothesised that supplying exogenous carbo- 
hydrate during exercise would maintain systemic levels, and provide 

sufficient glucose for working muscle to fuel metabolism and synthe- 
sise glycogen. It is apparent that reduced glycogen levels rather than 

glucose feeding per se stimulate resynthesis, even under conditions 
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of continued degradation in rat and human skeletal muscle (Kuipers, 
Costill, Porter, Fink and Morse, 1986; Kuipers, Keizer, Brouns and 
Saris, 1987). Muscle glycogen synthesis was maintained during light 

exercise which proceded multi-sprint exercise (Peters Futre, Noakes, 
Raine and Terblanche, 1987). It was suggested that glycogenic sub- 
strates were provided in the form of glucose and lactate. In contrast, 
Borten, Ness, Belcastro and Kirby (1985) observed that mild exercise 
delayed glycogen replenishment in humans in both active and non- 
active tissue. It was speculated that this may be due to the inhibitory 

effect of elevated plasma adrenaline. 

A number of studies have demonstrated significant glycogen synthe 1 

sis during exercise (Hutber and Bonen, 1989; Kuipers et al, 1986; 

Kuipers et al, 1987; Peters Futre et al, 1987), but this is not a consistent 
finding (Bonen et al, 1985; Kuipers, Saris, Brouns, Keizer and Ten 

Bosch, 1989). Equivocal observations may arise from differences in 

exercise protocol and individual training status (Kuipers et al, 1987; 

Kuipers et al, 1989). The present consensus suggests a net glycogen 

gain with carbohydrate feeding in trained athletes during mild 

exercise in relatively non-active muscle fibres (ie. type Ila and 11b). 

Thus, glycogenesis should be thought of as an extremely dynamic 

process that is usually increased during as-well as following exercise, 

without the necessity for extensive prior depletion (Bonen et al, 1989; 

Hutber and Bonen, 1989). 

2.7 Excess post-exercise oxygen consumption (EPOC) 

Cycling or running at 70% VO2max for longer than 80 min results in 

elevated post-exercise resting oxygen consumption (Bahr, 1992; Bahr, 

Inges, Vaage, Sejersted, Newsholme, 1987; Gore and Withers, 1990). 

This excess post-exercise oxygen consumption (EPOC) corresponds to 

as much as -14% of the energy expended during previous activity 
(Bahr and Maehlum, 1986), and may persist for more than 12-h ý- 
(Bielinski, Schutz and Jequier, 1985; Maehlum, Grandmontagne, 

Newsholme and Sejersted, 1986). The magnitude of EPOC depends 

upon both exercise intensity and exercise duration, there being a 
minimum threshold level of activity below which a protracted effect 
is not apparent (Bahr et al, 1987; Bahr and Sejersted, 1991b). 
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The removal of lactate and repletion of haemoglobin and myoglobin 
bound oxygen stores are all speculated as contributing to EPOC (Bahr C 

and Maehlum, 1986). However, the former is unlikely, especially 
following constant pace running, whereas the latter requires a 
combined total of only -0.5-2.0 litres of oxygen. A further -10% may 
be accounted for as a consequence of a post-exercise tachycardia (Gore 

and Withers, 1990). 

The major fraction of EPOC is believed to arise from the resynthesis 

of muscle and liver glycogen, and enhanced rates of 'futile' energy 

cycling (Bahr and Maehlum, 1986). With regards to the latter, elevated 

post-exercise plasma catecholamine levels may stimulate substrate 

cycles, thereby increasing energy metabolism (Bahr et al, 1987). Such 

futile cycling of fats and carbohydrates is evident in both non-active 

and active muscle (Bahr, Hansson and Sejersted, 1990; Ivy et al, 
1988b), where the rate of post-exercise FFA utilisation and triglyceride- 

fatty acid cycling reflects the intensity and duration of prior exercise 
(Bahr, Hostmark, Newsholme, Gronnerod and Sejersted, 1991). 

The consumption of food during the immediate post-exercise period 
is observed to further increase oxygen consumption (Bielinski et al, 
1985; Gore and Withers, 1990). A 'thermic effect of food' (TEF) results 
from the energy requirements of digesting, absorbing and disposing of 

a meal. This effect is additive with the recovery energy requirements 
following exercise (Young, Treadway and Ruderman, 1985). A stim- 

ulatory effect of diet on metabolism may be mediated through 

increased insulin secretion in response to elevated circulatory macro- (! E-- 

nutrients (Balon, Zorzano, Goodman and Ruderman, 1984). The 

thermic effect of physiological insulin concentrations is negligible 

under resting conditions (Christin, Nacht, Vernet, Ravussin, Jequier 

and Acheson, 1986). However, prior exercise appears to potentiate the 

activity of enhanced systemic insulin concentrations (Young et al, 

1985). Thus, substrate cycles are stimulated, as are ion transporter 

systems, and possibly further unidentified energy requiring processes 
(Balon, Treadway, Hughes, Young and Ruderman, 1992). However, 

the contribution of TEF in response to post-exercise dietary intake to e_ _ 
EPOC is relatively small in comparison with the residual effects of 
prior exercise (Bahr and Sejersted, 1991a). Nevertheless, such consid- 
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erations need to be taken into account when examining the influence 

of nutrition on recovery from prolonged, constant pace running. 

2.8 Post-exercise carbohydrate replenishment 

The essentiality of muscle glycogen for physical activity necessitates 
its rapid resynthesis following exercise (Costill and Hargreaves, 1992). 

If the level of glycogen depletion is less than -60%, then repletion 

with a carbohydrate-rich diet may be complete within 24-h (Costill et E- 

al, 1981; Kochan, Lamb, Lutz, Perril, Reimann and Schiender, 1979). 

However, restoration to pre-exercise levels may take longer if this 

prior depletion is greater than -60% (Piehl, 1974; Sherman et al, 1983). 

The influence of muscle glycogen concentration on the resynthesis 

rate is greatest immediately post-exercise (Zachwieja, Costill, Pascoe, 

Robergs and Fink, 1991). This rate is also influenced by: the nature of 

prior exercise; the amount and timing of post-exercise carbohydrate C-- 

feeding; the type of carbohydrate; and, the method of administration 
(Blom, 1989a). 

2.8.1 The pattern of post-exercise glycogen resynthesis 

Post-exercise muscle glycogen resynthesis follows a curvi- 
linear pattern. This response is characterised by an initial and 

relatively short fast phase, which is followed by a longer slow 

phase (Adolfson and Ahren, 1971; Garetto, Richter, Goodman 

and Ruderman, 1984). The duration of the fast phase is -4 to 6- 

h, where the first 2-h is most rapid. The slow phase, which is 

characterised by less transient metabolic adjustments, may last 

for 2 to 3 days after severe, prolonged exercise (Bergstrom and 
Hultman, 1966a). 

The pattern of glycogen resynthesis reflects previous muscle 
fibre recruitment, and differs between fibre types. Type II fibres 

resynthesise glycogen 65% faster than type I fibres during the 

early phase (McLane and Holloszy, 1979; Terjung, Baldwin, 

Winder and Holloszy, 1974; Vollestad, Blom and Gronnerod, 

1989), but this difference was no longer evident after 60 min. 
This suggests a slower initial acceleration of the synthetic 
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pathway in type-I fibres. However, the highest rate of glycogen 
resynthesis takes place in the liver, and is 75% faster than type- 
II fibres (Terjung et al, 1974). Differences in synthetic rates 
between tissues can be explained partly by variant activity 
levels of the enzyme glycogen synthase (Conlee, Hickson, 
Winder, Hagberg and Holloszy, 1978). 

Glycogen synthase (GS) is the rate limiting step in the synthetic ý. 
pathway (Young, Bogardus, Stone and Mott, 1988). It catalyses 
the transfer of free glucosyl units to the glycogen skeleton 
(Stryer, 1988). Being a very potent -enzyme, small changes in 

activity will yield relatively large changes in the synthetic rate. 
Whilst factors associated with its activation may simultane- 
ously inhibit phosphorylase activity, and impede further glyco- 
gen degradation (Constable et al, 1986). 

There are at least two inter-convertible forms of GS: GS-D, a 

phosphorylated D-form which requires the presence of G-6-P; 

and GS-I, a dephosphorylated I-form which operates indepen- 
dent of G-6"P (Lamer and Villar-Palasi, 1971). The activation of 
GS (ie. a D-to-I conversion) involves the hydrolysis of a phos- 

phate moiety. This process is catalysed by the enzyme D- 

phosphatase (Lamer and Villar-Palasi, 1971). Both GS-D and D- 

phosphatase are bound into glycogen in the basal fed state, thus 

protecting GS-D. Mobilisation of glycogen during exercise 
liberates the two enzymes and allows interaction in the cellular 

cytosol. Deactivation of GS (ie. an I-to-D conversion) involves 

the addition of a phosphate moiety. This process is catalysed by 

the enzyme I-kinase (Lamer and Villar-Palasi, 1971), whilst D- 

phosphatase is inhibited through incorporation into glycogen 
(Villar-Palasi, 1969). 

Insulin allosterically shifts the emphasis of control to favour 

GS activation (Roch-Norlund, Bergstrom and Hultman, 1972), 

whereas adrenaline and food deprivation shifts the emphasis 
towards deactivation (Danforth, 1965). High GS levels in the 

glycogen-depleted state modulate the influence of insulin on 
skeletal muscle (Bogardus, Thuillez, Ravussin, Vasquez, 
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Narimiga and Amhar, 1983). Further control of GS is exerted 
by cellular metabolites: UDP glucose, magnesium and G-6-P are 
positive effectors; whereas UDP, inorganic phosphate and the 

adenine nucleotides (ie. ATP, ADP and AMP) are negative 
effectors (Roach and Lamer, 1976). 

Decreasing muscle glycogen levels elicits a strong glycogenic 
drive (Fell, Terblanche, Ivy, Young and Holloszy, 1982). There 
is an inverse relationship between %GS-I activity (ie. GS-I/GS 
(I+D) %) and muscle glycogen content (Bergstrom, Hultman 

and Roch-Norlund, 1972; Roch-Norlund et al, 1972). Exercise 

increases %GS-I activity, though total enzyme activity (ie. GS [D 

+I]) remains unchanged (Adolfsson, 1973; Jefress, Peter and 
Lamb, 1968; Piehl, Adolfsson and Nazar, 1974). Following 

exercise %GS-I activity quickly returns to basal levels (Kochan 

et al, 1979), suggesting that other mechanisms must operate to 

sustain an elevated rate of glycogen synthesis (Piehl et al, 1974). 
One mechanism is thought to be an increased sensitivity of GS- 

D to G-6-P, allowing stimulation of GS-D by lower G-6-P con- 

centrations (Bak and Pedersen, 1990; Kochan et al, 1979). Thus, 

G-6-P formation is likely to be an important regulator of glyco- 

gen synthesis. Exercise may enhance glucose phosphorylation 
through a positive effect on hexokinase activity (Lamb, Peters, 

Jeffress and Wallace, 1969; Van Houten, Davis, Meyers and 
Durstine, 1992), such that cellular glucose transport may limit 

the recovery process (Ziel, Venkatesan and Davidson, 1988). 

Insulin enhances post-exercise membrane permeability by 
interaction with a specific receptor mechanism (Narahara and 
Ozand, 1963; Park, Reinwein, Henderson, Cadenas and 
Morgan, 1959). Total glucose disposal is accelerated, with 
storage being the prefered pathway over oxidation (DeFronzo, 
Jacot, Jequier, Maeder, Wahren and Felber, 1981). Elevated 

plasma catecholamines inhibit insulin secretion (Galbo et al, 
1977b), though this is countered by a local contraction-induced 
increase in muscle sensitivity to insulin (Heath, Gavin, 
Hinderliter, Hagberg, Bloomfield and Holloszy, 1983; Richter, 
Garetto, Goodman and Ruderman, 1982a; Richter, Garetto, 
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Goodman and Ruderman, 1984; Richter, Ploug and Galbo, 

1985). The sensitivity and responsiveness of muscle to insulin 

varies with fibre type (James, Kraegen and Chisholm, 1985b). 

Type I and Ha fibres are more sensitive than type-IIb fibres 

(James, Jenkins and Kraegen, 1985a). Increased sensitivity is 

not due to changes in receptor-binding characteristics (Zorzano, 

Balon, Garetto, Goodman and Ruderman, 1985), but is 

associated with reductions in muscle glycogen (Ivy, Frishberg, 

Farrell, Miller, and Sherman, 1985). This suggests that regula- 
tory alterations are taking place distal to the receptor site (James 

et al, 1985b; Treadway, James, Burcel and Ruderman, 1989). 

Contractile activity also enhances membrane permeability and e-- 

promotes glucose transport (Goldstein, Mullick, Huddlestun 

and Levine, 1953; Ivy, 1987; Richter, Mikines, Galbo and Kiens, 

1989; Wallberg-Henriksson and Holloszy, 1985). This effect is 

localised to previously active muscle (Bergstrom and Hultman, 

1966a). Berger, Hagg and Ruderman (1975) speculated that 
insulin played a permissive role, being an essential prerequi- 
site for glucose transport. However, the exercise effect appears 

to be independent of insulin (Ivy and Holloszy, 1981; Nesher, 

Karl and Kipinis, 1985; Ploug et al, 1984). Indeed, Ivy (1977) 

suggests that insulin is not essential for glucose transport and 

glycogen resynthesis during the early phase of recovery, but 

plays a more prominent role in the later phase. 

The combined effects of insulin and muscular contraction did 

not exceed their maximal independent effects in frog muscle 
(Holloszy and Narahara, 1965). Though their activities were 

approximately additive following submaximal contractions. In 

contrast, maximal additive effects were observed in rat skeletal 

muscle, suggesting that these stimuli operated via independent 

mechanisms (Nesher et al, 1985; Zorzano, Balon, Goodman 

and Ruderman, 1986). Ploug, Galbo, Vinten, Jorgensen and 
Richter (1987) reported that an additive effect was limited to 

type I and IIa fibres, being absent in type-Hb fibres. Wallberg- 

Henriksson, Constable, Young and Holloszy (1988) suggest that 

a combined maximal effect only persists during the early fast 
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phase of recovery. Thus, high insulin concentrations and prior 
exercise may act synergistically to enhance the disposal of blood 

glucose in muscle tissue (DeFronzo, Ferrannini, Sato, Felig and 
Wahren, 1981; Ploug et al, 1987; Wasserman, Geer, Rice, Flakoll, 

Brown, Hill and Abumrad, 1991). 

As contraction-induced transport declines, the enhanced 

sensitivity and responsiveness of skeletal muscle to insulin 

increases (Richter et al, 1989; Wallberg-Henriksson et al, 1988). 

The development of insulin sensitivity is a delayed response 
(Gulve, Cartee, Zierath, Corpus and Holloszy, 1990), and is 

confined to de-glycogenated muscle fibres (Mikines, Sonne, 

Farrell, Tronier and Galbo, 1988; Richter et al, 1989). As such, a 

rapid resynthesis seems to be facilitated through prioritising 

previously active tissue. 

Glucose enters the muscle cell via transporter proteins which 

span the sarcolemma (ie. facilitated diffusion). A family of 

such proteins has been identified (Mueckler, Caruso, Baldwin, 

Panico, Blench, Morris, Allard, Lienhard and Lodish, 1985; Klip 

and Paquet, 1990), of which GLUT -4 is the major transporter 

species in human muscle (Friedman, Neufer and Dohm, 1991). 

The greater distribution of GLUT-4 in type I and Ha muscle 
fibres appears to be a major determinant in their greater 

responsiveness to insulin (Kern, Wells, Stephens, Elton, 

Friedman, Tapscott, Pekala and Dohm, 1990). In addtion, 
GLUT -4 distribution is influenced by training, which has been 

observed to elicit increases in membrane transporter protein 
(Sherman, Friedman, Gao, Reed, Elton and Dohm, 1993). 

Enhanced post-exercise glucose transport involves a transloca- 

tion of transporters from an inner cellular pool to the outer 

plasma membrane (Fushiki, Wells, Tapscott and Dohm, 1989; 

King, Hirshman, Horton and Horton, 1989). Both insulin and 
muscle contraction stimulate a movement of hexose- 

complexes across the sarcolemma (Goodyear, King, Hirsham, 

Thompson, Horton and Horton, 1990b; Klip, Ramlal, Young 

and Holloszy, 1987; Wallberg-Henriksson and Holloszy, 1985), 
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possibly through the recruitment of transporters from different 
intracellular pools (Douen, Ramlal, Klip, Young, Cartee and 
Holloszy, 1989). The total transport rate is accelerated by 

recruitment of more transporter molecules and by increasing 

their intrinsic level of activity (DeFronzo et al, 1981; King et al, 
1989; Neufer et al, 1985; Richter et al, 1984; Young, Uhl, Cartee 

and Holloszy, 1986). Reversal of enhanced glucose transport 

correlates with a reversal in transporter turnover (Goodyear, 

Hirsham, King, Thompson and Horton, 1990a). The elevated 
level of intrinsic activity is lost in advance of a reduction in 

transporter number (Goodyear et al, 1990a). 

The onset of the late phase in muscle glycogen replenishment 
is marked by a decrease in both the rate of glucose uptake and 
the rate of glycogenesis. As muscle glycogen increases towards 
base-line levels the stimulatory effect of prior exercise quickly 
recedes (Garetto et al, 1984). An underlying component of this 

reversal is evident in all fibre types in the absence of glycogen 
repletion, but is more rapid in type I and Ha fibres than in type 
lIb (Ploug et al, 1987; Young, Wallberg-Henriksson, Sleeper and 
Holloszy, 1987). However, an 'exercise effect' persists for longer 

when exogenous carbohydrate is not available (Cartee, Young, 

Sleeper, Zierath, Wallberg-Henriksson and Holoszy, 1989; 

Young, Garthwaite, Bryan, Cartier and Holloszy, 1983). A 

decline in the stimulatory effect of prior activity may be due to 

a gradual intra-cellular sequestration of previously mobilised 

glucose transporters (Young et al, 1983). Thus, elevated glucose 
transport is sustained over the late phase through enhanced 

cellular sensitivity to, and hormonal responsiveness per se, of 
increasing plasma insulin concentrations (Zorzano et al, 1986). 

Splanchnic glucose output rapidly returns to resting levels 

during the immediate post-exercise period (Wahren, Felig, 

Hendler and Ahlborg, 1973). This is despite enhanced gluco- 

neogenic precusor uptake in response to greater availability 

and altered hepatic metabolism. Thus, glucagon stimulated 

gluconeogenesis covers an increasing proportion of the total 

glucose output (Felig et al, 1972; Wahren et al, 1973). Alanine is 



Chapter 2 58 

the major gluconeogenic substrate following exhaustive exer- 
cise, with lactate and glycerol playing relatively minor roles 
(Favier et al, 1987). 

To summarise, the fast phase of muscle glycogen resynthesis 

results from increased membrane permeability in response to 

previous contractile activity and insulin. Cellular glucose 
transporters are mobilised and their intrinsic level of activity 

enhanced. Substrate availability is maintained through inc- 

reased blood flow, which is a persistent cardiovascular adjust- 

ment to prior exercise (Schultz, Lewis, Westbie, Gerich, 

Rushakoff and Wallin, 1977). Activation of GS sustains 

glucose flux through the synthetic pathway. Glycogenic drive 

decreases over time as the magnitude of provocative stimuli 
diminish. There is a reversal of the direct exercise-induced 

effect as well as GS-I activation, though increased tissue sensi- 

tivity to insulin maintains elevated glycogen synthesis over 

the late phase of recovery (Adolfsson and Ahren, 1971). 

2.8.2 The importance of timing post-exercise carbohydrate ingestion 

Ivy et al (1988a) demonstrated the practical implications of this 

bi-phasic pattern of muscle glycogen resynthesis. Carbohydrate 

feedings equivalent to 1.0 g"kg-lbody wt-h-1 were ingested 

immediately post-exercise, or 2-h post-exercise. This delay in 
4ý=_ 7_ 

carbohydrate ingestion resulted in glycogen synthesis being 

reduced to -50% of that measured during the first 2-h, when 

carbohydrate was fed immediately on cessation of exercise. 

If a fasting state is maintained over the initial 4-h of recovery 
from exhaustive exercise (70% V02max), resynthesis of muscle 

glycogen takes place at -1.8 mmol-kg-1wet wt-h-1 (Maehlum and 
Hermansen, 1978). Similarly, Ivy et al (1988a) measured a 
fasting rate of -2.5 mmol"kg-1wet wt-h-1 over the first 2-h 

following prolonged, interval cycling. In contrast, a resynthesis 

rate equivalent to -5.0 to 8.0 mmol"kg-lwet wt-h'1 is maintained 

with carbohydrate ingestion (Blom et al, 1987b; Ivy et al, 1988b; 

Keizer, Kuipers, van Kranenburg and Geurten, 1987; Maehlum, 
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Felig and Wahren, 1978; Maehlum, Hostmark and Hermansen, 

1977; Reed, Brozinick, Lee and Ivy, 1989). Thus, the timing of 

post-exercise carbohydrate ingestion is critical in optimising the ý--- 

recovery process. Feedings should be provided immediately 

after exercise in order to capitalise upon favourable conditions 
for muscle glycogen replenishment. 

2.8.3 Short-term recovery from submaximal exercise - Optimising 

the early phase 

Increasing the amount of carbohydrate consumed over this 

critical period from 0.35 to 0.70 g"kg-ibody wt-2h-1 increases 

muscle glycogen resynthesis (Blom et al, 1987b). Further inc- 

reases in excess of 1.50 g kg-lbody wt-2h-1 do not appear to yield 

additional benefits at a muscle tissue level (Blom et al, 1987b; 

Ivy et al, 1988b). Thus, post-exercise muscle glycogen resynthe- 

sis can be maintained at an optimal rate of -6.0 mmol kg-1 wet 

wt-h-1, provided that carbohydrate intake exceeds 1.0 gkg-lbody 

wt2h-1(Ivy, 1991). 

Under basal conditions, -15% of an oral glucose load escapes 

the splanchnic bed and is available for peripheral metabolism 
(Felig, Wahren and Hendler, 1975). The primary fate of liver 

glucose uptake during exercise is storage, whereas in muscle 

the primary fate is oxidation (Kelley, Mitrakou, Marsh, 

Schwenk, Benn, Sonnenberg, Arcangeli, Aoki, Sorensen, 

Berger, Sonksen and Gerich, 1988). Following exhaustive 

cycling (70% VO2max), hepatic glucose output increased up to 

-200% (Wahren, Felig and Meehlum, 1977). Krzentowski, 

Pirnay, Luyckx, Pallikarakis, Lacroix, Mosora and Lefebvre 

(1982) suggest that high plasma glucagon concentrations and a 
delayed insulin response are partly responsible for a decrease in 

hepatic glucose retention. This gluco-regulatory hormonal bal- 

ance is also involved in prioritising the replenishment of 

muscle glycogen over liver glycogen (Fell, McLane, Winder, 

and Holloszy, 1980; Maehlum, 1978; Moehlum et al, 1978). Thus, 

the majority of glucose ingested immediately post-exercise 

escapes the liver and is transported directly to skeletal muscle. 
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Meanwhile, liver glycogen resynthesis is ensured through 
increased factional extraction of gluconeogenic precursors 
(notably lactate and alanine) from blood (Ahlborg et al, 1974; 
Holm et al, 1978; Rowell et al, 1965). 

The upper limit of 'useful' carbohydrate ingestion largely 
depends upon a maximal rate of incorporation into muscle as 

glycogen. A normal dietary carbohydrate intake is of the order 

of -350 g"24h-1 (Office of Population Censuses And Surveys, 

1990). The recommended intake for active individuals is -600 
to 700 g"24h-1 (Coyle, 1991). Carbohydrate over-feeding is dis- 

posed of through elevated oxidation and 'de novo' lipid synth- 

esis (Acheson, Schutz, Bessard, Anantharama, Flatt and 
Jecquier, 1988; Bjorntorp and Sjostrom, 1978). Lipogenesis has 

the capacity to convert a dietary carbohydrate excess of -475 
g"24h-1 into -150 g of fat (Acheson et al, 1988). Thus, there is an 

optimal level of daily carbohydrate ingestion which is conson- 

ant with both utilisation rates and a maximal rate of glycogen 

repletion. 

2.8.4 Long-term recovery from submaximal exercise - Optimising 

the late phase 

Daily training at a moderate intensity for longer than 60 min 

will reduce endogenous carbohydrate stores. Thus, if training 

is to be effective there is a need to consider replenishing these 

fuel reserves on a 24-h basis. Extrapolating from the require- 

ments of 'short-term' recovery following a strenuous exercise 
bout, -600 g"CHO represents a minimum daily intake for active 
individuals (Costill and Hargreaves, 1992; Coyle, 1991). 

Resting muscle glycogen content was restored in a day when a 
dietary intake of -600 g"24h-1 of carbohydrate was consumed 
following exhaustive single-legged cycling (Bergstrom and 
Hultman, 1966a). Similarly, a high-carbohydrate diet providing 
809 g-24h-1 (ie. 11.0 g"kg-lbody wt) replenished glycogen stores 

after 60 min of single-legged cycling (75% VO2max) within 24-h 

(Kochan et al, 1979). MacDougall, Ward, Sale and Sutton (1977) 

examined glycogen resynthesis after supramaximal cycling 
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which reduced muscle stores by -70%. A 'normal' diet, (ie. -4.0 
to 5.0 gkg-lbody wt), provided adequate carbohydrate to replen- 
ish muscle within 24-h. However, blood lactate was elevated 
following the intense exercise bout, and this would provide 

substrate in the absence of carbohydrate feeding for a consider- 

able degree of glycogen resynthesis. This would largely have 

been in type IIa and IIb fibres, as fructose 1,6 bisphosphatase 

activity is low in type-I fibres relative to type-II fibres (McLane 

and Holloszy, 1979). Hence, the capacity of type-I fibres for 

converting lactate to glycogen is limited (McLane and Holloszy, 

1979). 

A programme of daily endurance training will elicit a high 

energy demand. Pascoe, Costill, Robergs, Davis, Fink and 
Pearson (1990) reported that a carbohydrate intake equivalent 

to 5.0 g"kg-lbody wt-24h-1 was insufficient to maintain optimal 

muscle glycogen levels over 3 successive days of hard exercise 
(ie. 60 min at 75% VO2max). This study did not include an 

objective assessment of post-recovery performance, such that 

ratings of perceived exertion provided the only indication of 

exercise tolerance. 

Costill, Flynn, Kirwan, Houmard, Mitchell, Thomas and Park 

(1988) observed that swimmers ingesting 5.3 g-CHO kg-ibody wt 

24h-1 experienced difficulty in completing daily training 

sessions during an intensive 10-d programme, in comparison 

with swimmers consuming 8.2 gkg-lbody wt-24h-1. However, 

Kirwan, Costill, Mitchell, Houmard, Flynn, Fink and Beltz 

(1988) found that an intake as high as 8.0 g-kg-lbodywt-24h-1 in 

runners was still inadequate to prevent a cumulative glycogen 
depletion over 5-d of hard training (ie. 20 km run at 80% 

VO2max). As such, an even greater carbohydrate intake may be 

required to sustain this level of running. Alternatively, there 

may be a physiological limitation that acts as a metabolic safety 

mechanism (Kirwan et al, 1988). This limitation is probably 

operating at a cellular level, and is possibly associated with the 

capacity to store carbohydrate (Richter, Hansen and Hansen, 

1988). Simonsen, Sherman, Lamb, Dernbach, Doyle and 
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Strauss (1991) examined muscle glycogen content and rowing 
performance during 4-wk of intense training whilst consum- 
ing either a moderate (ie. 5.0 g"kg-lbody wt-24h-1) or a high (ie. 

10 g"kg-lbody wt-24h-1) carbohydrate diet. Both diets maintained 
muscle glycogen and power output, though the high carbohyd- 
rate diet was associated with enhanced glycogen resynthesis 

and a greater mean power output. In a more recent, study 
Sherman, Doyle, Lamb and Strauss (1993) observed that muscle 

glycogen was reduced by 30-36% in runners and cyclists con- 

suming a moderate carbohydrate diet (ie. 5 g"kg-lbody wt 24h-1) 

during 7-d of intense training. Whereas, a high carbohydrate 
diet (ie. 10 g"kg-lbody wt-24h-1) maintained muscle glycogen 

concentrations, though this did not appear to offer additional 
training benefits or improve performance in a subsequent bout 

of high intensity exercise. 

A daily carbohydrate intake equivalent to -9.0 g"kg-lbody wt is 

recommended for endurance sports participants (Costill, 1988). 

