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ABSTRACT 

Research work reported in th is thes is is d irected at deve lop ing and app ly ing 

mathemat ica I mode II ing and opt im izat ion techn iques to prob lems invo Ived in 
t lie econom ic operat. ion funct ions in e lectr ic power systems ,w ith spec ia I 

reference to the Abu Dhab iE lectr ic System in the Un ited Arab Emirates .I he 
three main areas Lreated in this thesis are; power, system load forecasting, 
fuel cost mode I parameter est imat ion , and econom ic d ispatch ing a Igor ithms . 
T tie three areas are essential ingredients required for a successful 
imp lementat ion of economic operation strategies in systems such as that of 
Abu Dhabi. 

Research work reported in the area of power system load forecasting involves 

short terrn pred ict ion of the load on the system . Conventional techniques in 
the general area of forecasting are explored and their performance in 
forecasting the actual load on the system is evaluated. The Box-Jenkins 

methodology for time series analysis is discussed arid appropriate models 
suited to the Abu Dhabi system are obtained. Advanced system-theoretic- 
based prediction techniques such as Kalman filtering and the Instrumental 
Variable method are treated. Particular attention is paid to the problem of 
noise statistics characterization for Kalman filtering implementation. The 

work reported involves a comparative evaluation of the performance of each 
method, based on the developed models of the Abu Dhabi Electric load 

character ist ics . 

Evaluating the fuel cost model paraineters necessary for economic scheduling 
is the second ingredient treated in this thesis. Here conventional least 

squares, weighted least squares and recursive techniques are considered in 
dealing with the 56 units of the Abu Dhabi system. The thesis reports on 
the finding of infeasible parameter estimates which has not been reported 
before. Diagnostic tools are developed to identify the possible data pairs 
that cause the infeasibility. T lie thesis also suggests a constrained 
parameter estimation technique to overcome this problem. 

A second important contribution in the area of fuel cost model parameter 
estimation is related to the application of robust parameter estimation 
techniques using the Iteratively Reweighted Least Square-, technique-, for the 



f irst time . In this thesis, results using eight weighting functions are 
reported. Evaluation of the results is carried out in terms of accuracy as 

well as in terms of the resulting economic scheduling strategy's cost. 

Economic dispatching of the system is considered from an efficient 

implementation point of view. The Generalized Reduced Gradient method and 

the Lambda Iteration method are treated and results of their application are 

detailed. In. the course of this investigation a newly developed method was 

discovered. The method, which is called the Lambda Aggregation method, has 

been shown to be an extremely fast technique for dispatching and does not 

require any initial guess for its implementation. 

it is hoped that the work in this thesis will be of interest and 

significance to the neighbouring countries in the Gulf States. Finally, 

recommendations and suggestions for further research are made. 
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CHAPTER I 

INTRODUCTION 

1.1 The-Scenario 

The planning and operation of an electric power system involves a number of 

challenging tasks that require a skilful blend of mathematical and system 
theoretic tools to arrive at strategies that ensure reliable and economic 
functioning of the system. These tasks invariably involve computer-aided 

computations that demand fast and efficient algorithms. 

This thesis is concerned with the application of mathematical and sy st em 
theoretic concepts to problems of load forecasting, fuel cost parameter 

estimation, and economic dispatching in an electric power system. While the 

techniques discussed and developed in this thesis are applicable to electric 

power systems in general, computational testing and results are reported 

with reference to the United Arab Emirate's Abu Dhabi electric power system. 

In the course of this investigation, techniques from the areas of 
forecasting, time series analysis, state and parameter estimation, 
identification, optimization and computational methods for the solution of 

non-linear equations, have been investigated and employed to achieve the 

desired result. In a number of instances, new contributions to the state of 
the art in specific areas have been made. These are summarized in Chapter 7 

of this work. An outline of the work conducted under this research 

programme is given in the next section. 

The impetus for this thesis work is due to a number of advanced Seminars on 
"Engineering Mathematics and its Applications" conducted at WED under the 

direction of Professor Bajpai, an eminent authority on this subject. The 

author became convinced that the mathematical modelling approach is the best 

vehicle to improve the planning and operation of the generation system in 

Abu Dhabi. 
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1.2 Scope of the Tlip%i% 

In Chapter 2, a presentation of relevant background material is given. T lie 

general requirements of electric power systems planning and operation are 
detailed in this chapter. A brief description of the proposed Gulf- 

interconnection is given and this is followed by a discussion of the Abu 

Dhabi electric power system in terms of generation resources and load 

characteristics. Economic scheduling requirements in an electric power 

system are also presented. 

A requirement of economic scheduling is an accurate prediction of the system 

power demand. Chapter 3, discusses "Load Forecasting", beginning with a 
detailed review of previous work in this area. A listing of the data base 

for forecasting power system load for the Abu Dhabi electric power system is 

given, and then we discuss General Exponential smoothing as applied to 

seasonal load forecasting using trigonometric functions, where a brief 

resume of the technique is given, and this is followed by results 

summarizing computational experience in both mid-term and short-tenn 
forecasting of power load on the Abu Dhabi (AD) system. 

In Sect ions 3 .5 and 3 .6, the use of W inters ' seasona I forecast ing via the 

additive/multiplicative models is considered. Following a brief review of 
the development of the technique, computational experience withmid-tenii and 
short -term forecasting for the AD system is given. As im i lar treatment of 
the mu It ip I icat ive mode I case is then g iven . 

One powerful technique in forecasting is the Box-Jenkins methodology which 
is reviewed and computational results are reported. 

Ka Iman fi Rer ing for prediction in systems described by state space models 
is considered, beginning with a brief summary. A state space model of the 
load forecasting function is then developed. A unique feature of the model 
is that it is a time-invariant model, and therefore offers computational 
time savings. One of the drawbacks of Kalman filtering is that it requires 

accurate knowledge of model parameters as well as the noise statistics. 
Many techniques of adaptive filtering have been proposed. A comprehensive 

review of the various techniques is offered, and we conclude with 

computational experience including a new approach to noise statistics 

evaluation using a simplified maximum likelihood approach. 
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Load forecasting by recurs ive we ighted least squares using exponential 

weighting in the past is treated next. Moreover we deal with the method of 
Instrumental Variable for system identification as applied to the 

forecasting task. Finally in this chapter a comparative evaluation of the 

seven techniques is given. 

Chapter 4, is devoted to the second ingredient of the economic dispatch 

function, namely that of fuel cost model parameter estimation. Here, 

following a review of previous work, the problem is formulated in Section 

4.3. The three subsequent sections briefly treat theoretical foundations of 
the We ighted Least Squares techn ique and recurs ive parameter est imat ion . 

In the course of applying parameter estimation techniques to data of the 

fifty-six units in the Abu Dhabi system, a challenging problem that has not 
been documented in the literature was discovered. The problem is that one 

of the parameters must be positive to obtain meaningful optimization 

results. The causes for this phenomenon were investigated using tools from 

the area of parameter estimation. We were also led to formulate the problem 

as one of constrained parameter estimation for which a non-linear 

programming approach was proposed. Computational experience is reported to 

conclude the chapter. 

Under the title of "Economic Dispatch Studies", Chapter 5 initially includes 

a comprehensive historical survey of the area. A review of the economic 
dispatch optimization problem formulation and its variational solution is 

then given, and three techniques for solving the problem were considered. 
The application of the generalized reduced gradient method, the Lambda 

Iteration method and the Lambda Aggregation technique are discussed in this 

chapter. The latter technique was developed by the author and has proven to 

offer computational savings when applied to the Abu Dhabi system. A major 

contribution of this thesis is the proposal of many new efficient initial 

guess generating procedures that are also reported in this chapter. 

In Chapter 6, the problem of parameter estimation for fuel cost 
representation is reconsidered. Here non-least squares objectives for 

estimation are discussed. The use of non-quadratic objectives such as least 
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absolute res idua Is and robust est imat ion are cons idered and we d iscuss the 

iteratively reweighted least square method as well as the associated 

weighting functions. Computational results and a comparative evaluation of 

the techniques in terms of the economic dispatch results are given. It is 

suggested that this chapter contains significant new results not reported so 

far in the power system field. 

Chapter 7 is devoted to concluding remarks summarizing the contributions of 

the thesis and recommendations for future work. 
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CHAPTER 2 

GENERAL CONSIDERATIONS 

2.1 Introduction 

This chapter presents the background material which underpins this thesis . 
In Section 2.2, a discussion of power systems planning and operations 

requirements is given. Since the techniques developed in this thesis are 

applied to a utility in the Arabian Gulf area, a brief discussion of the 

proposed Gulf inter-connection, which was approved in the middle of 1987 by 

the Executive Council of the Arab Gulf Cooperation Council (AGCC), is 

presented in Section 2.3. This is followed by a short discussion of 
Abu Dhabi's electric power system, its load characteristics and unique 
features. 

Section 2.6 is devoted to an introduction, concentrating mainly on 
definitions to topics within the broad area of economic scheduling of 

electric power systems, that are covered in this thesis. It should be noted 
that literature reviews, related to each topic discussed in this thesis, are 
found at the beginning of each chapter with the exception of this chapter. 

2.2 Functions in Power Svstems PlanninR and Operation 

In an existing electric power system, the functions of expansion planning 

and operation offer the electric power systems engineer many challenging and 

comp lex tasks -A bas ic requ irement is know ]edge of the system power demand 

over the planning time horizon of interest [1]. The time horizon can vary 
in duration from as long as 10 years to as short an interval as 10 seconds, 
depending on the required lead time for the function to be performed. 
Planning and operation functions are designed so as to meet the demand for 

electric power in the most economical manner, while simultaneously ensuring 

safety and reliability (continuity) of service. These objectives are all 
inter-related and are of equal importance in the day-to-day operation of an 

electric power system. 

Figure (2-1) shows the time horizons normally encountered in common power 
system planning and operational scheduling functions as well as the 
d iscret izat ion intervals that are considered. Expansion planning for 
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generation, transmission and distribution facilities requires committing 

cap ita I investment and may need 10 years ' lead t ime . Long term generat ion 

planning to determine the required fuel supply over a number of years in the 

future is another function that has to contend with economic as well as 
logistics aspects. 

Operational planning of electric power systems may require a lead time of up 
to 5 years. A load forecast of up to I year is required for scheduling unit 

maintenance and generation targets. Accuracy in forecasting both at the 

planning and operational planning levels is important, especially in 

situations requiring long delivery periods and costly order processing. 

Short term hourly load forecasting for up to one week is required to 

determine unit commitment strategies on an hourly basis [2]. Given a unit 

commitment schedule, the economic dispatch function is carried out for a 

time horizon of between 10 minutes to one hour to ensure that generation is 

allocated to achieve overall minimum fuel cost in the system. The shortest 

updating interval of I to 10 seconds is encountered in load frequency 

control where generation levels are adjusted continuously by the governor 

action to follow the load variations while minimizing the frequency 

deviations from a reference system frequency. 

Long term investment / 
a.. 5 or 10 years' 

expansion p(anning I YEAR 

Long term operational b. 52 weeks /I year maintenan(e planning 1 WEEK 

Short term functions 
I week unit commitment 

I HOUR 

Economic 
Real time dispatch S- 40 MINUTES 

Load frequency Real time 
control 

- 10 S(CONOS 

Figure (2-11 Time Horizons for Planning and Scheduling Activities 
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Electric power systems in the Arabian Gulf are in a unique situation, since 
the utility is invariably charged with both electricity production, and 
water production by desalination. This makes the planning and operation 
task a more complex one since the two activities are inter-dependent. 

Due to the rapid growth of electric power systems in the Arabian Gulf region 
over a relatively short period of time, the long range load forecasting and 
planning of functions were predominantly conducted by outside consulting 
organizations. In the meantime, operational planning has not received 
sufficient attention and was left mainly to plant operators. It is 
important to note that the necessity of operating the electric power system 

most economically was not considered in an era of abundant fuel supply and 
oil-related income. This situation is rapidly changing following the 
realization that development funds are limited. 

2.3 The Gulf Interconnection 

On May 25,1981, six states bordering on the Arabian Gulf announced the 
formation of the Arab Gulf Cooperation Council (AGCC) with the objective of 
preserving stability and security of the region and advancing the welfare of 
its people. The AGCC member states are; Bahrain, Kuwait, Oman, Qatar, Saudi 
Arabia and the United Arab Emirates, and lie between the longitude of 34'E 
& 60"E and latitude between 17'N & 33"N. The solar time difference between 

the extremities of the region is about 13hr A map of the AGCC region is -4 
shown in Figure (2-2). 

The AGCC region is predominantly a desert land without rivers. The winter 
climate is quite mild, and space heating is required only for a few months 
in some parts of Kuwait, Oman and Saudi Arabia. The summers are hot, with 
temperatures ranging from 35-C to 501C and humidity can reach up to 10(r/. in 

parts of the region. Air conditioning is used extensively throughout the 

region during summer, and this load component dictates the summer peak 
electric power demand. 
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ARAB GULF COOPERATION COUNCIL 
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BAHRAJN 
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Figure (2-21 A Map of the States of the 

Arab Gulf Cooperation Council 
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The main sources of potable water in the area are underground aquifers and 
desalination of sea water. The load due to desalination plants is 

significant and non-seasonal because of the steady water requirements 
throughout the year. 

The peak electric power demand in the region can thus be seen to take place 
in the summer period of July-August, during the day. 

Water and electric power services are provided at highly subsidized rates by 

governments of the AGCC states. Electric power generation, transmission and 
distribution is done through a number of isolated systems. Within the same 

state, isolated service areas exist due to the physical distances between 

major generating sources (close to major population centres) and remote 

areas characterized by low demand. Interconnecting the regions' isolated 

systems has not been a major consideration in the planning of electric 

systems in the AGCC states until just recently. 

Interconnecting the AGCC electric power systems can result in the following 

benefits; 

1. The reliability of all systems is improved for the same generation 

conf igurat ion . 

2. Lower installed generation capacity requirements due to the increase in 

system size. This results in cost savings both in terms of capital cost 
and operational and maintenance costs. 

3. In the interconnected system lower spinning reserve is required than 

that required by the individual systems. This results in operational 
cost savings. 

4. Strong interconnections can limit the effects of and facilitate recovery 
from certain multiple outages that can otherwise have pronounced effects 

on individual systems. 

5. Normally, an interconnected system can be scheduled more economically 
than individual systems, since optimal allocation of generation to the 

most economic units is performed independently of the geographic 
location. 
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6. Sy st em interconnection allows long tenn supply contracts between 

neighbouring utilities. These contracts enable one utility to postpone 

generation expansion in favour of importing from a neighbour with 

surplus capacity. Similar arrangements for short duration can improve 

maintenance scheduling also. 

The feasibility of interconnecting the electric power systems of the Arabian 

Gulf states was the subject of the "Gulf Interconnection Study" commissioned 

by the Gulf Cooperation Council in 1984 [3]. The study, concluded late in 

1986, established the feasibility of the interconnection and recommended a 

scheme shown in Figure (2-3) for implementation. The AGCC accepted the 

study's recommendations in principle in mid 1987. 
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Figure (2-3) Gulf Interconnection Proposal 
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2.4 The Abu Dhabi System 

The electric power system of Abu Dhabi of the UAE (see map of Figure 2-4) 

consists of; a main power transmission network of 180 km of 220 kV overhead 
lines, secondary transmission network of 132 kV including 138 km of 

underground cables, and about 32 km of overhead lines. A geographical map 

of the Abu Dhabi, Water and Electricity Department [WED] system is shown in 

Figure (2-5). A map of the projected UAE electric power system is shown in 

Figure (2-6). 

The total power generation installed capacity reached 1955 MW in 1987. The 

largest site is at LImm A] Nar West which consists of ten steam turbine units 

with a total rating of 830 MW commissioned between 1979 and 1987. Umm A] 

Nar East has four gas turbines with a total rating of 253 MW. Abu Dhabi 

Power Station has 209 MW of gas turbine, 140 MW of steam turbine. The 

Diesel Power Station at Shabia has one 17.9 MW gas turbine unit, is an older 

site that was fully commissioned in 1966, and its capacity has been 

decreasing since 1973 from a peak rating of 30 MW. Al-Ain Power Station has 

a capacity of 373 MW, and that of Baniyas is 124 MW. A small and separate 
Diesel Power Station exists at Saadiyat, with a capacity of 7.0 MW, feeding 

a local network. 

A new power station is planned at Al Taweelah to meet system demand in the 

late eighties. in the first phase a total of 255 MW (3x85 MW) gas turbines 

will be installed. In phase 2 and 3a total of 2000 MW of steam turbine 

power will be installed by the year 2000. 



-13- 

V--Ný ýN 

UNITED ARAB EMIRATES 

4*SIW 0 ABU "jsA 

QATAR DONA ARABIAN GUtF 

OA% 1.0) 
NAIR 

9 ZIRKU 

CALMA t6 

AdU DO& SLPdNMAM 0 
SA GAM YAS 

k 

00 
&W vlks 

AL 

k AW DýKA CA 

At SILA Is 

*GIVYAT"i 

HABSHAN 

BU HASA 

KINGDOM ABU OHABI 
OF 

SALO ARABIA 'AL AW 

LIWA , 

stom 0;, ""A 

ffýe 

GULF OF OPVW 

SULTANATE 
OF 

OMAN 

Figure (2-4) Geographical Map of the 

United Arab Emirates 



-14 

z 
w 
-j < 
< 
C) 
V) < 
p cc 

zw 
:; ý 3: 43 

7- 
< 

0 R Y- 
z 0 
w > o< 
< 

cr 
w 

w u 
z 

0 

< P4 0 

< 

< 

t1i 

< 0 
t l z 

> 
zic 
M 

=D 

C-4 

(A < w z CLý co Ir 
j 

Ln Ln t/) LLJ 
6 

LLI LLJ Z: Z Z 0 

< z z z z 0 
z 

0 0 0 0 0 
j7-: 
< 

t ý5- w w < 
- ujýý 

U u) U) 
, 
U) 3-- 

cr it 
1: 
cr 

u) LJ 
C) z 

w 
LI 

ca 
0 

co 
53 

m 
D 

Lil W 
>> C) 

W 
> 
0 

cr 
LIJ 

Z 
:: ) 

- (1) c 0 0 

> > > >> > > 
cn C-4 rn o C4 m 

C, 4 e) 04 

> 
C14 C14 

2 cr 
14 

<Re" % 0 
cc z 

w 
z 

0 

z U, 0 0 

2 0 a) Zýr 
< 

0: Z) 
0z 
V V): ý 

. 
4t) co 

z < 
Xý- 

00 

E 

U) 
>4 
Lr) 
1-4 

Q) 
3: 
0 

U 

u 

.0 

(3) 

EX, 



-15- 

1: 

a 

4: 

0 
-j 

CE) 

>.. 

0 

0 

4: 

E 
LA 

LL) 

u 
0 

Lij 

<c 
D 

C14 

LL 

z 

0--( 11 

m 



-16- 

As is the case with all AGCC systems, the WED system in Abu Dhabi is charged 

with the concurrent production of electric power and desalinated water. 
Water desalination plants use exhaust steam from steam turbines or exhaust 

gases from gas turbines. These lower temperature sources offer economic 

advantages. Three types of cogeneration schemes are commonly used: 

1. Back pressure steam turbines with desalination plants. A typical 

schematic diagram is shown in Figure (2-7)(a). 

2. Controlled extraction steam turbines with desalination plants 

combination as shown schematically in Figure (2-7)(b). 

3. Gas turbines with exhaust heat recovery (EHR) boilers and desalination 

plants combination as shown in Figure (2-7)(c). 

From an integrated system point of view, the operation of a typical AGCC 

power and water utility can be visualized as shown in the functional block 

diagram of Figure (2-8). The system consists of an energy input system 

feeding both the electric power system and the water system. As shown, the 

energy input system consists of gas turbines, steam generators, EHR boilers, 

and interacts with the production systems for electric power as well as 

water. 
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Figure (2-8) Functional Block Diagram 

of a Typical AGCC Power and Water Utility 
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2.5 Abu Dhabi's Load Characteristics 

As is expected in the climatic conditions of Abu Dhabi, the load 

characteristics of the WED electric power demand are such that summer is the 

season for high demand while winter is the season of low demand. During 

1986, the minimum demand for electric power was 248 MW (in February), 

whereas the highest demand of 1136 MW was recorded in July. The weekly peak 
load pattern for the years 1984-1986 along with the mean weekly temperature 

prof ile are shown in Figure (2-9). 

A typical hourly electric power demand (load curve) is shown in Figure 
(2-10) for a summer day and a winter day. The winter demand consists 

primarily of lighting, water heaters, domestic and industrial appliances. 
There is no space heating requirement unlike other Middle East Countries in 

the Gulf Area such as Kuwait, Bahrain and Saudi Arabia, where space heating 

is necessary for home and of f ice use in the w inter . The bu Ik of the summer 
load is due to air conditioning units for space cooling. 

There are four distinct seasons that govern the electric power demand in Abu 

Dhab i. A deta i led ana lys is of hour ly loads f rom January 1983 to Apr i1 1987 

shows the following patterns; 

a. Summer - week # 17 -to- # 41 i. e. 25 weeks. 
Middle of April to end of September. 
Daily peak load occurs at hours 14: 00.15: 00 or 16: 00 but mostly at 
15: 00 hrs. Peak load is due to air-conditioners only. Daily mean 
drybulb temperature is 301C or above, while the daily minimum drybulb 

temperature is around 27C or above. 

b. Fall i. e., summer to winter transition - 
week # 42 to # 46 ,ie., 5 weeks October to early November 

Daily peak starts to shift from 15: 00 to 19: 00/20: 00 hrs. This shift 

commences with Thursdays and Fridays and eventually other weekdays 
depending on the drybulb temperature. Daily mean drybulb temperature 

continues to fall and the minimum drybulb temperature is below 25"C. 

c. Winter -Week #47 to# 52 

#01 to # 11 ,ie. 17 weeks . Ear ly- November to early March 
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Da i ly peak load occurs mostly at 19: 00 hrs but occasionally at 20: 00 

hrs .A ir-cond it ion ing load is m in ima I, Ai le even ing 1 ight and domest ic 

app I iances dec ide the da i ly peak demand . Da i ly mean drybu lb temperature 

is below 25'C while the maximum drybulb temperature throughout the 

period is below 27'C . 

d. Spring i. e., winter to summer transition - 
Week # 12 -to- #16, i. e. 5weeks. 

Ear ly March to m id Apr iI. 

Daily mean drybulb temperature starts to rise and the maximum is above 

27'C , so that afternoons are warmer and air-conditioning units, in 

increasing numbers, are turned on. The peak load on weekdays begins to 

occur at 15 : 00 hrs wh i le at weekends it st iII occurs at 18 : 00/ 19 : 00 hrs . 
Mean daily drybulb temperature is nearly 25nC and rising. 

F igure (2-11) shows the var iat ion of the average m in imum , mean , and max imum 

temperatures in Abu Dhabi in the period 1983-1986. 
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In mid 1979 , the author visualized the imp lementat ion of an integrated 

approach to planning and operation of the WED system. The concept of a 
computer based Engineering Information System (EIS) was envisaged. For 

sc ient if ic management, it is imperative that the right information is made 
available to the right person and at the right time in order to monitor and 
control power station performance to achieve maximum economy, continuity of 
service and reliability. 

The appropriate computer hardware, operating system, and applications 
software were selected to handle the following envisaged tasks: 

I. Inventory Management System 
2. Personnel Management System 
3. Cost and Budget Analyses 
4. Operational Planning System 
5. Maintenance Planning and Scheduling System, and 
6. Production Costing System. 

The Operational Planning System (item 4), in turn, was to contain such 
applications as: 

a. Create Operating Statistics 
b. Forecast Demands (Power and Water) 
C. Reliability Studies 
d. Fuel Forecast and Related Statistics 
e. Heat Balance Calculations 
f. Unit Commitment and Economic Dispatch 
g. Power System Studies 
h. Expansion Planning 

The computer hardware was installed in early 1984 and applications software 
development has proceeded from that time. Several modules of the application 
program are being developed simultaneously, the discussion of which is 
beyond the scope of this work. 
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2.0 Economic Scheduling Functions 

The research reported in this thesis is in the broad area of economic 
scheduling of electric power systems. Here, given unit availability for 

scheduling and pertinent data on variables that allow a load forecast, the 

goal is to determine the optimal generation levels at each unit. Optimality 
is defined in terms of minimum fuel costs in an all-thermal system. A 
functional block diagram of economic scheduling functions is shown in Figure 
(2-12). Here the problem is decomposed into the following subproblems [4]: 

Load Forecast ing 

Unit Commitment 

Economic Dispatch 

Loss Modelling 

Fuel Cost Parameter Estimation. 

One is essentially dealing with economic dispatch (E. D. ) and its supporting 
functions. Here one relies on the definition of E. D. given in the IEEE 
Standard Dictionary of Electrical and Electronics Terms [5] as; 

"The distribution of total generation requirements among alternative sources 
for optimum system economy with due consideration of both incremental 

generating costs and incremental transmission losses". 
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Figure (2-12) Functional Block Diagram of 

Economic Scheduling Functions 

The tota I generation requirement is obtained from a load forecast to be 

discussed shortly. A unit commitment program uses the load forecast and 
inf ormat ion on units available for scheduling, recognizing outages due to 

maintenance schedules, to determine the selection of units to meet the 

demand. The duration of unit commitment function is usually one week 

conducted on an hourly basis (Figure 2-1). This function relies on start- 

up-shut-down and operational cost data to provide the input to the economic 
dispatch function. 

Economic dispatch requires an accurate representation of both losses in the 

e lectr ic network and the costs of f ue I as af unct ion of the un it output 
This latter aspect is covered in the cost parameter estimation function. 
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For an electric utility, load forecasting is of paramount importance, s ince 

a forecast is an essential input to many long-term and operational planning 
functions. A forecasting procedure analyzes past data in order to identify 

a pattern that can be used to describe the behaviour of existing data. This 

pattern is then extrapolated or extended into the future to obtain a 
forecast. The basic strategy employed in all forecasting techniques rests 

on the assumption that the identified pattern obtained on the basis of past 
data will continue in the future. If this pattern does not persist in the 
future, the forecasting technique will most likely yield results that are 
inaccurate. The components of a load forecast will invariably contain 

contributions from the following [6&7]: 

- Trend (growth) 

- Seasonality and cyclic components 

- Weather related components 

- Socio-economic variables and 

- Random fluctuations. 

A functional block diagram relating the inputs to a load forecasting model 
and subsequent output and monitoring functions is shown in Figure (2-13). 

A load forecasting model takes as input past records as well as weather 
forecasts of variables that influence the demand for e lectr ic ity . These 

variables, which are sometimes referred to as explanatory variables, include 
drybulb temperatures, dew point temperatures, relative humidity, and cloud 
cover. Such environmental data is more relevant to short-term rather than 
long-term forecasting. In many instances, only one weather variable 
(temperature) is included in the data base. Demand statistics are an 
essential part of the forecasting model since they provide the basis for 
identifying a pattern from past records. In long-range forecasts, a model 
of the demand growth based on trend analysis/socio-economic indicators/ 

analytical techniques is necessary for accurate forecasts. In short-range 
forecasts patterns of social behaviour including special events, holidays 

and customs may be included. As an example in Muslim Countries such as the 

UAE, the observance of the Holy Month of Ramadan changes the consumption 

pattern of electricity. This month is fixed in the Hijra Calendar (Islamic 

Lunar) and advances each year by nearly 11 days in relation to the Gregorian 
Calendar. Figure (2-14) shows the cyclic movement of the month of Ramadan 
for the years 1982-1990. 
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The current ad hoc method to forecast annual and weekly peak power demand 

for the WED system in Abu Dhabi is based on a combination of procedures. 
These include least squares polynomial analysis of past load data, annual 

percentage increase in demands, and the time diversity of the peaks occuring 
in A] Ain and in Abu Dhabi areas. The forecast so obtained is then adjusted 
to incorporate the most recent available information. 

Having obtained a single value for the annual demand, taken as the most 
I ike ly , the weekly expected peak loads are then determined from this load. 

The procedure is to obtain the normalized weekly peak load factors for the 
immediate past 5 years, take their averages, plot these and superimpose a 

smooth curve. This curve is then read of f to determ ine the norTna I ized 

weekly factors. Finally, an estimate of the expected weekly peak demand is 

obta ined by mu It ip ly ing the f orecast of the annua I peak demand w ith the 

normalized weekly factor. 

Annual peak load data for Abu Dhabi, UAE, is available for the last 14 years 
i -e .f rom 1973 , wh i le more deta i led week ly and month ly peak demand data is 

ava i lab le f rom 1979 onwards .F igure (2-15) shows the week ly system peak 
load from January 1983 to December 1986. 

2.7 Summary 

In this chapter, introductory material related to topics treated in this 

thesis was presented. The setting of the problems discussed within the 

framework of power system planning and operations activities was outlined. 
Practical application of techniques developed in subsequent chapters is 

conducted for the electric power system of the Water and Electricity 

Department (WED) of Abu Dhabi, United Arab Emirates. Various unique aspects 

of both the Arab Gulf Cooperation Council's (AGCC) interconnection being 

contemplated were discussed together with the Abu Dhabi Electric System 

including its load characteristics. The chapter was concluded with a 

section on the main functions of economic scheduling via appropriate 
definitions and preliminary comments. 
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DEMAND FORECASTING MODEL 

Figure (2-13) Functional Block Diagram 

of Load Forecasting 
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CHAPTER 3 

LOAD FORECASTING IN POWER SYSTEMS 

A COMPARATIVE EVALUATION 

3.1 Int-rodu-ction 

Load Forecasting plays a major role in economy -security functions in any 
electric power system and this chapter is devoted to this topic. We begin in 

Section 3.2 with a comprehensive review of progress in this area, followed 

by a critical evaluation of a number of techniques for load forecasting, 

conducted using data bases from the Abu Dhabi electric system. 

The techniques discussed in this chapter can be broadly class if ied into 

three categories: 

- Conventional Forecasting Methodologies 

- Time Series : Box-Jenkins Methodology 

- System Theoretic Methodologies 

Three major conventional forecasting techniques discussed in this chapter 
are : 

1. General Exponential smoothing for seasonal load forecasting, which is 
treated in Section 3.4. 

2. Winters' Additive model seasonal forecasting which is discussed in 
Section 3.5 

3. Winters' Multiplicative model seasonal forecasting which is discussed 
in Section 3.6. 

The Box-Jenkins approach is considered in Section 3.7. In each case a 
detailed discussion of salient features of the approach is given. Moreover, 

computational results pertaining to two forecasting problems are presented. 

Advances in system theory have a sign if icant impact on many power systems 
functions, and load forecasting i's no exception. The powerful technique of 
Kalman filtering is reviewed in Section 3-8. Particular attention is paid 
to the problem of adaptive filtering and a comprehensive review of 

approaches to evaluating noise statistics is offered. A simple technique is 

used in conjunction with our computational investigations of the short-term 
forecasting problem. 
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In Sect ion 3 .9, a spec if ic vers ion of the Recurs ive We ighted Least Squares 

technique of ident if icat ion is considered. Results for the short-term 
forecasting requirement are given. The last technique considered is that of 
Instrumental Variable and experience from the application of the method is 

presented in Section 3.10. 

The chapter is concluded by a critical evaluation of the performance of each 
method and recommendations for the appropriate selection of techniques for 
forecasting load with special reference to the Abu Dhabi electric power 
system are submitted. 

3.2 Literature Review of Methods on Load Forecasting 

Several needs of an electric utility are met by load forecasts, including 

corporate planning, competitive strategy development, revenue planning and 
budgeting, fuel purchasing, marketing and rate making for energy sales, 
system planning, and operations and dispatch management. Load forecasting 

includes power and energy as the two major variables of interest. Energy 
forecasts are important in long range planning activities, whereas power 
forecasts play a dominant role in systems operations and dispatch studies. 
The chapter deals with power demand forecasting. 

Classifying a large field such as load forecasting is equivalent to 

projecting an n-dimensional surface onto one or two dimensions at a time 
[8] 

. Certain classifications are quite distinct, while others may well 
intersect. A popular scheme is according to the load model structure in 

terms of the effects influencing the load behaviour: 

1] Models which rely mainly on the time of day and the latest load 
behaviour. 

2] Models which include weather effects but do not rely on the latest load 
behaviour for the forecast. 

31 Models that include both weather, time of day and immediate past load 
information. 

This classification scheme is employed in two bibliographic reviews of the 
area [9 & 101. 
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An a Iternat ive c lass if icat ion scheme is advocated by Abu E I-Magd and S inha 
[11] 

, on the basis of the modelling approach used to represent the load, 

since the most important part of forecasting is in the system identification 

stage. Moreover, incorporating weather-sensitive components in the 
forecasting technique does not affect the methodology used to model the 
other load components. 

A third classification is according to whether the entire load curve (hourly 

or a da i lY or week ly f orecast or da i ly f or a month ly or annua If orecast ) can 
be mode 1 led , or whether on ly the peak load prof i le is mode I led . 

According to Happ [12], the history of electric load forecasting may be 
traced to the early days of economic dispatch prior to 1930, using methods 
such as classical decomposition. Dryar [13]. correlates weather effects 
with electric power demand in forecasting daily peak loads. Multiple 

regression models are used in Davies [14] to correlate weather and demand, 

and in as im i lar manner He inemann et a1. [15] relate weather variables to a 
weather- sens it ive load to calculate the daily peak load for the summer 
period. 

In [16] to [181, Farmer and his associates use an additive model to 
represent the load j (t d w) at t ime t on day d of week w as the sum of a 
long term trend A (t w) ,a component B (t d) that depends on the day of the 

week, and a residual or random component v(t, dw). A simple moving 
average is used to estimate the trend component and A is updated daily on 
the basis of an N, day moving average. The day-of-the-week effect B(t, d) 
is computed using an average over the number of weeks of the difference 
between the actual load and the trend component. This procedure [18] 

minimizes the mean square error of the random component averaged over 
several weeks of past data. The random component v is estimated using a 
spectral decomposition. This method has been tested in [19] as well. 

The use of an exponential ly-weighted moving average has been advocated by 
Lijesen, and Rosing [20]. Here one updates B(t, d) as: 

B(t, d) = a[, S(t. d. w) - A(tw)] + (1-a) B(t, d-7) 

where ae is an empirically derived smoothing parameter. In addition, Lijesen 
and Rosing incorporate a weather-sensitive component into their residuals 
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by means of aI locat ing a da i ly energy requ irement v ia a 24-e lement vector of 
constants to each hour. 

Chr ist iaanse [21] uses a procedure based on Brown's exponential smoothing 
[22] for hourly loads over an interval of one week. The model considered is 
of the Fourier Series form. 

The selection of the fitting functions and the smoothing constant are major 
issues discussed in [21]. To improve the accuracy of the forecast, 
Christiaanse extends the method by forecasting the observed errors from the 
model already developed. Here the autocorrelation of the observed residuals 
for a period of time is studied and an autoregressive model with lags of one 
and twenty four hours is used to forecast the errors. 

Sachdev and Ibrahim [23] propose an on-line technique using exponential 

smoothing in two stages. In the f irst the load (d h) of the h" hour on the 
d" day is estimated from 

3 (h d) =ý (d-1 h) +)[ý (d-1 h) - ý3 (d-1 h)] 

where a. is the daily smoothing constant. The error component is then 
estimated using a similar model. The adaptive estimation of u (t), has been 
done using an autoregressive model ARý. ) given by 

k, 
ai 

i 71 

where E(t) is a white noise residual. In [241 
, Gupta and Yamada use AR (24) 

on hourly data. Galiana [25] on the other hand uses AR(I) and AR(2) for two 
different residual series. 

In [261 to [29], a general time series model to forecast medium and long 

range power demand is used . Th is is adopted by Vemur i et aI. to perform m id 

term forecasting in [30]. Here an Autoregressive Integrated Moving Average 
(ARIMA) (0 

'1 '1 
)X (0 

'1 '1)12 model with a twelve month period was used to 

forecast monthly peak loads for lead times of up to 40 months. The very 

short term forecasts were f irst addressed by Keyhani and EI-Abiad [31] using 
Autoregress ive Mov ing Average (ARMA) mode Is. They use ARMA (1 0) mode I 

on I minute load data, ARMA (I I) and (2,1) models on 5 minute data and an 
AMA (2.0) model on hourly load data. Later Keyhani and Eliassi Rad [32] 

use models which combined Autoregressive (AR) models with some weather 
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inputs and trigonometric trend functions to forecast hourly loads up to one 
week ahead. 

Hagan and Klien [33] use ARIMA models with a daily period to forecast 

hourly loads with one to four hour lead times. Different models were 
deve loped f or each season . Mes 1 ier [34] later used AR IMA (1 

'0 'O)x 
(0 

'1 5 1)36 
5 

models to forecast daily energy consumption one day ahead. Correction 

factors are added to the model to adjust for the holidays. In [35], Abu 

El-Magd and Sinha use multivariate AR models for forecasting load demands of 

a multinode system. They use an ARI (6,1) model to forecast the load demand 

at four substations at five minute intervals and an AR (2) model with 24 

hour differencing to forecast at 1 hour intervals. In [36] Vemuri, Huang, 

and Nelson develop a method for on-line identification of AR models using 

sequential least squares. They use AR (10) models on 3 hour load data to 

forecast up to 21 hours ahead. 

In [37] 
, Hagan and Behr demonstrate that a simple polynomial regression 

analysis to describe the non-linear relationship between loads and 
temperatures, when combined with a Box and Jenkins transfer function model 
[591, can provide more accurate short term forecasts. Ross et al. [38] 

suggest a hierarchial structure to obtain load forecasts with five-minute, 

one-hour, and twenty-four hour lead times. The load is assumed to be the 

sum of a component predicted by regression of the load an all observed 

exogenous factors (base value and a weather-sensitive component) and an 
error term which is represented by an ARMA model. 

Van Meeteren and Van Son [39] decompose the load into five components 

g (t d) =A (t d) +B (t d) +T (t d) +W (t d) +v (t d) 

Here T is a trend effect and W(t, d) is an additional weather-dependent 
component. 

Srinivasan and Pronovost [40] use a model 

(t d (t d) 

where 
il (t d) is a forecast of g2(t d) based upon f irst order autoregress ion 

with a lag of one hour. j, (t d) is a forecast of g (t d) based upon f irst 
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order autoregression with a lag of one day. j3 (t, d) and 34 (t d) 

similarly involve a lag of one week and one year respectively. 

The (x, are linear weights seeking an optimal combination of these four 

separate forecasts. 

In [41], De Martiano et al. also divide the load into a seasonal component, 
a weekly component and a residual component. Exponential smoothing is used 
to identify the seasonal and weekly components. A mixed ARMA model is 

employed to identify the residual component. 

Abu-Hussien et a]. [42] present an adaptive model based on hourly loads and 
weather information. They use an individual power system load bus which is 

strongly dependent on weather variables to test the accuracy of their 

a lgor ithm . Max imum error was f ound as 40% of the average hour ly load . 

Keyhani and Miri's [43] approach involves estimating the parameters of an 
ARIMA model fitted to historical load and weather data. With a strong 
correlation between load and temperature, they find good results with RMS 
error for hourly forecasts ranging from 21N. to 4.47. of the daily peak load 
for one-step ahead load predictions. 

Irisarri et al. [44] develop an hourly-recursive Kalman filter, which 
includes an exogenous temperature forecast, to formulate an equivalent 
deterministic component of the load value. They present results with 
average absolute errors ranging from 2.? 1. to 4.8%. 

Krogh et a]. [45] use a regression based technique to normalize daily peaks 
and troughs for weather variables and hence allow a univarate ARIMA model to 
be used to forecast the hourly normalized data. 

The formulation of the load evolution model in state space form allows the 

application of Kalman fittering theory to conduct the forecasting task. 
This is ideally suited for on-line applications since it is recursive in 

nature. Toyoda et al. [46] are credited with the application of state 
estimation methodology to load forecasting. Here the state variables are 
the system load itself, the increment of the load, and short-term and long- 
term load patterns . 
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In [47]. Sharma and Mahalanabis apply state estimation techniques to short- 
term load f orecast ing . Here , in contrast w ith Toyoda 's assumpt ion of a known 

system matr ix , Sharma and Maha lanb is assume two propert ies of the load . In 

the f irst the load is approx imated by af in ite order po lynom ia I of the t ime 

in hours. In the second assumption, the ratio of the change in the load 

demand to the actual load demand is constant for all days. The same model 
proposed by Christiaanse [21] is rearranged by Sharyna and Mahalanabis [481 

to apply adaptive state estimation to identify model parameters and noise 
covariance. 

Singh et al. [491 assume at ime ser ies mode I and deve lop a pred ictor A ich 
identifies the coefficients of the time series. In [50]. Galiana and 
Schweppe obtain load forecasts up to one week in advance by separating the 
load into a periodic term and a residual term. The periodic term is 

expressed as a Fourier Series expansion while the residual is an AR model 
with forcing terms that are weather dependent. Least squares estimation is 

used to find the model parameters off-line. 

In [51], a multivariable state space model for multinode systems is 

proposed. Two sub-systems are used to model the state and parameter 
variations separately. 

The use of maximum entropy method to identify an AR model to obtain 24 hour 
forecasts is advocated by Lu and Rao [52]. This can provide a good model 
even with a short data record. This advantage is not critical for load 
forecasting and the computations are quite lengthy. 

In [53 ] the application of pattern recognition techniques to load 
forecasting is reported. It is interesting to note that in [54], Dehdashti 

et al. present results applying pattern recognition techniques to 24 hour 
load forecasting of load in a small town with a peak load of 123 MW. They 

state that this technique is not appropriate for large areas as the 
diversity of loads distorts the weather sensitive pattern of loads. In [55]. 

Rahman and Bhatnagar present a knowledge-based system as an alternative to 
forecasting one-to -twenty -four loads with errors of up to 3.5%. 

There is another approach where a load management view point is adopted . As 

an examp le McRae et aI. [56] use regress ion ana ly s is to dea Iw ith potent ia I 
for management of load at peak times. For a collection of papers describing 
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current state of the art in power system load forecasting, the edited book 

by Bunn and Fanner [57] is recommended. 

At this point in the discussion, it is useful to note that no single most 

preferable forecasting method has emerged for load forecasting problems in 

electric utility systems. One reason is that each utility is presented with 

a unique set of external inputs that affect the composition and time 

evolution of its load (weather, cultural and special occasion related). As 

a result it appears that a considerable amount of "tailoring" (to use Bunn 

and Farmers' term [571) has to be done to the forecasting technique in 

somet imes ad hoc ways to dea Iw ith the spec if ic prob lem at hand - 

Some methods, such as conventional techniques listed in Section 3.1, are 
characterized by simple computational algorithms that do not require a large 

amount of tuning as compared to advanced techniques such as Box-Jenkins, 
Kalman Filtering and the Instrumental Variable methods. In these latter 

cases, one applies some sophisticated procedures to arrive at optimum model 
orders and their structures. 

