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ABSTRACT

Due to their inherent BW capacity, optical interconnect (OI) offers a means of replacement to

BW limited copper as bottlenecks begin to appear within the various interconnect levels of

electronics systems. Low-cost optically enabled printed circuit boards are a key milestone on

many electronics roadmaps, e.g. iNEMI. Current OI solutions found in industry are based upon

optical fibres and are capable of providing a suitable platform for inter-board applications

especially on the backplane. However, to allow component assembly onto high BW

interconnects, an integral requirement for intra-board applications, optically enabled printed

circuit boards containing waveguides are essential.

Major barriers to the deployment of optical printed circuit boards include the compatibility of

the technique, the cost of acquiring OI and the optical power budget. The purpose of this PhD

research programme is to explore suitable techniques to address these barriers, primarily by

means of laser material processing using UV and IR source lasers namely 248 nm KrF

Excimer, 355 nm UV Nd:YAG and 10.6 µm IR CO2. The use of these three main lasers, the

trio of which dominates most PCB production assembly, provides underpinning drive for the

deployment of this technology into the industry at a very low cost without the need for any

additional system or system modification. It further provides trade-offs among the suitable

candidates in terms of processing speed, cost and quality of waveguides that could be achieved.

This thesis presents the context of the research and the underlying governing science, i.e.

theoretical analysis, involving laser-matter interactions. Experimental investigation of thermal

(or pyrolitic) and bond-breaking (or photolytic) nature of laser ablation was studied in relation

to each of the chosen lasers with regression analysis used to explain the experimental results.

Optimal parameters necessary for achieving minimum Heat Affected Zone (HAZ) and

surface/wall roughness were explored, both of which are key to achieving low loss waveguides.

While photochemical dominance – a function of wavelength and pulse duration – is desired in

laser ablation of photopolymers, the author has been able to find out that photothermally-

processed materials, for example at 10.6 µm, can also provide desirable waveguides.

Although there are literature information detailing the effect of certain parameters such as

fluence, pulse repetition rate, pulse duration and wavelength among others, in relation to the

etch rate of different materials, the machining of new materials requires new data to be

obtained. In fact various models are available to try to explain the laser-matter interaction in a
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mathematical way, but these cannot be taken universally as they are deficient to general

applications. For this reason, experimental optimisation appears to be the logical way forward

at this stage of the research and thus requiring material-system characterisation to be conducted

for each case thereby forming an integral achievement of this research.

In this work, laser ablation of a single-layer optical polymer (Truemode™) multimode

waveguides were successfully demonstrated using the aforementioned chosen lasers, thus

providing opportunities for rapid deployment of OI to the PCB manufacturing industry.

Truemode™ was chosen as it provides a very low absorption loss value < 0.04 dB/cm at 850

nm datacom wavelength used for VSR interconnections – a key to optical power budget – and

its compatibility with current PCB fabrication processes. A wet-Truemode™ formulation was

used which required that optical polymer layer on an FR4 substrate be formed using spin

coating and then UV-cured in a nitrogen oxygen-free chamber. Layer thickness, chiefly

influenced by spinning speed and duration, was studied in order to meet the optical layer

thickness requirement for multimode (typically > 9 µm) waveguides. Two alternative

polymers, namely polysiloxane-based photopolymer (OE4140 and OE 4141) from Dow

Corning and PMMA, were sparingly utilized at some point in the research, mainly during laser

machining using UV Nd:YAG and CO2 lasers.

While Excimer laser was widely considered for polymer waveguide due to its high quality

potential, the successful fabrication at 10.6 µm IR and 355 nm UV wavelengths and at

relatively low propagation loss at datacom wavelength of 850 nm (estimated to be < 1.5

dB/cm) were unprecedented. The author considered further reduction in the optical loss by

looking at the effect of fluence, power, pulse repetition rate, speed and optical density on the

achievable propagation but found no direct relationship between these parameters; it is

therefore concluded that process optimisation is the best practice. In addition, a novel in-plane

45-degree coupling mirror fabrication using Excimer laser ablation was demonstrated for the

first time, which was considered to be vital for communication between chips (or other suitable

components) at board-level.

Keywords: Laser Ablation, Optical Interconnect, Polymer Waveguide, OPCB,

Micromachining, 2D 45-degree mirror, Metallisation , Excimer Laser, UV Nd:YAG Laser,

CO2 Laser.
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GLOSSARY

AFM Atomic Force Microscope

BER Bit Error Rate

BERT Bit Error Rate Tester

BW Bandwidth

CCD Charged-coupled device

CVD Chemical Vapour Deposition

CW Continuous Wave

CTE Coefficient of Thermal Expansion

DR Direct Writing

EMI Electromagnetic Interference

EOCB Electro-Optical Circuit Board

FEGSEM Field Emission Gun Scanning

Electron Microscope

GRIN GRaded INdex

HDI High Density Interconnect

HAZ Heat Affected Zone

IR Infra-Red

LASER Light Amplification by

Stimulated Emission of Radiation

LED Light Emitting Diode

LD Laser Diode

LAN Local Area Network

MASER Microwave Amplification by

Stimulated Emission of Radiation

MAN Metropolitan Area Network

MM Multimode

MPE Maximum Permissible Exposure

NA Numerical Aperture

OD Optical Density

OI Optical Interconnect

OPCB Optical Printed Circuit Board

PCB Printed Circuit Board

PRF Pulse Repetition Frequency

PC Polycarbonate

PD Photo Diode/Detector

PET Poly Ethylene Terephthalate

PI Polyimide

PMMA Polymethyl Methacrylate

PRR Pulse Repetition Rate

PS Polystyrene

PWB Printed Wiring Board

RF Radio Frequency

RI Refractive Index

RIE Reactive Ion Etching

SPD Scanning Power Density

SEM Scanning Electron Microscope

SMT Surface Mount Technology

TEM Transverse Electromagnetic Mode

TIR Total Internal Reflection

UV Ultraviolet

VCSEL Vertical Cavity Surface Emitting

Laser

VSR Very Short Reach

WAN Wide Area Network

YAG Yttrium Aluminium Garnet
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1 INTRODUCTION

1.1 Research Problem Definition

1.2 Introduction

This thesis and the research contained therein address the inherent bandwidth-limited

copper interconnection and the possible deployment of optical interconnection at short

range such that hybridisation of electrical and optical technologies can be featured on

Printed Circuit Boards (PCB) for the next generation of consumer electronics where data

rate, ~10 Gb/s, at reasonably cost is desired.

Limitation of conventional copper interconnection

Active (transistors and Integrated Circuits) and passive (resistors, capacitors and inductors)

components which are used in electronic devices rely heavily on metallic tracks to ensure

their functionalities. In other words they are connected by conventional copper

transmission, which itself has seen dramatic changes from what used to be, ‘big-sized

wires’, to thin short tracks of electrical lines. This change in size and architecture of Printed

Wiring Technology (PWT) is mostly forced by an increase in the number of components.

The rise in the demand for more features in electronics and the change in the manufacturing

technology has caused an increase in the data rate on the micro-level such as backplane,

board-to-board, rack-to-rack, box-to-box and chip-to-chip. Unfortunately, the bandwidth

(BW) of electrical connection is limited by cross-sectional area and the length of the track

given byܹܤ� ܣ�ߙ� ⁄ଶܮ , where A and L are the area and length of the track respectively [1].

Of course, the area can be increased while the length reduced but it is not a technically-

viable solution to the issue and, in fact, doing this, is at the expense of not only power

dissipation (and power management) but also bit rate and size. In addition, there are many

more parasitic or applied problems that could arise from this change alone. Furthermore, the

frequency-dependence of metallic transmission line is another major area of concern in this

miniaturized electronic world.

The aforementioned bottleneck for copper transmission in PCB with high interconnection

density and high-frequency is more pronounced at the 10 Gb/s crossbar where problems

such as crosstalk, radio frequency interference (RFI) [2], electromagnetic interference

(EMI), power dissipation and signal loss among others cannot be tolerated. Detailed
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accounts of copper limitations have been widely covered in the literature and some of the

key investigations and demonstration for Optical Interconnects (OI) are shown later in this

chapter.

Research has shown that the limitations in electrical transmission on board can be

minimized using a number of approaches including minimizing conductor length,

development of new dielectric material, and multi-level data coding which can allow up to

10 Gb/s transmission electrically, but these approaches are not cost-effective [3]. To

overcome this bottleneck, optical interconnection at short distances – as it has been

successfully used for long and medium range communication – has been widely suggested

as the practical way forward. It is believed that optical interconnect will perform efficiently

at this stage and at a low cost – lower than those incurred to overcome the copper

limitations as cited above. The deployment suggested here is not to overhaul traditional

copper technology – far from that – but to create a hybrid electric-optical interconnection

where data processing is handled electrically while data routing is carried optically in order

to meet the High Density Interconnection (HDI) trend while maintaining a balance between

data transfer and cost.

To address the bottleneck caused by the inherent problems in the copper transmission used

in backplanes and boards, the last decade has witnessed vigorous research input and output

from researchers – academic and industry – around the world to deploy OI on PCB. Japan,

EU and Asia-Pacific/North America, who led in the microvia technology, are also key

figures in the OI deployment [2, 4].

Undoubtedly, the cost-effectiveness of OI is a major consideration if it is to be implemented

on PCB [5]; Hopkins, K. and Pitwon, R. asserted [6] that, at higher BW for current and

near future requirements for telecom and datacom systems, the application of OI at the

backplane – where it is expected to be foremostly required – is unavoidable. It was argued

that the cost of solving the bottleneck of copper transmission will surpass that of the

implementation of the OI at ~ 6.25 Gb/s. Figure 1.1 depicts such an assertion from Hopkins,

K. and Pitwon, R. where the cost of deployment and implementation of OI technology is

expected to fall gradually when the date rate exceeds the 6.25 Gb/s ‘threshold’ with an

increase in the electrical connection. This prediction is, by expectation, valid for higher

level of interconnection such as backplane level but it might not be true, at least for the first

phase of OI deployment, for the lower hierarchical level of interconnection e.g. chip-to-
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chip.

Furthermore, the total power loss, commonly referred to as power budget, is also a

consideration; and is currently being investigated. Uhlig and Robertson [7], while analysing

the power-budget requirement, argued that optical amplification, at some point along the

transmission, would be needed for a realistic OI on PCB to be implemented.

Figure 1-1: Relative cost of copper technologies as
compared to optical technologies on PCB [6].

1.2.1 Optical interconnect on PCB as a solution

It is evident that today the question is not whether OI is required, rather it is a matter of

when and how it would be implemented efficiently and at a reasonable cost. Table 1.1 is a

list, though not exhaustive, of some of the key research– past and present – in the European

Union that are geared towards OI technology and many more investigations are underway

under EC-funded ‘Framework Programme’. Varioprint AG – a PCB manufacturer – has

taken the lead in the deployment of OI by opening a sister company, named Vario-Optics

AG, in the last quarter of 2009 dedicated to the production and supply of hybrid optical-

electrical PCBs. Other active candidates include Celestica, Intel Corporation, NTT

Advanced Technology, VTT Technical Research Centre, Agilent technologies, Advanced
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Interconnection Technology Inc. (AIT), DaimlerChrysler Research Centre at Ulm, and The

University of Texas at Austin among others.

The two OI approaches under consideration are either unguided or guided; both have their

pros and cons. The latter can be further divided into fibre- and polymer-based technologies.

Current trends in electronic system architecture vis-a-vis miniaturization and literature

reports suggest that polymer-waveguide is the favoured candidate. This is because : (i)

polymers are relatively cheap, ( ii) low acceptable loss is achievable with polymer, (iii) they

are easily available, and ( iv) most importantly, polymer waveguide fabrication which is

being considered, is compatible with the standard processes employed in PCB

manufacturing such as soldering temperature, Coefficient of Thermal Expansion (CTE)

matching, thermal stability and stress during lamination.

Polymer waveguide fabrication for Optical-PCB application has been reported and/or

demonstrated using a number of techniques, and more techniques are still emerging. These

techniques include, photolithography, laser direct writing, hot/UV embossing, inkjet

printing, microprinting, laser ablation, Reactive Ion Etching (RIE), electron beam writing ,

photolocking and selective polymerisation, photobleaching, photocrosslinking [8 - 14].

Each of these techniques has one or more advantages that make it of interest.

However, laser ablation of optical waveguides is a technique of choice in the research being

reported here in this thesis. This is because laser ablation of polymers, which started in the

early1980’s [15], has been demonstrated [16 - 21] as a viable technique for a wide range of

materials, more importantly, the class of polymers, i.e. photopolymers, required for the

technology being reported. Furthermore, it is a technique that is currently used for the

drilling of vias for blind, buried and through holes in PCB manufacturing making it a more

suitable choice when compatibility issues are taken into consideration. Laser ablation is a

non-contact micromachining technology that is based on a controlled and selective removal

of materials with intense laser pulses giving high precision and repeatability, and a minimal

heat-affected zone (HAZ) especially with ultraviolet (UV) laser source(s).
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Table 1-1: A table showing some of the research conducted and reported on the deployment of OI on printed circuit board to
overcome the inherent barriers with current copper transmission.

Project/Organisation Research Activities and Collaboration Overview Partners Reference

OHIDA project (Optics on

future printed circuit board in

high speed data transmission

applications)

It conducted a research project called, OHIDA (2002 –

2005). The main goal was to demonstrate ~10 Gb/s optical

interconnection on circuit board. The research was a

collaborative project mainly between Helsinki University of

Technology (HUT), and VTT Technical Research Centre,

Finland though with significant inputs from the industrial

partners in the area of assembly and demonstration. HUT

focused mainly on board side while VTT was looking at the

transceiver. A 4-channel 10 Gb/s optical interconnect on

Printed Wiring Board (PWB) was demonstrated at the end

of the project with potential application in copper-limited

electronic devices such as computers.

Helsinki University of

Technology (Finland), VTT

Electronics (Finland), Aplac

Solutions, Asperation,

Aspocomp, Elcoteq

Network, Perlos Aspocomp.

22 , 23

PPC Electronic AG, Switzerland It is a PCB manufacturer based in Switzerland. It has an

optical technology product called Optoboard® which allows

optical tracks to be sandwiched between electrical tracks in

a multilayer PCB design.

24
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Varioprint AG, Switzerland It is a PCB manufacturer based in Switzerland. In 2004, it

filed a patent on light coupling method for EOCB. It

demonstrated what it called “electro-optical circuit board

(EOCB)” at SMT 2005, Nuernberg, Germany. In the third

quarter of 2009, the Optical Printed Circuit Board (OPCB)

technologies and patents from Varioprint AG has led to the

creation of a spinout company called “vario-optics ag”

(http://www.vario-optics.ch/). This newly formed company

will focus on optically-enabled printed circuit board due to

the growing demands.

Varioprint AG and Vario-

optics AG.

25,26

Optical Printed Circuit Board

(OPCB)

OPCB was a 3-year UK EPSRC IeMRC funded Flagship

project that drew partners from UK institutions and

industries both in the UK and USA. Four different polymer

waveguide manufacturing techniques were investigated and

compared; they were photolithography, direct laser writing,

laser ablation and inkjet printing.

University College London,

UCL; Heriot-Watt

University, Loughborough

University, Xyratex

Technology, BAE Systems,

Renishaw, Dow Corning

USA ; Exxelis; Stevenage

Circuits Ltd, Cadence

Design Systems, and

National Physical

27,28

http://www.vario-optics.ch/
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Laboratory (NPL).

The Storlite (Storage Systems

Optical Networking) project

It is a UK DTI/EPSRC funded project; it is an academia-

industrial project led by Xyratex. It investigated optical

polymer waveguide fabrication using photolithography.

During the project, a novel patented technique to align them

with Vertical Cavity Surface Emitting Laser (VCSEL) was

developed which was later licensed to US connector

manufacturer Samtec. Partners of this project also

participated in OPCB project.

Exxelis, Xyratex

Technology, University

College London (UCL) and

Edinburgh University.

29

EOCB (Electrical/Optical

Circuit Boards) project

It was an EU research consortium funded by the German

government, department of Education and Research (1998 –

2001). It developed a packaging concept where optical layer

is embedded in a typical PCB board. The optical layer is a

multimode waveguide patterned using hot embossing.

Andus Electronics GmbH,

Robert Bosch GmbH, FhG

IZM Berlin, Mikropacks,

Siemens AG C-Lab, OECA

GmbH, ILFA GmbH, and

among others.

30

Information Society

Technologies (IST) EU funded

projects

IST is a research funding body/organization that has been

sponsoring projects in emerging technologies under its

‘framework programme’ such as FP4, FP5 , FP6 (2002 –

2006) and FP7(2007 – 2013) with Centre for Microsystems

Technology, Ghent University as a key partner in optical

31, 32
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interconnection.

IBM Zurich Research

Laboratory, Switzerland

IBM Zurich is an active centre in OI; in 2006 it developed

and demonstrated a twelve-channel 10 Gb/s optically-

enabled printed circuit boards. The waveguide was

fabricated using laser direct writing.

33

Interconnects by Optics (IO)

Project

It is an IST EU funded project (2001 - 2004). During the

project a 2-D optical OI was developed and demonstrated.

INTEC,ELIS and TFCG of

Ghent University, Alcatel

CIT, Avalon Photonics Ltd,

Albis Optoelectronics,

Helix, FCI, Nexans

Research Centre, Nexans

Cabling System, PPC

Electronics, and CEA-

LETI.

34, 35

Dow Corning, USA It is a company that focuses on silicon-based technology

and innovation. In 2003, the company involved in optical

waveguide fabrication using photolithography based on its

photopolymer. Dow Corning is an industrial partner to

OPCB IeMRC providing optical polymer and waveguides

based on photolithography. Polysiloxane, sometimes called

13, 36
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siloxane or silicone, is a product of Dow Corning and is

described further in chapter 3.

Exxelis, UK A spinout of Heriot-Watt University, Edinburgh, UK. It was

formerly called Terahertz Photonics. Since its

establishment, it has been engaging in optoelectronic and

optical interconnection. It is acrylate-based polymer,

Truemode™ suitable for optical polymer waveguide

fabrication. The company has demonstrated the use of the

polymer to make waveguides employing photolithography

and it is the material of choice in this project though by

applying laser ablation technique. Exxelis participated in

StorLite project with Xyratex and University College

London (UCL) and it is also a partner to OPCB IeMRC

consortium.

2, 37
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1.2.2 Research collaboration

The IeMRC Optical-PCB flagship project was an academic-industry collaborative research

project (figure 1.2) aimed at developing design rules and different waveguide

manufacturing techniques, namely photolithography, inkjet printing, laser direct writing and

laser ablation. The latter technique forms the basis of this thesis as the infrastructure is

currently being utilised in the PCB industry for microvia drilling; thus, it would facilitate

the deployment of the technology at little or no additional cost to the PCB manufacturers.

