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Abstract 

Many mechanisms have been suggested for brake squeal over many years. In order 

to identify the most appropriate of these mechanisms, an experimental investigation 

has been carried out to define in detail the vibration characteristics of a squealing 

heavy vehicle air operated drum brake on both a vehicle and a laboratory brake test 

rig. This required the development of a novel 'scanning' technique for the modal 

analysis of the rotating drum, which showed the presence of well-defined complex 

wavelike modes. From these results, the dynamic behaviour of the drum, in particular, 

is found to be in good qualitative agreement with the predictions of a simple 'binary 

flutter' mechanism of squeal. Based on the role of rotor symmetry in this mechanism, 

a means of decoupling, flutter modes is developed involving a reduction in the 

rotational symmetry of the drum by means of attaching masses in a defined pattern 

at its periphery. It is shown theoretically that such decoupling would be expected to 

increase the dynamic stability of the brake, and experimental application of the 

technique confirms its effectiveness in reducing or eliminating squeal. Practical design 

aspects of reducing the rotational symmetry of the drum are considered, using finite 

element modelling, and it is also shown that the technique can be effective in other 

types of vehicle brake, such as disc brakes and hydraulic drum brakes. 

The simple lumped parameter models used in the above work are inadequate as brake 

design tools, however, and so a novel application of finite element modelling is used 

to extend the principle of the binary flutter mechanism to a more detailed model of 

a complete brake. This is shown to be capable of predicting known features of squeal 

and may be used as a brake design tool for both the brake structure and the friction 

material. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Background to the Problem 

The primary requirement of a vehicle brake, that of producing a controlled and 

predictable deceleration of the vehicle, has been the subject of continuous development 

and this has resulted in friction brakes which are at least adequate in performance, 

matching other developments in vehicle technology. The introduction of disc brakes, 

together with improvements in actuation systems and friction materials have not only 

kept pace with increased vehicle power and speed but have made reliable and 

consistent brake performance the accepted norm for the majority of drivers. 

Along with these braking improvements, there has, of course, been a continued 

improvement to the whole vehicle, particular attention having been paid to 

`refinement' or comfort. A major factor in such ̀ refinement' has been a reduction in 

noise and vibration perceived by the occupants, mainly achieved through reduced 

engine noise, improved suspension and chassis design and better aerodynamics. These 

improvements have, however, given brake noise and vibration, which has always been 

a feature of braking, a much higher profile, to the extent that amongst passenger car 

users, noise and judder are often the only perceived braking problems, resulting in 

very significant warranty costs to the vehicle manufacturers. 

The need for refinement in heavy vehicles has lagged behind that for passenger cars 

and consequently the noise and vibration performance of their (predominantly drum) 
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brakes has received little attention. This situation is, however, now changing, a major 

motivator being the environmental impact of the loud brake squeal associated with 

heavy vehicles, and particularly with public service vehicles which have more 

occupants and regular stopping places. 

Brake squeal has been recognised as a problem and been the subject of investigation 

for over half a century. Approaches to the problem have been to some extent 

polarised into theoretical and empirical investigations. Theoretical work aimed at an 

understanding of the fundamental mechanism involved in squeal has been 

predominantly the preserve of academic institutions and has received wide publication, 

whereas the large amount of empirical work carried out mainly by brake and friction 

material manufacturers aimed at practical `fixes' has remained largely unpublished. 

It is now becoming clear to the braking industry that empirical approaches are 

extremely inefficient and also that the simplified models used to investigate 

fundamental mechanisms are of very limited application in the practical reduction of 

brake noise. The major problem is the fugitive nature of squeal -a brake may be 

noisy during one application but not in another, under apparently similar operating 

conditions - and in the absence of a knowledge of the mechanism involved, a 

structured approach to a solution is therefore difficult. A better understanding of the 

dynamics of the squealing brake, together with much more realistic modelling of the 

brake structure and its dynamic stability, are now thought to be the key to a general 

solution to the problem.. 

The work described here has been aimed at producing a more complete description 

of the dynamic process occurring in a squealing brake and hence identifying the 

fundamental mechanism by which it occurs. Such a physical understanding will be 
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shown to lead to potential solutions to existing brake squeal problems, and will 

provide a sound basis for more detailed, predictive models enabling the design of 

`quiet' brakes. 

The remainder of this chapter is devoted to a review of developments in the whole 

field of vehicle brake squeal - both drum and disc brakes, as the fundamental 

mechanisms may be related. Discussion of the strengths and weaknesses of this 

previous work will indicate the need for the investigation described here. 

1.2 Literature Survey 

1.2.1 Early work and variable friction mechanisms 

The earliest published work on brake squeal was, naturally, concerned with drum 

brakes and was of an essentially empirical nature. In 1935, Lamarque (1) brought 

together the experience of brake and vehicle manufacturers and operators on squeal 

prevention and found much conflicting evidence on palliatives and conditions of 

occurrence of noise. Although some palliatives appeared to be more generally 

applicable - such as increasing shoe flexibility, reducing lining friction and fitting steel 

bands or springs around the drum periphery, - all suffered from practical problems. 

It was felt that the latter method, of damping the drum, merely reduced the emission 

of sound without affecting the source of vibration, which was unknown. 

Williams (2), in follow up work to the above, gave a qualitative description of self- 

sustaining oscillations due to the variation of friction with rubbing speed. He 

measured this characteristic of friction pairs and found that the static/dynamic friction 

ratio was increased by a film of moisture and by bedding in, but was reduced as brake 
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temperature increased - trends which reflected some aspects of service noise 

experience and hence lent credence to the mechanism that vibrations were frictionally 

induced. 

The effect on squeal of varying a range of parameters was first studied in a systematic 

way by Mills (3) using both a complete brake assembly rig and a simplified rig using 

a small sample of friction material supported by a cantilever parallel to the axis of the 

drum, on which the material rubbed. He found that noise decreased with temperature, 

rubbing speed and shoe mass, but increased with load, whilst the basic squeal 

frequency was independent of rubbing speed or load, but in the simplified rig was a 

function of the mass and stiffness of the cantilever. The effect of contact geometry 

was indicated by rotating the cantilever to give a positive or negative servo effect 

(analogous to a leading or trailing shoe), when low frequency cantilever vibrations 

were produced only in the former position. This effect appeared to correlate with real 

brakes where most noise was thought to be produced by the leading shoe. The wide 

difference in noise produced by linings having similar static/dynamic friction 

characteristics led him conclude that squeal was affected more by contact geometry 

than by frictional characteristics. 

Further experimental work on rig mounted two leading shoe brakes was carried out 

by Fosberry and Holubecki (4,5,6). They found distinct types of noise spanning the 

whole of the audible frequency spectrum, but they concentrated on the 'normal' squeal 

frequency range from 3kHz to 15kHz. Their observations were consistent with the 

friction-velocity characteristic theory producing tangential relaxation oscillations of the 

shoes which excited radial vibrations of the drum similar to those of a bell. 

Investigation of these drum modes showed that with very short linings (1/2in long), 

modes were stationary in space, similar to an externally excited drum, with a node at 
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the lining position. With full linings , however, the drum showed no true stationary 

nodes and a continuous variation of phase around the drum. This was explained by 

a rotation of the modal pattern around the drum at a speed related to the mode 
frequency. 

Sinclair (7) produced a model to show how frictional vibrations could be produced by 

a discrete difference between static and dynamic friction. These vibrations would 

quickly decay in the presence of damping, however, and he concluded that an inverse 

friction-velocity relationship would be required to negate the damping effect. This 

was supported experimentally by the effect of water on the lining material, which, 

although reducing the overall friction, gave the required friction-velocity relationship 

and produced unstable vibrations. Lubrication of the lining with soap and glycerine 

produced the opposite effect on the p- velocity characteristic, but could not be 

successfully applied to real brakes. 

The mechanism of unstable vibration due to a falling friction - velocity characteristic 

was modelled by Basford and Twiss (8) who idealised their experimental observations 

of this variable (9) by the linear relationship 

p= No + a(V - z) (1.1) 

where go is the coefficient of friction at zero rubbing speed and a is the gradient of 

the 4u - velocity characteristic as illustrated in fig 1.1. 

This friction - velocity mechanism can be illustrated by the model in fig 1.1, for 

which the equation of motion is 

Mg + ci + Kx = N(po + a(V - z)) (1-2) 
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or 

Mg + (c + aN)z + Kx = N(po + aV) (1-3) 

so that if a is negative, as is common in friction materials, and aN > c, the system 

damping will be negative, and unstable oscillation will result. They suggested that if 

this tangential oscillation is coupled with a drum mode, the rate of amplitude build up 

would be increased, and based upon this and the value of a, formulated a noise 

probability factor which agreed with limited experimental observations. The Basford 

and Twiss model had no external damping but Wagenfuhrer (10) took this theoretical 

approach to the friction - velocity instability further by including damping in a single 

degree of freedom model, and assuming a more realistic hyperbolic function for the 

variation of friction with velocity. By a graphical solution to his equation of motion 

he was thus able to show vibration amplitude growth up to, and beyond, the point at 

which velocity matching between friction material and drum occur. The model 

suggests that instability is more likely to occur under heavy load conditions (as did 

that of Basford and Twiss) and at low rubbing speeds. Again, Wagenfuhrer 

considered drum vibrations to be secondary vibrations which served to radiate the 

noise and suggested that even though unstable vibrations occurred, the subjective noise 

could be decreased by control of those secondary systems. 

Chikamori (11) used a similar model to Wagenfuhrer but included a discrete 

difference between zero speed static and dynamic friction although reverting to a 

linear friction-velocity characteristic. He analysed the model using an analogue 

computer and predicted a limit cycle instability which occurred more readily when 

damping was low and when the negative µ-velocity slope and the difference between 

static and dynamic friction was high. 
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Although more recent work suggests that these variable U mechanisms are not 

responsible for 'mainstream' squeal, they are involved in lower frequency vibrations, 

often known as 'groan'. This has become particularly notable in installations where 

the usual elliptical, multiple leaf suspension springs have been replaced by one piece 

springs, almost eliminating the torsional damping applied to the brake, and hence 

making the value of c in equation 1.3 very small. In addition, the true 'stick-slip' 

mechanism has been suggested by Rinsdorf and Schiffner (48) for the mechanism of 

disc brake noises involving shear deformations of the friction material of the brake 

pad. 

1.2.2 Constant friction mechanisms 

The first attempt to give a mechanism by means of which frictional vibrations could 

be produced independently of a variation of coefficient of friction with speed, was due 

to Spurr (12). He described qualitatively how two noises, squeal and judder, which 

he had observed in a rotating bell, could be produced by a stationary `exciter' held 

against the bell mouth. Observation of water waves inside the bell indicated a 

stationary flexural mode shape with a node at the exciter. He hypothesised that the 

rotational motion of the bell wall at the node associated with such a flexural mode 

produced variations in friction force which acted to maintain the tangential component 

of vibration at the node also associated with this flexural mode. It is not stated how 

the necessary phasing between the two motions (tangential and rotational) arises. 

He considered judder of the bell to be due to what has since been termed a `sprag - 

slip' action. Considering the double cantilever PO'O" in fig 1.2, with P in contact 

with the moving surface of the bell, and a normal load N applied at P; if 0' is fixed, 

the friction force can be shown to be F= pN/(l-ptany) which becomes. very large 
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asp approaches coty and so spragging occurs. P now moves with the bell, forcing the 

cantilever O'O" to deflect, and the system PO'O" is now equivalent to a strut PO" 

at a smaller angle than y to the moving surface. This reduction in the effective value 

of y reduces F and the spragging action ceases, allowing P to slip back, when a further 

cycle commences. 

He confirmed the condition u= coty for squeal experimentally in a railway brake 

block and a modified disc brake, and considered that similar spragging conditions 

could be achieved by toe and heel contact in the leading shoe of a drum brake. In a 

later paper (13), Spurr also showed how the pad of a disc brake could wear in such 

a way that the real area of contact between pad and disc was localised and in the 

critical sprag condition. This non-uniform wear of the friction material could be due 

to thermal or mechanical distortion of the pad during braking or taper wear, which, 

under some circumstances produce a convex surface leading to localised contact. He 

suggested that similar wear effects in drum brakes induce `toe and heel' contact which 

exacerbates squeal. 

This type of mechanism was further investigated by Jarvis and Mills (14) who again 

considered an inclined strut, but with the rigid moving surface modelled by Spurr 

replaced by a flexible rotating disc. Both components were assumed to incorporate 

damping, and the disc to deform in a flexural mode shape having nodal diameters. 

The first model included a velocity dependent coefficient of friction, but analysis 

showed that the [i-velocity gradient required for instability was unreasonably high, and 

a second model, with constant friction was thus considered. In the latter model, the 

disc was assumed to hold two flexural modes of the same order but displaced spatially 

relative to each other, such that the cantilever was located at an antinode of the first 

mode and a node of the second. In the analysis, the role of the second mode is not 
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clear and it is stated that it is not a prerequisite for instability, but the solution for the 

first mode shows unstable conditions which depend upon the strut angle, coefficient 

of friction, radius at which the cantilever contacts the disc, and damping in the two 

components. It is significant that the damping in the cantilever has a destabilising 

effect as opposed to that in the disc which is stabilising. They suggested that limit 

cycling is the result of loss of contact between the components, and hence that the 

amplitude of squeal was not related to the instability mechanism. The theory was 

tested experimentally by measuring the minimum disc contact radius which resulted 

in instability for several values of cantilever angle. The departures from the predicted 

results, shown by these experiments, were reduced by Hales (15) in a modification to 

the theory which considered the radius profile of the cantilever tip. 

Crisp (16) produced a simplified model of this type of instability which considered the 

cantilever point as a mass MM constrained to move at the cantilever angle (y) against 

a spring, and the disc as a mass Md, constrained to move in the disc axis direction 

against a spring, with friction forces applied as though the masses were in relative 

sliding motion (fig 1.3). 

The equations of motion of the cantilever and disc are, respectively, 

MCü + cc4 + Kcu = R(siny - prosy) 
Mdv + cdv + Kdv = -R 

(where y is here the angle of the strut to the normal to the disc surface) 

(1-4) 

Assuming contact is maintained, the kinematic constraint v=u siny applies and the 

equations reduce to the single degree of freedom equation in the form 

ý1 - r)ü + cc 
-rýa+ (wc - rwd) =o MC Md 

where 

(1-5) 
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M 
r= 

2M 
(ju - tan y) sing y (1-6) 

The system becomes unstable when the damping term is negative, ie when 

2 2Y(Fý - ýY) > 
Cc` (1-7) 
Cd 

Hence stability depends upon damping, cantilever angle and coefficient of friction, and 
damping may in this case be destabilising. 

The mechanism of these `kinematic constraint' instabilities (described as such by 

Crisp) was further investigated by Earles and Soar (17). They again used a cantilever 

- disc system but with a short cantilever, described as a pin, and assumed rigid, but 

mounted on a flexible beam, as shown in fig 1.4. The disc was assumed to have one, 

axial, degree of freedom and the pin two, one translational and one rotational, 

although these latter were considered independently, and were modelled as in fig 1.5. 

The case of the translational pin mode is identical with that due to Crisp (16) but was 

rejected as the cause of squeal as, experimentally, it gave only low frequency, low 

amplitude oscillations and theoretically required unrealistically high damping, stiffness 

or mass ratios between the components to produce instability. Experimentally, squeal 

was associated with the torsional mode of the support beam and occurred at pin angles 

of 0<y< tan-'# , 
(the `digging-in' condition). In this mode, the model leads to a 

non-linear equation of motion, in qualitative agreement with the harmonic content of 

the observed stability boundary. Further, the generation of high frequency harmonics 

was felt to yield the energy dissipation required to stabilise the squeal amplitude. 
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This pin-disc system was modified by Earles and Lee (18) to give the pin system three 

degrees of freedom as shown in fig 1.6, but no damping. In this latter case, the 

analysis showed that the pin mode in the k2 direction is uncoupled from the other 

two modes, which themselves lead to the same condition for instability as the previous 

model, ie. u> -c/1 >0 (as from fig 1.6, c/1= tany). 

In order to more closely represent the situation in an actual disc brake Earles and 

Badi (19) investigated the effect of two pins, each modelled as above, one on each 

side of the disc which was again given a single, axial degree of freedom, They found, 

both by analysis and experimentally, that the instability boundary of U> tany >0 no 

longer applied, but could be extended if both pins had a 'digging in' action, or 

reduced if the second pin angle was outside the above instability region. 

It is worthy of note that all these 'spragging', kinematic constraint models require only 

single degree of freedom disc motion for instability, and this may be an important 

factor in determining their relationship to actual squeal characteristics. 

Perhaps the simplest constant p instability mechanism is one proposed by Lang and 

Smales (20) to explain a low frequency (typically 200 Hz-400 Hz) opposed piston disc 

brake vibration. This occurred under non-braking conditions whilst manoeuvring, 

when hub deflections caused one pad only to touch the disc. The single degree of 

freedom model, based on rigid body caliper motion and no disc vibration, is shown 

in fig 1.7, and the associated equation of motion is 

M. x +c+c 
12 li 

12 11 T1 -µ .z +kx =0 (1-8) 
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Unstable oscillation occurs if the damping coefficient is negative, ie when 

/1 > 
12 c' It (1-9) 
1, c212 

This shows that increasing friction coefficient is destabilising, but a more complete 

picture of the predicted effects of p, damping and geometry on stability is given in 

fig 1.8. Gouya and Nishiwaki (21) analysed a similar problem, often known as disc 

brake `groan' in pin-slider calipers, but under braking conditions. Two degree of 

freedom rigid body rotation of the caliper was considered and again a high value of 

p was found to be destabilising, with pad/disc contact positions, caliper inertias and 

mounting stiffnesses all influencing the occurrence of `groan'. 

1.2.3 Flutter mechanisms 

A different approach to the problem of disc brake noise was taken by North (22) who 

modelled the essential features of an actual disc brake by an eight degree of freedom 

lumped parameter system, as illustrated in fig 1.9. The disc, pads and caliper were 

each represented by elements having mass and inertia and one linear plus one 

rotational degree of freedom. The provision of two independent degrees of freedom 

for the disc is essential to this model, and is based upon the assumption, as 

appreciated by Jarvis and Mills, that the disc can hold two modes of the same order 

with different angular positions. A simplified 2-degree of freedom version of the 

model is given elsewhere by North (23), illustrated in fig 1.10, in which the role of 

this disc behaviour is stressed. The two equations of motion are 

My + (xd + xp )y + 2F0 =0 
IZ (i-10) 

18-2pkpy+ 
(Sd+kp3 

=0 

12 



and the associated eigenvalue problem can produce complex conjugate eigenvalues 

with positive real parts, indicating unstable oscillation. 

The condition for instability is shown to be 

0<k< 16MIFph 
p 

M12 2 i1-11) 

3 

again showing the destabilising effect of p, but also of the disc thickness. Unlike the 

previous mechanisms, 2-degree of freedom disc motion is a fundamental requirement 

for instability here. 

In the 8-degree of freedom model, parameter values for the analysis were chosen to 

represent the brake used for experimental work, the equivalent mass and inertia of the 

disc being calculated to give the same total energy as the actual disc in an appropriate 

mode. 

Good agreement was obtained between the calculated instability frequency and the 

actual squeal frequency and between calculated and measured mode amplitudes but 

not phases. Further, the effect of an experimental parameter change, reducing the 

caliper stiffness, was correctly predicted. General conclusions from the model are that 

both the addition of damping in any area and reduction in coefficient of friction are 

generally stabilising, and that instability regions are generally narrow and probably 

rely on the non-linearity of parameters, such as friction material stiffness, in order to 

readily access these regions. 

A similar approach to the disc brake was taken by Millner (24), in a six degree of 

freedom lumped parameter model (fig 1.11), again assuming two disc modes, but 
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including only one pad and no damping. The model did, however, allow the contact 

position between the pad and caliper to be defined, in the form of an offset a of the 

contact point from the centreline of the piston. Initial analysis showed that instabilities 

only occurred for positive a, that is contact in the leading half of the pad. The 

predicted instability conditions are qualitatively similar to those for cantilever angle 

(tß'µ >y> 0) in the `sprag-slip' or `pin-disc' models. Varying other parameters, 

however, showed that instabilities could occur for negative a, and in general, low pad 

modulus and high caliper stiffness produced `negative a' instabilities. An increase in 

coefficient of friction was again found to be destabilising. These predictions of the 

effect of pad/caliper contact explained well a long standing fix used in the industry 

for low frequency squeal - that of using a 'trailing offset' shim between the pad and 

piston. 

Squeal in modern pin-slider disc brakes has been investigated by Murakami, Tsunada 

and Kitamura (25), who showed experimentally that low frequency squeal (2.4kHz) 

involved almost rigid body pad rotation modes, but in high frequency squeal (8.4 

kHz), pad bending modes occurred. They also modelled the low frequency condition, 

where the pads can be assumed to be rigid, by a lumped parameter system (fig 1.12) 

where the disc, piston and caliper were allowed only one rotational freedom each but 

the pads two degrees of freedom each. This single degree of freedom representation 

of the disc was a fundamental departure from the flutter approach of North and 

Millner. As the outer pad loading fingers were found both by experiment and by 

finite element analysis, to move antiphase to each other at the squeal frequency, these 

were modelled by individual stiffnesses, as were the pad abutments. A linear, 

negative 4u-velocity characteristic was also included, and although, on analysis, this 

increased the instability, it was not found to be a necessary condition for instability. 

In general, they found that the pattern of influence of parameter variation fell into two 
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groups, those parameters having a 'worst' or 'best' value in terms of their effect on 
squeal, and those which show a continuously increasing adverse effect with change, 
The latter included the coefficient of friction and the `moment arm' of each 

component (eg. pad and disc thickness) and the former the masses, stiffnesses and 
finger spacing. 

1.2.4 Drum brake squeal 

Most of the preceding, more recent, work has been aimed specifically at the problem 

of squeal as it relates to disc brakes, and in particular to conditions under which the 

brake pad, and in some instances the brake disc over its limited area of contact with 

the pad, can be considered as rigid bodies. However, in drum brakes with their large 

areas of contact between lining and drum, these idealisations cannot be readily 

applied. 

Millner (26,27) tackled the specific problem of the drum brake by considering both 

the drum and the shoe to be flexible, represented in his model by a thin cylindrical 

shell and thin curved elastic strip respectively. The mode shapes taken by the drum 

and a leading shoe are assumed to be those for free vibration and the drum motion is, 

like the disc in some previous models, assumed to be the superposition of two flexural 

modes of the same order. The radial stress in the lining was then assumed to be 

Proportional to the difference in deflection between the shoe and drum and the 

resulting changes in normal and friction force used to calculate generalised forces. 

Substitution in the three Lagrange equations for the three modes gave equations of 

motion, the complex eigenvalues of which could involve positive real parts indicating 

instability (the magnitude of the positive real part being used as measure of `squeal 

Propensity'). 
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The model allowed variations in the distribution of the contact area between lining and 

drum to simulate 'crown' and 'leading and trailing' contact as well as full contact. 

Analysis showed that under full contact conditions the squeal propensity increased 

uniformly with 4u, but for 'crown' or 'leading-trailing' contact, a dramatic increase 

occurred above specific values of p, the required value of p for significant crown 

instability being substantially higher than for leading and trailing conditions. 

For the major squeal mode, involving the fundamental modes of both the drum and 

shoe, and which showed the greatest squeal propensity, an increase in lining stiffness 

had a destabilising effect. In higher squeal modes, however, the opposite effect 

occurred, and this difference in response to parameter changes between squeal modes 

extended to shoe and drum density and stiffness changes. Damping changes were 

found to have no significant effect on the fundamental squeal mode but in higher 

modes shoe damping was destabilising and drum damping stabilising. 

Experimental work on a two leading shoe drum brake confirmed many of the trends 

due to parameter changes in the theory and gave good agreement with predicted squeal 

frequencies. An earlier version of the model allowing only one drum mode but 

including a negative µ-velocity slope, also produced instabilities, although the required 

slopes were unrealistically high and the resulting squeal propensities generally lower 

than with the constant friction model. 

Okamura and Nishiwaki (28) extended Millner's analysis to include both brake shoes 

of a small, two-leading-shoe truck drum brake, but used the increase or decrease in 

kinetic energy per cycle as a measure of squeal propensity. Their results suggested 

that, with the shoes in contact with the drum, but no frictional force, the drum can 

hold two modes of slightly different frequency, but positioned such that nodes of one 
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mode and antinodes of the other align with the shoe centre. Increasing friction 

introduces tangential coupling between the shoes and drum and the two real drum 

modes converge in both frequency and position, ultimately coinciding, when squeal 

is produced. The model predicted the effects of N (destabilising), lining modulus and 

the positions of the shoes and the linings, suggesting that solutions to brake squeal 

problems may be found in all these areas, although reducing 4u, modifying lining 

position and shoe boundary conditions were predicted to have the greatest influence 

on squeal. They also carried out vibration measurements on the squealing brake to 

correlate the drum and shoe mode orders with those predicted by the model, although 

the technique was limited to obtaining amplitude information only from the drum. 

Suzuki and Olmo (29) carried out a similar, but, more detailed modal analysis on a 

large commercial vehicle drum brake and showed that, at a squeal frequency of 

500 Hz, both drum and shoe vibrated in their fundamental flexural modes, as 

suggested by Millner. They observed in addition, a large gross tangential vibration 

component of the shoe, but changes to the shoe anchor stiffness produced only a 

change in noise frequency, suggesting that this motion was of little significance. 

However, modifications to the flexural modes of the shoe (by casting rather than 

fabricating) or the drum (by modifying the mounting region) tended to decrease 

squeal. 