Muscle glycogen stores were replenished within 24-h after a 
16.1 km run at -80% VO2max when diets providing 525 to 648 

g of carbohydrate (ie. 7.3 to 8.2 g. kg-lbody wt) were consumed 
(Costill et al, 1981). Ingesting carbohydrate in frequent feedings 

did not further improve total muscle glycogen resynthesis over 
24-h, in comparison with ingesting the same amount of 

carbohydrate in fewer but larger feedings (Burke, Collier and 
Hargreaves, 1993b; Costill et al, 1981). 

The studies cited previously investigating glycogen resynthesis 
have not examined the return in functional capacity along 

with repletion of the body's fuel reserves. Keizer et al (1987) 

presents one of the few studies to examine post-recovery exer- 

cise performance. The relationship between glycogen restora- 
tion and the ability to perform maximal work (ie. maximal 

physical work capacity, MPWC) was examined. The MPWC of 

subjects was initially determined during a graded exercise test 

on a cycle ergometer. This was followed by a bout of exhaus- 
tive interval work, after which prescribed carbohydrate-rich 
diets (ie. -590 g or 8.0 g-kg-lbody wt"24h 1) were consumed. Self- 
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selection of food intake resulted in less effective muscle glyco- 
gen repletion in subjects, than was achieved through dietary 

prescription. This may reflect an appetite suppressive effect of 
previous exercise, possibly due to increased body temperature 

and elevated systemic metabolite concentraions. The MPWC 

of subjects were again determined after 22-h recovery. Despite 

restoration of muscle glycogen to pre-exercise values, MPWC 

was impaired by 7.3%. Thus, replenishing muscle glycogen 

alone was not sufficient to restore MPWC. Changes in glyco- 

gen content per se do not appear to result in a return in the 
force generating capacity of skeletal muscle (Housh, deVries, 

Johnson, Evans, Tharp, Housh and Hughes, 1990; Young and 
Davies, 1984), suggesting that other factors may be important 

for recovery from maximal exercise bouts. 

Nevill, Williams, Roper, Slater and Nevill (1993) examined the 

influence of dietary manipulation on recovery from intense, 

intermittent exercise. Participants in multi-sprint sports such 

as field hockey, rugby and soccer, rarely sprint for more than 5 

or 6 s5. Thus, a group of games players completed 30 maximal 6 

s sprints on a non-motorised treadmill. Each sprint was 

separated by 54 s of walking, and 60 s of jogging at 40% of pre- 
determined maximal speed. During a -22-h recovery period, 

subjects were assigned to one of three groups: a high carbo- 
hydrate group (ie. 644 g or 8.7 g "kg-lbody wt); a low carbohydrate 

group (ie. 80 g or 1.1 g"kg-lbody wt); or a normal carbohydrate 

group (ie. 322 g or 4.6 g"kg-lbody wt). Subjects repeated the 60 

min bout of intermittent exercise following the recovery. 
Power output did not differ between the groups during the first 

exercise bout, nor 22-h later. All maximal sprint performances 

were reduced during the repeated exercise test. Thus, a carbo- 
hydrate intake as high as 8.7 g"kg-1 body wt was inadequate for 

restoring maximal intermittent sprint exercise capacity after 22- 

h of recovery. Nevill et al (1993) suggested that games players 

may require a daily carbohydrate intake in excess of -9.0 g"kg-1 
body wt in order to maintain performance. 
In an adaptation of Nevill et al's (1993) study, Nicholas, 

Cited Williams (1992) Proceedings of the Second IOC Congress on Sports Science. pp. 
99-103 
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Nuttall, Green, Hawkins and Williams (1993) designed a field- 
based intermittent exercise model, incorporating the Multi- 
Stage Shuttle Run Test (Ramsbottom, Brewer and Williams, 
1988). Two bouts of intermittent exercise were performed on 
consecutive days, separated by 22-h recovery. Each bout com- 
prised of two parts: an initial 70 min at varying predicted 
relative exercise intensities (ie. walk, jog, steady running, and 

maximal sprint); the second part following a5 min rest, con- 

sisted of exhaustive intermittent running at speeds equivalent 
to 55% and 95% of predicted" VO2max. During the recovery, 

one group supplemented their normal diet with additional 

carbohydrate, increasing their daily intake to 10.0 g. kg-lbody wt 
(CHO group). A control group consumed their normal diet, 

which was made isocaloric to the CHO diet with additional 

energy from dietary fat and protein (CON group). Intermittent 

running capacity was restored in both groups after 22-h, but the 

CHO group exceeded their performance of the previous day in 

the second part of the exercise bout, the open-ended run. The 

difference in open-ended run times under the two dietary 

conditions was 345 (±100) s. This finding once again demon- 

strates the performance benefits of a high carbohydrate diet 

during post-exercise recovery. 

Brewer, Williams and Patton (1988) investigated the influence 

of a high-carbohydrate diet on recovery of endurance running 

capacity. Subjects were required to run to exhaustion at a speed 

equivalent to 70% VO2max on two occasions which were sepa- 

rated by an interval of 72-h. The normal diet was supple- 

mented during the recovery with either 'simple' or 'complex' 

carbohydrates, increasing the daily intake from 4.4 (±1.1) to 7.3 

(± 1.5) g"cHO"kg-1 body wt. The high-carbohydrate diets were 

associated with suppressed plasma FFA concentrations and 

elevated R-values in comparison with a control-group. Never- 

theless, endurance capacity was improved by 25% during the 

second exercise bout performed 72-h later. 

2.8.5 Influence of carbohydrate type 

0 Predicted from the Multi-Stage Shuttle Run Test 
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The nature of carbohydrate administered following prolonged 
exercise also influences the glycogen resynthesis rate (Blom et 
al, 1987b; Burke, Collier and Hargreaves, 1993a; Costill et al, 
1981). Costill et al (1981) did not observe differences in glyco- 

gen resynthesis during the initial 24-h of recovery, when diets 

high in what are classically referred to as either 'simple' or 
'complex' carbohydrates were provided. Notably, the complex 
carbohydrate diet resulted in higher muscle glycogen levels 

after 48-h of recovery. 

As discussed previously, it is of more physiological significance 
to categorise carbohydrates in terms of the glycaemic index (GI) 

(Coyle, 1991). Kiens, Raben, Valeur and Richter (1990) 

examined post-exercise muscle glycogen repletion following 

ingestion of a diet high in low-GI, fibre rich carbohydrates, in 

comparison with a diet providing high-GI, low-fibre carbohyd- 

rates. A more rapid resynthesis was achieved with the high-GI e- 

diet during the first 6-h. This was probably due to faster rates of 
digestion and absorption (Swan, Davidson and Albrink, 1966), 

with the glucose load being rendered more readily available 
during the fast phase of recovery (Coyle, 1991). However, glyco- 

gen repletion was independent of carbohydrate type after 20-h (Z7-- 

recovery, which contrasts the findings of Costill et al (1981). 

Thus, supplements providing high-GI carbohydrates are most 

effective for replenishing the body's glycogen reserves during E" 

the immediate post-exercise period (Burke et al, 1993a; Ivy, 

1991). However, there are subtle differences in physiological 

responses to the various forms of simple sugars (Conlee, 

Lawler and Ross, 1982). For example, glucose and sucrose are 

twice as effective as fructose for muscle glycogen resynthesis 
(Blom et al, 1987b). This reflects the different ways in which 

the body disposes of these sugars (Costill, Craig, Fink and Katz, 

1983). Glucose is preferentially metabolised in muscle tissue 

(Maehlum, 1978; Maehlum et al, 1978), whilst fructose is 

prefered by the liver (Zakim, Herman and Gordon, 1969). This 

has been demonstrated during intravenous infusion studies in 
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which blood glucose concentrations are maximised (Blom, 
1989b). Fructose infusion increased liver glycogen content to 
levels four times higher than those achieved following glucose 
infusion (Nilsson and Hultman, 1974). Whereas, glucose 
infusion achieved higher muscle glycogen concentrations 
(Bergstrom and Hultman, 1967). 

Sucrose is a disaccharide made up of equimolar fractions of 
glucose and fructose (Ivy, 1991). The physiological response to 

sucrose ingestion may reflect an hepatic inhibition of glucose 

uptake by the presence of fructose. In this way, a larger fraction 

of the total glucose absorbed is rendered available for muscle 

metabolism (Blom et al, 1987b). Thus, substrate is provided for 

both liver and muscle glycogen resynthesis (Blom et al, 1987b). 
As such, sucrose appears to be an ideal carbohydrate for 

optimising short-term recovery from glycogen depleting 

exercise, simultaneously repleting two major carbohydrate 
depots in the body. 

Bovens, Keizer and Kuipers (1985) demonstrated that isocaloric 
liquid and solid carbohydrate feedings do not differentially i 

influence muscle glycogen resynthesis over the inital 5-h of 

recovery from exhaustive cycling. Keizer et al (1987) further 

examined the influence of carbohydrate form on post-exercise 

recovery. A liquid carbohydrate diet providing 577 g (ie. 7.8 

g"kg-lbody wt), and a solid carbohydrate diet providing 602 g (ie. 4 

8.2 g"kg-lbody wt), were prescribed during 22-h recovery. There 

were no differences in muscle glycogen repletion between the G-: 
two dietary treatments. Similarly, Reed et al (1989) observed 
that despite differences in blood glucose and insulin response, 
post-exercise glycogen resynthesis was similar when 3.0 g "CHO 
kg-1 body wt were administered in either liquid or solid forms. 

2.9 Exercise-induced tissue damage and recovery 

It is possible that muscle functional capacity is impaired to a greater 
extent following eccentric exercise (ie. tension development during 

muscle fibre lengthening) in comparison with concentric exercise (ie. 
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tension development during muscle fibre shortening) (Armstrong, 
Ogilivie and Schwan, 1983; Clarkson, Byrnes, McCormick, Turcotte 

and White, 1986; Newham, Mills, Quigley and Edwards, 1983b). A 
difference has also been observed in post-exercise muscle glycogen 
replenishment, where prior eccentric exercise exerts a more persistent 
inhibitory effect upon the recovery process (Doyle, Sherman and 
Strauss, 1993). The running action is made up of both eccentric and 
concentric components, and is associated with muscle fibre ultra- 
structural disturbances (Hikida, Staron, Hagerman, Sherman and 
Costill, 1983; Sherman et a1,1983). 

Hikida et al (1983) examined muscle fibre integrity immediately prior 

and for 7-d following a marathon race. Signs of tissue damage were 

apparent even in resting samples, which reflected the rigorous nature 

of pre-race training. However, muscle fibre necrosis and inflamma- 

tion were much greater in post-race samples, and resulted in the 

spilling of cellular contents into extracellular and extravascular 

spaces. This may have resulted from ionic imbalances within the 

cell. Changes in intracellular calcium ion concentrations have been 

implicated in reduced tension development and a delaying of muscle 
fibre relaxation (Allen, Lee and Westerblad, 1989). This partially 

results from elevated calcium ion concentrations activating neutral 

proteases, which in turn may be responsible for Z-line breakdown 

(Busch, Strommer, Goll and Suzuki, 1962; Hikida et al, 1983). Such 

disturbances become manifest in the clinical symptons of rhabdo- 

myolysis and myoglobinuria, which were most pronounced during 

the first 3-d of recovery (Hikida et al, 1983). 

The development of post-exercise tissue damage follows a biphasic 

pattern (Newham, McPhail, Mills and Edwards, 1983a). Initially, the 

mechanical trauma of prior exercise is paramount, and is associated 

with an absence of pain but a reduced ability to generate force. The 

later phase is characterised by increasing muscle soreness and 

chemically-mediated tissue damage. This pattern reflects the time 

course of delayed creatine kinase (CK) release (Armstrong et al, 1983; 

Jones, Newham, Round and Tolfree, 1986). 
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Pascoe et al (1990) failed to demonstrate evidence of fibre injuries 

after 60 min of running (75% VO2max). Leukocyte infiltration was 

negligible and blood CK concentrations were low, providing no 

evidence of muscle damage. It is possible that training status may 
influence the susceptibility of individuals to mechanical trauma, 

which would explain Pascoe et al's (1990) observations in highly 

trained athletes (Hikida et al, 1983; Newham, Jones and Edwards, 

1986). O'Reilly et al (1987) examined the effects of eccentric cycling in 

untrained subjects. Exercise reduced muscle glycogen by -61% and 

was associated with myofibrillar tearing and oedema. After 10-d on a 

normal diet (ie. a carbohydrate intake equivalent to -54% of total 

energy) muscle fibre necrosis and inflammatory cell infiltration was 

still evident. Thus, the recovery process in terms of tissue repair is 

relatively slow (Hikida et al, 1983; Jones et al, 1986). Additionally, the 

heterogeneity of human muscle also appears to be influential, with 

type-II fibres being more susceptible to damage (Jones et al, 1986). 

Muscle damage incurred during eccentric exercise impairs glycogen 

resynthesis (O'Reilly et al, 1987; Costill et al, 1990; Sherman et al, 
1983). This is a delayed response and reflects the biphasic nature of 

events (Widrick, Costill, Fink, McConell, Anderson, Pearson and 
Zachwieja, 1992). Costill et al (1990) suggest that impaired glycogen 

resynthesis is partly attributable to an infiltration of damaged muscle 
by inflammatory cells. These have been shown to increase glucose 

metabolism by the release of as yet unknown soluble factors (Shearer, 

Amaral and Caldwell, 1988). Reduced glycogen storage may reflect 

substrate competition between inflammatory cells and muscle fibres. 

Improving substrate availability by increasing dietary carbohydrate 
intake may alleviate this situation (Costill et al, 1990; Doyle et al, 
1993). However, the time course of impaired glycogen accumulation 
does not closely parallel that of inflammatory cell infiltration 

(Widrick et al, 1992). 

Alternatively, reduced muscle glycogen resynthesis may result from a 
failure of the cellular glucose transport mechanism (Kirwan et al, 
1992; Lash et al, 1987). Tissue damage associated with eccentric exer- 

cise appears to impair the responsiveness of muscle cells to insulin, 

whilst disturbances of the sarcolemma may directly interfere with 
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glucose transport (O'Reilly et al, 1987). A resultant decrease in 

cellular glucose availability would reduce muscle glycogen replenish- 

ment, and hence delay recovery. 

2.10 Towards an understanding of the limitations to recovery 

Fatigue during prolonged, constant pace running ultimately results 
from a mismatch between ATP utilization and ATP resynthesis. This 
imbalance in energy metabolism is not necessarily accompanied by an 
observable disturbance in cellular ATP concentrations, nor in the con- 
centrations of products resulting from ATP hydrolysis (Green, 1991). 

The physiological availability of an appropriate fuel for maintaining 

cellular ATP flux is of paramount importance if exercise is to con- 
tinue. Whereas, replenishment of these fuel reserves following exer- 

cise is essential if functional capacity is to be restored. 

The following studies have attempted to further clarify our under- 

standing of recovery from prolonged, constant pace running, and the 
inherent limitations of what is an extremely complex process. 
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General Methods 

The specific procedures followed in each study are briefly described in the 

methods section of each experimental chapter. Common methods are 

reported below. 

All procedures were approved by the Ethical Advisory Committee of 
Loughborough University and were carried out in accordance with the 

'Code of Practice for Workers having Contact with Body Fluids'. Before 

receiving written consent to participate in the studies, subjects were 
informed of the demands that would be placed upon them and possible 

risks and discomforts. Subjects were given every opportunity to ask for 

further information and for clarification of the tests to be performed. 
Subjects were also required to complete a medical history questionnaire 

and provide general details of their running ability (Appendix A). 

Subjects with diabetes mellitus or any other medical condition potentiat- 
ing an undue personal risk or introducing bias were excluded. 

3.1 Apparatus and instrumentation 

Studies were performed on a motorised treadmill (Quinton, Model 

24-72), which had a dual speed range of either 2.4 to 24.2 km-h-1, or 4.0 

to 40.2 km-h-1. The lower range was selected for consistency with 

previous work carried out in this laboratory. The treadmill elevation 

ranged from 0 to 40%, which fulfilled the requirements of all experi- 

mental protocols. 

Before commencing each study the treadmill speed calibration was 

validated and the reliability of the analogue speedometer confirmed. 
The treadmill belt length was measured and time recorded for the 
belt to complete fifty revolutions at various speeds spanning the 

experimental range. The total distance covered by the belt during 

each set of fifty revolutions was determined and the actual treadmill 

speed calculated. 

The treadmill was linked to a microcomputer (BBC Master series), 

which was in turn interfaced with a switchable 40/80 track single disc 
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drive (Akhter Instruments Ltd, Type DS80TK) and a printer (Canon 

PW 1080-A). Using software developed in the department (© DG 

Kerwin 1988, Department of Physical Education, Sports Science and 
Recreation Management, Loughborough University) performance 
data from the treadmill was continuously monitored and recorded. 

Heart rate (HR) and ECG profiles were also continuously monitored 
throughout the preliminary tests and experimental trials. These 

were displayed on a cardiometer (Rigel, Model 302), which was at all 
times visible to the experimentor. The cardiometer was interfaced 

with the computer to provide a permanent record of HR. 

Electrical signals proportional to the treadmill speed and the cardiac 

responses of the subject enter two separate computer channels. 
Sampling took place at two levels. The first level, or 'inner loop', 

sampled data over intervals of 0.4s at a frequency of 50 Hz. Mean 

values for each sampling interval were calculated for the two 

channels. These averaged signals were processed by an analogue to 

digital converter (ADC) such that data is presented in a numerical 
form. The second level of sampling, or 'outer loop', overlies this 

continuous cycle of data retrieval and processing. The sampling 
interval in this case is pre-set by the experimentor (eg. 10s, 15s, or 30s). 

On completion of the outer loop the data displayed on the monitor 

was printed to provide a hard-copy. These two levels of data collec- 

tion act to smooth data sampling. 

Speed data was collected relative to time. Thus, distance completed 
by the subject was calculated and displayed on the monitor. The 

monitor display (providing information on run time, distance, speed, 

running pace, and heart rate) was updated every second. 

3.2 Subjects and laboratory procedures 

Prolonged running is extremely demanding and the exhaustive runs 

reported in this thesis warranted tremendous commitment and 

motivation on the part of the subjects. As such, men and women 
familiar with endurance exercise were accepted as volunteers. All 

regularly participated in submaximal running with weekly training 
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distances ranging from 35 to 100 km. 

3.2.1 Height and mass 

Height was measured using a wall mounted stadiometer with 

a maximum range of 200.00 cm and accurate to ±0.01 cm 
(Holtain Ltd). Subjects were weighed on each visit to the 

laboratory using balance scales (Avery Ltd, Model 3306BV) with 

a capacity of 120 kg and accurate to ±0.05 kg. Before each pre- 
liminary test subjects were weighed in light-weight running 
kit and bare feet. Nude body mass was measured before and 

after each long run, subjects having previously towelled down 

to remove all suface moisture. 

3.2.2 Monitoring of heart rate 

Four self-adhesive Ag/AgCl disposable chest electrodes (Red 

Dot 3M UK Ltd, type 2255) were positioned prior to exercise for 

monitoring HR. The first was located at the top of the 

sternum. Two more were located at either side of the rib cage, 
15 cm below the level of the first. Finally, the fourth electrode 

was located in close proximity to the acromion process of the 

shoulder and functioned to earth the subject whilst running 

on the treadmill. Each site was abraded, degreased and an 

electrolyte gel applied to ensure good contact prior to adhering 
the electrodes. Additional tape was required to maintain 

electrode contact during the long runs as profuse sweating was 
found to lift the plates and disrupt the signal. 

3.2.3 Expired air collection and analysis 

Expired air was collected using Douglas bag techniques. 

Subjects were presented with a noseclip (Harvard Equipment) 

and mouthpiece (Harvard Equipment) 45s before each collec- 
tion was due to be taken. This ensured evacuation of 'dead- 

space' with expiratory air. The mouthpiece communicated 

with a 150 1 capacity Douglas bag (Harvard Equipment) via a 
lightweight two-way valve (jakeman and Davies, 1979), a 1.5m 
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length of wide-bore (30mm) lightweight tubing (Fulconia; 

Baxter, Woodhouse and Taylor) and a two-way tap (Harvard 

Equipment). Thus, a closed-circuit was formed when the nose- 

clip and mouthpiece were correctly worn, allowing expired air 
to be collected over a measured time interval. 

The percentage oxygen content of expired air was measured by 

a paramagnetic oxygen analyser (Taylor Servomex, Model 

570A). This operates on the basis of the susceptibility of oxygen 
to a paramagnetic gas. Oxygen concentration accurate to ±0.1% 

was given as a digital readout. The percentage carbon dioxide 

of expired air was measured by an infra-red carbon dioxide 

analyser (Lira, Model 303; Mines Safety Appliances Ltd). This 

has an analogue readout from which carbon dioxide concentra- 
tions were calculated with reference to a calibration curve. The 

final value obtained was accurate to ±0.01%. Both analysers 

were calibrated against nitrogen, a calibration gas, and room air 
immediately prior to each series of gas analyses. The analysers 

were found to be stable over 8-h provided barometric pressure 

remained stable. Nevertheless, analysers were checked each 
hour and adjusted if necessary. 

A Harvard digital dry gas meter was used to determine gas 

volumes. This had previously been calibrated using a 6001 

Tissot Spirometer (Collins Ltd, USA). The temperature of 

expired air was monitored as each bag was evacuated by a 
thermistor probe (Edale type 2984, Model Q. This was fitted on 
the inner surface of the air inlet pipe connecting the Douglas 

bag to the gas meter. The analogue readout of the thermistor 

was calibrated prior to each set of analyses against two standard 

settings of 250C (position A) and 500C (position B). 

Respiratory values were standardised for temperature, atmos- 

pheric pressure and water vapour content using software dev- 

eloped in the department (© Dr HKA Lakomy, Department of 
Physical Education, Sports Science and Recreation Manage- 

ment, Loughborough University). 
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3.2.4 Estimation of energy expenditure 

Energy expenditure was estimated under steady state condi- 
tions by indirect calorimetry, using open circuit spirometry. 
The proportions of energy derived from carbohydrate and fat 

were estimated from the non-protein respiratory exchange 

ratio (R) value. This assumes that the contribution of protein 
to energy metabolism is relatively small (Consolazio, Johnson 

and Pecora, 1963). 

The following method for calculating energy expenditure by 

indirect calorimetry is adapted from McArdle, Katch and Katch 

(1981): 

The oxidation of 1.0 g of carbohydrate uses 0.828 1 of oxygen, 

and produces 0.828 1 of carbon dioxide and 17 kJ of energy. 
The oxidation of 1.0 g of fat uses 1.989 1 of oxygen, and 

produces 1.419 1 of carbon dioxide and 39 kJ of energy. 
Whole body oxygen consumption (702) and carbon dioxide 

production (VCO2) is calculated from expired air analyses. 
Rates of carbohydrate (x g"min-1) and fat (y g"min-1) 

oxidation can be determined using simultaneous equations: 

V 02 = 0.828 x+1.989 y ... 
(i) 

VCO2 = 0.828 x+1.419 y ... 
(ii) 

Solving for 'x' and 'y' by subtracting (ii) from (i), gives rise 
to the following equations of energy metabolism: 

x= V02 - (y * 1.989) where, y= VO2 - VC02 

0.828 0.570 

Thus, total energy expenditure is given by: 

Energy expenditure =[ (x * 17) + (y * 39) 1 kJ"min-1 
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3.2.5 Measurement of body temperature 

Four interchangeable thermistor probes (Edale, type EU) were 
used to measure skin temperature. These were taped to the 

calf, thigh, upper arm and chest as described by Mitchell and 
Wyndham (1969). Appropriate siting and methods of adhesion 
were established through pilot-testing such that reliable temp- 

erature profiles were recorded during the exercise bouts. 

Weighted mean skin temperatures (Tsk) were calculated from 

values recorded at the four sites (Ramanathan, 1964), and 

calculated as follows: 

Tsk = 0.3 (Tchest + Tarm) + 0.2 (Tcalf + Tthigh ) 

In Chapter 4 an aural probe (Edale) monitored tympanic temp- 

erature (Tb, ), whereas in Chapters 5,6, and 7, a rectal probe 
(Edale) was prefered to monitor body temperature (Tre), 

providing a more representative indicator of changes in deep 
body temperature (Nadel and Horvarth, 1970; Nielsen and 
Nielsen, 1965). The aural probe, which was inserted through a 

small plastic ear piece, was placed directly onto the tympanum 
by the subject (Nadel and Horvarth, 1970). The ear was then 
insulated by a small gauze pad and secured with strips of tape 

over the outer ear. The rectal thermistor probe was inserted to 

a depth of 10 cm beyond the external anal sphincter muscle 
(Nielsen and Nielsen, 1962). 

Core temperature can be estimated from hypothalamic, tym- 

panic membrane, ear canal, oral, esophageal, rectal, or central 
blood temperatures (Gisolfi and Wenger, 1984). Tympanum 

(Tty), oesophageal (Te ), and rectal (TTe) temperature measure- 

ments are the most commonly used. Nadel and Horvarth 
(1970) compared Tty and Trec over a range of ambient tempera- 

tures. The Tt, estimate responded more rapidly than Trec to 

transient changes in deep body temperature, providing a 
suitable measure during intensive dynamic activity. However, 
Tty was influenced by environmental factors during steady 
state activity and was consistently lower than Trec" In contrast, 
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Tfec was largely independent of environmental influences, 
being relatively stable during the early stages of steady state 
activity. 

The response of each probe was validated over the physio- 
logical range using a water bath prior to each study. Temp- 

eratures were monitored during each study by two electronic 
thermometers (Edale Instruments, Model C) with ranges of 
250C to 450C (increments of 0.2°C) and OTC to 500C (increments 

of 0.5°C) both accurate to ±1.0% of the full scale. 

3.2.6 Estimation of whole body rehydration 

Whole body rehydration was estimated according to the 

method of Gonzalez-Alonso, Heaps and Coyle (1992). The 

percent gain in body weight over the recovery period relative 
to weight loss during the previous exercise bout provided an 
index of rehydration. Percentage rehydration represented the 

amount of ingested fluid that was retained within the body 

after the specified recovery period, and was calculated as 
follows: 

Rehydration = [(BWpre BWpost) - (BWpre BWrec)1 

* 100 
Fluid intake (kg) 

Where, B Wpre = pre-exercise body weight (kg) 

B Wpost = post-exercise body weight (kg) 

B Wrec = body weight following recovery (kg) 

3.2.7 Subjective ratings of exertion 

Perceptions of fatigue during the preliminary tests and the 

experimental trials were measured using the fourteen point 
Borg scale (Borg, 1973). In addition, the ten point category-ratio 

scale was applied during Chapters 5,6, and 7 (Noble, Borg, 
Jacobs, Ceci and Kaiser, 1983). Both were shown to subjects 
during expired air collections, and their responses recorded. 
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The Borg scale is a linear rating scale graded from 6 to 20, 

where 7 is anchored by the expression 'Very, very light' and 19 

is anchored by the expression 'Very, very hard'. Responses to 

the Borg scale have been shown to correlate with relative 

exercise intensity and heart rate (Borg, 1973). 

The category-ratio scale is a curvi-linear scale graded from 0 to 

10, which is anchored by the expressions 'nothing at all' and 
'very, very strong' respectively. It was developed to assess 

perceptions of fatigue associated with non-linear physiological 

phenomena such as breathing difficulties, muscular aches, and 

pain (Borg, 1982). Responses in excess of 10 are recorded as 
'maximal'. Ratings from the category-ratio scale correlate with 
the time course of exercise induced glycogenolysis, values 
increasing with lactate accumulation in blood and muscle 
tissue (Noble et al, 1983). 

3.2.8 Environmental conditions 

Ambient conditions in the laboratory were carefully 

monitored during all experimental trials, and controlled 

where possible. Wet and dry bulb temperatures were 

measured using a whirling hygrometer (Brannan Thermo- 

meters Ltd), which was operated in close proximity to the 

treadmill. Relative humidity was calculated from these values 

using a sliding scale. Barometric pressure was measured using 

a wall mounted barometer (Griffen and George). 

3.3 Dietary analyses 

Before commencing each study, subjects weighed and recorded their 

food intake over a continuous seven-day period (Anonymous, 1991). 

Analyses of the nutritional content of their normal diets were made 
from these food diaries (Paul and Southgate, 1978). This provided 

guidance for the preparation of individual dietary prescriptions and 
dietary manipulations where necessary. 



Chapter 3 78 

Dietary analysis was based upon the weighed-food intake method 
(Marr, 1971). Subjects recorded the time of each meal and where the 

meal was consumed. In describing the food subjects were requested 
to provide as much detail as possible. Pertinent information to be 
included in the description would be: the brand name of food where 
possible; whether the food was fresh, frozen, dried or canned (ie. how 

the food is preserved and stored); details of the preparation (eg. the 

type of fat used in frying). The weight of each serving was deter- 

mined using precalibrated digital scales, as was the weight of left- 

overs. Hanson electronic scales were used in Chapters 4 and 6, with a 

capacity of 2.0 kg and accurate to ±2.0 g. In Chapter 7, EKS (Model 

1002) electronic scales were used, which similarly had a maximum 

capacity of 2.0 kg and accurate to ±2.0 g. 