One of the intentions of this chapter is to examine how many of the methods 

cited in the literature, and newer ones, fare in the application to 
forecasting the load on the Abu Dhabi electric system. 

3.3 Abu Dhabi's Load Forecast Data Base 

Load Forecasting in an electric power system is an ongoing activity that 

utilizes full data sets from past years' records. The testing of proposed 
forecasting algorithms should be done with data records that exhibit the 

most variability to allow evaluation of the efficiency of the proposed 

algorithms. In conducting research into load forecasting for the Abu Dhabi 

system, a main short-term load data set has been utilized and is listed in 

Table (A-1) and plotted in Figures (A-1) of Appendix A. The data set 

consists of the hourly load for 672 points covering the period from 

September 7th to October 5th, 1986 as plotted in Figure (A-1-a). This 

period straddles the boundary between summer and fall and therefore is 

representative of a typical segment where load patterns are less clearly 
defined. This period is critical for system maintenance planning and 
therefore requires a reliable load forecast. In Figure (A-1-b) data for one 

week of hourly load is shown. 
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The mid-tenn data base for our forecasting spans eleven years of monthly 
peak demands. This is listed in Table (A-2) and shown in Figure (A-2) of 
Appendix A. 

3.4 Seasonal Load Forecasting via Trigonometric Functions 

A_Ge-n-e-ra-I Exponential Smoothing Approach 

Power system loads exhibit a cyclical pattern that is repeated over a period 

of time. This is referred to as seasonality and the length of the cycle as 

seasonal period power case s. An additional trend component is observed in 

the load time series. The traditional approach to modelling seasonal data 
is to decompose the series into three components :a Trend T(k), a 
Seasona 1 Component S and a No ise (res idua 1) Component V where k, is the 
d iscrete t ime index . 

In the additive decomposition approach, the series is modelled as a sum of 
the three components given by 

TU-) + Sý) + (3-1) 

The multiplicative decomposition approach assumes that the applicable model 
is the product of the three components 

g ý-, )=T ý-, )S ý-, )v ý-, ) (3-2) 

The multiplicative model is readily transformed into an additive model by 
taking the logorithm of both sides of the model equation and dealing with 
the new time series in InU(k)]. Equations (3-1) and (3-2) form the basis 
for a number of seasonal time series forecasting techniques. 

3.4.1 Seasonal Models Using Trigonometric Functions 

Trad it iona 1 ly , the Trend Component is modelled by a low-order polynomial of 
time k 

ri Tý) + (3-3) 

K is the order of the po lynom ia I. The Seasona I Component S can be 

described by seasonal indicators or by trigonometric functions 

S A, s in[ 2-n i+ 
,I] (3-4) 
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where A, and ý, are the amplitude and the phase shift of the sine function 

with frequency f, = 
21T 1 and m is the number of harmonics included. Combining S- 

the three components using the additive model leads to seasonal models of 
the form; 

Y fc i 

's (k )=Ds in [ 'Tt j 
A, + -ý, 

]+v (k, ) (3-5) 
0 izi 

S-- 

This model incorporates the parameters in a non-linear fashion, and it is 

more convenient to write the model in the form; 

M ++I sin fi k+0 Cos fj /C +V (3-6) 
H 1. 

H[ 

OH 
2i 

I 

The mode 11 ing prob lem is reduced to determ in ing the parameters 0. . D, ,..., 
0 
Y, ' 

011 ' 021 0 
Im ' 

02m ' provided that f, have been assigned. A direct 

least squares parameter estimator can be applied to obtain the parameters of 
the mode I on the bas is of a number of observed loads % (k, ). Th is assumes that 

the parameters in the Trend Component T(k-) and in the Seasonal Component 

S(k-) are fixed constants and that the errors jv(k, )j are uncorrelated. 

These models work well for trends and seasonal components with fixed 
amplitudes and phases [6]. It is more logical for load time series to allow 
for adaptive - time changing trend and seasonal components. One possible 
implementation technique involving the principle of general exponential 
smoothing via discounted least squares is discussed in Appendix B. 

3.4.2 Computational Results: Mid-Term Forecasting 

The data base given in Appendix A corresponding to monthly peak load history 

was used in an implementation of the seasonal forecasting using 
trigonometric functions and general exponential smoothing to forecast the 

monthly peak for 12 months ahead. 

The Trend Component was modelled using a linear relationship, so that K=1. 
The Seasonal Component was modelled using four harmonics so that m=4, with 
seasonality s= 12 months. Thus we have 

fi = 
2n i 12 
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The estimated model parameters were found using the procedure of Appendix B 

as: 

(1) ýo 865-939 

(3 ) ý 349.463 

(5) 
12 

25.297 

(7) -24.853 
(9) 

-4.335 

(2) ý, =5 . 763 

(4 b 
21 = 37.171 

X (6) 
22 

= 52-300 

x (8 ) 
23 

= 17.101 

x (10)= 
24 

= 34.370 

The estimation is based on 130 data points. 

Tab le (3-1) 1 ists the resulting forecasts compared to the actual values. 
F igure (3-1 ) dep icts the resu Its graph ica I ly . The fo I low ing are the f it 

statistics: 

Mean Squared Error (MSE) 1695 

Mean Absolute Percentage Error (MAPE) 8.26 

The forecast statistics are as follows; 

MSE 2924 

MAPE 5.312 

The optimum value of the smoothing constant a is 0.150, which was found by 

a trial and error process to arrive at the lowest possible value of mean 
square prediction error. 

Inspection of the forecast errors in Table (3-1) reveals that only three 

points involved a percentage error larger than 1(r/.. The spread of errors 
around zero is reasonable, as can be seen from Figure (3-1). 
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Table (3-1) Forecasting Results 

For Monthly Data Using Trigonometric 

Functions and General Exponential Smoothing 

I MONTH (L )I ACTUAL I FORECAST I ERROR I PERCENT ERROR 

131 762.000 720.433 41.567 5.455 

132 529.000 593.003 -64.003 -12.099 
133 493.000 501.982 -8.982 -1.822 
134 528-000 523.372 4.628 0.877 

135 616.000 694.817 -78.817 -12.795 
136 965.000 864.173 100.827 10.448 

137 1084.000 1153.662 -69.662 -6.426 
138 1142.000 1188.018 -46.018 -4.030 
139 1204.000 1194.449 9.551 0.793 

140 1213.000 1193.069 19.931 1.643 

141 1209.000 1137.748 71.252 5.893 

142 1092.000 1076.033 15.967 1.462 
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3.4.3 Computational Results: Short-Term Forecasting 

The data base given in Appendix A corresponding to hourly load history was 

used in an implementation of the seasonal forecasting using trigonometric 

functions and general exponential smoothing to forecast hourly loads. 

Here, once again we used a trend model such that K=1. Five harmonics were 

required with seasonality of 24 hours. The estimated model parameters on 
the basis of 660 data points, were found to be: 

x (1) = 815-872 

X(3) = 31.710 

X (5) = 12 
129.635 

X (7) = 13 
36.327 

x (9 )= 
14 

12.741 

x (11)= 
15 -21.135 

X (2) = d, = -0 . 44E 

X (4) =ß 21 = 47.966 

X (6) =ý 22 = -33 . 591 

X (8) = 6 
23 

= 26.350 

x (10)= 
24 

= -8 . 777 

X (12)= 
25 

= 2.164 

Table (3-2) lists the resulting forecasts compared to actual values. Figure 
(3-2) shows graphically the forecast and actual hourly loads. The following 

are the fit statistics; 
MSE = 555.97 
MAPE = 2.17 

The forecast statistics are as follows; 
MSE = 195 

MAPE = 1.097 

The optimum value the smoothing constant a is 0.055, which was obtained 

using a trial and error procedure to obtain the lowest possible MSE. 

From Table (3-2) it is clear that the percentage forecast error is 

relatively small compared to that involved in the mid-term problem. The 

errors do not exceed 3.51%. 
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Table (3-2) Forecasting Results 

Hourly Data Using Trigonometric Functions 

and General Exponential Smoothing 

HO UR I ACTUAL I FORECAST I ERROR I PERCENT ERROR 

661 893.000 892.215 0.785 0.088 

662 943.000 938.900 4.100 0.435 

663 966.000 983.041 -17.041 -1.764 
664 1008.000 1006.000 2.000 0.198 

665 933.000 995.117 -2.117 -0.213 
666 936-000 959.723 -23.723 -2.534 
667 930.000 927.779 2.221 0.239 

668 956.000 923.750 32.250 3.373 

669 956.000 947.335 8.665 0 . 906' 

670 962.000 973.232 -11.232 -1.168 
671 962.000 972.865 -10.865 -1.129 
672 928.000 938.375 -10.375 -1.118 
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3.5 Winters' Seasonal ForecastinR: The Additive Model 

An alternative technique for forecasting seasonal time series is offered by 
Winters' procedures [58]. These are two versions of the technique depending 

on the choice of model representing the evolution of the series as either 

additive or multiplicative. The present section is devoted to the additive 

case, beginning with a discussion of the origin of the procedures as traced 
back to the concept of general exponential smoothing via discounted least 

squares. 

3.5.1 Background 

In the formulation of the discounted least squares approach one usually 

assumes that the series follows a given pattern defined by the elements Of 
the vector function h(j). If the series is non-seasonal, then only a trend 

component is present (m=O) and one has the following three important special 

cases: 
I- Simple exponential smoothing : n=1 and ý(fl=l 

2- Double exponential smoothing : n=2 and the trend is assumed to vary as a 

straight line with the time index. 

3- Triple exponential smoothing : n=3, and the trend is quadratic. This is 

sometimes called Brown's one-parameter quadratic smoothing method. 

it is important to note that the smoothed estimates depend on the parameter 

(x, which is usually chosen to minimize the forecast error. 

The literature on time series analysis and forecasting includes a number of 

procedures that can be viewed as modifications to the basic exponential 

smoothing concept. 

3.5.2 Winters' Additive Procedure 

Winters' [6] considers the forecasting problem involving seasonal 
components. The one parameter exponential smoothing procedure can be 
disadvantageous in situations where the seasonal components are more stable 
than the trend. Thus in a manner similar to Holt's two parameter procedure, 
Winters considers updating equations with several smoothing constants. The 

models considered can be additive or multiplicative. The additive procedure 
is discussed in Appendix C. 
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3.5.3 Computational Results Mid-Term Forecasting 

The results of applying Winters' additive seasonal forecasting to the mid- 
term problem are listed in Table (3-3) and the corresponding graphical 

display is shown in Figure (3-3). Here with N=130, we obtain X, (N) = 856-815, 

and X, (N) =5 . 628 .W ith seasona I per iod s= 12 , we get the foI low ing 

seasonal components. 

fIS (N+t - 12 ) 

1 -140.931 
2 -307.573 
3 -365.248 
4 -360.126 
5 -209.364 
6 -18-017 
7 269.208 

8 284.250 

9 292-939 

10 277 . 747 

11 211.685 

12 

--------------- 

151 . 790 

----------------------- 

inspection of the forecast errors in Table (3-3) shows that the absolute 

value of the percentage error is less than 10%. The forecast errors using 
Winters' additive model are less than those obtained using the general 

exponential smoothing, as can be seen from a comparison of Tables (3-1) and 
(3-3). 



-50- 

The fit statistics are; 
MSE = 2092 

MAPE = 9.206 

The forecast statistics are; 
MSE = 2,545 

MAPE = 4.731 

The optimum values of the method's smoothing constants are 

(y, =0 . 05 a2=0.5 a3 = 0.95 

Table (3-3) 

Forecasting Results Mid-Term 

Using Winters' Additive Method 

MONTH I ACTUAL I FORECAST I ERROR I PERCENT ERROR 

131 762.000 721.512 40.488 5.313 

132 529.000 560.498 -31.498 -5.954 
133 493.000 508.452 -15.452 -3-134 
134 528-000 519.202 8.798 1.666 
135 616.000 675-592 -59.592 -9.674 
136 965-000 872-567 92.433 9.674 
137 1084-000 1165.419 -81.419 -7.511 
138 1142-000 1186-090 -44.090 -3-861 
139 1204.000 1200.407 3.593 0.298 

140 1213.000 1190.843 22.157 1.827 

141 1209.000 1130.409 78.591 6.500 

142 1092.000 1076.143 15.857 1.452 
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3.5.4 Computational Results : Short-Term Forecasting 

The application of Winters' additive seasonal forecasting to the short-term 
problem resulted in forecasts listed in Table (3-4) and displayed in Figure 

(3 
.4). Here w ith N= 660 , we obta in R, (N) = 833 . 909 , and X, (N) = -0 . 277 . 

The f it stat i st ics are; 
MSE = 640 .2, MAPE =1 . 561 

The forecast Statistics are as follows; 

MSE = 401.6, MAPE = 1.575 

The optimum values of the method's smoothing constants are 

at -0 . 15 a2 ý 0.1 a3=0.7 

From Table (3-4), one observes that the absolute value of the percentage 
forecast error is less than 5%. The forecast errors using Winters' additive 

model are consistently higher than those obtained using general exponential 

smoothing for the short-term problem. It is also noted that the forecast 

errors for the short-term problem are lower in absolute value than those for 

the mid-terTn problem since we have more data for model fitting in the short- 

term case. 
Table (3-4) Forecasting Results 

Short-Term Using Winters' Additive Model 

HOUR ACTUAL 

------------- 

FORECAST 

---------- 

ERROR PERCENT ERROR 

661 893.000 
--- 

886.078 
-------------- 

6.922 
---------------- 

0.775 

662 943.000 945.414 -2.414 -0.256 
663 966.000 922.520 43.480 4.501 

664 1008-000 1023.330 -15.330 -1.521 
665 933-000 1019.938 -26.938 -2-713 
666 936.000 967.395 -31.395 -3.354 
667 891.000 887.828 3.172 0.356 

668 956-000 954.622 1.378 0.144 

669 956.000 966.134 -10.134 -1.060 
670 962.000 964.704 -2.704 -0.281 
671 962-000 988-000 -26.000 -2.703 
672 928-000 939.422 -11.422 -1*. 231 
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3.6 Winters* Seasonal Forecasting The Multiplicative Model 

In the case when seasonal swings and the variations in the errors are 
proportional to the level, one would transform the data and consider the 

additive model for the logorithnically transformed observations. On the 

other hand, if the seasonal swings are proportional to the level, but the 

errors are not, one can consider the application of Winters' multiplicative 
version of seasonal exponential smoothing [6] described in Appendix D. 

3.6.1 Computational 
-Re-sul 

ts 
-: 

Mid_-Term Forecasting 

Winters' multiplicative seasonal forecasts for the mid-term problem are 
listed in Table (3-5) and plotted in Figure (3-5). Here N= 130, yields 
XO(N) = 872.117, and X, (N) = 5.094. With seasonal period s= 12, we get the 

following seasonal components: 

fIS (N+t - 12 ) 

1 0.799 
2 0.601 
3 0.526 
4 0.527 
5 0.732 
6 0.973 
7 1.243 
8 1.286 
9 1.328 

10 1 . 337 
11 1.261 
12 

--------------- 

1.161 

----------------------- 

The f it stat i st ics are ; 
MSE 1,422 

MAPE 5.507 

The forecast statistics are; 
MSE 1,843 

MAPE 4.498 
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The optimum values of the method's parameters are 

(XI = 0', 0ý2 =0 *05 a3 =0 .3 

Inspection of the forecast errors in Table (3-5), reveals that the absolute 
value of the percentage forecast error is less than 1P/.. This may suggest 
that this model gives an inferior forecast than the preceding two 
techniques. This is not true as one can verify that the multiplicative 
model's forecasts at points 132,135,137,138,141 and 142 are closer to 
the actual values than forecasts obtained by other methods. This fact is 

supported by observing that the MSE and MAPE of the forecast statistics 

using Winters' Multiplicative model are lower than their counterparts for 

other methods implemented for this problem. 

Table (3-5) Mid-Term Forecasting Results 

Using Winters' Seasonal Multiplicative Model 

MONTH ACTUAL 

------------- 

FORECAST 

--------- 

ERROR PERCENT ERROR 

131 762.000 
---- 

701.299 
------------- 

60.701 
----------------- 

7.966 
132 529.000 530.020 -1.020 -0-193 
133 493.000 466.463 26.537 5.383 
134 528-000 470.140 57.860 10.958 
135 616.000 675.036 -41.036 -6.662 
136 965.000 878.464 86.536 8.967 
137 1084.000 1128.281 -44.281 -4.085 
138 1142.000 1173.678 -31.678 -2.774 
139 1204.000 1219.234 -15.234 -1.265 
140 1213.000 1234.374 -21.374 -1.762 
141 1209.000 1170.436 38.564 3.190 
142 1092.000 1083.619 8.381 0.767 
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3. G. 2 Computational Results Short-Term Forecasting 

The results of applying Winters' seasonal multiplicative forecasts to the 

short-term problem are given in Table (3-6) and shown in Figure (3-6). Here 

ith N= 660 , we get Xo (N) = 836 . 044 , and X, (N) =1 . 600 . 

The fit statistics are; 
MSE = 145.5, MAPE = 1.007 

The forecast statistics are; 
MSE = 100-75, MAPE = 0.966 

The optimum values of the method's smoothing constants are 
oll 0.8 a2 =0 '15 a3 0.2 

By inspecting Table (3-6), one can conclude that for this short term problem 
the absolute values of the percentage forecast errors are all less than ? '/.. 
The Winters' multiplicative model's forecasts are the lowest compared to the 

results of the previous two methods at data points 663,666,671. The MSE 

and MAPE of the present technique is the lowest compared with the previous 
two methods. Once again, one notes that the error measures for the short- 
term problem are considerably lower than those for the mid-term problem. 

Table (3-6) Short-Term Forecasting Results 

Using Winters' Seasonal Multiplicative Model 

HOUR ACTUAL 

------------- 

I FORECAST 

- - 

I ERROR PERCENT ERROR 

661 893.000 
- ---------- 

900.668 
------------- 

-7.668 

----------------- 

-0.859 
662 943.000 952.191 -9.191 -0.975 
663 966.000 972.940 -6.940 -0.718 
664 1008-000 1013-500 -5.500 -0.546 
665 933.000 1002.830 -9.830 -0.990 
666 936.000 952.479 -16.479 -1.761 
667 891-000 877-913 13.087 1.469 

668 956.000 941.030 14.970 1.566 

669 956.000 953.835 2.165 0.226 

670 962.000 955.740 6.260 0.651 

671 962.000 957-487 4.513 0.469 

672 928-000 940.633 -12.633 -1.361 
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3.7 Time Series Seasonal Forecasting via Box-Jenkins Methodology 

This section is concerned with the application of time-series analysis 
forecasting methodology of Box and Jenkins considering the seasonality 

observed in the data base. The approach involves more general and 
statistical based techniques for time series analysis involving ARIMA 
(Autoregressive Integrated Moving Average) processes which have been studied 

extensively by George Box and Gwilym Jenkins [59] and their names have 
frequently been used synonymously with general ARIMA models. Auto- 

regressive (AR) models were first intorduced by Yule in 1926 [60] and later 

generalized by Walker in 1931 [61], while moving average (MA) models were 
first used by Slutzky [591 in 1937. The theoretical foundations of combined 
AFNA processes was laid by Wo Ids' work [62] in 1938 . 

Box and Jenkins have effectively integrated in a comprehensive manner, the 

relevant information required to understand and use univariate time series 
ARIMA models. The basis of their approach is summarized in Figure (3-7) and 
consists of three stages: identification, estimation, diagnostic testing and 
application. 

At the heart of model specification is the principle of parsimony advocated 
by Tukey [631 and Box-Jenkins, which can be paraphrased as; 

"In a choice among competing hypotheses, other things being equal, the 

s imp lest is preferrab le ". A Iternat ive ly , pars imony imp I ies the inc lus ion of 

only as many parameters as one really needs. Reasons for preferring simple 

models over models with a large number of parameters are: 

(1) simple models are easier to understand and interpret. 

(2) The estimation of each unnecessary parameter will increase the variance 

of the pred ict ion error - 

A brief discussion of the ingredients of Box-Jenkins methodology is given in 

Appendix E. 
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Identification Postulate 
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Application 
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Estimating 
and Testing 

Testing 

Yes 

Use Model 
to Forecast 

Figure (3-7) Elements of Box-Jenkins 
Forecasting Methodology 
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3.7.1 Computational Results Mid-Term Forecasting 

Applying Box-Jenkins forecasting methodology to the mid-term forecasting 

problem involved experimenting with data transformations in order to achieve 

a stationary time series as discussed in Appendix E. The transformed time 

series used is of the form 

3 ý, )= [Data]' x=0 .5. 

A seasonal ARIMA model of the following form was found to yield the best 

results. 

ýp (B 12 ) Vd VD (B) 9 (Bll a (k 
12 q 1) 

The model particulars are given by: 

D=I Q=1 P=I 

d=O q=O p=1 
(B) =I -t, B 

0.5873 

. ýP (B) 1 12 

1)12 0.2865 

(B) I (B 12 BI 
12 

=0 . 6522 

The f it statistics are; 
MSE = 1384, MAPE = 5.24 

The results of applying Box-Jenkins forecasting methodology to the mid-term 
forecasting problem are listed in Table (3-7) and shown in Figure (3-8). 

The following are the forecast statistics; 
MSE = 2551, MAPE = 5.30, 

inspection of Table (3-7) reveals that the forecast percent errors are all 
below 100% except for points 132 and 135. The forecast of points 131,134, 
136 and 141 using the Box-Jenkins model involves the lowest forecast error 
among the four methods discussed so far. In terms of MSE and MAPE the 
technique did not perform as well as did the Winters' multiplicative 
seasonal model. 
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Table (3-7) Forecast Results for 

Mid-Term Using Box-Jenkins Methodology 

MONTH I ACTUAL I FORECAST I ERROR I PERCENT ERROR 

131 762 735.59 26.45 3.47 

132 529 583.08 -54.8 -10.22 
133 493 519.37 -26.37 -5.34 
134 528 524.6 3.39 0.64 

135 616 690.8 -74.8 -12.144 
136 965 885.18 79.81 8.27 

137 1084 1154.39 -70.38 -6.49 
138 1142 1209.42 -67.4 -5.9 
139 1204 1252.35 -48.35 -4.01 
140 1213 1249.56 -36.55 -3.01 
141 1209 1182.96 26.04 2.15 

142 1092 1113.5 -21.5 -1.96 
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3.7.2 Computational Results Short-Term Forecastine 

The application of Box-Jenkins time series modelling to the short-term 
forecasting problem was conducted for two distinct applications. In the 
first, one deals with forecasting for one day, and thus a periodicity of 24 
hours is assumed. On the other hand, the second application involves hourly 
forecasting for one week ahead. This requires a periodicity of 168 hours. 

The one-week-ahead forecasts are useful for unit commitment purposes. No 
transformations of the raw data was needed. A seasonal ARIMA model was 
assumed of the following form: 

Mode II: Per iod ic ity 24 ; 

(B21 ) V, 1 VEll gq 
p 

(B ) eF' 2 
(B) g,., (B24 

The model particulars were obtained as: 
D=I Q=1 P=O 

d=1 q=1 p=O 

I)P (B) =10q (B) =1- OIB 

ep (B )=1 00 (R2' )=1- @24 wl 

ei =0 . 3733 0 24 =0 . 9719 

The f it stat i st ics are 
MSE = 245.88 

MAPE = 1.236 

The forecast results are listed in Table (3-8-a) and shown in Figure (3-9-a). 

Validation of Box-Jenkins short-term forecasting model with 24 hour 

periodicity is shown in Figure (3-9-c). The forecast statistics are; 
MSE = 88.26 

MAPE = 0.896 

Inspection of Table (3-8-a) reveals that the percent forecast errors have 

all absolute values of less than 2%. This model has a superior performance 
over the previous methods in terms of MSE and MAPE. 
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Table (3-8-al Short-Term Forecasting 

Results Using Box-Jenkins Methodology 

with 24 hour periodicity 

--------- 
HOUR 

------------ 
ACTUAL 

------------ 

----------------- 
FORECAST 

----------- 

------------- 
ERROR 

------------------- 
PERCENT ERROR 

661 893 
--- - 

894 
------------ 

-1 
------------------ 

-0.14 
662 943 934 9 0.96 
663 966 978 -12 -1.29 
664 1008 1005 3 0.26 
665 993 1002 -9 -0.86 
666 936 948 -12 -1.24 
667 891 881 10 1.12 
668 956 940 16 1.70 
669 956 949 7 0.78 
670 962 953 9 0.95 
671 962 957 5 0.47 
672 

---------- 

928 

------------ 

937 

---------------- 
-9 

------------- 
-0.97 

------------------- 

The second model with periodicity of 168, has the following parameters: 

D=l Q= 1 P=O 

d=o q=O p=3 

4ý (B I-B B2 -ýB3 p3 

. tp (B) 

1,1 =0 . 
492 't2 0.1902 

f3 = 0.1558 

0 (BO )=I- 0169 B'6'3 

ol (B) =I 

ý0 . 8836 

The f it stat ist ics are 
MSE = 171.8 

MAPE = 1.052 
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Table (3-8-b) lists the forecast results and Figure (3-9-b) show a graphical 

comparison of the forecast and actual values. The forecast statistics are; 
MSE = 289-26 

MAPE = 1.530 

inspecting Table (3-8-b) reveals that the forecast errors in percent are 
less than 3% which is inferior to that obtained using a model with 24 hour 

periodicity. This can also be seen from the MSE and MAPE values. 

Table (3-8-b) Short-Term Forecasting 

Results Using Box-Jenkins Methodology 

Using the Model with IGS hour Periodicity 

HOUR ACTUAL 

-- - - 

FORECAST ERROR PERCENT ERROR 

661 
---- - -- - 

893 
-------------- - 

885 
------------ 

8 
------------------ 

0.95 

662 943 912 31 3.25 

663 966 968 -2 -0.26 
664 1008 997 11 1.11 

665 993 992 1 0.13 

666 936 942 -6 -0.61 
667 891 864 27 2.99 

668 956 931 25 2.63 

669 956 944 12 1.25 

670 962 946 16 1.65 

671 962 945 17 1.78 

672 928 912 16 1.77 



67- 

C\i 

Cýj 

....... .. ..... ... 

to 

u.... 
..... ... ... .... . 

C) 
m CD . . 

4-j C- 
u0 

.u .......... ....... .. ..... ... 

(07) 
L= 
ar- 00 
C- cn 
oc 

4-j 
cz (j) ....... ...... ....... ..... ... 

u 
MW 
= L- J 4-J 0 ............ . ....... ... LXL. 
< 

C- 
0W ..... ....... .. ... 

4-J 

a-0 - .... ....... ..... ... ... .... J_ - . . U) 

cr) ......... ........ 

..... .. ..... ... C\j 

C> C) Co C) C) Co Lr) C) Er) C) U') C) C) C) cn cn co co W-1 W-4 

C: ) 
r 

C- 
C) 

m 

(0 
u CL) 
C- 
0 

LL- 

E-4 
1 

4-1 
W 
0 

U) ý4 

(1) (1) 

.r 
LO 

4-1 0) >-, 

L4 EE 
o -4 

'41.4 E-4 

(n V) 

WW 04 

,n00 (o M (-- 

0 -4 
U) 

. 1= 

14 

Ia 
0 
W 

V-4 
w 

MW ul puewaa AjjnOH 



68- 

CC) 
ED 
V-4 

(n 

XL Cc 7ý I 

U ci 
CL) 
0 Ll- 

4--) 
L. 
0 

X_- 
U) 

I VY 

...... ....... 

Mu 

=3 CD 
4--J C- 
U0 

......... Vol ....... ... . 

NI 

.............. 

... 

...... ...... 

... ...... .. 

C 

cu 
-4-1 

C3 
IWI 

CID = 

tu ci 
le 

C) 
Li- 

D 
C) C) C) CDI CDI C) Cýo 
Cl LO C> LO C) tO Cý 

C) C) CY) CY) co co 
wl W-4 

E 
W 
cu 
E1 -4 

o V) 

(W lu 
"a 

tn V) 0 

U) r- C14 

4) 4) 
6-4 
:j 

4-J 0 
V) 

0 
r- 

al 
m 

u ON co 

0 

ON -4 

0 
S-4 

W 

-3 
t7l 

-4 
DU 

MW ut PUewao AjjnOH 



--69- 

C) 
.............. -:........... - cc) 

(n 

cn C: cu ......... ........ ....... ..... (D 
C- 
C- in oca 

- L3 C-) 0 cu 
C- 
C) 

LL- 
C> 

. ... ....... ............. 
C- m CL) 

U) 4-J' 
CD L- cc C: ) 

U) C) 
......... ....... ............. cu 

C) 
LO U-) 

C; C) C> 
I 

4ualoýjjaoo 

Q 

4- 

C: 3c 
a) 

Cu 
X'o 
00 C13 ME 

4- C" 

0c 
. rl . 

c 4-1 >% 

0 U) 4-) 
(a -r-4 

41 uu 
CL) 

cn It) 
co LL- .,. q 

C- 

EW 
C- CL 
CL) 

U t- L. 
1 -5 

4-1 0 
C- -T- 

M0 
r_- Iq 
CJ3 C\J 

CL) 
C- 

LIL- 



-70- 

3.8 Load Forecasting via Kalman Filtering Methodology 

A Kalman Filter is a recursive data processing algorithm that accepts noise 

- corrupted measurements to provide an estimate of the "state variables" 
that describe the behaviour of a dynamic system. The Kalman Filter (K. F. ) 

combines the real-time data with the results of stochastic modelling of 
system dynamics and measurements device characteristics and the statistical 
description of the system noises, measurement errors and/or inadequacies in 

the mathematical model. The K. F. takes into consideration any available a 

priori statistical information about the system states. 

Modern interest in recursive estimation for non-stationary processes over 
finite-time intervals is due to Kalman [66] and Kalman Bucy [67]. The great 
interest in recursive algorithms is due to their obvious computational 
advantages. The "standard" form of K. F. refers to the estimator first given 
by Kalman [66], from which the discrete optimal filter was derived and 

subsequently documented in many books [68 to 72]. 

The filter algorithm is usually given in two sets of equations - one for 

prediction (extrapolation) and the other for correction (updating). The 
basic algorithm is discussed in the next section. 

3.8.1 ]Kalman Filtering Algorithm 

The Kalman filter algorithm is stated for the linear system represented by 

the discrete state space model 

X ý0 =I (k A-1) X (Ic-1) + Bd (k. -I) u (ic-1) + Gd (k-1) Wd (") (3-7) 

where X (- ) is an n-vector state process ,u (- ) is an r-vector of contro I 

input , Wd (' ) is an s-vector. The matrix § is a state transition matrix which 
is an nxn, Bd is an nxr matrix, and Gd is an nxs matrix. The noise input Wd (- ) 

is assumed to be discrete time zero-mean White Gaussian Noise Sequence with 

covariance kernel 

E( Wd WdT 
Qd =j (3-8) 
0 k; "j 
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Q, is an sxs matrix which is symmetric and positive semi-def inite for all 4, . 
Measurements are available at discrete time points 1,2, and 

are modelled by 

,jý)=H (A-, )Xý, )+u ý- ) (3-9) 

where 
.j 

ý-. ) is an ffý -vector discrete time measurement process, H( ) is an 

mxn measurement matrix, and u is an m,, -vector discrete time white 

Gaussian noise with statistics: 

E {(; )) =0 

u uT 
(j R k=j (3-10) 

0 k,;, -. 
i 

in this description R ý-, ) is an Nxm, , symmetr ic , pos it ive def in ite matr ix 

for aII A-. . it is f urther assumed that u ý-. ) and W,, ý- ) are uncorre lated . 

The state X at K-0 , is modelled as a random vector that is norma I ly 

distributed with mean X(O) and covariance P(O): 

E f. X (0» = (3-11) 

[X (0) -X (0)1 [X (0) -X (0)1' j= P(O) (3-12) 

where P(O) is an nxn matrix that is symmetric and positive semidef inite . 

The object of a Kalman Filter is to combine the measurement data taken from 

the actual system with the information provided by the system and 

measurement models and statistical description of uncertainties in order to 

obtain an optimal estimate of the system state. 

it is convenient to introduce a composite vector which comprises the entire 

measurement h istory to the current t ime and denote it as Z where 

,12 

(3-13) 
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we consider two measurement times (A -1) &A, and propagate optimal estimates 
from the point just after the measurement at time(A. -I) has been incorporated 
into the estimate to the point just after the measurement at time K-. is 

incorporated. This is shown in Figure (3-10) as propagating from time (k. -I)' 
to time (A-, )' 

. We def ine X, (A., -I) and P, (k- -I) to be the cond it iona I mean and 
conditional covariance of the optimal estimate: 

(k, -1) ýni Ei kXý-l) I Z(k. -I)) (3-14) 

ýE(EX (k, _I )_X, (k, 
_1)3 

EX (k, (k _I), 
TIZ 

P, ý-O (3-15) 

We also let X_ ý-. ) denote the conditional mean of X ý-, ) before the measurement 
is taken and processed: 

El., XIZ1 (3-16) 

The conditional covariance of X ý, ) before the measurement is taken and 
processed is thus 

P(EX (k, )-X ý, ) ]T (3-17) (c ) ýý Er ý, )]Ex ý)-X- 

The Kalman Filtering algorithm propagates the optimal state estimates from 

measurement time to time k. by a set of recursive linear relations 

given by 

X, ý--1) + B4 Li ý--1) (3-18) 

1)p, ý- -1) eT ý_, 4- -1)+G, (Ký -1)Q, (k -1) Gý, (k -1) 

This gives the mean and covariance of the optimal state estimate at time k, 
before incorporating the measurement The estimate is updated by 

def in ing the Ka Iman fi Iter ga in K by 

K(k) =P ý-) HT (k )AI (k (3-20) 

where 

+R ý- ) (3-21) 

and the measurement residual r ý-, ) (usually called the innovations) is the 
d if f erence between the measurement va lue and its best pred ict ion bef ore 
it is actually taken as 

rý, ) = ý(k. ) - H(i, ) X 4-. ). (3-22) 
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As a result we have the updated estimate 

X, (*. ) =X (k) + K(k) r(k), 

where the error covariance is given by 

P. (A- )=jI-K (4- )H (A- )jP (k ). 

(3-23) 

(3-24) 

The mechanics of the Kalman filtering algorithm can best be understood in 

terms of two stages called the predictor and corrector stages. In the 

predictor stage, knowledge of the optimum state estimate X, (k-1) and its 

error covariance matrix P, (k-I) allows us to compute the estimates X (A-. ) and 
P (4, ), based on the system mode I parameters ý (A. <- -I ), G, j 

(k -I ), and Q., (A- A). 

In the corrector stage, we incorporate the measurement , (k ) by computing the 

residual r(k. ), and correcting to obtain the optimal est imate ý, (A-, ) 

using Kalman's gain matrix K(A. ). The latter is obtained on the basis of A(, k-. ) 

computed from results of the predictor stage. The optimal error covariance 

matrix P, ý-, ) is obtained using K(A-) and P (A. ) as depicted in Figures (3-10 

and 3-11). 

It is important to realize that a Kalman filter requires knowledge of the 

optimal initial state mean X (0 ), its error covar iance matr ix P (0 system 

and measurement model parameters 4>(A- , k-1) , B, j (A-1. ), G, (4-1) , H(K-) and the 

assoc iated no ise covar iance matr ices Q, (A. ) and R (A ). 
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ýý-1) pý (x--1) 

Pned ictor Equationsj 

pI Pý I 
T 

+ G, 1 Q, (Aý -I G11 

X() P () 

11 1 

iCor-rector-Fq--uatio-n-si 

A (ý )=H (k )P (k ) H' (K- )+R (k ) 
KP HT A1 

r3Hx 
X, +K (K. )r (k. ) 
PK (K-ý )H (Ä. )1 

x+ () p (k) 

Figure (3-10) The Predictor Corrector form of K. F. 
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(-k -I )-I (ýk -I) 
"* 

including After including 

Corrector x+ 
->P 
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-I+ 

Before including After including 

Predictor x 
P ýýP+ oR) 

a- priori' a- posteriori 

Figure (3- 11 ) 
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The Predictor 

- Corrector From Of K F. 
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3.8.2 State Space Model of Load Function 

The successful implementation of a K. F. as a too] in forecasting power 
system load requires choosing an appropriate state space model that 

ref lects the sa I ient features of the system dynam ics . There are a number of 
possibilities depending on the time series representation chosen. In this 

research work we adopted a seasonal model using trigonometric functions of 
the form of Equation (3-6), as it appeared to represent the load evolution 
closely. The load j(k) therefore varies with time according to a linear 

trend plus harmonics to give a model of the form: 

00 +01+B,, siriw, k +0i2 cos(oik, +U (k, (3-25) 

As shown in Appendix B, this can be written in the compact form: 

(k, fT (k) aý) +u (k. ) (3-26) 

where the fitting function vector is introduced as 

si rk, ) , k. co s(j , A-, --. si rk, ) mk, cos(, )Mk ] (3-27) 

The parameter vector is defined by 
aT ý. )=[ 00 of Oll 012 ,*, OMI OM2 (3-28) 

The dynamics of the parameter vector a ý, ) are assumed to evolve according 
to a random walk model 

a (k+ 1) =a ý-, )+w (k ) (3-29) 

where w ý. ) is a no ise vector . Note that Equat ions (3-26) & (3-28) are of the 

same form as the measurement Equation (3-9) and the system dynamic Equation 
(3-7) respectively - 

As it stands the state space model (3-26) & (3-29) is characterized by time 

varying matrices jý 4-1) and H(k). Recall that the fitting functions vector 
defined in Equation (3-28), satisfies the transition property given in 
Equation (3-30) as 

f (k+ I) = Lf ý) (3-30) 

One can show that 

f, (k )= Lk f (0 ) (3-31) 

This fact allows us to convert the state space model to a form that has time 
invariant I and H as follows. 
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Using Equation (3-31) in (3-26), we obtain 

'1 
(4. )=f1 (0 )ýLTIa (A- )+u ý- ) (3-32) 

We def ine the state vector X ý-. ) in terms of a and the L matrix by: 

X ý- )=IL, Iaý) (3-33) 

We also substitute 
H= 1" (0 ) (3-34) 

As a result, the measurement model (3-32) is written as 

ýi (k )=HX (k, )+u (A- ) (3-35) 

We now take (3-29) and pre-multiply both sides by ý1-1.1 
A-I 

to obtain 

ILT) 
A-, 41 

a (A+1) = LT ILT]ka (4- )+(LT)k. 
+Iw 

(k ) 

Using Equation (3-33) we therefore get 

X (A-+ 1) L' X+IL T) 
W (3-36) 

We now let: 

LT (3-37) 

W, 
j 

(k T (3-38) 

As a result, our state model is 

x (Aý + I) =ýx (A- )+W., (A ) (3-39) 

The desired representation is therefore given by (3-35) and (3-39). 

To suninarize, we have 
T LT di ag L, (3-40) 

with 

LT I101 (3-41) 

[ LT C=d iag (3-42) 

LTc. 
c, ), s, (, oi -s 

irKi, 

(3-43) 
j coswi 

11 =fT (0 )=t 10 010... 011 (3-44) 
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The conversion from the original parameter vector a ý-. ) to the state vector 
X ý) is governed by Equation (3-33) and the conversion of the noise vector 

w(A., ) to the new noise vector W,, (Aý ) is governed by Equat ion (3 -38 In both 

cases the k" power of L is required. It is easy to verify that 

LTI diag LL L', I 
k, 

(3-45) 

with L1r 041 (3-46) 

LT cosý-Wi -si nA- 1 (3-47) 
21 S1 N-. W i coskWi 

3.8.3 Approaches to Adaptive Filtering 

Kalman Filtering requires the availability of lumped model parameters 

represented by elements of the matrices 1,, ý, , G, andH specified in 

Equation (3-7) and (3-9) as well as statistical characterization of the 

system and measurement model noises represented by Q', and R of (3-8) and 
(3-10). If these parameters are specified accurately, then the Kalman 

Filtering algorithm provides an optimal state estimate. Any errors in the 

modelling effort will yield a sub-optimal filter. During the second half of 
the 1960s, a number of papers investigated errors in K. F. when it is 

implemented using various approximations. For example, Heffes [73] studied 
the actual error covariance matrix for the discrete case by considering 

uncertainties in P,,, q, and R, . Nishimura [74] extended this study to include 

the continuous time case. Price [75] derived recursive equations for the 

sub-optimal estimation error covariance matrix in the discrete-time case. 

Adaptive filtering is the term used to describe techniques which deal with 
fiI ter ing when one or more of a=), ýt ý, Gd Qý R) are unknown . The object of 

adaptive filtering is to attain an on-line capability that learns the 

unknown data based not only on measurements, but also on measurement 
residuals as they are generated in real-time. 

The process essentially uses the new information to adapt the filter gains 
and model coefficients to the measurements. A parameter-adaptive filter 

est imates elements of 1, Id , and G, 
1 that are unknown . On the other hand ,a 

no ise-adapt ive fi fter is one that est imates unknown Q,, and/or R. 
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An early survey of adaptive filtering techniques can be found in Mehra [761. 
The subject is treated in Chin's review [771; Maybeck's monograph [78], 

Isaksson's paper [79]. and briefly in Stengel [80]. 

It is important to note that our formulation of the load forecasting problem 
as a Kalman filtering problem as given by Equation (3-7) to (3-10), with 
defining Equations (3-35) and (3-39), does not require parameters in H and 4) 
that are related to the physical process. Here it is assumed that the radian 
f requenc ies w, are prec ise ly known . The uncerta int ies invo lved in our mode I 

are related to Q, and R entries. 

As a result, the present review concentrates on the noise-adaptive filtering 

problem. 

Approaches to adaptive filtering can be broadly classified into the 
following categories: 

I- Bayesian Based Approach 
2- Maximum Likelihood Approach 

3- Correlation Based Techniques 
4- Covariance Matching. 

As a general rule, if the number of unknowns is small then satisfactory 
results may be obtained. The problem of identifying R appears to be easier 
than that of identifying Q, using all approaches. A review of the main 
techniques in each category is given in Appendix F. 

3.8.4 Application of K. F. Methodology to Load Forecast 

In this section, we report on computational experience with the application 
of Kalman filtering methodology to forecasting the hourly load on the Abu 
Dhabi power system using the state space model detailed in Section 3.8.2. 
The data set used is that listed in Appendix A which consists of 672 data 

points. Forecasts for 12 hours ahead were obtained and the evaluation of 
the method is based on comparing the forecast based on the preceeding 660 

points to the actual load in each of the hours considered. 

To spec ify the mode I. we need the va lues of angu lar f requec ies W, and the ir 

number, as indicated in Equation (3-25). The weekly pattern was considered 
as the basis and therefore a fundamental frequency w, was chosen as 

21T 
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On the basis of a spectral analysis of the data set, it was detennined that 
the fundanental, the seventh, fourteenth, twenty-first and twenty-eighth 
harmon ics were dom inant in tenns of the ir energy content . As a resu It , we 
have 

7w, W, 14w, 

2 lwl w 28(, ), 

The number of parameters to estimate is therefore n--12. 

