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ABSTRACT 

The thesis describes techniques of detection, coding and estimation, for use in 
high speed serial modems operating over fading channels such as HF radio and land mobile 
radio links. The performance of the various systems that employ the above techniques are 
obtained via computer simulation tests. 

A review of the characteristics of HF radio channels is first presented, leading 
to the development of an appropriate channel model which imposes Rayleigh fading on the 
transmitted signal. Detection processes for a 4.8 kbit/s HF radio modem are then 
discussed, the emphasis, here, being on variants of the maximum likelihood detector that is 
implemented by the Viterbi algorithm. The performance of these detectors are compared 
with that of a nonlinear equalizer operating under the same conditions, and the detector 

which offers the best compromise between performance and complexity is chosen for 
further tests. 

Forward error correction, in the form of trellis coded modulation, is next 
introduced. An appropriate 8-PSK coded modulation scheme is discussed, and its 

operation over the above mentioned HF radio modem is evaluated. Performance 

comparisons are made of the coded and uncoded systems. 

Channel estimation techniques for fast fading channels akin to cellular land 

mobile radio links, are next discussed. A suitable model for a fast fading channel is 
developed, and some novel estimators are tested over this channel. Computer simulation 
tests are also used to study the feasibility of the simultaneous transmission of two 4-level 

QAM signals occupying the same frequency band, when each of these signals are 
transmitted at 24 kbit/s over two independently fading channels, to a single receiver. A 

novel combined detector/estimator is developed for this purpose. 

Finally, the performance of the complete 4.8 kbit/s HF radio modem is 

obtained, when all the functions of detection, estimation and prefiltering are present, where 
the prefilter and associated processor use a recently developed technique for the adjustment 
of its tap gains and for the estimation of the minimum phase sampled impulse response. 
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CHAPTER 1 

INTRODUCTION 

1.1 BASIC DEFINITIONS 

When historians of the future chronicle the events of the current millennium, 
they may probably look back to the 19th century as the era which sowed the seeds of the 
'communications revolution'. The invention of the telegraph - Samuel Morse (1837), the 
telephone - Alexander Graham Bell (1874) and the establishment of the existence of radio 
waves - Heinrich Hertz (1887), are three events that would amply justify their thinking. 
Confirmation of the existence of radio waves, in particular, has given rise to innumerable 

possibilities for communication over very long distances. These possibilities were further 

confirmed in 1901, when Guglialmo Marconi successfully received at Newfoundland in 
Canada, a radio signal that had been transmitted from Cornwall in England. 

Since then, radio channels have been used with increasing regularity for the 
transmission of information. A perennial problem faced by radio communication systems 
designers however, has been the fact that radio channels introduce adverse and time 

varying effects on the information bearing signal. These problems are never more 
amplified than when a phenomenon known as signal fading occurs. When a signal is 

transmitted over a radio channel, it may reach its destination via several paths with differing 

lengths and thus may be received as a sequence of signals delayed in time. This 

phenomenon is known as multipath propagation 111. As a consequence of multipath 

propagation, the time delayed signals at the receiver may interfere with each other in either a 

constructive or destructive manner. Constructive interference is accompanied by a 

corresponding gain in the resultant signal level, while destructive interference is 

accompanied by a corresponding loss. This variation of the signal at the receiver is known 

as signal fading, and radio channels exhibiting this phenomenon are sometimes known as 
fading channels. 

Fading channels may themselves be broadly categorised as slow fading 

channels and fast fading channels. An example of the former is the high frequency (HF) 

radio channel, which normally occupies a band of frequencies between 3 and 30 MHz. 

(generally referred to as the HF radio spectrum). A typical fast fading channel is a cellular 

mobile radio channel which occupies a frequency band close to 900 MHz [2]. 

A device that performs the various functions needed for the transmission and 
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reception of data is called a modem. When the data is ýrocESSýd d, gita. y , the modem itself 
is called a digital modem. Signal detection, error control coding and channel estimation are 
three of the many possible functions that may be performed in a digital modem. This 
thesis is concerned with the development of techniques of detection, coding, and estimation 
for digital modems operating over HF radio channels and fast fading channels. 

1.2 BACKGROUND 

The conventional HF radio modems are parallel modems, where transmission 
takes place over a number of subchannels within a3 kHz. band, at a fairly low (eg. 75 
baud) rate [3]. This tends to nullify to a great extent, the effects of multipath propagation. 
However, the performance, in general, of parallel HF radio modems have been shown to 
be inferior to that of their counterpart, the serial modem [4]. Indeed, with the advent of 
faster processors and new technology in the form of optimum detection schemes and faster 

adaptation algorithms, the emphasis is shifting inexorably towards the design of serial 
modems for HF radio communications. 

In high speed, serial data transmission over a3 kHz. band in the HF radio 
spectrum, one of the major problems facing the modem designer is that of eliminating the 
intersymbol interference (which is caused by multipath propagation) in the received signal. 
Of course, the fact that the channel characteristics vary with time, merely serves to 

compound this problem. Traditionally, such problems have been overcome by equalizing 
the received signal before passing it on to a detector [5]. The time varying nature of the HF 

channel is accommodated by making the equalizer adaptive, that is, by using various 

adaptation algorithms to adjust the tap gains of the equalizer at the appropriate time instants. 

However, the optimum detection process for a sequence of data symbols transmitted over a 

non-ideal, bandlimited channel which introduces intersymbol interference and additive 

white Gaussian noise, and where the transmitted symbols are equally likely to have any one 

of their possible values, is maximum likelihood detection. It has been shown that a 

maximum likelihood detector can be efficiently implemented via a recursive algorithm 
known as the Viterbi algorithm, and in these cases, it is alternately known as a Viterbi 

detector [5,6] 
. 

Although an implementable design, the Viterbi detector suffers from the 

problems of excessive storage requirements and high computational complexity, whenever 

a multilevel signal is used and/or the sampled impulse response of the channel has more 
than a few components. A class of detectors that reduce this problem to a certain extent, 

are known as near maximum likelihood detectors. Near maximum likelihood detectors are 
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derivatives of the Viterbi detector and although suboptimal, it has been shown that [8J, 

when operating on a binary or quaternary signal, they are not significantly inferior to 
Viterbi detectors, in terms of their tolerance to additive white Gaussian noise. This thesis 
examines the performance of various near maximum likelihood detectors, operating in a 4.8 
kbit/s HF radio modem employing 4-level quadrature amplitude modulation. 

The performance of a modem may be improved by introducing redundancy into 

the transmitted message and exploiting this redundancy at the receiver in a process known 

as error control coding 191. When the coding scheme has the ability to correct as well as 
detect errors, it is known as error correction coding, and when no feedback path to the 
transmitter is used for this purpose, it is known as forward error correction coding (FEC). 

Forward error correction schemes are generally accompanied by a 
corresponding increase in the required transmission bandwidth, or a corresponding 
decrease in the transmitted symbol rate. Thus, power efficiency may be achieved, but only 

at the expense of bandwidth efficiency. However, in 1976, Ungerboeck proposed a 
forward error correction scheme that does not change either the bandwidth or the symbol 

rate 1101. This type of coding is now widely known as trellis coded modulation (TCM) 
Convol. Atw+nc-Il [11], a name arising from the fact that the1encoder and modulator are now treated as one 

entity. 

Trellis coded modulation systems gain an advantage over the corresponding 

uncoded modulation systems, when operating over additive white Gaussian noise 

channels. Indeed, they have been proved to be very successful in both satellite and 

telephone modems, [12,131 and their performance over the more volatile, fading, HF radio 

channels, is thus of tremendous interest. This thesis examines the performance of a 

suitable TCM system, when used in a 4.8 kbit/s HF radio modem. 

A near maximum likelihood detector requires knowledge (as indeed does a 
Viterbi detector), not only of the possible transmitted data symbol values, but also of the 

sampled impulse response of the channel. The possible transmitted data symbol values are, 

of course, determined by the particular modulation method that is used. The sampled 
impulse response of radio channels, however, are continuously varying quantities and as 

such, even if determined at the beginning of the transmission, cannot be assumed to be 

constant over the duration of the transmission. The receiver, therefore, must somehow 

gain knowledge of the sampled impulse response of the channel at every appropriate 
sampling instant. 

One approach toward solving this problem has been to employ a prefilter before 
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the detector, where the function of the prefilter is to generate a known, shortened impulse 
response, in the course of adapting itself to the time varying channel according to some 
error (least mean square - LMS, recursive least square - RLS) criterion [ 14,15]. However, 
this approach has its problems. Firstly, in trying to shorten the impulse response, the 
prefilter may cause some amplitude equalization of the channel, thereby enhancing the noise 
at its output. Secondly (and more importantly), the convergence of the tap coefficients, 
regardless of the particular algorithm (LMS, RLS, etc. ) used for adaptation, is likely to be 
too slow for operation in a 4.8 kbit/s HF radio modem. 

The alternative approach is to track the sampled impulse response of the channel 
with the aid of a channel estimator [16], which can be made to operate well, and without 
any complex equipment. A channel estimator does not perform any linear modification of 
the channel itself, and as such, fast convergence of its taps may be achieved with relatively 
simple algorithms. A channel estimator that is very simple to implement is the gradient 
estimator [17] which uses the least mean square (LMS) algorithm [181 to give an estimate 
of the sampled impulse response of the channel. However, the gradient estimator assumes 
that the channel is time invariant, or that it varies only very slowly with time. As such, it 

needs to be modified for effective use over fading channels. A modification of the gradient 
estimator that has been developed for HF radio links involves the prediction of future 

values of the sampled impulse response of the channel [191. This thesis examines the 

performance of the above mentioned modified gradient estimator when operating over fast 
fading channels, and develops a novel estimator for use over slow, fast and very fast 
fading channels. The thesis also develops a novel combined detector-estimator for 

operation over fast fading channels. 

Another requirement for near optimum performance in a near maximum 
likelihood detector, is that the magnitude of the first few components of the sampled 
impulse response of the channel should be large, relative to the other components. If the 
first component is the largest, then the sampled impulse response is referred to as a 

minimum phase response [5]. If the response is not minimum phase (or near minimum 

phase), then the near maximum likelihood detector must be suitably modified to take this 
into account, or some sort of processing is required ahead of the detector, to make the 

sampled impulse response of the channel minimum phase. Tests have shown that the 
former method leads to very complex systems which appear not to be able to handle severe 

phase distortion [20], and hence, the near maximum likelihood detectors in this thesis are 
designed on the basis that the sampled impulse response of the channel is minimum (or 

near minimum) phase. 

The sampled impulse response of the channel may be made minimum phase 
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by means of a prefilter located at the input to the detector [51 
. An adaptive linear 

feedforward transversal filter that performs the function of this prefilter, has been recently 
developed for telephone modems [211. The sole input used by this filter is an estimate of 
the sampled impulse response of the channel, which, of course, is provided by the channel 
estimator. The final work in the thesis describes the operation and performance of the 
previously mentioned 4.8 kbit/s HF radio modem, when the detector operates in 

conjunction with an estimator, and the adaptive linear feedforward transversal filter. 

1.3 OUTLINE OF THESIS 

The thesis begins, in Chapter 2, with a description of the HF radio channel, and 
the possible signal impairments that could occur when a data signal is transmitted over such 
a channel. A model of the HF radio channel is developed and verified here, for use in the 
tests carried out in the thesis. 

Chapter 3 gives the derivation for the model of a QAM data transmission 

system, and extends this theory to obtain a model of a QAM data transmission system that 

can be used over HF radio links. 

Chapter 4 describes near maximum likelihood detection in some detail. The 

operation of the near maximum likelihood detectors used in the thesis is described, and the 

performance of these detectors, when operating in a 4.8 kbit/s HF radio modem, is 

assessed. Perfect channel estimation is assumed here, and the channel is made a minimum 

phase by some 'ideal' method. As such, the tests do not assume the use of a prefilter or a 

channel estimator. 

The design of trellis codes for TCM is described in Chapter 5. A code suitable 
for transmission over HF radio links is obtained, along with two corresponding near 

maximum likelihood decoding schemes. This code is used to compare the performance of 
trellis coded modulation against that of uncoded modulation, when both the coded and 

uncoded systems are used in a 4.8 kbit/s HF radio modem. 

Chapter 6 considers the problem of channel estimation for fast fading channels. 
The theory is given for the modified gradient estimator and a novel estimator known here as 
the 'unbiased estimator', where the latter could be adjusted to be used over slow, fast or 

very fast fading channels. A novel, combined detector-estimator is also developed in this 
chapter. The performance of the estimators is first compared under the assumption of 
perfect detection, after which detection is introduced to obtain and assess the performance 



6 

of the complete system. Two cases are considered here, these being the reception of one, 
and two signals over the given frequency band. In the latter case, the two signals are 
assumed to be fading independently, and no error correction or diversity is used to improve 

the performance of the system. 

The final work in the research project is contained in Chapter 7 of the thesis, 

and concerns the operation and performance of the 4.8 kbit/s HF radio modem, when all 
the functions of detection, prefiltering and estimation are assumed to be present. 

Chapter 8 gives a summary of the project and presents the main conclusions 
drawn from the research. 

The thesis contains several appendices on descriptions of various algorithms, 

proofs and techniques, all of which, in the author's view, would have impeded the flow of 

the discussion, had they been included in the main text. The appendices also include 

source code listings of the main computer programs that were developed by the author, 
during the course of the research. All programs are in Fortran 77, and conform to the 
ANSI standards. 
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CHAPTER 2 

THE HF RADIO CHANNEL 

2.1 INTRODUCTION 

The spectrum between 3 and 30 MHz. is termed the high frequency (HF) radio 
spectrum. A voiceband, HF radio channel normally occupies about 3.5 kHz within this 
spectrum. In such channels, radio waves are propagated primarily due to reflection from 

the ionosphere. Thus, in order to model an HF radio channel, it is first necessary to have 

some sort of understanding of the ionosphere and its related phenomena. 

Toward this end, the chapter begins with a brief description, in Section 2.2, of 
the formation and composition of the ionosphere. Section 2.3 explains the mechanics of 
radio wave propagation through the ionosphere. This explanation is somewhat simplified, 
(for example, it assumes a flat earth! ), but nevertheless, should serve its purpose in 
introducing the reader to the nature and characteristics of the ionosphere. 

Section 2.4 discusses the most common and significant signal impairments 

which occur on HF radio channels. These are discussed in some detail since any HF 

channel model should be capable of simulating such impairments and as such, a proper 

understanding of this is deemed necessary. Section 2.5 classifies the HF radio channels 

used in the thesis and in Section 2.6, the channel model is developed. The chapter ends in 

Section 2.7, with the verification of the simulated channel model. 

2.2 THE IONOSPHERE 

The ionosphere is a region of ionized air molecules, lying upwards of about 50 

km. above the surface of the Earth. Free electrons exist here in sufficient abundance to 
influence the propagation of radio waves [1-4], 

Ionization of the upper atmosphere is primarily caused by electromagnetic 

radiation from the Sun. The Earths atmosphere consists of molecules of nitrogen, oxygen 

and other rarer gases. When a photon, arising due to solar radiation, collides with a 

molecule, it can force an electron out of the molecule provided it has sufficient energy. 
Thus, the upper regions of the ionosphere would show a higher level of ionization than the 
lower regions due to the increased absorption, and hence decreased energy, of the solar 
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radiation as it penetrates the atmosphere. Ionization is also caused by charged particles of 
solar origin entering the Earths atmosphere, meteors travelling through this atmosphere and 
by cosmic rays. Indeed, it is generally accepted that cosmic rays are the principal source of 
ionization in the lower regions of the ionosphere where the solar radiation is very weak. 
Ionization of the Earths atmosphere is counterbalanced by the recombination of electrons 
and positive ions and by the attachment of electrons to neutral gas atoms and molecules. 
Thus, the level of ionization would depend not only on the intensity of the solar radiation 
but also on the frequency of collisions between electrons and other particles. 

From this rather simplistic view of the formation of the ionosphere, it would 
appear that the electron density due to ionization should increase gradually with altitude. 
However, the situation in practice is much more complex, primarily due to the variable 
nature of the constitution of the Earths atmosphere. Studies of the ionosphere have 

shown[1-4I that the level of ionization, and hence the electron density, does increase with 
height up to about 400km but not in any simple, uniform manner. Rather, the ionization is 
distributed in layers, where each layer displays a higher level of ionization than the layer 
immediately below it. This is accompanied by a decrease, with altitude, in the number of 
collisions between electrons and other particles. As a result, the peak electron densities in 

the upper layers are greater than those in the lower layers. Beyond an altitude of about 450 
km. however, the electron density actually decreases with height, aided, no doubt, by a 
relative increase in the collision frequency, and other complex phenomena [5-7]. 

The ionosphere has classically been divided into 3 such layers, namely, D, E, 

and F, with subdivisions existing under certain conditions, notably, the F1 and F2 layers. 

The salient parameters of these layers are their virtual heights, electron densities and critical 
frequencies, where the latter is defined as the highest frequency of a vertically incident ray 
that can be reflected by the layer. However, due to the volatile nature of the ionosphere, 

the values of these parameters change both temporally and spatially, and as such, any value 

given should be taken as typical and not absolute X51 (see Table 2.2.1). The temporal 

variations occur daily, seasonally and according to the 11-year solar cycle, while the spatial 

variations occur according to the geomagnetic latitude. Fig. 2.2.1 shows a typical electron 
density profile at mid latitudes during summer noon, at solar maximum conditions [7], and 
Fig. 2.2.2 shows the ionospheric layers as a function of height above the surface of the 
Earth [8] 

The D-layer has a high molecular concentration of the order of 1020 

molecules/m3 and, as seen in Table 2.2.1, a relatively low electron density. This results in 

a very high number of collisions between electrons and molecules, making this region 
essentially an attenuation band for HF radio waves. However, VLF, LF and MF radio 
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waves can be reflected from this layer. The maximum electron density in this region is 
observed at local noon during summer. The D-layer is a daytime phenomenon and is 
virtually non existent at night (see Fig. 2.2.2). 

The E-layer has a lower ionization absorption level, and hence, a higher overall 
electron density than the D-layer, and is a good reflector of HF radio waves. It can support 
propagation upto distances of about 2000 km. The maximum electron density occurs at 
local noon during summer and in general, peak electron densities occur at about 110 km. 

above the surface of the Earth. Although the E-layer does exist at night, the ionization level 
is generally small and is more conducive to the propagation of MF, rather than HF, radio 
waves. 

Embedded within the E-layer there exists, from time to time, patches of 

abnormally high levels of ionization. These are known as sporadic E or ES-layers [1-4]. 

Their properties and frequency of occurrence differ significantly with geomagnetic latitude. 

An Es-layer is capable of reflecting very high frequencies (> 10 MHz. ), but is generally 

regarded as a nuisance for HF radio wave propagation due to its 'sporadic' occurrence and 
highly volatile and unreliable nature. 

The portion of the ionosphere most suited for HF radio communication is the 
F-region. Due to the different variations observed in the lower and upper parts of this 

region, it has been further subdivided into the F1 and F2 layers. However, at night, these 

two layers merge to form a single F-layer which can support propagation upto distances of 
4000 km. and is the only part of the ionosphere which could be used for reliable nighttime 

communication. 

The Fl-layer behaves in a similar fashion to the E-layer, with the bulk of the 
ionization occurring due to solar radiation, and peak electron densities occurring just after 
local noon during summer. On the other hand, the behaviour of the F2-layer is completely 

different to that of the other layers and its ionization does not bear a direct relationship to 

the intensity of the solar radiation. The uniqueness of the F2-layer is manifested in the 

many anomalies it exhibits [7], such as the diurnal anomaly (maximum electron density 

occurring well after noon), and the seasonal anomaly (electron densities at noon in winter 

exceeding the corresponding values during summer). However, the highest ionization 

levels are found in the F2-layer and as such, it plays a very important role in the 

propagation of HF radio waves through the ionosphere. 
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2.3 IONOSPHERIC PROPAGATION 

An HF radio wave propagated through the ionosphere undergoes absorption, 

refraction and a phenomenon known as ray splitting. As explained previously, a high level 

of absorption occurs in the lower regions of the ionosphere, such as in the D-layer, due to 

the relative abundance of neutral gas molecules. However, absorption is also proportional 

to 1/f2 [31, where f is the frequency of the radio wave, and hence by increasing f, the 

attenuation due to absorption could be minimised. 

Propagation of radio waves is possible due to progressive refraction at different 

heights in the ionosphere. The refractive index of the ionized medium is given by i, 
where 111, 

f Nee 112 
l1-e2} 

Eomeco 

and 

N= electron density in electrons/m3 

ee = charge of an electron = 1.6 x 10-19 C 

EID = permittivity of free space = 10- 9/ 36n F/m 

M= mass of an electron =9x 10- 31 kg 

w= angular frequency of radio wave. 

Substituting the values of e, , EO and me gives 

81N) 2 

fJ 

where f= o)/2n = frequency of radio wave in MHz. 

(2.3.1) 

(2.3.2) 

Since the electron density is a function of the height above the surface of the 
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Earth, it could be seen from eqn. 2.3.2, that the refractive index 71, would change 
continuously with height, giving rise to the progressive refraction of radio waves. These 
radio waves are returned to Earth, as shown in Fig. 2.3.1, when N is large enough to 
reduce the value of rl such that [61, 

Ti = sin 0 (2.3.3) 

where 0 is the angle of incidence of the radio wave with the ionized layer. For vertical 
incidence, 0=0 and hence, sin 8=0. From eqns. 2.3.2 and 2.3.3, 

81N) 2_0 

f2 

i. e., 

f=9 JN = fo (2.3.4) 

where f0 is, of course, the critical frequency as defined in Section 2.2 and is given in MHz. 

However, when a radio wave is obliquely incident on an ionospheric layer, as is necessary 
for HF radio communication, frequencies higher than f0 are reflected according to the 

relationship 

f= fo sec8 (2.3.5) 

For a given angle of incidence, 61, there exists a maximum frequency which will be 

reflected by a particular layer. This frequency is known as the maximum usable frequency 

(MUF) of the layer and is given by 

f (MUF) = fo secO1 (2.3.6) 

Due to its dependence on f0 , it is obvious that for a given angle of incidence, 

the MUF's of the higher layers are greater than those of the lower layers. Thus, whenever 
possible, the operating frequency of an HF radio link should be chosen such that it is close 
to the MUF of the layer via which propagation is desired. This is done in order to 
surpress unwanted reflections of the radio wave from the lower layers. Towards this end, 
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it is customary to employ an operating frequency called the optimum working frequency 
(FOT), which is taken to be approximately 85% of the MUF [1,3]. 

It should be noted that the above discussion on the progressive refraction of 
radio waves has been based on ray theory, assuming a flat Earth and neglecting the effect 
of the Earth's magnetic field. However, it is adequate for the purpose intended, which is to 
give the reader a broad indication of the manner in which HF radio waves are propagated 
through the ionosphere. 

The presence of the Earths magnetic field gives rise to a phenomenon known as 
ray splitting, or magnetoionic splitting. When a radio wave enters the ionosphere, it 
interacts with the Earths magnetic field and is split into two differently polarised waves 
called the ordinary and extraordinary rays. These waves are reflected by a different 

electron density and as such, at slightly different heights from the ionosphere. 

2.4 SIGNAL IMPAIRMENTS OCCURRING ON 
HF RADIO CHANNELS 

When a data signal is transmitted over an HF radio link it is subjected to various 
types of time varying distortion and is corrupted by various forms of noise. The 

parameters that characterize an I IF radio channel are based on these types of distortion and, 
thus, it is essential to understand them in order to appreciate the different classifications of 
such channels and indeed, to develop a channel model. 

2.4.1. Multipath Propagation 

As explained in Section 2.3, a radio wave could reach its destination via many 

propagation paths which are generally known as different modes of propagation. This 

could be due to reflection from two or more ionospheric layers, reflection from a single 
layer but with two or more hops, reception of two differently polarized waves 
(magnetoionic splitting), reception of two or more waves with different elevation angles 

connecting the same end points (high/low angle rays) or the existence of a groundwave in 

addition to the skywave 191. These modes are illustrated in Fig. 2.4.1. Thus, the 

transmission of a very short pulse could result in the reception of a train of pulses, as 

shown in Fig. 2.4.2. Due to the difference in group delay in the various modes, there will 
be a time difference between the reception of the first and the last of these pulses. This time 
difference is known as the multipath delay spread or time spread of the HF radio channel. 
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Multipath delay spread is a major limiting factor in the operation of high speed 
HF radio modems. The delays that can be tolerated depend on the nature of the 
communication signal and its transmission rate. When the multipath spread becomes 

comparable to the signall'ing pehiod, adjacent signal elements interfere with each other, causing 
a degradation in the error rate. This type of distortion is known as intersymbol interference 

and becomes serious when the multipath spread is 40% 1101 or more, of the duration of a 
signal element. However, by judicious choice of the operating frequency, the number of 

propagation paths, and hence the multipath spread, can be reduced. This is because all 

paths in a given layer tend to coalesce when the operating frequency is close to the MUF 

for that layer. 

Over medium distances, (800 - 2000 km. ), multipath spreads of about 1 ms. 

could be encountered. More severe multipath spreads of upto 1o ms. occur over short 
distances and very long paths involving multiple hops. Furthermore, if the reflection 

points are in or near the auroral belt, it is not impossible to encounter spreads of nearly 10 

ms [111. However, most HF modems operate over long distances at mid and equatorial 
latitudes, and as such, are generally designed to accommodate multipath spreads of up to 3 

MS. 

2.4.2. Fading 

Fading can broadly be divided into two types, long term and short term 

fading. Long term fading is the variation of the received signal strength, which is related to 

the daily, seasonal and annual variations in the structure of the channel and, in some cases, 

could even involve the 1 1-year sun spot cycle. However, it is the short term fading that is 

most important to the modem designer since this affects the received waveform structure 

within the time span of a transmitted message. 

When an unmodulated sine wave carrier is transmitted over an HF radio 

channel, it could reach its destination via two or more paths due to multipath propagation. 

However, the signal received on each path (each skywave) is, in itself, made up of the sum 

of several slightly different paths, all adding randomly at the receiver. Thus, each skywave 

could be thought of as the sum of a number of vectors (phasors) having slightly different 

amplitudes and widely different phases [12]. (These large changes in the phase of the 

individual components constituting each skywave occur due to the small changes in their 

path lengths. ) Furthermore, due to the short term variations in the structure of the 

ionosphere, these vectors are random and time variant. This results in the vectors at times 

adding destructively, and at other times adding constructively. When they add 
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destructively, the resultant received vector (or received skywave), becomes very small, or 
practically zero, and when they add constructively, it is observed to be very large. These 

variations in the received signal amplitude are generally known as signal fading, and they 
occur due to the time varying characteristics of the channel. 

This type of fading is sometimes referred to as multiplicative fading or flat 
fading. The term flat fading arises due to the fact that all frequency components in the 
signal are affected in a similar manner. Furthermore, the envelope of the faded signal is 

observed to follow a Rayleigh distribution, with the phase being uniformly distributed (see 
Fig. 2.4.3. ), giving rise to the term 'Rayleigh fading'. In some cases, other distributions 
have been found to fit the envelope of a faded signal, most notably, the Rician distribution 
(occurring when a specular component, such as a ground wave, is present in addition to the 

sky waves) and the Nakagami-n distribution 1111. However, over HF channels, the most 
widely observed type of fading is Rayleigh fading, and hence, the work in this thesis will 
be based on channels which exhibit such. 

A single tone, when Rayleigh faded, gives rise to a spectrum of nonzero width 
as shown in Fig. 2.4.3. Thus, the channel introduces a 'spread' into the frequency of the 

transmitted signal. This is another parameter of an HF channel and is called the frequency 

(or Doppler) spread. Its magnitude, in particular, is closely related to the fading rate 1131. 

For single hop links over medium distances the frequency spread rarely exceeds 0.01 

Hz. 1l11, this constituting very slow fading. More severe spreads, ranging upto 2 Hz., 

occur over long distances involving multiple hops. Although in some cases, spreads of 

even upto 20 Hz. have been observed to occur (especially in the polar regions), most HF 

modems are designed to combat fading that gives rise to frequency spreads of upto 2 Hz. 

Adjacent channel interference, occurring due to these frequency spreads, could, 

at this stage, be thought of as a potential problem. However, most signal bandwidths of 

practical interest are much larger than the spreads introduced to their spectra and hence, 

interference between adjacent channels, if any, is negligible. 

The fading rates associated with these frequency spreads are generally of the 

order of 10-50 fades per minute, while fade depths are usually less than 20 dB. It should 
be noted however, that fading rates could rise to more than 1 fade per second and on 

occasion, fade depths of over 30 dB have been encountered 191. 
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2.4.3. Frequency selectivity of channel 

The coherence bandwidth of an HF radio channel is a measure of the frequency 
coherence of the channel, and is taken to be approximately equal to the reciprocal of the 
total multipath spread. (For a more formal definition of the coherence bandwidth, the 
reader is referred to Proakis, 1983). When the bandwidth of a signal transmitted over an 
HF radio channel lies within the coherence bandwidth of the channel, all parts of the signal 
spectrum are affected equally by the fading. This is flat fading, and the channel is said to 
be frequency nonselective. However, when the signal bandwidth exceeds the coherence 
bandwidth, the spectrum of the signal is subjected to different gains and shifts across the 
band, and the channel is now said to be frequency selective. Thus, two sinusoids with a 
frequency separation greater than the coherence bandwidth are affected differently by the 
channel. 

An equivalent statement for frequency selectivity, (especially for simple symbol 
waveforms where the symbol duration is approximately equal to the reciprocal of the signal 
bandwidth), is that the multipath spread should be greater than the symbol duration. Note 

that this is also a condition, as explained in Section 2.4.1, for intersymbol interference and 
as such, signals transmitted over frequency selective channels are severely distorted. 

A frequency selective channel could thus be viewed as one which gives rise to 
two or more skywaves at the receiver, where each has a different (and resolvable) multipath 
delay, and is affected differently by the channel. In HF radio transmission, as indeed in 

most time variant communication, the attenuation and phase shift associated with one 

skywave is generally uncorrelated to those associated with another skywave [121. Thus, 

the fading on each skywave is uncorrelated and, under certain conditions [14], is 

considered to be independent. 

When a signal transmitted over a frequency selective channel undergoes fading, 

the fading in itself is sometimes called frequency selective fading, in contrast with flat 
fading which is observed on frequency nonselective channels. Note however, that 
frequency selectivity is inherently dependent on the multipath spread, while flat fading 

occurs as a result of the time variations of the channel. 

2.4.4. Doppler Shifts 

Due to the continuous movement of the ionospheric layers, a signal transmitted 

over an HF channel undergoes a mean shift in frequency called the Doppler shift. In 
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general, Doppler shifts range from 0.1 Hz. to 1 Hz. and become quite small during 

nighttime. Under extreme conditions, (for example, during solar flares), values of upto 50 
Hz. have been observed 191, but as regards HF modem design, the Doppler shifts which a 
modem need tolerate are taken to be their typical values. Note that the above concerns 
Doppler shifts, which occur due to moving platforms, and not Doppler spreads, which 
arise as a consequence of signal fading. 

2.4.5 Noise 

The main types of additive noise encountered over HF radio links are 
atmospheric noise and impulsive noise [15]. Impulsive noise is man-made interference and 
becomes important only near built-up areas. Atmospheric noise on the other hand, could 
be a major source of performance degradation in an HF radio modem. Occurring due to 
lightning discharges, atmospheric noise has a bandwidth extending to around 30 

MHz. [ 15]. A bandlimited, received signal would thus contain noise components 

originating from several lightning discharges, each of which could be assumed to be a 

statistically independent source. Central limit theorem arguments lead to the assumption 

that this noise has a Gaussian probability density function, at least near the mean, which is 

zero. This assumption has held the HF radio modem designer in good stead, since it has 

been found out that a modem having a better tolerance to additive Gaussian noise would 

almost certainly have a better tolerance to atmospheric noise [151. Thus, performance 

comparisons of modems are carried out on the basis of their tolerance to additive Gaussian 

noise, and the work in this thesis is no exception. 

2.5 HF CHANNEL CLASSIFICATION 

There is at present, no standard classification for HF radio channels, probably 

due to the number and variety of parameters that need to be considered (and indeed their 

relative importance) in such classifications. The CCIR, for example, have classified HF 

channels according to their multipath delays and frequency spreads as good, average, poor 

and flutter fading channels [14] (see Table 2.5.1. ). These channel models are based on 

two skywaves where each skywave is subjected to independent Rayleigh fading, and has 

same frequency spread. 

The channels used in this thesis are based on the CCIR model. Channel I is a 

three-skywave channel with a frequency spread of 2 Hz. on each skywave and relative 
delays of 1.1 ms. and 3.0 ms. between them. Channels 2 and 3 are two-skywave channels 
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with parameters as given in Table 2.5.2. Note that Channel 2 is similar to the CCIR 
'flutter fading' channel (albeit having a more realistic value for the frequency spread), and 
Channel 3 is exactly the same as the CCIR 'poor' channel. All three channels could be said 
to be 'worst case' ones, and were thus chosen so that a detection or coding process 
exhibiting satisfactory performance over such a channel would probably be suitable for 
inclusion in a modem operating over a real HF radio channel. 

2.6 MODEL OF CHANNEL 

The performance of HF radio modems could be ascertained either by direct 

on-the-air measurements or by testing the modems over an HF fading channel simulator in 

a laboratory environment. Although it would seem, at first thought, that the former method 
is by far the more accurate (since testing is being carried out over 'real' channels), it is not 
necessarily so, and in any case, it suffers from quite a few disadvantages. For example, it 
is virtually impossible to compare the performance of different modems accurately since, 
due to the time varying nature of the IHF radio medium, they cannot be tested over the same 

channel. It is also difficult to test modems for 'worst case' conditions since these could 

occur at random, making scheduled testing impossible. Even when tests are carried out 

regardless of these restrictions, it is sometimes difficult to pinpoint the exact reason for the 

poor performance of a system since this could be due to any one of a multitude of effects 

such as multipath spread, fading, Doppler shifts and atmospheric noise, to name a few. 

Consequently, the design cannot be improved if the relative importance of the 

aforementioned effects for a particular link are not known. 

By employing an HF channel simulator, almost all of these constraints could be 

nullified. Laboratory simulators exist in hardware or software ß81, the essential difference 

here being that, in a software simulator, the mechanics of the process are converted to 

changes in the instructions in a computer simulation program. These channel simulators 

have the advantages of repeatability, availability of any appropriate set of channel 

conditions as desired, flexibility in introducing distortion, and lower cost. However, care 

should be taken to ensure that the model on which the simulator is based is a valid 

representation of an HF radio channel. As such, the modem designer should be fully aware 

of the assumptions made in modelling the channel, and the conditions, if any, under which 

the model could be considered to be invalid. 
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2.6.1 Outline of model 

The HF channel model used in this thesis is based on that proposed by 
Watterson, et. al, [161 and adopted by the CCIR [141. This model has been proved to be a 
valid representation of the majority of HF radio channels. It is based on the assumption 
that the channel is narrowband (< 10 kHz. ) and that sufficiently short transmission times 
(< 10 mins. ) are considered. Both these assumptions do not, in any way, invalidate the 
work carried out in this thesis since the channels of interest here are bandlimited voiceband 
channels (- 3 kHz. ), and transmission times are in the order of tens of seconds rather than 
minutes. It should be noted here, that it is not the intention of the author to either 
physically justify or experimentally validate the channel model since this would only 
involve the repetition of already established work [161. Rather, the objective is to present 
the channel model in its given form, ensuring that the assumptions made are both 

reasonable and valid, for the research being carried out. 

Figure 2.6.1 gives an illustration of the channel model. This is a stationary 
model (a valid assumption for HF channels, given the constraints mentioned above on 
bandwidth and transmission times) with a number of discrete modes representing the 
different skywaves. The input signal is fed to a tapped delay line with adjustable delays. 

The delayed signals at each tap are modulated in both amplitude and phase by a baseband 

tap gain function Q; (t). These delayed and modulated signals are next added to a noise 

function Vn(t) to give the received signal. Each tap corresponds to a skywave that is 

resolvable in time. The noise function corresponds to any type of additive noise and, in 

certain cases interference, occurring on the channel, but is represented here as white 
Gaussian noise, for the reasons given in Section 2.4.5. 

This model is an intuitively obvious model for an HF radio channel and remains 

a fairly general one until the tap gain functions Q; (t) are completely specified. In the 

particular case considered here, the tap gain functions are assumed to have the following 

properties [14,16]. 

1. Each tap gain function is a complex valued, zero mean, Gaussian 

random process. 

2. Each tap gain function is independent of the other tap gain functions. 

3. Each tap gain spectrum (generally) consists of the sum of two 
Gaussian functions of frequency. 
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The first of these hypotheses gives rise to Rayleigh fading being imposed on 
each skywave where the signal envelope follows a Rayleigh distribution and the phase is 
uniformly distributed. The second hypothesis ensures that the fading on each skywave is 
uncorrelated, and as a consequence of the zero mean criterion, is also independent. The 
third hypothesis reflects the fact that, included in each skywave are the two magnetoionic 
components, that is, the ordinary and the extraordinary rays. However, if the frequency 
spreads of these two components are assumed to be equal and significantly larger than their 
frequency shifts (as on the daytime F-layer mode [16] ), then a single Gaussian function is 
sufficient to represent the tap gain spectrum. 

The model used in this thesis assumes a single Gaussian function for each tap 
gain spectrum. Moreover, for further simplification, the average power and frequency 

spreads of the different skywaves themselves are assumed to be equal, and the frequency 

spreads are also assumed to be large, compared to the frequency shifts. Paradoxically, 

this simplified model, although obviously not representing the exact nature of the HF 

channel, does reflect the 'worst case' type situations that could be encountered. For 

example, the assumption that the average power in the different skywaves is equal, leads to 
the worst fades, since these occur when two skywaves are of equal strength and are in 

phase opposition. The 'equal frequency spread' assumption would not significantly affect 
the performance of the modem relative to its performance over a 'real' channel since the 

spreads being modeled are much larger than those observed on typical HF radio channels. 
The frequency shifts could also be assumed to be taken care of by these large frequency 

spreads, and thus need not be included as a seperate form of distortion. Moreover, even if 

there were an abnormally large shift in the mean carrier frequency, this would be detected 

and rectified by the carrier recovery circuit in the demodulator section of the modem. 

2.6.2 Generation of the Q; (t) 

The tap gain functions Q; (t) must be generated within the constraints and 

specifications given in Section 2.6.1, in order that they impose Rayleigh fading on the 

input signal. Consider one such function Q1(t), or equivalently, one propagation path. The 

Rayleigh fading present on this path can be modeled as illustrated in Fig. 2.6.2 [171. The 

input signal is passed through a 900 phase shifting network to give two signals in phase 

quadrature. This 90° phase shift should be carried out over the entire bandwidth of the 
input signal, or equivalently, a Hilbert transform [12] of the input signal should be 

performed. These two signals are next modulated by two random variables, q1(t) and q2(t), 
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where each of these variables are subjected to the following constraints. 

1. Each must possess a zero mean, Gaussian probability density function 
with the same r. m. s. value. 

2. Each must possess a Gaussian power spectrum with the same r. m. s. 
frequency. 

3. The two processes must be uncorrelated. 

The Gaussian power spectra of ql(t) and q2(t) are given by [171, 

2 

ql (f) 12 =I q2 (f) 12 = exp (^2 
2f 

rms 

The frequency spread introduced into an unmodulated carrier is the r. m. s. width of the 
power spectrum, and is given by 

fp = 2f 
ms 

(2.6.2) 

The correlation between the fading rate and the r. m. s. frequency is given by [13], 

fading rate = 1.475 fms (2.6.3) 

where the fading rate is defined as the average number of downward crossings per unit 
time, of the signal through its median value. 

The two processes q1(t) and q2(t) are themselves generated as shown in Fig. 

2.6.3., by passing zero mean, white Gaussian noise with a variance of unity, through two 
seperate, but identical filters whose frequency responses are Gaussian. The filters chosen 

were 5-pole Bessel filters which meet the above requirements and their detailed design is 

given in Appendix A. The choice of Bessel filters was dictated by the fact that, as the order 

of these filters is increased, their frequency responses tend toward Gaussian. A block 

diagram of the filter used is given in Fig. A. 1. 

Nyquist theorem considerations dictate that the sampling frequency of the q; (t) 
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in the digital implementation of the Bessel filter, should be more than twice the highest 
frequency contained in the qi (t). Since the filters have a Gaussian frequency response, the 

maximum frequency contained in the qi (t) is unbounded and could, theoretically, be 

considered to be infinity. However, for the highest frequency spread of interest, i. e., 2 
Hz., it can be seen from Table A. 1, that the cutoff frequency of the filter is 1.17 Hz., 

giving rise to a 3-dB bandwidth of 2.34 Hz. This implies that a sampling frequency of 
more than, say, 10 Hz., should be adequate for accurate representation of the filters in the 
digital domain. 

However, the sampling rate of the fading processes q; (t) are ultimately 
determined by the transmission rate of the modem. For example, in a 2.4 kbaud modem, 

every signal sample should be modified by the fading, thus forcing the sampling frequency 

of the ql (t) to be 2400 Hz. or more. However, as the sampling frequency is increased, 

the filter poles in the z-plane tend to be pushed extremely close to the unit circle, and a high 

degree of accuracy is now required to define the tap gain coefficients. This problem is 

solved by having an intermediate sampling frequency for the q; (t) and obtaining the 

remaining samples by a process of linear interpolation. The sampling frequency used in 

this work was 100 Hz., that is, a sampling interval of 10 ms. (see Appendix A). 

Finally, the constant GD at the input to the Bessel filter (see Fig. A. l), is 

employed to change the variance of the q; (t) to their required values. The objective here is 

to ensure that the total mean power input to the model is equal to the total mean power 

output. Thus, the total variance of all the qi (t)os should be unity. Combined with the 

requirement that the variances of all the qi (t)°s should be equal, this implies that in a 

3-skywave channel, each q; (t) should have a variance of 1/6, whereas in a 2-skywave 

channel, the variance of each qi (t) should be 1/4. This is because six sequences 

(ql(t)-q6(t)) are required for a 3-skywave channel and four sequences (ql(t)-q4(t)) are 

required for a 2-skywave channel. The values of (GD)- 1 which give the required 

variances in the qi (t) for Channels 1,2, and 3 are, respectively, 19378,15832 and 

319330. 

2.7 VERIFICATION OF CHANNEL MODEL 

As mentioned earlier, it has been proven that the channel model given in the 

previous section is a fair, if not exact, representation of an HF radio channel [16,17]. 
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However, it still needs to be confirmed, (to within a reasonable degree of accuracy) that the 
simulated model conforms to the model given in the previous section. Toward this end, a 
number of tests, (designed to check the accuracy), have been carried out on the simulated 
model, and these are now presented, along with their results. 

Figs. 2.7.1 and 2.7.2 give the baseband power spectra of the Bessel filter (Fig. 
2.6.3), for the two frequency spreads of interest. These spectra should, ideally, be 
Gaussian in shape and as such, they are compared with the theoretical Gaussian spectrum 
obtained via eqn. 2.6.1. It could be seen from Figs. 2.7.1 and 2.7.2 that, in both cases, 
the simulated Bessel filter response is exactly coincident with the Gaussian response, in the 
range of their respective frequency spreads, namely 2 Hz. and 1 Hz. (This range is 

marked by the dashed lines in the above mentioned figures). As such, it could safely be 

assumed that the power spectra of the qi (t) are Gaussian. 

Figs. 2.7.3 and 2.7.4 show, for the three channels, the cumulative distribution function of 
the envelope of the first skywave. For a Rayleigh fading channel, these functions should, 

of course, follow a Rayleigh cumulative distribution function and hence, are compared 

with such. The theoretical Rayleigh cdf (cumulative distribution function) is easily 

obtained by integrating the Rayleigh probability density function, that is, if the Rayleigh cdf 
is given by F(x), then, 

2 

F(x) =2 exp (x 
2) 

dx 

oß2 cs 

2 

= 1-exp(^x2) 
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where 62 is the variance of the individual qi (t) (see Figs. 2.6.2 and 2.6.3). 

(2.7.1) 

Since the Rayleigh cdf is dependent on the variance of the individual qi (t), and 

since this variance itself is different for the 2-skywave and 3-skywave channels, (these 

variances are 1/4 and 1/6, respectively), the comparison for the 2-skywave channels should 

be seperate from the comparison for the 3-skywave channel. Hence the need for Figs. 

2.7.3 and 2.7.4, where the former compares the cdf of the envelope of the first skywave in 

Channel 1 with the Rayleigh cdf corresponding to a 3-skywave channel, and the latter 

compares the cdf of the envelope of the first skywave in Channels 2 and 3 with the 
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Rayleigh cdf corresponding to a 2-skywave channel. 

It can be seen, from these two figures, that the first skywave in all three 
channels exhibit Rayleigh statistics. The slight deviation which exists between the 
theoretical and simulated curves in Fig. 2.7.3 is, of course, due to the statistical nature of 
the simulation, where the value of a2 in the simulation, may not always be equal to 1/6 (or, 
for a 2-skywave channel, to 1/4). Even after these deviations, the general shape of the cdf 
is similar to that of a Rayleigh cdf, and as such, it could be assumed that all three channels 
exhibit Rayleigh fading. 

Another important parameter in a Rayleigh fading channel is the distribution of 
the phase of the faded signal. As stated before, this phase should be uniformly distributed. 
Fig. 2.7.5 compares the cdf of the phase of the first skywave in the three channels with the 
cdf corresponding to a uniform distribution. In the case of every channel, there is an 
excellent correspondence between the theoretical and simulated curves, and as such, the 
phase of the first skywave in all three channels could be assumed to be uniformly 
distributed between -n and +n . 

Since the second and third skywaves are obtained via the same filter in the same 
manner as the first skywave, (apart from a change in value of a seed integer which 

,I 
initializes the random number generators), they exhibit the same statistics as the first 

skywave. Thus, all skywaves in the simulated HF radio channel model exhibit a Rayleigh 

- distribution in amplitude and a uniform distribution in phase. 

Figs. (2.7.6 - 2.7.8) show, for the 3 channels, the baseband, complex 

envelope of the first skywave when the input is considered to be an unmodulated sine-wave 

carrier. These skywaves are shown relative to their median values, where the median 

values are directly obtained from their respective cumulative distribution functions given in 

Figs. 2.7.3 and 2.7.4 (The median value is the point at which the cdf is 0.5, or 50%). It 

should be emphasised that Figs. (2.7.6 - 2.7.8) show the fading observed on the first 

skywave and not the resultant fading due to all the skywaves at the output of the channel 

model. As such, no remarks can be made, at this stage, about the overall fading structure 

of the channel. Nevertheless, these figures do give some indication of the number of fades 

likely to be encountered in the respective channels. In a 25 sec. time period, the first 

skywave in Channels 1,2 and 3 exhibits, respectively, 37,36 and 14 fades, where a fade 

is regarded as a downward crossing of the signal through its median value. There are a 
fewer number of fades in the first skywave in Channel 3, when compared with the first 

skywave in Channels 1 and 2. This is to be expected, since the fading rate depends on the 
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frequency spread (eqns. 2.6.2 and 2.6.3), and the frequency spread in Channel 3 (1 Hz. ) 
is half that in Channels 1 and 2 (2 Hz. ). In terms of the depths of the fades, there is at 
least one fade in excess of - 30 dB. These depths however, are expected to chancre when 
the other skywaves are added to form the resultant HF channel model. This point is 

explained further in Section 4.6. 

Finally, Figs. (2.7.9 - 2.7.11) show the phase variations of the first skywave in 

Channels 1,2 and 3. It could be seen that in Channel 3, (the channel with the lower 

frequency spread of 1 Hz. ), the phase variations are slower than in the other two channels. 
In all three channels however, the phase varies between it and +n . This is, as proven 

earlier, to be expected. 
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IONOSPHERIC LAYER 

F 
D E 

F 
1 

F 
2 

Virtual height 
(km) 

50 - 90 90 - 130 130 - 210 250 - 350 

Electron density 
10 

9 10 
11 2* 10 11 10 12 

-3 (m) 

Critical 
frequency 0.5 4 5 10 

( MHz. ) 

Table 2.2.1 Main parameters of 
ionospheric layers 
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Multipath 
Spread 

(ms. ) 

Frequency 
Spread 
(Hz. ) 

GOOD 0.5 0.1 

MODERATE 1 0.5 

POOR 2 1 

FLUTTER 0.5 10 

Table 2.5.1 CCIR classification of HF 
channels 

Multipath 
Spread 

(ms. ) 

Frequency 
Spread 
(Hz. ) 

CHANNEL l 1.1 &3 2 

CHANNEL 2 3 2 

CHANNEL 3 2 1 

Table 2.5.2 Channels used in tests 
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CHAPTER 3 

DATA TRANSMISSION USING QUADRATURE 
AMPLITUDE MODULATION 

3.1 INTRODUCTION 

Quadrature amplitude modulation (QAM) is a multilevel, digital modulation 
scheme used to modulate information bearing data signals, so that they become compatible 
for transmission over practical bandpass channels. It employs two double sideband 
surpressed carrier AM signals of the same carrier frequency for this purpose, where these 

are in phase quadrature and are transmitted simultaneously. The spectrum of a QAM 

signal is, of course, similar to that of a double sideband surpressed carrier AM signal, 

with the upper and lower sidebands centred around the carrier frequency. (1) 

A distinct advantage of QAM is that it is a highly bandwidth efficient 

modulation scheme which is also linear [1-3]. A QAM signal has m levels where m >_ 4. 

By increasing the number of levels, it is possible to increase the information transmission 

rate over a given bandwidth. This scheme of things cannot, of course, be carried on ad 
infinitum since the increase in the number of levels is also accompanied by more acute 
intersymbol interference problems and timing and phase jitter problems 11]. However, a 

profitable compromise is achieved in most situations. Moreover, the modulation (and 

demodulation) process is linear, thus greatly simplifying the theoretical analysis of the 

system by reducing it to that of a linear baseband channel I3-51. These, and other factors 
[6] combine to make QAM one of the most widely used modulation methods in both radio 

and satellite systems. 

Since a thorough and detailed discussion into every aspect of QAM is beyond 

the scope of the thesis, this chapter will be confined to developing a theoretical model for 

the QAM system which lends itself into the more detailed model for data transmission 

using QAM over IIF radio links. 

3.2 THE QAM SYSTEM MODEL 

A QAM data transmission system is shown in Fig. 3.2.1. The {s1) and (S2,11 

are two streams of data symbols which carry the information to be transmitted. They are 
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statistically independent and each symbol is equally likely to have any one of log2m 

possible values. An example of the possible values of sl, i and s2,; is given in Fig. 3.2.2. 

This is normally referred to as the QAM signal constellation. These symbols are assumed 
to be transmitted in the form of impulses at every iT seconds. 

These data symbols are initially passed, seperately, through two lowpass 

transmitter filters (A1 and A2), having the same impulse response a(t), and transfer 

function A(f). a(t) here is real valued. Al and A2 are signal spectrum shaping filters which 
limit the bandwidth of the resultant QAM signal to that available on the transmission path. 
In the case considered here, IA(f)I, as shown in Fig. 3.2.3, is assumed to be bandlimited 
from -1/2T to 1/2T Hz., thus ensuring that the signaling rate of 1/T Hz. is at the Nyquist 

rate 111. 

The two signals at the outputs of Al and A2 are next modulated by two carriers 

which are in phase quadrature. The carrier frequency, f, is chosen such that the spectra of 

the baseband signals are shifted into the passband of the transmission path. These 

modulated carrier signals are now added together, to form the resultant QAM signal x(t), 

whose amplitude spectrum, IX(f)I, is as shown in Fig. 3.2.4. 

The QAM signal, x(t), is transmitted over a channel whose impulse response is 

a real valued function h(t). The channel is assumed to introduce stationary, white 
Gaussian noise, which is added at the output of the transmission path. The noise function, 

n(t), is a Gaussian random process with zero mean and a two-sided power spectral 

density of No/2 . 

At the receiver, the noisy QAM signal is first passed through a bandpass 

receiver filter C, whose function is to remove any noise components lying outside the 

signal frequency band. Toward this end, the filter has a bandlimited amplitude spectrum 

IC(f)I, where its value is unity for f, -1/2T<_ Iff <_ f f+l/2T, and zero elsewhere, and is as 

shown in Fig. 3.2.5. The impulse response of this filter is c(t) and is real valued. The 

signal at the output of the receiver filter, z(t), is coherently demodulated by two reference 

carriers in phase quadrature. These carriers are assumed to have a carrier frequency of fc 

and a reference phase of 0. [Any 
variation in 0, such as would occur in practical carrier 

recovery circuits [21, is neglected here, and 0 is assumed to be constant. I 

The outputs of the two coherent demodulators are next passed through two 

lowpass filters B1 and B2. These filters remove the high frequency components which 
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result as a consequence of the demodulation process. Each filter has a real valued impulse 

response b(t) and a Fourier transform B(f), which bandlimits the signals at their inputs 

from -1/2T to 1/2T Hz. B(f) is illustrated in Fig 3.2.6. The outputs from the two filters 

Bt and B2 are, respectively, r1(t) and r2(t). Imaginary values are now assigned to r2(t), 

which is then added to rl(t), to give the resultant received signal r(t). r(t) is sampled once 

per signal element at the time instants t= iT to give the samples (ri } which are then fed to 

the detection system. 

The QAM signal at the input to the transmission path is 

x(t) ={ 
'sl 

i a(t-iT) cos2Tc ct - s2 i a(t-iT) sin27t ct } 
ii 

(3.2.1) 

J2nfc2 j2. Tffct 
e +e 

,rl2 st i a(t-iT) [2 

1 

j2nf t j27tfj 

vF2 - S2ý i a(t-iT) 
e-e [1 

2j 

1 j2atfft -j2nfct 
a(t-iT) 

{ (sl 
i+ js2 3e+ (sl, i- js2, i) e} 

i 

(3.2.2) 

Let 

i +js2 i 
(3.2.3) si = sl 

where s; is a complex data value with j= I-1 
. 

Eqn. 3.2.2 can now be written as 

1 12ne,. t -j2 t (3.2.4) x(t) _{[s. e +s. e] a(t-iT) 
} 

, 
F2 xi 
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where si* denotes the complex conjugate of si. The signal at the input to the coherent 
demodulator is 

z(t) = x(t) * h(t) * c(t) + n(t) * c(t) (3.2.5) 

where * denotes convolution. The signals at the outputs of the two lowpass filters B1 and 
B2 are, respectively, 

rl(t) _{J z(t) cos(2n ct+8) }* b(t) (3.2.6) 

and 

r2(t) _{ -J' z(t) sin(2n ct+6) }* b(t) (3.2.7) 

where 8 is the phase of the reference carrier relative to that of the signal carrier. The 

operator * in eqns. 3.2.5,3.2.6 and 3.2.7, and indeed, in the rest of the chapter, is taken 

to denote the process of convolution. 

