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Abstract 

This work addresses the material properties and behaviour of Japanese lacquers 

(urushi) coatings similar to those found on the Mazarin Chest, an important Japanese 

lacquerware artefact currently displayed in the Toshiba Gallery of Japanese Art at the 

Victoria and Albert Museum (V&A) in London. For almost four centuries, the Mazarin 

Chest has been displayed in uncontrolled environmental conditions and has been 

exposed to a range of lighting conditions. As a result, the Mazarin Chest has 

deteriorated and started to suffer from different kinds of damage. However, the optimal 

conservation approach to repairing this damage is not known and as a consequence, 

research on urushi and related materials is of great interest. 

For the first time, the effect of changing relative humidity (RH) on the response of 

urushi is investigated by examining the deflection of a glass substrate coated with a 

thin film of urushi. Phase shifting interferometry was employed to measure this 

deflection, from which the in-plane stress developed in the system due to the 

expansion mismatch in the bilayer was calculated. This was performed for aged 

(exposed to ultra-violet radiation) and non- aged urushi films. The film stress was 

observed over 66 hrs under 30%, 36% and 42% RH, while the stress response was 

observed over 7 hrs during exposure to 60%, 54% and 48% RH. 

During exposure to 30%, 36% and 42% RH and for both non-aged and aged urushi 

films, tensile in-plane stress was observed. It was seen to reach a peak value then relax 

over a longer time scale. The stresses develop in the non-aged urushi films were found 

to be higher than the stresses developed in the aged urushi films. The peak stress 

values for non-aged and aged urushi films were found to increase when increasing the 

difference between the storage RH (75%) and the target RH. 

When the non-aged and aged urushi films were subjected to a step change from low 

RH (30%, 36% and 42%) to high RH (60%, 54% and 48% RH), a compression in-

plane stress was observed and in this case, the aged urushi films exhibited higher 

stresses than those developed in non-aged urushi films. 
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To predict the behaviour of the urushi films, a simple 1D model of stress has been 

proposed. It shows reasonable agreement against the experimental stress measurements 

when the RH changes from 75% to 30%, 36% and 42% respectively, for both non-

aged and aged urushi films. Furthermore, the model is extended to predict the stress 

response as a function of depth for non-aged urushi layers above an aged layer. For 

both the upper urushi layer (non-aged) and the lower urushi layer (aged), the model 

suggests that decreasing the layer depth results in an increase in the stress levels. 

In addition to the stress response measurements and in order to fully characterise the 

mechanics of urushi, mechanical properties were determined for non-aged and aged 

urushi films under different RH levels. These including the moisture diffusion 

coefficients, the elastic modulus, the tensile strength at break, the elongation at break, 

and the viscoelastic properties. 

The moisture diffusion coefficients were determined from the sorption and desorption 

curves when urushi films, non-aged and aged, subjected to step changes in RH. The 

results showed that the moisture diffusion coefficients were independent of the 

moisture content for non-aged and aged urushi. 

A strong dependence of the elastic modulus and the elongation at failure on the RH has 

been observed for non-aged and aged urushi films. At all strain rates used and as the 

RH increases, a significant reduction in tensile elastic modulus and an increase in the 

elongation at failure were observed. As a result of the UV ageing, no plastic 

deformation was observed in the stress-strain curves at any RH or tensile speeds. 

Creep recovery behaviours of non-aged and aged urushi under 30%, 50% and 75% RH 

and different stress levels were studied. The overall deformation levels at 75% RH for 

non-aged films were found to be higher than that at 30% RH and the aged films 

exhibited less stiffness. This trend reflects the strong influence of water, as a 

plasticizer, on urushi films. 

The variation of the elastic recovery with the applied stress and the RH for non-aged 

and aged urushi films were determined from the recovery behaviour. The results 

showed that the amount of elastic recovery at 30% RH for non-aged urushi was higher 
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than that for aged urushi films at all stress values. At 50% RH and 75% RH, the aged 

urushi films recovered to a greater degree than non-aged urushi films. 

The 4-element Burger‟s model was used for quantitative characterisation of the creep 

recovery curves to determine the viscoelastic properties for urushi films and their 

dependence on the RH and UV ageing. It was found that the RH has a strong effect on 

the viscoelastic properties for both non-aged and aged urushi films. A significant 

decrease in these parameters has been observed when the RH has been increased 

suggesting that the films tend to become soft as a result of the high mobility of the 

molecular chains under elevated RH. 

We have proposed a methodology to identify the effectiveness of the Japanese 

traditional consolidation processes that are used to consolidate the formation of micro-

cracks on lacquerware surfaces. A rectangular aluminium substrate, covered with a 

thin film of aged urushi, was mechanically loaded using three point bending device 

and the in-plane urushi surface displacement profile was obtained through phase 

shifting digital speckle pattern interferometry (DSPI). A comparison of the 

displacement profiles before and after creating a ‟v‟ notch along the film showed an 

anomalous profile around the notch. While after consolidate the notch, no anomaly in 

the displacement profiles were observed. The potential for DSPI to play a key role in 

investigating consolidation mechanics has been demonstrated with the detection of the 

surface displacement around a notch before and after consolidation. 

Key words: East Asian lacquer film, urushi, UV aging, moisture diffusion coefficient, 

phase shifting interferometer, stress in coating, mechanical viscoelastic properties, 

phase shifting digital speckle pattern interferometer, in-plane displacement. 
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Chapter 1 

Introduction 

1.1 Introduction 

The Victoria and Albert museum (V&A) in London has a substantial collection of 

lacquer artefacts including those of Asian, Islamic and European origin. In particular it 

has one of the most important collections of Japanese lacquer artefacts outside of 

Japan, numbering around 2,500 pieces. The majority of objects in the collection date 

from the Edo period (1615-1868), which bore witness to an enormously creative 

outpouring in the craft of lacquering. The pieces exhibit an extremely high quality of 

workmanship and only a very small number of such objects were produced. The V&A 

has four items of this period, together with parts of a fifth: the Van Diemen Box, a 

casket in renaissance form, a small wedding casket, the Mazarin Chest, and panels 

from what is thought to have been another chest of comparable size and quality. The 

star item in Japanese lacquer work art collection is the Mazarin Chest and it is this item 

from which we draw our inspiration. 
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1.2 Overview  of the Mazarin Chest 

The Mazarin Chest is an extraordinary object of major cross-cultural significance, 

being renowned as one of the finest pieces of Japanese export lacquer to have survived 

from the late 1630s or early 1640. Its name is derived from having once been in the 

possession of the Mazarin–La Meilleraye family, whose coat of arms is carried on the 

chest‟s French steel key. It measures 59 cm high, 101.5 cm wide and 63.9 cm deep 

(Figure 1.1) [1]. 

 

Figure 1.1: The Mazarin Chest. 

It is constructed from straight grain wood and cross grain pinewood. Each side of the 

chest is composed of several boards joined together which are additionally connected 

with several butterfly joints (Figure 1.2). There are wooden hashibami boards roughly 

3 cm wide on the left and right ends of the lid to prevent the boards from becoming 

distorted, and a frame surrounds the entire periphery. All side boards are joined with 

five interlocking joints and nailed with wooden pegs. The bottom board is composed 

of two boards with no hashibami. Butterfly joints are used to reinforce the cracks on 

the bottom board. All side boards are fixed in place with wooden pegs through the 

bottom board. Four round wooden legs are attached to the bottom board. Part of the lid 

hinge is attached with copper nails before applying makie (sprinkled picture 

decoration) while the part that is attached to the body is inserted into a slot in the wood 

of the body and nailed from the outside after finishing the lid and the body with makie. 

Once the wooden boards are assembled, the chest was coated with numerous 
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foundation layers that consist of oriental lacquer mixed with other materials such as 

wheat flour paste and water mixed with clay. Finally the chest has been coated with 

multiple layers of coloured lacquer and decorated using a range of traditional Japanese 

techniques. 

 

Figure 1.2: Wooden structure of the Mazarin Chest. 

What makes the Mazarin Chest artistically and historical important is the wide range of 

lacquer decoration techniques and the extraordinarily fine workmanship. These include 

gold and silver hiramakie (flat sprinkled picture) and takamakie (raised sprinkled 

picture) decoration, raden (mother-of-pearl) and hyomon (metal foil) inlay, and 

embellishment with carved gold, silver and shibuichi alloy figures. Its corner plates, 

hinge plates and lock plate are made of gilded copper partially coloured with black 

sumi ink. The upper face of the lid and its reverse side are decorated with cartouches 

formed by phoenixes and dragons. Inside the cartouches are designs of a landscape 

with mountains, water and a pavilion and of a scene from court life (Figure 1.3). 

Designs of a similar scene are found at the front and on the right side of the chest 

(Figure 1.1). On the left side, there is design of a hunting scene taken from the Tale of 

Genji and the Tale of the Soga Brothers. The Tale of Genji is the supreme masterpiece 

of Japanese prose written in the early eleventh century by the court lady, Murasaki 

Shikibu. On the back, there is a design of bamboo and tiger. The sides of the lid and 

the bottom board are decorated with gold and silver makie powder sprinkled in 

gradation to create an effect of wood grain. 
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Figure 1.3: Photograph of the interior part of the lid of the Mazarin Chest. 

1.3 Urushi lacquer degradation 

The main material used during coating and decoration of the Mazarin Chest is a natural 

lacquer known as urushi, which is characterized by its smooth and gloss surface, its 

durability and water and solvent resistance. 

In the years since its manufacture, the Mazarin Chest has suffered from different kinds 

of damage as a result of storage and display in fluctuating environmental conditions, 

particularly the relative humidity (RH), which is high in Japan compared to relative 

humidity in Europe. It has also been exposed to potentially harmful lighting conditions 

for long periods and it has also suffered from previously applied Western coatings that 

were used in an attempt to restore the original appearance and the lustre of the lacquer. 

As a result of this exposure to fluctuating environmental conditions micro-cracks have 

appeared in the lacquer, leading to significant discoloration and fading of the originally 

glossy surface. In addition, there is also damage to the structure, in the form of cracks, 

due to the expansion and contraction of the wooden substrate. Because of this the 

lacquer film around the cracks have lifted, there has been a loss of lacquer coating with 

extensive loosening and wrinkling of adhered decorative elements, including silver and 

gold foils. There has also been extensive lifting of the mother-of-pearl decoration. 

As a consequence of the damage suffered by the Mazarin Chest, it is not stable enough 

for display or transport and is at some risk of further deterioration. Even if it simply 

remains in storage without conservation, access to the chest within the V&A will be 

severely limited. In addition any requests for the loan of this object could not be 
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supported, preventing the chest from playing a wider role in the international field of 

art history. Every loss to the original decoration represents a loss of meaning and 

cultural value of the object and as a result, conservation is urgently needed. Therefore, 

the V&A with the support of the Toshiba Foundation and other charitable bodies has 

initiated a project to consider the most appropriate methodologies for conserving this 

object for future generations. 

At the point of initiation of this project, the traditionally favoured method for the 

conservation of natural lacquer objects is to apply another layer of lacquer (usually 

diluted) to the damaged surface. This has the effect of filling any holes or micro-

cracks. This contrasts with the Western approach of preserving the object in its current 

state. Conservators do not know for sure, however, which method is the most effective 

in minimising the negative long term impact. 

1.4 The Mazarin Chest conservation project 

The Mazarin Chest conservation project is a combination of art, historical and 

scientific research. The stated aims of the Mazarin Chest conservation project are to 

develop a comprehensive interdisciplinary methodology for the conservation of 

Japanese lacquer objects held in Japan and Western collections and develop a 

theoretical framework for the collaborative conservation treatment of the V&A 

Mazarin Chest and similar lacquer objects in Japan and in the West.  

Achieving this aim will require the meeting of the following objectives: 

 Consolidate the micro-cracks in the lacquer surface and stabilize, re-adhere, the 

poorly adhered lacquer and loose decoration in which much of the artistic, 

aesthetic, historical and technical value of the object is located. 

 Remove restoration coatings where possible. 

 Minimize further deterioration as much as possible, for example by improving 

the conditions in which the chest is stored or displayed. 

 Allow future display, storage and transport without risk of further loss of 

original decoration. 
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The Mazarin Chest conservation project consists of a network of partnerships between 

universities and specialist institutions and the V&A. The partners include 

Loughborough University, the Polish Academy of Sciences, Imperial College and the 

Dresden Academy of Fine Arts. 

The Institute of Catalysis and Surface Chemistry, within the Polish Academy of 

Sciences, will investigate the amount and the way that moisture is absorbed by wood 

and lacquer, the dimensional response (swelling isotherm) of wood and lacquer due to 

fluctuations in relative humidity, the rate at which moisture moves through each of 

these materials, and the effects of the moisture distribution in the wood and lacquer on 

cracks, as they respond to fluctuations in relative humidity [2]. 

The Chemistry Department at Imperial College will study the effect of Western 

varnishes on the chest‟s lacquer. Western varnishes have been applied in an attempt to 

restore the original colour and gloss of the aged lacquer. Unfortunately, they do not 

replicate the original appearance of lacquer. Further, Western varnishes can damage 

the original lacquer as they age and degrade in turn. The more aged the lacquer surface 

and the more degraded and oxidised the Western coating, the more difficult it is to 

remove the varnish without damaging the original lacquer. The problem of removing 

degraded Western varnishes from oriental lacquer affects a substantial proportion of 

such objects held in public collections in the West. Analysing the interpretation and 

presentation of Japanese lacquer in Western collections, identifying the aesthetic 

criteria applied to Japanese lacquer in Japan and the West, and understanding the 

cultural belief systems that define conservation ethics in Japan and the West will 

provide a framework for proposing experimental methodology [2]. 

Dresden Academy of Fine Arts in Germany will investigate problems encountered by 

conservators in their working practice when consolidating degraded oriental lacquer 

surfaces/structures. The main research strands are identification and characterisation of 

the typical problems/different types of deterioration/modes of failure of the lacquer 

layer structure and review the materials used for consolidation in conservation (i.e. 

collagen glues, PVAs, acrylics, traditional Japanese consolidation materials used on 

lacquer) [2]. 
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The Wolfson School of Mechanical and Manufacturing Engineering at Loughborough 

University will focus on developing an understanding of the basic mechanics of urushi 

layers. Our aim is to understand and be able to predict the effect of ageing on the 

ability of urushi layers to support stresses that are generated through interaction with 

typical environments. To meet this aim we will  

1- measure the development of stresses within urushi as a result of changes in 

environmental conditions. 

2- determine the effect of environmental conditions and exposure to light on the 

mechanical properties of urushi. 

3- observe the effect of consolidation on strain evolution in a deformed urushi 

layer. 

This work will result in two major advances in this area. First, we will for first time 

have a complete view of the mechanical properties of urushi and its response to 

changing environmental conditions. Secondly, the research outcomes will support the 

V&A conservators in making informed decisions about conservation treatments 

options. 

To achieve these objectives we will take a primarily experimental approach. After first 

reviewing the available literature on the effect of the environmental conditions on the 

properties of urushi, we will investigate traditional Japanese techniques for 

manufacturing urushi samples such as filtration and the kurome processes. Then, we 

will develop an experimental methodology that first establishes techniques for 

producing urushi samples with consistent properties and appearance to be used in the 

subsequent stages of the experimental programme. We then go on to develop an 

experimental procedure that will enable us to determine the stresses that arise within a 

thin layer applied on a glass substrate when exposed to changes in environmental 

conditions. Having obtained a general view of the response of the material, we will use 

this as a basis to examine the rheological properties of layers exposed to different 

accelerated ageing regimes. Other more traditional techniques will be used to 

determine the material properties of urushi such as elastic modulus, tensile strength 

and elongation at break and their dependence on the moisture content and ageing. 
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Finally, we will outline designs for simulating ageing, cracking, filling, ageing cycle 

that in situ conserved layers will be exposed to. 

The Chapters of the thesis are structured as follows: 

Chapter 2 gives an introduction to the nature of urushi material as a natural polymer. 

The chemical structure and the kurome process of urushi have been discussed. It also 

describes analysis of the published literature on urushi with special emphasis on the 

effect of the environmental conditions (temperature, humidity and exposure to UV 

radiation) on the properties of urushi. 

Chapter 3 discusses the methodologies and the procedures for the controlled 

manufacture of urushi samples (Stage 1 in Figure 1.4) for the measurements of stress 

response of urushi as it subjected to different humidity levels. The artificial ageing 

process using UV radiation and thickness measurements of urushi films have been 

described. 

Chapter 4 discusses (Stage 2 in Figure 1.4) the curvature method and the stress 

evaluation from deflection measurements. The principles of the phase stepping 

interferometry, the experimental setup and calibration are described. A description of 

the environmental load chamber has been presented. 

Chapter 5 discusses the measurements of moisture diffusion coefficient (Stage 3 in 

Figure 1.4) for non-aged and aged urushi under different humidity levels. 

Chapter 6 describes the measurements of the stress response of non-aged and aged 

urushi films under different humidity levels (Stage 2 in Figure 1.4). Also, a 1D model 

will be developed and tested against the experimental observation. We will 

demonstrate the potential of our model by investigating the stress response in layers of 

urushi of different ages. 

Chapter 7 describes the effect of the moisture content and ageing on the rheological 

behaviour of urushi material through tensile, tensile creep and recovery tests (Stage 4 

in Figure 1.4). It also discusses the experimental results which describes the effect of 

moisture content and ageing on the mechanical properties of urushi films. 
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Chapter 8 describes the traditional Japanese process used to consolidate micro-cracks 

which appear on degraded urushi surfaces and its effectiveness in minimising the long 

term impact (Stage 5 in Figure 1.4). 

 

Figure 1.4: The work flow chart for the experimental programme. 
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1.5 Conclusion 

The Mazarin Chest is one of the finest pieces of Japanese export lacquer to have 

survived from the late 1630's in the V&A‟s collection. The high quality of this piece is 

clearly evident in its lavish decoration, which is executed to an astonishing level of 

detail using a wide range of traditional Japanese decoration lacquer techniques. It also 

has a great scientific importance in the field of conservation science. This makes the 

research on Mazarin Chest and its relative subjects of great interest. The Mazarin 

Chest deteriorated over the centuries as a result of exposure to light, changes in 

temperature and relative humidity and previous western restorations. The result of this 

deterioration can be seen in terms of splits in the wood substrate, lifting metal foil, 

gold and silver, decoration, lifting mother-of-pearl decoration and degradation of the 

lacquer surface due to exposure to light. The Mazarin Chest project has been proposed 

and carried out, combining a comprehensive research on art, history and science and 

engineering, involving conservators, curators and scientists from the UK, Japan, 

Germany and Poland. 
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Chapter 2 

Urushi and Mazarin Chest 

2.1 Introduction 

In order to be able to predict and control the behaviour of urushi under common 

environment conditions it is necessary to understand the mechanical behaviour of the 

material, not only under static conditions, but also in time varying states of relative 

humidity and ageing. Some work has been done in this area, and we look to exploring 

the state of the art before discussing the gap in the knowledge and our proposed 

programme of work. 

2.2 East Asian lacquer overview 

East Asian lacquer or urushi, is a natural polymeric material obtained from the sap of 

lacquer trees, Rhus vernicifera [3, 4] in China, Korea and Japan, Rhus Succedanea in 

Vietnam and Taiwan and Melanorrhoea Usitate in Thailand and Burma [5]. The plant 

is in the family that includes sumac, poison ivy, poison oak, mango and cashew. The 
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raw lacquer is a skin irritant, to which workers must develop a tolerance [6]. Urushi 

does not cure in the same way as other natural resins, which are usually dissolved in a 

solvent. When resin mixture is applied as a coating, the resin hardens into a solid film 

as the solvent evaporates. On the other hand, urushi cures as a result of a complex 

internal chemical crosslinking and, uniquely, does so only in the presence of high 

relative humidity. The resulting material is polymerized (like a plastic), it is very hard, 

lustrous and durable, resistant to water, acids, scratches, heat and exhibits excellent 

resistance to weathering indoors. These properties of urushi led to it being used as a 

protective, decorative and adhesive material in Japan and other oriental countries from 

ancient times. Examples include surfaces in shrines and temples, wooden bowls 

(lacquerware) and chests. Many of these objects are exhibited in museums in Japan, 

USA and Europe [6-10]. 

In Japan, sap is collected at the moment of oozing out from the cut trunk after removal 

of the outer bark of lacquer trees (Figure 2.1) [11] of age of about 7-10 years, at a 4-5 

days interval from early June to late October. Each yield of sap is 120-200 g per tree. 

This scarce production makes urushi a very precious commodity. Urushi is graded 

according to the season it was collected and the age of the tree. Different grades of 

urushi are appropriate for various specific tasks [6]. 

 

Figure 2.1: Collection of urushi sap oozing out from cuts in the trunk of urushi tree 

[11]. 
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2.3 Chemistry of urushi 

The variety of sap Rhus vernicifera [12-14] is a very common natural product. 

Commercially available sap is a blend collected at different times. The constituents 

materials are water (20-30%), urushiol (60-65%) and an acetone insoluble powder, a 

mixture of water insoluble glycoprotein (3-5%), water soluble plant gum (6.5-10%) 

and enzymes (<1%). The plant gum contains mono-, oligo- and polysaccharides (5-

7%), and the enzymes are laccase, lactase (a copper-glycoprotein enzyme having 4 

atoms of copper in a molecule), stellacyanin, and peroxides. In sap, a water-in-oil type 

emulsion, a major part of the gum and the enzymes may be dissolved in the water 

phase, and the glycoproteins are in the oil (urushiol) phase [5, 15, 16]. 

The main component of the sap of the urushi tree is urushiol, whose chemical structure 

is shown in Figure 2.2 [7, 9, 17-19]. 

 

 R : (CH2)14-CH3      4 wt % 

: (CH2)7-CH=CH-(CH2)5-CH3    21 wt % 

: (CH2)7-CH=CH-CH2-CH=CH-(CH2)2   4 wt % 

: (CH2)7-CH=CH-CH2-CH=CH-CH=CH-CH3  70 wt % 

other constituent compounds with a C17- side chain  1 wt % 

Figure 2.2: Typical chemical structure and composition of urushiol [7]. 

 

OH 

OH 

R 
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2.4 Urushi process and treatment (kurome) 

Raw urushi sap is a non stable water-in-oil type emulsion. As a result of the naturally 

high moisture content, the water soluble polysaccharides in the sap can aggregate to 

form large irregular islands during drying [20] (Figure 2.3(b)). It is therefore stirred 

and homogenized in an open vessel at room temperature for 30 minutes and then for 2 

hrs at a temperature below 45 C so as not to lose the activity of laccase, until the 

water content is reduced to 2-4% [5, 21]. The process of stirring and heating of the sap 

is known as kurome and leads to evaporation of water, polymerization of urushiol and 

reaction of glycoproteins with urushiol. The urushi constituents are homogenized and 

polysaccharides disappear into the oil phase in which the urushiol-glycoproteins 

complex is formed. Spherical grains of polymerized urushiol are surrounded by a thin 

wall of polysaccharides in the urushi film. Such a fine “core-shell” structure is 

believed to be responsible for the excellent durability of the urushi film owing to the 

high barrier of polysaccharides wall toward oxygen [4, 11, 20, 22] (Figure 2.3(a)). 

High humidity is essential for the crosslinking reaction to take place, explaining the 

need for the elevated RH required for curing. Figure 2.4 shows an electron micrograph 

of urushi film demonstrating a densely packed grain structure with the same diameter 

[ca. 0.1 m], contaminated with polysaccharide particles (ca. 1-2 m in diameter) 

deposited from water droplets [11]. 

 

Figure 2.3: Schematic illustration of the structure of (a) kurome-treated urushi film and 

(b) sap [20]. 



Urushi and Mazarin Chest 

 

15 

 

Figure 2.4: Scanning electron micrograph of urushi film [11]. 

The details of the kurome process are a closely guarded secret and differ from 

manufacturer to manufacturer [21]. 

A clear viscous urushi is composed of 3% water, urushiol, oligo-urushiol, enzymes, 

aggregates of polysaccharides and glycoproteins. The variation of viscosity and water 

content as a function of the stirring (cooking) time of sap is shown in Figure 2.5 [5]. 