Table (3-9) Elements of the Matrix P, 

----------- 
POS IT ION 

---------------- 
I ENTRY I 

------------ 
POSITION 

------------ 
I ENTRY 

----------- 
(1,1) 

----------- 

---------------- 
1 4.5548 1 

---------------- 

------------ 
(7.7) 

------------ 

------------ 
1 2.2053 

------------ 
(2,2) 13 

. 0489 x 10 ' 1 (8,8) 1 2.2050 

----------- 
(3,3) 

---------------- 
1 2.2921 1 

------------ 
(9-9) 

------------ 
1 2.2051 

----------- 
(4 4) 

---------------- 
1 2.2050 1 

------------ 
(10,10) 

------------ 
1 2.2050 

----------- 
(5,5) 

---------------- 
1 2.2067 1 

------------ 
(11,11) 

------------ 
1 2.2050 

------------ 
(6,6) 

------------ 

--------------- 
1 2.2050 1 

--------------- 

------------ 
(12,12) 

------------ 

------------ 
1 2.2050 

------------ 

To initialize the filtering process, one needs the error covariance matrix 
P(O). This was obtained for the data set using conventional least squares 

techniques. The diagonal elements of P(O) are listed in Table (3-9). The 

measurement noise covariance was obtained as R= 740. 

To complete the model spec if icat ion for Kalman fiI ter i rig imp lementat ion, we 

need to spec ify Q, , if one chooses af ixed R. It is appropriate at this 

point to comment on some physically based interpretations of the process 
model covariance matrix %. 
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Inspection of Equation (3-19) reveals that P ý-. ) is greater than Q,,, and 
therefore P) is prevented from getting too small. From Equation (3-20) 

we see that as a resu It the ga in K is prevented f rom go ing to zero .A large 

va lue of Q, causes a large ga in to we igh newer innovat ions rý) more heav i ly 

at the expense of old data, as can be seen from Equation (3-23). We 
therefore conclude that Q, controls the rate at which old data are forgotten. 
Moreover, it is on the basis of %, that the tracking speed (or rate of 
change of state values) of the estimator does change. 

Since Q., affects P(A-, ), it therefore affects estimation accuracy. A large 

value of Q, is reflected as a large error covariance P ý, ) and therefore 

estimates become more erratic. On the other hand, a small Q, results in 

lower est imates X and P. For very sma II va lues of Q. ,Xwi 11 lag beh ind X 

and a biased estimate will result. 

in I ight of the preced ing d iscuss ion , it is c lear that care must be taken in 

selecting Q.,. Ideally, one would choose one of the approaches reviewed in 

Appendix F, provided that satisfactory results can be obtained. It is 

noted, however, that of the many approaches reported, the reliable ones 

require a considerable computational effort involving iterative non-linear 

equation solution. It seems appropriate for our purposes to adopt a simpler 

approach that can provide reliable results while minimizing the 

computational burden. We take a maximum likelihood approach, and employ a 

simple search technique as discussed next. 

Optimal Likelihood Choice of Q 

We have chosen to experiment with the effect of varying Q, as a multiple 

of the covariance matrix Pn. For each value considered, the following log 
likelihood function was evaluated 

("2: ri N- rT (i) A' (i) r (i)/N In (f -0 . 5N - 0.5 in JA 1i11 

This log likelihood function is the saine as that of Equation (F-4) except 
f or the eI im inat ion of the a poster ior i tenns (conta in ing P. (, t ) and X, ý- ) and 
some constants). This a priori log likelihood function is consistent with 
Harvey's [101] and Sallas and Harville [102]. 
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The variation of In (f ) with Q, as multiple of P,, is listed in Table (3-10) 

and is plotted in Figure (3-12) 
. With this simple search technique, it was 

determined that with R=740 , the maximum likelihood is attained for % AP. 

Table (3-11) lists the 12-hour-ahead forecast results for three estimators. 
In the table the actual power demand is listed along with forecast values. 
Forecast I corresponds to Q,, 3Pýj, forecast 2 corresponds to Q,, = 4P, , and 
forecast 3 corresponds to Q,, 5Pn. Table (3-12) lists the corresponding 

percent forecast errors. Figure (3-13) shows the forecast demand in 

comparison with the actual demand. 

The statistical summary of Table (3-13) gives the mean square error and 
maximum absolute percent error (MAPE) for fitted and forecast quantities. 
In terms of f itt ing the data, it is clear that the multiplier of 5 offers 
lower error statistics. On the other hand, in terms of forecast MSE, the 

multiplier of 3 is better. The maximum likelihood criterion selects the 

multiplier of 4, which offers a compromise between fitting and forecasting 

accuracy. 

Figures (3-14) and (3-15) show the spectrum of data and the corresponding 

residuals for this filter. It is evident that the fitting and forecasting 

resulted in good reduction in the residuals spectrum. 

From an overall comparison point of view, it appears that Kalman filtering 

offers an excellent forecasting error as measured by the MAPE criterion, 
being better then Winters' additive and Box-Jenkins with 168 hours 

periodicity. Kalman filtering results, as measured by the MSE criterion, do 

not rank as high as with the MAPE criterion. 
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Table (3-10) Vauiation of Log Likelihood Function 

with 0 -is Multiple of p,, 
'I . 

Multiplier 1 10-' (In f) I Multiplier 1 10 ý (In f) 

-------------- 
0.0 1 

--------------- 
-1.9471 

-------------- 
1 5.5 

------ 
1 -1 

--------- 
. 8455 

-------------- 
0.1 1 

--------------- 
-1.9040 

-------------- 
1 6.0 

------ 
1 -1 

--------- 
. 8474 

-------------- 
0.2 1 

--------------- 
-1-8932 

-------------- 
1 6.5 

------ 
1 -1 

--------- 
. 8484 

-------------- 
0 .31 

--------------- 
-1-8859 

-------------- 
1 7.0 

------ 
1 -1 

--------- 
. 8494 

-------------- 
0.4 1 

--------------- 
-1.8802 

-------------- 
1 7.5 

------ 
1 -1 

--------- 
. 8504 

-------------- 
0.5 1 

--------------- 
-1.8755 

-------------- 
1 8.0 

------ 
1 -1 

--------- 
. 8515 

-------------- 
0.6 1 

--------------- 
-1.8716 

------------- 
1 8.5 

------- 
1 -1 

--------- 
. 8527 

-------------- 
0.7 1 

--------------- 
-1.8683 

------------- 
1 9.0 

------- 
1 -1 

--------- 
. 8538 

-------------- 
0.8 1 

--------------- 
-1.8655 

-------------- 
1 9.5 

------ 
1 -1 

--------- 
. 8549 

-------------- 
0.9 1 

--------------- 
-1.8631 

------------- 
1 10.0 

------- 
1 -1 

--------- 
. 8560 

-------------- 
1.0 1 

--------------- 
-1.8609 

------------- 
1 

------- --------- 

-------------- 
1.5 1 

--------------- 
-1.8534 

- 
1* denotes optima l value. 

-------------- 
2.0 1 

--------------- 
-1-8492 

- 
1 

-------------- 
2.5 1 

--------------- 
-1.8468 

- 
1 

-------------- 
3.0 1 

--------------- 
-1.8455 

- 
1 

-------------- 
3.5 1 

--------------- 
-1.8450 

- 
1 

-------------- 
14 . 0* 1 

--------------- 
-1 . 8449* 

- 
1 

-------------- 1 4.5 1 --------------- -1.8452 
- 1 

-------------- 
1 5.0 1 

-------------- 

--------------- 
-1.8458 

--------------- 

- 
1 

- 
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Table (3-11) 

Comparison of Forecast Demand 
Using Three Values of 0 

,I 

IIIi 

HOUR I ACTUAL I FORECAST I FORECAST 2 FORECAST 3 

661 

-- 

1 893 1 

-------- 

891.2 1 892.0 1 892.6 

------- 
662 

---- 

--- 
1 943 1 

---------- 

--------------- 
936.9 

- 

-------------- 
1 937.3 

--------------- 
1 937.6 

----- 
663 

- 
1 966 1 

- - 

-------------- 
980.7 

-------------- 
1 980.6 

--------------- 
1 980.6 

--------- 
664 

- 

---- - ---- 
1 1008 1 

----------- 

--------------- 
1004.1 

--------------- 
1 1004.1 

-------------- 
1 1004.0 

-------- 
665 

- 

1 993 1 

--------- 

--------------- 
994.4 

--------------- 
1 994.7 

-------------- 
1 994.9 

-------- 
666 

- - 
1 936 1 

--------- 

--------------- 
960.0 

--------------- 
1 960.8 

-------------- 
1 961.4 

--------- 
667 

- 

- - 
1 891 1 

-------- 

--------------- 
928.8 

--------------- 
1 929.8 

-------------- 
1 930.5 

-------- 
668 

- 

-- - 
1 956 1 

----------- 

--------------- 
925.2 

- 

--------------- 
1 925.9 

-------------- 
1 926.4 

-------- 
669 

--- 

1 956 1 

----------- 

- ------------- 
949.2 1 

--- 

--------------- 
949.4 

-------------- 
1 949.5 

------ 
670 

--- 

1 962 1 

----------- 

------------ 
975.7 1 

- 

--------------- 
975.4 

-------------- 
1 975.1 

------ 
671 1 

--- 

962 1 

----------- 

- ------------- 
976.2 1 

-- 

--------------- 
975.5 

-------------- 
1 974.9 

------ 
672 1 928 1 

------------- 
942.5 1 

--------------- 
941.5 

-------------- 
1 940.7 
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Tab le (3-12) 

Comparison of PPrcPnt Forecast Error 
Using Thrpe Values of 0,, 

HOUR ACTUAL % ERROR I % ERROR 2 % ERROR 3 
DEMAND 

-------- 
661 

------------ 
1 893 

- 

------------- 
1 0.201 

-------------- 
1 0.111 

-------------- 
1 0.045 

--------- 
662 

---- ------ 
1 943 

------------- 
1 0.647 

-------------- 
1 0.604 

-------------- 
1 0.573 

--------- 
663 

----------- 
1 966 

------------- 
1 -1.512 

-------------- 
1 -1.512 

-------------- 
1 -1.511 

--------- 
664 

---- 

----------- 
1 1008 

--------- - 

------------- 
10 M7 

-------------- 
1 0.387 

-------------- 
1 0.397 

----- 
665 

- 
1 993 

------------- 
1 -0.100 

-------------- 
1 -0.171 

-------------- 
1 -0.191 

--------- 
666 

----------- 
1 936 

------------- 
1 -2-564 

-------------- 
1 -2.649 

-------------- 
1 -2-714 

--------- 
667 

- 

----------- 
1 891 

------- - 

------------- 
1 -4.242 

-------------- 
1 -4.355 

-------------- 
1 -4.433 

-------- 
668 

--- 

- -- 
1 956 

---------- 

------------- 
1 3.221 

- 

-------------- 
1 3.148 

-------------- 
1 3.096 

------ 
669 

- 
1 956 

---------- 

------------ 
1 0.711 

-------------- 
1 0.690 

-------------- 
1 0.679 

--------- 
670 

- 
1 962 

- - -- 

------------- 
1 -1-424 

-------------- 
1 -1-393 

-------------- 
1 -1.362 

--------- 
671 

--- 

- -- ---- 
1 962 

---------- 

------------- 
1 -1.476 

-------------- 
1 -1.403 

-------------- 
1 -1.341 

------ 
672 

--------- 

- 
1 928 

----------- 

------------- 
1 -1-562 
------------- 

-------------- 
1 -1.455 
-------------- 

-------------- 
1 -1.368 
--------------- 
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Table (3-13) 

Comparison of Fitting and Forecast Statistics 

for Three Values of 0,, 

--------------------- 
I FITTING 

--------------------- 
I FORECAST 

--------------------- 
I MSE I MAPE 

--------------------- 
I MSE I MAPE 

- ---------------------------- 
3 PP 1 500 . 53 1 2.206 

-------------------- 
1 323.03 1 1.509 

---------------------------- 
4 Pf) 1 496.33 1 2.200 

--------------------- 
1 323.42 1 1.490 

---------------------------- 
5 Pf, 1 495 . 47 1 2.198 

---------------------------- 

--------------------- 
1 323.86 1 1.477 

--------------------- 
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3.9 Recursive Weighted Least Squaips Forecasting 

An important class of estimation techniques employs the concept of weighted 
least squares in a recursive form that can be thought of as special cases of 
Ka Iman fi fter ing . The class defines an optimality criterion of the form 

A 
J-V R4 HX 

71 

The c lass is important in identifying t ime vary ing parameters , and is 
discussed extensively in the literature (see for example Young [1031, Liung 
[104 1, Ljung and Soderstrom [1051 

, and Astrom and W ittenmark [106] ). 

The weighting function is called an exponential weighting into the past 
(EWP) function. A typical form is given by 

R (j )=ý,,, R (j- I) + (1-, \rl )R 

The function tends to a steady state R as 4-. -+oo , with R being a positive 
constant of magn itude less than or equa 1 to one . We wiII assume that R=I 

and \,, - 0.99 in subsequent work following Ljung [104]. 

The recursive algorithm for estimation in a Kalman-like form is given by: 

H ý- )Xý, ) 

ý--1) Pý ý--1) -i' ý--1) + G, 1 Q, ýý-1) Gl ýý4) 

H ý- )HTý. )]I 

I-K H I-K H' +KRKT RU., ) 

in the computational experiments reported in this section we used initially 

a model of the same form as that of Equation (3-25), but with 10 parameters 
only with the following angular frequencies: 

21T 
W, 168 

7w, 

W, 14w, 

W', 2 1w, 

The algorithn was applied to the short term data set consisting of 660 

points and the last twelve were reserved for forecasting purposes. 
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Computational Result% 

Results of applying the Recursive Least Squares algoriffin with EWP are 

reported here. The value of ý, f, was chosen as 0.99, and a range of values of 
R (0 )f rom 0 .8 to 0 . 98 were cons idered . Tab le (3-14 ) summar izes the f itt ing 

and forecast statistics for each case. It is clear that. better perfonuance 
is offered by R(O)=0.8. 

Forecast ing resu Its w ith R (0)=O 
.8, are presented in Tab le (3-15) . Note that 

the maximum absolute percent error is 3.3289, which is a reasonable forecast 

error. Figure (3-16) shows the actual and forecast demands for the 12- 

hours-ahead forecasting along with the residuals. The steady state values 

of the model parameters are obtained as: 

0 =8 73 .8 189 0= -0 . 0667 

Oil = 19.6525 13 . 123 

= -119.1135 33-9418 

= 34 . 3972 23 . 9104 

13 . 4597 12 . 2493 
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Table (3-14) 
Comparison of Fitting and Fort-cast Statistics 

for Five Values of R(o) 

- 
I 
---------- 

FITTING 
----------- 
STATISTICS 

---------- 
I FORFCAST 

------------- 
STATISTICS I 

-------- 
IR (0) 1 

---------- 
MSE 

----------- 
I MAPE 

---------- 
I MSE 

------------- 
I MAPE I 

-------- 0.8 1 ---------- 1105 ------------ 1 3.1244 --------- 1 1243 ------------- 1 3.3289 

-------- 
0.85 1 

---------- 
1119 

------------ 
1 3.1494 

--------- 
1 1231 

------------- 
1 3.3054 

-------- 
0.9 1 

---------- 
1142 

------------ 
1 3.1719 

--------- 
1 1230 

------------- 
1 3.2955 

-------- 
0.95 1 

---------- 
1182 

------------ 
1 3.2221 

--------- 
1 1289 

------------- 
1 3.3666 

-------- 
0.98 1 

-------- 

---------- 
1228 

---------- 

------------ 
1 3.2979 

------------ 

--------- 
1 1429 

--------- 

------------- 
1 3.5369 

------------- 

Table (3-15) 
Actual, Forecast and Errors 

Using R(o)=0.8 for 10 Parameter 
Model Realization 

--------------------------------------------------------- 
HOUR I ACTUAL I FORECAST I ERROR I% ERROR 

661 893 870.7 22.3 2.5 
662 943 920.1 22.9 2.4 
663 966 948.3 17 .7 1.8 
664 1008 952.6 55.4 5.5 
665 993 939.0 54.0 5.4 
666 936 919.6 16.4 1.8 
667 891 906.3 -15.3 -1.7 
668 956 905.5 50.5 5.3 
669 956 914 .7 41.3 4 .3 
670 962 925.3 36.7 3.8 
671 962 926.8 35.2 3 .7 
672 

---------- 

928 

------------ 

912.2 

--------------- 

15.8 

------------- 

1.7 

-------------- 
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An improvement in the forecasts was obtained 4 adopting a twelve parameter 
mode Iw ith R (040 

.8, R=I and h. reta Wed at 0 . 99 . The opt imum parameter 

values were found to be: 

874 . 8837 

13.5683 

= 34 . 9120 

12.8282 

P, = -0-0682 

-119.667 
23 . 6402 

-20 . 474 

ßil 19.4362 

ß_ 33 . 68 16 

ßýII - 13.7688 

-0 . 3936 

The following statistics were obtained 
Fitting Statistics 

MSE = 831, MAPE = 2.7334 

Forecast Statistics 
MSE =1 098 , MAPE =2 . 9853 

Table (3-16) lists the forecast values and errors involved, and Figure (3-17) 

shows a comparison of actual and forecast demands for 12 hours. 

Table (3-16) Actual, Forecast and Errors 

Using R(o)=0.8 for 12 Parameter Model 

---------- 
HOUR 

------------- 
ACTUAL 

--------------- 
FORECAST 

----------- 
ERROR 

--------------- 
% ERROR 

661 
------------ 

893 
-------------- 

853.5 
----------- 

39.5 
------------- 

4.4 
662 943 904.2 38.8 4.1 
663 966 950.9 15.1 1.6 
664 1008 972.8 35.2 3.5 
665 993 958.3 34.7 3.5 
666 936 920.2 15.8 1.7 
667 891 888.7 2.3 0.3 
668 956 887.9 68.1 7.1 
669 956 915.1 40.9 4.3 
670 962 943.5 18.5 1.9 
671 962 944.8 17.2 1.8 
672 

---------- 

928 

------------- 

912.4 

--------------- 

15.6 

------------ 

1.7 

------------- 

Inspecting the percent forecast errors associated with each point given in 
Table (3-16) shows that the maximum error is lower in absolute value than 
80%. This techn ique d id not perform we II in terms of the MSE and MAPE in 
comparison with other methods. It must be noted, however, that this method 
involves less computational effort than other methods tested in this work. 
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3.10 Instrumental VariablP Approach 

The Instrumental Variable Estimation technique is an excellent too] for 

time-series analysis and forecasting [103 - 106]. The theoretical 
foundations of the techn lque are described in Appendix G. The application 
of the method relies on the fact that there is a definite relationship 
between the hourly power demand on the Abu Dhabi system arid the hourly 

temperatures. In this data, there is a definite 24 hours cyclic trend with 
f luctuat ions around an a ]most stat ionary mean . As a resu It , we carr ied out 

a pre-processing step of removing the respective means from the data sets. 

From a preliminary investigation, it was concluded that model orders of N(B) 

and D(B) of up to 5 and 10 are appropriate. A search to define the optimum 

model order was conducted. The process model is given by 

D (B N (B +u 
L (B) ue (A 

w ith ýý )=- 

'a (A- )=u (A )-ý,, 

Here and u,,, denote the mean of load and temperature over an interval of 

660 hours. The optimum model orders are found by trial and error to be 

D(B) of order 2 

N(B) of order 2 

Prefilter L(B) order of 32 

D (B) =1-1 . 6228 B+0 . 69403 B-' 

N (B) =10 161 B-1 . 0256 B' 

The choice of the L(B) order was based on the Akaike Information Criterion 
(AIC) values as listed in Table (3-17). The model of order 32 involves a 

minimum AIC. The parameters of L(B) are listed in Table (3-18) and were 

obtained by a least squares estimation. The forecast values are listed in 

Table (3-19) and plotted in Figure (3-18) 
. 

The following is a sumnary of the forecast statistics. 

F itt ing MSE = 275 

Forecasting MSE = 224 
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Inspecting the forecast percent error associated with each load reveals that 

all absolute values are less than 30%. [lie forecasts of points 662,663 are 
better than any obtained by other methods for short term forecasting. In 

terms of MSE, the results of the Instrumental Variable forecasting rank 

ahead of Winters' additive, Box-Jenkins model with periodicity of 168 hours, 

Kalman filtering, and Recursive Weighted Least Squares. The process of 

obtaining the forecast appears to involve more computations than many other 

methods. Most of the computational effort is spent on determining the 

prefilter's order. 

Table (3-17) 

Variation of AIC 

with L(B) Model Order 

MODEL ORDER I 

-- - 

AIC 

- -- - 

I MODEL ORDER I AIC 

------------ - 
20 

- - ---- 
1533.5 

----------------- 
20 

------------ 
565.53 

21 1532.9 29 562.54 

22 1491.0 30 557.67 

23 1486.1 31 552.56 

24 700.52 32* 550-11* 

25 594.62 33 551.13 

26 572.25 34 551.49 

27 

---------------- 

570.73 

---------- 

35 

----------------- 

552.35 

------------ 
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Table (3-181 

- --- 

Parameters 

-------------- 

of the AR(32) 

----- ---- - 

L Filter 

------ - 
INDEX i I COEFF IC IENT 

- - -- 
(1, )I INDEX i 

--------------------- 
I COEFF IC IENT (1, 

----------- 
1 

-------------- 
0 . 4898 

-------------- 
17 

--------------------- 
0.022528 

2 0.27481 18 0.041865 
3 0.064388 19 0.02218 
4 -0-13496 20 0.049199 
5 -0.13334 21 0.033055 
6 -0.15091 22 0.044463 
7 -0.13039 23 -0.058275 
8 -0.040368 24 -0.7941 
9 0.049585 25 -0.46953 

10 0.057595 26 -0.2268 
11 -0.0014735 27 -0.043121 
12 0.030166 28 0.16544 
13 0.028168 29 0.16106 
14 0.016 30 0.18686 
15 0.050917 31 0.13983 

16 

----------- 

0.026413 

-------------- 

32 

-------------- 

0.066378 

--------------------- 

Table (3-19) 

Actual, Forecast Demand and 

Error Using Instrumental Variable 

HOUR ACTUAL 

------ 

FORECAST 

------ - -- - 

ERROR %ERROR 

- - - 
661 

------ 
893 

- - - - 
900.5 

------------ 

-7.5 

- -- - - --- 

-0.84 
662 943 940.7 2 .3 

0.24 

663 966 973.5 -7.5 -0.78 
664 1008 1026.2 -18.2 -1.81 
665 993 1020.9 -27.9 -2.81 
666 936 956.5 -20.5 -2.19 
667 891 914.8 -22.8 -2.56 
668 956 951.8 4.2 0.44 

669 956 951.2 4.8 0.50 

670 962 947.3 14.7 1.53 

671 962 945.7 16.3 1.69 

672 

---------- 

928 

------------- 

915.1 

-------------- 

12.9 

------------- 

1.39 

------------- 
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3.11 A Comparative Evaluation of Appioaches 

In the present section comparisons between the various forecasting 

techniques are given for both the short-terTn and mid-term problems. T fie 

comparisons are based on individual point of forecasts, fitting, and 
forecast stat ist ics . 

Short-Term Forecasts 

Considering the short-term forecasting problem first, Table (3-20) 

summarizes the fitting and forecast statistics for the techniques explored. 
Figures (3-19) and (3-20) give the same information graphically. The 

following rank order of the techniques is given on the basis of Table (3-20) 

for fitting and forecast criterion. 

Fitting MSE 

I-W inters ' Mu It ip I icat ive Mode I (WMM) 

2- Box-Jenkins - 2, model with 168 hours seasonality (BJ2) 

3- Box-Jenkins -1, model with 24 hours seasonality (BJ1) 

4- Instrumental Variable (IV) 

5- Kalman Filtering (KF) 

6- Generalized Exponential Smoothing (GES) 

7- Winters' Additive Model (WAM) 

8- Recursive Weighted Least Squares (RWLS). 

Fitting MAPE 

I- Box-Jenkins 2 

2- W inters ' Mu It ip I icat ive Mode 1 

3- Box-Jenkins -1 
4- Instrumental Variable 

5- Winters' Additive Model 

6- Generalized Exponential Smoothing 

7- Kalman Filtering 

8- Recursive Weighted Least Squares. 
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Forecast MSE 

I- Box Jenkins -1 
2- Winters' Multiplicative Model 

3- Generalized Exponential Smoothing 

4- Instrumental Variable 

5- Box-Jenkins -2 
6- Ka Iman Fi fter ing 

7- Winters ' Add it ive Mode 1 

8- Recursive Weighted Least Squares. 

Forecast-MAPE 

I- Box-Jenkins -1 
2- Winters' Multiplicative Model 

3- Generalized Exponential Smoothing 

4- Instrumental Variable 

5- Kalman Filtering 

6- Box-Jenkins -2 
7- Winters' Additive Model 

8- Recursive Weighted Least Squares. 

We observe from the ranking that models that fit the data better do not 
necessarily provide the best forecast. The Box-Jenkins model I is the best 

in terms of forecast MSE and MAPE, yet it is consistently placed third in 

the fitting statistics. This may not be totally true for Winters' 

multiplicative model which is placed second consistently in the forecast 

error category but was either first or second in the fitting error category. 
The Generalized Exponential Smoothing approach is consistently the third in 

the forecast errors, yet it is consistently sixth in the fitting category. 
Note that the Instrumental Variable method is consistently placed fourth in 

all categories. The Recursive Weighted Least Squares method consistently 

came in last, indicating that improvements in the weighting mechanism must 
be sought. 
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Tablp (3-20) 

Compararison of Performancp of 

Forecasting Techniques for Short-Term Problem 

--------- 
I FITTING 

--------- 

------------- 
STATISTICS 

------ 

--------- 
I FORECAST 

------------- 
STATISTICS I 

I MSE 
------- 

I MAPE 
--------- 
I MSE 

------------- 
I MAPE I 

--------- 
I GES 

- 

--------- 
1 555-97 

----- - 

------------ 
1 2.17 

--------- 
1 195 

------------- 
1 1.097 1 

------- - 
WA 

- -- 
1 640 

---- 

------------ 
11 

. 561 
--------- 

1 401.5 
------------- 

11 
. 575 

--------- 
wm 

--- -- 
1 145.5 

----- - 

------------ 
1 1.07 

---------- 
1 100.75 

------------ 
1 0.966 

--------- 
B-J-1 

- - - 
1 245.87 

- 

------------ 
11 

. 236 
---------- 

1 88.26 
------------ 
1 0.896 

--------- 
B-J-2 

---- 

---- ---- 
1 171 . 87 

--------- 

------------ 
1 1.053 1 

--- 

---------- 
289.26 

------------ 
1 1.53 

----- 
KF 1 495 .7 

-- 

--------- 
1 2.198 1 

---------- 
323.86 

------------ 
1 1.477 

--------- 
RWLS 

- 

--- ---- 
1 831 

--------- 

------------ 
1 2.73 

-- 

---------- 
1 1098 

------------ 
1 2.985 

-------- 
IV 1 

--------- 

275.65 

--------- 

---------- 
1 1.435 1 

------------ 

---------- 
241-75 

---------- 

------------ 
1 1.4075 

------------ 

One can also extract useful information about the performance of each method 
if recourse is made to the nature of the error at each point to be forecast 
in the time series. To do this, we recall that the forecast error is the 
difference between the actual load and the forecast value. A negative 
forecast error means a higher forecast than actual, or over-forecasting in 

the forecasters' terminology. This situation is called "optimistic" in the 

power systems planning and operation, since one is on the safe side when 

using the results of an overforecast. The converse terminology would be 

'funderforecasting, pessimistic", for a positive forecasting error. Based on 
these definitions, we can now state a "score" for each method based on 
inspection of Table (3-21) summarizing the forecast values over the 12 hour 
forecast horizon. 
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I- Box-Jenkins, with 24 hour seasonality has 7 pessimistic forecasts and 
5 opt im i st ic ones - 

2- Winters' Multiplicative Model forecasting has 5 pessimistic and 7 

opt im ist ic forecasts . 

3- Generalized Exponential Smoothing has an equal division of 6 forecasts 

on each side. 

4- The Instrumental Variable method has an equal division of 6 forecasts 

on each side. 

5- Kalman filtering has 5 pessimistic and 7 optimistic forecasts. 

6- Box Jenkins, with 168 hours seasonality has 10 pessimistic and 2 

optimistic forecasts. 

7- Winters' additive model has 4 pessimistic and 8 optimistic forecasts. 

8- Recursive Weighted Least Squares has 12 pessimistic forecasts. 

it is clear from the preceding discussion that a good spread of over and 

under-forecasts is an indication of the merit of the method. This 

information sometimes is masked by the MSE and MAPE which eliminate the sign 

of the error in their computation. 
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Mid-Tenn Forecast 

Considering now the mid-terin forecasting problem, we have Table (3-22) 

showing a comparison of fitting and forecasting statistics for the four 

methods considered. 

Table (3-22) 

Comparison of Performance of 

Forecasting Techniques for Mid-Term Problem 

------------ 
II 

------- 
FITTING 

------------- 
STATISTICS 

--------- 
I FORECAST 

------------- 
STATISTICS I 

ITECHNIQUEJ - ------- ------------- --------- ------------- 
II MSE I MAPE I MSE I MAPE I 

------------ 
I GES 1 

-------- 
1995 

------------ 
1 8.26 

---------- 
1 2924 

------------ 
1 5.312 1 

- ------------ 
I WA 1 

-------- 
2092 

------------ 
1 9.206 

---------- 
1 2545 

--------- -- 
1 4.731 1 

------------ 
I wm 1 

-------- 
1422 

------------ 
1 5.507 

---------- 
1 1843 

------------ 
1 4.498 1 

------------ 
I B-J 1 

------------ 

-------- 
1384 

-------- 

------------ 
1 5.24 

------------ 

---------- 
1 2551 

---------- 

------------ 
1 5.3 1 

------------ 

The rank ordering of the techniques is given as follows. 

Fitting MSE & MAPE 

1- Box-Jenkins 

2- Winters' Multiplicative Model 

3- General Exponential Smoothing 

4- Winters' Additive Model. 

Note that identical rankings are obtained from both MSE & MAPE 
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Forecasting MSE & MAPE 

I-W inters ' Mu It ip I icat ive Mode 1 

2- Winters' Additive Model 

3- Box-Jenkins 

4- General Exponential Smoothing. 

Note aga in rank ing is the same f or MSE & MAPE . 

One observes once again that the best fitting model does not give the best 

forecast. 

in terms of the forecast score for each method, one can conclude from the 

results given in this chapter that: 

1- Winters' Multiplicative model has an even split of 6 pessimistic and 

six optimistic forecasts. 

2- Winters' Additive model has 7 pessimistic and 5 optimistic forecasts. 

3- Box-Jenkins has 4 pessimistic and 8 optimistic forecasts. 

4- General Exponential Smoothing has 7 pessimistic and 5 optimistic 

forecasts. 

Again we note that the more successful methods show a good spread of 
forecast errors . 

T he errors ecountered in the mid-term problem are larger than those for the 

short-term problem, since we have more data points in the latter case. 

The Choice of a Preferred Technique 

in the short-term problem, it is tempting to state that any of the top four 

methods would give satisfactory results. It is important to realize that 

for practical application the complexity and effort involved in a technique 

are important considerations. 

Here we note that Box-Jenkins, Kalman filtering and the Instrumental 

Variable method involve more effort and decision making than those required 

for Winters' and the Generalized Exponential Smoothing. 
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3.12 Summary 

Ih is Chapter was devoted to comprehens ive rev iew and a Cunparat ive Ana ly si 

of perforinance of major load forecast ing techn i(ltje% , bot h convent jona I and 

modern. with emphas is on Abu Dhab i 's short-tenn and mid-terri forecaý; t ing 

tasks . Among the un ique contr ibut ions of th is Chapter are : 

- New Kalman-filtering based model of the forecasting function. 

- An invest igat ion into the OPt jMa I cho ice of covar iance matr ice% f or- 
Ka han 's forecast ing 

-T fie application 0f the Instrumenta I Var iab le method to t tj(ý load 

forecast ing function . 

I he work reported in th is chapter is hoped to he lp prov ide more ins ight into 

the practical and algorithmic con-, iderat ions in dea I ing with Abu Dhab i 

load forecasting problems. 
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CHAPTER 4 

FUEL COST MODEL PARAMETER ESTIMATION 

4.1 Introd--uc-tion 

The intent of this chapter is to offer a discussion of the important topic 

of parameter estimation of thermal generation production cost models. As 

mentioned in Section 2.6, thermal cost modelling is the second ingredient of 

the development of an economic dispatch strategy. Needless to say, accurate 

representations are the corner-stone of successful implementation. 

The chapter begins with a background review of this important area fuel cost 

model parameter estimation, and is followed by a discussion of the parameter 

estimation problem formulation. The well-established approaches of the 

weighted least squares parameter estimation, recursive parameter estimation, 

are discussed as the basis for computational work reported in this chapter. 

As a result of experimentation with data for our utility system, it was 

realized that in a number of instances, the estimated parameters were 

unsatisfactory from an end use point of view. One of the parameters of the 

quadratic model is required to be positive to guarantee a minimum in 

subsequent optimization work. The author was led to investigate approaches 
that might meet this requirement. The requirement of a positive 

coefficient is rightfully called a constrained parameter estimation problem 

and, therefore, the author considered investigating a nonlinear programming 

approach to the problem. This is believed be a new application. To 

conclude this chapter a summary of computational experience for one set of 
data in the 56-unit system is given, comparing the performance of all models 
discussed in this chapter. 

4.2 Background 

The object of economic dispatch is to determine the most economic pattern of 
load sharing amongst available units in an electric power system to meet a 

specified system power demand. The goal of such a study is to minimize the 

total cost of production to satisfy the given demand. In a modern fossil 
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fuelled plant, the cost of fuel is the most important component in 

determining the total operating cost. This fuel related component accounts 

for up to 85% of the total cost of electricity production (107]. 

From an econoin ic operat ion po int of v iew , the fuel consumption of a thermal 

unit is a function of its active power output. This function is generally 

referred to as the input/output curve, with input (F) being measured in 

terms of hourly thermal energy consumption in (Mcal/hr) and output in net 

unit's active power send out (P) in MW. A typical input/output curve is 

shown in figure (4-1). 

I .C 

U 

a C 

P- 

Output. 11 (MW) 

Figure (4-1 ) Input - 
Output Curve of a Steam Turbine Generator 

Following commissioning of a power plant, acceptance tests are conducted to 

verify that each unit meets minimum guaranteed design specifications. These 

tests require high precision instrumentation and are conducted by 

specialists. Test results yield a set of data relating input (Mcal/hr) to 

output energy [MWhrj- These form the basis of an input/output curve 

referred to as manufacturer's guaranteed characteristics. 

Unit performance characteristics deteriorate with time due to a number of 

factors that are classified as controllable and uncontrollable. 

Uncontrollable factors are those over which the utility has no control. it 

is not possible for the operator to act to improve plant performance 

degradation due to fuel type and quality. and set load points required by 

the grid demand. Controllable factors are those that can be altered to 
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reverse deterioration. These in turn can be classified as short, medium and 
long term factors. Short term factors are ones that are under continuing 
operator control such as control settings. Medium term variables are 
influenced by decisions made on an hourly or daily basis such as soot 
b low ing. Long term var iab les are inf luenced by dec is ions made on a month ly 
or yearly basis such as chemical cleaning of boilers. 

In the long tenn, degradation of the performance characteristic can be 

attributed to individual components of a unit as follows [107). 

1. Boilers 
Extent of deposit accumulation on heat absorbing surfaces in the boiler 

affects the gas stack temperature. A rise of 1(rC in fuel gas temperature 
is known to increase fuel consumption by about 0.50% 

2. Turbo-Generator 

Deposits on turbine blades, clearance of blade tips, roughness of blade 

surface and gland seals all affect the stage efficiency of a turbine. A 

roughness of turbine blade surface equivalent to a fine sand paper grade can 

cause a loss in stage efficiency of about A. 

3. Condenser 

Variations in the condenser's vacuum influences the heat consumption of a 
unit. A drop of 10 mbar of the condenser's vacuum increases the fuel 

consumpt ion by up to P% - 

Developing accurate models to represent the thermal cost of generation is 
important for economic operation studies. In view of the preceding 
discussion, it is evident that maintaining up-to-date model parameters is of 
equal importance since the unit's performance continually changes due to the 
factors discussed earlier. 

The subject of thermal cost model parameter estimation is part of the 
broader area of model parameter estimation in electric power systems 

security-economy functions. The evaluation of system model parameters is of 

continuing interest to the electric power industry. Most of the available 
literature, however, assumes the availability of such parameters. It is 

noted however that Sasson [108] reports on the use of the least squares 
error estimation approach as a viable option to obtain loss formula 

coeff-icients for economic dispatch purposes. 
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As a general rule, the evaluation of model parameters in electric power 
system studies has been conducted using physically- based arguments and 
therefore it has not been necessary to approach the problem on a system- 
theoret ic bas is - It was not unt iI the late sixties that power systems 
engineers realized the limitations of a completely physical ly-based approach 
to the solution of important economy-security functions. 

The introduction of the concept of a "Static State Estimator" [109] to 

evaluate the best estimate of the network state variables in terms of 

voltage profiles and power injections heralded the use of system theoretic 

estimation techniques in the electric power industry. A static state 

estimator is now an integral software too] that is in use in many modern 

energy control centres. 

It has been shown [1101 that parameter inaccuracies can severely limit the 

on-line state estimation function's accuracy in comparison with the actual 
measured value. As a consequence, Debs [110) presented a recursive 
filtering approach for on-line network parameter estimation. 

A number of researchers have established the sensitivity of economic 
operation strategies to modelling errors as far back as Ringlee's Study 
[111). More recently, Vemuri and Hill [112] and Dillon and Tan [113], 

demonstrate the potential loss in economy due to implementing optimal 

strategies with deviations from the assumed operating conditions. in [4] 

El-Hawary and Christensen highlight the problems caused by using erroneous 

model parameters, even for the smallest size system. In two related papers 
El-Hawary and Mansour [114 and 115] consider some basic models commonly used 
in conjunction with optimal economic operation studies. 

The techniques of weighted least squares, Gauss-Newton, Powell's regression 

and Levenburgh- Marquardt for estimating model parameters were evaluated for 

determining the parameters of fuel cost models, active power loss and active 

reactive power loss models. It is concluded in the study that the weighted 
least squares approach is preferable. It is noted that El-Hawary and 

Mansour employed conventional least squares formulations requiring the 

solqtion of the normal equations in batch processing. 



-115- 
In [116] El-Hawary and Kumar apply a recursive least squares technique that 
uses one additional measurement in building the optimal estimates 
recursively. These studies were conducted using data contained in a report 
on common thermal unit types and their performance [117]. 

4.3 Formulation 

In considering the problem of modelling the input/output curve for a thermal 

unit, one is guided by common practice adopting a quadratic polynominal in 

the active power generation P (in MW) to represent the fuel input F (in 

Mca 1/hr) . Therefore , one writes 

F(P) =N+ ýP + a2P2 (4-1) 

Each unit consists of a thermal source (combustion-chamber, boiler-furnace), 

a turbine and a generator. A unit may either operate with full steam 
extraction for water co-production or no steam extraction (i. e. zero pass- 
out) for no water co-production. Equation (4-1) can be written in compact 
matrix form as: 

y= hTX 

where one replaces F by y and defines 
(4-2) 

hT = [I p p2] (4-3) 

XI = [aý a2 (4-4) 

The ident if icat ion of the parameters cý ,ý and a2 requ ires the ava i lab iI ity 

of data re ]at ing the output P to the input F. Noryna I ly , one wou Id be 

tempted to use data obtained from high cost performance tests, similar to 

those conducted on commissioning, acceptance tests. Operating records 
documenting F versus P for each unit provide an alternative option that uses 

parameter estimation techniques to determine the required model. 

Let us assume that each measurement of F is denoted by z to recognize the 

effects of measurement errors denoted by v. Therefore one has: 
z=y+V 

Using eq. (4-2) one thus has the measurement model given by: 

z= h'x +V 

In particular for the k" measurement, one writes: 
(k )= bl (k )X +v (k ) (4-5) 
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In general, if (N+1) measurements are available, then one has: 

z (k) = hT (k) X+ (k ) 

z (k-1) v (k-1) 
(4-6) 

(k-N) hT (k-N) +v (k-N) 

It is convenient to introduce the concatenated measurement vector Z(k) 
which has a dimension (N+l) xI and rewrite eq (4-6) in the compact form 

Z (k )=P (k) A+v (k) (4-7) 

The matrix H(k) is of dimension (t4l) xn and is given by: 

hT(k 
H(k) 

hT (k-1 

hr 

Here n is the minber of unknown parameters and is equal to 3 in the present 
application. 

The notation employed here follows closely that of Mendel [1181, which is 
designed for time-oriented parameter estimation. In the power systems 
application the data pairs (F, P) are listed such that P values are 
increasing as the index increases. An example listing of a typical data set 
is given in Table (4-1). It should be noted that available data sets for 
thermal units studied in this investigation range from 5 to 23 data points. 
This is contrasted with only 5 data points available in [117]. 

Table (4-1) 

A typical F-P data set 

Count LOAD Thema I input 
index (MW (Mcal/hr) 

1 10 
--------------- 

12-92 
2 11 14.20 
3 12 15.48 
4 13 16.77 
5 14 18-06 
6 15 19-34 
7 16 20.59 
8 17 21-85 
9 18 23-06 

10 19 24.26 
11 

---------- 

20 

-------- 

25.50 

----------------- 
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4.4 Weighted Least Squares Parameter Estimation 

The aim of an optimal parameter estimation algorithm is to find an optimal 
estimate R(k) of the parameter vector based on (N+1) data samples. The 

parameter estimation error -X(k) is defined as: 

X (k) (k) (4-8) 

The associated optimal estimate of Z(k) is denoted by 2(k) and is related to 
(k) by: 

Z (k) =H (k (k) 

The measurement error vector is denoted by -Z(k) and is defined by: 

Z (k) =Z (k) Z (k) 

clearly, one has: 

Z (k) (k) X (k) + (4-9) 

The optimal estimate vector R(k) is obtained in the weighted (Generalized) 

Least Squares of errors approach so as to minimize the objective J[ R(k)] 
defined by: 

IT (k) Y (k ) -Z (k) (4-10) 

The weighting matrix W(k) is assumed to be symmetric and positive definite 

of dimension (N+I) x (N+I). If one carries out the minimization with respect 

to R. (k), the following linear set of n equations in n unknowns, commonly 
referred to as the normal equations, is obtained. 