The received signal at the input to the sampler is the complex signal 

r(t) = rl(t) + jr2(t) 

Substituting from eqns. 3.2.6 and 3.2.7 gives 

r(t) _{ ý72 z(t) [ cos(21uct+e) -j sin(2itfct+e) J}* b(t) 

={T z(t) ej 
(27cýt +0)l* b(t) 

Substituting the value of z(t) from eqn. 3.2.5 in eqn. 3.2.9 gives, 

(3.2.8) 

(3.2.9) 

r(t) _{ 
ý72 [ x(t) * h(t) * c(t) + n(t) * c(t) ]ej( 

2nf`t+e) }* b(t) 



51 

={IT[ x(t) * h(t) * c(t) ] e-j 
(2 t+e) 

+[ n(t) * c(t) ]ej( 
eft+e) l* b(t) (3.2.10) 

Substituting the value of x(t) from eqn. 3.2.4, in eqn. 3.2.10 gives 

r(t) {[{ Y, ( sie 
j2nf,: t 

+si 
*e -j27tf t) 

a(t-iT) )* h(t) * c(t) ]e -j (2nf t+ 0) 

+[ n(t) * c(t) ] e3 
(2nfj+ e) 1* b(t) (3.2.11) 

With the aid of the relationship [6) 

{f 1(t) * f2(t) }e2 ýt = fl (t) et* f2(t) et (3.2.12) 

eqn. 3.2.11 can be written as 

+si 
*e j2 tf t 

) a(t-iT) )e 
j2 tft 

r(t) s. e 
j2n ýt 

h(t) * c(t) }e 
j2; t] 

e- 
j0 

_{[{(*{ 

+r[ n(t) * c(t) ]ej( 
t+e )l* b(t) 

* jairf t j2 t_j 

_[( si + si e) a(t-iT) *[ h(t) * c(t) ]e]e* b(t) 

-I- T2 [ n(t) * c(t) ] e- 
j( 27rft +A)]* 

b(t) 

_ si a(t-iT) *[ h(t) * c(t) ]e 
-121tft ] e- 

j8 
* b(t) 

* b(t) +[ Is; 
e'4n`` a(t-iT) *[ h(t) * c(t) I e'2 

`]ejo 

ýt +8) 
+ r2- [n(t)*c(t)]e- 

j( 2rtf ]* b(t) (3.2.13) 
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The spectrum of exp(j4nfýt) a(t) lies outside the passband of the two lowpass filters B1 

and B2, and therefore, the second term in eqn. 3.2.13 reduces to zero, giving, 

r(t) _ si { a(t-iT) *[ h(t) * c(t) Je)e* b(t) 

-i- [ n(t) * c(t) ]ej 
(2nfct+e) 

* b(t) (3.2.14) vF2 

r(t) _ si y(t-iT) + w(t) (3.2.15) 

where, 

-j2nft 
ý{*[}e y(t) a(t) h(t) * c(t) 1e e- * b(t) (3.2.16) 

and 

w(t) _{ 
Ji [ n(t) * c(t) ] e- 

j( 2rrfýt +0)I* 
b(t) (3.2.17) 

y(t) here, is the overall system impulse response which is complex valued and w(t) is the 

resultant complex valued noise component in the received signal. 

y(t), in eqn. 3.2.16, does not appear to be a baseband waveform due to the 

component exp(-j2nft). However, consider h(t)*c(t). This is a bandpass waveform 

whose spectrum is centred at f, Hz. Due to the multiplying factor exp(-j2nf,, t), the 

spectrum of h(t)*c(t) is shifted in frequency by -f. Hz., thus making [h(t)*c(t)] exp(-j2nfct) 

a lowpass response. Together with the bandlimiting applied by A(f) and B(f), this results 
in y(t) being converted to a baseband response. Moreover, the value of 0, and those of 

a(t), h(t), c(t) and b(t) are either known or can easily be determined from their 

corresponding frequency characteristics. Thus, the channel model in eqn. 3.2.16 could be 

taken to represent the baseband equivalent of a bandpass QAM system, and is shown in 
Fig. 3.2.7. 

It is important, at this stage, to consider in greater detail, the statistics of the 

complex valued Gaussian noise waveform w(t). In this model, since the amplitude 
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spectrum IC(f)I, of the receiver bandpass filter is symmetrical about the carrier frequency 

f, it could be shown that, any sample of the real part of w(t), and any sample of the 
imaginary part of w(t) are statistically independent Gaussian random variables, with zero 
mean and a fixed variance [5,61 

. 

From eqns. 3.2.12 and 3.2.17, the noise function, w(t), could be expressed as 

W(t) _f[ n(t) e 
j2 ý, c 

* c(t) ej et e101 b(t) (3.2.1$) 

Since the two-sided power spectral density of n(t) is No/2, and multiplication by 

exp(-j2nf ft) merely shifts the spectrum of n(t) by -f, without affecting its power denstiy, it 

could be concluded that the power spectral density of n(t) exp(j2nfct) is No/2. Thus, 

from eqn. 3.2.18, 

IW(f)12 = 2.2No. IC(f+f)I2IB(f)I2 (3.2.19) 

where IW(f)12 is the power spectral density of w(t). 

The autocorrelation function is the inverse discrete Fourier transform of the 

power spectral density. Thus, if the autocorrelation function of w(t) is RW(i), then, from 

eqn. 3.2.19, 

00 
RW(ti) = No 

`I 
C(f+ f)12 I B(f) 12 e2 "f ` df (3.2.20) 

J 

If the transfer functions of the filters C, B1 and B2 are assumed to be as given in this 

model, then from eqn. 3.2.20, 

1%2T 

RW(t) _ No ej27rfT df 

-1/2T 

_ 
No sin(mr/T) 
, I, nti/T 

(3.2.21) 
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The variance of a random process is given by its autocorrelation function at zero lag. Thus, 

if the variance of w(t) is (o. )2, then, from eqn. 3.2.21, 

G2 = RW(0) 

No 

T (3.2.22) 

It could also be shown that the autocorrelation function of each of the real and imaginary 

parts of w(t) is given by half the real part of the autocorrelation function of w(t) [5,6,7]. 

In the case considered here, since IC(f)I is symmetric about fc over positive frequencies, 

the autocorrelation function given in eqn. 3.2.20 is purely real. Thus the autocorrelation 
function R,, ' (-T), of each of the real and imaginary parts of w(t) is given by, 

00 

RW(r) =2 No I C(f+ f)12 1 B(f) 12 ej27c 
fr df (3.2.23) 

For the model considered here, this leads to a variance, (a'' )2, for each of the real and 
imaginary parts of w(t), of 

w 6 2T 
(3.2.24) 

The transmitted and received signal energies are two other quantities that are 

particularly important in assessing the performance of a system, especially since they are 

needed in the calculation of signal-to-noise ratios. Let the average transmitted energy per 

signal element be Fis . Then, 

00 

E. = E[Isi12ja2(t)dtý (3.2.25) 

where E[. ] denotes the expected value. Since the (si) are statistically independent and 

have zero mean, eqn. 3.2.25 could be written as, 
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CO 

Frs s? 
f 

a2(t) dt (3.2.26) 

where the first term on the right hand side of the equation is the expected value of I s; 12 

Using Parseval's theorem, and assuming the given transmitter filters, eqn. 3.2.26 could be 

written as 

1/ZT 

Fr = s? 
rI 

A( 12 df (3.2.27) J 
-112r 

If the average transmitted energy per bit is EZ-B, then, 

2 1/IT 

FIB = 
Sl 

I A(f)12 df (3.2.28) l092m 
-l/zr 

where m is the level of the QAM signal. In the case considered here, since m=4, 

2 1%ZT 

Em =2S, A(f)I2 df (3.2.29) 

-lm' 

The average received energy per signal element is given by 

00 

ERS E[I Si 12 y2(t) dt , (3.2.30) 

00 

Using the fact that the { s; ) are statistically independent and have zero mean, and 

employing Parseval's theorem, egn. 3.230 could be written as 

00 

ERS = s? I Y(f) I2 df (3.2.31) 

where Y(f) is the transfer function of y(t). From eqn. 3.2.16 it could be seen that , 
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IY(f)12 = IA(f 12 IH(f+c)12 IC(f+c)12 IB(f)12 

Substituting the value of eqn. 3.2.32 in eqn. 3.2.31 gives 

00 

EIS = s? 
$I 

A(f) 12 1 H(f+f )12 1 C(f+ f) 12 1 B(f) 12 df 

(3.2.32) 

(3.2.33) 

Assuming the filters C, B1, and B2 used in this model, eqn. 3.2.33 could be written as 

1/z'- 

ERS = s? 
rI 

A(f) 12 1 H(f+ f )12 df (3.2.34) J 
-112T 

If the average received signal energy per bit is ERB, then, 

2 1/2T 

ERB _ ýoý2sI mfI 
A(f) 12 1 H(f+ c )12 df (3.2.35) 

J 
-1,2T 

where m is as defined previously. 

3.3 QAM SYSTEM MODEL WHEN USED OVER HF RADIO LINKS 

It is now appropriate to discuss the model of a data transmission system 

employing QAM over HF radio links. An illustration of such a model is given in Fig. 

3.3.1. This is an example of a synchronous, serial data transmission system, where the 

transmitted signal is subjected to Rayleigh fading, as would be the case in a practical HF 

radio channel. 

The ( si) are a sequence of complex data symbol values, represented as a series 

of impulses, where s; could assume the value of any one of a possible set of complex 

numbers, and 1/T is the signal element rate of the system in bands. The {si} here, carry 

the information to be transmitted, and are statistically independent and equally likely to 



57 

have any one of their possible values. The filter A' is a lowpass filter which shapes the 
spectrum of the transmitted signal such that the resultant QAM signal fits into the passband 
of the voice frequency channel in the CIF radio spectrum. The impulse response of A' is 
the real valued function a'(t), and its transfer function is A'(f), which is assumed to be such 
that, 

A (f) =0 for f< -f +k sp 

and f>f- kf 
c sp (3.3.1) 

where fc is the carrier frequency in Hz. fsp here, is the largest value of the frequency spread 
(in Hz. ) that is expected to be introduced by the HF channel and k is an appropriate positive 
integer [6]. The reason for this assumption will become clear later on, but, at this stage, 
suffice it to say that the above assumption facilitates effective lowpass filtering at the 
receiver. A possible example of the absolute value of A'(f), i. e., IA'(f)I, is shown in Fig. 
3.3.2. The output of the lowpass filter A' is multiplied by the complex factor \2exp(j21rfct) 

to give the signal xl(t). The real part of x1(t) is the QAM signal (as given in Section 3.2), 

and is denoted by x2(t). A possible example of the absolute value of the transfer function 

of x2(t), i. e. 1 X2(f) I, is shown in Fig. 3.3.3. 

The spectrum of the voiceband QAM signal is next shifted to the HF radio 
spectrum, (3-30 MHz. ), by a process of single sideband surpressed carrier amplitude 

modulation 111. The radio transmitter filter employed towards this end is G, which has an 
impulse response g(t) and a transfer function G(f). The modulated HF radio signal x(t), 
is transmitted over an HF radio channel, whose model is as explained in Section 2.6, and 

as shown in Fig. 3.3.4, For simplicity's sake, the two skywave model was chosen for 

this purpose, where the relative delay between the skywaves is 'r seconds. The Rayleigh 

faded and distorted signal at the output of the HF radio channel is denoted by z(t), and is 

now linearly demodulated by the radio receiver, in order to shift its spectrum back to the 

voice frequency band. The radio receiver filter employed in the demodulation is D, which 
has an impulse response d(t) and a transfer function D(f). White Gaussian noise, (denoted 

by n(t)), with zero mean and a two-sided power spectral density of NO112 is added to the 

signal at the output of the radio receiver filter D. It should be noted here, that the processes 

of modulation and demodulation are linear, and they do not change the bandwidth of the 

signal, or introduce any distortion into the signal, other than that introduced by the HF 

radio channel and the radio equipment filters themselves. Thus, these processes are not 

explicitly shown in Fig . 
3.3.1, rather, the entire HF radio link is represented by its 

equivalent model in the voiceband, as shown in the figure. 
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The noisy, Rayleigh faded, and distorted QAM signal is next passed through a 
bandpass filter C, whose impulse response and transfer function are, respectively, c(t) and 
C(f). This filter is found in the data modem itself, and its function is to remove the noise 
frequencies which lie outside the bandwidth of the signal, without unduly distorting it. 
IC(f)I is assumed to be symmetric about f, over positive frequencies. The signal at the 

output of the filter C, undergoes a process of coherent demodulation, where it is first 

multiplied by the complex valued reference signal '2exp(j2ztf 
f't) . f, ' is equal to the average 

instantaneous frequency of the received signal, and, in the case considered here, is 

assumed to be equal to the carrier frequency f, thus eliminating any frequency offset that 

may have been introduced by the channel. This, in itself, is a fair assumption, especially 
for the theoretical analysis of the system, since in any practical modem, the carrier recovery 
circuit is expected to remove the above mentioned frequency offset by, for example, 
employing the well known phase locked loop technique [1,21 

. 

The signal at the output of the complex multiplier is now subjected to the second 

stage of the demodulation process, which consists of it being passed through a lowpass 

filter B', with impulse response b'(t) and transfer function B'(f), where the value of B'(f) is 

zero outside the frequency band -f, to f, The function of this lowpass filter is to surpress 

the harmonics generated by the multiplying process, thus leaving only the baseband 

received signal, r(t), at its output. This received signal is sampled once per signal element, 

and passed onto the detector, whose output gives the desired, detected signal si'. 

From Fig. 3.3.1, the signal at the output of the first multiplier is given by 

j2mft 
x1(t) _Y si a (t-iT) e (3.3.2) 

Taking the real part of x1 (t) gives, 

j2ltfýt 
x2(t) = 

ý72 Re ( Is, 
a(t-iT) e} (3.3.3) 

i 

Let the complex valued data symbol, s; , be given by 

si = sl 1 +js2 i (3.3.4) 



59 

Then from eqn. 3.3.2, 

/ý j27tft 
x2(t) ` Re { (s1 i +js2 i) a(t-iT) e} 

5 Re {(si1+ js2 
i) a (t-iT) [ cos 21t ct +j sin 2nfct ]} 

IT { 
si ia 

(t-iT) cos 2nfct - s2 ia (t-iT) sin 2n ct } 

(3.3.5) 

Eqn. 3.3.5. is exactly similar to eqn. 3.2.1 in the previous section. Thus, from eqn. 
3.2.1,3.2.4 and 3.3.5, the QAM signal x2(t) could be written as 

1 j27if t*'Jo 

x2(t) 
{ 

si a (t-iT) e+ si a (t-iT) et} (3.3.6) 
F2 

The signal at the input to the transmission path is given by x(t) where 

x(t) = x2(t) * g(t) 

=1{s, a (t-iT) ej2nfýt + Si a (t iT) e2 
cf 
`t }* g(t) 

i 

1 j2nf t -j2nft 
sý a (t-i'O e g(t) + Si 

*a 
(t-iT) e* g(t) } r 

t ]ýýtj 2ý f,; I{ (si a (t-iT) * g(t) e 
-j2] 

e Ii 

+ [s. 
a(ti1)*g(t)e'2nfýtIej2nf, t1 (3.3.7) 
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Let 

a(t-iT) =a (t-iT) * g(t) e- 
j2 it ft 

(3.3.8) 

From eqns. 3.3.7 and 3.3.8, x(t) can be written as 

{ s, a(t-iT) 
e 2nf°t 

+ si a*(t-iT) e'2`t } (3.3.9) x(t) =1 -2 
i 

a(t-iT) here represents the overall filtering carried out on the transmitter side, on the 
baseband signal. 

x(t) is the HF radio signal that is assumed to be transmitted over the HF radio 

channel. Since the channel model involves Hilbert transforms, (see Fig. 3.3.4), it is first 

necessary to define such. A Hilbert transformer is an allpass filter which introduces a 

-90°/+90° phase shift to all positive/negative frequencies of its input signal [2]. It is 

characterized by the impulse response 

P(t) 
1 

itt 

and the transfer function 

P(f) = -j for f>0 

+j for f<0 

If the Hilbert transform of x(t) is denoted by xH(t), then 

xH(t) = x(t) * p(t) 

From eqn. 3.3.9, substituition for x(t) in eqn. 3.3.12 yields 

(3.3.10) 

(3.3.11) 

(3.3.12) 

I J2Trf t** -j2nf t 
xH(t) ={ 

Is, 
a(t-iT) e p(t) + Si a (t-i1) e p(t) J-2 

} 

1 i 

(3.3.13) 
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Noting the relationship in eqn. 3.2.12 in the previous section, eqn. 3.3.13 could be 
written as 

xH(t) =1{[I si a(t-iT) * p(t) ejt]ej2nf, 
c 

i 

-i- 
isi 

a*(t-iT) * p(t) ej2xfct 
]ej 27c f, t1 

(3.3.14) I 

From eqns. 3.3.8 and 3.3.1, it follows that the Fourier transform of a(t) is bandlimited to 
the frequency band of A'(f), i. e., -f, to f.. Thus, if a Fourier transform were to be taken of 

XH(t) in eqn. 3.3.14, the frequency band of interest would be -f, to f,,,. Now, the Fourier 

transforms of p(t) exp(-j2ztft) and p(t) exp(j2nft) are given, respectively, by P(f+fc) and 

P(f-fc), where P(f) is as given in eqn. 3.3.11. The values of P(f+f f) and P(f-f f) over the 

frequency band of interest (namely, -f,, to f, ) are, respectively, -j and +j. Thus, by taking 

the Fourier transform of XH(t) in eqn. 3.3.14, inserting the appropriate values of P(f+f f), 
and P(f-f 

f), and then taking the inverse Fourier transform of the resultant function, xH(t) 

could be rewritten as 

j2itf, t ** -j2if,: t 

xH(t) _{s, a(t-iT) (j) e+ Si a (t-iT) (j) e 

(3.3.15) 

Referring to Figs. 3.3.1 and 3.3.4, it could be seen that the signal at the output of the HF 

channel is given by 

z(t) = x(t) ql(t) + x}{(t) q2(t) + x(t-i) q3(t) + xH(t-Z) q4(t) 

Substituting the values of eqns. 3.3.9 and 3.3.15 in eqn. 3.3.16 gives 

1 j21[fct ** j23tfct 

z(t) =I[[ si a(t-iT) e± si a (t-iT) e] ql(t) 
i 

(3.3.16) 

j2itft ** -j2itfýt 
-i- [ (j) si a(t-iT) e+j Si a (t-iT) e q2(t) 
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j2itf, (t-'r) ** . j2 tfý(x-T) 
-I- [ st a(t-^t-iT) e+ si a (t-i-iT) e] q3(t) 

j21tfc(t-T) ** -j2nf (t-t) 
-1- (-j) si a(t-i-i'O e+j si a (t-i-il) e] q4(t) } 

II{ 
si a(t-iT) L ql(t) - J92(t)1 

e 2nt 
J. 

i 

ýt -I- si a*(t-iT) [ ql (t) + jg2(t) ]e 
j2mf 

ý(t-T) 
'i' s. a(t-'t-1T) [ q3(t) - jq(t) Ie 

j27tf 

-ý- si a*(t-ti-iT) [ q3(t) +jq4(t) I ej 
(`-T) 

(3.3.17) 

Let, 

J2cT 
hi (t-iT) = a(t-iT) [q1 (t) - jq2(t)] +{ a(t-i-iT) [q3(t) - jq4(t)] }e 

(3.3.18) 

Using the value in eqn. 3.3.18, edn. 3.3.17 could be rewritten as 

+S* h* 
2nf t 

=1. h. e 
j2nft 

t, (t-iT) c, (t-iT) e' (3.3.19) z(t) S 
. vF i 

Consider eqn. 3.3.18. In the case considered here, the time delay i is assumed to be a 
constant, and hence the term exp(-j2nf fT) is merely a complex valued scalar with an 

absolute value of unity. Therefore, it has no bearing on the statistical properties of 
[q3(t)-jg4(t)] exp(-j2itf, t), especially since q3(t) and q4(t) are statistically independent 

random variables with zero mean. Moreover, it does not change the power spectrum of the 

above mentioned signal. It could thus be ignored in eqn. 3.3.18, enabling h; (t-iT) to be 

rewritten as 
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hi (t iT) = a(t-iT) [ ql(t) - jg2(t) ]+ a(t-'t-iT) [ q3(t) - jq4(t) 1 (3.3.20) 

The signal at the output of the receiver filter C is given by 

rl(t) = z(t) * d(t) * c(t) + n(t) * c(t) (3.3.21) 

and the demodulated baseband signal at the output of the lowpass filter B', is given by 

r(t) _ rt(t) e- 
j2nft*b 

(t) (3.3.22) 

However, as mentioned previously, f, ' is equal to the carrier frequency f,,. Thus, from 

eqn. 3.3.22, 

r(t) = F2 rl (t) e- 
j2n Fc c* 

bI(t) (3.3.23) 

Substituting the value of r1(t) from eqn. 3.3.21 yields, 

r(t) _{[ z(t) * d(t) * c(t) ] e'2 
`+[ 

n(t) * c(t) ] e'2 `` }* b(t) 

ý, (Z(t) e 
j2nrcc 

*[ d(t) * c(t) Ie 
ý2 cr }* b(t) 

+ F2 ((n(t) * c(t) Ie j2n ̀t I*b '(t) (3.3.24) 

Now, let 

b(t) =[ d(t) * c(t) Ie -j2Tcft *b (t) (3.3.25) 

where b(t) represents the overall filtering carried out at the receiver side of the modem. 
From eqns. 3.3.24 and 3.3.25, 
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r(t) ý72 z(t) e 
j21rf t* 

b(t) +2 n(t) * c(t) ]e 

Let 

w(t) = 
F2 

L[ n(t) * c(t) I e-j2nfct 
j*b, (t) 

(3.3.26) 

(3.3.27) 

where w(t) represents the resultant noise component in the received signal r(t). Eqn. 
3.3.26 could now be written as 

irfýt 
r(t) _[ z(t) e-j2 ]* b(t) + w(t) (3.3.28) VF2 

Substituting for z(t) from eqn. 3.3.19 gives, 

r(t) _ si hj (t-iT) + s, 
* h, (t-iT) e4nft}* b(t) + w(t) 

(3.3.29) 

Consider now, the lowpass filter with the impulse response b(t). From eqn. 
3.3.25 it can be seen that the frequency response of this filter is governed by B'(f). 

However, it was assumed earlier that B'(f) is zero outside the frequency band -fc to f,. 

Thus, the above mentioned Iowpass filter will surpress all frequency components which lie 

outside this band. 

Consider next, the response hi (t-iT) 
. 

If the frequency response of this could 

be constrained to be within the frequency band -f,,, to f, then the second term in eqn. 

3.3.29 would be reduced to zero, due to the lowpass filtering. From eqn. 3.3.20, it can 
be seen that the frequency response of hi (t-iT) is dependent on A'(f), and the frequency 

spreads introduced by the q; (t)'s. If now, A'(f) could be made such that after 

accommodating the highest frequency spread, it still lies within the frequency band -f, to 

fý, then, the frequency response of h; (t-iT) too would be limited to this band. This is the 

reason for A'(f) to be defined as given in eqn. 3.3.1 and shown in Fig. 3.3.2. As regards 

the integer k, (eqn. 3.3.1), a value of 5 is deemed more than sufficient, in order to ensure 

satisfactory filtering. 
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Eqn. 3.3.29 could now be written as 

r(t) _ S. hi (t-iT) * b(t) + w(t) 

Let 

yIl (t-iT) =hi (t-iT) * b(t) 

Then, from eqn. 3.3.30, 

r(t) _ si yi (t-iT) + w(t) 

From eqn. 3.3.31 and 3.3.20, y; (t-iT) is ascertained to be 

(3.3.30) 

(3.3.31) 

(3.3.32) 

yi (t-iT) { a(t-iT) [q1(t) - Jg2(t)] + a(t-, c-iT) [q3(t) - jg4(t)] I* b(t) 

(3.3.33) 

yI (t-iT) here, is the time varying impulse response of the linear baseband channel (without 

the noise), as shown in Fig. 3.3.1, and the equivalent baseband model of the QAM data 

transmission system over HF radio links, is given by eqn. 3.3.32. A diagrammatic 

exposition of this model is given in Fig. 3.3.5. 

It is now appropriate to explore the statistics of the resultant noise function, 

w(t), in more detail. From eqn. 3.3.27, 

w(t) =T2{[ n(t) * c(t) J e-j2nfýt 1* b'(t) (3.3.34) 

By a similar argument to that developed in Section 3.2, the power spectral density and 

autocorrelation function of w(t), denoted, respectively, by IW(f)12 and R,,, (r'), could be 

said to be given by 

IW(f)12 = No IC(f+c)I2 1 B(fli2 (3.3.35) 
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and, 

fý 

RW(ti) =N0J IC(f+c)I2 IB(f)I2 ej2nfý df 

- fc 
(3.3.36) 

The limits of integration here, are governed by the bandwidth of the filter B'. The variance 

of w(t), which is (ßW)2, is given by 

ßW = N0 JI C(f+ f) 12 IB (f)12 df (3.3.37) 

- fc 

In the case considered here, where C(f) is symmetric about the carrier frequency fc (for 

positive frequencies), it could be shown that the autocorrelation function of each of the real 

and imaginary parts of w(t) is equal to half the autocorrelation function of w(t), and, that 

the real and imaginary parts of w(t) are uncorrelated [5,6,7] 
, 

The average transmitted energy per signal element at the output of the 

transmitter filter with impulse response a(t), is given by, 

E=E1 si a(t-m 12 dt 
-00 

(3.3.38) 

where E[. ] denotes the expected value. Since the { si ) are statistically independent and 

have zero mean, eqn. 3.3.38 could be written (using Parseval's theorem) as, 

00 

EIS = s? IA(f)I2 df (3.3.39) 

where the first term on the right hand side of the equation denotes the expected value of 

(s1 )2 . The average transmitted energy per bit at the output of the transmitter filter with 

impulse response a(t), is given by, 
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2 00 

mI 
A(f)12 df (3.3.40) Em 

loss J 92 

The average energy per signal element at the input to the receiver filter whose impulse 

response is b(t), is given by, 

r2 
ERS =E[JIs, (a(t-iT) [ql(t) - Jg2(t)] + a(t-, r-iT) [q3(t) - Jg4(t)]) I dt 

-100 (3.3.41) 

Since the qi (t) are independent, eqn. 3.3.41 simplifies to 

2 ERS = s? [ 2(t) 
+ q22 (t) + q3(t) + q4(t) 1 r1 

A(f)12 df (3.3.42) 
J 

-00 

and the corresponding energy per bit is, 

2 
ERB = 

s' 

m[ 
qi(t) + q2(t) + q3(t) + q4(t) 

f1 
A( 12 df (3.3.43) 

log2 J 

where the respective components inside the square brackets are the mean square values of 
the functions ql(t), q2(t), q3(t) and q4(t) . Since all these functions have zero mean, the 

above mean square values are also their variances. From eqns 3.3.39 and 3.3.43, it could 
be seen that, 

ERs =[ q3 (t) + q2 (t) + q3(t) +q (t) I Ers 24 (3.3.44) 

Thus, if the sum of the variances of the q; (t) are equal to unity, there would be no change 
in the signal energy due to transmission over the HF channel. As explained in Section 

2.6.2 in the previous chapter, this is the case that is assumed. 
i 
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Fig. 3.2.1 Model of QAM data 
transmission system 
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Fig. 3.3.4 I--IF channel model with 
2 sky waves 
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CHAPTER 4 

NEAR MAXIMUM LIKELIHOOD DETECTORS 
FOR A 4.8 KBIT/S HF RADIO MODEM 

4.1 INTRODUCTION 

For a sequence of clata symbols transmitted over a non-ideal, bandlimited 

channel which introduces intersymbol interference and additive noise, the optimum 
detection process is one which minimises the probability of error in the detection of the 
entire transmitted sequence, given that the whole sequence has been received [1-31 

. It is 

assumed here that the transmitted symbols have a finite alphabet. 
now, The optimum detector is said to 

be that which performs a process of maximum likelihood estimation [1) of the transmitted 

sequence, and is known as a maximum likelihood detector, or, maximum likelihood 

sequence estimator [1,41 
. 

One such realization of a maximum likelihood sequence estimator is that 

proposed by Forney [4], which uses a recursive algorithm called the Viterbi algorithm 
[5,6]. This is a relatively simple implementation of an optimum detection process which 
lends itself well to theoretical analysis and performance evaluation. It is optimum in the 

sense that it provides a maximum likelihood estimate of the entire transmitted sequence, 

subject to certain conditions which will be explained in due course. This detector, which 

will be referred to in the thesis as the Viterbi detector, does not, however, minimize the 

probability of error in the detection of an individual data symbol. Nevertheless, it has been 

proven that, at high signal-to-noise ratios, the performance of the Viterbi detector is similar 

to that of any other detector whose optimization criterion is the minimization of the 

probability of error in an individual data symbol [1,41 
. 

The detection processes studied in this chapter are based on the Viterbi 
detector. As such, the chapter begins with a description of the Viterbi algorithm. The 

theory of maximum likelihood detection is however, not included, since it is widely 

available in the published literature [1-3], and it is the authors view that no loss of logicality 

results due to this omission. It should also be noted that the Viterbi algorithm is explained, 
in Section 4.2, from the viewpoint of its operation in a Viterbi detector, rather than in a 

more general sense. The constraints and limitations of the Viterbi detector are explained in 

Section 4.3, and a need for near maximum likelihood detectors is established. Section 4.4 

gives a model of the data transmission system that was used in the simulation tests, and 
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this is followed in Section 4.5, by a detailed study of the near maximum likelihood 
detectors that were tested. In Section 4.6, the results are discussed, and the performance of 
the detectors are compared and contrasted. The major conclusions are summarized in 
Section 4.7. 

4.2 THE VITERBI ALGORITHM 

The Viterbi algorithm was originally developed in 1967, for the decoding of 
convolutional codes [5]. However, it was later observed to be a recursive optimal solution 

firs order to the problem of estimating the state sequence in a finite state, discrete time, AMarkov 
process observed in memoryless noise [6]. The process should be Markov in the sense 
that the probability of being in a particular state at time j, given all the states up to that 
time, depends only on the state at time j-1. The process is said to be observed in 

memoryless noise in the sense that the observations at time j, depend probabilistically, only 
on the state transitions at that particular time instant. Thus, if a process could be 

represented by a finite state shift register model, (subject, of course, to the memoryless 
noise observation constraint), it is amenable for processing by the Viterbi algorithm. 

The objective in this section is to explain the Viterbi algorithm in terms of its 

operation as a maximum likelihood detector. Toward this end, consider the model of the 
data transmission system given in Fig. 4.2.1. This is a model of a synchronous, serial 

system, where the element rate is lIT bands. The signal at the input to the transmitter filter 

is assumed to be a set of impulses, regularly spaced at intervals of T seconds, that is, 

s (t} _ si 8(t-iT) (4.2.1) 

The {si} are assumed to be statistically independent and equally likely to have one of m 

possible values. The transmitter filter has an impulse response a(t), and is the filter which 

shapes the spectrum of the input signal, in order that it matches the available bandwidth of 

the transmission path. The transmission path has an impulse response h(t), which is 

assumed to be of finite duration and time invariant. White Gaussian noise with zero mean 

and a two-sided power spectral density of Nß, /2 is added at the output of the transmission 

path. The receiver filter has an impulse response b(t), and its function is to remove the 

noise frequencies which lie outside the signal bandwidth. For the purpose of this analysis, 

the absolute value of the receiver filter transfer function, IB(f)I, is assumed to have a 

"I 

rectangular shape, as shown in Fig. 4.2.2. The transmitter filter, transmission path and 
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receiver filter in cascade, is said to form a linear baseband channel with impulse response 
y(t), such that, 

y(t) = a(t) * h(t) * b(t) (4.2.2) 

The received signal, r(t), at the output of the receiver filter, is sampled once per signal 

element, at the time instants t= iT, (i = 0,1,...... ), to give the received signal sequence 
{ri}. The {ri) are fed to the detector, which gives at its output, the detected data symbol 

sequence { si' }. 

The signal at the output of the receiver filter is given by 

r(t) = si y(t-iT) + w(t) (4.2.3) 

where, 

w(t) = n(t) * b(t) (4.2.4) 

The power spectral density of n(t) is NQ/2 and hence the power spectral density of w(t) is 

No IB(f)12 / 2. Therefore, the autocorrelation function, R, (r), of w(t), is given by 

00 

RW(ti) 
2 

No I B(f) 12 ej27cfT df (4.2.5) 

-00 

Substituting for IB(f)I (as shown in Fig. 4.2.2), 

lm, 

ej 
2nfT df 

2J 
-1/2T 

No sin(ici/T) 
2ý (4.2.6) 

ntif 

7 

The variance of w(t) is, 
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Rw(O) 
No 

2T (4.2.7) 

w(t) is, thus, a bandlimited Gaussian noise waveform with zero mean and variance Nd2. 

The signal at the output of the sampler, at time t= jT, is, 

r(T) = si YUT-iT) + w(jT) 

_ si y( U-il T) +woT) (4.2.8) 

Thus, the jth received sample is, 

- s1-h ytl + W. (4.2.9) 
h=0 

where Yh = y(hT) and Yh =0 for h<0 and h>g. Thus, the samples yh, (h=0,1,.... g), 
form a finite sequence and is represented by the (g+1)-component vector Y, where 

Y= y0 yl ....... y (4.2.10) 

Y is called the sampled impulse response of the linear baseband channel. It is of finite 
length and is assumed to be completely known at the receiver. 

The noise sample wj is a sample value of the noise function w(t) at time t=jT. 
Since w(t) was shown to be a bandlimited Gaussian noise waveform with zero mean and 

variance No/2T, so the (w; ) are a set of Gaussian random variables with zero mean and 

variance No, /2T. Moreover, it could be shown from eqn. 4.2.6, that the {w; }, for different 

i, are uncorrelated [7,81, and since they have zero mean, are statistically independent [1] as 
well. This assumption of statistical independence of the noise samples entering the detector, 
is extremely vital for the operation of the Viterbi algorithm. This is the reason for the 

choice of the receiver filter as given in Fig. 4.2.2. 

"I 

It could be seen from eqn. 4.2.9, that the model given in Fig. 4.2.1 could be 
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represented, equivalently, by a discrete time, feedforward transversal filter with tap gains 

YO yl.... yg, to whose output is added a noise sample. This equivalent model is shown in 

Fig. 4.2.3. Since the {s1) are assumed to have only a finite number, m, of possible values, 

this is essentially a finite state, shift register model. Moreover, since the additive noise 

affects only the current sample, the process could be said to be observed in memoryless 

noise. Thus, the model fits in perfectly with the requirements observed at the beginning of 

this section, and the Viterbi algorithm could now be used for the estimation of its state 

sequence, i. e. for the estimation of the transmitted data symbol sequence. 

Let, 

Sk = Si s2 ....... sk (4.2.1 1) 

Wk = wl w2 ....... wk (4.2.12) 

and 

Rk=r1 r2 ....... rk (4.2.13) 

Sk, Wk and Rk are k-component vectors whose ith components are, respectively, si, w; and 

ri for i=1,2, .... 
k. They represent, respectively, the symbol values, noise components 

and received samples up to time kT, in the transmitted message. Clearly, Sk is equally 

likely to have any one of its mk possible values. Now let, 

Xk =x1 x2 ....... xk (4.2.14) 

Zk = z1 z, 2 ....... zk (4.2.15) 

and 

Uk= U1 u2 ....... Uk (4.2.16) 

Xk, Zk and Uk are k-component vectors whose ith components are x;, zi and u;. xi is a 

possible value of si and as such, may have any one of m values. zi is a possible estimate 

of the signal component in r; , and is given by, 

ME 
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tXihYt, 
(4.2.17) 

h=0 

ui is a possible value of w;, satisfying 

r. =z+U. (4.2.18) 11 

Clearly, 

ui = r. - zi (4.2.19) 

and hence Uk is the unitary distance between Rk and Zk, where, 

1 Uk12 =I ul 1Z+1u212+....... +I uk 12 (4.2.20) 

Under the conditions assumed, (most importantly, the equally likely condition 
for Si and the statistical independence condition for the Gaussian noise samples wi ), the 

maximum likelihood estimate of the transmitted sequence is given by the vector (Xk)max, 

where this is the value of the vector Xk such that IUk12 is minimized. (Xk)max is also the 

possible value of Sk that is most likely to be correct Ill. 

The Viterbi algorithm is now explained as follows. Just prior to the receipt of 
the sample rk+l, the detector holds in store mg vectors, (Xk), corresponding to the mg 

different possible combinations of their last g components, i. e., Xk-g+1= Xk-g+2. ...... 

Xk-1, Xk . 
These set of vectors are called 'survivors' corresponding to the state given by 

that particular combination of its last g components. Each survivor is associated with a 

'cost', 1Uk12, as given by eqns. 4.2.17,4.2.19 and 4.2.20, and is the vector with the 

lowest cost, corresponding to its own state. These costs are stored alongside the 

survivors. It should be noted here, that these costs are analogous to the 'metrics' which 

need to be computed in the traditional exposition of the Viterbi algorithm 161, the 

difference (apart from its value) being that, in the case of metrics, the algorithm searches 
for maximum values, whereas in this case, the algorithm attempts to find minimum costs. 

When rk. 1 is received, each of the mg survivors is expanded m ways to give 

'I 

mg+l vectors, (Xk+l) , where the last component, xk+t, takes on its m different possible 
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values, and the first k components remain unchanged. The cost of these vector {Xk+l } is 

given by IUk+l ! 2, where, 

Uk+l 12I Uk I2+{ rk+l - xk+l-h yh (4.2.21) 
h=O 

The resulting (m)g+l costs are stored alongside the corresponding (m)$+1 vectors, where 
the costs are evaluated using the stored values of IUk12 

. 

Now, for each of the mg possible combinations of the last g components of 
Xk+1, ( that is, Xk-g+2, Xk-g+3. ....... Xk-1, Xk, Xk+1 )' the detector selects the vector 

which has the smallest value of IUk+112. When this process is completed, the detector is 

left with the resulting mg vectors (Xk+l) 
, which are of course, the survivors at time 

(k+1)T. The associated cost, IUk+l 12, is stored alongside the corresponding vector Xk+l. 

The maximum likelihood vector, (Xk+i)max, is now chosen as the vector with the lowest 

cost amongst the survivors. The process continues this way, on receipt of the signal rk+2 

Ideally, the detection is carried out on receipt of the whole message, whereby, 
the components ( xi) in (Xk)r, are taken to be the detected values of the data symbols (s; 1, 

assuming of course, the duration of the entire message to be kT seconds. In practice, 
(especially if the message is long and k is a large positive integer), this would involve an 

excessive amount of storage. Thus, an appropriate delay of n time intervals is introduced 

before the detection of any of the s;, and instead of storing mg k-component vectors {Xk}, 

the detector stores mg n-component vectors IQk}, where, 

Qk Xk-n+l Xk-n+2 """" xk (4.2.22) 

It could be seen that Qk is formed by the last n components of the corresponding vector Xk . 
sk_n+l is now detected as the value of xk_n+l in the maximum likelihood vector (Qk)max , 
corresponding to (Xk)max . 

If n is chosen to be large enough, this truncation process rarely reduces the 

optimality of the detector, since, in almost every case, the segment, xl x2 .... xk-n , 
becomes common to all the survivors. Thus, the true maximum likelihood vector (Xk)max 

, 

"I 

is always held in the detector store. Moreover, in the rare instances that this is not so, it 
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has been observed that the effect on the performance of the detector is negligible [6]. As a 
general rule however, n is always chosen to be greater than g+1 [1] 

. 

The recursion may be. started, in practice, by making one of the mg stored 
vectors exactly equally to the first g data symbols, and assigning to it, a zero cost. The 
remaining mg -1 vectors may be chosen arbitrarily with a very high value of cost assigned 
to each of them. After g recursion cycles, all of the arbitrarily chosen vectors would have 
been discarded, and every one of the new set of mg survivors would have originated from 
the vector to which was initially assigned a zero cost. 

As regards computational complexity, the Viterbi detector requires, for every 
recursion cycle, m9+1 squaring operations, mg comparisons and m9+1 additions. In terms 
of storage, it requires 2mg storage locations, half of which are used to store the survivors 
and the other half, to store their corresponding costs. 

The symbol error probability, P(e), for the Viterbi detector, has been shown to 
be lower and upper bounded as [4] 

d. d. 
k0 Q(' ) <_ P(e) < kl Q( ) 

26 26 
(4.2.23 

where d.. in is the minimum euclidean distance between any two possible (Zx} as given in 

eqn. 4.2.15, ß2 is the variance of the noise samples {w1), ko and kl are two small 

constants and Q(. ) is the complementary error function. It has also been shown that dmln is 

a function of both the energy of the sampled impulse response of the channel, and the 
number of components it possesses (91. Thus, given these values, it should be possible to 
predict the performance of the Viterbi detector. 

4.3 MODIFICATIONS AND DERIVATIVES OF THE VITERBI 
DETECTOR 

It should be recalled, at this stage, that, for the Viterbi detector to perform true 

maximum likelihood detection, the noise components in the received signal samples at the 
input to the detector should be uncorrelated. (It was shown by Ungerboeck 1101 that this 

need not necessarily be the case and that, if the noise entering the detector were correlated, 

maximum likelihood detection could still be performed. However, this required a 
fundamental modification to the Viterhi algorithm, and the detectors given in the thesis do 

, qq 
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not follow this path. ) In the model described in the previous section, this was acheived by 
choosing the receiver filter such that it had a flat amplitude characteristic with sharp 
cut-offs, as shown in Fig. 4.2.2. Alas, this type of filter could never be designed in 
practice since it would require an infinite number of taps. Thus, any practical filter used 
would correlate the noise, preventing tnie maximum likelihood detection. 

When Forney originally proposed the optimum receiver, [4] the above 
mentioned problem was circumvented by replacing the receiver filter with a matched filter, 

sampling the output of the matched filter, and feeding these samples to a linear transversal 
filter, which is used just ahead of the detector (see Fig. 4.3. l ). When this linear 
transversal filter is designed according to certain criteria [4], the noise components of the 
signals at its output become uncon"elated, i. e., this filter essentially decorrelates the noise. 
Moreover, the outputs of this filter (which are also the inputs to the detector), have been 

shown to form a set of sufficient statistics for the maximum likelihood detection of the 
transmitted data signals. The cascade of the matched filter, sampler, and linear transversal 
filter is known as the 'whitened matched filter'. 

The criteria under which the linear transversal filter becomes part of the 
whitened matched filter, will now be explained. It should be noted that no proof will be 

given for any results and observations, (the interested reader should refer to [4] for such), 

rather, the main points of concern will be summarized. 

Consider Fig. 4.3.1. g(t) here, is the impulse response of the cascade of the 

transmitter filter and transmission path. The receiver filter is a filter matched to g(t), (i. e., 
it has an impulse response g(-t)), such that the signal-to-noise ratio at its output is 

maximised. The samples at the output of this receiver filter, {r; ), form a set of sufficient 

statistics for the estimation of the transmitted data sequence. 

Now, let the z-transform of the sampled impulse response of the channel 
(which includes the transmitter filter) and receiver filter, by Y'(z). It could be shown that 

Y'(z) is a polynomial in z with 21 +1 terms, has 21 complex roots, and these roots occur in 

complex conjugate reciprocal pairs 14]. Let these pairs be pl and 1/(pt)*, P2 and 1/(P2)*, 

and so on, until pi and 1/(p j)*. It could then be seen that Y(z) may always be factored as 

Y (z) = Y1 (z) Y2 (z) (4.3.1) 

where Y1(z) is a polynomial in z with the I roots p1, p2...... pi , and Y2(z) is a polynomial 
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in z with the 1 roots 1/(pl)*, 1/(p2)*, ..... 1/(pi )* . If now, the tap gain coefficients of the 
linear transveral filter are given by the coefficients of the polynomial 

F(z) = Yil(z) (4.3.2) 

then the noise components of the received samples at the output of this linear filter will be 

uncorrelated. Moreover, these received samples themselves would form a sufficient set of 
statistics for the estimation of the transmitted data sequence. 

Y1(z) here, is assumed to be chosen such that all of its roots lie outside the unit 

circle. All the roots of Y- 1 (z) would then lie inside the unit circle, making the linear 

transversal filter a physically realisable, stable, discrete time filter. (Of course, the roots 
on the unit circle could theoretically be accommodated by removing the stability condition 
of the linear filter - details of this general case are given in ref. [4] ). A little thought would 
now indicate that the resultant z-transform of the channel and the whitened matched filter, 
has no zeros outside the unit circle, these having been eliminated by the linear filter. Such 

are the characteristics and operations of the linear transversal filter which is used to 
decorrelate the noise. 

In the explanation in Section 4.2, of the operation of the Viterbi detector, no 
mention was made of a whitened matched filter. Thus, it may appear on first thought, that 
the signals at the input to the detector (see Fig. 4.2.1) do not form a set of sufficient 

statistics for the estimation of the transmitted data sequence, and that the noise components 
in these signals are correlated, thereby preventing maximum likelihood detection. 

However, it has been shown that, when the channel is strictly bandlimited to -1/2T to 1/2T 

Hz., (i. e., when the channel is used at the Nyquist rate), the whitened matched filter 

degenerates into a lowpass filter with a flat amplitude response, arbitrary phase 
characteristic, and a cutoff frequency at half the symbol rate, 1/2T, where the cutoff is 

assumed to be instantaneous Il 11. 'lt is this filter that is assumed in Fig. 4.2.1 and shown 
in Fig. 4.2.2, and hence, the validity of the Viterbi detector as a maximum likelihood 
detector still holds, as does the subsequent analysis in Section 4.2. The noise components 
at the output of this lowpass filter are statistically independent, and the outputs themselves 

are said to form a set of sufficient statistics for the estimation of the transmitted data 

sequence. 

An added convenience here, is to make the resultant sampled impulse response 

of the transmitter filter, transmission path and receiver filter, minimum phase 111, whence 
the effective number of components of this sampled impulse response would be a 
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minimum, thereby reducing the complexity of the Viterbi detector. It has been shown that 
this can be accomplished by specifying the phase characteristic of the receiver filter to be 
linear, and following this receiver filter with a sampler and a linear feedforward transversal 
filter (that which forms the first part of a conventional nonlinear equalizer 11,121 ). The 
linear feedforward transveral filter here, is an allpass network which replaces the roots of 
the z-transform of the channel which lie outside the unit circle, by the complex conjugates 
of their reciprocals, so that the resultant z-transform of the channel, receiver (lowpass) 
filter, sampler and linear feedforward transversal filter, has no roots outside the unit circle. 
It should also be noted that the linear feedforward transversal filter does not change either 
the noise statistics, or any amplitude distortion that may have been introduced by the 
channel, performing instead, a pure phase transformation of the signal at its input. 

Although an implenientable design, the Viterbi detector does have a rather 

restrictive, if not prohibitive, characteristic, in that the computational complexity grows 
exponentially with the number of components in the sampled impulse response of the 
channel. Indeed, when the sampled impulse response of the channel has more than a few 

components, the complexity becomes unmanageable. One solution to this problem is to 

shorten the channel impulse response by introducing some form of pre-filtering of the 

signal at the input to the detector, such that the detector sees only a 'desired channel 
impulse response', which could be constrained to be of very short length [13-16]. 

However, this prefiltering tends to correlate the noise, making the detection process 

suboptimal. Another approach is to replace this prefilter with a nonlinear equalizer which 

partially equalizes the channel before passing its output onto the detector 1171. Again, this 

technique suffers from the error extension effects common to the nonlinear equalizer and 

also reduces the effective signal-to-noise ratio. Thus, both these solutions result in 

detectors which are very much sub-optimal. 

An alternative method of reducing the complexity of the Viterbi detector when a 
large number of components are present in the channel sampled impulse response, is to 

reduce the number of vectors held in the detector store at any particular time instant. Thus, 

instead of holding mg survivors, the detector may hold m' survivors, (m' < mg), where 

these are chosen according to some criterion 118,191. These class of detectors are known 

as reduced state Viterbi detectors, and their performance approaches that of an optimum 
detector as the noise variance approaches zero. At low and moderate signal-to-noise ratios 
however, these detectors are suboptimurn, with the performance degradation relative to the 

optimum detector being dependent on the ratio of m'/ mg , the lower the ratio, the higher 

the degradation. 

7 

Near maximum likelihood detectors are a class of reduced-state Viterbi detectors 
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where m' is generally much smaller than mg and where all the m' stored vectors need not 
be survivors. The criterion for the choice of the m' vectors is such that the degradation in 
tolerance to noise is kept to a minimum. Several such criteria have been established in the 
published literature [12,20-271. The detectors employed in the ensuing work are all near 
maximum likelihood detectors and are known in the sequel as System A, System B and 
System C. In order to explain the operation of these detectors, it is first necessary to 
describe the model of the data transmission system and its attendant parameters that were 
used in the simulation. 

4.4 MODEL OF THE DATA TRANSMISSION SYSTEM USED IN 
THE SIMULATION 

The model of the data transmission system is given in Fig. 4.4.1. This is 
based on the baseband model of the QAM system as given in Fig. 3.3.5, with a few 

necessary changes, as will be explained below. These changes are incorporated in order 
to model, as closely as possible, a practical data modem within the framework of the stated 
objective, i. e., that of assessing the performance of various near maximum likelihood 
detectors when operating over HF radio links. 

The model itself assumes a synchronous, serial data transmission system 
employing a 4-level QAM signal, with an element rate of 2400 bauds, resulting, of course, 
in an information rate of 4800 bit/s. The information to be transmitted is in the form of a 

sequence of binary digits { a; ), where these are statistically independent and equally likely 

to have either of the values 

(X. =0 or 1 (4.4.1) 

These {a; } are fed to a differential encoder, which gives at its output, the differentially 

encoded signal that will be transmitted over the HF radio link. Differential encoding of 
the input sequence is carried out for the following reason. When the transmitted signal is 
in a deep fade, the carrier experiences large and rapid phase changes called phase jumps. 
These phase jumps are manifested in the equivalent, complex valued, linear baseband 

channel model, as rotations of multiples of 7t/4 radians (in the complex number plane), in 

each of the complex valued received signal samples. This, of course, would result in a 

string of errors in the detected data symbol values, where the occurrence of these errors 
would continue until the end of the transmitted message, even in the absence of noise. 
However, these prolonged error bursts can be prevented by coding the difference in phase 
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between two consecutive symbol values (as represented in the complex number plane), 
where the transmitted signal would now represent a phase rotation. By employing the 
corresponding differential decoding process at the receiver, the original symbols, ( a; }, 

could be reconstructed. The mechanics of the differential encoding and decoding processes 
are given in Appendix B. It should be noted however, that in this particular model, perfect 
estimation of the channel is assumed, and as such, the phase jumps that occur are known 

at the receiver, making differential coding seem rather superfluous. Nevertheless, in any 
practical modem operating over a fading channel, differential coding is an essential 
constituent part, (since perfect estimation can no longer be assumed); hence its inclusion 
here. 

The output of the differential encoder (see Appendix B) is a sequence of data 

symbol values, { s; 1, in the form of impulses occurring at 2400 symbols/s, where 

si = si i+ js2 i (4.4.2) 

with s1, I = ±1 and s2, i = ±1. Each s; is thus one of a set of 4-level data symbols as shown 
in Fig. 3.2.2, and it is assumed that s; =0 for i50, so that si is the ith transmitted data 

symbol value. Moreover, the { s; ) are statistically independent and equally likely to have 

any one of their four possible values. 

The impulses, { s; 5(t-iT)1, where T= 1/2400, are fed to a channel model 
comprising the transmitter filter, HF radio link, and receiver filter. The model here, is a 

scaled, minimum phased version of the equivalent, time varying, linear baseband channel 
that was derived in Section 3.3 (shown in Fig. 3.3.5) and will be explained in more detail 

shortly. The complex valued, time varying, impulse response of the channel is yi (t), and 

the stream of signal elements at the output of the channel are given by { si y; (t-iT) 1. 

Stationary, complex valued, zero nmean, coloured, Gaussian noise w(t), is added to the 

signal at the output of the channel, to give the complex valued received waveform r(t). 
Again, the reasons for, and consequences of, the noise being correlated, will be given in 

the detailed explanation of the channel model. 

The received waveform r(t), is now sampled once per data symbol, at the time 
instants {iT}. The delay in transmission is neglected, such that the first nonzero sample of 

the received signal waveform is assumed to arrive with no delay. The sample ri, of the 

received waveform at t= iT, is now given by, 
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r. = si-h yi, h + Wi (4.4.3) 
h=0 

where, 

yi, h = yi 
-n(hT) 

(4.4.4) 

and 

w. = w(iT) (4.4.5) 

It is assumed that Yi, h =0 for h<0 and h>g, and the vector 

Y. = Yi 0 Yi 1 ....... Yl (4.4.6) 

is taken to be the sampled impulse response of the channel at t=iT. 

The received samples, f r; 1, are next fed to the detector, which gives at its 

output, the detected symbol values { s'; _� 
}. In the particular case considered here, the 

detector is assumed to have an exact knowledge of the channel (i. e., perfect estimation is 

assumed). The detector also introduces a delay of nT seconds such that the detected data 

symbol obtained on receipt of r; , 
is S'; -n. These detected data symbols, { s'i_,, }, are finally 

fed to a differential decoder, which performs an inverse operation to that of the differential 

encoder, and gives at its output, the detected binary digit sequence {oc'i_n}. 

It is now appropriate to discuss in further detail, the scaled minimum phased 

version of the equivalent linear baseband channel model. Toward this end, consider Fig. 

4.4.2. This represents the time varying linear baseband channel whose impulse response is 

y; " (t-iT), and is exactly that derived in Section 3.3 and given by eqn. 3.3.33. It should be 

noted however, that the model of the HF radio link itself could comprise either two or three 

skywaves, with parameters corresponding to those of Channel 1, Channel 2 and Channel 
3, as given in Table 2.5.2. In the sequel, the two skywave model is assumed. 

From eqns. 3.3.8,3.3.25 and 3.3.33, 
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yl (t-il) _{ a(t-iT) [91 (t) - jq2 (t)1 + a(t-z-iT [q3 (t) - jq4 (t)] }* b(t) 

where, 

a(t) g(t) e-j21' 
t 

=a (t) * 

(4.4.7) 

(4.4.8) 

and 

b(t) _[ d(t) * c(t) ] e- 
j2 itf t*b 

(t) (4.4.9) 

ti here, is the relative delay between the two skywaves and f, is the carrier frequency of the 
QAM signal, where 

f= 1800 Hz. 
C 

(4.4.10) 

ä(t), c(t) and b'(t) are the impulse responses of the modem filters and g(t) and d(t) are the 
impulse responses of the radio filters. The attenuation and phase characteristics of these 
filters in the passband of the QAM signal, along with the sampled versions of a(t), a(t-T) 

and b(t), (for i=l. lms., 2ms. and 3ms. ), are given in Figs. 4.4.3 - 4.4.5 and Tables 

4.4.1 - 4.4.2. The sampled impulse responses assume a sampling rate of 4800 samples/s, 
the reason for which will become clear shortly. 

The values given in Tables 4.4.1 - 4.4.2 have been obtained from Dr. S. N. 

Abdullah, and further details regarding the design of these filters are available in refs. [7] 

and [29]. However, it should be noted here, that each of the sampled versions of a(t), 
a(t-i) and b(t), (for r=1. lms., 2ms. and 3ms. ), are minimum phase (or near minimum 

phase), so that the cascade of any one transmitter filter and the receiver filter would result in 

a minimum phase (or near minimum phase) sequence. Thus, in the absence of any fading, 

the channel formed by the transmitter and receiver filters is minimum phase (or near 

minimum phase). 