Academic partners: Loughborough University, Heriot-Watt University and University

College London

Industrial partners: Xyratex, Stevenage Circuits, Renishaw, BAE Systems, Exxelis,

Dow Corning, Cadence and NPL

Figure 1-2: IeMRC OPCB flagship showing both academic
and industrial partners in the consortium and network of
activities.
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The author’s contribution in the flagship project was primarily on laser ablation of optical

polymer waveguides using Truemode™ photopolymer, provided by Exxelis. Furthermore,

since research has been focused on the out-of-plane coupling of optical waveguide signals,

for example, from board to board, the author considered in-plane mirror fabrication for

routing signals on board, on backplane and on chip, albeit the later is still a long term

consideration.

1.3 Research Concept

1.3.1 Research goal

This PhD research programme was geared towards the fabrication of low-cost waveguides

for optical interconnection on PCB using 248 nm KrF Excimer laser, 355 nm tripled-

frequency UV Nd:YAG and 10.6 µm CO2 lasers with the following objectives:

 Material deposition to form optical waveguide layers: A suitable technique to

deposit wet formulation of Truemode™ polymer to form an optical layer consisting of

lower cladding, core and upper cladding, in a manner that the thickness of the layers can

be controlled to provide the right thickness for a typical multimode waveguide of a

value ≥ 9 µm. The optical layer is to be patterned on an FR4 substrate; this also requires 

that the adhesion between the substrate and the deposited polymer should be controlled.

 Laser system characterisation using Truemode™: The aim here is in two folds: (i) to

investigate the potential of the chosen class of lasers, especially UV Nd:YAG and CO2,

for the proposed application, and (ii) to understand the effects of various laser system

parameters, which include fluence, power, pulse repetition frequency, speed, number of

pulses and number of passes, on the depth of ablation. The choice of parameters to be

investigated was largely dependent on the laser setup and capabilities; for example, the

effect of pulse repetition frequency was only possible on pulsed lasers, i.e. UV

Nd:YAG and Excimer lasers.

 Polymer waveguide fabrication: A single-layer straight waveguides were projected

for each of the lasers identified. The speed and running cost of Excimer laser – its

comparatively low ‘approval’ in high volume production in the PCB manufacturing

industry – were some of the key factors in exploring potential candidates and, indeed

competitors in order to meet the low cost objective/criteria of any successful

commercialization.

 Formation of 2D mirrors for in-plane coupling: A suitable coupling mechanism was
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desired such that signals can be routed horizontally with a layer required for

communication between components of the layers, e.g. chip-to-chip communication.

 Waveguide assessment and improvement: The third key criterion for successful

deployment of optical interconnects – the first two being the cost and compatibility of

the technique – is the optical power loss. It is therefore an integral part of this PhD

research programme to assess the quality of the waveguides in terms of the losses and

roughness and providing/suggesting ways of improving this.

1.3.2 Contribution to the body of knowledge

This thesis and the research reported therein has played a role in advancing the current state

of research in the field under investigation not only in exploring new designs but also in

facilitating the deployment of the technology to its targeted industry, i.e. PCB. The key

contributions of this research to the existing body of knowledge are in the following:

 Excimer Laser system characterisation: Although, reports are available on the effects

of fluence, pulse repetition frequency and number pulses on the etch rate for polymers

such as polymethyl methacrylate (PMMA), polycarbonate (PC), polyimide (PI), poly

ethylene terephthalate (PET) and polystyrene (PS) among others but such a report is

lacking for Truemode™ photopolymer, which adequately satisfies the key requirements

of polymer waveguide on PCB such as compatibility and absorption loss, measuring

less than 0.04 dB/cm at 850 nm. The author has thus made available such important

information advancing the deployment a step forward. Ablation threshold of ~ 0.02

J/cm2 was obtained for Excimer laser ablation of Truemode™ polymer at 248 nm

wavelength which agrees with the thresholds reported for polymers. The tapering effect

– a major issue in Excimer laser ablation – was overcome by process optimisation with

a near-vertical profile obtained at an operating fluence of 200 mJ/cm2. The etch rates

was found to vary with fluence; a value of 0.252 µm/pulse and 2.5 µm/pulse were

achieved at 30 mJ/cm2 and 280 mJ/cm2 respectively. Although the straight waveguide

achieved using this laser was relatively lossy (estimated to 3.9 dB/cm), the Ra

surface/bottom and wall roughness were measured to be 30 nm and 260 nm

respectively, suggesting that factors other than fabrication/waveguide were responsible

for this.

 CO2 laser ablation of optical polymer waveguide: The suitability of Continuous

Wave (CW) and Infra-Red (IR) laser in machining photopolymer was successfully
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demonstrated; the machining was carried out on three polymers, namely PMMA,

polysiloxane and Truemode™ at varying power and scanning speed – the only two

changeable parameters of interest. The CW CO2 laser micromachining of the optical

polymers was understood to be governed by what the author regarded as the ‘Scanning

Power Density’ (SPD) calculated using the input power and scanning speed. While

polysiloxane-based polymer ablation gave clean structures at SPD values between 12

mJ/mm and 20 mJ/mm, the laser ablation of Truemode™ polymer produced a better

result at the range between 15 mJ/mm and 50 mJ/mm. Multimode waveguides in

Truemode™ was successfully fabricated, for the first time at the point of writing, with

propagation loss estimated to be 1.3 dB/cm at 850 nm wavelength.

 UV Nd:YAG laser ablation of optical polymer waveguides: In this work 355 nm 60

ns pulse length UV Nd:YAG laser ablation of Truemode™ was investigated at various

processing speed, power and pulse repetition rate to determinate optimum setting which

was followed with successful demonstration of multimode optical waveguide with a

propagation loss estimated to be 1.4 dB/cm at 850 nm datacom wavelength . This

proved its potential as a possible alternative to Excimer laser micromaching in order to

overcome the drawbacks associated with Excimer and to facilitate rapid deployment of

the technology into the targeted industry. Laser ablation of Truemode™ polymer at 355

nm using Nd:YAG laser was considered to be a photochemical-photothermal process

thus favouring Srinivasan-Smrtic-Babu (SSB) explanation; it was found that input

power below 0.15 Watt at 5 mm/s – 10 mm/s speed and a frequency of 5 kHz – 10 kHz

is an effective operating condition. The depth of ablation was also found to increase

linearly proportional to an increase in the number of laser scans; however, a single scan

was considered optimum and sufficient to obtain the required depth of ablation during

optical waveguide. Therefore, it can be understood that at the point of writing this

thesis, there are no available quoted values (of propagation loss) for laser ablation of

multimode waveguide in Truemode™ polymer using either 355 nm UV:YAG or 10.6

µm CO2 laser.

 Integrated 2D in-plane mirror fabrication using Excimer laser: A novel 45-degree

signal coupler, which would allow the redirection of optical signals within the plane of

the board, was achieved. Laser ablation approach was chosen to fabricate the 2D mirror

as the technique has also been used for 3D out-of-plane coupling. In addition, since 2D

in-plane coupling would mostly be useful at the board level where OI deployment is

expected to reach in the next decade for chip-to-chip communication, the introduction
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of any additional micro-optical component at this level of integration could face serious

challenges such as alignment. Among the three laser candidates, Excimer laser was

preferred due to its capabilities and potentials in patterning complex shapes as opposed

to the others, however, it is expected that such current limitations (on the two other

lasers) can be overcome once the deployment is accomplished by, for example, by

customising the system functionalities once the deployment is accomplished.

1.4 Thesis Organisation

The nine-chapter research thesis (figure 1.3) has chapter 1 and 9 forming the introduction

and conclusion of the work respectively. Chapter 2 provides literature coverage of reports

relevant to the research in question by giving background insight into optics and optical

communication, laser material processing, optical polymer waveguide fabrication

techniques and concluding with laser hazards.

Experimental design, procedure, measurement and analysis are the backbone of Chapter 3.

It presents methodological designs of various aspects of the research and procedures for

depositing the polymer waveguide using a spin coating technique. Furthermore, the chapter

accounts for spin coating characterisation of Truemode™, necessary to achieve a desired

layer thickness. This chapter concludes with measurement techniques and various

equipment used to achieve this.

In chapter 4, the author presents the experimental investigation of CO2 laser machining

which is followed with the successful waveguide fabrication. Chapter 5 presents

experimental results of 355 nm UV Nd:YAG laser system characterisation hosted by

Stevenage Circuits Limited, Stevenage, UK – an industrial partner to the IeMRC OPCB

flagship.

Chapter 6 is a characterisation of 248 nm Excimer laser at Loughborough University with

Chapter 7 presenting the results of waveguide fabrication carried out using UV laser

systems, namely Excimer, UV Nd:YAG and IR laser, CO2.

Integrated mirrors for in-plane signal couplings are presented in Chapter 8. This chapter

further provides information on metallization processes for 45-degree design. Finally,

Chapter 9 is devoted to the summary of the research and proposed future work.
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Figure 1-3: Thesis structure (schematic representation).

1.5 Summary

This chapter has provided an account of the current problems, in terms of BW, facing the

traditional copper interconnection used in most electronics devices. It has presented OI

deployment on PCB as a way of overcoming this inherent bandwidth-limited electrical

connection supported by the literature survey of the past and ongoing research in this

direction. This proposed solution is also the author’s consideration in the research presented

in this thesis. The chapter then provided the research goals, collaboration and its

contribution to the body of knowledge. The chapter was concluded by presenting the

organisation of this thesis chapter by chapter.

Thesis

Introduction

(Chapter 1)

Literature Review

(Chapter 2)

Research
Methodology

(Chapter 3)

System
Characterisation

(Chapters 4 – 6)

CO2 Laser

(Chapter 4)

Nd:YAG Laser

(Chapter 5)

Excimer Laser

(Chapter 6)

Waveguide
Fabrication

(Chapter 7)

Mirror
Fabrication

(Chapter 8)

Conclusion

(Chapter 9)
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2 LITERATURE REVIEW

2.1 Introduction

Having set out the goals, relevance and importance of this research in proffering solutions

to the challenges faced in meeting technology roadmaps for consumer electronics vis-à-vis

data rate and size, in the preceding chapter, this chapter reviews some of the fundamental

principles, concepts, literature and limitations surrounding this emerging technology. This

is addressed by first considering optical communication in general and why its deployment

at short distance would be beneficial, and of course a potential solution, to the bandwidth-

limited copper transmission. Thereafter, some of the available techniques employed in

patterning waveguides for OI are briefly examined. Since laser ablation is a technique of

choice in this research, and for the fact that lasers are the key tools in this concept, laser

operation, principle and types are reviewed; this is succeeded by discussion on laser-matter

interaction, optical polymer waveguide fabrication and limitations. This chapter is

concluded by highlighting some of the potential hazards involved in the use of lasers.

2.2 Optical Interconnections

Interconnection using optical principles for long-haul communication is now an established

technology with optical fibre (or waveguide) used as light pipes to convey signals. In recent

years, there has been ongoing research geared towards adapting the same principles at

board level, driven by the requirement for higher data transfer rate, higher density

interconnection, smaller packages, and low power consumption/dissipation among others,

which is impracticable due to the limitations of conventional electrical connections [1-7].

Light can carry a huge amount of information due to its optical frequencies, typically in the

infrared region, namely 850 nm and 1300 nm / 1550 nm for datacom and telecom

respectively, and this is where low losses are achieved in light propagation. The high

frequencies of optical communication medium (i.e. light) mean a very broad BW which is a

requirement for carrying large amounts of data. For example, a carrier source such as

VCSEL with a wavelength of 850nm (carrier frequency is 3.5 x 105 GHz) has a BW of ≈ 

2.08 x 106 MHz (Equation 2.1) if a 5 nm [8] linewidth is chosen for a multimode operation.

What this means is that for a TV transmission using a typical BW of 6 MHz (based on

Shannon sampling theory) the number of channels that can be transmitted along the fibre is
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There are three basic building blocks of any optical communication system (Figure 2.1

(i) transmitter, (ii) channel, and (iii) receiver, each of which consists of sub

elements depending on the type of information, means of transmission, distance of

transmission and type of carrier source. For instance, a typical fibre optical communication

e transmission would contain a modulator, carrier source and

channel coupler as elements of the transmitter, while with free-space radio-frequency

wireless communication an antenna is required as a carrier source (or RF generator). A

ation of a communication system based on distance is shown in figure

a form of waveguide – dominates the long distance

based waveguides have been suggested for short

connections, primarily based on their relative achievable low

cost benefits respectively [9]. On the other hand, unprotected (i.e. unguided)

transmission has also been used for both long- and short-distances. In fact, the former is

achievable and thus used at both optical and RF wavelengths (Section 2.2.2).

Basic building block of a typical optical
communication system.

Information
Channel

Receiver
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i.e. 346,667 channels as compared to 50 channels (i.e. 300 MHz /

frequency (RF) transmission systems, even though

the latter still offers huge advantages over cable links (i.e. coaxial cable). This has made it

ssible for optical fibre to replace RF in most applications where information capacity is

(Figure 2.1),

and (iii) receiver, each of which consists of sub-

elements depending on the type of information, means of transmission, distance of

transmission and type of carrier source. For instance, a typical fibre optical communication

e transmission would contain a modulator, carrier source and

frequency

wireless communication an antenna is required as a carrier source (or RF generator). A

ation of a communication system based on distance is shown in figure

dominates the long distance

been suggested for short-distance (e.g.

low-loss (at 850

[9]. On the other hand, unprotected (i.e. unguided)

distances. In fact, the former is

).

Receiver

(2.1)



Figure 2-2
communication system based on distance and guided
mechanism.

2.2.1 Free space communication

The free space communication is a form of unguided wave using carrier

wavelength or RF wavelength.

2.2.2 Radio-frequency (RF) communication

In RF communication systems, frequencies typically in the range 3 kHz

generated at the antenna and used as the carrier source. The fact that RF is part of

electromagnetic spectrum in which light is a portion,

transmission is fundamentally similar to that of optical transmission

constituents are made of electric and magnetic fields

of propagation of the signal travelling at the speed of light (in a vacuum or air). Radio wave

transmission utilizes antennas (

VCSEL and Photo-Diodes (PDs) used respectively in optical c

RF is unguided means its use is affected by possible obstruction along the path of

propagation, such as absorption of the signal by walls or reflections from surfaces.
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2: Hierarchical classification of optical
communication system based on distance and guided

Free space communication

The free space communication is a form of unguided wave using carriers at either optical

wavelength or RF wavelength.

frequency (RF) communication

In RF communication systems, frequencies typically in the range 3 kHz – 300 GHz are

generated at the antenna and used as the carrier source. The fact that RF is part of

electromagnetic spectrum in which light is a portion, means that its principle of

transmission is fundamentally similar to that of optical transmission, because its wave

constituents are made of electric and magnetic fields which are orthogonal to the dir

of propagation of the signal travelling at the speed of light (in a vacuum or air). Radio wave

(or aerials) at the transmitting and receiving ends, as against

Diodes (PDs) used respectively in optical communication. The fact that

RF is unguided means its use is affected by possible obstruction along the path of

propagation, such as absorption of the signal by walls or reflections from surfaces.

Optical
communication

Long distance

Unguided (e.g.
satellite)

Short distance

Guided (e.g.
OPCB)
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of propagation of the signal travelling at the speed of light (in a vacuum or air). Radio wave

receiving ends, as against

ommunication. The fact that

RF is unguided means its use is affected by possible obstruction along the path of

propagation, such as absorption of the signal by walls or reflections from surfaces.
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Furthermore, the signal is easily affected by the presence of moisture in the air and any

other signal in the transmission medium which might constitute a noise.

Another problem with this wireless (unguided) communication system is that the signal is

not naturally polarized, which requires that only a particular polarisation can be transmitted

by the aerial while the receiving aerial can only receive the maximum signal when its

direction is in line with the receiving signal. Even though the polarisation in free space is

thought to remain the same once a signal is launched, reflections along the transmission line

can cause slight changes to the polarisation of the signal. This poses challenges in

alignment (of antennas) and consequently causes signal loss along the transmission line.

Furthermore, the aerials, and thus the system, is characterised by impedance matching that

is dominated by capacitance and inductance of the transmission line circuit. These are some

of the drawbacks in this system of communication. However, one of the advantages of this

system over fibre- or waveguide-based communication is the elimination, or at least

minimisation, of losses due to its absorption and bending (required for signal

routing/coupling), which are found limiting in fibre applications. Furthermore, the system

offers huge advantages over twisted pair cable used for telephony and coaxial cable for TV

and internet broadband [8, 10].

2.2.3 Free space optical communication

Free space optical communication is fundamentally similar in principle to the fibre optical

communication described later in section 2.2.4, except that the atmosphere is used in lieu of

fibre (or any other suitable candidate) as the transmitting channel. For this reason, the

establishment of an unobstructed path, i.e. line-of-sight, between the transmitter and

receiver is a requirement in this technology. There are some challenges facing this type of

communication, especially inland, such as divergence, directionality of the beam, presence

of moisture, and cloud in the medium among others, all of which can affect the signal and

thus decrease the quality of information in terms of the signal-to-noise (S/N) ratio.

Nevertheless, this type of communication is still required and mostly used in satellite

communication and possibly for chip-to-chip interconnection [8, 11].

2.2.4 Fibre optical interconnections

Fibre, typically a dielectric material (polymer, silica or glass), is an optical waveguide for
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long-distance communication. Fibre optical communication has overcome the challenges

facing both free space optical communication and that of coaxial-cable communication,

especially for long-haul transmission of information and has been successfully used for

internet broadband. This technology has seen acceptance among electronic consumers from

telephony to cable TV and down to internet traffic for Local Area Network (LAN),

Metropolitan Area Network (MAN) and Wide Area Network (WAN). The most important

advantages of this system include its high information capacity, relatively low cost, space

reduction, reduced losses, low level of distortion, reduced power consumption and

immunity to EMI, all (or some) of which have been limiting the performance of electrical

interconnection based on copper. The first generation of fibre optical communication was

provided about three decades ago using GRaded INdex (GRIN) fibre operated at 850 nm

(wavelength) followed by the use of 1300 nm wavelength for single mode propagation.

A fibre optical communication system is based on the principle of total internal reflection

(TIR) at core-clad (or core-air) interface. TIR is an optical phenomenon where a light

travelling from a denser to less dense medium, on striking a medium boundary at an angle

larger than the critical angle, will totally reflect back into the medium with no fraction

(theoretically) transmitted. The core, which can be either glass or plastic, is sandwiched

between materials of low refractive index (RI), commonly called the clad layers. This

cladding ensures that light propagating inside the core is totally contained along the fibre by

TIR. Furthermore, the cladding serves as a mechanical support for the core and also as a

shield against any contamination which can contribute to Rayleigh loss arising from

microscopic impurities [8, 10, and 12].