1.2.5 Experimental analysis 

Kusano, Ishidou, Matsumura and Washizu (30) again carried out an experimental 

analysis of the vibration amplitude distribution in a squealing passenger car drum 

brake which showed that the modes involved, the 6 node flexural drum mode and the 

fundamental bending shoe mode, had approximately equal nodal spacings, with nodes 

aligned during squeal. Normal mode frequencies of the individual components, shoe, 
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drum or brake backplate, did not coincide with the squeal frequency, but they 

suggested that under actuation pressure, both drum and shoe frequencies increased 

towards the squeal frequency at different rates until, at the actuation pressure at which 

they coincided, squeal occurred. They showed, by normal modal analysis of the drum 

in a stationary actuated brake, and a shoe constrained in a manner representing the 

actuated condition, that in general the rate of increase of drum natural frequency with 

pressure was greater than that for the shoe This implied that squeal could be avoided 

by ensuring that the drum natural frequency was greater than that of the shoes. In 

practice this was achieved by both reducing the shoe web stiffness and increasing the 

drum plate stiffness, resulting in the predicted improvements in squeal performance. 

Their suggested mechanism for this squeal was one of a feedback system instability 

relying on a negative [t-velocity characteristic of the friction material together with a 

large forward loop gain caused by coincidence of shoe and drum mode frequencies. 

More sophisticated modal analysis methods have been brought to bear on disc brakes 

in recent years. These have generally revolved around the use of laser interferometry 

techniques to obtain more detailed spatial information about the vibration 

characteristics of both individual components and squealing brake systems. Felske, 

Hoppe and Matthai (31) used the standard technique of time-averaged holography to 

examine the modal characteristics of components but, more importantly, developed the 

use of double pulsed holography to allow the analysis of squealing disc brakes. The 

very short time period required to produce a hologram by this technique eliminated 

the masking effect of the low frequency gross movements of the disc during actual 

braking. They also applied the technique to passenger car drum brakes (32), but the 

problem under investigation was of relatively low frequency, the noise being radiated 

by a strong brake backplate flexural mode. A torsional mode of the leading shoe was 
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identified, and a form of coupling between this and the backplate was hypothesised. 

Modification of the backplate mode frequency by mass addition or stiffening flanges 

was shown to eliminate the squeal. 

Fieldhouse and Newcomb (33) extended the technique using mirrors and cutout areas 

in the brake pad to obtain more comprehensive views of a squealing disc brake 

(fig 1.13). They examined the effect of pad abutment position in the caliper, and 

found that changing the friction force abutment between the trailing and the leading 

end of the pad could dramatically influence both noise frequency and occurrence. 

1.2.6 Finite element modelling 

These experimental modal analysis techniques have, more recently, been 

complemented by the use of finite element dynamic modelling to predict the modal 

behaviour of brake components and, in a few cases, to attempt to produce squeal 

models which represent the real brake system better than the previous lumped 

parameter approaches. 

Kusano et al (30) used finite element models of the drum, shoe and the coupled 

drum/shoe to back up their difficult measurements of natural frequency convergence 

of the components with actuation pressure increase, noted earlier. The model also 

indicated a reduction in their suggested ̀ forward loop gain' effect when shoe and 

drum stiffnesses were modified. 

Such finite element modal analysis of brake components has now become widely used, 

particularly in the context of one current approach to the 'fixing' of existing squeal 
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problems, that of modifying component natural frequencies to avoid coincident 

frequencies, as suggested by Kusano et al, above. For example Nishiwaki, Harada, 

Okamura and Ikeuchi (34) showed by modelling that higher order ventilated disc 

frequencies could be significantly influenced by the number of ventilation ducts. 

This approach of component modification has had limited success in practice as it 

often fails to recognise the often substantial difference between the dynamics of the 

collection of individual components and the total system under operating conditions. 

Modelling of the system using finite elements has, however, proved difficult due to 

the necessary inclusion of frictional coupling terms at the lining/rotor interface. 

Liles (35) has partially overcome this problem for the disc brake by using full finite 

element models of the components, without friction, then representing each component 

by its predicted modal characteristics over the frequency range of interest, thus 

reducing the number of degrees of freedom involved by orders of magnitude. These 

modal models were then interconnected and frictional forces added, assuming these 

to be proportional to the relative displacements between the components. The 

frictional forces introduced asymmetric terms into the stiffness matrix, and eigenvalue 

analysis predicted instability conditions. The results confirmed the destabilising effect 

of µ, but also showed that increasing lining length, and decreasing lining thickness and 

modulus are also destabilising. 

More recently, Ghesquiere (36) took a similar approach, but used experimental modal 

analysis in addition to component dynamic modelling to obtain the modal 

characteristics of the components for inclusion in a stability model. He showed how 

pairs of stable modes could be coupled by friction forces producing a single complex 

unstable mode. 
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1.3 Summary 

The literature survey shows that a wide range of approaches to the squeal problem, 

both theoretical and experimental, have been taken over a long time period. In part, 

the disparity in approach is a result of the wide range of problems which are included 

under the umbrella of 'brake noise' (summarised by Lang and Smales (20)), and it is 

certainly clear that not all brake noise problems are the result of the same dynamic 

mechanisms, nor do they respond to the samesolutions. A common theme, however, 

throughout much of the literature is that of brake squeal as a resonant dynamic 

instability of the brake system, rather than a response to a forcing function (although 

such forced vibrations can occur in brakes and are often referred to as 'judder'). 

The instability mechanisms which have been examined can be usefully divided into 

three distinct classes: - 

i) [L-velocity instabilities 

ii) pin-disc instabilities 

iii) binary flutter - like instabilities 

Each of these mechanisms can clearly induce unstable frictional vibrations, but in 

tackling any particular brake noise problem it would be important to distinguish 

between these mechanisms if an effective solution is to be found. In particular, the 

mechanisms are likely to involve different types of motion of the brake rotor, and thus 

a detailed knowledge of the rotor motion during noise generation would be a 

significant factor in determining their applicability. 
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Instability mechanisms based purely on the negative friction/sliding velocity 

characteristic at the friction interface appear to require no transverse motion of the 

rotor surface and hence rotor flexural modes are unlikely to be a significant feature 

of such problems. It is known that this type of instability is responsible for some low 

frequency resonant brake vibrations involving rigid body torsional motion of the brake 

in the frequency range 10 Hz - 100 Hz, significantly below the fundamental flexural 

natural frequencies of brake rotors. Although this mechanism is unlikely to be the 

major cause of the more usual higher frequency brake squeals, some workers have 

suggested that it has an exacerbating effect (for example Millner(26)). 

Pin-disc instability mechanisms do, however, involve transverse motion of the rotor 

surface but, due to the single discrete contact point between the friction components, 

such motion can be adequately supplied by normal mode flexural vibration of the 

rotor. 

Binary flutter type mechanisms involve distributed contact between the brake lining 

and rotor, and in their simplest form, usually applied to low frequency disc brake 

squeal, a fundamental requirement for instability is that the sector of rotor in contact 

with the brake lining has at least two independent degrees of freedom. These cannot 

be supplied by a single normal flexural mode, and the predicted phasing between the 

freedoms in such modelled instabilities suggests that the rotor should exhibit a 

complex mode. 

The significance of the rotor modal behaviour in identifying the likely type of 

instability mechanism was appreciated as long ago as 1975 by North in a review of 

disc brake squeal (22). He suggested that only the binary flutter type of instability 
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would give rise to a pair of disc modes with well defined time and spatial phase 

differences. 

This then provided the initial motivation for carrying out the work described in this 

thesis. It is clear from the literature that the majority of modal analysis carried out 

on squealing discs or drums have been limited to the specification of the flexural 

mode order involved and the approximate positioning of nodes, usually due to the 

non-availability of phase information. The more widespread use of holographic 

interferometry as an accepted modal analysis tool in brake noise has, perhaps, 

exacerbated this situation, the basic technique being at present limited to providing 

information on amplitude distribution. Phase information requires multiple images to 

be obtained and expensive modifications to the standard equipment and, so far, such 

work has been restricted to the analysis of the predominently unidirectional motion of 

disc brakes. An inexpensive modal analysis technique which would readily supply 

both amplitude and phase information from the squealing drum was clearly required 

to add to our knowledge of squeal behaviour. It is also clear from the literature that 

the traditional lumped parameter models used to examine potential instability 

mechanisms are limited in their ability to provide useful design criteria against squeal. 

This limitation is a result of one of the major predictions of such models - that most 

brake parameters do not have a monotonic influence on squeal, so that trends from 

simple models cannot generally be extrapolated to real brakes (a notable exception 

being the effect of friction coefficient). It is generally thought, however, that the use 

of finite element modelling may well provide the much needed tool for the design of 

dynamically stable brake systems. Some inroads have been made in this area, eg Liles 

(35) with a hybrid finite element/small degree of freedom model, and unpublished 

work continues by other workers to produce a full finite element stability model of a 

heavy vehicle drum brake. Such models are potentially very complex and it is 
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considered that efficient modelling is only possible if the dynamic characteristics of 

the actual squeal are known, so that essential degrees of freedom and boundary 

conditions can be defined correctly. A secondary purpose of this work, then, was to 

provide the modal characteristics for the development of such models, and, if possible, 

to develop a predictive model for drum brake squeal. 

Finally, it was anticipated that detailed investigation of the dynamic behaviour of a 

squealing brake, and particularly the behaviour of the drum, of which current 

knowledge was most limited, may provide a level of conceptual understanding of the 

unstable system which could lead to a more generally applicable 'fix'. Many current 

fixes are very specific to the particular noise and installation for which they have been 

developed and the discovery of common features in the drum dynamics influencing 

stability could lead to stabilising rotor designs which are insensitive to other system 

variables. 

In recent times there has been an upsurge in interest in commercial vehicle refinement, 

and this has encouraged the current study to focus on the squeal behaviour of the most 

popular type of heavy vehicle brake, the air actuated, mechanically operated drum 

brake. 

The noise characteristics of such a brake on a vehicle are defined in Chapter 2, but 

in depth investigation of the brake dynamics in the vehicle environment would be both 

difficult and costly. The industry relies heavily on dynamometer brake performance 

testing to reduce cost and provide more controlled operating conditions, and such a 

machine has been used for this investigation, after verification of the dynamic 

similarity of the two installations. Different mechanisms proposed in the literature for 

squeal involve different rotor motions, and to help distinguish the applicability of such 
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mechanisms detailed measurements are made of the drum squeal modes in Chapter 3, 

and this required the development of a novel modal analysis technique, made 

necessary by the drum rotation. Standard modal analysis techniques can be applied 

to the stationary parts of the brake, and in Chapter 4, the shoe motion is measured and 

integrated with that of the drum to produce a description of the complete brake 

motion. 

The modal behaviour of the drum is shown to be consistent with the `binary flutter' 

mechanism for squeal, which is a dynamic instability due to coupling of two similar 

flexural meridian modes of the brake rotor. Decoupling of these drum modes is 

investigated in Chapter 5, and reducing the rotational symmetry, by adding masses, 

is found to reduce or eliminate squeal. 

Practical problems of introducing such symmetry reduction are considered in Chapter 

6, including the effect of extended arc length masses and the use of stiffness 

asymmetry. The significance of the rotational asymmetry of the complete actuated 

brake system is investigated in Chapter 7, using a simple binary flutter model to show 

how the separation of pairs of static system modes can influence the occurence of 

squeal. 

Finally, the measured dynamic behaviour of the squealing brake and the binary flutter 

mechanism are brought together in Chapter 8 to develop a 2-Dimensional finite 

element idealisation of the brake with interface friction. The predicted squeal 

characteristics are shown to correlate well with the measured behaviour and it is 

suggested that the technique may form the basis for a brake design tool against squeal. 
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Figure 1.1 A model for dynamic instability due to an idealised falling 
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Figure 1.2 A `sprag-slip' mechanism for unstable vibration, due to Spurr. 
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Figure 1.3 A kinematic constraint instability mechanism due to Crisp 
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to investigate a potential squeal mechanism 
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Figure 1.6 The 3-degree of freedom undamped pin model used by Earls 
and Lee with a single degree of freedom disc 
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Figure 1.7 Single degree of freedom model for low frequency `moan' 

noise due to Lang and Smales 
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Figure 1.8 The influence of friction coefficient, damping and geometry on 
the stability of the model in fig 1.7 
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mechanism for squeal 
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Figure 1.11 Six degree of freedom `flutter' model for disc brake squeal due 

to Millner. 
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Figure 1.12 Lumped parameter model for disc brake squeal due to 
Murakami et al, allowing only single degree of freedom disc 
motion. 
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Figure 1.13 Holographic modal analysis of disc brake squeal by Fleldhouse 

and Newcomb, showing a wavelike disc mode and complex 
flexural motion of the pad. 
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CHAPTER 2 

DEFINING AND REPRODUCING THE SQUEAL PROBLEM 

TO BE INVESTIGATED 

2.1 Introduction 

It is clear from the literature, and also everyday experience, that brake noise problems 

take many forms and occur in some form in most types of vehicle brake installation, 

both disc and drum. The choice of a specific squeal problem for detailed 

investigation, from the wide range available, is therefore not obvious, and may not, 

in fact, be desirable if generally applicable solutions to squeal are sought. In practice, 

therefore, a variety of brake installations have been used in the development of the 

analytical techniques, in order that common features of squeal problems, should they 

exist, could be identified. For continuity, however, a single brake squeal problem will 

form the basis of the work reported here, with reference to other brake installations 

and squeal problems only when significant differences or similarities are noteworthy. 

The work has, however, been mainly concerned with drum brakes, in recognition of 

recent developments in the perceived environmental seriousness of squeal problems 

associated with heavy goods and public service vehicles. These vehicles currently use 

large air-operated drum brakes almost exclusively, and have been the subject of little 

recent published investigation, the literature survey indicating that more recent work 

has been directed predominantly at the problems of passenger car disc brakes. 
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2.2 Description of the Brake 

The brake chosen for the majority of the investigative work reported here is the 

popular 412 mm x 203 mm air actuated 'S' cam brake designed and manufactured 

by Saab Scania in Sweden, for use on both heavy trucks and buses. The dimensions 

refer to the drum internal diameter and the shoe width, respectively, and the type is 

named after the 'S' - like shape of the actuating cam. This type of brake is very 

widely used on heavy goods and public service vehicles, and the brake investigated 

is typical except for the incorporation of unusually short brake linings (72° arc 

length compared with the more usual X120°) aimed at reduced brake judder and 

thermal cracking of the brake drum. 

A schematic diagram of the brake is shown in fig 2.1. Both brake shoes pivot at one 

end on fixed 'anchor' pins attached to the axle through a 'torque plate', and are forced 

against the drum by rotation of an 'S' shaped cam acting on rollers fitted to the other 

end of the shoes. The direction of rotation of the drum differentiates between the two 

shoes, the drum moving from the cam end to the anchor end of the leading shoe, the 

other shoe being the trailing shoe. The leading end of either shoe is the end which 

any point on the drum approaches first. The cam shaft is located in rigid bearings in 

the brake torque plate and actuation torque is applied by an air diaphragm through an 

actuation lever. The direction of cam rotation is usually in the same direction as 

wheel rotation, and unlike a typical hydraulically operated brake, this type of actuation 

produces approximately equal displacements at the leading and trailing shoe ends. 

The shoe tip forces are therefore unequal and such that, on average, they equalise the 

work done by each shoe. As the leading shoe has a positive self-servo action (and 

hence a higher shoe factor than the trailing shoe) the greater shoe tip force will be 

applied to the trailing shoe. The brake shoes are lined with blocks of friction material, 
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attached to the shoe platform by rivets, the material chosen for most of the 

investigative work being designated Don D7115, manufactured by Mintex Don Ltd 

and having a nominal coefficient of friction of p=0.4. Don D7115 is a modem, non- 

asbestos friction material, being a composite of glass fibres and phenol formaldehyde 

thermosetting resin, with various friction modifiers such as lubricants and abrasives 

designed to produce a stable friction coefficient over a wide range of operating 

conditions. The composite is produced from a low density mixture of the constituents 

in a cavity die using uniaxial pressure (with an elevated temperature), giving the 

material anisotropic mechanical properties. 

A photograph of the brake, mounted on a brake test inertia dynamometer, is shown 

in fig 2.2. 

This type of brake has several advantages for use in research into brake squeal :- 

(i) being a drum brake, complete access is available to apply instrumentation to 

both the outer surface of the drum and the inner surface of the shoe platform. 

This is not the case with a disc brake where both sides of the disc are friction 

surfaces and the backs of the pads are largely obstructed by the means of 

actuation. 

(ii) being a large brake, the dynamic behaviour of the components is less 

influenced by the additional mass of accelerometers than would the 

lightweight structure of a small, passenger car brake. 

(iii) being `S' cam actuated with a rigidly mounted camshaft, it is possible, 

in theory, to actuate one shoe only so that the effects of the leading and 
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trailing shoes can be isolated. This can be carried out in practice by 

removing the brake lining from the unwanted shoe, but only at low 

actuation pressures, higher pressures resulting in excessive distortion of 

the brake. 

(iv) brakes of this type are known to suffer from serious low frequency squeal 

problems, particularly when installed on buses. Furthermore, as low frequency 

squeal is likely to involve low order component modes the vibrations are more 

amenable to analysis. 

2.3 Vehicle squeal measurement 

The above brake is fitted as standard to the rear axle of the Scania P93ML 17 tonne 

truck, which was known to suffer from brake squeal in service. Noise measurements 

were carried out on a vehicle instrumented for brake performance test work, which 

allowed manual recording of the air pressure applied to the brake actuators, the vehicle 

deceleration and the temperature of the inside surface of the drum (using a rubbing 

thermocouple). A private test track was used for squeal evaluation in order to 

eliminate noise from other traffic and to allow the repetition of well defined brake 

application conditions. Squeal was recorded using a high quality audio cassette 

recorder (Marantz model CP430) with a cardioid response microphone inside the cab, 

directed towards an open window. This position was found to suffer less from wind 

and road noise than when recording close to the wheel, producing a better signal to 

noise ratio. 

By carrying out brake applications over a wide range of operating conditions, it was 

found that loud squeal was produced most consistently when braking from a vehicle 
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speed of approximately 50 kmh7' with 3-4 bar air actuation pressure and a drum 

temperature of around 100°C. In common with many brake installations, the loudness 

of the squeal generally increased towards the end of the brake application. 

The recordings were analysed using a fast fourier transform (FFT) spectrum analyser 

and a typical squeal spectrum is shown in fig 2.3(a), showing, at 3 bar actuation 

pressure, a fundamental squeal frequency of 585Hz with some low level (> -26dB) 
harmonic content. Some pressure dependency of the squeal frequency was observed 

and is illustrated by fig 2.3(b), showing an increase in frequency to 600Hz at a 

pressure of 4 bar. The spectra also show an increase, with pressure, in the relative 

amplitude of the first two harmonics to approximately -13dB from -27dB, indicating 

a more distorted waveform. 

Although under some braking conditions, high frequency 'squeaks' and very low 

frequency vibrations could be induced, the above squeal was predominant and 

consistent and similar in character to many other heavy vehicle squeal problems, and, 

as such was chosen as the subject for detailed investigation. 

2.4 The Brake Test Inertia Dynamometer 

Although consistent squeal could be reproduced on the vehicle under controlled test 

track conditions, the basis of the proposed investigation - the detailed modal analysis 

of the squealing brake - would have presented significant practical difficulties on the 

vehicle due to the necessarily restricted access to the brake, limitations in the use of 

instrumentation in a mobile and hostile environment, and the problem of accurate 

control of braking conditions. It was felt that these difficulties could be diminished 

if the squeal problem could be reproduced on a type of brake test rig in general use 
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for highly controlled evaluation of brake performance, usually known as a brake 

inertia dynamometer. 

Fig 2.4 illustrates the inertia dynamometer used for this investigation. It is a double 

ended machine with the facility for mounting two brake installations simultaneously, 

though only the end shown was used in these investigations. The brake drum was 

attached, at its normal mounting bolt positions, to a specially made adaptor plate on 

a rotatable shaft carrying a number of flywheels. The total inertia attached to the 

drum can be adjusted in steps from 20 to 3500 kgm2 by fitting a suitable combination 

of various sized flywheels, and for these investigations was initially set at 1328 kgm2, 

to simulate the proportion of the Scania vehicle mass effectively braked by a single 

rear brake. A 170 kW motor drives these flywheels at speeds up to 1000 rev min', 

although braking is carried out with the motor drive disconnected so that all the 

braking torque is used to decelerate the flywheels. The static part of the brake, ie the 

torque plate, actuator and shoes, was similarly attached to a second, concentric, shaft 

which is mounted in bearings but restrained from rotating by a lever arm, attached, 

through a force cell, to the machine frame. The force cell could thus be used to 

measure the torque output from the brake. The whole of this non-rotating end of the 

machine is slidable axially relative to the driven end, to allow the brake shoes to be 

drawn from the drum for fitting and general access. 

The normal braking procedure is to accelerate the flywheels to a predetermined speed, 

remove the motor torque and apply the brake, the actuation being controlled to give 

either a constant actuation pressure or a constant brake torque output throughout the 

brake application (the latter to simulate constant deceleration of the vehicle, which is 

often the case in practice). Alternatively, low brake torques (< 3000 Nm) can be 

applied at a low, constant speed, by maintaining the drive to the motor. In instances 
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when squeal could be generated at low actuation pressures (and hence low output 

torques) - ie less than 1 bar, this latter condition was advantageous in producing long 

periods of consistent squeal for analysis. The rig is instrumented, in its standard form, 

to measure brake actuation pressure, torque output, drum speed and drum surface 

temperature, the latter by means of a type K thermocouple, spring loaded to rub on 

the inside surface of the drum. 

2.5 Reproducing the Squeal Problem on the Inertia Dynamometer 

The friction material was first 'bedded' to the drum (ie surface conditioned and worn 

to develop full area contact with the drum) by carrying out an automated schedule of 

brake applications involving a variety of braking pressures, speeds and temperatures, 

typical of low duty service use. When the linings were fully bedded, evaluation over 

a further wide variety of application conditions showed that squeal could be most 

readily reproduced at 4-5 bar actuation pressure and between 80°C and 150°C drum 

temperature, conditions which are not dissimilar to those observed from the vehicle 

tests in section 2.3. Even under such optimum conditions, however, squeal was only 

apparent towards the very end of each brake application, typically for only the last 1 

second before the drum came to rest, ie during only approximately the last 2 

revolutions of the drum. In order to increase the time and the number of drum 

revolutions available for the modal analysis (described in chapter 3) the flywheel 

inertia was increased to 1917 kgm2, which produced a corresponding increase (=50%) 

in the duration of the squeal. 

Spectrum analysis of audio recordings of the squeal, illustrated in fig 2.5, showed a 

frequency and harmonic content similar to that observed from the vehicle squeal, the 

dynamometer fundamental squeal frequency being typically 5% below that from the 
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vehicle. This frequency difference was not considered a serious drawback as it is 

known that differences of this order can occur between similar vehicles. 

In fig 2.6, the squeal spectrum is compared with the FRF of the dynamometer 

mounted drum, showing that no close relationship exists between the squeal frequency 

and that of the drum natural frequencies. This particular squeal problem is thus one 

which conflicts with the popular empirical approach to such problems, noted in 

chapter 1, which involves the coincidence of component natural frequencies as a major 

factor in the mechanism, and hence in the remedy. From this limited information, the 

400Hz or 900Hz drum modes might be suspected as being involved in the squeal, but 

clearly no informed choice could be made between them. 

2.6 Summary 

A specific heavy vehicle drum brake has been chosen for detailed investigation, of a 

type in widespread use, and which exhibits environmentally and commercially serious 

squeal problems. The squeal generated on the test vehicle could be reproduced on a 

brake test dynamometer under similar brake operating conditions and in both cases the 

squeal frequency was typical of that produced by many other brake installations of 

similar size. It is therefore considered that the choice of brake and the use of 

simulated vehicle braking on a test rig are justified for the detailed investigation which 

follows. 
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'S'-cam 

anchor pins 

Figure 2.1 Schematic diagram of the Scania 412mm diameter x 203mm 

wide `S'- Cam brake used for the majority of the experimental 

work 
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Figure 2.2 The Scania 412mm x 203mm `S' cam brake fitted to the brake 

test inertia dynamometer, showing the torque plate, actuation, 

and shoes withdrawn from the drum. 
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Figure 2.3(a) Spectrum of squeal from a vehicle, at 3 bar actuation pressure 
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Figure 2.3(b) Spectrum of squeal from vehicle, at 4 bar actuation pressure 
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Figure 2.4 The brake inertia dynamometer used for a major part of the 
experimental work. The machine is double-ended and the two 
sets of flywheels can be seen enclosed in safety guards. The 
drum is attached to the flywheel shaft, and the brake 
torqueplate, actuator and shoes to the tailstock on the left. 
The brake shoes are shown partly withdrawn from the drum, 
achieved by sliding the tailstock along the machine bed. 
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Figure 2.5 Spectrum of squeal from dynamometer mounted brake 
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Figure 2.6 Drum frequency response functionf mounted on the 

dynamometer for comparison with the squeal spectrum in 
fig 2.5 

45 



CHAPTER 3 

BRAKE DRUM MODAL ANALYSIS 

3.1 Introduction 

It was suggested in Chapter 1 that the initial objective of this work was to provide an 

improved description of the dynamic characteristics of a squealing brake, and in 

particular to identify the complex modal behaviour predicted by some proposed 

instability mechanisms (for example North (22)). This would provide a basis for 

distinguishing between existing mechanisms and also indicate a direction for future 

mathematical modelling. 