The sampled impulse response of the channel (as given in eqn. 4.4.6), is 

obtained by sampling y; "(t-iT) in eqn. 4.4.7 at the rate of 2400 samples/s (i. e., l/T ), 

which is the baud rate of the system. However, the convolution itself (in eqn. 4.4.7) is 

carried out at 4800 samples/s, and as such, the sampled impulse response is obtained by 

appropriately choosing every other sample in the resultant sampled, convolved sequence. 
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The higher sampling rate of 4800 samples/s is well above the Nyquist rate for the filters 

a(t) and b(t) and as such, ensures that no information is lost in the discretization of these 
filters. 

Now, let {al k}, {a2k} and {bk} be the sequences obtained by sampling a(t), 

a(t-, r) and b(t) at 4800 samples/s. (al, k) and {bk} here, correspond to the two sequences 

given in Table 4.4.1, while {a2k} could be any one of the sequences in Table 4.4.2. 

Also, let {g121 }, {q2 2i }, {q3 2i } and (q4,2) be the sequences obtained by sampling the 

four fading components ql(t), q2(t), q3(t) and q4(t), at 4800 samples/s, where the samples 

in each sequence correspond to those obtained upto the time instant t=iT. Then, from eqns. 
4.4.7 and 4.4.4, it could be seen that the components of the sampled version of yi"(t-iT), 

at t=iT, are given by, 

2h 

_Tr yi, h 2 Laik 
[gi, 

2(i-h)+k Jg2,2(i-h)+k] 

k=0 

+ a2, k[g3,2(i-h)+k J94,2(i-h)+k1 
] b2h-k I 

(4.4.11) 

for h=0,1, 
..... g, where g is dependent on the maximum delay between the first and 

the last (which, for a two skywave model, is the second) skywave. The values of (g+l) 
for Channels 1,2 and 3 are, respectively, 22,22 and 20. 

In eqn. 4.4.11, the {y"i, h} are automatically obtained at 2400 samples/s since 
the equation incorporates the fact that every other sample is chosen. It also takes into 

account the relationship in eqn. 4.4.4, thus ensuring the proper correspondence between 

the fading samples and the filter samples. The multiplication by the inverse of the sampling 

rate of the { ak } and { bk } is necesssary in order to ensure that eqn. 4.4.11 is an exact 

representation, in the discrete time domain, of eqn. 4.4.7. 

It is now attempted to make the sequence { y";, h) , (for h=0,1, ...... g), a 
minimum phase sequence, by passing it through a minimum phasing network. A minimum 

phased channel would have most of its energy concentrated in the first few components. 
Although not critical in a full Viterbi detector, minimum phasing of the channel is desirable 

when employing near maximum likelihood detectors, (essential in the case of a 

conventional nonlinear equalizer Ill ), in order that the cost functions give a reliable 
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indication (especially in fairly low noise situations), as to which vectors should be held in 

store. 

In practice, minimum phasing would be carried out by employing an adaptive 
linear filter just ahead of the detector, where the function of this filter is to replace the zeros 
of the z-transform of the sampled impulse response of the channel which lie outside the 

unit circle, (i. e., those that have an absolute value greater than unity), by the reciprocals of 
their complex conjugates [1,28]. However, such a filter, in its ideal form, would require 

an infinite number of taps, and as such, in order to preserve the practical feasibility of the 

model, it was decided that the minimum phasing network should operate only on those 

roots that have absolute values greater that d, where d>l. By increasing the value of d, a 

reduction in the number of taps required in a practical adaptive linear filter could be 

obtained. However, this cannot be carried on ad infinitum, since an increase in the value of 
d would also be accompanied by a corresponding degradation in the performance of any 

near maximum likelihood detector, due now, to the increasing departure of the channel 
from being minimum phase. Hence, the smallest practically feasible value of d should be 

employed, and this has been shown to be 1.05 [271. 

Thus, the minimum phasing network in the assumed model operates on the 

roots of the z-transform of the sequence (y"i, h ), (h = 0,1, 
.... g), that have absolute 

values greater than 1.05, by replacing these roots by the reciprocals of their complex 

conjugates. The network here comprises a root finding software module from the 
Numerical Algorithm Group library, (NAG - CO2ADF), which operates on the samples of 

yi"(t-iT) as given in eqn. 4.4.11, and some attendant calculations to determine the new 

'channel' from the new set of roots. The impulse response at the output of the minimum 

phasing network is given by yi' (t-iT), where this is almost (though not strictly) a 

minimum phased channel. Thus, 

Yi Ct iý min. Phased t- 4.4.12 = ýYi Ciý] C) 

and, 

{ yl h} min. phased [{ yi 
,h}] 

(4.4.13) 

for h=0,1,......, g. 

The minimum phased sequence, {y'i h), is now scaled such that its first 
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component is unity. This scaling is carried out purely for convenience in simulating the 

operation of the detectors. A similar scaling is performed on the noise sequence as well, in 

order not to introduce any undue change in the signal-to-noise ratio of the system. The 

impulse response of the scaled, minimum phased channel is given by yi (t-iT), and its 

sample values are given by yl, h, where, 

y. (t-iT) = scaled [ yl (t-iT) ] (4.4.14) 

and 

{ yi h}=l 
yi" } (4.4.15) 
yi 

,o 

for h=0,1, ... g. The sequence {yi h} corresponds exactly to the vector Yi in eqn. 
4.4.6, and is the resultant 'sampled impulse response' vector of the time varying linear 

baseband channel. The vector Yi is a minimum phase (almost, at least) sequence, whose 

first component is always unity. 

The noise function w(t), which is added at the output of the channel model, (see 

Fig. 4.4.1), is represented in the discrete time domain by the sequence {w; }, where wi is 

the additive noise component in the sampled, received signal ri, as given in eqn. 4.4.3. 

The {wi } are generated as follows. A sequence of statistically independent, complex 

valued, Gaussian random variables with zero mean and a variance of a2 in each of the real 

and imaginary parts, is generated via a software module (G05DDF) from the NAG 

library. This sequence is next convolved with { b"k 1, where { b"k } is the sequence obtained 

by scaling the sequence {bk} such that II b"k 12 = 1. Thus, these Gaussian random 

variables are passed through a scaled version of the same receiver filter that the signal 

passes through. ( The { ak } and { bk } have been normalised such that the sum of the 

squares of each sequence is 2, /T. All these normalization procedures are carried out in order 
to simplify the signal-to-noise ratio calculations, full details of which are given in Appendix 

A. 3 ). It should be noted however, that the noise sequence obtained at the output of the 

scaled version of the receiver filter, would correspond to a sampling rate of 4800 

samples/s, due to the { bk }, (and hence the { b"k) ), being at this rate. Thus, it is necessary 

to choose every other sample at the output of the scaled receiver filter, thereby ensuring that 

the noise samples correspond to a sampling rate of 2400 samples/s, which is the baud rate 

of the system. 
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Let the noise sequence thus obtained, be represented by { wi' ). This sequence 

is now scaled by dividing each component by y'i, o , (in order to compensate for the similar 

scaling which was carried out on the minimum phased channel sequence), to give the 

sequence {w; }, where, 

{ w. ) 

{wi 1= (4.4.16) 
{Yi, 

O} 

and is the discrete time representation of the noise function w(t). 

It can be observed now that the noise samples {wi }, are no longer 

uncorrelated, the correlation having been introduced by the scaled version of the receiver 
filter. This means that the noise components in the received signal entering the detector are 

correlated and as such, would prevent true maximum likelihood detection of the transmitted 

signal sequence. It is of course, possible now, to attempt to decorrelate the noise, but only 

at the expense of added complexity at the receiver ;a most unenviable option. Moreover, 

the objective is not to perform true maximum likelihood detection, (the usage of near 

maximum likelihood detectors eliminate such hopes anyway), but to develop and test near 

maximum likelihood detectors that are a good compromise between performance and 

complexity. As such, it was decided to maintain the status quo by leaving the correlated 

noise as it is, and accepting a slight degradation in the performance of the detectors. In the 
light of the results obtained, this matter is discussed further in Section 4.6. 

Recalling the fact that the HF channel model on average does not introduce any 

gain or attenuation to the transmitted signal, (eqn. 3.3.44 and Section 2.6.2), the 

signal-to-noise ratio of the system is defined as 

yr = 101og1o (1I) (4.4.17) 

2 No 

where Eb is the average transmitted energy per bit at the output of the transmitter filter A in 

Fig. 4.4.2, and No/2 is the two-sided power spectral density of the real valued noise 

waveform n(t), in Fig. 3.3.1. Under the assumed conditions, that is, a 4-level QAM 

signal transmitted over the previously described channel model, yi is shown in Appendix C 

(eqn. C. 20) to be given by 
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2 
S. 

yr = 10 loglo ( 12 ) (4.4.18) 
26 

where the numerator on the right hand side of the equation is the expected value of I s; 12 

and 62 is the variance of the real or imaginary part of the discrete time noise sequence 
{WO. 

4.5 THE DETECTORS 

Three different near maximum likelihood detectors have been tested, namely, 
System A, System B and System C. These detectors operate on the data transmission 

system model shown in Fig. 4.4.1, i. e., that which was explained in Section 4.4. 

4.5.1 System A 

Just prior to the receipt of the sample rl , the detector holds in store p different 

n-component vectors (sequences) f Q-1), where, 

Qi-1 
L Xi-n Xi-n+l """. Xi-1 

1 (4.5.1) 

and xi_h ,(h=1,2, ... n ), can take on any one of the four possible values of si , as 

given in eqn . 
4.4.2. It is assumed that n? g, where g is the number of components in the 

sampled impulse response vector given in eqn. 4.4.6. Each vector Qi_1 
, 

is formed by the 

last n components of the (i-1)-component vector Xi_ 1, where, 

Xii = 
Ixt x2 ...... * xi1] (4.5.2) 

Each vector Xi-1, represents a possible transmitted sequence of data symbols { sj }, (j = 
1,2, 

.... i-1 ), and has associated with it, the cost 

1-1 2 
1 (4.5.3) IU. 

- 
I2 = L, 

I X. 
i=1 h=0 
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where xi =0 for i <_ 0 and lul is the absolute value of the scaler quantity u. I U; 1 I2 is 

also taken to be the cost of the corresponding vector Qi_1 (which is obtained from the 

vector Xi_1). To simplify the terminology, these costs are denoted by, 

1 (4.5.4) ci-1 = IUi-1 2 

Under these conditions, and given the received sequence {rj }, it can be shown that the 

vector Xi-1 most likely to be correct, is that which has the smallest cost, (cl-1), over all 

combinations of possible values of the { xj} . 

On receipt of the sample ri, each of the p vectors { Qi_1 1, is expanded into four 

(n+l )-component vectors (Pi 1, where, 

Pi = 
[X 

i- n 
Xi 

-n+l """' Xi 
-1 

xi 
1 (4.5.5) 

Thus, there are four vectors { P; }, originating from any one { Qi_1 1. The first n components 

of such a group of four, are as in the original vector Q1_1 
, 

from which they were derived, 

and the last component xi, takes on its four possible values given by the four possible 

values of si . 
Stored alongside each of the resulting vectors {Pi}, are their costs ci , where, 

Ci = ýi-1 +I ri - 

tXihYih 
12 (4.5.6) 

h=0 

Using the fact that yi o=1 (Section 4.4), eqn 4.5.6 could be rewritten as 

+I ri - 

tXihYih 

- xi yi 0 
12 

h=1 

tXihyih 
xi 

2I 
(4.5.7) 

h=1 

where ci_1 is the cost of the vector Qi_1 , from which Pi is derived. 
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The vector with the smallest cost is now chosen from the resulting set of 4p 

expanded vectors {Pi). Let this chosen vector be denoted by PS . The first component x; _,, , 
of PS , is then taken as the detected value s'; _n, of the data symbol s; _� . 

Any vector P, , 
whose first component differs from s'i_n , 

is then discarded by assigning to it, an arbitrarily 
high value of cost. From the remaining vectors (Pi } (which includes Ps), are selected the 

p vectors which have the smallest costs. The first component xi_n , of all these selected 

vectors, is now omitted, to give the corresponding n-component vectors { Qi 1, where, 

ý`i L Xi 
n+1 

Xi-n+2 """' Xi 
-1 

Xi 
1 

(4.5.8) 

These p vectors { Qi } are now stored along with their associated costs, where these costs 

are the same as those of the { Pi } from which the { Qi } were derived. The smallest of these 

costs is now subtracted from each of the p costs, so that the smallest cost becomes zero. 
This is done in order to avoid an unacceptable increase in the value of the costs Ic; ), over a 
long message, and it does not change the differences between the various costs. With the 

p stored vectors (Q1), and their costs (c}, the detector is ready for the next detection 

process, that is, the detection of si_n+l, on receipt of ri+l . 

The detection process just described involves the computation, per received data 

signal, of 4p costs and p searches, (i. e., p comparisons ), through these 4p costs. In 

terms of memory, it requires 2p permanent storage locations, half of which are used to 

store the vectors, and the other half to store their corresponding costs. The delay in 

detection in System A is n sampling intervals. However, when n»g, the effective delay 

is 1 sampling intervals, where 1 is the smallest positive integer for which xi_I has the same 

value in all the p different stored vectors { Q; 1. 

4.5.2. System B 

System B has two versions, namely, the pseudobinary and the 

pseudoquaternary. The former involves two expansions per stored vector, and the latter 

involves four. ( Indeed, System A has a pseudobinary version as well [12,23-261; 

however, this is not one of the detectors that were tested ). Since the pseudoquaternary 

version is a direct extension of the pseudobinary version, only the latter will be explained in 

detail. However, the main differences of the pseudoquaternary version will be noted at the 

end of this section. 
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The pseudobinary version of System B is a detector that operates as follows. 

Just prior to the receipt of the sample ri , the detector holds in store p different vectors 
{Q; 

_1 
}, together with their costs {ci_1 }, as in System A (eqns. 4.5.1 and 4.5.4). However, 

p must now be an even number and in addition to this, the vectors are arranged in pairs, 
where the two vectors in any one pair differ only in their last component xi_, . This last 

0 
component is such that the two vectors in any one pair{ Q1_1 1, are those with the smallest 

and second smallest cost, for the particular combination of values xi_n , xi-,,,,, - X, -2, 
in 

the given pair. Each pair of vectors is arranged such that the smallest cost vector is given 
by the first of the pair and the second smallest cost vector by the second of the pair. Thus, 

the p stored vectors {Qi_1}, could be thought of as having originated from p/2 'root' 

vectors. 

On receipt of the sample r; , each vector Qi_1 is expanded into the corresponding 

vector Pi with the smallest cost, where Pi is as given in eqn. 4.4.5. For each of the 

vectors {Qi_1}, the value of xi which gives the corresponding smallest cost vector {Pi}, is 

determined by simple threshold level comparisons, [23,25] and does not involve the 
6 

calculation of any costs. The detector next evaluates the costs of the p expanded vectors 
{Pi}, and selects from these the vector with the smallest cost. Let this vector be denoted as 

PS . 
The detector then takes the value of xi_n in PS , as the detected value s'i_n of the data 

symbol sl, . All vectors whose first component differs from s'; _" are now discarded by 

assigning to them, an arbitrarily high value of cost. The first component of the remaining 

vectors, {Pi}, is omitted (without changing their costs), to give the corresponding 

n-component vectors { Q; 1. 

From these remaining vectors { Qi }, the detector now selects, (in addition to the 

smallest cost vector which originated from PS ), the {(p/2)-l} vectors with the next 

smallest costs. This results in the detector having, at this stage, a total of p/2 vectors {Q1). 

To each of these vectors is then added an additional vector Q; 
, whose first (n-1) 

components are the same as in the original vector Qi 
, and whose last 

component, xi , 
is such that the additional vector is that with the second smallest cost, for 

the given combination of values xi-n+l, xi-n+2. ....... xi-1 , 
in the original vector Q; 

. 
Again, simple algorithms have been developed to obtain the value of xi , which gives the 

vector with the second smallest cost, [23,26], and as such, no costs need be evaluated at 

this stage. 
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The detector now holds in store p vectors, {Qi}, which could be thought of as 

having originated from p/2 'root' vectors with the same values of xi_i+1, xi_n+2. ....... Xi- 
1-Thus, the p vectors {Q1}, could be held in pairs, as were the p vectors [Q1.1}. The costs, 

(ci}, of the p/2 vectors not yet determined, are next evaluated, and the smallest cost is 

subtracted from all the costs, in order to prevent any cost overflow. The p vectors { Qi }, 

which are held in store along with their costs {ci}, are now ready for the next detection 

process, that is, the detection of si_n+l , on receipt of ri+l. 

The pseudobinary version of System B involves the computation, per received 
data signal, of 1.5p costs, and 0.5p searches through p costs. The memory requirement, 
in terms of permanent storage locations, is the same as in System A, that is, 2p, and the 
delay in detection is n sampling intervals. 

- The pseudoquatemary version of System B operates in a manner similar to the 

pseudobinary version, except that p now, is a multiple of four, and the initial stored 

vectors { Qi_1 }, are arranged in groups of four. Each group of four vectors are those which 

have the four smallest costs, for the particular combination of xi_,,, xi_n+l, """" Xi-2, in the 

given group. Thus, the p vectors { Qi_1 } could be considered to have originated from p/4 

'root' vectors. In the case considered here, that is, a 4-level QAM signal, the vectors with 

the four smallest costs are, of course, given by the four possible expansions of a 'root' 

vector. 

On receipt of the signal ri, the detection process proceeds exactly as in the 

pseudobinary version of System B, until the stage where the detector holds p vectors {Qi }, 

which have originated from the p vectors (Pi 1. The detector now selects, in addition to 

the smallest cost vector which originated from PS ,{ 
(p/4) - 11 vectors with the next 

smallest costs, to give a total of p/4 selected vectors { Qi 1. To each of these is added three 

more vectors, that is, those that give the second, third and fourth smallest costs, for the 

particular combination of xi_n+l, Xi-n+2, """". xi-1, in the corresponding original Q; 
. 

Again, 

this is done by threshold level comparisons, and do not require the computation of any 

costs [261 
. 

As before, in this particular case where a 4-level signal is used, the three 

additional vectors are given by the original vector Qi 
, with its last component xi , replaced 

by the three remaining possible values it could take. 

The detector now has in store p vectors, { Qi }, which could be thought of as 

having originated from p/4 'root' vectors. These vectors are arranged in groups of four, 
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as were the vectors {Q1.1) at the start of the detection process. The 0.75p costs, { ci 1, that 
have yet to be determined, are next evaluated. The smallest cost is subtracted from all the 
costs and the detector stores the p vectors { Q; 1, along with their costs { ci }, ready for the 
next detection process. 

The pseudoquaternary version of System B involves the computation, per 
received data signal, of 1.75p costs and 0.25p searches through p costs. The memory 
requirement (in terms of permanent memory locations), and the delay in detection, is the 
same as that in the pseudobinary version of System B. 

4.5.3 System C 

System C is a modified version of System B, where now, the number of 
expansions, ij, of a given vector Qi_1, is a variable. Q is varied such that it reduces from 4 

to 2 to 1 as the cost of a vector, Qi_1, increases. This is best explained via the following 

example. 

Let the detector initially hold in store p vectors, {Q11}, where p=16. Each of 

these vectors is first expanded into the corresponding vector Pi , with the smallest cost. 
The detection of si_n is then carried out exactly as in System B, and the corresponding 16 

vectors, (Qi ), are obtained. From these 16 vectors [Q1- }, the detector selects the two 

vectors with the smallest and second smallest cost, and adds to each of them, three more 

vectors, as in the pseudoquaternary version of System B. Then, the detector selects, from 

the original set of 16 vectors { Qi 1, the two vectors with the third and fourth smallest cost, 

and adds to each of them, one more vector, as in the pseudobinary version of System B. 

Finally, the detector selects, from the original set of 16 vectors { Q1 }, the four vectors with 

the fifth to eighth smallest cost, but does not add any more vectors to these four. The eight 

vectors remaining from the original set of 16 vectors { QI }, are now discarded, and the 

detector is left with 16 selected vectors, (and of course, their costs), ready for the next 
detection process. If, following the detection of si_n, any vectors {Pi }, are discarded, this 

merely reduces the number of vectors { Qi }, that are subsequently discarded at the end of 

each detection process, and does not, in any other way, change the detection process. 

The complexity of System C depends not only on the number of stored vectors 
p, but also on the way in which the expansions are carried out. As such, quantification of 
this parameter is left until the next section, where a comparison of the various detectors 
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that were used, is given . Memory requirements (permanent storage), and the delay in 
detection, however, are the same as in the previous systems, namely, 2p storage locations 

and a delay in detection of n sampling intervals. 

4.6 COMPUTER SIMULATION TESTS AND RESULTS 

Computer simulation tests have been carried out to assess the performance of 
the various near maximum likelihood detectors mentioned in the previous section. The 

performance of a nonlinear equalizer has been included for comparisons sake. The model 
of the data transmission system used is that developed in Section 4.4, where a QPSK 

signal is employed to transmit the information at a rate of 4800 bit/s. The detectors have 
been tested over Channels 1,2 and 3, whose parameters are given in Table 2.5.2. Before 

discussing the results however, it is first necessary to collate the assumptions made in the 

tests, in order for the results to be viewed in their proper perspective. 

As mentioned in Section 4.4, it is assumed that the detectors have a perfect 
knowledge of the channel at every sampling instant, i. e., perfect estimation of the sampled 
impulse response of the channel is assumed. This is a major assumption in testing the 

performance of detectors operating over fading channels, and it may be argued that the 

subsequent results do not represent practical modem performance, in the absolute sense. 
Indeed so, and no claim is made to the contrary. However, the objective here is to select a 

near maximum likelihood detector that is effective in combatting the signal fading 

experienced over such channels, and within the framework of this objective, perfect 

estimation of the sampled impulse response of the channel becomes a reasonable, and 
indeed sensible, assumption. 

It was also mentioned in Section 4.4, that the noise components at the input to 

the detector are slightly correlated, the correlation having been caused by the receiver filter 

having non-ideal characteristics (i. e., the spectrum of the receiver filter is not flat as in Fig. 
4.2.2). It was expected that this would degrade the performance of the detectors. 

However, 'spot checks' were carried out using uncorrelated noise, and the performance 
degradation was found to be negligible. It is thus inferred that the correlation introduced 

by the receiver filter is not sufficient to affect significantly, the performance of the 

detectors. 

In all tests involving error rates, the same fading sequence has been employed, 
for a given channel. This facilitates proper comparison of the performance of the various 
detectors when operating over a given channel. It should be noted here that the three fading 
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sequences employed for the three channels, have been chosen from about 30 different 

sequences, such that the chosen ones exhibit 'worst case' conditions for the particular 
channel parameters. The noise and data sequences however, have been varied at each 
SNR, in order that the performance is not influenced by the choice of a particular sequence. 
On average, a total of 5x 106 symbols have been involved in the plotting of each curve, 
making their 95% confidence limits better than ±0.5 dB. The signal-to-noise ratio (SNR), 
is as defined in eqn. 4.4.17, and the channel parameter values are those given in Table 
2.5.2. The number of components in the sampled impulse response of Channels 1,2 and 
3 are, respectively, 22,22 and 20. The bit error rate is that in the { (xi' l (Fig. 4.4.1). 

In all the figures showing the performance of the detectors, the nonlinear 
equalizer is denoted NLE. The near maximum likelihood detectors are named according to 
the number of expansions per chosen stored vector, and the number of stored vectors. For 

example, 4B 16 is the pseudoquaternary (4 expansions) version of System B with 16 stored 

vectors, while 2B8 is the pseudobinary (2 expansions) version of System B with 8 stored 

vectors. System C has no numeral preceding the letter C, because the number of 
expansions of a stored vector is a variable. All the near maximum likelihood detectors 

introduce a delay of 32 sampling intervals, i. e., n= 32. The nonlinear equalizer of course, 
introduces no delay in detection. 

Figs. 4.6.1 - 4.6.3 show the fading encountered over the three channels. In 

terms of the depth of the fades, Channel 1 is the mildest, with the deepest fade around 

-14dB, and Channel 2 is the severest, with the deepest fade extending to -20dB. This is 

as expected, since Channel 1 is the sole 3-skywave channel, and the existence of the 

additional skywave decreases the probability of the signal being in a deep fade at any given 

time instant. The lower frequency spread (1 Hz. ) in Channel 3, is manifested in Fig. 

4.6.3 by the slower variations of the signal level. Channel 2 is thus confirmed as the worst 

of the three channels, exhibiting faster variations and possessing the deepest fades. 

Fig. 4.6.4 shows the performance of the system under conditions of no fading, 
i. e., when the HF radio channel is taken out. The detector used here is 4A 16. The curve 
marked 'ideal' shows the performance when the sampled impulse response of the channel 
is 1,0,0, 

.... , and the curve marked 'back-to-back' shows the performance when the 
distortion present is only that caused by the cascade of the transmitter and receiver filters. 

The corresponding sampled impulse response is given in Table 4.6.1. These curves were 

obtained in order to assess the degradation in performance caused by the inclusion of the 

equipment filters, and as can be seen, this degradation is about 0.2 dB. 

Before assessing the performance of the various detectors, it is appropriate to 
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consider first, their relative complexities. Undoubtedly, one of the best measures of 
complexity is the number of separate instructions needed, for a given digital signal 
processor (DSP) to implement the algorithms contained in the detectors. To obtain such a 
measure however, requires quite a thorough understanding of the particular DSP 

architecture and instruction set, and as such, is beyond the scope of this work. Instead, 

the complexities are compared here on the basis of the number of costs computed per data 

symbol, and the number of searches through these costs, again, per data symbol. Table 
4.6.2 shows these values for the various systems where the number of stored vectors in 

each case is p. (Obviously, as the number of stored vectors increase, so does the 

complexity, making, for example, 4A16 a more complex detector than 4A4). As can be 

seen from Table 4.6.2, by far the most complex detector is System A. This is followed 

by System B (quaternary) and finally, by System B (binary) and System C, where the latter 

two are of a similar order of complexity. 

Figs. 4.6.5 - 4.6.8 show the performance of the various detectors when 

operating over Channel 1. The nonlinear equalizer is the worst of the detectors tested while 
4A16 is the best, the difference in performance being about 3 dB asymptotically. As 

expected, for a given system, the performance improves as the number of stored vectors is 

increased. An interesting observation here is that this performance improvement is greater 

when the number of stored vectors is increased from 4 to 8, than when they are increased 

from 8 to 16, with the latter offering only a very marginal improvement. Thus, on the 
basis of their performance over Channel 1, it could be said, firstly, that it is more than 
likely that increasing the number of stored vectors beyond 16 would offer negligible 
improvement in performance and, secondly, that the detector offering the best compromise 
between performance and complexity is one which contains 8 stored vectors. 

Figs. 4.6.9 - 4.6.12 shows the performance of the detectors when operating 

over Channel 2, which is the worst of the three channels. As expected, the performance of 

all the detectors is inferior, relative to their performance over Channel 1. The difference in 

performance between the nonlinear equalizer and 4A 16 (again, the worst and the best of the 
detectors tested), approaches 2dB, asymptotically. The variation in the performance of a 

given system with the number of stored vectors, is as observed previously over Channel 

1, lending support to the conclusion that a detector with 8 stored vectors should be chosen 

as that which offers the best compromise between performance and complexity. 

Figs. 4.6.13 - 4.6.16 show the performance of the detectors when operating 

over Channel 3. The difference in performance between the best (4A16) and the worst 
(nonlinear equalizer) detector here, approaches 4.5dB, and the variation of the performance 

of the detectors, with the number of stored vectors, is as observed in Channels 1 and 2. It 
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was thus decided that a detector with 8 stored vectors should be chosen as the preferred 
system. 

Figs. 4.6.17 - 4.6.19 show the performance of the detectors with eight stored 
vectors (i. e., 4A8,2B8,4B8 and C8), when operating over Channels 1,2 and 3. Since 
Channel 2 is the worst channel, the initial choice of a detector would be based on its 

performance over this channel, the reasoning being that a detector which gives satisfactory 

performance over poor channels, should perform well over channels with less adverse 
fading conditions. However, Fig. 4.6.18 shows that there is at most, only 1dB difference 

in performance between the four detectors, when operating over Channel 2. It could also 
be seen that, although the best detector here is 4A8, the detector C8 exhibits a similar 
performance to the former. Since C8 is also much less complex than 4A8, it is the most 
suitable detector, given the objectives stated earlier. Moreover, Figs. 4.6.17 and 4.6.19 

show that the relative performance of these detectors over Channels 1 and 3 is similar to 
their relative performance over Channel 2, thus confirming that C8 should be chosen as the 
detector which gives the best compromise between performance and complexity. 

The performance of C8 over the 3 channels is summarised in Fig. 4.6.20. As 

expected, the best performance is over Channel 1 and the worst performance over Channel 

2, the degradation being about 6dB, asymptotically. It should be noted here, that the 
degradation at high signal-to-noise ratios is greater than that at low signal-to-noise ratios. 
This is due to the increasing influence at high SNR's, of the deep fades, on the 

performance of the system. Most of the errors at high SNR's are caused by deep fades, 

and since Channel 2 has deeper fades than Channel 1, the degradation in performance of a 

system operating over Channel 2 would become more pronounced as the signal-to-noise 

ratio increases. Thus, the relative asymptotic behaviour of these curves is probably a more 

reliable indicator of the vagaries introduced by the channels, than is their behaviour at low 

SNR's. The asymptotic performance of C8 over Channel 3 falls somewhere between that 

of its performance over Channels 1 and 2. 
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Sampled impulse response 
of transmitter filter 

('t=0) 

Sampled impulse response 
of receiver filter 

Real Part Imaginary Part Real Part Imaginary Part 

-0.1796 2.3539 -1.9418 1.3626 

-3.0074 20.7590 -15.9798 11.5941 

-9.9409 45.5585 -35.1418 27.3343 

-11.7870 41.4910 -34.4789 28.0870 

-3.4618 8.7046 -11.2302 7.2715 
4.4438 -11.7870 7.8155 -9.2602 
3.0643 -5.5819 7.5124 -5-0954 

-1.3597 3.1582 -0.5058 3.2327 

-1.4974 1.7365 -3.3707 1.8975 
0.2926 -0.7777 -0.6760 -1.2817 
0.5181 -0.1293 1.0483 -0.4830 

-0.1843 0.2880 0.3622 0.7615 

-0.3168 -0.2325 -0.3106 0.1979 
0.0022 -0.2108 0.0438 -0.1533 

-0.0444 0.0392 0.0739 0.0940 

0.0516 0.0099 -0.0647 -0.0312 

./ 

Table 4.4.1 Sampled impulse responses of transmitter 
and receiver filters, both minimum phase, 
obtained at 4800 samples/s. 
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Sampled impulse response 
of transmitter filter 

ti= 1.1 ms 

Sampled impulse respons 
of transmitter filter 

T= 2.0ms 

sampled impulse respons 
of transmitter filter 

ti= 3.0 ms 

Real Imaginary Real Imaginary Real Imaginary 
Part Part Part Part Part Part 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

-1.6694 13.2373 0.0000 0.0000 0.0000 0.0000 
-7.8492 39.6494 0.0000 0.0000 0.0000 0.0000 

-12.3887 46.9272 0.0000 0.0000 0.0000 0.0000 
-6.6023 19.2347 0.0000 0.0000 0.0000 0.0000 

2.9409 -8.8804 -0.7630 7.3452 0.0000 0.0000 
4.3005 -9.0256 -5.6487 31.9050 0.0000 0.0000 

-0.3368 1.6284 -11.9216 48.7718 0.0000 0.0000 
-1.9014 2.8139 -9.3589 29.8080 0.0000 0.0000 
-0.1434 -0.4311 0.5650 -3.0208 0.0000 0.0000 

0.6243 -0.4537 4.9376 -11.4980 -1.3137 11.0689 
0.0279 0.3082 1.0473 -0.9823 -7.1104 37.2137 

-0.3820 -0.0772 -1.9766 3.5053 -12.3470 47.9575 
-0.0417 -0.3043 -0.7165 0.3116 -7.5849 22.8263 
-0.0440 0.0085 0.5944 -0.7219 2.2354 -7.2499 

0.0749 0.0094 0.2544 0.2045 4.5939 -10.0027 
-0.0594 0.0095 -0.3636 0.1085 0.0932 0.8695 

-0.1544 -0.3287 -1.9704 3.1073 
-0.0228 -0.0636 -0.3234 -0.2261 

0.0167 0.0279 0.6313 -0.5553 
-0.0610 0.0186 0.1036 0.2882 

-0.3866 -0.0157 
-0.0735 -0.3216 
-0.0387 -0.0108 

0.0608 0.0141 
-0.0710 0.0136 

Table 4.4.2 Sampled impulse responses of the 
transmitter filter for different delays, 
obtained at 4800 samples/s., and 
shown relative to the transmitter 
filter with no delay 
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Sampled impulse response 

Real Part Imaginary Part 

1,00000 0.00000 
0.45076 0.06770 

-0.16580 -0.03527 0.35403 0.01254 
0.00629 0.00069 

-0.00415 -0.00209 0.00005 0.00117 
-0.00011 -0.00008 

0.00021 -0.00005 
-0.00011 0.00000 

0.00005 0.00002 
0.00000 0.00000 
0.00000 0.00000 
0.00000 0.00000 
0.00000 0.00000 
0.00000 0.00000 

Table 4.6.1 Sampled impulse response of cascade of 
transmitter (ti =0) and receiver filter, 
obtained at 2400 samples/s. 

Number of Number of 

costs per searches 

data symbol 
through the 
costs 

System A 4p p 

System B 1.5 p 0.5 p (binary) 

System B 1.75 p 0.25 p (quaternary) 

System C 1.5 p variable 

p= number of stored vectors 

Table 4.6.2 Relative complexities of detectors 
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Fig. 4.4.2 Scaled, minimum phased, linear 
baseband channel model 
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CHAPTER 5 

TRELLIS CODED MODULATION FOR 
A 4.8 KBIT/S HF RADIO MODEM 

5.1 INTRODUCTION 

In the classical approach to channel coding, redundant bits are inserted in the 
information sequence and this redundancy is exploited at the receiver in order to detect 

and/or correct errors that occur due to channel noise [1-4]. The introduction of redundancy 
at the transmitter is carried out by a 'channel encoder' and at the receiver, a 'channel 
decoder' uses this redundancy to recover the received signal. 

The codes that these encoders implement have been broadly categorized into 

two groups, namely, block codes and convolutional codes. Structures of abstract algebra 
are used to in the ontt block codes while linear sequential circuits often lead to 

convolutional codes. Generally, it has been accepted that, for similar degrees of 
complexity of the encoder and decoder, convolutional codes outperform their counterparts, 
the block codes [5-71. This is, in Eckt, a mistaken view L31] 

Traditionally however, with both these types of code, the encoder and 

modulator are separated, and as such, the transmission of the redundant bits implied either 

a reduction in data rate given constraints on bandwidth, or, an increase in bandwidth given 

constraints on the data rate. Thus, for a given data rate, the performance improvement (in 

terms of the probability that a transmitted bit is received incorrectly, given a particular 

signal-to-noise ratio) that is achieved by coding is at the expense of bandwidth. More 

concisely, the trade off is increased power efficiency for reduced bandwidth efficiency. 

At least, until 1976. In June of 1976, Ungerboeck [8] proposed the technique 

of combining convolutional encoding with modulation, a technique that is now widely 
known as trellis coded modulation (TCM) 19-10], The codes that resulted, fall under the 

general category of 'trellis codes' [ 11-13], The important feature of TCM however, is that 

the redundancy required by the coding process is obtained by the use of larger sets of 
channel signals than is required for uncoded transmission. Thus, the redundant bits are not 
transmitted in isolation, rather, they are incorporated in an expanded set of channel signals. 
The upshot of this is that TCM does not change the data rate and/or bandwidth relative to 

uncoded transmission, and it has been shown that considerable coding gains can be 

achieved by this method [8,10,14-22]. For bandwidth limited applications, TCM is, 
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indeed, an attractive proposition. 

The objective of this part of the work is to examine the performance 
improvement, if any, that could be achieved by using TCM, for the 4.8 kbit/s HF radio 
modem described in Chapter 4. Since the modem is to be used for voiceband 
communication in the HF region, it is, necessarily, a bandwidth limited design, and since 
TCM does not impose the requirement of additional bandwidth, whatever coding gain that 
is achieved will only be at the expense of added complexity. 

The chapter continues, in Section 5.2, with a detailed description of TCM, 
presented via an example. Section 5.3 describes the model of the data transmission system 
that is used in the simulation. This is equivalent to the model that was described in the 

previous chapter, except for the inclusion of the encoder and decoder. Section 5.4 

examines in some detail, the decoders that are used in the receiver. These decoders are 
near maximum likelihood decoders. In Section 5.5, the results of the computer simulation 
tests are given and discussed. 

5.2 TRELLIS CODED MODULATION 

5.2.1 General Description 

Trellis coded modulation (TCM) is a combination of convolutional encoding 
and modulation, which uses an expanded set of channel signals to transmit the 
information, where this expanded signal set contains the redundancy created by the process 

of convolutional encoding 19-111. Thus, the convolutionally encoded signals are 'mapped' 

in a one-to-one fashion, onto a set of channel signals. Both the coding and mapping 
functions are designed with the objective of maximising the minimum Euclidean distance 

between coded channel signal sequences. (The Euclidean distance between any two code 

sequences is defined as the square root of the sums of the squares of the geometric 
distances between corresponding symbols of the two sequences). As a result, the 

minimum Euclidean distance (or, free distance) of the coded channel signal 

sequences is greater than that of the corresponding uncoded channel signal sequences. 
Since channel signals with a large Euclidean distance are more resistant to additive noise 

than those with a small Euclidean distance, then, all other factors being equal, a 

performance advantage could be gained by the use of TCM, at least over additive white 
Gaussian noise channels. 

A generalized representation of an encoder-modulator for TCM is shown in Fig. 
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5.2.1 1101. Assume that the design constraints require that m bits must be transmitted per 
modulation interval. In TCM, any such group of m bits will (in most cases 191 ) be 
incorporated in one of a set of 2m+1 channel signals, with the transmission of one channel 
signal occurring per modulation interval. Let these m bits (at t=iT) be denoted as, 

f. =[f. (m) f. (m-1) ..... f. (m'+ 1) f. (m') f. (1) ] 1 

(5.2.1) 

The trailing m' of these m bits (m'<_ m) are passed through a convolutional encoder which 

gives at its output, the sequence 

v. =[ vi (m'+1) vi (m') 
..... Vi (1) (5.2.2) 

The output of the convolutional encoder, along with the (m-m') bits which did not pass 
directly through the encoder, now form a sequence v; f, of ((m'+ 1) + (m-m') } bits, i. e., 
(m+l) bits, giving rise to a rate - m/(m+l) convolutional code where, 

v. =[ vi (m+1) vi (m) ..... Vi (m'+1) vi (m') ..... Vi (1) ] 
(5.2.3) 

The (m+1) bits that constitute the sequence vi f are now passed through a 'signal mapper' 

which performs a one-to-one mapping function such that the bits are mapped onto one of a 

set of redundant 2m+1 channel signals. Of course, when the channel signal constellation is 

two dimensional, the signals themselves are complex valued. 

The mapping process itself is integrated with the concept of set partitioning 
[10]. In set partitioning, a signal set of size 2m+1 is divided, successively, into smaller 

subsets with maximally increasing minimum Euclidean distance between the signals within 

a subset. As such, a signal set of 2m+1 channel signals would be partitioned, successively, 
into 2,4,8, 

..., subsets with 2m signals in each of the first two subsets, 2m-1 signals in 

each of the next four subsets, and so on. This partitioning is repeated (m'+1) times until 
there are 2m'+l unique subsets with 2m-m different signals within each subset. Now, the 

mapping is performed such that the bits in the convolutionally coded sequence vi, (see Fig. 

5.2.1), determine one of 2m'+l subsets, while the uncoded (m-m') bits determine one of 
2m-m' signals within a particular subset. This form of one-to-one mapping is commonly 
referred to as 'mapping by set partitioning'. 
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The technique of mapping by set partitioning is illustrated in Fig. 5.2.2 for an 
8-PSK signal constellation. Of course now, 2m+1 =8 and m=2, and the resulting TCM 

scheme is generally referred to as 8-PSK coded modulation. Since m=2, the 8-PSK 

channel signal set is used to transmit two information bits per modulation interval. 

Fig. 5.2.2 gives an example of the way in which subsets are created. At the 
first partitioning stage, subsets BO and BI are created, each having four channel signals. 
There are 4 subsets (CO, C1, C2 and C3) at the second partitioning stage with each subset 

comprising two channel signals, and at the final partitioning stage, 8 subsets (DO-D7) are 

created, each of which has a single channel signal. As mentioned earlier, the original signal 

set AO need be partitioned only (m'+l) times and as such, the partitions DO-D7 need be 

created only if m'=m=2, i. e., when both information bits pass through the convolutional 

encoder. If, on the other hand, m'=l, then, only one information bit passes through the 

convolutional encoder, and the signal set AO need be partitioned only twice, i. e., up to the 

creation of subjects CO-C3. 

Another proviso in mapping by set partitioning is that, with every successive 

partition, the subsets created should consist of channel signals with increasing minimum 
Euclidean distance. This is confirmed with reference to Fig. 5.2.2. In the original signal 

set AO, the minimum Euclidean distance is, of course, the distance between any two 

successive signal points. Thus, if oo is the minimum Euclidean distance for the signal set 

AO, then, 

Da =2 ES, 
c sin(7t/8) = 0.765 ES 

c 
(5.2.4) 

where ES, 
c 

is the average energy of the coded signals. Similarly, for subsets BO and B 1, 

the minimum Euclidean distance is 

A1= fiESC 
--- 1.414 Es, 

c 

and for subsets CO-C3, the minimum Euclidean distance is 

A 
2=s, c 

(5.2.5) 

(5.2.6) 

Thus it can be seen that, 



144 

A2 > Al > Ao (5.2.7) 

and, 

A, 
+1 = . /5 A (5.2.8) 

for i>0. Eqn. 5.2.8 holds, in general, for two dimensional modulation schemes of the 
m-aryQASictype [10]. It should also be mentioned here that, if uncoded 4-PSK were used 
to transmit two information bits per modulation interval, the minimum Euclidean distance 

would always be 

AU = 
F2 Es, 

u (5.2.9) 

where Es, 
u 

is the average energy of the uncoded 4-PSK signals. If now, the average signal 

energies of the coded 8-PSK and uncoded 4-PSK schemes were the same (i. e. ES 
c= Es, 

u ), 

then from eqns. 5.2.5 and 5.2.9, 

Al Au (5.2.10) 

that is, the minimum Euclidean distance of subsets BO and B1 is exactly equal to the 
minimum Euclidean distance of the uncoded 4-PSK signal constellation. 

The actual mapping of the binary sequence vi f (eqn. 5.2.3) onto the 2m+1 

channel signals c3fl . now be carried out by any unique mapping function (straight binary, 
Gray coding, etc. ), as long as the convolutional encoder connections conform to a given 

set of rules for maximizing the minimum Euclidean distance between the coded signals, for 

the selected mapping function. This set of rules refer to the partitioned subsets and as 
such, 'mapping by set partitioning' ensures good distance properties in the resulting 
codes. 

An appropriate rate-m/(m+i) convolutional code may now be designed 

according to a set of rules which refer to the partitioned subsets. In the sequel, a degree of 
familiarity with the basic concepts and definitions of convolutional encoding D] ] is 

assumed. 
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In TCM, a convolutional encoder is regarded simply as a finite state machine 
with a given number of states and a specified set of state transitions. These state 
transitions constitute a trellis diagram, giving rise to the term 'trellis' in the general 
description of such codes. If the code is of rate - m/(m+1), there are m input bits to, and 
m+1 output bits from the encoder at each modulation interval. As such, each state would 
give rise to 2m possible transitions to a successor state, where these transitions correspond 
to the possible combinations of the m input bits. Parallel transitions (those starting and 
ending in the same state) are allowed and there may exist more than one transition per pair 
of states. Moreover, these state transition (trellis) diagrams should exhibit a reasonable 
degree of symmetry. 

Once a suitable trellis diagram has been established, it remains to assign channel 
signals from the redundant 2m+1 signal set, to the various state transitions, such that the 
resulting code maximizes the minimum Euclidean distance between the coded signal 
sequences. This assignment of channel signals is carried out in accordance with the set of 
rules given below, which refer to the partitioned subsets 191. 

1. Transitions originating from, or terminating in the same state, are assigned channel 
signals from any one of the subsets of size 2m. 

2. Any parallel transitions are assigned channel signals from any one of the subsets of size 
2m-1. 

3. All channel signals should occur with equal frequency and the trellis diagram should 
exhibit a reasonably degree of symmetry. 

Transitions originating from the same state imply that multiple error events could occur and 

parallel transitions imply that single error events could occur. Thus, the first two rules 

ensure good distance properties for these error events while the last rule ensures that the 

codes themselves exhibit regular structures. 

It is helpful at this stage, to consider an example 191 of the design of a trellis 

code for TCM. Assume, as before, 8-PSK coded modulation and consider a convolutional 
encoder with 8 states and a state transition diagram as given in Fig. 5.2.3. Note first, that 
there are no parallel transitions in the trellis diagram, implying of course, that in the final 

set of subsets, there is only one channel signal in each subset. Thus, m' =m=2, and 
the output, vi , of the convolutional encoder uniquely determines not only the subset, but 

also the channel signal, and the resulting code has a rate of 2/3. The channel signals 
assigned to each state transition are given in Fig. 5.2.3, on the corresponding branch of 
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the trellis. It c' a ý-i be seen that this assignment of channel signals has been carried out in 

accordance with the three rules mentioned earlier. (Note that rule 2 is not applicable since 
there are no parallel transitions). 

A convolutional encoder corresponding to this state transition diagram can be 

realized either as a feedback-free minimal encoder or a systematic encoder with 
feedback{91. The former realization is depicted in Fig. 5.2.4. Assuming this realization, 

the state at t= iT is deigned as, 

zl =[f_2 (1) f_ 1(2) f_ 1(1) 1 (5.2.11) 

Accordingly, the states in the state transition diagram can now be labelled by a sequence of 

three binary digits. These are given in Fig. 5.2.3 in square brackets. 

A convolutional encoder for TCM could thus be completely specified by means 

of a truth table giving the state transitions and the channel signals assigned to these 

transitions. An example of such, for the code described above, is given in Table 5.2.1 

where, for convenience, decimal notation is used instead of sequences of binary numbers. 

The mapping function assumed in this work first determines the value k', 

where, 

(m'+2) k' = 2m vi (m+l) + 2m-1 v. (m) + ..... + 2m+1 v. 
11 

+ 2m vi (m'+l) + ..... +20v. (1) (5.2.12) 

k' is thus, an integer in the range 0 to (2m+1 - 1). The mapper then determines the phase 

angle q j, of the channel signal in the complex number plane, via, 

= oi Tck' 
radians (5.2.13) - 

2m 

The channel signal si, is then defined as 

si = cos4. +j sin4. (5.2.14) 

where j= 4-1. In the case of the given example, 
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k' =4 vi (3) +2v. (2) + v. (1) 

Ttk' ýi =4 

and 

it k' 
.n 

k' 
S. = cos 4+j sin 4 

As mentioned earlier, an important coqstration of trellis codes is their 
Euclidean distance. This is denoted dfr,,, , where, 

00 
2 min '' 2 {I Si - S'' 12 } 

si sl.. i=0 

(5.2.15) 

(5.2.16) 

(5.2.17) 

t C. C. 

(5.2.18) 

and si and si" are two possible channel signals. The minimum in eqn. 5.2.18 is taken over 

all pairs of encoded sequences and Isi - si"I denotes the geometric distance between the two 

channel signals si and si". Various methods have been proposed for the calculation of dfree 

for codes with a large number of states 19,181. However, for codes with a small number 

of states (say, 8 or less), dfree "n be calculated by referring to the state transition 

diagram, as follows. Take the all zero path as the reference path and determine the path 

which diverges from the all zero path at t= iT and remerges at t =jT (j > i), with the least 

Euclidean distance. As long as the --c3x is linear týI an the 
Euclidean distance of the path so determined, will also be the free Euclidean distance, 

or the free distance, of the code. 

In the example given earlier, the path giving rise to dfr,, is denoted in Fig. 5.2.3 

as ABCD. The fre Euclidean distance c-arn thus be calculated as, 

l12 
dI ={ d2(0,6) + d2(0,7) + d2(0,6) } (5.2.19) 

where d2 (a, b) is the squared Euclidean distance between channel signals a and b. From 

Fig. 5.2.2, d2 (0,6) = Al and d2(0,7) = eo. Thus, 
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(D1 22+t+i) 1R 

_ 201 + dö ) 
12 

(5.2.20) 

Substituting from eqns. 5.2.4 and 5.2.5 gives, 

d_ (4.585ES 2) 1/2 

= 2.14 ES 
c (5.2.21) 

Another important characteristic of trellis codes is their asymptotic coding gain, 
which is defined as, 

G= lOlo 
c, u g10 E/EI 

s, c s, u 

2 

1 = 10 login I clýmc, c 
EE 

SC 
C 

ES, 
u 

,u 

where, 

(5.2.22) 

d2 fee, G = squared fr ;ýt Euclidean distance of the code. 
d2free, u = squared ýt-"ý; Euclidean distance of the corresponding uncoded 

scheme for the transmission of m bits per modulation interval. 

ES c= average signal energy of the coded signals. 
Es, u = average signal energy of the uncoded signals. 

For m-ary PSK coded modulation schemes however, it is general practice to 
have ES, 

c = Es, 
u , and the work in this thesis conforms to this relationship by having, 

Es, 
c= 

Es, 
u= 

ý-2 (5.2.23) 

The asymptotic coding gain is, now, 
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Gc 
u= 

10loglo [2 ,C] 
(5.2.24) 

,,, 
u 

Thus, for the example given earlier, from eqns. 5.2.21 and 5.2.9, 

4.585 E2 
Gc 

u= 
10 login 

2s, 
c] (5.2.25) 

2E 
s, u 

Using the relationship of eqn. 5.2.23 in eqn. 5.2.25, 

Gc 
u= 

101oglo 14.585 
2 

Gc 
u= 

10 loglo [2.2925] 

G 
c, = 3.6 dB (5.2.26) 

Thus, the code given in the example achieves a gain of 3.6 dB, asymptotically, over the 

corresponding uncoded scheme, when used over a channel which introduces additive white 
Gaussian noise. For the given modulation technique and given number of states, this code 
is optimum in the sense that it has the largest asymptotic coding gain, when used over 

additive white Gaussian noise channels. 

5.2.2 Rotationally Invariant Codes 

When a signal is transmitted over an HF radio channel, it is subjected to large 

and sudden phase changes called phase jumps. The prolonged error bursts that occur due 

to these phase jumps can be prevented by differentially encoding the signal at the 
transmitter and employing the corresponding differential decoding scheme at the receiver. 
The above is explained in detail in Section 4.4 and Appendix B. However, in the 
discussion in Section 5.2.1 on the design of trellis codes for TCM schemes to be employed 
in HF radio modems, no allowance has been made for any likely phase jumps, which are 
normally manifested as fixed phase rotations of the complex valued, baseband received 
signal. Indeed, it has been assumed throughout that the decoder is transparent to these 
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possible phase rotations, i. e., the encoding process is assumed to be such that a rotated 
version of a coded signal sequence (si } (Fig. 5.2.1), results in another valid coded 
sequence { si" 1, with the corresponding decoded sequence exhibiting the same rotation. 

The above, in general, is an invalid assumption for most optimum trellis codes 
that are designed in accordance with the three rules mentioned in Section 5.2.1. For the 
assumption to hold, the code should satisfy the requirement that, if a fixed phase rotation is 
introduced into each signal si , of a coded signal sequence, another valid coded signal 

sequence is obtained. Moreover, if properly decoded, each signal of the resulting decoded 

sequence should exhibit the same constant phase rotation, in the same direction. These 

rotations could then be removed by a differential encoding/decoding system, where the 
differential encoder operates on the binary data sequence at the input to the convolutional 
encoder at the transmitter, and the differential decoder operates on the signal at the output of 
the convolutional decoder at the receiver. 

In designing trellis codes that meet the above requirement, another rule must be 
followed, in addition to the three rules mentioned in Section 5.2.1. The type of codes that 

result are generally referred to as rotationally invariant codes X23-261. In order that the 

ensuing discussion is properly understood, it is necessary to define the term 'rotation' in 

the context of this chapter, lest it be confused with the rotation of a vector. Let 

a. =[ ai (m) ai (m-1) ..... ai (1) ] (5.2.27) 

be the binary sequence that is input to a differential encoder, and let 

Pi =I ßi (m) ßi (m-1) ..... 
pi (1) 1 (5.2.28) 

be its output binary sequence at time t= iT. Assume too, that both the vectors ai and ßi 

represent points on a complex number plane such that all possible points represented by ai 

(or ßi) form a 2m-ary PSK signal set. In differential encoding (see Section 4.4 and 

Appendix B), the phase angle of the complex valued symbol represented by ßi is given 

by the sum of the phase angles of the complex valued symbols represented by ßi_1 and ai , 
with the absolute values of these complex valued symbols being held constant. As such, at 

each time interval there may be a change in the complex valued symbol represented by ß; 

(and hence, in ßi ), from one of its possible values to another. This change is called a 

'rotation' in the complex valued symbol represented by ßi (and hence, in ßi ), and the 
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amount of rotation is given by the particular value of a; . 
Since there are 2m possible values 

of ai , so there are 2m possible rotations in the complex valued symbol represented by ßi 

(and hence, in ßt ). These 2m rotations in ß; result, of course, in another valid vector ß; , 
representing another valid complex valued symbol. Thus, from hereon, a 'rotation' will 
be taken as the above mentioned change in phase of the corresponding complex valued 
symbol. 

At this stage it is appropriate to present a formal definition for rotationally 
invariant codes. Consider Fig. 5.2.1. Let 

Fn =r fh fh 
+1'. ", fn 1 (5.2.29) 

be a possible sequence of sets of m bits that are input to a convolutional encoder where f; , 
(i = h, h+l, 

...., n), is as given in eqn . 5.2.1. Assume too, that each vector f; contains 

differentially encoded bits, i. e., similar to the vector ßi in eqn. 5.2.28. Also let 

Dn = [dh dh+l 
.... * do (5.2.30) 

be a sequence of complex valued symbols such that each d; is the symbol representing the 

corresponding fi 
, 

(i = h, h+1, 
.... n), in the complex number plane. Each d; could assume 

any one of 2m possible complex values, where the entire set of possible complex values 
form a 2tm-ary PSK signal set. Again, let 

n= 
[vh Vh+1 ..... Vn ..... Vn+k 1 (5.2.31) 

be the corresponding convolutionally encoded sequence of sets of (m+1) bits, where vi f, 

(i = h, h+1, 
...., n+k), is as given in eqn. 5.2.3 and k is the memory of the code. The 

memory is simply the number of stages of the shift register representing the code, and is 

measured here in symbols. Also, let 

sn [ Sh Sh 
+1..... 

Sn ..... Sn 
+k 

(5.2.32) 

be the sequence of complex valued transmitted symbols (see Fig. 5.2.1) where each 

symbol si , is uniquely determined by the corresponding (m+l)-bit sequence v, f. Each s; 

can assume any one of 2m+1 possible complex values. 
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Now let 

Fn = [fh fh+1 "'. ' fn ] (5.2.33) 

be another possible sequence of sets of m bits that are input to the convolutional encoder 
and let 

Dn = [dh dh+l 
"'. do ] (5.2.34) 

be the corresponding sequence of symbols representing Fn in the complex number plane. 

