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Abstract 

The Binary Decision Diagram (BDD) method has emerged as an alternative to conventional 
techniques for performing both qualitative and quantitative analysis of fault trees. BDDs are 

already proving to be of considerable use in reliability analysis, providing a more efficient 
means of analysing a system, without the need for the approximations previously used in the 
traditional approach of Kinetic Tree Theory. In order to implement this technique, a BDD must 
be constructed from the fault tree, according to some ordering of the fault tree variables. The 

selected variable ordering has a crucial effect on the resulting BDD size and the number of 

calculations required for its construction; a bad choice of ordering can lead to excessive 

calculations and a BDD many orders of magnitude larger than one obtained using an ordering 

more suited to the tree. Within this thesis a comparison is made of the effectiveness of 

several ordering schemes, some of which have not previously been investigated. Techniques 

are then developed for the efficient construction of BDDs from fault trees. The method of 
Faunet reduction is applied to a set of fault trees and is shown to significantly reduce the size 

of the resulting BDDs. The technique is then extended to incorporate an additional stage that 

results in further improvements in BDD size. A fault tree analysis strategy is proposed that 

increases the likelihood of obtaining a BDD for any given fault tree. This method implements 

simplification techniques, which are applied to the fault tree to obtain a set of concise and 
independent subtrees, equivalent to the original fault tree structure. BDDs are constructed for 

each subtree and the quantitative analysis is developed for the set of BDDs to obtain the top 

event parameters and the event criticality functions. 
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Chapter 1: Introduction 

1.1 Introduction to Reliability and Risk Assessment 

The failure of industrial systems, such as those within the nuclear, aeronautical, offshore and 

transport industries, can have catastrophic consequences. Examples of such incidents 

include the explosion on the Piper Alpha oil platform in 1988 and the Concorde disaster in 

Paris in 2000, both of which resulted in multiple fatalities. System safety assessments are 

now routinely undertaken to increase the reliability of potentially hazardous systems and thus 

safeguard against undesired incidents in the future. 

Reliability and risk assessment techniques have been developed over a number of years, with 

considerable advancements being made since the Second World War. Both methods are 

used in system safety analysis in order to calculate the probability and frequency with which a 

hazardous system failure could occur, and to determine whether the associated risk is 

acceptable. 

The risk or 'expected loss', R, of any hazardous event is defined as the product of its 

consequence, C, and the probability or frequency of its occurrence, P: 

R=CxP 1.1 

The risk can therefore be reduced either by reducing the associated consequences of the 
hazard, or by reducing the probability or frequency of its occurrence. 

A quantitative risk assessment of a system involves four basic stages: 

1. Identification of potential safety hazards. 

2. Estimation of the consequences of each hazard. 

3. Estimation of the probability or frequency of each hazard. 

4. A comparison of the results against the acceptability criteria. 

The consequences of a hazard are usually measured by the expected number of fatalities 

and indicate the severity of the incident. Consequence modelling is very much industry 
dependent, as systems and their modes of failure can vary significantly from one industry to 

another. Reliability assessment techniques, however, which are concerned with calculating 
the probability or frequency with which system failure can occur, are generic. Methods such 
as Failure Mode and Effect Analysis (FMEA), Event Tree Analysis, Markov Analysis and Fault 
Tree Analysis are used extensively in many industries. The most widely used technique for 

system reliability assessment is Fault Tree Analysis and is discussed later in this chapter. 
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Having calculated the consequences of each hazard and the probability or frequency with 

which it can occur, Equation 1.1 is used to determine the associated risk. In order to assess 

whether a level of risk is acceptable, the HSE (Health and Safety Executive) recommend the 

use of a three-band approach known as the ALARP principle. This is shown in Figure 1.1. 

Frequency 

Unacceptable 

ALARP 

Acceptable 

Consequence 

Figure 1.1: The ALARP principle 

Risks that fall into the 'acceptable' region are considered low enough to be permissible. 
Generally, they have a low probability of occurrence and do not have a severe hazard 

associated with them. Risks that fall into the 'unacceptable' region are not tolerated and either 
the probability or consequence of the event must be reduced. Between these bands is the 
'ALARP' region, where risks must be 'as low as reasonably practicable'. In this case the risks 

must be shown to be as low as possible, whilst still being economically feasible. 

1.2 Quantification Parameters for System Failure 

Reliability techniques are employed to assess the reliability performance of a system in terms 

of the reliability performance of its components. Many quantification measures can be used to 
describe component and system performance. The common parameters that are used 
throughout this thesis are defined belowt'l. 

For systems that can be repaired, and so for which failure can be tolerated, a relevant 
measure of performance is the availability. This is defined as: 

The fraction of the total time that a system (or component) is able to perform the 
required function. 

The complement of availability is unavailability, where: 

unavailability =1- availability 
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Unavailability is defined as the probability that a component or system does not work at a 

given time t, and is denoted by q(t) for a component and Q. ys(t) for a system. 

Reliability can be defined as: 

The probability that a system or component will operate without failure for a 

stated period of time under specified conditions. 

This measure is relevant for systems where failure cannot be tolerated, and so the successful 

operation of the system over a stated period of time is an important performance measure. 
The probability that a system (or component) fails to work continuously over a stated time 

interval and under specified conditions is known as its unreliability (F(t)) where: 

unreliability =1- reliability 

If a component or system is not repairable and it is working at time t, then it must have 

worked continuously since t=0. Therefore for non-repairable components and systems the 

unavailability is equal to the unreliability. 

The transition of a component or system to a failed state can be characterised by the 

conditional failure rate, h(t). This is the rate at which failures occur taking into account the size 

of the population that has the potential to fail, i. e. those that are still functioning at time t. It is 

defined as follows: 

The conditional failure rate, h(t), is the probability that a system or component 
fails in the interval [t, t+dt), given that it has not failed in [0, t). 

The unconditional failure intensity of a system or component is defined as: 

The probability of system or component failure in the interval [t, t+dt), given that it 

was working at t=0. 

This measure is denoted by w(t) for a component and w8p(t) for a system. Integrating the 
unconditional failure intensity with respect to time gives the expected number of failures 
during the interval (to, t1), denoted by W(to, t1): 

t, 
W(to, tl)= Jw(t)dt 1.2 

to 

Further component and system quantification measures can be found in reference 1. 

A wide range of methods can be used to evaluate the system reliability parameters. One such 
technique, which is applied extensively in systems safety assessment, is Fault Tree Analysis. 
This is discussed in the following section. 

3 



1.3 Fault Tree Analysis 

Fault Tree Analysis was developed by H. A. Watsonl21 in the early 1960's, and is a deductive 

procedure for determining the causes of a particular system failure mode and the probability 

and frequency with which it could occur. The fault tree diagram provides a visual 

representation of the combinations of component failures and human errors that could 

combine to cause system failure. The system failure mode under consideration is referred to 

as the `top event' of the fault tree and branches of the tree are constructed below, by taking a 
'what causes this' approach. The events are continually redefined in terms of their causes, 

until each branch ends with a basic event: either a component failure or human error. 

Fault Tree Analysis is an example of a `top-down' technique, as the process starts with the 

top event and works downwards, building the fault tree beneath. Other methods, such as 
FMEA, are known as 'bottom-up' techniques, since they start with a set of component failure 

conditions and identify the possible consequences using a 'what happens if' approach. 

The techniques for performing the quantitative analysis of fault trees, known as Kinetic Tree 

Theory, were not developed until the early 1970's by Vesely131. They allow the calculation of 

various system reliability parameters, such as: 

0 Probability of top event existence. 

0 Frequency of top event occurrence. 

9 Component importance measures. 

These are used to determine whether the risk of system failure is sufficiently small and 
therefore whether or not the system meets the required safety standards. 

The disadvantage of the conventional methods of Kinetic Tree Theory is that for large fault 

trees the analysis can become computationally intensive and can require the use of 

approximations. This obviously leads to inaccuracies in the calculations. As the techniques 

are already so well developed, further refinement is unlikely to result in vast improvements. 

This has led to the development of a new method for analysing fault trees, known as the 
Binary Decision Diagram technique. This is discussed briefly in the following section. 

1.4 Binary Decision Diagrams 

The Binary Decision Diagram (BDD) technique for Fault Tree Analysis was developed 
predominantly by Rauzyt4l. This method does not analyse the fault tree directly, but constructs 
a BDD, which encodes the fault tree's logic function. Both qualitative and quantitative 
analyses are then applied to the BDD. The advantage of this technique is that the calculations 
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for the BDD quantification are both exact and efficient; unlike Kinetic Tree Theory, 

approximations are not required. 

However, the structure of the BDD is dependent upon the order in which the fault tree 

variables (basic events) are considered during the construction process. Many different BDDs 

can be obtained from one fault tree and their sizes vary considerably, depending on the 

chosen variable ordering. The wrong choice of ordering scheme can result in a time- 

consuming construction process and a large BDD, which in turn can lead to increased 

analysis times. Previous research has failed to identify any ordering scheme that can order 
the fault tree variables in a manner that produces the smallest possible BDD from every fault 

tree structure. 

1.5 Research Objectives 

The aim of this research is to consider techniques for the efficient construction of BDDs from 

fault trees. Two distinct aspects will be examined. The first of these explores the variable 

ordering issue and the problem of finding an ordering scheme that produces the smallest 
BDD for any given fault tree. The second aspect looks at methods of reducing the fault tree 

size, so that smaller BDDs can be constructed and the choice of variable ordering scheme 
becomes less critical. The objectives of the project are listed below: 

Variable ordering issue: 

" Generate and analyse different categories of ordering schemes. 

" Examine neural networks as a technique for selecting the most appropriate ordering 
scheme for a particular fault tree. 

Reducing fault tree size: 

" Apply modularisation techniques to fault trees. 

" Investigate the effect on BDD size of applying reduction techniques to fault trees. 

" Extend the BDD quantification methods to consider BDDs that have been constructed 
from modularised and reduced fault trees. 
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Chapter 2: Overview of Fault Tree Analysis 

2.1 Introduction 

Fault Tree Analysis is the most widely used tool in safety and reliability assessment. It is a 
deductive technique for determining the causes of system failure and the associated reliability 

parameters. The fault tree itself provides a visual representation of the structure of the 

system, by expressing a particular system failure mode in terms of component failures and 
human errors. It produces a complete description of the causes of system failure, which is 

important during the design stages of a system, as it allows weak areas to be identified and 

so any problems corrected. 

2.2 Construction of the Fault Tree 

The initial step in the construction of the fault tree is to identify the system failure mode of 

concern, known as the top event. A system may have more than one undesirable failure 

mode and if so, a separate fault tree must be constructed for each. Consequently, several 
fault trees may be required for the assessment of any given system. Once the top event has 

been defined, fault tree branches leading to intermediate events are developed underneath, 
by determining its causes. The intermediate events are then continually redefined in terms of 
lower resolution events by determining the immediate, necessary and sufficient causes for 

their occurrence. The process continues until the resolution limit is reached, i. e. all branches 

end with basic events. These basic events can be component failures or human errors. 

The fault tree diagram is composed of gates and events. Events are categorised as either 
intermediate or basic. Intermediate events, which can be further developed in terms of other 

events, are represented by rectangles in the tree; basic events cannot be developed any 
further and are represented by circles. These symbols are shown in Table 2.1. Gates link the 

events together, depending on their causal relationship. The three fundamental types of gate 

used in fault trees are the 'AND' gate, 'OR' gate and 'NOT' gate. These gates combine events 
in the same way as the Boolean operations of 'intersection', 'union' and 'complementation'. 

Another gate frequently used is the k/n vote gate. This allows the flow of logic through the tree 

if at least k out of n inputs occur. The vote gate can be expressed in terms of 'AND' and 'OR' 

logic, but its use reduces the size of the resulting fault tree. The symbols for the gates and 
their causal relations are shown in Table 2.2. 
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Event symbol Meaning of symbol 

Intermediate event further 
I developed by a gate 

Basic event 

Table 2.1: Event symbols 

Gate symbol Gate name Causal relation 

Output event occurs if all 
AND gate input events occur 

simultaneously 

Output event occurs if at 
OR gate least one of the input events 

occurs 

Output event occurs if at 
k k/n vote gate least k-out-of-n input events 

occur 
n inputs 

NOT gate 
output event occurs if the 

ut event does not occur in . p 

Table 2.2: Common gate types and corresponding symbols 

A system whose failure modes are expressed solely in terms of component failures, is known 

as a 'coherent' system. A coherent fault tree will contain only 'AND' and 'OR' logic. If the 

failure modes of a system are expressed in terms of both component failures and successes, 
it is referred to as a 'non-coherent' system. In addition to the gates used in coherent fault 

trees, non-coherent fault trees also contain 'NOT' logic. The work within this thesis considers 

coherent fault trees only. 

Once a fault tree has been constructed for a system, two types of analysis are performed: 

qualitative and quantitative. 

" Qualitative analysis involves obtaining the smallest sets of events that combine to 

cause system failure. In coherent fault trees, these are called 'minimal cut sets'; in 

non-coherent trees, they are called the 'prime implicants'. 

" Quantitative analysis is concerned with calculating the system failure parameters (the 

top event probability and frequency) and event importance measures. 
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2.3 Qualitative Analysis 

The aim of qualitative analysis is to determine the combinations of basic events that combine 
to cause system failure. These are termed the cut sets or minimal cut sets of the fault tree 

and are defined below. 

A cut set is a group of basic events such that if they all occur (i. e. all 

components fail), the top event also occurs. 

However, system failure does not necessarily require the failure of all the components in a cut 

set. Consider for example a cut set that contains three basic events A, B and C. The failure of 

all three components would guarantee system failure. However, if A and B alone result in 

system failure, then the state of C is irrelevant and the system will fail regardless of whether C 

is in a working or failed state. This leads to the definition of a minimal cut set: 

A minimal cut set is the smallest combination of basic events, which if they all 

occur, cause system failure. If any basic event in the set does not occur (i. e. the 

component works) then the system will not fail. 

Fault trees constructed using different approaches are said to be logically equivalent if their 

minimal cut sets are identical. The order of a minimal cut set is the number of components 

within the set. In general, the lowest order minimal cut sets contribute most to system failure, 

as fewer components failures are needed for the top event to occur. Efforts should therefore 
be focussed on eliminating lower order minimal cut sets, especially those of order one, which 

represent single point failures in the system. 

If NOT logic is used or implied, the combinations of basic events that cause the top event are 

called implicants. Minimal sets of implicants are called prime implicants. 

To determine the cut sets of a fault tree, the Boolean logic expression for the top event must 
be transformed to a sum-of-products (s-o-p) form. This can be achieved with the use of a top- 

down or bottom-up approach, depending on which end of the tree is used to initiate the 

expansion process. The top-down procedure is described below and illustrated with the use of 

an example. 

The process starts with the top event, which is expanded by continually substituting in the 
Boolean events appearing lower in the tree, until the expression contains only basic 

component failures. The product, '. ', is used to represent 'AND' gates in the logic equations, 
and the sum, '+', is used to represent 'OR' gates. Expansion of the resulting equation gives 
the s-o-p form, from which the cut sets can be determined. If the fault tree contains repeated 
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events then the resulting s-o-p expression may not be minimal and so the minimal cut sets 

cannot be obtained directly. Redundancies must be removed from the expression using the 
laws of Boolean algebra, to allow the extraction of the minimal cut sets. The laws are shown 
in section 2.3.1. 

2.3.1 Boolean Laws of Algebra 

1. Commutative Laws: 

A+B=B+A 
A. B = B. A 

2. Associative Laws: 

(A+B)+C=A+(B+C) 

(A. B). C = A. (B. C) 

3. Distributive Laws: 

A+ (B. C) = (A + B). (A + C) 

A. (B + C) = (A. B) + (A. C) 

4. Identities: 

A+O=A A. 0=0 
A. 1=A A+1=1 

5. Idempotent Laws: 

A+A=A (removes repeated cut sets) 
A. A =A (removes repeated events within each cut set) 

6. Absorption Laws: 

A+A. B =A (removes non-minimal cut sets) 
A. (A + B) =A 

7. Complementation: 

A=1 -A 
A. A =0 
(A)=A 

8. De Morgans Laws: 

(A+B)=A. B 

(A. B)=A+B 
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2.3.2 Example - Obtaining the Minimal Cut Sets 

The top-down approach for calculating the minimal cut sets is demonstrated using the 

example fault tree shown in Figure 2.1. 

Figure 2.1: Example fault tree 

Starting with the top event (Top), it is an 'AND' gate with three inputs, G1, X1 and G2. It can 
therefore be expressed as a product of these inputs: 

Top = G1. X1. G2 

As G1 is an 'OR' gate, made up of two events, X2 and X3, it can be written as: 

G1 = X2+X3. 
Substituting this into Top gives: 

Top = (X2+X3). X1. G2 

Similarly, G2 can be written as the sum of X1 and X4, so Top becomes: 

Top = (X2+X3). X1. (X1+X4) 

The expression now contains only basic events, so is expanded to give: 

Top = X2. X1. Xi + X1. X3. X1 + X2. X1. X4 + X1. X3. X4 

= X1. X2 + X1. X3 + X1. X4. X2 + X1. X4. X3 (as Xl. X1 = X1) 

which gives the cut sets of the fault tree, expressed in s-o-p form. Redundancies can then be 
removed using the absorption law: 

Top = X1. X2 + X1. X3 

This is the minimal disjunctive form of the logic equation, each term of which is a minimal cut 
set. For this fault tree there are two minimal cut sets, both of order two (i. e. they each contain 
two basic events). These are {X1, X2} and {X1, X3}. 
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Obtaining the minimal cut sets for the tree in the example above is relatively straightforward. 
However, this was for a very small fault tree; a complex system may produce thousands of 
minimal cut sets. Determining the cut sets of a large system and their conversion to minimal 
form is a computationally intensive task due to the number of comparisons to be made. 
Although the algorithms are not complex, the process can be very time-consuming. For this 

reason, approximations such as culling are often implemented, which cull the cut sets above 
a certain order (for example above order four) during the calculation process, to reduce the 

number of computations and the time taken for the analysis. However, this obviously leads to 

a reduction in the accuracy of the minimal cut sets and so in the resulting quantitative analysis 
for which they are frequently used. 

2.4 Quantitative Analysis 

Quantitative analysis of the fault tree allows the calculation of a number of parameters, which 
are used to assess the system. The top event probability and frequency are used together 

with the expected number of occurrences of the top event and event importance measures to 

gain a full understanding of the system. 

The methods for fault tree quantification are developed from Kinetic Tree Theoryt3l, which is a 
time-dependent methodology for system evaluation. These techniques form the basis of the 
approach used in the majority of commercial Fault Tree Analysis packages. 

2.4.1 Structure Functions 

The structure function for the top event of a fault tree shows the system state in relation to its 
components and is given by: 

NC 

9(x)=1-[J(1-Pi(x)) 

where p, (x) is the binary indicator function for each minimal cut set C;, i=1.. Nc: 

1 
Pi (x) _ fJ ß, such that pi = 

jEci 0 

if cut set Ci exists 

if cut set C, does not exist 

2.1 

2.2 

and for each system component j, ßj is the binary indicator variable such that: 

1 if component I is failed 
Rj 

0 if component! is working 
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The structure function is also a binary indicator function, taking the following values: 

1 
cp(x) = 

if the system is failed 

0 if the system is working 

For the fault tree shown in Figure 2.1, which has minimal cut sets C, = {X1, X2} and C2 = {X1, 
X3}, the structure function is given by: 

cp(x) = 1-(1-X1. X2)(1-X1. X3) 2.3 

The probability of the top event is given simply by the expected value of the structure function, 

Qsys(t)=E[cp(x)] 2.4 

If each minimal cut set is independent (i. e. no event appears in more than one cut set), then it 
is also true that: 

E[T(x)] = cp[E(x)] 2.5 

Obtaining the expected value of the structure function for independent minimal cut sets would 
simply be a matter of substituting the probability of failure of each component into the 

structure function and calculating the result. 

However, the minimal cut sets are not usually independent, and so in this case a full 
expansion of the structure function and then reduction of the indicator variables (i. e. X, = X, ") 
must be undertaken. 

Applying this to the structure function for the example fault tree (Equation 2.3), gives: 

cp(x) =1 - (1 - X1. X3 - X1. X2 + X1. X1. X2. X3) - expansion 

= X1. X3 + X1. X2 - X1. X2. X3 - reduction 

The probability of the top event is then given by the expected value of the expanded and 
reduced structure function: 

QSys(t) = E(cp(x)) = P(X1). P(X3) + P(X1). P(X2) - P(X1). P(X2). P(X3) 2.6 

A more efficient method of implementing this uses Shannon's Theorem. 

2.4.2 Shannon's Theorem 

Shannon's theorem[5) can be expressed as follows. 

A Boolean function f(x) where x= (x1, x2, ..., x�) can be written as: 

f(x) = xi. f(1;, x)+zi. f(O;, x) 2.7 
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where: x; = 1-x;, 
f(1;, x) = f(x,...... A4-� 1, y4+1...... x�) and 
f(O;, x) = f(x,...... Als 0, x+1....., x�) 

f(11, x) and f(0;, x) are known as the residues of f(x) with respect to x;. 

The structure function is pivoted around the most repeated variable using Shannon's 

expansion. This is continued until no repeated variables exist in the residues. 

Shannon's theorem can be applied to the structure function given in Equation 2.3: 

cp(x) =1-(1-X1. X2)(1-X1. X3) 

Pivoting around the repeated variable, X1, gives: 

cp(x) = X1[1-(1-X2)(1-X3)] + (1-X1)[0] 

= X1 [1 -(1-X2)(1-X3)] 

The probability of the top event is therefore given by: 

QBrs(t) = E((p(x)) = P(X1). [1-(1-P(X2))(1-P(X3))] 2.8 

Expanding this gives exactly the same result as shown in Equation 2.6. 

2.4.3 General Method for the Calculation of the Top Event Probability 

The general method of calculating the top event probability (i. e. the system unavailability) 
uses the minimal cut sets obtained from the qualitative analysis. This method can be used 
whether or not the fault tree contains repeated events. 

The top event occurs if at least one minimal cut set exists, therefore for a fault tree that has N. 
minimal cut sets, C;, Qsys(t) is given by: 

Ný 

Qsys(t)=P UCI 
1=1 

Expanding gives: 

2.9 

NN (-1 

Qsys(t)=2P(Ci)-2ZP(Cf nCj)+... +(-1)NC-1P(C1 nC2 n... nCNC) 2.10 
i=1 =2 J=1 

where P(C; ) is the probability of the existence of minimal cut set i. 

This expansion is known as the inclusion-exclusion expansion and generates the exact 
probability of the top event existence. 
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For example, consider the example fault tree shown in Figure 2.1, which has minimal cut sets 

C1 = {X1, X2} and C2 = {X1, X3}. Equation 2.10 gives the top event probability as: 

Qsy$(t) = P(C1) + P(C2) - P(C1 n C2) 

= P(X1. X2) + P(X1. X3) - P(X1. X2. X1. X3) 

= P(X1). P(X2) + P(X1). P(X3) - P(X1). P(X2). P(X3) 

which is identical to the expression calculated in Equation 2.6. 

It can be seen from the above expansion that if the fault tree has a large number of minimal 

cut sets then calculating this probability will be computationally intensive. For this reason, the 

calculation is simplified by the use of approximations. 

2.4.3.1 Upper and Lower Bounds for System Unavailability 

Truncation of the series in Equation 2.10 at an even-numbered term gives a lower bound for 

the top event probability; truncation at an odd-numbered term gives an upper bound for the 

top event probability: 

N 

P(Ci)-ýEP(Ci nCj) QsYS(t): 
&(Ci) 2.11 

i=1 i=2 j=1 1=1 

Lower bound Exact Upper bound 

The upper bound is known as the Rare Event Approximation, PRE (Top), as it is accurate if the 

component failure events are rare. 
N 

PRE(Top) _ P(C1) 2.12 

2.4.3.2 Minimal Cut Set Upper Bound 

A more accurate approximation for the top event probability is the Minimal Cut Set Upper 

Bound, PMCSUB(Top). This is derived as follows: 

P(system failure) = P(at least one minimal cut set exists) 

=1- P(no minimal cut sets exist) 2.13 

Also, 
Nc 

P(no minimalcut sets exist) z [P(minimalcut set i does not exist) 2.14 
1=1 

(Equality exists when the minimal cut sets are independent i. e. when no event occurs in more 
than one cut set. ) 
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Substituting Equation 2.14 into 2.13 gives: 

Ne 

P(system failure) S 1- f[ P(minimal cut set i does not exist) 2.15 

which gives the Minimal Cut Set Upper Bound: 

N0 

PMcsuB(Top)=1-[(1-P(CI)) 2.16 
1=1 

It can be shown that 
Nc N 

Qsys(t)51-fl(1-P(CI))_ P(CI) 2.17 
f=1 1=1 

Exact Minimal Cut Set Rare Event 
Upper Bound Approximation 

2.4.4 Top Event Frequency 

The top event frequency is another system parameter that can be calculated - this is useful 
for systems where unreliability is an important issue. 

The system unconditional failure intensity, wsys(t), is defined as the probability that the top 
event occurs at t per unit time. Therefore, the probability that the top event occurs in the 
interval [t, t+dt) is given by wys(t)dt. 

For the top event to occur in the interval [t, t+dt), no minimal cut sets can exist at time t, and at 
least one minimal cut set, e;, must occur in [t, t+dt). This can be written as: 

wSys(t)dt =P AU81 2.18 

Ne 

where: A is the event that no minimal cut sets exist at time t, A= nul 
. 

1=1 

u; is the event that the i`h minimal cut set does not exist at t. 
Nc 
U8j is the event that at least one minimal cut set occurs in the interval [t, t+dt). 
1=1 

As P(A) =1- P(A), the right hand side of Equation 2.18 can be written: 

N 

P AUE), =P Uel -P el 2.19 
1=1 1=1 

11 

1=1 

1 

where A is the event that at least one minimal cut set exists at t. 
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Therefore w6 (t) becomes: 
r N., 

wsy. (t)dt =P Ue1 -P ei 2.20 
L 1=1 1=1 

The first term on the right-hand side gives the contribution from the occurrence of at least one 

minimal cut set. The second term gives the contribution of the minimal cut set occurrence 

while other minimal cut sets already exist (i. e. the system is already failed). These terms are 
denoted by wyg('"(t)dt and wsys(2)(t)dt respectively to give: 

wsys(t)dt = wys(')(t)dt - wsyS(2)(t)dt 2.21 

The terms on the right of the above equation can be expanded using the inclusion-exclusion 

principle, but as this is a computationally intensive operation, an approximation is required. 

2.4.4.1 Approximation for the System Unconditional Failure Intensity 

If component failures are rare, then minimal cut set failures will also be rare events. The term 

wSYg(2)(t)dt, which requires minimal cut sets to exist and occur at the same time, would become 

negligible if component failures are unlikely. Therefore, an upper bound for wsys(t)dt is simply: 

W sys (t) max dt =W sys(') (t)dt 2.22 

As this can be expanded using the inclusion-exclusion principle, the series expansion is 
truncated after the first term (as for the top event probability) to give the Rare Event 
Approximation: 

N 
Wsys(t)m,, dt <_ P(81) 

Nc 
Z wek (t)dt 2.23 

k=1 

where: P(8; ) is the probability of the occurrence of minimal cut set i 

wok (t) is the unconditional failure intensity of minimal cut set 9w 

Note that this is not the same as the Rare Event Approximation for the top event probability. 
Here P(6, ) denotes the probability of occurrence of a minimal cut set; for the top event 

probability, P(C; ) denoted the probability of existence of a minimal cut set. 

2.4.4.2 Expected Number of System Failures 

The expected number of system failures in time t, W(0, t), is given by the integral of the 
system unconditional failure intensity in the interval t. 
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t 
W(O, t) = 

jwsys(u)du 2.24 
0 

For a reliable system, the expected number of system failures is an upper bound for the 

system unreliability, F(t) (i. e. F(t) s W(O, t)). 

2.4.5 Importance Measures 

The importance measure of a component or minimal cut set is given by a numerical value and 
signifies the role that the component or cut set plays in contributing to the top event. This 

allows the components or cut sets to be ranked in order according to the extent of their 

contribution to system failure. Importance measures are useful as they can identify weak 
areas of a system, which is especially important at the design stage. 

Importance measures can be categorised as either deterministic or probabilistic. Probabilistic 

measures can themselves be subdivided into two categories: those dealing with system 
unavailability assessment and those dealing with the system unreliability assessment. 

2.4.5.1 Deterministic Measures 

Deterministic importance measures evaluate the importance of a component without 
considering its probability of failure. One such measure is the structural measure of 
importance. 

Structural Measure of Importance 

The structural measure of importance for component i is given by: 

= 
number of critical system states for component 1 lý 

total number of states for the (n -1) remaining components 
2'25 

A critical system state for component i is a state for which the failure of component i will cause 
the system to go from a working to a failed state 

2.4.5.2 Probabilistic Measures for System Unavailability 

Probabilistic measures are generally of more use than deterministic measures in reliability 
problems as they take into account the components' probability of failure. 
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Birnbaum's Measure of Importance 

This measurel61 is also known as the criticality function and is defined as the probability that 
the system is in a critical state for component i. 

There are two expressions for the criticality function: 

0 Gi (q(t)) = Q8 ys (ii, q(t)) - Qsys (Oi q(t)) 2.26 

where QSys(t) is the probability that the system fails 

(i,, q(t)) = (qý,..., q;. ý, 1, qý+>>"""ýqn) component i failed 

(0,, q(t)) = component i working 

The above expression gives the probability that the system fails with component i 
failed, minus the probability of the system failing with component i working, which 
results in the probability that the system fails only if component i fails. 

" G. (q(t)) 
aQ (t) 

= aqi (t) 
2.27 

This is equivalent to Equation 2.26, as: 

aQsys(t) 
- 

Qsys(1i, q(t))-Qsys(01, q(t)) 2.28 
aq; 1-0 

This measure of importance forms the basis for many other importance measures. 

Criticality Measure of Importance 

This calculates the probability that the system is in a critical state for component i and that i 
has failed. Unlike Birnbaum's measure of importance, it also takes into account the failure 

probability of component i itself. 

Gi(q(t))qi(t) 
2.29 Q. Y. (t) 

Fussell-Vesely Measure of Importance 

This measurem calculates the probability that component i contributes to system failure and is 
defined as the probability of the union of the minimal cut sets containing i, given that the 
system has failed. 

P(U, 
l IeCk 

Ck 

J 2.30 QsY, (t) 
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This measure gives very similar importance rankings to those obtained using the criticality 
measure. 

Fussell-Vesely Measure of Minimal Cut Set Importance 

This measure of importancem ranks the minimal cuts sets in the order of their contribution to 
the top event, rather than considering the individual components. It is defined as the 

probability of existence of the cut set i, given that the system has failed. 

- 
P(C1) 2.31 

Qsys (t) 

2.4.5.3 Probabilistic Measures for System Unreliability 

These importance measures assess the interval reliability of a system, where the order in 

which components fail is important. The sequence of failure can be described with the use of 

enabling and initiating events. This analysis is of particular use in safety protection systems, 

where the order in which the protection system fails and some hazardous event occurs is 

extremely important. For example if the protection system fails first, then the hazardous event 

occurs, the result will be system failure. However if the hazardous event occurs first, then the 

protection system will invoke shutdown and a dangerous situation will be avoided. In this 

case, the protection system failure is an enabling event, which would put the system into a 
critical state. The hazardous failure is an initiating event, which would result in a dangerous 

system failure only if the enabling event has already occurred; if the initiating event occurs 
first, then the safety system would respond as required. The formal definitions of initiating and 
enabling events are given as: 

" Initiating events perturb system variables and place a demand on control/protection 
systems to respond. 

" Enabling events are inactive control/protective systems that permit initiating events to 
cause the top event. 

Barlow-Proschan Measure of Initiator importance 

The Barlow-Proschan measure of initiator importance'81, I;, is the probability that the system is 
in a critical state for component i at time t and that the occurrence of initiating event i in the 
interval [t, t+dt), causes the system to fail. 

t JG; (q(u))wi(u)du 

ý; =°W (0, t) 2.32 

19 



Modified Measure of Enabler Importance 

This importance measuret9l gives the probability that the enabling event i permits the initiating 

event j to cause system failure in the interval [O, t). The failure of the enabler i is considered 
only a factor when it is contained in the same minimal cut set as the initiating event j: 

J[Gi, 
j (q(u)) - GM, I 

(q(u))]qi(u)wj(u)du 
0 

i, =J2.33 W(O, t) 

where G; j is the criticality of components i and j given by: 

G1, l(q(t)) = 
a2QsYS(t) 

2.34 
aqi(t)aqj(t) 

and GM11 is a correction to the term G1 , which eliminates the separate roles of components i 

and j. Further discussion of this measure can be found in reference 9. 

Measure of Minimal Cut Set Frequency Importance 

This measurel1°1 gives the probability that a minimal cut set of order m causes the system 
failure in the interval [O, t), given that the system has failed: 

Mt 1m 
C'{gym} (q(U)) - GM{cý"} (q(U))J[I qj(U)W k (U)du 

k=l 0 
l(Cm) _ :k2.35 

W(O, t) 

where G(cm) (q(t)) is the criticality of cut set i, defined as: 

a2Gis, ý (t) Gtým} (q(t)) = aqk (t) m 
2.36 

ýCECI 

and GM 
{CM} 

(q(t)) is a correction to the term G{cm} (q(t)) that eliminates the separate effects of 
s 

the components contained in Cr 

2.5 Fault Tree Modularisation 

Modularisation methods can be applied to fault trees in order to reduce their complexity and 
simplify the resulting analysis. The modularisation procedure identifies independent subtrees 
within the fault tree, known as modules. A module is defined as a section of the fault tree that 
is completely independent from the rest of the tree, with no inputs that appear anywhere else 
in the tree and no outputs to the rest of the tree except from its output event. The advantage 
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of identifying modules is that each one can be analysed independently of the rest of the tree. 
In effect, the modules can be regarded as individual fault trees and analysed as such. 

Several modularisation techniques are available for detecting fault tree modules, but one of 

particular interest is the linear-time algorithmt"1. The advantage of this algorithm over other 
techniques is its efficiency, as it requires only two passes through the fault tree to obtain the 

modules. 

2.5.1 Principles of the Linear-Time Algorithm 

The modules can be identified after just two depth-first traversals of the fault tree. The first of 
these performs a step-by-step traversal recording for each gate and event, the step number at 
the first, second and final visits to that node. To demonstrate this process, refer to the fault 

tree in Figure 2.2. Starting at the top event and progressing through the tree in a depth-first 

manner, the gates and events are visited in the order shown in Table 2.3. Event inputs to any 

gate are considered before the gate inputs. Each gate is visited at least twice: once on the 

way down the tree and again on the way back up the tree. Once a gate has been visited, it 

can be visited again, but the depth-first traversal beneath that gate is not repeated. This is 

shown at step 30 in Table 2.3, where G4 is visited again, but its descendants (any gates and 

events appearing below that gate in the tree) are not re-visited. 
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Step number 1 2 3 4 5 6 7 8 9 10 11 

node Top G1 a G5 c G4 d G8 e f G8 

Step number 12 13 14 15 16 17 18 19 20 21 22 

node G4 G5 G1 G2 G6 g b h G6 G7 b 

Step number 23 24 25 26 27 28 29 30 31 

node I G7 G2 G3 a c G3 G4 Top 

Table 2.3: Order in which the gates and events are visited in the depth-first traversal of the 
fault tree in Figure 2.2 

The step numbers of the visits (first, second and final) are recorded during this traversal and 

the values for the gates are shown in Table 2.4. As G4 is a repeated gate, the step number of 

the final visit is different to that of the second visit. The equivalent data for the events is 

shown in Table 2.5. It should be noted that the step number of the second visit to each basic 

event is always equivalent to the step number of the first visit to that event. 

Gate Top G1 G2 G3 G4 G5 G6 G7 G8 

1$` visit 1 2 15 26 6 4 16 21 8 

2nd Visit 31 14 25 29 12 13 20 24 11 

Final visit 31 14 25 29 30 13 20 24 11 

Min 2 3 16 3 7 5 17 18 9 
Max 30 27 24 28 11 28 22 23 10 

Table 2.4: Data for the gates in the fault tree 

Event 

1$' visit 

a 

3 

b 

18 
c 

5 

d 

7 

e 
9 

f 

10 

g 

17 

h 

19 23 

2nd Visit 3 18 5 7 9 10 17 19 23 

Final visit 27 22 28 7 9 10 17 19 23 

Table 2.5: Data for the events in the fault tree 

The second pass through the tree finds the maximum (max) of the last visits and the minimum 
(min) of the first visits to the descendants of each gate; these values are also shown in Table 
2.4. The principle of the algorithm is that if any descendant of a gate has a first visit step 
number smaller than the first visit step number of the gate, then it must also occur beneath 

another gate. Conversely, if any descendant has a last visit step number greater than the 
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second visit step number of the gate, then again it must occur elsewhere in the tree. 

Therefore, a gate can be identified as heading a module iff: 

0 The first visit to each descendant is after the first visit to the gate 

and 

" the last visit to each descendant is before the second visit to the gate. 

That is, none of the descendents of a gate can appear anywhere else in the tree (unless 

beneath another occurrence of the same gate). Therefore, the final step of the algorithm 

simply compares the minimum (min) and maximum (max) values of the descendents visit 

numbers with the first and second visit step numbers for each gate. 

From Table 2.4, it can be seen that gates G1, G5 and G6 cannot be modules, as their 

descendants have maximum step numbers greater than the second visit step numbers of 

those gates. Gates G3 and G7 are also not modules, as their descendants have minimum 

step numbers smaller than the first visit step numbers of the gates. 

The following gates can therefore be identified as heading modules: 

Top, G2, G4, and G8 

For completeness, the top event (Top) is included in this list, even though it will always be a 
module of the fault tree. 

Each of the subtrees can be replaced by a single modular event in the fault tree structure and 
are assigned the following labels: 

G2-* M1, G4-ß M2 and G8-> M3 

Four separate fault trees as shown in Figure 2.3 now replace the single fault tree shown in 

Figure 2.2. 
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G4 G8 

M3 def 

(c) Module M2 (d) Module M3 

Figure 2.3: The four modules obtained from the fault tree shown in Figure 2.2 

Having identified the modules, each one can be analysed separately and the results 
substituted into the higher-level fault trees where the modules occur. This process can 
significantly reduce the number of calculations required in the subsequent analysis. The 
linear-time algorithm has been programmed as part of the research and a detailed description 

can be found in Appendix I. 

2.6 Summary of Fault Tree Analysis 

Fault trees are an extremely good way of representing the failure logic of a system in a visual 
format. However, if the fault tree is large, then performing analysis upon it (such as finding the 

minimal cut sets, top event probability, etc) can require extensive calculations and 
consequently, considerable computing power. Approximations are needed for many 
parameters, which inevitably leads to a loss of accuracy. Finding more efficient and accurate 
means of performing these calculations has been the subject of much research, which has led 
to the introduction of the Binary Decision Diagram technique as an alternative method for this 
analysis. 

24 

(a) The modularised fault tree 

(b) Module M1 



Chapter 3: Binary Decision Diagrams 

3.1 Introduction 

Binary Decision Diagrams (BDDs) were first used by Lee 1121 to represent switching circuits. 
Their use in reliability analysis was developed predominantly by Rauzyt4l, who suggested that 
they might provide an alternative, more efficient technique for performing fault tree analysis. 

The BDD method does not analyse the fault tree directly, but converts the tree to a Binary 

Decision Diagram, which represents the Boolean equation for the top event. This 

representation of the logic equation is in a form that is much easier to manipulate than a fault 

tree and so lends itself well to the mathematical analysis. Both qualitative and quantitative 

analysis can be performed on the BDD, with the advantage that exact solutions can be 

calculated very efficiently without the need for the approximations necessary in the 

conventional approach of Kinetic Tree Theory. 

3.2 Properties of the BDD I 

A BDD is a directed acyclic graph, which means that all paths through the BDD are in one 
direction and that no loops can exist. The BDD is composed of terminal and non-terminal 
vertices (also called nodes) connected by branches. The non-terminal vertices encode the 
basic events of the fault tree and the terminal vertices correspond to the final state of the 
system. These are shown on the BDD in Figure 3.1. 

Terminal vertex 

Non-terminal vertex 

Terminal vertex 

Figure 3.1: Example Binary Decision Diagram 

Non-terminal vertices have two outgoing branches. By convention, the left-hand branch is a 
'1' branch, corresponding to basic event occurrence (i. e. the component fails); the right-hand 
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branch is a '0' branch corresponding to basic event non-occurrence (i. e. the component 

works). The size of a BDD is usually measured by its number of non-terminal vertices. 
Terminal vertices have a value of either one or zero, corresponding to top event occurrence 
(i. e. the system fails) and non-occurrence (i. e. the system works) respectively. 

All paths through the diagram start at the root vertex and proceed to a terminal vertex, which 

marks the end of the path. Each path that terminates in a '1' state gives a cut set of the fault 

tree, as that particular combination of component failures must result in system failure. Only 

vertices that lie on the '1' branches of these paths are included in the cut sets. For example, 
in the BDD shown in Figure 3.1, there are two possible paths that terminate in '1' states. 

These are: 

1. a 

2. ä, b, c 

which gives the two corresponding cut sets: 

1. {a} 

2. {b, c} 

In this example, the BDD is in its minimal form and so generates minimal cuts sets. However, 

this is not always the case, as is discussed later in this chapter. 

3.3 Formation of the BDD Using the Structure Function 

One method of constructing the BDD uses the structure function of the fault tree. An ordering 

of the fault tree variables must be chosen, which determines the order in which they are 
considered in the construction process. The choice of variable ordering also has a significant 
effect on the size of the resulting BDD, a subject that is discussed in more detail in section 3.6 

and Chapter 4. Values of one and zero are then successively substituted into the structure 
function equation for each node in the BDD, according to the chosen ordering. This process is 

demonstrated using the fault tree shown in Figure 3.2. 

Figure 3.2: Example fault tree 
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The minimal cuts sets for this tree are: 

1. {a, d} 

2. {b, d} 

3. {c} 

which gives the following structure function: 

9 =1- (1- a. d)(1- b. d)(1- c) 

The BDD is constructed according to the variable ordering a<b<c<d, which was chosen by 

listing the variables as they appear from left to right in the fault tree. The ordering means that 

event 'a' is considered first, then event 'b' and so on, until the BDD has been fully 

constructed. The first node, which encodes event 'a', is drawn with its two outgoing branches. 

The result of the left-hand branch is obtained by substituting the value one into the structure 
function equation for each occurrence of W; the result of the right-hand branch is found by 

substituting in the value zero for'a'. The remaining variables are then considered in the same 

way, according to the chosen ordering, until the terminal vertices are reached. The resulting 

BDD with its Boolean equations is shown in Figure 3.3. 

Figure 3.3: Binary Decision Diagram with Boolean equations 

27 



The resulting BDD is not, however, in its simplest form. It consists of ten non-terminal nodes, 
which can be reduced by applying the reduction technique outlined in the following section. 

3.3.1 Reduction of the BDD 

The following 'collapsing' operations (Friedman and Supowit") can be used to reduce the 
size of the BDD: 

1. If the two sons of a node 'a' are equivalent, then delete node 'a' and direct all of its 
incoming branches to its left son. 

2. If nodes 'a' and 'b' are equivalent, then delete node 'b' and direct all of its incoming 
branches to 'a'. 

The son of a node is the node to which either the one or the zero branch leads. 

The above operations can be applied to reduce the BDD in Figure 3.3. Operation 1 is first 

applied to delete node F2, as both its sons are equivalent. Its incoming branch from node F1 
is therefore directed to its left son, node F4. Nodes F5 and F9 are deleted. Then, operation 2 

can be applied to the equivalent nodes F4 and F6. Node F6 and its sons are deleted and its 
incoming branch from node F3 is directed to R. This is known as 'sub-node sharing' and 
results in the BDD shown in Figure 3.4. 

Figure 3.4: The reduced BDD from Figure 3.3 

The reduced BDD is significantly smaller than the original, with five non-terminal nodes as 
opposed to ten. Two of the redundant cut sets that could be found from Figure 3.3 have also 
been eliminated. However, the reduced BDD is not minimal, as the BDD paths result in a 
further two non-minimal cut sets. To obtain minimal cut sets from the BDD, it must undergo a 
minimisation procedure, which is described in section 3.5. 
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The reduction technique does not alter the logic of the BDD, but it does reduce computer 
memory requirements. 

Although the method of constructing the BDD from the structure function clearly indicates the 
relationship between the fault tree and the BDD, an obvious disadvantage is that the cut sets 
must be determined before the BDD can be constructed. As the aim of the BDD method is to 
perform the analysis more efficiently, an alternative method is implemented. 

3.4 Formation of the BDD Using If-Then-Else 

This method of constructing the BDD was developed by Rauzyt°l and proceeds by applying an 
if-then-else (ite) technique to each of the gates in the fault tree. The He structure derives from 

Shannon's formula, which is discussed in detail in Chapter 2. If f(x) is the Boolean function for 

the fault tree top event then by pivoting about any variable X1, Shannon's formula can be 

written as: 

f(x) = X1. f1+Xif2 3.1 

where f1 and f2 are Boolean functions with X1=1 and X1=0 respectively, and are of one order 
less than f(x). 

The corresponding ite structure is ite(X1, f1, f2), where X1 is the Boolean variable and f1 and 
f2 are logic functions. This means that if X1 fails then consider f1, else consider f2. Therefore 
in the BDD structure, f1 lies below the '1' branch of the node encoding X1 and f2 lies below 
the '0' branch. This is shown in Figure 3.5. 

X1 
1p 

f1 f2 

Figure 3.5: BDD showing ite(X1, f1, f2) 

Once a variable ordering has been established, the following procedure can be implemented 

to construct the BDD: 

" Each basic event Xi is assigned the ite structure ite(Xi, 1,0). 

" If X<Y (i. e. X appears before Y in the variable ordering): 

Let J= ite(X, Fl, F2) and H= ite(Y, G1, G2), then 

J<op>H=ite(X, F1<op>H, F2<op>H). 
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" If X=Y: 

J= ite(X, Fl, F2), H= ite(X, G1, G2), then 

J<op>H = ite(X, F1 <op>G1, F2<op>G2). 

where <op> corresponds to a Boolean operation of the gates in the fault tree. 

The following identities can also be used to simplify the results: 

1 <op>H=1, if <op> is an 'OR' gate. 

1 <op>H=H, if <op> is an 'AND' gate. 

0<op>H=H, if <op> is an 'OR' gate. 

O<op>H=O, if <op> is an 'AND' gate. 

An advantage of the ite method for constructing the BDD is that the algorithm automatically 
makes use of sub-node sharing. This not only reduces the computer memory requirements, 
as each ite structure is only stored once, but it also increases the efficiency, as once an ite 

structure has been calculated, the process does not need to be repeated. 

The He method can be demonstrated by constructing a BDD from the fault tree shown in 
Figure 3.6. 

Figure 3.6: Example fault tree for the He method 

The ordering a<b<c<d is chosen, which is obtained by a simple top-down, left-right traversal 
of the fault tree (known as top-down ordering). 

G1 is expressed as: 

G1 =b+c 
= ite(b, 1,0) + ite(c, 1,0) 

= ite(b, 1, ite(c, 1,0) ) 
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G2 is found in a similar way to give: 

G2 = ite(c, 1, ite(d, 1,0) ) 

The ite structure for Top is therefore given by: 

Top= a. G1. G2 

= ite(a, 1,0) . ite(b, 1, ite(c, 1,0)) . ite(c, 1, ite(d, 1,0) ) 

= ite(a, 1,0) ite(b, ite(c, 1, ite(d, 1,0) ), ite(c, 1,0) ite(c, 1, ite(d, 1,0)) ) 

= ite(a, 1,0) . ite(b, ite(c, 1, ite(d, 1,0) ), ite(c, 1,0) ) 

= ite(a, ite(b, ite(c, 1, ite(d, 1,0) ), ite(c, 1,0) ), 0) 

The BDD is constructed by considering the one and zero branches of each variable in turn. In 

this example, 'a' is the first variable to be considered and is encoded in the root vertex of the 

BDD. The structure ite(b, ite(c, 1, ite(d, 1,0)), ite(c, 1,0)) lies below its one branch and the 

terminal '0' vertex lies below the zero branch. Event 'b' is the next variable to be considered 

and is encoded in the node beneath the left-hand branch of the root vertex. Its outgoing 

branches are determined by breaking down the structure ite(b, ite(c, 1, ite(d, 1,0)), ite(c, 1, 

0)) into ite(c, 1, ite(d, 1,0)) for the one branch and ite(c, 1,0) for the zero branch. This 

process is continued until all branches end with terminal vertices. The resulting BDD is shown 

in Figure 3.7. 
r4 

Figure 3.7: BDD obtained from the fault tree in Figure 3.6, with the ordering a<b<c<d 

The cut sets, which are obtained from the paths ending with terminal '1' nodes, are: 

1. {a, b, c} 

2. {a, c} 

3. {a, b, d} 
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The BDD is not minimal and therefore does not generate minimal cut sets. The first cut set is 

redundant, as it contains the second cut set as a subset. In order to obtain minimal cut sets 
the BDD has to undergo a minimisation procedure, which is introduced in the following 

section. 

3.5 Minimisation 

The cut sets produced from the BDD are only minimal if the BDD is in its minimal form. In 

order to get a non-minimal BDD into this form, it must undergo a minimising procedure. This 

process, introduced by Rauzyt°', is applied to the ite form of the BDD and creates a new BDD 

that exactly defines the minimal cuts sets of the fault tree. If there are shared nodes in the 
BDD, then these must be expanded out prior to minimisation. 

Consider a general node in the BDD whose output represents the function F, where 

F= ite(x, G, H) 3.2 

If ö is a minimal solution of G, which is not a minimal solution of H, then the intersection of b 

and x, ({b} n x), will be a minimal solution of F. The set of all the minimal solutions of F, 

solm; n(F) will also include the minimal solutions of H, so: 

SOlmin (F) = (a) 

where, 

3.3 

Q= [{b} n x] V [SOIm1n (H)] 3.4 

Rauzy has defined the `without' operator, without(Gmi,, Hm, n), which removes all the paths 
from Gm;,, that are included in a path of Hm;,,. This ensures that the combined set in Equation 

3.4 represents the minimal solutions of F, by removing any minimal solutions of G that are 
also minimal solutions of H. 

This algorithm can be applied to the BDD in Figure 3.7. Each node is considered in turn: 

171 = ite(a, F2,0) - F2 does not contain any paths that are included in the zero branch, as 
this leads to a terminal vertex. 

F2 = ite(b, F3, F4) - Event 'c' is included in a path on both the one branch (F3) and the zero 
branch (F4). Therefore 'c' is removed from the one branch by replacing 
the terminal '1' vertex with a terminal '0' vertex. 

F3 = ite(c, 1, F5) - F5 does not contain any paths that are included in the one branch as it 
leads to a terminal vertex. 

F4 = ite(c, 1,0) - Both the one and zero branches are terminal. 

F5 = ite(d, 1,0) - Both the one and zero branches are terminal. 
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The minimised BDD is shown in Figure 3.8. 

cl 

Figure 3.8: The minimised BDD 

This produces the following minimal cut sets: 
1. {a, b, d} 

2. {a, c} 

Minimising the BDD has therefore removed the redundant cut set {a, b, c}. 

It is important to note that as the minimisation procedure changes the structure of the BDD, 
any quantitative analysis must be performed on the unminimised BDD. 

3.6 The Influence of Variable Ordering on the BDD 

The variables in the fault tree must be ordered before the BDD can be constructed. The 

chosen ordering not only affects the order in which the variables appear in the BDD, but can 
also have a crucial effect on the BDD size and the complexity of the calculations required for 
its construction. For example, consider the fault tree in Figure 3.9. 
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Figure 3.9: Example fault tree for variable ordering 

If the 'depth-first' ordering scheme is chosen, which considers the variables in a depth-first, 

left-right manner, the ordering a<c<d<b<e<f is obtained. The BDD constructed from this 

ordering is shown in Figure 3.10. 

Figure 3.10: BDD obtained from the fault tree in Figure 3.9 

using the ordering a<c<d<b<e<f 

This ordering gives a simple non-minimal BDD with only six non-terminal nodes. However, if 
the top-down ordering scheme is used, the following variable ordering is obtained: 

a<b<c<d<e<f 
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which results in the BDD shown in Figure 3.11. 

Figure 3.11: BDD for the fault tree in Figure 3.9, using variable ordering a<b<c<d<e<f 

The BDD produced from the top-down ordering has nine non-terminal nodes compared with 
the six non-terminal nodes obtained with the depth-first ordering - an increase of 50%. 
Although an increase of three nodes is itself not significant, for a fault tree whose BDD 

contains thousands of nodes, a 50% increase in size could be crucial. For large fault trees, 

the difference in size produced by a 'good' ordering and a 'bad' ordering can in fact be many 

orders of magnitude, which can result in the computer storage capabilities being exceeded 

and the calculations terminated. 

Many ordering heuristics have been investigated, but previous research, which is discussed in 

detail in Chapter 4, has failed to identify any scheme that will always produce a minimal BDD. 

In fact, no ordering scheme has been found which will produce a BDD, minimal or otherwise, 

for every fault tree. Although a minimal BDD is advantageous, as the minimal cut sets can be 

obtained directly so eliminating the need to perform the minimisation procedure, it is not a 

necessity. The calculations required for the quantitative analysis of BDDs (discussed in 

Chapter 7) are linear in the size of the BDD, and therefore very efficient. Provided that a BDD 

can be obtained, the subsequent quantification can be performed. However, it is obviously an 

advantage to produce as small a BDD as possible to reduce the analysis time, and further 

research is necessary to ensure that a BDD can be constructed for any given fault tree. The 

problem of variable ordering is the subject of the literature survey in Chapter 4. 
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3.7 Modularisation 

The BDD construction process can be made more efficient by modularising the fault tree 
before the conversion procedure takes place. Modularisation identifies independent subtrees 
(modules) within the fault tree that can be analysed separately from the rest of the tree. A 
detailed discussion of the modularisation technique is given in Chapter 2. 

Modularisation can significantly reduce the complexity of a fault tree, by breaking it down into 

smaller, more manageable pieces that can be dealt with separately. In terms of the BDD 

process, the tree can then be analysed in several stages by obtaining smaller BDDs for each 

subtree. These can then be combined to form a BDD that represents the original fault tree 

structure. It is possible therefore, that a BDD could be constructed for a tree that could not 

previously be analysed. 

The process can be demonstrated using the fault tree shown in Figure 3.12. 

Figure 3.12: A fault tree that can be modularised 

The following modules can be identified: 

" Gate G1 heads the module M1, as none of its inputs appears as an input elsewhere 
in the tree. 

" Gate G6 heads the module M2. M2 appears twice in the modularised tree, as an input 
to both G2 and G3. 

" Top itself is also a module. 

The modularised tree and modules M1 and M2 are shown in Figure 3.13. 
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(c) Module M2 

Figure 3.13: The modularised fault tree and two modules 

To form the BDD from the modularised tree, the modules are treated as events and so need 
to be ordered together with the basic events. Taking the top-down order M1<M2<a<g, the ite 

structure for the top event can be formed: 

Top = M1. G2. G3 

= ite( M1,1,0). ite( M2,1, ite( a, 1,0)). ite( M2,1, ite( a, ite( g, 1,0), 0)) 

= ite( M1, ite( M2,1, ite(a, ite(g, 1,0), 0 )), 0) 

Each module is then analysed independently to form its own BDD. The top-down orderings 
for the modules are as follows: 

M 1: b<c<d 

M2: e<f 

which result in the He structures given by: 

Ml =G4+G5 

= ite(b, ite(c, 1,0), 0) + ite(c, ite(d, 1,0), 0) 

= ite(b, ite(c, 1,0), ite(c, ite(d, 1,0), 0) 

M2 = ite(e, 1,0). ite(f, 1,0) 

= ite(e, ite(f, 1,0), 0) 

This corresponding set of BDDs is shown in Figure 3.14. 
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(b) BDD for module M1 

(a) BDD for the modularised tree 

(c) BDD for module M2 

Figure 3.14: The BDDs obtained from the modularised fault tree and two modules 

The BDDs for each module are then substituted into Figure 3.14(a) to give one BDD encoding 
only basic events. This is shown in Figure 3.15. 

Figure 3.15: The BDD encoding only basic events 
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Constructing the BDD from the modularised fault tree involves fewer calculations than if the 

unmodularised fault tree were used. Ordering the variables of the unmodularised tree in a top- 
down manner (a<b<c<d<e<f<g) results in a BDD with fifteen non-terminal nodes. This is 

significantly more than for the BDD in Figure 3.15, which has only eight non-terminal nodes. 

In the above example, the top-down ordering scheme was used throughout to order the 

variables of the modularised tree and the two modules. However, the same scheme does not 
necessarily have to be used for each. The modules can be ordered according to their 
individual structures, using the scheme that results in the smallest BDD in each case. This 

could be particularly beneficial in large fault trees, when vast savings could be made in terms 

of the number of calculations performed and could result in a substantially smaller BDD. 

3.8 Summary 

The BDD technique is already proving to be of considerable use in reliability analysis. It 

provides an efficient means of analysing a system, without the need for the approximations 
previously used in the conventional methods of Kinetic Tree Theory. 

The difficulty with this technique is in the conversion of the fault tree to the BDD. The variable 
ordering can have a crucial effect on the BDD; it can mean the difference between a minimal 
BDD with few nodes, so providing an efficient analysis, and no BDD at all. There is no 
ordering scheme capable of generating an efficient BDD structure for all fault trees. 
Considerable research has been conducted into this area and also into methods of selecting 
an appropriate scheme from a group of alternatives. A detailed survey of current ordering 
heuristics and scheme selection techniques is conducted in the following chapter. 
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Chapter 4: A Survey of Variable Ordering Heuristics 

4.1 Introduction to Variable Ordering 

The BDD technique introduced in the previous chapter provides an exact and efficient means 

of analysing fault trees. The difficulty however, lies in the construction of the BDD from the 
fault tree. An ordering of the fault tree variables must be chosen, which determines the 

sequence in which the events are considered in the ite procedure. The variables are ordered 
in a systematic manner, according to a particular variable ordering scheme. The choice of 
ordering scheme can have a crucial effect on the size of the resulting BDD -a 'bad' ordering 
can result in a BDD many orders of magnitude larger than one obtained from a 'good' 

ordering. 

One of the reasons for the significant variation in BDD size is the rate at which the maximum 
number of nodes grows as the number of fault tree variables increases. The number of nodes 
in the BDD cannot be less than the number of variables, n, on which it depends, though this 
can be less than the number of basic events appearing in the tree if redundancies exist. The 
maximum number of nodes, however, increases exponentially as 2%1, as shown Table 4.1. 

Number of variables / minimum 
number of nodes in BDD, n 

5 10 20 50 100 

Maximum number of nodes in 
31 1023 _ -1015 -1030 BDD, 2"-1 

1 1 
Table 4.1: The rapidly increasing function governing the maximum number of nodes 

Another factor that can greatly affect the BDD size is the symmetry of the function. For a 
symmetrical function, the BDD size does not depend on the variable ordering. However, as 
the asymmetry increases, so does the variability in the BDD size. 

Circuit Analysis is another field in which the BDD technique can be implemented. As with 
Fault Tree Analysis, an ordering of the system variables must be chosen in order to construct 
the BDD. The need for a good ordering of the circuit variables was addressed at an early 
stage by Bryanti'41, who noted that the size of the resulting BDD was highly sensitive to the 
chosen ordering scheme. Consequently there has been much research into finding the 
optimal variable ordering for circuits and many of the heuristics identified have been 
considered for fault trees. However, circuits have a different type of logic structure to fault 
trees and it has been shown by Nikolskaial'5l that traditional variable ordering heuristics for 
circuits make poor choices for fault trees. Therefore, the survey of heuristics presented in this 
chapter will not include many of the heuristics and algorithms developed for use in the field of 
Circuits. 
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Ordering heuristics are categorised as either dynamic or static. Both techniques are 
discussed below. 

" Dynamic ordering: These methods focus mainly on circuits, but can also be applied to 
fault trees and involve swapping or exchanging variables to produce a smaller BDD176, "1. 

This is achieved either by obtaining the BDD (using any heuristic), then re-ordering the 

variables to produce a reduced BDD, or by swapping variables during the construction 

process when the original ordering is not adequate to finish the computation. Although 

this procedure can significantly reduce the BDD size, it is of limited use in reliability 
analysis due to the time taken for its implementation. Once a BDD has been constructed, 
the analysis is a linear function of the number of nodes within the BDD. Therefore, 

provided a BDD (of any size) can be obtained, it is more efficient simply to perform the 

required calculations, rather than applying dynamic ordering techniques prior to the 

analysis. For this reason, dynamic techniques are not considered to be of great use and 

will not be discussed in this survey. 

" Static ordering, whereby a variable order is established prior to the construction of the 
BDD is the focus of this chapter. Figure 4.1 highlights the techniques that will be covered. 

Ordering 

Circuits (different logic structure to fault trees) 

heuristics Dynamic (not efficient) 
Fault 
Trees Structural 

Static Topological 

Weighted 
Importance 
Measures 

Heuristic topics considered in this chapter 

Figure 4.1: Relation of variable ordering heuristics 

Many different heuristics have been proposed for selecting a variable ordering and this 
chapter aims to review and, where possible, compare these schemes. The ordering schemes 
fall into two categories: structural and weighted. Structural schemes perform a structured 
traversal of the tree, ordering variables as they are encountered and preserving 
neighbourhoods. Weighted methods allocate weights to the variables in order to determine 
the ordering and do not necessarily preserve neighbourhoods. Weighted schemes can be 
further categorised as being either topological or as based upon importance measures. 
Structural schemes are the most commonly used ordering techniques and will be discussed 
first. 
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4.2 Structural Ordering Schemes 

Structural ordering techniques are very widely used and involve ordering the variables via a 

structured traversal of the fault tree. These schemes tend to preserve the neighbourhoods of 
the variables, such that those appearing close together in the tree structure are also close in 

the ordering. The first structural heuristic to be suggested was the depth-first ordering 
scheme, which Rauzy applied in his initial paper on using the BDD technique for Fault Tree 
Analysisl41. However, by far the most common ordering heuristic is the top-down scheme and 
this is introduced first, as it is referred to in many other techniques. 

4.2.1 Top-Down Ordering Scheme 

The top-down ordering scheme is the most basic scheme, simply ordering the variables as 
they are encountered on a top-down, left-right traversal of the fault tree structure. Basic 

events appearing high in the fault tree will therefore be placed earlier in the ordering than 
those appearing further down the tree. 

For example, the scheme can be applied to the fault tree shown in Figure 4.2. Each level is 

considered in turn, from the top to the bottom, with the basic events in that level ordered from 
left to right. Each event is ordered the first time it is encountered; subsequent occurrences are 
ignored. 

Level 1 

Level 2 

Level 3 

Level 4 

Level 5 

Figure 4.2: Example fault tree used for ordering heuristics 
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The top-down ordering of basic events is therefore: 

a<b<c<d<e<f<g<h 

An obvious feature of this scheme is that it is highly dependent on the way in which the fault 

tree is written. This is true to some extent in all structural ordering schemes. For example, 

gates G1 and G2 could be swapped around, as could G4 and G5, or the order in which 

events are placed as inputs to the gates could be altered, without changing the logic function 

of the tree. This would affect any structural ordering imposed upon the tree, and the size of 
the resulting BDD. This is the greatest disadvantage of the structural ordering schemes. 

4.2.2 Depth-First Ordering Schemes 

In the first paper on the application of BDDs to Fault Tree Analysis, Rauzy suggested a depth- 
first ordering heuristic [41, which is implemented by 'carrying out a depth-first exploration of the 
tree and numbering the variables as soon as they appear'. However, an example was not 
given, so it is unclear exactly how this was implemented. 

The following definition of depth-first ordering will be the one used throughout this thesis: 

Depth-first ordering considers the fault tree as being made up of many smaller 
subtrees, with each subtree ordered in a top-down, left-right manner. Starting with 
the top event, any basic event inputs would be ordered from left to right, and the 
gate inputs are then considered from left to right. Each of those gates is then 
considered as the top event and ordered in the same manner, such that lower 
levels of leftmost subtrees are considered before higher levels of other subtrees. 

This ordering scheme can be applied to the fault tree shown in Figure 4.2. The gates are 
considered in the following order. The traversal starts at the top event, Top, which has two 

gate inputs. The leftmost gate G1 is considered first. Moving down through the tree, gate G3 
is ordered, followed by its input G6. Having completely ordered this subtree, the traversal 

returns to Top to consider G2. G2 also has two subtrees, headed by G4 and G5. G4 is 

ordered first, and then its input, G7. Once G4 has been completely ordered, G5 is considered. 