Each food item was coded in accordance with the index of foods in 
the MAFF/MRC Food Composition Tables (Paul and Southgate, 

1978). The weight of food consumed and its item code was entered 
into a dietary analysis programme. This was originally devised by Dr 

John Challis (© Department of Physical Education, Sports Science, 

and Recreation Management, Loughborough University). An up- 
dated version was later developed by Dr Juliet Wiseman also formely 

of this department. This was run using an Apple Macintosh-Plus 

computer interfaced with a Rodime 45-Plus hard drive. 

Dietary prescriptions were made in accordance with each subject's 

normal intake of carbohydrate, fat and protein. 

Chapter 5 was the exception to the above. Dietary control was 

achieved by recording the items consumed and approximate portion 

sizes in a food diary during the 48-h prior to the first experimental 
trial. Subjects then followed the same diet during the 48-h prior to 

the second trial. This system of dietary recall developed by Dr Juliet 

Wiseman was found to be reliable providing that subjects received 

careful instruction in describing portion sizes. 
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3.4 Preliminary Testing 

Subjects were initially familiarised in the laboratory for 2-3 weeks. 
During this time they were introduced to running on a motorised 
treadmill, the laboratory setting, and the experimental protocols. In 

addition, three preliminary tests were completed determining the 

oxygen cost of submaximal running, maximal oxygen capacity 
(VO2max), and the relationship between oxygen consumption and 

blood lactate concentration during submaximal running. 

3.4.1 Familiarisation 

During the first visit to the laboratory subjects were thoroughly 
familiarised with running on a motorised treadmill. This was 
in the form of a progression, commencing with a walk, which 

was extended into a jog, and eventually into a run. Stopping 

procedures were explained and practised such that subjects felt 

confident and safe during all exercise bouts. 

Subjects were instructed in the standard laboratory methods 
for sampling expired air and monitoring heart rate. In 

addition, they were introduced to the Borg Scale of perceived 

exertion, the Category Ratio Scale of muscular effort (Chapters 

5-7), and the Gut Fullness Scale' (Chapter 7). 

3.4.2 Establishing a speed-V02 relationship 

The first performance test determined the oxygen cost of 

running over a range of submaximal speeds (speed-VO2 test). 

The speeds were selected with reference to each subject's 

running ability and lay between 60 and 90% VO2max. Actual 

speeds ranged from 2.79 to 5.04 m-s-1 with increments of 0.45 

m-s-1. This was a continuous test with subjects running for 4 

min at four different speeds. Expired air collections were made 

over the last minute of each stage (ie. 3-4,7-8,11-12, and 15-16 

min) and analysed as described previously. Percentage oxygen 
and carbon dioxide concentrations were measured in each 

7Stensel DJ (1988) Unpublished MSc thesis, Loughborough University 
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sample as was the total volume of expired air collected. Thus, 

rates of oxygen consumption (' O2) and carbon dioxide produc- 
tion (VCO2) were determined using the Haldane transforma- 

tion, and the minute ventilation volume (VE) was calculated. 
Responses to the Borg scale were recorded during each collec- 
tion. By applying linear regression to the four co-ordinate 

values of VO2 and running speed, individual relationships 

were established for each subject. 

3.4.3 Determination of maximal oxygen uptake (VO2max) 

Maximal oxygen uptake was determined during continuous, 
incremental-grade uphill running. The method used was a 

modification of the Taylor treadmill test (Tayor, Buskirk and 
Henschel, 1955). The treadmill was initially set at a grade of 
3.5%, and was subsequently increased by 2.5% every 3 min. 
Subjects ran at a constant submaximal speed throughout the 

test, and 1 min expired air collections were taken over the 

third min of each stage. Subjects aimed to run for as long as 

possible. A final expired air collection was taken when subjects 
felt that they could only maintain the required exercise 
intensity for one more minute. From this collection VO2max 

was calculated. Criterion establishing a valid VO2max test 

include: an R value greater than 1.15; plateauing of VO2 and 
VE values; and a heart rate which approximated a predicted 

maximal value (Astrand and Rodahl, 1986). 

3.4.4 Establishing the speed-lactate relationship 

The speed-lactate test established a relationship between 

exercise intensity and capillary blood lactate concentration. 
Subjects arrived at the laboratory having fasted overnight or in 

a 4-h post-absorptive state. After sitting quietly for 15 min, a 

pre-exercise capillary blood sample was taken for determining 

a base-line blood lactate concentration. The subject was then 

made ready for the test. Four speeds were calculated from data 

obtained during the previous tests (Ramsbottom, Nute and 
Williams, 1987), such that the respective VO2 demands of the 
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exercise bouts were equivalent to 60% to 90% of VO2max. 

Capillary blood samples were taken at the end of each 4 min 
stage. Samples were analysed for blood lactate concentration as 
described in Section 3.7.1. 

3.4.5 Assessing training status 

Training status was assessed from the speed-V02 and speed- 
lactate tests. Blood lactate concentrations during submaximal 

exercise are closely related to running performance (Jacobs, 

1986). The running speed (ms-1) and %VO2max of subjects at 
blood lactate concentrations of 2 mmol-l-1 and 4 mmol"1-1 were 
determined. The former reference value is equivalent to the 
blood lactate concentration of endurance athletes at a self- 
selected running speed (Williams, Brewer and Patton, 1984), 

whilst the latter is equivalent to the 'onset of blood lactate 

accumulation' (OBLA) (Astrand and Rodahl, 1986). Thus, 

assessing exercise capacity at these two reference blood lactate 

concentrations provides a method for evaluating aerobic 
fitness (Williams, 1990). 

3.5 Standardised test procedure 

Run 1 in Chapters 4,6 and 7 (Figure 3.1), and the long run of Chapter 

5 (Figure 3.2), were performed early in the morning. Subjects arrived 

at the laboratory after an overnight fast of 10-h. They emptied their 
bladders before any pre-test measurements were made. Subjects were 

weighed nude before and after each run. Four ECG electrodes were 

positioned immediately before exercise for monitoring heart rate, and 

skin temperature probes were taped to the calf, thigh, upper arm and 

chest. An index of changes in body temperature was provided by 

either an aural (Chapter 4) or a rectal (Chapters 5,6 and 7) thermistor 

probe. 

Pre-exercise venous and capillary blood samples were taken as 
described in Section 3.7.1 and 3.7.2. Further capillary blood samples 
were taken during each exercise bout, and venous and capillary blood 

samples were taken at the end of the exercise bout. 
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Resting expired air collections were taken in Chapters 6 and 7 which 
allowed pre-exercise metabolic rate to be determined. A standardized 
5 min warm-up at 60% VO2max was then performed. The treadmill 

speed was increased to the test pace equivalent to 70% VO2max 

immediately following the warm-up. In Chapters 4,6 and 7 the first 

run was a standardized endurance task in which subjects were 

required to run for 90 min, or until volitional fatigue, which ever 

was reached first (RI). Volitional fatigue was defined as the point at 

which the required running pace could not be maintained. During 

the second run subjects were required to run for as long as possible to 

assess endurance capacity (R2). All subjects were highly motivated 

and were instructed to give a maximal effort. In order that subjects 

might more acurately assess their level of fatigue during the latter 

stages of each run they had the option of reducing their running pace 
for a period of 2 min on one occasion, after which the prescribed 

speed was resumed. When subjects needed to reduce the treadmill 

speed a second time the test was ended. 

Expired air collections were taken during each exercise bout from 

which VE, VO2 and VCO2 were determined and the respiratory 

exchange ratio (R) value calculated. Simultaneously, subjective 

ratings of perceived exertion (Chapters 4,5,6 and 7) and muscular 

effort (Chapters 5,6 and 7) were obtained. 

The laboratory was maintained at 200C and subjects were cooled 

whilst running on the treadmill by electric fans. Wet sponges and 
drinking water were available for use ad libiturn (Chapters 4,6 and 7 

only). The total fluid ingested during exercise was recorded at the 

end of each run and accounted for in post-exercise changes in body 

weight. Subjects maintained a constant level of training from comm- 

encing the preliminary tests until the completion of the experimental 
trials. In addition, subjects refrained from strenuous activity over the 

two days prior to the experimental day. 
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3.6 An examination of the reliability of the experimental procedure 

To examine the reliability of the recovery experimental procedure, 
the following data were retrospectively collated from Chapters 6 and 
7. Male subjects who completed Rl (ie. 90 min run at 70% VO2max) 

were matched according to preliminary test measurements and 

physiological data relating to R1 performance. Run times for R2 were 

examined as a means of assessing reliability. 

3.6.1 Subjects 

Twelve men were allocated to two matched groups (group A 

and group B). Subjects were matched according to age, height, 

weight, VO2max, VE max, and HRmax (Table 3.1). 

3.6.2 Protocol 

The data reported in this examination of reliability were 

collected after subjects had completed the standardised prepara- 

tions as reported in Chapters 4,6 and 7. 

In brief, subjects completed weighed-food intake dietary anal- 

yses from which normal diets were prescribed over the 48-h 

prior to the test. After familiarisation, subjects completed the 
three preliminary tests (refer to Section 3.4) from which appro- 

priate running speeds for the recovery test were determined. 

Consistent with the standardised experimental design, R1 was 

performed early in the morning after an overnight fast of 10-h. 

This first run was a standardised endurance task consisting of 
90 min running at 70% VO2max. A second run (R2) was per- 
formed 4-h later. During the recovery between R1 and R2 

subjects in both groups ingested a 6.9% glucose-polymer 

solution immediately following R1 and 2-h later. Each feeding 

provided the equivalent of 1.0 g-CHO. kg-lbody wt. During R2, 

subjects were required to run for as long as possible to assess 
the return of endurance capacity for each group. Expired air 
samples were collected during Rl and R2, and subjective 



Chapter 3 86 

ratings of perceived exertion and muscular effort were 
obtained. 

Wet sponges and drinking water were available during 

exercise. The total fluid ingested was recorded at the end of 
each run and accounted for in post-exercise changes in body 

weight. Only the prescribed fluid was ingested during the 

recovery period. 

Recovery performance times (R2) were compared by a Mann- 

Whitney U test for small samples. 

3.6.3 Results 

Both groups completed the 90 min endurance task (RI). TheR2 

run time of group A was 56.1 (±9.8) min, and the R2 run time 

of group B was 56.8 (±5.8) min (NS). 

3.6.4 Conclusion 

The submaximal exercise procedure adopted in the studies 
and reported in this thesis (ie. a standardised endurance task, 

a controlled recovery period, and an open-ended steady state 
performance test) provides a reliable measure for assessing 
recovery from an endurance activity. 
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Table 3.1 Physiological characteristics of subjects in group A and group 

B (mean ± SE) 

Age Height Weight VEmax HR max VO2max 

(yrs) (cm) (kg) (1-min-1) (b'min-1) (ml"kglmin-1) 

A 29.4 174.6 67.5 116.5 192 57.3 

±SE 3.8 1.9 2.2 5.1 4 2.5 

B 31.6 178.8 73.4 126.5 185 60.6 

±SE 3.0 3.6 2.4 7.5 6 1.6 
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3.7 The collection and analysis of blood samples 

The characteristics of all commercial kits used in the biochemical 

analysis of blood samples were initially examined in the laboratory 

over a physiological range of standard concentraions. From these 

procedures the reliability and validity of micro-methods were ascer- 
tained. Assays were then performed with greater precision on 
smaller sample volumes. 

3.7.1 Capillary blood samples 

Capillary blood samples (20 µl) were taken in duplicate from 

the thumb using micro-pipettes, the hand being pre-warmed 
for resting collections. Samples were immediately deprotein- 

ised in 200 µl of cold 0.38 mM perchloric acid prior to centri- 
fugation (Eppendorf, Model 5414) and storage at -20°C. These 

were later analysed for blood glucose and blood lactate. 

Blood glucose concentration was determined by photometric 

analyses on 20 tcl aliquots of perchloric acid extract using the 

G. Od period method (Boehringer Mannheim GmbH 

Diagnostica, Appendix B). Blood lactate concentration was 
determined by fluorimetric analyses (Locarte, Model 8-9) on 20 

Ecl aliquots of perchloric acid extract using a method adapted 
from Maughan (1982) (Appendix Q. A coefficient of variability 

of less than 3.0% (or a regression equation of correlation 0.999) 

on the standards was achieved before commencing sample 

analyses. The lactate standards ranged between 0.5 and 15.0 

mmol-1-1, which accommodated the sample values measured 
in the studies reported in this thesis. The accepted coefficient 

of variation for these two assays was 2.0%. 

3.7.2 Venous blood samples 

Venous samples were drawn from an antecubital vein in the 
forearm. 
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From the venous blood samples, 1.5 ml aliquots were 
dispensed into heparinised Eppendorf tubes and immediately 

centrifuged for 5 min (Eppendorf, Model 5414). The plasma 
'was removed and stored at -70°C, and analysed for ammonia 
(Boehringer Mannheim GmbH Diagnostica, Appendix D) 

within 48-h (Chapter 4) or within 24-h (Chapters 5,6 and 7) 
(Tsintzas and Wilson, unpublished observations). This same 

plasma sample was also analysed for sodium and potassium by 

flame photometry (Ciba Corning, Model M435) (Appendix E). 

The major fraction of each venous blood sample was 
dispensed into lithium heparin tubes to prevent coagulation. 
Two 20 µl aliquots of blood were drawn from each sample 

using calibrated micro pipettes (Acupette Pipettes, Scientific 

Industries Ltd) and mixed with 5.0 ml of Drabkins Reagent 

(Boehringer Mannheim GmbH Diagnostica). Thus, haemo- 

globin concentration was photometrically determined by the 

cyanmethaemoglobin method (Appendix F). Triplicate 50 µl 
samples of whole blood were drawn from each sample using 
heparinised pipettes. Following micro-centrifugation for 15 

min at 11 000 rev-min' (Hawksely Ltd), packed cell volume 

was measured using a sliding haematocrit reader (Hawksley 

Ltd). Percent changes in plasma volume from rest were 

estimated by the method of Dill and Costill (1974), which is 

based upon changes in haemoglobin concentration and packed 

cell volume. 

Serum was obtained in Chapters 5,6 and 7. A3 ml aliquot of 
whole blood was left to clot for 1-h and then centrifuged at 30C 
for 15 min. Insulin and cortisol are reported to be stable in 

serum stored at -200C for 6 months (Dr. J. Burrin, The London 
Hospital Medical College, personal communication) . 

Plasma was obtained by centrifugation of the remaining whole 
blood at 6000 rpm for 15 min at 30C (Burkard µP Koolspin). 

The operational range of the Koolspin was 100 to 99 000 

rev-min 1. Aliquots were stored at -200C and later analysed for 
FFA (method-i Chromy, Gergel, Voznicek, Krombholzova and 



Chapter 3 90 

Musil, 1977; Noma, Okabe and Kita, 1973; method-ii Wako 
Chemicals GmbH), glycerol (Laurell and Tibling, 1966), and 

urea (Boehringer Mannheim GmbH Diagnostica). These 

assays are detailed in Appendices G- J). Serum insulin con- 

centrations were determined by radioimmunoassay (Soeldner 

and Slone, 1965), and cortisol concentrations were determined 

using a kinetic enzyme immunoassay system (Euro/DPC Ltd, 

Llanberis, Gwynedd, UK). All hormone analyses were per- 
formed by Dr. J. Burrin of The London Hospital Medical 

College, where the coefficients of variation were reported to be 

5.6% for serum insulin and 3.6% for serum cortisol. 

3.8 The collection and analysis of sweat samples 

Sweat was sampled in the male subjects from the scapula region at 
the end of Rl and R2 in Chapter 6. A pre-measured sampling area 
(5cm x 5cm) was wiped dry during the final minute of exercise. Five 

collections were made, each of 1 min duration, over the immediate 

post-exercise period. Sweat was absorbed using 25cm2 filter paper 

swabs pressed against the sampling area with metal forceps. The 

swabs were placed into individual test tubes which were quickly 

sealed after each collection. Scapula skin temperature readings were 

recorded as each collection was completed. Each test tube and swab 

was then weighed to determine total sweat content, from which rates 

of secretion and electrolyte fluxes were calculated. The filter paper 

swabs were soaked in 15.0mM lithium solution prior to centrifuga- 
tion. The upper phase was removed and analysed for sodium and 

potassium (Ciba Corning flame photometer, Model M435). 

3.9 Statistical Analyses 

Data are presented as means (±SE). The performance and physio- 
logical response data were analysed by parametric statistical methods, 

where values at the 0.05 level were accepted as being statistically 

significant. Details of the statistical tests are given in the respective 
chapters. 
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Carbohydrate intake and recovery from prolonged, constant pace 

running 

4.1 Introduction 

Optimal muscle glycogen stores are an important factor in successful 
endurance performances (Hultman, 1967; Karisson and Saltin, 1971). ) 
Prolonged exercise at 60 to 80% VO2max will reduce muscle glycogen, (' 
and this is believed to be a major contributor to the onset of fatigue ý' 

.ý 
(Bergstrom and Hultman, 1967; Hermansen et al, 1967). This carbo- 
hydrate store must be replenished if endurance capacity is to be 

restored, where endurance capacity refers to the exercise time to 

fatigue at a constant running speed. The restoration of normal 

resting muscle glycogen values is dependent upon post-exercise 

carbohydrate intake (Ahlborg et al, 1967a; Bergstrom et al, 1967). 

Costill et al (1981) reported restoration of pre-exercise muscle glycogen 
24-h after prolonged running, when a diet providing 525 to 648 g (ie. C 

7.3-8.2 gkg-lbody wt) of carbohydrate was consumed. This high intake 

may be satisfactorily incorporated into a nutritionally well-balanced 
diet (Fogelholm, Tikkanen, Naveri and Harkonen, 1989). 

Few studies have examined the return of exercise capacity along with 

replenishment of endogenous carbohydrate stores. Keizer et al (1987) 

examined muscle glycogen content and maximal physical work cap- ,' 
acity (MPWC) before and after exhaustive intermittent cycling and a 

prescribed diet. A recovery diet providing -590 g of carbohydrate (ie. 

8.0 g"kg-lbody wt) replenished muscle glycogen stores within 22-h. 

Despite restoring the body's carbohydrate stores, MPWC was reduced 
by 7.3%. Nevill et al (1993) examined the effects of high (ie. 8.7 g"kg-1 
body wt), normal (ie. 4.6 g"kg-ibody wt) and low (ie. 1.1 g"kg-lbodywt) 

carbohydrate diets on intermittent sprint performance. Power output 

was reduced in all groups after -22-h of recovery, there being no 
differences between dietary treatments with respect to maximal exer- 

cise performance. 



Chapter 4 92 

However, the question of a return in endurance capacity along with 

replenishment of endogenous carbohydrate stores has still to be 

addressed. Thus, the aim of this study was to examine the influence 

of providing additional carbohydrate during 22.5-h recovery from 

prolonged, constant pace running on subsequent endurance capacity. 

4.2 Methods 

4.2.1 Subjects 

Sixteen men volunteered to take part in the study. This 

sample included a wide range of performers, from recreational 

runners to county games players and international rowers. The 

subjects were divided into two matched groups (Table 4.1). The 

groups were matched in terms of physiological characteristics 
(age, height and weight), respiratory and cardiovascular res- 

ponses (VEmax, HRmax and VO2max), running economy and 
blood lactate responses to submaximal exercise. It was evident 
from the preliminary performance tests that the groups were of 

equal training status (Table 4.2). Subjects from each group were 

randomly assigned to either a control (CON) or a carbohydrate 
(CHO) trial. 

4.2.2 Protocol 

Subjects completed weighed-food intake dietary analyses before 

the start of the study (Section 3.3). From these analyses, pre- 
scribed diets were prepared for the 48-h period prior to R1. 

After familiarisation, the three preliminary tests were com- 
pleted to determine the oxygen cost of submaximal running, 
VO2max and the relationship between oxygen consumption 
and blood lactate concentrations during submaximal running 
(Section 3.4). 

The treadmill runs R1 and R2 were performed at 08.30h on two 

consecutive days (Figure 3.1), subjects arriving at the laboratory 

after an overnight fast of 10-h on both occasions. After the pre- 
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viously described preparations and standardised warm-up, 
subjects completed R1. The interval between R1 and R2 was 
22.5-h. During this controlled recovery period, food intake was 

prescribed to include additional energy. This was calculated on 
the basis of an increase in the carbohydrate component of each 
subject's habitual diet to 8.8 g"CHO-kg-ibody wt. The supple- 

mentary energy for the CHO group was provided in the form 

of a 16.5% glucose-polymer drink (Appendix K). The isocaloric 

equivalent was prescribed for the CON group in the form of 
dietary fat and protein, which was incorporated into the main 

meals. The proportions of additional fat and protein were 
determined in relation to each subject's normal levels of inges- 

tion. Both groups were provided with their first meal in the 

laboratory immediately on completion of R1. Dietary prescrip- 
tions were prepared by a trained 

_dietitian 
with reference to 

each subject's habitual food intake. As such, the prescribed 
foods were familiar and acceptable. 

After the subject had been seated in a relaxed position for -10 
min, a 10 ml venous blood sample was drawn from the ante- 

cubital vein. Duplicate 20 ul capillary blood samples were also 

obtained. Further capillary samples were taken after 30 and 60 

min during each run, with venous and capillary samples being 

obtained at the end of Rl and R2. Packed cell volume and 
haemoglobin concentration were measured in whole blood, 

whilst plasma was analysed for FFA (method-i), glycerol, 

sodium, potassium, ammonia and urea. Lactate and glucose 

were determined in capillary samples. All blood samples were 

collected, treated, stored and analysed as previously described 

(Section 3.7). 

Expired air samples were collected at 15 min intervals during 

both runs using the Douglas bag technique, and subjective 

ratings of perceived exertion were obtained using the Borg 

scale. 

Performance times of the two groups were compared by 
analysis of covariance, where R1 represented the covariate. 
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Differences in blood biochemical 

responses were examined using Student's independent T -test. 
Whereas, differences within each group were examined using 

a paired T-test. All other responses were analysed using two- 

way analysis of variance (ANOVA) with repeated measures 
(treatment-by-time). When differences were revealed using 
ANOVA, a Tukey post-hoc test was applied to identify the 

nature of these differences. 

4.3 Results 

4.3.1 Performance 

Run times for Rl were not different between the groups (CON 

group: 86.3 (±3.8) min; CHO group: 82.7 (±3.8) min). After 22.5- 

h recovery, run time of the CON group (R2) was reduced by 15.6 

min (p<0.05) (mean 70.7±7.2 min; range 38.8 to 93.0 min), 

whilst run time of the CHO group was increased by 9.2 min 
(NS) (mean 91.9±9.0 min; range 60.0 to 131.0 min). 

4.3.2 Pre-exercise energy intake and fuel utilisation during exercise 

The energy intake of subjects during the 48-h prior to Rl are 

given in Table 4.3. Carbohydrate provided 51 (±3)% and 52 

(±3)% of total dietary energy of the CON and CHO groups 

respectively. The total carbohydrate in the CON recovery diet 

was the same in absolute terms as for the previous 48-h, but 

represented a reduction in relative terms to 36 (±6)% of energy 
intake. Whilst, the carbohydrate content of the CHO recovery 
diet was increased, representing 63 (±3)% of energy intake. 

The eating patterns of the two groups during the recovery 

phase were analysed by examining the dietary content of 
breakfast, lunch, dinner and snacks. There were no differences 

in eating patterns between the two groups in terms of energy 
intake. Furthermore, the carbohydrate content of the first meal 
ingested immediately after Rl was the same for both groups. 
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Respiratory exchange ratio (R) values were not different during 

the two runs (Figure 4.1). Estimated energy expenditure of the 
CON group during R1 was 5.7 MJ, of which carbohydrate oxida- 
tion contributed 52%. This was equivalent to 173 (±8) g of 

carbohydrate during the first exercise bout. Whilst the energy 

expenditure of the CHO group during R1 was 5.5 MJ, of which 

carbohydrate contributed 43% or 140 (±8) g. During R2,4.8 MJ 

of energy were expended by the CON group, of which 58% was 
in the form of carbohydrate. This compares with 6.2 MJ 

expended by the CHO group, of which 49% was provided by 

carbohydrate. 

The oxygen cost of constant pace running for subjects in the 

CON and CHO groups during Rl and R2 are given in Table 4.4. 

There was evidence of V02-drift in both groups during R1 

(p<0.01) and R2 (p<0.05), though there were no differences 

between the groups. This reflected an increase in the estimated 

energy cost of running during R1 equivalent to -3.8 KJ"min71, 

where more than 90% of the additional fuel requirement was 

provided from elevated fat metabolism. 

4.3.3 Blood glucose and blood lactate responses 

Both groups maintained normal blood glucose concentrations 
during Rl and R2 (Figure 4.2). The running speeds initially 

eliciting 70% VO2max represented 106% of the 2.0 mmol"1-1 
blood lactate reference speed in the CON group, and 110% in 

the CHO group. Following the onset of R1 exercise, blood 

lactate concentrations increased from 0.78 (±0.08) to 5.12 (±0.72) 

mmol"l-1 in the CON group, and from 0.96 (±0.11) to 4.51 (± 

0.60) mmol"1-1 in the CHO group (NS). Whereas, during R2 

blood lactate increased from 0.79 (±0.09) to 4.60 (±0.59) mmol4-1 

in the CON group, and from 1.04 (±0.10) to 4.75 (±0.73) mmol-l-1 
in the CHO group. There were no differences between the two 

groups in blood glucose and blood lactate responses. 
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4.3.4 Plasma glycerol, FFA, ammonia and urea responses 

Plasma glycerol increased seven-fold during Rl in the CON 

group and eight-fold in the CHO group (p<0.01) (Figure 4.3). 
Whereas, plasma FFA increased two-fold in both groups 
(p<0.01). Pre-R1 plasma glycerol and FFA concentrations were 

restored in both groups over the recovery period. During the 

second exercise bout plasma glycerol increased four-fold in the 
CON group and seven-fold in the CHO group (p<0.01), whilst 
plasma FFA approximately doubled in both groups. However, 

the change in FFA concentration in the CHO group (p<0.01) 

was greater than that in the CON group (p<0.05). 

Plasma ammonia increased in both groups during R1 and R2 

(p<0.01). Resting concentrations ranged from 39.02 to 54.12 

pmo1-1-1, increasing to 101.60 (±7.97) pmol-1-1 following exercise. 
There were no differences in response between the two groups, 

with resting concentrations being restored during the recovery. 

Plasma urea increased in both the CON (p<0.05) and CHO 

(p<0.01) groups during Rl (Figure 4.4), though there were no 
differences between the groups. Pre-R1 values were restored 

prior to R2 in the CHO group, but not in the CON group 
(p<0.05). Plasma urea remained stable in the CHO group 
during R2 but increased in the CON group (p<0.01). As such, 

plasma concentrations were persistently higher in the CON 

group (p<0.05). 
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Table 4.1 Physiological characteristics of subjects in the control (CON) 

and carbohydrate (CHO) groups (mean±SE) 

Age Height Weight VEmax HR max VO2max 

(yrs) (cm) (kg) (1"min-1) (b"min-1) (ml"kgimin-1) 

CON 25.2 175.8 70.3 130.9 186 65.0 

±SE 2.1 3.0 2.4 7.1 3 2.3 

CHO 25.6 176.7 72.7 136.3 188 65.0 

±SE 1.8 2.8 2.5 2.5 3 2.2 
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Table 4.2 Running speeds (ms-1) and relative exercise intensities 

(%VO2max) at blood lactate concentrations of 2 mmol"1-1 and 

4 mmol-1-1, and running economy of subjects in the control 

(CON) and carbohydrate (CHO) groups (mean±SE) 

Speed %VO2max Running 

Economy 

2mmol-1-14mmol"1-1 2mmol-1-1 4mmol-l-1 V02 at 3.8 ms-1 
(ml"kg-lmin-1) 

CON 3.44 4.51 66.1 86.0 44.8 

± SE 0.53 0.40 4.3 6.2 1.0 

CHO 3.34 4.51 63.7 86.3 43.6 

± SE 0.42 0.21 1.2 2.8 0.4 
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Table 4.3 The energy content and main dietary nutrients for the 

normal (ND) and recovery (RD) diets, of subjects in the 

control (CON) and carbohydrate (CHO) groups (mean±SE) 

Energy Protein Carbohydrate Fat 

MJ g gkg-lbody wt g gkg-lbody wt g 

CON 13.4 119.0 1.7 431.0 6.1 120.9 

±SE 1.3 14.1 0.2 45.5 0.6 12.1 

ND 
CHO 13.0 113.0 1.6 

±SE 0.9 8.3 0.1 

CON 17.4 171.8 2.4 

± SE 0.9 14.9 0.2 

422.0 

32.5 

446.5 

50.0 

5.8 
0.5 

6.3 

0.7 

116.8 

16.2 

RD 

197.2 

15.1 

CHO 16.3 a**118.5 a**1.6 b**631.8 b**8.8 a**113.3 

±SE 0.9 12.1 0.2 25.8 0.1 15.7 

a* * Denotes CHO group values significantly lower than CON group 

values (p<0.01) 

b* * Denotes CHO group values significantly higher than CON group 

values (p<0.01) 
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4.3.5 Plasma electrolyte responses 

Plasma sodium concentration increased during Ri by 2.7% 

(p<0.01) in the CON group and 1.7% (NS) in the CHO group 
(Table 4.5). Resting values were restored in both groups after 
22.5-h recovery. Plasma sodium remained unchanged in the 

two groups during R2. 