[ BT (k) Y (k) P (k) IX (k) =9 (k) Y (k) Z 

it is convenient at this point to introduce the matrix P(k) defined by 

P(k) = [#(k) W(k) H(k) (4-11) 

As a result, the nonnal equations are written as: 
9 (k) =P (k ) HI (k) W (k) Z (k) (4-12) 

Eq. (4-11) & (4-12) comp lete ly spec ify the opt ima I est imate vector X (k) 
. 
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Error Statistics 

The estimate R(k) is called an unbiased estimate of X, if EjX(k)j =X 
The generalised least squares estimate of X given in eq. (4-12) is unbiased 
if u (k) has zero mean and if u (k) and H (k) are stat ist ica I ly independent . 

In the case of a zero mean u (k ), determ in ist ic H (k ), u (k ) and H (k ) be ing 

statistically independent and the covariance matrix of the measurement 
errors given by: 

RM=E (u (k) UT (k)) (4-13) 

the covariance matrix of the parameter estimation error denoted by 

Cov (X-(k)) is obtained as: 

Cov [-X (k)1 = P(k) [ HT (k) W(k) R(k) W(k) H(k)] P(k) (4-14) 

Moreover, if the components of V(k) are equally distributed with zero mean 

and variance al. then 

Cov E-[ HT X (k) a' P (k) (k) W2 (k) H (k) IP (k) 

it is important to note that if one chooses the weighting matrix W(k) to be 

the measurement error covariance matrix inverse W(k) = R-I(k), then it follows 

f rom eq . 
(4-14) that Cov [ -X (k )]=P (k In th is case the matr ix P (k ) is the 

parameter error covar iance matrix . 

The Choice of Weighting Matrix 

The optimal estimate of the parameters and the corresponding error 
statistics depend on the choice of the weighting matrix W(k). There are two 

restrictions on this (N+l)x(N+I) matrix. The matrix must be positive 

def in ite and the inverse CHT (k)W(k)H(k)]-' must exist. This latter cond it ion 
is satisfied if H(k) is of maximum rank and W(k) is positive definite. With 
this, one still has a wide choice of elements of W(k). In the least squares 
method , the we ight ing matr ix is taken as un ity Y (k)= I 

If k denotes discrete time, then one can employ a scheme to weight earlier 
measurements more heavily than latter measurements or vice versa. A 

weighting matrix can thus be used in both of these situations: 
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u k-N 

uE -1 +N 

W(k) 

uk 

(4-15) 

When 0<p<I one weighs recent measurements more heavily than past ones. 
In this case one discounts earlier measurements in favour of latter ones. 

In the fuel cost model parameter estimation problem, the count index is not 
discrete time. In this case, one reorders the data pairs such that the 
least important loading points are placed early with the most important ones 

placed latter in the ordering scheme. 

In the situation when one knows the statistics of the measurement error 
process, it is good policy to use all available a priori information. This 
is achieved in the minimum variance method. Assuming that the measurements 
have zero error; 

Efu (k)l 0 

and E( u (k) u )) = 

Qu (k ) V" (k)) =R (k) 

R(k) is an (N+I)x(N+I) positive definite covariance matrix that is assumed 

known a priori. Minimizing the error covariance of each parameter subject 

to the requirement that the estimate must be unbiased is referred to as the 

unbiased minimum. It can be shown that the unbiased minimum variance 

estimate of X is a special case of the weighted least squares estimate X, 

when 

(k) = R-1 

In this case the weighting matrix R-1 (k) stresses the contr ibut ions of 

precise measurements and down-plays the contribution of less precise 

measurements. It is noted that if the probability density function of the 

measurements vector f[z(k)] is multivariate Gaussian, then the maximum 
likelihood estimator coincides with the unbiased minimum variance estimator. 
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4.5 Recursive Parameter Estimation 

Let us assume that subsequent to performing an optimal parameter estimation 
using the weighted least squares technique described by equation (4-12) for 
(L+I) measurements, it was decided to add more measurements, increasing the 
total to (L+p+l) where p is the number of additional measurements. One may 
be tempted to re-estimate X from a fresh start using eq. (4-12) for old and 
new measurements taken together. It is more efficient, however, to adopt a 
recursive parameter estimation strategy that uses the available estimate 
R(k) to obtain a new estimate k(k+p). This, of course, is done recognizing 
the contribution of the new p measurements. Stated simply, the new (up- 

dated) estimate is equal to the sum of old estimate and a correction term. 

In the one-step ahead, or one additional measurement recursive estiMator, 
one begins by finding an up-dated value of P(k) according to: 

P-' (k+1) = P-1 (k) + h(k+1) W(k+1) hT (41) (4-17) 

The weighted (generalized) least squares gain matrix is computed as: 
K*(k+l) = P(k+l) h(k+l) W(k+l) (4-18) 

As a result one obtains the up-dated estimate as [118): 

X (k+l) =X (k) + IC (k+l)[ z (41) - tý (41) X (k)] (4-19) 

This strategy is sometimes referred to as the expanding memory identifier. 

Recursive parameter estimation is useful in identifying changes in parameter 
estimates as new data is introduced. 

Altern2tive Form 

An alternative formulation of the recursive estimator makes use of a matrix 
inversion lemma to yield for the one-step ahead case [118): 

IC(k+l) = P(k) h(k+l) [W(k+l) P(k) h(k+l) + W(kL+1)1- (4-20) 

P(k+l) =[I- IC (k+l) h' (k+l)l P(k) (4-21) 

X (k+l) =X (k) + IC (41) [z (41) - hT (41) X (k)] (4-22) 
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This alternative formulation has a significant advantage over the original 
formulation in terms of required matrix inversions. Other computational 
considerations such as accuracy and initialization difficulties have to be 

accounted for in comparing the two formulations. Recursive parameter 
estimation is sometimes referred to as the sequential weighted least square 
estimator. 

Start-up Considerations 

The recursive weighted least squares parameter estimator given in either eq. 
(4-17) to (4-19) or (4-20) to (4-22) can be started at time k=o either by 
setting 

X(o)=o and P(o)--a ý or P(o) = 

where a is a very large ntxnber (say 106). 

Relation to the Discrete Kalman Filter 

The discrete Kalman filter provides estimates of the states for the dynamic 

system described by: 

X (k+ 1) 0 (k+ I k) X (k) +r (k+ I k) W (k) 

Z(k+1) H (41) X (41) +u (41) 

with EIW(k)1=0 EfW(j) W(k)l = Q(k)6 
ik 

Efv (k+ 1)j=O Efy (k+1) UT (k+1» =R (k+1)öjk 

Elu (i) W (k»=o 

Efx (0)j=O E(X (0) X' (0» =P 

The optimal fi Itered estimate of X (41) is denoted by X (4ý41) and is given 
by the prediction equation 

X (k+ýk) =0 (k+l k) X (Nk) 

Correct ion Equat ion 

X(k+ýk+l) = X(k+ýk) + K(k+l)[Z(k+l) - H(k+l) X(k+ýkfl 
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The Kalman weighting or gain matrix is given by: 

K (k+1 )=P (k+ ýk ) H' (k+ I) [H (k+ I) P (k+ ýk ) H' (k+1 )+R (k+1 )] -1 

P (k+ ýk) = (p (k+ Ik)P (ýk ) OT (k+ I k) +r (k+l kQ (k) rT (k+ Ik 

P(k4ýk+l) =fI- K(k+l) H(k+l)j P(k+4k) 

The discrete Kalman filter can be shown to be equivalent to the recursive 
parameter estimator if one sets: 

X (k )=X 

O(k+I, k) 

Q(k) =0 

This results in 

X (4ý41) =X (ýk) +K (k+1)[ Z (41) - H(k+1) X (ýk)] 

P(k+ýk+l) =[I- K(k+l) H(k+l)j P(Nk) 

P (ýk) HT (k+1)[ H (k+1 )P (ýk) HT (k+ 1)+R (k+ I) ] -' 

These are equations (4-20) to (4-22), the alternative form of the recursive 
parameter estimator with minor notational differences. 

4.6 Constrained WeightedLeast Squares Parameter Estimation 

In the course of this investigation, it became apparent that there is a need 
for a methodology. whereby the parameter estimation task may be carried out 
subject to constraints on the parameters sought. In particular, it is 

required that the second order coefficients be positive to guarantee a 
global minimum in economic dispatch terms. 

In order to illustrate how this requirement arises, consider the problem of 
minimizing the total operating costs in an electric power system where each 
units fuel cost is given by eq. (4-1). Here we seek to minimize 

FT =INI+P, +a 2jý (4-23) 
iE Rd 

The minimization is carried out while satisfying the power balance equation 

P'l -v PI o (4-24) 
lcP4 
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Here R,, is the set of generating units available to dispatch, P, is the 
output of the V' un it and P, is a spec if ied power demand . The constrained 
prob lem can be so Ived by augment ing the cost FT by the equa I ity constra int 
using the Lagrange multiplier X, to obtain 

FT ýFT+ (4-25) 

To achieve an extremum, we set the partial derivatives of -F 
T with respect to 

P, to zero to obta in 

FT 
- al + 2a2 P, 0 a-pý ii (4-26) 

For the extremum to be a minimum, the second partial derivatives of -F 
T Must 

be positive. Therefore 

2- FT= 
2a2 

i>o (4-27) P', 

The present section deals with two logical approaches to solving this 
problem. The object of a weighted least squares estimator is to find the 
optimal estimator vector X(k) so as to minimize the weighted error criterion 

j[ X (k)] = ZT (k) W (k) -Z (k) (4-28) 

The measurement error vector is given by: 

Z (k) =Z (k H (k) X (k) 

Therefore J[X(k)) ZT (k) W (k) Z (k) + XT HT (k) W(k) H(k) X(k) 

2X T (k) HT(k) W(k) Z(k) (4-29) 

If the parameter estimates are not constrained, one obtains the normal 
equations as the solution to this problem. In the application to the 

economic dispatch problem the component X3(k) is required to be positive. 

One therefore has to solve a constrained optimization problem. The matrix 
formulation of the objective function is manipulated to obtain the following 
form: 

2 + a22X2 +a+2+ 2ý3XIX3 NXIý 
33X; aIAX2 

+2- 2bX, - 2b2X, 2bX3 (4-30) a23X2)(3 
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The Tinimization is carried out subject to the inequality constraint X, >0 

The coefficients required for the objective function are given by; 

N 
'S7 

Jýj 
w (j) (4-31-1) 

N 
wo Po (4-31-2) 

N 
47 i7l 

w0 P, 0 (4-31-3) 

a22 
N 

=E 

j7l 
w (j Pý (j (4-31-4) 

a23 
N 

=E 

j=l 
w (j p- (j (4-31-5) 

a3, 
N 

=I 

jzf 
w0 P, 0 (4-31-6) 

b 
N 

171 
w (j z (j (4-32-1) 

b., 
N 

W (J P0Z (i (4-32-2) 

b3 
N 

=E 

j =1 
w(j) P2(j) Zw (4-32-3) 

The number of data points is N. Details of the derivations are given in 
Appendix H. 

The problem of constrained parameter estimation [1191 is well recognized in 
many f ie Ids of sc ience and eng ineer ing , but has not been treated in the 
power systems area before. 

4.7 Computational Experience 

Parameter estimation computations for data of 56-units in the utility system 
were conducted. Parameter estimates are listed in Table (4-2) and these 
results are useful for the economic dispatch studies of Chapter 5. 
Presently an important finding pertaining to data of four identical units is 
discussed. The results of this investigation bring together all estimation 
approaches discussed in the preceeding sections. 

The least square estimate of the unit parameters of the unit whose data is 
given in Table (4-1) is obtained as: 

-0.7261 ý=1 . 414 a2= -0 . 0051 
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Table (4-2) 

56 Unit System Data 

I UNII IPIPIaIaIa 
I MAX 2 

I 

18- 28 
-1-- . 5127 A. Q_ I-- 2.56441 

. 13716 x lo-, 
2 18 j 18 0.984 23 1 1 3. x 10- 
3 18 0.984 L 1.23___ 3 X_10 3 

4 18 18 0.984 1.23 
_3 

x 10-3 
5 18 18 0.984 1 . 23 x 10 3 

68 28 4.05127 2.56441 8.13716 x 10-T 
-- 75 

8 
12 
12 

15.329 0.44088 
12.8579.1.11871 

1 6.45779 

_ 
3.51052 

x 
x 

10-2 l 
10-1 1 

5 12 11.7029 1.44421 2.73719 x 10-21 
10 8 12 15.1093 2.16889 6.15996 x 10-2 

8 12 15.1093 2.16889 6.15996 x 10-2 
-1 8 1.45384 1.54264 0.95546 x 10-2 1 

13 10 18 26.8755 1 1.44404 1 5.45426 x lo-Z 
14 10 18 30.347 0.44969 9.94145 x 10-2--j 
15 10 18 25.2581 1.4525 _ 4.87114 x 10-2 
16 10 12 21.97844 2.10979 3.80244 x 10-3 

10 12 21.9048 2.01706 1.28266 x 10-2-1 
10 18 28.7014 

19 18 25.6835 
8 18 24.5833 

1.28539 
1.63675 
1.90378 

5.44844 
3.92341 
2.45608 

x 
x 
x 

10-Z 
10-2--l 
16-2 1 

- 21 20 60 -2.11152 2.06606 3.66639 x 10-3 1 
20 
20 

j 35 -2.11152 2.06606 3.66639 
L 60 -2,11152 2.06606 3.66639 

x 
x 

10-3 
10-3 1 

- 24 1 20 1 35 1_-2.11152 2.06606 3.66639 x 10-3 1 
- 25 20 22 -2.11152 2.06606 3.66639 x 10-3 1 

26 20 22 -2.11152 2.06606 3.66639 x 10-3 
27 20 60 18.4888 1.89252 4.40305 x 10-3- 

20 
1 Lg 40 

75 
65 

23.4884 
60.8187 

1.69801 6.09390 x 
0.38813 4.46988 x 

10-3 
10-3 

-- L 40 65 60.8187 0.38813 4.46988 
25 75 68.6577 1.9829 1.78273 

x 
x 

10-3 
10-3 

- 1 1 32 25 75 68.6577 1.9829 1.78273 X 10-3 
1 33 30 20.2877 2.02209 7.720i-2 -X10-3- 

34 
.......... 

30 21.4153 1.94077 1.10727 x 10-2 
35 

-30- 
19.5795 2.04247 8.59541 x 10-3 

36 8 
.......... 

30 
27 

38 2 
....... ... 

7 

20.2877 
3.31764 
3.31764 

2.02209 7.72012 
1.60332 5.49957 
1.60332 5.49957 

x 
x 
x 

10-3 
10-2 
10-2 

1 39 2 7 3.31764 1.60332 5.49957 x 10-2 
40 7 3.31764 1.60332 5.49957 x 10-2 
41 6.... l 16 1 1.68581 1.90197 1.56548 x lo-Z 1 

__ 
L_2.50403 1.81245 2.11244 x - 10-2 1 

43 6 
44 6 

16 
16 

1.28414 
2.02671 

1.98009 
1.84021 

1.43057 
2.02094 

x 
x 

10-2_1 
10-Z I 

45 5 15 30.1168 0.87605 1.12108 x 10-1-1 
46 

_5 47 5 
15 
15 

30.1168 
30.1168 

0.87605 
0.87605 

1.12108 
1.12108 

x 
x 

10-1-1 
10-1 

48 5 
49 5 

15 

_L__15 

30.1168 
30.1168 

0.87605 
0.87605 

1.12108 
1.12108 

x 
x 

10-1 
10-1 

50 5 15 30.1168 0.87605 1.1ýlg8 x 10-1 1 
51 22 47,3067 0.81433 9.09956 x - 10-2 1 
52 9 22 47.3067.. 0.81433 9.09956 x 10-2-1 
53 8 22 1 47.3067 J- 0.81433 1 9.09956 x lo-Z 
54 8 22 1 47.3067 A 0.81433 1 9.09956 x 10-2 

5L 8___ L 26---- L-ll-. 479___ 
__i 

3.43752 6.94301 X 10-3 
8 26 22.479 3.43752 1 6.94301 x 10-3 
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The appearance of a negative value of a?. leads to no guarantee of 

optimality in economic dispatch studies, since under certain conditions it 

may lead to a non-positive definite Hessian. In fact, when losses are 
neglected in the dispatch formulation, the Hessian is a diagonal matrix of 
second order coef f ic ients of the ind iv idua I un its a2. .A parameter est imate 

solution with this property is called an infeasible parameter estimate. 

In order to determine the cause of this anomaly and to devise a remedy, a 

number of computational experiments have been conducted. One can classify 
the experiments as belonging to a diagnostic phase followed by a corrective 

phase. The purpose of this investigation is to detect the effect of each of 
the data pairs on the value of the estimate of the parameter a2. Such 

data pairs can then either be excluded or down-weighted since it would 

appear that their measurements involved an extraordinary error. 

Phase A, Diagnostic Phase 

The objective of this phase is to attempt to determine the data point or 

points that lead to the infeasible parameter estimates. Two experiments 

were conducted in phase A for this purpose. 

Experiment A-1 

in this experiment, the technique of recursive least squares parameter 

estimation was employed as a diagnostic tool. The object is to determine 

the particular data point or points that cause/force a negative value of 

a2 to appear. The first three measurements were used to obtain a least 

squares estimate (this is a perfect fit, since the number of experiments is 

equal to the number of estimated parameters). The estimates are listed in 

row 1 of Table (4-3) corresponding to measurement index 3. These estimates 

were used as starting values to obtain new estimates by including the fourth 

measurement information. The recursive procedure was carried out and the 
full sets of results is shown in Table (4-3). 
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Table (4-3) 

Recursive Parameter Estimation Results 

Measurement Power a, 
index Generation 

------------- 
3 

------------- 
12 

---------- 
0.4303 

---------- 
1.2228 

---------- 
0.0026 

4 13 0.4310 1.2226 0.0026 
5 14 0.3644 1.2345 0.0021 
6 15 0.1713 1.2680 0.0007 
7 16 -0-1869 1.3281 -0.0018 
8 17 -0.3039 1.3473 -0.0026 
9 18 -0.5618 1.3883 -0.0042 

10 19 -0.7645 1.4197 -0.0053 
11 20 -0-7361 1.4154 -0.0052 

It is noted from the table that values of a2 are negative for measurements 

starting at the 7th experiment, corresponding to 16MW unit loading. A closer 

examination reveals that the introduction of the 6th experiment (15MW) 

results in relatively significant decrease in the value of a, Thus one 
is led to conclude that experiments 6 upwards introduce the negative value 
of the second order coefficients a2 for this unit. The fuel cost model 
follows a convex quadratic up to 15MW, and then turns concave. Note that the 

negative estimate of N implies that a negative cost is associated with 

generating zero power. This is of no consequence to the optimization as the 

values of generation are not allowed to be below a positive minimum. 

Experiment A-2 

In this invest igat ion, the coefficients N, ý, a2 are determined by taking 3 

measurements at a time and employing a sliding window. The results are given 
in Table (44). it is clear that the introduction of the 6th experiment 

results in a negative value of a2. This effect prevails up to the last 



-128- 

Table (4-4) 

Sliding Window Parameter Estimation Results 

--------------------- 
indices of Measu- 

--------------- 
aO 

------------- 
al 

---------------- 
a2 

rements Included 

------------------- ------------- - ------------- ---------- - 
1-3 0.12 1.28 

-- - 
8 . 8x 10- 

2-4 0.78 1.165 5xIO 

1 3-5 1 1.07xlO-' 1 1.29 101 

4-6 0.91 1.425 -5x 
10-3 

5-7 3.01 1.715 -1 . 5x 10-2 

6-8 1.79 1.095 5xIO-' 

7-9 6.37 2.085 -2 . 5X 10- 2 

8-10 0.25 1.385 -5x 10- ý 

9-11 
--------------------- 

8.3 
--------------- 

0.46 
-------------- 

2x 10-2 

--------------- 

set (experiments 9-11). This confirms the conclusions of the investigation 

of experiment I. Another way to arrive at a conclusion as to which 
measurements cause a negative a, is to consider the results of finite 

differencing to approximate a2 from the measurement records. It is clear 
from inspection of Table (4-5) that experiments 6,7,9, and 10 correspond to a 
negative second difference. 

Table (4-5) 

Finite Difference Results 

----------------------------------------------------------------------------- 

Data 23456789 10 11 
Po int i 

z (i) 112.92 114 .2 
115-48 116.77 118 

. 06 119 
. 34 120 . 59 121.85 123 

. 06 124 
. 26 125.5 1 

&z(i) 111.28 1 1.28 1 1.291 1.291 1.281 1.251 1.261 1.211 1.20 1 1.24 

I A2Z(i) II 10 10.0110 1-0.011-0.0310.011-0-051-0.0110.041 

----------------------------------------------------------------------------- 
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Phase- &-corrective Phase 

Here, a number of techniques that could possibly lead to a positive value of 

ca, were attempted. 

Experiment-B-1 

A straight-forward least squares parameter estimation computation is carried 
out: 

a) The measurements for P=15, and 16 MW corresponding to indices 6 and 7, 

were deleted and a least squares estimation procedure was applied. The 
result is 

ac = -0 .65 38 ý=1 . 4036 a2 = -0 . 0048 

it is clear that no improvement took place. 
b) Dropping points 6,7,9, and 10 resulted in still negative values 

aý = -0 . 6358 ý=1 . 4002 a2= -0.0046 
c) Dropping points 5,6,7,8,9, and 10 gave 

aý = -0 . 3535 ý=1.3611 a2= -0 . 0034 
The significant change in a2 towards zero lead to eliminating point 11 to 

obta in 
aý =0 .3 703 1 . 2336 a2=0 . 0021 

Th is uses on ly 4 po ints but y ie Ids a pos it ive aý . Note that inc lud ing up to 

point 6 as suggested by the recursive algorithm yields still a positive 

value of a2 

Experiment B-2 

Here the idea of a we ight ing matr ix us ing ad iscount f actor b, 
9 was tr ied 

The diagonal elements of W are given by 

W(ij) = bN-i 

Table (4-6) lists the results. It was found that for low values of b up to 
0.312, a positive aý can be obtained 

ag = 0.98366 ý=1 . 2255 a2=I . 3717x 10-1 

The correspor 

W(l I) 

w (2 . 2) 

w (3 3) 

w (4 4) 

w (5 . 5) 

iding weighting factors for this case: 

=8 . 7407x 10-6 

= 2.8015xlO-5 

=8 . 0792x 10- 1 

= 2.8779xlO-l 

= 9.2242xlO-l 
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w (6 6) = 2.9565xlO 

wQ 7) = 9.4759xlO 

w (8 8) = 3.0371xlO-' 

w (9,9) = 9-734410 ` 

(10 
, 10) 3 . 12x 10' 

W(11,11) I 

This weighting sequence favours the last five data points. 

Table (4-6) 

Parameter Est imates w ith We ight ing w (i , i) = ý'- i 

b a. I 

--------------- -- ------------- 

I a, 

----- -- - 
0.1 5.449 0.7543 

- -- ------- 
1.2412x 10-2 

0.2 2.9709 1.0136 5.6417x 10-3 

0.3 1.1529 1.2072 5 . 04x 10-" 

0.4 4 . 185x 10-2 1.3283 -2.7794xlO-3 

The we ight ing matrix was changed to w(i, i)=W'. Th is we ighs ear I ier 

measurements heavier than latter ones. Table (4-7) lists the results. For a 
d iscount f actor upto 0 .3 the va lue of a., is pos it ive . 

Table (4-7) 

Parameter Estimates with Weighting w(i, i) = bl' 

b INI I k, I 

----------- 
0.1 

-------------- 
0.2364 

------------- 
1.258 

-------------- 
0.001 

0.2 0.2480 1.2558 0.0011 
0.3 0.1575 1.2721 0.0004 
0.4 

------------- 

0.0004 

--------------- 

1.2996 

------------- 
-0.0008 

---------------- 
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Experiment B-3 

In this case the following weighting matrix was attempted. 

w (i. i) = b" 1+a 
An extensive computational experiment was conducted with the result that 
negat ive va lues of a2 appeared in aII cases . As a samp le of the resu Its , one 
finds: 

For b=1a=0.1 : aq = -0.7355 ý=1.4153 a2 = -0 . 0052 
Fo rb=0 . 02 5a=0 .2: ao = -0 .7 19 ý=1 .4 19 a2 =-0 . 0052 

The estimates do not appear to be sensitive to the variations in this 
particular weighting matrix. This is a discount factor plus a bias term 
weighting. 

Experiment B-4 

In this case a weighting matrix which is unity up to the 5th measurement 
followed by a discount factor weighting was attempted. 

(O(i, i) =I i=I 
'. . ., 5 

= tp-i i=6 
, ... 11 

The discount factor b was varied from b=I to b=0.025 in steps of 0.025. The 

results have consistently contained a negative a2 as indicated in Table (4-8). 

Table (4-8) 

Parameter Estimates with Weighting w(i, i) = IP-1 for i>5 

b 

--------- 

IN 
I -------------- 

I 
I ----------- 

I dý I 

0.9 -0.696 
-- 

1.4097 
----------- 

-0.005 
0.8 -0.6538 1.4037 -0.0048 
0.7 -0.6123 1.3979 -0.0046 
0.6 -0.5750 1.3927 -0.0044 
0.5 -0.5451 1.3885 -0.0043 
0.4 -0.5240 1.3855 -0.0042 
0.3 -0.5112 1.3837 -0.0042 
0.2 -0.5052 1.3828 -0.0041 
0.1 

----------- 

-0.5039 
--------------- 

1.3826 

------------- 
-0.0041 

------------- 
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Experiment B-5 

This experiment is concerned with use of the constrained parameter 

estimation algorithm, as an implementation of the Generalized Reduced 

Gradient method detailed in Chapter 5. Using this nonlinear programming 

approach, we seek to minimize the objective function given by eq. (4-31) 

subject to the requirement that X3>0 . With strict inequality the optimization 

algorithm indicated that there is no feasible solution. It was thus decided 

to investigate the problem with the inequality constraint X 32ýC where E is a 

small positive number representing a chosen lower bound on X3. 

in Table (4-9), the optimal estimates are listed for the choice of lower 

bounds as 
ao ? -50 50 a, ?0 . 00 1 

I 

Many starting guess values were tried as shown with the result that thelower 
bound on a2 was obta ined as its opt imum va lue . 

Table (4-9) 

Starting Guess Effects 

-------- --------- 
START ING 

------ 

---------- 
GUESS 

----- - 

--------- 
I 

------------ 
SOLUTION 

----------- 

-------- 
Cý, 

-- 

--- 
I 

---------- 

- --- 
I caý 

--------- 

--------- 
I Cý, 

---------- 

------------ 
II 

----------- 

----------- 
a2 

---------- ------ 

0.00 0.00 0.00 0.6083 1.229 
- 

0.001 

5.00 5.00 5.00 0.6002 1.229 0.001 

-1 -1 -1 0.6118 1.229 0.001 

100 

-------- 

100 

---------- 

100 

--------- 

0.6002 

---------- 

1.229 

----------- 

0.001 

----------- 

Table (4-10) corresponds to a different set of lower bounds given by 

-50 > 50 a, 20 . 005 

The sam result was obtained. Note that in this case the optimum values of 
a. and ýd if fer sI ight ly depend ing on the in it ia I guess va lues as ind icated . 
This is due to the nature of the iterative method and can be expected. 
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Table (4-10) 

Starting Guess Effects 

I 

------ 

START ING 

--------- 

GUESS 

---------- 

I 

-------- 

SOLUTION 

-- 
I 

-------- 

I 

---------- 

Ia2 

---------- 

- 
1 a. 

-------- 

------------ 
II 

---- -- - - 

----------- 
a21 

0.00 0.00 0.00 1.469 
- -- - 

1.109 
----------- 

0.005 

5.00 5.00 5.00 1.457 1.11 0.005 

-1 -1 -1 1.470 1.109 0.005 
loo 

-------- 

100 

---------- 

100 

---------- 

1.457 

-------- 

1.11 

------------ 

0.005 

----------- 

Table (4-11) lists the results with different values of the lower bound on 

a2 . Aga in , the opt imum va lues of a2 is its spec if ied lower bound . As a, is 

increased we see that aý increases with a corresponding decrease in 

One can conclude that the most appropriate way for the present constrained 

est imat ion prob lem is to f ix a2 at a spec if ied lower bound and carry out a 
I inear est imat ion procedure for a,, and a2 - In this case we obtain a unique 

solution for ý and a2. 

Table (1-11) 

Lowef Bound Effects 

- 

LOWER 

-------- 

BOUNDS 

------------ 

I 

-------- 

SOLUTION 

-- - -- ---- ----- - ------- 
a. 

- 

I 

-------- 

I aý I 

------------ 

N 

-------- 

- -- - 
II 

------------- 

- --- 
aý I 

---------- ------- 
-50 -50 0.001 0.6002 1.229 0.001 

-50 -50 0.005 1.457 1.11 0.005 

-50 -50 0.01 2.531 0.9597 0.01 

-50 -50 0.015 3.667 0.8054 0.015 

-50 -50 0.02 4.702 1 0.6566 0.020071 

-50 

--------- 

1 -50 

------- 

0.025 

------------ 

5.766 

--------- 

1 0.5081 

------------ 

0.025021 

---------- 
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4.8 Summary 

This chapter dealt with the important area of parameter estimation of 
thermal generation production cost models. Beginning with a background 

review of this important area, and a discussion of the parameter estimation 
problem formulation, the chapter proceeded with brief outlines of well 
established approaches to solving the problem. In particular, the weighted 
least squares parameter estimation and recursive parameter estimation were 
discussed as the basis for computational work reported in this chapter. 

As a result of experimentation with data for the utility system, it was 
recognized that in a number of instances, the estimated parameters were 
unsatisfactory from an end use point of view. one of the parameters of the 

quadratic model is required to be positive to guarantee a minimum in 

subsequent optimization work. This aspect of the problem appears not to 
have been previously addressed in the literature. The chapter included 

results of an investigation of approaches that might meet this requirement. 
In the course of this work, the technique of iteratively reweighted least 

squares parameter estimation was used and will therefore be documented in 

Chapter 6. The requirement of a positive coefficient is rightfully called a 

constrained parameter estimation problem and as a result of this, the 

chapter reported on the use of a nonlinear programming approach to the 

problem. This again is believed be a new application. 

In the course of the investigation, the utility of weightings and recursive 

parameter estimation as diagnostic and remedial tools was realized. These 

aspects were discussed in the concluding section of this chapter. 
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CHAPTER 5 

ECONOMIC DISPATCH STUDIES 

5.1 introduction 

This chapter is devoted to a study of efficient algorithms for optimal 
economic dispatching of electric power systems. The problem considered 
deals with a system that includes thermal generation sources, and it is 
desired to determine the optimum loading to satisfy given load requirements 
and to simultaneously observe system and equipment constraints. 

The solution of the problem considered is important in a number of economy- 
security functions of electric power systems. It is used primarily as a 
stand-alone function for dispatch in systems with concentrated load and 
negligible losses. Results of the dispatch are used to establish merit 
ordering. The optimal schedules and associated optimal costs are also used 
as a basis for power interchange and pool-transaction cost evaluation in 
large electric power interconnections. Finally, the solutions are used to 

establish initial guesses for more complex scheduling problems. 

As a result of an extensive study of available optimization techniques, 
three methods emerged as the most practical tools to carry out the 
dispatching function. The methods discussed in this chapter are the 
Generalized Reduced Gradient (GRG) algorithm, the Lambda Iteration (LI) 

algorithm, and a recently developed technique called the Lambda Aggregation 
(LA) algorithm. 

The LA algorithm is the result of the author's investigations and is based 

on a specific implementation of the principle of equal incremental cost of 
power de I ivered loading, for systems with quadratic objective functions. 

The implementation uses a set of equivalency relations to solve the problem 
in conjunction with the Kuhn-Tucker optimality conditions. Among its 

advantages is that no initial guess of the unknowns is required. All other 
methods require and are sensitive to the choice of the initial guess. The 

proposed technique is applicable, with slight modifications, to more complex 
prob lems where losses are accounted for using a linear model. It can also 
be applied to systems with fuel cost models of exponential form. 
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The theoretical foundations and details of the three methods are discussed 
in this chapter, and computational experience related to the 56 units in the 

existing UAE's Abu Dhabi utility system is presented. Guidelines for 

selecting initial guess values for the GRG and LI algorithm are discussed. 
Experience with other available methods shows the techniques discussed to be 

extremely fast and robust. A comparison of execution times of the three 
techniques on a DEC micro VAX-11 running under VMS with 6 Mb of memory is 

given. A critical comparative evaluation of the methods is also detailed. 

5.2 Historical 
_Surv_e_y 

Starting early in the Twentieth Century, electric utility operators realized 
the importance of scheduling generating resources in the most economic 
manner as is evident from Arismunander and Noakes' bibliography [120]. 

Interest in this area continues due to the potential savings as well as the 
development of new and efficient solution methods. 

in an IEEE Working Group Report [1211, economic dispatch is defined as: 
The allocation or change in 

_allocation 
of the power resources which are 

connected to the system at a particular time to meet the system load at that 

t ime in a manner wh ich m in im izes the overa 11 cost to the system Econom ic 

dispatch no rma I ly takes into account generating unit incremental 

input/output characteristics which include the effects of power station 

auxiliaries__. 
_fue_]_costs. 

Two companion papers [122] and [123] chart in bibliographical form the 

developments of ideas in the areas of economy -security functions up to 1979. 

The solution to the original problem is commonly known as the equal 
incremental cost principle. 

The principle of equal incremental cost of power delivered for optimal 

scheduling of electric power systems is attributed to Steinberg and Smith in 

their two papers [124] published in 1934. The principle was further 

developed in their book entitled "Economy Loading of Power Plants and 
Electric Systems" [1251 in 1943. Interest in practical implementation of 
the optimal strategies continued in 1953 by Ward [1261, Early, Phillips, and 
Shreve, (1271, where an incremental cost of power developed device is 
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described in 1955. Kirchmayer's classic book on "Economic Operation of 
Power Systems", [128] summarizes developments in this area. More recently, 
books such as El-Hawary and Christensen [4] in 1979, Wood and Wollenberg [2] 
in 1984, and Heydt [129] in 1986 treat practical aspects of the overall 
problem of economic operation of power systems. 

it is important to realize that the inclusion of the inequality constraints 
is a complicating factor that makes it necessary to use special algorithms 

such as the Lambda Iteration method [2) and [129], and nonlinear programming 
techniques [1301. The LA technique described here uses an efficient 
combination of results of Kuhn-Tucker [131] and special reduced forms of 
so lut ion g iven by E 1-Hawary [132] to y ie Id the Lambda Aggregat ion techn ique . 

5.3 Problem Formul2tion 

Optimal economic dispatching of an electric power system requires finding 
the optimal power generation levels of each unit in the system to cover a 
system load (power demand) and minimizing the system production cost. The 

optimization is carried out such that all system and equipment constraints 
are observed. System constraints include network balance equations 
(represented by the power flow equations) as in the optimal power flow 
formulation or the active power balance equation in the conventional 
dispatch function. 

The a im of the opt im izat ion process is to minimize the o perating cost 
function F7 defined by: 

F7 F (i) (Mcal/hr) 

The set of d ispatchab le un its in the system is denoted by Rj . Th is is 

essentially all units committed for generation. The fuel cost functions 

F(i) represent the variation of the input to the unit with its active power 

generation. 

The active power generation of the system is constrained by the system load 

requirements. When transmission losses are neglected this constraint is 

represented by the power balance equation: 
YP (MW (5-2) 

iER, j 
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This is a simple equality constraint with P,,.,, denoting the system load. 

The active power generation of each unit P(i) is constrained by upper and 
lower bounds representing unit capacity and system spinning reserve 
requirements. This is stated as: 

b, (i ) :sP (i ) :sb,, (i ) (5-3) 

Equations (5-3) is a set of inequality constraints that requires special 
consideration in all implementations discussed. 

5.4 The Variational Solution 

The variational solution to the dispatching problem ignoring the inequality 

constraints leads to the well known equal incremental cost of loading 

principle [2] and [4] which states that the incremental cost of power 
generation at each unit should be equal to the system incremental cost 
This is stated as: 

dW (Mcal/hr/MW) (5-4) 

To account for inequality constraints, the Kuhn-Tucker conditions [4] are 
used. The process involves solving Eq. (5-4) and then examining the 

resulting solution for violations to the inequality constraints. Variables 

that violate a bound are set to that bound and are excluded from subsequent 
optimization. 

So far, nothing has been stated about the nature of the fuel cost model 
F(i). There are a number of representations for the variation of F with the 

active power generation P. If one uses a linear model, then the 

optimization problem reduces to a linear programming problem and available 

software can be used directly to obtain the optimal dispatch strategy. 

It is well known that a quadratic cost model is preferred in the power 
industry to represent the variation of the fuel cost F with the active power 
generation. Here the model is of the form: 

F (i) = a,, (i) +ý (OP (i) + a, (i)W (i) (5-5) 

The parameters ý, (i), ý (i) , and a. 2 
(i) are assumed ava i lab le for each un it 

In this case one has: 

dý i (i) + 2a,, (i)P (i) (5-6) d 
ý1 
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This particular formulation allows one to design an extremely fast and 
efficient algorithm for optimum economic dispatch called the Lambda 
Aggregation method. The foundations of the technique are discussed now. 

if inequality constraints are not present, one can easily show that the 
system operating in an optimal sense can be represented by one equivalent 
un it w ith opt ima 1 cost f unct ion g iven by 

++ a-,, (5-7) 

The subscript (eq) is used to denote an equivalent quantity. 

The equivalent cost parameters are given by: 

aý V a; (Mcal/MWhr x MW) (5-8) 
i ERd 

icp. ll 

(Mcal/MWhr) (5-9) 

The optimal system incremental cost of power delivered in this case is given 
by : 

+ 2a,, (5-10) 

The individual optimum power generation are obtained as: 

P(i) - 
x-a, M 

(5-11) 2-k-(-lT 

The derivation of the preceeding equations can be found in [132]. The Lambda 

Aggregation technique uses equations (5-8) to (5-11) and the Kuhn-Tucker 

conditions to solve the problem accounting for inequality constraints. Note 

that equations (5-8) to (5-11) give a closed form solution in the absence of 
inequa I ity constra ints - 

5.5 The Generalized Reduced Gf2dient Method 

The concept of the GRG method goes back to 1964-65, when it was proposed by 

Abadie and Carpentier [133 and 1341 as a generalization of Wolfe's Reduced 
Grad ient Method [135 and 136] . The f irst imp lementat ion of the method was 
ranked first in Colville's 1968 study, comparing some 30 methods using 8 

nonlinear programming problems [137]. Subsequent improvements to the code 
resulted in many software implementations including Lasdon and Waren's GRG2 
[138 to 1401, Murtagh and Saunder's MINOS [141 to 1431. The latter is 
designed specifically for large sparse linearly constrained problems. 
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The reduced gradient method was adopted by Dome] and Tinney [144] in 
solving the optimal power flow problem in 1968. The first application of 
the original GRG technique to the OPF problem is due to Peschon et al. 
[1451, in 1972. Further refinements have been reported by Burchett et al. 
[146 and 1471. The algorithm reported in [147] is an adaptation of the 

MINOS implementation of the GRG concept. 

The purpose of GRG algorithms is to solve nonlinear program ing problems of 
the following canonical form: 

Minimize f(x) 

subject to g(x) =b 
Lb :sh (x ) :s Ub (5-12) 
LýxsU 

where x is an nx1 column vector of the decision variables, f(x) is the 
objective function, g is an mx1 column vector of equality constraint, h is a 
pxl column vector of inequality constraint functions, and Lb, Ub ,L, and U 

are vectors of corresponding lower and upper bounds. Appendix I briefly 

rev iews the GRG a Igor ithm . 

5.6 The Lambda Iteration Method 

The Lambda Iterations method [21 and [129] is based on an intuitive 

approach that recognizes the fact that if the value of the system 
incremental production cost is known, then with the availability of the 
incremental cost characteristics for each unit, the corresponding power 

output of each unit is found. In the case of negligible losses, the sum of 
the resulting power generations is obtained. The sum is compared with the 

required power demand, and if they are equal, an optimal solution has been 

found. If the sum of generations is higher than the given power demand, 

then the value of lambda is reduced and the process is repeated. If, on the 

other hand, the value of the sum of power generations is less than the power 
demand, then the value of lambda is increased, and the process is repeated. 

Dealing with inequality constraints on the output of the units is simple in 

the Lambda iteration method, since one sets the generation of the unit to 
the va lue correspond ing to the v io lated I im it , as it occurs . 
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There are a number of practical implementation aspects that need particular 
attention in the Lambda iteration method. The first is the amount of 
reduction (or increase) in lambda value for the next iteration. A 

recommended procedure involves a Golden Section search. The second and most 
important aspect is that of the initial guess value of lambda. A number of 
possibilities exists, and these are discussed in the section on 
computational results. 

5.7 The Lambda Aggregation Techni 

The theoretical background given in section (5-4) is the basis of the Lambda 
Aggregation technique for optimal economic dispatch algorithm described 
here. The algorithm is designed as a main routine comprising three steps. 
The first is called the aggregation step and solves a dispatch problem 
without inequality constraints using the concepts of equivalent cost 
function for the dispatchable units. The second step is called the reset 
step and is an implementation of the Kuhn-Tucker conditions. The third step 
is a verification step that directs the flow of subsequent computations. 

There are two auxiliary routines, called the overdispatch and underdispatch 

routines which are used whenever the resulting optimization sets all units 
to their respective upper and lower bounds. 

As a preparatory step , the e lements of an array ca I led Mark (i) are set to 

zero. The value of Mark (i) corresponds to the status of the i"' unit. A zero 
value signifies that the unit is available to dispatch. If a unit is to 

remain at its upper bound, the corresponding value is Mark (i) = +I. In a 
similar manner Mark (i) = -1, indicates that the unit is set to its lower 
bound. 

The term dispatchable demand, denoted by Pdd is used to describe the portion 

of the system power demand to be covered by the available dispatchable 

units. It is equal to the difference between the system power demand p 0. and 

the sum of the generations of units set to their upper or lower bounds. 

Initially the value of P,,,, is equal to Pd,,,,, since all units are available to 
dispatch. 
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Lambda Aggregation Step 

In this step, the parameters aý,, and a,, 2 of the equivalent cost function for 

the system composed of all dispatchable units are obtained using equations 
(5-8) and (5-9). The dispatchable system incremental cost of power 
generated x is computed using: 

,\=a eql +2 aý, 42 
P1,1 (5-13) 

The optimum power generation of each dispatchable unit can now be computed as: 

P (i )=x -ý (i ) 
-2M 1) (5-14) 

It should be noted that the outcome of this step is not guaranteed to yield 
optimum generations that satisfy the imposed inequality constraints. This 

aspect is treated in the second (reset) step. 

Reset Step 

This step is a direct implementation of the Kuhn-Tucker conditions. Here 
the values of each optimum generation P(i) obtained in the Lambda 
Aggregation step is checked for violations to the upper and lower bounds. 
The generations and values of the array Mark (i) are reset to respect the 

constraints and indicate unit status in the following manner. 