When light is launched at one end of the fibre it undergoes a series of internal reflections,

known as Fresnel reflection, along the fibre before emerging at the receiving end (figure

2.3). Even though the numerical aperture restricts the amount of coupling signal, not all

light that enters within an acceptance cone emerges from the waveguides, but only those

that strike at an angle ≤ critical angle of the medium (Equation 2.2). Therefore, the size of 

the core and the difference between the refractive indices of the core-cladding material

(Table 2.1) play important roles in determining the numbers of allowed paths or modes that

can be propagated. This leads dimensionally to two types of optical fibre or waveguides,

known as single-mode and multimode. The main differences between the two types are the

size of core and the number of modes operating in the core.
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The core/cladding dimensions for a single mode fibre and step index multimode fibre are

typically 9 µm / 125 µm and 50 µm / 125 µm respectively [13]. Single mode fibre is

favoured for long-distance communication as it gives lower attenuation and dispersion.

However, even though it reduces the dispersion, it poses a problem of alignment and

coupling of signals for the transmitter-fibre and fibre-receiver. The solution to this is

achieved by the use of multimode fibre in which the RI of the core decreases continuously

with distance from the fibre central axis so that various incident signals can reach the end of

the fibre at roughly the same time, thus avoiding signal distortion. This method of

propagation is known as Graded Index, GRIN [8]. Transmission in a GRIN fibre is

technically due to refraction rather than TIR as the light is refracted as the RI reduces

gradually from the core centre and no abrupt change occurs at the core-clad interface.

Table 2-1: Various core-cladding materials used for fibre
optical communication with their associated optical
properties [8].

Boundary
(Core/Cladding)

RI of the core RI of the
cladding

Critical angle
θc

N.A

Glass-air 1.5 1.0 41.80o 1

Plastic-plastic 1.49 1.39 68.9o 0.54

Glass-plastic 1.46 1.4 73.5o 0.41

Glass-glass 1.48 1.46 80.6o 0.24

Figure 2-3: The principle of waveguiding in core/cladding
structure of different RI for a multimode fibre or
waveguide.

Core

Cladding

(2.2)
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2.3 Optical Interconnection on PCB

The PCB is the backbone of connections in almost all electronics products. They are used to

mechanically support and electrically connect circuit components such as ICs, logic gates,

transistors, diodes, capacitors, inductors and resistors, for board, rack, chip and backplane

applications. Conventional electrical interconnection is limited with frequency-dependent

(L-C) attenuation, cross-talk due to interconnection density, impedance matching, power

dissipation due to impendence of the line, voltage isolation, EMI and interconnection

density limitations. These limitations pose serious drawbacks in their use for micro- and

nano-technology such as in Micro-Optical-Electrical Mechanical System (MOEMS),

Micro-Electro Mechanical System (MEMS) and opto-electronics [1-7].

The introduction of microvia technology, i.e. HDI, into the PCB manufacturing process

(used for ‘buried’ and ‘blind’ vias to connect multi-layer boards) which is assisted by laser

ablation has dramatically improved interconnection density and package size. However, as

the speed of signal on-board approaches and tends to exceed 10 gigabits per second (Gb/s)

there occurs even greater loss – a real bottleneck in electrical interconnection. The

aforementioned limit in electrical transmission on board is becoming unbearable despite

using a number of correcting measures:

 minimizing conductor length

 shielding each signal with grounded pins

 filtering and noise elimination

 development of new dielectric substrate, and

 multi-level data coding [14-15].

To resolve the problem due to losses, optical interconnection on the PCB has been

suggested as a viable solution. The first application of OI technology is required at the

backplane, the most widely used interconnection between boards, but it is expected to

extend to lower hierarchical levels of interconnection up to chip level according to some

reports even though this, i.e. chip level, is not anticipated soon. For optical interconnection

at inter- and intra-board level communication there are currently four different identified

concepts using either polymer or glass as the guiding material; they are: (i) overlay

technology with polymer optical waveguides, (ii) embedded technology with polymer

optical waveguides, (iii) embedded technology with glass waveguides, and (iv) embedded
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technology with optical multiwire technology [16]. Polymer-based connection has been a

preferred choice for its cost-effectiveness and compatibility with manufacturing in the PCB

industry [9, 14, 17 - 19].

2.3.1.1 Light coupling methods for OPCB application

Signals are coupled in and out of optical waveguides using the transmitter and receiver

respectively as previously mentioned. The optical transmitter is used to convert an electrical

signal to light pulses which is then coupled into the waveguide using a carrier source in the

optical-PCB. The reverse process, i.e. conversion of light pulses into electrical signals, is

achieved at the receiving end. The commonly-used components for impressing and

detecting signals are considered below.

2.3.1.2 Laser Diode (LD)

Laser diodes combine the characteristics of both a simple diode, such as Light Emitting

Diode (LED), and a laser. Unlike a LED, it emits coherent narrow-spectrum light when

forward-biased (figure 2.4) but no light when reverse-biased. Biasing a diode refers to the

act of connecting a dc voltage to its respective terminals. In forward biasing, the positive

and negative terminals of a voltage supply are connected to the p- and n-junction

respectively of the pn junction diode; the opposite is the case during reverse biasing.

It should be mentioned here that the emitted photon in a laser diode is a product of

stimulated emission as opposed to spontaneous emission in an LED. This emission occurs

when an electron moves from a conduction band to a valence band. The wavelength emitted

depends on the composition and condition of the semi conducting material used, and lies

between infrared to near-ultraviolet. For example, for a binary semiconductor – those with

two elements – such as gallium arsenide (GaAs), the wavelength of the emitted photon

corresponds to the band gap energy, however for ternary semiconductors such as gallium

aluminium arsenide (GaAlAs), the wavelength depends on the concentrations of the three

elements in the crystal, in other words, the wavelengths of ternary semiconductors are

tuneable. There is a threshold level of current above which the laser action occurs

(monochromatic coherent light) but below which the laser diode behaves like a LED

(emitting incoherent light) [20 – 22].
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Figure 2-4: Circuit representation of Forward-biasing of
LD: (a) Conventional Symbol, and (b) Circuit
representation.

2.3.1.3 Vertical Cavity Surface Emitting Laser (VCSEL)

Unlike a conventional laser diode, a VCSEL (pronounced as ‘vixel’) has its optical cavity

axis shorter and along the direction of current flow rather than perpendicular to the current

flow. This results in laser beam emission perpendicular to the top surface of the wafer with

a small degree of divergence. In other words, the VCSEL is a surface emitter. The short size

of resonator in a VCSEL limits the viable longitudinal mode that can oscillate to one [23].

The VCSEL proves to be an ideal component for on-board optical interconnect because it is

small, compact with a favourable Gaussian beam profile, highly efficient and with

relatively low manufacturing cost because the beam quality can be assessed before the final

stage of the process. In addition, the VCSEL is also characterised with a small angular

divergence making coupling and alignment comparatively easy [24].

2.3.1.4 Photodiode (PD)

A PD is a P-N junction semiconductor diode that functions as a photodetector. Figures 2.5 a

and 2.5 b are symbol and circuit representation for a typical PD; the direction of the arrows

in the figure depict the path of the incoming light which is in an opposite direction to that of

a laser diode shown previously. When a photon of light of sufficient energy strikes the

diode surface it excites an electron thus creating a mobile electron-hole pair. A typical PD is

packaged with either a window or optical fibre connection in order to let light into the

sensitive part of the device. PDs are designed to have wide detecting range for easy and

(a) (b)
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efficient coupling of the signals [1, 24, 25].

Figure 2-5: Photodiode (a) Circuit diagram showing
biasing condition, and (b) Symbol representation with arrow
showing direction of light.

In summary, the above optoelectronic devices should, in essence, possess certain features in

order to be used as either a light transmitter or a receiver, including but not limited to the

following:

 The ability to launch light directly into (or couple light out of) an optical waveguide

(or fibre) and be small enough for mounting on equipment.

 The ability to generate enough power so that sufficient light power can be coupled

into / out of the waveguide.

 A narrow spectral line width is essential to minimise signal broadening caused by

dispersions as previously mentioned.

 It should emit light at a wavelength where the waveguide has low loss and

dispersion.

 It should meet the failure rate and life requirements for the system application.

2.3.2 Challenges in current optical interconnects

Signals launched at one end of an optical waveguide, either for short or long distance

applications, are not in many cases, identical to those arriving at the receiving end, either

due to attenuation (change in amplitude) and/or distortion (change in waveform). These

losses (propagation, insertion, coupling, angular misalignment, etc.) in optical

communication are quantified using a logarithmic unit called decibels (dB) using Equation

2.3, where P1 and P2 represent the input and output power respectively. For a loss, it is a

(a) (b)
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negative dB while a positive value indicates a gain of power, usually obtained in amplifiers

or amplification circuits. Sometimes the negative sign is omitted but replaced with ‘loss’ to

mean attenuation in signal.

Loss (dB) = 10Logଵ
୮మ ୮భ⁄

Attenuations are caused by a number of factors including inhomogeneities and geometric

(sharp bend and core-clad boundary irregularities) effects of the core, coupling losses

resulting from misalignment, absorption by the core (due to electronic, molecular and

vibrational bands), and scattering (i.e. Rayleigh) from microscopic impurities dimensionally

smaller than the light wavelength. Distortion, on the other hand, is largely due to waves

travelling different distances along the optical channel due to a difference in launching

angles causing phase delay of the light signal. The light along the waveguide axis or any

path parallel to it travels the least distance and thus reaches the receiver first. Distortion is

caused by different mechanisms among which are modal distortion, material dispersion and

chromatic dispersion. Dispersion cannot be totally eliminated but can be reduced; this is

because there is no absolute monochromatic light and RI is a function of wavelength. Thus

the more monochromatic a light is the less the problem encountered with dispersion. One of

the ways of reducing problems associated with dispersion is by using a single-mode or

GRIN waveguide [8, 10, 12].

Apart from propagation and dispersion of waveform there are other issues that have to be

considered in any optical communication system for either short- or long-distance

transmission. These are addressed in the following sections.

2.3.2.1 Numerical aperture

Numerical aperture (NA) – the sine of the maximum angle of incident light normal to the

fibre axis for which transmitted light is guided in the core by TIR – is an important factor in

optical waveguide communication because it is directly related to the acceptance cone. For

example, a Truemode™ polymer with clad and core having refractive indices of 1.5264 and

1.556 [17, 26] respectively, the NA and the acceptance angle are 0.302 and 17.8o

respectively using equations 2.4 and 2.5 where NA is the numeric aperture and ncore and

nclad are the refractive indices of core and clad respectively. This is a typical value for a

multimode waveguide. This value of acceptance angle can be increased by widening the RI

(2.3)
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difference between the clad and core but this, in most cases, is at the expense of

propagation loss. However, current polymer waveguides (e.g. polysiloxane and

Truemode™) are made in such a way that the RI of both layers can be tuned to suit various

applications. Truemode™ for instance, has RI tunable between 1.45 and 1.58. With this, an

acceptance angle 38.87o (and NA of 0.628) could be achieved, which is more than doubling

the acceptance angle; this high acceptance angle might be very useful in photonic

applications. Another way of overcoming this problem is by the use of 'uncladded' (i.e.

using air as the clad with a RI of 1), though this increase in NA would be at the compromise

of low loss.
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2.3.2.2 Coupling loss

Light is required to be transferred in and out of the waveguide via LD/VCSEL and PD to

complete the transmission system. During this transfer, designers are faced with alignment

of these components mainly due to the dimensional characteristic of the waveguide and also

the NA constraint of any guided system. This results in loss, termed as the coupling loss.

2.3.2.3 Bit-error

The fact that information are coded in a defined series of zeros and ones, known as bits,

does not eliminate error in digital communication systems, but the ability to design a

mechanism with which to detect and subsequently correct the error is a key issue in optical

communication. The Bit Error Rate (BER), the fraction of incorrectly transmitted data or

signal, determined using what is called a Bit Error Rate Tester (BERT), must be as low as

possible to guarantee the reliability of the information received. This problem is one of the

current challenges in any form of optical communication system be it for short distance or

long distance, guided or unguided, glass-based or polymer-based communication systems

[27].

(2.4)

(2.5)



2.3.2.4 Crosstalk

Cross-talk is a situation whereby signal from a channel interferes with

channel, causing an undesirable effect such as noise. This effect in o

can be reduced using an appropriate thickness of cladding material to prevent any possible

leakage of signals between closely packed waveguide channels or by digitalising the signal,

which is less susceptible to interference

2.4 Waveguide Fabrication

Many fabrication techniques have been identified and reported in the literature

lists, four techniques, including laser ablation, were investigated as part of

flagship. Photolithography and

for fabricating optical waveguides while laser ablation is

printing, though a form of direct writing

known for optical waveguide fabrication.

2.4.1 Photolithography

This is an established technique of microfabrication used in the electronic industry, for

example, in silicon wafer patterning. During the photolithographic process of fabricating

waveguides, a photosensitive

create the pattern, i.e. waveguide, on a photopolymer. This is achieved while the polymer

acts as either a positive or negative resist. With the positive resist, the unexposed areas

form the waveguide structures while with the negative type, the exposed part forms the

waveguides. In either case, the unwanted areas are developed or washed away.

shows the major steps involved in photolithographic fabrication of waveguides.

Figure 2-6:
waveguides by photolithography

Deposition of photopolymer
on a substrate

UV Illumination
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talk is a situation whereby signal from a channel interferes with another

channel, causing an undesirable effect such as noise. This effect in optical interconnection

an appropriate thickness of cladding material to prevent any possible

leakage of signals between closely packed waveguide channels or by digitalising the signal,

which is less susceptible to interference [28].

abrication Techniques for OI

Many fabrication techniques have been identified and reported in the literature

techniques, including laser ablation, were investigated as part of

. Photolithography and Laser Direct Writing (LDW) are now established techniques

optical waveguides while laser ablation is an emerging alternative. Inkjet

printing, though a form of direct writing – an established deposition technique

optical waveguide fabrication.

This is an established technique of microfabrication used in the electronic industry, for

example, in silicon wafer patterning. During the photolithographic process of fabricating

polymer is illuminated in such a way that a mask is used to

create the pattern, i.e. waveguide, on a photopolymer. This is achieved while the polymer

acts as either a positive or negative resist. With the positive resist, the unexposed areas

guide structures while with the negative type, the exposed part forms the

In either case, the unwanted areas are developed or washed away.

shows the major steps involved in photolithographic fabrication of waveguides.

: Steps involved in the optical fabrication of
waveguides by photolithography.

Deposition of photopolymer Soft baking to evaporate the
solvent

Development Post bake
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techniques, including laser ablation, were investigated as part of the OPCB
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This is an established technique of microfabrication used in the electronic industry, for

example, in silicon wafer patterning. During the photolithographic process of fabricating

polymer is illuminated in such a way that a mask is used to

create the pattern, i.e. waveguide, on a photopolymer. This is achieved while the polymer

acts as either a positive or negative resist. With the positive resist, the unexposed areas

guide structures while with the negative type, the exposed part forms the

In either case, the unwanted areas are developed or washed away. Figure 2.6

shows the major steps involved in photolithographic fabrication of waveguides.
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2.4.2 Laser Direct Writing (LDW)

The LDW process involves using UV laser sources such as Helium Cadmium (HeCd) at

325/442 nm wavelength. In this process, a substrate with a liquid photopolymer deposited

using any suitable deposition technique such as spin coating, is placed on a translation

stage. While the laser is stationary, in most cases, the stage is moved in such a way that

the laser light passes over the sample in order to create the waveguide structures. The

interaction of the UV laser beam with the (negative working) photopolymer results in

cross-linking of the polymer molecules; thereafter, the unwanted or unexposed areas are

then washed in a solvent. The manufacturing speed depends largely on the capability of

the stage; furthermore, the waveguide dimensions are functions of the power of the UV

source and speed of the translation stage. This technique is similar to the

photolithography described above except that: (i) the UV light source is a laser, and (ii)

no mask is employed.

2.4.3 Inkjet printing

Inkjet printing is a type of Direct Writing (DR) technology as shown in the classification

of figure 2.7. Inkjet printing is well known for marking and printing of text and graphics,

however, its use for deposition of structures on substrates has only begun in the last

decade [29]. For the fabrication of polymer waveguides, the lower cladding layer is first

deposited on an FR4 substrate using spin coating and then cured. In the second stage, the

core is deposited using an appropriate dimension of nozzles to sequentially deposit a

liquid polymer on the lower cladding placed on a translation stage. Finally, in the third

stage, an upper cladding is formed. Although, the inkjet printing technique is very cost

effective – an essential requirement for OI deployment – its use for optical waveguides

poses certain challenges such as the viscosity, surface tension and wettability of the

polymer in relation to the substrate which has to be thoroughly studied and optimised.

Other barriers include the ability to control the waveguide dimension; this is because

since the process is maskless, the dimension relies, among other factors, on the rate at

which the polymer can be cross linked.



Figure 2-7:

2.4.4 Laser ablation

Laser ablation of optical waveguides, as a technique, has been demonstrated by many [30

- 36] as a viable technique and is also considered in this thesis. When it comes to defining

integrated mirrors required for coupling light in and out of optical waveguides, laser

ablation is a more suitable choice compared to those previously mentioned. Th

sections will discuss in detail the relevant features of laser ablation for optical waveguide

fabrication.

Apart from these four waveguide fabrication techniques, other methods have also been

investigated and/or reported; some are very similar, in concept and step, to those already

described or to microfabrication techniques in general. The methods are:

i. Casting + Doctor blade [37].

ii. DPP (Direct Photo Patterning) [38].

iii. Hot embossing [39].

iv. LIGA-like process [40].

v. Milling [41].

vi. Reactive Ion Beam Etching (RIBE) [42].

vii. Reactive Ion Etching (RIE) [43].

viii. Photobleaching [44].
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Classification of DR techniques [29].

Laser ablation of optical waveguides, as a technique, has been demonstrated by many [30

36] as a viable technique and is also considered in this thesis. When it comes to defining

integrated mirrors required for coupling light in and out of optical waveguides, laser

ablation is a more suitable choice compared to those previously mentioned. Th

sections will discuss in detail the relevant features of laser ablation for optical waveguide

Apart from these four waveguide fabrication techniques, other methods have also been

investigated and/or reported; some are very similar, in concept and step, to those already

described or to microfabrication techniques in general. The methods are:

g + Doctor blade [37].

DPP (Direct Photo Patterning) [38].

Hot embossing [39].

like process [40].
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Reactive Ion Beam Etching (RIBE) [42].

Reactive Ion Etching (RIE) [43].
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Laser ablation of optical waveguides, as a technique, has been demonstrated by many [30

36] as a viable technique and is also considered in this thesis. When it comes to defining

integrated mirrors required for coupling light in and out of optical waveguides, laser

ablation is a more suitable choice compared to those previously mentioned. The following

sections will discuss in detail the relevant features of laser ablation for optical waveguide

Apart from these four waveguide fabrication techniques, other methods have also been

investigated and/or reported; some are very similar, in concept and step, to those already
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ix. Photocrosslinking [45].

x. Photolithography + Reactive Ion Etching (RIE) [46].

xi. Photolocking and selective polymerisation [47].

xii. UV-embossing [48].

