
 
 
 

This item is held in Loughborough University’s Institutional Repository 
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s 
EThOS service (http://www.ethos.bl.uk/). It is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



An Intelligent Modelling Interface for 
Process Simulators in Process Industries 

By 

Graham Adrian Clark 

A Doctoral Thesis 

Submitted in partial fulfilment of the requirements 
for the award of 

Doctor of Philosophy of Loughborough University 

Yd June 2001. -...., 
r+. a. "' j 

"r 

"yt 

" '.. 

M 

0 by Graham Clark 2001 



Abstract 
Over the past three decades, modelling packages for chemical processes have become 

more advanced and widely used. For example, equation-oriented dynamic simulators, 

such as gPROMS are useful for simulating plantwide processes as well as unit 

operations, and are widely used by process engineers. Whereas, other types of 

simulator (e. g. Simulink) are often used by control engineers to solve complex control 

problems. However, both these types of simulator rely on the user being proficient in 

modelling and familiar with their syntax beforehand. A useful development would be 

the integration of some knowledge into the formation of the process models and 

automatic syntax code generation. This would lead to the design engineers having a 
library of knowledge to check on first, much as an expert engineer uses their past 

experiences to help guide them through a design. If this could be incorporated into a 

modelling interface this would greatly help the design engineer, especially when 
tackling problems in areas that they have little, or no experience. 

The thesis addresses this problem and describes the design of an intelligent modelling 
interface that incorporates a knowledge base using some form of a priori case library 

and recall facility. The interface also incorporates an automatic input file generation 

stage. At present, the user can: specify a single unit operation problem to search for, 

retrieve similar cases from the database, specify their solution in the database based 

on past cases and experience, and then automatically generate an input file for either 

gPROMS or Simulink. These features are demonstrated through four case studies. 

Keywords 

Process modelling, Case based reasoning, User interface, Knowledge base 



To Heather 



Acknowledgements 
I would like to thank: 

Prof. Paul Chung and Dr. Diane Rossiter, my supervisors, for their encouragement 

and knowledge, for aiding me through the course of my PhD and occasionally 

pointing me back in the right direction. 

Richard Illiffe, for help with the search query implementation and CLIPS language. 

All my friends and colleagues, both in the Department and outside, who have put up 

with me over the last three and a bit years. 

To the Engineering and Physical Sciences Research Council for funding my project. 

And finally to my family and to Heather, for their love and support, and for putting up 

with me through thick and thin. 

111 



Contents 

ABSTRACT 
.......................................................................................................... I 

ACKNOWLEDGEMENTS 
....................................................................................... III 

CONTENTS ........................................................................................................ IV 

FIGURES .......................................................................................................... VIII 

TABLES ............................................................................................................ xi 

1. PREFACE 
.................................................................................................... 1 

1.1 MOTIVATION 
....................................................................................................... 1 

1.2 OVERVIEW OF PROJECT 
......................................................... . 

2 
. .......................... 

1.3 THE IMIPS RELATED FEATURES ........................................................................ 
.. 
.. 

3 
1.4 ORIGINAL CONTRIBUTIONS 

........................................................ 3 
........................ 1.5 STRUCTURE OF THE THESIS 

............................................. . 
.. 

4 
. ................................. .. 

2. REVIEW OF PROCESS MODELLING RELATED DEVELOPMENTS 
....................... .. 5 

2.1 INTRODUCTION 
.................................................................................................. .. 

5 
2.2 MATHEMATICAL MODELLING OF PHYSICAL-CHEMICAL SYSTEMS 

.................... .. 
5 

2.2.1 Fundamental Laws and Empirical Equations used in Modelling Physical- 
Chemical Systems .............................................................................................. 6 
2.2.2 Solution of Mathematical Models .............................................................. 7 
2.2.3 Simulation of Physical-Chemical Processes ............................................. 8 

2.3 SIMULATION PACKAGES 
.................................................................................... .. 

9 

2.3.1 Equation-Oriented and Modular Approaches ............................................ 9 
2.3.2 Summary ................................................................................................ 13 

2.4 INTERFACES, FRONT ENDS AND TRANSLATORS 
................................................. 

14 

2.4.1 Aspen Plus and HYSYS ......................................................................... 14 
2.4.2 Ascend ................................................................................................... 16 
2.4.3 Translators ............................................................................................. 17 

2.5 CONCLUSIONS 
.................................................................................................... 

18 

3. CASE-BASED REASONING 
.......................................................................... 19 

3.1 INTRODUCTION 
.................................................................................................. 

19 
3.2 BACKGROUND 

................................................................................................... 
19 

3.3 ADVANTAGES AND DISADVANTAGES OF CASE-BASED REASONING 
.................. 

22 
3.3.1 Advantages of Case-Based Reasoning .................................................. 22 
3.3.2 Disadvantages of Case-Based Reasoning ............................................ 22 

3.4 CASE INDEXING ................................................................................................. 23 
3.4.1 Automatic Indexing ................................................................................. 23 
3.4.2 Manual Indexing ..................................................................................... 24 

3.4.2.1 Description Schemes .................................................................................... 24 
3.4.2.2 Relationship Schemes .................................................................................. 25 

3.5 CASE RETRIEVAL 
............................................................................................... 

27 

3.5.1 Flat Search & List Checking ................................................................... 27 
3.5.2 Concept Refinement ............................................................................... 28 
3.5.3 Associative Recall .................................................................................. 29 

IV 



3.5.4 Partial or Fuzzy Matching ....................................................................... 29 
3.5.4.1 Symbolic Data .............................................................................................. 29 
3.5.4.2 Numerical Data ............................................................................................ 31 

3.6 CASE ADAPTATION 
............................................................................................ 31 

3.6.1 Automatic Adaptation 
............................................................................. 31 

3.6.2 Manual Adaptation 
................................................................................. 33 

3.7 CONCLUSIONS 
.................................................................................................... 33 

4. SYSTEM OVERVIEW 
................................................................................... 35 

4.1 INTRODUCTION ...................................................................... 35 ............................ 4.2 SYSTEM COMPONENTS ....................................................................................... 35 
4.3 CASE SPECIFICATION 

......................................................................................... 37 
4.3.1 General Information ................................................................................ 38 
4.3.2 Equations ............................................................................................... 41 

4.3.2.1.1 Boundary Conditions .................................................................... 42 
4.3.3 Variables ................................................................................................ 43 
4.3.4 Constants ............................................................................................... 45 

4.4 CASE RETRIEVAL ................................................................ 46 ............................... 4.4.1 Search Query Specification ........................................ 46 ............................ 4.4.2 Search Query Mechanism ....................................... 47 ............................... 4.5 CASE REVIEw ........................................................................... 49 ......................... 4.6 CASE ADAPTATION 
.................................................................. 50 

.......................... 
4.7 CASE TRANSLATION ...................................................................... 50 .................... 4.7.1 Simulink .................................................................................................. 51 

4.7.1.1 Block Selection ............................................................................................ 51 
4.7.1.2 Block Linking ............................................................................................... 52 
4.7.1.3 Results Viewing ........................................................................................... 52 
4.7.1.4 Equation Handling ....................................................................................... 52 

4.7.1.4.1 Differentials .................................................................................. 52 
4.7.1.4.2 Integral Partial Differential Equations ........................................... 53 

4.7.2 gPROMS ................................................................................................ 53 
4.7.2.1 MODEL ........................................................................................................ 54 
4.7.2.2 PROCESS .................................................................................................... 55 
4.7.2.3 Equation Handling ....................................................................................... 55 

4.7.2.3.1 Arrays and Loops ......................................................................... 55 
4.7.2.3.2 Partial Differentials ....................................................................... 57 
4.7.2.3.3 Integrals ....................................................................................... 57 
4.7.2.3.4IF and WHILE Constructs 

............................................................ 57 
4.8 GENERAL CASES - FROM DEFINITION TO TRANSLATION 

................................... 
58 

4.8.1 Scenario 1: A new case from scratch ..................................................... 58 
4.8.2 Scenario 2: Retrieval and use of an existing case .................................. 58 
4.8.3 Scenario 3: Retrieval, Adaptation, and use of an existing case ............... 59 

4.9 SUMMARY .......................................................................................................... 59 
5. SYSTEM DESIGN AND IMPLEMENTATION 

....................................................... 
60 

5.1 INTRODUCTION 
.................................................................................................. 

60 
5.2 PAST CASE DATABASE IMPLEMENTATION 

......................................................... 
60 

5.3 CASE RETRIEVAL 
............................................................................................... 

61 
5.4 CASE REVIEW 

.................................................................................................... 
62 

5.5 CASE ADAPTATION 
............................................................................................ 

63 
5.6 TRANSLATION PROCEDURE 

................................................................................ 
63 

5.6.1 Case Initialisation ................................................................................... 64 
5.6.2 Simulink Translator Implementation 

........................................................ 66 

V 



5.6.3 gPROMS Translator Implementation 
...................................................... 

70 
5.7 SUMlvIARY 

...................................................................................................... 
73 

6. CASE STUDIES 
.......................................................................................... 

74 

6.1 INTRODUCTION 
............................................................................................... 

74 

6.2 CASE 1- CASE FROM SCRATCH, SIMPLE BATCH EXTRACTION 
....................... .. 

74 

6.2.1 Case Statement 
.................................................................................... .. 75 

6.2.2 Case Retrieval and Review .................................................................. .. 76 
6.2.3 Case Translation .................................................................................. .. 77 

6.3 CASE 2- PLUG FLOW REACTOR SEARCH 
...................................................... .. 

82 
6.3.1 Case Specification 

................................................................................ .. 82 
6.3.2 Case Retrieval and Review .................................................................. .. 83 
6.3.3 Case Adaptation ................................................................................... .. 83 
6.3.4 Case Translation .................................................................................. .. 84 

6.4 CASE 3- NUMERICAL SEARCH 
..................................................................... .. 

92 

6.4.1 Case Specification 
................................................................................ .. 93 

6.4.2 Case Retrieval and Review .................................................................. .. 93 
6.4.3 Case Adaptation ................................................................................... .. 93 
6.4.4 Case Translation .................................................................................. .. 94 

6.5 CASE 4- LIQUID PHASE CONTINUOUS STIRRED TANK REACTOR 
................... 

100 

6.5.1 Case Specification ................................................................................ 101 
6.5.2 Case Retrieval and Review .................................................................. 101 
6.5.3 Second Case Specification ................................................................... 101 
6.5.4 Case Retrieval and Review .................................................................. 102 
6.5.5 Case Adaptation ................................................................................... 

102 
6.5.6 Case Translation .................................................................................. 

102 
6.6 SUMMARY 

.................................................................................................... 
109 

7. CONCLUSIONS AND FUTURE WORK 
........................................................... 

111 

7.1 CONCLUSIONS 
.............................................................................................. 

111 
7.1.1 Ideas Behind This Approach ................................................................. 

111 
7.1.2 Process Modelling Approaches ............................................................ 

112 
7.1.3 Case Based Reasoning ........................................................................ 

113 
7.1.4 IMI PS ................................................................................................... 

114 
7.2 FUTURE WORK 

............................................................................................. 
116 

7.2.1 Adaptation of the Hierarchy Structure 
................................................... 

116 
7.2.2 Improvements in the Search, Retrieval and Adaptation Mechanisms ... 116 
7.2.3 Investigation into the Relationship between Simulator Error Code and 

Original User Input ............................................................................. 
116a 

7.2.4 Statement of Multi Value (Matrix) Constant Arrays within Simulink..... 116a 
7.2.5 Consideration of Multi-Unit Cases 

...................................................... 
116a 

7.2.6 Addition of More Translators ............................................................... 
116a 

7.2.7 Expansion of the Cases in the Database of IMIPS .............................. 
116b 

REFERENCES 
................................................................................................. 

I1 

BIBLIOGRAPHY 
.............................................................................................. 

120 

WEB SITES OF INTEREST 
...................................................................................... 

122 

APPENDICES .................................................................................................. 
123 

I. SYNTAX 
....................................................................................................... 

124 

II. INDEXING FOR CASES 
................................................................................... 

126 

III. TRANSLATOR FLOW DIAGRAMS 
.................................................................... 

128 

vi 



IV. CODE FOR IMIPS PROGRAMME ................................................................. 133 
IV. 1. Selection hierarchies declaration: classes. clp ....................................... 133 
IV. 2. Constant, variable and equation object class declaration: classesl. clp 138 
IV. 3. Global function declarations file: function. clp ........................................ 139 
IV. 4. Occurrence matrix code: occtable. clp ................................................... 141 
IV. 5. IMI PS interface code: IMI PS. clp ........................................................... 145 
IV. 6. gPROMS translator code file: gPROMStrans. clp .................................. 181 
IV. 7. Simulink translator code file: Simulinktrans. clp ..................................... 199 

V. EXAMPLES OF SIMULATOR CODE 
.................................................................. 215 

V. 1. Translated Simple Batch Extraction Simulink Input File (Case Study 1)...... 

............................................................................................................. 215 
V. 2. Translated Simple Batch Extraction gPROMS Input File (Case Study 1).... 

............................................................................................................. 225 
V. 3. Translated Catalytic Tube Reactor gPROMS Input File (Case Study 2)...... 

............................................................................................................. 227 
V. 4. Translated Cooling Reactor Simulink Input File (Case Study 3)............ 231 
V. 5. Translated Cooling Reactor gPROMS Input File (Case Study 3) .......... 243 
V. 6. Translated CSTR, Van de Vusse reaction gPROMS Input File (Case 
Study 4) .......................................................................................................... 245 

vii 



Figures 
Figure 2.1. Structure of process simulators. (Biegler, 1989) ...................................... 10 

Figure 2.2. Aspen User Interface 
............................................................................. . 

15 

Figure 2.3. HYSYS User Interface 
.......................................................................... . 15 

Figure 2.4. ASCEND User Interface ........................................................................ . 17 
Figure 3.1. Process of case-based problem solving .................................................. . 20 

Figure 3.2. Example of a list 
.................................................................................... . 25 

Figure 3.3. The relationship-based indexing scheme ................................................ . 26 

Figure 3.4. Example of a hierarchy 
.......................................................................... . 26 

Figure 3.5. Breadth-first search ............................................................................... . 28 

Figure 3.6. Depth-first search .................................................................................. . 28 

Figure 3.7. TANKS hierarchy sub-section ................................................................ 29 
Figure 4.1. System diagram 

...................................................................................... 35 
Figure 4.2. Part of the Heating and Cooling Equipment Hierarchy 

............................ 38 

Figure 4.3. Database general information form 
......................................................... 39 

Figure 4.4. Database equations form 
......................................................................... 42 

Figure 4.5. Database variables form 
.......................................................................... 

43 

Figure 4.6. Database constants form 
......................................................................... 

45 

Figure 4.7. IMIPS query specification form 
.............................................................. 

47 

Figure 4.8. Numerical Search Retrieval Possibilities 
................................................. 

48 

Figure 4.9. More Info Screen .................................................................................... 49 

Figure 4.10. Basic Translation Flow Diagram 
........................................................... 

50 

Figure 4.11. Differential equation, as seen in Simulink 
............................................. 

53 

Figure 5.1. Occurrence Matrix .................................................................................. 62 

Figure 5.2. Simulink model, as seen in Simulink ...................................................... 64 

Figure 5.3. Basic Simulink input file outline ............................................................. 
67 

Figure 5.4. Simulink translation flow diagram. (For complete diagram see Appendix 

III. ) 
........................................................................................................ 

67 

Figure 5.5. Basic DAE, as seen by a user in Simulink 
............................................... 

70 

Figure 5.6. Basic gPROMS input file outline ............................................................ 
71 

Figure 5.7. gPROMS translation flow diagram. (For complete diagram see Appendix 

III. ) ........................................................................................................ 
71 

viii 



Figure 6.1. Simple batch liquid-liquid extraction ...................................................... 77 

Figure 6.2. Case general information form 
................................................................ 78 

Figure 6.3. Case Equations 
....................................................................................... 78 

Figure 6.4. Case Constants 
....................................................................................... 78 

Figure 6.5. Case Variables 
........................................................................................ 79 

Figure 6.6. More Info... Screen 
................................................................................ 79 

Figure 6.7. Occurrence Matrix 
.................................................................................. 79 

Figure 6.8. Simulink file as seen in Simulink 
............................................................ 80 

Figure 6.9. Simulink results ...................................................................................... 80 

Figure 6.10. gPROMS results ................................................................................... 81 

Figure 6.11. ISIM results .......................................................................................... 81 

Figure 6.12. Tank hierarchy selection menu. Reactor Vessel selected .................. 86 

Figure 6.13. Reactor Vessel hierarchy selection menu. Reactor Vessel selected. 

.............................................................................................................. 86 

Figure 6.14. Completed search form 
......................................................................... 86 

Figure 6.15. Results form 
......................................................................................... 87 

Figure 6.16. Selection menu for more information on this case ................................. 87 

Figure 6.17. More information screen showing the equations, constants and variables 

and their associated properties ............................................................... 
88 

Figure 6.18. Original translated file results ............................................................... 
89 

Figure 6.19. Original results from PSE (1998) 
.......................................................... 

89 

Figure 6.20. New case and selection of translator ..................................................... 
90 

Figure 6.21. PDE Simulink translator error window ................................................. 
90 

Figure 6.22. gPROMS results plot. Reactor centre temperature variation with time. . 
91 

Figure 6.23. gPROMS results plot. Reactor perimeter temperature variation with time. 

.............................................................................................................. 
91 

Figure 6.24. gPROMS results plot. Perimeter and Centre temperatures at reactor inlet 

and outlet .............................................................................................. 
92 

Figure 6.25. Tank hierarchy selection menu. Reactor Vessel selected .................. 
96 

Figure 6.26. Completed search form 
......................................................................... 

96 

Figure 6.27. Numerical search user options .............................................................. 
97 

Figure 6.28. Results form 
......................................................................................... 

97 

Figure 6.29. Original translated file results ............................................................... 
98 

Figure 6.30. Simulink hand-written file 
.................................................................... 

98 

ix 



Figure 6.31. Results from Simulink run of hand-written file 
..................................... 

99 

Figure 6.32. gPROMS results plot. Bulk and coolant temperature variations with time. 

.............................................................................................................. 
99 

Figure 6.33. Simulink file as seen in Simulink 
........................................................ 

100 

Figure 6.34. Simulink results plots. Bulk and coolant temperature variations with 

time ..................................................................................................... 
100 

Figure 6.35. Completed search form 
....................................................................... 

105 

Figure 6.36. Completed search form 
....................................................................... 

106 

Figure 6.37. Results form 
....................................................................................... 

107 

Figure 6.38. Original translated file results ............................................................. 
108 

Figure 6.39. Original results from PSE (1998) 
........................................................ 

108 

Figure 6.40. Multi value matrix array translation error window .............................. 109 

Figure 6.41. gPROMS results plot. Component concentration and height variation 

with time . ............................................................................................ 
109 

Figure 11.1. Case Specification Hierarchy ............................................................... 
126 

Figure 11.2. Case Specification Hierarchy ............................................................... 
126 

Figure 11.3. Equipment Hierarchy ........................................................................... 
127 

Figure II. 4. Heating and Cooling Equipment Hierarchy .......................................... 
127 

Figure 11.5. Chemical Hierarchy ............................................................................. 
127 

Figure 111.1. Flow Diagram for Simulink Translator ............................................... 
128 

Figure 111.2 Flow Diagram for gPROMS Translator ............................................... 
130 

X 



Tables 
Table 2.1. Modelling Approaches (Svrcek, et al., 2000) ............................................. 

12 

Table 2.2. Classification Groups (Marquardt, 1994) .................................................. . 
12 

Table 2.3. Review of some current approaches .......................................................... . 13 

Table 2.4. Review of some current approaches and proposed approach .................... . 18 

Table 3.1. Examples of abstract relationships ............................................................ . 25 

................. Table 4.1. Available mathematical methods .............................................. 
44 . 

Table 5.1. Equation instance properties ...................................................................... . 65 

Table 5.2. Variable and Constant instance properties ................................................ . 65 

Table 5.3. Variable instance properties ....................................................................... 
66 

Table 5.4. Constant instance properties ....................................................................... 66 

Table 7.1. Review of current approaches and proposed approach ............................ 112 

Table I. 1. Equation syntax for IMIPS ........................................................................ 125 

xi 



1. Preface 
1.1 Motivation 
Over the past three decades, much of the approach taken towards modelling and 
design of chemical processes has been based upon the designers' knowledge and 

experience. As the modelling packages have become more advanced and more 
automated, many of the original simplifications have been removed from this 

procedure and fewer mistakes (due to simplifications) are made. The next step, 

therefore, would seem to be the integration of some knowledge into this semi- 

automated process. This would lead to the design engineers having a library of 
knowledge to check on first, much as an experienced engineer uses their experiences 
to help guide them through a design. If this could be incorporated into a modelling 
interface this would greatly help the design engineer, especially when tackling 

problems in areas that they have little, or no experience. 

With increasing environmental and safety regulations, more competitive markets and 

tighter specifications on product quality, there is a necessity to optimise the 

performance of chemical processes in minimal time at minimal cost (Marquardt, 

1994). Often when investigating the performance of an existing or new process it 

would be useful to have a dynamic model of the process for computer simulation 

studies. The type of dynamic model may vary depending on the type of computer 

simulation study to be performed. For example, a process engineer may want to 

perform full-scale non-linear dynamic simulations to verify that the product quality is 

achievable. This requires the assistance of a control engineer to provide the 

controllers for the process. The control engineer often only needs to use a crude linear 

model for the controller design and could use a package such as Simulink 

(MathWorks, 1999) for the modelling and controller design. On the other hand the 

process engineer wants to represent the complex non-linearities of the process using a 

detailed model to avoid constructing a pilot plant. Hence a package such as gPROMS 

(PSE, 1999 a& b) could be used to provide the functionality. At present if this were 

the case, both engineers would become involved in having to write separate 

simulation code for each program. This is time consuming and expensive. What is 

required is that the engineers firstly work on writing a common mathematical 

1 



description of the process, or model, then input that to a user interface and the 

interface generates the code for both simulation packages. 

1.2 Overview of Project 
The aim of this project is to design an intelligent modelling interface for process 

simulators that incorporates a knowledge base using some form of prior case library 

and recall facility. Included in this is an automatic modelling package input file 

generation stage. 

Modelling is a complex task, whether using manual problem solving techniques or an 

automatic modelling or simulation package. When using modelling packages, the user 

must, in most cases, still write the conditions and equations in a form that the package 

can use and then manipulate in such a way so that it can solve the problem. In our 

search for a new approach to the problem, the thesis offers an overview of many 

modelling approaches in use. The advantages and disadvantages of these approaches 

are assessed and compared to try and find an optimum solution - the Intelligent 

Modelling Interface for Process Simulators (IMIPS). This interface includes the 

flexible, equation-oriented statement of problems, with a knowledge (or case) base the 

user may search for related models (or, as referred to in the thesis, cases) and help. 

Knowledge bases have been used very successfully in many fields, from architecture 

and law, to arbitration and recipe/menu planning. Adding a knowledge base and 

search mechanism to the interface adds another source of knowledge so that less 

experienced modellers can draw on the past experience of others. Also, looking at 

prior cases may serve as pointers to aid in the solution of some more complicated 

problems. The knowledge (or case) base may be searched using Case Based 

Reasoning techniques. This involves the systematic problem definition, search, 

retrieval, and adaptation of cases from the case base. These techniques have been used 

in other fields to great success, e. g. CHEF (Hammond, 1986), and CYRUS (Kolodner, 

1983a, 1983b). More details are given in Chapter 3. 

2 



1.3 The IMIPS related features 
The interface also incorporates the automatic generation of code using translators. The 

code can then be solved by a simulation package. Translators have been developed for 

gPROMS (PSE, 2000 a& b) and Simulink (MathWorks, 1999). 

Automatic code generation has been seen as a benefit in other fields (Maclay, 2000). 

By removing what used to be the most time consuming task from model creation the 

user can concentrate on the task at hand and not so greatly on its representation so that 

the solver can solve it. Maclay (2000) says, `At the prototyping stage, automatic code 

generation can greatly accelerate the development process, ..., 
because there is no 

significant time penalty for trying alternative solutions, automatic code generation 

tools positively encourage innovation. ' IMIPS automatically creates input code for the 

model simulators by translation of the selected case. The user then runs the produced 
file in the simulator and can then compare results of many simulator runs. More 

details are given in Chapters 4 and 5. 

1.4 Original Contributions 
The main contributions of the thesis are as follows: 

" Developing a database and indexing system for cases. (Chapter 4) 

" Using case based reasoning search and retrieval mechanisms for chemical 

engineering single unit problems. (Chapter 4) 

" Combining the above contributions to create an intelligent modelling interface, 

IMIPS, that includes automatic code generation from case specification for 

gPROMS and Simulink. (Chapters 4 and 5) 

" Carrying out case studies to demonstrate IMIPS functionality. (Chapter 6) 

1.5 Structure of the Thesis 
The thesis is split into 7 chapters. In Chapter 2, process modelling related 

developments are reviewed. This includes discussions on the mathematical modelling 

of physical-chemical systems, the different approaches used in simulation packages, 

and the use of interfaces and front ends both in process engineering and other fields. 

3 



Chapter 3 outlines the principles of the case-based reasoning methodology, and how 

this can be related to and incorporated in the intelligent interface. Again an overview 

of available techniques is given, including some examples of case-based reasoning 

use and of the wide variety of tasks to which this methodology can be applied. 

Chapters 4 and 5 show an overview of our system, IMIPS, and discusses the design 

and implementation issues encountered. Case studies to illustrate the uses of IMIPS 

are explored in Chapter 6. Chapter 7 contains the conclusions from the thesis and 
hence the work to follow. Finally, the appendices include the syntax used in the 

system, the indexing schemes, flow diagrams for the two translators, the code for 

IMIPS and the simulator input files automatically created by the translators for the 

case studies. 

4 



2. Review of Process Modelling Related 
Developments 

2.1 Introduction 
This chapter describes the key stages in the development of process modelling related 

tools. This sets the scene for the thesis and the work on the IMIPS, (Intelligent 

Modelling Interface for Process Simulators) (Clark, 1998). The layout of this chapter 
is as follows: In § 2.2 the ideas and methods behind mathematical modelling are 

explained, § 2.3 explores the types of simulation package, § 2.4 gives an overview of 

some of the interfaces and front ends currently available in the process industries, and 
§ 2.5 outlines the basic features of IMIPS. 

2.2 Mathematical Modelling of Physical-Chemical Systems 
A mathematical model consists of a variety of equations that relate to the physical 

variables of the system being modelled. To ensure the model is correct the modelling 

of physical-chemical processes requires all the basic principles of chemical 

engineering science: basis, assumptions, consistency, solution of the model equations, 

and verification (Luyben, 1990). 

9 Basis - the basis for each model are the fundamental physical and chemical laws 

that govern the behaviour of the system. (See § 2.2.1. ) 

" Assumptions - the engineer must use their judgement as to what assumptions can 
be made to create a valid model. It is also vital that the engineer also states the 

assumptions used so that a true representation of the model is known. 

" Consistency - the model must be mathematically consistent. There must be zero 
degrees of freedom, i. e. the number of unknown variables must equal the number 

of equations. Also ensuring the units of all equations are consistent is another 
important part of this procedure. 

9 Solution of the model equations - the solution techniques available are explored in 

more depth in § 2.2.2. 

5 



" Verification - once the model has been solved it is also important to check that the 
results gained are realistic to the real world case. 

The modelling of all physical-chemical systems can be undertaken if this procedure is 

used. The determining factor for success is that the modeller has enough knowledge to 

create a good model and that there are solution methods available to then solve that 

model. Stephanopoulos & Han, (1996) reviewed intelligent systems in process control 
and included a section on modelling languages, simulation and reasoning. In this 

section they stated that `we should use models that capture all available knowledge, 

whether it is expressed in the form of logical propositions, order-of-magnitude, or 
quantitative relationships'. With this in mind, it is necessary to state that it is 

acceptable to simplify the model to some extent, to reduce its complexity, without 
eliminating the important and vital details. Von Neumann and Morgenstern (1964) 

state that `... the definition must be precise and exhaustive in order to make 
mathematical treatment possible. The construct must not be unduly complicated so 
that the mathematical treatment can be brought 

... to the point where it yields 
complete numerical results. Similarity to reality is needed to make the operation 

significant. And this similarity must usually be restricted to a few traits deemed 

"essential" pro tempore... ' 

The work involved in generating dynamic process models of individual unit 
operations and/or the entire process flowsheet is non-trivial. Modelling is inherently a 

non-intuitive process that can initially be difficult to grasp. Even if the modeller can 

produce sufficient equations to satisfy the problem, it may still be a difficult task 

turning them into a working model. To aid with this task work has been done by 

Barber (2000) to look at the possibility of using computers to create these models. 
The fundamental laws used in the modelling of deterministic systems' are described 
below. 

2.2.1 Fundamental Laws and Empirical Equations used in Modelling Physical- 
Chemical Systems 

The basis for creating models of physical-chemical systems are the fundamental 

physical and chemical laws. These are: 

1A deterministic system is one which is completely specified as a function of time (Ogata, 1992). 

6 



" Continuity Equations - total mass balance and component mass balance. 

" Energy Equations - the first law of thermodynamics is applied to all systems 

where there is some energy change present. 

" Equations of Motion - this relates the movement within the system to the changes 

that are created by this movement. 

" Transport Equations - these are of the form of a flux being proportional to a 
driving force. The proportionality constant is a physical property of the system, 

e. g. thermal conductivity, diffusivity, or viscosity. 

" Equations of State - these are equations that relate the physical properties to each 

other, e. g. density is a function of pressure, temperature and molar fraction. 

" Equilibrium - based on the second law of thermodynamics. There are two types of 

equilibrium, i. e. chemical, and phase. 

9 Chemical Kinetics - used to model the kinetics of chemical reactions. 

Depending on the purpose of the model many of these laws are not necessary to 

describe the system to create a model. The greatest drawback of solely using the 

fundamental laws is the size and complexity of the model, e. g. to model a distillation 

column with ten components and fifty trays using fundamentals would lead to a 

model with around 500 differential equations. The other method is to create a working 

model of a system using empirical equations. These equations are based on physical 

data and responses to disturbances in the system. So, the distillation column could 

have an empirical equation relating the reflux flow rate to the distillate composition, 

without the modeller having to model each tray individually. Marlin, (1995, pp. 196- 

231), gives a very good overview of using empirical equations within a mathematical 

model and explains the procedure used to create useful empirical equations. 

Once a model has been created it needs to be solved. It has become less of a worry 

now that the model created, assuming the degrees of freedom are correct, will be able 

to be solved by the package chosen. The solution of the model created is covered in 

the next section. 

2.2.2 Solution of Mathematical Models 

The solution methods used to solve mathematical models are based on work originally 

completed to allow mathematicians to solve large complex systems of equations by 

7 



hand. With the improvement of computing power these methods have been 

transferred onto computers and have been improved markedly over their predecessors. 

This topic is potentially huge and so this will be a brief summary of some methods 

used at present. Initially mathematical solution methods can be grouped by the types 

of equation they can be used to solve. The three types of equations are: ordinary 

differential equations (ODE's), differential algebraic equations (DAE's), and partial 

differential equations (PDE's). The basic forms of these equations and ways to solve 

them are discussed at length by Schiesser (1994). Schiesser also states that `Within 

the present state of knowledge, general algorithms which can reliably provide 

solutions to all the major classes of differential equations are not available. ' It also 

needs to be remembered that the solution method used to solve a problem may not 

give the best results. 

The use of an iterative technique is one method used to solve algebraic equations. The 

key here is finding a method that converges rapidly on the solution. Some of these 

methods are (from Luyben, 1990): Internal halving, Newton-Raphson, False position, 

Explicit convergence methods, Muller method, and Wegstein. All these methods use 

estimates to calculate the next `step' to hopefully converge on a solution. However, 

they are all dependent on the initial guess. 

Methods for solving systems of PDE's include finite difference methods and 

orthogonal collocation on finite elements (PSE, 2000 a& b). The usual manner of 

deriving finite difference methods is based on Taylor expansion of the distributed 

variables, but other ways have been used, e. g. basing the method on polynomial 

approximations. An orthogonal collocation method approximates the solution by 

weighted combinations of orthogonal polynomials, and demands that the describing 

equations be satisfied exactly at a set of finite points. 

2.2.3 Simulation of Physical-Chemical Processes 

Once a model has been created, a simulation can be run to see what the outcome is. 

The simulation of physical-chemical processes is only possible once a mathematical 

model for that process is available. By using fundamental laws and empirical 

equations, the mathematical models for many systems can be created. There are some 

systems, though, for which the task of creating a mathematical model is too complex 

8 



and so assumptions are included to simplify the model. It is very important, therefore, 
that these are stated clearly as an assumption could have a large effect on the final 

results of the simulation. The simulation of the process is only as accurate as the 

model used for the simulation, so the less assumptions used then the better the 

simulation will be. 

As simulation packages and the methods used to solve the models have improved, so 
larger, more complex models may be simulated. Simulation has moved from being 
just a designer's tool, to being useful in training people on how to deal with dangerous 

situations on a plant and running start-up and shutdown procedures before the plant 
has even been built. This `next step' is helping engineers design, build, and run safer, 
cleaner, and more user-friendly plants. 

2.3 Simulation Packages 
A wide variety of simulation packages have been produced over the past forty years 
and this section aims to look at the different approaches used. 

2.3.1 Equation-Oriented and Modular Approaches 
Throughout the thesis, the approaches used to model dynamic processes will be split 
into two different types: equation oriented and modular (Boston et al., 1993, and 
Marquardt, 1994). The differences between these two architectures are stated in figure 

2.1 with the executive performing a slightly different function by organising the 

equations and controlling the general purpose equation solver. (Biegler, 1989) 

9 



Executive Program 
(Set up flow sheet. 
sequence and control 
unit calculations) 

Unit Operations 
Library 

Physical Properties 
Library' 

Executive Profirain 
(Set up flow sheet 
and unit equations) 

Simultaneous 
Equation Creation 

and Solution 

Physical Properties 
Library 

Figure 2.1. Structure of process simulators. Left, sequential modular architecture, 

right, equation-oriented architecture. (Biegler, 1989). 

The different architectures describe the way the model is written and thus how the 

modelling program deals with it. The largest difference between these two approaches 
is the amount of information the user sees. The modular approach is very much a 
`black box' approach. When picking units from a library the user is unable to see what 

goes on inside the unit, but just sees it as a black box with information going to and 

the results coming from it. This approach is often applied for steady state modelling. 

The equation-oriented approach shows the equations describing the process so the 

user can adapt the models for each unit to ensure correct fitting to the problem in 

hand. This approach makes modelling dynamic systems more feasible and accessible. 

The equation-oriented approach is based around the assumption that the complete 

model of the plant can be expressed as one large system of equations. The iteration is 

simultaneously done on all unknowns. The ideas behind this approach are not recent, 

as they were described by Sargent (1967) and Shacham, ei a/. (1982). But it is only 

over the past decade that general-purpose process modelling tools based on this 

approach have reached the stage of being used widely in industry. The main reasons 

for this delay were the lack of computing power, reliable algorithms, software for the 

solution of the underlying mathematical problems, and the common practise in 

industry was to only model steady state behaviour. Due to the nature of the equation- 

oriented approach, as long as the user can write suitable equations to describe the 

process, then a dynamic (or steady state) model of some sort can be made. This does, 

10 



however, rely heavily on both the ability of the modeller to supply complete 

equations, and on the modelling program's ability to solve the more complex models. 

Some simulators that are based on the equation oriented approach are: SpeedUp2 

(Pantelides, 1988), gPROMS (Pantelides & Barton, 1993), and ASCEND (Piela et al., 

1991). 

As stated earlier, the modular approach is very much a `black box' approach and can 
be prescriptive. Some simulators that use this approach are: ASPEN PLUS 

(http: //www. aspentech. com/) and HYSYS (http: //www. hyprotech. com). 

There are three types of problem that these approaches are used for: simulation, 

design, and optimisation problems. The modular structure can easily be applied to 

simulation problems, but difficulties can arise with design and optimisation problems. 

For the design and optimisation problems, the assumptions used to simplify the 

process model for the simulation case no longer apply and the use of the modular 

approach becomes cumbersome. 

These two approaches are in no way mutually exclusive, as there are some equation- 

oriented packages that have a library of units with them. These units can be seen as 

`black boxes', although the user can, usually, still see what is going on inside. For 

example, DIVA (Holl, P. et al., 1988) is an equation oriented system with many of the 

equations used hidden from the user. 

Other ways of grouping these approaches have also been presented by Svrcek, et al. 

(2000) and Marquardt (1994). Svrcek, et al. (2000), states that there are six different 

types of approach (see table 2.1) which have evolved over time as computing power 

and solution techniques improved. 

2 SpeedUp is now sold by AspenTech as part of Custom Modeller V10.1 (AspenTech, 1999) 

11 



Approach Era Example System 
Analog 1950 -1980 
Hybrid (1960 -1980 
Digital Analog (1955 -1980 
CSMP/CSSL (Continuous 
System Simulation Language) 

(1965 -present) Simulink (MathWorks, 1999) 

Equation Oriented 1980 - present) SpeedUp (Pantelides, 1988) 
Procedural (1975 - resent 
Object Oriented 1970 - resent 
Modular (1990 - present) HYSYS 

(http: //www. hyprotech. com) 
Table 2.1. Modelling Approaches (Svrcek, et al., 2000). 

Marquardt (1994) also groups recent packages into four styles (table 2.2). 

Grouping Example System 
General Modelling Language ASCEND (Piela et al., 1991 
Process Modelling Language MODEL. LA Ste hano oulos, et al., 1990 a& b) 
Modelling Expert System PROFIT (Telnes, 1992) 
Interactive (Knowledge-Based) 
Modelling Environment 

DIVA (Bär & Zeitz, 1990) 

Table 2.2. Classification Groups (Marquardt, 1994). 

This method of grouping shows the different ways the packages are moving forward 

with different methods for solving similar modelling problems. 

Another review of the current state of simulation was written by Boston et al., (1993) 

and was based on where the simulation packages would be in 2001. Again, they split 
the packages into two approaches: modular and equation-oriented. By 2001, it was 
felt that these two approaches would be combined to form an object-oriented 

modelling environment, useable by both experts and novices alike. The other main 

advance would be in the solution techniques used inside the simulators. With 

improving models useable for physical properties and increasing data sources the 

models simulated will be closer to the real world than ever before. It can be seen in 

current packages that some of these prophecies are coming to fruition, with many 

advances being behind the scenes (solution techniques and data sources, see § 2.2.2). 

12 



2.3.2 Summary 
A brief summary of the benefits and drawbacks of each approach is shown in table 
2.3. The models available in some of these simulators (within a form of knowledge 
library) should be used carefully and may need amending, or replacing, to be suitable 
for use with the users requirements. 

Modelling 
Approach 

Modelling Features Code Generation Example 
Systems 

Equation- Flexible equation based, Manual: Time gPROMS, 
Oriented but little or no guidance consuming, easy SpeedUp 
Approach or help. to make errors. 
Modular Fixed black box models Automatic. HYSYS, 
Approach from library. Choice of ASPEN PLUS 

models and some 
guidance. 

Table 2.3. Brief review of some current approaches. 

Two types of approach have been discussed in this section and the following 

conclusions may be drawn from this discussion. The greatest difficulty with the 

textual, equation-oriented approach is that the modeller still has to write all the 

equations down and then turn them into a program that the package can use. For 

complex dynamic models, this can lead to many errors and much time can be spent 
de-bugging the model. The second approach, the modular approach, solves this 

problem by removing the model writing stage from the modeller. The modeller 

simply joins units (taken from a library) and then fills in the relevant data for each of 
the units. The package contains all the equations for each unit and decides which are 

necessary for solving the problem. This speeds up the modelling process and reduces 
the amount of time spent de-bugging the model. It is, however, generally harder to 

model complex (e. g. dynamic) or novel units and plant through a modular system. 
Hence, as long as the modeller can write the equations for the system it can be 

modelled by a textual system, but with the modular system, incorporating these 

equations can be a very complex task, for which the user may need assistance. 

For the inexperienced modeller, the library of units available in the modular approach 

also act as a pointer should they become stuck or unsure how to continue. There is 

13 



also better provision for on-line help as the package knows what information it needs 
to solve a particular problem and so can prompt the modeller for this information. 

The main advantage to the textual approach, though, is that the modeller can see 

exactly what they are modelling and will know that the model input is exactly what 

they wanted. This is important for non-standard pieces of equipment and units. The 

more experienced a modeller is, the more likely they are to use a modelling package 

with a textual interface as this allows them more control over the total process. They 

can see exactly what equations are used and the way the problem has been tackled. 

These two approaches are at either end of the modelling package spectrum (see table 

2.3), i. e. the equation-oriented approach requires considerable expertise, whereas the 

modular approach is led far more by an expert system. What is required is an 

approach that draws on the positive aspects of these two approaches and integrates 

them to provide a user-friendly modelling interface that can be used for both steady 

state and dynamic modelling. In the next section some user interfaces are described 

showing how they aid the modeller in their task. 

2.4 Interfaces, Front Ends and Translators 
In order to reduce the complexity of creating a model in a simulation package or 

solver, many are being produced with their own front end packages. The aim of the 

interface is to simplify the modelling task by aiding the user with the creation of the 

input file that the simulator or solver uses. These interfaces are usually graphical in 

nature and aid the user by including much information (such as the equations needed 

to solve a particular unit) behind the scenes of the graphical unit. The user is then 

prompted to input certain data to solve that unit. 

The use of a front end to simplify the modelling task has also been used in ecological 

modelling (Ushold et al., 1984). 

2.4.1 Aspen Plus and HYSYS 
Two of the most well known packages that include a user interface are Aspen Plus 

(http: //www. aspentech. com/) and HYSYS (http: //www. hyprotech. com). Their 

interfaces are shown in figures 2.2 and 2.3 below. 

14 



15 

Figure 2.2. Aspen User Interface. 

Figure 2.3. HYSYS User Interface. 



These packages use their interfaces as a tool to manipulate the `black box' units. 
These units are linked and the information the solver needs is prompted for via an 

expert system before the simulation can be run. To create the models through this 
form of interface is relatively straight forward, but, should an error occur, the 
debugging can take a long time due to the behind the scenes nature of the modelling. 
The user can also be restricted by the library of models available within the package. 
Even though the user is able to add to the model library, they may not have the skills 

needed to create a model for their process. 

It can be seen that the interfaces are very similar in layout and design with the user 

initially inputting data via a flowsheet, then being prompted for more information for 

each unit through other windows. The two main ways that Aspen Plus and HYSYS 

differ are: HYSYS interactively deals with the users input; the user does not need to 

run the simulation manually (by pressing a `run' button) and, secondly, HYSYS has 

the ability to allow information to propagate in both the forwards and backwards 

directions. This allows for less iterative steps and shorter solution times. One property 

the majority of these simulators have is the ability to run small parts of the whole 

system fairly easily through unit selection and grouping. 

2.4.2 Ascend 

Another type of interface is used by ASCEND (Piela et al., 1991). This interface 

guides the user through the creation of their model by using pre-set objects, for 

example, relation, distance, volume, factor, and cost_per_volume. These objects 

have certain properties that are inherited by the item that is a child to them. For 

example, in figure 2.4 D IS 
-A 

distance means that D inherits all the properties of 

type distance: dimension, lower and upper bound, nominal and default value. This 

front end incorporates the benefits of the modular system with many pointers for the 

user to follow, it does, however, place an extra level of complexity on the modelling 

process as the user must learn how to use this interface to benefit from its full 

potential. 

16 



Ede Edit Eeeaas Qpb- Yrew Ieel- ! lelp Lie tde t2iep1ay hed Qptrons V_aw" Eepod tlaip 
# Ty Coon, Fresidert of Vice a440) vessel 

L. r . rn, ýlcl o<h0, 
t7 I his General Public License does not permit mcorporutnlt 
rlt cr program into proprietary programs. If your proyr xn 

subroutine library, you may consider it more useful t� 
t: p, rmlt linking proprietary applications with the library 
L' Tr this Is what you want to do, use the GNU Libraryf moral 
K Pcbllc .. I: ense instead of this License. 

C: /users/clantenycggada4090/ascenda/bin, J 

vessel_optimize IN C: ̀, Users\planteng\cgyac\a4O90\ascend4'mlo 
Ede End [spiny Find 2poons flew Export tjelp 

Cylinder IS 
-A relation 

D IS A distance 
Fl tE d IS A l i a n s at re on 
H IS_A distance za, lot % 
HD definition IS A relation t le Ldn i. rp 

- H to Dratio IS A factor gn °' rnrr, -1 
_ _ _ Metal volume IS Arelation 

Oe e ersrt 3 c99e \a40v0 ntl4\ k Lrnýn 
eC\Users\plemeng\cggec\x4090\escend4TK/Typenre Fin rel 

_ _ ce clUsersAplemangAcggac1a4090Vescend4\TK/Brovserýncru 
Sides IS A relation C\Users\plnrieng\cggec\e4090\escend4\TK(DebugFrn-r. 

_ 
Ves lM IS A l ti 

ý=eC\users\pl 
anreg\cgga\e409u\nscend4\T K; Ift l--", = 

se ass re a on 
- eng\cg9ec\e4090\escend4\t Kl SoNeF1oc cI CUSars\p 

IS A cost er volume C\Users\prenteng\cggec\e4090\escend4\K/S. ptP-, _: l sou 
I, 1,. ýtýl sou". «l: Uwrs\plam. ng\cggec\84090\eswnd4\TK/NýYvýRtulprrýýr 

eC \Us urs\ pl entony\cyyec\ e4090 \eswnd 4\TK/Hubßui: I- 
C \L a eis\plameny\ 9gec\. 4090\eccend4\TK(mps 4I 

. cc C\Usors\plenrong\cggec\e4090\escontl4\TK/CellbecAF., ýrý. ý 
C\Usors\plantang\cggec\. 4090\escentl4\TK/NCroboxPrnr rl 
C\Users\plantong\cggec\. 9090\eccontl4\TK/mo"nr 1' '.: I 

Co, Ang OiC ea 
Iývnnrn LnndnA 

User der: directorya C\WtNN i\Prolr ee\p: enlenq/esctl+rn 

ItFolnnybl. Ci, Users\Flnrnrny\uygn, _\e409C\us r0 iý rn ý. r... \...:, i ý. ý. i , '41 

r say rwr RR r Lý, r Pc r oc rroming 

Figure 2.4. ASCEND User Interface. 

2.4.3 Translators 
The use of translators to aid the modeller have been available for a number of years. 

In some respects, the front ends and interfaces are translators that turn one 

representation of information into a model for the solver. Other examples of situations 

where translators have been used are: 

"A translator to turn Simulink models into VisSim models 

(http: //www. adeptscience. co. uk/ products/mathsim/vissim/). VisSim is a program 

for the modelling and simulation of complex dynamic systems. The simulation 

engine within VisSim provides fast and accurate solutions for linear, nonlinear, 

continuous time, discrete time, time varying and hybrid system designs. 

" The automatic translation of a Simulink model into executable code to be used in 

engine management systems (Maclay, 2000). 

17 



2.5 Conclusions 
Ultimately, all modelling packages have to solve many equations and use numerical 

methods to do this. It is merely the interface that is different, and from that, the way 
the package (and modeller) approach the problem. What is required is an interface 

that is user friendly and achieves its purpose, i. e. to assist the modeller. 

An interface that incorporates automatic code generation with the flexibility of the 

equation-oriented approach, and some form of help or knowledge base would be an 
improvement on the packages in use today (see table 2.4). A package like this could 
be of great use when dealing with corporate information, as it would encourage the 

reuse and possibly re-evaluation of corporate knowledge. Thus leading to a fully 

annotated evolving base of information with time. Such an intelligent modelling 
interface has been developed, called IMIPS, (Intelligent Modelling Interface for 

Process Simulators) (Clark, 1998). This is the subject of the thesis. 

The knowledge base and knowledge retrieval involves case-based reasoning and so in 

the next chapter, case-based reasoning is reviewed and it is shown how its 

methodology could be applied within an interface such as IMIPS. 

Modelling Approach Modelling Features Code Generation Example 
Systems 

Equation-Oriented Flexible equation based, Manual: Time gPROMS, 
Approach but little or no guidance or consuming, easy SpeedUp 

help. to make errors. 
Modular Approach Fixed black box models Automatic. HYSYS, 

from library. Choice of ASPEN 
models and some PLUS 
guidance. 

NEW Case-Based Flexible equation based. Automatic. IMIPS 
Reasoning Approach Provides guidance for 

model. 

Table 2.4. Brief review of some current approaches and proposed approach. 

18 



3. Case-Based Reasoning 
3.1 Introduction 
To incorporate the benefits of the two approaches into one, we have incorporated case 
based reasoning ideas to allow us to intelligently search through a database of past 

cases. A case is an example of a chemical engineering problem, with the information 

to index and solve that problem. This is to allow the less experienced user to have a 
knowledge base to start their work from, much as an experienced engineer bases some 

of their decisions on their past experiences. 

The layout of this chapter is as follows: In §3.2 a brief explanation of the background 

behind case-based reasoning is given. § 3.3 outlines the advantages and disadvantages 

of case-based reasoning. §3.4, §3.5, and §3.6 outline the indexing, retrieval and 

adaptation methods used at present. The chapter finishes with some conclusions that 

can be drawn about case-based reasoning. 

3.2 Background 
If a person bases any decisions they make on past experiences or examples that they 

have seen, then they are using case-based reasoning. Case-based reasoning is a type of 

reasoning that incorporates problem solving, understanding, and learning, and 

integrates all with memory processes. (For the general case-based problem solving 

process, see figure 3.1. ) 

A case to be included in the case memory must be relevant to the system and so be 

able to be indexed using the scheme present. Features of the case are identified and 

these are used to base the indexing of the case. If a case is to be retrieved, the features 

that are relevant are found and a search carried out on those parameters. 

19 



Case 

Feature Extraction 

Feature Revision 

Case 
Feature Match indexes 

Case 
Case Retrievalj-*-Oý Files 

Case Memory 

Solution Adaptation 

Case Storage 

Figure 3.1. Process of case-based problem solving. 

The föllowing premises underlie this type of reasoning and will be discussed in detail 

later, Kolodner (1993): 

0 Reference to old cases is advantageous in dealing with situations that recur. 

Reference to previous similar situations is often necessary to deal with the 

complexities of novel situations. Thus. remembering a case to use in later problem 

solving (and integrating that case with what is already known) is a necessary 

learning process. 

" Any form of reasoning requires that a situation be elaborated in enough detail and 

represented in enough clarity and with appropriate vocabulary to allow the 

reasoner to recognise the knowledge it needs (whether general knowledge or 

cases) to reason about it. (See feature extraction, matching and revision in figure 

3.1. ) 

20 



" Because no old case is ever exactly the same as a new one, it is usually necessary 

to adapt an old solution to fit a new situation. Adaptation compensates for the 

differences between an old situation and a new one. (See solution adaptation in 

figure 3.1. ) 

" Learning occurs as a natural consequence of reasoning. The new situation, stored 
in the case library, embodies a refinement or modification of the reasoning 

knowledge found in the original case. Its indexes designate when it is useful, and 
indexes associated with the old case are refined, based on this analysis, so that it is 

retrieved only when its procedure is known to be appropriate. This incremental 

learning process results in the learning of new procedures, their refinement, and 

the learning of when each is appropriately used. 

" Feedback and analysis of feedback through follow-up procedures and explanatory 

reasoning are necessary parts of the complete reasoning/learning cycle. Without 

evaluation processes based on feedback, learning could not happen, and references 

to previous experiences during reasoning would be unreliable. Follow-up 

procedures include explaining failures and attempting to repair them. (See 

feedback loop from case storage to case indexes and case files in figure 3.1. ) 

In addition, the quality of the case-based reasoner's reasoning is based on: 

" The experiences it has had. 

9 Its ability to understand new situations in terms of those old experiences. 

9 Its adeptness to adapt. 

" Its adeptness at evaluation and repair. 

" Its ability to integrate new experiences into its memory appropriately. 

Due to the continuous learning of the system, it becomes more efficient and more 

competent with the more problems it attempts. Case-based reasoning achieves most of 

its learning through accumulation of new cases and assignment of indexes. Due to the 

continuous learning of the system, it becomes more useful for solving new problems. 

21 



3.3 Advantages and Disadvantages of Case-Based Reasoning 
The advantages and disadvantages of case-based reasoning are outlined in the 

following sections. 

3.3.1 Advantages of Case-Based Reasoning 
Case-based reasoning allows a reasoner to propose solutions in domains that are not 

completely understood by the reasoner. It also allows the reasoner to propose 

solutions to problems quickly, avoiding the time necessary to derive those answers 

from scratch. Previous experiences are particularly useful in warning of the potential 

for problems that have occurred in the past, alerting a reasoner to act to avoid 

repeating past mistakes. 

Cases help a reasoner to focus its reasoning on important parts of a problem by 

pointing out what features of a problem are the important ones. They are also useful in 

interpreting open-ended and ill-defined concepts. 

These systems are easier to develop than other knowledge based systems, as 
knowledge acquisition is simplified to a task of adding the cases to the library and 
indexing them appropriately. 

3.3.2 Disadvantages of Case-Based Reasoning 
A case-based reasoner may be tempted to use old cases blindly, relying on previous 

experience without validating it in the new situation or to allow old cases to bias the 

line of reasoning. For example when designing a high pressure reactor vessel, the 

designer may use past experience to decide the size, shape, and mechanical properties 

of the vessel. However, if the designer's experience is in designing reactor vessels for 

low pressure use, some of the experience will be useless as the mechanical design of 

the vessel will be different. 

Many case-based reasoning systems are based in domains where case information can 

be represented at a chosen level of abstraction. However, for many design cases it is 

necessary to decompose the case into multiple levels of abstraction. For example a 

simple reactor system has, at one level, overall mass, component and energy balances, 

whereas at another level what actually happens inside the reactor is not included in the 

detail in the overall balances. (See also Tsatsoulis & Alexander, 1997. ) 

22 



3.4 Case Indexing 
A very important component of a case-based reasoning system is the indexing scheme 
used to index and compare cases. The indexing scheme needs to be as detailed as 
possible to cover all possible eventualities of cases. This leads to a very precise 
description of a case, which can also lead to easier case matching and retrieval. 

An indexing scheme is judged by the following four properties (Maher et. al. (1995), 

pp. 87-88): 

" Prediction: the index must capture the aspects of the cases that tend to predict 
solutions and outcomes of cases. The indexing vocabulary should include the 

aspects of the problem that may be critical in determining the problem solution. 

" Specificity: the vocabulary must be specific enough to make all useful 
discriminations between items in the library. The indexes should also be concrete 
enough to be easily recognisable later. The level of detail in the vocabulary should 
be at a level where two similar designs can be distinguished. 

" Generality: the vocabulary must be general enough to capture the similarities 
between cases. This is so that cases can be used in a number of situations. 

" Usefulness: recalling cases from the case base should produce useful cases. This is 

possibly the most difficult part of the index vocabulary to design as the usefulness 
is usually only apparent to the user of the case-based reasoning tool. 

Indexing can be done automatically or manually, and are discussed below. 