The sequence Fn is derived from the sequence Fn with each component fi, (i = h, h+l, 

.... n), changed such that the corresponding di is rotated through a fixed angle of 6 radians 

in the complex number plane. This rotation is assumed to carry each d; (and hence, each 

fi ), to another one of its possible values. Thus, 

di = di ej (5.2.35) 

and 

8=2) modulo-2n radians (5.2.36) 
2m 

where L is an integer, j= 4-1 and i=h, h+1, 
...., n. Also let 

Vf, vvv (5.2.37) 
nh h+ 1 n+ k 

be the convolutionally coded sequence corresponding to Fn 
, 

and let 

II 11 II 11 

Sn [ Sh Sh +1 ""' Sn k] 
(5.2.38) 

be the corresponding complex valued transmitted symbol sequence. 
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The convolutional code is then said to be transparent to the given phase rotation 
of '0 radians if each component si", (i = h, h+1, 

.... , n+k), is such that 

11 

si = s. ej 
8 

(5.2.39) 

If now, eqn. 5.2.39 holds true for all possible {Fn} and { Fn' }, the convolutional code is 

transparent to all 2m possible rotations in { dl }. The given convolutional code is then said 

to be rotationally invariant to angles of 8 radians, where e is as given in eqn. 5.2.36. In the 
above situation, if the phase of the received signal is rotated by an angle of 0 radians, the 

correct decoded sequence at the output of the decoder, in the absence of noise, must be Fn F. 

This fixed phase rotation of 8 radians in each component of the decoded sequence can now 
be removed by a differential decoding operation corresponding to the differential encoding 
that is performed at the transmitter. 

As mentioned earlier, in order to design rotationally invariant codes, the 
following rule [24] must be taken into account, when assigning channel signals to the state 
transitions in the trellis diagram. This rule should, of course, be satisfied in addition to the 

three rules mentioned in Section 5.2.1. 

4. Let the state transition from state zi to state z; +l correspond to the input vector f; and 

the output vector vi f. Also, let zi , z'i+l and f; ' be the corresponding equally rotated versions 

of z; , zi+i , and fi. Then, for a state transition from state zi to state z i+l , with the input 

vector fl' 
, the corresponding output vector must be vi f', where vif is simply vi f rotated 

by the same amount and in the same direction. This relationship is known in the sequel, 

as the rule of equal rotation. 

Rotationally invariant codes could thus be designed in accordance with these 
four rules. However, if a particular implementation of the encoder (such as feedback or 
feedforward) is desired, further rules need to be adhered to, when designing rotationally 
invariant convolutional codes. These rules were first formulated by L. F. Wei [231 for 

m-ary QAM coded modulation, and are given in their entirety in the appropriate reference. 
For the purpose of the work carried out in this thesis however, the four rules mentioned 

previously form an adequate set of constraints for the design of rotationally invariant 

convolutional codes. 

The rule of equal rotation gives rise to codes that are rotationally invariant to the 

2m possible rotations in d;. However, for any rate - m/(m+l) code, there are 2m+1 possible 
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rotations in si, and hence, the resulting codes are only transparent to half of the possible 

rotations in the received signal. This fact will be further discussed in the following section, 
where an example of a rotationally invariant code is given. 

5.3 MODEL OF DATA TRANSMISSION SYSTEM USED IN THE 
SIMULATION 

The model of the data transmission system is given in Fig. 5.3.1 and is 

essentially the same as that explained in Section 4.4, except for the modifications given 
below and the inclusion of a convolutional encoder and signal mapper at the transmitter, 

and the corresponding decoder at the receiver. The model assumes a synchronous, serial 
data transmission system with a transmission rate of 4800 bit/s. It employs 8-PSK coded 

modulation such that two information bits are transmitted per modulation interval, making 

the signal element rate 2400 baud. The redundancy of the code is contained in the additional 

signal levels of the 8-PSK signal set, which requires 3 bits for the representation of each 

signal. 

The information to be transmitted is in the form of a sequence of binary digits 

{a; }, where these are statistically independent and equally likely to have either of the values 

0 or 1. Also, 

a. =[ ai(2) a; (1)] (5.3.1) 

so that the sequence { ai } is divided into groups of two bits. 

The { ai } are fed to a differential encoder which gives at its output the 

differentially encoded bit sequence {fi }, where fi is as given in eqn. 5.2.1 with m=2, such 

that, 

f= [f. (2) f (1)] (5.3.2) 

The relationship between ai and fi is given in Table 5.3.1. Notice that the relationship is 

slightly different to that assumed in Chapter 4, (and given in Appendix B), for the systems 

tested previously. This is because, in order to be consistent with the straight binary 
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mapping used in set partitioning, Gray coding of the information bits is no longer assumed. 
Also, let the sequence {dl} be such that each di represents the corresponding two element 

vector f; in the complex number plane, as given in Fig. 5.3.2. Thus, 

di = 
T2 { cos 

2+J 
sin 2 

TEk 
(5.3.3) 

where k is an integer and j= 4-1. The factor \12 is included so that the average energy per 
uncoded bit is the same as for the system tested in Chapter 4. This allows a valid 
comparison between the trellis coded systems tested in this chapter, and the uncoded 

systems tested in Chapter 4. 

The convolutional encoder uses the input sequence { f; ), to give at its output the 

sequence (v; f }, where vif is as given in eqn. 5.2.3 with m=2, so that, 

f=[vv. (3) v. (2) v. (1) ] 
. (5.3.4) 

The convolutional code used here is a rate - 2/3 trellis code with eight states, where the 

code is rotationally invariant to angles that are multiples of n/4 radians. Details of this code 

are given later. 

The output sequence from the convolutional encoder, {v; f }, is next mapped 

onto an 8-PSK signal set using the technique of mapping by set partitioning, as explained 
in Section 5.2.1 and shown in Fig. 5.2.2. Straight binary mapping is assumed such that 

the output from the signal mapper is the symbol s; , where, 

S. =T{ cos 
4+j 

sin 
4} (5.3.5) 

and 

k' =4 vi (3) +2v. (2) + v. (1) (5.3.6) 

with j= 4-1. Clearly, k' is an integer in the range 0 to 7 inclusive, and so, each si is one 

of a set of 8-PSK data symbols, as shown in Fig. 5.3.3. 
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Each symbol si , could now be assumed to be transmitted in the form of an 

impulse si 8(t-iT), (see Section 4.4), where T =1/2400. These impulses are next fed to a 

model of an HF radio link, which has a complex valued, time varying impulse response 

yi(t). The impulse response yi (t) is exactly that derived in the previous chapter (eqn. 

4.4.14) and as such, will not be described again, except in reiterating that it is a minimum 
phased impulse response. The stream of signal elements at the output of this channel 

model is given by (si yl(t-iT) 1. Stationary, complex valued, zero mean, coloured Gaussian 

noise w(t), is added to the signal at the output of the channel model, to give the complex 

valued received waveform r(t). The correlation of the noise has been discussed in Section 

4.4 and will not be repeated here. 

The received waveform r(t), is next sampled once per data symbol at the time 
instants {iT}. The delay in transmission is neglected such that the first non-zero sample of 

the received signal waveform is assumed to arrive with no delay. The sample r; , of the 

received waveform at t=iT is now given by 

ri = si-hyi, h + wi (5.3.7) 

h=0 

where 

yi, h = yi 
- h(hT) 

(5.3.8) 

and 

wi = w(iT) (5.3.9) 

It is assumed that Yi, h =0 for h<O and h>g, and the vector 

Y=[ yi 0 yi 1 ..... yi g1 
(5.3.10) 

is taken to be the 'sampled impulse response' of the channel at t=iT. 

The received samples (ri }, are next fed to a near maximum likelihood decoder 

which gives at its output, the decoded sequence of binary digits, Clearly, the 
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decoder introduces a delay of nt seconds. In the particular case considered here, the 
decoder is assumed to have an exact knowledge of the impulse response of the channel, 
i. e., perfect estimation of the channel impulse response is assumed. The decoder is 
described in greater length in Section 5.4. 

The decoded bits {f i_�}, at the output of the near maximum likelihood decoder, 

are finally fed to a differential decoder. The differential decoder performs an inverse 

operation to that of the differential encoder at the transmitter, to give at its output, the 
detected binary digit sequence The differential decoder relationship is given in 

Table 5.3.2. 

It now remains to describe in further detail, the trellis code that is used in the 

transmitter to encode the sequence { f; }. The code used here is a rate - 2/3, rotationally 
invariant code that is completely described by the truth table in Table 5.3.3 where, for the 

sake of convenience, the decimal equivalent of the binary sequence values are given. The 

appropriate state transition diagram is given in Fig. 5.3.4. Notice that there are parallel 
transitions in the state transition diagram, inferring that each of the final subsets in the 

associated mapping by set partitioning process contain two channel signals. The encoder 
itself is shown in Fig. 5.3.5. The state of the encoder is defined as 

f 
-3(1) 

f 
_2(1) 

f 1(1)] (5.3.11) 

and is given in square brackets alongside the state transition diagram in Fig. 5.3.4. Notice 

that the state zi is completely described by the second component of the input vectors fi_3, 

fl-2 and fi_1. 

This rotationally invariant code was designed by Dr. Z. C. Zhu [24], and 

represents a possible optimum design for the given number of states and given coded 

modulation scheme. The code itself has a minimum Euclidean distance squared of 4ES 
c 

where ES 
c 

is the average energy of a coded signal. This corresponds to an asymptotic 

coding gain of Gc, 
u , where 

(4 Es 
,c Gc 

u= 
10 loglo 

2E 
S, u 

(5.3.12) 

and Es 
,u 

is the average energy of an uncoded signal. However, from eqn. 5.2.23 and 
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Figs. 5.3.2 and 5.3.3, since ES, c = Es, u = 42 
, 

GC 
u=3.0 

dB (5.3.13) 

It has been mentioned by Dr. Zhu [24] that the above asymptotic coding gain 
co nA be improved on, by any other rate - 2/3,8-state rotationally invariant code. As 

such, the possible optimum rate - 2/3,8-state rotationally invariant convolutional code loses 

only 0.6 dB, in terms of its asymptotic coding gain, when compared with the 
corresponding optimum but not rotationally invariant code (see Section 5.2.1), which has 

an asymptotic coding gain of 3.6 dB. 

Confirmation of the rotational invariance of the above code may be obtained as 
follows. Rotate all possible bit pairs, fl (2) and fi (1), at the input to the convolutional 

encoder, by 0, i/2, in or 3in/2 radians. (The effects of these rotations are given in Table 

5.3.4). For each rotation, determine the corresponding rotation in the bit sequence { v; (3) 

v; (2) vi (1) }, with the aid of the truth table (Table 5.3.3) and Fig. 5.3.3, bearing in mind 

that the entries in the truth table are in decimal notation. It could be seen that, for any given 

state of the encoder, any rotation of the bit pair fi (2) and fi (1) is accompanied by exactly 

the same rotation in the bit sequence (vl (3) v; (2) vi (1) } (and hence in the signal element 

si ). Thus, the code is rotationally invariant to 0, n/2, it and 3n/2 radians, and differential 

encoding/decoding is used to remove the said rotations, as shown in Fig. 5.3.1. 

Although the above code is rotationally invariant to any of the four possible 

rotations in d; (Fig. 5.3.2), the coded signal si , 
is an 8-level signal (Fig. 5.3.3), and as 

such, it could have 8 possible rotations, where these rotations take si onto another one of its 

possible values. Thus, the said code is rotationally invariant only to half of the possible 

rotations in si , and hence only to half of the possible rotations in the received signal ri , 
leaving an irreducible phase error of n14 radians. 

There are two methods for circumventing this problem. The first (and 

probably the more obvious! ) is to design codes that are rotationally invariant to all possible 

rotations in the coded signal si , in this case, multiples of n/4 radians. However, this 

results in an unacceptable degradation in tolerance to noise with respect to the optimum but 

not rotationally invariant codes [24,25]. The other method is to incorporate a carrier phase 

correction system originally proposed by Ungerboeck 1101 This is the preferred 

method. 
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In the work described in this chapter, the objective is to determine the advantage 
(if any) that could be gained by using TCM over HF radio links, and as such, the results in 
this chapter are compared with the results in Chapter 4. In both cases, perfect estimation is 

assumed such that any phase jumps that do occur are known at the receiver. This obviates 
the need for a carrier phase correction system to be used in conjunction with the rotationally 
invariant code tested in this work. Indeed, it may be argued that perfect knowledge of the 
channel at the receiver obviates the need for rotationally invariant codes themselves, but of 
course, this would be defeating the purpose of the stated objective! Thus, the code tested 
here is not accompanied by a carrier phase correction system, but is rotationally invariant 

only to half of the possible rotations in the coded signal si . The performance of the above 

code should give adequate indication of the extent of the improvement that could be gained 
by the use of TCM over HF radio channels. 

5.4 THE DECODERS 

5.4.1 Viterbi algorithm decoders 

The optimum decoding scheme for a convolutionally coded and undistorted 
signal, in the presence of additive white Gaussian noise, is that which minimizes the 

probability of decoding error [4,5,7]. When the transmitted symbols are equally likely to 
have any one of their possible values, the probability of decoding error is minimized when 
the decoded sequence is chosen such that it is the sequence that is most likely to be correct. 
The resulting decoder is called a maximum likelihood decoder [4,27-29]. 

A maximum likelihood decoder can be implemented by means of the Viterbi 

algorithm [5] and as such, is sometimes called the Viterbi algorithm decoder. These 
decoders use soft decisions [30] on the received signal, in the detection of the transmitted 

message. The theory of Viterbi algorithm decoders is well established and the interested 

reader is referred to references [4], [5] and [7] for a thorough and formal description and 
analysis. 

A drawback of Viterbi algorithm decoders is that their complexity increases 

exponentially with the memory of the code. For example, a binary convolutional code with 
a memory of k bits would require the storage and manipulation of 2k states, in the decoder. 
Moreover, the above is true only for coded and undistorted signals. When the code is used 
together with a distorting channel in which the sampled impulse response has (g+l) 

components as in eqn. 5.3.10, the corresponding Viterbi algorithm decoder would require 
the storage and manipulation of 2k x 2(m+l)g states, where 2m+1 is the number of expanded 
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signal levels. Clearly, for most values of g, this is an unacceptable level of complexity. 

In the three HF radio channel models used in this thesis, the values of (g+l) are 
22,22 and 20 (Section 4.6). In these circumstances, the design of Viterbi algorithm 
decoders becomes not merely impractical, but borders on the impossible. There are two 
methods for circumventing this problem [27,28,31,32]. The first is to equalize the coded 
and distorted signal by means of a linear or nonlinear (decision feedback) equalizer, prior 
to the decoding process. If ideally equalized, the input to the decoder would be a coded but 

undistorted signal, on which a Viterbi algorithm decoder may operate. The other method is 

to use a class of decoders which operate directly on the coded and distorted signal in a 
manner similar to that of a Viterbi algorithm decoder, with, however, a significant 
reduction in storage requirement and complexity. The decoders in this thesis are based on 
the latter method and are derived from the near maximum likelihood detectors that were 
used in Chapter 4. In the sequel, they will be referred to as near maximum likelihood 
decoders. 

Two different near maximum likelihood decoders, namely, System D and 
System E, have been used in this work. These decoders operate on the received signal r, , 
in the data transmission system model shown in Fig. 5.3.1 and explained in Section 5.3. 

5.4.2 System D 

System D is a near maximum likelihood decoder that is based on the Viterbi 

algorithm decoder for a coded and distorted signal [28] with, however, a considerable 
reduction in the number of stored vectors (states). The decoder operates on the received 
signal ri , as given in eqn. 5.3.7, where eqns. (5.3.8 - 5.3.10) hold. 

Just prior to the receipt of the sample ri , the detector holds in store p different 

n-component vectors { Qi-1) 
, where 

Xi-1 'S-1 
[Xi-n Xi-n+1 '»*** (5.4.1) 

and x; _h , 
(h = 1,2, ... , n), takes on a possible value of si , given the constraint below. It 

is also assumed that n>g and that, when i<0, xi = 0. 

The p vectors (Qi_1) 
, are arranged into eight groups, where each group has p/8 
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vectors corresponding to a different one of the 8 states of the encoder at time t= (i- l )T. 
For example, when p=8, each group has a single stored vector, and the eight stored 
vectors in the eight groups correspond to the eight different states of the encoder. In this 
case (i. e., p=8), the resulting decoder becomes a Viterbi algorithm decoder for the coded 
but undistorted signal. 

The correspondence of each group of p/8 vectors to a particular state of the 
encoder is such that all the vectors in the said group can take only permitted values of si_1, 
in determining xi-1 . These permitted values are, of course, the channel signals that are 

assigned to the state transitions corresponding to the particular state at t= (i- l )T, that is 

associated with the particular group of p/8 vectors. As such, the x; _h , 
(h = 1,2, 

... , n), in 

any vector Q; 
-I, can take on only one of a subset of 4 possible values of si, where these 4 

possible values are either from subset BO or from subset B1 (Fig. 5.2.2). The state 
corresponding to a group of vectors is identified by the storage locations of the vectors. 

Each n-component vector Qi_1 is formed by the last n components of the 

(i-1)-component vector Xi-1, where 

Xi-1 = [x1 x2..... Xi-1 (5.4.2) 

It is evident from Section 5.3 that there is a unique one-to-one relationship between Xi_1 

and the corresponding sequence of binary digits {aj }, (j = 1,2, 
..., 

i-1), so that the 

correct detection of the { sj } results in the correct detection of the { (xj). Thus, each vector 

Xi-1, represents a possible sequence of transmitted data symbols {sj}, (j = 1,2, ..., 
i-1). 

Associated with each vector Xi-1, is its cost ci-1, where, 

i-1 2 

ci 1I j- 
tXjhYjh 

(5.4.3) 
j=1 h=0 

and xi =0 for i: 5 0 and lul is the absolute value of the quantity u. 

On receipt of the sample rj , each of the p vectors { Qj_1) , is expanded into four 

(n+ 1)-component vectors (Pi ), where 

P. [ xi-n xi-n+l ..... Xi- 1 Xi 1 (5.4.4) 
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Thus, there are four vectors {Pi }, originating from any one Ql_1 
. The first n components 

of such a group of four vectors are as in the original vector Qi_1, from which they were 
derived, while the last component xi , takes on its four different permitted values. These 

permitted values are given by the channel signals s; , assigned to the allowable state 

transitions from the state corresponding to the original vector Qi_1 (see Table 5.3.3). 

Thus, the 4p expanded vectors (Pi ), occur in eight groups, each with p/2 
vectors and associated with a different state of the encoder at t= (i- 1)T. The 4p expanded 
vectors {Pi }, also occur in eight groups, each with p/2 vectors and associated with a 
different state at t= iT. Associated with each of these 4p vectors are their costs ci , where, 

2 
Ci = Ci 1+I ri - 

tXihYih 

h=0 
(5.4.5) 

The decoder now selects, from the 4p expanded vectors {Pi }, the vector with 

the smallest cost. Let this vector be denoted by PS P. The first component xi_n , of PS is then 

used to determine the detected values a'i_n(2) and a'i_n(1). This is possible due to the 

unique one-to-one relationship (established in Section 5.3) that exists between a coded 

symbol si , and the corresponding transmitted bit pair ai (2) and a; (1). Any vector P; , 
whose first component differs from that of PS 

, 
is then discarded by assigning to it an 

arbitrarily high value of cost. From the remaining vectors, (including PS ), the decoder next 

selects for each of the eight states of the encoder at t= iT, the p/8 vectors with the smallest 

cost. The first component xi_n , of all the p selected vectors { Pi ), is now omitted without 

changing the cost of the corresponding vector, to give the set of n-component vectors { QJ 
, 

where, 

ý`i 
E Xi 

-n+l 
Xi 

-n+2 ""' Xi (5.4.6) 

These p vectors {Q; }, are now stored, along with their associated costs. To prevent cost 

overflow, the smallest of the costs is now subtracted from each of the costs of the p vectors 
(Q1 ), such that the smallest cost becomes zero. The decoder is now ready for the next 

detection process. 
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5.4.3 System E 

System E is a development of System A (Section 4.5.1) and operates without 
reference to any of the eight states of the encoder. Just prior to the receipt of the sample r, , 
the decoder holds in store p vectors { Qi_1 }, together with their costs, exactly as in System 

E. However, p may now be any suitable integer, and any number of stored vectors may 
correspond to any number of states at t= (i-1)T. 

On receipt of the sample ri , each vector is expanded into 4 vectors {Pi ). The 

expansion is carried out as before, on the basis of permitted values of si . The decoder now 

selects the vector Pi with the smallest cost. Let this be denoted by PS 
. The value of the 

first component of P, 
, 

i. e., x; _n , 
is then used to determine the detected binary digits a'; _r, 

(2) 

and a'. (1), as in System D. Any vector Pi 
, whose first component differs from that of 

PS, is now discarded by assigning to it an arbitrarily high value of cost. From the 

remaining vectors (including PS), are next selected the p vectors with the smallest costs. 
The p selected vectors may correspond to any of the states at t= iT. The first component of 

each selected vector Pi 
, 

is now omitted without changing its cost, to give the 

corresponding vector Qi. To prevent cost overflow, the smallest cost is subtracted from all 

the costs of the p vectors { Qi) 
, such that the smallest cost becomes zero. The p vectors 

{ Qi } are then stored, along with their costs, ready for the next detection process. 

5.5 COMPUTER SIMULATION TESTS AND RESULTS 

Computer simulation tests have been carried out to assess the performance of 
8-PSK coded modulation over HF radio channels. A comparison is made of the 

performance of the coded systems with that of QPSK (4-QAM) uncoded modulation 

where, in both cases, two information bits are transmitted per modulation interval. The 

signalling rate is 2400 baud, giving an information rate of 4800 bit/s. The systems have 

been tested over Channels 1 and 2 where the former is a 3-skywave channel and the latter, 

a 2-skywave channel. These channels are the same as those considered in Chapter 4, and 

their relevant parameters are given in Table 2.5.2. 

The model of the data transmission system used is that given in Section 5.3. 

The detectors (decoders) at the receiver are assumed to have perfect knowledge of the 

channel at every sampling instant, i. e., perfect estimation of the channel sampled impulse 
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response is assumed. This assumption is justified in Section 5.3. As in the tests for 
uncoded modulation described in Section 4.6, the noise components at the input to the 
detector are slightly correlated. Again, the reasons for, and consequences of this 
correlation is explained in Section 4.6. 

In all tests involving error rates, the same fading sequence has been employed 
for a given channel. Moreover, these sequences are the same as those used in Section 4.6 
for assessing the performance of uncoded 4-QAM modulation, and are shown in Figs. 
4.6.1 and 4.6.2. The noise and data sequences however, have been varied at each 
signal-to-noise ratio, so that the performance is not influenced by the choice of a particular 
sequence. The number of components, (g+l), in the sampled impulse response of 
Channels 1 and 2 are, respectively, 22 and 22. The bit error rate in Figs. 5.5.1 - 5.5.6 is 

that in the { a'i } (Fig. 5.3.1). 

On average, a total number of 5x 106 symbols have been involved in the 
plotting of each curve, making their 95% confidence limits better than ±0.5 dB. The 

signal-to-noise ratio (SNR) is exactly the same as for uncoded QPSK (4-QAM) 

modulation, and is given by it (eqn. 4.4.17) 
, where, 

yr = 101og10 

2 
No 

(5.5.1) 

where Eb and N. are as defined in Section 4.4. Notice here, that Eb (the average 

transmitted energy per information bit) is the same for the coded and uncoded modulation 
schemes since the average signal energies in both cases are the same (ES, c = Es.,, =ßi2 ), 

and since both cases assume the transmission of two information bits per modulation 
interval. 

In the sequel, the curves representing the performance of uncoded systems, are 
taken directly from Section 4.6. The performance curves are labelled according to the 
detectors (decoders) that have been adopted. These detectors (decoders) are identified as 
follows. In the case of the uncoded systems, the near maximum likelihood detectors are 
denoted as given in Section 4.6, with NLE representing the nonlinear (decision feedback) 

equalizer. The near maximum likelihood decoders for the coded system are identified by an 

alphabetic character followed by a numeral, where the alphabetic character denotes the 

particular system under test, and the numeral denotes the number of stored vectors in the 
decoder. For example, System D with 16 stored vectors (i. e., two stored vectors per 
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encoder state) is denoted D 16. 

The code used is the rate-2/3,8-state, rotationally invariant code given in 
Section 5.3. In the software simulation, look-up tables are used at the encoding stage in 
order to obtain the coded signal si, from the bit sequence ai , and again at the decoding 

stage in order to obtain the detected bit sequence a. 'i , from the detected value s'1 . All 
detectors (decoders) introduce a delay of 32 sampling intervals (i. e., n= 32 symbols) in 
the detection and/or decoding process. 

Fig. 5.5.1 shows the performance of the coded and uncoded systems over an 
additive white Gaussian noise channel, where the sampled impulse response of the channel 
is 1,0,0 

...... 
Since the channel does not introduce any distortion, a Viterbi algorithm 

decoder for the coded system would require only eight stored vectors, i. e., one vector for 

each state. This, indeed, is the decoder used for the coded system (D8), while the detector 
4A16 (Section 4.6) is used for the uncoded system. These detectors (decoders) are 
optimum for the particular cases considered in Fig. 5.5.1, and as such, the two systems 
lend themselves well for comparison. 

It can be seen that coded system outperforms the uncoded system for error rates 
below 3.5 x 10-2. Indeed, the coding gain increases with the reduction of the error rate 
such that, at error rates of 10-2,10-3 and 10- 4, the corresponding coding gains are, 

respectively, 1.0,2.17 and 2.67 dB. Thus, most of the theoretical asymptotic coding gain 

of 3.0 dB is already obtained at error rates of 10- 4. These results agree with those given 
by Dr. Z. C. Zhu [24] for the same code. 

Fig. 5.5.2 shows the performance of the coded and uncoded systems when 
tested over a channel formed by the cascade of the transmitter (TX) and receiver (RX) 

filters of Table 4.4.1. The corresponding sampled impulse response of the channel is 

given in Table 4.6.1. The above channel introduces distortion, (arising due to the non- 
ideal characteristics of the filters - Fig. 4.4.5), and as a consequence, intersymbol 

interference. However, there is no signal fading, multipath or otherwise. 

The decoders tested here are D8, D16 and D32, while 4A16 is the detector used 
in the uncoded system. As expected, in the case of the coded system, there is an 
improvement in the performance of System D as the number of stored vectors is increased 
from 8 to 16 to 32. This improvement however, is very marginal, with a maximum of the 

order of 0.45 dB at error rates of 10- 4. 
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The relative performance of the coded and uncoded system is similar to that 
observed in Fig. 5.5.1, albeit with a very slight degradation in the performance of the 
coded system with respect to the uncoded system. The coding gain achieved by the best 
decoder, (D32), is now 0.68,1.9 and 2.4 dB at error rates of 10-2,10-3 and 10- 4, 

respectively. This slight degradation is due to the distortion introduced by the channel. 
However, the reduction of the coding gain is insignificant, especially at low error rates. It 

could thus be concluded that these filters do not significantly affect the performance of the 
code, in terms of its coding gain, over uncoded QPSK (4-QAM) modulation. 

Fig. 5.5.3 shows the performance of the systems when operating over Channel 
1. Recall here, that Channel I is the 3-skywave channel with fades extending upto -14 dB 
(Fig. 4.6.1). The coded systems tested are D8, D16 and D32 and as in Fig. 5.5.2, the 

performance improves with the increase of the number of stored vectors in the decoder, 

with a maximum improvement of 0.55 dB between D8 and D32, at error rates of 10- 4. 

A comparison of the coded and uncoded systems shows the coded systems D16 

and D32 outperforming the uncoded system, when the detector used in the latter is the 

nonlinear equalizer (NLE). The coding gain achieved by D32, over the uncoded system 

with the nonlinear equalizer, is approximately 1.0 dB at error rates of 10- 4, while the 

crossover error rate for these two curves is 1.5 x 10-1. However, since the decoders in the 

coded system are of the near maximum likelihood type, so their performance should be 

compared with uncoded systems that incorporate similar detectors. When the uncoded 

system is used with the near maximum likelihood detector C8 (chosen in Section 4.6 as the 
detector giving the best compromise between complexity and performance), its 

performance is generally superior to that of every coded system, upto error rates of about 
1.4 x 10- 4, when the performance curve for D32 crosses with that of C8. When compared 

with D32 (the best of the coded systems) the performance of the uncoded system C8 is 

consistently better by about 0.4 dB. Although a modest advantage, it should be recalled 
here, that the complexity of C8 is an order of magnitude lower than that of the coded 

system D32. Thus, TCM does not appear to give an advantage over uncoded modulation 
(indeed, it is slightly inferior! ) when the systems are used over Channel 1. 

Figs. 5.5.4 and 5.5.5 confirm the above observation. Fig. 5.5.4 compares the 

performance of Systems D and E with 16 stored vectors, against the uncoded system C8, 

when operating over Channel 1. The performance of the coded systems D16 and E16 are 

very similar, inferring that the use of System E does not improve the performance of the 

coded systems. Indeed, they are both shown to be inferior to the uncoded system with C8. 

Fig. 5.5.5 compares the performance of the best coded system (D32) with the uncoded 

systems 4A16 and 4A4, when operating over Channel 1. Again, the overall performance 
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of the uncoded systems is better than that of the coded system D32. Even the simplest of 
near maximum likelihood detectors in the uncoded system, 4A4, is better than the coded 
system D32, upto error rates of 2.5 x 10- 4. 

In Fig. 5.5.6, the relative performance of the coded and uncoded systems is 

compared, when the systems are used over the 2-skywave channel, Channel 2. Recall 
here, that Channel 2 exhibits worse fades (extending upto -20dB - Fig. 4.6.2) than 
Channel 1, and consequently would introduce more severe distortion into the transmitted 
signal. The performance of the coded systems over Channel 2, relative to that of the 
uncoded systems, is similar (if not worse! ) to their relative performances over Channel 1. 
The uncoded system C8, is better than the coded systems D8 and E16, upto error rates of 
10- a. At 10- 4, there is a crossover of the curves representing C8 and E16. Even the 
nonlinear equalizer, NLE, (operating in the uncoded system), gives a better performance 
than coded D8, upto error rates of 10-4. The nonlinear equalizer is better than coded E16 

upto error rates of 10-3. These results suggest that, even over Channel 2, QPSK (4-QAM) 

uncoded modulation is better than 8-PSK trellis coded modulation. 

The above observations should not be misconstrued as inferring the wholesale 
condemnation of TCM for HF radio channels. This is because, firstly, the channels used 
in this thesis are worst-case channels for the given channel parameters and as such, the 

codes are being tested under the severest of conditions. Secondly, the code that is tested is 

an 8-state code offering only 3.0 dB theoretical asymptotic coding gain over the 

corresponding uncoded system, in additive white Gaussian noise channels. This translates 
into a coding gain of only 2.67 dB (Fig. 5.5.1) at error rates of 10- 4, which is further 

reduced to 2.4 dB by the distortion introduced by the filters (Fig. 5.5.2). As such, a more 

powerful code (say, with 16 or 32 states) with a greater asymptotic coding gain, may offer 

an improvement in performance relative to the corresponding uncoded system, especially 

when tested over more typical HF channels with less severe fades. Thirdly, interleaving 

could be used as a means of nullifying the effects of error bursts [33,34] (common on HF 

channels), in conjuction with TCM, to improve the performance of the coded systems. 
Indeed, the absence of interleaving is probably a major cause for the poor relative 

performance of the coded systems. 

However, it does appear that TCM loses its reputed advantage over the 

corresponding uncoded modulation systems, when used over HF channels with deep 

selective fades. A possible reason for this is that although the code is near optimum for an 
additive white Gaussian noise channel, it may not be so for a fading channel. Indeed, it 

has been suggested in a recently published paper [351, that the criterion for the design of 

optimum m-ary PSK trellis codes for additive white Gaussian noise channels (i. e., 
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maximizing the minimum Euclidean distance, dfree) is not necessarily the criterion that 

should be considered in the design of such codes for fading channels. A companion 

papertZ361 describes a modified method of set partitioning appropriate for the design of 

codes for fading channels. Although being beyond the scope of this thesis, it would be an 

interesting excercise to determine the performance of TCM schemes designed according to 

the criteria set out in the said references [35,36], over an I- IF channel model similar to that 

used here. As regards the work in this thesis however, the conclusion is that, for Channels 

1 and 2, QPSK (4-QAM) uncoded modulation is the preferred system, when compared 

with 8-PSK trellis coded modulation. 
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Input fi 

0 

1 

2 
N 

3 
co 

4 
U 

5 

6 

7 

Next State z i+l 

0123 

0 1 2 3 

4 5 6 7 

0 1 2 3 

4 5 6 7 

0 1 2 3 

4 5 6 7 

0 1 2 3 

4 5 6 7 

Output v 

0123 

0 4 2 6 

1 5 3 7 

4 0 6 2 

5 1 7 3 

2 6 0 4 

3 7 1 5 

6 2 4 0 

7 3 5 1 

Table 5.2.1 Truth table for the 8-state, rate-2/3 
convolutional code in Figs. 5.2.3 
and 5.2.4 
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fi-1 ai f. 

fi 
1(2) 

f 
i-1 

(1) a. (2) ai(l) f (2) f. il) 
i 

00 0 0 0 0 
00 0 1 0 1 
00 1 0 1 0 
00 1 1 1 1 
01 
01 

0 
0 

0 
1 

0 
1 

1 
0 

01 1 0 1 1 
01 1 1 0 0 
10 0 0 1 0 
10 0 1 1 1 
10 
10 

1 
1 

0 
1 

0 
0 

0 
1 

11 
11 

0 
0 

0 
1 

1 
0 

1 
0 

11 
11 

1 
1 

0 
1 

0 
1 

1 
0 

Table 5.3,1 Differential encoding of 
binary digits in Fig. 5.3.1 

r 
f 
i-1 

r f. 
1 

d. 

re f 
i-1 

(2) fi 
1(1) 

r f'(2) f' (1) a'i(2) a. (1) 

00 0 0 0 0 
00 0 1 0 1 
00 1 0 1 0 
00 1 1 1 1 
01 0 0 1 1 
01 0 1 0 0 
01 1 0 0 1 
01 1 1 1 0 
10 0 0 1 0 
10 0 1 1 1 
10 1 0 0 0 
10 1 1 0 1 
11 0 0 0 1 
11 0 1 1 0 
11 1 0 1 1 
11 1 1 0 0 

Table 5.3.2 Differential decoding of 
binary digits in Fig. 5.3.1 



175 

Input fi 

0 

1 

2 
N 

C CC 
co 
C4 
U 

5 

6 

7 

Next State z i+l 

0123 

0 1 0 1 

2 3 2 3 

4 5 4 5 

6 7 6 7 

0 1 0 1 

2 3 2 3 

4 5 4 5 

6 7 6 7 

Output vf 

0123 

0 2 4 6 

1 3 5 7 

3 1 7 5 

2 0 6 4 

6 4 2 0 

7 5 3 1 

1 3 5 7 

0 2 4 6 

Table 5.3.3 Truth table for 8-state, rate-2/3, 
rotationally invariant code in Fig. 5.3.4 

fi (2) 

fi 

fi (1) 0 

Phase 

7t/2 

Rotation 

lt 31t/2 

0 0 0 0 0 1 1 0 1 1 

0 1 0 1 1 0 1 1 0 0 

1 0 1 0 1 1 0 0 0 1 

1 1 1 1 0 0 0 1 1 0 

Table 5.3.4 Effect of different phase rotations on fi 
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Convolutional 
Code 

fi (m) 

f; (m' +1 

fi (n ) 

Convolutional 

fi (2) Encoder 

fi(1) 

vi (m+1) 

i 
i 

V. (m'+2) 

ý; (n-f +1) 

V. (2) 

Vi(1) 

Signal 
Mapping 

Select signal 
from subset 

Select 
Subset 

Fib. 5.2 .1 Generalized representation of 
Trellis Coded Modulation 

{s; } 
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2 

3. I 
"1 

4" "0 

r S'c 
i 

5 "ý 
6 

ýo= 2 ES, c sin (n/8) 

AO 

2 
F2 ES, c 

3" 
"1 

4ý 
"" 

57 
6 

BO B1 

2 02= 2 ES, c ýl 
3 

40 
5 

6 

CO C2 Cl C3 

2 

0l3 

04 00 57 
6 

DO D4 D2 D6 Dl D5 D3 D7 

Fig. 5.2.2 Partitioning of an 8- PSK 
signal constellation 



178 

Encoder 
State 

z" i 

[000] 

[041] 

[010] 

[Oll] 

[100] 

[101] 

[110] 

[111] 

D 

IT (i+1)T (i+2)T (i+3)T 

Fig. 5.2.3 State transition diagram for an 8-state, rate-2/3 
convolutional code for coded 8PSK modulation 

Fig. 5.2.4 Realization of trellis code in Fig. 5.2.3 as 
feedback free minimal encoder 
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{ (xi) Differential 
Encoder 

f 
f} Convol. {v" 

Code 
Signal { s; } 
Mapper 

Channel Y. (t) 

in 

Fig. 4.4.1 

{ a'. 
_ 

} Differential 
Decoder 

Fig. 5.3.1 

{fin} NML 
Decoder 

Coloured w (t) 
Gaussian 14 

Noise 

{r; } \.. r(t) 
t. -T 

Model of the data transmission system 
used in the simulation tests 

Fig. 5.3.2 fi represented in Fig. 5.3.3 Coded signal 
the complex number mapped onto complex 
plane as di number plane as si 
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Encoder 
State 

zi 

10001 

[001] 

[010] 

[011] 

11001 

[101] 

[110] 

[111] 

II 
II 

Fig. 5.3.4 State transition diagram for an 8-state, rate-2/3 
rotationally invariant convolutional code 

Fig. 5.3.5 An 8-state, rate-2/3, rotationally invariant coder 

II 
IT (i+1)T 
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v 
a 

0 L L 

aý 
-4- 
-0 

0.1 

0.01 

0.001 

0.0001 

4 

uncoded - 4A16 

coded - D8 

468 10 

signal-to-noise ratio (dB ) 

Fig. 5.5.1. Performance comparison of coded and 
uncoded systems over additive white 
Gaussian noise channel 
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Fig. 5.5.2. Performance comparison of coded and 
uncoded sysfems over channel with TX 
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1z 



1Ö3 

ý. 

ýý 

N 

a L 
i 
O 
L L 
a) 

-ý- 
-0 

0.1 

0.01 

0.001 

0.0001 

uncoded - NLE 

uncoded - C8 

coded - D8 

coded - D16 
........................ 
coded - D32 

5 10 15 20 

signal-to-noise ratio (dB ) 
25 

Fig-5.5.3. Performance of System D and comparison 
with uncoded system over Channel 1 
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coded - E16 
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5 25 

Fig. 5.5.4. Performance of System E16 and comparison 
with System D16 over Channel 1 
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Fig. 5.5.5. Performance comparison of coded Sysfern D32 
wifh uncoded Sysfem A over Channel 1 
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CHAPTER 6 

CHANNEL ESTIMATION FOR FAST FADfNG CHANNELS 

6.1 INTRODUCTION 

The near maximum likelihood (NML) detectors used in the previous chapters 
are assumed to have an exact knowledge of the time variations introduced by the radio 
channel. This means that perfect estimation of the sampled impulse response (SIR) of the 
channel is assumed. In practice however, the detector would have to be given the sampled 
impulse response of the channel at every sampling instant. The device which does this is 
known as a channel estimator. 

Channel estimators are implemented by means of adaptive filters, where the 
adaptive filters are used in the context of system identification, rather than their more 
common application of adaptive equalization [1-4]. Many such channel estimators have 
been designed and their performance over I-IF radio channels is well documented in the 

published literature [5-111. However, under conditions of very fast fading, such as would 
occur in an urban land mobile radio environment where transmission frequencies are in the 

region of 900 MHz. [12], the performance of a channel estimator may be quite different to 
that obtained when operating over an BIF radio channel. Indeed, new techniques may need 
to be developed in order for the estimator to be successful in its tracking of such fast 
fading channels. 

This chapter describes the outcome of a feasibility study of some new 
estimation processes [131 and also describes some novel techniques for estimating the 

response of channels that introduce flat Rayleigh fading with a high fading rate. A further 

aim of this chapter is to study the feasibility of the simultaneous transmission of two 
bandlimited 4-QAM (QPSK) signals over two independent, flat Rayleigh fading channels 
to a single receiver, where both signals occupy the same frequency band. No coding or 
diversity techniques are employed here to improve the performance, other than differential 

coding needed to avoid prolonged error bursts. The above situation may occur in cellular 

mobile radio systems where the base station must carry out a process of estimation and 
detection on each individual received signal, where these signals originate from different 

mobiles and therefore, are fading independently[ 12-161. 

The chapter continues in Section 6.2, with a description of the basic 

assumptions made in the study and Section 6.3 gives the assumed model of the data 
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transmission system. Section 6.4 describes the estimators that are tested, and gives the 
theory for a novel estimator known here as theunbiased estimator'. Section 6.5 examines 
the detection techniques that are used, which includes a novel combined detector-estimator. 
Finally, Section 6.6 gives the results of some computer simulation tests, and compares and 
assesses the performance of the various systems. 

6.2 BASIC ASSUMPTIONS 

To restrict the depth of the analysis to within reasonable limits and to keep it as 
general as possible, a number of idealised assumptions are made, both about the channel 
and about the digital communication system itself. 

Firstly, it should be noted here that the initial objective is to determine the 
relative performance of the estimators when operating under conditions of fast, flat 
Rayleigh fading similar to those experienced in cellular land mobile radio [12-16]. 

However, the fading channel model used in the study is not one that is derived specifically 
for a cellular land mobile radio channel. Rather, it is the fading channel model derived in 
Section 2.6, for the generation of a single Rayleigh fading skywave (Figs. 2.6.2 and 
2.6.3) albeit with the corresponding changes in the Bessel filter coefficients, which are 
necessary to produce higher fading rates. This assumption has been made to keep the 
fading model as general as possible, rather than confine it to the particular spectral shaping 
obtained in an urban mobile radio environment [171. It is also assumed that the fading 
introduced by the model is purely random fading, without any constant Doppler shift. This 
does not invalidate the results since the maximum short term fading rate in the assumed 
model is several times the average fading rate, so that any channel estimator capable of 
tracking the given channel should, if anything, be more successful in tracking a more 
realistic channel model having the same fading rate but less random fading. Thus, although 
the estimators are being tested purely under conditions of fast, flat Rayleigh fading, the 

relative performance should be an adequate indication of their robustness (or otherwise) in 

an urban mobile radio environment. 

In the model of the system, the radio carrier frequency (RF) is assumed to be 

close to 900 NMz. and each radio channel is assumed to have a bandwidth of 25 kHz., 

thus making it a narrowband system. With a frequency guard band of I kHz. between 

adjacent radio channels to handle variations in filter characteristics, the available channel 
bandwidth becomes 24kHz. With a 4-level QAM signal and full raised-cosine spectral 

shaping of the recovered baseband modulating waveform at the receiver, a transmission 

rate of 24 kbit/s can be achieved over each channel 1181. Allowing 20% redundancy in 



189 

this signal for synchronising, training and control purposes, a useful transmission rate of 
19.2 kbit/s is achieved. 

As mentioned before, the other aim of the investigation is to study the feasibility 

of receiving two 4-level QAM signals, where these are received over two independently 
fading paths (as would be the case when transmitted from two different mobiles to the sarne 
base station), but occupy the same frequency band. This means that both signals are 
assigned the same radio channel of 25kHz., thus increasing the bandwidth efficiency of the 
system. The useful transmission rate over the given frequency band is now increased 
from 19.2 to 38.4 kbit/s. 

6.3 MODEL OF THE SYSTEM 

The model of the data transmission system is shown in Fig. 6.3.1, where all 

signals are baseband and complex valued, except (xo, i , cclj , cc'oj, and cc'jj-, , which are 
binary valued. The model is that of a synchronous, serial data transmission system 
employing two 4-level QAM signals, each of which is transmitted over a fading path that is 
independent of the path of the other signal. The signal element rate is assumed to be 12 
kbaud for each signal, resulting of course, in an information rate of 24 kbit/s, per fading 

path. When both signals are received in the given frequency band, the total information 

rate is 48 kbit/s. 

The transmitted information is in the form of two sequences of binary digits 

ao, j) and [ (xl, i 1, where the digits in each sequence are statistically independent and equally 

likely to have either of the binary values 0 or 1. The sequences t ccoj I and t ajj I are fed to 

two identical differential encoders, which give at their outputs, the corresponding 
differentially encoded signals. The differential encoding of each stream of binary digits is 

performed exactly as given in Appendix B, where the outputs of the two differential 

encoders are two corresponding sequences of data symbol values [ soj ) and t sIj ). These 

data symbol values are assumed to be in the form of impulses, (soj 8(t-iT)) and ( sj'j 

5(t-iT) 1, occuring at 12 kbaud, i. e. T= 1/12000 secs. The data symbols I soj I and f sIj I 

are statistically independent and equally likely to have any one of four given values, which 

may be either ± 1±j, or else, ±1 or ±j, where j= 4- 1. Moreover, it is assumed that s O, j 

sj, j =0 for i !ý0, so that both so, j and sj, j are the ith transmitted data symbol values. 

The two signal streams, f sO'j 8(t - iT) I and f sj, j 5(i - iT) 1, are fed to two 
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lowpass filters Z. and Z, . whose transfer functions are identical and root raised-cosine in 

shape. The signals at the outputs of ZO and Z1, are fed to the transmission paths TXO and 
TXj, respectively. Each transmission path is a linear baseband channel that introduces the 
baseband equivalent of flat Rayleigh fading. Each transmission path could thus be 
considered to comprise a single Rayleigh fading skywave, whose generation is as depicted 
in Figs. 2.6.2 and 2.6.3, and explained in Section 2.6, and whose baseband equivalent 
model is as derived in Section 3.3, albeit now with only one skywave. The frequency 

spread introduced by each transmission path is 125 Hz. and the coefficients of the Bessel 
filter (Fig. 2.6.3) that gives rise to this frequency spread, are given in Appendix A. The 

sampling rate of the Bessel filter used in this case is 1200 Hz. and linear interpolation has 
been employed to generate samples at 12000 per second. The value of (GD)- I (Fig. A. 1) 
is 17.4392. A frequency spread of 125 Hz. results in a fade rate of approximately 92 fades 

per second (eqns. 2.6.2 and 2.6.3). This is a useful, but rather idealised model of the 
fading likely to be introduced into a 900 NIHz. carrier in an urban environment [15-171. 

Stationary, zero mean, complex valued, white Gaussian noise w(t), is added to 
the sum of the two fading signals, as shown in Fig. 6.3.1. The noise waveform w(t), in 

the baseband equivalent model, is derived from a real valued noise function n(t), which is 

a Gaussian random process with zero mean and a two sided power spectral density of N, )2 

(see Section 3.2, Figs. 3.2.1 and 3.2.7). The resultant noisy and fading signal is next fed 

through a lowpass filter Z3, to give the bandlimited noisy waveform r(t). The transfer 
function of Z3 is assumed to be root raised-cosine in shape. 

The received waveform. r(t), is now sampled once per data symbol at t= iT, to 

give the corresponding sequence of received samples fri ). Clearly, since the resultant 

transfer function of the transmitter and receiver filters is raised-cosine in shape, the 
appropriate phase in the sampling instants would ensure that there is no intersymbol 

interference in the received samples fri ), where ri = r(iT), the delay in transmission being 

neglected here 1181. Thus, the received sample at time t= iTis 

r1 = so, iy0, i 
+ Sl, iyl, i +w (6.3.1) 

where ri, yO, j , yj, j and wi are complex valued. The lowpass filter Z3 is such that the real 

and imaginary parts of the noise components [wi 1, are statistically independent Gaussian 

random variables with zero mean and a fixed variance (y2 [181. The quantities yO, I and yj, j 
may vary quite rapidly with i, and each represents the attenuation and phase change 
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introduced into the corresponding signal by the transmission path. The average transmitted 
energy per bit is Eb at the input to each transmission path. These transmission paths do not 
introduce, on average, any gain or loss into the data signal, so that the averatge energy per 
bit at the output of each transmission path is also Eb. 

On receipt of the sample ri at t= iT, the detector uses the predictions y'o, i, i-l and 

yI that were formed of y0j and y1j , respectively, at t= (i-1)T by the estimator, to 

determine the detected data symbol values s'Oj-n and S'l, i-n - Clearly, the detector 'ntroduces 
a delay of n sampling intervals (in the case of simple detectors, n= 0). The two detected 
data symbols s'o, i-,, and S'l, i-n , are then passed through two identical differenfial decoders, 

which give at their outputs, the detected binary information digits (x'o, i-,, and (X'I, i-n - 
Differential decoding is the inverse operation of differential encoding, and is fully described 
in Appendix B, for the given system. 

In addition to s'o, i-,, and s'l, i-,, , the detector also provides two "early" detected 

data symbols s'Oj and s',, i , for use in the channel estimator. The channel estimator uses the 

values of ri , s'Oj and s'l, i , to form the predictions y'o, i,,, i and y'j, j+IJ , of the values yo, i, -, 
and y1j+1 , that are needed by the detector at the next sampling instant t= (i+I)T. The 

process continues this way. 

When it is assumed that only one data signal is received in the given frequency 
band, the second of the two transmission paths is omitted from Fig. 6.3.1 and eqn. 6.3.1 
becomes 

(6-3.2) 
0, i YO, i+ wi 

It is also assumed in every case, that at the start of the transmission of any message, the 

receiver has exact prior knowledge of yO'j and yj, j , which corresponds to the ideal practical 

case where a known training signal is transmitted prior to the data, to enable the receiver to 

obtain an accurate initial estimate of the channel. 

6.4 THE ESTIMATORS 

The estimators developed in this work are derivatives of the gradient 

estimator[51 which uses the least mean square (LMS) algorithm D] for the adjustment of 
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the tap gains . As such, the operation of the gradient estimator is given first, and this is 
followed by a description of the operation of the estimators used in this work. 

6.4.1 The Gradient Estimator 

In order to facilitate the understanding of the estimators used in this work, it is 
first necessary to explain the operation of the gradient estimator (which was developed by 
Magee and Proakis in 1973 [5] ), when configured to estimate the responses yO', and yj'j , 
of two independently fading channels, when flat Rayleigh fading is assumed to occur on 
both channels. 

The gradient estimator for the above case is shown in Fig. 6.4.1, where the 
signals shown occur at the time instant t= iT. The tap gains of the estimator give the 
estimated values of the sampled impulse responses of the two channels. These tap gains 
are adjusted by the stochastic gradient algorithm (which is derived from the steepest descent 

algorithm [4,19] ), in such a way as to minimise the mean square error between the 

received samples fri 1, and the corresponding values fr'i ), at the output of the estimator, 

which are estimates of the received sample. The adjustment of the two tap gains after the 

receipt of the sample ri , leads to the two tap gains forming the stored estimates yIo, i and 

y'l, i , of y0j and y1j . 

The channel estimator operates as follows. At t= iT, the received sample ri and 

the detected data symbols symbols s'Oj and s',, i , are fed to the estimator. The symbols s'o, l 

and s', j are first multiplied by the corresponding tap gains ( y'o, j-1 and y'lj-1, respectively), 

and the products are added to give an estimate r'i , of the received sample ri . The tap gains 

are, of course, the estimated responses of the two channels at t= (i-1)T. Thus, 

so, iyo, i-i , sl, iyl, i-i 

The error, ej , in the estimate is taken as, 

(6.4.2) 

where ri is as given in eqn. 6.3.1. This error signal is multiplied by a srnall positive 
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quantity b, to give the signal bei . The signal bei now multiplies the complex conjugates of 

s'o, i and s'l, i ( i. e., (s'o, i )* and (s',, i )* ), and the respective products are added to the 

corresponding tap gains to give the new stored estimates y. o, i and y',, i , of the sampled 
impulse response of the two channels. Thus, the estimates of the sampled impulse 

response of the two channels at t= iT are, 

Yo, 

i z: -- yo, i_, +b ei (so, ,) (6.4.3) 

and 

yl, i_l + bei(sl, i) (6.4.4) 

Eqns. 6.4.3 and 6.4.4 can be shown to be derived from the steepest descent algorithm for 

adjusting the tap gains of the channel estimator [1-51. 

The above algorithm is widely known as the least mean square (LMS) 

algorithm 111. The quantity b is known as the step size, and it controls the speed of 
convergence and the accuracy of the estimate. The smaller the step size, the smaller is the 
effect of additive noise on the channel estimates (and hence, the more accurate the channel 

estimates), but the slower is the rate of response of y'Oj and y',, i , to changes in y0j and yl,, -, 

6.4.2 The Modified Gradient Estimator 

The first of the estimators studied in this work is a modification of the gradient 
estimator described in Section 6.4.1, whereby a least squares fading memory predictor is 

used [7,20] to give two predictions y'o, i, l, i and y'l, i+,, i , at t= iT, of the sampled impulse 

responses yoj-ý, and yl, i,,, of the two channels at t= 

The operation of the estimator is as follows. As before, an estimate, r'i , of the 

received signal ri , is fonned at t= iT as, 

s 
0, 

i Yo, i, i- i+s1, i Yl, i, i- 1 
(6.4.5) 

Notice that y'O, ij-j and y'1j, j-1 are predictions of y0j and y1j , respectively, that were 
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obtained at t =(i-I)T. The error in the estimate of the received signal is then formed, and is 
given by, 

el (6.4-6) 

where ri is as given in eqn. 6.3. l. The updated estimates of yO'j and y1j are next obtained, 
and are given by, 

Yo, i 7-"-:: yo, i' i_,, be, (so, i) (6.4.7) 

and 

Yi, i yl, i, i_l + bei(sl'i) (6.4.8) 

where b is a small positive quantity and (s'o, i )* and (s',, i )* are the complex conjugates of 

s'o, i and s'l, i , respectively. The errors in the predictions y'o, i, i-l and y'l, i, i-I are then taken to 
be 

F-0, i Yo, i - Yo, i, i-i = bei(so�) (6.4.9) 

and 

Yl, i - Yl, i, i-l bel(sl, i) (6.4.10) 

These errors are then fed to the appropriate least squares fading memory polynomial filter 
(degree 0,1 or 2) [201 to give the predictions y'o, i,,, i and yII, i,,, i , that are needed for the 
detection process at t= (i+I)T. 

Table 6.4.1 gives the relationships of the degree 0,1 and 2 least squares fading 

memory polynomial filters for obtaining the one-step and n-step predictions y'o, i,,, i and 

y'o, i, n, i , at time t= iT. 0, in Table 6.4.1, is a constant that determines the memory of the 

filter, while the terms y"O, i, l, i and y ... 0, i, jj are functions of the first and second derivatives 

of y'o, i,,, i with respect to time, and are considered in detail elsewhere [201. Further 

consideration of these is not necessary for, and indeed is beyond the scope of, the work in 
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this thesis. Relationships exactly corresponding to those in Table 6.4.1 also hold for 

y',, i+,, i , y",, i+,, i and y ... l, i+,, i . 

When there is only one received signal, eqn. 6.4.5 becomes 

So, i Yo, i, i-i 

and in eqn. 6.4.6, ri is now (see eqn. 6.3.2 ) 

r1=s0, i Yo, i, wi 

Clearly, eqns. 6.4.8 and 6.4.10 are redundant, but the system otherwise operates as 
previously described, to determine y'o, i,,, i . 