We can see from this figure that the viscosity of sap decreases with stirring time, 

reaching a minimum, after which it rapidly increases again. 

 

Figure 2.5: Variation of viscosity and water content in cooking sap to make urushi [5]. 
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2.5 The effect of environmental conditions on the properties of urushi 

2.5.1 Temperature 

Obataya et al [20] investigated the effect of ageing on the dynamic viscoelastic 

properties, tensile storage modulus E  and loss tangent tan  by using an Orientec 

DDV-25FP viscoelastometer. Three different kinds of urushi films were used, virgin 

(V), clear (C) and black (B) oriental urushi. These were made from the sap of Rhus 

vernicifera harvested at Iwate (Japan). The films were cast on a Teflon plate and dried 

at 20 C and 85% relative humidity (RH) for 3-10 days and aged over 1000 days at 

room temperature. The virgin urushi was a neat filtered sap that has a naturally high 

moisture content of more than 20% and a low degree of polymerization. The clear and 

the black urushi had lower moisture content of about 3% and higher degree of 

polymerization as a result of kurome treatment. The black urushi was coloured with 

1% (w/w) of iron powder. 

The temperature variation of the storage modulus E  and loss tangent tan  at 11 Hz 

within the range of -150-300 C for the clear urushi film is shown in Figure 2.6. With 

respect to tan  peaks, three relaxation processes labelled  ,  , and   were 

detected. These were attributed to the glass-transition of polymerized urushiol, the 

motions of water molecules remaining in the film, and the molecular motions of 

methylene groups in the side-chains of urushiol, respectively. 

 
Figure 2.6: The temperature variation of the storage modulus E  and loss tangent at 11 

Hz for the clear urushi films aged for 30 days ( ) and 906 days ( ) [20]. 
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Figure 2.7 shows the temperature location of the   loss peak T  and its peak value 

tan  plotted against the ageing duration, t . The glass transition temperature of the 

urushi films T  shifted to higher temperatures and its loss peak tan  decreased with 

an increase of ageing duration. These changes reflected the oxidative polymerization 

of urushiol and formation of crosslinking between their side chains. The B and V 

urushi films showed lower T  and higher tan  values than the C urushi films at the 

same time t . As the chemical components of these three urushi films were the almost 

identical, the variation in T  and tan  can be attributed to the effect of the kurome 

process and the addition of trace iron. 

 

Figure 2.7: Changes in the peak temperature T  and peak value tan  of the   

relaxation process detected in the clear (), black ( ), and virgin ( ) urushi films with 

the elapse of time (days) [20]. 

The storage modulus E  at 20 C increased and the loss tangent at 20 C decreased as 

shown in Figure 2.8. 
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Figure 2.8: The storage modulus E  and loss tangent at 20 C and 11 Hz for urushi 

films plotted against the ageing duration t in the clear (), black ( ), and virgin ( ) [20]. 

2.5.2 Humidity 

Lacquerware is susceptible to damage from very dry conditions or fluctuating 

humidity. Relative humidity (RH) fluctuation causes the wooden substrate to shrink 

and expand thus causing the urushi to crack to relieve the stress and to lose adherence 

to the substrate. For this reason, cracks most often appear along seams and joints, and 

usually in the direction of the grain of the underlying wood substrate. If the shrinkage 

becomes permanent then the urushi surface will no longer lie flat [23, 24]. In low RH, 

water, an essential part of urushi structure is lost and as a result urushi becomes more 

brittle, less strong and susceptible to attack by water and oxygen. If urushi is exposed 

to cycles of low and high humidity it will eventually start to flake off its wooden core. 

It is important not to let the humidity drop too low or fluctuate wildly to keep 

lacquerware in prime condition. In museums, a constant humidity of 50% to 60% is 

usually recommended during storage, treatment and display. In Japan the most 

valuable pieces of lacquerware are stored in silk bags or wooden boxes and brought 
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out for special occasions. The box serves a number of functions: it keeps the item from 

exposure to light, protects it from structural damage and buffers any changes in 

humidity [23]. 

Obataya et al [20] also investigated the effect of moisture on the viscoelastic properties 

of urushi films. Figure 2.9 shows the water sorption of C and V urushi films aged over 

a thousand days. The equilibrium moisture content (MC) of the V urushi film was 

higher than that of the C urushi film over the RH range (10%-90%). Obataya et al 

found that the hygroscopicity of polysaccharides is higher than that of the polymerized 

urushiol. Furthermore, the hygroscopicity of polysaccharides in the V urushi film must 

be higher than that in the C urushi film because the former is held more loosely among 

the urushiol domains. Thus, the higher moisture content of the V urushi film is 

attributable to the hygroscopicity of polysaccharide aggregated during drying. Figure 

2.10 shows the changes in E  and tan  for C and V urushi films at 30 C and 0.5 Hz 

with increasing the moisture content (MC). As shown in Figure 2.10, E  decreased and 

tan  for C and V urushi films increased with increasing moisture content of urushi 

film, showing that urushi films soften with increasing moisture content. 

 

Figure 2.9: Equilibrium moisture contents (MC) of the clear (), and virgin ( ) urushi 

films aged over 1000 days [20]. 
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Figure 2.10: Changes in E  and tan  at 30 C for clear (), and virgin ( ) urushi films 

[20]. 

Urushi properties are also affected by the moisture levels within the material. Ogawa 

et al [10] investigated the effect of water on mechanical properties of urushi film of 

constant thickness. Curing was achieved through three steps: at 60% RH for 4 hrs, 

70% RH for 18 hrs and 80% RH for 24 hrs. A tensile test was carried out using a AGS-

1000B tensile tester (Simadzu Co., Ltd., Japan) with a load cell of 981 N at a test 

speed of 2 mm/min. Test samples were 4 mm  35 mm  50 m. The tensile stress-

strain tests were conducted under various degrees of humidity (15%-100%) as shown 

in Figure 2.11 and the relation between tensile properties and humidity are shown in 

Figure 2.12. In general, urushi films become flexible by water absorption, leading to 

an increase in the strain at break and a decrease in the elastic modulus, demonstrating 

that the water serves as a plasticizer. 
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Figure 2.11: Effect of humidity on the tensile stress-strain curves for urushi film [10]. 

 

Figure 2.12: Relation between stress-strain properties and RH: ( ) elastic modulus, ( ) 

tensile strength, and ( ) strain at break [10]. 

Ogawa et al also investigated the changes of the relaxation modulus, )(tE  over 100hrs. 

The stress relaxation test was conducted using a dynamic viscoelastometer Rheovibron 

DDV-II-C (Orientec Co., Ltd., Japan). The experiments were carried out under a set 

temperature and humidity. Figure 2.13, on the left side, shows the relaxation moduli 

)(tE  at 60% RH. The master curve under this condition was obtained by applying the 
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principle of time–temperature superposition where a reference temperature was 

adopted as 293 
o
K (20 C). The result is shown on the right side of Figure 2.13, where 

the long term region above the temperature of 333 
o
K was neglected because the 

chemical structure of the film changed during the experiment. The relaxation modulus 

for long or short term can be predicted from Figure 2.13. Figure 2.14, shows the 

relaxation modulus under dry and wet conditions, where the modulus of the film in a 

wet condition decreases with time at a high rate. 

 
Figure 2.13: Relaxation modulus of urushi film and master curve for urushi film at 

60% RH [10]. 

 

Figure 2.14: Relaxation modulus of urushi film under various humidity levels: (---) 

20%, ( __ ) 60%, and ( _ _ _ ) 100% RH; ( ) 293, ( ) 303, ( ) 308, ( ) 313, ( ) 323, 

( ) 333, ( ) 343 K [10]. 
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Urushi film has a tendency to become brittle under dry conditions and toughens under 

wet conditions. On the other hand, the film becomes sticky and soft under high 

humidity or in water. When lacquerwares are used under these conditions, stress builds 

up between urushi and the substrate, which is usually wood. This stress makes bonding 

strength decrease in between urushi and adherent. The bonding strength is the unit load 

applied in tension, compression, flexure, cleavage, or shear, required to break an 

adhesive assembly, with failure occurring in or near the plane of the bond. 

As a result of these stresses, urushi will eventually peel off from the substrate. It was 

concluded by Ogawa et al that water is one of the most important influences on the 

durability of lacquerware. 

2.5.3 UV exposure 

It is believed that the main cause of fading and loss of gloss in urushi is exposure to 

ultra-violet light [23, 25, 26]. The surface of the lacquerware fades and becomes dull 

as the urushi molecular structure during sustained exposure. Some black lacquer 

pieces, for example, eventually turn a mottled brown and also lose their sheen. Under 

magnification, one can see that the dull appearance is actually a network of very fine 

cracks (micro-cracks) that have formed on the surface of the lacquerware. The 

traditional consolidation technique, urushi gatame, is based on the impregnation of 

micro-cracks with diluted urushi. However, once the micro-cracks have formed they 

can penetrate through the decorative urushi layers and into the foundation layers 

causing further damage by trapping the solvents being used to clean the lacquer, 

leaving the lacquer vulnerable to further damage [26]. 

Lacquer damaged by light loses its durability, it lacks its normal resistance to water 

and other solvents and becomes brittle [23, 27, 28]. It is known that the damage 

increases with the length of exposure and the intensity of the illumination [6]. 

Ogawa et al [9] investigated the effect of exposure to fluorescent lamps on the 

mechanical properties of East Asian urushi films. The films were exposed to light 

under three different conditions: uncovered, in a box of acrylic plates, and in a box of 

glass plates. Hardness was obtained using a hardness meter (MVK-E; Akashi 

Seisakusho, Japan) with a load of 25 g under a pressing time of 15 s and tensile tests 
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were carried out using a AGS-1000B tensile tester (Simadzu Co., Ltd., Japan) with a 

load cell of 100 kg at a test speed of 1 mm/min. The test samples were prepared in a 

rectangular size of 35  5 mm. They found that the hardness and the elastic modulus 

increased with exposure time, while the tensile strength and the elongation at break 

decreased with exposure time. They concluded that the increased hardness is related to 

a crosslinking reaction by the enzyme laccase over the whole region of the films. Other 

studies have shown that following exposure to UV radiation, the surface of urushi 

fades and becomes dull as light breaks down the molecular structure [26]. 

Mee-Young Park et al [25], investigated the effect of UV-degradation chemistry of 

urushi, the effect of photostabilization on the physical properties of urushi coating and 

the effect of weathering exposure on urushi. Hindered amine light stabilizer (HALS) 

and benzotriazole UV absorber were added to urushi to improve the weatherbility 

(resistance to light degradation) of urushi. Three different mixtures were prepared: 1) 

unstabilized purified urushi (PL); 2) PL plus 2% HALS and 3) PL plus 2% weight 

benzotriazole UV absorber. Each mixture was coated on glass substrate slides, 60 m 

thick, and dried for one week at room temperature and at 755% RH. The samples 

were exposed for 300 hrs at 50 C to continuous irradiation with a UVB–313 lamp in a 

Q-Pandel Accelerated Weathering Tester (Q-UV). Figure 2.15 shows the Fourier 

Transform Infrared–Attenuated Total Reflectance, FTIR/ATR, spectra of unexposed 

and exposed PL. The effect of weathering exposure is shown in the difference of the 

spectra. The difference spectrum was obtained by using Spectra-Cal software after 

baseline correction. 
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Figure 2.15:FTIR-ATR spectra of urushi film: (a) Original; (b) after 100 hrs exposure; 

(c) difference between spectra in a and b [25]. 

The presence of negative and positive intensity bands in the difference spectra can be 

regarded as resulting from the chemical changes due to photo-gradation. The negative 

absorbance in the difference spectrum reflects the structures that were formed during 

the photo-degradation, and the positive absorbance reflects the structures that were 

lost. 

The difference spectrum is dominated by strong bands near 3500, 2900, 1700, 1650, 

1480, 990 and 730 cm
-1

. The broad band near 3500 cm
-1

 was associated with OH 

stretching in urushiol. The strong bands related to C-H stretching in the urushiol side 

chain were observed near 2900 cm
-1

. The strong bands near 1650 cm
-1

 and 990 cm
-1

 

may be related to the C-H out-of-plane bending in the quinone group and in conjugated 

triene, respectively. 

The four sets of bands decrease in intensity when the urushi films are exposed to UV. 

The band near 1480 cm
-1

 is characteristic of CH2 bending; its observed decrease in 

intensity is partly related to decomposition of urushiol side chains. Presumably, the 

weak peak at 730 cm
-1

 also decreased due to degradation of the aromatic substitute of 

urushiol. In contrast, the very strong peak near 1700 cm
-1

 increased and was attributed 

to C=O stretching in the various carbonyl functional groups formed by photo-

oxidation. These results are consistent with the hypothesis that urushi network 

degrades mostly in the unsaturated side chains. A small number of photosensitive 

groups had already been formed in urushi film during the photo-degradation 

processing. The photolysis of these groups gives rise to carbonyl products. Carbonyl 
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absorbance starts increasing immediately for the unstabilized urushi film during UV 

exposure. Figure 2.16 shows the IR carbonyl intensity near 1700 cm
-1

 as a function of 

UV exposure time. The rate of increase of carbonyl intensity for photostabilized 

mixtures is lower than that for unstabilized mixture. 

 

Figure 2.16: Increase in carbonyl intensity with UV exposure time [25]. 

Scanning electron micrographs of the surface of urushi are shown in Figure 2.17. As 

shown in Figure 2.17(a) the surface of unexposed urushi film has small regions 0.1-2 

m diameter, due to polysaccharide particles composed of polymerized urushiol and 

glycoproteins, (Figure 2.3(a)). After exposure to UV light, Figure 2.17(b), large black 

regions of 10-80 micron in diameter appear together with small regions of 0.1-3 m 

diameter. The large black regions may be being formed due to deterioration of the 

polysaccharide walls and polymerized urushiol. After exposure to UV light, the small 

regions become larger and more numerous. 
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Figure 2.17: SEM of (a) unexposed urushi film and (b) urushi film exposed to UVB-

313 lamp for 100 hrs [25]. 

In case of urushi containing 2% weight HALS, photo-degradation is significantly 

inhibited as shown in Figure 2.18. 

 

Figure 2.18:SEM of urushi film containing 2% wt HALS exposed to UVB-313 lamp 

for 100 hrs [25]. 

To confirm this result they also measured the weight loss of urushi film during photo-

degradation as shown in Figure 2.19. All urushi films lost weight as a result of photo-

degradation. This may be due to evaporation of water in the film. The same result was 

obtained by Toyoshima [29], where urushi film lost weight as a result of photo-

degradation with UVA. 

(b) (a) 
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Figure 2.19:Weight loss of urushi film with UV exposure time [25]. 

FTIR/ATR analysis of an accelerated weathering test (Q-UV) showed that the addition 

of 2 wt% HALS into urushi enhanced photostabilization up to three times, which was 

supported by the results of weight loss measurements and SEM analysis [25]. 

Miyakoshi et al [28] developed a mixer capable of repeated kurome that make urushi 

dry fast in the natural environmental. The repeated kurome process (Section 2.4) is 

based on stirring raw urushi at room temperature for 1.5 hrs, then at 20-40
 
C for 2 hrs 

until the concentration of water is reduced to 3-5% for the first kurome process (K-0). 

Water is added to K-0 to increase the moisture about 20-25%, comparable to the water 

concentration of the raw urushi, and the kurome process is repeated by adding water 

and reducing it, the second (K-1), the third (K-2), the fourth (K-3), the fifth (K-4) 

kurome process were obtained. The moisture concentration of raw and repeated 

kurome urushi are shown in Table 2.1. The moisture concentrations of the raw and 

repeated kurome urushi were estimated using an MX-50 moisture meter (A&D Co. 

Ltd., Japan). The water concentration of raw urushi was 24.5% and at least 3% 

moisture is required for the laccase oxidation of urushiol. 
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Table 2.1: The moisture concentration of raw and repeated kurome urushi. 

urushi sap Moisture (%) 

Raw 24.5 

K-0 3.55 

K-1 3.49 

K-2 3.48 

K-3 3.34 

K-4 3.47 

Figure 2.20 shows SEM and SPM images of a cross section and the surface of raw and 

K-0 urushi films after drying at 20 C 70% RH for 1 month. The images revealed that 

the holes in K-0 film are smaller than in the raw film. The holes are the marks of water 

drops in urushi sap. The holes were 2.08 m in the raw urushi film and 0.97 m in the 

K-0 urushi film. Also as a result of repeated kurome process, the drying time 

decreases. 

  

(a)                                                       (b) 

SEM images of cross section of (a) raw, and (b) K-0 urushi film. 

  

(c)                                                                  (d) 

SPM images of (c) surface, and (d) cross section of raw urushi film. The diameter of 

the biggest hole is about 2.08 m. 
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(e)                                                               (f) 

SPM images of (e) surface and (f) cross section surface of K-0 urushi film. The 

diameter of the biggest hole is about 0.97 m. 

Figure 2.20: SEM and SPM photographs of the raw urushi and K-0 urushi. 

2.6 The structure of lacquerware objects 

Structurally, lacquerware objects are composed of substrate, foundation, coating and 

decoration. While wood is the most commonly substrate material for lacquer objects, 

there are two kinds of foundation. In one of them, kokuso (mixture of urushi, sawdust 

and hemp fibres), nonokise or kamikise (adhering of hemp cloth or paper, respectively, 

to the substrate) are applied to reinforce the substrate. In the other one, jinoko (coarse 

powder earth), tonoko (fine powdered earth) or gofun (calcium carbonate) are used to 

smooth the surface of the substrate. Urushi, wheat flour paste or animal glue is used in 

making these foundations. Normally several layers of foundation are applied. Over the 

foundation, several thin layers of urushi are applied. After each layer, the substrate is 

cured in a chamber with a relative humidity of 70-80% at 20-25 C. The surface of 

urushi is polished with hard and then soft charcoals with water or oil, then sap is 

rubbed into the polished surface and cured to obtain a high gloss and durable coating 

surface. Coating-curing-polishing-rubbing-curing is repeated 10-20 times to obtain a 

lacquerware finish ready for decoration. This process is called Roiro Siage. There are 

various types of decoration applied on lacquerware objects, the most widely used being 

[27]: 

 Hiramakie (flat sprinkled picture). 

 Takamakie (raised sprinkled picture). 

 Raden (mother-of-pearl) and hyomon (metal foil) inlay. 
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2.7 Nature of damage in Mazarin Chest 

In the years since the Mazarin Chest was made, it suffered significant damage due to 

fluctuations in RH and exposure to light. The following section summarizes different 

types of damage [26]: 

2.7.1 Structural damage 

Expansion and contraction of the wooden substrate of the lid, in response to fluctuation 

in RH, lead to: 

 Shrinkage across the centre of the lid, preventing the lid from closing. This 

warps it approximately 4 mm. 

 Movement of the metal catch of the lock to inward. 

 Hairline splits along the corner joints as show in Figure 2.21. 

 Cracks are found in parts where the lid and the body join, along parts where the 

board and frame of the lid join and also on the reverse side of the lid [26, 30]. 

 

Figure 2.21: Detail of the right corner of the lid showing: (a) Stress fracture of the 

lacquer along the cleated joint line with associated loss and tenting (up to 3 mm high) 

of lacquer and decoration; (b) Exposed foundation layers in the inner square gold foil 

and losses of gold squares, silver and mother of pearl. 

(a) 

(b) 
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2.7.2 Urushi damage 

As a result of structural damage mentioned before, urushi surface and foundation 

layers around the cracks are poorly adhered (Figure 2.21) and there are losses of urushi 

in approximately ten places, ranging in size from 1 mm 1 mm to 10 mm 15 mm. 

Additionally, exposure to light has caused photo-degradation of urushi with loss of 

lustre as micro-cracks have formed on the surface of urushi as shown in Figure 

2.22(b). Previous applications of black Western natural resin to the urushi surface, in 

an attempt to restore its shine, resulted in changing the original decorative scheme 

from the original silver makie. In addition, the black varnish layer has been lost from 

some areas, leaving the original surface partially visible in many areas. 

   

(a)                                                                    (b) 

Figure 2.22: SEM image showing the surface of (a) Freshly made urushi and (b) 

Mazarin Chest surface [2]. 

2.7.3 Decoration damage 

Passive abrasive cleaning combined with photo-degradation of urushi coating has 

disfigured some areas of the black background and has exposed parts of the foundation 

(shitaji) layers (Figure 2.23(a)). Polishing the silver decoration and the applied 

elements in the past has resulted in loss of detail (e.g. tsukegaki decoration on the 

silver hyomon), damage to adjacent lacquer, and loss of poorly adhered decorative 

silver foil (Figure 2.23(b)). All silver decorative elements are tarnished. There is 

extensive lifting and wrinkling of gold and silver foil decoration (Figure 2.23(b, c)). 

There is also extensive lifting of the mother-of-pearl decoration (Figure 2.23(d)) where 

the shell is broken and has been lost in five places. 
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(a)                                                                      (b) 

   

(c)                                                                      (d) 

Figure 2.23: Examples of decoration damage: (a) Loss of facial detail as a result of 

corrosion and cleaning; (b) lifting and losses of silver and gold foil decoration; (c) 

wrinkling of gold foil decoration; (d) poorly adhesion and lifting of silver decoration 

and mother-of-pearl. 

2.8 Record of past storage and display 

It is likely that the Mazarin Chest has been on display for long periods since it was 

acquired by the V&A in 1882. For example, it was on continuous display at the V&A 

since the early 1960s. From 1986 to 1998 the Mazarin Chest was displayed in the 

Toshiba Gallery of Art and Design located at the V&A, under light levels of 80 lux 

and UV levels of less than 5 W/lumen. The RH in the Toshiba Gallery ranges from 

38% to 53% (15% annual variation) as shown in Figure 2.24. In October 1998 the 

chest was rotated off display and into an acrylic box as shown in Figure 2.25, located 

at the V&A main storage repository in Olympia, London. The stores are dark and unlit 

except when museum staff visit. The annual RH in storage ranges from 35% to 54% 

(19% annual variation) as shown in Figure 2.26. 
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Figure 2.24: The RH variation in the Toshiba Gallery of Art and Design located at the 

V&A April 2002 – March 2003. 

 

Figure 2.25: Acrylic box for storage and conservation treatment. Located at the V&A 

main storage repository in Olympia, London. 
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Figure 2.26:.The RH variation in the storage April 2002 – March 2003. 

2.9 Conclusion 

It is clear that the behaviour of urushi is highly complex, with strong changes in its 

mechanical behaviour when subjected to changes in moisture content and UV 

illumination. Many studies have been done on the chemical structure and reaction of 

urushiol (main component of urushi), but articles on the mechanical properties and 

responses of urushi film are of a comparatively small number. In order to formulate a 

predictive mechanical model for urushi that includes its constitutive relations, a 

comprehensive analysis of the response of urushi to changes in environmental 

conditions is still required in order to determine the precise nature of the relationship 

between stress, strain, moisture content and thermal and UV conditioning. Moreover, 

as the ultimate cause for the formation of surface micro-cracks is the surface stress, 

detailed measurements of the dependence of film stress with environmental conditions 

are required. 
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Chapter 3 

Development of a Methodology for Preparing 

Urushi Films  

3.1 Introduction 

Stresses can develop within coatings during film formation through temperature 

changes and relative humidity fluctuations and these stresses have an effect on coating 

degradation. They may influence characteristics such as the resistance of the coating to 

wear and fatigue crack propagation. Furthermore, there is often a danger that the 

presence of stresses may promote debonding and palliation of the coating [31-34]. 

Therefore measuring stresses in coatings is of great significance. 

In Chapters 1 and 2 we have discussed the importance of determining the response of 

urushi to environment changes. In this work the curvature method (described in 4.2) 

was used to determine the average plane stress developed in a thin urushi films. It can 

be measured by comparing the deflection of a substrate covered with a thin urushi film 
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relative to a reference state. However, in order to be able to achieve this, a standardised 

method for sample preparation must be developed. In this Chapter we lay out the 

methodologies and procedures that we used to produce consistent urushi samples. To 

prepare urushi samples, we followed some traditional Japanese processes such as the 

filtration, mixing and curing processes and spin coating was used to spread a thin layer 

of urushi on glass substrate. 