3.4.1 Automatic Indexing 
The four main automatic indexing methods used in existing packages are: indexing by 
features or dimensions, by differences, by similarity, and by using inductive learning 

methods. These are described in more detail below. 

9 The first method is to index the cases by using features or dimensions that tend to 
be predictive across the entire domain. This is a very useful approach and there 
are many problems where this can be used, e. g. CHEF (Hammond, 1986) is a 

system that creates new recipes from existing ones, indexing on features like taste 

23 



and texture. Unfortunately, when the problem cases are based on more abstract 
ideas, the features do not usually encompass the whole problem and so are only 
partially useful in indexing the problem. 

" Difference based indexing, which selects indexes that differentiate one case from 

another. This is very useful where cases are very similar and it is easier to list the 
differences than the similarities, for example, in CYRUS (Kolodner, 1983a, 

1983b) events were stored and then retrieved from the life of Cyrus Vance when 
he was secretary of state of the United States (under President Jimmy Carter). All 

the events were similar and so indexing on their differences is a logical way of 
dealing with the problem. 

" Similarity and explanation-based generalisation methods produce a set of indexes 

for abstract cases, from cases that share some common set of features. The 

unshared features are then used as indexes for the original cases. This method 
needs a large case base of similar cases that the indexer uses as a base line. 

" Inductive learning methods identify predictive features that are then used as 
indexes. Some features that run through the cases to be used are selected (by 

induction) and these features are used for the indexing of the cases. Due to the 

inductive nature of the process the features can be modified, the more cases there 

are in the case library. This method, again, needs the cases to be similar in certain 

ways for the features to be picked up by the indexer. 

3.4.2 Manual Indexing 
Manual indexing is a fine art. To create an index that incorporates all the qualities 
listed above (prediction, specificity, generality, and usefulness) manually is an 

extremely complex task. The methods used for this task can be split into either 
description or relationship schemes (Maher, et. al. (1995)), which are explored in 

more detail below. 

3.4.2.1 Description Schemes 
If designs are indexed by a set of surface features, e. g. length, material, mass, etc., 

then these are considered as descriptive indexing schemes. This type of scheme often 

24 



adopts a fixed structure to describe and represent cases. The basic structure used to 

organise these descriptive features is a list. This is explored below. 

In a list organisation of the indexing vocabulary, features are regarded as elements of 

a list. An element of a list can be represented by a single indexing feature or by a set 

of indexing features. Cases are assigned to elements of the list, according to the 

description of cases. Each element indicates a set of cases that can be descriptively 

labelled by it (figure 3.2). 

TANK Set of Indexed Cases 

REACTOR Set of Indexed Cases 

COLUMN Set of Indexed Cases 

PUMP Set of Indexed Cases 

Figure 3.2. Example of a list. 

3.4.2.2 Relationship Schemes 
In many situations, the relevance of one case to another does not always depend on 

the surface features, but may depend on abstract relationships. These relationships 

may be feature-based, object-based, or graph-based. (For examples see table 3.1. ) 

Feature-based The way two features are related, e. g. mass and volume. 
Object-based The way two objects are related, e. g. a tank and a reactor. 
Graph-based Two items are related by a graph, not an equation, e. g. flowrate and 

NRE" 

Table 3.1. Examples of abstract relationships. 

The object of the relationship indexing scheme is to add several models or rational 
knowledge to facilitate the recognition of the relevance of cases. This type of scheme 

requires some form of domain knowledge. Based on multiple indexing paths to the 

same cases, relationship indexing schemes provide flexibility in indexing cases. The 

basic structure used in this method is a tree or hierarchy. 

25 



Relationship Models 

Indexing 
Scheme 

Feature-Based 
Object-Based 
Graph-Based 

Cf 
Design Cases 

Figure 3.3. The relationship-based indexing scheme. 

In a tree, features of the indexing vocabulary are distributed in the nodes of a 
hierarchical tree. The tree can be generated by clustering cases according to the 

indexing features. Cases are indexed in the tree from more general to more specific 
descriptions. The search of this indexing scheme can also be simplified more by only 
including the `leaf nodes of the tree. 

Using hierarchies can simplify the indexing of a problem by automatically assuming 

some form of property inheritance from parent to child down the hierarchy, is-a 

relationships. For example, (see figure 3.4. ) a Jacketed Vessel is a special form of 

Tank, and as such has many of the Tank's attributes. Likewise, Tank will have many 

of the features of EQUIPMENT, its parent, and so Jacketed Vessel will have many 

of the properties of EQUIPMENT. 

I EQUIPMENT 

Separation 

Liquid/Liquid 

Tanks 

Reactors 

Gas/Liquid II Jacketed Vessel 

Figure 3.4. Example of a hierarchy. 

Using a set of surface features from the description of cases is the simplest way to 

index cases. However, there is one main problem when using this simple approach. 

26 



Surface features can not fully anticipate the relevance of cases to the current problem, 

consequently causing the retrieval of irrelevant cases and ignoring some relevant 

ones. 

3.5 Case Retrieval 
The method used to retrieve cases is related to the indexing scheme in use. There are 

many schemes in commercial use at present with varying degrees of usefulness to our 

problem. From a simplistic point of view, case retrieval can be seen as a massive 

search problem (like searching a database), but with a twist. No case in the library can 

ever be expected to match a new situation exactly, so the search must result in 

retrieval of close partial matches. Due to this problem, there also needs to be some 

way of ranking the relevance of the retrieved cases to the new situation. Database 

search methods are used to compare values in fields to those in the database. A search 
for primary colours would yield red, yellow and blue in the colour field, and a search 
for blue in the same field would only retrieve those entries with blue in that field. 

Entries with navy or cobalt in that field would not be retrieved, though both are close 

matches to blue. The retrieval method, therefore, should also be capable of selecting 

and ranking partial matches to the initial problem. Likewise, when searching fields for 

numerical values some tolerance needs to be included in the search. 

3.5.1 Flat Search & List Checking 

As Kolodner (1993) stated, a flat search is the simplest search to perform. Each case 

in the library is compared to the problem specification and the closest match is 

selected. This method can be improved by assigning a relevance value to each case 

and thus ranking them before retrieval. This, however, is a very slow process and is 

only useful where the search domain is very small. The list-checking method (Maher, 

et. al. (1995)) is very similar to the flat search, but instead of retrieving a single case, 

or some ranked cases, it retrieves all the cases that have an element that is being 

searched for. Each element of the indexing list points to a set of relevant cases and 

using the list-checking method, the cases indicated by the matched indexing element 

are retrieved as relevant cases. Both these strategies are based, in essence, on a feature 

match. 

27 



3.5.2 Concept Refinement 
Concept refinement uses a tree indexing representation. The search starts at the most 

general feature in the tree and progresses downwards only when a match is possible. 

A match is where the description of the new problem matches the indexing features of 

that particular node. This method can be approached in two ways: a breadth first or 

depth first search. These are shown in the following diagrams. A breadth first search 

would search across the hierarchy before moving down to the next level, so using 

figure 3.4 the search order would be: EQUIPMENT, Separation, Tanks, 

Liquid/Liquid, Gas/Liquid, Jacketed Vessel. Reactors. etc. 

A 

21 1 

BCD 

Fýi F 

Figure 3.5. Breadth-first search. 

The depth first search runs down a branch before returning to the highest unexplored 

branch, again for example, using figure 3.4: EQUIPMENT, Separation, 

Liquid/Liquid, ..., 
Gas/Liquid, ..., "hanks, Jacketed Vessel, ..., Reactors, etc. 

28 

Figure 3.6. Depth-first search. 



3.5.3 Associative Recall 

This method considers the relationship-based indexing schemes. (See Maher, et. al. 
(1995)) Cases are recalled through elaboration and explanation of the new problem 

specification, based on the relevant generalised models. In this method, cases are 

recalled based on a basis of the most relevant match, which is not necessarily the 

closest match. This is due to the retrieved cases' relevance to the current problem not 
being based on just surface features, but also on a deep feature match based on 
domain knowledge. For this, domain knowledge is vital to guide the search to the 

most relevant matches. 

3.5.4 Partial or Fuzzy Matching 

Much research has been performed recently on a 'fuzzy matching' approach to 

searching databases. (See Gaines. B. R. (1976), Schmucker. K. J. (1984), Jeng & 

Liang. (1995), Chung & Jefferson, (1998), Dubois, D. ei. al., (1988), Koiranen, T. el. 

al., (1998). ) This approach works differently from the usual database search and 

match string methods and is more useful in situations where it is unlikely that the 

same keywords/values will be used to describe similar, but slightly different, 

problems. The two types ofdata are dealt ýNith in slightly different was. 

3.5.4.1 Symbolic Data 
One way of searching and ranking symbolic data follows. If the items in the index 

were in a hierarchy then we could define how closely any two items are related. For 

example the TANKS section of the previous indexing system (figure 3.4). 

TANKS 

Jacketed Vessel II Reactors 

II Continuous Stirred lank 
Plug Iloýý Reactor Reactor 

Figure 3.7. TANKS hierarchy sub-section. 

The attribute to be searched for is the target, t, and the value stored for that attribute, 

d. The goodness of fit (GOF) between these two attributes can then be calculated. 

29 



Chung & Jefferson, (1998) found four categories with four different methods for 

calculating the GOF. 

d is the same as t. 

d is a descendant of tin the hierarchy. 

d is an ancestor oft in the hierarchy. 

d and t are on different branches in the hierarchy. 

For category 1, it is obvious that d matches t with GOF =1. 

In category 2d is a narrower term than t. Therefore, we can also define d matches t 

with GOF = 1. 

In category 3d is more general than t. In this case d may or may not be what the user 
is searching for. Using the approach used in ReMind (a case-based reasoning tool) the 

GOF can be calculated as below: 

GOF = 
(IP + ER) 
(IR + ER) 

Where IP is the number of links between t and the common parent between t and d. 

EP is the number of links between d and the common parent between t and d. 

IR is the number of links between t and the root of the hierarchy. 

ER is the number of links between d and the root of the hierarchy. 

The following example shows this: 

If d= Reactors and t= Plug Flow Reactor then GOF = (1/2) = 0.5 

If d= Tanks and t= Reactors then GOF = (1/3) = 0.3 

If d= Tanks and t= Plug Flow Reactor then GOF = (1/2) x (1/3) = (1/6) = 0.17 

In category 4d and t are on different branches in the hierarchy. It is inappropriate to 

apply a general rule to determine the GOF value in this category as nodes on different 

30 



branches in a hierarchy may or may not be related. It is therefore left to the expert to 
determine how closely the nodes are related, if at all. 

When returning results from a query there needs to be some form of ranking to allow 
the user to look over the more relevant results first. This can be achieved by a number 

of methods. When searching for a number of attributes an average or weighted GOF 

could be used to determine the relevance to the problem. (As discussed by Dubois et. 

al., (1988). ) 

3.5.4.2 Numerical Data 
When matching numerical values the GOF is calculated in relation to how close the 

value is to that being searched for. When matching a target, t, against a data value, d, 

the value of the GOF should decrease as d moves away from t (Chung & Inder, 

(1992). A linear approximation could be used falling from a maximum of 1 to a 

minimum of 0, e. g.: 

GOF (t, d) = max 10,1 - 
Lit) Kalt 

Functions that are more complex have been derived to remove the sharp cut-off point 

or to move the emphasis to near misses, e. g. (Schmucker, (1984)): 

r lZ -ý 
GOF (t, d) =1+I 

ltd 
I 

If t represents the upper bound then if d <= t the GOF = 1, otherwise the above 

equation (or another) holds, and likewise if t represents the lower bound, the reverse 
behaviour is expected. 

3.6 Case Adaptation 
As for indexing, case adaptation can be automatic or manual. 

3.6.1 Automatic Adaptation ' 
Another vital role of the system is the ability to adapt past solutions to solve the 

present problem. This adaptation is recorded via feedback either from the user or 

31 



automatically on set parameters. The logging of how successful the adaptation was is 

also vitally important as the system can then learn from its mistakes. 

Three methods of adaptation are substitution, transformation, and derivational 

analogy methods. Substitution methods choose and install a replacement for some part 

of the old case that does not meet the current problem requirements. Transformation 

methods use heuristics to replace, delete, or add components to an old case in order to 

make the old case fit into the new situation. Derivational analogy methods use the 

method of deriving the old solution to then derive a solution to the new problem. 

'Kolodner (1993) noted that many design problems are very hard to decompose due to 

many of the components having strong relationships between them. But, to ease the 

solving of large or complex design problems, the problem needs to be decomposed. 

Thus, the solving of many large and complex problems starts with the need to 
decompose them into smaller, more easily manageable parts. One problem leading 

from this is that if one part of the problem is solved it could change the values and 

properties of other parts of the total problem. 

CHEF (Hammond, 1986) is a menu/recipe planner that has an automatic adaptation 

step. Its input is a collection of sub-goals that need to be achieved and its output is a 

meal plan. CHEF recalls old plans that satisfy most sub-goals and then adapts them to 

fit the other sub-goals. CHEF indexes its plans by the goals that they achieve, e. g. 

some of the goals, beef and broccoli, are indexed by include beef, include a crisp 

vegetable, use method stir fry, and achieve taste savoury. This increases the chances 

of getting a close match to the problem from the case library. 

The next step CHEF undertakes is to adapt the old plan to fit the current situation. 

First it reinstantiates the old plan. That is, it creates an instance of the old plan that 

substitutes new objects for the ones used previously, e. g. if it is creating a chicken 

recipe from a beef recipe, it substitutes chicken for beef. For this, CHEF needs to 

know something about the roles of each of the recipes constituent parts. It knows that 

both chicken and beef are defined as meat and so the substitution is valid. 

The second adaptation step involves applying special `object critics' to the plan. 
These add special preparation steps to the plan that may be only relevant to the new 

32 



constituents, e. g. deveining shrimps, defatting, deboning, etc. These critics are the 

way CHEF stores specialist knowledge about its domain. 

After these two steps are complete, the plan is ready to be used. CHEF has completed 
its job, but without some form of feedback it will not learn from its success/failure 

and so will not improve over time and use. CHEF has its own simulator that can run a 
planned meal and gives feedback similar to that which would be given in the real 
world. 

3.6.2 Manual Adaptation 
This is the easiest method to apply as the user adapts the cases retrieved by the 

package. It is important, though, that the user keeps a record of the changes made and 
the successes and failures that arise from them. It is from these successes and failures 

that the reasoner can learn which cases are more relevant for some abstract problems. 
This form of adaptation assumes the user has some form of knowledge about the 

problem at hand and so is not particularly useful for applications to be used by 

novices. 

3.7 Conclusions 
This chapter has highlighted the benefits of case-based reasoning techniques when 

used to draw knowledge and cases from a library. As the natural way of approaching 

most engineering problems is to call upon the experience of the modeller or another 

expert to help with the creation and solving of the problem, an automation of this 

activity would enable solutions to be produced faster and with fewer errors. 

Case indexing is more of an art form than a science. It takes a great deal of knowledge 

to create a predictive, robust, abstract, and useful index that will cater for all problems 

encountered. Most indexing schemes involve a great deal of evolution from the initial 

ideas to a useable index. Whether an automatic or manual indexing system is used is 

highly dependent on the domain of the study. For domains with rigid guidelines, or 

fixed parameters to be known, then the automatic generation of the indexes is 

possible. However, within many domains the automatic generation of indexes is far 

too complex. The translation from a natural language problem description to a 

description that can be easily indexed is one where the human brain is still far more 

33 



efficient than other, automatic methods. Within our domain of interest, the cases are 
to be stated in a very structured and formal way with the information written in pre- 
defined fields in a database, and so these fields can be used as the index for the 
system. 

Cases can be retrieved using one of two search methods: the usual `database' field 

search, and a partial or fuzzy search. As the possibility of a case in the library being 

exactly the same as the current problem is virtually zero, then a search that draws out 

all cases that might be slightly relevant is better than one searching for the exact 

answer. For this reason, a partial or fuzzy search is a far better way of drawing the 

most appropriate cases from the library. This retrieval procedure should also have a 
method of ranking the retrieved case so that the more relevant ones are drawn to the 

user's attention before those that are less similar. The search should differentiate 

between numerical and symbolic values and vary its search techniques accordingly. 

Automatic case adaptation is a very powerful method of solving problems, but only 
within a limited domain (such as that in CHEF). To automate the process over our 
domain seems, at present, virtually impossible with current methods and technologies. 
It would therefore seem more appropriate to concentrate on manual adaptation of 

cases and concentrate on the indexing and retrieval side on the case-based reasoning 
tool. 

34 



4. System Overview 

4.1 Introduction 
This chapter outlines the system produced. The system is a front end (or interface) for 

users of process simulators who may, or may not, have had previous experience in 

their use. The front end is interfaced to a database of past cases through which the 

user may search and then use some or all of those retrieved cases as a base for their 

problem solution. The front end incorporates a mechanism to create a valid search 

query, a system to view all retrieved cases, and translators to create simulator input 

tiles. 

The layout of this chapter is as follows: In §4.2 the system components are outlined, 

§4.3, §4.4, §4.5, §4.6, and §4.7 outline the main stages for the process, i. e. case 

specification, case retrieval, case review, case adaptation, and case translation. and 

finally in §4.8 the procedure is demonstrated for a general case. 

4.2 System Components 
The system outline is shown in figure 4.1. This shows the three sections of the system, 

and the output produced (a simulator input file). 

-- 
IMIPS 

--------------------- 
Case Retrieval 

gPROMS Translator 
-------------------- 

Case RcvicNN 
-------------------- - Simulink Translator 

, ------------------- 
Case Adaptation 

- ----------------------- ro 
rD 

- -- ---------------- Problem 

-- 

Description 

-------------- 

USER 

Figure 4.1. System diagram. 

gPROMS Input File 

Simulink Input File 

... _.......... _.... _........... 

35 



The sections are: the past case database, the retrieval and review mechanisms, and the 
translators, (these sections form IMIPS, Intelligent Modelling Interface for Process 
Simulators). IMIPS is implemented using the CLIPS language 
(http: //web. ukonline. co. uk/julian. smart/wxclips/). CLIPS is NASA's expert system 
shell, allowing rule-based, functional and object-oriented programming. Our package 
uses wxCLIPS, which includes a set of CLIPS functions for graphical user interface 

creation. The database is constructed in Access (Microsoft, 1997), but could be 

written in any ODBC3 compatible format with the same database structure. This 

structure could be altered in the future if applicable standards were introduced, and 
work on this standardisation is being done by the CAPE-Open project. The 

mechanism used to create the search queries (Illiffe et. al, 1998) incorporates the 

ability to search for exact matches, and also matching for the parents and/or children 
of the selected item. It also allows searches for related objects. 

The past case database is a store of previous cases through which the user can search 
for cases similar to the problem they are interested in. The user could also input a new 
case from scratch if they knew the relevant information to create a model in terms of 
its differential algebraic equations (DAE's), or integral and partial differential 

equations (IPDAE's). The database has been designed to be easy to use for the input 

of new cases. The user uses forms to fill in all relevant information about the case and 
this can then be recalled by IMIPS to be translated into the simulation package input 

language. Likewise, past cases that have been amended can be saved in the database, 

thus increasing the knowledge base for future users of the system. 

The main user interface, though, is IMIPS. This is where the user can search, view 
and translate cases stored in the database. The search can be carried out on the case 
number to search for a specific individual case, on a problem specification for similar 

cases, (see §4.4), or by using keywords. This provides a flexible search facility. Once 

the user has selected a case, from either the library or one that has been amended or 
input, they can view an occurrence matrix for the DAE model (see §5.4). This allows 

them to check if the degrees of freedom for the DAE model are zero and the model 

3 Open Database Connectivity. A standard protocol for accessing information in SQL database servers, 
such as Microsoft SQL Server. 
4 The objective of the CAPE-Open project is to deliver the power of component software and open 
standard interfaces in computer-aided process engineering. 

36 



can be solved, i. e. the number of equations is equal to the number of the unknown 
variables. The user can then select the option to automatically create an input file (or 

files) suitable for use with their chosen simulator. Two translators have been 
implemented so far: gPROMS (PSE, 2000 a& b) and Simulink (MathWorks, 1999). 
Each part of the system is discussed in the following sections. 

4.3 Case Specification 
When stating a case in the past case database the user must be able to give a high level 

specification of the problem, in a general form. By stating the cases in a general form 

it allows IMIPS to search through these case specifications and retrieve all cases that 

are similar to the search conditions. Each specification in the database is referred to as 

a `case'. 

In the database, each case is represented in four parts: general information, equations, 

variables, and constants. A case contains all the information necessary to create a 
DAE model that can then be solved. IMIPS allows some checking of the case with an 

occurrence matrix (see §5.4). Each part of a case is described in the following 

subsections. 

The index scheme is based on a hierarchical approach to representing data, thus 

allowing parent/child and other more specific relationships to be included. 

Figure 4.2 shows part of the heating and cooling branch of the equipment hierarchy 

and is used in the indexing and searching of cases. Although no attributes are attached 

to any part of the hierarchy, the search engine can be instructed to search for exact 

matches, or include the children of, or parent of the item searched for. A search for 

heating equipment, for example, would retrieve all cases where the equipment was 
included in heating equipment, but by instructing the search engine to include the 

children would retrieve all cases where the equipment was a heating equipment, drier, 

heater, or concentrator. Likewise if the search was carried out for heating equipment 

and parent was included then all items from Heating and Cooling Equipment down 

would be included. The more general relationships, like those that would not fit into 

the hierarchical representation, include word associations, e. g. cold and refrigerated, 

and also where an item of equipment is of one type, but the type is not necessarily that 

37 



item, e. g. a pump may be an agitator, but an agitator is not a pump. Thus, a search for 

cold would also search for refrigerated. 

Heating and Cooling Equipment 

Ccoluig &luipineit 

Air Fin Fan Refngerahon Unit Cooler 
Cooler Cooler 

Heating Heat E; cchauaei' P1i e C1imnge 
Equipnient Equipnicait 

Dne- Her concentrator 

Figure 4.2. Part of the Heating and Cooling Equipment Hierarchy. 

4.3.1 General Information 
This part contains the information describing a problem and it is this information that 
is initially searched by IMIPS to find a matching case for the given problem. There 

are several fields to this part. (See figure 4.3. ) Each field has a description box so that 

any notes can be included. These could be general notes or important assumptions 

about the problem. The descriptions aid in the completeness of the problem statement, 

which help other users to see why the problem was modelled that way. There is also a 
large field to input the overall problem statement. 

38 



Not all fields are applicable to a given problem, and so an input of n/a is valid. 

However, the more information that is given the better the problem is described for 

the search engine. 

To help filling in the various fields, choices of options are provided. These choices are 

either in a list form or a classification hierarchy. All lists and hierarchies can be added 

to and improved upon as more problems are stored in the database. This allows for the 

continual adaptation of the system as more cases are stored and different index 

elements are needed. These fields are: 

39 

Figure 4.3. Database general information form. 



" Equipment - The equipment hierarchy is one of the largest hierarchies in the 

system. Items of equipment are grouped into like types, with this helping in the 

searching later. The main classes of equipment are: pressure raising or reducing 

equipment, tank, heating, and cooling equipment, separation equipment, and other 

equipment. These are then sub-divided into lower classes (see hierarchy in 

Appendix II). 

" Operating Mode - The operating mode of the system is a simple choice between 

continuous, batch, and semi-batch. 

" Thermal Behaviour - The thermal behaviour of the system is a simple choice 
between isothermal, endothermal, exothermal and superheat. 

" Reaction Properties - Three hierarchies are only of use in describing reactions. 
Reaction Type is a choice between general, polymerisation, Van de Vusse, 

anaerobic, fermentation, parallel, and catalytic. Catalytic also has a lower class, 

auto-catalytic. Reaction Order is a choice between zero, first, second and higher. 

Reversible is a simple yes, no choice. 

. Phases - The phases present in the problem is a choice between vapor, liquid or 

solid. If the problem were, for example, a jacketed reactor, then the main phase 

would be that inside the reactor, and not the cooling fluid. This can be a multiple 

entry choice. 

. Mass and Heat Transfer - The mass transfer hierarchy is, at present, very limited 

as there are no mass transfer problems included in the database. The three main 

types of heat transfer listed are conduction, convection, and radiation. 

" Pipeline Flow - When modelling flow down a pipeline the flow regime 

consideration is very important. The three main regimes listed are laminar, 

turbulent and plug/slug. 

. Chemical - This section has the potential to be highly complex. Incorporating all 

chemicals is a virtually impossible task. The form chosen is a list structure, 

although relationships can still be stated, i. e. a chemical that has a widely used 

common name can be listed twice and linked together. 

40 



There are six other pieces of information that are included on the General Information 

page. A name is stated for the case, and this is used as the default name of the input 
file created by IMIPS. The correct file name extension is added by IMIPS on 
translation (e. g. filename. gPROMS for a gPROMS input file and filename. mdl for a 
Simulink input file). 

The unit name is used in the input file to give the unit an identifier. This will become 

more useful in multiple unit systems, as, for example, different reactors will need 
different identifiers, but will be based on the same type of unit. 

Two fields specify the simulation time (or time for run), and the interval to report the 

results. 

The final two fields are for the statement of the operating conditions of the case (both 

temperature and pressure) and the applicable ranges for the case (again, both 

temperature and pressure). The operating conditions are for additional information, 

but the applicable range is more important. These ranges are used so that if part of the 

case is only valid over a certain range it can be stated. If the field is left blank then it 

is assumed that the case is valid over the total temperature and pressure range. The 

`unknown' box can be checked if the user is unsure if the case is universally 

applicable, and these cases will be ignored in a search that includes a temperature or 

pressure range. 

4.3.2 Equations 

In the equations part the user states all equations for the solution of the problem. It is 

also where all information connected with the equations is stated, i. e. boundary 

conditions, limits, etc. (See figure 4.4. ) The different sections are described in more 

detail below. 

41 



brd, 'ai'D PARTIOLIgNc. ComPmr. radt ml =<ICfeec*lo0'< ICINo mr=0 e uSvv ccrdý. x, dreaýt< erdrer, ce lz- 1)I 

T., 'P<PT1O ITI radtaal=ýhK4'PP« IT IcedT(d<a, dII ar=0 N riry cer iwyi drea. ra drrr; e or 

FAFTL41 r -<« < xradl avl=0 
11 

ax=L R rdey _c". a« reaace cr+lr-LI 

PAPTAL(T(ox . aIT .1 =0 ar=L B ý, r-iay _er; drxý d rea-ta es Ir=L) 
- 

PAAT14LICINcZe V ex radi rad1= 0 iai-0 s' aL 0<a U- ad, y ccrýdbxr d red ! rc erbe Irk) 

PAPTI41ITI, ««dl -0 ad-0 L U<av Pa. «d y -jo- 'o C-4" I'=01 

PARTI4L(CIIdcCamp m ,. Jl radl -0 ax L U «a Ba ixy cc1. >býxý al ea7e' Lin ret (wRl 

AS P. +. RTLa. IITlex rsTl radl - h« <Tla aJj Tc( rad-R axd Gcx. bomiýY Cmd: x, d reaacý Fan, we, I 

SC INcCa< a, rail- P6RTIAljC(fJcF-p, avai) wja d, 'a. ]'Da'F ax. Lrai<R 0<«a0 ai 0<o<.. <- and me; s Oad « 

rhXY, m"ST ltx rroil= +ha4001'u'PART'<LITla radlarl aI. i'FlRTt4LIT 

N 

ax<L ai, R tlýaxO rad Ervrq; ndvice 

PrNcCýroO. a, iaj - CINcCaaq. ar ra]I'RU'T(«, rail I #: a gas t<a 

Vla<adJ -A'E OPE E/Rg'T! ai r«dl Rrx bxý cmttara 

I Rde(ex reit = k[., adffll a adi'Pi2 redl Rear r+>-r rate 

A. >c"ýc'C;,, fTc= Fc Cý_'[T cn T cl "Q Coý. rx m ý, yy hzLxee 

0 -0vna111J'A- INTEGR4L(ax "0L TI. R) Tcl Heins*al<r rel>"xvýJsa 

Pteel! Iofcaol= CPeeUNaCornpIRq'TIeed fredc «±da. ý_ 

ENG 

Figure 4.4. Database equations form. 

Equations are written very much as they would appear on paper. There is limited 

syntax to understand (see Appendix I). The only limitation is that each equation must 

be less than 255 characters long. This is due to a limitation of the database, Access 

(Microsoft, 1997), but can be easily overcome by splitting an equation into parts and 

using dummy variables. Array variables and constants can be included in the 

equations and are explained in §43.3) and §4.3.4. 

4.3.2.1.1 Boundary Conditions 

If an equation is only valid at one place in the system, it is stated in the fixed bound 

section as: 

Identifier = Bound 

Identifier is a variable present in the equation, and Bound is a value or constant where 

the equation is fixed. 

The lower boundary for the validity of an equation can he stated as: 

Identifier] < Boundl ; Identifier2 < Bound2 

There can be as many boundaries as necessary, the semi-colon is used as a separator. 

The upper boundary for the validity of an equation can also be stated. 

Boundl - klon/ifierl ; Bounc12 °- Idenlitier2 

42 



As for the lower bound, there can be as many boundaries as necessary, separated by a 

semi-colon. 

A description of the equation can be added alongside the equation. This can include 

what the equation is for, and any assumptions that were made in the choice and 
formulation of the equation. 

4.3.3 Variables 
In this part, all variables are declared along with their properties. (See figure 4.5. ) 

Variables can be fixed and used as constants, however, constants cannot be used as 

variables. 

Arrays can also be used to simplify some equations. There can be arrays of variables 

and arrays of constants. An array has a name and a list of identifiers for the array 

elements. An array can have unlimited dimensions, so arbitrarily large arrays can be 

written quite easily. 

Variable_Name(Array_Var 1, Array_Var_2,......, Array_Var n) 

with the array element identifiers, Array_Var_n, being declared in the constants part. 

There are four basic properties than can be filled in for each variable. These are its 

name, its initial value or set of values, the units and a description. The initial value or 

set of values can be written as a single value or as an array. Even if the variable is an 

array it can still have a single value and this will be translated into an array of 

elements, all of the same value for the simulator. Array values are written with the 

43 

Figure 4.5. Database variables form. 



individual values separated by commas, e. g. 12,23,45,23. There are four other 

properties that the variables may have and these are described in more detail below. 

If a variable is distributed then the range for the distribution needs to be stated. 
(Distributed variables are variables whose properties vary, not only with time, but also 

with position, for example the temperature in a tubular reactor varies with its axial 

and radial positions within the reactor. ) The distribution domain is written as: 0: L. 

Here the lower limit for the domain is zero and the upper limit is a constant, L. The 

limits can be either values or constant identifiers. 

If a variable is only valid between certain points then these should be stated here. The 

syntax for this section is the same as that in the equation part. 

For problems that use distributed variables, the solution method should be stated. The 

methods discussed here are based on the gPROMS nomenclature and ideas (PSE, 

1999b, p. 70), as gPROMS is the only simulator being considered in the thesis that can 

cope easily with distributed systems. gPROMS provides five numerical methods, 

which are shown in table 4.1. 

A chosen method is indicated by stating the Method, Order, and Interval in exactly 

this order. For example an entry of BFDM, 2,40 means use the backward finite 

difference method, order 2, over a uniform grid of forty intervals is to be used. 

Numerical Method IMIPS Order Partial 
Derivatives 

Integrals 

Centred finite difference method CFDM 2,4,6 � � 

Backward finite difference method BFDM 1,2 � � 

Forward finite difference method FFDM 1,2 � � 

Orthogonal collocation on finite 

elements method 
OCFEM 2,3,4 � � 

Gaussian quadratures 5 � 

Table 4.1. Available mathematical methods 

44 



4.3.4 Constants 

A constant has a fixed value that can be either a single value or an array. (See figure 

4.6. ) 

Constant arrays are written in the same syntax as for variables. 

Constant Name(Array_Var_1, Array_Var 2,......, Array_Var n) 

With the array element identifiers, Array_Var_n, being declared elsewhere in the list 

of constants, e. g. see figure 4.6, NoComp is an array element identifier for the 

constant Nu. 

Five properties can be set for each constant: name, value, units, description, and 

`Include'. The first four are obvious. The `Include' property value can be either yes 

(Y) or no (N). This is to distinguish between a constant and an array identifier. An 

array identifier can be used to indicate which component, for example, the variable or 

constant is talking about, e. g. P(NoComp) for pressure of each component. P(1) is the 

pressure of component 1, P(2) the pressure of component 2, etc. With NoComp being 

the array identifier with a value for the number of components present. This 

45 

Figure 4.6. Database constants form. 



completes the description of the past case database and how to specify a case. The 

next sections discuss how the case is retrieved and then reviewed. 

4.4 Case Retrieval 
Facilities are provided for the user to search through the library of past cases. By 

using the hierarchies defined, a search can be made more intelligent by considering 

similar or related cases (discussed in §4.4.2). The following subsections describe the 

different aspects of case retrieval, namely: the search query specification, and the 

search query mechanism. 

4.4.1 Search Query Specification 
A search query is input through a form in IMIPS that is very similar in layout to the 

general information form for the database (see figure 4.7. ). The query is then used by 

the database as the basis from which to search through the cases. Each section has a 

hierarchical list that the user can use to select various key words to search from. These 

are menu representations of the hierarchies shown in Appendix II. There is the 

opportunity for the user to input related terms to be searched too. The user can tell the 

search engine to look for the parents or children of the selected key words, or can 

disable the relationship search mechanism. This makes the search more intelligent so 

results that are more general can be retrieved to give the user a wider scope of 

examples to view. For example, a simple search for Tank in the equipment box would 

retrieve all cases stored with Tank as the equipment type. A search with the `children' 

tab marked would also retrieve cases with equipment types Jacketed Vessel and 

Reactor Vessel, and Plug Flow Reactor and Continuous Stirred Tank Reactor which 

are the children of Reactor Vessel. If the search were for Reactor Vessel with the 

`parent' tab marked then the retrieved cases would have an equipment type of either 

Reactor Vessel or Tank (see Figure 11.3). 

46 



4.4.2 Search Query Mechanism 

The search query mechanism allows a search to be written for complete matches, and 

for related units (Illiffe et. al, 1998). The user can also search through (either up or 

down) the hierarchy that the unit is in for similar cases. The mechanism uses the 

stated hierarchies and relationships to enlarge the search specification. By allowing 

the user to decide to search through wider fields, the user has a higher chance of 

retrieving a case that is likely to be of use to them. 

If the user leaves an item empty the search mechanism will assume the user has no 

preference for that menu. The user can choose whether to do an exact match search, 

or to search through the children or parents of the items chosen. The user may also 

search for a related item by inputting it in the related text box on the right. 

47 

Figure 4.7. IMIPS query specification form. 



A keyword may also be input and searched for. This search takes place in each of the 

description text boxes in the database. Likewise a search can be carried out for a 

specific case number. 

A numerical search feature is also in operation. The user has the facility to search for 

temperature or pressure, using either a single numerical value, or a numerical range. 

The range search retrieves cases that fall into one of three categories shown in figure 

4.8. Figure 4.8. a is where the search range is totally inside the case range, 4.8. b where 

the case range is totally inside the search range, and 4.8. c where the two ranges 

overlap. If an individual value, instead of a range, is searched for then there are only 

two possible outcomes. The value is either inside or outside the case range. When a 

numerical search is created the user is prompted for which category they are 

interested in. This can then be amended if the number of retrieved cases is not 

acceptable to the user. 

Search Range 

Case Range 

a. Search Range inside Case Range 

Search Range 

Case Range b. Case Range inside Search Range 

Search Range 

Case Range 

c. Search Range and Case Range 

overlap 

Figure 4.8. Numerical Search Retrieval Possibilities. 

4R 



Once the search has been completed and the cases are retrieved from the database, the 

user is able to review them. The user needs to then decide which, if any, are suitable 
for describing the process they wish to represent. 

4.5 Case Review 
Once the search is completed, the review screen shows the first retrieved case from 

the database. The retrieved cases can he scrolled through so the user can decide on 

their appropriateness. Initially the general information about the retrieved cases is 

shown. Each retrieved case can then be looked at in more detail by clicking the more 

info' button. This brings up a screen (figure 4.9) with the variables, constants, and 

equations with their properties. Showing the retrieved cases in this way saves time as 

the user will not have to search through hundreds of equations and problems to find 

the suitable cases. The user can also see an occurrence matrix for the selected case 

(see §5.4). This is useful when checking that the case model has been stated correctly 

with zero degrees of freedom, i. e. that there is the same number of unknown variables 

as equations. 

-Bed Void «Dz-PARTIAL (C(NoComp. axrad): ax) u"(Cfeed(NoComp) C(NoComp. zuc. rad)) 
FB ax=O; Boundary condition at reactor entrance (r-0) 

-kz-PARI IAL(T(ax. rad): ax) = rhof. Cpf«u"(Tteed T(axrad)) 
FB ax=0: Boundary condition at reactor entrance (z0) 

PART IAL(C(NoComp. ax. rad): ax) -0 
;FB axL ; Boundary condition at reactor exit (z=L) 

PARTIAL(T(axrad): ax) =0 
FB ax=L; Boundary condition at reactor exit (z4) 

CONSTANTS 

L. 3m; Reactor Length 

T 0.0127 m; Reactor Radius 

)b 1300 kglm3 ; Bed Density 

if 1.293 kg/n]3; Fluid Density 

f 992 J/kg. K; Fluld Specific Ifeat Capacity 

0.01 m21s; /vial Diffusivity 

RIABLE S (Mathematical Method) 

Axial position (; BFDM, 2,40) 

1; Radial position (: OCFEM, 3.5) 

loComp. axrad) 0 kglmol ; UB ax <L; rad <R :1B0< ax ;0< rad ; Concentration 

IoComp. ax, rad) ; Partial pressures 

625 K : UH ax <I; rad <R : LB 0< ax: 0< rad : Temperature 

; Reaction constant 

Figure 4.9. More Info Screen 

a() 



4.6 Case Adaptation 
Once the retrieved cases have been reviewed the user can either adapt one of the 

retrieved cases or input a new case with the specification of the problem of interest. 

The adaptation of previous cases is completed through the database interface, where 

the similar case can be copied and amended accordingly. 

This action is carried out, at present, by the user without any support from IMIPS. In 

the future this feature is to be included in IMIPS. 

4.7 Case Translation 
Once the user has retrieved the case that they wish to use, they can decide which 

simulator is most appropriate for their particular problem. With the click of a button, 

the automatic translation of the selected case from the database begins. The translators 

convert the case retrieved into an input file to be used with the selected simulator (see 

figure 4.10). The first step that is consistent for all translators is the initialisation step. 

During this the case information that was stored in fields in the database is turned into 

instances of equations, constants and variables (See §5.6.1. ) 

General Information 
Form Data 

Variables Form Data 

Constants Form Data 

Equations Form Data 

Transparent Translation 
Stage 

Translator 
(CLIPS Code) r 

----------------------- 

------------------- 

Figure 4.10. Basic Translation Flow Diagram. 

Input File for 
Simulator 

The translation is transparent with the user only being prompted for an input tile 

name, although if a name was defined in the database then this will appear as the 

default, and, if applicable, the type of numerical search to be used. Once translation is 

complete, the user may create another input file for a different simulator by the same 

method. Thus allowing them to use the same mathematical case specification to create 

different simulator packages' input tiles for a particular problem, and then to compare 

the different results gained. 

cn 



At present, there are two translators available for the simulation packages Simulink 

and gPROMS. How these translators have been created is now described in the 
following subsections. 

4.7.1 Simulink 
Simulink has many lines of default code, which are automatically created by the 

translator. The information for some of these lines comes from the case selected, e. g. 

name, stop time, and current time. These lines include the general properties of the 

blocks and links in the model, and the page that the model is shown on. These lines of 

code are similar for each simulation run through Simulink. The other issues the 

translator has to consider are now reviewed. 

4.7.1.1 Block Selection 
Initially the constants are declared and a block is created for each constant. If a 

constant is an array, this is stated by enclosing the array values with square brackets 

before stating it as the block value. For example: X (Constant Array) = 0.1,0.2,0.5, 

0.2. Then the translator would create the following code: 

Block { 

BlockType Constant 

Name "X" 

Description "Constant Array" 

Position (50,20,80,50] 

Value "(0.1,0.2,0.5,0.1]" 

} 

The constant blocks are created one after each other and are placed on the page with 

set gaps between them. Once all the constants have been displayed, the equation 

decomposition starts. 

Each equation is then systematically decomposed, based around the constants and the 

known mathematical, or logical, syntax. As the equations are decomposed, a block is 

drawn for each symbol or logical operator that is present. As there is only one block 

for each constant, before any linking is done, the blocks that the constant is attached 

to are stored in a multi-variable array in the instance of that constant so that the links 

can be created effectively. 

51 



4.7.1.2 Block Linking 
The block linking is the most difficult part of the translation. The links from each 
block have to be written together, so cannot be written until all the equations have 

been decomposed and all block code is present. To enable this the use of multi- 

variable arrays is needed to describe the links from each constant. As each symbol 
block code is written, the link to it is either drawn (if a link from another symbol 
block) or stored in the instance of the source constant. 

4.7.1.3 Results Viewing 
The user is asked during translation to select, from the list of variables, those they are 
interested in viewing results for, and the type of display they want; a numerical 
display (a numerical screen) or a scope display (a graph plot). This allows the 

inclusion of displays in the Simulink model to show the results. Depending on the 

type of simulation, the correct display can be selected. (For a steady state model, a 

numerical display would suffice, and for a continuous model, a scope display would 
be preferable. ) 

4.7.1.4 Equation Handling 
Each equation is automatically checked, first for brackets, then for mathematical 

symbols. As the checking proceeds, if a constant is part of the equation, the symbol it 

is linked to is recorded in a multi-variable array attached to that constant. 

At present partial differential equations cannot be dealt with easily in Simulink, but 

differential equations can. These are discussed in the following subsections. 

4.7.1.4.1 Differentials 

Simulink represents differentials in the following way. If the equation includes a 

differential then the simulation must include an integral. So, if the equation were 

dx 
_- 

K(x - b) 
then the Simulink input would be shown as in figure 4.11. Simulink 

dt (M--- Vol) 

has to solve the differential equation by integration and so an integrator (represented 

as 
1) is used instead of a derivative. 
S 

52 



Q x, 
File Edit View Eirnulation Format TQols 

F) iU ý^, ºn tQ. 

100% ode45 

Figure 4.11. Differential equation, as seen in Simulink. 

As the translator looks through the equations if' a differential is found then the 

integration block is drawn. Once the integration block has been drawn the translator 

searches to see if the variable to he integrated had an initial condition. If so, this is 

then included in the block code. 

4.7.1.4.2 Integral Partial Differential Equations 

At present, Simulink does not have the ability to solve IPDAF's. I lence, if' the user 

tries to translate a case including an IPDAE into Simulink, there is an error returned to 

show this facility is not available. 

This completes the discussion of the translator for Simulink. Next, the translator For 

gPROMS is described. 

4.7.2 gPROMS 
First, the variables are DECLAREd and given a TYPE. Nach TYPE has an initial value, 

upper and lower bounds, and the units associated with the variable for which it was 

created. 

G1 



4.7.2.1 MODEL 
The model name is recalled and stated and the constants are listed in the PARAMETER 

section. Each constant is automatically checked to see if they are an array (described 

in more detail below), and whether the value is an integer. The constant is then listed 

as a REAL number or an INTEGER accordingly. The translator then checks to see if 

there are any distributed variables. If not then the next section is skipped. If there are 

any distributed variables then an extra section in the file is needed to allow them to be 

declared with their limits. These values are taken directly from the instances and 
declared with the limits. They are then not listed in the variable declaration section. 

Variables are automatically checked to see whether they are distributed or an array 
(see below). If the variable is distributed then it has bounds over which it is valid. The 

program looks for these and changes the output accordingly. The information written 
is dependent on the type of variable, if a basic variable then its TYPE is recalled and 
stated directly, otherwise the format appropriate to the form of variable is written 

If an array is detected (or a distributed variable) then the format of the output differs 

from retrieving and simply rewriting the variable/constant name. The variable is 

originally written as VarName(A, B, C,... ) and for the declaration in the input file the 

variable name is separated from the remaining, bracketed, part. The bracketed part is 

then written later in the line, e. g. A variable: Conc(NoComp) is the concentration of 

component NoComp. This has been declared in the database with an initial value, 

units, and a description. The initial value is used in the PROCESS section of the input 

file (described below) and the units are used in the TYPE section described above. 

This information would appear in the gPROMS input file as: 

Typel =1: -1E6 : 1E6 UNIT = "kg/m3" # Concentration 

Conc AS ARRAY(NoComp) OF Typel # Concentration 

Once all the constants and variable have been declared the equations are dealt with. 
There are two sections used in gPROMS for the declaration of equations, BOUNDARY 

for the statement of boundary condition equations and EQUATION for the statement of 

the other equations. Equation handling is described in more detail in § 4.7.2.3. 

Cd 



4.7.2.2 PROCESS 
After the declaration of all the equations the problem is still unfinished, as without the 

initial conditions and setting parameters the problem is only half complete. gPROMS 

includes all this information in a PROCESS section. The name for the unit was stored 

during the initialisation stage and is recalled to give the unit a unique identifier. This 

will be more important when modelling multiple units as each unit will need an 

original identifier. A SET section is automatically written in which the constants are 

listed with their values, and units if present. In addition, in this section, the 

mathematical methods chosen for solving the distributed domain are stated. In this 

section, and in the section setting the variable initial values, if the values were listed 

as an array, they are dealt with slightly differently. They are read and brackets are 

included in the input file statements. The variables can be either set or have an initial 

value attached to them. If they are set then the modelling package uses them as 

constants (as constants are just specialist forms of variables). The ASSIGN section sets 

variable values so they are treated like constants and the INITIAL section gives the 

variables initial values. 

Finally, the length of time for the problem to run and the interval for results to be 

plotted is stated. These values are read from the database, but if none are present, 

default values set within the database are used. 

4.7.2.3 Equation Handling 

The translation of equations is the most troublesome, with three main problems being 

identified and their solutions are detailed below. 

4.7.2.3.1 Arrays and Loops 

An array (usually of variables or constants) needs to be identified within an equation, 

and then a loop is created for it so that an equation is written (internally) for each 

instance of each variable. 

The translator identifies the equations that include arrays after searching for partial 

differentials. The variables with brackets after them are identified and using a 

specially written function each array variable (within the brackets) is replaced and a 

FOR loop (see below) inserted before the equation. Every time the equation changes, 

55 



it is re-checked for arrays, IF and WHILE constructs, and partial derivatives. In this 

way, the correct number of loops associated with array variables is ensured 

Loops are needed for arrays and are useful for repetitive tasks. They can be stated in 

the equation definition in the database, or are produced automatically by the 

translator. To create the correct expansion for an equation that includes arrays the 

translator searches the equation for an array variable. If it finds one it writes the first 

part of a FOR loop. It then changes all occurrences of the variable to the loop 

variable, and then searches again. This iterative step continues until the equation does 

not change and then the translator writes the END lines for the FOR loops, e. g. the 

equation as it is written in the database: 

k(ax, rad)=A*EXP(-E/Rg/T(ax, rad)) 

This is then translated to: 

FOR il :=0 TO L DO 

FOR i2 :=0 TO R DO 

k(i1, i2)=A*EXP(-E/Rg/T(i1, i2)); 

END #For 

END #For 

By the searching for arrays, and then the replacement of the array variables, ax and 

rad, with the loop variables, i1 and i2, the loops are created. 

For boundary conditions where the limits are just inside some values, e. g. 0<x<L, 

and not to the boundary, e. g. 0 <= x <=L the translator can insert the correct symbol 

to the FOR loop definition. The values are input in the database and these are read by 

the translator who then adds the appropriate symbols. For example the equation: 
PARTIAL(C(NoComp, axial, radial): radial) =0 

radial = 0, axial < L, 0< axial (where L is the reactor length). 

Would be translated to the gPROMS code: 

# Boundary condition at reactor centre (r=0) 

FOR il := 01+ TO LI- DO 

PARTIAL(C(, i1,0), rad) = 0; 

END #For 

This equation also shows the use of a partial derivative. The way the translator deals 

with these is described in the next section. 

56 



4.7.2.3.2 Partial Differentials 
Partial differentials are a special case inside a FOR loop. To convert the user input, 

e. g. PARTIAL (C (NoComp, axial, radial) : radial) = 0, at radial=0, 

to a form gPROMS will use involves formation of FOR loops and manipulation of the 

original statement. For this example, the gPROMS code generated is: 

FOR il :=0 TO L DO 

PARTIAL(C(, il, O), radial) = 0; 

END #For 

The normal FOR loop function cannot be used for this purpose, as this would replace 

all occurrences of axial and radial with loop variables (ii, i2, etc. ). Likewise, the 

fixed variable (radial) cannot be just replaced throughout, as this would not leave 

the final occurrence in the equation. 

A function was written to solve this problem. It first searches each equation for the 

string PARTIAL and if this exists it triggers the function. The function then looks for 

the : and the close bracket after this. It removes whatever is in this range and then 

treats the equation as any other, replacing for fixed values (radial), removing non- 

included (array identifiers, see §4.3.4) constants (Nocomp), and creating FOR loops 

accordingly. Then the removed string is replaced before the function is terminated. 

4.7.2.3.3 Integrals 
Integrals are dealt with in a similar way to partial differentials; the translator cannot 

just search the line and replace all instances of variables that may usually be used to 

from loops, e. g. 
Q= Overa11U*Area*INTEGRAL(ax: =O: L; T(ax, R)-Tc) 

as ax would normally be used to create a loop it is replaced and the translation is: 

Q= OverallU*Area*INTEGRAL(IntNol: =0: L; T(IntNol, R)-Tc); 

The replacement is triggered with a search for INTEGRAL, with the term between the 

first bracket and the := being replaced throughout the line with IntNol, or similar 

(i. e. IntNo2, etc. ). This way loops can still be formed if necessary with the integration 

variable not being affected. 

4.7.2.3.4 IF and WHILE Constructs 

IF and WHILE constructs are quite easy to deal with. The IF... THEN... ELSE 

statement is split into its three parts and the WHILE... DO statement into two, and then 

57 



each part is dealt with as an individual equation. This way nested IF or WHILE loops 

can be dealt with and the correct nesting is created for the output code. 

The application of IMIPS to a general example is now described in the following section. 

4.8 General Cases - From Definition to Translation 
The aim of this section is to run through the basic stages of the procedure: the initial 

case statement in the database, the search creation, the review and adaptation, and the 

translation to an input file. 

The user can use IMIPS for a variety of scenarios: 

1. To create a case description from scratch in the database, and then use IMIPS to 

create simulator input files. 

2. To use IMIPS to search and retrieve an existing case, accept this as representative 

of the user's process and carry out translation into simulator input file/s. 

3. To use IMIPS to search and retrieve cases similar to that of the user's process. 

Then adapt one (or some) of the retrieved cases and then use this as the basis for 

the creation of simulator input file/s. 

Each of these scenarios are now considered. 

4.8.1 Scenario 1: A new case from scratch. 
Step 1. Write down the mathematical description of the problem. 

Step 2. Create the case description in the case database from the mathematical 

description in step 1. 

Step 3. Use IMIPS to retrieve known case and initiate translation of case to 

simulator program input code. 

4.8.2 Scenario 2: Retrieval and use of an existing case. 

Step 1. Use IMIPS quer form orm to automatically create search query. 

Step 2. Use IMIPS to search and retrieve relevant cases. 

58 



Step 3. Select appropriate case and use IMIPS to translate into simulator program 
input code. 

4.8.3 Scenario 3: Retrieval, Adaptation, and use of an existing case. 
Step 1. Use IMIPS quer form to automatically create search query. 

Step 2. Use IMIPS to search and retrieve relevant cases. 

Step 3. Select appropriate case and use database to create copy of selected case. 

Step 4. In the database, adapt the copied case to represent the user's process. 

Step 5. In IMIPS select new, adapted case and translate into simulator program 

input code. 

A more detailed description of these processes is given in Chapter 6 where case 

studies are presented. 

4.9 Summary 
This chapter has outlined the system under development as the major part of this 

project. The chapter has shown how IMIPS can be used to store case statements of 

problems in a database for use at a later date. IMIPS has been designed to allow the 

novice user to easily create a search and then gives them the ability to review and 

amend the retrieved cases with ease. The user then has the ability to create simulator 

input files at the touch of a button. These files can be run and the results compared. 

How a case can be specified, retrieved, reviewed, adapted and translated was 

discussed. How the translators for Simulink and gPROMS were created was also 

described. And finally, the application of IMIPS in a variety of scenarios was 

described. 

The next chapter outlines how the system has been designed and implemented. 

59 



5. System Design and Implementation 

5.1 Introduction 
This chapter highlights the design and implementation issues encountered and 
decisions made during the development of IMIPS. The layout of this chapter is as 
follows: The database is covered in §5.2, §5.3 looks at the retrieval mechanisms used, 
§5.4 covers the retrieved case review capabilities of the system, §5.5 looks at how to 

adapt the retrieved cases, and the translator design and implementation is shown in 

§5.6. 

5.2 Past Case Database Implementation 
The greatest problem in the design of a case database is that of designing a structure 

for a case fully so that others have sufficient information to understand it. But, at the 

same time, keeping the case small enough so that it is not difficult to understand or 

keep track. 

The representation of a case in the database is a complex task. Ensuring the case is 

small enough whilst including all the relevant information has proved troublesome. 

The initial statement of the case was relatively straightforward once an indexing 

scheme had been decided upon. Many of the extra fields used were created once a 

need for more information had been found through the testing of the translation 

mechanisms. These extra fields contain information important to the complete 

statement of the case to ensure the correct translation and, hence, solution of the 

problem. 

The indexing system used in the general information page of the case base is not 

exhaustive and can be amended as more cases and the need for improved matching 

are included. 

60 



5.3 Case Retrieval 
The retrieval of the relevant cases is an area that uses some of the ideas from the case- 
based reasoning tools described in Chapter 3. 

When retrieving the relevant cases the retrieval mechanisms used must ensure that all 

relevant cases are returned to the user. Likewise, the search engine should not retrieve 

those cases that are of little relevance to the user's search parameters. The second 

point is related more to the way the search specification is represented than to the 

search mechanisms used and so the first point is explored in more detail below. 

The search query generation mechanisms used in IMIPS are based on those of Illiffe 

et. al (1998) and include the ability to improve the search by not only looking for 

identical matches (very unlikely), but also look for cases that are related to the search 

parameters. As was outlined in §3.2 there are many methods that can be used to 

improve on the basic match search procedure. By improving the way the cases are 

stored and indexed, relationships can be included in the indexing and, thus, the 

retrieval of the cases. By using a hierarchical structure, the user can search for the 

children (further down the tree) or parents (further up the tree) of their search 

parameter. This improves the matching abilities of the system. 

The other form of search implemented in IMIPS is the ability to search for numerical 

matches of individual numbers or over numerical ranges. This is important as some 

cases may include equations or boundary conditions that are only valid over certain 

temperature or pressure ranges. The ability to remove cases where the model is 

invalid for the user's requirements is, therefore, important for the retrieval of the 

correct cases. When searching for numerical values there are two outcomes possible: 

the value is either inside or outside the range, but when searching for numerical 

values, as was stated in §4.4.2, there are four possible outcomes: the search range is 

completely inside the object range, the object range is completely inside the search 

range, the two ranges overlap or the two ranges do not meet. The user can select 

which range search to use (or choose all) and the search query generator will produce 

the correct SQL query. The type of range search that is of most use to the user 

depends on their own search criteria, this allows the user to eliminate cases that are 

only valid over temperature or pressure ranges outside those of interest. 