Plasma potassium increased in the CON group by 11.6% over 
R1 and 7.8% over R2 (ie. A% -3.8) (p<0.01). Whilst plasma 

potassium increased by 16.9% and 15.9% during the two runs 

respectively in the CHO group (ie. A% -1.0) (p<0.01). Resting 

concentrations were restored prior to R2 in both groups. There 

were no differences between the groups in plasma electrolyte 
responses. 

4.3.6 Body weight , pläsmä volume and-heart-rate and thermos 

regulatory responses to exercise 

Body weight was reduced by 3.1% and 2.3% during Ri and R2 in 

the CON group. These values take into account fluid ingestion 

of 248 (±59) ml and 220 (±63) ml respectively. Body weight was 

reduced in the CHO group by 2.7% and 3.2% during the two 

runs, with fluid intakes equivalent to 385 (±108) ml and 447 

(±114) ml. Pre-R1 body weights were restored in both groups 

over the recovery period. 

Plasma volume decreased during R1 by 5.7 (±1.7)% and 7.5 (± 

1.6)% in the CON and CHO groups respectively, and decreased 

during R2 by 7.1 (±1.2)% and 10.8 (±1.7)% respectively (NS). 

Heart rate progressively increased in both groups during exer- 

cise, though there were no differences between the groups. 

Figures 4.5 and 4.6 illustrate the Tty and Tk profiles of the CON 

and CHO groups during Ri and R2. Tympanic membrane 

temperature was maintained relatively stable throughout the 

two trials, with only minor deviations at the onset and cessa- 
tion of exercise. Whereas, Tsk was less stable at the start of each 

exercise bout, attaining a plateau during the mid-phase, before 

deviating non-uniformly at exercise cessation. Thermoregula- 
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tory responses did not appear to be influenced by the different 
dietary treatments of the recovery period. 
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Table 4.5 Plasma electrolyte concentrations (mmol. l-1) in the control 
(CON) and carbohydrate (CHO) groups (mean±SE) 

Plasma sodium 

Pre Post 

Plasma potassium 

Pre Post 

CON 138.6 142.3 3.79 4.23 
± SE 1.3 1.1 0.07 0.09 

CHO 136.9 139.3 3.79 4.43 

±SE 1.9 1.7 0.07 0.05 

CON 140.3 138.6 3.83 4.13 

± SE 2.7 2.6 0.09 0.17 

R2 
CHO 140.9 141.0 3.84 4.45 

±SE 0.9 0.9 0.06 0.08 
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4.4 Discussion 

The main finding of this study was that a normal diet supplemented 
with additional carbohydrate restored endurance capacity following a 

recovery period of 22.5-h. An isocaloric diet in which additional 
energy was provided in the form of fat and protein did not result in a 

similar return in exercise capacity. The groups were well matched in 

terms of their physiological characteristics, respiratory and cardio- 

vascular responses, running economy, and blood lactate concentra- 
tions during submaximal exercise. This was also reflected in their 

similar Ri run times. 

Keizer et al (1987) observed that a diet providing -8.0 g-CHO-kg-1body 

wt restored resting muscle glycogen concentrations within 22-h after 

exhaustive intermittent cycling. This is similar to the level of carbo- 
hydrate intake as provided in the present study. However, Keizer et 

al (1987) report that despite replenishing the immediate energy store 

of muscle, MPWC was reduced by 7.3%. This contrasts a return in 

endurance capacity as observed in the present study. The MPWC test 

provided a measure of the maximal power generating capacity of 

muscle as opposed to the capacity to sustain constant pace, sub- 

maximal exercise. The ability to generate power is largely determined 

by muscle fiber recruitment patterns. The prior bout of exhaustive 

cycling., possibly evoked an inflammatory response (O'Reilly et al, 
1987), which may have interfered with propagation and realisation of 

action p tials. As a consequence, the number of muscle fibers 

recruited may have been reduced resulting in impaired MPWC. 

Whilst muscle biopsies taken during 
_the 

study may have exacerbated 
this situation to compound the muscle damage resulting directly 

from the prolonged, intermittent exercise bout (Costill, Pearson and 
Fink, 1988). 

In the present study, the post-recovery trial (R2) was a submaximal 
test of uniform intensity (ie. constant pace running) unlike the incre- 

mental MPWC test, which attained a maximal exercise intensity over 

a relatively short period of time. Thus, the performance tests differ in 

both their neural demands as well as their energy metabolism 
demands. Anaerobic metabolism will substantially contribute to a 
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high rate of energy demand during the MPWC test. Accumulation of 

metabolic end-products may interfere with anaerobiosis to limit exer- 

cise performance. Submaximal exercise on the other hand has a 
lower rate of energy demand, which is sustainable over a longer 

period of time through a greater dependency upon aerobic metab- 

olism. Thus, performance of the MIPWC test is limited by the rate of 

energy (ie. ATP) turnover, whereas prolonged, constant pace running 
is limited by a total capacity for energy production (ie. the magnitude 

of fuel reserves). Carbohydrate availability is not a major limitation 

in the case of the former, whilst becoming increasingly so in the case 

of the latter. A final consideration is the localised nature of the 

MPWC cycling test in comparison with the whole body activity of R 

where the former presents a prop_portionately, _greater.. physiological 

challenge to active tissue. 

In the present study, the CON group consumed 446.5g of carbohyd- 

rate during the recovery (ie. 6.3 g-kg-lbody wt). This is higher than 

values for the general population but is consistent with their habitual 

intake and values reported for endurance runners (Costill, 1988). 

Nevertheless, this was found to be insufficient to restore endurance 

capacity within 22.5-h. The CHO group consumed 631.8g of carbohyd- 

rate (ie. 8.8 g"kg-lbody wt) during the recovery. This is in agreement 

with the dietary recommendations of previous authors for optimal 

muscle glycogen replenishment (Costill et al, 1981; Keizer et al, 1987). 

The recovery diets of both groups contained more carbohydrate than 

was estimated to have been oxidised during R1. This was equivalent 

to a normal level of carbohydrate intake for the CON group. How- 

ever, the CHO recovery diet provided adequate carbohydrate to 

accommodate both the daily requirements of the body as well as the 

additional deficit accrued during R1, plus an additional amount to 

cover possible under-estimations. 

Although carbohydrate supplementation in the present study was 

successful in restoring endurance capacity, an intake of 8.0 g"kg-1 body 

wt-24h-1 failed to prevent a cumulative glycogen depletion in subjects 

performing strenuous running on five successive days (Kirwan et al, 
1988). Thus, a higher carbohydrate intake may be necessary to main- 
tain fuel reserves during periods of heavy training. Alternatively, a 
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storage limitation may act as a physiological safety mechanism to 

restrict further activity (Kirwan et al, 1988). 

A difference between the CON and CHO groups with respect to esti- 
mated levels of carbohydrate oxidation during Rl cannot be satis- 
factorily explained from the available data. The running economy 
and blood lactate responses of the groups are indicative of a similar 
training status (Table 4.2). The CHO group was estimated to have a 
lower rate of oxidation (1.7±0.1 g"min l), in comparison with the CON 

group (2.0±0.1 g"min4). The effect that this could have had on the 

energy reserves may have been compounded by the marginally, but 

not significantly, longer run time of the CON group duringR1. 

Muscle glycogen concentrations in subjects on a normal mixed diet 

(ie. 40-50% carbohydrate) are reported to be -80 mmol"kg-lwet wt 
(Hultman and Sjoholm, 1983). If an average total muscle mass of 

-25-30 kg is assumed, this would allow -350g of carbohydrate to be 

stored as muscle glycogen (Essen, 1977). Thus, Newsholme (1983) 

estimated total body carbohydrate reserves to be -440 g, as a further 

-90 g is stored in the liver. Assuming that 60% of the total muscle 

mass is active_ during running, the carbohydrate available to fuel 

exercise will be -300 g (Callow, Morton and Guppy, 1986). However, 

Sherman et al (1981) observed muscle glycogen reserves ranging 
between 130 and 135 mmol"kg-lwet wt in trained individuals on diets 

providing -50-55% of the total energy intake as carbohydrates. Thus, 

it should be noted that the available carbohydrate for running exer- 

cise in endurance trained subjects may exceed 300g. Nevertheless, 

subjects in the present thesis were considered to conform more 

closely with the observations of Hultman and Sjoholm (1983) with 

respect to training status. As such, calculations in this thesis will be 

based upon these values unless otherwise stated. 

Muscle glycogen represents the largest carbohydrate store in the body 

(Newsholme and Leech, 1983). If it is assumed that muscle glycogen 

provides the majority of carbohydrate-oxidised during R1, this energy 

store would be reduced by -58% in the CON group and by -47% in the 
CHO group. These values are in agreement with _Costill et al (1981) 
for running exercise of a similar intensity and duration. Moreover, 
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Costill et al (1981) report that substantial glycogen stores may remain 
in muscle following prolonged exhaustive running. Consistent with 
adequate carbohydrate availability, blood glucose was normally 
maintained in both groups during Ri and R2, such that hypo- 

glycaemia per se was not thought to be a major contributor to fatigue. 

The importance of consuming carbohydrate immediately after 

exercise in order to achieve a rapid rate of glycogen resynthesis has 

already been demonstrated (Ivy et al, 1988a). In the present study, the 
first meal provided in the laboratory for both groups on completion 

of R1 contained foods of a high glycaemic index. Thus, a rapid avail- 

ability of ingested carbohydrate was ensured (Coyle, 1991; Robergs, 

1991). The CON meal contained 102.1 (±15.0) g-CHO, and the CHO 

meal contained 82.7 (±9.6) g-CHO; this difference was not significant. 
The remainder of the prescribed diet was consumed ad libitum over 
the 12-h between the end of R1 and the start of the second overnight 
fast prior to R2. The precise timing of ingestion was noted but not 

controlled. An optimal rate of muscle glycogen resynthesis may be 

achieved over the initial 4 to 5-h post-exercise by ingesting 1.0 g-CHO 
kg-lbody wt-2h-1 (Ivy, 1991). This is equivalent to 37.0 g-h-l. Thus, the 
first meal taken following R1 provided adequate carbohydrate for 

ý, _ 
optimal glycogenesis over the early recovery phase. 

The eccentric component of running is associated with muscle sore- 

ness (Newham et al, 1983b), and ultrastructural changes indicative of 
intracellular-lesions (Hikida et al, 1983; O'Reilly et al, 1987). Such 

localised tissue damage has been found to impair muscle glycogen 

replenishment (Costill et al, 1990). This may be due to an infiltration 

of traumatised muscle by inflammatory cells. As well as being oxida- 
tively. active, these cells release a factor which stimulates carbohydrate 

metabolism. Increased competition developes between inflammatory 

cells and glycogen depleted muscle fibres for the available glucose. 
Costill et al (1990) observed that a normal level of carbohydrate inges- 

tion of 4.3 gkg-lbody wt-24h-1 was inadequate for replenishing glyco- 

gen reserves when performing strenuous activity on a daily basis. It 

was suggested that this may be appeased by consuming a high carbo- 
hydrate diet (ie. >8.5 g-kg-lbody wt-24h-1). In the present study, both 

groups reported joint stiffness and muscle soreness 22.5-h after R1, 
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which may be indicative of sub-clinical micro-trauma. It would be 
inappropriate to speculate on the respective levels of glycogen resyn- 
thesis in the two groups following the recovery period. However, it 

might be argued in light of previous authors' findings (Costill et al, 
1990) that additional carbohydrate provided in the CHO recovery diet 

would facilitate the recovery process. 

Exercise was associated with plasma ammonia and urea accumula- 
tion in both groups. Resting concentrations were restored in the CHO 

group during the recovery. However, plasma ammonia and urea 

concentrations remained elevated in the CON group prior to R2, 

plasma urea continuing to increase above post-R1 levels during the 
22.5-h recovery. This was probably due to the additional protein 

prescribed in the CON recovery diet. Elevated resting concentrations 

of ammonia and urea prior to R2, both of which represent potential 

metabolic toxins (Banister et al, 1983), may have impaired the CON 

group yperformance (Banister and Cameron, 1990). Plasma ammonia 

concentrations post-exercise were similar to values previously 

observed immediately following a 30s bout of maximal sprinting on a 

cycle ergometer (Bogdanis, unpublished observations). Notably, 

plasma ammonia 6 min post-sprinting had increased by a further 

67%, which probably reflects muscle ammonia efflux. As such, it 

might be speculated that elevated ammonia concentrations at a 

muscle fibre level-may-play a part in limiting performance. Plasma 

ammonia concentrations immediately following intermittent sprint 

cycling (ie. ten 6s sprints with 30s recovery periods) were 85% higher 

than values reported in the present study (Nevill, Lakomy, McKee, 

Weller and Nevill, 1993). Thus, elevated plasma ammonia concen- 
trations per se are not thought to limit constant pace running. 
Nevertheless, increasing systemic ammonia levels in combination 
with a number of other factors may have contributed to fatigue. 

The protein intake of both groups prior to R1 were consistent with 

current dietary recommendations for active individuals (Lemon, 

1991). Lemon (1991) suggests that a daily protein intake equivalent to 

-1.2-1.4 g"kg-lbody wt will maintain health, and ultimately perfor- 
mance, in endurance athletes. This normally represents -12-15% of 
total energy intake, providing that energy intake is adequate to meet 
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the demands of exercise in addition to the demands of normal living. 

Redressing an energy imbalance is not the only concern following 

7 exercise, restoring a favourable fluid balance is also of paramount 
importance (Barr, Costill and Fink, 1991). Both groups experienced 
decreases in body weight during Rl and R2, which essentially reflected 
losses in body fluid. These decrements were greater than the 2.0% 

threshold identified by Armstrong et al (1985), beyond which athletic 

performance is impaired. Notably, plasma volume was reduced to a 

greater extent in the CON group over R2 relative to R1. This was 
despite a shorter run time for the second exercise bout, which 

suggests a higher rate of fluid loss. Core temperature did not differ 

between the two groups. Thus, it might be speculated that reduced 

metabolic efficiency may have elevated heat production in the CON 

group. This would result in greater fluid losses in the form of sweat 
in order to maintain a constant body temperature. A higher fluid loss 

may have contributed to an unfavourable metabolic environment 
through adversely impinging upon cardiovascular integrity and 
temperature regulation (Costill and Sparks, 1973). Thus, an elevated 

rate of fluid loss in the CON group may have been a contributory 
factor to the onset of fatigue. 

In summary, increasing the carbohydrate content of a normal diet to 

8.8 g"kg-lbody wt-24h-1 restores endurance capacity within 22.5-h. 

Additional substrate was provided to facilitate replenishment of 

endogenous carbohydrate reserves, a process which may have been 

hampered by localised tissue damage. However, any consideration of 
the recovery process cannot focus exclussively upon energy status. 
The restoration of fluid balance is also important, as this will 
influence the physiological milieu in which metabolism takes place. 
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Effect of water ingestion during prolonged, constant pace running 

on endurance capacity 

5.1 Introduction 

Dehydration impairs prolonged exercise performance (Armstrong et 
al, 1985). High rates of fluid loss may reduce blood volume, which in 

turn would compromise cardiovascular integrity. Maintenance of 
central blood pressure is prioritised over peripheral circulation 
(Fortney et al, 1984). Whilst a concomitant decrease in sweating rate 
(Sawka et al, 1985) would further compromise heat dissipation, and 
result in a rapid increase in core temperature (Gissolfi and Copping, 

1974). Fluid ingestion during exercise may attenuate this temperature 

rise (Costill et al, 1970). 

Compartmental fluid shifts in response to transient osmotic imbal- 

ances compound a cumulative exercise-induced deficit. Ad libitum 
fluid ingestion during and after prolonged exercise does not always 
result in an adequate rate of rehydration (Carter and Gisolfi, 1989). 

As well as adversely effecting exercise capacity, dehydration will also 
impinge upon the body's recovery capacity. Implementing strategies 
to maintain fluid balance during an event may also offer benefits in 

improving the recovery process over the immediate post-exercise 

period. The purpose of this study was to examine whether fluid 

provision during constant pace running can limit dehydration and 
influence endurance capacity. Performance benefits of drinking water 
during exercise were assessed in terms of exercise time to fatigue, 

whereas post-exercise physiological responses were determined to 

establish the nature and extent of metabolic disturbances arising from 

prolonged running. These disturbances must be promptly addressed 
by the recovery process. 
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52 Methods 

5.2.1 Subjects 

Four men and four women took part in the study. All were 
physical education students at Loughborough University, who 

exercised on a routine bases. Mean (±SE) age, height, weight 
and VO2max were 21.4 (±0.7) yr, 169.4 (±2.2) cm, 63.10 (±2.91) 

kg, and 51.12 (±1.80) ml"kg-1min-1 respectively. 

Dietary intake was controlled during the 48-h preceding each 
trial by dietary recall. A food diary was completed prior to the 
first trial itemising the foods consumed and estimated portion 

sizes. Subjects followed the same diet during the 48-h prior to 

the second trial. A constant training regimen was maintained 
throughout the study and subjects refrained from heavy exer- 

cise for 2-d preceding each trial. 

5.2.2 Protocol 

Subjects completed three preliminary tests following familiar- 

isation (Section 3.4). Two trials were then performed in a 

counter-balanced design, separated by an interval of at least 7-d 
(Figure 3.2). During one trial, no fluid was ingested during the 

exercise bout (NF). Whilst during the fluid replacement (FR) 

trial a water bolus equivalent to 3.0 ml"kg-ibody wt was 
ingested immediately prior to the warm-up, followed by serial 
feedings equivalent to 2.0 ml"kg-lbody wt every 15 min during 

exercise. Each feeding was presented in calibrated plastic 

syringes, and was maintained at a uniform temperature of -9- 
10°C. The total fluid ingested was recorded at the end of the 

FR-trial and accounted for in post-exercise changes in body 

weight. 

Subjects arrived at the laboratory after an over-night fast of 10- 

h, and maintained a relaxed standing position whilst ECG and 
temperature electrodes were positioned. This allowed for 

equilibration of imbalances between body fluid compartments 



Chapter 5 117 

which arise through changes in posture. Arterialisation of 
venous blood was achieved by immersing the lower arm in a 
420C water bath. A 10 ml venous blood sample was drawn 
from an antecubital vein after 20 min, whilst duplicate 20p1 

capillary blood samples were taken for the determination of 
blood glucose and blood lactate. 

Immediately following the standardised warm-up, the tread- 

mill speed was increased to a pace which initially elicited an 
oxygen consumption equivalent to 70% VO2max. Subjects ran 
to volitional fatigue, which was defined as the point at which 
the required running pace could no longer be maintained. 
Endurance capacity was measured in terms of exercise time to 
fatigue. 

Further capillary samples were taken after 30 and 60 min 
during each trial. Venous and capillary blood samples were 
obtained at the end of exercise with subjects maintaining a 
supported standing position. This was once again to minimise 
the influence of postural changes on blood volume distribu- 

tion whilst the sample was drawn (Hagan, Diaz and Horvarth, 

1978). Packed cell volume and haemoglobin concentrations 

were measured in whole blood. Glycerol, FFA (method-ii), 

sodium, potassium and ammonia concentrations were deter- 

mined in plasma, and cortisol was determined from serum. 
Blood samples were collected, treated, stored and analysed as 
described previously. 

Expired air samples were collected over 60s intervals after 5 

and 15 min of exercise, and every 15 min thereafter. Simul- 

taneously, subjective ratings of perceived exertion and ratings 
of muscular effort were obtained. From gas analyses, VE, "02 

and VCO2 were determined, and R values calculated. Energy 

expenditure and rates of fat and carbohydrate oxidation were 
estimated from pulmonary respiratory exchange data. 

Performance times of the two trials and blood biochemical 

responses were compared by Student's T-test for paired data. 
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Cardiorespiratory responses were compared by two-way (trial- 
by-time) repeated measures ANOVA and a Tukey post-hoc test. 

5.3 Results 

5.3.1 Performance 

The mean run time of the NF-trial was 77.7 (±7.7) min, com- 

pared to 103.0 (±12.4) min for the FR-trial. Thus, FR-trial run 
time exceeded NF-trial run time by 25.3 (±5.8) min (p<0.01). 

Performances during the NF-trial ranged between 52 and 115 

min, whereas performances ranged between 65 and 150 min 
during the FR-trial. 

5.3.2 Fuel utilisation during exercise 

Figure 5.1 illustrates the shift in energy metabolism with 

respect to changes in R values. A total of 3.7 (±0.3) MJ of energy 

were expended during the NF-trial, whereas 5.0 (±0.4) MJ of 

energy were expended during the FR-trial (p<0.01). This differ- 

ence reflects a longer run time with fluid replacement. How- 

ever, the rate of energy expenditure was similar for both trials. 

This was equivalent to 47.2 kj"min-1 during the NF-trial, and 
48.8 kJ -min-1 during the FR-trial. In the NF-trial, 72.9% of the 

total energy expenditure was in the form of carbohydrate and 
27.1% was in the form of fat. This compares with 63.5% and 
36.5% respectively in the FR-trial. Consistent with this pattern 

of energy metabolism, the FR-trial was associated with a greater 
VO2-drift (p<0.05). The rate of oxygen consumption increased 

by 0.25 (±0.06) 1"min-1, in comparison with an increase of 0.17 

(±0.05) 1-min-1 in the NF-trial (Figure 5.2). There were no 
differences between the trials with respect to VE-drift, which 

represented 11.49 (±3.23)1"min71 in the NF-trial and 13.78 (±4.25) 

1"min-1 in the FR-trial. Thus, carbohydrate metabolism was 

enhanced and fat metabolism suppressed when fluid was not 

consumed during exercise (p<0.01). The respective rates of fuel 

metabolism are illustrated in Figures 5.3 and 5.4. 
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5.3.3 Blood glucose and blood lactate responses 

Blood glucose concentrations were maintained within the 

normal range during both trials (Figure 5.5). During the FR- 

trial concentrations were maintained at -4.25 mmol"1-1. Whilst 
during the NF-trial blood glucose concentrations tended to 

increase from a pre-exercise value of 4.28 (±0.20) mmol"1-1 to 

4.81 (±0.25) mmoll-1 at exercise cessation (NS). This difference 

in response was most evident over the later stages of exercise. 

Blood lactate increased to -4.00 mmol-l-1 following the onset of 

exercise (Figure 5.6). This is relatively high in comparison 

with values reported in Chapters 6 and 7 of this thesis for exer- 

cise of the same relative exercise intensity. From preliminary 
test data (Table 5.1), subjects in the present study were less 

trained with respect to prolonged, constant pace running in 

comparison with those taking part in the later studies. This 

may have contributed in the higher blood lactate concentra- 
tions 

Stable blood lactate levels were maintained over the inital 60 

min of exercise. However, concentrations were elevated over 
the later stages of the NF-trial in comparison with the FR-trial 

(p<0.05). 
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Table 5.1 Running speeds (m"s-1) and relative exercise intensities 

(%VO2max) at blood lactate concentrations of 2 mmol"l-1 and 4 

mmo1.1-1(mean±SE) 

Speed %VO2max 

2mmo1'1-1 4mmo1.1-1 2mmo1'1-1 4mmo1.1-1 

Mean 2.98 

± SE 0.. 22 

4.01 

0.17 
62.6 

3.7 

79.5 

3.4 
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5.3.4 Plasma FFA, glycerol and ammonia responses 

Plasma FFA increased by -100% during both trials, from a pre- 
exercise level of -0.4 mmol"1-1 to -0.9mmo1.1-1 at exercise cessa- 
tion (p<0.01). Plasma glycerol increased -seven-fold during the 
NF-trial, and -nine-fold during the FR-trial (NS). There were 
no differences between the trials with respect to changes in 

plasma lipid metabolites (Figure 5.7). 

Plasma ammonia increased by -150% in both trials (Figure 5.8). 

This represents a rate of change of 0.79 (±0.15) µmol"1-1min-1 
during the NF-trial, compared with 0.59 (±0.12) pmol"1-'min71 
during the FR-trial (NS). 

5.3.5 Serum cortisol responses 

There were no differences in serum cortisol responses between 

the two trials. Concentrations increased by 16% during the NF- 

trial (ie. 481±46 to 569±47 nmol"1-1) at a rate of 0.98 (±0.74) 

nmol-l-1min-1. During the FR-trial serum cortisol increased by 

22% (ie. 483±59 to 606±47 nmol-1-1) at a rate of 1.03 (±0.57) 

nmol-l-1min-1. 

5.3.6 Plasma sodium and potassium responses 

Electrolyte responses did not differ between the two trials. 

Plasma potassium increased by 21% during the NF-trial (ie. 4.00 

±0.18 to 4.83±0.15 mmol-l-1, p<0.01), and by 23% during the FR- 

trial (ie. 4.08±0.10 to 5.00±0.32 mmol-1-1, p<0.01). Whilst plasma 

sodium concentrations remained stable during both trials (ie. 

NF-trial: pre- vs. post-, 140.0±0.7 to 141.7±0.8 mmol-1-1; FR-trial: 

pre- vs. post-, 138.8±0.7 to 141.5±1.3mmol-1-1). 
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5.3.7 Body weight, plasma volume and heart rate responses 

Total water ingestion during the FR-trial was 929 (±96) ml, 

which is equivalent to 9 ml-min-1 or 0.51"h-1. After correcting 
for fluid intake, body weight decreased by 1.71 (±0.16) kg in the 
FR-trial and 1.29 (±0.17) kg in the NF-trial, which are equiva- 
lent to decreases in body weight of 2.7 (±0.2)% and 2.0 (±0.2)% 

respectively (p<0.01). Estimated sweating rates were similar for 

the two trials (ie. NF-trial: -0.84 1-h-1; FR-trial: -0.83 1-h-1), 

which are consistent with a rate of weight loss equivalent to 

-1.0 kg"h-1 for both trials. Plasma volume was reduced by 1.1 

(±1.1) % during the NF-trial, and by 3.5 (±1.1) % during the FR- 

trial (NS). This difference was not significant due to a high 

variance in measures, which was evident despite careful 

experimental control. Between the 5 min- and End-sampling 

points, HR increased by 12.8 (±3.2)% in the NF-trial and by 11.9 

(±3.8)% in the FR-trial. 

Perceived exertion increased with run time in both trials. 
However, scores were higher in the NF-trial at the 30 min 
(p<0.05), and 45 and 60 min (p<0.01) time points. In agree- 

ment, increases in the sensation of muscular fatigue (CRS- 

scores) paralleled PRE scores, with higher scores during the 
NF-trial at the 45 min (p<0.05) and 60 min (p<0.01) time points. 

5.3.8 Thermoregulatory responses 

Weighted mean Tsk and Trec were equally well maintained 
during the two trials (Figures 5.9 and 5.10). An increase in Trec 

during the initial 35 min of exercise was followed by a period of 

relative stability. In the NF-trial Trec plateaued at 38.6 (±0.1) °C, 

whereas a higher plateau of 39.1 (±0.1)°C was maintained in the 

FR-trial (p<0.01). Core temperature was again tending to inc- 

rease at exercise cessation. Mean Tsk tended to decrease follow- 

ing the onset of exercise, and was then maintained at -30.0°C 
throughout the remainder of both trials. 
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5.4 Discussion 

The main finding of the study was that the ingestion of 3.0 ml-kg-1 
body wt of water prior to prolonged running, and further feedings-of 
2.0 ml"kg-lbodywt"15min-1 during the run, improved endurance cap- 
acity. "-- difference in performance between the NF and FR trials was 
evident despite similar decreases in body weight, which provided an 
index of exercise-induced fluid loss. The prescribed rate of water 
ingestion is consistent with the American College of Sports Medicine 

position statement for The Prevention of Thermal Injuries During 
Distance Running (1987). This rate of fluid ingestion appeared to 

7 maintain performance by off-setting whole body thermoregulatory 
fluid losses. 

