

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Efficient Fault Tree Analysis
Using Binary Decision Diagrams

by

Karen Ann Reay

A Doctoral Thesis
Submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy of Loughborough University

September. 2002

by Karen Ann Reay, 2002

Abstract

The Binary Decision Diagram (BDD) method has emerged as an alternative to conventional
techniques for performing both qualitative and quantitative analysis of fault trees. BDDs are

already proving to be of considerable use in reliability analysis, providing a more efficient
means of analysing a system, without the need for the approximations previously used in the
traditional approach of Kinetic Tree Theory. In order to implement this technique, a BDD must
be constructed from the fault tree, according to some ordering of the fault tree variables. The

selected variable ordering has a crucial effect on the resulting BDD size and the number of

calculations required for its construction; a bad choice of ordering can lead to excessive

calculations and a BDD many orders of magnitude larger than one obtained using an ordering

more suited to the tree. Within this thesis a comparison is made of the effectiveness of

several ordering schemes, some of which have not previously been investigated. Techniques

are then developed for the efficient construction of BDDs from fault trees. The method of
Faunet reduction is applied to a set of fault trees and is shown to significantly reduce the size

of the resulting BDDs. The technique is then extended to incorporate an additional stage that

results in further improvements in BDD size. A fault tree analysis strategy is proposed that

increases the likelihood of obtaining a BDD for any given fault tree. This method implements

simplification techniques, which are applied to the fault tree to obtain a set of concise and
independent subtrees, equivalent to the original fault tree structure. BDDs are constructed for

each subtree and the quantitative analysis is developed for the set of BDDs to obtain the top

event parameters and the event criticality functions.

Acknowledgements

I would like to thank my supervisor Professor John Andrews for his guidance, advice and
encouragement throughout the course of my Ph. D.

Thanks must also be extended to the members of the Mathematics Department, particularly
the administrative staff, who have been so kind and helpful during my time at Loughborough.

Thanks also to my family for their love and support. I'm especially grateful to my Dad, Harry,
for his help with proof-reading my thesis and for his continued interest in my work.

I would like to say a huge thank-you to Sally, whose endless enthusiasm, friendship and
laughter have helped make the last three years such a fun and memorable time.

Finally, a special thank-you to Alan for his support, understanding, meticulous proof-reading

and most of all, for his confidence in me.

Contents

1 Introduction

1.1 Introduction to Reliability and Risk Assessment 1

1.2 Quantification Parameters for System Failure 2
1.3 Fault Tree Analysis 4

1.4 Binary Decision Diagrams 4

1.5 Research Objectives 5

2 Overview of Fault Tree Analysis

2.1 Introduction 6

2.2 Construction of the Fault Tree 6

2.3 Qualitative Analysis 8

2.3.1 Boolean Laws of Algebra 9

2.3.2 Example - Obtaining the Minimal Cut Sets 10

2.4 Quantitative Analysis 11

2.4.1 Structure Functions 11

2.4.2 Shannon's Theorem 12

2.4.3 General Method for the Calculation of the Top Event Probability 13

2.4.3.1 Upper and Lower Bounds for System Unavailability 14
2.4.3.2 Minimal Cut Set Upper Bound 14

2.4.4 Top Event Frequency 15

2.4.4.1 Approximation for the System Unconditional Failure

Intensity 16

2.4.4.2 Expected Number of System Failures 16

2.4.5 Importance Measures 17

2.4.5.1 Deterministic Measures 17

2.4.5.2 Probabilistic Measures for System Unavailability 17

2.4.5.3 Probabilistic Measures for System Unreliability 19

2.5 Fault Tree Modularisation 20
2.5.1 Principles of the Linear-Time Algorithm 21

2.6 Summary of Fault Tree Analysis 24

3 Binary Decision Diagrams

3.1 Introduction 25

3.2 Properties of the BDD 25

3.3 Formation of the BDD Using the Structure Function 26

3.3.1 Reduction of the BDD 28

3.4 Formation of the BDD Using If-Then-Else 29

3.5 Minimisation 32

3.6 The Influence of Variable Ordering on the BDD 33

3.7 Modularisation 36

3.8 Summary 39

4A Survey of Variable Ordering Heuristics

4.1 Introduction to Variable Ordering 40

4.2 Structural Ordering Schemes 42
4.2.1 Top-Down Ordering Scheme 42
4.2.2 Depth-First Ordering Schemes 43

4.2.2.1 Priority Depth-First Ordering 44

4.2.2.2 Depth-First, with Number of Leaves 45
4.2.3 Repeated Events 46

4.2.4 Repeated Gates and Events 48
4.2.5 REBESUL Ordering Scheme 48

4.3 Weighted Ordering Schemes 50

4.3.1 Topological Schemes 50

4.3.1.1 Applying Weights in a Top-Down Manner 50
4.3.1.2 Applying weights in a Bottom-Up Manner 52

4.3.2 Importance Measures 54

4.4 Optimising the Fault Tree before Application of Ordering Heuristics 60
4.5 Results of a Comparative Study of Several Ordering Heuristics 62
4.6 Pattern Recognition Techniques 63

4.6.1 The Machine Learning Classifier System Incorporating Genetic
Algorithms 63

4.6.2 Neural Networks: The Multi-Layer Perceptron 65
4.6.3 Neural Networks: The Radial Basis Function 66

4.7 Summary 68

5 Comparison of Variable Ordering Schemes

5.1 Introduction 69

5.2 Descriptions of the Eight Ordering Schemes 70
5.2.1 Modified Top-Down Ordering 70
5.2.2 Modified Depth-First Ordering 71
5.2.3 Modified Priority Depth-First Ordering 72
5.2.4 Depth-First, with Number of Leaves 72

5.2.5 Non-Dynamic Top-Down Weighted Ordering 74
5.2.6 Dynamic Top-Down Weighted Ordering 75
5.2.7 Bottom-Up Weighted Ordering 77

iv

5.2.8 Event Criticality 79

5.3 Performance of the Schemes on a Set of Fault Trees 80
5.3.1 Measures of BDD Complexity 80

5.3.1.1 Non-Distinct Nodes 80

5.3.1.2 Distinct Nodes 81
5.3.1.3 Number of If-Then-Else Calculations 81

5.3.2 Results: Highest Scheme Rankings 82

5.3.2.1 Non-Distinct Nodes 82

5.3.2.2 Distinct Nodes 83

5.3.2.3 Number of If-Then-Else Calculations 83

5.3.3 Results: Overall Ranking of the Schemes 84
5.3.3.1 Non-Distinct Nodes 84

5.3.3.2 Distinct Nodes 85

5.3.3.3 Number of If-Then-Else Calculations 85
5.4 Conclusions 86

6 Fault Tree Reduction

6.1 Introduction 88

6.2 The Faunet Reduction Technique 88
6.3 Worked Example of the Reduction Technique 89

6.3.1 Inputting Fault Tree Data to the Program 90

6.3.2 The Reduction Process 91
6.3.3 The Reduced Fault Tree 100

6.4 Results of the Application of the Reduction Technique 102
6.4.1 Effect of the Reduction Technique on BDD Complexity 102

6.4.1.1 Non-Distinct Nodes 103
6.4.1.2 Distinct Nodes 106
6.4.1.3 Number of If-Then-Else Calculations 107
6.4.1.4 Summary of Results 108

6.4.2 Performance of the Ordering Schemes on the Reduced Fault Trees 109
6.4.2.1 Results: Highest Scheme Rankings 109

6.4.2.1.1 Non-Distinct Nodes 109

6.4.2.1.2 Distinct Nodes 110

6.4.2.1.3 Number of If-Then-Else Calculations 110
6.4.2.2 Results: Overall Ranking of the Schemes 111

6.4.2.2.1 Non-Distinct Nodes 111
6.4.2.2.2 Distinct Nodes 112

6.4.2.2.3 Number of If-Then-Else Calculations 112

6.4.2.3 Summary of Results 113
6.5 Conclusions 113

V

7 Quantitative Analysis of Binary Decision Diagrams Incorporating Modules and

Complex Events

7.1 Introduction 114

7.2 System Unavailability 114
7.3 System Unconditional Failure Intensity 115

7.4 Worked Example 119

7.5 Incorporating Complex Events and Modules into the Analysis 123

7.5.1 Syntax 123

7.5.2 Overview of the Calculation Procedure 123

7.5.3 Unavailability of Complex and Modular Events 124

7.5.4 Criticality of Basic Events Within Complex Events 125

7.5.4.1 Repeated Complex Events 127

7.5.5 Criticality of Basic Events Within Modules 128

7.6 The Algorithm for Incorporating Complex Events and Modules into the

Analysis 129

7.7 Worked Example of the Calculation Procedure 130

7.8 Conclusions 140

8A Fault Tree Analysis Strategy Using Binary Decision Diagrams

8.1 Introduction 141

8.2 Pre-Processing of the Fault Tree 141
8.2.1 Faunet Reduction 142

8.2.2 Modularisation 144

8.3 Construction of the BDDs 146
8.4 Quantitative Analysis 150

8.5 Results of the Application of the Fault Tree Analysis Strategy 152

8.6 Conclusions 153

9 Neural Networks

9.1 Introduction 154

9.2 Overview of Neural Networks 154

9.2.1 Learning Techniques 155

9.3 Multi-Layer Perceptron 155

9.3.1 The Forward Pass 156

9.3.1.1 The Activation Function 157
9.3.2 The Backward Pass 158

9.3.2.1 Calculating the Errors 158

9.3.2.2 Calculation of the Error Derivatives 159

9.3.2.3 Computation of the Weight Adjustments 160

vi

9.3.3 Network Architecture for the Ordering Problem 161

9.3.3.1 Output Units 161

9.3.3.2 Input Units 162

9.3.3.3 Training and Validation Data 163

9.3.3.4 Hidden Layers and Units 164

9.3.3.5 Parameter Values 164
9.4 Results of the Multi-Layer Perceptron Investigation 165

9.4.1 Using the Number of If-Then-Else Calculations for the Output Units 166

9.4.2 Reducing the Number of Output Units to Four 167

9.4.3 Modified Fault Tree Characteristics 169
9.4.4 Discussion of Results 171

9.5 Radial Basis Function Neural Network 172

9.5.1 Training Stage One 173

9.5.2 Training Stage Two 174

9.5.3 A Comparison of the Multi-Layer Perceptron and Radial Basis
Function Models 175

9.6 Results of the Radial Basis Function Investigation 176

9.6.1 Initial Network Architecture 177

9.6.2 Using the Number of If-Then-Else Calculations for the Output Units 177
9.6.3 Reducing the Number of Output Units to Four 178

9.6.4 Modified Fault Tree Characteristics 179

9.7 Conclusions 179

10 Extending the Reduction Technique

10.1 Introduction 181
10.2 Application of the Absorption and Idempotent Laws to Fault Tree Structures 181

10.2.1 Primary and Secondary Gates of Different Types 182
10.2.2 Primary and Secondary Gates of the Same Gate Type 183

10.2.2.1 Special Case 184

10.3 Implementation of the Absorption Technique 185

10.3.1 Worked Example 185
10.3.2 Dealing with Repeated Gates Within the Fault Tree Structure 191

10.4 Integration of the Absorption Stage into the Reduction Technique 193
10.5 Results of the Application of the Extended Reduction Technique 194

10.5.1 Non-Distinct Nodes 195

10.5.2 Distinct Nodes 196

10.5.3 Number of If-Then-Else Calculations 196
10.6 Conclusions 197

VII

11 Conclusions and Future Work

11.1 Summary 198

11.2 Conclusions 201

11.3 Future Work 201

11.3.1 Combine Structural and Weighted Ordering Techniques 201
11.3.2 Incorporate Extended Reduction into the Fault Tree Analysis

Strategy 201

11.3.3 Develop Further Quantification Methods 202

11.3.4 Extend the Neural Network Approach 202

11.3.5 Analyse the Fault Tree Test Data 202

11.3.6 Optimise Non-Coherent Fault Trees 203

References 204

Appendices

Appendix I Implementation of the Linear-Time Algorithm 207

Appendix II Fault Tree Summary Details 210

Appendix III Number of Non-Distinct Nodes in BDDs Obtained from the Original

Fault Trees 218

Appendix IV Number of Distinct Nodes in BDDs Obtained from the Original Fault
Trees 225

Appendix V Number of If-Then-Else Calculations Required to Construct BDDs
from the Original Fault Trees 232

Appendix VI Number of Non-Distinct Nodes in BDDs Obtained from Fault Trees
Restructured Using the Faunet Reduction Method 239

Appendix VII Number of Distinct Nodes in BDDs Obtained from Fault Trees

Restructured Using the Faunet Reduction Method 246

Appendix VIII Number of If-Then-Else Calculations Required to Construct BDDs
from Fault Trees Restructured Using the Faunet Reduction Method 253

Appendix IX Comparison of Analysis Times for the Fault Tree Strategy and a
Direct BDD Analysis Technique 260

Appendix X BDD Complexities for Additional Reduced Trees Used in the Neural
Network Investigation 272

Appendix XI Number of Non-Distinct Nodes in BDDs Obtained from Fault Trees
Restructured Using the Extended Reduction Method 277

Appendix XII Number of Distinct Nodes in BDDs Obtained from Fault Trees

Restructured Using the Extended Reduction Method 284

Appendix XIII Number of If-Then-Else Calculations Required to Construct BDDs
from Fault Trees Restructured Using the Extended Reduction Method 291

viii

Nomenclature

A(t) Availability function

C Consequence of an event

C, Minimal cut set i

c Number of output units in the neural network

d Number of input units in the neural network

E" Sum of squares error function for training pattern n

F(t) System unreliability function

g(a) Activation function

G, (q(t)) Criticality function for event i (Birnbaum's measure of importance)

h(t) Conditional failure rate

I, Measure of importance for component or cut set i

M Number of hidden units in the neural network

n Number of components in a system; all nodes encoding event i in a BDD; training

pattern for the neural network

N Number of neural network training patterns

Nc Number of minimal cut sets
P Probability

P(C;) Probability of existence of minimal cut set i

P(9;) Probability of occurrence of minimal cut set i

pr,, (q(t)) Probability of the path section from the root vertex to the node xi in the BDD

pol,, (q(t)) Probability of the path section from the one branch of a node encoding x; to a
terminal one node in the BDD

poX, (q(t)) Probability of the path section from the zero branch of a node encoding x; to a
terminal zero node in the BDD

P[F] Probability value of node F in a BDD

Qsys(t) System unavailability function (failure probability)

q, (t) Component unavailability (failure probability)

R Risk

tk Target response for output unit k

T Matrix of target responses

wsy$(t) System unconditional failure intensity

w, (t) Component unconditional failure intensity

W(to, t1) Expected number of failures during the interval (to, t1)

ix

wj, (k) Weight from the ith unit in layer k to the jth unit in layer k+1 in the multi-layer

perceptron model

w Weight vector

wwi Weight from the eh unit in the hidden layer to the jth unit in the output layer of the

radial basis function neural network

W Matrix of weights

xi Response of input unit I in the neural network

Yk Response of output unit k in the neural network

zi Response of hidden unit j in the neural network

Z(q(t)) Probability of paths from the root vertex to a terminal one vertex that do not pass

through a node encoding xi

a Scaling parameter for r)
Pi Binary indictor variable for component states

y Scaling parameter for n

b; Errors for output unit j

r) Learning rate parameter

p Momentum term

R Vector determining the centre of basis functions j

p, (x) Binary indicator function for each minimal cut set

aj Width parameter in the Gaussian function for hidden unit j

T Time step in iterative algorithms

cp(x) Structure function

q)1(x) Basis function j

41 Matrix of basis functions

X

Chapter 1: Introduction

1.1 Introduction to Reliability and Risk Assessment

The failure of industrial systems, such as those within the nuclear, aeronautical, offshore and

transport industries, can have catastrophic consequences. Examples of such incidents

include the explosion on the Piper Alpha oil platform in 1988 and the Concorde disaster in

Paris in 2000, both of which resulted in multiple fatalities. System safety assessments are

now routinely undertaken to increase the reliability of potentially hazardous systems and thus

safeguard against undesired incidents in the future.

Reliability and risk assessment techniques have been developed over a number of years, with

considerable advancements being made since the Second World War. Both methods are

used in system safety analysis in order to calculate the probability and frequency with which a

hazardous system failure could occur, and to determine whether the associated risk is

acceptable.

The risk or 'expected loss', R, of any hazardous event is defined as the product of its

consequence, C, and the probability or frequency of its occurrence, P:

R=CxP 1.1

The risk can therefore be reduced either by reducing the associated consequences of the
hazard, or by reducing the probability or frequency of its occurrence.

A quantitative risk assessment of a system involves four basic stages:

1. Identification of potential safety hazards.

2. Estimation of the consequences of each hazard.

3. Estimation of the probability or frequency of each hazard.

4. A comparison of the results against the acceptability criteria.

The consequences of a hazard are usually measured by the expected number of fatalities

and indicate the severity of the incident. Consequence modelling is very much industry
dependent, as systems and their modes of failure can vary significantly from one industry to

another. Reliability assessment techniques, however, which are concerned with calculating
the probability or frequency with which system failure can occur, are generic. Methods such
as Failure Mode and Effect Analysis (FMEA), Event Tree Analysis, Markov Analysis and Fault
Tree Analysis are used extensively in many industries. The most widely used technique for

system reliability assessment is Fault Tree Analysis and is discussed later in this chapter.

1

Having calculated the consequences of each hazard and the probability or frequency with

which it can occur, Equation 1.1 is used to determine the associated risk. In order to assess

whether a level of risk is acceptable, the HSE (Health and Safety Executive) recommend the

use of a three-band approach known as the ALARP principle. This is shown in Figure 1.1.

Frequency

Unacceptable

ALARP

Acceptable

Consequence

Figure 1.1: The ALARP principle

Risks that fall into the 'acceptable' region are considered low enough to be permissible.
Generally, they have a low probability of occurrence and do not have a severe hazard

associated with them. Risks that fall into the 'unacceptable' region are not tolerated and either
the probability or consequence of the event must be reduced. Between these bands is the
'ALARP' region, where risks must be 'as low as reasonably practicable'. In this case the risks

must be shown to be as low as possible, whilst still being economically feasible.

1.2 Quantification Parameters for System Failure

Reliability techniques are employed to assess the reliability performance of a system in terms

of the reliability performance of its components. Many quantification measures can be used to
describe component and system performance. The common parameters that are used
throughout this thesis are defined belowt'l.

For systems that can be repaired, and so for which failure can be tolerated, a relevant
measure of performance is the availability. This is defined as:

The fraction of the total time that a system (or component) is able to perform the
required function.

The complement of availability is unavailability, where:

unavailability =1- availability

2

Unavailability is defined as the probability that a component or system does not work at a

given time t, and is denoted by q(t) for a component and Q. ys(t) for a system.

Reliability can be defined as:

The probability that a system or component will operate without failure for a

stated period of time under specified conditions.

This measure is relevant for systems where failure cannot be tolerated, and so the successful

operation of the system over a stated period of time is an important performance measure.
The probability that a system (or component) fails to work continuously over a stated time

interval and under specified conditions is known as its unreliability (F(t)) where:

unreliability =1- reliability

If a component or system is not repairable and it is working at time t, then it must have

worked continuously since t=0. Therefore for non-repairable components and systems the

unavailability is equal to the unreliability.

The transition of a component or system to a failed state can be characterised by the

conditional failure rate, h(t). This is the rate at which failures occur taking into account the size

of the population that has the potential to fail, i. e. those that are still functioning at time t. It is

defined as follows:

The conditional failure rate, h(t), is the probability that a system or component
fails in the interval [t, t+dt), given that it has not failed in [0, t).

The unconditional failure intensity of a system or component is defined as:

The probability of system or component failure in the interval [t, t+dt), given that it

was working at t=0.

This measure is denoted by w(t) for a component and w8p(t) for a system. Integrating the
unconditional failure intensity with respect to time gives the expected number of failures
during the interval (to, t1), denoted by W(to, t1):

t,
W(to, tl)= Jw(t)dt 1.2

to

Further component and system quantification measures can be found in reference 1.

A wide range of methods can be used to evaluate the system reliability parameters. One such
technique, which is applied extensively in systems safety assessment, is Fault Tree Analysis.
This is discussed in the following section.

3

1.3 Fault Tree Analysis

Fault Tree Analysis was developed by H. A. Watsonl21 in the early 1960's, and is a deductive

procedure for determining the causes of a particular system failure mode and the probability

and frequency with which it could occur. The fault tree diagram provides a visual

representation of the combinations of component failures and human errors that could

combine to cause system failure. The system failure mode under consideration is referred to

as the `top event' of the fault tree and branches of the tree are constructed below, by taking a
'what causes this' approach. The events are continually redefined in terms of their causes,

until each branch ends with a basic event: either a component failure or human error.

Fault Tree Analysis is an example of a `top-down' technique, as the process starts with the

top event and works downwards, building the fault tree beneath. Other methods, such as
FMEA, are known as 'bottom-up' techniques, since they start with a set of component failure

conditions and identify the possible consequences using a 'what happens if' approach.

The techniques for performing the quantitative analysis of fault trees, known as Kinetic Tree

Theory, were not developed until the early 1970's by Vesely131. They allow the calculation of

various system reliability parameters, such as:

0 Probability of top event existence.

0 Frequency of top event occurrence.

9 Component importance measures.

These are used to determine whether the risk of system failure is sufficiently small and
therefore whether or not the system meets the required safety standards.

The disadvantage of the conventional methods of Kinetic Tree Theory is that for large fault

trees the analysis can become computationally intensive and can require the use of

approximations. This obviously leads to inaccuracies in the calculations. As the techniques

are already so well developed, further refinement is unlikely to result in vast improvements.

This has led to the development of a new method for analysing fault trees, known as the
Binary Decision Diagram technique. This is discussed briefly in the following section.

1.4 Binary Decision Diagrams

The Binary Decision Diagram (BDD) technique for Fault Tree Analysis was developed
predominantly by Rauzyt4l. This method does not analyse the fault tree directly, but constructs
a BDD, which encodes the fault tree's logic function. Both qualitative and quantitative
analyses are then applied to the BDD. The advantage of this technique is that the calculations

4

for the BDD quantification are both exact and efficient; unlike Kinetic Tree Theory,

approximations are not required.

However, the structure of the BDD is dependent upon the order in which the fault tree

variables (basic events) are considered during the construction process. Many different BDDs

can be obtained from one fault tree and their sizes vary considerably, depending on the

chosen variable ordering. The wrong choice of ordering scheme can result in a time-

consuming construction process and a large BDD, which in turn can lead to increased

analysis times. Previous research has failed to identify any ordering scheme that can order
the fault tree variables in a manner that produces the smallest possible BDD from every fault

tree structure.

1.5 Research Objectives

The aim of this research is to consider techniques for the efficient construction of BDDs from

fault trees. Two distinct aspects will be examined. The first of these explores the variable

ordering issue and the problem of finding an ordering scheme that produces the smallest
BDD for any given fault tree. The second aspect looks at methods of reducing the fault tree

size, so that smaller BDDs can be constructed and the choice of variable ordering scheme
becomes less critical. The objectives of the project are listed below:

Variable ordering issue:

" Generate and analyse different categories of ordering schemes.

" Examine neural networks as a technique for selecting the most appropriate ordering
scheme for a particular fault tree.

Reducing fault tree size:

" Apply modularisation techniques to fault trees.

" Investigate the effect on BDD size of applying reduction techniques to fault trees.

" Extend the BDD quantification methods to consider BDDs that have been constructed
from modularised and reduced fault trees.

5

Chapter 2: Overview of Fault Tree Analysis

2.1 Introduction

Fault Tree Analysis is the most widely used tool in safety and reliability assessment. It is a
deductive technique for determining the causes of system failure and the associated reliability

parameters. The fault tree itself provides a visual representation of the structure of the

system, by expressing a particular system failure mode in terms of component failures and
human errors. It produces a complete description of the causes of system failure, which is

important during the design stages of a system, as it allows weak areas to be identified and

so any problems corrected.

2.2 Construction of the Fault Tree

The initial step in the construction of the fault tree is to identify the system failure mode of

concern, known as the top event. A system may have more than one undesirable failure

mode and if so, a separate fault tree must be constructed for each. Consequently, several
fault trees may be required for the assessment of any given system. Once the top event has

been defined, fault tree branches leading to intermediate events are developed underneath,
by determining its causes. The intermediate events are then continually redefined in terms of
lower resolution events by determining the immediate, necessary and sufficient causes for

their occurrence. The process continues until the resolution limit is reached, i. e. all branches

end with basic events. These basic events can be component failures or human errors.

The fault tree diagram is composed of gates and events. Events are categorised as either
intermediate or basic. Intermediate events, which can be further developed in terms of other

events, are represented by rectangles in the tree; basic events cannot be developed any
further and are represented by circles. These symbols are shown in Table 2.1. Gates link the

events together, depending on their causal relationship. The three fundamental types of gate

used in fault trees are the 'AND' gate, 'OR' gate and 'NOT' gate. These gates combine events
in the same way as the Boolean operations of 'intersection', 'union' and 'complementation'.

Another gate frequently used is the k/n vote gate. This allows the flow of logic through the tree

if at least k out of n inputs occur. The vote gate can be expressed in terms of 'AND' and 'OR'

logic, but its use reduces the size of the resulting fault tree. The symbols for the gates and
their causal relations are shown in Table 2.2.

6

Event symbol Meaning of symbol

Intermediate event further
I developed by a gate

Basic event

Table 2.1: Event symbols

Gate symbol Gate name Causal relation

Output event occurs if all
AND gate input events occur

simultaneously

Output event occurs if at
OR gate least one of the input events

occurs

Output event occurs if at
k k/n vote gate least k-out-of-n input events

occur
n inputs

NOT gate
output event occurs if the

ut event does not occur in . p

Table 2.2: Common gate types and corresponding symbols

A system whose failure modes are expressed solely in terms of component failures, is known

as a 'coherent' system. A coherent fault tree will contain only 'AND' and 'OR' logic. If the

failure modes of a system are expressed in terms of both component failures and successes,
it is referred to as a 'non-coherent' system. In addition to the gates used in coherent fault

trees, non-coherent fault trees also contain 'NOT' logic. The work within this thesis considers

coherent fault trees only.

Once a fault tree has been constructed for a system, two types of analysis are performed:

qualitative and quantitative.

" Qualitative analysis involves obtaining the smallest sets of events that combine to

cause system failure. In coherent fault trees, these are called 'minimal cut sets'; in

non-coherent trees, they are called the 'prime implicants'.

" Quantitative analysis is concerned with calculating the system failure parameters (the

top event probability and frequency) and event importance measures.

7

2.3 Qualitative Analysis

The aim of qualitative analysis is to determine the combinations of basic events that combine
to cause system failure. These are termed the cut sets or minimal cut sets of the fault tree

and are defined below.

A cut set is a group of basic events such that if they all occur (i. e. all

components fail), the top event also occurs.

However, system failure does not necessarily require the failure of all the components in a cut

set. Consider for example a cut set that contains three basic events A, B and C. The failure of

all three components would guarantee system failure. However, if A and B alone result in

system failure, then the state of C is irrelevant and the system will fail regardless of whether C

is in a working or failed state. This leads to the definition of a minimal cut set:

A minimal cut set is the smallest combination of basic events, which if they all

occur, cause system failure. If any basic event in the set does not occur (i. e. the

component works) then the system will not fail.

Fault trees constructed using different approaches are said to be logically equivalent if their

minimal cut sets are identical. The order of a minimal cut set is the number of components

within the set. In general, the lowest order minimal cut sets contribute most to system failure,

as fewer components failures are needed for the top event to occur. Efforts should therefore
be focussed on eliminating lower order minimal cut sets, especially those of order one, which

represent single point failures in the system.

If NOT logic is used or implied, the combinations of basic events that cause the top event are

called implicants. Minimal sets of implicants are called prime implicants.

To determine the cut sets of a fault tree, the Boolean logic expression for the top event must
be transformed to a sum-of-products (s-o-p) form. This can be achieved with the use of a top-

down or bottom-up approach, depending on which end of the tree is used to initiate the

expansion process. The top-down procedure is described below and illustrated with the use of

an example.

The process starts with the top event, which is expanded by continually substituting in the
Boolean events appearing lower in the tree, until the expression contains only basic

component failures. The product, '. ', is used to represent 'AND' gates in the logic equations,
and the sum, '+', is used to represent 'OR' gates. Expansion of the resulting equation gives
the s-o-p form, from which the cut sets can be determined. If the fault tree contains repeated

8

events then the resulting s-o-p expression may not be minimal and so the minimal cut sets

cannot be obtained directly. Redundancies must be removed from the expression using the
laws of Boolean algebra, to allow the extraction of the minimal cut sets. The laws are shown
in section 2.3.1.

2.3.1 Boolean Laws of Algebra

1. Commutative Laws:

A+B=B+A
A. B = B. A

2. Associative Laws:

(A+B)+C=A+(B+C)

(A. B). C = A. (B. C)

3. Distributive Laws:

A+ (B. C) = (A + B). (A + C)

A. (B + C) = (A. B) + (A. C)

4. Identities:

A+O=A A. 0=0
A. 1=A A+1=1

5. Idempotent Laws:

A+A=A (removes repeated cut sets)
A. A =A (removes repeated events within each cut set)

6. Absorption Laws:

A+A. B =A (removes non-minimal cut sets)
A. (A + B) =A

7. Complementation:

A=1 -A
A. A =0
(A)=A

8. De Morgans Laws:

(A+B)=A. B

(A. B)=A+B

9

2.3.2 Example - Obtaining the Minimal Cut Sets

The top-down approach for calculating the minimal cut sets is demonstrated using the

example fault tree shown in Figure 2.1.

Figure 2.1: Example fault tree

Starting with the top event (Top), it is an 'AND' gate with three inputs, G1, X1 and G2. It can
therefore be expressed as a product of these inputs:

Top = G1. X1. G2

As G1 is an 'OR' gate, made up of two events, X2 and X3, it can be written as:

G1 = X2+X3.
Substituting this into Top gives:

Top = (X2+X3). X1. G2

Similarly, G2 can be written as the sum of X1 and X4, so Top becomes:

Top = (X2+X3). X1. (X1+X4)

The expression now contains only basic events, so is expanded to give:

Top = X2. X1. Xi + X1. X3. X1 + X2. X1. X4 + X1. X3. X4

= X1. X2 + X1. X3 + X1. X4. X2 + X1. X4. X3 (as Xl. X1 = X1)

which gives the cut sets of the fault tree, expressed in s-o-p form. Redundancies can then be
removed using the absorption law:

Top = X1. X2 + X1. X3

This is the minimal disjunctive form of the logic equation, each term of which is a minimal cut
set. For this fault tree there are two minimal cut sets, both of order two (i. e. they each contain
two basic events). These are {X1, X2} and {X1, X3}.

10

Obtaining the minimal cut sets for the tree in the example above is relatively straightforward.
However, this was for a very small fault tree; a complex system may produce thousands of
minimal cut sets. Determining the cut sets of a large system and their conversion to minimal
form is a computationally intensive task due to the number of comparisons to be made.
Although the algorithms are not complex, the process can be very time-consuming. For this

reason, approximations such as culling are often implemented, which cull the cut sets above
a certain order (for example above order four) during the calculation process, to reduce the

number of computations and the time taken for the analysis. However, this obviously leads to

a reduction in the accuracy of the minimal cut sets and so in the resulting quantitative analysis
for which they are frequently used.

2.4 Quantitative Analysis

Quantitative analysis of the fault tree allows the calculation of a number of parameters, which
are used to assess the system. The top event probability and frequency are used together

with the expected number of occurrences of the top event and event importance measures to

gain a full understanding of the system.

The methods for fault tree quantification are developed from Kinetic Tree Theoryt3l, which is a
time-dependent methodology for system evaluation. These techniques form the basis of the
approach used in the majority of commercial Fault Tree Analysis packages.

2.4.1 Structure Functions

The structure function for the top event of a fault tree shows the system state in relation to its
components and is given by:

NC

9(x)=1-[J(1-Pi(x))

where p, (x) is the binary indicator function for each minimal cut set C;, i=1.. Nc:

1
Pi (x) _ fJ ß, such that pi =

jEci 0

if cut set Ci exists

if cut set C, does not exist

2.1

2.2

and for each system component j, ßj is the binary indicator variable such that:

1 if component I is failed
Rj

0 if component! is working

11

The structure function is also a binary indicator function, taking the following values:

1
cp(x) =

if the system is failed

0 if the system is working

For the fault tree shown in Figure 2.1, which has minimal cut sets C, = {X1, X2} and C2 = {X1,
X3}, the structure function is given by:

cp(x) = 1-(1-X1. X2)(1-X1. X3) 2.3

The probability of the top event is given simply by the expected value of the structure function,

Qsys(t)=E[cp(x)] 2.4

If each minimal cut set is independent (i. e. no event appears in more than one cut set), then it
is also true that:

E[T(x)] = cp[E(x)] 2.5

Obtaining the expected value of the structure function for independent minimal cut sets would
simply be a matter of substituting the probability of failure of each component into the

structure function and calculating the result.

However, the minimal cut sets are not usually independent, and so in this case a full
expansion of the structure function and then reduction of the indicator variables (i. e. X, = X, ")
must be undertaken.

Applying this to the structure function for the example fault tree (Equation 2.3), gives:

cp(x) =1 - (1 - X1. X3 - X1. X2 + X1. X1. X2. X3) - expansion

= X1. X3 + X1. X2 - X1. X2. X3 - reduction

The probability of the top event is then given by the expected value of the expanded and
reduced structure function:

QSys(t) = E(cp(x)) = P(X1). P(X3) + P(X1). P(X2) - P(X1). P(X2). P(X3) 2.6

A more efficient method of implementing this uses Shannon's Theorem.

2.4.2 Shannon's Theorem

Shannon's theorem[5) can be expressed as follows.

A Boolean function f(x) where x= (x1, x2, ..., x�) can be written as:

f(x) = xi. f(1;, x)+zi. f(O;, x) 2.7

12

where: x; = 1-x;,
f(1;, x) = f(x,...... A4-� 1, y4+1...... x�) and
f(O;, x) = f(x,...... Als 0, x+1....., x�)

f(11, x) and f(0;, x) are known as the residues of f(x) with respect to x;.

The structure function is pivoted around the most repeated variable using Shannon's

expansion. This is continued until no repeated variables exist in the residues.

Shannon's theorem can be applied to the structure function given in Equation 2.3:

cp(x) =1-(1-X1. X2)(1-X1. X3)

Pivoting around the repeated variable, X1, gives:

cp(x) = X1[1-(1-X2)(1-X3)] + (1-X1)[0]

= X1 [1 -(1-X2)(1-X3)]

The probability of the top event is therefore given by:

QBrs(t) = E((p(x)) = P(X1). [1-(1-P(X2))(1-P(X3))] 2.8

Expanding this gives exactly the same result as shown in Equation 2.6.

2.4.3 General Method for the Calculation of the Top Event Probability

The general method of calculating the top event probability (i. e. the system unavailability)
uses the minimal cut sets obtained from the qualitative analysis. This method can be used
whether or not the fault tree contains repeated events.

The top event occurs if at least one minimal cut set exists, therefore for a fault tree that has N.
minimal cut sets, C;, Qsys(t) is given by:

Ný

Qsys(t)=P UCI
1=1

Expanding gives:

2.9

NN (-1

Qsys(t)=2P(Ci)-2ZP(Cf nCj)+... +(-1)NC-1P(C1 nC2 n... nCNC) 2.10
i=1 =2 J=1

where P(C;) is the probability of the existence of minimal cut set i.

This expansion is known as the inclusion-exclusion expansion and generates the exact
probability of the top event existence.

13

For example, consider the example fault tree shown in Figure 2.1, which has minimal cut sets

C1 = {X1, X2} and C2 = {X1, X3}. Equation 2.10 gives the top event probability as:

Qsy$(t) = P(C1) + P(C2) - P(C1 n C2)

= P(X1. X2) + P(X1. X3) - P(X1. X2. X1. X3)

= P(X1). P(X2) + P(X1). P(X3) - P(X1). P(X2). P(X3)

which is identical to the expression calculated in Equation 2.6.

It can be seen from the above expansion that if the fault tree has a large number of minimal

cut sets then calculating this probability will be computationally intensive. For this reason, the

calculation is simplified by the use of approximations.

2.4.3.1 Upper and Lower Bounds for System Unavailability

Truncation of the series in Equation 2.10 at an even-numbered term gives a lower bound for

the top event probability; truncation at an odd-numbered term gives an upper bound for the

top event probability:

N

P(Ci)-ýEP(Ci nCj) QsYS(t):
&(Ci) 2.11

i=1 i=2 j=1 1=1

Lower bound Exact Upper bound

The upper bound is known as the Rare Event Approximation, PRE (Top), as it is accurate if the

component failure events are rare.
N

PRE(Top) _ P(C1) 2.12

2.4.3.2 Minimal Cut Set Upper Bound

A more accurate approximation for the top event probability is the Minimal Cut Set Upper

Bound, PMCSUB(Top). This is derived as follows:

P(system failure) = P(at least one minimal cut set exists)

=1- P(no minimal cut sets exist) 2.13

Also,
Nc

P(no minimalcut sets exist) z [P(minimalcut set i does not exist) 2.14
1=1

(Equality exists when the minimal cut sets are independent i. e. when no event occurs in more
than one cut set.)

14

Substituting Equation 2.14 into 2.13 gives:

Ne

P(system failure) S 1- f[P(minimal cut set i does not exist) 2.15

which gives the Minimal Cut Set Upper Bound:

N0

PMcsuB(Top)=1-[(1-P(CI)) 2.16
1=1

It can be shown that
Nc N

Qsys(t)51-fl(1-P(CI))_ P(CI) 2.17
f=1 1=1

Exact Minimal Cut Set Rare Event
Upper Bound Approximation

2.4.4 Top Event Frequency

The top event frequency is another system parameter that can be calculated - this is useful
for systems where unreliability is an important issue.

The system unconditional failure intensity, wsys(t), is defined as the probability that the top
event occurs at t per unit time. Therefore, the probability that the top event occurs in the
interval [t, t+dt) is given by wys(t)dt.

For the top event to occur in the interval [t, t+dt), no minimal cut sets can exist at time t, and at
least one minimal cut set, e;, must occur in [t, t+dt). This can be written as:

wSys(t)dt =P AU81 2.18

Ne

where: A is the event that no minimal cut sets exist at time t, A= nul
.

1=1

u; is the event that the i`h minimal cut set does not exist at t.
Nc
U8j is the event that at least one minimal cut set occurs in the interval [t, t+dt).
1=1

As P(A) =1- P(A), the right hand side of Equation 2.18 can be written:

N

P AUE), =P Uel -P el 2.19
1=1 1=1

11

1=1

1

where A is the event that at least one minimal cut set exists at t.

15

Therefore w6 (t) becomes:
r N.,

wsy. (t)dt =P Ue1 -P ei 2.20
L 1=1 1=1

The first term on the right-hand side gives the contribution from the occurrence of at least one

minimal cut set. The second term gives the contribution of the minimal cut set occurrence

while other minimal cut sets already exist (i. e. the system is already failed). These terms are
denoted by wyg('"(t)dt and wsys(2)(t)dt respectively to give:

wsys(t)dt = wys(')(t)dt - wsyS(2)(t)dt 2.21

The terms on the right of the above equation can be expanded using the inclusion-exclusion

principle, but as this is a computationally intensive operation, an approximation is required.

2.4.4.1 Approximation for the System Unconditional Failure Intensity

If component failures are rare, then minimal cut set failures will also be rare events. The term

wSYg(2)(t)dt, which requires minimal cut sets to exist and occur at the same time, would become

negligible if component failures are unlikely. Therefore, an upper bound for wsys(t)dt is simply:

W sys (t) max dt =W sys(') (t)dt 2.22

As this can be expanded using the inclusion-exclusion principle, the series expansion is
truncated after the first term (as for the top event probability) to give the Rare Event
Approximation:

N
Wsys(t)m,, dt <_ P(81)

Nc
Z wek (t)dt 2.23

k=1

where: P(8;) is the probability of the occurrence of minimal cut set i

wok (t) is the unconditional failure intensity of minimal cut set 9w

Note that this is not the same as the Rare Event Approximation for the top event probability.
Here P(6,) denotes the probability of occurrence of a minimal cut set; for the top event

probability, P(C;) denoted the probability of existence of a minimal cut set.

2.4.4.2 Expected Number of System Failures

The expected number of system failures in time t, W(0, t), is given by the integral of the
system unconditional failure intensity in the interval t.

16

t
W(O, t) =

jwsys(u)du 2.24
0

For a reliable system, the expected number of system failures is an upper bound for the

system unreliability, F(t) (i. e. F(t) s W(O, t)).

2.4.5 Importance Measures

The importance measure of a component or minimal cut set is given by a numerical value and
signifies the role that the component or cut set plays in contributing to the top event. This

allows the components or cut sets to be ranked in order according to the extent of their

contribution to system failure. Importance measures are useful as they can identify weak
areas of a system, which is especially important at the design stage.

Importance measures can be categorised as either deterministic or probabilistic. Probabilistic

measures can themselves be subdivided into two categories: those dealing with system
unavailability assessment and those dealing with the system unreliability assessment.

2.4.5.1 Deterministic Measures

Deterministic importance measures evaluate the importance of a component without
considering its probability of failure. One such measure is the structural measure of
importance.

Structural Measure of Importance

The structural measure of importance for component i is given by:

=
number of critical system states for component 1 lý

total number of states for the (n -1) remaining components
2'25

A critical system state for component i is a state for which the failure of component i will cause
the system to go from a working to a failed state

2.4.5.2 Probabilistic Measures for System Unavailability

Probabilistic measures are generally of more use than deterministic measures in reliability
problems as they take into account the components' probability of failure.

17

Birnbaum's Measure of Importance

This measurel61 is also known as the criticality function and is defined as the probability that
the system is in a critical state for component i.

There are two expressions for the criticality function:

0 Gi (q(t)) = Q8 ys (ii, q(t)) - Qsys (Oi q(t)) 2.26

where QSys(t) is the probability that the system fails

(i,, q(t)) = (qý,..., q;. ý, 1, qý+>>"""ýqn) component i failed

(0,, q(t)) = component i working

The above expression gives the probability that the system fails with component i
failed, minus the probability of the system failing with component i working, which
results in the probability that the system fails only if component i fails.

" G. (q(t))
aQ (t)

= aqi (t)
2.27

This is equivalent to Equation 2.26, as:

aQsys(t)
-

Qsys(1i, q(t))-Qsys(01, q(t)) 2.28
aq; 1-0

This measure of importance forms the basis for many other importance measures.

Criticality Measure of Importance

This calculates the probability that the system is in a critical state for component i and that i
has failed. Unlike Birnbaum's measure of importance, it also takes into account the failure

probability of component i itself.

Gi(q(t))qi(t)
2.29 Q. Y. (t)

Fussell-Vesely Measure of Importance

This measurem calculates the probability that component i contributes to system failure and is
defined as the probability of the union of the minimal cut sets containing i, given that the
system has failed.

P(U,
l IeCk

Ck

J 2.30 QsY, (t)

18

This measure gives very similar importance rankings to those obtained using the criticality
measure.

Fussell-Vesely Measure of Minimal Cut Set Importance

This measure of importancem ranks the minimal cuts sets in the order of their contribution to
the top event, rather than considering the individual components. It is defined as the

probability of existence of the cut set i, given that the system has failed.

-
P(C1) 2.31

Qsys (t)

2.4.5.3 Probabilistic Measures for System Unreliability

These importance measures assess the interval reliability of a system, where the order in

which components fail is important. The sequence of failure can be described with the use of

enabling and initiating events. This analysis is of particular use in safety protection systems,

where the order in which the protection system fails and some hazardous event occurs is

extremely important. For example if the protection system fails first, then the hazardous event

occurs, the result will be system failure. However if the hazardous event occurs first, then the

protection system will invoke shutdown and a dangerous situation will be avoided. In this

case, the protection system failure is an enabling event, which would put the system into a
critical state. The hazardous failure is an initiating event, which would result in a dangerous

system failure only if the enabling event has already occurred; if the initiating event occurs
first, then the safety system would respond as required. The formal definitions of initiating and
enabling events are given as:

" Initiating events perturb system variables and place a demand on control/protection
systems to respond.

" Enabling events are inactive control/protective systems that permit initiating events to
cause the top event.

Barlow-Proschan Measure of Initiator importance

The Barlow-Proschan measure of initiator importance'81, I;, is the probability that the system is
in a critical state for component i at time t and that the occurrence of initiating event i in the
interval [t, t+dt), causes the system to fail.

t JG; (q(u))wi(u)du

ý; =°W (0, t) 2.32

19

Modified Measure of Enabler Importance

This importance measuret9l gives the probability that the enabling event i permits the initiating

event j to cause system failure in the interval [O, t). The failure of the enabler i is considered
only a factor when it is contained in the same minimal cut set as the initiating event j:

J[Gi,
j (q(u)) - GM, I

(q(u))]qi(u)wj(u)du
0

i, =J2.33 W(O, t)

where G; j is the criticality of components i and j given by:

G1, l(q(t)) =
a2QsYS(t)

2.34
aqi(t)aqj(t)

and GM11 is a correction to the term G1 , which eliminates the separate roles of components i

and j. Further discussion of this measure can be found in reference 9.

Measure of Minimal Cut Set Frequency Importance

This measurel1°1 gives the probability that a minimal cut set of order m causes the system
failure in the interval [O, t), given that the system has failed:

Mt 1m
C'{gym} (q(U)) - GM{cý"} (q(U))J[I qj(U)W k (U)du

k=l 0
l(Cm) _ :k2.35

W(O, t)

where G(cm) (q(t)) is the criticality of cut set i, defined as:

a2Gis, ý (t) Gtým} (q(t)) = aqk (t) m
2.36

ýCECI

and GM
{CM}

(q(t)) is a correction to the term G{cm} (q(t)) that eliminates the separate effects of
s

the components contained in Cr

2.5 Fault Tree Modularisation

Modularisation methods can be applied to fault trees in order to reduce their complexity and
simplify the resulting analysis. The modularisation procedure identifies independent subtrees
within the fault tree, known as modules. A module is defined as a section of the fault tree that
is completely independent from the rest of the tree, with no inputs that appear anywhere else
in the tree and no outputs to the rest of the tree except from its output event. The advantage

20

of identifying modules is that each one can be analysed independently of the rest of the tree.
In effect, the modules can be regarded as individual fault trees and analysed as such.

Several modularisation techniques are available for detecting fault tree modules, but one of

particular interest is the linear-time algorithmt"1. The advantage of this algorithm over other
techniques is its efficiency, as it requires only two passes through the fault tree to obtain the

modules.

2.5.1 Principles of the Linear-Time Algorithm

The modules can be identified after just two depth-first traversals of the fault tree. The first of
these performs a step-by-step traversal recording for each gate and event, the step number at
the first, second and final visits to that node. To demonstrate this process, refer to the fault

tree in Figure 2.2. Starting at the top event and progressing through the tree in a depth-first

manner, the gates and events are visited in the order shown in Table 2.3. Event inputs to any

gate are considered before the gate inputs. Each gate is visited at least twice: once on the

way down the tree and again on the way back up the tree. Once a gate has been visited, it

can be visited again, but the depth-first traversal beneath that gate is not repeated. This is

shown at step 30 in Table 2.3, where G4 is visited again, but its descendants (any gates and

events appearing below that gate in the tree) are not re-visited.

21

Figure 2.2: Example fault tree to demonstrate the linear-time algorithm

Step number 1 2 3 4 5 6 7 8 9 10 11

node Top G1 a G5 c G4 d G8 e f G8

Step number 12 13 14 15 16 17 18 19 20 21 22

node G4 G5 G1 G2 G6 g b h G6 G7 b

Step number 23 24 25 26 27 28 29 30 31

node I G7 G2 G3 a c G3 G4 Top

Table 2.3: Order in which the gates and events are visited in the depth-first traversal of the
fault tree in Figure 2.2

The step numbers of the visits (first, second and final) are recorded during this traversal and

the values for the gates are shown in Table 2.4. As G4 is a repeated gate, the step number of

the final visit is different to that of the second visit. The equivalent data for the events is

shown in Table 2.5. It should be noted that the step number of the second visit to each basic

event is always equivalent to the step number of the first visit to that event.

Gate Top G1 G2 G3 G4 G5 G6 G7 G8

1$` visit 1 2 15 26 6 4 16 21 8

2nd Visit 31 14 25 29 12 13 20 24 11

Final visit 31 14 25 29 30 13 20 24 11

Min 2 3 16 3 7 5 17 18 9
Max 30 27 24 28 11 28 22 23 10

Table 2.4: Data for the gates in the fault tree

Event

1$' visit

a

3

b

18
c

5

d

7

e
9

f

10

g

17

h

19 23

2nd Visit 3 18 5 7 9 10 17 19 23

Final visit 27 22 28 7 9 10 17 19 23

Table 2.5: Data for the events in the fault tree

The second pass through the tree finds the maximum (max) of the last visits and the minimum
(min) of the first visits to the descendants of each gate; these values are also shown in Table
2.4. The principle of the algorithm is that if any descendant of a gate has a first visit step
number smaller than the first visit step number of the gate, then it must also occur beneath

another gate. Conversely, if any descendant has a last visit step number greater than the

22

second visit step number of the gate, then again it must occur elsewhere in the tree.

Therefore, a gate can be identified as heading a module iff:

0 The first visit to each descendant is after the first visit to the gate

and

" the last visit to each descendant is before the second visit to the gate.

That is, none of the descendents of a gate can appear anywhere else in the tree (unless

beneath another occurrence of the same gate). Therefore, the final step of the algorithm

simply compares the minimum (min) and maximum (max) values of the descendents visit

numbers with the first and second visit step numbers for each gate.

From Table 2.4, it can be seen that gates G1, G5 and G6 cannot be modules, as their

descendants have maximum step numbers greater than the second visit step numbers of

those gates. Gates G3 and G7 are also not modules, as their descendants have minimum

step numbers smaller than the first visit step numbers of the gates.

The following gates can therefore be identified as heading modules:

Top, G2, G4, and G8

For completeness, the top event (Top) is included in this list, even though it will always be a
module of the fault tree.

Each of the subtrees can be replaced by a single modular event in the fault tree structure and
are assigned the following labels:

G2-* M1, G4-ß M2 and G8-> M3

Four separate fault trees as shown in Figure 2.3 now replace the single fault tree shown in

Figure 2.2.

23

G4 G8

M3 def

(c) Module M2 (d) Module M3

Figure 2.3: The four modules obtained from the fault tree shown in Figure 2.2

Having identified the modules, each one can be analysed separately and the results
substituted into the higher-level fault trees where the modules occur. This process can
significantly reduce the number of calculations required in the subsequent analysis. The
linear-time algorithm has been programmed as part of the research and a detailed description

can be found in Appendix I.

2.6 Summary of Fault Tree Analysis

Fault trees are an extremely good way of representing the failure logic of a system in a visual
format. However, if the fault tree is large, then performing analysis upon it (such as finding the

minimal cut sets, top event probability, etc) can require extensive calculations and
consequently, considerable computing power. Approximations are needed for many
parameters, which inevitably leads to a loss of accuracy. Finding more efficient and accurate
means of performing these calculations has been the subject of much research, which has led
to the introduction of the Binary Decision Diagram technique as an alternative method for this
analysis.

24

(a) The modularised fault tree

(b) Module M1

Chapter 3: Binary Decision Diagrams

3.1 Introduction

Binary Decision Diagrams (BDDs) were first used by Lee 1121 to represent switching circuits.
Their use in reliability analysis was developed predominantly by Rauzyt4l, who suggested that
they might provide an alternative, more efficient technique for performing fault tree analysis.

The BDD method does not analyse the fault tree directly, but converts the tree to a Binary

Decision Diagram, which represents the Boolean equation for the top event. This

representation of the logic equation is in a form that is much easier to manipulate than a fault

tree and so lends itself well to the mathematical analysis. Both qualitative and quantitative

analysis can be performed on the BDD, with the advantage that exact solutions can be

calculated very efficiently without the need for the approximations necessary in the

conventional approach of Kinetic Tree Theory.

3.2 Properties of the BDD I

A BDD is a directed acyclic graph, which means that all paths through the BDD are in one
direction and that no loops can exist. The BDD is composed of terminal and non-terminal
vertices (also called nodes) connected by branches. The non-terminal vertices encode the
basic events of the fault tree and the terminal vertices correspond to the final state of the
system. These are shown on the BDD in Figure 3.1.

Terminal vertex

Non-terminal vertex

Terminal vertex

Figure 3.1: Example Binary Decision Diagram

Non-terminal vertices have two outgoing branches. By convention, the left-hand branch is a
'1' branch, corresponding to basic event occurrence (i. e. the component fails); the right-hand

25

branch is a '0' branch corresponding to basic event non-occurrence (i. e. the component

works). The size of a BDD is usually measured by its number of non-terminal vertices.
Terminal vertices have a value of either one or zero, corresponding to top event occurrence
(i. e. the system fails) and non-occurrence (i. e. the system works) respectively.

All paths through the diagram start at the root vertex and proceed to a terminal vertex, which

marks the end of the path. Each path that terminates in a '1' state gives a cut set of the fault

tree, as that particular combination of component failures must result in system failure. Only

vertices that lie on the '1' branches of these paths are included in the cut sets. For example,
in the BDD shown in Figure 3.1, there are two possible paths that terminate in '1' states.

These are:

1. a

2. ä, b, c

which gives the two corresponding cut sets:

1. {a}

2. {b, c}

In this example, the BDD is in its minimal form and so generates minimal cuts sets. However,

this is not always the case, as is discussed later in this chapter.

3.3 Formation of the BDD Using the Structure Function

One method of constructing the BDD uses the structure function of the fault tree. An ordering

of the fault tree variables must be chosen, which determines the order in which they are
considered in the construction process. The choice of variable ordering also has a significant
effect on the size of the resulting BDD, a subject that is discussed in more detail in section 3.6

and Chapter 4. Values of one and zero are then successively substituted into the structure
function equation for each node in the BDD, according to the chosen ordering. This process is

demonstrated using the fault tree shown in Figure 3.2.

Figure 3.2: Example fault tree

26

The minimal cuts sets for this tree are:

1. {a, d}

2. {b, d}

3. {c}

which gives the following structure function:

9 =1- (1- a. d)(1- b. d)(1- c)

The BDD is constructed according to the variable ordering a<b<c<d, which was chosen by

listing the variables as they appear from left to right in the fault tree. The ordering means that

event 'a' is considered first, then event 'b' and so on, until the BDD has been fully

constructed. The first node, which encodes event 'a', is drawn with its two outgoing branches.

The result of the left-hand branch is obtained by substituting the value one into the structure
function equation for each occurrence of W; the result of the right-hand branch is found by

substituting in the value zero for'a'. The remaining variables are then considered in the same

way, according to the chosen ordering, until the terminal vertices are reached. The resulting

BDD with its Boolean equations is shown in Figure 3.3.

Figure 3.3: Binary Decision Diagram with Boolean equations

27

The resulting BDD is not, however, in its simplest form. It consists of ten non-terminal nodes,
which can be reduced by applying the reduction technique outlined in the following section.

3.3.1 Reduction of the BDD

The following 'collapsing' operations (Friedman and Supowit") can be used to reduce the
size of the BDD:

1. If the two sons of a node 'a' are equivalent, then delete node 'a' and direct all of its
incoming branches to its left son.

2. If nodes 'a' and 'b' are equivalent, then delete node 'b' and direct all of its incoming
branches to 'a'.

The son of a node is the node to which either the one or the zero branch leads.

The above operations can be applied to reduce the BDD in Figure 3.3. Operation 1 is first

applied to delete node F2, as both its sons are equivalent. Its incoming branch from node F1
is therefore directed to its left son, node F4. Nodes F5 and F9 are deleted. Then, operation 2

can be applied to the equivalent nodes F4 and F6. Node F6 and its sons are deleted and its
incoming branch from node F3 is directed to R. This is known as 'sub-node sharing' and
results in the BDD shown in Figure 3.4.

Figure 3.4: The reduced BDD from Figure 3.3

The reduced BDD is significantly smaller than the original, with five non-terminal nodes as
opposed to ten. Two of the redundant cut sets that could be found from Figure 3.3 have also
been eliminated. However, the reduced BDD is not minimal, as the BDD paths result in a
further two non-minimal cut sets. To obtain minimal cut sets from the BDD, it must undergo a
minimisation procedure, which is described in section 3.5.

28

The reduction technique does not alter the logic of the BDD, but it does reduce computer
memory requirements.

Although the method of constructing the BDD from the structure function clearly indicates the
relationship between the fault tree and the BDD, an obvious disadvantage is that the cut sets
must be determined before the BDD can be constructed. As the aim of the BDD method is to
perform the analysis more efficiently, an alternative method is implemented.

3.4 Formation of the BDD Using If-Then-Else

This method of constructing the BDD was developed by Rauzyt°l and proceeds by applying an
if-then-else (ite) technique to each of the gates in the fault tree. The He structure derives from

Shannon's formula, which is discussed in detail in Chapter 2. If f(x) is the Boolean function for

the fault tree top event then by pivoting about any variable X1, Shannon's formula can be

written as:

f(x) = X1. f1+Xif2 3.1

where f1 and f2 are Boolean functions with X1=1 and X1=0 respectively, and are of one order
less than f(x).

The corresponding ite structure is ite(X1, f1, f2), where X1 is the Boolean variable and f1 and
f2 are logic functions. This means that if X1 fails then consider f1, else consider f2. Therefore
in the BDD structure, f1 lies below the '1' branch of the node encoding X1 and f2 lies below
the '0' branch. This is shown in Figure 3.5.

X1
1p

f1 f2

Figure 3.5: BDD showing ite(X1, f1, f2)

Once a variable ordering has been established, the following procedure can be implemented

to construct the BDD:

" Each basic event Xi is assigned the ite structure ite(Xi, 1,0).

" If X<Y (i. e. X appears before Y in the variable ordering):

Let J= ite(X, Fl, F2) and H= ite(Y, G1, G2), then

J<op>H=ite(X, F1<op>H, F2<op>H).

29

" If X=Y:

J= ite(X, Fl, F2), H= ite(X, G1, G2), then

J<op>H = ite(X, F1 <op>G1, F2<op>G2).

where <op> corresponds to a Boolean operation of the gates in the fault tree.

The following identities can also be used to simplify the results:

1 <op>H=1, if <op> is an 'OR' gate.

1 <op>H=H, if <op> is an 'AND' gate.

0<op>H=H, if <op> is an 'OR' gate.

O<op>H=O, if <op> is an 'AND' gate.

An advantage of the ite method for constructing the BDD is that the algorithm automatically
makes use of sub-node sharing. This not only reduces the computer memory requirements,
as each ite structure is only stored once, but it also increases the efficiency, as once an ite

structure has been calculated, the process does not need to be repeated.

The He method can be demonstrated by constructing a BDD from the fault tree shown in
Figure 3.6.

Figure 3.6: Example fault tree for the He method

The ordering a<b<c<d is chosen, which is obtained by a simple top-down, left-right traversal
of the fault tree (known as top-down ordering).

G1 is expressed as:

G1 =b+c
= ite(b, 1,0) + ite(c, 1,0)

= ite(b, 1, ite(c, 1,0))

30

G2 is found in a similar way to give:

G2 = ite(c, 1, ite(d, 1,0))

The ite structure for Top is therefore given by:

Top= a. G1. G2

= ite(a, 1,0) . ite(b, 1, ite(c, 1,0)) . ite(c, 1, ite(d, 1,0))

= ite(a, 1,0) ite(b, ite(c, 1, ite(d, 1,0)), ite(c, 1,0) ite(c, 1, ite(d, 1,0)))

= ite(a, 1,0) . ite(b, ite(c, 1, ite(d, 1,0)), ite(c, 1,0))

= ite(a, ite(b, ite(c, 1, ite(d, 1,0)), ite(c, 1,0)), 0)

The BDD is constructed by considering the one and zero branches of each variable in turn. In

this example, 'a' is the first variable to be considered and is encoded in the root vertex of the

BDD. The structure ite(b, ite(c, 1, ite(d, 1,0)), ite(c, 1,0)) lies below its one branch and the

terminal '0' vertex lies below the zero branch. Event 'b' is the next variable to be considered

and is encoded in the node beneath the left-hand branch of the root vertex. Its outgoing

branches are determined by breaking down the structure ite(b, ite(c, 1, ite(d, 1,0)), ite(c, 1,

0)) into ite(c, 1, ite(d, 1,0)) for the one branch and ite(c, 1,0) for the zero branch. This

process is continued until all branches end with terminal vertices. The resulting BDD is shown

in Figure 3.7.
r4

Figure 3.7: BDD obtained from the fault tree in Figure 3.6, with the ordering a<b<c<d

The cut sets, which are obtained from the paths ending with terminal '1' nodes, are:

1. {a, b, c}

2. {a, c}

3. {a, b, d}

31

The BDD is not minimal and therefore does not generate minimal cut sets. The first cut set is

redundant, as it contains the second cut set as a subset. In order to obtain minimal cut sets
the BDD has to undergo a minimisation procedure, which is introduced in the following

section.

3.5 Minimisation

The cut sets produced from the BDD are only minimal if the BDD is in its minimal form. In

order to get a non-minimal BDD into this form, it must undergo a minimising procedure. This

process, introduced by Rauzyt°', is applied to the ite form of the BDD and creates a new BDD

that exactly defines the minimal cuts sets of the fault tree. If there are shared nodes in the
BDD, then these must be expanded out prior to minimisation.

Consider a general node in the BDD whose output represents the function F, where

F= ite(x, G, H) 3.2

If ö is a minimal solution of G, which is not a minimal solution of H, then the intersection of b

and x, ({b} n x), will be a minimal solution of F. The set of all the minimal solutions of F,

solm; n(F) will also include the minimal solutions of H, so:

SOlmin (F) = (a)

where,

3.3

Q= [{b} n x] V [SOIm1n (H)] 3.4

Rauzy has defined the `without' operator, without(Gmi,, Hm, n), which removes all the paths
from Gm;,, that are included in a path of Hm;,,. This ensures that the combined set in Equation

3.4 represents the minimal solutions of F, by removing any minimal solutions of G that are
also minimal solutions of H.

This algorithm can be applied to the BDD in Figure 3.7. Each node is considered in turn:

171 = ite(a, F2,0) - F2 does not contain any paths that are included in the zero branch, as
this leads to a terminal vertex.

F2 = ite(b, F3, F4) - Event 'c' is included in a path on both the one branch (F3) and the zero
branch (F4). Therefore 'c' is removed from the one branch by replacing
the terminal '1' vertex with a terminal '0' vertex.

F3 = ite(c, 1, F5) - F5 does not contain any paths that are included in the one branch as it
leads to a terminal vertex.

F4 = ite(c, 1,0) - Both the one and zero branches are terminal.

F5 = ite(d, 1,0) - Both the one and zero branches are terminal.

32

The minimised BDD is shown in Figure 3.8.

cl

Figure 3.8: The minimised BDD

This produces the following minimal cut sets:
1. {a, b, d}

2. {a, c}

Minimising the BDD has therefore removed the redundant cut set {a, b, c}.

It is important to note that as the minimisation procedure changes the structure of the BDD,
any quantitative analysis must be performed on the unminimised BDD.

3.6 The Influence of Variable Ordering on the BDD

The variables in the fault tree must be ordered before the BDD can be constructed. The

chosen ordering not only affects the order in which the variables appear in the BDD, but can
also have a crucial effect on the BDD size and the complexity of the calculations required for
its construction. For example, consider the fault tree in Figure 3.9.

33

Figure 3.9: Example fault tree for variable ordering

If the 'depth-first' ordering scheme is chosen, which considers the variables in a depth-first,

left-right manner, the ordering a<c<d<b<e<f is obtained. The BDD constructed from this

ordering is shown in Figure 3.10.

Figure 3.10: BDD obtained from the fault tree in Figure 3.9

using the ordering a<c<d<b<e<f

This ordering gives a simple non-minimal BDD with only six non-terminal nodes. However, if
the top-down ordering scheme is used, the following variable ordering is obtained:

a<b<c<d<e<f

34

which results in the BDD shown in Figure 3.11.