3.2 Urushi preparation 

The preparation of urushi samples involved several stages, each with the end point in 

mind of producing consistent thin layers. The stages are as follows: 

1. Filtration. 

2. Mixing process. 

3. Glass substrate. 

4. Coating process. 

5. Curing condition. 

In the follow sections we will describe these processes in detail. 

3.2.1 Filtration 

The urushi lacquer used in this study is Kijiro urushi, product of Wantanabe Syoten 

Co., Japan. As urushi is a natural product, it can often contain unwanted objects and 

particles. The first stage, therefore, in urushi preparation is the filtering to eliminate all 

impurities. We followed the traditional Japanese filtration process of using Rayon 

sheets to filter urushi by wrapping and twisting it as shown in Figure 3.1, repeating 

seven times with three Rayon sheets each time. 

 

Figure 3.1: Traditional Japanese filtration method. 



Development of a Methodology for Preparing Urushi Films  

 

38 

3.2.2 Mixing process 

Raw urushi is a non-stable water-in-oil type emulsion. The water soluble 

polysaccharides in the raw urushi can often aggregate during drying [20] and therefore, 

urushi is mixed and homogenized for about 3 minutes to avoid aggregate formation. 

Gentle manual mixing is required to avoid bubble production. 

3.2.3 Glass substrate 

In order to measure depth averaged stresses using the curvature measurement method, 

it is necessary to deposit layers of known thickness onto a substrate. We obtained these 

urushi-substrate samples by casting a small amount of urushi onto the top surface of a 

BK-7 glass substrate of thickness 1905 m and 22 mm in diameter. Prior to applying 

urushi, the bottom surface of the substrate is coated with a thin film of a metallic 

coating using a thermal evaporation technique (Edward E 306 Vacuum Evaporator) to 

increase its reflectivity and thus obtain high visibility interference fringes. The metallic 

coating prevents interference fringes due to multi-reflections within the glass substrate 

thickness and within the urushi film. Two different types of metallic coating were 

used, Aluminium (Al) and Nickel Chromate (NiCrO4). We found that the bonding 

between Nickel Chromate and the glass substrate is stronger than the bonding between 

Al and the glass substrate and consequently employed that in our work. 

3.2.4 Coating process 

Generally, in lacquerware artefacts, plastic or wooden spatulas are used to spread a 

thin layer of urushi over a wooden object. We found that it is difficult to obtain a 

homogenously thin layer of urushi on a small size glass substrate in a controlled 

fashion using this technique and opted to use the more reliable spin coating technique 

instead. 

3.2.4.1 Spin coater theory 

The spin coating process involves depositing small drop of liquid onto the centre of a 

substrate and then spinning the substrate at high speed [35-41]. Centripetal 

acceleration causes the liquid to spread out in the direction of the substrate edge 
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leaving a thin film on the substrate. The film properties depend on different factors 

such as liquid viscosity, particle content in the liquid, spinning speed and spin time. 

The spin coater used in the preparation of urushi films is shown in Figure 3.2, and 

consists of a high speed DC motor and speed controller unit. A substrate holder, fixed 

on the chuck, is provided with three pins to hold the substrate down (Figure 3.3). 

 

Figure 3.2: Image showing the spin coater with component parts labelled. 

 

Figure 3.3: Substrate holder showing the three pins used to fix the substrate securely. 

During the film preparation, a number of issues were encountered and overcome. We 

present the problems and solutions below. 

Speed control unit 

Protective cover 

Speed levels 

 Motor 

3 pins with springs to hold the 

substrate down 
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(b) 
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Problem Cause Solution 

Film too thin 
Spin speed too high 

Spin time too long 

Select lower speed 

Decrease spin time 

Film too thick 
Spin speed too low 

Spin time too short 

Select higher speed 

Increase spin time 

Air bubbles on 

substrate 

Air bubbles in dispensed fluid 

(Figure 3.4a) De-gas the fluid 

Uncoated area 
Insufficient dispense fluid 

(Figure 3.4b) 

Increase amount of 

material dispensed 

Pin holes 

Air bubbles 

Particles in fluid 

Particles exist on substrate 

before dispense (Figure 3.4c) 

De-gas the fluid 

Filter the fluid 

Clean the substrate 

   

(a) 

   

(b) 

   

(c) 

Figure 3.4: Some problems during film preparation (a) air bubbles in dispensed fluid, 

(b) uncoated area and (c) particles in fluid and exist on substrate before dispensing. 
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3.2.4.2 Spin coater calibration 

The spin coater calibration was achieved by measuring the thickness of different 

urushi films coated at constant speed at different speed times. The amount of urushi 

per film was 0.1 gm and the spin times were 30 s, 90 s and 150 s. The spin coater 

speed used during the calibration was 3000 rpm. The samples used during calibration 

were cured in 78%-80% RH at 24 C for 17 hrs. As expected, we observed that a 

longer spin time resulted in a thinner film (Figure 3.5). 

At a spinning speed of 3000 rpm and spinning time of 150 s, a thin film of thickness of 

10 m was obtained. This could be increased to 25 m by reducing the spinning time 

to 30 s. 

 

Figure 3.5: The relation between spin time and thickness at constant spin speed. 

3.2.5 Curing conditions 

As Urushi cures only in the presence of air and high relative humidity, a controlled 

humidity chamber was constructed for curing purposes (Figure 3.6). The appropriate 

RH can be maintained at a constant RH level in the chamber by increasing the 

moisture content of a stream of air blown through the chamber. The air moisture 

content can be increased by using an air-cooler which consists of a small fan forcing 
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air through a wet pad. The air-cooler is connected to an on/off Relative Humidity 

Controller which switches off the cooler each time the RH exceeds the desired RH 

value and switches on the cooler when the RH moves below the desired RH value. 

With this configuration, the tolerance in the RH was found to be less than 2%. 

 

Figure 3.6: Schematic illustration of the chamber used to cure urushi thin films. 

Immediately after spin coating, the films were cured at 752% RH. For films of 

around 20 m, it takes at least 3 days for them to fully cured. The film thickness was 

measured by focusing a microscope (BX-60 Olympus with 50 objective) on the 

glass/air and the urushi/air interfaces and measuring the distance required to refocus. 

3.3 Ageing process and conditions 

In order to produce films that were aged we exposed a subset of the samples to UV 

radiation. The UV radiation exposure history of the Mazarin Chest is unknown and 

therefore any attempt to try to replicate its accumulated ageing will be flawed, and as 

such rather than replicating the damage to the lacquer exactly, we attempt to produce 

damage of a more general kind to understand the broad changes in behaviour that 

occur during UV ageing. To induce UV damage, we used a Q-Sun environmental test 

chamber, equipped with a Xenon arc source, into which the film was exposed to 340 

nm, 0.7 W.m
-2

 UV radiation for 400 hrs. The only clear data on the exposure of the 

chest to light is that during the period between 1986 to 1998 it was displayed at the 

Toshiba Gallery in the V&A, London, where the illuminance was 80 lux, with UV 

RH sensor 

RH controller 

Chamber 

Air-cooler Humidified air 
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levels less than 5 W.lumen
-1

, resulting in an energy density of 0.0004 W.m
-2

. 

Considering 52 weeks per year, 5 days per week and 8 hrs per day display, this results 

in a total UV exposure of about 36 kJ.m
-2

. As a comparison, one can estimate the 

average (accounting for seasonal and daily variations) exposure to 340 nm UV 

radiation due to sunlight as 0.08 W.m
-2

. In order to place our tests into context, we can 

calculate that our test protocol is equivalent to an average daylight exposure of 0.4 

years or an exposure within the Toshiba gallery of 80 years (assuming 80 lux at 340 

nm, though the exposure at this wavelength is likely to be much lower in reality). 

3.4 Thickness measurement 

An Olympus microscope (BX-60) was used to measure the thickness of thin films of 

urushi on the circular glass substrate. It works by focussing on the urushi’s upper 

surface and comparing this height to a reference plate, usually a substrate on which a 

film has been deposited and when the substrate is flat, a localized thickness can be 

measured. The BX-60 Olympus microscope is an optical microscope with features that 

include transmission/reflection illumination for different object types and filters. 

Differential interference contrast microscopy (DIC) tools are provided to enhance the 

contrast in unstained, transparent samples. In addition, the BX-60 Olympus 

microscope is characterized by a 1 m fine focusing adjustment knob and a collecting 

lens unit with aperture diaphragm and field iris diaphragm adjustment knobs. The last 

two features are more helpful in thickness measurements, where the fine focusing knob 

can be used for precise adjustment.  

Calibrating the Olympus fine focusing knob was done using standard gauge blocks. 

Figure 3.7 shows the relation between the microscope fine knob divisions and the 

block thickness. 
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Figure 3.7: Relation between the microscope divinations and the block thickness. 

3.5 Conclusion 

In this Chapter, we have described the procedures for the controlled manufacture of 

urushi samples. We have developed a protocol that will enable us to reliably produce 

large batches of urushi films of calibrated thickness ready for the subsequent stages of 

the experimental programme. We have found that the traditional Japanese filtration 

method is appropriate providing we apply the filter several times. This filtration 

method offers the benefits of obtaining thin urushi film without bubbles and voids. Our 

preparation and calibration techniques provide for a controlled urushi thin layer to be 

produced of known thickness and ready for measurement of the developed stresses in 

urushi. The techniques for measurement of stresses and analysis will be described in 

the following Chapters. 
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Chapter 4 

Development of a Methodology to Measure 

Stresses in Urushi Thin Films 

4.1 Introduction 

Loss of gloss in urushi is linked to the formation of micro-cracks [23, 42, 43]. These 

are caused as a consequence of ageing, mainly due to exposure to UV radiation and 

fluctuations in temperature, relative humidity (RH) and mechanical strain due to 

expansion and shrinkage of the substrate, which is generally wood. Due to the 

multilayer fabrication process, urushi can be thought of as a superposition of thin films 

one on top of another, each with properties that will depend on their composition, 

deposition and curing history.  

As mentioned in Section 2.5.2, urushi film is strongly affected by water. It has the 

tendency to become brittle by water desorption and to be toughened with absorption of 

water [10]. However, few studies have been done on the effect of relative humidity 
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changes on the mechanical responses of urushi. The approach followed in this work to 

understand the micro-crack formation was, first, to study the stress levels that develop 

in a thin urushi film as it is subjected to humidity variations and second, to do it on 

fresh (recently cured) and aged urushi. 

Many other techniques have been used to observe and measure the response of 

coatings to changes in the environmental conditions [44, 45]. These techniques make 

use of relations between the physical or crystallographic parameters and the stress 

developed in the coatings. These techniques include X-ray diffraction, neutron 

diffraction, ultrasound, curvature measurements, nano-indentation and Raman/Fourier-

Transform Infrared Spectroscopy. The physical principle of stress measurement by 

neutron diffraction is similar to those for the X-ray diffraction method. The greatest 

advantage that neutrons have over X-rays is the very large penetration depths that 

neutrons can achieve [46, 47]. Ultrasonic methods are based on the variation of the 

velocity of ultrasound waves travelling through a solid where this variation can be 

related to the stress state [46, 47]. Raman scattered light conveys information about a 

sample‟s physical state and chemical structure. Raman spectral lines shift linearly with 

hydrostatic stress and can be used to measure stresses [48, 49]. However, it relies on 

spectral signatures of narrow bandwidth which are unfortunately absent in urushi. A 

number of authors have used the curvature method to determine stresses in thin films 

and the wide applicability and accuracy of this approach has shown it to be a very 

powerful method [31, 34, 50-53]. 

The average plane stress developed in a thin urushi film under constant temperature 

and changing RH can be obtained by comparing the deflection of the substrate to 

which the film is adhered to, relative to a reference state at a known temperature and 

RH. As long as the substrate mechanical properties remain stable under changing 

environmental conditions, the substrate thickness and the film stress will ultimately 

determine the deflections, which will be in the sub-micrometer range. For constant 

temperature and changing RH, glass possesses the mechanical stability required and 

constitutes a suitable substrate material. For the range of environmental conditions 

covered in this study small stress levels are expected on urushi films onto glass 

substrates. Phase stepping interferometry (PSI) [54-59] is a well known optical 
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technique that allows full-field non-contact measurements of deformations in the nm 

range without sign ambiguities and is therefore an ideal candidate to measure small 

substrate deflections due to film stress.  

The purpose of this Chapter is to describe Stage 2 in Figure 1.4. The curvature method 

and the stress evaluation from deflection measurements are described in 4.2. The 

principles behind phase stepping interferometry, the relationship between the measured 

spatial distribution of optical phase difference and the deflections that cause it are 

described in Section 4.3. In Section 4.4, average principal stresses in the film are 

evaluated from measured displacement fields. The experimental setup is presented in 

Section 4.5, a discussion on the experimental errors in Section 4.6 and conclusions in 

Section 4.7. 

4.2 The curvature method 

The curvature method, widely used for the determination of residual stresses in thin 

films [60, 61], consists of measuring the deflection of a substrate plate due to stress 

build up in the film after this is deposited on the substrate. The deformation is usually 

a change in the curvature of the substrate depending on the tensile or compressive 

nature of the film stress. Under certain conditions, the substrate deflection field 

),( yx  and the average stress  in the film are related by the following 

approximation, known as the Atkinson‟s formula [31, 34, 50-53, 62]: 

22

3 ),(
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ttt
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fsf
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 ,    (4.1) 

where sE , s  and st  are the Young‟s modulus, Poisson‟s ratio and thickness of the 

substrate respectively. ft  is the film thickness, assumed constant all over the substrate, 

whilst 2/122 )( yxr   and )/(tan 1 xy  are the polar coordinates of point ),( yx  

as shown in Figure 4.1. It is worth noting that, provided certain conditions are 

satisfied,  is independent of the Young‟s modulus and the Poisson‟s ratio for the 

film, which makes this method appealing for our purposes as these are unknown. 

Equation (4.1) is derived under the following assumptions [63-65]: 



Development of a Methodology to Measure Stresses in Urushi Thin Films  

 

48 

1- Strains and rotations are infinitesimally small (i.e. all displacement gradients 

<< 1). 

2- The film/substrate thickness ratio 4.0/ sf tt . When the thickness ratio 

1.0/ sf tt , however, a simpler approximation can be used, known as the 

Stoney‟s equation [51-53, 62-64, 66]. 

3- Substrate material is homogeneous, isotropic and linearly elastic, and the film 

material is isotropic. 

4- The film is in plane stress. 

 

(a)                                                                (b) 

Figure 4.1: (a) Deflection of an initially flat substrate due to tensile stress following 

film shrinkage. (b) A schematic showing the top view of the substrate geometry with 

Cartesian and polar pixel coordinates. 

For our thin films, these assumptions are generally true. It is worth noting that 

although this technique was developed with the aim of measuring residual stresses, our 

concern in this work is to measure the response of the average stress in urushi thin 

films due to changes in relative humidity. In order to achieve this with the curvature 

method, several requirements needed to be addressed. First, an appropriate film and 

substrate system has to be designed so that assumptions 1-4 are all met. Secondly, a 

highly sensitive method is required to measure the small deflections expected of the 

substrate. Finally, a chamber had to be built to enable full control over the system 

environment. 
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4.3 Phase stepping interferometry 

Phase-stepping interferometry has been shown to be a powerful method for measuring 

small displacements. Well known advantages of phase stepping interferometry over 

conventional interferometers include: (1) high measurement accuracy, (2) rapid 

measurements, (3) good results even with low contrast fringes, (4) phase obtained at a 

grid of data points, and (5) the sign of the displacement field is automatically obtained 

[67]. When two beams that originate from a common light source are recombined after 

they have travelled optical paths that differ by no more than the coherence length of 

the source, they interfere and form a fringe pattern. This is usually recorded with a 2D 

detector array and can be described by the following intensity distribution, 

 ),(cos),(),(),( 0 yxyxIyxIyxI M     (4.2) 

where ),(0 yxI , ),( yxIM  and ),( yx  are three unknown distributions referred to as 

the background intensity, the modulation intensity and the phase difference between 

the interfering beams at point ),( yx , respectively. 

In order to evaluate the phase, ),( yx , having been given three unknown parameters, 

),(0 yxI , ),( yxIM  and ),( yx , it is necessary to have at least three independent 

measurements of the intensity )( yx,I . A simple and widely used phase evaluation 

algorithm [68, 69] is based on four intensity measurements where a 
2


 phase shift is 

introduced between the interfering beams between consecutive interferograms. The 

intensity for each interferogram is thus given by 
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By solving this set of equations, under the assumption that ),( yx  does not change 

during the acquisition of 1I  to 4I , it can be shown that 
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The arctangent function, ),( yxw  lies in the range    ,  and is referred to as the 

wrapped phase, thus the subscript „ w ‟. The process of recovering the continuous phase 

distribution ),( yx  that extends beyond the    ,  range is known as phase 

unwrapping, and consists of adding an appropriate integer multiple of 2  at each 

point in the wrapped phase distribution [68, 70-73]. When the interferometer is set up 

to measure object deformations, two unwrapped phase distributions ),( yxr  (phase of 

the reference state) and ),( yxd  (phase of the deformed state) are required to evaluate 

the unwrapped phase change distribution, ),( yx . An alternative method consists in 

a direct evaluation of the wrapped phase change distribution as 
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where rN , rD , dN  and dD  are defined in terms of the phase shifted interferograms 

recorded for the reference state, 1rI  to 4rI , and those for the deformed state, 1dI  to 

4dI : 
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The advantage of this approach is that the numerator and denominator in the argument 

of the arctangent function in Eq. (4.5) can be low-pass filtered to reduce phase noise 

[68]. In the case when the interferometer has pure out-of-plane sensitivity, i.e. parallel 

to the observation direction, the relationship between the measured unwrapped phase 

change ),( yx  and the displacement (or deflection) distribution ),( yx  is given by 

),(
4

),( yxyx 



  ,    (4.7) 
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where   is the wavelength of the coherent light source used. Equation (4.7) assumes 

that the object and the interferometer are immersed in a medium of unit refractive 

index. 

4.4 Evaluation of film stress from displacement fields measurements 

Ideally, a film and substrate system such as the one described in Section 4.2 will 

respond to a uniform stress field in the film by deforming with axial symmetry so that 

the deflection perpendicular to the plane yx   has circular contour lines. However, 

slight heterogeneities in the stress field lead to elliptical contour lines, as shown in 

Figure 4.2. The principal axes of the elliptical contour lines correspond to the 

directions of the principal in-plane stress components in the film plane. 

 

Figure 4.2: Deflection distribution contour for non-aged urushi film when exposed to a 

humidity change from 75% to 30% for 4080 minutes. 

The deflection distribution ),( yx  can conveniently be approximated by a second 

order surface as follows 

feydxcxybyaxyx  22),( ,   (4.8) 
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where the quadratic coefficients a , b  and c  reflect the curvature characteristics of the 

paraboloid, while coefficients d  and e  describe a linear tilt and f  the displacement of 

the centre of mass of the film/substrate system perpendicular to the yx   plane. The 

linear and constant terms in Eq. (4.8) can be ignored as they do not contribute to the 

curvature and therefore are not linked to the film stress. After a convenient change to 

polar coordinates, Eq. (4.8) reduces to 





   sincossincos),( 222 cbarr .  (4.9) 

The benefit of this is that once the orientation of the ellipse is determined, the problem 

is reduced to the determination of   along the major and minor axes of the ellipse 

corresponding to M  and m  respectively. M  and m  are the orientation angles of 

the major and minor axes respectively, where 

2


  mM .    (4.10) 

Substitution of Eq. (4.9) into Eq. (4.1) for M  and m  finally leads to the film 

principal stresses 

.)sincossincos(
)1()/1(3

,)sincossincos(
)1()/1(3

22

2

3

2

22

2

3

1

MMMM
s

s

fsf

s

mmmm
s

s

fsf

s

cba
E

ttt

t

cba
E

ttt

t





















 (4.11) 

Due to the fact that a higher film stress would be responsible for the curvature of the 

substrate on the plane that contains the minor axis of the ellipse and the z  axis, 1  

and 2  have been defined here following the usual convention in which 21   . 

If ),( yx  is available as a full-field measured deflection distribution, then coefficients 

a , b  and c  can be found by least squares fitting of the measured distribution to an 

elliptical paraboloid. Equation (4.9) is used to find the orientation m  of the minor axis 

by minimizing the radius at a contour of constant deflection. The orientation M  of the 
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major axes is found from Eq. (4.10) and finally Eq. (4.11) leads to the film principal 

stresses along m  and M . 

4.5 Experimental setup 

4.5.1 Layout 

Figure 4.3 shows a schematic of the interferometer used to measure changes in the 

curvature of a film/substrate sample due to variations of relative humidity. A He-Ne 

laser (Melles Griot model) is used as the coherent light source, providing a vertically 

polarized 30 mW beam with wavelength  =632.8 nm. The beam goes through a half-

wave plate (HWP) that rotates the plane of polarization before entering a polarizing 

beam splitter (PBS) that splits the incoming beam into reference beam (RB) and object 

beam (OB) with orthogonal polarizations, the intensities of which can be easily 

adjusted by rotating the HWP. These beams are then launched into single mode 

polarization preserving optical fibres, reference fibre (RF) and object fibre (OF). The 

reference beam (RB) goes through a pair of opposing glass wedges, one of which is 

fixed and the other is moved across the beam with an open loop piezoelectric lead 

zirconate titanate (PZT) transducer to increase the optical path and introduce controlled 

phase steps. The fibres then deliver both beams with the same polarization to the 

recombination head of the interferometer. The object beam, OB, is transmitted through 

a non-polarizing beam splitter (NPBS) and propagates towards the film/substrate 

sample, where it is reflected back from the specular bottom surface of the substrate. On 

its way back, the object beam is recombined with the reference beam so that the optical 

path difference remains within the coherence length of the laser. The sample is 

mounted inside an environmental loading chamber (EC). A CMOS camera (C) (HCC-

1000 Vosskühler, 8 bits, 1024×1024 pixels) records the interference fringe patterns 

that encode the shape of the substrate relative to the reference wavefront. The purpose 

of lens L1, shown in the side view inserted in Figure 4.3 is to illuminate the sample 

with a collimated beam, and thus the distance from the output end of the object optical 

fibre is equal to the focal length of L1. L2 collimates the beam launched by the 

reference fibre and lens L3 focuses it at the aperture stop plane (AS) of imaging lens 

L4. This results in a reference beam that covers the CMOS detector with a Gaussian 

distribution that is typical of the TEM00 mode. 
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Figure 4.3: Schematic of phase shifting interferometer and side view of the object 

beam and the environmental chamber EC: HWP, half-wave plate; PBS, polarizing 

beam splitter; PZT, open loop piezoelectric transducer; RB, reference beam; OB, 

object beam; NPBS, non polarizing beam splitter; L1, L2 and L3 convex lenses; L4, 

imaging lens; C, CMOS camera. 
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Figure 4.4: Photograph of the phase stepping interferometer: EC, environmental 

chamber; RF, reference fibre; OF, object fibre; C, CMOS camera. 

4.5.2 Alignment of polarisation preserving optical fibre 

Single mode fibre optic delivery allows flexible remote delivery with a near pure 

Gaussian output which removes the need of spatial filters. Flexibility in the fibre optic 

delivery system offers the benefit of allowing infinite adjustment of the emission 

direction. The fibre-launch optics system consists of two precision 4-axis Manipulated 

(Point Source FDS-4X-2) and two Fibre Delivery Systems (FDS) (see Figure 4.5). 

 

Figure 4.5: Optical fibre launch setup, showing He-Ne laser, half wave plate (HWP), 

polarizing beam splitter (PBS) and 4-axis fibre alignment mounts for the object (OF) 

and the reference (RF) fibre. 
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The FDS-4X-2 is a kinematics manipulator for FDS optical assemblies which allows 

four axes of adjustment to achieve perfect launch conditions. Each unit is designed to 

mount directly onto the direct and the right angle directions of the Microbench holder 

as shown in Figure 4.5. The FDS is designed to efficiently couple light into the core of 

a single mode fibre via a focusing lens (FL) as shown in Figure 4.6. The focal length 

of FL is chosen firstly to suit the desired input beam diameter and secondly to produce 

a focus that matches the mode field diameter of the fibre. 