During 60 min of exercise at 70% VO2max, TTec, Vs and HR were 

observed to remain relatively stable (Hamilton et al, 1991). However, 

these responses began to diverge when exercise was continued for a 
further 60 min. In a NF-trial, Trec and HR rapidly increased, possibly 
in response to a reduction in V. Thus, water ingestion during pro- 
longed exercise attenuates hyperthermia over the later stages (Costill 

et al, 1970; Hamilton et al, 1991). Costill et al (1970) reported a 
plateauing of Trec after -45 min of running (70% VO2max). Consis- 

tent with this observation, a plateau in T, c was observed in the 

present study after -35 min of exercise. There were no differences in 
HR response between the two conditions, where a secondary rise in 
HR following an initial increase during both trials was symptomatic 

of an underlying cardiovascular drift (Nielsen et al, 1984). Weighted 

mean Tsk and Trec reflected similar levels of thermoregulatory control 
during the two trials. Plasma cortisol concentrations were further 

indicative of comparable exercise-distress tolerances. This failure to 
differentiate between the NF and FR trials in the present study is 

possibly a function of the exercise time and training status of the 

subjects. Unlike the previously cited studies, subjects in this study 

were routinely exercising but were not highly trained endurance 

athletes. Thus, factors other than circulatory dysfunctioning (eg. 

compromised energy substrate availability in muscle) may have 

precipitated the earlier onset of fatigue in the NF-trial. 
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A tendency towards a greater decrease in plasma volume during the 
FR-trial cannot be explained from the available data. It is possible 
that changes in osmotic balance between body compartments as a 
consequence of drinking during exercise may have influenced fluid 

distribution (Nielsen et al, 1986). Though a high variance in the 

measurements make further speculation tenuous. Moreover, it 

remains open to debate whether the small changes in plasma volume 

reported in the present study are of any physiological significance 
(Harrison, 1985). 

Plasma sodium concentrations were maintained within the normal 
range in both trials (ie. 135 to 145 mmol-l-1, Nottingham City Hospital, 

Nottingham, UK, normative data, personal communication). This is 

in contrast with previous findings where plasma sodium concentra- 
tions decreased during prolonged exercise (Barr et al, 1991). Plasma 

potassium increased -22% in response to prolonged running. This 

change will partly reflect enhanced mobilisation of muscle glycogen 
(Hultman, 1967), whilst potassium conductance is enhanced in 

fatigued, glycogen-deficient muscle fibres (Fink and Luttgau, 1976). 

Notably, an elevated cellular efflux of potassium accompanying exer- 

cise did not increase plasma concentrations beyond the normal 

physiological range (ie. 3.5 to 5.3 mmol-1-1, Nottingham City Hospital, 

Nottingham, UK, normative data, personal communication). 
Changes in plasma osmolality are implicated in reduced cutaneous 
blood flow (Horstman and Horvarth, 1972), and a diminished 

sweating response (Costill et al, 1976; Greenleaf and Castle, 1971; 

Nielsen, 1974). Thus, an impaired capacity to dissipate heat may have 

contributed to fatigue. 

Montain and Coyle (1992a) examined fluid ingestion during pro- 
longed cycling. A carbohydrate-electrolyte solution was prescribed 
before and during a FR-trial. Exercise responses to the FR-trial were 

compared with a NF and a control (CON) trial. Blood volume was 

maintained during the CON-trial, without disturbing serum osmo- 
lality, through intravenous infusion of a blood volume expander. 
Fluid replacement maintained skin blood flow such that hyper- 

thermia was reduced during the later stages of prolonged exercise. As 

core temperature was lower in the FR-trial in comparsion with the 
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CON-trial, this effect was not simply due to the maintenance of 
systemic blood volume. Montain and Coyle (1992a) suggest that fluid 
ingestion during exercise stabilises skin blood flow, which in turn 

will influence the ability to thermoregulate, by preventing an inc- 

rease in serum osmolality. 

Fluid ingestion in the present study was associated with a more 
favourable energy balance with respect to sustaining prolonged exer- 

cise. Fat oxidation was suppressed during the NF-trial as carbohyd- 

rate oxidation was enhanced. This shift in energy metabolism was 

reflected in elevated blood glucose and blood lactate concentrations 

over the later stages of exercise. Conversely, V02-drift was greater 
during the FR-trial, which indicates an increasing oxygen cost of 

energy metabolism in the face of parallel minute ventilation rates. 
Thus, dependency upon fat metabolism to fuel activity was enhanced 
in the FR-trial, whilst a dependency upon carbohydrate metabolism 
decreased. 

Elevated blood lactate concentrations, which are associated with more 

rapid rates of glycogen depletion, have previously been reported 
during dehydrating exercise (Kozlowski et al, 1985; Nadel et al, 1980). 

In the present study, anecdotal reports of localised fatigue in the 

quadriceps and gastrocnemius muscles, possibly arising from such 

selective substrate depletion, were associated with higher CRS- and 
PRE-scores during the NF-trial. 

Differences in carbohydrate metabolism between the two trials may 
have thermoregulatry implications if it is assumed that water 
liberated from glycogen breakdown becomes physiologically available 
(Olsson and Saltin, 1970). As discussed previously, temperature regu- 
lation was similar during the two trials, as were estimated rates of 

sweating and body weight loss. Carbohydrate oxidation during the 

FR-trial was equivalent to 1.8 (±0.1) gmin4, which is potentially 

associated with a liberation of -4.9 ml-min71 of water (ie. assuming 2.7 

g of water is bound with 1.0 g of glycogen). Water absorption in the 

small intestine takes place at a rate of -1.8 (±2.8) ml-cm7lh-1 (Leiper 

and Maughan, 1986) or -8 ml-min-1. Thus, -13 ml"min-1 of water 

would theoretically be made physiologically available during the FR- 
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trial. A carbohydrate oxidation rate equivalent to 2.0 (±0.2) g-min-1 
during the NF-trial would potentially be associated with only -5.5 
ml-min-1 of water. Accepting that these calculations are largely specu- 
lative, it is apparent that -130% more fluid might be made available 
during the FR-trial in comparison with the NF-trial. This is despite 

possible increases in water availability arising from shifts in energy 

metabolism. Nevertheless, an incidental thermoregulatory role of 

metabolic water cannot be discounted. Where body fluid compart- 

ment stores combine with the small amount of water liberated 

during exercise energy metabolism, to contribute to the maintenance 

of a thermic homeostasis in the NF-trial. Plyley et al (1980) observed 
that during 45 min of exercise at 65% VO2max in a hot, moderately 
humid environment, glycogen-bound water appears to function in 

the maintenance of plasma volume rather than playing a direct role 
in temperature regulation. However, it might be argued that this role 
in ensuring cardiovascular integrity indirectly assists thermoregula- 

tion. 

In conclusion, the ingestion of water during prolonged running 
improves endurance capacity. "Fluid ingestion during exercise was 

associated with a more favourable fuel balance with respect to 

meeting the body's energy requirements. In contrast, abstaining from 

fluid ingestion was accompanied by enhanced carbohydrate oxidation 

and suppressed fat oxidation. This shift became manifest in elevated 
blood lactate concentrations and localised muscle fatigue over the 

later stages of exercise. Thus, fluid ingestion during exercise plays a 

role in optimising performance, but may also hold implications for 

post-exercise recovery. 
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The influence of liquid carbohydrate ingestion on short-term 

recovery from prolonged, constant pace running 

6.1 Introduction 

The recovery process is concerned with reinstating a normal physio- 
logical balance such that further activity is made possible. The ability 

to sustain prolonged exercise is limited by several factors. Chapter 4 

examined the effect of increased carbohydrate provision in alleviating 

one possible factor (Bergstrom and Hultman, 1967), whilst Chapter 5 

examined the factors limiting performance arising through exercise- 
induced dehydration (Armstrong et al, 1985). Ingesting carbohydrate- 

electrolyte (CE) beverages may alleviate symptons of fatigue assoc- 
iated with such physiological distrurbances (Carter and Gisolfi, 1989). 

The biological availability of an orally ingested solution is jointly 

determined by gastric emptying, intestinal absorption, and subsequent 
fluid retention (Mitchell and Voss, 1991). All three processes are 
influenced by the solute content of a fluid (Costill and Saltin, 1974; 

Nose et al, 1988a; Nose et al, 1988b). The addition of carbohydrate 

provides energy, and in small amounts, does not appear to com- 

promise fluid replacement (Costill and Sparks, 1973). An adequate 

ý. carbohydrate intake following exercise is essential for a rapid reple- 

tion of endogenous reserves (Bergstrom et al, 1967). Optimal rates of 

muscle glycogen resynthesis are achieved when 1.0 g-CHO. kg-lbody ý- 

wt-2h-1 is consumed over the initial 4 to 6-h post-exercise (Ivy, 1991). 

This in turn will enhance energy availability during further exercise. 

Ingesting CE solutions during exercise improves prolonged, exercise 

performance (Maughan et al, 1989; Tsintzas et al, 1993a; Williams et 

al, 1990), whilst dehydration is reduced (Carter and Gisolfi, 1989). 

However, it remains unclear whether provision of CE solutions 
during a short recovery period similarly promotes rehydration and 

carbohydrate availability, such that endurance capacity is improved 

during a later bout of exercise. 
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Thus, the aim of this study was to compare the influence of ingesting 

either sweetended water or an optimum quantity of a carbohydrate 
(glucose-polymer) solution during 4-h recovery, on rehydration and 

subsequent exercise capacity. 

6.2 Methods 

6.2.1 Subjects 

Twelve men and four women took part in the study. Subjects 

were allocated to two matched groups which were randomly 
assigned to either a control (P) or a carbohydrate (CHO) trial. 
Subjects were matched according to age, height, weight, 
VO2max, VEmax, HRmax, and training status. 

Mean age, height, weight and VO2max of the P group were 27.9 
(±1.9) yrs, 173.9 (±2.5) cm, 68.8 (±3.4) kg and 57.6 (±2.1) ml-kg-1 
min-1 respectively, and of the CHO group were 26.1 (±1.3) yrs, 
174.3 (±2.4) cm, 68.8 (±4.6) kg and 59.5 (±1.7) ml"kg-'min-l 
respectively. 

6.2.2 Protocol 

Weighed-food intake dietary analyses were completed before 
the start of the study (Section 3.3), from which subjects were 
prescribed their normal diet over the 48-h prior to the experi- 
mental trial. 

After familiarisation subjects completed the three preliminary 
tests (Section 3.4), allowing training status to be ascertained 
(Table 6.1), and appropriate running speeds for the experi- 
mental trials determined. 

The first run (R1) was performed early in the morning after a 
10-h overnight fast (Figure 3.1). Subjects were prepared for the 
trial as described previously. 
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Whilst maintaining a relaxed seated position on the treadmill, 

a pre-exercise expired air sample was collected using the 

Douglas bag technique. A 10 ml venous blood sample was 
drawn from an antecubital vein after -15 min of rest. Simul- 

taneously, duplicate 20 pl capillary blood samples were taken 

from the thumb of a pre-warmed hand. These procedures 

were repeated immediately prior to R2. Subjects then per- 
formed the standardised warm-up and first treadmill run (RI). 

Expired air samples were collected at 15 min intervals during 

R1 and R2, and subjective ratings of perceived exertion and 

muscular effort obtained. Further capillary samples were taken 

after 30 and 60 min of each run, from which blood glucose and 
blood lactate were determined. Venous and capillary blood 

samples were similarly obtained at the end of R1 and R2. 

Immediately following post-exercise blood sampling, sweat was 

sampled in the male subjects from the scapula region of the 

back as described in Section 3.8. Wet sponges and drinking 

water were available-ad libiturn during exercise. The total fluid 

ingested was recorded at the end of each run and accounted for 

in post-exercise changes in body weight. Only a prescribed fluid 

was ingested during the recovery. 

The standardised endurance task R1 was followed by a 

controlled 4-h recovery. After which, R2 provided a measure of 

the efficacy of the prescribed recovery in terms of exercise time 

to fatigue. 

An isotonic sports drink (6.9% GP solution; Lucozade Sport, 

Smithkline Beecham Plc) was ingested during the CHO trial 

immediately following R1, and 2-h later (Appendix Q. Each 

feeding provided a carbohydrate load equivalent to 1.0 g"kg-1 
body wt. A placebo drink was provided in the form of a low- 

calorie orange cordial diluted in water. Equal volumes of the 

placebo drink were ingested at the same time points during the 

control (P) trial. 
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Packed cell volume and haemoglobin concentrations were 
determined in whole blood, and FFA (method-i), glycerol, 

sodium, potassium, ammonia and urea concentrations deter- 

mined in plasma. Cortisol and insulin concentraions were 
determined in serum. Blood samples were collected, treated, 

stored and analysed as previously described (Section 3.7). 

Performance times were compared by analysis of covariance, , 
where R1 represented the covariate. Blood biochemical res- 

ponses within each trial were examined using Student's T-test 

for paired data. Differences between trials were examined by an 
independent T -test. All other physiological responses were 

analysed by two-way ANOVA with repeated measures on one 
factor (treatment-by-time), and a Tukey post-hoc test. 

6.3 Results 

6.3.1 Performance 0 

The run times of the P and CHO trials were not different for R1 

(P: 86.3±3.8 min, CHO: 87.5±2.5 min), whereas the CHO group 

exercised for 22.2 (±3.5) min longer than the P group during R2 

(p<0.05). Mean run times over this second exercise bout were 
39.8 (±6.1) min for the P trial (range 20.0 to 66.5 min), and 62.0 

(±6.2) min for the CHO trial (range 42.5 to 90.0 min). 
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Table 6.1 Running speeds (m"s-1) and relative exercise intensities 

(%VO2max) at blood lactate concentrations of 2 mmol"l-1 and 4 

mmol-l-1 of the control (P) and carbohydrate (CHO) groups 

(mean±SE) 

Speed %VO2max 

2mmo1.1-1 4mmo1.1-1 2mmo1'1-1 4mmol'1-1 

P 3.71 4.56 67.3 86.3 

f SE 0.21 0.18 2.8 1.3 

CHO 3.57 4.65 68.3 85.1 

±SE 0.25 0.15 4.1 3.1 
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6.3.2 Blood glucose, blood lactate, serum insulin and serum cortisol 

responses 

Blood glucose was maintained within the normal range during 

R1 (Figure 6.1), whilst serum insulin concentrations decreased 

by -50% (Table 6.2). Serum insulin was higher in the CHO trial 
following the 4-h recovery, and then decreased by 68% during tom" 
R2. Nevertheless, blood glucose remained stable in the face of 
these fluctuations in serum insulin concentrations. Serum 

cortisol increased during exercise in both trials (p<0.05) (Table 
6.2). This change in systemic concentrations was greater over 
R2 in both trials (ie. P: R2z % +107%; CHO: R2i % +85%). 

Blood lactate increased with the onset of exercise (Figure 6.1). 

Pre-R1 concentrations were restored in the P trial during the 

recovery, whereas blood lactate remained elevated prior to R2 

in the CHO trial (pre-R1 vs. pre-R2 - AP: 0.21 mmol"1-1; tCHO: 

0.39 mmol"1-1, p<0.05). This finding could not be attributed to 
differences in training status, as the two groups were well 

matched with respect to running economy and blood lactate 

responses to submaximal graded exercise (Table 6.1). There 

were no differences between the trials in blood lactate concen- 
trations during the second exercise bout. 
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Table 6.2 Serum insulin (mU"1-1) and serum cortisol (nmol"l-1) 

concentrations of the control (P) and carbohydrate (CHO) trials 

over Rl and R2 (mean±SE) 

Serum insulin Serum cortisol 

Pre Post Pre Post 

R1 

P 13.54 6.54 596.9 *748.9 

t SE 6.16 1.89 44.5 26.8 

CHO 11.72 5.98 589.0 *621.3 
± SE 4.42 2.21 63.6 39.5 

P 6.83 4.32 325.6 *675.5 

t SE 1.45 1.10 29.0 45.3 
R2 

CHO 10.57 3.34 358.3 *665.7 

± SE 3.68 0.18 56.7 62.0 

* Denotes significantly different from pre-exercise values (p<0.05) 
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6.3.3 Pre-exercise energy intake and fuel utilisation during exercise 

The carbohydrate intake of the P and CHO groups over the 48-h 

prior to R1 represented 53 (±3)% and 55 (±4)% of the total 

energy intake respectively (Table 6.3). The P group expended 
4.8 (±0.3) MJ of energy during R1, compared with 5.0 (±0.3) MJ 

expended by the CHO group. The fluid ingested by the P group 
during the recovery contained 15.5 (±0.8) g of carbohydrate 

providing 0.3 MJ, whereas the fluid ingested by the CHO group 

contained 138.0 (±9.0) g of carbohydrate and provided 2.3 MJ. 

The nature of energy metabolism did not differ between the 

two trials during R1 (Figure 6.2), though R values were higher 

in the CHO trial compared with the P trial after 15 min of R2 

(p<0.05). Carbohydrate oxidation contributed 41% of the total 

energy requirement of the P group during R1, compared with 
32% during R2. Whilst 47% of the energy requirement was 

provided by carbohydrate oxidation during Rl in the CHO 

group, compared with 44% during R2. Thus, the P group relied 
less on carbohydrate as a fuel for exercise over the later stages 

of R2 in comparison with the CHO group (p<0.05). 

The oxygen cost of constant pace running during R1 and R2 for 

the P and CHO trials are given in Table 6.4. There was evi- 
dence of VO2-drift during R1 (p<0.01) in both trials, though 

there were no differences between the trials. This was assoc- 
iated with an increase in the estimated energy cost of running 

equivalent to -3.9 KJ"min71 during exercise. 
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Table 6.3 The daily energy and nutrient intakes of the subjects in the 

control (P) and carbohydrate (CHO) groups (mean±SE) 

Energy Protein Carbohydrate Fat 

MJ g gkg-lbody wt g gkglbodywt g 

P 13.4 

±SE 1.2 

109.2 

9.7 

1.6 

0.1 

443.1 

53.1 

6.4 

0.8 

113.9 

12.0 

CHO 12.3 97.3 1.4 413.7 6.0 95.7 

± SE 0.8 9.2 0.1 30.1 0.4 14.5 
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6.3.4 Plasma FFA, glycerol, ammonia and urea responses 

Plasma FFA concentrations doubled during Rl (p<0.01), and 

plasma glycerol increased approximately nine-fold (p<0.01) 

(Figure 6.3). Plasma glycerol remained elevated in the P trial 
following the recovery (p<0.01), whilst FFA concentrations had 

increased by a further 15% (p<0.01). In contrast, pre-exercise 

plasma glycerol and FFA concentrations were restored in the 
CHO trial prior to R2. 

Resting plasma ammonia concentrations (Figure 6.4) were 
higher in the CHO trial than in the P trial prior to R2 (p<0.05), 

though the rate of change of plasma ammonia during the 

second exercise bout was greater in the P trial (p<0.01). Thus, 

absolute concentrations were the same in both trials at the end 

of exercise. Plasma urea increased with exercise during both 

trials (Figure 6.5), though notably concentrations tended to be 

elevated over R2 in the P trial in comparison with the CHO 

trial (NS). 

6.3.5 Plasma electrolyte responses 

Plasma sodium concentrations did not differ between the two 
trials (Table 6.5). Plasma potassium increased by -19% in both 

the P (p<0.01) and CHO (p<0.05) trials during R1. Pre-R1 levels 

were restored in both trials prior to R2, after which potassium 
levels increased by 8.7% in the P trial (NS) and 13.5% in the 

CHO trial (p<0.05) during the second exercise bout. 
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Table 6.5 Plasma electrolyte concentrations (mmol-l-1) of the control (P) 

and carbohydrate (CHO) groups over R1 and R2 (mean±SE) 

Plasma sodium Plasma potassium 

Pre Post Pre Post 

R1 

P 141.4 145.0 3.84 **4.59 

t SE 2.3 3.4 0.15 0.18 

CHO 141.1 141.1 4.08 *3.95 

± SE 2.3 3.2 0.16 0.07 

P 139.0 138.6 3.90 4.24 

t SE 3.1 2.6 0.13 0.18 

R2 
CHO 142.0 144.0 3.95 *4.48 

t SE 1.7 2.9 0.07 0.16 

** Denotes post-run value significantly different from pre-run value 

(p<0.01) 

* Denotes post-run value significantly different from pre-run value 

(p<0.05) 
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6.3.6 Plasma volume and heart rate responses, and subjective 

ratings of fatigue 

Plasma volume decreased by 8.7 (±1.4)% during Rl (p<0.01). 

Following restoration of pre-exercise levels during the 4-h 

recovery, plasma volume then decreased by 5.4 (±1.3)% in the P 

trial and by 7.2 (±1.7)% in the CHO trial during R2 (NS). 

There were no differences with respect to heart rate responses 
between the two trials. 

Ratings of perceived exertion and muscular effort were higher 
in both trials during R2 in comparison to R1 (p<0.01). It is 

worth noting that subjective ratings of PRE (p<0.05) and CRS 
(p<0.01) were higher in the P trial in comparsion with the CHO 

trial after 15 min of R2, and for the remainder of the second 
exercise bout. 

6.3.7 Changes in body weight, %-Rehydration and thermoregulatroy 

responses 

Fluid losses resulted in a reduction in body weight of -2.6% 
during R1. During the recovery, a total of 1.98 (±0.09) kg of 
fluid was ingested in two feedings in the P trial, and a total of 
2.06 (±0.13) kg of fluid was ingested in the CHO trial (NS). 

Neither trial restored pre-R1 body weight following the 4-h 

recovery (p<0.05). Estimated rehydration in the P trial was 65.9 

(±6.3)%, compared with 62.6 (±7.3)% in the CHO trial (NS). 

These values take into account the weight of energy substrate 

metabolised during R1, as well as the potential liberation of 

metabolic water. Thus, despite the two treatments providing 

adequate fluid to cover dehydratory weight losses incurred 

during R1, subjects in both trials may have been relatively 
hypohydrated prior to R2. 

Nevertheless, despite this incomplete rehydration during the 

recovery, weighted mean Tsk followed similar profiles during 

R1 and R2 (Figures 6.6 and 6.7), though notably Tsk remained 
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elevated in both trials at the start of R2 (p<0.01). In contrast 

with the periphery, pre-R1 Trec was restored during the P trial 

recovery, but was still elevated at the start of R2 in the CHO trial 
(p<0.05). 

6.3.8 Post-exercise sweat secretion 

Post-exercise sweat secretion rates were similar in the two 

trials. Secretion followed an exponential pattern, with values 

ranging from 20 (±9) m1m-2min-1 at the end of exercise to 6 (± 

2) mlm-2min-1 after 5 mins of recovery. Sodium secretion 
following Rl decreased from 2.5 (±0.5) mmol"m-2min-1 to 1.1 (± 

0.3) mmolm-2min-1 by the fifth minute of sampling. A similar 
decrease was observed in the CHO trial following R2. Sodium 

secretion was depressed following R2 in the P trial reaching a 

peak of 1.6 (±0.5) mmol"m-2min-1. However, in contrast to 

changes in plasma potassium levels, sweat potassium secretion 

was higher following R2 in the P trial than in the CHO trial 
(p<0.05). 
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6.4 Discussion 

The main finding of this study was that ingesting 1.0 g"CHO"kg-lbody 

wt2h-1 following prolonged running improved endurance capacity 

after 4-h recovery. As similar levels of rehydration were achieved 

when either sweetended water or a 6.9% glucose-polymer drink was 
ingested, the difference in post-recovery performance appears to be 

related to the provision of carbohydrate and electrolytes. The two 

groups were well matched in terms of their physiological charac- 
teristics, respiratory and cardiovascular responses, running economy 

and blood lactate profiles. This was reflected in equal run times for 

R1. Whereas, the CHO group exercised for 22.2 (±3.5) min longer than 

the P group during R2. 

An estimated 152 (±16) g of carbohydrate were oxidised during R1. 
; ----' 

Tsintzas (1993) performed single fibre analyses on biopsy samples( 

obtained from the m. vastus lateralis before and after exhaustive 

running (70% V02maxý. Muscle glycogen concentration decreased 

from 317.0. (±34.2) toi 31.6 (±10.3) mmol"kgldry wt in type-I fibres, and G- 

from 443.4 (±44.9) to, -J'03.9'(129.2) mmol"kgidry wt in type-II fibres. 

When expressed as means for. xed , 
fibre samples, glycogen concen- 

tration decreased from 380.2 (±35.2)`to 67.8 (±15.2) mmol"kg-idry wt, ýi 
which is equivalent to a utilisation rate of -2.85 mmol"kg-1dry wt 

min-1 for treadmill running. Extrapolating from these observations, 
it might be speculated that R1 reduced muscle glycogen concentration 
by -67%. This is in general agreement with levels of carbohydrate 

oxidation estimated from indirect calorimetry. 

The placebo solution ingested during the 4-h recovery in the P trial 

contained 15.5 (±0.8) g of carbohydrate (provided by a sweetening 

agent) which would be sufficient to replace -10% of that estimated to 

have been metabolised during R1. This compares with 138.0 (±9.0) g 

of carbohydrate contained in the sports drink ingested during the 

CHO trial, which would be sufficient to replace -91% of that r_-- 

estimated to have been metabolised. During the second exercise bout, 

R values indicated that carbohydrate oxidation was reduced by 40% in E-- 

the P trial, but was increased by 3% in the CHO trial. This reduction 
in carbohydrate metabolism during the P trial was associated with a 
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compensatory increase in fat metabolism, as reflected in elevated 

systemic concentrations of lipid metabolites. A large increase in 

plasma glycerol -concentration relative to changes in FFA concentra- 
tions probably reflects increased FFA oxidation (Ahlborg et al, 1974), 

and decreased splanchnic uptake of glycerol (Havel et al, 1964). 

During R1, a maximum of 61% of the total energy expenditure was 
derived from fat. In contrast, during R2 76% of energy expenditure in 

the P trial was derived from fat, compared with 60% in the CHO trial. 

The maintenance of stable blood glucose concentrations during R2 in 
both groups may have been associated with reduced carbohydrate ý- 

availability within active muscle cells. Systemic glucoregulation 
represents a potent homeostatic mechanism, whereby blood glucose 
is maintained in order to provide a readily available fuel supply for 

the brain, and CNS (Reichard et al, 1961). As a consequence, cellular 

glucose transport may be compromised as circulatory demands are 

prioritised over muscle tissue needs. Thus, reduced whole body 

carbohydrate availability during R2 in the P trial may have been 

associated with restricted blood glucose supply at a muscle cell level. 

Recent evidence indicates that decreased carbohydrate availability 

specifically in type-I fibres is associated with fatigue during prolonged, 

onstant pace running (Tsintzas, 1993). The required exercise inten- 

sity could not be sustained despite the presence of adequate glycogen 

stores in adjacent type-II fibres. Elevated fat oxidation stimulates 
mobilisation of FFA, which may directly interfere with cellular glu- 

cose transport (Hargreaves et al, 1991). Alternatively, FFA may supp- 

ress the activity of PFK (Randle et al, 1963; Hargreaves and Richter, 

1988). In either case, fatigue arises despite apparently adequate fuel 

provision, as an obligatory requirement for carbohydrate inter- 

mediates in both glycolysis and fat oxidation is not fulfilled. Thus, 

enhanced fat metabolism during the P trial may have indirectly 

played a role in limiting endurance capacity through substrate inhibi- 

tion of carbohydrate metabolism (Costill et al, 1977). 

-The importance of timing post-exercise carbohydrate ingestion in 

optimising the recovery process has already been demonstrated (Ivy 

et al, 1988a). Insulin increases muscle membrane permeability and L_ 

promotes_glucose _uptake_ 
(Narahara and Ozand, 1963). Contractile 
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activity per se also stimulates sarcolemma glucose transport. This is 

achieved through enhancing the number of glucose carriers and their 
intrinsic levels of activity (Goodyear et al, 1990b; DeFronzo et al, 1981). 

In the present study, plasma insulin concentrations decreased during 

exercise. Following the recovery, insulin concentrations tended to be 

higher in the... CHQ_trial relative to the P trial. This is in agreement 
with 

-the--thesis. - 
whereby -enhanced carbohydrate availability in the 

form of blood glucose stimulates pancreatic insulin secretion (Ivy et 

a1,1988b). 