6.4.3 The Unbiased Estimator 

It C-ýýo be seen from eqns. 6.4.9 and 6.4.10 that two updated estimates y'Oj 
and y'1j, are used in the calculation of the prediction errors EOj andF-l, i , in the predictions 

y'Ojj-j and y',, i, i-,. However, in the original least squares fading memory algorithm 1201, 

direct measurements of y0j and y1j that are independent of the predictions, are assumed to 
be used in the calculation of the respective prediction errors e0j and clj , that are fed to the 
least squares fading memory predictor. The reason for this is that if the updated estimates 

y'o, i and y'lj are used instead of direct measurements to calculate prediction errors, then, the 

system may be prone to instability (especially in the case of degree-2 and higher order 
predictions), because the updated estimates are themselves functions of the predictions 
(eqns. 6.4.7 and 6.4.8 ). 

This suggests that a useful modification to the algorithm described in Section 

6.4.2, may be to determine the estimates y# Oj and y'lj directly from the received signal in 

such a way that y'o, i and y'l, i are not dependent on y'0, jj-j and y'1j, i-1 . (Of course, y'o, i 

and y'lj will not now be updated estimates). The required result is achieved by means of an 

algorithm which leads to an estimator which, in the sequel, will be known as the 'unbiased 

estimator'. 

Three different arrangements of the unbiased estimator, based on the degree-0, 
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I or 2 polynomial filters, may be considered. These arrangements are appropriate to slow, 
fast and very fast fading channels, respectively. The resulting estimates of YO, I are 

referred to here as 'unbiased estimates'. The possible values of soj and sl,, - are assumed 

now, to be ±1 or ±j, as shown in Fig. 6.4.2. This is done purely for convenience since 
the algorithm requires the calculation of (soj )- 1 and (sl, i )- I, in the estimation process. 
Also for convenience, all the detected data symbol values are assumed to be correct. The 

effects of errors in detection are studied later by computer simulation. The algorithms are 
described for the estimation and prediction of y0j , and the corresponding algorithms for 

yl, i are obtained from these by interchanging the subscripts 0 and 1. 

This section describes the algorithm for the unbiased estimate of a slow fading Z: ) 

channel. In order not to impede the flow of the discussion, the algorithms for the unbiased 
estimate of fast and very fast fading channels, are given in Appendix D. 

In the algorithm for the unbiased estimate of a slow fading channel, the 

unbiased estimator assumes that 

Yo, i ý-- Yo, i-1 (6.4.12) 

and 

yi, i ""::: yi, i-1 
(6.4.13) 

For slowly fading channels, eqns. 6.4.12 and 6.4.13 are approximately valid [7]. The 

key to the estimation of y0j is the accurate removal of yj'j from the received samples. This 

can be achieved by operating on the two samples, 

s 

O, iyo, i , sl, iyl, i 
+wi 

and 

r1-1=s0, 

i- i Yo, i- i+si, i-i Yi, i- i+w i-i 

(6.4.14) 

(6.4.15) 

At time t= iT, after the receipt of ri , the estimator is fed with r, and the detected values s'o, i 

and s'l, i , of the data symbols soj and sj, j . Since correct detection is assumed, s'o, i = So, i 

and s'Ij = sj, j and so, all data symbols in eqns. 6.4.14 and 6.4.15 are known at the 
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estimator. Now, from eqn. 6.4.14, 

si r, si 
'i 

so'i Yo, i + yi, i + Si i wi (6.4.16) 

and from eqn. 6.4.15, 

si j- 1 r, _ 1 si 
'i-i 

So, i-i Yo, i-i + yi, i-i + Si 1 
i-IWI-l (6.4.17) 

From eqns. 6.4.16 and 6.4.17, 

4 -1 sI, is O'i Yoj - Si, i-i So, i-i Yo, i-i 

+ Yl, i - Yl, i-i 

44 
+ sl'i wi - sl'i-I wi-I (6.4.18) 

Substituting the values of eqns. 6.4.12 and 6.4.13 in eqn. 6.4.18 gives, 

sri-sssss) Yo, i l'i O'i 1 j- I O'i- I 

+s4W. s4w (6.4.19) 1,1 1 I'l-1 i-1 

Eqn. 6.4.19 can be expressed as 

ro, ,= 
ao, i yo, i+ uo, i (6.4.20) 

where 

4 -1 ro, i sl,, r, - sl, i_l r, 
_, 

(6.4.21) 

ao,, si 
I, 

i so, i- si I 
'i-l 

so, i-i 
(6.4.22) 

and 
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44 
u 0, i= 

From eqn. 6.4.20 it could be seen that an estimate of yO, j is given by 

44 
X0, i ao, i ro, i yo, i+ ao, i uo', 

(6.4.23) 

(6.4.24) 

x0j is called an 'unbiased estimate' of y0j . This channel estimate is then compared with 
the corresponding one-step prediction y'o, j, i_j, to give the measured error (xo, i - y'o, i, i-, ), in 

th prediction y'Oj, j_j . 

The variance of u0j is independent of so'j, sl, i , soj-, and slj-, and therefore it 

is also independent of ao, j . Thus, the variance of (aOj )- 1 uO'j is inversely proportional 

to IaOj 12, and hence, the greater the value of IaOj 1, the smaller the variance of (aO, j )- 1 uo, i 
and so, the better is the estimate of y0j that is given by x0j . To make due allowance for 

the changes in the variance of (aO'j )- 1 uO'j with i, and to provide more adjustability when 

applying the measured prediction error (xo, i - y'o, i, i-, ) to the least squares fading memory 

prediction algorithm, the prediction error is now redefined as, 

bI ao, iI (xo,, -0 "o, i --,: Yo, i, i-i (6.4.25) 

where b is, again, a small positive constant, similar to the one that was used in the modified 
gradient estimator (eqns. 6.4.7 and 6.4.8). The measured error, FO, i , is now used for the 
degree-0 polynomial filter in Table 6.4.1, to give the one-step prediction of y0j, j . The 

corresponding arrangement, with the subscripts 0 and 1 interchanged, gives the prediction 
of y1j, j . These predictions are used in the next detection process at t= (i+l)T. 

Whenever aO, j = 0, it could be seen from eqn. 6.4.24 that the algorithm cannot 
be used to give the unbiased estimate x0j . The procedure now, is to ignore ri in the 

estimation and prediction process, and continue instead with ri, j . The detector would now 

use the two-step predictions, y'oj, j, j_j and y'j, j, j, i_j , for the detection of so'jj and s1,1,1 
from ri+,, while the estimator would evaluate x0j+1 (see eqn. 6.4.24) and the prediction 

error, 
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F-0, i, 1= blao, i+11 (xo, i+l -yo, i+,, i_, ) (6.4.26) 

in which the two-step prediction of y0j, j is used. The least squares fading memory 

prediction algorithm (Table 6.4.1) now operates on the appropriate two-step predictions, 
for time t= (i+l)T, instead of on the corresponding one-step predictions, to give the 
required one and n-step predictions. In the case of the degree-0 polynomial filter used 
here, the one and two-step predictions are, of course, the same. 

If now, n successive [ri+h ), (h=0,1, 
..., n-1 ), give zero values for the 

corresponding JaO, i+h ), the (h+2)-step predictions of the tYO, i+h+l) must be used for the 

detection of the corresponding data symbols, no estimation or prediction processes being 

carried out during this time. The (n+l)-step prediction of yo, i+,, is then used in the 

evaluation of F-O, i+n . The least squares fading memory prediction algorithm (Table 6.4.1) 

now operates on the appropriate (n+l)-step predictions, for time t= (i+n)T, instead of on 
the corresponding one-step predictions. Similar procedures should be carried out for the 
detection of the f sl, i-,, h ) and the estimation of the ( yl, ih ) when ali+h -= 0, for h=0,1, 

... I 
n-1 . 

The derivations of the unbiased estimates of fast and very fast fading channels 
are given in Appendix D. Both these derivations follow the same basic approach as that in 

the analysis just presented. However, the estimation processes themselves are substantially 

more complex because of the necessity here, to correct for changes in y0j and yj'j , with i. 

When only one signal is received, such that 

r, = So, i Yo, i, 'i (6.4.27) 

the unbiased estimate of y0j becomes 

X0, 
i so r, YO, i+ so 

I 
'i 

wi (6.4.28) 

and is therefore obtained from just one received sample. The error in the one-step 
prediction is now taken as 

I 
ý0' ib( so, i ri - yo,,,, (6.4.29) 
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which is then used in the appropriate prediction algorithm of Table 6.4.1, to give y 
Correct detection of so, j and sj, j has been assumed in the above analysis. 

6.5 THE DETECTORS 

6.5.1 The Simple Detector 

The simple detector is essentially a threshold level detector. The term 'simple' 
is deemed appropriate since it distinguishes this detector from a more sophisticated detector 
to be described in the next section. 

At time t= iT, the detector receives in addition to the received sample r, - , the 

predictions y'o, i, i-l and y',, i, i-l , of yo, i and yl, i , that were formed at t= (i-1)T by the channel 

estimator. The detector uses this information to calculate 

12 
qo,, yo'',, i_l - ql,, yl,,,, 

_, 
1 

where IxI is the absolute value of x and qO, j and qj, j take on the possible values of soj and 

sIj . 
Since soj and sIj are both 4-level signals, there are 16 possible values of (di )2 

associated with the 16 possible combinations of the values of soj and sj'j . The detected 

data symbols s'Oj and s', j , are now chosen by the detector as the values of q0,1 and qj'j, 

respectively, that give rise to the lowest possible (di )2 , 
i. e., the possible values of qO'j 

and qjj that minirrýise (di)2. 

6.5.2 The Combined Detector 

As described in Section 6.4, the estimators used in this work rely on correct 
detection of the data symbols. This suggests that an estimation process that considers 
several different possible values of each detected data symbol, may give an advantage over 
an estimation process that considers just the single possible value. The combined detector 

and estimator achieves this objective by storing a number, say p, of possible transmitted 

sequences (as in the case of a near maximum likelihood detector - Chapter 4), and having a 
different estimator associated with each transmitted sequence. This combination of 
detection and estimation is carried out as follows. 
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Consider a composite data symbol given by a two-component vector 

q, = [qo,, ql, i] (6.5.2) 

where qO'j and qIj take on the possible values of soj and sIj , respectively. Thus, q, has 

16 different possible values corresponding uniquely to the 16 different possible 
combinations of soj and sj'j . 

Just prior to the receipt of the sample ri at time t= iT, the detector holds in store 

p different n-component vectors [ QI-j ), where, 

q. 
-1=[q, -n 

q, 
-n+l 

Each vector Qj-j , represents a different possible pair of the sequences 

[s0, 
i-n s 0, i-n+ 1 -- s 0, i- 11 

and 

[s1, 
i-n+1 ***'* 

(6.5.3) 

Associated with each vector Qj-j , is a cost function which is a measure of the likelihood 

that the vector is correct, the lower the cost, the higher being the likelihood. This cost 
function is given by 

12 
q, I ýh 

h-%, i-hyO, i-h, i-h-1 i-hyl, i-h, i-h-I 
h=l 

(6.5.4) 

where 0 is a real valued constant in the range 0 to 1, and W is the absolute value of the 

scalar quantity x. It is assumed that 

Q, =q, so, is0 for i :! ý 0 (6.5.5) 
, io i 



202 

The nearer 0 approaches to zero, the smaller is the effect of earlier costs on cl , thus 

reducing the effective memory in ci . 

On receipt of the sample ri , each of the p vectors ( Q-1 I is expanded into m 
(n+l)-component vectors (Pi ), where, 

Pi = [q, 
-n 

q, 
-n+l 

q, 
_, 

qi] (6.5.6) 

and rn is a variable that decreases as the cost of the given Qj_j increases. In each group of 

m vectors tPi I which were derived from a given vector Qj-j , the first n components 

tqj-h), (h=n, n-1 . ..... 1 ), are as in the original Qj-j , and the last component qj , takes 

on m different possible values. When m< 16, the m vectors tP, - I originating from any 

one Qj-j , are those with the smallest costs in the group of 16 possible vectors that can be 

derived from the given Qj-j . Stored alongside each of the resulting vectors tPi 1, are their 

costs, 

2 
ci ci 

-1+I 
ri - qo,, yo,,,, 

-1- 
ql, i Yi, i, i-1 (6.5.7) 

where ci-, is the cost of the vector Qj-j , from which the particular vector Pi is derived. 

At this stage, the detector holds in store a number of expanded vectors JPI 1. 

From these expanded vectors [Pi ), is now chosen the vector with the smallest cost. Let 

this chosen vector be denoted Ps . The first component ch-n , of Ps , is then taken as the 

value which gives the detected values S'O, i-n and s',, i-,,, of the data symbols soj, and sj, j-n 
(see eqn. 6.5.2). Any vector Pi whose first component differs in value from the first 

component of PS i is then discarded by assigning to it an arbitrarily high value of cost. 
From the remaining vectors [ Pi 1, (which includes Ps ), are selected the p vectors which 
have the smallest costs. The first component of each of the p selected vectors [ Pi ), is now 

omitted (without changing its cost), to give the corresponding n-component vectors f Q1 

where, 

-n+ 
q, 

-n+2 ..... q, (6.5.8) 
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These p vectors (Q), are then stored along with their associated costs ( ci 1. The smallest 

of these costs is now subtracted from each of the p costs, in order to prevent cost overflow. 
With the p stored vectors (Q1, and their associated costs f ci ), the detector is ready for 

the next detection process, that is, the detection of si-,,,,, after the receipt of ri, 1 . When 

ý--1, ( eqns. 6.5.4 and 6.5.7 ), the detector just described becomes a direct development of 
the near maximum likelihood detectors that were discussed in Chapter 4. 

In the detector that is used in the simulation tests, p=4 and m has the values 4, 
3,2 and 1, respectively, for the four t Q-1), when arranged in the order of increasing costs 

and starting with the lowest cost vector. Thus, on the receipt of ri , the first, second, third 

and fourth vectors (Qi-, ), are expanded into four, three, two and one vectors (PI 1, 

respectively. There are now, ten expanded vectors JPj ), from which are selected four 

vectors ( Qj 1, as previously described. 

With no intersymbol interference (as is the case here), and a single estimation 

and prediction process, no advantage would be gained by the arrangement just described, 

over the simple detector that was given in Section 6.5.1. However, in the system studied 
here, each of the four vectors (Q-1), is associated with its own separate estimator and 

predictor, which may operate by any of the methods described in Section 6.4, and which 

take the received sequences of data symbol values I SO, h I and I S1, h ) to be those given by 

the corresponding vector Qi_I 
. 

Thus, there are four separate estimation and prediction 

processes operating in parallel. For convenience, eqns. 6.5.4 and 6.5.7 assume the use of 

a modified gradient estimator (Section 6.4.2), so that the predictions of y0j and y1j that 

are employed, are one-step predictions. 

When a vector Qi_I is expanded into m vectors (Pi ), the same predictions of 

y0j and yl, i are used to obtain each of the m vectors [Pi 1, but these predictions normally 

differ from those associated with any of the other three vectors ( Q-1). After the selection 

of the four vectors ( Q, ) from the ten vectors ( Pi ), the prediction errors F-O, i and F-l, i , 

are evaluated separately for each Q. Then, for each of these vectors, F-O, i is applied to the 

appropriate prediction algorithm of Table 6.4.1, to give the one-step prediction y'o, i+,, i , of 

y0j, I . Of course, el, i is handled similarly, to give the one-step prediction y'i, i, l, i , of 

yl, i+l . Thus, since the four (Qi ) are different, so also, in general, are the predictions of 

y0j+1 and yl. i+l that are associated with the four (Q1. The techniques just described not 
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only make the estimator more tolerant of errors in the detected data symbols, but they also 
reduce the possibility of a complete failure in the detection and estimation processes, when 
these are operating together. 

6.6 COMPUTER SIMULATION TESTS AND RESULTS 

Before discussing the results of the computer simulation tests that have been 

carried out to compare the performance of the different estimation and prediction processes, 
it is necessary first to note the values of the parameters used and the additional assumptions 
made, in the tests. 

The model of the system that is used in the tests is that given in Section 6.3. 
The only exception to this is that ideal lowpass filtering with a bandwidth of 1/2T Hz. is 

assumed for the lowpass filters so that the signal is in fact transmitted over the channel at 
the Nyquist rate. This is done in order that only one sample per signal element is involved 
in the processing of the signal, thereby substantially reducing the computer time needed for 

the tests. No significant change in performance should be introduced by this modification. 

In all tests, the average transmitted signal energy per bit is, 

s 0, i (6.6.1) 

and the mean square values of y0j and yj, j are both equal to unity. The signal-to-noise 

ratio is W dB, where, 

10 loglo b 

No 
(6.6.2) 

For the filters assumed in the model, it is easily shown (see Appendix C- eqn. 21 onwards) 
that 

1 
No a2 

2 
(6.6.3) 

where CV2 is the variance of the real or imaginary part of the noise samples f w, ) in eqn. 
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Thus, from eqns. 6.6.2 and 6.6.3, 

Nf 10 loglo ( 
Eb 

(6.6.4) 2 
(Y 

It could be seen that full allowance is made here for the transmitted signal level. 

Figs. 6.6.1 and 6.6.2 show the signal level fading and Figs. 6.6.3 and 6.6.4 

show the phase variations introduced by the two transmission paths TXO and TX, , 
respectively. These fading sequences have been chosen to be typically 'worst-case' 

sequences for the given parameters of the channel. In the rest of the figures, the 
nomenclature given below has been followed. 

LSFM - least squares fading memory 

MGE - modified gradient estimator 

UE - unbiased estimator 

SD - simple detector 

CD - combined detector 

Figs. (6.6.5 - 6.6.8) show the performance of the modified gradient estimator 
in various situations, and Figs. (6.6.9 - 6.6.13) show the performance of the unbiased 
estimator in the same situations. The parameter b is that given in Section 6.3 and 6.4 for 

the two different estimators, and the parameter 0 is that given in Table 6.4.1. The 

measurements of the mean square error are all carried out on the signal received over the 
first transmission path TXO, which introduces the more severe fading of the two. The 

measurements of the mean square error in a prediction of y0j, are expressed in decibels 

relative to unity, and are given by 

24000 

10 lo 
1 12 (6.6.5) 71 910 

( 
21600 YO, i- YO, i, i-h 

i= 2401 

where h=I or 2, denoting, respectively, the one-step or two-step predictions. The first 

2400 (Y'O, i, i-h ) are ignored here in order to eliminate the transient effects that sometimes 
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occur at the start of operation [20]. 

Figs. (6.6.13 - 6.6.20) show the performance of the modified gradient 
estimator and unbiased estimator in similar situations to those in Figs. (6.6.5 - 6.6.12), 

albeit with the performance measure now being a normalised version, T1N, of the 
prediction error, where, 

24OW 2 
'IN 10 loglo 

10 Iyo'i 

I- 

YO, i, i-h 
(6.6.6) ( 

-ý I 6TO 
2401 YO, iI 

The use of this measurement is justified as follows. A possible weakness of the error 
measurement in eqn. 6.6.5 is the fact that a given error in an estimate of yO'j , has an 

increasingly serious effect on the detection of soj , as the magnitude of yo, j decreases. 

Furthermore, most errors in the detection of soj occur when the magnitude of y0j is small, 

so that the smaller the magnitude of y0j , the more important it becomes that an accurate 

estimate of y0j is used. These considerations suggest the use of the error measurement TIN 
(eqn. 6.6.6), where the error in the estimate of y0j is taken as the absolute value of the 

error itself, divided by the magnitude of yo, j . The error TIN is known in the sequel, as the 

mean square normalised error. Whereas the mean square error is influenced mainly by the 
errors in the channel estimate at high signal levels, the mean square normalised error is 
influenced mainly by the errors at low signal levels, that is, during fades. 

Fig. 6.6.21 shows that perfon-nance of a hybrid of the two unbiased estimators 
described in Appendix D (Section D. I and D. 2). An unbiased estimate of yO'I is here taken 

as xO'j in eqn. D. 18, but it is used in the degree-2 least squares fading memory prediction 

algorithm in Table 6.4.1. Thus, the unbiased estimate of yO'j is that appropriate to a fast 

fading channel, whereas the predictions of y0j+1 and YO, i+2 are those appropriate to a very 
fast fading channel. Similar operations are carried out to estimate y1j and predict y1j+1 and 
yl, i+2 - 

In Figs. (6.6.5 - 6.6.21), correct detection of all data symbols is assumed, so 
that only the effects of fading and noise are considered. This gives the performance of the 

estimators when a known signal is transmitted. Also, the values of b and 0 shown on the 
diagrams are their optimum (approximately) values, where the optimization is in the sense 
that the particular values of b and 0 give rise to the minimum (approximately) mean square 
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error or minimum (approximatelY) mean square normalised error. 

Figs. (6.6.22 - 6.6.25) show the performance of various combinations of 
detector and estimator operating in various situations. The parameter 0 is that given in 
eqns. 6.5.4 and 6.5.7. Again, the parameters b, 0 and 0 are approximately optimised, but 

now the optimization is carried out to minimize the bit error rate rather than the mean square 
prediction error or mean square normalised prediction error. The bit error rate is the error 
rate in the detected stream of binary digits ( (x'o, i 1, at the output of the differential decoder 
in Fig. 6.3.1. Tests have shown that differential coding is essential here to avoid 
prolonged error bursts being introduced by the deeper fades. 

Fig. 6.6.22 assumes perfect channel estimation at the receiver. In Figs. (6.6.23 

- 6.6.25), the detected data symbols are used in adjusting the estimators, so that full 

account is taken of the effects of errors in the data symbols, on the adjustment of the 
estimators. All the estimators in Figs. (6.6.23 - 6.6.25) are used with the degree-1 least 

squares fading memory prediction algorithm that is given in Table 6.4.1. 

Fig. 6.6.24 assumes that, after every 50 received samples, the predictions of 

yO, j and yj, j are corrected by some ideal retraining process. Fig. 6.6.25 assumes that, 

not only the predictions of yO, j and yj, j , but also the predictions of their rates of change 

are corrected every 50 samples. In practice, exact correction of these quantities is not 
possible, so that the results given in these figures are 'lower bounds' to the bit error rates 
actually obtained for the given cases. Tests with two received signals and no retraining, 

where the receiver has no prior knowledge of y0j and y1j , and so must estimate them, 
have shown that the system fails completely, regardless of the type of detector (simple or 
combined) used. 

It is clear from Figs. 6.6.1 and 6.6.2 that error free performance is unlikely to 
be obtained in the presence of any significant noise, due to the very high attenuation 
introduced by the deeper fades. The estimators are thus being tested under much more 
severe conditions than would be the case with a more realistic model of the channels. Figs. 
6.6.3 and 6.6.4 confirm that the phase of the fading signal varies, as expected, between -71 
and +ir . The distribution functions for the amplitude and phase were obtained in the 

verification of the channel model in Chapter 2, Section 2.7 (albeit for different channel 

parameters) and they confirmed that the amplitude of the fading signal follows a Rayleigh 

distribution and that the phase of the fading signal follows a uniform distribution. 

Figs. (6.6.5 - 6.6.9) show the surprisingly good estimates that can be achieved 
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of the channel with the modified gradient estimator and least squares fading memory 
prediction, when one signal is received, bearing in mind that correct detection is assumed 
but no retraining is performed. There is an increase of some 11.5 dB in the mean square 
prediction error at high signal-to-noise ratios, when two signals are used in place of one. 
Furthermore, the degree-2 least squares fading memory predictor has a performance 
similar to that of the degree- I predictor at high signal-to-noise ratios and for both one and 
two signals, albeit with a slight advantage in the latter case. However, since the optimum 
value of b varies with the signal-to-noise ratio, and since in practice a fixed value of b will 
have to be used in accordance with the signal-to-noise ratio at which optimum performance 
is most needed, the average performance here is likely to fall somewhat below optimum. 

It can be shown theoretically (Appendix E) that, when one signal is received, 
the unbiased estimator becomes equivalent to the modified gradient estimator, so that the 
two estimators should now have the same performance. This is indeed confirmed (at least 

within the limits of experimental accuracy) by Figs. 6.6.9 and 6.6.10, which show the 
performance of the unbiased estimator when one signal is received. These two figures 

should be compared with Figs. 6.6.5 and 6.6.6, i. e., the corresponding figures for the 
modified gradient estimator. However, when two signals are received in the given 
frequency band, the performance of the unbiased estimator as shown in Figs. 6.6.11 and 
6.6.12 is, on average, inferior to that of the modified gradient estimator (Figs. 6.6.7 and 
6.6.8), especially at low signal-to-noise ratios. 

Figs. (6.6.13 - 6.6.20) show the performance of the two estimators when the 

measure of performance is the mean square normalised prediction error. These figures 
include all cases of interest and are thus equivalent to Figs. (6.6.5 - 6.6.12), given the 
difference in the performance measure. Examination of the results in Figs. (6.6.13 - 
6.6.20), and comparison with the corresponding results in Figs. (6.6.5 - 6.6.12) reveal 
an unexpected consistency between the two measures of performance. The mean square 
error shows only a small overall advantage for the modified gradient estimator over the 

unbiased estimator, whereas the mean square normalised error shows a somewhat greater 
advantage. However, the overall assessment of the different systems tested is not 
significantly affected by the performance measure used. This is an encouraging result since 
it further supports the use of the mean square error as a measure of performance of an 

estimator. 

Fig. 6.6.21 compares the performance of the unbiased estimator in the hybrid 

arrangement that was described earlier, with the performance of the unbiased estimator in 

its original form from which the hybrid arrangement is derived. Clearly, the hybrid system 

shows a superior performance. However, its overall performance is still inferior to that of 
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the corresponding modified gradient estimator with degree-2 least squares fading memory 
prediction (cf. Fig. 6.6.8). 

Fig. 6.6.22 shows that, with perfect channel estimation, there is, on average, a 
loss in tolerance to additive white Gaussian noise of nearly 5 dB, when two signals are 
transmitted in place of one, and at the same average transmitted energy per bit. This is 

similar to the loss experienced when a 16-QAM signal is transmitted in place of a 4-QAM 

signal, again at the same average transmitted energy per bit. Thus, the two fading channels 
TXO and TX1 (Fig. 6.3-1) are themselves multiplexing the two signals such that these can 
be transmitted over the same frequency band without seriously interfering with each other, 
just so long as sufficiently accurate channel estimates can be obtained in each case. 

Fig. 6.6.23 shows that, over the range of bit error rates from 10- 1 to 10- 3, the 
simple detector and modified gradient estimator, when operating together, lose between 0.5 

and 1.5 dB in tolerance to additive white Gaussian noise, relative to the case where the 
simple detector is used with a perfect estimator. Both the combined detector and modified 
gradient estimator, and the combined detector and unbiased estimator, lose between 0.5 and 
1.0 dB, under the same conditions. These results are very encouraging, bearing in mind 
that there is no retraining of the channel estimator. At the higher signal-to-noise ratios a 
combined detector and estimator gains a significant advantage over the simple detector and 
estimator, and the system with the best overall performance is the combined detector and 
modified gradient estimator. 

Figs. 6.6.24 and 6.6.25 show that, when two signals are received, even with 
regular retraining of the channel estimate (and its rate of change, in the case of Fig. 
6.6.25), there is an unacceptably high bit error rate at high signal-to-noise ratios. 
However, a useful advantage is gained here by the combined detector and estimator, over 
the simple detector and estimator. No tests have been carried out where the combined 
detector is accompanied by the unbiased estimator (rather than a modified gradient 
estimator), largely due to the high complexity of the unbiased estimator algorithms, when 
designed for operation with two signals (Appendix D). 

Although it is more than likely that a further useful improvement in performance 
can be achieved through appropriate modifications to the systems described here, it seems 
improbable that a satisfactory performance will be obtained with two signals, so long as the 
depth of the fades can exceed 20 dB. The reason for this is that when one of the two 

signals is attenuated by, say, 20 dB relative to the other, so that Iyj, j I= 10 IyO'j 1, then, an 

error of -20 dB in the estimate of yj, j becomes an error of 0 dB relative to the smaller 
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signal soj y0j , and can therefore of itself introduce an error in the detection of the smaller 

signal. Moreover, a similar effect can occur when the two signals have very similar levels 

and one signal nearly cancels the other. Thus, when there are two signals received in the 
given frequency band, a much greater accuracy is required in the estimate of the channel. 

It has been shown [21] that, when two signals are received over the given 
frequency band, the above mentioned problems could be alleviated by an appropriate 
arrangement of space diversity, together with the combined detector and modified gradient 
estimator. The two antennas reduce the depth of fading to a level that can be handled by the 
combined detector and estimator, with an acceptable small loss in tolerance to noise relative 
to the corresponding system that employs perfect channel estimation. 

Thus, when only one signal is received in the given frequency band, the 

preferred system is the combined detector and gradient estimator, which gives a tolerance 
to noise quite close to that obtained with perfect channel estimation. No retraining of the 

channel estimator is needed here. In the presence of two signals however, it is necessary to 

use some sort of diversity scheme, along with regular retraining of the channel estimator. 
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CHAPTER 7 

COMBINED DETECTION AND ESTIMATION FOR 
A 4.8 KBIT/S HF RADIO MODEM 

7.1 INTRODUCTION 

The detectors developed in Chapter 4 were tested under the assumption that the 
receiver has exact prior knowledge of the channel, i. e., perfect estimation was assumed. 
Although a logical (and indeed, necessary) assumption for testing the relative performance 
of various detectors, the corresponding results may not give an accurate indication of the 
performance of the system when the receiver has to estimate the sampled impulse response 
of the channel, as would be the case in practice. Furthermore, the minimum phasing of the 
channel was carried out in Chapter 4, with the aid of a root-finding software module from 
the Numerical Algorithm Group (NAG) library, along with some attendant calculations. 
Again, this is not a practically feasible method for generating a minimum Phase channel. 
In practice, a minimum phase channel would be generated by some sort of linear filter 111. 

Thus, it is of utmost interest to test the performance of the system when the rather idealized 

assumptions mentioned above are not made. 

This chapter describes the performance of the 4.8 kbit/s HF radio modem 
(Chapter 4) when the detector operates in conjunction with an estimator. The estimator used 
here is the appropriately configured modified gradient estimator described in Chapter 6. 
Moreover, a minimum phase channel is achieved here by employing an adaptive linear 
feedforward transversal filter just ahead of the detector, thus making the whole system 
practically feasible. Trellis coded modulation however, is not included here, largely due to 
the rather disappointing performance exhibited by 8-PSK coded modulation systems when 
operating over the given IIF radio channels (Chapter 5). 

Before summarizing the structure of the chapter, it is necessary first to introduce 

to the reader in slightly more detail, the adaptive linear feedforward transversal filter that is 

used just ahead of the detector. The particular filter used here was originally developed for 

telephone modems [2]. In its ideal form, the filter is an allpass network with an infinite 

number of taps, and it adjusts the sampled impulse response of the channel and filter to be 

a minimum phase. The filter achieves this without changing any amplitude distortion in the 

channel and without changing the levels of the data signal and noise, thus avoiding any 

noise enhancement. 
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The adjustment of the filter is based on a novel technique that has been 
developed for telephone modems [2]. In addition to this adjustment, the algorithm also 
gives an estimate of the sampled impulse response of the channel and filter, which is 
ideally, minimum phase. The sole input required by the filter is an estimate of the 
sampled impulse response of the channel, which is provided by the channel estimator. 
Given this estimate of the sampled impulse response of the channel, the time taken for the 
adjustment of the filter appears to be much less than that needed to obtain the said initial 

estimate [21 
. Thus, the total time taken for adjustment of the system is not much greater 

than that needed to estimate the channel. Now, a channel estimate could be obtained much 
more quickly and accurately than the corresponding adjustment of the adaptive filter by 

conventional means [21 and as such, the new technique has a much shorter convergence 

time than more conventional systems [3,4] 
. 

The chapter continues with a description in Section 7.2, of the model of the data 
transmission system that was used in the tests. Section 7.3 describes the detector and 
Section 7.4 describes the estimator used, that is, the modified gradient estimator that was 
developed in Chapter 6, but in this case, configured to operate over a channel with 
memory. Section 7.5 gives a rather qualitative description of the adaptive linear 
feedforward transversal filter that is used ahead of the detector. The algorithm for the 
adjustment of the filter has been described in detail elsewhere [2], and hence is not 
included in the main body of the thesis. However, for the sake of completeness, the 
adjustment algorithm is given, along with the appropriate modifications for operation over 
time varying channels, in Appendix F. The chapter concludes in Section 7.6, with a 
discussion of the computer simulation tests and their results. 

7.2 MODEL OF DATA TRANSMISSION SYSTEM 

The model of the system that is used in the tests, is given in Fig. 7.2.1. The 
initial section of this model, upto the sampler, is exactly the same as that described in 

Section 4.4 and given in Fig. 4.4.1, with just one exception. The equivalent time varying 
linear baseband channel is not now, a minimum phased version. Rather, it is the 'raw' 

channel whose response is given by y"i (t-iT) in eqn. 4.4.7. In the interest of clarity 
however, this response will be denoted in the sequel, as yi (t-iT) (which was the notation 

for the scaled minimum phased channel in Chapter 4- eqn. 4.4.14). Thus, the reader is 

reminded again, that yi (t-iT) as used in this chapter, does not denote the minimurn phased 

channel, but is the original channel (eqn. 4,4.7) from which the minimum phased channel 

was derived in Chapter 4. Since the rest of the model, up to the sarnpler in Fig. 7.2.1, is 
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exactly the same as that in Fig. 4.4.1, its description is not repeated here. 

Consider Fig. 7.2.1. The received, baseband signal waveform r(t), is sampled 
once per data symbol, and the output of the sampler at t=iT is a complex valued sample 
given by, 

rIis i-hyi, h + Wi (7.2.1) 
h=O 

where, 

Yi, h yi 
-h 

(hT) (7.2.2) 

and 

wl w(iT) (7.2.3) 

It is assumed that yi, h =0 for h<0 and h>g and the vector 

yl r Yi, o Yi, i ..... Yi, 
g1 

(7.2.4) 

with z-transform 

Y1 (Z) = Yi, 0+yi, 1 Z- 
1...... 

+ yi, 
g 

Z- 
9 (7.2.5) 

is taken to be the complex valued 'sampled impulse response' of the equivalent linear 
baseband channel at t= iT. The Jwj ) are samples of the stationary, zero mean, complex 

valued noise waveform. w(t). As shown in Section 4.4, the real and imaginary parts of the 
twi are Gaussian random variables with zero mean and variance cF2. The neighbouring 
(wi are slightly correlated, and the reasons for, and consequences of this correlation was 
fully described in Section 4.4. 

The received sample ri , is now passed to the adaptive filter, which is a linear 

feefforward. transversal filter with (n+1) taps, where the tap gains are given by 
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di, 0 d,, 1**- dl, 
n1 (7.2.6) 

with z-transfonn 

1-n 
Di (z) = dl, () + dl, , z- ++ di, 

nZ (7.2.7) 

The output signal ftom this filter at t= iT is 

n 

rI-h dl, 
h (7.2.8) 

h=O 

From eqns. 7.2.1 and 7.2.8, vi could be represented as 

s i-h e i, h +wi (7.2.9) 
h=O 

where the sequence 

El =[e,, 0 ei, 1 ..... el, n+g 
] (7.2.10) 

has the z-transfonn 

Ei (z) = ei, () + ei' , 
il . ..... +e1, n+g 

Z -(n+g) 

and w'i is a noise sample originating from wi . 

The filter in fact, is such that ej, h ý: -- 0 for h=0,1 
. ..... (n-1), and so 

introduces a delay of n sampling intervals such that the earliest symbol that could be 

detected at t= iT is si_,, . 
In addition to vi , the filter gives at its output, the sequence 

1 
- [f, 0 f, 1 

fj, 
g } (7.2.12) 

with z-transfon-n 
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Fi (z) = f. 
, () 

+ f. Z- 
1...... +f Z-9 1 1,1 i, g (7.2.13) 

where fi, h = ei, -,,, h , 
for h=0,1 

. ..... g, and Fj is an estimate of the value of the sampled 

impulse response of the cascade of the linear baseband channel at t (i-n)T, and the 
adaptive filter. When the filter is correctly adjusted, fi, h = ei, n+h for h 0,1 . ..... g, and 
the sequence Fj should be minimum phase, i. e., Fj (z) should have no roots outside the 

unit circle. In determining Fj the sole input used by the adaptive filter is an estimate (to be 

more precise, a prediction) of the sampled impulse response of the linear baseband channel 
at t= (i-n)T. This prediction is denoted Y'i-n, i-n-I , where, 

Yi-n, i-n-l, g 

(7.2.14) 

and is that which was the output of the channel estimator at t= (i- I)T. 

The detector uses vi and Fj to determine the detected value s'i-,, -l , of the data 

symbol si-,, -,. 
Clearly, the detector itself introduces a delay of 1 sampling intervals so that 

the total delay in detection is (n+1 ) sampling intervals. The detected symbol value s'l-n-I is 

finally fed to a differential decoder, which performs an inverse operation to that of the 
differential encoder (Appendix B), to give at its output the detected binary digit a 1-, -l 

In addition to s'i-,, -l , the detector also provides the 'early' detected data 

symbols [ S"i-ri-h 1, (h=0,1 
. ..... g, and g<I), for use in the channel estimator. The 

channel estimator uses the appropriate received samples, together with the (S"i-n-hj, to 

predict the value of the sampled impulse response of the linear baseband channel at t= 

(i-n+l) T i. e., Y'i-n+l, i-n, which will be required by the adaptive filter at the next sampling 
instant, t= (i+ 1)T. 

The model given above assumes ideal symbol timing. The following sections 

explain the operation of the detector, estimator and adaptive linear feedforward filter in 

greater depth. For the sake of convenience, the adaptive linear feedforward filter will g 
henceforth be referred to as 'the adaptive filter', and the equivalent linear baseband channel 

will be referred to simply as 'the channel'. 
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7.3 THE DETECTOR 

The detector used in the tests is System C (Section 4.5-3) with eight stored 
vectors, i. e., C8. This is the detector that was chosen from earlier tests (see Chapter 4), as 
that giving the best compromise between performance and complexity. The operation of 
the detector is exactly as described in Section 4.5.3, except that it now operates on the 

sample vi at the output of the adaptive filter, rather than on the received sample r, - . The 

other essential difference is that the knowledge it has of the channel is simply the vector F, I 
which is an estimate of the cascade of the sampled impulse response of the channel at t 
(i-n)T, and the adaptive filter. 

Just prior to the receipt of the sample vi , the detector holds in store eight 

different 1 -component vectors (sequences) I Qi-,, 
-, 

) where 

Ql-n-1 = [xi-n-1 Xi-n-l+1 ***** Xi-n-11 (7.3.1) 

) with xi taking on any of the possible values of si . Each of these vectors has associated 

with it a 'cost', given by, 

i-i 2 
1 u. 12= 

11 
v. X. 

- 
f. 1 (7.3.2) 

i-n-1 J1j n-h j, h 
j=n h=O 

where IxI is the absolute value of the scalar quantity x, and xi =0 for i: fý- 0. 

On receipt of the sample vi , the vectors [ Ql-,, 
-, 

I are expanded as per System C 

(Section 4.5.3), to give the (I + l)-component vectors [Pi ), where, 

p1= [x 
i-n-1 x i-n-1+1 **'** x i-n-1 x i-n 

] (7.3.3) 

Stored alongside each vector Pi , is its cost which is now given by 

1 u. 12= lu 12+1v. -f1 (7.3.4) 
1-n i-n-1 11 n-h i, h 

h=O 
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The expansion of the vectors, selection of the best vector and subsequent 
retention of vectors for the next time instant t= (i+I)T, is exactly as described in Section 
4.5.3, with the detector now providing, in addition to the final detected data symbol s'i-n-1, 

the early detected data symbols f S"i-n-h 1, (h=0,1 
. ..... 9 ), for use in the channel 

estimator. 

7.4 THE ESTIMATOR 

The estimator used in the tests is the modified gradient estimator described in 
Section 6.4.2, but configured now, to operate on channels with memory. Its operation is 

as follows. 

At the time instant t = iT, the estimator receives the ' early' detected data 

symbols I S"i-n-h 1, (h= 0,1 . ..... g ), from the detector. In addition to this, it is also fed 

the received signal corresponding to the time instant t= (i-n)T, i. e., ri-n , as shown in Fig. 

7.2.1, where, 

r 
i-n 

$1, 

s i-n-h Yi-n, h +w i-n 
h=O 

The estimator first forms an estimate of ri, , given by 

III 
r 
1-n 

s i-n-h Yi-n, i-n-l, h 
h=O 

where 

IIII 
y 

i-n, l-n- 1 
Eyi-n, 

i-n-1,0 Yi-n, i-n-l, l Yi-n, i-n-l, g] 

(7.4.1) 

(7.4.2) 

(7.4.3) 

and is a prediction of the channel corresponding to the time instant t= (i-n)T, 

which was formed by the estimator at the time instant t= (i- OT. 

The estimator then calculates the error, e'j, , in the estimate of the received 

signal, as 
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II 
el-n ri-n - ri-n (7.4.4) 

The updated estimate vector Yi, is now formed, where, 

IIII 
Yl-n Eyi-n, 

O Yi-n, l Yi-n, 
g 

(7.4.5) 

and where the (h+l)th component of this vector is 

Yi-n, h Yi-n, i-n- 1, h + be 
i-n 

(s 
1- n-h) 

(7.4.6) 

b here, is a small positive quantity known as the 'step size' (Section 6.4.2) and (S"l-n-h 

denotes the complex conjugate Of S"i-n-h - 

The estimator now obtains the error in the updated estimate vector, to give the 

error vector II-j, , where, 

]F E F-i 
- n, 0 F-i 

- n, 1 ! F'i 
- n, g 

(7.4.7) 
1-n 

and where the (h+1)th component of the vector ri, is given by 

1-n, h Yi-n, h - Yi-n, i-n-1, h 

be, (s i-n-h) (7.4.8) 

The components of I-i, are finally fed to the degree-1 least squares fading memory 

prediction algorithm [51 (given in Table 6.4.1, albeit with the subscripts reversed!! ), to 

obtain the one-step prediction vector 

n+l, i-n 
[yi-n+l, 

i-n, O Yi-n+l, i-n, l Yi-n+l, i-n, g 

(7.4.9) 

The vector Y'i-n+1, i-n is a prediction of the sampled impulse response of the channel 



237 

corresponding to the time instant t= (i-n+I)T. This prediction is that required by the 
adaptive linear feedforward transversal filter at time t= (i+I)T, i. e., at the next time 
instant. 

7.5 THE ADAPTIVE FILTER 

The adaptive filter used just ahead of the detector (Fig. 7.2.1) is a linear 
feedforward transversal filter with (n + 1) taps. At the time instant t= iT and before the 
detection of s'i-,, -, , the adaptive filter receives from the estimator, an estimate (more 

precisely, a prediction) of the sampled impulse response of the channel corresponding to 
the time instant t= (i-n)T. This estimate (or prediction) is of course Yi-ni-n-i 

, as given in 

eqn. 7.2.14. The adaptive filter uses this prediction to both adjust the filter tap gains, and 
determine Fi (eqn. 7.2.12), where Fi is an estimate of the sampled impulse response of the 

cascade of the channel corresponding to the time instant t= (i-n)T, and the filter itself. 
When the filter is correctly adjusted, the sequence Fi should be minimum phase, i. e., all 

the roots of Fi (z) (eqn. 7.2.13) should lie inside the unit circle. 

A discussion of the theory of the adaptive filter and the adjustment algorithm for 
its taps, are considered in great detail in reference [2], albeit for the case of a time invariant 

channel. For the sake of clarity, it has been decided not to include the corresponding tap 
adjustment algorithm for time varying channels in the main text of the thesis, and so, is 

given in Appendix F. Thus, the reader who is interested in the general theory of the 

adaptive filter is referred to reference [2], and for a concise account of just the tap 

adjustment algorithm for time varying channels, he should refer Appendix F. The objective 
of the remainder of this section is to describe the filter in a qualitative manner, from the 

point of view of its operation in the given BF modem receiver. 

Consider the situation at t= iT. Since the filter introduces a delay of n sampling 
intervals, the earliest possible detected symbol is s'i-n . The detector thus requires, at t= iT, 

an estimate of the sampled impulse response of the cascade of the channel corresponding to 

the time instant t= (i-n)T, and the filter. This sampled impulse response is, of course, 

the sequence Fj (eqn. 7.2.12) with z-transform Fj (z) (eqn. 7.2.13), where Fj as generated 

by the filter is, ideally, a minimum phase sequence. (In practice however, Fj would only 

be near minimum phase since the ideal form of the filter assumes an infinite number of 

taps). The filter generates Fj via the following sequence of operations. 
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1. Accepts as input, an estimate (prediction) of the sampled impulse 
response of the channel corresponding to t= (i-n)T. This estimate (prediction) is the 
sequence (eqn. 7.2.14) with z-transform Y'i-ni-,, 

-, 
(z). 

2. Determines, with the aid of a root finding algorithm, the roots of 
Y'i-nJ-n-I(z) which lie outside the unit circle. The root finding algorithm here is an iterative 

process (see Appendix F) which converges rapidly to those roots that lie outside the unit 
circle. The process stops when it has found all (or at least most) of the roots. 

3. Forms the roots of Fj (z) by replacing the roots Of Y'i-n,, 
-n-l(z) that lie 

outside the circle, by the complex conjugates of their reciprocals, all remaining roots being 
left unchanged. 

4. Generates Fj using the knowledge of the roots of Fj (z). 

In addition to estimating Fj , the filter uses its knowledge of these new set of 

roots to also adjust its tap gains. Thus, a new set of tap gains is obtained at every sampling 
instant, and at t= iT, these tap gains are given by Di (eqn. 7.2.6) with z-transform DI(z) 

(eqn. 7.2.7). As mentioned earlier, the technique used for the adjustment of the taps is 

given in Appendix F. 

7.6 COMPUTER SIMULATION TESTS AND RESULTS 

Computer simulation tests have been carried out to assess the performance of 
the systems when operating over Channels 1 and 2, whose parameters are given in Table 
2.5.2. Thus, Channel I is a 3-skywave channel with a frequency spread of 2 Hz. and 
relative delays of 1.1 and 3.0 ms. between the first skywave and the others, while Channel 
2 is a 2-skywave channel with a frequency spread of 2 Hz. and a relative delay of 3 ms. 
between the skywaves. The fading sequence employed for a given channel, is exactly the 

same as that used in the tests in Chapter 4, where the performance of various near 
maximum likelihood detectors were obtained under certain idealized assumptions. Thus, 

the fading sequences are those represented in Figs. 4.6.1 and 4.6.2, where Channel 1 is 

the milder of the two channels in terms of the depths of the fades (see Section 4.6). 

In all tests without the adaptive filter, perfect estimation is assumed, and the 

sampled impulse response of the channel has been made a minimum phase by employing a 

root finding algorithm from the NAG software library. This algorithm operates on the 
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roots of the z-transform of the channel that have absolute values greater than d, b,, 
replacing these roots by the complex conjugates of their reciprocals. The minimum phase 
channel is then determined with the aid of the new set of roots and some attendant 
calculations. 

Although practically infeasible, the above method has the ability to track every 
root that has an absolute value greater than d, unlike the adaptive filter which may miss 
some roots, especially when the signal is in a deep fade. It thus provides an effective 
? upper bound'in terms of the performance of the detectors, under the given conditions. In 
all tests, the value of d has been set to 1.05, instead of unity. This is done in order to 
ensure a proper comparison of the performance of the detector with and without the 
adaptive filter when perfect estimation is assumed, since a value of d= I would have forced 
the filter to be used in its ideal form, which, of course, would require an infinite number of 
taps! Clearly, the performance curve of the detector without the adaptive filter is the same 
as that given in Figs. 4.6.8 and 4.6.12 for detector C8 over the two channels. 

As mentioned in Section 7.3, the detector used is System C with eight stored 
vectors (i. e., C8). The delay introduced by the detector is 32 sampling intervals, i. e., I 

=32. The adaptive filter has 50 taps, i. e., (n+l) = 50, and as such, in all tests with the 
adaptive filter, the total delay in detection is (n+I )= 81 sampling intervals. The value of 
g in eqns. 7.2.4 and 7.2.14 is 21 for each of the channels, so that the number of 
components in the sampled impulse response of each of the channels, and the number of 
components predicted by the estimator for each of the channels, is, in both cases, 22, i. e., 
(g+ 1) - 

In all tests, the signal-to-noise ratio is taken to be V dB, where this is exactly as 
given in eqns. 4.4.17 and 4.4.18, i. e., 

10 loglo (b 

2 

10 loglo 
2 

2cy 
(7.6.2) 

where Eb, No andU2 are as defined in eqns. 4.4.17 and 4.4.18. An average of around 5x 

106 data symbols have been involved in the plotting of each curve, giving 95% confidence 
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limits ofless than ± 0.5 dB. 

The notation used in the performance curves is as follows. 

PE - perfect estimation assumed. 

NF - no filter, i. e., the minimum phase channel is obtained with the aid of 
the NAG software module, where all the roots that have an absolute 
value greater than 1.05 are replaced by the complex conjugate of their 
reciprocals. 

MGR - modified gradient estimator. The number that follows this abbreviation, 
(eg., 30 in MGR30), indicates the signal-to-noise ratio at which the 
estimator parameters b and 0 have been optimized. 

Figs. 7.6.1 and 7.6.2 [51 give the perfon-nance of the system over Channels I 

and 2, respectively, when perfect estimation is assumed, for the case where the channel is 
made minimum phase by the previously described ideal method which does not employ 
the adaptive filter (NF), and for the case where the adaptive filter is employed (WF) to 

generate the minimum phase response. When the adaptive filter is used with pefect 
estimation, it operates, at t= iT, on the sampled impulse response of the channel given by 

Yi, (see eqn. 7.2.4), rather than on the prediction Y'i-n, i-n-I (eqn. 7.2.14), of Yi, . 
Aside of this, the rest of the system operates exactly as described in Section 7.2. It should 
be noted here that the adaptive filter operates on a different sampled impulse response at 

every time instant and the tap adjustment is also effected at every time instant. 

Since the performance curve without the filter (N-F) represents an 'effective 

upper bound', the performance curve with the filter would give an indication of the 
degradation caused by the inclusion of the filter. The results here are quite remarkable 

since it appears that this degradation is quite small, considering the nature and seventy of 
the fading. Indeed, at low signal-to-noise ratios there is absolutely no degradation over 

either of the channels. This is because, at low signal-to-noise ratios, additive noise is much 

more of a contributory factor towards the occurrence of errors, than any failure of the 

adaptive filter to track the roots that have an absolute value greater than 1.05. At high 

signal-to-noise ratios, the degradation is about 0.6 dB over Channel I (Fig. 7.6.1) and 2 

dB over Channel 2 (Fig 7.6.2). The degradation is worse in Channel 2 because of the 

significantly deeper fades exhibited by this channel. At high signal-to-noise ratios, most of 

the errors occur when the signal is in a deep fade, and this is also when the adaptive filter is 

most likely to miss some of the roots that have an absolute value greater than 1.05. Pius, 
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the deeper the fade, the more will be the degradation caused by the inclusion of the adapfive 
filter. The overall performance of the adaptive filter however, is most encouraging, beaiing 
in mind that Channel 2 exhibits some horrendous fades (Fig. 4.6.2). 

When perfect estimation is not assumed, and a modified gradient estimator is 

employed to give a prediction of the sampled impulse response of the channel as required 
by the adaptive filter, it was found that the system collapsed, even though the signals were 
differentially encoded. Thus, it was decided to use an ideal retraining scheme as follows. 
The data is assumed to occur in blocks of 1000 symbols (2000 bits). After the receipt of 

every 1000th sample, the prediction vector Yi-n, i-n-i (eqn. 7.2.14) is made correct by 

having Y'i-n, i-n-I ý-- Yi-n, and the first time derivative of all the components of Y'i-ni-n-I is 

set to zero. Thus, at the end of every 1000th sample, the receiver is given knowledge of 
the channel sampled impulse response, though not of the variation of this sampled impulse 

response with time. Moreover, all the values in each of the stored vectors in the detector 

are made correct by having xi-n-h -= Si-n-h 1 for h=1,2 . ..... 1 (see eqn . 7.3.1), and the 

costs of these stored vectors are reinitialised such that one stored vector has zero cost and 
the rest have an arbitrarily high value of cost. As such, after every 1000 samples, the 
detector starts to operate as it did at the beginning of the transmission, with all the values in 

the stored vectors correct and the costs initialised. This is similar to the situation that would 
occur in practice, at the end of each training period. 

Fig. 7.6.3 shows the performance of the system with the above mentioned 
retraining, when operating over Channel 1. The estimator used here is the modified 
gradient estimator whose parameters b and 0 have been optimized for a signal-to-noise ratio 
of 30 dB. It could be seen that there is a degradation, at error rates of 10- 4, of some 8 dB 

relative to the 'upper bound' and 7.5 dB relative to the case where the adaptive filter is used 
with perfect estimation. 

Fig. 7.6.4 shows the performance of the system, again with the above 

mentioned retraining, but now operating over Channel 2. There are two performance 
curves with the modified gradient estimator, one where its parameters have been optimized 
for a signal-to-noise ratio of 30 dB (MGR30), and the other where the parameters have 
been optimized for a signal-to-noise ratio of 35 dB (MGR35). Although MGR35 is the 
better system at high signal-to-noise ratios, it is slightly worse than MGR30 at low 

signal-to-noise ratios, and as such, it is up to the modem designer to choose a 

signal-to-noise ratio at which the system must work best, and then optimize the pararneters 

of the estimator for that particular signal-to-noise ratio. 
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In the range of error rates from 10- 1 to 5x 10- 3, both MGR30 and MGR35 

are, on average, about 9.0 dB worse than the 'upper bound' and about 8.5 dB worse than 
the case where the adaptive filter is used with perfect estimation. Moreover, there is an 
irreducible error rate of approximately 1.5 x 10- 3 and 7x 10- 4 in MGR30 and MGR35, 

respectively. As such, the degradation caused by the inclusion of the estimator is worse in 
Channel 2, than in Channel 1. 

These results (especially those in Fig. 7-6.4), on first thought, do not appear to 
be very encouraging since it was hoped that the estimator would not degrade the 
performance of the system substantially. However, tests have shown that at error rates of 
around 10- 3, most of the errors occur in just one or two blocks, where these blocks 

correspond to the times when the signal is in the deepest fades. Moreover, when the noise 
level is fairly high (say, at error rates of around 5x 10- 2 ), once errors start to occur due to 
the signal encountering a deep fade, they generally continue to occur until the end of the 
block, which is when retraining is performed once more. This suggests that the 

perfon-nance of the system with the modified gradient estimator is critically dependent on 
the depth of the fades. As such, since the fading sequences employed are 'worst case' for 

the given channel parameters, the performance of the system is seen here in a much worse 
light than the performance that could be expected of the system when operating over a more 
typical channel. 

Furthermore, in the case of the system operating over Channel 1, it clo be 

seen from Fig. 7.6.3, that error-free performance could be achieved, given adequate 
transmission power. This is a very encouraging result, since, to the authors knowledge, 

there has been no system proposed which could boast this fact for 4.8 kbit/s HF radio 

modems which do not use any form of interleaving, ARQ or diversity, and which are 
designed to handle frequency spreads and time delays similar to those experienced over 
Channel 1. Moreover, the estimator used here (modified gradient estimator) is basically 

simple, relative to the, say, Kalman estimator or most derivatives of the Kalman 

estimator[3]. As such, a more powerful estimator would undoubtedly give a better 

performance since the degradation has been shown to be mainly due to the inclusion of the 

estimator. Indeed, tests have shown [61 that an improvement in performance of some 2 dB 

may be achieved over both Channels I and 2, with the use of a slightly more versatile 

estimator. 