Standard experimental techniques are available for the complex modal analysis of 

stationary structures and these can be readily applied to the stationary parts of a brake. 

Such an application will be described in detail in chapter 4, but, briefly, the technique 

involves a comparison between the signals from an array of transducers (typically 

accelerometers), distributed around the structure, and a single amplitude and phase 

reference transducer. The use of a multiplicity of transducers attached to a rotating 

body presents formidable practical difficulties, however, particularly in extracting the 

large number of signals for simultaneous analysis. Although this difficulty can be 

partially overcome by the use of holographic interferometry (see Fieldhouse and 

Newcomb (33)) to examine, for example, the plane surface of a brake disc, it is more 

difficult both to apply, and to interpret the results generally, without extensive 

development of the technique. Further, the double pulsed holographic technique 

developed for examining rotating discs is currently inhibited in its ability to provide 
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phase information because of the need to produce multiple images and hence cannot 

easily produce a complete complex modal analysis. 

In order to achieve the above objective, it was therefore necessary to develop a 

relatively inexpensive and convenient means of obtaining a complex modal analysis 

of the rotating drum whilst squealing, and a description of this development and the 

results obtained will form the principal part of this chapter. 

Prior to this work on the squealing brake, however, the normal modes of the drum 

were examined to indicate the types of mode to be expected, and also to quantify the 

effect of mounting the drum to the dynamometer. 

3.2 Brake Drum Normal Modal Analysis 

Normal modal analysis was carried out on a drum under two restraint conditions :- 

i) mounted on the brake inertia dynamometer using the normal drum mounting 

bolt positions, in the squeal test condition. 

ii) unmounted, face upward, with the mounting face placed on a foam rubber 

block to approximate to the freely suspended or unrestrained condition. 

The primary purpose of the latter condition was to provide data under well defined 

boundary conditions to support later finite element modelling (described in chapter 6), 

but in addition, a comparison between the two conditions gave an indication of the 

magnitude of the influence of the drum mounting on its dynamic behaviour. 
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The drum was excited using a force-measuring impact hammer and the response 

measured by a low mass (2.4g) accelerometer, attached to the outer surface of the 

drum mouth and directed to measure radially. The transfer function between the 

response and excitation force was produced by a two-channel FFT spectrum analyser. 

Mode shapes were measured using a single response position at the drum mouth, and 

multiple equally spaced radial impact excitation points, both around the drum mouth 

and axially across the brake rubbing path. The resulting sets of transfer functions 

were assembled into waterfall diagrams (Fig 3.1 is typical for a set measured around 

the drum mouth) and the circumferential and axial mode shapes were then given by 

profiles through these diagrams at the various natural frequencies. Fig 3.2 shows 

typical mode components, fig 3.2(a) being the shape around the drum mouth 

circumference and fig 3.2(b) the shape axially across the rubbing path, and from 

results such as these most modes could be classified by the number of pairs of nodal 

lines in the axial direction across the brake rubbing path (n) and the number of 

circumferential nodal lines around the rubbing path W. Hence the example shown is 

the n=3, s=0 mode. Note that because of the wavelike nature of the 

circumferential mode shape the axial nodes must, for continuity, occur in pairs, and 

will be referred to as 'meridian nodes', a term used by Perrin and Charnley (38) in 

their work on campanologists bells, based on the topological similarity of the nodal 

lines to geographical meridian lines. A more graphic illustration of the shpes of the 

modes was obtained by impacting over a grid of points on the outer surface of the 

drum and analysing the resultant transfer functions using modal analysis animation 

software, producing shapes typified by fig 3.3. The measured drum modes are 

summarised in table 3.1 overleaf. 
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Table 3.1 Normal Modes of the Drum 

Mode Free Natural Frequency 
(Hz) 

Fixed Natural Frequency 
(Hz) 

n=2, s=0 325 415 

n=3, s=0 900 915 

n=4, s=0 1637 1645 

n=3, s=1 not found 2445 

n=4, s=1 2462 2785 

n=5, s=0 2512 2525 

It is clear, from the comparison of free and fixed natural frequencies, that, as would 

be expected, mounting the drum to the dynamometer has a predominantly stiffening 

effect, increasing all the above natural frequencies. The fundamental, n=2, s=O mode 

is particularly influenced by mounting, whilst the effect on the higher s=0 modes is 

small. Examination of the mode shapes across the rubbing path shows that for the 

higher order free modes the amplitude near the drum mounting region is small and 

hence will be little influenced by additional restraint. This is not the case for the 

n=2, s=O and n=4, s=1 modes, where significant mounting face amplitudes are seen. 

Clearly, none of the above modes is close in frequency to the measured squeal 

frequency of 580-600 Hz, and, although it may be suspected that the n=2, s=0 mode 

is likely to be involved, being closest to the squeal frequency, this is by no means 

certain as this would require a 42% frquency increase, whereas the n=3, s=O mode 

would reqire only a 36% decrease to match the squeal frequency. 
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3.3 Measurement of the Modes Held by the Drum Whilst Squealing. 

3.3.1 Background 

The usual method employed in modal analysis of a vibrating structure is to determine 

the transfer function between the motion at each point of an array of points on the 

surface of the structure and the motion at a fixed reference point. The transfer 

functions can then be used to produce a vibration amplitude and phase distribution for 

the structure normalised to that at the reference point. This technique is, however, 

difficult to apply directly to a rotating drum during squealing as: - 

(i) the structure being analysed is rotating, making the acquisition of a 

large number of simultaneous measurements, from accelerometers on 

its surface, difficult. 

(ii) the squeal vibration is a transient phenomenon allowing little time for 

sequential measurements by multiplexing the signals from large number 

of fixed accelerometers. 

To overcome these difficulties, a technique has been developed of sequential measure- 

ments, not from an array of individual transducers, but from recordings of a single 

transducer which effectively scans the vibration mode. 

It is well known (for example Rayleigh (37)) that the normal modes of a circular disc, 

symmetrical about its axis, take a form which can be approximated by the equation 

(3-1) 
Y= f(r) y0 
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the predominant displacement, y, being in the axial direction. f(r) represents the form 

of the displaced shape along a radius (at 0= 0) and may have zero values at certain 

radii corresponding to circular nodal lines. 

The normal modes measured in section 3.2 also indicate that the cylindrical section 

of a brake drum behaves in a similar manner to that described above and the mode 

shapes over this cylindrical area can again be approximated by an equation of the 

form 

Y= f(z) sinn 0 (3-2) 

In this case the predominant displacement, y, is radial andf(z) is the displaced shape 

of an axial line across the drum rubbing path and again may have zero values at 

certain axial positions corresponding to the circular nodal lines referred to in section 

3.2 (ie if s>O). 

The initial objective of the experimental work was to detect whether such modes are 

present on a squealing drum and, if so, to measure their detailed form and assess their 

contribution to the instability. Investigation of the axial form of the mode, f(z), was 

limited to detecting the presence or absence of circular nodal lines, the significance 

of which lies in classifying the squeal as essentially a 2-dimensional or 3-dimensional 

phenomenon. If no circular nodal lines are present, then the problem could be 

considered as fundamentally 2-dimensional, which may have significant repercussions 

in simplifying future modelling work. 

The modal analysis technique developed here is based upon an initial assumption that 

the wavelike vibration mode of the drum will not rotate with the drum but remain 

fixed in space relative to the stationary brake shoes. This assumption is supported by 
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the observation that brake squeal is generally a continuous phenomenon with no 

apparent changes in characteristics related to the angular position of the drum, 

suggesting that the motions of the drum and shoe at the friction interface are time- 

invariant and hence independent of drum angular position. 

If the drum mode is fixed in space and time-invariant, then accelerometers fixed to, 

and rotating with, the drum, can be used to 'scan' the mode at any axial (z) position, 

and sequential measurements of the mode can be used to determine the circumferential 

form during one revolution of the drum. 

3.3.2 Experimental arrangement 

A schematic diagram of the experimental arrangement is shown in fig 3.4, and a 

photograph of the brake with its local equipment in fig 3.5. Low mass accelerometers, 

were attached to the outer surface of the drum in the positions shown, ie two on the 

extreme ends of a line parallel to the drum axis running across the rubbing path, and 

a third at the drum mouth, displaced by 90° around the drum from the position of the 

first two. The accelerometers were attached using screw/adhesive adaptors with 

cyanoacrylate adhesive and were directed to measure radially. Low noise cables 

transferred the signals from these accelerometers to three battery powered charge 

amplifiers attached to the drum adaptor and hence rotating with the drum. 

Commercial, small, battery powered charge amplifiers were not available and so 

operational amplifier based units were designed and constructed specifically for this 

purpose as detailed in Appendix 1. 
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The voltage signals from the low impedance output of the charge amplifiers could 

now be transferred, through a slip ring arrangement, to three channels of a high 

quality frequency modulated (FM) magnetic tape recorder. 

A reference accelerometer was attached to measure radially at the leading end of the 

leading shoe platform, as shown in fig 3.4. This signal was also transferred, via a 

commercial charge amplifier, to a fourth channel of the magnetic tape recorder. 

The modal analysis technique, which will be described in detail in 3.3.5, requires that 

the angular position of the `scanning' accelerometers on the drum are known when 

any measurement of the mode is taken. Measurement of the drum angular position 

was achieved using an optical encoder driven from the dynamometer shaft by a 

toothed belt. The encoder produced parallel outputs of 1 , 2,4,8,16,32,64 and 128 

pulses per revolution (ppr), of which only the 1 and 128 ppr signals were recorded on 

a further two channels of the magnetic tape recorder. Fig 3.6 shows the relationship 

between these signals. The angular position of accelerometer A on the drum was 

chosen such that it was passing the centre line of the brake camshaft as the leading 

edge of the lppr signal occurred. Thus, the absolute position of the accelerometers 

could be determined to a resolution of 1.4° (if both leading and trailing edges of the 

128 ppr signals were used). 

The magnetic tape recorder on which all these signals were recorded is a frequency 

modulated (FM) recorder with a bandwidth dependent upon the chosen tape speed. 

Although a speed of 4.76 cros-', giving a bandwidth of 1250 Hz, would have been 

adequate for the low frequency (=600 Hz) squeal being investigated, in practice the 

maximum speed of 76 cros'(giving a 20kHz bandwidth) was used to allow the 

maximum freedom to expand time on replay, where necessary, to aid analysis. 
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3.3.3 System calibration 

No facilities were available for the absolute calibration of the accelerometer measuring 

system, nor was it considered necessary that accurate absolute values of acceleration 

(or displacement) be obtained for modal analysis of this type, where the vibration 

amplitude is continually changing. The manufacturer's quoted accelerometer 

sensitivities, together with the known transfer functions of the charge amplifiers were 

used to estimate absolute amplitudes of vibration, whilst accuracy of relative values 

for modal analysis was assured by using accelerometers with outputs normalised to 

±1% of the nominal value. The relative calibrations of the system channels were 

checked by 'back to back' testing of accelerometers on an electromagnetic shaker. 

3.3.4 Spectrum analysis of the recorded signals 

The signals from the three drum accelerometers, the reference accelerometer on the 

shoe and the 1 ppr and 128 ppr signals from the optical encoder were recorded on the 

magnetic tape recorder during squealing brake applications, under various operating 

conditions. 

Single channel spectrum analysis of the shoe reference signal, fig 3.7, shows the 

frequency content of the vibration, which is similar to that obtained from the audible 

noise, shown in fig 2.5. The only significant differences in frequency content are in 

the presence of a higher level of background random noise in the sound spectrum, 

produced by the dynamometer drive equipment, together with some difference in the 

harmonic distortion of the basic squeal frequency. 
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The amplitude of the 580Hz squeal vibration at the shoe reference point was typically 

of the order of 100 ms'2 or 7 µm, but was not constant with time, as shown by the 

typical amplitude time history in fig 3.8. In addition, the overall amplitude and 

variability of such time histories changed with brake operating conditions. The effect 

of this variability in the overall amplitude of the vibration was minimised in the mode 

shape measurements by defining the mode shape in terms of the transfer function 

between the drum and shoe motion, the shoe accelerometer providing an amplitude, 

as well as a phase, reference. It needs to be recognised, however, that the underlying 

assumption of system linearity, implying that the mode shape is independent of 

amplitude, is unlikely to be exactly true. 

3.3.5 The modal analysis technique 

The procedure used to determine the drum modes during squealing can now be 

described as follows: - 

i) the signals from a drum accelerometer and the shoe reference 

accelerometer, which had been recorded at a high tape speed as 

described in 3.3.2, were replayed, at a lower tape speed, into the two 

channels of the FFT spectrum analyser. 

ii) the spectrum analyser was configured to calculate the magnitude of the 

transfer function between drum and reference signals, and to do this 

repeatedly on demand from an external trigger signal. 

iii) the recorded 128 ppr signal from the optical encoder was used to 

trigger the above transfer function analyses, producing 128 transfer 

functions per revolution of the drum. 
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iv) the recorded 1 ppr signal from the optical encoder was used to form a 

`window' allowing only 128 of the above pulses to trigger the analyser, 

thus scanning one well-defined revolution only, starting and ending at 

a radial line through the cam shaft centre. 

v) the 128 transfer function magnitude versus frequency characteristics 

were assembled into a waterfall diagram by the analyser. A profile 

through this diagram, at the squeal frequency (corrected for reduced 

tape playback speed), produced the required amplitude of the mode 

shape of the drum. 

vi) the procedure (ii) to (v) was repeated for the phase and the real and 

imaginary parts of the complex transfer function, as required. 

Conditioning of the trigger signals from the recorder to produce the TTL level 

required by the analyser, and applying the one revolution window to these signals was 

achieved by using simple logic circuitry. The circuit allowed manual selection of the 

drum revolution to be analysed, with a choice of two start positions, 180° apart, on 

a diameter of the brake through the camshaft centre. 

Even though the squeal usually occurred only at the very end of the brake application 

when the rotational speed was low, the time for one revolution of the drum was too 

short for real time transfer function analysis, together with storage to a waterfall file, 

to be carried out 128 times. To increase the time available for analysis the tape replay 

speed was reduced by a factor of 64 from the recording speed (ie from 76 cros'' to 

1.2 cros'), reducing the frequency of the =60OHz squeal to -9Hz. Although the 

associated reduction in analysis frequency range incurred an analysis time penalty, the 
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major benefit achieved was to reduce the frequency of the trigger pulse to less than 

the maximum waterfall file update rate. 

A typical waterfall diagram of transfer function magnitude (ITF I) v frequency is 

illustrated in fig 3.9, which shows only 80 transfer functions due to a limitation of 

the available display, although the waterfall file stored in the analyser contains all 

128. It can be seen that in the region of the (scaled down) squeal frequency, the 

values of JTFI show a wavelike characteristic with angular position, corresponding 

to the expected wavelike circumerential mode shape of the drum. At all other 

frequencies, except at harmonics of the squeal frequncy the values of ITFI show no 

pattern due to lack of coherence between the signals, which consist of low level 

random noise. It was usually possible, by careful choice of signal gains, to ensure 

higher noise levels on the reference signal and thus low levels of `background' ITF I 

on the waterfall diagram, as illustrated in fig 3.9. 

It is clear, from the width of the wavelike section of the diagram, that the frequency 

resolution used for the analysis was low. The factors affecting the choice of 

resolution were: - 

(i) small variations in frequency are often observed during each revolution 

of the brake, probably due to unavoidable eccentricity and ovality in 

the drum, and a typical frequency variation can be seen in the high 

resolution spectrum analysis of fig 3.10. This frequency variability 

together with a high FFT frequency resolution could result in inaccur- 

acy when attempting to produce a profile through the diagram at a 

single frequency. 
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(ii) As frequency resolution is not an important factor in mode shape 

determination, greater amplitude accuracy can be achieved using 'flat- 

top' filtering in place of the more usual `Nanning' filtering, which is 

designed to achieve a compromise between frequency and amplitude 

accuracy. 

(iii) Although 800,400,200, or 100 line FFT analyses were available on 

the analyser, using the minimum resolution of 100 lines over the 

analysis frequency range resulted in the highest FFT analysis speed. 

FFT analysis speed was found to be an extremely important factor in obtaining 

accurate modal analysis results. The analysis speed obtainable depends upon the 

frequency range of the analysis together with the chosen number of lines of frequency 

resolution, as noted above. Initial results using an appropriate analysis frequency 

range of 0-20Hz for the -9Hz signals produced the expected wavelike mode shape. 

However, comparative analysis of the recorded signals played in the forward and 

reverse directions showed a significant difference in the angular positions of the 

modes as shown in fig 3.11, suggesting the influence of a time delay in the analysis. 

Increasing the analysis speed by increasing the frequency range of the analysis 

reduced this delay, as illustrated in fig 3.12, which shows the mode amplitude using 

20Hz, 50Hz, 100Hz and 200Hz analysis ranges. This suggests that errors in the 

position of the mode shape will be small when using the 200Hz analysis range, and 

this range was therefore used for all subsequent modal analyses. It may also be noted 

from fig 3.12, that the error in the mode position is more marked at the beginning of 

the revolution than the end, and this is due to the reduction in speed of the drum 

during the revolution, increasing the time between encoder pulses and hence analyses, 

and thus making the analysis delay less significant. 
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3.3.6 Drum modal analysis results 

A profile through the ITFI waterfall diagram of fig 3.9, at the scaled down squeal 

frequency of -10Hz, is shown in fig 3.13(a). This represents the vibration amplitude 

distribution circumferentially around the drum mouth (position A in fig 3.3) and the 

wavelike nature of the mode shape is apparent. The four `antinodes' suggest a form 

similar to the n=2 normal mode measured in section 3.3, but at no point around the 

circumference does the measured amplitude reduce to zero, and this lack of true nodes 

indicates that this cannot be a normal n=2 mode. Fig 3.13(b) shows a similar 

amplitude distribution characteristic taken from another 'S'-Cam brake (by Steyr of 

Austria), although in this case the squeal mode is an n=5 type at a higher frequency 

of 2.5 kHz. 

Repeating the procedure described in 3.3.5 for the phase(d) of the transfer function 

produced the waterfall diagram of phase distribution shown in fig 3.14, with a profile 

at the squeal frequency in as illustrated in fig 3.15 (again, this particular result is taken 

from the Steyr `S'-cam brake, showing an n=5 type characteristic). This shows a 

continuous phase change around the drum circumference (the discontinuities being 

merely a return to zero after a 360° shift is accumulated) unlike the discrete 180° 

phase changes at the nodes of a normal mode. These ITFI and $ results thus indicate 

the presence of a complex drum mode which could alternatively be described by its 

real and imaginary components relative to the reference signal. 

Again, repeating the analysis procedure described in 3.3.5 for the Real (Re) and 

imaginary (Im) parts of the transfer function separately, and superimposing the 

waterfall diagram profiles, results in the form of the complex mode shown in fig 3.16. 
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The 'scanning' technique used to obtain this result is based upon assumptions that the 

mode is time invariant and is fixed relative to the shoes, and, as noted in section 3.3.1, 

data from a second accelerometer, angularly displaced from accelerometer A, is 

required to justify these assumptions. In fig 3.17, the complex drum mode produced 

using accelerometer C, which is positioned 90° around the drum mouth from A (see 

fig 3.3), is compared with that from A. It can be seen from the results that the mode 

components are identical apart from a spatial phase shift of 90°, corresponding to the 

90° physical separation of the measurement points on the drum. Thus, identical 

modes have been measured at times separated by 3c/2w seconds, the time taken for the 

drum to rotate through 90°, the separation of the accelerometers, supporting the 

assumtion of time-invariance of the mode. 

The accelerometer in position B, fig 31-, axially displaced across the rubbing path 

from A, was used to determine the presence or absence of a circumferential node 

around the rubbing path, as discussed in section 3.3.2. The complex modes measured 

using accelerometers A and B are compared in fig 3.18, from which it is clear that the 

circumferential mode shape at the mounted side of the rubbing path is similar to that 

at the drum mouth, but has a reduced amplitude. No phase shift occurred across the 

rubbing path, confirming that an -even number of circumferential nodal circles must 

have been present, and, considering the low frequency of the mode, this number can 

be taken to be zero (particularly as the first normal mode havings>1 is at a frequency 

of - 2.8 kHz). 

3.3.7 Discussion of results 

Each of the components in fig 3.16 is similar in form to a normal n=2 mode as 

measured in section 3.3 and illustrated in fig 3.19, and the complex mode can thus be 
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described as the superposition of two similar normal modes of the same mode order 

(n=2). These normal modes are time phase shifted by 90° and also spatially phase 

shifted relative to each other in a circumferential direction. In this case, the spatial 

phase shift is approximately 45°, or 1/a the wavelength of the mode shape wave, so that 

the nodes of one mode approximately coincide with the antinodes of the second mode. 

The two components of the drum mouth mode can therefore be approximated by the 

equations 

yl = al sinnesinwt 

(3-3) 
Y2 = a2 sin(n O+Z) cos wt 

If the components were of equal amplitude, a, then the sum of the components would 

be 

Y, + y2 = a(sinnOsinnwt + cosnOcoswt) (3-4) 

or yl + y2 =a cos(n O- wt) (3-5) 

This suggests that the complex drum mode can also be approximated by a wave of 

wavelength -r/n radians, travelling around the drum with angular velocity co. This is 

consistent with the findings of Fieldhouse and Newcomb (33), who inferred such a 

rotating wave from holographic analysis of a squealing disc brake. The absence of 

a circumferential nodal circle on the drum rubbing path indicates that the normal mode 

components of the complex mode are similar to the n=2, s=0 normal mode of the fixed 

drum measured in section 3.3. 

Now the observed complex modal characteristic of the squealing drum is consistent 

with an essential feature of the binary flutter mechanism of squeal proposed by North 

(22), which requires 2-degree of freedom motion of the rotor in the region of contact 
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with the brake lining. North suggested that these 2 degrees of freedom could be 

provided by two independent flexural modes of the rotor having identical forms and 

frequencies, but separated angularly into `sine' and `cosine' modes. The relationship 

between the motions of the rotor segment of the flutter model and the two rotor modes 

is illustrated in fig 3.20, and it is clear that the spatial relationship between these 

modes is in close agreement with those of the drum, measured above. This complex 

rotor motion is not a feature of the pin-disc squeal mechanics discussed in Chapter 1 

(which involve single degree of freedom drum motion), and hence the consistency of 

this behaviour (on a range of brakes and at a range of squeal frequencies, as will be 

shown in section 3.3.8), suggests that binary flutter is the more likely mechanism for 

the instability. 

3.3.8 Comparison of drum squeal modes from other brake installations 

The Scania brake used as the focus for this work produced only a single repeatable 

squeal frequency, the -580 Hz investigated in detail here. As noted ealier, a second 

`S' cam brake, manufactured by Steyr of Austria, and of similar size and construction 

was also tested and found to produce several squeal frequencies under different 

operating conditions, typically 1.3 kHz at 1-2 bar, 2.5 kHz at 3 bar and 5.5 kHz at 7.3 

bar. All these squeals occurred over only a small part of each revolution, however, 

and so proved difficult to analyse. Continuous loud squeal at 2.5 kHz was, however, 

obtained by applying only the leading shoe to the drum, by removing the trailing shoe 

lining. It is interesting to note at this point that when the trailing shoe alone was 

applied to the drum, by removing the leading shoe lining, no squeal could be obtained 

from the brake, suggesting that, in this case, the unstable interaction is restricted to 

the leading shoe only. 
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Drum squeal modal analysis produced the amplitude and phase distributions already 

shown in figs 3.14 and 3.15 and the complex mode illustrated in fig 3.21. Although 

a higher drum mode is involved (the n=5, s=0 mode), the spatial relationship between 

the real and imaginary components is clearly similar to that seen in the Scania 

n=2, s=O squeal mode. In this case, the squeal frequency of 2.5 kHz is more closely 

related to the normal mode frequency of the mounted drum - 2275 Hz for the n=5, s=0 

mode - than is the case for the Scania brake. 

The similarity between the drum squeal modal characteristics of two similar heavy 

vehicle brakes squealing at very different frequencies and involving different drum 

mode orders, indicates that such complex modes may be a common feature of squeal. 

To further test this indication, two dissimilar squealing brakes were also analysed, a 

small 180mm x 30mm passenger car drum brake squealing at 3.3 kHz and a medium 

sized, 308mm x 89mm light truck drum brake squealing at a range of discrete 

frequencies between 7-10 kHz (the analysed frequency being 7.7kHz). 

The measured complex drum modes, from these two different sized drum brakes, are 

illustrated in figs 3.22 and 3.23 respectively, and although the quality of the 

measurements is poor, due to discontinuous squeal, similar characteristics are seen, 

supporting the results obtained from the larger brakes. 

3.3 Summary 

By using a novel 'scanning' modal analysis technique, it has been shown that, during 

squeal, the drum holds a complex wavelike mode, which, when expressed in the form 

of real and imaginary component modes approximates to the superposition of two 

spatially phase shifted normal modes. The mode components are stationary in space 
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and similar in form to those measured on the static drum, with s=0 (ie no 

circumferential nodes) but the squeal frequency is significantly different from these 

normal mode frequencies. This modal behaviour also appears to be a common feature 

of a range of squeal problems on different sized brakes. 
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Figure 3.1 Waterfall diagram of the imaginary parts of the transfer 

functions, obtained from the response to impact excitation 

around the drum mouth 
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I 
SCANIA 8 INCH DRUM - MOUNTED N=3 MODE 

V/V 

LIN 

-1I 1 
i TF IM B/A AVG REC 36 

X: 910.00 HZ Y: . 223 V/V REC I TIME 01: 09: 08 RPM 

Figure 3.2(a) Typical flexural mode shape around the drum mouth, obtained 
from a profile taken through the waterfall diagram at a 

natural frequency (n=3, s=0 mode) 
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-2 
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TF IM B/A AVG REC 21 
Y: -. 721 V/V REC I TIME 05: 51: 56 RPM 

Figure 3.2(b) Typical flexural mode shape in an axial direction across the 
drum rubbing path obtained from profile through waterfall 
diagram (n=3, s=0 mode) 
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n=3, s=O mode 

n=4, s=1 mode 

Figure 3.3 Typical drum normal mode shapes obtained using the SKIS 
STAR modal analysis software in conjunction with the impact 
excitation transfer function analysis technique 
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Figure 3.5 The modal analysis equipment attached to the brake 
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accelerometers charge amplifiers 

to spectrum 
analyser 

Figure 3.4 Schematic diagram of the arrangement of instrumentation for 
modal analysis of the drum during squealing 
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1 Revolution 

1 pulse per rev. 