2.5 Laser Fundamentals

Since the laser was chosen as a tool for the fabrication of optical waveguides in this project,

it is pertinent that the fundamental of laser operation is examined; this is the focus of this

section.

2.5.1 Introduction to laser

The word ‘laser’ has been part of ordinary English language since its invention in early

1960, and subsequent commercialisation in 1964. The word is an acronym that stands for

Light Amplification by Stimulated Emission of Radiation. Furthermore, laser is considered

as a modified version of its predecessor, ‘maser’, meaning Microwave Amplification by

Stimulated Emission of Radiation by Townes (or Gordon Gould as asserted in [49]). In

other words, laser is an optical maser. The first laser, ruby, emitted red-colour light at a

wavelength of 694.3 nm.

Just approximately five decades later, laser (and laser technology) controls a remarkable

market share in various applications ranging from research to medicine, manufacturing to

domestic applications. One of the sectors that have seen dramatic advancement with the

advent of lasers is medical surgery (ophthalmology, cosmetic surgery and dentistry). For

instance, in ophthalmology – the sector that benefited the most – Excimer is used for the

treatment of myopia and hypermetropia by a process commonly known as LASIK (Laser

in-situ Keratomileusis) where it is used to machine the cornea [50]. This makes laser a very

powerful and indispensable machine with the potential of multi-tasking operations. Other

industrial applications of lasers are on metals and non-metals (polymers, ceramics, glass,

etc.) including surface hardening, surface cleaning, cladding, welding, soldering, brazing,

cutting, marking and drilling [50].

2.5.2 Principle of laser generation

There are some fundamental phenomena that need to be understood when considering laser
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beam design and generation; they are addressed in the following sub-sections.

2.5.2.1 Spontaneous versus stimulated emission

Most light sources such as a bulb, work on a principle of spontaneous emission in which an

excited atom or molecule releases photons by falling from a higher energy level to a lower

one. Conversely, at the ground state – the stable state in which most species could be found

as compared to the excited state under normal conditions – an atom or molecule, can only

absorb a discrete packet of light known as a photon, in order to move to a higher energy

level which is released again as light on falling back down. According to equation 2.6, this

process is reversible. The photons released in this case are non-coherent with different

frequencies, and of course wavelengths, since they are constantly and indiscriminating

falling to different energy levels.

ܣ ݊ݐ݅ݎݏܾ � ݄߭ �՞ ݊ܵ ݐܽ ݊ ݉݁�ݏݑ݁ ݏ݅ݏ݅ ݊ െ ݄߭

However, when the aforementioned process is triggered by an external source (i.e. another

incident photon) an interesting result is obtained. In this case, photons are not only released

prematurely but the emitted photons have the same characteristics – wavelength/frequency,

direction of propagation, phase relationship, and plane of polarisation – with the triggering

photon, thus resulting in a pool or family of photons. This is known as stimulated emission

– the principle of generation of a laser beam. Depending on the laser the beam of light

generated in this way can comprise of UV, visible or IR light with wavelengths in the range

of 102 – 104 nm (figure 2.8) [50]. In fact, nowadays, lasers in the soft X–ray region can also

be produced using a Free Electron Laser (FEL).

Figure 2-8: Portion of electromagnetic spectrum at which
lasers operate based on ANSI Z136 definition.

IR - C IR - B IR - A UV - A UV - B UV - CVisible light

400 nm – 700 nm 400 nm – 100 nm700 mm – 1 mm

(2.6)
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2.5.2.2 Population inversion

The thermodynamic equilibrium condition of matter represented by the Maxwell-

Boltzmann distribution (Equation 2.7) explains the way in which energy is distributed in

matter under normal conditions where N2 and N1 are the population of species at energy

levels E2 and E1 respectively, T is the absolute temperature and k is a constant, known as

Boltzmann constant with a value of ~ 1.38 x 10-23 J/K

ܰଶ
ܰଵ
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In practice, what the Boltzmann distribution represents is that even though there is an

increase in the number of species at energy E2, for example, at higher temperature, the

distribution however remains constant such that the ratio of N2/N1 at any given temperature

is less than one as shown in figure 2.9. To put it in a different way, for any given

temperature of the system, no energy level is practically expected to have more species than

any immediate lower energy though the number of species in that higher state can increase

proportionally with temperature. It further follows from equation 2.7 that since (E2 – E1)

will always be positive and that temperature cannot be negative then population of the

lower state would always be greater than that at a higher level or that N2/N1 would always

be less than one. Unfortunately, this ‘normal’ distribution needs to be reversed for laser

action to occur in order to ensure that stimulated emission is sustained rather than mere

absorption and spontaneous emission. This process by which the thermodynamic

equilibrium state is reversed is known as population inversion.

(2.7)



Chapter 2: Literature Review

- 37 -

Figure 2-9: Maxwell-Boltzmann thermal population
distribution.

Population inversion is achieved through externally supplied energy in the form of

excitation, commonly known as ‘pumping’. The source of this excitation depends mainly

on the type of laser and/or the active medium which could be gas, liquid or solid. The

common forms of excitation are electrical (DC, AC or RF), optical (flash lamps, arc lamps,

semiconductor lasers, etc.) and chemical pumping. Sustaining this population inversion is

essential for continuous laser production, which can be accomplished by:

 creating a situation whereby the rate of populating, via excitation, the upper

state is greater than that of the lower state; and

 making the lifetime of the lower state shorter than the upper state. In other

words, the upper lasing state is metastable with lifetime greater than

spontaneous lifetime.

Thus, for laser generation to take place, essentially, there are three factors, principles and/or

phenomena that must be preceded. The first two are: (i) stimulated emission to defeat

spontaneous emission and absorption, and (ii) population inversion to temporarily disturb

normal distribution. These two processes require that species move from a lower energy

level to a higher one, and this is known as laser transition which is considered next.
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2.5.2.3 Laser transition stages

In the simplest form, laser light is obtained by transition between the ground and excited

states, i.e. only two energies involved, say E1 and E2. This system is not efficient for the

amplification of light required in an industrial laser application, however Excimer laser is,

naturally, generated using a two-state design like the one schematically depicted in figure

2.10 a. In a 3-level laser (Figure 2.10 b) typically used for a ruby laser, species are excited

to a pump level – E3 in this case – which is then quickly and spontaneously decayed to a

metastable state at energy level E2 where the lasing takes place. A state is called metastable

because species at this state have life times longer than the spontaneous life such that the

state can ‘inversely’ be populated with species and laser action can be invoked between the

state in question and the state immediately below it.

The three-level design reduces the problem encountered with a 2-level system where the

sustenance of population inversion is an issue. However, the problem is not totally solved in

this system, which necessitates using a 4-level system (figure 2.10 c) where lasing transition

occurs between two intermediate energy states, thus sustaining the population inversion

[51]. Today most industrial lasers are operated on a 4-level transition with the exception of

few such as Excimer laser.
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Figure 2-10: Laser transitions process (a) two-level (b)
three levels, and (c) four-level.
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2.5.2.4 Feedback system – active medium and laser cavity

The third factor for laser generation is the laser amplification achieved through a feedback

system. Laser feedback is quite similar to feedback in audio amplifiers except that it is a

two-way operation. This process is required in order to create a ‘pool’ of photons to form

the laser beam which takes place in a laser medium.

This medium (gas, liquid, or solid) – through which light is amplified by stimulated

emission – is usually contained in an optical cavity consisting of two parallel mirrors,

totally- and partially-reflecting mirrors, in which light travels in both directions. The

partially-reflecting mirror is coupled to an output window or exit, which delivers the output

beam to, for example, the workpiece. The totally-reflecting mirror is made such that its

reflectivity is as close as possible to 100%, while the reflectivity of the partially-reflecting

mirror varies from laser to laser depending on the power output desired. For example, 35 %

reflectivity is employed in CO2 lasers while 8% of the beam is fed back into the cavity for

the purpose of amplification in Excimer lasers [52].

For cavity design, curved mirrors are used to minimise alignment issues usually

encountered with flat mirrors and losses due to the diffraction of the oscillating beam [10,

50]. This phenomenon, i.e. loss in coupling light via a flat surface, is also a consideration in

the implementation of integrated mirrors for coupling light in and out of waveguides.

Figure 2.11 shows various processes involved in the laser generation with the cavity

designed is such a way that the oscillating beam tends to converge towards the centre and it

is called a stable cavity; it is suitably used for low power lasers up to 1 kWatt for YAG and

5 kWatt for CO2 [53] where it is safe to transmit the beam through the mirror without the

potential of a damage or breakage [52]. On the other hand, a cavity can be designed in such

a way that the beam diverges from the central axis; this is called an unstable cavity often

used for high-power lasers. In this design, the output power is taken at the edges of the

mirror and the two mirrors are totally reflecting.
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Figure 2-11: Schematic diagram of laser beam design and
generation.

2.5.3 Characteristics of laser beam

It must be surprising to know that lasers are not as efficient as common light sources such

as bulbs with operating efficiency as low as 2 % for flash-pumped YAG laser. However,

what distinguishes a laser beam from other light and makes it a powerful tool despite these

‘huge’ energy losses, i.e. low efficiency, are its unique properties. These characteristics

include the following:

i. Polarization

A light wave (e.g. laser beam) possesses both electric and magnetic field that are

orthogonal. The orientation of the E-field is mostly considered to define the direction of

polarization. If the direction of the E-field is always pointing in a particular direction,

which is perpendicular to the direction of travel of light, then it is said to be linearly-

polarized. Consequently, two incoherent waves can be propagating in the same direction
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but with different plane of polarization. This is not the case with a laser beam as all

photons in a beam are polarized in the same direction [54].

ii. Chromaticity

Chromaticity is an attribute in which the beam produced is of a particular colour and thus

frequency. The monochromatic nature of a laser beam makes it possible for it to retain its

energy (with much less attenuation or distortion) on passing through optical components

(e.g. lens) used in a beam delivery system. It merits mentioning here that although a laser

is said to be monochromatic, i.e. having a single wavelength or frequency, there is no

such ideal monochromatic light. In other words, in practice, the laser light has a narrow

band of wavelength rather than a pure single wavelength [22, 54]. For example, the

linewidths (δλ) of Nd:YAG (1064 nm), Excimer (248 nm KrF), and CO2 (10.6 µm) lasers

are 0.5 nm, ~ 2 nm and 1.6 µm respectively [23].

iii. Directionality or Divergence

Divergence is the tendency of a beam to spread out as it travels; it is measured in radians

(rad). A typical value of divergence is between 2 – 3 mrad for most industrial laser

applications [50].

iv. Coherence

Coherence is another important property of a laser beam which can be described as

correlation between phases of monochromatic radiation. In other word it is a measure of

degree of phase correlation that exists in the radiation field of a light source at different

locations and different times. In fact, polarization, chromaticity and directionality of laser

beam are related to each other and to the coherent property; thus, it is often found that the

characteristic of the latter is of utmost concern when dealing with the property of a laser

beam.

Coherence is of two types, temporal and spatial; spatial coherence can be either

longitudinal or transverse. The transverse electromagnetic mode (TEM) indicates the

variation of the laser beam intensity in a plane normal to the direction of beam

propagation. The most useful of these modes is the fundamental mode, TEM00, with a

profile described as Gaussian. Although other higher modes are produced alongside,
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which could be found useful for other applications, but for most material processing

applications, it is useful to keep the cavity operating at the fundamental mode. Figure 2.12

shows some of the examples of low-orders of TEM modes including the fundamental

mode TEM00; the TEM is generally written with two subscripts as TEMxy [23].

Figure 2-12: Transverse electromagnetic modes (TEM).

2.5.4 Gaussian versus ‘tophat’ beam profile

The intensity distribution in a Gaussian beam is shown in figure 2.13a. The beam

intensity variation can be described according to equation 2.8, where Io = Imax = intensity

at the centre of the profile, I, is the intensity at any other point, and r is the radius of the

beam taken at a point where the beam axis intensity has fallen to 1/e2 of its maximum.

Although this Gaussian profile is better than and preferred to higher order modes, its

intensity variation is still something of a concern in laser material processing and

particularly in laser ablation. For this reason, a modified version of the beam profile is

generated with uniform intensity across the entire profile similar, in principle, to that

shown in figure 2.13 b. This profile is called a ‘top-hat’ (or ‘flat-top’) profile perhaps due

to the ‘flatness’ of the top of the profile. This profile is thought to improve the tapering

nature of ablated profiles using the Gaussian.

TEM00 TEM10

TEM01 TEM11
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As shown in figure 2.13 c, a tophat profile is obtained from its Gaussian counterpart by

taking the energy from the weak intensity region, where beam intensity distribution is

lower than 1/e2 (i.e. 13.5 %) of the centre, and folding it back into the region within the

beam waist; this is the concept used in the HY120 beam shaper from OPTEC [55]. A

point should be made here that, to say that a laser operates in a single mode, i.e. TEM00,

simply means that this is the dominant mode of operation just like a given wavelength

implies the fundamental wavelength of operation.

ൌܫ �݁ܫ
ି�ሺ బ⁄ )మ

Figure 2-13: Typical laser bean profile (a) Gaussian beam
profile, (b) overlapping of Gaussian profile to generate ‘top-
hat’, and (c) 'Top-hat' beam profile.

2.5.5 Types of industrial lasers

Lasers can be classified on a number of factors e.g. active medium (solid, liquid and gas),

output power (low, medium and high power lasers), excitation method (electrical, optical

and chemical), efficiency, applications and operating mode (continuous wave, pulsed

mode and Q-switched output mode). Table 2.2 is a list, though not exhaustive, of some of

the commonly available lasers. CO2, Nd:YAG and Excimer lasers are the key lasers in

material processing due to their relatively high power. These three form a complete laser

assembly in PCB manufacturing processes, and are thus described under this section.

(2.8)
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Table 2-2: Properties of some common lasers used both in research and industrial applications [12, 23, 52].

Property Solid State (Ruby,

YAG)

Molecular Gas

(CO2, HeCd)

Dye Laser Excimer Laser Laser Diode

Lasing medium Al2O3:Cr+3 Y3Al5O12 CO2, Cd Dye in solvent Ar, Kr, Xe Semiconductor

Pumping technique Flash lamp, diodes HV discharge Flash lamp laser HV discharge Current

Operating mode Ruby : Pulsed

YAG : Pulsed, CW, Q-

switched

CW, Pulsed Pulsed Pulsed CW, Pulsed

Wavelength (nm) Ruby : 694

YAG: 266 – 1320

CO2: 9.6 - 11 x 103

HeCd : 325 - 442

300 – 1000 190 – 350 670 -1550

Beam divergence (rad) Ruby : 0.2 - 10

YAG : 0.3 - 20

CO2 : 0.5 – 10 0.5 -5 2 – 6 0.2 – 0.5

Output power (CW) or

average (pulsed) (Watt)

Ruby :

YAG : 10-3 -500

CO2 : 0.1 – 15,000

HeCd : 0.001 – 0.1

0.1 – 50 1- 100 0.01 - 5

Cooling method Water Water, Air Water, Air Water, Air Air

Wall plug efficiency (%) 4 – 12 12 0.5 – 2 50
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2.5.6 Solid-state laser: Nd:YAG

Solid-state lasers (it excludes semiconductor lasers in the general usage of the term) such as

ruby or Nd:YAG/Glass are generally made of a central material – crystalline or amorphous

– doped with a small amount ( ≈ 1% by concentration) of other material that is transparent 

at the emission/absorption of the laser wavelength; for example, Chromium (Cr) and

Neodymium(Nd) are used as dopants (or active ions) in ruby and Nd:YAG/Glass

respectively.

Generally, Nd:YAGs are optically pumped using a flash lamp, but the efficiency of the

lasers pumped using this method is low due to the broad range of the illumination coupled

with the fact that the YAG rod is unnecessarily heated as a result of this; however,

nowadays diode lasers are used instead which increases the operating efficiency by a factor

of five from 2% to ~10%. Another advantage of diode-pumped lasers is that the life span of

diodes is much longer than that of a flash lamp [52]. Nd:YAG lasers are usually operated as

a 4-level system with a fundamental (i.e. dominant) wavelength of 1.06 µm.

Due to the relatively high roughness achieved with Nd:YAG, they are not generally

considered for optical polymer waveguide fabrication. However, they are quite useful for

other material processing applications such as in cutting and welding of materials. In fact,

owing to their ability to be operated in pulsed mode and UV region of wavelengths they are

now competing with Excimer in some applications, such as laser ablation in general and in

particular, for polymer waveguide fabrication. The latter is considered by the author as will

be shown later in this thesis. Also, UV Nd:YAG lasers at wavelengths of 266 nm and 213

nm for example, compete with Excimer lasers in biomedical processes [10, 12].

2.5.7 Gas lasers

2.5.7.1 Carbon dioxide (CO2) laser

The most common gas laser – the carbon dioxide laser (CO2) – operates mostly in CW

mode at 10.6 µm wavelength (i.e. the strongest or fundamental wavelength, albeit other

emission are possible between 9 to 11 µm). The active medium is a mixture of CO2, N2 and

He in varying proportions, typically 0.8:1:7:: CO2:N2: He [52]. CO2 is widely used for

surface treatment, cutting, welding, drilling and marking, all of which are photothermal

reactions. The thermal effect of CO2 laser beam interaction is found useful in surgical
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operations where the heat produced is used to vaporize water brought about during the

surgical process and also limits any bleeding at the region.

One of the problems with the CO2 laser is the possibility of producing poisonous carbon

monoxide (CO) during the course of generation of the former, but this situation is overcome

by introducing water vapour into the chamber to react with any CO gas generated thus

forming CO2 gas according to equation 2.9 which, advantageously, increases the population

inversion and thus the efficiency of the system [10, 12].
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2.5.7.2 Excimer laser

Another commonly used gas laser is the halides of noble gases i.e. Excimer, which is a

contraction of the term ‘excited dimer’; more technically referred to as ‘exciplex’ meaning

excited complexes. This is because a dimer, in chemistry, strictly refers to a molecule

composed of two similar subunits (ions, monomers, etc.). The wavelengths of Excimer

lasers vary from about 160 nm to 350 nm (figure 2.14) but ArF, KrF and XeCl are the most

commonly used.

Figure 2-14: A graph of photon energy (eV) against various
Excimer laser wavelengths.

In Excimer, the laser beam is produced by chemical reaction between the inert gas and

halogen ion through electrical discharge [Equations 2.10 - 2.12 and figure 2.15 for KrF
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beam]. Microwave discharge, electron beam pumping and pumping by electrical discharge

are three commonly used methods of pumping energy into the laser chamber in Excimer

[50, 51].

Krଶ + Fଶ   →  2Krା + 2Fି

Fି + Krା +  He  →   KrF∗ + He

krF∗   →   Kr + F + Energy(hυ)

Figure 2-15: Block diagram showing chemical reactions in
the production of KrF laser beam.