 

Figure 4.6: The input optics of a Fibre Delivery System. 

4.5.3 Fibre delivery system alignment 

The alignment tool consists of a 60 mm long, 12 mm outer diameter and 2 mm inner 

diameter metal cylinder, shown in Figure 4.7, is used to align the FDS as follows: 

1. The tool is inserted into the manipulator with the small aperture nearest to the 

laser, where the tool is tightened using the tension screw. 

2. Screws A and A` are adjusted to gain maximum optical transmission, Figure 

4.8(a). 

3. The tool is inserted into the manipulator with the small aperture farthest from 

the laser, where the tool is tightened using the tension screw. 

4. Screws B and B` are adjusted to gain maximum optical transmission, (Figure 

4.8(a)). 
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5. The FDS input is inserted into the manipulator and again screws A, A`, B and 

B` are adjusted to gain maximum optical transmission at the FDS output 

(Figure 4.8(b)). 

 

Figure 4.7: Tool used for the coarse alignment of FDS with a collimated beam. 

 

(a) 

 

(b) 

Figure 4.8: Precision 4-Axis Manipulator. 

4.5.4 Polarisation alignment 

To satisfy the interference condition between two beams and to get high intensity 

modulation the state of polarisation should be the same and stable at the detector plane. 

The fibre transmits a linear and stable state of polarisation when two main conditions 

have been satisfied. Firstly, the input state of polarisation must be linear and stable and 

secondly, the input state of polarisation must be aligned to either the fast or the slow 

axis of the fibre. Therefore it is necessary to make sure that the light is polarised in one 

FDS input 

Laser 

44 mm A 

A
'
 B

' 

B 

Tension screw 

60 mm  

12 mm 

Small aperture 



Development of a Methodology to Measure Stresses in Urushi Thin Films  

 

58 

direction (say vertical) both at the fibre inputs and output ends. Figure 4.9 shows a 

typical arrangement that can be use to align the state of polarisation. 

 

Figure 4.9: Setup for polarisation alignment. 

The alignment is achieved in the following way [74]: 

1- The polariser is placed on the output fibre end such as to give vertically 

polarised light. 

2- The input end is rotated to get maximum stable beam of light on a screen. 

3- Put the polariser again such as to give vertically polarised light. 

4- The output end is rotated while maintaining the orientation of the polariser so 

as to get maximum optical transmission, which indicates that the light is 

vertically polarised at the fibre output end. 

4.5.5 Phase stepping control and synchronization 

As mentioned in Section 4.3 the four-frame algorithm requires, for each deformation 

state, the acquisition of four interferograms with 
2


 phase shifts between successive 

ones. A PZT driver, manufactured at Loughborough University, is used to generate a 

calibrated stepped voltage staircase profile V1 = 0 < V2 < V3 < V4 which is encoded 

and stored in a look-up table in the driver‟s internal microprocessor. During 

synchronisation, the camera is used as master and the PZT driver as slave. Once 

triggered from a PC-based application to start the acquisition of four frames (see 

Figure 4.10(a)) each time the camera records a frame it outputs a train of pulses 

Precision 4 axis manipulator 
Fibre delivery system 

Screen  Polariser 

Laser 
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separated a few microseconds which are conditioned to a single pulse of longer 

duration (Figure 4.10(b)). This pulse is input and detected by the PZT driver. The 

driver then moves to the next voltage level in the look-up table and holds it until it 

receives another TTL rising edge from the camera. Once four steps V1, V2, V3 and V4 

are scanned, it resets to V1 = 0 V ready for the next voltage profile (Figure 4.10(c)).  

 

Figure 4.10:  Camera output of frame pulses (a), Pulses conditioned for PZT driver (b) 

and PZT driver output voltage (c). 

The sign of the phase change distribution evaluated through the four-frame algorithm 

as expressed in Eq. (4.5) was checked for consistency by simply moving a test object 

towards the camera, and defining the z-axis accordingly. A calculated positive phase 

change, corresponding to a positive displacement with the z-axis so defined, is 

obtained when the object moves towards the camera along the observation direction. 

The microbench construction shown in Figure 4.5 includes also the phase stepping 

optics, shown in Figure 4.11 in detail. Phase stepping is achieved by mounting and 

translating a 45
o
 glass wedge w1 placed in one of the interfering beams RB with a PZT. 

The PZT actuator used in this work was a Physik Instrument type P-820.10 PZT which 

is a low voltage device with a maximum displacement of 15 m for 100 V of applied 

voltage. A second identical wedge, w2, brings the beam parallel to its original 

direction. This phase stepping method has several advantages over the conventional 

approach of reflecting the beam from a PZT-mounted mirror: (a) no beam tilt is 
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produced if the PZT tilts during translation, and (b) extension of the PZT does not 

introduce lateral beam translation provided the wedge is angled correctly in the beam. 

 

Figure 4.11: Layout of phase stepping optics. 

4.5.6 PZT calibration 

The displacement/voltage response of PZT actuators is sensitive to changes in 

humidity and temperature. For this reason, they need to be calibrated before each 

measurement. We followed the procedure described by Ochoa et al [73] to calibrate 

our PZT phase shifting actuator. The procedure is only suitable for calibrating phase 

modulators that can produce a full 2  phase shift and for which the phase changes 

monotonically with applied voltage, but is relatively simple to implement and can be 

performed in situ. The aim of the PZT calibration is to determine the voltage values 

that are required to introduce known phase steps. The basic principle of the calibration 

process depends on the evaluation of the average of the squared differences ( S ) 

between a reference intensity distribution ( rI ) and an intensity distribution ( I ) 

obtained after an unknown phase difference, which is produced by a known voltage 

applied to the PZT. The intensity distributions are given by [73] 





  )(),(cos),(),(),( 0 rrMr VyxyxIyxIyxI  ,   (4.12) 
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where ),( yx  are the pixel coordinates of an arbitrary point in the interference pattern, 

rV  and V  are the applied voltage corresponding to rI  and I  respectively. ),(0 yxI  

and ),( yxIM  are the background and visibility functions, which are presumed to be 

voltage independent; ),( yx  is the phase difference between the interfering beams and 

)(V  is the voltage function. Assuming it is a second order polynomial then 

2
321)( VaVaaV  ,    (4.14) 

)()()( 22
32 rr VVaVVaV  .    (4.15) 

From Eq. (4.12) and Eq. (4.13), the average of the squared difference is given by 

   )(cos1)2(cos1)( 22
rrMr IIIS   . (4.16) 

Using a conventional trigonometric identity we obtain 

  )(cos1)(sin)2(sin)(cos)2(cos12
rrrMIS   . (4.17) 

Both )2(cos   and )2(sin   tend to zero if the interference pattern contains 

sufficient fringes or speckle noise and therefore Eq. (4.17) can be simplified to 

 )(cos12
rMIS   .    (4.18) 

Substituting Eq. (4.15) into Eq. (4.18), we get 

  )()(cos1 22
32

2
rrM VVaVVaIS  .  (4.19) 

Equation (4.19) is used to fit the measured values )( iVS , the average of the squared 

differences between the reference intensity distribution rI  and the intensity 

distributions I  obtained after applying a known voltage. 125 steps were used in the 

calibration process with a 0.4 V / step. An example of the calibration results is shown 

in Figure 4.12 with the fitting of the first three cycles. 



Development of a Methodology to Measure Stresses in Urushi Thin Films  

 

62 

 

Figure 4.12: Second order polynomial fitting of )(VS . The open circles represent the 

experimental data and the line is the fitting. 

The fitting coefficients 2a  and 3a  are used to find the dependence of the phase shift 

on the applied voltage, Eq. (4.15), shown in Figure 4.13. The coefficients, 2a  = 0.44 

rad./volt (linear coefficient) and 3a = 0.004 rad./volt
2
 (quadratic coefficient), were 

obtained. In general, even good quality PZTs have non-linear relationship between the 

displacement and the applied voltage [67, 75, 76]. The dependence of the phase shift 

on the applied voltage can be used to extract the voltage values required to introduce 

an incremental phase shift of 
2


, as shown in Figure 4.14, by using a one-dimensional 

data interpolation function. 

 

Figure 4.13: The dependence of phase change on the applied voltage 
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Figure 4.14: The voltage values required for phase shifts 0 , 
2


,  , 

2

3
 and 2  rad. 

4.5.7 Environmental chamber 

Triggering the response of urushi films to changes in relative humidity and measuring 

it with the interferometer requires a fine control over the environmental conditions. An 

environmental chamber (EC) with thermal and humidity control systems was built and 

is shown in Figure 4.15. It was made from sealed acrylic sheets of thickness 10 mm 

and its dimensions are 300 mm  220 mm  170 mm. The sample holder, RH sensor, 

heating element and temperature sensor are all placed within the chamber. 

 

Figure 4.15: Top view of the environmental load chamber. 

4.5.7.1 Humidity control 

After some trial and error, humidity control was obtained by using Calcium Chloride 

and water reservoirs within the chamber. The water reservoir was open or closed to the 

chamber according to the humidity detected by a capacitive sensor. Opening the water 

reservoir leads to an increase in moisture within the chamber whereas Calcium 
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Sample 
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Chloride is used to decrease the moisture content within the chamber. The 

film/substrate test sample sat horizontally on a recessed holder by its own weight.  

4.5.7.2 Temperature control  

The temperature controlling system has three main components: 

1- Input: 

The input is a platinum thermo-couple (PT100) to measure the temperature 

inside the chamber. 

2- Controller: 

The controller, see Figure 4.16, monitors the input from the PT100 and 

compares it with the setting point or the desired temperature setting. As 

required, it increases the temperature by switching on the heating element. It 

is provided with an on/off and proportional with integral and derivative 

control (PID), where PID is used when precise control is required. 

3- Output: 

The output is a part of the controller that is used for turning the heating 

element on and off. The output inside the controller is a Solid State Relay. 

 

Figure 4.16: Temperature controller. 

This approach allowed us to control RH and temperature to within 1% RH and 1 C, 

respectively. 

4.6 Experimental errors 

The greatest challenge in this experimental study was to maintain interference fringe 

stability during the long recording times required for the measurements. 

Environmental vibration and temperature variations introduce strain in the optical 

Setting value 

Measured value 
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fibres, which can result in relative phase shifts and induce slow fluctuations in the d.c. 

component of the measured phase change,  . Regular calibration of the system was 

performed to ensure that changes in room temperature and humidity did not affect the 

results. The interferometer was setup on a vibration isolated table, the room 

temperature was kept at 18 C and the optical fibres were thermally insulated. Slight 

rigid body motion of the sample over the sample holder was dealt with in the data 

processing stage by following the procedure described in Section 4.4. 

The measured optical phase difference maps have some spatial noise which is a 

combination of electronic noise sources in the camera, camera dynamic range (8 bits in 

this case), the phase shifting algorithm used, spurious diffraction patterns and also 

environmental stability. Noise directly affects the measured displacement field 

),( yx , which is proportional to the phase as expressed by Eq. (4.7). A common 

parameter that describes this noise is that the root mean square error (rms) of the 

displacement distributions, which is defined as 
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yxyx
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y
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 1 1

2
exp ),(),( 

 ,   (4.20) 

where ),(exp yx  is the measured displacement map, ),( yxfit  is its best second order 

polynomial fit, MN   is the total number of pixels in the region where rms is 

evaluated and x  and y  are pixel coordinates. 

Using Eq. (4.1), the uncertainty in the average film stress   due to the uncertainties in 

the substrate thickness 
st

u , in the film thickness 
ftu , in the displacement u  and 

in the distance from the centre to where the displacement is measured, ru , can be 

calculated as 

ss t
s

t u
t
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 ,    (4.24) 

where 
stu , 

ftu , u  and ru  are the uncertainties in st , ft ,   and r , respectively. We 

neglected the uncertainty in the Young‟s modulus and Poisson‟s ratio of glass as these 

are not tabulated for our substrates. The total error in   is obtained by combining the 

individual contributions in quadrature: 

2222
rtt uuuuu

fs   .   (4.25) 

The results of the root mean square and the total error calculations will be presented in 

Chapter 6. 

4.7 Conclusion 

In this Chapter, we described the stress measurement process in thin urushi films 

which comprised of several steps. The first step is to alter the environment in which 

the sample resides in order to induce a change in curvature. We do this in a controlled 

manner by placing the sample within an environmental chamber with thermal and 

humidity control. We then change the relative humidity and observe the displacement 

of the sample using phase shifting interferometry which is a powerful full-field and 

non-contact technique for the measurements of sub-micron displacement. Having 

obtained the phase maps, we then employ regression methods to extract the curvature 

of the sample from the displacement field and thence the stresses. We found that the 

displacement distribution in polar coordinates is more appropriate where the stress 

associated with the minimum and maximum curvature can be evaluated. In the 

following Chapter the phase shifting interferometer will be employed to observe stress 

response of cured non-aged and aged urushi films to different humidity levels. 
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Chapter 5 

Measurements of Moisture Diffusion Coefficient 

for Non-Aged and Aged Urushi 

5.1 Introduction 

The practical and aesthetic importance of urushi has meant that many studies have 

been carried out to investigate the chemical structure of urushi, but a comparatively 

small number of studies have looked to determine its mechanical properties and their 

dependence on the environmental conditions. This Chapter is motivated by the need to 

investigate the rheological properties of non-aged and aged urushi films as they are 

subjected to different RH levels so that ultimately, they can serve as an input to models 

to predict the hygroscopic contributions to stress. 

Water sorption in polymers is related to the availability of free volume holes in 

polymer networks and polymer-water affinity. The availability of holes depends on the 

polymer structure, morphology and crosslink density [77, 78]. The polymer-water 
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affinity is related to the presence of hydrogen bonding sites along the polymer chains, 

which create attractive forces between the polymer and the water molecules. 

In this Chapter we will measure the diffusion coefficient for urushi, as a function of 

moisture content and UV ageing. This will be done by applying the solution of the 

diffusion equation to moisture uptake experiments and extracting the diffusion 

coefficient through fitting. 

5.2 Analytical solution of the diffusion equation 

The diffusion of moisture in a flat sheet during absorption or desorption is assumed to 

be one dimensional. The simplest moisture diffusion model in this case is based on 

Fick‟s law, which is represented mathematically by [79-82] 
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,   (5.1) 

where ),( txC  is the moisture concentration, t  is the time, x  is the spatial coordinate 

and D  is the diffusion coefficient. For the case where D  is independent of the 

moisture concentration, Eq. (5.1) can be written as:  
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.    (5.2) 

Initial conditions 

In the case where the initial concentrations of the penetrant are uniform throughout the 

sheet, we take the initial conditions to be 

CxC )0,(  at 0t  and hx 0 ,    (5.3) 

where C  is the initial concentration and h  is the thickness of the sheet. 

Boundary conditions 

If the sheet is exposed to different amount of penetrant than the one in which it was 

exposed, then the boundary conditions are 
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sCtxC ),(  at 0x  and hx  at 0t ,   (5.4) 

where sC  is the surface moisture concentration corresponding to the environmental 

relative humidity. The solution to Eq. (5.2) [81] is 

)exp()cossin(),( 2
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DtxBxAAtxC n

n

nnnn   




 ,  (5.5) 

where A  is the average concentration after the equilibrium has been reached 

following a step change in the relative humidity and nA , nB  and n  are constants. 

With the boundary condition given in Eq. (5.4), sCtxC ),(  at 0x , and when 

sCA   a solution can be obtained for Eq. (5.5) where 
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which implies that 0nB . 

With the boundary condition given in Eq. (5.4), sCtxC ),(  at hx   a solution can be 

obtained for Eq. (5.5) that gives 
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Recalling that 0nB , 

0)exp()sin( 2
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Equation (5.8) can only be satisfied if 
h
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Applying the initial condition given in Eq. (5.3), CxC )0,(  at 0t , with 0nB  

and 
h

n
n


   to Eq. (5.5) one arrives at 
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Multiplying Eq. (5.9) by 
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sin  and integrating x  over the range hx 0 , gives 
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Integrations on the right hand side equals zero, except the one for which pn  , and by 

using standard trigonometry identities we arrive at 
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Substituting Eq. (5.12) into Eq. (5.10) gives 
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which finally leads to 
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From Eq. (5.14), it can be seen that 0nA  at n = even values and 
n

CC
A s

n

)(4 
   

at n  = odd values. Therefore we can change the summation index so that only odd 

values of n  are summed 

)12(
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Substituting the values of nA , nB  and n  into Eq. (5.5) gives 
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The total moisture content at time t , tM , is then obtained by integrating Eq. (5.16) 

over the sheet thickness h  i.e. 
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where A  is the exposed surface area of the sheet. Then Eq. (5.17) becomes 
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where hACM s  is the moisture content at equilibrium when t . Therefore 

finally we obtain for the mass uptake as a function of time, 
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 .   (5.19) 

The determination of the water uptake can be carried out on free films and on 

supported coatings. For supported coatings, the denominator of the argument of the 

exponent in Eq. (5.19) is equal to 
24h  where h  is the thickness of the coating (equal 

to one symmetrical half of the free film) [83]. 
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5.3 Methodology 

5.3.1 Material and sample preparation 

Two groups of urushi samples have been used in this study. Urushi (Kijiro type) 

samples were prepared for the study of water absorption as follow: urushi was 

homogenously mixed and filtered as described in Chapter 3 (Section 3.2.1 and Section 

3.2.2). Urushi was then cast, using the spin coater described in Section 3.2.4, onto 70 

mm × 50 mm rectangular glass substrates. The curing procedures of the samples were 

same as described before in Chapter 3 (Section 3.2.5) in which they cured by storage at 

752% RH for three weeks (to ensure that a full cure was achieved). A Q-Sun 

environmental weathering chamber was used to simulate UV ageing into which one 

subset of the non-aged urushi films was exposed to UV radiation. The films were 

exposed to 340 nm, 0.7 W.m
-2

 UV radiation for 400 hrs (Section 3.3). The thickness of 

each urushi layer was measured in 25 locations to calculate the average thickness with 

a Mitutoyo digital micrometer of 0.001 mm resolution. 

5.3.2 Gravimetric measurements 

Diffusion of water in urushi films was studied by the gravimetric method in which the 

changes in weight of all the samples were monitored as a function of time using an 

electronic balance. A digital balance HA180 (A&D Instruments Ltd) that had a 

precision of 0.1 mg was used for all weight measurements. Care was taken to ensure 

that the balance was accurately calibrated and zeroed prior to each set of weighings 

and kept in the environmental chamber during the experiments. 

5.3.3 Desorption and sorption measurements 

Our desorption and sorption experiment involved four step changes in relative 

humidity for both non-aged and aged urushi films. Initially, aged and non-aged urushi 

samples were allowed to reach a uniform moisture distribution by storing them in the 

curing chamber at 75% until there was no change in mass of the sample. The samples 

were then put into 30% RH atmosphere, which was maintained for 20 hrs. After that 

the samples‟ environment was changed to 40%, 50% and 60% RH for 16 hrs, 20 hrs 

and 20 hrs, respectively, where the samples‟ mass was observed every 30 min. The 
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samples were dried at 100 C for 27 hrs to remove any excess moisture, after which 

the dried samples were weighed. 

During exposure to each relative humidity level, the moisture contents were measured 

gravimetrically and calculated with the following expression [84, 85]: 

  100% 



dry

dryt
t

m

mm
M ,    (5.20) 

where tM  is the moisture content at time t , weight percent of the specimen, tm  is the 

weight or mass of the specimen at time t  in mg and drym  is the weight or mass of the 

dry specimen in mg. 

5.4 Results and discussion 

Figure 5.1 and Figure 5.2 show the sorption and desorption curves for non-aged and 

aged urushi, respectively, at different RH levels. As expected the moisture contents of 

non-aged and aged urushi, during the desorption processes, decrease with time, while 

there is an increase during the sorption process. For non-aged and aged urushi, the 

initial moisture contents at 40%, 50% and 60% RH were found to be higher than the 

final moisture contents at 30%, 40% and 50% RH. These resulted as a result of the 

time taken to change the RH from lower to higher levels. Using the data shown in 

Figure 5.1 and Figure 5.2, the values of the diffusion parameters were obtained using 

the solution given in Eq. (5.19) fitted to the experimental data using regression 

techniques where the summation has been taken to the first 50
th

 terms. The resultant 

values for the diffusion coefficient D , the initial moisture content M , the moisture 

contents at equilibrium M  and the permeability P  for non-aged and aged urushi are 

given in Table 5.1 and Table 5.2, respectively. P  is the permeability, calculated as the 

product of D  and M  [86]. A typical fit is shown in Figure 5.1 and Figure 5.2. 
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Figure 5.1: Sorption and desorption curves for non-aged urushi at different RH levels 

as a function of time. Solid lines represent the fitting from Eq. (5.19). 

 

Figure 5.2: Sorption and desorption curves for aged urushi at different RH levels as a 

function of time. Solid lines represent the fitting from Eq. (5.19). 
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Figure 5.3 to Figure 5.6 show the variation of moisture contents tM  with time during 

desorption/sorption processes for non-aged and aged urushi film at 30%, 40%, 50% 

and 60%, respectively. As shown in all curves, the aged urushi films have higher tM  

values than non-aged urushi films over the RH range (30%-60%). 

 

Figure 5.3: Desorption curves for non-aged and aged urushi at 30% RH. 

 

Figure 5.4: Sorption curves for non-aged and aged urushi at 40% RH. 
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Figure 5.5: Sorption curves for non-aged and aged urushi at 50% RH. 

 

Figure 5.6: Sorption curves for non-aged and aged urushi at 60% RH. 

Figure 5.7 shows the variation of the asymptotic moisture contents at equilibrium, 

M , with the RH for non-aged and aged urushi. From the data obtained, we can see 

that the moisture content at equilibrium, M , for both non-aged and aged urushi, 
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increased with RH. Also, the moisture contents at equilibrium, M , values in aged 

urushi were significantly higher than those in non-aged over the RH range (30%-60%) 

which suggests that the ageing process has a significant influence on the mechanisms 

for mass transport at a microscopic level as a result of chemical changes due to UV 

exposure. These chemical changes would likely increase its water affinity and decrease 

the crosslink density and so increase the availability of free volume holes. Physically, 

micro-crack networks (Figure 5.8) have been observed on the aged urushi, which 

would facilitate the penetration of moisture into the aged films during the sorption 

process. 

 

Figure 5.7: Asymptotic moisture contents, M , as a function of RH for non-aged and 

aged urushi. 

 

Figure 5.8: Micro-cracks observed on aged urushi film. 
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Table 5.1: Water diffusion parameters for non-aged urushi. 

Humidity changes 
M  (%) M  (%) D  (m2/min) P  (m2/min) 

75%  30% 1.66 0.35 1.1 E-11 
3.87 E-12 

30%  40% 0.39 0.56 1.7 E-11 9.61 E-12 

40%  50% 0.62 0.84 1.3 E-11 1.08 E-11 

50%  60% 0.94 1.23 1.3 E-11 1.59 E-11 

 

Table 5.2: Water diffusion parameters for aged urushi. 

Humidity changes 
M  (%) M  (%) D  (m2/min) P  (m2/min) 

75%  30% 3.89 2.41 1.55 E-11 3.74 E-11 

30%  40% 2.48 2.69 0.9 E-11 2.41 E-11 

40%  50% 2.73 2.95 2.5 E-11 7.38 E-11 

50%  60% 2.98 3.33 1.3 E-11 4.32 E-11 

 

5.5 Conclusions 

The desorption and sorption curves from the gravimetric experiments at different 

humidity levels were undertaken to investigate the characteristics of water diffusion in 

non-aged urushi films. In each case the effect of ageing on the water diffusion process 

was considered. The moisture diffusion coefficient was determined by fitting the 

solution of the diffusion equation to the experimental data. The results show that no 

significant dependence of the moisture diffusion coefficient on the moisture contents 

for non-aged and aged urushi. The higher values of the moisture contents at 

equilibrium, M , in aged urushi would be contributed to chemical changes due to UV 

exposure where further spectroscopic measurements will be required to identify the 

effects of ageing on the chemical microstructure of urushi. 
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Chapter 6 

Stress Response of Urushi Films under Changes 

of Environmental Conditions 

6.1 Introduction 

We investigated the response of urushi to changes in environment conditions by 

examining the deflection of a glass substrate coated with a thin film of urushi when it 

was subjected to different humidity levels. This deflection was measured using phase 

shifting interferometry and then related to the bending moment and in-plane stress 

developed in the system due to the expansion mismatch in the bilayer using Atkinson‟s 

formula (Section 4.2). 