Figure 3.11: BDD for the fault tree in Figure 3.9, using variable ordering a<b<c<d<e<f

The BDD produced from the top-down ordering has nine non-terminal nodes compared with
the six non-terminal nodes obtained with the depth-first ordering - an increase of 50%.
Although an increase of three nodes is itself not significant, for a fault tree whose BDD

contains thousands of nodes, a 50% increase in size could be crucial. For large fault trees,

the difference in size produced by a 'good' ordering and a 'bad' ordering can in fact be many

orders of magnitude, which can result in the computer storage capabilities being exceeded

and the calculations terminated.

Many ordering heuristics have been investigated, but previous research, which is discussed in

detail in Chapter 4, has failed to identify any scheme that will always produce a minimal BDD.

In fact, no ordering scheme has been found which will produce a BDD, minimal or otherwise,

for every fault tree. Although a minimal BDD is advantageous, as the minimal cut sets can be

obtained directly so eliminating the need to perform the minimisation procedure, it is not a

necessity. The calculations required for the quantitative analysis of BDDs (discussed in

Chapter 7) are linear in the size of the BDD, and therefore very efficient. Provided that a BDD

can be obtained, the subsequent quantification can be performed. However, it is obviously an

advantage to produce as small a BDD as possible to reduce the analysis time, and further

research is necessary to ensure that a BDD can be constructed for any given fault tree. The

problem of variable ordering is the subject of the literature survey in Chapter 4.

35

3.7 Modularisation

The BDD construction process can be made more efficient by modularising the fault tree
before the conversion procedure takes place. Modularisation identifies independent subtrees
(modules) within the fault tree that can be analysed separately from the rest of the tree. A
detailed discussion of the modularisation technique is given in Chapter 2.

Modularisation can significantly reduce the complexity of a fault tree, by breaking it down into

smaller, more manageable pieces that can be dealt with separately. In terms of the BDD

process, the tree can then be analysed in several stages by obtaining smaller BDDs for each

subtree. These can then be combined to form a BDD that represents the original fault tree

structure. It is possible therefore, that a BDD could be constructed for a tree that could not

previously be analysed.

The process can be demonstrated using the fault tree shown in Figure 3.12.

Figure 3.12: A fault tree that can be modularised

The following modules can be identified:

" Gate G1 heads the module M1, as none of its inputs appears as an input elsewhere
in the tree.

" Gate G6 heads the module M2. M2 appears twice in the modularised tree, as an input
to both G2 and G3.

" Top itself is also a module.

The modularised tree and modules M1 and M2 are shown in Figure 3.13.

36

G6

ef

(c) Module M2

Figure 3.13: The modularised fault tree and two modules

To form the BDD from the modularised tree, the modules are treated as events and so need
to be ordered together with the basic events. Taking the top-down order M1<M2<a<g, the ite

structure for the top event can be formed:

Top = M1. G2. G3

= ite(M1,1,0). ite(M2,1, ite(a, 1,0)). ite(M2,1, ite(a, ite(g, 1,0), 0))

= ite(M1, ite(M2,1, ite(a, ite(g, 1,0), 0)), 0)

Each module is then analysed independently to form its own BDD. The top-down orderings
for the modules are as follows:

M 1: b<c<d

M2: e<f

which result in the He structures given by:

Ml =G4+G5

= ite(b, ite(c, 1,0), 0) + ite(c, ite(d, 1,0), 0)

= ite(b, ite(c, 1,0), ite(c, ite(d, 1,0), 0)

M2 = ite(e, 1,0). ite(f, 1,0)

= ite(e, ite(f, 1,0), 0)

This corresponding set of BDDs is shown in Figure 3.14.

37

(b) Module M1

(a) The modularised tree

(b) BDD for module M1

(a) BDD for the modularised tree

(c) BDD for module M2

Figure 3.14: The BDDs obtained from the modularised fault tree and two modules

The BDDs for each module are then substituted into Figure 3.14(a) to give one BDD encoding
only basic events. This is shown in Figure 3.15.

Figure 3.15: The BDD encoding only basic events

38

Constructing the BDD from the modularised fault tree involves fewer calculations than if the

unmodularised fault tree were used. Ordering the variables of the unmodularised tree in a top-
down manner (a<b<c<d<e<f<g) results in a BDD with fifteen non-terminal nodes. This is

significantly more than for the BDD in Figure 3.15, which has only eight non-terminal nodes.

In the above example, the top-down ordering scheme was used throughout to order the

variables of the modularised tree and the two modules. However, the same scheme does not
necessarily have to be used for each. The modules can be ordered according to their
individual structures, using the scheme that results in the smallest BDD in each case. This

could be particularly beneficial in large fault trees, when vast savings could be made in terms

of the number of calculations performed and could result in a substantially smaller BDD.

3.8 Summary

The BDD technique is already proving to be of considerable use in reliability analysis. It

provides an efficient means of analysing a system, without the need for the approximations
previously used in the conventional methods of Kinetic Tree Theory.

The difficulty with this technique is in the conversion of the fault tree to the BDD. The variable
ordering can have a crucial effect on the BDD; it can mean the difference between a minimal
BDD with few nodes, so providing an efficient analysis, and no BDD at all. There is no
ordering scheme capable of generating an efficient BDD structure for all fault trees.
Considerable research has been conducted into this area and also into methods of selecting
an appropriate scheme from a group of alternatives. A detailed survey of current ordering
heuristics and scheme selection techniques is conducted in the following chapter.

39

Chapter 4: A Survey of Variable Ordering Heuristics

4.1 Introduction to Variable Ordering

The BDD technique introduced in the previous chapter provides an exact and efficient means

of analysing fault trees. The difficulty however, lies in the construction of the BDD from the
fault tree. An ordering of the fault tree variables must be chosen, which determines the

sequence in which the events are considered in the ite procedure. The variables are ordered
in a systematic manner, according to a particular variable ordering scheme. The choice of
ordering scheme can have a crucial effect on the size of the resulting BDD -a 'bad' ordering
can result in a BDD many orders of magnitude larger than one obtained from a 'good'

ordering.

One of the reasons for the significant variation in BDD size is the rate at which the maximum
number of nodes grows as the number of fault tree variables increases. The number of nodes
in the BDD cannot be less than the number of variables, n, on which it depends, though this
can be less than the number of basic events appearing in the tree if redundancies exist. The
maximum number of nodes, however, increases exponentially as 2%1, as shown Table 4.1.

Number of variables / minimum
number of nodes in BDD, n

5 10 20 50 100

Maximum number of nodes in
31 1023 _ -1015 -1030 BDD, 2"-1

1 1
Table 4.1: The rapidly increasing function governing the maximum number of nodes

Another factor that can greatly affect the BDD size is the symmetry of the function. For a
symmetrical function, the BDD size does not depend on the variable ordering. However, as
the asymmetry increases, so does the variability in the BDD size.

Circuit Analysis is another field in which the BDD technique can be implemented. As with
Fault Tree Analysis, an ordering of the system variables must be chosen in order to construct
the BDD. The need for a good ordering of the circuit variables was addressed at an early
stage by Bryanti'41, who noted that the size of the resulting BDD was highly sensitive to the
chosen ordering scheme. Consequently there has been much research into finding the
optimal variable ordering for circuits and many of the heuristics identified have been
considered for fault trees. However, circuits have a different type of logic structure to fault
trees and it has been shown by Nikolskaial'5l that traditional variable ordering heuristics for
circuits make poor choices for fault trees. Therefore, the survey of heuristics presented in this
chapter will not include many of the heuristics and algorithms developed for use in the field of
Circuits.

40

Ordering heuristics are categorised as either dynamic or static. Both techniques are
discussed below.

" Dynamic ordering: These methods focus mainly on circuits, but can also be applied to
fault trees and involve swapping or exchanging variables to produce a smaller BDD176, "1.

This is achieved either by obtaining the BDD (using any heuristic), then re-ordering the

variables to produce a reduced BDD, or by swapping variables during the construction

process when the original ordering is not adequate to finish the computation. Although

this procedure can significantly reduce the BDD size, it is of limited use in reliability
analysis due to the time taken for its implementation. Once a BDD has been constructed,
the analysis is a linear function of the number of nodes within the BDD. Therefore,

provided a BDD (of any size) can be obtained, it is more efficient simply to perform the

required calculations, rather than applying dynamic ordering techniques prior to the

analysis. For this reason, dynamic techniques are not considered to be of great use and

will not be discussed in this survey.

" Static ordering, whereby a variable order is established prior to the construction of the
BDD is the focus of this chapter. Figure 4.1 highlights the techniques that will be covered.

Ordering

Circuits (different logic structure to fault trees)

heuristics Dynamic (not efficient)
Fault
Trees Structural

Static Topological

Weighted
Importance
Measures

Heuristic topics considered in this chapter

Figure 4.1: Relation of variable ordering heuristics

Many different heuristics have been proposed for selecting a variable ordering and this
chapter aims to review and, where possible, compare these schemes. The ordering schemes
fall into two categories: structural and weighted. Structural schemes perform a structured
traversal of the tree, ordering variables as they are encountered and preserving
neighbourhoods. Weighted methods allocate weights to the variables in order to determine
the ordering and do not necessarily preserve neighbourhoods. Weighted schemes can be
further categorised as being either topological or as based upon importance measures.
Structural schemes are the most commonly used ordering techniques and will be discussed
first.

41

4.2 Structural Ordering Schemes

Structural ordering techniques are very widely used and involve ordering the variables via a

structured traversal of the fault tree. These schemes tend to preserve the neighbourhoods of
the variables, such that those appearing close together in the tree structure are also close in

the ordering. The first structural heuristic to be suggested was the depth-first ordering
scheme, which Rauzy applied in his initial paper on using the BDD technique for Fault Tree
Analysisl41. However, by far the most common ordering heuristic is the top-down scheme and
this is introduced first, as it is referred to in many other techniques.

4.2.1 Top-Down Ordering Scheme

The top-down ordering scheme is the most basic scheme, simply ordering the variables as
they are encountered on a top-down, left-right traversal of the fault tree structure. Basic

events appearing high in the fault tree will therefore be placed earlier in the ordering than
those appearing further down the tree.

For example, the scheme can be applied to the fault tree shown in Figure 4.2. Each level is

considered in turn, from the top to the bottom, with the basic events in that level ordered from
left to right. Each event is ordered the first time it is encountered; subsequent occurrences are
ignored.

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 4.2: Example fault tree used for ordering heuristics

42

The top-down ordering of basic events is therefore:

a<b<c<d<e<f<g<h

An obvious feature of this scheme is that it is highly dependent on the way in which the fault

tree is written. This is true to some extent in all structural ordering schemes. For example,

gates G1 and G2 could be swapped around, as could G4 and G5, or the order in which

events are placed as inputs to the gates could be altered, without changing the logic function

of the tree. This would affect any structural ordering imposed upon the tree, and the size of
the resulting BDD. This is the greatest disadvantage of the structural ordering schemes.

4.2.2 Depth-First Ordering Schemes

In the first paper on the application of BDDs to Fault Tree Analysis, Rauzy suggested a depth-
first ordering heuristic [41, which is implemented by 'carrying out a depth-first exploration of the
tree and numbering the variables as soon as they appear'. However, an example was not
given, so it is unclear exactly how this was implemented.

The following definition of depth-first ordering will be the one used throughout this thesis:

Depth-first ordering considers the fault tree as being made up of many smaller
subtrees, with each subtree ordered in a top-down, left-right manner. Starting with
the top event, any basic event inputs would be ordered from left to right, and the
gate inputs are then considered from left to right. Each of those gates is then
considered as the top event and ordered in the same manner, such that lower
levels of leftmost subtrees are considered before higher levels of other subtrees.

This ordering scheme can be applied to the fault tree shown in Figure 4.2. The gates are
considered in the following order. The traversal starts at the top event, Top, which has two

gate inputs. The leftmost gate G1 is considered first. Moving down through the tree, gate G3
is ordered, followed by its input G6. Having completely ordered this subtree, the traversal

returns to Top to consider G2. G2 also has two subtrees, headed by G4 and G5. G4 is

ordered first, and then its input, G7. Once G4 has been completely ordered, G5 is considered.

At each stage, the basic event inputs are ordered before any gate inputs are considered. This
gives the following ordering:

a<b<c<g<h<d<f<e

Two variations on this depth-first method are:

Alternative 1: The first alternative methodd181 proceeds as the technique described above,
but does not order the events of a gate before considering any gate inputs.

43

The events and gates are considered in the order in which they appear in the
input list, so any gates that are listed before events will be ordered first.

For example, in Figure 4.2, G1 appears before 'a' as an input to Top.

Therefore G1 will be considered, and so its inputs ordered, before 'a' is

placed in the ordering. This is also the case for the inputs to G3; G6 appears
before 'c' and so is considered first. Thus the ordering would be:

b<g<h<c<a<d<f<e

This method of depth-first ordering is therefore much more dependent on how

the fault tree is written than the previous technique, as the way in which the

events and gates are placed in relation to one another is now relevant.

Alternative 2: This second alternative method"1 simply considers the subtrees of the top

event in turn, ordering each subtree in a top-down, left right manner.

For example consider again the fault tree in Figure 4.2. There are three

subtrees of the top event, headed by G 1, 'a' and G2, which are considered in
this order. Ordering the first subtree, G1 using the top-down method gives the
partial ordering b<c<g<h. The second subtree to be considered is simply 'a'
itself, so the ordering becomes b<c<g<h<a. The remaining variables are
ordered from the final subtree as d<e<f, to give the complete ordering:

b<c<g<h<a<d<e<f

4.2.2.1 Priority Depth-First Ordering

This ordering is an extension to the simple depth-first schemes, incorporating an extra factor
thought to have a significant influence on the size of the BDD. Sinnamon and Andrews[201

proposed that the basic events that have more influence on the structure function should be

ordered first and that these events frequently lie higher up the fault tree. For this reason,
priority should be given to subtrees that only have basic event inputs.

For example, in Figure 4.2, where previously G4 had been ordered before G5, G5 would now
be ordered first as it has only basic events as its inputs. This gives the ordering:

a<b<c<g<h<e<f<d

A comparison of the BDD sizes for 51 fault trees using the top-down, depth-first and priority
depth-first schemes was conducted by Sinnamon1211. The results showed that for 21 out of the
51 fault trees, the top-down scheme produced the smallest BDDs. The depth-first method
produced the smallest BDDs for 36 of the fault trees. However, the priority depth-first method

44

performed marginally better than this, producing the smallest BDDs for 37 of the 51 fault

trees. It is noted that for some fault trees the orderings produced equivalent sized BDDs, so

were each considered to have produced the smallest BDD.

Therefore, in this relatively small study of 51 fault trees, the priority depth-first method of
ordering was shown to perform better than both the top-down and depth-first schemes.

4.2.2.2 Depth-First, with Number of Leaves

This heuristic, proposed by Rauzy (unpublished) performs a depth-first (first alternative)
traversal of the tree, but rather than considering the inputs of a gate from left to right, it

chooses the order of the inputs according to their number of leaves. The number of leaves of
a gate is the total number of basic events occurring at any level beneath that gate.

The inputs with the smallest number of leaves that have not yet been ordered are considered
first. In the case of a tie, the input with the fewest ordered leaves is chosen.

This process can be applied to the fault tree shown in Figure 4.2. The number of leaves
beneath each gate is given in Table 4.2.

Gate G1 G2 G3 G4 G5 G6 G7

Number of leaves 4 7 3 4 3 2 3

Table 4.2: Number of leaves of each gate in Figure 4.2

Starting with the inputs to the top event, 'a' has fewer leaves than G1 or G2 (as it is itself a
basic event), so is ordered first. G1 has fewer unordered leaves than G2 (four vs. seven) so is

processed first, to give the partial ordering a<b<c<g<h. Events are simply ordered from left to

right as they appear in the input list. G2 is considered next and has two inputs, G4 and G5.
They have an equal number of unordered leaves (two each), but G5 is processed first, as it
has fewer ordered leaves (one vs. two). The partial ordering then becomes a<b<c<g<h<e<f.
G4 has the input 'd' which is ordered next, as it has fewest leaves and finally G7 is processed,
but contributes nothing further to the ordering as all the basic events have been ordered. The
final ordering is:

a<b<c<g<h<e<f<d

This ordering scheme has the advantage that it is less dependent on how the fault tree is
written, especially when compared to the first alternative depth-first method, upon which it is
based. This is particularly true for gates that have other gates as inputs (either all gate inputs
or a mixture of gates and events), as their order is decided by the number of leaves and not
by the order in which they appear in the list of inputs. It makes no difference to gates that

45

have only basic events as inputs, as they continue to be ordered from left to right. This
heuristic was included in a comparative studJ181 with several other ordering heuristics, which
is discussed in more detail in section 4.5.

4.2.3 Repeated Events

The top-down ordering scheme was the first to be extended by Sinnamon and Andrews1221 to

prioritise repeated basic events (i. e. events that appear more than once in the fault tree) and
is called modified top-down ordering. It was noted that repeated variables cause the problem

of non-minimal cut sets, and so by considering these events first, the size of the resulting
BDD structure would be reduced. In this initial study, it was found that by considering

repeated events first, 13 out of 15 fault trees resulted in a minimal BDD, whereas using a top-
down ordering had previously resulted in redundant BDDs.

The tree is still scanned in a top-down manner. However, variables on the same level that

were initially ordered according to their position from left to right, are now ordered according
to their number of occurrences within the tree. Those with the greatest number of occurrences
are ordered first. If events have an equal number of occurrences, then they are ordered as
before.

The variable ordering for the fault tree in Figure 4.2 would therefore be changed slightly due

to this new condition. On level three, event 'f' would be ordered before the other events as it
has two occurrences and similarly on level four, 'h' is ordered before 'g' as it appears twice in

the fault tree. This gives the new ordering:

a<b<f<c<d<e<h<g

Prioritising repeated events was extended to the depth-first and priority depth-first ordering

schemes by the same authors1201. Within these schemes, basic event inputs to each gate were

simply ordered in a left-right manner; they are now ordered giving priority to repeated events.
Where there is a tie, variables are ordered as before. Ordering the fault tree in Figure 4.2

using these schemes gives the following orderings:

" Modified depth first method: a<b<c<h<g<d<f<e.

0 Modified priority depth-first method: a<b<c<h<g<f<e<d.

Sinnamon and Andrews then compared these six ordering heuristics:

" Top-down and modified top-down

" Depth-first and modified depth-first

0 Priority depth-first and modified priority depth-first

46

For six example fault trees, the number of ite calculations required to produce the BDD using

each different type of ordering scheme (top-down, depth-first, priority depth-first) was found.

For the trees with repeated events, the ordering scheme that had been most successful was

used to find the number of ite calculations using the repeated events option. It was found that

there were large differences in the number of computations between the different orderings.
However, there was no one scheme that worked best for all the trees. They concluded that it

seems unlikely that a general rule-based ordering scheme could be found which would be

optimal for all fault trees.

Sinnamon[211 later extended this comparison to consider 51 fault trees. A study using these
fault trees to compare the top-down, depth-first and priority depth-first methods had shown
that the priority depth-first method had performed the best, producing the smallest fault trees
in 37 out of the 51 cases. These results are discussed in section 4.2.2.1. The modified
ordering schemes, prioritising repeated events were now included in the comparison. Table
4.3 shows the number of fault trees for which each scheme produced the smallest BDD.

Ordering heuristic Top-down Modified
Depth-first

Modified Priority
Modified
priority top-down depth-first depth-first depth-first

Number of trees for
which the smallest 17 19 27 35 30 34
BDD was produced

Table 4.3: Results for Sinnamon's comparative study of six ordering heuristics

These results show that the modified depth-first method produced the smallest BDD in the

most cases (35 out of 51). For nineteen of these trees, the resulting BDDs were minimal. By

considering repeated events, the depth-first method has performed better than the previous
best method, priority depth first. However, the modified priority depth first method still
performs well, producing the smallest BDDs for 34 fault trees.

This investigation was extended in a larger study of 225 fault trees by Bartletttl91, which
produced the results shown in Table 4.4.

Ordering heuristic Top-down
Modified

Depth-first
Modified Priority Modified

priority top-down depth-first depth-first
depth-first

Number of trees for
which the smallest 87 169 120 117 36 38
BDD was produced

Table 4.4: Results for Bartlett's comparative study of six ordering heuristics

47

These results show that the modified top-down heuristic significantly outperforms the other

schemes for these fault trees. In fact, the priority depth-first and modified priority depth-first

methods perform poorly. A reason for the contradicting results could simply be the difference

in fault trees used in the studies. It is well documented that heuristics can perform well on

some fault trees, but poorly on others, so the fault trees chosen could simply suit one type of
heuristic particularly well. However due to the size of Bartlett's study, it is concluded that the

modified top-down ordering scheme does seem to produce a better overall performance.

4.2.4 Repeated Gates and Events

A scheme reported by Bouissou et altiBi prioritises both repeated gates and events within the
depth-first (first alternative method) scheme. Rather than simply considering the inputs (both

gates and events) to a gate from left to right, they are considered according to their number of
occurrences in the tree.

This ordering scheme can be applied to the fault tree shown in Figure 4.2. There are no
repeated gates in this tree to be considered, but there are repeated events. In G6, 'h' is

chosen before 'g', as 'h' appears twice in the tree and 'g' only appears once. There is
therefore, a slight change to the ordering obtained with the depth-first (first alternative)
method:

b<h<g<c<a<d<f<e

By prioritising repeated gates and events, the ordering is less sensitive to the way the fault
tree is written. Results obtained from a comparative study of heuristicst1el show that this

method performs better than the depth-first (first alternative method) heuristic. These results
are discussed in more detail in section 4.5.

4.2.5 REBESUL Ordering Scheme

The REBESUL ordering scheme, suggested by Sinnamon[211, incorporates the factors

deemed to have the greatest effect in reducing BDD size. Previous results obtained by
Sinnamon had shown that a depth-first approach was a good one, and that by employing the

priority depth-first ordering scheme, which gives priority to those subtrees that have basic

event inputs only, the size of the resulting BDD could be further reduced. Also, the position of
repeated events in the ordering has a significant effect on the size of the BDD, so by

considering these first, a smaller BDD was likely to be produced. These factors were
incorporated into a depth-first approach to give a variable ordering scheme that considers
repeated basic events and subtree levels, called REBESUL. The algorithm is based on six
steps, which are described overleaf.

48

1. Create a list of the repeated events in the fault tree; those with the highest number of

occurrences are listed first. Repeated events that have an equal number of

occurrences are placed in the rows between the next highest and the next lowest.

2. For each repeated event in step 1, create a list of the subtrees (first sons of the top

gate) that contain this repeated event in the order of the highest number of different

repeated event occurrences within each subtree to the lowest.

" If two or more subtrees share the same number of repetitions for an event,

the subtree with the greatest number of levels takes precedence over how

many repetitions there are in a subtree.

3. Create a list of the levels in the subtree at which the repeated event in step 2 occurs.

4. Order the gates (depth-first) starting with the gate that 'contains' the lowest level

occurrence (obtained in step 3) of the repeated event, followed by the other gates
that 'contain' the next level of occurrence of the repeated event. Note that the term
'contains' does not necessarily mean that the repeated event is a direct input to the

gate, it may be an input several levels down. List the repeated events first when

ordering the inputs of each gate.

5. If all repeated events have been dealt with in this subtree, order any remaining events
to gates in the subtree in a depth-first manner and go to step 6. Otherwise go to step
3 for the next repeated event obtained in step 1.

6. If all subtrees containing repeated events have been dealt with, order any remaining
subtrees in a depth-first manner. Otherwise order the next subtree containing
repeated events, i. e. go to step 2.

This algorithm can be applied to the fault tree in Figure 4.2 in the following way:

1. 'b' - occurs three times

T- occurs two times
'h'- occurs two times

2. Subtree three (G2) has the highest number of different repeated events (three), so is

ordered first. Subtree one (G1) has two different repeated events.

3. Event 'b' occurs at level two and level three of G2.

4. G5 contains the lowest level of occurrence of 'b' and G4 contains the next level of 'b'
('b' is an input to G7which is an input to G4), therefore take the order of the gates G5,
G4, G7, to give the partial basic event ordering:

b<f<e<d<h

5. All repeated events dealt with, go to step 6.

49

6. The ordering for subtree one is:

c<g

The ordering for subtree two gives the last basic event 'a'.

All basic events have been dealt with giving the ordering:

b<f<e<d<h<c<g<a

Sinnamon used the REBESUL ordering scheme to calculate the number of BDD nodes for

the 51 fault trees that were used to compare the top-down, depth-first and priority depth-first

schemes (discussed in section 4.2.2.1). It was found that the REBESUL ordering produced
BDDs with the fewest nodes for 41 of the 51 fault trees, compared with the previous best of
37 for the priority depth-first scheme. 19 of these BDDs were minimal. Therefore, the

REBESUL ordering scheme proved to be more efficient than the priority depth-first ordering

scheme in this case.

4.3 Weighted Ordering Schemes

Weighted ordering techniques allocate weights to the variables, which then determine their

position in the ordering. These methods do not necessarily preserve neighbourhoods in the

same way as structural ordering schemes, so variables that appear together in the tree
structure may not be close in the ordering. Weighted ordering schemes can be divided into
two categories: topological schemes, which assign weights according to the positions of the
variables in the tree and schemes based on importance measures, which assign weights in a
manner that is not dependent on how the tree is written.

4.3.1 Topological Schemes

Two ordering schemes are discussed in this section, which differ by using opposite ends of
the fault tree to initiate the weighting process. The ordering produced by each of these

schemes is dependent on the way in which the fault tree is written.

Although the use of these schemes for fault trees has been reportedt1a, 23ý, few results have
been published. The comparative study in section 4.5 however, does include the second of
the following schemes.

4.3.1.1 Applying Weights in a Top-Down Manner

Minato et alt241 have applied a weights method to circuits, which can be applied to fault trees in
a similar manner. The bases for their method are the following two properties that have been
observed in circuits:

50

1. The inputs that greatly affect the output function should be high in the ordering.

2. The inputs whose connections are topologically close to one another should be close
in the ordering.

The corresponding properties applied to fault trees could be:

1. The basic events having the greatest effect on the structure function should be high in

the ordering.
2. Basic events topologically close to one another (i. e. events which appear together as

inputs to a particular gate) should be close in the ordering.

These two properties form the basis of their approach, termed the 'dynamic weight
assignment method'. In terms of fault trees, the method progresses as follows:

"A weight of 1.0 is assigned to the top event and is propagated towards the basic

events.

9 At each gate, the weight is equally distributed between its inputs.

" Each basic event will then have been assigned a weight. Repeated events have their
corresponding weights added together.

" The highest order is given to the basic event with the largest weight.

The ordering could be determined at this point, by ordering the variables according to their
weights. However, Minato et al choose the next event by deleting that part of the circuit which
can only be reached from the input already chosen (in terms of fault trees, the ordered basic
event and any branches leading to it would be deleted) and weights are reassigned from the
beginning. By doing this, the largest weight in the last assignment is distributed to the
neighbouring events, so that their weights are greatly increased. Therefore in many cases the
neighbouring events are given near orders.

To illustrate this method, it will be applied to the fault tree shown in Figure 4.3(a). A weight of
1.0 is assigned to Top and this is propagated through the fault tree to give the distributed
weights as shown in Figure 4.3(a). The weights of each basic event are therefore:

a=

b-4+12 3

C= 1
4

d=12

e=, 2

51

Therefore the first event in the ordering is V. Now, all occurrences of event 'b' are removed
from the fault tree, to give the fault tree shown in Figure 4.3(b). It is now possible to see that
the next event in the ordering is V. This process is continued until all the events are ordered.

(a) Weights for ordering
the first variable

(b) Weights for ordering
the second variable

Figure 4.3: Example fault tree for the top-down weighted method

The method does not address the problem of how to order events if they have equal

weightings. If this case did arise however, the tie could be broken by selecting the event that

occurs the greatest number of times (as it is the repeated events that cause cut set
redundancy) or the least number of times (as this would mean that the individual events occur
higher in the tree, therefore have more effect on the structure function) in the fault tree. If they
had an equal number of occurrences, then a top-down or depth-first approach could be

employed.

4.3.1.2 Applying Weights in a Bottom-Up Manner

This ordering scheme proceeds in a similar manner to the previous method, but the technique
is initiated from the bottom of the tree, rather than the top. The general method is described
below:

"A weight of 1.0 is assigned to each basic event and propagated towards the top event.

" At each gate, the weights of its inputs are added together to give the weight of the
gate.

52

I ,_1
12 12 12

11
88

. Once the inputs to the top event have been assigned weights, the tree is explored in a

depth-first manner, considering the branches with the largest weight first.

" The events are ordered as they are encountered.

No indication is made as to which branch would be chosen should two or more branches

have the same weight. Also, when a gate has two or more basic event inputs, it is unclear as

to the order in which the events should be considered.

To demonstrate this ordering, consider the fault tree shown in Figure 4.4. For this example, it

is assumed that in the case of two branches having the same weight, the tie is broken by

considering the leftmost branch first. Where a gate has two or more basic event inputs, the

events shall be ordered in a left-right manner. Each event is given the weight 1. The weights
of the gates are therefore calculated to be: G3 = 3, G2 = 2, G1 = 4. The depth-first traversal

starts at the top gate and considers G1 first as it has a larger weight than G2. G3 is ordered
next and then finally G2. This gives the basic event ordering:

a<b<d<e<c

This ordering seems to give priority to the largest subtrees, whilst preserving neighbourhoods.

Figure 4.4: Fault tree showing the weights method applied in a bottom-up manner

Several variations on this technique are possible. One alternative is to combine the weights of
'AND' and 'OR' gates differently. For example, adding the weights at an 'OR' gate and
multiplying them at an 'AND' gate. This would give 'OR' gates with many inputs precedence
over 'AND' gates with many inputs, where it would be fair to assume that the events beneath
the 'OR' gate would have more influence over the occurrence of the top event as only one is

53

111

needed for the logic to flow, compared with the `AND' gate where every event would need to
occur.

Once the weights have been assigned, the gates could be ordered using an alternative
method. For example, each level could be considered in turn, from top to bottom, ordering the
gates at each level according to their weight, i. e. largest weight first and ordering the events
as they are encountered.

A possible way to decide the order of events that occur together under a gate is to consider
repeated events first. This method has proved successful in its application to many other
ordering methods and there is no reason why it should not be successfully applied here.
Repeated events could also determine which branch is chosen in the case of equal weights;
the branch that has the most repeated events below could be the first to be considered.

4.3.2 Importance Measures

Bartlettl'9l has performed extensive investigations into the use of importance measures for

variable ordering. The aim of this research was to rank the basic events in terms of their
significance within the system, in a way that is not dependent on how the fault tree is written.

In order to explore the potential of importance measures for determining a good ordering,
Birnbaum's structural importance measure for each component was derived from the fault
trees' BDDs. These importance measures were used as an indicator of the importance of
each component within the system. An advantage of using importance measures is that they
produce the same values regardless of how the fault tree is written. The variables were
ranked with those of highest importance appearing earlier in the ordering than those of lower
importance. The order for variables with the same value of importance was decided by
ordering the one appearing highest in the fault tree structure first.

225 trees were ordered using this measure and the results were compared with the best of six
previously identified alternative schemes [251:

" Top-down.

" Modified top-down.

" Depth-first.

" Modified depth-first.

" Priority depth-first.

Modified priority depth-first.

54

It was reported that 76.9% of the 225 trees produced BDDs that had fewer or the same
number of nodes as the previous best scheme. Of these six ordering schemes, it was noted
that the best results had previously been obtained with the modified top-down scheme (as

shown in Table 4.4), with 29.8% of the trees producing BDDs with the fewest nodes
compared with the other five orderings. The structural importance measure shows
significantly improved results.

The method was then adapted to consider the most repeated event first when the importance

measure failed to distinguish between events. If there was still a tie, the events were ordered
as before (in a top-down manner). This modified method produced different orderings for 152

of the 225 trees. The percentage with equal or fewer nodes than the previous best of the six
structural schemes increased to 77.3%. This is a small improvement on the previous 76.9%
obtained without this modification. Bartlett concludes that a different method may be more
beneficial in reducing the number of nodes. Either a different approach for ordering those
components with equal importance measures could be implemented, or a different
importance measure could be used. However, the overall performance is better than that of
any other heuristic and shows good potential.

The main drawback of this method is the need to calculate the importance measures from the
BDD (obtaining them from the fault tree is very inefficient) and Bartlett addresses this problem
by considering the use of approximations that could produce the same ordering. Three
possibilities were considered:

i. Look for patterns within the tree that relate to the importance measures, so enabling
an ordering to be established by inspection of the tree.

ii. Generate alternative measures, similar to the importance measures, derived by an
alternative method.

iii. Apply Birnbaum's structural importance method directly to the tree.

Each of these is now reviewed in more detail:

The importance measures for the events of several fault trees were calculated and
Bartlett attempted to identify patterns within these trees that related to the measures.
The conclusion drawn was that no obvious patterns were identifiable and this option
was given no further consideration.

ii. The aim of this approach was to consider a number of alternative weighting methods
that are fast and efficient to apply to the fault tree, but which give component rankings
similar to those obtained by the calculated importance measures. Three weighting
methods were examined:

55

0 Calculation of Importance by Dividing by the Number of Inputs

This method is similar to that discussed in section 4.3.1.1, but does not restructure the

tree after ordering each event. The top event is given a weight value of one. The weight

values of its input events are calculated by dividing the weight of the top event by its

number of inputs. For example, if there were three inputs, each is then given a weight

value of 1/3. This is continued down through the tree, so that the inputs to any gate are

given the weight value of that gate divided by its number of inputs.

No mention is made at this stage of how repeated events are dealt with, but the

conclusion drawn is that the orderings obtained do not match those of the calculated

structural importance measures.

Bartlett then considers how to approach repeated events: adding together their values
disproportionately increases their importance but taking the average of the values

would probably underestimate its importance. Therefore a different approach is taken,
by scaling the total combination. The weight for the repeated event is calculated by

summing the values and multiplying by the square root of the total number of repeated

components:

wi=Fn wig 4.1

1

where i is the component, and j each of its occurrences.

Using this scaling mechanism for repeated events, the ordering produced BDDs with
fewer or equal nodes than the best of the previous six alternatives in 52.9% of the 225
fault trees.

" Calculation of Importance by Dividing by the Number of Critical States

This measure is similar to the one above, except that the criticality of the component is

considered when calculating the weights. In the above measure, weight values for the

gate inputs are calculated by dividing the gate's weight value by its number of inputs.

Here, the weight values of the gate inputs are calculated by dividing the gate value by

the number of critical states for the component. Therefore, if there are n inputs to the

gate, the criticality of a component is given by 1/0", compared with the previous
measure of 1/n. Repeated events were dealt with by using the weighting method in
Equation 4.1.

This ordering produced BDDs with fewer or equal nodes than the best of the previous
six alternatives in 50.2% of the 225 fault trees. Neither this nor the method above has

56

produced results close to those obtained using the calculated structural importance

measures.

0 Altering the Repeated Events Weighting

Bartlett considers the problem to be due to the repeated events. Therefore a new

weighting method for the repeated events was used, whereby the weight values of the

repeated events are added, but the value of its second occurrence is divided by the

square root of two and the value of its nth occurrence is divided by the square root of n.

This method produced BDDs with fewer or equal nodes than the best of the previous

six alternatives in 62.2% of the 225 fault trees. This is a significant improvement on the

previous two methods, however it is still 15.1 % lower than the best results obtained

iii. The aim of this third method was to apply the principle of Birnbaum's structural
importance measure directly to the tree. This was implemented as follows:

The contribution of each basic event to the occurrence of the top event is calculated
according to:

I; =Q(11, '/2 -Q(0;, '/2 4.2

The selected basic event therefore assumes the failure probabilities of 1 and 0 on two
consecutive computations of the top event probability, with the remaining components
being given failure probabilities of Y2. The event probabilities are worked up through the
tree, with the contributions of intermediate events (gates) calculated using Equation 4.3
for 'AND' gates and Equation 4.4 for 'OR' gates.

P(gate) _
[J qi
1=1

4.3

n
P(gate) =1- [(1- ql) 4.4

1=1

where n is the number of inputs to the gate.

The result of the second run (with a failure probability of 0) is subtracted from the first

run (with failure probability 1) to give the probability value contribution of that basic

event to the occurrence of the top event. The basic events are ordered with those
giving the largest contribution earlier in the ordering than those with smaller
contributions. If events have an equal contribution, then they are ordered according to
the top-down ordering scheme.

57

This ordering technique is demonstrated using the fault tree shown in Figure 4.5.

Figure 4.5: Example fault tree

Starting with event 'a', it first assumes a failure probability of 1, with the remaining
events assigned probabilities of 1/z. The probabilities of the gates are then calculated,
starting with those containing basic event inputs only and working up through the tree
to the top event. The results are shown in Table 4.5.

Gate Top G1 G2 G3 G4 G5 G6

P(gate) 32 1 32
ä

4
8 4

Table 4.5: Gate probabilities, with event 'a' assigned a failure probability of 1

The calculations are repeated, with event 'a' assigned a probability of 0. The resulting

gate probabilities are shown in Table 4.6.

Gate Top G1 G2 G3 G4 G5 G6

P(gate) '-64
8 8 4 g 8 4

Table 4.6: Gate probabilities, with event 'a' assigned a failure probability of 0

58

The contribution of event 'a' to the occurrence of the top event is therefore:

Ia=17 -15_1 "0.297

The calculations are repeated for each basic event, giving the contributions shown in
Table 4.7.

Event, i a b c d e f

Q(11, j/2 0.531 0.781 0.465 0.492 0.432 0.457

Q(0;, 1/z 0.234 0.078 0.281 0.258 0.305 0.279

0.297 0.703 0.184 0.234 0.127 0.178

Table 4.7: Contributions of the basic events to the top event occurrence

The events are ordered from the one with the largest contribution to the one with the
smallest contribution to give the ordering:

b<a<d<c<f<e

The difference between this approximation and the exact version of Birnbaum's

structural importance measure is that redundant combinations of basic events can
occur, as the method of working the probabilities up through the tree means that the
intermediate events are not necessarily independent. The values obtained by the

approximation method are therefore not exact, but it was thought that they might still

offer a good ordering heuristic.

The results obtained in Bartlett's study showed that in 67.1% of cases, the BDD

produced had equal or fewer nodes than the BDD produced using the best schemes
option from the six structural heuristics.

Bartlett concluded that further improvements could be made by altering the method for

dealing with events with the same importance. However, this is the best approximated

measure of those considered and although the results are not quite as good as the
77.3% obtained with the structural importance measures calculated from the BDD, it is

much more efficient to implement.

The use of importance measures shows great potential as a method of variable ordering.
Obviously calculating the importance measures from the BDD is not a viable option, but
approximation methods could be used to obtain similar results.

59

4.4 Optimising the Fault Tree Before Application of Ordering Heuristics

Bouissou1231 suggests that the major problem with conventional ordering heuristics is the lack

of theoretically proven properties. He also acknowledges the fact that many heuristics are

very sensitive to the way the fault tree is written, which can lead to BDD sizes that differ by

many orders of magnitude. In this paper he proposes that the modules of the fault tree should
be taken into account when ordering the variables and investigates the effect that this has on
the size of the resulting BDD.

Bouissou presents the following theorem:

Let f and g be two functions of disjoint sets of variables and TQ(f) and TO(g) denote the sizes of
the BDDs of those functions respectively, obtained with variable ordering a. Then

T 09 (f u 9) = Tag, af (f u 9) = Taf (f) + Tag (9)

where af, Qg stands for the ordering obtained by concatenation of of and ag.

Bouissou states that this equation makes it possible to hope for 'reasonable growth' of the
BDD size with an increasing number of variables and suggests the following constraint for any
ordering heuristic: the heuristic should group the variables of a module.

A completely modularised tree (i. e. a tree for which each sub-tree is a module) can be
represented by a BDD of size n (i. e. the number of variables). For such a tree, the way it is
written has no effect on the BDD size.

An optimisation technique is presented, which restructures the fault tree to make the modules
appear. The optimiser works in three phases:

" The fault tree is transformed into a sequence of alternating gates. Single input gates
and equivalent gates are suppressed.

" The following simplifying rules are repeatedly applied:

(aub1)n(aub2)n... n(aub�)nc

-*(au(b1 nb2 n... nbj)nc

(anbl)L(anb2)u... U(anb�)vc

-+(an(b1 ub2 L)... vbn))uc

au(anb)-ýa an(aub) -- a

" Implicit modules are made explicit. For each 'OR' gate in the tree the maximum
subset of basic events that always appear together is found.

In fact, many aspects of this optimisation technique are similar to the 'Faunet' reduction
approach of Platz and Olsen [261, which is introduced and used in Chapter 6. The first phase is

60

equivalent to the 'contraction' stage, where subsequent gates of the same type are contracted
to form a single gate. This gives an alternating sequence of 'AND' and 'OR' gates. Single
input gates would automatically be suppressed, as they do not form a true fault tree structure.
The first two simplifying rules of the optimisation technique employ the Boolean distributive
laws, which form the basis of the extraction step of the Faunet approach. Finally, the third
phase of the optimisation technique groups sets of basic events that always occur together in
the fault tree. In effect, this is what the factorisation step of the Faunet technique achieves,
when it repeatedly takes pairs of events, combining them to form complex events.

The only phase of the optimisation technique that can lead to excessive CPU time is the

second one. Therefore, two versions of the optimiser are used: 01 is the simplified version,
consisting of only the first and last steps; 02 is the full optimisation.

Once the tree has been optimised, any ordering heuristic can be used, as long as it orders the
variables of modules together.

The optimiser was tested on a group of fault trees by finding the number of BDD nodes and
the amount of CPU time used for their analysis both before and after optimisation. Each
calculation was carried out on 100 randomly generated re-writings of the tree, in order to
show the sensitivity of the heuristics to the way the tree is structured. Two heuristics were
used, the first of which was the depth-first heuristic, used in the program ARALIA1271.
METAPRIME[281 was also used, which incorporates the following heuristic:

0 The level of a gate or variable is defined as:

Level(top) = 0; level(f) = max(Ievel(g;))+1

where the g; are the parents of f.

" The variables are put in order by increasing levels. METAPRIME uses an enhanced

version of this heuristic, whereby the variables of a module are ordered together.

It was found that the depth-first heuristic, on average, gives better results than METAPRIME's
heuristic.

The optimised version of the trees produced smaller average BDD sizes and used less CPU
time than the original fault trees. However, the maximum BDD sizes for the optimised trees
increased.

For 20 large trees, which couldn't originally be processed with a reasonable success rate, it
was found that all could be processed without failure, for each of the 100 trials, in their
optimised form.

61

The author concludes that restructuring the tree to create as many modules as possible is an

efficient pre-processing tool, the cost of which (in terms of CPU time) is negligible when

compared with the savings to be made when generating the BDD.

4.5 Results of a Comparative Study of Several Ordering Heuristics

Bouissou et a11181 compared twelve heuristics, presenting the results of the best six (the

remaining six were not detailed). The six heuristics used are:

1. Depth-first (first alternative method), as in section 4.2.2.

2. Weights applied bottom-up, as in section 4.3.1.2.

3. Depth-first, considering repeated events and gates first, as in section 4.2.4.

4. Depth-first, with number of leaves, as in section 4.2.2.2.

5. Heuristic 3 applied to heuristic 2.

6. Heuristic 3 applied to heuristic 4.

The authors take into account the fact that heuristics can give significantly different results
according to how the fault tree is written. The heuristics were tested on 500 random re-
writings of thirteen fault trees, in both their original and optimised forms (using optimisers 01
and 02 as discussed in section 4.4).

The results obtained show that the heuristics fall into two classes. The first class, containing
heuristics 2,4,5 and 6, tends to give a very low standard deviation on the BDD size, showing
that the heuristic is not very sensitive to the re-ordering of branches within the tree. The sizes
of the BDDs also tend to be neither excellent, nor bad, usually somewhere between the two.
For the optimised trees, the results are usually good or excellent.

The second class, containing heuristics 1 and 3, show a high standard deviation in the BDD

size. The heuristics can generate BDDs with fewer nodes than the first class, but can also
lead to extremely large BDDs (up to 1500 times larger than the smallest). It seems that in

most cases, heuristic 3 gives better results than heuristic 1, in terms of mean, maximum and
minimum BDD size.

The results given in the paper suggest that the first class of heuristics are less sensitive to the
way the fault tree is written, but only give average results in terms of BDD size. Using the
explorative capabilities of the second class of heuristics is more likely to lead to smaller
BDDs, but also there is a greater chance of resulting in a large BDD due to their sensitivity to
the way the fault tree is written.

62

4.6 Pattern Recognition Techniques

Pattern recognition techniques can be used to identify patterns within the fault trees and

select an appropriate ordering heuristic based on the results. Three different techniques have

been explored: the classifier system, the multi-layer perceptron neural network and the radial
basis function neural network. The results obtained are reviewed in the following three

sections.

4.6.1 The Machine Learning Classifier System Incorporating Genetic Algorithms

The use of classifier systems as a method of selecting the most appropriate ordering scheme

for a particular fault tree has been investigated by Bartlett and AndrewsI291. They use a

machine learning approach based on genetic algorithms to build a classifier that chooses an

ordering scheme according to certain characteristics of the fault tree.

A classifier system is a machine learning system that generates a model of a particular

problem by learning the rules that govern the problem through a training process. The rules,

which reflect the patterns within the problem, are generated by subjecting the classifier

system to large amounts of training data. Once the system adequately models the problem, it

can be used for predictive purposes. The system then takes a new input (whose output is

unknown) and by applying the rules learnt during training, provides a response. The

performance of the algorithm is evaluated from the number of correct responses.

The classifier approach was applied to the ordering problem, where the aim was to learn the

rules that govern the relationship between the characteristics of the fault tree and the best

ordering scheme option. Once the training had been completed, the system was used to

predict ordering schemes for a set of test fault trees, depending on their characteristics and

the rules that had been learnt from the training data.

Key features that were thought to describe the fault tree structure were identified, and provide

the inputs to the machine learning algorithm in the form of a 19 bit binary string. In total, six

characteristics were initially selected:

" Percentage of 'AND' gates in the tree.

" Percentage of different events repeated.

" Percentage of total events repeated.

" Top event gate type.

" Number of outputs from the top event.

" Number of levels in the tree.

63

The ordering represents the output or response of the classifier in the form of a six bit binary

string of 1's and 0's, where a1 represents the best scheme option and a0 otherwise. The

choices of ordering schemes were based on previous heuristic work by Sinnamon[211:

" Top-down.

" Modified top-down.

" Depth-first.

" Modified depth-first.

" Priority depth-first.

" Modified priority depth-first.

Each fault tree in the training set was analysed for the best ordering scheme. This, together

with the characteristics data was used to produce the training data set, from which the

classifier was trained.

The classifier was then used to predict the best ordering schemes for a set of twenty test fault

trees. The results were compared with known best schemes for these trees.

The conclusion drawn by the authors was that this model could be trained to predict the best

ordering scheme to use on a particular fault tree to produce the most efficient BDD

representation. However, they acknowledged that the small group of characteristics used did

not adequately represent the fault tree and other characteristics need to be developed.

Quantitative results obtained from this investigation are given in Bartlett's doctoral thesist19]

and show that four and five correct predictions out of a possible twenty were obtained.

The work on classifiers was extended by Bartlett and Andrewsl251 to use more characteristics

to represent the fault tree. Eleven characteristics were considered compared to the previous

six. The five additional characteristics are:

" The number of basic events.

" The maximum number of gates in any level.

" Number of gates with gate inputs only.

" Number of gates with event inputs only.

" The highest multiple of a repeated event.

The results are reported to have been more accurate for smaller fault trees. The authors

suggest that modifications to the characteristics chosen for larger trees may produce results
that are more convincing. Bartlett's doctoral thesis[191 reveals that when using eleven
characteristics, the best result was nine out of twenty correct predictions.

64

4.6.2 Neural Networks: The Multi-Layer Perceptron

Bartlett1191 extended the use of pattern recognition techniques to consider neural networks,
which have a more solid theoretical base than the classifier approach. The first neural

network model used was the multi-layer perceptron. As with the machine learning approach,
the aim is to select the best ordering scheme for a fault tree according to its characteristics.

Neural networks offer a powerful framework for representing non-linear mappings from

several input variables to several output variables. The form of the mapping is controlled by a

number of adjustable parameters, known as weights, whose values are determined through a

training process. In the prediction phase, the weights then determine the path through the

network, and so the output response for a given set of inputs.

The multi-layer perceptron consists of a layer of input units, one or more hidden layers of
hidden units and a layer of output units. Connections, governed by the weight values, run
between every unit in one layer to every unit in the next layer. This is shown in Figure 4.6.

The bias units act like adding a constant to an equation.

Numerical values can be applied to the input and output variables, rather than the simple
binary representation used in the classifier approach. This has the advantage of being able to

give an indication of how good a scheme is in relation to the best.

N output units

M hidden units

Figure 4.6: Multi-layer perceptron neural network

Bartlett reports that numerous trials were conducted to find the best network architecture for

predicting the optimal ordering schemes for a set of twenty test fault trees. The best network
was comprised of eleven units in the input layer, each of which represented one of eleven
fault tree characteristics:

65

Bias d input units

" Percentage of 'AND' gates in tree.

" Percentage of different events repeated.

" Percentage of total events repeated.

" Top event gate type.

" Number of outputs from top event.

" Number of levels in tree.

" Number of basic events.

" The maximum number of gates in any level.

" Number of gates with gate inputs only.

" Number of gates with event inputs only.

" The highest multiple of a repeated event.

The output layer consisted of six units, one for each of the ordering schemes:

" Top-down.

" Modified top-down.

" Depth-first.

" Modified depth-first.

" Priority depth-first.

Modified priority depth-first.

With a training set of 198 fault trees, it was found that one hidden layer with five units offered

the best results, predicting the correct ordering schemes for 14/20 test trees.

Bartlett suggests that the method is capable of predicting the best ordering scheme for fault

trees and that these results could be improved by using a larger training data set. The basis

for this hypothesis is that 186 training fault trees were used initially and the best results

obtained were 13/20 correct predictions. The addition of extra data into the training set

improved these results. Bartlett concludes that the inputs have the most influence on the

neural network and so the characteristics used to describe the fault tree structure need to be

examined in more detail.

4.6.3 Neural Networks: The Radial Basis Function

The radial basis function is another class of neural network and was also investigated by
Bartlettt191 as a method for selecting the best ordering scheme for a particular fault tree.

Diagrammatically, the radial basis function network looks very similar to the multi-layer
perceptron, as shown in Figure 4.7. However, the radial basis function network has only one

66

hidden layer, made up of a number of radial basis functions. The connections that run from
the input layer to the hidden layer represent the vectors that determine the centres of the
basis functions. The connections between the hidden layer and the output layer represent the

weights of the network in the same way as with the multi-layer perceptron model.

c output units

M radial basis functions

d input units

Figure 4.7: Radial basis function neural network

The radial basis function centres and the final layer weights are determined by the training

process and are subsequently used in the prediction phase to calculate the output responses
from the network for a new set of inputs.

Bartlett reports that numerous trials were carried out to determine the network architecture
that predicts the greatest number of correct ordering schemes for twenty test fault trees. As

with the multi-layer perceptron, the best networks comprised of eleven units in the input layer

and six units in the output layer. Again, numerical values can be applied to the input and
output variables, which gives an indication of how good each scheme is in relation to the best.
The input units each represented one of the following fault tree characteristics:

" Percentage of 'AND' gates in tree.

" Percentage of total events repeated.

" Percentage of different events repeated.

" Top event gate type.

" Number of levels in tree.

" Number of outputs from top event.

" Number of basic events.

" The maximum number of gates in any level.

" Number of gates with event inputs only.

" Number of gates with gate inputs only.

" The highest multiple of a repeated event.

67

The output units represent the possible variable ordering schemes:

" Top-down.

" Modified top-down.

" Depth-first.

" Modified depth-first.

" Priority depth-first.

" Modified priority depth-first.

Eight network architectures were identified that were capable of predicting the correct

ordering schemes for 14/20 test fault trees. These had between four and nine radial basis

function centres. The most efficient of these networks had four centres and in five out of the

six incorrect predictions chose the second best ordering scheme.

Bartlett concludes that the radial basis function neural network has the potential to model the

variable ordering problem but that improvements could be made by examining the fault tree

characteristics in more detail to determine which have the greatest influence on the outcome

of the network.

4.7 Summary

There is no ordering heuristic capable of producing a good variable ordering for all fault trees.

Many heuristics have been proposed, but most are based on intuition and few conclusions as

to the required features of a good heuristic have been drawn.

Much of the research has centred on structural ordering techniques, but results obtained from

the weighted scheme based on importance measures appear to be very promising.

Optimising the fault tree before application of the ordering schemes takes relatively little time,

but can result in the construction of much smaller BDDs and has been shown to produce
BDDs for trees that had not previously been analysed in a reasonable time.

Pattern recognition techniques could offer a good way of selecting an ordering scheme,
based on the characteristics of the fault tree. The best results obtained so far, with both the

multi-layer perceptron and the radial basis function models, predict the best ordering scheme
in 70% of cases. However there were only six structural schemes to choose from, so the

method could be extended to include weighted methods as options.

68

Chapter 5: Comparison of Variable Ordering Schemes

5.1 Introduction

The survey of ordering schemes conducted in the previous chapter has highlighted methods
that have not been fully investigated and would benefit from further consideration. Therefore a
number of ordering techniques were chosen for a comparative study, in order to assess
whether they could provide an alternative means of ordering that would result in a more
efficient BDD construction process.

Eight schemes were selected, with modifications made as necessary to incorporate elements
from other schemes that had proven advantageous in the BDD construction process. Some of
the modifications suggested in the previous chapter were also implemented, including various
methods of dealing with 'tied' variables (i. e. variables that remain 'equal' in the ordering after
the application of other heuristics). One of the most important features of an ordering scheme
is that it is discriminating (i. e. it will always produce the same ordering for a particular fault
tree) and it was ensured that each of the ordering techniques fulfilled this criterion. The eight
chosen schemes and the reasons for their selection are detailed below.

1. Modified top-down.

2. Modified depth-first.

3. Modified priority depth-first.

4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.
6. Dynamic top-down weights.
7. Bottom-up weights.

8. Event criticality.

The modified versions of the first three schemes were chosen, as they had performed well in

previous work, and gave consistently better results than the non-modified versions. The first

two schemes are also very widely used and provide a good benchmark against which to test
the other schemes. The fourth scheme (depth-first, with number of leaves) implements an
alternative method of choosing the gates within the depth-first scheme, and as the depth-first

scheme had proven to be a good choice, this scheme was also considered. The four

weighted methods (dynamic and non-dynamic top-down weights, bottom-up weights and
event criticality) were chosen as an alternative to the structural ordering schemes. Much of
the previous work on ordering heuristics has centred on structural methods and it was felt that
the weighted techniques need to be examined in more detail and their performance compared
to structural schemes. The final ordering scheme, which applies Birnbaum's measure directly
to the tree for an approximate event importance ordering, has produced particularly good
results in a previous investigation and was included for this reason.

69

This chapter describes each of the selected schemes in detail and then discusses their

individual performances on a set of example fault trees.

5.2 Descriptions of the Eight Ordering Schemes

As modifications have been made to the schemes introduced in the literature survey, a full

description of each scheme and how it is applied to the example fault tree shown in Figure 5.1

is now given.

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 5.1: Example fault tree used to demonstrate the ordering schemes

5.2.1 Modified Top-Down Ordering

The tree is scanned in a top-down manner. Variables appearing on the same level within the

tree are ordered according to their total number of occurrences in the fault tree. Those with

higher occurrence are ordered first. If there are two or more variables with an equal number of

occurrences, then they are ordered as they appear from left to right on that level. Each event

is placed in the ordering the first time it is encountered; subsequent occurrences are ignored.

This scheme can now be applied to the fault tree shown in Figure 5.1. There are no events to

consider on the first two levels, so level three is the first level to be examined. Four events

appear on this level, which reading from left to right are: 'b', 'c', 'd' and 'a', which need to be

ordered according to their number of occurrences elsewhere in the tree. In fact, events 'b', 'c'

and 'd' occur an equal number of times (three occurrences) so remain in the left to right order

70

in which they were placed and event 'a' occurs the least number of times (twice) so is ordered

after the other events. The partial ordering for this level is therefore:

b<c<d<a.

Level four is now considered and the events appearing on this level that haven't already been

ordered are (listed from left to right): 'g', 'f' and 'e'. Event 'f' appears most often in the tree

(three occurrences) so is ordered first, whilst 'g' and 'e' occur an equal number of times, so

retain their respective positions. The ordering then becomes:

b<c<d<a<f<g<e.

There is no need to consider level five, as all the events have been placed in the ordering.

5.2.2 Modified Depth-First Ordering

The modified depth-first ordering scheme considers the gate inputs to any gate in a left-right

manner, such that the subtree of the left-most gate is completely explored before considering

the remaining gate inputs. Any basic event inputs to a gate are considered before the gate
inputs, and are ordered according to their total number of repetitions in the fault tree. The

events with the greatest number of occurrences are ordered first, but if there is a tie then they

are simply ordered as they appear from left to right in the list of inputs.

The ordering scheme can be applied to the fault tree in Figure 5.1 in the following manner:

The top event, Top, has no event inputs to order, so its three gate inputs, G1, G2 and G3, are

considered in turn. The subtree of the leftmost gate, G1, is explored first. Again, this contains

no event inputs, but has two gate inputs, G4 and G5, which are processed before returning to

consider G2 and G3. G4 appears first in the input list to G1, so is considered next. It has four

event inputs: 'c', 'b', 'a' and 'g'. As 'c' and 'b' are the most repeated events (each occurring

three times) they appear before 'a' and 'g' in the ordering, which both occur twice. Event 'c' is

ordered before 'b' as it appears leftmost in the inputs list and 'a' appears before 'g' for the

same reason. This gives the partial ordering:

c<b<a<g

G4 contains no gates, so the process continues by examining G5, which contains the events
'd', 'f' and V. Events 'd' and 'f' occur the greatest number of times (three appearances) so
appear before 'e' in the ordering. Event 'd' is ordered before 'f' as it appears to the left of 'f' in
the inputs list. This gives the ordering:

c<b<a<g<d<f<e

All the events have now been ordered, so it is not necessary to consider gates G2 and G3.

71

5.2.3 Modified Priority Depth-First Ordering

This ordering scheme is simply an extension of the modified depth-first method, where rather
than simply considering the gate inputs from left to right, any gates which themselves have

only basic events as inputs, are given preference. Basic events are ordered as in the modified
depth-first method, such that the most repeated events are given priority - if there is a tie then
they are ordered from left to right as they appear in the list of inputs. Events continue to be

considered before any gate inputs.

This ordering technique can be applied to the fault tree in Figure 5.1 in a similar way to the

modified depth-first scheme. The top event, Top, has no event inputs to order, so its three

gate inputs, G1, G2 and G3, are considered in turn. As G2 has only basic event inputs, it is

explored before the other gates, i. e. the inputs to Top are considered in the order G2, G1, G3.

G2 contains the events 'b', 'c' and 'd', which, as they already appear with the most repeated

events first, retain their respective positions when placed in the ordering:

b<c<d

The subtree of the next gate, G1, is now explored. This gate contains no event inputs, but has

two gate inputs, G4 and G5, which are processed before returning to consider G3. G4

appears leftmost in the input list to G1, so is considered first. G4 contains the unordered

events 'a' and 'g'. Both occur twice in the tree, so are placed in the ordering with 'a' first, as it

appears first in the input list:

b<c<d<a<g

G5 adds the final two events to the ordering: 'f' and V. As 'f' is the most repeated event, it is

placed in the ordering before V, to give the final ordering as:

b<c<d<a<g<f<e

All the events have now been ordered, so it is not necessary to consider the remaining gates.

5.2.4 Depth-First, with Number of Leaves

This scheme is again an extension to the modified depth-first ordering, with a different method
of choosing the order in which gate inputs are explored. They are chosen according to the
number of `leaves' beneath the gate itself. The number of leaves of a gate is the total number
of basic events occurring at any level beneath that gate.

The gate inputs with the least number of leaves that haven't been ordered are considered
first. In the case of a tie, the gate with the fewest ordered leaves is chosen. If an order still
can't be established, then they are simply ordered as they appear from left to right in the input
list. A modification has been made to how events are dealt with - they are now ordered in the

72

same way as in the modified depth-first method. So the most repeated events are chosen first
but in the case of a tie, they are ordered as they appear from left to right in the list of inputs.
Again, they are considered before any gate inputs.

To demonstrate this technique, it is applied to the fault tree in Figure 5.1. The top event, Top,

has no event inputs to order, so its three gate inputs, GI, G2 and G3 are considered in turn.
The number of leaves, shown in Table 5.1, determines the order in which they are explored.

Gate name G1 G2 G3

Number of unordered leaves 7 3 8

Number of ordered leaves 0 0 0

Table 5.1: Number of ordered and unordered leaves of fault tree gates G1, G2 and G3

As G2 has the fewest number of unordered leaves, it is considered first, followed by G1, then

G3. G2 contains the events 'b', 'c' and 'd', which gives the partial ordering:

b<c<d

The subtree of the next gate, G1, is now explored. This gate contains no event inputs, but has

two gate inputs, G4 and G5, which are processed before returning to consider G3. The

number of leaves for each gate are shown in Table 5.2.

Gate name G4 G5

Number of unordered leaves 2 2

Number of ordered leaves 2 1

Table 5.2: Number of ordered and unordered leaves of fault tree gates G4 and G5

Both gates have the same number of unordered leaves, so the number of ordered leaves is

considered, of which G5 has fewer. G5 contains the new events 'f' and 'e', and as 'f' has the

greatest number of occurrences, appears first in the ordering:

b<c<d<f<e

G4 contains the new events 'a' and 'g', and as both occur twice in the tree are simply placed
in the ordering in their respective positions in the tree:

b<c<d<f<e<a<g

This concludes the ordering, so gate G3 is not examined.

73

5.2.5 Non-Dynamic Top-Down Weighted Ordering

Weights are calculated for each event according to the following steps:

"A weight of 1.0 is assigned to the top event and is propagated through the fault tree
towards the basic events.

" At each gate, the weight is equally distributed between its inputs.

" Each basic event will then have been assigned a weight. Repeated events have their

corresponding weights added together.

" The highest order is given to the basic event with the largest weight.

The variables are placed in order of decreasing weight. A modification has been made to how

events with equal weights are ordered: they are chosen according to their average level of

appearance in the tree. The average level is calculated for each variable by summing the

levels on which the event occurs and dividing this by the number of occurrences. The variable

that appears, on average, highest in the tree is placed earlier in the ordering. If variables still

tie for positions then the most repeated event is chosen and if a tie still exists then they are

simply ordered as they appeared in the modified top-down ordering.

Figure 5.2 shows the same fault tree as Figure 5.1, but with the weight assignments:

11 Top

3 L- 3
G2 3 G3

s G4
6

G5

ýývU vUL
24 24 24 24 18 18 18

G6 1
-1

1? 1 9996

18
G7 (dý GS

18

18

ceffbg

111111
54 54 54 54 54 54

Figure 5.2: Weight assignments for ordering of variables

74

Weights can be obtained for each variable:

a_J-+- -_
5=_44`_

6 24 24 216

b_1+ i +.. 1.. = 37
9 24 54 216

C_1+_L. +. 1. = 37
9 24 54 216

d_1+1+1__2 _ 48
9 18 18 9 216

e= 1 +1=ý__ 16
18 54 27 216

18+54+54-54-216

g=-L+-L= 13
54 216

The events can now be ordered by decreasing weights. However, events 'b' and 'c' have

equal weights, so their average level of occurrence is calculated. This also is found to be

equal (both average on level four) and as they both occur the same number of times, they are

ordered as in the modified top-down ordering, which was b<c. This gives the non-dynamic

top-down weighted ordering:
d<a<b<c<f<e<g

There are several ways in which events could be ordered should they have equal weights,

and some suggestions were made in Chapter 4. It was suggested that the event occurring

most could be selected first, as it is the repeated events that cause cut set redundancy.

Conversely the event with the lowest number of occurrences could be chosen, as this would

mean that the individual events probably occur higher in the tree and therefore have more

effect on the structure function. It was decided that calculating the events' average levels of

occurrence and choosing the highest would give an improved indicator of which event should

be ordered first. So, for example, an event appearing on level two (i. e. as a direct input to the

top event) would be chosen before an event that occurs three times on level four. But, an

event occurring three times on level four (average level is four) would be ordered before an

event appearing once on level three and again on level six (average level is 4.5), even though

one occurrence of the second event occurs at a higher level than the first event.