Helium gas is used, as shown in equation 2.11, to act as a buffer which, for KrF,

by volume about 90 - 99% of the mixture with Kr and F representing 1 - 9% and

0.3% respectively at an atmospheric pressure of 2.5 – 3.0 bars. The KrF* produc

(2.11)

(2.10)
(2.12)
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process is unstable with a lifetime of about 2.5 ns, falling to a lower energy level with

emission of the laser beam; the dissociation of the compound, i.e. bond-breaking, results in

energy gain which comes as photons [51].

Due to its wavelengths in the Medium Ultraviolet (MUV) and Far Ultraviolet (FUV), high

pulse energy and photochemical-nature of its interaction with matter, especially polymers

or polymer-like materials, Excimer laser has been very useful in medicine, micromachining

(laser marking, drilling, etc.), scientific research (for example, in laser ablation of optical

waveguides, and pulsed laser deposition (PLD)), and also in metrology and semiconductor

industry. It is also used for surface modification and the treatment of metals and

semiconductors which can be used to improve adhesion between two components,

changing the hydrophilicity of materials, and improving friction [56]. Having said this

however, one of the concerns and, indeed, limitations with regards to the use of Excimer

laser is its cost and also the corrosive-nature and potential danger associated with the

halogen gases resulting in a relative shift to close competitors, i.e. UV Nd:YAG and Ti-

sapphire lasers.

2.6 Laser Micromachining

2.6.1 Laser material processing overview

Laser material processing is generally, though not technically, referred to as laser

processing of engineering materials such as metals, polymer, glass and ceramics. This

definition thus excludes applications of lasers to human tissues even though the mechanism

is, to some extent, similar. The possible reason for this exclusive usage might be as a result

of the fact that early laser candidates, e.g. YAG and CO2, found application in engineering

sectors such as in drilling and cutting of materials where high energies, irrespective of

wavelengths, are needed. For laser material processing, there are four key stages/processes

(or sub-processes) of importance as schematically shown in figure 2.16, the complexity of

which depends on a number of factors among which is the desired application. The

processes or mechanisms are explained below.
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Figure 2-16: Schematic diagram showing key stages of a
typical laser material processing.

i. Beam generation

This is the first stage and the backbone of any material processing; the principle of this has

been covered under section 2.4 and its output determines the components of the remaining

stages. For example, if a ceramic material is to be processed then the output at this stage

should be high-power laser; furthermore, if the ceramic is to be processed with minimum

thermal damage then the output beam should be either q-switched or pulsed with short

pulse duration to provide a minimum time interaction between the beam and the material. It

is thus obvious that a laser material engineer or production engineer would have to carry out

a rigorous exercise in matching the output from this stage with, most importantly, the last

stage while also considering the cost implication.

ii. Beam delivery or propagation

This involves transporting the output beam in the first stage to the site of processing, i.e.

workpiece. What constitutes the beam delivery system depends on the application under

consideration but in general, the elements of the stage include various optical devices such

as mirrors, lenses and attenuator. The number and the arrangement of the components of

this stage vary so much that it would be difficult to classify or standardise such design.

However, it is imperative that careful combination is made to achieve optimum result

without losing much power as a small fraction of beam energy/power is lost per each

element. It should be noted that, even though the fraction lost per element might be small,

when many elements are used, for example for beam homogenisation in Excimer, coupled
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with long path length this will eventually be a significant loss.

Also to be considered is the length of the path between the laser chamber output window

and the workpiece, which needs to be kept to the minimum length possible in order to avoid

beam profile distortion and divergence among other issues. Sometime, the use of a fibre is

employed, currently considered in YAG lasers [53], to convey laser to the workpiece with

minimum optical devices incorporated. Among prominent lasers used in material

processing, Excimer laser usually has the longest beam path with the highest number of

optical components while CO2 employs the least.

Beam profile distortion and losses due to reflection from the optical surface are also

problematic; although the former can be minimised by using a spherical mirrors while the

latter is mitigated using anti-reflection coatings, nevertheless this is still worth considering

[53].

iii. Laser beam monitoring

There are many properties of the laser beam that are essential for an optimum process;

however, three of these properties are highly important in material processing. They are:

power/energy, beam diameter and beam profile or intensity distribution. Beam power is

very important for laser processing so its quantity is specifically monitored, and there are

two methods of obtaining the beam energy. In the first approach, the beam is sampled

during the processing, this provides an accurate account of beam energy/power utilised

during a particular process, and however, the task is somehow difficult and risky. Three

methods of beam sampling, namely static beam splitter, rotating chopper mirror and leaky

resonator mirror, are discussed in [53].

The second approach is by total beam measurement; although the method might not be a

real account of what happens during a process, but it is easier than the sampling method

generally employed. This approach involves measuring the energy or power at the

workpiece using a power meter. Apart from it not being an accurate representation of the

amount of energy used during a process, another ‘clause’ with this method is the fact that

safe access to the workpiece is required and during a scanning process (where the laser is

moved with the stage static) measuring the beam might prove difficult or/and impractical

depending on the system setup.
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A common way of examining both the beam diameter and profile is by using low energy to

irradiate a suitable material, the etched sample is then analysed to measure the diameter and

observe the profile. This is an indicative method only especially when the process is

thermal; and it also depends on power usage and irradiation time [53]. Alternatively, beam

profile is monitored using a beam profiler which shows, in real-time, the shape of the beam

during a process.

iv. Laser processing

When the laser beam strikes the material, the photon energy is transferred to the material

wherein it is then converted to other forms of energy depending on the material. With

metals, this is transferred to the mobile electrons which results in the heat energy that can

cause vaporisation and disintegration of the metal. However, with non-metals, the energy

can either be converted to chemical energy required for bond-breaking or heat energy for

vaporization; these two possibilities depend on the type of material, its bond energy and the

wavelength of the laser or more precisely the photon energy. Essentially, there are two

common mechanisms for laser material interactions; they are:

i. Thermal (photothermal or pyrolytic): This is an electronic absorption in which

the photon energy is used to heat up the material to be processed and thus

removed as a result of molecule vaporization, e.g. CO2 laser cutting. This type of

process is commonly and broadly referred to as laser micromachining.

ii. Athermal (photochemical or photolytic): This is a photochemical process

whereby the material is ablated by direct breaking of molecular bonds when hit

by photons (energy) of the incident beam. This is only possible, in principle, if

the photon energy is equal or greater than the bond energy of the molecules of

the material to be processed. During this process, a particular area of the surface

of the material is removed without any damage (by heating) done to the

surroundings or the bottom of the material. This process is generally called

ablation, though photothermal processes are in some cases also referred to as

ablation; in an ideal situation, the process is called ‘cold ablation’ [57]; it is

generally used in reference to polymer materials, but laser ablation is also

possible with other materials such as ceramic and glass, but higher fluencies are

required in their case.
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2.6.2 Laser ablation of polymer

2.6.2.1 Laser-matter interaction

The wave-particle duality concept is quite useful in treating laser matter-interaction; for

example, laser generation is better described using the quantum (or particle) approach while

propagation and delivery is suitably described using the wave concept. For laser matter-

interaction, it is appropriate to use the quantum mechanics thus viewing the beam as a

packet of photons hitting the matter with which it is interacting. This makes photon energy

a useful tool in this situation.

When photons come in contact with a polymer material, the photons are absorbed which

then results in the bond breaking. The net energy, i.e. photon energy minus bond energy, is

then transferred to the ablated fragments in the form of mechanical energy, precisely kinetic

energy, in order to eject the fragments from the ablated zone. Sometimes, the ejected

materials interact with incoming photons and thus get excited by this which then produces

flame-like effects during laser processing [53]. This explanation holds only when the

process, i.e. laser ablation of polymers, is considered to be photochemical.

However, it is still a subject of debate as to what exactly are the mechanisms of material

removal during ablation, whether it is photochemical, or a combination of photochemical

and photothermal [58 - 63] or even simply photothermal as argued by some authors [64] in

their model in favour of this approach. In fact, optimization of experimental parameters was

justified [64] as the best practice in achieving an experimental goal rather than relying on

models such as Beer’s law (Equation 2.13) or the Srinivasan-Smrtic-Babu (SSB) model

(Equation 2.14) [60],which are based on pure photochemical and combination of

photochemical and photothermal mechanisms respectively. The two models, widely cited

and referred to, are similar except that SSB’s model adds a photothermal part to Beer’s

modes as shown below where L, β, f and fth are the etching depth per laser pulse, coefficient

of absorption (cm-1), laser fluence per pulse (J/cm2) and threshold fluence (J/cm2)

respectively.

L = 1
βൗ ��ቂ



౪
ቃ��ǡ���������� �୲୦ (2.13)

L = 1
βൗ ��ቂ
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It is difficult to accept the concept of a pure photothermal process as argued by some

authors [64] based on the investigation of two materials, namely, polyimide and

VacrelTM8230 at varying repetition rates, just as it is hard to apply Beer’s model to many

cases of ablation, for example, at high pulse repetition rates for poorly absorbing polymers.

Thus, the two mechanisms occur in varying degrees depending on the experimental

settings, the ratio of which still puzzles researchers [62].

In summary, since more explanations and observations accounting for the physics and

chemistry of the laser-matter interaction are still being researched, it is therefore believed

that, until a clear and fundamental account(s) of the mechanism is documented, the process

can only be explained by relying on energy conversion via thermal, athermal or thermal-

athermal mechanisms. This would then mean that for each experimental case, the

phenomenon would be a subject of the polymer and the laser wavelength involved.

2.6.2.2 Optical polymer

Polymer is an essential material for engineering processes; it is composed of large

molecules with repeating units. The classification of polymer based on origin can be

broadly made into organic and inorganic with carbon as the backbone of the unit of the

former, while elements such as silicon act as the backbone to the latter [65]. Examples of

polymers that are currently considered for laser ablation include acrylate, halogenated

acrylate, PC, PET, PI, and polysiloxane among others [14, 19, 66].

Table 2.3 shows a list of common bonds in polymers with their respective bond energies;

these energies need to be overcome during any laser ablation irrespective of the nature of

the mechanism, i.e. thermal or athermal. For photochemical ablation, the laser wavelength

has to be carefully chosen such that the photon energy emitted or obtained from the laser is

equal or greater than the bond energy of the polymer to be processed.
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Table 2-3: Table showing different type of bonds in
polymers and their respective bond energies [51, 53, 67].

Group Bond Energy (eV)

C = C 6.9 – 7.75

C = O 6.7, 4.2

-NO2 4.4, 5.9

-N = N 3.5, >4.8

Benzene Ring 4.9, 6.2, 7.75

Si-Si, Cl-Cl 1.8 – 3

C-H, C-N, C-C 3 – 3.5

C-H, O-H, N-H 3.0 – 4.9

C-O, O-O 5.1 - 11.2

N-N, N-O 6.0 - 9.8

2.6.3 Laser ablation of optical waveguides

Laser ablation of optical polymer waveguides is considered to be a photochemical process

as previously mentioned and it is a non-contact micromachining technology. Excimer laser

ablation of polymers has been successfully demonstrated [68 - 70]. The key feature of this

class of laser is their wavelength and pulse duration; the latter hel.ps in thermal diffusivity

while the former is a key to absorptivity of the laser beam in the polymer. The pulse

duration of Excimer laser is of significance when it comes to quality because shorter pulse

width lasers give better machined quality though a costly task as Chen, X. and Liu, X.

asserted in [71]; furthermore, it helps in reducing the ablation threshold [72]. In fact, most

of the close competing lasers, for example, YAGs and Ti-Sapphire, are found to operate

either in the UV regions or with very short pulse duration, and also possibly with a

combination of both features thus intensifying competition. Another area where Excimer

excels is in its ability to ‘mask-project’ patterns on to a sample placed at the workpiece; this

feature is mostly found useful and unique with Excimer laser micromachining.

The suitability of a UV laser (e.g. Excimer) for the application under discussion, i.e.

photochemical ablation mechanism, over any other laser operating either in the IR (or

visible) region of wavelength, such as CO2, could be demonstrated as follows. For example,

using the Planck equation, the energy ܧ) ൌ ሻofݒ݄ a photon is inversely proportional to its
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wavelength , thus a CO2 laser operating at 10.6 µm will produce an energy more than 40

times less than that produced by a KrF laser [Equations 2.16 – 2.20]. This, obviously, is not

in the order of magnitude of the energies for chemical bond scission of typical polymers,

usually between 3 – 10 eV. Increasing the number of pulses to match the required bond

energy will merely result in a cumulative heat effect on the polymer surface. This is why a

laser such as CO2 is mainly used in applications where a thermal mechanism is required.

ܧ ൌ ݄߭ �՜ ݄ൌ
ா

జ

ℎைమ =
ைమܧ

߭ைమ

ℎி =
ிܧ
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ᇲ௦�௦௧௧

ிܧ

߭ி
=

ைమܧ

߭ைమ

ா಼ೝಷ

ாೀమ
=

జ಼ೝಷ

జೀమ
=

ఒೀమ

ఒ಼ೝಷ
=

ଵǤ�௫�ଵయ

ଶସ଼
= ≈ 43

It is thus clear from table 2.3 that Excimer lasers have the right order of photon energy to

ablate polymers chemically, in fact, other UV lasers such UV Nd:YAG and HeCd also

possess enough energy for photochemical processes to be undertaken. On the other hand,

IR laser sources have photon energy much lower than 3 eV and thus mean that with such

lasers the process would be dominated by thermal mechanism. A cross-over from between

thermal and athermal processes can be found for a 3 eV polymer bond as follows:

ܧ ൌ ݄�ܿȀߣ (2.21)

Let E = Bond energy of the polymer to be processed = 3 eV

H = Planck’s constant = 4.14 x 10 -15 eV

c = velocity of light in vacuum = 3 x 108, and

 λ = wavelength of the laser  

(2.20)

(2.19)

(2.18)

(2.17)

(2.16)
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Rearranging equation 2.21

ൌߣ ݄�ܿȀܧ (2.22)

ൌߣ
ͶǤͳͶݔ��ͳͲିଵହݔ�͵�ݔ��ͳͲ଼

3
= 414 nm

Therefore, in principle, laser of a maximum wavelength of 414 nm (visible region of

electromagnetic spectrum) is required in order to photochemically ablate a polymer material

with bond energy of 3 eV. There would be a shift in the dominance of the mechanism by

changing the wavelength of the laser source. For example, a shorter wavelength, e.g. 355

nm would guarantee or increase the dominance of a photochemical process, on the other

hand, a longer wavelength, e.g. 1064 nm in the IR, would both reduce the dominance of

photochemical and introduce the presence of thermal process for the same polymer.

Table 2-4: Different Excimer Lasers in operation today
with their respective wavelengths and photon energies.

Laser Wavelength

(nm)

Region Process mechanism * Photon energy

(eV)

XeF 351 UV Photochemical 3.53

XeCl 308 UV Photochemical 4.03

KrF 248 UV Photochemical 5.00

KrCl 222 UV Photochemical 5.50

ArF 193 UV Photochemical 6.42

Nd :YAG 1064 IR Photothermal 1.18

UV Nd:YAG 355 UV Photochemical 3.50

CO2 10600 IR Photothermal 0.12

CO 5400 IR Photothermal 0.23

HeCd 325 UV Photochemical 3.82

* Assumed mechanism based on the calculated photon energy and the bond energies shown

in table 2.3.

It is worth noting here that even though Excimer laser has been proven as a suitable

candidate for this process, the emergence of UV Nd:YAG which operates in the UV region

means the possibility of laser ablation with this type of laser which has already been applied
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in PCB manufacturing for microvia drilling. In addition, as shown in table 2.4, the UV

Nd:YAG laser can also produce photon energy needed to cause non-thermal processes on

some polymers.

2.6.4 Glass- versus polymer-based waveguides

Glass-based optical layers are integrated into PCBs by embedding thin glass sheets into a

standard FR4 stack. They have low CTE and high thermal resistance with very low

absorption loss. Although glass optical fibre (GOP) has the potential of carrying large

amounts of information (at low loss) required in OPCB, they are not widely considered for

this application for a number of reasons. This is because: (i) glass is not as cheap as a

polymer alternative, (ii) it is difficult to fabricate due to its fragility, and (iii) it is heavy

when compared to polymer. These factors, and others, make polymer-based waveguides a

suitable choice for optical-PCB interconnections [6, 14, 17 - 19]. Furthermore, if an

ablation technique is to be used for fabrication, the ablation threshold for a glass is higher

compared to a polymer, which in turn, can lead to possible cracks and rougher surfaces for

glass-based waveguides. This simply means a lossy waveguide. However, this is not to say

that the process cannot be optimised to mitigate the aforementioned problems, but this

choice would certainly delay the deployment of the technology which of course is an

undesired option.

Polymer waveguides are favoured for optical-PCB not only because of the ease in their

fabrication and integration with other optoelectronic devices but more importantly their

compatibility with PCB manufacturing process vis-à-vis pressure and lamination. Although

Polymer Optical Waveguide (POW) is compatible with current PCB manufacturing

process, there are some drawbacks:

i. Although a lot of polymer materials have been investigated, still new materials

require new processes, equipment and experimentation, both during the deposition

of optical layer and the fabrication of the waveguides.

ii. Polymers show high losses in the IR region due to the C-H bond absorption that is

why higher loss is recorded at telecom wavelengths than datacom; and the same

reason makes polymer waveguides unsuitable for long distance communications.

iii. The optical loss or attenuation is not constant, but dependent on variable parameters

such as temperature and humidity which might be difficult to keep constant [16].
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2.6.5 Ablation threshold

The ablation threshold is the point at which the applied power or energy density is enough

to cause ablation either thermally (or pyrolitic) and athermally (or photolytic). The value of

this varies from polymer to polymer depending on the nature and strength of the bonds in

the polymer (table 2.3). The ablation threshold of a particular polymer can be easily

obtained by extrapolating a graph of ablation depth against fluence, the value of which also

depends on other factors such as the pulse repetition frequency (PRF). When working

below this threshold, no ablation is expected to occur, however, the chemical properties of

the materials are subject to certain changes. Furthermore, operating at well above the

threshold can cause or increase the HAZ effect and debris deposition; the former is due to

high energy while the latter is as a result of bombarding the ejected materials. In fact, it

should be noted that intense bombardment of ejected particles above the ablation zone can

retard the ablation rate; the reason for this is that, the ejected materials might absorb

fractions of the incoming beam thus reducing the effective fluence at the ablation zone, i.e.

the material. Wavelength is one of the factors that determine the thresholds of ablation, for

example, the ablation threshold for PMMA is ~150 mJ/cm2 at 193 nm and ~500 mJ/cm2 at

248 nm – this is a 3-time increase in value between the two wavelengths. The rule-of-thumb

for laser ablation of polymers is to have lower threshold fluences for ablation at shorter

wavelengths. In other words, the shorter the wavelength of the laser beam the lower the

fluence required for ablation [73, 74].
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Table 2-5: Ablation threshold fluence for some selected
material [57, 59, 74, 75].