----------------- 

128 pulses per rev. 

___M ---------------------- rML- 
Output from trigger logic circuit 

Figure 3.6 The form of the Ippr and I28ppr signals from the optical 
encoder 
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Figure 3.7 Spectrum from reference accelerometer signal for comparison 
with that of audible noise shown in fig 2.5 
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Figure 3.8 Typical amplitude-time history produced by the reference 

accelerometer on the brake shoe 
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Figure 3.10 Waterfall diagram formed from zoom spectra of the squealing 

brake, showing frequency variation 
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Figure 3.11 Comparison between mode shapes analysed from forward and 
reverse tape playback, showing the effect of the delay in the 
analysis. Note that the effect of the delay reduces as the brake 
rotates more slowly and the time between analysis triggers is 
extended 
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Figure 3.12 Showing the effect of the frequency range used for the 

transfer function analysis on the apparent angular position of 

the mode 
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V/V 

LIN 

0 
one revolution 

I liii 8/A AVG REC 127 
X: 10.000 HZ Y: 1.14 V/V REC I TIME 03: 27: 17 RPM 

Figure 3.13(a) Profile through the waterfall diagram of transfer 
function magnitude at the squeal frequency showing the 
amplitude distribution of the n=2 mode (Scania drum) 
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v/v 
LIN 

0 
- one revolution 

Figure 3.13(b) Profile through the waterfall diagram of transfer 
function magnitude at the squeal frequency showing the 
amplitude distribution of the n=5 mode (Steyr drum) 
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LIN 

o BSA AVG AF 20.00 HZ 2000.0 

Figure 3.14 Waterfall diagram assembled from successive transfer 
function phases. (Note that this is obtained from a Steyr 

`S' cam brake squealing at 2.5 kHz in the n=5 mode) 

180 

DEG 

LIN 

-180 

Figure 3.15 Profile through the transfer function phase waterfall diagram 
at the squeal frequency showing a continuously changing 
phase around the drum. (Note that this is obtained from a 
Steyr `S' cam brake squealing at 2.5 kHz in the n=5 mode) 
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Figure 3.16 Complex squeal mode of the drum using accelerometer `A' on 

the drum. This is the superposition of profiles through the 

waterfall diagrams of Real and Imaginary parts of the. 

transfer functions 
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Figure 3.18 Complex modes measured using drum accelerometers A and 

B, at either side of the drum rubbing path, showing an 

amplitude reduction but no phase shift across the rubbing 

path 
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Figure 3.19 Normal n=2 mode of the mounted drum for'comparison with 
the complex squeal mode in fig 3.16 

Figure 3.20 Relation of rigid body binary flutter modes to the measured 
complex squeal mode 
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Figure 3.21 Complex drum mode measured from a Steyr `S' cam brake 
squealing at 2.5 kHz, showing an n=5 squeal mode 
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Figure 3.22 Complex drum mode measured from a 180m x 30mm Ford 
passenger car drum brake squealing at 3.3kHz 
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v/v 
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FORD 350 DRUM TC1197 

one revolution 

Figure 3.23 Complex drum mode measured on Ford 308mm x 89mm 

light truck drum brake, squealing at 7.7kHz, showing a pair 

of n=9 mode components with a quarter wavelength spatial 

phase difference, similar to that measured on the Scania 

drum 
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CHAPTER 4 

MODAL ANALYSIS OF THE COMPLETE BRAKE 

4.1 Introduction 

As noted in the section 3.1, standard modal analysis techniques can be readily applied 

to the stationary parts of a brake, and by combining such measurements with those 

from the drum, a description of the motion of the complete brake, whilst squealing, 

could be obtained. The modal analysis technique employed on the squealing brakes, 

that of measuring the transfer function between discrete points on the structure and a 

fixed reference point, has, in practice, a limited spatial resolution, determined by the 

number of simultaneous measurements which can be made and/or the number of 

consecutive measurements which can be made under repeatable test conditions. In 

view of this practical limitation to the amount of modal data obtainable, the measure- 

ment resource was focused on the shoe platform, the region most closely coupled to 

the drum through the friction interface, together with a less detailed attempt to indicate 

the type of boundary conditions to which the brake shoe is subject. These latter 

measurements were considered to be important to the development of future stability 

modelling. 

Prior to this squeal modal analysis, however, the normal modes of the free shoe and 

of the statically actuated brake system were investigated in order to : - 

(i) determine if any close relationship exists between the free component 

natural frequencies and the squeal frequency. Such frequency 
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coincidences are often seen as significant in empirical squeal problem 

solving, motivating structural modification of components. 

(ii) determine whether any close relationship exists between the modes of 

the static and squealing brake system. 

4.2 Brake Shoe Modal Analysis 

4.2.1 Introduction 

The shoe used in the Scania 412 x 203 mm brake is illustrated in fig 4.1. It is of 

cast iron construction and consists of a 203 mm wide cylindrical platform, supported 

along its centre by a substantial circumferential web from which smaller axial webs 

support the edges of the platform. At the extremities of the central web, which is 

extended beyond the platform ends, are fitted a plain bearing, for location on the shoe 

anchor pin, and a roller, which contacts the actuating 'S' Cam (see fig 2.1 for a 

general arrangement of the brake). As noted in chapter 2, the arc length of the shoe 

platform is 72°, unusually short compared with the more typical length of 120°, and 

due to this short length, the friction material is manufactured and attached, by rivets, 

in a single block rather than the more usual two 'half-blocks'. The leading and 

trailing shoes are identical in construction and positioning of the friction material. 

4.2.2 Shoe normal modal analysis 

A normal modal analysis was first carried out on the shoe alone to determine whether 

any relationship exists between the free vibration of a component and its motion 

whilst squealing, a situation suggested by some current empirical approaches to squeal 

solutions (described in section 2). 
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The shoe was analysed, both with and without the friction material attached, in the 

'freely-suspended' state on a foam rubber block, such that the rigid body frequencies 

were all below 20 Hz and so did not influence the flexural modes. Its response to 

impact excitation was measured by a single, radially directed, accelerometer attached 

to a corner of the shoe platform. Excitation impacts were applied radially at a range 

of equally spaced points around the platform periphery, and also axially (in the 

direction of the brake axis) along the edge of the shoe web. The imaginary part of 

the transfer function between response and force was used to define mode shapes. 

The frequency response of the shoe is shown in fig 4.2, and the modes associated with 

the major resonances are summarised in the table below, with the forms of the first 

torsion and bending modes illustrated in fig 4.3. 

Table 2 Free Shoe Modes 

Natural Frequency (Hz) Mode Shape 

No Lining With Lining 

569 635 1st Torsion 

1075 1220 1st Bending 

1540 1755 2nd Torsion 

It is already clear from Table 1 in Chapter 3 that no drum normal mode frequency 

coincides with the squeal frequency of 580 Hz, which is, however close to the first 

torsion mode frequency of the shoe, above. The empirical component modification 

approach to reducing squeal may well suggest, from the above observation, that 

changing the frequency of this shoe torsional mode by structural modification, should 

alleviate the squeal. It will be shown later, however, that in this case, the shoe mode 
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involved in the 580 Hz squeal is more akin to the first bending mode and that little 

torsional motion is apparent. 

This lack of correlation between drum and shoe normal modes and the squeal 

behaviour is not, however, surprising when the close physical coupling of the 

components, under braking conditions, is considered. To evaluate the significance of 

this coupling effect, a modal analysis was carried out on the statically actuated brake 

on the inertia dynamometer. 

4.2.3 Normal modal analysis of the actuated brake 

This was carried out on the stationary brake actuated at various pressures. The 

response was measured from a single radially directed accelerometer, attached to the 

drum, to impacts at 36 positions around the drum mouth and 10 positions along an 

antinodal line across the drum rubbing path. A typical frequency response up to 

2 kHz is shown in fig 4.4 for 7 bar actuation, and a typical collection of modes is 

summarised in the table below, where they are also compared with the modes of the 

drum alone, obtained in chapter 3. 

Table 3 Normal mode frequencies of the drum and the brake 

actuated at 3 bar 

Drum Mode 
Shape 

Actuated Brake 
Natural Frequency (Hz) 

Mounted Drum 
Natural Frequency (Hz) 

n=2, s=0 528,548,578,608 445 

n=3, s=0 925,970,1045,1070 925 

n=4, s=0 1415,1495,1580 
1647,1710 

1660 
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A fundamental difference between the drum mode shapes of the actuated and 

unactuated brakes, is that the latter is arbitrarily positioned angularly, following the 

excitation around the drum, whilst the former takes up preferential angular positions. 

This will be explored more fully in the next chapter, but it is clear from the modes 

shown in fig 4.5 that the actuated brake drum holds modes of similar form but with 

different frequencies corresponding to different angular positions of the modes on the 

brake. 

It was observed that the above natural frequencies were sensitive to the actuation 

pressure, and this characteristic was measured for one of the modes involving n=2 

drum motion, near the squeal frequency. Frequency response functions were measured 

at actuation pressures from 0.5 bar to 6 bar and the resultant frequency - pressure 

characteristic is shown in fig 4.6. The characteristic is extremely non-linear, probably 

due to non-uniform contact between the linings and drum at very low actuation 

pressures (0.5 bar is only just above the `threshold' pressure of the brake - the 

pressure required to extend the shoe pull-off spring and close the gap between lining 

and drum). It is worthy of note that the frequency at 0.5 bar is less than that of the 

fundamental (n=2, s=O) drum mode, suggesting a mass loading effect. At higher 

pressures, where good contact is established, the frequency is less sensitive to pressure 

and is above the drum fundamental, suggesting a predominant stiffening effect. 

4.2.4 The significance of normal modal analysis 

The above results suggest that no normal modal analysis of the brake or its 

components can give a reliable picture of the situation whilst squealing, and hence that 

modification to components based on such normal modal analysis cannot be readily 

used to produce a predictable influence on the occurrence of squeal. 
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4.3 Analysis of the Squeal Mode of the Brake Shoe 

As indicated in the introduction to this chapter, the shoes, being a stationary part of 

the brake, can be analysed using an array of accelerometers attached at discrete points 

on the structure. In this case, measurements were limited to the radial direction (the 

same direction as the drum mode measurements in chapter 3) on the shoe platform 

only. Low mass accelerometers were attached, ' using screw/adhesive adaptors and 

cyanoacrylate adhesive, at the positions along the inner and outer edges of the 

platforms, shown in fig 4.7. A single reference position, position 1 at the drum mouth 

side of the leading end of the shoe, was used for all measurements, this being the 

same reference position used for the drum squeal modal analysis in chapter 3. This 

common reference position allowed later combination of the drum and shoe modes. 

The amplified signals were recorded on the multichannel magnetic tape recorder 

together with the lppr and 128ppr optical encoder signals, the latter to be used to 

ensure simultaneity of analysis. Due to the limitation of the number of recording 

channels available, not all signals could be recorded simultaneously, and several brake 

applications were required with groups of signals being recorded from each. 

Overlapping of the groups of signals (for example signals 1-9 from one application 

and 1,3,5,9,10,11,12,13,14 from another) allowed consistency of the modes between 

applications to be confirmed. 

Transfer functions between each accelerometer signal and the reference signal were 

produced using the 2-channel spectrum analyser, and the real and imaginary 

components of the complex transfer function were assembled into waterfall diagrams, 

triggered from the optical encoder signals. Profiles through the waterfall at the squeal 
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frequency show the time history of the transfer function through one revolution, 

illustrated in fig 4.8 for one accelerometer position. 

These profiles indicate the variation in transfer function during one revolution of the 

drum, and would be expected to be constant if the assumption of time-invariance, used 

in the drum modal analysis of chapter 3, were valid. Bearing in mind the small in- 

stop variations in squeal frequency (shown in fig 3.10), it was considered that the 

transfer functions indicated a sensibly constant dynamic condition and average values 

of the transfer function components were used to define the shoe mode. 

The real and imaginary components for each accelerometer position on the leading 

shoe are shown in fig 4.9, and the form of the component modes on the shoe 

illustrated in fig 4.10. It is clear from these results that no significant torsional motion 

of the shoe platform is present (as may have been envisaged from the free shoe modal 

analysis), the mode shape and phasing being similar at both edges. The reduction in 

amplitude from the mouth side across the rubbing path is qualitatively similar to that 

seen from the drum modal analysis (the amplitude ratio being slightly greater here, 

=0.4 cf =0.5 for the drum). The form of the mode components in the circumferential 

direction is a combination of bending with rigid body rotation such that the resulting 

curve approximates to part of a sinusoidal function. 

The wavelength of this sinusoid approximates to that of the wavelength of the n=2 

drum mode measured during squeal, that is it has an angular wavelength of 180°. It 

also appears that the spacial phasing of the real and imaginary component waves of 

the shoe complex mode is similar to that of the drum complex mode components (cf 

fig 3.16). The measurements thus show that the overall form of both the drum and 

shoe modes are very closely related, both being complex wavelike modes of 

approximately the same wavelength and amplitude ratio across the rubbing path. 
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4.4 Combined Drum and Shoe Squeal Modes 

The use of a common reference point for the drum and shoe'squeal mode transfer 

function measurements enabled the modes to be combined so that the true relative 

motions of drum and shoes could be obtained. The position of the drum complex 

mode in fig 3.16, relative to the stationary parts of the brake, is defined, as the 

waterfall used to produce this mode was initiated when the drum accelerometer was 

at the position of the cam centreline, Thus, the shoe modes can be superposed on 

fig 3.16 at positions corresponding to the shoe platform angular positions to produce 

the combined mode shown in fig 4.11. 

4.5 Summary 

Only the shoe first torsion mode natural frequency is found to be close to the squeal 

frequency, and this is shown to be coincidental as the shoe exhibits bending motion 

while squealing. The natural frequencies of the statically actuated brake system are 

sensitive to the actuation pressure, and multiple modes are found involving a single 

drum mode form, each drum mode occupying a unique angular position on the brake. 

During squealing, the shoe platforms exhibit complex bending motion of a similar 

form to that of the drum to which they are coupled through the friction material. 
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Figure 4.1 Brake shoe used on the Scania 412x203mm brake 
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Figure 4.2 Frequency response of a freely suspended shoe 
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Figure 4.3 The first torsional mode shape of the platform of a freely 

suspended shoe and the first bending mode of the shoe web 
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Figure 4.4 Waterfall diagram of transfer functions taken from impacts 

around the drum of the statically actuated brake, showing 

multiple modes involving n=2 and n=3 drum motion. the two 

predominent n=2 modes are identified 
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Figure 4.5 Typical mode shapes of the drum and shoes on a brake sub- 
jected to 5 bar static actuation pressure on the dynamometer 
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Figure 4.7(a) Positions of the accelerometers on the leading shoe, used for 
squeal modal analysis 
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Figure 4.7(b) The accelerometers attached to the shoe platform 
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Figure 4.8 Typical variation of the Real and Imaginary shoe transfer 

function components during one revolution of the drum 
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CHAPTER 5 

THE SYMMETRY OF THE BRAKE DRUM 

5.1 Introduction 

An important feature of the drum modal analysis, produced in chapter 3, is the 

stationary nature of the components of the complex mode shape relative to the brake 

shoes. As the drum is rotating during braking, this implies that the mode components 

rotate relative to the drum with variable angular velocity, whilst maintaining an 

approximately constant squeal frequency. Such rotation of the mode, at constant 

frequency, is only possible due to the inherent symmetry of the drum about its axis 

of rotation. 

When considering the normal modal behaviour of the drum, as measured in section 

3.3, it is clear that the angular position of the measured mode on the drum is arbitrary, 

being determined, during modal analysis, only by the position used for excitation, 

which becomes an antinode. This feature makes the normal modal analysis of an 

axisymmetric structure, such as a brake drum, fundamentally different from the 

analysis of more arbitrarily shaped structures. 

Normal modal analysis is generally carried out by measuring the response, at one 

point on a structure, to an excitation at a different point on the structure and repeating 

for either an array of response positions with a fixed excitation point or an array of 

excitation points with a fixed response position. If impact excitation is used, the latter 

is, in practice, more readily carried out and was used for the normal modal analysis 

of the drum in chapter 3. For most structures, this technique is based upon the effect 
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that, although the response position is fixed relative to the structure's mode shape, the 

response amplitude is proportional to the mode amplitude at the excitation point. In 

particular, excitation at a nodal point of a mode produces no response in that mode. 

Thus, the transfer functions between the response at a fixed position and excitation at 

a range of positions, exactly reproduce the mode shape. 

The general structure, considered above has mode shapes which are fixed in position 

relative to features on the structure or its boundaries, whereas on an axisymmetric 

structure, such as a brake drum, no such features or boundaries exist, in the 

circumferential direction, to locate the modes. The angular position of such modes 

is thus arbitrary and follows the excitation position as it is moved during the modal 

analysis. Hence, in this particular case, the response measurement position, although 

fixed to the drum, effectively `scans' the mode shape, which is being moved around 

the drum by the movement of the excitation position. In this sense, the normal mode 

measurement technique and the squeal mode technique developed in chapter 3 are very 

similar, the shoe reference accelerometer signal in the latter effectively replacing the 

impact excitation signal in the former. 

5.2 The Effect of Reducing Symmetry on the Normal Mode Behaviour of the 

Drum 

5.2.1 Defining rotational symmetry 

The arbitrary positioning of circumferential drum modes, which appears to be a 

necessary condition for the observed stationary complex squeal modes, is, as noted 

above, a direct consequence of the high degree of symmetry of the drum structure 

about its axis of rotation. 
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In considering this symmetry of the drum it is useful to employ the well defined 

mathematical concept of 'a symmetry' - that of an operation on a figure or structure 

which leaves the figure or structure unchanged. Thus, a plane equilateral triangle has 

three rotational symmetries: - rotation through 0°, 120° and 240°, and these 

symmetries form a Group of order 3. By this definition, a perfectly circular drum 

with constant wall thickness would have an infinite number of rotational symmetries 

forming a Group of order infinity. Thus any angular position of the drum is 

indistinguishable from any other. 

The number of rotational symmetries can be reduced by identifying specific points on 

the drum structure. When considering the drum as a dynamic system, this could be 

achieved by attaching discrete masses to the drum periphery. Any random arrange- 

ment of masses is likely to reduce the symmetry group order to one - the identity 

element of the group, but if equal masses are attached at equispaced intervals around 

the drum periphery the symmetry group order will be equal to the number of masses. 

For example, attaching 3 equispaced masses to the drum will reduce the drum 

rotational symmetries from an infinite number to just 3, rotation through 0°, 120° and 

240°. 

Perrin and Charnley (38) have investigated the effect of rotational symmetry on 

campanologist's bells, which have some similarity in form to brake drums. They 

recognised that natural imperfections in bells were responsible for 'warbling' due to 

cyclic transfer of energy between the two preferentially orientated meridian modes, 

and their solution to this problem was to cast in a mass or rib to swamp the spurious 

natural 'splitting' and, by striking the bell at the mass point only one of the pair of 

modes would be excited. Although there is little similarity between the problems of 

'warbling' in a static bell and self-excited vibration in a rotating brake, the'degree of 
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rotational symmetry in a brake will be shown to be fundamental to its capacity to 

squeal. 

5.2.2 Modal analysis of a drum with reduced rotational symmetry 

In order to evaluate the effect of a reduction in the symmetry group order of the drum 

on its normal mode behaviour, steel blocks, of mass 1.38 kg, were attached to the 

outside surface of the drum mouth by bolts into tapped holes in the drum (as in 

fig 5.1). The dynamic response of the drum was measured using impact excitation 

and accelerometer response as for the normal modal analysis in 3.3. In this instance, 

however, the modes were not expected to be arbitrarily positioned and so any arbitrary 

impact position and response measurement point would not necessarily capture all the 

modes of interest. For initial response tests, the involvement of all modes of interest 

was ensured by impacting and measuring responses at a large number of angular 

positions between two masses and averaging the resultant transfer functions 

(automatically, using the spectrum analyzer). The resultant average frequency 

response is shown in fig 5.3 for the case of 2 equispaced masses attached to the drum, 

and this is compared with the response of the same drum, with no masses attached, 

in fig 5.2. 

It can be seen that for each circumferential mode of the 'symmetric' drum, two natural 

frequencies are now present, one identical with the 'symmetric' drum natural 

frequency, and one below it. (Modes corresponding to these pairs of natural 

frequencies will be referred to as `split' modes). Repeating the measurements with 

3,4 and 5 equispaced masses attached to the drum produced the frequency responses 

shown in fig 5.4 (a-c). Comparison of these results with the 'symmetric' drum 

responses indicate that, in these cases, the masses have not modified the response in 
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all modes to produce two natural frequencies, or split modes. The measured natural 

frequencies for each mass arrangement are summarised in the following table. 

Table 4 Effect of discrete mass addition on normal mode frequencies 

Number of equispaced 1.38 kg masses 
Mode 

0 2 3 4 5 

n=2, s=0 425 385 395 360 375 
425 415 

n=3, s=0 915 860 835 860 855 
915 920 

n=4, s=O 1645 1505 1535 1380 1465 
1650 1655 

n=5, s=O 2530 2445 2445 2435 2265 
2535 2550 

The above results suggest that the addition of equispaced masses only introduce a 

second natural frequency if the number of masses divides exactly into the number of 

axial nodal lines (ie twice the number of nodal diameters). That is, a second mode 

is introduced only if the following condition is satisfied 

n= integer (5-1) 
z 

where z= no of equispaced masses, and hence is equal to the rotational 

symmetry group order. 

This condition will be explored more fully in section 5.3. 
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The mode shapes corresponding to the natural frequencies in table 1 were measured 

using the same techniques described in section 3.3. The circumferential mode shapes 

of a typical pair of split modes (n=2, s=O), produced by the addition of 2 equispaced 

masses, are shown in fig 5.5. Unlike the arbitrary angular positioning of the single 

mode of the symmetric drum, these two modes occupy fixed positions relative to the 

masses, such that the masses coincide with nodes of the higher frequency mode and 

antinodes of the lower frequency mode. The upper mode will thus be unmodified in 

frequency by the mass addition (except for a small effect due to rotational inertia of 

the masses) as observed in fig 5.3 

5.3 Analysis of the Effect of Reduced Symmetry on the Drum Modes 

In order to explain the foregoing experimental observations, the effect of the addition 

of discrete, equispaced masses to the drum periphery will be examined by considering 

the kinetic energy of the masses in the drum meridian modes. 

Consider a series of z equispaced, equal, point-like masses of mass m, attached to the 

drum periphery at a fixed axial position, a, as shown in fig 5.6. 

If the masses are small it can be assumed that the mode shape of the drum rubbing 

path in the meridian mode of order n will be of the form 

Y= f(a) sinn 6 (5-2) 

(Where f (a) is the form of the mode axially across the drum rubbing path) 

and is identical in form to the normal mode of the symmetric drum, measured in 

section 3.3. 
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Referring to fig 5.6, the angular position of mass k is 6k = 2kt/z -4 and its 

amplitude, shown in fig 5.7, in the meridian mode of equation 5-2 is given by the 

equation 
Yk f(a)sinn (2Z" 

_ 45) (5-3) 

The total kinetic energy of the z masses is therefore 

z=m w2 E w yk (5.4) =m syk- T =- 
i22k. i 

The meridian modes of the drum will have no preferential angular position on the 

drum structure, relative to the masses, only if the natural frequency of the mode is 

independent of the angular position, ý, of the set of masses relative to the mode. In 

order that the natural frequency of the mode be independent of the angular position 

of the masses, the total kinetic energy of the masses in this mode of vibration must 

be independent of 4, ie 

dT 
=0 for all 0 (5-5) 

d45 

From equations 5-3 and 5-4 

2= 
T= MW f2(a) E s2 

(2nk7r 
- n0) (5-6) 

2 k, 1 
lz 

putting 2nk; r/z = a, and differentiating gives 

dT nmo2 =2 ! 2(a)E -2nsin(ak-n45)cos(nk-n#) 
(5-7) 

d45 k-I 

dT nm&)2 ` (5-8) 
-" d45 =2 f2(a)E sin(2ak-2n46) 

k-I 
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-º d=n 
2ý'' f (a) 

(sin2n#E 
cos2ak - cos2n4iE sing akl (5-9) 

&-1 kul 

In this expression, consider evaluating first the summation 

E sin2ak le sin 
4nkn 

k-i k-i z 

Putting 4nic 
_p (5-10) 

z 

E 
sin r_E ßß (5-11) 

k=1 Z k=1 

= sinp+sin2p...... +sin(4nn-2p)+sin(4nn-ß)+sin4nir (5-12) 

But sin(4nir-kp) _ -sinke 
(543) 

and hence, if z is even, all such terms cancel, whilst if z is odd, all such terms cancel 

except 
sin 2 

40 = sin2n is =0 (5-14) 

The final term, sin4ni, is also zero and so 

z 
E sin2ak =0 for all z (5-15) 
k-I 

Equation (5-9) now becomes 

dT nmw2. f2(a)sin2n45E cos2crk (5-16) 
2 k. i 
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Evaluating now the summation 

ý cos2rk =E coskß =1E (eikp+ e akp) (5-17) 
k-i k-i 2 ,. i 

which is the sum of a geometric progression, and may be expressed in the form 

z1 1-e(=ýiý0 
+ 

1-e-(=4»'ß 
_1 

(5-18) Ep=- 2I 
k-i 2 1-e ip 1-t "gyp J 

coskß =1 
(2 -2cosß +2coszß -2cos(z+l)Q) (5-19) 

k -I 22- 2cosß J 

But as zp = 4nnr -º 
ß(zß) =1 (5-20) 

cos(z+l)ß = cosß 

cosk a=i (4 - 4cosp 
-2) 

(5-21) ~ 
k-1 

22- 2COSýi J 

COSp*l 
-- r cost ak =0, only if 1e Cos 

4n rr *1 
(5-22) 

k-1 z 

Equation (5-16) now becomes 

g=0 if cos- 
4n-r 

*1 (5-23) 
dq z 

The condition cos4nn/z=1 implies that 4nx/z must be an integral multiple of 2, -r and 

that 2n/z must be an integer. This signifies that the kinetic energy of the masses, and 

hence the natural frequency of the meridian mode, order n, is independent of 4i for any 

number of z equally spaced masses except where z is consistent with the condition 

2n/z = integer, mentioned earlier. 
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Substituting this condition in equation (5.6) for the kinetic energy of the masses gives 

= mWZ T fl(a)rsin2(jkn - n4) (5-24) 
2 k1 

where j and k are integers. 