61 



5.4 Case Review 
Once the search is complete, the user needs to have the ability to review the retrieved 

cases so they may select those that are suitable for their problem. Initially, only the 

general information (§4.3 .1. ) of the retrieved cases is shown using the same format as 

the database. From this initial selection, the user may be able to select the cases that 

are of interest and move onto the adaptation process. The user also needs the ability to 

look at the information contained within the case when reviewing and so the user has 

the ability to look at the equations, constants and variables and to see an occurrence 

matrix for the selected case. The occurrence matrix (see figure 5.1) is a graphical 

method that can be used to check that the degrees of freedom for the case are zero, i. e. 

that there is the same number of unknown variables as equations. The occurrence 

matrix shows the equations and variables for the case and indicates the presence of a 

variable in an equation by a *. It also shows the total number of equations and 

unknown variables present. thus acting as a quick check to ensure the problem is 

described fully. 

Yz 

Z=(iJi1r: 
3 Equations: 3 Unknown Variables 

Figure 5.1. Occurrence Matrix. 

62 



5.5 Case Adaptation 
The adaptation of the selected case or cases in a process engineering environment is a 

very difficult task. The user must have a good grasp of the case to be adapted and the 

case they want to model. To automate this procedure would be incredibly hard as the 

adaptation of a past case is not as straight forward as in other areas where this 

technique has been employed, e. g. Menu selection and adaptation (see §3.4.1). The 

automatic adaptation procedure has not yet been implemented within IMIPS because 

of the complexity of the task. 

Due to these problems and complexities it was decided to use manual adaptation for 

IMIPS. This allows the user to review and adapt retrieved cases to reach a solution. 

The user is prompted to ensure they annotate all changes they perform and then record 

the success or failure of their amendments. 

5.6 Translation Procedure 
The general translation procedure is described below for the creation of both Simulink 

and gPROMS input files. The automatically generated gPROMS input file is the same 

as that which the user would see if the task were done manually (a text file). However, 

the Simulink input file when seen in Simulink looks like figure 5.2. The user has no 

direct interaction with the text file used to create this, although this is the file created 

in translation. 

63 



M 11,11], 11111- 1111111111111 
_QX File Edit View Simulation Format Tools 

2; Uoº ýr 

Z (AD -XiI XO 

100% ode45 

Figure 5.2. Simulink model, as seen in Simulink. 

5.6.1 Case Initialisation 

The first stage in translating any case into the respective input file is the creation of' 

variable, constant, and equation instances. An instance of an item contains all the 

information related to the item. The information may be stated explicitly, or may be a 
default value. By using an object-oriented language, the ability to create, use, and 

manipulate instances is a great benefit to the later stages of the translation. Once a 

case has been chosen and the translation stage started the case is transferred to 

instances containing all the information in the case. This is the initialisation stage. 

Fach variable, constant, and equation has properties associated with it. These 

properties are set at initialisation and are shown in the tables below. The properties 

are set from the values given in fields in the database unless the field is left empty. In 

this case the value is left set as the default (see tables below). 

64 



Slot Name Default 
Value 

Description 

Equation The stated equation 

UpperBound "All" Upper bound of applicability 

LowerBound "All" Lower bound of applicability 

FixedBound "All" Fixed bound of applicability 

Table 5.1. Equation instance properties. 

Slot Name Default Description 
Value 

Identifier The variable/constant identifier 

Unit "" Units 

Include "Y" See §4.3.4 

Distributed "N/A" Whether a distributed variable or 

not 

Description "" Description of the variable/constant 

ArrayVar 0 "none" Stores the number of elements (0) 
and their values ("none") if the 
constant/ variable is an array 

Port 0 Stores the input port identifier 

value used in the Simulink 

translation 

OutPorts 0 Stores the output port identifier 
value used in the Simulink 
translation 

Table 5.2. Variable and Constant instance properties. 

65 



Slot Name Default Description 
Value 

Set "unknown" Variable set -value l 

Value "unknown" Variable initial value 

UpperBound "Al 1" Upper bound for distributed 

variable 

LowerBound "Al 1" Lower bound for distributed 

variable 

MathMethod "N/A" Mathematical method used to 

solve for distributed variable 

Type Used in gPROMS translation 

Table 5.3. Variable instance properties. 

Slot Name Default Description 
Value 

Value 0.1 Constant value 

Table 5.4. Constant instance properties. 

Where the constant/variable has a value in the case, this overwrites the default value 

given. All constant or variable arrays are split into separate values and are stored in a 

multivalue slot with the first value being the number of elements in the array. 

The input file is then created using the name given in the General Information form 

(or other specified by the user). The two translators now differ to create the files 

needed for each package. These will be explained individually, with the Simulink 

translator shown first. 

5.6.2 Simulink Translator Implementation 

The basic layout of a Simulink input file is shown in figure 5.3 and a flow-diagram of 

the process is shown in figure 5.4. 

66 



Version Information (including name) 

Solver Information (including start and stop times) 

History (including creation date and last modified by) 

BlockDefaults 

AnnotationDefaults 

LineDefaults 

System 

Block 

Line 

Branch 

Figure 5.3. Basic Simulink input file outline. 

Database Instances 

ýyuations Equations 

Variables Create Instances Constants 

- 
Constants - Variables 

Gener, 

Version Information 
(Including "Name") 

Solver Information 
(Including star and 

, top I adu"c") 

Iliýwn I)cclaration 
III Iudin, l'ui'reitl 

7imr ) 

I IoockI)cIauIts 

AnnolaIiunl)cIli uIts 

I. ineUcfaults 

ScSICnl 

Mock Declaration 14 --- - -- -- 

I Block Links 
DccIaratiun 

I. nd 

Figure 5.4. Simulink translation flow diagram. (For complete diagram see Appendix 

11I. ) 

67 



The method for creating the translator follows through the steps of creating a simple 

model through to a complex problem. Starting with a simple set of equations, through 

DAE's and onto IPDAE's. When approaching the problem, the initial cause of 

concern was the different method used by Simulink to represent equations. 

As was stated in §5.6, the Simulink method for representing equations is quite 

different to that of textual interface based simulators. As is shown in figure 5.2 the 

way an equation is stated is through the linking of various blocks. The equations in 

this figure are: 

dX i_-K 
. 

(X-Y) dY-K (x-Y) 
Z_(XO-X) 

dt (M " Voll» dt (M " Vo12» X 

With X, Y, and Z as the unknown variables, and K, M, Vol], Volt and XO as constants. 

These blocks may be constants, mathematical operations, etc. For a user of Simulink 

this is the normal view they see, however the input file for this representation is a text 

file, and thus it is this file that we are creating with the translator. 

The approach draws on the fact that all equations are made from blocks linked to each 

other. These blocks have a basic form and representation with slight variations for 

position, and purpose. By searching through the equation the correct blocks are 

selected and joined to create the final working model. 

The other difference between this representation and a textual one is that the variables 

have no physical presence. They are not blocks, but are merely the output from 

blocks. One of the main problems, therefore, is the attachment of output blocks to 

these variables. This has been achieved by asking the user to select which variable 

they wish to monitor through the simulation, and to assign an output block to that 

variable. The two output types used are `scope' and `display'. A scope plots the 

variable's value over time to give a graphical representation of the variable's value as 

it changes throughout the simulation, whereas a display shows a value alone and so is 

only really useful for final values. 

At present there is no equation manipulation present in the system so the equations 

must be written in a certain order to be translated properly (see later in this section). 

68 



The initial statements and structure that are in all Simulink files are very easy to 

include in the translated file, with the time, date and simulation run times added to the 

default values. The equation checking is the most complicated task for the translator. 

The selection of the correct blocks is quite straight forward, with the equation being 

decomposed, brackets first, and the correct symbol being selected and the code 

written. For each block, two pieces of information are needed to correctly connect it 

to each input. This information is the block to connect to, and the port from that block 

to use. These inputs are either a constant or an output from another block. When 

connecting blocks the input port in use is stored in the `Port' slot of the instance 

(See table 5.2). 

Each equation is decomposed and the relevant blocks are included in a straight line on 

the graphical view. There is, at present, no block re-ordering, to give a layout for the 

blocks so the view the user would see can be quite jumbled. 

When solving equations in Simulink it is necessary to state the variable that the 

equation is to be solved for on the left. This is due to Simulink not having physical 

entities for the unknown variables. They must be stated as the solution of an equation 

so that equation can be solved to produce a value for the unknown variable. This can 

be shown in the following example. If you wished Simulink to solve 

Holdup, = Xout; "TotalHoldup for Xout; it would have to be written as 

Xout = 
Holdup; 

where i =1- n for n components, Holdup, and TotalHoldup are ' TotalHoldup 

known. This can also be seen when dealing with DAE's. In Simulink when trying to 

solve a DAE the user does not state the differential equation as it is written. Instead, 

they must state what the differential is equal to, and then integrate to solve it. So the 

dt 

(X Y) is actually stated in Simulink as X= equation dt =-K " (M " Vol)) 

j_K. (X- Y) dt (See figure 5.5, with X and Y being variables, and M, K and (MVo 

Vol constants) 

hh" 69 



Edit View Simulation Format Tools 

Giý 61 a 1, k 'r 1* 

Figure 5.5. Basic DAF. as seen by a user in Simulink. 

Therefore, as there is no equation manipulation in the translator at present, the 

equations must be stated in a certain order to he correctly translated. 

Simulink has two main drawbacks associated with it at present, its inability to state 

constants as a multi value array (larger than a vector) and its lack of solution method 

for dealing with IPDAE's. The first of these problems may be addressed through 

future research into a solution, but the second is a problem within Simulink itself. At 

present, there is no partial derivative solver for Simulink, but MathWorks are writing 

a solver that should be completed soon. 

5.6.3 gPROMS Translator Implementation 

The basic layout of a gPROMS input file is shown in figure 5.6 and a flow-diagram of' 

the process is shown in figure 5.7. 

hkhl 70 



# Title 

DECLARE 

MODEL 

PARAMETER 

DISTRIBUTION DOMAIN 

VARIABLE 

BOUNDARY 

EQUATION 

PROCESS 

UNIT 

SET 

ASSIGN 

INITIAL 

SOLUTIONPARAMETERS 

SCHEDULE 

Figure 5.6. Basic gPROMS input file outline. 

Database 

Equation. 

Variable. 

Constants 

Instances 

_l: 
quatiuns 

Create Instances Constants 

1 
Open Input Pile 

Variables 

Variable IYl'I[ 
I )cc larauun 

MODI I. Declaration 

Constant Declaraliun 

Distributed 
System" 

Variable Declaration f 

Boundar 
Conditions" 

LyuaUun Declaration - 

PROCI SS I)cclaranon 

FNU I 

Figure 5.7. gPROMS translation Clow diagram. (For complete diagram see Appendix 

III. ) 

66- 71 



Like the Simulink translator, the method for creating the gPROMS translator followed 

through the steps of creating a simple model through to a complex problem. Starting 

with a simple set of equations, through DAE's and onto IPDAE's. Unlike the problem 
in Simulink of the representation being very different to that of describing a process 
by mathematical equations, a gPROMS input file is a textual one and is the file the 

user would write were they to use gPROMS themselves. The greatest problems to be 

overcome are the creation of the correct syntax for the statements in the equations. 

The inclusion of arrays in both the variable and constant definitions was the first 

problem to be overcome (see §4.7.2.1). Each constant/variable is checked for sets of 

brackets. This indicates the presence of an array. From this the correct syntax is used 
in the variable/constant declaration. The actual values are not needed until much later 

in the file, but the constants are checked to see if the values are REAL or INTEGER. 

This is vital for the `identifier' values, e. g. number of components (NoComp), etc, as 

these have to be integers or gPROMS will call up an error on running. 

The syntax used in our case database for equations is similar to that used in gPROMS. 

The manipulation of the equations is, therefore, minimal. The inclusion of array 

variables and constants does lead to the inclusion of loops in the gPROMS code and 

this needed to be solved. Each equation is checked for array variables and constants 

and if found a FOR... DO... loop created (see §4.7.2.3.1). This involves selecting the 

array identifier for the loop and retrieving its value from its instance. This information 

creates the first part of the loop with all occurrences of that array identifier being 

replaced with the loop variable (i i): 

FOR il :=0 TO R DO 

The equation is checked again and this procedure repeated until all array identifiers 

have been replaced. Once complete the equation is printed to the file and the correct 

number of `END #For' statements included. 

The translator should now be able to deal with all simple equations. When dealing 

with DAE's there were no extra problems encountered. The addition of a differential 

to the equation statement was just a matter of syntax and no extra manipulation was 

needed to incorporate this. 

72 



More problems were encountered, however, when trying to deal with IPDAE's. The 

inclusion of integrals and partial differentials to the equations led to more 

manipulation of the stated equations and some rearrangement of the input statements. 
It also led to the inclusion of distributed variables being declared. These are selected 
if the variable has lower or upper bounds stated in the case. Also the distributed 

domain variables are selected and declared separately from the other variables, by 

checking for limits in the distributed slot (see table 5.2) of that instance. 

Partial differentials are stated in the database such that when the equations are being 

written in the input file certain parts of the statement are removed, or changed (see § 

4.7.2.3.2). This needed a different approach from the simple replacement of the array 

identifiers seen in FOR... DO... loops. The equation is, therefore, checked for PARTIAL 

statements before the array identifier replacement procedure is called. When checking 

the partial differentials the limits of applicability also need to be checked to ensure the 

correct boundary conditions are applied. 

Integrals are, again, dealt with slightly differently from the loops and partial 

differentials (see §4.7.2.3.3). Again, there is the need to replace some occurrences of 

variable names before the equations are checked for array identifiers. This is 

completed before the partial derivatives are translated. 

The input file has statements for the values of the constants and the initial values (if 

applicable) of the variables. These are stated at the end of the input file and, for single 

values, are quite straight forward. For the declaration of distributed variable initial 

values, loops need to be included and these were created in the same way as for the 

equations. The array identifiers were replaced and FOR... DO... loops written. 

5.7 Summary 
This chapter has shown the design and implementation issues encountered in the 

creation and development of IMIPS. Issues relating to the implementation of the past 

case database were discussed. Then, what needed to be considered during case 

retrieval, and adaptation was highlighted. Finally, the nuances of the translation 

procedure for the simulators for Simulink and gPROMS were outlined. 

The next chapter presents some case studies to show how IMIPS has been used. 

73 



6. Case Studies 

6.1 Introduction 
This chapter aims to run through some case studies to show the properties of the 

system and to outline its benefits. The basic use of IMIPS was shown in §4.8. As was 

outlined in §4.8 IMIPS can, at present, cater for three different scenarios: the creation 

of a new case from scratch, retrieval of an existing case and the retrieval and 

adaptation of existing cases. All these scenarios include an automatic simulator input 

code generation, and, to some extent, a search and review stage. 

The interface properties that are to be described are: 

" The creation and translation of a case from scratch, §6.2. 

"A search for similar, or related, cases for use in solving a plug flow reactor 

problem (demonstrates the use of PDE's), §6.3. 

"A search for similar, or related, cases for use in solving a cooling jacketed vessel 

problem using specified numerical range(s) (demonstrates additional functionality 

to §6.3), § 6.4. 

"A search for similar, or related, cases for use in solving a continuous stirred tank 

reactor problem (demonstrates use of DAE's), §6.5. 

The results shown in the following case studies are from the default solvers within the 

simulators. More information on the solution methods used can be found in the 

following: Simulink, §9, MathWorks, (1999); gPROMS, §1-16, PSE (1998). 

For each case the figures mentioned in the text are grouped at the end of each section. 

6.2 Case 1- Case from Scratch, Simple Batch Extraction 

This case study looks at how to use IMIPS to create a case from scratch, and then 

recall and translate the case into input files for gPROMS and Simulink. The following 

procedure outlines how this is achieved. 

74 



1. Case Statement - writing the new case in the database, §6.2.1. 

t- 

2. Case Retrieval and Review - retrieving and reviewing the case in IMIPS, §6.2.2. 

3. Case Translation - translating the case into gPROMS and Simulink input files, 

§6.2.3. 

6.2.1 Case Statement 
When stating a case from scratch the user inputs all data through the database 
interface forms. These forms and the information required to state a case fully have 

been outlined in §4.3. The case to be investigated is the modelling of a simple batch 

extraction process (Ingham et al., 1995, pp. 527-530). 

The process takes place in a column, where, at time 0, two liquid layers are present, 

with all the product in layer X (see figure 6.1). The volumes of the two layers are 
known, as are the mass transfer coefficient, the equilibrium constant, and the initial 

concentration of the product (shown below). All this information can be stated in the 
database (see figures 6.2,6.3,6.4, and 6.5). For this simple case the equations needed 

to model the system are: 

d_K, `X M/ Change in concentration of product in 6.2.1.1 dt Voll Vol1. 

_K 
Change in concentration of product in 

6.2.1.2 
dt Vo12 Vo12. 

= 
(X0- X) Fractional extraction of product from Z 

XO Voll to Vo12. (6.2.1.3) 

75 



With the constants and variables being: 

K 2.5 Rate Constant (m3. hr -1) 

M 0.8 Equilibrium Constant 

Vol1, Vo12 10,40 Batch Volumes (m3) 

X0 I Initial Concentration in X phase 

X Initially I Concentration in X phase (kg. m-3) (unknown) 

Y Initially O Concentration in Y phase (kg. m-3) (unknown) 

Z Fractional Extraction (unknown) 

The general information relating to this case is stated and the user has the opportunity 

to write the details of the case down. In this example, the user has kept the default 

values for the Unit Name, and the Applicable Range. The user has stated the 

following: Equipment type: Other Column, Operating Mode: Batch, Phases: 

Liquid, and Mass Transfer: Absorption. They have also given the problem a name, 
CS 1, and changed the default Reporting Interval and Time for Run fields. 

The equations are written in the database using the syntax shown in Appendix I. 

The user needs to ensure their problem has zero degrees of freedom, i. e. that there are 

the same number of unknown variables as there are equations. This is easy to check in 

this example as there are only three variables. With larger problems the user may have 

to wait until the problem is specified and retrieved in IMIPS and use the occurrence 

matrix feature to check this. 

Once the user is happy with the case statement in the database they move to IMIPS to 

retrieve and translate the case. 

6.2.2 Case Retrieval and Review 
To retrieve the new case the user may search using key-words, or using the case 

number. The case number approach will ensure that their case is retrieved without 

having to view many possible search results. From here the user can view the 

information about the case (figure 6.6) and can also check the occurrence matrix 

(figure 6.7) for the case to ensure that it has zero degrees of freedom (§5.4). If this is 

76 



not the case the user must return to the case description in the database and alter the 

case to solve the problem. This is the only check the system can perform on a new 

case to see if it is correctly formulated. If the degrees of freedom equals zero this does 

not imply that the system of equations will be solvable, only that they could be. For 

more complete problem checking the user needs to look at the feedback given by the 

simulators on running the translated input files, should the problem not run correctly. 

Automatically retrieving this feedback and relating it to the case in the database is a 

topic for future work (see §7.2.2). 

The occurrence matrix states that there are zero degrees of freedom and so the case 

may be solvable. The user now moves to the translation stage. 

6.2.3 Case Translation 

The retrieved case is translated to the two simulator input files. These files are shown 

in Appendices V. 1 and V. 2. The Simulink file as opened in Simulink is shown in 

figure 6.8, and the results of running the simulations are shown in figures 6.9 and 

6.10. 

Ingham et a/. (1995) include a simple modelling tool with their book, ISIM. Using 

this tool the problem was solved and the results are shown in figure 6.11. 

As can be seen from these plots, the three sets of results agree. 

Figure 6.1. Simple batch liquid-liquid extraction. 

77 



Simple Batch Extraction Problem 
Simplo batch omection Ftt, cti g produI from Voll to Vol; Case Stud,; 

Figure 6.2. Case general information form. 

78 

Figure 6.3. Case Equations. 

Figure 6.4. Case Constants. 



ve 1. uritleý sa uen. Lorer flrwnd Upper en. ea Dýeurhwwe sok on McMOe fl. wipýme 

01 F- r-I 1 F77enve4on 
in VePýr 

Figure 6.5. Case Variables. 

fX = -K«((X-(Y/M))IVol1) 
; Change In concentration In Vol 

iY = K«((X-(Y/M))(Vo12) 
; Change In concentration In Vo12 

z=(xo-xyxo 
; Fractional Extraction 

CONSTANTS 

K 2.5 Mass Transfer Coefficient 

M 0.8 Equilibrium Constant 

Voll 10 Batch Volume 

Vo12 40 Batch Volume 

XO 1 Initial Concentration 

VARIABLES (Mathematical Method) 

X1 Concentration in liquid 

Y0 Concentration In Vapor 

Z: Fractional Extraction 

Figure 6.6. More Info... Screen. 

M" 
AMMÄd., ýPwL JýGp 

. i. 
Ä 

ýý4wI. 

Eile Help 
A BCD 

1 XY7 

2 $X = -K'((X-(Y/M))Noll) 
3 $Y = K*((X-(Y/M))Nol2) 
4 Z= (XD-X)/XO 
5 3 Equations: 3 Unknown Variables 

. 
w x'ýwý rx ryýr`frYr r rýýt, 

, 
x, 

Figure 6.7. Occurrence Matrix. 

79 



_Qx 
File Edit View Simulation Format Tools 

Ready 

Figure 6.9. Simulink results. 

Product12 

100% ode45 
........ .... '.. 

Figure 6.8. Simulink file as seen in Simulink. 

8pil At 

"; () 



fills baps in slow 

10.7 

S 
x 

I 

"caoreawuuu 1ý 1ý 10 1/ ltl 19 2Q 
Tim 

-ý-- Cac tratlon in )( layer (kg/m3) (left) -t- Connntretlon in Y layer (k9/e3) (left) 
--t-- Fractional Extraction (right) 

i 

R 
4I 

Figure 6.10. gPROMS results. 

ISIN 
1.888 

A X1 
B Y1 
C Z1 C 

8.758 

8.588 

8.258 

8.888 8.8 5.8 18.8 15.8 28.8 
I 

in in Craphic Mode (Y. N) 

Figure 6.11. ISIM results. 

81 



6.3 Case 2- Plug Flow Reactor Search 
To search for a case using IMIPS the user must have a reasonable idea of the problem 
they wish to solve. This will aid them in narrowing their search down to suitable cases 

and also, once suitable case are available, enable them to easily amend the selected 

cases to fit their needs. 

This case study looks at how to use IMIPS for a process that can be described by 

partial differential equations (PDE's). The following procedure outlines how this can 
be done. 

1. Case Specification - writing the initial search specification, §6.3.1. 

2. Case Retrieval and Review - reviewing the retrieved cases, §6.3.2. 

3. Case Adaptation - adapting the selected case, §6.3.3. 

4. Case Translation - translating the adapted case into simulator input code, §6.3.4. 

6.3.1 Case Specification 
If the user wished to model a plug flow reactor, cooled by a jacket, in which a 

catalytic reaction in the gaseous phase occurred, they could initially search under 

many keywords, e. g. plug flow reactor, continuous operation, catalytic reaction, solid 

and vapour phases, etc. They may also have some idea of the conditions of the 

reaction type, temperature and pressure. All of these could be used to narrow the 

search further to retrieve the most appropriate case. 

To input all these conditions, however, would be highly restrictive for the search and 

the chance of exactly the same problem being stored in the database is very slim. 

Therefore the user should decide which points are the most important so they can get 

some cases through which they can then narrow their search. 

In this example, the user is interested in finding all the cases that include a reactor 

vessel, or any of its children, as a start for their search. Reactor Vessel is in the 

equipment hierarchy, under Tank. (This is shown in figure 6.12. ) 

All items that are under Reactor Vessel in the hierarchy are shown in figure 6.13. 

The search specification for this is shown in figure 6.14. It can be seen that the 

82 



`children' box is checked. This allows a search query to be created to check for cases 
that have equipment specified as Reactor Vessel or a type lower down the indexing 

hierarchy (see figure 6.13). 

6.3.2 Case Retrieval and Review 
After pressing the `Search' button the results are shown in a form very similar to that 

in the database (figure 6.15). At the bottom of the form is a box showing the number 

of cases retrieved, for this search specification, five. The retrieved cases may then be 

scrolled through and if the user wishes to inspect the case more closely then the 

equations, constants and variables can be seen (with their associated properties) by 

pressing the `More Info... ' button (figure 6.17), or using the drop down menu (figure 

6.16). 

The five cases retrieved are: two plug flow reactor cases and three continuous stirred 

tank reactor cases. These five cases are returned because their equipment specification 
is a child of Reactor Vessel. 

6.3.3 Case Adaptation 
If a retrieved case is of use then the user may go back to the database, copy the 

retrieved case and then amend it for their specific parameters. The user may amend 

any of the attributes of the case to create a case with their desired specifications. In 

this example, the user only wishes to amend some of the values of the constants and 

some variable set and initial values. This is achieved in the database where the case to 

amend is copied and then the appropriate changes are made. 

The amendments made to the original case are: 

" The changing of the reactor dimensions (length and radius). 

" The bed voidage fraction, the temperature of the reactants and coolant into the 

reactor. 

" The velocity and mass flowrate into the reactor. 

" The initial temperatures within the reactor and cooling jacket. 

83 



" The time for the run and the reporting interval for the results. 

The different values used are shown in §6.3.4. 

Once the user is satisfied with the new case (based on the retrieved case) they save it 

in the database and return to IMIPS, where they may retrieve their new case using the 

case number. (It is quicker to search for individual case numbers, where known, rather 

than searching as for a new case. ) 

6.3.4 Case Translation 
To ensure the translation of the new case is correct the original case can be translated 

and compared to the results produced by the original file (PSE, 1998). If the retrieved 

case is translated the following graph can be plotted (figure 6.18) and when compared 

to the original results (figure 6.19) it can be seen that they are the same. 

The new case is then recalled (figure 6.20) and, once selected, can be translated into 

either or both of the modelling package input files using the drop down `Translate' 

menu (figure 6.20). For this particular case (based on an example from PSE, 1998) 

since the equations are PDE's only the gPROMS translator can be used. At present, as 

was outlined towards the end of §5.6.2, Simulink does not have the necessary blocks 

to solve IPDAE's or PDE's as are present in this problem. Therefore, this case can 

only be translated by one of the translators. If the user tried to translate this case into a 

Simulink file, an error message would pop up indicating Simulink's shortcoming 

(figure 6.21). 

The gPROMS input file created automatically from the case description input by the 

user is in appendix V. 3. For this case the equations retrieved required no amendments 

to be suitable for the problem, only the values of some constants and variables were 

changed. These amendments are (sections from gPROMS input file code shown): 

84 



Originally Retrieved Case 

SET 
WITHIN R101 DO 

L . =3; #m 
R .=0.0127; it m 
BedVoid :=0.35; it 
Vc 4.56E-03; it m3 
Area :=0.239; # m2 

END it Within 

ASSIGN 
WITHIN R101 DO 

Pfeed [1100,21100]; 
Tfeed .= 625; #K 
u .=0.877; 

# m/s 
Fc .=0.1; 

# kg/s 
Tcin := 625; #K 

END # Within 

INITIAL 
WITHIN R101 DO 
FOR il := 01+ TO LI- 

FOR i2 01+ TO RI- 
T (il, i2) = 625; 

END #For 
END #For 

Tc = 625; #K 
END # Within 

New Case 

SET 
WITHIN CS101 DO 

L .=4; #m 
R 0.025; #m 
BedVoid :=0.25; # 
Vc .=0.0100; # m3 
Area :=0.628; it m2 

END it Within 

ASSIGN 
WITHIN CS101 DO 

# Pa Pfeed [1100,21100]; # Pa 
Tfeed .= 550; #K 
u .=1; # m/s 
Fc 0.05; # kg/s 
Tcin := 550; #K 

END # Within 

INITIAL 
WITHIN CS101 DO 

DO FOR il := 01+ TO LI- DO 
DO FOR i2 01+ TO RI- DO 
# K; T (il, i2) = 550; # K; 

END #For 
END #For 

Tc = 550; #K 
END # Within 

SOLUTIONPARAMETERS 
Reportinglnterval :=0.2; 

SCHEDULE 
CONTINUE FOR 5 

SOLUTIONPARAMETERS 
Reportinglnterval :=0.1; 

SCHEDULE 
CONTINUE FOR 10 

After running the translated file in gPROMS the following graphs can be plotted: 

Figure 6.22 shows the change in temperature down the reactor centre-line with time, 

figure 6.23 shows the change in temperature down the reactor perimeter with time, 

and figure 6.24 shows how the temperatures at the centre and perimeter inlet and 

outlet change over time. 

This example was fairly straight-forward. The mathematical description was well 

formulated and the input file to gPROMS ran first time. This, however, is not that 

surprising as the basis for the model was an existing case that had no mention of 

problems running it in it's notes. This may not always be the case and is a topic for 

future work (see § 7.2.1). Problems with translation are likely to arise when retrieved 

case equations are changed. Even if it is only the values of some constants that are 

altered the solution given may not be correct, even if the original case solution was. 

85 



Figure 6.12. Tank hierarchy selection Figure 6.13. Reactor Vessel hierarchy 

menu. Reactor Vessel selected. selection menu. Reactor Vessel selected. 

86 

Figure 6.14. Completed search form. 



87 

Figure 6.15. Results form. 

Figure 6.16. Selection menu for more information on this case. 



F 

-BedVoidwDz%PARTIAL(C(NoComp, axrad): ax) = u»(Cfeed(NoComp}C(NoComp. axrad)) 
; FB ax=0; Boundary condition at reactor entrance (z=0) 

-kz*PARTIAL(T(axrad): ax) = rhof Cpf»uI(Tfeed-T(axrad)) 
; FB ax--O; Boundary condition at reactor entrance (z=0) 

PARTIAL(C(NoComp. axrad): ax) =0 
; FB ax=L; Boundary condition at reactor extt (z=L) 

PARTIAL(f(axrad): ax) =0 
; FB x--L; Boundary condition at reactor exit (z=L) 

CONSTANTS 

13m; Reactor Length 

R 0.0127 m; Reactor Radius 

rhob 1300 kghn3; Bed Density 

rhof 1.293 kglm3; Fluid Density 

Cpf 992 JIkg. K; Fluid Specific Heat Capacity 

Dz 0.01 m21s; Axial DiffusKdty 

VARIABLES (Mathematlcal Method) 

ax ; A>dal position (; BFDM, 2,40) 

rad ; Radial position (; OCFEM. 3.5) 

jC(NoComp. ax. rad) 0 kglmol; UB ax < L; rad < R; LB 0< ax; 0< rad; Concentration 

P(NoComp. axrad) . Partial pressures 

T(axrad) 625 K . UB ax <L; rad <R; LB 0< ax; 0< rad ; Temperature 

k(axrad) ; Reaction constant 

Figure 6.17. More information screen showing the equations, constants and variables 

and their associated properties. 

88 



i 
J 

624 

610 6n 

. N. 
4 

A 

ý. 4 

Goo 

ý-1 4 

590 I m 

x 

oie3 
Distrce W 

--ý- Rotor antra, t=0 (left) -s- Re-tar centre, t=4 (left) 
ý- Reactor per'-star, t=0 (right) " Reactor perleeter, t=4 (right) 

Figure 6.18. Original translated file results. 

I 
f fA 

600 

Soo. 
I 
m 

V'3 

-ý- R. Ctor Centro, t"0 (left) -s-- Rwetor ante. t. 4 (left) 

-ý- R. entor pr(irt. r, t=0 (right) -f AYttOr ppr(nter, t=4 (right) 

Figure 6.19. Original results from PSE (1998). 

4 

x 

89 



cenrKR at present devil with partial de 

As your problem fnckades these 

please try another sXi&4 or. 

Ei 

Figure 6.21. PDE Simulink translator error window. 

hhý 90 

Figure 6.20. New case and selection of translator. 



and outlet. 

6.4 Case 3- Numerical Search 
The numerical search procedure is based on the user knowing either the temperature 

or pressure range under which their problem system will operate in addition to other 

system information. Without this numerical information, the case search is the same 

as for case 2. 

This case study looks at how to use IMIPS for a process that has specific operating 

conditions, in this example a temperature range. The following procedure outlines 

how this can be done. 

1. Case Specification - writing the initial numerical search specification, §6.4.1. 

2. Case Retrieval and Review - reviewing the retrieved cases, §6.4.2. 

3. Case Adaptation - adapting the selected case, §6.4.3. 

4. Case Translation - translating the adapted case into simulator input code, §6.4.4. 

91 

Figure 6.24. gPROMS results plot. Perimeter and Centre temperatures at reactor inlet 



550 

ý, a 
ýý ßa6 ýoý 

yaa 
ýý 

yp2 
i 

yao 

fry 
cý 

a7 

'! J 

+J 
o''Q 

Oý_ 

ý r�rJ 

D 

sso 

S48 

/ Sqs 

v, 
`Sq4 QJ 

l S4ý Q 

SSO 
ýý 

ýO 
10 

0 

0ý 

Figure 6.22.. gPROMS results plot. Reactor centre temperature variation with time. 

s 

0 

5ýý 
O 

ý b9 
9 

5 
bg gge 

ýe ya9' 
1 

hag'S 

SSA' 
Q 

s49 
"9 SID 

'sS49 ý ýi' 
\ Qs. 

s ýo Qýaý 
Oma 

Ir 
lb 

Q. CO 

Op 

Figure 6.23. gPROMS results plot. Reactor perimeter temperature variation with time. 

92 



6.4.1 Case Specification 

If the user wished to model a liquid filled reactor, cooled by a liquid flowing through 

a jacket, they could initially search under many keywords, e. g. reactor, jacketed 

vessel, batch operation, liquid phase, etc. They may also have some idea of the 

conditions of the temperatures and pressures. For this case the user is interested in 

cases where the temperature range is between 90°C and 120°C. All of these could be 

used to narrow the search further to retrieve the most appropriate case. 

The user, as was stated before, should decide which points are the most important so 

they can get some cases through which they can then narrow their search. In this 

instance, the user is interested in finding all the cases that include a jacketed vessel, or 

any of its children, and the temperature range as a start for their search. 
Jacketed Vessel is in the equipment hierarchy, under Tank (shown in figure 6.25. ) 

and the completed search form is shown in figure 6.26. 

As in case 2, the `children' box is checked. So, again, the search query will be formed 

to check for cases that have equipment specified as Jacketed_Vessel or a type lower 

down the indexing hierarchy. The main difference now arises, on pressing the 

`Search' button the user is now presented with a choice (independently for the 

pressure and temperature searches) as shown in figure 6.27. This choice is to decide 

which types of numerical match are to be included in the search. As can be seen in 

figure 6.27, three types of query can be addressed (as described in §4.4.2) and for this 

example the user is interested in including all possible cases in the search, so `All 

Options' is selected. 

6.4.2 Case Retrieval and Review 

After pressing the 'OK' button, the search results are shown (figure 6.28). Two cases 

(both of reactors cooling) are retrieved. These cases are returned because their 

equipment specification is a child of Jacketed Vessel and they are applicable over 

the range required. 

6.4.3 Case Adaptation 

These two cases can be reviewed and the user can then select the one that is most 

suitable for their needs. As in the second example, all manipulation of the selected 

case occurs in the database. 

93 



If a retrieved case is of use then the user may go back to the database, copy the 

retrieved case and then amend it for their specific parameters. In this example the 

second retrieved case is more suitable and will only need little alterations to be of use 

to solve the problem. The changes made to this case are: 

" The reactor dimensions. 

9 The bulk fluid specific heat capacity. 

" The temperatures of the coolant in and the initial temperatures of the coolant and 

bulk. 

9 The density of the coolant. 

The different values used are shown in §6.4.4. 

Once the user is satisfied with the new case (based on the retrieved case) they return 

to IMIPS, and retrieve their new case. 

6.4.4 Case Translation 

To ensure the translation of the new case is correct the original case can be translated 

and compared to the results produced in Simulink from a hand-written file (figure 

6.30). If the retrieved case is translated the following graph can be plotted (figure 

6.29) and when compared to the original results (figure 6.31) it can be seen that they 

are the same. 

The case is then recalled and, once selected, can be translated into either or both (at 

present) of the modelling package input files. The gPROMS and Simulink input files 

created, automatically, from the case description input by the user are shown in 

Appendices V. 4 and V. 5. For this case, again, the equations required no changes, only 

the values of some constants and variables were changed. These amendments are 

(gPROMS input file code shown): 

94 



Originally Retrieved Case New Case 

SET SET 
WITHIN A101 DO WITHIN A101 DO 

Vol .=2; # m3 Vol .=0.28; # m3 
Cvb 4000; # kJ/m3. K Cvb .= 4000; # kJ/m3. K 
Cvc .= 4000; # kJ/m3. K Cvc .= 6000; # kJ/m3. K 
Volc 0.025; # m3 Volc .=0.049; # m3 
Area 1.7; # m2 Area 1.88; # m2 
U .=1; # kW/m2. K U .=1; # kW/m2 .K 
Tcin .= 20; #C Tcin :=5; #C 
q 0.3; # m3/min q .=0.5; # m3/ min 
rhoc .= 1000; # kg/m3 rhoc .= 800; # kg/m3 
rhob .= 1000; # kg/m3 rhob .= 1000; # kg/m3 

END # Within END # Within 
INITIAL INITIAL 

WITHIN A101 DO WITHIN A101 DO 
Tc = 20; # Tc = 5; # 
T = 80; # T = 120; # 

END # Within END # Within 

After running the translated file in gPROMS the following graphs can be plotted. 

Figure 6.32 shows how the temperatures of the bulk fluid and the coolant vary over 

time. 

The Simulink file as opened in Simulink is shown in figure 6.33 and the results are 

shown in figure 6.34. 

Although these results look different to those produced by gPROMS, they are actually 

the same. gPROMS plots are drawn at the intervals specified in the user input, and so 

some fluctuations in the values may not be picked up by the plot. In this case the 

initial rapid temperature rise (as shown in the Simulink plot) is not picked up in the 

gPROMS plot, thus the temperature appears to not rise to the same value before 

declining. 

95 



Figure 6.25. Tank hierarchy selection menu. Reactor_Vessel selected. 

Figure 6.26. Completed search form. 

96 

r ar p c- rR Wed 



Range Overlaps Case Data Range 

F- Search Range is inside Case Data Range 

(- Case Data Range is inside Search Range 

f All Options 

OK 

Please select the search/s to use 

Figure 6.27. Numerical search user options. 

97 

Figure 6.28. Results form. 



N 

70 

so 

30 

o fooo 2000 3000 . aoo saw coon 7000 ww 
T- I. ) 

t LWk Týý (C) -- Cw1w4 T. F"- {C) 

Figure 6.29. Original translated file results. 

X 
Eile Edit Yew Simulation Formal TQols 

T 

Figure 6.30. Simulink hand-written file. 

98 



12o 

uo 

100 s 

90 

so a 

70 

Bo 7 

50 

w s 

30 " 

20 

10 

n -l 
1000 20DO 3000 1000 5000 6000 7000 8000 

T_b) 

-4- Bulk Teperatr (C) (lft) -* Cool. rt (wpsatvr (C) (right) 

ä 9 

3 

Figure 6.32. gPROMS results plot. Bulk and coolant temperature variations with time. 

99 

Figure 6.3 1. Results from Simulink run of hand-written file. 



File Edit View Simulation Format Tools 

0 

100% ý ode45 

Figure 6.33. Simulink file as seen in Simulink. 

6.5 Case 4- Liquid Phase Continuous Stirred Tank Reactor 
This example expands on the previous ones by showing how the user may search for a 

variety of different cases and then incorporate parts from each into their final case. 

The following procedure outlines how this can be done. 

1. Case Specification - writing the initial search specification, §6.5.1. 

2. Case Retrieval and Review - reviewing the retrieved cases, §6.5.2. 

3. Secondary Case Specification - writing the second search specification, §6.5.3. 

4. Secondary Case Retrieval and Review - reviewing the retrieved cases, §6.5.4. 

100 

Figure 6.34. Simulink results plots. Bulk and coolant temperature variations with 

time. 



4. Secondary Case Retrieval and Review - reviewing the retrieved cases, §6.5.4. 

5. Case Adaptation - adapting the selected cases, §6.5.5. 

6. Case Translation - translating the new case into simulator input code, §6.5.6. 

6.5.1 Case Specification 
If the user wished to model a liquid phase continuous stirred tank reactor, in which a 

Van de Vusse reaction occurred, they could initially search under many keywords, 

e. g. CSTR, batch operation, Van de Vusse reaction, liquid phase, etc. All of this 

information could be used to narrow the search further to retrieve the most 

appropriate case. The most important items to search for are Van de Vusse and 

Continuous Stirred Tank Reactor with its outlet not at its base. To search for these 

together may recall some cases, but it may be easier to search for each individually 

and then combine the retrieved cases to form a solution. 

Initially, the user is interested in finding all the cases that include a Van de Vusse 

reaction as a start for their search. Van de Vusse reaction is in the reaction hierarchy 

and selecting this creates the following search form (figure 6.35). 

6.5.2 Case Retrieval and Review 

After pressing the `Search' button the result is shown, 1 case includes a Van de Vusse 

reaction and this case is also a Continuous Stirred Tank Reactor. The user is still 

interested to see if there are any cases of reactors with the outlet off the base of the 

reactor, so they need to do a second search. 

6.5.3 Second Case Specification 

In this example, the user is also interested in finding all the cases that include a 

continuous stirred tank reactor with its outlet off the base of the reactor. Continuous 

stirred tank reactor is in the equipment hierarchy, under Tank and Reactor Vessel. 

It can be. seen (figure 6.36) that the `children' box is not checked, as the user only 

wishes to see cases that include Continuous Stirred Tank Reactors. 

101 



(figure 6.37). This case does not use a Van de Vusse reaction though so the two cases 
must be combined to solve the problem. 

The first of the two suitable cases is from PSE (1998) and so the translation for this 

can be compared to the original results to ensure the translation procedure is correct. 
If the retrieved case is translated the following graph can be plotted (figure 6.38) and 
when compared to the original results (figure 6.39) it can be seen that they are the 
same. 

6.5.5 Case Adaptation 
The two cases can now be called up in the database and the relevant equations copied 
to form the new case description. The basis for this new case is the Continuous Stirred 

Tank Reactor case with the Van de Vusse reaction. The major change is the inclusion 

of a conditional equation (from the other case) to allow for the outlet to be off the 
base of the reactor. This and other changes made to these cases are: 

" The equations from each case were placed into the new case. 

9 The stoichiometric coefficients and reaction orders. 

" The dimensions of the reactor vessel. 

The initial concentrations within the reactor. 

" The feed stream concentrations. 

The different values used are shown in §6.5.6. 

Once the user is satisfied with the new case (based on the retrieved cases) they return 

to IMIPS, and retrieve their new case. 

6.5.6 Case Translation 
At present, as was outlined towards the end of §5.6.2, Simulink can not deal with 

multi value (matrix) constant arrays. The translators, also, cannot, at present, convert 

them into code that Simulink can solve, therefore, this case can only be translated by 

one of the translators. If the user tried to translate this case into a Simulink file, an 

error message would pop up indicating this shortcoming (figure 6.40). 

61 102 



The case is then recalled and, once selected, can be translated into either or both (at 

present) of the modelling package input files. 

The gPROMS input file created, automatically, from the case description input by the 

user is shown in Appendix V. 6. For this case the equations retrieved required no 
amendments to be suitable for the problem, they just needed putting in the same case. 
Also, the values of some constants and variables were changed. These amendments 
are (sections from gPROMS input file code shown): 

Original CSTR case, tank outlet off base, not Van de Vusse reaction 
# Calculation of liquid level 
TotalVolume=CrossSectionalArea*Height; 
# Calculation of flowrate out 
IF Height > Hp THEN 
Fout = ValveConstant*(Height-Hp) ; 
ELSE 
Fout = 0; 
END # If 

SET 
WITHIN R101 DO 

ReactionConstant [8E-5,1E-5]; # m3/kmol. s 
Order := [1,0,1,0,0,1,0,1]; # 
NU := 

END # Within 

ASSIGN 
WITHIN R101 DO 

Xin := [0.5,0.5,0,0]; # 
END # Within 

INITIAL 
WITHIN R101 DO 

Xout (2) 
Xout(3) 
Xout(4) 
TotalHoldup 

END # Within 

= 2*Xout(1); # 
= 0; # 

= 0; # 
= 10; # 

103 



Original CSTR case, tank outlet at base, Van de Vusse reaction 
# Calculation of liquid level 
TotalVolume=CrossSectionalArea*Height; 
# Calculation of flowrate out 
Fout = ValveConstant*(Height-Hp) ; 

SET 
WITHIN R101 DO 

ReactionConstant [8E-5,1E-4,1E-2]; # m3/kmol. s 
Order := (1,0,1,0,1,0,0,0,0,0,0, o]; # 
NU := [-1,0, -2,1, -1,0,0,1,0,0,0,1]; it 

END It Within 

ASSIGN 
WITHIN R101 DO 

Xin := [0.5,0.1,0.3,0.1]; # 
END # Within 

INITIAL 
WITHIN R101 DO 

Xout(2) = 2*Xout(1); # 
Xout (3) = 0; # 
Xout (4) = 0; # 
TotalHoldup = 10; # 

END # Within 

New Case 
PARAMETER 

Pi AS REAL # Pi 

# Calculation of liquid level 
TotalVolume=Pi*DiameterA2*Height/4; 
# Calculation of flowrate out 
IF Height > Hp THEN 
Fout = ValveConstant*(Height-Hp) ; 
ELSE 
Fout = 0; 
END # If 

SET 
WITHIN R101 DO 

ReactionConstant [8E-3,1.3E-2,1E-2]; # m3/kmol. s 
Order ._ [1,0,1,0,1,0,0,0,0,0,0, o]; # 
NU := [-1,0, -2,1, -1,0,0,1,0,0,0,1 ]; # 
Pi :=3.1415926; # 

END # Within 

ASSIGN 
WITHIN R101 DO 

Xin ._ [0.5,0.1,0.3,0.1]; # 
END # Within 

INITIAL 
WITHIN CS4 DO 

Xout(1) = 0.5; # 

Xout(2) = 0.1; # 
Xout(3) = 0.3; # 

TotalHoldup = 10; # 

END # Within 

104 



After running the translated file in gPROMS the following graphs can be plotted. 
Figure 6.41 shows the varying concentrations of the four components and the liquid 

level within the vessel. 

This case outlines the other drawback with the use of Simulink. The translator cannot 

deal with converting multi value constant arrays (matrices) into the relevant Simulink 

code. As Simulink cannot have constants with values stored in a matrix these 

problems must be decomposed into arrays (vectors) of constants. This, in turn, means 

that the equations present that use the matrices must be duplicated for each vector 

produced from the matrix and so the complexity of the problem is increased. This is 

an area that is featured in the future work section, §7.2.3. 

I -- 11 urs. n I Werg 

;. 
. ý. ý. ý_j. s.:.. ý. . __ _. _. _ _ 

Figure 6.35. Completed search form. 

105 



P... rC kn rRw. ý, 

-------- . ... . ..... 

Figure 6.36. Completed search form. 

106 



107 

Figure 6.37. Results form. 



"" 9 

0 6 1 B . 

0 .5 

7` 
6 

g o. ý 
sE 

0.3 

0.2 

0.1 
-ý 1 

' 
0.0 0 

1000 2000 d000 4000 5000 BD00 7000 

  Conr tr t, o. (N) (left Ln- ere - (B) (left) f Lmrmtrebm ¢) (left) 
.- cmnncr, rtým (0) deft) Liqu, d level (')ght) 

Figure 6.38. Original translated file results. 

108 

Figure 6.39. Original results from PSE (1998). 



translator cannot, at present, deal with multi value constant arrays (matrices). 

As your problem includes these please try another simulator. 

Figure 6.40. Multi value matrix array translation error window. 

with time. 

6.6 Summary 

This chapter has shown the properties of IMIPS through the use of four case studies 

and has run through the methods for using IMIPS for the three main scenarios. It has 

also shown some of the shortcomings of the system and of Simulink. These are 

expanded on in the future work section, §7.2. 

109 

Figure 6.41. gPROMS results plot. Component concentration and height variation 



The first case (§6.2) outlined how to write a case from scratch and showed how 

IMIPS can give some feedback, through the creation of an occurrence matrix (§6.2.2), 

as to whether the model has zero degrees of freedom and could then be solved. 

The second and third cases showed the retrieval mechanism used in more detail with 

two different types of problem. The first of these (§6.3) used the hierarchical search to 

find related cases the user could amend to create a model suitable for their problem. 

This case also showed how IMIPS deals with the inability of Simulink to deal with 

IPDAE's (§6.3.4). The second of these (§6.4) showed the use of the numerical search 

to find cases that were valid within the range of the user's interest and showed how 

IMIPS can deal with the three possible outcomes of that search (§6.4.1). 

The final case shows how IMIPS can be used to search for a variety of cases, and then 

allows the user to combine these cases to form a model that is useful to them (§6.5). 

The next chapter concludes the thesis with a discussion on all the topics covered and a 

look at future work based on the work in the thesis. 

110 



7. Conclusions and Future Work 
This chapter outlines the conclusions that can be drawn from the thesis and 

prospective future work that may lead from the thesis. 

7.1 Conclusions 
The following conclusions can be drawn from the work carried out for the thesis. 

7.1.1 Ideas Behind This Approach 
The ideas behind the approach we have taken to this problem are outlined below. 

When a modeller tries to create a model of a system they base that model on prior 

experience of similar systems. If they have no prior knowledge they can then get 

advice from colleagues or from literature to help in the writing of the model. To 

include some form of prior knowledge in a system would be advantageous to the user 

and would enable them to review previous relevant cases to aid them in their task. 

This knowledge base would need to include all relevant information about a case 
(model) so that an intelligent search may be used to retrieve useful cases. A database 

is included in our programme to incorporate this idea. The way the cases are stated 

needs to be structured to ensure that all relevant information is included and so our 
indexing hierarchy has been developed (based on unit operations) to enable this to be 

accommodated. The largest drawback of this method is in the way the case is 

described. It is becoming more common practice that units are described by their 

function, or product, and so as cases become more complex our original indexing 

hierarchy may be limited. 

The search itself needs to be able to reproduce the processes the user may use when 

looking through their own experiences. It needs to be able to retrieve all useful cases 

from the database to give the user the greatest chance of finding a case (or cases) that 

may be of use to them. To allow this our search methods are based on case-based 

reasoning techniques. These techniques can allow for good matches to be returned as 

long as the cases have been stated fully. There is still scope for incorrect cases to be 

returned, but this can be reduced with the correct use of the indexing scheme and the 

complete description of each case in the database. 

111 



7.1.2 Process Modelling Approaches 
There are two main approaches to the modelling and simulation problem. They both 

have their own advantages and disadvantages, but behind the different interfaces the 

structure is still equation-oriented in nature. The equation-oriented, textual approach 
is the most versatile to use, but has little or-no help or guidance about the problem for 

the user. These types of simulator package are mathematical solvers and, generally, 
do not have an expert system available to guide the user in constructing the model. It 

is up to the user to supply the necessary equations, operating data, and conditions, in a 
form the package understands, so that the package can solve the problem. This does 

allow the user to model complex or novel units more easily than with the black box 

approach (see below), but it can be far more difficult to debug the model if mistakes 

are made. 

The modular approach, however, has in-built guidance for the units it can be used to 

model. This guidance is inherent in the black box style that they adopt. As the 

package already has in-built the equations each unit needs to be modelled, it is just for 

the user to supply the necessary operating data and conditions and the package can 

model the process. It is far harder, and sometimes impossible, to model complex or 

novel units with this approach, as to create a new unit and incorporate the relevant 

information into it can be very cumbersome. This black box method does incorporate 

automatic input file code generation, thus eliminating one error prone step from the 

modelling procedure. Thus, simpler models (where the units are more common) can 

be quicker to model using these systems. 

These characteristics are summarised in table 7.1, along with the characteristics we 

are aiming for in our new system. 

16,112 



Modelling Approach Modelling Features Code Generation Example 
Systems 

Equation-Oriented Flexible equation based, Manual: Time gPROMS, 
Approach but little or no guidance consuming, easy to SpeedUp 

or help. make errors. 

Modular Approach Fixed black box models Automatic. DIVA, 
from library. Choice of HYSYS 
models and some 
guidance. 

NEW. Case-Based Flexible equation based. Automatic. IMIPS 
Reasoning Approach Provides guidance for 

model. 

Table 7.1. Brief review of current approaches and proposed approach. 

7.1.3 Case Based Reasoning 

As the natural way of approaching most engineering problems is to call upon the 

experience of the modeller or another expert to help with the creation and solving of 

the problem, an automation of this activity would enable solutions to be produced 

faster and with fewer errors. 

Case indexing is more of an art form than a science. It takes a great deal of knowledge 

to create a predictive, robust, abstract, and useful index that will cater for all problems 
encountered. Most indexing schemes involve a great deal of evolution from the initial 

ideas to a useable index. Whether an automatic or manual indexing system is used is 

highly dependent on the domain of the study. The translation from a natural language 

problem description to a description that can be easily indexed is one where the 

human brain is still far more efficient than other automatic methods. Within our 

domain of interest, the cases are to be stated in a very structured and formal way, and 

so these fields can be used as the index for the system. 

Cases can be retrieved using different search methods: the usual `database' field 

search, and a partial or fuzzy search. As the possibility of a case in the library being 

exactly the same as the current problem is virtually zero, then a search that draws out 

all cases that might be slightly relevant is better than one searching for the exact 

answer. For this reason, a partial or fuzzy search is a far better way of drawing the 

most appropriate cases from the library. This retrieval procedure should also have a 

113 



method of ranking the retrieved case so that the more relevant ones are drawn to the 

user's attention before those that are less similar. The search should differentiate 

between numerical and symbolic values and vary its search techniques accordingly. 

Automatic case adaptation is a very powerful method of solving problems, but only 

within a limited domain (such as that in CHEF). To automate the process over our 
domain seems, at present, virtually impossible with current methods and technologies. 

It would therefore seem more appropriate to concentrate on manual adaptation of 

cases and concentrate on the indexing and retrieval side of the case-based reasoning 

tool. 

7.1.4 IMIPS 
To enable a package to be flexible and still able to provide guidance means a package 

that requires some form of built in knowledge. The guidance in our new system is in 

the form of a knowledge base or case library. This consists of past cases that have 

been indexed so that they can be recalled at a later date. The indexing procedure 

allows for all possible problems to be indexed and the retrieval procedure allows for 

relevant cases to be recalled. As the chances of having an exact match for any 

problem in the case library is virtually zero the retrieval system is able to draw similar 

and relevant cases from the library for the user to view. 

The problem input needs to be concise enough to include all relevant information and 

be structured to allow for an indexing procedure to be applied. This input must have 

all operating conditions, equations, and data to allow the automatic translation into a 

modelling package's input file. This translation could be carried out for many 

different packages. In the thesis gPROMS (PSE, 1999) and Simulink (MathWorks, 

1999) input codes are automatically generated. 

