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I kept my answers small and kept them near; 

Big questions bruised my mind but still I let 

Small answers be a bulwark to my fear. 

The huge abstractions I kept from the light; 

Small things I handled and caressed and loved. 

I let the stars assume the whole of night. 

But the big answers clamoured to be moved 

Into my life. Their great audacity 
Shouted to be acknowledged and believed. 

Even when all small answers build up to 

Protection of my spirit, still I hear 

Big answers striving for their overthrow. 

And all the great conclusions coming near. 

(Answers,, 
Elizabeth Jennings, 1926- 
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SYNOPSIS 

The Chemelec Cell 
0 

is an electrochemical reactor which achieves 

the recovery of metals from electroplating effluent by electro- 

deposition at concentrations too low to be considered for conventional 

electrolysis. The combination of a mesh-type configuration of 

electrodes together with the use of a non-conducting (inert) fluidised 

bed electrolyte engenders a sufficiently high rate of mass transport 

in the cell for efficient deposition to be carried out at metal ion 

concentrations below 1.0 gl-1. 

Two approaches have been made to the investigation of the system. 

First, experiments have been conducted using a laboratory scale 

Chemelec Cell 
0 

in which the electrodeposition of nickel from 

Watts electrolytes has been carried out under a wide range of conditions 

of electrode potential, pH and metal ion concentration. Relatively 

long-term experiments have been attempted in which the cell is operated 

under conditions of constant electrode potential, temperature, pH and 

fluidisation and the fall of nickel ion concentration plotted as a 

function of time. Measurement of the charge passed (also as a 

function of time) has allowed access to the cathode current efficiency. 

Polarisation data, comprising two regions of electrode potential in 

which the current density varies semi-logarithmically with a large 

apparent Tafel slope (, ý, 570 mV/dec. ) separated by a region of some 

300-500 mV in which the current density is almost independent of 

potential, have been obtained under these diffe rent conditions. An 

interpretation of these somewhat unusual characteristits has been 

sought. 

Secondly, more fundamental studies concerning the electrode 

kinetics of cadmium in various electrolytes have been carried out. 



The techniques of faradaic impedance, linear sweep voltammetry and 

the rotating disc have been applied and the results of these experiments 

interpreted. The presence of a hydroxide film on the electrode has 

been demonstrated and this obscures the true kinetics. 

Finally, the observed electrode kinetics and the experimental 

results obtained from the operation of the Chemelec Cell 0 
are com- 

pared and critically discussed. 



SYMBOLS 

a Tafe. 1 - intercept 

A El6ctrode area M2 

b Tafel slope V, 

c Electrolyte concentration mol m-3 

c Specific capacitance (compact layer) F M-2 c 

cd Specific capacitance (diffuse layer) F M-2 

cb Bulk concentration (species j), Mol M-3 

cS Surface concentration (species j) mol m-3 

cL Specific double layer capacitance F M-2 

CL Double layer capacitance F 

d Thickness of the Helmholtz layer m 

D Differential coefficient of. Z 
l with 

ca 

respect to P at P = AP 
I 1 1 

D Diffusion coefficient (species j) M2 S-1 

e The electron 

e Electronic charge (1.604 x 10-19) C 

e Cathode current efficiency % 

E Electrode p6tential V 

E Initial electrode potential V 

E Peak potential V 
p 

E Revers-ible potential V r 

Ez Potential of zero charge V 

E 0- Standard electrode potential V 

f Volume force N M-3 

F The Faraday (96487) C mol-, 

i ýet (reduction) current densitj--' A M-2 

Excfiange current d6ýisity A M-2 0 

i Peak current density A, -m-2 
P 



I 

iL Limiting current density A M-2 

i Ni Partial current density for nickel 

electrodeposition A m 

Cathodic, anodic partial current density A M2 
i Current density at infinite rotation speed A M-2 OD 

I a. c. current A 

I Amplitude of I A m 
i Flux (species j) Mol M-2 S-1 
4. kp k Cathodic, anodic rate constant m S-1 

k k Cathodic, anodic standard rate constant M S-1 0 0 
k0 Standard rate constant M S-1 

MI Intercept to log[c) versus t. plot 

M2 Slope of log{cj versus t plot S-1 

n Number of parameters for the equivalent 

circuit 

n+ Anion, cation surface ionic excess M-2 

N Number of frequencies 

0 Oxidised species 

p Pressure gradient Pa 

P Parameter i of the equivalent circuit 

Pr Prandtl number (species j) 

q Charge C 

R Reduced species 

R The Gas constant (8.314) J K-1 mol-1 

R Solution resistance 

t Time s 

T Absolute temperature K 

UO Fluid velocity m S-1 



v Velocity profile m S-1 

V Electrolyte volume M3 

V a. c. voltage V 

V Amplitude of V V 
m 

x Distance m 

<X> Mean distance of the net distributed charge m 

<X > Mean distance of n+ from the electrode m 
+ 

z Charge transfer valence 

z Ionic valence 

z Ionic valence (species j) 

za Number of electrons transferred up to and 

including the rate determining step 

z Experimental value of Z' or Z" n 

Z Impedance a 

z 
cal 

Calculated value of the impedance 0 

z 
=w 

Warburg impedance n 

ZI Real part of Z S1 

z1v Imaginary part of Z 

C1 Charge transfer coefficient (cathodic) 

6 Diffusion layer thickness M 

6 Diffusion layer thickness (species j) m 

60 Prandtl boundary layer thickness m 

Y Roughness factor 

C Residual error 

C Relative permittivity 

C Permittivity of free space (8.854 X 10-12) F m-1 
0 

nD Charge transfer overpotential V 

0 Charge transfer resistance 0 



11 Viscosity Pa s 

V Kinematic viscosity M2 S-I 

V Sweep rate V S-1 

P Density kg M-3 

a Warburg coefficient Ils-i 

CY RI Cr C Resistive, capacitive Warburg coefficient Qs-i 

a+ Anion, cation excess distribution m-2 

T Transition time s 

Phase angle rad 

0 Galvani potential V 

00 Galvani potential (X = 0) V 

01 Galvani potential (IHP) V 

02 Galvani potential (OHP) V 

W Angular frequency rad s-I 
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CHAPTER ONE 

INTRODUCTION 

A selective account of the hisýory of nickel and cadmium 

electrodeposition 

Electroplating has been, and indeed still isa particularly 

practical subject. Thus it was known, according to the Greek historian 

Zosimus, to the ancients who coated, iron swords with copper by 

immersion in waters rich in copper salts. 1 

It was not until after the pioneering work of Galvani2 (1791) 

and Volta3 (1800) that some hint of the r6le of electricity in such 

processes was first given. The deposition of metals from solutions 

of their salts by the passage of electrical current was first reported 

by Cruickshankl as early as 1803, still some twenty four years in 

advance of the exposition of Faraday's Laws. 4 

This is remarkable. in view of the fact that the voltaic pile 

was replaced with the first battery in 1800 and that the first magneto- 

electric machines were developed by Faraday in. 1831. As cheaper and 

more easily managed sources of electricity became available, so ý 

research and development in the field of electrodeposition advanced 

apace. 

The electrodeposition of nickel from sulphate or chloride 

solutions was first reported by Birds in 1837 and the first patent for 

commercial nickel plating granted to Shore6 in 1840. Experiments by 

de RuolZ7 of France were said to be less than satisfactory in terms 

of the adhesion of the deposit. Smee8 also published results con- 

cerning the electrodeposition of nickel, but again his attempts to 
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produce a satisfactory deposit were less than entirely satisfactory. 

More acceptable deposits were obtained in Germany by B6ttger7, using 

an acid ammonium sulphate bath. A variety of different electrolytes 

were subsequently proposed and some granted patents. The solution of 

B6ttger7 was to remain in commercial use for a number of years. A 

process involving neutral nickel ammonium sulphate was suggested by 

Gore9 in 1855 and later by Becquerel" in 1862. The process is often 

attributed, however, to Adams. 11 Whilst Adams was not the first to 

propose this bath, he was the first*to patent it12,13 and this, latter, 

patent aided him to establish a virtual monopoly over commercial nickel 

plating for some years. A third patent14 was granted to him for a 

plating bath based on nickel sulphate. 1878 saw-the addition of boric 

acid to improve the quality of the deposit by Weston. 15 The additives 

citric and benzoic. 
-acids were patented by Powell16 in the following 

year. A further year saw a second patent to PoweI117 claiming the 

pyrophosphate bath. In Germany the work of Langbein and Pfanhauser 

was continued by Springer who first revealed18 the essential nature of 

the chloride ion to satisfactory anode corrosion, this being later 

stressed by Bancroft. 19 It was the work of Foerster20, however, that 

did much to elucidate the basis of nickel'plating and, 
"in 

particular, 

the importance of temperature to the plating. process. The effect of 

acidity on the production of thick deposits had already been. described 

in a patent, claiming any and all salts and, acids from which nickel 

plating appeared possible, to Vandermersch'. 21 Research on plating 

solutions, however, was still far from exhausted. The year 1909 saw 

the introduction of the nickel fluoroborate bath by Kern22, a bath 

which is still in use today. The most important breakthrough was, 

however, that of WattS23 who described a plating bath for rapid nickel 

plating at current densities an order of magnitude higher than those 

previously achieved. The composition of the Watts Bath, as it has 
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become known, was given as: 

NiS04.7H20 240 gl-l 

NiC12.61120 20 91-1 

H31303 20 91-1 

This bath is, with minor modifications, the bath used by the majority 

of nickel platers even today. The Watts Bath was to be maintained 

acid and worked hot. Other plating baths, which are still in commercial 

use, include the sulphamate solution of Cambi and Piontelli24 and the 

all-chloride electrolyte of Wesley and Carey. 25 

By this time the emphasis on research was shifting towards 

the elucidation of methods for the production of 'bright' nickel. As 

early as 1910, small amounts of cadmium had been added to nickel 

plating baths, though with limited success. From the 1930's onwards, 

and especially under the influence of the, world wars, bright nickel 

plating baths were much improved. The first real results in bright 

nickel plating are attributed to Schlbtter26 for the addition of 

aromatic sulphonic acids; his work led to commercial bright nickel 

plating being employed in a variety of situations. A rival process, 

due to Weisberg27, involving the deposition of a nickel-cobalt alloy 

in the presence of formate, was found to be too expensive. Research 

into different additives for brightening, levelling and the generation 

of specific physical properties still'continues and-many such compounds 

have been proposed. 

Owing to the high cost and relative scarcity of cadmium,, it 

has received markedly less attention than has nickel. The history of 

its development is of less interest. The metal was first deposited by 
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Smee8, from ammoniacal solutions of cadmium sulphate, and noted the 

difficulties of obtaining good deposits from either cadmium chloride 

or cadmium sulphate. A solution of cadmium bromide, slightly acidified 

with sulphuric acid, was used successfully by Bertrand. 1 The solution 

of Russell and Woolrich28, a basic solution of cadmium cyanide 
I 

forms 

the basis of all cadmium plating today. The method of preparation of 

the solution has varied somewhat and again a range of different 

additives have been proposed, but the essential components of cadmium 

plating solutions remain largely unaltered. 

The tremendous advances which had been made concerning plating 

solutions were only to set the scene for other developments which were 

to transform the face of industrial electroplating. A patent to 

Remington29 claiming the use of electrolytic nickel anodes contained 

in insoluble (platinum) baskets was perhaps, in some sense, a starting 

point for this change. Slowly, the small-scale manual plant, in which 

work was moved from tank to tank by hand, gave way to the fixed 

sequence plants in which jigs moved automatically from one tank to 

the next, residing in and above each for a fixed period of time. Such 

plant was capable of much greater throughput than was the manual 

plant. Eventually the fixed sequence plant itself gave way to the 

variable programme plant. This, fully automatic, design enabled 

the jigs to be lowered into a pre-programmed selection of the. available 

process tanks for predetermined lengths. of. *time. This has. undoubtedly 

improved, facilitated'and helped to optimise the plating-process. 

Other advances included the introduction of air agitation (which 

proved popular with British platers as early as. the 1920's) as, well 

as the development of the barrel plating process. This latter allowed 

the economical plating of vast numbers of small items in an economic 

manner for the first time, and was of especial importance in nickel 
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electroplating. 

The frequent need for a process tank to be followed by a 

static or 'drag-out' tank and one or more running rinse tanks demands 

the use of a very large volume of water, whose cost requires that 

it is efficiently used and re-used. So while the industrial process 

of electroplating (often despite the absence of a knowledge of the 

electrochemical kinetics concerned) is now well established for a 

range of metals, further effort is clearly desirable in attendant 

areas of plating practice, not least in waste water treatment. There 

is clearly an incentive for research into novel effluent treatment 

methods. 

1.2 Effluent treatment in the electroplating industry 

Under the terms of the Water Act of 1973, Regional Water 

Authorities were set up to administer the watercourses and sewers of 

Great Britain. These Authorities have the power to impose discharge 

consents, monitor discharges and to levy charges for the discharge 

of effluent. Electroplating processes produce effluents containing 

metal ions, a variety of anions which may or may not be toxic 

(e. g. cyanides) and a range of organic compounds used for their 

brightening or levelling properties. As a consequence of the charges 

levied by Water Authorities it is clearly important to subject such 

effluents to an efficient treatment programme prior to discharge. 

Effluent treatment is thus of importance to the economics of the 

plating process as well as to the environFent. It is to be expected 

that as the technology availablc; foteffluenf-ir-eatmep't' be`cýneý-moi; 6-- 

advanced, so the legislation controlling discharges will become 

more stringent. 
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1.2.1 Conventional Effluent Treatment 

It is only recently in the history of electroplating that 

supplementary techniques have been available. In the past, if 

effluent treatment were to be attempted at all, then the following, 

type of process would have been used in isolation. 

In general, individual effluent streams are not kept 

separate unless recovery is envisaged or such streams contain hexa- 

valent chromium or cyanides. In the latter cases cyanides are treated 

with gaseous chlorifie or sodium hypochlorite and hexavalent chromium 

reduced with gaseous sulphur dioxide or sodium bisulphite.. Except 

where recovery is to be attempted, such streams may now be combined and 

the pli adjusted to cause precipitation of the metals present. The 

resulting precipitate is allowed to settle in large tanks and various 

methods have been employed to aid this process. Once settling is 

complete the supernatant liquor may be discharged and the sludge 

removed either as a slurry or, after de-watering, as a cake. The costs 

of disposal of such sludges are considerable and the possibility of 

metal recovery remote. 

Where this method is the only form of effluent treatment, 

there is a considerable waste of resources and obvious disadvantages 

(including the environmental ones) are apparent. It was estimated 

that, in the United'Kingdom, in 1976 approximately 700 tonnes of 

nickel were lost to drag-out, at a value of 92,800/tonne. 30 This 

represents a significant incentive for the development of-. the novel 

methods-for metal recovery whic1ý_ar_e`curre-htly enjoying-success in the 

electroplating industry. Some of these methods are described below. 
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1.2.2 Evaporative Recovery 

The drag-out tank contains, by definition, much of the 

material required in order to maintain the plating bath at its opera- 

ting concentration. The salts are present in the correct proportions, 

although the dilution involved pre-vents their immediate return to the 

bath. If the salts contained in the drag-out tank are to be re-cycled, 

some form of concentration must first be effected. Evaporative 

recovery is one technique currently used in industry for this purpose. 

There are four types of evaporator which are commercially available. 

1.2.2.1 Climbing Film Evaporator 

The drag-out solution is made to rise up the inside of 

externally heated tubes. A film of solution climbs the walls of the 

tubes and evaporates at an enhanced rate under the slightly reduced 

pressure at which the system operates. The water vapour is condensed 

for re-use and the concentrated drag-out returned to the plating tank, 

making good the evaporative losses. 

1.2.2.2 Flash Evaporator 

The drag-out solution is pre-heated at atmospheric pressure 

and then fed into a reduced pressure system at fairly high vacuum. 

The water boils and the vapour is condensed at the top of the system. 

Concentrated drag-out solution collects at the bottom and return to 

the process is again possible. 
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1.2.2.3 Submerged Tube Evaporator 

Submerged steam coils are used to heat the solution under 

fairly high vacuum. 

1.2.2.4 Forced Draught Atmospheric Evaporator 

The solution is heated prior to descending a column against 

an ascending air flow. The air carries steam into the atmosphere and 

a more concentrated drag-out solution collects at the bottom of the 

apparatus. 

1.2.3 Ion Exchange 

Columns of ion exchange resins have been successfully used 

for the concentration of effluent streams and for the production of 

de-ionised water. The recovery of specific metal ions may be envisaged 

although the direct return of plating constituents to the plating bath 

is not possible due to the nature and compositionof the regenerating 

solutions. This method has found its widest application in the 

recovery of gold and silver, where the metal is recovered by burning 

the resins rather than regenerating them. In situations where the 

resins are regenerated the resulting solutions may be further treated, 

for example, by electrolysis. This approach, however, has found a 

more limited market. 

1.2.4 Reverse Osmosis 

In this technique the application of an external pressure 
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opposing the osmotic pressure causes a transfer of solvent from the 

stronger to the weaker solution. The solution to be concentrated is 

separated from the solvent by a semi-permeable membrane. The concen- 

trated solution is often capable of being directly recycled. Small 

ions may, however, pass through the membrane with the solvent. The 

method has most successfully been used in connection with Watts Bath- 

drag-out, although its industrial occurrence is rare. 

1.2.5 Electrochemical Recovery 

The electrochemical recovery of metals from dilute solutions 

of their ions is a topic of increasing interest. The conventional 

electrolysis of such solutions, with metal ion concentrations typically 

below 1.0 gl-1, is not economically viable. The mass transport regime 

of these cells is such that a large value for the diffusion layer 

thickness results and a small limiting current density pertains to the 

metal deposition reaction. Acceptable cathode. current efficiencies are 

achieved only where the cells are operated at very low currents, when 

the rate of metal deposition is exceedingly slow. Conventional 

electrolysis has been employed, however, following an initial concen- 

tration of the electrolyte by evaporative recovery or reverse osmosis. 

The desire to carry the electrolysis of dilute solutions both 

quickly and efficiently has, over the past decade, led to the develop- 

ment of a considerable number of novel electrochemical reactors. Two 

approaches to the problem have been considered. First, the use of 

electrodes of high surface area allows the passage of high currents, 

i. e. a high rate of metal deposition at a moderate current density. 