In Section 6.4, the results of the average stress measurements in urushi film are 

presented for aged and non-aged urushi. The stresses were measured when urushi 

films were subjected to three low RH (30%, 36% and 42%) and three high RH (60%, 

54% and 48%). Comparison of the behaviour of the aged and non-aged urushi showed 
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that both have the same response to changes in the humidity. During desorption, 

stresses were higher for the non-aged urushi films while during adsorption stresses 

were higher for the aged urushi films. A discussion on the experimental errors analysis 

and conclusions are presented in Section 6.5 and Section 6.7. Upon changing the 

humidities we observed rapidly changing stresses in urushi, which then showed 

evidence of relaxation over much longer timescales. A simple 1D model of stress will 

be also proposed (Section 6.6) to predict the behaviour of the urushi thin layers to 

changes in environmental RH. 

6.2 Experimental conditions 

Two sets of urushi samples have been used in this study, in which a thin layer of 

urushi films of thickness 21 m were deposited on a circular glass substrate of 

thickness 190 m and cured at the same conditions. One subset has been exposed to 

UV radiation for 400 hrs. Full description of urushi films preparation and ageing 

condition has been described in Sections 3.2 and 3.3. 

6.3 Environmental loading 

The stress response of three non-aged and three UV-aged urushi films to changes in 

RH were measured in this work. Each of them was used for measuring its response to 

two changes in RH, rather than using the same sample to measure different RH 

changes, so as to avoid history dependent effects. The RH history of each of the 

samples is shown in Figure 6.1. 

 

Figure 6.1: Schematic of step changes in relative humidity levels with time, where 

RHC = 75% is the curing RH, RH1 is the low RH = 30%, 36% and 42% and RH2 is the 

high RH= 60%, 54% and 48%. tC1 and t12 are the times at which RH changes from 

RHC to RH1 and from RH1 to RH2, respectively. 

R
H

%
 

RH1 

RH2 

RHC 

tC1 t12 t 
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Initially, all samples were kept at the relative humidity for curing, RHC=752%, for 3 

weeks to ensure equilibrium. Each sample was then exposed to a step reduction in RH, 

to one of three different low relative humidity levels, denoted as RH1 in Figure 6.1. 

Under each low relative humidity level, the film stress was observed over 66 hrs, a 

time that corresponds to 95% of an approach to the asymptote. After that the samples‟ 

environment was changed to one of three different high relative humidity levels, 

denoted as RH2 in Figure 6.1. During exposure to the high humidity levels, the stress 

response was observed for the following 7 hrs. The low relative humidity levels (RH1) 

were 30%, 36% and 42% while the high relative humidity levels (RH2) were 60%, 

54% and 48%. The measurements were carried out every 5 minutes until the stress 

reached a maximum value and then every 1 hr. During all measurements the 

temperature was held constant at 23 C. 

6.4 Results and discussion 

As mentioned in Chapter 4, to obtain wrapped phase of difference, four interferograms 

were recorded with 
2


 phase shift introduced between the interfering beams. An 

example of four interferograms obtained with 0 , 
2


,  , 

2

3
 phase shifts is shown in 

Figure 6.2. Since there is a   phase shift between the first and the third 

interferograms, Figure 6.2 (a) and (c), they appear out of phase. 

   

(a)                                                                    (b) 
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(c)                                                                   (d) 

Figure 6.2: Interferograms with (a) 0 , (b) 
2


, (c)   and (d) 

2

3
 phase difference. 

Figure 6.3 shows typical results of wrapped phase of difference maps,  yxw , , for 

non-aged urushi thin film during exposure to 30% RH for 5 min, 50 min, 100 min,  

1080 min, 2280 min and 4080 min, respectively. As shown in Figure 6.3, the wrapped 

phase of difference maps lie in the range ),(  . The changing in colour 

discontinuously from white to black means there is a phase jump of 2 . It is shown 

that in Figure 6.3 that the fringe frequency increases with exposure time reaching a 

maximum value after exposure time 100 min (Figure 6.3 (c)) followed by a decrease in 

the fringe frequency over long exposure time. Increasing the fringe frequency indicates 

that more wrapped out-of plane deformation while a decrease in the fringe frequency 

indicates less wrapped deformation. Unwrapped phase of difference maps, ),( yx , 

have been evaluated as shown in Figure 6.4. It can be seen that the 2  discontinuities 

have been removed by adding an appropriate integer multiple of 2  at each point in 

the wrapped phase of difference distribution. 
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(a)                                                                 (b) 

 

(c)                                                                 (d) 

 

(e)                                                                 (f) 

Figure 6.3: Wrapped phase of difference maps, ),( yxw , for non-aged urushi thin 

film when exposed to a humidity change from 75% to 30% for (a) 5 min, (b) 50 min, 

(c) 100 min, (d) 1080 min, (e) 2280 min and (f) 4080 min. 
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(a)                                                                 (b) 

 
(c)                                                                 (d) 

 
(e)                                                                 (f) 

Figure 6.4: Unwrapped phase of difference maps, ),( yx  for non-aged urushi thin 

film when exposed to a humidity change from 75% to 30% for (a) 5 min, (b) 50 min, 

(c) 100 min, (d) 1080 min, (e) 2280 min and (f) 4080 min. 

Using Eq. (4.7), the displacement distribution maps, ),( yx , can be extracted and is 

shown in Figure 6.5 for the same conditions in Figure 6.3 and Figure 6.4. Figure 6.6 
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shows the best fit of Eq. (4.8) to the experimental data, only showing the quadratic 

coefficients a , b  and c . 

 

(a)                                                                 (b) 

 
(c)                                                                 (d) 

 
(e)                                                                 (f) 

Figure 6.5: Displacement distributions maps, ),( yx , for non-aged urushi thin film 

when exposed to a humidity change from 75% to 30% for (a) 5 min, (b) 50 min, (c) 

100 min, (d) 1080 min, (e) 2280 min and (f) 4080 min. 
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(a)                                                                 (b) 

 

(c)                                                                 (d) 

 

(e)                                                                 (f) 

Figure 6.6: Least square fitting of the displacement distribution, ),( yx , using the 

quadratic coefficients for non-aged urushi thin film when exposed to a humidity 

change from 75% to 30% for (a) 5 min, (b) 50 min, (c) 100 min, (d) 1080 min, (e) 

2280 min and (f) 4080 min. 
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Figure 6.7 shows a contour representation of the displacement distribution shown in 

Figure 6.6(f). The orientation of the minor axis, m , is 2.36 rad. and the orientation of 

the major axis, M , is 3.93 rad. For this figure, the depth-averaged film stresses along 

the minor and the major axes, 1  and 2 , are 9.14 MPa and 7.51 MPa respectively. 

 

Figure 6.7: Displacement distribution contour for non-aged urushi film when exposed 

to a humidity change from 75% to 30% for 4080 min. 

Figure 6.8 shows a further comparison of the out–of plane deflection for non-aged 

urushi thin film when exposed to a humidity change from 75% to 30% for (a) 5 min, 

(b) 50 min, (c) 100 min, (d) 1080 min, (e) 2280 min and (f) 4080 min. As shown in 

Figure 6.8, the bi-material system experiences stress relaxation after an exposure time 

of 100 min in 30% RH. 

m 

M 
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Figure 6.8: Surface topography along the minor axis for non-aged urushi thin 

film/substrate system during exposure to 30% RH for different exposure times. 

As shown in Figure 6.9, the curvature ( K ) of a deformed substrate is related to the 

radius of curvature ( R ), based on the assumption of R , by 

2

21

rR
K


 ,     (6.1) 

where r  is the substrate radius. 

 

Figure 6.9: Relation between the radius of curvature and the deflection. 

Figure 6.10(a-c) shows the development of film curvature along the minor axis of non-

aged and aged urushi films exposed to a range of relative humidity levels, as a function 

 

R 

 r 

R -  
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of time. The general behaviour of the urushi film subsequent to a reduction in 

humidity from 75% is a positive deflection of the substrate (cusp towards the camera) 

which corresponds to a tension in-plane stress developing in the film. 

 

(a) 

 

(b) 
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(c) 

Figure 6.10: Curvature development as a function of time in non-aged and aged urushi 

films after changing the humidity from 75% to (a) 30%, (b) 36% and (c) 42%. 

Figure 6.11(a-c) shows the development of film stress in three different non-aged and 

aged urushi films during exposure to the low relative humidity levels, as a function of 

time. The stress peaks within about 2 hrs then relaxes over a longer time scale with a 

slight reduction in the magnitude of the stress. Semi-log (line-log) plots have been 

inserted in Figure 6.11 to illustrate the stress behaviour during the first 2 hrs. 
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(a) 

 

(b) 
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(c) 

Figure 6.11: Film stress development along the minor axis in non-aged and aged 

urushi films after changing the humidity from 75% to (a) 30%, (b) 36% and (c) 42%. 

Inserted plots are semi-log plots to illustrate the stress behaviour during the first 2 hrs. 

Solid lines are the predicted film stress, further discussion in Section 6.6.1. 

In order to compare the behaviour of the urushi to changes in humidity we plot three 

functions. Firstly we estimate the rate at which the stress develops in the period after 

the first step change in humidity occurs (Figure 6.12). Secondly, we note the peak 

tensile in-plane stress (Figure 6.13). Finally we determine the asymptotic stress values 

(  ) reached in the film (Table 6.1 and Table 6.2) by assuming that at long times, the 

relaxation can be modelled by a single relaxation function and fitting an exponential 

approach to the long time behaviour, approximated by 

)/(  t
B e 

       (6.2) 

where B  and   are fitting constants. We can attribute different physical mechanisms 

to the stages of deformation for the material when subjected to a reduction in relative 
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humidity. Shortly after the humidity is changed, the desorption of water leads to 

volume shrinkage and as a result of the adhesion to the glass substrate a compressive 

in plane stress (on the substrate) and its associated bending moment will be created. 

Because the substrate/film system is in equilibrium, a tensile stress develops in the 

film. Following this period we observe that tensile in-plane stress peaks after which 

there is a relaxation of the material. We believe that the most likely explanation for this 

behaviour is that the viscoelastic properties of the urushi lead to time dependent 

behaviour since the humidity and therefore hygral strain is maintained at a constant 

value once hydrothermal equilibrium is reached: we are observing stress relaxation in 

the material. In order to identify the physical processes, further investigation is 

required to quantify the moisture dependent material properties of urushi. The peak 

stress values and times for non-aged and aged urushi samples which were subjected to 

low relative humidity levels are shown in Table 6.1 and Table 6.2 and are plotted in 

Figure 6.13 as a function of the difference between storage (75%) and different low 

RH levels. This shows clearly that the absolute value of the in-plane stress scales with 

the size of the RH change. Figure 6.12 shows the rate at which the tensile stress 

develops in non-aged and aged urushi films as a function of the difference between 

storage (75%) and different low RH levels. As shown in Figure 6.12, the stress 

develops quickly with a change in humidity but it is not clear that the rate increases 

with increasing RH difference. 

Table 6.1: Maximum stress, time of peak occurrence, stress rate and the asymptotic 

stress values obtained for non-aged urushi films in response to different amounts of 

decrease in relative humidity. 

 

RHC 

(%) 

 

RH1 

(%) 

non-aged urushi 

max
 

(MPa) 

t 

(min) 

stress rate 

(MPa.min-1) 

asymptotic stress ∞ 

(MPa) 

75 30 11.29 100  0.26  7.7454 

75 36 9.964 135  0.28  7.0395 

75 42 9.52 140  0.2  7.3016 
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Table 6.2: Maximum stress, time of peak occurrence, stress rate and the asymptotic 

stress values obtained for aged urushi films in response to different amounts of 

decrease in relative humidity. 

 

RHC 

(%) 

 

RH1 

(%) 

aged urushi 

max
 

(MPa) 

t 

(min) 

stress rate 

(MPa.min-1) 

asymptotic stress ∞ 

(MPa) 

75 30 8.357 85  0.3  6.026 

75 36 7.454 60  0.27  6.0071 

75 42 7.045 100  0.23  5.0982 

 

 

Figure 6.12: Stress rate in non-aged and aged urushi films as a function of the 

difference between storage (75%) and different low RH levels. 
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Figure 6.13: Effect of relative humidity changes RH (RHC to RH1) on the peak film 

stress developed in non-aged and UV-aged urushi films. 

6.5 Experimental errors analysis 

It was observed that the rms error, Eq. (4.20), was below 0.17 m for the time between 

1Ct  and the time at which the stress peaked, corresponding to 1.2% of the maximum 

deflection at peak stress. For small deformations of the glass substrate, this error is 

mainly due to the high spatial frequency nature of the phase noise. For large 

deformations of the substrate, i.e. at peak stress, the rms error was at most 0.17 m for 

the biggest RH step from 75% to 30%, and reflects not only the spatial variations of 

the measured displacements but the truncation error of the second order polynomial 

used to approximate what in reality is not exactly a parabolic displacement field. To 

obtain an estimate of the error associated with the calculated stress, an error 

propagation analysis was performed for non-aged urushi film when RH changes from 

75% to 30% (the RH change which produced the maximum peak stress of 11.29 MPa 

as shown in Table 6.1). This used the experimental parameters 
stu = 5 m, 

ftu = 2 m, 

u = 0.1749 m, ru = 18 m, st  = 190 m,  t f = 21 m,   = 14.32 m and r  = 8 

mm. The individual contributions obtained from Eq. (4.21) to Eq. (4.24) to the overall 

uncertainty u  are shown in Table 6.3. It can be observed that the film thickness ft  

has the greatest contribution on the error of the estimated average film stress while the 
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displacement   and the distance from the centre to where the displacement is 

measured, r , have the lowest contributions. The overall uncertainty is then 

approximately 1.4 MPa, for the state described, resulting in an error of less than 13% 

of the absolute stress observed. 

Table 6.3: The uncertainty in the average film stress   due to the substrate thickness 

st , the film thickness ft , the displacement   and the distance from the centre to 

where the displacement is measured, r . 

stu  (MPa) 
ftu (MPa) u

 
(MPa) ru  

(MPa) u
 
(MPa) 

0.65 1.22 0.14 0.05
 

1.39 

When the urushi films are subjected to an increase in relative humidity (RH1 to RH2), a 

similar behaviour to that seen during desorption is observed. Due to water ingress, we 

naturally anticipate that there will be a volume increase, and a compression in-plane 

stress is observed that supports this. Similar to that observed for desorption, we 

observe an initial region of rapid in-plane stress change, followed by a peak and 

relaxation to the asymptotic value. In this case however, the magnitude of the relative 

humidity changes is small and the behaviour is correspondingly weaker (Figure 6.14(a-

c)). 

 

(a) 
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(b) 

 

(c) 

Figure 6.14: Film stress development along the minor axis in non-aged and aged 

urushi films after changing the humidity from (a) 30% to 60%, (b) 36% to 54% and (c) 

42% to 48%. 

The behaviour observed following a humidity change is broadly consistent regardless 

of whether the material has been aged or not. The patterns we observe are similar, but 

we do observe significant differences in the absolute values. In general, for large 

reductions in relative humidity, the aged films exhibit a smaller in-plane stress than the 

non-aged materials. For example, we observe a ~30% reduction in the peak tensile 

stress in Figure 6.11(c), which is replicated for other changes in relative humidity, and 

applies to the asymptotic stress as well. When RH changes from 30% to 60% and from 
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36% to 54%, the aged films exhibit a higher in-plane stress than the non-aged materials 

(Figure 6.14a-b). When RH changes from 42% to 48%, the picture for the rehydration 

is much less clear, and it is difficult to obtain good trend from simply looking at the 

comparisons (Figure 6.14 (c)). For the relaxation following the peak stress, similar 

behaviour was observed for the asymptotic stresses for the desorption part of the tests 

(Figure 6.11) however, for the rehydration the in-plane stress changes are much 

smaller in magnitude (Figure 6.14). 

The peak stress values and times for non-aged and aged urushi films when going from 

RH1 to RH2 are shown in Table 6.4. To obtain a better view of the trends when we go 

from RH1 to RH2 we plot the peak stress values and the relative humidity differences 

for both the aged and the non-aged films in Figure 6.15. 

Table 6.4: Maximum stress and time of peak occurrence obtained for non-aged and 

aged urushi films in response to different amounts of increase in relative humidity. 

RH1 

(%) 

RH2 

(%) 

non-aged urushi aged urushi 

max
 

(MPa) 

t 

(min) 
max

 

(MPa) 

t 

(min) 

30 60 -10.1 75 -12.16 15 

36 54 -6.041 130 -7.655 165 

42 48 -2.341 120 -2.2 200 

 

Figure 6.15: Effect of relative humidity changes RH (from RH1 to RH2) on the peak 

film stress developed in non-aged and aged urushi films. 
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We observe different gradients to those observed in Figure 6.13, but at this stage, we 

are unable to determine the physical cause of this phenomenon since the in-plane stress 

states are different (compressive and tensile) and there is no overlap in the change of 

relative humidities in the figures. This suggests that in order to be able to fully describe 

the temporal and spatial evolution of the strain and stress fields, a complete assessment 

of urushi thin layer mechanical properties is required, but in subsequent sections we 

will show that a simplified model can reproduce some of the key features that we 

observed. 

6.6 1D Model of stress development in urushi layers 

Having observed the response of the material to changes in relative humidity (Section 

6.4), we now propose a 1D model that will be used to characterise and predict urushi 

behaviour. We will show how this model can describe the observed behaviour of the 

urushi thin layers and then go on to demonstrate the model‟s potential for applications 

in this area. 

6.6.1 Hygral stresses induced by absorption of moisture 

The experimental observations of the stress response over time (Section 6.4) indicate 

that the system responds to both changes in moisture content and relaxation of the 

stresses in the material, with the moisture changes dominating initially, followed by a 

period in which the relaxation is stronger. Under these conditions, we can consider an 

isotropic plate in plane stress subject to the biaxial mechanical stresses 1 and 2 , 

moisture change M , in percentage, and temperature change T . In this case the 

strain components 1 and 2  are given by 

TM
EE

TM
EE















21
2

21
1

    (6.3) 

where   is the thermal expansion coefficient,   is the hygroscopic expansion 

coefficient,   is Poisson‟s ratio and E  is Young‟s modulus. For the case where 1 , 

2  and T  are all zero, we are left therefore with the hygral strains 



Stress Response of Urushi Films under Changes of Environmental Conditions  

 

100 

MHH   21  assuming the film is isotropic. The film is however unable to 

expand due to the underlying substrate, giving rise to hygral stresses HH
21    where 

M
E

E HH


















1

1
11

     (6.4) 

To describe the stress relaxation over time we employ a three-element viscoelastic 

material model given by the equation [87] 

)/exp()/exp(1)(  tEtEt 




    ,  (6.5)

 

where   is the time constant for the model,   is the magnitude of the imposed strain 

step, and E  and E  are respectively the relaxed and instantaneous moduli [87]. The 

effective relaxation function, )(tR , is therefore 

)/exp()/exp(1)(  tEtEtR 




    .   (6.6) 

The stress for a general strain history, )(t , is 

 dtRt

t
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which for the model considered here, with 0)( t  for 0t , can be written 
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where 
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1
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k      (6.8) 

and 
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1
2

E
k .     (6.9) 

Thus, the material response to a change in moisture content is characterised by the 

three parameters 1k , 2k  and  , which are themselves combinations of the material 

properties. 

The values of 1k , 2k , and  , for each combination of RH and ageing can be 

determined from the experimental data shown in Figure 6.11(a-c) by fitting Eq. (6.7) to 

the data. To do this, the moisture contents at equilibrium at 30%, 36% and 42% RH for 

non-aged and aged urushi were extracted from the asymptotic moisture content at 

equilibrium results shown in Figure 5.7. Having obtained the moisture contents at 

equilibrium (at 30%, 36% and 42% RH) and a single value of D  and M  when RH 

changes from 75%30% (Table 5.1 and Table 5.2), these were then inserted into the 

diffusion model (Eq.(5.19)) over the timescales used in Figure 6.11(a-c) to get a 

prediction of the moisture content as a function of time at 30%, 36% and 42% RH 

(Figure 6.16). As shown in Figure 6.16, the response is more rapid than in Figure 5.1 

and Figure 5.2 because of the thinner film thickness (20 µm). The term 
d

dM
 (in Eq. 

(6.7)) is proportional to the strain gradient and was determined by calculating the 

gradient of the moisture contents versus time (Figure 6.16). 

 

(a) 
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(b) 

Figure 6.16: Predicted moisture contents for (a) non-aged urushi films and (b) aged 

urushi films when RH changes from 75% to 30%, 36% and 42%. Markers provide for 

clarity. 

As shown in Figure 6.11(a-c), the fitting of Eq. (6.7) is reasonably good over the time 

ranges interrogated for all three curves and the rheological parameters 1k , 2k  and   

obtained for non-aged and aged urushi are shown in Table 6.5 and Table 6.6. The 

parameters show no obvious dependency on RH but there does, however, appear to be 

a systematic upward shift in relaxation time   as the humidity level rises for the non-

aged material. For the aged material, the picture is similar, although the data is 

somewhat confused for the shift from 75% to 42%. 

Table 6.5: Summary of best-fit viscoelastic model parameters for non-aged urushi. 

Humidity change 
1k  (MPa) 2k  (MPa)   (min) 

75%30% 5.79 8.34 1.9E+3 

75%36% 5.36 7.94 2.0E+3 

75%42% 4.72 6.46 3.1E+3 

 



Stress Response of Urushi Films under Changes of Environmental Conditions  

 

103 

Table 6.6: Summary of best-fit viscoelastic model parameters for aged urushi. 

Humidity change 
1k  (MPa) 2k  (MPa)   (min) 

75%30% 3.35 5.18 5.4E+3 

75%36% 3.85 4.73 1.4E+3 

75%42% 0 4.40 4.1E+4 

 

6.6.2 A 1D model for multiple layers of urushi on a substrate 

The agreement between the 1D model and the experimental observation (Figure 6.11 

(solid lines)) suggests that the important behaviour is being captured by the model. In 

practice, urushi is most often found in multiple layers. A natural extension to the 

model, therefore, is to incorporate further layers of urushi. To demonstrate the 

possibility, we consider a domain consisting of two layers of urushi, constrained in the 

lateral direction by the presence of an infinitely stiff and impermeable substrate as the 

lower most boundary and a completely permeable interfacial layer. The moisture 

content at the upper most boundary is fixed by the relative humidity in the 

environment (Figure 6.17). 

 

Figure 6.17: Schematic of the substrate and two urushi layers. The bottom layer is 

aged urushi layer, while the upper layer is non-aged urushi layer. 

The problem is solved sequentially. First we solve the diffusion equation (Eq. (5.19)) 

using a finite-difference approximation to find the moisture content distribution within 

each layer. A time step of 0.01 min was employed throughout the analysis, and the 

number of spatial nodes varied until we obtained a mesh independent solution. The 

depth averaged moisture content in each layer was then calculated from the time-

dependent moisture profile, and the gradient determined. The initial gradient was 

obtained by examining the short time behaviour at successively shorter time steps until 

Aged urushi 

 

Non-aged urushi 

 

Substrate 
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the initial gradient was independent of the time step. This gradient was then taken as 

the gradient of the depth averaged moisture content at 0t . The boundary conditions 

were a fixed moisture content at the upper surface specified by the relationship in 

Figure 6.17, a zero flux condition at the base representing an impenetrable barrier at 

the base and we assume that the flux at the layer-layer interface is controlled by a 

diffusion coefficient that is an average of the two layers‟ diffusion coefficients. The 

model was validated by comparing against the numerical solution expected for a single 

layer of the same depth, and the analytical solution of a single layer, with agreement 

observed. The gradient of the depth averaged moisture content for each layer was then 

inserted into Eq. (6.7) and the stress calculated using the material properties 1k , 2k  

and   determined previously in Section 6.6.1. 