"T= mW2 (a)E ý2nO (5-25) 
2 k-1 

z 
-» T=2j (a)z sin2no (5-26) 

and the kinetic energy of the masses is clearly a function of the angular position, ý, 

of the masses relative to the origin of the mode shape. 

5.4 The Effect of Reduced Symmetry on Squeal 

The experimental and theoretical analysis in sections 5.2 and 5.3 suggest that the 

addition of suitably placed discrete masses to the drum structure could result in modal 

behaviour inconsistent with that measured on a squealing drum in section 3.5. In 

particular, if pairs of modes which rotate relative to the drum do occur, as measured 

in 3.5, then their frequencies would not be always identical (as in the case when 

squealing) due to the `splitting' effect of the added masses. It may thus be expected 

that the addition of such masses will have an effect on the squeal characteristics of the 

brake. 

The effect on squeal propensity was examined using the same range of equispaced 

1.38 kg masses attached to the drum during brake applications known to induce 

consistent (= 580Hz) squeal from the unmodified brake. Subjective evaluation of 

the audible squeal associated with each mass arrangement is listed overleaf. 
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No masses gives - Continuous squeal 

2 masses gives - Cyclic squeal 

3 masses gives - Continuous squeal 

4 masses gives - No squeal 

5 masses gives - Continuous squeal 

It was clear from these subjective assessments that the squeal propensity was modified 

only by the addition of 2 or 4 masses, which are the only values of z which satisfy the 

2n/z = integer condition for n=2 (the drum mode order associated with the 580 Hz 

squeal). There thus appears to be a relationship between squeal propensity and the 

'splitting' of drum modes. 

The `cyclic' description of the squeal produced with 2 masses attached indicates non- 

continuous squeal which occurs in several bursts per revolution of the drum. A 

measurement of the time history of this cyclic squeal was obtained from an accelerom- 

eter on the leading shoe platform. Spectra measured repeatedly during the brake 

application were assembled into a waterfall diagram and a profile at the squeal 

frequency is shown in fig 5.8. Two cyclic characteristics are apparent, corresponding 

to one and eight cycles per revolution of the drum. The one cycle per revolution 

component is the normal amplitude variation associated with drum runout or 

eccentricity whilst the eight cycles per revolution is due to the influence of the two 

masses. 

Although the subjective evaluation of the squeal noise was the same with 0,3 or 5 

masses, spectrum analysis showed a decrease in squeal frequency with mass addition, 

and a comparison between spectra with 0 and 5 masses is shown in fig 5.9. The lack 

of influence of 3 and 5 masses on the amplitude of the squeal, or squeal propensity, 
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effectively eliminates other possible contributors to stability, such as potential 

additional damping from the mass attachment interfaces. It is also noted that the 

observed invariance of the squeal frequency with the angular position of the masses 

is in a agreement with the analysis of section 5.3 which shows that the total kinetic 

energy of the masses is independent of their angular position relative to the mode if 

2n/z # integer. 

5.5 A Suggested Mechanism for the Effect of Reduced Drum Symmetry on 

Squeal 

5.5.1 Introduction 

The theoretical treatment, in section 5.3, of the effect of structural asymmetry on 

flexural drum modes explains the normal mode behaviour of the drum observed in 

section 5.2. It does not, however, directly explain the effect of such reduced 

symmetry on the squeal propensity discussed above. The squealing drum is observed 

to hold a complex mode whose real and imaginary components appear similar in 

shape and position to the pairs of normal modes produced by a suitable reduction in 

symmetry. In the squealing condition, however, the mode components are, of course, 

of the same frequency and rotate around the drum, whilst the 'split' pairs of normal 

modes are not coincident in frequency and are fixed relative to the drum. 

It was initially considered that the positional 'fixing' of the drum modes to the drum, 

by the masses, resulted in the observed elimination of squeal by forcing rotation of 

the complex squeal mode components and thus disturbing the observed consistent 

dynamic conditions at the frictional interface. This view is, however, difficult to relate 

to the single frequency cyclic squeal produced by small reductions in symmetry. 
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A mechanism more consistent with the observed behaviour is provided by 

consideration of the squeal as a binary flutter type of instability and the applied 

masses as decoupling the flutter modes. 

5.5.2 Decoupling of binary flutter modes 

The binary flutter mechanism for brake squeal is, as noted in the Literature Survey, 

most readily related to the low frequency squeal of disc brakes, where the section of 

disc in contact with the pads can be approximated as a rigid beam with two degrees 

of freedom. Such an approximation cannot be applied to a drum brake due to the 

greater length of friction material in contact with the drum, with the consequent 

significant amount of drum bending over this length even in the lower drum flexural 

modes. The observed complex drum mode which occurs during squeal is, however, 

consistent with the type of rotor motion predicted by the binary flutter mechanism. 

The ability of the drum to vibrate in two differently positioned modes with identical 

frequencies provides the two independent degrees of freedom at any point at the 

frictional interface, required for binary flutter, and hence a simple flutter model of a 

short section of the interface will now be considered. 

Consider a simple model of a section of the drum/lining interface of length 21, as 

shown in fig 5.10. It is assumed that the section of drum has two independent degrees 

of freedom, y and 0, and is in contact with a section of friction material over its whole 

length. The friction material is assumed to be attached to a rigid fixed shoe, and its 
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total stiffness through its thickness is k. , resulting in a rotational stiffness of kk12/3 

over this length, 21. The equations of motion of the system are 

MY + Rd + kp)y + j+(N + kpy) 9=0 (5-27) 

1# - phkpy + (Sd + kp 3 )9 =0 
(5-28) E 

where N is the normal force applied at the interface during braking. For small 

displacements, y , it can be assumed that kpy cN and so equation 5.27 can be approxi- 

mated by 

My + (kd + kp)y + pNO =0 (5-29) 

Putting 

a 
M+ M 

b= 
M (5-30) 

1uhk° d=S+k? 
i. 

cI1 31 

equations (5.27) and (5.28) become 

y+ ay + bO =o (5-31) 
ö+ cy + de =o (5-32) 

or in matrix form 

J+ 
[cdj 

B= 
(5-33) 

Assuming a solution of the form 

y "0 
e, u (5-34) 

B= Bo 
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equation (5.33) becomes 

A2 
Yo ab Yo (5-35) 
Bo +cd Bo -0 

je 
[22[O 101+a b] l Yo 

=0 
(5-36) 

1 cd 
1 [oj0 

The characteristic equation of this eigenvalue problem is 

det a+22 b=0 (5-37) 

c d+22 

-. (a + AZ) (d + 22) - be =0 (5-38) 
-» A4+(a+d). i2+(ad-bc) =0 

This is a quadratic equation in X2 and so 

22 = 
2(-(a 

+ d) * (a + d)2 - 4(ad - bc) (5-39) 

I 
-» =t 

ý-(a+d)t (a+d)2-4(ad-bc))i (5-40) 
2 

The criterion for oscillatory instability is the occurrence of a pair of complex 

conjugate eigenvalues having positive real parts, and such eigenvalues occur when 

4 (ad - bc) > (a +d )2 (5-41) 

(a condition which is derived in Appendix 2) 

or, simplifying, for instability, 

-4bc > (a - d)2 (5-42) 
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p2 ZZ 4 NhkP kd 
+ 

kP 
_ 

Sd 
_ 

kP1(5-43) 

MI 

(M 

M1 31 

Now for a standard brake drum, they and 0 coordinate motions of the short segment 

of drum wall can be considered as parts of two identical normal modes, related as 

shown in fig 5.11. These normal mode frequencies are identical, and so 

ka 
_ 

Sd (5-44) 
MI 

and the condition for instability reduces to 

4µ2Nhk 1 12 2 

MI 

(M 
-ii 

2 
4 p2Nh >k . MI 1 12 (5-46) (M 

31) 

which is similar to the condition obtained by North from the simple disc brake flutter 

model (23). 

Although this criterion for stability is based on an oversimplified model of the brake, 

some features are consistent with observed squeal behaviour. The consensus of opinion 

from most empirical work (for example Newcomb and Spurr (39)) is that increasing 

p is destabilising, and also the current experimental work suggests an increase in noise 

propensity with increased applied pressure, and hence normal force, N. 

If it is now assumed that the two identical normal drum modes are decoupled, by, for 

example, the addition of discrete masses to the drum, then the equivalent rotational 
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and translational modes of the section of the drum in the binary flutter model will now 

have different frequencies. That is 

Id 
* 

Sd (5-47) 
MI 

and by putting 

kd 

- 

Sd 
=W2-W2=S (5-48) 

MITR 

then the criterion for instability, equation (5-43), becomes 

s 4 ýZNh ko 
>S+ kp 

(1 
- 

12 l1 (5-49) 

MI 

(M 

31) ) 

from which it can be seen that the frequency split, S, certainly influences the stability, 

and will have a positive stabilising effect if 

S' 
(kp (M 12 )1 (5-50) 

31 

but may be destabilising if S is small. 

Note: - S is a measure of the separation or `split` of any pair of drum modes as 

WT-WR 
= (WT-CJR)IwT +( vR) = 2Wdw (5-51) 

5.5.3 Cyclic decoupling of drum modes 

The above simplified binary flutter analysis considered the effect of decoupling normal 

drum modes by, for example, the addition of suitably placed masses. In practice, any 

discrete mass attached to the drum will rotate with the drum, and hence move relative 
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to the stationary drum modes measured during squeal. Thus, even when the 

arrangement of attached masses satisfies the 2n/z = integer criterion, the decoupling 

effect on stationary nodes will depend upon the angular position of the masses relative 

to the modes. 

The real and imaginary components of the complex squeal mode, measured in section 

3.5, can be approximated at the axial position of the drum mouth by two normal 

modes in the form 

model: yl = a, sinn 0 sin wt 
(5-51) 

model: Y2 = a2 sinn (e - ¢) cos wt (5-52) 

where 4 is the angular separation of the two mode components. 

As the shapes of these two modes are identical, their generalised mass and stiffness 

will also be the same, say M and K respectively, referred to antinodal positions, and 

their natural frequencies will be co. = (KIM)". The addition of a small mass, m, at 

position 0, will modify these natural frequencies. Assuming that the mode shape is 

unchanged by the small added mass, the total energy in mode 1 is 
4 

2 
My12 +m (ylsinn9)2 +2 Ky12 = constant (5-53) 

Differentiating this equation gives 

Mjlyl + my, ytsinzne + Ky, yl =0 
(5-54) 

-. (M + msin2n8 )yl + Ky, =0 
(5-55) 
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and the modified natural frequency is thus 

(K )12 (5-56) 
1M+ msin2nO 

Similarly, the modified natural frequency of mode 2 is 

_K 
)12 (5-57) 

ý1 
(M+ 

msin2n(9 - #) 

The difference of the squares of the natural frequencies given by equations (5.56) and 

(5.57) results in 

2Z_K1 
M1+m 

sin2nO M 

1 

1+ Msin, n(e - ß) 
(5-58) 

and 

w! Z _ w=2 
_M 

(sin2n(B - 0) - sinzn8) 
(5-59) 

Z1+ msin2n9sinn(9-4) + M(sinn9+sinn(9-¢)) 
MZ 

where cw 2= KIM 

Now, assuming m is small, ie m/M c 1, and that n4 = n/2, as is approximately the 

case for the component modes measured in section 3.5, equation 5.59 reduces to 

w' 
i- 

w2 
2 

(sin2n (9 - it/2) - sin2nO) (5-60) 
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or 
wý2 w22 

=m cos 2n e (5-61) 
0R2M 

This equation describes the decoupling effect of a single mass, m, on two drum modes 

of similar shape and relative position as those measured during squeal. It is clear 

from fig 5.12 that if mass m is divided equally into z equispaced masses, m/z, such 

that 2nlz = integer, these will have an identical effect on the modes. 

In section 5.5.2 it was suggested, through a simplified binary flutter ana; ysis, that 

`splitting' the frequencies of the component modes could have a stabilising effect, 

JwT - wR I. which increases with the magnitude of the split, ýSý = 

Equation (5-61), above, approximates the magnitude of the frequency split, and 

wjz - wz I=Iw. 2 ! cos2nB I (5-62) 

which is clearly dependent upon not only the size of the added mass, but also its 

angular position 0, relative to the modes. Hence, as the added mass rotates with the 

drum, Jw, 2 - uo2 J varies between zero and w. Zm/M with 4n cycles per revolution. 

The real and imaginary components of the measured squeal mode have n=2 (see 

fig 3.16) and so suitably placed added masses will produce 8 cycles of 

decoupling/coupling of the modes per revolution. This is consistent with the observed 

cyclic squeal obtained with a small total added mass illustrated in fig 5.8, which 

shows 8 bursts of squeal per revolution, and thus lends credence to the suggested 

decoupling mechanism. 
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5.6 Squeal and the effects of drum symmetry related to aircraft flutter 

The binary flutter mechanism proposed for brake squeal is so named because of its 

original application to an unstable vibration phenomenon known as `flutter', in the 

aerofoil surfaces of aircraft such as the wings. This vibration occurs as a result of 

aerodynamic coupling between a bending and a torsional mode of the wing, which is 

possible because twist of the wing alters its angle of attack to the airstream and hence 

its lift, which in turn bends the wing. These two modes of the wing are clearly 

related to the two degrees of freedom of the rotor segment in the simple binary flutter 

model for squeal, the wing twist corresponding to the rotational mode and the bending 

to the translational mode. As for the brake, at rest the two modes are distinct, but as 

airspeed increases (together with the aerodynamic forces) they can coalesce and 

produce a single unstable mode, potentially resulting in structural failure. 

In the aircraft industry the technique used to increase stability (in terms of increased 

airspeed at which instability arises - the equivalent of increased friction level for 

squeal to occur in brakes) is to decouple the torsional and bending modes further by 

attaching a mass at the wing tip on the nodal line of the torsional mode, thus reducing 

the bending frequency only, as illustrated in fig 5.13. The mass in this case is, 

however, stationary relative to the wing structure, unlike the rotating masses used to 

decouple drum modes, and hence will be more effective. This similarity in the modal 

behaviour and a potential solution to the problems of brake squeal and aircraft flutter 

reinforces the view that the mechanism of squeal is a form of binary flutter. 
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5.7 Summary 

The stationary nature of the complex squeal mode on the drum is only possible due 

to the rotational symmetry of the drum structure, such that its modes have no 

preferential angular position. Reducing this rotational symmetry by, say, attaching 

discrete masses to its periphery 'splits' some modes into pairs which are in fixed 

angular positions. The condition for such behaviour is that the rotational symmetry 

group order, z (or number of masses) should be related to the mode order, n, by 2nIz 

= integer. It is found that a suitable reduction in symmetry can reduce or eliminate 

the squeal and, by analysis of the symmetry effect applied to a simple binary flutter 

model for squeal, its mechanism is found to be consistent with the decoupling of pairs 

of flutter modes. 
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Figure 5.1 Typical arrangement of masses attached to the drum periphery 

to reduce its rotational symmetry 
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Figure 5.2 Frequency response function of the unmodified drum 

mounted on the dynamometer, showing the first 4 diametral 

modes 
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Figure 5.3 Frequency response function of the drum with two 1.38 kg 
masses attached at diametrically opposite points on the 
drum mouth, showing that all diametral modes are `split' 
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Figure 5.4 FRF's of the drum with 3,4 and 5 equispaced masses 
attached around its mouth, showing how the modes which 
are `split' are consistent with the 2n/z=integer condition, 
and also that the non-split modes are reduced in frequency 
due to the mass addition 
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Figure 5.5 The pair of 'split' n=2, s=0 modes produced by the addition of 
two equispaced 1.38kg masses to the drum periphery 
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Figure 5.6 The arrangement of s equispaced masses, m, attached around 
the drum, for analysis of the effects of reduced rotational 
symmetry 
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Figure 5.7 The amplitudes of the s masses in an m-diameter mode 
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Figure 5.8 A typical cyclic squeal vibration amplitude resulting from the 

cyclic decoupling effect of two masses attached to the drum 

periphery 
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Figure 5.9 Comparison of squeal spectra with and without 5 attached 
masses, showing frequency reduction due to mass addition 
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Figure 5.10 Lumped parameter flutter model of a short section of the 
drum/lining interface 
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Figure 5.11 Showing how the translational and rotational degrees of 
freedom of the flutter model can be provided by identical, but 
differently positioned, flexural modes of the drum 

Figure 5.12 Showing how z equispaced masses, m/z, are equivalent to a 
single mass m, in a model where 2n/z = integer. In this case 
z=5 
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Figure 5.13 The use of a `mass balance weight' to decouple the bending 

and torsional flutter modes of an aircraft wing 
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CHAPTER 6 

REDUCING DRUM SYMMETRY - PRACTICAL 

CONSIDERATIONS 

6.1 Introduction 

In chapter 5 it was shown experimentally that the addition to the drum structure of 

suitably positioned discrete masses could reduce or eliminate the squeal, and that the 

likely mechanism of this effect is the decoupling of meridian modes which couple in 

the symmetric drum to produce squeal. This decoupling of meridian modes is a result 

of introducing a suitable reduced order of symmetry into the drum structure, and its 

implementation should not be limited to the addition of discrete masses. In practice, 

the attachment of substantial masses at discrete points around the drum periphery may 

not be practicable due to limitations of space inside the road wheel and to potential 

problems with the mechanical integrity of the attachments. In a commercial drum, 

some form of modification to the shape of the casting, such as a non-uniform drum 

wall thickness, would be preferable from production, space and structural integrity 

considerations. Simple changes in section of the drum wall would result in the 

distribution of the added masses over significant areas of the periphery of the drum, 

together with associated increases in stiffness over these areas. The effect of extended 

added mass will be considered first in isolation assuming that, by careful design, the 

variation in stiffness could be made minimal. 

6.2 The Effect of Distributing Added Mass 

It was observed in the modal analysis in section 5.2.2, illustrated in fig 5.5, that a 

single, arbitrarily positioned meridian mode could be split into two similar modes 
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having fixed, but different angular positions, and different natural frequencies, by a 

suitable arrangement of discrete added masses. The frequency difference between the 

two modes is due to their positioning on the drum such that the masses lie at 

antinodes of one mode, lowering its frequency, and nodes of the second, leaving its 

frequency unchanged. The observations of the effect of such added masses on the 

squeal propensity, in section 5.4, together with the mechanism discussed in section 

5.5, suggest that it is desirable to maximise this frequency difference. Distributing the 

added mass away from the localised nodal and antinodal points will clearly influence 

the frequency difference, and this effect is examined below. 

Consider the situation illustrated in fig 6.1, where an added mass, m, is distributed 

uniformly over a sector 2a of the drum periphery. The centre of this distributed mass 

is located at some angle j3 to the origin of a mode defined by the relationship 

(6-i) 
y=a sinn 0 sin wt 

ie y= ya sinne , where yQ =a sin wt (6-2) 

Consider also a small element of the mass, positioned at angle 4 from the centre of 

the mass, having width Aý and hence mass m04/2a. The velocity of this element is 

y, 0 = y, Sinn (ß - 0) (6-3) 

and its kinetic energy is 

m AT = 4aß yQ sinn (ß - 45) (6-4) 

The total kinetic energy of the mass, m, is thus 

Q 

yy2 f sinn (ß - q5) d45 (6-5) T=4 
4a 

-Q 
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T= 
8na 

y2 (2na - cos2nßsin2na) (6-6) 

Now, if the generalised mass and stiffness of the unmodified drum mode are M and 

K, referred to an antinode, the total energy in the mode is 

E=2MyZ+ 
8n yz (2n a- cos2nß sin2n a) +2 xy, 2 = constant (6-7) 

Differentiating E with respect to time and dividing byya gives the equation of motion 

M94 + 4na y. (2na - cos2nß sin2na) + Ky. =0 (6-8) 

and the natural frequency of the mode, wp , with the mass centred at position (3, is 

given by 

WZ=K P (6-9) (M 
+ 4na 

(2nß cos2nß sin2na )ý 

Now, if the mass is centred on a node, then n(3 = kit, where k=0,1,2..., 

= cos2n(3 =1 and 

W2=K 
(M 

+4a (2na - sin2na)) 
(6-10) 

If, however the mass is centred on an antinode, 

n(3 = (2k + 1)ßc, k=0,1,2,..., = cosn(3 = -1, and 

W2 2= K 
(641) (M 

+4ä (2na + sin2na)l 
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Subtracting the reciprocals of equations (6-10) and (6-11) gives 

1_1m 
sin2na (6-12) 

w2 2 wl 2 2n aK 

If the effect of a point mass, m, is now considered, the natural frequency with m at 

a node will be unchanged at w32 = KIM, whilst with m at an antinode, the frequency 

will be reduced to w/ = KI(M + m). Hence 

I_1_m 
W4 2 W3z K 

(6-13) 

Taking 11w2 - 1/6w, 2 and 11w4 - 1/w3 as measures of the frequency splits, Sd and 

Sp, produced by the distributed masses and point masses respectively (see note 1 

below), equating equations (6-12) and (6-13) gives the equivalent point mass, meg, 

which would produce the same split as the distributed mass, m, that is 

m sin2na 
2n a 

(6-14) 

The effect of the arc length of the distributed mass on the effectiveness of the mass 

in producing split frequencies (from equation (6-14)), is shown in fig 6.2. It is clear 

that the effectiveness of the mass addition reduces as the arc length increases, 

becoming zero when 2a =180°/n and hence that localised mass addition is desirable, 

especially as the mode order increases. 

The physical reason for the reduced effectiveness of the distributed mass in separating 

the frequencies is clear from equations 6-10 and 6-11, the former indicating that, 

unlike a point mass at a node, which has no effect on that mode frequency, the 

distributed mass centred on a node must add to the modal mass and thus reduce the 

frequency of the higher mode. This, together with reduced depression of the 

frequency of the lower mode by the extended mass indicated by equation 6-11, is 

responsible for the reduced frequency difference. 
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Note 1 :- For a small frequency difference, co, - ao2 , 

1_1 
W2 
i 

WIz 

(W2 -+w, ) 

wr 2 wi 2 
2 

(f2 
- cI, (6-15) 

W3 

6.3 The Effect of Non-uniform Drum Wall Thickness 

As suggested in section 6.1, the symmetry of the drum could, in practice, be reduced 

by varying the thickness of the drum wall in a cyclic manner but this would produce 

a cyclic variation in the flexural stiffness of the drum wall in addition to adding the 

distributed mass discussed above. This cyclic variation in stiffness will modify the 

flexural mode frequencies of the drum and hence influence the frequency split and 

decoupling effect. Adding flexural stiffness to the same region of the drum as the 

mass addition would, intuitively, be expected to oppose the frequency depressing 

effect of the mass alone and hence, potentially reduce the decoupling effect. 

To investigate this possibility, a simple 2-dimensional finite element model of the 

drum rubbing path was constructed using the ANSYS-386D educational FEM package, 

installed on a personal computer. The model idealises the rubbing path region of a 

400mm cast iron drum as an unrestrained cylinder made up of 60,8-noded elements 

each of 6° arc length and 20mm radial thickness, as illustrated in fig 6.3. The axial 

length of the rubbing path is not defined in this 2-dimensional model, and although 

this does not affect the natural frequencies, which are independent of the length of the 

cylinder, the rubbing path width was assumed to be 200mm, the width of the Scania 

drum, for the purpose of mass addition calculations (mass addition must be specified 

as mass/unit thickness in a truly 2-dimensional model). Initially, natural frequencies 

were calculated for the unmodified drum and with discrete point-like masses attached 
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to the mid plane of the drum section for comparison with the analytical approach 

taken in the previous chapter. Results for the first four flexural modes with 0,2,3,4 

and 5 equispaced 1kg masses are summarised in the table below, and a typical pair 

of split modes is shown in fig 6.4 which illustrates the angular relationship between 

the modes, with the nodes of one mode aligned with the antinodes of the second. 