Chapters 4 and 5 outlined the reasoning behind the way IMIPS has been developed 

and the problems faced. IMIPS has been designed to allow the novice user to easily 

create a search and then gives them the ability to review and amend the retrieved 

cases with ease. The user then has the ability to create simulator input files at the 

touch of a button. These files can be run and the results compared. How a case can be 

specified, retrieved, reviewed, adapted and translated was discussed, and how the 

translators for Simulink and gPROMS were created was also described. These 

114 



chapters also outline the nuances of the translation procedure for the simulators for 
Simulink and gPROMS and also outline the three main scenarios that IMIPS can be 

used for: 

" Scenario 1: A new case from scratch. 

" Scenario 2: Retrieval and use of an existing case. 

" Scenario 3: Retrieval, Adaptation, and use of an existing case. 

To demonstrate the properties of IMIPS four case studies were used to show how 

IMIPS deals with the three main scenarios shown above. 

The first case (§6.2) outlined how to write a case from scratch and showed how 

IMIPS can give some feedback, through the creation of an occurrence matrix (§6.2.2), 

as to whether the model has zero degrees of freedom and could then be solved. 

The second and third cases showed the retrieval mechanism used in more detail with 

two different types of problem. The first of these (§6.3) used the hierarchical search to 

find related cases the user could amend to create a model suitable for their problem. 

This case also showed how IMIPS deals with the inability of Simulink to deal with 

IPDAE's (§6.3.4). The second of these (§6.4) showed the use of the numerical search 

to find cases that were valid within the range of the user's interest and showed how 

IMIPS can deal with the three possible outcomes of that search (§6.4.1). 

The final case shows how IMIPS can be used to search for a variety of cases, and then 

allows the user to combine these cases to form a model that is useful to them (§6.5). 

This thesis has shown that, although IMIPS is not a finished product, the ideas behind 

it are valid and that they are a suitable method of approaching this problem. The 

system is now at a stage where the ideas behind it have been shown to work and the 

system should move forward to continue progressing and evolving into a complete, 

working system. The system is written on packages that were available at the time, 

but to create a commercially viable product the system would need to be re-written as 

one package (this would remove one source of error, the ODBC link between the 

interface and the database) incorporating the database and interface. Other work to be 

115 



done on this project to improve and expand on the present state of IMIPS is described 
in the next section. 

7.2 Future Work 
As has been outlined within the case studies, the IMIPS system can be improved upon 
by progressing in a variety of directions. These are outlined below. 

7.2.1 Adaptation of the Hierarchy Structure 
The hierarchy structure is, at present, based on the unit operation as this is the way the 

majority of users look at a problem at the present time. There is, however, a move 

away from this approach as unit operations become more complex and varied. This 

move is to classing units by their function or the product of the operation. 

The incorporation of these other schemes of classification should be included in future 

versions of IMIPS to allow plant that is difficult to identify with a single operation to 

be classified. This will also aid the user in their search by being able to search for the 

function of a unit/plant so that the likelihood of a suitable match is increased. 

7.2.2 Improvements in the Search, Retrieval and Adaptation Mechanisms 

The search and retrieval mechanism is limited, at present, by the length the SQL 

query can be. This can not be extended, but the field names used could be shortened 

to allow for longer queries. Also, there is no specific order given to the retrieved 

cases. They are returned in the order they are in the database. Some form of ranking 

system needs to be included in the retrieval so that the more relevant cases are shown 
first. 

In its current state, IMIPS incorporates manual adaptation of the retrieved cases to the 

users specifications. This task should be automated to allow the user to concentrate on 

the initial problem specification and not worry about the editing of a retrieved case. 
At the moment the most likely cause for error (in model specification) is where the 

user adapts a past case and incorporates an error in this. These errors can be hard to 

spot and so automating this process would reduce the chance of a badly posed 

problem for the simulator to solve. 

` 116 



7.2.3 Investigation into the Relationship between Simulator Error Code and 
Original User Input 
At present, if the code produced by the IMIPS translator creates errors at simulation, 
this information is not linked to the initial user input in any way. Although the error 

codes produced by both gPROMS and Simulink are very helpful in diagnosing the 

problem with the input file, it can be hard to relate these errors to the original case (in 

the database). Therefore, the addition of an expert system to interpret the simulator 

errors and give meaningful information about the original user input would be needed 

to improve this error fixing procedure. 

7.2.4 Statement of Multi Value (Matrix) Constant Arrays within Simulink. 
Within Simulink the statement of multi value constant arrays as matrices is not 

possible. This could be overcome by the incorporation of some form of FOR loops 

within Simulink to solve the equations involving these arrays and then combining the 

results (where necessary) into vector formats to be used in later calculations. 

7.2.5 Consideration of Multi-Unit Cases 
IMIPS only deals with single unit cases at present and this, although useful, is very 

limiting. The expansion of IMIPS features to include multi-unit cases needs to be 

investigated and implemented to improve IMIPS's usefulness and applicability to 

problems that are more likely to be faced in industry. The main problem to be 

overcome will be based on the linking of the individual units together to ensure 

consistency within the problem. 

7.2.6 Addition of More Translators 

There are many simulators on the market at present and these can all be viable as they 

all have something to offer that the others do not. Due to this, there will be some 

problems that are solved better by one simulator than another. The inclusion of more 

translators for more simulators is, therefore, a logical next step to ensure that the best 

solution is available for the problems being modelled. The translators needed would 

depend on the users requirements, but once written could be utilised when needed. 

116a 



7.2.7 Expansion of the Cases in the Database of IMIPS. 

The knowledge base within IMIPS is the case database. This database needs to 
include as many cases as possible to allow the user to be certain of some case retrieval 

when searching through the database. The additional cases need to be selected 

carefully to ensure a wide range of type of case, and to ensure that the indexing 

scheme can cope fully with the new cases. The indexing scheme, at present, is quite 

small and should be expanded as more cases are included. 

kký 116b 



References 
AspenTech (1999) `Aspen Custom Modeler (10.0/10.1-0) User Guides (1998-99)', 

Aspen Technology Inc. USA. 
Bär, M. & Zeitz, M. (1990) `A Knowledge-Based Flowsheet-Oriented User Interface 

for a Dynamic Process Simulator', Computers and Chemical Engineering, 14, 
pp. 1275-1280 

Barber, J. A. (2000) `Computer Generation of Process Models', PhD Thesis, 
University of London 

Biegler, L. (1989) `Chemical Process Simulation', Chemical Engineering Progress, 
October, pp. 50-61 

Boston, J. F., Britt, H. I. & Tayyabkhan, M. T. (1993) `Software: Tackling tougher 
tasks', Chemical Engineering Progress, November, pp. 38-49 

Chung, P. W. H. & Inder, R. (1992) `Handling Uncertainty in Accessing Petroleum 
Exploration Data', Revue de L'Institute Francais du Petrole, 47, pp. 305-314 

Chung, P. W. H. & Jefferson, M. (1998) `A Fuzzy Approach to Accessing Accident 
Databases', International Journal of Applied Intelligence, 9, pp. 129-137 

Clark. G. (1998) `An Intelligent Front-End System for Chemical Engineering 
Modelling: Background and Proposed Methodology', Internal Report, Plant 
Engineering Group, Loughborough University, Department of Chemical 
Engineering, Loughborough LE11 3TU, UK, 7 September 1998. 

Dubois, D., Prade, H. & Testemale, C. (1988) `Weighted Fuzzy Pattern Matching', 
Fuzzy Sets and Systems, 28, pp. 313 - 331 

Gaines, B. R. (1976) `Foundations of Fuzzy Reasoning', International Journal of 
Man-Machines Studies, 8, pp. 623-668 

Hammond, K. (1986) `CHEF: A Model Of Case-Based Planning', Proceedings of 
the AAAI `86, Philadelphia, PA, pp. 237-258 

Holl, P., Marquardt, W. & Gilles, E. D. (1988) `DIVA -A Powerful Tool for Dynamic 
Process Simulation', Computers and Chemical Engineering, 12, pp. 421-426 

Ingham, J., Dunn, I. J., Heinzle, E. & Prenosil, J. E. (1995) `Chemical Engineering 
Dynamics', VCH, Weinheim 

Illiffe, R. E., Chung, P. W. H. & Kletz, T. A. (1998) `More Effective Permit-To-Work 
Systems', Institution of Chemical Engineers Symposium Series, 144, pp. 181- 
194 

Jeng, B. C. & Liang, T. P. (1995) `Fuzzy Indexing and Retrieval in Case-Based 
Systems', Expert Systems With Applications, 8, pp. 135-142 

Koiranen, T., Virkki-Hatakka, T., Kraslawski, A. & Nystrom, L. (1998) `Hybrid, 
Fuzzy and Neural Adaptation in Case-Based Reasoning System for Process 
Equipment Selection', Computers and Chemical Engineering, 22, pp. S997- 
S1000 

Kolodner, J. (1983a) ̀ Maintaining Organization in a Dynamic Long-Term Memory' 
Cognitive Science, 74 

Kolodner, J. (1983b) `Reconstructive Memory: A Computer Model' Cognitive 
Science, 114) 

Kolodner, J. & Simpson, R. (1989) `The MEDIATOR: Analysis of an Early Case- 
Based Problem Solver' Cognitive Science, 13 U4, pp. 507-549 

Kolodner, J. (1993) ̀ Case-Based Reasoning', Morgan Kaufmann, CA. 
Luyben, W. L. (1990) `Process Modeling, Simulation and Control for Chemical 

Engineers', McGraw-Hill 

L 

117 



Maclay, D. (2000) ̀ Click and Code', IEE Review, May 2000, pp. 25-28 
Maher, M. L., Balachandran, M. B. & Zhang, D. M. (1995) `Case-Based Reasoning in 

Design', Lawrence Erlbaum Associates, Mahwah, NJ. 
Marlin, T. E. (1995) `Process Control - Designing Processes and Control Systems for 

Dynamic Performance', McGraw-Hill 
Marquardt, W. (1994), `Trends in computer-aided process modeling' Proceedings of 

PSE'94,1, pp. 1-23, Kyongju, KOREA. 
MathWorks, (1999), `SIMULINK Dynamic System Simulation for MATLAB, Using 

SIMULINK version 3', The MathWorks, Inc., 24 prime Park Way, Natick, MA 
Microsoft (1997) `Microsoft Access - Relational Database Management System for 

Windows - Users Guide' Microsoft Corporation 
Ogata, K. (1992) ̀ System Dynamics', Prentice Hall, Inc. p. 6 
Pantelides, C. C. & Barton, P. I. (1993) `Equation-Oriented Dynamic Simulation. 

Current Status and Future Perspectives', Computers and Chemical Engineering, 
17, pp. S263-S285 

Pantelides, C. C. (1988) `SPEEDUP - Recent Advances in Process Simulation', 
Computers and Chemical Engineering, 12, pp. 745-755 

Piela, P. C., Epperly, T. G. Westerberg, K. M. & Westerberg, A. W. (1991) `ASCEND: 
An Object Oriented Computer Environment for Modeling and Analysis: The 
Modeling Language', Computers and Chemical Engineering, 15, pp. 53-72 

PSE (1998) 'gPROMS Training Course P, Process Systems Enterprise Ltd., London, 
United Kingdom 

PSE (1999a) 'gPROMS Advanced User Guide - Release 1.7', Process Systems 
Enterprise Ltd., London, United Kingdom 

PSE (1999b) 'gPROMS Introductory User Guide - Release 1.7', Process Systems 
Enterprise Ltd., London, United Kingdom 

ReMind Reference Manual, Cognitive Systems Inc., 1992, Boston 
Sargent, R. W. H. (1967) `Integrated Design and Optimization of Processes', 

Chemical Engineering Progress, 63, pp. 71-78 
Schmucker, K. J. (1984) `Fuzzy Sets, Natural Language Computations, and Risk 

Analysis', Computer Science Press 
Schiesser, W. E. (1994) `Computational Mathematics in Engineering and Applied 

Science: ODEs, DAEs, and PDEs', CRC Press, London 
Shacham, M., Macchietto, S., Stutzman, L. F. & Babcock, P. (1982) `Equation 

Oriented Approach to Process Flowsheeting', Computers and Chemical 
Engineering, 6, pp. 79-95 

Stephanopoulos, G. & Han, C. (1996) `Intelligent Systems in Process Engineering: A 
Review', Computers and Chemical Engineering, 20, pp. 743-791 

Stephanopoulos, G., Henning, G. & Leone, H. (1990a) 'MODEL. LA. A Modeling 
Language for Process Engineering - I. The Formal Framework', Computers and 
Chemical Engineering, 14, pp. 813-846 

Stephanopoulos, G., Henning, G. & Leone, H. (1990b) `MODEL. LA. A Modeling 
Language for Process Engineering -11. Multifaceted Modeling of Process Systems', 
Computers and Chemical Engineering, 14, pp. 847-869 

Svercek, W. Y., Mahoney, D. P. & Young, B. R. (Eds. ) (2000) `A Real-Time Approach 
to Process Control', John Wiley and Sons, Ltd. Chichester. pp. 1-12 

Telnes, K. (1992) `Computer-aided modeling of dynamic processes based on 
elementary physics', Doctoral Dissertation, Division of Engineering Cybernetics, 
Norwegian Institute of Technology, Trondheim. 

118 



Tsatsoulis, C. & Alexander, P. (1997) `Integrating Cases, Subcases, and Generic 
Prototypes for Design', in Maher, M. L. & Pu, P. (Eds. ) Issues and Applications of 
Case-Based Reasoning in Design, Lawrence Erlbaum Associates, London, pp. 
261-299 

Ushold, M., Harding, N., Muetzelfeld, R. & Bundy, A. (1984) `Intelligent Front End 
for Ecological Modeling', Research Paper 223, Dept of Artificial Intelligence, 
University of Edinburgh. 

Von Neumann, J. & Morgenstern, 0. (1964) `Theory of Games and Economic 
Behavior', John Wiley and Sons, New York 

hL- 119 



Bibliography 
Abufares, A. A. & Douglas, P. L. (1995) `Mathematical Modelling and Simulation of 

an M7BE Catalytic Distillation Process Using Speed Up and Aspen Plus', 
Transactions of the IChem, 73, pp. 3-12 

Acorn, T& Walden, S. (1992) ̀ SMART. - Support Management Cultivated Reasoning 
Technology For Compaq Customer Service', Proceedings of AAAI 192, 
Cambridge, MA, AAAI Press/MIT Press 

Alterman, R. (1986) `An Adaptive Planner', Proceedings of AAAI '86, Cambridge, 
MA, AAAI Press/MIT Press 

Bär, M., Schaffner, J., Selg, W. & Zeitz, M. (1993) `Functionality and 
Implementation of a Knowledge-Based Flowsheet-Oriented User Interface for the 
Dynamic Process Simulator DIVA', Simulation, 61, pp. 117-123 

Barletta, R. (1992) `An Introduction to Case-Based Reasoning', Al Expert, 6, pp. 43- 
49 

Barton, P. I. (1992) `The Modelling and Simulation of Combined Discrete/Continuous 
Processes', PhD Thesis, University of London 

Barton, P. I. & Pantelides, C. C. (1994) `Modeling of Combined discrete/Continuous 
Processes', AIChE Journal, 40, pp. 966-979 

Carbonell, J. G. (1986) `Derivational Analogy: A Theory of Reconstructive Problem 
Solving and Expertise Acquisition', in Michalski, R. S., Carbonell, J. G. & Mitchell, 
T. M. (Eds. ) Machine Learning: An Artificial Intelligence Approach Vol. 2, 
Morgan Kaufmann 

Cho, J. H. (1997) `Computer Aids for Mathematical Model Building', PhD Thesis, 
University of London 

Chung, P. W. H. & Jefferson, M. (1997) `Accident Databases - Indexing and 
Retrieval', Ling Seminar 

Clark, G., Rossiter, D. & Chung, P. W. H. (2000) `Intelligent Modelling Interface for 
Dynamic Process Simulators', Transactions of the IChemE, 78, Part A, pp. 823- 
839 

Gani, R., Sorensen, E. L. & Perregaard, J. (1992) `Design and Analysis of Chemical 
Processes through DYNSIM, Industrial Engineering and Chemical Research, 
31, pp. 244-254 

Jensen, A. K. & Gani, R. (1999) `A Computer Aided Modeling System' Computers 

and Chemical Engineering, 23, pp. S673-S678 
Kambhampati, S. & Hendler, J. A. (1992) `A Validation Structure Based Theory Of 

Plan Modification And Reuse' Artificial Intelligence Journal, 55, pp. 193-258 
Ketler, K. (1993) `Case-Based Reasoning: An Introduction', Expert Systems with 

Applications, 6, pp. 3-8 
Khan, T& Yip, Y. J. (1995) `CBT II - Case-Based Computer Aided Instruction: 

Survey of Principles, Applications and Issues', The Knowledge Engineering 
Review, 10, pp. 235-268 

Koton, P. (1988) `Integrating Case-Based and Casual Reasoning' Proceedings of the 
Tenth Annual Conference of Cognitive Science Society, Hillsdale, NY, Lawrence 
Erlbaum Associates 

Kröner, A., Holl, P., Marquardt, W. & Gilles, E. D. (1990) `DIVA - An Open 
Architecture for Dynamic Simulation', Computers and Chemical Engineering, 
14, pp. 1289-1295 

120 



Maher, M. L. & Pu, P. (Eds. ) (1997) `Issues and Applications of Case-Based 
Reasoning in Design', Lawrence Erlbaum Associates, Mahwah, NJ. 

Marquardt, W. (1991), `Dynamic Process Simulation - Recent Trends and Future 
Challenges', in Arkun, Y. & Ray, E. D. (Eds), Chemical Process Control CPC-IV, 
CACHE, Austin, AIChE, New York, pp. 131-180 

Mott, S. (1993) `Case Based Reasoning: Market, Applications, and Fit with Other 
Technologies', Expert Systems with Applications, 6, pp. 97-104 

Näf, U. G. (1994) ̀ Stochastic Simulation usinggPROMS', Computers and Chemical 
Engineering, 18, pp. S743-S747 

Navinchandra, D. (1988) `Case-Based Reasoning in CYCLOPS, a Design Problem 
Solver' Proceedings of the DARPA Workshop on Case-Based Reasoning, San 
Mateo, CA, Morgan Kaufmann, pp. 286-301 

Oh, M. (1995) `Modelling and Simulation of Combined Lumped and Distributed 
Processes', PhD Thesis, University of London 

Oh, M. & Pantelides, C. C. (1996) `A Modelling and Simulation Language for 
Combined Lumped and Distributed Parameter Systems', Computers and 
Chemical Engineering, 20, pp. 611-633 

Pantelides, C. C. & Britt, H. I. (1995) `Multipurpose Process Modelling 
Environments', In L. T. Biegler & M. F. Doherty, (Eds. ), Proceedings of the 
Conference on Foundations of Computer Aided Process Design '94, CACHE 
Publications, pp. 128-141 

Pantelides, C. C. (1996) `gPROMS: An Advanced Tool for Process Modelling, 
Simulation and Optimisation', Paper presented at CHEMPUTERS EUROPE III, 
Frankfurt, 29-30 October, 1996 

Perkins, J. D. & Sargent, R. W. H. (1982) `SPEEDUP: A Computer Program for 
Steady-State and Dynamic Simulation and Design of Chemical Processes', AIChE 
Symposium Series, 78, pp. 1-11 

Perregaard, J., Pedersen, B. S. & Gani, R. (1992) `Steady-State and Dynamic 
Simulation of Complex Chemical Processes', Transactions of the Institution of 
Chemical Engineers, 70, pp. 99-109 

Ram, A. (1993) `Indexing, Elaboration and Refinement: Incremental Learning of 
Explanatory Cases', Machine Learning, 10, pp. 201-248 

Sargent, R. W. H. & Westerberg, A. W. (1964) "`SPEED-UP" in Chemical 
Engineering Design', Transactions of the Institution of Chemical Engineers, 42, 
pp. T190-T197 

Sargent, R. W. H., Perkins, J. D., Cho, J. H. & Barber, J. (1997) `Computer Aids for 
Process Model Building', From the Centre for Process Systems Engineering 
Annual Report 1997, pp. 62-63 

Schenk, M., Gani, R., Bogle, I. D. L. & Pistikopoulos, E. N. (1999) `A Hybrid 
Approach for Reactive Separation Systems' Computers and Chemical 
Engineering, pp. S419-S422 

Seader, J. D. (1985) `Computer Modelling of Chemical Processes', AIChE 
Monograph Series, 15 (Volume 81) 

Simoudis, E. (1992) `Using Case-Based Retrieval For Customer Technical Support', 
IEEE Expert, 1-0), pp. 7-13 

Steward, D. V. (1962) `On an approach to techniques for the analysis of the structure 
of large scale systems of equations', Soc. Ind. App. Math. Rev., 4, pp. 321-342 

Sycara, K., Guttal, R., Koning, J., Narasimhan, S. & Navinchandra, D. (1990) 
`CADET. " A Case-Based Synthesis Tool for Engineering Design', International 
Journal of Expert Systems 

121 



Sycara, K. P. & Navinchandra, D. (1989) `Integrated Case-Based Reasoning And 
Qualitative Reasoning In Engineering Design', in J. S. Gero (Ed. ), Artificial 
Intelligence in Design, NY, Springer Verlag, pp. 231-250 

Von Watzdorf, R., Näf, U. G., Barton, P. I. & Pantelides, C. C. (1994) `Deterministic 
and Stochastic Simulation of Batch/Semi-Continuous Processes', Computers and 
Chemical Engineering, 18, pp. S343-S347 

Watson, I. (1997) `Applying Case-Based Reasoning: Techniques for Enterprise 
Systems', Morgan Kaufmann, San Fransisco, CA 

Westerberg, A. W. & Benjamin, D. R. (1985) `Thoughts on a Future Equation- 
Oriented Flowsheeting System', Computers and Chemical Engineering, 9, pp. 
517-526 

Winkel, M. L., Zullo, L. C., Verheijen, P. T. J. & Pantelides, C. C. (1995) `Modelling 
and Simulation of the Operation of an Industrial Batch Plant using gPROMS', 
Computers and Chemical Engineering, 19, pp. S571-S576 

Web Sites of Interest 
The ASCEND web page: http: //www. cs. cmu. edu/-ascend/ 

The ASPEN PLUS web page: http: //www. aspentech. com/ 

The CLIPS web page: http: //web. ukonline. co. uk/julian. smart/wxclips/ 

The DIVA web page: http: //www. isr. uni-stuttgart. de/diva/diva. html 

The gPROMS web page: http: //www. psenterprise. com/gPROMS/ 

The HYSIM web page: http: //www. hyprotech. com/ 

The HYSYS web page: http: //www. hyprotech. com/ 

The MATLAB web page: http: //www. mathworks. co. uk/ 

The Simulink web page: http: //www. mathworks. co. uk/ 

The SpeedUp web page: http: //www. aspentech. com/ 

The VisSim web page: http: //www. adeptscience. co. uk/products/mathsim/vissim/ 

122 



Appendices 

Syntax 
II Indexing for Cases 
III Translator Flow Diagrams 
IV Code for IMIPS Programme 
V Examples of Simulator Code 

123 



I. Syntax 

Below are some examples of equations and their IMIPS representation. 

Natural E 
Language k= Ae `g''' 

IMIPS k= A*EXP(-E/(Rg*T)) 

Natural 
Language rhoc - Vc " Cpc 

d dtc) 
= Fc - Cpc(Tcin - Tc) +Q 

IMIPS rhoc*Vc*Cpc*$Tc = Fc*Cpc*(Tcin-Tc) +Q 

Natural 
Language -Bed Void " Dz 

UC 
= u(Cfeed - C) 

IMIPS -BedVoid*Dz*PARTIAL(C, ax) = u*(Cfeed-C) 

Natural Q= Overall U" Area J'T (ax, R) - Tc)d(ax) 
Language 

IMIPS Q= Overa11U*Area*INTEGRAL(ax: =O: L; T(ax, R)-Tc) 

Natural IF Height > Hp THEN Fout = ValveConst - (Height-Hp) ELSE Fout =0 
Language 

IMIPS IF Height > Hp THEN Fout = ValveConstant*(Height- 
Hp) ELSE Fout =0 

Natural WHILE the temperature is too low, heat the vessel 
Language 

IMIPS WHILE Temp < Temp_fix DO Q= U*A*AT 

Other usual signs apply, e. g. *, /, +, -, COS, SIN, TAN, etc. and these are shown on 

the next page 

124 



The symbols syntax for IMIPS is shown below. 

IMIPS Description 
* Multiplication 
+ Addition 

Subtraction 
/ Division 
A Raised to the power 
ABS Absolute value 
ACOS Arc-cosine 
ACOSH Arc-hyperbolic cosine 
AS1N Arc-sine 
AS1NH Arc-hyperbolic sine 
ATAN Arc-tangent 
ATANH Arc-hyperbolic tangent 
COS Cosine 
COSH Hyperbolic cosine 
ERF Error function 
EXP Exponential 
IF arg THEN 
arg ELSE arg 

IF ... THEN ... ELSE loop 

WHILE arg 
DO arg 

WHILE ... DO loop 

1NT Truncation of a real argument 
LOG Natural loarithm 
LOG10 Logarithm to base 10 
MAX The largest of the arguments 
MIN The smallest of the arguments 
PRODUCT The product of the arguments 
SIGN The sign of the argument 
SUM The sum of the arguments 
SIN Sine 

SINH Hyperbolic sine 
SQRT S uare root 
TAN Tangent 
TANH Hyperbolic t gent 
$ ar) Derivative, with respect to time 
PARTIAL(x: y, z) Partial derivative of x with respect to y, and 

with respect to z 
INTEGRAL x: =a: b; f x Integral of f(x) from x=a to x=b 

Table I. 1. Equation syntax for IMIPS. 

125 



II. Indexing for Cases 

Case Specification (Part 1) 

Equipment* Thermal I3eha%ior Reaction Order Reversible II cat 'I Transfer Chemical" 

Yeti N 
Operating Mode 

Batch Semi-Batch 

Continuous 

Reaction I pe Phases Mass Transfer Pipeline Flow 

F- I 1 11 IT-Sion 
General i olcmensation Solid 1.1 yutd Lammar Turbulent 

Absorption F- F- 
Van-de-Vusse Anaerobic Vapor Solid-Vapor Plug Slug 

Fermentation Parallel Liquid-Vapor Solid-I. igwd 

I italybc Solid-Liquid-Vapor 

Auto t'ntdýtir 

Figure 11. I. Case Specification Hierarchy 

Case Specification (Part 2) 

F: quipment* I Operating Mode 

Thermal Behaviour 

Superheat Isothermal 

Endothermal Exothermal 

Reaction Type Reversible I Mass Transfer I Chemical" 

Reaction Order 

1 
Yes No 

Pliases 11 ca1 1 ranslcr Pipeline l ̀ I'm 

Zero Dust tbmccuun undudion 

Second Ihgher Radiation onecnon'tunducn, n 

Cbnvectiorr! Rudinhon Conduction Radunion 

i'., es ti n! ' undueh, un'R; idruion 

Figure 11.2. Case Specification Hierarchy 

1 "_' 6 



Equipment 

E- cctro-Static 
I 

Ion-Exchang 
Precipitator lied 

('entrifuge Adsorption 

Settling Pit Strainer 

Cyclone Column 

f- 
Hydro-Csclonc Danllzoon Aburtpuon 

Column Column 

Other S eiun, n 

Figure 11.3. Equipment Hierarchy 

Heating and Cooling Equipment 

Pressure Raising or "Dank Ileating and Cooling Separation Other 
Reducing Equipment I I{quipment* Equipment t: quipment 

Jacketed Vessel ('poling Dealing Dessicator Decanting 

Valve Pump Equipment Equipment Vessel 

Reactor Vessel 

Compressor Ejector Equipment 
L-__ Heat I uchangers Phase Change Scrubber Filter 

III Equipment 
(or cucoc sowed Play Flor, 

Bloucr Vacuum ( omprcssor Tank Reactor Rcxior 

Cooling Equipment Tank Ileat Exchangers Phase Chanie 
I[yuipment 

Dner Heater Shell and Plate Heat ( ondenur (lyrtalhscr 

Air Cooler Tube Heat P. x changer 

Cooler Fachanger 
Concentrator 

I 

Fin Fan Refrigeration l nit Il , aporatoI Vaporher 

Figure 11.4. Heating and Cooling Equipment I licrarchy 

Acid Alkaline Earth Alkali Metal 
Metal 

Inorganic Solvent 

Non-Polar 
TPuI. 

r 
Sulphide Solvent Sohent 

OrSnmc 
Solvent 

Chemical 

Group III Ilalogen Ine rt Mineral 

Metal (; as 

Organic 

. Arumauc 11".. Alcohol yanidc Urgams 
Compound Acid 

Hydrocarbon 

Monomer 

f ý- 1 
Alkane - Ikene L ung Chain Med tom (harn Shim ('harn 

Hydrocarbon Hydrocarbon llydrocarbon 

Para11i11 Olclin Pr'nllln V. in 

Figure 1 1.5. Chemical II ierarchy 

II 

Polymer I ransitIon 
M ctal 

Salt 

Al Aal i'Metal l tananun 
Salt Metal Salt 

Alkaltnc t auh 
Metal ,,, all 

º 
127 



Ill. Translator Flow Diagrams 

Flow Diagram for the Simulink Translator 

r 
Database Instances 

Equations Equations 

Variables Create Instances Constants 

Constants Variables 
Open Input File 

General Inforniation 

Model 

Name -'Aame" 

I)etäult Parameter 
I )eclaration 

. Stop Ilnle 'IWue' 

Default Parameter 
Declaration 

Created "Current 
lone' 

Default Parameter 
Declaration 

I. atitModificdBy 
/AIII'S vO. 03 
S/. 411I7. Gti'K 
1 ranslafor" 

Default Parameter 
Declaration 

BlockDcla tilts 

Continued on next page 

129 



Continues from previous page 

I Equations 

Delhult Parameter 
1)eclaration 

AnnotationDetaults 

Default Parameter 
Declaration 

I. ineDefaults 

Default Parameter 
Declaration 

System 

Default Parameter 
Declaration 

Constant Declaration 

I Equation Checking 

Symbol Blocks 
Declaration 

Block Links 
Declaration 

Variable Output 
Declaration 

I: nd 

Constants III Variables 

129 



Flow Diagram for the gPROMS Translator 

r --------------- Database 

Equations 
, 

Variables 

Constants 
It-t 

General Information, 

------------- 

Yes 

Ilist anees 

Equations 

Create Instances Constants 

Variables 
Open Input I ile 

Variable lY Pt; 
Declaration 

MOl)I. I.. Vwne 

Constant Declaration 

Array? 

No 
Constant Arras 

Declaration 
Yes 

Intcgcr? 

No 

l vpe RI Al .r pe IN I1 UI{R 

Yes 

Distribution Variable 
Declaration 

Yes 

Variable Array 
Declaration 

Svsteni? 

No 

Variable Declaration 1- 

Array? 

Nu 

I ypc Declaration 

Continued on next page 

1 () 



Continues from previous page 

General 
Intonation 

I 

Continued on next page 



Continues from previous page 

Constants 

132 



IV. Code for IMIPS programme 

IV. 1. Selection hierarchies declaration: classes. clp 

Author : Graham Clark 
File Name: classes. clp 
Last Updated: 20/12/00 
Description: Class declarations File 

adapted from Richard Illiffe's Original Work 

; defclass TEMP-UNITS 

(defclass temp-unit (is-a USER) 
(role concrete) 
(pattern-match reactive) 
(multislot properties (create-accessor read-write) 

(default none)) 
(slot synonym (create-accessor read-write)) 
(slot abbreviation (create-accessor read-write))) 

(defclass C (is-a temp-unit)) 
(defclass F (is-a temp-unit)) 
(defclass K (is-a temp-unit)) 
(defclass R (is-a temp-unit)) 

; defclass PRES-UNITS 

(defclass pres-unit (is-a USER) 
(role concrete) 
(pattern-match reactive) 
(multislot properties (create-accessor read-write) 

(default none)) 
(slot synonym (create-accessor read-write)) 
(slot abbreviation (create-accessor read-write))) 

(defclass Pa (is-a pres-unit)) 
(defclass kPa (is-a pres-unit)) 
(defclass mPa (is-a pres-unit)) 
(defclass bar (is-a pres-unit)) 
(defclass mbar (is-a pres-unit)) 

; defclass EQUIPMENT 

(defclass equipment (is-a USER) 
(role concrete) 
(pattern-match reactive) 
(multislot properties (create-accessor read-write) 

(default none)) 
(slot synonym (create-accessor read-write)) 
(slot abbreviation (create-accessor read-write))) 

133 



(defclass Pressure_Raising_or_Reducing_Equipment (is-a equipment)) 
(defclass Compressor (is-a Pressure_Raising_or_Reducing_Equipment)) 

(defclass Blower (is-a Compressor)) 
(defclass Vacuum Compressor (is-a Compressor)) 

(defclass Ejector_Equipment (is-a 
Pressure_Raising_or_Reducing_Equipment)) 

(defclass Pump (is-a Pressure_Raising_or_Reducing_Equipment)) 
(defclass Valve (is-a Pressure_Raising_or_Reducing_Equipment)) 

(defclass Tank (is-a equipment)) 
(defclass Jacketed_Vessel (is-a Tank)) 
(defclass Reactor_Vessel (is-a Tank)) 

(defclass Plug_Flow_Reactor (is-a Reactor_Vessel)) 
(defclass Continuous_Stirred_Tank_Reactor (is-a Reactor_Vessel)) 

(defclass Heating_and_Cooling_Equipment (is-a equipment)) 
(defclass Cooling_Equipment (is-a Heating_and_Cooling_Equipment)) 

(defclass Air_Cooler (is-a Cooling-Equipment)) 
(defclass Cooler (is-a Cooling-Equipment)) 
(defclass Cooling_Tower (is-a Cooling-Equipment)) 
(defclass Fin-Fan-Cooler (is-a Cooling-Equipment)) 
(defclass Refrigeration_Unit (is-a Cooling-Equipment)) 

(defclass Heating-Equipment (is-a Heating_and_Cooling_Equipment)) 
(defclass Concentrator (is-a Heating-Equipment)) 
(defclass Drier (is-a Heating_Equipment)) 
(defclass Heater (is-a Heating-Equipment)) 

(defclass Heat_Exchangers (is-a Heating_and_Cooling_Equipment)) 
(defclass Plate_Heat_Exchanger (is-a Heat_Exchangers)) 
(defclass Shell_and_Tube_Heat_Exchanger (is-a Heat_Exchangers)) 

(defclass Phase_Change_Equipment (is-a 
Heating_and Cooling_Equipment)) 

(defclass Condenser (is-a Phase_Change_Equipment)) 
(defclass Crystalliser (is-a Phase_Change_Equipment)) 
(defclass Evaporator (is-a Phase_Change_Equipment)) 
(defclass Vaporiser (is-a Phase_Change_Equipment)) 

(defclass Separation_Equipment (is-a equipment)) 
(defclass Column (is-a Separation_Equipment)) 

(defclass Distillation_Column (is-a Column)) 
(defclass Absorption_Column (is-a Column)) 
(defclass other-Column (is-a Column)) 

(defclass Decanting_vessel (is-a Separation_Equipment)) 
(defclass Scrubber (is-a Separation_Equipment)) 
(defclass Cyclone (is-a Separation_Equipment)) 
(defclass Electro-Static_Precipitator (is-a Separation_Equipment)) 
(defclass Filter (is-a Separation_Equipment)) 
(defclass Hydro-Cyclone (is-a Separation_Equipment)) 
(defclass Centrifuge (is-a Separation_Equipment)) 
(defclass Adsorption (is-a Separation_Equipment)) 
(defclass Settling-Pit (is-a Separation-Equipment)) 
(defclass Strainer (is-a Separation-Equipment)) 
(defclass Ion-Exchange_Bed (is-a Separation_Equipment)) 
(defclass Dessicator (is-a Separation-Equipment)) 

(defclass Other_Equipment (is-a equipment)) 
(defclass Pipeline (is-a Other_Equipment)) 

; defclass CONDITIONS 

******************************************************************** 

134 



(defclass condition (is-a USER) 
(role concrete) 
(pattern-match reactive) 
(multislot properties (create-accessor read-write) 

(default none)) 
(slot synonym (create-accessor read-write)) 
(slot abbreviation (create-accessor read-write))) 

(defclass Operating_Mode (is-a condition)) 
(defclass Batch (is-a Operating_Mode)) 
(defclass Semi-Batch (is-a Operating_Mode)) 
(defclass Continuous (is-a Operating_Mode)) 

(defclass Thermal_Behaviour (is-a condition)) 
(defclass Superheat (is-a Thermal_Behaviour)) 
(defclass Isothermal (is-a Thermal_Behaviour)) 
(defclass Endothermal (is-a Thermal_Behaviour)) 
(defclass Exothermal (is-a Thermal_Behaviour)) 

; defclass REACTION 

(defclass reaction (is-a USER) 
(role concrete) 
(pattern-match reactive) 
(multislot properties (create-accessor read-write) 

(default none)) 
(slot synonym (create-accessor read-write)) 
(slot abbreviation (create-accessor read-write))) 

(defclass Reaction_Type (is-a reaction)) 
(defclass General (is-a Reaction_Type)) 
(defclass Polymerisation (is-a Reaction_Type)) 

(defclass Catalytic (is-a Reaction_Type)) 

(defclass Auto-Catalytic (is-a Catalytic)) 
(defclass Anaerobic (is-a Reaction_Type)) 
(defclass Van_De_Vusse (is-a Reaction_Type)) 
(defclass Fermentation (is-a Reaction_Type)) 
(defclass Parallel (is-a Reaction_Type)) 

(defclass Reaction_Order (is-a reaction)) 
(defclass Zero (is-a Reaction_Order)) 
(defclass First (is-a Reaction_Order)) 
(defclass Second (is-a Reaction_Order)) 
(defclass Higher (is-a Reaction_Order)) 

(defclass Reversibility (is-a reaction)) 
(defclass Yes (is-a Reversibility)) 
(defclass No (is-a Reversibility)) 

; defclass PHASES 

(defclass phases (is-a USER) 
(role concrete) 
(pattern-match reactive) 
(multislot properties (create-accessor read-write) 

(default none)) 

135 



(slot synonym (create-accessor read-write)) 
(slot abbreviation (create-accessor read-write))) 

(defclass Solid (is-a phases)) 

(defclass Liquid (is-a phases)) 

(defclass Vapour (is-a phases)) 

(defclass Solid-Liquid (is-a phases)) 

(defclass Solid-Vapour (is-a phases)) 

(defclass Liquid-Vapour (is-a phases)) 

(defclass Solid-Liquid-Vapour (is-a phases)) 

; defclass TRANSFER 

(defclass transfer (is-a USER) 
(role concrete) 
(pattern-match reactive) 
(multislot properties (create-accessor read-write) 

(default none)) 
(slot synonym (create-accessor read-write)) 
(slot abbreviation (create-accessor read-write))) 

(defclass Mass_Transfer (is-a transfer)) 
(defclass Diffussion (is-a Mass_Transfer)) 
(defclass Absorption (is-a Mass_Transfer)) 

(defclass Heat_Transfer (is-a transfer)) 
(defclass Convection (is-a Heat_Transfer)) 
(defclass Conduction (is-a Heat_Transfer)) 
(defclass Radiation (is-a Heat_Transfer)) 

(defclass Pipeline_Flow (is-a transfer)) 
(defclass Laminar (is-a Pipeline_Flow)) 
(defclass Chaotic (is-a Pipeline_Flow)) 
(defclass Turbulent (is-a Pipeline_Flow)) 
(defclass Plug/Slug (is-a Pipeline_Flow)) 

; defclass CHEMICAL 

(defclass chemical (is-a USER) 
(role concrete) 
(pattern-match reactive) 
(multislot properties (create-accessor read-write) 

(visibility public) 
(default nil)) 

(slot synonym (create-accessor read-write) (default nil)) 
(slot abbreviation (create-accessor read-write) (default 

nil))) 

(definstances CHEMICALS 
([acetic-acid-instance) of chemical 

(synonym ethanoicacid) 

136 



(properties corrosive causes_burns)) 

137 



IV. 2. Constant, variable and equation object class declaration: classesi. clp 
; ********************************************************** 

Author : Graham Clark 
File Name: classesl. clp 
Last Updated: 20/12/00 
Description: Class declarations File 

********************************************************* 
defclass SIM_DECLARATION General declaration classes 

(defclass SIM_DECLARATION (is-a USER) 
(role abstract) 

(defclass EQUATION (is-a SIM_DECLARATION) 
(role concrete) 
(pattern-match reactive) 
(slot Eqn (create-accessor read-write)) 
(slot UpperBound (default "All") (create-accessor read-write)) 
(slot LowerBound (default "All") (create-accessor read-write)) 
(slot FixedBound (default "All") (create-accessor read-write)) 
(slot Description (default "") (create-accessor read-write)) 

(defclass CONST VAR DEC (is-a SIM_DECLARATION) 
(role concrete) 
(pattern-match reactive) 
(slot identifier (create-accessor read-write)) 
(slot unit (default "") (create-accessor read-write)) 
(slot include (default "Y") (create-accessor read-write)) 
(slot Distributed (default "N/A") (create-accessor read-write)) 
(slot Description (default "") (create-accessor read-write)) 
(multislot ArrayVar (default 0 "none") (create-accessor read- 

write)) 
(slot Port (default 0) (create-accessor read-write)) 
(multislot OutPorts (default 0) (create-accessor read-write)) 

(defclass VARIABLE (is-a CONST_VAR_DEC) 
(slot Set (default "unknown") (create-accessor read-write)) 
(slot Value (default "unknown") (create-accessor read-write)) 
(slot UpperBound (default "All") (create-accessor read-write)) 
(slot LowerBound (default "All") (create-accessor read-write)) 
(slot MathMethod (default "N/A") (create-accessor read-write)) 
(slot Type (create-accessor read-write)) 

(defclass CONSTANT (is-a CONST_VAR_DEC) 
(slot Value (default 0.1) (create-accessor read-write)) 

(defclass PARTIALS (is-a SIM_DECLARATION) 

(role concrete) 
(slot Number (default "0") (create-accessor read-write)) 
(slot Value (create-accessor read-write)) 
(slot ReplacedWith (create-accessor read-write)) 

138 



IV. 3. Global function declarations file: function. clp 
********************************************************** 

Author : Graham Clark * 
File Name: function. clp * 
Last Updated: 20/12/00 * 
Description: General functions file 

(deffunction str-replace (? string ? old-str ? sub-str) 
(bind ? start (str-index ? old-str ? string)) 
(bind ? length (str-length ? old-str)) 
(bind ? totallength (str-length ? string)) 
(bind ? newstring 

(str-cat (str-cat (sub-string 1 (- ? start 1) ? string) ? sub-str) 
(sub-string (+ ? start ? length) ? totallength ? string))) 

(return ? newstring) 

(deffunction str-replace-all (? string ? old-str ? sub-str) 
(bind ? oldstring ? string) 
(bind ? newstring ? string) 
(bind ? start (str-index ? old-str ? oldstring)) 
(while (= 0 (str-compare TRUE (integerp ? start))) do 

(bind ? totallength (str-length ? oldstring)) 
(bind ? length (str-length ? old-str)) 
(bind ? newstring 

(str-cat (str-cat (sub-string 1 (- ? start 1) ? oldstring) ? sub-str) 
(sub-string (+ ? start ? length) ? totallength ? oldstring))) 

(bind ? oldstring ? newstring) 
(bind ? start (str-index ? old-str ? oldstring)) 

(return ? newstring) 

(deffunction str-count-all (? string ? count-str) 
(bind ? count 0) 
(bind ? totallength (str-length ? string)) 
(bind ? length (str-length ? count-str)) 
(bind ? new-str ? string) 
(while (= 0 (str-compare "TRUE" (integerp (str-index ? count-str 

? new-str)))) do 
(bind ? count (+ 1 ? count)) 
(bind ? start (str-index ? count-str ? new-str)) 
(bind ? new-str (sub-string (+ ? start ? length) ? totallength ? new- 

str)) 
(bind ? totallength (str-length ? new-str)) 

(return ? count) 

(deffunction check-eqn (? eqn ? name) 
(bind ? check (sub-string 12 ? eqn)) 
(switch ? check 

(case "IF" then (print-eqn-if ? eqn)) 
(case "WH" then (print-eqn-while ? eqn)) 
(default (print-for-loop ? eqn ? name)) 

(return ? eqn) 

139 



(deffunction check-bdry-eqn (? eqn ? name) 
(bind ? check (sub-string 12 ? eqn)) 
(switch ? check 

(case "IF" then (print-eqn-if ? eqn)) 
(case "WH" then (print-eqn-while ? eqn)) 
(default (print-bdry-for-loop ? eqn ? name)) 

(return ? eqn) 

140 



IV. 4. Occurrence matrix code: occtable. clp 

Author : Graham Clark 
File Name: occtable. clp 
Last Updated: 20/12/00 
Description: Occurence Matrix creation and population 

(deffunction get-eqn-sql-query ()) 
(deffunction get-var-sql-query ()) 
(deffunction get-const-sql-query ()) 

(deffunction on-close (? frame) 
(format t "Closing frame. %n") 
(bind ? *matrix* 0) 
1) 

(deffunction on-activate (? frame ? active) 
(if (> ? *matrix* 0) then (grid-on-activate ? *matrix* ? active)) 

(deffunction menu-command (? frame ? id) 

(switch ? id 
Help 
(case 200 then (message-box "Occurence Matrix 

Intelligent Modelling Interface for Process Simulators vO. 03 
by Graham Clark (c) 1999" wxOK 10 "About IMIPS Prototype - 

Occurence Matrix")) 
Quit 
(case 1 then 

(database-close ? *database*) 
(if (on-close ? frame) then (window-delete ? frame))) 

(deffunction occurence-matrix () 

(bind ? *occ-matrix-frame* (frame-create 0 "IMIPS - Occurence Matrix" 
-1 -1 1150 523)) 

(window-add-callback ? *occ-matrix-frame* OnClose on-close) 
(window-add-callback ? *occ-matrix-frame* OnMenuCommand menu-command) 
(window-add-callback ? *occ-matrix-frame* OnActivate on-activate) 

(bind ? file-menu (menu-create)) 

(menu-append ? file-menu 1 "&Quit") 

(bind ? help-menu (menu-create)) 

(menu-append ? help-menu 200 "&About") 

(bind ? menu-bar (menu-bar-create)) 

(menu-bar-append ? menu-bar ? file-menu "&File") 

(menu-bar-append ? menu-bar ? help-menu "&Help") 

(frame-set-menu-bar ? *occ-matrix-frame* ? menu-bar) 

Make a grid 
(bind ? *matrix* (grid-create ? *occ-matrix-frame* 00 1150 523)) 
(grid-set-editable ? *matrix* 0) 

(grid-create-grid ? *matrix* 22 26) 

(grid-set-column-width ? *matrix* 0 300) 

141 



(grid-set-label-alignment ? *matrix* wxHORIZONTAL wXCENTRE) 

; Insert Variable Names 
(get-var-sql-query) 
(bind ? varcount 0) 
(loop-for-count (? var 1 25) do 

(grid-set-cell-alignment ? *matrix* wxCENTRE 0 ? var) 
(if (neq (recordset-get-char-data ? *recordset* (+ ? var 1)) 
then 

(if (eq 0 (str-length (recordset-get-char-data ? *recordset* (+ 21 
(* ? var 8))))) then 

(if (< (str-length (recordset-get-char-data ? *recordset* (+ 20 
(* ? var 8)))) 1) 

then 
(grid-set-cell-value ? *matrix* (recordset-get-char-data 

? *recordset* (+ ? var 1)) 0 (+ 1 ? varcount)) 
(bind ? varcount (+ 1 ? varcount)) 

; Insert Equations 
(get-eqn-sql-query) 
(bind ? eqncount 0) 
(loop-for-count (? eqn 1 20) do 

(if (not (or (eq (recordset-get-char-data ? *recordset* (+ ? eqn 1)) 
UN ) 

(eq (recordset-get-char-data ? *recordset* (+ ? eqn 1)) 
"END"))) 

then 
(if (not (or (> (str-length (recordset-get-char-data ? *recordset* 

(+ 20 (* ? eqn 4)))) 0) 
(> (str-length (recordset-get-char-data ? *recordset* (+ 19 

(* ? eqn 4)))) 0) 
(> (str-length (recordset-get-char-data ? *recordset* (+ 18 

(* ? eqn 4)))) 0))) 

then 
(bind ? egncount (+ ? eqncount 1)) 

(grid-set-cell-value ? *matrix* (recordset-get-char-data 
? *recordset* (+ ? eqn 1)) ? eqncount 0) 

; Create Occurence Matrix 

(loop-for-count (? var 1 25) do 

(loop-for-count (? eqn 1 20) do 

(grid-set-cell-alignment ? *matrix* WxCENTRE ? eqn ? var) 
(if (> (str-length (grid-get-cell-value ? *matrix* 0 ? var)) 0) 

then 
(if (neq (str-index (grid-get-cell-value ? *matrix* 0 ? var) (grid- 

get-cell-value ? *matrix* ? eqn 0)) FALSE) 

then 
(grid-set-cell-value ? *matrix* "*" ? eqn ? var) 

(get-const-sql-query) 
Count unknown variables 

142 



(bind ? var-number 0) 
(loop-for-count (? var 1 ? varcount) do 

(if (> (str-length (grid-get-cell-value ? *matrix* 0 ? var)) 0) 
then 

(bind ? varcnt 1) 
(loop-for-count (? count 1 35) do 

(if (= 0 (str-compare "TRUE" (integerp (str-index "N" 
(recordset-get-char-data ? *recordset* (+ 34 (* ? count 

4))))))) 
then 

(if (neq 0 (str-length (recordset-get-char-data ? *recordset* (+ 
1 ? count)))) then 

(if (= 0 (str-compare "TRUE" (integerp (str-index (recordset- 
get-char-data ? *recordset* (+ 1 ? count)) 
(grid-get-cell-value ? *matrix* 0 ? var))))) 

then 
(bind ? value (string-to-float (symbol-to-string 

(recordset-get-char-data ? *recordset* (+ 33 (* 
? count 4)))))) 

(bind ? varcnt (* ? varcnt ? value)) 

(bind ? var-number (+ ? var-number ? varcnt)) 

Count equations 
(bind ? eqn-number 0) 
(loop-for-count (? eqn 1 ? eqncount) do 

(if (> (str-length (grid-get-cell-value ? *matrix* ? eqn 0)) 0) 
then 

(bind ? eqncnt 1) 
(loop-for-count (? count 1 35) do 

(if (= 0 (str-compare "TRUE" (integerp (str-index "N" 
(recordset-get-char-data ? *recordset* (+ 34 (* ? count 

4))))))) 

then 
(if (neq 0 (str-length (recordset-get-char-data ? *recordset* (+ 1 

? count)))) then 
(if (= 0 (str-compare "TRUE" (integerp (str-index (recordset- 

get-char-data ? *recordset* (+ 1 ? count)) 
(grid-get-cell-value ? *matrix* ? eqn 0))))) 

then 
(bind ? value (string-to-float (symbol-to-string 

(recordset-get-char-data ? *recordset* (+ 33 (* 
? count 4)))))) 

(bind ? eqncnt (* ? egncnt ? value)) 

(bind ? eqn-number (+ ? eqn-number ? eqncnt)) 

(get-var-sql-query) 
Count initial value variables 

(loop-for-count (? var 1 25) do 
(if (neq "" (recordset-get-char-data ? *recordset* (+ (* ? var 8) 

19))) 

143 



then 
(bind ? var-number (- ? var-number 1)) 

; Write number of eqns and variables for comparison 
(grid-set-cell-text-font ? *matrix* (font-create 12 wxROMAN wxNORMAL 

wxBOLD 0) (+ ? eqncount 1) 0) 
(grid-set-cell-value ? *matrix* (sym-cat ? eqn-number (sym-cat 

Equations: " 
(sym-cat ? var-number " Unknown Variables"))) 
(+ ? eqncount 1) 0) 

(grid-update-dimensions ? *matrix*) 
(window-centre ? *occ-matrix-frame* wxBOTH) 
(window-show ? *occ-matrix-frame* 1) 

? *occ-matrix-frame*) 

144 



IV. 5. IMIPS interface code: IMIPS. clp 

Author : Graham Clark 
File Name: IMIPS. clp 
Last Updated: 20/12/00 
Description: Main Interface File 

Search tools adapted from Richard Illiffe's Work 

(deffunction translate-gPROMS ()) 
(deffunction translate-SIMULINK ()) 
(deffunction create-problem-instances ()) 
(deffunction printout-eqn-sql-query ()) 
(deffunction printout-var-sql-query ()) 
(deffunction printout-const-sql-query ()) 
(deffunction search-button-callback ()) 
(deffunction construct-sql-query ()) 
(deffunction printout-sql-query ()) 

; Sizing callback function 

(deffunction on-size (? id ?w ? h) 
(if (and (neq ? id 0) (neq ? *panel* 0) (neq ? *text-win* 0) (neq 

? *boris* 0) (neq ? *doris* 0)) then 
(bind ? client-width (window-get-client-width ? id)) 
(bind ? client-height (window-get-client-height ? id)) 
(window-set-size ? *panel* 00 ? client-width ? client-height) 
(window-set-size ? *text-win* 00 ? client-width (- (/ ? client- 

height 3) 1)) 
(window-set-size ? *boris* 0 (/ ? client-height 3) ? client- 

width (- (/ ? client-height 3) 1)) 
(window-set-size ? *doris* 0 (* 2 (/ ? client-height 3)) 

? client-width (/ ? client-height 3)) 

; Window closing callback function 

(deffunction on-close (? frame) 
(format t "Closing frame. %n") 
(window-delete ? *start-frame*) 
(bind ? *panel* 0) 
(bind ? *text-win* 0) 
(bind ? *boris* 0) 
(bind ? *doris* 0) 
1) 

11 
; Function changes between panel 1 and panel 2 on button-press 

(deffunction on-panel-change-button (? id) ON 

(bind ? event-id (panel-item-get-command-event)) 
(if (eq "wxEVENT_TYPE_BUTTON_COMMAND" (event-get-event-type 

? event-id)) then 
(bind ? name (window-get-name ? id)) 
(bind ? parent (window-get-parent ? id)) 
(window-show (window-get-parent ? id) 0) 

145 



(switch ? name 
(case "next" then 

(window-show ? *panel2* 1)) 
(case "prey" then 

(window-show ? *panel* 1)) 
(case "more" then 

(window-show ? *panel3* 1)) 

(deffunction on-panel-more-button (? id) "" 
(bind ? event-id (panel-item-get-command-event)) 
(if (eq "wxEVENT_TYPE_BUTTONCOMMAND" (event-get-event-type 

? event-id)) then 
(bind ? name (window-get-name ? id)) 
(bind ? parent (window-get-parent ? id)) 
(printout-eqn-sql-query) 
(printout-const-sql-query) 
(printout-var-sql-query) 

; The next two functions pop-up choice menus for the hierarchies and 
; store the ultimate selection in appropriate globals. 