Secondly, and perhaps more fundamentally, the mass transport limitation 
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has been alleviated by means of some sort of solution and/or electrode 

movement. In some cases a combination of these two approaches has been 

beneficial. 

The field was reviewed by Kuhn3l and presented to a symposium 

on "Novel electrode systems for dilute metal bearing liquors" in 1978. 

The review discussed the commercial need for such devices as well as 

some of the reactors themselves. A more recent review is that of 

Kreysa32, but the most recent and exhaustive work is that of Walsh and 

Gabe. 33 

In introducing the Chemelec Cell 
0 it is instructive to view 

the cell against other designs, and a number of these aýre described 

below. The classification of Goodridge34, though sometimes misleading, 

has been borne in mind according to which §1.2.5.1-3 deal with stationary 

two-dimensional electrodes, 51.2.5.4-5 with dynamic two-dimensional 

electrodes, 91.2.5.6-7 with stationary three-dimensional electrodes and 

§1.2.5.8 with dynamic three-dimensional electrodes. It should be 

realised that whilst the majority of cells have been discussed, it has 

not been practicable to give details of all of them. Among those which 

have been omitted from the following are the Rotating Multipolar 

Electrode35-41, the CJB Ce1142, the Inclined, Moving Particulate 

Electrode43, the Moving Bed Electrode44 and the Rotating Packed Bed 

CeI145 which, with the exception of the firstA dynamic two-dimensional 

electrode, are all examples of dynamic three-dimensi6nal electrodes. 

10 



1.2.5.1 Bipolar Trickle Tower Reactor 

The reactor, developed at Newcastle and Southampton 

UniversitieS46, is shown in Fig. 1.2.1 and consists of a cylindrical 

column containing layers of conductive material separated by thin sheets 

of insulating mesh. A potential difference is applied to a pair of 

feeder electrodes circumjacent to the conductive layers, inducing 

bipolarity in these layers. The electrolyte is fed into the top of the 

tower through which it percolates under the influence of gravity. The 

metal is recovered as a plate or powder depending on the form of con- 

ducting material used. This is usually carbon in the form of hollow 

cylinders, perforated plates, felts, cloths, fibres or particles. The 

particulate tower is actually a three-dimensional electrode. The 

electrode is of high surface area and the device can reduce metal ion 

concentration to p. p. m. levels, although the current efficiency is not 

high. Operation is in the batch recycle mode. A prototype commercial 

trickle tower is being evaluated for gold recovery using a disposable 

electrode/separator cartridge. 

1.2.5.2 Swiss-Roll Cell 

The Swiss-Roll Cell47-50, developed'in Switzerland by 

Robertson and Ibl, is shown in Fig. 1.2.2. --The favourable ratio of 

surface area to volume has been achieved by constructing a sandwich of 

electrodes and separators, rolled round a-common axis and enclosed in a 

cylinder. The electrolyte flows axially through the cell. The 

electrodes may be sheets or nets and the separators cloths, ion exchange* 

membranes or porous, non-woven materials. The metal is recovered as an 

11 
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adherent electroplate which is usually anodically stripped or chemically 

dissolved; dismantling of the cell to extract the electroplate being 

an unattractive proposition. In addition to the high specific surface 

area, a good mass transfer r6gime ensures the efficiency of the cell 

which, operating in batch recycle mode, can achieve recovery to p. p. m. 

or sub-p. p. m. levels. The cell may be tailored to suit specific appli- 

cations through the choice of electrode materials and separators, and 

a variety of metals including copper, silver, nickel, zinc and gold 

have been recovered. The cell has not, however, been exploited commer- 

cially. 

1.2.5.3 The Chemelec Cell 
0 

The Chemelec Cell 
0, 

wh ch forms the subject of this thesis, 

was developed30,51-2 and patented53 by Lopez-Cacicedo for the Electricity 

Council and is now marketed for them by BEWT (Water Engineers). The 

cell is shown in Fig. 1.2.3a, and Fig. 1.2.3b shows--how the cell 

operates in practice. The cell comprises a bed of non-conducting glass 

beads which is fluidised by the passage of electrolyte through the 

slotted flow distributor. Electrodes of expanded mesh configuration 

reside in the dispersed phase, the cathode is generally titanium 

or mild steeLand the anodes of titanium coated with ruthenium dioxide. 

The fluidised bed electrolyte engenders a high rate-of mass transfer, 

but is easier to maintain than the traditional fluidised bed electrode. 

Metal recovery is as a smooth, bright and adherent electroplate which 

may subsequently be used as a process plating anode. Operation of the 

cell is in the batch recycle mode. Recovery of copper, nickel, zinc, 
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silver, gold, indium and cadmium has been achieved, and the cell is 

enjoying considerable industrial success in silver, cadmium and nickel 

electroplating shops where the possibility of direct recycling of the 

recovered metal is of particular appeal. , 

1.2.5.4 Eco-Cell 

The Eco-Ce1154-60, developed by Ecological Engineering is 

schematised in Fig. 1.2.. 4a, and is really an extension to the Pump 

CeI161-6 of Fleischmann and Jansson. The Monopolar Pump Cell 

(Fig. 1.2.4b) comprises a rotating anode in close proximity to a stator 

which forms the cathode. The effect of anode rotation is to induce a 

self-pumping action. Mass transport and mixing are of a high order. 

A metal powder is formed which detaches itself from the electrode under 

the influence of tangential shear forces. Unlike the Eco-Cell, however, 

the Pump Cell remains commercially unexploited. 

The Eco-Cell differs. from the Pump Cell in that the rotating 

disc is replaced by a rotating cylinder cathode which is separated from 

its concentric anode by a membrane to'form a divided cell. A scraper 

continuously removes the metal powder from the cathode. Potentiostatic 

operation allows, to some extent at least, the selective recovery of 

particular metals from solutions containing more than one metal ion. 

Despite this advantage, potentiostatic operation is unlikely to be 

viewed favourably by the industrial electroplater. The mass transfer 

regime is sufficiently good to allow single pass operation, although a 

batch recycle mode is also possible. A cascade cell has been developed 

to allow metal ion removal down to 1-10 p. p. m. The cell has proved 

commercially viable and remains the main rival to the Chemelec Cell 
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1.2.5.5 HSA Reactor 

The use of carbon fibre cathodes, developed for HSA Reactors 

Ltd. by Das Gupta and Fleet67, has resulted in a patented cell68 of 

extremely high cathode surface area, the application of which to metal 

recovery from industrial effluents has been described by Kennedy and 

Das Gupta. 69 The cell is a divided one and the metal is recovered by 

discontinuous leaching. Apart from their enormous. surface area, the 

carbon fibres are inert and have high oxygen and hydrogen overpotentials. 

They may be poisoned, however, by chemisorption of certain organics. 

The cell is used in single pass or batch recycle mode. Despite its 

successes abroad it has yet to be established in this country. 

1.2.5.6 ESE Cell 

The Extended Surface Electrolysis (ESE) Reactor70 of Dupont 

is perhaps best described as a three-dimensional analogue of their 

Swiss-Roll Cell (q. v. ), with 1 cm thick knitted stainless steel mesh 

(porous) electrodes replacing the single mesh/sheet in the sandwich.. 

This has necessitated the use of planar sandwiches (Fig. 1,2.5). 

Cascade operation has been investigated; the specific surface area 

appears similar to that of the Swiss-Roll Cell. The metal is recovered 

by leaching. 

1.2.5.7 Parallelepiped Packed Bed Cell 

The Parallelepiped Cell of Kreysa7l=2 is a particularly 

interesting example of a packed bed cell. It is shown diagramatically 
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in Fig. 1.2.6. The electrolyte is pumped through the inlet and per- 

colates upwards through a packed bed of carbon granules. The bed is 

separated from the anode compartment by an ion exchange membrane; the 

anode is planar graphite. The electrolyte-flows over a weir into the 

anode compartment and thence to the outlet. 
I 

The cell has a large cathode area and is designed in such a 

was as to have an increasing surface area and'volume towards the outlet 

causing a decrease in the current density. The potential drop across 

the reactor length is minimised. The cell operates in single pass 

mode, achieving. recovery to sub-p. p. m. levels. The design is recent 

and has yet to prove itself commercially. 

1.2.5.8 AKZO Fluidised Bed Electrochemical Reactor, 

The Fluidised Bed Electrode as invented by Fleischmann et al73. -4 

has only fairly recently begun to fulfil its promi I se in such applications. 

One. such development has led to the marketing of the AKZO F. B. E. R. 75 for 

the removal of toxic metals from effluent streams. 

The reactor, shown in Fig. 1.2.7, is cylindrical. and comprises 

a cathode bed of metal particles with associated current feeders. The 

cell is divided, this being made possible by, the use of anodes contained 

within concentric diaphragms. Fluidisation' of'the cathode by the cath- 

olyte enhances mass transport and the available electrode 'area is very 

large. Metal recovery is, by removal of 'grown' particles from the 

bottom of the reactor to be replaced with fresh Iseedt particles added 

at the top. The design of the reactor is such that many of the 

traditional problems associated-with fluidised bed electrodes have been 

overcome. The cell operates in single pass mode. 
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1.3 The Chemelec Cell n Context 

It has been argued that the electrodepositon of nickel, 

cadmium and a wide range of other metals is now undertaken routinely, 

efficiently and largely without difficulty. Whilst research into 

addition agents and electrodeposition plant continues, it is apparent 

that an increasingly important area of research is the development of 

ancillary equipment, particularly that related to the problem of 

effluent treatment. This -research 
has advantages for plant economy 

as well as for the environment and both the value of metal lost to 

effluent and the almost certainly increasing discharge and water costs 

provide powerful incentives for such developments. 

The existing methods of effluent treatment have been described. 

Although several techniques are available to augment the traditional 

precipitation process, none have received as much attention as have the 

electrolytic ones. Certainly, nothing would appear more natural than 

to exploit electrochemical technology in the electroplating industryl 

1, 
Although several cells capable of efficient electrodeposition 

at metal ion concentrations below 1.0 gl-1 are commercially available 

abroad, only two such cells are proving successful in this country. 

The Chemelec Cell is one of these, the Eco-Cell being the other. As 

has been pointed out by Walsh and Gabe33, "due to the large spectrum 

of cell designs, and fundamental differences in geometry, it is not 

possible to make valid quantitative comparisons without referring to 

several indices of performance". 
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PROPERTY CHEMELEC CELL ECO-CELL 

Cell Geometry Planar Cylindrical 

Classification34 Stationary 2-D*--. ' Dynamic 2-D 

Form of metal Electroplate Powder 

Normally divided? No Yes 

Control Galvanostatic Potentiostatic 

Operating mode Batch recycle Single pass/ 
I Batch recycle 

TABLE 1.1. Comparisons of themelec Cell 9) 
& Eco-Cell Designs 

The fundamental design differences between the Chemelec Cell a 

and the Eco-Cell are apparent from Table 1.1. A valid quantitative 

comparison of the two cells cannot be made, but some critical evaluation- 

is possible. In particular it should be noted that the Eco-Cell is 

capable of efficient metal removal down to 1-10 p. p. m., whilst the 

normal operating concentration of the Chemelec Cell 0 is some 200 p. p. m. 

For the needs of the industrial electroplater, however, the simpler 

design and operation of the Chemelec Cell a, 
t ogether with the more 

suitable form of its. product, make it a more attractive propostion. 

In terms of effluent treatment, a Chemelec Cell 
1) 

could be followed by 

76 an Eco-Cell. The Chemelec Cell would reclaim the majority of the 

metal from the drag-out (maintaining it at 'u'200 p. p. m. ) and the over- 

flow passed on to the Eco-Cell which would render it suitable for 

discharge. Unfortunately, the capital cost of such an arrangement is 

prohibitively high. 

* the term 'stationary' refers to the electrode and not the electrolyte. 
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It follows that careful optimisation of the Chemelec Cell (D 

and an understanding of the mechanisms by which electrodepostion occurs 

will benefit the commercial viability of the cell and this thesis 

represents a first attempt in this direction. 
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CHAPTER TWO 

THEORETICAL PRINCIPLES 

2.1 The electrode/electrolyte interphase 

The region between a solid electrode and the bulk of an 

electrolyte solution'is known as the electrode/electrolyte interphase 

or, more commonly, the electrical double layer. It is, as the term 

suggests, a region whose physical properties are intermediate between 

those of the two phases. As charge transfer (the passage of electrons 

from one phase to the other) must take place across this interphase, 

it is clearly important to possess a model of this region if one is to 

gain an understanding of charge transfer processes. However, since 

this thesis does not dwell on the study of the electrical double layer 

per se, it will suffice to limit discussion to a general account of the 

various models which have been proposed, without recourse to detailed 

quantitative arguments. 

The historical origins of a model for the electrical double 

layer may be found in the works of HelmholtZ77 and Quincke78, who 

perceived the interphase as consisting of two fixed layers of equal 

and opposite-charge (Fig. 2.1.1a), one residing on the electrode 

itself and the other at a fixed distance from the electrode on the 

solution side of the interphase. This distribution of charge is ana- 

logous to that in a parallel plate condenser and is responsible for 

the use of the term 'double layer' for the electrode/electrolyte inter- 

phase. The variation of the Galvani potential, ý, with distance from 

the electrode, X, is given in Fig. 2.1.1b. By analogy with electrical 

theory, the charge density, a, may be given by: 
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a 
Ae (2.1.1) 

whence the capacitance is: 

cr cc 0 cc 
d 

Such a model, and indeed others, assumes that the separated 

charge is in electrostatic equilibrium and that no charge transfer 

occurs. Thus it follows that changes in the electrode potential merely 

alter the distribution of charge and that the double layer is entirely 

capacitive in nature. This is an unjustified assumption, as in most 

cases where a net charge resides on an electrode there will be at 

least a small current due to some faradaic process. Electrodes for 

which the assumption holds are termed 'ideally polarisable'. The 

Helmholtz model also predicts (equation 2.1.2) that the double layer 

capacitance is independent of both the potential and the electrolyte 

concentration. This is not the case experimentally. 

- Gouy79 and Chapman, 80 independently proposed a more sophisti- 

cated model (Figs. 2.1.2a and 2.1.2b) to that of Helmholtz. The model 

closely resembles the Debye-HUckel Theory which it preceded by a 

decade. The fixed layer of charge on the solution side of the 

electrode was considered to be dispersed by the thermal motion of the 

ions, resulting in a diffuse layer of charge within which rearrangement 

occurs in such a way as to balance the osmotic and electrostatic 

forces. Following an elegant solution of the Poisson-Boltzmann 

Equation in one dimensioir 

d2o F 
zjcj ! exp(- 

Htý) 

dX2 cc 
0 RT 
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they obtain, for a symmetrical electrolyte, 

m sinh( 2RT 

where am is the excess charge density on the electrode and ýo is the 

potential at x=o. The diffuse double layer capacity, cd, is obtained 

on differentiation of (2.1.4) whence 

aam 
vl(2Z2F2ccoc/RT) . cosh( 

ZFOO) 
Cd 5-0-0 2RT 

The Gouy-Chapman Theory, therefore, correctly predicts that the double 

layer capacitance is a function of both potential and concentration. 

The values of the double layer capacity are, however, in excess of 

those found experimentally. 

The reason, for this discrepancy is inherent in the treatment 

of ions as point charges. An improved model was proposed by Stern, 81ý 

who advanced the concept of a plane of closest approach to the electrode 

and combined the models of Helmholtz and Gouy-Chapman by postulating 

both a-compact layer of ions adjacent to the electrode and a diffuse 

layer of ions extending into the solution. The potential ýo is now 

replaced by ý2, the potential at the plane of closest approach. He 

suggested that the total double layer capacitance was due to the series 

combination of the capacitances arising from the two layers, viz., 

CL cc+cd (2.1.6) 

where cL is the total capacitance, cc that of the compact and cd of the 

diffuse layer. It follows that in dilute solution and at potentials 

close to the point of zero charge the double layer capacitance is 
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essentially that of the diffuse layer (and thus potential and concen- 

tration dependent) whilst in more concentrated solutions and at higher 

polarisations the double layer capacitance is, essentially that of the 

compact layer and therefore independent of these quantities. Whilst 

this model is a considerable improvement over the Gouy-Chapman 

approach, and the theoretical values of the double layer capacitance 

are in better agreement with experiment, discrepancies still exist. 

Not least among these is the fact that the capacitance of-the compact 

layer is not entirely independent of potential. The model of Stern 

is shown in Fig. 2.1.3a and the associated potential distribution in 

Fig. 2.1.3b. It was Stern, also, who distinguished between ions at 

their closest distance of approach and specifically adsorbed anions. 

A further refinement, admitted by Stern8l, was developed by 

Grahame82 who recognised two planes of closest approach. The inner 

Helmholtz plane was defined as the plane passing through the centres' 

of adsorbed anions whilst the outer Helmholtz plane was that passing 

through the centres of hydrated cations at their closest distance of 

approach., Fig. 2.1.4a. illustrates this concept, and the corresponding 

potential distribution is given in Fig. 2.1.4b. The compact layer 

is bounded by the outer Helmholtz plane. This model forms the basis 

of our understanding of the double layer. However, it is inadequate 

in many respects and further, more sophisticated models have been 

proposed. 

According to Bockris, Devanathan and MUller83 many of the 

remaining discrepancies between theory and experiment can be overcome 

by the adoption of a model such as that shown in Fig. 2.1.5. The roke 

of the solvent is considered in detail. According to the authors, the 

22 



OHP 

ru 

E- 

oll 

x 

Fig. 2.1.3 (a) Stern Model of the Double Layer 

(b) Potential Distribution corresponding to (a) 



IHPOHP 

0 (0 
-4- 
C) 

E 
- 

2 

-specif i call y 
adsorbed ani on 

x 

Fig. 2.1.4 (a) Grahame Model of the Double Layer 

(b) Potential Distribution corresponding to (a) 



0 

ru 

E 

imary hydration layer 
: ondary It it 

acif icalLy adsorbed 
ion 

0 

Fig. 2.1.5 Bockris Model of the Double Layer 



electrode is bounded by a primary hydration layer of oriented dipoles. 