Table 4 Drum natural frequencies from the 2-D Finite Element Model 

No. of Natural Frequencies (Hz) 

Masses () 
n=2 n=3 n=4 n=5 

0 upper 222.6 625.9 1190.3 1906.6 

lower 222.6 625.9 1190.3 1906.6 

split 0 0 0 0 

2 upper 220.4 622.7 1186.9 1903.5 

lower 213.8 599.1 1137.8 1824.4 

split 6.6 23.6 48.9 79.1 

2n/z 2 3 4 5 

3 upper 214.3 621.3 1148.3 1844.7 

lower 214.3 585.2 1147.9 1844.1 

split 0 36.1 0.4 0.6 

2n/z 4/3 2 8/3 10/3 

4 upper 218.1 595.5 1183.6 1821.7 

lower 205.9 595.5 1084.7 1821.5 

split 12.2 0 98.8 0.2 

2n/z 1 3/2 2 5/2 

5 upper 209.2 590.5 1119.0 1898.9 

lower 209.2 590.5 1118.8 1689.1 

split 0 0 0.2 209.8 

2n/z 4/5 6/5 8/5 2 
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Several features of these results are worthy of note: - 

i) the results are consistent with equation 5.1, the condition for producing pairs 

of flexural modes with different frequencies, ie 2n/z = integer, suggested by 

both experimental modal analysis and the theoretical analysis presented in 

chapter 5. The very small frequency splits predicted when this condition does 

not apply in the above table are likely to be the result of small inherent 

asymmetries in the model. 

ii) even with no masses added, the model produces two modes of the same order, 

with identical frequencies, but angularly positioned such that the nodes of one 

mode coincided with the antinodes of the other. 

iii) when split frequencies are produced, the magnitude of the split for any mode 

order is approximately proportional to the total mass addition. 

iv) in the examples where equation 5-1 is satisfied, ie where a frequency split 

occurs, the associated mode shapes always show that the higher frequency 

mode is positioned with nodes at the angular positions of the masses, and as 

such no reduction in frequency of this mode would be expected. The above 

results do, however, show a small frequency reduction in the upper frequency 

which appears, from detailed examination of the associated mode shapes, to 

be due to a combination of circumferential motion at the `nodes' (predominant 

in the n=2 mode) and rotation of the drum wall section at the `nodes' about 

a centre radially displaced from the added mass position (predominant in the 

n=5 mode) 

138 



Regions of increased wall thickness were now modelled by adding elements of radial 

width 10mm to the outside of the drum, as illustrated in fig 6.5. The thickness was 

increased in two diametrically opposite arcs of equal length varying from 0 to 15 

elements each (or 0° to 90° in 6° increments), and the effect on the frequencies of the 

pairs of n=2 to n=5 modes was investigated (the n=6 modes were calculated but were 

found to couple with an `expansion' mode of the drum and so were not valid for this 

purpose). 

The resulting natural frequencies are plotted in fig 6.6(a) - 6.6(d), as functions of the 

arc length of the thickened regions. It is immediately clear that the effect is 

fundamentally different from that of pure mass addition, which depresses the lower 

frequency of the pair, leaving the upper frequency sensibly constant. In fig 6.6, the 

opposite effect is found at low values of stiffening arc length, the lower frequency 

remaining sensibly constant whilst the upper frequency of the pair increases with arc 

length. These results imply that, of the mass and stiffness additions incorporated by 

the increased drum wall thickness, the effect of stiffness is dominant. 

Fig 6.7 shows the difference between these upper and lower natural frequencies (the 

frequency `split') as a percentage of the natural frequency of the unmodified drum. 

The frequency differences are shown as a function of the arc length of the increased 

thickness region, for each of the n=2 to n=5 modes, and in each case the split reaches 

a maximum at an arc length of -45% of the mode wavelength, and then decreases to 

zero at typically 70% - 75% of the mode wavelength. 

As the arc length of the stiffened region of drum is increased, the mass added to the 

drum is also increased proportionally, and fig 6.8 compares the actual frequency split 

with that which would have been achieved if all this added mass had been localised 

139 



at diametrically opposite discrete points. Comparing this result with fig 6.2 (which 

can also be interpreted as comparing the extended mass frequency split with that 

produced by the same localised mass), some important differences are seen. Fig 6.2 

had suggested that the addition of mass in practice, by casting thicker sections on the 

drum, would be most effective if such sections were restricted to a very short angular 

length, and initial trials were made on this basis. Fig 6.8 indicates, however, that such 

short thickened sections of, say, 5°-15°(or 17mm-52mm for the Scania drum) would 

be relatively ineffective for low order modes, and that 25°-50° arc lengths (87mm- 

175mm) would most effectively use the extra mass, depending on the mode involved. 

In the case of the n=2 and n=3 modes the effectiveness of the mass added by drum 

wall thickening is seen to be potentially greater than that from the same localised mass 

addition. 

The choice of the optimum number of discrete masses demands a foreknowledge of 

the drum mode order involved in the squeal problem, except in the case of two 

diametrically opposite masses, which are predicted by equation 5-1 to be effective in 

all modes. The motivation for adding more than two masses would therefore be to 

reduce the individual sizes of the relatively large masses for practical installation. 

This limitation would be, to a large extent, overcome by distributing the mass over a 

significant arc length of increased drum wall thickness, making a more generally 

applicable reduced symmetry fix a possibility. Although fig 6.8 shows that, for 

maximum effectiveness, even two diametrically opposed thickened regions require arc 

lengths matched to the mode order, it is clear that an arc length of, say, 30° (or 

105mm) will have a significant splitting effect on all of the first 4 modes considered 

here. 
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6.4 Practical Experience With Reduced Symmetry Drums 

The technique developed here for reducing drum symmetry, in an attempt to reduce 

or eliminate brake squeal, has been evaluated in various forms on different types and 

sizes of drum brakes, and this experience is summarised below. 

6.4.1 Heavy vehicle pivoted shoe `S' cam brake 

This brake, a 420mm diameter x 165mm wide brake manufactured by Steyr Daimler 

Puch, although of a similar type and size to the Scania brake used for the majority of 

the work described here, squealed at a much higher frequency. As noted in section 

3.3.8, the brake could be made to squeal most effectively by removing the trailing 

shoe brake lining and thus using the leading shoe only, when exceptionally loud and 

continuous 2.5kHz squeal was obtained. Drum modal analysis during squeal showed 

a complex n=5, s=0 mode (illustrated in fig 3.21), corresponding to a mounted drum 

natural frequency of 2280Hz. Attaching 5 equispaced 900g masses near the drum 

mouth produced a frequency `split' of 370Hz, or 16% of co,,, and almost completely 

eliminated the squeal, which was only present as a short 'peep' at the very end of a 

stop. 

It is interesting to note that this drum had 10 shallow axial grooves cast into its 

periphery, as shown in fig 6.9, which themselves introduced a small split in the 

n=5, s=0 mode, although of insufficient magnitude to influence the squeal. Lang and 

Newcomb (50) show more detail of this effect. 
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6.4.2 Heavy vehicle sliding shoe `Z' cam brake 

This again is a brake of similar size, 400mm x 200mm, to the Scania brake, 

manufactured by Lucas Heavy Duty Braking Systems to operate with a Volvo drum, 

but with some significant design differences :- 

i) the shoes are not pivoted on anchor pins, but slide against fixed 

abutment faces. This difference influences the shoe self servo effect 

and hence both torque output and lining wear pattern. 

ii) the shoes are actuated indirectly by the rotating cam, through sliding 

tappets, and this influences the direction of the shoe tip forces. 

iii) the shoes are fabricated from steel plate rather than by casting. 

Despite these differences, the brake squeals at a similar frequency to the Scania brake, 

580Hz, but in addition an 1100Hz squeal is often apparent. Modal analysis showed 

that these squeals involve the n=2, s=0 and n=3, s=0 modes of the drum respectively 

and hence the 2n/z = integer condition limits the number of equispaced added masses 

to 2, if both modes are to be influenced. Based on this analysis, Volvo produced the 

experimental cast drums shown in fig 6.10, with 2 masses, each slotted to reduce 

additional stiffness. These produced splits of only 2% and 4% in the frequencies of 

the n=2 and n=3 modes, and although trials on a vehicle showed some small 

improvement, it was clear that in this case larger masses would be needed to 

completely eliminate the noise. Larger frequency splits were expected from this 

configuration, and it is thought that the inherent asymmetry of the drum casting 
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through eccentricity or variable wall thickness, may have partially offset the effect of 

the additional masses. 

6.4.3 Light truck hydraulic drum brake 

This is a medium sized, 308mm diameter x 89mm wide, hydraulically operated sliding 

abutment drum brake used on the Ford (US) 350 light truck, which squeals at a range 

of discrete frequencies between 7kHz and 10kHz. Drum modal analysis (of which 

fig 3.23 is typical, showed the involvement of n=9, s=0, n=10, s=0, and n=11, s=0 

drum modes, again limiting the number of added masses to two if all squeal nodes are 

to be decoupled. 

Experiments with 2x 400g masses on a dynamometer mounted brake, shown in 

fig 6.11, produced a typical split of 8% of the unmodified natural frequency, and 

almost eliminated the squeal. In this case, due to severe space restrictions within the 

wheel, a 3-dimensional dynamic finite element model of the drum, produced by Dr 

D. R. Schafer of Mintex Don Limited (40), and illustrated in fig 6.12, was used to aid 

in the design of a modified drum, which significantly reduced the service noise 

problem. 

6.4.4 Passenger car hydraulic drum brake 

This is a typical small passenger car rear drum brake, 180mm diameter x 30mm wide, 

manufactured by Bendix, for use with a drum designed and manufactured by Ford 

Motor Company. A modal analysis of the drum, squealing at 3.3kHz on a 

dynamometer, and using the arrangement shown in fig 6.13, produced the n=3, s=0 

complex mode illustrated in fig 6.14. Six equispaced 60g masses, attached using 

143 



adhesive as in fig 6.15, produced an 18% frequency separation and eliminated the 

squeal, again with the exception of a light 'peep' at the very end of some brake 

applications. 

6.5 Summary 

If reduced drum rotational symmetry is to be used in a commercial environment to 

reduce brake squeal then a means of incorporation into the drum structure without 

fitting additional components must be found. The analysis carried out here shows that 

the `ideal' configuration would be the addition of two compact masses attached at 

discrete points 180° apart, but this would be difficult to achieve in practice. 

Employing the localised stiffening effect of a change in drum wall thickness can, 

however, be as effective for a limited range of modes, but could potentially produce 

other detrimental effects on braking refinement due to cyclic non-uniform deformation 

under braking loads and non-uniform thermal stresses. 
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centre of mass 

Figure 6.1 Position of extended mass, of length 2a, relative to a drum 
normal mode. 

i 

m/meq 

\h °2 

0 
------- 

0 

arc length of mass (degrees) ---. r 
90 6 

Figure 6.2 The discrete mass equivalent, m, of an extended mass, m. q, distributed over an arc length 2a. 
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Figure 6.3 2-dimensional drum model used to investigate the effect of 

reduced rotational symmetry 

Figure 6.4 Typical pair of modes of the same order, but different 
frequencies, showing their fixed positions relative to added 
masses. 
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increased wall tt 

Figure 6.5 Showing a typical drum model with regions of increased wall 

thickness, used to investigate their effect on modal `splitting'. 

The arc length (3 is the value plotted in figures 6.6 to 6.8 
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Figure 6.6(b) The influence of the arc length of the region of increased drum 

wall thickness on the n=3 mode 
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Figure 6.6(c) The influence of the arc length of the region of increased drum 

wall thickness on the n=4 mode. 
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Figure 6.6(d) The influence of the arc length of the region of increased drum 

wall thickness on the n=5 mode 
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Figure 6.7 The frequency `split' as a percentage of the natural frequency 
of the unmodified drum modes 
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Figure 6.8 The percentage frequency'split' per element of additional wall 
thickness, indicating the effectiveness of the added mass in 
reducing symmetry 
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Figure 6.9 The Steyr `S'-cam brake, showing the 10 axial grooves which 
introduce a small frequency `split' in the n=5, s=0 squeal mode. 

Figure 6.10 A heavy vehicle 400mm x 200mm drum with added mass cast 
into the drum mouth. the masses are slotted to reduce the 
additional stiffness 
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Figure 6.11 The Ford 308mm x 89mm tight truck brake with masses 
attached to the drum periphery for evaluation of symmetry 
reduction on high frequency squeal 

Figure 6.12 Finite element model of the drum in fig 6.11, used to optimise 
the mass addition 
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Figure 6.13 Arrangements for modal analysis of a 180mm x 30mm 
passenger car drum brake using the method described in 
Chapter 3 

Figure 6.14 Six masses, attached to the passenger car drum using adhesive, 
which eliminated the 3.3khz squeal. 
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CHAPTER 7 

THE SIGNIFICANCE OF THE NORMAL MODES 

OF THE ACTUATED BRAKE SYSTEM 

7.1 Introduction 

In chapter 5, the effect of the rotor modes on stability was considered in some detail, 

and it was suggested that decoupling rotor modes by reducing rotational symmetry 

can be stabilising. If the total actuated brake is considered, however, including the 

brake shoes and friction material, it is clear that this system does not have the inherent 

rotational symmetry of the drum alone and so would be expected to vibrate in modes 

which have fixed angular positions, due to the extended, but discontinuous, loading 

effects of the shoes on the symmetric drum. In such a system the drum mode shape 

will remain qualitatively similar to that of the drum alone due to the predominance of 

its mass and the relatively light coupling to the shoes through the low modulus friction 

material, and so the system modes can be conveniently described by their 

approximation to drum diametral mode shapes (eg n=2, s=0). 

In chapter 4, these system modes were investigated experimentally and it was indeed 

seen that the modes take up fixed angular positions and that at least two modes are 

present corresponding to each of the drum flexural modes (ie two modes involving 

n=2, s=O drum motion etc), a behaviour qualitatively similar to that of a drum with 

attached masses. In this chapter, the likely influence of this system asymmetry on 

squeal propensity will be discussed. 
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7.2 Static Normal Modes of the Binary Flutter Model 

Consider now how these static system modes relate to the simple binary flutter model 

described in chapter 5. In the model shown in fig 5.10, the static brake system is 

simulated by removing the frictional forces at the drum/lining interface, and the two 

natural frequencies of the system are now, clearly, 

i 

= 
kd + kp 

s (7-1) 
M 

and 1 [Sd_+ 

3k 
12 2 (7-2) 

I 

where subscripts st and sr indicate the translational and rotational modes of the 

system respectively. 

The condition for instability of the model, equation 5-43, now becomes 

4p 2 Nhkp 
> (w 

s` 
2-m2 )2 (7-3) 

MI 1 ý` 

2p 
Nhkp 

ý, I (wa - (''. )«Ja + ., ) I (7-4) 
MI 

If (co., + (o, )/2 is taken as the mean system natural frequency, co,, then, for instability 
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µ 
Nhkp 

(wem - ws, I ýs (7-5) 
MI 

and hence stability is increased by increased separation of the static system mode 

natural frequencies. 

Reducing the rotational symmetry of the drum, as described in chapter 5, is one 

effective means of increasing this static mode separation, which will, however, depend 

upon the angular position of the masses used and so lead to the cyclic decoupling 

effects described earlier. However, in the static model, equations 7-1 and 7-2 indicate 

that other system parameters involving stiffness could also modify the separation of 

the static system modes. Based on the above analysis SY Kim (41) has investigated 

the influence of various parameters on the static mode separation of a3- dimensional 

finite element model of a statically actuated heavy vehicle drum brake, with a view 

to using this separation as a criterion tor the design of quiet braking systems. The 

modelling work confirms the positive effect of reduced drum symmetry on static mode 

separation and, of the parameters assessed, this was found to be the most effective 

technique. Of the other parameters investigated, the coupling stiffness between shoe 

and drum (a combination of lining stiffness and 'contact' stiffness between lining and 

drum) also increased the mode separation, whilst shoe and drum stiffness changes had 

little effect. 

7.3 The Effect of Friction on the System Mode Frequencies 

The above 2-degree of freedom analysis, and the FEM modelling work referred to, 

both assume a non-rotating brake and hence no sliding friction forces. If friction 

forces are now reintroduced into the binary flutter model, their effect on the system 

natural frequencies can be assessed, and the significance of the static system mode 

separation more graphically illustrated. 
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Referring to the binary flutter model (fig 5.10) the eigenvalue solution is given in 

equation 5-40 and is repeated below 

2=t1 ((a+d) t (a+d)Z - 4(ad - bc)) (7-6) 
v 

using (a+d)2 - 4(ad-bc) = (a-d)2 + 4bc this becomes: - 

i 
=tL 

((a 
+d) t (a +d)2 + 4bc )2 (7-7) 

Comparing equations 5-30 with equations 7-1 and 7-2, indicates that 

a= co and d= wsr 

and also that be = -1? Nhk, / MI 

Hence equation 7-7 becomes 

1 

.i=t1w2+w2tw2-w2z 
4p2Nhkp 2 (7-8) 

aA Ml 

and the dynamic system frequencies with friction, X, can now be related to the static 

system frequencies, In order to illustrate this relationship, values for N, h, kp ,M and 

I are required, some of which are, in practice, not readily defined quantitatively, 

making it difficult to relate these simple model parameters to the much more complex 

real brake characteristics. If, however, the factor 4Nhk,, / MI is taken as a constant, 

K2, for the brake, an estimate can be made of its value from a knowledge of the 

behaviour of the real brake under investigation. 
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From equation 5-43, the stability boundary occurs when 

gz 2_/22 )2 (7-9) 
JU w st 

A) sr 

or 
= (Kµ t w#2 - WSr2) (7-10) 

Now the frequencies of the pair of static system modes involving n=2, s=0 drum 

motion are known, for the brake under investigation, from measurements in chapter 

4, and, although these cannot be identified as `transverse' or 'rotational' modes, this 

will not be significant to the argument due to the symmetry of equation 7-10. So, 

from chapter 4, let cost = 578 Hz and (q, = 608 Hz and as the nominal friction 

coefficient of the friction material is, say, ,u=0.3 when squeal occurs, then a value 

of K can be calculated from equation 7-10. Using this data gives K=4.7x106 s"2. 

Substituting this value for K, and the measured values of (p,, and co., in equation 7-8 

allows the system frequencies, X, to be calculated for a range of values of friction 

coefficient, p. 

These frequencies are plotted in fig 7.1, and it can be seen that increasing the friction 

coefficient causes the pair of system natural frequencies to converge until they 

coincide at p=0.3, when the system becomes unstable and squeals. From this point 

the eigenvalue, X, becomes complex and the real part of the eigenvalue only is plotted, 

which represents the squeal frequency (the method of evaluating the squeal frequency 

is shown in Appendix 3). 

The effect of changing the separation of the static system mode frequencies is 

illustrated in fig 7.2 which shows clearly that increased separation has a stabilising 

effect on the model in the sense that a higher coefficient of friction is required to 
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produce squeal. If this relationship was translatable to a real brake, it would provide 

a practical approach to retrospective ̀ fixing' of brake squeal by structural or geometric 

modifications to increase the mode separation. 

Not only this static system mode frequency separation influences stability, however,, 

but also the value of K (and, of course,, u ). Fig 7.3 illustrates the effect of changing 

K, showing that increasing K is destabilising as expected from equation 7-5. Here, for 

a given static frequency separation, increasing K results in more rapid convergence of 

the mode frequencies with increasing u. Of course, the static frequency separation and 

K are not independent parameters of either the model or of a real brake, both having 

more fundamental parameters, such as M and k, , in common. This suggests that even 

static brake system modelling using comprehensive finite element models, such as 

those developed by Kim, should be used with care, and an awareness maintained of 

the `convergence factor', K. This limitation of static system modelling, implied by 

the simple binary flutter model, serves to reinforce the need for a more comprehensive 

dynamic (ie including dynamic friction) model of the braking system, and such a 

model will be discussed in the next chapter. 

7.4 Summary 

Based on the simple binary flutter model, the separation of the static system mode 

frequencies (ie with µ=0) is shown to have a positive influence on stability. The 

analysis suggests, however, that this criterion cannot be used in isolation for design 

as the rate of convergence of these modes with increasing friction also depends upon 

design parameters, reinforcing the need for a comprehensive stability model for the 

operating brake. 
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CHAPTER 8 

FINITE ELEMENT MODELLING 

OF THE OPERATING BRAKE 

8.1 Introduction 

Throughout the previous chapters, only a simple two degree of freedom lumped 

parameter model of the dynamic brake has been considered. Although this model is 

clearly a very limited representation of an actual brake, its consistent use has been 

justified as follows. 

(i) The predicted unstable behaviour of the model rotor segment is in good 

qualitative agreement with the essential features of any short segment 

of the experimentally measured modal behaviour of the real brake 

rotor. 

(ii) Although more comprehensive lumped parameter models with more 

degrees of freedom, based upon the binary flutter mechanism, have 

been developed (eg refs 21 & 22), these require numerical solution 

techniques which can `mask' the conceptual understanding obtainable 

from the analytical solution processes possible with a simple model. 

(iii) Analysis of the model has produced practically useful results in 

highlighting the significance of rotor symmetry and the separation of 

the frequencies of modes of the static brake system. 
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Such a model is, however, of very limited application as a brake design tool, as are 

most lumped parameter models, particularly when applied to drum brakes with their 

distributed coupling between shoes and drum and the complex flexural behaviour of 

their components. 

Finite element modelling can address the problem of ensuring the required structural 

complexity of the brake, but, as argued at the end of chapter 7, purely structural 

models representing the stationary brake are also limited to predicting the effect of 

brake parameters on the separation of the frequencies of modes of the static system, 

which, although thought to influence squeal, cannot be considered in isolation from 

other factors. A comprehensive squeal design tool would combine the sophisticated 

structural simulation of a finite element model with the ability to represent the 

dynamic frictional coupling at the lining/drum interface, as in the simple binary flutter 

model. This simulation of friction coupling in dynamic models, together with the 

associated complex eigenvalue analysis capability, are not standard features of most 

commercial finite element software packages. One package, ANSYS, does, however, 

have complex eigenvalue analysis capability, together with user definable stiffness 

elements which can be defined to have non-symmetric matrices. It will be shown that 

this latter feature can allow suitable friction forces to be simulated at the lining/drum 

interface. 

As part of a collaborative project between Mintex Don in the UK and Saab Scania in 

Sweden (who had the ANSYS software available) the concept of using stiffness 

elements having non-symmetric matrices (based on the binary flutter stiffness matrix) 

was implemented on a very detailed 3-dimensional ANSYS model of the brake used 

for the experimental work detailed earlier. The work is described by Lundström (42) 

and in internal Saab-Scania/Mintex Don collaborative project reports. This model 
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predicted squeal at a frequency close to that of the actual brake tested and at a friction 

coefficient typical of the brake lining used, but the cpu time required to run the model 

(typically 6 hours) severely restricted its use for parametric studies. As a result of this 

initial success of the FEM/flutter approach, ANSYS was purchased and installed at 

Mintex Don, where the work detailed here was carried out, to develop a more efficient 

model to explain the squeal behaviour of the brake. 

The approach taken here is to produce undamped dynamic models of the individual 

brake components using standard finite element techniques, but then to couple all 

corresponding nodes across the interface between the drum and the friction material 

using specially designed elements which introduce frictional forces proportional to the 

normal forces at the interface. The design of these interface elements is discussed 

below. 

8.2 Frictional Interface Elements 

The equations of motion of the 2- degree of freedom binary flutter model, equations 

5-28 and 5-29, expressed in matrix form are 

ka+kp 
M0y 
0II8 -phkp 

µN 

iz 
y=0 

Sd+kp3 8 
(8-1) 

The stiffness matrix is non-symmetric, due to the representation of dynamic friction 

forces in the model, leading to the possibility of complex eigenvalues and unstable 

oscillation. If u=0, the stiffness matrix is symmetric and unstable oscillation is not 

possible. If this potential instability mechanism is to be incorporated into a finite 
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element model, a means of introducing dynamic friction forces is therefore required 

as outlined along the lines indicated above. 

Consider the modified version of the 2 degree of freedom binary flutter model shown 

in fig 8.1. The combination of compression and torsional springs representing the 

friction material has been replaced by two compression springs spaced apart by a 

distance 21/�3, which can be shown to produce equivalent forces and moments on the 

drum section. Each of these springs applies both normal and friction forces to the 

drum surface, and so can be depicted as shown below. 

N 4 N, 

F' 

ýx 

kj2 

71147 

The forces on the drum are independent of the tangential displacement x as the spring 

has stiffness only in the direction normal to the interface. Hence 

N= 
2yF=p !yy (8-2) 

or 

k° 

N=2y (8-3) 
Fp 2p 

0 
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The above stiffness matrix can be expressed as 

1Gp 
0 

kp 
2_210 (8-4) 
pp 

OOp 
ýL 02 

ie a symmetric stiffness matrix multiplied by a non-symmetric 'friction' matrix. 

In principle, this type of linear spring representation of the friction material could be 

used in a finite element model to connect the shoe and drum, but in practice, this 

would limit the accuracy of the structural effects of the friction material, a 

shortcoming which is overcome by considering a further representation of the 'friction 

material' spring below. 

F 

x 

(note here that kp/2 has been replaced by kp for simplicity) 

Here an `interface stiffness', kk , has been introduced between the friction material and 

the drum. 

166 



The total stiffness of this system, k, consisting of two springs in series is given by 

the equation 

k= 
kp kr 

kp + k, 
(8-5) 

Now, if kJ » kp, the total stiffness k= kp , and the addition of k, has little effect on 

the model behaviour. The arrangement does, however, provide a means of applying 

friction forces to the interface without restricting the friction material to being a purely 

compressive spring-like element. 