(deffunction popup (? choicel ? name ? choice) "" 

(if (and (neq (length (class-subclasses (string-to-symbol 
? choicel))) 0) (neq ? choicel ? choice)) then 

(bind ? children (create$ (class-subclasses (string-to-symbol 
? choicel)))) 

(bind ? children (insert$ ? children 1 ? choicel)) 
(bind ? choice2 (get-choice ? choicel ? children ? *panel*)) 

else 
(bind ? *related-term* 
(assert (find-related ? choicel)) 
(run) 
(switch ? name 

(case "equipment-list" then 
(bind ? *equipment* ? choicel) 
(text-set-value ? *equipment-searchbox* ? *equipment*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-equipment- 

searchbox* ? *related-term*) 
(bind ? *related-equipment* ? *related-term*) 

(return)) 
(case "operating-mode-list" then 

(bind ? *operating-mode* ? choicel) 
(text-set-value ? *operating-mode-searchbox* 

? *operating-mode*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-operating-mode- 

searchbox* ? *related-term*) 
(bind ? *related-operating-mode* ? *related- 

term*) 

146 



(return)) 
(case "thermal-behaviour-list" then 

(bind ? *thermal-behaviour* ? choicel) 
(text-set-value ? *thermal-behaviour-searchbox* 

? *thermal-behaviour*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-thermal-behaviour- 

searchbox* ? *related-term*) 
(bind ? *related-thermal-behaviour* ? *related- 

term*) 

(return)) 
(case "reaction-type-list" then 

(bind ? *reaction-type* ? choicel) 
(text-set-value ? *reaction-type-searchbox* 

? *reaction-type*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-reaction-type- 

searchbox* ? *related-term*) 
(bind ? *related-reaction-type* ? *related- 

term*) 

(return)) 
(case "reaction-order-list" then 

(bind ? *reaction-order* ? choicel) 
(text-set-value ? *reaction-order-searchbox* 

? *reaction-order*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-reaction-order- 

searchbox* ? *related-term*) 
(bind ? *related-reaction-order* ? *related- 

term*) 

(return)) 
(case "reversible-list" then 

(bind ? *reversible* ? choicel) 
(text-set-value ? *reversible-searchbox* 

? *reversible*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-reversible- 

searchbox* ? *related-term*) 
(bind ? *related-reversible* ? *related-term*) 

(return)) 
(case "phase-list" then 

(bind ? *phases* ? choicel) 
(text-set-value ? *phases-searchbox* ? *phases*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-phases-searchbox* 

? *related-term*) 

147 



(bind ? *related-phases* ? *related-term*) 

(return)) 
(case "mass-transfer-list" then 

(bind ? *mass-transfer* ? choicel) 
(text-set-value ? *mass-transfer-searchbox* ? *mass- 

transfer*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-mass-transfer- 

searchbox* ? *related-term*) 
(bind ? *related-mass-transfer* ? *related- 

term*) 

(return)) 
(case "heat-transfer-list" then 

(bind ? *heat-transfer* ? choicel) 
(text-set-value ? *heat-transfer-searchbox* ? *heat- 

transfer*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-heat-transfer- 

searchbox* ? *related-term*) 
(bind ? *related-heat-transfer* ? *related- 

term*) 

(return)) 
(case "pipeline-flow-list" then 

(bind ? *pipeline-flow* ? choicel) 
(text-set-value ? *pipeline-flow-searchbox* 

? *pipeline-flow*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-pipeline-flow- 

searchbox* ? *related-term*) 
(bind ? *related-pipeline-flow* ? *related- 

term*) 

(return)) 
(case "chemical-list" then 

(bind ? *chemical* ? choicel) 
(text-set-value ? *chemical-searchbox* ? *chemical*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-chemical-searchbox* 

? *related-term*) 
(bind ? *related-chemical* ? *related-term*) 

(return)) 

(popup ? choice2 ? name ? choicel) 

(deffunction on-list-choice (? id) 

(bind ? name (window-get-name ? id)) 

148 



(bind ? choice (list-box-get-string-selection ? id)) 
(if (neq (length (class-subclasses (string-to-symbol ? choice))) 

0) then 
(bind ? children (create$ (class-subclasses (string-to-symbol 

? choice)))) 
(bind ? children (insert$ ? children 1 (string-to-symbol 

? choice))) 
(bind ? choicel (get-choice ? choice ? children ? *panel*)) 

else 
(bind ? *related-term* 
(assert (find-related ? choice)) 
(run) 
(switch ? name 

(case "equipment-list" then 
(bind ? *equipment* ? choice) 
(text-set-value ? *equipment-searchbox* ? *equipment*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-equipment- 

searchbox* ? *related-term*) 
(bind ? *related-equipment* ? *related-term*) 

(return)) 
(case "operating-mode-list" then 

(bind ? *operating-mode* ? choice) 
(text-set-value ? *operating-mode-searchbox* 

? *operating-mode*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-operating-mode- 

searchbox* ? *related-term*) 

(bind ? *related-operating-mode* ? *related- 
term*) 

(return)) 
(case "thermal-behaviour-list" then 

(bind ? *thermal-behaviour* ? choice) 
(text-set-value ? *thermal-behaviour-searchbox* 

? *thermal-behaviour*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-thermal-behaviour- 

searchbox* ? *related-term*) 
(bind ? *related-thermal-behaviour* ? *related- 

term*) 

(return)) 
(case "reaction-type-list" then 

(bind ? *reaction-type* ? choice) 
(text-set-value ? *reaction-type-searchbox* 

? *reaction-type*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-reaction-type- 

searchbox* ? *related-term*) 
(bind ? *related-reaction-type* ? *related- 

term*) 

149 



(return)) 
(case "reaction-order-list" then 

(bind ? *reaction-order* ? choice) 
(text-set-value ? *reaction-order-searchbox* 

? *reaction-order*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-reaction-order- 

searchbox* ? *related-term*) 
(bind ? *related-reaction-order* ? *related- 

term*) 

(return)) 
(case "reversible-list" then 

(bind ? *reversible* ? choice) 
(text-set-value ? *reversible-searchbox* 

? *reversible*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-reversible- 

searchbox* ? *related-term*) 
(bind ? *related-reversible* ? *related-term*) 

(return)) 
(case "phase-list" then 

(bind ? *phases* ? choice) 
(text-set-value ? *phases-searchbox* ? *phases*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-phases-searchbox* 

? *related-term*) 
(bind ? *related-phases* ? *related-term*) 

(return)) 
(case "mass-transfer-list" then 

(bind ? *mass-transfer* ? choice) 
(text-set-value ? *mass-transfer-searchbox* ? *mass- 

transfer*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-mass-transfer- 

searchbox* ? *related-term*) 
(bind ? *related-mass-transfer* ? *related- 

term*) 

(return)) 
(case "heat-transfer-list" then 

(bind ? *heat-transfer* ? choice) 
(text-set-value ? *heat-transfer-searchbox* ? *heat- 

transfer*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-heat-transfer- 

searchbox* ? *related-term*) 
(bind ? *related-heat-transfer* ? *related- 

term*) 

150 



(return)) 
(case "pipeline-flow-list" then 

(bind ? *pipeline-flow* ? choice) 
(text-set-value ? *pipeline-flow-searchbox* 

? *pipeline-flow*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-pipeline-flow- 

searchbox* ? *related-term*) 
(bind ? *related-pipeline-flow* ? *related- 

term*) 

(return)) 
(case "chemical-list" then 

(bind ? *chemical* ? choice) 
(text-set-value ? *chemical-searchbox* ? *chemical*) 
(if (neq ? *related-term* "") then 

(if (eq ? *match-related-terms* TRUE) then 
(text-set-value ? *related-chemical-searchbox* 

? *related-term*) 
(bind ? *related-chemical* ? *related-term*) 

(return)) 
(case "temp-list" then 

(bind ? *t-unit* ? choice) 
(return)) 

(case "pres-list" then 
(bind ? *p-unit* ? choice) 
(return)) 

(popup ? choicel ? name ? choice) 

; Generic function to append string values to listbox 

(deffunction append-to-list (? local ? global) 
(bind ? num (length ? global)) 
(loop-for-count (? count 1 ? num) do 

(list-box-append ? local (str-cat (nth$ ? count ? global))) 

; Initialises database 

(deffunction initialise-database () on 

(bind ? *database* (database-create)) 
(if (eq 0 (database-open ? *database* ? *database-name*)) then 

(bind ? msg (database-get-error-message ? *database*)) 

(printout t ? msg crlf) 

(return 0) 

(bind ? *recordset* (recordset-create ? *database* 

151 



"wxOPEN_TYPE_SNAPSHOT")) 

; The following two functions are for constructing a SQL query based 
; on the user selected keywords and options. get-include-terms 
; retrieves any of multiple descriptives, divided by slashes. 

(deffunction get-include-terms (? key ? term) 
(bind ? symbol-term (string-to-symbol ? term)) 
(bind ? key-string (str-cat ? key " like '%/" ? term 
(if (class-existp ? symbol-term) then 

(if (and (eq ? *match-children* TRUE) (neq (implode$ (class- 
subclasses ? symbol-term)) "")) then 

(bind ? term-subclasses (class-subclasses ? symbol-term 
inherit)) 

(bind ? cont 1) 
(loop-for-count (length$ ? term-subclasses) 

(bind ? key-string (str-cat ? key-string " OR " ? key 
like '%/" (nth$ ? cont ? term-subclasses) 

II/%#N)) 

(bind ? cont (+ ? cont 1)) 

(if (eq ? *match-parent* TRUE) then 
(bind ? term-superclasses (class-superclasses ? symbol-term 

inherit)) 
(bind ? key-string (str-cat ? key-string " OR " ? key " like 

'%/" (nth$ 1 ? term-superclasses) "/%'")) 

(bind ? key-string (str-cat "(" ? key-string ")")) 
(return ? key-string) 

; Function retrieves single terms which are not divided by slashes 

(deffunction get-include-terms2 (? key ? term) 
(bind ? symbol-term (string-to-symbol ? term)) 

(printout t ? term crlf) 
(bind ? key-string (str-cat ? key " like '%" ? term 

(printout t ? key-string crlf) 
(if (class-existp ? symbol-term) then 

(if (and (eq ? *match-children* TRUE) (neq (implode$ (class- 
subclasses ? symbol-term)) "")) then 

(bind ? term-subclasses (class-subclasses ? symbol-term 
inherit)) 

(bind ? cont 1) 
(loop-for-count (length$ ? term-subclasses) 

(bind ? key-string (str-cat ? key-string " OR " ? key 
like '%" (nth$ ? cont ? term-subclasses) 

"%, ") ) 

(bind ? cont (+ ? cont 1)) 

(if (eq ? *match-parent* TRUE) then 
(bind ? term-superclasses (class-superclasses ? symbol-term 

inherit)) 

152 



(bind ? key-string (str-cat ? key-string " OR " ? key " like 
'%" (nth$ 1 ? term-superclasses) "%'")) 

(bind ? key-string (str-cat "(" ? key-string ")")) 
(printout t ? key-string crlf) 
(return ? key-string) 

(deffunction related-sql (? key ? term ? related) 
(bind ? tmpl (get-include-terms ? key ? term)) 
(bind ? tmp2 (get-include-terms ? key ? related)) 
(bind ? tmp3 (str-cat (sub-string 1 (- (str-length ? tmpl) 1) 

? tmpl) " OR " 
(sub-string 2 (str-length ? tmp2) ? tmp2))) 

(if (eq ? *match-related-terms* TRUE) then 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat ? *sql* " AND " ? tmp3)) 
else 

(bind ? *sql* ? tmp3) 

else 
(if (neq ? term "") then 

(if (neq ? *sql* "") then 
(bind ? *sql* (str-cat ? *sql* " AND " ? tmpl)) 

else 
(bind ? *sql* ? tmpl) 

) 

; Numerical Search Type - SR overlap, SR internal, CR internal, All 
; Temperature 
(deffunction Temp-SRO-check-callback (? id) 

(if (eq ? *Temp-SRO-search* FALSE) then 
(bind ? *Temp-SRO-search* TRUE) 

else 
(bind ? *Temp-SRO-search* FALSE) 

(if (eq ? *Temp-SRO-search* TRUE) then 
(bind ? *Temp-ALL-search* FALSE) 
(check-box-set-value ? *Temp-All-check* 0) 

(deffunction Temp-SRI-check-callback (? id) 

(if (eq ? *Temp-SRI-search* FALSE) then 
(bind ? *Temp-SRI-search* TRUE) 

else 
(bind ? *Temp-SRI-search* FALSE) 

(if (eq ? *Temp-SRI-search* TRUE) then 
(bind ? *Temp-ALL-search* FALSE) 
(check-box-set-value ? *Temp-All-check* 0) 

153 



(deffunction Temp-CRI-check-callback (? id) 
(if (eq ? *Temp-CRI-search* FALSE) then 

(bind ? *Temp-CRI-search* TRUE) 
else 

(bind ? *Temp-CRI-search* FALSE) 

(if (eq ? *Temp-CRI-search* TRUE) then 
(bind ? *Temp-ALL-search* FALSE) 
(check-box-set-value ? *Temp-All-check* 0) 

(deffunction Temp-ALL-check-callback (? id) 
(if (eq ? *Temp-ALL-search* FALSE) then 

(bind ? *Temp-ALL-search* TRUE) 
else 

(bind ? *Temp-ALL-search* FALSE) 

(if (eq ? *Temp-ALL-search* TRUE) then 
(bind ? *Temp-SRO-search* FALSE) 
(check-box-set-value ? *Temp-SRo-check* 0) 
(bind ? *Temp-SRI-search* FALSE) 
(check-box-set-value ? *Temp-SRi-check* 0) 
(bind ? *Temp-CRI-search* FALSE) 
(check-box-set-value ? *Temp-CRi-check* 0) 

(deffunction Temp-OK-search-button-callback (? id) 
(window-delete ? *temp-search-frame*) 
(initialise-database) 
(construct-sql-query) 
(printout-sql-query) 

(deffunction Pres-OK-search-button-callback (? id) 
(window-delete ? *pres-search-frame*) 
(initialise-database) 
(construct-sql-query) 
(printout-sql-query) 

(deffunction Temp-Range-Search () "" 
(bind ? *temp-low* (integer (string-to-float ? *temp-low*))) 
(bind ? *temp-high* (integer (string-to-float ? *temp-high*))) 
(bind ? *temp-search-frame* (frame-create 0 "Temperature Search 

Options" 220 200 300 250)) 
(frame-create-status-line ? *temp-search-frame*) 
(frame-set-status-text ? *temp-search-frame* "Please select the 

search/s to use") 
(bind ? *temp-search-panel* (panel-create ? *temp-search-frame* 00 

400 400) ) 
(panel-Set-label-position ? *temp-search-panel* wxVERTICAL) 
(bind ? *Temp-SRo-check* (check-box-create ? *temp-search-panel* 

Temp-SRO-check-callback "Search Range Overlaps Case Data Range" 
-1 -1 -1 -1 "" "")) 

(check-box-set-value ? *Temp-SRo-check* 0) 
(panel-new-line ? *temp-search-panel*) 

(bind ? *Temp-SRi-check* (check-box-create ? *temp-search-panel* 
Temp-SRI-check-callback "Search Range is inside Case Data 

154 



Range" -1 -1 -1 -1 "" "")) 
(check-box-set-value ? *Temp-SRi-check* 0) 

(panel-new-line ? *temp-search-panel*) 
(bind ? *Temp-CRi-check* (check-box-create ? *temp-search-panel* 

Temp-CRI-check-callback "Case Data Range is inside Search 
Range" -1 -1 -1 -1 "" "")) 

(check-box-set-value ? *Temp-CRi-check* 0) 
(panel-new-line ? *temp-search-panel*) 
(bind ? *Temp-All-check* (check-box-create ? *temp-search-panel* 

Temp-ALL-check-callback "All Options" -1 -1 -1 -1 "" ^^)) 
(check-box-set-value ? *Temp-All-check* 1) 

(panel-new-line ? *temp-search-panel*) 
(bind ? OK-search-button (button-create ? *temp-search-panel* Temp- 

OK-search-button-callback "OK" -1 -1 -1 -1 "" "OK")) 
(window-show ? *temp-search-frame* 1) 

; Pressure 
(deffunction Pres-SRO-check-callback (? id) 

(if (eq ? *Pres-SRO-search* FALSE) then 
(bind ? *Pres-SRO-search* TRUE) 

else 
(bind ? *Pres-SRO-search* FALSE) 

(if (eq ? *Pres-SRO-search* TRUE) then 
(bind ? *Pres-ALL-search* FALSE) 
(check-box-set-value ? *Pres-All-check* 0) 

(deffunction Pres-SRI-check-callback (? id) 
(if (eq ? *Pres-SRI-search* FALSE) then 

(bind ? *Pres-SRI-search* TRUE) 

else 
(bind ? *Pres-SRI-search* FALSE) 

(if (eq ? *Pres-SRI-search* TRUE) then 
(bind ? *Pres-ALL-search* FALSE) 
(check-box-set-value ? *Pres-All-check* 0) 

(deffunction Pres-CRI-check-callback (? id) 
(if (eq ? *Pres-CRI-search* FALSE) then 

(bind ? *Pres-CRI-search* TRUE) 

else 
(bind ? *Pres-CRI-search* FALSE) 

(if (eq ? *Pres-CRI-search* TRUE) then 
(bind ? *Pres-ALL-search* FALSE) 
(check-box-set-value ? *Pres-All-check* 0) 

(deffunction Pres-ALL-check-callback (? id) 

(if (eq ? *Pres-ALL-search* FALSE) then 
(bind ? *Pres-ALL-search* TRUE) 

else 
(bind ? *Pres-ALL-search* FALSE) 

(if (eq ? *Pres-ALL-search* TRUE) then 

155 



(bind ? *Pres-SRO-search* FALSE) 
(check-box-set-value ? *Pres-SRo-check* 0) 
(bind ? *Pres-SRI-search* FALSE) 
(check-box-set-value ? *Pres-SRi-check* 0) 
(bind ? *Pres-CRI-search* FALSE) 
(check-box-set-value ? *Pres-CRi-check* 0) 

(deffunction Pres-Range-Search () "" 
(bind ? *pres-low* (integer (string-to-float ? *pres-low*))) 
(bind ? *pres-high* (integer (string-to-float ? *pres-high*))) 
(bind ? *pres-search-frame* (frame-create 0 "Pressure Search 

Options" 220 200 300 250)) 
(frame-create-status-line ? *pres-search-frame*) 
(frame-set-status-text ? *pres-search-frame* "Please select the 

search/s to use") 
(bind ? *pres-search-panel* (panel-create ? *pres-search-frame* 00 

400 400)) 
(panel-set-label-position ? *pres-search-panel* wxVERTICAL) 
(bind ? *Pres-SRo-check* (check-box-create ? *pres-search-panel* 

Pres-SRO-check-callback "Search Range Overlaps Case Data Range" 
-1 -1 -1 -1 no "")) 

(check-box-set-value ? *Pres-SRo-check* 0) 
(panel-new-line ? *pres-search-panel*) 
(bind ? *Pres-SRi-check* (check-box-create ? *pres-search-panel* 

Pres-SRI-check-callback "Search Range is inside Case Data 
Range" -1 -1 -1 -1 "" "")) 

(check-box-set-value ? *Pres-SRi-check* 0) 
(panel-new-line ? *pres-search-panel*) 
(bind ? *Pres-CRi-check* (check-box-create ? *pres-search-panel* 

Pres-CRI-check-callback "Case Data Range is inside Search 
Range" -1 -1 -1 -1 "" "")) 

(check-box-set-value ? *Pres-CRi-check* 0) 
(panel-new-line ? *pres-search-panel*) 
(bind ? *Pres-All-check* (check-box-create ? *pres-search-panel* 

Pres-ALL-check-callback "All Options" -1 -1 -1 -1 
(check-box-set-value ? *Pres-All-check* 1) 

(panel-new-line ? *pres-search-panel*) 
(bind ? range-search-button (button-create ? *pres-search-panel* 

Pres-OK-search-button-callback 
"OK" -1 -1 -1 -1 "" "OK")) 

(window-show ? *pres-search-frame* 1) 

(deffunction Numerical-Search 
(if (or (neq ? *temp-low* 

(Temp-Range-Search)) 
(if (or (neq ? *pres-low* 

(Pres-Range-Search)) 
(bind ? *Num-Search* 1) 

() MM 

(neq ? *temp-high* "")) then 

(neq ? *pres-high* "")) then 

******************************************************************** 

(deffunction construct-sql-query () "" 
(bind ? *record-number* (text-get-value ? *record-number- 

searchbox*)) 
(bind ? *description-name* (text-get-value ? *description- 

searchbox*)) 
(bind ? *temp-tolerance* (text-get-value ? *temp-tolerance- 

156 



searchbox*)) 
(bind ? *pres-tolerance* (text-get-value ? *pres-tolerance- 

searchbox*)) 
(bind ? *sql* "") 
(if (neq ? *equipment* "") then 

(related-sql equipment ? *equipment* ? *related-equipment*) 

(if (neq ? *operating-mode* "") then 
(related-sql operating_mode ? *operating-mode* ? *related- 

operating-mode*) 

(if (neq ? *thermal-behaviour* "") then 
(related-sql thermal-behaviour ? *thermal-behaviour* 

? *related-thermal-behaviour*) 

(if (neq ? *reaction-type* "") then 
(related-sql reaction_type ? *reaction-type* ? *related- 

reaction-type*) 

(if (neq ? *reaction-order* "") then 
(related-sql reaction_order ? *reaction-order* ? *related- 

reaction-order*) 

(if (neq ? *reversible* "") then 
(related-sql reversible ? *reversible* ? *related-reversible*) 

(if (neq ? *phases* "") then 
(related-sql phases ? *phases* ? *related-phases*) 

(if (neq ? *mass-transfer* "") then 
(related-sql mass_transfer ? *mass-transfer* ? *related-mass- 

transfer*) 

(if (neq ? *heat-transfer* "") then 
(related-sql heat-transfer ? *heat-transfer* ? *related-heat- 

transfer*) 

(if (neq ? *pipeline-flow* "") then 
(related-sql pipeline_flow ? *pipeline-flow* ? *related- 

pipeline-flow*) 

(if (neq ? *chemical* "") then 
(related-sql chemical ? *chemical* ? *related-chemical*) 

(if (neq ? *record-number* "") then 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat ? *sql* " AND IDsearch ? *record- 
number*)) 

else 
(bind ? *sql* (str-cat "IDsearch = ? *record-number*)) 

(if (neq ? *description-name* "") then 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat ? *sql* " AND (Descriptionl like '%" 
? *description-name* 
"%' OR Description2 like '%" ? *description-name* 
"%' OR Description3 like '%" ? *description-name* 
"%' OR Description4 like '%" ? *description-name* 

else 

157 



(bind ? *sql* (str-cat "(Descriptionl like '%" 
? *description-name* 
"%' OR Description2 like '%" ? *description-name* 
"%' OR Description3 like '%" ? *description-name* 
"%' OR Description4 like '% ? *description-name* 
"$')")) 

(bind ? *temp-tolerance* (string-to-float ? *temp-tolerance*) 
100)) 

(bind ? *pres-tolerance* (/ (string-to-float ? *pres-tolerance*) 
100)) 

; Temperature 
(if (and (neq ? *temp-low* "") (neq ? *temp-high* "")) then 

(if (eq ? *Temp-ALL-search* TRUE) then 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat ? *sql* " AND " 
"((Temperature_Low <= " ? *temp-low* 
0 <= Temperature-High) OR (Temperature-Low 
<_ " ? *temp-high* 
" <= Temperature-High) OR (Temperature_Low 
" ? *temp-low* 
" AND Temperature_High <" ? *temp-high* "))" 

)) 
else 

(bind ? *sql* (str-cat 
"((Temperature_Low <_ ? *temp-low* 
" <= Temperature-High) OR (Temperature_Low <= 
N ? *temp-high* 
" <= Temperature_High) OR (Temperature_Low > 
" ? *temp-low* 

" AND Temperature_High <" ? *temp-high* "))" 
)) 

(bind ? *Temp-SRO-search* FALSE) 
(bind ? *Temp-SRI-search* FALSE) 
(bind ? *Temp-CRI-search* FALSE) 

(if (eq ? *Temp-SRO-search* TRUE) then 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat ? *sql* " AND 
"((Temperature_Low <= " ? *temp-low* 
" <= Temperature_High) OR (Temperature_Low 
<_ " ? *temp-high* 
* <= Temperature-High) AND NOT 
((Temperature_Low <_ " ? *temp-low* 
") AND (" ? *temp-high* " <_ 
Temperature_High)))" 

)) 
else 

(bind ? *sql* (str-cat "" 
"((Temperature_Low <_ " ? *temp-low* 
" <= Temperature-High) OR (Temperature_Low <= 
" ? *temp-high* 
* <= Temperature-High) AND NOT 
((Temperature_Low <_ " ? *temp-low* 
N) AND (" ? *temp-high* " <_ 
Temperature_High)))N 

)) 

158 



(if (eq ? *Temp-SRI-search* TRUE) then 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat ? *sql* " AND " 
"((Temperature_Low <= " ? *temp-low* 
") AND (" ? *temp-high* " <_ 
Temperature_High))" 

else 
(if 

low*)) ) 

)) 
else 

(bind ? *sql* (str-cat 
"((Temperature_Low <= " ? *temp-low* 
") AND (" ? *temp-high* " <_ 
Temperature-High))" 

(if (eq ? *Temp-CRI-search* TRUE) 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat ? *sql* 
"((" ? *temp-low* 
" AND (Temperatu 
") )" 

then 

" AND " 
<= Temperature_Low)" 

re_High <= 0 ? *temp-high* 

)) 
else 

(bind ? *sql* (str-cat 
"((" ? *temp-low* " <= Temperature_Low)" 
" AND (Temperature_High <= " ? *temp-high* 
") )" 

(neq ? *temp-low* "") then 
(bind ? *temp-low* (integer (string-to-float ? *temp- 

(if (neq ? *sql* "") then 
(bind ? *sql* (str-cat ? *sql* " AND 

"((Temperature_Low <_ 
? *temp-low* 

<= Temperature-High) OR (Temperature_Low <= 
(* ? *temp-low* (- 1 ? *temp-tolerance*)) 

<= Temperature_High) OR (Temperature_Low <= 
(* ? *temp-low* (+ 1 ? *temp-tolerance*)) 
" <= Temperature_High))" 

)) 
else 

(bind ? *sql* (str-cat 
"((Temperature-Low <= ^ 
? *temp-low* 
" <= Temperature-High) OR (Temperature_Low <= 
(* ? *temp-low* (- 1 ? *temp-tolerance*)) 

<= Temperature-High) OR (Temperature_Low <= 
(* ? *temp-low* (+ 1 ? *temp-tolerance*)) 

<= Temperature_High))" 
)) 

else 
(if (neq ? *temp-high* "") then 

(bind ? *temp-high* (integer (string-to-float ? *temp- 
high*))) 

(if (neq ? *sql* "") then 
(bind ? *sql* (str-cat ? *sql* " AND 

159 



"((Temperature_Low <= 
? *temp-high* 

<= Temperature-High) OR (Temperature-Low <= 
(* ? *temp-high* (- 1 ? *temp-tolerance*)) 

<= Temperature_High) OR (Temperature_Low <= 
(* ? *temp-high* (+ 1 ? *temp-tolerance*)) 

<= Temperature_High))" 
)) 

else 
(bind ? *sql* (str-cat 

"((Temperature_Low <= 
? *temp-high* 

<= Temperature_High) OR (Temperature_Low <= " 
(* ? *temp-high* (- 1 ? *temp-tolerance*)) 

<= Temperature_High) OR (Temperature_Low <= " 
(* ? *temp-high* (+ 1 ? *temp-tolerance*)) 

<= Temperature_High))" 

; Pressure 
(if (and (neq ? *pres-low* "") (neq ? *pres-high* "")) then 

(if (eq ? *Pres-ALL-search* TRUE) then 

(if (neq ? *sql* "") then 
(bind ? *sql* (str-cat ? *sql* " AND 

"((Pressure_Low <_ " ? *pres-low* 
" <= Pressure 

- 
High) OR (Pressure-Low <= 

? *pres-high* 
" <= Pressure High) OR (Pressure_Low > 
? *pres-low* 
" AND Pressure_High <" ? *pres-high* "))" 

else 
(bind ? *sql* (str-cat 

"((Pressure_Low <= " ? *pres-low* 
" <= Pressure_High) OR (Pressure_Low <= 
? *pres-high* 
" <= Pressure-High) OR (Pressure-Low > 
? *pres-low* 

AND Pressure_High <" ? *pres-high* 

(bind ? *Pres-SRO-search* FALSE) 
(bind ? *Pres-SRI-search* FALSE) 
(bind ? *Pres-CRI-search* FALSE) 

(if (eq ? *Pres-SRO-search* TRUE) then 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat ? *sql* " AND 
"((Pressure_Low <= " ? *pres-low* 
N <= Pressure-High) OR (Pressure_Low <= 
? *pres-high* 
" <= Pressure-High) AND NOT ((Pressure_Low <= 
" ? *pres-low* 

AND (" ? *pres-high* " <= Pressure_High)))" 
)) 

else 
(bind ? *sql* (str-cat 

"((Pressure_Low <_ ? *pres-low* 

160 



" <= Pressure-High) OR (Pressure-Low <= 
? *pres-high* 
" <= Pressure_High) AND NOT ((Pressure_Low <= 
" ? *pres-low* 
") AND (" ? *pres-high* " <= Pressure_High)))" 

(if (eq ? *Pres-SRI-search* TRUE) then 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat ? *sql* " AND 
"((Pressure_Low <= " ? *pres-low* 
") AND (" ? *pres-high* " <= Pressure_High))" 

)) 
else 

(bind ? *sql* (str-cat 
"((Pressure_Low <= " ? *pres-low* 
") AND (" ? *pres-high* " <= Pressure_High))" 

(if (eq ? *Pres-CRI-search* TRUE) then 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat ? *sql* " AND " 
"((" ? *pres-low* " <= Pressure_Low)" 
" AND (Pressure_High <_ " ? *pres-high* "))" 

else 
(bind ? *sql* (str-cat 

"((" ? *pres-low* " <= Pressure_Low)" 
" AND (Pressure_High <_ 0 ? *pres-high* "))" 

else 
(if (neq ? *pres-low* "") then 

(bind ? *pres-low* (integer (string-to-float ? *pres- 
low*))) 

(if (neq ? *sql* "") then 
(bind ? *sql* (str-cat ? *sql* " AND 

"((Pressure_Low <= 
? *pres-low* 

<= Pressure-High) OR (Pressure-Low <= 
(* ? *pres-low* (- 1 ? *pres-tolerance*)) 

<= Pressure-High) OR (Pressure-Low <= 
(* ? *pres-low* (+ 1 ? *pres-tolerance*)) 

<= Pressure_High))" 
)) 

else 
(bind ? *sql* (str-cat 

"((Pressure_Low <= 
? *pres-low* 

<= Pressure-High) OR (Pressure-Low <= 
(* ? *pres-low* (- 1 ? *pres-tolerance*)) 

<= Pressure-High) OR (Pressure-Low <= 
(* ? *pres-low* (+ 1 ? *pres-tolerance*)) 

<= Pressure_High))" 

else 
(if (neq ? *pres-high* "") then 

161 



(bind ? *pres-high* (integer (string-to-float ? *pres- 
high*))) 

(if (neq ? *sql* "") then 
(bind ? *sql* (str-cat ? *sql* " AND " 

"((Pressure_Low <= 
? *pres-high* 
" <= Pressure_High) OR (Pressure_Low <= " 
(* ? *pres-high* (- 1 ? *pres-tolerance*)) 
" <= Pressure_High) OR (Pressure_Low <= ^ 
(* ? *pres-high* (+ 1 ? *pres-tolerance*)) 

<= Pressure_High))" 
)) 

else 
(bind ? *sql* (str-cat 

"((Pressure_Low <= 
? *pres-high* 
" <= Pressure_High) OR (Pressure_Low <= " 
(* ? *pres-high* (- 1 ? *pres-tolerance*)) 

<= Pressure_High) OR (Pressure_Low <= " 
(* ? *pres-high* (+ 1 ? *pres-tolerance*)) 

<= Pressure_High))" 

(printout t ? *sql* crlf) 

display the current record set values on to the various window 
boxes 

(deffunction get-display-string (? recordset ? field) 
(bind ? record-string (recordset-get-char-data ? recordset ? field)) 
(bind ? string-length (length ? record-string)) 
(if (> ? string-length 2) then 

(bind ? record-string (sub-string 2 (- ? string-length 1) 
? record-string)) 

else 
(bind ? record-string NU) 

** 

(deffunction display-record () "" 

(menu-enable ? *data-menu* 11 1) 

(menu-enable ? *data-menu* 12 1) 

(menu-enable ? *report-menu* 21 1) 

(menu-enable ? *report-menu* 22 1) 

(menu-enable ? *report-menu* 23 1) 

(menu-enable ? *report-menu* 24 1) 

(menu-enable ? *translate-menu* 30 1) 

(menu-enable ? *translate-menu* 31 1) 

(if (neq ? *retrieved-number* 0) then 
(text-set-value ? *number-textbox* (recordset-get-char-data 

? *recordset* 0)) 
(bind ? *main-ID* (recordset-get-int-data ? *recordset* 1)) 

162 



(bind ? *problem-title* (recordset-get-char-data ? *recordset* 
2)) 

(text-set-value ? *equipment-textbox* (get-display-string 
? *recordset* 7)) 

(text-set-value ? *operating-mode-textbox* (get-display-string 
? *recordset* 9)) 

(text-set-value ? *thermal-behaviour-textbox* (get-display- 
string ? *recordset* 11)) 

(text-set-value ? *reaction-type-textbox* (get-display-string 
? *recordset* 13)) 

(text-set-value ? *reaction-order-textbox* (get-display-string 
? *recordset* 15)) 

(text-set-value ? *reversible-textbox* (get-display-string 
? *recordset* 17)) 

(text-set-value ? *phases-textbox* (get-display-string 
? *recordset* 19)) 

(text-set-value ? *mass-transfer-textbox* (get-display-string 
? *recordset* 21)) 

(text-set-value ? *heat-transfer-textbox* (get-display-string 
? *recordset* 23)) 

(text-set-value ? *pipeline-flow-textbox* (get-display-string 
? *recordset* 25)) 

(text-set-value ? *equipment-desc-textbox* (recordset-get- 
char-data ? *recordset* 8)) 

(text-set-value ? *operating-mode-desc-textbox* (recordset- 
get-char-data ? *recordset* 10)) 

(text-set-value ? *thermal-behaviour-desc-textbox* (recordset- 
get-char-data ? *recordset* 12)) 

(text-set-value ? *reaction-type-desc-textbox* (recordset-get- 
char-data ? *recordset* 14)) 

(text-set-value ? *reaction-order-desc-textbox* (recordset- 
get-char-data ? *recordset* 16)) 

(text-set-value ? *reversible-desc-textbox* (recordset-get- 
char-data ? *recordset* 18)) 

(text-set-value ? *phases-desc-textbox* (recordset-get-char- 
data ? *recordset* 20)) 

(text-set-value ? *mass-transfer-desc-textbox* (recordset-get- 
char-data ? *recordset* 22)) 

(text-set-value ? *heat-transfer-desc-textbox* (recordset-get- 
char-data ? *recordset* 24)) 

(text-set-value ? *pipeline-flow-desc-textbox* (recordset-get- 
char-data ? *recordset* 26)) 

(text-set-value ? *chemical-textbox* (get-display-string 
? *recordset* 27)) 

(text-set-value ? *record-number-textbox* (float-to-string 
(recordset-get-int-data ? *recordset* 1))) 

(multi-text-set-value ? *description-multi-textbox* 
(str-cat (recordset-get-char-data ? *recordset* 3) " 

(recordset-get-char-data ? *recordset* 4) "" 
(recordset-get-char-data ? *recordset* 5) "" 
(recordset-get-char-data ? *recordset* 6) )) 

(text-set-value ? *message-box* 
(str-cat ? *current-record-number* " of " ? *retrieved- 

number*)) 
(bind ? *prob-name* (recordset-get-char-data ? *recordset* 29)) 
(bind ? *unit-name* (recordset-get-char-data ? *recordset* 30)) 
(bind ? *model-time* (recordset-get-char-data ? *recordset* 

31)) 
(bind ? *rep-int* (recordset-get-char-data ? *recordset* 32)) 
(bind ? *temp-low* (recordset-get-char-data ? *recordset* 34)) 
(bind ? *temp-high* (recordset-get-char-data ? *recordset* 35)) 

163 



(bind ? *pres-low* (recordset-get-char-data ? *recordset* 36)) 
(bind ? *pres-high* (recordset-get-char-data ? *recordset* 37)) 
(bind ? *temp-unit* (recordset-get-char-data ? *recordset* 38)) 
(bind ? *pres-unit* (recordset-get-char-data ? *recordset* 39)) 

else 
(text-set-value ? *number-textbox* NN) 

(text-set-value ? *equipment-textbox* 
(text-set-value ? *operating-mode-textbox* 
(text-set-value ? *thermal-behaviour-textbox* 
(text-set-value ? *reaction-type-textbox* "") 
(text-set-value ? *reaction-order-textbox* "") 
(text-set-value ? *reversible-textbox* NN) 
(text-set-value ? *phases-textbox* "") 
(text-set-value ? *mass-transfer-textbox* 
(text-set-value ? *heat-transfer-textbox* 
(text-set-value ? *pipeline-flow-textbox* 
(text-set-value ? *chemical-textbox* "") 
(multi-text-set-value ? *description-multi-textbox* "") 

(window-show ? *panel* 0) 
(window-show ? *panel2* 1) 
(window-show ? *panel3* 0) 

(deffunction large-crlf () 

(deffunction display-more-eqn () "" 
(open "eqn-file. tmp" ? *temp-file* "w") 
(printout ? *temp-file* "EQUATIONS" crlf crlf) 
(loop-for-count (? cnt 1 20) do 

(if (not (or (eq (recordset-get-char-data ? *recordset* (+ ? cnt 
1)) "") 

(eq (recordset-get-char-data ? *recordset* (+ ? cnt 1)) 
"END"))) then 

(printout ? *temp-file* (recordset-get-char-data ? *recordset* 
(+ ? cnt 1)) crlf) 

(if (neq (recordset-get-char-data ? *recordset* (+ 20 (* ? cnt 
4))) "") then 

(printout ? *temp-file* "UB " (recordset-get-char-data 
? *recordset* (+ 20 (* ? cnt 4)))) 

(if (neq (recordset-get-char-data ? *recordset* (+ 19 (* ? cnt 
4))) "") then 

(printout ? *temp-file* ; LB " (recordset-get-char-data 
? *recordset* (+ 19 (* ? cnt 4)))) 

(if (neq (recordset-get-char-data ? *recordset* (+ 18 (* ? cnt 
4))) "") then 

(printout ? *temp-file* ; FB " (recordset-get-char-data 
? *recordset* (+ 18 (* ? cnt 4)))) 

(printout ? *temp-file* (recordset-get-char-data 
? *recordset* (+ 21 (* ? cnt 4))) crlf crlf) 

(close) 
(text-window-load-file ? *text-win* "eqn-file. tmp") 

(deffunction display-more-const () "" 

164 



(open "const-file. tmp" ? *temp-file* "w") 
(printout ? *temp-file* "CONSTANTS" crlf crlf) 
(loop-for-count (? cnt 1 35) do 

(if (neq (recordset-get-char-data ? *recordset* (+ ? cnt 1)) 
then 

(printout ? *temp-file* (recordset-get-char-data ? *recordset* 
(+ ? cnt 1)) " ") ; Name 

(printout ? *temp-file* (recordset-get-char-data ? *recordset* 
(+ 33 (* ? cnt 4))) " ") ; Value 

(printout ? *temp-file* (recordset-get-char-data ? *recordset* 
(+ 35 (* ? cnt 4))) "; ") ; Units 

(printout ? *temp-file* (recordset-get-char-data ? *recordset* 
(+ 36 (* ? cnt 4))) crlf crlf) ; Description 

(close) 
(text-window-load-file ? *boris* "const-file. tmp") 

(deffunction display-more-var () "" 
(open "var-file. tmp" ? *temp-file* "w") 
(printout ? *temp-file* "VARIABLES (Mathematical Method)" crlf 

crlf) 
(loop-for-count (? cnt 1 25) do 

(if (neq (recordset-get-char-data ? *recordset* (+ ? cnt 1)) "") 
then 

(printout ? *temp-file* (recordset-get-char-data ? *recordset* 
(+ ? cnt 1)) " ") 

(printout ? *temp-file* (recordset-get-char-data ? *recordset* 
(+ 19 (* ? cnt 8))) "" ) 

(printout ? *temp-file* (recordset-get-char-data ? *recordset* 
(+ 20 (* ? cnt 8))) "") 

(if (not (and (eq (recordset-get-char-data ? *recordset* (+ 19 
(* ? cnt 8))) "") 

(eq (recordset-get-char-data ? *recordset* (+ 20 (* 
? cnt 8))) ""))) then 

(printout ? *temp-file* (recordset-get-char-data 
? *recordset* (+ 25 (* ? cnt 8)))) 

(if (neq (recordset-get-char-data ? *recordset* (+ 23 (* ? cnt 
8))) "") then 

(printout ? *temp-file* " ; UB " (recordset-get-char-data 
? *recordset* (+ 23 (* ? cnt 8)))) 

(if (neq (recordset-get-char-data ? *recordset* (+ 22 (* ? cnt 
8))) "") then 

(printout ? *temp-file* " ; LB " (recordset-get-char-data 
? *recordset* (+ 22 (* ? cnt 8)))) 

(printout ? *temp-file* (recordset-get-char-data 
? *recordset* (+ 26 (* ? cnt 8)))) 

(if (neq (recordset-get-char-data ? *recordset* (+ 24 (* ? cnt 
8))) "") then 

(printout ? *temp-file* 
(recordset-get-char-data ? *recordset* (+ 24 (* 

? cnt 8))) ")") 

(printout ? *temp-file* crlf crlf) 

(close) 
(text-window-load-file ? *doris* "var-file. tmp") 

165 



(window-show ? *panel* 0) 
(window-show ? *panel2* 0) 
(window-show ? *panel3* 1) 

; Button and checkbox callbacks 

when the children check-box is checked 
(deffunction children-check-callback (? id) 

(if (eq ? *match-children* FALSE) 

then (bind ? *match-children* TRUE) 
else (bind ? *match-children* FALSE)) 

when the parent check-box is checked 
(deffunction parent-check-callback (? id) 

(if (eq ? *match-parent* FALSE) 
then (bind ? *match-parent* TRUE) 

else (bind ? *match-parent* FALSE)) 

when the related check-box is checked 
(deffunction related-check-callback (? id) 

(if (eq ? *match-related-terms* FALSE) 

then (bind ? *match-related-terms* TRUE) 
else (bind ? *match-related-terms* FALSE)) 

when the first button is pressed, set pointer to first record 
(deffunction first-button-callback (? id) 

(if (neq ? *retrieved-number* 0) 
then (bind ? *current-record-number* 1) 

(recordset-move-first ? *recordset*) 
(display-record) 

when previous button is pressed, move pointer back one place 
(deffunction previous-button-callback (? id) 

(if (neq ? *retrieved-number* 0) 

then (if (neq ? *current-record-number* 1) 
then (bind ? *current-record-number* (- ? *current-record- 

number* 1)) 
(recordset-move-prev ? *recordset*) 
(display-record)) 

; when next button is pressed, move pointer one place forward 

(deffunction next-button-callback (? id) 

(if (neq ? *retrieved-number* 0) 
then (if (neq ? *current-record-number* ? *retrieved-number*) 

then (bind ? *current-record-number* (+ ? *current-record- 
number* 1)) 
(recordset-move-next ? *recordset*) 
(display-record)) 

; 'when last button is pressed, move pointer to last record 
(deffunction last-button-callback (? id) 

(if (neq ? *retrieved-number* 0) 

then (bind ? *current-record-number* ? *retrieved-number*) 
(recordset-move-last ? *recordset*) 
(display-record) 

166 



; when clear button is pressed, clear panel and reset globals 
(deffunction on-panel-clear-button (? id) 

(set-reset-globals TRUE) 
(window-delete ? *main-frame*) 
(reset) 
(eval "(startup)") 

(deffunction printout-sql-query () "" 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat "SELECT * FROM " ? *database-data-table- 
name* " WHERE (" ? *sql* ")" )) 

(if (eq 0 (recordset-execute-sql ? *recordset* ? *sql*)) then 
(bind ? msg (database-get-error-message ? *database*)) 
(printout t ? msg crlf) 
(return 0) 

(printout t "Records: " (recordset-get-number-records 
? *recordset*) crlf) 

(bind ? *retrieved-number* (recordset-get-number-records 
? *recordset*)) 

(if (neq ? *retrieved-number* 0) then 
(bind ? *current-record-number* 1) 
(display-record) 

else 
(text-set-value ? *message-box* (str-cat "No records 

retrieved. " )) 
(display-record) 

(deffunction get-eqn-sql-query () "" 
(initialise-database) 

(bind ? *sql* (str-cat ? *sqlall* ? *main-ID* )) 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat "SELECT * FROM " ? *database-equation- 
table-name* " WHERE (" ? *sql* ")" )) 

(if (eq 0 (recordset-execute-sql ? *recordset* ? *sql*)) then 
(bind ? msg (database-get-error-message ? *database*)) 
(printout t ? msg crlf) 
(return 0) 

(bind ? *retrieved-number* (recordset-get-number-records 
? *recordset*)) 

(deffunction printout-eqn-sql-query () "" 
(get-eqn-sql-query) 

(if (neq ? *retrieved-number* 0) then 
(bind ? *current-record-number* 1) 
(display-more-eqn) 

(deffunction get-const-sql-query () 
(initialise-database) 

(bind ? *sql* (str-cat ? *sqlall* ? *main-ID* )) 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat "SELECT * FROM " ? *database-constant- 
table-name* " WHERE (" ? *sql* ")" )) 

167 



(if (eq 0 (recordset-execute-sql ? *recordset* ? *sql*)) then 
(bind ? msg (database-get-error-message ? *database*)) 
(printout t ? msg crlf) 
(return 0) 

(bind ? *retrieved-number* (recordset-get-number-records 
? *recordset*)) 

(deffunction printout-const-sql-query () on 
(get-const-sql-query) 

(if (neq ? *retrieved-number* 0) then 
(bind ? *current-record-number* 1) 
(display-more-const) 

(deffunction get-var-sql-query () 
(initialise-database) 

(bind ? *sql* (str-cat ? *sqlall* ? *main-ID* )) 
(if (neq ? *sql* "") then 

(bind ? *sql* (str-cat "SELECT * FROM ? *database-variable- 
table-name* " WHERE (" ? *sql* ")" )) 

(if (eq 0 (recordset-execute-sql ? *recordset* ? *sql*)) then 
(bind ? msg (database-get-error-message ? *database*)) 
(printout t ? msg crlf) 
(return 0) 

(bind ? *retrieved-number* (recordset-get-number-records 
? *recordset*)) 

(deffunction printout-var-sql-query () "" 

(get-var-sql-query) 
(if (neq ? *retrieved-number* 0) then 

(bind ? *current-record-number* 1) 
(display-more-var) 

(deffunction not-exist (? term ? multi-term) no 
(while (> (length ? multi-term) 0) 

(if (eq (str-compare ? term 
(sub-string 2 
(- (length (implode$ (first$ ? multi-term))) 1) 
(implode$ (first$ ? multi-term)))) 0) then 

(return FALSE) 

(bind ? multi-term (rest$ ? multi-term)) 

(return TRUE) 

; when search button is pressed, set up and call the SQL query 
(deffunction search-button-callback (? id) 

(bind ? *temp-1ow* (text-get-value ? *temp-low-searchbox*)) 

(bind ? *temp-high* (text-get-value ? *temp-high-searchbox*)) 

(bind ? *pres-low* (text-get-value ? *pres-low-searchbox*)) 

168 



(bind ? *pres-high* (text-get-value ? *pres-high-searchbox*)) 
(printout t ? *Num-Search* crlf) 

(if (neq ? *Num-Search* 1) then 
(Numerical-Search) 

else 
(initialise-database) 
(construct-sql-query) 
(printout-sql-query) 

******************************************************************** 
When More Info button pressed, show equation screen 

(deffunction more-button-callback (? id) 
(window-show ? *panel2* 0) 
(menu-enable ? *data-menu* 11 0) 
(menu-enable ? *report-menu* 21 0) 
(menu-enable ? *report-menu* 22 0) 
(menu-enable ? *report-menu* 23 0) 
(menu-enable ? *report-menu* 24 0) 
(printout-eqn-sql-query) 
(printout-const-sql-query) 
(printout-var-sql-query) 

; startup creates a frame, panels and panel items 

(deffunction on-menu-command (? frame ? id) 
(switch ? id 
Quit 
(case 1 then 

(database-close ? *database*) 
(if (on-close ? frame) then (window-delete ? frame))) 

; More info 
(case 11 then (more-button-callback ? id) 

; Occurence Matrix 
(case 12 then (occurence-matrix)) 
Search 
(case 13 then (search-button-callback ? id)) 

Clear 
(case 14 then (set-reset-globals TRUE) 

(database-close ? *database*) 
(window-delete ? *main-frame*) 
(reset) 
(eval "(startup)")) 

First 
(case 21 then (first-button-callback ? id)) 
Previous 
(case 22 then (previous-button-callback ? id)) 

Next 
(case 23 then (next-button-callback ? id)) 
Last 
(case 24 then (last-button-callback ? id)) 

gPROMS translator 
(case 30 then (translate-gPROMS)) 

169 



Simulink translator 
(case 31 then (translate-SIMULINK)) 

Help 
(case 200 then (message-box "Intelligent Modelling Interface for 

Process Simulators vO. 04 
by Graham Clark (c) 2000" wxOK 10 "About IMIPS Prototype")) 

(deffunction startup () "" 
(bind ? *main-frame* (frame-create 0 "Intelligent Modelling 

Interface for Process Simulators" 

-1 -1 ? *main-frame-x* ? *main-frame-y* wxDEFAULT_FRAME)) 
(frame-create-status-line ? *main-frame*) 
(frame-set-status-text ? *main-frame* 

; add callbacks 
(window-add-callback ? *main-frame* OnSize on-size) 
(window-add-callback ? *main-frame* OnClose on-close) 
(window-add-callback ? *main-frame* OnMenuCommand on-menu-command) 

; Populate panell 
(bind ? *panel* (panel-create ? *main-frame* 00 ? *main-frame-x* 

? *main-frame-y*)) 
(panel-set-label-position ? *panel* wxVERTICAL) 

(bind ? file-menu (menu-create)) 
(menu-append ? file-menu 1 "&Quit") 
(bind ? *data-menu* (menu-create)) 
(menu-append ? *data-menu* 11 "&More Info... 
(menu-append ? *data-menu* 12 "&Occurence Matrix") 
(menu-enable ? *data-menu* 11 0) 
(menu-enable ? *data-menu* 12 0) 
(menu-append-separator ? *data-menu*) 
(menu-append ? *data-menu* 13 "&Search") 
(menu-append-separator ? *data-menu*) 
(menu-append ? *data-menu* 14 "&Clear") 
(bind ? *report-menu* (menu-create)) 
(menu-append ? *report-menu* 21 "&First") 
(menu-append ? *report-menu* 22 "&Previous") 
(menu-append ? *report-menu* 23 "&Next") 
(menu-append ? *report-menu* 24 "&Last") 
(menu-enable ? *report-menu* 21 0) 

(menu-enable ? *report-menu* 22 0) 

(menu-enable ? *report-menu* 23 0) 

(menu-enable ? *report-menu* 24 0) 

(bind ? *translate-menu* (menu-create)) 

(menu-append ? *translate-menu* 30 "&gPROMS") 
(menu-append ? *translate-menu* 31 "&SIMULINK") 
(menu-enable ? *translate-menu* 30 0) 

(menu-enable ? *translate-menu* 31 0) 

(bind ? help-menu (menu-create)) 

(menu-append ? help-menu 200 "&About") 

(bind ? menu-bar (menu-bar-create)) 

(menu-bar-append ? menu-bar ? file-menu "&File") 

(menu-bar-append ? menu-bar ? *data-menu* "F&orms") 
(menu-bar-append ? menu-bar ? *report-menu* "&Report") 

(menu-bar-append ? menu-bar ? *translate-menu* "&Translate") 
(menu-bar-append ? menu-bar ? help-menu "&Help") 

170 



(frame-set-menu-bar ? *main-frame* ? menu-bar) 

(bind ? listequip (list-box-create ? *panel* on-list-choice "Select 
Equipment" 0 -1 -1 ? *box-s-x* ? *list-s-y* on "equipment-list")) 

(append-to-list ? listequip (class-subclasses equipment)) 
(bind ? *equipment-searchbox* (text-create ? *panel* "" "Search" 

-1 -1 ? *text-s-x* ? *text-s-y*)) 
(bind ? *related-equipment-searchbox* (text-create ? *panel* "" 

"Related Items" "" -1 -1 ? *text-s-x* ? *text-s-y*)) 
(panel-new-line ? *panel*) 
(bind ? listopmode (list-box-create ? *panel* on-list-choice 

"Operating Mode" 0 -1 -1 ? *box-s-x* ? *list-s-y* on "operating- 
mode-list")) 

(append-to-list ? listopmode (class-subclasses Operating_Mode)) 
(bind ? *operating-mode-searchbox* (text-create ? *panel* " on 

-1 -1 ? *text-s-x* ? *text-s-y*)) 
(bind ? *related-operating-mode-searchbox* (text-create ? *panel* 

"" "" "" -1 -1 ? *text-s-x* ? *text-s-y*)) 
(panel-new-line ? *panel*) 
(bind ? listthermal (list-box-create ? *panel* on-list-choice 

"Thermal Behaviour" 0 -1 -1 ? *box-s-x* ? *list-s-y* 
"thermal-behaviour-list")) 

(append-to-list ? listthermal (class-subclasses 
Thermal_Behaviour)) 

(bind ? *thermal-behaviour-searchbox* (text-create ? *panel* NO N 
"" -1 -1 ? *text-s-x* ? *text-s-y*)) 

(bind ? *related-thermal-behaviour-searchbox* (text-create 
? *panel* "" "" "" -1 -1 ? *text-s-x* ? *text-s-y*)) 

(panel-new-line ? *panel*) 

(bind ? listreactype (list-box-create ? *panel* on-list-choice 
"Reaction Type" 0 -1 -1 ? *box-s-x* ? *list-s-y* on "reaction- 
type-list")) 

(append-to-list ? listreactype (class-subclasses Reaction_Type)) 
(bind ? *reaction-type-searchbox* (text-create ? *panel* NN NN no 

-1 -1 ? *text-s-x* ? *text-s-y*)) 
(bind ? *related-reaction-type-searchbox* (text-create ? *panel* NN 

"" "" -1 -1 ? *text-s-x* ? *text-s-y*)) 
(panel-new-line ? *panel*) 
(bind ? listreacorder (list-box-create ? *panel* on-list-choice 

"Reaction order" 0 -1 -1 ? *box-s-x* ? *list-s-y* on "reaction- 
order-list")) 

(append-to-list ? listreacorder (class-subclasses Reaction_Order)) 
(bind ? *reaction-order-searchbox* (text-create ? *panel* "" "N on 