Material Fluence (mJ/cm2) Wavelength (nm)

Photo resist 30 -

Polycarbonate 40 -

Polyimide ~ 40 248

Polyimide 50 308

Polyimide 100 355

PMMA 150 193

Silicon nitride 195 -

SiO2 350 -

PMMA 500 248

Glass, metal oxide 700-1200 -

2.6.6 Challenges in laser ablation of optical waveguides

The three main challenges that frequently occur during laser ablation are discussed here.

They are:

2.6.6.1 Debris

The micro particles ablated (or removed) from polymer materials during the ablation

process are of different materials (gas, plasma and carbon clusters) depending on a number

of factors but, in most cases, it mainly contains carbon residues from the long C-H bonds.

The mixture of these microparticles is collectively referred to as ‘debris’, the quantity of

which depends on the laser material interaction, laser beam settings, type of material being

ablated and constituents of the surrounding atmosphere. The redeposition of debris on to the

surface of the material, especially around the region of waveguide structures, is highly

undesirable as this contributes to propagation losses resulting from micro impurities or

diffused reflection on hitting the particles [76, 77] and need to be minimised, if it cannot be

eliminated.

Controlling the amount of debris is crucial in optical polymer waveguide fabrication in

order to ensure that optical power budget for OI is satisfied. Any suitable techniques can be

used to control this effect but here are some of the currently employed methods:
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1. Process optimisation: Laser process should be controlled in such a way that the

velocity of the ejected particle is low enough such that the momentum exchange

between the ejected molecules and the constituents of the surrounding atmosphere is at

its minimum. This can be achieved by a careful selection of experimental parameters

so that optimal photon energy corresponding to the bond energy of the polymer is

used, by applying lower J/cm² fluences and/or shorter duration pulses in the range of fs

to ns. This is because working well above the ablation threshold, especially for

photochemical ablation, would result in the ejected particles moving at high velocity,

due to increases in kinetic energy acquired, making it liable to strong collision with

molecules and particles in the surrounding air, thus causing debris deposition [77].

2. Control of the ablation zone: This is to reduce (or eliminate) any unwanted particles

that might be deposited on the machined waveguides through collisions or

bombardment. One way of achieving this is by working in what is generally described

as a ‘clean room’. Another method is to eliminate the atmosphere either by ‘vacuum

ablation’, i.e. ablating in a vacuum chamber or atmosphere which is difficult or

impracticable or by introducing a lighter gas, such as Helium (He) which resulted in

improving the surface of ablated samples in [72, 78]; in fact, ablation of materials in

Helium atmosphere was said to be capable of reducing the roughness to Ra < 200 nm

for PEEK and PSU, lower Ra values, below 100 nm, were obtained for PI [74].

Ablating in water environment has also been shown as a means of reducing debris for

both polymeric and metallic materials [63, 74].

3. Others: Post-ablation of debris removal is also employed, for example, cleaning

using methanol, sonic agitation and plasma etching [79]. Shorter pulse-width lasers,

such as femto second lasers, are also possible ways of reducing debris.

2.6.6.2 Tapering

One of the common problems with ablation is the tapering of the ablated profile, this, in

most reported cases, is unavoidable; however, the effect can be reduced by working at a

relatively high fluence above the threshold. For example, Meijer [8] observed that tapering

can be reduced from 20 degree at 150 mJ/cm2 to 2 degree at 500 mJ/cm2. Gower [53] also

observed similar trends on holes drilled in polyimide using ArF laser where tapering was

reduced from ~50 degree to ~15 degree for fluence increase from ~ 350 mJ/cm2 to 1050

mJ/cm2. This approach, i.e. increasing the fluence, cannot be taken as a general trend and/or
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a way of reducing the tapering effect, as high fluence well above the threshold can also

result in other negative effects such as increase in HAZ as previously mentioned. Harvey, et

al [10] also observed that the tapering of the wall depends largely on the fluence and the

numerical aperture of the objective or projection lens.

What actually is responsible for tapering is still relatively unclear but Harvey, et al [10], in

their study of the effect of fluence on tapering for PET and Polyimide found the

phenomenon was attributed to the incident light diffraction. Gower [53] also supported this

explanation; he however argued that such tapering can find applications in fluid dynamics

such as laminar flow where a tapered nozzle is preferred. Generally, to overcome this

effect, an optical device or component, namely a homogeniser, is used to obtain what is

termed a ‘top-hat’ profile. The top-hat beam profile, to a large extent, is considered to

minimise the tapering effect, however, it is possible to obtain a near-vertical profile without

using an homogeniser or beam shaper as obtained in [10]; this was also the case during this

research especially when proper combination of laser parameters were used.

2.6.6.3 HAZ

Heat affected zone is the area adjacent to the ablated zone where the chemical structure has

been altered without causing or resulting in ablation. This could be due to, among other

factors, the excess energy applied which is not completely required during the process of

ablation. HAZ is believed to be pronounced in a thermal process – a notion that cannot be

substantiated. This minimal HAZ is attributed to the short interaction between the laser

beam and the material. Today, picoseconds and femtosecond lasers are now available,

designed to further reduce the HAZ effect and these class of lasers are also characterised

with higher etch rate and lower ablation thresholds.

2.7 Laser Hazards

The laser has turned out to be an indispensable tool in current technological advancements,

however any improper abuse in its usage, for example if the accessible emission limit

(AEL) (the maximum accessible level of laser radiation permitted within a particular laser

class) is exceeded, this could pose serious potential danger to its users. The two main

organs that are mostly affected by laser beam radiation are the eye, causing for example

cataracts, and the skin, which could result in skin burns or cancer. The former is more
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affected due to the optical power of the human lens (in the eye) which can magnify beam

intensity by a factor of 100000, i.e. the optical density of the lens in human eye is ≈ 100, 

1000. For example, a beam of radiant exposure of 1 mJ/cm2 entering the eye would produce

radiant exposure (H) of 100 J/cm2 at the retina (figure 2.17).

Lasers are, therefore, classified as Class 1, Class 1M, Class 2, Class 2M, Class 3R, 3B and

Class 4 with increasing order of their potential danger based on American National

Standard for Safe Use of Lasers, ANSI Z136.1, and British Standards BS EN 60825-1:1994

and BS EN 60825-2:1995. Most lasers used for material processing (e.g. Excimer, UV

Nd:YAG) are under the most hazardous, i.e. Class 4, except if the equipment is properly

and completely shielded against human exposure so that Maximum Permissible Exposure

(MPE) – the level of laser radiation to which a person may be exposed without hazardous

effects or adverse biological changes in the eye or skin – is not exceeded. For this reason

appropriate engineering, administrative and procedural controls, along with the use of

Personnel Protective Equipment (PPE) are highly recommended. Laser hazards, laser

standards and safety procedure are detailed in [80 - 83].

Figure 2-17: Schematic diagram of propagation of laser
light through human eye.

2.8 Summary and Conclusion

Optical fibre (or waveguide) technology, at 850 nm and 1300 nm / 1550 nm for datacom

and telecom respectively, has indeed complemented the data rate barriers of traditional

copper transmission for LAN, WAN and MAN; its adaption to Very Short Reach (VSR)

is thought to be needed for the bottlenecks facing the copper transmission at board-level.

In this chapter, the author presented the need for OI for both intra- and inter-board
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applications, such as for the backplane where this deployment is expected to take place

due to prevailing limitations with electrical interconnection on the PCB despite the

various rectifying measures being considered – e.g. minimizing conductor length, filtering

and noise elimination, development of new dielectric substrate, etc. – used to overcome

these problems Even though optical interconnection is necessary and essential to meet

the current clock rates which is about to cross the limit of 10Gb/s, electrical connection is

still expected to be used for a larger part of connections on a PCB where an optical link is

only used when high data transfer rates are required. For successful implementation of OI

at the board-level, three goals must be met viz:

 Material that would be compatible with PCB manufacturing procedure,

 Fabrication technique that would be easy, cost effective and efficient from the

production point of view, and

 Material/waveguide that would satisfy the optical power budget requirement

A polymer-based waveguide is being favoured for this application for many reasons,

among which is its compatibility with current PCB manufacturing conditions in terms of

pressure, temperature and soldering process. In addition, polymer are considered to be

readily available, tunable to meet certain features and cheap thus satisfying the need for a

cost effective technique. Finally, the current available photopolymers have low absorption

loss thus relaxing the power budget demand of OI. Multimode polymer waveguide, with

core dimension > 9 µm, is the choice for optically-enabled PCB because, contrary to

single mode, it would not pose any alignment issues and coupling loss. Additionally,

losses due to attenuation and dispersion would be tolerable within the short distance of

communication.

Current polymer waveguide fabrication techniques include photolithography, laser

ablation, laser direct writing, hot embossing, milling and RIE. Although, the

aforementioned techniques are well-established microfabrication techniques and are used

in one way or the other during PCB manufacturing, however, the fact that laser ablation is

currently being used for the drilling of µvias (for HDI) makes it much compatible and a

cost effective alternative. Furthermore, for the fabrication of integrated mirrors, either in-

plane or out-of-plane, laser ablation using an Excimer laser, for example, is a much

suitable option for this due to its excellent laser matter interaction, resulting in clean

removal at micro-level scales. In addition, the mask projection available with Excimer
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laser material processing makes it possible for complex features to be easily defined.

Excimer specifically KrF operating at 248 nm, has been widely adopted for this purpose.

Although the cost and speed of Excimer laser could be an issue from the production point

of view at this stage of the deployment, the author has proposed two alternative laser

systems, namely UV Nd:YAG and CO2, that will supplement and complement the

perceived ‘deficiency/drawbacks’ of an Excimer laser thus making laser ablation an all-

encompassing technique meeting the production speed, cost, efficiency and quantity.

Finally, the author presented the laser-matter interaction with reference made to the bond-

energies of common polymers – typically between 3 eV and 10 eV – and the photon

energies available at different wavelengths in order to determine, for a particular polymer

of a given bond energy, the laser wavelength at which either photochemical or

photothermal ablation can be the mechanism of interaction. Having reviewed the various

submissions on this, the author concludes that although polymers can be broken

photochemically during laser ablation provided that the photon energy, a function of

wavelength, of the laser beam is equal or greater than the bond energy of the polymer,

this does not guarantee that such interaction at that given wavelength is purely photolytic.

For example, if the photons available at the ablation zone are not totally used in bond

breaking, the remaining would be left at the site of ablation and contribute to thermal

effect; furthermore, the absorption characteristic and thermal-optical properties of the

materials would play a part in determining the degree of each mechanism, and although

waveguide fabrication using a photothermally-dominated mechanism can be relatively

rougher than that of photochemically-processed materials, this does not mean that such

waveguides would be lossy and/or that the technique is unsuitable; in fact, its contrary is

proven in this work.
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3 METHODOLOGY, EXPERIMENTAL DESIGN, PROCEDURE AND

MEASUREMENT

3.1 Methodology

In the two preceding chapters, efforts were made to present the research problems and

possible solution to the bandwidth-limited copper transmission. The current chapter is

devoted to the methods and procedures devised to address the research goals which include

laser system choice, optical polymer preparation, waveguide fabrication and measurement.

It is evident that the laser and optical polymer choice is of great importance for polymer

waveguide fabrication using laser ablation. It followed from this literature survey that the

Excimer laser has largely been favoured as the sole candidate for this technology, i.e. laser

ablation of optical waveguide, while the suitable polymer materials were selected based on

their optical properties, e.g. absorption loss and compatibility with the PCB manufacturing.

Considering these facts, the author’s initial stage of research was, mainly, concentrated on

the use of Excimer laser for both waveguide and integrated mirror fabrication. However,

since the technology under investigation was a product-oriented research that would require

mass production in a typical PCB industry, there is therefore a necessity to provide a means

through which this high volume production can be accomplished with a minimum possible

cost. It was for this reason that the attention was shifted, or better still extended to the use of

both UV Nd:YAG and CO2 lasers; both of which are key tools in laser processing of PCB

materials.

The main optical material, Truemode™, used in the project was supplied by a partner to

this consortium. This was demonstrated to satisfy the properties required of any optical

polymer, in fact its supplier showed its successful use for photolithographically-fabricated

waveguides. Furthermore, it is gathered from the literature that Truemode™ has also been

used for laser ablation of optical polymer waveguides. The supply of this material was not

underway until the second quarter in the first year of the collaboration. For this period, the

author relied on the use of PMMA which is cheap and readily available at the site where the

major work of the research reported here was carried out, i.e. at Loughborough University.

The use of PMMA subsequently became the means by which preliminary test or feasibility

study was conducted during the course of the project which proved to be economical; in
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other words, PMMA was largely utilised not during the initial investigation on Excimer

laser but also, and more importantly, during the trials carried out with both UV Nd:YAG

and CO2 lasers as both were new for this technology. It is worth while mentioning here

that, at a later part of the collaboration, another optical polymer – polysiloxane-based

polymer – was also made available, however, due to the time constraints, this could not be

significantly investigated.

3.2 Laser System

To achieve the research goals (section 1.3), careful appraisal of different laser systems and

their capabilities was essential and challenging. Following thorough research evaluation,

three laser candidates were identified with various achievable tasks projected for each of

them (Figure 3.1). The choice of investigation was primarily based on laser system

capability in-line with the existing reports and the trends in research. For instance, 2D

embedded mirror fabrication was limited to the Excimer laser system mainly because: (i)

the current design of Excimer laser could easily accommodate system modification required

by this design, and (ii) the ablation with this laser is a photochemically-dominated process

and thought to be smoother compared to other choices. However, the same goal could be

achieved by employing any of the two systems used in this thesis and perhaps others not

investigated here, provided that the flexibility of laser scanning/machining could be

achieved and the process can be optimised or the system customised in order to achieve a

smooth finish on the mirror.

With the constraints in the current designs of other systems in mind, the author investigated

the use of UV-source Excimer laser machining which offered highly flexible processing

capabilities especially for integrated mirror fabrication though at the expense of speed and

cost. Furthermore, 355 nm UV Nd:YAG was also tried as this has the capability of the

pulse energy and pulse duration that characterise the minimum HAZ associated with

Excimer in order to broaden the potential application of the technology contained in this

research. To complete this investigation, an infrared laser source, namely 10.6 µm CO2 was

used which, to an unprecedented expectation, was found to be capable of producing optical

waveguides as will be shown later in the thesis. The CO2 laser used, unlike the two other

lasers, not only operates in the IR but is also a CW mode.
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Figure 3-1: Overview of laser system and experimental
activities for low cost optical polymer waveguide
fabrication.

3.3 System Characterisation

System characterisation was highly essential in understanding the laser-material interactions

that characterise each laser system; this was primarily required in order to be able to control

the depth to which ablation into the optical polymer layer was to terminate and ensuring

that the etching was not into the FR4 substrate layer. This latter point was important

because ablation at the optical polymer-FR4 substrate interface accompanies a huge ‘jump’

in ablation threshold causing not only thermal damage and debris but also involves

unnecessary energy/power input as much more energy or fluence is required to ablate an

FR4 substrate.

The main factors investigated depended on the individual laser system and included: PRF,

laser power/energy, fluence, number of pulses, beam width, number of passes, translation

stage speed and laser scanning speed, all in relation to both depth and quality of fabrication.

System characterisation (looking at the effect of fluence, power, etc. on the etch rate) was

achieved on both Excimer and UV Nd:YAG lasers with a feasibility study preceding the

latter as shown in figure 3.1, to establish its suitability, as little literature was available

regarding UV Nd:YAG optical waveguide fabrication. Although CO2 laser is currently used

10.6 µm CO2

Feasibility study of
optical polymer machining Laser micromachining

Fabrication of
waveguides

355nm UV Nd:YAG

Feasibility study of
optical polymer machining

Laser-material machining
characterisation

Fabrication of
waveguides

248 nm Excimer

Laser-material machining
characterisation

Fabrication of
waveguides

Mirror design & fabrication
for in-plane coupling



Chapter 3: Methodology, experimental design, procedure and measurement

- 75 -

for drilling of vias, a feasibility study was also necessary and thus carried out to ascertain its

suitability for optical waveguide fabrication which was followed with a successful

fabrication of polymer waveguides, making it a novel achievement. As a result of the study

conducted, extensive information emerged providing trade-offs among the three main lasers

used in PCB assembly, a prerequisite for the deployment of the technology in the targeted

industry without incurring additional cost in the process.

3.4 Waveguide Fabrication

The stages or processes involved in laser ablation of a polymer waveguide as employed in

this research are shown in (Figures 3.2 and 3.3). A single layer of waveguide fabrication

was the focus of research as this is currently enough to provide the data rate requirements

for OI; future work could extend these processes to multiple layers of waveguides.
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Figure 3-2: Flow diagram of the processes involved in
patterning optical polymer waveguides using laser ablation.

3.4.1 Single-layer fabrication process

The process involved in the fabrication of a single-layer optical waveguide can be divided,

for simplicity, into three main stages as represented in figures 3.2 and 3.3. They are:
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1. Deposition of optical polymer on FR4 laminates to form both the lower cladding

and core layers, achieved by spin coating. The core layer thickness should be the

same as the final height of the waveguide; while the cladding layer should be made

thick enough for support and to ensure that signals are completely contained by total

internal reflection. For instance, 20 µm lower cladding has been used for a

multimode waveguide of 50 µm by 50 µm primarily to keep the optical layer

thickness minimal, but that was at the expense of a propagation loss as asserted by

the author of [1].

2. Laser ablation of grooves in the core layer to purposely leave a ridge of polymer in-

between which represents the waveguide channel. Typical dimensions are 50 m x

50 m, 50 m x 70 m and 70 m x 70 m for multimode waveguides, but other

dimensions such as 40 m x 45 m [2] and 35 m x 35 m [3] have been reported.

The material removal process (ablation) is continued to penetrate beyond the core

layer in to the lower cladding to ensure that the light signal is completely contained

in the core by TIR.

3. The last stage is to deposit another layer of clad known as the upper cladding. This

is to ensure that TIR is achieved. For measuring purposes, this stage is not vital

because the surrounding air is of lower RI, typically 1, and can thus serve as an

upper cladding layer, however without protection the core/air interface could

become contaminated or damaged in service leading to optical losses.
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Figure 3-3: Schematic diagram (side view) of the three
major stages in the fabrication of optical waveguides by
laser ablation.

3.4.2 Optical density (OD)

OD, as used in this thesis, refers to the concentration of optical channels within an area of

the substrate, while waveguide pitch is the distance between two adjacent waveguides

measured from the centre of one waveguide to the centre of the next adjacent waveguide. In

the future, more optical channels would be required if the technology should be efficiently
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used especially in HDI provided that it is not at the expense of loss due to crosstalk. The

value of the waveguide ‘pitch’ has direct or indirect effects on the losses due to crosstalk as

does OD. Therefore, OD was considered in the design of experiments, and to achieve this,

one, two, three, and up to ten adjacent optical waveguide were fabricated; figure 3.4 is an

example of three waveguides formed by machining four channels adjacent to one another.