The above considerations show the results in Figs. 7.6.3 and 7.6.4 to be 

encouraging. Indeed, the basic structure of the receiver of the modem, with its particular 

techniques of detection, estimation and adaptive filtering, suggests a potentially useful 
design for 4.8 kbit/s HF radio modems, and as such, is worthy of further developrnent. 
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FiLy. 7,2.1ý Model of data transmission system 
used in tests in Chapter 7 
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CHAPTER 8 

COMMENTS 

8.1 SUMMARY OF PROJECT 

The research project has been concerned with the development of detection, 

coding and estimation techniques for modems operating over fading channels. Two types 
of fading channels have been considered, an HF radio channel (3-30 NMz. ) and a fast 
fading channel with fades of the type that are normally likely to be encountered over cellular 
land mobile radio (- 900 MHz. ) links. 

Various near maximum likelihood detection processes have been tested for 

operation in a 4.8 kbit/s BF radio modem using 4-level quadrature amplitude modulation. 
These tests have assumed perfect estimation and the channel is made minimum phase by 

an ideal method, thus obviating the need for a prefilter to be associated with the detector. 
The performance of the near maximum likelihood detectors has been compared with that of 
the corresponding nonlinear equalizer, and the detector that offers the best compromise 
between performance and complexity is chosen for further tests. 

Trellis coded modulation (TCM) has been investigated as a possible forward 

error correction scheme for BF radio modems. The assumed system is the same 4.8 kbit/s 

modem mentioned previously, and the tests have been carried out under the same basic 

assumptions regarding the functions of estimation and prefiltering. 8-PSK coded 

modulation is tested here, and the code used is a rate-2/3,8-state, 900 rotationally invariant 

convolutional code with an asymptotic coding gain of 3.0 dB over the corresponding 

uncoded modulation scheme, over additive white Gaussian noise channels. The decoders 

used are two near maximum likelihood decoders that employ soft decisions at the receiver. 

Two estimation techniques have been tested for operation in a modem to be 

used over fast fading channels. Both estimators are variants of the gradient estimator, and 

are known here as the modified gradient estimator and the unbiased estimator. The system 

assumed is a 24 kbit/s modem employing 4-level quadrature amplitude modulation. To 

effect a proper comparison of the estimators, the above tests have been carried out, initially, 

under the assumption that the transmitted signals are perfectly detected, and the measures of 

performance used are the mean square error and the mean square normalized error, in the 

prediction. Another important aim of this investigation has been to study the feasibility of 

the simultaneous transmission of two bandlimited 4-level QAM signals over two 
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independently fading channels, where both signals occupy the same frequency band, and 
no diversity or error correction is used at the receiver to improve the performance. The 
information rate when two signals are transmitted is, of course, 48 kbit/s. In addition to 
the estimator performance tests, the effect of errors in detection on the perfon-nance of the 
system is investigated by employing two detectors, a 'Simple' detector and a more 
complicated 'combined' detector. The measure of performance here is the bit error rate 
(BER) curve. The above tests have been carried out for both the cases of the receipt of 
one, and two signals over the given frequency band. 

Finally, tests have been carried out to determine the performance of the 

previously mentioned 4.8 kbit/s EF radio modem, when all the functions of detection, 

estimation and prefiltering are included. The detector used here is the detector chosen from 

the previous tests, and the estimator employed is the modified gradient estimator. The 

prefilter is an adaptive linear feedforward transversal filter, whose function is to make the 

sampled impulse response of the channel and filter, a minimum phase. 

Throughout the work carried out in this thesis, all other functions (AGC , 
symbol timing, etc. ) of the modem, except when stated otherwise, have been assumed to 
be perfect. 

8.2 CONCLUSIONS 

The results of the performance tests of the detectors have shown that all the near 

maximum likelihood detectors tested, offer an advantage in terms of their tolerance to 

noise, over the corresponding nonlinear equalizer. The best of the near maximum 
likelihood detectors (System 4A16), gains a maximum of about 3 dB over the 

corresponding nonlinear equalizer. The detector which gives the best compromise between 

performance and complexity however, is System C with 8 stored vectors, that is, C8. 

In the case of trellis coded modulation for the 4.8 kbit/s HF radio modem, the 

coded systems D and E give a similar performance. However, their overall performance is 

worse than that of the corresponding uncoded modulation scheme with detector C8. This 

result may be attributed to the fact that the codes are being tested under the severest of 

conditions, and the absence of interleaving. It may even be that more powerful codes with 

larger asymptotic coding gains need to be considered for successful operation over HF 

radio channels. However, it does appear that the use of TCM may not necessarily provide 

the expected advantage over uncoded modulation schemes, when operating over channels 

with deep, frequency selective Rayleigh fading. For the given data transniission systern 
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and channel conditions, uncoded modulation with the detector C8 is the preferred scheme. 

The estimator tests of the fast, flat Rayleigh fading channel have shown that the 
overall performance of the modified gradient estimator is better than that of the unbiased 
estimator. Moreover, the unbiased estimator is much more complex than the modified 
gradient estimator, for the case where two signals are received over the given frequency 
band. Thus, the modified gradient estimator is chosen as the preferred system. When the 
measure of performance of the estimators is changed from the mean square error in the 
prediction, to the mean square normalized error in the prediction, the overall conclusions 
remain unchanged, thereby confirming the validity of the mean square error in the 
prediction as an appropriate measure of performance. 

The performance of the combined detector over the fast fading channel, in the 
presence of one signal, is within 1.5 dB of the performance of the system with perfect 
estimation, while the simple detector suffers from an irreducible error rate of about 2x 10- 4. 
Both detectors have been used here with the modified gradient estimator. When two 
signals are received over the given frequency band, tests have shown that the system 
collapses completely, unless an appropriate retraining scheme is used. However, even 
with retraining, both the simple and combined detectors suffer from irreducible error rates 
in the range 2.5xIO-2 to 7xjO- 3. As such, it is concluded that some sort of diversity 

scheme is necessary for error free operation, in the presence of two received signals, where 
both signals occupy the same frequency band. 

The tests on the 4.8 kbit/s BF radio modem with detector CS and the prefilter, 
have shown that the inclusion of the adaptive linear feedforward transversal filter does not 
degrade the performance of the systems significantly, as long as perfect estimation is 

assumed. When the receiver has to estimate the channel however, it has been found that 

the system with the modified gradient estimator requires retraining, in order to prevent a 
total collapse. When retraining is performed at intervals of 1000 symbols, the degradation 

caused by the inclusion of the estimator is, on average, 7.4 dB over Channel 1 and 9 dB 

over Channel 2. Although the system suffers from an irreducible error rate when operating 

over Channel 2, error free performance can be achieved over Channel 1, given adequate 
transmission power. Bearing in mind that these results are 'worst case', it is concluded 
that the proposed system is a potentially useful design for the receiver of a modem 

transmitting data at 4.8 kbit/s over HF radio channels. 
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APPENDIX A 

DERIVATION OF 5-POLE BESSEL FILTER 

The transfer function, in the s-plane, of a 5-pole Bessel filter could be wntten 
as, Ill 

H(s) =, 
GA 

(S-pi) 

where, 
GA = constant dependent on the cutoff frequency 

s= Laplacian variable 
Pi = s-plane poles 

(A. 1) 

When the filter is normalized to a cutoff (-3dB) frequency of f, = lHz., the s-plane poles 
take on the following values. P] 

P, = -9.4394 (A. 2) 

P2'P3 = -8.6764 ± j4.5108 (A. 3) 

P4 ' P5 = -6.0173 ± j9.2434 (A. 4) 

However, the cutoff frequency of interest here, is not lHz. but is dependent on the 
frequency spread that is to be introduced. Thus, the relationship between the cutoff 
frequency fc, and the frequency spread fp, is next obtained. 

Consider the process ql(t). The required power spectrum, as given in eqn. 
2.6.1 

ý is, 

2 
ql(f) I= exp (A. 5) 

The cutoff frequency, f, is the -3dB (or half power) point and is given by the value of f 

in eqn. A. 5 when I qI(f) 12 =- 0.5. 
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0.5 exp c 
2ý 

fC 1.1774 f= (A. 6) 

But, from eqn. 2.6-2., 

f 
f= = SP (A. 7) 2 

From eqns. A. 6 and A. 7., 

fC = 0.5"7 fsp (A. 8) 

Since the two frequency spreads of interest (for Channels 1,2 and 3) are known, the 
corresponding cutoff frequencies can be determined. The s-plane poles corresponding to 
the required cutoff frequencies are next obtained by scaling the values given in eqns. A. 2, 
A. 3 and AA, by the value of f,,,. These values are given in Table A. 1. 

The s-plane poles must next be transformed onto the z-plane in order that the 
filter may be implemented digitally. Toward this end, the impulse invanance technique [21 

is used, where the impulse reponse of the digital filter becomes a sampled version of the 
impulse response of the analogue filter, and the transfer function becomes, 

H(z) 
5 

GD 
(A. 9) 

(1 - diz-1 

where, 
GD = constant 
d, = pole locations in the z-plane 

The mapping of the s-plane poles to the z-plane is effected by the transformation, 

d, = exp (pIT) (A. 10) 
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where T is the sampling interval in seconds. The sequence obtained at the output of this 
filter is equivalent to the sequence obtained by sampling the waveforrn at the output of the 
original filter with a sampling interval of T seconds. The value of T here, was chosen to 
be 10 ms., for reasons given in Section 2.6.2. The values of the pole locations in the 
z-plane, for the various frequency spreads, are given in Table A. 2, and the value of the 
constant GD is adjusted as explained in Section 2.6.2. 

The 5-pole Bessel filter with z-plane poles d1-, (i =1 to 5), is realized as shown 
in Fig. A-1, where the tap gain co-efficients are given by ci, (i =1 to 5)- [31 This is a 
cascade of two 2-pole sections and a single 1-pole section. The poles in each 2-pole 

section are complex conjugates and are, d2 and d3, and, d4 and d5. The single I-pole 

section has a real pole dl. From Fig. A. 1, it could be seen that the transfer function of the 
first 2-pole section is given by, 

TT(f) = 
1 

11) 
1c1 Z-1 +c2z 

If this section is allowed the complex conjugate pole pair d2 and d3, an equivalent 

representation of this transfer function would be, 

TT (f) =(I- 
d2z-l 1- d3z-l ) 

(A. 12) 

TT (f) =2 (A. 13) 
1-(d2+d3)z +(d2d3)z 

Fron eqns. A. 11 and A. 13, the relationship between the tap gain co-efficients and the 

z-plane poles could be obtained, i. e., 

cl = -(d2 +d3 (A. 14) 

C2 = d2 d3 (A. 15) 

Similarly, if the complex conjugate pole pair d4 and d5 were assigned to the second 2-pole 

section, 

-(d4 +d 5) 
(A. 16) 
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d4d5 

Finally, the transfer function of the single 1 -pole section is given by, 

1 

1 +c 5 
il 

(A. 17) 

(A. 18) 

This section is allowed the real pole dj, and an equivalent representation of this transfer 
function is obtained as, 

1 
Ts (f) =1- 

dlz-i 
(A. 19) 

From eqns. A-18 and A. 19, 

d, (A. 20) 

Thus, the tap gain co-efficients of the filter are derived (eqns. A. 14 - A. 17 and eqn. A. 20), 

and their numerical values are given in Table A. 3. 
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f SP 
Hz 

fc 

Hz 

s -plane poles 

. . p P2 and P3 p4 ard P5 

1 0.5897 -5.56 -5.11 + j2.67 -3.54 + j5.44 

2 1.1774 -11.11 -10.22 + j5.31 -7.09 + J10.88 

125 73.5 7 -694.63 -638.48 + j331.94 -442.80 + j680.25 

abIeA.,. -I s-plane poles of Bessel filter 

fSP 

Hz 

z -plane poles 

. d1 d2 and d3 d4 and d5 

1 0.9459 0.9498 + jO. 0252 0.9638 + jO. 0525 

2 0.8948 0.9016 + jO. 0479 0.9261 + jO. 10 19 

125 0.5605 0.5651 + jO. 1604 0.5832 + jO. 3713 

Table A. 2 z-plane poles of Bessel filter 

f SP tap gain co-efficients 

Hz. c1 C2 C3 C4 C5 

1 -1.8996 0.9028 -1.9270 0.9316 -0.9459 

2 -1.8032 0.9152 -1.8520 0.8678 -0.8948 

125 -1.1300 0.3450 -1.1670 0.4780 -0.5610 

T, a bIeA. 3 Coefficients of Bessel filter 
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APPENDIX B 

DIFFERENTIAL ENCODING AND DECODING 

Differential encoding of the transmitted message is carried out as follows. The Z7 
transmitted stream of binary digits [(xi I (Fig. 4.4.1), are first divided, consecutively, into 
groups of two. To simplify the terminology, let the two binary digits in the Ith group be 

represented by (xl, i and a2j, as shown in Fig. B. I. These two binary digits are next 

encoded into the two binary digits Pjj and hi 
-(with 

the aid of Pjj__j and P2, i-, ) according 

to Table B. 1. Finally, PIj and P2, i are recoded into the complex valued signal s, 

according to Table B. 3 and as illustrated in Fig. B. 3, where si is depicted as SI, i+ jS2, i - 

In order to obtain the correct detected values of the ( (xi), the encoding process 
must be reversed, (or, decoding should be carried out), at the output of the detector in Fig. 

4.4.1. This decoding process is illustrated in Fig. B. 2. The detected binary digits P'j, j and 

are first determined from the detected data symbol values ( s-'j, again according to the 1 t) 
relationships given in Table B. 3 and Fig. B. 3, the difference being that the values used 

now are the corrseponding detected values. P'jj and P'2, i are used in the decoder, along 

with P'jj--j and P'2, i-I , to give the detected values of (xjj and (X2, i , namely, and (Y'2,1. 

This is done according to Table B. 2. 

It can be seen, from Table B. 1 and Fig. B. 3, that the signal corresponding to Z! ) 

the group of digits C4, i Cý2, i , represents the difference in phase between the two signals 

corresponding to the two groups of digits NJ NJ and Pl, i--l P2, i-1. As such, the phase of 

the signal corresponding to Pi, i P2J , is equal to the sum of the two phases of the signals 

corresponding to (Xl, i (X2, i and 01, i--l P2, i-,. Thus, given the two groups of digits (yl, i C(2, i b 

and Pj, j--j P2, i-1, the group of digits NJ P2, i could readily be obtained by referring to Fig t) Z: ) * 

B-3. Moreover, phase shifts of multiples of 90' in the received signal would no longer 

lead to Prolonged error bursts in the detected binary digits ((x'i), since the transmitted 

binary digits now represent'phase differences'. It should be noted here, that in addition to 

differential coding, the signal is Gray coded (Fig. B. 3), such that adjacent values of si t: ) 
I 
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differ only in one digit. This, of course, reduces further, the probability of error in the 
detected data signals. 
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0 
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0 
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Table B,, I Differential encoding of binary 
digits for 4-QAM system 

cc 
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0 

0 

0 
0 

0 
0 

0 

0 

Ta bIeB., 2 Differential decoding of binary 
digits for 4-QAM system 
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Fig. B. 1 The differential encoding process 

FiLy. B. 2 The differential decoding process 
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APPENDFLK C 

SIGNAL-TO-NOISE RATIO CALCULATIONS 

In the simulated data transmission system model given in Figs. 4.4.1 and 
4.4.2, the signal-to-noise ratio is defined as 

10 loglo ( 
-1 

b 

fNo 
1) 

where Eb is the average transmitted energy per bit at the output of the transMItter filter A in 

Fig. 4.4.2, and, N. /2 is the two-sided power spectral density of the real valued noise 
function n(t) in Fig. 3.3.1. The complex valued noise function w(t), in Fig. 4.4.1 is, of 
course, derived from the real valued noise function n(t) as explained in Section 3.3. It is 

now necessary to express the signal-to-noise ratio in ten-ns of quantities that are readily 
obtainable from the simulation process. 

From eqn. 3.3.40, Eb could be expressed as 

2 00 

Eb=-1ýf1 A(f) 12 df 
1092M 

(C. 2) 

where Sj2 is the expected value of ISiJ2, m is the number of levels of the transmitted signal, 

and IA(f)I is the absolute value of the transfer function of the transmitter filter A. Noting 

that, for a 4-level QAM signal, m=4, and using Parseval's theorem [11, 

I a(t) 12 dt (C. 3) 

It is well known [2,31 that if X(f) is a bandlimited spectrum whose inverse 

Fourier transform is the continous waveform x(t), and if x(t) is sampled at a rate greater 

than the Nyquist rate, to give the samples I Xh II then, 
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00 
cý 

1 

x(t) 12 dt =Tx 12 
fh 

(C. 4) 
h= - c>o 

where T, is the sampling period. This result is intuitively rather obvious as well, since the 
integral on the left hand side of eqn. CA represents an area, and for the right hand side to 
equal this, each component of the summation must be multiplied by the time period 
seperating the samples. Of course, the lesser the time period, the more accurate the result, 
with exact correspondence between these continous and discrete time domain functions 
being obtained when the sampling rate, i. e. I/T, is at or greater than the Nyquist rate. 
Using the result in eqn. CA, Eb can be expressed, from eqn. C. 3, as 

2 
S- T 
L- 

221 
la 1 1, k (C. 5) 

where the fal, k) are the sample values of the filter A, obtained at 4800 samples/s (Table 

4.4.1), and 1/T is the baud rate of the transmission system, i. e. T= 1/2400. 

It is next attempted to express the power spectral density (N. /2) of the noise 

waveform n(t), in terms of the variance, ((yw)2, of the complex valued noise waveform 

w(t). Toward this end consider eqn. 3.3.37, that is, 

+f c 

(5 
2=NfI C(f+f )12 1 B'(f) 12 df 
wc 

(C. 6) 

(, Uw)2, here, is the variance of the continous time noise waveform w(t), that is shown in 

Figs. 3.3.5 and 4.4.1, and C(f) and B'(f) are the transfer functions of the filters C and B', 

that are shown in Fig. 3.3.1. However, from eqn. 3.3-25, 

-j2nf,: t 
b(t) d(t) * c(t) Ie, * b(t) (C. 7) 

giving rise to, 

I B(f) 12 1 D(f+f )121 C(f+f ) 12 1 B'(f) 12 (C. 8) 
cc 
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where D(f) is the transfer function of the radio receiver filter D in Fig. 3.3.1, and B (f) is 
the transfer function of the filter B in Figs. 3.3.5 and 4.4.2. But, from the characteristics 
of the filters (Figs. 4.4.3 - 4.4.5), it can been seen that the radio filters have a much wider 
bandwidth, compared to the modem filters, and as such, D(f) could be assumed to 
represent an ideal voice channel over the passband of the modem filters C and B'. 
Therefore, eqn. C. 8 can be approximated by, 

I B(f) 12=I C(f+f 
c)121B 

(f) 12 (C. 9) 

Now, from eqns. C. 6 and C. 9, 

fc 

(T 
2= No 

fI 
B(f) 12 df (C. 10) w 

and using Parseval's theorem, eqn. C. 10 could be rewritten as 

2= No 
fI 

b(t) 12 dt (C. 11) 
w 

-00 

Using the result in eqn. CA, ((yw)2 can be expressed, from eqn. C. 11, as 

00 
(T 

2NTI bk 12 (C. 12) 
w02 

where the [bkj are the sample values of the filter B in Fig. 4.4.2, obtained at 4800 

samples/s (Table 4.4.1), and T/2 is, of course, the sampling period of 1/4800 secs. From 

eqn. C. 12, 

NG2 

2w 
(C. 13) 

I bk 12 

From eqns. C. 5 and C. 13, 
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s2T' <>O b=i la 12T lb 12 
141, k2k 
i No Gw k=-oo 

00 ca S. 212 
12 ---L- T a, II lb 2, kk 

4(y k=-oo k=-c-o 
w 

(C. 14) 

Now, in order for the signal-to-noise ratio calculation to be made easier, it is 
necessary to eliminate the factor T2 in eqn. C. 14. This is easiest done by normalizing the 
filters A and B such that the sum of the squares of their sample values become equal, 
numerically, to their sampling rates, that is, 

Cý 00 
I 

la 1, k12=IIbk12 (C. 15) 
k=-- k=-<>o 

Substituting the values from eqn. C. 15, in eqn. C. 14, gives 

Eb 

(C. 16) 

Finally, it is necessary to establish a relationship between (aw)2 and 2(y2, where 

the former is the vaýfiance of the continuous time noise wavefrom w(t), and the latter is the 
total variance of the real and imaginary parts of the discrete noise samples generated from 

the software module G05DDF, obtained from the Numerical Algorithm Group (NAG) 
library. For the particular discrete time noise model assumed, it can be shown [4] that 
these two variances are related by the equation, 

00 

(7 
2= 2a 2 lb 12 
wk 

(C. 17) 

If now, I 1bkj2 = 1, the two variances would be numerically equal. However, since this is 

not the case, the discrete time noise samples obtained via the software module G05DDF, 

are passed through a scaled version of the receiver filter B, whose samples are given by 

bk" 1, and where the scaling is carried out such that I Ibk" 12 = 1. This would introduce 
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the correct correlation to the noise samples, while maintaining the relationship, 

(Y 
2= 2(y 2 
w 

Then, from eqns. C. 16 and C. 18, 

2 Ebs 

2(y 2 

(C. 18) 

(C. 19) 

and from eqns. C. 1 and C. 19, the signal-to-noise ratio could now be represented as 

2 
S. 

10 loglo ( 
2G 2 (C. 20) 

For the case of the more idealistic model assumed in Chapter 6, the result is the 
same. Consider Fig. 6.3.1 and Fig. 3.2.7. The noise function w(t) in Fig. 6.3.1 is that in 
the equivalent baseband model and, as such, is similar to w(t) in Fig. 3.2.7. From eqn. 
3.2.23 it can be seen that the autocorrelation function of each of the real or imaginary part 
of w(t) is given by, 

Cý 

No 

2 
Z2(f) 12 exp 027ufc) df (C. 2 1) 

where Z2(f) is the overall filtering that is carried out at the receiver (Fig. 6.3.1), which 

includes the bandpass and lowpass filtering in the corresponding bandpass system model 
(Fig. 3.2.1). Thus, the variance of the real or imaginary part of w(t) is 

00 

(CY' )2N1 Z2(f) 12 df 
w2 

(C. 22) 

Since the filtering in the model developed in Chapter 6 is assumed to be equally divided at 

the transmitter and receiver, considering the first transmission path, TXO, in Fig. 6.3.1 
I 
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Iz 
O(f) 

1 
-": 1 Z2(f) 1 

(C. 2 3) 

A similar result is obtained when the second transmission path, TXI, is considered. Thus, 
if the transfer function of the transmitter and receiver filters in cascade is H(f), then, 

I H(f) I=I ZO(f) IIZ 
2(f) 1 (C. 24) 

Substituting the value of eqn. C. 23 in eqn. C. 24, 

IH(f)l = IZ 
2(f) 

12 (C. 25) 

However, for the optimum design of the transmitter and receiver filters (as in the case 
assumed in the tests in Chapter 6), another convenient proviso is that 

Cý 

I H(t) I clf =1 (C. 26) 

Thus, from eqns. C. 22, C. 25 and C. 26, 

(cy, )2 
No 

(C. 27) 
w2 

Consequently, the variance of the real or imaginary part of the noise sample w, (eqn. 6.3.1) 

is 

CY 
2= (Cy' )2 == 

No 

w2 
(C. 28) 

Thus from eqns. C. 1 and C. 28, the signal-to-noise ratio of the system could alternatively 
be expressed as 

E 
10 loglo (b 

2 
CY 

(C. 29) 

It is also appropriate here, to discuss the statistical independence of the 
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Gaussian random variables wi (eqn. 6.3.1). From eqns. C. 21 and C. 25, 

00 

R0fI H(f) I exp 02TcfT) df (C-30) w2 

No 
h(r) (C-31) 2 

where h(, c) is the corresponding time domain response. For zero intersymbol interference 
filtering (i. e., ideal Nyquist, raised cosine, etc), 

h(iT) = (C. 32) 

for any nonzero integer i, where T here is the symbol period. From eqns. C. 31 and C. 32 
it could be seen that, 

No 
Rw(iT) 

2 
h(iT) (C-33) 

for any nonzero integer i. Now, the sampling instants for any two noise samples, t) Wk and 

wl, are separated by a multiple of T secs., and the noise samples have zero mean. Thus, 

the real or imaginary part of any two noise samples Wk and w, (and hence, the two noise 

samples themselves), are uncorrelated, and therefore, are also statistically independent 

Gaussian random variables. 
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APPENDIX D 

UNBIASED ESTIMATES 

D. I Unbiased estimate of a fast fading channel 

The estimator here assumes that 111, 

YO, i+l-yo, i Yo, i-yo, i-I Yo, ýi- 1 

so that 

2yo, i = yo, i,, +yo,, 
_, 

(D. 2) 

and similarly for yj'j . To estimate yo'j, it is necessary to remove yj'j from the received 

samples. This can be achieved by operating on the three received sample ri,,, ri and ri-I. 
Before starting the estimation process, it is necessary for the estimator to know all the data 

symbols involved in the three samples. The data symbols so'j, j and sj'j, j are detected 

after the receipt of r, -,,, using the two-step predictions y'O, j, j'j_j and y',, i,,, I-l of yo'jj and 

yl, i,,, respectively. Correct detection of all data symbols is assumed, as before. 

The three samples ri,,, r1- and ri-1, are given by 

rl+l ::: -- so, i+lyo, i+, +sl, i+lyl, i+, +wi+l (D. 3) 

ri = so, iyo, i+sl, iyl, i + wi (D. 4) 

r, 
_, = ýo, j_jyo, j_j+sj, j_jyj, j-j+wj-j 

(D. 5) 

From eqns. D. 3, DA and D. 5., 

s -1 r. 7- s -1 s+s -1 w (D. 6) 
1, i+l 1+1 1, i+l O, i+lyo, i+l+Yi, i+i 1, i+l i+l 
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4 -1 4 
2 sl,, ri 2 sl,, so', yo,, ,2 yl, 1+2 sl,, wl (D. 7) 

4 -1 -1 si, i-iri_, si, i-iso, i-iyo, i-i+yili-i+sl, i-lwi-i (D. 8) 

From eqns. D. 6, D. 7 and D. 8, 

2s 4rs4r. 4 
1, i 1, i+l 1+1 -s l'i-l r i-i 

2s 4s44 
l'i O, iyo, i - sl, i+lso, i+lyo, i+l - sl, i-lso, i-lyo, i-1 

2y,, i - yl, i+l - yl, i_l 

2s 4w4ws -1 w (D. 9) 
1, ii- Sl, i+l i+l - l'i-l i-i 

But, for degree- I prediction [21 
, 

9. 
Yo, i+i= yo, i+ yo, i' i-1 

(D. 10) 

and 

11 (D. 11) YO, i-l Yoj - YO, i, i-l 

Also, from eqn. D. 2, 

2y,, i - yl, i, l + yl, i_l 
(D. 12) 

Substituting the values of eqns. D. 10, D-11 and D. 12, in eqn. D. 9, 

2s 4 
r. -S4r. -s 1, i11, i+l 1+1 

=( s4 s-s4s-s4s 1, i 0, i 1, i+l O, i+l 1, i-i O'i-I 
) Yo, i 
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s4s--s4s I, i+l 0,1+1 I, i-i OJ-1 
) Yo, ýi-j 

+( 2s -1 W. -s -1 
-w-s -1 (D. 13) 1, i11,1+1 i+l l'i-I 

Eqn. D. 13 can be expressed as, 

ro, i =-- ao, i yo, i+ uo, i (D. 14) 

Eqn. D. 14 is the same as eqn. 6.4.20, albeit with its terms redefined as follows. 

2s 
444 

i ý- i, i'i - sl, i+i'i+i - si, 1-ir, -1 
ss-ss (D. 15) 1, i+l O, i+l l'i-I O'i-I ) Yo, ýi-l 

44 -1 ao, i2 sl, i so, i- sl,, ,1 so, i, I-s,,, _I 
so', 

_I 
(D. 16) 

-1 -1 -1 UO'i = 2s,,, w, - sl, i+lw, +, - sl, i_lw, _, 
(D. 17) 

An unbiased estimate of y0j is now given by x0j, where, 

44 
xo, i :: -- ao,, ro, i= yo', + ao', uo, i (D. 18) 

with ro'j, aO, j and uO, j as given in eqns. (D. 15-D. 17). The error in the one-step prediction 

Y'o, i, i-l , is then taken as (see eqn. 6.4.25), 

Eo, i = lao, 
il 

(xo, j-yo, ýj_j) 
(D. 19) 

where b is, as before, a small positive constant. Finally, the degree-I least squares fading 

memory prediction algorithm (degree- I polynomial filter in Table 6.4.1) is used to obtain 

the one-step prediction, y'o, i,,, i , for the next estimation process and the two-step 

prediction, y0O, i+2, i , for the next detection process. The next detection process is, of 

course, carried out immediately after the receipt of r1+2 , and just before the next estimation 
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process. 

The situation where ao, j =0 is handled as in Section 6.4.3, but, of course, now 
using the appropriate degree-1 least squares fading memory predictions in place of 
degree-0. The estimation and prediction of y1j are determined in a manner similar to that 
for yo, i - 

D. 2 Unbiased estimate of a very fast fading channel 

The estimator here assumes that III , 

( Yo, i+i- Yo, i)-( Yo, i- Yo, i-i) 

=( YO, i-YO, i-I 
)-( YO, i-I-YO, i-2 

) 

III 
YO, i, i-I 

Thus, 

(D. 20) 

yo, i+l - 2yo, i + yo, i_l yo, i - 2yo, i_l + YOJ-2 (D. 21) 

t" 
Yo, ýi-I 

(D. 22) 

so that, 

3 yo, i --: -- yo', ,1+3 yo, i_1- YO, i-2 
(D. 23) 

and similarly for Y1, j. The estimator now operates on the four received samples, r,,,, ri, ri-I 

and ri-2, after having detected all the associaited data symbols, as before (see Section D. 1). 

Correct detection of all data symbols is assumed in the following analysis. 

The three received samples ri+,, ri and ri-I are as given in eqns. D. 3, DA and 

D. 5, respectively, while the received sample, ri-2 , is given by 

rI-2=SO, i-2yO, i-2 + Si, i-2yl, i-2 + Wi-2 (D. 24) 
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From eqns. D. 3, D. 4, D. 5 and D. 24, 

s r. =Ss+SW. (D. 25) I, i+l 1+1 I, i+l O, i+IYO, i+l + Yi, i+i 1, i+l 1+1 

3s -1 r. = 3s -1 so, i yo, i+3 yl,, +3 s-1 W. (D. 2 6) 1, i11, i I'l I 

3s 4r= 3s 4 
so, i4 1, i-i i-i l'i-i -JYO, i_l + 3y,,, 

_, 
+ 3s,,, 

_, 
w (D. 2 7) 

s -1 r. = S4 s -1 
I, i-2 1- 2 IJ-2. O, i-2yO, i-2 -ý' YIJ-2 + Sl, i-2Wi-2 (D. 2 8) 

From eqns. (D. 25-D. 28), 

s4r. -s4r. - 3s 
4 

r. +s4r. 1, iI1, i+l 1+1 l'i-I I-II, i-2 i-2 

3s -1 s4- 3s s I, i O, iyo, i - Si, i+lso, i+lyo, i+i O, i- I Yo, i-i 

+s4s+( 3y,,. - yl,,,, - 3y,,. 
_, 1J-2 O, i-2yO, i-2 11+ Y1,1-2 

3s 
4. 

W. -s4. w. - 3s 
4 

W. 
- 

+s4w (D. 29) 1,1 1 Ij+ 1 1+1 1, i-111 IJ-2 i-2 

It now remains to eliminate yj, j from eqn. D. 29. Toward this end, the estimator uses, 
from eqn. D. 23, the relationship, 

3yj'j = yj'j, j + 3y,, i_l - YIJ-2 (D. 30) 

and the fact that [2] 

Yo, i+I Yo, i 
I 

, Yo, i, i-I 
III 

+ Yo, ýi-I (D. 31 

YO, i-I YO, I 
+ - YO, i, i-l y 0, ýi-1 

(D. 3 2) 
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11 111 
YO, i-2 ý- YO, i- 2yo, i, i_l + 4yo, i, i_l (D. 3 3) 

Substituting the values of eqns. (D. 30-D. 33) in eqn D. 29, along with some manipulation 

of terms, gives, 

3s rs -1 r- 3s 4r+s -1 r. 
_ 1, i+l i+l l'i-I i-I l, i-2 12 

444 
3 sl'i so, i- sl,, +1 so,, +, -3 sl, i_l so,, 

_, 

4 
Si, i-2 s O, i-2 

) YO, i 

s4s-- 3s 
4s+ 2s 

4s 

1, i+l 0,1+1 l'i-I O, i-l I, i-2 0,1-2 
) YO, 

Ili-I 

s4s-+ 3s 4s- 4s -1 s 
1, i+l 0,1+1 l'i-i OJ-1 lj-2 OJ-2 

4w-s4w- 3s-i 3 sl, ii1,1+ 1 i+l 1, i-1 wi 
-1 

s4w 
(D. 34) 

1, i-2 i-2 

Eqn. D. 34 could now be expressed as 

ro, ,= ao, i yo, i+ uo, i 
(D. 35) 

Eqn. D. 35 is the same as eqn 6.4.20, albeit with its terms redefined as follows. 

ro -1 r. -s -1 r- 3s 
4 

r. +sr 

'i 
3 sl, iII, i+l i+l l'i-I 1 I, i-2 i-2 

3s 4s+ 2s 4s 
+( sl, i+l SO, i+l - l'i-i O, i-l ij-2 OJ-2 

) Y0.0-1 
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-1 -1 -1 . 11 +( sl, i+1 SO, i+1 +3 sl, i_ so, j_j -4sl, i-2SO, i-2 
) YO, 

111-1 

(D. 36) 

3 s4 s-s4- 3s 4s+s4s 
(D. 37) 0, i i'l O'i I, i+l so, i+i l'i-I O, i-l 1J-2 0,1-2 

4444 
UO'i = 3s,, iw, - sl, i+lwi+l - 3sl, i-lw i-I+s1, i-2w2 (D. 3 8) 

An unbiased estimate of y0j is now given by x0j, where 

44 
X0, i= ao, i ro, i :: -- yo, i+ ao', uo', (D. 39) 

with r0j, aO, j and u0j given by eqns. (D. 36 - D. 38). The error in the one-step prediction 

y'Ojj_j , is then taken as (see eqn. 6.4.25), 

co'i =b lao, il (xo, j-yo, ýj_j) (D. 40) 

where b is, as before, a small positive constant. Finally, the degree-2 least squares fading 

memory prediction algorithm (degree-2 polynomial filter in Table 6.4.1) is used to evaluate 

yI Oj+jj and yIO, i+2, i for the next estimation and detection processes, respectively. The 

situation where ai'O =0 is handled as before, but with the appropriate degree-2 least 

squares fading memory predictions. The estimation and prediction of yj'j are determined 

in a manner similar to that for y0j 
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APPENDIX E 

THE EQUIVALENCE OF THE TESTED ESTIMATORS 
WHEN ONE SIGNAL IS RECEIVED 

From eqn. 6.3.2, when one signal is received, 

r1= so, i Yo, i, wi 1) 

where the symbols ri, so, j, yo, j and wi are as defined in eqn. 6.3.2. Assume perfect 
detection. 

Consider first the modified gradient estimator as described in Section 6.4.2. 

The error in the prediction y'o, i, i-l that is fed to the predictor is F-O, j (eqn . 6.4.9), where, 

with perfect dectection 

E0, ,= 
so, i) 

Substituting the values of eqns. 6.4.6, E. 1 and 6.4-5, in eqn. E. 2, 

co'l b( so, i yo, i+ wi - so, i yo, j, i so, i 

41 
(so, j) 

(yo, i + so, iwi - Yo, i, i-, 
) (so, j) 

(E. 2) 

b Is 12s4w (E. 3) 
O'l 

(YO, 
i + O, i i- Yo, i, i-i 

Now consider the unbiased estimator as described in Section 6.4.3. When only 

one signal is received, the error in the prediction y. O, i, i-l , that is fed to the predictor is co,,, 

as given in eqn. 6.4.29, i. e., 

I (E. 4) (so, 
jr, - yo, ýj_j 
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Substituting the value of eqn. 6.4.28 in eqn. E. 4, the prediction error in the case of the 

unbiased estimator becomes 

41 
F-0, ib( yo, i+ so, i wi - yo, j, i_I (E. 5) 

Now, consider eqns. E. 3 and E. 5, where the former gives the error that is fed 

to the predictor in the case of the modified gradient estimator, and the latter gives this same 

error in the case of the unbiased estimator. It could be seen that the quantity inside the 

main brackets is the same. Therefore, since b is a variable and since I So', 12 is a constant 

for a particular signal constellation, eqns E. 3 and E. 5 could be adjusted to give exactly 

the same value for F-O'j* As such, the prediction error that is fed to the least sqaures fading 

memory predictor, is the same for both the modified gradient estimator and the unbiased 

estimator, given that one signal is received. Thus, in the presence of one received signal, 

these two estimators are equivalent. 

Q. E. D 
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ADAPTIVE ADJUSTMENT OF PREFILTER 

In the ensuing discussion on the operation of the prefilter, it is assumed that the 

receiver has exact knowledge of the channel. As such, the prefilter is considered to operate 
on the sampled impulse response of the channel, rather than on an estimate (or prediction) 
of the sampled impulse response of the channel. The operation of the filter for a time 
invariant channel will be presented first, followed by an account of the modifications 

necessary to incorporate time varying channels. 

Let the sampled impulse response of the channel be 

YO Y, ........ Y9 I 

APPENDIX F 

1) 

whose z-transforrn is 

Y(Z) = YO + Y, z -1 +y Z-9 (F. 2) 

Now, let 

Y(Z) =Y1 (Z) Y2 (Z) 

where 

Y, (Z) = 11 (1+ (X, Z -1 )(1+ (X 2 Z- 
1)...... (1+ ag 

-m 
Z-1 ) 

and 

2(Z) z-- Z-m (1+ ßi Z)(1+ ß2 Z) ****** 
(1+ ßm Z) 

(F. 3) 

(F. 4) 

(F. 5) 

with I ai I<1 and I Pi I<1 so that Yj(z) has all its roots inside the unit circle and Y2(Z) 

has all its roots outside the unit circle. It is assumed that no roots of Y(z) lie exactly on the 

unit circle. The quantity 71 is the complex value needed to satisfy eqns. ( F-3 - F. 5 ). 



28 3-3 

Let the adaptive prefilter have (n+1) taps. When the prefilter is ideally adjusted, 
the z-transform. of its sampled impulse response is 

-n -1 D(z) =Z Y2 (Z) Y3 (Z) (F. 6) 

where 

y* -i * -1 -1 3 
(Z) + ßl Z+ ß2 Z+ ßm Z (F. 7) 

and (Pi )* is the complex conjugate of pi . From eqns. F. 3 and F. 6, it could be seen that the 
z-transform of the sampled impulse response of the cascade of the channel and prefilter is, 
approximately, 

F(z) = Y(z) D(z) 

= Z- ny1 (Z) Y3 (Z) (F. 8) 

Eqn. F. 8 is satisfied exactly when n => -. However, a good approximation may be 

obtained here without using an unduly large value of n [1,2] 
. It could be seen that the 

prefilter replaces those roots of Y(z) that lie outside the unit circle by the complex 
conjugates of their reciprocals, leaving the remaining roots unchanged, thereby making the 
response of the channel and prefilter, minimum phase. The algorithms for determining Zý$ 
the wanted roots and for evaluating D(z) and F(z), arise from the following technique. 

The receiver first fon-ns a filter with the z-transfonn 

A, (z) = (F. 9) 

for i=0,1, 
... k in turn, using an iterative process to adjust Xi so that, as i increases, X, 

tends toward 01, i. e. ý, -> Pi - Pi is the negative of the reciprocal of the first root to be 

processed by the system (eqn. F. 5), and I Pi I<1. Since the filter with z-transform A, 

does not operate on the received signal in real time, its z-transform is not limited to zero and 

negative powers of z. At the end of the iterative process, the z-transform of the filter is 

k (Z) = (I+ßlz)-1 (F. 10) 
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The receiver next forms a filter with the z-transform 

+X; Z-l 
(Z) + kZ) k 

=(1ß, Z )_ 1(i ß*l il ) (F. 11) 

The whole of this process is carried out for each Ph (h=1,2, 
... m ), to give a total of m 

filters with z-transfonns [Ch(Z)). These m filters are then connected in cascade and a 
delay of (n-m) sampling intervals is added. The m filters and the associated delay are, in 
fact, implemented as a single filter whose z-transform now approximates D(z). 

The algorithm for calculating D(z) and F(z) is as follows. The receiver first 

holds in store the sequence Y and an estimate ki, of the quantity P, . The first estimate of 

p, at the start of the process is one of a number of different starting points. The values of 
these starting points differ according to whether the channel is time invariant or otherwise, 
and as such, the appropriate start up procedure is given at the end of this Appendix, where 
the modifications necessary for time varying channels are considered. 

Once Xi has been determined, the receiver appropriately adjusts the one-tap 
feedback transversal filter shown in Fig. F. l. The stored sequence Y is now reversed in 

order, so that it starts with the component y. , when it is fed through this filter. The 

sequence Y, passing through the filter in reverse order, is taken to be moving backwards in 

time, starting with the component yo at t=0. The delay of one sampling interval, T, in the 

feedback filter, now becomes an advance of T with z-transform z. Thus the effective 

z-transform of the feedback filter becomes Ai (z) (eqn. F. 9) . The output from the filter is 

the sequence le'i, hI- Only the (g+l) components e'i, 0, e'j, I...... e'j, g, of this 

sequence are, in fact, generated. An improved estimate of PI is now given by 

x X. 
c ei, 0 (F. 12) 

where c is a constant in the range 0 to 1 and 

eI-eIk+eIx2-+e. 
I (-k )9-, (F. 13) 

1 i, I i, 2 i i, 3 i 1,9 1 

This gives a new one-tap feedback transversal filter with Xi replaced by Xj+i . The 
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effective z-transform of this filter, when operating on the sequence Y in reverse order, is 

Ai+, (z) = (I+X, 
+lz)-l (F. 14) 

and the co-efficients of Z- h in Y(z) Aj, j (z) is e'i+,, h . The iterative process continues in 

this manner until one of the following occurs. 

ei 0 1<d (F. 15) 
1 

where d is an appropriate small, positive, real constant. 

40 (F. 16) 

3. 1 (F. 17) 

In each of the cases (1), (2), and (3), the process is terminated. In the case of (2) and (3), 

the iterative process is taken to have diverged, and the consequent actions for this will be 
described later. When condition (1) is met, the iterative process is taken to have 

converged. Let the value of i at convergence be k, such that, 

ý'k 7: -, (F. 18) 

The receiver next appropriately adjusts the two-tap feedforward transversal filter 

shown in Fig. F. 2, which has the z-transform 

(F. 19) 
k(Z) 'z '+kkZ 

The sequence ( e'k, hI is fed through this two-tap feedforward transversal filter in the 

correct order, to give the (g+2)-component output sequence 

. ........... Z- (F. 20) 
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which is approximately equal to Y(z) Ak(z) Bk(Z), and where fl, 
_, = 0. The resulting 

effect of the sequence Y passing through the two filters in Figs. F. I and F. 2, is the same as 
that of the sequence Y passing through a single filter with the z-transform 

C, (z) - Ak (z) Bk (Z) 

From eqns. F. 14, F. 18, F. 19 and F. 21, 

+ P, Z)-l (I+P; Z-l ) (F. 22) 

as in eqn. F. 11. Finally, the output sequence, is advanced by one sampling, I fl, h 
1, 

Z: ) 

interval (multiplication by z), and the first component, fl, 
_1 , 

is discarded, to give the 

sequence Fl, with the z-transform 

F, (z) = fl 
,0+ 

fl 
,, 

Z- 
1.......... + fl, 

gz- 
9 (F. 23) 

=Z Y(Z) C, (Z) (F. 24) 

For practical purposes, the linear factor (1+ p, z) in eqn. F. 5, is replaced in 

Fj(z) by the linear factor (1+ pl* z -1 ). Thus, the root -1/ ýj , of Y(z), is replaced by the 

root (-Pl)* , i. e., one root of Y(z) which lay outside the unit circle is replaced by the 

complex conjugate of its reciprocal, and hence now lies inside the unit circle. F1(z) 

contains, in addition, an advance of one sampling interval: The iterative process is now 

repeated with Y replaced by F, , for the tracking of more roots. 

The adjustment of the tap gains of the filter whose ideal z-transform is D(z), 

(eqn. F. 6), will now be explained. All the tap gains of this (n+l)-tap linear feedforward 

transversal filter are initially set to zero, except for the last tap, whose gain is set to unity. 
Thus, the initial z-transform of the filter is 

Do (z) = z- "' (F. 25) 

and the initial z-transforin of the channel and filter is Z-n Y(z). When convergence has been 
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obtained in the iterative process previously described, such that kk P1 , the sequence Do 
is fed through the two-tap feedforward transversal filter with z-transfo I Cy rm. Bk(Z) (Fit-, 

F. 2), starting with the first component of Do 
. This gives an output sequence with (n+2) 

components and z-transforin Do (z) Bk (Z) . This output sequence is now fed in reverse 
order (starting with the last component) through the one ansversal ilter -tap feedback tr fi 

shown in Fig. F. I. The effective z-transform of the one-tap feedback transversal filter is 
now Ak (z), and hence the output sequence from this filter will have a z-transforrn that is 

approximately 

Do (z) Ak (z) Bk (Z) = D. (z) C, (z) (F. 26) 

When (n+1) components of the output sequence have been obtained, the process is halted. 
These (n+1) components, in the order in which they are received, are the co-efficients of 

Z- (n+l ), Z- n,, Z- 1, in Do (z) C, (z) . The tap gains of the h th tap of the adaptive 
filter is now set to the co-efficient z- b (for h=1,2 . ....... n+ I ), to give the required tap 

gains. Thus, the z-transform of the adaptive filter is, approximately, 

D, (z) -z Do (z) C, (z) (F. 27) 

The whole of the root finding process and tap adjustment process just 

described, is now repeated, albeit using F, (z) in eqn. F. 12 ( in place of Y(z) ), and 

DI(z) in eqn. F. 25 ( in place of Do (z) ). At the end of the root finding iterative process, 

4 ýý P2 , and as such, the values of F, (z), Xk , and D, (z) determine the values of F2 (Z) 

and D2 (z). F2 (z) and D2 (z) are now used in place of F, (z) and D, (z), in order to 

process P3 - 

The whole process continues this way until no roots of Fh (Z) outside the unit 

circle are found, starting from any possible ki - It is assumed that no roots of Fh (Z) 1'e 

outside the unit circle when one of the two divergence conditions (eqn. F. 16 and F. 17) are 

met, regardless of the starting point X, . Thus, it can now be assumed that all the m roots 

of Y(z) that lie outside the unit circle have been replaced by the complex conjugate of their 

reciprocals, in the z-transform of the channel and adaptive filter. The z-transform, now, of 

the adaptive filter is 

D. (z) = D(z) (F. 28) 
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so that the z-transform of the channel and adaptive filter is 

Y (z) Dm (z) = a. + a, z -1 . .......... + an+g Z- 
(n+g) 

(F. 29) 

where ah ý:: -- 0 for h=0,1 (n- 1) 
. 

The estimate of the sampled impulse response of the channel and adaptive filter, 
that is employed by the detector, is the sequence Fm with z-transfon-n 

F. (z) =f m' 0+fm, 1 Z- . ........... +fM, g 
Z- 

9 (F. 30) 

=Zn F(z) (F. 3 1) 

Thus, from eqn. F. 8, 

F. (z) = Yl (Z) Y3 (Z) (F. 32) 

The delay of n sampling intervals introduced by the adaptive filter is, for convenience, 
ignored here, but should be taken into account when comparing Y(z) D .. (z) and Fm(z) - 

The above are the algorithms for the estimation of the sampled impulse response 
of the channel and filter, and for the adjustment of the tap gains of the filter, when the 

channel is considered to be time invariant. For time varying channels, the following 

modificadons should be implemented. 

Firstly, the above algorithms should be implemented at every sampling instant, 

such that both F. and the tap gains are calculated at each t=iT, for i=1,2 . ....... . If the 

channel is varying only very slowly with time, however, it may be sufficient to perform the 

adjustment of the filter tap gains once every so often, say, once every four sampling 
instants. The work in this thesis is based on the adaptation of the filter at every sampling 
instant. 

Secondly, nine starting points are used for the adaptive filter, when operating 

over time varying channels. The values of these starting points are given 

The algorithm always starts with X1 set to starting point number I (see( ý. A and it 
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uses all the nine possible starting points for tracking any new roots. This is done in order 
to facilitate the tracking of as many as possible of the roots outside the unit circle, at the 
beginning. When the algorithm diverges (eqns. F. 16 and F. 17) for each of the nine 
starting points, it is assumed that all of the rn roots that lie outside the unit circle ha-,,, e been 
found. For subsequent runs, however, the m roots that were tracked in the previous run, 
are added to the nine starting points, to give a total of (m+9) starting points. These (m+9) 

starting points are arranged as shown in Fig. F. 3, and the algorithm now starts with ; ý, set 

to p, , where P1 here is the first root tracked in the previous run. Whenever a root is found 

or a new starting point is required due to divergence of the algorithm, the next of the (m+9) 

starting points is used. This process is repeated until all (m+9) starting points have been 

used, at which stage it is assumed that there are no more roots of Y(z) that lie outside the 

unit circle, and the process is terminated. Thus, once a set of roots is found, it is added to 

the original nine starting points, such that the starting points for any subsequent run are the 

roots tracked from the previous run, plus the original nine starting points. 