At each stage, the basic event inputs are ordered before any gate inputs are considered. This 
gives the following ordering: 

a<b<c<g<h<d<f<e 

Two variations on this depth-first method are: 

Alternative 1: The first alternative methodd181 proceeds as the technique described above, 
but does not order the events of a gate before considering any gate inputs. 
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The events and gates are considered in the order in which they appear in the 
input list, so any gates that are listed before events will be ordered first. 

For example, in Figure 4.2, G1 appears before 'a' as an input to Top. 

Therefore G1 will be considered, and so its inputs ordered, before 'a' is 

placed in the ordering. This is also the case for the inputs to G3; G6 appears 
before 'c' and so is considered first. Thus the ordering would be: 

b<g<h<c<a<d<f<e 

This method of depth-first ordering is therefore much more dependent on how 

the fault tree is written than the previous technique, as the way in which the 

events and gates are placed in relation to one another is now relevant. 

Alternative 2: This second alternative method"1 simply considers the subtrees of the top 

event in turn, ordering each subtree in a top-down, left right manner. 

For example consider again the fault tree in Figure 4.2. There are three 

subtrees of the top event, headed by G 1, 'a' and G2, which are considered in 
this order. Ordering the first subtree, G1 using the top-down method gives the 
partial ordering b<c<g<h. The second subtree to be considered is simply 'a' 
itself, so the ordering becomes b<c<g<h<a. The remaining variables are 
ordered from the final subtree as d<e<f, to give the complete ordering: 

b<c<g<h<a<d<e<f 

4.2.2.1 Priority Depth-First Ordering 

This ordering is an extension to the simple depth-first schemes, incorporating an extra factor 
thought to have a significant influence on the size of the BDD. Sinnamon and Andrews[201 

proposed that the basic events that have more influence on the structure function should be 

ordered first and that these events frequently lie higher up the fault tree. For this reason, 
priority should be given to subtrees that only have basic event inputs. 

For example, in Figure 4.2, where previously G4 had been ordered before G5, G5 would now 
be ordered first as it has only basic events as its inputs. This gives the ordering: 

a<b<c<g<h<e<f<d 

A comparison of the BDD sizes for 51 fault trees using the top-down, depth-first and priority 
depth-first schemes was conducted by Sinnamon1211. The results showed that for 21 out of the 
51 fault trees, the top-down scheme produced the smallest BDDs. The depth-first method 
produced the smallest BDDs for 36 of the fault trees. However, the priority depth-first method 
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performed marginally better than this, producing the smallest BDDs for 37 of the 51 fault 

trees. It is noted that for some fault trees the orderings produced equivalent sized BDDs, so 

were each considered to have produced the smallest BDD. 

Therefore, in this relatively small study of 51 fault trees, the priority depth-first method of 
ordering was shown to perform better than both the top-down and depth-first schemes. 

4.2.2.2 Depth-First, with Number of Leaves 

This heuristic, proposed by Rauzy (unpublished) performs a depth-first (first alternative) 
traversal of the tree, but rather than considering the inputs of a gate from left to right, it 

chooses the order of the inputs according to their number of leaves. The number of leaves of 
a gate is the total number of basic events occurring at any level beneath that gate. 

The inputs with the smallest number of leaves that have not yet been ordered are considered 
first. In the case of a tie, the input with the fewest ordered leaves is chosen. 

This process can be applied to the fault tree shown in Figure 4.2. The number of leaves 
beneath each gate is given in Table 4.2. 

Gate G1 G2 G3 G4 G5 G6 G7 

Number of leaves 4 7 3 4 3 2 3 

Table 4.2: Number of leaves of each gate in Figure 4.2 

Starting with the inputs to the top event, 'a' has fewer leaves than G1 or G2 (as it is itself a 
basic event), so is ordered first. G1 has fewer unordered leaves than G2 (four vs. seven) so is 

processed first, to give the partial ordering a<b<c<g<h. Events are simply ordered from left to 

right as they appear in the input list. G2 is considered next and has two inputs, G4 and G5. 
They have an equal number of unordered leaves (two each), but G5 is processed first, as it 
has fewer ordered leaves (one vs. two). The partial ordering then becomes a<b<c<g<h<e<f. 
G4 has the input 'd' which is ordered next, as it has fewest leaves and finally G7 is processed, 
but contributes nothing further to the ordering as all the basic events have been ordered. The 
final ordering is: 

a<b<c<g<h<e<f<d 

This ordering scheme has the advantage that it is less dependent on how the fault tree is 
written, especially when compared to the first alternative depth-first method, upon which it is 
based. This is particularly true for gates that have other gates as inputs (either all gate inputs 
or a mixture of gates and events), as their order is decided by the number of leaves and not 
by the order in which they appear in the list of inputs. It makes no difference to gates that 
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have only basic events as inputs, as they continue to be ordered from left to right. This 
heuristic was included in a comparative studJ181 with several other ordering heuristics, which 
is discussed in more detail in section 4.5. 

4.2.3 Repeated Events 

The top-down ordering scheme was the first to be extended by Sinnamon and Andrews1221 to 

prioritise repeated basic events (i. e. events that appear more than once in the fault tree) and 
is called modified top-down ordering. It was noted that repeated variables cause the problem 

of non-minimal cut sets, and so by considering these events first, the size of the resulting 
BDD structure would be reduced. In this initial study, it was found that by considering 

repeated events first, 13 out of 15 fault trees resulted in a minimal BDD, whereas using a top- 
down ordering had previously resulted in redundant BDDs. 

The tree is still scanned in a top-down manner. However, variables on the same level that 

were initially ordered according to their position from left to right, are now ordered according 
to their number of occurrences within the tree. Those with the greatest number of occurrences 
are ordered first. If events have an equal number of occurrences, then they are ordered as 
before. 

The variable ordering for the fault tree in Figure 4.2 would therefore be changed slightly due 

to this new condition. On level three, event 'f' would be ordered before the other events as it 
has two occurrences and similarly on level four, 'h' is ordered before 'g' as it appears twice in 

the fault tree. This gives the new ordering: 

a<b<f<c<d<e<h<g 

Prioritising repeated events was extended to the depth-first and priority depth-first ordering 

schemes by the same authors1201. Within these schemes, basic event inputs to each gate were 

simply ordered in a left-right manner; they are now ordered giving priority to repeated events. 
Where there is a tie, variables are ordered as before. Ordering the fault tree in Figure 4.2 

using these schemes gives the following orderings: 

" Modified depth first method: a<b<c<h<g<d<f<e. 

0 Modified priority depth-first method: a<b<c<h<g<f<e<d. 

Sinnamon and Andrews then compared these six ordering heuristics: 

" Top-down and modified top-down 

" Depth-first and modified depth-first 

0 Priority depth-first and modified priority depth-first 
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For six example fault trees, the number of ite calculations required to produce the BDD using 

each different type of ordering scheme (top-down, depth-first, priority depth-first) was found. 

For the trees with repeated events, the ordering scheme that had been most successful was 

used to find the number of ite calculations using the repeated events option. It was found that 

there were large differences in the number of computations between the different orderings. 
However, there was no one scheme that worked best for all the trees. They concluded that it 

seems unlikely that a general rule-based ordering scheme could be found which would be 

optimal for all fault trees. 

Sinnamon[211 later extended this comparison to consider 51 fault trees. A study using these 
fault trees to compare the top-down, depth-first and priority depth-first methods had shown 
that the priority depth-first method had performed the best, producing the smallest fault trees 
in 37 out of the 51 cases. These results are discussed in section 4.2.2.1. The modified 
ordering schemes, prioritising repeated events were now included in the comparison. Table 
4.3 shows the number of fault trees for which each scheme produced the smallest BDD. 

Ordering heuristic Top-down Modified 
Depth-first 

Modified Priority 
Modified 
priority top-down depth-first depth-first depth-first 

Number of trees for 
which the smallest 17 19 27 35 30 34 
BDD was produced 

Table 4.3: Results for Sinnamon's comparative study of six ordering heuristics 

These results show that the modified depth-first method produced the smallest BDD in the 

most cases (35 out of 51). For nineteen of these trees, the resulting BDDs were minimal. By 

considering repeated events, the depth-first method has performed better than the previous 
best method, priority depth first. However, the modified priority depth first method still 
performs well, producing the smallest BDDs for 34 fault trees. 

This investigation was extended in a larger study of 225 fault trees by Bartletttl91, which 
produced the results shown in Table 4.4. 

Ordering heuristic Top-down 
Modified 

Depth-first 
Modified Priority Modified 

priority top-down depth-first depth-first 
depth-first 

Number of trees for 
which the smallest 87 169 120 117 36 38 
BDD was produced 

Table 4.4: Results for Bartlett's comparative study of six ordering heuristics 
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These results show that the modified top-down heuristic significantly outperforms the other 

schemes for these fault trees. In fact, the priority depth-first and modified priority depth-first 

methods perform poorly. A reason for the contradicting results could simply be the difference 

in fault trees used in the studies. It is well documented that heuristics can perform well on 

some fault trees, but poorly on others, so the fault trees chosen could simply suit one type of 
heuristic particularly well. However due to the size of Bartlett's study, it is concluded that the 

modified top-down ordering scheme does seem to produce a better overall performance. 

4.2.4 Repeated Gates and Events 

A scheme reported by Bouissou et altiBi prioritises both repeated gates and events within the 
depth-first (first alternative method) scheme. Rather than simply considering the inputs (both 

gates and events) to a gate from left to right, they are considered according to their number of 
occurrences in the tree. 

This ordering scheme can be applied to the fault tree shown in Figure 4.2. There are no 
repeated gates in this tree to be considered, but there are repeated events. In G6, 'h' is 

chosen before 'g', as 'h' appears twice in the tree and 'g' only appears once. There is 
therefore, a slight change to the ordering obtained with the depth-first (first alternative) 
method: 

b<h<g<c<a<d<f<e 

By prioritising repeated gates and events, the ordering is less sensitive to the way the fault 
tree is written. Results obtained from a comparative study of heuristicst1el show that this 

method performs better than the depth-first (first alternative method) heuristic. These results 
are discussed in more detail in section 4.5. 

4.2.5 REBESUL Ordering Scheme 

The REBESUL ordering scheme, suggested by Sinnamon[211, incorporates the factors 

deemed to have the greatest effect in reducing BDD size. Previous results obtained by 
Sinnamon had shown that a depth-first approach was a good one, and that by employing the 

priority depth-first ordering scheme, which gives priority to those subtrees that have basic 

event inputs only, the size of the resulting BDD could be further reduced. Also, the position of 
repeated events in the ordering has a significant effect on the size of the BDD, so by 

considering these first, a smaller BDD was likely to be produced. These factors were 
incorporated into a depth-first approach to give a variable ordering scheme that considers 
repeated basic events and subtree levels, called REBESUL. The algorithm is based on six 
steps, which are described overleaf. 
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1. Create a list of the repeated events in the fault tree; those with the highest number of 

occurrences are listed first. Repeated events that have an equal number of 

occurrences are placed in the rows between the next highest and the next lowest. 

2. For each repeated event in step 1, create a list of the subtrees (first sons of the top 

gate) that contain this repeated event in the order of the highest number of different 

repeated event occurrences within each subtree to the lowest. 

" If two or more subtrees share the same number of repetitions for an event, 

the subtree with the greatest number of levels takes precedence over how 

many repetitions there are in a subtree. 

3. Create a list of the levels in the subtree at which the repeated event in step 2 occurs. 

4. Order the gates (depth-first) starting with the gate that 'contains' the lowest level 

occurrence (obtained in step 3) of the repeated event, followed by the other gates 
that 'contain' the next level of occurrence of the repeated event. Note that the term 
'contains' does not necessarily mean that the repeated event is a direct input to the 

gate, it may be an input several levels down. List the repeated events first when 

ordering the inputs of each gate. 

5. If all repeated events have been dealt with in this subtree, order any remaining events 
to gates in the subtree in a depth-first manner and go to step 6. Otherwise go to step 
3 for the next repeated event obtained in step 1. 

6. If all subtrees containing repeated events have been dealt with, order any remaining 
subtrees in a depth-first manner. Otherwise order the next subtree containing 
repeated events, i. e. go to step 2. 

This algorithm can be applied to the fault tree in Figure 4.2 in the following way: 

1. 'b' - occurs three times 

T- occurs two times 
'h'- occurs two times 

2. Subtree three (G2) has the highest number of different repeated events (three), so is 

ordered first. Subtree one (G1) has two different repeated events. 

3. Event 'b' occurs at level two and level three of G2. 

4. G5 contains the lowest level of occurrence of 'b' and G4 contains the next level of 'b' 
('b' is an input to G7which is an input to G4), therefore take the order of the gates G5, 
G4, G7, to give the partial basic event ordering: 

b<f<e<d<h 

5. All repeated events dealt with, go to step 6. 

49 



6. The ordering for subtree one is: 

c<g 

The ordering for subtree two gives the last basic event 'a'. 

All basic events have been dealt with giving the ordering: 

b<f<e<d<h<c<g<a 

Sinnamon used the REBESUL ordering scheme to calculate the number of BDD nodes for 

the 51 fault trees that were used to compare the top-down, depth-first and priority depth-first 

schemes (discussed in section 4.2.2.1). It was found that the REBESUL ordering produced 
BDDs with the fewest nodes for 41 of the 51 fault trees, compared with the previous best of 
37 for the priority depth-first scheme. 19 of these BDDs were minimal. Therefore, the 

REBESUL ordering scheme proved to be more efficient than the priority depth-first ordering 

scheme in this case. 

4.3 Weighted Ordering Schemes 

Weighted ordering techniques allocate weights to the variables, which then determine their 

position in the ordering. These methods do not necessarily preserve neighbourhoods in the 

same way as structural ordering schemes, so variables that appear together in the tree 
structure may not be close in the ordering. Weighted ordering schemes can be divided into 
two categories: topological schemes, which assign weights according to the positions of the 
variables in the tree and schemes based on importance measures, which assign weights in a 
manner that is not dependent on how the tree is written. 

4.3.1 Topological Schemes 

Two ordering schemes are discussed in this section, which differ by using opposite ends of 
the fault tree to initiate the weighting process. The ordering produced by each of these 

schemes is dependent on the way in which the fault tree is written. 

Although the use of these schemes for fault trees has been reportedt1a, 23ý, few results have 
been published. The comparative study in section 4.5 however, does include the second of 
the following schemes. 

4.3.1.1 Applying Weights in a Top-Down Manner 

Minato et alt241 have applied a weights method to circuits, which can be applied to fault trees in 
a similar manner. The bases for their method are the following two properties that have been 
observed in circuits: 
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1. The inputs that greatly affect the output function should be high in the ordering. 

2. The inputs whose connections are topologically close to one another should be close 
in the ordering. 

The corresponding properties applied to fault trees could be: 

1. The basic events having the greatest effect on the structure function should be high in 

the ordering. 
2. Basic events topologically close to one another (i. e. events which appear together as 

inputs to a particular gate) should be close in the ordering. 

These two properties form the basis of their approach, termed the 'dynamic weight 
assignment method'. In terms of fault trees, the method progresses as follows: 

"A weight of 1.0 is assigned to the top event and is propagated towards the basic 

events. 

9 At each gate, the weight is equally distributed between its inputs. 

" Each basic event will then have been assigned a weight. Repeated events have their 
corresponding weights added together. 

" The highest order is given to the basic event with the largest weight. 

The ordering could be determined at this point, by ordering the variables according to their 
weights. However, Minato et al choose the next event by deleting that part of the circuit which 
can only be reached from the input already chosen (in terms of fault trees, the ordered basic 
event and any branches leading to it would be deleted) and weights are reassigned from the 
beginning. By doing this, the largest weight in the last assignment is distributed to the 
neighbouring events, so that their weights are greatly increased. Therefore in many cases the 
neighbouring events are given near orders. 

To illustrate this method, it will be applied to the fault tree shown in Figure 4.3(a). A weight of 
1.0 is assigned to Top and this is propagated through the fault tree to give the distributed 
weights as shown in Figure 4.3(a). The weights of each basic event are therefore: 

a= 

b-4+12 3 

C= 1 
4 

d=12 

e=, 2 
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Therefore the first event in the ordering is V. Now, all occurrences of event 'b' are removed 
from the fault tree, to give the fault tree shown in Figure 4.3(b). It is now possible to see that 
the next event in the ordering is V. This process is continued until all the events are ordered. 

(a) Weights for ordering 
the first variable 

(b) Weights for ordering 
the second variable 

Figure 4.3: Example fault tree for the top-down weighted method 

The method does not address the problem of how to order events if they have equal 

weightings. If this case did arise however, the tie could be broken by selecting the event that 

occurs the greatest number of times (as it is the repeated events that cause cut set 
redundancy) or the least number of times (as this would mean that the individual events occur 
higher in the tree, therefore have more effect on the structure function) in the fault tree. If they 
had an equal number of occurrences, then a top-down or depth-first approach could be 

employed. 

4.3.1.2 Applying Weights in a Bottom-Up Manner 

This ordering scheme proceeds in a similar manner to the previous method, but the technique 
is initiated from the bottom of the tree, rather than the top. The general method is described 
below: 

"A weight of 1.0 is assigned to each basic event and propagated towards the top event. 

" At each gate, the weights of its inputs are added together to give the weight of the 
gate. 
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. Once the inputs to the top event have been assigned weights, the tree is explored in a 

depth-first manner, considering the branches with the largest weight first. 

" The events are ordered as they are encountered. 

No indication is made as to which branch would be chosen should two or more branches 

have the same weight. Also, when a gate has two or more basic event inputs, it is unclear as 

to the order in which the events should be considered. 

To demonstrate this ordering, consider the fault tree shown in Figure 4.4. For this example, it 

is assumed that in the case of two branches having the same weight, the tie is broken by 

considering the leftmost branch first. Where a gate has two or more basic event inputs, the 

events shall be ordered in a left-right manner. Each event is given the weight 1. The weights 
of the gates are therefore calculated to be: G3 = 3, G2 = 2, G1 = 4. The depth-first traversal 

starts at the top gate and considers G1 first as it has a larger weight than G2. G3 is ordered 
next and then finally G2. This gives the basic event ordering: 

a<b<d<e<c 

This ordering seems to give priority to the largest subtrees, whilst preserving neighbourhoods. 

Figure 4.4: Fault tree showing the weights method applied in a bottom-up manner 

Several variations on this technique are possible. One alternative is to combine the weights of 
'AND' and 'OR' gates differently. For example, adding the weights at an 'OR' gate and 
multiplying them at an 'AND' gate. This would give 'OR' gates with many inputs precedence 
over 'AND' gates with many inputs, where it would be fair to assume that the events beneath 
the 'OR' gate would have more influence over the occurrence of the top event as only one is 
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needed for the logic to flow, compared with the `AND' gate where every event would need to 
occur. 

Once the weights have been assigned, the gates could be ordered using an alternative 
method. For example, each level could be considered in turn, from top to bottom, ordering the 
gates at each level according to their weight, i. e. largest weight first and ordering the events 
as they are encountered. 

A possible way to decide the order of events that occur together under a gate is to consider 
repeated events first. This method has proved successful in its application to many other 
ordering methods and there is no reason why it should not be successfully applied here. 
Repeated events could also determine which branch is chosen in the case of equal weights; 
the branch that has the most repeated events below could be the first to be considered. 

4.3.2 Importance Measures 

Bartlettl'9l has performed extensive investigations into the use of importance measures for 

variable ordering. The aim of this research was to rank the basic events in terms of their 
significance within the system, in a way that is not dependent on how the fault tree is written. 

In order to explore the potential of importance measures for determining a good ordering, 
Birnbaum's structural importance measure for each component was derived from the fault 
trees' BDDs. These importance measures were used as an indicator of the importance of 
each component within the system. An advantage of using importance measures is that they 
produce the same values regardless of how the fault tree is written. The variables were 
ranked with those of highest importance appearing earlier in the ordering than those of lower 
importance. The order for variables with the same value of importance was decided by 
ordering the one appearing highest in the fault tree structure first. 

225 trees were ordered using this measure and the results were compared with the best of six 
previously identified alternative schemes [251: 

" Top-down. 

" Modified top-down. 

" Depth-first. 

" Modified depth-first. 

" Priority depth-first. 

Modified priority depth-first. 
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It was reported that 76.9% of the 225 trees produced BDDs that had fewer or the same 
number of nodes as the previous best scheme. Of these six ordering schemes, it was noted 
that the best results had previously been obtained with the modified top-down scheme (as 

shown in Table 4.4), with 29.8% of the trees producing BDDs with the fewest nodes 
compared with the other five orderings. The structural importance measure shows 
significantly improved results. 

The method was then adapted to consider the most repeated event first when the importance 

measure failed to distinguish between events. If there was still a tie, the events were ordered 
as before (in a top-down manner). This modified method produced different orderings for 152 

of the 225 trees. The percentage with equal or fewer nodes than the previous best of the six 
structural schemes increased to 77.3%. This is a small improvement on the previous 76.9% 
obtained without this modification. Bartlett concludes that a different method may be more 
beneficial in reducing the number of nodes. Either a different approach for ordering those 
components with equal importance measures could be implemented, or a different 
importance measure could be used. However, the overall performance is better than that of 
any other heuristic and shows good potential. 

The main drawback of this method is the need to calculate the importance measures from the 
BDD (obtaining them from the fault tree is very inefficient) and Bartlett addresses this problem 
by considering the use of approximations that could produce the same ordering. Three 
possibilities were considered: 

i. Look for patterns within the tree that relate to the importance measures, so enabling 
an ordering to be established by inspection of the tree. 

ii. Generate alternative measures, similar to the importance measures, derived by an 
alternative method. 

iii. Apply Birnbaum's structural importance method directly to the tree. 

Each of these is now reviewed in more detail: 

The importance measures for the events of several fault trees were calculated and 
Bartlett attempted to identify patterns within these trees that related to the measures. 
The conclusion drawn was that no obvious patterns were identifiable and this option 
was given no further consideration. 

ii. The aim of this approach was to consider a number of alternative weighting methods 
that are fast and efficient to apply to the fault tree, but which give component rankings 
similar to those obtained by the calculated importance measures. Three weighting 
methods were examined: 
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0 Calculation of Importance by Dividing by the Number of Inputs 

This method is similar to that discussed in section 4.3.1.1, but does not restructure the 

tree after ordering each event. The top event is given a weight value of one. The weight 

values of its input events are calculated by dividing the weight of the top event by its 

number of inputs. For example, if there were three inputs, each is then given a weight 

value of 1/3. This is continued down through the tree, so that the inputs to any gate are 

given the weight value of that gate divided by its number of inputs. 

No mention is made at this stage of how repeated events are dealt with, but the 

conclusion drawn is that the orderings obtained do not match those of the calculated 

structural importance measures. 

Bartlett then considers how to approach repeated events: adding together their values 
disproportionately increases their importance but taking the average of the values 

would probably underestimate its importance. Therefore a different approach is taken, 
by scaling the total combination. The weight for the repeated event is calculated by 

summing the values and multiplying by the square root of the total number of repeated 

components: 

wi=Fn wig 4.1 

1 

where i is the component, and j each of its occurrences. 

Using this scaling mechanism for repeated events, the ordering produced BDDs with 
fewer or equal nodes than the best of the previous six alternatives in 52.9% of the 225 
fault trees. 

" Calculation of Importance by Dividing by the Number of Critical States 

This measure is similar to the one above, except that the criticality of the component is 

considered when calculating the weights. In the above measure, weight values for the 

gate inputs are calculated by dividing the gate's weight value by its number of inputs. 

Here, the weight values of the gate inputs are calculated by dividing the gate value by 

the number of critical states for the component. Therefore, if there are n inputs to the 

gate, the criticality of a component is given by 1/0", compared with the previous 
measure of 1/n. Repeated events were dealt with by using the weighting method in 
Equation 4.1. 

This ordering produced BDDs with fewer or equal nodes than the best of the previous 
six alternatives in 50.2% of the 225 fault trees. Neither this nor the method above has 
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produced results close to those obtained using the calculated structural importance 

measures. 

0 Altering the Repeated Events Weighting 

Bartlett considers the problem to be due to the repeated events. Therefore a new 

weighting method for the repeated events was used, whereby the weight values of the 

repeated events are added, but the value of its second occurrence is divided by the 

square root of two and the value of its nth occurrence is divided by the square root of n. 

This method produced BDDs with fewer or equal nodes than the best of the previous 

six alternatives in 62.2% of the 225 fault trees. This is a significant improvement on the 

previous two methods, however it is still 15.1 % lower than the best results obtained 

iii. The aim of this third method was to apply the principle of Birnbaum's structural 
importance measure directly to the tree. This was implemented as follows: 

The contribution of each basic event to the occurrence of the top event is calculated 
according to: 

I; =Q(11, '/2 -Q(0;, '/2 4.2 

The selected basic event therefore assumes the failure probabilities of 1 and 0 on two 
consecutive computations of the top event probability, with the remaining components 
being given failure probabilities of Y2. The event probabilities are worked up through the 
tree, with the contributions of intermediate events (gates) calculated using Equation 4.3 
for 'AND' gates and Equation 4.4 for 'OR' gates. 

P(gate) _ 
[J qi 
1=1 

4.3 

n 
P(gate) =1- [ (1- ql) 4.4 

1=1 

where n is the number of inputs to the gate. 

The result of the second run (with a failure probability of 0) is subtracted from the first 

run (with failure probability 1) to give the probability value contribution of that basic 

event to the occurrence of the top event. The basic events are ordered with those 
giving the largest contribution earlier in the ordering than those with smaller 
contributions. If events have an equal contribution, then they are ordered according to 
the top-down ordering scheme. 
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This ordering technique is demonstrated using the fault tree shown in Figure 4.5. 

Figure 4.5: Example fault tree 

Starting with event 'a', it first assumes a failure probability of 1, with the remaining 
events assigned probabilities of 1/z. The probabilities of the gates are then calculated, 
starting with those containing basic event inputs only and working up through the tree 
to the top event. The results are shown in Table 4.5. 

Gate Top G1 G2 G3 G4 G5 G6 

P(gate) 32 1 32 
ä 

4 
8 4 

Table 4.5: Gate probabilities, with event 'a' assigned a failure probability of 1 

The calculations are repeated, with event 'a' assigned a probability of 0. The resulting 

gate probabilities are shown in Table 4.6. 

Gate Top G1 G2 G3 G4 G5 G6 

P(gate) '-64 
8 8 4 g 8 4 

Table 4.6: Gate probabilities, with event 'a' assigned a failure probability of 0 
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The contribution of event 'a' to the occurrence of the top event is therefore: 

Ia=17 -15_1 "0.297 

The calculations are repeated for each basic event, giving the contributions shown in 
Table 4.7. 

Event, i a b c d e f 

Q(11, j/2 0.531 0.781 0.465 0.492 0.432 0.457 

Q(0;, 1/z 0.234 0.078 0.281 0.258 0.305 0.279 

0.297 0.703 0.184 0.234 0.127 0.178 

Table 4.7: Contributions of the basic events to the top event occurrence 

The events are ordered from the one with the largest contribution to the one with the 
smallest contribution to give the ordering: 

b<a<d<c<f<e 

The difference between this approximation and the exact version of Birnbaum's 

structural importance measure is that redundant combinations of basic events can 
occur, as the method of working the probabilities up through the tree means that the 
intermediate events are not necessarily independent. The values obtained by the 

approximation method are therefore not exact, but it was thought that they might still 

offer a good ordering heuristic. 

The results obtained in Bartlett's study showed that in 67.1% of cases, the BDD 

produced had equal or fewer nodes than the BDD produced using the best schemes 
option from the six structural heuristics. 

Bartlett concluded that further improvements could be made by altering the method for 

dealing with events with the same importance. However, this is the best approximated 

measure of those considered and although the results are not quite as good as the 
77.3% obtained with the structural importance measures calculated from the BDD, it is 

much more efficient to implement. 

The use of importance measures shows great potential as a method of variable ordering. 
Obviously calculating the importance measures from the BDD is not a viable option, but 
approximation methods could be used to obtain similar results. 
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4.4 Optimising the Fault Tree Before Application of Ordering Heuristics 

Bouissou1231 suggests that the major problem with conventional ordering heuristics is the lack 

of theoretically proven properties. He also acknowledges the fact that many heuristics are 

very sensitive to the way the fault tree is written, which can lead to BDD sizes that differ by 

many orders of magnitude. In this paper he proposes that the modules of the fault tree should 
be taken into account when ordering the variables and investigates the effect that this has on 
the size of the resulting BDD. 

Bouissou presents the following theorem: 

Let f and g be two functions of disjoint sets of variables and TQ(f) and TO(g) denote the sizes of 
the BDDs of those functions respectively, obtained with variable ordering a. Then 

T 09 (f u 9) = Tag, af (f u 9) = Taf (f) + Tag (9) 

where af, Qg stands for the ordering obtained by concatenation of of and ag. 

Bouissou states that this equation makes it possible to hope for 'reasonable growth' of the 
BDD size with an increasing number of variables and suggests the following constraint for any 
ordering heuristic: the heuristic should group the variables of a module. 

A completely modularised tree (i. e. a tree for which each sub-tree is a module) can be 
represented by a BDD of size n (i. e. the number of variables). For such a tree, the way it is 
written has no effect on the BDD size. 

An optimisation technique is presented, which restructures the fault tree to make the modules 
appear. The optimiser works in three phases: 

" The fault tree is transformed into a sequence of alternating gates. Single input gates 
and equivalent gates are suppressed. 

" The following simplifying rules are repeatedly applied: 

(aub1)n(aub2)n... n(aub�)nc 

-*(au(b1 nb2 n... nbj)nc 

(anbl)L(anb2)u... U(anb�)vc 

-+(an(b1 ub2 L)... vbn))uc 

au(anb)-ýa an(aub) -- a 

" Implicit modules are made explicit. For each 'OR' gate in the tree the maximum 
subset of basic events that always appear together is found. 

In fact, many aspects of this optimisation technique are similar to the 'Faunet' reduction 
approach of Platz and Olsen [261, which is introduced and used in Chapter 6. The first phase is 
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equivalent to the 'contraction' stage, where subsequent gates of the same type are contracted 
to form a single gate. This gives an alternating sequence of 'AND' and 'OR' gates. Single 
input gates would automatically be suppressed, as they do not form a true fault tree structure. 
The first two simplifying rules of the optimisation technique employ the Boolean distributive 
laws, which form the basis of the extraction step of the Faunet approach. Finally, the third 
phase of the optimisation technique groups sets of basic events that always occur together in 
the fault tree. In effect, this is what the factorisation step of the Faunet technique achieves, 
when it repeatedly takes pairs of events, combining them to form complex events. 

The only phase of the optimisation technique that can lead to excessive CPU time is the 

second one. Therefore, two versions of the optimiser are used: 01 is the simplified version, 
consisting of only the first and last steps; 02 is the full optimisation. 

Once the tree has been optimised, any ordering heuristic can be used, as long as it orders the 
variables of modules together. 

The optimiser was tested on a group of fault trees by finding the number of BDD nodes and 
the amount of CPU time used for their analysis both before and after optimisation. Each 
calculation was carried out on 100 randomly generated re-writings of the tree, in order to 
show the sensitivity of the heuristics to the way the tree is structured. Two heuristics were 
used, the first of which was the depth-first heuristic, used in the program ARALIA1271. 
METAPRIME[281 was also used, which incorporates the following heuristic: 

0 The level of a gate or variable is defined as: 

Level(top) = 0; level(f) = max(Ievel(g; ))+1 

where the g; are the parents of f. 

" The variables are put in order by increasing levels. METAPRIME uses an enhanced 

version of this heuristic, whereby the variables of a module are ordered together. 

It was found that the depth-first heuristic, on average, gives better results than METAPRIME's 
heuristic. 

The optimised version of the trees produced smaller average BDD sizes and used less CPU 
time than the original fault trees. However, the maximum BDD sizes for the optimised trees 
increased. 

For 20 large trees, which couldn't originally be processed with a reasonable success rate, it 
was found that all could be processed without failure, for each of the 100 trials, in their 
optimised form. 
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The author concludes that restructuring the tree to create as many modules as possible is an 

efficient pre-processing tool, the cost of which (in terms of CPU time) is negligible when 

compared with the savings to be made when generating the BDD. 

4.5 Results of a Comparative Study of Several Ordering Heuristics 

Bouissou et a11181 compared twelve heuristics, presenting the results of the best six (the 

remaining six were not detailed). The six heuristics used are: 

1. Depth-first (first alternative method), as in section 4.2.2. 

2. Weights applied bottom-up, as in section 4.3.1.2. 

3. Depth-first, considering repeated events and gates first, as in section 4.2.4. 

4. Depth-first, with number of leaves, as in section 4.2.2.2. 

5. Heuristic 3 applied to heuristic 2. 

6. Heuristic 3 applied to heuristic 4. 

The authors take into account the fact that heuristics can give significantly different results 
according to how the fault tree is written. The heuristics were tested on 500 random re- 
writings of thirteen fault trees, in both their original and optimised forms (using optimisers 01 
and 02 as discussed in section 4.4). 

The results obtained show that the heuristics fall into two classes. The first class, containing 
heuristics 2,4,5 and 6, tends to give a very low standard deviation on the BDD size, showing 
that the heuristic is not very sensitive to the re-ordering of branches within the tree. The sizes 
of the BDDs also tend to be neither excellent, nor bad, usually somewhere between the two. 
For the optimised trees, the results are usually good or excellent. 

The second class, containing heuristics 1 and 3, show a high standard deviation in the BDD 

size. The heuristics can generate BDDs with fewer nodes than the first class, but can also 
lead to extremely large BDDs (up to 1500 times larger than the smallest). It seems that in 

most cases, heuristic 3 gives better results than heuristic 1, in terms of mean, maximum and 
minimum BDD size. 

The results given in the paper suggest that the first class of heuristics are less sensitive to the 
way the fault tree is written, but only give average results in terms of BDD size. Using the 
explorative capabilities of the second class of heuristics is more likely to lead to smaller 
BDDs, but also there is a greater chance of resulting in a large BDD due to their sensitivity to 
the way the fault tree is written. 
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4.6 Pattern Recognition Techniques 

Pattern recognition techniques can be used to identify patterns within the fault trees and 

select an appropriate ordering heuristic based on the results. Three different techniques have 

been explored: the classifier system, the multi-layer perceptron neural network and the radial 
basis function neural network. The results obtained are reviewed in the following three 

sections. 

4.6.1 The Machine Learning Classifier System Incorporating Genetic Algorithms 

The use of classifier systems as a method of selecting the most appropriate ordering scheme 

for a particular fault tree has been investigated by Bartlett and AndrewsI291. They use a 

machine learning approach based on genetic algorithms to build a classifier that chooses an 

ordering scheme according to certain characteristics of the fault tree. 

A classifier system is a machine learning system that generates a model of a particular 

problem by learning the rules that govern the problem through a training process. The rules, 

which reflect the patterns within the problem, are generated by subjecting the classifier 

system to large amounts of training data. Once the system adequately models the problem, it 

can be used for predictive purposes. The system then takes a new input (whose output is 

unknown) and by applying the rules learnt during training, provides a response. The 

performance of the algorithm is evaluated from the number of correct responses. 

The classifier approach was applied to the ordering problem, where the aim was to learn the 

rules that govern the relationship between the characteristics of the fault tree and the best 

ordering scheme option. Once the training had been completed, the system was used to 

predict ordering schemes for a set of test fault trees, depending on their characteristics and 

the rules that had been learnt from the training data. 

Key features that were thought to describe the fault tree structure were identified, and provide 

the inputs to the machine learning algorithm in the form of a 19 bit binary string. In total, six 

characteristics were initially selected: 

" Percentage of 'AND' gates in the tree. 

" Percentage of different events repeated. 

" Percentage of total events repeated. 

" Top event gate type. 

" Number of outputs from the top event. 

" Number of levels in the tree. 
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The ordering represents the output or response of the classifier in the form of a six bit binary 

string of 1's and 0's, where a1 represents the best scheme option and a0 otherwise. The 

choices of ordering schemes were based on previous heuristic work by Sinnamon[211: 

" Top-down. 

" Modified top-down. 

" Depth-first. 

" Modified depth-first. 

" Priority depth-first. 

" Modified priority depth-first. 

Each fault tree in the training set was analysed for the best ordering scheme. This, together 

with the characteristics data was used to produce the training data set, from which the 

classifier was trained. 

The classifier was then used to predict the best ordering schemes for a set of twenty test fault 

trees. The results were compared with known best schemes for these trees. 

The conclusion drawn by the authors was that this model could be trained to predict the best 

ordering scheme to use on a particular fault tree to produce the most efficient BDD 

representation. However, they acknowledged that the small group of characteristics used did 

not adequately represent the fault tree and other characteristics need to be developed. 

Quantitative results obtained from this investigation are given in Bartlett's doctoral thesist19] 

and show that four and five correct predictions out of a possible twenty were obtained. 

The work on classifiers was extended by Bartlett and Andrewsl251 to use more characteristics 

to represent the fault tree. Eleven characteristics were considered compared to the previous 

six. The five additional characteristics are: 

" The number of basic events. 

" The maximum number of gates in any level. 

" Number of gates with gate inputs only. 

" Number of gates with event inputs only. 

" The highest multiple of a repeated event. 

The results are reported to have been more accurate for smaller fault trees. The authors 

suggest that modifications to the characteristics chosen for larger trees may produce results 
that are more convincing. Bartlett's doctoral thesis[191 reveals that when using eleven 
characteristics, the best result was nine out of twenty correct predictions. 
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4.6.2 Neural Networks: The Multi-Layer Perceptron 

Bartlett1191 extended the use of pattern recognition techniques to consider neural networks, 
which have a more solid theoretical base than the classifier approach. The first neural 

network model used was the multi-layer perceptron. As with the machine learning approach, 
the aim is to select the best ordering scheme for a fault tree according to its characteristics. 

Neural networks offer a powerful framework for representing non-linear mappings from 

several input variables to several output variables. The form of the mapping is controlled by a 

number of adjustable parameters, known as weights, whose values are determined through a 

training process. In the prediction phase, the weights then determine the path through the 

network, and so the output response for a given set of inputs. 

The multi-layer perceptron consists of a layer of input units, one or more hidden layers of 
hidden units and a layer of output units. Connections, governed by the weight values, run 
between every unit in one layer to every unit in the next layer. This is shown in Figure 4.6. 

The bias units act like adding a constant to an equation. 

Numerical values can be applied to the input and output variables, rather than the simple 
binary representation used in the classifier approach. This has the advantage of being able to 

give an indication of how good a scheme is in relation to the best. 

N output units 

M hidden units 

Figure 4.6: Multi-layer perceptron neural network 

Bartlett reports that numerous trials were conducted to find the best network architecture for 

predicting the optimal ordering schemes for a set of twenty test fault trees. The best network 
was comprised of eleven units in the input layer, each of which represented one of eleven 
fault tree characteristics: 
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" Percentage of 'AND' gates in tree. 

" Percentage of different events repeated. 

" Percentage of total events repeated. 

" Top event gate type. 

" Number of outputs from top event. 

" Number of levels in tree. 

" Number of basic events. 

" The maximum number of gates in any level. 

" Number of gates with gate inputs only. 

" Number of gates with event inputs only. 

" The highest multiple of a repeated event. 

The output layer consisted of six units, one for each of the ordering schemes: 

" Top-down. 

" Modified top-down. 

" Depth-first. 

" Modified depth-first. 

" Priority depth-first. 

Modified priority depth-first. 

With a training set of 198 fault trees, it was found that one hidden layer with five units offered 

the best results, predicting the correct ordering schemes for 14/20 test trees. 

Bartlett suggests that the method is capable of predicting the best ordering scheme for fault 

trees and that these results could be improved by using a larger training data set. The basis 

for this hypothesis is that 186 training fault trees were used initially and the best results 

obtained were 13/20 correct predictions. The addition of extra data into the training set 

improved these results. Bartlett concludes that the inputs have the most influence on the 

neural network and so the characteristics used to describe the fault tree structure need to be 

examined in more detail. 

4.6.3 Neural Networks: The Radial Basis Function 

The radial basis function is another class of neural network and was also investigated by 
Bartlettt191 as a method for selecting the best ordering scheme for a particular fault tree. 

Diagrammatically, the radial basis function network looks very similar to the multi-layer 
perceptron, as shown in Figure 4.7. However, the radial basis function network has only one 
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hidden layer, made up of a number of radial basis functions. The connections that run from 
the input layer to the hidden layer represent the vectors that determine the centres of the 
basis functions. The connections between the hidden layer and the output layer represent the 

weights of the network in the same way as with the multi-layer perceptron model. 

c output units 

M radial basis functions 

d input units 

Figure 4.7: Radial basis function neural network 

The radial basis function centres and the final layer weights are determined by the training 

process and are subsequently used in the prediction phase to calculate the output responses 
from the network for a new set of inputs. 

Bartlett reports that numerous trials were carried out to determine the network architecture 
that predicts the greatest number of correct ordering schemes for twenty test fault trees. As 

with the multi-layer perceptron, the best networks comprised of eleven units in the input layer 

and six units in the output layer. Again, numerical values can be applied to the input and 
output variables, which gives an indication of how good each scheme is in relation to the best. 
The input units each represented one of the following fault tree characteristics: 

" Percentage of 'AND' gates in tree. 

" Percentage of total events repeated. 

" Percentage of different events repeated. 

" Top event gate type. 

" Number of levels in tree. 

" Number of outputs from top event. 

" Number of basic events. 

" The maximum number of gates in any level. 

" Number of gates with event inputs only. 

" Number of gates with gate inputs only. 

" The highest multiple of a repeated event. 
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The output units represent the possible variable ordering schemes: 

" Top-down. 

" Modified top-down. 

" Depth-first. 

" Modified depth-first. 

" Priority depth-first. 

" Modified priority depth-first. 

Eight network architectures were identified that were capable of predicting the correct 

ordering schemes for 14/20 test fault trees. These had between four and nine radial basis 

function centres. The most efficient of these networks had four centres and in five out of the 

six incorrect predictions chose the second best ordering scheme. 

Bartlett concludes that the radial basis function neural network has the potential to model the 

variable ordering problem but that improvements could be made by examining the fault tree 

characteristics in more detail to determine which have the greatest influence on the outcome 

of the network. 

4.7 Summary 

There is no ordering heuristic capable of producing a good variable ordering for all fault trees. 

Many heuristics have been proposed, but most are based on intuition and few conclusions as 

to the required features of a good heuristic have been drawn. 

Much of the research has centred on structural ordering techniques, but results obtained from 

the weighted scheme based on importance measures appear to be very promising. 

Optimising the fault tree before application of the ordering schemes takes relatively little time, 

but can result in the construction of much smaller BDDs and has been shown to produce 
BDDs for trees that had not previously been analysed in a reasonable time. 

Pattern recognition techniques could offer a good way of selecting an ordering scheme, 
based on the characteristics of the fault tree. The best results obtained so far, with both the 

multi-layer perceptron and the radial basis function models, predict the best ordering scheme 
in 70% of cases. However there were only six structural schemes to choose from, so the 

method could be extended to include weighted methods as options. 
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Chapter 5: Comparison of Variable Ordering Schemes 

5.1 Introduction 

The survey of ordering schemes conducted in the previous chapter has highlighted methods 
that have not been fully investigated and would benefit from further consideration. Therefore a 
number of ordering techniques were chosen for a comparative study, in order to assess 
whether they could provide an alternative means of ordering that would result in a more 
efficient BDD construction process. 

Eight schemes were selected, with modifications made as necessary to incorporate elements 
from other schemes that had proven advantageous in the BDD construction process. Some of 
the modifications suggested in the previous chapter were also implemented, including various 
methods of dealing with 'tied' variables (i. e. variables that remain 'equal' in the ordering after 
the application of other heuristics). One of the most important features of an ordering scheme 
is that it is discriminating (i. e. it will always produce the same ordering for a particular fault 
tree) and it was ensured that each of the ordering techniques fulfilled this criterion. The eight 
chosen schemes and the reasons for their selection are detailed below. 

1. Modified top-down. 

2. Modified depth-first. 

3. Modified priority depth-first. 

4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 
6. Dynamic top-down weights. 
7. Bottom-up weights. 

8. Event criticality. 

The modified versions of the first three schemes were chosen, as they had performed well in 

previous work, and gave consistently better results than the non-modified versions. The first 

two schemes are also very widely used and provide a good benchmark against which to test 
the other schemes. The fourth scheme (depth-first, with number of leaves) implements an 
alternative method of choosing the gates within the depth-first scheme, and as the depth-first 

scheme had proven to be a good choice, this scheme was also considered. The four 

weighted methods (dynamic and non-dynamic top-down weights, bottom-up weights and 
event criticality) were chosen as an alternative to the structural ordering schemes. Much of 
the previous work on ordering heuristics has centred on structural methods and it was felt that 
the weighted techniques need to be examined in more detail and their performance compared 
to structural schemes. The final ordering scheme, which applies Birnbaum's measure directly 
to the tree for an approximate event importance ordering, has produced particularly good 
results in a previous investigation and was included for this reason. 
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This chapter describes each of the selected schemes in detail and then discusses their 

individual performances on a set of example fault trees. 

5.2 Descriptions of the Eight Ordering Schemes 

As modifications have been made to the schemes introduced in the literature survey, a full 

description of each scheme and how it is applied to the example fault tree shown in Figure 5.1 

is now given. 

Level 1 

Level 2 

Level 3 

Level 4 

Level 5 

Figure 5.1: Example fault tree used to demonstrate the ordering schemes 

5.2.1 Modified Top-Down Ordering 

The tree is scanned in a top-down manner. Variables appearing on the same level within the 

tree are ordered according to their total number of occurrences in the fault tree. Those with 

higher occurrence are ordered first. If there are two or more variables with an equal number of 

occurrences, then they are ordered as they appear from left to right on that level. Each event 

is placed in the ordering the first time it is encountered; subsequent occurrences are ignored. 

This scheme can now be applied to the fault tree shown in Figure 5.1. There are no events to 

consider on the first two levels, so level three is the first level to be examined. Four events 

appear on this level, which reading from left to right are: 'b', 'c', 'd' and 'a', which need to be 

ordered according to their number of occurrences elsewhere in the tree. In fact, events 'b', 'c' 

and 'd' occur an equal number of times (three occurrences) so remain in the left to right order 
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in which they were placed and event 'a' occurs the least number of times (twice) so is ordered 

after the other events. The partial ordering for this level is therefore: 

b<c<d<a. 

Level four is now considered and the events appearing on this level that haven't already been 

ordered are (listed from left to right): 'g', 'f' and 'e'. Event 'f' appears most often in the tree 

(three occurrences) so is ordered first, whilst 'g' and 'e' occur an equal number of times, so 

retain their respective positions. The ordering then becomes: 

b<c<d<a<f<g<e. 

There is no need to consider level five, as all the events have been placed in the ordering. 

5.2.2 Modified Depth-First Ordering 

The modified depth-first ordering scheme considers the gate inputs to any gate in a left-right 

manner, such that the subtree of the left-most gate is completely explored before considering 

the remaining gate inputs. Any basic event inputs to a gate are considered before the gate 
inputs, and are ordered according to their total number of repetitions in the fault tree. The 

events with the greatest number of occurrences are ordered first, but if there is a tie then they 

are simply ordered as they appear from left to right in the list of inputs. 

The ordering scheme can be applied to the fault tree in Figure 5.1 in the following manner: 

The top event, Top, has no event inputs to order, so its three gate inputs, G1, G2 and G3, are 

considered in turn. The subtree of the leftmost gate, G1, is explored first. Again, this contains 

no event inputs, but has two gate inputs, G4 and G5, which are processed before returning to 

consider G2 and G3. G4 appears first in the input list to G1, so is considered next. It has four 

event inputs: 'c', 'b', 'a' and 'g'. As 'c' and 'b' are the most repeated events (each occurring 

three times) they appear before 'a' and 'g' in the ordering, which both occur twice. Event 'c' is 

ordered before 'b' as it appears leftmost in the inputs list and 'a' appears before 'g' for the 

same reason. This gives the partial ordering: 

c<b<a<g 

G4 contains no gates, so the process continues by examining G5, which contains the events 
'd', 'f' and V. Events 'd' and 'f' occur the greatest number of times (three appearances) so 
appear before 'e' in the ordering. Event 'd' is ordered before 'f' as it appears to the left of 'f' in 
the inputs list. This gives the ordering: 

c<b<a<g<d<f<e 

All the events have now been ordered, so it is not necessary to consider gates G2 and G3. 
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5.2.3 Modified Priority Depth-First Ordering 

This ordering scheme is simply an extension of the modified depth-first method, where rather 
than simply considering the gate inputs from left to right, any gates which themselves have 

only basic events as inputs, are given preference. Basic events are ordered as in the modified 
depth-first method, such that the most repeated events are given priority - if there is a tie then 
they are ordered from left to right as they appear in the list of inputs. Events continue to be 

considered before any gate inputs. 

This ordering technique can be applied to the fault tree in Figure 5.1 in a similar way to the 

modified depth-first scheme. The top event, Top, has no event inputs to order, so its three 

gate inputs, G1, G2 and G3, are considered in turn. As G2 has only basic event inputs, it is 

explored before the other gates, i. e. the inputs to Top are considered in the order G2, G1, G3. 

G2 contains the events 'b', 'c' and 'd', which, as they already appear with the most repeated 

events first, retain their respective positions when placed in the ordering: 

b<c<d 

The subtree of the next gate, G1, is now explored. This gate contains no event inputs, but has 

two gate inputs, G4 and G5, which are processed before returning to consider G3. G4 

appears leftmost in the input list to G1, so is considered first. G4 contains the unordered 

events 'a' and 'g'. Both occur twice in the tree, so are placed in the ordering with 'a' first, as it 

appears first in the input list: 

b<c<d<a<g 

G5 adds the final two events to the ordering: 'f' and V. As 'f' is the most repeated event, it is 

placed in the ordering before V, to give the final ordering as: 

b<c<d<a<g<f<e 

All the events have now been ordered, so it is not necessary to consider the remaining gates. 

5.2.4 Depth-First, with Number of Leaves 

This scheme is again an extension to the modified depth-first ordering, with a different method 
of choosing the order in which gate inputs are explored. They are chosen according to the 
number of `leaves' beneath the gate itself. The number of leaves of a gate is the total number 
of basic events occurring at any level beneath that gate. 

The gate inputs with the least number of leaves that haven't been ordered are considered 
first. In the case of a tie, the gate with the fewest ordered leaves is chosen. If an order still 
can't be established, then they are simply ordered as they appear from left to right in the input 
list. A modification has been made to how events are dealt with - they are now ordered in the 
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same way as in the modified depth-first method. So the most repeated events are chosen first 
but in the case of a tie, they are ordered as they appear from left to right in the list of inputs. 
Again, they are considered before any gate inputs. 

To demonstrate this technique, it is applied to the fault tree in Figure 5.1. The top event, Top, 

has no event inputs to order, so its three gate inputs, GI, G2 and G3 are considered in turn. 
The number of leaves, shown in Table 5.1, determines the order in which they are explored. 

Gate name G1 G2 G3 

Number of unordered leaves 7 3 8 

Number of ordered leaves 0 0 0 

Table 5.1: Number of ordered and unordered leaves of fault tree gates G1, G2 and G3 

As G2 has the fewest number of unordered leaves, it is considered first, followed by G1, then 

G3. G2 contains the events 'b', 'c' and 'd', which gives the partial ordering: 

b<c<d 

The subtree of the next gate, G1, is now explored. This gate contains no event inputs, but has 

two gate inputs, G4 and G5, which are processed before returning to consider G3. The 

number of leaves for each gate are shown in Table 5.2. 

Gate name G4 G5 

Number of unordered leaves 2 2 

Number of ordered leaves 2 1 

Table 5.2: Number of ordered and unordered leaves of fault tree gates G4 and G5 

Both gates have the same number of unordered leaves, so the number of ordered leaves is 

considered, of which G5 has fewer. G5 contains the new events 'f' and 'e', and as 'f' has the 

greatest number of occurrences, appears first in the ordering: 

b<c<d<f<e 

G4 contains the new events 'a' and 'g', and as both occur twice in the tree are simply placed 
in the ordering in their respective positions in the tree: 

b<c<d<f<e<a<g 

This concludes the ordering, so gate G3 is not examined. 
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5.2.5 Non-Dynamic Top-Down Weighted Ordering 

Weights are calculated for each event according to the following steps: 

"A weight of 1.0 is assigned to the top event and is propagated through the fault tree 
towards the basic events. 

" At each gate, the weight is equally distributed between its inputs. 

" Each basic event will then have been assigned a weight. Repeated events have their 

corresponding weights added together. 

" The highest order is given to the basic event with the largest weight. 

The variables are placed in order of decreasing weight. A modification has been made to how 

events with equal weights are ordered: they are chosen according to their average level of 

appearance in the tree. The average level is calculated for each variable by summing the 

levels on which the event occurs and dividing this by the number of occurrences. The variable 

that appears, on average, highest in the tree is placed earlier in the ordering. If variables still 

tie for positions then the most repeated event is chosen and if a tie still exists then they are 

simply ordered as they appeared in the modified top-down ordering. 

Figure 5.2 shows the same fault tree as Figure 5.1, but with the weight assignments: 

11 Top 

3 L- 3 
G2 3 G3 

s G4 
6 

G5 

ýývU vUL 
24 24 24 24 18 18 18 

G6 1 
-1 

1? 1 9996 

18 
G7 (dý GS 

18 

18 

ceffbg 

111111 
54 54 54 54 54 54 

Figure 5.2: Weight assignments for ordering of variables 
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Weights can be obtained for each variable: 

a_J-+- -_ 
5=_44`_ 

6 24 24 216 

b_1+ i +.. 1.. = 37 
9 24 54 216 

C_1+_L. +. 1. = 37 
9 24 54 216 

d_1+1+1__2 _ 48 
9 18 18 9 216 

e= 1 +1=ý__ 16 
18 54 27 216 

18+54+54-54-216 

g=-L+-L= 13 
54 216 

The events can now be ordered by decreasing weights. However, events 'b' and 'c' have 

equal weights, so their average level of occurrence is calculated. This also is found to be 

equal (both average on level four) and as they both occur the same number of times, they are 

ordered as in the modified top-down ordering, which was b<c. This gives the non-dynamic 

top-down weighted ordering: 
d<a<b<c<f<e<g 

There are several ways in which events could be ordered should they have equal weights, 

and some suggestions were made in Chapter 4. It was suggested that the event occurring 

most could be selected first, as it is the repeated events that cause cut set redundancy. 

Conversely the event with the lowest number of occurrences could be chosen, as this would 

mean that the individual events probably occur higher in the tree and therefore have more 

effect on the structure function. It was decided that calculating the events' average levels of 

occurrence and choosing the highest would give an improved indicator of which event should 

be ordered first. So, for example, an event appearing on level two (i. e. as a direct input to the 

top event) would be chosen before an event that occurs three times on level four. But, an 

event occurring three times on level four (average level is four) would be ordered before an 

event appearing once on level three and again on level six (average level is 4.5), even though 

one occurrence of the second event occurs at a higher level than the first event. 

5.2.6 Dynamic Top-Down Weighted Ordering 

This ordering progresses in the same way as the non-dynamic version, to calculate the 

weights for the basic events. However, only the event with the highest weight is placed in the 

ordering. If two or more events have the same weight, then the event with the highest 

average level of occurrence is chosen. If they remain indistinguishable, the most repeated 
event is chosen and if a tie still exists then the event appearing first in the modified top-down 

ordering is chosen. Once an event has been placed in the ordering, it is removed from the 
fault tree by deleting all its occurrences. Using the modified fault tree, weights are reassigned 
from the beginning. This allows another event to be ordered and the process continues until 
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all events have been placed in the ordering. As explained in Chapter 4, applying the dynamic 

ordering method means that in many cases neighbouring events are given near orders. 

Applying this scheme to the example fault tree gives the first set of weights as in the non- 
dynamic ordering. This means that event 'd' is the first to be placed in the ordering. However, 

'd' is now removed from the fault tree to give the modified tree shown in Figure 5.3. 

Figure 5.3: Modified fault tree with event 'd' removed 

The new weight assignments are: 

a=-t+-L=-L= 15 
6 24 24 72 

17 b-6+24+36-72 

C 6+24+36 
72 

8-12+36 6 
72 

f=-., + 1 +-_=-L __ 
10 

12 36 36 36 72 

g-24+36'72 

Events 'b' and 'c' have the largest weight values, and the same average level of occurrence 
and number of repetitions, so 'b' is chosen as it appears first in the modified top-down 
ordering. 
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Continuing in the same manner, event 'b' is removed from the tree and further weights are 
assigned. This process is repeated until all events have been placed in the ordering. The final 
dynamic top-down weighted ordering is: 

d<b<c<a<g<f<e 

5.2.7 Bottom-Up Weighted Ordering 

This technique is initiated from the bottom of the tree, rather than the top and in effect 
calculates weights for the gates, which are then used to determine the ordering in which they 

are considered within a depth-first exploration. The way in which this scheme is implemented 
differs significantly from the method described in Chapter 4. The main features are described 
below: 

"A weight of 1/z is assigned to each basic event and propagated towards the top event. 

" At each gate, the weights of the inputs are combined as probabilities according to: 

n 
'AND' gates: P(gate) = [Jqj 5.1 

n 
'OR' gates: P(gate) =1- (1- q, ) 5.2 

1=1 

where n is the number of inputs to the gate. 

" Once each of the inputs to the top event has been assigned weights, the tree is 

explored in a depth-first manner, considering branches with the largest weight first. 

Once the weight values of the gates have been established, the method proceeds as in the 

modified depth-first method, except that the gates are explored according to which has the 

highest weight rather than simply from left to right. However, if gates do have the same weight 
then they are considered according to the percentage of repeated events below that gate. 
This is calculated by adding up the number of repeated events below the gate and dividing by 

the total number of events below the gate. The gate with the highest number of repeated 

events is considered first, but if there is a tie, then they are considered from left to right as 
they appear in the input list. The events of each gate are ordered before the gate inputs are 
explored and are chosen according to the highest number of occurrences in the fault tree. If 

events have the same number of occurrences then they are simply chosen from left to right 
as they appear in the input list. 

This scheme can now be applied to the tree in Figure 5.1. Every event is given a weight of 1/2 
and so the weights of the gates can be calculated as in Table 5.3. 
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Gate name Gate type Inputs 
Calculated 
gate weight 

G1 OR G4, G5 23/128 

G2 OR b, c, d 7/8 

G3 OR G6, a 17/32 

G4 AND c, b, a, g 1/16 

G5 AND d, f, e 1/8 
G6 AND G7, G8, d 49/128 

G7 OR c, e, f 7/8 

G8 OR f, b, g 7/8 

Table 5.3: Weights of the gates according to the bottom-up weighted method 

The top event has three gate inputs: G1, G2 and G3. These are considered in order of 
highest weight according to Table 5.3, i. e. G2 then G3 then G1. G2 has three event inputs, 

which gives the partial ordering: 
b<c<d 

The subtree of the next gate, G3 is now explored. It contains one event input, 'a', which is 

added to the partial ordering to give: 
b<c<d<a 

Its gate input G6 is then examined. It has one event input, 'd', but as this is already in the 

ordering, it is not considered. G6 has two gate inputs, G7 and G8, which have equal weights. 
As they also have the same percentage of repeated events below (both 100%) they are 

simply considered from left to right, i. e. G7 first. G7 contains two unordered events, 'e' and T. 

Event 'f' is placed first in the ordering as it has more occurrences in the tree, giving: 

b<c<d<a<f<e 

G8 adds the final event 'g' to the ordering to give: 

b<c<d<a<f<e<g 

The subtree of the gate G1 is not explored, as all the events have been ordered. 

This method differs significantly from the general method detailed in Chapter 4. The general 
method assigned each event a weight value of one and added the weights up at each gate. 
However this simply orders the gates according to the number of basic events in its subtree 
and would not distinguish between 'OR' gates with many inputs and 'AND' gates with many 
inputs. In this case it would be fair to assume that the events beneath the 'OR' gate would 
have more influence over the occurrence of the top event as only one is needed for the logic 
to flow, compared with the 'AND' gate where every event would need to occur. For this 
reason the events were given weights of 1/2 and the weights were propagated as probabilities, 
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so keeping the weight values of the gates below one, and giving 'OR' gates higher 

precedence. If gates have equal probabilities, the order is chosen according to the 
percentage of repeated events below that gate. This is because repeated events cause the 

problem of non-minimal cut sets and so by ordering repeated events first the resulting BDD 

can be smaller. Tied events are dealt with in the same way as in the other depth-first 

schemes as this has been shown to be a good ordering technique. 

5.2.8 Event Criticality 

This final ordering scheme is an extension of the one reported in Chapter 4, which applies the 

principle of Birnbaum's structural importance measure directly to the tree. The contribution of 

each basic event to the top event is calculated according to: 

Ii =Q(11, j/z -Q(0;, 'h 5.3 

The selected basic event therefore assumes the failure probabilities of one and zero on two 

consecutive computations of the top event probability, with the remaining components given 
failure probabilities of 1/2. The result of the second run (with failure probability zero) is 

subtracted from the first run (with failure probability one) to give the contribution of that basic 

event to the occurrence of the top event 

The basic events are ordered such that those with a greater contribution to the occurrence of 

the top event are ordered before those with smaller contributions. If two events have the 

same calculated contribution, then the event with the highest average level of occurrence is 

selected first. If the events are still tied then the most repeated event is selected and if the 

events are still indistinguishable, then they are simply ordered as they appear in the modified 

top-down ordering. 

This scheme can be applied to the fault tree in Figure 5.1 to give the calculated contributions 

shown in Table 5.4: 

Event 
Probability of Top with 

event failure probability 1 
Probability of Top with 

event failure probability 0 
Contribution to 
the top event 

a 0.2051 0.0419 0.1632 
b 0.1685 0.0623 0.1062 

c 0.1685 0.0623 0.1062 

d 0.2621 0.0234 0.2387 
e 0.1867 0.0363 0.1504 
f 0.1948 0.0350 0.1598 

9 0.1474 0.0726 0.0748 

Table 5.4: The calculated contributions of each of the basic events to system failure 
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The events are ranked such that those with larger contributions appear earlier in the ordering 
than events with smaller contributions. Events 'b' and 'c' have the same contribution, the 

same average level of occurrence and the same number of occurrences. Therefore, they are 

simply ordered as they appear in the modified top-down ordering scheme: 

d<a<f<e<b<c<g 

5.3 Performance of the Schemes on a Set of Fault Trees 

A program was written to implement the eight ordering schemes (ordering. c), which were 

applied to a set of 228 fault trees. Summary details of these trees can be found in Appendix II. 

BDDs were constructed for each tree, using the variable orderings determined by each of the 

schemes. 

The schemes are ranked in order according to the complexity of the BDD that they produce. 
The performance of the schemes is then assessed in two ways. Firstly, the number of times 

that each scheme produces the highest ranking is calculated. This is the usual method of 

scheme evaluation. The second method considers the average ranking of each scheme 

across the set of fault trees, so gives an indication of the overall scheme performance. Three 

different measures of BDD complexity are considered, which are discussed in the following 

sections. 

5.3.1 Measures of BDD Complexity 

In order to fully compare the ordering schemes, three measures of BDD complexity are used 

in the investigation. These are the number of non-distinct nodes in the BDD, the number of 

distinct nodes in the BDD and the number of ite calculations required to construct the BDD. 

Each measure and the reason for employing it, is described in the following sections. 

5.3.1.1 Non-Distinct Nodes 

The number of non-distinct nodes in the BDD is essentially the size of the BDD when sub- 
node sharing is not enabled. Therefore if a section of the BDD is repeated, the nodes within 
this section will be counted as many times as that section appears. For example, nodes F3 

and F6 in Figure 5.4(a) are identical, so sub-node sharing can be enabled, as in Figure 5.4(b). 
The number of non-distinct nodes is therefore measured from 5.4(a), giving a total of seven 
nodes in this case. This is a particularly useful measure when considering quantitative 
analysis, as it gives an indication of the number of calculations to be performed. 
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(a) BDD not enabling sub-node sharing (b) BDD enabling sub-node sharing 

Figure 5.4: Identical BDDs, showing the use of sub-node sharing 

Previous results obtained by Sinnamon[211 (comparing schemes 1,2 and 3) and Bartlettt19l 

(comparing schemes 1,2,3 and 8) have both used this measure as a comparison of BDD 

size. 

5.3.1.2 Distinct Nodes 

The number of distinct nodes in the BDD is the total number of non-terminal nodes when sub- 

node sharing is enabled and is shown in Figure 5.4(b). In this example, the BDD has five 

distinct nodes. This measure indicates the size of the most compact representation of the 
BDD and is also the number of nodes that has to be stored in computer memory. This is an 
important consideration, as it is the very large BDDs that cannot be handled. It is also what is 

generally referred to as 'the size of the BDD'. 