Lower Bound Violation: If P(i) < b, (i) Set P(i) = b, (i) Set Mark(i) = -1 
Upper Bound Violation: If P(i) > b,, (i) Set P(i) = b, ji) Set Mark(i) = +1 
No Bound V io ]at ion : If P(i) is within bounds Set P(i)=P(i) Set Mark(i)=o 

Verification Step 

The result of the Reset Step is a set of power generations and associated 

array value Mark(i). Two Verification computations are necessary to 
determine subsequent action. The difference between the power demand Plem and 

the sum of P (i) is ca Icu lated as PdIf ,g iven by 

ýJjf p 
dem 

ý] P(i) (5-15) 

if the magn itude of Pd, 
f 

is less than a spec if ied to lerance I im it IE , then an 

optimum dispatch satisfying the demand constraint and the upper and lower 

bound constraints has been obtained and the program is successfully 
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terminated. If the magnitude of P,, If is not less than the spec if ied tolerance 
limit E, then an optimum dispatch satisfying the demand constraint and the 
upper and lower bound constraints has not been obtained. The sum of unit 
generations set at the upper bounds denoted by and the sum of 

generat ions set at the lower bounds denoted by a., are ca Icu lated as : 
Oh 

T= 

ý- P(i) 

The sum is over all i such that Mark(i) = 

(5-16) 

0= S- P(i) 
The sum is over all i such that Mark(i) = -1 

The d ispatchab le power demand P ,,, is computed as: 
p6d ý pde. - of,., - ow 

(5-17) 

(5-18) 

The array values Mark(i) are examined. If some va lues of the array are 
zero , th is ind icates that not aII un its have been set to e ither the ir 

respective upper or lower bounds. The algorithm goes back to the first 
(aggregation) step, to repeat the process. 

if all values of the array Mark(i) are either +I or -1, this indicates that 

all units have been set to either their respective upper or lower bounds. 
No dispatchable units are available. In this case one needs to go to either 
the overdispatch routine or the underdispatch routine according to the value 
of power difference P,, if calculated earlier in this step. 

Overdispatch Routine 

This routine is entered from the verification step for the case with all 
un its hav ing been set to the ir upper and lower bounds and dPIif <0, i -e . the 

sum of generations P(i) is greater than the power demand. One needs here to 

reduce the generated powers. 

For maximum economy 
*, 

it is clear that in this case the units set at their 
lower bounds should remain there, and allow all units set to their upper 
bounds to be scheduled below their upper bounds. As a result in the 

overdispatch routine one sets Mark(i) =0 for all units with Mark (i) = +1 
from the main routine. The value of Pjj is calculated as: 

P(Id = Pdem - Crt-I (5-19) 
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The next steps involve repeating the aggregation and reset steps of the main 
routine with the object of reducing the power level of units at their upper 
bound enough to make the generation match the demand. The reduction is done 
in terms of a merit ordering scheme reducing generation from units with 
highest incremental cost. The process is repeated in accordance with a 
mer it order unt iI Rif is reduced to zero . 

The verification step of this routine calculates: 
PdIf = Pdem - 'zS' P(') (5-20) 

if the magn itude of P, jif is less than the spec if ied to lerance , the program 
successfully terminates. If P4, f is less than zero, the algorithm repeats 
the overdispatch function. If P4, f is greater than zero, the algorithm 
branches to the underdispatch function. 

Underdispatch Routine 

This routine is entered from the verification step for the case with all 
units having been set to the upper and lower bounds and PlIf > 0, i. e the sum 
of generations PM is less than the power demand. One needs here tc 
increase the generated powers. 

For maximum economy, it is clear that in this case the units set at their 

upper bounds should remain there, and allow all units set to their lower 
bounds to be scheduled above their lower bounds. As a result in the 
underdispatch routine one sets Mark(i) =0 for all units with Mark(i) 
f rom the ma in rout ine . The va lue of Pd, is ca Icu lated as 

Pdd = RIM - Oki (5-21) 

The next step involve repeating the aggregation and reset steps of the main 
routine. 
The verification step of this routine calculates: 

Pdif = Pdl- -1 P(i) (5-22) 

if the magnitude of ýjjf is less than the spec if ied to lerance , the program 

successfully terminates. If P,, f is greater than zero, the algorithm repeats 
the underdispatch function. If on the other hand Pd, f is less than zero, the 

algorithm branches to the overdispatch function. 
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5.8 Computational Results 

The algorithms described in the preceding sections were implemented on a 
DEC Micro-VAX-11 in Fortran-77. The programs were used to obtain the most 
economic schedule of generation for a utility system consisting of 56 units 
with maximum installed capacity of 1426 MW. The system load varied from 700 
to 1400 MW in the computational experiments conducted. 

s. s. i System Data 

Data of the system are given in Table (5-1) listing unit lower and upper 
bounds and the quadratic fuel cost parameters. The system considered 
consists of a mix of steam units, gas turbines, and diesel units, that vary 
in capacity from 7 MW to 75 MW. The evolution of the system leads to a mix 
of upper and lower bounds on each unit that proved to be a complicating 
factor for other software tested. From Table (5-1), it can been seen that 
the following upper and lower bound overlaps exists: 

I- The upper bound of units 37-40 is 7 MW, which is below the lower bounds 

of un its 1-6 10-36 , and 51-56 . 

2- The upper bound of units 7-11 and 16-17 is 12 MW, which is below the 

lower bounds of units 2-6 and 21-32. 

3- The upper bound of units 12, and 45-46 is 15MW, which is below the lower 

bounds of units 2-5 and 21-32. 

4- The upper bound of units 41-44 is 16 MW, which is below the lower bounds 

of units 2-6 and 21-32. 

5- The upper bound of units 2.. -5,13-15 and 20 is 18 MW, which is below the 
lower bounds of un its 21-32. 

6- The upper bound of units 25-26 and 51-54 is 22 MW, which is below the 
lower bounds of units 29-32. 
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7- The upper bounds of units 55-56 is 26MW, which is below the lower bounds 

of units 29-30. 

8- The upper bounds of units 6 is 28 MW, which is below the lower bounds of 
units 29-30. 

The upper bounds of units 33-36 is 30 MW, which is below the lower bounds 

of units 29-30. 

10- The upper bounds of units 22 and 24 is 35 MW, which is below the lower 
bounds of units 29-30 . 

One also notes that units 2-5 are required to operate at 18 MW generation 
level. Moreover, there are many identical units in the system in terms of 
their fuel cost model parameters. From Table (5-1), the following can be 

observed: 

I- Units 2-5 are identical 

2- Units 10 and 11 identical 

3- Units 25 and 26 are identical 

4- Units 29 and 30 are identical 

5- Units 31 and 32 are identical 

6- Units 37-40 are identical 

7- Units 45-50 are identical 

8- Units 51-54 are identical 

9- Units 55-56 are identical 
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Table (5-1) 

56 Unit System Data 

I UNIT IPI P 
mAx 

I 
1 

............. ...... 
2 1 

81 
2 18 1 

28 
18 __A. 

Q5 12 7__. 1 2.5. §. 44j. 
0.984 1 1.23 _. __j___q_, 

13716 x 
3x 

10-'- 
--- 

I 

31 18 
4 18 18 

15L 18 18 
I1 28 
1 
_7 

1 5___ 
_j 

12 
81 12 
9 12 

10 81 12 
11 8 12 

0.984 
_ 

11.23 
0.984 

-1 
1.23 13 

0.984 1.3 
4.05127 56441 8.13716 x 

1 15.329 1 0.44088_.. 1 6.45779 X-10-2 
--- 

I 
1 12.8579 1 1.11871 3 . 51052 x 10-2 

11.7029 L-1.44421 2.73 19 x 10-2 
15.1093 2.16889 6.15996 x 10-2- 
15.1093 2.16q8L 

_§_. 
15996 x 10-1 

12 8 15 1.45384 1.54264 0.95546 x 
13 10 18 26.8755 1.44404 5.45426 x 10-Z 

- 14 10 18 30.347 0.44969 
_9.94145 x 10-2 

- 25.2581 1.4525 4.87114 x 10-2 
1 12 21.97844 2.10979 3.80244 x lo-" l 

17 12 21.9048 2.01706 1,28266 x - 10-2 

19 10-1- 
8 

21 20 1' 

18 28.7014 1.28539 5.44844 

-18 
1 25.6835 1.63675 3.92341 

18 24.5833 1,90378 45608 

---.. 
60 -2.11152 1 2.06606 1 3.66639 

x 
x 
x 
x 

lo-ýý 
10-2 
10-2--l 
10-i 

22 
23 1 20 1 
24 20 
25 20 

35 -2.11152 

---... 
60 -2.11152 
35 -2.11152 
22 -2.11152 

1 2.06606 1 3.66639 
2.06606 

.13.66639 2.06606 1 3.66639 
2.06606 1 3.66639 

x 
x 
x 
x 

10-3- 
10-3 
10-3 
10--l 

26 20 22 -2.11152 2.06606 3.66639 x 10-3 
- 27 20 60 18.4888 1.89252 4.40305 x 10-3 

28 20 
29 40 

75 
65 

23.4884 
1 60.8187 

1.69801 
0.38813 

6.09390 
4.46988 

x 
X 

10-: 5 
10-3- 

30 1 40 65 1 60.8187 0.38813 4.46988 X 10-3---l 
31 25 

25 
75 
75 

1 68.6577 
1 68.6577 

1.9829 
1.9829 _1.78273 1.78273 

X 
X 

10-3 
10-3 

33 30 1 20.2877 2.02209 7.72012 x 10-i 
- 

35 8 
30 
30 

21.4153 1.94PL7__J_ 1,10727 
19.5795 2.04247 

__L_8.59541 

x 
x 

10-2 1 
lo-Z5 I 

16 8 1 30 20.2877 2.02209 1 7.72012 x 10-3- 
_ 37 2,.. 

_l 
713.31764 

38 273.17 4 
1 1.60332 

1.60332 
1 5.49957 

5.49957 
x 
x 

10-2-1 
10-2--j 

39 2 7 1 3.31764 1 1.60332 5.49957 X 10-2-1 
40 2 7 1 3.31764 1.60332 5.49957 x 10-2- 

§_J 41 _16 
1 1.68581 1.90197 1.56548 x 10-Z 

__ § 
__L 42 _16 

1 2.50403 1.81245 2.11244 x 10-2 
__ _ 43 L6 16 1 1.28414 1.98009 1.43057 x 10-2-1 

44 6 16 1 2.02671 1.84021 2.02094 x 0 T-2 

45 5 15 1 30.1168 1 0.87605 1.12108 x 10-1-1 
46 1.12108 x 10-1 
47 5 15 1 30.1168 1 0.87605 1.12108 x 10-1 
48 5 15 1 30.1168 1 0.87605 1.12108 x 10-1- 1 

1 49 15 15 1 30.1168 1 
. 87605 1 1.12108 x 10-1 

50 5 
51 8 

15 
22 

1 30.1168 
1 47.3067 

0.87605 
0.81433 

1 1.12108 
9.09956 

x 
x 

10-1- 
10-2- 

52 181 22 1 47.3067 0.81433 9.09956 x 10-2- 
53 1j 
54 8 

22 
22 

1 47.3067 
1 47.3067 

0.81433 
1 0.81433 

9.09956 
j 9.09956 

x 
x 

lo-Z 
10-2-1 

J_J5 8 
56 8 

26 
26 

22.479 
22.479 

1 3.43752 6.94301 x 
3.43752 6.94301 x 

10-3- 1 
10-3- 
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5.8.2 Expefience with GRG Method 

The application of the GRG technique to the dispatching problem using the 
GRG2 software proved the robustness of the method. Table (5-2) lists the 

optimal schedules for a selection of system power demands. The first column 
in Table (5-2) gives unit index, and subsequent columns list the optimal 
power generation of each unit corresponding to system power demand between 
700 and 1400 MW. Row 57 of Table (5-2) gives the minimum operating cost 
denoted by F for each power demand, and the last row gives the number of 
iterations (ITER) required to arrive at the optimal strategy using the GRG 

Method. 

it is important to examine the optimization results to detect patterns of 

change and to verify that the strategies obtained conform to rational 

expectations based on practical considerations. From inspection of the 

results in Table (5-2), the following are some interesting observations: 

I- Units 10 & 11, are more expensive units and the optimal strategy 
requires that their output remain at the lower bound of 8 MW up to and 
including a power demand of 1300 MW. At 1400 MW demand, the two units 
output is the maximum allowed of 12 MW. 

2- Unit 15, is required to stay at the minimum output level of 10 MW up to 

1200 MW, then the GRG optimization requires an optimum generation of 
10.46 MW, but then at 1300 MW, the output is required to drop back to 10 

MW. At 1400 MW the required output is 18 MW. From a practical point of 

view, one would expect the optimal unit generation to increase (or stay 
the same) with an increase in power system demand. 

3- Units 29 & 30, are least expensive to operate and therefore the 

optimization outcome requires that their output remain at the maximum 

allowed of 65 MW, as expected from a practical point of view. 

4- Units 31 & 32. are identical and it is expected that their optimal 

generation be the same. However, the optimal values returned from GRG 2 

show that at a power demand of 800 MW, the output of unit 31 is required 
to be 44.61 MW, whereas that of unit 32 is 44.03 MW. 
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5- Units 37-40, are identical and the GRG 2 results require identical 

outputs as expected. 

6- Units 45-50, are identical but at 800 MW the GRG 2 results for units 45- 
47 are slightly less than that for units 48-50. The optimal 

generations, however, increase with an increase in power demand as 
expected. 

7- Units 51-54, are identical. The schedule at 1000 MW demand is higher for 

unit 51 at 8.13 MW than these for subsequent units. Similar 

observations can be made about higher demands. 

The preceding observations lead us to conclude that deviations from expected 

practical results can take place when using GRG 2. A possible explanation 
is that the search mechanism in the approach attempts to carry out the 

optimization by sequentially increasing the values of the decision variables 

until a minimum is reached. No attempt is made to equalize outputs that 

should be equal, since these constraints are not specified in the problem 
formu I at ion. 

A typical execution time of 17s on a DEC Micro-VAX-11 was obtained. In the 
implementation of the method, the Hessian was found to be too large for use 
of the variable metric method and the algorithm switched to the conjugate 

gradient method using Fletcher-Reeve's direction. Termination of the 

computation was based on the determination that the fractional change in the 

object ive f unct ion was less than 10-4 . 

The algorithm displayed a sensitivity to the initial guess values in terms 

of convergence behaviour as discussed next. 
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Table (5-2) 

Optimal Schedule for 56 Unit System 
Using the GRG Method 

JUNITI 700 800 900 

. .............. ........ 

--L--L 

1000 1 
I 

8 

1100 

...... ...... ..... 
8 

1200 

8 

1300 1400 

--- --. - --.. I 
8 28 

2 IS 18 18 18 18 18 18- 
- 

18 
3 18 18 18 18 18 18 18 
4 18 18 18 18 18 18 18 18 
5 18 18 18 18 18 18 18 18 
6 

.8 
8 8 8 8 28 

7 10.24 12 12 12 12 12 12 12 
9.07 12. 12 12 12 12 12 12- 

9 5v57 12 12 L 12_ 12 12 12 12 
10 8.00 8 8 8 8 8 

-8 
12 

gO 8 8 8 8 8 8 12 
11.12 15 15 15 15 15 15 15 

13 10 1 
-10-. 

10 10 10 10.01 10 18 
lp 14_L 10 

--- 
L- 

-jo 
10 10.31 10 18 

15 10 10 1 10 10 10.46 10 18 
16 1 10 12 12 12 12.00 12 12 
17 10 10 10 10 12 12.00 12 12 

-! 
kJ- 10 10 10 10 1 10.061 10.9 1 10 18 

19 10 10 10 10 1 10 1 10.7 1 10 le 
20 8 8 81 81 9,841 13.43 1 18 18 
21 20 20 1 20.711 30.841 43.741 60 1 59 60 
22 20 1 20 

-. 
1 20.711 30.841 35 1 35 1 35 1 35 

20 1 20 
-1 

20.711 3! q. 
_84 

L 43,741 60 1 59 1 60 
24 20 

--j 
20 

.-1 ý5 20 1 
. 
20.... 1 

20.711 
22 

30.841 
22 1 

35 1 
22 1_ 

35 1 
22 1 

35 
22 

35 
22 

_ý 26 1 20 1.... 20 1 22 22 1 22 1 22 1 22 22 
I_g7 L 20 1 29.551 36.461 45.21 56.551 60 1 60 60 
1-18-1 20 36,42i 40.04i 48. 1 73.35 1 75 

29 1 65 65 65 1 65 1 65 1 65 
- -1 

65 1 65 
30 1 65 65 65 1 65 1 65 1 65 1 65 
31 25 44.611 75 1 75 1 75 1 75 1 7 
32 2i 1 44.031 75 1 75 1 75 1 75 1 75 75 
33 8 

-- 
L 8.091 12.111 17.741 23.911 30 

-1 
30 30 

34 8 1 9.201 12.151 16.011 20.091 30 30 30 
35 8 8.0 1 9.701 14.741 20.191 30 30 

-6 8 A nol - 30 30 30 
37 12 1 4.971 5.591 6.281 71 71 7 7 

138 12 1 4.971 5.591 6.281 71 71 7 7 
39 2 4.971 5.591 6- 1 71 7 
40 12 1 4.981 5.591 6.281 71 71 7 7 
41 51 61 61 12.491 16 1 16 1 16 16 

__- 
42 6 L-7.8 51 9.461 11.351 13.621 15.79 1 16 16 

_ 43 61 61 10.961 15.031 16 1 16 16 
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Table (5-2) (Cont'd) 

Optimal Schedule for 56 Unit System 
Using the GRG Method 

JUNITI 700 800 900 
I--- --- - ----- 

44 617.441.8.621 

1000 1 1100 1200 1300 1400 

. .... ..... I . -.. ........ -........... - 
11.181 13.551 15.77 1 16 

45 515.631 5.861 6.321 6.781 7.26 1 15 1 15__l 
46 515.631.5.871 6.321 6,781 7.26 L 15 L 15 I 

_ _ 1 
__17_J_5 

5.. 631 5.871 6.321 6.781 7.26 1 15 
__J_ 

15 
48 5 5.641 5.861 6.321 6.781 7.26 1 15 

.1 
15 

49 515.671 5.851 6.321 6.781 7.26 1 15 1 15 
1.621 5.841 6.321 6.781 7.26 1 15 1 15 

_I 51 88181 8.131 8.69i 9.23 1 22 
--L-l 

8 
818 8 1-- 8.691 9.23 1 22 18 

53 88181 818.691 9.23 22_ 1 22__l 
81818118.531 9.01 221 
888 88261 

56 888 8 j---8 8aI 
F 136,089.07139,336.142,817.146,380.150,092.153,995.6159,560.164,219.61 

jpoh, ýh r 
JITERI 33 1 32 1 30 1 31 14 30 16 29 
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Initial__Gues_s Effects 

The sensitivity of the convergence pattern of the GRG algorithm to initial 

guesses of the unknowns was investigated. The initial values of power 
generated were required to be feasible. Three sets of initial values were 
chosen. in the first the generation was set at the lower bound (lower 

guess) of the unit. The second set assumes that units are operating at a 
leve Im idway between the lower and upper bounds (Midway guess). In the 
third the generation was set at the upper bound (upper guess) of the unit. 
A comparison of the performance of the algorithm in terms of the final value 
of the objective function, using the three sets, was conducted for a 
sequence of demand values as shown in Table (5-3). 

it is clear from inspecting Table (5-3) that the midway guess is by far 

superior at all demand levels. As a general conclusion, in terms of speed 
of convergence, on computational experience one shows that the Midway guess 
results in faster convergence for demand values at 800 MW and higher. At 
low demand level the lower bound guess provided for faster convergence. It 

should be noted, however, that for a high demand such as 1000 MW, the 

algorithm failed to converge with the lower bound guess. 

An alternative means of generating a reliable, feasible initial guess has 
been devised in the course of this investigation. Here one uses the value 
of the optimal power generations obtained neglecting the inequality 

constraints. The value of the variables are adjusted to respect the upper 
and lower bounds on the generations. The resulting initial guess values 
constitute a feasible solution but do not satisfy the power balance 

equation. In our computational experiments this guess resulted in the 
following reductions in number of iterations to convergence relative to 
those for the midway guess. 

800 MW Case: From 31 iterations to 13 iterations 

1000 MW Case: From 31 iterations to 8 iterations 

1200 MW Case: From 30 iterations to 21 iterations 

AII convergence criteria were set at 10-' re lat ive error in the object ive 
function. 
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Table (5-3) 

Effect of Initial Guess on Final Value of 
Objective Using the GRG Method 

DEMAND LOW 
Mcal/hr 

MIDWAY 
Mcal/hr 

I HIGH 
i Mcal/hr 

700 2292.8 2292.8 2292.8 
750 2393.7 2393.6 2393.7 
800 1 2499.6 1 2499.6 2499.6 
850 2638.7 2608.2 2608.2 
900 2745.6 2718.8 2804.2 L*) I 
950 2862.2 2831.5 __ 2872.6 

1000 3056.4 2944.4 3141.5 
1100 3280.2 3178.9 3291.7 
1200 3499.8 3425.8 3425.8 
1300 3753.4 3708.9 3737.2 
1400 4075.4 4065.8 4065.8 

(*) indicates final convergence not attained. 
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5.8.3 Experience with Lambda Iteration Method 

The application of the Lambda Iterations (LI) technique to the dispatching 

problem proved the robustness of the method. The code for the LI algorithm 
was provided by B. Wollenberg as share-ware for the IBM personal computers 
and was subsequently adapted to the DEC Micro-VAX II. Table (5-4) lists the 

optimal schedules for a selection of system power demands using the Lambda 
iteration algorithm with stopping criterion set at 0.001. A typical 

execution time of 2s on a DEC Micro-VAX 11 was obtained. 

Entries in Table (5-4) are the same as those used in Table (5-2). It must 
be noted that the resu lts obta ined us ing the LI method conformed w ith the 
following two practical considerations: 

The optimal generation of identical units must be identical. 

2- For an increasing power demand, the optimal generations for each unit 

must be at least non-decreasing. 

This is not surprising, since the program's formulation recognizes these two 

requirements. The algorithm appears to display sensitivity to the values 

chosen for the initial guess on \. This aspect is discussed next. 
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Table (5-4) 

Optimal Schedule for 56 Unit System 
Using Lambda Iterations Method 

JUNITI 700 1 800 900 1000 1100 1200 13-00- 1400 
I ..... . .... I-- 

888 8. 8 8 28 
2 18 

---L-l 
8 18 18 18 18 18 18 

3 18_. 
_ 

1 18 18 18 18 18 18 18 
4 18 1 18 18 18 18 18 18 18 

18 18 18 18 18 18 18 
168 

. 
8.8 8 8 8 8 28 

17 10.21 12 12 12 12 
-12. 

12 12 
189.1 1.2 12 12 12 12 12 12 

97 12 12 1 12 12-- 12 12 
. 
_aoj 

8 88 8 8 8 12___l 
11 8 

............ 
8 8 8 8 8 8- 12 

15 15 15 15 15 
- 

15 -15 

13 10 A-- 
--Lo----i 

10 1 10 10 10.2 14.8 18 
10 10 I L4 L lo I lo lo 10.6 13.1 18 

__ _. _ L 10 10 !§ 10 10 10 11.3 16.4 18 
-- - 16 10 10. 12 12 12 12-_ 12 12 

17 10 10 10 10 12 12.001 12 12 
le 10 10 10 10 1 10.1 1 11.6 16.2 18 
19 lo-- 10 10 10 10 11.7 le- 

1 Lo L 8 A- 8 8 8 9.9 13.2 18 18 
_ _ 21 20 

.. __20 
21.2 30.8 44.3 60 60 LO 
21.2 30.8 35 35 35 35 

h 20 1- 20 21.2 30.8 44.3 60 60 60 
24 20 20 21.2 30.8 1 35 35 35 

-! 
L-- I 

20 j 20 21.2 22 1 
------- . 

22 22 22 
26 20 1 20 21.2 22 1 22 22 22 22 
27 20 28.3 37.4 1 45.4 1 56.551 60 

-1 
60 60 

28 20 36.. 4 j 43 1 48.8 1 56.9 1 70.1 1 75 1 
_75 L 65 65 1 29 65 1 65 1 65 65 65 65 

-- 65 65 1 30 65 1 65 1 65 65 65 65 
... - 1 31 25 44.5 67 75 1 75 1 75 75 1 

44. ý 32 25 67 75 1 75 1 75 1 75 75 
1 3L3 8 

.... -8 
12.9 17.5 1 23.9 30 1 30 30 

9.1 2A L 12.7 15 91 20.3 1 27.61 30 A 30 
- - 1ý5 8.0 1 10.4 14.5 20.3 29.7 30 30 

36 88 12.9 17.5 23.9 30 
-1 - 

30 30 
37 2 4.9 5.6 6.3 7 7 7 7 
38 2 4.9 5.6 6.3 7 7 7 7 

1 4.9 1 1 391 2 5.6 1 6.3 1 71 71 
--- 

71. 
-L 

I 
-- 1 .91 5.69 1 6.3 1 7 

-1 
71 - 71 -- 71 
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Table (5-4) (Cont'd) 

Optimal Schedule for 56 Unit System 
Using Lambda Iterations Method 

JUNITI 700 800 1 900 1000 1 1100 1200 1300 1400 

7.6 10 .2 12.5 15.6 16 6ý 
7.8 9.7 1- 11.4 3.7 66 16 

8.4 10.9 14.4 
6 7.5 94 11.2 13.6 16 6 16 

45 5 5.6 6 6.3 887.5 9.7 13.8_1 
46 5 5.... 6 6 6.3 6.8 7... 5.. 9.7 13. QJ 
47 5 5.6 6 6.3 6.8 7.5 9.7 3. f? I 
48 5 5.6 6 6.3 6.8 7.5 9.7 

___13.8 _I 49 5_ 5.6 61 6.3 6.8 
. --z 

13.8_1 
50 5 5.. 6.1.. 6 6.3 6.8 7.5 1 

___2_. _7 
13.8 1 

-3-1 8 8 8 
-8-1 

8.7 9.6 12.3 17.41 
52 1 8- 8 8 8.1 8.7 9.6 12.3 17.4 j 
! ý3 888 8 8.7. 3 17.4 1 

_. 54 8 
.... 

8 8 8 8. 
_L 

§__L__12. ý 1_17.4 1 
55 8- 

... 
8... 8 8 8 88 26 

§Lýý8 .. 
8 8 8 8 88_. ý6 

- F 136,084 5 139, 330.4142 , 798.0146, 374.7150,085.4153,983.2158,428.9164,047.31 
! Dh/hft i i 
JITERI 23 1 
I....... .... . 

26 1 40 1 24 1 40 1 

....... 

23 1 22 1 40 
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Initial Guess Effects 

In the GRG method an initial guess on all problem variables (56 power 
generation levels) is required. In the LI method, however, one is required 
to start with an initial guess of the incremental cost of power production 
lambda only. The choice of lambda influences the convergence pattern of the 
algorithm. 

The sensitivity of the convergence behaviour of the lambda iterations 
algorithm to initial guess of the unknown lambda was investigated. The 
initial values of power generated were required to be feasible. This 
results in a number of feasible ranges of lambda corresponding to the 
feasible ranges of the system units. Recall that for the quadratic cost 
case, the individual optimum power generations are obtained by (5-11) as: 

P(i) X-a, (i) 
2a 2 

(1 ) 

As a resu It the va lue of lambda is g iven in terms of the power generat ion as 
,\=ý 

(i )+ 2a. 2 
(i)P (i) 

Corresponding to the lower and upper bounds on each P(i), one obtains lower 
and upper bounds on lambda as follows: 

, ýMfn (i) =ý (i) + 2a, 2 
(') P 

min 
0) 

X. 
x 

(i) =ý (i) + 2a2 (i)Pý.. (i) 

ideally a feasible range of lambda can be obtained by finding: 

ý Max [, \,.,, n 
(i)] 

t\Inf i 

XSUP =MI in k 
max 

In this case the feasible range of lambda is defined by: 

hillf <x< ksup 

One can further define the lowest value of 

value of Lambda as x Here one has: 

M in (i)] 

Max 

lambda as XL and the h ighest 

For the system studied the computations yield the following: 

N= 11 . 83458 



-158- 

76.46383 

'\inf 56.31642 

hSup 15 . 38 14 3 

Note that h inf is greater than xsup * If one defines a midway \ by 

Nnid Chinf + \sup 112 , the fo I low ing va lue is obta ined 

' 35.84892 
mid": 

These values are good candidates for an initial guess on \. 

One can also use the value of X computed from the first step of a lambda 

aggregation computation for the power demand considered using eq. (5-10). it 
is clear that there are six options for an initial guess. Results of 
testing are summarized in Table (5-5) for system demands of 800,1000, and 
1200 respectively. 

Table (5-5) 

Effect of Initial Guess on Number of 
Iterations Using the LI Method 

------------ 
DEMAND 

--------- 
LOW 

- - 

--------- 
SUP 

---------- 
HIGH 

-------- 
INF 

------- 
LA 

------- 
MID 

---------- 
800 

---- -- 
27 

-------- 
20 

--------- 
27 

------- 
23 

------ 
25 

------ 
26 

1000 25 24 25 22 24 24 

1200 24 21 24 23 23 23 

From the table, one can see that the method is not very sensitive to the 

initial guess. In terms of preference of possible start, the supremum value 

of \ appears to give lowest number of iterations overall. 
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5.8.4 Experience With Lambda Aggregation Method 

The coding of the Lambda Aggregation technique was tested for the system 
considered. Table (5-6) shows the optimal schedules for the system for load 
levels from 700 MW to 1400 MW, using the Lambda Aggregation algorithm, with 
stopping criterion set at 0.001. The algorithm converged in 3 iterations 
for load values of 700 and 1000 MW. Four iterations were required at 1400 
MW and 5 iterations for 1100 MW and 1200 MW loads. It is clear that the 

algorithm correctly schedules identical power generations for identical 

units as expected. It is noted that other software tested for the same 
system sometimes fai. led to produce this result. In terms of computational 
time, the algorithm typically required I second to obtain a solution as 

compared to 17 seconds required to obtain a similar solution using the 
Reduced Gradient Method for optimization. 

Consider for example unit 50, the optimal active power generation at the low 

power demand of 700 MW is set by the strategy at the minimum value of 5 MW. 

The optimal active power generation of the unit increases as the power 
demand is increased up to a demand of 1300 MW where the optimal generation 
is set at its maximum allowed of 15 MW. 

it has been noted that the system considered contains a number of identical 

units and one would expect that the optimal generations of such units be 

identical. The GRG2 code failed to produce this result, whereas LI and LA 

software produced this expected result, as can be seen from inspection of 
Table (5-6). 

The algorithn failed to converge (oscillated), for test cases involving 

negative values of the cost parameter a. 2 - Note that this case corresponds 
to a non-convex objective and the Hessian of the problem is not positive 
definite. 

it should be noted that a faster implementation of the present algorithm can 
be affected by simply using equivalents for identical units. In the present 

application this was not attempted as the resulting solution was obtained in 

a very fast time. 
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Table (5-6) 

Optimal Schedule for 56 Unit System 
Using Lambda Aggregation Method 

JUNITI 700 

. 
8 

800 1 

.... ..... ...... - --- 
0. 

- 

900 

---- .... .... 
8 

1000 1 

.. 
8 

1100 

............... ...... ... 
8 

1200 1300 1 

. ... ........ . ..... 
8 

-J-8 -I 

1400 

........... . .. 

2 18 18 18 18 18 18 18 18 
3 18 18 18 18 18 18 18 

18 18 18 18 18 
5 18 
68 
7 12 

18 
8 

12 

1.8 
8 

12 

18 18 18 
8L88 

12 12 12_ 

le 
8 28 

- 
12 12 

9 11 12 12 12 12 12 12 12_1 
95 

__12 
12 12 12 12 12 12 

10 8 8..... 
.. 

8 8 8 8 8 _ 12 
ll 8 8 8 88 8 8- 12 
12 8 
ILI 10 

15 
10 

15 
10 

15 
10 

15 
10 

15 
10 

15 
10 

15 
18 

- - 14 10 
.. --.. 

10 10 10 1 10 10 lo 18 
15 10 10 10 10 1 10 10 10 18 
16 1) 10 12 12 12 12 12 12 
17 10 10 10 10 12 12 12 12 
Le 10 10 10 10 10 10 10 18 

- 19 10 lo lo 10 10 10 
-lo 

le 
1 20 it 1 81 1 81 - 13.721 18 1 18 1 

ýo 1 ;! L 20 1 20 1 30.991 44.631 60 1 60 1 60 
-- - - 22 20 1 20 1 20 1 30.991 35 1 35 1 35 1 35 

23 20 20 1- 20 1 30.991 44.631 60 1 60 1 60 
24 20 20 1 20 1 30.991 

_35 
1 35 1 35 

_15 25 20 2_0 1 22 1 22_ 1_22 1 22 
... 

1 22 2 2.. 
_. _ 

1 
I 
. _g6 _j 

20 1 
----? 

0 1 
-_-22- 

1 22 1- 22 1 22 1 22 1 22 1 
27 20 28.271 38,111 

------ 
A5,511_.. 

__. L6.87 60 60 60 
_j -- 

I 
28 20 1 36.3.91 43.491 48.841 57,051 72.201 75 75 
29 65 5__j 65 65 65 1 65 65 
30 65 1 65 1 65 1 65 65 1 65 65 
31 25 44.48,1 68.77 1 75 1 75 1 75 1 75 1 15 1 
32 44.481 68.77 1 75 1 75 1 75 _ 1 75 75 

1 13 L 8 81 13.34 1 17.561 24.041 30 1 30 i 30 
_ _- 34 81 9.06_1 12.97 1 15.921 20.441 __ 28.771 30 1 30 

35 81 81 10.8 1 14.591 20.411 30 1 30-- 1 30 
Ijý j8-1 81 13.34 1 17.561 24.041 30 1 30 30 1 

-- 37 21 4.891 5.68 1 6.271 71 7 7 - 7 
38 121 4.891 5... 6.8. 1 6,271 71 7 7 7 
39 12.. 4.891 5.68 1 6.271 71 7 1 

-- 
7 7 

40 12 4.891 5.68 1 6.271 71 7 1 
_7 

1 7 
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Table (5-6) (Cont'd) 

Optimal Schedule for 56 Unit System 
Using Lambda Aggregation Method 

JUNITI 700 800 900 1000 1 1100 1200 1300 1400 
-I 

41 
.. -. I 
61 

. ...... . ........ 

. 
7.651 10.421 

. .... .. I 
12.501 15.691 

- ----- 1- 
16 1 

-. - - 
16 1 16 

617.791 9.841 11.381 13.751 16 - 16 .. 16 
43 61 618.671 10.951 14.441 16 16 

I A± j 61 451 9.601 11.211 13.681 16 L 
- 

16 16 
_ _ 1 45 51 5.641 6.031 6.321 6.771 7. ý 91 15 15 

47 5... 1-5-641 6.031 6.321 6.771 7.591 15 
481 5 5.6 ýJ__ 6.03 L 

_ 
6.321 6.771 7.591 15 15 

49 5 5.. 641 6.031 6.321 6.771 7.59 15. 
5 5.641 6.031 6.321 6.771 7.591 15 

8181 818.681 9.691 21.501 22.... 
52 881 ý9 j- 9.621 21 

. _ýO 
L 22 

. - 818 L 8I 53 8 8.681 9.69 21.501 I 1 
_ __ 1-54 8 8_ 181 -, - 818.681.9.691 21.501 22 

55 888 88L88 
. 
13 

8 88188 13 
F 136,283.66139,522.8142,922.014 6,568.0150,280.0154,184.3159,676.0164,491.81 

i)h/hr I 

ITER 332 

.. 

3354 

........ --*""--, -, ---, "-"--"**---"", ---*, --"-, *--, "-', - --- - -1-111-1-11 .. '. I 
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5.8.5 A_Compar_is_o_n__o_[__Meth_ods 

The performance comparison of the three methods tested shows that the Lambda 
Aggregation technique provides the fastest execution times to obtain power 
system optimal schedules. In the set of Tables (5-7-A, B, C and D) the 

opt ima I generat ion levels for demand values of 700 MW to 1400 MW are 
displayed for the three methods tested. In Table (5-8) the corresponding 
optimal objective functions are listed. 

The Lambda Aggregation method does not require an initial guess. It failed 
to converge for cases with negative a2- On the other hand the GRG method is 

sensitive to the selection of an initial guess. Midway values were 
effective, but a drastic improvement in GRG method's speed of convergence 

was obtained by the use of results of the f irst step of the Lambda 
Aggregation method. The Lambda Iteration method proved to be insensitive to 

the initial guess values. 

The Lambda Iteration method consistently resulted in optimal schedules with 
the lowest attainable values. It should be noted, however, from Table (5- 

8), that the differences in values of optimum objective are less than 0.50%. 

An interesting observation is that the GRG method sometimes resulted in 

opt ima I generat ions that were not ident ica I for un its w ith ident ica I mode I 

parameters and upper and lower bounds. This behaviour was not found with 
either of the other methods. As stated earlier, it is the very nature of 
the GRG algorithm to adjust the unknown values in sequential manner until a 
minimum is reached. This is a possible explanation for the behaviour of the 

optimal solutions, since the units with lower index number showed a higher 

optimal generation than those identical units, but with a higher index 

number. 
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Table (5-7-A) 

II GRG I 
I-I __. - ... . .................... 

LII-8 

LA I LI I 

. ... ......... -I-.. -I 88 

GRG I LA I I-I I 

... -I.......... ....... ... -.. ---I 88 
2 18 18 18 18 18 18 
3 18 18 18 18 

141 
51 18 

18 1 
18 1 

18 1 18 1 
18 1 18 1 

18 1 18 1 
18 1 18 

618 8 8 8 88 
7 10.24 12 10.2 12 12 
8 9.07 11 9.1.12 12 12 

5. A7 5-_. 7 12 12 12 
I 
-LO 

8 
...... 

8 8888 
u, 

_ILJ___Ll 
12 95 15 15 

13 10 1__. 
__10 

1 10 10 
___L_l 

0- 1 
14 10 10 1Q 

__JL 
10 10 J_ 10 

15 10 
.... 

10 10 10 10 I-Ag. 
16 10 
17 10 

10 
10 

10 
10 

10 
10 

10 10 
10 lo 

18 10 10 10 10 10 10 
19 10 10 10 10 10 10-1 
2Q_I__-j 

__L_ 21 20 
20 

_8 
88 

20 
___20 

20 

_20 
20 

881 

__LO 
__LO_ 

20 20.. 
---l 

2g__ I 
2ýO 

1 25 20 1_ 
_ýL5J 20 

27 20 

. 20 1 
20 
20 

__ýo 20 
_ 

j____ 
20 
20 

20 
_L_ 

__LO 
1 

20 
29.55 J... 

_ 

__. 
ýo 

-. 
L--10 I 
1 20 

. __I 20 
_10 

_g8.; 
ý7 L2 

28 20 20 20 36.42 1 36.39 1- 36.4 
29 65 65 65 65 j 65 65 

_I 65 1 30 65 65 65 65 65 
_I ... - 1 31 2 25 25 44.61 44.48 44.5 1 

32 25 25 25 44.03 44.48 44.5 
8 8 8.09 88 

1 J4 8 8 9.20 9.06 9.1 
1 35 8 81 8 8 88 

36 8 8 8 8.09 88 
L2 37 2 2 4.97 4.89 4.9 

- 38 2 2 2 4.97 4.89 4, ý_ 
L2 39 2 2 4.97 4.89 4.9 

- 40 2 2 2 4.98 4.89 
-A. 

9 I 
41 6_j 
42 6 

__J_ 

6 
6 

6 
6 

6 
7.85 

7.65 7.6 1 
7.79 7.8 

43 66_ 
_A_j 

66 
_I 
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Table (5-7-A) (Cont'd) 
Comparison of Optimal Loadings 

700 and 800 MW Demands 

I 

................ 

I GRG I 

.... ....... .... ....... ... 
700 MW 

LA I 

i 

..... ......... ..... ........ 

I-I I 

6 

.............. ..... . .... --- ............. . ... ... ...... 
800 mw 

GRG I LA I 

7.44 7.45_L_ 

. ...... .................. 

I-I I 

7.5_... 
_ 

1 
45 55 5 5.63 5.64 
46 5 

... ......... 
5 5 5.63 5.6 4 

-.! 
Z-L- 5 5 5 5.63 5.6 4_. 

- 
5.6_1 

48 5 5 5 5.64_ 5.64 5.6 
49 5 5 5 5.67 5.64 

1 ýO J 5 5 5 5.62 5.64 5.6 
- - 51 - 8 8 8 88L 81 

8 8 8 88 8 
8 8 8 88 8 
8 8 8 88 

55 8 8 8 88 8 
56 1 88 

F 136,089.07136,283.66136,084.5 139,336.2 139,522.8 139,330.4 1 

Table (5-7-8) 

Comparison of OptimaI Loadings 
900 and 1000 MW Demands 

.... . ......... . ........ .... . ... ........ . 
900 mw 1000 mw 

GRG 1 LA 1 LI 1 GRG 1 LA 1 LI 

8 8 8 
2J 

-1 
8 18 18 18 18 18-1 

3 18 18 18 18 18 18 
4 18 18 18 18 18 L-1 8 1 
5 j is 18 18 18 - - 18 18 

_ - 6 8 8 8 8 8 
7 12 12 12 12 12 12 
8 12 12 12 12 12 12 

I jj 12 12 12 12 12 12 
_ 10 8 8 8 8 8-. 

- 
8__ 

11 8 8 8 a 8 
12 ! ýý 15 15 15 15 15 15 
13 - 

.0 
10 10 10 lo lo 

14 L 10 1 10 10 10 10 10 
- 10 10 10 10 

12 12 12 12 
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Table (5-7-B) (Cont'd) 
Comparison of Optimal Loadings 

900 and 1000 MW Demands 

. ....... .............. ... 

. ..... .......... .... .. 
II GRG I 

.. 

... ..... ..... -- - .......... .... .................. ..... ......... ......... ........... . ...... ........ .................. . ........ 900 mw 1000 mw 
.... . ......... ---- - --- --.... ..... ...... 

LA I LI I GRG I LA I LI I 

...... ..... .. --- ---. -I -- ... .. I.............. ... I......... 10 0 10 10 
10--l 10 1 10 1 10 

19 10 10 10 10 10 
20 8---L 

-8 --L _81 
8 t818 

21 20.71 20 21.2 30.84 30.99 1 30.8 
22 20.71 20_ 21.2 30.84 30.99 30.8 
23 20.71 20 21.2 30.84 _ 3 0.9 8. 30 
24 20.71 20 21.2 30.84 30.99 30.8_1 
25 22 

-? 
q 

---J-.. 
21.2 22 22 1 

I 
_ýL6 _L_Z2 

20 
-- 

21.2 22 22 
... 