This layer is field independent and of low dielectric constant and 

may be penetrated by specifically adsorbed anions. Such anions would 

possess little or no hydration energy. Outside this layer is a second, 

comprising the water of hydration of solvated cations at their closest 

distance of approach. The secondary hydration layer is of intermediate 

dielectric. The inner and outer Helmholtz planes are still defined, 

although the outer Helmholtz plane is now further removed from the 

electrode, due to the presence of the primary hydration sheath. This 

model, therefore, is the most sophisticated of its type. 

More recent work by Cooper and Harrison84, however, has cast 

doubt on the validity of developing more sophisticated models of this 

type. They regard the sub-division of the double layer into compact 

and diffuse parts as unjustified. They are of the opinion that a 

radically new approach to the problem is required and such an approach 

is developed in later papers. 85 Their treatment makes no assumptions 

about the structure of the interphase. They consider the potential 

difference, Aý, between the electrode and bulk Of solution as: 

Ae =- f' 1.2ý (x) dx 
0 ax 

[x +xa dx 
ax 003 

x2, 

f xcr (x) dx 
0 

.0 

where the symbols have their usual meanings. The charge density is 

simply related to the excess distributions a+(x) of anions and cations 

at the interface with respect to bulk, whence, 
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I -I., - 17-1 % "I ", - -., 71' 
e. xcr_(x)dx -f 

00 xcr (x)dx] . (2.1.8) 
cc fo 0+ 0 

They define the surface ionic excesses, n+, and their mean distances, 

<x ± >, from the electrode by: 

n+ f cr+ (x) dx (2.1.9) 
0- 

. <X+> 
1f 00 xcr, (x) dx 

n+ o- 

whence, 

Ae [n <x >-n <x >] (2.1.11) 
es --+ 0 

They further define the mean distance, -<x>, of the net distributed 

charge as: 

Co fo xcr (x) dx 
<X> 

fo a (x) dx 

en, <x, > - en_<x_> 

(en, - en_) 

So that, 

Aý 
(en_ - en, )<x> 

am<x> 
EC cc 

00 

The specific differential capacitance*is then, 

3a m 
"L 30 

. <X> + am (d<x>/dcr m)-0m «x>/cc )(dee /dam) 
00 
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This equation may be simplified depending on the circumstances, but in 

its present form is independent of any specific molecular model for 

the excess distributions u.,. (x). Notice that the excess distributions, 

a+(x), are required in order to obtain n+, <x+> and hence <x> from 

(2.1.9), (2.1.10) and (2.1.12). The quantity <x> therefore requires 

a knowledge of a+ based, preferably, on sound and detailed statistical 

theories. 

In conclusion, whilst the model of Cooper and Harrison is 

both simple and theoretically elegant and allows more accurate 

predictions of double layer properties, the need for detailed stat- 

istical theories and the absence of a physical model lessen its use- 

fulness to the average electrochemist, for whom the model of Grahame 

suffices. 
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2.2 Charge Transfer 

A general charge transfer reaction may be represented by 

the equation: 
4. 
k 

ze 

where 0 is an oxidised and Ra reduced species; k the cathodic'and k 

the anodic rate constant; z the number of electrons, e, transferred 

across the interphase in each charge transfer step. The transfer of 

charge in this way inevitably leads to the generation of electrical 

currents. We write 

S 
zFkco (2.2.2) 

-*- s 
zFkc R 

'(2.2.3) 

4. *_ 

where i, i are the cathodic and anodic partial current densities res- 

pectively and cs the surface concentration of species j. It is clear i 

that the net current density in an external circuit is given by the 

difference between the two partial current densities, viz., 

ss 

zF (kc 0 kc R (2.2.4) 

At electrochemical equilibrium there is no net flow of 

current, hence the partial-current densities must be equal. Under 

these conditions, 

kcs kc's (2.2.5) 
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The electrochemical rate constants k, k may be seen to depend on the 

electrode potential, E, as follows. We apply the Nernst Equation" 

at the electrode surface with the assumption of unit activity Co- 

efficients, hence, 

, ýý I+Ts S) in {, c /c 
r zF 0R (2.2.6) 

Here, Er is the reversible potential and e the standard electrode 

potential. Substituting from (2.2.5) we obtain, for (2.2.6), 

E+ ET- ln {'k-/-k"l (2.2.7) r zF 

whence, upon differentiation, 

DE ET- 
D ln 

r zF 

RT Z ln ik) a ln Ocl 
i-F L DE 

r 

If we set, 

LT 
.3 

ln {k) 
1-a 

zF BE 
r 

then, 

RT 3 In {kj -1, 

zF aER 

(2.2.8) 

(2.2.9) 

(2.2.10) 

(2.2.11) 

Integrating (2.2.10) and (2.2.11) with respect to Er from E 0- to E we 

obtain, on rearrangement, 

. 4- 4. 

k ko . exp {zF(l-a)(E-e)/RT) (2.2.12) 

-. %. -Il. el 
k ko . exp {-zFci(E-E )/RT) (2.2.13) 
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where k0, k0 are constants which may be defined as the values of 

k, k at E=E: 'a'. From (2.2.7), however, we see that at the standard 

electrode. potential these constants must be equal. We may therefore 

0 
replace these two constants by the single quantity k, known as the 

standard rate constant. Thus we write (2.2.12) and (2.2.13), 

. 4- 0 0-1 
kk. exp izF(l-a)(E-E )/RT) (2.2.14) 

0 kk. exp {. -zFa(E-EI3")jRT) (2.2.15) 

Hence, the potential dependence of t, t is apparent. Substituting into 

(2.2.4) 

0s0. 
zFk [c . exp{ -zFa(E-E )/RT) - cs exp {z F (1 -a) (E-Ee. ) /RT 0R 

(2.2.16) 

At electrochemical equilibrium, however, we have seen that 1 and 1 are 

equal and we define the exchange current density, i0, from (2.2.2) and 

(2.2.1S) and from 
_(2.2.3) 

and (2.2.14) whence, 

zFkocs.. exp{-zFa(E-, -E I& )/RT) 0r 

zFk 0cs. exp{zF(l-a)(E---tý)/RT) (2.2.17) 
Rr 

We may now write (2.2.16) in terms of the exchange current density, viz: 

0 
(exp(-zFan D 

/RTI - expfzF(l-a)n D 
/RT)] 

where the charge transfer overpotential, TID) is given by: 

Er 

(2.2.18) 

(2.2.19) 
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Equation (2.2.18) is the well-known Erdey-Gruz and Volmer Equation87, 

upon which the study of electrode kinetics is largely based. 

The Erdey-Gruz and Volmer Equation is generally simplified 

in one of two ways. First, where the overpotential is small (ITI, I<<RT/F) 

the exponentials may be expanded and terms of second and higher order 

may be neglected to give: 

zFTi D 
o RT (2.2.20) 

A plot if i versus nD is, therefore, linear and passes through the 

origin. The slope of the curve determines the charge transfer resis- 

tance, e, as: 

OA 
D)ti =. O 

RT 
zFi 0 

(2.2.21) 

Secondly, where the overpotential is, large, the Erdey-Gruz 

and Volmer Equation reduces to the Tafel Equation. " This is achieved 

by neglecting one of the terms of (2.2.1 8), whence: 

ii. expf-zFan /RTI ,n «0 (2.2.22) 0D-D 

i -i 0. exp{zF(l-«)n D 
/RTI , il D »o (2.2.23) 

These equations may be rearranged to give the Tafel Equation 

nD a+b lolg{i) 

where the constants a and b, related to a and iol are dependent on 
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whether an anodic or a cathodic reaction is under consideration. 

Consideration of (2.2.6) and (2.2.18) yields the concentration 

dependence of i0, viz: 

zFk 0 (C s 1-a a ip (C, ) R (2.2.25) 

Where the process is reversible, the surface concentration may be 

replaced by the more easily accessible bulk concentration. Consideration 

of equations (2.2.21) and (2.2.25) leads to the relation: 

RT bb OA (C (2.2.26) 
Z2F2ko 

' loý 
(CR) 

b 
whence a plot of ln{OA} versus In {c } is expected to be linear, and: 0 

31n[OAI )a (2.2.27) 
Dln{C 

b) TID "0 
0 

Similarly, if we consider potentials reasonably close to the reversible 

potential, then (2.2.17) and (2.. 2.21) may be combined to give: 

eA RT 
_. exp{zFa(E-Ea)/RT) (2.2.28) 

Z2F20Cý 0 

whence a plot of In OA) versus E is expected to be linear and: 

4 
Dln{OAI 

_zFa 
3E RT 

Hence, a may be determined. 

(2.2.29) 
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2.3 Mass Transport 

It is often the case that an electrochemical reaction is 

limited by the supply of reactant to the electrode rather than by 

kinetic factors. Any study of electrode kinetics must, therefore, take 

full account of mass transport. processes. 

The flux of a species i to an electrode is given, in its 

most general form, by the Nernst-Planck Equation": 

D VC Dc Vý + c. v ii RT ii J- 

where J is the flux, D the diffusion coefficient and v the velocity 

profile, the other symbols having their usual meanings. The operator 

v is defined: 

a+k (2.3.2) 
ax 77 - -5 -Z 

where i., i and k are the unit vectors. 

The three terms of (2.3.1) represent the threegenemlly 

accepted modes of mass transfer, namely diffusion, migration and con- 

vection. 

2.3.1 Migration 

The movement of ions under the influence of an electrical 

potential gradient is known as migration. The. majority of electrical 

current passing through the bulk of the solution does so by this 
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process. In order to minimise the contribution of migration to the 

flux of the electroactive species, solutions containing an excess of 

an inert supporting electrolyte. are frequently encountered. Under 

these conditions, a considerable simplification of (2.3.1) accrues 

from the neglection of the second term of the equation. 

2.3.2 Diffusion 

Diffusion is the movement of ions under the influence of a 

concentration gradient. This is simply expressed in Fick's First Law90: 

D Vc (2.3.3) 

for the diffusional flux, Jj- The time dependence of the concentration 

profile is given by Fick's Second Law90: 

ac. 
j D. V2C. at 31 (2.3.4) 

where t is the time and V2 is the Laplacian operýLtor defined by: 

B2 32 a2 v2 +-+ (2.3.5) 
BX2 8y2 aZ2 

The solution of Fick's Laws is a common problem in electro- 

chemistry, and clearly depends on the choice of boundary and initial 

conditions. Consider, for the moment, diffusion to a plane electrode. 

In this case (2.3.3) reduces to: 

dcj 
dx (2.3.6) 
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In order to obtain a solution to this equation the relationship 

between ci and x must first be established. This relationship has 

been the cause of some controversy. 

According to Nernst9l, the concentration varies as a linear 

function of distance within a stagnant layer of electrolyte of thick- 

ness 6. The quantity 6 is known as the Nernst diffusion-layer thick- 

ness, and is an arbitrary quantity defined by Fig. 2.3.1. Clearly, 

using this artifice: 

dc 
I (C b-Cs )/a (2.3.7) dx 

where cb is the bulk concentration of species j. Hence: 

D (cý - cý)/S (2.3.8) 

Where the supply of reactant controls the reaction, the surface 

concentration of that reactant falls to zero.. It is then possible 

to define the limiting current density, i L' as: 

iL-z FD cb /S (2.3.9) 

Unfortunately, the Nernst diffusion layer thickness cannot be calculated. 

Indeed, for unstirred solutions 6 has no steady state value, but the 

diffusion layer grows with time until disturbed by convective processes. 

The diffusion layer is, however, often assumed to be constant for 

experiments of short duration. 

I 

2.3.3 Convection 

Convection is generally held to arise in two distinct ways. 
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It may be free (natural) or forced. Natural convection, the movement 

of a fluid under the influence of local density or temperature gradients 

is impossible to formulate precisely and equally impossible to 

prevent. Its effects may, however, be minimised by the introduction of 

a forced convective r6gime. 

The process of forced convection is concerned with the 

transportation of solution by agitation or stirring, resulting in 

thorough mixing with a concomitant reduction of local density and 

temperature gradients. Where the hydrodynamics and cell geometry are 

well-defined it is often possible to obtain the velocity profile v 

from the Navier-Stokes Equation92: 

pav 
Vp + pV2V +f (2.3.10) 

together with the continuity equation: 

V. v 

and the initial and boundary conditions pertaining to the system under 

consideration. In the above, V is the viscosity, p the density, p the 

pressure gradient and f the volume force exerted on an element of fluid. 

Neglecting the effects of migration and introducing the mass 

balance condition: 

ac. 
V. J3 (2.3.12) at 

(2.3.1) becomes: 

ac. 
3=D V2C VC. (2.3.13) at ii 
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Clearly, when considering the steady state (2.3.13) reduces to: 

Di V2Cj -V. VCj (2.3.14) 

which is the familiar equation of convective diffusion. The exact 

solution of this equation is rarely possible. Indeed, the rotating 

disc electrode (q. v. ) is one of the few systems for which the boundary 

conditions allow this. 

The Nernst diffusion layer theory, despite its usefulness, 

is of little help in the solution of (2.3.14). A more realistic and 

quantitative theory is that of the hydrodynamic boundary layer, as 

developed by Levich. 93 In this theory, a fluid in motion relative to 

some surface is divided into two regions. In the region adjacent to 

the surface the fluid velocity rises from zero at the surface to the 

value attained by the bulk solution, and viscous forces are present'. 

Outside of-this hydrodynamic layer the fluid is essentially inviscid. 

Clearly, the viscous boundary layer is not stagnant as in the Nernst , 

theory. The main change in concentration also occýirs within this layer. 

An appropriate relation exits for the thickness of the 

Prandtl layer, according to which: 

a05.2V{vxlU 
0Y I 

(2.3.15) 

v being the kinematic viscosity and Uo the fluid velocity. Consider? - 

ation of (2.3.14) together with the Navier-Stokes-Equation leads to 

an expression for the thickness of the diffusion boundary layer in 

terms of So. Hence: 

60 Pr 16) 
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where Pr, the Prandtl Number, is a dimensionless quantity characterising 

the physical properties of the fluid. In fact: 

Pr i v/D i (2.3.17) 

Hence: 

D 
V, -V{X/u 

0 
(2.3.18) 

A consequence of the form of (2.3.17) is that (2.3.18) admits a different 

boundary layer thickness for each species. 

/ 
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2.4 Rotating Disc Electrode 

The Rotating Disc Electrode (RDE) is one of the most useful 

tools available to the electrochemist. It has been noted (§2.3.2) 

that the value of the Nernst diffusion layer thickness lacks a steady 

state value in unstirred solutions. In order to obtain reproducible 

results from an electrochemical experiment it is necessary, at least 

for experiments in the steady state, to arrange for a well-defined 

diffusion layer. This condition is met by the RDE, the hydrodynamics 

of which have been rigorously treated by Levich. 93,94 The review of 

Filinovsky and Pleskov95 is noteworthy. 

If we consider a general charge transfer reaction such as 

(2.2.1) then from the solution of Fick's First Law (2.3.8) we write: 

cscb 
is i 

ii 

whereupon substitution into (2.2.4) gives: 

4- -" b'b i[ 1-kS 
0 

/D 
0 +k6 R 

/D 
R] zF [kco-kc 

RI (2.4.2) 

We note that the right hand side is merely the current density in the 

absence of diffusion, which we shall write as i 
Co 

The Levich Equation, 93 which is an exact solution to the 

convective diffusion problem for a rotating' disc electrode, may be 

written: 

1.62 v6 Di3w (2.4.3) 

Introducing (2.4.3) into (2.4.2) gives, on division by i. i,, and 

rearranging: 
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-L 
2- 

-> 
2 

1.6 2 V6 3) k ITR3 kD 0- w 
(2.4.4) 

-> b (k b 
zF Co -k CR 

whence a plot of i- I 
versus w-' is expected to be linear with slope: 

I-22 
ai- 

1.62 v6(tb R 
-3 tý 

0 
-3) 

(2.4.5) 
-T bb 

aw zF(kc 0 
kc 

R) 

and intercept: 

i- 1 (W-i = 0) = ico- 1 (2.4.6) 

When the reaction is entirely controlled by charge transfer it can be 

shown that the current is independent of rotation speed. For a rever- 

sible reaction, however, i- 0 and the plots of i-I versus w-i CO pass 

through the origin. In this case a plot of i versus 
J 

will also be 

linear. In the case of mixed kinetic and mass transport control, the 

full form of (2.4.4) must be used. 

When using this equation it is useful to remember that the 

rate constants are potential dependent according to (2.2.14) and 

(2.2.15). Introducing these dependencies into (2.4.5) we obtain, on 

multiplication by exp{-zF(l-a)(E-E )/RTI: 

I_22 

ai- 
1 

1.62v 
61DR3-D0T exp{-zF(E-0')/RTj 

, 
7T 

ZF bb ol Bw -C R+C0 expf-zF(E-E )/RT) 

(2.4.7) 

If we consider the special case when R is a solid metal, then: 

cb >> cb exp{-zF(E-Ee. )/RT) (2.4.8) R0 

22 
and, 'TRT " Cj exp{-zF(E-E 'e-ý )/RT) (2.4.9) 
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whence, 

1 
ai- 1 . 62v6' 2 

7-: T b' 
D03 exp{-zF(E-E )/RT) (2.4.10) 

aw zF cR 

A plot of log { ai- 

,. 
7T} versus E is therefore expected to be linear with 

Dw 
slope: 

alogjai-i 
"71 

} 
Bw 2.303 RT (2.4.11) 

3E zF 

and intercept: 

31 
2b 

log{(-: 71 log{1.62%ýD 0 
3/ZFC 

R' (2.4.12) 
aw E=E 

Hence z is available from (2.4.11) and D0 from (Z. 4.12). 

Thus, in theory, the RDE is capable of distinguishing between 

charge transfer and mass transfer control of a reaction. Where the 

reaction is not completely dominated by charge transfer control, the 

method is capable of obtaining the current density due to the charge 

transfer process in the absence of diffusion and this current may be 

used in the Tafel Equation, (2.2.24) in order to determine the true 

electrochemical kinetics. Where the reaction is reversible and the 

reduced species is a solid metal, the charge transfer valence and 

diffusion coefficient may be obtained. 
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2.5 Linear Sweep Voltamnetry 

Linear sweep voltammetry (LSV) is a technique which is often 

used for the preliminary investigation of an unknown electrochemical 

system. The technique has been considered by Delahay96 and others. 169 

Whilst the experimental technique is fairly simple, the underlying 

theory is quite complex. The derivation of this theory will not 

be given here - indeed, it would not be appropriate to do so. It will 

suffice to state the relevant equations. 