5.2.6 Dynamic Top-Down Weighted Ordering

This ordering progresses in the same way as the non-dynamic version, to calculate the

weights for the basic events. However, only the event with the highest weight is placed in the

ordering. If two or more events have the same weight, then the event with the highest

average level of occurrence is chosen. If they remain indistinguishable, the most repeated
event is chosen and if a tie still exists then the event appearing first in the modified top-down

ordering is chosen. Once an event has been placed in the ordering, it is removed from the
fault tree by deleting all its occurrences. Using the modified fault tree, weights are reassigned
from the beginning. This allows another event to be ordered and the process continues until

75

all events have been placed in the ordering. As explained in Chapter 4, applying the dynamic

ordering method means that in many cases neighbouring events are given near orders.

Applying this scheme to the example fault tree gives the first set of weights as in the non-
dynamic ordering. This means that event 'd' is the first to be placed in the ordering. However,

'd' is now removed from the fault tree to give the modified tree shown in Figure 5.3.

Figure 5.3: Modified fault tree with event 'd' removed

The new weight assignments are:

a=-t+-L=-L= 15
6 24 24 72

17 b-6+24+36-72

C 6+24+36
72

8-12+36 6
72

f=-., + 1 +-_=-L __
10

12 36 36 36 72

g-24+36'72

Events 'b' and 'c' have the largest weight values, and the same average level of occurrence
and number of repetitions, so 'b' is chosen as it appears first in the modified top-down
ordering.

76

_I _]_ _L
?

-1_ ..
]_

36 36 36 36 36 36

Continuing in the same manner, event 'b' is removed from the tree and further weights are
assigned. This process is repeated until all events have been placed in the ordering. The final
dynamic top-down weighted ordering is:

d<b<c<a<g<f<e

5.2.7 Bottom-Up Weighted Ordering

This technique is initiated from the bottom of the tree, rather than the top and in effect
calculates weights for the gates, which are then used to determine the ordering in which they

are considered within a depth-first exploration. The way in which this scheme is implemented
differs significantly from the method described in Chapter 4. The main features are described
below:

"A weight of 1/z is assigned to each basic event and propagated towards the top event.

" At each gate, the weights of the inputs are combined as probabilities according to:

n
'AND' gates: P(gate) = [Jqj 5.1

n
'OR' gates: P(gate) =1- (1- q,) 5.2

1=1

where n is the number of inputs to the gate.

" Once each of the inputs to the top event has been assigned weights, the tree is

explored in a depth-first manner, considering branches with the largest weight first.

Once the weight values of the gates have been established, the method proceeds as in the

modified depth-first method, except that the gates are explored according to which has the

highest weight rather than simply from left to right. However, if gates do have the same weight
then they are considered according to the percentage of repeated events below that gate.
This is calculated by adding up the number of repeated events below the gate and dividing by

the total number of events below the gate. The gate with the highest number of repeated

events is considered first, but if there is a tie, then they are considered from left to right as
they appear in the input list. The events of each gate are ordered before the gate inputs are
explored and are chosen according to the highest number of occurrences in the fault tree. If

events have the same number of occurrences then they are simply chosen from left to right
as they appear in the input list.

This scheme can now be applied to the tree in Figure 5.1. Every event is given a weight of 1/2
and so the weights of the gates can be calculated as in Table 5.3.

77

Gate name Gate type Inputs
Calculated
gate weight

G1 OR G4, G5 23/128

G2 OR b, c, d 7/8

G3 OR G6, a 17/32

G4 AND c, b, a, g 1/16

G5 AND d, f, e 1/8
G6 AND G7, G8, d 49/128

G7 OR c, e, f 7/8

G8 OR f, b, g 7/8

Table 5.3: Weights of the gates according to the bottom-up weighted method

The top event has three gate inputs: G1, G2 and G3. These are considered in order of
highest weight according to Table 5.3, i. e. G2 then G3 then G1. G2 has three event inputs,

which gives the partial ordering:
b<c<d

The subtree of the next gate, G3 is now explored. It contains one event input, 'a', which is

added to the partial ordering to give:
b<c<d<a

Its gate input G6 is then examined. It has one event input, 'd', but as this is already in the

ordering, it is not considered. G6 has two gate inputs, G7 and G8, which have equal weights.
As they also have the same percentage of repeated events below (both 100%) they are

simply considered from left to right, i. e. G7 first. G7 contains two unordered events, 'e' and T.

Event 'f' is placed first in the ordering as it has more occurrences in the tree, giving:

b<c<d<a<f<e

G8 adds the final event 'g' to the ordering to give:

b<c<d<a<f<e<g

The subtree of the gate G1 is not explored, as all the events have been ordered.

This method differs significantly from the general method detailed in Chapter 4. The general
method assigned each event a weight value of one and added the weights up at each gate.
However this simply orders the gates according to the number of basic events in its subtree
and would not distinguish between 'OR' gates with many inputs and 'AND' gates with many
inputs. In this case it would be fair to assume that the events beneath the 'OR' gate would
have more influence over the occurrence of the top event as only one is needed for the logic
to flow, compared with the 'AND' gate where every event would need to occur. For this
reason the events were given weights of 1/2 and the weights were propagated as probabilities,

78

so keeping the weight values of the gates below one, and giving 'OR' gates higher

precedence. If gates have equal probabilities, the order is chosen according to the
percentage of repeated events below that gate. This is because repeated events cause the

problem of non-minimal cut sets and so by ordering repeated events first the resulting BDD

can be smaller. Tied events are dealt with in the same way as in the other depth-first

schemes as this has been shown to be a good ordering technique.

5.2.8 Event Criticality

This final ordering scheme is an extension of the one reported in Chapter 4, which applies the

principle of Birnbaum's structural importance measure directly to the tree. The contribution of

each basic event to the top event is calculated according to:

Ii =Q(11, j/z -Q(0;, 'h 5.3

The selected basic event therefore assumes the failure probabilities of one and zero on two

consecutive computations of the top event probability, with the remaining components given
failure probabilities of 1/2. The result of the second run (with failure probability zero) is

subtracted from the first run (with failure probability one) to give the contribution of that basic

event to the occurrence of the top event

The basic events are ordered such that those with a greater contribution to the occurrence of

the top event are ordered before those with smaller contributions. If two events have the

same calculated contribution, then the event with the highest average level of occurrence is

selected first. If the events are still tied then the most repeated event is selected and if the

events are still indistinguishable, then they are simply ordered as they appear in the modified

top-down ordering.

This scheme can be applied to the fault tree in Figure 5.1 to give the calculated contributions

shown in Table 5.4:

Event
Probability of Top with

event failure probability 1
Probability of Top with

event failure probability 0
Contribution to
the top event

a 0.2051 0.0419 0.1632
b 0.1685 0.0623 0.1062

c 0.1685 0.0623 0.1062

d 0.2621 0.0234 0.2387
e 0.1867 0.0363 0.1504
f 0.1948 0.0350 0.1598

9 0.1474 0.0726 0.0748

Table 5.4: The calculated contributions of each of the basic events to system failure

79

The events are ranked such that those with larger contributions appear earlier in the ordering
than events with smaller contributions. Events 'b' and 'c' have the same contribution, the

same average level of occurrence and the same number of occurrences. Therefore, they are

simply ordered as they appear in the modified top-down ordering scheme:

d<a<f<e<b<c<g

5.3 Performance of the Schemes on a Set of Fault Trees

A program was written to implement the eight ordering schemes (ordering. c), which were

applied to a set of 228 fault trees. Summary details of these trees can be found in Appendix II.

BDDs were constructed for each tree, using the variable orderings determined by each of the

schemes.

The schemes are ranked in order according to the complexity of the BDD that they produce.
The performance of the schemes is then assessed in two ways. Firstly, the number of times

that each scheme produces the highest ranking is calculated. This is the usual method of

scheme evaluation. The second method considers the average ranking of each scheme

across the set of fault trees, so gives an indication of the overall scheme performance. Three

different measures of BDD complexity are considered, which are discussed in the following

sections.

5.3.1 Measures of BDD Complexity

In order to fully compare the ordering schemes, three measures of BDD complexity are used

in the investigation. These are the number of non-distinct nodes in the BDD, the number of

distinct nodes in the BDD and the number of ite calculations required to construct the BDD.

Each measure and the reason for employing it, is described in the following sections.

5.3.1.1 Non-Distinct Nodes

The number of non-distinct nodes in the BDD is essentially the size of the BDD when sub-
node sharing is not enabled. Therefore if a section of the BDD is repeated, the nodes within
this section will be counted as many times as that section appears. For example, nodes F3

and F6 in Figure 5.4(a) are identical, so sub-node sharing can be enabled, as in Figure 5.4(b).
The number of non-distinct nodes is therefore measured from 5.4(a), giving a total of seven
nodes in this case. This is a particularly useful measure when considering quantitative
analysis, as it gives an indication of the number of calculations to be performed.

80

(a) BDD not enabling sub-node sharing (b) BDD enabling sub-node sharing

Figure 5.4: Identical BDDs, showing the use of sub-node sharing

Previous results obtained by Sinnamon[211 (comparing schemes 1,2 and 3) and Bartlettt19l

(comparing schemes 1,2,3 and 8) have both used this measure as a comparison of BDD

size.

5.3.1.2 Distinct Nodes

The number of distinct nodes in the BDD is the total number of non-terminal nodes when sub-

node sharing is enabled and is shown in Figure 5.4(b). In this example, the BDD has five

distinct nodes. This measure indicates the size of the most compact representation of the
BDD and is also the number of nodes that has to be stored in computer memory. This is an
important consideration, as it is the very large BDDs that cannot be handled. It is also what is

generally referred to as 'the size of the BDD'.

5.3.1.3 Number of If-Then-Else Calculations

This measure represents the number of computations that must be performed and stored
during the ite procedure (each one is stored with its result so that it is not repeated
unnecessarily), and so indicates the size of the arrays that have to be handled. If the
computer memory is exceeded and the construction process fails, then the BDD technique
cannot be utilised. Therefore reducing this method of BDD complexity is particularly
beneficial.

81

5.3.2 Results: Highest Scheme Rankings

The schemes are ranked in order three times, according to the number of non-distinct BDD

nodes, the number of distinct BDD nodes and the number of ite calculations required for BDD

construction. A count is then made of the number of times that each scheme receives the
highest ranking. The numbers of fault trees for which each scheme is 'best', do not add up to

the total number of trees, as some have the same result for more than one scheme. The

results are not included for the trees that give identical values for each ordering scheme.

The results for each tree, showing the number of non-distinct BDD nodes, distinct BDD nodes
and ite calculations required to construct the BDD using each ordering, can be found in

Appendices III, IV and V.

5.3.2.1 Non-Distinct Nodes

The eight schemes gave identical results for 59 of the 228 fault trees. For the remaining 169

trees, the results are shown in Table 5.5.

Ordering scheme 1 2 3 4 5 6 7 8

Number of trees using 18 43 34 37 34 35 46 68
non-distinct nodes

Table 5.5: The number of trees for which each scheme was ranked the highest according
to the number of non-distinct BDD nodes

These results clearly show that the event criticality ordering scheme (8), which is a weighted

measure, performs significantly better than any other ordering scheme. It produces BDDs with
the fewest non-distinct nodes in 68 cases, which is for 22 more trees than the next best

scheme, the bottom-up weighted measure (scheme 7).

The modified top-down scheme (1) produced disappointing results, generating BDDs with the
fewest non-distinct nodes in only 18 cases. This is substantially worse than for any other
scheme - the closest result was obtained by schemes 3 and 5 (the modified priority depth-
first and non-dynamic top-down weighted schemes respectively), which were both ranked
highest for 34 fault trees.

Although some schemes performed better than others, each has at least one fault tree (and in
many cases, several trees) for which it produces a result that cannot be matched by any other
scheme. Therefore none can be disregarded at this stage.

82

5.3.2.2 Distinct Nodes

The eight schemes produced identical results for 64 of the 228 fault trees. The results for the
remaining 164 trees are shown in Table 5.6.

Ordering scheme 1 2 3 4 5 6 7 8

Number of trees using 11 64 54 59 25 39 68 39
distinct nodes

Table 5.6: The number of trees for which each scheme was ranked the highest according
to the number of distinct BDD nodes

These results are significantly different to those obtained for the number of non-distinct BDD

nodes. For example in the previous case, the event criticality scheme (8) performed the best.

However here it does not perform particularly well at all. One aspect that is mirrored by these

results is that again, the modified top-down scheme (1) produces the worst results by a

considerable margin.

It is interesting to note that the schemes based on a depth-first approach (i. e. the modified
depth-first (2), modified priority depth-first (3), leaves depth-first (4) and the bottom-up

weighted measure (7)) perform significantly better than the other schemes. This suggests that
in order to draw the BDD in a concise manner, a depth-first approach should be considered.
As this was not apparent in the results for the number of non-distinct BDD nodes, it could be

that the use of a depth-first method somehow promotes the use of sub-node sharing.

The bottom-up weighted approach (7) performs marginally better than the remaining

schemes, so as with the previous section, a weighted technique produces the best results. It

could be the combination of a weighted scheme incorporating a depth-first approach that

makes this scheme successful.

5.3.2.3 Number of If-Then-Else Calculations

The eight schemes produced identical results for 41 of the 228 fault trees. The results for the

remaining 187 trees are shown in Table 5.7.

Ordering scheme 1 2 3 4 5 6 7 8

Number of trees using
ite calculations

24 52 42 47 33 57 45 58

Table 5.7: The number of trees for which each scheme was ranked the highest according
to the number of He calculations

83

There are similarities between these results and those obtained for the number of non-distinct
BDD nodes, in that the modified top-down scheme (1) is ranked highest for the fewest

number of trees and the event criticality scheme (8) is ranked highest for the greatest number
of trees. However, the results are more evenly spread than for either of the other BDD

complexity measures, with a difference of only 34 trees between the best and worst

performances, compared with 57 for the number of distinct BDD nodes.

5.3.3 Results: Overall Ranking of the Schemes

This method of evaluating the ordering schemes ranks them in order from the scheme that

produces the best results (i. e. the smallest number of nodes or the fewest ite calculations), to

the scheme that produces the worst results for each fault tree, where a ranking of one

indicates the best performance and a ranking of eight indicates the worst performance. The

rankings are then added together over all 228 trees, to show which scheme performs well

over all the trees, but does not necessarily perform 'best' each time. This is indicated by the

scheme with the lowest added ranking. If a scheme consistently comes second or third, then

this could prove a better choice of scheme than one which might perform erratically,

producing the highest ranking a number of times, but performing badly on other trees. The

results are not included for the trees that give identical values for each ordering scheme.

5.3.3.1 Non-Distinct Nodes

The rankings were added over the 169 trees to give the results shown in Table 5.8.

Ordering scheme 1 2 3 4 5 6 7 8

Added rankings for
787 703 708 676 621 638 740 503

non-distinct nodes

Table 5.8: The added rankings for each ordering scheme for 169 fault trees

The event criticality scheme (8) produces the best results, as it did for the number of times it

produced the BDD with the fewest number of non-distinct nodes. So in addition to being

ranked first for 68 trees, it also performs well over the remaining trees.

Other than the modified top-down approach (1), which again performs badly, most of the
remaining schemes produce average results. A significant difference with this measure of
scheme performance however, is that the bottom-up weighted measure (7) now produces a
result similar to that obtained using the modified top-down method (1), whereas for the
number of times it received the highest ranking, it returned the second-best results. This could
be because although it is ranked first on 46 occasions, it frequently produced a BDD size that
was much larger than that obtained using other schemes.

84

5.3.3.2 Distinct Nodes

The rankings were added over the 164 trees to give the results shown in Table 5.9.

Ordering scheme 1 2 3 4 5 6 7 8

Added rankings
887 541 534 570 743 588 625 674

for distinct nodes

Table 5.9: The added rankings for each ordering scheme for 164 fault trees

These results are similar to those obtained for the number of times each scheme received the

highest ranking, with the depth-first measures again performing particularly well. However in

this case it is the modified priority depth-first (3) measure rather than the bottom-up weighted

measure (7) that produces the best results, with the lowest overall ranking.

As with the results obtained for the non-distinct nodes, the bottom-up weighted measure (7)
has not performed as well in the overall rankings as it did when considering the number of
times it was ranked highest. It seems that while it produces the best ordering on 68

occasions, it does not maintain a good overall performance on the remaining trees.

If one scheme were to be selected for use when considering the number of distinct nodes,
then an appropriate choice would be the modified depth first scheme (2), which performed

well in both sets of results. When considering the number of trees for which it produced the

smallest BDD, it came a close second place with 64 compared with 68 for the bottom-up

weighted measure (7). In this set of results, it had the second lowest ranking (a total of 541

compared with 534 obtained with the modified priority depth-first scheme (3)), which gives it

the best overall results and suggests it is a good choice of scheme.

5.3.3.3 Number of If-Then-Else Calculations

The rankings for each scheme were added for the 187 fault trees to give the results shown in
Table 5.10.

Ordering scheme 1 2 3 4 5 6 7 8

Added rankings
for ite calculations

896 739 727 728 742 606 825 680

Table 5.10: The added rankings for each ordering scheme for 187 fault trees

85

The results are similar to those obtained for the number of times that each scheme produced
a BDD with the fewest He calculations. The dynamic top-down weighted scheme (6) has

performed particularly well and although it didn't produce the best results in the previous
section, it did come a very close second, using the fewest number of ite calculations for 57
trees compared with 58 trees for the event criticality scheme (8). This scheme is therefore

very successful at ordering the variables in a manner which minimises the number of He

calculations necessary to construct the BDD.

5.4 Conclusions

Previous research has suggested that no scheme will be identified that is capable of

producing the smallest possible BDD for any given fault tree, and these results appear to

support this theory. It is interesting to see however, that even within a particular fault tree,

different schemes work best depending on the measure used to assess the BDD complexity.

For example, Table 5.11 shows the number of distinct BDD nodes, non-distinct BDD nodes

and ite calculations required to produce the BDDs for the fault tree 'rand155'. Scheme 8

produces the best results for the number of non-distinct nodes, scheme 4 produces the best

results for the number of distinct nodes, whilst scheme 6 is best when considering the number

of ite calculations required to obtain the BDD. Not only does this show that the 'best' choice of

scheme can be different for a fault tree according to how BDD complexity is measured, but in

this case the schemes that perform well for one measure of BDD complexity do not even

produce results that are near to the best for other measures.

Ordering scheme 1 2 3 4 5 6 7 8

Number of non- 1051 1695 1888 1439 894 863 2484 790
distinct nodes

Number of 226 146 115 97 158 106 172 174
distinct nodes
Number of He

314 307 297 213 238 196 448 250
calculations

Table 5.11: The number of non-distinct and distinct nodes for the BDDs obtained by each of
the orderings from fault tree 'rand155'

In order to produce the smallest number of non-distinct nodes, the event criticality scheme (8)
appears to be the best choice. It produced the smallest BDDs on the greatest number of
occasions, but also showed that it performs consistently well by producing the best overall
ranking. As there are several ways of distinguishing 'tied' variables within this scheme, it is
thought that further work could lead to improved results.

86

For the smallest number of distinct nodes, the schemes based upon a depth-first approach
seemed to provide the best orderings. In particular the bottom-up weighted approach (7),
which is a weighted method, produced encouraging results when considering the number of
times it was ranked highest and again it is thought that this scheme would benefit from further
refinement. As it has already been noted however, the modified depth-first method (2)
produced excellent results in both categories and would provide a good choice of scheme
when considering distinct nodes.

Two schemes performed particularly well when considering the number of ite calculations
required to construct the BDD - the dynamic top-down weighted method (6) and the event
criticality scheme (8), both of which are weighted measures. It is thought that the dynamic

top-down scheme would particularly benefit from further investigation, as it is the first time that

results have been obtained using this ordering technique.

The variable orderings produced by each of the schemes are very sensitive to the way in

which the fault tree is written. The structure of the tree can vary considerably whilst still
satisfying the same logic function and is very rarely written in its most concise form. As well
as affecting the variable ordering, this can have a significant effect on the size of the resulting
BDD. However, methods can be applied to fault trees to reduce their complexity, with the aim
of constructing smaller BDDs. One such technique is considered in the following chapter.

87

Chapter 6: Fault Tree Reduction

6.1 Introduction

Fault trees are rarely written in their most concise format and this can have a significant effect

on the size of the resulting BDDs. Their complexity can be reduced however, by applying fault

tree reduction techniques, which optimise the structure of the tree, whilst retaining the

underlying logic. This chapter discusses how one such technique, known as the 'Faunet1261'

method, can be used to restructure fault tees to give an equivalent, but simpler,

representation of the logic function. The reduced fault trees can then be used within the BDD

method, with the aim of producing smaller BDDs than can be obtained using the original (non-

reduced) fault trees.

The following sections consider the Faunet reduction technique in detail and discuss the

program that was written for its implementation. The performance of the reduction method is

then evaluated by comparing the complexity of BDDs constructed from a set of reduced fault

trees against those obtained from the original, non-reduced, fault trees.

6.2 The Faunet Reduction Technique

This method of fault tree reduction consists of three stages:

1. Contraction

Subsequent gates of the same type are contracted to form a single gate. This gives

an alternating sequence of 'AND' gates and 'OR' gates throughout the tree.

2. Factorisation

Pairs of events that always occur together in the same gate type are identified. They

are combined to form a single complex event.

3. Extraction

The following two structures are identified and replaced:

restructure

(a)

88

restructure
10

(b)

Figure 6.1: The extraction procedure

The above three steps are repeated until no further changes are possible in the fault tree,

resulting in a more compact representation of the system.

6.3 Worked Example of the Reduction Technique

In order to demonstrate the reduction process and explain its implementation in the program

'faunet. c', the technique will be applied to the example fault tree shown in Figure 6.2.

Figure 6.2: Example fault tree

89

6.3.1 Inputting Fault Tree Data to the Program

The initial step, when given a fault tree such as the one shown in Figure 6.2, is to represent it
by a data file. Each gate that appears in the tree is listed in the file, along with its type, the

number of inputs (gates and events are numbered separately) and the inputs themselves. A

typical file format for the fault tree in Figure 6.2 is shown in Table 6.1.

Gate name Gate type
Number
of gates

Number
of events

Inputs

Top OR 1 2 G1 ad
G1 OR 1 1 G2 b

G2 AND 2 0 G3 G4

G3 OR 1 3 G5 abf
G4 OR 1 2 G5 ef
G5 OR 0 2 cd

Table 6.1: Fault tree data for Figure 6.2

The data is read into the program with each column of Table 6.1 forming an array. As the data

is read into these five arrays, it is also converted to a numerical format and stored in five

corresponding arrays. The numerical arrays are used throughout the program, for ease of

data manipulation.

9 Basic events are numbered from 1 to 999.

9 Gates are numbered from 1000 to 1999.

" Complex events are numbered from 2000 upwards.

The numerical arrays for the data in Table 6.1 are shown in Table 6.2.

Gate number
Value of gate
1-OR, 2- AND

Number
of gates

Number
of events

Inputs

1000 1 1 2 1001 12

1001 1 1 1 1002 3

1002 2 2 0 1003 1004

1003 1 1 3 1005 134

1004 1 1 2 1005 54
1005 1 0 2 62

Table 6.2: Numerical fault tree data for Figure 6.2

90

Other arrays that are created as the data are read in, are the occurrence arrays. These store
the number of occurrences in the fault tree data of both gates and basic events. The

occurrences of the complex events are also recorded as they are formed. In order for the
occurrence arrays to be correct, it is essential that the top event be listed first in the data file.
Since the gate representing the top event is the only gate that does not appear as an input to

another gate (i. e. it appears in the first but not the fifth column of Table 6.2), it is easily
identified. The program scans the data until it identifies the gate with this property, and if this

gate doesn't appear on the first line of data, then the data is re-arranged to make this the

case.

It is also essential that any gate inputs be listed before events in the inputs list, as it is

assumed in the program that the inputs occupying positions 0 to (number of gates - 1) are all

gates. This was not the case for some of the data for the test trees and so a piece of code

was written that rearranges the data into the required format. The order in which the gates

appear in the listing is retained; the first input that is found to be a gate is placed in position 1,

the second in position 2 and so on.

6.3.2 The Reduction Process

Once the data has been read in, the reduction process can begin. Figure 6.3 shows the

numerical fault tree and Table 6.2 its corresponding data at the start of this process.

Figure 6.3: The numerical fault tree

91

Contraction 1

The aim of this first stage is to identify subsequent gates in the tree structure that have the
same gate type. In order to do this, the program scans through the inputs to each gate
(subsequently referred to as the primary gate) and checks the gate type of each gate input
(called the secondary gate). If secondary gate type matches the primary gate type, then the

secondary gate can be contracted.

However, before contraction takes place, the number of occurrences of the secondary gate
must be checked. If it occurs more than once, then any additional gates to which the

secondary gate is an input must also be considered. If any additional gates are of the same
type, then contraction can also occur for those cases (resulting in more than one primary

gate), however contraction cannot take place for gates that are of a different type.

The process of contraction adds the inputs of the secondary gate to those of the primary gate

and deletes the secondary gate from the primary gate's input list. The occurrence arrays

containing the number of gates and events are altered accordingly. If there is only one

occurrence of the secondary gate, then its line of data can be deleted. However, if it occurs

more than once, then its data is only deleted if all the gates to which it is an input are of the

same type. If they are not, then the data cannot be deleted as it the gate still occurs as an
input elsewhere in the tree and its data is therefore required.

Once contraction has taken place, the inputs to the gates are checked to ensure that each
input is listed only once. This is necessary, as the secondary gate could have had an input in

common with a primary gate, which would now be listed twice as an input to the primary gate,

and would impede the factorisation process.

Application of the contraction stage to the fault tree shown in Figure 6.3:

In this example, gate 1001 appears as an input to gate 1000 and they both have a gate value

of 1 (i. e. they are 'OR' gates). Gate 1001 only appears once in the fault tree data, so its inputs

are directed to gate 1000 and its line of data deleted. Gate 1005 is also found to be of the

same type as gate 1003. However it appears twice in the tree, so its other occurrences must
be checked. As it appears as an input to gate 1004, which is also of the same type, it can be

contracted in both cases and the line of data can again be deleted. The resulting fault tree

and data arrays are shown in Figure 6.4 and Table 6.3.

92

Figure 6.4: The fault tree after contraction 1

Gate
number

Gate
value

Number
of gates

Number
of events

Inputs

1000 1 1 3 1002 132

1002 2 2 0 1003 1004

1003 1 0 5 13462

1004 1 0 4 5462

Table 6.3: Fault tree data after contraction 1

Factorisation 1

The fault tree now has an alternating sequence of 'AND' and 'OR' gates, and can be

factorised. The input events to each gate are scanned, looking for pairs that always occur

together. This is achieved by systematically examining each possible event pair within the list

of inputs. When two events are chosen, the number of occurrences of each is found. If they

do not occur the same number of times then the search ends, as this means they cannot

always occur together. If they do occur the same number of times, then factorisation can be

considered, but each occurrence of the events is checked to ensure that if one event appears

as the input to a gate (which must be the same type as the original gate) then the other event
is also an input. If each event occurs only once, then they must always occur together, so

can immediately be combined.

Once it has been established that they do always occur together and under the same gate
type, the events are combined to form a single, complex event. The complex events are
numbered from 2000 upwards. The next available number is selected and this is recorded in
the complex event array, with the gate type and the two events from which it was formed. The

93

complex event is then substituted into the input array for every occurrence of the first event;
occurrences of the second event are deleted. The number of event inputs for the

corresponding gates decreases by one.

Application of factorisation to the fault tree shown in Figure 6.4:

Starting with gate 1000, events 1 and 3 are examined. They occur together twice under the

same gate type, so can be factorised. Complex event 2000 is created and replaces event 1 in

lines 1 and 3 of the input array. Event 3 is deleted. The number of events in both lines of data

decreases by one. Events 2000 and 2 are then examined. Event 2000 occurs twice and event

2 occurs three times, therefore they cannot always occur together and are not considered

further.

Gate 1002 is now considered, but as it only contains gate inputs, gate 1003 on the next line of

data is examined. Events 2000 and 4, then 2000 and 6 are considered, but although they

have the same number of occurrences, they do not always occur together. Events 2000 and 2

are again examined, but do not have the same number of occurrences. Events 4 and 6 are

considered next, and it is found that they occur together twice under the same gate type.

They are therefore combined to form the complex event 2001. Events 2001 and 2 form the

next pair, but do not occur the same number of times, so are not considered further. The final

gate 1004 is then scanned, but no events can be factorised.

The modified fault tree and data are shown in Figure 6.5 and Table 6.4.

Figure 6.5: The fault tree after factorisation 1

94

Gate
number

Gate
value

Number
of gates

Number
of events

Inputs

1000 1 1 2 1002 2000 2

1002 2 2 0 1003 1004

1003 1 0 3 2000 2001 2
1004 1 0 3 5 2001 2

Table 6.4: Fault tree data after factorisation 1

The complex event array has now been started, and is shown in Table 6.5.

Complex Gate Event 1 Event 2
event value

2000 1 1 3

2001 1 4 6

Table 6.5: Complex event data after factorisation 1

Extraction 1

The extraction process searches for the structures shown in Figure 6.1. In order to do this, the

program scans through each line of data, examining the gate inputs to the primary gate. If the

primary gate does not have at least two gate inputs, then the program moves onto the next
gate. If it does have two or more gates as inputs (referred to as the secondary gates), then
the gates are selected in pairs. Both secondary gates are then checked to see if they are of
the same type, but a different type to the primary gate. If so, the inputs to the secondary gates
are checked to see if they have a gate or event in common. If they do, then extraction can
take place.

Before extraction can occur, however, there may be some necessary adjustments to be made
to the data. If the primary gate has more than two inputs, then a new gate must be created

which has the same gate type as the primary gate, but which has the primary gate and all its
inputs, bar the two secondary gates, as inputs. This restructures the fault tree into the form

required for extraction, by using an equivalent representation. An example of this is shown in
Figure 6.6.

95

(a) (b)

Figure 6.6: Equivalent representations of a fault tree

In Figure 6.6(a), the primary gate 1000 has two secondary gates, 1001 and 1002, which have

an input in common. In order to get this tree into the required form for extraction, gate 1004 is

generated, as shown in Figure 6.6(b). This has gate 1000 as an input, together with events 1

and 2 and gate 1003, which were inputs to gate 1000. Gate 1000 now only has its two

secondary gates as inputs. The fault tree data has a new line added for the generated gate,

which is listed in the same way as the other gates. The line containing the data for gate 1000

is also adjusted accordingly.

A second adjustment may be required if the secondary gates appear elsewhere in the tree.
The secondary gates will be altered (a gate or event extracted as a common input) but any

other occurrences of this gate should remain unchanged. This problem is overcome by

checking the occurrences of the secondary gates and if either occurs more than once, a new
gate must be created. This new gate has exactly the same properties and inputs as the

secondary gate, and replaces it in the input list to the primary gate. Therefore, the data for the

original secondary gate and its other occurrences in the tree remain unchanged, and the new
data can be altered accordingly.

Once the tree is in the correct form, the extraction process can be undertaken. The
numbering of the gates is important in order to avoid confusion and is shown in Figure 6.7.

96

(a) (b) (c)

Figure 6.7: Numbering of fault tree gates throughout extraction

In Figure 6.7(b), a new gate is created (1004), which is of the same type as the secondary

gates and has the common input, 1, and the primary gate, 1001, as its inputs. The common

input 1 is removed from both 1002 and 1003. Figure 6.7(c) shows the next stage, which is the

removal of gate 1003 (as it only has one input) with its input directed to gate 1001. This

numbering is essential, as the secondary gates may have more than two inputs (as for 1002)

and so remain in the tree and the extraction process must take account of this.

Application of the extraction procedure to the fault tree shown in Figure 6.5:

The only gate that has two or more gates inputs is 1002, whose inputs are 1003 and 1004.

These secondary gates are both of a different type to the primary gate, and have the event

2001 in common, which can be extracted (Figure 6.8(a)). It is clear from Figure 6.8(a) that

another extraction can also be undertaken. Gates 1003 and 1004 also have the event 2 in

common, so a second extraction can be undertaken, as shown in Figure 6.8(b).

97

Common event - 2001 Common event -2
(a) (b)

Figure 6.8: Fault tree after extraction 1

The resulting fault tree data no longer lists gates 1003 and 1004, but instead lists the

generated gates 1006 and 1007, as shown in Table 6.6.

Gate
number

Gate
value

Number
of gates

Number
of events

Inputs

1000 1 1 2 1006 2000 2

1002 2 0 2 2000 5

1006 1 1 1 1007 2001

1007 1 1 1 1002 2

Table 6.6: Fault tree data after extraction 1

Contraction 2

Two further contractions can now take place: gate 1006 can be contracted into gate 1000 and
gate 1007 can then also be contracted into gate 1000. This would leave event 2 as occurring
twice as an input to gate 1000, but the program checks for this, and deletes one occurrence,
updating the occurrence array at the same time. The resulting fault tree and arrays are shown
in Figure 6.9 and Table 6.7.

98

Figure 6.9: Fault tree after contraction 2

Gate Gate Number Number
number value of gates of events

Inputs

1000 1 1 3 1002 2000 2 2001

1002 2 0 2 2000 5

Table 6.7: Fault tree data after contraction 2

Factorisation 2

Events 2 and 2001 occur together, so the complex event 2002 is formed, resulting in the fault

tree shown in Figure 6.10 and the fault tree data shown in Tables 6.8 and 6.9.

Figure 6.10: Fault tree after factorisation 2

Gate Gate Number Number
inputs

number value of gates of events
1000 1 1 2 1002 2000 2002

1002 2 0 2 2000 5

Table 6.8: Fault tree data after factorisation 2

99

Complex

event

Gate

value
Event 1 Event 2

2000 1 1 3

2001 1 4 6

2002 1 2 2001

Table 6.9: Complex event data after factorisation 2

Extraction 2

No extractions can be performed on the fault tree. The program would carry out the three

steps again, as there have been changes made, but no further modifications are possible.

6.3.3 The Reduced Fault Tree

The fault tree and complex event data are output to data files in terms of the original gates

and event names. Any complex events and generated gate names are output as they were

named in the program.

The reduced fault tree and corresponding data files are shown in Figure 6.11 and Tables 6.10

and 6.11 in terms of the original event and gate names.

Figure 6.11: The reduced fault tree

Gate Gate Number Number Inputs
name type of gates of events
Top 1 1 2 G2 2000 2002
G2 2 0 2 2000 e

Table 6.10: Reduced fault tree data

100

Complex
event

Gate type Event 1 Event 2

2000 1 a b

2001 1 f c
2002 1 d 2001

Table 6.11: Complex event data

It can be verified that the reduced tree is equivalent to the original tree by examining their

minimal cut sets. These will be identical for logically equivalent trees. The original tree has

five minimal cut sets of order one:

(a), {b}, {c}, {d} and {f}

The minimal cut sets for the reduced tree are:

{2000} and {2002}

These can be expanded out in terms of the basic events by taking a 'MOCUS1311' type of

approach. The principle of this method is that 'OR' gates increase the number of cut sets,

whilst 'AND' gates increase the number of elements in the cut sets. Therefore using the basic

event data in Table 6.11, the minimal cut sets of the reduced tree can be expanded to give:

Top = 2000 + 2002

=a+b+d+2001

=a+b+d+f+c

which are equivalent to those obtained from the original tree. The technique for obtaining the

minimal cut sets of reduced trees in terms of their basic events has been programmed as part

of the research (cutsets. c to obtain the minimal cut sets in terms of complex events and

complex_cuts. c to expand these out) in order to verify that the trees used to assess the

reduction technique have been restructured correctly.

Reduction has simplified the example fault tree considerably. In the original fault tree, there

were six gates; in the reduced fault tree, there are two. In the original fault tree there were
twelve events, six of them different; in the reduced fault tree there are four events, and only
three of them are different. This means that when choosing a variable ordering there are half

the number of events to consider, so the number of options for variable ordering is

significantly reduced. It is expected that BDDs constructed from reduced fault trees will be

substantially smaller than those constructed from non-reduced fault trees and in order to test
this hypothesis, the reduction technique was applied to a set of fault trees and their BDD
sizes compared. The results are discussed in the following sections.

101

6.4 Results of the Application of the Reduction Technique

The reduction technique was applied to a set of 228 fault trees. Summary details for the trees

are given in Appendix II. BDDs were constructed for each reduced tree using variable

orderings determined by the eight ordering schemes analysed in Chapter 5. These are:

1. Modified top-down.
2. Modified depth-first.

3. Modified priority depth-first.
4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.
6. Dynamic top-down weights.
7. Bottom-up weights.

8. Event criticality.

The resulting BDDs were analysed in two ways. Firstly, the success of the reduction
technique was evaluated by comparing the complexity of the BDDs constructed from the

reduced fault trees against those obtained using the original trees. Then, the performance of
the ordering schemes on the reduced trees was analysed by considering the number of times

each scheme received the highest ranking and the average ranking of the schemes over all
the trees. The results are discussed in the following sections.

6.4.1 Effect of the Reduction Technique on BDD Complexity

The BDDs constructed from the reduced fault trees were compared against those obtained

from the original trees for three different measures of BDD complexity: the number of non-
distinct BDD nodes, the number of distinct BDD nodes and the number of ite calculations

required to construct the BDD. The results obtained for each measure of BDD complexity for

the set of fault trees are given in Appendices VI, VII and VIII. It was expected that the

reduction technique would reduce the trees to a more concise form and that consequently the

BDD construction process would be more efficient, requiring fewer ite calculations and

producing BDDs with fewer non-distinct and distinct nodes.

As there are 228 fault trees with eight ordering schemes used for each, there are a total of
1824 cases to consider. The difference in the number of ite calculations and the number of
non-distinct and distinct BDD nodes was calculated for each case together with the

percentage decrease.

102

6.4.1.1 Non-Distinct Nodes

Out of a total of 1824 cases, 1751 either showed a decrease or no change (often due to the

fact that the BDDs were already minimal for the original fault trees) in the number of non-

distinct nodes after reduction. The average decrease over these 1751 cases was 46.72%,

which means that on average, the number of non-distinct nodes approximately halved

through reduction. This is a substantial decrease in BDD size for a procedure that takes such

a short amount of time to apply.

In 73 cases, which account for 4.00% of the sample tested, the number of non-distinct nodes

actually increased. This can occur because of the difference in the variable ordering once

reduction has taken place. The BDD size is very sensitive to the chosen ordering, so if the

fault tree changes sufficiently that the same ordering scheme produces a different variable

ordering for the reduced tree, it is possible that this would have an adverse effect and actually

increase the number of nodes in the resulting BDD. For example, consider the fault tree

'random1' (summary details for the tree are given in Appendix II) shown in Figure 6.12(a).

(a) (b)

Figure 6.12: The fault tree'randoml' shown before (a) and after (b) reduction

If the variables of the original fault tree are ordered according to the modified depth-first

method, the following ordering is obtained:

C5<C2<CO<C4<C3<C1

The BDD constructed from this ordering is shown in Figure 6.13.

103

Figure 6.13: The BDD constructed from the fault tree in Figure 6.12(a)

using the modified depth-first ordering

The resulting BDD has six non-terminal nodes, which is the number of both distinct and non-
distinct nodes. However, by applying the reduction technique to the fault tree, the reduced
tree shown in Figure 6.12(b) is obtained. The only stage of the method that can be applied is

extraction, where event C4 appears as a common event to both G1 and G2, so can be

extracted. The resulting fault tree has the same number of gates as the original (six in total),

but has one less basic event (eleven as opposed to twelve). However, when the modified
depth-first ordering scheme is applied to the reduced tree, the following ordering is obtained:

C5<C2<C4<CO<C3<C1

Event C4 now appears earlier in the ordering than it did for the original tree. This is because

in the original tree it appears under the same gate as CO, so is ordered after CO as it has

fewer occurrences in the tree. In the reduced tree however, it appears as the only event input

to the gate above CO so is ordered first. The resulting BDD is shown in Figure 6.14.

104

Figure 6.14: The BDD constructed from the reduced fault tree in Figure 6.12(b)

using the modified depth-first ordering

This BDD has seven distinct and non-distinct nodes, meaning that reduction has increased

the number of nodes in the BDD. However, this is purely down to the variable ordering. If the

ordering obtained from the reduced fault tree is used to construct a BDD from the original fault

tree, the resulting BDD is exactly the same as that shown in Figure 6.14. Also, if the ordering
C5<C2<CO<C4<C3<C1 (i. e. the ordering obtained from the original tree) is used to construct

a BDD from the reduced tree, the BDD obtained is the same as the one shown in Figure 6.13,

with only six nodes.

The alternate orderings could have been applied to the trees automatically, simply by altering
the way in which the original fault tree is written. For example, if g1 and g2 had been swapped
in the original fault tree, then C4 would have been ordered first, and the same number of
nodes would have been obtained for both the original and reduced tree. Or, the gates (or

even the events beneath the gates) could have been written such that CO was extracted
(either by ordering the inputs to g1 such that CO appears before C4, or by listing g3 before gl
in the inputs to g0), meaning that it would have been ordered before C4 in the ordering, so
producing the smaller BDD from the reduced tree. This demonstrates that the ordering
scheme chosen for the original trees is not necessarily the best choice of scheme for the

reduced trees, as modifications to the fault tree structure can affect the resulting variable
ordering. Also, it has been shown that the way in which the original fault tree is written has a
direct effect on the structure of resulting reduced tree.

Overall, there are 32 fault trees that showed an increase in the number of non-distinct nodes,
for one or more of the ordering schemes. The smallest number of non-distinct nodes obtained

105

over all the orderings from the original tree was compared with the smallest number of non-
distinct nodes obtained via the reduced tree. It was found that reduction increased the

smallest possible number of nodes in only four trees. This accounts for just 1.75% of cases.
So in 28 of these trees, although one or more orderings produced a BDD from the reduced

tree with more nodes than the one obtained using the original tree, there was at least one

other ordering that resulted in a BDD from the reduced tree of smaller or equivalent size to

the smallest produced from the original tree. For example, the tree 'rand147' produced the

results shown in Table 6.12.

Ordering
scheme

Non-distinct BDD

nodes using the
original tree

Non-distinct BDD

nodes using the
reduced tree

Decrease in
the number

of nodes
1 3017 6692 -3675
2 160475 60575 99900

3 168581 50517 118064

4 6307 54288 -47981
5 2761 2262 499

6 36930 1493 35437

7 11385 6842 4543

8 5460 1655 3805

Figure 6.12: Results for fault tree 'rand 147'

This fault tree shows two increases in the number of non-distinct nodes obtained from the

reduced tree, in ordering schemes 1 and 4. However, the smallest BDD obtained from the

original tree (scheme 5) has 2761 non-distinct nodes. Although ordering five results in a BDD

with fewer nodes after reduction, ordering six actually produces an even smaller BDD with

only 1493 non-distinct nodes. Therefore the minimum BDD size has been reduced by

45.93%. So, even though an increase occurred using two of the schemes, the fault tree has

ultimately benefited from reduction, as a significantly smaller BDD could be constructed.

Each tree was analysed in this way and it was found that the average reduction in the

minimum number of non-distinct nodes was 44.86% for the 224 trees that recorded a

constant or decreased minimum BDD size. The minimum number of nodes for the four

remaining trees was on average 11.37% lower when constructed using the original trees.

6.4.1.2 Distinct Nodes

In 1732 cases out of the total of 1824, the number of distinct BDD nodes decreased or
remained the same after the reduction process had been applied to the trees. The average
decrease in the number of distinct nodes for these trees was 34.29%. This is not as high as

106

the result obtained for the number of non-distinct nodes, but as there are usually fewer
distinct nodes in the BDD than non-distinct nodes, there is less scope for improvement.

As with the results for the non-distinct nodes, a small percentage of the cases actually
showed an increase in BDD size. This occurred for 92 cases out of 1824 (5.04%), which is

slightly more than when considering non-distinct nodes.

The 92 cases that showed an increase in size account for 45 different fault trees. Of these,

reduction had a negative effect on twelve, as the minimum number of nodes that was

obtained over all the orderings was smaller before reduction than after reduction, by 12.55%.

These twelve trees account for 5.26% of the set of fault trees that were considered. However,

reduction had either a positive effect or no effect on the remaining 33 trees, as although one

or more orderings resulted in an increase in the number of nodes, another ordering either
improved or equalled the smallest number of nodes that was previously attainable. For these

trees, together with the 183 trees that showed no increase in the number of distinct BDD

nodes after reduction, the average decrease in the minimum number of distinct nodes was
32.47%.

Of the twelve trees whose minimum number of distinct BDD nodes increased through

reduction, only two were in the set of four that reduction affected negatively when considering

the number of non-distinct nodes. Therefore, for ten of the trees that recorded an increase in

the minimum number of distinct BDD nodes after reduction, their minimum number of non-
distinct BDD nodes actually decreased or stayed the same (in fact it decreased for nine and

remained the same for one). And conversely, there were two trees whose minimum number

of non-distinct BDD nodes increased after reduction that did not show an increase in the

minimum number of distinct BDD nodes - one showed a decrease, one remained the same.
So overall, only two trees (rando33 and rand144) showed an increase in the minimum

number of both distinct and non-distinct BDD nodes after reduction.

6.4.1.3 Number of If-Then-Else Calculations

The number of He calculations required to obtain the BDD from the reduced trees either
decreased or remained the same when compared to the number needed for the original trees
in 1580 out of 1824 cases. On average, the number of calculations was reduced by 40.87%.
This is a very promising result, as it shows that not only is the final BDD size significantly

affected by the reduction process, but that the number of calculations and the time taken to

perform them is also substantially reduced.

In 244 cases, which account for 13.38% of those considered, the number of ite calculations
actually increased. This is a larger percentage than was obtained for the number of non-

107

distinct and distinct nodes and means that although the final BDD size is smaller, sometimes
more calculations are necessary for its construction.

The 244 cases that showed an increase in the number of required ite calculations account for

53 different fault trees. Of these, reduction has a negative effect on 27 (11.84% of the

sample), as the minimum number of ite calculations was smaller by an average of 10.51%

when the BDDs were constructed from the original trees. Only one of these trees (rand144)

also showed an increase in the minimum number of distinct and non-distinct BDD nodes after

reduction. The remaining 26 trees actually benefit from or are not affected by the reduction

process, as although one or more orderings resulted in an increased number of calculations,

the previous minimum was either improved or equalled by other schemes. For these trees,

together with the 175 trees that showed no increase in the number of ite calculations after the

reduction process has been applied, the average decrease in the minimum number of

calculations was 40.39%.

6.4.1.4 Summary of Results

The BDDs constructed from the reduced fault trees were compared against those constructed

using the original fault trees for three different measures of BDD complexity. The reduction

technique has been shown to perform well according to each, with average decreases of

46.72% over 96.00% of the 1824 cases for the number of non-distinct BDD nodes, 34.29%

over 94.96% of cases for the number of distinct BDD nodes and 40.87% over 86.62% of

cases for the number of ite calculations required to construct the BDD.

The smallest attainable values of BDD complexity (i. e. the minimum obtained over all eight

ordering schemes) were also compared for each of the original and reduced trees. Average

decreases were recorded of 44.86% over 224 trees for the number of non-distinct nodes,

32.47% over 216 trees for the number of distinct nodes and 40.39% over 201 trees for the

number of ite calculations required to obtain the BDD.

Only one tree (rand144) recorded an increase in each measure of BDD complexity. Nine

other trees (benjiam, rstree5, worrell, random4, random7, rando27, rando45, rando72 and

rand152) show no improvement in any of the measures, but reduction has a positive effect on
the remaining 218 trees, which each produce BDDs with at least one improved complexity

measure.

108

6.4.2 Performance of the Ordering Schemes on the Reduced Fault Trees

The performance of the ordering schemes on the reduced trees is assessed in two ways. The

first method considers the number of times that each scheme produces the best results and
the second method examines the average ranking of each scheme over all the trees. The

results are discussed in the following sections.

6.4.2.1 Results: Highest Scheme Rankings

The schemes are ranked in order according to the complexity of the BDDs that they produce

and a count is then made of the number of times that each scheme receives the highest

ranking. Three measures of BDD complexity are considered: the number of non-distinct BDD

nodes, the number of distinct BDD nodes and the number of ite calculations required for BDD

construction. Results are not included for the trees that give identical values for each ordering

scheme.

6.4.2.1.1 Non-Distinct Nodes

The eight ordering schemes gave identical results for 90 of the 228 trees. This is significantly

more than the number of identical results obtained using the non-reduced trees. In fact, the

number has increased by more than 50% from 59 trees. This is due to two factors. Firstly, the

reduced trees generally have fewer variables, meaning there are fewer variations in the

orderings produced by the schemes and consequently identical BDDs are constructed. The

second reason is that smaller fault trees produce BDDs that are not so variable is size and so

different orderings are more likely to produce BDDs with the same complexity, but that are not

necessarily identical. Whatever the reason for producing identical results, it is obviously

advantageous if it reduces the importance of choosing just one 'correct' scheme.

The results for the remaining 138 trees are shown in Table 6.13.

Ordering scheme 1 2 3 4 5 6 7 8

Number of trees using 13 24 23 24 30 32 28 63
non-distinct nodes

Table 6.13: The number of reduced trees for which each scheme was ranked the highest

according to the number of non-distinct BDD nodes

The event criticality scheme (8) performs significantly better than the other schemes,
producing BDDs with the fewest non-distinct nodes for 63 fault trees. This echoes the result
obtained for the non-reduced trees.

109

The four weighted methods (schemes 5-8) have all performed well, producing better results
than the structural schemes. This was not seen in the results for the non-reduced trees and

could be due to the way in which the reduced trees are now structured

6.4.2.1.2 Distinct Nodes

The ordering schemes produced identical results for 90 trees. Again, this is significantly more
than the number of identical results obtained for the non-reduced trees, which was 64. Table

6.14 shows the results obtained for the remaining 138 trees.

Ordering scheme 1 2 3 4 5 6 7 8

Number of trees using 12 40 35 39 14 32 37 35
distinct nodes

Table 6.14: The number of reduced trees for which each scheme was ranked the highest

according to the number of distinct BDD nodes

The schemes based upon a depth-first approach (2,3,4 and 7) perform well, as they did for

the non-reduced trees. However, the results are far closer when using the reduced trees, with

a difference of only 28 between the best and worst performers (modified depth-first (scheme

2) and modified top-down (scheme 1) respectively) compared with a difference of 57 when

using the non-reduced trees. This again suggests that the choice of ordering scheme is of
less importance when considering the reduced trees. There are still 'good' and 'bad' schemes
for each tree, but overall the difference is not as marked as it was with the non-reduced trees.

6.4.2.1.3 Number of If-Then-Else Calculations

The eight schemes produced identical results for 64 of the 228 fault trees. Again, this is a

significant increase on the 41 identical results obtained using the non-reduced trees. The

results for the remaining 164 trees are shown in Table 6.15.

Ordering scheme 1 2 3 4 5 6 7 8

Number of trees using 20 44 28 19 20 43 33 55 ite calculations

Table 6.15: The number of reduced trees for which each scheme was ranked the highest

according to the number of ite calculations

110

The event criticality ordering scheme (8) outperforms the other schemes, producing BDDs
from the fewest ite calculations in 55 cases. The results are similar to those obtained for the

non-reduced trees, with schemes 2,6 and 8 producing the best results, though the dynamic

top-down weighted measure (scheme 6) has not performed as well as it did previously.

6.4.2.2 Results: Overall Ranking of the Schemes

The schemes are ranked in order from the one that produces the best results (i. e. the

smallest number of nodes or the fewest ite calculations) to the one that produces the worst

results for each fault tree, where a ranking of one indicates the best performance and a

ranking of eight indicates the worst performance. The rankings are then added together over

all 228 trees, to give an indication of the overall behaviour of the schemes. The best

performance is indicated by the scheme with the lowest added ranking The results are not

included for the trees that give identical values for each ordering scheme.

6.4.2.2.1 Non-Distinct Nodes

The rankings were added over the 138 trees to give the results shown in Table 6.16.

Ordering scheme 1 2 3 4 5 6 7 8

Added rankings for

non-distinct nodes
627 640 583 595 460 508 659 371

Table 6.16: The added rankings for each ordering scheme for 138 reduced fault trees

The event criticality scheme (8) performs better than the other seven ordering schemes,

which means that in addition to producing BDDs with the fewest number of non-distinct nodes
for the most trees, it also produces consistently good results for the remaining trees. This is a

result that was also seen for the non-reduced trees. In general, the weighted measures (with

the exception of scheme 7, which is discussed below) perform better than the structural

ordering schemes, both in the number of times they produce the smallest BDD and in these

results for the overall scheme rankings.

The bottom-up weighted measure (7) performs badly in this scheme assessment method,
though the results for the number of times it received the highest ranking placed the scheme
in fourth position. This suggests that although it produces the smallest BDDs for a
considerable number of fault trees, it does not perform well over the remaining trees. This

conclusion was also drawn for the non-reduced trees.

6.4.2.2.2 Distinct Nodes

The rankings were added over the 138 trees to give the results shown in Table 6.17.

Ordering scheme 1 2 3 4 5 6 7 8

Added rankings 717 503 491 505 583 468 578 528
for distinct nodes

Table 6.17: The added rankings for each ordering scheme for 138 reduced fault trees

The dynamic top-down weighted scheme (6) produced the best results, which is the first time

that the depth-first schemes have been outperformed when considering the number of distinct

BDD nodes (for both reduced and non-reduced trees).

It was noted in the results for the number of times that each scheme produced the best

ranking that they were much closer for the reduced trees than for the non-reduced trees. This

is also the case here with a difference of only 249 between the best and worst performing

schemes, compared with 353 for the non-reduced trees. This again suggests that the choice

of scheme becomes less critical when considering the number of distinct BDD nodes for

reduced trees.

6.4.2.2.3 Number of If-Then-Else Calculations

The rankings for each scheme were added for the 164 fault trees to give the results shown in

Table 6.18.

Ordering scheme 1 2 3 4 5 6 7 8

Added rankings 785 614 647 739 627 531 746 542
for He calculations

Table 6.18: The added rankings for each ordering scheme for 164 reduced fault trees

The dynamic top-down weighted measure (6) and the event criticality scheme (8) both

perform well, as they did for the number of times each produced BDDs using the smallest

number of ite calculations. The event criticality scheme (8) would probably be a marginally
better choice of scheme as it produced BDDs with the fewest ite calculations for 12 more
trees than the dynamic top-down weighted measure (6). However, the dynamic top-down

weighted measure has shown great potential and proved the better choice of scheme for the
non-reduced trees (when considering the number of ite calculations) and would benefit from
further investigation.

112

6.4.2.3 Summary of Results

The event criticality ordering scheme (8) performs well when considering the number of non-
distinct BDD nodes, producing the smallest BDDs most often and the best overall ranking. It

is also a good choice of scheme when considering the number of ite calculations required to

obtain the BDD. The dynamic top-down ordering (6) also produced good results for the

number of ite calculations and was the best choice of scheme when considering the overall

rankings for the number of distinct BDD nodes. The modified depth-first scheme (2) produced

BDDs with the fewest distinct nodes for the most trees and is the only category in which the

event criticality (8) and dynamic top-down orderings (6) were outperformed. In fact, the four

schemes based on the depth-first approach provided the best results in this category, as they

did when considering the non-reduced fault trees.

The ordering schemes produced identical results for a significant number of the reduced
trees. For the number of non-distinct and distinct BDD nodes, identical results were obtained
for 90 trees whilst for the number of ite calculations, the total number of trees with identical

results was 64. These figures are substantially higher than for the non-reduced trees and

suggest that it is less critical to choose just one 'correct' scheme. This was also shown in the

results for the number of distinct BDD nodes, where there is less difference between 'good'

and 'bad' schemes.

6.5 Conclusions

The Faunet reduction technique has been shown to be an effective pre-processing tool for

fault trees. BDDs constructed from a set of 228 reduced trees were compared against those

obtained from non-reduced trees for three different measures of BDD complexity: the number

of non-distinct BDD nodes, the number of distinct BDD nodes and the number of He

calculations required to obtain the BDD. The results showed a significant decrease in each

measure of BDD complexity for a large percentage of the trees tested. The performance of

eight ordering schemes on the reduced trees was also assessed according to these

measures and the results obtained suggest that the choice of ordering scheme becomes less

critical when dealing with reduced trees. The use of the Faunet reduction technique is

therefore recommended for application to fault trees before constructing BDDs.

113

Chapter 7: Quantitative Analysis of Binary Decision Diagrams
Incorporating Modules and Complex Events

7.1 Introduction

The quantitative analysis of BDDs is an exact and efficient procedure, which determines

many properties of the system under consideration. To date, the methods have only been

applied to BDDs consisting entirely of basic events. However, the techniques of reduction and

modularisation have been investigated as methods of optimising fault trees and so can result
in BDDs encoding both complex and modular events. The current methods therefore need to

be extended to consider these additional factors.

In this chapter, the current procedures for performing the basic elements of quantitative

analysis, such as calculating the system unavailability, the unconditional failure intensity and

the criticality functions of the basic events, are explained. The methods are then extended to

incorporate both complex events and modules into the analysis, so that BDDs obtained from

reduced and modularised fault trees can be quantified.

7.2 System Unavailability

The ite structure encoded in the BDD is derived from Shannon's theorem, which can be used

to express the structure function for the top event as:

f(X) = Xi-fl (X1, X2,...,)4"lß 11 Xi+11..., Xn) 7.1

-F XýJ&1i X2,... ß Xi-1,0, xI+1,... P Xn)

where: x4 is the pivoting variable

fý and f2 are Boolean functions with x; =1 and x; =0 respectively.

If f(x) represents the root vertex of the BDD, encoding the event x,, then the equations for the

next level in the BDD will be fi for the one branch and f2 for the zero branch. The probability of

the top event (i. e. system unavailability) can be found by taking the expectation of each term

of Equation 7.1, to give:

E[f(x)] = q, (t). E[f1] + (1-q, (t)). E[f2] 7.2

where q, (t) = E[x;], the probability that event i occurs.

Therefore the system unavailability can be calculated by summing the probabilities of the
disjoint (mutually exclusive) paths through the unminimised BDD. The disjoint paths can be
found by tracing all paths from the root vertex to terminal one vertices. Each disjoint path
represents a combination of working and failed components that leads to system failure and

114

therefore events lying on both one and zero branches are included in the probability
calculation.

In order to implement the calculation procedure, Equation 7.2 can, in effect, be applied to

each node in the BDD to get its 'probability value'. This only has a physical representation for

the root vertex, as it is equivalent to the top event probability; for any other node in the BDD it
is simply used as a means of calculation and has no physical significance. For any BDD

node, F= ite(xi, J, K), the probability value is given by:

P[F] = q, (t). P[J] + (1-q, (t)). P[K] 7.3

where P[J] is the probability value of the node on the one branch of F

P[K] is the probability value of the node on the zero branch of F

Equation 7.3 is applied to the BDD in a bottom-up manner. Nodes that have terminal vertices

on both their one and zero branches are considered first, as terminal one and zero vertices

simply have probability values of one and zero respectively. The values are then worked up

through the BDD until the top event probability can be evaluated.

7.3 System Unconditional Failure Intensity

The system unconditional failure intensity, w8y$(t), which is defined as the probability that the

top event occurs at t per unit time, is given by:

ways(t)_ Gi(q(t))"wi(t) 7.4

where G, (q(t)) is the criticality function for each component

w, (t) is the component unconditional failure intensity

The criticality function is defined as the probability that the system is in a critical state with

respect to component i and that the failure of component i would cause the system to go from

a working to a failed state. Therefore:

G1(q(t)) = Q(11 'q(t)) - Q(01' q(t)) 7.5

where Q(1i, q(t)) is the probability of system failure with q, (t) =1 and Q(0;, q(t)) is the probability

of system failure with q, (t) = 0.

An efficient method of calculating the criticality function from the BDD1321 considers the

probabilities of the path sections in the BDD up to and after the relevant nodes. For example,
consider the variable xi, which occurs at two intermediate nodes in the BDD, as shown in
Figure 7.1.

115

XI-I

F

A

F3

1 0, 0

Figure 7.1: BDD section showing the locations of variable x,

Q(11, q(t)) and Q(0;, q(t)) can be defined for this variable as:

Q(11, q(t))= (pr
l(q(t))"Poz,

(q(t)))+Z(q(t)) 7.6
n

Q(6i, q(t))_ (Pr),, (q(t))"Poz, (q(t)))+Z(q(t)) 7.7
n

where: pr,,, (q(t)) - the probability of the path section from the root vertex to the node x, (set

to one for the root vertex).

pozl(q(t)) - the probability of the path section from the '1' branch of a node encoding
x; to a terminal '1' node (or the probability value of the node beneath the
'1' branch of x;).

pool (q(t)) - the probability of the path section from the '0' branch of a node encoding
x; to a terminal '1' node (or the probability value of the node beneath the
'0' branch of x;).

Z(q(t)) - the probability of paths from the root vertex to the terminal '1' node that

do not go through a node encoding xi.

n- all nodes encoding variable xr in the BDD.

By substituting Equations 7.6 and 7.7 into Equation 7.5, the criticality function for each event
can be expressed as:

GI (q(t)) = prx, (q(t))[poX, (q(t)) - poo, (q(t))] 7.8
n

As this summation is over all the nodes encoding a particular event, the algorithm must

calculate prx, (q), poX, (q) and poz, (q) for each node and record the values separately. For

this reason, pr[F], po'[F] and po°[F] are referred to as the corresponding values calculated for
the nodes, which are then used in the evaluation of Equation 7.8 according to the encoded

116

variable. Only when they have been found for each occurrence of the event in the BDD can
the criticality function for that event be calculated.

The values of pr[F], pol[F] and po°[F] (known collectively as the 'path probabilities') are

calculated during one depth-first pass of the BDD, during which the structure beneath the one

branch of any node is always fully explored before returning to consider the zero branch.

Starting with the root vertex, values of pr[F] are assigned to each node as the branches are

descended. Once the foot of a branch is reached, the procedure continues by working back

up through the BDD calculating values of pol[F] and po°[F] for each of the nodes.

The calculation of the system unavailability can be performed simultaneously, as po'[F] is

equivalent to the probability value of the node beneath the one branch of F, and po°[F] is

equivalent to the probability value of the node beneath its zero branch. Therefore at each

stage of the calculation, both the path probabilities and the terms of Equation 7.3 are

evaluated. The algorithm that encodes this calculation procedure is shown in Figure 7.2.

prob_value(F)
{

F= Ite(x;, J, K)

Consider '1' branch:

if (J = 1) then po'[F]=1
else
{

if (visited[J] = 1) then temp = pr[J]
else temp =0

pr[J] = gi. pr[F]
pol[F] = prob value(J)

pr[J] = pr[J] + temp

Consider '0' branch:

if (K = 0) then po°[F) =0

else
{

if (visited[K] = 1) then temp = pr[K]
else temp =0

pr[K] = (1-q,)"pr[F]

po°[F] = prob-value(K)
pr[K] = pr[K] + temp

Calculate the probability value of the node:

if (visited[F] = 0) then
{

probability[F] = qi. po'[F) + (1-q,). p0°[F]
visited[F] =1

}
retum(probability[F])

Figure 7.2: Algorithm to calculate the system unavailability and node path probabilities

The algorithm returns the probability value of the node under consideration, so the original

calling function will receive the top event probability. The variable 'visited', which is used
throughout the algorithm, is used to determine whether or not a node has previously been

considered in the calculations. Due to sub-node sharing, a node may be reached by more
than one path and its value of pr[F] needs to include the probabilities of all the possible path
sections from the root vertex to that node. Therefore if a node has previously been visited and
assigned a value of pr[F], this is held in a temporary variable, whilst the new value from the

117

current path is used to calculate the increase in the values of pr[F] for the nodes beneath. For

example, consider the section of a BDD shown in Figure 7.3:

Pra Prb

F1
X1

F2
X2

Figure 7.3: A section of a BDD, reachable by two different paths

If the probability of the path sections from the root vertex to node F1 is Pre by one route and

Prb by a second route, then the total value of pr[Fl] is Pry, + Prb. However, the depth-first pass

through the BDD would assign these values in two separate calculations. On the first visit to

node F1, pr[F1] is evaluated as Pra. This is subsequently used to calculate the value pr[F2]

(resulting in Pre. gi) and values of pr[F] for any other nodes beneath F1 in the BDD. When

node F1 is visited for the second time, the probability of the paths sections by the second

route, Prb, must be used to calculate the increase in the values of pr[F] for the nodes beneath.