This model was used to investigate the development of stress as a function of upper 

layer depth when placed upon a much thicker support layer. The bottom layer was set 

to be 500 µm, and represented an aged layer. We then envisage a scenario where there 

was a step change in RH (45% RH) resulting in a change of moisture content of -

1.31% and then used our model to determine the stress evolution. Figure 6.18 shows 

the depth averaged stresses in the upper and bottom layers, respectively. We see that 

the stress developed in the upper layer is significantly larger than that in the lower 

layer, but that the form of the stress distribution is similar. This simple model suggests 

significant complexity in the stress development in lacquers where conservation may 

have occurred through the addition of new layers of material and the layers are of 

significantly different age and depth. In both cases we observe that reducing the depth 

of the upper will result in an increase in both the maximum and asymptotic stresses, 

which can be attributable to the quick uptake of moisture and the rapid passing of 

moisture through the upper layer to the lower, when using thin upper layers. This 

model has the benefit of simplicity and may in the future be modified to include time 

varying RH, multiple layers and the effect of changes in the substrate, and will be 

effective in guiding the type of layers that should be employed to reduce the magnitude 

of stresses that a conserved urushi lacquer might suffer in environments of rapidly 

changing moisture content. 
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(a) 

 

(b) 

Figure 6.18: Predicted depth average stresses in urushi layers subjected to a change in 

moisture content of -1.31% at the upper surface for (a) the upper layer and (b) the 

bottom layer. 

6.7 Conclusions 

The stress response of cured non-aged and aged urushi films to different humidity 

levels has been measured using a phase shifting interferometer. This method has been 

shown to be able to resolve displacements in a bilayer to within 1.2% of the best 
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second order deflection approximation. We compared the behaviour of aged and non-

aged urushi films when subjected to changes in the environmental relative humidity. 

We observed similar modes of behaviour, with a strong indication of time dependent 

behaviour and a coupling of the diffusion and relaxation of the material, but we also 

observed that the in-plane stresses during desorption were higher for the non-aged 

urushi films and during adsorption were higher for the aged urushi films. The results 

indicate that the material properties are likely to be strongly affected by the moisture 

ingress during variation of the RH, and this depends on the amount of ageing the 

material has been subjected to. A 1D model has been developed and tested against the 

experimental observation, showing reasonable agreement. The hygroscopic expansion 

can be incorporated into the parameters of this model, so that only three parameters are 

needed. Despite the relatively small number of parameters, the model was found to 

capture the behaviour of non-aged and aged urushi films over several days following a 

step change in humidity level. As urushi is applied on the object in the form of 

multiple layers, an extension to the model has been developed to investigate the stress 

response in urushi layers. The extension of this model was used to predict the 

development of stress as a function of depth for non-aged urushi layer covered an aged 

layer. The model suggests that a reduction in the layer depth leads to an increase in the 

stress levels for both the upper and lower layer. The model also suggests an increase in 

the stress levels in the upper non-aged layer more than that in the lower aged layer. 
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Chapter 7 

Mechanical Properties of Aged and Non-aged 

Urushi Layers 

7.1 Introduction 

In order to fully characterise the mechanics of urushi layers it is necessary to 

determine the rheological behaviour of the material. In this Chapter, we will look to 

tensile, tensile creep and recovery tests of freestanding urushi films for this 

characterisation. We will present the results of experimental studies that investigated 

the effect of moisture content and ageing on the mechanical properties of urushi films. 

The elastic modulus ( E ), tensile strength at break ( B ) and elongation at break ( B ) 

were determined from the tensile stress–strain curves for non-aged and aged urushi 

samples under three different RH levels. The effects of strain rates [88-91] on the 

mechanical characteristics of non-aged and aged urushi films were also studied. Creep 

and recovery tests have been performed to study the influence of RH and UV ageing 
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on the long-term viscoelastic behaviour of non-aged and aged urushi films. Based on 

the creep and recovery measurements, we will describe the viscoelastic properties 

using a Burger‟s style model, show how the rheological characterisation depends upon 

the RH, UV ageing and the applied stress. 

7.2 Methodology 

7.2.1 Material and sample preparation 

Urushi (kijiro type) samples were prepared for tensile and creep-recovery tests by 

using the preparation techniques described in Chapter 3 (Section 3.2.1 and Section 

3.2.2). Urushi was then cast using a spin coater (Section 3.2.4) onto 70 mm  50 mm 

rectangular glass substrates. The films were left to cure at room temperature at 752% 

RH for three weeks. After curing, the films were cut into rectangular strips of 60 mm  

5 mm. One subset of urushi samples was exposed to UV radiation for 400 hrs as per 

the method described in Section 3.3. The test pieces were then peeled from the glass 

substrate. The thickness of each urushi strip was measured with a Mitutoyo digital 

micrometer of 0.001 mm resolution. 

7.2.2 Tensile test 

Tensile tests [92-98] were performed on non-aged and aged urushi films up to failure 

with an Instron universal testing machine 5569 (100 N load cell), Figure 7.1. A relative 

humidity (RH) controllable chamber has been attached to the tester. The tensile tests 

were carried out under 30%, 50% and 75% RH. Prior to each test, the films were kept 

for 1 week under constant RH (30%, 50% and 75%) to be sure that the film reached 

equilibrium. 
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Figure 7.1: Instron tensile-test machine model 5569. 

The tensile test consists of a non-aged and aged free urushi strip that is placed between 

2 grips and then stretched at a constant rate until the film fractures. Under a given RH, 

samples were tested at tensile speeds of 0.002 mm/min, 0.02 mm/min and 0.2 mm/min 

which correspond to strain rates of 1.3  10
-6

 s
-1

, 1.3  10
-5

 s
-1

 and 1.3  10
-4

 s
-1

. These 

tensile speeds were chosen to be relatively low to reflect the long timescales of 

straining likely to be experienced by urushi films. The force and displacement values 

are recorded during the test and these data are converted to stress ( ) and stain ( ). 

7.2.3 Creep and recovery 

Creep recovery [87, 99-103] is one of the simplest tests for characterizing viscoelastic 

behaviour. The creep recovery behaviour is a rheological test method where a constant 

stress is applied to a material and its resulting deformation is recorded. The main 

objectives in these creep recovery tests were to measure how non-aged and aged urushi 

films will perform under different constant stresses [104-106] and different constant 

RHs [107, 108] and the effect of UV ageing on the rheological behaviour [109, 110]. 

During creep tests four different constant values of stress were used and the samples 

were maintained within an atmosphere of constant RH. The resulting strain is 

measured and plotted as a function of elapsed time. The tests were performed for non-

Humidity chamber 

100 N load cell 

Sample 

Grip  

Grip  
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aged and aged urushi films under 30%, 50% and 75% RH with a uniaxial tensile 

Instron testing machine 5569 (100 N load cell) (Figure 7.1). Prior to each test, the 

samples were first kept for 1 week under constant RH (30%, 50% and 75%) to be sure 

that the film reached equilibrium. The applied stresses have been chosen based on the 

tensile strength at break values, for non-aged and aged films, established during the 

tensile tests that have been performed at a tensile speed of 0.002 mm/min. The applied 

stresses were 30%, 50%, 60% and 70% of their tensile strength at break (Table 7.1 and 

Table 7.2). The applied stress values are tabulated in Table 7.3. Under each stress 

value, the stress held for 12 hrs during creep and the strain was monitored. For the 

recovery test, the stress was removed and the strain was monitored for 12 hrs. 

7.3 Results and discussion 

7.3.1 Tensile tests 

In order to investigate the effect of RH and UV ageing on the mechanical behaviour 

and properties of urushi films, the experimental results are represented in three ways. 

Firstly, the stress-strain curves as a function of RH for non-aged and aged urushi films 

are shown in Figure 7.2 and Figure 7.3 respectively. Secondly, the evaluated 

mechanical properties for both non-aged and age urushi films are plotted as a function 

of RH (Figure 7.5 and Figure 7.6) to find out the effect of RH on the mechanical 

properties of non-aged and aged urushi films. Finally, the stress-strain curves for both 

non-aged and aged urushi films as a function of the tensile speeds are represented in 

Figure 7.4 to evaluate the effect of the UV ageing and effect of the tensile speed on the 

tensile behaviour and properties. 

7.3.1.1 Effect of Humidity 

The stress versus strain curves for non-aged and aged urushi films under three different 

RHs and different tensile speeds (Figure 7.2 and Figure 7.3) were used to extract the 

tensile properties. The results of the tensile properties, tensile elastic modulus, tensile 

strength at break and elongation at break, are tabulated in Table 7.1 and Table 7.2. The 

tensile elastic modulus was calculated as the slope of the linear part of the    

curves (at %1.0 ). As to be expected for non-aged urushi films, it has been 

observed that increasing the RH, from 30% to 75% RH, leads to a decrease in the 
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elastic modulus. This behaviour has been observed with tensile speeds 0.002 mm/min, 

0.02 mm/min and 0.2 mm/min, Figure 7.2(a-c). This trend means that the non-aged 

urushi films become more flexible with increasing moisture content [10]. In aged 

urushi films, Figure 7.3(a-c), it is noticeable that brittle fracture took place instead of 

yielding and no plastic deformation was observed in the stress-strain curves at any RH 

or tensile speeds. Also, the stress levels, in comparison with the non-aged urushi films, 

seem to be less sensitive to RH changes. On the other hand, the elongation at break 

increases with increasing RH with tensile speeds 0.002 mm/min and 0.2 mm/min. It is 

likely that this can be related to a crosslinking reaction by the enzyme laccase over the 

whole region of the aged films [9]. 

 

(a)                                                               (b) 

 

(c) 

Figure 7.2: Stress versus strain for uniaxial extension for non-aged urushi films under 

different RH levels at (a) 0.002 mm/min, (b) 0.02 mm/min and (c) 0.2 mm/min. 
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(a)                                                               (b) 

 

(c) 

Figure 7.3: Stress versus strain for uniaxial extension for aged urushi films under 

different RH levels at (a) 0.002 mm/min, (b) 0.02 mm/min and (c) 0.2 mm/min. 

7.3.1.2 Effect of UV ageing 

To have a general view of the effect of the UV ageing and strain rate on the tensile 

behaviour of urushi film, the tensile behaviour for non-aged urushi together with the 

tensile behaviour of aged urushi films is plotted in Figure 7.4 under 30%, 50% and 

75% RH respectively. As shown in Figure 7.4, the ageing treatment changes the stress-

strain behaviour drastically in comparison with the non-aged urushi films. Importantly 

we see a substantial reduction in strain at failure, underlining that UV ageing is 

detrimental for urushi. 
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(a) 

 

 

 

(b) 
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(c) 

Figure 7.4: Stress versus strain for uniaxial extension of non-aged and aged urushi 

under (a) 30% RH, (b) 50% RH and (c) 75% RH at different tensile speeds. 

Table 7.1: Tensile elastic modulus ( E ), tensile strength at break ( B ) and elongation 

at break ( B ) for non-aged urushi at different tensile speeds for RH = 30%, 50% and 

75%. 

tensile 

speed 

(mm/min) 

30% RH 50% RH 75% RH 

E  

(GPa) 

B  

(MPa) 

B  

(%) 

E  

(GPa) 

B  

(MPa) 

B  

(%) 

E  

(GPa) 

B  

(MPa) 

B  

(%) 

0.002 2.2 46.63 5.989 1.7 35.23 10.56 1.3 30 15 

0.02 2.3 48 4.847 1.9 40 9.613 1.6 34 12.5 

0.2 2.3 58.56 4 2.1 47.55 6.467 1.5 35 9.5 
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Table 7.2: Tensile elastic modulus ( E ), tensile strength at break ( B ) and elongation 

at break ( B ) for aged urushi at different tensile speeds for RH = 30%, 50% and 75%. 

tensile 

speed 

(mm/min) 

30% RH 50% RH 75% RH 

E  

(GPa) 

B  

(MPa) 

B  

(%) 

E  

(GPa) 

B  

(MPa) 

B  

(%) 

E  

(GPa) 

B  

(MPa) 

B  

(%) 

0.002 2.2 28.59 1.494 2.1 40.55 2.821 1.5 28.7 3.8 

0.02 2.6 40.6 1.906 2.1 46.11 3.473 1.7 35.8 3.2 

0.2 2.6 31 1.267 2.2 40.35 2.067 1.9 44.8 3.5 

 
7.3.1.3 Mechanical properties 

The results of the tensile test experiments are summarized in Figure 7.5 and Figure 7.6. 

As shown in Figure 7.5(a-c), a significant reduction in tensile elastic modulus were 

observed with increasing the RH for non-aged and aged urushi films at all tensile 

speeds. For the highest RH, that is 75% RH, the average reduction in tensile elastic 

modulus was about 64.5% and 69% of the initial value (at 30% RH) for non-aged and 

aged urushi films, respectively. Also, the results show that the UV ageing resulted in 

an increase of the tensile elastic modulus and a decrease in the elongation at break for 

aged urushi film (Figure 7.6). 

 

(a)                                                               (b) 
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(c) 

Figure 7.5: Dependence of elastic modulus on RH for non-aged and aged urushi at (a) 

0.002 mm/min, (b) 0.02 mm/min and (c) 0.2 mm/min. Solid lines provide for clarity. 

The tensile strength at break for non-aged urushi films shows a significant reduction 

with increasing the RH at all tensile speeds (Figure 7.6), while a relative increase in 

tensile strength at break, at 50% RH, has been observed for aged urushi films at all 

tensile speeds. At 75% RH, the average reduction in tensile strength at break for non-

aged urushi films was about 65% relative to the initial values at 30% RH. For non-

aged urushi films, when the RH was increased, the reduction in tensile elastic modulus 

and tensile strength at break was accompanied by a strong increase in the elongation at 

break at all tensile speeds (Figure 7.6). Aged urushi shows a relative increase in the 

elongation at break with increasing RH at all tensile speeds (Figure 7.6). 
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(a) 

 

(b) 

 

(c) 

Figure 7.6: Dependence of tensile strength at break (left) and elongation at break 

(right) on RH for non-aged and aged urushi at (a) 0.002 mm/min, (b) 0.02 mm/min and 

(c) 0.2 mm/min cross-head speed. Solid lines provided for clarity. 
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The previous trends of the mechanical properties indicate that the compliance of non-

aged urushi films increases with the amount of water absorbed. This behaviour can be 

attributed to the fact that water serves the film as a plasticizer. The evolution of 

mechanical properties for non-aged urushi films is in good agreement with results 

already reported in literature [9, 10]. 

7.3.1.4 Effect of Strain rate 

It is important to characterize the effects of strain rate on the mechanical properties and 

tensile behaviour of urushi films. As shown in Figure 7.4(a-c), a strong strain rate 

dependency in non-aged and aged urushi has been observed under all RH levels. As 

the strain rate goes up (from 1.3  10
-6

 s
-1

 to 1.3  10
-4

 s
-1

), the flow stress increases 

and the rupture strain decreases drastically. This has been observed for non-aged 

urushi films tensile tests that have been undertaken for the range 30%, 50% and 75% 

RH. The elastic modulus, the tensile strength at break and elongation at break are 

shown in Figure 7.7 and Figure 7.8 as a function of strain rate for non-aged and aged 

urushi films, respectively (Table 7.1 and Table 7.2). 

 

 

(a)                                                               (b) 
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(c) 

Figure 7.7: Mechanical properties as a function of strain rate for non-aged urushi films. 

(a) tensile elastic modulus, (b) tensile strength at break and (c) elongation at break. 

Solid lines provided for clarity. 

 
(a)                                                               (b) 

 
(c) 

Figure 7.8: Mechanical properties as a function of strain rate for aged urushi films, (a) 

tensile elastic modulus, (b) tensile strength at break and (c) elongation at break. Solid 

lines provided for clarity. 
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For non-aged urushi films (Figure 7.7 (a)), the elastic modulus slightly increases at the 

strain rate ranging from 1.3  10
-6

 s
-1

 to 1.3  10
-5

 s
-1

. Figure 7.7(b and c) shows the 

tensile strength at break and the elongation at break plotted against the strain rate. An 

increase in the tensile strength at break and a decrease in the elongation at break as the 

strain rate increases are observed for all RH. These results reveal that non-aged urushi 

is sensitive to the rate of the tensile testing. For aged urushi films, the strain rate does 

not show any influence on the elastic modulus under 50% RH, while under 30% and 

75% RH The elastic modulus slightly increases with the strain rate (Figure 7.8(a)). As 

shown in Figure 7.8(b), under high RH (75%) a strong increase in the tensile strength 

with the strain rate is observed, while under 30% and 50% RH an increase and then a 

decrease in the tensile strength is observed with increasing the strain rate.  

7.3.2 Creep recovery test 

Figure 7.9 - Figure 7.14 show the creep and creep recovery curves for non-aged and 

aged urushi films under 30%, 50% and 75% RH at different stress values. The curves 

all show two stages of creep, primary followed by a stabilization period characteristic 

of secondary creep. The experiments were completed before the tertiary stage was 

observed here since it was unlikely to be experienced on the Mazarin Chest. 

The creep curves form a consistent set at all stress levels for the non-aged and aged 

films at all RH levels, where increasing stress levels lead to an increase in the creep 

deformations. It was noticeable that the non-aged urushi films at 30% RH show less 

resistance to deformation than the aged films at the same RH (Figure 7.9 and Figure 

7.10). The overall deformation levels of non-aged films at 30% RH were very close to 

the deformation levels at 50% RH, Figure 7.9 and Figure 7.11. While at 75% RH, 

Figure 7.13, the overall deformation levels of non-aged films were noticeably higher 

than those at 30% (Figure 7.9) and 50% RH (Figure 7.11) suggesting that the films 

tend to be more flexible at 75% RH. On the other hand, as shown in Figure 7.10, 

Figure 7.12 and Figure 7.14, increasing the RH in aged films leads to a significant 

effect in lowering their stiffness. 
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Figure 7.9: Creep recovery curves for non-aged urushi films under 30% RH at 

different stress values. 

 

Figure 7.10: Creep recovery curves for aged urushi films under 30% RH at different 

stress values. 
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Figure 7.11: Creep recovery curves for non-aged urushi films under 50% RH at 

different stress values. 

 

Figure 7.12: Creep recovery curves for aged urushi films under 50% RH at different 

stress values. 
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Figure 7.13: Creep recovery curves for non-aged urushi films under 75% RH at 

different stress values. 

 

 

Figure 7.14: Creep recovery curves for aged urushi films under 75% RH at different 

stress values. 



Mechanical Properties of Aged and Non-aged Urushi Layers  

 

124 

7.3.3 Isochronous stress-strain 

In order to know whether the material is linear or non-linear viscoelastic, it is more 

convenient to construct a series of isochronous stress-strain curves [111, 112]. An 

isochronous stress-strain curve is a plot showing how the strain depends on the applied 

load at a specific point in time after application of the load. On the basis of 

experimental creep curves presented in Figure 7.9 to Figure 7.14, isochronous creep 

curves were obtained and presented in Figure 7.15 to Figure 7.17 for non-aged and 

aged urushi samples under 30%, 50% and 75% RH, respectively. Seven curves are 

plotted in each figure, corresponding to times 15 min, 30 min, 45 min, 60 min, 120 

min, 180 min and 240 min. To obtain an isochronous stress-strain curve for previous 

times (say 15 min), we read off the strain at 15 min from each creep curve and plot 

these strain values against the corresponding stress values. This process was repeated 

for other times to obtain a series of isochronous curves. 

As shown in Figure 7.15 to Figure 7.17, the total strains all increase with the increase 

of applied stresses over the whole range of testing times with different degrees. The 

higher the level of stress is, the greater the degree of strains increases. 

Isochronous stress-strain curves (Figure 7.15 to Figure 7.17) show that the behaviour 

approximates linear viscoelasticity for non-aged and aged urushi films in the range of 

stresses which were used in the investigations. The average coefficients of 

determination (R
2
) were found to be about 0.98, 0.98 and 0.97 for non-aged urushi 

films under 30%, 50% and 75% RH respectively. In aged urushi films, R
2
 were found 

to be about 0.98, 0.99 and 0.99 under 30%, 50% and 75% RH respectively. However, 

non-liner viscoelasticity has been observed for non-aged urushi films at 75% RH 

(Figure 7.17(a)). 
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(a) 

 

(b) 

Figure 7.15: Isochronous creep curves of (a) non-aged and (b) aged urushi films under 

30% RH. 
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(a) 

 

(b) 

Figure 7.16: Isochronous creep curves of (a) non-aged and (b) aged urushi films under 

50% RH. 
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(a) 

 

(b) 

Figure 7.17: Isochronous creep curves of (a) non-aged and (b) aged urushi films under 

75% RH. 
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Based on the experimental creep recovery curves, the applied stress values ( ) and the 

percent of elastic recovery ( R ) for non-aged and aged urushi films under 30%, 50% 

and 75% RH are presented in Table 7.3. The variation of the elastic recovery with the 

applied stress is presented in Figure 7.18. As was expected, it has been observed that 

the percentage recovery decreases as we increase the applied stress for both non-aged 

and aged urushi films at all relative humidities (Figure 7.18). The non-aged urushi 

films exhibited higher amount of elastic recovery with increasing the stress than the 

aged films at 30% RH (Figure 7.18a). At elevated RH, 50% and 75% RH (Figure 

7.18b,c), the aged urushi films recovered with higher amount than that of non-aged 

urushi films which indicate the strong influence of UV ageing on the films. Figure 

7.19 shows the variation in elastic recovery for aged urushi films with stress at the 

lower and the higher RH, 30% and 75%. At   = 20 MPa the amount of elastic 

recovery is almost the same at 30% and 75% RH. While at lower stress,   = 9 MPa, 

the amount of elastic recovery at 30% RH was higher than that at 75% RH. 

Table 7.3: Stress values and elastic recovery values for non-aged and aged urushi films 

used during creep test under 30%, 50% and 75% RH. 

urushi 
30% RH 50% RH 75% RH 

  (MPa) 
R  (%)   (MPa) 

R  (%)   (MPa) 
R  (%) 

non-aged 

14 96.44 10.5 93.64 9 96.6 

23 90.94 17.5 85.43 15 79.39 

28 84.75 21 80 18 76.82 

32 82.31 24.5 77.85 21 76.01 

aged 

9 99.76 12 95.35 9 90.43 

14 100 20 90.33 14 88.37 

17 86.73 24 85.31 17 82.81 

20 79.65 28 78.98 20 78.95 
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(a) 

 

(b) 
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(c) 

Figure 7.18: Variation of elastic recovery with the applied initial stresses for non-aged 

and aged urushi under (a) 30%, (b) 50% and (c) 75% RH. 

 

Figure 7.19: Variation of elastic recovery with the applied initial stresses for aged 

urushi under 30% and 75% RH. 
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7.3.4 Viscoelastic properties of urushi 

Creep modelling is of considerable interest in creep analysis for viscoelastic materials. 

Different models have been reported in the literature [99, 101, 112] for viscoelastic 

polymeric materials. These models can be classified into physical models and 

empirical models based on the interpretation of the parameters. Among these models, 

Burger‟s model is the most commonly used physical model. A generalized Burger‟s 

model has one Maxwell unit and one or multiple Kelvin units connected in series. It 

divides the creep strain of a polymeric material into three parts: instantaneous 

deformation resulting from the Maxwell spring, viscous deformation resulting from the 

Maxwell dashpot and viscoelastic deformation resulting from Kelvin units. 