The experiment concerns the observation of the current 

response to a linear sweep of the electrode potential from an initial 

value, Eis at a rate of v. At any time t, therefore, the electrode 

potential is given by: 

vt (2.5.1) 

As the electrode potential departs from E 
1, which is chosen such that 

the substance 0 is not reduced, the electron transfer (2.2.1) is acce- 

lerated until the concentration of species 0 at the electrode surface 

falls from its initial value (i. e. the bulk concentration) to zero 

when the reaction becomes diffusion controlled. A peak is observed 

in the current response. 

It may be. shown, on application of the appropriate boundary 

conditions that, for a reversible reaction, the peak current density 

is given by: 

3' 

cbjj 2.72 x 105 J D' (2.5.2) 

and also that the observed peak has a characteristic shape defined by: 
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Ep-E 
p/2 - 1.109 . RT/zF (2.5.3) 

where Ep is the potential at which iP occurs and E 
p/2 

is the potential 

at i=ip /2. The potential Ep is independent of sweep rate. Where 

diffusion is unimportant, i. e. for a solid-state reaction, the peak 

current varies with the sweep rate rather than with vi. Where a 

return sweep is made, the separation between the cathodic peak and 

its anodic counterpart is indicative of the number of electrons trans- 

ferred according to: 

AE 
p 

0.058/Z (2. S. 4) 

Where the reaction is intrinsically irreversible, the 

quantity Ep may be shown to depend on the sweep rate. For the cath- 

odic process: 

RT -+i i az Fv 
E. + [-0.78 + ln{k ($D) O. Sln{ a 

p1 az aF RT 

whence, 

(2.5.5) 

BE 
p 0.5- RT 

(2.5.6) 
aln{vl az aF 

-"l where k is the value of the rate constant at E=Ei and $ is some 

function. Note that for the irreversible anodic process, the cathodic 

charge transfer coefficient a should be replaced by 1-a in (2.5.6). 

The peak current density is given by: 

ip3.01 X 105 . Z(aZ 
a 

)'Dl cbvi (2.5.7) 
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Thus linear sweep voltammetry offers the possibility of 

determining the reversibility of a reaction, the number of electrons 

involved in the charge transfer and the charge transfer coefficient. 

It is usually only possible to obtain this information for fairly 

simple systems. Where more complex systems are involved, the method 

may be useful in a more qualitative way, in determining the various 

reactions which may possibly occur in a given potential range. 
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2.6 Faradaic Impedance 

2.6.1 The definition and representation of impedance 

The method of faradaic impedance was first used to investigate 

electrochemicalprocesses by Ershler97 and Randles. 98 The method has 

been reviewed, notably by Grahame99 and by Sluyters-Rehbach and Sltytersl" 

and extensions to the theory have been made by Armstrong, Bell and 

Metcalfe. 101 

A small sinuosoi'ddl perturbation in potential is applied to 

an electrode, superimposed onto a d. c. polarisation. The resultant 

current response contains an alternating component. If the voltage 

is given by: 

Vm sinfwt) - 

and the current by: 

I Im sin{wt-ol (2.6.2) 

then the impedance is defined as the vector: 

Z 
VM 

. arg (2.6.3) im 

VM and Im are the amplitudes of the alternating voltage and current 

respectively, w the angular frequency, t the time and 0 the phase angle. 

The impedance is conveniently represented in the complex plane as: 

Zi - jzlf (2.6.4) 
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where: 

Z 
VM 

W (2.6.5) Im --- 

ZVI 
vm 

sin{ýj (2.6.6) 1 -M 

and j= V-1. The impedance is generally measured as a function of 

frequency, concentration or d. c. polarisation. A plot of Z11 versus ZI 

in these cases is referred to as a 'Sluyters Plot'. The alternative 

Z11 versus w-i and ZI versus w-' plots, known as 'Randles Plots' are 

perhaps less used. 

2.6.2 The Randles Equivalent Circuit 

The impedance of an electrode was considered by Randles", 

who proposed the equivalent circuit of Fig. 2.6.1a as an analogue 

model of it. The circuit is a relatively simple one, allowing for the 

effects of the charge transfer resistance, 0, the double layer capaci- 

tance, CLI the solution resistance, R., and the Warburg impedance, ýW. 

In essence the circuit allows only for the effects of simple charge 

transfer and of diffusion on the electrode impedance. The circuit, 

despite its lack of sophistication, adequately models a large number of 

electrode reactions. It will therefore be described in some detail. 

Fick's Second Law, with the appropriate boundary conditions, 

has been solved by Warburg102 to yield the impedance due to diffusion. 

This impedance, known as the 'Warburg impedance', ýy, may be expressed 

as: 

(00 + C'R)to- 
i-i 

(Cro + Cr R )W-1 (2.6.7) 
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Fig. 2.6.1 The Randles Model 

(a) The Equivalent Circuit 

(b) Sluyters Plot for (a) 
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Generally the quantities co and aR are combined in the 'Warburg co- 

efficient', a, whence: 

N : -- aw-i - jaw-i (2.6.8) 

The Warburg coefficient, for potentials close to the equilibrium, may 

be given as: 

RT 
_II+1 (2.6.9) 

V2z2F2 Cb DcbD 00RR 

per unit area. 

By virtue of the laws governing the combination of impedances 

in series and in parallel, an expression for the total impedance of 

the Randles Equivalent Circuit may be derived. Thus: 

(e + jaw-i i/wCT) (2.6.10) 
e+ aw-i - jcrw-i /WCL 

whence: 

(e + aw-i) 
(I + CL"' )2 + CL 2W2(e + auj-J)2 

(2.6.11) 

(1 + CLowi) 
I 

tOCL (1 + CL'7w 
1)2 

+ CL 2W2 (e + crw-i) 2 

(2.6.12) 

It may be demonstrated that at sufficiently high frequencies (2.6.11) 

and (2.6.12) reduce to: 

Zi R+62 
292 

(2.6.13) 
1+ CL W 
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and: 

Zts 
WC L 

02 

1+ CL 2w262 

respectively. Eliminating w and rearranging leads to: 

Rn - . 
6]2 

+ [Ztt]2 02/4 1 

(2.6.14) 

(2.6.15) 

which is the equation of a circle whose centre lies on the ZI axis at 

Z' =R+ 6/2 and whose radius is equal to 0/2. Thus, the 

Sl&yters Plot at high frequencies often reveals a semi-circular locus 

of frequency. Conversely, the frequency may be sufficiently low for 

(2.6.11) and (2.6.12) to reduce to: 

and: 

ZI RQ+e+ 202 CL (2.6.16) 

Zil crw-i (2.6.17) 

i4hence the Sluyters Plot becomes a straight line of 450 slope, inter- 

secting the ZI axis at ZI = Rn +6- 2a2 CL (w=-). At intermediate 

frequencies the semi-circle bends upwards to meet the 4S* line. 

For systems which are completely analogous to the Randles 

Equivalent Circuit, the values of R,,, 0, a and CL may be determined 

from the Sluyters Plot, using a graphical method. Fig. 2.6.1b shows 

the graphical method for such an ideal case. 

It is possible, howeverto obtain impedance spectra which 

are not of this form and where the Randles Circuit is not appropriate. 

In such cases, even where it is possible to design an equivalent 
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circuit which adequately models the data, there may be no graphical 

method capable of recovering the values of the circuit parameters. 

In such cases a numerical method must be used; indeed, such a 

method may prove advantageous even when the simple Randles Circuit 

is used. 
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2.6.3 A numerical method for the analysis of impedance data 

The analysis of experimental values of the impedance 

Z(Z', Z") as a function of angular frequency w may be achieved using 

the following numerical method and a mainframe computer. The following 

method is quite general to any chosen equivalent circuit. We consider 

an equivalent circuit composed of n elements, whose values are 

Pi (i=l, n) . 

The first step is to derive a relation for the total impedance 

of the equivalent circuit, analogous to (2.6.10). It is assumed that 

the computer is capable of manipulating complex numbers, so that it is 

not necessary to derive expressions, such as (2.6.11) and (2.6.12), for 

the real and imaginary parts of the impedance; these are directly 

available. Given approximate values of Pi it is clearly possible for 

the computer to calculate values for these components from the equation 

for the total impedance. In general, the values calculated in this way 

will differ from the true (experimental) values, reflecting the use of 

approximate values of Pi. Thus: 

Zi z, + AZI (2.6.18) cal 

Zil z1f AZII (2.6.19) cal + 

We note that the experimental data consists of values of both ZI and 

Z" at N different frequencies. The application of the numerical 

method is equally valid for (2.6.18) as to (2.6.19) and in the following 

the use of the distinguishing superscripts will be suppressed. The 

quantity Z will, therefore, represent either ZI or Z" as required. 

We assume that our approximate values of Pi differ from their 
Ii 
14 

48 f 



true values by an amount APi. If this amount is small then the 

quantity AZ may be expressed in terms of Taylor expansions about Pi. 

For sufficiently small values of APi it is valid to truncate the 

Taylor expansions after the first term to yield the linear expression: 

n 
ZZZ DiAPi Z (2.6.20) 

cal +. cal + AZ 

where: 

az 
Di ca (2.6.21) lpi Pi = Api 

Equation (2.6.20) has n unknowns APi and therefore at least 

n values of Z (i. e. n frequencies) must be considered. In general the 

number of frequencies, N, is much larger than the number of unknowns, 

n, and it is desirable to derive maximumlikelihood estimates of APi by 

performing a multiple regression analysis on the data. 

For any particular frequency and a given set of Pi: 

z 
cal - AZ c (2.6.22) 

whence: 

==> C2 

+ 

C2 (Z -Z cal 
)2 - 2(Z - Zcal)'äZ + (AZ) 2 (2.6.23) 

nn 
(Z ,Z cal 

)2 - 2(Z -Z cal) 
Z DiAPi +Z (DiAPi)2 

i=l i=l 

nn 
EZ DiAPiDjAPjSij 

i=l j=l 
(2.6.24) 

where 6ij = 0(i=j) and 6ij =1 otherwise. The sum of errors squared 

is then: 
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NNn 
E2 F . [(Z -Z cal)k - 2(Z -Z cal)k -ZDi, k Api 

k=l k=l J=l 

nnn 
E (D i, k Api) 2+EEDi, 

k Ap iDj, k Ap i6 ij (2.6.25) 
i=l i=l j=l 

The normal equations for linear regression require that: 

n 
E F2 

N k=l 2Z [Di, k(Api +ZDj, k AP i6 ij - (Z -Z cal)k)3 ««3 () 
aApi k=l j=l 

(2.6.26) 

At this point it is convenient to express the n normal equations in 

matrix form. To illustrate the method, we choose 'the Randles Circuit 

for which n=4. The method is valid for all n, however. 

We define a matrix of differential coefficients: 

4 ý- 

Dl, k D 1, k D 2, k D 1'Pk D 3, k D I, k D 4, k 
D 2, k D 1, k D 2, k D2pk D 3, k D 2, k D 4, k 
D 3, k D 1, k D 3, k D 2, k D 3sk D 3, k D 4., k 
D 4, k D 1, k D 4, k D 2, k D 4, k D 3, k D 4, k 

(2.6.27) 

so that: 

API D l0k 
N AP2 ND2, 

k E [(Z -z]ý (2.6.28) 1: ýk 
cal k k=l AP3 k=1 D 3, k 

AP4 D 4, k 

It remains only to calciilate (Z -Z cal)k and D i, k* We have already 

seen that (Z - Zcal)k is available. The differential coefficients, 

..; I 
so 



D. are also capable of calculation. The original equation is used, 1, k' 

with the approximation: 

D i, k E(Zcal('*Ol Pi) - Zcal(Pi))k3I*O' Pi (2.6.29) 

The values of AP 
1 

are now available from (2.6.28) via the matrix inversion 

of A. This is easily achieved using computer methods. =k 

Because of the errors introduced in linearising the Taylor 

expansions, the new values of Pi(= Pi + APi) are substituted and the 

entire process repeated. This iterative procedure continues until 

the value of Ee2 becomes constant. The true values of Pi result. 
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CHAPTER THREE 
A SELECTIVE REVIEW OF THE RELEVANT LITERATURE 

3.1 The electrochemistry of cadmium in aqueous solution 

Introduction 

The electrochemistry of cadmium in various electrolytes has 

been comprehensively reviewed by Latham and Hampson103; and in 

alkaline solution by Armstrong et al. 104 This latter review has been 

extended by Barnard105 recently. 

The purpose of this review is to summarise the literature 

pertaining to the electrochemical kinetics of solid cadmium metal in 

aqueous solution. 

3.1.2 Standard and Formal Potentials 

The data of Harned and Fitzgerald106 is regarded as the most 

comprehensive. Values have also been reported by Burnett and Zirin107 

and by Getman. 108 The generally accepted value for the standard 

electrode potential of cadmium is -0.402 V. 

The potential-pH diagram for the aqueous cadmium system 

(Fig. 3.1.1) has been obtained by Deltcombe, Pourbaix and de Zoubov. 109 

A simplified active-passive diagram has also been given. 109 

3.1.3 Double Layer Properties 

The point of zero charge, Ez, has been determined in several 

electrolytes (Table 3.1.1). 
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Fig. 3.1.1 Potential-pl-I Diagram for the Cadmium Aqueous System109 

(1) Cd 
2+ 

+ 21420 = HCdO2- + 311 +; Cd 
2+ 

/liCdO2-; PH = 11.1; 

(2) CdO + 211+ + 2e = Cd (3) Cd 2+ CdO + 211 +. 
+ 1120; + 1120 = 

(4) CdO + H20 = liCdO2- + ll+; (5) Cd 2+ 
+ 2c = Cd; 

(6) fiCdO2- + 31-1+ + 2e = Cd + 21120; (7) Cd + 11+ +c= Cd1l. 



ELECTRODE CONDITIONS EZ/V REFERENCE 

Stat Sphere 5X 10-3 - 1.0 M KC1 -0.91 110 

it -0.9* ill 

0.1 M Na2SO4/H2SO4 -0.7 to -0.9 112 

Stat dsk 1x 10-3 _ 1.0 M NaC104 -0.9 113 

1X 10-3 - 0.1 M NaF, 
MI N Na2S04. pH 2- 10 -0.72 114 

0.01 M NaF -0.74 115 

TABLE 3.1.1 Zero charge potent. ials of cadmium 

The values were determined from faradaic. impedance measurements. Some 

degree of specific adsorption is suggested, by shifts in the diffuse 

layer minimum with concentration, for sulphate and halide electrolytes. 

This interpretation of the results for sulphate solutions is question- 

able owing to the assymmetry of the electrolyte. The most reliable 

estimates for Ez in the absence of specific adsorption place it around 

-0.73 V. 

3.1.4 Kinetics 

Compared with the amalgam electrode, the electrode kinetics 

of cadmium metal have received little attention. There is,, as yet, no 

unambiguous mechanism for the cadmium electrode. The fact that the 

zero charge potential is positive of the equilibrium potential means that 

equilibrium measu"rements are often sub' iLdso ject to te iýtion of 01F. 

The development of electrode films is frequently observed. 

*by electroreduction of anions. 
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LorenzI16 has studied the kinetics of the exchange reaction 

in neutral sulphate solution. The galvanostatic pulse method was 

applied in the Tafel region; the results were interpreted in terms of 

a rate determining two electron charge transfer step. A cathodic 

charge transfer coefficient of 0.4S was obtained. The exchange current 

density, for 5x 10-3 M Cd2t in 0.4 M I(2SO4. was 1.5 x 10-3 ACM-2, 

indicating an extremely fast reaction. A value of 0.5 was obtained 

for the apparent charge transfer coefficient in 0.75 M IK2SO4. from the 

slope of a plot of logfio) versus log{c). A determination of the 

transfer coefficient was also made using the transition time for the 

deposition of cadmium at high current densities. At long times, a 

plot of E versus 10g{l - VtITI gave a value of a=O. S. At short 

times, however, values as low as a=0.2S were found. The faradaic 

impedance data of BroddI17 largely supports the conclusions of Lorenz. 116 

According to Heusler and Gaiserlls, however, a two-step 

mechanism: 

2+ -h. + Cd +e w- Cd 
ad 

Cd +e --. %. Cd 
ad + qr- 

cannot be dismissed. Their data, and indeed that of Lorcnzll6, is 

consistent with this mechanism. The rate constants of (3.1.2) were 

found to be always greater than those of (3.1.1) which is, therefore, 

the rate determining step. The second step is not necessarily always 

in equilibrium. The observed kinetics are in agreement with this 

mechanism as long as each step has a charge transfer coefficient of 

O. S and the adsorbed intermediate is well-defined and weakly bound 

to the electrode, via a water bridge, say. The rate determining step, 
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(3.1.1), is a typical redox reaction; (3.1.2) represents a metal/ion 

reaction. 

Amosse et all" have also studied the cadmium exchange 

reaction in sulphate solution. Using a double potential step technique, 

they found exchange current densities, (in a solution of 2.5 x 10-3 ýj 

'M WS04/0-5 M Na2SO4),, of 1.65 X 10-2 Ar -2 in agreement with those of 

Lorenz. 116 A Tafel slope of S8 mV was obtained, consistent with a 

charge transfer valence of 2 and a transfer coefficient of O. S. 

flampson and Latham120 have measured exchange current densities 

and obtained a value of a=0.23 for the apparent charge transfer co- 

efficient. Their values for io lie within an order of magnitude of 

those of Lorenz. 116 Their experiments'were conducted in 2.0 H NaC104 

in a range of cadmium concentrations from 0.0617 - 0.452 M. The 

galvanostatic pulse technique was used. In a later paperl2l, they 

employed the method of faradaic impedance to confirm their earlier 

results. The apparent transfer coefficient was found to be 0.35. No 

evidence for the Cd+ species postulated by Ileusler and Gaiser 
ad 

118 was 

deduced, but, working close to the equilibrium, the two step mechanism 

could not be rejected. They note that their values of az support the 

latter mechanism if the transfer coefficient for each step is O. S. 