5.3.1.3 Number of If-Then-Else Calculations 

This measure represents the number of computations that must be performed and stored 
during the ite procedure (each one is stored with its result so that it is not repeated 
unnecessarily), and so indicates the size of the arrays that have to be handled. If the 
computer memory is exceeded and the construction process fails, then the BDD technique 
cannot be utilised. Therefore reducing this method of BDD complexity is particularly 
beneficial. 
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5.3.2 Results: Highest Scheme Rankings 

The schemes are ranked in order three times, according to the number of non-distinct BDD 

nodes, the number of distinct BDD nodes and the number of ite calculations required for BDD 

construction. A count is then made of the number of times that each scheme receives the 
highest ranking. The numbers of fault trees for which each scheme is 'best', do not add up to 

the total number of trees, as some have the same result for more than one scheme. The 

results are not included for the trees that give identical values for each ordering scheme. 

The results for each tree, showing the number of non-distinct BDD nodes, distinct BDD nodes 
and ite calculations required to construct the BDD using each ordering, can be found in 

Appendices III, IV and V. 

5.3.2.1 Non-Distinct Nodes 

The eight schemes gave identical results for 59 of the 228 fault trees. For the remaining 169 

trees, the results are shown in Table 5.5. 

Ordering scheme 1 2 3 4 5 6 7 8 

Number of trees using 18 43 34 37 34 35 46 68 
non-distinct nodes 

Table 5.5: The number of trees for which each scheme was ranked the highest according 
to the number of non-distinct BDD nodes 

These results clearly show that the event criticality ordering scheme (8), which is a weighted 

measure, performs significantly better than any other ordering scheme. It produces BDDs with 
the fewest non-distinct nodes in 68 cases, which is for 22 more trees than the next best 

scheme, the bottom-up weighted measure (scheme 7). 

The modified top-down scheme (1) produced disappointing results, generating BDDs with the 
fewest non-distinct nodes in only 18 cases. This is substantially worse than for any other 
scheme - the closest result was obtained by schemes 3 and 5 (the modified priority depth- 
first and non-dynamic top-down weighted schemes respectively), which were both ranked 
highest for 34 fault trees. 

Although some schemes performed better than others, each has at least one fault tree (and in 
many cases, several trees) for which it produces a result that cannot be matched by any other 
scheme. Therefore none can be disregarded at this stage. 
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5.3.2.2 Distinct Nodes 

The eight schemes produced identical results for 64 of the 228 fault trees. The results for the 
remaining 164 trees are shown in Table 5.6. 

Ordering scheme 1 2 3 4 5 6 7 8 

Number of trees using 11 64 54 59 25 39 68 39 
distinct nodes 

Table 5.6: The number of trees for which each scheme was ranked the highest according 
to the number of distinct BDD nodes 

These results are significantly different to those obtained for the number of non-distinct BDD 

nodes. For example in the previous case, the event criticality scheme (8) performed the best. 

However here it does not perform particularly well at all. One aspect that is mirrored by these 

results is that again, the modified top-down scheme (1) produces the worst results by a 

considerable margin. 

It is interesting to note that the schemes based on a depth-first approach (i. e. the modified 
depth-first (2), modified priority depth-first (3), leaves depth-first (4) and the bottom-up 

weighted measure (7)) perform significantly better than the other schemes. This suggests that 
in order to draw the BDD in a concise manner, a depth-first approach should be considered. 
As this was not apparent in the results for the number of non-distinct BDD nodes, it could be 

that the use of a depth-first method somehow promotes the use of sub-node sharing. 

The bottom-up weighted approach (7) performs marginally better than the remaining 

schemes, so as with the previous section, a weighted technique produces the best results. It 

could be the combination of a weighted scheme incorporating a depth-first approach that 

makes this scheme successful. 

5.3.2.3 Number of If-Then-Else Calculations 

The eight schemes produced identical results for 41 of the 228 fault trees. The results for the 

remaining 187 trees are shown in Table 5.7. 

Ordering scheme 1 2 3 4 5 6 7 8 

Number of trees using 
ite calculations 

24 52 42 47 33 57 45 58 

Table 5.7: The number of trees for which each scheme was ranked the highest according 
to the number of He calculations 
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There are similarities between these results and those obtained for the number of non-distinct 
BDD nodes, in that the modified top-down scheme (1) is ranked highest for the fewest 

number of trees and the event criticality scheme (8) is ranked highest for the greatest number 
of trees. However, the results are more evenly spread than for either of the other BDD 

complexity measures, with a difference of only 34 trees between the best and worst 

performances, compared with 57 for the number of distinct BDD nodes. 

5.3.3 Results: Overall Ranking of the Schemes 

This method of evaluating the ordering schemes ranks them in order from the scheme that 

produces the best results (i. e. the smallest number of nodes or the fewest ite calculations), to 

the scheme that produces the worst results for each fault tree, where a ranking of one 

indicates the best performance and a ranking of eight indicates the worst performance. The 

rankings are then added together over all 228 trees, to show which scheme performs well 

over all the trees, but does not necessarily perform 'best' each time. This is indicated by the 

scheme with the lowest added ranking. If a scheme consistently comes second or third, then 

this could prove a better choice of scheme than one which might perform erratically, 

producing the highest ranking a number of times, but performing badly on other trees. The 

results are not included for the trees that give identical values for each ordering scheme. 

5.3.3.1 Non-Distinct Nodes 

The rankings were added over the 169 trees to give the results shown in Table 5.8. 

Ordering scheme 1 2 3 4 5 6 7 8 

Added rankings for 
787 703 708 676 621 638 740 503 

non-distinct nodes 

Table 5.8: The added rankings for each ordering scheme for 169 fault trees 

The event criticality scheme (8) produces the best results, as it did for the number of times it 

produced the BDD with the fewest number of non-distinct nodes. So in addition to being 

ranked first for 68 trees, it also performs well over the remaining trees. 

Other than the modified top-down approach (1), which again performs badly, most of the 
remaining schemes produce average results. A significant difference with this measure of 
scheme performance however, is that the bottom-up weighted measure (7) now produces a 
result similar to that obtained using the modified top-down method (1), whereas for the 
number of times it received the highest ranking, it returned the second-best results. This could 
be because although it is ranked first on 46 occasions, it frequently produced a BDD size that 
was much larger than that obtained using other schemes. 
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5.3.3.2 Distinct Nodes 

The rankings were added over the 164 trees to give the results shown in Table 5.9. 

Ordering scheme 1 2 3 4 5 6 7 8 

Added rankings 
887 541 534 570 743 588 625 674 

for distinct nodes 

Table 5.9: The added rankings for each ordering scheme for 164 fault trees 

These results are similar to those obtained for the number of times each scheme received the 

highest ranking, with the depth-first measures again performing particularly well. However in 

this case it is the modified priority depth-first (3) measure rather than the bottom-up weighted 

measure (7) that produces the best results, with the lowest overall ranking. 

As with the results obtained for the non-distinct nodes, the bottom-up weighted measure (7) 
has not performed as well in the overall rankings as it did when considering the number of 
times it was ranked highest. It seems that while it produces the best ordering on 68 

occasions, it does not maintain a good overall performance on the remaining trees. 

If one scheme were to be selected for use when considering the number of distinct nodes, 
then an appropriate choice would be the modified depth first scheme (2), which performed 

well in both sets of results. When considering the number of trees for which it produced the 

smallest BDD, it came a close second place with 64 compared with 68 for the bottom-up 

weighted measure (7). In this set of results, it had the second lowest ranking (a total of 541 

compared with 534 obtained with the modified priority depth-first scheme (3)), which gives it 

the best overall results and suggests it is a good choice of scheme. 

5.3.3.3 Number of If-Then-Else Calculations 

The rankings for each scheme were added for the 187 fault trees to give the results shown in 
Table 5.10. 

Ordering scheme 1 2 3 4 5 6 7 8 

Added rankings 
for ite calculations 

896 739 727 728 742 606 825 680 

Table 5.10: The added rankings for each ordering scheme for 187 fault trees 
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The results are similar to those obtained for the number of times that each scheme produced 
a BDD with the fewest He calculations. The dynamic top-down weighted scheme (6) has 

performed particularly well and although it didn't produce the best results in the previous 
section, it did come a very close second, using the fewest number of ite calculations for 57 
trees compared with 58 trees for the event criticality scheme (8). This scheme is therefore 

very successful at ordering the variables in a manner which minimises the number of He 

calculations necessary to construct the BDD. 

5.4 Conclusions 

Previous research has suggested that no scheme will be identified that is capable of 

producing the smallest possible BDD for any given fault tree, and these results appear to 

support this theory. It is interesting to see however, that even within a particular fault tree, 

different schemes work best depending on the measure used to assess the BDD complexity. 

For example, Table 5.11 shows the number of distinct BDD nodes, non-distinct BDD nodes 

and ite calculations required to produce the BDDs for the fault tree 'rand155'. Scheme 8 

produces the best results for the number of non-distinct nodes, scheme 4 produces the best 

results for the number of distinct nodes, whilst scheme 6 is best when considering the number 

of ite calculations required to obtain the BDD. Not only does this show that the 'best' choice of 

scheme can be different for a fault tree according to how BDD complexity is measured, but in 

this case the schemes that perform well for one measure of BDD complexity do not even 

produce results that are near to the best for other measures. 

Ordering scheme 1 2 3 4 5 6 7 8 

Number of non- 1051 1695 1888 1439 894 863 2484 790 
distinct nodes 

Number of 226 146 115 97 158 106 172 174 
distinct nodes 
Number of He 

314 307 297 213 238 196 448 250 
calculations 

Table 5.11: The number of non-distinct and distinct nodes for the BDDs obtained by each of 
the orderings from fault tree 'rand155' 

In order to produce the smallest number of non-distinct nodes, the event criticality scheme (8) 
appears to be the best choice. It produced the smallest BDDs on the greatest number of 
occasions, but also showed that it performs consistently well by producing the best overall 
ranking. As there are several ways of distinguishing 'tied' variables within this scheme, it is 
thought that further work could lead to improved results. 
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For the smallest number of distinct nodes, the schemes based upon a depth-first approach 
seemed to provide the best orderings. In particular the bottom-up weighted approach (7), 
which is a weighted method, produced encouraging results when considering the number of 
times it was ranked highest and again it is thought that this scheme would benefit from further 
refinement. As it has already been noted however, the modified depth-first method (2) 
produced excellent results in both categories and would provide a good choice of scheme 
when considering distinct nodes. 

Two schemes performed particularly well when considering the number of ite calculations 
required to construct the BDD - the dynamic top-down weighted method (6) and the event 
criticality scheme (8), both of which are weighted measures. It is thought that the dynamic 

top-down scheme would particularly benefit from further investigation, as it is the first time that 

results have been obtained using this ordering technique. 

The variable orderings produced by each of the schemes are very sensitive to the way in 

which the fault tree is written. The structure of the tree can vary considerably whilst still 
satisfying the same logic function and is very rarely written in its most concise form. As well 
as affecting the variable ordering, this can have a significant effect on the size of the resulting 
BDD. However, methods can be applied to fault trees to reduce their complexity, with the aim 
of constructing smaller BDDs. One such technique is considered in the following chapter. 
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Chapter 6: Fault Tree Reduction 

6.1 Introduction 

Fault trees are rarely written in their most concise format and this can have a significant effect 

on the size of the resulting BDDs. Their complexity can be reduced however, by applying fault 

tree reduction techniques, which optimise the structure of the tree, whilst retaining the 

underlying logic. This chapter discusses how one such technique, known as the 'Faunet1261' 

method, can be used to restructure fault tees to give an equivalent, but simpler, 

representation of the logic function. The reduced fault trees can then be used within the BDD 

method, with the aim of producing smaller BDDs than can be obtained using the original (non- 

reduced) fault trees. 

The following sections consider the Faunet reduction technique in detail and discuss the 

program that was written for its implementation. The performance of the reduction method is 

then evaluated by comparing the complexity of BDDs constructed from a set of reduced fault 

trees against those obtained from the original, non-reduced, fault trees. 

6.2 The Faunet Reduction Technique 

This method of fault tree reduction consists of three stages: 

1. Contraction 

Subsequent gates of the same type are contracted to form a single gate. This gives 

an alternating sequence of 'AND' gates and 'OR' gates throughout the tree. 

2. Factorisation 

Pairs of events that always occur together in the same gate type are identified. They 

are combined to form a single complex event. 

3. Extraction 

The following two structures are identified and replaced: 

restructure 

(a) 
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restructure 
10 

(b) 

Figure 6.1: The extraction procedure 

The above three steps are repeated until no further changes are possible in the fault tree, 

resulting in a more compact representation of the system. 

6.3 Worked Example of the Reduction Technique 

In order to demonstrate the reduction process and explain its implementation in the program 

'faunet. c', the technique will be applied to the example fault tree shown in Figure 6.2. 

Figure 6.2: Example fault tree 
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6.3.1 Inputting Fault Tree Data to the Program 

The initial step, when given a fault tree such as the one shown in Figure 6.2, is to represent it 
by a data file. Each gate that appears in the tree is listed in the file, along with its type, the 

number of inputs (gates and events are numbered separately) and the inputs themselves. A 

typical file format for the fault tree in Figure 6.2 is shown in Table 6.1. 

Gate name Gate type 
Number 
of gates 

Number 
of events 

Inputs 

Top OR 1 2 G1 ad 
G1 OR 1 1 G2 b 

G2 AND 2 0 G3 G4 

G3 OR 1 3 G5 abf 
G4 OR 1 2 G5 ef 
G5 OR 0 2 cd 

Table 6.1: Fault tree data for Figure 6.2 

The data is read into the program with each column of Table 6.1 forming an array. As the data 

is read into these five arrays, it is also converted to a numerical format and stored in five 

corresponding arrays. The numerical arrays are used throughout the program, for ease of 

data manipulation. 

9 Basic events are numbered from 1 to 999. 

9 Gates are numbered from 1000 to 1999. 

" Complex events are numbered from 2000 upwards. 

The numerical arrays for the data in Table 6.1 are shown in Table 6.2. 

Gate number 
Value of gate 
1-OR, 2- AND 

Number 
of gates 

Number 
of events 

Inputs 

1000 1 1 2 1001 12 

1001 1 1 1 1002 3 

1002 2 2 0 1003 1004 

1003 1 1 3 1005 134 

1004 1 1 2 1005 54 
1005 1 0 2 62 

Table 6.2: Numerical fault tree data for Figure 6.2 
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Other arrays that are created as the data are read in, are the occurrence arrays. These store 
the number of occurrences in the fault tree data of both gates and basic events. The 

occurrences of the complex events are also recorded as they are formed. In order for the 
occurrence arrays to be correct, it is essential that the top event be listed first in the data file. 
Since the gate representing the top event is the only gate that does not appear as an input to 

another gate (i. e. it appears in the first but not the fifth column of Table 6.2), it is easily 
identified. The program scans the data until it identifies the gate with this property, and if this 

gate doesn't appear on the first line of data, then the data is re-arranged to make this the 

case. 

It is also essential that any gate inputs be listed before events in the inputs list, as it is 

assumed in the program that the inputs occupying positions 0 to (number of gates - 1) are all 

gates. This was not the case for some of the data for the test trees and so a piece of code 

was written that rearranges the data into the required format. The order in which the gates 

appear in the listing is retained; the first input that is found to be a gate is placed in position 1, 

the second in position 2 and so on. 

6.3.2 The Reduction Process 

Once the data has been read in, the reduction process can begin. Figure 6.3 shows the 

numerical fault tree and Table 6.2 its corresponding data at the start of this process. 

Figure 6.3: The numerical fault tree 
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Contraction 1 

The aim of this first stage is to identify subsequent gates in the tree structure that have the 
same gate type. In order to do this, the program scans through the inputs to each gate 
(subsequently referred to as the primary gate) and checks the gate type of each gate input 
(called the secondary gate). If secondary gate type matches the primary gate type, then the 

secondary gate can be contracted. 

However, before contraction takes place, the number of occurrences of the secondary gate 
must be checked. If it occurs more than once, then any additional gates to which the 

secondary gate is an input must also be considered. If any additional gates are of the same 
type, then contraction can also occur for those cases (resulting in more than one primary 

gate), however contraction cannot take place for gates that are of a different type. 

The process of contraction adds the inputs of the secondary gate to those of the primary gate 

and deletes the secondary gate from the primary gate's input list. The occurrence arrays 

containing the number of gates and events are altered accordingly. If there is only one 

occurrence of the secondary gate, then its line of data can be deleted. However, if it occurs 

more than once, then its data is only deleted if all the gates to which it is an input are of the 

same type. If they are not, then the data cannot be deleted as it the gate still occurs as an 
input elsewhere in the tree and its data is therefore required. 

Once contraction has taken place, the inputs to the gates are checked to ensure that each 
input is listed only once. This is necessary, as the secondary gate could have had an input in 

common with a primary gate, which would now be listed twice as an input to the primary gate, 

and would impede the factorisation process. 

Application of the contraction stage to the fault tree shown in Figure 6.3: 

In this example, gate 1001 appears as an input to gate 1000 and they both have a gate value 

of 1 (i. e. they are 'OR' gates). Gate 1001 only appears once in the fault tree data, so its inputs 

are directed to gate 1000 and its line of data deleted. Gate 1005 is also found to be of the 

same type as gate 1003. However it appears twice in the tree, so its other occurrences must 
be checked. As it appears as an input to gate 1004, which is also of the same type, it can be 

contracted in both cases and the line of data can again be deleted. The resulting fault tree 

and data arrays are shown in Figure 6.4 and Table 6.3. 
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Figure 6.4: The fault tree after contraction 1 

Gate 
number 

Gate 
value 

Number 
of gates 

Number 
of events 

Inputs 

1000 1 1 3 1002 132 

1002 2 2 0 1003 1004 

1003 1 0 5 13462 

1004 1 0 4 5462 

Table 6.3: Fault tree data after contraction 1 

Factorisation 1 

The fault tree now has an alternating sequence of 'AND' and 'OR' gates, and can be 

factorised. The input events to each gate are scanned, looking for pairs that always occur 

together. This is achieved by systematically examining each possible event pair within the list 

of inputs. When two events are chosen, the number of occurrences of each is found. If they 

do not occur the same number of times then the search ends, as this means they cannot 

always occur together. If they do occur the same number of times, then factorisation can be 

considered, but each occurrence of the events is checked to ensure that if one event appears 

as the input to a gate (which must be the same type as the original gate) then the other event 
is also an input. If each event occurs only once, then they must always occur together, so 

can immediately be combined. 

Once it has been established that they do always occur together and under the same gate 
type, the events are combined to form a single, complex event. The complex events are 
numbered from 2000 upwards. The next available number is selected and this is recorded in 
the complex event array, with the gate type and the two events from which it was formed. The 
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complex event is then substituted into the input array for every occurrence of the first event; 
occurrences of the second event are deleted. The number of event inputs for the 

corresponding gates decreases by one. 

Application of factorisation to the fault tree shown in Figure 6.4: 

Starting with gate 1000, events 1 and 3 are examined. They occur together twice under the 

same gate type, so can be factorised. Complex event 2000 is created and replaces event 1 in 

lines 1 and 3 of the input array. Event 3 is deleted. The number of events in both lines of data 

decreases by one. Events 2000 and 2 are then examined. Event 2000 occurs twice and event 

2 occurs three times, therefore they cannot always occur together and are not considered 

further. 

Gate 1002 is now considered, but as it only contains gate inputs, gate 1003 on the next line of 

data is examined. Events 2000 and 4, then 2000 and 6 are considered, but although they 

have the same number of occurrences, they do not always occur together. Events 2000 and 2 

are again examined, but do not have the same number of occurrences. Events 4 and 6 are 

considered next, and it is found that they occur together twice under the same gate type. 

They are therefore combined to form the complex event 2001. Events 2001 and 2 form the 

next pair, but do not occur the same number of times, so are not considered further. The final 

gate 1004 is then scanned, but no events can be factorised. 

The modified fault tree and data are shown in Figure 6.5 and Table 6.4. 

Figure 6.5: The fault tree after factorisation 1 
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Gate 
number 

Gate 
value 

Number 
of gates 

Number 
of events 

Inputs 

1000 1 1 2 1002 2000 2 

1002 2 2 0 1003 1004 

1003 1 0 3 2000 2001 2 
1004 1 0 3 5 2001 2 

Table 6.4: Fault tree data after factorisation 1 

The complex event array has now been started, and is shown in Table 6.5. 

Complex Gate Event 1 Event 2 
event value 

2000 1 1 3 

2001 1 4 6 

Table 6.5: Complex event data after factorisation 1 

Extraction 1 

The extraction process searches for the structures shown in Figure 6.1. In order to do this, the 

program scans through each line of data, examining the gate inputs to the primary gate. If the 

primary gate does not have at least two gate inputs, then the program moves onto the next 
gate. If it does have two or more gates as inputs (referred to as the secondary gates), then 
the gates are selected in pairs. Both secondary gates are then checked to see if they are of 
the same type, but a different type to the primary gate. If so, the inputs to the secondary gates 
are checked to see if they have a gate or event in common. If they do, then extraction can 
take place. 

Before extraction can occur, however, there may be some necessary adjustments to be made 
to the data. If the primary gate has more than two inputs, then a new gate must be created 

which has the same gate type as the primary gate, but which has the primary gate and all its 
inputs, bar the two secondary gates, as inputs. This restructures the fault tree into the form 

required for extraction, by using an equivalent representation. An example of this is shown in 
Figure 6.6. 
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(a) (b) 

Figure 6.6: Equivalent representations of a fault tree 

In Figure 6.6(a), the primary gate 1000 has two secondary gates, 1001 and 1002, which have 

an input in common. In order to get this tree into the required form for extraction, gate 1004 is 

generated, as shown in Figure 6.6(b). This has gate 1000 as an input, together with events 1 

and 2 and gate 1003, which were inputs to gate 1000. Gate 1000 now only has its two 

secondary gates as inputs. The fault tree data has a new line added for the generated gate, 

which is listed in the same way as the other gates. The line containing the data for gate 1000 

is also adjusted accordingly. 

A second adjustment may be required if the secondary gates appear elsewhere in the tree. 
The secondary gates will be altered (a gate or event extracted as a common input) but any 

other occurrences of this gate should remain unchanged. This problem is overcome by 

checking the occurrences of the secondary gates and if either occurs more than once, a new 
gate must be created. This new gate has exactly the same properties and inputs as the 

secondary gate, and replaces it in the input list to the primary gate. Therefore, the data for the 

original secondary gate and its other occurrences in the tree remain unchanged, and the new 
data can be altered accordingly. 

Once the tree is in the correct form, the extraction process can be undertaken. The 
numbering of the gates is important in order to avoid confusion and is shown in Figure 6.7. 
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(a) (b) (c) 

Figure 6.7: Numbering of fault tree gates throughout extraction 

In Figure 6.7(b), a new gate is created (1004), which is of the same type as the secondary 

gates and has the common input, 1, and the primary gate, 1001, as its inputs. The common 

input 1 is removed from both 1002 and 1003. Figure 6.7(c) shows the next stage, which is the 

removal of gate 1003 (as it only has one input) with its input directed to gate 1001. This 

numbering is essential, as the secondary gates may have more than two inputs (as for 1002) 

and so remain in the tree and the extraction process must take account of this. 

Application of the extraction procedure to the fault tree shown in Figure 6.5: 

The only gate that has two or more gates inputs is 1002, whose inputs are 1003 and 1004. 

These secondary gates are both of a different type to the primary gate, and have the event 

2001 in common, which can be extracted (Figure 6.8(a)). It is clear from Figure 6.8(a) that 

another extraction can also be undertaken. Gates 1003 and 1004 also have the event 2 in 

common, so a second extraction can be undertaken, as shown in Figure 6.8(b). 
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Common event - 2001 Common event -2 
(a) (b) 

Figure 6.8: Fault tree after extraction 1 

The resulting fault tree data no longer lists gates 1003 and 1004, but instead lists the 

generated gates 1006 and 1007, as shown in Table 6.6. 

Gate 
number 

Gate 
value 

Number 
of gates 

Number 
of events 

Inputs 

1000 1 1 2 1006 2000 2 

1002 2 0 2 2000 5 

1006 1 1 1 1007 2001 

1007 1 1 1 1002 2 

Table 6.6: Fault tree data after extraction 1 

Contraction 2 

Two further contractions can now take place: gate 1006 can be contracted into gate 1000 and 
gate 1007 can then also be contracted into gate 1000. This would leave event 2 as occurring 
twice as an input to gate 1000, but the program checks for this, and deletes one occurrence, 
updating the occurrence array at the same time. The resulting fault tree and arrays are shown 
in Figure 6.9 and Table 6.7. 
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Figure 6.9: Fault tree after contraction 2 

Gate Gate Number Number 
number value of gates of events 

Inputs 

1000 1 1 3 1002 2000 2 2001 

1002 2 0 2 2000 5 

Table 6.7: Fault tree data after contraction 2 

Factorisation 2 

Events 2 and 2001 occur together, so the complex event 2002 is formed, resulting in the fault 

tree shown in Figure 6.10 and the fault tree data shown in Tables 6.8 and 6.9. 

Figure 6.10: Fault tree after factorisation 2 

Gate Gate Number Number 
inputs 

number value of gates of events 
1000 1 1 2 1002 2000 2002 

1002 2 0 2 2000 5 

Table 6.8: Fault tree data after factorisation 2 
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Complex 

event 

Gate 

value 
Event 1 Event 2 

2000 1 1 3 

2001 1 4 6 

2002 1 2 2001 

Table 6.9: Complex event data after factorisation 2 

Extraction 2 

No extractions can be performed on the fault tree. The program would carry out the three 

steps again, as there have been changes made, but no further modifications are possible. 

6.3.3 The Reduced Fault Tree 

The fault tree and complex event data are output to data files in terms of the original gates 

and event names. Any complex events and generated gate names are output as they were 

named in the program. 

The reduced fault tree and corresponding data files are shown in Figure 6.11 and Tables 6.10 

and 6.11 in terms of the original event and gate names. 

Figure 6.11: The reduced fault tree 

Gate Gate Number Number Inputs 
name type of gates of events 
Top 1 1 2 G2 2000 2002 
G2 2 0 2 2000 e 

Table 6.10: Reduced fault tree data 
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Complex 
event 

Gate type Event 1 Event 2 

2000 1 a b 

2001 1 f c 
2002 1 d 2001 

Table 6.11: Complex event data 

It can be verified that the reduced tree is equivalent to the original tree by examining their 

minimal cut sets. These will be identical for logically equivalent trees. The original tree has 

five minimal cut sets of order one: 

(a), {b}, {c}, {d} and {f} 

The minimal cut sets for the reduced tree are: 

{2000} and {2002} 

These can be expanded out in terms of the basic events by taking a 'MOCUS1311' type of 

approach. The principle of this method is that 'OR' gates increase the number of cut sets, 

whilst 'AND' gates increase the number of elements in the cut sets. Therefore using the basic 

event data in Table 6.11, the minimal cut sets of the reduced tree can be expanded to give: 

Top = 2000 + 2002 

=a+b+d+2001 

=a+b+d+f+c 

which are equivalent to those obtained from the original tree. The technique for obtaining the 

minimal cut sets of reduced trees in terms of their basic events has been programmed as part 

of the research (cutsets. c to obtain the minimal cut sets in terms of complex events and 

complex_cuts. c to expand these out) in order to verify that the trees used to assess the 

reduction technique have been restructured correctly. 

Reduction has simplified the example fault tree considerably. In the original fault tree, there 

were six gates; in the reduced fault tree, there are two. In the original fault tree there were 
twelve events, six of them different; in the reduced fault tree there are four events, and only 
three of them are different. This means that when choosing a variable ordering there are half 

the number of events to consider, so the number of options for variable ordering is 

significantly reduced. It is expected that BDDs constructed from reduced fault trees will be 

substantially smaller than those constructed from non-reduced fault trees and in order to test 
this hypothesis, the reduction technique was applied to a set of fault trees and their BDD 
sizes compared. The results are discussed in the following sections. 
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6.4 Results of the Application of the Reduction Technique 

The reduction technique was applied to a set of 228 fault trees. Summary details for the trees 

are given in Appendix II. BDDs were constructed for each reduced tree using variable 

orderings determined by the eight ordering schemes analysed in Chapter 5. These are: 

1. Modified top-down. 
2. Modified depth-first. 

3. Modified priority depth-first. 
4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 
6. Dynamic top-down weights. 
7. Bottom-up weights. 

8. Event criticality. 

The resulting BDDs were analysed in two ways. Firstly, the success of the reduction 
technique was evaluated by comparing the complexity of the BDDs constructed from the 

reduced fault trees against those obtained using the original trees. Then, the performance of 
the ordering schemes on the reduced trees was analysed by considering the number of times 

each scheme received the highest ranking and the average ranking of the schemes over all 
the trees. The results are discussed in the following sections. 

6.4.1 Effect of the Reduction Technique on BDD Complexity 

The BDDs constructed from the reduced fault trees were compared against those obtained 

from the original trees for three different measures of BDD complexity: the number of non- 
distinct BDD nodes, the number of distinct BDD nodes and the number of ite calculations 

required to construct the BDD. The results obtained for each measure of BDD complexity for 

the set of fault trees are given in Appendices VI, VII and VIII. It was expected that the 

reduction technique would reduce the trees to a more concise form and that consequently the 

BDD construction process would be more efficient, requiring fewer ite calculations and 

producing BDDs with fewer non-distinct and distinct nodes. 

As there are 228 fault trees with eight ordering schemes used for each, there are a total of 
1824 cases to consider. The difference in the number of ite calculations and the number of 
non-distinct and distinct BDD nodes was calculated for each case together with the 

percentage decrease. 
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6.4.1.1 Non-Distinct Nodes 

Out of a total of 1824 cases, 1751 either showed a decrease or no change (often due to the 

fact that the BDDs were already minimal for the original fault trees) in the number of non- 

distinct nodes after reduction. The average decrease over these 1751 cases was 46.72%, 

which means that on average, the number of non-distinct nodes approximately halved 

through reduction. This is a substantial decrease in BDD size for a procedure that takes such 

a short amount of time to apply. 

In 73 cases, which account for 4.00% of the sample tested, the number of non-distinct nodes 

actually increased. This can occur because of the difference in the variable ordering once 

reduction has taken place. The BDD size is very sensitive to the chosen ordering, so if the 

fault tree changes sufficiently that the same ordering scheme produces a different variable 

ordering for the reduced tree, it is possible that this would have an adverse effect and actually 

increase the number of nodes in the resulting BDD. For example, consider the fault tree 

'random1' (summary details for the tree are given in Appendix II) shown in Figure 6.12(a). 

(a) (b) 

Figure 6.12: The fault tree'randoml' shown before (a) and after (b) reduction 

If the variables of the original fault tree are ordered according to the modified depth-first 

method, the following ordering is obtained: 

C5<C2<CO<C4<C3<C1 

The BDD constructed from this ordering is shown in Figure 6.13. 
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Figure 6.13: The BDD constructed from the fault tree in Figure 6.12(a) 

using the modified depth-first ordering 

The resulting BDD has six non-terminal nodes, which is the number of both distinct and non- 
distinct nodes. However, by applying the reduction technique to the fault tree, the reduced 
tree shown in Figure 6.12(b) is obtained. The only stage of the method that can be applied is 

extraction, where event C4 appears as a common event to both G1 and G2, so can be 

extracted. The resulting fault tree has the same number of gates as the original (six in total), 

but has one less basic event (eleven as opposed to twelve). However, when the modified 
depth-first ordering scheme is applied to the reduced tree, the following ordering is obtained: 

C5<C2<C4<CO<C3<C1 

Event C4 now appears earlier in the ordering than it did for the original tree. This is because 

in the original tree it appears under the same gate as CO, so is ordered after CO as it has 

fewer occurrences in the tree. In the reduced tree however, it appears as the only event input 

to the gate above CO so is ordered first. The resulting BDD is shown in Figure 6.14. 
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Figure 6.14: The BDD constructed from the reduced fault tree in Figure 6.12(b) 

using the modified depth-first ordering 

This BDD has seven distinct and non-distinct nodes, meaning that reduction has increased 

the number of nodes in the BDD. However, this is purely down to the variable ordering. If the 

ordering obtained from the reduced fault tree is used to construct a BDD from the original fault 

tree, the resulting BDD is exactly the same as that shown in Figure 6.14. Also, if the ordering 
C5<C2<CO<C4<C3<C1 (i. e. the ordering obtained from the original tree) is used to construct 

a BDD from the reduced tree, the BDD obtained is the same as the one shown in Figure 6.13, 

with only six nodes. 

The alternate orderings could have been applied to the trees automatically, simply by altering 
the way in which the original fault tree is written. For example, if g1 and g2 had been swapped 
in the original fault tree, then C4 would have been ordered first, and the same number of 
nodes would have been obtained for both the original and reduced tree. Or, the gates (or 

even the events beneath the gates) could have been written such that CO was extracted 
(either by ordering the inputs to g1 such that CO appears before C4, or by listing g3 before gl 
in the inputs to g0), meaning that it would have been ordered before C4 in the ordering, so 
producing the smaller BDD from the reduced tree. This demonstrates that the ordering 
scheme chosen for the original trees is not necessarily the best choice of scheme for the 

reduced trees, as modifications to the fault tree structure can affect the resulting variable 
ordering. Also, it has been shown that the way in which the original fault tree is written has a 
direct effect on the structure of resulting reduced tree. 

Overall, there are 32 fault trees that showed an increase in the number of non-distinct nodes, 
for one or more of the ordering schemes. The smallest number of non-distinct nodes obtained 
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over all the orderings from the original tree was compared with the smallest number of non- 
distinct nodes obtained via the reduced tree. It was found that reduction increased the 

smallest possible number of nodes in only four trees. This accounts for just 1.75% of cases. 
So in 28 of these trees, although one or more orderings produced a BDD from the reduced 

tree with more nodes than the one obtained using the original tree, there was at least one 

other ordering that resulted in a BDD from the reduced tree of smaller or equivalent size to 

the smallest produced from the original tree. For example, the tree 'rand147' produced the 

results shown in Table 6.12. 

Ordering 
scheme 

Non-distinct BDD 

nodes using the 
original tree 

Non-distinct BDD 

nodes using the 
reduced tree 

Decrease in 
the number 

of nodes 
1 3017 6692 -3675 
2 160475 60575 99900 

3 168581 50517 118064 

4 6307 54288 -47981 
5 2761 2262 499 

6 36930 1493 35437 

7 11385 6842 4543 

8 5460 1655 3805 

Figure 6.12: Results for fault tree 'rand 147' 

This fault tree shows two increases in the number of non-distinct nodes obtained from the 

reduced tree, in ordering schemes 1 and 4. However, the smallest BDD obtained from the 

original tree (scheme 5) has 2761 non-distinct nodes. Although ordering five results in a BDD 

with fewer nodes after reduction, ordering six actually produces an even smaller BDD with 

only 1493 non-distinct nodes. Therefore the minimum BDD size has been reduced by 

45.93%. So, even though an increase occurred using two of the schemes, the fault tree has 

ultimately benefited from reduction, as a significantly smaller BDD could be constructed. 

Each tree was analysed in this way and it was found that the average reduction in the 

minimum number of non-distinct nodes was 44.86% for the 224 trees that recorded a 

constant or decreased minimum BDD size. The minimum number of nodes for the four 

remaining trees was on average 11.37% lower when constructed using the original trees. 

6.4.1.2 Distinct Nodes 

In 1732 cases out of the total of 1824, the number of distinct BDD nodes decreased or 
remained the same after the reduction process had been applied to the trees. The average 
decrease in the number of distinct nodes for these trees was 34.29%. This is not as high as 

106 



the result obtained for the number of non-distinct nodes, but as there are usually fewer 
distinct nodes in the BDD than non-distinct nodes, there is less scope for improvement. 

As with the results for the non-distinct nodes, a small percentage of the cases actually 
showed an increase in BDD size. This occurred for 92 cases out of 1824 (5.04%), which is 

slightly more than when considering non-distinct nodes. 

The 92 cases that showed an increase in size account for 45 different fault trees. Of these, 

reduction had a negative effect on twelve, as the minimum number of nodes that was 

obtained over all the orderings was smaller before reduction than after reduction, by 12.55%. 

These twelve trees account for 5.26% of the set of fault trees that were considered. However, 

reduction had either a positive effect or no effect on the remaining 33 trees, as although one 

or more orderings resulted in an increase in the number of nodes, another ordering either 
improved or equalled the smallest number of nodes that was previously attainable. For these 

trees, together with the 183 trees that showed no increase in the number of distinct BDD 

nodes after reduction, the average decrease in the minimum number of distinct nodes was 
32.47%. 

Of the twelve trees whose minimum number of distinct BDD nodes increased through 

reduction, only two were in the set of four that reduction affected negatively when considering 

the number of non-distinct nodes. Therefore, for ten of the trees that recorded an increase in 

the minimum number of distinct BDD nodes after reduction, their minimum number of non- 
distinct BDD nodes actually decreased or stayed the same (in fact it decreased for nine and 

remained the same for one). And conversely, there were two trees whose minimum number 

of non-distinct BDD nodes increased after reduction that did not show an increase in the 

minimum number of distinct BDD nodes - one showed a decrease, one remained the same. 
So overall, only two trees (rando33 and rand144) showed an increase in the minimum 

number of both distinct and non-distinct BDD nodes after reduction. 

6.4.1.3 Number of If-Then-Else Calculations 

The number of He calculations required to obtain the BDD from the reduced trees either 
decreased or remained the same when compared to the number needed for the original trees 
in 1580 out of 1824 cases. On average, the number of calculations was reduced by 40.87%. 
This is a very promising result, as it shows that not only is the final BDD size significantly 

affected by the reduction process, but that the number of calculations and the time taken to 

perform them is also substantially reduced. 

In 244 cases, which account for 13.38% of those considered, the number of ite calculations 
actually increased. This is a larger percentage than was obtained for the number of non- 
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distinct and distinct nodes and means that although the final BDD size is smaller, sometimes 
more calculations are necessary for its construction. 

The 244 cases that showed an increase in the number of required ite calculations account for 

53 different fault trees. Of these, reduction has a negative effect on 27 (11.84% of the 

sample), as the minimum number of ite calculations was smaller by an average of 10.51% 

when the BDDs were constructed from the original trees. Only one of these trees (rand144) 

also showed an increase in the minimum number of distinct and non-distinct BDD nodes after 

reduction. The remaining 26 trees actually benefit from or are not affected by the reduction 

process, as although one or more orderings resulted in an increased number of calculations, 

the previous minimum was either improved or equalled by other schemes. For these trees, 

together with the 175 trees that showed no increase in the number of ite calculations after the 

reduction process has been applied, the average decrease in the minimum number of 

calculations was 40.39%. 

6.4.1.4 Summary of Results 

The BDDs constructed from the reduced fault trees were compared against those constructed 

using the original fault trees for three different measures of BDD complexity. The reduction 

technique has been shown to perform well according to each, with average decreases of 

46.72% over 96.00% of the 1824 cases for the number of non-distinct BDD nodes, 34.29% 

over 94.96% of cases for the number of distinct BDD nodes and 40.87% over 86.62% of 

cases for the number of ite calculations required to construct the BDD. 

The smallest attainable values of BDD complexity (i. e. the minimum obtained over all eight 

ordering schemes) were also compared for each of the original and reduced trees. Average 

decreases were recorded of 44.86% over 224 trees for the number of non-distinct nodes, 

32.47% over 216 trees for the number of distinct nodes and 40.39% over 201 trees for the 

number of ite calculations required to obtain the BDD. 

Only one tree (rand144) recorded an increase in each measure of BDD complexity. Nine 

other trees (benjiam, rstree5, worrell, random4, random7, rando27, rando45, rando72 and 

rand152) show no improvement in any of the measures, but reduction has a positive effect on 
the remaining 218 trees, which each produce BDDs with at least one improved complexity 

measure. 
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6.4.2 Performance of the Ordering Schemes on the Reduced Fault Trees 

The performance of the ordering schemes on the reduced trees is assessed in two ways. The 

first method considers the number of times that each scheme produces the best results and 
the second method examines the average ranking of each scheme over all the trees. The 

results are discussed in the following sections. 

6.4.2.1 Results: Highest Scheme Rankings 

The schemes are ranked in order according to the complexity of the BDDs that they produce 

and a count is then made of the number of times that each scheme receives the highest 

ranking. Three measures of BDD complexity are considered: the number of non-distinct BDD 

nodes, the number of distinct BDD nodes and the number of ite calculations required for BDD 

construction. Results are not included for the trees that give identical values for each ordering 

scheme. 

6.4.2.1.1 Non-Distinct Nodes 

The eight ordering schemes gave identical results for 90 of the 228 trees. This is significantly 

more than the number of identical results obtained using the non-reduced trees. In fact, the 

number has increased by more than 50% from 59 trees. This is due to two factors. Firstly, the 

reduced trees generally have fewer variables, meaning there are fewer variations in the 

orderings produced by the schemes and consequently identical BDDs are constructed. The 

second reason is that smaller fault trees produce BDDs that are not so variable is size and so 

different orderings are more likely to produce BDDs with the same complexity, but that are not 

necessarily identical. Whatever the reason for producing identical results, it is obviously 

advantageous if it reduces the importance of choosing just one 'correct' scheme. 

The results for the remaining 138 trees are shown in Table 6.13. 

Ordering scheme 1 2 3 4 5 6 7 8 

Number of trees using 13 24 23 24 30 32 28 63 
non-distinct nodes 

Table 6.13: The number of reduced trees for which each scheme was ranked the highest 

according to the number of non-distinct BDD nodes 

The event criticality scheme (8) performs significantly better than the other schemes, 
producing BDDs with the fewest non-distinct nodes for 63 fault trees. This echoes the result 
obtained for the non-reduced trees. 
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The four weighted methods (schemes 5-8) have all performed well, producing better results 
than the structural schemes. This was not seen in the results for the non-reduced trees and 

could be due to the way in which the reduced trees are now structured 

6.4.2.1.2 Distinct Nodes 

The ordering schemes produced identical results for 90 trees. Again, this is significantly more 
than the number of identical results obtained for the non-reduced trees, which was 64. Table 

6.14 shows the results obtained for the remaining 138 trees. 

Ordering scheme 1 2 3 4 5 6 7 8 

Number of trees using 12 40 35 39 14 32 37 35 
distinct nodes 

Table 6.14: The number of reduced trees for which each scheme was ranked the highest 

according to the number of distinct BDD nodes 

The schemes based upon a depth-first approach (2,3,4 and 7) perform well, as they did for 

the non-reduced trees. However, the results are far closer when using the reduced trees, with 

a difference of only 28 between the best and worst performers (modified depth-first (scheme 

2) and modified top-down (scheme 1) respectively) compared with a difference of 57 when 

using the non-reduced trees. This again suggests that the choice of ordering scheme is of 
less importance when considering the reduced trees. There are still 'good' and 'bad' schemes 
for each tree, but overall the difference is not as marked as it was with the non-reduced trees. 

6.4.2.1.3 Number of If-Then-Else Calculations 

The eight schemes produced identical results for 64 of the 228 fault trees. Again, this is a 

significant increase on the 41 identical results obtained using the non-reduced trees. The 

results for the remaining 164 trees are shown in Table 6.15. 

Ordering scheme 1 2 3 4 5 6 7 8 

Number of trees using 20 44 28 19 20 43 33 55 ite calculations 

Table 6.15: The number of reduced trees for which each scheme was ranked the highest 

according to the number of ite calculations 
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The event criticality ordering scheme (8) outperforms the other schemes, producing BDDs 
from the fewest ite calculations in 55 cases. The results are similar to those obtained for the 

non-reduced trees, with schemes 2,6 and 8 producing the best results, though the dynamic 

top-down weighted measure (scheme 6) has not performed as well as it did previously. 

6.4.2.2 Results: Overall Ranking of the Schemes 

The schemes are ranked in order from the one that produces the best results (i. e. the 

smallest number of nodes or the fewest ite calculations) to the one that produces the worst 

results for each fault tree, where a ranking of one indicates the best performance and a 

ranking of eight indicates the worst performance. The rankings are then added together over 

all 228 trees, to give an indication of the overall behaviour of the schemes. The best 

performance is indicated by the scheme with the lowest added ranking The results are not 

included for the trees that give identical values for each ordering scheme. 

6.4.2.2.1 Non-Distinct Nodes 

The rankings were added over the 138 trees to give the results shown in Table 6.16. 

Ordering scheme 1 2 3 4 5 6 7 8 

Added rankings for 

non-distinct nodes 
627 640 583 595 460 508 659 371 

Table 6.16: The added rankings for each ordering scheme for 138 reduced fault trees 

The event criticality scheme (8) performs better than the other seven ordering schemes, 

which means that in addition to producing BDDs with the fewest number of non-distinct nodes 
for the most trees, it also produces consistently good results for the remaining trees. This is a 

result that was also seen for the non-reduced trees. In general, the weighted measures (with 

the exception of scheme 7, which is discussed below) perform better than the structural 

ordering schemes, both in the number of times they produce the smallest BDD and in these 

results for the overall scheme rankings. 

The bottom-up weighted measure (7) performs badly in this scheme assessment method, 
though the results for the number of times it received the highest ranking placed the scheme 
in fourth position. This suggests that although it produces the smallest BDDs for a 
considerable number of fault trees, it does not perform well over the remaining trees. This 

conclusion was also drawn for the non-reduced trees. 



6.4.2.2.2 Distinct Nodes 

The rankings were added over the 138 trees to give the results shown in Table 6.17. 

Ordering scheme 1 2 3 4 5 6 7 8 

Added rankings 717 503 491 505 583 468 578 528 
for distinct nodes 

Table 6.17: The added rankings for each ordering scheme for 138 reduced fault trees 

The dynamic top-down weighted scheme (6) produced the best results, which is the first time 

that the depth-first schemes have been outperformed when considering the number of distinct 

BDD nodes (for both reduced and non-reduced trees). 

It was noted in the results for the number of times that each scheme produced the best 

ranking that they were much closer for the reduced trees than for the non-reduced trees. This 

is also the case here with a difference of only 249 between the best and worst performing 

schemes, compared with 353 for the non-reduced trees. This again suggests that the choice 

of scheme becomes less critical when considering the number of distinct BDD nodes for 

reduced trees. 

6.4.2.2.3 Number of If-Then-Else Calculations 

The rankings for each scheme were added for the 164 fault trees to give the results shown in 

Table 6.18. 

Ordering scheme 1 2 3 4 5 6 7 8 

Added rankings 785 614 647 739 627 531 746 542 
for He calculations 

Table 6.18: The added rankings for each ordering scheme for 164 reduced fault trees 

The dynamic top-down weighted measure (6) and the event criticality scheme (8) both 

perform well, as they did for the number of times each produced BDDs using the smallest 

number of ite calculations. The event criticality scheme (8) would probably be a marginally 
better choice of scheme as it produced BDDs with the fewest ite calculations for 12 more 
trees than the dynamic top-down weighted measure (6). However, the dynamic top-down 

weighted measure has shown great potential and proved the better choice of scheme for the 
non-reduced trees (when considering the number of ite calculations) and would benefit from 
further investigation. 

112 



6.4.2.3 Summary of Results 

The event criticality ordering scheme (8) performs well when considering the number of non- 
distinct BDD nodes, producing the smallest BDDs most often and the best overall ranking. It 

is also a good choice of scheme when considering the number of ite calculations required to 

obtain the BDD. The dynamic top-down ordering (6) also produced good results for the 

number of ite calculations and was the best choice of scheme when considering the overall 

rankings for the number of distinct BDD nodes. The modified depth-first scheme (2) produced 

BDDs with the fewest distinct nodes for the most trees and is the only category in which the 

event criticality (8) and dynamic top-down orderings (6) were outperformed. In fact, the four 

schemes based on the depth-first approach provided the best results in this category, as they 

did when considering the non-reduced fault trees. 

The ordering schemes produced identical results for a significant number of the reduced 
trees. For the number of non-distinct and distinct BDD nodes, identical results were obtained 
for 90 trees whilst for the number of ite calculations, the total number of trees with identical 

results was 64. These figures are substantially higher than for the non-reduced trees and 

suggest that it is less critical to choose just one 'correct' scheme. This was also shown in the 

results for the number of distinct BDD nodes, where there is less difference between 'good' 

and 'bad' schemes. 

6.5 Conclusions 

The Faunet reduction technique has been shown to be an effective pre-processing tool for 

fault trees. BDDs constructed from a set of 228 reduced trees were compared against those 

obtained from non-reduced trees for three different measures of BDD complexity: the number 

of non-distinct BDD nodes, the number of distinct BDD nodes and the number of He 

calculations required to obtain the BDD. The results showed a significant decrease in each 

measure of BDD complexity for a large percentage of the trees tested. The performance of 

eight ordering schemes on the reduced trees was also assessed according to these 

measures and the results obtained suggest that the choice of ordering scheme becomes less 

critical when dealing with reduced trees. The use of the Faunet reduction technique is 

therefore recommended for application to fault trees before constructing BDDs. 
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Chapter 7: Quantitative Analysis of Binary Decision Diagrams 
Incorporating Modules and Complex Events 

7.1 Introduction 

The quantitative analysis of BDDs is an exact and efficient procedure, which determines 

many properties of the system under consideration. To date, the methods have only been 

applied to BDDs consisting entirely of basic events. However, the techniques of reduction and 

modularisation have been investigated as methods of optimising fault trees and so can result 
in BDDs encoding both complex and modular events. The current methods therefore need to 

be extended to consider these additional factors. 

In this chapter, the current procedures for performing the basic elements of quantitative 

analysis, such as calculating the system unavailability, the unconditional failure intensity and 

the criticality functions of the basic events, are explained. The methods are then extended to 

incorporate both complex events and modules into the analysis, so that BDDs obtained from 

reduced and modularised fault trees can be quantified. 

7.2 System Unavailability 

The ite structure encoded in the BDD is derived from Shannon's theorem, which can be used 

to express the structure function for the top event as: 

f(X) = Xi-fl (X1, X2,..., )4"lß 11 Xi+11..., Xn) 7.1 

-F XýJ&1i X2,... ß Xi-1,0, xI+1,... P Xn) 

where: x4 is the pivoting variable 

fý and f2 are Boolean functions with x; =1 and x; =0 respectively. 

If f(x) represents the root vertex of the BDD, encoding the event x,, then the equations for the 

next level in the BDD will be fi for the one branch and f2 for the zero branch. The probability of 

the top event (i. e. system unavailability) can be found by taking the expectation of each term 

of Equation 7.1, to give: 

E[f(x)] = q, (t). E[f1] + (1-q, (t)). E[f2] 7.2 

where q, (t) = E[x; ], the probability that event i occurs. 

Therefore the system unavailability can be calculated by summing the probabilities of the 
disjoint (mutually exclusive) paths through the unminimised BDD. The disjoint paths can be 
found by tracing all paths from the root vertex to terminal one vertices. Each disjoint path 
represents a combination of working and failed components that leads to system failure and 
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therefore events lying on both one and zero branches are included in the probability 
calculation. 

In order to implement the calculation procedure, Equation 7.2 can, in effect, be applied to 

each node in the BDD to get its 'probability value'. This only has a physical representation for 

the root vertex, as it is equivalent to the top event probability; for any other node in the BDD it 
is simply used as a means of calculation and has no physical significance. For any BDD 

node, F= ite(xi, J, K), the probability value is given by: 

P[F] = q, (t). P[J] + (1-q, (t)). P[K] 7.3 

where P[J] is the probability value of the node on the one branch of F 

P[K] is the probability value of the node on the zero branch of F 

Equation 7.3 is applied to the BDD in a bottom-up manner. Nodes that have terminal vertices 

on both their one and zero branches are considered first, as terminal one and zero vertices 

simply have probability values of one and zero respectively. The values are then worked up 

through the BDD until the top event probability can be evaluated. 

7.3 System Unconditional Failure Intensity 

The system unconditional failure intensity, w8y$(t), which is defined as the probability that the 

top event occurs at t per unit time, is given by: 

ways(t)_ Gi(q(t))"wi(t) 7.4 

where G, (q(t)) is the criticality function for each component 

w, (t) is the component unconditional failure intensity 

The criticality function is defined as the probability that the system is in a critical state with 

respect to component i and that the failure of component i would cause the system to go from 

a working to a failed state. Therefore: 

G1(q(t)) = Q(11 'q(t)) - Q(01' q(t)) 7.5 

where Q(1i, q(t)) is the probability of system failure with q, (t) =1 and Q(0;, q(t)) is the probability 

of system failure with q, (t) = 0. 

An efficient method of calculating the criticality function from the BDD1321 considers the 

probabilities of the path sections in the BDD up to and after the relevant nodes. For example, 
consider the variable xi, which occurs at two intermediate nodes in the BDD, as shown in 
Figure 7.1. 
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XI-I 

F 

A 

F3 

1 0, 0 

Figure 7.1: BDD section showing the locations of variable x, 

Q(11, q(t)) and Q(0;, q(t)) can be defined for this variable as: 

Q(11, q(t))= (pr 
l(q(t))"Poz, 

(q(t)))+Z(q(t)) 7.6 
n 

Q(6i, q(t))_ (Pr),, (q(t))"Poz, (q(t)))+Z(q(t)) 7.7 
n 

where: pr,,, (q(t)) - the probability of the path section from the root vertex to the node x, (set 

to one for the root vertex). 

pozl(q(t)) - the probability of the path section from the '1' branch of a node encoding 
x; to a terminal '1' node (or the probability value of the node beneath the 
'1' branch of x; ). 

pool (q(t)) - the probability of the path section from the '0' branch of a node encoding 
x; to a terminal '1' node (or the probability value of the node beneath the 
'0' branch of x; ). 

Z(q(t)) - the probability of paths from the root vertex to the terminal '1' node that 

do not go through a node encoding xi. 

n- all nodes encoding variable xr in the BDD. 

By substituting Equations 7.6 and 7.7 into Equation 7.5, the criticality function for each event 
can be expressed as: 

GI (q(t)) = prx, (q(t))[poX, (q(t)) - poo, (q(t))] 7.8 
n 

As this summation is over all the nodes encoding a particular event, the algorithm must 

calculate prx, (q), poX, (q) and poz, (q) for each node and record the values separately. For 

this reason, pr[F], po'[F] and po°[F] are referred to as the corresponding values calculated for 
the nodes, which are then used in the evaluation of Equation 7.8 according to the encoded 
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variable. Only when they have been found for each occurrence of the event in the BDD can 
the criticality function for that event be calculated. 

The values of pr[F], pol[F] and po°[F] (known collectively as the 'path probabilities') are 

calculated during one depth-first pass of the BDD, during which the structure beneath the one 

branch of any node is always fully explored before returning to consider the zero branch. 

Starting with the root vertex, values of pr[F] are assigned to each node as the branches are 

descended. Once the foot of a branch is reached, the procedure continues by working back 

up through the BDD calculating values of pol[F] and po°[F] for each of the nodes. 

The calculation of the system unavailability can be performed simultaneously, as po'[F] is 

equivalent to the probability value of the node beneath the one branch of F, and po°[F] is 

equivalent to the probability value of the node beneath its zero branch. Therefore at each 

stage of the calculation, both the path probabilities and the terms of Equation 7.3 are 

evaluated. The algorithm that encodes this calculation procedure is shown in Figure 7.2. 

prob_value(F) 
{ 

F= Ite(x;, J, K) 

Consider '1' branch: 

if (J = 1) then po'[F]=1 
else 
{ 

if (visited[J] = 1) then temp = pr[J] 
else temp =0 

pr[J] = gi. pr[F] 
pol[F] = prob value(J) 

pr[J] = pr[J] + temp 

Consider '0' branch: 

if (K = 0) then po°[F) =0 

else 
{ 

if (visited[K] = 1) then temp = pr[K] 
else temp =0 

pr[K] = (1-q, )"pr[F] 

po°[F] = prob-value(K) 
pr[K] = pr[K] + temp 

Calculate the probability value of the node: 

if (visited[F] = 0) then 
{ 

probability[F] = qi. po'[F) + (1-q, ). p0°[F] 
visited[F] =1 

} 
retum(probability[F]) 

Figure 7.2: Algorithm to calculate the system unavailability and node path probabilities 

The algorithm returns the probability value of the node under consideration, so the original 

calling function will receive the top event probability. The variable 'visited', which is used 
throughout the algorithm, is used to determine whether or not a node has previously been 

considered in the calculations. Due to sub-node sharing, a node may be reached by more 
than one path and its value of pr[F] needs to include the probabilities of all the possible path 
sections from the root vertex to that node. Therefore if a node has previously been visited and 
assigned a value of pr[F], this is held in a temporary variable, whilst the new value from the 
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current path is used to calculate the increase in the values of pr[F] for the nodes beneath. For 

example, consider the section of a BDD shown in Figure 7.3: 

Pra Prb 

F1 
X1 

F2 
X2 

Figure 7.3: A section of a BDD, reachable by two different paths 

If the probability of the path sections from the root vertex to node F1 is Pre by one route and 

Prb by a second route, then the total value of pr[Fl] is Pry, + Prb. However, the depth-first pass 

through the BDD would assign these values in two separate calculations. On the first visit to 

node F1, pr[F1] is evaluated as Pra. This is subsequently used to calculate the value pr[F2] 

(resulting in Pre. gi) and values of pr[F] for any other nodes beneath F1 in the BDD. When 

node F1 is visited for the second time, the probability of the paths sections by the second 

route, Prb, must be used to calculate the increase in the values of pr[F] for the nodes beneath. 

The initial values are kept in temporary variables, and on returning through the BDD the 

values from the two separate passes are added together to give the correct value of pr[F] for 

each of the nodes. For example, for node F2 the second pass assigns a value of Prbgl to 

pr[F2]. Adding the two values together results in a total of Q1. (Pr8 + Prb), which is equivalent to 

what would have been calculated had a single pass been made through the BDD using the 

total value for pr[Fl] of (Pre + Prb). However, although some nodes will be encountered more 

than once, it is still more efficient to carry out this depth-first calculation, rather than 

continually searching through the lie structure to find whether or not the nodes can be 

reached by alternative paths and then performing the calculations once the final values of 

pr[F] have been established. 

The values of po1[F] and po°[F] are stored for each node and the algorithm shown in Figure 

7.4 is used to calculate both the criticality functions for each of the basic events and the 

unconditional failure intensity of the system. 
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calc criticality 
{ 

set G; (q) =0 for each event. 
for (each node F= ite(Y4, J, K) in the BDD) 
{ 

G, (q) = G, (q) + Pr[F]. (Po'[F] - Po°[F]) 
} 

wSY� = 0.0 
for (each event, x4 in the system) 
{ 

ways = ways +G (q). wi 
} 

} 

Figure 7.4: Algorithm to calculate the event criticality functions and the system 

unconditional failure intensity 

The calculation procedure is demonstrated in the following section, by means of a worked 

example. 

7.4 Worked Example 

To demonstrate the calculation of the system unavailability and unconditional failure intensity, 

consider the BDD shown in Figure 7.5. 

F1 
X1 

F2 

X2 

F3 
F4 

1 
F5 

X4 10 

10 

Figure 7.5: Example Binary Decision Diagram 

There are three paths through the BDD that end with a node that has terminal vertices on 
both branches. These paths must be considered in turn. 
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1. The one branch of node Fl: 

Fl -F3-F5 

2. The zero branch of node F1, which splits into two sub-branches at node F2: 

Fl - F2 - with sub-branches (a) - F3 - F5 

(b) - F4 

One Branch: Fl - F3 - F5 

Starting at the root vertex F1, the value 1.0 is assigned to pr[F1]. Node F3 Is reached by 

descending the one branch of F1 and the current value of pr[F3] can then be calculated (this 

will not be the total value, as the node can be reached by another path): 

pr[F3] = pr[F1]. gl 

= q1 

The current value of pr[F5] can also be evaluated: 

pr[F5] = pr[F3]. (1-q3) [F5 lies on the zero branch of F3] 

= q, (I -q3) 

Having reached the foot of this BDD branch, the procedure continues by working back up 

through the BDD, calculating po'[F], po°[F] and probability values for the nodes. As the 

probabilities of the paths beneath branches leading directly to one and zero terminal vertices 

are one and zero respectively, the probability value of node F5 is simply q4. 

Node F3 has a terminal one vertex on its one branch (which therefore has a probability value 

of one) and the probability of the paths beneath its zero branch is equal to the probability 

value of the node beneath, i. e. node F5. Therefore the probability value of F3 Is calculated as: 

P[F3] = g3. po1[F3] + (1-g3). po°[F3] 

=q3+ (1-q3). P[F5] 

= q3 + (1 "43)44 

This value therefore becomes the probability of the paths beneath the one branch of node F1 

and concludes the calculations on this branch. 

Zero Branch: Fl - F2 - 

The probability of the paths from the root vertex to node F2 is given by: 

pr[F2] = pr[F1]. (1-qi) 

= 1-q1 
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There are two possible paths through the BDD from node F2, but as the one branch of any 

node is always explored before the zero branch, this is considered first. 

Sub-Branch (a): - F3 - F5 

Moving down the BDD to node F3, it is noted that it has already been visited, so 

current values of pr[F] of both F3 and F5 are temporarily stored whilst new ones are 

utilised. The additional probabilities arising from this path are now calculated: 

pr[F3] = pr[F2]. q2 

= (1-gl)42 
and, 

pr[F5] = pr[F3]. (1-q3) 

= g2(1-q1)(1-q3) 

These are then added to the previous values to give totals of: 

pr[F3] = qi + (1-q, )g2 

and, 

pr[F5] = (q1 + (1-gl)q2)"(1-q3) 

The path probabilities po'[F] and po°[F] and the probability values for these nodes are 
not re-evaluated, as they do not change. The probability of the paths below the one 
branch of F2 is therefore assigned the probability value of node F3 that has already 
been calculated. The second sub-branch of node F2 is considered before returning to 

node Fl. 

Sub-Branch (b): - F4 

Descending the zero branch of node F2 allows the calculation of the probability of the 

paths from the root vertex to node F4: 

pr[F4] = pr[F2]. (1-q2) 

= 

The probability value of node F4 is simply q3. This value is assigned to the probability 
of the paths beneath the zero branch of node F2 and the probability value of F2 can 
then be calculated as: 

P[F2] = Q2, pol[F2] + (1-g2). po°[F2] 

= q2(q3 + (1-g3)q4) + (1-g2)q3 

= q3 + 42g4(1 -q3) 
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Finally, the probability value of the root vertex is calculated, which gives the top event 

probability: 

Qsy. = P[F11 = gi. po'[F1] + (1-gi). po°[F1] 

= q, (q3 + (1-g3)q4) + (1-q, )"(g3 + g2q4(1-q3)) 

= q3 + g4(1-q3)"[qi + g2(1-q1)] 

The calculation results are summarised in columns 3 to 6 of Table 7.1. 

Node Variable 
Probability 

Pr Po' Poo Criticality 
value (P) 

F1 X1 q3 + g4(1-q3). 1 q3 + q3+ g4(1-q3)(1-q2) [q1+ g2(1-q1)I q40 -q3) g2q4(1-q3) 

F2 X2 q3+g2q4(1-q3) 1-q1 q3+ 
q40 -q3) 

q3 g4(1-q1)(1-q3) 

F3 X3 q3+g4(1-q3) qi+g2(1-q1) 1 q4 
(1-q4)" 

(qi+g2(1-ql)l 

F4 Xs q3 (1-g1)(1-q2) 1 0 (1-ql)(1-g2) 

F5 X4 q4 
(1-q3)" 

1 0 
(1-q3)" 

[ql+g2(1-qi)] [q_+g2(1-q_)] 

Table 7.1: Quantitative results for the BDD in Figure 7.5. 

The final column of Table 7.1 shows the criticality values that are calculated according to the 

algorithm in Figure 7.4. This gives the correct criticality functions for variables xj, x2 and x4 as 

they each appear only once in the BDD. However, as variable x3 is encoded in both nodes F3 

and F4, their criticality values must be added to give the total criticality function for x3: 

Gs = (1-g4)dql+g2(1-q1)] + (1-gl)(i-q2) 

=1- 44[41 + g2(1-q1)] 

The final stage of the analysis is to calculate the system unconditional failure intensity, which 
is given by: 

w$y$(t) = G1w1 + G2w2 + G3w3 + G4w4 

= wlg4(1-q3)(1-q2) + W2g4(1-q1)(1-q3) + w3(1-g4[qi + g2(1-ql)]) + w4(1-g3)"[ql+g2(1-q1)] 

The analysis so far has considered BDDs containing only basic events. in the following 

sections this is extended to incorporate both complex events and modules. 
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7.5 Incorporating Complex Events and Modules Into the Analysis 

The following sections describe the extension of the current quantification methods to 

consider BDDs encoding complex events and/or modular events. The aim of the analysis is to 

obtain not only the system unavailability and unconditional failure intensity, but to be able to 

extract the criticality functions for the basic events that contribute to the complex events and 

modules. This is essential, as although reduction and modularisation may be used to help 

construct the BDDs, it must be possible to analyse the system in terms of its original 

components. 