The initial values are kept in temporary variables, and on returning through the BDD the

values from the two separate passes are added together to give the correct value of pr[F] for

each of the nodes. For example, for node F2 the second pass assigns a value of Prbgl to

pr[F2]. Adding the two values together results in a total of Q1. (Pr8 + Prb), which is equivalent to

what would have been calculated had a single pass been made through the BDD using the

total value for pr[Fl] of (Pre + Prb). However, although some nodes will be encountered more

than once, it is still more efficient to carry out this depth-first calculation, rather than

continually searching through the lie structure to find whether or not the nodes can be

reached by alternative paths and then performing the calculations once the final values of

pr[F] have been established.

The values of po1[F] and po°[F] are stored for each node and the algorithm shown in Figure

7.4 is used to calculate both the criticality functions for each of the basic events and the

unconditional failure intensity of the system.

118

calc criticality
{

set G; (q) =0 for each event.
for (each node F= ite(Y4, J, K) in the BDD)
{

G, (q) = G, (q) + Pr[F]. (Po'[F] - Po°[F])
}

wSY� = 0.0
for (each event, x4 in the system)
{

ways = ways +G (q). wi
}

}

Figure 7.4: Algorithm to calculate the event criticality functions and the system

unconditional failure intensity

The calculation procedure is demonstrated in the following section, by means of a worked

example.

7.4 Worked Example

To demonstrate the calculation of the system unavailability and unconditional failure intensity,

consider the BDD shown in Figure 7.5.

F1
X1

F2

X2

F3
F4

1
F5

X4 10

10

Figure 7.5: Example Binary Decision Diagram

There are three paths through the BDD that end with a node that has terminal vertices on
both branches. These paths must be considered in turn.

119

1. The one branch of node Fl:

Fl -F3-F5

2. The zero branch of node F1, which splits into two sub-branches at node F2:

Fl - F2 - with sub-branches (a) - F3 - F5

(b) - F4

One Branch: Fl - F3 - F5

Starting at the root vertex F1, the value 1.0 is assigned to pr[F1]. Node F3 Is reached by

descending the one branch of F1 and the current value of pr[F3] can then be calculated (this

will not be the total value, as the node can be reached by another path):

pr[F3] = pr[F1]. gl

= q1

The current value of pr[F5] can also be evaluated:

pr[F5] = pr[F3]. (1-q3) [F5 lies on the zero branch of F3]

= q, (I -q3)

Having reached the foot of this BDD branch, the procedure continues by working back up

through the BDD, calculating po'[F], po°[F] and probability values for the nodes. As the

probabilities of the paths beneath branches leading directly to one and zero terminal vertices

are one and zero respectively, the probability value of node F5 is simply q4.

Node F3 has a terminal one vertex on its one branch (which therefore has a probability value

of one) and the probability of the paths beneath its zero branch is equal to the probability

value of the node beneath, i. e. node F5. Therefore the probability value of F3 Is calculated as:

P[F3] = g3. po1[F3] + (1-g3). po°[F3]

=q3+ (1-q3). P[F5]

= q3 + (1 "43)44

This value therefore becomes the probability of the paths beneath the one branch of node F1

and concludes the calculations on this branch.

Zero Branch: Fl - F2 -

The probability of the paths from the root vertex to node F2 is given by:

pr[F2] = pr[F1]. (1-qi)

= 1-q1

120

There are two possible paths through the BDD from node F2, but as the one branch of any

node is always explored before the zero branch, this is considered first.

Sub-Branch (a): - F3 - F5

Moving down the BDD to node F3, it is noted that it has already been visited, so

current values of pr[F] of both F3 and F5 are temporarily stored whilst new ones are

utilised. The additional probabilities arising from this path are now calculated:

pr[F3] = pr[F2]. q2

= (1-gl)42
and,

pr[F5] = pr[F3]. (1-q3)

= g2(1-q1)(1-q3)

These are then added to the previous values to give totals of:

pr[F3] = qi + (1-q,)g2

and,

pr[F5] = (q1 + (1-gl)q2)"(1-q3)

The path probabilities po'[F] and po°[F] and the probability values for these nodes are
not re-evaluated, as they do not change. The probability of the paths below the one
branch of F2 is therefore assigned the probability value of node F3 that has already
been calculated. The second sub-branch of node F2 is considered before returning to

node Fl.

Sub-Branch (b): - F4

Descending the zero branch of node F2 allows the calculation of the probability of the

paths from the root vertex to node F4:

pr[F4] = pr[F2]. (1-q2)

=

The probability value of node F4 is simply q3. This value is assigned to the probability
of the paths beneath the zero branch of node F2 and the probability value of F2 can
then be calculated as:

P[F2] = Q2, pol[F2] + (1-g2). po°[F2]

= q2(q3 + (1-g3)q4) + (1-g2)q3

= q3 + 42g4(1 -q3)

121

Finally, the probability value of the root vertex is calculated, which gives the top event

probability:

Qsy. = P[F11 = gi. po'[F1] + (1-gi). po°[F1]

= q, (q3 + (1-g3)q4) + (1-q,)"(g3 + g2q4(1-q3))

= q3 + g4(1-q3)"[qi + g2(1-q1)]

The calculation results are summarised in columns 3 to 6 of Table 7.1.

Node Variable
Probability

Pr Po' Poo Criticality
value (P)

F1 X1 q3 + g4(1-q3). 1 q3 + q3+ g4(1-q3)(1-q2) [q1+ g2(1-q1)I q40 -q3) g2q4(1-q3)

F2 X2 q3+g2q4(1-q3) 1-q1 q3+
q40 -q3)

q3 g4(1-q1)(1-q3)

F3 X3 q3+g4(1-q3) qi+g2(1-q1) 1 q4
(1-q4)"

(qi+g2(1-ql)l

F4 Xs q3 (1-g1)(1-q2) 1 0 (1-ql)(1-g2)

F5 X4 q4
(1-q3)"

1 0
(1-q3)"

[ql+g2(1-qi)] [q_+g2(1-q_)]

Table 7.1: Quantitative results for the BDD in Figure 7.5.

The final column of Table 7.1 shows the criticality values that are calculated according to the

algorithm in Figure 7.4. This gives the correct criticality functions for variables xj, x2 and x4 as

they each appear only once in the BDD. However, as variable x3 is encoded in both nodes F3

and F4, their criticality values must be added to give the total criticality function for x3:

Gs = (1-g4)dql+g2(1-q1)] + (1-gl)(i-q2)

=1- 44[41 + g2(1-q1)]

The final stage of the analysis is to calculate the system unconditional failure intensity, which
is given by:

wy(t) = G1w1 + G2w2 + G3w3 + G4w4

= wlg4(1-q3)(1-q2) + W2g4(1-q1)(1-q3) + w3(1-g4[qi + g2(1-ql)]) + w4(1-g3)"[ql+g2(1-q1)]

The analysis so far has considered BDDs containing only basic events. in the following

sections this is extended to incorporate both complex events and modules.

122

7.5 Incorporating Complex Events and Modules Into the Analysis

The following sections describe the extension of the current quantification methods to

consider BDDs encoding complex events and/or modular events. The aim of the analysis is to

obtain not only the system unavailability and unconditional failure intensity, but to be able to

extract the criticality functions for the basic events that contribute to the complex events and

modules. This is essential, as although reduction and modularisation may be used to help

construct the BDDs, it must be possible to analyse the system in terms of its original

components.

7.5.1 Syntax

When modules are identified and extracted from a fault tree, the result is a set of subtrees,

which together describe the original system. Each of these trees is converted to a BDD and

the analysis is performed on the resulting set of BDDs. The BDD that represents the top

event, and from which the top event probability can be calculated, is referred to as the

`primary' BDD. The remaining BDDs encode the structure of the subtrees and are labelled

according to the 'modular event' that replaces the subtree in the higher-level fault tree

structure.

7.5.2 Overview of the Calculation Procedure

The calculation process starts at the root vertex of the primary BDD and proceeds down

through the branches, calculating the probabilities of the paths from the root vertex to each of
the nodes. The unavailability of each encoded event is required as it enables the calculation

of pr[F] for the nodes beneath. Therefore, the probabilities of both the complex and modular

events are necessary for the analysis.

Values of po'[F] and po°[F] are calculated for the nodes on the way up through the primary
BDD. If a node is encountered that encodes either a complex or modular event, then the

complex event or module must be further analysed to assign appropriate values of pr[F],

po'[F] and po°[F] to its component nodes. This allows the calculation of the criticality functions

of the basic events with the complex events and modules.

The criticality functions of basic events encoded within the primary BDD are calculated

according to Equation 7.8 at the end of the analysis, once the path probabilities of the nodes
have been evaluated. The criticality functions of all the basic events are then used together

with their unconditional failure intensities to calculate the system unconditional failure
intensity.

123

It is also possible to calculate w,, y$(t) by considering only the events encoded In the primary
BDD. This would require both the criticality functions of any encoded modular and complex

events and their unconditional failure intensities. Although these are relatively simple to

calculatet331, they are values that have no further use in the analysis. Instead, the criticality

functions of all basic events are calculated, which allows the analysis of the contributions to

system failure through component or basic event importance measures.

The techniques for calculating the complex and modular event probabilities and the criticality
functions of their constituent basic events are described in the following sections.

7.5.3 Unavailability of Complex and Modular Events

The probabilities of the complex events are used during the depth-first pass of the BDD to

calculate the values pr[F], po'[F] and po°[F] for other nodes in the BDD.

The probabilities of the complex events are calculated as they are formed, which ensures the

process is as efficient as possible. Determining their probabilities is a straightforward

procedure, as they are only a combination of two component events. The calculation depends

on whether the events were combined under an 'AND' gate or an 'OR' gate, so for a complex

event Xc that has constituent events X, and X2, the unavailability is given by:

'AND' Gate: q, = glq2 7.9

'OR'Gate: g0=q, +q2-q, q2 7.10

The probabilities of the modular events are not calculated before the quantitative analysis

takes place, but are determined as and when required during the analysis (once a value has

been calculated it is stored for later use). The calculation of the unavailability of a modular

event is effectively that of finding the probability of the 'top event' of the module. A depth-first

algorithm (similar to the one shown in Figure 7.2) is used, which sums the probabilities of the

disjoint paths through the module's BDD. If another modular event, x,, is encoded within the

module, the algorithm identifies its root vertex, M[x;], and proceeds to call itself to calculate the

required probability. Thus, the unavailability of modules encoding only basic and complex

events will necessarily be evaluated first. The algorithm is shown in Figure 7.6.

124

module-prob(F)

F= ite(x4, J, K)

Consider '1' branch:

if(J=1)thenpo1[F]=1

else po'[F] = module-prob(J)

Consider '0' branch:

if (K = 0) then p6°[F] =0
else po°[F] = module-prob(K)

Calculate and return probability value of node:

if (xi is a modular event whose probability is

unknown) then qi = module-prob(M[xi])

probability[F] = qj"po'[F] + (1-qi)"p6°[F]

return(probability[F])
}

Figure 7.6: Algorithm for calculating the probability of a module

The calculation procedures for evaluating the probabilities of the complex and modular events

are therefore relatively straightforward. At this stage they could be used alone to determine

the system unavailability by performing the depth-first calculations (as In the algorithm for

analysing single BDD structures in Figure 7.2) on the primary BDD onlym1. The calculation of

the basic events' criticality functions does however require further analysis. This is discussed

in the following sections.

7.5.4 Criticality of Basic Events Within Complex Events

Once the path probabilities have been calculated for a node encoding a complex event, that

complex event must be further analysed by assigning appropriate values of pr,, (q), pox, (q)

and pozl (q) to its component events. These are required so that the criticality functions of the

basic events can be evaluated. Consider a node encoding the complex event X, as shown in

Figure 7.7.
Prc

Pic PO

Figure 7.7: A complex event node within a BDD

125

The two events that combine to form this complex event are joined either by an 'AND' gate or

an 'OR' gate, which gives the possible Ito structures and corresponding BDDs as shown in

Figure 7.8.

'AND': XC= Xi. X2
Xc = ite(X1, ite(X2,1,0), 0)

'OR': XC=X1+X2
Xý = ite(X1,1, ite(X2,1,0))

Figure 7.8: The possible BDD structures of a complex event

The complex event node effectively replaces one of these structures in the original BDD

(either the primary BDD or the BDD of a module). In order to evaluate the path probabilities of

the nodes encoding these component events, the terminal one vertices are simply replaced

with the probability of the paths below the one branch of the complex event node and the

terminal zero vertices are replaced with the probability of the paths below the zero branch of

the complex event node. The probability of the paths preceding the root vertex does not have

the usual value of one, but takes the value of pr[F] of the complex event node (prc). This is

shown in Figure 7.9.

Pro

x,

xz PO°

Poc Pop.

prc

X1

Poc x2

Poö Pop.

(a) X, = X, . X2 (b) X, = Xi + X2

Figure 7.9: The complex event structure

Using Figure 7.9, the values of pr,, (q), poX, (q) and poz, (q) can be calculated for the

variables X, and X2. The resulting expressions are shown in Equations 7.11 - 7.22.

126

'AND' gate: 'OR' gate:

XI: prl =prc 7.11 XI: pr1 =prc 7.17

Poi =g2"Poc +(1-g2)"PoC 7.12 poi =poi 7.18

poI = Poo 7.13 po° = g2. poc + (1- q2) -POO 7.19

X2: pr2 =prc. gl 7.14 X2: pr2 =pr . (1-q1) 7.20

POI t= poc 7.15 pot = Poe 7.21

pot = poc 7.16 pot = poc 7.22

As the events X, and X2 may be either basic events or other complex events, this process is

repeated until values have been calculated for all contributing basic events. The criticality

functions of the basic events are then calculated according to Equation 7.8. The algorithm

implementing this method is shown in Figure 7.10.

complex calc(xc)
{

xý=Xi <OP> X2

Calculate probabilities:

pr[xi] = pr[xc]
po'[x2] = Po'[Xcl
po°[x2] = po°[xc]

if (<op> = 'AND')
{

pol [xi] = g2. po'[xc] + (1-g2). Po°[Xc]
po°[xi] = P0°[Xc]
Pr[x2] = Pr[x1. gi

}

if (<op> ='OR')
{

po'[xi] = Po'[xc]
Po°[x, } = g2. Po1 [xc] + (1-g2)"Po°[xxl

Pr[x2] = Pr[x]"(1-qi)
}

If contributing events are basic, then calculate criticality,
otherwise call function again:

if (xi is a basic event) then G1 = G1 + pr[xi]. (po'[xi] - po°[xi])

else complex_calc(xi)

if (x2 is a basic event) then G2 = G2 + pr[x2]. (po'[x2] - po°[x2])
else complex calc(x2)

Figure 7.10: Algorithm for the calculation of the criticality functions of basic events within

complex events

7.5.4.1 Repeated Complex Events

Any complex event can appear more than once in the BDD, resulting in new values of pry(q),

poX, (q) and poXi(q) being calculated for its component events on each occasion. The

criticality function for each of the contributing basic events must therefore be calculated in

stages, using the newly assigned values each time. Once this additional criticality value has
been calculated for each of the contributing basic events, it is added to the current value so

127

that it is calculated as the analysis proceeds, rather than as a separate procedure at the end
of the analysis as is the case for the basic events in the primary BDD.

7.5.5 Criticality of Basic Events Within Modules

Modular events are dealt with in a similar way to complex events. Once the path probabilities

of the modular event node are known, the module is further analysed to determine the path

probabilities of its component nodes. These probabilities must be assigned as they would
have been, had the module not been replaced by the single modular event. In order to do this,

the values of po'[F] and po°[F] of the modular event node replace any terminal one and zero

vertices within the module, and the probability of the paths preceding the root vertex of the

module is assigned the value of pr[F] of the modular event node. This is shown in Figure 7.11.

prm

Module X_-

Prm

+

Pom Pom PC

Figure 7.11: Replacing a modular event with the entire module structure

o0 m

Unlike complex events, the structure of modules is not fixed. They can contain any number of

events (basic, complex, or indeed other modular events), connected by any number of gates.
Therefore, the path probabilities are assigned to the nodes by means of a depth-first process,

which is capable of dealing with any BDD structure. The method is very similar to that used
for analysing a single BDD, the algorithm for which is shown in Figure 7.2. The difference is

that whenever a terminal node is encountered, the probability of the paths below either the

one or the zero branch of the modular event node is used, rather than the terminal vertex

probability values of one and zero. Obviously, pr[F] of the root vertex will also be set to equal
the probability of the paths preceding the modular event node.

As with complex events, the calculations required to obtain the path probabilities for the
nodes within the module must be repeated for each occurrence of the modular event in the
BDD. These values are used to calculate the additional contributions to the criticality functions

of the basic events that arise due to the further occurrences of the modular event.

128

Pom Pom

7.6 The Algorithm for Incorporating Complex Events and Modules Into the Analysis

The analysis of the primary BDD is conducted in a similar manner to the analysis of single
BDD structures, except for the processes instigated when a modular or complex event Is

encountered. As the probabilities of complex events are calculated as they are formed, they

are treated as basic events when descending the BDD. However, once the path probabilities
have been evaluated for a complex event node, the algorithm 'complex_calc' (Figure 7.10) is

used to calculate the criticality functions of its constituent basic events.

If a modular event is encountered when descending the BDD, the algorithm 'module rob' (as

shown in Figure 7.6) is called to calculate the probability of the modular event if it has not

already been evaluated. When ascending the BDD, a depth-first algorithm is used to calculate

the criticality functions of the basic events that contribute to the module.

As the process for determining the path probabilities of the nodes within a module is so

similar to the procedure used for dealing with the primary BDD, a separate algorithm is not

needed. The existing method is simply extended to include both options. The resulting

algorithm is shown in Figure 7.12 and deals with the primary BDD or any of its modules,

depending upon how the parameters are set. It requires three initial variables, which are set

each time the function is called: F, subtree and m_node. These are described below:

F: The node currently being considered.

subtree: The variable that determines whether the node belongs to a module or the

primary BDD - set to'l' if it occurs in the BDD of a module, '0' otherwise.

m_node: If node F belongs to a module, m_node is the modular event that has

replaced that module structure in the higher-level BDD.

Further variables that are used within the algorithm are:

visited[F]: Determines whether or not node F has previously been considered in the
calculations - set to '1' if it has been considered, '0' otherwise.

M(x;): The root node of the module replaced by the modular event x,.

If 'subtree' is set to zero, the algorithm performs calculations on the primary BDD, resulting in

the calculation of the top event probability and values of pr[F], po'[F] and po°[F] for each of its

nodes.

If 'subtree' is set to one, the calculations will determine pr[F], po'[F] and p6°[F] for nodes in

the module and upon exiting the module, the algorithm evaluates the criticality functions for

each of its basic events.

129

When the algorithm is initialised, the node to be considered is set as the root vertex of the

primary BDD and the variable 'subtree' is set to zero. The algorithm then performs all the

necessary calculations and returns the top event probability.

'\

caic_prob(F, subtree, m_node)
{

F= ite(xi, J, K)

if (x4 is a modular event whose probability is

unknown), then qi = module-prob(M[xi])

Consider '1' branch:
if (J = 1) then

if (subtree = 0) then po'[F] =1
else po'[F] = po'[m_node]

else
{

if (visited[J] = 1) then temp = pr[J]

else temp =0

pr[J] = g1. pr[F]
pol [F] = calc_prob(J, subtree, m_node)
pr[J] = pr[J] + temp

}

Consider '0' branch:

if (K = 0) then
if (subtree = 0) then po°[F] =0
else p6°[F] = po°[m_node]

else
{

if (visited[K] = 1) then temp = pr[K]
else temp =0

pr[K] = (1-q,)"pr[F]

po°[F] = calc-prob(K, subtree, m_node)
pr[K] = pr[K] + temp

}

Figure 7.12: The algorithm for the quantitative analysis of BDDs encoding modular and

complex events

7.7 Worked Example of the Calculation Procedure

Calculate the probability value of the node:

if (visited[F] = 0) then
{

probability[F] = qi. po'[F] + (1-q,). po°[F]
visited[F] =1

}

If Yq is a complex or modular event, calculate the

additional criticality of its component basic events:

if(x, is a modular event)
{

Calculate pr and po values for events within the

module; the root node of the module is M[x].

set pr[M[x;]] = pr[F]
set subtree =1
calc_prob(M[xi], subtree, F)

for(aII basic event nodes in the module)
{
G[event] =G[event] +pr[node]. (po'[node] -

po°[node])

}
}
else if (xi is a complex event)
{

complex calc[xi]
}

retum(probability[F])

The method of dealing with BDDs encoding complex and modular events is demonstrated

with the following example. Consider the BDDs shown in Figure 7.13, where (a) shows the

'primary' BDD for the fault tree containing the top event, and (b) and (c) show the BDDs for

4 modules M1 and M2 contained within the primary BDD. Note that each node in the set of

130

BDDs is labelled uniquely, for ease of identification. The data for the complex events, which

shows their constituent events and the gate type under which they were combined, is given in

Table 7.2.

Fl F6 F9

(a) - Primary BDD (b) - Ml (c) - M2

Figure 7.13: Example BDD set

Complex
event

Gate
value

Event 1 Event 2

2000 OR g k

2001 OR 2000 j

2002 AND i h

2003 AND 1 2001

Table 7.2: Complex event data

The basic event data (unavailability, q;, and unconditional failure intensity, w,, of each event)

are shown in Table 7.3. The probabilities of the complex events are calculated as they are
formed, according to Equations 7.9 and 7.10 and are also shown in Table 7.3. The

unconditional failure intensities of the complex events are not required for the analysis.

Event a b c d e f g h

q; 0.008 0.005 0.008 0.006 0.007 0.010 0.003 0.002

w, (h(1) 3.92x10'6 2.88x10'6 1.94x10'5 9.90x10"7 4.67x10'5 7.23x10'6 1.10x10'5 8.30x10'7

Event i j k 1 2000 2001 2002 2003

q, 0.004 0.009 0.005 0.015 7.985x10'3 1.691 x10'2 8.000x10'6 2.537x10'4
wi (h(l) 1.65x10'5 4.20x10'5 5.58x10'7 2.15x10'8 - - - -

Table 7.3: Event data for the BDDs shown in Figure 7.13

131

There are two paths through the primary BDD that end with a node that has terminal vertices

on both branches; the first starts with node F1 and includes the nodes on its one branch (F2

and F4), the second path also begins at node F1, but comprises of the nodes on the zero
branch (F3 and F5). The analysis is therefore considered in four stages - descending the one
branch of F1, ascending the one branch, descending the zero branch of F1 and finally

ascending the zero branch.

Descending the One Branch of Fl

The process begins at the root vertex F1 with the value 1.0 assigned to pr[F1]. No further

calculations can be undertaken until the unavailability of the encoded modular event, M1, is

known. Therefore the procedure for calculating the probability of a module is implemented.

Unavailability of M1:

Evaluating the unavailability of the module M1 simply requires the summation of the

probabilities of the disjoint paths through its BDD (Figure 7.13(b)). The algorithm
shown in Figure 7.6 performs this procedure efficiently.

The disjoint paths through the BDD are:

1. c. d

2. c. d. e

Therefore the unavailability of the module is given by:

4M1= 4o. gd + qo. (1 - gd)"qa

= 1.037x10'4

Having calculated the module's probability, the calculations in the primary BDD can

continue.

Descending the one branch of node F1 in the primary BDD leads to node F2. The probability

of the paths from the root vertex to this node is calculated as follows:

pr[F2] = gMl"Pr[Fl]

= 1.037x10-4

Node F2 also encodes a modular event whose probability is unknown. This must be

calculated before moving down the BDD branches.

132

Unavailability of M2:

The unavailability of module M2 is calculated in the same manner as M1, so is

considered independently of the primary BDD. Although it contains complex events, it

is treated in exactly the same way at this stage, as their probabilities have already
been calculated. The disjoint paths through the BDD are:

1.2003

2.2003. f. 2002

Therefore the unavailability of the module is given by:

qM1 = q2003 +0- g2003)ql. q2OO2

= 2.538x104

The calculations in the primary BDD can now continue.

Having calculated the unavailability of the modular event M2, the nodes on the branches of

node F2 can now be examined. As the one branch is a terminal one vertex it needs no further

consideration, except to set po'[F2] equal to 1.0. The node F4 lies on the zero branch, so is

considered next.

The probability of the paths from the root vertex to node F4 is calculated as follows:

pr[F4] = Pr[F2]. (1-qM2)

= 1.036x10.4

Both the one and zero branches of F4 lead to terminal nodes, therefore po'[F4] and po°[F4]

are set to 1.0 and 0.0 respectively and the process of moving back up through the BDD starts.

Ascending the One Branch of Fl

The probability values of the nodes are calculated on the way back up through the BDD

branches. Also, any nodes encoding complex or modular events are explored so that the

criticality functions of their constituent basic events can be calculated.

The node currently being considered is F4, whose probability value is simply the unavailability
of the node variable 'b', which is equal to 0.005. This value also becomes the probability of
the paths below the zero branch of node F2, po°[F2].

As node F2 encodes the modular event M2, and the path probabilities for this node have all
been calculated, the module must be explored and probability values assigned to its nodes.

133

Assigning Values to the Nodes Within Module M2

The nodes within the module's BDD are assigned probabilities as they would have

been, had the module not been replaced in the higher-level BDD structure by the

single modular event. Therefore pr[F9] is given the value of pr[F2] (i. e. 1.037x10-4), as
detailed earlier. The probabilities of the paths below branches that lead to terminal

one and zero vertices are assigned the values po'[F2] (i. e. 1.0) and po°[F2] (i. e.
0.005) respectively.

The calculations are summarised in Table 7.4.

Node Event Pr Pol Poo Probability value

q2003 + po°[F9]. (1-g2003)
F9 2003 1.037x10 1.0 5.000x10'3

= 5.253x10'3

F10 f pr[F9]. (1-g2003) 3 5 008x10' 005 0 po'[F10]. gt + po°[F10]. (1-q,)

I
4 = 1.036x1 0' I . . 3 = 5.000x1 0'

-
F1 1 2002 pr[F10]. gf 1 0 005 0 q2002 + p6°[F11]. (1-g2002)

=1.036x10'8 . . = 5.008x10'3

Table 7.4: Assigning values to the nodes of module M2

The criticality functions of the basic events within this module are also evaluated. For

event T, the values of node F10 are used, giving:

Gf = 1.036x10'4. (5.008x10,3 - 0.005)

= 8.250x10»10

In order to calculate the criticality functions of the basic events that form the complex

events 2002 and 2003 (which has further complex events 2000 and 2001 as

components), Equations 7.11-7.22 are used to evaluate prx, (q), poX, (q) and pool (q)

for each basic event. The results of applying these equations, together with the

calculated criticality values are shown in Table 7.5.

134

Complex Gate Component pr pol p6° Criticality

event type event of the component event

X =i
Pr2002 = gh. Po'2002 + (1-qn)" P0°2002 = 9 2 062x10 , 1.036x10 e P0°2002 = 6.990x103 0.005 .

2002 AND

X2 =h
Pr2002. gi --

4 146 10'9 P012002 = 1.0 P0°2°°2 -
0 005

4.125x10'9
. x .

X1=1 Pr2003 =
g2001-13012003 +

(1-g2001)" Po zoos
130°2003 =

3
6 1.745x10

-4 1.037x10 .2 5.000x10'
2003 AND = 2.183x10

X2 = 2001
Pre 3"qi -

1.555x10 s o'2oos =1 .0 P
PO°2003 =

5.000x10'3 -

qj. P&2001 +
X1 = 2000 Pr2001 _

.6 P012001 = 1.0 (1-g1). po°2001 -
2001 OR

1.555x10
=1.396x10-2

X2 =i
Pr2®1. (1-g2000)

=1.543x10-8
I Po 2001 = 1.0 P0°2001 =

5.000x10.3
6 1.535x10

X' =g
Pr2OOO _

1 555x10-6 PO 2000 =1.0
qk-Po12000 +

(1-gk). 130°2oo° 1.526x10.6
2000 OR . =1.889x10-2

X2 =k
Pr2ooo. (1-gg)ý

=1.550x10
Po'2oo° = 1.0

P002000 =2
1.396x10

1.526x10'6

Table 7.5: Calculation of the criticality of basic events within complex events 2002 and 2003

Having calculated the current criticality values of the basic events within module M2,

the calculation process continues in the primary BDD.

The probability value of node F2 is now calculated. This also gives the probability below the

one branch of the root vertex, Fl:

po'[F1] = P[F2] = gM2. po'[F2] + (1-gM2). po°[F2]

= 5.253x1 o'3

This concludes the second stage of the analysis - the current calculated values are shown in

Table 7.6.

135

M2:

Node Event
One Zero

Pr Po' Poo
Probability

branch branch value

F1 M1 F2 F3 1.0 5.253x10,3

[Fi Pr
po'. gm2 +
° F2 M2 1 F4

l0ß 1
1.0 0.005 po . (1-qM2) _

x 1 . 037x
5.253x10,3

F3 a F5 0

pr[F2]. (1-qM2)
R b 1 0

=1.036x10
1.0 0.0 qb = 0.005

F5 M2 1 0

F9 2003 1 F10 1.037x10.4 1.0 5.000x10-3 5.253x10-3

F10 f F11 0 1.036x10-4 5.008x10-3 0.005 5.000x10.3

F11 2002 1 0 1.036x10'6 1.0 0.005 5.008x10.3

Table 7.6: Current calculated values for the primary BDD and module M2

Descending the Zero Branch of Fl

As the probabilities of both modular events have been determined, the calculations required
for descending this branch of the BDD are straightforward. They simply involve calculating the

probability of the path sections from the root vertex to nodes F3 and F5.

pr[F3] = pr[F1]. (1-qml)

= 9.999x10.1

and,
pr[F5] = pr[F3]. ga

= 7.999x10'3

The probabilities below the one and zero branches of node F5 can be set to 1.0 and 0.0

respectively as they lead to terminal one and zero vertices. The final stage of the analysis

now begins.

Ascending the Zero Branch of Fl

As node F5 encodes the second occurrence of the modular event M2, additional criticality
values must be calculated for the basic events within the module.

Assigning Values to the Events Within Module M2 - Second Occurrence

The probability preceding node F9 is set to the value of pr[F5] (7.999x10'3) and the
probabilities of the paths below branches that lead to terminal one and zero vertices
are assigned the values po'[F5] and po°[F5] respectively (simply 1.0 and 0.0).

136

The calculations are repeated with these new values for all nodes within M2,

overwriting the previous results. The summarised calculations are shown in Table 7.7.

Node Event Pr Po' Poo Probability value

F9 2003 7.999x10-3 1.0 8.000x10.8 q2003+po°(1-q2)

= 2.538x10-4

F10 f pr[F9]. (1-q20)
000X10 e 8 0 0 po1. q, +po°"(1-qß)

= 7.997x10.3 . . = 8.000X10-8

F11 2002 pr[f10].
1 = 7.997x10-5

1.0 0.0 gzooz = 8.000x10 e

Table 7.7: Assigning values to the nodes of module M2

Additional criticality values of the basic events within the module are now evaluated.
For event T, the values of node F10 are used, giving:

Gf = 7.997x1 0,3. (8.000x10"6 - 0.0)

= 6.398x10.8

As for the previous occurrence of M2, Equations 7.11 - 7.22 are used to obtain values

of pr,, (q), pol, (q) and poop (q) for the basic events. The results of the calculations

are shown in Table 7.8.

Complex Gate Component pr pol p6° Criticality

event type event of the component event

2002 AND
X, =i 7.997x10'5 2.000x10'3 0.0 1.599x10''

X2 =h 3.199x10' 1.0 0.0 3.199x10'7

2003 AND
X1 =I 7.999x103 1.691x10'2 8.000x10'8 1.353x10'4

X2 = 2001 1.200x10'4 1.0 8.000x10.8 -

2001 OR
X1= 2000 1.200x10'4 1.0 9.000X10'3

X2 =j 1.190x10'4 1.0 8.000x10'8 1.190x10-4

2000 OR
X1 =9 1.200x10' 1.0 1.396x10"2 1.183x10'4

X2 =k 1.196x104 1.0 9.000x10'3 1.186x10'4

Table 7.8: Calculation of the criticality of basic events within complex events 2002

and 2003

The new values of the events' criticality functions are added to the values calculated
previously, to give their total criticality functions.

137

The probability value of node F5 is given by the unavailability of the encoded modular event,

M2, which was previously calculated to be 2.538x10"4. This also determines the value of

po'[F3]. The probability value of F3 can therefore be computed, which in turn gives the

probability of the paths below the zero branch of the root vertex:

po°(F1] = P[F3] = ga. po1[F3] + (1-ga). po°[F3]

= 2.030x10-6

As node F1 encodes a modular event, its component basic events are considered before its

probability value (and so the probability of the top event) is calculated.

Assigning Values to the Events Within Module M1

The probability preceding the root vertex, F6 is assigned the value of pr[F1] (1.0) and
the probabilities of paths below branches that lead to terminal one and zero vertices

are assigned the values po'[F1] (5.253x10,3) and po°[F1] (2.030x10-6) respectively.

The calculations to determine the remaining path probabilities and criticality functions

for the basic events are straightforward, as all the nodes encode basic events. The

calculations are summarised in Table 7.9.

Node Event Pr Po' Poo Probability value Criticality

F6 c 1.0 7.007x10'5 2.030x10"6
'. g0 + po°. (18qß) po2
= . 575x10'

6.804x10"8

F7 d pr[F6]. gc = 5 253x10'3 878x10'5 3
po'. gd + po°. (1-qd)

4.171 x10'5 8.000x10"3 . . = 7.007x10"5

F8 e
pr[f7]. (1-qa)

253x1 0"3 5 e 030x1 0' 2 po'"q. + po°. (1-q.)
4.175x1 0'5

= 7.952x10'3 . . = 3.878x1 0"S

Table 7.9: Assigning values to the nodes of module M1

Once the criticality functions have been evaluated, the final calculations in the primary
BDD can be performed.

The top event probability, which is given by the probability value of the root vertex F1, is

calculated as follows:

Q8ys= P[F1] = gMi. po'[F1] + (1-gMl). po°[F1]

= 2.575x10'8

All the calculations are summarised in Table 7.10. There are two sets of values for the

module M2, as it has two occurrences in the primary BDD.

138

Ml:

M2:

Node Event
One Zero

Pr Po' Po°
Probability

branch branch value

po1. gM, +
F1 M1 F2 F3 1.0 5.253x10.3 2.030x10'8 po°. (1-qM,)

= 2.575x10.6

po'. q, 2 +
F2 M2 1 F4 pr[F1]. qMl

4 '
1.0 0.005 po°. (1-qr,,, 2) =1.037x10 = 5.253x10"3

po'"q. +
F3 a F5 0 pr[F1]. (1-qMl)

2.538x10'4 0.0 po°. (1-qa)
= 9.999x10'

= 2.030x10'8

F4 b 1 0 pr[F2]. (1-qm2)
.4

1.0 0.0 qb = 0.005
=1.036x10

F5 M2 1 0 pr[F3]. ge = 1 0 0.0 2.538x10.4
7.999x10.3 .

F6 c F7 0 1.0 7.007x10'5 2.030x10'6 2.575x10$

F7 d 1 F8 8.000x10"3 5.253x10.3 3.878x10'5 7.007x10'5

F8 e 1 0 7.952x10.3 5.253x10"3 2.030x10'6 3.878x10.5

1.037x10'` 1.0 5.000x10'3 5.253x10.3
F9 2003 1 F10

7.999x10'3 1.0 8.000x10'8 2.538x10"4

1.036x10'` 5.008x10-3 0.005 5.000x10.3
F10 f F11 0

7.997x10'3 8.000x10,8 0.0 8.000x10'8

1.036x10.6 1.0 0.005 5.008x10.3
F11 2002 1 0

7.997x10'5 1.0 0.0 8.000x10'6

Table 7.10: Final calculated probabilities for the primary BDD and its modules

The criticality functions of the basic events within the primary BDD are now calculated

according to Equation 7.8:

Ga = 0.9999. (2.538x10 - 0.0)

= 2.538x10'`

Gb = 1.036x10'4. (1.0 - 0.0)

= 1.036x10'`

Table 7.11 shows the criticality functions for all the basic events.

Event a b c d e f

Criticality 2.538x10"4 1.036x10'4 6.804x10'5 4.171x10'5 4.175x1c15 6.480x10'8

Event g h I j k I
Criticality 1.198x104 3.240x10-7 1.620x10-7 1.206x10"4 1.201x10' 1.370x10-4

Table 7.11: The criticality functions of the basic events

139

The system unconditional failure intensity can be found from Equation 7.4:

W sys (t) _ Gi (q(t))"wt (t)

=1.135x10"8 hr"'

This concludes the quantitative analysis of the BDD. If required, the methods could be

developed to obtain further basic event importance measures, such as those detailed in

Chapter 2. The criticality functions are needed for many of these and are a major element

required to evaluate the criticality measure of component importance.

7.8 Conclusions

In this chapter the quantitative analysis has been developed for BDDs that encode modular

and/or complex events. It has been shown how the analysis proceeds to enable the

calculation of the top event probability and the system unconditional failure intensity. In

addition, a technique for extracting the criticality functions of the basic events, which are

constituents of both complex events and modules, has been developed. This enables the

system to be assessed in terms of its original components and allows analysis of the

contributions to system failure through basic event importance measures.

140

Chapter 8: A Fault Tree Analysis Strategy Using

Binary Decision Diagrams

8.1 Introduction

The BDD technique for Fault Tree Analysis provides a more accurate and efficient means of

system assessment than the conventional approach of Kinetic Tree Theory. However, there is

currently no method of selecting an appropriate ordering scheme that can be used to

guarantee the successful construction of a BDD for all fault trees. As such, emphasis in the

research has turned to applying alternative techniques that increase the likelihood of

obtaining a BDD for any given fault tree structure, by ensuring that the associated calculations

are as efficient as possible. This chapter introduces an analysis strategy for fault trees, which

aims to implement this requirement by providing a structured framework for the BDD

construction process, so that the BDD method can be used successfully for any given system.

The initial stage of the analysis strategy applies two pre-processing techniques to the fault

tree: reduction and modularisation. The reduction technique optimises the fault tree structure,

whilst modularisation identifies modules that can be analysed independently of the rest of the

tree. This results in a set of concisely written subtrees, which are logically equivalent to the

original fault tree structure. BDDs are constructed for each, using a variable ordering
determined by one of eight ordering schemes. Quantitative analysis is then performed

simultaneously on the resulting set of BDDs to obtain the top event probability, the system

unconditional failure intensity and the criticality functions of the basic events.

The stages of the analysis strategy are detailed in the following sections and demonstrated

throughout with the use of an example fault tree. The program written to implement the
technique is also discussed and results are given at the end of the chapter for its application
to a set of fault trees.

8.2 Pre-Processing of the Fault Tree

The aim of applying the pre-processing techniques is to obtain the smallest possible fault

trees, so that the process of constructing the BDDs becomes as simple and efficient as
possible. Two simplification procedures are used. The first of these is Faunet reduction, a
technique that restructures the tree to a more concise format. This is followed by linear-time

modularisation, which identifies modules existing within the tree that can be analysed
separately. The result is a set of simple, independent fault tree structures that together
describe the original system.

141

8.2.1 Faunet Reduction

Faunet reduction is a technique that is used to reduce the complexity of fault trees, so

eliminating any'noise' from the system, without altering the underlying logic. Its effectiveness

was demonstrated in Chapter 6, where its application to a large set of fault trees significantly

reduced the complexity of the resulting BDDs.

The fault tree shown in Figure 8.1 is used to demonstrate the analysis strategy.

- Figure 8.1: Example fault tree

The fault tree is represented by a data file throughout the program and it is this that is

manipulated, rather than the actual fault tree structure. As details of the data manipulation for

the Faunet reduction technique were discussed in depth in Chapter 6, only the effect of

applying the technique will be considered here and the data file for the fault tree will be
introduced in the following section.

The basic event data for the fault tree is shown in Table 8.1 and is read into the program at
the same time as the data file containing the fault tree structure.

Event a b c d e f

q; 0.003 0.0045 0.008 0.01 0.0035 0.0025

A 1.94x10-4 9.90x10-7 2.15x10"6 1.37x10"5 3.92x10'6 8.50x10-7

Event g h i i k m
q; 0.015 0.012 0.009 0.004 0.007 0.015

w; 2.44x10-6 6.40x10' 2.27x10-6 3.92x10.6 6.22x10'5 8.76x10,8

Event n p q r s

q; 0.005 0.008 0.0065 0.012 0.006

w; 4.86x10'6 1.12x10'4 9.90x10'7 3.53x10'5 7.86x10'6

Table 8.1: Basic event data for the fault tree in Figure 8.1

Upon application of the Faunet reduction technique to the tree in Figure 8.1, a significantly

smaller fault tree is obtained, as shown in Figure 8.2. The corresponding fault tree data is

shown in Table 8.2. The fault tree data lists each gate that appears in the tree, together with
its type, the number of inputs (gates and events are numbered separately) and the inputs

themselves. This forms a complete description of the fault tree structure.

Figure 8.2: The resulting fault tree after the application of Faunet reduction

143

Gate

name

Gate
type

Number

of gates

Number
of events

Inputs

Top AND 3 1 G2 G3 G4 2006

G2 OR 2 1 G6 G7 a
G3 OR 1 1 G9 2003

G4 OR 0 2 cd

G6 AND 1 1 G12 e
G7 AND 0 2 af
G9 AND 0 2 di

G12 OR 1 1 G15 m
G15 AND 0 2 2002 e

Table 8.2: The fault tree data for the tree shown in Figure 8.2

The complex event data are shown in Table 8.3. The probabilities of the complex events,

which are required for the quantification process and are calculated as the complex events

are formed, are also shown in Table 8.3.

Complex

event
Gate
type

Event 1 Event 2 Unavailability

2000 AND g h 1.800x10-4

2001 OR p q 1.445x102

2002 OR r s 1.793x10,2

2003 OR 2000 b 4.679x10'3

2004 OR j 2001 1.839x10.2

2005 AND 2004 k 1.287x10-4

2006 OR 2005 n 5.128x1073

Table 8.3: The complex event data after Faunet reduction

Having reduced the fault tree to a more concise form, the second simplification technique of
modularisation is now considered.

8.2.2 Modularisation

The linear-time algorithm, introduced in Chapter 2, is an efficient method of modularisation,
which is capable of identifying the fault tree modules after only two depth-first traversals of the
tree. The advantage of identifying such modules is that each one can be analysed
independently of the rest of the tree, and the results substituted into the higher-level fault
trees where the modules occur.

144

The modularisation technique is applied to the tree in Figure 8.2, identifying the gates that
head modules as:

Top, G2 and G6

The occurrences of these subtrees are replaced in the fault tree structures by single modular
events, which are named in the same way as complex events (i. e. they take on the next

available value above 2000):

Top - 2007, G2 - 2008, G6 - 2009

In the program, this is achieved by replacing each occurrence of these gates in the list of
inputs to other gates by the appropriate modular event. This is shown in Table 8.4, where the
fault tree data now essentially incorporates three separate fault trees. The corresponding

module structures are shown in Figure 8.3.

Gate
name

Module
name

Gate
type

Number
of gates

Number
of events

inputs

Top 2007 AND 2 2 G3 G4 2008 2006
G2 2008 OR 1 2 G7 2009 a
G3 - OR 1 1 G9 2003

G4 - OR 0 2 cd
G6 2009 AND 1 1 G12 e
G7 - AND 0 2 af
G9 - AND 0 2 di

G12 - OR 1 1 G15 m
G15 - AND 0 2 2002 e

Table 8.4: The fault tree data after modularisation

(b) Module 2008 (c) Module 2009

Figure 8.3: The three modules obtained from the fault tree shown in Figure 8.2

145

(a) Module 2007

Having reduced the fault tree to a more concise form and identified all the independent

subtrees, the pre-processing stage is complete and the next step is to obtain the associated
BDDs.

8.3 Construction of the BDDs

A BDD is constructed for each of the modules, using a variable ordering determined by one of

eight ordering schemes, which are detailed in Chapter 5:

1. Modified top-down.

2. Modified depth-first.

3. Modified priority depth-first.

4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.

6. Dynamic top-down weights.

7. Bottom-up weights.

8. Event criticality.

The choice of ordering scheme for each module should be less critical than for the original
tree, due to the pre-processing techniques applied. At this stage the schemes are selected

randomly. An alternative option, however, would be to incorporate a method of scheme

selection based on the characteristics of the individual modules. This would ensure that the

most appropriate scheme was chosen on each occasion. One such approach is the neural

network technique, which is a pattern recognition method that has previously been considered

as a mechanism for selecting ordering schemes for BDD constructiont19' 30]. The following

chapter investigates this as an option for inclusion within this analysis strategy.

The fault tree data for each module must be extracted from the collective data, so that it can
be considered independently. Taking each module in turn, its variables are ordered using the

chosen ordering scheme and a BDD constructed. The BDD data is stored in an ite array, and
is added to as the BDDs are constructed for the remaining modules. This technique is now
applied to the example modules shown in Figure 8.3.

The extraction of the data for any module starts on the line on which the gate heading that

module is located. Therefore, for module 2007, which is headed by the gate Top, the process
starts on the first line of the fault tree data, which is then copied into the module data array.
Every gate that is referenced in the inputs to Top is included in the module data (G3 and G4).
Each gate that appears as an input to either G3 or G4 is also listed, and so on until every gate
that exists within the module is included in the module data. The self-contained data for

module 2007 is shown in Table 8.5.

146

Gate

name

Module

name

Gate
type

Number

of gates

Number

of events
Inputs

Top 2007 AND 2 2 G3 G4 2008 2006

G3 - OR 1 1 G9 2003
G4 - OR 0 2 cd
G9 - AND 0 2 dI

Table 8.5: Data for module 2007

This data forms a completely independent subtree, for which a variable ordering must now be

determined. A suitable scheme would be the modified priority depth-first scheme, which

results in the following ordering:

2008<2006<d<c<2003<i

The BDD obtained from this ordering is shown in Figure 8.4. It is known as the 'primary BDD,

as it represents the top event of the original fault tree and can be used to calculate the system

unavailability.

Gt

Figure 8.4: The primary BDD (module 2007) obtained from the ordering
2008<2006<d<c<2003<i

The program stores the BDD data in an ite array. Each node is identified by its unique label
(Fl, F2, and so on), as shown in Figure 8.4. The node labels are stored together with the

encoded event and the names of the nodes that appear on the one and zero branches. The
ite data contains all the information necessary to describe the BDD, as shown in Table 8.6.

147

Node Event
One

branch
Zero

branch

Fl 2008 F2 0

F2 2006 F3 0

F3 d F4 F5
F4 2003 1 F6

F5 c F7 0

F6 i 1 0
F7 2003 1 0

Table 8.6: The ite array, currently containing the data for module 2007

Each module is considered in the same way, and its ite data is stored in the same array as

the first module. Obviously, this means that the nodes in the BDDs must be labelled

differently - therefore, the number of the first node of the next BDD follows on from the

number of the final node in the previous BDD.

The extracted data for the modules 2008 and 2009 are shown in Tables 8.7 and 8.8.

Gate Module Gate Number Number inputs
name name type of gates of events

G2 2008 OR 1 2 G7 2009 a

G7 - AND 0 2 af

Table 8.7: Data for module 2008

Gate
name

Module
name

Gate
type

Number
of gates

Number
of events

inputs

G6 2009 AND 1 1 G12 e
G12 - OR 1 1 G15 m
G15 - AND 0 2 2002 e

Table 8.8: Data for module 2009

Again, variable ordering schemes must be chosen to construct the BDDs. The event criticality

ordering scheme is used for module 2008, giving the event ordering:

a<2009<f

The modified top-down scheme is used for module 2009 giving:

e<m<2002

148

The resulting BDDs, which also illustrate the node labelling, are shown in Figure 8.5.

FR

F10

F1
m

F12

(a) BDD for module 2008 (b) BDD for module 2009

Figure 8.5: The BDDs for modules 2008 and 2009, demonstrating the node labelling

The BDD data for these modules are added to the ite array, shown in Table 8.9. This now

completely represents the original fault tree structure.

Node Event
One

branch
Zero

branch

Fl 2008 F2 0

F2 2006 F3 0

F3 d F4 F5

F4 2003 1 F6

F5 c F7 0

F6 i 1 0

F7 2003 1 0

F8 a 1 F9

F9 2009 1 0

F10 e F11 0

F11 m 1 F12

F12 2002 1 0

Table 8.9: The ite array, containing the data for all the modules

Once the set of BDDs has been constructed, the quantitative analysis can begin.

149

8.4 Quantitative Analysis

The basic event data (i. e. unavailability, q, and unconditional failure intensity, wi,) are input to

the program with the fault tree data and are shown in Table 8.1. The probabilities of the

complex events are calculated as they are formed and are shown in the final column of Table

8.3.

The unavailabilities of the modules are also required and are evaluated by calculating the

probability of the modules' 'top event'. This procedure is described in further detail in Chapter

7. The probabilities of modules 2008 and 2009 in this example are:

g2008=3.11x10-3

q2009 =1.14x10.4

The quantitative analysis described in Chapter 7 is performed simultaneously on the three

BDDs, the results of which are summarised in Table 8.11.

The top event probability is given by the probability of the root vertex of the primary BDD:

Qsys(t) = 2.77 x10-9

The criticality functions of the basic events are required, so that the system can be analysed
in terms of its basic components. These are shown in Table 8.10, and are also calculated

according to the methods described in Chapter 7.

Event a b c d e f
Criticality 8.89x10"7 2.85x10.7 7.40x108 2.17x10"7 8.71x10'" 0.0

Event g h i j k m
Criticality 3.40x10'9 4.25x10'9 1.59x10'' 3.71x10'9 9.88x10'9 9.17x10.12

Event n p q r s
Criticality 5.40x10'' 3.72x10'9 3.72x10'9 1.39x10'13 1.38x10'13

Table 8.10: Criticality functions for the basic events

The system unconditional failure intensity is calculated using the criticality functions and
unconditional failure intensities of the basic events:

wsys(t)_ G, (q(t))"wi(t)

= 1.80x10'10

This concludes the analysis of the example fault tree.

150

2007:

2008:

2009:

Node Event
One Zero

Pr Po' Poo
Probability

branch branch value

g2DDS-Po' +
F1 2008 F2 0 1.0 8.89x10'' 0.0 (1-g2DOe). po°

= 2.77x10'9

F2 2006 F3 0 pr[F1]. g20° 1.73x10'4 0.0
g2006-POI +

(1-Q2). po° 3 = 3.11x10'
= 8.89x10'7

F3 d F4 F5 Pr F
1.36x10"2 3.74x10'8

qa-Po' +
(1-gd). po°

60x1Ö 1
=1.73x10'4

F4 2003 1 F6
r F3

. p[1 1.0 9.00x10

g2003. po' +

(1-g2O03). po2
= 0"7 60x

=1.36x10"

F5 C F7 0 pr[F3]. (1-qa)
4.68x10 0.0

q, Pol +o
(1-qý). po 5 = 1.58x10'

= 3.74x10'5

pr[F4].
F6 i 1 0 (1-Q2) 1.0 0.0 q, = 9.00x10'3

=1.59x10''

F7 2003 1 0 r[1.0 0.0
q2003-POI +

(1-q2)-po°
26x 10'' =P = 4.68x10'3

F8 a 1 F9 pr[F1] =1.0
poi [Fi] =

"
1.02x10'1° - 8.89x10

F9 2009 1 0
[F8]. ga po' [F1]

po°[F1] = 0.0
o' +

(l-q2GOg). po° 3 3.00 x10' = 0'7 89x1 8.
= 1.02x10'10

F10 e F11 0 prF9]
.3 10 00

2.90x10'8 po°[F9] = 0.0 - x = 3.

F11 m 1 F12 Pr[F10]. g0 pol[F9] = 1.59x1 0"B
o' + imp

° (
= 1.05x10' 8.89x10'

= 2.990x1 0x10'8

F12 2002 1 0 pr[Fl 1]. qm po'[F9] =
7 o° P [F9] 0.0 -

o' + g2002-P
° (1-g2002)"Po

=1.58x10"7 8.89x10"
.8 =1.59x10

Table 8.11: Results of the quantitative analysis applied to the BDDs in Figures 8.4 and 8.5

151

8.5 Results of the Application of the Fault Tree Analysis Strategy

The analysis strategy (program 'strategy. c') was applied to a set of 228 fault trees, whose

summary details are shown in Appendix II. The calculation times were compared with those

obtained for the construction and subsequent quantification of the BDDs directly from the

original trees. As the choice of ordering scheme has such an effect on the number of He

calculations and the size of the resulting BDDs, the times were recorded for each of the eight

available schemes. In the cases where more than one module was detected, each was

ordered using the same scheme. The calculations were performed three times for each tree

using the two methods and an average taken of the resulting calculation times in order to gain

more accurate results.

Appendix IX shows the calculation times obtained using the two methods for the 1824

different cases. Applying the fault tree analysis strategy has the effect of both increasing and
decreasing the analysis times, depending on which tree and ordering scheme is being used.
In 1446 cases the analysis times actually increased. Although this seems a large proportion,
the average increase in time was in fact only 0.145 seconds. This is probably due to the

number of comparisons necessary in the Faunet reduction technique, which for small trees is

not compensated for by the time saved in the BDD construction and quantification.

Although only 316 cases showed a decrease in analysis time, the average decrease for these

was 15.48 seconds. This result does however include the times for the tree 'randol1', which
has exceptionally large BDDs compared to the other trees. If the results for 'randoll 1' are

excluded from the analysis, then the average decrease in analysis time is still 0.654 seconds.

The results for the largest tree in the set, 'randoll', are shown in Table 8.12.

Ordering 1 2 3 4 5 6 7 8
scheme

Direct 629.16 3125.63 3145.01 174.12 306.98 234.95 940.13 108.74
analysis times

Strategy 143.33 1624.34 1625.66 59.17 103.03 48.09 325.60 46.69
analysis times

Difference 485.83 1501.29 1519.35 114.95 203.95 186.86 614.53 62.05

Table 8.12: Analysis times for the fault tree 'randol 1'

These results demonstrate the substantial savings in analysis time that can be made when
dealing with large fault trees. The time taken for the analysis using the third ordering scheme,

152

modified priority depth-first, is reduced by over 25 minutes when the fault tree analysis

strategy is implemented. The reduction in analysis time could be even more substantial for

larger fault trees.

8.6 Conclusions

The fault tree analysis strategy has the potential to reduce the analysis times of large fault

trees significantly and increase the likelihood of obtaining a BDD for any given fault tree. The

results of the application of the analysis strategy have shown that although applying the

technique slightly increases the analysis times for some trees, due to the comparisons

necessary for Faunet reduction, this is countered by the savings in analysis time for larger

trees. It is also possible that the Faunet reduction technique could be coded in a more

efficient manner, thus reducing the time spent applying the methods.

A significant advantage of the analysis strategy is the possibility of analysing the modules of

the trees separately. This is likely to be of particular use where the tree is too large to be dealt

with as a whole but can be taken piece by piece and the quantitative analysis applied to the

set of resulting BDDs.

The results were obtained using the same ordering scheme for each module of the original
fault tree. As discussed in section 8.3, it is possible to use different schemes for the modules,
depending on which best suits the module under consideration. If the optimal scheme can be

selected on each occasion, it would lead to smaller BDDs and further reduce the analysis

times. This is the topic discussed in the following chapter.

153

Chapter 9: Neural Networks

9.1 Introduction

This chapter investigates the use of neural networks as a technique for scheme selection

within the fault tree analysis strategy described in the previous chapter. The work aims to
develop a neural network model that is capable of selecting the optimal variable ordering

scheme for any given fault tree. If such a network model can be identified, it would eliminate
the need for trying several schemes until an appropriate one is found and could significantly
reduce computation time.

The use of pattern recognition techniques, such as neural networks, for selecting the optimal

variable ordering scheme for a particular fault tree based on its individual characteristics was

proposed by Bartlett and AndrewsE301. Their analysis produced encouraging results, with the

prediction of the correct scheme in up to 70% of cases. This investigation differs from the

previous research, in that the reduced fault trees will be used to train and test the network.

The following section describes the basic elements of a neural network. Two specific models,
known as the multi-layer perceptron and the radial basis function network are then described

in detail and the results of their application to the ordering problem are discussed. The
investigation uses the programs written by Bartlettt191 to perform neural network training and
validation, with modifications where necessary.

9.2 Overview of Neural Networks

Neural networks offer a powerful framework for representing non-linear mappings from

several input variables to several output variables. The general structure of a neural network
model is shown in Figure 9.1. A layer of input units representing the characteristics of the

system connects via some internal processing to a layer of output units, which each represent
one of the possible variable ordering schemes. The exact nature of the processing depends

on the type of neural network being used and is described in detail later in the chapter.

y, y2 yý Output units

TTT
Internal Processing

xý x2
O Input units

Figure 9.1: Basic structure of a neural network

154

The aim of the neural network technique is to optimise the internal parameters through some
training process to produce an effective model for the problem. This is known as the training

phase. The prediction phase tests the performance of the trained network, by using the

calculated parameters to determine output responses for a set of validation data. These

responses are compared with target responses for the data and determine whether or not it

has been trained successfully. There are three techniques for training, which are described

below.

9.2.1 Learning Techniques

Supervised learning is the most commonly used technique, in which desired values of the

outputs (target values) are specified for each set of inputs. The parameters within the network

are chosen so as to minimise the error between the target values and those actually attained
by the network. This learning technique is used within the multi-layer perceptron model and is

employed as part of the training process in the radial basis function network. In the pattern
mode of training, the parameters are updated after each individual training case has been

presented. In this investigation, however, the batch mode of training will be used, which
updates the parameters only after the entire training set has been presented.

A second widely used technique is that of unsupervised learning, which does not provide the

network with target output values for the inputs, but allows it to discover features of the
training set and then group the data into classes that it regards as distinct. The radial basis
function neural network uses an unsupervised learning technique during the training phase to
determine the basis function parameters.

A third type of learning technique that will not be considered in this investigation is

reinforcement learning. This is an unsupervised method in that target values are not specified,
but is also supervised in that information is given as to whether the network response was
good or bad.

9.3 Multi-Layer Perceptron

The multi-layer perceptron consists of a layer of input units, a layer of output units and one or
more 'hidden' layers sandwiched between, as illustrated in Figure 9.2. The bias parameters
that appear in each layer (except for the output layer) simply act like adding a constant to the
equation. A network containing no hidden layers is referred to as a single-layer neural
network. Although faster to train, it is limited in the range of functions it can represent and is
therefore not considered in this analysis.

155

Weights connect each of the units in one layer to each unit in the next and primarily determine

the behaviour of the network, as they control the influence each unit has in propagating the
intermediate outcome to the output nodes. It is the aim of the training phase to determine

optimal values for the weights, which are initially assigned random values between -0.5 and
0.5.

Yi) (yc) c output units

W10
W(2) W(2) it cM

W(2)
Wo1) WiM

ZO co ZI ZM M hidden units

bias
W10 Wjl

W(1)

WMd

W
(l)

0

td

x W(l) x, """""""""" Xd d input units

bias

Figure 9.2: Multi-layer perceptron neural network

The training phase is an iterative process, which repeatedly applies two passes through the

network, and terminates when either the error in the output units is minimised or the

maximum number of iterations is reached. The two passes consist of a forward pass, where
the current values of the weights are used to determine the values of the output units and a
backward pass through the network, which adjusts the weights in order to minimise the
difference between the target values and those actually obtained.

9.3.1 The Forward Pass

During the forward pass, the outputs of each unit are calculated layer by layer until the values
of the output units are obtained. Considering the network shown in Figure 9.2, which has d
input units, M hidden units and c output units, the weighted sum of the inputs to each of the
hidden units is given by:

d
aj _E W()x 9.1

1=o

where w, (i) denotes a weight in the first layer going from input i to hidden unit j and xi is the

value of the input i. The value of each bias unit is permanently set to 1. The output of each
hidden unit is calculated by applying a non-linear activation function, g, to its input:

Z, =9(aj)= w(I)XI 9.2

156

The values of the output units are determined in the same way, by applying a non-linear

activation function to the weighted sum of their inputs:

M

Yk =9(ak)=9
Zw zj

j=o

Md

=g Wkj) wo)XI 9.3
J=O 1=o

In this example the activation functions applied to the output units and the hidden layers are
the same, though this is not always the case. The form of the activation function is now
discussed.

9.3.1.1 The Activation Function

The activation function introduces non-linearities into the system and is applied to the net
input of each unit in order to determine its output. The majority of networks use the logistic

sigmoid activation function and although there are several popular alternatives, it is the one
that will be used in this investigation. It is given by:

g (a) -1
+ e'8

9.4

where a represents the value of the unit to be activated. Although the domain of this function

is any real number, the range is bounded between 0 and 1 as shown in Figure 9.3.

d

a

Figure 9.3: Logistic sigmoid activation function

Therefore the output of each unit will be in the range (0,1). For ease of comparison, the target

values for the outputs are also scaled within this range, as are the values of the input units.

Two alternatives to this function are the Heaviside, or step, function and the hyperbolic
tangent, given in Equations 9.5 and 9.6 respectively.

157

-4 -2 024

0 whena<O
9(a) 1 when az09.5

ea - e-a
g(a) = tanh(a) = 9.6

ea +e'a

One of the advantages of the logistic sigmoid function is that the derivative is easily calculated

as:
9'(a) = 9(a)"(1- g(a)) 9.7

This is of importance during the backward pass through the network, which is described in the

following section.

9.3.2 The Backward Pass

The aim of the backward phase is to minimise the error at the output nodes by making

adjustments to the weights within the network. This process is undertaken in three stages.
Firstly, the error between the target output values and those actually attained is calculated

using the sum-of-squares error function. This is a differentiable function of the network

weights and therefore the derivatives of the error with respect to each of the weights can be

calculated. An efficient algorithm, known as error-back propagation is used for calculating the

derivatives and forms the second stage of the process. Finally, the derivatives are used to

calculate the adjustments to be made to the weights in order to minimise the error in the

system. Each of these stages is now described in detail.

9.3.2.1 Calculating the Errors

For each training case, n, presented to the network, the sum-of-squares error function is

given by:

is! 1 Eý =-E(Yk 'tk
)2

2
k=1

9.8

where yk is the actual response of the output unit k and tk is the target response for that unit,
for the training case n under consideration. The superscript n is omitted from input and output

variables from this point onwards for clarity.

If the calculated errors are above a predetermined value and the maximum number of
iterations has not been exceeded, then training continues with the calculation of the error
derivatives.

158

9.3.2.2 Calculation of the Error Derivatives

The derivatives of the error with respect to the output layer weights are given by:

aEn
=59.9 aW (2) kZj

where the bk are referred to as the 'errors' and are calculated for each output unit according to

the following expression:
ak = g'(ak). (Yk - tk) 9.10

The derivative of the logistic sigmoid activation function is given by Equation 9.7 and is

applied to the weighted sum of the inputs to each output unit to give:

9'(ak) = 9(ak). (1- 9(ak))
= Yk"(1- Yk) 9.11

The errors, ök, are therefore simply given by:

bk =Yk"(1'Yk). (Yk "tk) 9.12

leading to the simple evaluation of each of the derivatives of the output layer weights. The
derivatives of the error with respect to each of the hidden layer weights can be calculated
once the values of Sk are known for the output layer. The öj for the hidden units can be

calculated from the back-propagation formula given by:

aj =g'(aj)lwkjbk
k

Substituting for g'(al) gives:

9.13

öj =Zß. (1-zJ). I: Wkjök 9.14
k

As for the output layer weights, the derivatives of the error with respect to each of the hidden
layer weights is given by the product of the value of 6 for the unit at the output end of the

weight and the value of the unit at the input end of the weight:

aEn
- 61XI 9.15

awýi)

The back-propagation formula shows that the value of ö for any hidden unit can be calculated
by propagating the ö's backwards from units higher up in the network. The output layer is

always considered first, as the values of ö are dependent only on the target and calculated
values of the output units. Any size of network can be dealt with using this method. A full
derivation of these results can be found in reference 35.

159

9.3.2.3 Computation of the Weight Adjustments

Once the error derivatives have been calculated, an optimisation algorithm is employed to find

the minimum of the error function. Gradient descent is one such algorithm and is considered
below.