It is now generally accepted that the mechanism of 11cusler 

and GaiserII8 is correct, although its unambiguous deduction remains 

to be sought, despite the recent work of Harrison et al. 135 

Largely as a result of its application to the nickel-cadmium 

battery, the cadmium electrode in alkaline solutions has been more 

extensively studied. Despite this work, the system remains even less 

clearly defined than was the case for sulphate or perchlorate electrolytes. 
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It has been shown122-4 that the adsorption of the hydroxyl ion is 

important to the anodic oxidation process, and it is difficult to 

avoid the intrusion of oxide/hydroxide films. 

Casey and Lake125 concluded that the anodic oxidation of 

cadmium proceeded in two stages, viz: 

electrochemical chemical 
Cd ) CdO > Cd(OH)2 (3.1.3) 

and indeed evidence for CdO has been given. 126 

There has, however, been some dispute as to the sequence of 

the two reactions. CroftI27 considered the oxidation to follow the 

mechanism: 

Cd + 20H- Cd(0102 + 2e - (3.1.4) 

having established the presence of Cd(0102 but not crystalline CdO. 

Lange and Ohse128 and Ohsel29 pointed out the thermodynamic 

unlikelihood of the primary formation of CdO. It was suggested129 

that Cd(OH)2 was formed initially and subsequently dehydrated to Cdo, 

viz: 

Cd(0102 CdO + H20 

Breiter and Weiningerl3O have carried out voltammotric 

experiments in an attempt to distinguish between the two mechanisms. 

They suggested that the primary oxidation product, formed below the 

passivation potential, consisted of Cd(011)2. Strong passivation was 

thought to be due to a thin layer of CdO. At more anodic potentials, 

thickening of the Cd(0102 layer was said to occur. The thin passivating 
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layer was reduced first. 

Devanathan and Lakshmanan131, from galvanostatic transient 

experiments, concluded that passivation on cadmium occurred by way of 

the following dissolution-precipitation mechanism: 

Cd + OH- -> Cd0H ++ 2e 

WOH ++ OH- Cd (OH) 2 liz- (3.1.7) 

Cd0H + 
--> Cd0 + fl+ (3.1.8) 

The analysis of these results, however, has been questioned. 132 

Llvova et a1133 have studied the impedance of the cadmium 

electrode in concentrated KOH solution. The-frequency spectrum of the 

impedance was characteristic of diffusion. The diffusing species was 

shown to be neither the hydroxyl ion nor the cadmate ion. It was 

suggested instead that the electrochemical adsorption of hydroxyl 

ions was responsible and the frequency dependence due to either the 

surface diffusion of Off, or some surface inhomogeneity. There is, 

however, no quantitative basis for either of these explanations. The 

movement of the species has been demonstrated by other mothods. 122-3 

The equivalent circuit was consistent with the mechanism: 

Oil --> of I 
ad + 

01-1 + oil- 0- (3.1.10) ad ad + 1120 

Cd CdO +c + Oad 

The rate of (3.1.11) is sensitive to temperature, and is diminished, 

as expected, by the application of more cathodic potentials and the 

accumulation of CdO at the elcctrode. 
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The work of OkinakaI34 at the rotating ring disc electrode 

also supports the dissolution-precipitation mechanism over the solid- 

state alternative, in the active range of potential. Passivation was 

found to be due to a thin layer of CdO. 

Later work by Armstrong and WeSt132 criticised the work of 

Devanathan131 and of Okinaka. 134 The authors presented results from 

potentiostatic pulse, rotating ring disc, linear sweep and impedance 

experiments. These results revealed a region of active dissolution 

prior to film formation. The mechanism of film formation was thought 

to be a solid-state one. Film thickening followed an approximately 

parabolic law at short times. These results support the claims of 

Croft127 and Farr and Hampson136 for the solid-state mechanism. 

Hampson and Latham137 have examined the cadmium electrode 

in alkaline solution by double pulse gdVanostatic and faradaic impe- 

dance techniques. Their attempts to determine the kinetic parameters 

were complicated by film formation. They reported a very fast 

exchange reaction, certainly faster than that in perchlorate electro- 

lytes, and the process was found to be independent of [qd2+]. It was 

postulated that a neutral or complexed species be transferred. This 

would explain, if Cd(011)2 were the species transferred, the enhanced 

value of the rate constant in alkaline solution. Their unexpected 

lack of variation in the results with temperature was explained in 

terms of control of the reaction by film growth. 
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3.2 The electrochemistry of nickel in aqueous solution 

3.2.1 Introduction 

The electrochemistry of nickel has been exhaustively reviewed 

by Arvia and Posadas138'and this is the major source consulted. 

The present survey considers the kinetic parameters and 

other relevant work concerning the mechanisms of dissolution and 

deposition of nickel metal in aqueous solution. There is an immense 

body of literature pertaining to nickel and the present review seeks 

only to summarise this. Much of the data pertains to the dissolution 

reaction and this will not be considered here. 

3.2.2 Standard and Formal Potentials T 

It is, as yet, not possible to quote with great accuracy 

the standard electrode potential of the Ni/Ni(II) couple. This is due 

to the fact that a truly reversible equilibrium appears difficult to 

obtain. Values have been determined by several researchers. The 

generally accepted value, E""= -0.23 V, has been found by several 

independent methodsý39-242, but values approaching -0.25 V have also 

been reported. 143-5 

The potential-pH diagram for the aqueous system has been 

constructed by Pourbaix et al. 109 The diagram is considerably more 

complicated than that for cadmium. 
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(2) Ni(s) + 1120(l) = NiO(s) + 2fi+ + 2e; (3) WO(s) + 

H20(l) = Ni304(S) + 2H + 2e; (S) 2Ni3O4(S) + l1200) 

3Ni2O3(S) + 2fi+ + 2e; (6) Ni203(S) + 1120(l) = 2NiO2(S) 

2H ++ 2e; (7) Ni 2+ 
+ H200) = NiO(s) + 211+; (9) Ni(s) 

Ni 2+ 
+ 2e; (10) Ni(s) + 21120(l) = HNi02- + 311 ++ 2c; 

a 1) 3N i2+ + 41120 = Ni304(S) + 811+ + 2e; (12) 31INiO2- + 

li += Ni304(S) + 21120(l) + 2e; (13) 2Ni 2+ 
+ 31120(l) = 

Ni203(s) + 6H+ + 2e; (14) Ni 
2+ 

+ 2H20(l) = N'02(S) + 

4H ++ 2e; (a) 112 = 2H+ + 2e; (b) M20 = 02 + 4H+ + 4e; 

(11) N j2 +/HNi02-j 
PH = 10.13. 
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3.2.3 Double Layer Properties 

The point of zero charge has been estimated in several 

investigations and found to depend strongly on the experimental con, 

ditions. The relevant values are collected together in Table 3.2.1. 

The point of zero charge is generally held to be -0.3 V. 146 

CONDITIONS EZ/V METHOD Ref. 

1x 10-3 M fici -0-06 Salt effect 147 
on h. e. r. 

1.5 X 10-3 M HC1/HBr -0.28 Hydrogen 148 
overvoltage 

H2S04/Na2SO4/NaOH, 0.02, pHl -0.21 Capacitance 149 
minimum 

it it pH2 -0.33 it it 

it it pHS -0.37 

0.01 M KCI -0.193 Immersion ISO 

0.1 M NaC104, pH12.5 -0.30 Friction 146 
Method 

1X 10-4 M NaOH -0.26 Capacitance 146 

5X 10-4 M KC104., pHlO. 3 -0.24 146 

TABLE 3.2.1 Zero Charge Potentials of Nickel 

3.2.4 Kinetics 

The available kinetic data is summarised in Table 3.2.2 for 

the reduction of Ni2+. 
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CONDITIONS pH io/Acm-2 a. Ref. 

1M NiS04 - 2x 10-9 0.5 151 

2N H2SO4/0.01 N NiS04 0.00 8.3 x 10-10 0.35 - 0.4 152 

0.2 N H2SO4/0.01 N NiS04 0.83 2.4 x 10-9 

2N Na2SO4/0. O1 N NiS04 5.86 4.2 x 10-8 

2N HC1/1.0 N NiC12 0.28 1.1 X 10-8 0.35 0.4 

1N HC1/1.0 N KC1/ 
0.01 M NiC12 0.01 6.9 x 10-9 

0.2 N HC1/1.5 N KC1/ 
0.01 M NiC12 0.60 1.7 x 10-9 

0.2 N HC1/0.01 M NiC12 0.67 3.9 x 10-9 

2N KC1/0.01 M NiC12 5.96 1x 10-8 

Piatti, Arvia and Podestal53-4. have studied the behaviour 

of nickel in acid aqueous solution. They found that in nickel ion 

solutions at pH > 4, a Tafel slope of 60 mV was observed. Correction 

of the results for the simultaneous evolution of hydrogen resulted in 

a slope of 120 mV. The exchange current density (extrapolated to the 

reversible potential) was 2x 10-6 ACM-2. These experiments were 

carried out in 2M NaC104- In chloride solutions the system was less 

amenable to analysis, presumably due to the specific adsorption demon- 

strated by several workers. 147-8ilSS 

Tafel plots, again corrected for the hydrogen evolution 

reaction, were obtained by Ovari and Rotinyan156 using solutions of 

NiS04/H2SO4. The nickelous ion concentration was varied from 0.2S M 

to 2M and the pH from 0.55 to 3. The observed Tafel slopes, which 

were independent of the nickelous ion concentration, were between 

124 and 130 W. Other studiesI57, in nickel chloride solution, had. 
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shown that the cathodic process was first order with respect to [Ni2+], 

the anodic reaction being independent of the nickelous ion concentration. 

They were able to propose the following mechanism: 

Ni2+ +e Ni + 
Iv- 

Ni ++e Ni (3.2.2) 

of which the first step is rate determining. This mechanism may be 

seen to adequately fit the data of Table 3.2.2. 

Of particular relevance to the present work are the experi- 

ments of Epelboin. 158 Results obtained using a Watts solution, at 

varying pH and nickelous ion concentration, indicated that the NiOH 

species was involved as an intermediate in the charge transfer process, 

although it did not fulfil a catalytic role. 

Certain of the recently reported investigations of the nickel 

electrode have revealed details of the mechanism of metal deposition 

in electrolytes more closely associated with the present work. 

In chloride electrolytes the involvement of a NiCl inter- 

mediate has been suggested159, viz: . 

Ni2+ + Cl- + 
%a- (NiCl) (3.2.3) 

(NiCl)+ +e NiCl 4Q- (3.2.4) 

NiCl +e ---t Ni + Cl- qlqý (3.2.5) 

The nickel ion concentration ranged from n, 0.01 to. ^, 0.1 M. 

It has also been proposed"O that, in all-chloride electro- 

lytes, the chemical reduction of electrogenerated hydrogen was involved. 

62 



The following scheme could apply: 

H+eH 
ad 

(3.2.6) 

2H H2 t (3.2.7) 
ad 

2H + Ni 2+ Ni + 2H + (3.2.8) 
ad 

The choice of second step, i. e. (3.2.7) or (3.2.8), would be expected 

to depend on the pH. The involvement of NiOH+ is suggested for the 

reduction (3.2.8), possibly via: 

Ni2+ + H20 NiOH + H+ (3.2.9) 

NiOH ++ 2H Ni + H20 +H+ (3.2.10) 
ad INC- 

OvariI61 has suggested the possibility of enhancement by 

hydrogen ions according to: 

]2+ + H30+ [Ni(H ]3+ [Ni(H20)4 30)(H20)3 + H20 

(3.2.11) 

[Ni(H30)(HZO)3 ]3+ + 2e Ni + H30 ++ 3H20 (3.2.12) 

Equation (3.2.12) may be expanded as: 

] 3+ +] 2+ [Ni (H30) (H20) 3e [Ni (H 30) (H20) 3 (3.2.13) 

[Ni(H30)(H20)3]2+ +e Ni + H30+ + 3H20 

(3.2.14) 

Perhaps the most widely accepted mechanism153,162-3 is one 

resembling that proposed for the deposition of iron: 
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(NiOH) ++ H+ Ni2+ + H20 
AZ- 

(Ni0H) ++ 2e > Ni + OH 

(NiOH) ++e>. NiOH 
ad 

(3.2.15) 

(3.2.16) 

(3.2.17) 

If (3.2.17) occurs rather than (3.2.16) then one of the following steps 

may be envisaged for the reduction of the adsorbed NiOH: 

I 

NiOH H++e Ni +H (3.2.18) 
ad + 20 

{ NiOH 
ad + NiOH + 2e ---->. NiOH 

ad + Ni + OH- 
(3.2.19) 

NiOH 
ad + NiOH ++ 3e 2Ni + 20H- (3.2.20) 

An alternative mechanism, also involving NiOH, iS164: 

Ni + [Ni (H20) 4 ]2+ +e (NiOH)+. 3H20 + Ni -H qq- ad 
(3.2.21) 

(NiOH)+ +e NiOH 
ad 

(3.2.22) 

I 
NiOH 

ad 
+ Ni -H ad 

2Ni + H20 (3.2.23) 

The presence of a monolayer of (NiOH) + (at small cathodic potentials) 

has been claimed. 165 
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CHAPTER FOUR, 

EXPERIMENTAL TECHNIQUES 

4.1 Techniques for kinetic investigations 

All experiments of this type were conducted in an electro- 

lytic cell (in house) similar to that illustrated in Plate I. The 

three electrode cell was constructed from borosilicate glass with 

unlubricated ground glass joints, facility being made for the passage 

of nitrogen gas both through and (in later designs) over'týe electro- 

lyte. White spot nitrogen, further purified by passage over copper 

turnings at %, 4000C, was used in this way in all experiments. The 

reference electrode compartment was terminated by a Luggin capillary, 

the tip of which was positioned O. S - 1.0 mm fTom'the surface of the 

working electrode. The counter electrode compartment was separated 

from the main body of the cell by a porous frit. The facility of 

circulating the electrolyte over purified charcoal was provided, but 

not found to be beneficial and was not utilised. 

All glassware was steeped in o. SO: 50 (VOI: VO1) H2SO4/HN03" 

for 24 h. and then thoroughly rinsed with tri-distilled water before 

use. All solutions were prepared from AnalaR grade reagents where 

possible; tri-distilled water was used throughout. 

The working electrodes were metal rods (Cd; Specpure, JMC 170, 

Johnson Matthey Chemicals Ltd. ) machined to a diameter of 3.0 mm and 

pressed into a Teflon shroud. 'A one piece construction (Fig. 4.1.1b) 

was favoured over the two piece design (Fig. 4.1.1a) on account of the 

improved corrosion resistance afforded. Electrical contact was esta- 

blished via a compression spring soldered onto the electrode thence to 

the stainless steel shaft of the rotating disc assembly and a mcrcur y 
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PLATE I The electrochemical cell 
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pool. The electrode assembly was secured to the shaft bya pair of 

nylon screws (previously stainless steel grub screws). 

The working electrodes were subjected to a variety of prer 

treatments during the course of the experiments described. In most 

cases, pre-treatment consisted of abrasion, first on wetted emery 

paper (600 and 1200 grit, SIACO) and then on roughened glass. The 

electrode was then thoroughly rinsed with tri-distilled water and 

introduced into the cell wet. In some cases electrodes were subjected 

to chemical etching in perchloric acid (, %, 10% volume, 10s). In an 

attempt to produce working electrodes of a more reproducible surface 

state, abrasion on roughened glass was replaced by the following 

procedure. The electrodes were roughly dried and polished on an auto- 

matic polishing and lapping machine (Kent 2A, Engis Ltd. ) using a6 

diamond paste (Padamet cloth, Metaserv; dialap lapping compound 6M, 

L. M. Van Moppes and Sons; 10 min. ) followed by a lp paste (Metron cloth, 

Metaserv; dialap lapping compound lMl, L. M. Van Moppes and Sons; 5 min. ) 

with a recommended'lubricant (dialap fluid, L. M. Van Moppes and Sons). 

Traces of lubricant and detritus were removed between stages by immersion 

in tri-distilled water in an ultrasonic bath. 

The counter electrode was a platinum gauze of comparitively 

large surface area. The gauze was attached to a piece of platinum 

wire which was let into a glass tube. A solder connection was made', 

at the bottom of the tube, between the platinum and a length of copper 

wire. 

The reference electrode was a wick-type sodium calomel 

electrode (Beckman RIIC, reference solution-- saturated. sodium 

chloride). 
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4.1.1 Experiments at the Rotating bi-sc. - 
-Er&cýfrode. 

The electrical circuitry, in schematic form, is shown in 

Fig. 4.1.2. For experiments at the rotating disc, however, there 

was no need for the x-y recorder or the function generator. 

The potential of the working electrode was maintained against 

that of the reference electrode (measured. 'at. the tip of the Luggin 

capillary) using a potentiostat (Ministat 251 (I. R. ), H. B. Thompson 

and Associates). For each electrode potential the steady-state 

current was measured with a digital multimeter (Sinclair DM450, 

Sinclair Radionics Ltd. ) as a potential drop across a sense resistor 

(1.00 kQ) in series with the working electrode. The current-time 

profile was recorded using a y-t chart recorder (Omniscribe B5116-7, 

Houston Instrument) to determine the attainment of the steady-state. 

The electrode was rotated at a series of angular velocities (in house 

RDE assembly) in the range 50<w<1000 r. p. m. and the steady-state 

current determined for each. 

4.1.2 Linear/Cyclic Sweep Voltammetry 

The same electrical circuit (Fig. 4.1.2) as used for rotating 

disc experiments was employed, this time utilising the. x-y recorder 

and function generator. 

The function generator (in house) was capable of producing 

a triangular wavefOrm of various amplitudes and frequencies, The 

triangular waveform of the. generator was superimposed upon the d. c. 

potential of a potentiostat (Ministat 251 (I. R. ), H. B. Thompson--and 
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Fig. 4.1.2 Electrical circuit (block diagram) for LSV/RDE experiments 



Associates). The voltammograms were recorded with a x-y recorder 

(Omnigraphic 2011, Houston Instrument) at a series of sweep rates. 