22 l 
1 27 36.46 11 
1-18 40-04 43.49 

37.4 
43 

__ 45.52 45.51 45.4 
48.75 48.84 L___A8.8 

1 29 65 65 65 t 65 1 65 1-- 65 
1-10 j 65 65 65 1 65 1 65 

-L 
65 

31 75 68.77 67 75 75 75 
32 75 68.77 67 75 75 75 
33 12-11 13-34 12... 9 17.74 17.56 17.5 
34 12-15 12.97 12.7 16.01 15.92 15.9 
35 9.70 10.8 10.4 14.74 14.59 14.5 
36 12-11 13.34 12.9 17.74 17.56 17.5 
37 5.59 5.68 5.6 6.28 6.27 6.3 
38 5.59 5.68 5.6 6.28 6,27 6.3 
39 5.59_j 5.68 5.6 6.28 6.27 6,3 
40 5.59 5.68 5.6 6.28 6.27 6.3 

10.. 42 10.2 2.49 L 12.50 2.5 
_L_ 9.46 9.84 9.7 11.35 11.38 11.4 

6 8.67 4 10.96 10.. 95 1 10.9 
8.62 9.60 9.4 11.18 11 . 21 1.2 
5.8 6 6.03 6 6.32 6.32 6.3 

1 46 5.87 6.03 6 6.32 6.32 6.3 
47 5.87 6.03 6 6.32 6.32 6.3 
48 5.86 6.03 
49 5.85 6.03 

6 
6 

6.32 
6.32 

6.32 6.3 
6.32 6.3 

I jo j 5.84 1 
1 51 8....... 

. 

6.03 1- 

. ....... 
8 

6- 1 
8- -- 

6.32 1 
8.13 

6.32 1 6.3 1 
8 8.1 

152 8 8 8 8 8 8.1 
53 8- 8 8 

-- 
8 88 

48 8 8 8 88 

_. 
j5 J_8 8 8 8 88 
56 1- 8 8 8 8 88 

F 142,817.142,992.142,789.146,380.146,568.146,374.7 1 



-166- 

Table (5-7-C) 

Comparison of Optimal Loadings 
1100 and 1200 MW Demands 

................ ... ........ 
1100 mw 1200 MW 

.... . ........ . .... .......... ........... ........... . ... . 
GRG I LA I LI I GRG I LA I LI 

11 8 8 8 8 8 8 
2 18 18 18 18 18 18 
3 18 18 18 18 18 18--1 
4 18 18 18 18 18 18 
5 18 18 18 18 18 18 
§-1 8 8 8 8 8 8 

-- 7 12 12 12 12 12 12 
8 12 12 12 12 12 12 

1 2 12 5 12 12 12 12 
_ 10 8 8 8 8 8 8 

11 8 8 8 8 
12 15 15 15 15 15 15 
13 10--- 10 10 10.01 lo 10.2 
14 10 10 10 10.31 10 10.6 
15 10 10 10 10.46 10 11.3 
16 12 12 12 12 12 12 
17 12 12 12 12 12 12 

J 
_ 

10.06 10 10.1 10.9 lo 11.6 
19 lo lo 10 10.7 10 11.7 

84 8 9.9 13.43 13.72 13.2 
21 43 . 74 44.63 44.3 60 60 
22 35 35 35 35 35 35 
23 43.74 44.63 44,3 1--ýLo 60 
24 35 35 35 35 35 35 
25 22 22 22 22 22 

1-26 22 
.... 

22 22 22 22 22 
1 
__ý7 

J_ 
_56.55 ....... .......... 

56.87 56.. 6 60 60 60 
1 28 57.49 57.05 56.9 73.35 72.20 70.1 

29 65 
,... 

65- 65 65 65 65 
30 65 65 65 65 65 65 
31 75 75 75 75 75 75 
32 75 75 75 75 75 75 
33 23.91 24.04 23.9 30 30-- 30 
34 20.09 1 20.441 20.3 1 30 1 28.77 1 27.6 
35 20.19 20-41 20.3 30 30 29.7 
36 23.91 24.04 23.9 30 30 30 
37 T 7 7 7 7 7 
38 7 7- 7 7 7- 7 

1 39 1 7 1- 
_71 

7 17 171 1 
1 40 71 7 

--- 
7 7 1 71 

41 16 15.69 15.6 16 16 L 16 1 
42 13.62 13.75_ 13.7., 15.79 16 _ 
43 15.03 1 14.441 1 4.4- 16 16 16 
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Table (5-7-C) (Cont'd) 
Comparison of Optimal Loadings 

1100 and 1200 MW Demands 

I 
I. - 

I GRG I 
I ---- I 

13.55 1 

1100 mw 

LA 

---- --- 13.68 

I LI 
I .. 1 13.6 

I GRG 

-. I -. 1 15.77 

1200 MW 
. ..... ........ ....... 

ILAILII 

-II............... .... . ...... 1 16 16 
I A5 6.781 6.77 1 6.8 1 7.26 1 7.59 1 7.5 
_ 1 46 6.78 1 6.77 1 6.8 1 7.26 1 

_L. 
59 7.5 

47 6.78 6.77 1 6.8 7.26 1 7.59 7.5 
6.78 6.77 1 6.8 1 7.26 1 7.591 7.5 

49 6.78 6.77 1 6.8 1 7.26 1 7.59 1 7.5 
50 6.78 6.77 1 6.8 1 7.26 1 7.59 1 7.5 
51 8.69 8.68 8.7 9.23 9.69 9.6 
52 8.69 8.68 8.7 9.23 9.69 9.6 
53 8.. 69 8.68 8.7 

- 
1 9.23 1 9.691 9.6 

54 8.53 8.68 8.7 1 9.01 9.69 9.6 
55 8 8 8 8 8-8 
56 18 A 8 8 88 

F 150,092.150,280. 
loh/hr 

-I- 

150,085.4 
I 

153,995.6 
I 

154,184.3 153,983,2 1 
I 

--- -1 
1 

Table (5-7-D) 

Comparison Of Optimal Loadings 
1300 and 1400 MW Demands 

II GRG 
.. - 

I 

1-1 8 

1300 MW 

I LA I 
I 

-.. I-I 
8 

LI I 
-- I 

28 

. ........ ... . ..... 
GRG 

. ......... ... 28 

1400 MW 
.... . 
I LA I 

......... .... . .... 28 

.......... 
LI I 

28 
2 18 18 18 18 18 18 
3 18 
4 18 

8 
18 

18 
18 

18 
18 

18 
18 

18 

5 18 18 18 18 18 
68 8 28 28 28 28 
71 12 12 12 12 12 12 
81 12 12 12 12 12 12 
91 12 12 12 12 12 12 

10 8 8 8 12 12 12 
11 8 8 8 12 12 12 
12 15 1 15 1 15 L 

- 
15 1 15 1§ 

1 13 1 .01 
10 1 14. i I le 1 18 

--1 
18 l 

141 10 10 13.1 18 18 --- 17.7 
15 10 10 16.4 18 18 18 
16 12 12 12 12 12 12 
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Table (5-7-D) (Cont'd) 
Comparison of Optimal Loadings 

1300 and 1400 MW Demands 

. ......... ..... ...... .. 
II GRG I 

1 -1 - ---------------- I 
17 1 12 

1300 MW 
..... -. -. .... ....... ......... ..... .- 

LA I LI 

-I............. . .......... 12 12 

1 
I --.. -.... ..... ...... 
I GRG I 

... .... .. II- 12 

1400 MW 

LA I LI I 
I --. - I 

12 
_I 1 18 1 10 10 16.2 18 18 le I 

- 19 
-Lo----j 

10 18 18 18 18-1 
20 10 18 18 18 18 18 
21 59 60 60 60 60 60 
22 35 35 35 35 1 35 35 
23 59 60 60 60 60 60 

124 35 35 35 35 35 35 
1 25 1 22 1 22 1 22 1 22 22 1 22_ 

27 60 
22 
60 

1 22 1 22 
1 60 1 60 1 

22 
69 

1 22 
1o 

2 75 75 75 75 
29 65 65 65 65 65 65 
30 65 65 65 65 65 65 
31 
32 75 

75 
75 

75 
75 

75 
75 

75 
75 

75 
75 

33 30 30 30 30 30 30 
34 30 30 30 30 30 30 

125 30 
. 
30 1 30 1 30 1 30 1 30 

36 30 30 30 30 30 30 
37 7 1__ 

_7 
7 7 7 7 

38 7 7 7 7 7 7 
39 7 7 7 7 7 7 

1 AP J 7 7 7 7 7 7 
- - 16 

42 16 
43 16 
44 16 

16 
16 
16 
16 

16 
16 
16 
16 

16 16 1§- 1 
16 16 16 

16 16... 
_ 16 16 

___16 45 15 
46 15 

15 
15 

9.7 
9.7 

15 
15 

15 
15 

13.8 
13.8 

47 15 15 9.7 15 15 13.8 
48 15 15 9.7 15 15 13.8 
49 15 15 9.7 15 15 13.8 
50 15 15 9.7 15 15 13.8 
51 118 21.50 12.3 18 22 17.4 
52 18 21.50 12.3 18 22 17.4 
53 22 21.50 12.3 22 22 17.4_1 
54 22 21.50 12.3 22 22 17.4 

1 55 L8 8 8 26 13 26 
56 1 8 8 13 26 
F 159,560.159,676. 

jDh/hr I 
158,428.92164,219.6 164,491.85164,047. 
IIII 

---L 
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Table (5-8) 

Comparison of Minimum Costs for Methods Tested 

IMETHOD1700 MW 1 800 MW 1 900 MW 11000 MW 11100 MW 1 1200 MWI1300 MW 11400 MW 

GRG 136,089-1139,336,2142,817 146,380 150,092 143,995.6159,560 164,219.61 

LI 136 , 084.5139,330.4142,798.5146,374,7150,085,4153,983,21c)8,428.9164.047 

I LA 136,283.6139,522.8142,922 146,568 150,280 154,184.3159,676 164,491.81 

II-II-II-I- -- -- -1 1-I 
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5.9 Summary 

In this chapter, three efficient algorithms for optimal economic dispatching 

of electric power systems were discussed. The problem treated involves a 
system w ith therma I generat ions , and the object is to determ ine the opt imum 
loading to satisfy a given load requirement and observe system and equipment 
constraints. 

As a result of an extensive study of available optimization techniques, the 
three methods emerged as most practical tools to carry out the dispatching 
function.. The methods discussed in this paper are the Generalized Reduced 

Gradient (GRG) algorithm, the Lambda Iteration (LI) algorithm, and the 
Lambda Aggregation (LA) algorithm. The latter is believed to be a 

NEW approach to the problem and appears to have many advantages. 

In this chapter, details of the algorithm were discussed and the 

computational results corresponding to a large size system with 56 units 

were summarized. Guidelines for selecting initial values for the GRG and LI 

algorithms were discussed. The experience with other available methods 

shows the techniques discussed to be extremely fast and robust. A 

comparison of execution times of the three techniques on a DEC micro VAX-11 

shows that the Lambda Aggregation method is extremely fast. A comparison of 
the optimal schedules and optimal objective obtained using the three methods 

shows reasonably close agreement. 

The advantages of the newly developed Lambda Aggregation technique are its 

speed and reasonably competitive results. Another attractive feature of the 

techn ique is that it proved to be an ef f ic ient means for prov id ing initial 

guess values for the GRG method to achieve fast convergence. The technique 

has been observed to fail when the Hessian has negative entries. 
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CHAPTER 0 

NON-LEAST SOUARES PARAMETER 

ESTIMATES AND EFFECTS ON 

ECONOMIC DISPATCH 

6.1 Introduction 

The literature on regression analysis [148 149) indicates that Least Squares 

parameter estimators may not be appropriate to use with data whose 
measurement errors are not norinally distributed. Alternative parameter 
estimation methods are available to deal with such cases. A generally 
accepted term for the process is that of robust regression (or parameter 
est imat ion) . 

The object of this chapter is to explore the application of robust parameter 
estimation methodology to fuel cost model parameter estimation for some 
units in the system. In this chapter, the Least Absolute Residual 
Estimation (LARE) or L, -norm approx imat ion est imators and the Iteratively 

Rewe ighted Least Squares (IRLS) est imators are d iscussed .A se lect ion of 
system units is considered, and the estimation task is carried out using 
these techniques. The computational results are compared in terms of the 

effect of the model parameters on the outcome of the economic dispatch 

computation. 

6.2 Least Absolute Residual Estimators 

Least Squares parameter estimators work we II when the measurement errors are 
normally distributed and in th is case the max imum I ike I ihood and Least 
Squares estimators are identical. When the observations follow a non-normal 
distribution, the method of least squares may not be appropriate [148]. 

A number of authors have proposed robust regression procedures designed to 
dampen the effect of measurements that would be highly influential if least 

squares were used. It can be shown that if the measurement errors follow a 
double exponential distribution, then the max-imum likel-ihood estimate is 

equivalent to the least absolute residual estimator (LARE) whose objective 
is to minimize 

L ý (k-i)l (6-1) JLAI =1 
1=0 
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The object ive is essent ia I ly an L, -norm of the measurement error vector 
where (L+I) is the number of available observations. 

The L, -norm parameter estimator can be formulated as a linear programming 
problem. if one lets E,, and E_, denote the positive and negative deviations 

about the estimated model, then the problem reduces to minimizing. 
L JLAR 

4V (6, + E, (6-2) 
imo 

subject to 

, S(k-i) - hT (k-i)X + Eý,, - E-i =0 i=0 L (6-3) 

with elements of X unrestricted in sign. The LP problem has (L+I) 
constraints [one for each observation] and [n+2(L+I)] variables (one 

variable for each model parameter and 2(L+I) variable representing the 
deviations). 

6.3 Robust Parameter Estimation 

The basis for the iteratively reweighted least squares estimator is the 
requirement of minimizing a function p of the individual measurement errors 
'IV %. This type of estimator is called a robust estimator or an M-estimator, 

where M stands for maximum likelihood. The function p is related to the 
likelihood function for an appropriate choice of the error distribution. In 
the method of least squares (implying that the error distribution is normal) 
the function p is given by [149] 

62 
- co <r< co (6-4) 2 

The estimation problem can be formulated as requiring minimizing the 
following robust objective criterion denoted by JR over the components X, 

of the nxI unknown parameter vector x[149] 
L 

JR (k) p ('I (k- i)/s) (6-5) 

The measurement error scale factor s is required since the M-estimator is 

not necessarily scale-invariant (if the measurement errors are multiplied by 

a constant, the new estimate may not be the same as the old one). Using the 

notation of chapter 4, the measurement error is defined by 

7 (k- i) =g (k- i) - hT (k- i) X (6-6) 
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There are (L+I) measurements available. and the overall measurement model of 
eq . 

(4 
. 7) app I ies - 

A robust estimate of X, denoted by X is obtained by setting the derivative 
of JR (k) w ith respect to the n components X, to zero and so Iv ing the 
resulting set of n equations. To simplify the notation, one substitutes 

(k-i)/s (6-7) 

As a resu It the m in im izat ion of J, (k. ) requ ires so lv ing 
L 

'IP ý r. 
v -! =0 a x, -, - ;jrx 

Now sr, 5(k-i) '5- h, (k-i) x, 
j=o 

Lr I= -ýj (k- i)/s 
axi 

Therefore the M-estimation problem requires solving 
L hj (k -i0 j=1 n 

it is customary to replace the partial derivative by the 
called the influence function defined by 

(r) _ ap 
ar 

(6-8) 

(6-9) 

(6-10) 

(6-11) 

f unction * (r) 
, 

(6-12) 

As a result, we need to solve 
L 

Ij =I hi (k-i)j (r, 0 j=1 ,n (6-13) 
j=0 

in the unknown parameter X, for j=1,..., n. This is a set of nonlinear 
equations which require an iterative algorithm for its solution. 

6.4 Iterative Solution of Robust Estimator Equations 

A popular iterative technique for solving nonlinear equations is that of 
Newton's method [132]. Here one requires solving the set of equations. 

-Fi (R )=0 j=1 ..., n . (6-14) 

Start ing w ith an in it ia I guess RO , one f inds an improved so lut ion X, such 
that 

x, = xo +A (6-15) 

The improved estimate X, is obtained as 

R, = Ru - J-1 -F (Xý ) (6-16) 
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The Jacobian matrix J is nxn and is made of the partial derivatives of 
with respect to x. 

ýý-X, - -, Ix - n 
j (6-17) 

14.1411 a§n 

1- 
ýý ý-X, ** -I xI 

I 

in the application to the robust regression problem, one has: 

§= HT + (6-18) 
Here * is an (L+ I)x I vector defined by 

*=[4, (rý ) 'k (r, )---- 'P (ý )1' (6-19) 
The matrix H is as defined in Chapter 4. The elements of the Jacobian matrix 
are obtained from 

L 
§j I hj (k- j) (r, 0 M=I ....... n (6-20) 

i=0 
L hi (k-i) (6-21) ri A7m 

Recalling that 

ar, =_ 
hm(k-i) 

3-XI- b (6-22) 

one concludes that 

14i =-II s- h. (k-i)h (k-i)ai, 
Im iýe a ri- 

(6-23) 

The Jacobian can be written in the compact vector-matrix notation as: 
J=- -sl 

WrH (6-24) 

Here one introduces the diagonal (L+I)x (L+I) matrix r defined by 
a4,0 00 
, Tr. - 
0a4, o ... 0 

r0000 (6-25) 
0000 
0000 
000... at - a rL 

t4ewton's iterations for the robust regression problem can thus be written 
as: 
x, = X0 + sl"T r HP Ur (6-26) 
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Newton's method is difficult to implement since it requires the derivatives 

of the inf luence f unct ion i, and a ]so because the matr ix HT rH may be 
negative definite. 

An approximation discussed by Huber [1501 and Bickel [151] assumes that r 
is a unity matrix and iterates according to the formula 

XI= 90 +S [HT HI-1 Hr 1, (6-27) 

The Huber iterations are attractive since the inverse needs to be computed 
once, but it requires more iterations and is not as easy to use with 
existing least-squares regression packages. 

An attractive iterations alternative is provided by the technique commonly 
known as the Iterat ive ly Rewe ighted Least Squares est imator (IRLS) 

, wh ich is 
discussed in the next section. 

6.5 Iteratively_ Reweighted Least Squares Estimation 

In the Iteratively Reweighted Least Squares (IRLS) method a weighting 
f unction w (r) is def ined in terms of the inf luence f unction by 

w (r) (r)/r r, ,-0 
r=O (6-28) 

As a result, one has 
A=w (r) +r aw 
ar Ar (6-29) 

As an approximation one obtains assuming that the second term is negligible 
all w(r) (6-30) Tr 

This expression is exact for either r=O or w being a constant. 

As a consequence of the introduction of the weighting function approximation 

one has 

--Wo 
Where W,, is a diagonal (L+l)x(L+l) 

one writes [149) 

f=W 7/s 

(6-31) 

matr ix w ith e lements w (r, )- As a resu It , 

(6-32) 
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The iteration therefore progress according to 

X=9+ LW WH11HTW [Z -HX] 10 fl -- - -0 -- 0 (6-33) 

It is c ]ear that th is iterat ion is equ iva lent to d irect ly f ind ing X, us ing : 
xI= LHT Wa "P HT wnz (6-34) 

This can be verified by expanding equation (6-33) to obtain equation (6-34), 
which is simply the solution to the normal equations with weighting matrix 
W. that depends on the measurement errors. 

The IRLS method only requires knowing how to compute the weight function 
w(r) and then it is possible to use an existing weighted least squares 

a Igor ithm or compute the square root of W (r) ,f rom the matr ix V, 12H and V12Z 
and use a standard least squares program for each step. A fundamental issue 
in IRLS estimation is that of choosing the weight functions w(r) which is 
discussed in the next section. 

6.6 The Weighting Functions 

A number of robust criterion functions p have been proposed and robust 
estimation procedures can be classified by the behaviour of their influence 
function f. The influence function controls the weight given to each 
measurement error. It should be noted that the least squares method has 

,p 
(r )= 21 r-1 (6-35) 

and j (r) =r (6-36) 
Note that the * function in this case is unbounded and thus the least 
squares procedure becomes non-robust when used with data arising from a 
heavy tailed distribution. 

Holland and Welsch [149] report on eight weight functions, chosen after some 
years of experience with robust estimation. The functions are designed so 
as not to weigh large measurement errors as heavily as least squares. 
Holland and Welsch give nominal values for tuning constants associated with 
each function to guide in the selection process. The tuning constant is 
used to define the region for which lower weighting of the errors takes 
place. The IRLS method is implemented in ROSEPACK [152] using the eight 
weighting functions. 
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We now give the definitions of the eight weighting functions and associated 
p and i, functions for the benefit of the power systems engineer. 

I- Andrews Weighting Function 

The Andrews weighting function is defined by the criterion function [153]. 

p (r) =A2 [1-cos (r/A)] < nA 

= 2A2 > TrA (6-37) 

The assoc iated inf luence f unct ion j, (r) is g iven by the der ivat ive of p (r) as 
(r) =A sin (r/A < IrA 

=0> nA (6-38) 

The weight function therefore is given by 

w(r) = (r)-i sin(r/A) Iq < nA A 
=0 Iq > -nA (6-39) 

Andrews weighting function is classified as a hard descender. The nominal 
tuning constant for this function is A=1.339. 

2- The Biweight_ Function 

This is attributed to Beaton and Tuckey [154], and is classified as a hard 
descender. The defining functions are given by: 

B2 ( 1_ [, _ (r - 11 <B 2- 13)'13 
) 

BI 11 >B (6-40) 7 

(r r[ 1- 
1)2 B B 

0 Iq >B (6-41) 

w(r) =[ 1-(, r)'] 11 <B 

=0>B (6-42) 

The nominal tuning constant for the Biweight function is B=4.685. 
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3- The Cauchy Weighting Function 

The weighting function is sometimes referred to as the (t-likelihood 
function) and is classified as a soft redescender defined by [149] 

p (r C' log[ I+ (Cr Y (6-43) 7 
(r )2 

* (r) r+r (6-44) 

w (r) = [I+ (-, r Y] (6-45) 

The nominal tuning constant for the Cauchy weighting function is C = 2.385. 

4- The Fair Weighting Function 

This is a weighting function defined by (1551 

p (r) 
F2 

- log(, -, I) (6-46) ET 'T 

r+ II I -, 
(6-47) ET 

w (r) + II ET (6-48) 

The Fa ir f unct ion is character ized by a monotone i, (r) and is des igned as an 
approximation to the least absolute residuals estimation procedure. The 
nominal tuning constant for this function is F=1.400. 

The Huber Weighting Function 

The Huber weighting function is defined by [1561: 

p (r) - Y"2 11 <H -7 - 
w 
2- >H (6-49) 

r 11 5H 
H sgn (r) 11 >H (6-50) 

1 11 <H 

11 >H (6-51) 

The nominal tuning constant H for the Huber weighting function is H=1.345. 

A comparison of the Hubert defining functions for the nominal tuning 
constant and the least squares functions is given in Figure (6-1). it is 
noted that as the measurement errors' magnitude increases, the weighting is 
decreased. 
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P (r) 

2 

2 

= 0.9045 
2 

Ic 

r 

1-345 

1 

r 

W (r ) 
I .. 

S. 

Huber 

r H= 1-34S 2 

Fig. ( 6-1 Comparison of Least Squares and Huber's Defining Functions 

I 

A 1.34S 

H 1.345 2 



-180- 

6- The Logistic Function 

This is def ined by [149] 

p 
(r) =L2 log [ cosh (r E (6-52) 

+(r) =L tanh(, r) (6-53) 

w (r) = (r )j tanh (r LE (6-54) 
The nominal tuning costant L for this function is L=1.205. 

7- The Talwar Weighting Function 

The Ta )war f unction is def ined by [157] 
I 

p (r) 2r2 !5T 

T2 >T 7 (6-55) 

r<T 
0>T (6-56) 

w (r) =1 :5T 
=0>T (6-57) 

The nominal tuning constant T for the Talwar function is T=2.795. 

8- The Welsch Weighting Function 

This soft redescender function is defined by [158]: 

p (r) = -W2- exp )2 (6-58) 

(r) =r exp (6-59) 

w(r) = exp[-(ý)2) (6-60) 
The nominal tuning constant W for this function is W=2.985. 

It has been noted that the starting value X used in robust parameter 
estimation must be chosen carefully. Using the least squares solution can 
d isgu ise the h igh res idua I po ints . The L, -norm (LARE) est imates wou Id be a 
good choice of starting values. in the ROSEPACK imp lementat ion the LARE 
solution technique of Bartels and Conn [159) is used. 

Robust estimation procedures are extremely helpful in locating outliers and 
highly influential measurements. Whenever a least squares analysis is 
performed, it would be useful [148] to perform a robust fit also. If the 
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results of the two procedures are in substantial agreement, then one should 
use the least squares results, because conclusions based on L. S. are at 
present better understood. However, if the results of the two analyses 
differ, then reasons for these differences should be identified. 
Measurements that are downweighted in the robust fit should be carefully 
examined. For a discussion of this aspect Mosteller and Tuckey [160] is 
recommended reading. 

6.7 The Iterative Weighting Least Squares Estimator 

in considering the problem of improving on the Least Squares parameter 
estimates for the fuel cost models in power systems, El-Hawary [161] and 
El-Hawary and Kumar [1621 proposed the Iterative Weighted Least Squares 
(IWLS) method to deal with the problem. The basic concept of the technique 
is outlined in this section. 

The weighted least squares error parameter estimator coincides with the 
unbiased minimum variance parameter estimator for the choice of the weighting 
matrix as [1631: 

W= R-1 (6-61) 

The matrix R is the error covariance matrix of the measurements 
[V-Vl [V_V]T 

.) (6-62) 

where 9 is the mean value of the measurement noise v. This requires 
knowledge of the statistics of measurement errors, which involves repeating 
the measurements under the same conditions to establish the required means 
and covariances. In the lack of this information one may attempt to build 
this information from the weighted least square process itself. 

One starts with a unit weighting matrix W, =I 

An estimate X0 is obtained as 

RO = [HT WO H]-l fir W, ) Z 

The error V,, is obta ined as 

vo =z-H Ro 
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From V. one approximates the covar iance matrix ý by 
F (VO ) 

Now one takes a new weighting matrix 
= Ic-I 

A new estimate vector X, is calculated as 

X, =[HTW, H] .1HTWIz 

A new measurement error V, is formed as 

H 

l3ef ore proceeding one checks the improvement in X, over X. by f inding 

At = xf - X0 

If A, is close to zero (a given tolerance) no further improvement will be 

requ ired . Otherew ise, R, is ca Icu lated and a new est imate is found X2. The 

process is repeated 

On the i" iteration, we have 

Xj =[ HT ýj H] -I W Wj Z 

Wi = 
li -I 

(6-63) 

The relation between the IWLS and the IRLS techniques can be seen from 
inspection of eq. (6-34) for the IRLS iterations and eq(6-63) for the IWLS 
iterations. The same form is adopted by both methods, but the difference is 
in the choice of the diagonal matrix elements. In the IRLS scheme, from 
eq. (6-31) the dependence of the new weightings is on the current iterations 

errors using one of the standard weighting functions. The IWLS is an 
expanded memory weighting as opposed to the one-step weighting of the IRLS . 

6.8 Computational Results 

An extensive computational experiment to explore the application of the LARE 

and IRLS estimators to the, units of the system under consideration was 
conducted. On the basis of the system economic dispatch results, a number 
of units were selected for the study. Data for units 2-5 were selected to 

examine the aspect of an infeasible parameter estimate further. Four more 
data sets representing units 28,42,44 & (45-50) were considered, since 
these units experienced more changes in the optimal loading than all other 
units. In total 5 data sets were examined out of a possible 30 data sets. 
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The objective of the experiments was to ascertain the validity of the least 

squares parameter estimates and the underlying assumption of a Gaussian 

error distribution. The results of the experiment were used to determine 

the most economic mode of loading based on the newly obtained parameters of 
the units considered. Comparisons and conclusions in terms of various error 

measures, loadings, and minimum cost were also made in the work reported in 

this section. 

The experiments were conducted using the Robust Statistical Estimation 
Package (ROSEPACK) imp lementat ions of LARE and IRLS estimators, on a DEC 

Micro-VAX 11 in Fortran 77. The convergence criterion used was 10-4 on the 

scaled errors in the parameter estimates. Scaling of elements of the vector 
Z and the matrix H was carried out using column maximum element scaling. 
Least absolute residual estimates were used to initiate the iterations. 

Experiments using the eight weighting functions and the LARE estimators were 
conducted. Elements of the diagonal weighting matrix were examined on each 
iteration. Recommended default values of the tuning constant for each 

weighting function were used. The following error measures were considered 
and are reported in this section. 

SSR - Sum of squares of residuals (measurement errors). This is L, norm. 
SAR - Sum of the absolute value of the residuals. This is L, norm. 
MAXRE - Maximum of the absolute value of the residuals. This is L, 

)D norm . 

This last measure is useful for ranking purposes using error measures. This 
is because the Least Squares Estimates (LSE) will always yield the lowest 

SSR and LARE wiII resu It in the lowest SAR by the ir very def in it ion. 

It should be noted in the application of the IRLS that whenever the scaled 

residuals are less than the tuning constant of the weighting function, the 

value of weighting will be unity for the measurement. If all scaled 

residuals are less than the tuning constant, then the algorithm returns the 

estimate to be precisely that of the LSE. This can be seen from eq. (6-34). 

Results and conclusions given in this section can be divided into two parts. 
In the first, conclusions using statistical measures from ROSEPACK are 
drawn, and in the second results of economic dispatch using the GRG 
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algorithm used in Chapter 5 are used to further evaluate the conclusions 
from an end-use point of view. This latter part is a unique contribution of 
this investigation. 

Data for the four identical units (2-5) were listed in Table (4-1) and in 

Table (6-1) a listing of the results obtained using ROSEPACK are given. it 
is noted that out of the eight weighting functions, only Andrews resulted in 

estimates different from the LSE values. These are listed in Table (6-1) 

along with the error measures. Here LSE and Andrews gave almost identical 

parameters. The maximum of absolute residuals (MAXRE) is lowest for the 

Andrews estimates. 

Table (6-1) 

Comparison of Parameter 

Estimates and Error Measures 

for Units 2-5 

I aý II SSR I SAR I MAXRE I 

---------------------------------------------------------------------- 
IL SE 1-0 . 7356019 11.415329 1-0 

. 0051867 p 
. 0025847 P 

. 1393057 P. 023969 1 

---------------------------------------------------------------------- 
ILARE 1-0 . 7518344 11.416294 1-0 

. 0051850 10 
. 0027186 P 

. 131484 P. 0274066 1 

---------------------------------------------------------------------- 
ONDREWS 1-0 . 7359567 11.415346 1-0 . 0051861 p . 0025848 0 

. 138885 P 
. 023883 1 

---------------------------------------------------------------------- 

Tab le (6-2) lists fuel cost measurement data for unit 28 in this system. 
This data was used to obtain parameter estimates as shown in Table (6-3). 

it is noted that for this unit, three weighing functions resulted in new 

estimates. These are Andrews, Huber, and Talwar. The LSE values for' a. and 

aý are the highest and the value of ý is the lowest. In terms of SSR, the 

LARE and Huber are closest to LSE measure, whereas, Huber and Andrews are 

closest to LARE in terms of SAR. Maximum value of the absolute residual is 

lowest for the LSE estimates. 
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Table (6-2) 

Fuel Cost Measurement Data 

for Unit 28 

---------------------- 
P (MW )IF (Mcal/hr) 

20 61.20 
25 69.38 
30 78.60 
35 89.78 
40 101.00 
45 112.50 
50 124.00 
55 135.85 
60 147.60 
65 159.90 
70 172.20 
75 

------------ 

184.50 

---------------- 

Table (6-3) 

Comparison of Parameter Estimates 

and Error Measures for 

----- --- 

Units 28 

-- - - ------------- - -- - -- - 

-- 

- - 
I 

---------- 

--- -- -- - -------- -- 
a21 SSR I SAR 

--- --- ------------------ ------------ 

- -- ------ 
I MAXRE I 

------ ----- - ILSE 

-------- 

123.48927 

---------- 

- - - 11.698061 P. 00609200 1 5.02719616.14531 

---------------------------------------- 

------ 11.3146 

--------- 
ILARE 

- 

121.01563 

-- -- --- 

11.809463 P . 00500448 16.262388 15.047783 

-------------------- --- - - - 

-- 
11.993324 

----------- -------- - - 
ONDREWS 118.77898 

---------- - 

------- -- - - --- 
11.883038 P. 00439636 110.24764 15.659702 

-------------------- --- -- - --------- 

13.001726 1 

----------- ------- 
IHUBER 120.42926 

- ------ 

- -- - - 
11.832238 P. 004779771 6.80352515.262701 

----------------- -- ----- - -- 

12.21407 1 

----- -------- 
ITALWAR 

-------- 

- - - 
119.07516 

---------- 

-------- -- - -- 
11.871445 P. 00450209 1 9.609438 15.645875 

---------------------------------------- 

------ 
12-895098 1 

----------- 



-186- 

Table (6-4) gives the data for unit 42 and results of parameter estimation 
are given in Table (6-5). For this unit, only Andrews weightings resulted in 

parameter estimates different from the LSE parameters. The highest values 
of N and a, are due to Andrews which can also be seen to be a good 

compromise on SAR and SSR between LARE estimates. 

Table (6-4) 

Fuel Cost Measurement Data 

for Unit 42 

---------------------- 
P (MW) IF (Mcal/hr) 

6 14.00 
7 16.24 
8 18.46 
9 20-66 

10 22S2 
11 24.99 
12 27.18 
13 29.54 
14 31.93 
15 34.43 
16 

------------ 

37.04 

---------------- 

Table (6-5) 

Comparison of Parameter Estimates 

and Error Measures for 

Units 42 

------------------------------------------------------------- 
IIIa21 SSR I SAR I MAXRE 

--------------------------------------------------- - ---------------- 
ILSE 12.504698 11-81230710.021130610.10159250-91867390-13924011 

--------------------------------------------------------------------- 
ILARE 12.5B7843 11.7993690.0215628 P. 1031212P. 8775129P. 16031741 

--------------------------------------------------------------------- 
ONOREWS 12.51777 11 . 810364 p . 02119283 p . 10 16335 p .9 121832 Pý. 1429066 1 

--------------------------------------------------------------------- 
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Data for unit 44, are given in Table (6-6), and the corresponding parameter 
estimates and error measures are given in Table (6-7). Here one notes that 
Andrews and Hubers functions were active for this data set. One notes that 
the LSE est imates g ive h ighest N and a., . The best (lowest max imum res idua 1) 

is due to the LSE as well. Andrews SSR is closest to LSE values and its SAR 

are closest to LARE's. 

Table (6-6) 
Fuel Cost Measurement Data 

for Unit 44 

---------------------- 
P (MW )IF (Mcal/hr) 

6 13.68 
7 15.90 
8 18.12 
9 20.33 

10 22.54 
11 24.74 
12 26.95 
13 29.25 
14 31.64 
15 34.13 
16 36.80 

Table (6-7) 

Comparison of Parameter Estimates 

and Error Measures for 

Units 44 

------------------------------------------------------------- 
1 a, 11 a2 1 SSR 1 SAR 1 MAXRE 1 

--------------------------------------------------------------------- 

ILSE 12.025374 11.840458P. 02019813P. 0960667P-9137835P-15657711 

--------------------------------------- ----------------------------- 
ILARE 11.753449 11.900622P. 01718764P. 1081151P. 8275089P. 236557 1 

--------------------------------------------------------------------- 
ýN()REWS11.997309 11.847085P. 01984565P. 0963338P-9003233P-16883861 

--------------------------------------------------------------------- 
IHUBER 11 . 453874 11.967021 p . 01367429 P. 1768975 p . 9124443 p . 3731728 1 

--------------------------------------------------------------------- 
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The fifth data set is for units (45-50) and is listed in Table (6-8). The 
parameter estimation results are given in Table (6-9). One notes that 
Andrews parameter estimates are close to those for the LSE estimator. 

Table (G-8) 

Fuel Cost Measurement DatA 

for Unit 45-50 

---------------------- 
P (MW) IF (Mcal/hr) 

5 37.00 
6 39.60 
7 41.30 
8 44.80 
9 47.70 

10 50.50 
11 52.80 
12 56.40 
13 59.80 
14 64.40 
15 

------------ 

69.00 

---------------- 

Table (6-9) 

Comparison of Parameter Estimates 

and Error Measures for 

Units 45-50 

------------------------------------------------------------- 
I%IIa21 SSR I SAR I MARE 

--------------------------------------------------------------------- 
IL SE 130.11814 P. 875764P. 1121209 12.226672 14.569719 P. 65150261 

--------------------------------------------------------------------- 
ILARE 127.80556 11.408331P. 0861112613.078162 14-472225 P. 91666411 

--------------------------------------------------------------------- 
ONDREWS130.10572 P. 877533P. 112077 12.226759 14.565876 0.654669 1 

--------------------------------------------------------------------- 
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It is important at this point to attempt to rank the parameter estimates 
using the various methods in terms of the statistical error measures. 
Earlier, it was stated that the SSR for the LSE would be the lowest, and the 
value of SAR would be lowest for LARE. The maximum absolute error (MAXRE) 
would be a good criterion for ranking and the listing of Table (6-10) gives 
such ranking for the five data sets for five sets of parameter estimates. 
The ranking gives a score of I to the top method with lowest MARE followed 
by 2 for the second lowest MAXRE and so on. It is clear that LSE values are 
superior, but those for Andrews are close second. The same conclusions can 
be drawn for Table (6-11) giving the ranking in terms of the sum of squares 
of error. In terms of the sum of absolute errors (SAR), Andrews estimates 
are close second to LARE's. 

Table (6-10) 
Ranking of Methods in Terms of 

- 

Maximum Absolute 

-------------------- - 

Error 

1 

- -- 

2-5 1 

--------- 

- - 

28 1 42 1 

-- 

------- 
44 1 

--------- 

45-50 

------- - 
LSE 2 

-- ----------- 
111 

------ 
11 

--------- 
11 

LARE 3 231 31 3 
ANDREWS 1 521 21 2 
TALWAR 41 1 
HUBER 

----------- --------- 

31 

--------------- 

41 

------ --------- 

Table (6-11) 

Ranking of Methods in Terms of 

- 

Sum 

--------- 

of 

- 

Squares of 

--- 

Errors 

1 2-5 1 
--- 

28 
-- ------ 

1 42 1 
------ 

44 1 
--------- 

45-50 

----------- 
LSE 

--------- 
III 

---- 
I 

----------- 
111 

------ 
11 

---------- 
11 

LARE 3 2 3 3 3 
ANDREWS 2 4 2 2 2 
TALWAR 5 
HUBER 

----------- ---------- 

3 

--- ----------- 

4 

------ --------- 
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Table (6-12) 

Ranking of Methods in Terms of 

- 

Sum 

--------- 

of Absolute E rror 

1 
- 

2-5 1 
--- 
28 

---------- 
1 42 1 

------- 
44 1 

--------- 
45-50 

----------- 
LSE 

---------- 
3 

--- 
5 

---------- 
3 

------- 
4 

--------- 
3 

LARE 1 1 1 1 11 
ANDREWS 2 4 2 2 2 
TALWAR 3 
HUBER 

----------- ---------- 

2 

--- ---------- 

3 

------- --------- 

it should be noted that one does not have enough information to properly 
rank Talwar's and Huber's results. It is therefore concluded on the basis 

of the foregoing analysis to proceed with further evaluation on the basis of 
the intended use of the acquired parameters in performing economic dispatch 

of the 56 unit system. Table (6-13) lists the minimum cost of the operation 
using the parameter estimates for power demand values ranging from 700 MW to 
1400 MW. Andrews results appear to be superior, as can be seen from Table 
(6-14). 

Table (6-13) 

Comparison of Minimum Cost Of Operation 

Using 

------- 

Different Parameter Estimates 

---------------------------------- ----- - -- 
I LSE I TALWAR I HUBER I ANDREWS 

- ----- 
I LARE 

------ 
700 

---------- 
136,089.7 

------------ 
136 063 . 97 

- 

----------- 
136,074 

. 03 
----------- 
136,051-81 

------------ 
136,078.00 1 

------ 
800 

--- 

---------- 
139,336 

.2 
---------- 

---- ------- 
139 372 . 47 

------------ 

----------- 
139 382 

. 
53 

----------- 

----------- 
139 272 . 89 

----------- 

------------ 
139 336 . 00 1 

------------ --- 
900 142,817.0 142,807-61 

- - - - - - 

142,818.72 142,745.38 

- 

142,815.00 1 

------ 
1000 

---------- 
146,380.0 

- - - - - - 
146,384.50 

- 

----------- 
146,386.62 

--------- - 
146,311.04 

------------ 
146,381.00 1 

------ 
1100 

---------- 
150,092.0 

---- ------- 
150,097.05 

----------- 
150,095.26 

----------- 
150,017.77 

-- 

------------ 
150,092.00 1 

----- ------ 
1200 

---------- 
153,995.6 

------------ 
153,990.18 

----------- 
153,986.25 

--------- 
153,909.03 

------- 
153,995.00 1 

------ 
1300 

---------- 
159,560.0 

- 

------------ 
159,554.95 

----------- 

----------- 
159,551-12* 

----- 

----------- 
159,474.05* 

- - - 

------------ 
159,561.00 1 

--- ------ 
1400 

- -------- 
164,219.6 

---- 

- 
164,213.93 

------------ 

------ 
164,210.10* 

---------- 

------ - - 
164,133.03* 

----------- 

--------- 
164.219.00 1 

------ ------- 
The 

----- 
asterisk means that c 

- ------ 
onvergence was not obtained. 
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Table (6-14) 

Ranking of Methods 

in Terms of Minimum Cost of Operation 

- 
I 

- - 

------- 
LSE 

------- 

------------------------ 
I TALWAR I HUBER I 

------- 

------------ 
ANDREWS I 

------- 
LARE 

---- -- 
700 5 2 

----------------- 
3 

------------ 
1 

------- 
4 

800 3 4 5 1 2 

900 5 2 4 1 3 

1000 2 4 5 1 3 

1100 2 5 4 1 3 

1200 5 3 2 1 4 

1300 3 2 1* 5* 4 

1400 

-------- 

5 

------- 

3 

------- 

2* 

----------------- 

1* 

------------ 

4 

------- 

The experiments evaluating the performance of the parameter estimates were 
conducted using. the GRG dispatch. Parameters used in Chapter 5 were retained 
and only those new ones for each method were changed in the runs reported. 

Results comparing the optimal power generation of the 56 units for loads of 
700 and 800 MW are given in Table (6-15). Here one notes that for the 700 
MW demand the optimal generations are identical when using LSE and Andrews 

parameters. Lower generations for units 27,28,31,36,44 and 45-50 are 
required by Andrews parameters, whereas higher generation is required at 
unit 32,37-40 and 42 for the 800 MW demand. 