7.5.1 Syntax 

When modules are identified and extracted from a fault tree, the result is a set of subtrees, 

which together describe the original system. Each of these trees is converted to a BDD and 

the analysis is performed on the resulting set of BDDs. The BDD that represents the top 

event, and from which the top event probability can be calculated, is referred to as the 

`primary' BDD. The remaining BDDs encode the structure of the subtrees and are labelled 

according to the 'modular event' that replaces the subtree in the higher-level fault tree 

structure. 

7.5.2 Overview of the Calculation Procedure 

The calculation process starts at the root vertex of the primary BDD and proceeds down 

through the branches, calculating the probabilities of the paths from the root vertex to each of 
the nodes. The unavailability of each encoded event is required as it enables the calculation 

of pr[F] for the nodes beneath. Therefore, the probabilities of both the complex and modular 

events are necessary for the analysis. 

Values of po'[F] and po°[F] are calculated for the nodes on the way up through the primary 
BDD. If a node is encountered that encodes either a complex or modular event, then the 

complex event or module must be further analysed to assign appropriate values of pr[F], 

po'[F] and po°[F] to its component nodes. This allows the calculation of the criticality functions 

of the basic events with the complex events and modules. 

The criticality functions of basic events encoded within the primary BDD are calculated 

according to Equation 7.8 at the end of the analysis, once the path probabilities of the nodes 
have been evaluated. The criticality functions of all the basic events are then used together 

with their unconditional failure intensities to calculate the system unconditional failure 
intensity. 
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It is also possible to calculate w,, y$(t) by considering only the events encoded In the primary 
BDD. This would require both the criticality functions of any encoded modular and complex 

events and their unconditional failure intensities. Although these are relatively simple to 

calculatet331, they are values that have no further use in the analysis. Instead, the criticality 

functions of all basic events are calculated, which allows the analysis of the contributions to 

system failure through component or basic event importance measures. 

The techniques for calculating the complex and modular event probabilities and the criticality 
functions of their constituent basic events are described in the following sections. 

7.5.3 Unavailability of Complex and Modular Events 

The probabilities of the complex events are used during the depth-first pass of the BDD to 

calculate the values pr[F], po'[F] and po°[F] for other nodes in the BDD. 

The probabilities of the complex events are calculated as they are formed, which ensures the 

process is as efficient as possible. Determining their probabilities is a straightforward 

procedure, as they are only a combination of two component events. The calculation depends 

on whether the events were combined under an 'AND' gate or an 'OR' gate, so for a complex 

event Xc that has constituent events X, and X2, the unavailability is given by: 

'AND' Gate: q, = glq2 7.9 

'OR'Gate: g0=q, +q2-q, q2 7.10 

The probabilities of the modular events are not calculated before the quantitative analysis 

takes place, but are determined as and when required during the analysis (once a value has 

been calculated it is stored for later use). The calculation of the unavailability of a modular 

event is effectively that of finding the probability of the 'top event' of the module. A depth-first 

algorithm (similar to the one shown in Figure 7.2) is used, which sums the probabilities of the 

disjoint paths through the module's BDD. If another modular event, x,, is encoded within the 

module, the algorithm identifies its root vertex, M[x; ], and proceeds to call itself to calculate the 

required probability. Thus, the unavailability of modules encoding only basic and complex 

events will necessarily be evaluated first. The algorithm is shown in Figure 7.6. 
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module-prob(F) 

F= ite(x4, J, K) 

Consider '1' branch: 

if(J=1)thenpo1[F]=1 

else po'[F] = module-prob(J) 

Consider '0' branch: 

if (K = 0) then p6°[F] =0 
else po°[F] = module-prob(K) 

Calculate and return probability value of node: 

if (xi is a modular event whose probability is 

unknown) then qi = module-prob(M[xi]) 

probability[F] = qj"po'[F] + (1-qi)"p6°[F] 

return(probability[F]) 
} 

Figure 7.6: Algorithm for calculating the probability of a module 

The calculation procedures for evaluating the probabilities of the complex and modular events 

are therefore relatively straightforward. At this stage they could be used alone to determine 

the system unavailability by performing the depth-first calculations (as In the algorithm for 

analysing single BDD structures in Figure 7.2) on the primary BDD onlym1. The calculation of 

the basic events' criticality functions does however require further analysis. This is discussed 

in the following sections. 

7.5.4 Criticality of Basic Events Within Complex Events 

Once the path probabilities have been calculated for a node encoding a complex event, that 

complex event must be further analysed by assigning appropriate values of pr,, (q), pox, (q) 

and pozl (q) to its component events. These are required so that the criticality functions of the 

basic events can be evaluated. Consider a node encoding the complex event X, as shown in 

Figure 7.7. 
Prc 

Pic PO 

Figure 7.7: A complex event node within a BDD 
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The two events that combine to form this complex event are joined either by an 'AND' gate or 

an 'OR' gate, which gives the possible Ito structures and corresponding BDDs as shown in 

Figure 7.8. 

'AND': XC= Xi. X2 
Xc = ite(X1, ite(X2,1,0), 0) 

'OR': XC=X1+X2 
Xý = ite(X1,1, ite(X2,1,0)) 

Figure 7.8: The possible BDD structures of a complex event 

The complex event node effectively replaces one of these structures in the original BDD 

(either the primary BDD or the BDD of a module). In order to evaluate the path probabilities of 

the nodes encoding these component events, the terminal one vertices are simply replaced 

with the probability of the paths below the one branch of the complex event node and the 

terminal zero vertices are replaced with the probability of the paths below the zero branch of 

the complex event node. The probability of the paths preceding the root vertex does not have 

the usual value of one, but takes the value of pr[F] of the complex event node (prc). This is 

shown in Figure 7.9. 

Pro 

x, 

xz PO° 

Poc Pop. 

prc 

X1 

Poc x2 

Poö Pop. 

(a) X, = X, . X2 (b) X, = Xi + X2 

Figure 7.9: The complex event structure 

Using Figure 7.9, the values of pr,, (q), poX, (q) and poz, (q) can be calculated for the 

variables X, and X2. The resulting expressions are shown in Equations 7.11 - 7.22. 
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'AND' gate: 'OR' gate: 

XI: prl =prc 7.11 XI: pr1 =prc 7.17 

Poi =g2"Poc +(1-g2)"PoC 7.12 poi =poi 7.18 

poI = Poo 7.13 po° = g2. poc + (1- q2) -POO 7.19 

X2: pr2 =prc. gl 7.14 X2: pr2 =pr . (1-q1) 7.20 

POI t= poc 7.15 pot = Poe 7.21 

pot = poc 7.16 pot = poc 7.22 

As the events X, and X2 may be either basic events or other complex events, this process is 

repeated until values have been calculated for all contributing basic events. The criticality 

functions of the basic events are then calculated according to Equation 7.8. The algorithm 

implementing this method is shown in Figure 7.10. 

complex calc(xc) 
{ 

xý=Xi <OP> X2 

Calculate probabilities: 

pr[xi] = pr[xc] 
po'[x2] = Po'[Xcl 
po°[x2] = po°[xc] 

if (<op> = 'AND') 
{ 

pol [xi] = g2. po'[xc] + (1-g2). Po°[Xc] 
po°[xi] = P0°[Xc] 
Pr[x2] = Pr[x1. gi 

} 

if (<op> ='OR') 
{ 

po'[xi] = Po'[xc] 
Po°[x, } = g2. Po1 [xc] + (1-g2)"Po°[xxl 

Pr[x2] = Pr[x ]"(1-qi) 
} 

If contributing events are basic, then calculate criticality, 
otherwise call function again: 

if (xi is a basic event) then G1 = G1 + pr[xi]. (po'[xi] - po°[xi]) 

else complex_calc(xi) 

if (x2 is a basic event) then G2 = G2 + pr[x2]. (po'[x2] - po°[x2]) 
else complex calc(x2) 

Figure 7.10: Algorithm for the calculation of the criticality functions of basic events within 

complex events 

7.5.4.1 Repeated Complex Events 

Any complex event can appear more than once in the BDD, resulting in new values of pry(q), 

poX, (q) and poXi(q) being calculated for its component events on each occasion. The 

criticality function for each of the contributing basic events must therefore be calculated in 

stages, using the newly assigned values each time. Once this additional criticality value has 
been calculated for each of the contributing basic events, it is added to the current value so 
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that it is calculated as the analysis proceeds, rather than as a separate procedure at the end 
of the analysis as is the case for the basic events in the primary BDD. 

7.5.5 Criticality of Basic Events Within Modules 

Modular events are dealt with in a similar way to complex events. Once the path probabilities 

of the modular event node are known, the module is further analysed to determine the path 

probabilities of its component nodes. These probabilities must be assigned as they would 
have been, had the module not been replaced by the single modular event. In order to do this, 

the values of po'[F] and po°[F] of the modular event node replace any terminal one and zero 

vertices within the module, and the probability of the paths preceding the root vertex of the 

module is assigned the value of pr[F] of the modular event node. This is shown in Figure 7.11. 

prm 

Module X_- 

Prm 

+ 

Pom Pom PC 

Figure 7.11: Replacing a modular event with the entire module structure 

o0 m 

Unlike complex events, the structure of modules is not fixed. They can contain any number of 

events (basic, complex, or indeed other modular events), connected by any number of gates. 
Therefore, the path probabilities are assigned to the nodes by means of a depth-first process, 

which is capable of dealing with any BDD structure. The method is very similar to that used 
for analysing a single BDD, the algorithm for which is shown in Figure 7.2. The difference is 

that whenever a terminal node is encountered, the probability of the paths below either the 

one or the zero branch of the modular event node is used, rather than the terminal vertex 

probability values of one and zero. Obviously, pr[F] of the root vertex will also be set to equal 
the probability of the paths preceding the modular event node. 

As with complex events, the calculations required to obtain the path probabilities for the 
nodes within the module must be repeated for each occurrence of the modular event in the 
BDD. These values are used to calculate the additional contributions to the criticality functions 

of the basic events that arise due to the further occurrences of the modular event. 

128 

Pom Pom 



7.6 The Algorithm for Incorporating Complex Events and Modules Into the Analysis 

The analysis of the primary BDD is conducted in a similar manner to the analysis of single 
BDD structures, except for the processes instigated when a modular or complex event Is 

encountered. As the probabilities of complex events are calculated as they are formed, they 

are treated as basic events when descending the BDD. However, once the path probabilities 
have been evaluated for a complex event node, the algorithm 'complex_calc' (Figure 7.10) is 

used to calculate the criticality functions of its constituent basic events. 

If a modular event is encountered when descending the BDD, the algorithm 'module rob' (as 

shown in Figure 7.6) is called to calculate the probability of the modular event if it has not 

already been evaluated. When ascending the BDD, a depth-first algorithm is used to calculate 

the criticality functions of the basic events that contribute to the module. 

As the process for determining the path probabilities of the nodes within a module is so 

similar to the procedure used for dealing with the primary BDD, a separate algorithm is not 

needed. The existing method is simply extended to include both options. The resulting 

algorithm is shown in Figure 7.12 and deals with the primary BDD or any of its modules, 

depending upon how the parameters are set. It requires three initial variables, which are set 

each time the function is called: F, subtree and m_node. These are described below: 

F: The node currently being considered. 

subtree: The variable that determines whether the node belongs to a module or the 

primary BDD - set to'l' if it occurs in the BDD of a module, '0' otherwise. 

m_node: If node F belongs to a module, m_node is the modular event that has 

replaced that module structure in the higher-level BDD. 

Further variables that are used within the algorithm are: 

visited[F]: Determines whether or not node F has previously been considered in the 
calculations - set to '1' if it has been considered, '0' otherwise. 

M(x; ): The root node of the module replaced by the modular event x,. 

If 'subtree' is set to zero, the algorithm performs calculations on the primary BDD, resulting in 

the calculation of the top event probability and values of pr[F], po'[F] and po°[F] for each of its 

nodes. 

If 'subtree' is set to one, the calculations will determine pr[F], po'[F] and p6°[F] for nodes in 

the module and upon exiting the module, the algorithm evaluates the criticality functions for 

each of its basic events. 
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When the algorithm is initialised, the node to be considered is set as the root vertex of the 

primary BDD and the variable 'subtree' is set to zero. The algorithm then performs all the 

necessary calculations and returns the top event probability. 

'\ 

caic_prob(F, subtree, m_node) 
{ 

F= ite(xi, J, K) 

if (x4 is a modular event whose probability is 

unknown), then qi = module-prob(M[xi]) 

Consider '1' branch: 
if (J = 1) then 

if (subtree = 0) then po'[F] =1 
else po'[F] = po'[m_node] 

else 
{ 

if (visited[J] = 1) then temp = pr[J] 

else temp =0 

pr[J] = g1. pr[F] 
pol [F] = calc_prob(J, subtree, m_node) 
pr[J] = pr[J] + temp 

} 

Consider '0' branch: 

if (K = 0) then 
if (subtree = 0) then po°[F] =0 
else p6°[F] = po°[m_node] 

else 
{ 

if (visited[K] = 1) then temp = pr[K] 
else temp =0 

pr[K] = (1-q, )"pr[F] 

po°[F] = calc-prob(K, subtree, m_node) 
pr[K] = pr[K] + temp 

} 

Figure 7.12: The algorithm for the quantitative analysis of BDDs encoding modular and 

complex events 

7.7 Worked Example of the Calculation Procedure 

Calculate the probability value of the node: 

if (visited[F] = 0) then 
{ 

probability[F] = qi. po'[F] + (1-q, ). po°[F] 
visited[F] =1 

} 

If Yq is a complex or modular event, calculate the 

additional criticality of its component basic events: 

if(x, is a modular event) 
{ 

Calculate pr and po values for events within the 

module; the root node of the module is M[x]. 

set pr[M[x; ]] = pr[F] 
set subtree =1 
calc_prob(M[xi], subtree, F) 

for(aII basic event nodes in the module) 
{ 
G[event] =G[event] +pr[node]. (po'[node] - 

po°[node]) 

} 
} 
else if (xi is a complex event) 
{ 

complex calc[xi] 
} 

retum(probability[F]) 

The method of dealing with BDDs encoding complex and modular events is demonstrated 

with the following example. Consider the BDDs shown in Figure 7.13, where (a) shows the 

'primary' BDD for the fault tree containing the top event, and (b) and (c) show the BDDs for 

4 modules M1 and M2 contained within the primary BDD. Note that each node in the set of 
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BDDs is labelled uniquely, for ease of identification. The data for the complex events, which 

shows their constituent events and the gate type under which they were combined, is given in 

Table 7.2. 

Fl F6 F9 

(a) - Primary BDD (b) - Ml (c) - M2 

Figure 7.13: Example BDD set 

Complex 
event 

Gate 
value 

Event 1 Event 2 

2000 OR g k 

2001 OR 2000 j 

2002 AND i h 

2003 AND 1 2001 

Table 7.2: Complex event data 

The basic event data (unavailability, q;, and unconditional failure intensity, w,, of each event) 

are shown in Table 7.3. The probabilities of the complex events are calculated as they are 
formed, according to Equations 7.9 and 7.10 and are also shown in Table 7.3. The 

unconditional failure intensities of the complex events are not required for the analysis. 

Event a b c d e f g h 

q; 0.008 0.005 0.008 0.006 0.007 0.010 0.003 0.002 

w, (h(1) 3.92x10'6 2.88x10'6 1.94x10'5 9.90x10"7 4.67x10'5 7.23x10'6 1.10x10'5 8.30x10'7 

Event i j k 1 2000 2001 2002 2003 

q, 0.004 0.009 0.005 0.015 7.985x10'3 1.691 x10'2 8.000x10'6 2.537x10'4 
wi (h(l) 1.65x10'5 4.20x10'5 5.58x10'7 2.15x10'8 - - - - 

Table 7.3: Event data for the BDDs shown in Figure 7.13 
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There are two paths through the primary BDD that end with a node that has terminal vertices 

on both branches; the first starts with node F1 and includes the nodes on its one branch (F2 

and F4), the second path also begins at node F1, but comprises of the nodes on the zero 
branch (F3 and F5). The analysis is therefore considered in four stages - descending the one 
branch of F1, ascending the one branch, descending the zero branch of F1 and finally 

ascending the zero branch. 

Descending the One Branch of Fl 

The process begins at the root vertex F1 with the value 1.0 assigned to pr[F1]. No further 

calculations can be undertaken until the unavailability of the encoded modular event, M1, is 

known. Therefore the procedure for calculating the probability of a module is implemented. 

Unavailability of M1: 

Evaluating the unavailability of the module M1 simply requires the summation of the 

probabilities of the disjoint paths through its BDD (Figure 7.13(b)). The algorithm 
shown in Figure 7.6 performs this procedure efficiently. 

The disjoint paths through the BDD are: 

1. c. d 

2. c. d. e 

Therefore the unavailability of the module is given by: 

4M1= 4o. gd + qo. (1 - gd)"qa 

= 1.037x10'4 

Having calculated the module's probability, the calculations in the primary BDD can 

continue. 

Descending the one branch of node F1 in the primary BDD leads to node F2. The probability 

of the paths from the root vertex to this node is calculated as follows: 

pr[F2] = gMl"Pr[Fl] 

= 1.037x10-4 

Node F2 also encodes a modular event whose probability is unknown. This must be 

calculated before moving down the BDD branches. 
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Unavailability of M2: 

The unavailability of module M2 is calculated in the same manner as M1, so is 

considered independently of the primary BDD. Although it contains complex events, it 

is treated in exactly the same way at this stage, as their probabilities have already 
been calculated. The disjoint paths through the BDD are: 

1.2003 

2.2003. f. 2002 

Therefore the unavailability of the module is given by: 

qM1 = q2003 +0- g2003)ql. q2OO2 

= 2.538x104 

The calculations in the primary BDD can now continue. 

Having calculated the unavailability of the modular event M2, the nodes on the branches of 

node F2 can now be examined. As the one branch is a terminal one vertex it needs no further 

consideration, except to set po'[F2] equal to 1.0. The node F4 lies on the zero branch, so is 

considered next. 

The probability of the paths from the root vertex to node F4 is calculated as follows: 

pr[F4] = Pr[F2]. (1-qM2) 

= 1.036x10.4 

Both the one and zero branches of F4 lead to terminal nodes, therefore po'[F4] and po°[F4] 

are set to 1.0 and 0.0 respectively and the process of moving back up through the BDD starts. 

Ascending the One Branch of Fl 

The probability values of the nodes are calculated on the way back up through the BDD 

branches. Also, any nodes encoding complex or modular events are explored so that the 

criticality functions of their constituent basic events can be calculated. 

The node currently being considered is F4, whose probability value is simply the unavailability 
of the node variable 'b', which is equal to 0.005. This value also becomes the probability of 
the paths below the zero branch of node F2, po°[F2]. 

As node F2 encodes the modular event M2, and the path probabilities for this node have all 
been calculated, the module must be explored and probability values assigned to its nodes. 
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Assigning Values to the Nodes Within Module M2 

The nodes within the module's BDD are assigned probabilities as they would have 

been, had the module not been replaced in the higher-level BDD structure by the 

single modular event. Therefore pr[F9] is given the value of pr[F2] (i. e. 1.037x10-4), as 
detailed earlier. The probabilities of the paths below branches that lead to terminal 

one and zero vertices are assigned the values po'[F2] (i. e. 1.0) and po°[F2] (i. e. 
0.005) respectively. 

The calculations are summarised in Table 7.4. 

Node Event Pr Pol Poo Probability value 

q2003 + po°[F9]. (1-g2003) 
F9 2003 1.037x10 1.0 5.000x10'3 

= 5.253x10'3 

F10 f pr[F9]. (1-g2003) 3 5 008x10' 005 0 po'[F10]. gt + po°[F10]. (1-q, ) 

I 
4 = 1.036x1 0' I . . 3 = 5.000x1 0' 

- 
F1 1 2002 pr[F10]. gf 1 0 005 0 q2002 + p6°[F11 ]. (1-g2002) 

=1.036x10'8 . . = 5.008x10'3 

Table 7.4: Assigning values to the nodes of module M2 

The criticality functions of the basic events within this module are also evaluated. For 

event T, the values of node F10 are used, giving: 

Gf = 1.036x10'4. (5.008x10,3 - 0.005) 

= 8.250x10»10 

In order to calculate the criticality functions of the basic events that form the complex 

events 2002 and 2003 (which has further complex events 2000 and 2001 as 

components), Equations 7.11-7.22 are used to evaluate prx, (q), poX, (q) and pool (q) 

for each basic event. The results of applying these equations, together with the 

calculated criticality values are shown in Table 7.5. 
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Complex Gate Component pr pol p6° Criticality 

event type event of the component event 

X =i 
Pr2002 = gh. Po'2002 + (1-qn)" P0°2002 = 9 2 062x10 , 1.036x10 e P0°2002 = 6.990x103 0.005 . 

2002 AND 

X2 =h 
Pr2002. gi -- 

4 146 10'9 P012002 = 1.0 P0°2°°2 - 
0 005 

4.125x10'9 
. x . 

X1=1 Pr2003 = 
g2001-13012003 + 

(1-g2001)" Po zoos 
130°2003 = 

3 
6 1.745x10 

-4 1.037x10 .2 5.000x10' 
2003 AND = 2.183x10 

X2 = 2001 
Pre 3"qi - 

1.555x10 s o'2oos =1 .0 P 
PO°2003 = 

5.000x10'3 - 

qj. P&2001 + 
X1 = 2000 Pr2001 _ 

.6 P012001 = 1.0 (1-g1). po°2001 - 
2001 OR 

1.555x10 
=1.396x10-2 

X2 =i 
Pr2®1. (1-g2000) 

=1.543x10-8 
I Po 2001 = 1.0 P0°2001 = 

5.000x10.3 
6 1.535x10 

X' =g 
Pr2OOO _ 

1 555x10-6 PO 2000 =1.0 
qk-Po12000 + 

(1-gk). 130°2oo° 1.526x10.6 
2000 OR . =1.889x10-2 

X2 =k 
Pr2ooo. (1-gg)ý 

=1.550x10 
Po'2oo° = 1.0 

P002000 =2 
1.396x10 

1.526x10'6 

Table 7.5: Calculation of the criticality of basic events within complex events 2002 and 2003 

Having calculated the current criticality values of the basic events within module M2, 

the calculation process continues in the primary BDD. 

The probability value of node F2 is now calculated. This also gives the probability below the 

one branch of the root vertex, Fl: 

po'[F1] = P[F2] = gM2. po'[F2] + (1-gM2). po°[F2] 

= 5.253x1 o'3 

This concludes the second stage of the analysis - the current calculated values are shown in 

Table 7.6. 
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M2: 

Node Event 
One Zero 

Pr Po' Poo 
Probability 

branch branch value 

F1 M1 F2 F3 1.0 5.253x10,3 

[Fi Pr 
po'. gm2 + 
° F2 M2 1 F4 

l0ß 1 
1.0 0.005 po . (1-qM2) _ 

x 1 . 037x 
5.253x10,3 

F3 a F5 0 

pr[F2]. (1-qM2) 
R b 1 0 

=1.036x10 
1.0 0.0 qb = 0.005 

F5 M2 1 0 

F9 2003 1 F10 1.037x10.4 1.0 5.000x10-3 5.253x10-3 

F10 f F11 0 1.036x10-4 5.008x10-3 0.005 5.000x10.3 

F11 2002 1 0 1.036x10'6 1.0 0.005 5.008x10.3 

Table 7.6: Current calculated values for the primary BDD and module M2 

Descending the Zero Branch of Fl 

As the probabilities of both modular events have been determined, the calculations required 
for descending this branch of the BDD are straightforward. They simply involve calculating the 

probability of the path sections from the root vertex to nodes F3 and F5. 

pr[F3] = pr[F1 ]. (1-qml) 

= 9.999x10.1 

and, 
pr[F5] = pr[F3]. ga 

= 7.999x10'3 

The probabilities below the one and zero branches of node F5 can be set to 1.0 and 0.0 

respectively as they lead to terminal one and zero vertices. The final stage of the analysis 

now begins. 

Ascending the Zero Branch of Fl 

As node F5 encodes the second occurrence of the modular event M2, additional criticality 
values must be calculated for the basic events within the module. 

Assigning Values to the Events Within Module M2 - Second Occurrence 

The probability preceding node F9 is set to the value of pr[F5] (7.999x10'3) and the 
probabilities of the paths below branches that lead to terminal one and zero vertices 
are assigned the values po'[F5] and po°[F5] respectively (simply 1.0 and 0.0). 
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The calculations are repeated with these new values for all nodes within M2, 

overwriting the previous results. The summarised calculations are shown in Table 7.7. 

Node Event Pr Po' Poo Probability value 

F9 2003 7.999x10-3 1.0 8.000x10.8 q2003+po°(1-q2 ) 

= 2.538x10-4 

F10 f pr[F9]. (1-q20) 
000X10 e 8 0 0 po1. q, +po°"(1-qß) 

= 7.997x10.3 . . = 8.000X10-8 

F11 2002 pr[f10]. 
1 = 7.997x10-5 

1.0 0.0 gzooz = 8.000x10 e 

Table 7.7: Assigning values to the nodes of module M2 

Additional criticality values of the basic events within the module are now evaluated. 
For event T, the values of node F10 are used, giving: 

Gf = 7.997x1 0,3. (8.000x10"6 - 0.0) 

= 6.398x10.8 

As for the previous occurrence of M2, Equations 7.11 - 7.22 are used to obtain values 

of pr,, (q), pol, (q) and poop (q) for the basic events. The results of the calculations 

are shown in Table 7.8. 

Complex Gate Component pr pol p6° Criticality 

event type event of the component event 

2002 AND 
X, =i 7.997x10'5 2.000x10'3 0.0 1.599x10'' 

X2 =h 3.199x10' 1.0 0.0 3.199x10'7 

2003 AND 
X1 =I 7.999x103 1.691x10'2 8.000x10'8 1.353x10'4 

X2 = 2001 1.200x10'4 1.0 8.000x10.8 - 

2001 OR 
X1= 2000 1.200x10'4 1.0 9.000X10'3 

X2 =j 1.190x10'4 1.0 8.000x10'8 1.190x10-4 

2000 OR 
X1 =9 1.200x10' 1.0 1.396x10"2 1.183x10'4 

X2 =k 1.196x104 1.0 9.000x10'3 1.186x10'4 

Table 7.8: Calculation of the criticality of basic events within complex events 2002 

and 2003 

The new values of the events' criticality functions are added to the values calculated 
previously, to give their total criticality functions. 
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The probability value of node F5 is given by the unavailability of the encoded modular event, 

M2, which was previously calculated to be 2.538x10"4. This also determines the value of 

po'[F3]. The probability value of F3 can therefore be computed, which in turn gives the 

probability of the paths below the zero branch of the root vertex: 

po°(F1] = P[F3] = ga. po1[F3] + (1-ga). po°[F3] 

= 2.030x10-6 

As node F1 encodes a modular event, its component basic events are considered before its 

probability value (and so the probability of the top event) is calculated. 

Assigning Values to the Events Within Module M1 

The probability preceding the root vertex, F6 is assigned the value of pr[F1] (1.0) and 
the probabilities of paths below branches that lead to terminal one and zero vertices 

are assigned the values po'[F1] (5.253x10,3) and po°[F1] (2.030x10-6) respectively. 

The calculations to determine the remaining path probabilities and criticality functions 

for the basic events are straightforward, as all the nodes encode basic events. The 

calculations are summarised in Table 7.9. 

Node Event Pr Po' Poo Probability value Criticality 

F6 c 1.0 7.007x10'5 2.030x10"6 
'. g0 + po°. (18qß) po2 
= . 575x10' 

6.804x10"8 

F7 d pr[F6]. gc = 5 253x10'3 878x10'5 3 
po'. gd + po°. (1-qd) 

4.171 x10'5 8.000x10"3 . . = 7.007x10"5 

F8 e 
pr[f7]. (1-qa) 

253x1 0"3 5 e 030x1 0' 2 po'"q. + po°. (1-q. ) 
4.175x1 0'5 

= 7.952x10'3 . . = 3.878x1 0"S 

Table 7.9: Assigning values to the nodes of module M1 

Once the criticality functions have been evaluated, the final calculations in the primary 
BDD can be performed. 

The top event probability, which is given by the probability value of the root vertex F1, is 

calculated as follows: 

Q8ys= P[F1] = gMi. po'[F1] + (1-gMl). po°[F1] 

= 2.575x10'8 

All the calculations are summarised in Table 7.10. There are two sets of values for the 

module M2, as it has two occurrences in the primary BDD. 
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Ml: 

M2: 

Node Event 
One Zero 

Pr Po' Po° 
Probability 

branch branch value 

po1. gM, + 
F1 M1 F2 F3 1.0 5.253x10.3 2.030x10'8 po°. (1-qM, ) 

= 2.575x10.6 

po'. q, 2 + 
F2 M2 1 F4 pr[F1 ]. qMl 

4 ' 
1.0 0.005 po°. (1-qr,,, 2) =1.037x10 = 5.253x10"3 

po'"q. + 
F3 a F5 0 pr[F1]. (1-qMl) 

2.538x10'4 0.0 po°. (1-qa) 
= 9.999x10' 

= 2.030x10'8 

F4 b 1 0 pr[F2]. (1-qm2) 
.4 

1.0 0.0 qb = 0.005 
=1.036x10 

F5 M2 1 0 pr[F3]. ge = 1 0 0.0 2.538x10.4 
7.999x10.3 . 

F6 c F7 0 1.0 7.007x10'5 2.030x10'6 2.575x10$ 

F7 d 1 F8 8.000x10"3 5.253x10.3 3.878x10'5 7.007x10'5 

F8 e 1 0 7.952x10.3 5.253x10"3 2.030x10'6 3.878x10.5 

1.037x10'` 1.0 5.000x10'3 5.253x10.3 
F9 2003 1 F10 

7.999x10'3 1.0 8.000x10'8 2.538x10"4 

1.036x10'` 5.008x10-3 0.005 5.000x10.3 
F10 f F11 0 

7.997x10'3 8.000x10,8 0.0 8.000x10'8 

1.036x10.6 1.0 0.005 5.008x10.3 
F11 2002 1 0 

7.997x10'5 1.0 0.0 8.000x10'6 

Table 7.10: Final calculated probabilities for the primary BDD and its modules 

The criticality functions of the basic events within the primary BDD are now calculated 

according to Equation 7.8: 

Ga = 0.9999. (2.538x10 - 0.0) 

= 2.538x10'` 

Gb = 1.036x10'4. (1.0 - 0.0) 

= 1.036x10'` 

Table 7.11 shows the criticality functions for all the basic events. 

Event a b c d e f 

Criticality 2.538x10"4 1.036x10'4 6.804x10'5 4.171x10'5 4.175x1c15 6.480x10'8 

Event g h I j k I 
Criticality 1.198x104 3.240x10-7 1.620x10-7 1.206x10"4 1.201x10' 1.370x10-4 

Table 7.11: The criticality functions of the basic events 
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The system unconditional failure intensity can be found from Equation 7.4: 

W sys (t) _ Gi (q(t))"wt (t) 

=1.135x10"8 hr"' 

This concludes the quantitative analysis of the BDD. If required, the methods could be 

developed to obtain further basic event importance measures, such as those detailed in 

Chapter 2. The criticality functions are needed for many of these and are a major element 

required to evaluate the criticality measure of component importance. 

7.8 Conclusions 

In this chapter the quantitative analysis has been developed for BDDs that encode modular 

and/or complex events. It has been shown how the analysis proceeds to enable the 

calculation of the top event probability and the system unconditional failure intensity. In 

addition, a technique for extracting the criticality functions of the basic events, which are 

constituents of both complex events and modules, has been developed. This enables the 

system to be assessed in terms of its original components and allows analysis of the 

contributions to system failure through basic event importance measures. 
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Chapter 8: A Fault Tree Analysis Strategy Using 

Binary Decision Diagrams 

8.1 Introduction 

The BDD technique for Fault Tree Analysis provides a more accurate and efficient means of 

system assessment than the conventional approach of Kinetic Tree Theory. However, there is 

currently no method of selecting an appropriate ordering scheme that can be used to 

guarantee the successful construction of a BDD for all fault trees. As such, emphasis in the 

research has turned to applying alternative techniques that increase the likelihood of 

obtaining a BDD for any given fault tree structure, by ensuring that the associated calculations 

are as efficient as possible. This chapter introduces an analysis strategy for fault trees, which 

aims to implement this requirement by providing a structured framework for the BDD 

construction process, so that the BDD method can be used successfully for any given system. 

The initial stage of the analysis strategy applies two pre-processing techniques to the fault 

tree: reduction and modularisation. The reduction technique optimises the fault tree structure, 

whilst modularisation identifies modules that can be analysed independently of the rest of the 

tree. This results in a set of concisely written subtrees, which are logically equivalent to the 

original fault tree structure. BDDs are constructed for each, using a variable ordering 
determined by one of eight ordering schemes. Quantitative analysis is then performed 

simultaneously on the resulting set of BDDs to obtain the top event probability, the system 

unconditional failure intensity and the criticality functions of the basic events. 

The stages of the analysis strategy are detailed in the following sections and demonstrated 

throughout with the use of an example fault tree. The program written to implement the 
technique is also discussed and results are given at the end of the chapter for its application 
to a set of fault trees. 

8.2 Pre-Processing of the Fault Tree 

The aim of applying the pre-processing techniques is to obtain the smallest possible fault 

trees, so that the process of constructing the BDDs becomes as simple and efficient as 
possible. Two simplification procedures are used. The first of these is Faunet reduction, a 
technique that restructures the tree to a more concise format. This is followed by linear-time 

modularisation, which identifies modules existing within the tree that can be analysed 
separately. The result is a set of simple, independent fault tree structures that together 
describe the original system. 
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8.2.1 Faunet Reduction 

Faunet reduction is a technique that is used to reduce the complexity of fault trees, so 

eliminating any'noise' from the system, without altering the underlying logic. Its effectiveness 

was demonstrated in Chapter 6, where its application to a large set of fault trees significantly 

reduced the complexity of the resulting BDDs. 

The fault tree shown in Figure 8.1 is used to demonstrate the analysis strategy. 

- Figure 8.1: Example fault tree 

The fault tree is represented by a data file throughout the program and it is this that is 

manipulated, rather than the actual fault tree structure. As details of the data manipulation for 

the Faunet reduction technique were discussed in depth in Chapter 6, only the effect of 

applying the technique will be considered here and the data file for the fault tree will be 
introduced in the following section. 

The basic event data for the fault tree is shown in Table 8.1 and is read into the program at 
the same time as the data file containing the fault tree structure. 



Event a b c d e f 

q; 0.003 0.0045 0.008 0.01 0.0035 0.0025 

A 1.94x10-4 9.90x10-7 2.15x10"6 1.37x10"5 3.92x10'6 8.50x10-7 

Event g h i i k m 
q; 0.015 0.012 0.009 0.004 0.007 0.015 

w; 2.44x10-6 6.40x10' 2.27x10-6 3.92x10.6 6.22x10'5 8.76x10,8 

Event n p q r s 

q; 0.005 0.008 0.0065 0.012 0.006 

w; 4.86x10'6 1.12x10'4 9.90x10'7 3.53x10'5 7.86x10'6 

Table 8.1: Basic event data for the fault tree in Figure 8.1 

Upon application of the Faunet reduction technique to the tree in Figure 8.1, a significantly 

smaller fault tree is obtained, as shown in Figure 8.2. The corresponding fault tree data is 

shown in Table 8.2. The fault tree data lists each gate that appears in the tree, together with 
its type, the number of inputs (gates and events are numbered separately) and the inputs 

themselves. This forms a complete description of the fault tree structure. 

Figure 8.2: The resulting fault tree after the application of Faunet reduction 
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Gate 

name 

Gate 
type 

Number 

of gates 

Number 
of events 

Inputs 

Top AND 3 1 G2 G3 G4 2006 

G2 OR 2 1 G6 G7 a 
G3 OR 1 1 G9 2003 

G4 OR 0 2 cd 

G6 AND 1 1 G12 e 
G7 AND 0 2 af 
G9 AND 0 2 di 

G12 OR 1 1 G15 m 
G15 AND 0 2 2002 e 

Table 8.2: The fault tree data for the tree shown in Figure 8.2 

The complex event data are shown in Table 8.3. The probabilities of the complex events, 

which are required for the quantification process and are calculated as the complex events 

are formed, are also shown in Table 8.3. 

Complex 

event 
Gate 
type 

Event 1 Event 2 Unavailability 

2000 AND g h 1.800x10-4 

2001 OR p q 1.445x102 

2002 OR r s 1.793x10,2 

2003 OR 2000 b 4.679x10'3 

2004 OR j 2001 1.839x10.2 

2005 AND 2004 k 1.287x10-4 

2006 OR 2005 n 5.128x1073 

Table 8.3: The complex event data after Faunet reduction 

Having reduced the fault tree to a more concise form, the second simplification technique of 
modularisation is now considered. 

8.2.2 Modularisation 

The linear-time algorithm, introduced in Chapter 2, is an efficient method of modularisation, 
which is capable of identifying the fault tree modules after only two depth-first traversals of the 
tree. The advantage of identifying such modules is that each one can be analysed 
independently of the rest of the tree, and the results substituted into the higher-level fault 
trees where the modules occur. 
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The modularisation technique is applied to the tree in Figure 8.2, identifying the gates that 
head modules as: 

Top, G2 and G6 

The occurrences of these subtrees are replaced in the fault tree structures by single modular 
events, which are named in the same way as complex events (i. e. they take on the next 

available value above 2000): 

Top - 2007, G2 - 2008, G6 - 2009 

In the program, this is achieved by replacing each occurrence of these gates in the list of 
inputs to other gates by the appropriate modular event. This is shown in Table 8.4, where the 
fault tree data now essentially incorporates three separate fault trees. The corresponding 

module structures are shown in Figure 8.3. 

Gate 
name 

Module 
name 

Gate 
type 

Number 
of gates 

Number 
of events 

inputs 

Top 2007 AND 2 2 G3 G4 2008 2006 
G2 2008 OR 1 2 G7 2009 a 
G3 - OR 1 1 G9 2003 

G4 - OR 0 2 cd 
G6 2009 AND 1 1 G12 e 
G7 - AND 0 2 af 
G9 - AND 0 2 di 

G12 - OR 1 1 G15 m 
G15 - AND 0 2 2002 e 

Table 8.4: The fault tree data after modularisation 

(b) Module 2008 (c) Module 2009 

Figure 8.3: The three modules obtained from the fault tree shown in Figure 8.2 
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Having reduced the fault tree to a more concise form and identified all the independent 

subtrees, the pre-processing stage is complete and the next step is to obtain the associated 
BDDs. 

8.3 Construction of the BDDs 

A BDD is constructed for each of the modules, using a variable ordering determined by one of 

eight ordering schemes, which are detailed in Chapter 5: 

1. Modified top-down. 

2. Modified depth-first. 

3. Modified priority depth-first. 

4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 

6. Dynamic top-down weights. 

7. Bottom-up weights. 

8. Event criticality. 

The choice of ordering scheme for each module should be less critical than for the original 
tree, due to the pre-processing techniques applied. At this stage the schemes are selected 

randomly. An alternative option, however, would be to incorporate a method of scheme 

selection based on the characteristics of the individual modules. This would ensure that the 

most appropriate scheme was chosen on each occasion. One such approach is the neural 

network technique, which is a pattern recognition method that has previously been considered 

as a mechanism for selecting ordering schemes for BDD constructiont19' 30]. The following 

chapter investigates this as an option for inclusion within this analysis strategy. 

The fault tree data for each module must be extracted from the collective data, so that it can 
be considered independently. Taking each module in turn, its variables are ordered using the 

chosen ordering scheme and a BDD constructed. The BDD data is stored in an ite array, and 
is added to as the BDDs are constructed for the remaining modules. This technique is now 
applied to the example modules shown in Figure 8.3. 

The extraction of the data for any module starts on the line on which the gate heading that 

module is located. Therefore, for module 2007, which is headed by the gate Top, the process 
starts on the first line of the fault tree data, which is then copied into the module data array. 
Every gate that is referenced in the inputs to Top is included in the module data (G3 and G4). 
Each gate that appears as an input to either G3 or G4 is also listed, and so on until every gate 
that exists within the module is included in the module data. The self-contained data for 

module 2007 is shown in Table 8.5. 
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Gate 

name 

Module 

name 

Gate 
type 

Number 

of gates 

Number 

of events 
Inputs 

Top 2007 AND 2 2 G3 G4 2008 2006 

G3 - OR 1 1 G9 2003 
G4 - OR 0 2 cd 
G9 - AND 0 2 dI 

Table 8.5: Data for module 2007 

This data forms a completely independent subtree, for which a variable ordering must now be 

determined. A suitable scheme would be the modified priority depth-first scheme, which 

results in the following ordering: 

2008<2006<d<c<2003<i 

The BDD obtained from this ordering is shown in Figure 8.4. It is known as the 'primary BDD, 

as it represents the top event of the original fault tree and can be used to calculate the system 

unavailability. 

Gt 

Figure 8.4: The primary BDD (module 2007) obtained from the ordering 
2008<2006<d<c<2003<i 

The program stores the BDD data in an ite array. Each node is identified by its unique label 
(Fl, F2, and so on), as shown in Figure 8.4. The node labels are stored together with the 

encoded event and the names of the nodes that appear on the one and zero branches. The 
ite data contains all the information necessary to describe the BDD, as shown in Table 8.6. 
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Node Event 
One 

branch 
Zero 

branch 

Fl 2008 F2 0 

F2 2006 F3 0 

F3 d F4 F5 
F4 2003 1 F6 

F5 c F7 0 

F6 i 1 0 
F7 2003 1 0 

Table 8.6: The ite array, currently containing the data for module 2007 

Each module is considered in the same way, and its ite data is stored in the same array as 

the first module. Obviously, this means that the nodes in the BDDs must be labelled 

differently - therefore, the number of the first node of the next BDD follows on from the 

number of the final node in the previous BDD. 

The extracted data for the modules 2008 and 2009 are shown in Tables 8.7 and 8.8. 

Gate Module Gate Number Number inputs 
name name type of gates of events 

G2 2008 OR 1 2 G7 2009 a 

G7 - AND 0 2 af 

Table 8.7: Data for module 2008 

Gate 
name 

Module 
name 

Gate 
type 

Number 
of gates 

Number 
of events 

inputs 

G6 2009 AND 1 1 G12 e 
G12 - OR 1 1 G15 m 
G15 - AND 0 2 2002 e 

Table 8.8: Data for module 2009 

Again, variable ordering schemes must be chosen to construct the BDDs. The event criticality 

ordering scheme is used for module 2008, giving the event ordering: 

a<2009<f 

The modified top-down scheme is used for module 2009 giving: 

e<m<2002 
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The resulting BDDs, which also illustrate the node labelling, are shown in Figure 8.5. 

FR 

F10 

F1 
m 

F12 

(a) BDD for module 2008 (b) BDD for module 2009 

Figure 8.5: The BDDs for modules 2008 and 2009, demonstrating the node labelling 

The BDD data for these modules are added to the ite array, shown in Table 8.9. This now 

completely represents the original fault tree structure. 

Node Event 
One 

branch 
Zero 

branch 

Fl 2008 F2 0 

F2 2006 F3 0 

F3 d F4 F5 

F4 2003 1 F6 

F5 c F7 0 

F6 i 1 0 

F7 2003 1 0 

F8 a 1 F9 

F9 2009 1 0 

F10 e F11 0 

F11 m 1 F12 

F12 2002 1 0 

Table 8.9: The ite array, containing the data for all the modules 

Once the set of BDDs has been constructed, the quantitative analysis can begin. 

149 



8.4 Quantitative Analysis 

The basic event data (i. e. unavailability, q, and unconditional failure intensity, wi, ) are input to 

the program with the fault tree data and are shown in Table 8.1. The probabilities of the 

complex events are calculated as they are formed and are shown in the final column of Table 

8.3. 

The unavailabilities of the modules are also required and are evaluated by calculating the 

probability of the modules' 'top event'. This procedure is described in further detail in Chapter 

7. The probabilities of modules 2008 and 2009 in this example are: 

g2008=3.11x10-3 

q2009 =1.14x10.4 

The quantitative analysis described in Chapter 7 is performed simultaneously on the three 

BDDs, the results of which are summarised in Table 8.11. 

The top event probability is given by the probability of the root vertex of the primary BDD: 

Qsys(t) = 2.77 x10-9 

The criticality functions of the basic events are required, so that the system can be analysed 
in terms of its basic components. These are shown in Table 8.10, and are also calculated 

according to the methods described in Chapter 7. 

Event a b c d e f 
Criticality 8.89x10"7 2.85x10.7 7.40x108 2.17x10"7 8.71x10'" 0.0 

Event g h i j k m 
Criticality 3.40x10'9 4.25x10'9 1.59x10'' 3.71x10'9 9.88x10'9 9.17x10.12 

Event n p q r s 
Criticality 5.40x10'' 3.72x10'9 3.72x10'9 1.39x10'13 1.38x10'13 

Table 8.10: Criticality functions for the basic events 

The system unconditional failure intensity is calculated using the criticality functions and 
unconditional failure intensities of the basic events: 

wsys(t)_ G, (q(t))"wi(t) 

= 1.80x10'10 

This concludes the analysis of the example fault tree. 
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2007: 

2008: 

2009: 

Node Event 
One Zero 

Pr Po' Poo 
Probability 

branch branch value 

g2DDS-Po' + 
F1 2008 F2 0 1.0 8.89x10'' 0.0 (1-g2DOe). po° 

= 2.77x10'9 

F2 2006 F3 0 pr[F1]. g20° 1.73x10'4 0.0 
g2006-POI + 

(1-Q2 ). po° 3 = 3.11x10' 
= 8.89x10'7 

F3 d F4 F5 Pr F 
1.36x10"2 3.74x10'8 

qa-Po' + 
(1-gd). po° 

60x1Ö 1 
=1.73x10'4 

F4 2003 1 F6 
r F3 

. p[ 1 1.0 9.00x10 

g2003. po' + 

(1-g2O03). po2 
= 0"7 60x 

=1.36x10" 

F5 C F7 0 pr[F3]. (1-qa) 
4.68x10 0.0 

q, Pol +o 
(1-qý). po 5 = 1.58x10' 

= 3.74x10'5 

pr[F4]. 
F6 i 1 0 (1-Q2) 1.0 0.0 q, = 9.00x10'3 

=1.59x10'' 

F7 2003 1 0 r[ 1.0 0.0 
q2003-POI + 

(1-q2)-po° 
26x 10'' =P = 4.68x10'3 

F8 a 1 F9 pr[F1] =1.0 
poi [Fi] = 

" 
1.02x10'1° - 8.89x10 

F9 2009 1 0 
[F8]. ga po' [F1] 

po°[F1] = 0.0 
o' + 

(l-q2GOg). po° 3 3.00 x10' = 0'7 89x1 8. 
= 1.02x10'10 

F10 e F11 0 prF9] 
.3 10 00 

2.90x10'8 po°[F9] = 0.0 - x = 3. 

F11 m 1 F12 Pr[F10]. g0 pol[F9] = 1.59x1 0"B 
o' + imp 

° ( 
= 1.05x10' 8.89x10' 

= 2.990x1 0x10'8 

F12 2002 1 0 pr[Fl 1]. qm po'[F9] = 
7 o° P [F9] 0.0 - 

o' + g2002-P 
° (1-g2002)"Po 

=1.58x10"7 8.89x10" 
.8 =1.59x10 

Table 8.11: Results of the quantitative analysis applied to the BDDs in Figures 8.4 and 8.5 
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8.5 Results of the Application of the Fault Tree Analysis Strategy 

The analysis strategy (program 'strategy. c') was applied to a set of 228 fault trees, whose 

summary details are shown in Appendix II. The calculation times were compared with those 

obtained for the construction and subsequent quantification of the BDDs directly from the 

original trees. As the choice of ordering scheme has such an effect on the number of He 

calculations and the size of the resulting BDDs, the times were recorded for each of the eight 

available schemes. In the cases where more than one module was detected, each was 

ordered using the same scheme. The calculations were performed three times for each tree 

using the two methods and an average taken of the resulting calculation times in order to gain 

more accurate results. 

Appendix IX shows the calculation times obtained using the two methods for the 1824 

different cases. Applying the fault tree analysis strategy has the effect of both increasing and 
decreasing the analysis times, depending on which tree and ordering scheme is being used. 
In 1446 cases the analysis times actually increased. Although this seems a large proportion, 
the average increase in time was in fact only 0.145 seconds. This is probably due to the 

number of comparisons necessary in the Faunet reduction technique, which for small trees is 

not compensated for by the time saved in the BDD construction and quantification. 

Although only 316 cases showed a decrease in analysis time, the average decrease for these 

was 15.48 seconds. This result does however include the times for the tree 'randol1', which 
has exceptionally large BDDs compared to the other trees. If the results for 'randoll 1' are 

excluded from the analysis, then the average decrease in analysis time is still 0.654 seconds. 

The results for the largest tree in the set, 'randoll', are shown in Table 8.12. 

Ordering 1 2 3 4 5 6 7 8 
scheme 

Direct 629.16 3125.63 3145.01 174.12 306.98 234.95 940.13 108.74 
analysis times 

Strategy 143.33 1624.34 1625.66 59.17 103.03 48.09 325.60 46.69 
analysis times 

Difference 485.83 1501.29 1519.35 114.95 203.95 186.86 614.53 62.05 

Table 8.12: Analysis times for the fault tree 'randol 1' 

These results demonstrate the substantial savings in analysis time that can be made when 
dealing with large fault trees. The time taken for the analysis using the third ordering scheme, 
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modified priority depth-first, is reduced by over 25 minutes when the fault tree analysis 

strategy is implemented. The reduction in analysis time could be even more substantial for 

larger fault trees. 

8.6 Conclusions 

The fault tree analysis strategy has the potential to reduce the analysis times of large fault 

trees significantly and increase the likelihood of obtaining a BDD for any given fault tree. The 

results of the application of the analysis strategy have shown that although applying the 

technique slightly increases the analysis times for some trees, due to the comparisons 

necessary for Faunet reduction, this is countered by the savings in analysis time for larger 

trees. It is also possible that the Faunet reduction technique could be coded in a more 

efficient manner, thus reducing the time spent applying the methods. 

A significant advantage of the analysis strategy is the possibility of analysing the modules of 

the trees separately. This is likely to be of particular use where the tree is too large to be dealt 

with as a whole but can be taken piece by piece and the quantitative analysis applied to the 

set of resulting BDDs. 

The results were obtained using the same ordering scheme for each module of the original 
fault tree. As discussed in section 8.3, it is possible to use different schemes for the modules, 
depending on which best suits the module under consideration. If the optimal scheme can be 

selected on each occasion, it would lead to smaller BDDs and further reduce the analysis 

times. This is the topic discussed in the following chapter. 
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Chapter 9: Neural Networks 

9.1 Introduction 

This chapter investigates the use of neural networks as a technique for scheme selection 

within the fault tree analysis strategy described in the previous chapter. The work aims to 
develop a neural network model that is capable of selecting the optimal variable ordering 

scheme for any given fault tree. If such a network model can be identified, it would eliminate 
the need for trying several schemes until an appropriate one is found and could significantly 
reduce computation time. 

The use of pattern recognition techniques, such as neural networks, for selecting the optimal 

variable ordering scheme for a particular fault tree based on its individual characteristics was 

proposed by Bartlett and AndrewsE301. Their analysis produced encouraging results, with the 

prediction of the correct scheme in up to 70% of cases. This investigation differs from the 

previous research, in that the reduced fault trees will be used to train and test the network. 

The following section describes the basic elements of a neural network. Two specific models, 
known as the multi-layer perceptron and the radial basis function network are then described 

in detail and the results of their application to the ordering problem are discussed. The 
investigation uses the programs written by Bartlettt191 to perform neural network training and 
validation, with modifications where necessary. 

9.2 Overview of Neural Networks 

Neural networks offer a powerful framework for representing non-linear mappings from 

several input variables to several output variables. The general structure of a neural network 
model is shown in Figure 9.1. A layer of input units representing the characteristics of the 

system connects via some internal processing to a layer of output units, which each represent 
one of the possible variable ordering schemes. The exact nature of the processing depends 

on the type of neural network being used and is described in detail later in the chapter. 

y, y2 yý Output units 

TTT 
Internal Processing 

xý x2 
O Input units 

Figure 9.1: Basic structure of a neural network 
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The aim of the neural network technique is to optimise the internal parameters through some 
training process to produce an effective model for the problem. This is known as the training 

phase. The prediction phase tests the performance of the trained network, by using the 

calculated parameters to determine output responses for a set of validation data. These 

responses are compared with target responses for the data and determine whether or not it 

has been trained successfully. There are three techniques for training, which are described 

below. 

9.2.1 Learning Techniques 

Supervised learning is the most commonly used technique, in which desired values of the 

outputs (target values) are specified for each set of inputs. The parameters within the network 

are chosen so as to minimise the error between the target values and those actually attained 
by the network. This learning technique is used within the multi-layer perceptron model and is 

employed as part of the training process in the radial basis function network. In the pattern 
mode of training, the parameters are updated after each individual training case has been 

presented. In this investigation, however, the batch mode of training will be used, which 
updates the parameters only after the entire training set has been presented. 

A second widely used technique is that of unsupervised learning, which does not provide the 

network with target output values for the inputs, but allows it to discover features of the 
training set and then group the data into classes that it regards as distinct. The radial basis 
function neural network uses an unsupervised learning technique during the training phase to 
determine the basis function parameters. 

A third type of learning technique that will not be considered in this investigation is 

reinforcement learning. This is an unsupervised method in that target values are not specified, 
but is also supervised in that information is given as to whether the network response was 
good or bad. 

9.3 Multi-Layer Perceptron 

The multi-layer perceptron consists of a layer of input units, a layer of output units and one or 
more 'hidden' layers sandwiched between, as illustrated in Figure 9.2. The bias parameters 
that appear in each layer (except for the output layer) simply act like adding a constant to the 
equation. A network containing no hidden layers is referred to as a single-layer neural 
network. Although faster to train, it is limited in the range of functions it can represent and is 
therefore not considered in this analysis. 
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Weights connect each of the units in one layer to each unit in the next and primarily determine 

the behaviour of the network, as they control the influence each unit has in propagating the 
intermediate outcome to the output nodes. It is the aim of the training phase to determine 

optimal values for the weights, which are initially assigned random values between -0.5 and 
0.5. 

Yi) ...... (yc) c output units 

W10 
W(2) W(2) it cM 

W(2) 
Wo1) WiM 

ZO co ZI .......... ZM M hidden units 

bias 
W10 Wjl 

W(1) 

WMd 

W 
(l) 

0 

td 

x W(l) x, """""""""" Xd d input units 

bias 

Figure 9.2: Multi-layer perceptron neural network 

The training phase is an iterative process, which repeatedly applies two passes through the 

network, and terminates when either the error in the output units is minimised or the 

maximum number of iterations is reached. The two passes consist of a forward pass, where 
the current values of the weights are used to determine the values of the output units and a 
backward pass through the network, which adjusts the weights in order to minimise the 
difference between the target values and those actually obtained. 

9.3.1 The Forward Pass 

During the forward pass, the outputs of each unit are calculated layer by layer until the values 
of the output units are obtained. Considering the network shown in Figure 9.2, which has d 
input units, M hidden units and c output units, the weighted sum of the inputs to each of the 
hidden units is given by: 

d 
aj _E W( )x 9.1 

1=o 

where w, (i ) denotes a weight in the first layer going from input i to hidden unit j and xi is the 

value of the input i. The value of each bias unit is permanently set to 1. The output of each 
hidden unit is calculated by applying a non-linear activation function, g, to its input: 

Z, =9(aj)= w(I)XI 9.2 
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The values of the output units are determined in the same way, by applying a non-linear 

activation function to the weighted sum of their inputs: 

M 

Yk =9(ak)=9 
Zw zj 

j=o 

Md 

=g Wkj) wo)XI 9.3 
J=O 1=o 

In this example the activation functions applied to the output units and the hidden layers are 
the same, though this is not always the case. The form of the activation function is now 
discussed. 

9.3.1.1 The Activation Function 

The activation function introduces non-linearities into the system and is applied to the net 
input of each unit in order to determine its output. The majority of networks use the logistic 

sigmoid activation function and although there are several popular alternatives, it is the one 
that will be used in this investigation. It is given by: 

g (a) -1 
+ e'8 

9.4 

where a represents the value of the unit to be activated. Although the domain of this function 

is any real number, the range is bounded between 0 and 1 as shown in Figure 9.3. 

d 

a 

Figure 9.3: Logistic sigmoid activation function 

Therefore the output of each unit will be in the range (0,1). For ease of comparison, the target 

values for the outputs are also scaled within this range, as are the values of the input units. 

Two alternatives to this function are the Heaviside, or step, function and the hyperbolic 
tangent, given in Equations 9.5 and 9.6 respectively. 
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0 whena<O 
9(a) 1 when az09.5 

ea - e-a 
g(a) = tanh(a) = 9.6 

ea +e'a 

One of the advantages of the logistic sigmoid function is that the derivative is easily calculated 

as: 
9'(a) = 9(a)"(1- g(a)) 9.7 

This is of importance during the backward pass through the network, which is described in the 

following section. 

9.3.2 The Backward Pass 

The aim of the backward phase is to minimise the error at the output nodes by making 

adjustments to the weights within the network. This process is undertaken in three stages. 
Firstly, the error between the target output values and those actually attained is calculated 

using the sum-of-squares error function. This is a differentiable function of the network 

weights and therefore the derivatives of the error with respect to each of the weights can be 

calculated. An efficient algorithm, known as error-back propagation is used for calculating the 

derivatives and forms the second stage of the process. Finally, the derivatives are used to 

calculate the adjustments to be made to the weights in order to minimise the error in the 

system. Each of these stages is now described in detail. 

9.3.2.1 Calculating the Errors 

For each training case, n, presented to the network, the sum-of-squares error function is 

given by: 

is! 1 Eý =-E(Yk 'tk 
)2 

2 
k=1 

9.8 

where yk is the actual response of the output unit k and tk is the target response for that unit, 
for the training case n under consideration. The superscript n is omitted from input and output 

variables from this point onwards for clarity. 

If the calculated errors are above a predetermined value and the maximum number of 
iterations has not been exceeded, then training continues with the calculation of the error 
derivatives. 
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9.3.2.2 Calculation of the Error Derivatives 

The derivatives of the error with respect to the output layer weights are given by: 

aEn 
=59.9 aW (2) kZj 

where the bk are referred to as the 'errors' and are calculated for each output unit according to 

the following expression: 
ak = g'(ak ). (Yk - tk) 9.10 

The derivative of the logistic sigmoid activation function is given by Equation 9.7 and is 

applied to the weighted sum of the inputs to each output unit to give: 

9'(ak) = 9(ak). (1- 9(ak )) 
= Yk"(1- Yk) 9.11 

The errors, ök, are therefore simply given by: 

bk =Yk"(1'Yk). (Yk "tk) 9.12 

leading to the simple evaluation of each of the derivatives of the output layer weights. The 
derivatives of the error with respect to each of the hidden layer weights can be calculated 
once the values of Sk are known for the output layer. The öj for the hidden units can be 

calculated from the back-propagation formula given by: 

aj =g'(aj)lwkjbk 
k 

Substituting for g'(al) gives: 

9.13 

öj =Zß. (1-zJ). I: Wkjök 9.14 
k 

As for the output layer weights, the derivatives of the error with respect to each of the hidden 
layer weights is given by the product of the value of 6 for the unit at the output end of the 

weight and the value of the unit at the input end of the weight: 

aEn 
- 61XI 9.15 

awýi) 

The back-propagation formula shows that the value of ö for any hidden unit can be calculated 
by propagating the ö's backwards from units higher up in the network. The output layer is 

always considered first, as the values of ö are dependent only on the target and calculated 
values of the output units. Any size of network can be dealt with using this method. A full 
derivation of these results can be found in reference 35. 
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9.3.2.3 Computation of the Weight Adjustments 

Once the error derivatives have been calculated, an optimisation algorithm is employed to find 

the minimum of the error function. Gradient descent is one such algorithm and is considered 
below. 

The gradient of a function is the direction in which it increases most rapidly. Therefore the 

negative gradient gives the direction in which to move in order to decrease the function most 

rapidly. The gradient descent algorithm iteratively updates the weights by moving small 
distances in the weight space in the direction of greatest rate of decrease of error. The 

weights can be combined to form a single weight vector w, which is updated according to: 

WL+i _WT+AWT 9.16 

Awz=-fVEJ 
T 9.17 

where ,r labels the iteration step and VEI 
WT 

gives the gradient of E in weight space, evaluated 

at wt. The parameter q is referred to as the learning rate and determines the step size taken. 

If r) is chosen to be too small, the convergence towards the minimum will be slow; conversely 
if n is too large, the algorithm may continually overshoot (causing oscillatory motion) and 
never converge. 

A modification to this method adds a momentum term, with the aim of smoothing out any 
oscillations. Each new search direction is now calculated as a weighted sum of the current 

gradient and the previous search direction. The modified gradient descent formula is given by 

Awl =-nVEI WT 
+NOw`-' 9.18 

where pis the momentum term in the range 0: 5 p :SI. 

A disadvantage of this technique is that the learning rate and momentum term must both be 

selected by trial and error at the start of the process. However, the optimum values will 
depend on the particular problem and may also vary during the training. One approach for 

automatically updating the values when required is the bold driver technique135l. This applies a 
multiplicative factor to the learning rate parameter, which depends on whether the error has 

actually increased or decreased after a given step. If the error increases, then the algorithm 
must have overshot the minimum, so the learning rate parameter was too large. The step is 

undone and repeated with a smaller learning rate parameter. This process continues until a 
decrease in the error is recorded. However, if the error decreases at a given step then the 
new values are accepted and the value of the learning rate parameter increased for the next 
step, as it may currently be too small. The learning rate is therefore updated according to 
Equation 9.19. 
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(a"noid if AE <0 
fl new = jt 9.19 

Y"floid if AE >0 

The parameter a is chosen to be slightly greater than 1 (typically around a=1.1), in order to 

avoid subsequent error increases and y is chosen to be significantly less than 1 (typically 

y=0.5) so that the algorithm quickly finds an error decrease. 

Having calculated the optimal weights, the network is tested by comparing its responses to a 

set of test data with target responses for those patterns. 

The following section describes the initial network architecture that was employed for the 

application of the multi-layer perceptron to the ordering problem. 

9.3.3 Network Architecture for the Ordering Problem 

9.3.3.1 Output Units 

Each of the output units of the network represents one of the possible variable ordering 

schemes. In this investigation, eight ordering schemes were available for selection, so 

requiring eight output units. Previous work had used six ordering schemes1191, but it was felt 

that as these were all structural schemes, they did not adequately cover the range of 

possibilities and so adding in some weighted schemes would lead to improved results. The 

eight schemes used are: 

1. Modified top-down. 

2. Modified depth-first. 

3. Modified priority depth-first. 

4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 

6. Dynamic top-down weights. 

7. Bottom-up weights. 

8. Event criticality. 

Each of these schemes is described in detail in Chapter 5. Target values were calculated for 

each of the output units by determining the number of non-distinct nodes in the BDDs 

obtained using each of the schemes (Appendices VI and X). As the values of the output units 
result from the application of the logistic sigmoid activation function to their summed inputs, 

they are in the range (0,1), though they will never reach the extreme values of 0 and 1 due to 
the nature of the function. Therefore the number of BDD nodes is scaled from 0.0001 to 
0.9999 to allow easy comparison between the target values and those actually attained by the 
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network. The value of 0.9999 is given to the most desirable scheme (i. e. the one with the 

lowest number of non-distinct nodes) and 0.0001 is given to the scheme with the worst 

performance. The remaining schemes are scaled linearly between these values. Scaled 

target output values are shown for the tree'trialsl' in Table 9.1. 

Scheme number 1 2 3 4 5 6 7 8 

Number of non- 244 439 439 416 221 230 513 186 
distinct nodes 
Scaled target 

0.8226 0.2264 0.2264 0.2967 0.8929 0.8654 0.0001 0.9999 
values 

Table 9.1: The scaled target outputs for the tree 'trials1' 

Target values are obtained in this way for each tree in the training data set. In the prediction 

phase, the scheme corresponding to the unit with the largest value is deemed the optimal 

choice. The selected scheme is compared with the known best scheme for that tree to 

determine the network performance. 