Taking the interface spring element now in isolation, 

- -4 

gives the force equation Nd -- -N, = ki (yd - Yl 
Fd = -F, =pk, (Yd Y, 
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and so 

Nd ki 0 -kt 0 yd 

Fd uk, 0 -µkß 0 Xd 
Ni -ki 0 ki 0 y1 

F, -pki 0 pki 0 x1 

(8-7) 

In ANSYS, spring elements can be defined to have the above stiffness matrix by using 

the STIF27 user-defined element described in the ANSYS manual (43). The actual 

stiffness matrix used in the model is somewhat larger due to the rotational degrees of 

freedom at the nodes (which are taken to have no influence on the frictional forces). 

The matrix used is 

1 0 0 -1 0 0 

µ 0 0 -µ 0 0 

K- ký 
0 0 0 0 0 0 (8-8) 
-1 0 0 1 0 0 

-µ 0 0 p 0 0 
0 0 0 0 0 0 

(In practice, even in a 2-D analysis, ANSYS requires a full 12x12 matrix to include 

all 3-D degrees of freedom) 

As maintained earlier, if the role of the interface element is to provide friction forces 

only, then k, should be much greater than k,. and in practice, the value of ki was 

chosen to be k; > 100k, , where in this case, kp represents the compressive stiffness 

of the small section of friction material associated with each interface element. Trials 

with a range of values of ki showed that results were sensibly independent of ki above 

this value. 
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8.3 Modelling the Brake 2-Dimensionally 

It was remarked earlier that the detailed 3-dimensional finite element model of the 

brake produced by Saab Scania, using the above friction interface elements, required 

excessive cpu time and so could not be readily used for parametric studies and hence 

as a design tool. The experimental modal analysis work carried out on the squealing 

brake in chapters 3 and 4 suggests, however, that the modal behaviour of both the 

brake drum and shoes is essentially two-dimensional in nature. The drum vibrates in 

modes having axial nodal lines only with no phase shift across the rubbing path - only 

an increase in amplitude from the mounted side to the mouth of the drum. Similarly, 

the shoes are seen to exhibit essentially bending motion with no significant torsional 

component - again showing only an increase in amplitude across the platform 

approximately matching that of the drum. Further modal analysis of other squealing 

brakes at various frequencies has shown qualitatively similar results, suggesting that 

this 2-dimensional behaviour is a common feature of squeal. This suggests that for 

modelling purposes, the brake could be represented by a 2-dimensional idealisation 

without significant loss of essential dynamic similarity to the real brake, provided that 

the individual component models behave dynamically similarly to the actual 

components in the relevant modes. 

8.4 2-Dimensional Representation of the Shoe 

This condition is relatively easily achieved for the shoes as they are composed of 

essentially two parts, the platform and the web, each of which can be considered as 

having a uniform section in the axial direction. The platform approximates to a 

uniform curved plate having a depth in the axial direction equal to the drum rubbing 

path width, whilst the two webs can be represented by a single curved beam, as shown 
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in fig 8.2. In the finite element model the 3-dimensional features of the shoe can thus 

be accommodated by variations in the axial thickness of an essentially 2-dimensional 

model. 

The shoes are cast from malleable iron having the following properties, 

Young's modulus = 1.75x10" Nm-2 

Density = 7300 kgn 3 

Poisson's ratio = 0.17 

and using these values, this simple representation of the shoe exhibited a free 

fundamental bending natural frequency of 1930 Hz, much higher than the measured 

1075 Hz. Adding point masses to represent the cam rollers (0.7kg), the shoe platform 

support webs (0.11kg at each end of platform) and thickening of the web at the anchor 

pin position (0.56kg), reduced this frequency to 1033 Hz, which was considered an 

acceptable match to the real shoe. 

8.5 2-Dimensional Representation of the Drum 

2-dimensional idealisation of the drum is not so clearly achievable, due to the 

influence of the mounting flange and its attachment to the hub, which modifies the 

dynamic behaviour of the rubbing path annulus in an axially non-symmetric manner, 

unlike the symmetric effect of the shoe web on the platform. In this case it is 

necessary to design an annular ring to represent the drum which has similar dynamic 

characteristics to, say, that of the mid point of the drum rubbing path. Thus, the 

annular ring should have the same natural frequency in the mode(s) of interest, and 

the same single degree of freedom equivalent mass (M) in that mode referred to the 

mid rubbing path position on the drum. These two conditions will then ensure that 

the stiffness of the ring is also equivalent at the reference position. 
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A further proposed requirement is that the ring should have a similar radial thickness 

to that of the rubbing path portion of the drum, in order to maintain the torsional 

effect of the friction forces on the drum elements - the equivalent of the parameter h 

in the 2 degree of freedom flutter model. 

The required values of co,, and M for the n=2, s=O mode of the drum were obtained 

by modal analysis of the drum mounted to its dynamometer adaptor, using the impact 

excitation technique described earlier. The equivalent mass, M, was measured by 

attaching small masses of mass m, to the drum at an antipode 25mm from the drum 

mouth, and recording the resultant reductions in natural frequency, iw. 

It can be shown that for small m (ie m<<M), 

M wR 
M (8-12) 

2dw 

The experimental results for the n=2, s=O mode of the drum (for which w', = 405.6 Hz) 

are given below. 

Table 5 Measurement of the Effective Mass of the n=2, s=0 Drum Mode 

m 
(kg) 

Aw 
(Hz) 

m 
(kg) 

0.32 3.28 19.6 

0.47 5.15 18.3 
0.60 7.03 17.0 

0.75 8.28 18.0 

Some scatter in the above values is observed which is thought to be due to some 

angular deviation of the antinodal position from the added mass position during the 

171 



test due to some inherent rotational asymmetry in the drum structure. This deviation 

will change with the magnitude of the added mass, thus changing the equivalent mass 

at the measurement point. An average value of M= 18.2kg was chosen, and referring 

this to the rubbing path centre, where the amplitude is typically 0.75 times that at the 

position of mass addition, gives a value of M= 32kg, which was used for the model 

design. 

The average thickness of the drum rubbing path region was estimated as 28mm, and 

the resulting drum model geometry is shown fig 8.3, the angular size of the elements 

being chosen as 9° for convenience in coupling to the brake lining elements. 

The properties of the drum cast iron are: - 

Young's modulus = 1.25x10" Nm-2 

Density = 7100 kgm 3 

Poisson's ratio = 0.25 

and using these, the basic annulus model of the drum exhibited a n=2 mode frequency 

of 302 Hz, much lower than the measured 410 Hz, as would be expected due to the 

lack of representation of the drum mounting stiffness. To increase this frequency and 

provide some restraint on rigid body motion, radial springs were attached between 

each external node and `earthed' nodes. The stiffness of these springs was adjusted 

to bring the n=2 mode frequency to 407 Hz (for which each spring had stiffness 

5x106 Nm') and under this condition, the generalised mass was shown to be 34.9 kg, 

a reasonable match to the required value, without resorting to the adjustment to the 

material density which had been anticipated. 
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8.6 Shoe Boundary Conditions 

It can be seen from fig 8.4 that the shoes are attached to the torque plate by fixed 

anchor pins about which they are free to rotate; and that braking expansion force is 

applied to their free ends, through rollers by rotation of the 'S' cam. A first 

approximation to the boundary conditions at the shoe ends was therefore based on the 

assumption that the anchor pins and cam shaft were rigidly fixed, so allowing only 

rotation of the anchor pin shoe nodes and radial sliding of the cam roller shoe nodes. 

Using these boundary conditions, however, no instability could be achieved. 

To determine whether these assumed boundary conditions were realistic further modal 

analysis was carried out on the anchor pins and cam during squeal of the brake. The 

results, summarized in Appendix 4, clearly indicated significant tangential motion in 

both the camshaft and anchor pins, the latter moving together as may be expected due 

to the connecting link between their ends. 

Based on these observations, the anchor pin and cam roller nodal restraints were 

released and these points were connected to earth through springs, in both the radial 

and tangential directions for the anchor pins and the tangential direction only for the 

cam rollers, as shown in fig 8.5. The spring constants used were estimated values, 

107 Nm' for the anchor pins and 3x 107 Nm-1 for the cam rollers (the cam shaft 

support structure being significantly stiffer than that of the anchor pins). The anchor 

pin nodes were coupled to move identically, reflecting their physical coupling, and the 

cam roller nodes connected by a rigid link to represent the fixed separation imposed 

by the cam itself. 

The complete model geometry is summarised in a fig 8.6. 
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8.7 Friction Material Properties 

It was noted earlier that friction material generally has anisotropic elastic properties 

and the Don D7115 material used in this work is no exception. Its dynamic modulus 

was measured in two directions, by measuring the response of small samples of the 

material to a non-resonant compressive cyclic force in a 'Metravib' viscoanalyser. A 

typical result for the radial direction, that is through the thickness of the lining, is 

illustrated in fig 8.7. which shows the dynamic elastic modulus (E') and the ratio of 

loss modulus to elastic modulus (tan delta), for a range of excitation frequencies up 

to 900 Hz and at temperatures from -100°C to 200°C. The elastic modulus is seen 

to be relatively insensitive to frequency but decreases with temperature over most of 

the brake working temperature range. The elastic modulus in the tangential direction 

that is along the lining length, was typically 2x this value, this being the direction of 

the preferred orientation of the fibrous content of the liner. For the purpose of the 

finite element model, the friction material was assumed to be isotropic, and the 

modulus value chosen was that measured radially as this would have the greater 

influence on the modal coupling effect in the flutter mechanism. From fig 8.7, it can 

be seen that the modulus value required at the estimated mean lining temperature of 

80°C during squeal, is 2x 109 Nm2. The measured density of the Don D7115 material 

is 2000 kgm 3. 

8.8 Model Predictions 

A typical model data file is listed in Appendix 5, and this was run on ANSYS 

version 5.0 using the Lancxos unsymmetric eigenvalue solver. The eigenvalues 

produced using a coefficient of friction of µ=0.4 and other friction material 

properties described earlier are tabulated overleaf. 
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Table 6 Eigenvalues for µ=0.4 

Mode Eigenvalues 
Number 

Real Imaginary 

1 205.4 0 

2 231.8 0 

3 312.9 0 

4 608.8 -10.5 
5 608.8 +10.5 

6 644.7 0 

7 1157.1 0 

8 1368.1 0 

9 1512.2 0 

10 1945.2 0 

Most modes have real eigenvalues indicating that they are normal modes of the 

system, which, in practice would be damped, but two modes occur as a complex 

conjugate pair with the same frequency, 609 Hz, one being stable and the other 

unstable. The magnitude of the imaginary component of the eigenvalue gives a 

measure of the degree of instability of the mode, or `squeal propensity' as it has been 

described by previous workers. 

The predicted squeal frequency of 609 Hz is in fairly good agreement with the 

observed value of 585-600 Hz, and the associated mode shape components, illustrated 

in fig 8.8, show qualitatively similar characteristics to those measured in chapters 3 

and 4. The predicted mode shapes are in the form of real and imaginary components, 

both involving n=2 drum motion, with an angular shift of -45° between the two. 
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The model was analysed for a range of friction coefficients, from µ=0 to µ=0.5, and 

the resulting eigenvalues are plotted in fig 8.9, (in this case using a value of 

Frt = 1x109 Nm-1 for the friction material). The region of greatest interest is shown in 

more detail in fig 8.10, and several features of this eigenvalue - friction coefficient 

characteristic are noteworthy. 

i) When jj=O, three normal mode frequencies occur in the vicinity of the 

squeal frequency, ie 603Hz, 612Hz and 656Hz, and their associated 

eigenvectors show that each involves n=2 drum motion. This 

behaviour is similar to the measured behaviour of the static system 

summarised in Table 3 of Chapter 4, where five `n=2' frequencies are 

found - 528Hz, 548Hz, 578Hz, 608Hz and 663Hz. It must be noted, 

however, that the conditions are somewhat different, in that sliding of 

the friction interface probably does not occur in the latter case due to 

the static friction forces. 

11) The influence of friction forces on the frequencies of most modes is 

small. 

iii) Two of the modes involving n=2 drum motion are very close in 

frequency when µ=0 (only 9Hz apart) and the effect of the friction 

forces is to cause these frequencies to converge, and, at µ=0.16, to 

coincide. Above this friction coefficient, the eigenvalue becomes 

complex, and the magnitude of the imaginary part increases as µ 

increases, indicating increasing dynamic instability. This behaviour is 

very similar to that discussed in Chapter 7, for the simple binary flutter 

model. 
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8.9 The Effect of Friction Material Modulus Variation 

The above model predictions appear to correlate well with the observed behaviour of 

the actual brake and experience of the generally destabilising effect of increasing 

friction coefficient. This suggests that this model could be used for predicting the 

effect of parameter variations on the squeal behaviour of the brake. 

It is well known that squeal is a fugitive phenomenon, often depending quite critically 

on the applied braking pressure and the temperature of the brake, and it is reasonable 

to suppose that the component whose physical characteristics are most sensitive to 

these variables is the friction material. Its modulus is somewhat non-linear with 

applied load, and is very temperature sensitive; its thickness changes as it wears, and 

its contact to the drum can be nonuniform, decreasing the apparent stiffness between 

the drum and shoe. All these effects could be considered for modelling purposes as 

variations in material modulus, and hence the effect of this variation was examined 

in the model for values of E,. = 0.5x109 Nm-' to Ef = 4x109 Nm-, a range which was 

considered to cover most service conditions, for the material used in the investigation. 

By again carrying out analysis for a range of friction values, the friction coefficient 

corresponding to the onset of instability was evaluated for each friction material 

modulus, and the results are plotted in fig 8.11. This characteristic prompts the 

following observations. 

i) No simple monotonic relationship exists between friction material 

modulus and dynamic stability and so no simple rule could be 

suggested for friction material design. 

177 



ii) The nominal value of modulus for the friction material used produces 

the greatest potential for instability, but the effect of variations in 

effective stiffness in service could well explain the fugitive nature of 

the squeal. 

iii) The values of friction coefficient required for instability are below the 

nominal value for the friction material over a wide range of moduli, 

suggesting that squeal would always occur. The model does not, 

however, include damping effects and these would be expected to 

increase the values of µ required to produce instability. 

iv) At a low value of modulus, the pair of modes which couple to produce 

the instability changes from the 4th+5th modes to the 5th+6th modes. 

8.10 The Effect of Reducing Drum Symmetry 

It was shown in chapter 5 that a suitable reduction in drum symmetry could have a 

beneficial effect in reducing or eliminating squeal, and also that this stabilising effect 

has a cyclic characteristic as the masses used to reduce symmetry rotate around the 

brake. A useful test of the finite element model would thus be to determine whether 

this cyclic stabilising effect is reproduced. 

As the squeal mode involves n=2 drum motion, four point mass, elements were 

attached to drum model nodes, at positions equally spaced around its periphery. These 

2kg masses were moved around the drum with 9° increments (the angular distance 

between nodes) over a 60° arc length, and an eigenvalue analysis carried Out at each 

178 



position. In this case, in order to reduce computing time, a single coefficient of 

friction, p=0.4, was used, chosen to ensure instability occurred at all mass positions, 

and the magnitude of the imaginary component of the eigenvalue was used as a 

measure of the degree of instability. The result is shown in fig 8.12, from which the 

cyclic nature of the degree of instability is apparent, agreeing qualitatively with the 

observed squeal behaviour and predictions based on the simple binary flutter model. 

The baseline value of the imaginary eigenvalue component, with no mass addition, is 

also shown in fig 8.12, and it is clear that over part of the cycle instability is increased 

by the mass addition. The mechanism by which the overall effect during the cycle can 

be stabilising is, as yet, unclear. 

8.11 Summary 

It has been shown that the frictional forces at the interface between the friction 

material and the drum can be represented in a dynamic finite element model by 

'spring' elements having non-symmetric stiffness matrices. Under some conditions 

this results in complex eigenvalues, which predict the presence of unstable squeal 

modes. A 2-dimensional finite element idealisation of the brake has been justified in 

terms of the measured experimental mode shapes and computing efficiency, and such 

a model can predict squeal characteristics in good agreement with those observed in 

practice, if the dynamic characteristics of the individual component models are 

carefully simulated. 

The model analysed here suggests that dynamic stability, and hence, squeal, is very 

sensitive to the friction coefficient at the interface and the stiffness of the friction 
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material, and these results go some way towards explaining the fugitive nature of 

squeal. 

Finally, the decoupling effect of reduced symmetry of the drum predicted from the 

binary flutter model and observed in its effect on squeal, is reproduced by the finite 

element model, supporting both the suggested flutter mechanism and the finite element 

modelling technique used. 
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Figure 8.1 Two degree of freedom flutter model modified to represent the 
friction material by a pair of linear springs 
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Figure 8.2(b) 

Figure 8.2 Idealised brake shoe allowing two-dimensional finite element 
representation using elements of different thickness for the 
web and platform. Discrete masses are used to simulate 
stiffenning webs and reinforcement of the shoe tips 
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Figure 8.3 Two dimensional idealisation of the brake drum 
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Figure 8.4 The brake shoes mounted on the torque plate showing the 
anchor pin pivot points and the `S' cam between the cam 
rollers 
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Figure 8.5 Boundary conditions applied to the shoes, including a rigid 
strut to couple the motion of this cam ends of the shoes in the 
tangential direction, representing the effect of the cam. The 
anchor pins are constrained to move together in the tangential 
direction as they are linked on the brake 
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Figure 8.6 Complete two dimensional model of the brake 
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Figure 8.7 The dynamic elastic modulus characteristic of the friction 

material (Don 7115), measured in a direction normal to the 

friction surface using a Metravib viscoanalyser. 
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squeal instability at 609Hz 
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Figure 8.8 The complex mode shape of the brake associated with the 
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Figure 8.9 The influence of coefficient of friction on the predicted 

eigenvalues, showing convergence of a pair of real values to 

produce a complex unstable eigenvalue. 
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Figure 8.10 Detail of fig 8.9 in the region of the squeal frequency, showing 

the convergence of a pair of real eigenvalues to produce a 

complex unstable eigenvalue 
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Figure 8.11 The influence of friction material modulus on the stability of 
the model. The brake is taken to be more stable if a greater 
value of friction coefficient is required for instability to occur 
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Figure 8.12 The cyclic effect on stability due to 2x2kg masses attached to 
the drum and rotating with it (Ef = 2x10' Nm") 
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CHAPTER 9 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

9.1 Summary 

A survey of the large body of previous work on brake squeal indicated that proposed 

mechanisms for the phenomenon generally fall into one of three categories: - 

i) instabilities due to a decrease in friction coefficient with increasing 

sliding velocity 

ii) pin-disc or kinematic constraint instabilities 

iii) binary flutter type instabilities. 

and that each type of instability involves distinct types of motion of the brake system 

components. In particular, binary flutter involves the coupling of two similar brake 

rotor modes, whereas the pin-disc mechanisms presuppose only a single rotor mode. 

The 4u-velocity mechanism needs no flexural rotor motion for instability, but is clearly 

relevant to some low frequency brake vibration problems. 

The initial aim of this work was to assess the applicability of these proposed 

mechanism to a typical brake squeal problem by detailed measurement of the vibration 

characteristics of the drum and shoes during squeal. A large heavy vehicle drum 

brake was chosen for this purpose because of the increasing significance of noise 

pollution from these brakes, together with the relative absence of practical palliatives. 
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The brake chosen for the investigation, a 412mm diameter x 200mm wide air operated 

'S' cam drum brake, was found to squeal at a frequency of approximately 600Hz, a 

squeal frequency region common to many brakes used on heavy vehicles. Testing this 

brake on a dynamometer braking simulation rig produced squeal with similar 

characteristics to those on a vehicle, thus allowing subsequent experimental work to 

be carried out in a controlled environment, with good physical access. 

Normal modal analysis of the brake shoes and drum showed poor correlation with the 

squeal characteristics and even the statically activated brake system natural 

frequencies, although closer to the squeal frequency, were not identical with it. These 

observations reinforced the necessity for carrying out modal analysis whilst the brake 

was actually squealing. Such an analysis could be carried out on the static parts of 

the brake using standard modal analysis techniques, but the drum, due to its rotation, 

required the development of a novel modal analysis technique to provide both 

amplitude and phase characteristics. 

The technique developed used accelerometers rotating with the drum to effectively 

'scan' the drum mode shape, the amplitude and phase reference for the mode being 

taken from a stationary accelerometer on the brake shoe. Transfer function analysis 

between the rotating and static accelerometer signals was carried out at regular angular 

intervals defined by an angular position sensor, and amplitude and phase distributions 

were obtained around the drum. 

The drum mode was found to be a complex mode which could be described as either 

a rotating wave around the drum, or the superposition of two similar normal modes, 

stationary relative to the shoes, but phase shifted both spatially and in time relative 

to each other. This latter description correlated well with the rotor motion 
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characteristics predicted by binary flutter type mechanisms of instability. Similar 

modal analysis on other brakes suggested that this type of complex mode is a common 

feature of 'mainstream' brake squeal implying that 'pin-disc' mechanisms, which do 

not require such complex rotor modes for instability, are unrepresentative of the 

behaviour of actual brake assemblies. 

The observed stationary nature of the component modes of the drum, together with 

constant squeal frequency, implies that the rotational symmetry of the drum plays an 

important part in the squeal mechanism. A less rotationally symmetric drum would 

either cause the mode to rotate with it or produce a cyclic frequency change in the 

noise. Using a simple 2 degree of freedom flutter model, it was shown that reducing 

the symmetry of the rotor decoupled the flutter modes and potentially increased 

dynamic stability. Further analysis showed that, in practice, decoupling could be 

achieved by attaching discrete equispaced masses around the drum periphery, so long 

as the number of masses is an integral divisor of the numbers of axial modal lines 

across the drum. The stabilising effect of this decoupling was confirmed by 

experiment, reducing or eliminating squeal on not only `S' cam brakes but also a 

variety of other types and sizes of drum brake installation. Practical aspects of 

modifying drum rotational symmetry in the design of the drum have been examined 

using finite element modelling. The simple binary flutter model was now used to 

show that the influence of rotor symmetry on squeal is part of a more general 

symmetry effect in the brake system as a whole. Due to the loading of the shoes on 

the drum, the brake system exhibits pairs of modes corresponding to each type of 

drum mode shape, and it is shown that frictional forces can cause these modes to 

converge and coalesce to produce complex squeal modes. The initial separation of 

these modes and their rate of convergence with friction coefficient have been shown 
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to depend on brake design parameters, suggesting the potential for the elimination of 

squeal problems at the brake design stage. 

It is clear, however, that brake design to avoid squeal requires much more detailed 

models of the brake structure than have been considered previously and so the 

measured squeal modal characteristics and the flutter mechanism have been combined 

to produce a 2-dimensional ANSYS finite element model of the brake, incorporating 

many of the brake design parameters. Frictional interface elements have been 

designed to reproduce the conditions in the flutter model, and a complex eigenvalue 

analysis carried out to predict dynamic stability. The model showed convergence and 

coalescence of pairs of system modes with increase of friction coefficient similar to 

that obtained with the simple binary flutter model. It also correlated well with the 

observed behaviour of the squealing brake in terms of frequency, mode shape, and the 

effect of drum asymmetry, and it is believed that such a model may form the basis for 

the design of all types of brakes in the future. 

9.2 Conclusions and Relationship to Other Current Work 

As would be expected, investigation into brake squeal has continued by other workers 

in parallel with that reported here, both independently and in the form of 

collaborations born of this work. Where these are related to the subject of this thesis, 

they will be discussed in the following conclusions, and in recommendations for 

further work. 

9.2.1 No simple relationship exists between the natural frequencies of the 

brake components and the squeal frequency. This is a significant result as it indicates 
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that one current approach to obtaining a 'fix' to eliminate squeal based upon 

identifying and modifying frequency coincidences may have limited success. 

9.2.2 During squeal both the drum and shoes hold complex modes, which can 

be best visualised as the superposition of pairs of similar normal modes phase shifted 

both spatially and in time relative to each other. The drum complex component 

modes are stationary relative to the shoes and hence the drum rotates through them. 

Fieldhouse and Newcomb (33) have inferred, from holographic analysis of a squealing 

disc brake, that travelling waves consistent with this complex modal behaviour are 

also present on the brake disc, an observation supported by initial application of the 

`scanning' modal analysis technique to a brake disc by Lang and Newcomb (44). 

Further, Mottershead and Chan (45) have recently produced a simplified finite element 

model of a brake disc to which they applied `follower forces' representing the pad 

interface friction, and complex eigenvalue analysis resulted in complex modes almost 

identical in form to these measured experimentally here. 

9.2.3 The measured complex drum mode is consistent with the binary flutter 

mechanism of brake squeal, which involves 2 degree of freedom rotor motion, as 

opposed to the pin-disc mechanisms of instability, which require only single degree 

of freedom rotor motion at the point of contact. 

9.2.4 The rotational symmetry of the brake drum is a prerequisite for the 

presence of stationary mode components with constant frequency, and standard flutter 

models make use of this symmetry in predicting instability. Reducing this symmetry 

in a flutter model can increase its stability, and a means of achieving this is by 

attaching equispaced masses to its periphery. If the number of masses is an integral 

divisor of the number of axial nodal lines in the drum mode, and the total mass is 
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large enough to decouple the flutter modes it has been established that squeal is 

reduced or eliminated entirely. Nishiwaki, Harade, Okamura and Ikeuchi (34) came 

to a similar conclusion through their concept of forcing rotation of the modes with the 

disc and thus not allowing the maintenance of constant dynamic conditions at the 

friction interface, rather than on the basis of decoupling of flutter modes. They 

achieved significant noise reduction by eliminating six vanes from a ventilated disc. 