Figure 3-4: Schematic diagram showing experiment design
for a three-channel waveguide.

3.5 Optical Polymer Materials

The two main polymers of choice in this research were TruemodeTM and polysiloxane-

based photopolymer (OE4140 and OE 4141) manufactured by Exxelis, UK and Dow

Corning, USA, respectively. Both of these companies were partners to the OPCB project.

While Truemode™ was the main focus of this research; polysiloxane-based polymer was

also partially investigated as the latter became available at a later stage in the project when

its manufacturer joined the consortium. The author also investigated the use of PMMA at

the initial stage of the research for Excimer laser characterisation, the result of which is

reported in chapter 6. A brief description of Truemode™ and polysiloxane-based optical

polymers is given below.

3.5.1 Truemode™ optical polymer

Truemode™ is the product of Exxelis previously owned by Terahertz Photonics Edinburgh,

UK – a spinout of Heriot-Watt University. It is a UV-curable mixture of acrylate and

methacrylate monomers that is liquid at room temperature and pressure. It is a light yellow
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(or orange) colour material which is insoluble in water. Table 3.1 shows some of the

optical, thermal and electrical properties of this organic polymer. The fact that its

absorption loss is very low with a typical value of < 0.04 dB/cm @ 850 nm datacom

wavelength, a controllable RI for clad-core, and its compatibility with current PCB

fabrication processes makes it an excellent choice for VSR interconnections. In this

project, three different formulations of Truemode™ were investigated. They were:

1. Formulation 1 : LB-clad 520 and LB-core 561

2. Formulation 2 : EXX-clad 277 and EXX-core 37E

3. Formulation 3 : EXX-TM clad and EXX-TM core

These formulations were based on different monomer compositions and photoinitiator;

however, the fundamental difference in these formulations lies in their viscosity. Moreover,

it was observed that these three formulations have different UV curing time with

formulation 1 and formulation 3 having the least and highest curing durations respectively.

The author also noticed that their behaviour to laser radiation was not the same. Following

careful assessment and to be consistent during the process of experimentation, Truemode™

formulation 2 was chosen as the sole candidate to be employed for the research, thus, any

subsequent experimental results of Truemode™ are based on formulation 2 except if

otherwise mentioned.

Table 3-1: Some key properties of Truemode™ optical
polymer [4].

Properties

Waveguide loss (dB/cm) <0.04 @ 850 nm <0.4 @1300 nm

RI 1.45 – 1.58

Thermo-optic coefficient -2.2 x 10-4 0C-1

Coefficient of thermal expansion 60 ppm 0C-1

Thermal conductivity 0.21 W/mK

Glass transition temperature 150 0C

Decomposition temperature 350 0C

3.5.2 Polysiloxane photopolymer

The polysiloxane used in this work, sometimes called siloxane or silicone, is a product of
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Dow Corning, USA. Siloxane is an established organic-inorganic polymer suitable for

telecommunication and photonic applications due to its excellent optical properties, and

thermo-mechanical stability which can be tuned by changing the constituents of the

molecule. For example, the ratio of methyl to phenyl group in a given silicone is a key to RI

control typically in the range of 1.4 to 1.6. Furthermore, the polymer is very hydrophobic

with low moisture absorption – an essential property for optical-PCB applications. The

structural formula of polysiloxane is based on Si-O-Si bonds, for example

polydialkylsiloxane, the most common silicone family, has a structural representation of

(R2SiO) n. [5 - 8]. The photopolymer material used in this project was coded as OE4140 and

OE 4141 for clad and core respectively. Samples of this polymer were obtained from Dow

Corning after being processed. In other words, the samples were received as optical

polymer layers of core on clad on FR4 substrate without needing to undergo stage 1 of

figure 3.3. Unlike Truemode™, the OE4140 and OE 4141 polymer does not require an

oxygen-free atmosphere for the curing process; additionally, pre-baking is essential for this

photopolymer in order to remove the solvent, Toluene in this case.

3.6 Deposition of Optical Polymer

To form the optical layers of the samples utilised in this project, i.e. clad and core, there are

essentially two main processes involved: spin coating and curing of the material. Figure 3.5

is an overview of the stages involved in patterning an appropriate thickness of clad and core

of Truemode™ polymer on an FR4 substrate in order to form a single-layer optical channel,

though the flow diagram could be extended to accommodate any number of multilayer

optical channels if needed.
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Figure 3-5: Schematic flow diagram showing experimental
procedure for depositing Truemode™ (core and clad) on
FR4 substrate.

3.6.1 Spin coating

The spin coating process relies on the centrifugal force to spread the material evenly over

the surface. It is thought to be governed by both fluid flow and evaporation; although the

latter factor is only important where the polymer contains some solvent component such as

toluene in polysiloxane as previously mentioned. During the spin-coating process, the fluid

flow dominates the early stage, while evaporation dominates the later stage. The final

thickness of the resulting layer depends on a number of factors such as the speed of rotation,
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duration of spinning, viscosity of the material, solvent evaporation and density among

others. There are many models relating to the final thickness on some of the above factors

[9 - 12]. By and large, the final thickness and uniformity has more to do with

experimentation and optimisation of the process rather than relying on a mathematical

model, thus, for this reason, a study into this relationship was carried out for Truemode™.

Prior to polymer deposition, FR4 samples were normally cleaned in methanol, either by

immersing the sample into a beaker of methanol and then washing it with water or by

spraying methanol onto the sample and then rinsing with water, to remove mirco-particles

from the substrate surface which if not considered could mar the uniformity of the layers

deposited forming bubbles or bubble-like spots on the surface. Once cleaned, samples were

dried in an oven at 80 oC – 100 oC for about 1 min. to ensure they were moisture-free.

During spin coating, a square or rectangular sample – 6 cm square, 8 cm square and 6 cm x

8 cm were normally used – of FR4 substrate was placed on a motor-driven vacuum chuck

to secure it in position. The liquid optical polymer (core or clad) was centrally dispensed

onto the FR4 substrate using either a pipette or syringe. Usually, to ensure total coverage of

the substrate, an excess solution of the material was employed. For example, a 6 cm square

FR4 sample would require 2 ml (approx.) of polymer, however, visual examination was

highly essential in every case to ensure the final coverage. Having dispensed the polymer,

the whole specimen was then accelerated to the desired spin speed.

The two main factors that could be easily controlled during spin coating of the samples used

in this project were the speed of spinning, measured in revolution per minute (rpm), and the

duration of spinning, measured in seconds. Therefore, to establish how these two factors

related to the final thickness of the optical layer, optical polymer deposition of Truemode™

was carried out at speeds between 200 rpm – 1000 rpm for both clad and core for a duration

of 30 seconds which they were cured. Figures 3.6 and 3.7 are graphical relationships

between the spin speed and layer thickness for core and clad respectively; in both cases, the

slope of the curves becomes smaller from left to right. This means that thick layers were

achievable at low spin speed; however, observations revealed that this was at the expense of

uniformity of the layer which varied in thickness from the centre to the edge of the sample.

It therefore became important to spin at higher speeds to avoid such non-uniform coatings.

At this stage, it is worth noting the following:
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1. The measurement of the samples was carried out by employing the dicing-potting-

polishing process as would be explained later in the chapter. This was to make sure that

measurement was taken to reflect the actual thickness of each layer determined visually

by the optical (or colour) change in the layers as evident in figure 3.8.

2. Although the thickness was not expected to be uniform across the entire area of a

sample, a significant uniform area was achievable at the middle of any coating.

Therefore, measured samples were those obtained by dicing through (or close to) the

middle part on any spun substrate.

3. Since Truemode™ optical polymer was received in batches from Exxelis, the author

noticed that there were some discrepancies in the results. In other words, results from

the characterisation might and might not agree with a new batch of polymer. In such

case(s), the following approaches/considerations were made: (a) with new batches a few

trials were conducted and compared with the results of the characterisation and then an

offset applied as per the new data values, and (b) more importantly, a special request

was made to Exxelis that a sufficient volume of the polymer be made available in a

single batch in order to allow for consistency in the results not only during deposition

but also in the course of ablation.

4. This investigation was also tried at other spin times namely 45 seconds and 60 seconds

but the effect of time was not found to be significant over this range.

Figure 3-6: Graphical representation of the relationship
between speed of spinning and thickness of coating for
Truemode™ core polymer material.
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Figure 3-7: Graphical representation of the relationship
between the speed of spinning and the thickness for
Truemode™ clad polymer material.

Figure 3-8: Diagram sho
coated at 500 rpm for 30 s
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during the preparation stage of the polymer and constitutes 2 – 15 % by volume of the

formulation [13, 14].

UV curing of Truemode™ requires an oxygen-free nitrogen atmosphere. For this reason, an

oxygen analyzer was employed to monitor and indicate the composition by volume of

oxygen in the exposure chamber in parts per million (ppm). As shown in figure 3.9, the

setup consisted, essentially, of three components: (i) a nitrogen gas bottle, (ii) UV curing

chamber with sample placed inside, and (iii) an oxygen analyser. Both the gas bottle and the

oxygen analyser were ‘linked’ to the UV chamber by separate tubes with nitrogen fed into

the chamber from the gas bottle and a sample of the atmosphere taken from the chamber

into the analyser. The UV curing process was only initiated when the oxygen indicator

showed 80 parts per million (ppm) of oxygen and run for 200 - 250 seconds for both clad

and core.

After UV curing, the sample was placed in an oven to bake the optical layer in order to

complete the curing process. This was performed at ~100oC for one hour. It should be noted

that for samples where oxygen-free nitrogen atmosphere is not a condition, e.g.

polysiloxane-based polymer, only the UV chamber is required as a component of the setup.

Figure 3-9: Schematic diagram showing UV curing setup.

3.6.3 Challenges with optical polymer deposition

There were some challenges faced with the deposition of photopolymer on FR4; the main

problem had to do with its adhesion and could be grouped into two areas:
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1. Adhesion between the optical layers

This is a situation when there was a delamination between the clad and core layers or

sometimes between two core layers. The latter (i.e. delamination between two core layers)

occurred because for example, to obtain a uniform thickness of 70 µm of the core layer

polymer would be deposited as two layers by spinning at a higher revolution ~700 rpm

twice in succession with UV curing in between. Figures 3.10 a and 3.10 b show such cases

where delamination occurred between two different optical layers of Truemode™ polymer.

Following consultation with Exxelis (and also partly with Dow Corning), this problem was

addressed and overcome by ensuring that: (i) The FR4 substrate was prebaked for a minute

to remove any moisture that might have been introduced during sample cleaning with

methanol, (ii) that samples were prevented from dust contamination; for instance, when the

clad was spun and UV-cured, it was ensured that no contamination was introduced which

could form point(s) of detachment. This is easily avoidable if the process were to be

undertaken in a clean room; and (iii) in the case of delamination between two different core

layers, the first deposited layer was partially cured for a shorter duration, say 100 seconds

as against 200 – 250 seconds. This was done to ensure that crosslinking occurred between

the two layers of the core thus ‘locking’ them together.

2. Adhesion between FR4 substrate and optical layer

The delamination between the FR4 substrate and an optical layer was a major issue as,

sometimes, this would only be noticed after waveguides were fabricated (Figures 3.10 c

and 3.10 d). Initial investigation was to check the dicing process to see if it was too

damaging for the samples, but this seemed not to be the case. Thereafter, the dicing was

always done at a reasonably low speed, typically 5 – 6 rpm, and with relatively light loads.

The second and/or next action taken was to ensure that FR4 substrates were thoroughly

cleaned and dried i.e. prebaked, before any deposition took place. These two actions

seemed to temporarily solve the problem but occasionally this problem reoccurred, an

indication that the approaches were either not enough or the main cause had not been

identified.

Finally, a close examination of the available FR4 substrates was carried out; it was noticed

that the FR4 substrates were not the same in terms of roughness. In addition, the two sides
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of an FR4 substrate are of different roughness. For this reason, samples were taken from the

available sets of FR4 substrate materials with surface roughness of both sides of a sample

measured using a CLI Talysurf before deposition was carried out. Table 3.2 and figure 3.11

show the result of the test carried out on four samples with optical polymer deposited on

either of the two sides of the substrates. After deposition, the samples were diced and were

thereafter observed for possible detachment; it was noticed that smooth samples, with Ra <

~ 800 nm delaminated with varying degree while above that, no delamination was

observed. It did become obvious that the rougher the substrate the better it adhered to the

optical polymer layer. Following this investigation, not only did the author choose the

rougher side of an FR4 material for deposition but also a similar set of material was

constantly used.

Table 3-2: Table showing the effect of roughness of FR4
substrates on the potential of delamination between FR4
and optical layers.

No Ra (nm) Observation

1 458 Delamination occurred

2 619 Delamination occurred

3 958 No Delamination occurred

4 1020 No Delamination occurred



Chapter 3: Methodology, experimental design, procedure and measurement

- 89 -

Figure 3-10: Various images taken showing the
delamination between two layers of core and between FR4
substrate and optical layers : (a) Truemode™ -based optical
layer polymer showing partial delamination between two
core layers; the waveguides were patterned using UV
Nd:YAG, (b) same as (a) but a worse case of delamination
(c) polysiloxane-based optical layer polymer which was
completely delaminated from an FR4 substrate; the
waveguides were patterned using CO2 laser, and (b) same as
(c) showing the FR4 substrate from which it was
delaminated.

Two layers of core internally
delaminated from each other

FR4 layer

FR4 substrate

(b)
(a)

(c) (d)
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Figure 3-11: Some image
carried out using Talysurf
of an FR4 substrate: (a) R
Ra = 958 nm, and (d) Ra =

(

(

(a)
- 90 -

s from the experimental analysis
CLI to determine the roughness

a = 458 nm (b) Ra = 619 nm (c)
1020 nm.

(c)
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3.7 Sample Preparation

The following are some of the processes that were usually applied after laser ablation.

1. Cleaning: Due to possible debris deposition on the ablated structures and other

forms of contamination, samples required cleaning before depositing the upper

cladding. It was also required during sampling and polishing of mounted sample(s)

(figure 3.12). Water and alcohol, either methanol or iso-propanol, were employed

for cleaning. In the case of serious contamination which could be seen visually, and

sometimes, with the aid of an optical microscope, ultrasonic agitation (sonication)

was additionally required. This was achieved by putting the sample(s) in a beaker

containing methanol or propanol which was then immersed in an ultrasonic bath.

The sonication period varied from a minute to three minutes, depending on the

nature or amount of debris to be removed.

2. Sampling: For measurement and analysis purpose(s), especially if mounting was

required, a small piece of the ablated structures was usually obtained by dicing the

sample using a Buehler ISOMET low speed saw. During this process, the sample

would be positioned in such a way that the optical layer was in contact with the

blade of the saw to avoid possible detachment of the layer during dicing. The speed

at which samples were sliced depended on the combined thickness of the layers (i.e.

FR4, core and cladding) but generally, samples were diced at a speed between

5 rpm and 7 rpm.

3. Mounting: Cold-mounting a sample involved mixing seven to one by ratio of resin

to hardener which would be thoroughly stirred, for approximately 3 minutes, to

ensure an efficient mixture necessary for good curing. The diced sample would then

be placed in a container with the mixture of resin-hardener poured over it and

thereafter left for 12 - 18 hours at room temperature. The above description was

used for a Buehler acrylic-based resin. Sometimes, Buehler epoxy resin, known as

EpoColor was employed; this allowed for direct visual examination of the optical

polymer layer in the mounted specimen, and the subsequent detection of any

waveguide when investigated using an optical microscope, such as Flash™200.

4. Polishing: This was required to obtain a good and fine surface finish for better

examination on either Scanning Electron Microscope (SEM) or optical microscope.

Mounted samples were polished using a series of abrasives (or polisher) capable of
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removing different amounts of material from the samples, down to 1 m diamond

paste. During polishing, the sample was either held stationary or moved counter

clockwise to the direction of rotation of the wheel. Usually, polishing was

sequentially carried out on four different wheels of 240, 400, 600 and 800 grit SiC

paper then washed with water before transferring to wheels with 6 m and 1 m

diamond paste. Sometimes mounting was not required for sample examination; in

this case the unpotted specimen was manually ground on silicon carbide paper in

sequence over four different papers of 220, 400, 600 and 800 grit in increasing order

of smoothness.

Figure 3-12: Typical flow process for preparing a mounted
sample of optical polymer waveguide structure for
measurement and analysis.

3.8 Sample Measurement and Analysis

This section addresses specific quantities that were essential for waveguide analysis and the

systems used in determining them, namely measurands and measuring system respectively.

3.8.1 Measurands

Measurands are specific physical quantities determined during any measuring process; for

Sample cleaning (4)

Debris and other particles were
removed using either methanol
or isopropanol (and sonication)

Dicing (1)

Samples were cut using
Buehler ISOMET low speed
saw at appropriate speed,

typically 5 – 7 rpm

Mounting (2)

Potting was achieved by
pouring resin over the sample

which was supported in a
mould

Polishing (3)

Samples were polished using
a series of abrasives with grit

sizes down to 1 µm
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full characterisation of the results of the research here, the measurands determined could be

grouped into the following:

1. Quantitative measurement: In this case, measurands such as the length, width and

pitch of waveguides fabricated were determined using a Flash™200 measuring

device. Optical layer thickness and depth of waveguides were also determined using

Talysurf, Flash™200 or both. For depth measurement on Flash™200, the samples

had to be sectioned and mounted such that a vertical profile could be directly

examined.

2. Qualitative measurement: The quality of ablated waveguides is very essential to

ensure minimum propagation loss. Two measurands were of interest in this case;

one was the surface roughness and the second the wall roughness of the

waveguides. The former was successfully examined using Talysurf and Atomic

Force Microscope (AFM); however, the latter was investigated using a number of

equipment such as Talysurf CLI and/or Zygo but this proved unsatisfactory for

which the challenges observed for wall roughness measurement are further detailed

in chapter 7.

3. Waveguide measurement (detection and loss): - To establish continuous

waveguide paths before any propagation loss measurement was to be carried out,

the Flash™200 was employed. In this case, the backlight feature of the system was

used to shine white light into one end of the waveguide which should produce a

spot-light feature/pattern, dimensionally replicating the waveguides. Once this was

established, then the waveguide was ready for propagation loss assessment using an

850 nm VCSEL connected via a 50 micron core multi mode step index fibre which

was carried out separately using the facilities at University College London (UCL),

an academic partner to the IeMRC OPCB flagship project.