9.3.3.2 Input Units 

Each input unit represents one characteristic of the fault tree. There are an infinite number of 

possibilities for the characteristics and so initially the eleven that had produced the best 

results in Bartlett's workl191 are used. It was expected that they would produce improved 

results in this investigation, as they are being used on the reduced fault trees. The 

characteristics are: 

1. Percentage of 'AND' gates in the tree. 

2. Percentage of different events that are repeated. 
3. Percentage of the total events that are repeated. 

4. Top gate type ('AND' gate - 1, 'OR' gate - 0). 

5. Number of inputs to the top gate. 

6. Number of levels in the tree. 

7. Number of basic events in the tree. 

8. Greatest number of gates in any level. 

9. Number of gates with gate inputs only. 

10. Number of gates with event inputs only. 

11. The highest multiple of a repeated event. 
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As the characteristics can take a large range of values (i. e. top gate type can only be 0 or 1, 

whereas the number of basic events can run into hundreds), they are scaled across the whole 

set of training trees to be between 0.9999 and 0.0001. The tree with the largest value of a 

particular characteristic is given an input unit value of 0.9999; the tree with the lowest value is 

assigned 0.0001 for the unit representing the characteristic. The value of that unit for each of 
the other trees is scaled linearly in the range relative to the minimum and maximum values. 
The only exception is for characteristic four, which encodes the top gate type. The unit is 

given the value 1 for an `AND' gate and 0 for an `OR' gate. 

The maximum and minimum values of each characteristic are also used to determine the 

input unit values of the test trees. Again, each characteristic is scaled relative to the extreme 

values. If a characteristic is found to have a value that is larger or smaller than the maximum 

or minimum obtained from the training trees, then it is assigned the value 1 or 0 respectively. 

9.3.3.3 Training and Validation Data 

The 228 fault trees that were used for the analysis of the reduction method in Chapter 6 were 
initially considered for the training and validation data. However, once the reduction 

procedure has been applied, 22 of these trees consisted only of a single event. The number 

of distinct and non-distinct nodes is therefore one for each tree and the number of if-then-else 

(ite) calculations is zero. These trees were not considered useful for the neural network 

analysis and were removed from the set. A further 42 trees that each had an identical number 

of non-distinct nodes, distinct nodes and He calculations for every ordering scheme were also 

removed. This does leave some trees that have identical target values for each scheme when 

considering only one measure of BDD complexity, but simply means that there are no trees in 

the set for which no distinctions could be made between the ordering schemes for all three 

measures. As the number of trees is now significantly smaller, 72 randomly generated trees 

were identified as suitable for addition into the data set. The summary details of these trees 

are listed in Appendix II. The data set now consists of 236 trees, 216 of which are used as 
training trees and the remaining 20 as test trees. 

The 20 test trees are chosen from the set, so that each ordering scheme is the optimal choice 
for approximately the same number of trees. The target schemes for the chosen test trees are 

shown in Table 9.2. 
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Tree bddtest Iisab25 Iisab27 Iisab34 Iisab36 Iisab62 lisab70 

Target 
1,5,8 4 3 2 7,8 1 4 

scheme(s) 
Tree Iisab78 randl2l rand135 rand137 rand139 randl4l rand 142 

Target 
3 4,6 6 8 8 7 5 

scheme(s) 
Tree rand144 rand147 rand156 rand159 rando47 rando54 

Target 
5 6 7 2,3 1 2 

scheme(s) 

Table 9.2: Target schemes for the twenty test fault trees 

9.3.3.4 Hidden Layers and Units 

The number of hidden layers and the number of units within those layers are central to the 

multi-layer perceptron model. Using too few may not model the complexity of the problem, but 

using too many increases the training time dramatically. Masters1361 documents that one 
hidden layer is usually all that is needed, but that two are sometimes required. However, more 

than two hidden layers are never theoretically needed. 

A guideline for choosing the number of hidden units in a two-layer network (i. e. one which has 

two layers of weights and therefore has one hidden layer) with d input units and c output units 

is the geometric pyramid rule, which says that the hidden layer would have c. d hidden 

units. Masters recommends using as few hidden units as possible, so starting with two and 

adding one at a time. Usually three to six are optimal and the Masters suggests that more 

than ten are almost never needed. 

A full investigation was carried out, using one and two hidden layers. When one hidden layer 

is used, the number of units is incremented from two to nine. When two hidden layers are 

used, the investigation starts with two units in each and increases the number in the second 
layer by one each time to a total of six. The process is repeated for three units in the first layer 

and so on until there are six units in each layer. These figures were used, as including more 

units in the hidden layers was beyond the computing capabilities available. 

9.3.3.5 Parameter Values 

Using the enhanced gradient descent technique means that the initial values chosen for the 

momentum and learning rate parameters should be less critical. However, various values 
between 0.001 and 1.0 were chosen for each parameter to try and obtain the best possible 
network performance. The values of a and y were set to 1.04 and 0.5 respectively throughout 

the investigation. 

164 



9.4 Results of the Multi-Layer Perceptron Investigation 

Using the network architecture described in the preceding sections, 520 trials were performed 

with a single hidden layer and 1000 trials were performed with two hidden layers. 

The investigation with the single hidden layer started by using two hidden units and increased 

the number by one each time until there were nine hidden units. The value of the learning rate 

parameter, n, varied between 0.01 and 0.15. For each value of n, the momentum, p, was 

varied between 0.001 and 0.15. The best results obtained were 6/20 correct predictions on 
the test data set; the average number of correct predictions was 3.548/20. The results are 

shown in Table 9.3. 

Number of correct 0 1 2 3 4 5 6 7 8 
predictions 

Number of trials 0 1 28 213 244 31 3 0 0 

Table 9.3: Results obtained using a single hidden layer in the network 

The number of hidden layers was increased to two and the investigation started with each 
layer containing two hidden nodes. This was increased by one each time until both layers 

consisted of six hidden units. The value of the learning rate parameter varied between 0.01 

and 0.10. For each value of q, the momentum was varied between 0.001 and 0.15. The 

greatest number of correct predictions was 7/20, which was obtained using six hidden units in 

each layer and with n and p set to 0.6 and 0.5 respectively. The average number of correct 

predictions was again very poor at 3.903, though slightly better than the average obtained 
using one hidden layer. The results are shown in Table 9.4. 

Number of correct 0 1 2 3 4 5 6 7 8 
predictions 

Number of trials 0 1 17 74 896 11 0 1 0 

Table 9.4: The results obtained using two hidden layers in the network 

Given the poor results obtained using the current network architecture, an alternative was 
considered, which uses the number of He calculations required to construct the BDDs to 

calculate the target values for the output units. 
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9.4.1 Using the Number of If-Then-Else Calculations for the Output Units 

The number of non-distinct nodes in the BDD gives an indication of its final size, but it was 

thought that the number of He calculations required to produce the BDD would give a better 

indication of the complexity of the BDD. Some BDDs can have very few non-terminal nodes, 

but require extensive calculations for their construction. 

The number of He calculations required to construct the BDD using each of the eight 

orderings was obtained for the reduced fault trees (Appendices VIII and X) and scaled in the 

same way as for the number of non-distinct nodes. A new set of test trees was chosen, as the 

optimal scheme choices are not the same when considering the number of ite calculations. 
The twenty test trees and their target schemes are shown in Table 9.5. 

Tree Iisab17 Iisab37 Iisab47 Iisab70 lisab75 randlOO rand135 

Target 
7 4,8 5 4 3 5,8 6 

scheme(s) 
Tree rand139 randl4l rand142 rand143 rand144 rand147 rand148 

Target 
2 1 8 7 5 6 2 

scheme(s) 
Tree rand149 randl5l rand155 rando63 rando68 rando77 

Target 
1 8 4 3,7 1,2,6 3 

scheme(s) 

Table 9.5: Target schemes for the test trees, when considering the ite calculations 

A total of 256 trials were performed using one hidden layer. The learning rate and momentum 

parameters were varied between 0.01 - 0.10 and 0.001 - 0.2 respectively. In each case, the 

number of hidden units was incremented from two to nine. Table 9.6 shows the number of 

correct predictions obtained from the trials. 

Number of correct 0 1 2 3 4 5 6 7 8 
predictions 

Number of trials 0 0 45 94 107 7 2 1 0 

Table 9.6: The results obtained using a single hidden layer in the network 

The greatest number of correct predictions was 7/20, which was obtained with nine hidden 

nodes and with the learning rate and momentum parameters set to 0.07 and 0.01. The 

average number of correct predictions was just 3.336. 
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Two hidden layers were also considered. The learning rate and momentum parameters were 

assigned exactly the same set of values as for the single layer investigation and the number 
of units in the hidden layers was varied between two and six for each case. A total of 700 

trials were conducted and the results are shown in Table 9.7. The greatest number of correct 

predictions was 6/20 and the average number was calculated as 3.681. 

Number of correct 0 1 2 3 4 5 6 7 8 
predictions 

Number of trials 1 0 11 242 414 19 13 0 0 

Table 9.7: The results obtained using two hidden layers in the network 

The results obtained for both one hidden layer and two hidden layers are slightly worse than 

those recorded when using the number of non-distinct nodes as the target values. However, 

the difference is minimal and neither set currently looks promising - in order to implement this 

technique, a success rate of more than 80% would be desired. A different network 

architecture is now considered, which halves the number of possible ordering schemes to 
four. This is discussed in the following section. 

9.4.2 Reducing the Number of Output Units to Four 

The reason for reducing the number of output units was because it was felt that perhaps the 

number of training trees was not sufficient to allow the network to differentiate between eight 

possible outcomes. Rather than simply choosing four schemes at random, they are grouped 
into pairs and each possible combination of pairs is considered. For example, schemes 1 and 
2 are paired, 3 and 4 are paired and so on. Then, each combination of these pairs can be put 
as the output units of the network - this gives six possible sets of four schemes: 

{1,2,3,4}, {5,6,7,8}, {1,2,5,6}, {3,4,7,8}, {1,2,7,8}, {3,4,5,6} 

Each set can be analysed to see which scheme comes out as the best choice and the results 
compared to give an overall optimal scheme. For example, if the outcome using the first set is 

that scheme 2 is the best choice but when using the second set scheme 8 is the best choice, 
then the scheme selected using set 5 (which contains both) would compare these two 

schemes and differentiate between them. If necessary, each set of schemes could use a 
different network architecture to gain the best possible results. 

The investigation started by considering the number of ite calculations obtained using the first 

set of four schemes, i. e. (1,2,3,4}, as the output units. The test trees are again chosen so 
that each scheme is the optimal choice for a similar number of trees, as shown in Table 9.8. 
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Tree lisablO Iisabl7 Iisab35 lisab44 Iisab77 Iisaba9 rand135 
Target 

4 2,3 4 4 3 4 3 
scheme(s) 

Tree rand139 randl4l rand142 rand143 rand144 rand147 rand148 
Target 

2 1 3 2 1 1 2 
scheme(s) 

Tree rand149 rand150 rand153 rand154 rand155 randl6l 
Target 

1 1 2 2 4 3 
scheme(s) 

Figure 9.8: Target schemes for the test trees, using He calculations and four output nodes 

A total of 1023 trials were conducted, with 648 using one hidden layer and the remaining 

using two hidden layers. For the trials with one hidden layer, the learning rate parameter was 

varied between 0.005 and 0.75, whilst momentum values of between 0.005 and 0.9 were 
tried. The number of hidden units was varied between two and nine for each parameter 

setting. The best result was 10/20 correct predictions, achieved using eight hidden units and 

parameter values n=0.04 and p=0.9. The results for all the trials using one hidden layer are 

shown in Table 9.9. 

Number of correct 0 1 2 3 4 5 6 7 8 9 10 11 
predictions 

Number of trials 1 3 15 69 110 146 142 112 33 16 1 0 

Table 9.9: The results obtained using one hidden layer in the network 

The average number of correct predictions is 5.346/20. Although the results appear better 

than for the previous network architectures, there are fewer schemes from which to choose, 

and so the expected number of correct predictions is higher. 

For the trials using two hidden layers, the learning rate parameter was varied between 0.1 

and 0.8 and the momentum parameter was assigned values between 0.05 and 0.9. Of the 

375 trials conducted, ten correct predictions were achieved in two cases. Both were obtained 

using n=0.5, p=0.5 with six units in the first hidden layer. The second layer consisted of 
three units in the first case and six units in the second case. The average number of correct 
predictions over all the trials was 5.696. The full set of results is shown in Table 9.10. 
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Number of correct 0 1 2 3 4 5 6 7 8 9 10 11 
predictions 

Number of trials 0 0 1 4 26 126 163 38 11 4 2 0 

Table 9.10: The results obtained using two hidden layers in the network 

As the network is performing so poorly, it can be concluded the current architecture does not 

adequately describe the problem. Further sets of four output units are not therefore 
investigated at this stage. Instead, the choice of fault tree characteristics is examined. 

9.4.3 Modified Fault Tree Characteristics 

In order to be able to differentiate between fault trees, the characteristics should describe the 

features of each tree that make it unique. A modified set of key features was therefore chosen 

with the aim of being able to draw a representation of the tree using only the given 

characteristics data. There are many possibilities to consider, but ten were initially selected 

and are shown below: 

1. Type of the top gate. 

2. Number of levels in the fault tree. 

3. Number of different basic events. 
4. Total number of basic events. 

5. Average number of event inputs to the gates. 
6. Percentage of the different events that are repeated in the tree. 

7. Number of different gates. 

8. Total number of gates. 

9. Percentage of 'AND' gates in the tree. 

10. Percentage of different gates that are repeated in the tree. 

The modified characteristics are calculated using the programs newchar_tr. c for the training 

trees and newchar test. c for the test trees, which were written as part of the research. They 

are scaled in the same way as for the original characteristics, as described in section 9.3.3.2. 

The initial investigation with the new characteristics uses eight output units, whose target 

values are calculated according to the number of ite calculations required to obtain the BDDs. 
The test trees are therefore the same as those used in section 9.4.1 and are shown with their 
target schemes in Table 9.5. 
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A total of 512 trials were conducted using one hidden layer, with the number of units ranging 
from two to nine. The parameter rl was varied between 0.05 and 0.75 and N was assigned 

values between 0.001 and 0.9. The results are shown in Table 9.11. 

Number of correct 0 1 2 3 4 5 6 7 8 
predictions 

Number of trials 4 12 42 159 222 64 8 1 0 

Table 9.11: The results obtained using one hidden layer in the network 

The greatest number of correct predictions is 7/20, which was obtained using six hidden units 

and parameter values n=0.5 and p=0.5. On average, the number of correct predictions was 

only 3.586. 

1625 trials were conducted using two hidden layers in the network. The number of units in 

each hidden layer ranged from two up to six. Again, the parameter n was varied between 0.05 

and 0.75 and p was varied between 0.001 and 0.9. The results are shown in Table 9.12. 

Number of correct 0 1 2 3 4 5 6 7 8 
predictions 

Number of trials 0 4 65 717 794 44 1 0 0 

Table 9.12: The results obtained using two hidden layers in the network 

The greatest number of correct predictions is 6/20, which was obtained using five units in the 
first hidden layer, six units in the second hidden layer and parameter values of ri = 0.5 and 

p=0.1. Although more trials were performed than with one hidden layer, fewer resulted in 

five, six and seven correct predictions and on average only 3.500 correct predictions were 

made. 

Finally, the modified characteristics were used with four output units in the network. The test 

trees are the same as those used in section 9.4.2 with the target schemes shown in Table 

9.8. 

A total of 520 trials were performed using one hidden layer, with the parameters varying in the 

ranges 0.05 - 0.75 for q and 0.001 - 0.9 for p. The greatest number of correct predictions is 

9/20, which was obtained from 15 trials. The average number of correct predictions is 5.763. 
Table 9.13 shows the results from all 520 trials. 
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Number of correct 0 1 2 3 4 5 6 7 8 9 10 
predictions 

Number of trials 0 0 2 13 68 126 198 55 43 15 0 

Table 9.13: The results obtained using one hidden layer in the network 

The use of two hidden layers did not produce improved results, as can be seen from Table 

9.14. A total of 1625 trials were conducted, with the same range of parameter values as for 

the one-layer investigation. 

Number of correct 0 1 2 3 4 5 6 7 8 9 10 
predictions 

Number of trials 0 0 0 8 44 578 885 93 16 1 0 

Table 9.14: The results obtained using two hidden layers in the network 

The greatest number of correct predictions was 9/20, which was obtained using five units in 

the first hidden layer, six units in the second hidden layer and parameter values of ri = 0.05 

and p=0.9. The average over all the trials is 5.654, which is lower than obtained with one 
hidden layer. 

9.4.4 Discussion of Results 

Overall, the results from the multi-layer perceptron investigation have been very 
disappointing. When using eight output units the greatest number of correct predictions was 

seven out of twenty and when using four output units the best result was ten out of twenty 

correct predictions. In order to be a viable technique for scheme selection within the fault tree 

strategy, at least 80% accuracy would be required. 

The chosen network architectures have been unable to reproduce the results previously 

obtained by Bartlett, where 14/20 correct predictions were attained. The main difference in the 

approaches is that the reduced fault trees have been used in this investigation. Although it 

was expected that this would lead to improved results, because unnecessary elements have 

been removed from the system, it could in fact have made it more difficult for the network to 
distinguish between the fault trees. 

Another reason for the apparent disparity in the network performance could be the choice of 
test data. As explained in section 9.3.3.3, the test trees for each investigation are chosen so 
that each scheme appears as the best choice for approximately the same number of trees. 
However, the initial test data chosen by Bartlett is shown in Table 9.15. 
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Tree 1 2 3 4 5 6 7 8 9 10 

Best scheme(s) 1-6 1 1-6 3 2 1,2 2 4 1,3 2 

Tree 11 1 12 13 14 15 16 1 17 18 19 20 

Best scheme(s) 1,2,4 3 2 3 1.6 1-3 1-6 2 3 3 

Table 9.15: Target schemes for the set of twenty test trees in Bartlett's study 

Having used six ordering schemes, it can be seen that the worst result would be 4/20 correct 
predictions as each scheme performs equally well on trees 1,3,15 and 17. If the network 

simply chooses the same scheme for each tree, then by selecting schemes 1,2 and 3 it 

would correctly predict nine, twelve and eleven cases out of twenty respectively. The 

distribution of correct predictions for 200 trials shows that they range from the minimum 

possible up to 14/20 for one case. They are mainly grouped around 7-11 correct predictions, 

with 8 correct predictions obtained the greatest number of times (-38/200 trials). This 

distribution is therefore not dissimilar to the results obtained in the current investigation. 

As the current neural network technique has not adequately modelled the ordering problem, a 

second method known as the radial basis function neural network is considered. A significant 

advantage of this network model is the fast training times, which allows for a more thorough 

analysis. The radial basis function network is described in the following sections. 

9.5 Radial Basis Function Neural Network 

The radial basis function neural network model again performs a non-linear mapping from a 
set of input units that represent the fault tree characteristics to a set of output units, which 
each represent a variable ordering scheme. Diagrammatically, it is very similar to the multi- 
layer perceptron, as shown in Figure 9.4: 

c output units 

M basis functions 

d input units 

Figure 9.4: Radial basis function neural network 
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Unlike the multi-layer perceptron, which can have any number of hidden layers, the radial 
basis function network has only one hidden layer, which is made up of units known as basis 
functions. The outputs of the basis functions are determined by the distance between the 

input vector and a prototype vector. 

As with the multi-layer perceptron model, connections run between every unit in one layer to 

every unit in the next. The connections between the units in the input layer and a basis 

function in the hidden layer represent the elements of the vector determining the centre of that 
basis function. The connections between the hidden layer and the output layer represent the 

weights of the network and control the influence of each basis function on the output units, in 

the same way as with the multi-layer perceptron model. 

The training procedure is implemented in two stages. The first stage determines the values of 
the parameters governing the basis functions using unsupervised training methods. The 

second stage of training uses a supervised technique to calculate the values of the second 
layer weights. The parameters and weights calculated in training are subsequently used to 

progress through the network in the testing phase. The two training stages are described in 

detail in the following sections. 

9.5.1 Training Stage One 

The first stage of training uses unsupervised techniques to determine the parameters of the 
basis functions using only the input data. There are several non-linear basis functions that 

can be used; the one chosen for this investigation is the Gaussian function of the form: 

li2 
cpI(x)=ex 

X. ' 
p- 2II 

9.20 
2cr 

where x is the d-dimensional input vector with elements x,, pj is the vector determining the 

centre of the basis function cps with elements pp and a is the width parameter, which controls 
the smoothness of the interpolating function. The Gaussian function has the property that 

cp -+0 as Ixl -ý o. As it is a localised function, only a few hidden units will have significant 

outputs for any given input vector. 

Another choice of localised basis function is: 

cp(x)=(x2 +a2)'a, a>0 9.21 

However, the basis function need not be localised and other choices are: 

0 the thin-plate spline function, cp(x) = x2 In(x) 9.22 
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" the function cp(x)=(x2+a2T, 0<ß<1 9.23 

" the cubic function, cp(x) = x3 9.24 

0 and the linear function, cp(x) =x9.25 

which all have the property that 9 --- oo as Ixl --> °° . 

However, the Gaussian function will be used and the parameters that must be calculated 
during this training stage are therefore: 

" The radial basis function centres. 

" The width parameters. 

The radial basis function centres are chosen as a random subset of the input vectors. This is 

one of the simplest possible methods of selecting the centres, but it is very fast and is a good 

starting point from which to work. Other methods can be found in reference 35. The number 

of centres can range from one to a maximum of the number of input vectors used, though 

there are typically many less than this maximum. 

The width parameter of each radial basis function is given the same value, which is equal to 

the average distance between their centres. It is also possible to use multiples of this value, 

or indeed different parameters for each basis function. Again these alternative methods are 
discussed in detail in reference 35. Using the average distance between the centres ensures 
that the basis functions overlap to some degree and so give a relatively smooth 

representation of the distribution of the data set. 

9.5.2 Training Stage Two 

The second stage of training uses a supervised technique to calculate the optimum values for 

the final layer weights in the network. The value of each output unit is calculated as a 

weighted sum of its inputs, giving: 
M 

Yk(X)_LWkj(PJ(X) 9.26 
J=o 

where wW is a weight going from unit j in the hidden layer to unit k in the output layer and M is 

the total number of basis functions. cpo denotes the bias, whose output is fixed at one. 

The weights are optimised by minimising the error at the output units. The sum-of-squares 
error function for the network is given by: 

E=2Fý(Yk(xn). tk)2 9.27 
n=1 k=1 
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where tk is the target value for output unit k, when the network is presented with input vector 

x". By substituting Equation 9.26 for yk(x") , this can be re-written as: 

2 
Nc 

E_- Wkj cp, (X n)-tn 9.28 
21y 1 

Differentiating this expression with respect to the weights and setting the derivative equal to 

zero gives a set of equations of the form: 

)'tk (PJ(Xf)=0 

t[wkPJxn M 

n=1 J--° 9.29 

In order to solve these equations, they can be written in matrix notation as: 

«OT 0) WT = OTT 9.30 

where 0 is an NxM matrix with elements cp, (x") in the nth row and jth column, 

W is acxM matrix with elements ww in the kth row and j`h column, 

T is an Nxc matrix with elements tk in the nth row and kth column. 

Re-arranging for W gives: 
WT = ((I)T 4p\. 1 OTT 9.31 

Therefore, the calculation of the weights is a linear problem and they can be found very easily 
using Equation 9.31. 

A non-linear activation function can be applied to the output units, but the calculation of the 

weights would then become a non-linear optimisation. One of the major advantages of using 

radial basis function networks is the possibility of avoiding the need for such an optimisation, 
resulting in much faster training times. 

9.5.3 A Comparison of the Multi-Layer Perceptron and Radial Basis Function Models 

The multi-layer perceptron and radial basis function models have very similar roles, in that 
they are both techniques for performing non-linear mappings between multi-dimensional 
spaces. However, the networks themselves have significant differences and employ different 
techniques for their analysis. Some of the main differences are outlined below. 

" The outputs of the hidden units in the multi-layer perceptron are calculated by 

applying a non-linear activation function to the weighted sum of their inputs. In 

contrast, the outputs of the hidden units of the radial basis function network are 
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generated depending on the distance between the input vector and a prototype vector 

and transformed using a localised basis function. 

" Many hidden units contribute to the value of the output units in the multi-layer 

perceptron. This means that the training process to determine the weights is highly 

non-linear and can lead to very slow convergence times. The radial basis function 

network uses localised basis functions for the hidden units, which means that typically 

only a few will have significant outputs that contribute to the values of the output units 

and examples far from the decision boundaries have little influence on the network. 

" The multi-layer perceptron can have many layers of hidden weights, leading to 

complex network architectures and long training times. The radial basis function 

network, however, has a simple structure, consisting of two layers of weights. The 

first layer represents the parameters of the basis functions and the second layer 

forms linear combinations of the outputs of the basis functions to generate the values 

of the output units. 

" The weights in the multi-layer perceptron are determined simultaneously during a 

single training phase. However, with the radial basis function network, the training 

takes place in two stages. The first stage uses an unsupervised technique to 

determine the parameters of the radial basis functions. This is very fast, but means 

that the centres and width parameters of the basis functions are not necessarily 

optimal for the problem. The second stage determines the final layer weights using a 

fast linear supervised method. The training process is much faster than for the multi- 

layer perceptron as it does not require a non-linear optimisation. 

9.6 Results of the Radial Basis Function Investigation 

Each of the five network architectures investigated for the multi-layer perceptron is examined 

using the radial basis function network. This allows for a direct comparison of the two 

methods. 

The number of radial basis function centres can range from one up to the number of training 

trees. The centres are chosen randomly with a random number sequence that is initiated with 

the use of a seed value. Throughout the network evaluation, seed values from 1 to 500 are 

used for each possible number of centres (1 - 216), which results in 108,000 trials. This 

should give a good indication of the network performance. 
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9.6.1 Initial Network Architecture 

The initial network architecture is the same as for the multi-layer perceptron and Is discussed 

in sections 9.3.3.1 - 9.3.3.3. Briefly, this comprises of eleven input units, each representing a 
fault tree characteristic and eight output units that represent the ordering schemes available 
for selection. The target values for the output units are determined by the number of non- 
distinct nodes in the BDDs constructed using each of the ordering schemes. 216 fault trees 

are used in the training phase and twenty trees are used in the predictive phase. The test 

data for the initial investigation is shown in Table 9.2. 

The number of correct predictions was recorded for each trial and the results are shown in 

Table 9.16. 

Number of correct 0 1 2 3 4 5 6 7 
predictions 

Number of trials 3 71 310 59296 48159 153 8 0 

Table 9.16: The results obtained using the initial network architecture 

The greatest number of correct predictions is 6/20, which is lower than for the multi-layer 

perceptron model, which succeeded in predicting the correct scheme in seven cases. Given 

the large number of trials that were performed, a greater spread of results was predicted. 
From these results it is obvious that the current network architecture is not capable of 

modelling the variable ordering problem. 

9.6.2 Using the Number of If-Then-Else Calculations for the Output Units 

The second network uses the number of ite calculations required to obtain the BDDs as the 

target values for the output units. The results of the 108,000 trials are shown in Table 9.17. 

Number of correct 0 1 2 3 4 5 6 7 8 
predictions 

Number of trials 2 58 298 72791 34602 197 50 1 0 

Table 9.17: The results obtained using the number of Ite calculations and eight output units 

The best result is 7/20 correct predictions, which matches that obtained using the multi-layer 
perceptron network. However, this was produced in only one trial. Over 99% of the trials 

resulted in three or four correct predictions. 
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9.6.3 Reducing the Number of Output Units to Four 

The third network architecture uses four output units, whose target values are again 
determined by the number of Re calculations required to obtain the BDDs. The schemes used 

are 1,2,3 and 4. Table 9.18 shows the results obtained from the trials. 

Number of correct 0 1 2 3 4 5 6 7 8 9 10 
predictions 

Number of trials 0 2 14 84 9013 75653 22955 243 33 3 0 

Table 9.18: The results obtained using four output units for schemes 1,2,3 and 4 

The greatest number of correct predictions is 9/20, which is one less than the best result 

obtained using the multi-layer perceptron model. In order to check that the chosen four 

schemes are not simply a'bad' combination, the trials were also conducted using schemes 5, 

6,7 and 8. The modified set of test fault trees is shown in Table 9.19. 

Tree Iisabl7 Iisab22 Iisab25 Iisab47 Iisab57 rand135 rand139 

Target 7 5 7 5 5 6 7 
scheme(s) 

Tree randl4l rand142 rand143 rand144 rand146 rand147 rand149 
Target 7 8 7 5 8 6 5 

scheme(s) 

Tree rand150 randl5l rand153 rand154 rand155 rand156 
Target 8 8 6 8 6 6 

scheme(s) 

Figure 9.19: Target schemes for the test trees using the four output schemes 5,6,7 and 8 

The results of the trials using the modified set of output units are given in Table 9.20. 

Number of correct 0 1 2 3 4 5 6 7 8 9 10 
predictions 

Number of trials 0 2 18 93 193 107296 235 125 37 1 0 

Table 9.20 The results obtained using four output units for schemes 5,6,7 and 8 

They clearly show that no improvement has been made to the network performance, with 
over 99% of trials predicting only 5/20 correct ordering schemes. 
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9.6.4 Modified Fault Tree Characteristics 

The final network architectures use the modified fault tree characteristics listed in section 

9.4.3. The results obtained using eight and four output schemes are shown in Tables 9.21 

and 9.22 respectively. 

Number of correct 0 1 2 3 4 5 6 7 
predictions 

Number of trials 0 43 285 70882 36499 253 38 0 

Table 9.21: The results obtained using the modified characteristics and eight output units 

Number of correct 0 1 2 3 4 5 6 7 8 9 10 
predictions 

Number of trials 0 1 11 63 7817 63099 36570 344 78 14 3 

Table 9.22: The results obtained using the modified characteristics and four output units 

The new set of characteristics does not significantly change the network performance. 

Although ten correct predictions were made in three of the trials using four output units 

(whereas in the equivalent multi-layer perceptron investigation the best result was nine 

correct predictions), the network is clearly incapable of modelling the ordering problem 

suff iciently well. 

Overall, the radial basis function network does not appear to perform as well as the multi- 
layer perceptron model. Although more trials were conducted, due to the faster training times, 

it proved impossible to establish a good network architecture. Alternative methods for 

selecting the basis function centres and setting the width parameter could be considered, but 

the performance did not seem promising enough to warrant further investigation at this stage. 

9.7 Conclusions 

The neural network techniques have proved unsuccessful in modelling the variable ordering 

problem. Neither the multi-layer perceptron nor the radial basis function models have been 

able to reproduce the best result of 14/20 correct predictions achieved In previous work in the 

area"1. 

Numerous trials were conducted with both models, but the best result when using eight output 

units was 7/20 correct predictions. When the number of output units was reduced to four, the 
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best result was 10/20 correct predictions, but this was simply due to fewer options being 

available for selection. Both models produced the same best result for each number of output 

units. These results and the number of trials conducted show conclusively that the neural 

network models used are not capable of predicting the most appropriate ordering schemes for 

fault trees. 

Many features of the neural network models could be altered to try to improve the networks' 

performance. Several alternatives have been suggested throughout the chapter, but it is 

thought that the most likely reason for the poor performance of the network is that the chosen 
fault tree characteristics do not accurately represent the problem. There are an infinite 

number of choices for the characteristics and they need to be thoroughly reviewed before 

other, more detailed aspects of the models are examined. Another reason that the neural 

network approach has proved unsuccessful could be the non-unique way in which fault trees 

are written. Although the reduced trees have been restructured to a more concise format than 

the original trees, there are still numerous ways in which they can be constructed (for 

example, altering the order of gate inputs changes the tree structure, but maintains the 

underlying logic), that could result in different values for the characteristics. Consequently, the 

network models may not be able to distinguish between the different classes of fault tree 

accurately and so cannot predict a correct outcome for new input data. 

It is concluded therefore, that the current neural network models do not provide a satisfactory 

mechanism for selecting the ordering schemes to be used within the fault tree analysis 

strategy described in the previous chapter. However, the techniques used within the strategy 
for reducing the fault tree complexity have been shown to be very successful and as such, 
further research will focus on extending the methods of fault tree simplification. 
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Chapter 10: Extending the Reduction Technique 

10.1 Introduction 

The Faunet reduction technique, discussed in Chapter 6, has been shown to reduce the size 

of a sample set of fault trees and their resulting BDDs significantly. However, structures were 
identified within the reduced fault trees that could be further simplified through the application 

of the absorption and idempotent laws to the fault tree logic. 

This chapter describes how these laws can be incorporated into the reduction technique, by 

further manipulating the fault tree structure to give a more concise representation of the logic 

function. The aim of this work is to restructure the trees in such a way that they can be used 

to construct smaller BDDs, using fewer calculations, than are possible with either the original 

fault trees or those restructured using the Faunet reduction technique. 

10.2 Application of the Absorption and Idempotent Laws to Fault Tree Structures 

The Boolean laws of absorption are given as follows: 

a+(a. b) =a 10.1 

a. (a+b) =a 10.2 

According to these laws, fault tree structures such as those shown in Figure 10.1 (obtained 

from the left-hand sides of Equations 10.1 and 10.2), where an event is repeated on 

consecutive levels of a fault tree branch, will simply reduce to a single event 'a'. 

Figure 10.1: Fault tree segments that can be reduced to a single event'a' 

Further structures of this type can be examined by considering events that are repeated over 

any number of levels of a fault tree branch. Figure 10.1 shows the simplest possible case, 

with only one level between the occurrences of the repeated event, but in fact the fault tree 

can be simplified when a repeated event appears any number of levels down the tree. 

The simplification of the tree structure is based upon the application of the absorption and/or 
idempotent laws (i. e. a. a = a) to its underlying logic. The second law of absorption given by 
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Equation 10.2 is actually a combination of Equation 10.1 and the idempotent law and so the 

second tree segment shown in Figure 10.1 requires the use of both laws for its reduction to a 
single event. Some logic expressions (such as those of the trees shown in Figure 10.1) would 

only require the use of the absorption laws, some the idempotent laws and others require a 

combination of both. However, regardless of which laws would be necessary for the reduction 

of the logic expression, the way in which the tree structure is manipulated is dependent only 

on whether or not the two occurrences of the repeated event occur under the same gate type. 

The two gates to which the repeated event is an input are referred to as the primary and 

secondary gates, where the primary gate is the one located further up the fault tree branch. 

The following sections describe the manipulation of the fault tree according to the types of the 

primary and secondary gates. In each case, the fault tree must have an alternating sequence 

of `AND' and 'OR' gates (which it does after the contraction stage of the reduction process) 
before the technique can be applied. 

10.2.1 Primary and Secondary Gates of Different Types 

For fault tree branches that have primary and secondary gates of different types with an event 
in common, the structure is simplified by removing the whole of the secondary gate and its 

descendents. Figure 10.2(a) shows a tree with event 'a' common to gates G1 and G4. The 

tree is reduced by removing gate G4 and its descendants as described above. This results in 

the logically equivalent tree shown in Figure 10.2(b). 

(a) The original fault tree segment (b) The simplified fault tree segment 

Figure 10.2: Application of the absorption and idempotent laws for the case where the primary 

and secondary gates are of a different type 



The reduction of the logic expression confirms this re-arrangement. For the original tree 

segment shown in Figure 10.2(a), G1 is given by: 

G1= a. (b + (c. d. (a + e))) 

= a. b + a. c. d. a + a. c. d. e 

Applying the idempotent law a. a. =a to the second term reduces the expression giving 

Gl=a. b + a. c. d + a. c. d. e 

Finally, the absorption law removes the third term to give 

G1= a. b + a. c. d 

which represents the simplified tree segment in Figure 10.2(b). The method is applied in 

exactly the same way for primary gates that are 'OR' gates. 

10.2.2 Primary and Secondary Gates of the Same Gate Type 

For fault tree branches that have primary and secondary gates of the same type with an event 
in common, the structure is simplified by deleting the occurrence of the event beneath the 

secondary gate. Figure 10.3(a) shows a tree with event 'a' repeated under gates G1 and G3. 

In order to simplify the tree, event 'a' is removed from the inputs to G3, which is the 

secondary gate. This simply removes any combinations of events that include 'a', as 'a' alone 
is sufficient to cause system failure. 

(a) The original fault tree segment (b) The simplified fault tree segment 

Figure 10.3: Application of the absorption law for the case where the primary and secondary 

gates are the same type 

In this case, the logic expression can be reduced with the application of the absorption law: 
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G1=a+b. (a+c+d) 

=a+b. a + b. c + b. d 

=a+b. c+b. d 

This reduced logic expression represents the simplified tree structure shown in Figure 

10.3(b). 

The method is applied in exactly the same way to trees whose primary and secondary gates 

are 'AND' gates. The following section describes the one exception to this general method. 

10.2.2.1 Special Case 

There is one special case to consider, which occurs when the inputs to the secondary gate 

are a subset of the inputs to the primary gate and the gates are of the same type. In this 

instance, the fault tree branch is terminated from the gate above the secondary gate. An 

example of this special case, with primary and secondary gates of type 'AND' is shown in 

Figure 10.4. 

G1 

10 

a b c 

Figure 10.4: The special case, where the secondary gate is a subset of the primary gate 

Event 'd' is irrelevant to the failure of the system, so the branch below and including gate G2 

is removed. This special case must be accounted for separately, as the general method of 
dealing with primary and secondary gates of the same type would simply remove all the 
inputs to the secondary gate, but leave the gate above in place. 

The application of the absorption and idempotent laws to the fault tree will be referred to as 
the absorption technique. The technique is applied throughout the tree, considering not only 
event inputs to the gates, but also gate inputs. Gates that are repeated on a fault tree branch 

are also subject to the absorption and idempotent laws and are treated in exactly the same 



way as the events. However, only the case where the primary and secondary gates are of the 

same type will apply, as otherwise the tree would not be an alternating sequence of gate 
types. 

10.3 Implementation of the Absorption Technique 

The absorption technique has been programmed as part of the research (extended. c) and is 

capable of dealing with any given fault tree structure. The implementation is described in this 

section with the aid of two worked examples, each covering different aspects of the 

technique. 

10.3.1 Worked Example 

Consider the fault tree shown in Figure 10.5. 

Figure 10.5: Example fault tree 

The tree must be input to the program in the form of a data file, which represents the fault tree 
by listing each gate, together with its type ('AND' or 'OR') and inputs. It is this data that is 

subsequently manipulated by the program and converted back to a tree structure after the 

process is complete. The data for the fault tree shown in Figure 10.5 is given in Table 10.1. 
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Gate 

name 
Type 

Number of 
gate inputs 

Number of 
event inputs 

Inputs 

Top AND 2 1 G1 G2 a 
G1 OR 2 0 G3 G4 

G2 OR 2 0 G5 G6 
G3 AND 0 2 ab 
G4 AND 1 1 G7 c 
G5 AND 0 2 df 

G6 AND 1 2 G8 ce 
G7 OR 1 2 G9 ad 
G8 OR 1 1 G5 b 

G9 AND 0 2 ef 

Table 10.1: Data for the fault tree in Figure 10.5 

Each column of the fault tree data is held in an array and in the program is converted to a 

numerical format for ease of manipulation. The absorption technique is applied to this tree in 

three stages. 

Absorption Stage One 

Starting at the head of the tree, a depth-first exploration is undertaken, which identifies inputs 

to the gates that occur more than once in the fault tree data (as they must occur at least twice 

if it is to appear further down the branch). This is achieved by referring to an array that holds 

the number of occurrences of each gate and event and which is updated as necessary as 

changes are made to the data. If an input is repeated in the data, its gate becomes known as 
the primary gate and a further depth-first exploration takes place through the branches 

beneath that gate to establish whether the event occurs again in its descendants. As 

explained in the previous sections, any subsequent changes to the tree data depend on 

whether the second occurrence (under the gate referred to as the secondary gate) is an input 

to an 'AND' gate or an 'OR' gate. 

Of the inputs to gate Top, event 'a' occurs elsewhere in the data, so Top becomes the primary 

gate and the branches below are searched for any other occurrences of 'a'. Gate G3 is 
identified as having 'a' as an input and as it is of the same type (they are both 'AND' gates), 
this results in the removal of 'a' from the inputs to G3 and its number of occurrences is 

reduced by one. However, as gate G3 now has only one input it can be removed and its 

remaining input, event 'b', becomes an input to G1, the parent gate of G3. After this first 

stage, the fault tree is altered to give the new tree shown in Figure 10.6, with the 

corresponding data shown in Table 10.2. 
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Figure 10.6: The fault tree after stage one of the absorption technique 

Gate 

name 
Type 

Number of 
gate inputs 

Number of 
event inputs 

Inputs 

Top AND 2 1 G1 G2 a 

G1 OR 1 1 G4 b 

G2 OR 2 0 G5 G6 

G4 AND 1 1 G7 c 

G5 AND 0 2 df 

G6 AND 1 2 G8 ce 

G7 OR 1 2 G9 ad 

G8 OR 1 1 G5 b 

G9 AND 0 2 ef 

Table 10.2: Data for the fault tree in Figure 10.6 

Whenever absorption has taken place, the tree must be checked to ensure it still has an 

alternating sequence of gate types. It is obvious from this example that if event 'b' had been a 

gate, it would have been an 'OR' gate to maintain the alternating sequence after gate G3. The 



result would be two 'OR' gates in succession, not the alternating sequence that is required to 

continue with this method. 

It is not possible to maintain the alternating sequence by allowing gates to have only one 
input (or indeed no inputs if a further absorption was to take place) and scanning the data to 

remove these gates after all possible absorptions have been applied, as this causes further 

problems. For example, if there was another occurrence of event 'b' higher up this branch (but 

obviously lower than the primary gate which had caused the first absorption to take place), 

which was under an 'AND' gate, then this would now cause the removal of the entire branch 

from G1 downwards. If however, gate G3 had remained, the primary and secondary gates 

would both be the same type and the result would be simply to remove 'b' from the inputs to 

G3. The consequence of this would be that the branch below and including G1 would remain, 

giving an incorrect fault tree structure. Therefore in order to avoid these problems, gates with 

only one input are removed and the contraction routine is performed after each stage has 

taken place. 

Absorption Stage Two 

Continuing through the branches below the primary gate Top, event 'a' also occurs as an 
input to gate G7. As this gate is a different type to Top, the branch from G7 downwards is 

removed. The data is updated by deleting the lines for gates G7 and G9, and G7 is removed 
from the list of inputs to gate G4. This leaves G4 with only one input, resulting in its 

subsequent removal and its remaining event 'c' becomes an input to gate G1. The occurrence 

array is also updated accordingly. Figure 10.7 shows the current fault tree and Table 10.3 

shows the updated fault tree data. 

Gate 

name 
Type ie 

of 
gate inputs 

Number of 
event inputs 

inputs 

Top AND 2 1 G1 G2 a 
G1 OR 0 2 bc 

G2 OR 2 0 G5 G6 

G5 AND 0 2 df 

G6 AND 1 2 G8 ce 
G8 OR 1 1 G5 b 

Table 10.3: Data for the fault tree in Figure 10.7 
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Figure 10.7: The fault tree after stage two of the absorption technique 

Absorption Stage Three 

Event 'a' now occurs only once in the data, so the depth-first exploration continues, with the 

aim of identifying inputs to gates that have more than one occurrence in the fault tree data. 
Gate G1 is considered next, but as it lies at the end of a branch no further analysis can take 

place. Of the inputs to gate G2, gate G5 is known to occur elsewhere in the fault tree, so the 

branches beneath G2 are examined. G2 is an 'OR' gate and as G5 also occurs under another 
'OR' gate, G8, it is simply deleted as an input to the secondary gate. The line of data for G5 is 

not deleted as it occurs elsewhere in the tree, but the occurrence array is changed so that it 

has only one occurrence. G8 is left with the single input 'b', which now becomes an input to 
G6 and G8 is removed from the data. The updated fault tree and corresponding data is shown 
in Figure 10.8 and Table 10.4. 
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Figure 10.8: The fault tree after stage three of the absorption technique 

Gate 

name 
Type ie 

of 
gate inputs 

Number of 
event inputs 

Inputs 

Top AND 2 1 G1 G2 a 
G1 OR 0 2 bc 

G2 OR 2 0 G5 G6 

G5 AND 0 2 df 

G6 AND 0 3 bce 

Table 10.4: Data for the fault tree in Figure 10.8 

This concludes the application of the absorption technique to this fault tree. Although they 
look very different, the fault trees in Figures 10.5 and 10.8 have exactly the same underlying 
logic, which can be shown by considering the minimal cut sets of both trees. 

Considering the original fault tree, as shown in Figure 10.5, G1 and G2 can be written as: 

G1 = a. b + c. (a +d+e. f) 

G2 = d. f + c. e. (b + d. f) 

Therefore the top event is given by: 

Top = a. G1. G2 

= a. (a. b + ca + c. d + c. e. f). (d. f +c. e. b + c. e. d. f) 

= a. b. d. f + a. c. d. f + a. b. c. e 
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Now considering the modified fault tree shown in Figure 10.8, G1 and G2 are given by: 

G1=b+c 

G2 = d. f + b. c. e 

Top can therefore be written as: 

Top = a. G1. G2 

= a. (b + c). (d. f + b. c. e) 

= a. b. d. f + a. c. d. f + a. b. c. e 

The minimal cut sets of the two fault trees are therefore identical. 

10.3.2 Dealing with Repeated Gates Within the Fault Tree Structure 

This section highlights the way in which the fault tree data is manipulated when gates occur 

more than once in the fault tree and require altering in different ways. This is an aspect that 

was not covered in the previous example and a second example fault tree, shown in Figure 

10.9, is used to demonstrate the process. 

Figure 10.9: The second example fault tree 
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Again, it is the data that is manipulated within the program and the corresponding data for the 

tree in Figure 10.9 is shown in Table 10.5. 

Gate 

name 
Type 

Number of 
gate inputs 

Number of 
event inputs 

Inputs 

Top OR 2 0 G1 G2 

G1 AND 1 1 G3 a 
G2 AND 1 1 G3 b 

G3 OR 1 1 G4 c 
G4 OR 1 2 G5 ad 

G5 AND 0 2 ef 

Table 10.5: Fault tree data for the example tree shown in Figure 10.9 

On the left-hand branch of the tree, event 'a' appears as an input to both G1 and G4. In order 

to simplify, the absorption method would remove the second occurrence under gate G4. 

However, gate G4 occurs elsewhere in the fault tree and this occurrence cannot be simplified 

as 'a' does not appear as an input further up the branch. The fault tree data lists each gate 

just once, so the solution is to duplicate the data for gate G4 under a new gate name and 

apply the changes to the generated gate. This new gate name will need to be listed as the 

input to its parent gate, G3. However, as G3 appears twice in the tree and the other 

occurrence does not require alteration, it must also be duplicated and the modifications made 

to the new generated gate. 

This method can be generalised as follows. A list is made of the gates encountered on the 

path through the tree from the primary gate to the secondary gate. In this case the path is G1, 

G3, G4. If the primary gate occurs more than once in the tree data, no further action is 

required, as the modifications will be valid for each repeated section. However, if any gate 

after the primary gate is repeated then duplicates are required of each gate from the repeated 

gate down to the secondary gate. As each gate is duplicated, the one preceding it in the list is 

altered so that it points to the correct gate input. The absorption method is then applied to the 

new secondary gate. 

Gates G3 and G4 are therefore duplicated and are given the names G6 and G7 respectively. 
Input G4 to gate G6 now becomes input G7 and the input list for G1 is altered to include G6 

instead of G3. The absorption method removes event 'a' from the inputs of gate G7. 

The modified fault tree and data are shown in Figure 10.10 and Table 10.6. Although the 

example is actually very simple, with just a single application of the absorption technique, the 

method of re-arranging the data is important to avoid incorrect analysis. 
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Figure 10.10: The fault tree after application of the absorption technique 

Gate 

name 
Type 

Number of 
gate inputs 

Number of 
event inputs 

Inputs 

Top OR 2 0 G1 G2 

G1 AND 1 1 G6 a 

G2 AND 1 1 G3 b 

G3 OR 1 1 G4 c 

G4 OR 1 2 G5 ad 

G5 AND 0 2 ef 
G6 OR 1 1 G7 c 
G7 OR 1 1 G5 d 

Table 10.6: Fault tree data after application of the absorption technique 

The previous examples have described how the absorption method was implemented and the 

following section considers its integration into the existing reduction technique. 

10.4 Integration of the Absorption Stage into the Reduction Technique 

The original three steps of the reduction technique are contraction, factorisation and 

extraction. The fourth stage of absorption was included after the final stage, but contraction 
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was also first re-applied to ensure the required alternating sequence of gate types. As before, 

the stages are continually applied to the fault tree until no further changes are possible in the 

system. The new extended reduction technique was applied to the same 228 trees as the 

original reduction method (summary details for the trees are given in Appendix II) so that a 
direct comparison of its effectiveness in reducing the size of the resulting BDDs could be 

made. The results are given in the following section. 

10.5 Results of the Application of the Extended Reduction Technique 

The absorption stage was shown to contribute significantly to the reduction in fault tree size, 

with a total of 773 applications over the 228 trees. Table 10.7 shows the results obtained for 

all four stages. 

Stage of the 
technique 

Number of applications 
on the 228 trees 

Contraction 127 

Factorisation 3008 

Extraction 254 

Absorption 773 

Table 10.7: Number of applications of each stage of the technique over the set of fault trees 

Absorption is obviously a worthwhile addition to the reduction technique, with over three times 

as many applications as the extraction stage. The absorption method can be applied over any 

number of levels in the fault tree (the depth-first algorithm ensures this happens in practice) 

and was shown to occur over up to nine levels. The number of applications over the different 

levels are shown in Table 10.8. 

Levels between 
1 2 3 4 5 6 7 8 9 

absorption 
Number of 210 144 168 100 74 44 17 13 3 

absorptions 

Table 10.8: Analysis of the levels over which the absorption technique takes place 

As the method is applied in a depth-first manner, more absorptions are likely over fewer levels 

as they have the ability to remove whole branches of the fault tree below, thus reducing the 

size of the tree and therefore the number of levels that can be explored. 
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The BDDs were obtained for both the original and reduced trees using the same eight 

ordering schemes that were used for analysing the original reduction method. These are 
described fully in Chapter 5, and are given below: 

" Modified top-down. 

" Modified depth-first. 

" Modified priority depth-first. 

" Depth-first, with number of leaves. 

" Non-dynamic top-down weights. 

" Dynamic top-down weights. 

" Bottom-up weights. 

" Event criticality. 

Three measures of complexity were used to assess the resulting BDDs: the number of non- 

distinct BDD nodes, the number of distinct BDD nodes and the number of ite calculations 

required to construct the BDDs. The resulting values for the BDDs obtained from the reduced 

trees can be found in Appendices XI, XII and XIII. 

125 of the 228 fault trees resulted in BDDs that had an identical number of non-distinct nodes 

for all eight ordering schemes. This is significantly more than the number obtained using the 

original reduction method, where 90 trees produced BDDs with an identical number of nodes 

using each scheme. Increases in the number of identical results were also seen for the 

distinct BDD nodes (126 trees compared with 90 using the original reduction technique) and 

the number of ite calculations (114 trees compared with 64 using the original reduction 

method). This suggests that the choice of ordering scheme becomes less critical when 

dealing with trees that have been restructured using the extended reduction technique. 

The success of the extended reduction technique in reducing BDD complexity was evaluated 

by comparing the BDDs constructed from the reduced trees against those obtained using the 

original fault trees. As there are 228 trees with eight ordering schemes used for each, there 

are a total of 1824 cases to consider. The difference in the number of ite calculations and the 

number of non-distinct and distinct BDD nodes was calculated for each case, together with 

the percentage decrease. The results are discussed in the following sections. 

10.5.1 Non-Distinct Nodes 

Out of a total of 1824 cases, 1823 showed a decrease or no change in the number of non- 
distinct BDD nodes after reduction. 40 of these remained the same size, but this was mainly 
due to the fact that the BDDs obtained from the original trees were already minimal. Of the 
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1823 cases that decreased or stayed the same, there was an average decrease of 79.03% in 

the number of non-distinct nodes. This compares favourably with the average decrease of 
46.72% obtained over 96.00% of the cases using the original reduction method. 

Only one case showed an increase in the number of non-distinct nodes after reduction. This 

was for the fault tree 'trials4', though a smaller BDD than had previously been possible was 

obtained through alternative orderings. The increase for the single case can be attributed to 

the change in the variable ordering obtained from the reduced tree, which obviously affects 
the resulting BDD (this is discussed in greater detail in Chapter 6). The smallest number of 

non-distinct nodes (i. e. the minimum obtained over all eight ordering schemes) therefore 

either increased for remained the same for all 228 fault trees, with an average decrease 

recorded of 75.29%. This again compares well with the results obtained for the original 

reduction technique, where an average decrease of 44.86% was obtained over 224 trees. 

10.5.2 Distinct Nodes 

In this category, 1809 cases (i. e. 99.18% of the total) showed a decrease or no change in the 

number of distinct nodes after reduction. The average decrease for these cases was 66.87%, 

which again compares well with the results obtained using the original reduction method, 

where an average decrease of 34.29% was obtained over 94.96% of cases. 

A total of fifteen cases showed an increase, but this can again be attributed to the change in 

variable ordering that occurs after manipulation of the fault tree. These cases account for 

eleven different fault trees, of which reduction had a negative effect on two, as the minimum 

number of distinct nodes obtained over all the orderings was smaller before reduction than 

after reduction. However, the increase in the number of nodes was small - for the tree 

'lisaba4' the minimum number of distinct nodes increased from 148 to 155; for the tree 'trials4' 

the minimum number increased from 101 to 104 distinct nodes. Of the remaining 226 trees, 

the average decrease in the minimum number of distinct nodes of 60.90% compares 
favourably with the average decrease of 32.47% obtained over 216 trees using the original 

reduction method. 

10.5.3 Number of If-Then-Else Calculations 

The number of ite calculations required to obtain the BDD is the measure that it is most 
advantageous to reduce. This is because the usual reason for being unable to obtain a BDD 
is the large number of calculations involved and the lack of computational resources for 

performing them. 



Only in three cases did the number of He calculations increase after reduction had taken 

place. Again this is attributed to the change in variable ordering that occurs after manipulation 

of the tree. The three cases involved two trees (lisab57 and nakashi), but for both a smaller 

number of ite calculations than was previously possible was obtained after reduction using 

alternative orderings. A total of 99.84% of cases either showed a decrease or no change in 

the number of ite calculations after reduction and the average decrease over these was 
84.62%. Using the previous method of reduction, only a 40.87% average decrease was 

recorded, over 86.62% of cases. 

The minimum attainable values of the number of ite calculations were also compared for each 

of the original and reduced trees. An average decrease of 74.16% was recorded over 228 

trees; using the original reduction method, an average decrease of 40.39% over 201 trees 

was obtained. 

None of the fault trees showed an increase in all three measures of BDD complexity and only 

two trees (benjiam and worrell) showed no improvement in any of the measures. This means 
that the extended reduction technique had a positive effect on 226 trees, as they each 

resulted in BDDs with at least one improved measure of complexity. 

10.6 Conclusions 

The application of the extended reduction technique to fault trees has been shown to 

significantly reduce the complexity of the resulting BDDs. The method has been analysed 

using three measures of BDD complexity (number of non-distinct nodes, number of distinct 

nodes and number of ite calculations) and has performed exceptionally well under each. It is 

also a substantial improvement on the original reduction method, which was itself deemed to 
have performed extremely well when first analysed. The additional stage of absorption 

obviously has additional benefit and the extended reduction method would be recommended 
for application to any fault tree before conversion to a BDD. 
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Chapter 11: Conclusions and Future Work 

11.1 Summary 

Fault Tree Analysis is used extensively for system reliability assessment, providing a clear 
visual representation of the causes of system failure. However, the conventional techniques 
for the quantitative analysis of fault trees can be computationally intensive and require the use 
of approximations, which inevitably leads to a loss of accuracy. The BDD technique has 

emerged as an alternative approach for performing the required analysis. The method is 

efficient and produces exact results, without the need for approximations. However, the 

structure of the BDD is very sensitive to the variable ordering used for its construction. A bad 

choice of ordering can result in a time-consuming construction process and a large BDD, 

which in turn can lead to increased analysis times. 

The aim of this research was to develop techniques for the efficient construction of BDDs 

from fault trees. This was approached in two ways. One method was to explore the variable 

ordering issue and the problem of finding an ordering scheme that produces the smallest 
BDD for any fault tree structure. The second approach considered techniques for reducing the 

complexity of fault trees, with the aim of constructing smaller BDDs and making the choice of 

variable ordering scheme less critical. 

The survey of ordering schemes conducted in Chapter 4 highlighted techniques that had not 
been fully explored and were considered worthy of further investigation. Eight schemes were 

chosen for a comparative study, which included four structural ordering schemes and four 

weighted methods. BDDs were constructed for 228 test trees, using the variable orderings 
determined by each of the schemes. In order to compare the performance of the schemes, 
three different measures of BDD complexity were considered: the number of non-distinct BDD 

nodes, the number of distinct BDD nodes and the number of ite calculations required to 

construct the BDD. The results showed that none of the schemes consistently outperformed 
the others, but that each scheme is relevant, as it generated a BDD complexity that could not 
be matched by any other scheme for at least one fault tree (and in many cases, several 
trees). It was also shown that even within a particular fault tree, different schemes work best 

depending on the measure used to assess the BDD complexity. 

The structure of a fault tree can vary considerably whilst still satisfying the same logic 
function, and is rarely written in its most concise form. This can have a significant effect on 
the complexity of the resulting BDD. The Faunet reduction technique was considered as a 
method for optimising fault trees, before implementing the BDD construction process. A set of 
228 test trees were restructured using this technique and its success was evaluated by 

comparing the complexity of the BDDs obtained from the reduced fault trees against those 
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generated using the original trees. The BDDs were constructed using variable orderings 

obtained from the eight ordering schemes developed during the comparative study. Again, 

three measures of BDD complexity were considered: the number of non-distinct BDD nodes, 

the number of distinct BDD nodes and the number of He calculations required to construct the 

BDD. 

The reduction technique was shown to perform well according to each measure of BDD 

complexity, with average decreases of 46.72% over 96.00% of the 1824 cases for the number 

of non-distinct nodes, 34.29% over 94.96% of cases for the number of distinct nodes and 
40.87% over 86.62% of cases for the number of ite calculations. The smallest attainable 

values of BDD complexity (i. e. the minimum obtained over all eight ordering schemes) were 

also compared for each of the original and reduced trees. Average decreases were recorded 

of 44.86% over 224 trees for the number of non-distinct nodes, 32.47% over 216 trees for the 

number of distinct nodes and 40.39% over 201 trees for the number of ite calculations. Only 

one tree recorded an increase in each measure of BDD complexity. Nine other trees showed 

no improvement in any of the measures, but reduction had a positive effect on the remaining 

218 trees, which each produced BDDs with at least one improved complexity measure. The 

performance of the eight ordering schemes on the reduced trees was also assessed 

according to these measures and the results obtained suggested that the choice of ordering 

scheme becomes less critical when dealing with reduced trees. The Faunet reduction 

technique was therefore concluded to be an effective pre-processing tool for fault trees. 

A fault tree analysis strategy was developed, which aims to increase the likelihood of 

obtaining a BDD for any given fault tree, by ensuring that the associated calculations are as 

efficient as possible. The method implements Faunet reduction, together with a second 

method of fault tree simplification, linear-time modularisation. This results in a set of concisely 

written subtrees, which are each converted to a BDD structure. The set of BDDs, which can 

encode both complex and modular events, fully represents the original fault tree. The 

appropriate quantitative analysis for the BDDs was developed, enabling the calculation of 

system parameters such as the unavailability and unconditional failure intensity. In addition, 

the methods for extracting the criticality functions of the basic events were demonstrated, 

which allow the system to be analysed in terms of its original components. 

The analysis strategy was applied to a set of 228 fault trees, and the calculation times 

compared with those obtained for the construction and subsequent quantification of the BDDs 

directly from the trees. The results showed substantial savings in analysis time when dealing 

with large fault trees, but slight increases in analysis time when considering small trees. The 

increases were due to the number of comparisons necessary for the Faunet reduction 
technique. The strategy does therefore have the potential to substantially reduce the analysis 
times of large fault trees and increase the likelihood of obtaining a BDD for any given tree. A 
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significant advantage is the possibility of analysing fault tree modules separately. This is likely 

to be of particular use where the tree is too large to be dealt with as a whole but can be 

analysed in pieces and the quantitative analysis applied afterwards to the set of BDDs. 

Neural networks were considered as a method of selecting an appropriate variable ordering 

scheme based on the fault tree characteristics. The aim of this research was to develop a 

network model that could be used within the fault tree analysis strategy for selecting the best 

ordering scheme for each module. If the optimal scheme could be chosen on each occasion, 
it would lead to smaller BDDs and further reduce the analysis times. Two neural network 

models were considered: the multi-layer perceptron and the radial basis function. Numerous 

trials were conducted with both models using the reduced fault trees. The best result when 

choosing from eight ordering schemes was 7/20 correct predictions. When the number of 

ordering schemes was reduced to four, the best result was 10/20 correct predictions, but this 

was simply due to fewer options being available for selection. These results and the number 

of trials conducted show conclusively that the neural network models used were not capable 

of modelling the variable ordering problem and it was concluded that they were not 

satisfactory for selecting the ordering schemes to be used within the fault tree analysis 

strategy. Further research therefore focussed on extending the methods of fault tree 

simplification. 

Structures were identified within the reduced fault trees (i. e. those that had been restructured 

using the Faunet reduction technique) that could be further simplified through the application 

of the absorption and idempotent laws to the fault tree logic. An additional stage was 
developed for the reduction technique that manipulates the fault tree structure to incorporate 

these laws. This extended reduction technique was applied to a set of 228 test trees. BDDs 

were obtained for both the original and reduced trees using variable orderings determined by 

eight different ordering schemes. The performance of the technique was evaluated by 

comparing the complexity of the BDDs obtained from the reduced trees against those 

obtained using the original fault trees. Three measures of BDD complexity were considered: 
the number of non-distinct BDD nodes, the number of distinct BDD nodes and the number of 
ite calculations required to construct the BDD. 

Average decreases were calculated of 79.03% over 99.95% of the 1824 cases for the number 

of non-distinct nodes, 66.87% over 99.18% of cases for the number of distinct nodes and 
84.62% over 99.84% of cases for the number of ite calculations. The smallest attainable 

values of BDD complexity were also compared for each of the original and reduced trees. 
Average decreases were recorded of 75.29% over 228 trees for the number of non-distinct 
nodes, 60.90% over 226 trees for the number of distinct nodes and 74.16% over 228 trees for 

the number of He calculations. Only two trees showed no improvement in any of the 

measures, meaning that the extended reduction technique had a positive effect on 226 trees, 
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as they each resulted in BDDs with at least one improved measure of complexity. The 

number of trees for which all eight ordering schemes produced identical results was 

significantly increased after the extended reduction technique had been applied (compared 

with both the original trees and those restructured using Faunet reduction), which 
demonstrates that the choice of ordering scheme becomes less critical when considering the 

reduced trees. This method was therefore shown to be beneficial in the BDD construction 

process, and is also a substantial improvement on the original reduction technique. 

11.2 Conclusions 

" The performance of any ordering scheme is dependent on the fault trees to which it is 

applied and varies according to the measure used to assess the complexity of the 

resulting BDDs. Even within a particular tree, different schemes work best depending on 

the measure used to evaluate BDD complexity. 

" The fault tree analysis strategy resulted in substantial savings in analysis time for a 
particularly large fault tree and increases the likelihood of obtaining a BDD for any given 
tree. A significant advantage of the strategy is the ability to analyse a fault tree in several 

stages, if it is too large to be considered as a whole. 

" The models considered for the neural network technique did not accurately represent the 

variable ordering problem and were therefore not satisfactory for inclusion within the fault 

tree analysis strategy. Further research is required before the neural network method can 
be used as a technique for selecting an appropriate ordering scheme for a fault tree. 

" The extended reduction method is an effective pre-processing tool for fault trees, 

significantly reducing the size of resulting BDDs and the number of calculations required 
for their construction. The choice of variable ordering scheme also becomes less critical if 

reduction has been applied to the fault tree. 

11.3 Future Work 

11.3.1 Combine Structural and Weighted Ordering Techniques 

Both structural and weighted schemes have been shown to be valuable in the construction of 
BDDs. An ordering scheme that combines these techniques, so that variables retain their 

neighbourhoods, but are also ordered according to their weighting within the tree could be 

beneficial for BDD construction. 