Table (6-16) lists the results for 900 and 1000 MW demands. Table (6-17) 

gives results for 1100 and 1200 MW demands. Finally Table (6-18) lists 

results for 1300 MW demands. Again the optimal generations for these latter 
demands are identical. 

Comparing the minimum operating costs, one finds that values predicted by 

Andrews parameters are consistently lower than those obtained using the LSE 

values. This takes place even for 700 MW, 1300 MW and 1400 MW demands where 
the optimal generations are identical and logically one would expect the 

sane actual fuel costs to be incurred. One can conclude that results of the 

comparison should be treated with more caution. 
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Table (6-15) 
Comparison of Optimal Loadings 

Using LSE and Andrews Parameters 
for 700 and 800 MW Loads 

700 MW 800 MW 

LSE ANDREWS LSE ANDREWS 

1 L- 8 8 8 18 
2 L 18 is 18 18 
3 18 18 18 18 
4 18 18 18 le J 
5 18 18 18 18 
6 8 8 8 8- 
7 10.24 10.24 12 12 
8 9.07 9.07 12 12 
9 5.57 5.57 12 12 

10 8 8 8 8 
11 8 8 8 8 
12 11.12 11.12 15 15 
13 10 10 10 10 
14 10 10 10 10 
15 10 1 10 10 10 
16 10 10 10 12 
17 10 10 10 10 
18 10 10 10 10 
19 lo__ 10 10 10 
20 8 8 8 8 
21 20 20 20 20 
22 i 20 20 20 20 

__ 23 1 20 20 20 20 
24 j 20 20 20 20 
25 20 20 20 20 
26 20 20 20 20 

- 27 20 20 29.55 27.01 
28 36.42 30.65 
29 65 65 65 65 
30 L 65 65 65 65 

- _ 31 25 25 44.61 44.29 
32 25 25 44.03 44.54 
33 8 8 8.09 8 
34 8 8 9.20 8 
35 8 8 8 8 
36 8 8 8.09 8 
37 2 2 4.97 5.03 
38 2 

-A 
2 4.97 5.03 

39 2 2 4.97 5.03 
2 4.98 5.05 
6 6 6 
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Table (6-15) Cpmt'd 

__12 

LSE 

700 MW 

ANDREWS 

800 mw 

LSE ANDREWS 

.............. ...... . 
7.85 16 

43 6 6 6 6 
44 6 6 7.44 7 
45 5 5 5.63 5.56 
46 5 5 5.63 5.56 
47 5 5 5.63 5.56 
48 5 5 5.64 5.56 
49 5 5 5.67 5.56 

--Lo 
55 5.62 5.56 

51 8 8 8 8 
52 8 8 88 
53 8 8 8 8 
54 8 88 8 
55 8 9 8 8 
56 8 8 8 8 
F 

j__Qýh/hrr 
136,089. 

J-- 
136,051.8 139,336.2 139,272.9 
III-I 

Table (6-16) 
Comparison of Optimal Loadings 

Using LSE and Andrews Parameters 
for 900 and 1000 MW Loads 

900 MW 1000 MW 

LSE ANDREWS LSE ANDREWS 
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Table (6-16) Cont'd 

.. 
16 

900 

LSE 

.... ..... -- 
12 

MW 1 1000 MW 

- ------ -- ---- . ... . ... .... .... ......... ......... - --------- 
ANDREWS LSE ANDREWS 

. ... .. -- -. - - .-I 
12--- 12 

_12 17 10 10 10 
18 10. io___I_ 10 10 
19 10 10 10 
20 8 8 8 8 
21 20.71 20.05 30.84 30.95 
22 20.71 20.05 30.84 30.95 
23 20.71 20.05 30.84 30.95 
24 

... . ....... 
20271 20.05 30.84 30.95 

25 22 22 22 22 
26 22 22 22 22--- 
27 36.46 35-92 45.52 15.24 
28 40.04 35.63 _ 48.75 46.23 
29 65 65 65 65 
30 65 65 65 

__ 
§5 

31 75 74.69 75 75 
3i 75 75 75 5 
33 12.111 11.81 1 17.74 1 L7.18 
34 12.15 1 11.94 __ 1 16.01 1 15.70 
35 9.701 9.43 1 14.74 1 14.25 
36 12 . 11 1 11.81 1 17.74 1 17.18 
37 1 5.591 5.52 1 6.28 1 6.28 
38 5.591 5.52 

--L 
6.28 

_ __6.28 39_-j 
. 
5... 59. 

__.. 
l 5.52 6.28 6.28 

40 j 5.59_1 5.52 6.28 
___ _§.. 

28 
41 
42 

6 7.86 
9.46 16 

12.49 
11.35 

12.42 
16 

43 6 6 10.96 10.84 
44 8.62 8.77 11.18 11.19 
45 5.86.,., l 5.78 1 6.32 1 6.29 
46 1 5.871 5.77 1 6.32 1 6.29 
47 5.81 6.32 6.29 
48 1 5.86_1 5.89 6.32 § . 29 
49 j 5.851 6.04 . L 6.32 1 - _ ý. 29 

_ 50 1 5.84, 6.54 1 6.32 1 _ 6.29 
51 8 8 8.13 8.12 
52 8 8 8 8 

_ 53 8 
-- 

8 8 
-8 54- 8 8 8 8- 

55 8 8 L8 8 1 
56 - 8 L8 - 8 I 
F 142,817.142,745.38 , 146,380.146,311.04 1 
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Table (6-17) 
Comparison of Optimal Loadings 

Using LSE and Andrews Parameters 
for 1100 and 1200 MW Loads 

-- 

1100 

LSE 
------------ - -- 

8 

MW 

ANDREWS 

8 

1200 

LSE 

8 

MW 

ANDREWS 

8 
2 18 18 18 18 

-- - 
L8--L 18 18 18 
18 18 18 18 

5 18 18 18 18 
68 1- 8 8 8 
7 12 12 12 12 
8 12 12 12 12 
9 12 12 12 12 

10 8 8 8 

---Il 
8 88 

12 15 15 15 15 
10 10 10.01 10 

14 10 10 10.31 10 
15 10 10 10.46 10 

12 12.00 12 
17 12 12 12.00 12 
18 10.06 10 10.9 11.34 

10 10.7 _ 10.43 
20 9.84 9.71 13.43 12.09 
21 43.74 44.64 60 60 
22 

- 
35 35 

.. 
35 35 

23 4.3,74 43.06 60 60 
24 35. 35 35 35 
25 22 22 22 22 
26 

. 
22_ 22 

_ 
22 22 

27 56.55 55.86 60 60 
28 57.49 57.83 73.35 75 
29 65 

-- 
65 65 65 

30 65 65 65 65 
31 75 75 75 75 
32 75 75 75 75 
33 23.91 23.59 30 30 
34 qn-09 20.12 30 28.37 
35 20.19 20 30 30 
36 23.91 23.59 30 30 
37 

-7 - 
7 7 

-7 38 7 7 7 7 
39 7 7 7 7 
40 J_ 7 7 7 7 
41 _ 16 

-1 
15.86 16 16 
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Table (6-17) Cont'd 

1100 
. ...... ....... 

LSE 
-- ---- ---- - --------- - --- ---- 

42 13.62 

MW 
- --------- . ...... 

ANDREWS 
- ---- 

16 

1200 MW 

LSE ANDREWS 
-- . .......... .. I. ---. -- --I 

15.79 1 

__13 
15.03 14.14 16 16 
11.5ý_ 13.49 15ý77 16 

45 6.78 6.74 7.26 7.32 
46 6,78 6.74 7.26 7.32 
47 6.78 6.74 7.26 7.32 
48 6.78 6.74 7.26 7.32 
49 6.78 6.74 7.26 7.31 
50 6.78 6.74 7.26 7.35 

8.69 8.67 9.23 9.40 
52 8.69 8.67 9.23 9.40 
53 8.69 8.67 9.23 9.33 
54 8.53 8.67 9.01 9.71 
55 8 8 8 8 
56 8 8 8 8 
F 150,092.150 , 017.77 153,995,6 

1 
153,909.03 
11 

Table (6-18) 
Comparison of Optimal Loadings 

Using LSE and Andrews Parameters 
for 1300 and 1400 MW Loads 

LSE 

8 

1300 MW 

ANDREWS 

8 

LSE 

28 

1400 MW 

ANDREWS 

28 
2 18 18 18 le 
3 18 18 18 18 
4 18 18 is 18 
5 18 18 18 18 
6 le 18 is is 
7 12 12 12 12 

12 12 12 12 
9 L 12 12 12 12 

10 8 8 12 12 
8 12 12 
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Table (6-18) Cont'd 

1300 MW 1400 MW 
--- -------- 

LSE ANDREWS LSE I ANDREWS 

__. 
L6 1 12 12 12 

. 
12 

17 12 12 12 12 
18 10 10 18 __ is 
19 10 10 18 18 
20 18 19 18 is 
21 59 59 60 60 
22 35 35 35 35 
23 59 59 60 60 
24 35 35 35 35 
25 22 22 22 22 
26 22 22 22 22 
27 60 60 60 60 
28 75 75 75 75 
29 65 65 65 65 
30 65 65 65 65 
31 75 75 75 75 
32 75 75 75 75 
33 30 30 30 30 
34 30 30 30 30 
35 30 30 30 30 
36 30 30 30 30 
37 7 7 7 7 
38 

-7 
7 7 7 

39 7 7 7 7 
40 7 7 7 7 
41 16 16 16 16 
42 16 16 16 _ 16 
43 16 16 16 16 
44 16 16 16 _ L6 
45 15 15 15 _. 15 
46 15 15 15 15 
47 1 15 1 15 15 
48 15 15 15 15 
49 15 15 15 15 
50 15 15 15 15 
51 22 22 18 18 

22 18 is 
53 22 22 22 2 
54 22 22 22 2 
55 8 8 26 26 
56 8 8 8 8 
F 

1 Dh/hr 
159,560. 
I 

159,474.05 
I 

-- - 

164,219.6 
I 

164,133.03 
I 

-- 
I 
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The percentage relative differences in the minimum operating costs for the 

power demands considered are calculated as 

700 MW 0M 
800 mw 0 ift 
900 mw 0 . 167% 

1000 mw 0 . 14WI, 

1100 mw 0. Me 

1200 MW 0 . 16Y. 
1300 MW 0 . 144W. 

1400 MW 0.134W. 

Although all differences are below 0.2X and may be neglected from a 

numerical analysis point of view, it is important to realize that this can 

mean significant loss in economy over the span of years. Possible 

explanations of the discrepancy at 700 MW are effects of round off in 

listing solutions and that the Andrews fit underestimates the cost values at 

very low and high loadings on units modelled. 

6.9 Summary 

In this chapter parameter estimation techniques that offer an alternative to 

LSE were explored. The main features of the IRLS techniques is that they 

serve as a diagnostic too] to verify whether measurement errors are normally 

distributed or not. The least absolute residual estimator is ideally suited 

for measurement errors whose distribution is a double exponential. The IRLS 

estimates are a compromise between the two cases. 

App I icat ion of the est imat ion techn iques to data for a number of un its in 

the system revealed that the measurement errors are almost Gaussian and that 

estimates based on Andrews weighting functions offer an attractive 

alternative. From an intended use point of view in terms of results of 

econom ic d ispatch of the system th is conc ]us ion appears to be conf inned 

although the improvements are slight. 
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CHAPTER 7 

CONCLUSIONS, RECOMMENDATIONS, 

AND SUGGESTIONS FOR FURTHER RESEARCH 

7.1 Introductory Comments 

The intent of this chapter is to offer a summary of contributions made in 

this work as well as a number of proposed areas for future research that can 
be thought of as an off-shoot of this investigation. For conclusions and 

compar ison of methods in each area , the f ina I sect ion of each chapter may be 

consulted. 

7.2 Summary of this Research 

in demonstrating that this thesis embodies certain contributions to 

advancing knowledge, it is important to categorize such contribution as 

follows: 

Contributions that advance the state of the art in a specific area of 

applied mathematics with special reference to power system economy- 

security functions. 

2- Contributions in terms of advancing state of knowledge of pertinent 

characteristics of the UAE's Abu Dhabi electric power system. In this 

category we include developing advanced techniques for efficient 

operation of this system. The application of these techniques is 

expected to result in about 4% savings in annual fuel costs for the 

system as well as enhancing the reliability of the system. 

3- Contributions in terms comprehensive up-to-date literature reviews in 

areas encompassed by this research work. in this category we also have 

summaries of salient features of advanced techniques in the area 

treated. 
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7.2.1 AdvancingState-of-thp-Art 

It is suggested that contributions have been made to advance state-of-the- 
art in the following areas: 

a- Discovered the possibility of non-feasible parameters for the fuel cost 
model of thermal generating plants. 

Ib_ Devised a systematic procedure for identifying possible (bad data points) 
measurements pairs that cause non-feasible parameters. The procedure 
recognizes the role of recursive least squares as well as weighted least 

squares in achieving the desired result. 

Presented a formulation of constrained parameter estimation for fuel 

cost models as a non-linear programming problem. 

d- Proposed an extremely fast economic dispatching algorithm based on some 
realization of optimality conditions in closed form. Testing the method 
which is referred to as the Lambda aggregation technique proved a 
significant reduction in computing time over other techniques. 

Suggested and implemented a number of initial guess estimators for use in 

conjunction with GRG implementation. A particular scheme based on the 
first result of a Lambda aggregation procedure proved to achieve 
considerable reduction in computing time. 

implemented for the first time robust parameter estimation techniques 

employing the iteratively reweighted least squares with a number of 
weighting functions to the fuel cost model parameter estimation problem. 

Advocated the eva luat ion of parameter est imates on the bas is of not on ly 

accuracy considerations, but also from an intended use point of view. 

7.2.2 Advancing UAE's_Abu Dhabi System Operation 

The work reported in this thesis utilized system data from the UAPS Abu 

Dhabi electric system to test algorithms and perform comparative evaluations 
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in the three major areas of load forecasting, parameter estimation and 
economic d ispatch - As a result , the state of operat ion of the system wiII 
gain due to the following contributions: 

Determined optimal smoothing constants for the mid-tenn and short-term 

problems of load forecasting using the following conventional 
forecasting techniques: 

i- General Exponential Smoothing 

ii- Winters' Additive Procedure 

iii- Winters' Multiplicative Procedure 

b- Explored and determined an optimal time series model structure for 

short-term and mid-term load forecasting using Box-Jenkins methodology. 

Conducted extens ive test ing of Ka ban fi her ing us ing at ime- invar iant 

state space representat ion emp loy ing as imp le max imum I ike I ihood no ise 

adaptive filtering for short-term forecasting. 

d- Applied a recursive weighted least squares technique with exponential 

we ight ing in the past with optimal coefficients to the short-term 
forecasting problem. 

implemented an instrumental variable procedure using temperature as an 
exogenous variable to obtain short-teryn forecasting. 

implemented GRG and Lambda iterations techniques with initial guess 

enhancements to obtain optimal dispatch strategies for the load profile 

of the system. 

Conducted extensive testing of the newly proposed Lambda aggregations 

method. 

h- Obtained a set of model of parameters for the 56 units of the Abu Dhabi 

system. 

in all areas treated, comparative evaluations of possible alternatives were 

carried out. As a result it is felt that there is a sound basis for 

economic operation of the system which was not available before. 



-202- 

in particular, it is expected that fuel cost model parameter estimation for 
the majority of system units will be carried out using Andrews weighting 
function in conjunction with the iteratively reweighted least squares. The 

short-term forecasting function appears to be best dealt with using Box- 
Jenkins, Winters' multiplicative model, or the instrumental variable method. 
it may be advantageous to consider combinations of these forecasts to arrive 
at better forecasting accuracy. The results of the model parameters 
estimators and load forecasting are then used in an economic dispatching 

routine based on the Lambda aggregation method to schedule the system units 
to meet the forecast power system load. 

it is to be emphasized that preliminary investigations show that the 
implementation of the results of economic scheduling of Chapter 5 to the Abu 

Dhabi System can potentially increase the savings by up to 4Y. over the 

present pract ice of generat ion schedu I ing at 1988 cost f igures (Tab le 7- 1) - 

7.2.3 Comprehensive Reviews 

In terms of comprehensive up-to-date literature surveys, it is felt that the 

following are worth noting. 

a- Survey of Load forecasting methods up to 1987. 

b- Survey of Adaptive filtering techniques. 

c- Survey of optimal economic dispatch area. 
d- Survey of fuel cost model parameter estimation. 

e- Survey of robust estimation techniques. 

In addition, application-oriented summaries of procedures and techniques 

employed in the research work were also given. 

7.3 Suggestions for Future Work 

In conducting research work reported in this thesis, a number of areas of 
possible future research work emerge as deserving specific mention in this 
Section. 
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I- The work on load forecasting using general exponential smoothing 
involved a trial-and-error selection of the required smoothing constants 
for the various approaches tested. In the literature, this trial-and- 

error method is an accepted practice. It appears, however that the 

selection of optimal smoothing constants should be based on a systematic 
means for their evaluation. An attractive option to pursue is to 
investigate max imum likelihood choices as viable means for determining 
the smoothing constants. 

2- The inqu iry into ava i lab le no ise-adapt ive fi fter ing techn iques po inted 
out the need for simple and fast techniques for evaluation of the noise 
statistics. It appears that improvements on innovation correlation 
methods hold an excellent promise. For example, the method of Carew- 
Belanger appears to be more amenable for faster solution techniques than 
those suggested in the original work. 

3- The fuel cost parameter estimation problem appears to offer a fruitful 

area for applying techniques of adaptive filtering and this should be 
investigated . 

4- The newly developed Lambda aggregation method should be pursued further. 
Possible extensions to systems with losses and those incorporating 
decoupled load flow are worth a closer examination for the potential 
computational efficiencies that might be realized. 

5- The application of robust estimation techniques to the load forecasting 

problem is another area of possible future work. 

6- Perhaps one of the most overlooked areas that should be considered is 
that of developing an integrated approach to adaptive economic dispatch. 
Here the objective would be to take the parameter variations (both in 
fuel cost as well as load evolution models) into consideration in an on- 
line optimizing function. A stochastic objective and formulation might 
be the route to follow towards this goal. 

Before concluding this chapter, it is useful to mention that a number of 
publications based on some work reported in this thesis have been published 
(164-1671. 
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Table (7-1) 

Comparison of 

Generation Costs 

Hour Load Ex ist ing Newly Deve loped 

-- -------- 

Practice (Dh) 

---------------- 

System (Dh) 

----------------- 
1 839 39,773.26 38,377.31 
2 792 37,053.27 35,849.72 
3 762 34,850.13 33,850-58 
4 716 32,479.66 31,447.48 
5 691 31,510.00 30,468.21 
6 671 30,750.13 29,694.51 
7 671 30,750.13 29,694.47 
8 726 33,032.76 31)339.84 

9 781 36,325.32 34,625.26 
10 847 39,959.05 38,295.57 
11 885 42,227.49 40,568.35 

12 927 44,551.52 42,536.40 

13 982 47,354.90 45,202.74 
14 1,039 49,391.78 47,726.68 
15 1,029 48,994.82 47,159.68 
16 1,029 48,994.82 47,159.68 

17 959 46,583.06 44,568.17 
18 884 42,739.86 40,789.35 
19 864 41,382.41 39,567.60 
20 895 42,657.31 40,937.39 
21 887 42,275.43 40,621.52 

22 897 42,812.98 41,082.35 

23 907 43,459.74 41,551.24 

24 912 43,814.92 41,788.13 

-------- I -- 
Total: 

-------- ---------------- 
973,724.75 

----------------- 
935,402.23 

Savings: 38,322.52 

% Savings: 3.94 
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APPENDIX A 

LOAD FORECASTING DATA 

In this Appendix data used for the load forecasting experiments of 
Chapter 3 are listed. Short-term hourly load data are listed in Table 

(A-1) for 672 hours of operation. Figure (A-1-a) shows the same data 

set for Table (A-1). In Figure (A-1-b) an expanded view of a segment 

of the data for one week is shown. The data for mid-term load 

forecasting given as monthly peak demand for 142 months is I isted in 

Table (A-2) and Figure (A-2) is a graphical presentation of the sane 

set . 
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Table (A-1) 
Shor t-term Load Data set 

HOUR MW HOUR MW HOUR MW HOUR MW HOUR MW 

1 950 49 923 97 891 145 928 193 909 
2 909 50 878 98 859 146 B72 194 864 
3 871 51 843 99 823 147 847 195 833 
4 852 52 813 100 804 148 822 196 804 
5 E327 53 793 101 784 149 806 197 778 
6 803 54 778 102 769 150 787 198 753 
7 753 55 723 103 731 151 733 199 713 
a 738 56 723 104 701 152 723 200 793 

9 797 57 773 105 727 153 784 201 741 

10 846 58 792 106 739 154 829 202 776 

11 890 59 834 107 770 155 859 203 811 

12 928 60 879 108 812 156 902 204 843 

13 980 61 927 log 837 157 944 205 885 

14 1025 62 982 110 848 158 998 206 950 

15 1043 63 998 Ili 918 159 1011 207 987 

16 1063 64 1023 112 940 160 1038 208 1017 

17 1058 65 1023 113 940 161 1028 209 1010 

I's 1002 66 968 114 B93 162 988 210 951 

19 930 67 898 115 805 163 913 211 876 

20 975 68 938 116 860 164 964 212 951 

21 990 69 948 117 882 165 974 213 956 

22 995 70 959 lie 902 166 974 214 951 

23 995 71 959 119 912 167 974 215 948 

24 971 72 950 120 898 168 959 216 951 

25 941 73 915 121 877 169 929 217 895 
26 910 74 872 122 832 170 878 218 844 
27 866 75 840 123 806 171 846 219 804 
28 831 76 819 124 786 172 826 220 795 
29 809 77 804 125 766 173 800 221 775 
30 805 78 794 126 756 174 771 222 745 
31 780 79 744 127 697 175 722 223 683 
32 750 80 724 128 687 176 720 224 668 
33 794 81 753 129 760 177 743 225 712 
34 837 82 791 130 802 178 765 226 757 
35 878 83 816 131 e35 179 795 227 773 
36 913 84 857 132 862 180 862 228 814 
37 963 85 908 133 911 181 gie 229 867 
38 1032 86 954 134 972 182 963 230 918 
39 1039 87 983 135 999 183 988 231 949 
40 1058 Be 1003 136 1041 184 1020 23e 972 
41 102e 89 983 137 1039 185 1020 233 957 
42 978 90 928 l3e 999 186 993 234 911 
43 908 91 863 139 913 JB7 ee7 235 851 
44 955 92 923 140 958 188 954 236 906 
45 975 93 92e 141 978 189 957 237 916 
46 985 94 919 142 968 190 972 238 921 
47 985 95 916 143 978 191 972 239 935 
48 96e 96 899 144 963 192 934 240 923 
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Table (A-1) Continued 

HOUR mw HOUR mw HOUR mw HOUR mw HOUR mw 

241 878 289 871 337 eel 385 913 433 878 
242 830 290 814 338 830 3B6 850 434 833 
243 798 291 799 339 792 387 810 435 788 
244 768 292 779 340 772 388 787 436 768 
245 753 293 759 341 742 389 767 437 748 
246 733 294 749 342 722 390 757 436 738 
247 684 295 699 343 679 391 697 439 703 
248 664 296 668 344 649 392 662 440 663 
249 723 297 713 345 715 393 737 441 663 
250 740 298 768 346 772 394 772 442 663 
251 775 299 808 347 913 395 815 443 683 
252 816 300 848 348 842 396 853 444 735 
253 046 301 889 349 884 397 911 445 783 
254 899 302 959 350 934 3ge 968 446 804 
255 930 303 961 351 980 399 1005 447 882 
256 953 304 999 352 1009 400 1022 448 823 
257 949 305 985 353 1001 401 1015 449 920 
258 895 306 931 354 946 402 975 450 863 
259 838 307 863 355 869 403 918 451 798 
260 see 308 923 356 945 404 988 452 858 
261 see 309 928 357 944 405 988 453 868 
262 882 310 928 35e 954 406 988 454 903 
263 887 311 941 359 954 407 988 455 923 
264 880 312 920 360 934 408 950 456 902 
265 864 313 860 361 888 409 905 457 862 
266 824 314 824 362 840 410 846 458 812 
267 7B4 315 781 363 815 411 826 459 784 
268 764 316 768 364 801 412 802 460 759 
269 749 317 748 365 777 413 782 461 7119 
270 739 318 728 366 757 414 762 462 729 
271 694 319 675 367 697 415 712 463 685 
272 679 320 650 368 672 416 687 464 657 
273 689 321 707 369 742 417 722 465 715 
274 719 322 758 370 808 418 778 466 774 
275 754 323 796 371 847 419 805 467 795 
276 789 324 838 372 881 420 837 468 827 
277 814 325 890 373 918 421 872 469 883 
278 821 326 835 374 964 422 935 470 910 
279 908 327 968 375 1004 423 989 471 930 
280 920 328 1003 376 1034 424 998 472 991 
281 907 329 993 377 1024 425 987 473 996 
282 857 330 930 378 968 426 932 474 933 
283 797 331 852 379 903 427 857 475 863 
284 849 332 922 380 960 42B 917 476 923 
2B5 874 333 934 3ei 978 429 932 477 923 
286 899 334 934 382 979 430 912 478 920 
287 916 335 934 383 979 431 912 479 935 
28B 913 336 914 384 950 432 893 480 912 
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Table (A-1) Continued 

HOUR MW HOUR MW HOUR mw HOUR mw 

481 867 529 863 577 855 625 852 
482 805 530 818 57e 1326 626 807 
483 876 531 794 579 789 627 782 
484 744 532 769 580 752 628 741 
485 729 533 744 581 721 629 715 
486 719 534 724 582 684 630 697 
487 669 535 689 583 647 631 652 
488 649 536 659 584 622 632 632 
489 699 537 704 585 662 633 698 
490 734 538 752 586 717 634 740 
491 761 539 791 587 745 635 777 
492 800 540 836 588 797 636 821 
493 838 541 889 589 838 637 871 
494 900 542 939 590 890 636 913 
495 941 543 971 591 943 639 943 
496 973 544 1008 592 963 640 1004 
497 977 545 1003 593 953 641 999 
498 932 546 948 594 883 642 929 
499 857 547 884 595 829 643 884 
500 932 548 945 596 884 644 944 
501 952 549 948 597 885 645 944 
502 959 550 946 598 892 646 944 
503 959 551 943 599 885 647 944 
504 912 552 909 600 873 648 914 
505 863 553 859 601 843 649 876 
506 832 554 819 602 789 650 830 
507 819 555 784 603 764 651 795 
508 787 556 774 604 729 652 777 
509 767 557 749 605 703 653 757 
510 747 558 729 606 678 654 727 
511 707 559 674 607 64e 655 682 
512 677 560 647 608 619 656 657 
513 727 561 696 609 634 657 703 
514 772 562 735 610 671 658 758 
515 804 563 743 611 701 659 801 
516 827 564 eoe 612 729 660 856 
517 879 565 863 613 775 661 893 
518 828 566 911 614 809 662 943 
519 962 567 943 615 886 663 966 
520 984 56e 975 616 904 664 1008 
521 966 569 970 617 899 665 993 
522 916 570 920 618 836 666 936 
523 858 571 857 619 791 667 891 
524 926 572 912 620 842 668 956 
525 931 573 912 621 863 669 956 
526 930 574 912 622 887 670 962 
527 936 575 917 623 917 671 962 
52e 908 576 907 624 907 672 928 
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Table 
Monthly Peak 

Jan 76 - 

(A- &, ) 
Demand in MW 

Oct 87 

======== == -=========-- ======================== -============-- ===== 

MONTH LOAD MONTH LOAD MONTH LOAD MONTH LOAD 
============================== =====- ========== ====- ============= 

1 61.2 37 143.3 73 301.0 109 405.0 
2 61.0 3B 169.7 74 293.0 110 413.0 
3 69.5 39 204.3 75 371.5 

. 
111 649.0 

4 iie. e 40 333.5 76 572.0 112 773.0 
5 177.2 41 424.5 77 74e. o 113 961.0 
6 201. e 42 465.5 7e 799.0 114 973.0 
7 211.9 43 4ee. o 79 e22.0 115 102e. o 
e 219.9 44 4e7.0 eo e34.0 116 1063.0 
9 219.5 45 456.0 ei e06.0 117 1007.0 

10 191.7 46 427.7 e2 722.0 ile 962.0 
11 142. e 47 310. e e3 522.0 119 663.0 
12 e7.4 4e 200.4 e4 369.0 120 495.0 
13 E39.7 49 176.5 e5 331.0 121 442.0 
14 , e5.7 50 194.3 e6 332.0 122 451.0 
15 147.3 51 341.0 e7 356.0 123 597.0 
16 194.2 52 444.5 ee 566.0 124 795.0 
17 251.4 53 516.2 eg e27.0 125 1097.0 

ie 271.6 54 550.4 90 ee3.0 126 112e. 0 
19 293.1 55 629.7 91 920.0 127 1136.0 
20 293.7 56 607.1 92 953.0 12e 1124.0 
21 292. e 57 573.2 93 907.0 129 1063.0 
22 262.0 5e 543.5 94 e35.0 130 iooe. o 
23 226.7 59 376.0 95 530.0 131 762.0 
24 130.5 60 269.5 96 428.0 132 529.0 
25 116.3 61 260.5 97 372.0 133 493.0 
26 112.8 62 250.7 98 380.0 134 528.0 
27 175.4 63 356.0 99 607.0 135 616.0 
28 260.9 64 542.9 100 758.0 136 965.0 
29 301.9 65 643.0 101 864.0 137 1084.0 
30 345.6 66 674.0 102 906.0 138 1142.0 
31 359.6 67 741.7 103 973.3 139 1204.0 
32 381. e 68 728.1 104 962.0 140 1213.0 
33 353.9 69 701.6 105 900.0 141 1209.0 
34 324.6 70 635.0 106 800.0 142 1092.0 
35 237.8 71 420.0 107 550.0 
36 168.4 72 345.5 108 475.0 

mum= an====== 
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APPENDIX B 

GENERAL EXPONENTIAL SMOOTHING VIA 

DISCOUNTED LEAST SOUARES 

Equation (3-6) is cast in a form that is convenient for the application of 
parameter estimation techniques. The unknown parameter vector X is 
introduced by the following decomposition: 

XT xT xT 
-1 -2 

1 

In this decomposition X, denotes the trend parameter vector defined by 

XT = 
-1 

[00,01 '****' OKI 

Here X is of d bens ion (K+ 1) . The vector X is def ined by the fo1 lowing 
1 -2 

partitioning 

XT =[ XT XT 
.... 

yj 
-2 -21 -22 2m 

Each XT for i=1 ...... m is defined by: 
-21 
XT 
-21 

= [oil 021 

It is clear that X is a 2m dimensional vector and corresponds to the seasonal 
2 

component parameters. 

In as im i lar manner one def ines the vector h as foI lows: 

hT(. ) [hT(. ) hT(. )] 
- 2 1 

/C 2 
st 

K 
hT ....... 1E 21 
T TT hT T h1M h 

22 21 

sin f, /C , Cos f, /C ] where ff 
21 

It is therefore clear that the seasonal model using trigonometric functions 

equation (3.6) is written in the following compact form: 

9 
(A )= hT (- )X+V (A ) (B-1) 

it is important to note that the vector 
-h 

of the fitting functions in the 

present model satisfies the recursive relationship [22]: 
hU)=ih U-1) (B-2) 

Here the transition matrix L is def ined by: 
L=d iag [ 11 . 

12 ] 
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The notation diag is used to denote a diagonal matrix of the arguments in 
brackets. 

The (K+l)x(K+l) matrix ý, is 

model whose elements are: 
I for iýj (Ij -(I-jp. 

=0 otherwise 

the transition matrix of the polynomial trend 

The matrix L2 is defined by: 
ý2 = diag [L 21 ...... 

L 
2m 

Here 

Cos fl sin f 

-s in f, Cos f: 

The transition property (B-2) plays a central role in the general 

exponential smoothing methodology via discounted least squares generally 

attributed to Brown (22], discussed next. 

It is assumed that N observat ions % (1) ,& (2) . .., % (N) are ava i lab le . The 

measurement model is assumed to be of the form: 

,; ý, ) =jx, h, ý-N) +v (k) 
1=1 

A lternat ive ly 

g (k )= hT N)X (B-3) 

The n parameters x, are unknown , but the nf unct ions h, (j ) are assumed to be 

available. The model Equation (B-3) can be written for smoothing (A < N) 

purposes as 

% (N-j) = hT (-j) ý+v (N-j) j=O. l ...... N-1 

The elements of h satisfy 
h(j+l) =L hU) 

To estimate the model 

approach that seeks to mt 

i [N] WJ [%(N-j) 
J=O 

(B-4) 

the transition rule (B-2) 

paraineters, one adopts a discounted least squares 
nimize 

- hT w2 (B-5) 
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The weighting is such that later measurements are weighted more heavily by 
taking 0<W<1. 

The optimal estimate vector X based on N measurements is obtained as [58]: 

ý (N) =P (N) t (N) (B-6) 

Here 
N-1 

P-1 (N) =IWh (-j (-j (B-7) 
JA 

N- 
(N) = I' Wih (-j (N-i (B-8) 

J=O 

This is a restatement of the normal equations - 

From Equation (B-7) one has 
N-1 

P-1 (N+ 1) EWJh (-j (-j 
J=O 
Wl h (-N) hT (-N) + P-1 (N) 

In the steady state with 94(a and elements of h being polynomials in the time 
index, the first term vanishes 

ýI : 
'M ? -' (N+ 1) (N) P-1 
(a -W-- 

P-1 =Z WJ h(-j) h(-j) (B-9) 
J>O 

From Equation (B-8), one has 

Z (N+I) =NWJh (-j) % (N+l-j) 
J=O 

N 
h(o) I(N+l) +Z WJ h(-j) X(N+l-j) 

J=l 

N 
+F (N+ 1) =h (o) ; (N+ 1) ý WJ+l h(-j-l) I(N-j) 

J=O 

Using the transition rule 

+ 
N-I h(-j) %(N-j) t(N+I) = h(o) ; (N+l) I WL 
J=0 

Thus, from Equation (B-8) 

t (N+ 1) =h (0) % (N+ 1) + WL-1 t (N) 

Equation (13-6) is written as 
X (N+ 1) =? t (N+ 1) 
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Using Equation (B-10) one obtains 

X (N+l) Ph (o) (N+l) +WP L-1 Z (N) 

R (N+l) Ph (o) (N+I) +WP L` P-IR (N) (B-12) 

We can show that the elements of the last terms of (B-12) can be written as 
W P L-1 P-1 = P[. P-' - h(o) bT (o )] 

. 
LT (B-13) 

As a result, we rewrite (B-12) as: 

R (N+ 1) =Ph (o) g (N+ 1) +P P-1 -h (o) 6r (o) ]LTk (N) 

R (N+1) =LTX (N) +Ph (o) (N+ 1) - hT (o) LT (N)] 

=LTX (N) Ph (o) [,; (N+ 1) - 
hT (1) X (N) (B-14) 

The model Equation (B-3) is written for prediction (forecasting) purposes 
as: 

% (N+? ) =f (f) ý+v (N+f) 

The optimal forecast based on N measurements is 

j (N+t) = hI 4) X (N) (B-15) 

As a result 
X (N+I) =L TR (N) +Ph (o) [, j (N+ 1) (N+ 1) (B-16) 

This recursive formula updates the parameter estimate by a term 

corresponding to the one-step ahead forecast error and is used in the 

seasonal forecasting model using trigonometric functions. 
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APPENDIX C 

WINTERS' ADDITIVE PROCEDURE 

Assume that the measurement model is given by Equation (3-1) written in the 
form: 

5 (N+j )=T (N+j )+S (N+j )+v (N+j ) (C-1) 

The trend component is assumed to be the sum 
T (N+j) = )ý (N) + X, (N)j (C-2) 

There are s seasonal factors 
ý0 ý ýi+s) = ýi+2s) = i=1 ...... s (C-3) 

2ý ý i) =O (C-4) 
i=I 

An estimate of the level X, (N) can be obtained from a combination of two 

components k.., (N) and k 
0,2(N). The first component is obtained as: 

Ro,, (N+I) = X, (N+I) - ý(N+J-s) (C-5) 

This is the most recent observation adjusted by its seasonal factor S(N+l-s) 

which is available before 5(N+l) becomes known. The second component is 
XO. 

2 (N+1) = RO (N) + X, (N) (C-6) 

This uses the observations at N. Winters, procedure takes a weighted 

average of these two components to obtain 

RO(N+I) = aj[3ý(N+I) - S(N+I-s)] + (1-al)[RO(N) + XI(N)] 

Here a, is a smoothing constant chosen by a trial end error procedure. 

To estimate the slope X, (N) two components are used 

(C-7) 

X�, (N+ Xo (N+ 1 Xu (N (C-8) 
XI. 

2 (N+ X, (N) (C-9) 
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Using a smoothing constant (x 2, one has 

Ro (N) Rl (N+ 1 a' 2 
(N+ 1) 

The estimates of the seasonal factors are based on two components: 
51 (N+l) ; (N+l) - Ro (N+l) 
S2(N+l) "N+l-S) 

Using the smoothing factor *3' one has 

a3[%(N+l) - XO(N+I)] + (1-00 S(N+'-S) 

(C-10) 

(C-il) 

(C-12) 

(C-13) 

The forecast of future values of the variable of interest is now obtained 
as : 

(N-fi ) = Xg (N + (N )i + (N+i -s) i=I 2 ...... s (C - 14 ) 

Xo (N + (N )t + (N+i -2 s i=S+l ...... 2s (C-15) 
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APPENDIX D 
WINTERS' MULTIPLICATIVE PROCEDURE 

Here the measurement model is given by: 

5 (N+j )=[ XO (N )+ý (N)j ]S (N+j )+v (N+j (D-1) 

Est imat ing the leve I X0 (N) is based on f ind ing the two components 

(N+ 1) =g 
1) 

(D-2) S (N+ 1 -s) 
XC. 

2 (N+ 1)= RO (N) + R, (N ) (D-3) 

Thus us ing the we ight ing (smooth ing) parameter 01, , one has the est imate of 
the level given by: 

Ro (N+ 1) = a, g (N+1) 
+ (1, al )[ Ro (N) + R, (N) (D-4) S (N+I-S) 

For the slope X, (N) , one has to f ind the two components: 
X1,1 (N+ I) ko (N+ 1 RO (N (D-5) 

XI, 
2 

(N+ 1)X, (N) (D-6) 

As a result, using the smoothing parameter 012, one obtains an estimate of the 
slope given by: 

XI (N+l) ' (D-7) 'ý (X 214 
(N+' 4 (N) 1+ (1-Ce2 ) kl (N) 

The seasonal factors are obtained from the two components: 
S, (N+1) = '7 (D-8) ko(N+I) 
ý2(N+1) ý(N+'-S) (D-9) 

As a result, using the smoothing parameter (z 3. we obtain the estimate of 
seasonal factor as: 

3 
(N+1) 

+ (1-a3) ý(N+'-S) 
(N+1) (D-10) 

The forecast of future values of the variable of interest is therefore given 
by : 

j (N4-() =[ ko (N) + R, (N)l ]t (N+? -s 
-) 

i(W) = [ko(N) + Rift] t(N44-2s) 

t=l .2...... S. (D-11) 

t=s+l ...... 2s. (D-12) 

Winters' procedures are called three parameter trend and seasonality 
methods s ince one has to search f or the parameters a, 9 (X2 . and a3 that y ie Id 
best estimates of the constituent factors. 
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APPENDIX E 

ELEMENTS OF BOX-JENKINS FORECASTING 

METHODOLOGY 

E. 1 Background 

It is convenient in deal ing with t ime series , to introduce the backward 
sh if t operator B, def ined by the re ]at ion 

4W=x (k-1) 

From the def in it ion , one can see that a backward sh if t by m s&np les is 

obtained by 9" operating on the original series 
11m, x (A) =Ik -M) 

In addition, a differencing operation is denoted by V such that 

Vg (A) =; (k )-; (k -I) 

It is clear that 

V% (k )ý (1-B) 

Higher order differencing is obtained from 

Id vdj I-B 

The most fundamental time series models are the autoregressive (AR) model 
and the moving average (MA) model. In the autoregressive model AR(p), the 
current value of the variable is expressed as a linear combination of p 
previous values and a random component a(k) described by: 

% (A) = tj% (k-I-) + .... + -jPj (k-p) + a(*) 
This is written compactly as: 

*P (B) a (E-1) 

where 
tp (B) =I- #I B-42B2_.... _tp 

In the moving average model MA(q), the current value of the process is 

expressed as a linear combination of q previous random components 
a (t) -01 a(k-1) 0q aý-q) 

or 0q (B) a(*) (E-2) 

where (B) I-91B-92B Bq 
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The more general model. called the autoregressive moving average model ARMA 
(p, q) is a comb inat ion of the AR and MA mode Is defined by: 

tp (B) ; (1c )=0q (B) a (k) (E-3) 

The ARMA mode I can be used to represent a stationary process with f in ite 

variance , and it is assumed that the roots of -t (B) and e (B) I ie outs ide the 

unit circle of the B-plane to obtain a stable time series. 

One can model some types of non-stationary processes %(A; ) by differencing the 

or ig ina I process j. (* ) to obta in a stat ionary process w (k) 

w) = Vd 

The result is the autoregressive integrated moving average model ARIMA 
(p, d q) 

. Fp (B) Vd 
q 

(B) a(k) (E-4) 

Because of the periodic nature of the load curve, it is advantageous to use 

seasonal ARIMA models (p. d, q) x (P, DQ)s , with seasonalities: 

f (ff ) V' V' 1 (A )=0 90 (Bs )a(t) (E-5) 

In some cases, it is also useful to recognize another periodicity (such as 
weekly), and use a two period ARIMA (p, d, q) x (P, D, Q), x (P', D', Q'),. model 
defined by; 

I (B ) lp (Ef ) fp. (Os' V V' V'. ý 0 (B ) 00 (Os ) 0(), (Bs' )a (k (E-6) 
pssq 

Seasonal ARIMA models are used in this research for load forecasting in the 
short-term and m id-term prob lems . in the fo I low ing sect ion a synops is of 
Box-Jenkins forecasting methodology is presented. 

E. 2 The Process 

Preliminary identification of the appropriate time series model relies on 
the analysis of the autocorrelation function (ACF) and partial 
autocorrelation function (PACF). The method is systematic and very useful 
in the determination of the model order in the preliminary estimation of 
the model parameters and in diagnostic checking and model refinement. 
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ACF 
The autocorrelation function (ACF) describes the inherent correlations 
between observations of a time series which are separated in time by some 
lag j 

'y j=E[; 
(A )% (ic + (E-7) 

Pi= 'y i 
/'YO (E-8) 

For a white noise process, in which there is no correlation in time, the ACF 
would be zero for all lags except at j=O. 