The gradient of a function is the direction in which it increases most rapidly. Therefore the

negative gradient gives the direction in which to move in order to decrease the function most

rapidly. The gradient descent algorithm iteratively updates the weights by moving small
distances in the weight space in the direction of greatest rate of decrease of error. The

weights can be combined to form a single weight vector w, which is updated according to:

WL+i _WT+AWT 9.16

Awz=-fVEJ
T 9.17

where ,r labels the iteration step and VEI
WT

gives the gradient of E in weight space, evaluated

at wt. The parameter q is referred to as the learning rate and determines the step size taken.

If r) is chosen to be too small, the convergence towards the minimum will be slow; conversely
if n is too large, the algorithm may continually overshoot (causing oscillatory motion) and
never converge.

A modification to this method adds a momentum term, with the aim of smoothing out any
oscillations. Each new search direction is now calculated as a weighted sum of the current

gradient and the previous search direction. The modified gradient descent formula is given by

Awl =-nVEI WT
+NOw`-' 9.18

where pis the momentum term in the range 0: 5 p :SI.

A disadvantage of this technique is that the learning rate and momentum term must both be

selected by trial and error at the start of the process. However, the optimum values will
depend on the particular problem and may also vary during the training. One approach for

automatically updating the values when required is the bold driver technique135l. This applies a
multiplicative factor to the learning rate parameter, which depends on whether the error has

actually increased or decreased after a given step. If the error increases, then the algorithm
must have overshot the minimum, so the learning rate parameter was too large. The step is

undone and repeated with a smaller learning rate parameter. This process continues until a
decrease in the error is recorded. However, if the error decreases at a given step then the
new values are accepted and the value of the learning rate parameter increased for the next
step, as it may currently be too small. The learning rate is therefore updated according to
Equation 9.19.

160

(a"noid if AE <0
fl new = jt 9.19

Y"floid if AE >0

The parameter a is chosen to be slightly greater than 1 (typically around a=1.1), in order to

avoid subsequent error increases and y is chosen to be significantly less than 1 (typically

y=0.5) so that the algorithm quickly finds an error decrease.

Having calculated the optimal weights, the network is tested by comparing its responses to a

set of test data with target responses for those patterns.

The following section describes the initial network architecture that was employed for the

application of the multi-layer perceptron to the ordering problem.

9.3.3 Network Architecture for the Ordering Problem

9.3.3.1 Output Units

Each of the output units of the network represents one of the possible variable ordering

schemes. In this investigation, eight ordering schemes were available for selection, so

requiring eight output units. Previous work had used six ordering schemes1191, but it was felt

that as these were all structural schemes, they did not adequately cover the range of

possibilities and so adding in some weighted schemes would lead to improved results. The

eight schemes used are:

1. Modified top-down.

2. Modified depth-first.

3. Modified priority depth-first.

4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.

6. Dynamic top-down weights.

7. Bottom-up weights.

8. Event criticality.

Each of these schemes is described in detail in Chapter 5. Target values were calculated for

each of the output units by determining the number of non-distinct nodes in the BDDs

obtained using each of the schemes (Appendices VI and X). As the values of the output units
result from the application of the logistic sigmoid activation function to their summed inputs,

they are in the range (0,1), though they will never reach the extreme values of 0 and 1 due to
the nature of the function. Therefore the number of BDD nodes is scaled from 0.0001 to
0.9999 to allow easy comparison between the target values and those actually attained by the

161

network. The value of 0.9999 is given to the most desirable scheme (i. e. the one with the

lowest number of non-distinct nodes) and 0.0001 is given to the scheme with the worst

performance. The remaining schemes are scaled linearly between these values. Scaled

target output values are shown for the tree'trialsl' in Table 9.1.

Scheme number 1 2 3 4 5 6 7 8

Number of non- 244 439 439 416 221 230 513 186
distinct nodes
Scaled target

0.8226 0.2264 0.2264 0.2967 0.8929 0.8654 0.0001 0.9999
values

Table 9.1: The scaled target outputs for the tree 'trials1'

Target values are obtained in this way for each tree in the training data set. In the prediction

phase, the scheme corresponding to the unit with the largest value is deemed the optimal

choice. The selected scheme is compared with the known best scheme for that tree to

determine the network performance.

9.3.3.2 Input Units

Each input unit represents one characteristic of the fault tree. There are an infinite number of

possibilities for the characteristics and so initially the eleven that had produced the best

results in Bartlett's workl191 are used. It was expected that they would produce improved

results in this investigation, as they are being used on the reduced fault trees. The

characteristics are:

1. Percentage of 'AND' gates in the tree.

2. Percentage of different events that are repeated.
3. Percentage of the total events that are repeated.

4. Top gate type ('AND' gate - 1, 'OR' gate - 0).

5. Number of inputs to the top gate.

6. Number of levels in the tree.

7. Number of basic events in the tree.

8. Greatest number of gates in any level.

9. Number of gates with gate inputs only.

10. Number of gates with event inputs only.

11. The highest multiple of a repeated event.

162

As the characteristics can take a large range of values (i. e. top gate type can only be 0 or 1,

whereas the number of basic events can run into hundreds), they are scaled across the whole

set of training trees to be between 0.9999 and 0.0001. The tree with the largest value of a

particular characteristic is given an input unit value of 0.9999; the tree with the lowest value is

assigned 0.0001 for the unit representing the characteristic. The value of that unit for each of
the other trees is scaled linearly in the range relative to the minimum and maximum values.
The only exception is for characteristic four, which encodes the top gate type. The unit is

given the value 1 for an `AND' gate and 0 for an `OR' gate.

The maximum and minimum values of each characteristic are also used to determine the

input unit values of the test trees. Again, each characteristic is scaled relative to the extreme

values. If a characteristic is found to have a value that is larger or smaller than the maximum

or minimum obtained from the training trees, then it is assigned the value 1 or 0 respectively.

9.3.3.3 Training and Validation Data

The 228 fault trees that were used for the analysis of the reduction method in Chapter 6 were
initially considered for the training and validation data. However, once the reduction

procedure has been applied, 22 of these trees consisted only of a single event. The number

of distinct and non-distinct nodes is therefore one for each tree and the number of if-then-else

(ite) calculations is zero. These trees were not considered useful for the neural network

analysis and were removed from the set. A further 42 trees that each had an identical number

of non-distinct nodes, distinct nodes and He calculations for every ordering scheme were also

removed. This does leave some trees that have identical target values for each scheme when

considering only one measure of BDD complexity, but simply means that there are no trees in

the set for which no distinctions could be made between the ordering schemes for all three

measures. As the number of trees is now significantly smaller, 72 randomly generated trees

were identified as suitable for addition into the data set. The summary details of these trees

are listed in Appendix II. The data set now consists of 236 trees, 216 of which are used as
training trees and the remaining 20 as test trees.

The 20 test trees are chosen from the set, so that each ordering scheme is the optimal choice
for approximately the same number of trees. The target schemes for the chosen test trees are

shown in Table 9.2.

163

Tree bddtest Iisab25 Iisab27 Iisab34 Iisab36 Iisab62 lisab70

Target
1,5,8 4 3 2 7,8 1 4

scheme(s)
Tree Iisab78 randl2l rand135 rand137 rand139 randl4l rand 142

Target
3 4,6 6 8 8 7 5

scheme(s)
Tree rand144 rand147 rand156 rand159 rando47 rando54

Target
5 6 7 2,3 1 2

scheme(s)

Table 9.2: Target schemes for the twenty test fault trees

9.3.3.4 Hidden Layers and Units

The number of hidden layers and the number of units within those layers are central to the

multi-layer perceptron model. Using too few may not model the complexity of the problem, but

using too many increases the training time dramatically. Masters1361 documents that one
hidden layer is usually all that is needed, but that two are sometimes required. However, more

than two hidden layers are never theoretically needed.

A guideline for choosing the number of hidden units in a two-layer network (i. e. one which has

two layers of weights and therefore has one hidden layer) with d input units and c output units

is the geometric pyramid rule, which says that the hidden layer would have c. d hidden

units. Masters recommends using as few hidden units as possible, so starting with two and

adding one at a time. Usually three to six are optimal and the Masters suggests that more

than ten are almost never needed.

A full investigation was carried out, using one and two hidden layers. When one hidden layer

is used, the number of units is incremented from two to nine. When two hidden layers are

used, the investigation starts with two units in each and increases the number in the second
layer by one each time to a total of six. The process is repeated for three units in the first layer

and so on until there are six units in each layer. These figures were used, as including more

units in the hidden layers was beyond the computing capabilities available.

9.3.3.5 Parameter Values

Using the enhanced gradient descent technique means that the initial values chosen for the

momentum and learning rate parameters should be less critical. However, various values
between 0.001 and 1.0 were chosen for each parameter to try and obtain the best possible
network performance. The values of a and y were set to 1.04 and 0.5 respectively throughout

the investigation.

164

9.4 Results of the Multi-Layer Perceptron Investigation

Using the network architecture described in the preceding sections, 520 trials were performed

with a single hidden layer and 1000 trials were performed with two hidden layers.

The investigation with the single hidden layer started by using two hidden units and increased

the number by one each time until there were nine hidden units. The value of the learning rate

parameter, n, varied between 0.01 and 0.15. For each value of n, the momentum, p, was

varied between 0.001 and 0.15. The best results obtained were 6/20 correct predictions on
the test data set; the average number of correct predictions was 3.548/20. The results are

shown in Table 9.3.

Number of correct 0 1 2 3 4 5 6 7 8
predictions

Number of trials 0 1 28 213 244 31 3 0 0

Table 9.3: Results obtained using a single hidden layer in the network

The number of hidden layers was increased to two and the investigation started with each
layer containing two hidden nodes. This was increased by one each time until both layers

consisted of six hidden units. The value of the learning rate parameter varied between 0.01

and 0.10. For each value of q, the momentum was varied between 0.001 and 0.15. The

greatest number of correct predictions was 7/20, which was obtained using six hidden units in

each layer and with n and p set to 0.6 and 0.5 respectively. The average number of correct

predictions was again very poor at 3.903, though slightly better than the average obtained
using one hidden layer. The results are shown in Table 9.4.

Number of correct 0 1 2 3 4 5 6 7 8
predictions

Number of trials 0 1 17 74 896 11 0 1 0

Table 9.4: The results obtained using two hidden layers in the network

Given the poor results obtained using the current network architecture, an alternative was
considered, which uses the number of He calculations required to construct the BDDs to

calculate the target values for the output units.

165

9.4.1 Using the Number of If-Then-Else Calculations for the Output Units

The number of non-distinct nodes in the BDD gives an indication of its final size, but it was

thought that the number of He calculations required to produce the BDD would give a better

indication of the complexity of the BDD. Some BDDs can have very few non-terminal nodes,

but require extensive calculations for their construction.

The number of He calculations required to construct the BDD using each of the eight

orderings was obtained for the reduced fault trees (Appendices VIII and X) and scaled in the

same way as for the number of non-distinct nodes. A new set of test trees was chosen, as the

optimal scheme choices are not the same when considering the number of ite calculations.
The twenty test trees and their target schemes are shown in Table 9.5.

Tree Iisab17 Iisab37 Iisab47 Iisab70 lisab75 randlOO rand135

Target
7 4,8 5 4 3 5,8 6

scheme(s)
Tree rand139 randl4l rand142 rand143 rand144 rand147 rand148

Target
2 1 8 7 5 6 2

scheme(s)
Tree rand149 randl5l rand155 rando63 rando68 rando77

Target
1 8 4 3,7 1,2,6 3

scheme(s)

Table 9.5: Target schemes for the test trees, when considering the ite calculations

A total of 256 trials were performed using one hidden layer. The learning rate and momentum

parameters were varied between 0.01 - 0.10 and 0.001 - 0.2 respectively. In each case, the

number of hidden units was incremented from two to nine. Table 9.6 shows the number of

correct predictions obtained from the trials.

Number of correct 0 1 2 3 4 5 6 7 8
predictions

Number of trials 0 0 45 94 107 7 2 1 0

Table 9.6: The results obtained using a single hidden layer in the network

The greatest number of correct predictions was 7/20, which was obtained with nine hidden

nodes and with the learning rate and momentum parameters set to 0.07 and 0.01. The

average number of correct predictions was just 3.336.

166

Two hidden layers were also considered. The learning rate and momentum parameters were

assigned exactly the same set of values as for the single layer investigation and the number
of units in the hidden layers was varied between two and six for each case. A total of 700

trials were conducted and the results are shown in Table 9.7. The greatest number of correct

predictions was 6/20 and the average number was calculated as 3.681.

Number of correct 0 1 2 3 4 5 6 7 8
predictions

Number of trials 1 0 11 242 414 19 13 0 0

Table 9.7: The results obtained using two hidden layers in the network

The results obtained for both one hidden layer and two hidden layers are slightly worse than

those recorded when using the number of non-distinct nodes as the target values. However,

the difference is minimal and neither set currently looks promising - in order to implement this

technique, a success rate of more than 80% would be desired. A different network

architecture is now considered, which halves the number of possible ordering schemes to
four. This is discussed in the following section.

9.4.2 Reducing the Number of Output Units to Four

The reason for reducing the number of output units was because it was felt that perhaps the

number of training trees was not sufficient to allow the network to differentiate between eight

possible outcomes. Rather than simply choosing four schemes at random, they are grouped
into pairs and each possible combination of pairs is considered. For example, schemes 1 and
2 are paired, 3 and 4 are paired and so on. Then, each combination of these pairs can be put
as the output units of the network - this gives six possible sets of four schemes:

{1,2,3,4}, {5,6,7,8}, {1,2,5,6}, {3,4,7,8}, {1,2,7,8}, {3,4,5,6}

Each set can be analysed to see which scheme comes out as the best choice and the results
compared to give an overall optimal scheme. For example, if the outcome using the first set is

that scheme 2 is the best choice but when using the second set scheme 8 is the best choice,
then the scheme selected using set 5 (which contains both) would compare these two

schemes and differentiate between them. If necessary, each set of schemes could use a
different network architecture to gain the best possible results.

The investigation started by considering the number of ite calculations obtained using the first

set of four schemes, i. e. (1,2,3,4}, as the output units. The test trees are again chosen so
that each scheme is the optimal choice for a similar number of trees, as shown in Table 9.8.

167

Tree lisablO Iisabl7 Iisab35 lisab44 Iisab77 Iisaba9 rand135
Target

4 2,3 4 4 3 4 3
scheme(s)

Tree rand139 randl4l rand142 rand143 rand144 rand147 rand148
Target

2 1 3 2 1 1 2
scheme(s)

Tree rand149 rand150 rand153 rand154 rand155 randl6l
Target

1 1 2 2 4 3
scheme(s)

Figure 9.8: Target schemes for the test trees, using He calculations and four output nodes

A total of 1023 trials were conducted, with 648 using one hidden layer and the remaining

using two hidden layers. For the trials with one hidden layer, the learning rate parameter was

varied between 0.005 and 0.75, whilst momentum values of between 0.005 and 0.9 were
tried. The number of hidden units was varied between two and nine for each parameter

setting. The best result was 10/20 correct predictions, achieved using eight hidden units and

parameter values n=0.04 and p=0.9. The results for all the trials using one hidden layer are

shown in Table 9.9.

Number of correct 0 1 2 3 4 5 6 7 8 9 10 11
predictions

Number of trials 1 3 15 69 110 146 142 112 33 16 1 0

Table 9.9: The results obtained using one hidden layer in the network

The average number of correct predictions is 5.346/20. Although the results appear better

than for the previous network architectures, there are fewer schemes from which to choose,

and so the expected number of correct predictions is higher.

For the trials using two hidden layers, the learning rate parameter was varied between 0.1

and 0.8 and the momentum parameter was assigned values between 0.05 and 0.9. Of the

375 trials conducted, ten correct predictions were achieved in two cases. Both were obtained

using n=0.5, p=0.5 with six units in the first hidden layer. The second layer consisted of
three units in the first case and six units in the second case. The average number of correct
predictions over all the trials was 5.696. The full set of results is shown in Table 9.10.

168

Number of correct 0 1 2 3 4 5 6 7 8 9 10 11
predictions

Number of trials 0 0 1 4 26 126 163 38 11 4 2 0

Table 9.10: The results obtained using two hidden layers in the network

As the network is performing so poorly, it can be concluded the current architecture does not

adequately describe the problem. Further sets of four output units are not therefore
investigated at this stage. Instead, the choice of fault tree characteristics is examined.

9.4.3 Modified Fault Tree Characteristics

In order to be able to differentiate between fault trees, the characteristics should describe the

features of each tree that make it unique. A modified set of key features was therefore chosen

with the aim of being able to draw a representation of the tree using only the given

characteristics data. There are many possibilities to consider, but ten were initially selected

and are shown below:

1. Type of the top gate.

2. Number of levels in the fault tree.

3. Number of different basic events.
4. Total number of basic events.

5. Average number of event inputs to the gates.
6. Percentage of the different events that are repeated in the tree.

7. Number of different gates.

8. Total number of gates.

9. Percentage of 'AND' gates in the tree.

10. Percentage of different gates that are repeated in the tree.

The modified characteristics are calculated using the programs newchar_tr. c for the training

trees and newchar test. c for the test trees, which were written as part of the research. They

are scaled in the same way as for the original characteristics, as described in section 9.3.3.2.

The initial investigation with the new characteristics uses eight output units, whose target

values are calculated according to the number of ite calculations required to obtain the BDDs.
The test trees are therefore the same as those used in section 9.4.1 and are shown with their
target schemes in Table 9.5.

169

A total of 512 trials were conducted using one hidden layer, with the number of units ranging
from two to nine. The parameter rl was varied between 0.05 and 0.75 and N was assigned

values between 0.001 and 0.9. The results are shown in Table 9.11.

Number of correct 0 1 2 3 4 5 6 7 8
predictions

Number of trials 4 12 42 159 222 64 8 1 0

Table 9.11: The results obtained using one hidden layer in the network

The greatest number of correct predictions is 7/20, which was obtained using six hidden units

and parameter values n=0.5 and p=0.5. On average, the number of correct predictions was

only 3.586.

1625 trials were conducted using two hidden layers in the network. The number of units in

each hidden layer ranged from two up to six. Again, the parameter n was varied between 0.05

and 0.75 and p was varied between 0.001 and 0.9. The results are shown in Table 9.12.

Number of correct 0 1 2 3 4 5 6 7 8
predictions

Number of trials 0 4 65 717 794 44 1 0 0

Table 9.12: The results obtained using two hidden layers in the network

The greatest number of correct predictions is 6/20, which was obtained using five units in the
first hidden layer, six units in the second hidden layer and parameter values of ri = 0.5 and

p=0.1. Although more trials were performed than with one hidden layer, fewer resulted in

five, six and seven correct predictions and on average only 3.500 correct predictions were

made.

Finally, the modified characteristics were used with four output units in the network. The test

trees are the same as those used in section 9.4.2 with the target schemes shown in Table

9.8.

A total of 520 trials were performed using one hidden layer, with the parameters varying in the

ranges 0.05 - 0.75 for q and 0.001 - 0.9 for p. The greatest number of correct predictions is

9/20, which was obtained from 15 trials. The average number of correct predictions is 5.763.
Table 9.13 shows the results from all 520 trials.

170

Number of correct 0 1 2 3 4 5 6 7 8 9 10
predictions

Number of trials 0 0 2 13 68 126 198 55 43 15 0

Table 9.13: The results obtained using one hidden layer in the network

The use of two hidden layers did not produce improved results, as can be seen from Table

9.14. A total of 1625 trials were conducted, with the same range of parameter values as for

the one-layer investigation.

Number of correct 0 1 2 3 4 5 6 7 8 9 10
predictions

Number of trials 0 0 0 8 44 578 885 93 16 1 0

Table 9.14: The results obtained using two hidden layers in the network

The greatest number of correct predictions was 9/20, which was obtained using five units in

the first hidden layer, six units in the second hidden layer and parameter values of ri = 0.05

and p=0.9. The average over all the trials is 5.654, which is lower than obtained with one
hidden layer.

9.4.4 Discussion of Results

Overall, the results from the multi-layer perceptron investigation have been very
disappointing. When using eight output units the greatest number of correct predictions was

seven out of twenty and when using four output units the best result was ten out of twenty

correct predictions. In order to be a viable technique for scheme selection within the fault tree

strategy, at least 80% accuracy would be required.

The chosen network architectures have been unable to reproduce the results previously

obtained by Bartlett, where 14/20 correct predictions were attained. The main difference in the

approaches is that the reduced fault trees have been used in this investigation. Although it

was expected that this would lead to improved results, because unnecessary elements have

been removed from the system, it could in fact have made it more difficult for the network to
distinguish between the fault trees.

Another reason for the apparent disparity in the network performance could be the choice of
test data. As explained in section 9.3.3.3, the test trees for each investigation are chosen so
that each scheme appears as the best choice for approximately the same number of trees.
However, the initial test data chosen by Bartlett is shown in Table 9.15.

171

Tree 1 2 3 4 5 6 7 8 9 10

Best scheme(s) 1-6 1 1-6 3 2 1,2 2 4 1,3 2

Tree 11 1 12 13 14 15 16 1 17 18 19 20

Best scheme(s) 1,2,4 3 2 3 1.6 1-3 1-6 2 3 3

Table 9.15: Target schemes for the set of twenty test trees in Bartlett's study

Having used six ordering schemes, it can be seen that the worst result would be 4/20 correct
predictions as each scheme performs equally well on trees 1,3,15 and 17. If the network

simply chooses the same scheme for each tree, then by selecting schemes 1,2 and 3 it

would correctly predict nine, twelve and eleven cases out of twenty respectively. The

distribution of correct predictions for 200 trials shows that they range from the minimum

possible up to 14/20 for one case. They are mainly grouped around 7-11 correct predictions,

with 8 correct predictions obtained the greatest number of times (-38/200 trials). This

distribution is therefore not dissimilar to the results obtained in the current investigation.

As the current neural network technique has not adequately modelled the ordering problem, a

second method known as the radial basis function neural network is considered. A significant

advantage of this network model is the fast training times, which allows for a more thorough

analysis. The radial basis function network is described in the following sections.

9.5 Radial Basis Function Neural Network

The radial basis function neural network model again performs a non-linear mapping from a
set of input units that represent the fault tree characteristics to a set of output units, which
each represent a variable ordering scheme. Diagrammatically, it is very similar to the multi-
layer perceptron, as shown in Figure 9.4:

c output units

M basis functions

d input units

Figure 9.4: Radial basis function neural network

172

Unlike the multi-layer perceptron, which can have any number of hidden layers, the radial
basis function network has only one hidden layer, which is made up of units known as basis
functions. The outputs of the basis functions are determined by the distance between the

input vector and a prototype vector.

As with the multi-layer perceptron model, connections run between every unit in one layer to

every unit in the next. The connections between the units in the input layer and a basis

function in the hidden layer represent the elements of the vector determining the centre of that
basis function. The connections between the hidden layer and the output layer represent the

weights of the network and control the influence of each basis function on the output units, in

the same way as with the multi-layer perceptron model.

The training procedure is implemented in two stages. The first stage determines the values of
the parameters governing the basis functions using unsupervised training methods. The

second stage of training uses a supervised technique to calculate the values of the second
layer weights. The parameters and weights calculated in training are subsequently used to

progress through the network in the testing phase. The two training stages are described in

detail in the following sections.

9.5.1 Training Stage One

The first stage of training uses unsupervised techniques to determine the parameters of the
basis functions using only the input data. There are several non-linear basis functions that

can be used; the one chosen for this investigation is the Gaussian function of the form:

li2
cpI(x)=ex

X. '
p- 2II

9.20
2cr

where x is the d-dimensional input vector with elements x,, pj is the vector determining the

centre of the basis function cps with elements pp and a is the width parameter, which controls
the smoothness of the interpolating function. The Gaussian function has the property that

cp -+0 as Ixl -ý o. As it is a localised function, only a few hidden units will have significant

outputs for any given input vector.

Another choice of localised basis function is:

cp(x)=(x2 +a2)'a, a>0 9.21

However, the basis function need not be localised and other choices are:

0 the thin-plate spline function, cp(x) = x2 In(x) 9.22

173

" the function cp(x)=(x2+a2T, 0<ß<1 9.23

" the cubic function, cp(x) = x3 9.24

0 and the linear function, cp(x) =x9.25

which all have the property that 9 --- oo as Ixl --> °° .

However, the Gaussian function will be used and the parameters that must be calculated
during this training stage are therefore:

" The radial basis function centres.

" The width parameters.

The radial basis function centres are chosen as a random subset of the input vectors. This is

one of the simplest possible methods of selecting the centres, but it is very fast and is a good

starting point from which to work. Other methods can be found in reference 35. The number

of centres can range from one to a maximum of the number of input vectors used, though

there are typically many less than this maximum.

The width parameter of each radial basis function is given the same value, which is equal to

the average distance between their centres. It is also possible to use multiples of this value,

or indeed different parameters for each basis function. Again these alternative methods are
discussed in detail in reference 35. Using the average distance between the centres ensures
that the basis functions overlap to some degree and so give a relatively smooth

representation of the distribution of the data set.

9.5.2 Training Stage Two

The second stage of training uses a supervised technique to calculate the optimum values for

the final layer weights in the network. The value of each output unit is calculated as a

weighted sum of its inputs, giving:
M

Yk(X)_LWkj(PJ(X) 9.26
J=o

where wW is a weight going from unit j in the hidden layer to unit k in the output layer and M is

the total number of basis functions. cpo denotes the bias, whose output is fixed at one.

The weights are optimised by minimising the error at the output units. The sum-of-squares
error function for the network is given by:

E=2Fý(Yk(xn). tk)2 9.27
n=1 k=1

174

where tk is the target value for output unit k, when the network is presented with input vector

x". By substituting Equation 9.26 for yk(x") , this can be re-written as:

2
Nc

E_- Wkj cp, (X n)-tn 9.28
21y 1

Differentiating this expression with respect to the weights and setting the derivative equal to

zero gives a set of equations of the form:

)'tk (PJ(Xf)=0

t[wkPJxn M

n=1 J--° 9.29

In order to solve these equations, they can be written in matrix notation as:

«OT 0) WT = OTT 9.30

where 0 is an NxM matrix with elements cp, (x") in the nth row and jth column,

W is acxM matrix with elements ww in the kth row and j`h column,

T is an Nxc matrix with elements tk in the nth row and kth column.

Re-arranging for W gives:
WT = ((I)T 4p\. 1 OTT 9.31

Therefore, the calculation of the weights is a linear problem and they can be found very easily
using Equation 9.31.

A non-linear activation function can be applied to the output units, but the calculation of the

weights would then become a non-linear optimisation. One of the major advantages of using

radial basis function networks is the possibility of avoiding the need for such an optimisation,
resulting in much faster training times.

9.5.3 A Comparison of the Multi-Layer Perceptron and Radial Basis Function Models

The multi-layer perceptron and radial basis function models have very similar roles, in that
they are both techniques for performing non-linear mappings between multi-dimensional
spaces. However, the networks themselves have significant differences and employ different
techniques for their analysis. Some of the main differences are outlined below.

" The outputs of the hidden units in the multi-layer perceptron are calculated by

applying a non-linear activation function to the weighted sum of their inputs. In

contrast, the outputs of the hidden units of the radial basis function network are

175

generated depending on the distance between the input vector and a prototype vector

and transformed using a localised basis function.

" Many hidden units contribute to the value of the output units in the multi-layer

perceptron. This means that the training process to determine the weights is highly

non-linear and can lead to very slow convergence times. The radial basis function

network uses localised basis functions for the hidden units, which means that typically

only a few will have significant outputs that contribute to the values of the output units

and examples far from the decision boundaries have little influence on the network.

" The multi-layer perceptron can have many layers of hidden weights, leading to

complex network architectures and long training times. The radial basis function

network, however, has a simple structure, consisting of two layers of weights. The

first layer represents the parameters of the basis functions and the second layer

forms linear combinations of the outputs of the basis functions to generate the values

of the output units.

" The weights in the multi-layer perceptron are determined simultaneously during a

single training phase. However, with the radial basis function network, the training

takes place in two stages. The first stage uses an unsupervised technique to

determine the parameters of the radial basis functions. This is very fast, but means

that the centres and width parameters of the basis functions are not necessarily

optimal for the problem. The second stage determines the final layer weights using a

fast linear supervised method. The training process is much faster than for the multi-

layer perceptron as it does not require a non-linear optimisation.

9.6 Results of the Radial Basis Function Investigation

Each of the five network architectures investigated for the multi-layer perceptron is examined

using the radial basis function network. This allows for a direct comparison of the two

methods.

The number of radial basis function centres can range from one up to the number of training

trees. The centres are chosen randomly with a random number sequence that is initiated with

the use of a seed value. Throughout the network evaluation, seed values from 1 to 500 are

used for each possible number of centres (1 - 216), which results in 108,000 trials. This

should give a good indication of the network performance.

176

9.6.1 Initial Network Architecture

The initial network architecture is the same as for the multi-layer perceptron and Is discussed

in sections 9.3.3.1 - 9.3.3.3. Briefly, this comprises of eleven input units, each representing a
fault tree characteristic and eight output units that represent the ordering schemes available
for selection. The target values for the output units are determined by the number of non-
distinct nodes in the BDDs constructed using each of the ordering schemes. 216 fault trees

are used in the training phase and twenty trees are used in the predictive phase. The test

data for the initial investigation is shown in Table 9.2.

The number of correct predictions was recorded for each trial and the results are shown in

Table 9.16.

Number of correct 0 1 2 3 4 5 6 7
predictions

Number of trials 3 71 310 59296 48159 153 8 0

Table 9.16: The results obtained using the initial network architecture

The greatest number of correct predictions is 6/20, which is lower than for the multi-layer

perceptron model, which succeeded in predicting the correct scheme in seven cases. Given

the large number of trials that were performed, a greater spread of results was predicted.
From these results it is obvious that the current network architecture is not capable of

modelling the variable ordering problem.

9.6.2 Using the Number of If-Then-Else Calculations for the Output Units

The second network uses the number of ite calculations required to obtain the BDDs as the

target values for the output units. The results of the 108,000 trials are shown in Table 9.17.

Number of correct 0 1 2 3 4 5 6 7 8
predictions

Number of trials 2 58 298 72791 34602 197 50 1 0

Table 9.17: The results obtained using the number of Ite calculations and eight output units

The best result is 7/20 correct predictions, which matches that obtained using the multi-layer
perceptron network. However, this was produced in only one trial. Over 99% of the trials

resulted in three or four correct predictions.

177

9.6.3 Reducing the Number of Output Units to Four

The third network architecture uses four output units, whose target values are again
determined by the number of Re calculations required to obtain the BDDs. The schemes used

are 1,2,3 and 4. Table 9.18 shows the results obtained from the trials.

Number of correct 0 1 2 3 4 5 6 7 8 9 10
predictions

Number of trials 0 2 14 84 9013 75653 22955 243 33 3 0

Table 9.18: The results obtained using four output units for schemes 1,2,3 and 4

The greatest number of correct predictions is 9/20, which is one less than the best result

obtained using the multi-layer perceptron model. In order to check that the chosen four

schemes are not simply a'bad' combination, the trials were also conducted using schemes 5,

6,7 and 8. The modified set of test fault trees is shown in Table 9.19.

Tree Iisabl7 Iisab22 Iisab25 Iisab47 Iisab57 rand135 rand139

Target 7 5 7 5 5 6 7
scheme(s)

Tree randl4l rand142 rand143 rand144 rand146 rand147 rand149
Target 7 8 7 5 8 6 5

scheme(s)

Tree rand150 randl5l rand153 rand154 rand155 rand156
Target 8 8 6 8 6 6

scheme(s)

Figure 9.19: Target schemes for the test trees using the four output schemes 5,6,7 and 8

The results of the trials using the modified set of output units are given in Table 9.20.

Number of correct 0 1 2 3 4 5 6 7 8 9 10
predictions

Number of trials 0 2 18 93 193 107296 235 125 37 1 0

Table 9.20 The results obtained using four output units for schemes 5,6,7 and 8

They clearly show that no improvement has been made to the network performance, with
over 99% of trials predicting only 5/20 correct ordering schemes.

178

9.6.4 Modified Fault Tree Characteristics

The final network architectures use the modified fault tree characteristics listed in section

9.4.3. The results obtained using eight and four output schemes are shown in Tables 9.21

and 9.22 respectively.

Number of correct 0 1 2 3 4 5 6 7
predictions

Number of trials 0 43 285 70882 36499 253 38 0

Table 9.21: The results obtained using the modified characteristics and eight output units

Number of correct 0 1 2 3 4 5 6 7 8 9 10
predictions

Number of trials 0 1 11 63 7817 63099 36570 344 78 14 3

Table 9.22: The results obtained using the modified characteristics and four output units

The new set of characteristics does not significantly change the network performance.

Although ten correct predictions were made in three of the trials using four output units

(whereas in the equivalent multi-layer perceptron investigation the best result was nine

correct predictions), the network is clearly incapable of modelling the ordering problem

suff iciently well.

Overall, the radial basis function network does not appear to perform as well as the multi-
layer perceptron model. Although more trials were conducted, due to the faster training times,

it proved impossible to establish a good network architecture. Alternative methods for

selecting the basis function centres and setting the width parameter could be considered, but

the performance did not seem promising enough to warrant further investigation at this stage.

9.7 Conclusions

The neural network techniques have proved unsuccessful in modelling the variable ordering

problem. Neither the multi-layer perceptron nor the radial basis function models have been

able to reproduce the best result of 14/20 correct predictions achieved In previous work in the

area"1.

Numerous trials were conducted with both models, but the best result when using eight output

units was 7/20 correct predictions. When the number of output units was reduced to four, the

179

best result was 10/20 correct predictions, but this was simply due to fewer options being

available for selection. Both models produced the same best result for each number of output

units. These results and the number of trials conducted show conclusively that the neural

network models used are not capable of predicting the most appropriate ordering schemes for

fault trees.

Many features of the neural network models could be altered to try to improve the networks'

performance. Several alternatives have been suggested throughout the chapter, but it is

thought that the most likely reason for the poor performance of the network is that the chosen
fault tree characteristics do not accurately represent the problem. There are an infinite

number of choices for the characteristics and they need to be thoroughly reviewed before

other, more detailed aspects of the models are examined. Another reason that the neural

network approach has proved unsuccessful could be the non-unique way in which fault trees

are written. Although the reduced trees have been restructured to a more concise format than

the original trees, there are still numerous ways in which they can be constructed (for

example, altering the order of gate inputs changes the tree structure, but maintains the

underlying logic), that could result in different values for the characteristics. Consequently, the

network models may not be able to distinguish between the different classes of fault tree

accurately and so cannot predict a correct outcome for new input data.

It is concluded therefore, that the current neural network models do not provide a satisfactory

mechanism for selecting the ordering schemes to be used within the fault tree analysis

strategy described in the previous chapter. However, the techniques used within the strategy
for reducing the fault tree complexity have been shown to be very successful and as such,
further research will focus on extending the methods of fault tree simplification.

180

Chapter 10: Extending the Reduction Technique

10.1 Introduction

The Faunet reduction technique, discussed in Chapter 6, has been shown to reduce the size

of a sample set of fault trees and their resulting BDDs significantly. However, structures were
identified within the reduced fault trees that could be further simplified through the application

of the absorption and idempotent laws to the fault tree logic.

This chapter describes how these laws can be incorporated into the reduction technique, by

further manipulating the fault tree structure to give a more concise representation of the logic

function. The aim of this work is to restructure the trees in such a way that they can be used

to construct smaller BDDs, using fewer calculations, than are possible with either the original

fault trees or those restructured using the Faunet reduction technique.

10.2 Application of the Absorption and Idempotent Laws to Fault Tree Structures

The Boolean laws of absorption are given as follows:

a+(a. b) =a 10.1

a. (a+b) =a 10.2

According to these laws, fault tree structures such as those shown in Figure 10.1 (obtained

from the left-hand sides of Equations 10.1 and 10.2), where an event is repeated on

consecutive levels of a fault tree branch, will simply reduce to a single event 'a'.

Figure 10.1: Fault tree segments that can be reduced to a single event'a'

Further structures of this type can be examined by considering events that are repeated over

any number of levels of a fault tree branch. Figure 10.1 shows the simplest possible case,

with only one level between the occurrences of the repeated event, but in fact the fault tree

can be simplified when a repeated event appears any number of levels down the tree.

The simplification of the tree structure is based upon the application of the absorption and/or
idempotent laws (i. e. a. a = a) to its underlying logic. The second law of absorption given by

181

Equation 10.2 is actually a combination of Equation 10.1 and the idempotent law and so the

second tree segment shown in Figure 10.1 requires the use of both laws for its reduction to a
single event. Some logic expressions (such as those of the trees shown in Figure 10.1) would

only require the use of the absorption laws, some the idempotent laws and others require a

combination of both. However, regardless of which laws would be necessary for the reduction

of the logic expression, the way in which the tree structure is manipulated is dependent only

on whether or not the two occurrences of the repeated event occur under the same gate type.

The two gates to which the repeated event is an input are referred to as the primary and

secondary gates, where the primary gate is the one located further up the fault tree branch.

The following sections describe the manipulation of the fault tree according to the types of the

primary and secondary gates. In each case, the fault tree must have an alternating sequence

of `AND' and 'OR' gates (which it does after the contraction stage of the reduction process)
before the technique can be applied.

10.2.1 Primary and Secondary Gates of Different Types

For fault tree branches that have primary and secondary gates of different types with an event
in common, the structure is simplified by removing the whole of the secondary gate and its

descendents. Figure 10.2(a) shows a tree with event 'a' common to gates G1 and G4. The

tree is reduced by removing gate G4 and its descendants as described above. This results in

the logically equivalent tree shown in Figure 10.2(b).

(a) The original fault tree segment (b) The simplified fault tree segment

Figure 10.2: Application of the absorption and idempotent laws for the case where the primary

and secondary gates are of a different type

The reduction of the logic expression confirms this re-arrangement. For the original tree

segment shown in Figure 10.2(a), G1 is given by:

G1= a. (b + (c. d. (a + e)))

= a. b + a. c. d. a + a. c. d. e

Applying the idempotent law a. a. =a to the second term reduces the expression giving

Gl=a. b + a. c. d + a. c. d. e

Finally, the absorption law removes the third term to give

G1= a. b + a. c. d

which represents the simplified tree segment in Figure 10.2(b). The method is applied in

exactly the same way for primary gates that are 'OR' gates.

10.2.2 Primary and Secondary Gates of the Same Gate Type

For fault tree branches that have primary and secondary gates of the same type with an event
in common, the structure is simplified by deleting the occurrence of the event beneath the

secondary gate. Figure 10.3(a) shows a tree with event 'a' repeated under gates G1 and G3.

In order to simplify the tree, event 'a' is removed from the inputs to G3, which is the

secondary gate. This simply removes any combinations of events that include 'a', as 'a' alone
is sufficient to cause system failure.

(a) The original fault tree segment (b) The simplified fault tree segment

Figure 10.3: Application of the absorption law for the case where the primary and secondary

gates are the same type

In this case, the logic expression can be reduced with the application of the absorption law:

183

G1=a+b. (a+c+d)

=a+b. a + b. c + b. d

=a+b. c+b. d

This reduced logic expression represents the simplified tree structure shown in Figure

10.3(b).

The method is applied in exactly the same way to trees whose primary and secondary gates

are 'AND' gates. The following section describes the one exception to this general method.

10.2.2.1 Special Case

There is one special case to consider, which occurs when the inputs to the secondary gate

are a subset of the inputs to the primary gate and the gates are of the same type. In this

instance, the fault tree branch is terminated from the gate above the secondary gate. An

example of this special case, with primary and secondary gates of type 'AND' is shown in

Figure 10.4.

G1

10

a b c

Figure 10.4: The special case, where the secondary gate is a subset of the primary gate

Event 'd' is irrelevant to the failure of the system, so the branch below and including gate G2

is removed. This special case must be accounted for separately, as the general method of
dealing with primary and secondary gates of the same type would simply remove all the
inputs to the secondary gate, but leave the gate above in place.

The application of the absorption and idempotent laws to the fault tree will be referred to as
the absorption technique. The technique is applied throughout the tree, considering not only
event inputs to the gates, but also gate inputs. Gates that are repeated on a fault tree branch

are also subject to the absorption and idempotent laws and are treated in exactly the same

way as the events. However, only the case where the primary and secondary gates are of the

same type will apply, as otherwise the tree would not be an alternating sequence of gate
types.

10.3 Implementation of the Absorption Technique

The absorption technique has been programmed as part of the research (extended. c) and is

capable of dealing with any given fault tree structure. The implementation is described in this

section with the aid of two worked examples, each covering different aspects of the

technique.

10.3.1 Worked Example

Consider the fault tree shown in Figure 10.5.

Figure 10.5: Example fault tree

The tree must be input to the program in the form of a data file, which represents the fault tree
by listing each gate, together with its type ('AND' or 'OR') and inputs. It is this data that is

subsequently manipulated by the program and converted back to a tree structure after the

process is complete. The data for the fault tree shown in Figure 10.5 is given in Table 10.1.

185

Gate

name
Type

Number of
gate inputs

Number of
event inputs

Inputs

Top AND 2 1 G1 G2 a
G1 OR 2 0 G3 G4

G2 OR 2 0 G5 G6
G3 AND 0 2 ab
G4 AND 1 1 G7 c
G5 AND 0 2 df

G6 AND 1 2 G8 ce
G7 OR 1 2 G9 ad
G8 OR 1 1 G5 b

G9 AND 0 2 ef

Table 10.1: Data for the fault tree in Figure 10.5

Each column of the fault tree data is held in an array and in the program is converted to a

numerical format for ease of manipulation. The absorption technique is applied to this tree in

three stages.

Absorption Stage One

Starting at the head of the tree, a depth-first exploration is undertaken, which identifies inputs

to the gates that occur more than once in the fault tree data (as they must occur at least twice

if it is to appear further down the branch). This is achieved by referring to an array that holds

the number of occurrences of each gate and event and which is updated as necessary as

changes are made to the data. If an input is repeated in the data, its gate becomes known as
the primary gate and a further depth-first exploration takes place through the branches

beneath that gate to establish whether the event occurs again in its descendants. As

explained in the previous sections, any subsequent changes to the tree data depend on

whether the second occurrence (under the gate referred to as the secondary gate) is an input

to an 'AND' gate or an 'OR' gate.

Of the inputs to gate Top, event 'a' occurs elsewhere in the data, so Top becomes the primary

gate and the branches below are searched for any other occurrences of 'a'. Gate G3 is
identified as having 'a' as an input and as it is of the same type (they are both 'AND' gates),
this results in the removal of 'a' from the inputs to G3 and its number of occurrences is

reduced by one. However, as gate G3 now has only one input it can be removed and its

remaining input, event 'b', becomes an input to G1, the parent gate of G3. After this first

stage, the fault tree is altered to give the new tree shown in Figure 10.6, with the

corresponding data shown in Table 10.2.

186

Figure 10.6: The fault tree after stage one of the absorption technique

Gate

name
Type

Number of
gate inputs

Number of
event inputs

Inputs

Top AND 2 1 G1 G2 a

G1 OR 1 1 G4 b

G2 OR 2 0 G5 G6

G4 AND 1 1 G7 c

G5 AND 0 2 df

G6 AND 1 2 G8 ce

G7 OR 1 2 G9 ad

G8 OR 1 1 G5 b

G9 AND 0 2 ef

Table 10.2: Data for the fault tree in Figure 10.6

Whenever absorption has taken place, the tree must be checked to ensure it still has an

alternating sequence of gate types. It is obvious from this example that if event 'b' had been a

gate, it would have been an 'OR' gate to maintain the alternating sequence after gate G3. The

result would be two 'OR' gates in succession, not the alternating sequence that is required to

continue with this method.

It is not possible to maintain the alternating sequence by allowing gates to have only one
input (or indeed no inputs if a further absorption was to take place) and scanning the data to

remove these gates after all possible absorptions have been applied, as this causes further

problems. For example, if there was another occurrence of event 'b' higher up this branch (but

obviously lower than the primary gate which had caused the first absorption to take place),

which was under an 'AND' gate, then this would now cause the removal of the entire branch

from G1 downwards. If however, gate G3 had remained, the primary and secondary gates

would both be the same type and the result would be simply to remove 'b' from the inputs to

G3. The consequence of this would be that the branch below and including G1 would remain,

giving an incorrect fault tree structure. Therefore in order to avoid these problems, gates with

only one input are removed and the contraction routine is performed after each stage has

taken place.

Absorption Stage Two

Continuing through the branches below the primary gate Top, event 'a' also occurs as an
input to gate G7. As this gate is a different type to Top, the branch from G7 downwards is

removed. The data is updated by deleting the lines for gates G7 and G9, and G7 is removed
from the list of inputs to gate G4. This leaves G4 with only one input, resulting in its

subsequent removal and its remaining event 'c' becomes an input to gate G1. The occurrence

array is also updated accordingly. Figure 10.7 shows the current fault tree and Table 10.3

shows the updated fault tree data.

Gate

name
Type ie

of
gate inputs

Number of
event inputs

inputs

Top AND 2 1 G1 G2 a
G1 OR 0 2 bc

G2 OR 2 0 G5 G6

G5 AND 0 2 df

G6 AND 1 2 G8 ce
G8 OR 1 1 G5 b

Table 10.3: Data for the fault tree in Figure 10.7

188

Figure 10.7: The fault tree after stage two of the absorption technique

Absorption Stage Three

Event 'a' now occurs only once in the data, so the depth-first exploration continues, with the

aim of identifying inputs to gates that have more than one occurrence in the fault tree data.
Gate G1 is considered next, but as it lies at the end of a branch no further analysis can take

place. Of the inputs to gate G2, gate G5 is known to occur elsewhere in the fault tree, so the

branches beneath G2 are examined. G2 is an 'OR' gate and as G5 also occurs under another
'OR' gate, G8, it is simply deleted as an input to the secondary gate. The line of data for G5 is

not deleted as it occurs elsewhere in the tree, but the occurrence array is changed so that it

has only one occurrence. G8 is left with the single input 'b', which now becomes an input to
G6 and G8 is removed from the data. The updated fault tree and corresponding data is shown
in Figure 10.8 and Table 10.4.

189

Figure 10.8: The fault tree after stage three of the absorption technique

Gate

name
Type ie

of
gate inputs

Number of
event inputs

Inputs

Top AND 2 1 G1 G2 a
G1 OR 0 2 bc

G2 OR 2 0 G5 G6

G5 AND 0 2 df

G6 AND 0 3 bce

Table 10.4: Data for the fault tree in Figure 10.8

This concludes the application of the absorption technique to this fault tree. Although they
look very different, the fault trees in Figures 10.5 and 10.8 have exactly the same underlying
logic, which can be shown by considering the minimal cut sets of both trees.

Considering the original fault tree, as shown in Figure 10.5, G1 and G2 can be written as:

G1 = a. b + c. (a +d+e. f)

G2 = d. f + c. e. (b + d. f)

Therefore the top event is given by:

Top = a. G1. G2

= a. (a. b + ca + c. d + c. e. f). (d. f +c. e. b + c. e. d. f)

= a. b. d. f + a. c. d. f + a. b. c. e

190

Now considering the modified fault tree shown in Figure 10.8, G1 and G2 are given by:

G1=b+c

G2 = d. f + b. c. e

Top can therefore be written as:

Top = a. G1. G2

= a. (b + c). (d. f + b. c. e)

= a. b. d. f + a. c. d. f + a. b. c. e

The minimal cut sets of the two fault trees are therefore identical.

10.3.2 Dealing with Repeated Gates Within the Fault Tree Structure

This section highlights the way in which the fault tree data is manipulated when gates occur

more than once in the fault tree and require altering in different ways. This is an aspect that

was not covered in the previous example and a second example fault tree, shown in Figure

10.9, is used to demonstrate the process.

Figure 10.9: The second example fault tree

191

Again, it is the data that is manipulated within the program and the corresponding data for the

tree in Figure 10.9 is shown in Table 10.5.

Gate

name
Type

Number of
gate inputs

Number of
event inputs

Inputs

Top OR 2 0 G1 G2

G1 AND 1 1 G3 a
G2 AND 1 1 G3 b

G3 OR 1 1 G4 c
G4 OR 1 2 G5 ad

G5 AND 0 2 ef

Table 10.5: Fault tree data for the example tree shown in Figure 10.9

On the left-hand branch of the tree, event 'a' appears as an input to both G1 and G4. In order

to simplify, the absorption method would remove the second occurrence under gate G4.

However, gate G4 occurs elsewhere in the fault tree and this occurrence cannot be simplified

as 'a' does not appear as an input further up the branch. The fault tree data lists each gate

just once, so the solution is to duplicate the data for gate G4 under a new gate name and

apply the changes to the generated gate. This new gate name will need to be listed as the

input to its parent gate, G3. However, as G3 appears twice in the tree and the other

occurrence does not require alteration, it must also be duplicated and the modifications made

to the new generated gate.

This method can be generalised as follows. A list is made of the gates encountered on the

path through the tree from the primary gate to the secondary gate. In this case the path is G1,

G3, G4. If the primary gate occurs more than once in the tree data, no further action is

required, as the modifications will be valid for each repeated section. However, if any gate

after the primary gate is repeated then duplicates are required of each gate from the repeated

gate down to the secondary gate. As each gate is duplicated, the one preceding it in the list is

altered so that it points to the correct gate input. The absorption method is then applied to the

new secondary gate.

Gates G3 and G4 are therefore duplicated and are given the names G6 and G7 respectively.
Input G4 to gate G6 now becomes input G7 and the input list for G1 is altered to include G6

instead of G3. The absorption method removes event 'a' from the inputs of gate G7.

The modified fault tree and data are shown in Figure 10.10 and Table 10.6. Although the

example is actually very simple, with just a single application of the absorption technique, the

method of re-arranging the data is important to avoid incorrect analysis.

192

Figure 10.10: The fault tree after application of the absorption technique

Gate

name
Type

Number of
gate inputs

Number of
event inputs

Inputs

Top OR 2 0 G1 G2

G1 AND 1 1 G6 a

G2 AND 1 1 G3 b

G3 OR 1 1 G4 c

G4 OR 1 2 G5 ad

G5 AND 0 2 ef
G6 OR 1 1 G7 c
G7 OR 1 1 G5 d

Table 10.6: Fault tree data after application of the absorption technique

The previous examples have described how the absorption method was implemented and the

following section considers its integration into the existing reduction technique.

10.4 Integration of the Absorption Stage into the Reduction Technique

The original three steps of the reduction technique are contraction, factorisation and

extraction. The fourth stage of absorption was included after the final stage, but contraction

193

was also first re-applied to ensure the required alternating sequence of gate types. As before,

the stages are continually applied to the fault tree until no further changes are possible in the

system. The new extended reduction technique was applied to the same 228 trees as the

original reduction method (summary details for the trees are given in Appendix II) so that a
direct comparison of its effectiveness in reducing the size of the resulting BDDs could be

made. The results are given in the following section.

10.5 Results of the Application of the Extended Reduction Technique

The absorption stage was shown to contribute significantly to the reduction in fault tree size,

with a total of 773 applications over the 228 trees. Table 10.7 shows the results obtained for

all four stages.

Stage of the
technique

Number of applications
on the 228 trees

Contraction 127

Factorisation 3008

Extraction 254

Absorption 773

Table 10.7: Number of applications of each stage of the technique over the set of fault trees

Absorption is obviously a worthwhile addition to the reduction technique, with over three times

as many applications as the extraction stage. The absorption method can be applied over any

number of levels in the fault tree (the depth-first algorithm ensures this happens in practice)

and was shown to occur over up to nine levels. The number of applications over the different

levels are shown in Table 10.8.

Levels between
1 2 3 4 5 6 7 8 9

absorption
Number of 210 144 168 100 74 44 17 13 3

absorptions

Table 10.8: Analysis of the levels over which the absorption technique takes place

As the method is applied in a depth-first manner, more absorptions are likely over fewer levels

as they have the ability to remove whole branches of the fault tree below, thus reducing the

size of the tree and therefore the number of levels that can be explored.

194

The BDDs were obtained for both the original and reduced trees using the same eight

ordering schemes that were used for analysing the original reduction method. These are
described fully in Chapter 5, and are given below:

" Modified top-down.

" Modified depth-first.

" Modified priority depth-first.

" Depth-first, with number of leaves.

" Non-dynamic top-down weights.

" Dynamic top-down weights.

" Bottom-up weights.

" Event criticality.

Three measures of complexity were used to assess the resulting BDDs: the number of non-

distinct BDD nodes, the number of distinct BDD nodes and the number of ite calculations

required to construct the BDDs. The resulting values for the BDDs obtained from the reduced

trees can be found in Appendices XI, XII and XIII.

125 of the 228 fault trees resulted in BDDs that had an identical number of non-distinct nodes

for all eight ordering schemes. This is significantly more than the number obtained using the

original reduction method, where 90 trees produced BDDs with an identical number of nodes

using each scheme. Increases in the number of identical results were also seen for the

distinct BDD nodes (126 trees compared with 90 using the original reduction technique) and

the number of ite calculations (114 trees compared with 64 using the original reduction

method). This suggests that the choice of ordering scheme becomes less critical when

dealing with trees that have been restructured using the extended reduction technique.

The success of the extended reduction technique in reducing BDD complexity was evaluated

by comparing the BDDs constructed from the reduced trees against those obtained using the

original fault trees. As there are 228 trees with eight ordering schemes used for each, there

are a total of 1824 cases to consider. The difference in the number of ite calculations and the

number of non-distinct and distinct BDD nodes was calculated for each case, together with

the percentage decrease. The results are discussed in the following sections.

10.5.1 Non-Distinct Nodes

Out of a total of 1824 cases, 1823 showed a decrease or no change in the number of non-
distinct BDD nodes after reduction. 40 of these remained the same size, but this was mainly
due to the fact that the BDDs obtained from the original trees were already minimal. Of the

195

1823 cases that decreased or stayed the same, there was an average decrease of 79.03% in

the number of non-distinct nodes. This compares favourably with the average decrease of
46.72% obtained over 96.00% of the cases using the original reduction method.

Only one case showed an increase in the number of non-distinct nodes after reduction. This

was for the fault tree 'trials4', though a smaller BDD than had previously been possible was

obtained through alternative orderings. The increase for the single case can be attributed to

the change in the variable ordering obtained from the reduced tree, which obviously affects
the resulting BDD (this is discussed in greater detail in Chapter 6). The smallest number of

non-distinct nodes (i. e. the minimum obtained over all eight ordering schemes) therefore

either increased for remained the same for all 228 fault trees, with an average decrease

recorded of 75.29%. This again compares well with the results obtained for the original

reduction technique, where an average decrease of 44.86% was obtained over 224 trees.

10.5.2 Distinct Nodes

In this category, 1809 cases (i. e. 99.18% of the total) showed a decrease or no change in the

number of distinct nodes after reduction. The average decrease for these cases was 66.87%,

which again compares well with the results obtained using the original reduction method,

where an average decrease of 34.29% was obtained over 94.96% of cases.

A total of fifteen cases showed an increase, but this can again be attributed to the change in

variable ordering that occurs after manipulation of the fault tree. These cases account for

eleven different fault trees, of which reduction had a negative effect on two, as the minimum

number of distinct nodes obtained over all the orderings was smaller before reduction than

after reduction. However, the increase in the number of nodes was small - for the tree

'lisaba4' the minimum number of distinct nodes increased from 148 to 155; for the tree 'trials4'

the minimum number increased from 101 to 104 distinct nodes. Of the remaining 226 trees,

the average decrease in the minimum number of distinct nodes of 60.90% compares
favourably with the average decrease of 32.47% obtained over 216 trees using the original

reduction method.

10.5.3 Number of If-Then-Else Calculations

The number of ite calculations required to obtain the BDD is the measure that it is most
advantageous to reduce. This is because the usual reason for being unable to obtain a BDD
is the large number of calculations involved and the lack of computational resources for

performing them.

Only in three cases did the number of He calculations increase after reduction had taken

place. Again this is attributed to the change in variable ordering that occurs after manipulation

of the tree. The three cases involved two trees (lisab57 and nakashi), but for both a smaller

number of ite calculations than was previously possible was obtained after reduction using

alternative orderings. A total of 99.84% of cases either showed a decrease or no change in

the number of ite calculations after reduction and the average decrease over these was
84.62%. Using the previous method of reduction, only a 40.87% average decrease was

recorded, over 86.62% of cases.

The minimum attainable values of the number of ite calculations were also compared for each

of the original and reduced trees. An average decrease of 74.16% was recorded over 228

trees; using the original reduction method, an average decrease of 40.39% over 201 trees

was obtained.

None of the fault trees showed an increase in all three measures of BDD complexity and only

two trees (benjiam and worrell) showed no improvement in any of the measures. This means
that the extended reduction technique had a positive effect on 226 trees, as they each

resulted in BDDs with at least one improved measure of complexity.

10.6 Conclusions

The application of the extended reduction technique to fault trees has been shown to

significantly reduce the complexity of the resulting BDDs. The method has been analysed

using three measures of BDD complexity (number of non-distinct nodes, number of distinct

nodes and number of ite calculations) and has performed exceptionally well under each. It is

also a substantial improvement on the original reduction method, which was itself deemed to
have performed extremely well when first analysed. The additional stage of absorption

obviously has additional benefit and the extended reduction method would be recommended
for application to any fault tree before conversion to a BDD.

197

Chapter 11: Conclusions and Future Work

11.1 Summary

Fault Tree Analysis is used extensively for system reliability assessment, providing a clear
visual representation of the causes of system failure. However, the conventional techniques
for the quantitative analysis of fault trees can be computationally intensive and require the use
of approximations, which inevitably leads to a loss of accuracy. The BDD technique has

emerged as an alternative approach for performing the required analysis. The method is

efficient and produces exact results, without the need for approximations. However, the

structure of the BDD is very sensitive to the variable ordering used for its construction. A bad

choice of ordering can result in a time-consuming construction process and a large BDD,

which in turn can lead to increased analysis times.

The aim of this research was to develop techniques for the efficient construction of BDDs

from fault trees. This was approached in two ways. One method was to explore the variable

ordering issue and the problem of finding an ordering scheme that produces the smallest
BDD for any fault tree structure. The second approach considered techniques for reducing the

complexity of fault trees, with the aim of constructing smaller BDDs and making the choice of

variable ordering scheme less critical.

The survey of ordering schemes conducted in Chapter 4 highlighted techniques that had not
been fully explored and were considered worthy of further investigation. Eight schemes were

chosen for a comparative study, which included four structural ordering schemes and four

weighted methods. BDDs were constructed for 228 test trees, using the variable orderings
determined by each of the schemes. In order to compare the performance of the schemes,
three different measures of BDD complexity were considered: the number of non-distinct BDD

nodes, the number of distinct BDD nodes and the number of ite calculations required to

construct the BDD. The results showed that none of the schemes consistently outperformed
the others, but that each scheme is relevant, as it generated a BDD complexity that could not
be matched by any other scheme for at least one fault tree (and in many cases, several
trees). It was also shown that even within a particular fault tree, different schemes work best

depending on the measure used to assess the BDD complexity.

The structure of a fault tree can vary considerably whilst still satisfying the same logic
function, and is rarely written in its most concise form. This can have a significant effect on
the complexity of the resulting BDD. The Faunet reduction technique was considered as a
method for optimising fault trees, before implementing the BDD construction process. A set of
228 test trees were restructured using this technique and its success was evaluated by

comparing the complexity of the BDDs obtained from the reduced fault trees against those

198

generated using the original trees. The BDDs were constructed using variable orderings

obtained from the eight ordering schemes developed during the comparative study. Again,

three measures of BDD complexity were considered: the number of non-distinct BDD nodes,

the number of distinct BDD nodes and the number of He calculations required to construct the

BDD.

The reduction technique was shown to perform well according to each measure of BDD

complexity, with average decreases of 46.72% over 96.00% of the 1824 cases for the number

of non-distinct nodes, 34.29% over 94.96% of cases for the number of distinct nodes and
40.87% over 86.62% of cases for the number of ite calculations. The smallest attainable

values of BDD complexity (i. e. the minimum obtained over all eight ordering schemes) were

also compared for each of the original and reduced trees. Average decreases were recorded

of 44.86% over 224 trees for the number of non-distinct nodes, 32.47% over 216 trees for the

number of distinct nodes and 40.39% over 201 trees for the number of ite calculations. Only

one tree recorded an increase in each measure of BDD complexity. Nine other trees showed

no improvement in any of the measures, but reduction had a positive effect on the remaining

218 trees, which each produced BDDs with at least one improved complexity measure. The

performance of the eight ordering schemes on the reduced trees was also assessed

according to these measures and the results obtained suggested that the choice of ordering

scheme becomes less critical when dealing with reduced trees. The Faunet reduction

technique was therefore concluded to be an effective pre-processing tool for fault trees.

A fault tree analysis strategy was developed, which aims to increase the likelihood of

obtaining a BDD for any given fault tree, by ensuring that the associated calculations are as

efficient as possible. The method implements Faunet reduction, together with a second

method of fault tree simplification, linear-time modularisation. This results in a set of concisely

written subtrees, which are each converted to a BDD structure. The set of BDDs, which can

encode both complex and modular events, fully represents the original fault tree. The

appropriate quantitative analysis for the BDDs was developed, enabling the calculation of

system parameters such as the unavailability and unconditional failure intensity. In addition,

the methods for extracting the criticality functions of the basic events were demonstrated,

which allow the system to be analysed in terms of its original components.

The analysis strategy was applied to a set of 228 fault trees, and the calculation times

compared with those obtained for the construction and subsequent quantification of the BDDs

directly from the trees. The results showed substantial savings in analysis time when dealing

with large fault trees, but slight increases in analysis time when considering small trees. The

increases were due to the number of comparisons necessary for the Faunet reduction
technique. The strategy does therefore have the potential to substantially reduce the analysis
times of large fault trees and increase the likelihood of obtaining a BDD for any given tree. A

199

significant advantage is the possibility of analysing fault tree modules separately. This is likely

to be of particular use where the tree is too large to be dealt with as a whole but can be

analysed in pieces and the quantitative analysis applied afterwards to the set of BDDs.

Neural networks were considered as a method of selecting an appropriate variable ordering

scheme based on the fault tree characteristics. The aim of this research was to develop a

network model that could be used within the fault tree analysis strategy for selecting the best

ordering scheme for each module. If the optimal scheme could be chosen on each occasion,
it would lead to smaller BDDs and further reduce the analysis times. Two neural network

models were considered: the multi-layer perceptron and the radial basis function. Numerous

trials were conducted with both models using the reduced fault trees. The best result when

choosing from eight ordering schemes was 7/20 correct predictions. When the number of

ordering schemes was reduced to four, the best result was 10/20 correct predictions, but this

was simply due to fewer options being available for selection. These results and the number

of trials conducted show conclusively that the neural network models used were not capable

of modelling the variable ordering problem and it was concluded that they were not

satisfactory for selecting the ordering schemes to be used within the fault tree analysis

strategy. Further research therefore focussed on extending the methods of fault tree

simplification.

Structures were identified within the reduced fault trees (i. e. those that had been restructured

using the Faunet reduction technique) that could be further simplified through the application

of the absorption and idempotent laws to the fault tree logic. An additional stage was
developed for the reduction technique that manipulates the fault tree structure to incorporate

these laws. This extended reduction technique was applied to a set of 228 test trees. BDDs

were obtained for both the original and reduced trees using variable orderings determined by

eight different ordering schemes. The performance of the technique was evaluated by

comparing the complexity of the BDDs obtained from the reduced trees against those

obtained using the original fault trees. Three measures of BDD complexity were considered:
the number of non-distinct BDD nodes, the number of distinct BDD nodes and the number of
ite calculations required to construct the BDD.

Average decreases were calculated of 79.03% over 99.95% of the 1824 cases for the number

of non-distinct nodes, 66.87% over 99.18% of cases for the number of distinct nodes and
84.62% over 99.84% of cases for the number of ite calculations. The smallest attainable

values of BDD complexity were also compared for each of the original and reduced trees.
Average decreases were recorded of 75.29% over 228 trees for the number of non-distinct
nodes, 60.90% over 226 trees for the number of distinct nodes and 74.16% over 228 trees for

the number of He calculations. Only two trees showed no improvement in any of the

measures, meaning that the extended reduction technique had a positive effect on 226 trees,

200

as they each resulted in BDDs with at least one improved measure of complexity. The

number of trees for which all eight ordering schemes produced identical results was

significantly increased after the extended reduction technique had been applied (compared

with both the original trees and those restructured using Faunet reduction), which
demonstrates that the choice of ordering scheme becomes less critical when considering the

reduced trees. This method was therefore shown to be beneficial in the BDD construction

process, and is also a substantial improvement on the original reduction technique.