-1 -1 ? *text-s-x* ? *text-s-y*)) 
(bind ? *related-reaction-order-searchbox* (text-create ? *panel* 

NN N" "" -1 -1 ? *text-s-x* ? *text-s-y*)) 

(panel-new-line ? *panel*) 
(bind ? listreversible (list-box-create ? *panel* on-list-choice 

"Reversible? " 0 -1 -1 ? *box-s-x* ? *list-s-y* on Nreversible- 
list")) 

(append-to-list ? listreversible (class-subclasses Reversibility)) 
(bind ? *reversible-searchbox* (text-create ? *panel* on -1 

-1 ? *text-s-x* ? *text-s-y*)) 
(bind ? *related-reversible-searchbox* (text-create ? *panel* "" N 

N on -1 -1 ? *text-s-x* ? *text-s-y*)) 
(panel-new-line ? *panel*) 
(bind ? listphase (list-box-create ? *panel* on-list-choice "Select 

Phases" 0 -1 -1 ? *box-s-x* ? *list-s-y* no "phase-list")) 
(append-to-list ? listphase (class-subclasses phases)) 
(bind ? *phases-searchbox* (text-create ? *panel* "" -1 -1 

? *text-s-x* ? *text-s-y*)) 

171 



(bind ? *related-phases-searchbox* (text-create ? *panel* 
-1 -1 ? *text-s-x* ? *text-s-y*)) 

(panel-new-line ? *panel*) 
(bind ? listmasstrans (list-box-create ? *panel* on-list-choice 

"Mass Transfer" 0 -1 -1 ? *box-s-x* ? *list-s-y* ^" "mass- 
transfer-list")) 

(append-to-list ? listmasstrans (class-subclasses Mass_Transfer)) 
(bind ? *mass-transfer-searchbox* (text-create ? *panel* "" "N "" 

-1 -1 ? *text-s-x* ? *text-s-y*)) 
(bind ? *related-mass-transfer-searchbox* (text-create ? *panel* 

"" on -1 -1 ? *text-s-x* ? *text-s-y*)) 
(panel-new-line ? *panel*) 
(bind ? listheattrans (list-box-create ? *panel* on-list-choice 

"Heat Transfer" 0 -1 -1 ? *box-s-x* ? *list-s-y* "^ "heat- 
transfer-list")) 

(append-to-list ? listheattrans (class-subclasses Heat_Transfer)) 
(bind ? *heat-transfer-searchbox* (text-create ? *panel* 

-1 -1 ? *text-s-x* ? *text-s-y*)) 
(bind ? *related-heat-transfer-searchbox* (text-create ? *panel* 

""" -1 -1 ? *text-s-x* ? *text-s-y*)) 
(panel-new-line ? *panel*) 
(bind ? listpipeline (list-box-create ? *panel* on-list-choice 

"Pipeline Flow Type" 0 -1 -1 ? *box-s-x* ? *list-s-y* 
"pipeline-flow-list")) 

(append-to-list ? listpipeline (class-subclasses Pipeline_Flow)) 
(bind ? *pipeline-flow-searchbox* (text-create ? *panel* ^^ ^^ "^ 

-1 -1 ? *text-s-x* ? *text-s-y*)) 
(bind ? *related-pipeline-flow-searchbox* (text-create ? *panel* 

^" ^^ -1 -1 ? *text-s-x* ? *text-s-y*)) 
(panel-new-line ? *panel*) 
(bind ? list-chemicals (list-box-create ? *panel* on-list-choice 

"Select Chemical" 0 -1 -1 ? *box-s-x* ? *list-s-y* "" "chemical- 
list")) 

(append-to-list ? list-chemicals (class-subclasses chemical)) 
(bind ? *chemical-searchbox* (text-create ? *panel* 

? *text-s-x* ? *text-s-y*)) 
(bind ? *related-chemical-searchbox* (text-create ? *panel* "" ^^ 

"" -1 -1 ? *text-s-x* ? *text-s-y*)) 

(panel-new-line ? *panel*) 
(bind ? *temp-low-searchbox* (text-create ? *panel* "Temperature 

(Low)" "" -1 -1 ? *text-s-x* ? *text-s-y*)) 
(bind ? *temp-high-searchbox* (text-create ? *panel* "(High)" no 

-1 -1 ? *text-s-x* ? *text-s-y*)) 
(bind ? list-temp (list-box-create ? *panel* on-list-choice "Select 

Units" 0 -1 -1 (- ? *box-s-x* 200) ? *list-s-y* "" "temp-list")) 
(append-to-list ? list-temp (class-subclasses temp-unit)) 
(bind ? *temp-tolerance-searchbox* (text-create ? *panel* 

"Tolerance" "" -1 -1 (- ? *text-s-x* 123) ? *text-s-y*)) 

(panel-new-line ? *panel*) 
(bind ? *pres-low-searchbox* (text-create ? *panel* "Pressure 

(Low)" "" -1 -1 ? *text-s-x* ? *text-s-y*)) 
(bind ? *pres-high-searchbox* (text-create ? *panel* "(High)" 

-1 -1 ? *text-s-x* ? *text-s-y*)) 
(bind ? list-pres (list-box-create ? *panel* on-list-choice "0- 

1 -1 (- ? *box-s-x* 200) ? *list-s-y* "" "pres-list")) 
(append-to-list ? list-pres (class-subclasses pres-unit)) 
(bind ? *pres-tolerance-searchbox* (text-create ? *panel* 

-1 -1 (- ? *text-s-x* 123) ? *text-s-y*)) 

172 



(bind ? search-button (button-create ? *panel* search-button- 
callback "Search" ? *button-p-x* ? *button-p-y* ? *but-s-x* ? *but- 
s-y* "" "search")) 

(bind ? swap-panel (button-create ? *panel* on-panel-change-button 
"Results' -1 -1 ? *but-s-x* ? *but-s-y* "" "next")) 

(bind ? clear-panel (button-create ? *panel* on-panel-clear-button 
"Clear" -1 -1 ? *but-s-x* ? *but-s-y* "" "clear")) 

(bind ? *description-searchbox* (text-create ? *panel* "" "Enter 
Description Keyword" "" ? *supp-search-p-x* ? *freetext-desc-y* 
? *box-s-x* ? *key-y*)) 

(bind ? *record-number-searchbox* (text-create ? *panel* "" "Record 
No. " "" ? *rec-num-p-x* ? *rec-num-p-y* 75 ? *key-y*)) 

(bind ? parent-check (check-box-create ? *panel* parent-check- 
callback "Parent" ? *check-p-x* ? *check-p-y* -1 -1 "" "")) 

(bind ? children-check (check-box-create ? *panel* children-check- 
callback "Children" -1 -1 -1 -1 "" "")) 

(check-box-set-value ? children-check 1) 
(bind ? *match-children* TRUE) 

(bind ? related-check (check-box-create ? *panel* related-check- 
callback "Related" -1 -1 -1 -1 "" "")) 

; populate panel2 
(bind ? *panel2* (panel-create ? *main-frame* 00 ? *frame-x* 

? *frame-y*)) 
(panel-set-label-position ? *panel2* wxVERTICAL) 
(bind ? *description-multi-textbox* (multi-text-create ? *panel2* 

"Problem description" 
1 -1 ? *descrip-s-x* ? *descrip-s-y* "wxREADONLY")) 

(panel-new-line ? *panel2*) 
(bind ? *equipment-textbox* (text-create ? *panel2* "" "Equipment" 

NO -1 -1 ? *box-s-x* ? *key-y*)) 
(bind ? *equipment-desc-textbox* (text-create ? *panel2* "" 

"Description" ON -1 -1 ? *box-s-xl* ? *key-y*)) 
(panel-new-line ? *panel2*) 
(bind ? *operating-mode-textbox* (text-create ? *panel2* "" 

"Operating Mode" "" -1 -1 ? *box-s-x* ? *key-y*)) 
(bind ? *operating-mode-desc-textbox* (text-create ? *panel2* "" 

" ON -1 -1 ? *box-s-xl* ? *key-y*)) 
(panel-new-line ? *panel2*) 
(bind ? *thermal-behaviour-textbox* (text-create ? *panel2* ON 

"Thermal Behaviour" NO -1 -1 ? *box-s-x* ? *key-y*)) 
(bind ? *thermal-behaviour-desc-textbox* (text-create ? *panel2* "" 

" -1 -1 ? *box-s-xl* ? *key-y*)) 
(panel-new-line ? *panel2*) 
(bind ? *reaction-type-textbox* (text-create ? *panel2* 

"Reaction Type" NO -1 -1 ? *box-s-x* ? *key-y*)) 

(bind ? *reaction-type-desc-textbox* (text-create ? *panel2* 
"" -1 -1 ? *box-s-xl* ? *key-y*)) 

(panel-new-line ? *panel2*) 
(bind ? *reaction-order-textbox* (text-create ? *panel2* ON 

"Reaction order" "" -1 -1 ? *box-s-x* ? *key-y*)) 

(bind ? *reaction-order-desc-textbox* (text-create ? *panel2* 
" "" -1 -1 ? *box-s-xl* ? *key-y*)) 

(panel-new-line ? *panel2*) 
(bind ? *reversible-textbox* (text-create ? *panel2* ON 

"Reversibility" "" -1 -1 ? *box-s-x* ? *key-y*)) 
(bind ? *reversible-desc-textbox* (text-create ? *panel2* 

-1 -1 ? *box-s-xl* ? *key-y*)) 
(panel-new-line ? *panel2*) 

173 



(bind ? *phases-textbox* (text-create ? *panel2* "" "Phases" "" -1 
-1 ? *box-s-x* ? *key-y*)) 

(bind ? *phases-desc-textbox* (text-create ? *panel2* 
-1 ? *box-s-xl* ? *key-y*)) 

(panel-new-line ? *panel2*) 
(bind ? *mass-transfer-textbox* (text-create ? *panel2* "" "Mass 

Transfer" "" -1 -1 ? *box-s-x* ? *key-y*)) 
(bind ? *mass-transfer-desc-textbox* (text-create ? *panel2* 

"" -1 -1 ? *box-s-xl* ? *key-y*)) 
(panel-new-line ? *panel2*) 
(bind ? *heat-transfer-textbox* (text-create ? *panel2* "" "Heat 

Transfer" "" -1 -1 ? *box-s-x* ? *key-y*)) 
(bind ? *heat-transfer-desc-textbox* (text-create ? *panel2* 

"" -1 -1 ? *box-s-xl* ? *key-y*)) 
(panel-new-line ? *panel2*) 
(bind ? *pipeline-flow-textbox* (text-create ? *panel2* 

"Pipeline Flow Type" "" -1 -1 ? *box-s-x* ? *key-y*)) 
(bind ? *pipeline-flow-desc-textbox* (text-create ? *panel2* 

"" -1 -1 ? *box-s-xl* ? *key-y*)) 
(panel-new-line ? *panel2*) 
(bind ? *chemical-textbox* (text-create ? *panel2* "" "Chemicals" 

"" -1 -1 ? *box-s-x* ? *key-y*)) 
(bind ? *message-box* (text-create ? *panel2* "" "Retrieved Set" 

"" -1 -1 ? *rec-set-s-x* ? *key-y* "wxREADONLY")) 
(bind ? *record-number-textbox* (text-create ? *panel2* "" "Record 

no. " "" -1 -1 200 ? *key-y*)) 

(bind ? first-button (button-create ? *panel2* first-button- 
callback 01<" ? *first-but-p-x* ? *first-but-p-y* 30 30)) 

(bind ? previous-button (button-create ? *panel2* previous-button- 
callback "<" -1 -1 30 30)) 

(bind ? next-button (button-create ? *panel2* next-button-callback 
">" -1 -1 30 30)) 

(bind ? last-button (button-create ? *panel2* last-button-callback 
">1" -1 -1 30 30)) 

(bind ? swap-panel (button-create ? *panel2* on-panel-change-button 
"Search" ? *pan2-button-p-x* ? *pan2-button-p-yl* ? *but-s-x* 
? *but-s-y* "" "prey")) 

(bind ? clear-panel2 (button-create ? *panel2* on-panel-clear- 
button "Clear" ? *pan2-button-p-x* ? *pan2-button-p-y2* ? *but-s- 
x* ? *but-s-y* "" "clear")) 

(bind ? more-panel (button-create ? *panel2* on-panel-more-button 
"More Info.. " ? *pan2-button-p-x* ? *pan2-button-p-y3* ? *but-s-x* 
? *but-s-y* "" "more")) 

; populate panel3 
(bind ? *panel3* (panel-create ? *main-frame* 00 ? *frame-x* 

? *frame-y*)) 
(panel-set-label-position ? *panel3* wxVERTICAL) 
(bind ? *text-win* (text-window-create ? *panel3*)) 
(bind ? *boris* (text-window-create ? *panel3* )) 
(bind ? *doris* (text-window-create ? *panel3* )) 
(text-window-set-editable ? *text-win* 0) 
(text-window-set-editable ? *boris* 0) 
(text-window-set-editable ? *doris* 0) 

(window-centre ? *main-frame* wxBOTH) 
(window-show ? *main-frame* 1) 
(window-show ? *panel* 1) 
(window-show ? *panel2* 0) 

174 



(window-show ? *panel3* 0) 
? *main-frame*) 

******************************************************************** 

(deffunction on-start-choice (? id) ON 
(bind ? start-selection (list-box-get-string-selection ? id)) 
(switch ? start-selection 

(case "Large Display (17+ inch Screen)" then 
(load "lgscreen. clp") 

(case "Medium Display (15 inch Screen)" then 
(load "mdscreen. clp") 

(case "Small Display (14 inch Screen)" then 
(load "smscreen. clp") 

(window-show ? *start-frame* 0) 
(window-show ? *start-panel* 0) 
(startup) 

Function to create problem eqn, var and const instances 

(deffunction create-problem-instances () 

; Create equations 
(text-window-write ? *trans* "Creating problem equation instances ") 
(get-eqn-sql-query) 
(bind ? *no-of-eqn* 0) 
(make-instance [eqn] of EQUATION 

(Eqn "") (Description "Equation used for initialising loops")) 
(loop-for-count (? cnt 1 20) do 

(if (not (or (eq (recordset-get-char-data ? *recordset* (+ ? cnt 1)) 
"") (eq (recordset-get-char-data ? *recordset* (+ ? cnt 1)) 

"END"))) then 
(bind ? *no-of-eqn* (+ ? *no-of-eqn* 1)) 
(make-instance (symbol-to-instance-name (sym-cat eqn ? cnt)) of 

EQUATION 
(Eqn (recordset-get-char-data ? *recordset* (+ ? cnt 1))) 

(UpperBound 
(if (neq (recordset-get-char-data ? *recordset* (+ 20 (* ? cnt 

4))) "") then 
(recordset-get-char-data ? *recordset* (+ 20 (* ? cnt 4))) 
else "All")) 

(LowerBound (if (neq (recordset-get-char-data ? *recordset* (+ 
19 (* ? cnt 4))) "") then 

(recordset-get-char-data ? *recordset* (+ 19 (* ? cnt 4))) 
else "All")) 

(FixedBound (if (neq (recordset-get-char-data ? *recordset* (+ 
18 (* ? cnt 4))) "") then 

(recordset-get-char-data ? *recordset* (+ 18 (* ? cnt 4))) 
else "All")) 

(Description (recordset-get-char-data ? *recordset* (+ 21 (* 
? cnt 4)))) 

175 



(text-window-write-? *trans*- "Completed ") 

; Create variables 
(text-window-write ? *trans* "Creating problem variable instances ") 
(get-var-sql-query) 
(bind ? *no-of-var* 0) 
(loop-for-count (? cnt 1 25) do 

(if (neq (recordset-get-char-data ? *recordset* (+ ? cnt 1)) "") 
then 

(bind ? *no-of-var* (+ ? *no-of-var* 1)) 
(make-instance (symbol-to-instance-name (sym-cat var ? cnt)) of 

VARIABLE 
(Identifier (recordset-get-char-data ? *recordset* (+ ? cnt 1))) 
(Unit (if (neq (recordset-get-char-data ? *recordset* (+ 25 (* 
? cnt 8))) "") then 

(recordset-get-char-data ? *recordset* (+ 25 (* ? cnt 8))) 
else "")) 

(Description (recordset-get-char-data ? *recordset* (+ 26 (* ? cnt 
8)))) 

(UpperBound (if (neq (recordset-get-char-data ? *recordset* (+ 
23 (* ? cnt 8))) "") then 

(recordset-get-char-data ? *recordset* (+ 23 (* ? cnt 8))) 
else "All")) 

(LowerBound (if (neq (recordset-get-char-data ? *recordset* (+ 
22 (* ? cnt 8))) "") then 

(recordset-get-char-data ? *recordset* (+ 22 (* ? cnt 8))) 
else "All")) 

(Set (if (neq (recordset-get-char-data ? *recordset* (+ 20 (* 
? cnt 8))) "") then 

(recordset-get-char-data ? *recordset* (+ 20 (* ? cnt 8))) 
else "unknown")) 

(Value (if (neq (recordset-get-char-data ? *recordset* (+ 19 (* 
? cnt 8))) "") then 

(recordset-get-char-data ? *recordset* (+ 19 (* ? cnt 8))) 
else "unknown")) 

(Distributed (if (neq (recordset-get-char-data ? *recordset* (+ 
21 (* ? cnt 8))) "") then 

(recordset-get-char-data ? *recordset* (+ 21 (* ? cnt 8))) 

else "N/A")) 
(MathMethod (if (neq (recordset-get-char-data ? *recordset* (+ 
24 (* ? cnt 8))) "") then 

(recordset-get-char-data ? *recordset* (+ 24 (* ? cnt 8))) 

else "N/A")) 

(text-window-write ? *trans* "Completed ") 

; Create constants 
(text-window-write ? *trans* "Creating problem constant instances ") 
(get-const-sql-query) 
(bind ? *no-of-const* 0) 
(loop-for-count (? cnt 1 35) do 

(if (neq (recordset-get-char-data ? *recordset* (+ ? cnt 1)) 
then 

(bind ? *no-of-const* (+ ? *no-of-const* 1)) 
(make-instance (symbol-to-instance-name (sym-cat const ? cnt)) of 

CONSTANT 
(Identifier (recordset-get-char-data ? *recordset* (+ ? cnt 1))) 
(Unit (if (neq (recordset-get-char-data ? *recordset* (+ 35 (* 

? cnt 4))) "") then 

176 



(recordset-get-char-data ? *recordset* (+ 35 (* ? cnt 4))) 
else "")) 

(Include (if (neq (recordset-get-char-data ? *recordset* (+ 34 (* 
? cnt 4))) "") then 

(recordset-get-char-data ? *recordset* (+ 34 (* ? cnt 4))) 
else "Y")) 

(Description (recordset-get-char-data ? *recordset* (+ 36 (* ? cnt 
4)))) 

(Value (if (neq (recordset-get-char-data ? *recordset* (+ 33 (* 
? cnt 4))) "") then 

(if (eq (recordset-get-char-data ? *recordset* (+ 34 (* ? cnt 
4))) "Y") then 

(recordset-get-char-data ? *recordset* (+ 33 (* ? cnt 4))) 
else 

(string-to-long (recordset-get-char-data ? *recordset* (+ 
33 (* ? cnt 4)))) 

else 0.1)) 

(text-window-write ? *trans* "Completed 

Functions for gPROMS translation 

(deffunction translate-gPROMS () 

Create a frame to keep track of the translation 
(bind ? *trans-frame* (frame-create 0 "Translation Status" 220 200 

420 250)) 
(frame-create-status-line ? *trans-frame*) 
(bind ? *trans-panel* (panel-create ? *trans-frame* 00 400 400)) 
(panel-set-label-position ? *trans-panel* wxVERTICAL) 
(bind ? *trans* (text-window-create ? *trans-panel*)) 
(window-set-size ? *trans* 0 0,415 250) 
(text-window-set-editable ? *trans* 0) 
(window-show ? *trans-frame* 1) 
(create-problem-instances) 
(text-window-write ? *trans* "gPROMS translator invoked") 

(bind ? name (get-text-from-user "File Output Name" (sym-cat ? *prob- 

name* ". gPROMS"))) 
(open ? name ? *sim-file* "w") 
(text-window-write ? *trans* (sym-cat "Writing gPROMS input file: 

? name " ")) 
(print-gPROMS-introduction) 
(print-gPROMS-declaration) 
(print-gPROMS-model) 
(print-gPROMS-process) 
(close) 
(text-window-write ? *trans* "gPROMS translation complete") 
(if (on-close ? *trans-frame*) then (window-delete ? *trans-frame*)) 

Functions for SIMULINK translation 

(deffunction Scope-check-callback (? id) 
(if (eq ? *Scope* FALSE) then 

177 



(bind ? *Scope* TRUE) 
else 

(bind ? *Scope* FALSE) 

(if (eq ? *Scope* TRUE) then 
(bind ? *Display* FALSE) 
(check-box-set-value ? *Display* 0) 

(deffunction Display-check-callback (? id) 
(if (eq ? *Display* FALSE) then 

(bind ? *Display* TRUE) 
else 

(bind ? *Display* FALSE) 

(if (eq ? *Display* TRUE) then 
(bind ? *Scope* FALSE) 
(check-box-set-value ? *Scope* 0) 

(deffunction Simulink-continue () 
(bind ? name (get-text-from-user "File Output Name" (sym-cat ? *prob- 

name* ". mdl"))) 
(open ? name ? *sim-file* "w") 
(text-window-write ? *trans* (sym-cat "Writing SIMULINK input file: 

" ? name " ")) 
(print-simulink-introduction) 
(print-simulink-blocks) 
(close) 
(if (on-close ? *trans-frame*) then 

(window-delete ? *trans-frame*) 
(window-delete ? *vars-frame*)) 

(text-window-write ? *trans* "SIMULINK translation complete") 

(deffunction OK-button-callback (? id) 
(window-delete ? *vars-frame*) 

(deffunction translate-SIMÜLINK () 
Create a frame to keep track of the translation 
(bind ? *trans-frame* (frame-create 0 "Translation Status" 220 200 

420 250)) 
(frame-create-status-line ? *trans-frame*) 
(bind ? *trans-panel* (panel-create ? *trans-frame* 00 400 400)) 
(panel-set-label-position ? *trans-panel* wxVERTICAL) 
(bind ? *trans* (text-window-create ? *trans-panel*)) 
(window-set-size ? *trans* 00 415 250) 
(text-window-set-editable ? *trans* 0) 
(window-show ? *trans-frame* 1) 
(create-problem-instances) 
(text-Windout-Write ? *trans* "SIMULINK translator invoked") 

(Simulink-continue) 

Function App-on-finit 

178 



(deffunction app-on-finit () "" 
(unwatch all) 
(reset) 
(if (= ? *small-font* 0) then 
(bind ? *small-font* (font-create 12 wxSWISS WxNORMAL WXNORMAL 0)) 

;;; create initial popup menu to determine frame/panel size 
(bind ? *start-frame* (frame-create 0 "Database of Simulation 

Models" 220 200 420 250)) 
(frame-create-status-line ? *start-frame*) 
(bind ? *start-panel* (panel-create ? *start-frame* 00 400 400)) 
(panel-set-label-position ? *start-panel* wxVERTICAL) 
(bind ? start-choice (list-box-create ? *start-panel* on-start- 

choice "Select Preferred Size of Display" 0 30 40 350 100 "" 
"")) 

(append-to-list ? start-choice ? *initial-choice*) 
(window-centre ? *start-frame* wxBOTH) 
(window-show ? *start-frame* 1) 

(window-show ? *start-panel* 1) 

(deffunction popup2 (? searchbox ? var ? related-searchbox ? related-var) 

(text-set-value ? searchbox ? var) 
(if (eq ? *match-related-terms* TRUE) then 

(text-set-value ? related-searchbox ? related-var) 
(bind ? related-var ? *related-term*) 

(return) 

(deffunction popup (? choicel ? name ? choice) no 
(if (and (neq (length (class-subclasses (string-to-symbol 

? choicel))) 0) (neq ? choicel ? choice)) then 
(bind ? children (create$ (class-subclasses (string-to-symbol 

? choicel)))) 
(bind ? children (insert$ ? children 1 ? choicel)) 
(bind ? choice2 (get-choice ? choicel ? children ? *panel*)) 

else 
(bind ? *related-term* "") 
(assert (find-related ? choicel)) 
(run) 
(switch ? name 

(case "equipment-list" then 
(bind ? *equipment* ? choicel) 
(popup2 ? *equipment-searchbox* ? *equipment* 

? *related-equipment-searchbox* ? *related- 
equipment*) 

(case "operating-mode-list" then 
(bind ? *operating-mode* ? choicel) 
(popup2 ? *operating-mode-searchbox* ? *operating-mode* 

? *related-operating-mode-searchbox* ? *related- 
operating-mode*) 

(case "thermal-behaviour-list" then 
(bind ? *thermal-behaviour* ? choicel) 

179 



(popup2 ? *thermal-behaviour-searchbox* ? *thermal- 
behaviour* ? *related-thermal-behaviour-searchbox* 
? *related-thermal-behaviour*) 

(case "reaction-type-list" then 
(bind ? *reaction-type* ? choicel) 
(popup2 ? *reaction-type-searchbox* ? *reaction-type* 

? *related-reaction-type-searchbox* 
? *related-reaction-type*) 

(case "reaction-order-list" then 
(bind ? *reaction-order* ? choicel) 
(popup2 ? *reaction-order-searchbox* ? *reaction-order* 

? *related-reaction-order-searchbox* ? *related- 
reaction-order*) 

(case "reversible-list" then 
(bind ? *reversible* ? choicel) 
(popup2 ? *reversible-searchbox* ? *reversible* 

? *related-reversible-searchbox* ? *related- 
reversible*) 

(case "phase-list" then 
(bind ? *phases* ? choicel) 
(popup2 ? *phases-searchbox* ? *phases* ? *related- 

phases-searchbox* ? *related-phases*) 

(case "mass-transfer-list" then 
(bind ? *mass-transfer* ? choicel) 
(popup2 ? *mass-transfer-searchbox* ? *mass-transfer* 

? *related-mass-transfer-searchbox* ? *related-mass- 
transfer*) 

(case "heat-transfer-list" then 
(bind ? *heat-transfer* ? choicel) 
(popup2 ? *heat-transfer-searchbox* ? *heat-transfer* 

? *related-heat-transfer-searchbox* ? *related-heat- 
transfer*) 

(case "pipeline-flow-list" then 
(bind ? *pipeline-flow* ? choicel) 
(popup2 ? *pipeline-flow-searchbox* ? *pipeline-flow* 

? *related-pipeline-flow-searchbox* ? *related- 

pipeline-flow*) 

(case "chemical-list" then 
(bind ? *chemical* ? choicel) 
(popup2 ? *chemical-searchbox* ? *chemical* ? *related- 

chemical-searchbox* ? *related-chemical*) 

(popup ? choice2 ? name ? choicel) 

180 



IV. 6. gPROMS translator code file: gPROMStrans. clp 

Author : Graham Clark 
File Name: defgPROM. clp 
Last Updated: 20/12/00 
Description: gPROMS input file creation translator version 

; Forward declarations 
(deffunction check-eqn (? eqn ? name)) 
(deffunction check-bdry-eqn (? eqn ? name)) 
(deffunction str-replace (? a ?b ? c)) 
(deffunction str-replace-all (? a ?b ? c)) 

(deffunction str-remove (? string) 
(loop-for-count (? cnt 1 ? *no-of-var*) do 

(if (<> 0 (str-compare "Y" 
(send (symbol-to-instance-name (sym-cat var ? cnt))get-Include))) 

then 
(bind ? string (str-replace-all ? string 

(send (symbol-to-instance-name(sym-cat var ? cnt))get-Identifier) 
" ") ) 

(loop-for-count (? cnt 1 ? *no-of-const*) do 

(if (<> 0 (str-compare "Y" 

(send (symbol-to-instance-name (sym-cat 

then 
(bind ? string (str-replace-all ? string 

(send (symbol-to-instance-name(sym-cat 
Identifier) "")) 

(return ? string) 

const ? cnt))get-Include))) 

const ? cnt))get- 

(deffunction partial (? string) 
(bind ? parcount 0) 

(bind ? st 1) 
(bind ? end (str-length ? string)) 
(while (= 0 (str-compare "TRUE" (integerp(str-index "PARTIAL" 

(sub-string ? st ? end ? string))))) do 

(bind ? parcount (+ ? parcount 1)) 

(bind ? length (str-length ? string)) 
(bind ? stpar (str-index ": " ? string)) 
(bind ? endgar (+ ? stpar (str-index ")" (sub-string ? stpar ? length 

? string)) -1)) 
(bind ? replace (sub-string ? stpar ? endpar ? string)) 
(bind ? string (str-replace ? string ? replace (sym-cat (sym-cat # 

? parcount) #))) 

(bind ? st ? endpar) 
(make-instance (symbol-to-instance-name (sym-cat par 7parcount)) of 

PARTIALS (Value ? replace) (ReplacedWith (sym-cat # (sym-cat 
? parcount #)))) 

(make-instance [parO] of PARTIALS (Number ? parcount)) 
(return ? string) 

(deffunction change-integral (? eqn ? name) 

181 



(bind ? *integral-count* (+ ? *integral-count* 1)) 
(bind ? start (+ (str-index "INTEGRAL(" ? eqn) 9)) 
(bind ? end (str-index ": " ? eqn)) 
(bind ? length (str-length ? eqn)) 
(bind ? variable (sub-string ? start (- ? end 1) ? eqn)) 
(bind ? finish (+ (str-index ")" (sub-string ? start ? length ? eqn))(- 

? start 1))) 
(bind ? string (sub-string ? start ? finish ? eqn)) 
(bind ? eqn (str-cat (sym-cat (sub-string 1 (- ? start 1) ? eqn) 

(str-replace-all ? string ? variable (sym-cat "IntNo" ? *integral- 

count*))) 
(sub-string (+ ? finish 1) ? length ? eqn))) 

(send (symbol-to-instance-name ? name) put-Eqn ? eqn) 
(return ? eqn) 

(deffunction print-for-loop (? string ? name) 
(bind ? counter 1) 
(bind ? string (partial ? string)) 
(loop-for-count (? cnt 1 ? *no-of-var*) do 

(if (<> 0 (str-compare "none" (nth$ 2 
(send (symbol-to-instance-name (sym-cat var ? cnt)) get- 

ArrayVar)))) 
then 

(loop-for-count (? count 2 (+ (nth$ 1 
(send (symbol-to-instance-name (sym-cat var ? cnt)) get-ArrayVar)) 

1)) do 
(bind ? oldstring (nth$ ? count 

(send (symbol-to-instance-name (sym-cat var ? cnt)) get- 
ArrayVar))) 

(bind ? newstring (str-replace-all ? string ? oldstring (sym-cat i 

? counter))) 
(bind ? change (sym-cat i ? counter)) 
(if (<> 0 (str-compare ? string ? newstring)) 
then 

(loop-for-count (? c 1 ? *no-of-var*) do 
(if (= 0 (str-compare ? oldstring (send(symbol-to-instance- 

name(sym-cat var ? c))get-Identifier))) 
then 

(bind ? var (sym-cat var ? c)) 

(loop-for-count (? c 1 ? *no-of-const*) do 

(if (= 0 (str-compare ? oldstring (send(symbol-to-instance- 
name(sym-cat const ? c))get-Identifier))) 

then 
(bind ? var (sym-cat const ? c)) 

(if (= 1 ? *gPROMS-boundary*) 

then 
(if (= 0 (str-compare "Y" (send (symbol-to-instance-name 

? var)get-Include))) 
then 

(if (= 0 (str-compare "N/A" (send(symbol-to-instance-name 
? var)get-Distributed))) 

then 
(loop-for-count (? c 1 ? counter) do 

(printout ? *sim-file* " ")) 
(printout ? *sim-file* " FOR " (sym-cat i ? counter) " :=1 

TO " (nth$ ? count (send (symbol-to-instance-name (sym-cat 

182 



var ? cnt)) get-ArrayVar)) " D0" crlf) 
(bind ? counter (+ ? counter 1)) 

else 
(loop-for-count (? c 1 ? counter) do 

(printout ? *sim-file* " ")) 
(bind ? split (str-index ": " (send(symbol-to-instance-name 

? var)get-Distributed))) 
(bind ? len (str-length (send(symbol-to-instance-name 

? var)get-Distributed))) 
(printout ? *sim-file* " FOR " (sym-cat i ? counter) 

(sub-string 1 (- ? split 1) (send(symbol-to-instance-name 
? var)get-Distributed))) 

Lower bound 
(if (= 0 (str-compare TRUE (integerp 

(str-index ? oldstring (send(symbol-to-instance-name 
? name)get-LowerBound))))) 

then 
(printout ? *sim-file* "I+") 

(printout ? *sim-file* " TO " (sub-string (+ ? split 1) ? len 
(send(symbol-to-instance-name ? var)get-Distributed))) 

Upper bound 
(if (= 0 (str-compare TRUE (integerp 

(str-index ? oldstring (send(symbol-to-instance-name 
? name)get-UpperBound))))) 

then 
(printout ? *sim-file* 

(printout ? *sim-file* " DO" crlf) 
(bind ? counter (+ ? counter 1)) 

else 
(str-replace-all ? string ? change 

else 
(if (<> 0 (str-compare "Y" (send (symbol-to-instance-name 

? var)get-Include))) 
then 

(if (= 0 (str-compare "N/A" (send(symbol-to-instance-name 
? var)get-Distributed))) 

then 
(loop-for-count (? c 1 ? counter) do 

(printout ? *sim-file* " ")) 
(printout ? *sim-file* " FOR " (sym-cat i ? counter) " :=1 

TO " (nth$ ? count (send (symbol-to-instance-name (sym-cat 
var ? cnt)) get-ArrayVar)) " DO" crlf) 

(bind ? counter (+ ? counter 1)) 
else 

(loop-for-count (? c 1 ? counter) do 
(printout ? *sim-file* " ")) 

(bind ? split (str-index ": " (send(symbol-to-instance-name 
? var)get-Distributed))) 

(bind ? len (str-length (send(symbol-to-instance-name 
? var)get-Distributed))) 

(printout ? *sim-file* " FOR " (sym-cat i ? counter) 
(sub-string 1 (- ? split 1) (send(symbol-to-instance-name 

? var)get-Distributed))) 
Lower bound 
(if (= 0 (str-compare TRUE (integerp 

(str-index ? oldstring (send(symbol-to-instance-name 
? name)get-LowerBound))))) 

183 



then 
(printout ? *sim-file* "I+") 

(printout ? *sim-file* " TO " (sub-string (+ ? split 1) ? len 
(send(symbol-to-instance-name ? var)get-Distributed))) 

Upper bound 
(if (= 0 (str-compare TRUE (integerp 

(str-index ? oldstring (send(symbol-to-instance-name 
? name)get-UpperBound))))) 

then 
(printout ? *sim-file* 

(printout ? *sim-file* " DO" crlf) 
(bind ? counter (+ ? counter 1)) 

else 
(str-replace-all ? string ? change 

(bind ? string ? newstring) 

(loop-for-count (? cnt 1 ? *no-of-const*) do 
(if (<> 0 (str-compare "none" (nth$ 2 

(send (symbol-to-instance-name (sym-cat const ? cnt)) get- 
ArrayVar)))) 

then 
(loop-for-count (? count 2 (+ (nth$ 1 

(send (symbol-to-instance-name (sym-cat const ? cnt)) get- 
ArrayVar)) 1)) do 

(bind ? oldstring (nth$ ? count 
(send (symbol-to-instance-name (sym-cat const ? cnt)) get- 
ArrayVar))) 

(bind ? newstring (str-replace-all ? string ? oldstring (sym-cat i 
? counter))) 

(if (<> 0 (str-compare ? string ? newstring)) 
then 

(loop-for-count (? c 1 ? *no-of-var*) do 
(if (= 0 (str-compare ? oldstring (send(symbol-to-instance- 

name(sym-cat var ? c))get-Identifier))) 
then 

(bind ? var (sym-cat var ? c)) 

(loop-for-count (? c 1 ? *no-of-const*) do 

(if (= 0 (str-compare ? oldstring (send(symbol-to-instance- 
name(sym-cat const ? c))get-Identifier))) 

then 
(bind ? var (sym-cat const ? c)) 

(if (= 0 (str-compare "Y" (send (symbol-to-instance-name 
? var)get-Include))) 

then 
(if (= 0 (str-compare "N/A" (send(symbol-to-instance-name 

? var)get-Distributed))) 
then 

(loop-for-count (? c 1 ? counter) do 
(printout ? *sim-file* 0 ")) 

184 



ýý 

r ý{ 
(printout ? *sim-file* " FOR " (sym-cat i ? counter) " :=1 

TO " (nth$ ? count (send (symbol-to-instance-name (sym-cat 
const ? cnt)) get-ArrayVar)) " DO" crlf) 

(bind ? counter (+ ? counter 1)) 
else 

(loop-for-count (? c 1 ? counter) do 
(printout ? *sim-file* " ")) 

(bind ? split (str-index ": " (send(symbol-to-instance-name 
? var)get-Distributed))) 

(bind ? len (str-length (send(symbol-to-instance-name ? var)get- 
Distributed))) 

(printout ? *sim-file* " FOR " (sym-cat i ? counter) N 
(sub-string 1 (- ? split 1) (send(symbol-to-instance-name 

? var)get-Distributed))) 
Lower bound 
(if (= 0 (str-compare TRUE (integerp 

(str-index ? oldstring (send(symbol-to-instance-name 
? name)get-LowerBound))))) 

then 
(printout ? *sim-file* 

(printout ? *sim-file* " TO " (sub-string (+ ? split 1) ? len 
(send(symbol-to-instance-name ? var)get-Distributed))) 

Upper bound 
(if (= 0 (str-compare TRUE (integerp 

(str-index ? oldstring (send(symbol-to-instance-name 
? name)get-UpperBound))))) 

then 
(printout ? *sim-file* "I-") 

(printout ? *sim-file* " DO" crlf) 
(bind ? counter (+ ? counter 1)) 

else 
(str-replace-all ? string ? change 

(bind ? string ? newstring) 

(loop-for-count (? n 1 ? counter) 
(printout ? *sim-file* " ")) 

(loop-for-count (? l 1 (send [par0] get-Number)) 
(bind ? string (str-replace ? string 

(send (symbol-to-instance-name (sym-cat par ? 1))get-ReplacedWith) 
(sym-cat ", " (sub-string 2 

(str-length (send (symbol-to-instance-name (sym-cat par ? 1))get- 
Value)) 

(send (symbol-to-instance-name (sym-cat par ? l))get-Value))))) 

(printout ? *sim-file* ? string "; " crlf) 
(bind ? count ? counter) 
(loop-for-count (? cnt 1 (- ? counter 1)) do 

(bind ? count (- ? count 1)) 
(loop-for-count (? c 1 ? count) do 

(printout ? *sim-file* " ")) 
(printout ? *sim-file* END #For" crlf) 

(return ? string) 

IQ( 



(deffunction print-bdry-for-loop (? string ? name) 
(bind ? counter 1) 
(bind ? string (partial ? string)) 
(bind ? equals (str-index (send (symbol-to-instance-name ? name) 
get-FixedBound))) 

(bind ? LHS (sub-string 1 (- ? equals 1) (send (symbol-to-instance- 
name ? name) 

get-FixedBound))) 
(bind ? RHS (sub-string (+ ? equals 1) (str-length 

(send (symbol-to-instance-name ? name) get-FixedBound)) 
(send (symbol-to-instance-name ? name) get-FixedBound))) 

(bind ? string 
(str-replace-all ? string ? LHS ? RHS)) 

(loop-for-count (? cnt 1 ? *no-of-var*) do 
(if (<> 0 (str-compare "none" (nth$ 2 

(send (symbol-to-instance-name (sym-cat var ? cnt)) get- 
ArrayVar)))) 

then 
(loop-for-count (? count 2 (+ (nth$ 1 

(send (symbol-to-instance-name (sym-cat var ? cnt)) get-ArrayVar)) 
1)) do 

(bind ? oldstring (nth$ ? count 
(send (symbol-to-instance-name (sym-cat var ? cnt)) get- 
ArrayVar))) 

(bind ? newstring (str-replace-all ? string ? oldstring (sym-cat i 
? counter))) 

(bind ? change (sym-cat i ? counter)) 
(if (<> 0 (str-compare ? string ? newstring)) 
then 

(loop-for-count (? c 1 ? *no-of-var*) do 
(if (= 0 (str-compare ? oldstring (send(symbol-to-instance- 

name(sym-cat var ? c))get-Identifier))) 
then 

(bind ? var (sym-cat var ? c)) 

(loop-for-count (? c 1 ? *no-of-const*) do 
(if (= 0 (str-compare ? oldstring (send(symbol-to-instance- 

name(sym-cat const ? c))get-Identifier))) 
then 

(bind ? var (sym-cat const ? c)) 

(if (= 0 (str-compare "Y" (send (symbol-to-instance-name 
? var)get-Include))) 

then 
(if (= 0 (str-compare "N/A" (send(symbol-to-instance-name 

? var)get-Distributed))) 
then 

(loop-for-count (? c 1 ? counter) do 
(printout ? *sim-file* " ")) 

(printout ? *sim-file* " FOR " (sym-cat i ? counter) :=1 TO 
" (nth$ ? count (send (symbol-to-instance-name (sym-cat 
var ? cnt)) get-ArrayVar)) " DO" crlf) 

(bind ? counter (+ ? counter 1)) 

else 
(loop-for-count (? c 1 ? counter) do 

(printout ? *sim-file* " ")) 
(bind ? split (str-index ": " (send(symbol-to-instance-name 

? var)get-Distributed))) 

IR6 



(bind ? len (str-length (send(symbol-to-instance-name ? var)get- 
Distributed))) 

(printout ? *sim-file* FOR " (sym-cat i ? counter) 
(sub-string 1 (- ? split 1) (send(symbol-to-instance-name 

? var)get-Distributed))) 
Lower bound 
(if (= 0 (str-compare TRUE (integerp 

(str-index ? oldstring (send(symbol-to-instance-name 
? name)get-LowerBound))))) 

then 
(printout ? *sim-file* "I+") 

(printout ? *sim-file* " TO " (sub-string (+ ? split 1) ? len 
(send(symbol-to-instance-name ? var)get-Distributed))) 

Upper bound 
(if (= 0 (str-compare TRUE (integerp 

(str-index ? oldstring (send(symbol-to-instance-name 
? name)get-UpperBound))))) 

then 
(printout ? *sim-file* wl-N) 

(printout ? *sim-file* " DO" crlf) 
(bind ? counter (+ ? counter 1)) 

else 
(str-replace-all ? string ? change w w) 

(bind ? string ? newstring) 

(loop-for-count (? cnt 1 ? *no-of-const*) do 
(if (<> 0 (str-compare "none" (nth$ 2 

(send (symbol-to-instance-name (sym-cat const ? cnt)) get- 
ArrayVar)))) 

then 
(loop-for-count (? count 2 (+ (nth$ 1 

(send (symbol-to-instance-name (sym-cat const ? cnt)) get- 
ArrayVar)) 1)) do 

(bind ? oldstring (nth$ ? count 
(send (symbol-to-instance-name (sym-cat const ? cnt)) get- 
ArrayVar))) 

(bind ? newstring (str-replace-all ? string ? oldstring (sym-cat i 
? counter))) 

(if (<> 0 (str-compare ? string ? newstring)) 
then 

(loop-for-count (? c 1 ? *no-of-var*) do 
(if (= 0 (str-compare ? oldstring (send(symbol-to-instance- 

name(sym-cat var ? c))get-Identifier))) 
then 

(bind ? var (sym-cat var ? c)) 

(loop-for-count (? c 1 ? *no-of-const*) do 
(if (= 0 (str-compare ? oldstring (send(symbol-to-instance- 

name(sym-cat const ? c))get-Identifier))) 
then 

(bind ? var (sym-cat const ? c)) 

187 



(if (= 0 
. 
(str-compare "Y" (send (symbol-to-instance-name 

? var)get-Include))) 
then 
(if (= 0 (str-compare "N/A" (send(symbol-to-instance-name 

? var)get-Distributed))) 
then 

(loop-for-count (? c 1 ? counter) do 
(printout ? *sim-file* " ")) 

(printout ? *sim-file* " FOR " (sym-cat i ? counter) " :=1 
TO " (nth$ ? count (send (symbol-to-instance-name (sym-cat 
const ? cnt)) get-ArrayVar)) " DO" crlf) 

(bind ? counter (+ ? counter 1)) 
else 

(loop-for-count (? c 1 ? counter) do 
(printout ? *sim-file* " ")) 

(bind ? split (str-index ": " (send(symbol-to-instance-name 
? var)get-Distributed))) 

(bind ? len (str-length (send(symbol-to-instance-name ? var)get- 
Distributed))) 

(printout ? *sim-file* " FOR " (sym-cat i ? counter) 
(sub-string 1 (- ? split 1) (send(symbol-to-instance-name 

? var)get-Distributed))) 
Lower bound 
(if (= 0 (str-compare TRUE (integerp 

(str-index ? oldstring (send(symbol-to-instance-name 
? name)get-LowerBound))))) 

then 
(printout ? *sim-file* "I+") 

(printout ? *sim-file* " TO " (sub-string (+ ? split 1) ? len 
(send(symbol-to-instance-name ? var)get-Distributed))) 

Upper bound 
(if (= 0 (str-compare TRUE (integerp 

(str-index ? oldstring (send(symbol-to-instance-name 
? name)get-UpperBound))))) 

then 
(printout ? *sim-file* "j-") 

(printout ? *sim-file* " DO" crlf) 
(bind ? counter (+ ? counter 1)) 

else 
(str-replace-all ? string ? change 

(bind ? string ? newstring) 

(loop-for-count (? n 1 ? counter) 
(printout ? *sim-file* " ")) 

(loop-for-count (? l 1 (send [parO] get-Number)) 
(bind ? string (str-replace ? string 

(send (symbol-to-instance-name (sym-cat par ? 1))get-ReplacedWith) 
(sym-cat ", " (sub-string 2 

(str-length (send (symbol-to-instance-name (sym-cat par ? 1))get- 
Value)) 

(send (symbol-to-instance-name (sym-cat par ? l))get-Value))))) 

(printout ? *sim-file* ? string "; " crlf) 
(bind ? count ? counter) 

188 



(loop-for-count (? cnt 1 
(bind ? count (- ? count 
(loop-for-count (? c 1 

(printout ? *sim-file* 
(printout ? *sim-file* 

(return ? string) 

(- ? counter 1)) do 
1)) 

? count) do 
" 0)) 

9 END #For" crlf) 

(deffunction write-array-variables (? name ? stbracket) 
(bind ? count 0) 
(bind ? arrayvar 

(sub-string (+ ? stbracket 1) 
(send(symbol-to-instance-name 
(send(symbol-to-instance-name 

(while (= 0 (str-compare TRUE 
do 

(bind ? arrayvar (str-replace 
(bind ? count (+ ? count 1)) 

(send (symbol-to-instance-name 
(insert$ (explode$ ? arrayvar) 

(return ? arrayvar) 

(- (str-length 
? name) get-Identifier)) 
? name) get-Identifier))) 

(integerp (str-index ", " 

? arrayvar ", " " ")) 

? name) put-ArrayVar 
1 (+ ? count 1))) 

1) 

? arrayvar)))) 

(deffunction print-array-declare (? name) 
(bind ? stbracket (str-index "(" 

(send(symbol-to-instance-name ? name)get-Identifier))) 
(printout ? *sim-file* "" (sub-string 1 (- ? stbracket 1) 

(send(symbol-to-instance-name ? name)get-Identifier)) 
" AS ARRAY") 

(printout ? *sim-file* 
(sub-string ? stbracket(str-length 
(send(symbol-to-instance-name ? name)get-Identifier)) 
(send(symbol-to-instance-name ? name)get-Identifier))) 

(write-array-variables ? name ? stbracket) 
(return ? name) 

(deffunction print-dist-declare (? name) 
(bind ? stbracket (str-index "(" 

(send(symbol-to-instance-name ? name)get-Identifier))) 
(printout ? *sim-file* "" (sub-string 1 (- ? stbracket 1) 

(send(symbol-to-instance-name ? name)get-Identifier)) 
AS DISTRIBUTION") 

(printout ? *sim-file* 
(sub-string ? stbracket(str-length 
(send(symbol-to-instance-name ? name)get-Identifier)) 
(send(symbol-to-instance-name ? name)get-Identifier))) 

(write-array-variables ? name ? stbracket) 
(return ? name) 

(deffunction print-gPROMS-const-array (? name) 
(bind ? stbracket (str-index "(" 

(send(symbol-to-instance-name ? name)get-Identifier))) 
(print-array-declare ? name) 
(printout ? *sim-file* " OF REAL # 

(send (symbol-to-instance-name ? name) get-Description)crlf) 
(return ? name) 

189 



(deffunction print-var-array-dist (? name ? cnt) 
(bind ? stbracket (str-index "(" 

(send(symbol-to-instance-name ? name)get-Identifier))) 
(print-array-declare ? name) 
(printout ? *sim-file* " OF Type" ? cnt #" 

(send (symbol-to-instance-name ? name) get-Description) crlf) 
(send (symbol-to-instance-name ? name) put-Type 

(sym-cat Type ? cnt)) 
(return ? name) 

(deffunction print-var-dist-dist (? name ? cnt) 
(bind ? stbracket (str-index "(" 

(send(symbol-to-instance-name ? name)get-Identifier))) 
(print-dist-declare ? name) 
(printout ? *sim-file* " OF Type" ? cnt "# 

(send (symbol-to-instance-name ? name) get-Description) crlf) 
(send (symbol-to-instance-name ? name) put-Type 

(sym-cat Type ? cnt)) 
(return ? name) 

(deffunction print-gPROMS-const (? cnt) 
(if (= 0 (str-compare ")" (sub-string (str-length (send 

(symbol-to-instance-name(sym-cat const ? cnt)) get-Identifier)) 
(str-length (send(symbol-to-instance-name(sym-cat const ? cnt))get- 

Identifier)) 
(send(symbol-to-instance-name(sym-cat const ? cnt))get- 

Identifier)))) 
then 

(bind ? name (sym-cat const ? cnt)) 
(print-gPROMS-const-array ? name) 

else 
(printout ? *sim-file* " (send (symbol-to-i nstance-name 

(sym-cat const ? cnt)) get-Identifier) " AS 
(if (<> 0 (str-compare TRUE (integerp (send 

(symbol-to-instance-name(sym-cat const ? cnt)) get-Value)))) 
then 

(printout ? *sim-file* "REAL # 
(send (symbol-to-instance-name (sym-cat const ? cnt)) get- 

Description) crlf) 
else 

(printout ? *sim-file* "INTEGER # 
(send (symbol-to-instance-name (sym-cat const ? cnt)) get- 

Description) crlf)) 

(return ? cnt) 

(deffunction print-dist () 
(bind ? count 1) 
(loop-for-count (? cnt 1 ? *no-of-var*) do 

(if (<> 0 (str-compare "N/A" 
(send (symbol-to-instance-name(sym-cat var ? cnt)) get- 

Distributed))) 
then 

(if (= 1 ? count) 
then 

(printout ? *sim-file* " DISTRIBUTION DOMAIN" crlf) 

190 



(bind ? count (+ 1 ? count)) 
(printout ? *sim-file* "" (send (symbol-to-instance-name 

(sym-cat var ? cnt)) get-Identifier) " AS (" 
(send (symbol-to-instance-name(sym-cat var ? cnt)) get- 

Distributed) ")" crlf) 

(return ? count) 

(deffunction array-dist-choice (? name ? cnt) 
(bind ? printcnt 0) 
(loop-for-count (? count 1 ? *no-of-var*) do 

(if (<> 0 (str-compare "N/A" 
(send (symbol-to-instance-name (sym-cat var ? count))get- 

Distributed))) 
then 

(if (= 0 (str-compare "TRUE" (integerp (str-index 
(send (symbol-to-instance-name (sym-cat var ? count)) get- 

Identifier) 
(send (symbol-to-instance-name ? name) get-Identifier))))) 

then 
(bind ? printcnt (+ ? printcnt 1)) 
(if (= 1 ? printcnt) 
then 

(print-var-dist-dist ? name ? cnt) 

else 
(bind ? printcnt (+ ? printcnt 1)) 
(if (= 1 ? printcnt) 
then 

(print-var-array-dist ? name ? cnt) 

else 
(bind ? printcnt (+ ? printcnt 1)) 
(if (= 1 ? printcnt) 
then 

(print-var-array-dist ? name ? cnt) 

(return ? cnt) 

(deffunction print-gPROMS-var (? cnt) 
(if (= 0 (str-compare "N/A" 

(send (symbol-to-instance-name(sym-cat var ? cnt)) get- 
Distributed))) 

then 
(if (= 0 (str-compare ")" (sub-string (str-length (send 

(symbol-to-instance-name(sym-cat var ? cnt)) get-Identifier)) 
(str-length (send(symbol-to-instance-name(sym-cat var ? cnt))get- 

Identifier)) 
(send(symbol-to-instance-name(sym-cat var ? cnt))get-Identifier)))) 

then 
(bind ? name (sym-cat var ? cnt)) 
(array-dist-choice ? name ? cnt) 

else 
(printout ? *sim-file* " (send (symbol-to-instance-name 

(sym-cat var ? cnt)) get-Identifier) " AS Type" ? cnt "# 

191 



(send (symbol-to-instance-name (sym-cat var ? cnt)) get- 
Description) crlf) 

(send (symbol-to-instance-name (sym-cat var ? cnt)) put-Type 
(sym-cat Type ? cnt)) 

(return ? cnt) 

(deffunction print-eqn-if (? name) 
(bind ? stelse (str-index "ELSE" ? name)) 
(bind ? stthen (str-index "THEN" ? name)) 
(bind ? if then (sub-string 1 (- ? stthen 1) ? name)) 
(bind ? thenelse (sub-string (+ ? stthen 5) (- ? stelse 1) ? name)) 
(bind ? elseend (sub-string (+ ? stelse 5) (str-length ? name) ? name)) 
(printout ? *sim-file* "" ? ifthen " THEN" crlf) 
(check-eqn ? thenelse ? name) 
(printout ? *sim-file* " ELSE" crlf) 
(check-eqn ? elseend ? name) 
(printout ? *sim-file* " END # If" crlf) 
(printout ? *sim-file* crlf) 
(return ? name) 

(deffunction print-eqn-while (? name) 
(bind ? stdo (str-index "DO" ? name)) 
(bind ? whiledo (sub-string 1 (- ? stdo 1) ? name)) 
(bind ? doend (sub-string (+ ? stdo 3) (str-length ? name) ? name)) 
(printout ? *sim-file* "" ? whiledo " DO" crlf) 
(check-eqn ? doend ? name) 
(printout ? *sim-file* END # While" crlf) 
(return ? name) 

(deffunction print-bdry-loop () 
(bind ? count 1) 
(loop-for-count (? cnt 1 ? *no-of-eqn*) do 

(bind ? name (sym-cat eqn ? cnt)) 
(bind ? eqn (send (symbol-to-instance-name ? name) get-Eqn)) 
(bind ? eqn (str-remove ? eqn)) 
(if (<> 0 (str-compare "A11" (send (symbol-to-instance-name ? name) 
get-FixedBound))) 

then 
(bind ? *gPROMS-boundary* 1) 
(if (= 1 ? count) 
then 

(printout ? *sim-file* " BOUNDARY") 