The first sweep was made, in the cathodic direction, at a clean elec, 

trode and subsequent sweeps carried out until a steady-state voltammo- 

gram was achieved. Both the initial and equilibrium sweeps could be 

obtained from the same experiment. The sweep limits were generally 

from the onset of oxygen evolution to that of hydrogen evolution. 

4.1.3 Faradaic Impedance 

Fig. 4.1.3 shows a block diagram schematic of the elements 

used for the determination and analysis of the faradaic impedance 

spectrum. PlateII is a photograph of the experimental arrangement. 

A frequency generator, contained within a frequency response 

analyser (Solartron 1172, Solartron Electronics Group Ltd. ) was used 

to provide a sinuosoidal perturbation (300 mV peak. to peak, attenuated 

by 0.01) to a d. c. polarisation applied to the cell-via an electro- 

chemical interface (Solartron 1186, Solartron Electronics Group Ltd. ). 

The a. c. response of the cell was correlated by the frequency response 

analyser and output, via a data transfer unit, to a teletype printer 

and paper-tape punch (Data Dynamics 390, Data Dynamics Ltd. ). The 

frequency response alialyser also allowed for the programming of a 

frequency scan anywhere between the limits 10 kHz>w>l mHz in either 

direction. The number of frequencies per decade may also be'programmed. 

When required, a Sluyters Plot, could be obtained directly on an x-y 

recorder (Bryans 26000) via a plotter interface (Solartron 1182, 

Solartron Electronics Group Ltd. ). The data was subsequently transferred 

to a Prime 400 mainframe computer equipped with graphics terminals. 
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I-, LATE II The experimental arrangemcia for t-lic, measuremellL of 
faradaic impedance 
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4.2 Experiments in the Chemelec Cell 0 

(9). 
The Chemelec Cell is a comparatively recent development in 

electrochemical technology. It is to be expected, therefore, that the 

scientific investigation of aspects of its electrochemistry will 

involve the development of innovative experimental methods. Such 

methods may be contrasted with the rather more established ones of the 

preceding section. 

While the underlying philosophy or rationale of the experiments 

has essentially been that of the 'concentration-decay' type (q. v. ) of 

Lopez-Cacicedo30, the experimental set-up has been developed continuously 

during the course of the project. Such development, whilst both 

important and time-consuming, is of no particular academic interest 

and will not be described in any detail. In what follows, only the 

latest arrangement will be considered. Any results obtained with 

earlier experimental systems may be obtained with the present one, and 

with greater ease and precision. 

The cell itself was a laboratory scale Chemelec Cel (2) 1 which 

is shown, together with the control and certain of the associated 

monitoring equipment, in Plate III. Fig. 4.2.1 illustrates the 

essential features of the experimental arrangement. The electrolyte 

was circulated by pumping (encapsulated magnetic pump: maximum flow 

rate 401 min-1, actual linear flow rate 30-40 mm s-1) between the 

electrode compartment (dimensions 24.0 cm x-lS. 4 cm x 7. S cm) and the 

reservoir (dimensions 25.0 cm x 13.3 cm x 9.9 cm) through a non- 

conducting bed (static height 7 cm) of soda glass beads (Potter Ballutini 

Grade 0). The flow of electrolyte was controlled by a valve (see Plate III) 
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PLATE III The Chemelec Cell and potentiostat 
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in order to produce the correct degree of fluidisation in the beads. 

The flow was regulated so that the fluidised bed was maintained at 

twice its static height (Plate IV). This situation is termed 100% 

fluidisation. The electrolyte flows over the weir, through a nylon 

mesh (required to trap any entrained beads) and thence back to the 

reservoir. The slotted flow distributor ensures that the beads are 

constrained to the electrode compartment and provides an even upward 

flow of electrolyte. The bed is quite stable and, being inert, is- 

simple to maintain. 

The temperature of the electrolyte was maintained at 32 ± 1*C 

by use of a heating coil immersed in the reservoir. As a result of 

the slightly elevated temperature and the effective surface area of 

the electrolyte presented to the atmosphere, evaporative losses were 

significant and countered by the use of a constant head device as 

shown in Fig. 4.2.1. The pH of the electrolyte was monitored by a 

glass-AgCl combined electrode, used in conjunction with a pH meter 

(Model 38B, EIL). Any adjustments required to maintain,...,,. the, pli at 

its desired value were effected by the addition of sodium hydroxide 

or sulphuric acid via a peristaltic pump (HR Flow Inducer MHRE 22, 

Watson-Marlowe Ltd. ). 

The initial composition of the electrolyte was, in'-all cases, 

ih g1l: 

Na2SO4. IOH20 

NiS04.6H20 

NaCl 

H31303 

397 

6.7 (--2 1.5 g/i Ný) 

22.2 

39.6 
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PLATE IV The electrode compartment of Ole Chenieluc Cell ,; jjowIjj)' 
100% fluidisation of the bed 



- -1, -. 11 ---11-1.11 -- 11 

This composition was thought to adequately model that of a typical 

drag-out solution after many months of use*. 

The cathode was an expanded titanium mesh, whose nominal 

working surface area was restricted by the use of a stopping-off 

medium (Fortolac, Wm. Canning & Co. ) to a central area consistent with 

the output limitations of the potentiostat. The cathode was flanked 

by a pair of RU02/Ti anodes; the inter-electrode separation was 2.45 cm. 

The reference electrode (Hg/Hg2SO4. ceramic junction, EIL) was housed 

in a reference electrode assembly allowing a Luggin capillary to pene- 

trate the approximate centre of the cathode working area. The tip of 

the capillary contained an asbestos fibre to guard against its 

becoming blocked by glass beads. 

The electrical circuit is shown, in block schematic form, in 

Fig. 4.2.2 (see also Plate V). The potential of the cathode was main- 

tained with respect to the potential of the reference electrode at the 

tip of the Luggin capillary by a potentiostat (Chemical Electronics 

10/50A), and measured with a digital voltmeter PPM 300, Advance). A 

network of resistors, interposed in the secondary electrode circuit, 

allowed for the measurement of the current as a potential drop displayed 

on a further digital multimeter. An attenuated voltage (derived from 

the resistor network as shown in Fig. 4.2.2) was grounded via a differen- 

tial amplifier (151-BD, Fylde) and used to drive a y-t recorder 

(Omniscribe B5116-7, Houston Instrument). The same attenuated voltage 

was integrated (Mark IV Volt-Time Integrator, Lintronic Systems) over 

time to provide the charge passed. 

All experiments were of the 'concentration-decay' type. The 

cell was operated potentiostatically in batch recycle mode at constant 

the nickel ion concentration falls continuously during the. course of 
the experiment. 
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PLATE V Monitoring equipment used in Chemelec experiments 



Fig. 4.2.2 Electrical circuit (block diagram) for Chemelec experiments 



temperature, pH and fluidisation. The metal ion concentration was 

allowed to fall continuously and both it and the charge passed were 

obtained as functions of time. 

Polarisation data was obtained at various concentrations 

(i. e. at various times during the experiment) by interrupting the 

experiment and manually step scanning the potential, observing the 

resulting steady-state currents. The potential scans were from the 

most cathodic in all cases. 

The analysis for nickel was achýi, eýýd using flame atomic 

absorption spectrophotometry (A3400, Baird Atomic Ltd. or SP90A 

Series 2, Pye Unicam). Samples (ca. 2 ml) were withdrawn from the 

cell at intervals and, after dilution (1: 100), were atomised in an 

air-acetylene flame. The concentration of nickel was determined from 

the absorption of light (232.0 nm) emitted by a hollow cathode lamp. 

Unfortunately, the instability of the potentiostat and the 

necessity for frequent adjustments to the rate of addition of sodium 

hydroxide/sulphuric acid meant that the system required constant super- 

vision; continuous operation was not, therefore, possible. During 

the periods when the experiment was not running, the cathode was 

removed from the cell and stored under water. 

. Likewise, between experiments, the glass beads were kept wet. 

It was found that if the beads were allowed to dry then aggregation 

would occur and it would no longer be possible to produce an evenly 

fluidised bed. This situation could be remedied by treating-the ghiss 

beads with hot sodium hydroxide (N 5 M), followed by hot sulphuric acid 

4 M) with copious washing with water: between. 

72 



CHAPTER FIVE 

CADMIUM IN PERCHLORIC ELECTROLYTES 

5.1 Introduction 

Before attempting to determine impedance spectra for cadmium 

in alkaline cyanide solutions, it was decided to test the procedure on 

a system for which impedance data was already available. The choice 

of a perchloric electrolyte was thought to exclude the possibility of 

encountering film formation and associated problems. Experiments with 

electrolytes similar to those studied by Harrison et a1135 afforded 

results of interest in their own right, as well as verifying the method. 

5.2 Experimental 

The solution was composed of the following electrolytes: 

CdS04 0.005M 

HC104 0.001M 

NaC104 1.000M 

The impedance spectrum of the system was determined at a range of 

electrode potentials on either side of the equilibrium. For each 

potential, the frequency of the alternating perturbation was scanned 

from 9.9 kHz to 1.0 mHz (or until the system became unstable) in steps 

of ten frequencies per decade. 
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5.3 Results 

The resulting impedance spectra were analysed by computer 

according to the model of Randles. 98 The previously described 

numerical*method (§2.6.3) was used to find maximum likelihood estimates 

of the four parameters R... Os CL and &. The computer then calculated 

the impedance spectrum from the values of the parameters thus determined. 

In the spectra of Figs. 5.1 to 5.8 the points represent the experi- 

mental values, the solid lines are the calculated computer fits. In 

all cases the analysis was performed using both the so-called IR-1 

and IC-equations', (2.6.11) and (2.6.12). Noting in passing that R 

cannot be determined from (2.6.12), being purely resistive in nature, 

the values of the otherparameters should be the same whether calcu- 

lated from (2.6.11) or (2.6.12). In fact, there is generally a 

small discrepancy between the two values calculated for any given para- 

meter. This discrepancy may be ascribed to the fact that the equivalent 

circuit does not exactly model the experimental system. 

5.3.1 The cathodic process 

Figs. 5.1 to 5.4 show the impedance spectra for the given 

system, at four different electrode potentials, as calculated from 

the IR-equation'. Figs. 5.5 to 5.8 show the corresponding fits 

calculated from the IC-equation'. The upperfigure in each is the 

Sluyters Plot and the lower one the Randles Plot. 

The agreement between experimental and calculated data is 

excellent and extends to frequencies of 1 Hz in some cases. This is 

a significant achievement in itself for the study of solid metal elec- 

trodes. 
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The departure of the experimental data from the 450 line in 

the Sluyters Plots is often associated with the surface roughness of 

the electrode. It has been shown by de Levie166 that for a porous 

electrode (semi-infinite linear diffusion) a line at 22j* is to be 

expected. Hampson167 has suggested that for rough electrodes a rough- 

ness factor (O<y4l) be defined such that y=1 represents a perfectly 

smooth electrode while y=0.5 represents an electrode roughened to the 

extent of being porous in the sense of de Levie. 166 With this formalism, 

the Warburg impedance is given by: 

ZW CrRW-i - jac W-i (5.3.1) 

with the roughness factor defined in terms of aR and cr C as: 

cr R 
/0 

c (5.3.2) 

The effect of such a modification on the Sluyters Plot i§ twofold. At 

low frequencies the slope of the Warburg line may vary from 22j* to 

450. Concomitant with this is a flattening of the high frequency- 

semicircle. 

A model for the Randles Circuit with a roughened electrode 

was used to try and improve the fit between the theoretical values of 

the impedance at low frequencies. Any improvement gained, however, 

was outweighed by the effects on the high frequency part of the spec- 

trum and a better overall fit was obtained from the original Randles 

Circuit. 

The average values of the parameters at each of the four 

electrode potentials are given in Table S. 1 below. The magnitudes 
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of the double layer capacitance are consistent with a film-free solid 

metal surface. 

E 

v 

BA 

104nM2 

CL/A 

Fm-2 

-0.721 1.056 0.597 107 

-0.731 2.289 O. S88 178 

-0.737 3.280 0.487 319 

-0.745 8.035 0.442 835 

TABLE 5.1 Values of GA, CL and a as 
a function of E-cathodic process 

The Warburg coefficient increases with the degree of d. c. 

polarisation and a plot of 109{61 versus E (fig. S. 9) is consistent 

with a linear relationship of - 29 mV/decade slope, indicating a two 

electron reversible process. 

The charge transfer resistance also varies with electrode 

potential. The corresponding semi-logarithmic plot (fig. 5.10) is 

also consistent with a- 29 mV/decade slope. From examination of 

(2.2.29) a value of za =1 is deduced and this is confirmatory evidence 

for the two electron reversible process. 
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5.3.2 The anodic process 

The data obtained for the anodic process is less amenable to 

analysis in this way. Figs. 5.11 to 5.13 show the data analysed 

according to the IR-equation' and Figs. S. 14 to 5.16 that according to 

the IC-equation'. The Randles model could only be fitted for frequencies 

in the range 9.9 - 1.0 kHz and there are significant differences 

between the two fits. It would appear that the Randles Circuit is 

inappropriate here. 

eA/104pM2 CLA-1/Fm-2 a/ns-i 
E/V 

R-eqn. 
1 

C-eqn. R-eqn. C-eqn. R-eqn. C-eqn. 

-0.703 0.573 0.519 0.707 0.674 
i 

119.0 117.0 

-0.691 0.173 0.182 2.659 1.648 9.2 53.6 

-0.647 0.427 0.421 
1 

0.924 0.701 90.1 129.1 

TABLE 5.2 Values of OA, CL A-1 and a as a function of 
E-anodic process 

With this in mind, it is less than surprising that the values 

of the parameters do not exhibit a consistent trend with electrode 

potential (see Table 5.2 above). The values deduced for the double 

layer capacitance do not suggest extensive film formation, however, 

though the presence of a monolayer of hydroxide cannot be completely 

ruled out. The values of the charge transfer resistance indicate a 

facile anodic process, be it electrodissolution or some other process. 

It is unfortunate that the available data does not allow the deter- 

mination of the dissolution kinetics. It is suggested that the lack 

of a consistent trend with electrode potential is due to an ill-defined 
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electrode surface. 

In support of this argument, measurements at the equilibrium 

potential have been surprisingly difficult to obtain. The results 

tend to be irreproducible and the values of the charge transfer 

resistance are orders of magnitude larger than those obtained above. 

Correspondingly low values for the double layer capacitance would tend 

to suggest a well-established surface film, which develops whilst no 

net reaction is taking place at the electrode. Whilst it may be 

imagined that driving the anodic reaction may enhance the film thick- 

ening process, it is also possible that the electrodissoluticnserves 

to clean the electrode, leaving perhaps only a monolayer of film on 

the surface. A typical example of the equilibrium impedance spectrum 

is shown in Figs. 5.17 and 5.18. The intersection of the two curves 

of the Randles Plot (well-developed here) is characteristic of phase 

formation. 

5.4 Discussion 

Hampson and Latham121 have investigated the electrode 

kinetics of cadmium in perchlorate electrolyte. Their results were 

obtained for a range of cadmium ion concentrations at the reversible 

potential. They report an initial time dependence of the electrode 

impedance. Their steady state values yielded a value of a=0.23, which 

they considered consistent with a two step mechanism as suggested by 

Heusler and Gaiser. 118 

Although a more recent paper by Harrison et a1135 fails to 

make reference to the above work, its conclusions endorse those of 
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Hampson and Latham. 121 The work of Harrison et a1135 is not altogether 

conclusive. Assuming the Ileusler and'Gaiser mechanism118, with 

the first step rate determining, and, couching their theory in these 

terms they were able to fit their data to a theoretical model by 

estimating values for the standard electrode potentials of the Cd++/ 

Cd + and Cd+ /Cd couples. ad ad 

The present work is, perhaps regrettably, at variance with 

both of these studies in advocating a two electron charge transfer, 

at least for the cathodic process. No explanation for this can be given. 

However, the method appears satisfactory for the determination of 

electrode kinetics in this way. 

5.5 Conclusions 

1. The electrodeposition of cadmium in the given electrolyte 

occurs by a two electron process. 

2. Evidence for control by diffusion in solution has been 

observed. 

The presence of a well-established hydroxide film is postu- 

lated at equilibrium. 

4. This film is not observed at anodic polarisations, presumably 

on account of some cleaning process occasioned by the dis- 

solution reaction. 

S. The kinetics of the dissolution reaction are obscured, 

possibly by the presence of a monolayer of hydroxide film. 
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CHAPTER SIX 

CADMIUM IN CYANIDE/CHLORIDE ELECTRCLYTES 

6.1 Introduction 

Before attempting a kinetic investigation of the complex 

system of the next chapter, it was decided to apply the rotating disc 

method to a slightly simpler system. As in the last chapter it was 

thought desirable to examine a system for which some data was available. 

The work of Gerischer168 has been selected for this purpose. By means 

of impedance methods, Gerischer was able to propose a mechanism for 

the discharge of cadmium cyanide complexes at an amalgam electrode. 

The present work concerns the electrode kinetics of the 

dissolution of a*solid cadmium electrode in electrolytes similar to 

those of Gerischer. 168 The technique of the rotating disc has been 

used for this purpose. 

6.2 Experimental 

The di 
. 
ssolution of a solid cadmium electrode in the following 

electrolytes was examined at the rotating disc electrode. The rotation 

speed of the electrode was varied from 100 to 600 r. p. m. for a series 

of electrode potentials. 

Electrolyte (a) (b) (c) (d) 

NaCl 3.99M 3.95M 3.99M 3.99M 

NaCN O. Olm 0.05M O. Oim O. Olm 

WC12 2. OmM 1.0mm 
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6.3 Results and Discussion 

6.3.1 Electrolyte (a) 

The dependence of the current density on the rotation speed 

for this electrolyte, at seven different electrode potentials, is 

shown in Fig. 6.1, plotted in the form i-I versus w-'. These plots 

are quite linear and the fact that the current density depends on the 

rotation speed shows that the reaction is controlled, at least partly, 

by diffusion in solution. All of the curves pass through the origin 

from which fact (cf. equation (2.4.6. )) it may be concluded that the 

charge transfer current is extremely high; that is to say the reaction 

is essentially reversible. 