11.2 Conclusions

" The performance of any ordering scheme is dependent on the fault trees to which it is

applied and varies according to the measure used to assess the complexity of the

resulting BDDs. Even within a particular tree, different schemes work best depending on

the measure used to evaluate BDD complexity.

" The fault tree analysis strategy resulted in substantial savings in analysis time for a
particularly large fault tree and increases the likelihood of obtaining a BDD for any given
tree. A significant advantage of the strategy is the ability to analyse a fault tree in several

stages, if it is too large to be considered as a whole.

" The models considered for the neural network technique did not accurately represent the

variable ordering problem and were therefore not satisfactory for inclusion within the fault

tree analysis strategy. Further research is required before the neural network method can
be used as a technique for selecting an appropriate ordering scheme for a fault tree.

" The extended reduction method is an effective pre-processing tool for fault trees,

significantly reducing the size of resulting BDDs and the number of calculations required
for their construction. The choice of variable ordering scheme also becomes less critical if

reduction has been applied to the fault tree.

11.3 Future Work

11.3.1 Combine Structural and Weighted Ordering Techniques

Both structural and weighted schemes have been shown to be valuable in the construction of
BDDs. An ordering scheme that combines these techniques, so that variables retain their

neighbourhoods, but are also ordered according to their weighting within the tree could be

beneficial for BDD construction.

11.3.2 Incorporate Extended Reduction Into the Fault Tree Analysis Strategy

The fault tree analysis strategy was developed using the Faunet reduction technique and
produced promising results. The strategy could be modified by incorporating the extended

201

reduction method, which has been shown to result in significantly smaller BDDs than were

obtained using the original reduction technique. This could result in improved analysis times.
It would also be interesting to see the result of applying the strategy to trees that can not be

analysed using other methods.

11.3.3 Develop Further Quantification Methods

The quantification methods developed for BDDs encoding complex and modular events

enable the calculation of the system unavailability, system unconditional failure intensity and
the event criticality functions. The methods could be extended to include the calculation of

other performance indicators such as the system unreliability and basic event importance

measures.

11.3.4 Extend the Neural Network Approach

There are many aspects of the multi-layer perceptron network that could be changed to try to

fit the model to the ordering problem more successfully. For example, different activation
functions could be applied, alternative optimisation algorithms could be implemented, or even

pattern training could be used instead of batch training. Several features of the radial basis

function model could also be altered, including the type of basis function, the choice of basis

function centres and the way in which the width parameters are chosen. However, the choice

of fault tree characteristics is thought to have the biggest influence on the success of the

network, and these need to be reviewed in detail before more sophisticated network models

are considered.

One approach for determining the important fault tree characteristics is to use an

unsupervised training technique, which can identify the classes that the network itself regards

as distinct. Discussion in reference 37 suggests that models capable of unsupervised training

can be especially valuable in exploratory work. As the most significant fault tree features have

not yet been found, the network itself could help in detecting them.

11.3.5 Analyse the Fault Tree Test Data

The results obtained throughout the thesis are dependent upon the fault trees used to test the

methods. The fault tree test set consisted of a combination of trees obtained from industry

and trees generated randomly. However this test data is not exhaustive, that is, it Is unlikely to

cover the full range of fault tree structures that can exist. Although a larger sample will lead to
increased confidence in the results, including more fault trees in the data set may not provide
a more rigorous assessment of the techniques, as the underlying features of the additional
trees may be equivalent to those found in the existing set. Further work could therefore be

undertaken to examine the structures of the test trees, in order to determine whether they

could be classified according to particular characteristics. This could give an indication of
whether the techniques examined within the thesis are more suited to one type of fault tree

structure than another.

11.3.6 Optimise Non-Coherent Fault Trees

The work contained within this thesis has focussed on coherent fault tree structures, but the

methods could be extended to consider non-coherent fault trees. Within such structures, both

working and failed components can contribute to system failure and the techniques of

reduction (both Faunet reduction and extended reduction) and modularisation could be

modified to deal with these, so that smaller non-coherent BDDs can be constructed.

203

References

1. Andrews, J. D. and Moss, T. R. 'Reliability and Risk Assessment', Longman, 1993.

2. Watson, H. A. and Bell Telephone Laboratories 'Launch Control Safety Study, Bell
Telephone Laboratories, Murray Hill, NJ USA, 1961.

3. Vesely, W. E. 'A Time Dependent Methodology for Fault Tree Evaluation', Nuclear Design

and Engineering, 13, pp337-360,1970.

4. Rauzy, A. 'New Algorithms for Fault Tree Analysis', Reliability Engineering and System

Safety, 40, pp203-211,1993.

5. Schneeweiss, W. G. `Boolean Functions with Engineering Applications and Computer
Programs', Springer-Verlag, 1989.

6. Birnbaum, Z. W. 'On the Importance of Different Components in a Multi-Component

System', Multivariate Analyses II, P. R. Krishnaiah (Ed), Academic Press, 1969.

7. Fussell, J. B. 'How to Hand-Calculate System Reliability and Safety Characteristics', IEEE

Trans. Reliability, R-24, No. 3, pp169-174,1975.

8. Barlow, R. E. and Proschan, F. 'Importance of System Components and Fault Tree

Events', Stochastic Processes and their Applications, 3, pp153-173,1975.

9. Beeson, S. and Andrews, J. D. 'Importance Measures for Non-Coherent Systems'
Analysis', Accepted for Publication by IEEE Trans. Reliability, 2002.

10. Beeson, S. 'Non-Coherent Fault Tree Analysis', Doctoral Thesis, Loughborough

University, 2002.

11. Dutuit, Y. and Rauzy, A. 'A Linear-Time Algorithm to find Modules of Fault Trees', IEEE

Trans. Reliability, 45, No. 3, pp422-425,1996.

12. Lee, C. 'Representation of Switching Circuits by Binary Decision Diagrams', Bell Syst.

Tech. Journal, No. 38, pp985-999,1959.

13. Friedman, S. J. and Supowit, K. J. 'Finding the Optimal Variable Ordering for Binary

Decision Diagrams', IEEE Trans. Computers, 39, No. 5, pp710-713,1990.

14. Bryant, R. E. 'Graph-Based Algorithms for Boolean Function Manipulation', IEEE Trans.

Computers, C-35, No. 8, pp677-691,1986.

15. Nikolskaia, M. 'Binary Decision Diagrams and Applications to Reliability Analysis',
Doctoral Thesis, University of Bordeaux, 1999.

16. Fujita, M., Matsunaga, Y. and Kakuda, N. 'On the Variable Ordering of Binary Decision
Diagrams for the Application of Multilevel Logic Synthesis', Proc. European Design

Automation Conference, EDAC'91, pp50-54,1991.

204

17. Ishiura, N., Sawada, H. and Yajima, S. 'Minimization of Binary Decision Diagrams Based

on Exchange of Variables', Proc. IEEE International Conference on Computer Aided

Minimization of Binary Decision Diagrams, pp472-475, Nov. 1991.

18. Bouissou, M., Bruyere, F. and Rauzy, A. 'Binary Decision Diagram Based Fault Tree

Processing: A comparison of Variable Ordering Heuristics', Proc. ESREL'97, pp2045-

2052,1997.

19. Bartlett, L. M. 'Variable Ordering Heuristics for Binary Decision Diagrams', Doctoral

Thesis, Loughborough University, 2000.

20. Sinnamon, R. M. and Andrews, J. D. 'Improved Efficiency in Qualitative Fault Tree

Analysis', Proc. Advances in Reliability Technology Symposium, ARTS'96, Manchester,

April 1996.

21. Sinnamon, R. M. 'Binary Decision Diagrams for Fault Tree Analysis', Doctoral Thesis,

Loughborough University, 1996.

22. Sinnamon, R. M. and Andrews, J. D. 'New Approaches to Evaluating Fault Trees', Proc.

ESREL'95, pp241-254, June 1995.

23. Bouissou, M. 'An Ordering Heuristic for Building Binary Decision Diagrams from Fault

Trees', Proc. Reliability and Maintainability Symposium, ARMS'96, pp208-214, Jan. 1996.

24. Minato, S., Ishiura, N., Yajima, S. 'Shared Binary Decision Diagram with Attributed Edges

for Efficient Boolean Function Manipulation', Proc. 27 ̀h ACM/IEEE Design Automation

Conference, DAC'90, pp52-57,1990.

25. Bartlett, L. M. and Andrews J. D. 'Efficient Basic Event Ordering Schemes for Fault Tree

Analysis', Quality and Reliability Engineering International, 15, pp95-101,1999.

26. Platz, O. and Olsen J. V. 'FAUNET: A Program Package for Evaluation of Fault Trees and
Networks', Research Establishment RisT Report, No. 348, DK-4000 Roskilde, Denmark,

Sept. 1976.

27. Group Aralia, 'Computation of Prime Implicants of a Fault Tree Within Aralia', Proc. Of

ESREL'95, ppl90-202,1995.

28. Coudert, 0. and Madre, J. C. 'METAPRIME - An Interactive Fault-Tree Analyzer', IEEE
Trans. Reliability, 43, No. 1, pp121-127,1994.

29. Bartlett, L. M. and Andrews J. D. 'Efficient Basic Event Orderings for Binary Decision

Diagrams', Proc. Reliability and Maintainability Symposium, ARMS'98, pp61-68,1998.

30. Bartlett, L. M and Andrews, J. D. 'Selecting an Ordering Heuristic for the Fault Tree

Binary Decision Diagram Conversion Process using Neural Networks', IEEE Trans.

Reliability, 51, No. 3, pp344-349,2002.

205

31. Fussell, J. B. and Vesely W. E. 'A New Methodology for Obtaining Cut Sets for Fault

Trees', Trans. Am. Nucl. Soc., 15, pp262-263,1972.

32. Sinnamon, R. M. and Andrews, J. D. 'Quantitative Fault Tree Analysis using Binary

Decision Diagrams', European Journal of Automation, 30, No. 3, ppl051.1071,1996.

33. Reay, K. A. and Andrews, J. D. 'Modularised Binary Decision Diagrams for Fault Tree
Analysis', Proc. 3rd Edinburgh Conference on Risk: Analysis, Assessment and
Management, April 2002.

34. Reay, K. A. and Andrews, J. D. 'A Fault Tree Analysis Strategy Using Binary Decision

Diagrams', Reliability Engineering and System Safety, 78, pp45-56,2002.

35. Bishop, C. M. 'Neural Networks for Pattern Recognition', Clarendon Press, Oxford, 1995.

36. Masters, T. 'Signal and Image Processing with Neural Networks: A C++ Sourcebook',
Wiley, 1994.

37. Masters, T. 'Practical Neural Network Recipes in C++', Academic Press Inc. 1993.

206

Appendix I

Implementation of the Linear-Time Algorithm

The linear-time algorithm, which determines the modules of a fault tree, can be described in

four steps and uses the following variables:

0 visitl: step number of the first visit to a gate or event.
" visit2: step number of the second visit to a gate or event.

" last-visit : step number of the final visit to a gate or event.

" min: collected minimum of the variable visitl for the descendants of a gate.

" max: collected maximum of the variable last-visit for the descendants of a gate.

The steps of the algorithm are as follows:

1. Set all the counters (as above) to zero.

2. Perform a depth-first traversal of the fault tree (detailed algorithm shown in Figure 1.1),

setting variables visitl, visit2 and last-visit for each gate and event.

Note: For basic events, visitl and visit2 are identical. Also, the subtree under any

gate is never traversed more that once - if visitl has already been set for a gate, then
last-visit is simply updated and the traversal continues with the next gate.

3. Perform the second depth-first traversal (detailed algorithm shown in Figure 1.2), finding

for each gate, the maximum of the last visits and the minimum of the first visits of all the

gates and events beneath it.

4. A gate heads a module iff:

" max is less that the value of visit2 for that gate

and

" min is greater than the value of visitl for that gate.

The program 'module. c' that implements the algorithm was written in the C programming
language. It reads the fault tree data from a datafile of the form *. dat, performs the analysis

and outputs a list of the gates and whether or not they head modules into a file of the form

*. idm (identify modules).

207

df_setup (node, step)
{

if (node is a gate)
{

step = step +1

if (node has already been visited)
{

set last-visit [node] = step
}

else (not been visited)
{

set visitl [node] = step

for (all inputs to gate)
{

call df_setup (input, step)
}

step = step +1

set: visit2 [node] = step
last-visit [node] = step

}
}

else (node is a basic event)
{

if (node has already been visited)
{

step = step +1

set last-visit [node] = step
}

else (not been visited)
{

step = step +1

set: visits [node] = step
visit2 [node] = step
last-visit [node] = step

}

} }

Figure 1.1: Algorithm to set the variables visitl, visit2 and last-visit for each gate and event

208

df_max_min (node) [node is always a gate in this case]
{

for (each input to the gate)
{

if (the input is a gate)
{

if (the max/min hasn't been found for this gate input)
{

call df_max min (input)
}

if (no initial values assigned to max [node] and min [node])
{

max [node] = max [input]
min [node] = min [input]

if (last-visit [input] > max [node])
{

max [node] = last-visit [input]
}

if (visits [input] < min[node])
{

min [node] = visitl [input]
}

}
else
{

if (max [input] > max [node])
{

max [node] = max [input]
}
if (last-visit [input] > max [node])
{

max [node] = last-visit [input]
}
if (min [input] < min [node])
{

min [node] = min [input]
}
if (visits [input] < min [node])
{

min [node] = visits [input]
I

}
else (input is an event)
{

if (no initial values assigned to max[node] and min[node])
{

max [node] = last-visit [input]
min [node] = visits [input]

}
else
{

if (last-visit [input] > max [node])
{

max [node] = last-visit [input]
}

if (visit1 [input] < min (node])
{

min [node] = visitl [input]
}

}
}

}
}

Figure 1.2: algorithm
to set the variables
max and min for
each gate.

209

Appendix II

Fault Tree Summary Details

Fault tree
Minimai
cut sets

Top gate
type

No. of
levels

No. of
different
events

Total no.
of events

in tree

No. of
different

gates

Used in
chapters
5,6,8,10

Used in
chapter 9

aaaaaaa 2 AND 3 3 4 3 �

artqual 7 AND 5 7 11 5 � �

arttree 2 OR 3 4 5 3 �

astolfo 27 OR 8 16 22 19 � �

bddtest 9 OR 5 13 15 9 � �

benjiam 43 AND 5 11 22 15 � �

bpfeg03 8716 OR 6 63 63 20 �

bpfen05 7471 OR 6 61 61 17 �

bpfig05 7056 OR 6 60 60 17 �

bpfin05 416 OR 6 40 40 14 �

bpfpp02 3 OR 3 4 5 3 �

bpfsw02 84424 AND 7 40 44 21 � �

ch8tree 5 AND 4 7 12 5 � �

drei 019 63 OR 4 19 20 4 �

drei 032 75 OR 4 21 22 4 �

dre1057 2100 AND 5 32 33 7 �

dre1058 11934 AND 5 41 64 13 � �

dre1059 36990 AND 7 57 80 17 � �

dresden 11934 AND 7 57 144 17 � �

emerh2o 13 OR 4 10 11 4 �

fatram2 6 AND 5 8 10 5 � �

hpisf02 255 OR 6 72 80 19 � �

hpisf03 71 OR 4 31 33 7 � �

hpisf2l 7777 OR 6 61 208 15 � �

hpisf36 61 OR 4 30 34 8 � �

jdtreel 4 AND 4 7 7 5 �

jdtree2 4 AND 4 7 7 5 �

jdtree3 36 AND 7 21 21 11 �

jdtree4 30 AND 7 20 21 11 �

jdtree5 10 OR 7 20 21 11 �

khictre 21 AND 5 22 74 19 � �
lisal23 37 OR 7 27 39 15 � �

Iisabl0 940 AND 7 48 80 27 � �

1 Number of levels counts the top event as being on level 1.

210

Fault tree
Minimal Top gate
cut sets type

No. of
levels

Different

events

Total Different
events gates

Chapters
5,6,8,10

Chapter 9

lisab25 35 OR 6 26 37 15 � �
lisab28 66 OR 6 22 22 9 �

lisab30 17 OR 7 32 45 19 � �
lisab3l 164 AND 6 47 94 31 � �
lisab34 14 AND 4 14 23 8 � �
lisab35 136 AND 5 40 57 19 � �
lisab36 52 OR 6 39 130 46 � �
lisab42 10 OR 5 21 23 7 �

lisab44 12 OR 4 20 33 10 � �
Iisab51 11 OR 5 19 21 8 � �
lisab52 139 AND 6 38 94 31 � �

lisab53 15 OR 4 9 10 5 �
lisab54 14 OR 4 15 19 6 � �
lisab57 170 AND 5 28 46 18 � �
lisab59 3096 AND 5 49 49 16 �
lisab60 19 AND 4 16 23 7 � �
lisab78 503 AND 5 39 49 16 � �
lisab86 383 AND 7 40 50 21 � �
lisaba4 827 OR 7 44 63 26 � �
lisaba9 85 OR 6 41 46 17 � �

modtree 2 AND 4 5 74 �

nakashi 20 AND 7 16 29 21 � �
newtre2 3 OR 4 7 95 �
newtre3 2 OR 4 5 64 �
newtree 3 OR 4 6 74 �
rand100 8 OR 7 27 53 19 � �
rand101 2 AND 4 7 83 �
randl02 1 AND 4 7 93 �
rand103 13 OR 6 23 29 13 � �
rand104 9 OR 7 22 41 16 � �
randl05 96 OR 6 33 37 15 � �
rand106 8 AND 7 37 76 31 � �
rand107 5 OR 3 8 92 �
rand108 35 AND 7 35 76 32 � �
randl09 203 OR 7 56 68 27 � �

rand110 8 OR 8 30 61 24 � �
rand111 22 OR 6 22 47 19 � �
rand112 1 AND 3 5 72 �
rand113 1 AND 7 11 28 12 � �
rand114 2 AND 5 9 12 4 � �

211

Fault tree
Minimal
cut sets

Top gate
type

No. of
levels

Different
events

Total
events

Different
gates

Chapters
5,6,8,10

Chapter 9

rand115 46 OR 6 29 46 21 � �

randl16 15 AND 6 33 68 24 � �

randl17 11 OR 5 17 23 10 � �

rand118 52 OR 6 39 47 19 � �

rand119 84 AND 6 30 37 14 � �

rand120 58 AND 6 39 47 20 � �

rand121 80 AND 7 37 50 18 � �

rand122 4 OR 3 5 6 2 �

rand123 12 AND 6 17 23 9 � �

rand124 27 OR 7 24 30 12 � �

rand125 13 OR 5 14 19 6 � �

rand126 59 OR 6 37 53 25 � �

rand127 43 AND 7 28 31 12 � �

rand128 52 AND 6 35 68 24 � �

rand129 1 AND 6 20 26 8 � �

rand130 5 OR 7 23 40 13 � �

rand131 2 AND 4 7 10 4 � �

rand132 67 AND 7 39 84 31 � �

rand133 4 AND 3 7 9 3 �

rand134 60 OR 7 56 98 34 � �

rand135 24 AND 7 33 64 24 � �

rand136 1 AND 3 4 6 2 �

rand137 15 AND 7 21 26 10 � �

rand138 2 OR 7 18 31 10 � �

rand139 53 AND 7 29 50 21 � �

rand140 5 OR 4 9 11 3 �

rand141 8 OR 8 30 61 24 � �

rand142 410 AND 7 46 97 32 � �

rand143 8 OR 7 28 40 17 � �

rand144 41 OR 6 48 85 29 � �

rand145 47 OR 6 33 34 11 � �

rand146 15 AND 7 21 26 10 � �

rand147 30 AND 7 43 90 36 � �

rand148 8 OR 6 27 31 12 � �

rand149 18 OR 6 57 64 22 � �

rand150 114 OR 6 44 74 29 � �

rand151 36 OR 6 28 32 10 � �

rand152 1 AND 3 2 3 2 �

rand153 3 AND 7 21 47 16 � �

rand154 1 OR 7 21 30 11 � �

Fault tree
Minimal

cut sets

Top gate
type

No. of
levels

Different

events

Total

events
Different

gates

Chapters
5,6,8,10

Chapter 9

rand155 52 AND 6 33 47 20 � �

rand156 20 AND 6 22 28 10 � �

rand158 9 AND 7 71 123 49 � �
randol0 4 OR 3 6 8 2 �
randoll 6391 AND 6 94 143 48 � �
randol2 68 AND 6 68 98 32 � �
randol3 73 OR 6 56 140 46 � �
randol4 1 AND 4 7 9 3 �
randol5 5 OR 4 5 18 5 � �
randol6 76 OR 8 46 84 31 � �

randol7 1 AND 3 6 7 2 �

randol8 24 OR 7 85 178 62 � �
randol9 764 AND 6 53 133 51 � �
rando20 122 OR 8 47 143 52 � �
rando2l 5 OR 5 11 11 5 �
rando22 423 AND 7 64 128 46 � �
rando23 9 OR 7 39 56 19 � �
rando24 4 OR 3 7 8 2 �
rando25 6 OR 5 16 33 14 � �
rando26 3 OR 5 8 15 6 � �

rando27 100 AND 8 46 115 45 � �
rando28 1 OR 9 35 50 17 � �

rando29 22 OR 7 38 67 25 � �
rando30 195 AND 6 41 45 17 � �

rando3l 5 OR 9 36 120 47 � �

rando32 5 OR 4 6 15 4 �
rando33 11 AND 5 32 63 17 � �
rando34 35 OR 8 36 61 24 � �
rando35 8 AND 6 24 51 19 � �
rando36 10 OR 6 29 37 15 � �
rando37 29 AND 6 30 74 27 � �
rando38 9 OR 6 21 26 11 � �
rando39 51 AND 7 26 66 27 � �
rando40 9 OR 5 17 22 8 � �
rando4l 1 AND 5 8 12 4 �
rando42 2 AND 5 17 24 9 � �

rando43 22 OR 5 27 31 10 � �
rando44 436 OR 7 59 68 27 � �
rando45 16 AND 6 28 60 22 � �

Irando46 10 OR 6 41 69 22 � �

213

Fault tree
Minimal Top gate
cut sets type

No. of
levels

Different
events

Total
events

Different
gates

Chapters
5.6.8.10 Chapter 9

rando47 15 OR 5 42 62 20 � �

rando48 16 AND 5 21 42 16 � �
rando49 4 AND 6 16 24 10 � �
rando50 1 AND 5 8 12 4 �
rando5l 3 OR 4 5 9 3 �
rando52 41 OR 11 34 80 33 � �
rando53 2 AND 6 21 35 13 � �
rando54 269 AND 9 34 39 13 � �

rando55 9 AND 7 23 41 15 � �

rando56 3 OR 5 9 15 6 � �

rando57 2 AND 5 8 17 5 �

rando58 3 AND 6 17 28 10 � �
rando59 99 OR 5 42 60 23 � �

rando60 22 OR 7 70 87 36 � �
rando6l 15 AND 7 20 51 19 � �
rando62 7 AND 6 18 35 13 � �
rando63 9 AND 7 23 41 15 � �
rando64 31 OR 7 35 45 19 � �
rando65 13 OR 5 15 25 11 � �
rando66 5 AND 8 26 51 17 � �

rando67 1 AND 3 4 6 2 �

rando68 5 OR 5 8 19 6 � �

rando69 6 OR 4 8 12 4 �
rando70 27 AND 7 24 28 12 � �

randoll 2 AND 4 6 10 4 � �

rando72 2 OR 4 6 14 5 � �
rando73 80 AND 6 34 65 22 � �
rando74 2 OR 4 6 8 3 �
rando75 4 AND 7 17 28 12 � �
rando76 24 AND 6 32 45 15 � �
rando77 27 OR 7 37 79 31 � �
rando78 2 AND 6 30 38 17 � �
rando79 4 OR 4 7 12 4 �

rando80 22 AND 5 26 29 9 � �

rando8l 4 OR 3 6 8 2 �

rando82 5 OR 7 13 27 9 � �

rando83 39 AND 6 21 30 14 � �
rando84 52 OR 6 39 47 19 � �

rando85 7 OR 7 26 40 13 � �
rando86 1 AND 4 7 9 3 �

214

Fault tree
Minimal

cut sets
Top gate

type
No. of
levels

Different

events
Total

events
Different

gates
Chapters
5,6,8,10

Chapter 9

rando87 15 OR 6 22 29 11 � �
rando88 29 OR 5 22 25 11 � �

rando89 21 OR 8 41 61 24 � �
rando90 2 AND 3 3 3 2 �

rando9l 106 AND 6 58 98 32 � �
rando92 58 AND 8 64 130 41 � �
rando93 16 AND 7 40 55 19 � �
rando94 1 AND 4 7 9 3 �
rando95 31 AND 7 22 31 11 � �
rando96 5 AND 4 8 9 3 �

rando97 2 OR 5 5 6 4 �

rando98 283 OR 6 52 69 22 � �
rando99 28 AND 6 40 77 26 � �
randoml 5 OR 4 6 12 6 � �
random2 2 OR 3 5 7 2 �
random3 235 OR 8 49 61 24 � �
random4 5 OR 3 5 9 2 �

random6 93 OR 6 49 122 45 � �
random? 1 AND 4 5 8 3 �
random8 4 AND 6 15 21 7 � �

random9 2 AND 5 9 17 5 �
relcour 6 AND 3 6 6 3 �

rstreel 3 AND 5 5 6 4 �

rstree2 3 AND 6 6 7 5 �

rstree3 6 AND 6 8 10 8 � �
rstree4 4 OR 4 5 10 5 �
rstree5 2 OR 3 4 6 3 �
rstree6 4 OR 3 6 8 3 �
rstree7 8 AND 5 10 13 8 � �
trialsl 39 AND 10 16 66 27 � �
trials2 5 OR 8 14 32 22 � �
trials3 1 AND 10 25 44 20 � �
trials4 49 OR 13 21 85 39 � �

usatree 2 AND 3 4 5 3 �

worrell 10 AND 5 8 13 9 � �
lisa100 313 OR 7 63 79 31 �
lisal02 200063 AND 7 110 137 54 �
lisal04 4 AND 6 20 28 10 �
lisa107 6 OR 5 11 15 6 �
lisal08 1 AND 5 10 17 6 �

215

Fault tree
Minimal
cut sets

Top gate
type

No. of
levels

Different
events

Total
events

Different
gates

Chapters
5,6,8,10 Chapter 9

lisa109 20 AND 7 20 50 21 �
lisa110 32 OR 7 52 87 36 �
lisal11 46 OR 6 50 55 17 �
lisal12 4769 AND 6 81 90 32 �
lisa113 79 AND 7 60 75 25 �
lisa115 37 OR 5 25 35 12 �
lisa116 6 OR 5 14 23 10 �
lisa118 45505 OR 8 77 96 37 �
lisal19 15 AND 4 14 16 7 �
lisal2l 72 OR 6 41 46 21 �
lisa122 10 OR 6 23 38 12 �
lisa124 1112 AND 6 65 81 28 �
lisabl1 2 AND 6 21 35 13 �
lisabl3 8 OR 8 31 61 24 �
lisabl4 1633 OR 6 84 140 46 �
lisabl5 8113 AND 9 98 122 49 �
lisabl7 1054 OR 7 68 76 27 �
lisab22 493 AND 6 72 143 48 �
lisab26 3 OR 5 9 15 6 �
lisab27 285 AND 8 62 77 26 �
lisab33 2 OR 5 11 15 6 �
lisab37 64 AND 4 30 33 10 �
lisab39 1 AND 4 5 10 4 �
Iisab40 3 AND 4 13 16 7 �
lisab45 1 AND 6 10 25 9 �
lisab47 3 AND 6 12 24 10 �
lisab48 4 OR 4 17 29 8 �
lisab50 2 AND 5 14 24 10 �
lisab56 3 OR 6 17 29 11 �
lisab6l 14 OR 6 40 57 22 �
lisab62 74 OR 6 39 43 17 �
lisab63 6 OR 5 18 23 8 �
lisab64 7 OR 7 40 67 21 �
lisab66 33 OR 7 40 79 31 �
lisab67 1118 OR 7 77 96 38 �
lisab69 46 OR 5 30 33 14 �
lisab70 88 OR 7 48 53 19 �
lisab7l 3 OR 5 14 23 8 �
lisab72 34 OR 7 51 85 34 �
lisab74 68122 AND 7 122 135 46 �

216

Fault tree
Minimal
cut sets

Top gate
type

No. of
levels

Different
events

Total
events

Different
gates

Chapters
5,6,8,10 Chapter 9

lisab75 1 AND 6 29 41 14 �
lisab76 898 OR 7 58 96 38 �
lisab77 130 OR 6 59 74 29 �
lisab80 2 AND 4 7 10 4 �
lisab82 33540 AND 6 85 94 31 �
lisab83 61 OR 6 33 47 19 �
lisab85 4 OR 5 12 15 6 �
lisab87 93726 AND 7 96 137 54 �
lisab88 28 AND 5 49 70 25 �
lisab89 84 AND 7 61 76 32 �
lisab9l 7598 AND 7 62 77 32 �
lisab94 5 OR 3 7 10 3 �
lisab95 1 AND 5 18 25 7 �
lisabal 1054 OR 7 68 76 27 �
lisaba2 66083 AND 6 114 143 48 �
lisaba3 5396 AND 8 84 105 40 �
lisaba5 228 AND 8 57 82 29 �
lisaba6 990 AND 6 56 62 22 �
lisaba7 1054 OR 7 68 76 27 �
lisaba8 3344 OR 6 100 125 45 �

rand159 13 OR 7 34 67 25 �

rand161 114 AND 6 38 62 22 �
rand163 716 OR 8 58 96 37 �

rand164 4374 AND 7 58 77 32 �
rand165 2072 AND 7 98 109 40 �

rand166 262 OR 7 55 79 31 �
rand167 256 OR 7 37 44 19 �

217

Appendix III

Number of Non-Distinct Nodes in BDDs Obtained from the Original Fault Trees

Key to ordering schemes':

1. Modified top-down.

2. Modified depth-first.

3. Modified priority depth-first.

4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.
6. Dynamic top-down weights.
7. Bottom-up weights.
8. Event criticality.

Fault tree
Ordering scheme

12345678

aaaaaaa 3 3 3 3 3 3 3 3

artqual 11 11 11 11 11 11 11 11

arttree 5 5 5 4 4 4 4 4

astolfo 128 131 107 123 128 125 131 130

bddtest 38 38 38 59 62 60 38 62

benjiam 87 76 76 80 87 84 80 83

bpfeg03 290934 104687 219063 316983 321123 316983 95675 364508

bpfen05 151974 49337 99003 53343 151563 150543 52619 151568

bpfig05 144054 47987 94863 142623 143643 142623 50135 142628

bpfin05 5316 2915 5282 5282 5282 5282 2963 5287

bpfpp02 4 4 4 4 4 4 4 4

bpfsw02 112553 110698 110698 110799 112553 112553 110799 112553

ch8tree 12 11 11 14 12 14 14 12

drei 019 69 69 69 69 69 69 73 69

drel032 87 87 87 81 81 81 87 81

drel057 2478 2487 2468 2303 2310 2310 2712 2300

dre1058 26237 30373 22602 24956 26189 22628 29232 23132

dre1059 65085 126229 119848 119408 64813 56952 125796 61036

dresden 838653 27379 23037 22376 787373 22628 2344652 631388

emerh2o 16 16 16 16 16 16 16 16
fatram2 11 11 11 11 10 10 11 11

hpisf02 225258 180757 180757 137120 267413 168046 530539 1105399

1 For each fault tree, the ordering scheme(s) resulting in the fewest non-distinct BDD nodes is
(are) shown in bold.

218

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
hpisf03 202 202 202 202 202 202 182 182

hpisf2l 15155 10593 10593 11535 26825 26419 11505 62377

hpisf36 178 150 178 210 210 210 132 132

jdtreel 12 10 10 10 12 12 10 12
jdtree2 12 10 10 10 12 12 10 12

jdtree3 79 71 71 71 79 81 71 79

jdtree4 67 59 59 59 67 67 59 67

jdtree5 76 70 70 70 76 76 70 76

khictre 1244 982 1244 1364 1364 1364 982 999

Iisa123 346 360 360 280 336 234 430 307

Iisab1O 14113 18490 24243 9828 8612 6719 23411 4975

lisab25 164 181 167 149 154 150 155 164

lisab28 201 156 190 160 171 150 190 162

Iisab30 145 85 85 91 121 91 141 77

lisab3l 6641 92082 92082 16757 5416 9295 51869 5339

Iisab34 35 39 39 39 38 36 55 34

Iisab35 17368 44339 44339 14332 14859 19581 31806 12710

Iisab36 1553 698 708 4486 2724 3298 450 450

Iisab42 23 17 17 17 17 17 24 17

Iisab44 170 172 172 138 164 136 106 98

Iisab5l 104 95 95 87 103 91 74 91

Iisab52 5376 33585 33585 29644 3961 20021 45209 3360

Iisab53 25 25 25 21 22 22 25 21

Iisab54 61 43 55 55 55 55 55 59

lisab57 1144 1751 1793 2359 1063 1134 1859 1193

Iisab59 77222 35962 41272 105105 60994 110922 43242 114954

Iisab60 101 66 66 97 60 97 97 48

Iisab78 3694 2561 2528 6994 3687 6933 3959 4872

Iisab86 5458 5464 4637 4310 5190 4394 4349 3326

Iisaba4 9814 13425 13737 12478 6170 6811 12055 6330

lisaba9 5055 2863 2863 3850 6145 3850 3962 4435

modtree 4 4 4 4 4 4 4 4

nakashi 687 536 448 806 476 583 481 375

newtre2 9 9 9 9 9 9 8 10

newtre3 7 6 6 6 6 6 6 6

newtree 9 9 9 8 9 9 8 10

rand100 21 21 21 21 22 22 14 22

rand101 7 7 7 7 7 7 7 7

rand102 2 2 2 2 2 2 2 2

219

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

rand103 125 106 106 90 112 110 103 106

rand104 81 104 104 90 94 88 37 88

rand 105 1001 1117 1000 700 847 970 525 930

rand106 19 6769 6769 24 16 21 22 17

rand107 5 5 5 5 5 5 5 5

rand108 249 1978 1939 1139 134 520 1579 136

rand109 11133 14224 14224 2766 6656 4956 3661 3401

rand110 37 46 46 45 44 48 22 45

randl11 227 303 286 210 205 230 156 115

randl12 5 5 5 5 5 5 5 5

randl13 6 6 6 6 6 6 6 6

randl14 7 7 7 7 7 7 7 7

randl15 920 1131 1131 1022 809 620 1146 587

rand116 1182 837 1003 2172 846 2040 2660 392

randl17 43 32 31 31 31 31 31 32

randl18 1683 1014 1022 593 947 682 744 396

randl19 296 295 391 263 269 266 295 269

rand120 3925 5362 4839 3642 3607 4111 5536 3077

rand121 315 164 164 146 156 142 882 148

rand122 4 4 4 4 4 4 4 4

rand123 20 22 22 27 17 17 22 17

rand124 206 178 166 166 167 168 125 144

rand125 24 30 24 21 21 21 24 21

rand126 2024 5910 2552 1496 2106 1856 1820 3120

rand127 285 218 218 272 285 272 272 292

rand128 1833 593 630 1245 1762 1472 1266 931

rand129 4 4 4 4 4 4 4 4

rand130 5 5 5 5 5 5 5 5

rand131 8 8 8 8 8 9 8 7

rand132 4891 12858 12858 24215 4393 14958 22951 3909

rand133 5 5 5 5 5 5 5 5

rand134 550 4792 5470 51222 673 10732 29655 661

rand135 365 1255 1157 1101 395 349 1420 421

rand136 4 4 4 4 4 4 4 4

rand137 143 139 139 139 149 147 139 99

rand138 2 2 2 2 2 2 2 2

rand139 869 769 906 1273 645 1192 693 624

rand140 5 5 5 5 5 5 5 5

rand141 37 46 46 45 44 48 22 45

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

rand142 59072 74796 74322 115444 59462 111488 176698 62046

rand143 270 201 243 171 229 229 127 146

rand144 5617 39898 37150 15208 2309 9489 65099 1985

rand145 499 303 303 400 504 384 193 444

rand146 143 139 139 139 149 147 139 99

rand147 3017 160475 168581 6307 2761 36930 11385 5460

rand148 40 35 30 32 40 32 32 32

rand149 168 87 143 143 213 144 84 213

rand150 39213 108764 85856 62216 56768 57628 76449 37284

rand151 258 148 250 250 258 258 148 233

rand152 1 1 1 1 1 1 1 1

rand153 8 8 8 8 8 8 8 8

rand154 1 1 1 1 1 1 1 1

rand155 1051 1695 1888 1439 894 863 2484 790

rand156 44 40 40 40 40 40 41 40

rand158 39 30 30 26 25 26 26 24

randol0 4 4 4 4 4 4 4 4

randoll 3.87x107 1.02x109 1.05x109 1.35x108 3.93x107 1.31x108 6.98x108 4.54x107

rando12 9285 9739 9739 36182 7326 8415 35957 6186

randol3 1580 1963 1963 2456 726 3731 31647 767

randol4 2 2 2 2 2 2 2 2

randol5 5 5 5 5 5 5 5 5

randol6 533 463 474 1078 574 689 586 600

randoll 5 5 5 5 5 5 5 5

randol8 3625 31214 31214 768 2644 1273 741 2823

randol9 13171 402926 228764 312218 9529 26081 2318684 10784

rando20 10126 71152 81451 68892 14275 18437 232578 17137

rando2l 36 21 35 21 36 21 21 24

rando22 61382 271889 271889 131606 15023 50787 361842 14324

rando23 151 159 159 159 138 150 159 127

rando24 4 4 4 4 4 4 4 4

rando25 24 16 16 59 22 34 37 19

rando26 4 4 4 4 4 4 4 4

rando27 656 8830 8830 6284 784 708 2867 669

rando28 1 1 1 1 1 1 1 1

rando29 587 934 737 1216 819 494 1169 1233

rando30 12733 7929 9897 11787 12385 8160 3800 9866

rando3l 11 11 11 1925 29 53 11 53

rando32 5 5 5 5 5 5 5 5

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rando33 25 73 73 186 18 17 49 22
rando34 220 230 287 292 208 250 356 196
rando35 139 178 143 149 63 75 149 57
rando36 62 61 61 43 46 42 42 44
rando37 249 690 690 776 156 547 358 225
rando38 66 58 58 53 69 57 33 57
rando39 737 1400 1400 2252 606 2085 6824 997
rando40 54 36 36 48 39 33 48 33

rando4l 5 5 5 5 5 5 5 5
rando42 5 5 5 5 5 5 5 5
rando43 94 106 106 81 94 91 85 94
rando44 367520 76890 74190 182720 234022 105551 212337 227519
rando45 132 159 159 264 99 83 182 97
rando46 20 16 16 16 23 21 51 32

rando47 1127 1530 1530 2558 1094 1930 2990 1229

rando48 87 34 38 34 56 34 98 38

rando49 26 18 18 18 26 26 18 26
rando50 5 5 5 5 5 5 5 5

rando5l 3 3 3 3 3 3 3 3
rando52 563 503 451 747 559 431 347 319

rando53 5 5 5 5 5 5 5 5

rando54 1643 920 1577 1577 1579 1704 1705 1171

rando55 24 26 26 24 25 25 24 30

rando56 7 7 7 7 7 7 7 7
rando57 6 6 6 6 6 6 6 6

rando58 9 9 9 9 9 9 9 9
rando59 19360 31329 31329 21834 21162 19823 11829 17903
rando60 857 383 587 479 543 459 880 433
rando6l 103 71 62 265 77 119 257 42

rando62 20 22 11 11 11 11 22 11
rando63 24 26 26 24 25 25 24 30
rando64 2632 1548 1409 1251 1598 1355 2153 1108
rando65 101 103 110 108 98 122 129 93
rando66 149 121 121 265 132 113 167 141
rando67 4 4 4 4 4 4 4 4
rando68 6 6 6 6 6 6 6 6
rando69 8 8 8 8 8 9 8 8
rando70 100 79 79 79 84 97 99 75
randoll 7 7 7 7 7 7 7 6

222

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

rando72 2 2 2 2 2 2 2 2

rando73 948 1481 1775 1775 836 1015 5802 425

rando74 2 2 2 2 2 2 2 2
rando75 16 16 16 16 15 16 16 15
rando76 404 233 229 303 311 323 188 288

rando77 266 358 358 414 192 345 562 213

rando78 5 5 8 8 5 5 5 5

rando79 4 4 4 4 4 4 4 4

rando80 123 119 119 118 121 118 145 118

rando8l 4 4 4 4 4 4 4 4

rando82 6 6 6 6 6 6 6 6

rando83 239 327 316 221 210 221 265 214

rando84 1683 1014 1022 593 947 682 744 396

rando85 17 18 18 26 18 18 17 27

rando86 2 2 2 2 2 2 2 2

rando87 22 23 23 20 19 19 21 19

rando88 822 492 679 787 636 812 598 662

rando89 236 238 286 284 229 277 451 183

rando90 3 3 3 3 3 3 3 3

rando9l 33477 90989 80909 247443 29078 62748 49396 26183

rando92 6679 19287 20840 55703 10353 27182 8900 9657

rando93 76 144 96 66 47 46 131 46

rando94 2 2 2 2 2 2 2 2

rando95 89 68 86 86 89 76 86 76

rando96 7 7 7 7 7 7 7 7

rando97 3 3 3 3 3 3 3 3

rando98 24786 28363 28363 23523 18087 26370 12027 13815

rando99 716 4427 4371 3876 692 1389 3159 805
randoml 6 6 6 7 6 6 7 6

random2 2 2 2 2 2 2 2 2

random3 2377 4961 3371 2845 2681 3109 2291 2647

random4 5 5 5 5 5 5 5 5

random6 46584 1520239 1519663 635059 41579 49951 1042345 75836

random? 4 4 4 4 4 4 4 4

random8 36 30 35 35 36 30 30 30
random9 6 6 6 6 6 6 6 6
relcour 9 9 9 9 9 9 10 9

rstreel 4 4 4 4 4 4 4 4
rstree2 4 4 4 4 4 4 4 4

223

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

rstre e3 14 11 11 14 14 14 11 14

rstree4 5 5 5 5 5 5 6 5

rstree5 2 2 2 2 2 2 2 2

rstree6 4 4 4 4 4 4 4 4

rstree7 29 33 33 16 18 16 22 16

trialsi 807 800 1099 822 624 495 858 344

trials2 12 14 12 12 12 12 12 12

trials3 2 2 2 2 2 2 2 2

trials4 311 637 537 597 264 275 759 307

usatree 4 4 4 4 4 4 4 4

worrell 19 17 17 17 18 17 19 17

224

Appendix IV

1.

2.

3.

4.

5.

6.

7.

8. '

Number of Distinct Nodes in BDDs Obtained from the Original Fault Trees

Key to ordering schemes':

Modified top-down.

Modified depth-first.

Modified priority depth-first.

Depth-first, with number of leaves.

Non-dynamic top-down weights.
Dynamic top-down weights.
Bottom-up weights.
Event criticality.

Fault tree
Ordering scheme

12345678

aaaaaaa 3 3 3 3 3 3 3 3

artqual 9 8 9 9 9 9 9 8

arttree 4 4 4 4 4 4 4 4

astolfo 40 26 26 25 40 27 25 48

bddtest 32 25 25 34 52 37 25 40

benjiam 47 34 34 32 47 39 32 47

bpfeg03 101 63 63 63 93 63 63 70

bpfen05 90 61 61 61 82 61 61 85

bpfig05 88 60 60 60 81 60 60 63

bpfin05 45 40 40 40 40 40 40 42

bpfpp02 4 4 4 4 4 4 4 4

bpfsw02 150 61 61 62 150 150 62 150

ch8tree 10 9 9 10 10 10 10 10

drel019 19 19 19 19 19 19 19 19

dre1032 21 21 21 21 21 21 21 21

drel057 43 32 32 32 43 43 32 32

dre1058 164 186 90 107 190 103 70 72

dre1059 232 385 404 403 282 167 333 152

dresden 327 273 87 80 378 103 430 164

emerh2o 10 10 10 10 10 10 10 10

fatram2 11 11 11 11 10 10 11 11
hpisf02 414 96 96 98 361 357 134 419

' For each fault tree, the ordering scheme(s) resulting in the fewest distinct BDD nodes is
(are) shown in bold.

225

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
hpisf03 45 42 42 42 45 45 42 46
hpisf2l 220 196 196 249 429 406 210 1021
hpisf36 42 44 40 40 40 40 40 42
jdtreel 10 7 7 7 10 10 7 10
jdtree2 10 7 7 7 10 10 7 10
jdtree3 37 21 21 21 37 35 21 37
jdtree4 31 19 19 19 31 31 19 31
jdtree5 35 20 20 20 35 32 20 35
khictre 30 30 30 30 30 30 30 30
Iisal23 82 40 40 33 75 44 84 124
Iisabl0 820 534 400 302 372 277 476 243
lisab25 65 64 69 55 62 56 49 66
lisab28 30 22 22 22 30 27 22 30
Iisab30 44 37 37 34 40 34 36 33
Iisab3l 332 506 506 245 362 176 422 330
tisab34 22 20 20 20 23 20 28 23
lisab35 645 449 449 207 546 592 596 342
lisab36 134 114 110 324 162 267 79 98
lisab42 19 17 17 17 17 17 18 17
lisab44 32 32 32 41 33 41 32 41
lisab5l 33 27 27 30 42 36 24 36
Iisab52 598 778 778 659 423 524 623 350
lisab53 11 11 11 9 11 11 9 9
Iisab54 25 22 20 20 20 20 20 22
lisab57 137 118 110 220 131 125 139 175
lisab59 133 49 49 49 172 81 49 144
Iisab60 34 29 29 25 35 25 25 30
lisab78 313 111 149 111 196 140 195 167
Iisab86 202 230 199 160 207 198 261 195
lisaba4 420 278 294 246 276 273 148 203
lisaba9 167 59 59 57 127 56 55 107

modtree 44 4 4 4 4 4 4
nakashi 147 47 65 62 118 71 49 111
newtre2 66 6 6 6 6 6 8

newtre3 64 4 4 4 4 4 4
newtree 66 6 6 6 6 6 8
rand100 13 13 13 13 15 15 11 15
rand101 77 7 7 7 7 7 7
rand102 22 2 2 2 2 2 2

226

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rand103 52 34 34 27 51 46 38 49

rand104 35 31 31 32 40 34 19 34

rand105 81 60 61 52 74 55 49 95
rand 106 14 877 877 13 13 17 13 16
rand107 5 5 5 5 5 5 5 5

rand108 95 219 199 147 80 92 216 86
rand109 239 127 137 127 254 167 220 240

rand110 27 28 28 29 29 29 13 30

rand111 79 99 91 66 74 71 47 62

rand 112 5 5 5 5 5 5 5 5

randl13 6 6 6 6 6 6 6 6

randl14 7 7 7 7 7 7 7 7

randl15 176 111 111 168 161 112 111 94
randl16 98 112 142 158 82 188 172 63

rand117 27 29 27 29 27 27 25 30

randl18 179 91 93 84 121 83 70 96

rand119 47 30 52 29 34 32 30 34
randl20 395 82 84 150 373 198 95 372

randl2l 56 44 44 47 47 39 135 43

rand122 4 4 4 4 4 4 4 4
rand123 18 17 17 19 17 17 17 17

randl24 29 21 23 23 27 31 21 27

rand125 18 20 22 17 17 17 22 17
rand126 109 117 110 138 121 115 100 115

rand127 66 29 29 31 63 33 31 50

rand128 157 70 71 93 154 126 85 91
rand129 4 4 4 4 4 4 4 4

rand130 5 5 5 5 5 5 5 5
rand131 8 8 8 8 8 9 8 7
rand132 467 587 587 1084 376 845 1062 561
rand133 5 5 5 5 5 5 5 5

rand134 122 330 332 614 118 315 453 109
rand135 64 108 103 134 70 57 120 88

rand136 4 4 4 4 4 4 4 4

rand137 40 32 32 32 35 32 32 49

rand138 2 2 2 2 2 2 2 2
rand139 122 76 77 191 121 190 113 146
rand140 5 5 5 5 5 5 5 5
randl4l 27 28 28 29 29 29 13 30

227

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rand142 2056 2150 2139 2199 2133 1462 2411 1339
rand143 33 38 20 17 26 26 19 30
rand144 188 402 334 284 177 214 377 211
rand145 46 37 37 34 43 34 37 43
rand146 40 32 32 32 35 32 32 49
rand147 234 1474 1750 351 247 531 485 239
rand148 24 20 14 15 21 15 15 15
rand149 33 21 21 21 36 24 21 36

rand150 785 1896 1418 1634 997 960 1348 992
rand151 34 25 25 25 34 34 25 34
rand152 11 1 1 1 1 1 1
rand153 88 8 8 8 8 8 8
rand154 11 1 1 1 1 1 1
rand155 226 146 115 97 158 106 172 174
rand156 29 22 22 22 22 22 28 22

rand158 27 18 18 21 20 21 21 18
randol0 44 4 4 4 4 4 4

randoll 33318 55089 55097 10447 23334 16969 22213 12047
rando12 413 298 310 412 295 267 361 226
randol3 219 76 76 149 113 129 346 123
randol4 22 2 2 2 2 2 2
randol5 55 5 5 5 5 5 5

randol6 136 75 75 225 122 131 62 131

randol7 55 5 5 5 5 5 5

randol8 303 737 737 64 259 113 64 233

randol9 1076 1865 1832 3695 746 721 6392 639
rando20 737 1376 1076 1188 658 659 2121 523
rando2l 16 11 11 11 16 11 11 16
rando22 1584 2726 2726 1394 1049 1615 3254 878
rando23 38 31 31 31 37 37 31 35
rando24 44 4 4 4 4 4 4
rando25 16 13 13 28 17 21 18 12
rando26 44 4 4 4 4 4 4
rando27 109 187 187 270 90 99 217 94
rando28 11 1 1 1 1 1 1
rando29 124 183 174 172 124 96 115 108
rando30 295 86 93 94 272 185 90 249
rando3l 11 11 11 145 17 25 11 25
rando32 55 5 5 5 5 5 5

228

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rando33 18 31 31 48 16 13 19 16
rando34 64 62 58 58 57 66 44 48
rando35 45 51 54 55 26 27 30 29
rando36 28 17 17 16 20 16 16 18
rando37 71 179 179 203 73 226 70 97
rando38 24 19 19 16 32 22 17 22
rando39 140 170 170 347 135 259 361 237
rando40 27 19 19 24 25 19 24 19
rando4l 5 5 5 5 5 5 5 5
rando42 5 5 5 5 5 5 5 5
rando43 31 28 28 22 35 30 22 31
rando44 734 245 239 385 470 236 461 476
rando45 54 50 50 52 47 35 60 40
rando46 20 16 16 16 23 21 29 30
rando47 128 154 154 81 77 64 86 70

rando48 34 25 23 25 28 26 38 27
rando49 21 16 16 16 25 18 16 18
rando50 5 5 5 5 5 5 5 5
rando5l 3 3 3 3 3 3 3 3
rando52 106 55 124 130 115 129 86 112
rando53 5 5 5 5 5 5 5 5
rando54 68 45 68 68 70 68 69 61

rando55 24 25 25 21 25 25 24 26
rando56 7 7 7 7 7 7 7 7
rando57 6 6 6 6 6 6 6 6
rando58 9 9 9 9 9 9 9 9
rando59 557 239 239 182 452 293 126 235
rando60 98 34 37 34 73 59 42 57
rando6l 41 37 33 57 35 44 53 30
rando62 13 12 11 11 11 11 12 11
rando63 24 25 25 21 25 25 24 26
rando64 172 91 101 93 198 104 56 103
rando65 35 33 21 29 33 38 32 38
rando66 59 32 32 47 54 46 56 53
rando67 4 4 4 4 4 4 4 4
rando68 6 6 6 6 6 6 6 6
rando69 8 8 8 8 8 9 8 8
rando70 42 35 35 35 43 37 33 48
randoll 7 7 7 7 7 7 7 6

229

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rando72 2 2 2 22 2 2 2
rando73 136 114 127 127 108 105 240 64
rando74 2 2 2 22 2 2 2

rando75 13 13 13 13 11 13 13 11
rando76 71 30 39 39 39 45 39 40
rando77 72 82 82 60 48 48 132 41
rando78 5 5 8 85 5 5 5
rando79 4 4 4 44 4 4 4

rando80 31 26 26 29 31 29 36 29
rando8l 4 4 4 44 4 4 4
rando82 6 6 6 66 6 6 6
rando83 62 54 58 34 46 34 58 47
rando84 179 91 93 84 121 83 70 96
rando85 15 15 15 17 15 15 15 22
rando86 2 2 2 22 2 2 2
rando87 19 20 20 16 15 15 15 15

rando88 64 31 49 37 41 38 52 45
rando89 34 28 30 34 33 33 39 32
rando90 3 3 3 33 3 3 3
rando9l 490 1353 1341 861 432 458 1381 338

rando92 326 444 492 484 313 304 303 291
rando93 43 47 46 29 34 31 45 31

rando94 2 2 2 22 2 2 2

rando95 45 35 43 43 45 45 43 40
rando96 7 7 7 77 7 7 7
rando97 3 3 3 33 3 3 3
rando98 301 192 192 250 290 240 184 145
rando99 151 343 342 290 153 176 216 135
randoml 6 6 6 76 6 7 6
random2 2 2 2 22 2 2 2

random3 133 124 130 136 135 132 80 146
random4 5 5 5 55 5 5 5
random6 1086 4817 4817 5067 1594 1341 5684 1485
random? 4 4 4 44 4 4 4
random8 18 14 14 14 18 14 14 18
random9 6 6 6 66 6 6 6
relcour 6 6 6 66 6 6 6
rstreel 4 4 4 44 4 4 4
rstree2 4 4 4 44 4 4 4

230

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

rstree3 11 8 8 11 11 11 8 11

rstree4 5 5 5 5 5 5 5 5

rstree5 2 2 2 2 2 2 2 2

rstree6 4 4 4 4 4 4 4 4

rstree7 19 14 14 16 17 16 17 16
trialsl 127 95 125 82 139 66 76 108

trials2 12 14 12 12 12 11 10 12

trials3 2 2 2 2 2 2 2 2

trials4 122 171 151 137 124 111 138 101

usatree 4 4 4 4 4 4 4 4

Worrell 16 15 15 15 15 13 14 15

231

Appendix V

Number of If-Then-Else Calculations Required to Construct BDDs from the

Original Fault Trees

Key to ordering schemes':

1. Modified top-down.

2. Modified depth-first.

3. Modified priority depth-first.
4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.
6. Dynamic top-down weights.
7. Bottom-up weights.
8. Event criticality.

Fault tree
Ordering scheme

12345678

aaaaaaa 4 4 4 4 4 4 4 4

artqual 16 15 16 16 16 16 16 15

arttree 7 7 7 6 6 6 6 6

astolfo 56 59 56 42 58 47 60 67

bddtest 39 43 43 43 52 38 43 40

benjiam 76 75 75 71 76 67 75 101

bpfeg03 224 268 207 196 217 196 278 207

bpfen05 202 252 194 249 198 181 259 203

bpfig05 198 248 191 177 194 177 254 182

bpfin05 120 175 103 103 103 103 167 108

bpfpp02 6 6 6 6 6 6 6 6

bpfsw02 177 111 111 114 177 177 114 177

ch8tree 18 17 17 19 18 19 19 18

drel019 33 33 33 33 33 33 37 33

drel032 39 39 39 33 33 33 39 33

drel057 65 73 63 60 59 59 76 57

drel058 273 419 254 299 306 205 298 203

drei 059 299 598 631 630 333 230 540 251

dresden 864 1823 811 744 1220 810 1821 780

emerh2o 15 15 15 15 15 15 15 15

1 For each fault tree, the ordering scheme(s) requiring the fewest ite calculations to construct
the BDD is (are) shown in bold.

232

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
fatram2 18 18 18 18 18 18 18 17
hpisf02 581 223 223 269 593 575 402 920
hpisf03 96 91 91 91 96 96 94 100
hpisf2l 769 621 621 852 975 832 816 2717
hpisf36 124 126 118 112 116 112 126 132
jdtreel 10 9 9 9 10 10 9 10
jdtree2 10 9 9 9 10 10 9 10
jdtree3 46 38 38 38 46 44 38 46
jdtree4 52 46 46 46 52 52 46 52
jdtree5 46 38 38 38 46 44 38 46
khictre 207 184 207 204 204 204 184 200
Iisal23 170 160 160 145 186 132 176 245
IisablO 1150 1041 880 687 667 689 1021 571
Iisab25 204 192 216 202 203 193 197 209
Iisab28 42 47 40 37 39 44 40 48
Iisab30 255 216 214 207 231 192 239 220

Iisab3l 849 1289 1289 994 808 730 1195 721
Iisab34 58 60 60 60 63 61 67 61
Iisab35 772 534 534 434 682 703 694 544
Iisab36 1053 1277 1142 1316 1121 1257 1059 1017
Iisab42 44 41 41 41 41 41 42 41
Iisab44 101 103 103 108 102 114 102 111

Iisab5l 57 51 51 54 61 58 62 56
Iisab52 930 1287 1287 1007 742 808 1159 654

Iisab53 16 16 16 16 17 17 16 16
Iisab54 63 56 58 58 58 58 60 58
lisab57 191 189 183 376 184 189 267 243
Iisab59 182 129 126 136 223 164 125 216
Iisab60 59 53 53 51 59 52 51 52
Iisab78 414 279 313 242 282 239 332 260
Iisab86 313 386 304 286 318 301 417 272
Iisaba4 684 746 767 671 434 469 402 438
Iisaba9 266 164 164 130 194 126 131 202

rnodtree 9 9 9 9 9 9 9 9

nakashi 229 98 128 125 168 115 103 157
newtre2 12 12 12 12 12 12 13 13
newtre3 7 6 6 6 6 6 6 6
newtree 10 10 10 11 10 10 11 11
rand100 187 191 191 189 173 175 180 173

233

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
randl01 14 14 14 14 14 14 14 14
randl02 10 10 10 10 10 10 10 10
randl03 133 115 115 102 132 124 121 138
randl04 280 324 328 316 262 274 168 269

rand105 143 143 129 115 137 113 128 172
rand106 679 2050 2050 796 624 554 963 530

rand107 11 11 11 11 11 11 11 11
rand108 369 580 558 499 351 419 564 321

rand109 522 337 343 455 529 415 543 658

rand110 390 547 490 486 451 459 395 457

rand111 325 370 327 282 314 272 277 287

rand112 99 99 9 9 9 9

rand113 81 81 81 81 73 73 81 73
randl14 24 24 24 24 23 23 24 23

rand115 314 286 286 326 301 227 226 234

rand116 521 383 432 801 474 744 761 355

rand117 63 62 60 60 58 58 57 59

rand118 271 166 182 173 209 180 167 166

rand119 114 119 124 97 103 101 122 100
rand120 493 211 246 272 473 313 279 460

rand121 215 205 205 199 201 196 283 207

rand122 55 55 5 5 5 5

rand123 55 61 61 57 56 51 61 57

rand124 91 101 108 94 99 100 112 102

rand125 52 55 53 49 49 49 53 49

rand126 288 259 259 265 295 238 273 298

rand127 97 67 67 63 89 64 63 86

rand128 660 455 43 644 647 695 624 440
rand129 56 56 56 55 55 55 55 53

rand130 207 178 178 172 178 176 208 179
rand131 14 14 14 14 14 16 14 13

rand132 765 817 817 1550 607 1195 1525 888

rand133 11 11 11 11 11 11 11 11
rand134 546 719 739 1487 550 1028 1123 526
rand135 319 322 317 515 326 269 390 345
rand136 66 66 6 6 6 6
rand137 81 75 75 75 78 75 75 86
randl38 101 101 101 101 103 103 101 103

rand139 320 226 273 511 324 515 267 365

234

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rand140 12 12 12 12 12 12 12 12

rand141 390 547 490 486 451 459 395 457
rand142 2923 2643 2632 2965 3013 2150 3318 1902

rand143 166 141 149 140 151 146 140 156

rand144 555 1065 966 961 505 630 1084 572
rand145 80 88 88 72 81 76 92 87

rand146 81 75 75 75 78 75 75 86

rand-147 621 2689 2956 755 619 1096 1022 654

rand148 78 62 61 68 73 68 72 69

rand149 215 244 231 221 229 198 244 243

rand150 1189 2334 1816 2053 1301 1332 1679 1298

rand151 84 90 80 80 85 84 91 89
rand 152 2 2 2 2 2 2 2 2

rand153 175 167 167 163 163 163 163 170

rand154 123 84 119 119 93 93 122 81

rand155 314 307 297 213 238 196 448 250

rand156 170 130 130 130 130 124 178 130

rand158 11389 7473 7473 7942 8785 6677 7127 7869

randol0 11 11 11 11 11 11 11 11

randoll 33678 56142 56138 11312 23727 17480 24658 12557

randol2 747 595 605 887 567 561 721 531

rando13 998 1107 1107 1654 892 1213 1725 938

rando14 10 10 10 10 10 10 10 10

randol5 26 26 26 26 27 26 26 27

randol6 1895 1790 1553 1815 1876 1703 1484 1881

randol7 8 8 8 8 8 8 8 8

randol8 12975 26709 25905 38686 9984 22662 36197 9819

randol9 1772 3287 3249 4943 1401 1610 8248 1445
rando20 2605 2960 2735 3006 2439 2644 6408 2383

rando2l 17 17 16 17 17 17 17 20

rando22 3662 6136 6136 4453 2668 3238 7618 2237
rando23 317 361 361 354 266 279 360 235

rando24 9 9 9 9 9 9 9 9

rando25 85 74 74 125 86 105 92 74
rando26 32 32 32 32 32 32 32 32
rando27 2273 2588 2586 2248 2579 2123 1964 2289
rando28 245 242 236 235 231 233 238 241
rando29 449 587 449 450 428 374 415 386
rando30 351 163 176 174 327 269 186 307

235

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rando3l 1547 1420 1491 2206 1491 1535 1431 1668
rando32 27 27 27 27 27 27 27 27

rando33 180 172 172 201 182 167 201 177
rando34 397 379 443 447 375 389 386 318
rando35 378 474 426 421 296 297 277 284

rando36 141 129 136 146 147 140 142 138

rando37 388 554 554 590 387 572 399 437

rando38 99 96 96 95 99 92 Be 92

rando39 389 351 351 791 346 593 684 433
rando40 45 41 41 42 50 44 42 41
rando4l 20 20 20 20 20 20 20 20
rando42 51 52 55 54 55 54 52 59
rando43 101 106 106 104 103 101 113 99
rando44 979 388 380 571 599 469 674 677

rando45 246 238 238 299 228 209 245 216

rando46 687 595 595 522 522 498 441 497

rando47 244 284 284 245 202 206 243 199
rando48 144 139 139 137 138 131 144 143
rando49 65 62 62 62 68 62 62 62
rando50 20 20 20 20 20 20 20 20

rando5l 14 14 14 14 14 14 14 14
rando52 1138 1074 1154 1220 1109 1161 1239 956

rando53 107 95 118 115 113 113 95 115

rando54 133 128 130 130 133 132 130 139
rando55 191 191 191 217 193 192 189 187
rando56 31 31 31 31 31 31 31 36
rando57 25 25 25 25 25 25 25 25
rando58 104 107 107 106 95 95 103 95
rando59 820 493 493 444 696 548 411 520
rando60 355 378 405 378 330 291 452 296
rando6l 165 173 168 234 162 196 230 161
rando62 108 107 110 113 109 112 107 109

rando63 191 191 191 217 193 192 189 187
rando64 519 382 363 341 562 329 356 337
rando65 62 64 56 61 63 75 94 73
rando66 248 243 243 282 247 231 270 242
rando67 666 66 6 6 6
rando68 29 29 29 29 29 29 29 29
rando69 17 17 17 17 17 18 17 17

236

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rando70 94 86 86 86 87 88 87 91
randoll 17 17 17 17 17 17 17 16

rando72 17 17 17 17 18 18 17 18
rando73 325 333 330 332 283 270 489 261
rando74 9999 9 9 9 9

rando75 58 58 58 58 58 59 58 59

rando76 226 159 208 190 181 188 238 203
rando77 514 470 465 529 536 559 688 533

rando78 107 109 120 115 107 107 112 113
rando79 16 16 17 17 16 16 16 16
rando80 59 54 54 59 60 59 65 59
rando8l 11 11 11 11 11 11 11 11
rando82 60 60 60 60 60 62 59 60
rando83 97 111 105 75 84 75 110 82

rando84 271 166 182 173 209 180 167 166

rando85 221 213 213 205 200 200 219 204

rando86 10 10 10 10 10 10 10 10
rando87 55 59 59 55 52 52 54 52
rando88 93 71 92 72 69 74 88 71
rando89 987 866 833 822 910 845 621 970
rando90 2222 2 2 2 2
rando9l 899 1772 1758 1408 838 857 1829 789

rando92 7078 9862 11801 13736 5392 5029 3656 6782

rando93 390 332 290 388 339 343 321 307
rando94 10 10 10 10 10 10 10 10

rando95 134 95 124 124 134 120 124 114
rando96 10 10 10 10 10 10 10 10
rando97 9999 9 9 9 9
rando98 755 611 611 714 649 639 654 450

rando99 505 1091 1034 921 541 664 864 585
randoml 20 20 20 19 19 19 19 20
random2 9999 9 9 9 9

random3 601 696 604 632 574 531 452 595
random4 13 13 13 13 13 13 13 13

random6 1978 6846 6845 7631 2791 2686 8041 3081
random7 10 10 10 10 10 10 10 10
random8 72 66 68 68 72 66 66 66
random9 29 29 29 29 29 29 29 29
relcour 7777 7 7 8 7

237

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rstreel 10 10 10 10 10 10 10 10

rstree2 11 11 11 11 11 11 11 11

rstree3 14 15 15 15 15 15 15 15

rstree4 10 10 10 10 10 10 11 10

rstree5 6 6 6 6 6 6 6 6

rstree6 8 8 8 8 8 8 8 8

rstree7 41 31 31 30 32 30 30 30

trialsl 302 293 310 252 312 224 260 268

trials2 67 68 67 67 70 70 65 66

trials3 116 118 112 114 111 103 114 100

trials4 450 588 511 522 400 388 469 358

usatree 6 6 6 6 6 6 6 6

worrell 29 28 28 28 28 27 24 27

238

Appendix VI

Number of Non-Distinct Nodes in BDDs Obtained from Fault Trees

Restructured Using the Faunet Reduction Method

Key to ordering schemes':

1. Modified top-down.

2. Modified depth-first.

3. Modified priority depth-first.

4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.
6. Dynamic top-down weights.
7. Bottom-up weights.
8. Event criticality.