11.3.2 Incorporate Extended Reduction Into the Fault Tree Analysis Strategy 

The fault tree analysis strategy was developed using the Faunet reduction technique and 
produced promising results. The strategy could be modified by incorporating the extended 
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reduction method, which has been shown to result in significantly smaller BDDs than were 

obtained using the original reduction technique. This could result in improved analysis times. 
It would also be interesting to see the result of applying the strategy to trees that can not be 

analysed using other methods. 

11.3.3 Develop Further Quantification Methods 

The quantification methods developed for BDDs encoding complex and modular events 

enable the calculation of the system unavailability, system unconditional failure intensity and 
the event criticality functions. The methods could be extended to include the calculation of 

other performance indicators such as the system unreliability and basic event importance 

measures. 

11.3.4 Extend the Neural Network Approach 

There are many aspects of the multi-layer perceptron network that could be changed to try to 

fit the model to the ordering problem more successfully. For example, different activation 
functions could be applied, alternative optimisation algorithms could be implemented, or even 

pattern training could be used instead of batch training. Several features of the radial basis 

function model could also be altered, including the type of basis function, the choice of basis 

function centres and the way in which the width parameters are chosen. However, the choice 

of fault tree characteristics is thought to have the biggest influence on the success of the 

network, and these need to be reviewed in detail before more sophisticated network models 

are considered. 

One approach for determining the important fault tree characteristics is to use an 

unsupervised training technique, which can identify the classes that the network itself regards 

as distinct. Discussion in reference 37 suggests that models capable of unsupervised training 

can be especially valuable in exploratory work. As the most significant fault tree features have 

not yet been found, the network itself could help in detecting them. 

11.3.5 Analyse the Fault Tree Test Data 

The results obtained throughout the thesis are dependent upon the fault trees used to test the 

methods. The fault tree test set consisted of a combination of trees obtained from industry 

and trees generated randomly. However this test data is not exhaustive, that is, it Is unlikely to 

cover the full range of fault tree structures that can exist. Although a larger sample will lead to 
increased confidence in the results, including more fault trees in the data set may not provide 
a more rigorous assessment of the techniques, as the underlying features of the additional 
trees may be equivalent to those found in the existing set. Further work could therefore be 



undertaken to examine the structures of the test trees, in order to determine whether they 

could be classified according to particular characteristics. This could give an indication of 
whether the techniques examined within the thesis are more suited to one type of fault tree 

structure than another. 

11.3.6 Optimise Non-Coherent Fault Trees 

The work contained within this thesis has focussed on coherent fault tree structures, but the 

methods could be extended to consider non-coherent fault trees. Within such structures, both 

working and failed components can contribute to system failure and the techniques of 

reduction (both Faunet reduction and extended reduction) and modularisation could be 

modified to deal with these, so that smaller non-coherent BDDs can be constructed. 
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Appendix I 

Implementation of the Linear-Time Algorithm 

The linear-time algorithm, which determines the modules of a fault tree, can be described in 

four steps and uses the following variables: 

0 visitl: step number of the first visit to a gate or event. 
" visit2: step number of the second visit to a gate or event. 

" last-visit : step number of the final visit to a gate or event. 

" min: collected minimum of the variable visitl for the descendants of a gate. 

" max: collected maximum of the variable last-visit for the descendants of a gate. 

The steps of the algorithm are as follows: 

1. Set all the counters (as above) to zero. 

2. Perform a depth-first traversal of the fault tree (detailed algorithm shown in Figure 1.1), 

setting variables visitl, visit2 and last-visit for each gate and event. 

Note: For basic events, visitl and visit2 are identical. Also, the subtree under any 

gate is never traversed more that once - if visitl has already been set for a gate, then 
last-visit is simply updated and the traversal continues with the next gate. 

3. Perform the second depth-first traversal (detailed algorithm shown in Figure 1.2), finding 

for each gate, the maximum of the last visits and the minimum of the first visits of all the 

gates and events beneath it. 

4. A gate heads a module iff: 

" max is less that the value of visit2 for that gate 

and 

" min is greater than the value of visitl for that gate. 

The program 'module. c' that implements the algorithm was written in the C programming 
language. It reads the fault tree data from a datafile of the form *. dat, performs the analysis 

and outputs a list of the gates and whether or not they head modules into a file of the form 

*. idm (identify modules). 
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df_setup (node, step) 
{ 

if (node is a gate) 
{ 

step = step +1 

if (node has already been visited) 
{ 

set last-visit [node] = step 
} 

else (not been visited) 
{ 

set visitl [node] = step 

for (all inputs to gate) 
{ 

call df_setup (input, step) 
} 

step = step +1 

set: visit2 [node] = step 
last-visit [node] = step 

} 
} 

else (node is a basic event) 
{ 

if (node has already been visited) 
{ 

step = step +1 

set last-visit [node] = step 
} 

else (not been visited) 
{ 

step = step +1 

set: visits [node] = step 
visit2 [node] = step 
last-visit [node] = step 

} 

} } 

Figure 1.1: Algorithm to set the variables visitl, visit2 and last-visit for each gate and event 
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df_max_min (node) [node is always a gate in this case] 
{ 

for (each input to the gate) 
{ 

if (the input is a gate) 
{ 

if (the max/min hasn't been found for this gate input) 
{ 

call df_max min (input) 
} 

if (no initial values assigned to max [node] and min [node]) 
{ 

max [node] = max [input] 
min [node] = min [input] 

if (last-visit [input] > max [node]) 
{ 

max [node] = last-visit [input] 
} 

if (visits [input] < min[node]) 
{ 

min [node] = visitl [input] 
} 

} 
else 
{ 

if (max [input] > max [node]) 
{ 

max [node] = max [input] 
} 
if (last-visit [input] > max [node]) 
{ 

max [node] = last-visit [input] 
} 
if (min [input] < min [node]) 
{ 

min [node] = min [input] 
} 
if (visits [input] < min [node]) 
{ 

min [node] = visits [input] 
I 

} 
else (input is an event) 
{ 

if (no initial values assigned to max[node] and min[node]) 
{ 

max [node] = last-visit [input] 
min [node] = visits [input] 

} 
else 
{ 

if (last-visit [input] > max [node]) 
{ 

max [node] = last-visit [input] 
} 

if (visit1 [input] < min (node]) 
{ 

min [node] = visitl [input] 
} 

} 
} 

} 
} 

Figure 1.2: algorithm 
to set the variables 
max and min for 
each gate. 
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Appendix II 

Fault Tree Summary Details 

Fault tree 
Minimai 
cut sets 

Top gate 
type 

No. of 
levels 

No. of 
different 
events 

Total no. 
of events 

in tree 

No. of 
different 

gates 

Used in 
chapters 
5,6,8,10 

Used in 
chapter 9 

aaaaaaa 2 AND 3 3 4 3 � 

artqual 7 AND 5 7 11 5 � � 

arttree 2 OR 3 4 5 3 � 

astolfo 27 OR 8 16 22 19 � � 

bddtest 9 OR 5 13 15 9 � � 

benjiam 43 AND 5 11 22 15 � � 

bpfeg03 8716 OR 6 63 63 20 � 

bpfen05 7471 OR 6 61 61 17 � 

bpfig05 7056 OR 6 60 60 17 � 

bpfin05 416 OR 6 40 40 14 � 

bpfpp02 3 OR 3 4 5 3 � 

bpfsw02 84424 AND 7 40 44 21 � � 

ch8tree 5 AND 4 7 12 5 � � 

drei 019 63 OR 4 19 20 4 � 

drei 032 75 OR 4 21 22 4 � 

dre1057 2100 AND 5 32 33 7 � 

dre1058 11934 AND 5 41 64 13 � � 

dre1059 36990 AND 7 57 80 17 � � 

dresden 11934 AND 7 57 144 17 � � 

emerh2o 13 OR 4 10 11 4 � 

fatram2 6 AND 5 8 10 5 � � 

hpisf02 255 OR 6 72 80 19 � � 

hpisf03 71 OR 4 31 33 7 � � 

hpisf2l 7777 OR 6 61 208 15 � � 

hpisf36 61 OR 4 30 34 8 � � 

jdtreel 4 AND 4 7 7 5 � 

jdtree2 4 AND 4 7 7 5 � 

jdtree3 36 AND 7 21 21 11 � 

jdtree4 30 AND 7 20 21 11 � 

jdtree5 10 OR 7 20 21 11 � 

khictre 21 AND 5 22 74 19 � � 
lisal23 37 OR 7 27 39 15 � � 

Iisabl0 940 AND 7 48 80 27 � � 

1 Number of levels counts the top event as being on level 1. 
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Fault tree 
Minimal Top gate 
cut sets type 

No. of 
levels 

Different 

events 

Total Different 
events gates 

Chapters 
5,6,8,10 

Chapter 9 

lisab25 35 OR 6 26 37 15 � � 
lisab28 66 OR 6 22 22 9 � 

lisab30 17 OR 7 32 45 19 � � 
lisab3l 164 AND 6 47 94 31 � � 
lisab34 14 AND 4 14 23 8 � � 
lisab35 136 AND 5 40 57 19 � � 
lisab36 52 OR 6 39 130 46 � � 
lisab42 10 OR 5 21 23 7 � 

lisab44 12 OR 4 20 33 10 � � 
Iisab51 11 OR 5 19 21 8 � � 
lisab52 139 AND 6 38 94 31 � � 

lisab53 15 OR 4 9 10 5 � 
lisab54 14 OR 4 15 19 6 � � 
lisab57 170 AND 5 28 46 18 � � 
lisab59 3096 AND 5 49 49 16 � 
lisab60 19 AND 4 16 23 7 � � 
lisab78 503 AND 5 39 49 16 � � 
lisab86 383 AND 7 40 50 21 � � 
lisaba4 827 OR 7 44 63 26 � � 
lisaba9 85 OR 6 41 46 17 � � 

modtree 2 AND 4 5 74 � 

nakashi 20 AND 7 16 29 21 � � 
newtre2 3 OR 4 7 95 � 
newtre3 2 OR 4 5 64 � 
newtree 3 OR 4 6 74 � 
rand100 8 OR 7 27 53 19 � � 
rand101 2 AND 4 7 83 � 
randl02 1 AND 4 7 93 � 
rand103 13 OR 6 23 29 13 � � 
rand104 9 OR 7 22 41 16 � � 
randl05 96 OR 6 33 37 15 � � 
rand106 8 AND 7 37 76 31 � � 
rand107 5 OR 3 8 92 � 
rand108 35 AND 7 35 76 32 � � 
randl09 203 OR 7 56 68 27 � � 

rand110 8 OR 8 30 61 24 � � 
rand111 22 OR 6 22 47 19 � � 
rand112 1 AND 3 5 72 � 
rand113 1 AND 7 11 28 12 � � 
rand114 2 AND 5 9 12 4 � � 
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Fault tree 
Minimal 
cut sets 

Top gate 
type 

No. of 
levels 

Different 
events 

Total 
events 

Different 
gates 

Chapters 
5,6,8,10 

Chapter 9 

rand115 46 OR 6 29 46 21 � � 

randl16 15 AND 6 33 68 24 � � 

randl17 11 OR 5 17 23 10 � � 

rand118 52 OR 6 39 47 19 � � 

rand119 84 AND 6 30 37 14 � � 

rand120 58 AND 6 39 47 20 � � 

rand121 80 AND 7 37 50 18 � � 

rand122 4 OR 3 5 6 2 � 

rand123 12 AND 6 17 23 9 � � 

rand124 27 OR 7 24 30 12 � � 

rand125 13 OR 5 14 19 6 � � 

rand126 59 OR 6 37 53 25 � � 

rand127 43 AND 7 28 31 12 � � 

rand128 52 AND 6 35 68 24 � � 

rand129 1 AND 6 20 26 8 � � 

rand130 5 OR 7 23 40 13 � � 

rand131 2 AND 4 7 10 4 � � 

rand132 67 AND 7 39 84 31 � � 

rand133 4 AND 3 7 9 3 � 

rand134 60 OR 7 56 98 34 � � 

rand135 24 AND 7 33 64 24 � � 

rand136 1 AND 3 4 6 2 � 

rand137 15 AND 7 21 26 10 � � 

rand138 2 OR 7 18 31 10 � � 

rand139 53 AND 7 29 50 21 � � 

rand140 5 OR 4 9 11 3 � 

rand141 8 OR 8 30 61 24 � � 

rand142 410 AND 7 46 97 32 � � 

rand143 8 OR 7 28 40 17 � � 

rand144 41 OR 6 48 85 29 � � 

rand145 47 OR 6 33 34 11 � � 

rand146 15 AND 7 21 26 10 � � 

rand147 30 AND 7 43 90 36 � � 

rand148 8 OR 6 27 31 12 � � 

rand149 18 OR 6 57 64 22 � � 

rand150 114 OR 6 44 74 29 � � 

rand151 36 OR 6 28 32 10 � � 

rand152 1 AND 3 2 3 2 � 

rand153 3 AND 7 21 47 16 � � 

rand154 1 OR 7 21 30 11 � � 



Fault tree 
Minimal 

cut sets 

Top gate 
type 

No. of 
levels 

Different 

events 

Total 

events 
Different 

gates 

Chapters 
5,6,8,10 

Chapter 9 

rand155 52 AND 6 33 47 20 � � 

rand156 20 AND 6 22 28 10 � � 

rand158 9 AND 7 71 123 49 � � 
randol0 4 OR 3 6 8 2 � 
randoll 6391 AND 6 94 143 48 � � 
randol2 68 AND 6 68 98 32 � � 
randol3 73 OR 6 56 140 46 � � 
randol4 1 AND 4 7 9 3 � 
randol5 5 OR 4 5 18 5 � � 
randol6 76 OR 8 46 84 31 � � 

randol7 1 AND 3 6 7 2 � 

randol8 24 OR 7 85 178 62 � � 
randol9 764 AND 6 53 133 51 � � 
rando20 122 OR 8 47 143 52 � � 
rando2l 5 OR 5 11 11 5 � 
rando22 423 AND 7 64 128 46 � � 
rando23 9 OR 7 39 56 19 � � 
rando24 4 OR 3 7 8 2 � 
rando25 6 OR 5 16 33 14 � � 
rando26 3 OR 5 8 15 6 � � 

rando27 100 AND 8 46 115 45 � � 
rando28 1 OR 9 35 50 17 � � 

rando29 22 OR 7 38 67 25 � � 
rando30 195 AND 6 41 45 17 � � 

rando3l 5 OR 9 36 120 47 � � 

rando32 5 OR 4 6 15 4 � 
rando33 11 AND 5 32 63 17 � � 
rando34 35 OR 8 36 61 24 � � 
rando35 8 AND 6 24 51 19 � � 
rando36 10 OR 6 29 37 15 � � 
rando37 29 AND 6 30 74 27 � � 
rando38 9 OR 6 21 26 11 � � 
rando39 51 AND 7 26 66 27 � � 
rando40 9 OR 5 17 22 8 � � 
rando4l 1 AND 5 8 12 4 � 
rando42 2 AND 5 17 24 9 � � 

rando43 22 OR 5 27 31 10 � � 
rando44 436 OR 7 59 68 27 � � 
rando45 16 AND 6 28 60 22 � � 

Irando46 10 OR 6 41 69 22 � � 
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Fault tree 
Minimal Top gate 
cut sets type 

No. of 
levels 

Different 
events 

Total 
events 

Different 
gates 

Chapters 
5.6.8.10 Chapter 9 

rando47 15 OR 5 42 62 20 � � 

rando48 16 AND 5 21 42 16 � � 
rando49 4 AND 6 16 24 10 � � 
rando50 1 AND 5 8 12 4 � 
rando5l 3 OR 4 5 9 3 � 
rando52 41 OR 11 34 80 33 � � 
rando53 2 AND 6 21 35 13 � � 
rando54 269 AND 9 34 39 13 � � 

rando55 9 AND 7 23 41 15 � � 

rando56 3 OR 5 9 15 6 � � 

rando57 2 AND 5 8 17 5 � 

rando58 3 AND 6 17 28 10 � � 
rando59 99 OR 5 42 60 23 � � 

rando60 22 OR 7 70 87 36 � � 
rando6l 15 AND 7 20 51 19 � � 
rando62 7 AND 6 18 35 13 � � 
rando63 9 AND 7 23 41 15 � � 
rando64 31 OR 7 35 45 19 � � 
rando65 13 OR 5 15 25 11 � � 
rando66 5 AND 8 26 51 17 � � 

rando67 1 AND 3 4 6 2 � 

rando68 5 OR 5 8 19 6 � � 

rando69 6 OR 4 8 12 4 � 
rando70 27 AND 7 24 28 12 � � 

randoll 2 AND 4 6 10 4 � � 

rando72 2 OR 4 6 14 5 � � 
rando73 80 AND 6 34 65 22 � � 
rando74 2 OR 4 6 8 3 � 
rando75 4 AND 7 17 28 12 � � 
rando76 24 AND 6 32 45 15 � � 
rando77 27 OR 7 37 79 31 � � 
rando78 2 AND 6 30 38 17 � � 
rando79 4 OR 4 7 12 4 � 

rando80 22 AND 5 26 29 9 � � 

rando8l 4 OR 3 6 8 2 � 

rando82 5 OR 7 13 27 9 � � 

rando83 39 AND 6 21 30 14 � � 
rando84 52 OR 6 39 47 19 � � 

rando85 7 OR 7 26 40 13 � � 
rando86 1 AND 4 7 9 3 � 
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Fault tree 
Minimal 

cut sets 
Top gate 

type 
No. of 
levels 

Different 

events 
Total 

events 
Different 

gates 
Chapters 
5,6,8,10 

Chapter 9 

rando87 15 OR 6 22 29 11 � � 
rando88 29 OR 5 22 25 11 � � 

rando89 21 OR 8 41 61 24 � � 
rando90 2 AND 3 3 3 2 � 

rando9l 106 AND 6 58 98 32 � � 
rando92 58 AND 8 64 130 41 � � 
rando93 16 AND 7 40 55 19 � � 
rando94 1 AND 4 7 9 3 � 
rando95 31 AND 7 22 31 11 � � 
rando96 5 AND 4 8 9 3 � 

rando97 2 OR 5 5 6 4 � 

rando98 283 OR 6 52 69 22 � � 
rando99 28 AND 6 40 77 26 � � 
randoml 5 OR 4 6 12 6 � � 
random2 2 OR 3 5 7 2 � 
random3 235 OR 8 49 61 24 � � 
random4 5 OR 3 5 9 2 � 

random6 93 OR 6 49 122 45 � � 
random? 1 AND 4 5 8 3 � 
random8 4 AND 6 15 21 7 � � 

random9 2 AND 5 9 17 5 � 
relcour 6 AND 3 6 6 3 � 

rstreel 3 AND 5 5 6 4 � 

rstree2 3 AND 6 6 7 5 � 

rstree3 6 AND 6 8 10 8 � � 
rstree4 4 OR 4 5 10 5 � 
rstree5 2 OR 3 4 6 3 � 
rstree6 4 OR 3 6 8 3 � 
rstree7 8 AND 5 10 13 8 � � 
trialsl 39 AND 10 16 66 27 � � 
trials2 5 OR 8 14 32 22 � � 
trials3 1 AND 10 25 44 20 � � 
trials4 49 OR 13 21 85 39 � � 

usatree 2 AND 3 4 5 3 � 

worrell 10 AND 5 8 13 9 � � 
lisa100 313 OR 7 63 79 31 � 
lisal02 200063 AND 7 110 137 54 � 
lisal04 4 AND 6 20 28 10 � 
lisa107 6 OR 5 11 15 6 � 
lisal08 1 AND 5 10 17 6 � 
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Fault tree 
Minimal 
cut sets 

Top gate 
type 

No. of 
levels 

Different 
events 

Total 
events 

Different 
gates 

Chapters 
5,6,8,10 Chapter 9 

lisa109 20 AND 7 20 50 21 � 
lisa110 32 OR 7 52 87 36 � 
lisal11 46 OR 6 50 55 17 � 
lisal12 4769 AND 6 81 90 32 � 
lisa113 79 AND 7 60 75 25 � 
lisa115 37 OR 5 25 35 12 � 
lisa116 6 OR 5 14 23 10 � 
lisa118 45505 OR 8 77 96 37 � 
lisal19 15 AND 4 14 16 7 � 
lisal2l 72 OR 6 41 46 21 � 
lisa122 10 OR 6 23 38 12 � 
lisa124 1112 AND 6 65 81 28 � 
lisabl1 2 AND 6 21 35 13 � 
lisabl3 8 OR 8 31 61 24 � 
lisabl4 1633 OR 6 84 140 46 � 
lisabl5 8113 AND 9 98 122 49 � 
lisabl7 1054 OR 7 68 76 27 � 
lisab22 493 AND 6 72 143 48 � 
lisab26 3 OR 5 9 15 6 � 
lisab27 285 AND 8 62 77 26 � 
lisab33 2 OR 5 11 15 6 � 
lisab37 64 AND 4 30 33 10 � 
lisab39 1 AND 4 5 10 4 � 
Iisab40 3 AND 4 13 16 7 � 
lisab45 1 AND 6 10 25 9 � 
lisab47 3 AND 6 12 24 10 � 
lisab48 4 OR 4 17 29 8 � 
lisab50 2 AND 5 14 24 10 � 
lisab56 3 OR 6 17 29 11 � 
lisab6l 14 OR 6 40 57 22 � 
lisab62 74 OR 6 39 43 17 � 
lisab63 6 OR 5 18 23 8 � 
lisab64 7 OR 7 40 67 21 � 
lisab66 33 OR 7 40 79 31 � 
lisab67 1118 OR 7 77 96 38 � 
lisab69 46 OR 5 30 33 14 � 
lisab70 88 OR 7 48 53 19 � 
lisab7l 3 OR 5 14 23 8 � 
lisab72 34 OR 7 51 85 34 � 
lisab74 68122 AND 7 122 135 46 � 
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Fault tree 
Minimal 
cut sets 

Top gate 
type 

No. of 
levels 

Different 
events 

Total 
events 

Different 
gates 

Chapters 
5,6,8,10 Chapter 9 

lisab75 1 AND 6 29 41 14 � 
lisab76 898 OR 7 58 96 38 � 
lisab77 130 OR 6 59 74 29 � 
lisab80 2 AND 4 7 10 4 � 
lisab82 33540 AND 6 85 94 31 � 
lisab83 61 OR 6 33 47 19 � 
lisab85 4 OR 5 12 15 6 � 
lisab87 93726 AND 7 96 137 54 � 
lisab88 28 AND 5 49 70 25 � 
lisab89 84 AND 7 61 76 32 � 
lisab9l 7598 AND 7 62 77 32 � 
lisab94 5 OR 3 7 10 3 � 
lisab95 1 AND 5 18 25 7 � 
lisabal 1054 OR 7 68 76 27 � 
lisaba2 66083 AND 6 114 143 48 � 
lisaba3 5396 AND 8 84 105 40 � 
lisaba5 228 AND 8 57 82 29 � 
lisaba6 990 AND 6 56 62 22 � 
lisaba7 1054 OR 7 68 76 27 � 
lisaba8 3344 OR 6 100 125 45 � 

rand159 13 OR 7 34 67 25 � 

rand161 114 AND 6 38 62 22 � 
rand163 716 OR 8 58 96 37 � 

rand164 4374 AND 7 58 77 32 � 
rand165 2072 AND 7 98 109 40 � 

rand166 262 OR 7 55 79 31 � 
rand167 256 OR 7 37 44 19 � 
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Appendix III 

Number of Non-Distinct Nodes in BDDs Obtained from the Original Fault Trees 

Key to ordering schemes': 

1. Modified top-down. 

2. Modified depth-first. 

3. Modified priority depth-first. 

4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 
6. Dynamic top-down weights. 
7. Bottom-up weights. 
8. Event criticality. 

Fault tree 
Ordering scheme 

12345678 

aaaaaaa 3 3 3 3 3 3 3 3 

artqual 11 11 11 11 11 11 11 11 

arttree 5 5 5 4 4 4 4 4 

astolfo 128 131 107 123 128 125 131 130 

bddtest 38 38 38 59 62 60 38 62 

benjiam 87 76 76 80 87 84 80 83 

bpfeg03 290934 104687 219063 316983 321123 316983 95675 364508 

bpfen05 151974 49337 99003 53343 151563 150543 52619 151568 

bpfig05 144054 47987 94863 142623 143643 142623 50135 142628 

bpfin05 5316 2915 5282 5282 5282 5282 2963 5287 

bpfpp02 4 4 4 4 4 4 4 4 

bpfsw02 112553 110698 110698 110799 112553 112553 110799 112553 

ch8tree 12 11 11 14 12 14 14 12 

drei 019 69 69 69 69 69 69 73 69 

drel032 87 87 87 81 81 81 87 81 

drel057 2478 2487 2468 2303 2310 2310 2712 2300 

dre1058 26237 30373 22602 24956 26189 22628 29232 23132 

dre1059 65085 126229 119848 119408 64813 56952 125796 61036 

dresden 838653 27379 23037 22376 787373 22628 2344652 631388 

emerh2o 16 16 16 16 16 16 16 16 
fatram2 11 11 11 11 10 10 11 11 

hpisf02 225258 180757 180757 137120 267413 168046 530539 1105399 

1 For each fault tree, the ordering scheme(s) resulting in the fewest non-distinct BDD nodes is 
(are) shown in bold. 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
hpisf03 202 202 202 202 202 202 182 182 

hpisf2l 15155 10593 10593 11535 26825 26419 11505 62377 

hpisf36 178 150 178 210 210 210 132 132 

jdtreel 12 10 10 10 12 12 10 12 
jdtree2 12 10 10 10 12 12 10 12 

jdtree3 79 71 71 71 79 81 71 79 

jdtree4 67 59 59 59 67 67 59 67 

jdtree5 76 70 70 70 76 76 70 76 

khictre 1244 982 1244 1364 1364 1364 982 999 

Iisa123 346 360 360 280 336 234 430 307 

Iisab1O 14113 18490 24243 9828 8612 6719 23411 4975 

lisab25 164 181 167 149 154 150 155 164 

lisab28 201 156 190 160 171 150 190 162 

Iisab30 145 85 85 91 121 91 141 77 

lisab3l 6641 92082 92082 16757 5416 9295 51869 5339 

Iisab34 35 39 39 39 38 36 55 34 

Iisab35 17368 44339 44339 14332 14859 19581 31806 12710 

Iisab36 1553 698 708 4486 2724 3298 450 450 

Iisab42 23 17 17 17 17 17 24 17 

Iisab44 170 172 172 138 164 136 106 98 

Iisab5l 104 95 95 87 103 91 74 91 

Iisab52 5376 33585 33585 29644 3961 20021 45209 3360 

Iisab53 25 25 25 21 22 22 25 21 

Iisab54 61 43 55 55 55 55 55 59 

lisab57 1144 1751 1793 2359 1063 1134 1859 1193 

Iisab59 77222 35962 41272 105105 60994 110922 43242 114954 

Iisab60 101 66 66 97 60 97 97 48 

Iisab78 3694 2561 2528 6994 3687 6933 3959 4872 

Iisab86 5458 5464 4637 4310 5190 4394 4349 3326 

Iisaba4 9814 13425 13737 12478 6170 6811 12055 6330 

lisaba9 5055 2863 2863 3850 6145 3850 3962 4435 

modtree 4 4 4 4 4 4 4 4 

nakashi 687 536 448 806 476 583 481 375 

newtre2 9 9 9 9 9 9 8 10 

newtre3 7 6 6 6 6 6 6 6 

newtree 9 9 9 8 9 9 8 10 

rand100 21 21 21 21 22 22 14 22 

rand101 7 7 7 7 7 7 7 7 

rand102 2 2 2 2 2 2 2 2 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

rand103 125 106 106 90 112 110 103 106 

rand104 81 104 104 90 94 88 37 88 

rand 105 1001 1117 1000 700 847 970 525 930 

rand106 19 6769 6769 24 16 21 22 17 

rand107 5 5 5 5 5 5 5 5 

rand108 249 1978 1939 1139 134 520 1579 136 

rand109 11133 14224 14224 2766 6656 4956 3661 3401 

rand110 37 46 46 45 44 48 22 45 

randl11 227 303 286 210 205 230 156 115 

randl12 5 5 5 5 5 5 5 5 

randl13 6 6 6 6 6 6 6 6 

randl14 7 7 7 7 7 7 7 7 

randl15 920 1131 1131 1022 809 620 1146 587 

rand116 1182 837 1003 2172 846 2040 2660 392 

randl17 43 32 31 31 31 31 31 32 

randl18 1683 1014 1022 593 947 682 744 396 

randl19 296 295 391 263 269 266 295 269 

rand120 3925 5362 4839 3642 3607 4111 5536 3077 

rand121 315 164 164 146 156 142 882 148 

rand122 4 4 4 4 4 4 4 4 

rand123 20 22 22 27 17 17 22 17 

rand124 206 178 166 166 167 168 125 144 

rand125 24 30 24 21 21 21 24 21 

rand126 2024 5910 2552 1496 2106 1856 1820 3120 

rand127 285 218 218 272 285 272 272 292 

rand128 1833 593 630 1245 1762 1472 1266 931 

rand129 4 4 4 4 4 4 4 4 

rand130 5 5 5 5 5 5 5 5 

rand131 8 8 8 8 8 9 8 7 

rand132 4891 12858 12858 24215 4393 14958 22951 3909 

rand133 5 5 5 5 5 5 5 5 

rand134 550 4792 5470 51222 673 10732 29655 661 

rand135 365 1255 1157 1101 395 349 1420 421 

rand136 4 4 4 4 4 4 4 4 

rand137 143 139 139 139 149 147 139 99 

rand138 2 2 2 2 2 2 2 2 

rand139 869 769 906 1273 645 1192 693 624 

rand140 5 5 5 5 5 5 5 5 

rand141 37 46 46 45 44 48 22 45 



Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

rand142 59072 74796 74322 115444 59462 111488 176698 62046 

rand143 270 201 243 171 229 229 127 146 

rand144 5617 39898 37150 15208 2309 9489 65099 1985 

rand145 499 303 303 400 504 384 193 444 

rand146 143 139 139 139 149 147 139 99 

rand147 3017 160475 168581 6307 2761 36930 11385 5460 

rand148 40 35 30 32 40 32 32 32 

rand149 168 87 143 143 213 144 84 213 

rand150 39213 108764 85856 62216 56768 57628 76449 37284 

rand151 258 148 250 250 258 258 148 233 

rand152 1 1 1 1 1 1 1 1 

rand153 8 8 8 8 8 8 8 8 

rand154 1 1 1 1 1 1 1 1 

rand155 1051 1695 1888 1439 894 863 2484 790 

rand156 44 40 40 40 40 40 41 40 

rand158 39 30 30 26 25 26 26 24 

randol0 4 4 4 4 4 4 4 4 

randoll 3.87x107 1.02x109 1.05x109 1.35x108 3.93x107 1.31x108 6.98x108 4.54x107 

rando12 9285 9739 9739 36182 7326 8415 35957 6186 

randol3 1580 1963 1963 2456 726 3731 31647 767 

randol4 2 2 2 2 2 2 2 2 

randol5 5 5 5 5 5 5 5 5 

randol6 533 463 474 1078 574 689 586 600 

randoll 5 5 5 5 5 5 5 5 

randol8 3625 31214 31214 768 2644 1273 741 2823 

randol9 13171 402926 228764 312218 9529 26081 2318684 10784 

rando20 10126 71152 81451 68892 14275 18437 232578 17137 

rando2l 36 21 35 21 36 21 21 24 

rando22 61382 271889 271889 131606 15023 50787 361842 14324 

rando23 151 159 159 159 138 150 159 127 

rando24 4 4 4 4 4 4 4 4 

rando25 24 16 16 59 22 34 37 19 

rando26 4 4 4 4 4 4 4 4 

rando27 656 8830 8830 6284 784 708 2867 669 

rando28 1 1 1 1 1 1 1 1 

rando29 587 934 737 1216 819 494 1169 1233 

rando30 12733 7929 9897 11787 12385 8160 3800 9866 

rando3l 11 11 11 1925 29 53 11 53 

rando32 5 5 5 5 5 5 5 5 



Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rando33 25 73 73 186 18 17 49 22 
rando34 220 230 287 292 208 250 356 196 
rando35 139 178 143 149 63 75 149 57 
rando36 62 61 61 43 46 42 42 44 
rando37 249 690 690 776 156 547 358 225 
rando38 66 58 58 53 69 57 33 57 
rando39 737 1400 1400 2252 606 2085 6824 997 
rando40 54 36 36 48 39 33 48 33 

rando4l 5 5 5 5 5 5 5 5 
rando42 5 5 5 5 5 5 5 5 
rando43 94 106 106 81 94 91 85 94 
rando44 367520 76890 74190 182720 234022 105551 212337 227519 
rando45 132 159 159 264 99 83 182 97 
rando46 20 16 16 16 23 21 51 32 

rando47 1127 1530 1530 2558 1094 1930 2990 1229 

rando48 87 34 38 34 56 34 98 38 

rando49 26 18 18 18 26 26 18 26 
rando50 5 5 5 5 5 5 5 5 

rando5l 3 3 3 3 3 3 3 3 
rando52 563 503 451 747 559 431 347 319 

rando53 5 5 5 5 5 5 5 5 

rando54 1643 920 1577 1577 1579 1704 1705 1171 

rando55 24 26 26 24 25 25 24 30 

rando56 7 7 7 7 7 7 7 7 
rando57 6 6 6 6 6 6 6 6 

rando58 9 9 9 9 9 9 9 9 
rando59 19360 31329 31329 21834 21162 19823 11829 17903 
rando60 857 383 587 479 543 459 880 433 
rando6l 103 71 62 265 77 119 257 42 

rando62 20 22 11 11 11 11 22 11 
rando63 24 26 26 24 25 25 24 30 
rando64 2632 1548 1409 1251 1598 1355 2153 1108 
rando65 101 103 110 108 98 122 129 93 
rando66 149 121 121 265 132 113 167 141 
rando67 4 4 4 4 4 4 4 4 
rando68 6 6 6 6 6 6 6 6 
rando69 8 8 8 8 8 9 8 8 
rando70 100 79 79 79 84 97 99 75 
randoll 7 7 7 7 7 7 7 6 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

rando72 2 2 2 2 2 2 2 2 

rando73 948 1481 1775 1775 836 1015 5802 425 

rando74 2 2 2 2 2 2 2 2 
rando75 16 16 16 16 15 16 16 15 
rando76 404 233 229 303 311 323 188 288 

rando77 266 358 358 414 192 345 562 213 

rando78 5 5 8 8 5 5 5 5 

rando79 4 4 4 4 4 4 4 4 

rando80 123 119 119 118 121 118 145 118 

rando8l 4 4 4 4 4 4 4 4 

rando82 6 6 6 6 6 6 6 6 

rando83 239 327 316 221 210 221 265 214 

rando84 1683 1014 1022 593 947 682 744 396 

rando85 17 18 18 26 18 18 17 27 

rando86 2 2 2 2 2 2 2 2 

rando87 22 23 23 20 19 19 21 19 

rando88 822 492 679 787 636 812 598 662 

rando89 236 238 286 284 229 277 451 183 

rando90 3 3 3 3 3 3 3 3 

rando9l 33477 90989 80909 247443 29078 62748 49396 26183 

rando92 6679 19287 20840 55703 10353 27182 8900 9657 

rando93 76 144 96 66 47 46 131 46 

rando94 2 2 2 2 2 2 2 2 

rando95 89 68 86 86 89 76 86 76 

rando96 7 7 7 7 7 7 7 7 

rando97 3 3 3 3 3 3 3 3 

rando98 24786 28363 28363 23523 18087 26370 12027 13815 

rando99 716 4427 4371 3876 692 1389 3159 805 
randoml 6 6 6 7 6 6 7 6 

random2 2 2 2 2 2 2 2 2 

random3 2377 4961 3371 2845 2681 3109 2291 2647 

random4 5 5 5 5 5 5 5 5 

random6 46584 1520239 1519663 635059 41579 49951 1042345 75836 

random? 4 4 4 4 4 4 4 4 

random8 36 30 35 35 36 30 30 30 
random9 6 6 6 6 6 6 6 6 
relcour 9 9 9 9 9 9 10 9 

rstreel 4 4 4 4 4 4 4 4 
rstree2 4 4 4 4 4 4 4 4 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

rstre e3 14 11 11 14 14 14 11 14 

rstree4 5 5 5 5 5 5 6 5 

rstree5 2 2 2 2 2 2 2 2 

rstree6 4 4 4 4 4 4 4 4 

rstree7 29 33 33 16 18 16 22 16 

trialsi 807 800 1099 822 624 495 858 344 

trials2 12 14 12 12 12 12 12 12 

trials3 2 2 2 2 2 2 2 2 

trials4 311 637 537 597 264 275 759 307 

usatree 4 4 4 4 4 4 4 4 

worrell 19 17 17 17 18 17 19 17 
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Appendix IV 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. ' 

Number of Distinct Nodes in BDDs Obtained from the Original Fault Trees 

Key to ordering schemes': 

Modified top-down. 

Modified depth-first. 

Modified priority depth-first. 

Depth-first, with number of leaves. 

Non-dynamic top-down weights. 
Dynamic top-down weights. 
Bottom-up weights. 
Event criticality. 

Fault tree 
Ordering scheme 

12345678 

aaaaaaa 3 3 3 3 3 3 3 3 

artqual 9 8 9 9 9 9 9 8 

arttree 4 4 4 4 4 4 4 4 

astolfo 40 26 26 25 40 27 25 48 

bddtest 32 25 25 34 52 37 25 40 

benjiam 47 34 34 32 47 39 32 47 

bpfeg03 101 63 63 63 93 63 63 70 

bpfen05 90 61 61 61 82 61 61 85 

bpfig05 88 60 60 60 81 60 60 63 

bpfin05 45 40 40 40 40 40 40 42 

bpfpp02 4 4 4 4 4 4 4 4 

bpfsw02 150 61 61 62 150 150 62 150 

ch8tree 10 9 9 10 10 10 10 10 

drel019 19 19 19 19 19 19 19 19 

dre1032 21 21 21 21 21 21 21 21 

drel057 43 32 32 32 43 43 32 32 

dre1058 164 186 90 107 190 103 70 72 

dre1059 232 385 404 403 282 167 333 152 

dresden 327 273 87 80 378 103 430 164 

emerh2o 10 10 10 10 10 10 10 10 

fatram2 11 11 11 11 10 10 11 11 
hpisf02 414 96 96 98 361 357 134 419 

' For each fault tree, the ordering scheme(s) resulting in the fewest distinct BDD nodes is 
(are) shown in bold. 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
hpisf03 45 42 42 42 45 45 42 46 
hpisf2l 220 196 196 249 429 406 210 1021 
hpisf36 42 44 40 40 40 40 40 42 
jdtreel 10 7 7 7 10 10 7 10 
jdtree2 10 7 7 7 10 10 7 10 
jdtree3 37 21 21 21 37 35 21 37 
jdtree4 31 19 19 19 31 31 19 31 
jdtree5 35 20 20 20 35 32 20 35 
khictre 30 30 30 30 30 30 30 30 
Iisal23 82 40 40 33 75 44 84 124 
Iisabl0 820 534 400 302 372 277 476 243 
lisab25 65 64 69 55 62 56 49 66 
lisab28 30 22 22 22 30 27 22 30 
Iisab30 44 37 37 34 40 34 36 33 
Iisab3l 332 506 506 245 362 176 422 330 
tisab34 22 20 20 20 23 20 28 23 
lisab35 645 449 449 207 546 592 596 342 
lisab36 134 114 110 324 162 267 79 98 
lisab42 19 17 17 17 17 17 18 17 
lisab44 32 32 32 41 33 41 32 41 
lisab5l 33 27 27 30 42 36 24 36 
Iisab52 598 778 778 659 423 524 623 350 
lisab53 11 11 11 9 11 11 9 9 
Iisab54 25 22 20 20 20 20 20 22 
lisab57 137 118 110 220 131 125 139 175 
lisab59 133 49 49 49 172 81 49 144 
Iisab60 34 29 29 25 35 25 25 30 
lisab78 313 111 149 111 196 140 195 167 
Iisab86 202 230 199 160 207 198 261 195 
lisaba4 420 278 294 246 276 273 148 203 
lisaba9 167 59 59 57 127 56 55 107 

modtree 44 4 4 4 4 4 4 
nakashi 147 47 65 62 118 71 49 111 
newtre2 66 6 6 6 6 6 8 

newtre3 64 4 4 4 4 4 4 
newtree 66 6 6 6 6 6 8 
rand100 13 13 13 13 15 15 11 15 
rand101 77 7 7 7 7 7 7 
rand102 22 2 2 2 2 2 2 

226 



Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rand103 52 34 34 27 51 46 38 49 

rand104 35 31 31 32 40 34 19 34 

rand105 81 60 61 52 74 55 49 95 
rand 106 14 877 877 13 13 17 13 16 
rand107 5 5 5 5 5 5 5 5 

rand108 95 219 199 147 80 92 216 86 
rand109 239 127 137 127 254 167 220 240 

rand110 27 28 28 29 29 29 13 30 

rand111 79 99 91 66 74 71 47 62 

rand 112 5 5 5 5 5 5 5 5 

randl13 6 6 6 6 6 6 6 6 

randl14 7 7 7 7 7 7 7 7 

randl15 176 111 111 168 161 112 111 94 
randl16 98 112 142 158 82 188 172 63 

rand117 27 29 27 29 27 27 25 30 

randl18 179 91 93 84 121 83 70 96 

rand119 47 30 52 29 34 32 30 34 
randl20 395 82 84 150 373 198 95 372 

randl2l 56 44 44 47 47 39 135 43 

rand122 4 4 4 4 4 4 4 4 
rand123 18 17 17 19 17 17 17 17 

randl24 29 21 23 23 27 31 21 27 

rand125 18 20 22 17 17 17 22 17 
rand126 109 117 110 138 121 115 100 115 

rand127 66 29 29 31 63 33 31 50 

rand128 157 70 71 93 154 126 85 91 
rand129 4 4 4 4 4 4 4 4 

rand130 5 5 5 5 5 5 5 5 
rand131 8 8 8 8 8 9 8 7 
rand132 467 587 587 1084 376 845 1062 561 
rand133 5 5 5 5 5 5 5 5 

rand134 122 330 332 614 118 315 453 109 
rand135 64 108 103 134 70 57 120 88 

rand136 4 4 4 4 4 4 4 4 

rand137 40 32 32 32 35 32 32 49 

rand138 2 2 2 2 2 2 2 2 
rand139 122 76 77 191 121 190 113 146 
rand140 5 5 5 5 5 5 5 5 
randl4l 27 28 28 29 29 29 13 30 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rand142 2056 2150 2139 2199 2133 1462 2411 1339 
rand143 33 38 20 17 26 26 19 30 
rand144 188 402 334 284 177 214 377 211 
rand145 46 37 37 34 43 34 37 43 
rand146 40 32 32 32 35 32 32 49 
rand147 234 1474 1750 351 247 531 485 239 
rand148 24 20 14 15 21 15 15 15 
rand149 33 21 21 21 36 24 21 36 

rand150 785 1896 1418 1634 997 960 1348 992 
rand151 34 25 25 25 34 34 25 34 
rand152 11 1 1 1 1 1 1 
rand153 88 8 8 8 8 8 8 
rand154 11 1 1 1 1 1 1 
rand155 226 146 115 97 158 106 172 174 
rand156 29 22 22 22 22 22 28 22 

rand158 27 18 18 21 20 21 21 18 
randol0 44 4 4 4 4 4 4 

randoll 33318 55089 55097 10447 23334 16969 22213 12047 
rando12 413 298 310 412 295 267 361 226 
randol3 219 76 76 149 113 129 346 123 
randol4 22 2 2 2 2 2 2 
randol5 55 5 5 5 5 5 5 

randol6 136 75 75 225 122 131 62 131 

randol7 55 5 5 5 5 5 5 

randol8 303 737 737 64 259 113 64 233 

randol9 1076 1865 1832 3695 746 721 6392 639 
rando20 737 1376 1076 1188 658 659 2121 523 
rando2l 16 11 11 11 16 11 11 16 
rando22 1584 2726 2726 1394 1049 1615 3254 878 
rando23 38 31 31 31 37 37 31 35 
rando24 44 4 4 4 4 4 4 
rando25 16 13 13 28 17 21 18 12 
rando26 44 4 4 4 4 4 4 
rando27 109 187 187 270 90 99 217 94 
rando28 11 1 1 1 1 1 1 
rando29 124 183 174 172 124 96 115 108 
rando30 295 86 93 94 272 185 90 249 
rando3l 11 11 11 145 17 25 11 25 
rando32 55 5 5 5 5 5 5 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rando33 18 31 31 48 16 13 19 16 
rando34 64 62 58 58 57 66 44 48 
rando35 45 51 54 55 26 27 30 29 
rando36 28 17 17 16 20 16 16 18 
rando37 71 179 179 203 73 226 70 97 
rando38 24 19 19 16 32 22 17 22 
rando39 140 170 170 347 135 259 361 237 
rando40 27 19 19 24 25 19 24 19 
rando4l 5 5 5 5 5 5 5 5 
rando42 5 5 5 5 5 5 5 5 
rando43 31 28 28 22 35 30 22 31 
rando44 734 245 239 385 470 236 461 476 
rando45 54 50 50 52 47 35 60 40 
rando46 20 16 16 16 23 21 29 30 
rando47 128 154 154 81 77 64 86 70 

rando48 34 25 23 25 28 26 38 27 
rando49 21 16 16 16 25 18 16 18 
rando50 5 5 5 5 5 5 5 5 
rando5l 3 3 3 3 3 3 3 3 
rando52 106 55 124 130 115 129 86 112 
rando53 5 5 5 5 5 5 5 5 
rando54 68 45 68 68 70 68 69 61 

rando55 24 25 25 21 25 25 24 26 
rando56 7 7 7 7 7 7 7 7 
rando57 6 6 6 6 6 6 6 6 
rando58 9 9 9 9 9 9 9 9 
rando59 557 239 239 182 452 293 126 235 
rando60 98 34 37 34 73 59 42 57 
rando6l 41 37 33 57 35 44 53 30 
rando62 13 12 11 11 11 11 12 11 
rando63 24 25 25 21 25 25 24 26 
rando64 172 91 101 93 198 104 56 103 
rando65 35 33 21 29 33 38 32 38 
rando66 59 32 32 47 54 46 56 53 
rando67 4 4 4 4 4 4 4 4 
rando68 6 6 6 6 6 6 6 6 
rando69 8 8 8 8 8 9 8 8 
rando70 42 35 35 35 43 37 33 48 
randoll 7 7 7 7 7 7 7 6 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rando72 2 2 2 22 2 2 2 
rando73 136 114 127 127 108 105 240 64 
rando74 2 2 2 22 2 2 2 

rando75 13 13 13 13 11 13 13 11 
rando76 71 30 39 39 39 45 39 40 
rando77 72 82 82 60 48 48 132 41 
rando78 5 5 8 85 5 5 5 
rando79 4 4 4 44 4 4 4 

rando80 31 26 26 29 31 29 36 29 
rando8l 4 4 4 44 4 4 4 
rando82 6 6 6 66 6 6 6 
rando83 62 54 58 34 46 34 58 47 
rando84 179 91 93 84 121 83 70 96 
rando85 15 15 15 17 15 15 15 22 
rando86 2 2 2 22 2 2 2 
rando87 19 20 20 16 15 15 15 15 

rando88 64 31 49 37 41 38 52 45 
rando89 34 28 30 34 33 33 39 32 
rando90 3 3 3 33 3 3 3 
rando9l 490 1353 1341 861 432 458 1381 338 

rando92 326 444 492 484 313 304 303 291 
rando93 43 47 46 29 34 31 45 31 

rando94 2 2 2 22 2 2 2 

rando95 45 35 43 43 45 45 43 40 
rando96 7 7 7 77 7 7 7 
rando97 3 3 3 33 3 3 3 
rando98 301 192 192 250 290 240 184 145 
rando99 151 343 342 290 153 176 216 135 
randoml 6 6 6 76 6 7 6 
random2 2 2 2 22 2 2 2 

random3 133 124 130 136 135 132 80 146 
random4 5 5 5 55 5 5 5 
random6 1086 4817 4817 5067 1594 1341 5684 1485 
random? 4 4 4 44 4 4 4 
random8 18 14 14 14 18 14 14 18 
random9 6 6 6 66 6 6 6 
relcour 6 6 6 66 6 6 6 
rstreel 4 4 4 44 4 4 4 
rstree2 4 4 4 44 4 4 4 

230 



Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

rstree3 11 8 8 11 11 11 8 11 

rstree4 5 5 5 5 5 5 5 5 

rstree5 2 2 2 2 2 2 2 2 

rstree6 4 4 4 4 4 4 4 4 

rstree7 19 14 14 16 17 16 17 16 
trialsl 127 95 125 82 139 66 76 108 

trials2 12 14 12 12 12 11 10 12 

trials3 2 2 2 2 2 2 2 2 

trials4 122 171 151 137 124 111 138 101 

usatree 4 4 4 4 4 4 4 4 

Worrell 16 15 15 15 15 13 14 15 
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Appendix V 

Number of If-Then-Else Calculations Required to Construct BDDs from the 

Original Fault Trees 

Key to ordering schemes': 

1. Modified top-down. 

2. Modified depth-first. 

3. Modified priority depth-first. 
4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 
6. Dynamic top-down weights. 
7. Bottom-up weights. 
8. Event criticality. 

Fault tree 
Ordering scheme 

12345678 

aaaaaaa 4 4 4 4 4 4 4 4 

artqual 16 15 16 16 16 16 16 15 

arttree 7 7 7 6 6 6 6 6 

astolfo 56 59 56 42 58 47 60 67 

bddtest 39 43 43 43 52 38 43 40 

benjiam 76 75 75 71 76 67 75 101 

bpfeg03 224 268 207 196 217 196 278 207 

bpfen05 202 252 194 249 198 181 259 203 

bpfig05 198 248 191 177 194 177 254 182 

bpfin05 120 175 103 103 103 103 167 108 

bpfpp02 6 6 6 6 6 6 6 6 

bpfsw02 177 111 111 114 177 177 114 177 

ch8tree 18 17 17 19 18 19 19 18 

drel019 33 33 33 33 33 33 37 33 

drel032 39 39 39 33 33 33 39 33 

drel057 65 73 63 60 59 59 76 57 

drel058 273 419 254 299 306 205 298 203 

drei 059 299 598 631 630 333 230 540 251 

dresden 864 1823 811 744 1220 810 1821 780 

emerh2o 15 15 15 15 15 15 15 15 

1 For each fault tree, the ordering scheme(s) requiring the fewest ite calculations to construct 
the BDD is (are) shown in bold. 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
fatram2 18 18 18 18 18 18 18 17 
hpisf02 581 223 223 269 593 575 402 920 
hpisf03 96 91 91 91 96 96 94 100 
hpisf2l 769 621 621 852 975 832 816 2717 
hpisf36 124 126 118 112 116 112 126 132 
jdtreel 10 9 9 9 10 10 9 10 
jdtree2 10 9 9 9 10 10 9 10 
jdtree3 46 38 38 38 46 44 38 46 
jdtree4 52 46 46 46 52 52 46 52 
jdtree5 46 38 38 38 46 44 38 46 
khictre 207 184 207 204 204 204 184 200 
Iisal23 170 160 160 145 186 132 176 245 
IisablO 1150 1041 880 687 667 689 1021 571 
Iisab25 204 192 216 202 203 193 197 209 
Iisab28 42 47 40 37 39 44 40 48 
Iisab30 255 216 214 207 231 192 239 220 

Iisab3l 849 1289 1289 994 808 730 1195 721 
Iisab34 58 60 60 60 63 61 67 61 
Iisab35 772 534 534 434 682 703 694 544 
Iisab36 1053 1277 1142 1316 1121 1257 1059 1017 
Iisab42 44 41 41 41 41 41 42 41 
Iisab44 101 103 103 108 102 114 102 111 

Iisab5l 57 51 51 54 61 58 62 56 
Iisab52 930 1287 1287 1007 742 808 1159 654 

Iisab53 16 16 16 16 17 17 16 16 
Iisab54 63 56 58 58 58 58 60 58 
lisab57 191 189 183 376 184 189 267 243 
Iisab59 182 129 126 136 223 164 125 216 
Iisab60 59 53 53 51 59 52 51 52 
Iisab78 414 279 313 242 282 239 332 260 
Iisab86 313 386 304 286 318 301 417 272 
Iisaba4 684 746 767 671 434 469 402 438 
Iisaba9 266 164 164 130 194 126 131 202 

rnodtree 9 9 9 9 9 9 9 9 

nakashi 229 98 128 125 168 115 103 157 
newtre2 12 12 12 12 12 12 13 13 
newtre3 7 6 6 6 6 6 6 6 
newtree 10 10 10 11 10 10 11 11 
rand100 187 191 191 189 173 175 180 173 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
randl01 14 14 14 14 14 14 14 14 
randl02 10 10 10 10 10 10 10 10 
randl03 133 115 115 102 132 124 121 138 
randl04 280 324 328 316 262 274 168 269 

rand105 143 143 129 115 137 113 128 172 
rand106 679 2050 2050 796 624 554 963 530 

rand107 11 11 11 11 11 11 11 11 
rand108 369 580 558 499 351 419 564 321 

rand109 522 337 343 455 529 415 543 658 

rand110 390 547 490 486 451 459 395 457 

rand111 325 370 327 282 314 272 277 287 

rand112 99 99 9 9 9 9 

rand113 81 81 81 81 73 73 81 73 
randl14 24 24 24 24 23 23 24 23 

rand115 314 286 286 326 301 227 226 234 

rand116 521 383 432 801 474 744 761 355 

rand117 63 62 60 60 58 58 57 59 

rand118 271 166 182 173 209 180 167 166 

rand119 114 119 124 97 103 101 122 100 
rand120 493 211 246 272 473 313 279 460 

rand121 215 205 205 199 201 196 283 207 

rand122 55 55 5 5 5 5 

rand123 55 61 61 57 56 51 61 57 

rand124 91 101 108 94 99 100 112 102 

rand125 52 55 53 49 49 49 53 49 

rand126 288 259 259 265 295 238 273 298 

rand127 97 67 67 63 89 64 63 86 

rand128 660 455 43 644 647 695 624 440 
rand129 56 56 56 55 55 55 55 53 

rand130 207 178 178 172 178 176 208 179 
rand131 14 14 14 14 14 16 14 13 

rand132 765 817 817 1550 607 1195 1525 888 

rand133 11 11 11 11 11 11 11 11 
rand134 546 719 739 1487 550 1028 1123 526 
rand135 319 322 317 515 326 269 390 345 
rand136 66 66 6 6 6 6 
rand137 81 75 75 75 78 75 75 86 
randl38 101 101 101 101 103 103 101 103 

rand139 320 226 273 511 324 515 267 365 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rand140 12 12 12 12 12 12 12 12 

rand141 390 547 490 486 451 459 395 457 
rand142 2923 2643 2632 2965 3013 2150 3318 1902 

rand143 166 141 149 140 151 146 140 156 

rand144 555 1065 966 961 505 630 1084 572 
rand145 80 88 88 72 81 76 92 87 

rand146 81 75 75 75 78 75 75 86 

rand-147 621 2689 2956 755 619 1096 1022 654 

rand148 78 62 61 68 73 68 72 69 

rand149 215 244 231 221 229 198 244 243 

rand150 1189 2334 1816 2053 1301 1332 1679 1298 

rand151 84 90 80 80 85 84 91 89 
rand 152 2 2 2 2 2 2 2 2 

rand153 175 167 167 163 163 163 163 170 

rand154 123 84 119 119 93 93 122 81 

rand155 314 307 297 213 238 196 448 250 

rand156 170 130 130 130 130 124 178 130 

rand158 11389 7473 7473 7942 8785 6677 7127 7869 

randol0 11 11 11 11 11 11 11 11 

randoll 33678 56142 56138 11312 23727 17480 24658 12557 

randol2 747 595 605 887 567 561 721 531 

rando13 998 1107 1107 1654 892 1213 1725 938 

rando14 10 10 10 10 10 10 10 10 

randol5 26 26 26 26 27 26 26 27 

randol6 1895 1790 1553 1815 1876 1703 1484 1881 

randol7 8 8 8 8 8 8 8 8 

randol8 12975 26709 25905 38686 9984 22662 36197 9819 

randol9 1772 3287 3249 4943 1401 1610 8248 1445 
rando20 2605 2960 2735 3006 2439 2644 6408 2383 

rando2l 17 17 16 17 17 17 17 20 

rando22 3662 6136 6136 4453 2668 3238 7618 2237 
rando23 317 361 361 354 266 279 360 235 

rando24 9 9 9 9 9 9 9 9 

rando25 85 74 74 125 86 105 92 74 
rando26 32 32 32 32 32 32 32 32 
rando27 2273 2588 2586 2248 2579 2123 1964 2289 
rando28 245 242 236 235 231 233 238 241 
rando29 449 587 449 450 428 374 415 386 
rando30 351 163 176 174 327 269 186 307 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rando3l 1547 1420 1491 2206 1491 1535 1431 1668 
rando32 27 27 27 27 27 27 27 27 

rando33 180 172 172 201 182 167 201 177 
rando34 397 379 443 447 375 389 386 318 
rando35 378 474 426 421 296 297 277 284 

rando36 141 129 136 146 147 140 142 138 

rando37 388 554 554 590 387 572 399 437 

rando38 99 96 96 95 99 92 Be 92 

rando39 389 351 351 791 346 593 684 433 
rando40 45 41 41 42 50 44 42 41 
rando4l 20 20 20 20 20 20 20 20 
rando42 51 52 55 54 55 54 52 59 
rando43 101 106 106 104 103 101 113 99 
rando44 979 388 380 571 599 469 674 677 

rando45 246 238 238 299 228 209 245 216 

rando46 687 595 595 522 522 498 441 497 

rando47 244 284 284 245 202 206 243 199 
rando48 144 139 139 137 138 131 144 143 
rando49 65 62 62 62 68 62 62 62 
rando50 20 20 20 20 20 20 20 20 

rando5l 14 14 14 14 14 14 14 14 
rando52 1138 1074 1154 1220 1109 1161 1239 956 

rando53 107 95 118 115 113 113 95 115 

rando54 133 128 130 130 133 132 130 139 
rando55 191 191 191 217 193 192 189 187 
rando56 31 31 31 31 31 31 31 36 
rando57 25 25 25 25 25 25 25 25 
rando58 104 107 107 106 95 95 103 95 
rando59 820 493 493 444 696 548 411 520 
rando60 355 378 405 378 330 291 452 296 
rando6l 165 173 168 234 162 196 230 161 
rando62 108 107 110 113 109 112 107 109 

rando63 191 191 191 217 193 192 189 187 
rando64 519 382 363 341 562 329 356 337 
rando65 62 64 56 61 63 75 94 73 
rando66 248 243 243 282 247 231 270 242 
rando67 666 66 6 6 6 
rando68 29 29 29 29 29 29 29 29 
rando69 17 17 17 17 17 18 17 17 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rando70 94 86 86 86 87 88 87 91 
randoll 17 17 17 17 17 17 17 16 

rando72 17 17 17 17 18 18 17 18 
rando73 325 333 330 332 283 270 489 261 
rando74 9999 9 9 9 9 

rando75 58 58 58 58 58 59 58 59 

rando76 226 159 208 190 181 188 238 203 
rando77 514 470 465 529 536 559 688 533 

rando78 107 109 120 115 107 107 112 113 
rando79 16 16 17 17 16 16 16 16 
rando80 59 54 54 59 60 59 65 59 
rando8l 11 11 11 11 11 11 11 11 
rando82 60 60 60 60 60 62 59 60 
rando83 97 111 105 75 84 75 110 82 

rando84 271 166 182 173 209 180 167 166 

rando85 221 213 213 205 200 200 219 204 

rando86 10 10 10 10 10 10 10 10 
rando87 55 59 59 55 52 52 54 52 
rando88 93 71 92 72 69 74 88 71 
rando89 987 866 833 822 910 845 621 970 
rando90 2222 2 2 2 2 
rando9l 899 1772 1758 1408 838 857 1829 789 

rando92 7078 9862 11801 13736 5392 5029 3656 6782 

rando93 390 332 290 388 339 343 321 307 
rando94 10 10 10 10 10 10 10 10 

rando95 134 95 124 124 134 120 124 114 
rando96 10 10 10 10 10 10 10 10 
rando97 9999 9 9 9 9 
rando98 755 611 611 714 649 639 654 450 

rando99 505 1091 1034 921 541 664 864 585 
randoml 20 20 20 19 19 19 19 20 
random2 9999 9 9 9 9 

random3 601 696 604 632 574 531 452 595 
random4 13 13 13 13 13 13 13 13 

random6 1978 6846 6845 7631 2791 2686 8041 3081 
random7 10 10 10 10 10 10 10 10 
random8 72 66 68 68 72 66 66 66 
random9 29 29 29 29 29 29 29 29 
relcour 7777 7 7 8 7 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rstreel 10 10 10 10 10 10 10 10 

rstree2 11 11 11 11 11 11 11 11 

rstree3 14 15 15 15 15 15 15 15 

rstree4 10 10 10 10 10 10 11 10 

rstree5 6 6 6 6 6 6 6 6 

rstree6 8 8 8 8 8 8 8 8 

rstree7 41 31 31 30 32 30 30 30 

trialsl 302 293 310 252 312 224 260 268 

trials2 67 68 67 67 70 70 65 66 

trials3 116 118 112 114 111 103 114 100 

trials4 450 588 511 522 400 388 469 358 

usatree 6 6 6 6 6 6 6 6 

worrell 29 28 28 28 28 27 24 27 
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Appendix VI 

Number of Non-Distinct Nodes in BDDs Obtained from Fault Trees 

Restructured Using the Faunet Reduction Method 

Key to ordering schemes': 

1. Modified top-down. 

2. Modified depth-first. 

3. Modified priority depth-first. 

4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 
6. Dynamic top-down weights. 
7. Bottom-up weights. 
8. Event criticality. 