In this work, a four-element Burger‟s model (one Kelvin unit) was used to characterize 

the creep curves of non-aged and aged urushi films (Figure 7.20(a)). The parameters 

from the 4-element Burger‟s model were easily interpretable due to their physical 

meanings. According to Burger‟s model, the creep behaviour is described as the sum 

of the instantaneous elastic strain 1 , steady creep strain 2  and transient creep strain 

3 , controlled by Maxwell spring, Maxwell dashpot and Kelvin unit respectively as 

shown in Figure 7.20(b). During recovery, the instantaneous strain is reversible and 

recovers immediately on removal of the stress at 1t  due to Maxwell spring effect. 3  

recovers gradually with time, while 2  is unrecoverable deformation due to the 

viscous flow (denoted as r
3  and r

2 in Figure 7.20(b)). The system deformation ε (t) is 

given by [112]  
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where )(t  is the creep strain at time t ,   is the stress, 1E  and 1  are the 

instantaneous elastic modulus of the spring and viscosity of the dashpot in the 

Maxwell unit, and 2E  and 2  are elastic modulus of the spring and viscosity of the 

dashpot in Kelvin unit. 
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(a) 

 
(b) 

Figure 7.20: A diagram of generalized Burger‟s model. 

In this work, 1E , 2E  and 1  were separately calculated for each of the four levels of 

stress for non-aged and aged urushi films (presented in Figure 7.9 to Figure 7.14). The 

value of measured strain at t = 0 was taken as instantaneous elastic strain 1 , allowing 

us to calculate 1E  from 
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1
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  .     (7.2) 

The tangent of each creep curve at 1t  was evaluated where its rate of change (
1


) was 

used to calculate 1  and its value at t = 0 was used to calculate 2E  (Figure 7.20(b)). 

Having obtained 1E , 2E , 1  we are then able to determine 2  by inserting the known 

elements into Eq. (7.1) leaving 2  as the only unknown, i.e., 
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2  can then be obtained from Eq. (7.3) using regression. The recovery viscosity r
1  

was calculated using 

r

r t

2
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  ,     (7.4) 

where r
2  is the unrecoverable strain during recovery. 

The parameters of Burger‟s model, 1E , 2E , 1  and 2 , during creep and the recovery 

viscosity, r
1 , were calculated for each stress for non-aged and aged urushi (Appendix 

A1 and Appendix A2). Figure 7.21 and Figure 7.22 show the variations of the average 

of these parameters,  1E ,  2E ,  1 ,  2  and  r
1  with RH. For both 

non-aged and aged urushi films, increasing RH leads to a decrease in  1E ,  2E , 

 1 ,  2  and  r
1  (Figure 7.21 and Figure 7.22). The decrease in  1E  and 

 2E  under elevated RH indicates that urushi films, non-aged and aged, become soft 

[10] leading to increase the instantaneous and the viscoelastic deformations. The 

decrease in  1  and  2  with RH is evidence of the effects of the higher 

mobility of molecular chains and lower glass transition temperature at higher RH. This 

is consistent with the previous discussion that increasing plasticizer concentration 

increases the molecular mobility (Section 7.3.1.3). It has been found that  1  and 
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 2  for aged urushi film are higher than those for non-aged films at all RH values 

(Figure 7.21(c-d) and Figure 7.22(c-d)) indicating that the ageing treatment results in 

slowing down of the rheological processes and can be related to the shift in the glass 

transition temperature and increases in the cross-links density as reported by Obataya 

et al [20]. 
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(a)                                                                  (b) 

 

(c)                                                               (d) 

 

    (e) 

Figure 7.21: Variation of parameters in a Burger‟s model with RH for non-aged urushi 

films. 
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(a)                                                                (b) 

 

(c)                                                                (d) 

 

(e) 

Figure 7.22: Variation of parameters in Burger‟s model with RH for aged urushi films. 
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7.4 Conclusions 

Tensile stress-strain and creep recovery tests were conducted to investigate the effects 

of humidity on the mechanical properties and the viscoelastic behaviour of non-aged 

and aged urushi films. A strong dependence of the stress-strain behaviour on the strain 

rate and RH has been observed for non-aged urushi films, while the aged films showed 

less sensitivity to the strain rate and RH variation in comparison to the non-aged films. 

The effects of strain rate and RH on the mechanical properties of non-aged and aged 

urushi films at different strain rates were characterized. 

The elastic modulus, tensile strength and elongation at break of non-aged urushi films 

are found to be strongly dependent on the strain rate. As the strain rate increases, these 

films show a decrease in elongation and an increase in the elastic modulus and tensile 

strength at break. The aged films show that the elastic modulus increases as the strain 

rate increases. 

The UV ageing resulted in a strong decrease of elongation at break under the RH levels 

used in this study. At all strain rates used, a significant reduction in tensile elastic 

modulus and an increase in the elongation at break were observed with increasing the 

RH for non-aged and aged urushi films. As a result of the ageing process, the UV 

ageing films showed higher tensile elastic modulus and lower elongation at break than 

the non-aged films with increasing the RH. The creep tests show that the overall 

deformation levels of non-aged and aged films increase with increasing the RH. This 

behaviour can be explained considering that high humidity plays the role of a 

plasticizer, allowing more chain movement. 

The creep and recovery tests results were used to calculate the viscoelastic properties 

represented by Burger‟s model parameters, for non-aged and aged urushi film, under 

30%, 50% and 75% RH. Increasing the humidity showed a strong effect on all 

parameters in Burger‟s model, where increasing RH leads to a significant decrease in 

these parameters. It is found that dry environment, at 30% RH, hinders the molecular 

chains mobility in non-aged and aged urushi materials. UV ageing treatment showed a 

large impact on the viscoelastic properties leading to increase  2E ,  1  and 

 2  under the same RH. This change suggests that UV ageing resulted in an 

increase in the cross-linked density. 
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Chapter 8 

Feasibility Study on the Experimental 

Assessment of the Mechanical Effects of 

Traditional Japanese Consolidation on Aged 

Urushi Films 

8.1 Introduction 

Over 4 centuries of fluctuating environmental conditions have led to the formation of 

micro-cracks on the main urushi-covered surfaces in the Mazarin Chest. The 

traditional Japanese consolidation method of lacquerware objects, known as urushi-

gatame, consists in applying a diluted layer of fresh urushi to the damaged (aged) 

surface in order to fill any micro-cracks and restore its original gloss [113]. It is 

unknown, however, whether this procedure is effective in arresting crack propagation 

in the long term or whether it would accelerate damage mechanisms leading to 
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propagation of pre-existing micro-cracks. This poses a dilemma to Western museum 

curators and restorers, whose approach to conservation is based on minimum impact 

on the art piece, as opposed to their Japanese counterparts, who would apply the 

traditional methods used in the creation of the art piece to bring it back to its original 

appearance, even if this means adding or removing substantial parts of it. 

Consolidated urushi can be effectively seen as a mechanical system consisting of a 

stack of thin films with dissimilar mechanical properties (Enon-aged = 1.9 GPa; Eaged= 

2.13 GPa; CHEnon-aged=0.00266 wt %; CHEaged=0.00113 wt %). Whilst a protective 

layer of new non-aged urushi may reduce the surface area through which moisture is 

absorbed and delay the response of the aged film as a result, it is still uncertain how the 

different properties would compound to arrest or alternatively to promote crack 

growth. 

The displacement or strain fields around the crack tip on a plane along which the crack 

propagates (cross section of the crack) can be used to evaluate the stress intensity 

factors with which the maximum stress can be estimated [114]. In the case of the 

micro-cracks in urushi films, which would be classed as Mode I fractures, this means 

that measurements of the strain field on a plane “through the thickness” of the films 

would be required. We are not aware of any technology able to provide such 

information for polymeric materials at the spatial scale required (field of view of ~100 

m
2
), in a non contact way, with the required strain sensitivity and in a plane 

transverse to the plane of the film. We have access, however, to the surface of the film. 

In order to assess the effect of the traditional Japanese urushi gatame consolidation, an 

experiment was designed to measure displacement fields around a controlled groove 

(representing a crack) on an aged urushi film before and after the consolidation 

procedure. The basic idea, illustrated in Figure 8.1, is to measure the displacement 

field across a crack (or „v‟ groove) in the plane of the film surface when the substrate 

expands and strains the film. We will assume that no residual stresses are present and 

that we have a long groove, i.e. it is not growing in length by propagating the crack on 

the plane of the film. Under uniform strain, a crack-free film as illustrated in Figure 

8.1(a) will show a linear displacement field )(xu . Four points on the film surface, 

identified as A, B, C and D, will show displacements Au , Bu , Cu  and Du , 
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respectively. Figure 8.1(b) shows these displacements relative to point A, and for this 

reason 0Au . The constant slope 
x

ux




 of the graph indicates a uniform longitudinal 

strain x , shown in Figure 8.1(c). In the presence of a crack, however, it is expected 

that an anomaly would appear in the displacement field measured around the crack, 

indicated at x=0 in Figure 8.1(d), as either side of the crack would be unable to 

transmit surface stress as before, and for a deep crack they could even behave like de-

coupled film surfaces. As a result, point B will lag behind point C in terms of 

horizontal displacement relative to A, and the displacement and strain profiles would 

resemble the ones shown in Figure 8.1(e) and (f). Measuring this displacement 

anomaly for thin, stiff films could be a challenge, as it would be effectively equivalent 

to measuring shear lag through the thickness of the film, and the expected 

displacements could be very small. As the consolidation treatment restores the film 

surface by filling the cracks with fresh urushi, see Figure 8.1(g), the question that 

remains is whether there are still localized strains (due to displacement anomalies) 

around the crack that could eventually activate the crack and propagate it towards the 

substrate, Figure 8.1(h) and (i). Finally, the same question would apply a long time 

after the consolidation treatment, after the restoring urushi has aged, see Figure 8.1(j)-

(l). It is important to note that we limited this study to the case where the substrate 

deformation plays the dominant role as the loading mechanism. No changes in 

humidity or temperature were permitted in our experiment, but these cannot be ignored 

in a complete study, which is beyond the scope of this thesis. Even though no strain 

measurements have been performed on the Mazarin chest, museum curators have 

observed a shrinkage of about 2 cm across the centre of the lid (70 cm wide), 

corresponding to a strain level of 0.028, dominated by the shrinkage of the wood 

structure due to low relative humidity. 
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Figure 8.1: Schematic representation of the experimental stages. 
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In order to measure in-plane displacements around the crack, a high spatial resolution, 

high displacement sensitivity, non-contact method is required, all of these well known 

characteristics of Digital Speckle Pattern Interferometry (DSPI). In Section 8.2 some 

basic concepts of the speckle effect are presented, along with the fundamental 

principles of DSPI and the displacement sensitivity of the technique. Section 8.3 

describes sample preparation and loading, Section 8.4 the physical implementation of 

the interferometer, Section 8.5 the measurement methodology and the results obtained, 

and finally Section 8.7 some concluding remarks. 

8.2 Digital speckle pattern interferometry 

8.2.1 The Speckle effect 

When coherent light is reflected or scattered from a rough surface (Figure 8.2), the 

optical wave arriving at any point on the observation plane consists of the 

superposition of many waves, each arising from a different point in the illuminated 

surface. The path lengths travelled by these waves, from source to object point to the 

observation plane, can differ from zero to many wavelengths, depending on surface 

roughness and the geometry of the system. Interference of the de-phased waves 

arriving at the observation plane will cause the resultant irradiance varying from dark 

to fully bright. This variation in resultant irradiance from one receiving point to 

another is the cause of laser speckle. These speckles are normally observed to be 

randomly distributed in space in the form of bright and dark spots (Figure 8.3). 

 

Figure 8.2: Speckle formed by interference of scattered coherent light. 
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Figure 8.3: Speckle pattern resulting from interference of scattered waves. 

Speckle techniques can be basically classified into two types: (1) those based on 

positional shift of the speckles, and (2) those based on irradiance changes of the 

speckles. Speckle photography includes all those methods where positional changes of 

speckles are monitored, whereas speckle interferometry includes methods that are 

based on the measurements of phase changes and hence irradiance changes [115]. 

8.2.2 Digital speckle pattern interferometry  

The basic principles of speckle interferometry go back to the famous article of 

Leendertz [116]. This paper was the first to propose combining speckle interferometry 

with electronic detection and processing. With advances in digital recording and 

computing facilities, DSPI has evolved from electronic speckle pattern interferometry 

(ESPI) and was adopted to study a broad range of problems in applied mechanics. In 

DSPI, image subtraction, transforming, exporting, and various kinds of pre-processing 

can be performed flexibly and rapidly. It is an optical measuring technique that allows 

rapid and highly accurate measurement of deformations. Furthermore, in comparison 

with other techniques for strain measurement or calculation, DSPI enjoys the 

advantages of being non-contact, full-field, has a high spatial resolution, high 

sensitivity, delivers accurate displacement data and does not require any costly surface 

preparation. It can be applied to any material provided that the surface is sufficiently 

rough and the laser light is diffusely reflected [115]. An increased number of 

applications of DSPI for in-plane deformation and displacement measurements with 

one-dimensional sensitivity and two dimensional (2-D) sensitivities have been reported 
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[117-121]. The dual-beam optical arrangement of Leendertz [116] is normally used in 

these applications. 2-D in-plane deformation can be obtained using two orthogonal sets 

of Leendertz dual-beam systems by different means. 

8.2.3 Dual-beam illumination arrangement for measuring in-plane 

displacements 

Figure 8.4 shows a schematic representation of an optical configuration which is used 

for the measurement of the in-plane displacement component along the x axis. In this 

case, the object surface is supposed to lie in the xy  plane. The surface is illuminated 

by two collimated beams of coherent light propagating parallel to the xz  plane and 

incident at equal angles   to the observation direction on either side of the surface 

normal, which lies parallel to the observation direction. The two beams generate their 

own speckle patterns which are combined coherently and form a resulting speckle 

pattern at the detector of a CCD camera. The intensity distribution of the speckle 

pattern for a particular state of the object is given by: 

 ),(cos),(),(),( 01 yxyxIyxIyxI M  ,   (8.1) 

where ),(0 yxI  is the background average intensity, ),( yxIM  is the modulation 

intensity of the speckle interference pattern, ),( yx  is the a random phase difference 

between both scattered beams and ),( yx  are the spatial co-ordinates in the reference 

frame of the image. 

Deformation of the object changes the relative phase ),( yx  encoded in the 

interference pattern, thus another speckle pattern is formed and the intensity recorded 

in the deformed state becomes: 

 ),(),(cos),(),(),( 02 yxyxyxIyxIyxI M   ,  (8.2) 

where ),( yx  is the phase change caused by the deformation. 

The motion of the surface in the z direction induces, as a consequence of the 

symmetrical illumination, an equal amount of phase change ),( yx  in the two 

speckle patterns. The cancellation of these terms in the calculation in the relative phase 
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change renders the method insensitive to the movement in z direction. Similarly, the 

arrangement has no sensitivity to the motion in the y direction. The relative phase 

change ),( yx  results from the motion of the surface in the x direction. 

With the ensuing phase change induced in the two speckle patterns being of equal 

magnitude and of opposite sign, namely 



sin

2
un  for one and 




sin

2
un  for the 

other, with   the wavelength of the light used and n  being the refractive index of the 

medium ( 1n  for air). The in-plane component of the displacement in the 

x direction, u , relates to the phase change  : 





 sin

4
un ,    (8.3) 

By the use of  Eq. (8.3) we can therefore determine the extent of the in-plane 

displacement map on the sample surface by determining the wrapped phase difference 

w  using Eq. (4.5) and then unwrapping it as described in Section 4.3. It is seen from 

Eq. (8.3) that the sensitivity of the dual-beam interferometer is only dependent on the 

illumination angle and the wavelength. 

 

Figure 8.4: Basic configuration of a dual-beam speckle interferometer [122]. 
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8.3 Sample preparation and loading 

We followed the same preparation procedure described in Section 3.2.1 and Section 

3.2.2 to prepare urushi (kijiro type) samples for notched tests. A spin coater (Section 

3.2.4) was used to cast urushi films (60 µm thickness) onto 70 mm  15 mm  3 mm 

rectangular aluminium substrates. The films were left to cure at room temperature and 

752% RH for three weeks. After curing, the films were cut into rectangular strips of 

40 mm  5 mm, and the excess removed from the substrate. The samples were aged 

with UV radiation during 400 hrs of exposure as described in Section 3.3. A „v‟ groove 

was then created across the middle of the urushi film using a sharp blade (see Figure 

8.5). 

In order to strain the urushi film in a controlled and repeatable way, the aluminium 

substrates were mounted on a three-point-bending loading rig, with the urushi film 

facing the imaging system and the back face in contact with an edge that was 

positioned by a micrometer screw (Figure 8.8). Three point bending loading ensures a 

nearly uniform longitudinal strain field 
x

ux
x




 around the midspan of the beam. 

           

(a)                                                                 (b) 

Figure 8.5: A „v‟ groove in aged urushi film as viewed through an optical microscope 

in reflection mode (a) and a 3D surface profile obtained with a Zygo White Light 

Scanning Interferometer. 

8.4 Experimental setup 

8.4.1 Layout 

A dual sensitivity phase-shifting DSPI setup was used to measure 2-D in-plane 

displacement components in x  and y  directions (Figure 8.6). In the experiment, 
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however, we were only concerned with the horizontal x  sensitivity. A beam from a 

30mW He–Ne laser beam (Melles Griot model) with wavelength  =632.8nm is used 

as the coherent light source. A single mode optical fibre (OF) is used to deliver the 

laser beam that is collimated by lens L1 and then diffracted by two crossed 

transmission holographic diffraction gratings (G) (1200 lines/mm). The purpose of the 

gratings is twofold. Firstly, it splits the incident collimated beam into two pairs of 

beams (+1 and -1 orders of each of the diffraction gratings in the xz  and yz  planes. 

Four mirrors Mx1, Mx2, My1 and My2 (Figure 8.6) steer the collimated beams coming 

from the diffraction gratings towards the sample. Mx1 and Mx2 mirrors are arranged on 

the horizontal plane to form one set of dual-beam illumination to measure the 

displacement component in the x  direction ( u ), while My1 and My2 are arranged on 

the vertical plane to measure the displacement component in the y  direction ( ). Each 

mirror is fixed on a holder with 3 degrees of freedom for ease of adjustment. The four 

coherent illumination fields should preferably be plane wavefronts, incident at equal 

angles   on either side of the surface normal. The illumination angles are chosen to be 

29 to the sample normal. The sample is mounted and mechanically loaded using a 

three point bending device (BD) with a micrometer head as shown in Figure 8.8. A 

CMOS camera (C) (HCC-1000 Vosskühler, 8 bits, 1024×1024 pixels) records the 

speckle patterns imaged with a long working distance microscope objective zoom lens 

L2,  mounted 80 mm away from the sample surface. The imaged field of view was set 

to 2.6 mm  2.6 mm by adjusting the zoom lens. A positioning stage (PS), Figure 8.9, 

has been designed by a project student to mount and translate the diffraction gratings 

(G) in an accurate and repeatable way [123]. 

The second role of the transmission crossed gratings is to enable controlled phase 

stepping by translating it with a positioning stage with an open loop piezoelectric lead 

zirconate titanate transducer (PZT). The PZT actuator used in this work was a Physik 

Instrument type P055.31 PZT which is a low voltage device with a maximum 

displacement of 2 µm for 100 V of applied voltage. In order to obtain a fringe pattern 

corresponding to the u  displacement field, only the illumination beams lying on the 

horizontal plane were allowed to be incident on the surface (Figure 8.7) while the other 

beams were blocked. 
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Figure 8.6: Photograph of the 2-D in-plane phase-shifting DSPI system: OF, optical 

fibre; Mx1, Mx2 and My1, mirrors; BD, three point bending device; L2, zoom lens; C, 

CMOS camera. 

 

Figure 8.7: Optical arrangement for 1-D in-plane phase shifting digital speckle pattern 

interferometer: OF, optical fibre; L1, collimating lens; G, crossed diffraction gratings; 

Mx1 and Mx2, mirrors; BD, three point bending device; PZT, open loop piezoelectric 

transducer; L2, zoom lens; C, CMOS camera. 
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Figure 8.8: Three point bending device used to deform the sample mechanically. 

 

Figure 8.9: Positioning stage with PZT and grating holder. 
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In order to measure the phase change   in Eq. (8.2), one has to determine the three 

unknown values ),(0 yxI , ),( yxIM  and ),( yx  so that at least three acquisitions 

(interference images) are necessary. For a higher accuracy, a four-phase algorithm was 

chosen in order to get the phase value (Section 4.3 ). This is a process in which known 

phase shifts are introduced between the two interfering beams enabling the phase to be 

extracted by measuring the fringe or speckle intensity. In this work, the phase shifting 

was achieved by translating diffraction grating G onto its plane. A phase shift of 
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grating G moves a distance 
8

2
g  (with g  the grating pitch) along an axis at 45 to the 

x axis [124-126]. Accurate phase shifting requires calibration of the (usually non-

linear) phase-shifting device in order to obtain equal phase shifts between 

interferograms. The calibration was performed using a Moiré Interferometry approach. 

A reflection diffraction grating (RG) (600 lines/mm) was illuminated by the collimated 

beams reflected from Mx1 and Mx2 at an angle of 23 (Figure 8.10). Each collimated 

beam generated its own diffraction pattern (Figure 8.10). Interference between the +1 

order of the diffracted light coming from Mx1 and -1 order of the diffracted light 

coming from Mx2 gives rise to an interference pattern, whose spatial frequency encodes 

the angle between these diffracted beams –see Figure 8.11. A sequence of phase-

shifted interferograms was recorded for the horizontal sensitivity. Subsequently the 

procedure described in Sections 4.5.5 and 4.5.6 [73] to control and calibrate another 

PZT was followed. 

 

Figure 8.10: Diffraction orders of the grating used in calibration. 

 

Figure 8.11: Interference pattern obtained during calibration process. 
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Figure 8.12 shows the average of the squared differences ( S ) versus the applied 

voltage to the PZT, and also the best fit for a little over the first cycle using Eq. (4.19). 

During the calibration process, 100 steps were used at 0.5 V / step. 

The dependence of the phase shift on the applied voltage is shown in Figure 8.13. The 

amount of voltage required to introduce a 
2


 phase shift was extracted from the 

dependence of the phase shift on the applied voltage (Figure 8.13) using a one-

dimensional data interpolation function, (Figure 8.14). 

 

Figure 8.12: Second order polynomial fitting of )(VS . The open circles represent the 

experimental data and the line is the fitting. 
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Figure 8.13: The dependence of phase shift on the applied voltage. 

 

Figure 8.14: The voltage values required for phase shifts 0 , 
2


,  , 

2

3
 and 2  rad. 

were V1=0, V2= 13, V3=23, V4=32 and V5=40 volts, respectively. 

8.5 Measurement procedure 

Figure 8.1 (a), (d), (g), and (j) depict the different cases for which the horizontal 

displacements were measured in urushi films as a result of substrate strain. The 

substrate was mounted with the urushi film lying on the xy  plane as shown in Figure 
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8.8, presenting a field of view of 2.7 mm  2.7 mm. The relative humidity and 

temperature during measurements was 551% and 182 C, respectively. 

1) First, the displacement field of a groove-free aged urushi film surface was measured 

as follows: 

a) Four speckle interferograms of a reference state were recorded corresponding to 

phase shifts of 0 , 
2


,   and 

2

3
. 

b) A certain deflection along the z axis was introduced at the beam midspan by 

using the micrometre screw in the 3 point bending rig. This deflection was chosen 

to produce a strain level enough to introduce around two fringes across the 

measured field of view, which gives a good signal to noise ratio (phase measured 

vs. phase noise) and ensures that the aluminium beam remains in the elastic region.  

c) Four speckle interferograms of the deformed state were recorded corresponding 

to phase shifts of 0 , 
2


,   and 

2

3
. 

d) The wrapped phase change ),( yxw was computed using Eq. (4.5). 

e) The unwrapped phase ),( yx  was evaluated, as described in Section 4.3, 

using a robust 2D phase-unwrapping algorithm (from Phase Vision Ltd., 

Loughborough, UK) convolved with 5 × 5 Kernel filter. 

f) The horizontal component of the displacement field, ),( yxu , was obtained using 

Eq. (8.3). 

g) The profile )(xu   was computed by averaging ),( yxu  along the y -axis 

(image columns), to obtain a horizontal component of the displacement estimator 

with low speckle noise content. 

h) The profile )(1 xu   was then taken as an average of two measurements of 

)(xu  . 
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2) A 60 µm wide and ~6 µm deep vertical „v‟ groove was introduced in the sample 

tested in step (1) as indicated in Section 8.3, and steps (a)-(g) were followed to obtain 

)(2 xu   as an average of three  )(xu   measured profiles. Note that the groove 

was initially aligned to the image columns. 