Fault tree
Ordering scheme

12345678

aaaaaaa 1 1 1 1 1 1 1 1

artqual 6 6 6 6 6 6 6 6

arttree 1 1 1 1 1 1 1 1

astolfo 24 23 23 27 24 27 23 30

bddtest 32 35 35 35 32 36 35 32

benjiam 87 76 76 80 87 84 80 83

bpfeg03 1 1 1 1 1 1 1 1

bpfen05 1 1 1 1 1 1 1 1

bpfig05 1 1 1 1 1 1 1 1

bpfin05 1 1 1 1 1 1 1 1

bpfpp02 1 1 1 1 1 1 1 1

bpfsw02 19 19 14 14 19 14 19 15

ch8tree 9 8 8 8 9 10 10 8

dre1019 1 1 1 1 1 1 1 1

dre1032 1 1 1 1 1 1 1 1

dre1057 1 1 1 1 1 1 1 1

drel058 30 26 26 26 30 28 26 30

drel059 256 312 261 261 232 214 312 216

dresden 540 160 160 160 540 441 550 543

emerh2o 1 1 1 1 1 1 1 1

1 For each fault tree, the ordering scheme(s) resulting in the fewest non-distinct BDD nodes Is
(are) shown in bold.

239

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
fatram2 9 9 9 9 9 9 9 10
hpisf02 159 137 137 140 171 140 130 172
hpisf03 14 14 14 14 14 14 14 14
hpisf2l 30 41 41 38 33 41 32 31
hpisf36 14 14 14 14 14 14 14 14
jdtree1 1 1 1 1 1 1 1 1
jdtree2 1 1 1 1 1 1 1 1
jdtree3 1 1 1 1 1 1 1 1

jdtree4 6 6 6 6 6 6 6 6
jdtree5 4 4 4 4 4 4 4 4
khictre 36 30 30 33 39 33 30 30
lisa123 207 227 227 171 180 123 205 164
Iisabl0 11160 14901 18023 7476 7180 4883 20756 3913
Iisab25 90 93 82 77 86 78 87 84

Iisab28 1 1 1 1 1 1 1 1

Iisab30 69 57 57 57 65 61 61 49

lisab3l 5798 83846 83846 14033 5369 6963 47793 4656
Iisab34 25 20 32 25 23 25 32 23
lisab35 1572 2739 2935 2170 1584 2273 2739 679
Iisab36 1553 698 708 2930 2576 3102 450 450
Iisab42 6 6 6 6 6 6 6 6
Iisab44 138 41 128 128 141 125 41 74
Iisab51 17 16 16 16 17 16 18 21
Iisab52 4957 28897 28897 26738 3169 18701 34655 2772

Iisab53 1 1 1 1 1 1 1 1

Iisab54 22 22 19 19 21 19 19 20
Iisab57 1438 1626 1309 1582 1188 1466 1523 957
Iisab59 1 1 1 1 1 1 1 1
Iisab60 35 57 57 33 33 34 47 32

Iisab78 603 539 423 538 508 538 532 432
Iisab86 1132 2269 1954 1173 943 1188 1104 872
Iisaba4 2694 4921 5584 5054 2211 1971 6384 1764

Iisaba9 48 46 46 36 36 37 36 39

modtree 2 2 2 2 2 2 2 2
nakashi 501 359 318 342 360 455 359 304

newtre2 3 3 3 3 3 3 3 3
newtre3 3 3 3 3 3 3 3 3
newtree 1 1 1 1 1 1 1 1
randl00 18 18 18 18 19 19 13 19

240

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rand101 4 4 4 4 4 4 4 4

rand102 1 1 1 1 1 1 1 1
rand103 31 33 29 25 25 25 23 23
rand104 69 70 70 70 68 66 31 66
rand105 29 34 28 28 27 28 32 27
rand106 19 22 24 3495 18 37 5780 17

rand107 2 2 2 2 2 2 2 2
rand108 249 1978 1555 1139 133 499 1579 142

rand109 775 1169 1269 535 547 443 404 533
rand110 30 35 35 35 34 38 20 36
rand111 214 277 266 188 186 220 135 106
rand112 3 3 3 3 3 3 3 3
rand113 6 6 6 6 6 6 6 6

rand114 4 4 4 4 4 4 4 4

rand115 497 659 659 655 419 389 750 312

rand116 1189 1003 1003 2172 858 1900 2660 391
rand117 13 15 14 14 13 13 15 13
rand118 260 184 177 188 236 199 154 132
rand119 25 24 24 22 25 22 24 22
rand120 238 242 207 203 218 206 327 232

rand121 176 84 84 78 107 78 453 100
rand122 2 2 2 2 2 2 2 2

rand123 12 13 13 16 10 16 13 16

rand124 23 19 18 18 18 18 22 18
rand125 15 19 14 14 13 13 14 13
rand126 238 430 267 236 196 186 175 220
rand127 11 10 10 10 11 10 10 10
rand128 3586 417 417 3045 1569 2388 960 526

rand129 2 2 2 2 2 2 2 2

rand130 5 5 5 5 5 5 5 5

rand131 6 6 6 6 6 7 6 5
rand132 4901 12858 12858 23901 3920 9231 22637 3813
rand133 3 3 3 3 3 3 3 3
rand134 1918 2659 3020 35046 330 1428 18819 326
rand135 365 1255 1157 981 395 349 1420 421
rand136 3 3 3 3 3 3 3 3
rand137 69 67 67 67 70 72 56 43
rand138 2 2 2 2 2 2 2 2
randl39 501 461 544 645 358 733 523 341

241

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rand140 2 2 2 2 2 2 2 2
randl4l 30 35 35 35 34 38 20 36

rand142 43467 44476 43955 77267 41534 64968 119851 42920

rand143 31 42 36 28 31 30 28 31

rand144 5141 27724 25960 10268 2459 5138 6895 2996

rand145 7 7 7 7 7 7 7 7

rand146 69 67 67 67 70 72 56 43

rand147 6692 60575 50517 54288 2262 1493 6842 1655

rand148 8 7 7 7 7 7 7 7

rand149 8 8 8 8 8 8 8 8

rand150 30959 78516 61194 60240 39610 81592 64501 24546

randl5l 13 12 12 12 12 15 12 11

rand152 1 1 1 1 1 1 1 1

rand153 8 8 8 8 8 8 8 8

rand154 1 1 1 1 1 1 1 1

rand155 733 1018 1052 1044 663 903 1507 525

rand156 23 22 22 22 23 22 20 23

rand158 35 29 29 24 24 24 24 22

randolO 3 3 3 3 3 3 3 3

randoll 3944979 1.24x108 1.24x108 2.39x107 9066673 1.91x10' 1.16x108 7290272

randol2 3969 2838 2838 3393 2152 2007 9122 1932

randol3 1235 1963 1963 2456 702 4955 31647 767

randol4 1 1 1 1 1 1 1 1

randol5 5 5 5 5 5 5 5 5

randol6 409 238 252 796 352 421 300 396

rando17 2 2 2 2 2 2 2 2

rando18 3349 24217 24217 684 2350 1256 618 2681

rando19 44265 207893 207893 237216 10274 9413 602967 14141

rando20 9780 85872 81451 99481 9886 18437 232578 13786

rando2l 1 1 1 1 1 1 1 1

rando22 47936 220656 221672 118924 15661 59043 388687 13776

rando23 106 111 111 111 91 105 200 68

rando24 2 2 2 2 2 2 2 2

rando25 20 16 16 16 20 16 37 15

rando26 4 4 4 4 4 4 4 4

rando27 656 8830 8830 6284 784 708 2867 669
rando28 1 1 1 1 1 1 1 1

rando29 475 293 293 479 553 265 569 467

rando30 121 112 103 103 121 107 155 146

242

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rando3l 11 11 11 1925 29 53 11 53
rando32 5 5 5 5 5 5 5 5
rando33 24 72 70 60 18 23 68 20
rando34 174 167 185 185 163 202 270 158
rando35 104 142 117 117 74 71 149 57
rando36 22 25 25 18 21 18 22 22
rando37 460 544 585 702 183 221 283 231
rando38 13 13 13 13 13 13 11 14

rando39 736 1290 1290 2252 606 2085 6824 997
rando40 38 23 24 36 38 27 38 23
rando4l 3 3 3 3 3 3 3 3
rando42 4 4 4 4 4 4 4 4
rando43 14 17 17 17 14 16 13 14
rando44 1543 1000 957 1341 1487 903 1453 1506

rando45 132 159 159 264 99 83 182 97

rando46 14 12 12 12 13 15 12 18
rando47 474 706 706 1322 589 626 1106 562
rando48 77 32 32 32 49 32 91 38
rando49 13 13 13 13 13 13 13 13
rando50 3 3 3 3 3 3 3 3

rando5l 2 2 2 2 2 2 2 2
rando52 411 571 510 540 279 315 299 242

rando53 5 5 5 5 5 5 5 5
rando54 39 35 38 38 39 42 38 41
rando55 26 29 26 22 26 21 26 26

rando56 7 7 7 7 7 7 7 7
rando57 4 4 4 4 4 4 4 4
rando58 9 9 9 9 9 9 9 9
rando59 3836 3624 3425 2593 3158 2685 1281 2058

rando60 83 291 309 69 63 63 109 65
rando6l 111 88 67 265 94 75 257 42
rando62 14 16 9 9 9 9 16 9
rando63 26 29 26 22 26 21 26 26

rando64 216 244 222 187 171 187 208 151
rando65 46 42 42 59 42 39 44 38
rando66 92 185 185 185 108 89 184 141
rando67 3 3 3 3 3 3 3 3
rando68 6 6 6 6 6 6 6 6
rando69 6 6 6 6 6 6 6 6

243

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rando70 61 47 47 59 56 55 74 49
randoll 6 6 6 6 6 6 6 5
rando72 2 2 2 2 2 2 2 2

rando73 1019 1480 1816 1816 553 1146 7349 424
rando74 2 2 2 2 2 2 2 2
rando75 14 14 14 14 13 14 14 13

rando76 59 39 49 51 49 51 39 53

rando77 329 378 378 399 186 294 559 213
rando78 4 4 7 7 4 4 7 4
rando79 3 3 3 3 3 3 3 3

rando80 8 8 8 8 8 8 8 8

rando8l 3 3 3 3 3 3 3 3

rando82 6 6 6 6 6 6 6 6

rando83 169 228 211 182 177 182 244 168
rando84 260 184 177 188 236 199 154 132

rando85 14 15 15 21 15 14 14 22
rando86 1 1 1 1 1 1 1 1

rando87 9 11 11 11 9 11 11 9

rando88 35 34 31 34 29 30 26 23
rando89 94 102 110 110 95 111 182 81

rando90 1 1 1 1 1 1 1 1
rando9l 29915 62303 62303 85085 16890 24765 41973 23606
rando92 6594 14779 17238 88624 6503 21162 7544 7909

rando93 47 57 57 43 37 34 62 35
rando94 1 1 1 1 1 1 1 1
rando95 49 40 48 48 48 40 48 37

rando96 3 3 3 3 3 3 3 3
rando97 3 3 3 3 3 3 3 3

rando98 572 1031 1031 1031 566 748 949 785
rando99 522 3139 2539 2837 515 2623 2817 547
randoml 6 7 7 6 6 6 7 6
random2 2 2 2 2 2 2 2 2
random3 299 410 388 388 277 387 895 273
random4 5 5 5 5 5 5 5 5

random6 50601 1515090 1514514 630016 35450 155781 1034143 70875
random? 4 4 4 4 4 4 4 4
random8 9 9 9 9 9 9 9 9

random9 4 4 4 4 4 4 4 4
relcour 1 1 1 1T 1 1 1 1

244

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

rstreel 3 3 3 3 3 3 3 3

rstree2 3 3 3 3 3 3 3 3

rstree3 10 7 7 10 10 8 10 8

rstree4 4 4 4 4 4 4 4 4

rstree5 2 2 2 2 2 2 2 2

rstree6 3 3 3 3 3 3 3 3

rstree7 15 17 17 10 13 10 14 12

trialsl 244 439 439 416 221 230 513 186

trials2 11 12 12 12 10 11 12 12

trials3 2 2 2 2 2 2 2 2

trials4 242 491 496 698 210 291 760 262

usatree 1 1 1 1 1 1 1 1

worrell 19 17 17 17 18 17 19 17

245

Appendix VII

Number of Distinct Nodes in BDDs Obtained from Fault Trees Restructured

Using the Faunet Reduction Method

Key to ordering schemes':

1. Modified top-down.

2. Modified depth-first.

3. Modified priority depth-first.

4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.
6. Dynamic top-down weights.
7. Bottom-up weights.

8. Event criticality.

Fault tree
Ordering scheme

12345678

aaaaaaa 1 1 1 1 1 1 1 1

artqual 6 6 6 6 6 6 6 6

arttree 1 1 1 1 1 1 1 1

astolfo 16 17 17 14 16 18 17 19

bddtest 26 22 22 22 26 25 22 26

benjiam 47 34 34 32 47 39 32 47

bpfeg03 1 1 1 1 1 1 1 1

bpfen05 1 1 1 1 1 1 1 1

bpfigO5 1 1 1 1 1 1 1 1

bpfin05 1 1 1 1 1 1 1 1

bpfpp02 1 1 1 1 1 1 1 1

bpfsw02 17 14 13 13 17 13 14 14

ch8tree 8 8 8 8 8 8 8 8

dre1019 1 1 1 1 1 1 1 1

dre1032 1 1 1 1 1 1 1 1

dre1057 1 1 1 1 1 1 1 1

dre1058 24 18 18 18 24 21 18 24

dre1059 89 94 91 91 70 57 94 51

dresden 134 23 23 23 134 63 39 137

emerh2o 1 1 1 1 1 1 1 1

' For each fault tree, the ordering scheme(s) resulting in the fewest distinct BDD nodes is
(are) shown in bold.

246

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 'Scheme 7 Scheme 8
fatram2 9 9 9 9 9 9 9 10
hpisf02 77 24 24 34 67 34 33 86
hpisf03 11 11 11 11 11 11 11 11
hpisf2l 26 22 22 24 24 25 25 24
hpisf36 11 11 11 11 11 11 11 11
jdtreel 1 1 1 1 1 1 1 1
jdtree2 1 1 1 1 1 1 1 1
jdtree3 1 1 1 1 1 1 1 1
jdtree4 6 6 6 6 6 6 6 6
jdtree5 4 4 4 4 4 4 4 4
khictre 15 11 11 11 17 11 11 11
lisal23 75 36 36 29 80 38 67 58
Iisabl0 780 522 385 290 346 269 448 246
Iisab25 54 48 55 45 52 46 43 53
lisab28 1 1 1 1 1 1 1 1
Iisab30 29 28 28 28 27 27 23 23
Iisab31 407 500 500 242 301 172 415 299
lisab34 18 16 20 16 19 16 20 19
Iisab35 329 339 362 194 295 347 339 164
Iisab36 134 114 110 301 145 256 79 96
lisab42 6 6 6 6 6 6 6 6
Iisab44 35 29 37 35 41 32 29 33
lisab5l 13 12 12 12 13 12 12 18
lisab52 583 751 751 656 385 522 551 339
lisab53 1 1 1 1 1 1 1 1
lisab54 18 15 15 15 17 15 13 16
Iisab57 110 108 118 102 96 120 120 159
lisab59 1 1 1 1 1 1 1 1
Iisab60 26 20 20 23 24 24 22 22
lisab78 178 69 105 106 153 106 83 89
lisab86 148 164 141 107 150 104 146 143
lisaba4 328 204 222 179 200 198 208 191
lisaba9 36 18 18 18 21 18 18 26
modtree 2 2 2 2 2 2 2 2
nakashi 138 43 64 60 120 55 43 105
newtre2 3 3 3 3 3 3 3 3
newtre3 3 3 3 3 3 3 3 3
newtree 1 1 1 1 1 1 1 1
rand100 12 12 12 12

E

14 14 10 14

247

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rand101 4 4 4 4 4 4 4 4
rand102 1 1 1 1 1 1 1 1
rand103 24 19 21 24 24 24 22 22

rand104 33 29 29 29 33 30 17 30
rand105 23 24 20 20 22 20 16 22

rand106 14 13 13 606 15 25 782 16

rand107 2 2 2 2 2 2 2 2
rand108 97 219 192 147 81 91 216 90

rand109 147 85 95 83 143 109 105 147
rand110 26 29 29 29 25 26 12 27
randl11 77 96 88 66 70 68 46 60
rand112 3 3 3 3 3 3 3 3

rand113 6 6 6 6 6 6 6 6
rand114 4 4 4 4 4 4 4 4
rand115 126 106 106 113 112 94 98 87

rand116 89 142 142 158 81 168 172 61

randl17 12 14 14 14 13 13 14 13
rand118 79 51 49 56 70 59 49 56
rand119 17 14 14 13 17 13 14 13
rand120 98 52 43 72 91 73 81 109

rand121 42 33 33 32 35 34 86 33
rand122 2 2 2 2 2 2 2 2

rand123 11 10 10 12 10 12 10 12

rand124 15 11 13 13 13 13 13 13
rand125 12 13 14 14 11 11 14 11
rand126 74 79 74 90 66 59 69 58
rand 127 10 9 9 9 10 9' 8 8
rand128 134 59 59 88 144 98 77 74
rand129 2 2 2 2 2 2 2 2
rand130 5 5 5 5 5 5 5 5
randl31 6 6 6 6 6 7, 6 5
randl32 473 584 584 1128 347 591 1106 559
randl33 3 3 3 3 3 3 3 3

randl34 188 253 255 579 100 146 424 84
rand135 64 108 103 128 70 57 120 88
rand136 3 3 3 3 3 3 3 3
rand137 23 21 21 21 27 21 29 27
rand138 2 2 2 2 2 2 2 2
rand139 98 65 63 150 102 155 106 121

248

Fault tree Scheme 1 Scheme 2 'Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rand140 2 2 2 2 2 2 2 2
rand141 26 29 29 29 25 26 12 27
rand142 1892 1789 1732 1876 1595 1248 1992 1299
rand143 16 21 14 12 16 14 12 16
rand144 179 381 313 275 197 231 403 217

rand145 7 7 7 7 7 7 7 7
rand146 23 21 21 21 27 21 29 27
rand147 391 1656 1481 1276 257 206 425 228

rand148 7 5 6 6 6 6 6 6
rand149 8 8 8 8 8 8 8 8
rand150 981 1843 1341 1908 1211 1554 1273 1040
rand151 11 9 9 9 9 10 9 8

rand152 1 1 1 1 1 1 1 1
rand153 8 8 8 8 8 8 8 8

rand154 1 1 1 1 1 1 1 1
rand155 190 134 102 76 131 83 155 122
rand156 17 14 14 14 17 14 14 18
rand158 23 17 17 20 20 20 20 17
randol0 3 3 3 3 3 3 3 3
randoll 16878 46572 46572 7965 13456 7171 16680 8829
randol2 309 214 214 242 275 221 320 198
randol3 179 76 76 149 126 137 384 123
randol4 1 1 1 1 1 1 1 1
randol5 5 5 5 5 5 5 5 5

randol6 122 65 65 205 101 98 63 103
randoll 2 2 2 2 2 2 2 2
randol8 287 594 594 62 212 108 63 184
randol9 1496 1811 1811 3565 920 950 5094 791
rando20 711 1348 1076 1148 635 663 2121 490

rando2l 1 1 1 1 1 1 1 1
rando22 1537 2648 2565 1376 1045 1657 3418 803
rando23 31 25 25 25 31 31 29 32
rando24 2 2 2 2 2 2 2 2

rando25 14 13 13 13 15 13 18 12
rando26 4 4 4 4 4 4 4 4

rando27 109 187 187 270 90 99 217 94
rando28 1 1 1 1 1 1 1 1
rando29 154 63 63 158 123 71 89 93

rando30 44 38 34 34 44 39 35 49

249

l F au t tre e Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rando3l 11 11 11 145 17 25

J

11 25
rando32 5 5 5 5 5 5 5 5
rando33 17 30 28 24 16 16 25 16
rando34 56 49 50 50 50 53 41 45
rando35 32 50 45 45 27 25 30 29
rando36 17 13 13 12 16 12 14 16
rando37 108 193 202 200 90 104 59 100
rando38 11 11 11 11 11 11 9 12
rando39 139 160 160 347 139 259 357 237
rando40 19 15 15 16 19 14 20 18
rando4l 3 3 3 3 3 3 3 3
rando42 4 4 4 4 4 4 4 4
rando43 11 11 11 11 11 12 9 11
rando44 244 112 106 184 257 169 186 226
rando45 54 50 50 52 47 35 60 40
rando46 14 12 12 12 13 15 12 18
rando47 72 120 120 78 64 58 73 67
rando48 33 24 22 22 29 23 35 25
rando49 11 11 11 11 11 11 11 9
rando50 3 3 3 3 3 3 3 3
rando5l 2 2 2 2 2 2 2 2
rando52 101 86 123 126 112 125 85 109
rando53 5 5 5 5 5 5 5 5
rando54 28 19 27 27 28 28 27 29
rando55 22 23 22 19 23 21 22 23
rando56 7 7 7 7 7 7 7 7
rando57 4 4 4 4 4 4 4 4
rando58 9 9 9 9 9 9 9 9
rando59 363 177 172 120 392 148 118 177
rando60 34 65 63 21 26 26 35 29
rando6l 43 33 34 57 39 35 52 30
rando62 11 10 9 9 9 9 10 9
rando63 22 23 22 3 23 21 22 23
rando64 86 50 56 62 73 62 55 64
rando65 30 19 19 32 29 26 23 26
rando66 45 46 46 46 47 40 53 53
rando67 3 3 3 3 3 3 3 3
rando68 6 66 6 6 6 6 6 6
rando69 66 6 6 6 6 6 6

250

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rando70 26 22 22 20 26 23 27 31
rando7l 6 6 6 6 6 6 6 5
rando72 2 2 2 2 2 2 2 2

rando73 110 113 125 125 86 97 239 63
rando74 2 2 2 2 2 2 2 2
rando75 12 12 12 12 10 12 12 10

rando76 34 19 24 23 22 23 19 24

rando77 73 85 85 57 47 43 131 41
rando78 4 4 7 7 4 4 7 4

rando79 3 3 3 3 3 3 3 3
rando80 8 8 8 8 8 8 8 8

rando8l 3 3 3 3 3 3 3 3
rando82 6 6 6 6 6 6 6 6

rando83 56 45 49 31 42 31 49 42

rando84 79 51 49 56 70 59 49 56

rando85 13 13 13 15 14 13 13 19
rando86 1 1 1 1 1 1 1 1

rando87 9 11 11 11 9 11 11 9

rando88 23 14 17 14 21 15 18 19

rando89 26 22 24 24 27 27 49 27

rando90 1 1 1 1 1 1 1 1
rando9l 674 1250 1250 486 513 408 1436 335

rando92 276 446 456 568 288 283 291 261
rando93 32 34 34 22 30 27 35 28

rando94 1 1 1 1 1 1 1 1
rando95 31 26 30 30 30 32 30 29
rando96 3 3 3 3 3 3 3 3
rando97 3 3 3 3 3 3 3 3
rando98 172 126 126 126 151 148 154 171
rando99 117 315 261 256 122 223 254 126
randoml 6 7 7 6 6 6 7 6
random2 2 2 2 2 2 2 2 2
random3 92 94 87 87 91 84 47 78
random4 5 5 5 5 5 5 5 5
random6 1046 4773 4773 5059 1583 1871 5676 1481
random7 4 4 4 4 4 4 4 4
random8 9 9 9 9 9 9 9 9
random9 4 4 4 4 4 4 4 4

relcour 1 1 1 1 1 1 1 1

251

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

rstreel 3 3 3 3 3 3 3 3

rstree2 3 3 3 3 3 3 3 3

rstree3 9 6 6 8 9 8 8 8

rstree4 4 4 4 4 4 4 4 4

rstree5 2 2 2 2 2 2 2 2

rstree6 3 3 3 3 3 3 3 3

rstree7 13 11 11 10 12 10 12 11

trialsi 87 98 98 83 88 75 84 94

trials2 10 11 11 9 10 10 11 12

trials3 2 2 2 2 2 2 2 2

trials4 115 162 140 172 101 108 160 99

usatree 1 1 1 1 1 1 1 1

worrell 16 15 15 15 15 13 14 15

252

Appendix VIII

Number of If-Then-Else Calculations Required to Construct BDDs from Fault

Trees Restructured Using the Faunet Reduction Method

Key to ordering schemes':

1. Modified top-down.

2. Modified depth-first.

3. Modified priority depth-first.

4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.
6. Dynamic top-down weights.
7. Bottom-up weights.
8. Event criticality.

Ordering scheme
Fault tree

1 2 3 4 5 6 7 8

aaaaaaa 0 0 0 0 0 0 0 0

artq ual 10 9 10 10 10 10 10 9

arttree 0 0 0 0 0 0 0 0

astolfo 19 26 26 20 19 21 26 23

bddtest 27 31 31 31 27 26 31 27

benjiam 76 75 75 70 76 67 75 101

bpfeg03 0 0 0 0 0 0 0 0

bpfen05 0 0 0 0 0 0 0 0

bpfig05 0 0 0 0 0 0 0 0

bpfin05 0 0 0 0 0 0 0 0

bpfpp02 0 0 0 0 0 0 0 0

bpfsw02 27 18 22 22 27 22 18 24

ch8tree 16 14 14 14 16 17 17 14

drel019 0 0 0 0 0 0 0 0

drel032 0 0 0 0 0 0 0 0

dre1057 0 0 0 0 0 0 0 0

dre1058 23 25 25 25 23 21 25 23

drei 059 90 134 131 131 75 65 134 62

dresden 273 230 230 230 271 142 255 258

emerh2o 0 0 0 0 0 0 0 0

For each fault tree, the ordering scheme(s) requiring the fewest Ito calculations to construct
the BDD is (are) shown in bold.

253

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

fatram2 11 11 11 11 11 11 11 10

hpisf02 107 47 47 60 96 60 63 113

hpisf03 19 17 17 17 19 17 17 19

hpisf2l 58 50 50 65 54 52 56 53

hpisf36 19 17 17 17 19 17 17 19

jdtreel 0 0 0 0 0 0 0 0

jdtree2 0 0 0 0 0 0 0 0

jdtree3 0 0 0 0 0 0 0 0

jdtree4 15 15 15 15 15 15 15 15

jdtree5 6 6 6 6 6 6 6 6

khictre 31 24 28 26 31 26 28 24

Iisa123 146 130 130 115 156 100 146 131

Iisabl0 1095 1012 847 654 629 647 943 562

lisab25 204 152 188 204 208 198 192 216

lisab28 0 0 0 0 0 0 0 0

lisab30 191 180 179 179 173 165 173 181

lisab3l 1235 1605 1605 1182 1051 890 1483 950

Iisab34 72 61 82 81 72 81 82 70

lisab35 418 418 438 329 363 403 418 234

lisab36 1058 1331 1209 1293 1063 1201 1095 984

Iisab42 7 7 7 7 7 7 7 7

lisab44 160 158 149 142 161 131 158 141

lisab5l 23 21 21 21 23 21 22 25

lisab52 943 1282 1282 1033 726 840 1087 685

lisab53 0 0 0 0 0 0 0 0

lisab54 36 30 33 33 34 33 32 31

Iisab57 158 218 234 168 141 171 232 219

lisab59 0 0 0 0 0 0 0 0

Iisab60 39 40 40 38 37 39 40 36

Iisab78 228 170 204 181 196 179 180 137

lisab86 214 275 213 214 224 209 288 195

lisaba4 504 562 606 520 346 327 636 357

Iisaba9 67 44 44 42 51 41 42 51

modtree 3 3 3 3 3 3 3 3

nakashi 207 91 118 113 179 107 91 151

newtre2 7 7 7 7 7 7 7 7

newtre3 4 4 4 4 4 4 4 4

newtree 0 0 0 0 0
--

0 0 0

randl00 184 188 188 186 170
t

172 176 170

254

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rand101 6 6 6 6 6 6 6 6
rand102 2 2 2 2 2 2 2 2

rand103 74 66 74 72 72 69 63 70

rand104 272 290 292 292 222 232 182 223

rand105 55 52 53 53 54 53 48 50
rand106 553 921 892 2376 587 1107 3076 546

rand107 3 3 3 3 3 3 3 3

rand108 365 566 498 490 333 365 544 316

rand109 296 205 214 273 280 274 308 315
rand110 353 522 471 466 444 452 374 448

rand111 365 422 341 298 354 355 302 300

rand112 5 5 5 5 5 5 5 5

rand113 67 67 67 67 64 64 65 64

rand114 15 15 15 15 14 14 15 14

rand115 257 270 270 260 244 200 209 217

rand116 509 434 434 778 473 707 751 351

randl17 24 27 26 26 24 24 27 24

rand118 129 93 100 108 121 109 101 103

randl19 51 47 47 47 50 47 55 47

rand120 155 119 125 147 149 147 163 164

rand121 164 153 153 147 157 152 198 170

rand122 3 3 3 3 3 3 3 3

rand123 30 33 33 31 31 32 33 31

rand124 60 56 68 68 69 68 57 69

randl25 32 33 32 32 30 30 32 30

rand126 198 170 170 167 169 165 178 183

rand127 16 15 15 15 16 15 14 14

rand128 627 353 352 663 561 554 495 386

rand129 34 32 32 32 32 32 34 32

randl30 190 164 164 157 161 161 189 156

rand131 11 11 11 11 11 13 11 10

rand132 792 846 846 1608 542 957 1583 880

rand133 7 7 7 7 7 7 7 7

rand134 1130 675 696 2292 652 698 1731 634

randl35 371 340 335 609 375 312 408 418

rand136 4 4 4 4 4 4 4 4

randl37 52 51 51 51 54 50 54 48
randl38 123 124 123 123 124 124 124 124

randl39 262 186 220 421 273 439 239 304

255

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

rand 140 5 5 5 5 5 5 5 5

rand141 353 522 471 466 444 452 374 448

rand142 2852 2270 2219 2682 2238 1974 2924 1881

rand143 124 115 128 124 125 121 105 123

rand144 541 1004 914 949 533 605 926 564

rand145 9 9 9 9 9 9 9 8

rand146 52 51 51 51 54 50 54 48

rand147 890 2888 2682 2519 652 530 963 648

rand148 30 22 32 32 32 32 32 32

rand149 64 92 92 91 73 91 106 79

rand150 1258 2236 1686 2308 1451 1817 1584 1270

rand151 33 32 32 32 32 32 32 30

rand152 2 2 2 2 2 2 2 2

rand153 167 159 160 169 159 156 169 164

rand154 97 54 96 96 72 83 96 55

rand155 265 266 255 168 200 177 397 186

rand156 93 85 85 85 93 79 111 94

rand158 6699 6466 6707 7156 6837 6226 6144 4741

randol0 7 7 7 7 7 7 7 7

randoll 17216 47508 47508 8621 13881 7699 19305 9301

randol2 563 442 442 445 496 413 560 449

randol3 1310 1252 1252 2153 1167 1519 2040 1339

randol4 2 2 2 2 2 2 2 2

randol5 30 30 30 30 27 28 30 25

randol6 1838 1574 1389 1709 1694 1584 1339 1671

randoll 3 3 3 3 3 3 3 3

randol8 12890 26332 25528 39037 10872 22645 36439 9592

randol9 2703 3493 3493 4923 1746 1976 6101 1603

rando20 2997 4875 4746 5695 2930 3109 14427 3191

rando2l 0 0 0 0 0 0 0 0

rando22 3779 6137 5930 4483 2723 3341 8047 2129

rando23 254 291 291 289 192 223 153 177

rando24 3 3 3 3 3 3 3 3

rando25 74 68 68 68 73 71 89 65

rando26 36 36 36 36 36 37 36 36

rando27 2273 2588 2586 2248 2579 2123 1964 2289

rando28 212 215 206 205 191 206 212 200

rando29 416 303 303 466 393 318 362 349

rando30 56 54 51 51 56 55 64 59

256

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rando3l 1538 1441 1511 2105 1514 1571 1464 1686
rando32 25 25 25 25 25 25 25 25
rando33 175 162 161 209 168 158 212 174
rando34 346 308 365 370 313 322 332 268
rando35 377 558 443 443 325 328 307 310
rando36 99 99 99 100 93 100 78 92

rando37 736 768 777 853 605 718 444 633

rando38 78 78 78 78 78 78 65 71
rando39 386 339 339 796 350 601 677 442

rando40 28 27 25 26 30 26 29 28
rando4l 14 14 14 14 14 14 14 14
rando42 35 36 39 39 36 37 36 39

rando43 33 36 36 36 33 33 38 33
rando44 316 177 172 290 332 234 294 315

rando45 246 238 238 299 228 209 245 216
rando46 554 497 497 513 446 457 495 418

rando47 178 227 227 295 187 185 294 202

rando48 123 113 112 112 112 107 129 108

rando49 55 54 54 54 55 54 55 42

rando50 14 14 14 14 14 14 14 14
rando5l 6 6 6 6 6 6 6 6

rando52 1269 1389 1350 1353 1194 1314 1370 1144

rando53 98 83 107 106 104 104 83 106

rando54 53 47 52 52 53 54 52 48

rando55 168 168 166 190 170 183 166 170

rando56 29 29 29 29 29 29 29 34
rando57 19 19 19 19 19 19 19 19

rando58 89 89 89 89 80 79 89 79

rando59 588 354 348 300 597 324 361 363
rando60 212 225 225 256 201 213 197 217

rando6l 204 197 197 280 188 183 276 180

rando62 95 83 85 102 95 102 88 95
rando63 168 168 166 190 170 183 166 170
rando64 280 243 231 221 247 217 227 236
rando65 63 54 54 71 59 55 55 53
rando66 205 265 265 265 206 198 247 222
rando67 4 4 4 4 4 4 4 4

rando68 32 32 34 34 34 32 34 34
rando69 17 17 17 17 17 71 17 17

257

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rando70 58 53 53 53 56 53 62 55
randoll 15 15 15 15 15 15 15 14
rando72 19 19 18 18 19 19 19 17
rando73 312 336 333 256 266 490 259
rando74 5 5 5 5 5 5 5
rando75 53 53 53 53

P

54 53 54

rando76 122 88 127 98 110 88 111

rando77 537 470 465 527 533 547 681 536

rando78 82 59 97 77 71 94 75
rando79 13 13 13 13 13 13 13 13
rando80 13 13 13 13 13 13 12 12
rando8l 7 7 7 77 7 7 7

rando82 50 50 50 50 49 47 50 47

rando83 84 93 89 66 76 66 94 73
rando84 129 93 100 108 121 109 101 103

rando85 156 149 149 150 154 153 155 154

rando86 2 2 2 22 2 2 2

rando87 33 34 34 34 32 34 34 31
rando88 34 24 32 24 26 23 28 25
rando89 804 720 680 671 742 693 515 848
rando90 0 0 0 00 0 0 0

rando9l 961 1578 1578 811 822 714 1770 724

rando92 6585 10211 11343 13415 4818 5856 3721 5590
rando93 245 213 213 265 220 224 186 197

rando94 2 2 2 22 2 2 2

rando95 100 69 91 91 88 77 91 84
rando96 4 4 4 44 4 4 4
rando97 7 7 7 77 7 7 7
rando98 456 404 404 404 423 466 476 494
rando99 425 1020 818 833 450 655 832 469

randoml 20 20 20 21 20 21 20 20
random2 5 5 5 55 5 5 5
random3 445 513 475 469 431 435 245 423
random4 13 13 13 13 13 13 13 13
random6 2077 6949 6947 7829 2925 2947 8247 3338

random7 10 10 10 10 10 10 10 10
random8 49 49 49 49 50 50 49 50
random9 25 25 25 25 25 25 25 25

relcour 0 0 0 00 0 0 0

258

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

rstreel 7 7 7 7 7 7 7 7

rstree2 7 7 7 7 7 7 7 7

rstree3 10 10 10 11 10 10 11 12

rstree4 9 9 9 9 9 9 9 9

rstree5 6 6 6 6 6 6 6 6

rstree6 7 7 7 7 7 7 7 7

rstree7 25 19 19 21 22 21 20 23

trialsl 271 308 308 277 240 215 292 289

trials2 79 72 74 83 74 75 72 72

trials3 93 96 98 98 94 90 101 88

trials4 427 578 535 593 386 423 471 382

usatree 0 0 0 0 0 0 0 0

worrell 29 28 28 28 28 27 24 27

259

Appendix IX

Comparison of Analysis Times for the Fault Tree Strategy and a Direct BDD

Analysis Technique

Key to ordering schemes:

1. Modified top-down.

2. Modified depth-first.

3. Modified priority depth-first.

4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.
6. Dynamic top-down weights.
7. Bottom-up weights.
8. Event criticality.

Fault M th d
Times using ordering scheme

tree
e o

1 2 3 4 5 6 7 8

Direct 0.063 0.067 0.060 0.067 0.083 0.090 0.067 0.063
aaaaaaa Strategy 0.067 0.063 0.063 0.067 0.087 0.090 0.067 0.067

Direct 0.067 0.063 0.060 0.070 0.083 0.087 0.070 0.063
artqual

Strategy 0.083 0.090 0.090 0.083 0.110 0.110 0.090 0.090

Direct 0.067 0.060 0.067 0.063 0.090 0.080 0.070 0.063
arttree

Strategy 0.063 0.067 0.060 0.067 0.087 0.087 0.070 0.063

Direct 0.067 0.070 0.063 0.070 0.090 0.097 0.070 0.070
astolfo Strategy 0.090 0.090 0.090 0.083 0.113 0.110 0.090 0.093

Direct 0.060 0.067 0.063 0.067 0.087 0.087 0.070 0.070
bddtest

Strategy 0.087 0.090 0.083 0.087 0.110 0.110 0.093 0.090

Direct 0.063 0.067 0.067 0.067 0.087 0.090 0.070 0.073
benjiam

Strategy 0.090 0.090 0.090 0.090 0.110 0.110 0.090 0.100

Direct 0.350 0.193 0.277 0.370 0.407 0.403 0.193 0.427
bpfeg03

Strategy 0.060 0.070 0.070 0.067 0.093 0.090 0.070 0.070

Direct 0.227 0.140 0.170 0.223 0.247 0.253 0.147 0.233
bpfen05

Strategy 0.063 0.070 0.067 0.070 0.090 0.090 0.070 0.070

Direct 0.217 0.140 0.167 0.213 0.240 0.240 0.143 0.223
bpfig05

Strategy 0.067 0.070 0.067 0.067 0.090 0.093 0.067 0.070

Direct 0.077 0.083 0.077 0.077 0.100 0.103 0.083 0.083
bpfin05

Strategy 0.067 0.067 0.063 0.067 0.090 0.090 0.063 0.070

Direct 0.060 0.067 0.063 0.070 0.087 0.087 0.067 0.067
bpfpp02

Strategy 0.067 0.063 0.067 0.063 0.090 0.087 0.063 0.070

Direct 0.180 0.170 0.167 0.167 0.203 0.207 0.170 0.187
bpfsw02

Strategy 0.110 0.113 0.110 0.110 0.160 0.160 0.117 0.117

260

Tree Method 1 2 3 4 5 6 7 8

ch8t
Direct 0.063 0.063 0.063 0.063 0.090 0.087 0.063 0.067

ree
Strategy 0.087 0.087 0.087 0.087 0.110 0.110 0.087 0.090

d 1019
Direct 0.067 0.063 0.067 0.063 0.090 0.090 0.067 0.067

re
Strategy 0.063 0.067 0.063 0.067 0.090 0.083 0.067 0.070

drel032
Direct

Strategy

0.073

0.060

0.063

0.070

0.067

0.060

0.067

0.070

0.087

0.087

0.090

0.090

0.067

0.067

0.073

0.070

d 1057
Direct 0.070 0.070 0.070 0.070 0.090 0.093 0.077 0.070

re Strategy 0.063 0.067 0.067 0.067 0.087 0.090 0.070 0.063

d 1 058
Direct 0.120 0.173 0.113 0.107 0.153 0.133 0.130 0.110

re Strategy 0.133 0.130 0.130 0.137 0.203 0.210 0.140 0.140

d i 059
Direct 0.163 0.320 0.327 0.330 0.203 0.170 0.300 0.153

re
Strategy 0.090 0.103 0.093 0.097 0.120 0.110 0.100 0.100

d d
Direct 1.143 1.753 0.383 0.340 1.473 0.417 3.753 0.877

res en
Strategy 0.120 0.113 0.113 0.100 0.147 0.123 0.120 0.120

h2
Direct 0.063 0.063 0.067 0.063 0.087 0.090 0.063 0.067

emer o
Strategy 0.067 0.063 0.067 0.063 0.090 0.087 0.067 0.067

f t 2
Direct 0.063 0.067 0.063 0.063 0.090 0.090 0.070 0.063

ram a
Strategy 0.130 0.127 0.127 0.133 0.210 0.200 0.140 0.133

i f h
Direct 0.437 0.250 0.250 0.220 0.500 0.413 0.610 1.463

p s 02
Strategy 0.097 0.093 0.093 0.097 0.113 0.120 0.093 0.100

i f03 h
Direct 0.070 0.070 0.067 0.070 0.093 0.097 0.070 0.073

s p
Strategy 0.087 0.090 0.087 0.083 0.110 0.113 0.083 0.093

i f2l h
Direct 0.357 0.243 0.247 0.403 0.563 0.460 0.377 3.873

s p
Strategy 0.093 0.090 0.093 0.093 0.117 0.113 0.097 0.093

h i f36
Direct 0.083 0.077 0.070 0.070 0.097 0.097 0.077 0.077

p s
Strategy 0.090 0.087 0.087 0.090 0.113 0.110 0.090 0.093

dt l
Direct 0.067 0.063 0.060 0.070 0.083 0.087 0.070 0.063

j ree
Strategy 0.063 0.063 0.063 0.063 0.090 0.087 0.070 0.063

dt 2
Direct 0.067 0.060 0.063 0.067 0.090 0.080 0.070 0.067

j ree
Strategy 0.067 0.060 0.063 0.067 0.090 0.087 0.063 0.070

dt 3
Direct 0.063 0.070 0.060 0.070 0.087 0.087 0.067 0.070

j ree
Strategy 0.063 0.070 0.060 0.070 0.090 0.080 0.070 0.070

jdtree4
Direct 0.070 0.063 0.070 0.060 0.090 0.093 0.070 0.070

Strategy 0.090 0.083 0.090 0.090 0.110 0.110 0.090 0.090

dtre 5
Direct 0.060 0.070 0.060 0.070 0.090 0.090 0.060 0.070

j e
Strategy 0.083 0.090 0.087 0.083 0.110 0.110 0.090 0.090

khi tr
Direct 0.083 0.077 0.090 0.080 0.113 0.100 0.090 0.080

c e
Strategy 0.133 0.130 0.130 0.140 0.207 0.207 0.140 0.140

li 1 23
Direct 0.073 0.077 0.073 0.080 0.100 0.093 0.080 0.097

sa
Strategy 0.100 0.093 0.100 0.093 0.120 0.117 0.097 0.097

261

Tree Method 1 2 3 4 5 6 7 8

Direct 0.610 0.517 0.380 0.250 0.260 0.273 0.493 0.197
Iisabl0

Strategy 0.583 0.520 0.380 0.260 0.267 0.273 0.457 0.213

Direct 0.080 0.080 0.083 0.080 0.100 0.103 0.083 0.080
lisab25

Strategy 0.103 0.097 0.103 0.100 0.130 0.127 0.103 0.110

Direct 0.063 0.067 0.067 0.067 0.090 0.090 0.063 0.070
Iisab28

Strategy 0.067 0.063 0.067 0.063 0.087 0.090 0.067 0.070

Direct 0.087 0.080 0.080 0.083 0.103 0.107 0.083 0.087
Iisab30

Strategy 0.100 0.100 0.100 0.097 0.123 0.120 0.103 0.103

Direct 0.320 0.850 0.857 0.463 0.320 0.300 0.710 0.250

lisab3l
Strategy 0.633 1.313 1.313 0.653 0.520 0.423 1.110 0.427

Direct 0.067 0.063 0.067 0.063 0.090 0.090 0.070 0.067

Iisab34
Strategy 0.090 0.090 0.087 0.093 0.110 0.113 0.090 0.093

Direct 0.290 0.200 0.190 0.163 0.273 0.247 0.240 0.187
Iisab35

Strategy 0.150 0.147 0.150 0.150 0.153 0.170 0.147 0.113

Direct 0.470 0.687 0.563 0.770 0.553 0.713 0.497 0.470
Iisab36

Strategy 0.497 0.797 0.667 0.743 0.527 0.663 0.547 0.453

Direct 0.067 0.063 0.067 0.067 0.087 0.090 0.067 0.067
lisab42

Strategy 0.177 0.170 0.170 0.173 0.300 0.300 0.183 0.187

Direct 0.070 0.070 0.067 0.067 0.093 0.093 0.070 0.070
Iisab44

Strategy 0.100 0.093 0.100 0.093 0.120 0.120 0.100 0.097

Direct 0.067 0.063 0.070 0.067 0.087 0.090 0.070 0.067

lisab5l
Strategy 0.087 0.090 0.083 0.087 0.110 0.110 0.090 0.090

Direct 0.373 0.843 0.847 0.453 0.280 0.340 0.683 0.213
Iisab52

Strategy 0.403 0.860 0.853 0.500 0.297 0.390 0.630 0.253

Direct 0.067 0.063 0.067 0.063 0.087 0.090 0.063 0.067
Iisab53

Strategy 0.067 0.063 0.063 0.067 0.087 0.093 0.063 0.070

Direct 0.067 0.067 0.063 0.067 0.090 0.087 0.070 0.067
Iisab54

Strategy 0.087 0.087 0.087 0.087 0.110 0.110 0.090 0.090

Direct 0.077 0.077 0.080 0.077 0.100 0.103 0.097 0.097
lisab57

Strategy 0.100 0.103 0.107 0.103 0.123 0.123 0.110 0.110

Direct 0.147 0.107 0.110 0.163 0.167 0.203 0.113 0.200
Iisab59

Strategy 0.070 0.063 0.067 0.067 0.087 0.090 0.070 0.067

Direct 0.067 0.063 0.070 0.063 0.087 0.093 0.070 0.067
Iisab60

Strategy 0.090 0.087 0.090 0.087 0.110 0.113 0.087 0.090

Direct 0.150 0.093 0.0-7 0.093 0.127 0.113 0.110 0.100
Iisab78

Strategy 0.110 0.100 0.110 0.100 0.127 0.123 0.107 0.100

Direct 0.107 0.130 0.110 0.100 0.130 0.127 0.147 0.103
Iisab86

Strategy 0.103 0.123 0.110 0.107 0.133 0.130 0.123 0.107

Direct 0.267 0.293 0.293 0.240 0.167 0.183 0.137 0.153
Iisaba4

Strategy 0.203 0.223 0.240 0.193 0.167 0.160 0.263 0.147

262

Tree Method 1 2 3 4 5 6 7 8

i
Direct 0.093 0.080 0.080 0.077 0.107 0.100 0.080 0.090

I saba9
Strategy 0.133 0.130 0.130 0.133 0.207 0.203 0.140 0.143

modtree
Direct

Strategy

0.070

0.087

0.060

0.087

0.060

0.090

0.070

0.083

0.083

0.110

0.087

0.110

0.073

0.090
0.060

0.090

Direct 0.093 0.070 0.070 0.070 0.100 0.090 0.070 0.080
nakashi

Strategy 0.103 0.090 0.097 0.090 0.123 0.117 0.093 0.097

Direct 0.060 0.060 0.070 0.060 0.090 0.090 0.060 0.070
newtre2

Strategy 0.090 0.083 0.087 0.087 0.110 0.110 0.090 0.087
Direct 0.060 0.070 0.063 0.060 0.090 0.090 0.060 0.070

newtre3
Strategy 0.110 0.110 0.107 0.110 0.153 0.157 0.117 0.110

Direct 0.060 0.070 0.060 0.070 0.087 0.090 0.067 0.063
newtree

Strategy 0.067 0.067 0.067 0.063 0.087 0.090 0.067 0.063

Direct 0.077 0.073 0.080 0.080 0.097 0.100 0.080 0.080
rand100

Strategy 0.100 0.100 0.100 0.100 0.120 0.127 0.100 0.103

Direct 0.063 0.060 0.070 0.063 0.090 0.087 0.067 0.067
rand101

Strategy 0.087 0.083 0.087 0.083 0.117 0.117 0.087 0.090

Direct 0.063 0.067 0.063 0.063 0.087 0.087 0.067 0.070
rand 102

Strategy 0.087 0.083 0.087 0.087 0.110 0.110 0.090 0.087

Direct 0.070 0.067 0.070 0.070 0.093 0.097 0.070 0.073
rand 103

Strategy 0.110 0.110 0.110 0.113 0.160 0.160 0.113 0.117

Direct 0.090 0.100 0.107 0.103 0.110 0.113 0.077 0.093
rand 104

Strategy 0.113 0.117 0.120 0.120 0.127 0.133 0.100 0.110

Direct 0.077 0.073 0.073 0.077 0.093 0.097 0.073 0.080
rand 105

Strategy 0.097 0.083 0.090 0.090 0.113 0.117 0.090 0.090

rand 106
Direct

Strategy

0.227

0.190

1.710

0.410

1.730

0.390

0.300

2.103

0.220

0.230

0.210

0.547

0.407

3.663

0.170

0.207

Direct 0.067 0.063 0.067 0.060 0.090 0.083 0.067 0.070
rand 107

Strategy 0.087 0.087 0.087 0.087 0.110 0.107 0.090 0.090

Direct 0.103 0.190 0.180 0.150 0.130 0.153 0.190 0.107
rand 108

Strategy 0.140 0.210 0.180 0.170 0.150 0.157 0.203 0.130

rand1 09
Direct

Strategy

0.173

0.120

0.120

0.110

0.120

0.110

0.143

0.113

0.197

0.143

0.167

0.143

0.173

0.127

0.230

0.127

d
Direct 0.117 0.173 0.150 0.150 0.153 0.163 0.117 0.140

110 ran
Strategy 0.137 0.190 0.170 0.170 0.183 0.187 0.140 0.163

d 1
Direct 0.103 0.117 0.100 0.093 0.127 0.113 0.097 0.097

ran 1 1
Strategy 0.137 0.157 0.133 0.120 0.163 0.160 0.120 0.123

d 1
Direct 0.067 0.063 0.063 0.067 0.090 0.083 0.067 0.067

ran 1 2
Strategy 0.087 0.087 0.083 0.090 0.110 0.110 0.087 0.087

Direct 0.067 0.070 0.067 0.067 0.090 0.087 0.067 0.070
rand113 Strategy 0.087 0.090 0.090 0.090 0.110 0.117 0.090 0.093

263

Tree Method 1 2 3 4 5 6 7 8

rand1 14
Direct 0.063 0.067 0.060 0.067 0.087 0.090 0.067 0.067

Strategy 0.080 0.090 0.087 0.083 0.110 0.110 0.097 0.090

rand1 15
Direct 0.103 0.100 0.097 0.103 0.120 0.110 0.087 0.090

Strategy 0.110 0.123 0.113 0.117 0.130 0.130 0.103 0.110

d1 16
Direct 0.157 0.110 0.130 0.320 0.167 0.303 0.303 0.110

ran
Strategy 0.177 0.150 0.147 0.333 0.183 0.310 0.317 0.133

d1 17
Direct 0.070 0.063 0.067 0.067 0.087 0.090 0.067 0.070

ran
Strategy 0.087 0.083 0.090 0.090 0.110 0.110 0.090 0.090

dl 18
Direct 0.093 0.077 0.077 0.077 0.107 0.100 0.080 0.080

ran
Strategy 0.093 0.093 0.100 0.090 0.120 0.113 0.100 0.093

d1 19
Direct 0.070 0.073 0.070 0.070 0.097 0.093 0.077 0.070

ran
Strategy 0.110 0.107 0.110 0.110 0.160 0.160 0.117 0.113

d 120
Direct 0.163 0.090 0.097 0.100 0.180 0.130 0.107 0.153

ran
Strategy 0.100 0.090 0.100 0.093 0.120 0.120 0.103 0.103

dl2l
Direct 0.083 0.080 0.083 0.080 0.100 0.103 0.097 0.083

ran
Strategy 0.097 0.093 0.103 0.097 0.120 0.123 0.103 0.103

d 122
Direct 0.067 0.060 0.063 0.067 0.087 0.087 0.070 0.063

ran
Strategy 0.090 0.083 0.090 0.087 0.110 0.110 0.083 0.090

d 123
Direct 0.063 0.070 0.067 0.067 0.090 0.087 0.067 0.073

ran Strategy 0.090 0.087 0.083 0.090 0.110 0.110 0.090 0.090

d124
Direct 0.067 0.070 0.070 0.070 0.090 0.090 0.073 0.070

ran
Strategy 0.090 0.090 0.090 0.090 0.110 0.110 0.097 0.090

d 125
Direct 0.067 0.067 0.067 0.063 0.090 0.090 0.067 0.070

ran
Strategy 0.090 0.090 0.083 0.087 0.110 0.113 0.090 0.090

d126
Direct 0.093 0.090 0.090 0.090 0.120 0.117 0.090 0.107

ran
Strategy 0.103 0.100 0.100 0.100 0.120 0.123 0.100 0.103

d 127
Direct 0.070 0.067 0.063 0.070 0.093 0.090 0.070 0.070

ran
Strategy 0.130 0.130 0.130 0.130 0.207 0.203 0.140 0.140

nd128
Direct 0.227 0.140 0.133 0.220 0.240 0.290 0.210 0.140

ra
Strategy 0.247 0.130 0.130 0.270 0.223 0.240 0.170 0.150

d129
Direct 0.067 0.063 0.067 0.063 0.090 0.090 0.070 0.070

ran
Strategy 0.093 0.090 0.083 0.087 0.113 0.110 0.090 0.090

d 130
Direct 0.077 0.073 0.070 0.077 0.093 0.100 0.080 0.080

ran
Strategy 0.097 0.100 0.097 0.093 0.120 0.120 0.100 0.100

randl3l
Direct 0.067 0.067 0.063 0.060 0.090 0.090 0.060 0.070

Strategy 0.083 0.087 0.090 0.090 0.107 0.110 0.090 0.090

rand 132
Direct

Strategy

0.257

0.293

0.330

0.370

0.330

0.370

0.823

0.947
0.210
0.213

0.560

0.413
0.790

0.910
0.307

0.323

rand 133
Direct 0.063 0.063 0.063 0.067 0.087 0.087 0.067 0.067-

Strategy 0.087 0.087 0.083 0.087 7 0.107 0.110 0.090 0.090

264

Tree Method 1 2 3 4 5 6 7 8
Direct 0.167 0.250 0.263 0.947 0.187 0.490 0.603 0.163

rand 134
Strategy 0.560 0.240 0.260 2.140 0.250 0.280 1.223 0.220
Direct 0.097 0.103 0.097 0.163 0.123 0.113 0.123 0.110

rand 135
Strategy 0.133 0.130 0.130 0.233 0.160 0.147 0.153 0.157
Direct 0.063 0.060 0.067 0.063 0.087 0.087 0.070 0.067

rand 136
Strategy 0.087 0.090 0.083 0.087 0.110 0.110 0.087 0.087

d 137
Direct 0.063 0.070 0.063 0.070 0.090 0.090 0.070 0.070

ran Strategy 0.090 0.087 0.090 0.090 0.113 0.117 0.090 0.090

d 138
Direct 0.073 0.067 0.067 0.070 0.090 0.093 0.070 0.070

ran Strategy 0.090 0.093 0.097 0.090 0.120 0.113 0.097 0.093

d 139
Direct 0.103 0.083 0.093 0.167 0.127 0.193 0.093 0.113

ran
Strategy 0.120 0.100 0.110 0.153 0.140 0.180 0.120 0.120

d 140
Direct 0.067 0.063 0.063 0.063 0.087 0.090 0.063 0.067

ran
Strategy 0.090 0.080 0.090 0.087 0.110 0.110 0.087 0.093

d 141
Direct 0.117 0.177 0.150 0.150 0.160 0.163 0.117 0.137

ran
Strategy 0.133 0.193 0.177 0.170 0.187 0.183 0.137 0.170

d 142
Direct 3.777 3.043 3.053 3.793 4.087 2.100 4.553 1.600

ran
Strategy 3.657 2.310 2.173 3.160 2.300 1.890 3.670 1.620

d 143
Direct 0.073 0.070 0.077 0.073 0.090 0.103 0.070 0.080

ran
Strategy 0.100 0.090 0.093 0.097 0.117 0.120 0.093 0.097
Direct 0.187 0.580 0.483 0.417 0.180 0.240 0.640 0.190

rand144
Strategy 0.207 0.543 0.463 0.437 0.223 0.270 0.430 0.230

d 145
Direct 0.070 0.070 0.070 0.070 0.090 0.090 0.070 0.073

ran
Strategy 0.110 0.107 0.107 0.110 0.160 0.157 0.113 0.117

d146
Direct 0.067 0.070 0.063 0.067 0.090 0.093 0.070 0.070

ran
Strategy 0.087 0.087 0.093 0.087 0.113 0.113 0.093 0.090

d 147
Direct 0.193 3.073 3.733 0.233 0.217 0.550 0.420 0.210

ran
Strategy 0.373 3.500 2.947 2.530 0.263 0.213 0.397 0.243

d148
Direct 0.070 0.070 0.060 0.067 0.090 0.090 0.070 0.070

ran
Strategy 0.090 0.083 0.090 0.087 0.110 0.113 0.087 0.090

Direct 0.090 0.087 0.087 0.087 0.110 0.107 0.090 0.097
nd 149 ra

Strategy 0.093 0.097 0.093 0.090 0.117 0.117 0.100 0.090

Direct 0.560 2.143 1.267 1.493 0.697 0.733 1.023 0.650
rand150

Strategy 0.657 2.020 1.127 2.020 0.857 1.403 0.967 0.663
Direct 0.070 0.067 0.070 0.070 0.090 0.090 0.070 0 070

rand 151 .
Strategy 0.090 0.083 0.090 0.087 0.113 0.110 0.090 0.090
Direct 0.063 0.067 0.060 0.063 0.090 0.087 0.063 0.070

rand 152
Strategy 0.087 0.087 0.087 0.090 0.107 0.110 0.090 0.090

Direct 0.073 0.077 0.073 0.077 0.097 0.100 0.077 0.080
rand153

Strategy 0.093 0.097 0.100 0.093 0.120 0.123 0.100 0.103

265

Tree Method 1 2 3 4 5 6 7 8

rand 154
Direct

Strategy

0.073

0.090

0.063

0.087

0.070

0.090

0.070

0.090

0.090

0.117

0.093

0.110

0.073

0.090
0.070

0.093

d 155
Direct 0.100 0.103 0.107 0.083 0.110 0.100 0.157 0.090

ran
Strategy 0.117 0.120 0.117 0.103 0.123 0.127 0.163 0.103

rand156
Direct

Strategy

0.073
0.090

0.070
0.087

0.067
0.090

0.070
0.090

0.093
0.113

0.090
0.113

0.080
0.093

0.077
0.093

d 158
Direct 66.047 27.763 27.747 28.287 36.320 21.090 25.050 27.840

ran Strategy 22.430 20.013 21.520 23.117 22.000 18.113 18.663 9.360

d l
Direct 0.067 0.060 0.067 0.063 0.093 0.087 0.063 0.067

ran o 0
Strategy 0.087 0.087 0.090 0.087 0.110 0.110 0.083 0.090

d l1
Direct 629.157 3125.633 3145.013 174.117 306.983 234.953 940.133 108.740

ran o
Strategy 143.327 1624.337 1625.660 59.173 103.027 48.087 325.597 46.693

d
Direct 0.273 0.197 0.197 0.217 0.203 0.213 0.273 0.177

ran o12
Strategy 0.200 0.160 0.157 0.170 0.200 0.180 0.210 0.173

d l3
Direct 0.417 0.517 0.517 1.097 0.357 0.590 1.220 0.370

ran o
Strategy 0.727 0.743 0.747 1.980 0.603 0.957 1.773 0.783

Direct 0.067 0.070 0.063 0.067 0.087 0.083 0.070 0.067
rando14 Strategy 0.087 0.093 0.083 0.087 0.110 0.110 0.087 0.090

Direct 0.063 0.060 0.067 0.063 0.090 0.087 0.067 0.067
randol 5

Strategy 0.087 0.087 0.083 0.087 0.113 0.110 0.093 0.090

d l6
Direct 1.230 1.230 0.860 1.347 1.320 1.173 0.807 1.337

ran o
Strategy 1.227 0.997 0.740 1.240 1.120 1.033 0.703 1.090

d l7
Direct 0.070 0.063 0.067 0.060 0.090 0.087 0.063 0.070

ran o
Strategy 0.083 0.090 0.083 0.087 0.110 0.110 0.090 0.090

d l8
Direct 68.500 333.773 320.223 785.390 42.000 241.683 672.627 44.570

ran o
Strategy 68.570 324.997 308.940 784.617 51.273 241.943 686.420 41.037

d l9
Direct 1.260 4.960 4.647 5.827 0.847 1.170 30.990 0.843

ran o
Strategy 3.047 5.387 5.370 7.413 1.337 1.753 18.933 1.103

d 20
Direct 2.850 3.770 3.140 3.863 2.370 2.953 17.447 2.270

ran o
Strategy 3.843 10.467 9.880 14.373 3.597 4.053 93.960 4.103

d ll
Direct 0.063 0.070 0.060 0.070 0.080 0.090 0.070 0.063

ran o
Strategy 0.067 0.063 0.063 0.067 0.087 0.087 0.067 0.063

d 22
Direct 5.697 16.223 16.257 8.810 2.913 4.743 30.040 2.127

ran o
Strategy 6.057 16.177 15.113 9.023 3.063 5.227 33.590 1.957

r nd 23
Direct 0.097 0.103 0.100 0.097 0.113 0.113 0.100 0.090

a o
Strategy 0.107 0.113 0.113 0.113 0.120 0.130 0.100 0.100

nd 24
Direct 0.067 0.063 0.063 0.063 0.087 0.090 0.063 0.067

ra o
Strategy 0.087 0.087 0.087 0.083 0.110 0.110 0.090 0.087

rando25
Direct

Strategy
0.067
0.090

0.067

0.087

0.067

0.090

0.070

0.093

0.090

0.113
0.090

0.117
0.070

0.090

0.070

0.093

266

Tree Method 1 2 3 4 5 6 7 8

rando26
Direct

Strategy

0.063

0.090

0.067

0.090

0.063

0.083

0.063

0.087

0.087

0.110

0.090

0.110
0.070

0.090
0.063

0.090

rando27
Direct 1.913 2.510 2.523 2.147 2.540 1.710 1.437 1.930

Strategy 1.920 2.520 2.520 2.167 2.550 1.727 1.453 1.947

rando28
Direct

Strategy

0.103
0.110

0.090
0.107

0.080
0.103

0.090
0.107

0.110
0.127

0.110
0.130

0.087
0.107

0.093
0.107

29 d
Direct 0.123 0.177 0.127 0.130 0.147 0.133 0.120 0.117

ran o Strategy 0.143 0.117 0.117 0.160 0.163 0.143 0.133 0.133

d 30
Direct 0.130 0.080 0.090 0.087 0.147 0.127 0.083 0.117

ran o Strategy 0.090 0.090 0.090 0.090 0.113 0.117 0.090 0.093

d 3l
Direct 0.930 0.823 0.880 2.130 0.910 0.950 0.807 1.153

ran o
Strategy 0.940 0.887 0.957 1.973 0.960 1.013 0.890 1.193

d 32
Direct 0.060 0.067 0.063 0.063 0.087 0.093 0.067 0.063

ran o
Strategy 0.087 0.090 0.087 0.083 0.110 0.110 0.090 0.090

d 33
Direct 0.083 0.073 0.077 0.080 0.103 0.100 0.080 0.080

ran o
Strategy 0.100 0.100 0.100 0.107 0.123 0.120 0.110 0.103

rando34
Direct

Strategy
0.120

0.133

0.117

0.127

0.130

0.140

0.133

0.137
0.137

0.147

0.143

0.153

0.110

0.130

0.107

0.117

d 35
Direct 0.103 0.130 0.120 0.117 0.113 0.117 0.093 0.090

ran o Strategy 0.133 0.207 0.147 0.153 0.147 0.147 0.120 0.123

d 36
Direct 0.073 0.073 0.077 0.073 0.097 0.093 0.080 0.077

ran o
Strategy 0.093 0.090 0.093 0.093 0.113 0.117 0.090 0.093

rand 37
Direct 0.110 0.173 0.170 0.187 0.133 0.200 0.120 0.130

o
Strategy 0.280 0.330 0.327 0.400 0.243 0.310 0.163 0.240

d 38
Direct 0.070 0.070 0.070 0.067 0.093 0.090 0.070 0.070

ran o
Strategy 0.090 0.087 0.087 0.093 0.113 0.110 0.093 0.090

d 39
Direct 0.123 0.110 0.120 0.350 0.130 0.247 0.277 0.140

ran o
Strategy 0.150 0.133 0.130 0.380 0.157 0.273 0.300 0.167

d 40
Direct 0.070 0.060 0.073 0.060 0.090 0.090 0.070 0.063

ran o
Strategy 0.110 0.110 0.103 0.113 0.157 0.160 0.113 0.117

rando4l
Direct 0.067 0.060 0.070 0.060 0.090 0.083 0.067 0.070

Strategy 0.090 0.087 0.090 0.087 0.110 0.107 0.087 0.090

rando42
Direct 0.060 0.073 0.060 0.070 0.090 0.103 0.063 0.067

Strategy 0.090 0.087 0.087 0.087 0.113 0.110 0.090 0.090

rando43
Direct 0.070 0.070 0.070 0.073 0.090 0.090 0.070 0.077

Strategy 0.090 0.087 0.087 0.090 0.110 0.110 0.090 0.090

rando44
Direct

Strategy

0.813

0.133

0.197

0.107

0.187

0.100

0.353
0.123

0.433
0.150

0.283

0.137
0.427

0.123
0.450

0.133

rando45
Direct 0.093 0.083 0.087 0.093 0.110 0.103 0.087 0.090

Strategy 0.107 0.110 0.103 0.120 0.130 0.127 0.110 0.110

267

Tree Method 1 2 3 4 5 6 7 8
Direct 0.247 0.200 0.200 0.157 0.190 0.183 0 137 0 163

rando46 . .
Strategy 0.203 0.177 0.180 0.187 0.180 0.190 0.180 0.153
Direct 0.087 0.100 0.100 0.090 0.100 0.107 0 090 0 087

rando47 . .
Strategy 0.107 0.110 0.113 0.120 0.123 0.133 0.120 0.110
Direct 0.073 0.073 0.070 0.073 0.093 0.100 0 070 077 0

rando48 . .
Strategy 0.097 0.093 0.090 0.097 0.113 0.120 0.093 0.097
Direct 0.067 0.067 0.067 0.063 0.090 0.090 0.067 0 070

rando49 .
Strategy 0.087 0.090 0.083 0.090 0.110 0.117 0.090 0.090

Direct 0.063 0.063 0.067 0.063 0.087 0.090 0.063 0 067
rando50 .