(bind ? count (+ 1 ? count)) 
(printout ? *sim-file* crlf "# 

(send (symbol-to-instance-name ? name) 
(if (= 0 (str-compare "TRUE" (integerp 

? eqn)))) 
then 

(change-integral ? eqn ? name) 

(check-bdry-eqn ? eqn ? name) 

(return ? count) 

get-Description) crlf) 
(str-index "INTEGRAL" 

192 w 



(deffunction print-gPROMS-eqn-loop (? cnt) 
(bind ? name (sym-cat eqn ? cnt)) 
(if (= 1 ? *gPROMS-boundary*) 
then 

(if (= 0 (str-compare "All" (send (symbol-to-instance-name (sym-cat 
eqn ? cnt)) 

get-FixedBound))) 
then 

(printout ? *sim-file* crlf "# 
(send (symbol-to-instance-name ? name) get-Description) crlf) 

(bind ? eqn (send (symbol-to-instance-name ? name) get-Eqn)) 
(bind ? eqn (str-remove ? eqn)) 
(if (= 0 (str-compare "TRUE" (integerp (str-index "INTEGRAL" 

? eqn)))) 
then 

(bind ? eqn (change-integral ? eqn ? name)) 

(check-eqn ? eqn ? name) 

else 
(if (= 0 (str-compare "All" (send (symbol-to-instance-name (sym-cat 

eqn ? cnt)) 
get-FixedBound))) 

then 
(printout ? *sim-file* crlf "# 

(send (symbol-to-instance-name ? name) get-Description) crlf) 
(bind ? eqn (send (symbol-to-instance-name ? name) get-Eqn)) 
(if (= 0 (str-compare "TRUE" (integerp (str-index "INTEGRAL" 

? eqn)))) 
then 

(bind ? eqn (change-integral ? eqn ? name)) 

(check-eqn ? eqn ? name) 

(return ? cnt) 

(deffunction set-const (? cnt) 
(if (<> 0 (str-compare ^)" (sub-string (str-length (send 

(symbol-to-instance-name(sym-cat const ? cnt)) get-Identifier)) 
(str-length (send(symbol-to-instance-name(sym-cat const ? cnt))get- 
Identifier)) (send(symbol-to-instance-name(sym-cat const ? cnt))get- 
Identifier)))) 

then 
(printout ? *sim-file* (send (symbol-to-instance-name 

(sym-cat const ? cnt)) get-Identifier) " ._" (send 
(symbol-to-instance-name (sym-cat const ? cnt)) get-Value) "; #" 
(send (symbol-to-instance-name (sym-cat const ? cnt)) get-Unit) 
crlf) 

else 
(bind ? stbracket (str-index "(^ 

(send(symbol-to-instance-name(sym-cat const ? cnt))get- 
Identifier))) 

(printout ? *sim-file* (sub-string 1 (- ? stbracket 1) 
(send(symbol-to-instance-name(sym-cat const ? cnt))get-Identifier)) 

(if (= 0 (str-compare TRUE (integerp (str-index 
(send(symbol-to-instance-name(sym-cat const ? cnt))get-Value))))) 

then 

193 



(printout ? *sim-file* "[" 
(send(symbol-to-instance-name (sym-cat tonst ? cnt)) get-Value) 
"I; #" 

(send 
li(symbol-to-instance-name 

(sym-cat const ? cnt)) get-Unit) 
crlf) 

else 
(printout ? *sim-file* (send(symbol-to-instance-name (sym-cat const 

? cnt)) get-Value) 
"#" 
(send (symbol-to-instance-name (sym-cat const ? cnt)) get-Unit) 

crlf) 

(return ? cnt) 

(deffunction finit-var (? cnt) 
(if (<> 0 (str-compare "unknown" (lowcase (send 

(symbol-to-instance-name(sym-cat var ? cnt)) get-Value)))) 
then 

(if (<> 0 (str-compare ")" (sub-string (str-length (send 
(symbol-to-instance-name(sym-cat var ? cnt)) get-Identifier)) 
(str-length (send(symbol-to-instance-name(sym-cat var ? cnt))get- 

Identifier)) 
(send(symbol-to-instance-name(sym-cat var ? cnt))get-Identifier)))) 

then 
(printout ? *Sim-file* (send (symbol-to-instance-name 

(sym-cat var ? cnt)) get-Identifier) "=" (send 
(symbol-to-instance-name (sym-cat var ? cnt)) get-Value) "; #" 
(send (symbol-to-instance-name (sym-cat var ? cnt)) get-Unit) 

crlf) 
else 

(if (= 0 (str-compare TRUE (integerp (str-index 
(send(symbol-to-instance-name(sym-cat var ? cnt))get-Value))))) 

then 
(bind ? stbracket (str-index "(" 

(send(symbol-to-instance-name(sym-cat var ? cnt))get- 
Identifier))) 

(bind ? stcomma (str-index 
(send(symbol-to-instance-name(sym-cat var ? cnt))get-Value))) 

(bind ? length (str-length 
(send(symbol-to-instance-name(sym-cat var ? cnt))get-Value))) 

(bind ? stcommaold 0) 
(bind ? count 1) 
(bind ? start 1) 
(while (= 0 (str-compare TRUE (integerp ? stcomma))) do 

(bind ? stcomma (+ ? stcomma ? stcommaold)) 
(bind ? value (sub-string ? start (- ? stcomma 1) 

(send (symbol-to-instance-name (sym-cat var ? cnt))get-Value))) 
(bind ? end (- ? stcomma 1)) 
(if (>= 0 (- ? start ? end)) 
then 

(printout ? *sim-file* (sub-string 1 ? stbracket 
(send(symbol-to-instance-name(sym-cat var ? cnt))get- 

Identifier)) 
? count ") =" ? value "; #" 
(send(symbol-to-instance-name (sym-cat var ? cnt))get-Unit) 

crlf) 

(bind ? start (+ ? stcomma 1)) 
(bind ? count (+ ? count 1)) 

194 



(bind ? stcommaold ? stcomma) 
(bind ? stcomma (str-index ", " (sub-string ? start ? length 

(send(symbol-to-instance-name(sym-cat var ? cnt))get-Value)))) 

(bind ? value (sub-string ? start ? length 
(send (symbol-to-instance-name (sym-cat var ? cnt))get-Value))) 

(printout ? *sim-file* "" (sub-string 1 ? stbracket 
(send(symbol-to-instance-name(sym-cat var ? cnt))get-Identifier)) 
? count ") =" ? value "; #" 
(send(symbol-to-instance-name (sym-cat var ? cnt))get-Unit) crlf) 

else 
(bind ? stbracket (str-index 

(send(symbol-to-instance-name(sym-cat var ? cnt))get- 
Identifier))) 

FOR loops ..... 
(bind ? name (sym-cat (send(symbol-to-instance-name(sym-cat var 

? cnt))get-Identifier) 

(bind ? name (sym-cat ? name 
(send(symbol-to-instance-name (sym-cat var ? cnt)) get-Value))) 

(bind ? name (sym-cat ? name "; # ")) 
(bind ? name (sym-cat ? name 

(send (symbol-to-instance-name (sym-cat var ? cnt)) get-Unit))) 
(bind ? name (str-remove ? name)) 
(print-for-loop ? name (sym-cat var ? cnt)) 

(return ? cnt) 

(deffunction set-var (? cnt) 
(if (<> 0 (str-compare ")" (sub-string (str-length (send 

(symbol-to-instance-name(sym-cat var ? cnt)) get-Identifier)) 
(str-length (send(symbol-to-instance-name(sym-cat var ? cnt))get- 

Identifier)) 
(send(symbol-to-instance-name(sym-cat var ? cnt))get-Identifier)))) 

then 
(printout ? *sim-file* "" (send (symbol-to-instance-name 

(sym-cat var ? cnt)) get-Identifier) " ._" (send 

(symbol-to-instance-name (sym-cat var ? cnt)) get-Set) "; #" 

(send (symbol-to-instance-name (sym-cat var ? cnt)) get-Unit) crlf) 

else 
(bind ? stbracket (str-index 

(send(symbol-to-instance-name(sym-cat var ? cnt))get-Identifier))) 
(printout ? *sim-file* "" (sub-string 1 (- ? stbracket 1) 

(send(symbol-to-instance-name(sym-cat var ? cnt))get-Identifier)) 

(if (= 0 (str-compare TRUE (integerp (str-index ", " 
(send(symbol-to-instance-name(sym-cat var ? cnt))get-Set))))) 

then 
(printout ? *sim-file* 

(send(symbol-to-instance-name (sym-cat var ? cnt)) get-Set) 
N]; #" 

(send (symbol-to-instance-name (sym-cat var ? cnt)) get-Unit) crlf) 

else 
(printout ? *sim-file* (send(symbol-to-instance-name (sym-cat var 

? cnt)) get-Set) 
^#" 
(send (symbol-to-instance-name (sym-cat var ? cnt)) get-Unit) 

crlf) 

195 



(return ? cnt) 

(deffunction assign-variables () 
(bind ? count 0) 
(loop-for-count (? cnt 1 ? *no-of-var*) do 

(if (<> 0 (str-compare "unknown" 
(send (symbol-to-instance-name (sym-cat var ? cnt))get-Set))) 

then 
(bind ? count (+ ? count 1)) 
(if (= 1 ? count) 
then 

(printout ? *sim-file* " ASSIGN" crlf) 
(printout ? *sim-file* " WITHIN " ? *unit-name* DO" crlf) 

(set-var ? cnt) 

(if (> ? count 0) 
then 

(printout ? *sim-file* END # Within" crlf crlf) 

(return ? count) 

(deffunction initialise-variables () 
(bind ? count 0) 
(loop-for-count (? cnt 1 ? *no-of-var*) do 

(if (<> 0 (str-compare "unknown" 
(send (symbol-to-instance-name (sym-cat var ? cnt))get-Value))) 

then 
(bind ? count (+ ? count 1)) 
(if (= 1 ? count) 
then 

(printout ? *sim-file* " INITIAL" crlf) 
(printout ? *sim-file* " WITHIN " ? *unit-name* " DO" crlf) 

(finit-var ? cnt) 

(if (> ? count 0) 
then 

(printout ? *sim-file* " END # Within" crlf crlf) 

(return ? count) 

(deffunction print-math-method () 
(bind ? count 0) 
(loop-for-count (? cnt 1 ? *no-of-var*) do 

(if (<> 0 (str-compare "N/A" 
(send (symbol-to-instance-name (sym-cat var ? cnt))get- 

MathMethod))) 
then 

(bind ? count (+ ? count 1)) 
(if (= 1 ? count) 
then 

(printout ? *sim-file* crlf "# Mathematical Solution Methods" 
crlf) 

196 



(printout ? *sim-file* 
(send (symbol-to-instance-name 

Identifier)) 
(printout ? *sim-file* 

(send (symbol-to-instance-name 
MathMethod) 

"]; " crlf) 

(return ? count) 

(sym-cat var ? cnt))get- 

(sym-cat var ? cnt))get- 

(deffunction print-gPROMS-introduction () 
(printout ? *sim-file* 

«#***********************************************************« crlf) 
(printout ? *sim-file* (str-cat "# Problem Title ? *problem- 

title*) crlf) 
(printout ? *sim-file* (str-cat "# Created :" (now)) crlf) 
(printout ? *sim-file* "# By IMIPS vO. 03 gPROMS Translator" crlf) 
(printout ? *sim-file* 

«#***********************************************************« crlf) 
(printout ? *sim-file* "" crlf) 
(return ? *sim-file*) 

(deffunction print-gPROMS-declaration () 
(printout ? *sim-file* "DECLARE" crlf) 
(printout ? *sim-file* " TYPE" crlf) 
(loop-for-count (? cnt 1 ? *no-of-var*) do 

(printout ? *sim-file* " Type" ? cnt =1 -1E6 : 1E6 UNIT 
= \"" (send (symbol-to-instance-name (sym-cat var ? cnt)) get- 
Unit) "\" #" (send (symbol-to-instance-name (sym-cat var ? cnt)) 
get-Description) crlf) 

(printout ? *sim-file* 
(printout ? *sim-file* 
(return ? *sim-file*) 

"END # Declare" crlf) 
"" crlf) 

(deffunction print-gPROMS-model () 
(printout ? *sim-file* "MODEL "? *prob-name* crlf) 
(printout ? *sim-file* " PARAMETER" crlf) 
(loop-for-count (? cnt 1 ? *no-of-const*) do 

(print-gPROMS-const ? cnt)) 
(printout ? *sim-file* crlf) 
DISTRIBUTION DOMAIN 

(print-dist) 
(printout ? *sim-file* crlf) 
(printout ? *sim-file* " VARIABLE" crlf) 
(loop-for-count (? cnt 1 ? *no-of-var*) do 

(print-gPROMS-var ? cnt)) 
(printout ? *sim-file* crlf) 
BOUNDARY 

(print-bdry-loop) 
(printout ? *sim-file* crlf) 
(printout ? *sim-file* " EQUATION") 
(loop-for-count (? cnt 1 ? *no-of-eqn*) do 

(print-gPROMS-eqn-loop ? cnt)) 
(printout ? *sim-file* "END # Model "? *prob-name* crlf) 
(printout ? *sim-file* crlf) 

197 



(return ? *sim-file*) 

(deffunction print-gPROMS-process () 
(printout ? *sim-file* "PROCESS Sim" crlf) 
(printout ? *sim-file* " UNIT" crlf) 
(printout ? *sim-file* "" ? *unit-name* " AS " ? *prob-name* crlf) 
(printout ? *sim-file* crlf) 
(printout ? *sim-file* " SET" crlf) 
(printout ? *sim-file* " WITHIN " ? *unit-name* " DO" crlf) 
(loop-for-count (? cnt 1 ? *no-of-const*) do 

(set-const ? cnt)) 
(print-math-method) 
(printout ? *sim-file* END # Within" crlf) 
(printout ? *sim-file* crlf) 
(assign-variables) 
(initialise-variables) 
(printout ? *sim-file* crlf) 
(printout ? *sim-file* " SOLUTIONPARAMETERS" crlf) 
(printout ? *sim-file* " Reportinglnterval ? *rep-int* 

crlf) 
(printout ? *sim-file* " BlockDecomposition := ON; " crlf) 
(printout ? *sim-file* crlf) 
(printout ? *sim-file* " SCHEDULE" crlf) 
(printout ? *sim-file* " CONTINUE FOR " ? *model-time* crlf) 
(printout ? *sim-file* crlf) 
(printout ? *sim-file* "END") 
(return ? *sim-file*) 

198 



IV. 7. Simulink translator code file: Simulinktrans. clp 
******************************************************************* 

Author : Graham Clark * 
File Name: simulinktrans. clp * 
Last Updated: 20/12/00 * 
Description: SIMULINK input file creation translator version 

******************************************************************* 

; Forward declarations 
(deffunction check-eqn (? eqn ? name)) 
(deffunction check-bdry-eqn (? eqn ? name)) 
(deffunction str-replace (? a ?b ? c)) 
(deffunction str-replace-all (? a ?b ? c)) 
(deffunction str-count-all (? a ? b)) 
(deffunction symbol-link (? eqn ? cnt)) 
(deffunction initial-identifier (? cnt)) 
(deffunction print-simulink-blocks ()) 

******************************************************************* 
BLOCKS 

; Constant 
(deffunction constant (? name ? desc ? value ? cnt) 

(printout ? *sim-file* " Blopk (" crlf) 
(printout ? *sim-file* " BlockType Constant" crlf) 
(printout ? *sim-file* " Name \"" ? name crlf) 
(printout ? *sim-file* " Description ? desc "\"" crlf) 
(bind ?1 (* 50 ? cnt)) 
(bind ?t 20) 
(bind ?r (+ 30 (* 50 ? cnt))) 
(bind ?b 50) 
(printout ? *sim-file* " Position to ?l ?t 

", " ?r", " ?b "]" crlf) 
(printout ? *sim-file* " Orientation \"right\"" crlf) 

; {right}, left, up, down 
(printout ? *sim-file* " Value ? value "\"" crlf) 
(printout ? *sim-file* " crlf) 
(return ? *sim-file*) 

; Integrator 
(deffunction integrator ( ?l ?t ?r ?b ? initial ? cnt) 

(printout ? *sim-file* " Block (" crlf) 
(printout ? *sim-file* " BlockType Integrator" 

crlf) 
(printout ? *sim-file* " Name \"Integrator" ? cnt 

"\"" crlf) 
(printout ? *sim-file* " Description \"Description\NN 

crlf) 
(printout ? *sim-file* " Ports [1,1,0,0,0]" 

crlf) 
(printout ? *sim-file* " Position [N ?1N, N ?t 

"" ?r", " ?b crlf) 
(printout ? *sim-file* " Orientation \"right\" crlf) 

; (right), left, up, down 
(printout ? *sim-file* " ExternalReset \"none\"" crlf) 
(printout ? *sim-file* " InitialConditionSource \"internal\"" 

crlf) 
(printout ? *sim-file* " InitialCondition ? initial 

"\"" crlf) 

199 



(printout ? *sim-file* " 
(printout ? *sim-file* " 
(printout ? *sim-file* " 
(printout ? *sim-file* " 
(printout ? *sim-file* " 
(printout ? *sim-file* " 
(printout ? *sim-file* " 
(return ? *sim-file*) 

; Derivative 
(deffunction derivative ( ?l ?t ?r ?b ? cnt) 

(printout ? *sim-file* " Block (" crlf) 
(printout ? *sim-file* " BlockType 

crlf) 
(printout ? *sim-file* " Name 

"\"" crlf) 
(printout ? *sim-file* " Description 

crlf) 
(printout ? *sim-file* " Position 

", " ?r", " ?b crlf) 
(printout ? *sim-file* " Orientation 

; {right), left, up, down 
(printout ? *Sim-file* crlf) 
(return ? *sim-file*) 

; Logic 
(deffunction logic (? l ?t ?r ?b ? cnt) 

(printout ? *sim-file* " Block (" crlf) 
(printout ? *sim-file* " BlockType 
(printout ? *sim-file* " Name 

? cnt "\"" crlf) 
(printout ? *sim-file* " Description 

crlf ) 
(printout ? *sim-file* " Ports 

crlf ) 
(printout ? *sim-file* " Position 

", " ?r", " ?b "]" crlf) 
(printout ? *sim-file* " Orientation 

; {right}, left, up, down 
(printout ? *sim-file* " Operator 

; (AND), OR, NAND, NOR, XOR, NOT 
(printout ? *sim-file* " Inputs 
(printout ? *sim-file* crlf) 
(return ? *sim-file*) 

; Math 
(deffunction math (? l ?t ?r ?b ? cnt ? operator) 

(printout ? *Sim-file* " Block (" crlf) 
(printout ? *Sim-file* " BlockType 
(printout ? *sim-file* " Name 

"\"" crlf) 
(printout ? *sim-file* " Description 

crlf) 
(printout ? *Sim-file* " Ports 

crlf) 
(printout ? *sim-file* " Position 

", 0 ?r", " ?b "]" crlf) 

LimitOutput off" 
UpperSaturationLimit 
LowerSaturationLimit 
ShowSaturationPort 
ShowStatePort 
AbsoluteTolerance 

}" crlf) 

crlf) 
\"inf\"" crlf) 
\"-inf\"" crlf) 
off" crlf) 
off" crlf) 
\"auto\"" crlf) 

Derivative" 

\"Derivative" ? cnt 

\"Description\"" 

[" ?1", " ?t 

\"right\"" crlf) 

Logic" crlf) 
\"Logical Operator" 

\"Description\"" 

[2,1,0,0,01 " 

[" ?1", ?t 

\"right\"" crlf) 

\"AND\"" crlf) 

\"2\"" crlf) 

Math" crlf) 
\"Math Function" ? cnt 

\"Description\"" 

11,1,0,0,01 " 

[" ?1 "� " ?t 

200 I 



(printout ? *sim-file* " Orientation \"right\"" crlf) 
; {right), left, up, down 

(printout ? *sim-file* " Operator ? operator "\"" crlf) ; {exp}, log, 10910, square, sqrt, pow, reciprocal, hypot, rem, mod 
(printout ? *sim-file* " OutputSignalType \"auto\"" crlf) (printout ? *sim-file* " }" crlf) 
(return ? *sim-file*) 

; Product 
(deffunction product (? l ?t ?r ?b ? cnt ? type) 

(printout ? *sim-file* " Block (" crlf) 
(printout ? *sim-file* " BlockType 
(printout ? *sim-file* " Name 

crlf) 
(printout ? *sim-file* " Description 

crlf) 
(printout ? *sim-file* " Ports 

crlf) 
(printout ? *sim-file* " Position 

", " ?r", " ?b "]" crlf) 
(printout ? *sim-file* " Orientation 

; (right), left, up, down 
(printout ? *sim-file* " Inputs 

crlf) 

Product" crlf) 
\"Product" ? cnt "\"" 

\"Description\"" 

[2,1,0,0,0] " 

[" ?1"" ?t 

\"right\"" crlf) 

\"  ? type . \Nn 

(printout ? *sim-tile* " SaturateOnlntegerOverflow on" crlf) 
(printout ? *sim-file* crlf) 
(return ? *sim-file*) 

; Sum 
(deffunction sum (? 1 ?t ?r ?b ? cnt ? type) 

(printout ? *sim-file* " Block (" crlf) 
(printout ? *sim-file* " BlockType Sum" crlf) 
(printout ? *sim-file* " Name \"Sum" ? cnt "\"" 

crlf) 
(printout ? *sim-file* " Description \"Description\"" 

crlf) 
(printout ? *sim-file* " Ports (2,1,0,0,0]" 

crlf) 
(printout ? *sim-file* " Position ?l ?t 

", " ?r", " ?b "]" crlf) 
(printout ? *sim-file* " Orientation \"right\"" crlf) 

; {right}, left, up, down 
(printout ? *sim-file* " ShowName off" crlf) 
(printout ? *sim-file* " IconShape \"round\"" 

crlf) 
(printout ? *sim-file* " Inputs ? type 

crlf) 
(printout ? *sim-file* " SaturateOnInteg erOverflow on" crlf) 
(printout ? *sim-file* " )" crlf) 
(return ? *sim-file*) 

; Mux 
(deffunction mux (? l ?t ?r ?b ? cnt) 

(printout ? *sim-file* " Block (" crlf) 
(printout ? *sim-file* " BlockType Mux" crlf) 
(printout ? *sim-file* " Name \"Mux" ? cnt "\"" 

crlf) 

201 



(printout ? *sim-file* " Description 
crlf) 

(printout ? *sim-file* " Ports 
crlf) 

(printout ? *sim-file* " Position 
"" ?r", " ?b "]" crlf) 

(printout ? *sim-file* " Orientation 
; {right}, left, up, down 

(printout ? *sim-file* " ShowName 
(printout ? *sim-file* " Inputs 
(printout ? *sim-file* " Displayoption 
(printout ? *sim-file* " crlf) 
(return ?* sim-file*) 

; Scope 
(deffunction scope (? l ?t ?r ?b ? cnt) 

(printout ? *sim-file* " Block (" crlf) 
(printout ? *sim-file* " BlockType 
(printout ? *sim-file* " Name 

crlf) 
(printout ? *sim-file* " Description 

crlf) 
(printout ? *sim-file* " Ports 

crlf) 
(printout ? *sim-file* " Position 

", " ?r", " ?b "]" crlf) 
(printout ? *sim-file* " Orientation 

; {right}, left, up, down 
(printout ? *sim-file* " Floating 

(printout ? *sim-file* " Location 
6041" crlf) 

(printout ? *sim-file* " Open 
(printout ? *sim-file* " NuminputPorts 
(printout ? *sim-file* " TickLabels 

crlf) 
(printout ? *sim-file* " ZoomMode 
(printout ? *sim-file* " List (" crlf) 
(printout ? *sim-file* " ListType 
(printout ? *sim-file* " axesl 

crlf) 
(printout ? *sim-file* " crlf) 
(printout ? *sim-file* " Grid 
(printout ? *sim-file* " TimeRange 
(printout ? *sim-file* " YMin 
(printout ? *sim-file* " YMax 
(printout ? *sim-file* " SaveToWorkspace 
(printout ? *sim-file* " SaveName 

crlf) 
(printout ? *sim-file* " DataFormat 

\"StructureWithTime\ "" crlf) 
(printout ? *sim-file* " LimitMaxRows 
(printout ? *sim-file* " MaxRows 
(printout ? *sim-file* " Decimation 
(printout ? *sim-file* " Samplelnput 
(printout ? *sim-file* " SampleTime 
(printout ? *sim-file* " )" crlf) 
(return ? *sim-file*) 

; Sign 

\"Description\"" 

o]- 
fn 71 nn 7t 

\"right\"" crlf) 

off" crlf) 
\"2\"" crlf) 
\"bar\"" crlf) 

Scope" crlf) 
\"Scope" ? cnt "\"" 

\"Description\"" 

[1,0,0,0, o] " 

?1". " ?t In 

\"right\"" crlf) 

off" crlf) 
(188,365,512, 

off" crlf) 
\"1\"" crlf) 

\"OneTimeTick\"" 

\"on\"" crlf) 

AxesTitles" crlf) 
"%<SignalLabel>"" 

\"on\"" crlf) 
\"auto\"" crlf) 

\"-5\"" crlf) 
\"5\"" crlf) 

off" crlf) 
\"ScopeData\"" 

on" crlf) 
\"5000\"" crlf) 

\"1\"" crlf) 
off" crlf) 
\"0\"" crlf) 

202 



(deffunction sign (? 1 ?t ?r ?b ? cnt) 
(printout ? *sim-file* " Block {" crlf) 
(printout ? *sim-file* " BlockType 
(printout ? *sim-file* " Name 

crlf) 
(printout ? *sim-file* " Description 

crlf) 
(printout ? *sim-file* " Position 

", " ?r", " ?b crlf) 
(printout ? *sim-file* Orientation 

; (right), left, up, down 
(printout ? *sim-file* crlf) 
(return ?* sim-file*) 

; Trigonometry 
(deffunction trig (? l ?t ?r ?b ? cnt) 

(printout ? *sim-file* " Block {" crlf) 
(printout ? *sim-file* " BlockType 

crlf) 
(printout ? *sim-file* " Name 

Function" ? cnt "\"" crlf) 
(printout ? *sim-file* " Description 

crlf) 
(printout ? *sim-file* " Ports 

crlf) 
(printout ? *sim-file* " Position 

?r ?b crlf) 
(printout ? *sim-file* " Orientation 

; {right}, left, up, down 
(printout ? *sim-file* " Operator 

; {sin}, cos, tan, asin, acos, atan, atan2, 
(printout ? *sim-file* " OutputSignalType 

(printout ? *sim-file* " }^ crlf) 
(return ? *sim-file*) 

In 
(deffunction in (? l ?t ?r ?b ? cnt) 

(printout ? *sim-file* " Block (" crlf) 
(printout ? *sim-file* N BlockType 
(printout ? *sim-file* " Name 
(printout ? *sim-file* " Description 

crlf) 
(printout ? *sim-file* " Position 

", " ?r", " ?b crlf) 
(printout ? *sim-file* " Orientation 

; {right}, left, u p, down 
(printout ? *sim-file* " Port 
(printout ? *sim-file* " PortWidth 
(printout ? *sim-file* " SampleTime 
(printout ? *sim-file* " DataType 
(printout ? *sim-file* " SignalType 
(printout ? *sim-file* " Interpolate 
(printout ? *sim-file* " crlf) 
(return ?* sim-file*) 

; Out 
(deffunction out (? 1 ?t ?r ?b ? cnt) 

(printout ? *sim-file* ° Block {" crlf) 

Signum" crlf) 
\"Sign" ? cnt "\"" 

\"Description\"" 

[N 71 hh 7ý 

\"right\"" crlf) 

Trigonometry" 

\"Trigonometric 

\"Description\"" 

11,1,0,0,0] " 

?1", " ?t In 

\"right\"" crlf) 

\"sin\"" crlf) 
sinh, cosh, tanh 

\"auto\"" crlf) 

Inport" crlf) 
\"In" ? cnt "\"" crlf) 
\"Description\"" 

P ý1 NN ýt 

\"right\"" crlf) 

\"1\"" crlf) 
\"-1\"" crlf) 

\"-1\"" crlf) 
\"auto\"" crlf) 

\"auto\"" crlf) 
on" crlf) 

203 



(printout ? *sim-file* " BlockType Outport" crlf) 
(printout ? *sim-file* " Name \"Out" ? cnt 

crlf) 
(printout ? *sim-file* " Description \"Description\"" 

crlf) 
(printout ? *sim-file* " Position ?l ?t 

", " ?r", " ?b "]" crlf) 
(printout ? *sim-file* " Orientation \"right\"" crlf) 

; {right}, left, up, down 
(printout ? *sim-file* " Port crlf) 
(printout ? *sim-file* " OutputWhenDisabled \"held\"" crlf) 
(printout ? *sim-file* " InitialOutput crlf) 
(printout ? *sim-file* " }  crlf) 
(return ?* sim-file*) 

Block linking 

(deffunction print-link 
(printout t "print-link" 

(printout ? *sim-file* " 
(printout ? *sim-file* " 

crlf) 
(printout ? *sim-file* " 

crlf) 
(printout ? *sim-file* " 
(printout ? *sim-file* " 
(printout ? *sim-file* " 
(printout ? *sim-file* " 
(return ? *sim-file*) 

(? from ? fromport ? to 
crlf) 

Line (" crlf) 
SrcBlock 

SrcPort 

Points 
DstBlock 
DstPort 

}" crlf) 

? toport) 

\"" ? from "\"" 

" ? fromport 

[0, O]" crlf) 
? to "\"" crlf) 

" ? toport crlf) 

******************************************************************** 
Constant checking and printing 

(deffunction print-simulink-const-array (? cnt) 
(printout t "print-simulink-const-array" crlf) 

(bind ? name (send (symbol-to-instance-name (sym-cat const ? cnt)) 
get-Identifier)) 

(bind ? desc (send (symbol-to-instance-name (sym-cat const ? cnt)) 
get-Description)) 

(bind ? value (send (symbol-to-instance-name (sym-cat const ? cnt)) 
get-Value)) 

(bind ? value (str-cat "[" (str-replace-all ? value NNN N) NON)) 
(constant ? name ? desc ? value ? cnt) 

(return ? cnt) 

(deffunction print-simulink-const (? cnt) 
(printout t "print-simulink-const" crlf) 

(if (= 0 (str-compare ")" (sub-string (str-length (send 
(symbol-to-instance-name(sym-cat const ? cnt)) get-Identifier)) 
(str-length (send(symbol-to-instance-name(sym-Cat const ? cnt))get- 

Identifier)) 
(send(symbol-to-instance-name(sym-cat const ? cnt))get- 

Identifier)))) 
then 

(bind ? name (send (symbol-to-instance-name (sym-cat const ? cnt)) 
get-Identifier)) 

204 



(if (= 0 (str-compare "TRUE" (integerp (str-index ", " ? name)))) 
then 

(bind ? *simulink-array* 1) 
else 

(print-simulink-const-array ? cnt) 

else 
(bind ? name (send (symbol-to-instance-name (sym-cat const ? cnt)) 

get-Identifier)) 
(bind ? desc (send (symbol-to-instance-name (sym-cat const ? cnt)) 

get-Description)) 
(bind ? value (send (symbol-to-instance-name (sym-cat const ? cnt)) 

get-Value)) 
(constant ? name ? desc ? value ? cnt) 

(return ? cnt) 

(deffunction print-integral (? cnt) 
(bind ? *t* (+ 20 (* 50 ? *eqn-no*))) 
(bind ? *b* (+ 50 (* 50 ? *eqn-no*))) 
(bind ? *l* (+ ? *l* 50)) 
(bind ? *r* (+ ? *r* 50)) 
(derivative ? *l* ? *t* ? *r* ? *b* ? cnt) 
(bind ? *symbol-name* (sym-cat "Integrator" ? cnt)) 
(return ? *symbol-name*) 

(deffunction print-differential (? cnt) 
(loop-for-count (? var-count 1 ? *no-of-var*) do 

(bind ? name (string-to-symbol (str-cat "var" ? var-count))) 
(bind ? diff (sym-cat "$" (send (symbol-to-instance-name ? name) get- 

Identifier))) 
(bind ? *t* (+ 20 (* 50 ? *eqn-no*))) 
(bind ? *b* (+ 50 (* 50 ? *eqn-no*))) 
(bind ? *l* (+ ? *l* 50)) 
(bind ? *r* (+ ? *r* 50)) 
Set initial value 
(if (= 0 (str-compare "unknown" (send (symbol-to-instance-name 

? name) get-Value))) 
then 

(bind ? initial "0") 

else 
(bind ? initial (send (symbol-to-instance-name ? name) get-Value)) 

(integrator ? *l* ? *t* ? *r* ? *b* ? initial ? cnt) 

(bind ? *symbol-name* (sym-cat "Derivative" ? cnt)) 
(return ? *symbol-name*) 

(deffunction print-logarithm (? cnt) 
(bind ? *t* (+ 20 (* 50 ? *eqn-nq*))) 
(bind ? *b* (+ 50 (* 50 ? *eqn-no*))) 
(bind ? *l* (+ ? *l* 50)) 
(bind ? *r* (+ ? *r* 50)) 
(math ? *1* ? *t* ? *r* ? *b* ? cnt "log") 
(bind ? *symbol-name* (sym-cat "Math Function" ? cnt)) 
(return ? *symbol-name*) 

205 Ad 



(deffunction print-exponential (? cnt) 
(bind ? *t* (+ 20 (* 50 ? *eqn-no*))) 
(bind ? *b* (+ 50 (* 50 ? *eqn-no*))) 
(bind ? *1* (+ ? *l* 50)) 
(bind ? *r* (+ ? *r* 50)) 
(math ? *l* ? *t* ? *r* ? *b* ? cnt "exp") 
(bind ? *symbol-name* (sym-cat "Math Function" ? cnt)) 
(return ? *symbol-name*) 

(deffunction print-multiply (? cnt) 
(bind ? *t* (+ 20 (* 50 ? *eqn-no*))) 
(bind ? *b* (+ 50 (* 50 ? *eqn-no*))) 
(bind ? *l* (+ ? *l* 50)) 
(bind ? *r* (+ ? *r* 50)) 
(product ? *l* ? *t* ? *r* ? *b* ? cnt "**") 
(bind ? *symbol-name* (sym-cat "Product" ? cnt)) 
(return ? *symbol-name*) 

(deffunction print-divide (? cnt) 
(bind ? *t* (+ 20 (* 50 ? *eqn-no*))) 
(bind ? *b* (+ 50 (* 50 ? *eqn-no*))) 
(bind ? *1* (+ ? *1* 50)) 
(bind ? *r* (+ ? *r* 50)) 
(product ? *1* ? *t* ? *r* ? *b* ? cnt 

(bind ? *symbol-name* (sym-cat "Product" ? cnt)) 
(return ? *symbol-name*) 

(deffunction print-add (? cnt) 
(bind ? *t* (+ 20 (* 50 ? *eqn-no*))) 
(bind ? *b* (+ 50 (* 50 ? *eqn-no*))) 
(bind ? *1* (+ ? *1* 50)) 
(bind ? *r* (+ ? *r* 50)) 
(sum ? *1* ? *t* ? *r* ? *b* ? cnt "1++") 
(bind ? *symbol-name* (sym-cat "Sum" ? cnt)) 
(return ? *symbol-name*) 

(deffunction print-subtract (? cnt) 
(bind ? *t* (+ 20 (* 50 ? *eqn-no*))) 
(bind ? *b* (+ 50 (* 50 ? *eqn-no*))) 
(bind ? *1* (+ ? *1* 50)) 
(bind ? *r* (+ ? *r* 50)) 
(sum ? *1* ? *t* ? *r* ? *b* ? cnt "I+-") 
(bind ? *symbol-name* (sym-cat "sum" ? cnt)) 
(return ? *symbol-name*) 

Equation Checking and block printing 
******************************************************************** 

(deffunction print-simulink-eqn-loop (? cnt) 
(printout t "print-simulink-eqn-loop" crlf) 

(bind ? name (sym-cat eqn ? cnt)) 
(if (= 0 (str-compare "All" (send (symbol-to-instance-name (sym-cat 

eqn ? cnt)) 
get-FixedBound))) 

then 

206 



(if (= 0 ? *simulink-partial*) 
then 

(bind ? *eqn-no* ? cnt) 
(bind ? *eqn* (send (symbol-to-instance-name ? name) get-Eqn)) 
; check for partial derivatives 
(if (neq 0 (str-compare "TRUE" (integerp (str-index "PARTIAL" 

? *eqn*)))) 
then 

(if (eq 0 (str-compare "TRUE" (integerp (str-index "_" ? *eqn*)))) 
then 

(bind ? LHS (sub-string 1 (- (str-index "=" ? *eqn*) 1) ? *eqn*)) 
(bind ? marker 0) 
(loop-for-count (? count 1 ? *no-of-var*) do 

(bind ? varname (send (symbol-to-instance-name(sym-cat var 
? count))get-Identifier)) 

(if (<> 1 ? marker) then 
(if (eq 0 (str-compare "TRUE" (integerp (str-index ? varname 

? LHS)))) 
then 

; Variable to solve for here... 
(bind ? *eqn* (sub-string (+ 1 (str-index ? *eqn*)) (str- 

length ? *eqn*) ? *eqn*)) 
(bind ? marker 1) 

(bind ? marker 0) 
(loop-for-count (? varno 1 ? *no-of-var*) do 

(bind ? varname (send (symbol-to-instance-name(sym-cat var 
? varno))get-Identifier)) 

(if (eq 0 (str-compare "TRUE" (integerp (str-index 
? varname)))) 

then 
(if (eq 0 (str-compare "TRUE" (integerp (str-index ? varname 

? *eqn*)))) 

then 
(bind ? newname (sub-string 1 (- (str-index "(" ? varname) 1) 

? varname)) 
(bind ? *eqn* (str-replace ? *eqn* ? varname ? newname)) 

(loop-for-count (? constno 1 ? *no-of-const*) do 
(bind ? constname (send (symbol-to-instance-name(sym-cat const 

? constno))get-Identifier)) 
(if (eq 0 (str-compare "TRUE" (integerp (str-index "(" 

? constname)))) 
then 

(if (eq 0 (str-compare "TRUE" (integerp (str-index ? constname 
? *eqn*)))) 

then 
(bind ? newname (sub-string 1 (- (str-index "(" ? constname) 1) 

? constname)) 
(bind ? *eqn* (str-replace ? *eqn* ? constname ? newname)) 

(if (= 0 (str-compare "TRUE" (integerp (str-index "" ? *eqn*)))) 
then (bind ? *eqn* (str-replace ? *eqn* "" MM))) 
; bracket pairing checking 

207 , 



(if (= 0 (str-compare "TRUE" (integerp (str-index "(" ? *eqn*)))) 
then (bind ? no-of-bracket (str-count-all ? *eqn* "(")) 
(if (<> 0 ? no-of-bracket) 
then 

(bind ? bracket-number 1) 
(bind ? new-eqn ? *eqn*) 
(while (= 0 (str-compare "TRUE" (integerp (str-index 

? *eqn*)))) do 
(bind ? end-bracket (str-index ")" ? new-eqn)) 
(bind ? new-eqn (sub-string 1 ? end-bracket ? new-eqn)) 
(bind ? count (- (str-length ? new-eqn) 1)) 
(bind ? partial-eqn (sub-string ? count (str-length ? new-eqn) 

? new-eqn)) 
(while (<> 0 (str-compare "TRUE" (integerp (str-index 

? partial-eqn)))) do 
(bind ? count (- ? count 1)) 
(bind ? partial-eqn (sub-string ? count (str-length ? new-eqn) 

? new-eqn)) 

(bind ? new-eqn (str-replace ? *eqn* ? partial-eqn (sym-cat "Fake" 
? cnt ? bracket-number))) 

(bind ? eqn ? partial-eqn) 
(if (= 0 (str-compare "TRUE" (integerp (str-index "=" ? eqn)))) then 

(bind ? pos (str-index "=" ? *eqn*)) 
(bind ? eqn (sub-string (+ 1 ? pos) (str-length ? *eqn*) ? *eqn*)) 

(if (= 0 (str-compare "TRUE" (integerp (str-index " ? eqn)))) then 
(if (= 1 (str-index "" ? eqn)) then (bind ? eqn (sub-string 2 (str- 

length ? eqn) ? eqn))) 

(loop-for-count (? count 1 ? *no-of-const*) do 
(if (= 0 (str-compare "TRUE" (integerp (str-index 

(send (symbol-to-instance-name (sym-cat "const" 
? count))get-Identifier) ? eqn)))) then 

(if (= 1 (str-index (send (symbol-to-instance-name (sym-cat 
"const" ? count))get-Identifier) ? eqn)) 

then (bind ? eqn (sub-string (+ 1 (str-length (send (symbol-to- 
instance-name (sym-cat "const" ? count)) get-Identifier))) 
(str-length ? eqn) ? eqn))) 

(if (= 0 (str-compare "TRUE" (integerp (str-index "(" ? eqn)))) then 
(bind ? eqn (sub-string 2 (str-length ? *eqn*) ? *eqn*)) 

(if (= 0 (str-compare "TRUE" (integerp (str-index ")" ? eqn)))) then 
(bind ? eqn (sub-string 2 (str-length ? *eqn*) ? *eqn*)) 

(symbol-link ? eqn ? cnt) 

(bind ? *eqn* ? new-eqn) 
(bind ? bracket-number (+ ? bracket-number 1)) 

else 
(initial-identifier ? cnt) 

else 
(message-box "Simulink cannot, at present, deal with partial 

derivatives. 

208 I 



As your problem includes these please try another simulator. " 
wxOK 10 "Simulink Error") 

(bind ? *simulink-partial* 1) 
(window-delete ? *trans-frame*) 
(printout ? *sim-file* " Annotation (" crlf) 
(printout ? *sim-file* " Position [200,100]" 

crlf) 
(printout ? *sim-file* " Text \"Unable to 

translate to Simulink File. \"") 
(printout ? *sim-file* " \" Partial 

Derivatives used in problem. \"" crlf) 
(printout ? *sim-file* " }" crlf) 
(printout ? *sim-file* " crlf) 
(printout ? *sim-file* ")" crlf) 
(close) 

(return ? cnt) 

(deffunction print-const-links () 
(printout t "print-const-links" crlf) 

(return ? *sim-file*) 

(deffunction initial-identifier (? cnt) 
(printout t "initial-identifier" crlf) 

(bind ? eqn ? *eqn*) 
(if (= 0 (str-compare "TRUE" (integerp (str-index "=" ? eqn)))) then 

(bind ? pos (str-index "=" ? *eqn*)) 
(bind ? eqn (sub-string (+ 1 ? pos) (str-length ? *eqn*) ? *eqn*)) 

(if (= 0 (str-compare "TRUE" (integerp (str-index " ? eqn)))) then 
(if (= 1 (str-index "" ? eqn)) then (bind ? eqn (sub-string 2 (str- 

length ? eqn) ? eqn))) 

(loop-for-count (? count 1 ? *no-of-const*) do 
(if (= 0 (str-compare "TRUE" (integerp (str-index 

(send (symbol-to-instance-name (sym-cat "const" ? count))get- 
Identifier) ? eqn)))) then 

(if (= 1 (str-index (send (symbol-to-instance-name (sym-cat 
"const" ? count))get-Identifier) ? eqn)) 

then (bind ? eqn (sub-string (+ 1 (str-length (send (symbol-to- 
instance-name (sym-cat "const" ? count)) get-Identifier))) 
(str-length ? eqn) ? eqn))) 

(if (= 0 (str-compare "TRUE" (integerp (str-index "(" ? eqn)))) then 
(bind ? eqn (sub-string 2 (str-length ? *eqn*) ? *eqn*)) 

(if (= 0 (str-compare "TRUE" (integerp (str-index ")" ? eqn)))) then 
(bind ? eqn (sub-string 2 (str-length ? *eqn*) ? *eqn*)) 

(symbol-link ? eqn ? cnt) 
(return ? cnt) 

(deffunction symbol-link (? eqn ? cnt) 
(printout t "symbol-link" crlf) 

(bind ? from ? *symbol-name*) 

209 



(if (= 0 (str-compare "TRUE" (integerp (str-index "+" ? eqn)))) 
then 

(if (= 1 (str-index "+" ? eqn)) then (print-add ? *sum-cnt*) 
(bind ? length (str-length ? eqn)) 
(bind ? eqn (sub-string 2 ? length ? eqn)) 
(bind ? to (str-cat "Sum" ? *sum-cnt*)) 
(bind ? *sum-cnt* (+ 1 ? *sum-cnt*)) 
(bind ? print-link 0) 

(if (= 0 (str-compare "TRUE" (integerp (str-index "*" ? eqn)))) 
then 

(if (= 1 (str-index "*" ? eqn)) then (print-multiply ? *mult-cnt*) 
(bind ? length (str-length ? eqn)) 
(bind ? eqn (sub-string 2 ? length ? eqn)) 
(bind ? to (str-cat "Product" ? *mult-cnt*)) 
(bind ? *mult-cnt* (+ 1 ? *mult-cnt*)) 
(bind ? print-link 0) 

)) 
(if (= 0 (str-compare "TRUE" (integerp (str-index "/" ? eqn)))) 
then 

(if (= 1 (str-index "/" ? eqn)) then (print-divide ? *mult-cnt*) 
(bind ? length (str-length ? eqn)) 
(bind ? eqn (sub-string 2 ? length ? eqn)) 
(bind ? to (str-cat "Product" ? *mult-cnt*)) 
(bind ? *mult-cnt* (+ 1 ? *mult-cnt*)) 
(bind ? print-link 0) 

(if (= 0 (str-compare "TRUE" (integerp (str-index "-" ? eqn)))) 
then 

(if (= 1 (str-index "-" ? eqn)) then (print-subtract ? *sum-cnt*) 
(bind ? length (str-length ? eqn)) 
(bind ? eqn (sub-string 2 ? length ? eqn)) 
(bind ? to (str-cat "Sum" ? *sum-cnt*)) 
(bind ? *sum-cnt* (+ 1 ? *sum-cnt*)) 
(bind ? print-link 0) 

(if (= 0 (str-compare "TRUE" (integerp (str-index "$" ? eqn)))) 
then 

(if (= 1 (str-index "$" ? eqn)) then (print-differential ? *diff- 
cnt*) 

(bind ? length (str-length ? eqn)) 
(bind ? eqn (sub-string 2 ? length ? eqn)) 
(bind no (str-cat "Derivative" ? *diff-cnt*)) 
(bind ? *diff-cnt* (+ 1 ? *diff-cnt*)) 
(bind ? print-link 0) 

(if (= 0 (str-compare "TRUE" (integerp (str-index "LOG" ? eqn)))) 
then 

(if (= 1 (str-index "LOG" ? eqn)) then (print-logarithm ? *log-cnt*) 
(bind ? length (str-length ? eqn)) 
(bind ? eqn (sub-string 4 ? length ? eqn)) 
(bind no (str-cat "Math Function" ? *log-cnt*)) 
(bind ? *log-cnt* (+ 1 ? *log-cnt*)) 
(bind ? print-link 0) 

)) 
(if (= 0 (str-compare "TRUE" (integerp (str-index "EXP" ? eqn)))) 
then 

(if (= 1 (str-index "EXP" ? eqn)) then (print-exponential ? *log- 
cnt *) 

(bind ? length (str-length ? eqn)) 
(bind ? eqn (sub-string 4 ? length ? eqn)) 

210 



(bind ? to (str-cat "Math Function" ? *log-cnt*)) 
(bind ? *log-cnt* (+ 1 ? *log-cnt*)) 
(bind ? print-link 0) 

)) 
(if (= 0 (str-compare "TRUE" (integerp (str-index "INTEGRAL" 

? eqn)))) 
then 

(if (= 1 (str-index "INTEGRAL" ? eqn)) then (print-integral ? *int- 
cnt*) 

(bind ? length (str-length ? eqn)) 
(bind ? eqn (sub-string 9 ? length ? eqn)) 
(bind ? to (str-cat "Integrator" ? *int-cnt*)) 
(bind ? *int-cnt* (+ 1 ? *int-cnt*)) 

(bind ? print-link 0) 
)) 
(bind ? *eqn* ? eqn) 
(return ? eqn) 

;* Print out SIMULINK input file 

; Printout general information in file 
(deffunction print-simulink-introduction () 
(printout t "print-simulink-introduciton" crlf) 

(printout ? *sim-file* "Model (" crlf) 
(printout ? *sim-file* (str-cat " Name ? *prob- 

name* "\"") crlf ) 
(printout ? *sim-file* " Version 3.00" crlf) 
(printout ? *sim-file* " SimParamPage \"Solver\"" crlf) 
(printout ? *sim-file* SampleTimeColors off" crlf) 
(printout ? *sim-file* InvariantConstants off" crlf) 
(printout ? *sim-file* WideVectorLines off" crlf) 
(printout ? *sim-file* " ShowLineWidths off" crlf) 
(printout ? *sim-file* " ShowPortDataTypes off" crlf) 
(printout ? *sim-file* " StartTime \"0.0\"" crlf) 
(printout ? *sim-file* (str-cat " StopTime ? *model- 

time* "\"") crlf) 
(printout ? *sim-file* " SolverMode \"Auto\"" crlf) 
(printout ? *sim-file* " Solver \"ode45\"" crlf) 
(printout ? *sim-file* " RelTol \"le-3\"" crlf) 
(printout ? *sim-file* " AbsTol \"auto\"" crlf) 
(printout ? *sim-file* " Refine \"l\"" crlf) 
(printout ? *sim-file* " MaxStep \"auto\"" crlf) 
(printout ? *sim-file* " InitialStep \"auto\"" crlf) 
(printout ? *sim-file* " FixedStep \"auto\"" crlf) 
(printout ? *sim-file* " MaxOrder 5" crlf) 
(printout ? *sim-file* " OutputOption 

\"RefineoutputTimes\"" crlf) 
(printout ? *sim-file* " OutputTimes crlf) 
(printout ? *sim-file* " LoadExternallnput off" crlf) 
(printout ? *sim-file* " ExternalInput \"It, u]\"" crlf) 
(printout ? *sim-file* " SaveTime on" crlf) 
(printout ? *sim-file* " TimeSaveName \"tout\"" crlf) 
(printout ? *sim-file* SaveState off" crlf) 
(printout ? *sim-file* " StateSaveName \"xout\"" crlf) 
(printout ? *sim-file* " SaveOutput on" crlf) 
(printout ? *sim-file* " OutputSaveName \"gout\"" crlf) 
(printout ? *sim-file* " LoadlnitialState off" crlf) 

211 A 



(printout ? *sim-file* " InitialState \"xInitial\"" crlf) 
(printout ? *sim-file* " SaveFinalState off" crlf) 
(printout ? *sim-file* " FinalStateName \"xFinal\"" crlf) 
(printout ? *sim-file* " SaveFormat \"Matrix\"" crlf) 
(printout ? *sim-file* " LimitMaxRows off" crlf) 
(printout ? *sim-file* " MaxRows \"1000\"" crlf) 
(printout ? *sim-file* " Decimation \"l\"" crlf) 
(printout ? *sim-file* " AlgebraicLoopMsg \"warning\"" crlf) 
(printout ? *sim-file* " MinStepSizeMsg \"warning\"" crlf) 
(printout ? *sim-file* N UnconnectedlnputMsg \"warning\"" crlf) 
(printout ? *sim-file* " UnconnectedOutputMsg \"warning\"" crlf) 
(printout ? *sim-file* " UnconnectedLineMsg \"warning\"" crlf) 
(printout ? *sim-file* " InheritedTslnSrcMsg \"warning\"" crlf) 
(printout ? *sim-file* N IntegerOverflowMsg \"warning\"" crlf) 
(printout ? *sim-file* " UnnecessaryDatatypeConvMsg \"none\"" crlf) 
(printout ? *sim-file* " Int32ToFloatConvMsg \"warning\"" crlf) 
(printout ? *sim-file* " SignalLabelMismatchMsg \"none\"" crlf) 
(printout ? *sim-file* " ConsistencyChecking \"off\"" crlf) 
(printout ? *sim-file* " ZeroCross on" crlf) 
(printout ? *sim-file* " SimulationMode \"normal\"" crlf) 
(printout ? *sim-file* " BlockDataTips on" crlf) 
(printout ? *sim-file* " BlockParametersDataTip on" crlf) 
(printout ? *sim-file* " BlockAttributesDataTip off" crlf) 
(printout ? *sim-file* " BlockPortWidthsDataTip off" crlf) 
(printout ? *sim-file* " BlockDescriptionStringDataTip off" 

crlf) 
(printout ? *sim-file* " BlockMaskParametersData Tip off" crlf) 
(printout ? *sim-file* " ToolBar on" c rlf) 
(printout ? *sim-file* " StatusBar on" c rlf) 
(printout ? *sim-file* " BrowserShowLibraryLinks off" crlf) 
(printout ? *sim-file* " BrowserLookUnderMasks off" crlf) 
(printout ? *sim-file* " OptimizeBlocklOStorage on" crlf) 
(printout ? *sim-file* " BufferReuse on" crlf) 
(printout ? *sim-file* " BooleanDataType off" crlf) 
(printout ? *sim-file* " RTWSystemTargetFile \"grt. tlc\"" crlf) 
(printout ? *sim-file* " RTWlnlineParameters off" crlf) 
(printout ? *sim-file* N RTWRetainRTWFile off" crlf) 
(printout ? *sim-file* " RTWTemplateMakefile 

\"grt_default_tmf\" " crlf) 
(printout ? *sim-file* " RTWMakeCommand \"make_rtw\"" crlf) 
(printout ? *sim-file* " RTWGenerateCodeOnly off" crlf) 
(printout ? *sim-file* " ExtModeMexFile \"ext_comm\"" crlf) 
(printout ? *sim-file* " ExtModeBatchMode off" crlf) 
(printout ? *sim-file* " ExtModeTrigType \"manual\"" crlf) 
(printout ? *sim-file* " ExtModeTrigMode \"oneshot\"" crlf) 
(printout ? *sim-file* " ExtModeTrigPort \"1\"" crlf) 
(printout ? *sim-file* " ExtModeTrigElement \"any\"" crlf) 
(printout ? *sim-file* " ExtModeTrigDuration 1000" crlf) 
(printout ? *sim-file* " ExtModeTrigHoldOff ON crlf) 
(printout ? *sim-file* " ExtModeTrigDelay ON crlf) 
(printout ? *sim-file* " ExtModeTrigDirection \"rising\"" crlf) 
(printout ? *sim-file* " ExtModeTrigLevel ON crlf) 
(printout ? *sim-file* " ExtModeArchiveMode \"off\"" crlf) 
(printout ? *sim-file* " ExtModeAutolncOneShot off" crlf) 
(printout ? *sim-file* " ExtModelncDirWhenArm off" crlf) 
(printout ? *sim-file* " ExtModeAddSuffixToVar off" crlf) 
(printout ? *sim-file* " ExtModeWriteAllDataToWs off" crlf) 
(printout ? *sim-file* " ExtModeArmwhenConnect off" crlf) 
(printout ? *sim-file* (str-cat " Created (now) 