For an AR process, the autocorrelation function satisfies the following 
equation 

fp (B) pýt =0 (E-9) 

P& -fI PIC-I + .... + -FP Pk-P (E-10) 

If we write 

. F(B) (1-G, B), 

the general solution of (E-10) is 

AIGý, + Aýq ++A Gý 
pp 

where Gý' Gý' are the roots of the character ist ic equation 

§ (B) =I- §IB - §2 B2-.... -§p BP =0 

For the process to be stationary we require that, IG, l < 1. Assuming that 
the roots are distinct. then the autocorrelation function of a stationary AR 
series will consist of a mixture of damped exponentials and damped sine 
waves. 

Estimating the autoregressive parameters in terms of the autocorrelation can 
be done using the Yule-Walker equations [60-61]. These are obtained from 
ýE-10) by setting t=1.2 ...... p to obtain a set of linear equations 

P-1 p P -P 

Here one has 

#I pIpp P-1 

1ý2 

. 

P2 Pi pp-2 

F fp* 

Ip1 

16- pp 
P-1 

p 
p-2 

Note that the model order p must be known a priori in order to carry out the 
computation. 
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PACF 
The determination of the model order p of 
facilitated by a device called the partial 

Briefly, the partial autocorrelation function 

greater than the model order. 

an autoregressive model is 

autocorrelation function. 
(PACF) t., is zero for k 

The PACF is defined by considering an AR(&) process, so that equation (E-10) 

can be written as; 
PJ-1 ++ pj-/C+l + fkk 0 J-k 

j=1,2 . .... .k (E-12) 

Note that fj is the j" coef f ic ient in AR (k ) so that f., is the last 

coefficient. The quantity f. regarded as a function of the lag k, is the 

partial autocorrelation function. Writing (E-12) in the Yule-Walker form 

one has 
P, k -f* 

=P (E-13) 

The PACF is the last element in-j',. The PACF of a Oh order AR process has a 

cut-off after lag p. 

There is a duality between AR and MA processes, while the ACF of an AR(p) 

process is infinite in extent, the PACF cuts off after a lag p. -The ACF of an 
MA(q) process cuts off after a lag q. while the PACF is infinite in extent. 

The ACF and PACF of a mixed ARMA(p, q) process are both infinite in extent 

and tail off (die down) as the lag & increases. Eventually (fort > q-p), 
the ACF is determined from the autoregressive part of the model. The PACF is 

eventually (for k>p-q) determined from the moving average part of the model. 

Identif ication 

From the foregoing discussion, it is clear that the ACF and PACF allow one 
to determine potentially useful model structures. They are also very useful 
in determining appropriate model adjustments when diagnostic checks indicate 

model inadequacy. Figure (E-1) illustrates the theoretical correlation 
functions for non-seasonal AR processes. and Figure (E-2) is the counter- 
part for seasonal processes. Figure (E-3) illustrates the theoretical 
correlation functions for non-seasonal MA processes and that for seasonal MA 
processes are shown in Figure (E-4). 
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AUTOCORRELATION FUNCTION 

rlRST ORDER PROCESS (pzl) 

0) 

PARTIAL AUTOCORRELATION FUNCTIONI 

(I-A)wtzat 

1111,1 
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117 

I SECOND ORDER PROCESS (p=2) : (1-418-028' )wtýat I 

12 
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, 'I eT 
9 jj? 

correlation function lag 

Figure (E-1) 
Theoretical Correlation Functions 

oE Non-Seasonal Autoregressive Processes 
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AUTOCORRELATION FUNCTION AL AUTOCORRELATION FUMCTIOM 

I FIRST ORDER PROCESS (P=I) : (1-#Bs)wt=at I 
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3s IssI 
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2s 3s , -I ------ 11 25 
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5 4s Ss s 2s 

correlation function lag ---P- 

Figure (E-2) 
Theoretical Correlation Functions 

of Seasonal AUtoregressive Processes 
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AUTOCORRELATION FUNCTION 

I 
FIRST ORDER PROCESSES (q=l) 

AL AUTOCORRELATION FMCTION 

(I -#jB)a t 
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SECOND ORDER PROCESS (q=2) wC(l"18-028' )a 
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Figure (E-3) 
Theoretical Correlation Functions 

oE Non-Seasonal Moving Average Processes 
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AUTOCORRELATION FUNCTION 

FIRST OROER PROCESS (Q=I) 

S 

C 
0 

4I 

I- 

0 
U 

TIAL AUTOCORRELATION FUNCTION 

=(I -08S)a t 

s 2s 3s 4s 5s. 
1111- 

I 
2s I 4s 

3s I 5s 

I SECOND ORDER PROCESS (Q=2) : w, =(]-O, BS-O, Bls)a, I 

2s s 2s 3s 4s 5s 
111111 11 

2s 
I 

2s I 4s I 
ssI 3s 5s 

2s 3s I- 
s ?sS 4s 5s 

ss 4S Ss 
?s. 2s 3s III 

correlation function lag 

Figure (8-4) 
Theoretical Correlation Functions 

of Seasonal Moving Average Processes 
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The foregoing discussion is based on the assumption that the time series is 

stationary. If the random series a(k) is normally distributed then the 

process is stationary if its mean, variance and autocorrelation are 

constant. In practice, many time series are nonstationary. Fortunately, 

nonstationary time series can sometimes be transformed into stationary time 

series. If the mean changes with time such that different parts of the 

series behave in a similar fashion except for changes in level and slope, 

then the series can be transformed to a stationary series by differencing. 

Some time series have a variance that changes with time and in such cases a 

constant variance may be obtained by using natural logarithms. It is 

possible that no suitable transformation will be found [641. 

Estimation 

The second stage of the Box-Jenkins methodology is that of estimation. Here 

the task is to fit the tentative model (obtained in the identification 

stage) to the data to get precise estimates of the model parameters. Here 

the coefficient, values must be chosen in accordance with a certain criterion 
defining optimality. From an information content point of view, estimating 
the coefficients should be done so-that a maximum likelihood (ML) criterion 
is minimized. From a practical point of view, finding ML estimates involves 

considerable computational difficulties. Observing that when the random 

components are normally distributed, then least squares (LS) estimates 

coincide with ML estimates, thus one prefers LS estimates in practice. In 

this case one seeks the model parameters that minimize the sum of squares of 
the residuals. The residual is an estimate of the random component defined 

as the d if f erence between the observed va lue % (c ) and a computed va lue j (*, ). 

L inear least squares may be used to estimate parameters of only pure AR 

models without multiplicative seasonal terms. All other models require a 

non-linear least squares (NLS) iterative solution method. 

Solving NLS parameter estimation problems relies on iterative algorithms 

that start with an initial guess of the unknown parametersý and progressively 

improve on the solution until no further improvements are possible. There 

are many iterative procedures for solving NLS problems. but the most 

commonly used algorithms are Gauss-Newton (GN) Linearization and the 

Gradient Method. A favoured algorithm is the Lenvenburg- Marquardt method 
[651, which is a compromise between GN and the gradient methods. 
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Diagnostic Checking 

The results of the estimation stage may be used to check the model for 
stationarity and invertibility as part of the third stage referred to as 
diagnostic checking. 

The main object of the diagnostic checking stage is to verify the 
statistical adequacy of the model as completely specified through the 
identification and estimation stages. When diagnostic checking shows a 
model to be inadequate, one must return to the identification stage to 
tentatively select one or more other models. Moreover, diagnostic checking 
is extremely helpful in providing clues about how an inadequate model might 
be reformulated. 

The basic assumption in ARIMA models is that a(k) are uncorrelated random 
variables with zero mean and constant variance. Thus we would expect the 
behaviour of the residuals A(k) to be similar to that of the errors a(k) for 
a long time series. One thus requires: 
1- The mean of the residuals should-be close to zero. 
2- The variance 

- 
of the residuals should be approximately constant. 

3- The autocorrelations of the residuals should be negligible. 

To check whether the mean of the residuals is zero, we can compare the 

sample mean i with its standard error. To check whether the variance is 
constant, we exanine the residuals. To check whether the residuals are 
uncorrelated, we compute the sample autocorrelations defined below and 
compare them with their standard errors: 

- J[-j) - 

r(j) = (E-14) 
[t) - 

ki 

The standard error of t,. (j) is usually approximated as [59]: a 

SE r, Wl 

For small j, the true standard error can be much smaller. 

An alternative test statistic is based on all residual autocorrelations as a 
set. This is defined by: 

N (N+2) JK E N-j 3 -1 r? u 
J=j a 

(E-16) 
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where N is the number of observations used to estimate the model. The Q' 
approximately follows a chi-squared distribution with (K-M) degrees of 
freedom, where m is the number of parameters. If Q' is large, then the 

residual ACF's as a set are significantly different from zero and one should 
then consider reformulating the model. 

The residuals from af itted model present a new time series that can be 

stud ied in the sane manner as one d id w ith the or ig ina I ser ies .V isua 1 

analysis of the plot of the residuals can be helpful in detecting unusual 
events that impact a time series, detecting data errors, and detecting 

problems with the fitted model. 

An additional diagnostic check is that of overfitting. Here one adds 
another coef f ic ient to see if the resu It ing mode I is better. 

Af ina 1d iagnost ic test of ten c ited is to d iv ide the data set into subsets 

and estimate the model for each subset. This is useful if the model 
parameters are time varying. 

Model Reformulation 

When d iagnost ic check ing revea Is that a mode I is stat ist ica I ly inadequate, 

one then must return to the identification stage to tentatively select one 
or more other models. There are a number of possible ways to reformulate an 

apparently inadequate model, as discussed here. 

Re-examining the estimated ACF and PAU computed from the original series 

might suggest one or more alternative models that did not initially seem 

obvious. Alternatively, one uses the residual ACF as a guide. This allows 
one to model the residuals as an implicit time series and therefore modify 
the or ig ina I mode I- 

Forecasting 
The final outcome of the process is to forecast future -values of a time 

series on the basis of an ARIMA model. Consider the process described by 

equation (E4) rewritten as: 

,; (A) 
#P (B)V4 a (A ) (E-17) 
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One can define the f unction Tj (B) by: 

_ 
tp (B) (1-By 

IT (B) 
F4 (E-18) 

eq (H) 

It is assumed that one can expand IT (B) as: 

tT (B) =I- Tj, B - IT 2w-.... 

As a result we have 
II- 'TIB - 'T2Eý -----]x (k )=a (k) 

Therefore, an ARIMA model can be written in an equivalent AR form: 

I 
(t )= fill (4 

-I)+ 11 
21 (pt-2) + .... + a(, t) (E-19) 

An alternative formulation is obtained bY defining 

(B) - 
eq (B) 

(E-20) 
jý p 

(B) (14-y 

As a result 

, X. (, t )= ik (B a (, t (E-21) 

One assumes that * is given by the expansion 

t (B) =I+k, B +*2 BF + (E-22) 

Thus the ARIMA model can be written in the equivalent MA form: 
a(, t) + *, a(, t-1) + (E-23) 

In forecasting, one is concerned with finding an optimum value of j(N+f) 
denoted by iN U). I -e 1. when one is at time N. such that the minimum of mean 
square error (MSE) is achieved. Here the mean square error is defined by: 

MSE = E[%(N+I) - 'N U)] 2 
(E-24) 

Using the MA form (E-23) we can show that 
'N 4) = *f a(N) + *, +Ia(N-1) + (E-25) 

The forecast error is 

I (N+j) - iN ý) 

a(N+I) + *, a(N+1-1) . .... . t, 
_, 

a(N+I) (E-26) 
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and its variance is given by 

V[ eN 02 + *2 + p2 ++ *2_1 121 (E-27) 

If the random components are normally distributed and if one has an 
appropriate model, then the forecasts and the associated forecast errors are 
approximately normally distributed. 
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APPENDIX F 
APPROACHES TO ADAPTIVE FILTERING 

This Appendix is devoted to a review of the major techniques used in 
adaptive filtering discussed in Section 3.8. 

A. Bayesian Based Approach 

This approach is sometimes referred to as the multiple model filtering 
algorithm originated in the work of Magill [81]. One basic assumption is 
that the measurements %(A) are formed from a number L of elemental stochastic 
processes (, x I 

(#, ) : t=1,2, ..., i=1 . 2, . ., L) . The measurement sequence is 

obtained by connecting a switch to one of L possible positions as shown in 
F igure (F- 1) . Let (x, denote that the sw itch is in pos it ion j. One assumes 
that the a pr ior i probab iI it ies (P (a, i= 1 2, ... L) of the sw itch be ing 
in each of the L positions are known. 

The optimal Bayesian estimator CO of some state w can be shown [81] to be 
g iven by 

P( ailz (k) 

Here A is the space of all (y, 9 p((y. 
IZ(*)) is the conditional probability 

density function of a, given the data vector Z(k). The optimal estimate 
Co (oi, ) is the opt ima I est imate cond it iona I on ot, . Th is is the centra 1 resu It 

used in the Bayesian approach. 

The optimal estimate is formed by taking the complete set of conditional 
estimates, weighting each with the conditional probability that the 
appropriate parameter vector is true and suinming over the space of all 
possible parameter values. The algorithm essentially uses a number (L) of 
para I le I Ka ban fi Iters whose opt ima I est imates are we ighted by 

p(oe, 
jZ(k)) 

. The optimal estimate is the sum shown in Figure (F-2): 

Oc kqa p( cl, 
lz (, k 

The weighting coefficients are given by 
) 

P(al) 
(F-2) 

z 
J=j 
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In [821 , Smith obtains results that relax the assumption that the 
distributions are known. The distributions are assumed normal but with 
unknown variances. Hilborn and Lainiotis [83] extend Magill's solution to 
the vector case. In [84] an improved recursive algorithm is proposed by 
Sims and Lainitios that offers computational and memory savings compared to 
Magill's original proposal. The case of time varying parameters is 

considered in Hilborn and Lainiotis [85]. The general problem concerning 
simultaneous adaptation of system structure and parameters as well as 
adaptation of system structure alone is treated in [86]. Time varying 
statistics are considered in Alspach's work [87]. The asymptotic properties 
of Bayesian estimates and convergence characteristics are given in [88]. 

B. Maximum Likelihood - Based Approaches 

The maximum likelihood approach relies on maximizing a conditional 

probab iI ity dens ity f unct ion such as f(X (4 )Z (A )Ia), where ais the vector 

of uncertain elements. By applying Bayes' rule, the likelihood function is 
expressed as the following product: 

I 

f(Xý, ), Z(, t) a) = f(X(, t) I Z(t), a) f(,; (j) I Z(j-1). a) (F-3) 

It is usual to work with the log likelihood function for the case of 
Gaussian distributions which turns out to be 

Ln f (X ,Z a) 
(n+kin ) 

Ln (21T 
z 

1 
- -2 Ln P'. (k 

1k 
-22: Ln (JA (j » 

j=I 

[Z _ i+ (t)jT p-, '2 

1T 
- -2 Y- [Z (i) -H (i) X- (i) ] A-' (i) 

j=I 

[Z (i) - H(i) x- (j)] (F-4) 

The requirement is to determine the optimal state X' and optimal parameter 
vector a* to maximize the log likelihood function. 

The maximization process consists of solving two sets of equations. The 
f irst . wh ich is the resu It of sett ing the der ivat ive of the log I ike I Mood 
function with respect to Z (the dummy variable associated with X) to zero, 
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results in asserting the optimality of the Kalman Filter, provided that ()I is 
set to the optimal value of the parameter vector a*. The second set of 
equat ions is re lated to tak ing der ivat ives w ith respect to ()e - The resu lt ing 
set of equations is non-linear and is called the likelihood equations, or 
score vector [781. 

For off-line applications, Newton-Raphson's iterative method is used and in 
this case an approximation to the negative of the Jacobian is termed the 
conditional information matrix. For on-line applications several 
approximating assumptions are made [78] to arrive at a fixed memory 
algorithm of length N to compute an estimate of R given by 

r (j) rT (j) H (4) P- (k, ) HT (F-5) 
JAC N+l 

It should 'be recognized that R must be positive definite. An alternative 
result that guarantees a positive definite estimate of R is given by 

r., (j ) rT+ (j )+H (j ) P,. (j )HT (j 
jz*-N+l 

(F-6) 

where 
r, (i )= -X (i )-H (i ) X. 0) (F-7) 

This last expression requires more computations than that required by (F-5). 

Obtaining an estimate of Qd is much more involved, but in the steady state 
with an invertible G,, . we have [78] 

Od (i' 

f%l (j_J)[AX(j) AXT (j)+p+ (j)_f (j j_1) p+ (j-1) fT (j j_, )] G IT (j_1) ) (F-8) 

ith 

Ax (i) = X. (i) - X- (i) (F-9) 

The estimation results cited in the preceding discussion is based on 
developments reported in Maybeck [78]. It is appropriate to mention 
alternative approximations cited in the literature. 

In 1968, Abramson [891 derives formula for diagonal Q and R given by 

Qd" (4; ) = n-1 11 (&- I)+ 1[, 
&X (t) AXT (, t) - P4 ý)-# (t) p+ ý -1)#T ]I 

I 
r Qd 

n-I +I --rr- -n[ r+ (k) rT. +H P+ (k )HT 
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Abramson's results are based on a conditional probability density function 

of the form f( X (k) ; (k) I Qd R) 

Shellenbarger [90] maximizes the likelihood based on the conditional 

probability density function f(X(k)q(k)j %, R). Ho Id ing Qd constant, 

Shellenbarger's estimate of R is given by 

A (k )=r (st )e (k )-H(, t ) Fý (A; )W (4; ) (F-12) 

in 1969, Sage and Husa [91] present a suboptimal approximation using the 
d iscrete m in imum pr inc ip le . Here one has the fo 1 low ing resu Its 

4-1)p -1)§T lr (ot-00 (A -1) +K (A )r (, t )rT (A )KT + p+ (k 
+ 

(F-13) 

(, k-l) HT (, k-l)] I (, t-2) Rý-I) + r(k, ) rT(, t) - H( (F-14) 

It is important to note that Sage and Husa's results were given for non-zero 
mean noise terms. 

C. Correlation Based Approaches 

It has been pointed out earlier that correlation methods play an important 

role in time series analysis. It is therefore no surprise that this 
technique would be valuable in adaptive filtering when second-order 
statistics of the system and measurement noises are the only unknowns. 
There are two variants to correlation methods: 

A- output Correlation Method. 
B- Innovation Correlation Methods. 

The estimates obtained from the second method are more efficient than those 
obtained from the first method since the innovations r(k) are less 
correlated than the output 

C-I The Output Correlation Method 

This method is reported in Mehra [76 & 92]. and consists of obtaining 
estimates of correlation of the output using 

= 

Ii 
T(j. ) (F-15) 
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The sequence of matrices M(j) is formed by 

M(j) =H #J (F-16) 

An optimal estimate of a matrix S is obtained as 

s=[iw (j) m (j) E 51 MT (j) c (j) (F-17) 
J=l J=l 

I 

Note that 

S=§ HT 

with 

§= E(, X 
(i) 

XT 
(i)) 

(F- 18) 

(F-19) 

The estimate of R is obtained as 
R=C (0) - HS (F-20) 

To find an estimate of K, we solve the following algebraic Riccati equation 
in the matrix 

rf = #[TT + (S - IT HT) (C(O) 
-H IT HTI-I ( ST -H TI)I*T (F-21) 

I- 

The optimal estimate of the gain matrix K is thus 

K=[S-P HT I[C (0) -H. HT ] -' (F-22) 

C. 2 The Innovation Correlation Method 

This method is based on using the autocorrelation of the filter's residuals 
(innovations) and is given in Mehra's 1970 paper [93]. and in summary form 
in Mehra's review of 1972 [76], and Maybeck [78]. 

The method performs a correlation test on the observed residuals r(i) of the 
filter to determine statistically whether adaptation is required or not. if 
so, asymptotically Gaussian unbiased and consistent estimates of R are 
generated. If the number of unknowns in Qd is less than (n m) , then an 
estimate of Qd can be obtained. Otherwise the steady state gain of the 
fi Iter is est imated w ithout an exp I ic it est imate of Qd * 

It is important to note that this method is developed for the case when 
H and G. of the system and measurement models have constant parameters. 
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The filter is initialized with a guess of 01) and W) 
. From the K. F. result 

one computes the residual (innovation) sequence for i=I, ... N. given by: 

r (i) =; (i) -H X- (i) 

An estimate of the &-lag autocorrelations of the residuals is computed 
using 

N 
Aýt Zr (i) rT (i-*) (F-23) 

14+1 

If the corre lat ion test revea Is that W01 and 01)) are not opt ima I, then a best 

estimate of P-If can be computed using 

nn 
MT 1A (F-24) "M, Mlt k 

with M=H ok (F-25) 

A=A Ic + M&-, K Ai (F-26) 
1=0 

In (F-24) we def ine 

S= p- W- (F-27) 
Here P- is the steady state error covariance matrix. 

An estimate of R denoted by R is now obtained as 
A= AO - HS (F-28) 

Note that if A= 01), the filter may be considered optimal. 

To obtain an improved error covariance matrix F we have to find A to 
satisfy the following non-linear equation 

ý =fEA _CS4. jHT ][ AO + HAHT ] -1 [ ST + HA +C 
]§T 

(F-29) 

Here C= KST + tkT 
_ KAO KT (F-30) 

The improved value of P- denoted by P is now given by 
P, = P- +A (F-31) 

The improved gain matrix K' is obtained from 

IC =[S+ OT I[ AO + %HT 1 -1 (F-32) 

To obtain an estinate of G,, % G! dl we have 
GQ GT = Pý Pý - K* HPI ] 4T ddd (F-33) 
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A number of variations to the basic innovation correlation method exist. In 
[94], Carew and Belanger propose an alternative that uses a contraction 

mapp ing algorithm to solve for a matrix P. The steady state matrix r is 
defined by 

P* = E( [, i (i)3 E, ý (i)-x- 
ý- _. Xý (i)3T) -34) (i) (F 

where xs is the estimate from the suboptimal filter. 

Let us denote the primary unknown Fr by X 
X=P, (L-35) 

The algorithm begins by a suitable initial guess of X, say X., and 
calculates 

W (X, )=A (0 )-HX, W (F-36) 

(X im mMAfX. NT 
1w 

'm ) (F-37) 

The new improved estimate is thus 
T (X. (F-38) 

where 

T(X) =p- Vi xp-r,, H ]T +[r, -r 
(x) ]W (X) E r. -r 

(X) ]T (F-39) 

The following matrices are used 
r fK --: ý Optimum Filter Gain (F-40) 
r. tN) -+ Suboptimum Filter Gain (F-41) 

The subscript D denotes a quantity for a suboptimum filter. 

The matrix AM is defined by 

MT ff (H *)T A 
... 

(H (F-42) 

The matrix A is defined by 

A (1) +H rDA (0) 

AA 
(2) +H rDA (1) +H* rDC (0) 

(F-43) 

LA (n). +H rDA (n-l)+ ... +. H #n-i rDC (0) j 

Here A(k) is the approximate correlation of the innovation sequence. 
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The algorithm is shown (941 to converge uniquely to a solution P' and thus 
the matrix r and hence the optimal filter gain K can be obtained. In 

contrast to the basic innovation correlation method which requires solving 
the algebraic Riccati equation (F-29) at every step, the Carew-Belanger 

method involves only matrix multiplications and inversions. 

Another alternative is offered in Ohap and Stubberud's work [95), where it 

is observed that the matrix ý should be zero for an optimal filter. 
ý= P_W - KA(O) (F-44) 

The method estimates ý on the basis of the innovations correlation. If 
improvements are needed, Ohap and Stubberud suggest using the steepest 
descent method for its solution. 

In [96] , Brewer proposes the use of Ka ban fi lter ing to est imate the unknown 
stat ist ica I propert ies represented by e lements of R and Qd .A state space 

mode If or the unknown means and covar iances is proposed . The or ig ina 1 
filter's residuals provide the necessary measurements for the second K. F. 

In [97] and [98]. Martin and Stubberud show that the identification of Q and 
R can be decoupled from identifying H and f. A stochastic approximation 
a Igor ithm is emp loyed to carry out the ident if icat ion task . 

Ohnishi, [99] suggests that a process called the t-process is advantageous 
in identifying the noise statistics, since it does not involve estimating 
the state. The method involves estimating QdQT, and RR T from the t-process, 
obtained by a series of transformations on the original system and 

measurement models. A unique solution for RRT is given, whereas for W, a 

set of 1 inear equat ions w ith respect to the e lements of Q01 , are obta ined . 
if this set consists of (W+n)12 linearly independent equations, QO' can be 

uniquely identified. 

D. Covarlance Matching Approaches 

This approach is based on requiring that the covariances of the residuals be 

consistent with their theoretical values. In Mehra's review [761 one 
canputes from the K. F. results the theoretical value of the residual 
covariance 

EE r (A; )K (4; )]= HP- (k )HT +R (F-45) 
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The actual covariance matrix of the residuals is approximated by a sample 
covariance for an empirically chosen N. given by 

r (k ) rT 
N 

r(i) rT (i) (F-46) 

If the actual covariance is larger than the theoretical value, the process 
noise % is increased to increase P( 

- Lk, ) and to bring the actual covariance of 
the residual closer to the theoretical value. 

To f ind Qd 
, one has 

H Ql HI r (, t ) rT Hf P+ 1) §T HT R (F-47) 

If the rank of H is less than n, there is no unique solution for Qd. We may 
restrict the number of unknowns in Q, to obtain a unique solution. The 
convergence of the process is not guaranteed. 

If Qd is known , but R is unknown , the est imate of Rg iven by Equat ion (F-5) 
is reported to yield a good approximation [78]. 

Isaksson [79], summarizes Shellenbarger's approach [90] as one of using the 
residual covariance matrix to obtain a linear regression in the elements of 
Q. and R. The result is a recursive scheme employing the actual covariances 
of the opt ima I est imates - 

The original concept of covariance matching has been attributed to Jazwinski 
[100] . Here to est imate Qw ith X,. (*) and P. (k) ava i lab le we p ick at ime lag 
N and determine the optimum Q(*, N) by requiring that 

r2 (p, +j) = E(r2 (, k+t)) vl. --. N (F-48) 

This produces consistency between the residuals and their statistics. The 
predicted residuals for t>0 are defined by 

r ý, +j )a .1 (k+t )-j (A; +o ) 

One can show that 

r (t+nlk )) =H (k+f )F(, t+j ,t)P. (, t ) ll ý, +m . A; ) HT (, t+m ) 

I 
H [f (t+t ,eG(, t+ i-1 

xQ GT (A, + i-I) #T HT 

+R6 (1, m) In 2: (F-49) 
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The basic idea can be seen from the simple case of an input noise that is 
uncorrelated and identically distributed Q=-Il, for N=I; the optimal estimate 
4(jc, l) is given by 

r-2 (+, +I) -Q r-2 (ic+ 1 )1--0) 

H (, t+ I)G (pt Gý (, t ) N' (, t+ I) 
(F-50) 

This is taken only if its value is positive. In the case where the 

nwerator is negative we set Jazwinski's paper treats cases where 
a sample mean of N predicted residuals is used, as well as the case of 
independent noise input. 
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APPENDIX G 
THE INSTRUMENTAL VARIABLE METHOD 

A. The Concept 

Consider the measurement model given by 

3 (pt )=H(, t )X+u(, t ) 

The least squares estimate of the vector X, given N measurements is given by 

N 
(G-2) HT H (pt T, [I 

Let us assume that the data originated from a true model given by 

7(4) = H(k) X� + uo(Ä) 

By direct substitution one can show that 

(G-3) 

N 
XLS HT uo (G-4) +IN HT H 

T, [I 

It is clear that a desired property of the estimate XLS is that it is close 
to )ý and that it converges to X0 as N tends to inf in ity . This does not take 
place in practice since H(*) and u(k) are correlated. 

Let us now assume that the vector H(/,, ) is observed with some error and that 
its true value is lt(jc). If e(t) denotes the vector of measurement noise 
associated with the observation of H(+, ), then we write 

H(k) = H6 + e(*) (G-5) 

The least squares estimate of equation (G-2) is modified to the foryn 

N xN 
z (G-6) IV H 

T, UI 

where No is a best estimate of lt(A; ). This is the basis for the 
instrumental variable (I-V) method. 

A 
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T The method tries a general correlation vector Y(k) to replace N (k) so that 
the IN. estimate is obtained using 

N RIV y% (G-7) 
NyH 

st=l 

I 

provided that the indicated inverse exists. 

One can show by direct substitution that 

+N 
-1 N RIV 

ý XO Y (A )H(, t 2: Y (A) UO(k) (G-8) 

Therefore, the choice of the elements of the Y(, t) vector should be such that 
Y(t, ) and u, (k) be uncorrelated as N tends to infinity. 

B. Application to Time Series 

Assume that we are given the following time series: 
% (t) + ýj (A-1) +---+ah,; (4-n) = bow (4, ) + ... +bn 11 (J,, -I+U (G-9) 

The series can be expressed in the form of equation (G-1), where 
H(k) =[- X(t-1) ,- %(k-2), - ... - xk-n) ,p k) , ..., p ý-n)] (G-10) 

XT =[ý, a2 , ..., a,, , bo . b, ,..., bn] (G-11) 

The series can also be represented in transfer function form as 
,; (0 =y (k) +U (A) (G-12) 

where 

y (G-13) 

um 

with 
D(B) = I+ ýB + a2B 2 4. 

... + anB n (G-15) 

N(B) = N+ blB + ... + IýB n (G-16) 

We note that the input sequence p(t) is available directly for measurements 
and is uncorrelated with the noise. Therefore p(k) satisfies the 
requirements of an instrumental variable. 
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Since yý, ) is obtained from the input p(k) using the transfer function 
N (B)/D (B) , the two var iab les y (k ) and p (*, ) are corre lated . The degree of 
correlation depends on the form of the model and the values of its 
parameters . The transfer f unct ion causes a dynam ic lag between V (A ) and y (k ), 
and it is expected that y(, t) is more highly correlated with than with 
p(k. ). Here C is a pure time delay. We thus consider the instrumental 
variable vector to be chosen as 

y ýo =r -tj (Ic-c -1) .--.. -V (ý-t -n) , 1, (, t) , .... p (k-n) I (G-17) 

The ideal value of C is chosen such that the covariance matrix Fý, 
y 

is 

maximized. 

One may obtain instrumental variables that are even more correlated with 
y(A) by letting p(k) drive an "Auxiliary modeP of the process to obtain an 
output y(i) for i=*-I, that is used to define an IN. vector of 
the form 

-Y -y (*-n) (t-n)] (G-18) 

The auxiliary model is chosen to be of the same form as the transfer 
function 

D (B) yN (B) (G-19) 

Here. we have 

D(B) =I+ OIIB ++mn Bn (G-20) 

N (B) =p0+01B++D. Bm (G-21) 

The aux iI iary mode I parameters (x, ,01 are chosen in some sensible manner. 
Figure (G-1) shows in block diagram form the IV estimation process using 
the Auxiliary model concept. 



-258- 

Process 

uN (8) 
(B) 

IV 

ALIGORITHM 
Auxiliary Model 

N (B) 
-x- 

Figure (G-1 ) rV Ertimation Via the Auxiliary Model Concept 



-259- 

C. Implementations Using the Auxiliary Model Concept 

The instrumental variable method can be implemented in either an off-line or 
on-line fashion. Two possible off-line implementations discussed here 
differ only in the choice of the initialization estimates. 

Off-line Method I 

Here one assumes that the instrumental variable vector is defined by 

equation (G-17), with an appropriate choice of t. An initial instrumental 
variable estimation is carried out using equation (G-7). The elements of 
Xlv obtained in this manner, define the parameters of the auxiliary model, 
given by (G-20) and (G-21) are 

T RIV = [a, t a2 at n9 
00 01 9 .... On (G-22) 

As a result the series y(, t) can be computed using (G-19). A second pass can 
then be performed using the new instrumental variable vector defined by 
(G-18). 

Off-line Method 2 

In this method, the initial estimate of the auxiliary model parameters is 
obtained using a least squares estimator of the form (G-2). Thus we have 

T RLS = [*1'*2' -9 OEn' 009 Olt .... 0nI (G-23) 

The series y(c) is now computed using (G-19). A second pass is performed 
using the new instrumental variable vector defined by (G-18). 

The iterative procedure yields asymptotically unbiased estimates at each 
iteration if the IV's generated have the desired properties of high 
correlation withy(k) and statistical independence from the noise. The 
process is continued until there is no significant change in the resulting 
estimates. 

The iterative procedure can use either the en-bloc solution of the IV 
equat ions (G-7). or a recurs ive so lut ion g iven by the Ka Iman fi Iter ing form 

X (A) =X(, t-1) -k (k) ( H(A) X (k-1) -gý )) (G -24 ) 
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(ic )=P (Ic-1) Y (t )[ I+H (k )P (k-I )Y (* )I (G-25) 

PM = N-1) - 4-1NIO [ I+H(k) 41-1) H(k) 4-1) (G-26) 

on-line Metho 

An on-line method is obtained by using the recursive solution (G-24) to (G- 

26) and updating the auxiliary model continuously on the basis of the 

recursive estimates. 

The parameters of the auxiliary model are updated in such a manner as to 

ensure that the instrumental variables satisfy the validity requirements. 
Since the estimate R(k) is correlated with ul(k, ) at the same time instant, 
it is passed through a time delay filter and a discrete low pass filter as 
described in Young [103]. 

4. Refined Instrumental Variable Method 

Based on maximum likelihood estimation arguments, Young (103] concludes that 
a good theoretical foundation of the IS. method is obtained if data pre- 
filtering is carried out. The idea is to use the IN. normal equations with 
pre-filtering variables replacing the raw variables. Here we obtain 

F r'B )I (k. ) 

Pf (/c )= &) 
p (A; UD-R) 

D (B) 
The subscript f denotes pre-filtering. 

Noting that the additional pre-filtering operation requires knowledge of 
the process N(B) and D(B). a common approach is to pre-select a filter L(B) 

to conduct the filtering operation 

-;, (k )=L (B) I (Ic ) (G-27) 

L (B) (G-28) 

Yf 
(LB 

(G-29) 
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The procedure of selecting the fi Iter L (B) is embedded in the refined Iv 

algorithm discussed now. 

Step I: Select the order of N(B) and D(B). 

Step 2: Compute the estimate of the parameter vector aX using least 

squares minimization process. 

Step 3: Form the polynomials ý, (B) and Its (B) from parameters of 
Step 2. 

Step 4: Generate IV, variable Y(, t) using (G-19) 

y (t (B) 
(B) 

Step 5: Compute the estimate Riv of the vector X 

Step 6: Form Niv (B) and Div (B) from RIv 
, 

Step 7: Generate the estimate of noise sequence 

V (k )= Div (B) % (4. )- Nv (B) 11 (, t ). 

Stpe 8: Search for an n(h order AR mode I that transforms the sequence u (k, ) 

into a white noise sequence. This defines the pre-filter L(B). 

Step 9: Form the pre-f i Iter L (B) f rom the parameters of the Wh order 
AR model of Step 8. 

Step 10: Pre-filter input data to generate filtered input and output 

sequences f 
(A ) and If (t) 

- 
Step 11: Generate a new set of instrumental variables using the sequence 

Wr (k, ) and j (A ). 

Step 12: Compute the refined IV estimates 9 
RIV of Oe parameter vector X 

producing the optimum estimate of the system dynamics. 

Step 13: Generate the noise sequence uýt) corresponding to the estimates of 
Step 12. 

Step 14: Use IV technique to model u(*, ) to determine the optimum noise model. 
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APPENDIX H 

CONSTRAINED WEIGHTED LEAST SQUARES DERIVATION 

The objective function of the weighted least squares given by eq. (4-28) is 

written as 

Hx jTW EZ_ Hx 3 

This can be expanded and rearranged to yield 

j= ZTWZ 
- 2X 

THTWZ 
+ XT HTWHX 

The first term in J does not depend on X, and thus one needs to consider 
minimizing 

ý= XT HTWHX - 2XT HTWZ (H-1) 

We now define 

HWH (H-2) 

HTWZ (H-3) 

As a result J of eq. (H-1) is written as 

TT XA- 2X b (H-4) 

In the present application, we have 

X2 

X3 

(H-5) 
b, 

b b2 

b3 
(H-6) 
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Nký3 

ý2 a2,2 a23 (H-7) 
ý3 a23 a33 

I 

Expanding eq. (H-4), one obtains 

12 X2 +2+2 jý aX + a22X., + a33 3 a, 2XX2 aAX3 

+ 2a2, X2X, 
- 2bjý - 

2b2X2 
- 

2b3X3 (H-8 

This is eq. (4-30). 

To obtain the elements of the matrix A, we recall that 

1p (1) p2 (1) 

H1P 
(2) P2 (2 

L1P (N) P2 (N) 

W= diag [W(l), W(2), ..., W(N)l 

As a result, using eq. (H-2) and equating the result to the elements of eq. 
(H-7), we obtain the six expressions of eq. (4-31). In a similar fashion, 

the elements of the vector b of eq. (H-6) are evaluated using eq. (H-3) to 

obtain the three expressions of eq. (4-32). 
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APPENDIX I 

THE GRG METHOD 

The GRG algorithm is intended to solve the problem stated in eq. (5-12) 
iteratively. By introducing appropriate slack variables, one can convert 
the inequality constraints to equalities, and therefore GRG algorithms can 
be described in terms of the following nonlinear programming problem: 

Minimize f(x) (I-1) 
subject to g(x) =0 (1-2) 

LsxsU (1-3) 

In a manner similar to that employed in Linear Programming, GRG algorithms 
use the m equality constraints (1-2) to solve for m basic variables in 
terms of the remaining (n-in) non-basic variables. One thus partitions the 
nx] column vector x into the two vectors xb (basic) and Xnb (non-basic). As a 
result the constraint equation (1-2) is written as: 

9 ()ý 
I Xnb )ý0 (1-4) 

Let J denote the Jacobian matrix associated with (5-16), defined by: 

j= ag 
ax 

This Jacobian matrix is partitioned as: 
ag ag ag 
d-x axb a Xnb 

The Jacobian sulmnatrices are renamed as follows: 
39 Jb 

g Jnb 
Xnb 

As a result, one writes: 
ag = TX 

ljb 
I 

Jnb 3 

Alternatively, the Jacobian is written as: 
j= [jb I Jnb 3 (1-5) 

Note that one assumes that the basic variables havebeen renumbered as the 
first m components of x. One also assumes that the selection of basic 
variables is such that the Jacobian submatrix Jb evaluated at the feasible 
point 9 is non-singular. This allows the solution of (1-2) for the basic 
variables )ý in terms of non-basic variables Xnb. This is valid for al I X"b 
suf f ic ient ly near Xb 
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To solve (1-2) one uses a Taylor expansion of vector function g as follows: 

g (K+A )=g (9 Wa 

Assuming that R is chosen such that g(K)=O and that g(g+a)=O. then it follows 

that : 
JA =0 

In terms of the partitions one thus requires: 
JbAb +j 

nbAnb 
=0 

As a result: 
Ab ý -"V 

Ij 
nbAnb 

Note that: a=x-R 
&b )ý - )Tb 

Anb Xnb - Rnb 

One can write: 
X 'ý ýýb x 

b''ý ýV 
I Jnb [ Xnb ý nb 

(I -6) 

The objective function is thus transfonned into a function of the non-basic 
var iab les xnb on ly as expressed by : 

f( )ý( Xnb'l OXnb I "`ý F( Xnb) (1-7) 

One can thus conclude that the original problem (1-1), (1-2) & (1-3), in the 

neighbourhood of K has been transformed to a simpler reduced problem: 
Minimize F(ý,,, ) (1-8) 

subject to the bounds on ýnb* The function F is called the reduced objective, 
and its gradient VF is the reduced gradient. 

Using the chain rule, one writes: 

aF = 
af + af aXb 

a Xnb 8 Xnb a Xb a Xnb 

Reca IIf rom 
_(5-18) 

that 
a Xb 
5V ' -"VI Jnb 

b 

Therefore, one writes the reduced gradient as: 
aF=af-af Jý" 8 Xnb 8 Xnb aXb 
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One now defines: 

IT7 = 
af 

.I K 
Jý 

It is clear that TTI is obtained as the solution to the set of linear 
equations: 

jb ITT -af K 

As a result, the reduced gradient is written as: 
aF 

-= 
af 

_ 11T j 
nb Kb a Xnb 

All partial derivatives are evaluated at X. The first order necessary 
condition for optimality is that the reduced gradient is zero. 

The (n-m) non-basic variables vector Xnb is further partitioned into a vector 
of s super-basic variables xs and a vector of the(n-m-s) remaining non-basic 
variables Xr * The super-basic variables are strictly between their bounds 

and the variables of xr are those which are at one of their bounds. The 

reduced gradient with respect to the remaining non-basic variables 8F is 
8Xr 

used only to determine if one of these variables should be released from a 
bound to join the super-basic set. This decision is made at each iteration 
in the GRG2 implementation. On the other hand in the MINOS implementation, 
this decision is made after an optimization over the current-basics is 
completed. In either case, the reduced gradient with respect to the super- 
basic variables 1LF is used to forn a search direction d. Both conjugate and a X, 

variable metric methods have been used to determine a. Then a one 
dimensional search is conducted to solve the problem of 

* 
minimizing F(Knb+ad) 

over values of aj-0. The vector a is extended to include zero components for 
the non-basic variables at bounds. 

The minimization is carried out by choosing a sequence of positive values of 
all . For each value of a, the reduced objective F (K 

nb + (xa) must be 

evaluated. The basic variables (3(, 
b+a, 

a) have to be determined. since, 
F a), (Xnb+Ot 

1af 
(Xb (ýnbft (3ýb+a a 

The basic variables satisfy the system of equations 

(Xb 
*lnb+* Ia)= 
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Here 3ýb 
9 oý, ,a are known and )ý is to be determined. If )ý appears nonlinearly 

in any constraint, then the system is solved iteratively using the modified 

Newton's method obtained by keeping the Jacobian fixed throughout the 

iterations. 

In the case of nonlinear constraints, the one-dimensional search can 
terminate in three different ways: 

1- Newton's method may not converge. if this takes place on the first step, 

o!, is reduced and the process is repeated. Otherwise, the search is 

terminated. 

2- If Newton's method converges, some basic variables may be outside their 
bounds. In this case, a new value of 01 is determined such that at 
least one such variable is at its bound and all others are within their 
bounds. If at this new point, the objective is less than at all 
previous points, the one-dimensional search is teryninated. A new set of 
basic variables is determined and solution of a new reduced problem is 
initiated. 

3- The search may continue until an objective value is found which is 
larger than the previous value. Then a quadratic fit to the three ai 
values close to the minimum is determined. F is evaluated at the 
m in imum of th is quadrat ic , and the search teryn inates w ith the lowest F 

value obtained. The reduced problem remains the same. 

It is important to realize that the algorithm attempts to return to the 
constraint surface at each step in the one-dimensional search. 