Taking'the logarithm of the slopes of these curves and 

plotting them against electrode potential (Fig. 6.2), a linear relation- 

ship is obtained as would be expected on the basis of equation (2.4.10). 

Consideration of eqh. -(2.4.11) and the -29 mV/decade slope indicates 

that the electrode is in equilibrium with a two electron solution 

species. ' 

6.3.2 Electrolyte (b) 

Keeping the total ionic strength the same as for electrolyte 

(a), the cyanide ion concentration was increased fivefold. As before, 

I-1 versus w-' plots (Fig. 6.3) for seven electrode potentials were 

, linear and passed through the origin. In this case, however, the slope 

of the linear plot of log{3i-1/3w-') versus E (Fig. 6.4) was -415 mV/ 

decade compared to the -29 mV/decade slope obtained for electrolyte (a). 

so 
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Such a value is usually associated with the presence of a film on the 

electrode, such that the entire reaction must be pulled through a 

passive layer. It is quite possible that increasing the cyanide 

concentration led to a significant shift in the pH of the solution to 

a value favouring such film formation. 

6.3.3 Electrolyte (c) 

Reverting to the cyanide concentration of electrolyte (a) it 

was decided to attempt to investigate the effect of adding various 

amounts of cadmium chloride to the electrolyte. The results for a 

solution containing 2.0 mM CdC12 are shown in Fig. 6.5, as always in 

the form of i-1 versus w-' plots. Whilst these plots are still linear, 

they no longer pass through the origin. This implies that the addition 

of the cadmium ion has, in some way, conferred a degree of irreversibilit 

on the reaction. Fig. 6.6 shows the variation of Iog{3i-1/3w-') with 

E. The slope of the line is no longer -29 mV/decade as it was in the 

absence of the cadmium ion, but has risen to -55 mV/decade. If this 

were taken to imply that a one electron transfer were occurring then 

the 40 mV/decade Tafel slope (Fig. 6.7) would indicate an apparent 

charge transfer coefficient in excess of unity. Clearly, this is 

not possible. 

A more likely explanation of these facts is that the addition 

of the cadmium ion has caused a fall in the amount of free cyanide . 

available to complex dissolving cadmium. In such a situation, a pro- 

portion of the dissolving ions might be expected to precipitate. Such 

an analysis of Figs. 6.6 and 6.7 would not then be strictly valid. The 
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value of the slope of Fig. 6.6 shows, however, that the precipitated 

cadmium is far less passivating than the hydroxide film experienced in 

electrolyte (b). 

6.3.4 Electrolyte (d) 

The conditions for this experiment were identical to those 

of 6.3.3 save for a reduction in the concentration of cadmium chloride 

to 1.0 mM. Yet again linear i-1 versus w-' plots were produced 

(Fig. 6.8) with intercepts indicating an irreverisble process. The 

variation of log{3i-1/3w-') with potential (Fig. 6.9) is similar to 

that of Fig. 6.6 and although insufficient data exists for a line to 

be drawn, the slope of a line passing through the points at the three 

most positive potentials exhibits a slope of lessthan 55 mV/decade. 

Similarly, the Tafel slope of Fig. 6.10 is increased from its 40 mV/ 

decade value for Fig. 6.7 to 45 mV/decade in the present case. 

hbilst the changes in these parameters are too small with 

regard to the overall accuracy of the experiment to be considered 

conclusive, it is interesting to note that, if the interpretation of 

the data is correct, then the effect of a decrease in the concentration 

of cadmium chloride would be to decrease the competition for free 

cyanide. Thus is might be expected that the Tafel slope should rise 

towards its theoretical value of 59 mV/decade and the slope of the 

log(ai-1/aw versus E plot return to its -29 mV/decade value. 

I 
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6.4 Conclusions 

1. The dissolution of a solid cadmium electrode in a solution of 

0.01 M NaCN/3.99 M NaCI occurs as a two electron reversible 

process. 

2. Increasing the concentration of sodium cyanide to only 0.05 M 

produces a film on the electrode; this is thought to be due 

to the change in pH of the electrolyte. 

3. Addition of a cadmium salt to a solution containing 0.01 M 

NaCN induces irreversibility into the process and causes an 

increase in the slope of the log fai-1/Dw-'J versus E curve. 

Precipitation of the dissolved cadmium is thought to account 

for this, under the influence of a decreased amount of free 

cyanide available for complex formation. 
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CHAPTER SEVEN 

CADMIUM IN CHEMELEC ELECTROLYTES 

7.1 Introduction 

As has already been stated (H. 1), the majority of cadmium 

plating is achieved from cyanide electrolytes. A typical cyanide bath 

composition might be103: 

Cd 20 g/l 

NaCN 50 g1l 

NaOH 15 g1l 

A typical drag-out tank might commence operation with a solution 

containing only 10 g1l of sodium hydroxide. Over a period of months, 

drag-out from the plating bath will result in the incorporation of 

plating bath salts with concentrations up to their plating bath values. 

The metal ion concentration will, however, be depleted to below I g/l. 

In practice, a range of solution compositions will be encountered in 
'0 

. 
operation of the Chemelec Cell, The probable limiis of such solutions 

are, in g1l: 

Start-Hp After many months 

Cd 0.2 0.2 0.5 

NaCN 0.6 - 0.9 50 60 

NaOH 10 is 

and the electrolytes studied in the following sections have been chosen 

to fall within these values. 
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A combination of techniques (linear sweep voltammetry, 

rotating disc and faradaic impedance) has been used in an attempt to 

elucidate the electrode kinetics of solid cadmium in such electrolytes. 
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7.2 Linear Sweep Voltammetry 

Linear sweep voltammograms were recorded at a series of five 

different sweep rates for a set of three electrolytes of composition: 

(a) (b) (C) 

Cd(CN)2 3.0mM 3. OmM 3.0mm 

NaCN I. OM 0.1m O. Olm 

NaOH 0.4M OAM OAM 

The electrolytes were typical of the drag-out solution after- many 

months of use, but with sodium cyanide concentrations straddling the 

range. 

The resulting voltammograms are extremely complex and not 

amenable to a rigorous quantitative interpretation. There are several 

anodic and cathodic peaks and, often, a considerable fine structure. 

A semi-quantitative treatment will be attempted where possible. 

7.2.1 Electrolyte (a) 

Figs. 7.2.1 to 7.2.5 show the voltaTmnograms for the 1.0 M 

NaCN case. The first quadrant of each shows the oxidation currents, 

with the reduction currents in the fourth quadrant. 

Fig. 7.2.1 is suggestive of a passivated electrode, with the 

main anodic peak characteristic of classical passivation. The cathodic 

process, save for the evolution of hydrogen at -. -2 V is completely 

inhibited. As the sweep rate is increased (Figs. 7.2.2 through 7.2.5) 
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the appearance of cathodic peaks is noted. The separations between 

the anodic and cathodic peaks (and indeed their broadness) are far in 

excess of the values associated with simply coupled redox processes. 

The anodic peaks are thought to be due essentially to the solid-state 

film formation and the cathodic processes are believed to be predominantly 

associated with the reduction of the film. The cathodic peak at 2V 

is due to the hydrogen evolution reaction. 

The anomalous peak separations would be rationalised by the 

existence of a hydroxide film covering the electrode. In view of this 

interpretation and the complexity of t he current response, one would 

not necessarily expect to observe linear relationships between ip and 

v or vi. Only for the case of the most negative of the anodic peaks 

does such a relationship between ip and vi hold. This is shown in 

Fig. 7.2.6, which exhibits a positive intercept at vi = 0. Such an 

intercept would not be expected for a film-free electrode (cf. 2.5.2 

and 2.5.7). The dependence on v' does suggest, however, that the peak 

corresponds to a solution, rather than a solid state, process. On 

plotting Ep versus log{vj for this peak, Fig. 7.2.7, a linear relation 

of ,, 59 mV/decade results. Consideration of (2. S. 6) suggests that 

the peak is due to a one electron transfer with a=O. S. 

7.2.2 Electrolyte (b) 

The voltammograms obtained for electrolyte (b), Figs. 7.2.8 

to 7.2.12, appear to be of greater simplicity than those of Figs. 7.2.1 

to 7.2.5. The values for the peak separations are still too large, 

however, for simple redox processes. There is less evidence of pass- 
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ivation here, as might be expected on the basis of the arguments 

developed in §6.3. 

Again, a full quantitative interpretation is not possible. 

Only one resonably, linear relationship is seen. - Fig. 7.2.13 shows the 

plot of ip versus v' for the most negative anodic peak. There is no 

consistent trend in Ep with sweep rate in this case, however. 

7.2.5 Electrolyte (c) 

Figs. 7.2.14 to 7.2.18 show the voltammograms for the 0.01 M 

case. It is unfortunate that little additional information can be 

extracted from these experiments. The presence of multiple cathodic 

peaks might be interpreted in terms of the discharge of different 

cadmium cyanide complexes. However, there is really insufficient 

evidence for such an inference. 

Once again a linear relationship between ip and vi (Fig. 7.2.19) 

is observed for the most negative anodic peak, but apart from this, 

disappointingly,. oth&r attempts at quantitative analysis founder. 

7.2.4 Discussion 

It is indeed regrettable that no kinetic information could be 

deduced for the deposition process. It would a: ppear, however, that the 

deposition of cadmium from one or more cyanide complexes occurs through 

a more or less developed hydroxide film. A feature of the data of 

Fig. 7.2.1 which may at first sight appear Puzzling, is the complete 
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lack of cathodic processes (h. e. r. excepted) in a solution for which 

satisfactory operation of the Chemelec Cell occurs. When considering 

this point, however, it should be borne in mind that the linear sweep 

experiment spans a very large region of electrode potential. In 

addition, the sweeps are made from eu -0.4 V in a cathodic direction. 

Especially at low sweep rates, therefore, there will be opportunity for 

the complete development of a passivating film prior to reaching the 

region of electrode potential in which electrodeposition occurs. This 

is a situation which, it is hoped, would never be encountered in 

practical operation of the cell. 

Some of the anodic processes have been amenable to a more 

quantitative analysis. The most negative of the anodic peaks displays 

behaviour characteristic of a diffusive process at all three cyanide 

concentrations. Because of the uncertainty of the identity of the 

complexe(s) involved and their bulk concentrations, it has not proved 

possible to relate the changes in the slope of the ip versus vi plots 

to obtain a value for the diffusion coefficient via (2.5.7). The only 

kinetic information which has been obtained indicates that a one 

electron transfer is involved in the dissolution Process. Curiously 

enough, this information was obtained for the 1.0 M NaCN case. It is 

to be concluded that in this electrolyte the passivating film is 

sufficiently well-developed not to affect the variation of Ep with 

sweep rate. This should, however, be confirmed elsewhere. 

/ 

I 

I 

89 



7 

7.3 Experiments at the rotating disc electrode 

The rotating disc electrode has been used to investigate the 

electrode kinetics of the dissolution and deposition of cadmium in the 

following solutions: 

(a) (b) (C) 

Cd (CN) 2 3.0mm 3. on-M 3.0mm 

NaCN 0.03M 0.1m 1.01NI 

NaOH OAM OAM OAM 

7.3.1 The deposition of cadmium from electrolyte (a) 

Figs. 7.3.1a and 7.3.1b show the dependence of the current 

density on the rotation speed for a series of electrode potentials in 

the deposition region. A linear relationship is found to exist between 

i-I and w-' indicating at least partial control of the reaction by 

diffusion in solution. The extrapolated intercepts at w-i =0 are 

c lose to zero on the i-1 axis, but the lines have not been drawn 

through the origin as it was felt that to do so would impair the 

determination of 3i_1/3w_' as a function of E, as plotted semi- - 

logarithmically in Fig. 7.3.2. A line of 29 mV/decade slope has been 

drawn through the data and this shows, within a fairly large experi- 

mental error, that the data is consistent with a two electron transfer. 

In view of the rather small and inaccurate values of the intercepts at 

w-i =0 the Tafel plot has not been constructed. From this evidence, 

it appears that the deposition of cadmium from this electrolyte occurs 

as an essentially reversible two electron process. 

/» 
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7.3.2 The dissolution of cadmium in electrolyte (ii) 

The corresponding plots of i-I versus w-I for the dissolution 

process are shown in Fig. 7.3.3. Again, a linear relationship is obtained 

and the extrapolation to w-' =0 yields unreliable intercepts. The 

semi-logarithmic plot of ai-I/Dw-' against electrode potential is shown 

in Fig. 7.3.4 and a line of -59 mV/decade slope is entirely consistent 

with this data. This would tend to indicate a one electron transfer 

in the dissolution step, in complete agreement with the conclusions of 

§7.2.2. However, it is not inconceivable that the 29 mV/decade slope 

for the cathodic process has been augmented by the onset of film 

formation. The combination of the present data and that of §7.2.2, 

however, makes this latter interpretation-unlikely. 

7.3.3 The dissolution of cadmium in electrolyte 

The dependence of i-1 on w-i is shown in Fig. 7.3.5. The 

resulting plot of logOi /aw I versus E, Fig. 7.3.6, shows a linear 

, relationship of -120 mV/decade slope. This is not unexpected on the 

basis of the previous work (§6.3), as the concentration of sodium 

cyanide has been increased, and the presence of hydroxide films in 

such solutions is strongly suspected. 

7.3.4 Deposition of cadmium from electrolyte (c) 

Y, 

In the case of 1.0 M NaCN, the dependence of i-1 upon w-i 

is maintained for the deposition reaction. However, as Fig. 7.3.7 

clearly shows, the theory for the rotating disc is not really applicable 
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inasmuch as it is incapable of allowing the intersection of two i-I 

versus w-' curves obtained at different electrode potentials. A plot 

of log{3i-1/Dw-') versus E has, nevertheless, been obtained (Fig. 7.3.8) 

and this plot has a linear slope in excess of 1000 mV/decade. Such a 

value is eftirely indicative of a highly developed fili; through which 

the deposition reaction must take place. It is clearly impossible to 

unravel the electrode kinetics in such a case. 
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7.4 Faradaic Impedance Studies 

The impedance spectrum for cadmium in the electrolytes below 

was determined both at the equilibrium potential and at electrode 

potentials on either side of the equilibrium. As has frequently been 

observed during the course of this work, the attainment of a reproducible 

and stable equilibrium potential is one of the foremost problems in 

experiments such as these. Often the rest potential varies with time, 

presumably due to the thickening of a hydroxide film. 

(a) (b) 

Cd (CN)2 I. Omm lomm 

NaCN 1.0m Lom 

f4a, Pd6H 0.4M 0.4M 

Although an impedance spectrum, Figs. 7.4.1 and 7.4.2, has 

been obtained for both electrolytes at the equilibrium potential 

(cf. §5.3.2), and a moderately good fit achieved using the Randles 

equivalent circuit, the values of the parameters thus obtained defy a 

quantitative interpretation. 

It has also been possible to fit the Randles model to 

impedance spectra obtained at potentials close to the equilibrium, as 

shown in Figs. 7.4.3 to 7.4.6. The values of the quantity OA are at 

least an order of magnitude greater than those observed in &S. 3. 

The values of CL /A, ýowever, remain high. 

At higher overpotentials, both anodic and cathodic, the 

Randles model becomes inappropriate as the high frequency semicircle- 

elongates along the real axis; a typical example is shown in Figs. 7.4.7 
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and 7.4.8. 

It is to be concluded that the method of faradaic impedance 

is incapable of elucidating the true deposition and dissolution kinetics 

in a solution containing 1.0 M NaCN. However, the evidence does support 

the film formation as proposed in S7.2 and §7.3, despite the values of 

CL /A. An increase in Ra over the values seen in §5.3 provides - 

additional support. 
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7.5 Discussion 

A combination of the three experimental techniques has led to a 

working hypothesis for the cadmium electrode in alkaline cyanide solution. 

It has been difficult throughout to obtain a steady and reproducible 

equilibrium potential. This was first thought to be a consequence of 

the method of electrode pre-treatment, but experiments (not discussed) 

have shown this to be a second order effect. Another possible cause 

would be the extremely low concentration of the free (potential deter- 

mining) Cd2+ ion. 

The preferred explanation, however, is in terms of an ill- 

defined surface condition caused by film formation. Evidence of 

passivation has been observed in the linear sweep voltammograms at high 

cyanide ion concentration, and confirmatory results have been obtained 

at the rotating disc. The faradaic impedance data is not inconsistent 

with this interpretation. Results. of linear sweep experiments have 

been interpreted in terms of a one electron transfer, limited by 

diffusion in solution, for the anodic reaction. The effect of increased 

cyanide ion concentration is thought to derive from the ability of the 

ion to shift the pH to values more favourable to the formation of 

Cd(OH)2. 

It has also been possible to examine the electrode kinetics, 

in solutions of low cyanide concentration, at the rotating disc electrode. 

The results confirm that the dissolution process involves a one electron 

transfer, although the degree of irreversibility is small. The cathodic 

process, however, exhibits a charge transfer valency of two, and is a 

reversible process. 
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The suggestion that the cadmium electrode is most likely to 

be covered by a hydroxide film in the solutions most closely resembling 

those successfully used for industrial electroplating is disconcerting. 

Indeed, satisfactory cadmium plating may only be achieved from 

solutions which contain a minimum of the cyanide ion. As is evident 

from theresults, the film is unlikely to be passivating under the 

conditions which would be used in practical electroplating and may 

well be of a more 'dynamic' nature, such that it does not completely 

cover the electrode. The uncovered areas would then be expected to 

'move' over the entire electrode surface by a process of reduction 

and re-formation. It may well be that a process such as this is 

partly responsible for the quality of the deposit, at the expense of 

a little current efficiency. There is no proof of this, however. 

96 



CHAPTER EIGHT 

EXPERIMENTS IN THE CHEMELEC CELLO 

8.1 Introduction 

It had been intended, during the course of this project, to 

pursue four main areas of work. These were to concern the electrode 

kinetics of both nickel and cadmium electrodeposition, together with 

corresponding experiments carried out in the Chemelec Cell(F 

The initial decision was to study the electrode kinetics of 

cadmium whilst investigating the operation of the Chemelec Cellefor 

nickel recovery. It was considered that the electrode kinetics of the 

cadmium system might be easier to determine than those of the nickel 

system. In view of the toxic nature of the electrolyte, however, and 

the possible technical difficulties associated with the first time oper- 

ation of a Chemelec Cell? it was thought unwise to commence with the 

study of cadmium recovery in this reactor. The nickel system was, 

therefore, preferred here. 