9.2.5 The measured drum and shoe modes are essentially of a 2-dimensional 

form, involving no phase shift across the drum rubbing path nor twist of the shoes, 

suggesting that the instability mechanism is active over the full axial width of the 

brake rubbing path. This conclusion is particularly important to the modelling of 

squeal, supporting the basic assumption made by previous workers and justifying the 

2-dimensional approach to finite element modelling of squeal in this work. 

9.2.6 Pairs of modes of the statically actuated brake involving similar drum 

mode shapes appear to converge in frequency when frictional forces are introduced 

at the interface, and can coalesce to produce a single complex mode resulting in 

squeal. A simple flutter model of the situation suggests that both the static mode 

frequency separation and the rate of convergence with increasing friction coefficient 

can influence the occurrence of squeal. Kim (41) has investigated the effect of design 

parameters on the frequency separation using a finite element model of a heavy 

vehicle brake similar in size and design to that used in this work. He evaluated the 

effect of shoe, drum and lining stiffness, of which only the latter influenced the 

frequency separation significantly, increased stiffness increasing the separation. The 

decoupling effect of reducing drum symmetry was also confirmed, and had the 

greatest influence of all the parameters examined. 
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9.2.7 The frictional coupling forces of the binary flutter mechanism can be 

included in a finite element model of a brake by incorporating radial spring-like 

interface elements, having non-symmetric stiffness matrices, between the brake lining 

and the drum. If these springs are chosen to have a radial stiffness very much greater 

than the stiffness of the associated area of friction material, the dynamic model results 

are independent of the actual values chosen. 

9.2.8 The essential dynamic features of the squealing brake can be 

incorporated into a 2-dimensional finite element model on condition that the squeal 

modes involve only shoe bending and drum diametral modes, as is the case for the 

brake investigated here. If the 2-dimensional drum and shoe models are adjusted to 

exhibit similar free natural frequencies and equivalent single degree of freedom masses 

to those of the real components, and if suitable boundary conditions are imposed, the 

coupled model is found to predict behaviour similar to that measured from the real 

brake. In particular, increasing the coefficient of friction causes convergence of 

certain static system modes to produce a dynamic instability at a fequency 

approximating to that of the measured brake squeal. 

9.2.9 The 2-dimensional finite element model predicts squeal modes having 

characteristics similar to those measured on the actual brake. The stability of a 

particular mode can be usefully quantified by either the imaginary part of the 

eigenvalue, at a fixed friction coefficient, or by the coefficient of friction required for 

the onset of instability. Using these criteria, reduced symmetry of the drum produced 

a cyclic modification to the stability, and the tendency to squeal was shown to be 

significantly influenced by the compressive stiffness of the friction material and the 

interface. This latter influence, together with that of the friction coefficient, may help 

to explain the fugitive nature of squeal. 
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9.3 Recommendations for Further Work 

9.3.1 Extension to disc brakes 

The work reported in this thesis has been limited, in the main, to large heavy vehicle 

drum brakes, with some limited results from smaller drum brakes which have also 

been shown to exhibit similar vibration characteristics. Only cursory examination of 

disc brake characteristics has been carried out using the rotor modal analysis 

technique, however (Lang and Newcomb (44)), and whilst this, together with 

holographic analysis by Fieldhouse and Newcomb (33), suggests that similar types of 

wavelike complex stationary modes are present on the non-loaded portion of the disc, 

the loading effect of the pads appears to significantly modify the local disc motion. 

The resulting non-uniformity of the wavelike modes may well influence the effect of 

rotor asymmetry as a means of eliminating noise, and it is suggested that detailed 

modal analyses of squealing disc brakes are carried out if such an approach is to be 

optimised for this application. 

If the measured disc and pad modes show essentially 2-dimensional behaviour, it 

should, in principle, be possible to construct a 2-dimensional finite element 

idealisation of a disc brake, by treating the disc as a uniform beam representing a 

development of the disc rubbing path. The ends of the beam could be effectively 

joined by the use of nodal coupling in the finite element code, thus simulating the 

dynamic behaviour of the annular rubbing path. Again, the natural frequency and 

mass of the required mode could be simulated as described for the 2-dimensional 

drum model. The result of an initial trial of this technique is shown in fig 9.1, where 

the normal mode natural frequencies up to 10 kHz were found to be in acceptable 

agreement with the actual disc modes involving diametral modes only. 
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9.3.2 3-dimensional finite element modelling 

Although the simplified 2-dimensional brake model described here could be used to 

indicate major design modifications to reduce squeal, it clearly has limitations as a 

true design tool as the dynamics can only be optimised for a small number of modes 

at best. If the whole range of potential squeal problems is to be addressed, more 

detailed 3-dimensional model would be necessary, with the associated computing time 

penalty. It is possible, however, that the computing time problem may be eased by 

taking a more structured approach to evaluating the effects of parameter variations, 

such as the use of sensitivity analysis applied by Brooks et al (46) to a very 

comprehensive lumped parameter disc brake model. 

9.3.3 Improved friction material modelling 

The material of the brake lining has been represented in the finite element model as 

a homogeneous, isotropic material, which it is not, due to the raw materials and 

manufacturing process used. In particular, the fibrous content, together with the 

uniaxial compression of a relitively low density mix of the raw materials produces a 

high degree of orthotropy in the product. Experimental work on the influence of 

friction materials on squeal by Borchert (47) has suggested that the orthotropic 

modulus properties of the material can be significant and it is therefore suggested that 

such properties be incorporated in future stability models as a means of potentially 

designing friction materials themselves to reduce squeal. 

The finite element model is also based on the assumption of having initially perfectly 

uniform contact between the brake lining and drum. This is not the case in practice 
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as variable service conditions produce variable lining wear profiles, and, under some 

conditions, extremely non-uniform circumferential contact such as `crown' contact 

(near the centre of the lining) or leading and trailing end contact are thought to be 

possible. Unfortunately, no direct method of measurement of contact pressure 

distribution is available, and current finite element models can only predict pressure 

distributions for short periods after well-defined initial conditions. Even with 

relatively uniform circumferential contact, local variations in pressure distribution will 

influence the stiffness of contact to the drum, and it is clear from the modelling in 

chapter 8 that this stiffness can have a very significant influence on dynamic stability. 

Such non-uniform contact effects, both geometrical and in terms of contact stiffness, 

may partly explain the fugitive nature of squeal, and, as such, their evaluation in the 

finite element model may provide information on desirable wear characteristics for 

friction materials, to minimise geometry variations and maximise contact stiffness. 

9.3.4 Incorporating damping into the model 

The proposed finite element modelling technique neglects damping, whereas 

significant damping is clearly present in the structure and materials (particularly the 

friction material) of real brakes. North (22) incorporated damping in his lumped 

parameter flutter model and found that it was generally stabilising, and hence for true 

quantitative evaluation of squeal propensity, damping should be included. This would 

be particularly valuable when using a model for retrospective noise `fixing' when 

applying optimum damping may be the only practicable method allowable. 
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Figure 9.1 A typical mode shape produced from a two-dimensional FE 

idealisation of a brake disc. The ends of the beam are 

stiffened locally to avoid distortion of the end element sides, 

and the ends are then `joined' by constraining the nodal 

degrees of freedom to be identical 
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APPENDIX 1 

INSTRUMENTATION 

1 Accelerometers and signal conditioning 

Initial experiments were carried out using low cost type A/04 accelerometers 

manufactured by DJ. Birchall. These are low mass (2g) adhesive bonded piezo- 

electric transducers having a relatively low working temperature (170°C) and 

maximum acceleration, and, due to these limitations, were found to be unreliable in 

the braking environment, and were therefore replaced by Bruel & Kjaer low mass 

'Isoshear' accelerometers having the following specification. 

Type 

Mass 

Charge sensitivity 

Frequency response (to +10dB) 

Mounted resonant frequency 

Maximum temperature 

Attachment 

Bruel & Kjaer type 4393 

2.4g 

3.1 pC/g +/-2% 

0.1 Hz - 16.5 kHz 

55 kHz 

250°C 

M3 stud 

They were attached using B&K UA0867 cement studs and cyanoacrylate adhesive. 

These are charge generating transducers and the signals were therefore transmitted via 

low noise coaxial cables to charge amplifiers, having the specification shown overleaf. 
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Type DJ. Birchall type CA/04/F 

Frequency response 0.03 Hz - 10 kHz '+/-3 dB 

Gain accuracy +/-2% 

Output 10mV/g 

This combination of accelerometer and charge amplifier was used for all modal 

analysis work on static components, but measurements from the rotating drum required 

special consideration. 

2 Charge amplifiers for use on the rotating drum 

The accelerometers used for the modal analysis are piezo-electric, charge generating 

devices requiring very high impedance signal conditioning circuitry. The problem of 

transmitting this charge signal from accelerometers on the rotating drum to stationary 

instrumentation was first tackled through a pair of capacitor plates on the brake axis, 

one rotating and one stationary. This proved unsuccessful due to interference from 

mains radiation in the high impedance circuit. (Such a technique had proved successful 

in an undergraduate project on rotating disc vibrations, but in a less 'noisy' electrical 

environment). Slip rings are also generally unsuitable for the very low level, high 

impedance signals direct from accelerometers, but preamplification and conversion of 

the signals to low impedance would make slip ring transmission feasible. The 

standard charge amplifiers used for the other aspects of modal analysis are relatively 

large and mains powered, and unsuitable for mounting on the rotating drum. As small 

battery powered amplifiers were not commercially available, these were designed and 

constructed especially for this application. 

A circuit diagram of the charge amplifier is shown in fig ALL The circuit consists 

of a charge to voltage converter followed by a voltage amplifier, both based on low 
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noise J-FET integrated circuit operational amplifiers. The charge amplifiers were 

originally designed for use with DJ. Birchall type A/04 accelerometers, having a 

charge sensitivity of 2.4 pC/g, and thus, for the maximum envisaged acceleration of 

100g to produce a1 volt output, the nominal transfer function required of the charge 

converter is 4.2x10"3 V/pC. Due to the very high gain of the operational amplifier, 

IC1 (106 dB or 2x105), the transfer function of the charge converter, V, /Q, 

approximates to the reciprocal of the feedback capacitance (C3), which is thus chosen 

as 240 pF to give the above transfer function. A second feedback capacitor, C2, can 

be switched to give 4.2x10' V/pC, allowing for the possibility of accelerations greater 

than 100g. Resistor RI is included to introduce a low frequency cut-off of 7 Hz (or 

0.7 Hz with C2) to avoid drift due to integration of very low frequency signals. 

The voltage amplifier allows the overall sensitivity of the charge amplifier to be 

increased and adjusted to compensate for variations in accelerometer sensitivity. Its 

gain is equal to the ratio of the feedback resistance (R2 or R3) to the input resistance 

(VR1). The three available transfer functions, based on 2.4 pC/g accelerometers, are 

therefore, 

Feedback Feedback Transfer Function 

Capacitor Resistor (g/V) 

240 pF 10K 10x2 

240 pF 100K 10-1 

2400 pF 10K 10-3 

To maintain this relationship between switched gains and ensure stability, close 

tolerance, high stability components were used, ie +/- 1% polystyrene film capacitors 

and +/- 1% metal film resistors. The calibration was adjusted by setting the gain of 

the voltage amplifier to suit the quoted sensitivity of the accelerometer being used, and 
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was confirmed by back to back comparison on a shaker with a second system using 

a commercial charge amplifier. 

3 Signal Recording 

The modal analysis technique used on the operating brake required simultaneous 

recording of several accelerometer and other signals. The recorder used was a 

magnetic tape recorder employing VHS video tape to allow the simultaneous recording 

of up to 14 signals, which were recorded in the form of frequency modulated (FM) 

signals to overcome the inherent frequency response inaccuracies associated with 

magnetic tape recording. The specification can be summarised briefly as follows: - 

Type TEAC type XR5000 

Tape type VHS video 

No of channels 14 

Tape Speeds 1.2cros-' to 76cros-' 

Frequency response DC - 625 Hz (1.2cros'1) 

DC - 40 kHz (76cros-') 

A feature of this type of FM recorder is that the signals can be reproduced at a 

different playback speed to that used for recording, allowing transient signals, such as 

those involved in squeal, to be expanded in time by a factor of up to 64 for detailed 

analysis. 

4 Signal Analysis 

Both the normal modal analysis and squeal modal analysis techniques require the 

calculation of the dynamic transfer function between either response and excitation or 

pairs of spatially separated acceleration measurements, respectively. This transfer 
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function analysis was carried out using a 2-channel fast fourier transform (FFA') signal 

analyser briefly specified below. 

Type 

No. of channels 

Frequency range (0.5dB) 

Resolution 

Zoom magnification 

Dynamic range 

Real time bandwidth (2ch) 

Weighting characteristics 

Averaging 

Waterfall capacity 

Scientific Atlanta SD38OZ 

2 

0- 40 kHz 

100/200/400/800 lines 

up to x256 

>80dB 

2 kHz 

Harming, flat top, rectangular, 

force/response, exponential 

Sum, exponential, peak 

200 spectra or transfer functions 

An important feature of this analyser in the development of the drum squeal modal 

analysis technique is the facility for carrying out a type of analysis often referred to 

as a `poor man's modal analysis'. In it's usual form in normal modal analysis, the 

analyser calculates the imaginary component of the transfer function between the 

response of the structure and an impact excitation force. This is repeated for a range 

of excitation points around the structure in a well defined sequence eg. at incremental 

angular positions around a drum, and the imaginary Transfer Function components 

assembled by the analyser into a waterfall diagram. The analyser can now display a 

graphical representation of the imaginary components, at the chosen natural frequency, 

which is a one-dimensional representation of the mode shape of the structure along 

the line of the sequential impacts. (Note that the imaginary component is used 

because, for a normal mode, the displacement lags the force by 90° at resonance). If 
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the path along which the impacts are repeated is simple, the relationship between this 

one-dimensional representation and the real structural mode shape can be readily 

interpreted. Fig 3.1 in chapter 3 is an example of such a mode shape. 

The same technique can, however, be used for the squeal modal analysis of the drum, 

with the rotating accelerometer replacing the moving impact point. In this case 

however, the mode is not normal, but complex and requires both real and imaginary 

components to define it. The analyser has only a single waterfall file however and 

so two separate analyses are required for the two components, which can then be 

superimposed during the graph plotting stage. This clearly requires careful 

synchronisation of the two analyses to maintain the correct spatial phasing between 

the two mode components, and this has been achieved by use of an optical angular 

position encoder as described in chapter 3. 

The optical encoder used was a Holmer type 140 absolute position encoder, having an 

8-bit binary parallel output, and therefore TTL signals are available ranging from 

1 pulse per revolution to 128 pulses per revolution, in binary increments. In practice, 

for the modal analysis method described in chapter 3, only the lppr and 128ppr 

signals were used, but during earlier development work, before the waterfall triggering 

facility was available, all channels were used with a digital to analogue converter to 

produce an analogue voltage proportional to the drum angular position, which could 

then be used to correct for the drum deceleration. 
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APPENDIX 2 

THE CONDITION FOR INSTABILITY OF THE 

BINARY FLUTTER MODEL 

The eigenvalues from the binary flutter model, discussed in chapter 5, take the 

following form 

1 
.i=i 

L(-(a 
+ d) (a + d)2 - 4(ad - bc))2 (A14) 

substituting (Al-2) 
u=-(a+d) 

v= (a + d) 2- 4(ad - bc) (A1-3) 

then I 
, i=fý(utý)2 (Al-4) 

Considering first the condition v<O, which implies that 

=ti 
(A1-5) 

, rv 
and the eigenvalues become 

I 

,i=f 
(u tifm2 (A1-6) 
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Using DeMoivre's theorem 

1 (u of v7) =± 
1 

(r (cosO ti sinO)) Z 

=t2 
(cos 2±t 

sin 
2) 

(Al-7) 

= t(p t iq) 

where 

p j: 
j 

cos 
B 

q= se 
(A1-8) 

222 

The eigenvalues thus take the form of two complex conjugate pairs, 

Al = +p + iq 
22 = +P - iq (A1-9) 
Aj = -p + iq 
24 = -p - iq 

If p is positive, X, and X., have positive real parts and hence describe unstable 

oscillation, while A3 and A4 describe damped oscillation. If, however, p is negative, 

X3 and 7X4 describe unstable oscillation so that for only non-zero values of p, unstable 

modes are present. This confirms that v<O always produces unstable modes. 

Consider now the condition v>_0, which implies that 

f�TV7 
(A1-10) 
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and the eigenvalues become 

I 
.i=f r2 

(u ± VfFVI 
ý2 (A1-11) 

If u>41v1, the values of X are real and no oscillation occurs. 

If u <'/(vl, the values of X are imaginary and stable, constant amplitude oscillation 

occurs. 

Thus for v >_ 0 no unstable oscillation occurs. 

Hence, the condition for unstable oscillation is that v<0, or 

4 (ad - bc) > (a + d? (A1-12) 
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APPENDIX 3 

THE SQUEAL FREQUENCY IN THE BINARY FLUTTER MODEL 

Equation 7-8 in chapter 7 gives the eigenvalues of the binary flutter model 

22 =1 
(w,, 2 + m,, 2 t w# -w2 ý2 - K2µ2) (A3-1) 

2 

putting 

2u = W. 112 + 6) ,2 (A3-2) 
2v = 

(! Jst2 - fJsr2)2 - K2112 

then 
Az =ut 

(A3-3) 

Using DeMoivre's theorem 

A' =r (cosO ti sing) 
(A3-4) 

ýº ýi = 
(cos 2±i 

sin 
2) (A3.5) 

vrr 

where r2 = u2 + v2 and 0= tan'v/u 

Hence the frequency of unstable oscillation (the squeal frequency) is given by 

co = �r cos0/2 , or 

[(w,, 2 
+ ws2f + 

((w,, 2 
- w, 

2 f 
-K=P 

=/ý ]` 
Cý 2 ý' 

(ý 
=f 41 = 

' [1((ý2 
,, - K2W'JJ 

(A3-6) 
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APPENDIX 4 

RESULTS OF CAM AND ANCHOR MOTION ANALYSIS 

The following table gives the transfer functions at various positions around the 

regions of the cam, cam rollers and anchors, relative to the reference point 
(position 1) used throughout the experimental work. The positions are identified 

in fig A4.1. 

Position Magnitude Measured Corrected 

5 . 113 41 41 

6 . 105 50 50 

7 . 227 -144 -144 

8 . 052 -113 -113 

9 . 546 2 2 

10 . 606 167 -13 

11 . 512 -110 70 

12 . 359 -48 132 

13 . 843 -2 2 

15 . 391 -49 131 

16 . 765 -173 7 

17 . 653 178 -2 

19 . 371 68 -112 

20 1.005 17 -163 

21 . 261 108 108 

The phase values are corrected for the direction of measurement, the reference 

directions being radially towards the centre and tangentially anticlockwise. 

Note that positions 14 and 18 are omitted because of suspect measurements. 
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Figure A4.1 The positions of the accelerometers used to examine the 

motion of the cam, rollers and anchor pins during squeal 
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APPENDIX 5 

LISTING OF ANSYS DATA FILE FOR 2-D BRAKE FEM 

/title, scania 2d squea 
save 
I define element types 
et, 1,42,0,0,3 
et, 2,27,0,1,4 
et, 3,14,0,1 
et, 4,14,0,2 
et, 5,21,,, 4 
et, 6,1 
et, 7,21,,, 0 
! material properties 
I shoe cast iron 

mp, ex, 1,180e9 
mp, nuxy, 1,0.17 
mp, dens, 1,7200 
I friction material 

mp, ex, 2,2e9 
mp, nuxy, 2,0.45 
mp, dens, 2,2000 
! drum cast iron 
mp, ex, 3,1.25e11 
mp, nuxy, 3,0.25 
mp, dens, 3,6100 
I thickened shoe ends 

mp, ex, 4,700e9 
mp, nuxy, 4,0.17 
mp, dens, 4,7300 
I element thicknesses 
! platform 
r, 1,0.2 
I web 
r, 2,0.015 
1 cylindrical coordinate 
csys, 0 
local, 11,1,0,0,0,90,0,0 
I define stif27 matrix 
! interface stiffness 
k=1e12 
I friction coefficient 

m=0.4 
*create, rdef, mac 
r, argl, k, 0,0,0,0,0 
more, -k, 0,0,0,0,0 
rmore, 0,0,0,0,0, -m*k 
more, 0,0,0,0,0,0 
rmore, 0,0,0,0,0,0 
rmore, 0,0,0,0,0,0 
rmore, 0,0,0,0,0,0 
rmore, 0,0,0,0,0,0 
rmore, 0,0,0,0,0,0 
rmore, 0,0,0, k, 0,0 
rmore, 0,0,0,0,0,0 
rmore, 0,0,0,0,0,0 
rmore, 0,0,0,0,0,0 
rmore, m*k, 0,0,0,0,0 
rmore, 0,0,0,0,0,0 
rmore, 0,0,0, -k, 0,0 
rmore, 0,0,0, -m*k, 0,0 

squeal model 

system 
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rmore, 0,0,0,0,0,0 
rmore; 0,0,0,0,0,0 
rmore, 0,0,0,0,0,0 
rmore, 0,0,0,0,0,0 
rmore, 0,0,0,0,0,0 
rznore, 0,0,0,0,0,0 
tend 
rdef, 3 
I define nodes 
! drum 
n, 10,0.206,0,0 
n, 50,0.234,0,0 
ragen, 40,1,10,50,40,0,9,0 
I leading block 
n, 116,0.206,54,0 
n, 166,0.190,54,0 
ngen, 9,1,116,166,50,0,9,0 
I trailing block 
n, 136,0.206,234,0 
n, 186,0.190,234,0 
ngen, 9,1,136,186,50,0,9,0 
I leading shoe 
n, 213,0.182,27,0 
n, 263,0.160,27,0 
n, 313,0.124,27,0 
ngen, 16,1,213,313,50,0,9,0 
n, 212,0.182,19,0 
n, 262,0.160,19,0 
n, 312,0.124,19,0 
n, 229,0.182,169,0 
n, 279,0.160,169,0 
n, 329,0.124,169,0 
I trailing shoe 
n, 232,0.182,198,0 
n, 282,0.160,198,0 
n, 332,0.124,198,0 
ngen, 16,1,232,332,50,0,9,0 
n, 231,0.182,191,0 
n, 281,0.160,191,0 
n, 331,0.124,191,0 
n, 248,0.182,341,0 
n, 298,0.160,341,0 
n, 348,0.124,341,0 
I define elements 
I drum 
type, l 
mat, 3 
real, 1 
en, 1,11,10,50,51 
egen, 39,1,1 
en, 40,10,49,89,50 
I drum radial springs 
I earth nodes 
n, 450,0.260,0,0 
ngen, 40,1,450,,, 0,9 
I nrotat, all 
d, 450, all, 0 � 489 



I spring elements type, 5 
r, 41,3.5e6 real, 5 
type, 3 en, 302,216. 

real, 41 en, 303,223 

en, 400,50,450 en, 304,236 

engen, 1,40,1,400 en, 305,243 
1 leading block type, 5 

real 6 type, l 
mat, 2 

, 
en, 306,279 

en, 50,167,166,116,117 en, 307,281 

egen, 8,1,50 n, 1,0.16,19,0 
! trailing block n, 2,0.16,341,0 
type, l n, 4,0.16,191,0 
mat, 2 nrotat, all 
real, 1 I couple anchors 
en, 60,187,186,136,137 cp, 3, uy, 279,281 
egen, 8,1,60 cp, 4, ux, 279,281 
I leading platform ! cam link strut 
type, 1 r, 7,1.4e-3 
mat, i mp, ex, 6,1.0e15 
real, l mp, nuxy, 6,0.25 
en, 70,217,216,166,167 mp, dens, 6,7000 
egen, 8,1,70 type, 6 
I trailing platform real, 7 
en, 80,237,236,186,187 mat, 6 
egen, 8,1,80 en, 312,262,298 
I leading web I tangential springs 
type, 1 d, l, ux, 0,,,, uy 
mat, l d, 2, ux, 0,,,, uy 
real, 2 r, 9,3e7 
en, 100,263,262,212,213 type, 4 
egen, 17,1,100 real, 9 
en, 120,313,312,262,263 en, 320,1,262 
egen, 17,1,120 en, 321,2,298 
I trailing web type, 3 
en, 140,282,281,231,232 real, 9 
egen, 17,1,140 en, 326,1,262 
en, 160,332,331,281,282 en, 327,2,298 

egen, 17,1,160 ! springs at anchors 
I friction interface elements d, 3, ux, 0,,,, uy 
type, 2 d, 4, ux, 0,.,, uy 
real, 3 r, 8,1e7 

en, 200,116,16 type, 3 
real 8 egen, 9,1,200,207,1 

en, 210,136,36 
, 

en, 322,3,279 

egen, 9,1,210,217,1 real, 8 
en 323 4 281 I thicken shoe tips , , , type, 4 

emodif, 100, mat, 4 
real 8 

emodif, 120, mat, 4 
emodif, 116, mat, 4 

, 
en, 324,3,279 

emodif, 136, mat, 4 real, 8 
en, 325 4 281 

emodif, 140, mat, 4 , , 
nrotat all emodif, 160, mat, 4 , 42 r 1 0 

emodif, 156, mat, 4 , , . type ? 
emodif, L76, mat, 4 , 

real 42 I add masses to shoes , 
en, 704,279 

r, 4,0.7 
r, 5,0.11 en, 705,281 

r, 6,0.56 
type, 5 
real, 4 
en, 300,262 
en, 301,298 

at cams 
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