3) The sample tested in step (2) was covered with a fresh layer of urushi and the excess 

was removed with a spatula, in order to just fill the groove. The fresh urushi in the 

groove cured as indicated in Section 8.3 and steps (a)-(g) were followed to obtain 

)(3 xu   as an average of three  )(xu   measured profiles. 

4) The sample tested on step 3 was aged as indicated in Section 8.3 and steps (a)-(g) 

were followed to obtain )(4 xu   as an average of three  )(xu   measured 

profiles. 

8.6 Results and discussion 

Figure 8.15 and Figure 8.16 show the wrapped, ),( yxw , and the unwrapped, 

),( yx , phase difference maps obtained in steps 1-4 for the different cases 

described above for a deflection at midspan of the beam of 80 µm. Figure 8.17 shows 

the average displacements profiles )(xui  , i=1,...4, obtained as indicated above. 

Just as expected, an anomaly in the displacement profile )(2 xu   is visible around 

the groove exactly where the groove is. The amplitude of the anomaly relative to the 

linear slope is nearly 40 nm (see insert in Figure 8.17), not far from the speckle phase 

noise level of 8 nm rms , as shown in Table 8.1. The spatial extent of the anomaly is 

~60 µm, corresponding to the groove‟s width. 
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(a)                                                               (b) 

 

(c)                                                               (d) 

Figure 8.15: Wrapped phase difference maps,  ),( yxw , obtained for (a) groove-free 

aged urushi film; (b) aged urushi film with a „v‟ groove (vertical line indicated by 

arrow); (c) non-aged cured urushi film on top of an aged film with a groove 

(consolidated crack) and (d) aged urushi film on top of an aged film with a groove 

(aged consolidated crack). 
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(a)                                                               (b) 

 

(c)                                                               (d) 

Figure 8.16: Unwrapped phase difference maps,  ),( yx , obtained for (a) groove-

free aged urushi film; (b) aged urushi film with a „v‟ groove (vertical line indicated by 

arrow); (c) non-aged cured urushi film on top of an aged film with a groove 

(consolidated crack) and (d) aged urushi film on top of an aged film with a groove 

(aged consolidated crack). 

No anomaly is observed in any of the other cases where groove-free or consolidated 

films are studied. This seems to indicate that, if there is still a distortion in the surface 

displacement field above the consolidated groove, then its amplitude falls below the 

phase noise floor of the current setup and thus it is non detectable. The strain field 

seems to propagate undistorted from the film/substrate interface to the film surface. 
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Figure 8.17: Average horizontal displacements )(xui  , i=1,...4 measured across the 

groove for: (1) groove-free aged urushi film; (2) aged urushi film with a „v‟ groove; 

(3) non-aged cured urushi film on top of an aged film with a groove (consolidated 

crack) and (4) aged urushi film on top of an aged film with a groove (aged 

consolidated crack). The dashed line indicates the position of the groove. 

The average longitudinal strains  1 ,  3  and  4 , measured as the overall 

slope in the displacements profiles )(1 xu  , )(3 xu   and )(4 xu   in Figure 

8.17, are presented in Table 8.1 for a deflection at midspan of 80 µm and different film 

conditions. The displacement profile root mean square ( rms ) errors are also tabulated, 

and indicate the noise level in the displacement measurements. The rms  error 

increases with the level of ageing, which is consistent with the fact that aged urushi 

produces higher speckle phase fluctuations due to greater surface roughness. 
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Table 8.1: Substrate strain as measured with a strain gauge (second column); film 

average strain (third column); and film strain rms  error (fourth column), at different 

stages in the experiment for a deflection at midspan of 80 µm. 

Film  gaugest.  (%)    (%) rms  (µm) 

aged urushi film without groove 0.051 0.058 0.008 

non-aged consolidated urushi 0.054 0.055 0.01 

aged consolidated urushi 0.055 0.053 0.012 

 

Figure 8.18 shows the average displacement profiles around the groove for different 

levels of substrate strain. The amplitude of the displacement anomaly increases with 

substrate strain. The case for  =0.047% corresponds to the one shown in Figure 8.17. 

In Figure 8.18, the displacement at the centre of the groove was subtracted to all the 

respective profiles, as this constant value is irrelevant in terms of strain evaluation. For 

this reason the curves cross each other at a zero displacement value. 

 

Figure 8.18: Average displacement profile around the „v‟ groove for different levels of 

substrate strain. 
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The slope of the displacement profiles at the crossing point (around x=0.045 mm) 

depends on both the longitudinal strain and the shear strain in the film, as 

measurements of the displacement field in the groove region correspond to different 

depths into the film. This slope was evaluated by local least squares fitting of a straight 

line to the data, using a gauge length L =13 µm which corresponds to 5 samples/pixels. 

A comparison between the peak strain in aged urushi film with and without a „v‟ 

groove is shown in Figure 8.19, as a function of substrate strain. A significant increase 

in the film strain, of nearly one order of magnitude, is observed on aged urushi with a 

„v‟ groove as compared with the groove-free case. 

 

Figure 8.19: Peak strain measured in aged urushi versus applied substrate strain for 

films with and without a „v‟ groove. 

8.7 Conclusion 

The sequence of events during film cracking is more or less as follows [127]: 1) tensile 

stress develops on the film due to substrate strain or film shrinkage; 2) as the tensile 

stress exceeds the strength of the film, it fractures; 3) the film stress is relaxed around 

the crack and perpendicular to it, and as a result the film deforms and retreats on both 

sides of the crack (the crack opens); 4) due to stress relaxation, the level of stress in the 

film decreases near the crack; 5) a material element which before the crack was under 

uniaxial stress, is after crack opening under shear stress, as there is a differential stress 

between the surface of the film and the film/substrate interface. As a consequence, a 
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bending moment appears which tends to peel off the film around the crack. In the 

words of Eric Paquette [127], a shearing force is introduced at the interface between 

the film and the substrate, pulling the film away from its original position; 6) finally, 

this leads to a loss of adhesion and in the worst case scenario, to film loss. 

It is unknown whether the urushi-gatame consolidation procedure is effective in 

arresting crack propagation in aged urushi in the long term or whether it would 

accelerate damage mechanisms leading to propagation of pre-existing micro-cracks.  

In this feasibility study, phase shifting DSPI was used for measuring in-plane 

displacements across a groove resembling a crack in aged urushi films before and after 

traditional Japanese consolidation. It was found that the displacement field presents an 

anomaly around the groove before consolidation, which indicates high levels of 

localized strain. This anomaly disappears below the sensitivity phase noise floor of the 

technique after the consolidation procedure and even after further ageing, which 

suggests a significant reduction in the level of localized in-plane strain. 

It is worth noting here that in order to detect the small displacement anomaly we had to 

average along columns parallel to the groove, as indicated in point 1(g), Section 8.5. 

With the current method it is therefore not possible to measure strain fields around 

such small cracks as they propagate „on the plane‟ of the film. This is the main reason 

for our second assumption in the Introduction of this Chapter and for our choice of a 

long groove. 

Expansion and shrinkage of the wooden structural substrate of urushi due to RH and 

temperature changes is one of the main loading mechanisms that lead to deterioration 

and fracture of the urushi coating in the Mazarin chest. The experiment proposed in 

this Chapter isolated the effect of substrate strain from temperature and moisture 

induced stresses. It seems plausible that the same technique could be used on the 

Mazarin Chest or other art pieces to detect anomalies in the displacement field around 

treated cracks. The information retrieved, i.e. the in-plane displacements on the film 

surface, is however insufficient to estimate stress intensity factors through the 

thickness of the film, as displacements around the crack tip through the film cross 

section would be required for that. 



Assessment of the Mechanical Effects of Traditional Japanese Consolidation on Aged Urushi Films  

 

161 

As the fresh urushi crack filling is slightly more compliant than the aged underlying 

film (Enon-aged = 1.9 GPa; Eaged= 2.13 GPa), it could be expected that a displacement 

anomaly should still be present, even though it would be of a much lesser amplitude 

than a non-treated crack. 

We are currently developing an FEA model of the consolidation procedure, studying 

the displacement field under the same loading conditions as in the experiment 

described in this Chapter. It would be interesting to evaluate the response of the 

consolidated film to changes in relative humidity and temperature in terms of 

displacements across the groove and to check the FEA predictions with experimental 

measurements. One could imagine that displacement anomalies may arise due to 

differential water absorption and stiffness between the non-aged consolidating film and 

the cracked aged urushi. If the non-aged material expanded more than the aged 

underlying film, this could lead to stress concentration that would tend to open the 

cracks, promoting crack growth. 
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Chapter 9 

Discussion 

Lacquers generally serve two functions. They can be used as a means of protecting an 

object, attempting to insulate it from the effects of the environment or as a medium for 

decoration. In some objects, of course, the lacquer may serve both purposes and an 

exquisite example of this is the use of natural lacquers, also known as urushi in Japan, 

that have been used on Asian artefacts for centuries. A substantial collection of these 

artefacts held at the Victoria and Albert Museum (V&A) in London. Among the Asian 

artefacts objects, V&A has around 2,500 pieces of the Japanese lacquerware artefacts. 

They are classified as the most important collections outside Japan, dated from the Edo 

period (1615-1868). 

A highlight from the collection of Japanese art at V&A is the Mazarin Chest, the most 

significant and valuable artefact of Japanese lacquerware in the world to have survived 

from the late 1630's. It was made in Kyoto in the European style and measures 59 cm 

high, 101.5 cm wide and 63.9 cm deep and adorned with pictorial scenes from 
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Japanese literature. Nearly every available space is filled with detailed intricate 

patterns, often human figures, and narrative imagery. Moreover, it is decorated with a 

wide range of traditional Japanese lacquer techniques such as makie (sprinkled 

picture), in which gold or silver powder and flakes are sprinkled over successive layers 

of urushi before it dries. These make the Mazarin Chest a very important artefact in 

cultural heritage and it is considered as a national treasure. This makes the research on 

the Mazarin Chest of great interest. 

Unfortunately, however, environmental conditions and previous western restorations 

have taken their toll on the Mazarin Chest and conservators were faced with a number 

of questions regarding its repair. In the years since its manufacture, its condition has 

deteriorated as a result of storage and displaying in fluctuating environmental 

conditions, e.g. changing relative humidity, temperature and lighting. This 

deterioration including splits in the wood substrate, lifting gold and silver foil 

decoration, lifting mother-of-pearl decoration and degradation of the lacquer surface. 

Degradation of the lacquer surface resulted in discoloration and fading of the originally 

glossy lacquer surface as a result of the formation of micro-cracks on the surface. 

Therefore, the V&A, the Toshiba Foundation and the Getty Foundation have initiated a 

project, The Mazarin Chest project, to consider the most appropriate methodologies for 

conserving the Mazarin Chest and other similar objects. It was a major collaborative 

undertaking involving conservators, curator, scientists and engineering from the UK, 

Japan, Germany and Poland. 

The traditional Japanese consolidation process (urushi gatame) used for conservation 

of natural lacquer objects is to apply another layer of diluted urushi to the damaged 

surface, in order to fill any micro-cracks on the lacquer surface. Unfortunately, 

although tradition holds that this is generally a successful route, conservators do not 

know for sure whether this is the most effective method, or indeed, whether such a 

choice can lead to a negative long term impact. 

In order to be able to answer questions regarding the efficacy of conservation methods, 

we must first understand that the lacquer is a complex composite system that is 

affected by not only the environmental conditions, but by how it interacts with the 

object itself. The logical approach was firstly establishing the properties and response 
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of urushi in isolation, before then proceeding to consider the interaction between 

various components of the system as a whole: environment, lacquer layers and object. 

To achieve this, we firstly developed a sample preparation procedure to produce 

consistent urushi samples. Our procedure involved different stages and using different 

techniques, in which we first started with an urushi filtration process using the 

traditional Japanese technique for this. The purified urushi were then mixed and cast 

onto a thin glass substrate using spin coater. Finally, the samples were kept in a curing 

chamber at 75% RH. The sample preparation procedure we developed enabled us to 

produce urushi films of different geometry and known thickness to be used in different 

stages of the experimental programme. 

In this work, the dependence of film stress on environmental conditions and for aged 

and non-aged films was investigated. We presented a methodology to achieve this and 

started by measuring the film stress as a function of changes in relative humidity using 

the curvature method. The curvature method is the most popular technique for 

measuring thin film stress. It is based on measurements of the deflection of the 

substrate on which the film is deposited. Phase shifting interferometry (PSI), a well 

known powerful full-field optical technique for non-contact measurements of sub-

micrometer deformations, was used to measure small deflections in a substrate coated 

with urushi thin films. The experimental deflection distribution was then fitted by a 

second order surface to quantify the quadratic coefficients, which reflect the curvature 

characteristics of the substrate, and convert it to polar coordinates. After representing 

the deflection distribution in polar coordinates, we were able to determine the 

deflection along two normal directions. Finally, the stresses along these directions 

were determined by using Atkinson‟s formula. The benefits of using this formula are 

that the stress measurements depend only on the dimensions of the film and the 

substrate and the elastic properties of the substrate. In this work, we compared the 

stress response in UV aged urushi films to that developed in non-aged urushi films 

when they subjected to 30%, 36% and 42% RH and when they subjected to 60%, 54% 

and 48% RH. The results showed a strong effect of the moisture contents on the stress 

response of non-aged and aged urushi films. 
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Gravimetric experiments were carried out to characterise the water diffusion process in 

non-aged and aged urushi films when they were subjected to step changes in RH. The 

experimental data were then fitted with the solution of the diffusion equation to extract 

the diffusion coefficient for urushi films, as a function of the moisture content and UV 

ageing. The knowledge of the response of urushi and the moisture contents were 

required for the development of a 1D model that capable of characterising and 

predicting urushi behaviour. It involved the employment of a three-element 

viscoelastic material model to describe the stress relaxation over time in urushi films. 

The model contains only three parameters where the hygroscopic expansion 

incorporates into these parameters. Moreover, the model has been extended to predict 

the stress response as a function of depth in non-aged urushi layer on the top of aged 

layer. 

In order to fully characterise the rheological behaviour of urushi and its mechanical 

properties, a uniaxial tensile stress-strain and creep recovery tests were conducted for 

non-aged and aged urushi films. The tensile stress-strain tests were conducted under 

three different humidity levels (30%, 50% and 75% RH) and under each RH the 

samples were tested at three different stain rates (1.3  10
-6

 s
-1

, 1.3  10
-5

 s
-1

 and 1.3  

10
-4

 s
-1

). The dependence of the elastic modulus, the tensile strength and the elongation 

at break, on the moisture contents and ageing were determined from the tensile stress-

strain tests. In addition, the influence of the strain rates on the mechanical and the 

rheological behaviour of urushi were studied. 

In order to achieve better understanding of the influence of relative humidity and UV 

ageing on viscoelastic behaviour of urushi materials, creep and recovery tests were 

carried out under three humidity levels (30%, 50% and 75% RH) where four different 

constant values of stress were used under each relative humidity. The experimental 

creep curves were employed to draw the isochronous creep curves for urushi samples 

and to calculate Burger‟s model parameters. The recovery behaviour was used to 

determine the amount of elastic recovery and its dependence on the RH and ageing for 

urushi films. 

In order to assess the effectiveness of the traditional Japanese consolidation process 

(urushi gatame), we proposed a laboratory experimental scenario for simulating the 
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deterioration and consolidation stages as working on the real object, Mazarin Chest, is 

not possible. The proposed experiment involved applying a thin film of urushi onto 

aluminium substrate, ageing the film, cracking the film, consolidating the aged film 

using non aged urushi and finally ageing the both aged film and the consolidated film. 

Our sample preparation procedure was followed to produce 40 mm  5 mm  60 µm 

urushi films on 70 mm  15 mm  3 mm rectangular aluminium substrates. To 

simulate the ageing stage, the samples were exposed to UV radiation (340 nm) for 400 

hrs and 0.7 W.m
-2

 in a Q-Sun environmental test chamber. Micro-cracks simulation 

stage was achieved by creating a „v‟ groove, 60 µm wide, across the urushi films using 

a sharp blade. Urushi gatame process was followed by applying a diluted layer of non-

aged urushi on the „v‟ groove to fill it and repeat the ageing treatment after curing the 

consolidated layer. The sample was mechanically loaded to simulate the environmental 

loading using three point bending device and the urushi surface displacement profile 

was measured during all the experimental stages. 

The high displacement sensitivity, non-contact nature and high resolution make phase 

shifting digital speckle pattern Interferometry (DSPI) the best method to measure in-

plane urushi surface displacement fields. The basic concepts of the speckle effect and 

the fundamental principles of DSPI were presented. The span of the displacement 

measurements covers construction and alignment of the interferometer, construction of 

three point bending device, construction and validation of the positioning stage with a 

PZT and gratings holder, phase shifting calibration and phase stepping/imaging 

synchronisation. Anomaly displacement profiles around the groove were obtained, but 

these anomaly profiles disappeared after consolidate the groove with non-aged and 

aged urushi layers. 
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Chapter 10 

Recommendations for Future Works 

Phase shifting interferometry technique constructed and developed in this work has 

been aimed at developing a feasible technique that is able to measure stresses in thin 

films under controllable environmental conditions (RH and temperature). The 

construction and validation of this technique not only made the experiments described 

in this thesis possible, but also provides a platform for work in the future. The stress 

measurements were carried out when cured transparent urushi thin films, aged and 

non-aged, exposed to three low and three high RHs where the temperature was kept 

constant. More stress experiments are needed to investigate the response of cured 

urushi films to changes in temperatures under constant RH and a combination of RH 

and temperature changes. This will result in a clear view about the stress developed in 

urushi as a result of RH and/or temperature changes. 

It is known that stresses can develop within coating during film formation and curing 

(drying process) through temperature and RH changes. These internal stresses have an 

effect on coating degradation. They affect adhesion and/or cohesion and have effect on 
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delamination and cracking. These reasons make the measurements of internal stress 

during curing important where a correlation between the stress developed after curing 

and stress developed during curing can be established. 

The stress measurements were carried out for fully cured urushi samples of single 

thickness value (~20 µm). The natural extension of this is to study the dependence of 

the stress on thickness of urushi films as it is a key parameter for the stress calculation. 

In this work, we investigated the response of urushi in isolation but the response of a 

complete system, urushi and object, is in need in future work. This can be established 

by measuring the influence of changes in the environmental conditions on the response 

of a wooden substrate, similar to that used in the Mazarin Chest, covered with urushi. 

The glass transition temperature (Tg) is a critical physical property which can 

dramatically influence the material chemical stability and its viscoelastic properties. As 

water acts as a plasticizer for urushi, further work is required to investigate the 

influence of the moisture content on the Tg of urushi and to correlate the Tg and the 

mechanical properties of urushi. Also, a set of spectroscopic investigations (FTIR) is 

required to evaluate the influence of the moisture contents and ageing on the chemical 

structure of urushi material. 

Finally and as the lacquerware objects are covered with multiple layers of coloured 

urushi, the previous recommendations for future works can be repeated for multiple 

layers and coloured non-aged and aged urushi films. 

In Chapter 8, the consolidation technique was assessed by measuring and comparing 

the displacement around a „v‟ notch before and after consolidation. In this Chapter, 

aluminium substrate was covered with thin film of urushi and the substrate was 

mechanically loaded using three points bending device. Further FEA modelling of the 

consolidation procedure under the same loading conditions, as in the experiment 

described in this Chapter, is required. The work presented in this Chapter can be 

extended to evaluate the response of the consolidated film covered a wooden substrate 

under environmental loading (RH and temperature). It would be of interest to plan a set 

of experimental work to investigate the influence of the moisture content on the crack 

propagation through a multiple layers system of urushi covering a wood substrate. 
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Based on the results presented in this work, further modelling techniques need to be 

employed to predict long-term stress response as a function of changes in 

environmental conditions and long-term UV accelerated ageing treatments in order to 

simulate the circumstances in which lacquerwares artefacts are exposed to. In addition 

to stress response modelling, more extensive creep-recovery modelling is required to 

deepen the understanding of the effects of the environmental conditions and UV 

ageing on the viscoelastic behaviour of urushi during the creep-recovery processes. 
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A1: Parameters in Burger‟s model for non-aged urushi films. 

RH 

(%) 

  

(MPa) 

1E  

(MPa) 

2E  

(MPa) 

1  

(MPa.s) 

2  

(MPa.s) 

r
1  

(MPa.s) 

 

 

 

30 

 

14 2368.86 16529.70 1.07E+9 6.55E+7 6.8E+9 

23 2304.60 8960.57 6.69E+8 8.03E+7 7.5E+8 

28 2124.43 6364.21 4.39E+8 3.62E+7 3.9E+8 

32 2226.86 6392.32 2.97E+8 3.43E+7 3.2E+8 

 

 

 

50 

10.5 2015.35 7659.76 5.67E+8 3.01E+7 7.9E+8 

17.5 2364.86 6598.79 4.88E+8 4.16E+7 4.2E+8 

21 2095.80 5148.06 2.57E+8 3.01E+7 2.5E+8 

24.5 2095.80 3895.07 2.1E+8 2.78E+7 2.0E+8 

 

 

 

75 

9 1829.26 6761.22 5.81E+8 3.13E+7 1.5E+8 

15 1809.40 3546.77 2.47E+8 2.61E+7 2.1E+8 

18 1574.80 2647.21 1.38E+8 1.97E+7 1.4E+8 

21 1680 4007.63 9.69E+7 1.16E+7 1.4E+8 
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A2: Parameters in a Burger‟s model for aged urushi films. 

RH 

(%) 

  

(MPa) 

1E  

(MPa) 

2E  

(MPa) 

1  

(MPa.s) 

2  

(MPa.s) 

r
1  

(MPa.s) 

 

 

 

 

30 

 

9 2639.29 12788.3 6.91E+9   8.46E+7   1.7E+10 

14 2310.23 32198.71 7.24E+8   1.9E+8 3.7E+10 

17 2809.91 9941.05 1.38E+9   9.05E+7 7E+8 

20 2600.78 7978.29 4.68E+8   4.49E+7 3.5E+8 

 

 

 

 

50 

12 2424.24 13416.81 8.42E+8   4.06E+7 1.8E+9 

20 2125.39 6551.36 5.30E+8   3.68E+7 6E+8 

24 2086.95 5401.51 4.51E+8   3.87E+7 3.8E+8 

28 2259.88 3974.33 2.87E+8   2.87E+7 2.5E+8 

 

 

 

 

75 

9 1764.70 6065.34 9.34E+8   3.97E+7 5.3E+8 

14 1563.89 5872.48 5.79E+8   3.01E+7 4.1E+8 

17 1729.39 5463.42 1.95E+8   1.50E+7 2.5E+8 

20 1824.81 2492.52 2.96E+8   2.34E+7 1.8E+8 
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Journal papers 

1. Stress measurement in East Asian lacquer thin films owing to changes in 

relative humidity using phase shifting interferometry, Pro. R. Soc. A, Published 

online 24 November 2010. 

doi: 10.1098/rspa.2010.0414. 

2. Experimental investigation and Material Modelling of fresh and UV aged 

Japanese lacquer (Urushi), Prog. Org. Coat. (2010). 

doi:10.1016/j.porgcoat.2010.09.020. 

Conference papers 

1. A methodology for modelling the mechanical response of urushi lacquer under 

varying environmental conditions (The conservation, Science and material 

Cultural of East Asian Lacquer, V&A London October 2009). 

2. Stress measurement in East Asian lacquer thin films due to changes in relative 

humidity using phase shifting interferometry (The conservation, Science and 

material Cultural of East Asian Lacquer, V&A London October 2009). 

 