Unfortunately, difficulties encountered in both, of, the 

initially selected areas and also the long time-scale of experiments in 

the Chemelec Cell'Vhave meant that the scope of the project has been 

limited to these two areas. 

Experiments with the Chemelec Cellghave, therefore, been under- 

taken only with a Watts-type electrolyte as given in §4.2. Two main 

studies have been carried out. The effect of cathode potential on the 

operation of the cell is examined in §8.3 and that of pH in §8.4. 
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8.2 Cathode current efficiency 

The cathode current efficiency is a frequently used measure 

in electrodeposition. It is defined as the ratio of the current consumed 

by the process of interest to the total current flowing. The current 

flowing at any time t' may be obtained as the instantaneous slope of a 

plot of charge against time, viz. 

-I(dq/dt) A t=tl 

The partial current consumed by the deposition process may be obtained 

from a plot of metal ion concentration versus time, given the electrolyte 

volume V, from: 

i 2FV d[Ni2+1 ) (8.2.2) Ni A( dt t=tl * 

The current efficiency, eis is expressed as a percentage by: 

( 
d[Ni2+] 

200FV dt tl=tf (8.2.3) (dq/dt) 
t=tl 

It is clearly important that, for a commercial process, this 

quantity be maximised. In the present context, it should also be realised 

that the current efficiency need not be directly related to either the 

rate of the deposition process or to the total current, but only to the 

ratio of the two. 
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8.3 The effect of cathode potential on the operation of the 

Chemelec Cell 0 

8.3.1 Introduction 

Whilst commercial operation of the cell has been via galvano- 

static control, in view of the nature of the proposed experiments, it was 

thought that operation in the potentiostatic mode would be more appropriate 

here. Clearly, the electrode potential is the major control variable and 

of fundamental importance to the operation of the cell. 

The results of the following experiments were presented to the 

"Fundamentals of Electroplating and Metal Finishing" conference, held at 

Loughborough University of Technology in September, 1980, and have now 

been published. 170 

8.3.2 Experimental 

Concentration-decay type experiments were conducted at a series 

of cathode potentials in the range - 1. S to - 1.71 V (all cathode potentials 

were measured with respect to the Hg/H92SO4 electrode; increases in cath- 

ode potential should be taken to mean a more negative potential in the 

absolute sense). The electrolyte in each case was as given in §4.2 and 

the pH was fixed at 3.4. The geometric area of the cathode was 52.4 cm2. 

Several polarisation curves were obtained during each run. Both the 

charge passed and the nickel ion concentration were followed as functions 

of time. 
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8.3.3 Results and Discussion 

Fig. 8.3.1 shows the decay in nickel ion concentration as a 

function of time for experiments at four different cathode potentials in 

the range specified. It may be seen that in each case the decay in non- 

linear in time; a smooth curve may be fitted to the data for each pot- 

ential to show that the deposition rate falls continuously with time 

(and indeed concentration). There appears to be no particular trend 

with electrode potential. Indeed, all four sets of concentration-time 

data are reasonably similar. This suggests that the cell is being 

operated above the limiting current density for the deposition process. 

In no case does the concentration cease to fall altogether, although 

the deposition rate does become exceedingly small. 

Fig. 8.3.2 shows the relationship between the charge passed 

and time for a series of cathode potentials. The data suggests that 

the charge is a linear function of time; the current density is effect- 

ively constant. As expected, the current density does increase with 

cathode potential. The apparent independence with respect to the 

nickel ion concentration is, however, contrary to expectation. If we 

regard the total current density to be composed of the partial current 

densities for the deposition and hydrogen evolution reactions then, 

while the current density associated with the evolution reaction is 

expected to be independent of nickel ion concentration, that for the 

deposition reaction is not. If, for example, the concentration-time 

profile were to follow an exponential decay, as for a first order 

reaction (see Fig. 8.3.3), then we may write: 

109(c) 0 ml + m2t 
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where M2 and m, are the slope and intercept of the log{cj versus t plot 

respectively. Introducing this into the Nernst equation (2.2.6), we 

obtain via (2.2.19) an expression for the time-dependent overpotential 

for the deposition process, viz. 

nE- Eý - RT(m2t + ml)/zF (8.3.2) 

Substitution for n in (2.2.18) gives: 

e. i Ni zFko[exp{- azF(E -E- ml)/RT) . exp{OM2t) 

- exp { (1 - a) zF (E - E: e' 
-m 1) /RT) . exp {- (1 - CO In2t 

(8.3.3) 

Clearly, the slope, m2, is negative and (8.3.3) predicts that the 

current density will fall exponentially with time. 

On several occasions., however, the current density has actually 

risen with time. 170 This has been explained as follows. The apparent 

charge density, as plotted in Fig. 8.3.2, has been derived from the 

actual charge passed and the nominal (and therefore constant) electrode 

area of the electrode. If, as has been observed170, a more dendritic 

electrodeposit is produced at low nickel ion concentrations, under the 

influence of a relatively greater hydrogen evolution, then the true 

charge (and current) densities will fall as predicted as a result of an 

increase in the true area of the electrode. The actual linearity of 

these charge density-time curves remains, however, an intriguing 

phenomenon. 

The cathode current efficiency has been calculated (as indicated 

in 98.2) as a function of concentration for several potentials. The 

results are shown in Fig. 8.3.4. As expected, the efficiency falls with 
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concentration. The absolute values of the efficiency are somewhat 

lower than those claimed by the Electricity Council. 30 There may be 

several explanations for this apparent discrepancy. First, the present 

experiments were carried out at a more acidic pH, presumably favouring 

the hydrogen evolution over the electrodeposition reaction. Secondly, 

equation (8.2.3) makes use of the electrolyte volume, which has been 

taken to be 51. Since the cell is initially flushed with water prior 

to adding the 51 of electrolyte, it is likely that the actual volume 

of the solution is slightly in excess of this figure. 

It may also be noted from Fig. 8.3.4 that the current 

efficiency at - 1.71 V is less than that at - 1.6 V. This confirms 

the assumption that at higher cathode potentials proportionally more 

of the current drives tile hydrogen evolution reaction. The hypothesis 

that the limiting current density for the deposition process has been 

achieved is supported by these findings. 

It was expected that the cathode current density should have 

a maximum at the limiting current density and some shorter term 

experiments by Bettley 171 have indeed confirmed this. Fig. 8.3.5 

shows that at low overpotentials the cathode current efficiency 

increases with potential in accord with the kinetic enhancement of 

the deposition rate. A peak is reached at a given potential, after 

which the efficiency falls with the increased current serving only to 

promote the hydrogen evolution reaction. The height of the peak varies 

with the nickel ion concentration, as might be expected on the basis 

of equation (2.3.9). 

Fig. 8.3.6 shows the polarisation data for the experiment 

at - 1.6 V. Three curves, obtained at different nickel ion concentrations, 
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are presented. The curves were retraceable within the limits of the 

experimental error. The shape of the curves is unusual and quite 

characteristic. At high cathode potential an almost linear relation- 

ship exists between log{ij and E, of approximately - 600 mV/decade 

slope. The steady-state currents for this region were observed after 

as little as 1 min. In the intermediate potential range (, t, - 1.5 to 

n- - 1.0 V), however, the current might not achieve constancy for as 

long as 15 min., falling continuously during this time. In this region, 

a 'kneel is observed which embraces a region of current density of 

10 - 30 Am-2 and spans some 300 - 500 mV of potential. At even lower 

potentials a further linear region of ý, - 570 mV/decade slope is seen; 

here an initial decrease in current (as the potential is stepped more 

positive) was sometimes followed by a rise. Again, long times were 

often taken in order to achieve the steady-state. 

The fact that, in the intermediate range of potential, the 

steady-state took so long to attain implies some sort of morphologital 

transformation. At high cathode potentials the current fell sharply 

as the potential was altered, as a consequence of the decrease in 

rate constants for both deposition and hydrogen evolution reactions. 

At low cathode potentials, however, the rapid kinetic adjustment may 

be followed by an increase in the apparent current density; perhaps 

as a consequence of an increasing electrode area associated with the 

development of a less smooth electrodeposit. The increase in true 

cathode area would allow a higher current for the same actual current 

density, acting in opposition to the rapid kinetic adjustment. 

The very large values for the apparent Tafel slopes are 

inexplicable at present, except in terms of current control by a semi- 
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conducting phase. 

If, as is suggested by the data of Fig. 8.3.5, the potential 

at which the limiting current density is achieved is 1.5 V (versus 

Hg/Hg2SO4). then the plateau-like region of Fig. 8.3.6 cannot be 

ascribed to the deposition reaction as has been previously suggested. 170 

The plateau might represent the limiting current for some other process, 

probably involving the hydrogen atom. The limiting current density for 

nickel deposition would then be masked (in Fig. 8.3.6) by the onset of 

significant hydrogen evolution and the decomposition of water. 

The quality of the electrodeposit was excellent in most cases. 

Its appearance was bright and smooth and was both compact and adherent. 

Plate VI shows a typical example. The quality of the deposit is 

especially good considering the fact that it was achieved at lower 

temperatures than those needed for satisfactory operation of the 

Watts Bath. 

8.3A Conclusions 

1. The Chemelec Cel]Pachieves the recovery of nickel as a bright, 

smooth and adherent electroplate from solutions likely to be 

encountered in commercial operation, down to 100 mgl-1. 

2. The current efficiency is a function of concentration and of 

potential. The most efficient operation should be achieved 

at a cathode potential of - 1.5 V. 

3. The total current density appears to be independent of con- 

centration in a region of high cathode potential although 
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PLATE VI A typical nickel electrodeposit 



this is probably due to the fact that the actual surface area 

of the electrode is not, and is unknown. 

The polarisation characteristics are complex. Two linear 

regions of the semi-logarithmic plot of large apparent 

Tafel slopes are separated by a plateau which may represent 

the limiting current for some hydrogen atom process. 

1/ 
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8.4 The effect of pH on the operation of the Chemelec Cell 

8.4.1 Introduction 

Whilst the industrial performance of the Chemelec Cell a for. 

the recovery of nickel is largely satisfactory, there have been some 

reports of difficulties with poor deposits. Such difficulties were 

thought to arise from the precipitation of oxy-nickel salts and it 

was felt that the r6le of pH was of paramount importance here. In 

addition, it was considered worthwhile to establish criteria for pH 

in the operation of the cell, in terms of a compromise between the 

attainment of the maximum cathode current efficiency and the production 

of satisfactory electrodeposits. 

8.4.2 Experimental 

Concentration-decay experiments were conducted with the 

electrolyte of §4.2, at various values of pH in the range pH 3.0 to 

pH 6.2. The electrode potential was maintained at - 1.5 V in all cases 

and the geometric area of the cathode was nominally 121.4 cm2. All 

other experimental conditions were as in 98.3.2. 

8.4.3 Results and Discussion 

Perhaps the most important, and indeed surprising result 

from the point of view of the Chemelec Cell G 
operator is the apparent 

insensitivity of the process to changes in the electrolyte pH. Experi- 
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ments carried out at pH values in the range pH 3.0 to pH 6.2 all pro- 
11 

duced quite satisfactory deposits. Indeed, no deterioration in the 00( 

quality of the electroplate was observed as the pH was made more 

alkaline. 

The majority of the apparent problems of deposit quality 

have been encountered during the early stages of recovery from a fresh 

drag-out solution. Further to this work Bettley171 has obtained some 

evidence to suggest that the presence of boric acid at a concentration 

in excess of 20 g/l may be beneficial to deposit quality. The mechanism 

by which boric acid is able to improve deposit quality is not attri- 

butable solely to its properties as a buffering agent. Russian workers172 

have shown that succinic acid is less effective in promoting deposit 

quality than its superior buffer capacity would suggest. Whilst the 

final deposits obtained in the present work were entirely satisfactory, 

examination of the cathode after the first few hours of operation has 

revealed that a more matt deposit is produced at higher nickel ion 

concentrations than at lower ones. This effect appears to be slightly 

enhanced at more alkaline pH. 

The charge passed is shown, as a function of time, in 

Fig. 8.4.1 for experiments at different values of the pH. As might 

be expected, the current densities obtained from these curves decrease 

as the pH becomes more alkaline with the greatest effects on the 

current density being observed at the lowest values of pH. Notice 

also, that especially for the experiment at pH 5.4 a small amount of 

curvature towards the time axis may be seen. The relationship remains 

essentially linear as observed in S8.3. 
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The decay in nickel ion concentration, also as a function of 

time, is shown in Fig. 8.4.2. In contrast to the corresponding curves 
4'ý/) 

of §8.3, these data show a certain trend with the variable concerned. 

It is interesting that the absolute rate of nickel deposition appears 

to increase with pH. 

Since the current density decreases and the deposition rate 

increases with pH, it is to be expected that the cathode current 

efficiency will also increase with pH. Fig. 8.4.3 shows that this is 

indeed the case. The current efficiency is still a function of the 

nickel ion concentration. The data suggests that the current 

efficiency-concentration curves tend to a limiting form soon after 

pH 6.2. Again, the overall efficiencies are lower than expected and 

the only remaining explanation for this lies in an incorrect assessment 

of the electrolyte volume. 

Figs. 8.4.4 to 8.4.8 show the polarisation curves as a 

function of pH. The major difference in the curves occurs between pH 

3.0 and pH 5.0. The results in the range pH 5.0 to pH 6.2 do not 

exhibit a significant trend; the curves are similar as might be 

expected as the total hydrogen ion concentration here is small. On 

going from pH 5.0 to pH 3.0, however, a significant increase in 

hydrogen ion concentration is experienced and a corresponding enhance- 

ment in current is observed at the more negative potentials. The 

inflexion at n, - 1.3 V is more pronounced at the most acidic pH, and 

probably represents a change in the mechanism of the hydrogen evolution 

reaction. 

At the more positive potentials the current is reduced on 

going from pH 5.0 to pH 3.0. This anomalous behaviour might be ration- 
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alised in terms of the inhibition of the reaction by boric acid, 

which is likely to be more strongly adsorbed at the more acidic pH. 

There is little change in the polarisation curves as the 

nickel ion concentration falls. Any change is a second order effect 

compared to the difference observed between the first (highest nickel 

ion concentration) and subsequent polarisation curves. This difference 

undoubtedly arises from the presence of a mixed nickel/titanium 

surface in the former case. 

The commercial implication of these results is to suggest 

that the Chemelec Cell 
0 

may be more efficiently operated at higher pH, 

with no detrimental results to the quality of the deposit. An adequate 

quantity of boric acid might, however, be a requirement. 
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CHAPTER NINE 

C014CLUDING DISCUSSION 

The introductory chapter to this thesis considered the 

development of commercial electroplating. It was shown that there were 

both financial and environmental incentives for the efficient use and 

re-use of water and that conventional effluent treatment methods did 

little to recover the valuable metal lost to drag-out. 

The development of a number of novel processes was mentioned 

and the Chemelec Cell 
0 

viewed against these. The operation of the cell 

was thought capable of improvement and, to this end, experiments have 

been performed both with the cell itself and also in an attempt to 

reveal the electrode kinetics of the relevant systems. 

The method of faradaic impedance was applied to the determination 

of the kinetics of the solid cadmium electrode in perchloric electrolytes. 

Such electrolytes have little bearing on the operation of the cell, but 

the cathodic process was shown to occur as a two electron reversible 

transfer. Measurements at the equilibrium were difficult to achieve 

and interpret, except in terms of a passivated electrode. Surprisingly, 

the anodic process was easier to study than the equilibrium, although 

the true kinetics were obscured by the presence of a monolayer of 

Cd(OH)2. The anodic process was, however, facile. 

The rotating disc electrode was tested on a cyanide/chloride 

electrolyte. The results showed that, for low concentrations of the 

cyanide ion, dissolution occurred as a two electron reversible process. 

At higher cyanide ion concentrations, however, the shift in pH was thought 

I 
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to account for the development of a filmed surface, obscuring the 

kinetics. Additions of the cadmium ion to the electrolyte gave rise 

to results which suggested precipitation of the dissolving cadmium as 

less cyanide ion became available for complex formation. 

Having established the above methods, investigations were 

carried out in alkaline cyanide solutions. Linear sweeps revealed a 

tendency towards passivation at high cyanide ion concentrations. Under 

these conditions, however, evidence was obtained for a one electron 

reversible anodic process, involving a solution species. At lower 

cyanide concentration the appearance of several cathodic peaks was 

ascribed to the reduction of different cadmium complexes. The kinetics 

were obscured, however. Results at the rotating disc electrode for 

similar electrolytes showed, at low cyanide concentrations, a one 

electron reversible dissolution step, but a two electron reversible 

deposition process. Increasing the cyanide concentration led to film 

formation. The results of impedance studies largely confirmed these 

findings. At high cyanide ion concentration, however, the charge 

transfer process was thought not to be completely inhibited. The Cd/Cd2+ 

exchange was believed to occur through "holes" in an otherwise complete 

film. The film was considered subject to reduction and re-formation. 

At large anodic polarisations, however, more complete passivation was 

occasioned. 

The salient features of this section of the work are that-the 

cadmium electrode is frequently covered by a hydroxide film and the 

development of the film is encouraged by increasing the concentration 

of the cyanide ion and by the application of more positive potentials. 

This is surprising inasmuch as the electrolytes most favoured in 

commercial operation of the cell are those.! for which film formation is 

most likely. 
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At the electrode potentials generally encountered in commercial operation 

of the cell the film is likely to be incomplete and may serve to improve 'r 

deposit quality. 

As has been stated already, time did not permit these ideas 

a 
to be tested on the Chemelec Cell It would have been interesting, for 

example, to determine how far the pH could be acidified before the deposit 

quality suffered. 

Experiments in the Chemelec Cell 0 (with nickel) have shown that 

the most efficient operation will be at a current density associated with 

an electrode potential of - 1.5 V (versus Hg/Hg2SO4). This is likely to 

be around 40 Am-2. It would appear that operation at less acidic pH 

might be desirable but that a minimum amount of boric acid might be 

required for this. Problems with deposit quality of start-up might be 

overcome by operation at more acidic pH than otherwise used. 
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