The nature of the carbohydrate ingested also influences post-exercise 
glycogen resynthesis (Blom et al, 1987b). Supplements made up of 
simple carbohydrates with a high GI are most effective over this c-- 

If 

period (Burke et al, 1993a; Coyle, 1991; Kiens et al, 1990). Glucose and 

sucrose appear to be twice as effective as fructose in replenishing 

muscle glycogen (Blom et al, 19876), whereas fructose is more rapidly 

metabolised in the liver (Zakim et al, 1969). Blom et al (1987b) specu- 
lated that the presence of fructose would reduce hepatic glucose 

uptake, thereby rendering a greater proportion of the total glucose 

absorbed available to muscle tissue. In the present study, the sports 
drink contained a mixture of sucrose and maltodextrins, potentially 

providing substrate for both liver and muscle carbohydrate replenish- 

ment (Blom et al, 1987b). 

Increases in plasma ammonia during prolonged exercise observed in 

the present study were consistent with previous findings (Broberg 

and Sahlin, 1988). Protein turnover is enhanced, which in turn is 

associated with increased muscle ammonia production (Lemon and 
Mullin, 1980; Lemon and Nagle, 1981). Splanchnic uptake of 

ammonia from the systemic circulation during heavy exercise is the 

same as at rest (Eriksson et al, 1985). Thus, an increase in the rate of 

plasma ammonia appearance is probably due to increased release 
from active muscle. A higher rate of plasma ammonia accumulation 
during the P trial may have contributed to a shorter R2 run time 

(Banister et al, 1983; Banister and Cameron, 1990). 

As discussed in Chapter 5, endurance exercise disturbs the body's 

fluid balance as well as disturbing the body's energy balance. 
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Decreases in body weight during Ri were greater than the 2.0% 

threshold (Armstrong et al, 1985). Neither group achieved euhydra- 
tion during the 4-h recovery, where euhydration represents pre-R1 
body fluid levels which were assumed to equate with a normal fluid 

balance. This was despite the P group ingesting 116% of R1 fluid loss 

and the CHO group ingesting 109%. The levels of rehydration esti- 

mated in the present study are consistent with previously reported 

values (Costill and Sparks, 1973; Gonzalez-Alonso et al, 1992). Costill 

and Sparks (1973) estimated -74% rehydration following full fluid 

replacement with either water or a CE solution, though normalisa- 
tion of exercising HR was achieved after only -62% rehydration. 
Gonzalez-Alonso et al (1992) reported 64% rehydration with water 

and 69% rehydration with a CE solution. Lambert, Costill, McConell, 

Benedict, Lambert, Robergs and Fink (1992) examined fluid replace- 

ment over a 4-h post-exercise period, observing incomplete rehydra- 
tion with both carbohydrate and non-carbohydrate solutions. These 

cited studies administered fairly intensive feeding patterns, as rehyd- 

ration per se was being examined. However, post-exercise ingestion 

of fluid and nutrients needs to be carefully monitored if the recovery 

period between repeated bouts of physical activity is relatively short. 
In the present study, the feeding pattern represented a compromise 
between the provision of fluid and carbohydrate on the one hand, 

and the practical constraints with respect to further exercise and 

potential G-I discomfort on the other. Optimal post-exercise rehydra- 
tion will be achieved when a prescribed feeding pattern is consonant 

with both maximal rates of gastric emptying and intestinal absorp- 

tion, as well as the body's capacity to then retain the fluid. 

The volumes of fluid prescribed in the present study can be emptied 
from the stomach and are available for absorption within 2-h 
(Gonzalez-Alonso et al, 1992). This suggests that incomplete rehydra- 
tion in this instance may not totally be due to a G-I limitation. It is 

possible - that further body fluid losses during the recovery period E. _. 
through substrate metabolism and urine formation, as well as insen- 

sible losses through respiration and sweating, add to the dehydrating 

effect of prior exercise (Lambert et al, 1992). A movement of electro- 
lytes out of intra- and extra-cellular spaces may also contribute to 
incomplete rehydration (Nose et al, 1988b). 
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Exercise-induced dehydration impairs cardiovascular function 
, 

exacerbating an underlying challenge presented by physical activity 
(Barr et al, 1991). Heart rate increased throughout exercise in both 

trials. This possibly reflects an attempt to maintain central blood 

pressure in the face of changes in blood volume distribution (Saltin 

an Stenberg, 1964). Subjects effectively thermoregulated during Rl 

and R2 in both trials despite disturbances to cardiovascular integrity. 
Similar observations are reported by Sawka, Knowlton and Critz 
(1979) for repeated bouts of prolonged running (ie. two 80 min bouts 

at 70% VO2max, with a 90 min recovery period). Though notably in 

the present study, core temperature was higher in the CHO trial over 
the early stages of R2 relative to R1, whilst this was not evident in the 
P trial. Lambert et al (1992) similarly reported elevated Trec in carbo- 
hydrate versus non-carbohydrate trials. This 'thermic effect of food' 

(TEF) following carbohydrate ingestion may result from the increased c-- 

energy requirements of digestion, absorption, transport, and storage / 
(Acheson, Schutz, Bessard, Ravussin, Jequier and Flatt, 1984). Whilst 
increased blood glucose availability stimulates insulin secretion, 
which in turn stimulates skeletal muscle thermogenesis (Balon et al, 
1984). 

Plasma potassium concentrations increased during exercise in the 

present study, most probably due to elevated potassium ion efflux 
from exercising muscle (Lindinger and Sjogaard, 1991; Sjogaard, 1990). 

Systemic potassium is removed primarily by the kidneys, but extra- 

renal tissues such as the liver and skeletal muscle also play a part (Bia 

and DeFronzo, 1981). Extrarenal potassium metabolism is enhanced 
by insulin and adrenaline, though there is also evidence that aldo- . 
sterone is an essential prerequsite for maintaining normal potassium 
toler ance (Bia and DeFronzo, 1981). More than 10% of the total 

muscle potassium content may be released during 2-h of prolonged 

submaximal exercise (Sjogaard, 1986). In this instance, non-active 

muscle tissue plays an important role in preventing excessive plasma 

potassium accumulation (Lindinger and Sjogaard, 1991). The plasma- 
to-intracellular potassium concentration gradient favours cellular 

uptake in non-contracting muscle fibres. This potassium is then 

slowly released during the recovery, as whole body homeostatic 

mechanisms come into play (Lindinger and Sjogaard, 1991). 
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Resting plasma electrolyte concentrations were restored in both the P 

and CHO trials over the 4-h recovery. However, electrolyte losses 

from the body during exercise in sweat secretions and urine produc- 
tion were not measured in this study. Thus, the possibility of a whole 
body electrolyte deficit cannot be ignored, such a change in osmotic 
balance may adversely influence rehydration (Gonzalez-Alonso et al, 
1992). In addition, large potassium effluxes across the sarcolemma are 

reported to interfere with excitation-contraction coupling in muscle 
fibres, reducing their force generating capacity (Fink and Stephenson, 

1987; Moussavi, Carson, Boska, Weiner and Miller, 1989; Sjogaard, 

1986; Sjogaard, Adams and Saltin, 1985). It has been suggested that 

such potassium fluxes associated with the development of muscle 
fatigue are involved in a safety mechanism, protecting the muscle 

cell against mechanical overload (Sjogaard, 1989). Hyperkalemia also 
has a vasodilatory effect, which promotes the delivery of substrates to 

active tissue and the removal of metabolic waste (Lindinger and 
Sjogaard, 1991). Whilst elevated plasma potassium concentrations 

stimulate ventilation via activation of arteriole chemoreceptors 
(Paterson, 1989; Sjogaard, 1990). Thus, feedback systems operate to 
limit the potentially harmful effects of extracellular potassium 

accumulation. The exercise-induced potassium efflux is not reversed 

until after exercise cessation. This necessitates a passive recovery 

phase if previously active muscle is to restore a potassium homeo- 

static balance (Sjogaard, 1989). 

A movement of sodium ions into the muscle cell to counter the 

movement of potassium ions is less pronounced, as extracellular 
fluid appears to buffer sodium ion movements more effectively than 

the movement of potassium ions (McKenna, 1992). In addition, the 

potassium efflux depolarises the cellular membrane which inactiv- 

ates fast sodium channels. The combined effect of these phenomena 
may account for the relatively stable plasma sodium concentrations 
in the face of increasing plasma potassium concentrations observed 
in the present study. 

Thus, ingesting 1.0 g-CHO-kg-ibody wt at 2-h intervals following pro- 
longed, constant pace running improves endurance capacity 4-h later. 

The provison of carbohydrate in a 6.9% solution facilitated rehydra- 
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tion as effectively as water. Thus, failure to maintain adequate carbo- 
hydrate availability, rather than a failure to adequately rehydrate, 

appeared to hasten the onset of fatigue. 
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The influence of a high carbohydrate intake on recovery from 

prolonged, constant pace running 

7.1 Introduction 

A carbohydrate intake equivalent to 1.0 g"kg-ibody wt"2h-1 maintains 

optimal muscle glycogen resynthesis rates over the initial 4 to 6-h 

post-exercise (Ivy, 1991). The functional advantage of ingesting this 

amount of carbohydrate during 4-h recovery from prolonged, 

constant pace running was demonstrated in Chapter 6. However, this 
level of carbohydrate intake is associated with transient shifts in 
blood glucose and plasma insulin (Ivy et al, 1988b). Doyle et al (1993) 

suggest that a feeding pattern which maintains elevated systemic 

glucose and insulin concentrations over the immediate post-exercise 

period will further enhance recovery. 

The volume of a solution rather than its carbohydrate content is the 

more important factor regulating gastric emptying during rest and 

moderate exercise (Noakes et al, 1991). Thus, the rate of carbohydrate 
delivery to the small intestine is higher with ingestion of concen- 
trated rather than dilute glucose-polymer (GP) solutions. As such, if 

concentration is not limiting carbohydrate absorption and assimila- 
tion, this method might then be applied during recovery to provide 
the body with carbohydrate at a greater rate. 

The fate of carbohydrate ingested in excess of 1.0 g"kg-lbody wt-2h-1 

still remains unclear. If not incorporated into muscle glycogen nor 

remaining within the vascular system (Ivy et al, 1988b), then the 

other main storage site is the liver. However, direct assessment of 
liver glycogen content cannot be undertaken routinely. -in 

healthy 

humans. Nevertheless, elevated liver glycogen might contribute to 

energy metabolism during repeated exercise bouts, such that perfor- 

mance is maintained. Thtis, the present study examined whether 
increasing post-exercise carbohydrate intake to 3.0 g"kg-lbody wt-2h-1 
during 4-h recovery, provides any additional benefits in terms of 

exercise capacity. 
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7.2 Methods 

7.2.1 Subjects 

Nine men and eight women took part in this study (Table 7.1). 
As in the previous studies, this sample included a wide range 

of performers, though all were of a similar endurance trained 

status. 

7.2.2 Protocol 

Dietary intake was controlled during the 48-h prior to each 
trial, subjects having completed weighed-food intake dietary 

analyses from which individual dietary prescriptions were pre- 
pared (Section 3.3). 

Subjects completed the three preliminary tests following an 
initial familiarisation period (Section 3.4). Thus, training 

status was assessed (Table 7.2) and appropriate running speeds 
for the experimental trials were determined. Also during this 

period, a practice run was conducted to verify, and if necessary 

adjust, the work rate for the trials. This consisted of running 
for 5 min at 60% VO2max, followed by a maximum of 60 min 
at 70% VO2max. No blood sampling was carried out during 

the run and the recovery period was not monitored. 

Two experimental trials, separated by at least 7-d, were com- 
pleted in a counter-balanced, single blind design (Figure 7.1). 
On the day of each trial, subjects arrived at the laboratory after a 
10-h overnight fast, and proceded through the preparations as 
described previously (Chaper 6). Subjects maintained a relaxed 
standing position for -20 min prior to R1, afterwhich a 10 ml 
venous blood sample was drawn from the antecubital vein. 
Duplicate 20 ul capillary blood samples were simultaneously 
taken from the thumb. Further capillary blood samples were 
taken after 30 and 60 min of each exercise bout, and at 30 min 
intervals during the 4-h recovery. Venous and capillary blood 

samples were obtained at the end of R1, and before and after R2. 
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Post-exercise venous blood samples were drawn with the sub- 
ject maintaining a standing position with support. This was to 

minimise postural influences on the composition of pre- and 
post-exercise blood samples (Hagan et al, 1978). 

The blood samples were collected, treated, stored, and sub- 
sequently analysed as described previously. In brief, packed cell 
volume and haemoglobin concentrations were determined in 

whole blood, FFA (method-ii), glycerol, ammonia, sodium and 
potassium concentrations were determined in plasma, whilst 
insulin and cortisol concentraions were determined in serum. 

Before commencing R1, a6 min expired air sample was 

collected for determining pre-exercise metabolic rate. Subjects 

then performed the standardised 5 min warm-up before 

commencing R1. A standardised warm-up was similarly per- 
formed prior to R2. The treadmill speed was then increased to 
the test pace. The first run was a standardised endurance task 
in which all subjects completed 90 min of exercise at 70% 
VO2max. The second run was a performance test, in which 
endurance capacity provided a measure of the efficacy of the 

prescribed recovery. 

Further expired air samples were collected over 1 min inter- 

vals at 5 and 15 min of R1 and R2, and every 15 min thereafter. 
A final expired air collection was taken over the last minute of 
exercise, or part thereof if a subject was unable to complete a 
further 60 s of work. Simultaneously, subjective ratings of 

perceived exertion and muscular effort were obtained. 

Wet sponges and drinking water were available 
_ ad libitum 

during Rl and R2, but drinking water was nbt taken during the 

recovery period. The total fluid ingested during exercise was 
recorded at the end of each run and accounted for in post- 
exercise changes in body weight. 
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The two trials were separated by a 4-h controlled recovery 
during which subjects remained within the laboratory and 
their activity levels were minimal. A prescribed fluid was 
consumed immediately on cessation of R1, and then 2-h later. 
During one trial, a dilute GP solution (6.9% carbohydrate, 
Appendix L; Lucozade Sport, Smithkline Beecham Plc) was 
ingested providing 1.0 g"CHO"kg-1body wt (D-trial). An equal 

volume of a concentrated GP solution (19.3% carbohydrate, 
Appendix M; Lucozade Original, Smithkline Beecham Plc) was 
ingested during the other trial providing 3.0 g"CHO"kg-lbody wt 
(C-trial). Both solutions were non-carbonated and caffeine free, 

and were maintained at a uniform temperature of -6-90C. 

Resting expired air samples were collected for 6 min intervals 

after 30,60,90,150,180, and 210 min of recovery. Mood states 

were examined after the 180 min collection using the Bipolar 

Profile of Mood States (POMS-BI), which measures six bipolar 

(positive vs. negative) mood states (Lorr, 1984). 

Run times were compared using Student's T-test. Cardio- 

respiratory responses were examined by two-way ANOVA with 

repeated measures (trial-by-time). Blood biochemical respon- 

ses, mood-state (POMS-BI) scores, dietary data, energy intake 

and energy expenditure data were examined using T -tests for 

paired data. Similar comparisons were made between males 

and females by two-way ANOVA and independent T -tests 
respectively. A Tukey post-hoc test was applied to identify the 

nature of differences. 

7.3 Results 

7.3.1 Performance 

All subjects completed the 90 min endurance task (R1). The 

mean R2 run time for the D-trial was 58.5 (±5.2) min, com- 

pared with 57.6 (±6.3) min for the C-trial (NS). The male and 
female R2run times did not differ (male subjects (n=9) D-trial: 

56.7 (±6.5) min, C-trial: 53.4 (±9.5) min; female subjects (n=8) D- 
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trial: 60.5 (±8.7), C-trial: 62.5 (±8.4) min) (Figure 7.2). 

7.3.2 Blood glucose and serum insulin responses, 'Gut Fullness' 

ratings and mood states 

Blood glucose was equally well maintained over R1 in both 

trials, increasing from 3.87 (±0.14) to 4.22 (±0.21) mmol-l-1 (p< 

0.01) (Figure 7.3), whereas plasma insulin decreased by 33% in 

the D-trial and by 31% in the C-trial (Table 7.3; Figure 7.4). 

During the recovery, blood glucose peaked 30 min after the first 

feeding, reaching 6.44 (±0.20) and 6.40 (±0.33) mmol"l-1 in the D 

and C trials respectively (NS). After 90 min of recovery, blood 

glucose remained higher in the C-trial (p<0.01). However, 30 

min following the second feeding, blood glucose was higher in 

the D-trial (p<0.01). Concentrations were again similar after 
180 min, but remained higher in the C-trial after 210 min of 

recovery (p<0.01). Thus, blood glucose followed different patt- 

erns of response over the recovery phases of the two trials, but 

remained within a similar concentration range. This is despite 

an increase in plasma insulin of 431% during the recovery in 

the C-trial compared to 16% in the D-trial (p<0.01). Thus, 

plasma insulin was higher prior to R2 in the C-trial (p<0.01). 

Drowsiness, lethargy and nausea apparent in subjects during 

the recovery in the C-trial was perhaps associated with the 

large shift in plasma insulin concentrations. These subjective 

observations reflected less positive mood states (POMS-BI) in 

subjects prior to R2 (p<0.01). The male and female subjects 

differed in their mood states responses to the experimental 

treatments. The male subjects were less confident, less ener- 

getic and less clearheaded following the recovery in the C-trial 

in comparison with the D-trial (p<0.05). The female subjects 

were similarly less confident (p<0.05), but also felt less con- 

genial and less elated, though more composed during the C- 

trial (p<0.05). 

c- 

6--- 

C 

Higher responses to the 'Gut Fullness Scale' during the C-trial 

(p<0.01) may reflect slower absorption of the concentrated solu- 
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tion during the 4-h recovery. Nevertheless, a greater insulin 

response would suggest enhanced glucose absorption and 
assimilation in the C-trial. During R2, blood glucose was main- 
tained at a higher concentration in the C-trial, and this was 
most noticeable in the male subjects (p<0.01). Consistently, 

serum insulin also remained higher in the C-trial at the end of 
R2 (p<0.01) despite a 57% decrease in concentration. Whereas, 

serum insulin decreased by 16% over R2 in the D-trial (p<0.01). 

7.3.3 Serum cortisol responses 

A high variance between subjects in serum cortisol concentra- 
tion made interpretation of the data difficult (Figure 7.4). 
Serum cortisol tended to increase during Ri in both trials (NS). 
During the recovery, cortisol decreased by 36% in the D-trial 

and 22% in the C-trial (NS). Concentrations remained stable 
over R2 in the D-trial, but increased in the C-trial (p<0.05). 

7.3.4 Blood lactate and plasma ammonia responses 

Blood lactate responses did not differ between the trials during 

R1 and R2 (Figure 7.5). Similarly, there were no differences in 

plasma ammonia responses, with concentrations increasing 
during exercise in both trials (p<0.01) (Figure 7.6). Post-exercise 

blood lactate concentrations peaked 150 min after carbohydrate 
ingestion, and remained elevated thereafter in the C-trial 

(p<0.05) whilst pre-R1 values were restored in the D-trial. 

There were no differences in blood lactate response between 

the male and female subjects during Rl and R2, although it is 

worth noting that the female subjects maintained higher 

lactate concentrations than the male subjects throughout the 

recovery phase of both trials (p<0.05). 
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Table 7.1 Physiological characteristics of the male and female subjects 

(mean±SE) 

Age Height Weight VEmax HRmax VO2max 

(yrs) (cm) (kg) (1-min-1) (b"min-1) (ml"kglmin-1) 

Male 31.3 175.0 69.9 116.1 186 57.9 

±SE 2.9 2.7 1.2 3.6 4 1.5 

Female 30.4 **164.1 **57.5 **84.5 186 **47.4 

±SE 1.3 1.8 1.3 2.8 2 1.8 

** Denotes female data significantly different from male data (p<0.01) 
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Table 7.2 Running speeds (m"s-1) and relative exercise intensities 

(%VO2max) at blood lactate concentrations of 2 mmol"1-1 and 4 

mmol"1-1 of the male and female subjects (mean±SE) 

Speed %VO2max 

2 mm o1.1-1 4 mmol-1-1 2 mm o 1.1.1 4 mm o1.1-1 

Male 3.49 4.74 62.2 84.7 

± SE 0.39 0.29 4.9 2.9 

Female 3.13 4.03 72.1 89.9 

± SE 0.23 0.17 2.3 2.7 
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Fig 7.2 Male and female R2 run times for the dilute (D) and 
concentrated (C) trials (mean±SE) 
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Fig 7.3 Blood glucose concentrations of the dilute (D) and concentrated 
(C) trials during R1, the 4-h recovery, and R2 (mean±SE) 

** Denotes D-trial significantly different from C-trial (p<0.01) 

Anova : Main effect - treatment (p<0.05); time (p<0.01) 
Interaction - treatment * time (p<0.01) 
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Table 7.3. Serum insulin (mU-1-1) concentrations of the the male and 

female subjects during the dilute (D) and concentrated (C) trials 

over Rl and R2 (mean±SE) 

Male Female 

Pre Post Pre Post 

Rl 6.00 3.14 7.27 5.44 

± SE 0.55 0.40 0.74 1.08 

D 

R2 5.68 3.28 5.15 4.23 

± SE 1.63 0.59 0.71 0.38 

Rl 5.83 3.57 6.56 5.50 

± SE 0.34 0.49 0.85 0.90 

C 

R2 **19.21 *5.49 **26.22 5.48 

± SE 2.74 0.62 9.26 1.13 

** Denotes C-trial significantly different from D-trial (p<0.01) 

* Denotes C-trial significantly different from D-trial (p<0.05) 
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Fig 7.5 Blood lactate concentrations of the dilute (D) and concentrated 
(C) trials during R1, the 4-h recovery, and R2 (mean±SE) 

* Denotes D-trial significantly different from C-trial (p<0.05) 
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Fig 7.6 Plasma ammonia concentrations of the dilute (D) and 
concentrated (C) trials for Rl and R2 (mean±SE) 
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7.3.5 Pre-exercise energy intake and fuel utilisation during exercise 

The daily carbohydrate intake of the male and female subjects 

over the 48-h prior to R1 were 520.6 (±52.5) g and 382.6 (±24.1) g 

respectively (p<0.05) (Table 7.4). This represents 56.2 (±2.2)% of 
the total energy intake of the male subjects, and 64.3 (±2.3)% for 

the female subjects (p<0.05). When expressed in relation to 

body weight, there were no differences in carbohydrate intake 

of the male and female subjects. The energy cost of R1 was 4.54 

(±0.02) MJ, of which 71 (t2)% was provided by carbohydrate 

metabolism. The total volume of GP solution ingested during 

the D-trial provided 127.3 (±2.5) g of carbohydrate (2.1 MJ), com- 

pared to 382.0 (±7.4) g of carbohydrate (6.4 MJ) in the C-trial. 

Respiratory exchange ratio (R) values were similar during Ri 

in both trials (Figure 7.7), though notably this was associated 

with an increase in the oxygen cost of constant pace running 
(p<0.01) (Table 7.5). Fat metabolism was elevated to accommo- 
date the enhanced energy demand of exercise, whilst the rate of 

carbohydrate oxidation remained relatively constant. During 

the recovery, R values were higher in the C-trial indicating a 
decrease in fat oxidation and enhanced carbohydrate oxidation 
(p<0.05). Consistently, post-R1 oxygen consumption rates were 

elevated above pre-R1 values. This was especially apparent 

over the initial 60 min following each feeding in both trials 

(p<0.01) and after 90 min in the C-trial (p<0.05). Carbon diox- 

ide production was higher in the C-trial relative to the D-trial 

after 90 min (p<0.01) and 210 min (p<0.05) of recovery (Table 

7.6). However, oxygen consumption remained elevated 30 min 

prior to R2 in both trials (p<0.05). Comparing R1 and R2 

revealed that fat metabolism was suppressed and carbohydrate 

metabolism enhanced during the second run of the C-trial (p< 

0.01). In contrast, there were no differences in the balance of 

energy metabolism between Rl and R2 in the D-trial 

Notably the total rates of exercise energy expenditure did not 
differ between the trials. 



Chapter 7 174 

There were no differences in the nature of energy metabolism 
between the male and female subjects. 

7.3.6 Plasma FFA and glycerol reponses 

Plasma FFA doubled over Rl in both trials (p<0.01), whereas 
plasma glycerol increased by eight-fold (p<0.01) (Figure 7.8). 
During the recovery, decreases in plasma FFA (p<0.01) and 
glycerol (p<0.05) were greater in the C-trial, whilst concentra- 
tions remained elevated 4-h later in the D-trial (p<0.01). 
Throughout R2, plasma glycerol increased in the C-trial at 
twice the rate as in the D-trial. Whilst plasma FFA increased by 
300% in the case of the former, compared with 30% in the latter 
(p<0.01). 

7.3.7 Plasma electrolyte responses 

Plasma sodium increased during R1 in both trials (p<0.01) 
(Tables 7.7a and 7.7b), but remained elevated in the C-trial 
following the recovery (p<0.05). However, the rate of plasma 

change during R2 was greater in the D-trial (p<0.05), such that 

values were the same in both trials at the end of exercise. 
Plasma potassium also increased during R1 and R2 (p<0.01), 

though there were no differences between the trials. 

Resting and exercise plasma electrolyte concentrations were 
similar in the male and female subjects. 



Chapter 7 175 

Table 7.4 The daily energy and nutrient intakes of the male and female 

subjects (mean±SE) 

Energy Protein Carbohydrate Fat 

MJ g gkg-4body wt g gkg-lbody wt g 

Male 14.6 120.0 

± SE 1.2 8.9 

1.7 520.6 7.5 109.7 

0.1 52.5 0.8 11.0 

Female **9.5 **86.5 

± SE 0.5 8.0 

1.5 *382.6 6.7 **49.6 

0.1 24.1 0.5 7.9 

** Denotes female data significantly different from male data (p<0.01) 

* Denotes female data significantly different from male data (p<0.05) 
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Table 7.7a. Plasma electrolyte concentrations (mmol"1.1) of the male 

subjects during the dilute (D) and concentrated (C) trials over 

R1 and R2 (mean±SE) 

Plasma Sodium Plasma Potassium 

Pre Post Pre Post 

Rl 139.8 142.1 4.25 4.97 

t SE 0.4 0.6 0.08 0.14 

D 

R2 139.5 142.0 3.92 4.57 

t SE 0.2 0.6 0.09 0.14 

R1 139.6 142.0 4.33 4.90 

f SE 0.4 0.7 0.06 0.15 

C 

R2 *141.3 141.8 3.98 4.46 

t SE 0.5 0.7 0.06 0.12 

* Denotes D-trial significantly different from C-trial (p<0.05) 
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Table7.7b. Plasma electrolyte concentrations (mmol"1-l) of the female 

subjects during the dilute (D) and concentrated (C) trials over 

R1 and R2 (mean±SE) 

Plasma Sodium Plasma Potassium 

Pre Post Pre Post 

R1 138.4 

t SE 0.6 

140.3 

1.1 

4.24 

0.11 

5.35 

0.09 

D 

R2 138.7 140.4 3.84 4.91 

f SE 0.6 0.7 0.10 0.14 

Ri 138.8 141.0 4.18 5.03 

f SE 0.7 0.8 0.08 0.21 

C 

R2 139.7 141.1 3.67 4.83 

t SE 1.0 0.6 0.17 0.12 
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7.3.8 Plasma volume, heart rate and changes in body weight 

Plasma volume was reduced by 3.1 (±2.4)% during R1, which 
was associated with a 10% increase in HR (p<0.01). Following 

the recovery, plasma volume had increased by 6.6 (±1.4)% on 
post-exercise levels in the D-trial and by 6.4 (±2.7)% in the C- 

trial (NS). Pre-exercise HR was elevated prior to R2 (p<0.01) 

and was higher in the C-trial than in the D-trial (p<0.01). 

During R2, plasma volume decreased by 3.3 (±1.9)% and 6.2 (± 

0.9)% in the D and C trials respectively (p<0.05). However, HR 

responses did not differ between the two trials, but within trial 

values increased by 7% (p<0.01). 

Body weight decreased by 2.8 (±0.1)% during R1. Following the 

recovery period, this loss in body weight had been restored in 

the C-trial but not in the D-trial (p<0.01). However, there were 

no differences between the trials by the end of R2. This was 
probably due to a greater volume of water ingested by subjects 
during of the D-trial (D-trial: 170 (±45) ml; C-trial: 95 (±29) ml), 
and reflects higher responses to the 'Gut Fullness Scale' in the 
C-trial prior to R2 (p<0.01). 

7.3.9 Subjective ratings of fatigue 

Ratings of perceived exertion and muscular effort in the D-trial 

were higher at the start of R2 (p<0.05) and throughout the exer- 
cise bout (p<0.01) in comparison with Ri values (Figures 7.9 

and 7.10). This was also the case during the C-trial (p<0.01). 
Notably, muscular effort was rated more highly during R2 in 
the C-trial relative to the D-trial (p<0.01). Whereas, ratings of 
percieved exertion did not differ during the second bout of 
exercise. 