Another possible modification for the operation of the adaptive filter over time 

varying channels is to redefine eqn. F. 16 as 

i= 100 (F. 3 3) 

so that greater latitude is allowed in the iteration process, before determining that the 

process has diverged. This modification is only necessary, however, in the very worst of 

situations. In general, tests have shown that eqn. F. 16 is a reasonable condition for 

divergence, and the work in this thesis assumes this fact. 
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APPENDIX G 

SIMULATION OF 3-SKYWAVE HF RADIO CHANNEL 
INCORPORATING IDEAL MINIMUM PHASING 

/*JOB FZ36C, EUELSJ2, ST=C20, C=D, TI=2500, 
/* PW=SDM30 
PATTACH, L113APPL. 
PATTACH, PROCLIB. 
FrN200, L--O, OPT. 
LOAD, LJB=NAGLIB. 
GO. 
BEGIN,, PUTFEP, FDIMP, JC36, FO=BINARY. 
####S 

PROGRAM FADE 
PARAMETER (KPARI=16, KPAR2=30, KPAR3=22, LLOUT=5) 
REAL CF(5), Q(6,2600) 
REAL TXR(KPARl), TXI(KPARl), TXDR(KPAR 1), TXDI(KPARI) 
REAL TXDDR(KPARI), TXDDI(KPARI) 
REAL RXR(KPAR2), RXI(KPAR2), WSR(KPAR2), WSI(KPAR2) 
REAL QR(KPAR2, KPAR2), QI(KPAR2, KPAR2) 
REAL YR(KPAR2), YI(KPAR2) 
REAL CON(6), QQ(6), EQ(6), VQ(6), FMEAN(6), FVAR(6) 
REAL YNAGR(KPAR3), YNAýGI(KPAR3), REZ(KPAR3), IMZ(KPAR3) 
REAL YCOFR(KPAR3), YCOFI(KPAR3), DUMR(KPAR3), DUMI(KPAR3) 
REAL YNDIVR(KPAR3), YNDIVI(KPAR3) 

C VALUES TO VARIABLES AND ARRAYS 

DATA CF/-0.1803229723D+01,0.8152066804D+00, -0.1852182882D+01, 
I 0.8678845458D+00, -0.8948130729D+00/ 
DCG=19378 
DCG=1.0/DCG 
STDVN=SQRT(l. 0) 
NOSAM=2500 
INFD=36 
FSP=2.0 

C INMALISING 

DL1=0.0 
DL2--O. O 
DL3=0.0 
DL4--O. O 
DL5=0.0 

JQ=50+NOSAM 
JQ1=JQ+l 

OPEN(LLOUT, FILE--'OUTPUT', IOSTAT=JOSS) 
OPEN(8, FI]LE='FDIMP', FORM='UNFORMATTED', IOSTAT=JJOSS) 
WFJTE(LLOUT, 150)JOSS 
WRITE(LLOUT, 160)JJOSS 

150 FORMAT(J'ERRORS IN EXECUTION OF 1ST OPEN STATEMENT=', 13) 
160 FORMAT(ERRORS IN EXECUTION OF 2ND OPEN STATEMENT=', 13) 

CALL G05CBF(INFD) 

C GENERATION OF Ql(T) AND Q2(T) 
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DO 250 1=1,6 

JA=l 

TF3=0.0 
TVF3=0.0 
TF3DCG=0.0 
TVF3DCG=0.0 

DO 240 J=1, JQl 

FO--GO5DDF(O. OODOO, STDVN) 
Fl=FO-(DL1*CF(1)+DL2*CF(2)) 
F2--Fl-(DL3*CF(3)+DLA*CF(4)) 
F3=F2-(DL5*CF(5)) 

F3DCG=F3*DCG 

DL5=F3 
DLA=DL3 
DL3=F2 
DL2=DLI 
DL1=Fl 

IF(J. LE. 50) GO TO 240 

Q(I, JA)=F3DCG 
JA=JA+l 

TF3=TF3+F3 
TVF3=TVF3+(F3**2) 
TF3DCG=TF3DCG+F3DCG 
TVF3DCG=TVF3DCG+(F3DCG**2) 

240 CONTINUE 

EF3=TF3/(NOSAM+l) 
VARF3=TVF3/(NOSAM+l) 
EF3DCG=TF3DCG/(NOSAM+I) 
VARF3DC=TVF3DCG/(NOSAM+l) 

WRITE(LLOUT, 244)EF3, VAR F3 
Wl=(LLOUT, 246)EF3DCG, VARF3DC 

244 FORMAT('MEANOFF3=', IX, E20.10,2X, 'VAR. OFF3=', lX, E20.10) 
246 FORMAT('MEAN OF F3DCG =', IX, E20.10,2X, 'VAR. OF F3DCG =', lX, 

1 E20.10) 

250 CONTINUE 

C INUIALISING ARRAYS AND VARIABLES FOR MAIN PROGRAM 

DATA TXR /-0.1795896, -3.0773455, -9.9409021, -11.7869473, 
1 -3.4618271,4.4438154,3.0642536, -1.3596576, 
2 -1.4973528,0.2925598,0.5180829, -0.1842786, 
3 -0.3167778,0.0021899, -0.0443806,0.0515533/ 

DATA TXI / 2.3539405,20.7590237,45.5584592,41.4909978, 
8.7045826, -11.7869820, -5.5819054,3.1582131, 
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2 1.7365460, -0.7776891, -0.1292556,0.2880296, 
3 -0.2324818, -0.2107548,0.0392056,0.0098505 

DATA TXDR /-1.6694374, -7.8492148, -12.3887079, -6.6023157, 
1 2.9408554,4.3005084, -0.3368383, -1.9014342, 
2 -0.1433592,0.6242601,0.0278577, -0.3820071, 
3 -0.0416905, -0.0439705,0.0749333, -0.0594132 

DATA TXDI / 13.2372707,39-6493461,46.9272219,19.2346609, 
1 -8.8804125, -9.0256163,1.6284281,2.8139013, 
2 -0.4311352, -0.4537174,0.3081762, -0.0772327, 
3 -0.3043271,0.0085057,0.0093809,0.0094992/ 

DATA TXDDR / -1.3136537, -7.1104051, -12.3469721, -7.5848703, 
1 2.2353854,4.5938614,0.0931639, -1.9704176, 
2 -0.3233694,0.6313238,0.1035718, -0.3865939, 
3 -0.0734526, -0.0386471,0.0608046, -0.0713496 

DATA TXDDI / 11,0688962,37.2136597,47.9575159,22.8262482, 
1 -7.2498590, -10.0026703,0.8695437,3.1072800, 
2 -0.2261096, -0.5552906,0.2882096, -0.0156703, 
3 -0.3215770, -0.0107706,0.0140909,0.0135711 

DATA RXR / -1 . 9417691, -15.9797864, -35.1417733, -34.4788717, 
1 -11.2301982, 7.8155160, 7.5124057, -0.5057505, 
2 -3.3707125, -0.6759166, 1.0482656, 0.3621876, 
3 -0.3105902, 0.0438410, 0.0738947, -0.0646936, 
4 0.0000000, 0.0000000, 0.0000000, 0.0000000, 
5 0.0000000, 0.0000000, 0.0000000, 0.0000000, 
6 0.0000000, 0.0000000, 0.0000()00, 0.0000000, 
7 0.0000000, 0.0000000 / 

DATARXI/ 1.3625952,11.5941040,27.3342937,28.0870086, 
1 7.2714615, -9.2602472, -5.0954462, 3.2326498, 
2 1.8975352, -1.2813604, -0.4830313, 0.7614804, 
3 0,1979014, -0.1532672,0.0940330, -0-0312132, 
4 0.0000000, 0.0000000,0.0000000, 0.0000000, 
5 0.0000000, 0.0000000,0.0000000, 0.0000000, 
6 0.0000000, 0.0000000,0.0000000, 0.0000000, 
7 0.0000000, 0.0000000 / 

NLOOP=1200 
MLOOP=2*N-LOOP 
ISTEP--48 
STEP=1.0/ISTEP 
DEL1=1.1 
DEL2=3.0 
SAMPRAT=2.4 
SFACT=1.0/(SAMPRAT*2*1000-0) 
IDEL1=INT(SAMPRAT*2*DELl) 
IDEL2--INT(SAMPRAT*2*DEL2) 
KMPL--16 
KMP=IDEL2+KMPL 
KMP1=KMP-1 
KMCONV=(KMP+KMPL-1)/2 
UCIRC=1.05 
INDTN=15 
POS=-I. O 
SQ=0.0 
SSQ=0.0 
JCOUNT=O 
ICOUNT=O 
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DO 1010 I=I, KMP 
DO 1005 J=I, KMP 
QR(I, J)--O. O 
QI(I, J)=O. O 

1005 CONTINUE 
lol() CONTINUE 

DO 1020 1=1,6 
EQ(I)=O. O 
VQ(I)=O. O 

1020 CONTINUE 

DO 1030 I= l, KMCONV 
REZ(I)=O. O 
IMZ(I)=O. O 

1030 CONTINUE 

CALL G05CB F(INDTN) 

C ENTERING MAIN LOOP 

DO 9000 KMAIN=1, MLOOP 

DO 1510 I=1,6 
CON(I)=(Q(I, KMAIN+1)-Q(I, KMAIN))*STEP 

1510 CONTME 

C ENTERING SECONDARY LOOP 

DO 8000 KSEC=I, ISTEP 

ICOUNT=ICOUNT+l 
COUNT=REAL(ICOUNT) 

DO 1520 I=1,6 
QQ(I)=Q(I, KMAIN)+((KSEC-I)*CON(l)) 

1520 CONTINUE 

QQ(2)=-QQ(2) 
QQ(4)=-QQ(4) 
QQ(6)=-QQ(6) 

DO 1530 1=1,6 
EQ(I)=EQ(I)+QQ(I) 
VQ(I)=VQ(I)+(QQ(I)*QQ(I)) 

1530 CONTINUE 

C SHIFTING ARRAYS FOR CONVOLUTION 

DO 2010 1=1, KMP 
DO 2005 J=1, KMP1 
QR(I, KMP+1-J)=QR(I, KMP-J) 
QI(I, KMP+1-1)=QI(I, KMP-J) 

2005 CONTINUE 
2010 CONTINUE 

DO 2015 I=I, KMP 
QR(l, l)--O. O 
QI(I, 1)=O. O 

2015 CONTINUE 
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C CONVOLUTION (TO OBTAIN IMPULSE RESPONSE OF CHANNEL), BEGINS 

DO 2020 I= 1, KMPL 
QR(l, l)--TXR(I)*QQ(1)-TM(I)*QQ(2) 
QI(1,1)=T'XR(I)*QQ(2)+TM(I)*QQ(l) 

2020 CONTINUE 
DO 2030 I=I, KMPL 
QR(I+IDELl, l)--QR(I+IDEL1,1)+TXDR(I)*QQ(3)-TXDI(I)*QQ(4) 
QI(I+IDELl, l)---Ql(l+IDEL1,1)+TXDR(I)*QQ(4)+TXDI(I)*QQ(3) 

2030 CONTINUE 
DO 2040 I=I, KMPL 
QR(I+IDEL2,1)=QRU+IDEL2,1)+TXDDR(I)*QQ(5)-TXDDI(I)*QQ(6) 
QI(I+IDEL2,1)--QI(I+lDEL2,1)+TXDDR(I)*QQ(6)+TXDD1(1)*QQ(5) 

2040 CONTINUE 

POS=-POS 
IF(POS. LT. 0) GO TO 8000 

10=0 
JCOUNT=JCOUNT+l 
DCOUNT=REAL(JCOUNT) 

DO 2060 1=1, KMP, 2 
IO=10+1 
YR(10)--O. O 
YI(IO)=O. O 
DO 2050 J=1,1 
YR(IO)=YR(IO)+QR(J, 1+1-J)*RXR(I+I-J)-QI(J, I+I-J)*RXI(I+I-J) 
YI(10)=YI(10)+QI(J, 1+1-J)*RXR(I+1-J)+QR(J, I+I-J)*RXI(I+I-J) 

2050 CONTINUE 
YR(10)=YR(10)*SFACT 
YI(IO)=YI(IO)*SFACT 

2060 CONTINUE 

IF (MOD(KMP, 2). EQ. 0) THEN 
GO TO 2070 
ELSE 
GO TO 2100 
END IF 

2070 DO 2090 I=1, KMP1,2 
IO=10+1 
YR(IO)=O, O 
YI(10)=O. O 
MCONV=I+l 
DO 2080 J=MCONV, KMP 
KCVT=KMP+1+1-J 
YR(10)=YR(IO)+-QR(J, KCVT)*RXR(KCVT)-QI(J, KCVT)*RXI(KCVT) 
YI(IO)=YI(10)+QI(J, KCVT)*RXR(KCVT)+QR(J, KCVT)*RX'T(KCVT) 

2080 CONTINUE 
YR(IO)=YR(IO)* S FACT 
YI(IO)--YI(10)* S FACT 

2090 CONTINUE 

GO TO 2150 

2100 D021201=1, KNIPI, 2 
IO=10+1 
YRaO)=O. O 
YI(IO)=O. O 
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MCONV=I+2 
DO 2110 J=MCONV, KMP 
YR(10)--YR(10)+QR(J, KMP+2+1-J)*RXR(KMP+2+1-J) 

1 -QI(J, KMP+2+1-J)*RXI(KMP+2+1-J) 
YI(10)=YI(10)+QI(J, KMP+2+1-J)*RXR(KMP+2+1-J) 

1 +QR(J, KMP+2+1-J)*RXI(KMP+2+1-J) 
2110 CONTINUE 

YR(10)=YR(10)*S FACT 
YI(10)--YI(IO)*SFACT 

2120 CONTINUE 

2150 COTIMNUE 

C OBTAINING ROOTS OF Z-TRANSFORM OF CHANNEL 

DO 3000 I=1, KMCON-V 
YNAGR(I)=YR(l) 
YNAGI(I)=Yl(l) 

3000 CONTINUE 
NROOT=KMCON-V 
TOL--XO2AAF(l. 0) 
IFAIl--0 
CALL C02ADF(YNAGR, YNAGI, NROOT, REZ, IMZ, TOL, IFAIL) 

C MANIPULATION OF ROOTS TO MAKE CHANNEL MINIMUM PHASE 

RPROD=1.0 
DO 3010 I=IKMCONV 
RSQMOD=REZ(I)*REZ(I)+IMZ(I)*IMZ(I) 
RMOD=RSQMOD**0.5 
IF(RMOD. GT. UCIRC)THEN 
RPROD=RPROD*RMOD 
REZ(I)=REZ(I)/RSQMOD 
IMZ(I)=IMZ(I)/RSQMOD 
ELSE 
GO TO 3010 
END IF 

3010 CONTINUE 

C RECONSTRUC71ON OF CHANNEL 

DO 3020 1=1, KMCONV 
YCOFR(I)=O. O 
YCOFI(l)=0.0 

3020 CONTINUE 
YCOFR(1)=1.0 

DO 3050 I=1, KMCONV-1 
DO 3030 J=I, KMCONV-1 
DUMR(J)=YCOFR(J)*REZ(I)-YCOFI(J)*IMZ(I) 
DUMI(J)=YCOFR(J)*IMZ(I)+YCOFI(J)*REZ(f) 

3030 CONTINUE 
DO 3040 JJ=I, KMCONV-1 
JJI=JJ+l 
YCOFR(JJ1)--YCOFR(JJI)+DUMR(JJ) 
YCOFI(JJ1)=YCOFI(JJ1)+DUMI(JJ) 

3040 CONTINUE 
3050 CONTINUE 

DO 3060 I=2, KMCONV, 2 
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YCOFR(l)---YCOFR(l) 
YCOFI(I)=-YCOFI(l) 

3060 CWMNUE 

DO 3070 1=1, KMCON'V 
YNDIVR(l)--(YCOFR(I)*YR(l)-YCOFI(I)*Yl(l))*RPROD 
YNDIVI(I)=(YCOFR(I)*YI(I)+YCOFI(I)*YR(l))*RPROD 

3070 CONTINUE 

WRITE(8)(YNDIVR(l), 1=1, KMCONV) 
WRITE(8)(YNDIVI(I), I=I, KMCONV) 

C CHECKING THE SUM OF THE SQUARES 

YSQ=0.0 
YYSQ=0.0 
DO 3090 1=1, KMCONV 
YSQ=YSQ+(YR(I)*YR(I)+YI(I)*Yl(l)) 
Y-YS(ý--YYSQ+(YNDIVR(I)*YNI)IVR(I)+YNDIVI(l)*YNDIVI(l)) 

3090 CONTINUE 
SQ=SQ+YSQ 
SSQ=SSQ+YYSQ 
YDBQ=10.0*LOGIO(YYSQ) 

IF (JCOUNT. EQ. 1. OR. MOD(JCOUNT, 10000). EQ. 0) TH EN 
WRITE(LLOUT, 4500)(YNDIVR(l), I=I, KMCONV) 
WRITE(LLOUT, 4500)(YNDM(l), I=I, KMCON-V) 

4500 FORMAT(4E15.5) 
END IF 

8000 CONTINUE 

9000 CONTINUE 

DO 9100 1=1,6 
FMEAN(l)--EQ(I)/COUNT 
FVAR(I)=VQ(I)/COUNT 

9100 CONTME 

AVSQ=SQ/DCOLJNT 
AVSSQ=SSQIDCOUNT 

C PRINTlNG RESULTS 

WRITE(LLOUT, 9203)FSP, DEL1, DEL2, SAM PRAT 
9203 FORMAT('FREQUENCY SPREAD =', F6.2/ 

I 'DELAY BETWEEN SKYWAVE NOS. I AND 2 =', F6.3/ 
2 'DELAY BETWEEN SKYWAVE NOS. 2 AND 3 =', F6.3/ 
3 'SAMPLING RATE IN KILOBAUDS =', F6.3) 

WRITE(LLOUT, 9205)INDTN, ICOUNT, JCOUNT, KMCON-V 
9205 FORMAT('INDTN=', 17f ICOUNT=', I7f JCOUNT=', 17T KMCON-V=', 14) 

WRITE(LLOUT, 9210) 
9210 FORMAT('MEAN VALUE OF THE QQ-SIGNALS') 

WRITE(LLOUT, 9230)(FMEAN(I)J=1,6) 
WRITE(LLOUT, 9220) 

9220 FORMAT(f VARIANCES OF THE QQ-SIGNALS') 
WRITE(LLOUT, 9230)(FVAR(I), 1=1,6) 
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9230 FORMAT(E20.10) 

DO 9235 I=1, KMCON-V 
V4ýM(LLOUT, 9240)YR(l), YI(I), YNDIVR(I), YNDIVI(l) 

9235 CONTINUE 
9240 FORM AT(F 10.5,3X, F 1 0.5,3X, F 1 0.5,3X, F 10.5) 

YVRITE(LLOUT, 9250)AVSQ 
9250 FORMAT('AVERAGE SUM OF SQUARES OF ORIGINAL CHANNEL--', F7.4) 

YiRITE(LLOUT, 9260)AVSSQ 
9260 FORMAT(AVERAGE SUM OF SQUARES OF MINTHASE CHANN-EL--', F7.4///) 

STOP 
END 

#44#S 
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APPENDIX H 

SIMULATION OF TRELLIS CODED 
MODULATION SYSTEM D16 

/*JOB DQRF1, EUELSJ2, ST=C20, C=C, TI=2500, 
/* PW=SDMVP 
PATTACKLIBAPPL. 
PATTACH, PROCLIEB. 
BEGIN,, GETFEP, FDIMP, JC36, FO=BINARY. 
SWITCH, FDIMP, RT=W. 
F'FN200, L--O, OPT. 
LOAD, LJB=BLAS, NAGLJB. 
GO. 
####S 

PROGRAM DQRF 
PARAMETER(NDEL--32, PI=3.1415926536, NIMP=22, NVEC=16, NSTAT=8) 
PARAMETER(KLOUT=99) 
INTEGER IBIT1(NDEL), IBIT2(NDEL), IDBIT1(NDEL), IDBIT2(NDEL) 
INTEGER ISTE(NDEL), IVOUT(NDEL) 
INTEGER ILP1(32), ILKUP1(16,2), ILP4(32), ILKUP4(16,2) 
INTEGER ILP2(32), ILP3(32), ILKUP2(0: 7,0: 3), ILKUP3(0: 7,0: 3) 
INTEGER ILP5(64), ILKUP5(8,8) 
INTEGER LST1(NSTAT, NVEC/NSTAT) 
INTEGER ITX1(N-VEC, NDEL), rFX2(NVEC, NDEL) 
INTEGER JTXI(N-VEC*4, NDEL), JTX2(NVEC*4, NDEL) 
INTEGER LMTR(N-VEC*4), LMTI(N-VEC*4) 
REAL SR(NDEL), SI(NDEL) 
REAL VSR(N-VEC, NDEL), VSI(N-VECNDEL) 
REAL YR(NIMP), YI(NIMP) 
REAL YTR(NIMP), Y-n(NIMP) 
REAL HFR(NTMP), HFI(N-IMP), WFR(NIMP), WFI(NIMP) 
REAL GR(NVEC), GI(NVEC) 
REAL TR(NVEC*4, NDEL), TI(NVEC*4, NDEL) 
REAL PLIUP I (8,4), PLIUP2(8,4) 
REAL COST(NVEC), CTI (N-VEC*4), CT2(NSTATNVEC/NSTAT) 

C VALUES TO MAIN VARIABLES AND ARRAYS 

N=NDEL 
M=NVEC 
MM=NSTAT 
IQ=27 
KLOOP=57600 
NTR=KLOOP/10 
NOSNR=S 
SNR=7.5 
SNRD=0.5 
SNR=SNR-SNRD 
NI=N-1 
M4--M*4 
MDM=M/MM 
MLI=MDM*4 
ROOT2--SQRT(2.0) 

DATA WFR/-0.02805, -0.23081, -0.50758, -0.49800, 
1 -0.16221,0.11289,0.10851, -0.0073 1, 
2 -0.04869, -0.00976,0.01514,0.00523, 
3 -0.00449,0.00063,0.00107, -0.00093, 
4 0.00000,0.00000,0.00000,0.00000, 
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0.00000,0.00000/ 

DATA WFI/ 0.0 1968,0.16746,0.39481,0.40568, 
1 0.10503, -0.13375, -0.07360,0.04669, 
2 0.02741, -0.01851, -0.00698,0.01100, 
3 0.00286, -0.00221,0.00136, -0.00045, 
4 0.00000,0.00000,0.00000,0.00000, 
5 0.00000,0.00000/ 

DATA ILP1/0,0,0,1,1,0,1,1,0,1,1,0,1,1,0,0, 
1,0,1,1,0,0,0,1,1,1,0,0,0,1,1,0/ 

DATA ILP2/0,1,0,1,2,3,2,3,4,5,4,5,6,7,6,7, 
1 0,1,0,1,2,3,2,3,4,5,4,5,6,7,6,7/ 

DATA ILP3/0,2,4,6,1,3,5,7,3,1,7,5,2,0,6,4, 
6,4,2,0,7,5,3,1,1,3,5,7,0,2,4,6/ 

DATA ILP4/0,0,0,1,1,0,1,1,1,1,0,0,0,1,1,0, 
l'O'l, 1,0,0,0,1,0,1,1'O'l, l, 0,0/ 

DATA ILP5/1,3,5,7,33,35,37,39,2,4,6,8,34,36,38,40, 
1 9,11,13,15,41,43,45,47,10,12,14,16,42,44,46,48, 
2 17,19,21,23,49,51,53,55,18,20,22,24,50,52,54,56, 
3 25,27,29,31,57,59,61,63,26,28,30,32,58,60,62,64/ 

KLK1=0 
D040I=1,16 
DO 30 J=1,2 
ELKUPI(I, J)=ILPI(KLK1+J) 
ILKUP4(1, J)--ILP4(KLK1+J) 

30 CONTIN-UE 
KLKI=KLKI+2 

40 CONTINUE 

KLK2--O 
DO 60 I=1,8 
10=i-l 
DO 50 J=1,4 
JO=J-l 
IARRY=KLK2+J 
ILKUP2(IO, JO)=ILP2(IARRY) 
ILKUP3(10, JO)=ILP3(IARRY) 
PLIUP 1 (I, J)=ROOT2* COS (PI*ILP3 GARRY)/4 . 0) 
PLIUP2(I, J)=ROOT2*SIN(PI*ILP3(IARRY)/4-0) 

50 CONTINUE 
KLK2--KLK2+4 

60 CONTINUE 

KLK3=0 
DO 80 1=1,8 
DO 70 J=1,8 
ILKUP5(1, J)=ILP5(KLK3+J) 

70 CONTINUE 
KLK3=KLK3+8 

80 CONTINUE 

C OPEN RELEVANT FILES 

OPEN(18, FILE='FDIMP', FORM='UNFORMAT'rED', IOSTAT=10nl) 
OPEN(KLOUT, FILE--'OUTPUT', IOSTAT=10"2) 
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WRITE(KLOUT, 95)IOPTI, IOPT2 
95 FORMAT(ERRORS IN EXECUTION OF OPEN STATEMENT=', 215) 

CALL G05CBF(IQ) 

C PREPARE FOR TRANSMISSION BY FIXING AN SNR VALUE 

DO 9000 IVAL--I, NOSNR 

SNR=SNR+SNRD 
STDVN=10.0**(-SN-R/'20.0) 

XX=0.0 
ICOUNT=O 

IERSYM=O 
IER1=0 
IER2=0 
IDER1=0 
IDER2=0 

MPBIT1=0 
MPBIT2=0 

C INITIALISING SIGNAL, NOISE ARRAYS AND STORED VECTORS 

DO 100 1=1, N 
IBIT1(1)=O 
MIT2(I)=O 
IDBIT1(1)=O 
IDBIT'2(1)=O 
SR(I)=ROOT2 
si(i)--0.0 
ISTE(I)=O 
IVOUT(I)=O 

100 CONTINUE 

DO 120 I=1, M 
COST(I)=10000.0 
DO 115 J=1, N 
VSR(1,3)=ROOT2 
VSI(I, J)=O. O 
lTxl(i, j)=O 
ITX2(1, J)--O 

115 CONTINUE 
120 CONTINUE 

COST(1)=O. O 

DO 140 1= 1, NIMP 
HFR(I)=O. O 
HFI(I)=O. O 

140 CONTINUE 

C ENTERING MAIN LOOP 

DO 8000 IMAIN=I, KLOOP 
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ICOUNT=ICOUNT+l 
COUNT=REAL(ICOUNT) 

C INPUT SAMPLED IMPULSE RESPONSE 

READ(18)(YTR(l), I=I, NIMP) 
READ(18)(YTI(l), 1=1, NIMP) 

YDN=YTR(1)*YTR(I)+YTI(1)*YTI(l) 
DO 146 1=1, NIMP 
YR(I)=(YTR(I)*YTR(I)+YTI(I)*YTI(l))/YDN 
Yl(l)=(YTI(I)*YTR(l)-YTR(I)*YTI(l))[YDN 

146 CONTRq-UE 

C SHIFTING REGISTERS FOR INCOMING DATA SIGNAL 

DO 150 1=1, Nl 
lxl=l+l 
MITI (I)--IBIT1 (M) 
MM(I)=MIT2(IX1) 
IDBIT1(1)=IDBIT1(lXl) 
IDBM(I)=IDBIT2(lXl) 
SR(I)=SR(IX1) 
Sl(l)=Sl(fXl) 
ISTE(I)=ISTE(IX1) 
IVOUT(I)=IVOUT(Ixl) 

150 CONTINUE 

DO 170 I=1, M 
DO 165 J=1, Nl 
]Xl=J+l 
VSR(I, J)=VSR(I, JX1) 
VSI(I, J)--VSI(l, JXI) 
rrxl(l, j)=ITX1(1, jxl) 
ITX2(I, J)=ITX2(1, JXI) 

165 CONTINUE 
170 CONTINUE 

C CALCULATING THE INTERSYMBOL INTERFERENCE 

DO 200 I= 1, M 
GR(I)=O. O 
GI(I)=O. O 
DO 195 J=2, NIMP 
JZ--N+I-J 
GR(I)=GR(I)+VSR(I, JZ)*YR(J)-VSI(T, JZ)*YI(J) 
Gl(l)=Gl(l)+VSR(I, JZ)*YI(J)+VSI(I, JZ)*YR(J) 

195 CONTINUE 
200 CONTINUE 

C GENERATING SIGNAL IN BIT FORM 

XX=G05CAF(XX) 
IF(XX-0.5)210,210,220 

210 EBIT1(N)--0 
GO TO 230 

220 IBIT1(N)=l 
230 XX=G05CAF(XX) 

IF(XX-0.5)240,240,250 
240 IBM(N)=O 
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GO TO 260 
250 MM(N)--l 
260 CONTINUE 

C OBTAINING DIFFERENTIALLY PRE-CODED SIGNAL 

JENI=IDBIT1(Nl)*8+]IDBM(Nl)*4+IBIT1(N)*2+IBIT2(N)+i 

IDBIT1(N)=ILKUP1(JEN1,1) 
IIDBIT2(N)--ELKUP1(JENI, 2) 

C OBTAINING CON-VOLUTIONALLY CODED SIGNAL 

LEN1=ISTE(Nl) 
LEN2--IIDBIT1(N)*2+IDBIT2(N) 

ISTE(N)=ELKUP2(LEN1, LEN2) 
IVOUT(N)=ILKUP3(LEN1, LEN2) 

SR(N)=ROOT2*COS(PI*IVOUT(N)/4.0) 
SI(N)=ROO'M*SIN(PI*IVOUT(N)/4.0) 

C GENERATION OF NOISE 

DO 350 LNM=1,2 
DO 330 1=1, NIMP-1 
JX4=1+1 
HFR(I)=HFR(JX4) 
HFI(I)=HFI(JX4) 

330 CONTINUE 
HFR(NIMP)--GO5DDF(O. 0, STDVN) 
HFI(NIMP)=GO5DDF(O. 0, STDVN) 
WR=0.0 
WI=0.0 

DO 340 1=1, NIMP 
JX5=NIMP-I+l 
WR=WR+HFR(JX5)*YYTR(l)-HFI(JX5)*WFI(l) 
WI=WI+HFR(JX5)*WFI(I)+HFI(JX5)*WFR(l) 

340 CONTINUE 
350 CONTINUE 

WWR=(WR*YTR(I)+WI*YTI(l))/YDN 
YAVI=(WI*YTR(l)-WR*YTI(l))[YDN 

C CALCULAUON OF RECEIVED SIGNAL 

RR=0.0 
RI=0.0 
DO 400 1=1, NIMP 
JY=N+I-l 
RR=RR+SR(JY)*YR(I)-SI(JY)*YI(l) 
RI=RI+SR(JY)*YI(I)+SI(JY)*YR(l) 

400 CON'nN-LJE 
RR=RR+WWR 
RI=RI+NVWI 

C FORMING 4M EXPANDED VECTORS AND AND CALCULATING THEIR COSTS 

KY=l 
JD1=0 
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DO 500 1=1, M 
DO 480 JKL--1,4 
JD1=JD1+1 
DO 450 J=I, Nl 
TR(JD1, J)=VSR(I, J) 
TI(JD1, J)=VSI(I, J) 
JTX1(JD1, J)=ITX1(1, J) 
JTX2(JD1, J)=ITX2(I, J) 

450 CONTINUE 

TR(JD1, N)=PLIUPI(KY, JKL) 
DR=RR-GR(l)-TR(JD1, N) 
TI(JDI, N)=PLIUP2(KY, JKL) 
DI=RI-GI(l)-TI(JD1, N) 

JTX1(JD1, N)=ILKUPI(JKL, I) 
JTX2(JD1, N)=ILKUPI(JKL, 2) 

CTI(JDI)=COST(I)+DR*DR+DI*Dl 

480 CONTINUE 

IF(MOD(I, MDM). EQ. 0) KY=: KY+l 

500 CONTINUE 

C CHOOSING BEST VECTOR 

CC=1000000.0 
D05101=1, M4 
IF(CT1(I)-CC)505,510,5 10 

505 CC=CT1(I) 
MNO=I 

510 CONTINUE 

C DISCARDING VECTORS WHICH DISAGREE 

DO 515 1=1, M4 
LMTR(I)=INT(TR(1,1)*10.0) 
LMTI(I)--INTM(1,1)*10.0) 

515 CONTINUE 
IDETR=LMTR(MNO) 
IDE'n=LMTI(MNO) 

DO 530 I=I, M4 
IF(LMTR(I)-IDETR)525,520,525 

520 IF(LMTI(l)-IDETI)525,530,525 
525 CT1(1)=100000.0 
530 CONTINUE 

C SUBTRACTING THE SMALLEST COST FROM ALL THE COSTS 

CXY=CT1(MNO) 
DO 535 1=1, M4 
CT1(i)=CT1(1)-CXY 

535 CONTINUE 

OBTAPIONG BIT VALUE OF DETECTED SIGNAL 

MDBITI=JTX1(MNO, I) 
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MDBIT2=JTX2(MNO, l) 

C DIFFERENTIAL DECODING 

JEN2--MPBIT1*8+MPBIT2*4+MDBITI*2+MDBIT2+1 

b, MIT1=ILKUP4(JEN2, I) 
MBIT2=ILKUP4(JEN2,2) 

C ERROR COUNT 

IF(ICOUNT. LT. NTR)GO TO 545 
IF(INT(SR(1)*10.0)-IDETR)542,541,542 

541 IF(INT(Sl(l)*10.0)-IDETI)542,543,542 
542 IERSYM=IERSYM+l 
543 IF(IDBITI(l). NE, MDBITI)IERI=IERI+I 

lF(IDBM(l). NEMDBIT2)IER2=lER2+1 
IF(fBITI(l). NE. MBIT1)IDERI=IDERI+I 
IF(IBIT'2(l). NE. MBIT2)IDER2--IDER2+1 

545 CONTINUE 

C CHOOSING VECTORS FOR NEXT DETECTION PROCESS 

DO 830 I=1, MM 
DO 820 Ul=l, MDM 
CC=1000000.0 

DO 810 J=1, ML1 
MDOT=ILKUP5(LJ) 
IF(CT1(MDOT)-CC)805,810,810 

805 CC=CT1(MDOT) 
LG1=MDOT 

810 CONTIN-UE 
CT2(1, Ul)=CTI(LG1) 
LST1(1, lJl)=LG1 
CT1(LG1)--10000000.0 

820 CONTINUE 
830 CONTINUE 

C TRANSFERRING THE SELECTED VECTORS TO THEIR ORIGINAL STORES 
C WITHOUT ALTERING THE POSITIONS CORRESPONDING TO THE COSTS. 

KZ--l 
DO 850 I=I, MM 
DO 845 IJ2=1, MDM 
JCHS=LSTI(I, IJ2) 

DO 840 J=1, N 
VSR(KZ, J)=TR(JCHS, J) 
VSI(KZ, J)=TI(JCHS, J) 
ITX1(KZ, J)=JTX1(JCHS, J) 
ITX2(KZ, J)=JTX2(JCHS, J) 

840 CONTINUE 
COST(KZ)--CT'2(I, IJ2) 
KZ=KZ+l 

845 CONTINUE 
850 CONTINUE 

MPBIT1=MDBITI 
MPBIT2=MDBM 
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8000 CONTINUE 

C CONFIRMATION OF SNR VALUE AND CALCULAT10N OF ERROR RATE 

SNRCALC=10.0*LOG10(1.0/(STDVN*STDVN)) 

ERSYM=IERSYM/(COUNT-NTR) 
ERBIT=(IER1+IER2)/(2.0*(COUNT-NTR)) 
ERDBIT=GDER1+BDER2)/(2.0*(COUNT-NTR)) 

C PRINTING IMPORTANT RESULTS 

Vn=(KLOUT, 8100)KLOOP, NTR, IQ 
8100 FORMAT('KLOOP=', IIOTNTR=', 110ýIQ=', 110) 

WRITE(KL)OUT, 8110)ICOUNT, COUNT 
8110 FORMAT('ICOUNT=', IlOýCOUNT=', FI2.2) 

WRITE(KLOUT, 8120)MKN, NIMP, M 
8120 FORMAT('NO. OF STATES=', 11W DELAY IN DETECTION=', 110/ 

1 'NO. OF COMPONENTS IN SIR ='J10/ 
2 'NO. OF STORED VECTORS =', IlO/) 

WRITE(KLOUT, 8130)SNRCALC 
8130 FORMAT(SIGNALTO-NOISE RATIO=', F9.3, 'DB') 

WRITE(KLOUT, 8135)ERSYM 
8135 FORMAT('SYMBOL ERROR RATE =', E20.10) 

WRITE(KLOUT, 8140)ERBIT 
8140 FORMAT('BIT ERROR RATE WITHOUT DIFFERENTIAL CODING =', E20.10) 

WRITE(KLOUT, 8150)ERDBIT 
8150 FORMAT('BrF ERROR RATE WITH DIFFERENTIAL CODING =', E20.10//) 

REWIND(UNIT=18) 

9000 CONTINUE 

STOP 
END 

####S 
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APPENDIX I 

SIMULATION OF UNBIASED ESTIMATOR WITH DEGREE-1 
PREDICTION AND PERFECT DETECTION 

IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
DOUBLE PRECISION CF(5), Q(4,3000) 
DOUBLE PRECISION G05DDF 

DOUBLE PRECISION RR(-l: 1), Rl(- 1: 1) 
INTEGER ISNVR(-1: 1), ISNVI(-1: 1), ISSN-VR(-I: I), ISSNVI(-J: 1) 
DOUBLE PRECISION ASR(-1: 1), ASI(-I: I), ASSR(-1: 1), ASSI(-I: I) 
INTEGER IASR(-1: 1), IASI(-1: 1), IASSR(-1: 1), IASSI(-1: 1) 

C VALUES TO VARIABLES AND ARRAYS 

DATA CF /-O. l 130119879D+01,0.3450267457D+00, -O. I 166576134D+01, 
1 0.4780676433D+00, -0.5605390022D+00/ 
DCG--0.05734208236D+00 
NOSAM=2400 
INFD=9 

C INMALISING 

DL1=0.0 
DL2--O. O 
DL3=0.0 
DI-A--O. O 
DL5=0.0 

JQ=50+NOSAM 
JQ1=JQ+l 

CALL G05CBF(INFD) 

C GENERATION OF Ql(T) AND Q2(T) 

DO 250 I=1,4 

JA=l 

TF3=0.0 
TVF3=0.0 
TF3DCG=0.0 
TVF3DCG=0.0 

DO 240 J=1, JQ I 

FO--GO5DDF(O. ODO, LODO) 
Fl=FO-(DLI *CF(1)+DL2*CF(2)) 
F2--Fl-(DL3*CF(3)+DLA*CF(4)) 
F3=F2-(DL5*CF(5)) 
F3DCG=F3*DCG 

DL5=F3 
DLA=DL3 



309 

DL3=F2 
DL2=DLI 
DL1=Fl 

IF(J. LE. 50) GO TO 240 

Q(I, JA)=F3DCG 
JA=JA+l 

TF3=T'F3+F3 
TVF3=TVF3+(F3*F3) 
TF3DCG=TF3DCG+F3DCG 
TVF3DCG=TVF3DCG+(F3DCG*F3DCG) 

240 CONTINUE 

EF3=TF3/(NOSAM+l) 
VARF3=TVF3/(NOSAM+I) 
EF3DCG=TF3DCG/(NOSAM+l) 
VARF3DCG=TVF3DCG/(NOSAM+I) 

VR, rrE(0,244)EF3, VARF3 
NVRITE(0,246)EF3DCG, VARF3DCG 

244 FORMAT("MEAN OF F3 =", E 17.10,5X, "VARIANCE OF F3 =", E 17.10) 
246 FORMAT(WEAN OF F3DCG =", El7.10,2X, "VARIANCE OF F3DCG 

I E17.10) 

250 CONTINUE 

C INITIALISING VARIABLES FOR MAIN PROGRAM 

IFRB=960 
EFR=9600 
IFDIV=IFR/IFRB 
FDIV=REAL(IFDIV) 
NOD=24000 
NTR=2400 
EýT=NOD/TDIV 

EýDTN=10 

SNR=30.0 
SIGSQN=0.5*(10.0**(-SNR/I 0-0)) 
STDVN=SIGSQN**0.5 

NOFL--20 
NOTH=l 
NOB1=1 
THETA=0.0 
BlFST=1.0 
Bl=BlFST 
THD=0.05 
BlD=-O. l 



-10 

DO 6000 LT1=1, NOTH 

WRrl'E(NOFL, 475)THETA 
475 FORMAT(7H"THETA=, F9.4, lH") 

DO 5000 LT2= 1, NOB 1 

TQR=0.0 
TVQR--O. O 
TQI=0.0 
TVQI=0.0 
TQQR=0.0 
TVQQR=0.0 
TQQI=0.0 
TVQQI=0.0 

XX=0.0 
ERTOT=0.0 
ICOUNT=O 

YP2R=0.0 
YP2I=0.0 
XGRR=0.0 
XGRI=0.0 

CALL G05CBF(INDTN) 

C ENTERING MAIN LOOP 

DO 4000 IM=I, INT 

QA1=Q(I, IM) 
QB1=Q(1, IM+l) 
QA2=Q(2jM) 
QBZ--Q(2, IM+l) 
QA3=Q(3, IM) 
QB3=Q(3, IM+l) 
QA4--Q(4, IM) 
QB4--Q(4, IM+I) 

CON1=(QBI-QAI)/FDIV 
CON2=(QB2-QA2)/FDIV 
CON3=(QB3-QA3)/FDIV 
CON4=(QB4-QA4)/FDIV 

C ENTERING SECONDARY LOOP 

DO 3000 ISEC=I, IFDIV 

ICOUNT=ICOUNT+l 

QR=QAI+(ISEC-1)*CONI 
QI=QA2+(ISEC-I)*CON2 
QQR=QA3+(ISEC-1)*CON3 
QQI=QA4+(ISEC-I)*CON4 

TQR=TQR+QR 
TVQR=TVQR+(QR*QR) 
TQI=TQI+Ql 
TVQI=TVQI+(QI*Ql) 
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TQQR=TQQR+QQR 
TVQQR=TVQQR+(QQR*QQR) 
TQQI=TQQI+QQI 
TVQQI=TVQQI+(QQI*QQI) 

YR=QR 
Yl=-Ql 
YYR=QQR 
YYI=-QQI 

c GENERATING SIGNAL 

XX=G05CAF(XX) 
IF(XX-0.25)740,740,710 

710 IF(XX-0.75)770,770,760 
740 SR=-1.0 

ISR=-l 
SI=0.0 
ISM 
GO TO 800 

760 SR=1.0 
ISR=l 
SI=0.0 
ISI=o 
GO TO 800 

770 SR=0.0 
ISR=O 
XX=G05CAF(XX) 
rF(XX-0.5)780,780,790 

780 Sl=-I. O 
ISI=-l 
GO TO 800 

790 SI=1.0 
ISI=l 
GO TO 800 

800 XX=G05CAF(XX) 
IF(XX-0.25)840,840,810 

810 IF(XX-0.75)870,870,860 
840 SSR=-1.0 

ISSR=-l 
SSI=0.0 
ISSI=o 
GO TO 900 

860 SSR=1.0 
ISSR=l 
SSI=0.0 
ISSI=o 
GO TO 900 

870 SSR=0.0 
ISSR=O 
XX=G05CAF(XX) 
IF(XX-0.5)880,880,890 

880 SSI=-I. O 
ISSI=-l 
GO TO 900 

890 SSI=1.0 
ISSI=l 
GO TO 900 

900 CONTINUE 
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C GENERATING WHTfE GAUSSIAN NOISE 

WR=G05DDF(O. ODOO, STDVN) 
WI=GO5DDF(O. ODOO, STDVN) 

C SAVING THE FIRST TWO RECEIVED SAMPLES AND RELEVANT QUANTITIES 

IF(ICOUNT-2)1100,1200,1300 

1100 RR(-l)--(SR*YR-SI*YI)+(SSR*YYR-SSI*YYI)+WR 
Rl(-l)=(SI*YR+SR*Yl)+(SSI*YYR+SSR*yyl)+WI 
ASR(-l)=SR 
ASI(-I)=SI 
ASSR(-I)=SSR 
ASSI(-I)=SSI 
IASR(-l)=ISR 
IASI(-l)=ISI 
IASSR(-l)=ISSR 
IASSI(-l)=ISSI 
DNM=ISR*ISR+ISI*ISI 
DDNM=ISSR*ISSR+ISSI*ISSI 
ISN-VR(-l)--ISR/DNM 
ISNVI(-l)=-ISI/DNM 
ISSN'VR(-l)--ISSR/DDNM 
ISSNVI(-l)=-ISSI/DDNM 
GO TO 3000 

1200 RR(O)=(SR*YR-SI*Yl)+(SSR*YYR-SSI*YYI)+WR 
RI(O)=(SI*YR+SR*Yl)+(SSI*YYR+SSR*YYI)+WI 
ASR(O)=SR 
ASI(O)=SI 
ASSR(O)--SSR 
ASSI(O)=SSI 
IASR(O)=ISR 
IASI(O)=ISI 
IASSR(O)=ISSR 
IASSI(O)=ISSI 
DNM=ISR*ISR+ISI*ISI 
DDNM=ISSR*ISSR+ISSI*ISSI 
ISNVR(O)=ISR/DNM 
ISN'VI(O)=-ISI/DNM 
ISSN-VR(O)=ISSR/DDNM 
ISSN-VI(O)=-ISSI/DDNM 

YPlR=YR 
Ypll=YI 

GO TO 3000 

C CALCULATING ERRORS 

1300 IF(ICOUNT. LT-NTR)GO TO 1350 
EXR=YR-Y'P2R 
EXI=YI-Y'P21 
ERXY=EXR*EXR+EXI*EXI 
ERTOT=ERTOT+ERXY 

C CALCULATING RECEIVED SIGNAL 
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1350 RR(l)--(SR*YR-Sl*yl)+(SSR*YYR-SSI*YYI)+WR 
Rl(l)=(SI*YR+SR*YI)+(SSI*YYR+SSR*YYI)+WI 

ASR(l)--SR 
ASI(1)=Sl 
ASSR(1)=SSR 
ASSI(1)=SSI 
IASR(1)=ISR 
IASI(l)--ISI 
IASSR(I)=ISSR 
IASSI(1)=ISSI 

C CALCULATING SIGNAL INVERSE 

DNM=ISR*ISR+ISI*ISI 
DDNM=ISSR*ISSR+ISSI*ISSI 
ISNVR(1)=ISR/DNM 
ISN'Vl(l)=-ISI/DNM 
ISSN-VR(I)=ISSR/DDNM 
ISSNVI(1)=-ISSI/DDNM 

C CALCULATION OF INTERMEDIATE VALUES LEADING TO ESTIMATE OF CHANNEL 

REQR=(2*(ISSNVR(O)*RR(O)-ISSNVI(O)*RI(O)))- 
(ISSNVR(-l)*RR(-l)-ISSNVI(-I)*Rl(-1))- 
(ISSN-VR(1)*RR(l)-ISSNVI(I)*Rl(l)) 

REQI=(2*(ISSNVI(O)*RR(O)+ISSNVR(O)*RI(O)))- 
(ISSN-Vl(-I)*RR(-l)+ISSNVR(-l)*Rl(-l))- 
(ISSNVI(1)*RR(I)+ISSNVR(I)*Rl(l)) 

EEQLR=(ISSNVR(-l)*IASR(-l)-ISSNVI(-l)*IASI(-l))- 
1 (ISSN-VR(1)*IASR(l)-ISSN-Vl(l)*IASI(l)) 
IEQLI=(ISSNVI(-l)*IASR(-I)+ISSNVR(-l)*IASI(-I))- 

1 (ISSNVI(1)*IASR(I)+ISSNVR(I)*IASI(l)) 

EQMR=(IEQLR*XGRR)-(IEQLI*XGRI) 
EQMI=(IEQLI*XGRR)+(IEQLR*XGRI) 

ENUMR=REQR-EQMR 
EN-LJNU=REQI-EQMI 

IAEQR=(2*(ISSNVR(O)*IASR(O)-ISSNVI(O)*IASI(O)))- 
(ISSN-VR(-l)*IASR(-I)-ISSNVI(-1)*IASI(-I))- 
(ISSN-VR(1)*IASR(l)-ISSNVI(1)*IASI(l)) 

IAEQI=(2*(ISSN-VI(O)*IASR(O)+ISSNVR(O)*IASI(O)))- 
(ISSN-VI(-l)*IASR(-l)+ISSNVR(-l)*IASI(-l))- 
(ISSNVI(I)*IASR(I)+ISSN-VR(1)*IAST(1)) 

IADBSQ=IAEQR*IAEQR+IAEQI*IAEQI 
ADBSQ=REAL(IADBSQ) 
ADBSQM=ADBSQ**0.5 

C PREDICTION PROCESS BEGINS 

IF(IADBSQ-NE. O)GO TO 1400 
EPSR=0.0 
EPSI=0.0 
GO TO 1500 

1400 YlESR=(EN-LJMR*IAEQR+ENUMI*IAEQI)/ADBSQ 
YIESI=(ENUMI*IAEQR-ENUMR*IAEQI)/ADBSQ 
ER=YlESR-YPlR 
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EI=YIESI-YPII 
EPSR=ADBSQM*ER*Bl 
EPSI=ADBSQM*EI*Bl 

1500 XGRR=XGRR+((1.0-THETA)**2)*EPSR 
XGRI=XGRI+((I. O-THETA)**2)*EPSI 

YPlR=YPlR+XGRR+(1.0-(THETA*THETA))*EPSR 
YP11=YP11+XGRI+(1.0-(THE-rA*THETA))*EPSI 

YP2R=YPlR+XGRR 
YP21=YPII+XGRI 

C SFHFTING OF ARRAYS 

IV=-2 
DO 1600 1=1,2 

IV=IV+l 
RR(IV)=RR(IV+l) 
RI(IV)=RI(IV+l) 
ASR(IV)--ASR(IV+l) 
ASI(IV)=ASI(IV+I) 
ASSR(IV)=ASSR(IV+l) 
ASSI(IV)--ASSI(IV+I) 
IASR(IV)=IASR(IV+l) 
IASI(IV)=IASI(IV+l) 
IASSR(IV)=IASSR(IV+I) 
IASSI(IV)--IASSI(IV+l) 
ISNVR(IV)=ISN"VR(IV+l) 
ISNVI(IV)--ISNVI(fV+I) 
ISSN'VR(IV)=ISSN-VR(IV+l) 
ISSNVI(IV)=ISSNVI(IV+I) 

1600 CONTINUE 

3000 CONTINUE 

4000 CONTINUE 

SNRCALC=10*LOG10(0.5/SIGSQN) 

EXQI=TQR/ICOUNT 
EXQ2--TQI/ICOUNT 
VARQ1=TVQR/ICOUNT 
VARQ2=TVQI/ICOUNT 
EXQQI=TQQR/ICOUNT 
EXQQ2=TQQI/ICOUNT 
VARQQ1=TVQQR/ICOUNT 
VARQQ2=TVQQI/ICOUNT 

ERRORP2=10*LOG10(ERTOT/(ICOUNT-NTR)) 

Y; RITE(NOFL, 4005)B 1, ERRORP2 
4005 FORMAT(F8.4, ", ", E20.10) 

C PRINTING OUT IMPORTANT RESULTS 

WRITE(0,4007)NOSAM, SNRCALC 
4007 FOPMAT("NOSAM=", I7,2X, "SNR=", F8.5) 

WRITE(0,401 O)TH ETA, B I 
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4010 FORMAT('7HETA=", FlO. 4/"Bl=", FlO. 4) 

Vn=(0,4020)NOD, IFRB, EFR, ICOUNT 
4020 FORMAT("NOD=", I7,2X, "IFRB=", 17,2X, 'IFR=", 17,2X, "ICOUNT=", 17) 

Y, rRITE(O, 4030)INFD, INDTN 
4030 FORMAT("INFD=", 13,2X, "INDTN=", 13) 

Vy'l=(0,4040)EXQI, VARQI 
4040 FORMAT("MEANOFQ1=", El7.10,2X, "VARLkNCEOFQ1=", El7.10) 

WRITE(0,4050)EXQ2, VARQ2 
4050 FORMAT("MEANOFQ2=", El7.10,2X, "VARIANCEOFQ2=", El7.10) 

WRrIT-(0,4060)EXQQ1, VARQQ1 
4060 FORMAT("MEANOFQQ1=", El7.10,2X, "VARIANCEOFQQI=", El7.10) 

VA=(0,4070)EXQQ2, VARQQ2 
4070 FORMAT("MEANOFQQ2=", EI7.10,2X, "VARIANCEOFQQ2=", EI7.10) 

V; RITE(0,4080)ERRORP2 
4080 FORMAT("2ND STEP PREDIC71ON ERROR IN CHANNEL 1=", E20.10) 

Bl=Bl+BlD 

5000 CONTINUE 

THETA=THETA+THD 
Bl=BIFST 

6000 CONTINUE 

STOP 
END 
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APPENDIX j 

SIMULATION OF COMBINED DETECTOR AND MODIFIED 
GRADIENT ESTIMATOR FOR FAST FADING CHANNELS 

IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
DOUBLE PRECISION CF(5), Q(4,3000) 
DOUBLE PRECISION G05DDF 
DOUBLE PRECISION A(16), B(16), C(16), D(16) 
DOUBLE PRECISION SR(32), SI(32), SSR(32), SSI(32) 
DOUBLE PRECISION XR(4,32), XI(4,32), XXR(4,32), XX1(4,32) 
DOUBLE PRECISION YPlR(4,32), YPII(4,32), YYPlR(4,32), YYP11(4,32) 
DOUBLE PRECISION XGRR(4,32), XGRI(4,32), XGR2R(4,32), XGR2I(4,32) 
DOUBLE PRECISION GR(10,31), Gl(l 0,3 1), GGR(10,3 1), GGI(10,3 1) 
DOUBLE PRECISION GXR(l 0,3 1), GXI(l 0,3 1), GGXR(l 0,3 1), GG)cl(l 0,3 1) 
DOUBLE PRECISION COST(4), CT(10), CTR(I 6) 
INTEGER IA(16), IEB(16), IC(16), ID(16) 
INTEGER ISR(32), ISI(32), ISSR(32), ISSI(32) 
INTEGER IXR(4,32), IXI(4,32), IXXR(4,32), DCM(4,32) 
INTEGER ITR(10,32), M(10,32), IT7R(10,32), 17M(10,32) 
INTEGER INN(10)JNZ(4) 
INTEGER IHH(32), IDIFCD(16,2) 
INTEGER IENCD(4,32), IENDIF(4,32), IDECD(4,0: 1), IDCDIF(4) 

C INITIALISING VARIABLES FOR FADING GENERATOR 

DATA CF /-0.1130119879D+01,0.3450267457D+00, -O. I 166576134D+01, 
1 0.4780676433D+00, -0.5605390022D+00/ 
DCG=0.05734208236D+00 
NOSAM=2400 
INFD=9 

DL1=0.0 
DL2--O. O 
DL3=0.0 
DL4--O. O 
DI. 5=0.0 

JQ=50+NOSAM 
JQ1=JQ+l 

CALL G05CBF(INFD) 

C FADING GENERATOR 

DO 250 I= 1,4 

JA=l 

TF3DCG=0.0 
TVF3DCG=0.0 

DO 240 J=I, JQl 

FO--GO5DDF(O. ODO, I. ODO) 
Fl=FO-(DL1*CF(1)+DL2*CF(2)) 
F2--Fl-(DL3*CF(3)+DL4*CF(4)) 
F3=F2-(DL5*CF(5)) 
F3DCG=F3*DCG 



317 

DL5=F3 
DL4=DL3 
DL3=F2 
DL2=DL1 
DLI=Fl 

IF(J. LE. 50) GO TO 240 

Q(I, JA)--F3DCG 
JA=JA+l 

TF3DCG=TF3DCG+F3DCG 
TVF3DCG=TVF3DCG+(F3DCG**2) 

240 CONTINUE 

EF3DCG=TF3DCG/(NOSAM+I) 
VARF3DCG=TVF3DCG/(NOSAM+I) 

WRrf'E(0,244)I, EF3DCG 
YY'RITE(0,246)I, VARF3DCG 

244 FORMAT("MEANOFQ", Il, "(T) =", E16.7) 
246 FORMAT("VARLANCEOFQ", 11, "(T)=", EI6.7) 

250 CONTINUE 

ý, ý *, #1 1. pp 

C =ALISING VARIABLES FOR MAIN PROGRAM 

IRETR=50 
EFDIV=10 
FDIV=REAL(IFDIV) 
NOD=24000 
NTR=NOD/10 
RNOD=REAL(NOD) 
RM=NOD/IFDIV 
NOSNR--4 

SNR=10.0 
SNRD=2.5 
SNR=SNR-SNRD 

RýDTN=80 

BCONST=0.55 
THETA=0.79 
PSI=1.0 

K--4 
N=32 
NI=N-1 

DATA (IA(l), 1=1.8)/8*1/, (IA(I), 1=9,16)/8*-l/ 
DATA (1[13(l), EB(I+1)JB(1+2), IB(1+3), 1=1,9,8)/8*1/, 

I (IB(l), IB(1+1), IEB(1+2), EB(I+3), 1=5,13,8)/8*-l/ 
DATA (IC(I)JC(I+ 1), I= 1,13,4)/8 *I 

I (IC(l), IC(I+1), I=3,15,4)/8*-l/ 
DATA (ID(l), 1=1,15,2)/8*1/, (ID(l), I=2,16,2)/8*-l/ 

DATA IHH/0,0,0,1,1,0,1,1,1,0,0,0,1,1,0,1, 
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1 0,1,1,1,0,0,1,0,1,1,1,0,0,1,0,0/ 

DO 400 1= 1,16 
A(I)=REAUIA(I)) 
B(I)=REAIXIB(I)) 
C(I)=REAL(IC(I)) 
D(I)=REAL(ID(l)) 

400 CONTINUE 

KFC=O 
DO 600 1=1 1 16 
DO 550 J=1,2 
IDIFCD(I, J)=IHH(KFC+J) 

550 CONTINUE 
KFC=Y, FC+2 

600 CONTINUE 

C PREPARE FOR TRANSMISSION BY FIXING AN SNR VALUE 

DO 6000 IVAL--l, NOSNR 

CALL G05CBF(INDTN) 

SNR=SN-R+SNRD 
P=10.0**(-SNR/20.0) 
SIGSQN=P**2 

ICOUNT=O 
COUNT=0.0 
KCOUNT=O 

DO 650 1=1,4 
IDECD(I, O)=O 

650 CONTINUE 

EQR=0.0 
VQR--O. O 
EQI=0.0 
VQI=0.0 
EQQR=0.0 
VQQR=0.0 
EQQI=0.0 
VQQI=0.0 

XX=--O. O 

EERlSYM=O 
EER2SYM=O 
IER1=0 
IER2=0 
EER3=0 
IER4=0 
IDER1=0 
IDER2=0 
IDER3=0 
IDER4=0 

C INITIALISING SIGNAL ARRAYS 

DO 660 I=1, N 
SR(I)=I. O 
Sl(l)--1.0 
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SSR(I)=I. O 
SSI(I)=I. O 
ISR(I)=l 
ISI(I)=l 
ISSR(I)=l 
ISSI(I)=l 

660 CONTINUE 

C INITIALISING STORED VECTORS AND COSTS 
C ALSO INITIALISING ARRAYS CONTAINING BIT VALUES OF SIGNAL 

DO 670 1=1, K 
COST(I)=1000.0 

DO 665 J=I, N 
XR(I, J)=1.0 
M(I, J)=I. O 
XXR(I, J)=1.0 
=(I, J)=I. O 
IXR(I, J)=l 
DCI(I, J)=l 
IXXR(I, ])=l 
DCKI(I, J)=l 

YPlR(I, J)=0.9814489005D+00 
YP11(1, J)=-0.5665125350D+00 
YYPIR(I, J)=-0.679666933 ID+00 
YYP11(1, J)=0.2566136036D+00 
XGRR(I, J)=0.0005686099D+00 
XGRI(I, J)=0.0241126376D+00 
XGR2R(I, J)---0.0134283878D+00 
XGR21(1, J)=0.0153125377D+00 

IENCD(I, J)--O 
EENDIF(I, J)=O 

665 CONTINUE 
670 CONýNLJE 

COST(1)=O. O 

c ENTERING MAIN LOOP 

DO 4000 IM=1, Ri'fT 

CON1=(Q(I, IM+1)-Q(1, IM))/FDIV 
CON2=(Q(2, IM+1)-Q(2, IM))/FDIV 
CON3=(Q(3, IM+1)-Q(3, IM))IFDIV 
CON4=(Q(4, IM+I)-Q(4jM))IFDIV 