Fault tree 
Ordering scheme 

12345678 

aaaaaaa 1 1 1 1 1 1 1 1 

artqual 6 6 6 6 6 6 6 6 

arttree 1 1 1 1 1 1 1 1 

astolfo 24 23 23 27 24 27 23 30 

bddtest 32 35 35 35 32 36 35 32 

benjiam 87 76 76 80 87 84 80 83 

bpfeg03 1 1 1 1 1 1 1 1 

bpfen05 1 1 1 1 1 1 1 1 

bpfig05 1 1 1 1 1 1 1 1 

bpfin05 1 1 1 1 1 1 1 1 

bpfpp02 1 1 1 1 1 1 1 1 

bpfsw02 19 19 14 14 19 14 19 15 

ch8tree 9 8 8 8 9 10 10 8 

dre1019 1 1 1 1 1 1 1 1 

dre1032 1 1 1 1 1 1 1 1 

dre1057 1 1 1 1 1 1 1 1 

drel058 30 26 26 26 30 28 26 30 

drel059 256 312 261 261 232 214 312 216 

dresden 540 160 160 160 540 441 550 543 

emerh2o 1 1 1 1 1 1 1 1 

1 For each fault tree, the ordering scheme(s) resulting in the fewest non-distinct BDD nodes Is 
(are) shown in bold. 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
fatram2 9 9 9 9 9 9 9 10 
hpisf02 159 137 137 140 171 140 130 172 
hpisf03 14 14 14 14 14 14 14 14 
hpisf2l 30 41 41 38 33 41 32 31 
hpisf36 14 14 14 14 14 14 14 14 
jdtree1 1 1 1 1 1 1 1 1 
jdtree2 1 1 1 1 1 1 1 1 
jdtree3 1 1 1 1 1 1 1 1 

jdtree4 6 6 6 6 6 6 6 6 
jdtree5 4 4 4 4 4 4 4 4 
khictre 36 30 30 33 39 33 30 30 
lisa123 207 227 227 171 180 123 205 164 
Iisabl0 11160 14901 18023 7476 7180 4883 20756 3913 
Iisab25 90 93 82 77 86 78 87 84 

Iisab28 1 1 1 1 1 1 1 1 

Iisab30 69 57 57 57 65 61 61 49 

lisab3l 5798 83846 83846 14033 5369 6963 47793 4656 
Iisab34 25 20 32 25 23 25 32 23 
lisab35 1572 2739 2935 2170 1584 2273 2739 679 
Iisab36 1553 698 708 2930 2576 3102 450 450 
Iisab42 6 6 6 6 6 6 6 6 
Iisab44 138 41 128 128 141 125 41 74 
Iisab51 17 16 16 16 17 16 18 21 
Iisab52 4957 28897 28897 26738 3169 18701 34655 2772 

Iisab53 1 1 1 1 1 1 1 1 

Iisab54 22 22 19 19 21 19 19 20 
Iisab57 1438 1626 1309 1582 1188 1466 1523 957 
Iisab59 1 1 1 1 1 1 1 1 
Iisab60 35 57 57 33 33 34 47 32 

Iisab78 603 539 423 538 508 538 532 432 
Iisab86 1132 2269 1954 1173 943 1188 1104 872 
Iisaba4 2694 4921 5584 5054 2211 1971 6384 1764 

Iisaba9 48 46 46 36 36 37 36 39 

modtree 2 2 2 2 2 2 2 2 
nakashi 501 359 318 342 360 455 359 304 

newtre2 3 3 3 3 3 3 3 3 
newtre3 3 3 3 3 3 3 3 3 
newtree 1 1 1 1 1 1 1 1 
randl00 18 18 18 18 19 19 13 19 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rand101 4 4 4 4 4 4 4 4 

rand102 1 1 1 1 1 1 1 1 
rand103 31 33 29 25 25 25 23 23 
rand104 69 70 70 70 68 66 31 66 
rand105 29 34 28 28 27 28 32 27 
rand106 19 22 24 3495 18 37 5780 17 

rand107 2 2 2 2 2 2 2 2 
rand108 249 1978 1555 1139 133 499 1579 142 

rand109 775 1169 1269 535 547 443 404 533 
rand110 30 35 35 35 34 38 20 36 
rand111 214 277 266 188 186 220 135 106 
rand112 3 3 3 3 3 3 3 3 
rand113 6 6 6 6 6 6 6 6 

rand114 4 4 4 4 4 4 4 4 

rand115 497 659 659 655 419 389 750 312 

rand116 1189 1003 1003 2172 858 1900 2660 391 
rand117 13 15 14 14 13 13 15 13 
rand118 260 184 177 188 236 199 154 132 
rand119 25 24 24 22 25 22 24 22 
rand120 238 242 207 203 218 206 327 232 

rand121 176 84 84 78 107 78 453 100 
rand122 2 2 2 2 2 2 2 2 

rand123 12 13 13 16 10 16 13 16 

rand124 23 19 18 18 18 18 22 18 
rand125 15 19 14 14 13 13 14 13 
rand126 238 430 267 236 196 186 175 220 
rand127 11 10 10 10 11 10 10 10 
rand128 3586 417 417 3045 1569 2388 960 526 

rand129 2 2 2 2 2 2 2 2 

rand130 5 5 5 5 5 5 5 5 

rand131 6 6 6 6 6 7 6 5 
rand132 4901 12858 12858 23901 3920 9231 22637 3813 
rand133 3 3 3 3 3 3 3 3 
rand134 1918 2659 3020 35046 330 1428 18819 326 
rand135 365 1255 1157 981 395 349 1420 421 
rand136 3 3 3 3 3 3 3 3 
rand137 69 67 67 67 70 72 56 43 
rand138 2 2 2 2 2 2 2 2 
randl39 501 461 544 645 358 733 523 341 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rand140 2 2 2 2 2 2 2 2 
randl4l 30 35 35 35 34 38 20 36 

rand142 43467 44476 43955 77267 41534 64968 119851 42920 

rand143 31 42 36 28 31 30 28 31 

rand144 5141 27724 25960 10268 2459 5138 6895 2996 

rand145 7 7 7 7 7 7 7 7 

rand146 69 67 67 67 70 72 56 43 

rand147 6692 60575 50517 54288 2262 1493 6842 1655 

rand148 8 7 7 7 7 7 7 7 

rand149 8 8 8 8 8 8 8 8 

rand150 30959 78516 61194 60240 39610 81592 64501 24546 

randl5l 13 12 12 12 12 15 12 11 

rand152 1 1 1 1 1 1 1 1 

rand153 8 8 8 8 8 8 8 8 

rand154 1 1 1 1 1 1 1 1 

rand155 733 1018 1052 1044 663 903 1507 525 

rand156 23 22 22 22 23 22 20 23 

rand158 35 29 29 24 24 24 24 22 

randolO 3 3 3 3 3 3 3 3 

randoll 3944979 1.24x108 1.24x108 2.39x107 9066673 1.91x10' 1.16x108 7290272 

randol2 3969 2838 2838 3393 2152 2007 9122 1932 

randol3 1235 1963 1963 2456 702 4955 31647 767 

randol4 1 1 1 1 1 1 1 1 

randol5 5 5 5 5 5 5 5 5 

randol6 409 238 252 796 352 421 300 396 

rando17 2 2 2 2 2 2 2 2 

rando18 3349 24217 24217 684 2350 1256 618 2681 

rando19 44265 207893 207893 237216 10274 9413 602967 14141 

rando20 9780 85872 81451 99481 9886 18437 232578 13786 

rando2l 1 1 1 1 1 1 1 1 

rando22 47936 220656 221672 118924 15661 59043 388687 13776 

rando23 106 111 111 111 91 105 200 68 

rando24 2 2 2 2 2 2 2 2 

rando25 20 16 16 16 20 16 37 15 

rando26 4 4 4 4 4 4 4 4 

rando27 656 8830 8830 6284 784 708 2867 669 
rando28 1 1 1 1 1 1 1 1 

rando29 475 293 293 479 553 265 569 467 

rando30 121 112 103 103 121 107 155 146 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rando3l 11 11 11 1925 29 53 11 53 
rando32 5 5 5 5 5 5 5 5 
rando33 24 72 70 60 18 23 68 20 
rando34 174 167 185 185 163 202 270 158 
rando35 104 142 117 117 74 71 149 57 
rando36 22 25 25 18 21 18 22 22 
rando37 460 544 585 702 183 221 283 231 
rando38 13 13 13 13 13 13 11 14 

rando39 736 1290 1290 2252 606 2085 6824 997 
rando40 38 23 24 36 38 27 38 23 
rando4l 3 3 3 3 3 3 3 3 
rando42 4 4 4 4 4 4 4 4 
rando43 14 17 17 17 14 16 13 14 
rando44 1543 1000 957 1341 1487 903 1453 1506 

rando45 132 159 159 264 99 83 182 97 

rando46 14 12 12 12 13 15 12 18 
rando47 474 706 706 1322 589 626 1106 562 
rando48 77 32 32 32 49 32 91 38 
rando49 13 13 13 13 13 13 13 13 
rando50 3 3 3 3 3 3 3 3 

rando5l 2 2 2 2 2 2 2 2 
rando52 411 571 510 540 279 315 299 242 

rando53 5 5 5 5 5 5 5 5 
rando54 39 35 38 38 39 42 38 41 
rando55 26 29 26 22 26 21 26 26 

rando56 7 7 7 7 7 7 7 7 
rando57 4 4 4 4 4 4 4 4 
rando58 9 9 9 9 9 9 9 9 
rando59 3836 3624 3425 2593 3158 2685 1281 2058 

rando60 83 291 309 69 63 63 109 65 
rando6l 111 88 67 265 94 75 257 42 
rando62 14 16 9 9 9 9 16 9 
rando63 26 29 26 22 26 21 26 26 

rando64 216 244 222 187 171 187 208 151 
rando65 46 42 42 59 42 39 44 38 
rando66 92 185 185 185 108 89 184 141 
rando67 3 3 3 3 3 3 3 3 
rando68 6 6 6 6 6 6 6 6 
rando69 6 6 6 6 6 6 6 6 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rando70 61 47 47 59 56 55 74 49 
randoll 6 6 6 6 6 6 6 5 
rando72 2 2 2 2 2 2 2 2 

rando73 1019 1480 1816 1816 553 1146 7349 424 
rando74 2 2 2 2 2 2 2 2 
rando75 14 14 14 14 13 14 14 13 

rando76 59 39 49 51 49 51 39 53 

rando77 329 378 378 399 186 294 559 213 
rando78 4 4 7 7 4 4 7 4 
rando79 3 3 3 3 3 3 3 3 

rando80 8 8 8 8 8 8 8 8 

rando8l 3 3 3 3 3 3 3 3 

rando82 6 6 6 6 6 6 6 6 

rando83 169 228 211 182 177 182 244 168 
rando84 260 184 177 188 236 199 154 132 

rando85 14 15 15 21 15 14 14 22 
rando86 1 1 1 1 1 1 1 1 

rando87 9 11 11 11 9 11 11 9 

rando88 35 34 31 34 29 30 26 23 
rando89 94 102 110 110 95 111 182 81 

rando90 1 1 1 1 1 1 1 1 
rando9l 29915 62303 62303 85085 16890 24765 41973 23606 
rando92 6594 14779 17238 88624 6503 21162 7544 7909 

rando93 47 57 57 43 37 34 62 35 
rando94 1 1 1 1 1 1 1 1 
rando95 49 40 48 48 48 40 48 37 

rando96 3 3 3 3 3 3 3 3 
rando97 3 3 3 3 3 3 3 3 

rando98 572 1031 1031 1031 566 748 949 785 
rando99 522 3139 2539 2837 515 2623 2817 547 
randoml 6 7 7 6 6 6 7 6 
random2 2 2 2 2 2 2 2 2 
random3 299 410 388 388 277 387 895 273 
random4 5 5 5 5 5 5 5 5 

random6 50601 1515090 1514514 630016 35450 155781 1034143 70875 
random? 4 4 4 4 4 4 4 4 
random8 9 9 9 9 9 9 9 9 

random9 4 4 4 4 4 4 4 4 
relcour 1 1 1 1T 1 1 1 1 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

rstreel 3 3 3 3 3 3 3 3 

rstree2 3 3 3 3 3 3 3 3 

rstree3 10 7 7 10 10 8 10 8 

rstree4 4 4 4 4 4 4 4 4 

rstree5 2 2 2 2 2 2 2 2 

rstree6 3 3 3 3 3 3 3 3 

rstree7 15 17 17 10 13 10 14 12 

trialsl 244 439 439 416 221 230 513 186 

trials2 11 12 12 12 10 11 12 12 

trials3 2 2 2 2 2 2 2 2 

trials4 242 491 496 698 210 291 760 262 

usatree 1 1 1 1 1 1 1 1 

worrell 19 17 17 17 18 17 19 17 
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Appendix VII 

Number of Distinct Nodes in BDDs Obtained from Fault Trees Restructured 

Using the Faunet Reduction Method 

Key to ordering schemes': 

1. Modified top-down. 

2. Modified depth-first. 

3. Modified priority depth-first. 

4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 
6. Dynamic top-down weights. 
7. Bottom-up weights. 

8. Event criticality. 

Fault tree 
Ordering scheme 

12345678 

aaaaaaa 1 1 1 1 1 1 1 1 

artqual 6 6 6 6 6 6 6 6 

arttree 1 1 1 1 1 1 1 1 

astolfo 16 17 17 14 16 18 17 19 

bddtest 26 22 22 22 26 25 22 26 

benjiam 47 34 34 32 47 39 32 47 

bpfeg03 1 1 1 1 1 1 1 1 

bpfen05 1 1 1 1 1 1 1 1 

bpfigO5 1 1 1 1 1 1 1 1 

bpfin05 1 1 1 1 1 1 1 1 

bpfpp02 1 1 1 1 1 1 1 1 

bpfsw02 17 14 13 13 17 13 14 14 

ch8tree 8 8 8 8 8 8 8 8 

dre1019 1 1 1 1 1 1 1 1 

dre1032 1 1 1 1 1 1 1 1 

dre1057 1 1 1 1 1 1 1 1 

dre1058 24 18 18 18 24 21 18 24 

dre1059 89 94 91 91 70 57 94 51 

dresden 134 23 23 23 134 63 39 137 

emerh2o 1 1 1 1 1 1 1 1 

' For each fault tree, the ordering scheme(s) resulting in the fewest distinct BDD nodes is 
(are) shown in bold. 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 'Scheme 7 Scheme 8 
fatram2 9 9 9 9 9 9 9 10 
hpisf02 77 24 24 34 67 34 33 86 
hpisf03 11 11 11 11 11 11 11 11 
hpisf2l 26 22 22 24 24 25 25 24 
hpisf36 11 11 11 11 11 11 11 11 
jdtreel 1 1 1 1 1 1 1 1 
jdtree2 1 1 1 1 1 1 1 1 
jdtree3 1 1 1 1 1 1 1 1 
jdtree4 6 6 6 6 6 6 6 6 
jdtree5 4 4 4 4 4 4 4 4 
khictre 15 11 11 11 17 11 11 11 
lisal23 75 36 36 29 80 38 67 58 
Iisabl0 780 522 385 290 346 269 448 246 
Iisab25 54 48 55 45 52 46 43 53 
lisab28 1 1 1 1 1 1 1 1 
Iisab30 29 28 28 28 27 27 23 23 
Iisab31 407 500 500 242 301 172 415 299 
lisab34 18 16 20 16 19 16 20 19 
Iisab35 329 339 362 194 295 347 339 164 
Iisab36 134 114 110 301 145 256 79 96 
lisab42 6 6 6 6 6 6 6 6 
Iisab44 35 29 37 35 41 32 29 33 
lisab5l 13 12 12 12 13 12 12 18 
lisab52 583 751 751 656 385 522 551 339 
lisab53 1 1 1 1 1 1 1 1 
lisab54 18 15 15 15 17 15 13 16 
Iisab57 110 108 118 102 96 120 120 159 
lisab59 1 1 1 1 1 1 1 1 
Iisab60 26 20 20 23 24 24 22 22 
lisab78 178 69 105 106 153 106 83 89 
lisab86 148 164 141 107 150 104 146 143 
lisaba4 328 204 222 179 200 198 208 191 
lisaba9 36 18 18 18 21 18 18 26 
modtree 2 2 2 2 2 2 2 2 
nakashi 138 43 64 60 120 55 43 105 
newtre2 3 3 3 3 3 3 3 3 
newtre3 3 3 3 3 3 3 3 3 
newtree 1 1 1 1 1 1 1 1 
rand100 12 12 12 12 

E 

14 14 10 14 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rand101 4 4 4 4 4 4 4 4 
rand102 1 1 1 1 1 1 1 1 
rand103 24 19 21 24 24 24 22 22 

rand104 33 29 29 29 33 30 17 30 
rand105 23 24 20 20 22 20 16 22 

rand106 14 13 13 606 15 25 782 16 

rand107 2 2 2 2 2 2 2 2 
rand108 97 219 192 147 81 91 216 90 

rand109 147 85 95 83 143 109 105 147 
rand110 26 29 29 29 25 26 12 27 
randl11 77 96 88 66 70 68 46 60 
rand112 3 3 3 3 3 3 3 3 

rand113 6 6 6 6 6 6 6 6 
rand114 4 4 4 4 4 4 4 4 
rand115 126 106 106 113 112 94 98 87 

rand116 89 142 142 158 81 168 172 61 

randl17 12 14 14 14 13 13 14 13 
rand118 79 51 49 56 70 59 49 56 
rand119 17 14 14 13 17 13 14 13 
rand120 98 52 43 72 91 73 81 109 

rand121 42 33 33 32 35 34 86 33 
rand122 2 2 2 2 2 2 2 2 

rand123 11 10 10 12 10 12 10 12 

rand124 15 11 13 13 13 13 13 13 
rand125 12 13 14 14 11 11 14 11 
rand126 74 79 74 90 66 59 69 58 
rand 127 10 9 9 9 10 9' 8 8 
rand128 134 59 59 88 144 98 77 74 
rand129 2 2 2 2 2 2 2 2 
rand130 5 5 5 5 5 5 5 5 
randl31 6 6 6 6 6 7, 6 5 
randl32 473 584 584 1128 347 591 1106 559 
randl33 3 3 3 3 3 3 3 3 

randl34 188 253 255 579 100 146 424 84 
rand135 64 108 103 128 70 57 120 88 
rand136 3 3 3 3 3 3 3 3 
rand137 23 21 21 21 27 21 29 27 
rand138 2 2 2 2 2 2 2 2 
rand139 98 65 63 150 102 155 106 121 

248 



Fault tree Scheme 1 Scheme 2 'Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rand140 2 2 2 2 2 2 2 2 
rand141 26 29 29 29 25 26 12 27 
rand142 1892 1789 1732 1876 1595 1248 1992 1299 
rand143 16 21 14 12 16 14 12 16 
rand144 179 381 313 275 197 231 403 217 

rand145 7 7 7 7 7 7 7 7 
rand146 23 21 21 21 27 21 29 27 
rand147 391 1656 1481 1276 257 206 425 228 

rand148 7 5 6 6 6 6 6 6 
rand149 8 8 8 8 8 8 8 8 
rand150 981 1843 1341 1908 1211 1554 1273 1040 
rand151 11 9 9 9 9 10 9 8 

rand152 1 1 1 1 1 1 1 1 
rand153 8 8 8 8 8 8 8 8 

rand154 1 1 1 1 1 1 1 1 
rand155 190 134 102 76 131 83 155 122 
rand156 17 14 14 14 17 14 14 18 
rand158 23 17 17 20 20 20 20 17 
randol0 3 3 3 3 3 3 3 3 
randoll 16878 46572 46572 7965 13456 7171 16680 8829 
randol2 309 214 214 242 275 221 320 198 
randol3 179 76 76 149 126 137 384 123 
randol4 1 1 1 1 1 1 1 1 
randol5 5 5 5 5 5 5 5 5 

randol6 122 65 65 205 101 98 63 103 
randoll 2 2 2 2 2 2 2 2 
randol8 287 594 594 62 212 108 63 184 
randol9 1496 1811 1811 3565 920 950 5094 791 
rando20 711 1348 1076 1148 635 663 2121 490 

rando2l 1 1 1 1 1 1 1 1 
rando22 1537 2648 2565 1376 1045 1657 3418 803 
rando23 31 25 25 25 31 31 29 32 
rando24 2 2 2 2 2 2 2 2 

rando25 14 13 13 13 15 13 18 12 
rando26 4 4 4 4 4 4 4 4 

rando27 109 187 187 270 90 99 217 94 
rando28 1 1 1 1 1 1 1 1 
rando29 154 63 63 158 123 71 89 93 

rando30 44 38 34 34 44 39 35 49 
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l F au t tre e Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rando3l 11 11 11 145 17 25 

J 

11 25 
rando32 5 5 5 5 5 5 5 5 
rando33 17 30 28 24 16 16 25 16 
rando34 56 49 50 50 50 53 41 45 
rando35 32 50 45 45 27 25 30 29 
rando36 17 13 13 12 16 12 14 16 
rando37 108 193 202 200 90 104 59 100 
rando38 11 11 11 11 11 11 9 12 
rando39 139 160 160 347 139 259 357 237 
rando40 19 15 15 16 19 14 20 18 
rando4l 3 3 3 3 3 3 3 3 
rando42 4 4 4 4 4 4 4 4 
rando43 11 11 11 11 11 12 9 11 
rando44 244 112 106 184 257 169 186 226 
rando45 54 50 50 52 47 35 60 40 
rando46 14 12 12 12 13 15 12 18 
rando47 72 120 120 78 64 58 73 67 
rando48 33 24 22 22 29 23 35 25 
rando49 11 11 11 11 11 11 11 9 
rando50 3 3 3 3 3 3 3 3 
rando5l 2 2 2 2 2 2 2 2 
rando52 101 86 123 126 112 125 85 109 
rando53 5 5 5 5 5 5 5 5 
rando54 28 19 27 27 28 28 27 29 
rando55 22 23 22 19 23 21 22 23 
rando56 7 7 7 7 7 7 7 7 
rando57 4 4 4 4 4 4 4 4 
rando58 9 9 9 9 9 9 9 9 
rando59 363 177 172 120 392 148 118 177 
rando60 34 65 63 21 26 26 35 29 
rando6l 43 33 34 57 39 35 52 30 
rando62 11 10 9 9 9 9 10 9 
rando63 22 23 22 3 23 21 22 23 
rando64 86 50 56 62 73 62 55 64 
rando65 30 19 19 32 29 26 23 26 
rando66 45 46 46 46 47 40 53 53 
rando67 3 3 3 3 3 3 3 3 
rando68 6 66 6 6 6 6 6 6 
rando69 66 6 6 6 6 6 6 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rando70 26 22 22 20 26 23 27 31 
rando7l 6 6 6 6 6 6 6 5 
rando72 2 2 2 2 2 2 2 2 

rando73 110 113 125 125 86 97 239 63 
rando74 2 2 2 2 2 2 2 2 
rando75 12 12 12 12 10 12 12 10 

rando76 34 19 24 23 22 23 19 24 

rando77 73 85 85 57 47 43 131 41 
rando78 4 4 7 7 4 4 7 4 

rando79 3 3 3 3 3 3 3 3 
rando80 8 8 8 8 8 8 8 8 

rando8l 3 3 3 3 3 3 3 3 
rando82 6 6 6 6 6 6 6 6 

rando83 56 45 49 31 42 31 49 42 

rando84 79 51 49 56 70 59 49 56 

rando85 13 13 13 15 14 13 13 19 
rando86 1 1 1 1 1 1 1 1 

rando87 9 11 11 11 9 11 11 9 

rando88 23 14 17 14 21 15 18 19 

rando89 26 22 24 24 27 27 49 27 

rando90 1 1 1 1 1 1 1 1 
rando9l 674 1250 1250 486 513 408 1436 335 

rando92 276 446 456 568 288 283 291 261 
rando93 32 34 34 22 30 27 35 28 

rando94 1 1 1 1 1 1 1 1 
rando95 31 26 30 30 30 32 30 29 
rando96 3 3 3 3 3 3 3 3 
rando97 3 3 3 3 3 3 3 3 
rando98 172 126 126 126 151 148 154 171 
rando99 117 315 261 256 122 223 254 126 
randoml 6 7 7 6 6 6 7 6 
random2 2 2 2 2 2 2 2 2 
random3 92 94 87 87 91 84 47 78 
random4 5 5 5 5 5 5 5 5 
random6 1046 4773 4773 5059 1583 1871 5676 1481 
random7 4 4 4 4 4 4 4 4 
random8 9 9 9 9 9 9 9 9 
random9 4 4 4 4 4 4 4 4 

relcour 1 1 1 1 1 1 1 1 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

rstreel 3 3 3 3 3 3 3 3 

rstree2 3 3 3 3 3 3 3 3 

rstree3 9 6 6 8 9 8 8 8 

rstree4 4 4 4 4 4 4 4 4 

rstree5 2 2 2 2 2 2 2 2 

rstree6 3 3 3 3 3 3 3 3 

rstree7 13 11 11 10 12 10 12 11 

trialsi 87 98 98 83 88 75 84 94 

trials2 10 11 11 9 10 10 11 12 

trials3 2 2 2 2 2 2 2 2 

trials4 115 162 140 172 101 108 160 99 

usatree 1 1 1 1 1 1 1 1 

worrell 16 15 15 15 15 13 14 15 
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Appendix VIII 

Number of If-Then-Else Calculations Required to Construct BDDs from Fault 

Trees Restructured Using the Faunet Reduction Method 

Key to ordering schemes': 

1. Modified top-down. 

2. Modified depth-first. 

3. Modified priority depth-first. 

4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 
6. Dynamic top-down weights. 
7. Bottom-up weights. 
8. Event criticality. 

Ordering scheme 
Fault tree 

1 2 3 4 5 6 7 8 

aaaaaaa 0 0 0 0 0 0 0 0 

artq ual 10 9 10 10 10 10 10 9 

arttree 0 0 0 0 0 0 0 0 

astolfo 19 26 26 20 19 21 26 23 

bddtest 27 31 31 31 27 26 31 27 

benjiam 76 75 75 70 76 67 75 101 

bpfeg03 0 0 0 0 0 0 0 0 

bpfen05 0 0 0 0 0 0 0 0 

bpfig05 0 0 0 0 0 0 0 0 

bpfin05 0 0 0 0 0 0 0 0 

bpfpp02 0 0 0 0 0 0 0 0 

bpfsw02 27 18 22 22 27 22 18 24 

ch8tree 16 14 14 14 16 17 17 14 

drel019 0 0 0 0 0 0 0 0 

drel032 0 0 0 0 0 0 0 0 

dre1057 0 0 0 0 0 0 0 0 

dre1058 23 25 25 25 23 21 25 23 

drei 059 90 134 131 131 75 65 134 62 

dresden 273 230 230 230 271 142 255 258 

emerh2o 0 0 0 0 0 0 0 0 

For each fault tree, the ordering scheme(s) requiring the fewest Ito calculations to construct 
the BDD is (are) shown in bold. 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

fatram2 11 11 11 11 11 11 11 10 

hpisf02 107 47 47 60 96 60 63 113 

hpisf03 19 17 17 17 19 17 17 19 

hpisf2l 58 50 50 65 54 52 56 53 

hpisf36 19 17 17 17 19 17 17 19 

jdtreel 0 0 0 0 0 0 0 0 

jdtree2 0 0 0 0 0 0 0 0 

jdtree3 0 0 0 0 0 0 0 0 

jdtree4 15 15 15 15 15 15 15 15 

jdtree5 6 6 6 6 6 6 6 6 

khictre 31 24 28 26 31 26 28 24 

Iisa123 146 130 130 115 156 100 146 131 

Iisabl0 1095 1012 847 654 629 647 943 562 

lisab25 204 152 188 204 208 198 192 216 

lisab28 0 0 0 0 0 0 0 0 

lisab30 191 180 179 179 173 165 173 181 

lisab3l 1235 1605 1605 1182 1051 890 1483 950 

Iisab34 72 61 82 81 72 81 82 70 

lisab35 418 418 438 329 363 403 418 234 

lisab36 1058 1331 1209 1293 1063 1201 1095 984 

Iisab42 7 7 7 7 7 7 7 7 

lisab44 160 158 149 142 161 131 158 141 

lisab5l 23 21 21 21 23 21 22 25 

lisab52 943 1282 1282 1033 726 840 1087 685 

lisab53 0 0 0 0 0 0 0 0 

lisab54 36 30 33 33 34 33 32 31 

Iisab57 158 218 234 168 141 171 232 219 

lisab59 0 0 0 0 0 0 0 0 

Iisab60 39 40 40 38 37 39 40 36 

Iisab78 228 170 204 181 196 179 180 137 

lisab86 214 275 213 214 224 209 288 195 

lisaba4 504 562 606 520 346 327 636 357 

Iisaba9 67 44 44 42 51 41 42 51 

modtree 3 3 3 3 3 3 3 3 

nakashi 207 91 118 113 179 107 91 151 

newtre2 7 7 7 7 7 7 7 7 

newtre3 4 4 4 4 4 4 4 4 

newtree 0 0 0 0 0 
-- 

0 0 0 

randl00 184 188 188 186 170 
t 

172 176 170 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rand101 6 6 6 6 6 6 6 6 
rand102 2 2 2 2 2 2 2 2 

rand103 74 66 74 72 72 69 63 70 

rand104 272 290 292 292 222 232 182 223 

rand105 55 52 53 53 54 53 48 50 
rand106 553 921 892 2376 587 1107 3076 546 

rand107 3 3 3 3 3 3 3 3 

rand108 365 566 498 490 333 365 544 316 

rand109 296 205 214 273 280 274 308 315 
rand110 353 522 471 466 444 452 374 448 

rand111 365 422 341 298 354 355 302 300 

rand112 5 5 5 5 5 5 5 5 

rand113 67 67 67 67 64 64 65 64 

rand114 15 15 15 15 14 14 15 14 

rand115 257 270 270 260 244 200 209 217 

rand116 509 434 434 778 473 707 751 351 

randl17 24 27 26 26 24 24 27 24 

rand118 129 93 100 108 121 109 101 103 

randl19 51 47 47 47 50 47 55 47 

rand120 155 119 125 147 149 147 163 164 

rand121 164 153 153 147 157 152 198 170 

rand122 3 3 3 3 3 3 3 3 

rand123 30 33 33 31 31 32 33 31 

rand124 60 56 68 68 69 68 57 69 

randl25 32 33 32 32 30 30 32 30 

rand126 198 170 170 167 169 165 178 183 

rand127 16 15 15 15 16 15 14 14 

rand128 627 353 352 663 561 554 495 386 

rand129 34 32 32 32 32 32 34 32 

randl30 190 164 164 157 161 161 189 156 

rand131 11 11 11 11 11 13 11 10 

rand132 792 846 846 1608 542 957 1583 880 

rand133 7 7 7 7 7 7 7 7 

rand134 1130 675 696 2292 652 698 1731 634 

randl35 371 340 335 609 375 312 408 418 

rand136 4 4 4 4 4 4 4 4 

randl37 52 51 51 51 54 50 54 48 
randl38 123 124 123 123 124 124 124 124 

randl39 262 186 220 421 273 439 239 304 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

rand 140 5 5 5 5 5 5 5 5 

rand141 353 522 471 466 444 452 374 448 

rand142 2852 2270 2219 2682 2238 1974 2924 1881 

rand143 124 115 128 124 125 121 105 123 

rand144 541 1004 914 949 533 605 926 564 

rand145 9 9 9 9 9 9 9 8 

rand146 52 51 51 51 54 50 54 48 

rand147 890 2888 2682 2519 652 530 963 648 

rand148 30 22 32 32 32 32 32 32 

rand149 64 92 92 91 73 91 106 79 

rand150 1258 2236 1686 2308 1451 1817 1584 1270 

rand151 33 32 32 32 32 32 32 30 

rand152 2 2 2 2 2 2 2 2 

rand153 167 159 160 169 159 156 169 164 

rand154 97 54 96 96 72 83 96 55 

rand155 265 266 255 168 200 177 397 186 

rand156 93 85 85 85 93 79 111 94 

rand158 6699 6466 6707 7156 6837 6226 6144 4741 

randol0 7 7 7 7 7 7 7 7 

randoll 17216 47508 47508 8621 13881 7699 19305 9301 

randol2 563 442 442 445 496 413 560 449 

randol3 1310 1252 1252 2153 1167 1519 2040 1339 

randol4 2 2 2 2 2 2 2 2 

randol5 30 30 30 30 27 28 30 25 

randol6 1838 1574 1389 1709 1694 1584 1339 1671 

randoll 3 3 3 3 3 3 3 3 

randol8 12890 26332 25528 39037 10872 22645 36439 9592 

randol9 2703 3493 3493 4923 1746 1976 6101 1603 

rando20 2997 4875 4746 5695 2930 3109 14427 3191 

rando2l 0 0 0 0 0 0 0 0 

rando22 3779 6137 5930 4483 2723 3341 8047 2129 

rando23 254 291 291 289 192 223 153 177 

rando24 3 3 3 3 3 3 3 3 

rando25 74 68 68 68 73 71 89 65 

rando26 36 36 36 36 36 37 36 36 

rando27 2273 2588 2586 2248 2579 2123 1964 2289 

rando28 212 215 206 205 191 206 212 200 

rando29 416 303 303 466 393 318 362 349 

rando30 56 54 51 51 56 55 64 59 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rando3l 1538 1441 1511 2105 1514 1571 1464 1686 
rando32 25 25 25 25 25 25 25 25 
rando33 175 162 161 209 168 158 212 174 
rando34 346 308 365 370 313 322 332 268 
rando35 377 558 443 443 325 328 307 310 
rando36 99 99 99 100 93 100 78 92 

rando37 736 768 777 853 605 718 444 633 

rando38 78 78 78 78 78 78 65 71 
rando39 386 339 339 796 350 601 677 442 

rando40 28 27 25 26 30 26 29 28 
rando4l 14 14 14 14 14 14 14 14 
rando42 35 36 39 39 36 37 36 39 

rando43 33 36 36 36 33 33 38 33 
rando44 316 177 172 290 332 234 294 315 

rando45 246 238 238 299 228 209 245 216 
rando46 554 497 497 513 446 457 495 418 

rando47 178 227 227 295 187 185 294 202 

rando48 123 113 112 112 112 107 129 108 

rando49 55 54 54 54 55 54 55 42 

rando50 14 14 14 14 14 14 14 14 
rando5l 6 6 6 6 6 6 6 6 

rando52 1269 1389 1350 1353 1194 1314 1370 1144 

rando53 98 83 107 106 104 104 83 106 

rando54 53 47 52 52 53 54 52 48 

rando55 168 168 166 190 170 183 166 170 

rando56 29 29 29 29 29 29 29 34 
rando57 19 19 19 19 19 19 19 19 

rando58 89 89 89 89 80 79 89 79 

rando59 588 354 348 300 597 324 361 363 
rando60 212 225 225 256 201 213 197 217 

rando6l 204 197 197 280 188 183 276 180 

rando62 95 83 85 102 95 102 88 95 
rando63 168 168 166 190 170 183 166 170 
rando64 280 243 231 221 247 217 227 236 
rando65 63 54 54 71 59 55 55 53 
rando66 205 265 265 265 206 198 247 222 
rando67 4 4 4 4 4 4 4 4 

rando68 32 32 34 34 34 32 34 34 
rando69 17 17 17 17 17 71 17 17 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rando70 58 53 53 53 56 53 62 55 
randoll 15 15 15 15 15 15 15 14 
rando72 19 19 18 18 19 19 19 17 
rando73 312 336 333 256 266 490 259 
rando74 5 5 5 5 5 5 5 
rando75 53 53 53 53 

P 

54 53 54 

rando76 122 88 127 98 110 88 111 

rando77 537 470 465 527 533 547 681 536 

rando78 82 59 97 77 71 94 75 
rando79 13 13 13 13 13 13 13 13 
rando80 13 13 13 13 13 13 12 12 
rando8l 7 7 7 77 7 7 7 

rando82 50 50 50 50 49 47 50 47 

rando83 84 93 89 66 76 66 94 73 
rando84 129 93 100 108 121 109 101 103 

rando85 156 149 149 150 154 153 155 154 

rando86 2 2 2 22 2 2 2 

rando87 33 34 34 34 32 34 34 31 
rando88 34 24 32 24 26 23 28 25 
rando89 804 720 680 671 742 693 515 848 
rando90 0 0 0 00 0 0 0 

rando9l 961 1578 1578 811 822 714 1770 724 

rando92 6585 10211 11343 13415 4818 5856 3721 5590 
rando93 245 213 213 265 220 224 186 197 

rando94 2 2 2 22 2 2 2 

rando95 100 69 91 91 88 77 91 84 
rando96 4 4 4 44 4 4 4 
rando97 7 7 7 77 7 7 7 
rando98 456 404 404 404 423 466 476 494 
rando99 425 1020 818 833 450 655 832 469 

randoml 20 20 20 21 20 21 20 20 
random2 5 5 5 55 5 5 5 
random3 445 513 475 469 431 435 245 423 
random4 13 13 13 13 13 13 13 13 
random6 2077 6949 6947 7829 2925 2947 8247 3338 

random7 10 10 10 10 10 10 10 10 
random8 49 49 49 49 50 50 49 50 
random9 25 25 25 25 25 25 25 25 

relcour 0 0 0 00 0 0 0 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

rstreel 7 7 7 7 7 7 7 7 

rstree2 7 7 7 7 7 7 7 7 

rstree3 10 10 10 11 10 10 11 12 

rstree4 9 9 9 9 9 9 9 9 

rstree5 6 6 6 6 6 6 6 6 

rstree6 7 7 7 7 7 7 7 7 

rstree7 25 19 19 21 22 21 20 23 

trialsl 271 308 308 277 240 215 292 289 

trials2 79 72 74 83 74 75 72 72 

trials3 93 96 98 98 94 90 101 88 

trials4 427 578 535 593 386 423 471 382 

usatree 0 0 0 0 0 0 0 0 

worrell 29 28 28 28 28 27 24 27 
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Appendix IX 

Comparison of Analysis Times for the Fault Tree Strategy and a Direct BDD 

Analysis Technique 

Key to ordering schemes: 

1. Modified top-down. 

2. Modified depth-first. 

3. Modified priority depth-first. 

4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 
6. Dynamic top-down weights. 
7. Bottom-up weights. 
8. Event criticality. 

Fault M th d 
Times using ordering scheme 

tree 
e o 

1 2 3 4 5 6 7 8 

Direct 0.063 0.067 0.060 0.067 0.083 0.090 0.067 0.063 
aaaaaaa Strategy 0.067 0.063 0.063 0.067 0.087 0.090 0.067 0.067 

Direct 0.067 0.063 0.060 0.070 0.083 0.087 0.070 0.063 
artqual 

Strategy 0.083 0.090 0.090 0.083 0.110 0.110 0.090 0.090 

Direct 0.067 0.060 0.067 0.063 0.090 0.080 0.070 0.063 
arttree 

Strategy 0.063 0.067 0.060 0.067 0.087 0.087 0.070 0.063 

Direct 0.067 0.070 0.063 0.070 0.090 0.097 0.070 0.070 
astolfo Strategy 0.090 0.090 0.090 0.083 0.113 0.110 0.090 0.093 

Direct 0.060 0.067 0.063 0.067 0.087 0.087 0.070 0.070 
bddtest 

Strategy 0.087 0.090 0.083 0.087 0.110 0.110 0.093 0.090 

Direct 0.063 0.067 0.067 0.067 0.087 0.090 0.070 0.073 
benjiam 

Strategy 0.090 0.090 0.090 0.090 0.110 0.110 0.090 0.100 

Direct 0.350 0.193 0.277 0.370 0.407 0.403 0.193 0.427 
bpfeg03 

Strategy 0.060 0.070 0.070 0.067 0.093 0.090 0.070 0.070 

Direct 0.227 0.140 0.170 0.223 0.247 0.253 0.147 0.233 
bpfen05 

Strategy 0.063 0.070 0.067 0.070 0.090 0.090 0.070 0.070 

Direct 0.217 0.140 0.167 0.213 0.240 0.240 0.143 0.223 
bpfig05 

Strategy 0.067 0.070 0.067 0.067 0.090 0.093 0.067 0.070 

Direct 0.077 0.083 0.077 0.077 0.100 0.103 0.083 0.083 
bpfin05 

Strategy 0.067 0.067 0.063 0.067 0.090 0.090 0.063 0.070 

Direct 0.060 0.067 0.063 0.070 0.087 0.087 0.067 0.067 
bpfpp02 

Strategy 0.067 0.063 0.067 0.063 0.090 0.087 0.063 0.070 

Direct 0.180 0.170 0.167 0.167 0.203 0.207 0.170 0.187 
bpfsw02 

Strategy 0.110 0.113 0.110 0.110 0.160 0.160 0.117 0.117 
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Tree Method 1 2 3 4 5 6 7 8 

ch8t 
Direct 0.063 0.063 0.063 0.063 0.090 0.087 0.063 0.067 

ree 
Strategy 0.087 0.087 0.087 0.087 0.110 0.110 0.087 0.090 

d 1019 
Direct 0.067 0.063 0.067 0.063 0.090 0.090 0.067 0.067 

re 
Strategy 0.063 0.067 0.063 0.067 0.090 0.083 0.067 0.070 

drel032 
Direct 

Strategy 

0.073 

0.060 

0.063 

0.070 

0.067 

0.060 

0.067 

0.070 

0.087 

0.087 

0.090 

0.090 

0.067 

0.067 

0.073 

0.070 

d 1057 
Direct 0.070 0.070 0.070 0.070 0.090 0.093 0.077 0.070 

re Strategy 0.063 0.067 0.067 0.067 0.087 0.090 0.070 0.063 

d 1 058 
Direct 0.120 0.173 0.113 0.107 0.153 0.133 0.130 0.110 

re Strategy 0.133 0.130 0.130 0.137 0.203 0.210 0.140 0.140 

d i 059 
Direct 0.163 0.320 0.327 0.330 0.203 0.170 0.300 0.153 

re 
Strategy 0.090 0.103 0.093 0.097 0.120 0.110 0.100 0.100 

d d 
Direct 1.143 1.753 0.383 0.340 1.473 0.417 3.753 0.877 

res en 
Strategy 0.120 0.113 0.113 0.100 0.147 0.123 0.120 0.120 

h2 
Direct 0.063 0.063 0.067 0.063 0.087 0.090 0.063 0.067 

emer o 
Strategy 0.067 0.063 0.067 0.063 0.090 0.087 0.067 0.067 

f t 2 
Direct 0.063 0.067 0.063 0.063 0.090 0.090 0.070 0.063 

ram a 
Strategy 0.130 0.127 0.127 0.133 0.210 0.200 0.140 0.133 

i f h 
Direct 0.437 0.250 0.250 0.220 0.500 0.413 0.610 1.463 

p s 02 
Strategy 0.097 0.093 0.093 0.097 0.113 0.120 0.093 0.100 

i f03 h 
Direct 0.070 0.070 0.067 0.070 0.093 0.097 0.070 0.073 

s p 
Strategy 0.087 0.090 0.087 0.083 0.110 0.113 0.083 0.093 

i f2l h 
Direct 0.357 0.243 0.247 0.403 0.563 0.460 0.377 3.873 

s p 
Strategy 0.093 0.090 0.093 0.093 0.117 0.113 0.097 0.093 

h i f36 
Direct 0.083 0.077 0.070 0.070 0.097 0.097 0.077 0.077 

p s 
Strategy 0.090 0.087 0.087 0.090 0.113 0.110 0.090 0.093 

dt l 
Direct 0.067 0.063 0.060 0.070 0.083 0.087 0.070 0.063 

j ree 
Strategy 0.063 0.063 0.063 0.063 0.090 0.087 0.070 0.063 

dt 2 
Direct 0.067 0.060 0.063 0.067 0.090 0.080 0.070 0.067 

j ree 
Strategy 0.067 0.060 0.063 0.067 0.090 0.087 0.063 0.070 

dt 3 
Direct 0.063 0.070 0.060 0.070 0.087 0.087 0.067 0.070 

j ree 
Strategy 0.063 0.070 0.060 0.070 0.090 0.080 0.070 0.070 

jdtree4 
Direct 0.070 0.063 0.070 0.060 0.090 0.093 0.070 0.070 

Strategy 0.090 0.083 0.090 0.090 0.110 0.110 0.090 0.090 

dtre 5 
Direct 0.060 0.070 0.060 0.070 0.090 0.090 0.060 0.070 

j e 
Strategy 0.083 0.090 0.087 0.083 0.110 0.110 0.090 0.090 

khi tr 
Direct 0.083 0.077 0.090 0.080 0.113 0.100 0.090 0.080 

c e 
Strategy 0.133 0.130 0.130 0.140 0.207 0.207 0.140 0.140 

li 1 23 
Direct 0.073 0.077 0.073 0.080 0.100 0.093 0.080 0.097 

sa 
Strategy 0.100 0.093 0.100 0.093 0.120 0.117 0.097 0.097 
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Tree Method 1 2 3 4 5 6 7 8 

Direct 0.610 0.517 0.380 0.250 0.260 0.273 0.493 0.197 
Iisabl0 

Strategy 0.583 0.520 0.380 0.260 0.267 0.273 0.457 0.213 

Direct 0.080 0.080 0.083 0.080 0.100 0.103 0.083 0.080 
lisab25 

Strategy 0.103 0.097 0.103 0.100 0.130 0.127 0.103 0.110 

Direct 0.063 0.067 0.067 0.067 0.090 0.090 0.063 0.070 
Iisab28 

Strategy 0.067 0.063 0.067 0.063 0.087 0.090 0.067 0.070 

Direct 0.087 0.080 0.080 0.083 0.103 0.107 0.083 0.087 
Iisab30 

Strategy 0.100 0.100 0.100 0.097 0.123 0.120 0.103 0.103 

Direct 0.320 0.850 0.857 0.463 0.320 0.300 0.710 0.250 

lisab3l 
Strategy 0.633 1.313 1.313 0.653 0.520 0.423 1.110 0.427 

Direct 0.067 0.063 0.067 0.063 0.090 0.090 0.070 0.067 

Iisab34 
Strategy 0.090 0.090 0.087 0.093 0.110 0.113 0.090 0.093 

Direct 0.290 0.200 0.190 0.163 0.273 0.247 0.240 0.187 
Iisab35 

Strategy 0.150 0.147 0.150 0.150 0.153 0.170 0.147 0.113 

Direct 0.470 0.687 0.563 0.770 0.553 0.713 0.497 0.470 
Iisab36 

Strategy 0.497 0.797 0.667 0.743 0.527 0.663 0.547 0.453 

Direct 0.067 0.063 0.067 0.067 0.087 0.090 0.067 0.067 
lisab42 

Strategy 0.177 0.170 0.170 0.173 0.300 0.300 0.183 0.187 

Direct 0.070 0.070 0.067 0.067 0.093 0.093 0.070 0.070 
Iisab44 

Strategy 0.100 0.093 0.100 0.093 0.120 0.120 0.100 0.097 

Direct 0.067 0.063 0.070 0.067 0.087 0.090 0.070 0.067 

lisab5l 
Strategy 0.087 0.090 0.083 0.087 0.110 0.110 0.090 0.090 

Direct 0.373 0.843 0.847 0.453 0.280 0.340 0.683 0.213 
Iisab52 

Strategy 0.403 0.860 0.853 0.500 0.297 0.390 0.630 0.253 

Direct 0.067 0.063 0.067 0.063 0.087 0.090 0.063 0.067 
Iisab53 

Strategy 0.067 0.063 0.063 0.067 0.087 0.093 0.063 0.070 

Direct 0.067 0.067 0.063 0.067 0.090 0.087 0.070 0.067 
Iisab54 

Strategy 0.087 0.087 0.087 0.087 0.110 0.110 0.090 0.090 

Direct 0.077 0.077 0.080 0.077 0.100 0.103 0.097 0.097 
lisab57 

Strategy 0.100 0.103 0.107 0.103 0.123 0.123 0.110 0.110 

Direct 0.147 0.107 0.110 0.163 0.167 0.203 0.113 0.200 
Iisab59 

Strategy 0.070 0.063 0.067 0.067 0.087 0.090 0.070 0.067 

Direct 0.067 0.063 0.070 0.063 0.087 0.093 0.070 0.067 
Iisab60 

Strategy 0.090 0.087 0.090 0.087 0.110 0.113 0.087 0.090 

Direct 0.150 0.093 0.0-7 0.093 0.127 0.113 0.110 0.100 
Iisab78 

Strategy 0.110 0.100 0.110 0.100 0.127 0.123 0.107 0.100 

Direct 0.107 0.130 0.110 0.100 0.130 0.127 0.147 0.103 
Iisab86 

Strategy 0.103 0.123 0.110 0.107 0.133 0.130 0.123 0.107 

Direct 0.267 0.293 0.293 0.240 0.167 0.183 0.137 0.153 
Iisaba4 

Strategy 0.203 0.223 0.240 0.193 0.167 0.160 0.263 0.147 
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i 
Direct 0.093 0.080 0.080 0.077 0.107 0.100 0.080 0.090 

I saba9 
Strategy 0.133 0.130 0.130 0.133 0.207 0.203 0.140 0.143 

modtree 
Direct 

Strategy 

0.070 

0.087 

0.060 

0.087 

0.060 

0.090 

0.070 

0.083 

0.083 

0.110 

0.087 

0.110 

0.073 

0.090 
0.060 

0.090 

Direct 0.093 0.070 0.070 0.070 0.100 0.090 0.070 0.080 
nakashi 

Strategy 0.103 0.090 0.097 0.090 0.123 0.117 0.093 0.097 

Direct 0.060 0.060 0.070 0.060 0.090 0.090 0.060 0.070 
newtre2 

Strategy 0.090 0.083 0.087 0.087 0.110 0.110 0.090 0.087 
Direct 0.060 0.070 0.063 0.060 0.090 0.090 0.060 0.070 

newtre3 
Strategy 0.110 0.110 0.107 0.110 0.153 0.157 0.117 0.110 

Direct 0.060 0.070 0.060 0.070 0.087 0.090 0.067 0.063 
newtree 

Strategy 0.067 0.067 0.067 0.063 0.087 0.090 0.067 0.063 

Direct 0.077 0.073 0.080 0.080 0.097 0.100 0.080 0.080 
rand100 

Strategy 0.100 0.100 0.100 0.100 0.120 0.127 0.100 0.103 

Direct 0.063 0.060 0.070 0.063 0.090 0.087 0.067 0.067 
rand101 

Strategy 0.087 0.083 0.087 0.083 0.117 0.117 0.087 0.090 

Direct 0.063 0.067 0.063 0.063 0.087 0.087 0.067 0.070 
rand 102 

Strategy 0.087 0.083 0.087 0.087 0.110 0.110 0.090 0.087 

Direct 0.070 0.067 0.070 0.070 0.093 0.097 0.070 0.073 
rand 103 

Strategy 0.110 0.110 0.110 0.113 0.160 0.160 0.113 0.117 

Direct 0.090 0.100 0.107 0.103 0.110 0.113 0.077 0.093 
rand 104 

Strategy 0.113 0.117 0.120 0.120 0.127 0.133 0.100 0.110 

Direct 0.077 0.073 0.073 0.077 0.093 0.097 0.073 0.080 
rand 105 

Strategy 0.097 0.083 0.090 0.090 0.113 0.117 0.090 0.090 

rand 106 
Direct 

Strategy 

0.227 

0.190 

1.710 

0.410 

1.730 

0.390 

0.300 

2.103 

0.220 

0.230 

0.210 

0.547 

0.407 

3.663 

0.170 

0.207 

Direct 0.067 0.063 0.067 0.060 0.090 0.083 0.067 0.070 
rand 107 

Strategy 0.087 0.087 0.087 0.087 0.110 0.107 0.090 0.090 

Direct 0.103 0.190 0.180 0.150 0.130 0.153 0.190 0.107 
rand 108 

Strategy 0.140 0.210 0.180 0.170 0.150 0.157 0.203 0.130 

rand1 09 
Direct 

Strategy 

0.173 

0.120 

0.120 

0.110 

0.120 

0.110 

0.143 

0.113 

0.197 

0.143 

0.167 

0.143 

0.173 

0.127 

0.230 

0.127 

d 
Direct 0.117 0.173 0.150 0.150 0.153 0.163 0.117 0.140 

110 ran 
Strategy 0.137 0.190 0.170 0.170 0.183 0.187 0.140 0.163 

d 1 
Direct 0.103 0.117 0.100 0.093 0.127 0.113 0.097 0.097 

ran 1 1 
Strategy 0.137 0.157 0.133 0.120 0.163 0.160 0.120 0.123 

d 1 
Direct 0.067 0.063 0.063 0.067 0.090 0.083 0.067 0.067 

ran 1 2 
Strategy 0.087 0.087 0.083 0.090 0.110 0.110 0.087 0.087 

Direct 0.067 0.070 0.067 0.067 0.090 0.087 0.067 0.070 
rand113 Strategy 0.087 0.090 0.090 0.090 0.110 0.117 0.090 0.093 
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rand1 14 
Direct 0.063 0.067 0.060 0.067 0.087 0.090 0.067 0.067 

Strategy 0.080 0.090 0.087 0.083 0.110 0.110 0.097 0.090 

rand1 15 
Direct 0.103 0.100 0.097 0.103 0.120 0.110 0.087 0.090 

Strategy 0.110 0.123 0.113 0.117 0.130 0.130 0.103 0.110 

d1 16 
Direct 0.157 0.110 0.130 0.320 0.167 0.303 0.303 0.110 

ran 
Strategy 0.177 0.150 0.147 0.333 0.183 0.310 0.317 0.133 

d1 17 
Direct 0.070 0.063 0.067 0.067 0.087 0.090 0.067 0.070 

ran 
Strategy 0.087 0.083 0.090 0.090 0.110 0.110 0.090 0.090 

dl 18 
Direct 0.093 0.077 0.077 0.077 0.107 0.100 0.080 0.080 

ran 
Strategy 0.093 0.093 0.100 0.090 0.120 0.113 0.100 0.093 

d1 19 
Direct 0.070 0.073 0.070 0.070 0.097 0.093 0.077 0.070 

ran 
Strategy 0.110 0.107 0.110 0.110 0.160 0.160 0.117 0.113 

d 120 
Direct 0.163 0.090 0.097 0.100 0.180 0.130 0.107 0.153 

ran 
Strategy 0.100 0.090 0.100 0.093 0.120 0.120 0.103 0.103 

dl2l 
Direct 0.083 0.080 0.083 0.080 0.100 0.103 0.097 0.083 

ran 
Strategy 0.097 0.093 0.103 0.097 0.120 0.123 0.103 0.103 

d 122 
Direct 0.067 0.060 0.063 0.067 0.087 0.087 0.070 0.063 

ran 
Strategy 0.090 0.083 0.090 0.087 0.110 0.110 0.083 0.090 

d 123 
Direct 0.063 0.070 0.067 0.067 0.090 0.087 0.067 0.073 

ran Strategy 0.090 0.087 0.083 0.090 0.110 0.110 0.090 0.090 

d124 
Direct 0.067 0.070 0.070 0.070 0.090 0.090 0.073 0.070 

ran 
Strategy 0.090 0.090 0.090 0.090 0.110 0.110 0.097 0.090 

d 125 
Direct 0.067 0.067 0.067 0.063 0.090 0.090 0.067 0.070 

ran 
Strategy 0.090 0.090 0.083 0.087 0.110 0.113 0.090 0.090 

d126 
Direct 0.093 0.090 0.090 0.090 0.120 0.117 0.090 0.107 

ran 
Strategy 0.103 0.100 0.100 0.100 0.120 0.123 0.100 0.103 

d 127 
Direct 0.070 0.067 0.063 0.070 0.093 0.090 0.070 0.070 

ran 
Strategy 0.130 0.130 0.130 0.130 0.207 0.203 0.140 0.140 

nd128 
Direct 0.227 0.140 0.133 0.220 0.240 0.290 0.210 0.140 

ra 
Strategy 0.247 0.130 0.130 0.270 0.223 0.240 0.170 0.150 

d129 
Direct 0.067 0.063 0.067 0.063 0.090 0.090 0.070 0.070 

ran 
Strategy 0.093 0.090 0.083 0.087 0.113 0.110 0.090 0.090 

d 130 
Direct 0.077 0.073 0.070 0.077 0.093 0.100 0.080 0.080 

ran 
Strategy 0.097 0.100 0.097 0.093 0.120 0.120 0.100 0.100 

randl3l 
Direct 0.067 0.067 0.063 0.060 0.090 0.090 0.060 0.070 

Strategy 0.083 0.087 0.090 0.090 0.107 0.110 0.090 0.090 

rand 132 
Direct 

Strategy 

0.257 

0.293 

0.330 

0.370 

0.330 

0.370 

0.823 

0.947 
0.210 
0.213 

0.560 

0.413 
0.790 

0.910 
0.307 

0.323 

rand 133 
Direct 0.063 0.063 0.063 0.067 0.087 0.087 0.067 0.067- 

Strategy 0.087 0.087 0.083 0.087 7 0.107 0.110 0.090 0.090 
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Direct 0.167 0.250 0.263 0.947 0.187 0.490 0.603 0.163 

rand 134 
Strategy 0.560 0.240 0.260 2.140 0.250 0.280 1.223 0.220 
Direct 0.097 0.103 0.097 0.163 0.123 0.113 0.123 0.110 

rand 135 
Strategy 0.133 0.130 0.130 0.233 0.160 0.147 0.153 0.157 
Direct 0.063 0.060 0.067 0.063 0.087 0.087 0.070 0.067 

rand 136 
Strategy 0.087 0.090 0.083 0.087 0.110 0.110 0.087 0.087 

d 137 
Direct 0.063 0.070 0.063 0.070 0.090 0.090 0.070 0.070 

ran Strategy 0.090 0.087 0.090 0.090 0.113 0.117 0.090 0.090 

d 138 
Direct 0.073 0.067 0.067 0.070 0.090 0.093 0.070 0.070 

ran Strategy 0.090 0.093 0.097 0.090 0.120 0.113 0.097 0.093 

d 139 
Direct 0.103 0.083 0.093 0.167 0.127 0.193 0.093 0.113 

ran 
Strategy 0.120 0.100 0.110 0.153 0.140 0.180 0.120 0.120 

d 140 
Direct 0.067 0.063 0.063 0.063 0.087 0.090 0.063 0.067 

ran 
Strategy 0.090 0.080 0.090 0.087 0.110 0.110 0.087 0.093 

d 141 
Direct 0.117 0.177 0.150 0.150 0.160 0.163 0.117 0.137 

ran 
Strategy 0.133 0.193 0.177 0.170 0.187 0.183 0.137 0.170 

d 142 
Direct 3.777 3.043 3.053 3.793 4.087 2.100 4.553 1.600 

ran 
Strategy 3.657 2.310 2.173 3.160 2.300 1.890 3.670 1.620 

d 143 
Direct 0.073 0.070 0.077 0.073 0.090 0.103 0.070 0.080 

ran 
Strategy 0.100 0.090 0.093 0.097 0.117 0.120 0.093 0.097 
Direct 0.187 0.580 0.483 0.417 0.180 0.240 0.640 0.190 

rand144 
Strategy 0.207 0.543 0.463 0.437 0.223 0.270 0.430 0.230 

d 145 
Direct 0.070 0.070 0.070 0.070 0.090 0.090 0.070 0.073 

ran 
Strategy 0.110 0.107 0.107 0.110 0.160 0.157 0.113 0.117 

d146 
Direct 0.067 0.070 0.063 0.067 0.090 0.093 0.070 0.070 

ran 
Strategy 0.087 0.087 0.093 0.087 0.113 0.113 0.093 0.090 

d 147 
Direct 0.193 3.073 3.733 0.233 0.217 0.550 0.420 0.210 

ran 
Strategy 0.373 3.500 2.947 2.530 0.263 0.213 0.397 0.243 

d148 
Direct 0.070 0.070 0.060 0.067 0.090 0.090 0.070 0.070 

ran 
Strategy 0.090 0.083 0.090 0.087 0.110 0.113 0.087 0.090 

Direct 0.090 0.087 0.087 0.087 0.110 0.107 0.090 0.097 
nd 149 ra 

Strategy 0.093 0.097 0.093 0.090 0.117 0.117 0.100 0.090 

Direct 0.560 2.143 1.267 1.493 0.697 0.733 1.023 0.650 
rand150 

Strategy 0.657 2.020 1.127 2.020 0.857 1.403 0.967 0.663 
Direct 0.070 0.067 0.070 0.070 0.090 0.090 0.070 0 070 

rand 151 . 
Strategy 0.090 0.083 0.090 0.087 0.113 0.110 0.090 0.090 
Direct 0.063 0.067 0.060 0.063 0.090 0.087 0.063 0.070 

rand 152 
Strategy 0.087 0.087 0.087 0.090 0.107 0.110 0.090 0.090 

Direct 0.073 0.077 0.073 0.077 0.097 0.100 0.077 0.080 
rand153 

Strategy 0.093 0.097 0.100 0.093 0.120 0.123 0.100 0.103 
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rand 154 
Direct 

Strategy 

0.073 

0.090 

0.063 

0.087 

0.070 

0.090 

0.070 

0.090 

0.090 

0.117 

0.093 

0.110 

0.073 

0.090 
0.070 

0.093 

d 155 
Direct 0.100 0.103 0.107 0.083 0.110 0.100 0.157 0.090 

ran 
Strategy 0.117 0.120 0.117 0.103 0.123 0.127 0.163 0.103 

rand156 
Direct 

Strategy 

0.073 
0.090 

0.070 
0.087 

0.067 
0.090 

0.070 
0.090 

0.093 
0.113 

0.090 
0.113 

0.080 
0.093 

0.077 
0.093 

d 158 
Direct 66.047 27.763 27.747 28.287 36.320 21.090 25.050 27.840 

ran Strategy 22.430 20.013 21.520 23.117 22.000 18.113 18.663 9.360 

d l 
Direct 0.067 0.060 0.067 0.063 0.093 0.087 0.063 0.067 

ran o 0 
Strategy 0.087 0.087 0.090 0.087 0.110 0.110 0.083 0.090 

d l1 
Direct 629.157 3125.633 3145.013 174.117 306.983 234.953 940.133 108.740 

ran o 
Strategy 143.327 1624.337 1625.660 59.173 103.027 48.087 325.597 46.693 

d 
Direct 0.273 0.197 0.197 0.217 0.203 0.213 0.273 0.177 

ran o12 
Strategy 0.200 0.160 0.157 0.170 0.200 0.180 0.210 0.173 

d l3 
Direct 0.417 0.517 0.517 1.097 0.357 0.590 1.220 0.370 

ran o 
Strategy 0.727 0.743 0.747 1.980 0.603 0.957 1.773 0.783 

Direct 0.067 0.070 0.063 0.067 0.087 0.083 0.070 0.067 
rando14 Strategy 0.087 0.093 0.083 0.087 0.110 0.110 0.087 0.090 

Direct 0.063 0.060 0.067 0.063 0.090 0.087 0.067 0.067 
randol 5 

Strategy 0.087 0.087 0.083 0.087 0.113 0.110 0.093 0.090 

d l6 
Direct 1.230 1.230 0.860 1.347 1.320 1.173 0.807 1.337 

ran o 
Strategy 1.227 0.997 0.740 1.240 1.120 1.033 0.703 1.090 

d l7 
Direct 0.070 0.063 0.067 0.060 0.090 0.087 0.063 0.070 

ran o 
Strategy 0.083 0.090 0.083 0.087 0.110 0.110 0.090 0.090 

d l8 
Direct 68.500 333.773 320.223 785.390 42.000 241.683 672.627 44.570 

ran o 
Strategy 68.570 324.997 308.940 784.617 51.273 241.943 686.420 41.037 

d l9 
Direct 1.260 4.960 4.647 5.827 0.847 1.170 30.990 0.843 

ran o 
Strategy 3.047 5.387 5.370 7.413 1.337 1.753 18.933 1.103 

d 20 
Direct 2.850 3.770 3.140 3.863 2.370 2.953 17.447 2.270 

ran o 
Strategy 3.843 10.467 9.880 14.373 3.597 4.053 93.960 4.103 

d ll 
Direct 0.063 0.070 0.060 0.070 0.080 0.090 0.070 0.063 

ran o 
Strategy 0.067 0.063 0.063 0.067 0.087 0.087 0.067 0.063 

d 22 
Direct 5.697 16.223 16.257 8.810 2.913 4.743 30.040 2.127 

ran o 
Strategy 6.057 16.177 15.113 9.023 3.063 5.227 33.590 1.957 

r nd 23 
Direct 0.097 0.103 0.100 0.097 0.113 0.113 0.100 0.090 

a o 
Strategy 0.107 0.113 0.113 0.113 0.120 0.130 0.100 0.100 

nd 24 
Direct 0.067 0.063 0.063 0.063 0.087 0.090 0.063 0.067 

ra o 
Strategy 0.087 0.087 0.087 0.083 0.110 0.110 0.090 0.087 

rando25 
Direct 

Strategy 
0.067 
0.090 

0.067 

0.087 

0.067 

0.090 

0.070 

0.093 

0.090 

0.113 
0.090 

0.117 
0.070 

0.090 

0.070 

0.093 
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rando26 
Direct 

Strategy 

0.063 

0.090 

0.067 

0.090 

0.063 

0.083 

0.063 

0.087 

0.087 

0.110 

0.090 

0.110 
0.070 

0.090 
0.063 

0.090 

rando27 
Direct 1.913 2.510 2.523 2.147 2.540 1.710 1.437 1.930 

Strategy 1.920 2.520 2.520 2.167 2.550 1.727 1.453 1.947 

rando28 
Direct 

Strategy 

0.103 
0.110 

0.090 
0.107 

0.080 
0.103 

0.090 
0.107 

0.110 
0.127 

0.110 
0.130 

0.087 
0.107 

0.093 
0.107 

29 d 
Direct 0.123 0.177 0.127 0.130 0.147 0.133 0.120 0.117 

ran o Strategy 0.143 0.117 0.117 0.160 0.163 0.143 0.133 0.133 

d 30 
Direct 0.130 0.080 0.090 0.087 0.147 0.127 0.083 0.117 

ran o Strategy 0.090 0.090 0.090 0.090 0.113 0.117 0.090 0.093 

d 3l 
Direct 0.930 0.823 0.880 2.130 0.910 0.950 0.807 1.153 

ran o 
Strategy 0.940 0.887 0.957 1.973 0.960 1.013 0.890 1.193 

d 32 
Direct 0.060 0.067 0.063 0.063 0.087 0.093 0.067 0.063 

ran o 
Strategy 0.087 0.090 0.087 0.083 0.110 0.110 0.090 0.090 

d 33 
Direct 0.083 0.073 0.077 0.080 0.103 0.100 0.080 0.080 

ran o 
Strategy 0.100 0.100 0.100 0.107 0.123 0.120 0.110 0.103 

rando34 
Direct 

Strategy 
0.120 

0.133 

0.117 

0.127 

0.130 

0.140 

0.133 

0.137 
0.137 

0.147 

0.143 

0.153 

0.110 

0.130 

0.107 

0.117 

d 35 
Direct 0.103 0.130 0.120 0.117 0.113 0.117 0.093 0.090 

ran o Strategy 0.133 0.207 0.147 0.153 0.147 0.147 0.120 0.123 

d 36 
Direct 0.073 0.073 0.077 0.073 0.097 0.093 0.080 0.077 

ran o 
Strategy 0.093 0.090 0.093 0.093 0.113 0.117 0.090 0.093 

rand 37 
Direct 0.110 0.173 0.170 0.187 0.133 0.200 0.120 0.130 

o 
Strategy 0.280 0.330 0.327 0.400 0.243 0.310 0.163 0.240 

d 38 
Direct 0.070 0.070 0.070 0.067 0.093 0.090 0.070 0.070 

ran o 
Strategy 0.090 0.087 0.087 0.093 0.113 0.110 0.093 0.090 

d 39 
Direct 0.123 0.110 0.120 0.350 0.130 0.247 0.277 0.140 

ran o 
Strategy 0.150 0.133 0.130 0.380 0.157 0.273 0.300 0.167 

d 40 
Direct 0.070 0.060 0.073 0.060 0.090 0.090 0.070 0.063 

ran o 
Strategy 0.110 0.110 0.103 0.113 0.157 0.160 0.113 0.117 

rando4l 
Direct 0.067 0.060 0.070 0.060 0.090 0.083 0.067 0.070 

Strategy 0.090 0.087 0.090 0.087 0.110 0.107 0.087 0.090 

rando42 
Direct 0.060 0.073 0.060 0.070 0.090 0.103 0.063 0.067 

Strategy 0.090 0.087 0.087 0.087 0.113 0.110 0.090 0.090 

rando43 
Direct 0.070 0.070 0.070 0.073 0.090 0.090 0.070 0.077 

Strategy 0.090 0.087 0.087 0.090 0.110 0.110 0.090 0.090 

rando44 
Direct 

Strategy 

0.813 

0.133 

0.197 

0.107 

0.187 

0.100 

0.353 
0.123 

0.433 
0.150 

0.283 

0.137 
0.427 

0.123 
0.450 

0.133 

rando45 
Direct 0.093 0.083 0.087 0.093 0.110 0.103 0.087 0.090 

Strategy 0.107 0.110 0.103 0.120 0.130 0.127 0.110 0.110 
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Direct 0.247 0.200 0.200 0.157 0.190 0.183 0 137 0 163 

rando46 . . 
Strategy 0.203 0.177 0.180 0.187 0.180 0.190 0.180 0.153 
Direct 0.087 0.100 0.100 0.090 0.100 0.107 0 090 0 087 

rando47 . . 
Strategy 0.107 0.110 0.113 0.120 0.123 0.133 0.120 0.110 
Direct 0.073 0.073 0.070 0.073 0.093 0.100 0 070 077 0 

rando48 . . 
Strategy 0.097 0.093 0.090 0.097 0.113 0.120 0.093 0.097 
Direct 0.067 0.067 0.067 0.063 0.090 0.090 0.067 0 070 

rando49 . 
Strategy 0.087 0.090 0.083 0.090 0.110 0.117 0.090 0.090 

Direct 0.063 0.063 0.067 0.063 0.087 0.090 0.063 0 067 
rando50 . 