7.3.10 Thermoregulatory responses 

Rectal temperature followed similar profiles during Rl and R2, 

whilst weighted mean skin temperature tended to be higher 
during R2 in comparsion with R1, this difference being most 
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evident at the onset of exercise (p<0.01). 

There were no differences between male and female subjects 

with respect to TLec and Tsk (Figures 7.11 to 7.14). 
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7.6 Discussion 

The main finding of this study was that ingesting 3.0 g_CHokg-? body 

wt-2h-1 during 4-h post-exercise recovery does not further 
. 
improve 

endurance capacity, in comparison with ingesting 1.0 g CHOkg-lbody 

wt-2h-1. Despite additional carbohydrate being provided, it did not 
appear to contribute to 'useful' energy metabolism during a further 
bout of exercise. The high carbohydrate dose was_associated__with 
le hargynausea, and_a less 

_ positive attitude to exercise. Moreover, 
incomplete absorption of , 

the,. concentrated_.. solution -resulted- in e 
greater G-I discomfort during the recovery and second run. 

Post-exercise energy repletion with carbohydrate solutions may be 
limited through gastric-emptying, intestinal absorption, circulatory 
transport and cellular uptake, or intracellular processes (Blom et al, 
1987b; Ivy et al, 1988b). Of these factors gastric-emptying is not 
thought to restrict the recovery process (Reed et al, 1989). Rehrer et al 
(1989) demonstrated that the rate of gastric-emptying (ie. percentage 
emptied per unit time) is regulated by the carbohydrate content of a 
solution. However, the volume of solution emptied is determined by 

the gastric volume, which in turn is dependent upon the volume of 
fluid consumed. In this study, subjects ingested the same volume of 
solution during both trials and followed identical feeding regimens. 
Theoretically, this would result in a greater carbohydrate delivery to 
the small intestine during the C-trial (Noakes et al, 1991). 

Radzuik and Bondy--(1982) estimated an upper limit-of glucose absorp- 
tion from the intestine in normal subjects equivalent to -1.0 g"min-l. 

7 Thus, a maximum of 120 g 
_of 

glucose could be absorbed during 2-h 

post-exercise recovery. Assuming complete gastric emptying, 
_64 

g of 
carbohydrate. would be provided per feeding in the D-trial utilizing 

-53% of the estimated intestinal absorption capacity. Each feeding in 

the C-trial provided 191 g of carbohydrate, which exceeds the upper 
limit of intestinal absorption by 71 g. Thus, as much as 142 g of carbo- 
hydrate_may_remain within the G-I tract after 4-h recovery. Once 

absorbed from the small intestine, -15% of the carbohydrate will be 
incorporated _in-the 

liver to leave -85% available for general metab- 
olism (Ivy et al, 1988b). This reflects the prioritisation of muscle 
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glycogen resynthesis over liver glycogen resynthesis following 

exercise (Fell et al, 1980; Maehlum et al, 1978). The CNS requires -5 g 

glucose-h-1. As such, 88 g of carbohydrate would be available for 

energy repletion during the 4-h recovery of the D-trial. In contrast, a 

maximum of -240 g would be absorbed in the C-trial of which 36 g 

would be captured by the liver. This would leave -184 g available for 

energy repletion after CNS requirements are taken into account. 
Thus, intestinal absorption per se would not have been limiting, 

there being adequate capacity to cope with the carbohydrate delivery 

of the D-trial, and as now will be discussed, would ensure sufficient 
carbohydrate uptake during the C-trial. 

During R1, an estimated 190 (±2) g of glucose were metabolised in 
fueling exercise. The available carbohydrate provided during the D- 

trial would cover -40% of that oxidised during R1, whereas -97% of 
that estimated to have been oxidised during R1 would be covered by 

the C-trial feeding regimen. However, only -30% of glucose theoreti- 

cally available to the body is actin stored as muscle glycogen (Ivy et 

al, 1988b). Reed et al (1989) encountered difficulties in accounting for 

the fate of glucose absorbed from the intestine. If is possible that-prior 

exercise may stimulate, enhanced liver glycogen storage (Costill et al, 
1983; Terjung et al, 1974) and triglyceride formation (Bahr et al, 1990) 

above levels previously predicted under basal conditions (Nilsson 

and Hultman, 1974). Alternatively, muscle not directly recruited in 

the activity being undertaken may play a part in disposing of the 
ingested carbohydrate (Reed et al, -1989). Glycogenolysis appears to 

take place in relatively 'non-active' muscle during exercise, which 

results in the conversion of glucose to lactate. It follows that these 

glycogen stores will also need replenishing following exercise. 

Despite the high carbohydrate loads, especially during the C-trial, c 
blood glucose concentrations were effectively regulated towards 

normal values throughout the recovery. Similar patterns of response 
to post-exercise carbohydrate ingestion-are-reported by Acheson et al 
(1984) and Ivy et al (1988b), where blood glucose is down-regulated 

such that concentrations were the same after 240 min of recovery for 
both high and low carbohydrate loads (Ivy et al, 1988b). Notably, more 
stable systemic glucose levels were maintained with a high carbohyd- 
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ate intake during the C-trial in the present study. This observation is 
consistent with the findings of Doyle et al (1993), where 0.4 g"CHO"kg-l 
body wt was administered at 15 min intervals following exercise. 
This was equivalent to a bi-hourly intake of 3.2 g-kg-lbody wt during 
4-h recovery. Maintaining a steady glucose flow optimises cellular C 
glucose transport (Schultz et al, 1977), which in turn would enhance 

replenishment of energy reserves and _the-return of" exercise capacity. 
Vissing et al (1988) demonstrated a mechanism by which stabe blood 

glucose concentrations are maintained through regulated hepatic 

glucose production. Under basal conditions and during low level 

work, the mechanism is controlled by feed-back inhibition. This 

control is modulated by humoral factors (eg. increasing plasma insu- 
lin concentrations inhibits hepatic glucose release) (Felig et al, 1975; 
Zawadzki, Yaspelkis and Ivy, 1992). In contrast, exercise may trigger a 
feed-forward mechanism, as motor centres in the brain respond to an 
increase in energy demand. 

A high carbohydrate diet has been associated with increased rates of 
carbohydrate oxidation, whilst fat oxidation is suppressed and protein 
oxidation remains approximately constant (Acheson et al, 1988; Blom, 
1989b). Following prior muscle and liver glycogen depletion through 

exercise and dietary restriction, glycogen storage initially provided the 

major avenue for disposing of-excess- dietary- carbohydrate (Acheson 

et al, 1988). The contribution of de novo lipogenesis to this process 
increases over time (Bjorntorp and Sjostrom, 1978), but represents a 
major contributor to carbohydrate disposal only when muscle and 
liver glycogen stores become saturated (Acheson et al, 1988). Oxida- 

tion and storage start to become inadequate for disposing of excess 
dietary carbohydrate after 2-d of carbohydrate over-feeding (ie. mean 
±SD intake of 836±52 g-MO24h'1, equivalent to 12.3±0.8 gcHO kg-1 

body wt-24h-1) by which time glycogen stores had accommodated an 

additional -500 g. A 'resting' R-value (ie. non-exercising) greater than 
1.00 indicates net lipid synthesis -(Acheson et al, 1988). R-values 

greater than 1.00 were observed in the C-trial after 4-h recovery with a 
high carbohydrate intake. However, elevated carbon dioxide produc- 
tion provided evidence to suggest that this was probably a respiratory 
response to elevated blood lactate concentrations, where excess carbon 
dioxide is 'blown off' in an attempt to restore acid base balance 
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(Astrand and Rodahl, 1986). Notably, lower R-values were main- 
tained during the recovery period of the D-trial, where subjects were 
prescribed carbohydrate at the recommended rate of ingestion. 

During prolonged cycling blood glucose concentrations decline and 
carbohydrate oxidation becomes compromised (Ahlborg and Felig, 

1982; Ahlborg et al, 1974; Felig et al, 1982). Coyle et al (1986) suggests 
that the provision of carbohydrate during exercise improves endur- 

ance capacity by supplementing blood glucose and maintaining carbo- 
hydrate oxidation rates, rather than through a glycogen sparing effect. 
However, Tsintzas (1993) observed that carbohydrate ingestion during 

prolonged, constant pace running was associated with a sparing of 

muscle glycogen specifically in type-I fibres. In the present study, 
blood glucose concentrations were elevated and the rate of carbohyd- 

rate oxidation enhanced prior to R2, but running performance was 

not improved during this second exercise bout. Thus, constant pace 

running capacity is not primarily determined by whole body carbo- 
hydrate oxidation rates nor by the maintenance of stable blood 

glucose concentrations. A principal limitation appears to be the 

availability of carbohydrate in type-I fibres. 

Post-exercise oxygen consumption did not differ between treatments 
despite differences in R-values. The major fraction of excess post- 

exercise oxygen consumption (EPOC) is believed to arise from the 

resynthesis of glycogen and enhanced rates of 'futile' energy cycling 
(Bahr and Moehlum, 1986). The ingestion of nutrients also stimulates 
increased oxygen consumption (Bielinski et al, 1985; Gore and 
Withers, 1990). Elevated 'resting' blood lactate concentrations after 
210 min of recovery in the C-trial are possibly indicative of 'futile' 

carbohydrate cycling. Ivy et al (1988b) similarly observed enhanced 

post-exercise carbohydrate oxidation with a high carbohydrate intake. 

Blom et al (1987b) suggest that glucose in excess of immediate require- 

ments is either oxidised, or converted to lactate and released from the 

cell (Blom, 1989b). 

An increased serum insulin response in the C-trial prior to R2 is con- 
sistent with a higher rate of glucose absorption. As discussed previ- 
ously, this is in agreement with a thesis whereby elevated carbohyd- 
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rate availability in the form of blood glucose stimulates pancreatic 
insulin secretion (Ivy et al, 1988b; Kirwan, Bourey, Kohrt, Staten and 
Holloszy, 1991). Insulin facilitates cellular glucose transport (Berger et 

al, 1975; Richter et al, 1982a), as well as glycogen synthase activity 
(Lamer and Villar-Palasi, 1971). However, exercise induced catechol- 

amine release inhibits insulin secretion (Galbo et al, 1977). This effect 
is countered by increased tissue sensitivity to low insulin levels 

(Mikines et al, 1988; Richter et al, 1982a), whereas contractile activity 
further increases sarcolemma glucose transport by enhancing the 

number of glucose carriers and their intrinsic levels of activity 
(DeFronzo et al, 1981; Goodyear et al, 1990a; Goodyear et al, 1990b; 

Richter et al, 1984). Thus, transport and cellular uptake of glucose do 

not appear to limit the recovery process in terms of energy repletion 
(Blom, 1989b). 

The blood glucose profiles possibly reflect a greater level of glucose 

storage during the C-trial, though serum insulin concentrations per 

se do not necessarily reflect glucose storage rates in muscle tissue 
(Blom et al, 1987b; Reed et al, 1989). Young et al (1988) reported that 

total glucose disposal increased with increasing plasma insulin con- 

centrations. However, at relatively low plasma insulin concentra- 
tions increased disposal was achieved through increased glucose 

oxidation. Only when plasma concentrations were extreme of the 

normal physiological range was insulin-induced glucose disposal 

achieved through increased storage (Kelley, Reilly, Veneman and 
Mandarino, 1990). Insulin elicits a maximum stimulatory effect at 

plasma concentrations equivalent to -21.0 mU-1-1 (Blom et al, 1987b), 

which is similar to systemic concentrations at the end of the C-trial 

recovery phase. The findings of Blom et al (1987b) and Ivy et al 
(1988b) highlight the 'permissive' role of insulin in glucose transport 

and glycogen synthesis, as opposed to a direct regulatory role (Berger 

et al, 1975). 

Elevated post-exercise plasma FFA and glycerol concentrations reflect 

mobilisation of adipose fat depots under the influence of sympathetic 

nervous activity (Bahr et al, 1991; Havel et al, 1964; Paul and Holmes, 

1975). Increased oxidation of FFA may spare limited muscle glycogen C- 

stores, and hence increase endurance capacity. The proportionately 



Chapter 7 192 

greater increase in plasma glycerol concentrations in relation to 

plasma FFA concentrations may reflect decreased splanchnic glycerol 
uptake due to a reduced hepatic blood flow during exercise (Havel et 
al, 1964). The low post-recovery plasma concentrations of FFA and 
glycerol during R2 of the C-trial reflect the suppression of lipid metab- 
olism (Acheson et al, 1988). Plasma glycerol provides precursors for 

gluconeogenesis1 which may then-supplement exogenously provided 
carbohydrate. Gluconeogenic precursors produced during exercise 
(eg. lactate, glycerol and BCAA) may be recycled into the glycogen 

pathway. This mechanism will partly be responsible for the synthetic 
post-exercise glycogen resynthesis evident under fasting conditions 
(Maehlum and Hermansen, 1978). In contrast, the--availability. of 
carbohydrate and elevated plasma insulin concentrations during the 
C-trial may inhibit gluconeognesis (Zawadzki_et-al, 1992). 

Prolonged exercise and carbohydrate ingestion both influence plasma 
BCAA concentrations (Davis, Bailey, Woods, Galiano, Hamilton and 
Bartoli, 1992; Decombaz et al, 1979; Wagenmakers et al, 1991), which 
in turn influences the tryptophan-to-BCAA ratio (Newsholme et al, 
1991). Increasing plasma FFA concentrations during prolonged 

exercise displaces bound tryptophan from albumin (Curzon et al, 
1973). Thus, elevated plasma concentrations of free tryptophan 

increase the tryptophan-to-BCAA ratio (Blomstrand et al, 1988). This 

in turn increases 5-HT levels in the brain, and may contribute to the 

onset of fatigue (Newsholme et al, 1991; Parry-Billings et al, 1990). 

Carbohydrate ingestion during exercise attenuates systemic BCAA 

and free tryptophan concentrations, and hence suppresses changes in 

the tryptophan-to-BCAA ratio (Davis et al, 1992; Wagenmakers et al, 
1991). However, high plasma insulin concentrations associated with 

carbohydrate ingestion under resting conditions, on the one hand 

may be accompanied by changes in plasma concentrations of large 

neutral amino acids, whilst on the other hand insulin inhibits BCAA 

mobilisation. A direct consequence of both of these responses is an 
increase in plasma free tryptophan concentrations, which in turn will 
favour enhanced 5-HT production in the brain (Anderson, 1981). 

This may account for the lethargy and drowziness of subjects during 

the C-trial recovery period, where a high post-exercise carbohydrate 
intake would stimulate insulin secretion. 
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The importance of timing post-exercise carbohydrate ingestion and 
the nature of the supplement in optimising the recovery process has 

already been demonstrated and previously discussed (Blom et al, 
1987b; Burke et al, 1993a; Costill et al, 1981; Ivy et al, 1988a; Ivy et al, 
1988b; Kiens et al, 1990). The D-trial solution represented a combina- 
tion of sucrose (2.9%), maltodextrin (2.7%) and fructose (1.3%), whilst 
the C-trial solution was based upon a monosaccharide glucose syrup 
(19.3%). Glucose and sucrose appear to be twice as effective as fructose 

in replenishing muscle glycogen (Blom et al, 1987b), whereas fructose 

is more rapidly metabolised by the liver (Zakim et al, 1969). How- 

ever, differences in carbohydrate composition of the two trial solu- 
tions were not thought to play an instrumental role with respect to 
the experimental findings. 

In conclusion, increasing carbohydrate intake from 1.0 to 3.0 g"kg-1 
body wt-2h-1 does not appear to be beneficial in improving endurance 

capacity after 4-h recovery. Indirect respiratory and blood biochemical 

evidence is consistent with the rate-limiting step for repleting cellular 
carbohydrate stores as being the conversion of glucose to glycogen. 
Free glucose resulting from a high rate of carbohydrate ingestion, 

which is not directly incorporated in muscle and liver, may largely be 
disposed of through enhanced oxidation as elevated lipogenesis 

initially plays a relatively minor role. 

---I 

,ý 

\1 
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General Discussion 

Th principal aim of the present thesis was to examine the influence of 
post-exercise carbohydrate ingestion on the capacity of an individual to 
reproduce their previous running performance. 

From the Review of Literature, the consensus suggests that providing in 

excess of 8.0 g"CHO"kg-lbody wt-24h-1 replenishes muscle glycogen reserves 
following daily bouts of endurance exercise (Bergstrom and Hultman, 
1966a; Costill et al, 1981; Keizer et al, 1987; Kochan et al, 1979). This process 
is opsmise_si f_feedings_providing -1 0 g: (q O. kg I ody wt. 2h-1_ are, con- 
sumed over the immediate post-exercise period (Blom et al, 1987b; Ivy et 
al, 1988b). However, it remained unclear if the restoration of exercise ' n' 
capacity paralleled this replenishment of muscle glycogen. 

C/vý 

Pot. 

A 90 min bout of constant pace running at 70% VO, max was initially 

perfor edýin. theýtudies reported in Chapters 4,6 and 7 (R1). Previously, 
Brewer et al (1988) who adopted similar procedures measured mean tread- 

mill run times at 70% VO2max to exhaustion ranging between 105.9 (± 
24.4) to 119.2 (±19.5) min. Similarly, Tsintzas et al (1993b) observed a mean 
run time of 109.6 (±9.6) min for exhaustive running at 70% VO2max in 

subjects of a similar training status. Extrapolating from these observa- 
tions, it might be cautiously speculated that the 90 min run (R1) taxed k/ 

-85% of the endurance capacity of subjects in the studies reported in this 
thesis. Tsintzas (1993) further reports that such exhaustive exercise bouts 

resulted in decreases in muscle glycogen concentration from 317.0 (±34.2) G 
gu(ý'ý 

to 31.6 (110.3) mmol-kg-1dry wt in t_ypeýI, fibres, and from 443.4(±44.9) to J}ý 
103.9 (±29.2) mmol"kg-ldry wt in t e-II fibres. Expressing these values as a 
mean fob mixed fibre samples muscle glycogen concentration decreased / 
from 380.2 (±35.2) to 67.8 (±15.2) mmol"kg-ldry wt. This is equivalent to a 
utilisation rate of -2.85 mmol"kg-ldry weight"min71 for treadmill running 
at 70% VO2max. Extrapolating once again from these previously reported 
observations, Rl would reduce muscle glycogen concentration by -67%. 
This is in general agreement with estimated levels of carbohydrate oxida- 
tion obtained from indirect calorimetry reported in Chapters 4,6 and 7. 
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-Blood lactate concentrations increased with the onset of exercise. Ai 

plateau was then maintained until -75 mins of exercise, after which lactate 

levels tended to fall. Systemic concentrations reflect a difference between 

the respective rates of lactate production and lactate removal (Wahren, 

1977). Thus, a fall in concentrations over the later stages of exercise would 

result from either a decrease in the rate of production or an increase in the 

rate of removal. The former may be associated with declining muscle 

glycogen concentrations, whereas the latter might reflect a contribution of 
lactate to energy metabolism (Rowell et al, 1966). Blood glucose concen- 
trations and estimated rates of carbohydrate oxidation were consistently 

maintained throughout R1, whilst plasma FFA, glycerol, ammonia and 

urea concentrations increased. It has been suggested that FFA progress- 
ively contribute a greater proportion to the total substrate requirements of 

aerobic metabolism (Ahlborg et al, 1974; Havel et al, 1964). Evidence of 
this shift in energy metabolism was provided from indirect calorimetry, 

where protein was assumed to play a relatively minor role. 

An increase in fat oxidation would contribute to an upward drift in both 

ventilation and oxygen consumption (Kirwan et al, 1988). Conversely, 

e anced respiration may reflect an increasing energy cost of exercise. A 

decrease in muscle glycogen concentration is acompanied by a reduction in ýý ,. 
'+ 

running economy (Kirwan et al, 1988). Nicol, Komi and Marconnet (1991) 

report impaired contractile efficiency and decreased force generation 
following prolonged, submaximal running. This in turn would increase 

the ever cost ofmaintaining a constant level of work output. In the 

studies reported in this thesis, it was estimated that more than 90% of the 

additional energy-req uirement late in exercise during R was provided by 

enhanced fat metabolism, rather than through changes in carbohydrate 

oxidation. 

Elevated fat metabolism is associated with enhanced mobilisation of FFA. 

Increasing systemic FFA concentrations have been observed to inhibit 

membrane glucose transport (Randle et al, 1963; Rennie and Holloszy, 

1977). Thus, a pe ripheral limitation to performance may result from com- 

promised-cellular--carbohydrate uptake at a time of low muscle glycogen 

reserves. Increasing systemic FFA concentrations are also speculated to 

elicit a central effect which may limit prolonged exercise performance. 
The amino acid tryptophan is carried bound to albumin in plasma, but is 
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displaced by FFA (Curzon et al, 1973). Free tryptophan is then able to 

penetrate the blood-brain barrier, whereupon it is hydroxylated to 5-HT 
(Newsholme and Leech, 1983). Increased 5-HT concentrations in some 

areas of the brain are suggested to play a role in fatigue (Newsholme et al, 
1991; Parry-Billings et al, 1990). 

From the above, fatigue during a second exercise bout (R2) may have 

resulted from a combination of mechanical and metabolical factors, which, 

ultimately become incapacitating. The former directly influence muscle 
fibre contractility and reduces the efficiency by which force is generated. 
Whereas, the latter may influence events both at a muscle fibre level in 

terms of substrate availability, as well as events within the central nervous 

system in terms of initiating a motor action. Further research is required 
to determine the proportional contribution of these factors to fatigue. 

Thus, the role of carbohydrates in alleviating the symptons of fatigue may 
be assessed in terms of provision both during exercise, as well as over the 

immediate post-exercise period. 

Nevertheless, carbohydrate availability per se does not limit performance 
during submaximal, constant pace running (Tsintzas, 1993). Rather, 

decreased carbohydrate availability within specific muscle fibres appears to 

precipitate fatigue (Kirwan et al, 1988; Tsintzas, 1993). Glycogen resyn- 
thesis is prioritised in previously active tissue (Mikines et al, 1988; Richter 

et al, 1989). As such, it might be argued that post-exercise carbohydrate 
ingestion would facilitate a return in exercise capacity. Ingesting 8.8 g 
CHO. kg-lbody wt following 90 min of constant pace running at 70% 
VO2max restored endurance capacity within 22.5-h (Chapter 4). An iso- 

caloric diet in which additional energy was provided in the form of fat and 

protein did not result in the same return of exercise capacity. Thus, the 

application of dietary recommendations which result in the replenish- 

ment of muscle glycogen reserves during -22-h of recovery (Costill et al, 
1981; Keizer et al, 1987), also result in a return in the capacity to perform 

prolonged, constant pace running. Both recovery diets provided more 

carbohydrate than was estimated to have been oxidised during the 

previous exercise bout. However, a mixed diet containing the normal 
level of carbohydrate intake was associated with impaired running perfor- 

mance 22.5-h later. 
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Kirwan et al (1988) observed that merely matching carbohydrate intake 

with carbohydrate expenditure was inadequate for maintaining muscle 

glycogen stores during 5-d of intense training, (ie. -80 min of running at 

-80% VO2max). It was estimated that a carbohydrate intake equivalent to 
8.0 g"kg-lbody wt was required to meet the demands of exercise (ie. -240 
g"24h-1) as well as accommodating the demands of daily living (ie. -260 
g"24h-1). A further 30g was provided in the recovery diet in order to cover 

any additional requirements. This intake is consistent with the recomm- 

endations of Costill et al (1981) (ie. -530g. 24h-1 cf. -600g-24h-1). It was 

suggested that a greater level of carbohydrate intake may be required by 

athletes participating in such intensive training programmes. Alterna- 

tively, there ma be 
.ap 

siological limitation in the capacity of muscle to 

store glycogen (Kirwan et a, 1988). 

The provision of apparently adequate amounts of carbohvdrate is not the 

only factor 
_to, 

be considered with respect to_ the recovery_process,.. __ 
The 

ability to perform prolonged exercise is also influenced b fluk balance 

(Armstrong et al, 1985). There appears to be a limitation to post-exercise 

rehydration, _such_ that_ X60-7O%, rehydration . 
isy achieved during the initial 

4-h (Costill and Sparks, 1973; Gonzalez-Alonso et al, 1992). It is suggested 
that this limitation, which will delay the recovery process, is associated 

with the distribution of fluid and electrolytes between intra- and extra- 

cellular spaces (Nose et al, 1988a; 1988b). This possibly represents a safety 

mechanism (Sjogaard, 1989), whereby further activity is restricted until 

`"ý cardiovascular integrity has been restored. Thus, preserving a favourable 

internal environment with respect to fluid balance and circulatory osmo- 
lality during exercise may benefit the recovery process over the immediate 

post-exercise period. 

Water intake during exercise benefits prolonged, constant pace running 

performance. _. -Ingesting _, 
3.0 ml water kg-lbody wt before exercise, with 

further feedings of 2.0 ml-kg-lbody wt-15 mine during exercise, improved 

endurance capacity by 33% (Chapter 5). Total energy expenditure during 

prolonged, constant pace running was not influenced by the provision of 

water, though fluid ingestion was associated with a more favourable 

balance with respect to energy metabolism. Abstaining from water-inges- 
tion was accompanied by increased cdrate oxidation and suppressed 
fat oxidation. This shift in metabolism was associated with elevated blood 
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lactate concentrations and localised fatigue over the later stages of exercise, 

whilst blood glucose concentrations remained unchanged. The addition 

of ý carbohydrate and electrolytes to a solution ingested during exercise 

spares muscle glycogen (Tsintzas, 1993). Thus, fluid ingestion may reduce 
the disturbance of energy, osmotic and temperature balances during 

exercise, which would also assist the recovery process following exercise. 

Ingesting 1.0 g_gibody wt on cessation of prolonged, constant pace 

running, with a second carbohydrate feeding after 2-h recovery, improved 

endurance capacity 4-h later_(chap pr 6). A 6.9% glucose-polymer solution 

achieved a similar level of rehydration over this period as was evident 
following ingestion of a non-carbohydrate placebo solution. Thus, differ- 

ences in performance during the second exercise bout were due to the 

provision of carbohydrate and electrolytes, as opposed to the body merely 

attaining an adequate level of rehydration. Increasing carbohydrate inges- 

tion to 3gg-lbody wt"2h-1 did not result in a more complete return in 

endurance capacity (Chapter 7). A high carbohydrate intake was assoc- 
iated with elevated carbohydrate metabolism before and during the second 

exercise bout, though exercise time to exhaustion was not improved. The 

processes by which exogemous carbohydrate is absorbed from the G-I tract, 

transported in the systemic circulation, and eventuall y carried across the 

sarcolemma into the muscle cell are not considered to be limiting (Reed et 

al, 1989). Thus, providing 3.0 g -CHO-kg-lbody wt-2h-1 would be sufficient to 

replace -97% of that estimated to have been oxidised during R1. If this was 

completely incorporated into muscle tissue, pre-R2 glycogen stores would 

be adequate to fuel -106 min of exercise, (predicted from changes in 

muscle glycogen during constant pace running at 70% VO2max reported by 

Tsintzas, 1993). However, run time during a second 'open-ended' bout of 

exercise represented -57% of this theoretical end point. Indirect respira-( 

to and blood biochemical evidence suggests that one rate-limiting step in 

post-exercise energy repletion lies in the conversion of glucose to glycogen.,,, 

Whilst the entry of pyruvate into the TCA cycle may also be limiting. This 

would partly account for elevated blood lactate concentrations observed 

prior to the second exercise bout-(Blom, 
-1,989b). 

Further research is required to confirm the fate of carbohydrate ingested in 

excess of current recommendations. Intestinal absorption and assimila- 

tion of exogenous carbohydrate may in fact become limiting during carbo- 



Chapter 8 199 

hydrate overfeeding. Whereas, the role of the liver in the disposal of an 
oral glucose load has largely been estimated due to difficulties in obtaining 
direct measurements, as has the contribubution of extra-hepatic tissue 

other than previously active muscle. Thus, -50% of the carbohydrate 
ingested following exercise remains unaccounted (Blom, 1989b). 