C ENTERING SECONDARY LOOP 

DO 3000 ISEC=1, IFDIV 

ICOUNT=ICOUNT+l 
COUNT=REAL(ICOUNT) 
KCOUNT=KCOUNT+l 

QR=Q(1, IM)+((ISEC-1)*CON1) 
QI=Q(2, IM)+((ISEC-1)*CON2) 
QQR=Q(3, IM)+((ISEC-I)*CON3) 
QQI=Q(4, IM)+((ISEC-I)*CON4) 
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EQR=EQR+QR 
VQR=VQR+(QR**2) 
EQI=EQI+Ql 
VQI=VQI+(Ql**2) 
EQQR=EQQR+QQR 
VQQR=VQQR+(QQR**2) 
EQQI=EQQI+QQI 
VQQI=VQQI+(QQI**2) 

YR=QR 
Yi=-Qi 
YYR=QQR 
YYI=-QQI 

IF(KCOUNT. EQ. IRETR) THEN 
DO 678 1=1, K 
YPlR(I, N)--YR 
YP11(1, N)=YI 
YYPlR(I, N)=YYR 
YYP11(1, N)--YYI 
XGRR(I, N)=YR-PYR 
XGRI(I, N)=YI-PYI 
XGR2R(I, N)=YYR-PYYR 
XGR21(1, N)=YYI-PYYI 

678 CONTINUE 
KCOUNT=l 
END IF 

C SI-HFTING SIGNAL REGISTERS FOR INCOMING DATA SYMBOL 

DO 680 I=I, Nl 
JX=I+l 
SR(I)=SR(JX) 
SI(i)--SI(JX) 
SSR(I)=SSR(JX) 
SSI(I)=SSI(JX) 
ISR(l)--ISR(JX) 
ISI(I)=ISI(JX) 
ISSR(I)=ISSR(JX) 
ISSI(I)=ISSI(JX) 

680 CONTINUE 

C SHIFIING STORED VECTORS TO ACCOMMODATE NEW VALUE 
C ALSO SHIFTING ARRAYS CONTAINING BIT VALUES OF SIGNAL 

DO 690 I=1, K 
DO 685 J=1, Nl 
JY=J+l 
XR(I, J)--XR(I, J-Y) 
)(I(Ilj)=XI(llJY) 
XXR(I, J)--XXR(l, fY) 
NM(Ili)==(IIJY) 
IXR(I, J)=IXR(I, JY) 
I)CI(i, J)--I)U(I, JY) 
IXXR(I, J)=IXXR(I, JY) 
IXXI(I, J)--DCKI(I,. TY) 

YPlR(I, J)=YPlR(I, J-Y) 
Ypil(i, i)--Ypll(l, jy) 
YYPlR(I, J)=YYPlR(I, JY) 
YYPII(I, J)=YYPII(I, JY) 
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XGRR(I, J)=XGRR(I, JY) 
XGRI(I, J)=XGRI(I, JY) 
XGR2R(I, J)--XGR2R(I, JY) 
XGR21(I, J)=XGR2I(I, J'Y) 

IENCD(I, J)=IENCD(I, J-Y) 
IENDIF(I, J)=IENDIF(I, JY) 

685 CONTINUE 
690 CONTINUE 

c GENERATING SIGNAL 

700 XX=G05CAF(XX) 
IF(XX-0.5)710,710,720 

710 SR(N)=-1.0 
ISR(N)=-l 
IENCD(2, N)=l 
GO TO 750 

720 SR(N)=1.0 
ISR(N)--l 
IENCD(2, N)--O 
GO TO 750 

750 XX=G05CAF(XX) 
IF(XX-0.5)760,760,770 

760 SI(N)---l. 0 
ISI(N)=-l 
IENCD(I, N)=l 
GO TO 800 

770 SI(N)=1.0 
ISI(N)=l 
IEENCD(1, N)=O 
GO TO 800 

800 XX=G05CAF(XX) 
IF(XX-0.5)810,810,820 

810 SSR(N)=-1.0 
ISSR(N)=-l 
IENCD(4, N)=l 
GO TO 850 

820 SSR(N)=1.0 
ISSR(N)=l 
IENCD(4, N)=O 
GO TO 850 

850 XX=G05CAF(XX) 
IF(X'X-0.5)860,860,870 

860 SSI(N)=-1.0 
ISSI(N)=-l 
IENCD(3, N)=l 
GO TO 900 

870 SSI(N)=I. O 
ISSI(N)=l 
IENCD(3, N)=O 
GO TO 900 

900 CONTINUE 

C DIFFERENTIALLY ENCODING SIGNAL 

JENCI=IENCD(1, Nl)*8+IENCD(2, Nl)*4+IENCD(I, N)*2+EENCD(2, N)+l 
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JENC2=IENCD(3, Nl)*8+IENCD(4, Nl)*4+IENCD(3ýN)*2+IENCD(4, N)+I 

IENDIF(1, N)=IDIFCD(JENC1, I) 
IENDIF(2, N)=IDIFCD(JENCI, 2) 
IENDIF(3-N)=IDIFCD(JENC2, I) 
IENDIF(4, N)=IDIFCD(JENC2,2) 

C CALCULATING RECEIVED SIGNAL 

YirR=GO5DDF(O. ODOO, P) 
WI=GO5DDF(O. ODOO, P) 
RR=(SR(N)*YR-SI(N)*Yl)+(SSR(N)*YYR-SSI(N)*YYI)+WR 
Rl=(SI(N)*YR+SR(N)*Yl)+(SSI(N)*YYR+SSR(N)*YYI)+WI 

C EXPANDING THE VECTORS ACCORDINGLY 

EBRAVO=O 
DO 1000 I=I, K 
DO 910 J=1,16 
DR=RR-(A(J)*Y-PIR(I, Nl)-B(J)*YP11(1, Nl)) 

1 -(C(J)*YYPlR(I, Nl)-D(J)*YYP11(I, Nl)) 
DI=RI-03(J)*YPIR(I, Nl)+A(J)*YP11(1, Nl)) 

1 -(D(J)*YYPlR(I, Nl)+C(J)*YYP11(1, Nl)) 
CTR(J)--PSI*COST(I)+DR**2+Dl**2 

910 CONTINUE 
DO 990 ITRAN=1, K-I+l 
CC=1000000.0 
DO 970 JTRAN=1,16 
IIF(CTR(JTRAN)-CC)960,970,970 

960 CC=CTR(JTRAN) 
JNX=JTRAN 

970 CONTINUE 
CT(IBRAVO+ITRAN)=CC 
INNOBRAVO+ITRAN)=JNX 
CTR(JNX)=10000000DOO 

990 CONTINUE 
IBRAVO=IIBRAVO+K-I+l 

1000 CONTINUE 

C TRANSFERRING THE 10 EXPANDED VECTORS TO A TEMPORARY STORE 

KB=O 
DO 1150 I=1, K 

DO 1140 KM=1, K-I+l 
DO 1130 J=1, Nl 
ITR(KB+KM, J)=IXR(I, J) 
ITI(KB+KM, J)=IXI(I, J) 
lTrR(KB+KM, J)=IX'XR(I, J) 
rM(KB+KM, J)=DCXI(I, J) 
GR(K]3+KM, J)=YPlR(I, J) 
GI(KB+KM, J)--YP11(I, J) 
GGR(KB+KM, J)=YYPlR(I, J) 
GGI(KB+KM, J)=YYP11(1, J) 
GXR(KB+KM, J)=XGRR(I, J) 
GXI(KB+KM, J)=XGRI(I, J) 
GGXR(KB+KM, J)=XGR2R(I, J) 
GGXI(KB+KM, J)=XGR2I(I, J) 

1130 CONTINUE 
LAST=INN(KB+KM) 
rrR(KB+KM, N)=IA(LAST) 
M(KB+KM, N)=IB(LAST) 
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ITTR(KB+KM, N)=IC(LAST) 
rM(KB+KM, N)=ID(LAST) 

1140 COMINUE 
KB=KB+K-I+l 

1150 CONTINUE 

C SELECTING THE BEST VECTOR FROM THE 10 STORED VECTORS 

CC=1000000.0 
DO 1170 I=1,10 
IF(CT(I) -CC) 1160,1170,1170 

1160 CC=CT(l) 
I]LUCK=I 

1170 CONTINUE 
COST(l)--CC 
INZ(I)=ELUCK 
CT(ILUCK)--IOOOOOOODOO 

C OBTAD; ING BIT VALUE OF DETECTED SIGNAL 

KADD=rFR(ILUCK, I)+ITI(ELUCK, l) 
KKADD=ITTR(ILUCK, I)+rM(I]LUCK, I) 

IF(KADD-O)l 171,1173,1172 
1171 IDECD(l, l)--l 

IDECD(2,1)=l 
GO TO 1174 

1172 IDECD(1,1)=O 
IDECD(2,1)--O 
GO TO 1174 

1173 IF(ITR(ELUCK, I). EQ. 1) THEN 
IDECD(l, l)--l 
IDECD(2, l)--O 
ELSE 
IDECD(1,1)=O 
IDECD(2,1)=l 
END IF 
GO TO 1174 

1174 IF(KKADD-0)1175,1177,1176 
1175 IDECD(3,1)=l 

EDECD(4,1)--l 
GO TO 1178 

1176 IDECD(3,1)--O 
IDECD(4,1)--O 
GO TO 1178 

1177 IF(ITTR(ILUCK, 1). EQ. 1) THEN 
IDECD(3,1)=l 
IDECD(4,1)--O 
ELSE 
IDECD(3,1)--O 
IDECD(4,1)=l 
END IF 
GO TO 1178 

C DIFFERENTIAL DECODING OPERATION 

1178 JDEC1=IDECD(1,0)*8+IDECD(2,0)*4+IDECD(1,1)*2+IDECD(2,1)+l 
JDEC2=IDECD(3,0)*8+1DECD(4,0)*4+IDECD(3,1)*2+IDECD(4,1)+l 

IDCDIF(I)=IDIFCD(J DEC 1,1) 
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IDCDIF(2)=IDIFCD(JDECI, 2) 
IDCDIF(3)--IDIFCD(JDEC2,1) 
IDCDIF(4)--IDIFCD(JDEC2,2) 

C ERROR COUNT 

IF(ICOUNT. LT. NTR)GO TO 1190 
IF(ISR(l)-ITR(ILUCK, I)) 1182,1181,1182 

1181 IF(ISI(l)-M(ILUCK, 1)) 1182,1184,1182 
1182 IERlSYM=IERlSYM+l 
1184 CONTINUE 

IF(IENCD(l, l). NE. IDECD(l, l)) IERI=IERI+l 
EF(IENCD(2, l). N-E. IDECD(2, l)) IER2=IER2+1 
EF(IENDEF(l, 1). NE. IDCDIF(l)) IDER 1 =IDER 1 +1 
IF(IENDEF(2,1). NE. IDCDlF(2)) IDER2=IDER2+1 

IF(ISSR(l)-rITR(ELUCK, 1)) 1187,1186,1187 
1186 IF(ISSI(l)-I'M(ILUCK, I)) 1187,1189,1187 
1187 IER2SYM=IEER2SYM+l 
1189 CONUNUE 

IF(IENCD(3,1). NE. IDECD(3,1)) IER3=IER3+1 
IF(IENCD(4, l). NE. IDECD(4, l)) IER4=TER4+1 
EF(IENDIF(3,1). NE. IDCDIF(3)) IDER3=IDER3+1 
IF(IENDIF(4,1). N-E. IDCDIF(4)) IDER4=IDER4+1 

1190 CONTINUE 

C SFHFT BIT VALUE OF DETECTED SIGNAL, FOR USE IN NEXT DETECTION 

DO 1195 I=1,4 
IDECD(1,0)=IDECD(l, 1) 

1195 CONTINUE 

C DISCARDING THE VECTORS THAT DO NOT AGREE 

DO 1230 I=1,10 
IF(ITR(ILUCK, 1)-ITR(l, l))1225,1205,1225 

1205 IF(M(ELUCK, 1)-M(I, 1))1225,1210,1225 
1210 IF(ITTR(ILUCK, 1)-rl7R(l, l))1225,1215,1225 
1215 IF(rM(ILUCK, I)-ITTI(l, l))1225,1230,1225 
1225 CT(I)=10000.0 
1230 CONTINUE 

C SELECT (K-1) MORE VECTORS FROM THE REMAINDER 

DO 1250 1= 1, K- 1 
CC=1000000.0 

DO 1240 J=1,10 
IF(CT(J)-CC)1235,1240,1240 

1235 CC=CT(j) 
JLUCK=J 

1240 CONTINUE 
COST(1+1)=CC 
INTZ(1+1)=JLUCK 
CT(JLUCK)--l OOOOOOODOO 

1250 CONTINUE 

C TRANSFER THE 4 SELECTED VECTORS BACK TO THE X STORE 
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DO 1270 I=1, K 
IFTN=INZ(I) 

DO 1260 J=1, N 
IXR(I, J)=ITR(IFIN, J) 
DG(I, J)=M(lFIN, J) 
lKXR(I, J)=MR(lFIN, J) 
DCXI(I, J)=rM(IFIN, J) 
XR(I, J)=REAWXR(I, J)) 
XI(I, J)=REAL(D(I(I, J)) 
XXR(I, J)=REAL(IXXR(I, J)) 
XXI(I, J)=REAL(DCKI(I, J)) 

1260 CONTINUE 
DO 1265 J=1, Nl 
YPlR(I, J)=GR(IFIN, J) 
YPlI(I, J)=GI(EFIN, J) 
YYPlR(I, J)=GGR(EFIN, J) 
YYPII(I, J)=GGI(IFIN, J) 
XGRR(1,3)=GXR(IFIN, J) 
XGRI(I, J)=GXI(IFIN, J) 
XGR2R(I, J)--GGXR(IFIN, J) 
XGR21(1, J)=GGXI(IFIN, J) 

1265 CONTINUE 
1270 CONTINUE 

C ESTIMATION PROCEDURE BEGINS 

DO 2500 I=1, K 

RRR=(XR(I, N)*YPlR(I, Nl)-XI(I, N)*YPII(I, Nl))+ 
(XXR(I, N)*YYPlR(I, Nl)-XXI(I, N)*YYPll(I, Nl)) 

RRI=(XI(I, N)*YPlR(I, Nl)+XR(I, N)*YP11(1, Nl))+ 
()CXI(I, N)*YYPlR(I, Nl)+XXR(I, N)*YYPII(I, Nl)) 

ER=RR-RRR 
EI=RI-RRI 
BER=BCONST*ER 
BEI=BCONST*El 

BESCR=BER*XR(I, N)+BEI*)CI(I, N) 
BESCI=BEI*XR(I, N)-BER*XI(I, N) 
BBESCR=BER*XXR(I, N)+BEI*X)U(I, N) 
BBESCI=BEI*XXR(I, N)-BER*XXI(I, N) 

YESR=YPlR(I, Nl)+BESCR 
YESI=YP11(I, Nl)+13ESCI 
YYESR=YYPIR(I, Nl)+BBESCR 
YYESI=YYP11(1, Nl)+BBESCI 

EER=YESR-YPlR(I, Nl) 
EEI=YESI-YPII(I, Nl) 
EE2R=YYESR-YYPlR(I, Nl) 
EE21=YYESI-YYP11(1, Nl) 

XGRR(I, N)=XGRR(I, Nl)+((I. O-Tli ETA)* *2)*EER 
XGRIU, N)=XGRI(I, Nl)+((I. O-THETA)**2)*EEI 
XGR2R(I, N)=XGR2R(I, Nl)+((1.0-THETA)**2)*EE2R 
XGR21(I, N)=XGR21(1, Nl)+((]. O-THETA)**2)*EE21 

YPlR(I, N)=YPIR(I, Nl)+XGRR(I, N)+(I. O-(THETA**2))*EER 
YPlI(I, N)=YP11(1, Nl)+XGRI(1, N)+(I . 0-(THETA**2))*EEI 
YYPlR(I, N)=YYPlR(I, Nl)+XGR2RU, N)+(I. O-(THETA**2))*EE2R 
YYP11(1, N)=YYP11(1, Nl)+XGR21(1, N)+(1.0-(THETA**2))*EE21 
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2500 CON'flNUE 

PYR=YR 
PYI=YI 
PYYR=YYR 
PYYI=YYI 

3000 CONTINUE 

4000 CONTINUE 

C CALCULATION OF ERROR RATES 

ERlSYM=IERlSYM/(COUNT-NTR) 
ERIBIT=(IER1+IER2)/(2*(COUNT-NTR)) 
ERlDBIT=(IDER1+IDER2)/(2*(COUNT-NTR)) 

ER2SYM=IER2SYM/(COUNT-NTR) 
ER2BIT=(IER3+IER4)/(2*(COUNT-NTR)) 
ER2DBIT=(IDER3+IDER4)/(2*(COUNT-NTR)) 

AVERSYM=(ERlSYM+ER2SYM)/2.0 
AVERBrr=(ERlBrr+ER2BIT)/2.0 
AVERDBrr=(ERIDBIT+ER2DBIT)/2.0 

EXQR=EQR/COUNT 
EXQI=EQI/COUNT 
VARQR=VQR/COUNT 
VARQI=VQI/COUNT 
EXQQR=EQQR/COUNT 
EXQQI=EQQI/COUNT 
VARQQR=VQQR/COUNT 
VARQQI=VQQI/COUNT 

SNRCALC=10.0*LOG10(1.0/SIGSQN) 

C PRINTING IMPORTANT RESULTS 

PRINT *, "BCONST=", BCONST 
PRINT *, "THETA=", THETA 
PRINT *, "PSI=", PSI 

WRITE(0,4010)NOD, ICOUNT, COUNT, NTR, IRETR 
4010 FORMAT("NOD=", 17/"ICOUNT="j7f'COUNT=", FI2.2/"NTR=", 17/ 

1 "IRETR=", I7) 

V; RITE(0,4020)INFD, INDTN 
4020 FORMAT("INFD=", 13T'INDTN=", 13/) 

V4=(0,4030)EXQR, VARQR 
4030 FORMAT("MEANOFQR=", EI7.10,2X, "VAPJANCEOFQR=", EI7.10) 

Y4=(0,4040)EXQI, VARQI 
4040 FORMAT(WEAN OF QI =". El 7.10,2X, "VARIANCE OF QI =", E 17.10) 

WRrM(0,4050)EXQQR, VARQQR 
4050 FORMAT("MEANOFQQR=", El7.10,2X, "VARIANCEOFQQR=", El7.10) 

WRITE(0,4060)EXQQI, VARQQI 
4060 FORMAT(WEAN OF QQI=", E I 7.10,2X, "VARIANCE OF QQI=", E 17.10) 
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WRrl'E(0,4070)SNRCALC 
4070 FORMAT(P'SIGNAL-TO-NOISE RATIO =", F9.5, "DB'S"/) 

VaUTE(0,4080)ERlSYM 
4080 FORMAT("SYMBOL ERROR RATE NO. 1 =", E17.10) 

Y; RITE(0,4090)ERlBIT 
4090 FORMAT("BIT ERROR RATE NO. 1 =", E17.10) 

WRITE(0,4100)ERlDBIT 
4100 FORMAT("DIFFERENTIAL BIT ERROR RATE NO. 1 =", El7.10/) 

NVRITE(0,4110)ER2SYM 
4110 FORMAT("SYMBOL ERROR RATE NO. 2 =", E17.10) 

YY'RITE(0,4120)ER2BIT 
4120 FORMAT("BIT ERROR RATE NO. 2 =", E17.10) 

WRITE(0,4130)ER2DBIT 
4130 FORMAT("DIFFERENTIAL BIT ERROR RATE NO. 2 =", E17.10/) 

WRITE(0,4140)AVERSYM 
4140 FORMAT("AVERAGE SYMBOL ERROR RATE =", El7.10) 

VIRITE(0,4150)AVERBI'F 
4150 FORMAT("AVERAGE BIT ERROR RATE =", E17.10) 

WRITE(0,4160)AVERDBIT 
4160 FORMAT("AVERAGE DIFFERENTIAL BIT ERROR =", El7. IOH/) 

RýDTN=Rq-DTN+l 

6000 CONTINUE 

STOP 
END 
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APPENDIX K 

SIMULATION OF 4.8 KBIT/S HF RADIO MODEM 
AS GIVEN IN CHAPTER 7 

/*JOB DGR1, EUELSJ2, ST=C20, C=C, T71=2500, 
/* PW=SDMVP 
PATrACH, LIBAPPL. 
PATTACHYROCLIB. 
BEGIN,, GETFEP, FDIMP, FCE36, FO=BINARY. 
SWITCH, FDIMP, RT=W. 
FIN200, L--O, OP'f. 
LOAD, I-J]B=BLAS, NAGLIB. 
GO. 
####S 

PROGRAM FADFIL 
PARAMETER(NIMP=22, N=81, K=8, NN=32, NTAP=50, NEST=NTMP) 
PARAMETER(LLOUT=99) 
PARAMETER(MV1=1, MV2=1, MV3=2, MVTOT=MV1+MV2+MV3) 
INTEGER IILKI(32), ILK2(32), ILK3(32) 
INTEGER ILKPI(16,2), ILKP2(16,2)JLKP3(16,2) 
INTEGER MlTl(N), IBln(N), IIDBITI(N), IDBM(N), ISR(N), ISI(N) 
INTEGER IXR(KNN), DCI(KNN), ITR(K, NN), M(K, NN) 
INTEGER INN(MVTOT) 
REAL HFR(NIMP), HFI(NIMP), WFR(NIMP), WFI(NIMP), YR(NIMP), YI(NIMP) 
REAL SR(N), SI(N) 
REAL XR(KNN`), XI(Kj*4N), GR(K), GI(K) 
REAL VR(K), VI(K), VVR(K), VVI(K) 
REAL COST(K), CTI (K), CT2(MVTOT), CT3(K) 
REAL SYR(NIMP), SYI(NIMP), SSYR(NIMP), SSYI(NIMP) 
REAL YFR(NTAP+1), YFI(NTAP+1), SYFR(NTAP), SYFI(NTAP) 
REAL RR(N'TAP), RI(NTAP) 
REAL YRSR(NTAP, NIMP), YRSI(NTAP, NIMP) 
REAL YPlR(N'F-ST), YPII(NEST), GRDR(NEST), CRDI(NEST) 
REAL UPESR(NEST), UPESI(NEST), ERUPR(NEST), ERUPI(NEST) 

C VALUES TO VARIABLES AND ARRAYS 

JQ=21 
B=0.12 
THETA=0.95 
NOSNR=12 
KLOOP=57600 
SNR=14.0 
SNRD=0.5 
FRD=O 
NPRED=JPRD+l 
NTR=1000 
IRTRN=1000 
RTRN=REAL(IRTRN) 

-FACT=KLOOP/RTRN I]FACT=INT(FACT) 
JNTR=NNI*(IFACT-1) 
SNR=SNR-SNRD 
NI=N-1 
MMVTOT=MVTOT 
NWV2=MV2 
MMV3=MV3 
NTAPMI=NTAP-1 
NTAPM2=NTAP-2 
NN1=NN-1 
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DUMI=(I. O-THETA)*(I. O-THETA) 
DUM2=1.0-(THETA*THETA) 

DATA WFR/-0.02805, -0.23081, -0.50758, -0.49800, 
1 -0.16221,0.11289,0.10851, -0.0073 1, 
2 -0.04869, -0.00976,0.01514,0.00523, 
3 -0.00449,0.00063,0.00107, -0.00093, 
4 0.00000,0.00000,0.00()00,0.000oo, 
5 0.00000,0.00000/ 

DATA WFI/ 0.01968,0.16746,0.39481,0.40568, 
1 0.10503, -0.13375, -0.07360,0.04669, 
2 0,02741, -0.01851, -0.00698,0.01100, 
3 0.00286, -0.00221,0.00136, -0.00045, 
4 0.00000,0.00000,0.00000,0.00000, 
5 0.00000,0.00000/ 

DATA ILKI/0,0,0,1,1,0,1,1,0,1,1,1,0,0,1,0, 
1,0,0,0,1,1,0,1,1,1,1,0,0,1,0,0/ 

DATA 

DATA ILK3/0,0,0,1,1,0,1,1,1,0,0,0,1,1,0,1, 
0,1,1,1,0,0, l'o, 1,1,1,0,0,1,0,0/ 

KLKI=O 
DO 30 1=1,16 
DO 25 J=1,2 
IILKP1(I, J)=ILKI(KLK1+J) 
ELKP2(1, J)=ELK2(KLK1+J) 
ILKP3(1, J)=ILK3(K-LKI+J) 

25 COIIMN-UE 
KLK1=KLKI+2 

30 CONTINUE 

C OPEN ALL RELEVANT FILES 

OPEN(18, FILE='FDIMP', FORM='UNFORMAT-fED', IOSTAT=IOSS) 
OPEN(LLOUT, FILE--'OUTPUT', IOSTAT=JOSS) 
WRITE(LLOUT, 71)IOSSJOSS 

71 FORMAT(P ERRORS IN EXECUTION OF THE OPEN STATEMENT=', 13, I3/ 
11 7) 

CALL G05CBF(IQ) 

C PREPARE FOR TRANSMISSION BY FIXING AN SNR VALUE 

DO 9000 IVAL--1, NOSNR 

SNR=SNR+SN-RD 
STDVN=10.0**(-SNR/'20-0) 

XX=0.0 
ICOUNT=O 
TPRER=0.0 

IERSYM=O 
IER1=0 
IER2=0 
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IIDER1=0 
IIDER2=0 

IPDB1=0 
IPDB2=0 

C INITIALISING SIGNAL, AND NOISE ARRAYS 

DO 100 I= 1, N 
EBITl(l)=0 
IBIT2(1)=O 
IDBITI(I)=O 
IDBIT'2(I)=O 
SR(I)=1.0 
Si(l)=I. O 
ISR(I)=l 
ISI(I)=l 

100 CONTINUE 

DO 105 I=1, NTAP 
RR(I)=I. O 
Rl(l)=I. O 

105 CONTINUE 

DO I 10 1=1, NIMP 
HFR(I)=O. O 
HFI(I)=O. O 

110 CONTINUE 

C INMALISING STORED VECTORS AND COSTS 

DO 130 1=1, K 
COST(I)=10000.0 
DO 120 J=1, NN 
XR(I, J)--l. 0 
XI(I, J)=1.0 
IXR(I, J)=l 

120 CONTINUE 
130 CONTINUE 

COST(l)=0.0 

C INITIALISING ARRAY WHERE SIR WILL BE HELD 

DO 140 1=1, NTAP 
DO 135 J=1, NIMP 
YRSR(I, J)=O. O 
YRSI(I, J)=O. O 

135 CONTINUE 
YRSR(1,1)=1.0 
YRSR(I, 2)=-O. l 
YRSI(1,1)=O. O 

140 CONTINUE 

INMALISING ARRAY WHERE PREDICTIONS ARE HELD 

DO 145 1=1, NEST 
YPlR(I)=O. O 
YPII(I)=O. O 
GRDRa)--O. O 
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GRDI(l)--O. O 
145 CON'flNUE 

YPlR(l)--l. 0 
YPlR(2)=-O. l 

C ENTERING MAIN LOOP 

DO 8000 IMAIN=1, KLOOP 

ICOUNT=ICOUNT+l 
COUNT=REAL(ICOUNT) 

C S11IFTING SIGNAL REGISTERS FOR INCOMING DATA SIGNAL 

DO 150 1=1, Nl 
Jxl=l+l 
EBIT1(I)=IBrrl(JX1) 
EBM(I)=MM(JX1) 
IIDBITI(I)=IDBIT1(JX1) 
IDBM(l)--IDBM(JX1) 
SR(I)=SR(JX1) 
Si(l)--SI(JXI) 
ISR(I)=ISR(JX1) 
ISI(I)--ISI(JXI) 

150 CONTINUE 

DO 155 1=1, NTAPMl 
JFX1=1+1 
RR(I)=RR(JFX1) 
Rl(l)=RI(JFXI) 

155 CONTINUE 

C SFHFTING STORED VECTORS TO ACCOMMODATE NEW VALUES 

DO 170 1=1, K 
DO 160 J=1, NN1 
JX2=J+l 
XR(I, J)=XR(I, JX2) 
M(I, J)=)U(I, JX2) 
IXR(I, J)=IXR(I, JX2) 
DCI(I, J)=IXI(I, JX2) 

160 CONTINUE 
170 CONTINUE 

C SHIFTING SIR ARRAY IN PREPARATION FOR CURRENT SIR 

DO 175 1=1, NTAPM1 
DO 174 J=1, NIMP 
JFX2=I+l 
YRSR(I, J)=YRSR(JFX2, J) 
YRSI(I, J)--YRSI(JFX2, J) 

174 CONTINUE 
175 CONTINUE 

C INPUT SAMPLED IMPULSE RESPONSE 

READ(18)(YRSR(NTAP, I), 1=1, NIMP) 
READ(18)(YRSI(NTAP, I), I=I, NIMP) 
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IF (ICOUNT. EQ. NTAP. OR. MOD(ICOUNTJRTRN). EQ. 0) THEN 
DO 176 1=1, NIMP 
YPIR(I)=YRSR(lJ) 
YPII(I)--YRSI(l, l) 
GRDR(l)--O. O 
GRDI(I)=O. O 

176 CONTINUE 
DO 178 I=1, K 
DO 177 J=I, NN1 
XR(I, J)--SR(J) 
)G(I, J)=Sl(i) 
IXR(I, J)=ISR(J) 
IXI(i, i)--ISI(J) 

177 CONTINUE 
COST(I)=10000.0 

178 CONTINUE 
COST(1)=O. O 
END IF 

DO 179 1=1, NEST 
YR(I)=YPlR(I) 
Yl(l)=Ypll(l) 

179 CONTINUE 

C CALCULATION OF PREDICTION ERRORS 

IF (ICOUNT. GTNTR) THEN 
Y'EROR=0.0 
DO 180 1=1, NTEST 
PRER1=(YPlR(I)-YRSR(l, l))**2 
PRER2=(YPII(l)-YRSI(l, l))**2 
YEROR=YEROR+PRERI+PRER2 

180 CONTINUE 
TPRER=TPRER+YEROR 
END IF 

C CALL THE FILTER SUBROUTINE WHICH GIVES AN ESTIMATE OF THE CURRENT 
C ME14MUM PHASED CHANNEL AND THE CORRESPONDING FILTER COEFFICIENTS 

CALL DFILT(YR, YI, ICOUNT, SYR, SYI, YFR, YFI) 

C OBTAIN SCALED VERSION OF MINIMUM PHASED CHANNEL AND APPROPRIATELY 
C SCALED VERSION OF THE FILTER TAPS. THESE WILL BE HELD IN ARRAYS 
C SSYRSSYI, SYFR AND SYFI, RESPECTIVELY. 

SYSQQ=SYR(1)*SYR(I)+SYI(I)*SYI(I) 
DO 183 J=1, NIMP 
SSYR(J)=(SYR(1)*SYR(J)+SYI(1)*SYI(J))ISYSQQ 
SSYI(J)=(SYR(1)*SYI(J)-SYI(I)*SYR(J))/SYSQQ 

183 CONTINUE 

DO 185 1=1, NTAP 
SYFR(I)=(SYR(I)*YFR(I)+SYI(I)*YFI(l))/SYSQQ 
SYFI(I)=(SYR(1)*YFI(I)-SYI(I)*YFR(1))/SYSQQ 

185 CONTINUE 

C CALCULATING THE INTERSYMBOL INTERFERENCE 

DO 200 I= 1, K 
GR(I)=O. O 
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Gl(l)=O. O 
DO 195 J=2, NIMP 
JX3=NN+I-J 
GR(l)--GR(I)+XR(I, JX3)*SSYR(J)-XI(I, JX3)*SSYI(J) 
Gl(l)=Gl(l)+XR(I, JX3)*SSYI(J)+XI(I, JX3)*SSYR(J) 

195 CONTINUE 
200 CONTINUE 

C GENERATING SIGNAL IN BIT FORM 

XX=G05CAF(XX) 
IF(XX-0.5)210,210,220 

210 IBITI(N)=O 
GO TO 230 

220 103IT1(N)=l 
230 XX=G05CAF(XX) 

IF(XX-0.5)240,240,250 
240 EBIT2(N)=O 

GO TO 260 
250 MM(N)=l 
260 CONTINUE 

C DIFFERENTIAL ENCODING AND GENERATION OF QPSK SIGNAL 

JEN1=IDBrFl(Nl)*8+IDBM(Nl)*4+IBITI(N)*2+IBIT2(N)+l 

IUDBITI(N)=ILKP1(JENI, l) 
IIDBIT2(N)--ILKPI(JENI, 2) 

ISR(N)=ILKP2(JEN1,1) 
ISI(N)---ILKP2(JEN1,2) 
SR(N)=REAL(ISR(N)) 
SI(N)--REAL(ISI(N)) 

C GENERATION OF NOISE 

DO 350 LNM=1,2 
DO 330 1=1, NIMP-1 
JX4=I+l 
HFR(I)=HFR(JX4) 
HFI(I)=HFI(JX4) 

330 CONTINUE 
HFR(NIMP)--GO5DDF(O. 0, STDVN) 
HFI(NIMP)=GO5DDF(O. 0, STDVN) 
WR=0.0 
WI=0.0 
DO 340 1=1, NIMP 
JX5=NIMP-I+l 
WR=WR+HFR(JX5)*WFR(I)-HFI(JX5)*WFI(l) 
WI=WI+HFR(JX5)*WFI(I)+HFI(JX5)*WFR(l) 

340 CONTINUE 
350 CONTINUE 

C CALCULATION OF RECEIVED SIGNAL 

RR(NTAP)=O. O 
RI(NTAP)=0-0 
DO 400 I= INIMP 
JX6=N+1-1 
RR(NTAP)=RR(NTAP)+SR(JX6)*YRSR(NTAP, I)-SI(JX6)*YRSI(NTAP, l) 
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RI(NTAP)--RI(NTAP)+SR(JX6)*YRSI(NTAP, I)+SI(JX6)*YRSR(NTAP. 1) 
400 CONTINUE 

RR(NTAP)=RR(NTAP)+VY'R 
RI(NTAP)=RI(NTAP)+Wl 

C PASSING RECEIVED SIGNAL THROUGH ADAPTIVE FILTER 

VFR=0.0 
VFI=0.0 
DO 450 1=1, NTAP 
JFX3=NTAP-I+l 
VFR=VFR+SYFR(I)*RR(JFX3)-SYFI(I)*RI(JFX3) 
VFI=VFI+SYFR(I)*RI(JFX3)+SYFI(I)*RR(JFX3) 

450 CONTINUE 

C DETECTION BEGINS 
C THRESHOLD DETEC71ONTO OBTAIN LOWEST COST VECTOR. 
C CALCULATION OF THE COSTS OF THESE EXPANDED VECTORS. 

DO 500 1=1, K 

Vl=VFR-GR(l) 
VZ--VFI-GI(l) 
VRa)=Vl 
Vl(l)=V2 

IF (Vl. GE. 0) THEN 
XR(IJ, 4M=1.0 
IXR(I, NN)--l 
ELSE 
XR(I, NN)=-I. O 
IXR(I, NN)=-l 
END IF 

IF (V2. GE. 0) THEN 
XI(I, NN)--l. 0 
IXI(IJ. 4m=l 
ELSE 
)G(I, NN)=-1.0 
DCI(I, NN)=-l 
END IF 

DR=Vl-XR(I, NN) 
DI=V2-XI(I, NN) 
VVR(I)=DR 
VVI(I)=Dl 
CT1(1)=COST(I)+DR*DR+DI*Dl 

500 CONTINUE 

C SELECT THE BEST VECTOR FROM THE 1K EXPANDED VECTORS 

CC=1000000.0 
DO 650 1=1, K 
IF(CT1(1)-CC)630,650,650 

630 CC=CT1(I) 
LCl=I 

650 CONTINUE 
CT2(l)--CC 
INN(1)=LCI 
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CT1(LC1)=10000000,0 

C OBTAINING BIT VALUE OF DETECTED SIGNAL 

KADD=IXR(LC1,1)+IXI(LCl, l) 

IF(KADD-0)670,690,680 
670 IDB1=1 

IDB2=1 
GO TO 700 

680 IDBI=O 
IDB2=0 
GO TO 700 

690 IF(IXR(LCl, l). EQ. 1)THEN 
lDBl=l 
IDB2=0 
ELSE 
IDBl=0 
IDB2=1 
END IF 

700 CONTINUE 

C DIFFERENTIAL DECODING OPERATION 

JEN2--IPDB 1*8+fPDB2*4+IDB I *2+IDB2+1 

ISB1=ELKP3(IEN2,1) 
ISB2=ILKP3(JEN2,2) 

C ERROR COUNT 

IF(ICOUNT. LE. NTR)GO TO 800 
IF(ISR(l)-IXR(LCl, l))780,770,780 

770 IF(ISI(l)-I)U(LCI, I))780,790,780 
780 IERSYM=IERSYM+l 
790 IF(IDBIT1(1). NEJDB1)IERI=IERI+l 

IF(IDBrr2(1)NE. IDB2)IER2=]EER2+1 
IF(EBIT1(1). NE. ISB1)IDER1=IDERI+l 
IF(IBIT2(l). NF-. ISB2)IDERZ--IDER2+1 

800 CONTDTUE 

C DISCARDING THE VECTORS WHICH DO NOT AGREE 

DO 830 I=I, K 
IF(IXR(l, l)-IXR(LCl, l))820,810,820 

810 IF(IXI(l, l)-D(I(LCl, l))820,830,820 
820 CT1(1)=100000.0 
830 MMNUE 

C SELECTING (MVTOT-1) MORE VECTORS FOR THE CORRESPONDING EXPANSIONS 

IF (MMVTOT. EQ. 1) GO TO 870 

DO 860 I=I, MMVTOT-1 
CC= 1000000.0 

DO 850 J=I, K 
IF(CT1(J)-CC)840,850,850 

840 Cc=cTl(j) 
LC2=J 



336 

850 CONTINUE 
CT2(1+1)=CC 
INN(1+1)=LC2 
CTI(LC2)=10000000.0 

860 CONTINUE 

870 CONTINUE 

C TRANSFER AND EXPANSION OF THE BEST (MV1) VECTORS INTO 
C4 WAYS AND CALCULATING THEIR COSTS. 

MC1=1 
fDl=O 
DO 1000 1=1, MV1 
LC3=ENN(l) 
C73(MC1)=M(l) 
DO 950 Ul=1,4 
fDl=fDl+l 

DO 925 f=I, NN 
ITR(JD1, f)=IXR(LC3, f) 
M(JDI, f)=IXI(LC3, f) 

925 CONTINUE 
950 CONTINUE 

rrR(JD1, NN)=-IXR(LC3, NN) 
M(JD1, NN)=-DCI(LC3, NN) 

M(J]Dl-l, NN)=-DU(L)C3, NN) 

ITR(J]DI-2, NN)=-IXR(LC3, NN) 

JD2=2 
DO 975 U2=2,4 
JD3=JD1-JD2 
DDR=VR(LC3)-REAL(ITR(JD3, NN)) 
DDI=VI(LC3)-REAL(ITI(JD3, NN)) 
CT3(JD3)=COST(LC3)+DDR*DDR+DDI*DDI 
JD2=JD2-1 

975 CONTINUE 
MC1=MC1+4 

1000 CONTINUE 

C TRANSFER AND EXPANSION OF THE NEXT BEST (MV2) VECTORS 
C INTO 2 WAYS AND CALCULATING THEIR COSTS 

IF (MMV2. EQ. 0) GO TO 1060 

NDI=MVI*4 
DO 1050 1=1, MMV2 
LC3=INN(MVI+I) 
C73(MCI)=C'M(MVI+I) 

DO 1010 IJ1=1,2 
NDI=ND1+1 
DO 1005 J= 1 JýN 
rrR(ND1, J)=IXR(LC3, J) 
M(ND1, J)=DCI(LC3, J) 

1005 CONTINUE 
1010 CONTINUE 

TMXR=IXR(LC3, NN) 
TMXI=IXI(LC3, NN) 
VMR=SIGN(2.1, VVR(LC3)) 
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IVMR=INT(VMR) 
VMI=SIGN(2.1, VVI(LC3)) 
IVMI=lr4T(VMI) 

IF (ABS(VVI(LC3))-ABS(VVR(LC3))) 1022,1022,1030 

1022 ITR(NDI, NN)=TNI-XR+IVMR 
IF (ABS(ITR(ND1, NN))-2) 1045,1024,1024 

1024 ITR(ND1, NN)=TMXR 
M(ND1, NN)--TMXI+IVMI 
IF (ABS(M(NDI JTN))-2) 1045,1026,1026 

1026 M(ND1, NN)--TMXI-IVMI 
GO TO 1045 

1030 M(NDIM)=TMXI+IVMI 
IF (ABS(M(ND1, NN))-2)1045,1032,1032 

1032 ITR(ND1, NN)--TMXR+IVMR 
M(ND1, N-N)=TNM 
IF (ABS(ITR(NDI, NN))-2) 1045,1034,1034 

1034 ITR(ND1, NN)=TMXR-IVMR 

1045 CONTINUE 

DDR=VR(LC3)-REAL(ITR(NDI, NN)) 
DDI=VI(LC3)-REAL(M(ND1, NN)) 
CT3(ND1)=COST(LC3)+DDR*DDR+DDI*DDI 

MC1=MC1+2 
1050 CONTINUE 

1060 CONTINUE 

C TRANSFER OF NEXT BEST (MV3) VECTORS EXPANDED SINGLY 

IF (MMV3. EQ. 0) GO TO 1068 

DO 1066 1=1, MNW3 
LC3=INN(MV1+MV2+I) 
DO 1064 J=IIN 
ITR(MC1, J)=IXR(LC3, J) 
M(MC1, J)=DCI(LC3, J) 

1064 CONTINUE 
CT3(MCI)=CT'2(MVI+MV2+I) 
mcl=mcl+l 

1066 CONTINUE 

1068 CONTINUE 

C TRANSFERRING THE FINAL K VECTORS AND COSTS TO THEIR ORIGINAL 
C STORE, READY FOR THE NEXT DETECTION PROCESS. 

DO 1080 1=1, K 
DO 1070 J=INN 
IXR(1,3)=ITR(I, J) 
DU(I, J)--ITI(I, J) 
XR(I, J)=REAL(IXR(I, J)) 
XI(I, J)--REAL(DCI(I, J)) 

1070 CONTINUE 
COST(I)=CT3(I) 

1080 CONTINUE 
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C SUBTRACT COSTS TO BRING THE SMALLEST COST TO ZERO 

DO 1090 1=2, K 
COST(I)=COST(l)-COST(l) 

1090 CONTINUE 
COST(I)=O. O 

IPDBI=IDB1 
IPDB2=IDB2 

C ESTIMATION BEGINS 

C FORMING ESTIMATE OF THE RECEIVED SIGNAL AND CALCULATING THE 
C ERROR IN THAT ESTIMATE 

RER=0.0 
REI=0.0 
DO 1110 1=1, N-EST 
KX1=NN+I-l 

- 
RER=RER+XR(1, KX1)*YPlR(I)-Xl(l, KXI)*YPII(I) 
REI=REI+X'R(1, KX1)*YPII(I)+Xl(l, KXl)*YPlRO) 

1110 CONTINUE 

ERESR=RR(l)-RER 
ERESI=RI(l)-REI 

C OBTAINING THE UPDATED ESTIMATE AND ITS ERROR, WHERE THE 
C LATTER IS OBTAINED FIRST, IN ORDER TO MAKE THE SOFTWARE 
C MORE EFFIFCIENT. 

DO 1120 I=INEST 
KX2=NN+I-I 
ERUPR(I)=B*(ERESR*XR(I, KX2)+ERESI*Xl(l, KX2)) 
ERUPI(I)=B*(ERESI*XR(1, KX2)-ERESR*Xl(l, KX2)) 
UPESR(I)=YPlR(I)+ERUPR(l) 
UPESI(I)=YPlI(I)+ERUPI(l) 

1120 CONTINUE 

C PREDICTION PROCESS BEGINS 

DO 1130 I= INEST 
GRDR(I)=GRDR(I)+(DUM1*ERUPR(l)) 
GRDI(I)=GRDI(I)+(DUMI*ERUPI(l)) 
YPlR(I)=YPlR(I)+GRDR(I)+(DUM2*ERUPR(l)) 
YP11(I)=YP11(I)+GRDI(I)+(DUM2*ERUPI(l)) 

1130 CONTINUE 

8000 CONTINUE 

C CONFIRMATION OF SNR VALUE AND CALCULATION OF ERROR RATES 

SNRCALC=10.0* LOG 1 0(1.0/(STDVN* STDVN)) 

ERSYM=IERSYM/(COUNT-NTR-JNTR) 
ERBIT=(IER1+IER2)/(2.0*(COUNT-NTR-JNTR)) 
ERDBIT=(IDER1+IDER2)/(2.0*(COUNT-NTR-JNTR)) 
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IF (TPRER. NE. 0) THEN 
AVPRER=10.0*LOG10(TPRER/(COUNT-NTR)) 
ELSE 
AVPRER=0.0 
END IF 

C PRINTING IMPORTANT RESULTS 

WRITE(LLOUT, 8110)KLOOP, NTR, IQ, K 
8110 FORMAT('KLOOP=', IlOfNTR=', IlOfIQ=', IIO[K=', 110) 

Y; RITE(LLOUT, 8120)ICOUNT, COUNT 
8120 FORMAT('ICOUNT=', IlOf COUNT=', Fl2.2) 

WRITE(LLOUT, 8123)IFACT, JNTR 
8123 FORMAT('IFACT=', IlOf JNTR=', 110/) 

WRITE(LLOUT, 8125)B, THETA 
8125 FORMAT('B=', F8.4[ THETA=', F8.4/) 

WRITE(LLOUT, 8130)SNRCALC 
8130 FORMAT('THEORETICAL SIGNAL-TO-NOISE RATIO=% F9.3, 'DB') 

WRITE(LLOUT, 8135)AVPRER 
8135 FORMAT(AVERAGE ERROR IN ONE-STEP PREDICTION =', E20.10, 'DB') 

Y; RITE(LLOUT, 8140)ERSYM 
8140 FORMAT('SYMBOL ERROR RATE =', E20.10) 

NVRITE(LLOUT, 8150)ERBIT 
8150 FORMAT(BIT ERROR RATE =', E20.10) 

WRITE(LLOUT, 8160)ERDBIT 
8160 FORMAT(DIFFERDMAL BIT ERROR RATE =', E20.10//) 

REWIND(18) 

9000 CONTINUE 

STOP 
END 
SUBROUTINE DFILT(YR, YI, ICOUNT, SYR, SYI, YFR, YFI) 

PARAMETER(NINRT=9, NIMP=22, NTAP=50) 
REAL YR(NIMP), YI(NIMP), SYR(NIMP), SYI(NIMP) 
REAL ER(NIMP+I), EI(NIMP+I) 
REAL FR(NIMP+I), FI(NIMP+I) 
REAL RREAL(NIMP), RIMAG(NIMI)) 
REAL FSPR(NINRT), FSPI(NINRT), STPR(NTMP), STI)I(NIMP) 
REAL YFR(NTAP+1), YFI(NTAP+I) 
REAL QR(NTAP+1), QI(NTAP+l) 
REAL PREAL(NIMP), PIMAG(NIMP) 

C VALUES TO VARIABLES AND ARRAYS 

C=1.0 
D=10. OE-10 
AD--1.05 
ALTHD=I. O/AD 
NROOT=O 
JREF=l 
NIMPP1=NIMP+l 
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NIMPM2--NIMP-2 
NTAPP1=NTAP+l 
NDIVG--40 

DATA FS PR / 0.00000,0.90909,0.00000,0.00000, -0.90909, 
0.64282,0.64282, -0.64282, -O. (>4282 / 

DATA FSPI 10-00000,0.00000, -0.90909,0.90909,0.00000, 
-0.64282,0.64282,0.64282, -0.64282 / 

EFSPR=INT(FSPR(NINRT)* 100.0) 
IFSPI=UýT(FSPI(NINRT)* 100.0) 

IF (ICOUNT. EQ. 1) THEN 
DO 50 I=I, NMT 
STPR(I)=FSPR(l) 
STPI(I)=FSPI(l) 

50 CONTINUE 
DO 60 I=NINRT+I, NIMP 
STPR(I)=O. O 
STPI(I)=O. O 

60 CONTRýUE 
END IF 

DO 100 I=INIMP 
SYR(I)=YR(l) 
SYI(I)--Yl(l) 
RREAL(I)=O. O 
RIMAG(l)=0.0 

100 CONTINUE 

200 CONTINUE 

C ONE TAP FEEDBACK FILTER 

BETAR=STPR(JREF) 
BETAI=STPI(JREF) 

DO 1000 I=1, NDIV9 

DO 5 10 J= 1, NIMPP 1 
ER(J)=O. O 
EI(J)=O. O 

510 CONTINUE 

PR=0.0 
PI=0.0 

DO 520 J=I, NIMP 
JI=NIMP+1-J 
FOR=SYR(Jl)-(BETAR*PR-BETAI*Pl) 
FOI=SYI(Jl)-(BETAR*PI+BETAI*PR) 
PR=FOR 
Pl=FOl 
ER(Jl)--FOR 
EI(Jl)=FOI 

520 CONTINUE 

C ESTIMATE VALUE OF EPSILON 

ALFAR=-BETAR 
ALFAI=-BETAI 
EPSR=ER(NIMP) 
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EPSI=EI(NIMP) 
DO 530 J=I, NTMPM2 
J2--NIMP-J 
PALFAR=EPSR*ALFAR-EPSI*ALFAI 
PALFAI=EPSR*ALFAI+EPSI*ALFAR 
EPSR=PALFAR+ER(J2) 
EPSI=PALFAI+EI(J2) 

530 CONTINUE 

C OBTAIN CONDITION FOR CON-VERGENCE 

EPSMAG=EPSR*EPSR+EPSI*EPSI 
DELR=(ER(1)*EPSR+El(l)*EPSI)/EPSMAG 
DELI=(El(l)*EPSR-ER(1)*EPSI)/EPSMAG 
DELMAG=DELR*DELR+DELI*DELJ 

C AS LONG AS CONVERGENCE IS NOT ACHEIVED OR ALGORITHM HAS 
C NOT DIVERGED, DO ITERATION AGAIN. 

IF (DELMAG. LT. D) THEN 
GO TO 2050 
ELSE 
DELR=C*DELR 
DELI=C*DELI 
BETAR=BETAR+DELR 
BETAI=BETAI+DELI 

DL1=SQRT(BETAR*BETAR+BETAI*BETAI) 
IF (DL1. GT. ALTHD) THEN 
GO TO 1050 
END IF 

END IF 

1000 CONTINUE 

1050 CONTINUE 

C FIND NEW STARTING POINT AFFER DIVERGENCE 

IF (ICOUNT. EQ. 1) THEN 
IF (JREF. LT. NINRT) THEN 
JREF=JREF+l 
GO TO 200 
ELSE 
GO TO 2200 
END IF 

ELSE 
ISTPR=INT(STPR(JREF)* 100.0) 
ISTPI=INT(STPI(JREF)* 100.0) 

IF (ISTPR. EQJFSPR. AND. ISTPI. EQ. IFSPI) THEN 
GO TO 2200 
ELSE 
JREF=JREF+l 
GO TO 200 
END IF 

END IF 

2050 CONTINUE 

C ALTER CHANNEL WITH OBTAINED ROOT BY PASSING THROUGH 
C TWO TAP FEEDFORWARD FILTER 
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NROOT=NROOT+l 
RREAL(NROOT)=BETAR 
RIMAG(NROOT)=BETAI 
FR(I)=ER(l) 
Fl(l)=El(l) 
DO 540 J=2, NIMPP1 
J3=J-1 
FR(J)=ER(J)+ER(J3)*BETAR+EI(J3)*BETAI 
FI(J)=EI(J)+EI(J3)*BETAR-ER(J3)*BETAI 
SYR(J3)=FR(J) 
SYI(J3)=FI(J) 

540 CONTINUE 

C FIND NEW STARTING POINT AFTER CON-VERGENCE 

IF (ICOUNT. EQ. 1) THEN 
IF (JREF. LT. NINRT) THEN 
JREF=JREF+l 
GO TO 200 
ELSE 
GO TO 2200 
END IF 

ELSE 
IF (JREF. LE. NPROOT) THEN 
JREF=JREF+l 
GO TO 200 
ELSE 
GO TO 200 
END IF 

END IF 

2200 CONTINUE 

C SETTING UP STARTING POINTS FOR NEXT TIME INSTANT WHEN ALL 
C ROOTS HAVE ]BEEN FOUND. 

NTOTI=NROOT+NINRT+l 
NPROOT=NROOT 
DO 2250 J=l, NROOT 
STPR(J)=RREAL(J) 
STPI(J)=RIMAG(J) 

2250 CONTINUE 
DO 2260 J=1, NINRT 
STPR(NROOT+J)=FSPR(J) 
STPI(NROOT+J)=FSPI(J-) 

2260 CONTINUE 
IF (NTOT1. LE-NIMP) THEN 
DO 2270 J=NTOT1, NIMP 
STPR(J)=O. O 
STPI(J)=O. O 

2270 CONTINUE 
ELSE 
GO TO 3000 
END IF 

3000 CONTINUE 

DO 3005 J=I, NROOT 
CETAR=RREAL(J) 
CETAI=RIMAG(J) 



343 

RT=CETAR*CETAR+CETAI*CETAI 
PREAL(J)=(-1.0*CETAR)/RT 
PIMAG(J)=CETAI/RT 

3005 CONUNUE 

C AT THIS POINT SYR AND SYI CONTAIN THE MINIMUM PHASED VERSION 
C OF YR AND YI FOR THE PRESENT TIME INSTANT. 

C START CALCULATION OF THE TAP GAINS OF THE FILTER. 

C INMALIZE TAP GAINS 

DO 4500 J=1, NTAPP1 
YFR(J)=O. O 
YFI(J)=O. O 

4500 CONTME 
YFR(NTAP)--l. 0 

C ADJUST THE TAP GAINS OF THE FILTER BY PASSING EACH CON-VERGED 
C ROOT IN ACCORDANCE WITH THE GIVEN ALGORITHM. 

DO 5000 IJK=1, NROOT 

GAMAR=RREAL(LTK) 
GAMAI=RIMAG(IJK) 

DO 4610 J=INTAPP1 
QR(J)=O. O 
Qi(i)=O. O 

4610 CONTINUE 

C FEEDING THROUGH TWO TAP FEEDFORWARD FILTER 

QR(1)=YFR(l) 
Ql(l)=YFI(l) 
DO 4620 J=I, NTAP 
J4=J+l 
QR(J4)=YFR(J4)+(YFR(J)*GAMAR+YFI(J)*GANIAI) 
QI(J4)=YFI(J4)+(YFI(J)*GAMAR-YFR(J)*GAMAI) 

4620 CONTINUE 

C FEEDING OUTPUT FROM ABOVE FILTER THROUGH A ONE TAP FEEDBACK 
C FILTER. THE SEQUENCE IS FED IN REVERSE ORDER. THE OUTPUT 
C FROM THIS ONE TAP FILTER IS ALSO OBTAINED IN REVERSE ORDER. 

QGR=0.0 
QGI=0.0 
DO 4630 J=I, NTAP 
J5=NTAP+2-J 
QFR=QR(J5)-(GAMAR*QGR-GAMAI*QGI) 
QFI=QI(J5)-(GAMAR*QGI+GAMAI*QýGR) 
QGR=QFR 
QGI=QFI 
YFR(J5-1)=QFR 
YFI(J5-1)=QFI 

4630 CONTINUE 
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5000 CONTINUE 

RETURN 
END 

440S 