Strategy 0.083 0.087 0.087 0.087 0.110 0.113 0.090 0.087 
Direct 0.063 0.067 0.063 0.063 0.087 0.087 0.067 0.067 

rando5l 
Strategy 0.090 0.087 0.087 0.087 0.113 0.107 0.090 0.087 
Direct 0.560 0.537 0.567 0.630 0.550 0.600 0.680 0.417 

rando52 
Strategy 0.690 0.903 0.767 0.770 0.637 0.750 0.820 0.580 
Direct 0.070 0.070 0.070 0.070 0.090 0.093 0.070 0.073 

d 53 ran o 
Strategy 0.090 0.090 0.090 0.093 0.120 0.113 0.093 0.093 
Direct 0.080 0.070 0.073 0.077 0.093 0.097 0.080 0.077 

rando54 
Strategy 0.133 0.130 0.133 0.133 0.210 0.207 0.140 0.140 
Direct 0.073 0.080 0.073 0.080 0.103 0.100 0.080 0.077 

d 55 ran o 
Strategy 0.097 0.100 0.097 0.100 0.120 0.123 0.100 0.100 

Direct 0.070 0.060 0.067 0.063 0.090 0.090 0.063 0.070 
rando56 

Strategy 0.090 0.087 0.083 0.090 0.110 0.110 0.087 0.093 
Direct 0.060 0.070 0.063 0.063 0.090 0.087 0.070 0.063 

nd 57 ra o 
Strategy 0.090 0.087 0.087 0.090 0.110 0.110 0.087 0.087 
Direct 0.067 0.070 0.070 0.063 0.097 0.090 0.070 0.070 

rando58 
Strategy 0.090 0.097 0.090 0.090 0.110 0.113 0.090 0.093 
Direct 0.343 0.190 0.180 0.160 0.293 0.223 0.130 0 187 

rando59 . 
Strategy 0.227 0.140 0.137 0.130 0.250 0.160 0.140 0.140 
Direct 0.110 0.113 0.127 0.113 0.133 0.133 0.133 0.110 

rando60 
Strategy 0.107 0.117 0.113 0.117 0.133 0.137 0.107 0.117 
Direct 0.080 0.073 0.077 0.083 0.100 0.100 0.090 0.077 

rando6l 
Strategy 0.103 0.103 0.100 0.120 0.127 0.127 0.123 0.103 
Direct 0.070 0.067 0.070 0.070 0.093 0.097 0.070 0.073 

rando62 
Strategy 0.090 0.090 0.090 0.093 0.117 0.110 0.093 0.097 
Direct 0.070 0.080 0.080 0.080 0.100 0.100 0.077 0.080 

rando63 
Strategy 0.097 0.093 0.100 0.103 0.120 0.123 0.100 0.107 

Direct 0.163 0.120 0.120 0.110 0.200 0.133 0.120 0.113 
rando64 

Strategy 0.113 0.110 0.110 0.107 0.133 0.127 0.110 0.113 

E 

Direct 0.060 0.070 0.060 0.070 0.090 0.090 0.070 0.070 
rando65 

Strategy 0.087 0.093 0.087 0.090 0.110 0.113 0.090 0.090 
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rando66 
Direct 0.080 0.083 0.080 0.090 0.110 0.100 0.090 0.090 

Strategy 0.103 0.107 0.107 0.113 0.123 0.127 0.107 0.110 

rando67 
Direct 0.060 0.060 0.070 0.060 0.090 0.093 0.060 0.070 

Strategy 0.093 0.083 0.087 0.087 0.110 0.110 0.083 0.090 

rando68 
Direct 

Strategy 

0.060 

0.090 

0.073 

0.087 

0.060 

0.083 

0.067 

0.090 

0.083 

0.110 

0.090 

0.113 

0.070 

0.090 

0.060 

0.090 

d 69 
Direct 0.070 0.060 0.067 0.063 0.090 0.087 0.063 0.073 

ran o 
Strategy 0.087 0.083 0.087 0.087 0.110 0.110 0.090 0.090 

d 70 
Direct 0.067 0.063 0.073 0.070 0.090 0.090 0.070 0.070 

ran o 
Strategy 0.087 0.087 0.093 0.087 0.117 0.113 0.090 0.093 

d ll 
Direct 0.060 0.070 0.060 0.067 0.083 0.090 0.067 0.063 

ran o 
Strategy 0.083 0.087 0.083 0.083 0.110 0.110 0.090 0.090 

d 72 
Direct 0.070 0.063 0.060 0.070 0.087 0.083 0.070 0.067 

ran o 
Strategy 0.087 0.083 0.093 0.087 0.110 0.110 0.083 0.090 

d 73 
Direct 0.103 0.107 0.103 0.110 0.120 0.117 0.167 0.093 

ran o 
Strategy 0.130 0.130 0.130 0.137 0.140 0.140 0.193 0.127 

d 74 
Direct 0.067 0.063 0.060 0.067 0.087 0.087 0.070 0.060 

ran o 
Strategy 0.083 0.087 0.087 0.087 0.110 0.110 0.087 0.090 

d 75 
Direct 0.070 0.063 0.067 0.067 0.087 0.093 0.067 0.070 

ran o 
Strategy 0.130 0.130 0.130 0.133 0.207 0.203 0.140 0.143 

ndo76 
Direct 0.080 0.077 0.077 0.077 0.097 0.100 0.087 0.080 

ra 
Strategy 0.090 0.090 0.097 0.093 0.117 0.113 0.090 0.100 

rand ll 
Direct 0.157 0.143 0.143 0.167 0.183 0.200 0.250 0.170 

o 
Strategy 0.187 0.167 0.173 0.190 0.207 0.220 0.267 0.197 

nd 78 
Direct 0.070 0.070 0.067 0.070 0.093 0.097 0.070 0.073 

ra o 
Strategy 0.090 0.090 0.090 0.090 0.113 0.117 0.090 0.093 

rando79 
Direct 0.063 0.067 0.063 0.067 0.090 0.087 0.067 0.067 

Strategy 0.087 0.090 0.080 0.093 0.110 0.110 0.090 0.090 

d 80 
Direct 0.067 0.067 0.063 0.067 0.090 0.090 0.067 0.073 

ran o 
Strategy 0.107 0.110 0.103 0.113 0.160 0.163 0.110 0.117 

rando8l 
Direct 0.063 0.063 0.067 0.060 0.090 0.083 0.063 0.070 

Strategy 0.087 0.083 0.083 0.087 0.110 0.110 0.087 0.090 

rando82 
Direct 

Strategy 

0.060 

0.087 

0.070 

0.090 

0.063 

0.090 

0.067 

0.087 

0.090 

0.113 

0.090 

0.110 

0.067 

0.090 

0.067 

0.090 

rando83 
Direct 

Strategy 
0.073 

0.093 
0.070 

0.090 

0.070 

0.090 

0.070 

0.090 

0.090 

0.120 

0.090 

0.110 

0.070 

0.090 

0.073 

0.097 

rando84 
Direct 

Strategy 
0.090 

0.097 

0.077 

0.093 

0.080 

0.090 

0.083 
0.100 

0.100 
0.117 

0.107 

0.113 
0.077 

0.097 
0.083 

0.093 

rando85 
Direct 0.077 0.080 0.077 0.080 0.100 0.100 0.080 0.083 

Strategy. 0.097 0.093 0.097 0.093 0.120 0.117 0.100 0.097 
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Tree Method 1 2 3 4 5 6 7 8 
Direct 0.067 0.063 0.063 0.067 0.083 0.087 0 073 0 063 

rando86 . . 
Strategy 0.087 0.087 0.083 0.087 0.110 0.113 0.087 0.090 
Direct 0.067 0.067 0.063 0.070 0.090 0.090 0.067 0 067 

rando87 . 
Strategy 0.090 0.083 0.090 0.087 0.117 0.113 0.087 0.090 

Direct 0.070 0.070 0.070 0.067 0.090 0.090 0.070 0.070 
rando88 

Strategy 0.087 0.090 0.083 0.087 0.110 0.110 0.090 0.090 
Direct 0.420 0.343 0.317 0.313 0.387 0.347 0.197 0 420 

d 89 . ran o 
Strategy 0.317 0.280 0.243 0.247 0.303 0.280 0.183 0.350 

Direct 0.060 0.063 0.070 0.063 0.087 0.090 0.060 0 070 
d 90 . ran o 

Strategy 0.067 0.063 0.067 0.063 0.090 0.087 0.063 0.073 

Direct 0.350 1.050 1.020 0.707 0.337 0.383 1.113 0.307 
rando9l 

Strategy 0.440 0.913 0.903 0.397 0.370 0.317 1.107 0.300 

d 92 
Direct 24.307 44.423 63.450 85.157 13.987 11.917 5.643 22.197 

ran o 
Strategy 21.543 48.793 60.767 85.187 11.577 16.103 5.900 15.203 
Direct 0.120 0.110 0.093 0.120 0.130 0.130 0.110 0.107 

d 93 ran o 
Strategy 0.110 0.107 0.107 0.113 0.130 0.133 0.100 0.110 
Direct 0.063 0.060 0.067 0.063 0.090 0.087 0.067 0.067 

rando94 
Strategy 0.083 0.087 0.087 0.083 0.113 0.110 0.090 0.090 

Direct 0.073 0.067 0.067 0.073 0.093 0.093 0.077 0.077 
d 95 ran o Strategy 0.097 0.090 0.090 0.090 0.113 0.113 0.093 0.097 

Direct 0.060 0.067 0.063 0.060 0.090 0.090 0.060 0.070 
rando96 

Strategy 0.103 0.107 0.110 0.110 0.157 0.153 0.117 0.110 
Direct 0.060 0.067 0.063 0.063 0.087 0.090 0.063 0.067 

97 d ran o 
Strategy 0.083 0.090 0.087 0.083 0.110 0.110 0.090 0.087 
Direct 0.317 0.233 0.243 0.280 0.260 0.260 0.243 0.160 

and 98 r o 
Strategy 0.170 0.153 0.150 0.157 0.180 0.190 0.173 0.187 
Direct 0.140 0.510 0.460 0.380 0.180 0.233 0.337 0 173 

rando99 . 
Strategy 0.147 0.473 0.330 0.347 0.180 0.260 0.343 0.167 
Direct 0.063 0.063 0.067 0.063 0.087 0.087 0.067 0 067 d 1 . ran om 

Strategy 0.090 0.083 0.087 0.090 0.110 0.110 0.087 0.090 
Direct 0.063 0.063 0.067 0.060 0.093 0.090 0.060 0.070 

random2 
Strategy 0.087 0.087 0.083 0.087 0.110 0.110 0.087 0.093 

Direct 0.190 0.260 0.197 0.203 0.210 0.190 0.143 0.200 
random3 

Strategy 0.160 0.187 0.170 0.173 0.177 0.180 0.117 0.170 
Direct 0.063 0.067 0.063 0.070 0.080 0.090 0.070 0.060 

random4 
Strategy 0.083 0.087 0.083 0.090 0.110 0.107 0.093 0.087 
Direct 1.823 20.283 20.283 23.823 3.727 3.540 27 337 3 927 

random6 . . 
Strategy 2.103 21.253 21.240 25.497 4.097 4.007 28.730 4.720 
Direct 0.070 0.060 0.060 0.073 0.083 0.087 0 070 0 060 

random7 . . 
Strategy 0.087 0.087 0.087 0.083 0.110 0.110 0.090 0.087 
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Tree Method 1 2 3 4 5 6 7 8 

random8 
Direct 

Strategy 

0.070 

0.090 

0.063 

0.093 

0.067 

0.083 

0.067 

0.087 

0.090 

0.113 
0.087 

0.110 
0.067 

0.090 
0.070 

0.093 

random9 
Direct 

Strategy 

0.060 

0.090 

0.070 

0.087 

0.060 

0.083 

0.070 

0.090 

0.090 

0.110 

0.083 

0.110 
0.070 

0.087 

0.067 

0.090 

l 
Direct 0.063 0.067 0.060 0.070 0.080 0.090 0.070 0.060 

re cour 
Strategy 0.067 0.063 0.063 0.067 0.090 0.083 0.063 0.070 

Direct 0.067 0.063 0.060 0.070 0.087 0.083 0.070 0.063 
rstreel 

Strategy 0.080 0.090 0.087 0.087 0.110 0.110 0.090 0.087 

Direct 0.070 0.060 0.067 0.063 0.090 0.083 0.070 0.067 
rstree2 Strategy 0.087 0.090 0.087 0.083 0.110 0.110 0.093 0.087 

3 
Direct 0.067 0.063 0.067 0.060 0.090 0.090 0.060 0.070 

rstree 
Strategy 0.087 0.087 0.087 0.087 0.110 0.110 0.090 0.087 

Direct 0.060 0.070 0.060 0.063 0.087 0.090 0.063 0.067 
rstree4 

Strategy 0.087 0.087 0.083 0.090 0.107 0.110 0.090 0.090 

Direct 0.063 0.067 0.063 0.067 0.083 0.087 0.067 0.070 
rstree5 

Strategy 0.087 0.087 0.090 0.080 0.110 0.113 0.090 0.090 

Direct 0.063 0.067 0.063 0.067 0.083 0.087 0.073 0.063 
rstree6 

Strategy 0.080 0.090 0.093 0.080 0.110 0.110 0.090 0.090 

Direct 0.067 0.063 0.063 0.060 0.090 0.090 0.063 0.067 
rstree7 Strategy 0.083 0.087 0.090 0.083 0.110 0.110 0.093 0.090 

i l i 
Direct 0.100 0.090 0.097 0.087 0.127 0.103 0.090 0.090 

tr a s Strategy 0.110 0.120 0.117 0.113 0.133 0.127 0.113 0.120 

l 2 i 
Direct 0.070 0.067 0.063 0.070 0.090 0.090 0.070 0.070 

tr a s 
Strategy 0.090 0.090 0.090 0.090 0.113 0.113 0.093 0.093 

i l 3 
Direct 0.070 0.070 0.067 0.073 0.093 0.090 0.077 0.073 

tr a s 
Strategy 0.090 0.090 0.090 0.097 0.117 0.117 0.093 0.093 

i l 4 t 
Direct 0.133 0.180 0.153 0.140 0.143 0.140 0.150 0.113 

r a s 
Strategy 0.150 0.197 0.183 0.203 0.160 0.173 0.167 0.140 

Direct 0.063 0.067 0.060 0.063 0.090 0.087 0.063 0.067 
usatree Strategy 0.067 0.060 0.063 0.067 0.090 0.083 0.070 0.067 

ll 
Direct 0.067 0.067 0.063 0.067 0.083 0.093 0.067 0.063 

worre 
Strategy 0.083 0.090 0.083 0.087 0.110 0.110 0.093 0.090 
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Appendix X 

BDD Complexities for Additional Reduced Trees Used In the Neural Network 

Investigation 

Key to ordering schemes: 

1. Modified top-down. 

2. Modified depth-first. 

3. Modified priority depth-first. 

4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 
6. Dynamic top-down weights. 
7. Bottom-up weights. 
8. Event criticality. 

Number of Non-Distinct BDD Nodes' 

l 
Ordering scheme Fau t tree 

1 2 3 4 5 6 7 8 

Iisal00 5301 7590 7423 11067 4565 3935 16787 3810 

Iisa102 1247485 4082011 4011371 2177558 716199 1238861 2378816 670400 

Iisa104 10 10 10 10 10 10 10 10 

Iisa107 6 6 6 6 6 6 6 6 

Iisal08 4 4 4 4 4 4 4 4 

Iisa109 100 190 190 373 101 66 332 103 

Iisa110 5066 10027 9130 6714 5555 6683 6830 4409 

lisal11 41 36 36 36 41 37 36 41 

Iisal12 824 751 751 907 920 779 1068 815 

Iisal13 896 1292 1291 1270 702 643 1481 557 

lisa115 104 85 81 81 58 101 57 33 
lisa116 13 9 9 9 7 6 9 7 

lisa118 68485 314912 216236 161438 42531 47349 218787 38486 

lisal19 10 7 7 10 10 7 10 10 

lisa121 69 53 53 78 73 73 49 60 

lisa122 89 108 108 108 89 56 102 81 
Iisa124 6683 29271 28489 13552 5556 7747 12646 5831 

lisabl1 5 5 5 5 5 5 5 5 
Iisabl3 30 35 35 35 34 38 20 36 

1 For each fault tree, the ordering scheme(s) resulting in the fewest non-distinct BDD nodes is 
(are) shown in bold. 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
Iisabl4 393722 2.03x10' 2.02x107 7.50x10' 277891 6432290 3.62x10' 173643 

Iisabl5 61882 97222 96640 82408 41131 36451 100806 27763 
Iisabl7 330 591 591 720 285 609 602 285 

Iisab22 40778 279612 279612 616536 34342 273027 1089847 56122 

Iisab26 7 7 7 7 7 7 7 7 
Iisab27 1192 1145 1028 1417 1281 1148 1174 1166 

Iisab33 4 4 4 4 4 4 4 4 

Iisab37 10 10 10 9 9 10 10 9 
Iisab39 2 2 2 2 2 2 2 2 

Iisab40 4 4 4 4 4 4 4 4 

Iisab45 3 3 3 3 3 3 3 3 

Iisab47 11 11 11 11 11 11 12 13 

Iisab48 4 4 4 4 4 4 4 4 

Iisab50 7 7 7 7 7 7 7 7 

Iisab56 3 3 3 3 3 3 3 3 

Iisab6l 194 136 136 136 151 160 126 96 

Iisab62 54 68 68 68 72 68 68 70 

Iisab63 29 25 25 25 25 20 20 25 

Iisab64 12 12 12 12 12 12 13 12 

Iisab66 184 796 796 304 150 225 1520 150 

Iisab67 4374 3907 3907 4892 4375 6942 5446 4196 

Iisab69 27 23 23 29 27 23 36 24 

Iisab70 251 264 207 191 243 245 214 242 

Iisab7l 7 7 7 7 7 7 7 7 

Iisab72 2737 2011 2011 1911 2639 2583 6550 1697 

Iisab74 181810 216333 148790 140998 184136 151587 315425 217746 

Iisab75 2 2 2 2 2 2 2 2 

Iisab76 95319 86954 86954 114005 106220 69643 146792 57580 

Iisab77 4286 2333 2263 4785 3302 4261 4510 1364 

Iisab80 6 6 6 6 6 7 6 5 

Iisab82 2990 3048 3048 2856 2767 2896 3331 2285 

Iisab83 438 359 359 184 185 196 107 164 

Iisab85 7 6 7 7 6 7 7 6 

Iisab87 2835107 6.67x107 6.26x10' 2.21x10' 1729805 1.16x10' 6148359 1791517 

Iisab88 167 147 147 124 109 187 364 84 
Iisab89 1822 7427 6425 688 1387 2467 625 1105 
Iisab9l 737 1190 1190 1190 589 1242 1003 1104 
Iisab94 3 3 3 3 3 3 3 3 

Iisab95 3 3 3 3 3 3 3 3 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

lisabal 330 591 591 720 285 609 602 285 

Iisaba2 2537083 1.86x10' 1.86x107 5634287 2746780 5287903 2193175 1492771 

Iisaba3 3672 10529 10153 9659 4903 5015 7844 3272 

Iisaba5 1939 3345 1651 2673 1446 4240 2519 1326 

Iisaba6 156 663 647 210 126 199 207 117 

Iisaba7 330 591 591 720 285 609 602 285 

Iisaba8 1131891 1073774 947778 1488698 890146 901370 1267894 708655 

rand159 488 168 168 793 393 172 205 208 

rand161 1399 2921 2411 3723 687 1605 3779 974 

rand163 4996 15007 11938 11170 4974 6438 395942 4240 

rand164 8519 8530 7202 7202 8006 5978 7691 6771 

rand165 20967 11242 11877 22707 16700 24927 12000 12977 

rand166 53355 110373 60192 75445 17007 33731 160937 16499 

rand167 354 459 402 375 1 366 397 325 329 

Number of If-Then-Else Calculations Required for BDD Construction 

Ordering scheme 
Fault tree 

1 2 3 4 5 6 7 8 

Iisal00 1163 522 516 760 796 541 856 648 

Iisa102 9048 1915 2017 2609 3470 2438 3567 2398 

Iisal04 143 144 143 143 139 139 151 139 

Iisa107 14 14 14 14 14 14 14 15 

Iisal08 23 23 23 23 22 22 23 22 

Iisal09 304 268 268 349 305 292 299 303 

Iisa110 962 1082 1027 957 1266 951 989 1560 

lisa111 52 46 46 46 52 48 46 52 

lisal12 256 146 148 231 228 176 202 264 

Iisal13 832 1010 1028 1443 667 473 386 545 

Iisa115 80 71 69 69 58 66 50 45 

lisal16 36 48 48 48 45 44 48 45 

lisal18 1694 2089 1574 1732 973 844 681 819 

lisal19 13 12 12 13 13 13 13 13 

lisal2l 49 57 57 47 52 45 58 50 

Iisa122 112 105 105 105 112 100 104 103 

Iisa124 1010 671 671 744 877 554 580 673 

2 For each fault tree, the ordering scheme(s) requiring the fewest Ito calculations to construct 
the BDD is (are) shown in bold. 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
lisabl1 98 83 107 106 104 104 83 106 

Iisabl3 629 802 793 783 776 761 552 768 

Iisab14 2684 24420 24410 63029 1968 10536 19969 1677 

Iisabl5 2586 2963 2978 3153 925 1065 4651 674 

Iisabl7 136 116 116 145 133 129 111 128 

Iisab22 4171 10032 10032 9049 4246 6749 11680 6410 

Iisab26 29 29 29 29 29 29 29 34 

Iisab27 456 607 572 422 407 224 266 393 

Iisab33 21 20 21 21 21 21 21 20 

Iisab37 20 20 20 18 19 20 20 18 

Iisab39 13 13 13 13 13 13 13 12 

Iisab40 12 12 12 12 12 12 11 12 

Iisab45 59 59 61 61 57 57 61 57 

Iisab47 50 54 54 54 45 49 47 46 

Iisab48 50 46 46 57 50 50 46 48 

Iisab50 54 54 54 54 56 55 54 56 

Iisab56 50 51 51 51 48 46 51 49 

Iisab6l 171 192 192 192 164 172 240 167 

Iisab62 58 51 51 73 63 73 73 59 

Iisab63 28 26 26 26 27 23 23 28 

Iisab64 668 909 826 814 681 620 646 672 

Iisab66 482 858 847 558 449 497 928 486 

Iisab67 381 417 417 487 471 404 544 516 

Iisab69 27 27 27 27 30 27 34 29 

Iisab70 94 109 98 67 85 71 78 89 

Iisab7l 44 41 41 41 40 41 41 43 

Iisab72 611 494 494 535 615 476 813 583 

Iisab74 4677 741 710 709 2788 706 879 4697 

Iisab75 79 78 77 85 81 81 84 80 

Iisab76 3548 8641 8641 2737 3393 3015 2068 2399 

Iisab77 604 446 379 520 464 551 358 275 

Iisab80 11 11 11 11 11 13 11 10 

Iisab82 367 224 224 330 391 390 317 336 

Iisab83 379 268 268 211 234 216 165 191 

Iisab85 16 15 16 16 15 16 16 15 

Iisab87 18986 61622 61684 19717 10205 13825 10332 7107 
Iisab88 303 309 309 390 357 337 274 326 
Iisab89 500 408 591 398 468 480 305 345 
Iisab9l 691 470 470 470 620 469 342 557 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

lisab94 11 11 11 11 10 10 11 10 

Iisab95 54 39 59 59 58 58 39 58 

lisabal 136 116 116 145 133 129 111 128 

Iisaba2 22453 8224 8224 8083 17263 11381 3296 16936 

Iisaba3 602 1218 1163 1168 662 672 922 913 

Iisaba5 420 528 442 415 388 547 494 403 

Iisaba6 76 104 97 108 74 92 80 66 

Iisaba7 136 116 116 145 133 129 111 128 

Iisaba8 12047 3119 3235 1959 4519 1710 3740 4328 

rand159 799 307 307 889 615 317 359 445 

rand161 516 513 488 1027 338 527 1120 333 

rand163 1073 1652 1502 1478 1065 1045 3340 1508 

rand164 1595 1710 1035 1035 1090 1041 1009 1226 

rand165 2395 1049 1042 1367 1382 1446 567 3033 

rand166 1047 1273 1139 1465 715 1209 1222 729 

rand167 175 151 144 133 150 136 128 144 
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Appendix XI 

Number of Non-Distinct Nodes in BDDs Obtained from Fault Trees 

Restructured Using the Extended Reduction Method 

Key to ordering schemes': 

1. Modified top-down. 

2. Modified depth-first. 

3. Modified priority depth-first. 

4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 

6. Dynamic top-down weights. 

7. Bottom-up weights. 
8. Event criticality. 

Fault tree 
Ordering scheme 

12345678 

aaaaaaa 1 1 1 1 1 1 1 1 

artqual 6 6 6 6 6 6 6 6 

arttree 1 1 1 1 1 1 1 1 

astolfo 21 21 21 21 21 21 21 27 

bddtest 32 35 35 35 32 36 35 32 

benjiam 87 76 76 80 87 84 80 83 

bpfeg03 1 1 1 1 1 1 1 1 

bpfen05 1 1 1 1 1 1 1 1 

bpfig05 1 1 1 1 1 1 1 1 

bpfin05 1 1 1 1 1 1 1 1 

bpfpp02 1 1 1 1 1 1 1 1 

bpfsw02 19 19 14 14 19 14 19 15 

ch8tree 8 7 8 8 8 8 8 7 

drel019 1 1 1 1 1 1 1 1 

dre1032 1 1 1 1 1 1 1 1 

dre1057 1 1 1 1 1 1 1 1 

dre1058 30 26 26 26 30 28 26 30 

dre1059 256 312 261 261 232 214 312 216 

dresden 453 160 160 160 453 117 550 127 

emerh2o 1 1 1 1 1 1 1 1 

1 For each fault tree, the ordering scheme(s) resulting in the fewest non-distinct BDD nodes is 
(are) shown in bold. 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
fatram2 99 9 9 9 9 9 10 
hpisf02 159 137 137 140 171 140 130 172 
hpisf03 14 14 14 14 14 14 14 14 
hpisf2l 30 41 41 38 33 41 32 31 

hpisf36 14 14 14 14 14 14 14 14 
jdtreel 11 1 1 1 1 1 1 
jdtree2 11 1 1 1 1 1 1 
jdtree3 11 1 1 1 1 1 1 
jdtree4 11 1 1 1 1 1 1 
jdtree5 11 1 1 1 1 1 1 
khictre 36 30 30 33 39 33 30 30 

lisa123 206 226 226 170 188 122 204 180 

Iisabl0 4267 4629 4385 2313 3264 2686 8260 2380 
Iisab25 63 65 63 57 64 58 65 59 
Iisab28 11 1 1 1 1 1 1 
Iisab30 25 19 19 19 22 21 25 20 
Iisab3l 917 1219 1628 1499 733 865 1196 636 
Iisab34 25 20 32 25 23 25 32 23 
Iisab35 1717 2443 2619 1425 1396 1925 2443 668 
Iisab36 348 367 347 267 257 274 299 212 
lisab42 11 1 1 1 1 1 1 

Iisab44 18 18 18 18 18 18 16 18 
Iisab5l 17 16 16 16 17 16 18 21 
Iisab52 3502 4092 4028 4420 2192 3202 4447 1740 
Iisab53 11 1 1 1 1 1 1 
Iisab54 21 21 18 18 20 18 18 21 
Iisab57 582 815 615 704 629 582 774 575 
Iisab59 11 1 1 1 1 1 1 
Iisab60 23 25 25 25 23 25 25 23 

Iisab78 602 538 422 537 502 537 673 417 
Iisab86 1132 2269 1954 1173 943 1188 1104 872 
Iisaba4 2011 3805 3056 2980 1461 1470 1977 1174 
Iisaba9 14 13 13 13 14 14 13 14 

modtree 11 1 1 1 1 1 1 

nakashi 501 359 318 367 360 455 359 304 
newtre2 I1 1 1 1 1 1 1 
newtre3 11 1 1 1 1 1 1 
newtree 11 1 1 1 1 1 1 

rand100 11 1 1 1 1 1 1 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rand101 1 1 1 1 1 1 1 1 
rand102 1 1 1 1 1 1 1 1 
rand103 20 20 19 19 20 19 22 21 

rand104 1 1 1 1 1 1 1 1 

rand105 28 33 27 27 28 27 31 26 
rand106 1 1 1 1 1 1 1 1 

rand107 1 1 1 1 1 1 1 1 

randl08 119 206 203 152 109 169 193 110 
rand109 385 350 374 393 301 393 310 323 

rand110 6 6 6 6 6 6 6 6 

randl11 90 73 73 70 81 68 54 45 

randl12 1 1 1 1 1 1 1 1 

randl13 1 1 1 1 1 1 1 1 

randl14 1 1 1 1 1 1 1 1 

randl15 233 153 153 244 183 163 149 125 

rand116 142 176 176 186 121 191 220 99 

rand117 10 12 12 12 '11 11 12 11 

randl18 132 104 100 106 120 110 130 107 

randl19 1 1 1 1 1 1 1 1 

rand120 238 242 207 203 218 206 327 232 

rand121 32 25 25 32 32 32 32 34 

rand122 1 1 1 1 1 1 1 1 

rand 123 5 5 5 5 5 5 5 5 

rand124 1 1 1 1 1 1 1 1 

rand 125 6 6 6 6 6 6 6 6 

rand126 78 78 78 72 78 87 91 76 

rand127 1 1 1 1 1 1 1 1 

rand128 101 127 96 98 101 100 95 103 

rand129 1 1 1 1 1 1 1 1 
rand130 1 1 1 1 1 1 1 1 

rand131 1 1 1 1 1 1 1 1 

rand 132 3446 3773 3703 3565 1757 2158 3565 2144 

rand133 1 1 1 1 1 1 1 1 

rand134 48 63 63 50 52 52 63 48 

rand135 85 77 81 81 84 81 82 86 
rand136 1 1 1 1 1 1 1 1 
randl37 55 55 55 55 58 59 45 34 
randl38 1 1 1 1 1 1 1 1 

rand139 125 135 107 93 113 92 146 121 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

rand140 1 1 1 1 1 1 1 1 

rand141 6 6 6 6 6 6 6 6 
rand142 25750 29765 32074 38739 20834 32786 35941 15231 

rand143 1 1 1 1 1 1 1 1 

rand144 91 92 91 91 81 80 117 72 

rand145 7 7 7 7 7 7 7 7 

rand146 55 55 55 55 58 59 45 34 

rand147 2493 3153 2845 5815 1458 2104 1607 1363 

rand 148 1 1 1 1 1 1 1 1 

rand149 1 1 1 1 1 1 1 1 

rand150 15725 21580 21498 7049 12428 7999 8393 8659 

rand151 1 1 1 1 1 1 1 1 

rand152 1 1 1 1 1 1 1 1 

rand153 1 1 1 1 1 1 1 1 

rand 154 1 1 1 1 1 1 1 1 

rand155 463 453 429 485 464 475 696 471 

rand156 1 1 1 1 1 1 1 1 

rand158 1 1 1 1 1 1 1 1 

randolO 1 1 1 1 1 1 1 1 

randoll 2089234 8685527 8685527 6546439 4025841 6055138 8054312 3178689 

rando12 678 1026 1010 1016 558 534 1010 526 

randol3 113 209 209 209 103 104 182 99 

rando14 1 1 1 1 1 1 1 1 

rando15 1 1 1 1 1 1 1 1 

randol6 68 68 68 66 75 69 102 60 

rando17 1 1 1 1 1 1 1 1 

randol8 82 85 74 86 75 63 55 73 

rando19 10875 31473 32304 29924 8402 21327 37153 7150 

rando20 2686 5734 5666 5217 2415 2837 6664 2512 

randoll 1 1 1 1 1 1 1 1 

rando22 16787 22785 23439 66645 12061 24061 96609 10012 

rando23 1 1 1 1 1 1 1 1 

rando24 1 1 1 1 1 1 1 1 

rando25 1 1 1 1 1 1 1 1 

rando26 1 1 1 1 1 1 1 1 

rando27 18 18 18 18 16 16 18 16 

rando28 1 1 1 1 1 1 1 1 
rando29 235 152 186 299 172 177 186 138 
rando30 121 112 103 103 121 107 155 146 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rando3l 1 11 1 1 1 1 1 
rando32 1 11 1 1 1 1 1 
rando33 6 66 6 6 6 6 6 
rando34 23 22 22 22 23 22 23 23 

rando35 14 14 14 14 12 12 11 12 
rando36 1 11 1 1 1 1 1 

rando37 45 42 43 43 41 39 41 37 

rando38 1 11 1 1 1 1 1 

rando39 201 156 156 212 211 200 419 210 
rando40 34 23 32 32 34 32 34 23 
rando4l 1 11 1 1 1 1 1 
rando42 1 11 1 1 1 1 1 

rando43 1 11 1 1 1 1 1 
rando44 928 589 565 759 811 545 759 808 

rando45 41 44 44 49 36 39 42 32 

rando46 1 11 1 1 1 1 1 
rando47 44 51 53 53 40 39 64 38 

rando48 16 16 16 15 15 14 15 13 
rando49 1 11 1 1 1 1 1 
rando50 1 11 1 1 1 1 1 

rando5l 1 11 1 1 1 1 1 

rando52 43 51 38 38 37 33 50 37 
rando53 1 11 1 1 1 1 1 
rando54 18 18 18 18 18 19 18 19 

rando55 10 10 10 10 10 10 10 11 
rando56 1 11 1 1 1 1 1 
rando57 1 11 1 1 1 1 1 
rando58 1 11 1 1 1 1 1 
rando59 2188 1600 1511 845 1071 846 898 1026 
rando60 13 11 13 13 11 11 13 11 

rando6l 19 21 16 16 18 16 16 17 
rando62 1 11 1 1 1 1 1 
rando63 10 10 10 10 10 10 10 11 
rando64 80 81 81 81 87 81 86 83 
rando65 34 27 27 36 30 28 27 26 
rando66 22 29 29 29 27 27 23 22 
rando67 1 11 1 1 1 1 1 
rando68 1 11 1 1 1 1 1 

rando69 1 11 1 1 1 1 1 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rando70 56 44 54 54 51 54 63 46 

randoll 1 1 1 1 1 1 1 1 
rando72 1 1 1 1 1 1 1 1 

rando73 1 1 1 1 1 1 1 1 
rando74 1 1 1 1 1 1 1 1 

rando75 1 1 1 1 1 1 1 1 

rando76 10 10 10 10 10 10 10 10 
rando77 79 45 45 83 70 61 52 41 

rando78 1 1 1 1 1 1 1 1 

rando79 1 1 1 1 1 1 1 1 

rando80 7 7 7 7 7 7 7 7 

rando8l 1 1 1 1 1 1 1 1 

rando82 1 1 1 1 1 1 1 1 

rando83 39 41 34 34 34 31 35 34 

rando84 132 104 100 106 120 110 130 107 

rando85 1 1 1 1 1 1 1 1 

rando86 1 1 1 1 1 1 1 1 

rando87 1 1 1 1 1 1 1 1 

rando88 35 34 31 34 29 30 26 23 

rando89 1 1 1 1 1 1 1 1 

rando90 1 1 1 1 1 1 1 1 

rando9l 1901 1200 1200 1280 1465 1419 1138 1416 
rando92 668 651 643 1042 535 896 547 567 

rando93 9 9 9 9 9 9 9 9 

rando94 1 1 1 1 1 1 1 1 

rando95 47 38 46 46 38 38 46 35 

rando96 1 1 1 1 1 1 1 1 

rando97 1 1 1 1 1 1 1 1 

rando98 302 385 385 361 442 361 341 370 
rando99 98 84 84 79 97 100 99 84 

randoml 1 1 1 1 1 1 1 1 

random2 1 1 1 1 1 1 1 1 

random3 84 97 92 92 84 92 133 88 
random4 1 1 1 1 1 1 1 1 
random6 7509 15525 12328 22094 5199 4159 9807 5638 

random? 1 1 1 1 1 1 1 1 
random8 1 1 1 1 1 1 1 1 
random9 1 1 1 1 1 1 1 1 
relcour 1 1 1 1 1 1 1 1 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

rstree1 1 1 1 1 1 1 1 1 

rstree2 1 1 1 1 1 1 1 1 

rstree3 8 7 7 7 8 7 7 8 

rstree4 1 1 1 1 1 1 1 1 

rstree5 1 1 1 1 1 1 1 1 

rstree6 1 1 1 1 1 1 1 1 

rstree7 15 17 17 10 13 10 14 12 

trialsi 241 375 375 375 186 167 446 134 

trials2 11 11 11 11 10 11 11 11 

trials3 1 1 1 1 1 1 1 1 

trials4 279 560 497 425 215 342 618 255 

usatree 1 1 1 1 1 1 1 1 

worrell 19 17 17 17 18 17 19 17 
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Appendix XII 

Number of Distinct Nodes in BDDs Obtained from Fault Trees Restructured 

Using the Extended Reduction Method 

Key to ordering schemes': 

1. Modified top-down. 

2. Modified depth-first. 

3. Modified priority depth-first. 

4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 
6. Dynamic top-down weights. 

7. Bottom-up weights. 
8. Event criticality. 

Fault tree 
Ordering scheme 

12345678 

aaaaaaa 1 1 1 1 1 1 1 1 

artqual 6 6 6 6 6 6 6 6 

arttree 1 1 1 1 1 1 1 1 

astolfo 15 15 15 15 15 15 15 18 

bddtest 26 22 22 22 26 25 22 26 

benjiam 47 34 34 32 47 39 32 47 

bpfeg03 1 1 1 1 1 1 1 1 

bpfen05 1 1 1 1 1 1 1 1 

bpfigO5 1 1 1 1 1 1 1 1 

bpfinO5 1 1 1 1 1 1 1 1 

bpfpp02 1 1 1 1 1 1 1 1 

bpfsw02 17 14 13 13 17 13 14 14 

ch8tree 7 7 7 7 7 7 7 7 

dre1019 1 1 1 1 1, 1 1 1 

dre1032 1 1 1 1 1 1 1 1 

dre1057 1 1 1 1 1 1 1 1 

dre1058 24 18 18 18 24 21 18 24 

dre1059 89 94 91 91 70 57 94 51 

dresden 87 23 23 23 87 26 39 32 

emerh2o 1 1 1 1 1 1 1 1 

1 For each fault tree, the ordering scheme(s) resulting in the fewest distinct BDD nodes is 
(are) shown in bold. 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Schomo 8 
fatram2 9 9 9 9 9 9 9 10 
hpisf02 77 24 24 34 67 34 33 86 
hpisf03 11 11 11 11 11 11 11 11 
hpisf2l 26 22 22 24 24 25 25 24 

h pi sf36 11 11 11 11 11 11 11 11 
jdtreel 1 1 1 1 1 1 1 1 
jdtree2 1 1 1 1 1 1 1 1 
jdtree3 1 1 1 1 1 1 1 1 
jdtree4 1 1 1 1 1 1 1 1 
jdtree5 1 1 1 1 1 1 1 1 
khictre 15 12 11 11 17 11 11 11 
11sa123 74 35 35 28 59 37 66 56 

Iisabl0 532 228 165 185 269 201 376 244 
Iisab25 40 39 45 35 42 36 39 42 
Iisab28 1 1 1 1 1 1 1 1 
Iisab30 17 15 15 15 16 15 19 16 
lisab3l 290 123 144 140 224 166 132 157 
Iisab34 18 16 20 16 19 16 20 19 
Iisab35 308 331 354 139 273 318 331 194 
Iisab36 85 93 66 53 68 57 80 96 
Iisab42 1 1 1 1 1 1 1 1 
Iisab44 16 15 15 15 16 15 14 16 

Iisab5l 13 12 12 12 13 12 12 18 
lisab52 481 361 354 497 418 414 279 353 
lisab53 1 1 1 1 1 1 1 1 
Iisab54 17 14 14 14 16 14 12 17 
Iisab57 104 105 111 107 103 102 97 107 
Iisab59 1 1 1 1 1 1 1 1 
Iisab60 19 16 16 16 19 18 16 19 
lisab78 177 68 104 105 142 105 99 86 
Iisab86 148 164 141 107 150 104 146 143 
Iisaba4 315 188 198 155 191 213 195 166 
Iisaba9 13 10 10 11 13 13 10 13 
modtree 1 1 1 1 1' 1 1 1 
nakashl 138 43 64 58 120 55 43 105 
newtre2 1 1 1 1 1 1 1 1 
newtre3 1 1 1 1 1 1 1 1 
newtree 1 1 1 1 1 1 1 1 
rand100 1 1 1 1 1 1 1 1 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rand101 1 1 1 1 1 1 1 1 
rand102 1 1 1 1 1 1 1 1 
rand103 19 15 18 18 19 18 17 19 
rand104 1 1 1 1 1 1 1 1 
rand105 22 23 19 19 22 19 15 21 

rand106 1 1 1 1 1 1 1 1 
rand107 1 1 1 1 1 1 1 1 

rand108 75 82 71 70 70 72 73 71 
rand109 125 71 81 94 130 91 89 111 
rand110 6 6 6 6 6 6 6 6 

rand111 50 40 41 39 44 40 30 32 

randl12 1 1 1 1 1 1 1 1 

randl13 1 1 1 1 1 1 1 1 

randl14 1 1 1 1 1 1 1 1 

randl15 85 51 51 77 69 54 58 48 

randl16 49 49 49 48 48 49 79 47 

randl17 10 12 12 12 11 11 12 11 

randl18 68 45 41 48 61 51 38 54 

randl19 1 1 1 1 1 1 1 1 

rand120 98 52 43 72 91 73 81 109 
rand121 24 18 18 22 24 23 22 27 

rand122 1 1 1 1 1 1 1 1 

randl23 5 5 5 5 5 5 5 5 

randl24 1 1 1 1 1 1 1 1 

randl25 6 6 6 6 6 6 6 6 
randl26 38 32 32 37 46 31 58 43 
randl27 1 1 1 1 1 1 1 1 

rand128 44 42 35 37 44 41 38 54 

randl29 1 1 1 1 1' 1 1 1 
rand130 1 1 1 1 1 1 1 1 

rand131 1 1 1 1 1 1 1 1 

randl32 443 456 436 414 290 305 414 376 

rand133 1 1 1 1 1 1 1 1 

rand134 39 22 22 35 40 38 22 37 
rand135 42 36 36 36 40 36 27 45 
rand136 1 1 1 1 1 1 1 1 
rand137 19 19 19 19 23 19 25 22 
rand138 1 1 1 1 1 1 1 1 

rand139 73 42 36 36 62 39 37 58 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme a 
rand140 1 1 1 1 1 1 1 1 
rand141 6 6 6 6 6 6 6 6 
rand142 1466 1173 1187 961 1192 798 902 1224 
rand143 1 1 1 1 1 1 1 1 
rand144 45 34 32 32 50 45 57 51 
rand145 7 7 7 7 7 7 7 7 
rand146 19 19 19 19 23 19 25 22 
rand147 311 478 487 309 240 212 294 198 

rand148 1 1 1 1 1 1 1 1 
rand149 1 1 1 1 1 1 1 1 
rand150 846 1010 654 318 883 411 382 790 
rand151 1 1 1 1 1 1 1 1 
rand152 1 1 1 1 1 1 1 1 

rand 153 1 1 1 1 1 1 1 1 
rand154 1 1 1 1 1 1 1 1 
rand155 142 102 70 90 117 94 90 115 
rand156 1 1 1 1 1 1 1 1 
rand158 1 1 1 1 1 1- 1 1 
randol0 1 1 1 1 1 1 1 1 
randoll 12470 11851 11851 5951 7105 3319 5538 8645 
randol2 196 159 155 165 184 182 172 146 

randol3 58 40 40 40 54 46 68 45 

rando14 1 1 1 1 1 1 1 1 
randol5 1 1 1 1 1 1 1 1 

randol6 43 44 43 41 46 45 52 44 
randol7 1 1 1 1 1 1 1 1 
randol8 46 57 45 44 41 34 32 38 
randol9 860 825 833 1197 767 1092 1082 624 
rando20 368 470 404 391 363 292 550 360 

rando2l 1 1 1 1 1 1 1 1 
rando22 1472 1162 1099 2254 870. 1013 2172 785 

rando23 1 1 1 1 1 1 1 1 
rando24 1 1 1 1 1 1 1 1 
rando25 1 1 1 1 1 1 1 1 
rando26 1 1 1 1 1 1 1 1 
rando27 17 17 17 17 16 16 17 16, 
rando28 1 1 1 1 1 1 1 1 
rando29 70 45 48 66 61 53 48 58 
rando30 44 38 34 34 44 39 35 49 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Schomo 8 
rando31 1 1 1 1 1 1 1 1 
rando32 1 1 1 1 1 1 1 1 
rando33 6 6 6 6 6 6 6 6 
rando34 21 19 21 21 22 21 19 22 
rando35 13 13 13 13 12 12 11 12 
rando36 1 1 1 1 1 1 1 1 
rando37 34 28 32 32 35 30 34 32 

rando38 1 1 1 1 1 1 1 1 
rando39 94 54 54 93 93 89 90 91 
rando40 19 15 16 16 19 16 20 18 
rando4l 1 1 1 1 1 1 1 1 
rando42 1 1 1 1 1 1 1 1 

rando43 1 1 1 1 1 1 1 1 

rando44 203 107 101 166 227 159 166 177 

rando45 30 31 31 23 25 28 25 22 
rando46 1 1 1 1 1 1 1 1 
rando47 32 23 33 33 32 31 28 30 
rando48 14 12 12 11 14 11 11 12 
rando49 1 1 1 1 1 1 1 1 
rando50 1 1 1 1 1 1 1 1 
rando5l 1 1 1 1 1 1 1 1 
rando52 28 27 24 24 28 24 26 28 

rando53 1 1 1 1 1 1 1 1 
rando54 16 16 16 16 16 16 16 18 
rando55 10 10 10 10 10 10 10 11 
rando56 1 1 1 1 1 1 1 1 
rando57 1 1 1 1 1 1 1 1 
rando58 1 1 1 1 1 1 1 1 
rando59 333 142 141 68 210 78 68 211 
rando60 12 11 11 11 11 11 11 11 

rando61 17 16 15 15 16 15 15 16 
rando62 1 1 1 1 1 1 1 1 
rando63 10 10 10 10 10 10 10 11 
rando64 55 36 36 36 45 36 25 51 
rando65 25 15 15 24 24 22 17 21 

rando66 18 19 19 19 20 20 14 18 
rando67 1 1 1 1 1 1 1 1 
rando68 1 1 1 1 1 1 1 1 
rando69 1 1 1 1 1 1 1 1 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Schomo 6 
rando70 22 20 18 18 22 18 25 29 
rando7l 1 1 1 1 1 1 1 1 
rando72 1 1 1 1 1 1 1 1 
rando73 1 1 1 1 1 1 1 1 

rando74 1 1 1 1 1 1 1 1 
rando75 1 1 1 1 1 1 1 1 
rando76 9 9 9 9 9 9 9 9 

rando77 40 19 19 39 31 23 22 19 
rando78 1 1 1 1 1 1 1 1 
rando79 1 1 1 1 1 1 1 1 
rando80 7 7 7 7 7 7 7 7 

rando8l 1 1 1 1 1 1 1 1 

rando82 1 1 1 1 1 1 1 1 

rando83 28 19 21 21 26 23 17 28 

rando84 68 45 41 48 61 51 38 54 

rando85 1 1 1 1 1 1 1 1 

rando86 1 1 1 1 1 1 1 1 

rando87 1 1 1 1 1 1 1 1 

rando88 23 14 17 14 21 15 18 19 
rando89 1 1 1 1 1 1 1 1 

rando90 1 1 1 1 1 1 1 1 

rando9l 296 139 139 165 229 146 160 175 

rando92 166 142 143 115 163 107 97 166 

rando93 9 9 9 9 9 9 9 9 

rando94 1 1 1 1 1 1 1 1 

rando95 29 24 28 28 30 30 28 27 

rando96 1 1 1 1 1 1 1 1 

rando97 1 1 1 1 1 1 1 1 
rando98 139 96 96 90 172 90 88 130 

rando99 57 31 31 43 63 50 35 56 

randoml 1 1 1 1 1 1 1 1 
random2 1 1 1 1 1 1 1 1 

random3 49 49 44 44 49 44 41 55 
random4 1 1 1 1 1 1 1 1 
random6 486 362 484 528 574 278 372 414 
random7 1 1 1 1 1 1 1 1 
random8 1 1 1 1 1 1 1 1 
random9 1 1 1 1 1 1 1 1 

relcour 1 1 1 1 1 1 1 1 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

rstree1 1 1 1 1 1 1 1 1 

rstree2 1 1 1 1 1 1 1 1 

rstree3 8 6 7 7 8 7 7 8 

rstree4 1 1 1 1 1 1 1 1 

rstree5 1 1 1 1 1 1 1 1 

rstree6 1 1 1 1 1 1 1 1 

rstree7 13 11 11 10 12 10 12 11 

trialsi 74 78 78 78 77 62 77 84 

tri al s2 11 11 11 11 10 11 11 11 

trials3 1 1 1 1 1 1 1 1 

trials4 119 152 136 116 104 114 133 105 

usatree 1 1 1 1 1 1 1 1 

worrell 16 15 15 15 15 13 14 15 
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Appendix X111 

Number of If-Then-Else Calculations Required to Construct BDDs from Fault 

Trees Restructured Using the Extended Reduction Method 

Key to ordering schemes: 

1. Modified top-down. 

2. Modified depth-first. 

3. Modified priority depth-first. 

4. Depth-first, with number of leaves. 

5. Non-dynamic top-down weights. 
6. Dynamic top-down weights. 

7. Bottom-up weights. 
8. Event criticality. 

Fault tree 
Ordering scheme 

12345678 

aaaaaaa 0 0 0 0 0 0 0 0 

artqual 8 7 8 8 8 8 8 7 

arttree 0 0 0 0 0 0 0 0 

astolfo 16 21 21 21 16 16 21 22 

bddtest 27 31 31 31 27 26 31 27 

benjiam 76 75 75 70 76 67 75 101 

bpfeg03 0 0 0 0 0 0_ 0 0 

bpfen05 0 0 0 0 0 0 0 0 

bpfig05 0 0 0 0 0 0 0 0 

bpfin05 0 0 0 0 0 0 0 0 

bpfpp02 0 0 0 0 0 0 0 0 

bpfsw02 27 18 22 22 27 22 18 24 

ch8tree 11 9 11 11 11 11 1 11 9 

dre1019 0 0 0 0. 0 0 0 0 

dre1032 0 0 0 0 0 0 0 0 

dre1057 0 0 0 0 0 0 0 0 

drei 058 23 25 25 25 23 21 25 23 

dre1059 90 134 131 131 75 65 134 62 

dresden 131 91 91 91 131 76 97 89 

emerh2o 0 0 0 0 0 0 0 0 

' For each fault tree, the ordering scheme(s) requiring the fewest Ito calculations to construct 
the BDD is (are) shown in bold. 

291 



Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Schomo 8 
fatram2 11 11 11 11 11 11 11 10 
hpisf02 107 47 47 60 96 60 63 113 
hpisf03 19 17 17 17 19 17 17 19 
hpisf2l 58 50 50 65 54 52 56 53 
hpisf36 19 17 17 17 19 17 17 19 
jdtreel 0 0 0 0 0 0 0 0 
jdtree2 0 0 0 0 0 0 0 0 
jdtree3 0 0 0 0 0 0 0 0 
jdtree4 0 0 0 0 0 0 0 0 

jdtree5 0 0 0 0 0 0 0 0 
khictre 32 26 29 27 32 27 29 24 
lisa123 139 123 123 108 127 93 139 116 
Iisabl0 624 367 304 316 346 308 598 348 
lisab25 69 60 67 65 67 66 60 57 
Iisab28 0 0 0 0 0 0 0 0 
Iisab30 27 24 24 24 27 25 32 29 
Iisab3l 356 263 301 230 275 244 278 211 
lisab34 30 23 30 35 29 35 30 27 
lisab35 381 401 422 253 330 366 401 252 
Iisab36 123 131 103 89 98 93 114 134 
lisab42 0 0 0 0 0 0. 0 0 

lisab44 18 19 19 19 18 19 17 18 
Iisab5l 23 21 21 21 23 21 22 25 
Iisab52 698 631 624 736 625 614 537 513 
lisab53 0 0 0 0 0 0 0 0 
Iisab54 26 22 23 23 25 23 24 24 
lisab57 133 194 202 197 127 137 185 129 
lisab59 0 0 0 0 0 0 0 0 
Iisab60 25 26 26 26 25 28 26 23 
lisab78 210 145 178 170 173 168 152 126 

lisab86 214 275 213 214 224 209 288 195 
Iisaba4 362 283 299 255 235 267 318 206 
lisaba9 13 13 13 14 13 13 13 13 
modtree 0 0 0 0 0 0 0 0 
nakashi 207 91 118 117 179 107 91 151 
newtre2 0 0 0 0 .0 0 0 0 
newtre3 0 0 0 0 0 0 0 0 
newtree 0 0 0 0 0 0 0 0 
rand100 0 0 0 0 0 0 0 0 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 
rand101 0 0 0 0 0 0 0 0 
rand102 0 0 0 0 0 0 0 0 
rand103 28 26 27 27 28 27 25 27 
rand104 0 0 0 0 0 0 0 0 

rand105 30 35 30 30 30 30 31 27 

rand106 0 0 0 0 0 0 0 0 
rand107 0 0 0 0 0 0 0 0 

rand108 182 157 165 195 168 189 172 163 

rand109 183 120 129 141 176 141 153 157 

rand110 8 8 8 8 8 8 7 7 

randl11 88 81 81 78 85 80 57 67 

randl12 0 0 0 0 0 0 0 0 

randl13 0 0 0 0 0 0 0 0 

rand114 0 0 0 0 0 0 0 0 

randl15 118 80 80 115 97 81 95 78 

randl16 87 84 84 88 86 87 117 74 

randl17 16 19 19 19 17 17 19 17 

randl18 97 72 78 88 94 80 78 90 

randl19 0 0 0 0 0 0 0 0 

rand120 155 119 125 147 149 147 163 164 
rand121 31 24 24 33 29 28- 33 30 

rand122 0 0 0 0 0 0- 0 0 

rand123 6 6 6 6 6 6 6 5 

rand124 0 0 0 0 0 0 0 0 

rand125 8 7 8 8 8 8 7 7 

rand126 60 58 58 60 63 56 91 64 

rand127 0 0 0 0 0 0 0 0 
rand128 68 86 77 68 68 65 74 80 

rand129 0 0 0 0 0 0 0 0 

rand130 0 0 0 0 0 0 0 0 

randl31 0 0 0 0 0 0 0 0 

randl32 648 614 595 606 401 454 606 506 

rand133 0 0 0 0 0 0 0 0 

randl34 50 42 42 55 52 50 42 47 
rand135 60 52 60 60 58 60 59 58 
randl36 0 0 0 0 0 0 0 0 
rand137 36 36 36 36 36 35 37 33 
rand138 0 0 0 0 0 0 0 0 

rand139 101 82 91 79 97 79 82 90 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Schome 8 
rand140 0 0 0 0 0 0 0 0 
randl41 8 8 8 8 8 8 7 7 
rand142 2031 1412 1449 1301 1552 1151 1233 1407 
rand143 0 0 0 0 0 0 0 0 
rand144 65 72 73 73 69 70 76 71 
rand145 9 9 9 9 9 9 9 8 

randl46 36 36 36 36 36 35 37 33 

rand147 456 607 598 627 346 317 404 305 
rand148 0 0 0 0 0 0 0 0 
rand149 0 0 0 0 0 0 0 0 

randl50 1120 1302 1026 499 1088 682 535 949 
rand151 0 0 0 0 0 0 0 0 
randl52 0 0 0 0 0 0 0 0 

randl53 0 0 0 0 0 0 0 0 

randl54 0 0 0 0 0 0 0 0 
randl55 191 180 168 167 167 146 224 158 
rand156 0 0 0 0 0 0 0 0 
rand158 0 0 0 0 0 0 0 0 
randol0 0 0 0 0 0 0 0 0 
randoll 12626 12455 12455 6447 7298 3677 7266 8851 
rando12 293 292 287 326 267 281 274 265 

rando13 98 92 92 92 90 83 115 83 

randol4 0 0 0 0 0 0 0 0 
rando15 0 0 0 0 0 0 0 0 
randol6 96 97 96 93 93 85 95 85 
randol7 0 0 0 0 0 0 0 0 
randol8 70 91 79 78 58 55 52 58 
randol9 1092 1174 1181 1463 935 1317 1395 795 

rando20 545 794 669 658 492 451 902 468 

rando21 0 0 0 0 0 0 0 0 
rando22 1725 1590 1506 3297 1123 1226 3025 1034 
rando23 0 0 0 0 0 0 0 0 
rando24 0 0 0 0 0 0 0 0 
rando25 0 0 0 0 0 0 0 0 
rando26 0 0 0 0 0 0 0 0 
rando27 27 27 27 27 22 22 27 22 
rando28 0 0 0 0 0 0 0 0 
rando29 125 84 91 151 90 82 91 78 
rando30 56 54 51 51 56 55 64 59 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Schomo 7 Schomo 8 
rando3l 0 0 0 0 0 0 0 0 
rando32 0 0 0 0 0 0 0 0 
rando33 7 6 7 7 7 7 7 6 
rando34 34 31 32 32 34 32 31 31 
rando35 18 18 18 18 14 14 13 14 
rando36 0 0 0 0 0 0 0 0 

rando37 59 54 57 57 52 49 56 48 
rando38 0 0 0 0 0 0 0 0 
rando39 181 103 103 197 159 197 180 159 
rando40 26 22 24 24 26 24 27 23 
rando4l 0 0 0 0 0 0 0 0 
rando42 0 0 0 0 0 0 0 0 
rando43 0 0 0 0 0 0 0 0 
rando44 257 156 151 250 276 209 250 239 
rando45 40 42 42 45 35 37 41 32 
rando46 0 0 0 0 0 0 0 0 
rando47 57 67 69 69 54 53 63 51 
rando48 20 16 16 20 17 17 20 16 
rando49 0 0 0 0 0 0 0 0 
rando50 0 0 0 0 0 0 0 0 
rando5l 0 0 0 0 0 0 0 0 

rando52 42 41 39 39 44 41 51 44 

rando53 0 0 0 0 0 0 0 0 
rando54 20 20 20 20 20 21 20 19 
rando55 13 13 13 13 13 13 13 12 
rando56 0 0 0 0 0 0 0 0 
rando57 0 0 0 0 0 0 0 0 
rando58 0 0 0 0 0 0 0 0 
rando59 447 218 215 186 287 166 221 301 

rando60 17 14 17 17 14 14 17 14 
rando6l 28 24 25 25 27 25 25 25 
rando62 0 0 0 0 0 0 0 0 
rando63 13 13 13 13 13 13 13 12 
rando64 67 54 54 54 59 54 55 62 
rando65 36 23 23 41 29 27 25 26 
rando66 18 25 25 25 20 20 22 18 
rando67 0 0 0 0 0 0 0 0 
rando68 0 0 0 0 0 0 0 0 
rando69 0 0 0 0 0 0 0 0 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 'Scheme 5 Scheme 6 Schemel Schema 8 
rando70 35 31 32 32 33 32 40 35 
randoll 0 0 0 0 0 0 0 0 
rando72 0 0 0 0 0 0 0 0 
rando73 0 0 0 0 0 0 0 0 
rando74 0 0 0 0 0 0 0 0 
rando75 0 0 0 0 0 0 0 0 

rando76 13 13 13 13 13 13 13 13 
rando77 90 60 60 87 79 64 75 59 

rando78 0 0 0 0 0 0 0 0 

rando79 0 0 0 0 0 0 0 0 
rando80 9 9 9 9 9 9 8 8 
rando8l 0 0 0 0 0 0 0 0 
rando82 0 0 0 0 0 0 0 0 
rando83 36 37 36 36 33 31 34 30 

rando84 97 72 78 88 94 80 78 90 
rando85 0 0 0 0 0 0 0 0 

rando86 0 0 0 0 0 0 0 0 
rando87 0 0 0 0 0 0 0 0 
rando88 34 24 32 24 26 23 28 25 
rando89 0 0 0 0 0 0 0 0 
rando90 0 0 0 0 0 0 0 0 
rando9l 428 236 236 396 349 333 258 388 
rando92 227 222 221 187 214 169 227 242 
rando93 11 10 11 11 11 11 10 10 
rando94 0 0 0 0 0 0 0 0 
rando95 48 41 47 47 38 38 47 37 
rando96 0 0 0 0 0 0 0 0 
rando97 0 0 0 0 0 0 0 0 
rando98 174 137 137 131 201 131 128 167 
rando99 86 67 67 77 88 81 77 87 
randomi 0 0 0 0 0 0 0 0 
random2 0 0 0 0 0 0 0 0 
random3 71 79 75 75 71 75 103 73 
random4 0 0 0 0 0 0 0 0 
random6 620 507 622 715 685 412 549 539 
random? 0 0 0 0 0 0 0 0 
random8 0 0 0 0 0 0 0 0 
random9 0 0 0 0 0 0 0 0 
relcour 0 0 0 0 0 0 0 0 
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Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 

rstreel 0 0 0 0 0 0 0 0 

rstree2 0 0 0 0 0 0 0 0 

rstree3 10 8 9 9 10 9 9 8 

rstree4 0 0 0 0 0 0 0 0 

rstree5 0 0 0 0 0 0 0 0 

rstree6 0 0 0 0 0 0 0 0 

rstree7 25 19 19 21 22 21 20 23 

trials l 159 178 178 178 143 112 177 147 

trials2 18 15 15 15 14 15 15 15 

trials3 0 0 0 0 0 0 0 0 

trials4 241 336 318 286 201 233 269 203 

usatree 0 0 0 0 0 0 0 0 

worrell 29 28 28 28 28 27 24 27 
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