Ivy et al (1988a) demonstrated that the rate of glycogen resynthesis in 

muscle decreases_over-time, with the most ra id phase occuring immedi- 

ately post-exercise. Previous feeding patterns have either failed to take full 

advantage of this-rapid-phase-of-glycogen. resynthesis -(Burke et al, 1993a; 
Sherman et al, 1993; Simonsen et al, 1991), oxhave provided serial, carbo- 
ly ate-feedings-of-equal-size-, at-l=-or2h intervals_as_in_Chapters 6 and 7 
(Blom et al, 1987; Burke et al, 1993b; Ivy et al, 1988b; Keizer et al, 1987; Reed 

et al, 1989). However, a higher rate-of-glycogen- _resy_nthesis_is achieved 
during the initial -4- to_6 h_post-exercise- by administering carbohydrate 
feedings atýintervals of` 15 2Qmin (Doyle et al, 1993; Zachwieja et al, 1991). 
As such, research is also required to establish the maximal capacity of 
muscle to recover in terms of replenishing endogenous carbohydrate 

stores. This research needs to focus upon both the quantity of carbohyd- 

rate administered per feeding and the timing of post-exercise ingestion, 

with intake being prescribed in order to maximise the benefit of favour- 

able physiological conditions. It might be speculated that frequent feedings 

of variable size (ie. larger feedings on exercise cessation to 'prime' blood 

glucose availability and stimulate insulin secretion, followed by smaller 
feedings after -2 to 4-h recovery) may result in a more rapid replenish- 

ment of muscle glycogen. Thus, an upper limit of training load may be 

determined which is consonant with both an athlete's exercise capacity, as 

well as their capactiy to recover. The practical application of this informa- 

tion may assist in alleviating one contributory factor to overtraining. 

In conclusion, the replenishment of endogenous carbohydrate reserves 

plays a central role in post-exercise recovery, though it is not the only 
factor determining a return in exercise capacity. The restoration of favour- 

able fluid and osmotic balances, which ultimately define the physiological 

environment in which metabolism takes place, must also be addressed. 
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Appendices 

Appendix A: Health History Questionnaire 

NAME ........................... SS// ......... AGE ....... DATE 

...................... 

A: I 

ADDRESS ....................................... TELEPHONE (home) ........................ 

....................................... (office) ........................ 

....................................... DATE OF BIRTH ........................ 

OCCUPATION ..................... PLACE OF EMPLOYMENT .................................... 

MARITAL STATUS: MARRIED ....... SINGLE ........ 

DOCTOR ......................... ADDRESS ................................................ 

CHECK YES OR NO 

PAST HISTORY 
(Have you ever had? ) 

Yes No 
Rheumatic fever/heart murmur (1 () 
High blood pressure ........... (1 (1 
Any heart trouble ............ (1 (1 
Disease of arteries ........... (1 (1 

Varicose veins ................ (1 (1 
Lung disease .................. (1 (1 
Asthma ........................ (1 (1 
Kidney disease ................ (1 () 

Gout .......................... (1 (1 
Diabetes ...................... (1 (1 
Epilepsy ...................... (1 (1 
Thyroid disease ............... (1 (1 

PRESENT SY21PTOMS REVIEW 
(Have you recently had? ) 

Chest pain/discomfort ......... (] [1 
Shortness of breath ........... (J (J 
Heart palpitations ............ [] [J 
Skipped heart beats ........... (] [] 
Cough on exertion ............. (] [] 
Coughing of blood ............. II [] 
Dizzy spells .................. (] (J 
Frequent headaches ............ (] [J 
Frequent colds ............... (] [] 
Recurrent sore throat ......... (1 (J 
Back pain .......... ...... (] (] 
Arthritis/swollen, stiff, 

painful joints .............. [] (1 
Orthopaedic problems .......... [] EI 
Unexplained weight loss 

. (> 5 lb. ) ...... ........ (] [1 
Are you presently taking -. ". -" =-""' 

any medications? ........... [] "" [] 

FAMILY HISTORY 
(Have any of your immediate family or 
grandparents had? ) 

Yes No 
Heart attacks, 

who .................. age... [] [] 
High blood pressure ............ [J [] 
High cholesterol ............... (J (J 
Stroke ......................... [] [J 
Diabetes ...... ............ [] [1 
Congenital heart disease ....... (J (] 
Heart operations ............... (J [J 
Early death ..................... .... Other family illnesses .......... 
................................. 

.... 

.... 
................................. 

HOSPITALIZATIONS Yes ...... 

.... 

No ...... Year Reason 

Any other medical problems not already 
indicated? Yes ,..... No ...... 

LIST ALL CURRENT PRESCRIPTION AND NON-PRESCRIPTION MEDICATIONS '-(include' birth "control 

pills) -" - 

Medication Reason for Taking 
-z-For 

How Long? 

........ ................................................... ........ ................ ......... 

......................................................................................... 

...................... .............................. .... .. 

- 

. "_ .... ... ...... 
r? 

y... 
. 



Appendices A: 2 

Do'you currently smoke?: Yes .... No .... 

If so, what? ........... How much? ............. 

Have you ever quit smoking? Yes .... No .... How many years did you smoke?..... 

How much alcoholic beverage do you consume in one week? 

What type? Beer .......... Wine .......... Hard Liquor ........... 
cans glasses drinks 

How much caffeinated beverage do you consume per day? 

What type? Coffee ........ Tea .......... Soft Drinks .......... 
cups cups cans 

ACTIVITY LEVEL EVALUATION 

Dö'you engage in regular physical activity? Yes ......... No .......... 

If so what type? ............. ........................................................ 

How many days per week? ....................... 
How much time per day? (check one)Less than 15 minutes .... 15 to 30 minutes .... 

30 to 60 minutes .... More than 60 minutes 

Do you ever experience shortness of breath during exercise? Yes ..... No ..... 

Do you ever experience chest discomfort during exercise? Yes ..... No ..... 

If so, does it go away with rest? Yes ..... No ..... 

How would you describe your state of well-being at this time? 

Vex-1, very good ................... Poor ...................... [J 
Very good ......................... 

Very poor ................. [J 
Good .............................. 

[J Very, very poor ........... [J 
Neither good nor poor ............. [J 

EMOTIONAL WELL-BEING (Circle the response which most appropriately describes you): 

=R SELDOM SOMETIMES FREQUENTLY CONSTANTLY 

I feel sad or depressed 
I am under considerable stress 
I feel tense and anxious 
I worry about things 
I have an intense desire to achieve 
I am a restless sleeper 
I am worried about my health 
I feel like I cannot cope with 

daily stress 
I feel like I need to get away 

1 2 3 4 5 
1 2 3 4 5 
1 2 3 4 5 
1 2 3 4 5 
1 2 3 4 5 
1 2 3 4 5 
1 2 3 4, 5 

1 2 3 4 5 
1 2 3 4 5 

FOR OFFICE USE ONLY 
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Appendix B: Glucose Assay 

A: 3 

A colourimetric method was applied (Werner, Rey and Wielinger, 1970) 
based upon the following principles: 

(i) Glucose + 02 + H2 0 G" d Gluconate + H2O 

(ii) H2O + ABTS PO Coloured Complex + H2O 

Normal Values' 

Blood: 3.89 - 5.55 mmol-1-1 

Solutions* 

(a) Perchloric acid : 2.5 %w/v 

(b) Phosphate buffer : 100.0 mmol-1-1, pH 7.0 
(c) P. Od : > 0.8 U"m 1-1 
(d) G. Od : < 10.0 U"m 1-1 
(e) ABTS : 1.0 mg"m 1-1 
(f) Standard : 5.55 mmol"1-1 

A Boehringer Mannheim GmbH Diagnostica kit was used for the 

solutions and standard in this assay 

Deproteinisation 

A 20 Eil capillary blood sample was deproteinised in 200 µl of 0.38 mM 
perchloric acid. This was mixed thoroughly (Fisons Scientific Apparatus 
Whirlimixer, Model WM/250/F), centrifuged (Eppendorf, Model 5414), 

and stored at -200C until the assay was performed. 

' Cited Boehringer Mannheim GmbH Diagnostica 
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Procedure 

1. The samples, standard and reaction mixture (RxM) were removed 
from the freezer and refridgerator respectively, and allowed to warm 
to room temperature for at least 1-h. 

2. The samples were then mixed thoroughly and centrifuged. 
3.20 pl of standard or supernatant was placed in a test tube with 1.0 ml 

of RxM and mixed well (use RxM for blank). 
4. The tubes were then left to incubate for at least 20 min at room 

temperature. 
5. An Eppendorf photometer (Model 1101M) was then used to measure 

the absorbance of the standard and samples at Hg 436 nm, in a 

cuvette of 1.0 cm light path. 
6. The glucose concentration of each sample was calculated using the 

following equation: 

c=5.55 *A sample ... 
(mmoll-1) 

A standard 

Coefficient of Variation (n=20) 

Blood Glucose: 1.4% 

Note : The coefficient of variation (CV) was determined in this, 
and subsequent biochemical analyses reported in this 
thesis, on multiple aliquots drawn from a single sample, 
(where n refers to the number of aliquots from which the 
CV was calculated). 
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Appendix C: Lactic Acid Assay 

The method adapted from Maughan (1982) was based upon the release of 
NADH during the following reaction: 

Lactate + NAD L_ý Pyruvate & NADH 

Solutions 

(a) Perchloric acid: 2.5 % w/v 
(b) Hydrazine buffer: (1.1 M, pH 9.36) 

1.3 g hydrazine sulphate 
5.00 g hydrazine hydrate 

0.20 g disodium ethylenediaminetetra 
acetic acid (EDTA) 

- in 100 ml of distilled water (DW) 
(c) Reaction mixture (RxM): 2.0 mg NAD+ 

10.0u1LDH 

- for each ml of hydrazine (200 ul of 
hydrazine buffer required per tube) 

NB The RxM was always prepared immediately prior to 

use 

Standards 

These were made from 1.0 M Sodium L-Lactate stock solution providing 
concentrations of 0.5,1.0,5.0,10.0, and 15.0 mmol-l-1 

Deproteinisation 

The capillary blood samples were deproteinised as described in the glucose 

assay. 
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Procedure 

1. Samples and standards were removed from the freezer and allowed 
to thaw at room temperature for at least 1-h. 

2. Samples were then mixed thoroughly using a whirlimixer and 
centrifuged for 3 min. 

3.20 ul of either the standard or supernatant was then transferred into a 

glass fluorimeter tube, whereupon 200 µ1 of the RxM was added. 
4. The tubes were mixed thoroughly and allowed to incubate for 30 min. 
5.1.0 ml of Lactate Diluent (0.07 M HCl) was then added to each tube in 

order to stop the reaction and the contents of the tubes were once 

again mixed thoroughly. 
6. The samples were then read against the blanks and standards with a 

Locarte (Model 8-9) flourimeter. 

7. The lactate concentrations were then calculated on a BBC Master 

Series microcomputer using software developed in the department. 

Coefficient of Variation (n=20) 

Blood Lactate: 1.9% 
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Appendix D: Ammonia Assay 

A: 7 

A colourimetric method was applied (Da Fonseca-Wollheim, 1973) based 

upon the following principle: 

a-oxoglutarate + NH4+ + NADHPCLD14 1, L-glutamate + NADP+ + H2O 

Normal Values 9 

Men: 25-94 mg-dl-1; 14.7-55.3 µmol"1-1 
Women: 19-82 mgdl-1; 11.2-48.2 µmol"1-1 

Solutions* 

(a) NADPH 
(b) Buffer/ substrate: triethanolamine buffer 

a-oxoglutarate 
ADP 

(c) GLDH 

A Boehringer Mannheim Diagnostica kit was used for the solutions 

of this assay 

Preparation of Reagent Solution 

Dissolve contents of bottle 1 in 2.0 ml of solution 2 and store in a closed 
bottle. Stable for 24-h at +15°C to +25°C. 

Cited Boehringer Mannheim GmbH Diagnostica 
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Procedure 

Store plasma samples at -70°C. Perform assay as soon as possible. 

Read on wavelength Hg 365 nm in a cuvette of 1.0 cm light path; measure 
against air. This is a disappearance assay, thus set zero, ie. RB reading Ai, 

as 2.00. 

NB Always keep vessels containing plasma and all solutions firmly 

closed, since ammonia is readily taken up from the air. 

1. Centrifuge samples on thawing. 

2. Pipette 200 µl of plasma and 400 p1 of reagent (combination of 1 and 2) 

into plastic lactate tubes. Cap tubes and mix. 
3. Use 600 ul of reagent for reaction blank (RB). 

4. Read after 10 min (A1). 

5. Add 4.0 µl of GLDH using a positive displacement pipette. Recap 

tubes and mix. 
6. Read after 10 min (A2)- 

7. Add 4.0 µl GLDH using a positive displacement pipette. Recap tubes 

and mix. 
8. Read after 10 min (A3). 

9. The ammonia concentration of each sample is calculated using the 
following equations: 

(Al - A2)-(A2 - A3) = DA RB or AA sample 

c= 863 * (AA sample -AA RB) ..... imol"1-1 

Coefficient of Variation (n=21) 

Plasma Ammonia: 2.17o 
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Appendix E: Electrolytes (Na+, K+) 

A: 9 

Performed on plasma using flame photometry (Ciba Corning, Model 
M435) 

Normal Values 10 

PlasmaNa+: 135 - 145 mmol. 1-1 

PlasmaK+: 3.5 - 5.3 mmol. 1-1 

Solutions 

RB : 3M Lithium diluted 1: 200 to give 15 mmol-l-1 
(5.0 ml 3M Lithium in 1.0 litre of DW) 

Standard : 140 mmol l-1 Na+; 5 mmol-l-1 K+ diluted 1: 200. 
(0.5 ml in 100 ml of 15 mmol-l-1 lithium'working' 

solution) 

Calibration 

A zero base-line was achieved against RB, whereas the one point standard 

solution (ie. 140 mmol"1-1 Na+; 5 mmol-1-1 K+) established the working 

range. Repeat until readings are stable. 

NB Re-calibrate once every 20 samples 

Procedure 

1. Pipette 30 µl of sample or standard into bijou bottles. 

2. Add 6 ml of 15 mmol"1-1lithium solution, mix and read. 

Coefficient of Variation (n=15) 

Plasma Sodium: 0.9% 

Plasma Potassium: 0.8% 

10 Nottingham City Hospital, Nottingham, UK, normative data, personal 
communication 
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Appendix F: Haemoglobin Assay 

A cyanmethaemoglobin method was used (Van Kampan and Zijlstra, 

1961) which is a colourimetric method based on the following principle: 

Haemoglobin + Cyanide + Ferricyanide -----> Cyanmethaemoglobin 

Normal Values"' 

Men: 14-18 g"d1-1; 8.7 - 11.2 mmol-1-1 
Women: 12-16 g"dl-1; 7.5 - 9.9 mmol-1-1 

Solutions* 

Drabkins reagent: 1.63 mmol"1-1 phosphate buffer 

0.75 mmoll-1 potassium cyanide 
0.60 mmo1-1-1 potassium ferricyanide 

5.0 % detergent 

The above were dissolved in 1000 ml of DW. Stable for 6 months at +15°C 

to 250C if stored in a brown glass bottle. 

* The reaction mixture for this assay was provided by a Boehringer 

Mannheim GmbH Diagnostica kit 

" Cited Boehringer Mannheim GmbH Diagnostica 
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Procedure 

1.20 pul of blood was added to 5.0 ml of Drabkins reagent and mixed well 
to avoid clumping. 

2. The solution was allowed to incubate at room temperature for at least 
3 min, but not longer than 24-h. 

3. The absorbance (A) of the samples was measured using an Eppendorf 

photometer (Model 1101M) at Hg 546 nm, in a cuvette with a 1.0 cm 
light path. Drabkins reagent was used as a blank to zero the 

photometer. 
4. Haemoglobin concentrations (c) of the samples were calculated using 

the following equation: 

c= (37.2 * A) + 0.06 ... (g"100 ml-1) 

Coefficient of Variation (n=10) 

Blood Haemoglobin: 0.7% 



Appendices 

Appendix G: Free Fatty Acids Assay (method-i) 

A: 12 

Method-i was based upon extraction of FFA from plasma using inorganic 

solvents, as modified from Chromy, Gergel, Voznicek, Krombholzova and 
Musil (1977). 

Solutions 

(a) Extraction solvent : 500 ml volumetric flask 

(CHM) 280 ml chloroform 
210 ml n-heptane 
10 ml methanol 

(b) Stable copper reagent: 500 ml volumetric flask 

1.878 g sodium citrate (3.756 g"500 ml-1) 
16.775 g triethanolamine (33.55 g-500 ml-1) 
8.125 g copper nitrate (16.25 g-1-1) 
62.500 g sodium chloride (125.0 g-500 ml-1) 

- Make up to 250 ml (500m1), with 
D W, and keep refridgerated. Stable for 6 

months 
(c) TAC'2 : 

(d) Palmitic acid: 

Dissolve 50 mg 2-thiozolylazo-P-cresol (2- 

TPC) in 500 ml of ethanol. Filter if 

necessary 

mw 256.43. For a 1.0 M solution make up 
to 1000 ml 256.43 g of palmitic acid with 
CHM 

Thus, 4.0 mM= (0.25643 g* 4) in 1000 ml = 
1.0257 g in 1000 ml =(1.0257 / 10) g for 100 

ml of CHM (0.10257 g) 

11 Noma, Okabe and Kita (1973) 
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Standards 

From 4 mM stock solution of palmitic acid 

Stock solution (ml) CHM (ml) mM 
in triplicate ... Si 0.25 4.75 0.2 

S2 0.50 4.50 0.4 

S3 1.00 4.00 0.8 

S4 1.25 3.75 1.0 

Keep refridgerated in glass, screw-topped bottles. Seal over caps with 

parafilm 

Procedure 

1. Use Oxford pipettor to deliver 3.0 ml of CHM into screw-capped glass 
tubes. 

2. Add 50 ul of plasma or standard, CHM for blank. 
3. Add 1.0 ml of stable copper reagent. 
4. Shake vigurously for 10 min, and then centrifuge at 5 rpm for 10 

min. 
5. Transfer 1.0 ml of upper phase into 5.0 ml glass tube, containing 0.25 

ml of TAC. Cap tube and mix well. 
6. Read at Hg 578 nm. 
7. The FFA concentrations were then calculated on a BBC Master Series 

microcomputer using software developed in the department. 

NB Acid washed tubes give more consistent results. 

Coefficient of Variation (n=20) 

Plasma FFA: 2.6% 
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Appendix H: Free Fatty Acids Assay (method-ii) 

A: 14 

Method-ii applied a colourimetric approach (Shimizu, Yasui, Tani and 

Yamada, 1979; Mulder, Schouten and Popp-Snijders, 1983) based upon the 

following principle: 

(i) R COOH + ATP + CoA 
-Acs 

Acy1-CoA + AMP + PP (FFA) 

(ii) Acyl-CoA + 02 ACOD, 2,3 trans-Enoyl-CoA + H2 02 

(iii) 4-Aminoantipyrine + MEHA + 2H2 02 PCCORQD + 4H2 0 

Where, PP ... pyrophosphate 
ACS ... acyl-CoA synthetase 
ACOD ... acyl-CoA oxidase 
MEHA ... 3-methyl-N-ethyl-N-(b-hydroxyethyl)-alanine 
RQD ... red quinoneimine dye 

Normal Values 13 

The plasma concentration of FFA is subject to large physiological varia- 
tions and is particularly high after eating. 

Range: 0.3 - 1.0 mmol"1-1(0.3 - 1.0 mEq"1-1; 0.1 - 0.23 g-1-1) 

Solutions* 

(a) Colour reagent A: Acyl-CoA synthetase (300 U4-1) 

(RA) Ascorbate oxidase (1500 U-1-1) 

Coenzyme A (8.5 mmol-1-1) 
Adenosine triphosphate (5.0 mmo1-1-1) 

4-Aminoantipyrine (1.5 mmo1-1-1) 

13 Cited Wako Chemicals GmbH 
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(b) Solvent: Phosphate buffer (50 mmol"1-1; pH 6.9); 

(for RA) Magnesium chloride (3.0 mmol-l-1); Triton X- 

100 (0.2%) 

(c) Colour Reagent B: Acyl-CoA oxidase (6600 U. 1-1) 

(RB) Peroxidase (7500 U-1-1) 

3-Methyl-N-ethyl-N-(b-hydroxyethyl-aniline) 

(d) Solvent: 
(for RB) 

(e) FFA Standard: 

(1.2 mmo1-1-1) 
Malemide (10 mmo1-1-1) 
Phenoxyethanol (0.3% v/v) 
Triton X-100 (0.1%). 

Oleic acid (1.0 mmo1-1-1) 

A Wako Chemicals GmbH kit was used for the solutions in this assay 

Preparation of Reagent Solutions 

1. Dissolve one bottle of RA in 10 ml Solvent for RA, and mix well. 
Stable for 5 days at 2-8°C; stable for 6 to 8-h at room temperature up to 

2500. 

2. Dissolve one bottle of RB in 20 ml Solvent for RB B, and mix well. 
Stable for 5 days at 2-8°C; stable for 6 to 8-h at room temperature up to 

2500 

Procedure 

1. Centrifuge samples on thawing. Bring the colour reagent solutions to 

room temperature before use. Protect from sunlight. 
2. Pipette 0.015 ml of standard (e) and sample into test tube. 
3. Add 0.375 ml of RA (a). Add 0.015 ml of DW. Mix well, and incubate 

for exactly 10 min at 370C or 15 minutes at 250C 

4. Add 0.750 ml of RB (3). Mix well, and incubate for exactly 10 min at 

37°C or 15 min at 250C 

5. Read on wavelength Hg 546 nm, the absorbance of the standard 
(Astandard) and samples (A,,,,,, 

pie) against a reagent blank. Exceeding 

the incubation times will give falsely elevated values. The reaction 

colour is stable for 30 min at room temperature. 
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6. The FFA concentration (Conc. ) of each sample is calculated using the 
following equation: 

Conc. =A ple * Standard concentration (mmol-1-1) 
Astandard 

Coefficient of Variation (n=20) 

Plasma FFA: 1.5% 
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Appendix I: Glycerol Assay 

A: 17 

The glycerol assay applied a method as modified from Laurell & Tibling 

(1966). 

Solutions 

(a) Zinc sulphate: 6.25 g ZnSO4-7H20 (mw 287.54) in 250 ml 
0.087 M of DW 

(b) Barium hydroxide: 6.55 g Ba(OH)2-8H20 (mw 315.4) in 250 
0.083 M ml of DW 

(c) Cysteine: 35.0 mg cysteine in 1.0 ml of 0.4 M NaOH 
0.2 M (prepared daily) 

(d) Hydrazine-HC1 buffer: 1.0 M hydrazine, ie 19.0 ml hydrazine 
1.0 M (kept at 4°C) hydrate (wt"m 1-11.03 g) in 250 ml DW 

(64 % solution), with 1.5 mM MgC12, ie 
76.2 mg in 250 ml of DW. 

Adjust pH with HCl to 9.4 
(e) RxN mixture: 100 µl per tube (prepared daily) 

-12 mg ATP, 20 mg NAD dissolved in 0.2 

ml DW per ml of RxN mixture 

-Add 100 µl cysteine 0.2 M 

700 µl Hz-HC1 buffer 1.0 M 
1.0 pl glycerokinase 
5.0 pl glycerine-3-phosphate 

dehydrogenase 

(f) Diluent: 0.01 M NaOH with 1.0 mM EDTA 

-ie 0.4 g NaOH with 372.24 mg EDTA 

made up to 1000 ml with DW 
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Standards 

1. Prepare approximately 4.0 mM solution, ie about 36.8 mg in 100 ml 
D W. Calculate exact molarity from weight. 

2. Dilute ten-fold to give approximately 0.4 mM. 
3. Take approximately 0.4 mM as 100 %, then... 

0.4 mM (ml) distilled water (ml) 

10% ... is ... 0.25 2.25 

20 % 0.5 2.0 

407o 1.0 1.5 

607o 1.5 1.0 

80 % 2.0 0.5 

Procedure 

1. Pipette 0.25 ml zinc sulphate into small centrifuge tubes. 
2. Add 50 µl of sample or standard. 
3. Add 0.25 ml of barium hydroxide. Mix immediately. 

4. Chill in freezer at -200C, for 5 min. After which, centrifuge for 5 

min. 
5. Pipette 200 iii of supernatant into acid-washed flourimetric tubes. 
6. Add 100 µl of RxN mixture. Mix, cap and incubate for 60 min. 
7. Add 1.0 ml of diluent to stop the reaction, and read on medium slit 

width. 
8. The glycerol concentrations were then calculated on a BBC 

MasterSeries microcomputer using software developed in the 

department. 

Coefficient of Variation (n=20) 

Plasma Glycerol: 2.5% 
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Appendix J: Urea Assay 

An enzymatic colourimetric method was used (Fawcett and Scott, 1960), 

being a modified version of Bertholt's reaction. The test principle is as 
follows: 

Urea +2 H2O Urease, Ammonium Carbonate 

Ammonium ions react with sodium hydroxide and hypochlorite to yield a 

coloured complex. 

Normal Values " 

Serum: 10-50 g. d1-1; 1.7-8.3 mmol-1-1 

Solutions* 

(a) Solution 1: Phosphate buffer (120 mmol"1-1; pH 7.0) 
Urease (>5000 U"1-1) 

Sodium salicylate (62.5 mmol-1-1) 
Sodium nitroprussiate (5.00 mmol-1-1) 
EDTA (1.48 mmol-1-1) 

(b) Solution 2: Sodium Hyochlorite (6.00 mmol-1-1) 
Sodium hydroxide (150.00 mmol-1-1) 

(c) Standard: Urea (30 mg-100 ml-1) 

A Boehringer Biochemia Robin kit was used for the solutions of this 

assay 

" Cited Boehringer Biochemia Robin 
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Preparation of Reagent Solutions 

1. To ensure optimal dissolution of the reagent, empty the contents of 

one bag into a vessel, add 50 ml of DW as a single portion and mix 

thoroughly. Stable for 4 weeks at +2 to 8°C, 8-h at +15 to 25°C, when 

stored in a dark bottle. 

2. Dilute contents of bottle (50 ml), with 450 ml of DW. Stable for 6 

months at +2 to 8°C, 3 months at +15 to 25°C, when stored in a 
dark bottle. 

3. Use solution undiluted. Stable up to the expiry date specified when 

stored at +2 to 8°C 

Procedure 

NB The reaction is extremely sensitive to ammonium salts; use perfectly 
dean glass only. 

1. Centrifuge samples on thawing. 
2. Pipette 0.010 ml of standard and sample into test tubes. 
3. Add 1.25 ml of Solution 1. Mix, and incubate for at least 5 min at 

+20 to 25°C, or 3 min at +37°C 
4. Add 1.25 ml of solution 2. Mix, and incubate for at least 10 min at +20 

to 25°C, or 5 min at +37°C. 
5. Read on wavelength Hg 578 nm in a cuvette of 1.0 cm light path, the 

absorbance of the standard (Astandard), and samples (A.. 
�P1 

), against 

a reagent blank. The reaction colour is stable for at least one hour. 

6. The urea concentration (c), of each sample is calculated using the 
following equation: 

c= Asampie * 30 ... mg urea-100 ml-1 
Astandard 

Coefficient of Variation (n=15) 

Plasma Urea: 1.0% 
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Appendix K: Replay - Composition 

Replay (BASS Plc) 

Ions (meq-m 1-1) 

Sodium 3.00 
Potassium 1.10 
Calcium 0.80 

Magnesium 0.35 
Chloride 1.10 
Sulphate 0.40 
Phosphate 0.25 

Sugars (g"100ml-1) 

Dextrins 6.6 

Maltotriose 0.0 
Maltose 0.0 
Glucose 2.6 
Sucrose 0.7 
Fructose 6.6 

Total 16.5 

Fruit juice content = 20% 
Energy value = 262.1 kJ"100ml-l 
Glucose content equivalent = 804 mmol-1-1 

A: 21 
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Appendix L: Lucozade Sport - Composition 

Lucozade Sport (Smithkline Beecham Plc) 

Ions (mg -100m1-1) 

Sodium 52 

Potassium 14 

Calcium 6 

Magnesium 1 

Sugars (g"100m1'1) 

Sucrose 2.9 
Maltodextrin 2.7 
Orange Fruit 1.3 

Total 6.9 

Energy value = 110 kJ "100ml-1 
Osmolality = 269 mosmol"kg-1 

Glucose content equivalent = 384 mmol-1-1 

A: 22 

Note : Non-carbonated 
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Appendix M: Lucozade Original - Composition 

Lucozade Original (Smithkline Beecham Plc) 

Sugars (g"100m1-1) 

Dextrose 5.8 

Maltose 3.3 

Maltotriose 2.6 

Tetrasaccharides 1.8 

Pentasaccharides 1.3 

Higher sugars 4.0 

Total 18.8* 

Energy value = 309 KJ"100ml-1 
Osmolality = 630 mosmol"kg-l 
Glucose content equivalent = 916 mmol-1-1 

(Note: * 19.3 gl OOm1-1 as monosaccharides) 

A: 23 

Note : Non-carbonated 
Caffeine free 