"\"") crlf) 
(printout ? *sim-file* " UpdateHistory 

212 



\"UpdateHistoryNever\"" crlf) 
(printout ? *sim-file* " ModifiedByFormat \"%<Auto>\"" crlf) 
(printout ? *sim-file* " LastModifiedBy \"IMI PS vO. 03 SIMULINK 

Translator\"" crlf) 
(printout ? *sim-file* " ModifiedDateFormat \"%<Auto>\"" crlf) 
(printout ? *sim-file* (s tr-cat " LastModifiedDa te (now) 

"\"") crlf) 
(printout ? *sim-file* " ModelVersionFormat 

\"l. %<AutoIncrement : 1>\"" crlf) 
(printout ? *sim-file* " ConfigurationManager \"none\"" crlf) 
(printout ? *sim-file* " BlockDefaults (" crlf) 
(printout ? *sim-file* " Orientation \"right\"" crlf) 
(printout ? *sim-file* " ForegroundColor \"black\"" crlf) 
(printout ? *sim-file* " BackgroundColor \"white\"" crlf) 
(printout ? *sim-file* " DropShadow off" crlf) 
(printout ? *sim-file* " NamePlacement \"normal\"" crlf) 
(printout ? *sim-file* " FontName \"Helvetica\"" 

crlf) 
(printout ? *sim-file* " FontSize 10" crlf) 
(printout ? *sim-file* " FontWeight \"normal\"" crlf) 
(printout ? *sim-file* " FontAngle \"normal\"" crlf) 
(printout ? *sim-file* " ShowName on" crlf) 
(printout ? *sim-file* " }" crlf) 
(printout ? *sim-file* " AnnotationDefaults {" crlf) 
(printout ? *sim-file* " HorizontalAlignment \"center\"" crlf) 
(printout ? *sim-file* " VerticalAlignment \"middle\"" crlf) 
(printout ? *sim-file* " ForegroundColor \"black\"" crlf) 
(printout ? *sim-file* " BackgroundColor \"white\"" crlf) 
(printout ? *sim-file* " DropShadow off" crlf) 
(printout ? *sim-file* " FontName \"Helvetica\"" 

crlf) 
(printout ? *sim-file* " FontSize 10" crlf) 
(printout ? *sim-file* " FontWeight \"normal\"" crlf) 
(printout ? *sim-file* " FontAngle \"normal\"" crlf) 
(printout ? *sim-file* " crlf) 
(printout ? *sim-file* " LineDefaults crlf) 
(printout ? *sim-file* " FontName \"Helvetica\"" 

crlf) 
(printout ? *sim-file* " FontSize 9" crlf) 
(printout ? *sim-file* " FontWeight \"normal\"N crlf) 
(printout ? *sim-file* " FontAngle \"normal\"" crlf) 
(printout ? *sim-file* " crlf) 
(printout ? *sim-file* " System crlf) 
(printout ? *sim-file* (st r-cat " Name ? *prob-name* 

"\"") crlf) 
(printout ? *sim-file* " Location [2,70,1276, 

974]" crlf) 
(printout ? *sim-file* " Open on" crlf) 
(printout ? *sim-file* " ModelBrowserVisibility off" crlf) 
(printout ? *sim-file* " ModelBrowserWidth 200" crlf) 
(printout ? *sim-file* " ScreenColor \"automatic\"" 

crlf) 
(printout ? *sim-file* " PaperOrientation \"landscape\"" 

crlf) 
(printout ? *sim-file* " PaperPositionMode \"auto\"" crlf) 
(printout ? *sim-file* " PaperType \"a4letter\NN 

crlf) 
(printout ? *sim-file* " PaperUnits \"inches\"" crlf) 
(printout ? *sim-file* " ZoomFactor \"100\"" crif) 
(printout ? *sim-file* " AutoZoom on" crlf) 
(printout ? *sim-file* " ReportName \"simulink- 

213 



default. rpt\"" crlf) 
(return ? *sim-file*) 

(deffunction print-simulink-blocks () 
(printout t "print-simulink-blocks" crlf) 
; Constants 

(loop-for-count (? cnt 1 ? *no-of-const*) do 
(print-simulink-const ? cnt)) 

(if (= 0 ? *simulink-array*) 
then 

; Check equations and print out relevant blocks and links 
(loop-for-count (? cnt 1 ? *no-of-eqn*) do 

(print-simulink-eqn-loop ? cnt)) 
(if (neq 1 ? *simulink-partial*) then 

(print-const-links)) 
else 

(message-box "The translator cannot, at present, deal with multi 
value constant arrays (matrices). 
As your problem includes these please try another simulator. " 
wxOK 10 "Translation Error") 

(window-delete ? *trans-frame*) 
(window-delete ? *vars-frame*) 

(printout ? *sim-file* " Annotation (", crlf) 
(printout ? *sim-file* " Position [200,100]" 

crlf) 
(printout ? *sim-file* " Text \"Unable to 

translate to Simulink File. \"") 
(printout ? *sim-file* Multi value 

constant arrays (matrices) used in problem. \"" crlf) 
(printout ? *sim-file* " )" crlf) 
(printout ? *sim-file* "}" crlf) 
(close) 

; Close file 
(printout ? *sim-file* crlf) 
(printout ? *sim-file* crlf) 
(return ? *sim-file*) 
(bind ? *simulink-partial 0) 

214 



V. Examples of Simulator Code 

V. 1. Translated Simple Batch Extraction Simulink Input File (Case Study 1) 
Model { 

Name "cstudyl" 
Version 3.00 
SimParamPage "Solver" 
SampleTimeColors off 
InvariantConstants off 
WideVectorLines off 
ShowLineWidths off 
ShowPortDataTypes off 
StartTime "0.0" 
StopTime "20" 
SolverMode "Auto" 
Solver "ode45" 
RelTol "le-3" 
AbsTol "auto" 
Refine "1" 
MaxStep "auto" 
InitialStep "auto" 
FixedStep "auto" 
MaxOrder 5 
OutputOption "RefineOutputTimes" 
OutputTimes "[]" 
LoadExternallnput off 
Externallnput u]" 
SaveTime on 
TimeSaveName "tout" 
SaveState off 
StateSaveName "xout" 
SaveOutput on 
OutputSaveName "gout" 
LoadlnitialState off 
InitialState "xInitial" 
SaveFinalState off 
FinalStateName "xFinal" 
SaveFormat "Matrix" 
LimitMaxRows off 
MaxRows "1000" 
Decimation "1" 
AlgebraicLoopMsg "warning" 
MinStepSizeMsg "warning" 
UnconnectedlnputMsg "warning" 
UnconnectedOutputMsg "warning" 
UnconnectedLineMsg "warning" 
Inh eritedTsInSrcMsg "warning" 
IntegerOverflowMsg "warning" 
UnnecessaryDatatypeConvMsg "none" 

Int32ToFloatConvMsg "warning" 
signalLabelMismatchMsg "none" 

ConsistencyChecking "off" 
ZeroCross on 
SimulationMode "normal" 

BlockDataTips on 
BlockParametersDataTip on 
BlockAttributesDataTip off 
BlockPortWidthsDataTip off 
BlockDescriptionStringDataTip off 

r 215 



BlockMaskParametersDataTip off 
ToolBar on 
StatusBar on 
BrowserShowLibraryLinks off 
BrowserLookUnderMasks off 
OptimizeBlocklOStorage on 
BufferReuse on 
BooleanDataType off 
RTWSystemTargetFile "grt. tlc" 
RTWInlineParameters off 
RTWRetainRTWFile off 
RTWTemplateMakefile "grt_default_tmf" 
RTWMakeCommand "make_rtw" 
RTWGenerateCodeOnly off 
ExtModeMexFile "ext_comm" 
ExtModeBatchMode off 
ExtModeTrigType "manual" 
ExtModeTrigMode "oneshot" 
ExtModeTrigPort "1" 
ExtModeTrigElement "any" 
ExtModeTrigDuration 1000 
ExtModeTrigHoldOff 0 
ExtModeTrigDelay 0 
ExtModeTrigDirection "rising" 
ExtModeTrigLevel 0 
ExtModeArchiveMode "off" 
ExtModeAutolncOneShot off 
ExtModelncDirWhenArm off 
ExtModeAddSuffixToVar off 
ExtModeWriteAllDataToWs off 
ExtModeArmWhenConnect off 
Created "Thu Feb 03 09: 45: 58 2000" 
UpdateHistory "UpdateHistoryNever" 
ModifiedByFormat "%<Auto>" 
LastModifiedBy "planteng" 
ModifiedDateFormat "%<Auto>" 
LastModifiedDate "Wed Nov 15 12: 58: 39 2000" 
ModelVersionFormat "1. %<AutoIncrement: 27>" 
ConfigurationManager "none" 

BlockDefaults { 
Orientation "right" 
ForegroundColor "black" 
BackgroundColor "white" 
DropShadow off 
NamePlacement "normal" 
FontName "Helvetica" 
FontSize 10 

FontWeight "normal" 
FontAngle "normal" 
ShowName on 

} 

AnnotationDefaults { 
HorizontalAlignment "center" 
VerticalAlignment "middle" 
ForegroundColor "black" 
BackgroundColor "white" 
DropShadow off 
FontName "Helvetica" 
FontSize 10 
FontWeight "normal" 
FontAngle "normal" 

216 



I 
LineDefaults { 

FontName "Helvetica" 
FontSize 9 
FontWeight "normal" 
FontAngle "normal" 

] 
System { 

Name "cstudyl" 
Location [460,172,922,432] 
Open on 
ModelBrowserVisibility 
ModelBrowserWidth 
ScreenColor 
PaperOrientation 
PaperPositionNode 
PaperType 
PaperUnits 
ZoomFactor 
Au to Zoom 
ReportName 
Block { 

off 
200 
"automatic" 
"landscape" 
"auto" 
"a4letter" 
"inches" 
"100" 
on 
"simulink-default. rpt" 

BlockType Integrator 
Name "Integratorl" 
Description "Description" 
Ports [1, 1,0,0,0] 
Position (100,70, 
ExternalReset "none" 
InitialConditionSource "internal" 
InitialCondition "1" 
LimitOutput off 
UpperSaturationLimit "inf" 
LowerSaturationLimit "-inf" 
ShowSaturationPort off 
ShowStatePort off 
AbsoluteTolerance "auto" 

} 
Block 

BlockType Integrator 
Name "Int egrator7" 
Description "Des cription" 
Ports [1, 1,0,0,01 
Position [100,120, 
ExternalReset "none" 
InitialConditionSource "internal" 
InitialCondition "0" 
LimitOutpUt off 
UpperSaturationLimit "inf" 
LowerSaturationLimit "-info 
ShowSaturationPort off 
ShowStatePort off 
AbsoluteTolerance "auto" 

} 
Block { 

BlockType 
Name 
Description "Mass 
Position 

Value "2.5" 
} 
Block { 

Constant 

130,100] 

130,150] 

Transfer Coefficient" 
[50,20,80,501 

217 



BlockType Constant 
Name "M" 
Description "Equilibrium Constant" 
Position [100,20,130,50] 
Value "0.8" 

} 
Block { 

BlockType Product 
Name "Productl0" 
Description "Description" 
Ports [2,1,0,0,0] 
Position (250,122 , 280,153] 
Inputs 
SaturateOnlnte gerOverflow on 

} 
Block { 

BlockType Product 
Name "Productl2" 
Description "Description" 
Ports [2,1,0,0,0] 
Position [100,172 , 130,203] 
Inputs 
SaturateOnlntegerOverflow on 

} 
Block { 

BlockType Product 
Name "Product2" 
Description "Description" 
Ports [2,1,0,0,0] 
Position [150,72, 180,103] 
Inputs "2" 
SaturateOnlntegerOverflow on 

] 
Block { 

BlockType Product 
Name "Product3" 
Ports [2,1,0,0,0] 
Position [200,72, 230,103] 
Inputs 
SaturateOnlntegerOverflow on 

} 
Block { 

BlockType Product 
Name "Product4" 
Description "Description" 
Ports [2,1,0,0,0] 
Position [250,72, 280,103] 
Inputs 
SaturateOnlnteg erOverflow on 

} 
Block { 

BlockType Product 
Name "Product8" 
Description "Description" 
Ports [2,1,0,0,0] 
Position [150,122, 180,153] 
Inputs "2" 
SaturateOnlntegerOverflow on 

} 
Block { 

BlockType Product 

218 4 



Name "Product9" 
Ports [2,1,0,0,0] 
Position [200,122,230,153] 
Inputs 
SaturateOnlnteg erOverflow on 

I 
Block { 

BlockType Sum 
Name "Sumll" 
Description "Description" 
Ports . 

[2,1,0,0,0] 
Position [300,130,320,150] 
NamePlacement "alternate" 
ShowName off 
IconShape "round" 
Inputs "1-+" 
SaturateOnlntegerOverflow on 

] 
Block { 

BlockType Sum 
Name "Sum13" 
Description "Description" 
Ports [2,1,0,0,0] 
Position [155,175,175,195] 
ShowName off 
IconShape "round" 
Inputs "I+-" 
SaturateOnlntegerOverflow on 

] 
Block { 

BlockType Sum 
Name "Sum5" 
Description "Description" 

Ports [2,1,0,0,0] 
Position [300,75,320,95] 
ShowName off 
IconShape "round" 
Inputs "I+-" 
SaturateOnlntegerOverflow on 

] 
Block { 

BlockType Sum 
Name "Sum6" 
Ports [2,1,0,0,0] 
Position [340,75,360,95] 
ShowName off 
IconShape "round" 
Inputs "I-+" 
SaturateOnlntegerOverflow on 

} 
Block { 

BlockType Scope 
Name "X" 
Ports [1,0,0,0,0] 
Position [15,64,45,96] 
Orientation "left" 
Floating off 
Location [46,383,370,622] 
Open on 
NuminputPorts "1" 
TickLabels "OneTimeTick" 

219 



ZoomMode 
List { 
ListType 
axesi 
} 
Grid 
TimeRange 
YMin 
YMax 
SaveToWorkspace 
SaveName 
DataFormat 
LimitMaxRows 
MaxRows 
Decimation 
Samplelnput 
SampleTime 

} 
Block { 

BlockType 
Name 
Description 
Position 
Value 

} 
Block { 

BlockType 
Name 
Ports 
Position 
Orientation 
Floating 
Location 
Open 
NuminputPorts 
TickLabels 
ZoomMode 
List { 
ListType 
axesl 
} 
Grid 
TimeRange 
YMin 
YMax 
SaveToWorkspace 
SaveName 
Data Format 
LimitMaxRows 
MaxRows 
Decimation 
Sample Input 
SampleTime 

} 
Block { 

B1ockType 
Name 
Description 
Ports 
Position 
Orientation 

"on" 

AxesTitles 
"%<SignalLabel>" 

"on" 
"auto" 

ion 

"i. 
off 
"ScopeData" 

"StructureWithTime" 
on 
"5000" 

 i" 

off 
"o" 

Constant 
"XO" 
"Initial Concentration" 

[250,20,280,50] 
Ni-, 

Scope 
"Y" 

[1,0,0,0,0] 
[15,114,45,146] 

"left" 
off 
[48,107,372,346] 

on 
Ni" 

'OneTimeTick" 
"on" 

AxesTitles 
"%<SignalLabel>" 

0 on" 

Now 

NJM 

"auto" 

off 
"ScopeData" 

"StructureWithTime" 
on 
"5000" 

"J" 

off 
"O" 

Scope 
"Z" 
"Description" 
[1,0,0,0,0] 

(15,164,45,196] 
"left" 

220 A 



Floating off 
Location [43,663,367,902] 
Open on 
NuminputPorts "1" 
TickLabels "OneTimeTick" 
ZoomMode "on" 
List { 
ListType AxesTitles 
axesl "%<SignalLabel>" 
} 
Grid "on" 
TimeRänge "auto" 
YMin "0" 
YMax "1" 
SaveToWorkspace off 
SaveName "ScopeData" 
DataFormat "StructureWithTime" 
LimitMaxRows on 
MaxRows "5000" 
Decimation Ni" 
Samplelnput off 
SampleTime "0" 

} 
Block { 

BlockType Constant 
Name "voll" 
Description "Batch Volume" 
Position [150,20,180,50] 
Value "10" 

} 
Block { 

BlockType Constant 
Name "vol2" 
Description "Batch Volume" 
Position [200,20,230,50] 
Value "40" 

} 
Line { 

SrcBlock "Productl2" 
SrcPort 1 
Points [-75,0] 
DstBlock "Z" 
DstPort 1 

} 
Line { 

SrcBlock "Production 
SrcPort 1 
Points [-150,0] 
DstBlock "Product8" 
DstPort 1 

} 

Line { 
SrcBlock "Product4" 
SrcPort 1 
Points [0,5] 
DstBlock "Product2" 
DstPort 2 

} 

Line { 
SrcBlock "Sum5" 
SrcPort 1 

221 I 



Points [-90,0] 
DstBlock "Productl0" 
DstPort 1 

I 
Line { 

SrcBlock "Product8" 
SrcPort 1 
Points CO, -5] 
DstBlock "Integrator7N 
DstPort 1 

} 
Line { 

SrcBlock "Sum11" 
SrcPort 1 
Points [-90,0] 
DstBlock "Product4" 
DstPort 2 

} 
Line { 

SrcBlock "Product2" 
SrcPort 1 
Points [-100,0] 
DstBlock "IntegratorlN 
DstPort 1 

} 
Line { 

SrcBlock "Integratorl" 
SrcPort 1 
Points (0, -20; 30,0] 
Branch { 
Points [0,70; 145,0] 
DstBlock "Sum11" 
DstPort 2 
} 
Branch { 
Points [-10,0; 0,70] 
Branch { 

DstBlock "X" 
DstPort 1 

} 

Branch { 
Points (30,0] 
Branch { 

DstBlock "Sum5" 
DstPort 1 

} 
Branch { 

Points [0, -20] 
DstBlock "Suml3" 
DstPort 2 

} 
} 
} 

] 
Line { 

SrcBlock "K" 
SrcPort 1 
Points [0,0] 
Branch { 
DstBlock "Product8" 
DstPort 2 

222 A 



} 
Branch { 
DstBlock "Sum6" 
DstPort 1 
} 

} 
Line { 

SrcBlock "Sum6" 
SrcPort 1 
Points [0, -5] 
DstBlock "Product2" 
DstPort 1 

} 

Line { 
SrcBlock "volt" 
SrcPort 1 
DstBlock "ProductlO" 
DstPort 2 

} 
Line { 

SrcBlock "voll" 
SrcPort 1 
Points [50,0] 
DstBlock "Product4" 
DstPort 1 

} 
Line { 

SrcBlock "X0" 
SrcPort 1 
Points [0,0] 
Branch { 
Points CO, 100; -145,0] 
DstBlock "Sum13" 
DstPort 1 
} 
Branch { 
DstBlock "Productl2" 
DstPort 1 
} 

} 
Line { 

SrcBlock "Sum13" 
SrcPort 1 
Points [-95,0] 
DstBlock "Productl2" 
DstPort 2 

} 
Line { 

SrcBlock M" 
SrcPort 1 
Points [0,0] 
Branch { 
Points [0,30; 175,0; 0,30] 
DstBlock "Product3" 
DstPort 2 
} 

Branch { 
Points [215,0; 0,110] 
DstBlock "Product9" 
DstPort 2 
} 

223 A 



} 

} 
Line { 

SrcBlock "Integrator7" 
SrcPort 1 
Points [0, -25; 145,0; 0, -5] 
Branch { 
Points [-100,5] 
Branch { 

Points [5,0] 
DstBlock "Product3" 
DstPort 1 

} 
Branch { 

Points [-120,0] 
DstBlock "Y" 
DstPort 1 

} 
} 

Branch { 
Points CO, -5; -100,0; 0,30] 
DstBlock "Product9" 
DstPort 1 
} 

} 
Line { 

SrcBlock "Product3" 
SrcPort 1 
Points [0,20] 
DstBlock "Sum5" 
DstPort 2 

} 
Line { 

SrcBlock "Product9" 
SrcPort 1 
DstBlock "Sumll" 
DstPort 1 

} 
I 

224 



V. 2. Translated Simple Batch Extraction gPROMS Input File (Case Study 1) 

# Problem Title : Simple Batch Extraction 
# Created : Thu Nov 02 13: 23: 15 2000 
# By IMIPS vO. 03 gPROMS Translator 

DECLARE 
TYPE 

Typel =1: -1E6 : 1E6 UNIT =# Concentration in liquid 
Type2 =1: -1E6 : 1E6 UNIT =# Concentration in Vapor 
Type3 =1: -1E6 : 1E6 UNIT = "" # Extent 

END # Declare 

MODEL CStudyl 
PARAMETER 

K AS REAL # Mass Transfer Coefficient 
M AS REAL # Equilibrium Constant 
Voll AS REAL # Batch Volume 
Vo12 AS REAL # Batch Volume 
X0 AS REAL # Initial Concentration 

VARIABLE 
X AS Typel # Concentration in liquid 
y AS Type2 # Concentration in Vapor 
Z AS Type3 # Extent 

EQUATION 
# Change in concentration in Voll 
$X = -K*((X-Y)/(M*Voll)); 

# Change in concentration in Vo12 
$Y = K*((X-Y)/(M*Vo12)); 

# Conversion 
Z= (X0-X)/X; 

END # Model CStudyl 

PROCESS Sim 
UNIT 

CS1 AS CStudyl 

SET 
WITHIN CS1 DO 

K .=2.5; 
# 

M .=0.8; 
# 

Voll .= 10; # 
Vo12 40; # 
X0 # 

END # Within 

INITIAL 
WITHIN CS1 DO 

X=1; # 
Y=0; # 

END # Within 

225 



SOLUTIONPARAMETERS 
Reportinglnterval :=0.5; 
BlockDecomposition := ON; 

SCHEDULE 
CONTINUE FOR 20 

END 

226 



V. 3. Translated Catalytic Tube Reactor gPROMS Input File (Case Study 2) 

# Problem Title : Catalytic Tube Reactor 
# Created : Wed Nov 01 12: 05: 07 2000 
# By IMIPS vO. 03 gPROMS Translator 

DECLARE 
TYPE 

Typel = 1: -lE6 : 1E6 UNIT = "m" # Axial position 
Type2 = 1: -1E6 : 1E6 UNIT = "m" # Radial position 
Type3 = 1: -1E6 : 1E6 UNIT = "kg/mol" # Concentration 
Type4 = 1: -1E6 : 1E6 UNIT = "Pa" # Partial pressures 
Types = 1: -lE6 : 1E6 UNIT = "K" # Temperature 
Type6 = 1: -1E6 : 1E6 UNIT = "mol/kg. s. Pa2" # Reaction 

constant 
Type7 = 1. -1E6 : 1E6 UNIT = "mol/kg. s" # Reaction rate 
Type8 = 1: -1E6 : 1E6 UNIT = "mol/m3" # Feed concentration 
Type9 = 1. -1E6 : 1E6 UNIT = "Pa" # Feed partial pressures 
Type10 =1: -1E6 : 1E6 UNIT = "K" # Feed temperature 
Typell =1: -1E6 : lE6 UNIT = "m/s" # Superficial gas 

velocity 
Type12 =1: -1E6 : 1E6 UNIT = "kg/s" # Coolant flowrate 
Typel3 =1: -1E6 : 1E6 UNIT = "K" # Coolant temperature 
Type14 =1: -1E6 : 1E6 UNIT = "K" # Coolant temperature in 
Type15 =1: -1E6 : 1E6 UNIT = "W" # Total heat load absorbed 

by coolant 
END # Declare 

MODEL CStudyl 
PARAMETER 

L AS REAL # Reactor Length 

R AS REAL # Reactor Radius 

rhob AS REAL # Bed Density 

rhof AS REAL # Fluid Density 

Cpf AS REAL # Fluid Specific Heat Capacity 
Dz AS REAL # Axial Diffusivity 
Dr AS REAL # Radial Diffusivity 
kz AS REAL # Axial Conductivity 
kr AS REAL # Radial Conductivity 

BedVoid AS REAL # Bed Voidage Fraction 
deltaH AS REAL # Reaction Enthalpy 
A AS REAL # Pre-Exponential Arrhenius Constant 
E AS REAL # Activation Energy 
hw AS REAL # Wall Heat Transfer Coefficient 
Rg AS REAL # Ideal Gas Coefficient 

rhoc AS REAL # Coolant Density 
Cpc AS REAL # Coolant Specific Heat Capacity 
Vc AS REAL # Cooling Jacket Volume 

Area AS REAL # Overall Heat Transfer Area 
OverallU AS REAL # Overall Heat Transfer Coefficient 
NoComp AS INTEGER # Number of Components Present 
Nu AS ARRAY(NoComp) OF REAL # 

DISTRIBUTION-DOMAIN 
ax AS (O: L) 

rad AS (O: R) 

VARIABLE 
C AS DISTRIBUTION(NoComp, ax, rad) OF Type3 # Concentration 

227 , 



P 
pressures 

T 
k 
Rate 
Cfeed 
Pfeed 
Tfeed 
U 
Fc 
Tc 
Tcin 
Q 

AS DISTRIBUTION(NoComp, ax, rad) OF Type4 # Partial 

AS DISTRIBUTION(ax, rad) OF TypeS # Temperature 
AS DISTRIBUTION(ax, rad) OF Type6 # Reaction constant 

AS DISTRIBUTION(ax, rad) OF Type? # Reaction rate 
AS ARRAY(NoComp) OF Type8 # Feed concentration 
AS ARRAY(NoComp) OF Type9 # Feed partial pressures 
AS TypelO # Feed temperature 

AS Typell # Superficial gas velocity 
AS Type12 # Coolant flowrate 
AS Type13 # Coolant temperature 

AS Type14 # Coolant temperature in 
AS Type15 # Total heat load absorbed by coolant 

BOUNDARY 
# Boundary condition at reactor entrance (z=0) 

FOR i1 :=0 TO R DO 

-BedVoid*Dz*PARTIAL(C(, O, il), ax) = u*(Cfeed()-C(, O, il)); 

END #For 

# Boundary condition at reactor entrance (z=0) 

FOR il :=0 TO R DO 

-kz*PARTIAL(T(O, il), ax) = rhof*Cpf*u*(Tfeed-T(O, il)); 

END #For 

# Boundary condition at reactor exit (z=L) 

FOR il :=0 TO R DO 
PARTIAL(C(, L, il), ax) = 0; 

END #For 

# Boundary condition at reactor exit (z=L) 

FOR il :=0 TO R DO 
PARTIAL(T(L, il), ax) = 0; 

END #For 

# Boundary condition at reactor centre (r=0) 

FOR i1 := 01+ TO Ll- DO 
PARTIAL(C(, il, O), rad) = 0; 

END #For 

# Boundary condition at 
FOR il := 01+ TO Ll- DO 

PARTIAL(T(il, 0), rad) _ 
END #For 

reactor centre (r=0) 

o; 

# Boundary condition at reactor perimeter (r=R) 
FOR il := 01+ TO Ll- DO 

pARTIAL(C(, il, R), rad) = 0; 
END #For 

# Boundary condition at reactor perimeter (r=R) 
FOR ii := 01+ TO Ll- DO 

-kr*PARTIAL(T(il, R), rad) = hw*(T(il, R)-Tc); 
END #For 

EQUATION 
# Component mass balance 
FOR il 01+ TO Lj- DO 

FOR i2 01+ TO Rj- DO 
$C(, i1, i2) = -u*PARTIAL(C(, il, i2), ax) 

+BedVoid*Dz*PARTIAL(C(, il, i2), ax, ax) 

228 



+Bedvoid*Dr*PARTIAL(C(, il, i2), rad, rad) 
+BedVoid*Dr*(1/i2)*PARTIAL(C(, il, i2), rad) +rhob*Nu(*Rate(i1, i2); 

END #For 

END #For 

# Energy balance 
FOR il 01+ TO Lj- DO 

FOR i2 := 01+ TO Rj- DO 
rhof*Cpf*$T(il, i2) = -rhof*Cpf*u*PARTIAL(T(il, i2), ax) 

+kz*PARTIAL(T(il, i2), ax, ax) +kr*PARTIAL(T(i1, i2), rad, rad) 

+kr*(1/i2)*PARTIAL(T(il, i2), rad) +rhob*Rate(il, i2)*(deltaH); 

END #For 
END #For 

# Ideal gas law 
FOR ii :=0 TO L DO 

FOR i2 :=0 TO R DO 
P(, il, i2) = C(, il, i2)*Rg*T(il, i2); 

END #For 

END #For 

# Reaction constant 
FOR il 0 TO L DO 

FOR i2 :=0 TO R DO 
k(il, i2) = A*EXP(-E/Rg/T(il, i2)); 

END #For 
END #For 

# Reaction rate 
FOR il 0 TO L DO 

FOR i2 0 TO R DO 
Rate(il, i2) = k(il, i2)*P(1, il, i2)*P(2, il, i2); 

END #For 
END #For 

# Coolant energy balance 

rhoc*Vc*Cpc*$Tc = Fc*Cpc*(Tcin-Tc) + Q; 

# Heat transfer relationship 
Q= OverallU*Area*INTEGRAL(IntNol: =0: L; T(IntNol, R)-Tc); 

# Feed conditions 
Pfeed() = Cfeed(*Rg*Tfeed; 

END # Model CStudyl 

PROCESS Sim 
UNIT 

CS101 AS CStudyl 

SET 
WITHIN CS101 DO 

L .= 4; #m 
R 0.025; # m 
rhob 1300; # kg/m3 
rhof .=1.293; # kg/m3 
Cpf . = 992; # J/kg. K 
Dz .= 0.01; # m2/s 
Dr .= 0.0001; # m2/s 
kz .= 0.5; # W/m. K 
kr .= 0.05; # W/m. K 
BedVoid :=0.2 5; # 

229 



deltaH := -1.20E+06; # J/mol 
A .=1.15E-02; # mol/kg. s. Pa2 
E .= 113370; # J/mol 
hw .= 96; # W/m2. K 
Rg .=8.314; # J/mol. K 
rhoc .= 

2000; # kg/m3 
Cpc .= 123900; # J/kg. K 
Vc 0.0100; # m3 
Area .=0.628; # m2 
OverallU :=9.6; # W/m2. K 
NoComp .=2; # 
Nu ._ [-1, -1]; # 

# Mathematical Solution Methods 

ax [BFDM, 2,40]; 

rad [OCFEM, 3,5]; 
END # Within 

ASSIGN 
WITHIN CS101 DO 

Pfeed := [1100,21100]; # Pa 
Tfeed .= 550; #K 
u .=1; # m/s 
Fc .=0.05; 

# kg/s 
Tcin .= 550; #K 

END # Within 

INITIAL 
WITHIN CS101 DO 
FOR i1 01+ TO Ll- DO 

FOR i2 01+ TO Rl- DO 
C(, i1, i2) = 0; # kg/mol; 

END #For 
END #For 
FOR i1 01+ TO Ll- DO 

FOR i2 01+ TO Rl- DO 
T(il, i2) = 550; # K; 

END #For 
END #For 

Tc = 550; #K 

END # Within 

SOLUTIONPARAMETERS 
Reportinglnterval :=0.1; 
B1ockDecomposition ON; 

SCHEDULE 
CONTINUE FOR 10 

END 

230 



V. 4. 
Model { 

Name "cstudy3" 
Version 3.00 
SimParamPage "Solve 
SampleTimeColors off 
InvariantConstants off 
WideVectorLines off 
ShowLineWidths off 
ShowPortDataTypes off 
StartTime "0.0" 
StopTime "7200" 
SolverMode "Auto' 
Solver "ode45 " 
RelTol "le-3" 
AbsTol "auto" 
Refine "1" 
MaxStep "auto" 
InitialStep "auto' 
FixedStep "auto" 
MaxOrder 5 
OutputOption "Refir. 
OutputTimes H. 

LoadExternallnput off 
Externallnput "[t, u 
SaveTime on 
TimeSaveName "tout" 
SaveState off 
StateSaveName "xout" 
SaveOutput on 
outputSaveName "gout" 
LoadlnitialState off 
InitialState "xInitial" 
SaveFinalState off 
FinalStateName "xFinal" 
SaveFormat "Matrix" 
LimitMaxRows off 
MaxRows "1000" 
Decimation "1" 
AlgebraicLoopMsg "warning" 
MinStepSizeMsg "warning" 
UnconnectedlnputMsg "warning" 
UnconnectedOutputMsg "warning" 
UnconnectedLineMsg "warning" 
InheritedTsInSrcMsg "warning" 
IntegerOverflowMsg "warning" 
UnnecessaryDatatypeConvMsg "none" 
Int32ToF1oatConvMsg "warning" 
SignalLabelMismatchMsg "none" 
ConsistencyChecking "off" 
ZeroCross on 
simulationMode "normal" 

BlockDataTips on 
B1ockParametersDataTip on 
BlockAttributesDataTip off 
BlockPortWidthsDataTip off 
B1ockDescriptionStringDataTip off 
BlockMaskParametersDataTip off 
ToolBar on 
StatusBar on 

Translated Cooling Reactor Simulink Input File (Case Study 3) 

3.00 

off 
off 

"0.0" 
"7200" 

"ode45" 
"le-3" 
"auto" 
"1" 
"auto" 

"auto" 

"Solver" 
off 
off 

off 

"Auto" 

"auto" 

"RefineOutputTimes" 
"f1" 

off 
"Its uff " 

231 4 



BrowserShowLibraryLinks off 
Brows erLookUnderMasks off 
OptimizeBlocklOStorage on 
BufferReuse on 
BooleanDataType off 
RTWSystemTargetFile "grt. tlc" 
RTWInlineParameters off 
RTWRetainRTWFile off 
RTWTemplateMakefile "grt_default_tmf" 
RTWMakeCommand "make_rtw" 
RTWGenerateCodeOnly off 
ExtModeMexFile Next_comm" 
ExtModeBatchMode off 
ExtModeTrigType "manual" 
ExtModeTrigMode "oneshot" 
ExtModeTrigPort "1" 
ExtModeTrigElement "any" 
ExtModeTrigDuration 1000 
ExtModeTrigHoldOff 0 
ExtModeTrigDelay 0 
ExtModeTrigDirection "rising" 
ExtModeTrigLevel 0 

ExtModeArchiveMode "off" 
ExtModeAutolncOneShot off 
ExtModelncDirWhenArm off 
ExtModeAddSuffixToVar off 
ExtModeWriteAllDataToWs off 
ExtModeArmWhenConnect off 
Created "Thu Jul 20 16: 35: 30 2000" 
UpdateHistory "UpdateHistoryNever" 
ModifiedByFormat "%<Auto>" 
LastModifiedBy "planteng" 
ModifiedDateFormat "%<Auto>" 
LastModifiedDate "Thu Nov 02 13: 33: 15 2000" 
ModelVersionFormat "1. %<AutoIncrement: 13>" 
ConfigurationManager "none" 

BlockDefaults ( 
Orientation "right" 
ForegroundColor "black" 
BackgroundColor "white" 
DropShadow off 
NamePlacement "normal" 
FontName "Helvetica" 
FontSize 10 

FontWeight "normal" 
FontAngle "normal" 
ShowName on 

} 
AnnotationDefaults { 

HorizontalAlignment "center" 

VerticalAlignment "middle" 
ForegroundColor "black" 
BackgroundColor "white" 
DropShadow off 
FontName "Helvetica" 
FontSize 10 
FontWeight "normal" 
FontAngle "normal" 

} 
LineDefaults { 

FontName "Helvetica" 

232 



FontSize 9 
FontWeight "normal" 
FontAngle "normal" 

} 

System { 
Name "cstudy3" 
Location [450,302,1191,626] 
Open on 
ModelBrowserVisibility off 
ModelBrowserWidth 200 
ScreenColor "automatic" 
PaperOrientation "landscape" 
PaperPositionMode "auto" 

PaperType "a4letter" 
PaperUnits "inches" 
ZoomFactor "100" 
AutoZoom on 
ReportName "simulink-default. rpt" 
Block { 

BlockType Constant 
Name "Area" 
Description "Heat Transfer Area" 
Position [250,20,280,50] 
Value "1.5" 

} 
Block { 

BlockType Constant 
Name "Cvb" 
Description "Bulk Thermal Heat Capacity" 
Position (100,20,130,50] 

Value "4000" 

} 
Block t 

BlockType Constant 
Name "Cvc" 
Description "Coolant Thermal Heat Capacity" 
Position (150,20,180,50] 
Value "4000" 

} 
Block { 

BlockType Integrator 
Name "Integrators" 
Ports [1,1,0,0,0] 
Position [100,70,130,100] 
ExternalReset "none" 
InitialConditionSource "internal" 
InitialCondition "80" 
LimitOutput off 
UpperSaturationLimit "inf" 
LowerSaturationLimit "-inf" 
ShowSaturationPort off 
ShowStatePort off 
AbsoluteTolerance "auto" 

] 
Block { 

BlockType Integrator 
Name "Integrator2" 
Ports [1,1,0,0,0] 
Position [100,120,130,150] 
ExternalReset "none" 
InitialConditionSource "internal" 

233 
_ 



InitialCondition "20" 
LimitOutput off 
UpperSaturationLimit "inf" 
LowerSaturationLimit "-inf" 
ShowSaturationPort off 
ShowStatePort off 
AbsoluteTolerance "auto" 

} 
Block { 

BlockType Product 
Name "Productl" 
Ports [2,1,0,0,0] 
Position [150,72, 
Inputs "2" 
SaturateOnlntegerOverflow on 

} 
Block { 

BlockType Product 
Name "Productl0" 
Ports [2,1,0,0,0] 
Position [350,122, 
Inputs "2" 
SaturateOnlntegerOverflow on 

} 
Block { 

BlockType Product 
Name "Productll" 
Ports [2,1,0,0,0] 
Position [400,122, 
Inputs "2" 
SaturateOnlntegerOverflow on 

} 
Block { 

BlockType Product 
Name "Productl2" 
Ports [2,1,0,0,0] 
Position [450,122, 
Inputs "2" 
SaturateOnlnte gerOverflow on 

} 
Block { 

BlockType Product 
Name "Productl3" 
Ports [2,1,0,0,0] 
Position [500,122, 
Inputs "*/" 
SaturateOnlntegerOverflow on 

} 
Block { 

180,1031 

380,153] 

430,153] 

480,1531 

530,153] 

BlockType Product 
Name "Product2" 
Ports [2,1,0,0,0] 
Position [200,72,230,103] 
Inputs "2" 
SaturateOnlntegerOverflow on 

} 
Block { 

BlockType Product 
Name "Product3" 
Ports [2,1,0,0,0] 
Position 1250,72,280,103] 

234 



Inputs "2" 
SaturateOnInt egerOverflow on 

] 
Block { 

BlockType Product 
Name "Product4" 
Ports [2,1,0,0,0] 
Position [300,72, 330,103] 
Inputs "2" 
SaturateOnInt egerOverflow on 

} 
Block { 

BlockType Product 
Name "Product5" 
Ports [2,1,0,0,0] 
Position [350,72, 380,103] 
Inputs 
SaturateOnIntegerOverflow on 

] 
Block { 

BlockType Product 
Name "Product6" 
Ports [2,1,0,0,0] 
Position [150,122, 180,153] 
Inputs "2" 
SaturateOnIntegerOverflow on 

} 
Block { 

BlockType Product 
Name "Product7" 
Ports [2,1,0,0,0] 
Position [200,122, 230,153] 
Inputs "2" 
SaturateOnIntegerOverflow on 

} 
Block { 

BlockType Product 
Name "Product8" 
Ports [2,1,0,0,0] 
Position [250,122, 280,1531 
Inputs "2" 
SaturateOnInte gerOverflow on 

} 
Block { 

BlockType Product 
Name "Product9" 
Ports [2,1,0,0,0] 
Position [300,122, 330,153] 
Inputs "2" 
SaturateOnInte gerOverflow on 

I 
Block { 

BlockType Sum 
Name "Sum1" 
Ports [2,1,0,0,0] 
Position [400,70,430,100] 
ShowName off 
IconShape "round" 
Inputs "1+-" 
SaturateOnIntegerOverflow on 

3 

235 4 



Block { 
BlockType Sum 
Name "Sum2" 
Ports [2,1,0,0,0] 
Position [550,120,580,150] 
ShowName off 
IconShape "round" 
Inputs "1+-" 
SaturateOnlntegerOverflow on 

} 
Block { 

BlockType Sum 
Name "Sum3" 
Ports [2,1,0,0,0] 
Position [600,120,630,150] 
ShowName off 
IconShape "round" 
Inputs "I++" 
SaturateOnlntege rOverflow on 

} 
Block { 

BlockType Sum 
Name "Sum4" 
Ports [2,1,0,0,0] 
Position [650,120,680,150] 
ShowName off 
IconShape "round" 
Inputs "I+-" 
SaturateOnlntege rOverflow on 

} 
Block { 

BlockType Scope 
Name "T" 
Ports [1,0,0,0,0] 
Position [30,104,60,136] 
Orientation "left" 
Floating off 
Location [89,239,413,478] 
Open on 
NuminputPorts "1" 
TickLabels "OneTimeTick" 
ZoomMode "on" 
List { 
ListType AxesTitles 
axesl "%<SignalLabel>" 
} 
Grid "on" 
TimeRange "auto" 
YMin "-5" 
YMax "5" 
SaveToWorkspace off 
SaveName "ScopeData" 
DataFormat "StructureWithTime" 
LimitMaxRows on 
MaxRows "5000" 
Decimation "1" 
Samplelnput off 
SampleTime "0" 

} 
Block { 

BlockType Scope 

236 



Name "Tc" 
Ports [1,0,0,0,0] 
Position [30,164,60, 196] 
Orientation "left" 
Floating off 
Location [89,516,413, 755] 
Open on 
NuminputPorts Ni" 
TickLabels "OneTimeTick" 
ZoomMode "on" 
List { 

ListType AxesTitles 
axesi "%<SignalLabel>" 
} 
Grid "on" 
TimeRange "auto" 
YMin "-5" 

YMax "5" 
SaveToWorkspace off 
SaveName "ScopeData" 

DataFormat "StructureWithTime" 
LimitMaxRows on 
MaxRows "5000" 
Decimation Ni" 
Samplelnput off 
SampleTime "0" 

} 
Block { 

BlockType Constant 
Name "Tcin" 

Description "Coolant Inlet Tempe rature" 
Position [350,20,380, 50] 
Value "20" 

} 
Block { 

BlockType Constant 
Name "U" 
Description "Overall Heat Transf er Coefficient" 
Position [300,20,330, 50] 
Value "1" 

} 
Block { 

BlockType Constant 
Name "Vol" 
Description "Bulk Volume" 
Position [50,20,80,5 0] 
Value "1" 

} 
Block { 

BlockType Constant 
Name "Volc" 
Description "Coolant Volume" 
Position [200,20,230, 50] 
Value "0.025" 

} 
Block { 

BlockType Constant 
Name "q" 
Description "Coolant Flowrate" 
Position [400,20,430, 50] 
Value "0.1" 

237 4 



} 
Block { 

BlockType Constant 
Name "rhob" 
Description "Bulk Density" 
Position [500,20,530,50] 
Value "1000" 

} 
Block { 

BlockType Constant 
Name "rhoc" 
Description "Coolant Density" 
Position [450,20,480,50] 
Value "1000" 

} 
Line { 

SrcBlock "Cvb" 
SrcPort 1 
DstBlock "Productl" 
DstPort 1 

} 
Line { 

SrcBlock "rhob" 
SrcPort 1 

Points [0,75; -400,0] 
DstBlock "Products" 
DstPort 2 

} 
Line { 

SrcBlock "Vol" 
SrcPort 1 
Points [0,60; 85,0; 0, -15] 
DstBlock "Product2" 
DstPort 1 

] 
Line { 

SrcBlock "Productl" 
SrcPort 1 
DstBlock "Product2" 
DstPort 2 

} 
Line { 

SrcBlock "Product2" 
SrcPort 1 
Points [0,15; 100,0] 
DstBlock "Products" 
DstPort 2 

} 
Line { 

SrcBlock "Product3" 
SrcPort 1 
DstBlock "Product4" 
DstPort 1 

} 
Line { 

SrcBlock "Sum1" 
SrcPort 1 
Points [0,10] 
DstBlock "Product4" 
DstPort 2 

} 

238 



Line { 
SrcBlock "Product4" 
SrcPort 1 
DstBlock "Products" 
DstPort 1 

} 
Line { 

SrcBlock "Product5" 
SrcPort 1 
Points [0,25; -300, 0] 
DstBlock "Integratorl" 
DstPort 1 

} 
Line { 

SrcBlock "Productl3" 
SrcPort 1 
Points [0,35; -450, 0] 
DstBlock "Integrator2N 
DstPort 1 

} 
Line { 

SrcBlock "U" 
SrcPort 1 

Points [0,0] 
Branch { 
Points CO, 45] 
DstBlock "Product3" 
DstPort 1 
} 
Branch { 
Points [0,20; -175, 0; 0,751 
DstBlock "Product6" 
DstPort 1 
} 

} 
Line { 

SrcBlock "Area" 
SrcPort 1 
Points [0,0] 
Branch { 
Points [5,0; 0,601 
DstBlock "Product3" 
DstPort 2 
} 
Branch { 
Points [0,15; -160, 0; 0,95] 
DstBlock "Product6" 
DstPort 2 
} 

} 
Line { 

SrcBlock "Product6" 
SrcPort 1 
DstBlock "Product7" 
DstPort 1 

} 
Line { 

SrcBlock "Sum2" 
SrcPort 1 
Points [0,30; -400, 0] 
DstBlock "Product7" 

239 



DstPort 2 
] 
Line { 

SrcBlock "Integratorl" 
SrcPort 1 
Points [5,0] 
Branch { 
Points [395,0] 
DstBlock "Sum2" 
DstPort 1 
} 
Branch { 
Points [0,55; 50,0; 0,15] 
Branch { 

Points [225,0] 
DstBlock "Sum1" 
DstPort 2 

] 
Branch { 

Points [0, -35] 
DstBlock "T" 
DstPort 1 

] 
} 

} 
Line { 

SrcBlock "Integrator2" 
SrcPort 1 
Points [20,0] 
Branch { 
Points [0,20; 410,0] 
DstBlock "Sum2" 
DstPort 2 
} 
Branch { 
Points [0, -15; 510,0] 
DstBlock "Sumo" 
DstPort 2 
} 
Branch { 
Points [0,25; 180,0] 
Branch { 

Points [0, -5; 120,0; 0, -70] 
DstBlock "Suml" 
DstPort 1 

} 
Branch { 

Points [0,20] 
DstBlock "Tc" 
DstPort 1 

} 

] 
} 

Line { 
SrcBlock "Product7" 
SrcPort 1 
Points [0,50; 350,0] 
DstBlock "Sum3" 
DstPort 1 

} 
Line { 

240 
  



SrcBlock "q" 
SrcPort 1 
Points [0,85; -200,0] 
DstBlock "Product8" 
DstPort 1 

} 
Line { 

SrcBlock "Product8" 
SrcPort 1 
DstBlock "Product9" 
DstPort 1 

} 
Line { 

SrcBlock "Product9" 
SrcPort 1 
DstBlock "ProductlO" 
DstPort 1 

} 
Line { 

SrcBlock "Tcin" 
SrcPort 1 
Points [0, -10; 250,0] 
DstBlock "Sum4" 
DstPort 1 

} 
Line { 

SrcBlock "Sum4" 
SrcPort 1 
Points [0,45; -350,0] 
DstBlock "Productl0" 
DstPort 2 

} 
Line { 

SrcBlock "Productl0" 
SrcPort 1 
Points [0,60; 230,0] 
DstBlock "Sum3" 
DstPort 2 

} 
Line { 

SrcBlock "Sum3" 
SrcPort 1 
Points CO, -5] 
DstBlock "Productl3" 
DstPort 1 

} 
Line { 

SrcBlock "rhoc" 
SrcPort 1 
Points [0,0] 
Branch { 
Points [10,0; 0,140; -260,0] 
DstBlock "Product8" 
DstPort 2 
} 
Branch { 
Points [0,95] 
DstBlock "Productll" 
DstPort 1 
} 

} 

241 



I 

Line { 
SrcBlock "Cvc" 
SrcPort 1 
Points [0,0] 
Branch { 
Points CO, 15; 100,01 
DstBlock "Product9" 
DstPort 2 
} 
Branch { 
Points [0,110] 
DstBlock "Productll" 
DstPort 2 
} 

} 
Line { 

SrcBlock "Productll" 
SrcPort 1 
DstBlock "Productl2" 
DstPort 1 

} 
Line { 

SrcBlock "Volt" 
SrcPort 1 
Points [200,0] 
DstBlock "Productl2" 
DstPort 2 

} 
Line { 

SrcBlock "Productl2" 
SrcPort 1 

DstBlock "Productl3" 
DstPort 2 

} 

} 

242 



V. 5. Translated Cooling Reactor gPROMS Input File (Case Study 3) 

# Problem Title : Cooling Reactor 
# Created : Thu Nov 23 15: 23: 09 2000 
# By IMIPS vO. 03 gPROMS Translator 

DECLARE 
TYPE 

Typel =1: -1E6 : 1E6 UNIT = "" # 
Type2 =1: -1E6 : 1E6 UNIT = "" # 

END # Declare 

MODEL CStudy3 
PARAMETER 

Vol AS REAL # Bulk Volume 

Cvb AS REAL # Bulk Thermal Heat Capacity 
Cvc AS REAL # Coolant Thermal Heat Capacity 
Volc AS REAL # Coolant Volume 

Area AS REAL # Heat Transfer Area 
U AS REAL # Overall Heat Transfer Coefficient 
Tcin AS REAL # Coolant Inlet Temperature 

q AS REAL # Coolant Flowrate 

rhoc AS REAL # Coolant Density 

rhob AS REAL # Bulk Density 

VARIABLE 
Tc AS Typet # 

T AS Type2 # 

EQUATION 

$T*rhob*Cvb*Vol = U*Area*(Tc-T); 

$Tc*rhoc*Cvc*Volc = U*Area*(T-Tc)+q*rhoc*Cvc*(Tcin-Tc); 
END # Model CStudy3 

PROCESS Sim 
UNIT 

CS3 AS CStudy3 

SET 
WITHIN CS3 DO 

Vol 0.28; # m3 
Cvb 4000; # kJ/m3. K 
Cvc .= 6000; # kJ/m3. K 
Volc .=0.049 ; # m3 
Area 1.88; # m2 
U .= 1200; # kW/m2. K 
Tcin .=5; # C 
q .=8.333e-3 ; # m3/s 
rhoc 800; # kg/m3 
rhob 1000; # kg/m3 

END # Within 

INITIAL 
WITHIN CS3 DO 

243 



Tc = 5; # 
T= 120; # 

END # Within 

SOLUTIONPARAMETERS 
Reportinglnterval := 200; 
BlockDecomposition := ON; 

SCHEDULE 
CONTINUE FOR 7200 

END 

244 



V. 6. Translated CSTR, Van de Vusse reaction gPROMS Input File (Case 
Study 4) 

# Problem Title : Liquid Phase CSTR 
# Created : Fri Nov 03 09: 44: 10 2000 
# By IMIPS vO. 03 gPROMS Translator 

DECLARE 
TYPE 

Typel = 1 
Type2 = 1 
Type3 = 1 
Type4 = 1 
Type5 = 1 

Type6 = 1 
Type? = 1 
Type8 = 1 
Type9 = 1 
TypelO = 1 

END # Declare 

. -1E6 : 1E6 

. -1E6 : 1E6 

. -1E6 : 1E6 

. -1E6 1E6 

. -1E6 : 1E6 

. -1E6 : 1E6 

. -1E6 : 1E6 

. -1E6 : 1E6 

. -1E6 . 1E6 

-1E6 : 1E6 

UNIT = "" # 7 1 

UNIT = "" # 

UNIT = "" # 
UNIT = "" # 
UNIT = "" # 
UNIT = "" # 
UNIT = "" # 
UNIT = "" # 
UNIT = "" # 

UNIT = "" # 

MODEL CStudy4 
PARAMETER 

NoComp AS INTEGER # Number of Components 
NoReac AS INTEGER # Number of Reactions 
ValveConstant AS REAL # Valve Constant 
Diameter AS REAL # Tank Diameter 

Hp AS REAL # Outlet Pipe Height From Base 
Density AS ARRAY(Nocomp) OF REAL # Component Densities 
ReactionConstant AS ARRAY(NoReac) OF REAL # Reaction Rates 
Order AS ARRAY(NoComp, NoReac) OF REAL # Order 
NU AS ARRAY(NoComp, NoReac) OF REAL # Stoichiometric 

coefficients 
Pi AS REAL # Pi 

VARIABLE 
Fin AS Typel # 
Xin AS ARRAY(NoComp) OF Type2 # 
Fout AS Type3 # 
Xout AS ARRAY(NoComp) OF Type4 # 
Holdup AS ARRAY(NoComp) OF Types # 
Cout AS ARRAY(NoComp) OF Type6 # 
TotalHoldup AS Type7 # 
TotalVolume AS Type8 # 
Height AS Type9 # 
Rate AS ARRAY(NoReac) OF TypelO # 

EQUATION 
# Mass Balance 
FOR i1 :=1 TO NoComp DO 

$Holdup(i1)=Fin*Xin(il)- 
Fout*Xout(il)+TotalVolume*SIGMA(NU(i1, )*Rate); 

END #For 

# Reaction Rates 
FOR ii :=1 TO NoReac DO 

245 



Rate(il)=ReactionConstant(il)*PRODUCT(Cout^Order(, il)); 
END 

# Total Volume 
TotalVolume=SIGMA(Holdup()/Density()); 

# Total Holdup 
TotalHoldup=SIGMA(Holdup()); 

# Molar Fractions 
Holdup()=Xout()*TotalHoldup; 

# Molar Concentrations 
Holdup(=Cout()*TotalVolume; 

# Calculation of liquid level 
TotalVolume=Pi*Diameter^2*Height/4; 

# Calculation of flowrate out 
IF Height > Hp THEN 
Fout = ValveConstant*(Height-Hp) 
ELSE 
Fout = 0; 
END # If 

END # Model CStudy4 

PROCESS Sim 
UNIT 

CS4 AS CStudy4 

SET 
WITHIN CS4 DO 

NoComp .=4; 
# 

NoReac .=3; 
# 

ValveConstant 0.3; # 
Diameter :=3; #m 

Hp .=2; #m 
Density := [17.48,17.15,10.24,55.56]; # kg/m3 
ReactionConstant ._ [8E-3,1.3E-2,1E-2]; # m3/kmol. s 
Order := [1,0,1,0,1,0,0,0,0,0,0,0]; # 
NU := [-1,0, -2,1, -1,0,0,1,0,0,0,1]; # 
Pi .=3.1415926; # 

END # Within 

ASSIGN 
WITHIN CS4 DO 

Fin 1; # 
Xin [0.5,0.1,0.3,0.1]; # 

END # Within 

INITIAL 
WITHIN CS4 DO 

Xout(1) 
Xout(2) 
Xout(3) 
TotalHoldup 

END # Within 

= 0.5; it 

= 0.1; it 
= 0.3; it 

= 70.69; # 

SOLUTIONPARAMETERS 

246 



Reportinglnterval := 200; 
B1ockDecomposition := ON; 

SCHEDULE 
CONTINUE FOR 7200 

END 

247 