Strategy 0.083 0.087 0.087 0.087 0.110 0.113 0.090 0.087
Direct 0.063 0.067 0.063 0.063 0.087 0.087 0.067 0.067

rando5l
Strategy 0.090 0.087 0.087 0.087 0.113 0.107 0.090 0.087
Direct 0.560 0.537 0.567 0.630 0.550 0.600 0.680 0.417

rando52
Strategy 0.690 0.903 0.767 0.770 0.637 0.750 0.820 0.580
Direct 0.070 0.070 0.070 0.070 0.090 0.093 0.070 0.073

d 53 ran o
Strategy 0.090 0.090 0.090 0.093 0.120 0.113 0.093 0.093
Direct 0.080 0.070 0.073 0.077 0.093 0.097 0.080 0.077

rando54
Strategy 0.133 0.130 0.133 0.133 0.210 0.207 0.140 0.140
Direct 0.073 0.080 0.073 0.080 0.103 0.100 0.080 0.077

d 55 ran o
Strategy 0.097 0.100 0.097 0.100 0.120 0.123 0.100 0.100

Direct 0.070 0.060 0.067 0.063 0.090 0.090 0.063 0.070
rando56

Strategy 0.090 0.087 0.083 0.090 0.110 0.110 0.087 0.093
Direct 0.060 0.070 0.063 0.063 0.090 0.087 0.070 0.063

nd 57 ra o
Strategy 0.090 0.087 0.087 0.090 0.110 0.110 0.087 0.087
Direct 0.067 0.070 0.070 0.063 0.097 0.090 0.070 0.070

rando58
Strategy 0.090 0.097 0.090 0.090 0.110 0.113 0.090 0.093
Direct 0.343 0.190 0.180 0.160 0.293 0.223 0.130 0 187

rando59 .
Strategy 0.227 0.140 0.137 0.130 0.250 0.160 0.140 0.140
Direct 0.110 0.113 0.127 0.113 0.133 0.133 0.133 0.110

rando60
Strategy 0.107 0.117 0.113 0.117 0.133 0.137 0.107 0.117
Direct 0.080 0.073 0.077 0.083 0.100 0.100 0.090 0.077

rando6l
Strategy 0.103 0.103 0.100 0.120 0.127 0.127 0.123 0.103
Direct 0.070 0.067 0.070 0.070 0.093 0.097 0.070 0.073

rando62
Strategy 0.090 0.090 0.090 0.093 0.117 0.110 0.093 0.097
Direct 0.070 0.080 0.080 0.080 0.100 0.100 0.077 0.080

rando63
Strategy 0.097 0.093 0.100 0.103 0.120 0.123 0.100 0.107

Direct 0.163 0.120 0.120 0.110 0.200 0.133 0.120 0.113
rando64

Strategy 0.113 0.110 0.110 0.107 0.133 0.127 0.110 0.113

E

Direct 0.060 0.070 0.060 0.070 0.090 0.090 0.070 0.070
rando65

Strategy 0.087 0.093 0.087 0.090 0.110 0.113 0.090 0.090

268

Tree Method 1 2 3 4 5 6 7 8

rando66
Direct 0.080 0.083 0.080 0.090 0.110 0.100 0.090 0.090

Strategy 0.103 0.107 0.107 0.113 0.123 0.127 0.107 0.110

rando67
Direct 0.060 0.060 0.070 0.060 0.090 0.093 0.060 0.070

Strategy 0.093 0.083 0.087 0.087 0.110 0.110 0.083 0.090

rando68
Direct

Strategy

0.060

0.090

0.073

0.087

0.060

0.083

0.067

0.090

0.083

0.110

0.090

0.113

0.070

0.090

0.060

0.090

d 69
Direct 0.070 0.060 0.067 0.063 0.090 0.087 0.063 0.073

ran o
Strategy 0.087 0.083 0.087 0.087 0.110 0.110 0.090 0.090

d 70
Direct 0.067 0.063 0.073 0.070 0.090 0.090 0.070 0.070

ran o
Strategy 0.087 0.087 0.093 0.087 0.117 0.113 0.090 0.093

d ll
Direct 0.060 0.070 0.060 0.067 0.083 0.090 0.067 0.063

ran o
Strategy 0.083 0.087 0.083 0.083 0.110 0.110 0.090 0.090

d 72
Direct 0.070 0.063 0.060 0.070 0.087 0.083 0.070 0.067

ran o
Strategy 0.087 0.083 0.093 0.087 0.110 0.110 0.083 0.090

d 73
Direct 0.103 0.107 0.103 0.110 0.120 0.117 0.167 0.093

ran o
Strategy 0.130 0.130 0.130 0.137 0.140 0.140 0.193 0.127

d 74
Direct 0.067 0.063 0.060 0.067 0.087 0.087 0.070 0.060

ran o
Strategy 0.083 0.087 0.087 0.087 0.110 0.110 0.087 0.090

d 75
Direct 0.070 0.063 0.067 0.067 0.087 0.093 0.067 0.070

ran o
Strategy 0.130 0.130 0.130 0.133 0.207 0.203 0.140 0.143

ndo76
Direct 0.080 0.077 0.077 0.077 0.097 0.100 0.087 0.080

ra
Strategy 0.090 0.090 0.097 0.093 0.117 0.113 0.090 0.100

rand ll
Direct 0.157 0.143 0.143 0.167 0.183 0.200 0.250 0.170

o
Strategy 0.187 0.167 0.173 0.190 0.207 0.220 0.267 0.197

nd 78
Direct 0.070 0.070 0.067 0.070 0.093 0.097 0.070 0.073

ra o
Strategy 0.090 0.090 0.090 0.090 0.113 0.117 0.090 0.093

rando79
Direct 0.063 0.067 0.063 0.067 0.090 0.087 0.067 0.067

Strategy 0.087 0.090 0.080 0.093 0.110 0.110 0.090 0.090

d 80
Direct 0.067 0.067 0.063 0.067 0.090 0.090 0.067 0.073

ran o
Strategy 0.107 0.110 0.103 0.113 0.160 0.163 0.110 0.117

rando8l
Direct 0.063 0.063 0.067 0.060 0.090 0.083 0.063 0.070

Strategy 0.087 0.083 0.083 0.087 0.110 0.110 0.087 0.090

rando82
Direct

Strategy

0.060

0.087

0.070

0.090

0.063

0.090

0.067

0.087

0.090

0.113

0.090

0.110

0.067

0.090

0.067

0.090

rando83
Direct

Strategy
0.073

0.093
0.070

0.090

0.070

0.090

0.070

0.090

0.090

0.120

0.090

0.110

0.070

0.090

0.073

0.097

rando84
Direct

Strategy
0.090

0.097

0.077

0.093

0.080

0.090

0.083
0.100

0.100
0.117

0.107

0.113
0.077

0.097
0.083

0.093

rando85
Direct 0.077 0.080 0.077 0.080 0.100 0.100 0.080 0.083

Strategy. 0.097 0.093 0.097 0.093 0.120 0.117 0.100 0.097

269

Tree Method 1 2 3 4 5 6 7 8
Direct 0.067 0.063 0.063 0.067 0.083 0.087 0 073 0 063

rando86 . .
Strategy 0.087 0.087 0.083 0.087 0.110 0.113 0.087 0.090
Direct 0.067 0.067 0.063 0.070 0.090 0.090 0.067 0 067

rando87 .
Strategy 0.090 0.083 0.090 0.087 0.117 0.113 0.087 0.090

Direct 0.070 0.070 0.070 0.067 0.090 0.090 0.070 0.070
rando88

Strategy 0.087 0.090 0.083 0.087 0.110 0.110 0.090 0.090
Direct 0.420 0.343 0.317 0.313 0.387 0.347 0.197 0 420

d 89 . ran o
Strategy 0.317 0.280 0.243 0.247 0.303 0.280 0.183 0.350

Direct 0.060 0.063 0.070 0.063 0.087 0.090 0.060 0 070
d 90 . ran o

Strategy 0.067 0.063 0.067 0.063 0.090 0.087 0.063 0.073

Direct 0.350 1.050 1.020 0.707 0.337 0.383 1.113 0.307
rando9l

Strategy 0.440 0.913 0.903 0.397 0.370 0.317 1.107 0.300

d 92
Direct 24.307 44.423 63.450 85.157 13.987 11.917 5.643 22.197

ran o
Strategy 21.543 48.793 60.767 85.187 11.577 16.103 5.900 15.203
Direct 0.120 0.110 0.093 0.120 0.130 0.130 0.110 0.107

d 93 ran o
Strategy 0.110 0.107 0.107 0.113 0.130 0.133 0.100 0.110
Direct 0.063 0.060 0.067 0.063 0.090 0.087 0.067 0.067

rando94
Strategy 0.083 0.087 0.087 0.083 0.113 0.110 0.090 0.090

Direct 0.073 0.067 0.067 0.073 0.093 0.093 0.077 0.077
d 95 ran o Strategy 0.097 0.090 0.090 0.090 0.113 0.113 0.093 0.097

Direct 0.060 0.067 0.063 0.060 0.090 0.090 0.060 0.070
rando96

Strategy 0.103 0.107 0.110 0.110 0.157 0.153 0.117 0.110
Direct 0.060 0.067 0.063 0.063 0.087 0.090 0.063 0.067

97 d ran o
Strategy 0.083 0.090 0.087 0.083 0.110 0.110 0.090 0.087
Direct 0.317 0.233 0.243 0.280 0.260 0.260 0.243 0.160

and 98 r o
Strategy 0.170 0.153 0.150 0.157 0.180 0.190 0.173 0.187
Direct 0.140 0.510 0.460 0.380 0.180 0.233 0.337 0 173

rando99 .
Strategy 0.147 0.473 0.330 0.347 0.180 0.260 0.343 0.167
Direct 0.063 0.063 0.067 0.063 0.087 0.087 0.067 0 067 d 1 . ran om

Strategy 0.090 0.083 0.087 0.090 0.110 0.110 0.087 0.090
Direct 0.063 0.063 0.067 0.060 0.093 0.090 0.060 0.070

random2
Strategy 0.087 0.087 0.083 0.087 0.110 0.110 0.087 0.093

Direct 0.190 0.260 0.197 0.203 0.210 0.190 0.143 0.200
random3

Strategy 0.160 0.187 0.170 0.173 0.177 0.180 0.117 0.170
Direct 0.063 0.067 0.063 0.070 0.080 0.090 0.070 0.060

random4
Strategy 0.083 0.087 0.083 0.090 0.110 0.107 0.093 0.087
Direct 1.823 20.283 20.283 23.823 3.727 3.540 27 337 3 927

random6 . .
Strategy 2.103 21.253 21.240 25.497 4.097 4.007 28.730 4.720
Direct 0.070 0.060 0.060 0.073 0.083 0.087 0 070 0 060

random7 . .
Strategy 0.087 0.087 0.087 0.083 0.110 0.110 0.090 0.087

270

Tree Method 1 2 3 4 5 6 7 8

random8
Direct

Strategy

0.070

0.090

0.063

0.093

0.067

0.083

0.067

0.087

0.090

0.113
0.087

0.110
0.067

0.090
0.070

0.093

random9
Direct

Strategy

0.060

0.090

0.070

0.087

0.060

0.083

0.070

0.090

0.090

0.110

0.083

0.110
0.070

0.087

0.067

0.090

l
Direct 0.063 0.067 0.060 0.070 0.080 0.090 0.070 0.060

re cour
Strategy 0.067 0.063 0.063 0.067 0.090 0.083 0.063 0.070

Direct 0.067 0.063 0.060 0.070 0.087 0.083 0.070 0.063
rstreel

Strategy 0.080 0.090 0.087 0.087 0.110 0.110 0.090 0.087

Direct 0.070 0.060 0.067 0.063 0.090 0.083 0.070 0.067
rstree2 Strategy 0.087 0.090 0.087 0.083 0.110 0.110 0.093 0.087

3
Direct 0.067 0.063 0.067 0.060 0.090 0.090 0.060 0.070

rstree
Strategy 0.087 0.087 0.087 0.087 0.110 0.110 0.090 0.087

Direct 0.060 0.070 0.060 0.063 0.087 0.090 0.063 0.067
rstree4

Strategy 0.087 0.087 0.083 0.090 0.107 0.110 0.090 0.090

Direct 0.063 0.067 0.063 0.067 0.083 0.087 0.067 0.070
rstree5

Strategy 0.087 0.087 0.090 0.080 0.110 0.113 0.090 0.090

Direct 0.063 0.067 0.063 0.067 0.083 0.087 0.073 0.063
rstree6

Strategy 0.080 0.090 0.093 0.080 0.110 0.110 0.090 0.090

Direct 0.067 0.063 0.063 0.060 0.090 0.090 0.063 0.067
rstree7 Strategy 0.083 0.087 0.090 0.083 0.110 0.110 0.093 0.090

i l i
Direct 0.100 0.090 0.097 0.087 0.127 0.103 0.090 0.090

tr a s Strategy 0.110 0.120 0.117 0.113 0.133 0.127 0.113 0.120

l 2 i
Direct 0.070 0.067 0.063 0.070 0.090 0.090 0.070 0.070

tr a s
Strategy 0.090 0.090 0.090 0.090 0.113 0.113 0.093 0.093

i l 3
Direct 0.070 0.070 0.067 0.073 0.093 0.090 0.077 0.073

tr a s
Strategy 0.090 0.090 0.090 0.097 0.117 0.117 0.093 0.093

i l 4 t
Direct 0.133 0.180 0.153 0.140 0.143 0.140 0.150 0.113

r a s
Strategy 0.150 0.197 0.183 0.203 0.160 0.173 0.167 0.140

Direct 0.063 0.067 0.060 0.063 0.090 0.087 0.063 0.067
usatree Strategy 0.067 0.060 0.063 0.067 0.090 0.083 0.070 0.067

ll
Direct 0.067 0.067 0.063 0.067 0.083 0.093 0.067 0.063

worre
Strategy 0.083 0.090 0.083 0.087 0.110 0.110 0.093 0.090

271

Appendix X

BDD Complexities for Additional Reduced Trees Used In the Neural Network

Investigation

Key to ordering schemes:

1. Modified top-down.

2. Modified depth-first.

3. Modified priority depth-first.

4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.
6. Dynamic top-down weights.
7. Bottom-up weights.
8. Event criticality.

Number of Non-Distinct BDD Nodes'

l
Ordering scheme Fau t tree

1 2 3 4 5 6 7 8

Iisal00 5301 7590 7423 11067 4565 3935 16787 3810

Iisa102 1247485 4082011 4011371 2177558 716199 1238861 2378816 670400

Iisa104 10 10 10 10 10 10 10 10

Iisa107 6 6 6 6 6 6 6 6

Iisal08 4 4 4 4 4 4 4 4

Iisa109 100 190 190 373 101 66 332 103

Iisa110 5066 10027 9130 6714 5555 6683 6830 4409

lisal11 41 36 36 36 41 37 36 41

Iisal12 824 751 751 907 920 779 1068 815

Iisal13 896 1292 1291 1270 702 643 1481 557

lisa115 104 85 81 81 58 101 57 33
lisa116 13 9 9 9 7 6 9 7

lisa118 68485 314912 216236 161438 42531 47349 218787 38486

lisal19 10 7 7 10 10 7 10 10

lisa121 69 53 53 78 73 73 49 60

lisa122 89 108 108 108 89 56 102 81
Iisa124 6683 29271 28489 13552 5556 7747 12646 5831

lisabl1 5 5 5 5 5 5 5 5
Iisabl3 30 35 35 35 34 38 20 36

1 For each fault tree, the ordering scheme(s) resulting in the fewest non-distinct BDD nodes is
(are) shown in bold.

272

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
Iisabl4 393722 2.03x10' 2.02x107 7.50x10' 277891 6432290 3.62x10' 173643

Iisabl5 61882 97222 96640 82408 41131 36451 100806 27763
Iisabl7 330 591 591 720 285 609 602 285

Iisab22 40778 279612 279612 616536 34342 273027 1089847 56122

Iisab26 7 7 7 7 7 7 7 7
Iisab27 1192 1145 1028 1417 1281 1148 1174 1166

Iisab33 4 4 4 4 4 4 4 4

Iisab37 10 10 10 9 9 10 10 9
Iisab39 2 2 2 2 2 2 2 2

Iisab40 4 4 4 4 4 4 4 4

Iisab45 3 3 3 3 3 3 3 3

Iisab47 11 11 11 11 11 11 12 13

Iisab48 4 4 4 4 4 4 4 4

Iisab50 7 7 7 7 7 7 7 7

Iisab56 3 3 3 3 3 3 3 3

Iisab6l 194 136 136 136 151 160 126 96

Iisab62 54 68 68 68 72 68 68 70

Iisab63 29 25 25 25 25 20 20 25

Iisab64 12 12 12 12 12 12 13 12

Iisab66 184 796 796 304 150 225 1520 150

Iisab67 4374 3907 3907 4892 4375 6942 5446 4196

Iisab69 27 23 23 29 27 23 36 24

Iisab70 251 264 207 191 243 245 214 242

Iisab7l 7 7 7 7 7 7 7 7

Iisab72 2737 2011 2011 1911 2639 2583 6550 1697

Iisab74 181810 216333 148790 140998 184136 151587 315425 217746

Iisab75 2 2 2 2 2 2 2 2

Iisab76 95319 86954 86954 114005 106220 69643 146792 57580

Iisab77 4286 2333 2263 4785 3302 4261 4510 1364

Iisab80 6 6 6 6 6 7 6 5

Iisab82 2990 3048 3048 2856 2767 2896 3331 2285

Iisab83 438 359 359 184 185 196 107 164

Iisab85 7 6 7 7 6 7 7 6

Iisab87 2835107 6.67x107 6.26x10' 2.21x10' 1729805 1.16x10' 6148359 1791517

Iisab88 167 147 147 124 109 187 364 84
Iisab89 1822 7427 6425 688 1387 2467 625 1105
Iisab9l 737 1190 1190 1190 589 1242 1003 1104
Iisab94 3 3 3 3 3 3 3 3

Iisab95 3 3 3 3 3 3 3 3

273

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

lisabal 330 591 591 720 285 609 602 285

Iisaba2 2537083 1.86x10' 1.86x107 5634287 2746780 5287903 2193175 1492771

Iisaba3 3672 10529 10153 9659 4903 5015 7844 3272

Iisaba5 1939 3345 1651 2673 1446 4240 2519 1326

Iisaba6 156 663 647 210 126 199 207 117

Iisaba7 330 591 591 720 285 609 602 285

Iisaba8 1131891 1073774 947778 1488698 890146 901370 1267894 708655

rand159 488 168 168 793 393 172 205 208

rand161 1399 2921 2411 3723 687 1605 3779 974

rand163 4996 15007 11938 11170 4974 6438 395942 4240

rand164 8519 8530 7202 7202 8006 5978 7691 6771

rand165 20967 11242 11877 22707 16700 24927 12000 12977

rand166 53355 110373 60192 75445 17007 33731 160937 16499

rand167 354 459 402 375 1 366 397 325 329

Number of If-Then-Else Calculations Required for BDD Construction

Ordering scheme
Fault tree

1 2 3 4 5 6 7 8

Iisal00 1163 522 516 760 796 541 856 648

Iisa102 9048 1915 2017 2609 3470 2438 3567 2398

Iisal04 143 144 143 143 139 139 151 139

Iisa107 14 14 14 14 14 14 14 15

Iisal08 23 23 23 23 22 22 23 22

Iisal09 304 268 268 349 305 292 299 303

Iisa110 962 1082 1027 957 1266 951 989 1560

lisa111 52 46 46 46 52 48 46 52

lisal12 256 146 148 231 228 176 202 264

Iisal13 832 1010 1028 1443 667 473 386 545

Iisa115 80 71 69 69 58 66 50 45

lisal16 36 48 48 48 45 44 48 45

lisal18 1694 2089 1574 1732 973 844 681 819

lisal19 13 12 12 13 13 13 13 13

lisal2l 49 57 57 47 52 45 58 50

Iisa122 112 105 105 105 112 100 104 103

Iisa124 1010 671 671 744 877 554 580 673

2 For each fault tree, the ordering scheme(s) requiring the fewest Ito calculations to construct
the BDD is (are) shown in bold.

274

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
lisabl1 98 83 107 106 104 104 83 106

Iisabl3 629 802 793 783 776 761 552 768

Iisab14 2684 24420 24410 63029 1968 10536 19969 1677

Iisabl5 2586 2963 2978 3153 925 1065 4651 674

Iisabl7 136 116 116 145 133 129 111 128

Iisab22 4171 10032 10032 9049 4246 6749 11680 6410

Iisab26 29 29 29 29 29 29 29 34

Iisab27 456 607 572 422 407 224 266 393

Iisab33 21 20 21 21 21 21 21 20

Iisab37 20 20 20 18 19 20 20 18

Iisab39 13 13 13 13 13 13 13 12

Iisab40 12 12 12 12 12 12 11 12

Iisab45 59 59 61 61 57 57 61 57

Iisab47 50 54 54 54 45 49 47 46

Iisab48 50 46 46 57 50 50 46 48

Iisab50 54 54 54 54 56 55 54 56

Iisab56 50 51 51 51 48 46 51 49

Iisab6l 171 192 192 192 164 172 240 167

Iisab62 58 51 51 73 63 73 73 59

Iisab63 28 26 26 26 27 23 23 28

Iisab64 668 909 826 814 681 620 646 672

Iisab66 482 858 847 558 449 497 928 486

Iisab67 381 417 417 487 471 404 544 516

Iisab69 27 27 27 27 30 27 34 29

Iisab70 94 109 98 67 85 71 78 89

Iisab7l 44 41 41 41 40 41 41 43

Iisab72 611 494 494 535 615 476 813 583

Iisab74 4677 741 710 709 2788 706 879 4697

Iisab75 79 78 77 85 81 81 84 80

Iisab76 3548 8641 8641 2737 3393 3015 2068 2399

Iisab77 604 446 379 520 464 551 358 275

Iisab80 11 11 11 11 11 13 11 10

Iisab82 367 224 224 330 391 390 317 336

Iisab83 379 268 268 211 234 216 165 191

Iisab85 16 15 16 16 15 16 16 15

Iisab87 18986 61622 61684 19717 10205 13825 10332 7107
Iisab88 303 309 309 390 357 337 274 326
Iisab89 500 408 591 398 468 480 305 345
Iisab9l 691 470 470 470 620 469 342 557

275

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

lisab94 11 11 11 11 10 10 11 10

Iisab95 54 39 59 59 58 58 39 58

lisabal 136 116 116 145 133 129 111 128

Iisaba2 22453 8224 8224 8083 17263 11381 3296 16936

Iisaba3 602 1218 1163 1168 662 672 922 913

Iisaba5 420 528 442 415 388 547 494 403

Iisaba6 76 104 97 108 74 92 80 66

Iisaba7 136 116 116 145 133 129 111 128

Iisaba8 12047 3119 3235 1959 4519 1710 3740 4328

rand159 799 307 307 889 615 317 359 445

rand161 516 513 488 1027 338 527 1120 333

rand163 1073 1652 1502 1478 1065 1045 3340 1508

rand164 1595 1710 1035 1035 1090 1041 1009 1226

rand165 2395 1049 1042 1367 1382 1446 567 3033

rand166 1047 1273 1139 1465 715 1209 1222 729

rand167 175 151 144 133 150 136 128 144

276

Appendix XI

Number of Non-Distinct Nodes in BDDs Obtained from Fault Trees

Restructured Using the Extended Reduction Method

Key to ordering schemes':

1. Modified top-down.

2. Modified depth-first.

3. Modified priority depth-first.

4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.

6. Dynamic top-down weights.

7. Bottom-up weights.
8. Event criticality.

Fault tree
Ordering scheme

12345678

aaaaaaa 1 1 1 1 1 1 1 1

artqual 6 6 6 6 6 6 6 6

arttree 1 1 1 1 1 1 1 1

astolfo 21 21 21 21 21 21 21 27

bddtest 32 35 35 35 32 36 35 32

benjiam 87 76 76 80 87 84 80 83

bpfeg03 1 1 1 1 1 1 1 1

bpfen05 1 1 1 1 1 1 1 1

bpfig05 1 1 1 1 1 1 1 1

bpfin05 1 1 1 1 1 1 1 1

bpfpp02 1 1 1 1 1 1 1 1

bpfsw02 19 19 14 14 19 14 19 15

ch8tree 8 7 8 8 8 8 8 7

drel019 1 1 1 1 1 1 1 1

dre1032 1 1 1 1 1 1 1 1

dre1057 1 1 1 1 1 1 1 1

dre1058 30 26 26 26 30 28 26 30

dre1059 256 312 261 261 232 214 312 216

dresden 453 160 160 160 453 117 550 127

emerh2o 1 1 1 1 1 1 1 1

1 For each fault tree, the ordering scheme(s) resulting in the fewest non-distinct BDD nodes is
(are) shown in bold.

277

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
fatram2 99 9 9 9 9 9 10
hpisf02 159 137 137 140 171 140 130 172
hpisf03 14 14 14 14 14 14 14 14
hpisf2l 30 41 41 38 33 41 32 31

hpisf36 14 14 14 14 14 14 14 14
jdtreel 11 1 1 1 1 1 1
jdtree2 11 1 1 1 1 1 1
jdtree3 11 1 1 1 1 1 1
jdtree4 11 1 1 1 1 1 1
jdtree5 11 1 1 1 1 1 1
khictre 36 30 30 33 39 33 30 30

lisa123 206 226 226 170 188 122 204 180

Iisabl0 4267 4629 4385 2313 3264 2686 8260 2380
Iisab25 63 65 63 57 64 58 65 59
Iisab28 11 1 1 1 1 1 1
Iisab30 25 19 19 19 22 21 25 20
Iisab3l 917 1219 1628 1499 733 865 1196 636
Iisab34 25 20 32 25 23 25 32 23
Iisab35 1717 2443 2619 1425 1396 1925 2443 668
Iisab36 348 367 347 267 257 274 299 212
lisab42 11 1 1 1 1 1 1

Iisab44 18 18 18 18 18 18 16 18
Iisab5l 17 16 16 16 17 16 18 21
Iisab52 3502 4092 4028 4420 2192 3202 4447 1740
Iisab53 11 1 1 1 1 1 1
Iisab54 21 21 18 18 20 18 18 21
Iisab57 582 815 615 704 629 582 774 575
Iisab59 11 1 1 1 1 1 1
Iisab60 23 25 25 25 23 25 25 23

Iisab78 602 538 422 537 502 537 673 417
Iisab86 1132 2269 1954 1173 943 1188 1104 872
Iisaba4 2011 3805 3056 2980 1461 1470 1977 1174
Iisaba9 14 13 13 13 14 14 13 14

modtree 11 1 1 1 1 1 1

nakashi 501 359 318 367 360 455 359 304
newtre2 I1 1 1 1 1 1 1
newtre3 11 1 1 1 1 1 1
newtree 11 1 1 1 1 1 1

rand100 11 1 1 1 1 1 1

278

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rand101 1 1 1 1 1 1 1 1
rand102 1 1 1 1 1 1 1 1
rand103 20 20 19 19 20 19 22 21

rand104 1 1 1 1 1 1 1 1

rand105 28 33 27 27 28 27 31 26
rand106 1 1 1 1 1 1 1 1

rand107 1 1 1 1 1 1 1 1

randl08 119 206 203 152 109 169 193 110
rand109 385 350 374 393 301 393 310 323

rand110 6 6 6 6 6 6 6 6

randl11 90 73 73 70 81 68 54 45

randl12 1 1 1 1 1 1 1 1

randl13 1 1 1 1 1 1 1 1

randl14 1 1 1 1 1 1 1 1

randl15 233 153 153 244 183 163 149 125

rand116 142 176 176 186 121 191 220 99

rand117 10 12 12 12 '11 11 12 11

randl18 132 104 100 106 120 110 130 107

randl19 1 1 1 1 1 1 1 1

rand120 238 242 207 203 218 206 327 232

rand121 32 25 25 32 32 32 32 34

rand122 1 1 1 1 1 1 1 1

rand 123 5 5 5 5 5 5 5 5

rand124 1 1 1 1 1 1 1 1

rand 125 6 6 6 6 6 6 6 6

rand126 78 78 78 72 78 87 91 76

rand127 1 1 1 1 1 1 1 1

rand128 101 127 96 98 101 100 95 103

rand129 1 1 1 1 1 1 1 1
rand130 1 1 1 1 1 1 1 1

rand131 1 1 1 1 1 1 1 1

rand 132 3446 3773 3703 3565 1757 2158 3565 2144

rand133 1 1 1 1 1 1 1 1

rand134 48 63 63 50 52 52 63 48

rand135 85 77 81 81 84 81 82 86
rand136 1 1 1 1 1 1 1 1
randl37 55 55 55 55 58 59 45 34
randl38 1 1 1 1 1 1 1 1

rand139 125 135 107 93 113 92 146 121

279

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

rand140 1 1 1 1 1 1 1 1

rand141 6 6 6 6 6 6 6 6
rand142 25750 29765 32074 38739 20834 32786 35941 15231

rand143 1 1 1 1 1 1 1 1

rand144 91 92 91 91 81 80 117 72

rand145 7 7 7 7 7 7 7 7

rand146 55 55 55 55 58 59 45 34

rand147 2493 3153 2845 5815 1458 2104 1607 1363

rand 148 1 1 1 1 1 1 1 1

rand149 1 1 1 1 1 1 1 1

rand150 15725 21580 21498 7049 12428 7999 8393 8659

rand151 1 1 1 1 1 1 1 1

rand152 1 1 1 1 1 1 1 1

rand153 1 1 1 1 1 1 1 1

rand 154 1 1 1 1 1 1 1 1

rand155 463 453 429 485 464 475 696 471

rand156 1 1 1 1 1 1 1 1

rand158 1 1 1 1 1 1 1 1

randolO 1 1 1 1 1 1 1 1

randoll 2089234 8685527 8685527 6546439 4025841 6055138 8054312 3178689

rando12 678 1026 1010 1016 558 534 1010 526

randol3 113 209 209 209 103 104 182 99

rando14 1 1 1 1 1 1 1 1

rando15 1 1 1 1 1 1 1 1

randol6 68 68 68 66 75 69 102 60

rando17 1 1 1 1 1 1 1 1

randol8 82 85 74 86 75 63 55 73

rando19 10875 31473 32304 29924 8402 21327 37153 7150

rando20 2686 5734 5666 5217 2415 2837 6664 2512

randoll 1 1 1 1 1 1 1 1

rando22 16787 22785 23439 66645 12061 24061 96609 10012

rando23 1 1 1 1 1 1 1 1

rando24 1 1 1 1 1 1 1 1

rando25 1 1 1 1 1 1 1 1

rando26 1 1 1 1 1 1 1 1

rando27 18 18 18 18 16 16 18 16

rando28 1 1 1 1 1 1 1 1
rando29 235 152 186 299 172 177 186 138
rando30 121 112 103 103 121 107 155 146

280

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rando3l 1 11 1 1 1 1 1
rando32 1 11 1 1 1 1 1
rando33 6 66 6 6 6 6 6
rando34 23 22 22 22 23 22 23 23

rando35 14 14 14 14 12 12 11 12
rando36 1 11 1 1 1 1 1

rando37 45 42 43 43 41 39 41 37

rando38 1 11 1 1 1 1 1

rando39 201 156 156 212 211 200 419 210
rando40 34 23 32 32 34 32 34 23
rando4l 1 11 1 1 1 1 1
rando42 1 11 1 1 1 1 1

rando43 1 11 1 1 1 1 1
rando44 928 589 565 759 811 545 759 808

rando45 41 44 44 49 36 39 42 32

rando46 1 11 1 1 1 1 1
rando47 44 51 53 53 40 39 64 38

rando48 16 16 16 15 15 14 15 13
rando49 1 11 1 1 1 1 1
rando50 1 11 1 1 1 1 1

rando5l 1 11 1 1 1 1 1

rando52 43 51 38 38 37 33 50 37
rando53 1 11 1 1 1 1 1
rando54 18 18 18 18 18 19 18 19

rando55 10 10 10 10 10 10 10 11
rando56 1 11 1 1 1 1 1
rando57 1 11 1 1 1 1 1
rando58 1 11 1 1 1 1 1
rando59 2188 1600 1511 845 1071 846 898 1026
rando60 13 11 13 13 11 11 13 11

rando6l 19 21 16 16 18 16 16 17
rando62 1 11 1 1 1 1 1
rando63 10 10 10 10 10 10 10 11
rando64 80 81 81 81 87 81 86 83
rando65 34 27 27 36 30 28 27 26
rando66 22 29 29 29 27 27 23 22
rando67 1 11 1 1 1 1 1
rando68 1 11 1 1 1 1 1

rando69 1 11 1 1 1 1 1

281

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rando70 56 44 54 54 51 54 63 46

randoll 1 1 1 1 1 1 1 1
rando72 1 1 1 1 1 1 1 1

rando73 1 1 1 1 1 1 1 1
rando74 1 1 1 1 1 1 1 1

rando75 1 1 1 1 1 1 1 1

rando76 10 10 10 10 10 10 10 10
rando77 79 45 45 83 70 61 52 41

rando78 1 1 1 1 1 1 1 1

rando79 1 1 1 1 1 1 1 1

rando80 7 7 7 7 7 7 7 7

rando8l 1 1 1 1 1 1 1 1

rando82 1 1 1 1 1 1 1 1

rando83 39 41 34 34 34 31 35 34

rando84 132 104 100 106 120 110 130 107

rando85 1 1 1 1 1 1 1 1

rando86 1 1 1 1 1 1 1 1

rando87 1 1 1 1 1 1 1 1

rando88 35 34 31 34 29 30 26 23

rando89 1 1 1 1 1 1 1 1

rando90 1 1 1 1 1 1 1 1

rando9l 1901 1200 1200 1280 1465 1419 1138 1416
rando92 668 651 643 1042 535 896 547 567

rando93 9 9 9 9 9 9 9 9

rando94 1 1 1 1 1 1 1 1

rando95 47 38 46 46 38 38 46 35

rando96 1 1 1 1 1 1 1 1

rando97 1 1 1 1 1 1 1 1

rando98 302 385 385 361 442 361 341 370
rando99 98 84 84 79 97 100 99 84

randoml 1 1 1 1 1 1 1 1

random2 1 1 1 1 1 1 1 1

random3 84 97 92 92 84 92 133 88
random4 1 1 1 1 1 1 1 1
random6 7509 15525 12328 22094 5199 4159 9807 5638

random? 1 1 1 1 1 1 1 1
random8 1 1 1 1 1 1 1 1
random9 1 1 1 1 1 1 1 1
relcour 1 1 1 1 1 1 1 1

282

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

rstree1 1 1 1 1 1 1 1 1

rstree2 1 1 1 1 1 1 1 1

rstree3 8 7 7 7 8 7 7 8

rstree4 1 1 1 1 1 1 1 1

rstree5 1 1 1 1 1 1 1 1

rstree6 1 1 1 1 1 1 1 1

rstree7 15 17 17 10 13 10 14 12

trialsi 241 375 375 375 186 167 446 134

trials2 11 11 11 11 10 11 11 11

trials3 1 1 1 1 1 1 1 1

trials4 279 560 497 425 215 342 618 255

usatree 1 1 1 1 1 1 1 1

worrell 19 17 17 17 18 17 19 17

283

Appendix XII

Number of Distinct Nodes in BDDs Obtained from Fault Trees Restructured

Using the Extended Reduction Method

Key to ordering schemes':

1. Modified top-down.

2. Modified depth-first.

3. Modified priority depth-first.

4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.
6. Dynamic top-down weights.

7. Bottom-up weights.
8. Event criticality.

Fault tree
Ordering scheme

12345678

aaaaaaa 1 1 1 1 1 1 1 1

artqual 6 6 6 6 6 6 6 6

arttree 1 1 1 1 1 1 1 1

astolfo 15 15 15 15 15 15 15 18

bddtest 26 22 22 22 26 25 22 26

benjiam 47 34 34 32 47 39 32 47

bpfeg03 1 1 1 1 1 1 1 1

bpfen05 1 1 1 1 1 1 1 1

bpfigO5 1 1 1 1 1 1 1 1

bpfinO5 1 1 1 1 1 1 1 1

bpfpp02 1 1 1 1 1 1 1 1

bpfsw02 17 14 13 13 17 13 14 14

ch8tree 7 7 7 7 7 7 7 7

dre1019 1 1 1 1 1, 1 1 1

dre1032 1 1 1 1 1 1 1 1

dre1057 1 1 1 1 1 1 1 1

dre1058 24 18 18 18 24 21 18 24

dre1059 89 94 91 91 70 57 94 51

dresden 87 23 23 23 87 26 39 32

emerh2o 1 1 1 1 1 1 1 1

1 For each fault tree, the ordering scheme(s) resulting in the fewest distinct BDD nodes is
(are) shown in bold.

284

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Schomo 8
fatram2 9 9 9 9 9 9 9 10
hpisf02 77 24 24 34 67 34 33 86
hpisf03 11 11 11 11 11 11 11 11
hpisf2l 26 22 22 24 24 25 25 24

h pi sf36 11 11 11 11 11 11 11 11
jdtreel 1 1 1 1 1 1 1 1
jdtree2 1 1 1 1 1 1 1 1
jdtree3 1 1 1 1 1 1 1 1
jdtree4 1 1 1 1 1 1 1 1
jdtree5 1 1 1 1 1 1 1 1
khictre 15 12 11 11 17 11 11 11
11sa123 74 35 35 28 59 37 66 56

Iisabl0 532 228 165 185 269 201 376 244
Iisab25 40 39 45 35 42 36 39 42
Iisab28 1 1 1 1 1 1 1 1
Iisab30 17 15 15 15 16 15 19 16
lisab3l 290 123 144 140 224 166 132 157
Iisab34 18 16 20 16 19 16 20 19
Iisab35 308 331 354 139 273 318 331 194
Iisab36 85 93 66 53 68 57 80 96
Iisab42 1 1 1 1 1 1 1 1
Iisab44 16 15 15 15 16 15 14 16

Iisab5l 13 12 12 12 13 12 12 18
lisab52 481 361 354 497 418 414 279 353
lisab53 1 1 1 1 1 1 1 1
Iisab54 17 14 14 14 16 14 12 17
Iisab57 104 105 111 107 103 102 97 107
Iisab59 1 1 1 1 1 1 1 1
Iisab60 19 16 16 16 19 18 16 19
lisab78 177 68 104 105 142 105 99 86
Iisab86 148 164 141 107 150 104 146 143
Iisaba4 315 188 198 155 191 213 195 166
Iisaba9 13 10 10 11 13 13 10 13
modtree 1 1 1 1 1' 1 1 1
nakashl 138 43 64 58 120 55 43 105
newtre2 1 1 1 1 1 1 1 1
newtre3 1 1 1 1 1 1 1 1
newtree 1 1 1 1 1 1 1 1
rand100 1 1 1 1 1 1 1 1

285

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rand101 1 1 1 1 1 1 1 1
rand102 1 1 1 1 1 1 1 1
rand103 19 15 18 18 19 18 17 19
rand104 1 1 1 1 1 1 1 1
rand105 22 23 19 19 22 19 15 21

rand106 1 1 1 1 1 1 1 1
rand107 1 1 1 1 1 1 1 1

rand108 75 82 71 70 70 72 73 71
rand109 125 71 81 94 130 91 89 111
rand110 6 6 6 6 6 6 6 6

rand111 50 40 41 39 44 40 30 32

randl12 1 1 1 1 1 1 1 1

randl13 1 1 1 1 1 1 1 1

randl14 1 1 1 1 1 1 1 1

randl15 85 51 51 77 69 54 58 48

randl16 49 49 49 48 48 49 79 47

randl17 10 12 12 12 11 11 12 11

randl18 68 45 41 48 61 51 38 54

randl19 1 1 1 1 1 1 1 1

rand120 98 52 43 72 91 73 81 109
rand121 24 18 18 22 24 23 22 27

rand122 1 1 1 1 1 1 1 1

randl23 5 5 5 5 5 5 5 5

randl24 1 1 1 1 1 1 1 1

randl25 6 6 6 6 6 6 6 6
randl26 38 32 32 37 46 31 58 43
randl27 1 1 1 1 1 1 1 1

rand128 44 42 35 37 44 41 38 54

randl29 1 1 1 1 1' 1 1 1
rand130 1 1 1 1 1 1 1 1

rand131 1 1 1 1 1 1 1 1

randl32 443 456 436 414 290 305 414 376

rand133 1 1 1 1 1 1 1 1

rand134 39 22 22 35 40 38 22 37
rand135 42 36 36 36 40 36 27 45
rand136 1 1 1 1 1 1 1 1
rand137 19 19 19 19 23 19 25 22
rand138 1 1 1 1 1 1 1 1

rand139 73 42 36 36 62 39 37 58

286

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme a
rand140 1 1 1 1 1 1 1 1
rand141 6 6 6 6 6 6 6 6
rand142 1466 1173 1187 961 1192 798 902 1224
rand143 1 1 1 1 1 1 1 1
rand144 45 34 32 32 50 45 57 51
rand145 7 7 7 7 7 7 7 7
rand146 19 19 19 19 23 19 25 22
rand147 311 478 487 309 240 212 294 198

rand148 1 1 1 1 1 1 1 1
rand149 1 1 1 1 1 1 1 1
rand150 846 1010 654 318 883 411 382 790
rand151 1 1 1 1 1 1 1 1
rand152 1 1 1 1 1 1 1 1

rand 153 1 1 1 1 1 1 1 1
rand154 1 1 1 1 1 1 1 1
rand155 142 102 70 90 117 94 90 115
rand156 1 1 1 1 1 1 1 1
rand158 1 1 1 1 1 1- 1 1
randol0 1 1 1 1 1 1 1 1
randoll 12470 11851 11851 5951 7105 3319 5538 8645
randol2 196 159 155 165 184 182 172 146

randol3 58 40 40 40 54 46 68 45

rando14 1 1 1 1 1 1 1 1
randol5 1 1 1 1 1 1 1 1

randol6 43 44 43 41 46 45 52 44
randol7 1 1 1 1 1 1 1 1
randol8 46 57 45 44 41 34 32 38
randol9 860 825 833 1197 767 1092 1082 624
rando20 368 470 404 391 363 292 550 360

rando2l 1 1 1 1 1 1 1 1
rando22 1472 1162 1099 2254 870. 1013 2172 785

rando23 1 1 1 1 1 1 1 1
rando24 1 1 1 1 1 1 1 1
rando25 1 1 1 1 1 1 1 1
rando26 1 1 1 1 1 1 1 1
rando27 17 17 17 17 16 16 17 16,
rando28 1 1 1 1 1 1 1 1
rando29 70 45 48 66 61 53 48 58
rando30 44 38 34 34 44 39 35 49

287

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Schomo 8
rando31 1 1 1 1 1 1 1 1
rando32 1 1 1 1 1 1 1 1
rando33 6 6 6 6 6 6 6 6
rando34 21 19 21 21 22 21 19 22
rando35 13 13 13 13 12 12 11 12
rando36 1 1 1 1 1 1 1 1
rando37 34 28 32 32 35 30 34 32

rando38 1 1 1 1 1 1 1 1
rando39 94 54 54 93 93 89 90 91
rando40 19 15 16 16 19 16 20 18
rando4l 1 1 1 1 1 1 1 1
rando42 1 1 1 1 1 1 1 1

rando43 1 1 1 1 1 1 1 1

rando44 203 107 101 166 227 159 166 177

rando45 30 31 31 23 25 28 25 22
rando46 1 1 1 1 1 1 1 1
rando47 32 23 33 33 32 31 28 30
rando48 14 12 12 11 14 11 11 12
rando49 1 1 1 1 1 1 1 1
rando50 1 1 1 1 1 1 1 1
rando5l 1 1 1 1 1 1 1 1
rando52 28 27 24 24 28 24 26 28

rando53 1 1 1 1 1 1 1 1
rando54 16 16 16 16 16 16 16 18
rando55 10 10 10 10 10 10 10 11
rando56 1 1 1 1 1 1 1 1
rando57 1 1 1 1 1 1 1 1
rando58 1 1 1 1 1 1 1 1
rando59 333 142 141 68 210 78 68 211
rando60 12 11 11 11 11 11 11 11

rando61 17 16 15 15 16 15 15 16
rando62 1 1 1 1 1 1 1 1
rando63 10 10 10 10 10 10 10 11
rando64 55 36 36 36 45 36 25 51
rando65 25 15 15 24 24 22 17 21

rando66 18 19 19 19 20 20 14 18
rando67 1 1 1 1 1 1 1 1
rando68 1 1 1 1 1 1 1 1
rando69 1 1 1 1 1 1 1 1

288

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Schomo 6
rando70 22 20 18 18 22 18 25 29
rando7l 1 1 1 1 1 1 1 1
rando72 1 1 1 1 1 1 1 1
rando73 1 1 1 1 1 1 1 1

rando74 1 1 1 1 1 1 1 1
rando75 1 1 1 1 1 1 1 1
rando76 9 9 9 9 9 9 9 9

rando77 40 19 19 39 31 23 22 19
rando78 1 1 1 1 1 1 1 1
rando79 1 1 1 1 1 1 1 1
rando80 7 7 7 7 7 7 7 7

rando8l 1 1 1 1 1 1 1 1

rando82 1 1 1 1 1 1 1 1

rando83 28 19 21 21 26 23 17 28

rando84 68 45 41 48 61 51 38 54

rando85 1 1 1 1 1 1 1 1

rando86 1 1 1 1 1 1 1 1

rando87 1 1 1 1 1 1 1 1

rando88 23 14 17 14 21 15 18 19
rando89 1 1 1 1 1 1 1 1

rando90 1 1 1 1 1 1 1 1

rando9l 296 139 139 165 229 146 160 175

rando92 166 142 143 115 163 107 97 166

rando93 9 9 9 9 9 9 9 9

rando94 1 1 1 1 1 1 1 1

rando95 29 24 28 28 30 30 28 27

rando96 1 1 1 1 1 1 1 1

rando97 1 1 1 1 1 1 1 1
rando98 139 96 96 90 172 90 88 130

rando99 57 31 31 43 63 50 35 56

randoml 1 1 1 1 1 1 1 1
random2 1 1 1 1 1 1 1 1

random3 49 49 44 44 49 44 41 55
random4 1 1 1 1 1 1 1 1
random6 486 362 484 528 574 278 372 414
random7 1 1 1 1 1 1 1 1
random8 1 1 1 1 1 1 1 1
random9 1 1 1 1 1 1 1 1

relcour 1 1 1 1 1 1 1 1

289

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

rstree1 1 1 1 1 1 1 1 1

rstree2 1 1 1 1 1 1 1 1

rstree3 8 6 7 7 8 7 7 8

rstree4 1 1 1 1 1 1 1 1

rstree5 1 1 1 1 1 1 1 1

rstree6 1 1 1 1 1 1 1 1

rstree7 13 11 11 10 12 10 12 11

trialsi 74 78 78 78 77 62 77 84

tri al s2 11 11 11 11 10 11 11 11

trials3 1 1 1 1 1 1 1 1

trials4 119 152 136 116 104 114 133 105

usatree 1 1 1 1 1 1 1 1

worrell 16 15 15 15 15 13 14 15

290

Appendix X111

Number of If-Then-Else Calculations Required to Construct BDDs from Fault

Trees Restructured Using the Extended Reduction Method

Key to ordering schemes:

1. Modified top-down.

2. Modified depth-first.

3. Modified priority depth-first.

4. Depth-first, with number of leaves.

5. Non-dynamic top-down weights.
6. Dynamic top-down weights.

7. Bottom-up weights.
8. Event criticality.

Fault tree
Ordering scheme

12345678

aaaaaaa 0 0 0 0 0 0 0 0

artqual 8 7 8 8 8 8 8 7

arttree 0 0 0 0 0 0 0 0

astolfo 16 21 21 21 16 16 21 22

bddtest 27 31 31 31 27 26 31 27

benjiam 76 75 75 70 76 67 75 101

bpfeg03 0 0 0 0 0 0_ 0 0

bpfen05 0 0 0 0 0 0 0 0

bpfig05 0 0 0 0 0 0 0 0

bpfin05 0 0 0 0 0 0 0 0

bpfpp02 0 0 0 0 0 0 0 0

bpfsw02 27 18 22 22 27 22 18 24

ch8tree 11 9 11 11 11 11 1 11 9

dre1019 0 0 0 0. 0 0 0 0

dre1032 0 0 0 0 0 0 0 0

dre1057 0 0 0 0 0 0 0 0

drei 058 23 25 25 25 23 21 25 23

dre1059 90 134 131 131 75 65 134 62

dresden 131 91 91 91 131 76 97 89

emerh2o 0 0 0 0 0 0 0 0

' For each fault tree, the ordering scheme(s) requiring the fewest Ito calculations to construct
the BDD is (are) shown in bold.

291

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Schomo 8
fatram2 11 11 11 11 11 11 11 10
hpisf02 107 47 47 60 96 60 63 113
hpisf03 19 17 17 17 19 17 17 19
hpisf2l 58 50 50 65 54 52 56 53
hpisf36 19 17 17 17 19 17 17 19
jdtreel 0 0 0 0 0 0 0 0
jdtree2 0 0 0 0 0 0 0 0
jdtree3 0 0 0 0 0 0 0 0
jdtree4 0 0 0 0 0 0 0 0

jdtree5 0 0 0 0 0 0 0 0
khictre 32 26 29 27 32 27 29 24
lisa123 139 123 123 108 127 93 139 116
Iisabl0 624 367 304 316 346 308 598 348
lisab25 69 60 67 65 67 66 60 57
Iisab28 0 0 0 0 0 0 0 0
Iisab30 27 24 24 24 27 25 32 29
Iisab3l 356 263 301 230 275 244 278 211
lisab34 30 23 30 35 29 35 30 27
lisab35 381 401 422 253 330 366 401 252
Iisab36 123 131 103 89 98 93 114 134
lisab42 0 0 0 0 0 0. 0 0

lisab44 18 19 19 19 18 19 17 18
Iisab5l 23 21 21 21 23 21 22 25
Iisab52 698 631 624 736 625 614 537 513
lisab53 0 0 0 0 0 0 0 0
Iisab54 26 22 23 23 25 23 24 24
lisab57 133 194 202 197 127 137 185 129
lisab59 0 0 0 0 0 0 0 0
Iisab60 25 26 26 26 25 28 26 23
lisab78 210 145 178 170 173 168 152 126

lisab86 214 275 213 214 224 209 288 195
Iisaba4 362 283 299 255 235 267 318 206
lisaba9 13 13 13 14 13 13 13 13
modtree 0 0 0 0 0 0 0 0
nakashi 207 91 118 117 179 107 91 151
newtre2 0 0 0 0 .0 0 0 0
newtre3 0 0 0 0 0 0 0 0
newtree 0 0 0 0 0 0 0 0
rand100 0 0 0 0 0 0 0 0

292

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8
rand101 0 0 0 0 0 0 0 0
rand102 0 0 0 0 0 0 0 0
rand103 28 26 27 27 28 27 25 27
rand104 0 0 0 0 0 0 0 0

rand105 30 35 30 30 30 30 31 27

rand106 0 0 0 0 0 0 0 0
rand107 0 0 0 0 0 0 0 0

rand108 182 157 165 195 168 189 172 163

rand109 183 120 129 141 176 141 153 157

rand110 8 8 8 8 8 8 7 7

randl11 88 81 81 78 85 80 57 67

randl12 0 0 0 0 0 0 0 0

randl13 0 0 0 0 0 0 0 0

rand114 0 0 0 0 0 0 0 0

randl15 118 80 80 115 97 81 95 78

randl16 87 84 84 88 86 87 117 74

randl17 16 19 19 19 17 17 19 17

randl18 97 72 78 88 94 80 78 90

randl19 0 0 0 0 0 0 0 0

rand120 155 119 125 147 149 147 163 164
rand121 31 24 24 33 29 28- 33 30

rand122 0 0 0 0 0 0- 0 0

rand123 6 6 6 6 6 6 6 5

rand124 0 0 0 0 0 0 0 0

rand125 8 7 8 8 8 8 7 7

rand126 60 58 58 60 63 56 91 64

rand127 0 0 0 0 0 0 0 0
rand128 68 86 77 68 68 65 74 80

rand129 0 0 0 0 0 0 0 0

rand130 0 0 0 0 0 0 0 0

randl31 0 0 0 0 0 0 0 0

randl32 648 614 595 606 401 454 606 506

rand133 0 0 0 0 0 0 0 0

randl34 50 42 42 55 52 50 42 47
rand135 60 52 60 60 58 60 59 58
randl36 0 0 0 0 0 0 0 0
rand137 36 36 36 36 36 35 37 33
rand138 0 0 0 0 0 0 0 0

rand139 101 82 91 79 97 79 82 90

293

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Schome 8
rand140 0 0 0 0 0 0 0 0
randl41 8 8 8 8 8 8 7 7
rand142 2031 1412 1449 1301 1552 1151 1233 1407
rand143 0 0 0 0 0 0 0 0
rand144 65 72 73 73 69 70 76 71
rand145 9 9 9 9 9 9 9 8

randl46 36 36 36 36 36 35 37 33

rand147 456 607 598 627 346 317 404 305
rand148 0 0 0 0 0 0 0 0
rand149 0 0 0 0 0 0 0 0

randl50 1120 1302 1026 499 1088 682 535 949
rand151 0 0 0 0 0 0 0 0
randl52 0 0 0 0 0 0 0 0

randl53 0 0 0 0 0 0 0 0

randl54 0 0 0 0 0 0 0 0
randl55 191 180 168 167 167 146 224 158
rand156 0 0 0 0 0 0 0 0
rand158 0 0 0 0 0 0 0 0
randol0 0 0 0 0 0 0 0 0
randoll 12626 12455 12455 6447 7298 3677 7266 8851
rando12 293 292 287 326 267 281 274 265

rando13 98 92 92 92 90 83 115 83

randol4 0 0 0 0 0 0 0 0
rando15 0 0 0 0 0 0 0 0
randol6 96 97 96 93 93 85 95 85
randol7 0 0 0 0 0 0 0 0
randol8 70 91 79 78 58 55 52 58
randol9 1092 1174 1181 1463 935 1317 1395 795

rando20 545 794 669 658 492 451 902 468

rando21 0 0 0 0 0 0 0 0
rando22 1725 1590 1506 3297 1123 1226 3025 1034
rando23 0 0 0 0 0 0 0 0
rando24 0 0 0 0 0 0 0 0
rando25 0 0 0 0 0 0 0 0
rando26 0 0 0 0 0 0 0 0
rando27 27 27 27 27 22 22 27 22
rando28 0 0 0 0 0 0 0 0
rando29 125 84 91 151 90 82 91 78
rando30 56 54 51 51 56 55 64 59

294

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Schomo 7 Schomo 8
rando3l 0 0 0 0 0 0 0 0
rando32 0 0 0 0 0 0 0 0
rando33 7 6 7 7 7 7 7 6
rando34 34 31 32 32 34 32 31 31
rando35 18 18 18 18 14 14 13 14
rando36 0 0 0 0 0 0 0 0

rando37 59 54 57 57 52 49 56 48
rando38 0 0 0 0 0 0 0 0
rando39 181 103 103 197 159 197 180 159
rando40 26 22 24 24 26 24 27 23
rando4l 0 0 0 0 0 0 0 0
rando42 0 0 0 0 0 0 0 0
rando43 0 0 0 0 0 0 0 0
rando44 257 156 151 250 276 209 250 239
rando45 40 42 42 45 35 37 41 32
rando46 0 0 0 0 0 0 0 0
rando47 57 67 69 69 54 53 63 51
rando48 20 16 16 20 17 17 20 16
rando49 0 0 0 0 0 0 0 0
rando50 0 0 0 0 0 0 0 0
rando5l 0 0 0 0 0 0 0 0

rando52 42 41 39 39 44 41 51 44

rando53 0 0 0 0 0 0 0 0
rando54 20 20 20 20 20 21 20 19
rando55 13 13 13 13 13 13 13 12
rando56 0 0 0 0 0 0 0 0
rando57 0 0 0 0 0 0 0 0
rando58 0 0 0 0 0 0 0 0
rando59 447 218 215 186 287 166 221 301

rando60 17 14 17 17 14 14 17 14
rando6l 28 24 25 25 27 25 25 25
rando62 0 0 0 0 0 0 0 0
rando63 13 13 13 13 13 13 13 12
rando64 67 54 54 54 59 54 55 62
rando65 36 23 23 41 29 27 25 26
rando66 18 25 25 25 20 20 22 18
rando67 0 0 0 0 0 0 0 0
rando68 0 0 0 0 0 0 0 0
rando69 0 0 0 0 0 0 0 0

295

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 'Scheme 5 Scheme 6 Schemel Schema 8
rando70 35 31 32 32 33 32 40 35
randoll 0 0 0 0 0 0 0 0
rando72 0 0 0 0 0 0 0 0
rando73 0 0 0 0 0 0 0 0
rando74 0 0 0 0 0 0 0 0
rando75 0 0 0 0 0 0 0 0

rando76 13 13 13 13 13 13 13 13
rando77 90 60 60 87 79 64 75 59

rando78 0 0 0 0 0 0 0 0

rando79 0 0 0 0 0 0 0 0
rando80 9 9 9 9 9 9 8 8
rando8l 0 0 0 0 0 0 0 0
rando82 0 0 0 0 0 0 0 0
rando83 36 37 36 36 33 31 34 30

rando84 97 72 78 88 94 80 78 90
rando85 0 0 0 0 0 0 0 0

rando86 0 0 0 0 0 0 0 0
rando87 0 0 0 0 0 0 0 0
rando88 34 24 32 24 26 23 28 25
rando89 0 0 0 0 0 0 0 0
rando90 0 0 0 0 0 0 0 0
rando9l 428 236 236 396 349 333 258 388
rando92 227 222 221 187 214 169 227 242
rando93 11 10 11 11 11 11 10 10
rando94 0 0 0 0 0 0 0 0
rando95 48 41 47 47 38 38 47 37
rando96 0 0 0 0 0 0 0 0
rando97 0 0 0 0 0 0 0 0
rando98 174 137 137 131 201 131 128 167
rando99 86 67 67 77 88 81 77 87
randomi 0 0 0 0 0 0 0 0
random2 0 0 0 0 0 0 0 0
random3 71 79 75 75 71 75 103 73
random4 0 0 0 0 0 0 0 0
random6 620 507 622 715 685 412 549 539
random? 0 0 0 0 0 0 0 0
random8 0 0 0 0 0 0 0 0
random9 0 0 0 0 0 0 0 0
relcour 0 0 0 0 0 0 0 0

296

Fault tree Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

rstreel 0 0 0 0 0 0 0 0

rstree2 0 0 0 0 0 0 0 0

rstree3 10 8 9 9 10 9 9 8

rstree4 0 0 0 0 0 0 0 0

rstree5 0 0 0 0 0 0 0 0

rstree6 0 0 0 0 0 0 0 0

rstree7 25 19 19 21 22 21 20 23

trials l 159 178 178 178 143 112 177 147

trials2 18 15 15 15 14 15 15 15

trials3 0 0 0 0 0 0 0 0

trials4 241 336 318 286 201 233 269 203

usatree 0 0 0 0 0 0 0 0

worrell 29 28 28 28 28 27 24 27

297