3.8.2 Measuring systems

The following measuring systems were extensively employed during the research under

discussion; they are:

 Talysurf CLI: Talysurf CLI is a scanning topography-measuring instrument. This

system allows for both contact and non-contact measuring techniques. It is equipped

with four different types of gauges: a diamond-stylus inductive gauge (2.5 mm
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range), a laser triangulation gauge (10 mm range) and one or two CLA confocal

single point sensor gauges (3 mm / 300 µm ranges). It provides automated

movement of the X, Y and Z slides up to a maximum speed of 20 mm/sec.

 Zygo: Zygo is a three dimensional surface structure analyzer. It uses scanning white

light interferometry to image and measure surfaces; it employs MetroPro™

software to provide surface structure analysis in a non-contact manner. Depths up to

100 micrometers, with 0.1 nm resolution and 0.4 nm RMS repeatability are possible

independent of objective magnification.

 SmartScope® Flash™ 200: SmartScope® Flash™ 200 is an optical measuring

device; its XYZ travel is 200 x 200 x 150 mm with a resolution of 0.5 m in all

directions. It has highly inclusive (and modifiable) measurement capabilities and

provides, among other things, feature dimensions such as width, length and height.

3.9 Summary and Conclusion

This chapter laid down the methodology, procedures and principles upon which the goals

of this research were undertaken. It started by identifying the main tools, i.e. 248 nm

Excimer, 355 nm UV Nd:YAG and 10.6 µm CO2 lasers, which are to be employed in the

research and different investigations needed on each laser. The lasers were chosen since

they have been used for the drilling of vias during production of PCBs – an evident of the

compatibility of the chosen technique with the current practice in the PCB manufacturing.

Optical polymer deposition on an FR4 substrate to form lower and upper cladding and

core layers were investigated; the wet formulation of Truemode™ was deposited using

spin coating at spinning speeds between 200 rpm – 1000 rpm for 30 – 60 seconds, which

was then subsequently cured for 3 – 4 minutes in a nitrogen oxygen-free chamber to

cross-link the polymer and finally oven-baked. Although polymer deposition

characterisation was highly needed and essential, it was observed that there would be a

tendency for a small range of deviation influenced by other factors that would be

impractical to account for during the course of the experiment. Because a multimode

waveguide was intended, spinning at 350 – 450 rpm was constantly utilised to obtain 30 –

50 microns thickness; the lower cladding was made such that its thickness is equal (at

minimum) or greater than that of the core, for reasons already mentioned such as

containment of signal by TIR and structural integrity. The adhesion between the optical

polymer and FR4 substrate was maintained by depositing a relatively rough side with Ra
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~ 950 nm or above.

Sample preparation – cleaning, sampling, mounting and polishing – and measurement

using a number of systems including Talysurf CLI, Zygo, SmartScope® Flash™200 were

described with both intrinsic and extrinsic problems and challenges identified and solved

at an early stage of the research. Furthermore, pre- and post-treatment of samples were

found to be of paramount priority if consistency of the results was to be guaranteed.

Having covered the experimental design and methodology in this chapter, the next five

chapters focus on experimental results.
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4 LASER ABLATION USING A CO2 (10.6 µM) INFRARED LASER

4.1 Introduction

The current chapter presents the feasibility study and the laser micromachining carried out

using a CW CO2 laser aimed at optical polymer waveguide fabrication. The chapter begins

with a review of CO2 laser machining, describes the experimental setup and then goes on to

present the results of the laser micromachining accomplished.

4.2 CO2 Laser Micromachining

The CO2 laser is one of the most widely used gas lasers operating mostly in the CW mode,

albeit pulsed mode operations are now being used. They are highly efficient with relatively

low maintenance cost and high processing speed. The power output from CO2 lasers varies

from as low as 10 Watt, mainly for marking (of metals, wood and composites), to a very

high power of tens of kilowatts used in industrial applications e.g. welding, soldering (low

and high temperatures), drilling, cutting and heat treatment. The wavelength of CO2 lasers

are in the mid-IR region characterised by heat generation, making the laser a good source of

heat required in thermal or heat-related applications [1- 7].

CO2 laser micromachining has opened up new applications in microtechnology, especially

in the microvia formation required for current PCB architecture. The CO2 laser has been

extensively used in via drilling, offering both efficiency and cost-effectiveness. Unlike

mechanical drilling, CO2 laser machining is a non-contact process which depends

significantly on the thermal, and to some extent, on optical and chemical properties of the

materials to be processed [6]. Undoubtedly, owing to its wavelength in the mid-IR and, of

course, its photon energy, CO2 laser ablation is a photothermal process in nature. As such,

application of CO2 lasers is favoured in processes where heat generation is not an issue of

concern rather a merit, for example in soldering.

Only lately, new applications – besides the aforementioned areas – of CO2 have begun to

emerge. For instance, Chen, et al [8] has used a pulsed CO2 laser to inscribe Arabic

numerals on eggs aimed to replace, or at least to circumvent the potential chemical hazards

that might accompany the current ink printing method of bar-coding consumable products

while Williams, et al [9] used a similar system, i.e. a TEM00 pulsed CO2 laser by Coherent
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Inc., to machine various channels, of widths between 1 mm and 1.4 mm, in ceramic

materials, namely aluminium oxide and aluminium nitride. Furthermore, Chung et al [10 -

11] reported the use of a CO2 laser for etching holes in silicon, which naturally does not

absorb an IR laser beam – this, according to the authors, was unprecedented. The etching of

the silicon was achieved by placing pure silicon on top of a glass material which was then

irradiated by a beam from a high power CO2 laser source with the evidence of etching

demonstrated from the top through to the glass.

Reports [12 - 14] are now available on the use of a CO2 laser for optical waveguide

fabrications based on changing the refractive-index of the materials. In these investigations

[12 - 14], the RI of the region adjacent to the ablated site was reduced by an order that was

typical of the difference in clad-core refractive indices required for the containment of light

by TIR. This process was photothermal and the region of the reduced index was the area

affected by the heat diffused from the irradiated site, which was not sufficient enough to

cause any etching; that is to say, it was the HAZ which represented the cladding in this

scheme.

The CO2 laser-material interaction is photothermal (or a photothermally-dominated

process) because the photon energy of any laser or laser system is calculated using ൌ ߣ݄ , it

thus follows that the photon energy (1.88 x 10-20 J or 0.1 eV) emitted by a CO2 laser at 10.6

µm is far smaller than the chemical bond energies of typical polymers (e.g. C-C single

bond) usually in the range of 3 – 10 eV. It is therefore obvious that micromachining in this

case cannot be achieved by direct chemical bond-breaking as is the case with a UV laser

source (i.e. a photochemical process); rather, it takes place by thermal processes. In order to

successfully laser-ablate polymer waveguides using this class of laser, careful optimisation

of the system parameters is therefore essential to minimise thermal damage that could result

in a large HAZ and possible losses in any resulting waveguide.

4.3 Experimental Setup

The CO2 laser used is a commercially available air-cooled SYNRAD series-48 IR laser

source, with a fundamental wavelength of 10.6 µm, using WinMark Pro® software to

control the experimental parameters such as power and speed of laser scanning. It operates

in the CW operation mode with a Gaussian TEM00 beam profile and a maximum power of

10 Watts with output specified as a percentage of maximum power. The maximum
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scanning speed achievable is 3000 mm/s; it has a beam divergence of approximately 4 mR.

The circular beam diameter (or spot size) is fixed at 300 µm, but the system, through

software control, allows the ablation of any width larger than this to be made by passing the

beam over an area multiple times to cover the required width.

Figure 4.1 is a schematic diagram of the experimental setup used for the results presented in

this chapter and chapter 7; for this, the sample was usually placed on the workpiece, which

was stationary, while the laser beam was used to irradiate the area of interest to form the

desired structures. The laser scanning was achieved by moving-mirrors placed on a high

speed optical scanner forming the beam path; the mirrors move back and forth in a way that

it converts schematic drawings from the CAD software into the structure and then onto the

processing sample at the ablation site. Because the optical components are generally light

objects, this type of design provides a very high processing speed compared to both moving

laser and moving workpiece [15]. It should be noted here that, since the laser processing on

this system was achieved through scanning – where the sample was stationary with the laser

beam moved to ablate the drawn patterns – it was impractical to measure powers at the

workpiece using the available power meter. Thus, all powers reported on this system were

the laser output power values given by the software.

Figure 4-1: Schematic diagram of an experimental setup
employed for laser ablation process using CW TEM00

Gaussian beam intensity profile.

This laser system was designed for marking and simple cutting. However, its possible

application in the laser ablation of optical polymer waveguides was considered here, which

CO2 laser beam source

Beam movement

Adjustable marking table
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was preceded with a feasibility study. The results of this study are reported here and the

fabrication of optical waveguides using this laser is detailed in chapter 7.

4.4 Experimental Results and Discussion

4.4.1 Laser micromachining trial – feasibility study

Due to the lack of literature reporting the use of this class of laser on optical polymer, an

initial feasibility study was considered necessary. During this study, a wide range of

parameters were covered, with powers varying from 1 to 9 Watts and a scanning speed

range of 20 mm/s – 500 mm/s. Table 4.1 shows the experimental parameters employed to

machine channels in two different materials, namely Truemode™ and PMMA at various

power-speed combinations. In each case, the polymer sample was placed on a stationary

stage with the CO2 laser beam kept at 300 µm diameter, at the desired parameters, and

which was then passed over the sample to create a straight line or channel.

Table 4-1: Parameters used for laser micromachining of
PMMA and Truemode™ polymers during the initial trial.

Track No Power (Watt) Scanning Speed (mm/s)

1 9 500
2 9 200
3 9 100
4 9 50
5 9 20
6 8 50
7 7 50
8 6 50
9 5 50
10 4 50
11 3 50
12 2 50
13 1 50

In this experiment, a TEM00 Gaussian beam profile was used, resulting in a cylindrical-like

channel when the beam was translated across the surface. Figure 4.2 is an SEM image

showing a three-dimensional view of the channel made in a Truemode™ optical polymer at

an input power of 9 Watt and scanning speed of 200 mm/s. It is obvious from figure 4.2

that, due to the Gaussian nature of the beam profile coupled with the fact that the beam is

circular, the depth of ablation was not the same across the track width; this is because the

power intensity was not even across the profile. This phenomenon made it difficult to
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predict the depth of ablation, which is essential for optical waveguide fabrication in order to

make sure that etching is done beyond the core layer, but not into the FR4 layer. It should

be noted here that the spots/lines that appears on the channel in figure 4.2 are likely to be

debris deposited, during and/or after ablation, since the sample in this case was not

subjected to post-ablation treatment.

While ablating

emanating occ

process. It was

both the powe

channels mach

same beam siz

machined at an

size (figure 4.3

beam size; wh

In addition, it
Gaussian beam profile
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Figure 4-2: Cylindrical-like ablated profile resulting from
the TEM00 mode CW beam for a structure machined in
Truemode™ optical polymer at input power of 9 Watt and
scanning speed of 200 mm/s.

at high powers and low speeds, a charring-like effect (with smoke

asionally) at the ablation zones was observed – an indication of a thermal

also noticed that the channels machined had different widths depending on

r input and scanning speed. Figure 4.3 shows SEM images of various

ined in Truemode™ with tracks having different widths even though the

e of 300 µm was used in each case. For instance, consider the case of a track

input power of 9 Watt and scanning speed of 500 mm/s using a 300 µm spot

a) where the resulting channel width was only about one-third of the laser

ich could be due to power density variation.

was also observed that the channel had wavy edges (figure 4.3a); this could

(Circular beam spot)
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be due to the circular profile of the beam coupled with the fact that the machining was

carried out at a relatively high speed. In fact such was also the case when a PMMA polymer

sample was machined at the same input power of 9 Watt but with a much low speed of 20

mm/s as evident in figure 4.4, with the circular beam profile apparent at the end of the track.

Analysis of the surface profile using Flash™200 showed variations in track width (figure

4.5). It was found that the resulting track width could be as small as 100 µm with a

maximum width of about 500 µm achievable at high power and low speed. The track width

having a width larger than the beam spot size could be a result of many factors but most

likely is the power density and thermal effect of the ablation mechanism.
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Figure 4-3: SEM images of various channels machined in
Truemode™ showing variation in ablated track widths at
different parameter combinations using the same beam size
of 300 µm (a) 9 Watt and 500 mm/s, (b) 9 Watt and 200
mm/s, and (c) 9 Watt and 100 mm/s.

(a)

(b)

(c)
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Figure 4-4: A figure showing a PMMA polymer machined
at 20 mm/s and 9 Watt using a 300 µm circular beam
profile.

Since machining on this system is a photothermal process achieved by scanning the beam,

it implies that, for example, a scanning speed of 100 mm/s at 1 Watt of energy would likely

produce the same effect as that done at 200 mm/s and 2 Watt or 100 mm/s at 1 Watt but

with two passes, all other parameters being equal. It is on this premise that the author

considers that laser ablation using this CW CO2 laser, taking into cognizance the fact that

only the power and speed could be altered, could be achieved by calculating what could be

called a ‘Scanning Power Density (SPD)’, obtained by dividing power with speed,

measured in Watt per Millimetre per Second (Watt/mm/s) or Joule per Millimetre (J/mm)

(Equation 4.1). Therefore, it is possible to plot the relationship between the parameters

used, represented as SPD, against the widths of ablated channels as shown in figure 4.6.

From this, it is evident that the track width varies with increase in the power density;

however this increase gradually reduces as the values of SPD becomes higher. In addition, a

plot of SPD against the depth of ablation, shown in figure 4.7, indicates a linear relationship

between the two quantities. This is because as the power density is increased so is the

absolute beam intensity across the profile, which means that more power would be

available at points, especially at the region close to the edge of the Gaussian profile where

no ablation would have occurred if low power density were to be used.

Ԣ࢚࢙࢟ࢋࢊ�࢘ࢋ࢝�ࢍࢇࢉࡿ�ሺࡰࡼࡿሻᇱ=
௪�(ௐ ௧௧)

ௌௗ�(  ௦⁄ )
=

ா௬

௧
ሺܬ ݉݉⁄ ) (4.1)

500 µm
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Figure 4-5: Surface profile of various channels machined in
Truemode™ showing variation in ablated track widths at
different parameter combination using the same beam size
of 300 µm (a) 9 Watt and 100 mm/s, (b) 9 Watt and 50
mm/s, and (c) 9 Watt and 20 mm/s.

(a)

(b)

(c)
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Figure 4-6: A graph showing the relationship between the
SPD and the resulting ablated track width for a given beam
size of 300 µm.

Figure 4-7: Graphical representation of the effect of power
density on the depth of ablation for micromachining carried
out on Truemode™ optical polymer.

Finally, and indeed on a very important note, is the HAZ effect of this process. Since it is a

thermal or at least a thermally-dominated process, the effect of HAZ cannot be ruled out,

rather it should be minimised. Figure 4.8 shows the cross-section of three different

structures machined in a PMMA polymer with obvious thermal effect, on the sides of the

tracks which might have changed the RI of the adjacent region by softening the polymer
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material used, i.e. PMMA. The thermal effect seen on both sides of the structures in figure

4.8 is similar to that shown in [14, 16] where the refractive indices of the materials were

altered. However, in [14], the side modifications were purposely intended such that a RI

change would be introduced in the region in order to make the region act as a clad layer

thus forming a waveguide. It should be noted here that such obvious HAZ effect was not

observed for machined structures in Truemode™ polymer most likely due to being a better

beam absorber (of the two) at this wavelength; nevertheless, this does not mean that

machining in this case was a HAZ-free process.

Figure 4-8: Machined channels in PMMA polymer showing
the thermal effect on the sides of ablated tracks. The
parameters used from the left: 9 Watt and 50 mm/s; 9 Watt
and 20 mm/s; and 8 Watt and 50 mm/s.

4.4.2 Laser micromachining – effect of speed and power

Having conducted the feasibility study in the midst of a wide range of parameters, the

subsequent experiment(s) was more focused in narrowing down the operating window

and assessing the effect of the two main parameters, namely input power and scanning

speed. In this case, the polymers used were Truemode™ and polysiloxane (OE4140 and

OE 4141). Similar to the initial trial, channels were machined in these two polymers using

a fixed beam spot size of 300 µm at the desired parameters.

Since high powers at 7 – 9 Watts and low speeds at 50 mm/s or less were found to cause a

large HAZ in the first trial, as described above, 5 Watt was taken as the upper limit for

operating power while a minimum scanning speed of 100 mm/s was used. The

micromachining was therefore carried out in two phases; one at varying powers of 1 – 5

Watts keeping the scanning speed constant and the other at varying speed between 100

mm/s and 400 mm/s with the power kept constant. This, in effect, maintained the power

density (or SPD) applied in every case in the range of ~ 10 mJ/mm to 50 mJ/mm; unlike

in the first trial where as high as 450 mJ/mm was employed with a parameter combination

of 9 Watt – 20 mm/s (Table 4.1).

500 µm

HAZ
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It was observed that a change in any of the two main variable parameters affects the

quality of the ablated channels. Figure 4.9 shows top views of a series of channels

machined in a polysiloxane-based photopolymer at a fixed input laser power of 5 Watt

and varying scanning speed between 150 mm/s and 400 mm/s. This corresponds to a

change in the scanning power density with a minimum SPD of 12.5 mJ/mm employed at

400 mm/s and a maximum SPD of 33.3 mJ/mm at 150 mm/s. It is evident from figure 4.9

that an increase in the scanning speed from 150 mm/s to 400 mm/s which corresponds to

a decrease in SPD from 33.3 mJ/mm to 12.5 mJ/mm, at a fixed output power of 5 Watt

dramatically improved the quality of ablation on a polysiloxane-based polymer. For

example, the structure machined at 5 Watt and 150 mm/s, i.e. SPD 33.3 mJ/mm (figure

4.9 a), resulted in a great amount of debris deposited at the ablation site, however, at a

higher scanning speed of 250 mm/s and lower SPD of 20 mJ/mm, the debris deposition

was reduced. Figures 4.9 c and 4.9 d resulted in very clean ablated structures with no

apparent debris deposition at the site of the processing. However, as expected, these clean

structures ablated at lower SPD resulted in smaller track widths compared with those at

higher power densities.
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Figure 4-9: Effects of varying scanning speed at a fixed
input power of 5 Watt on the quality of ablation on
polysiloxane (OE4140 and OE 4141) polymer using CW
CO2 laser showing (a) 150 mm/s scanning speed (SPD =
33.3 mJ/mm), (b) 250 mm/s scanning speed (SPD = 20
mJ/mm), (c) 350 mm/s scanning speed (SPD = 14.3
mJ/mm), and (d) 400 mm/s scanning speed (SPD = 12.5
mJ/mm).

In figure 4.10, images of two channels structured at a fixed scanning power of 150 mm/s

but different power are presented. Although, there is evidence of debris deposition in both

situations, however, it was milder at a lower power of 4 Watt (figure 4.10 b) where lower

SPD of 26.7 mJ/mm was utilised. It can therefore be argued that SPD values, which

combine the effects of the two changeable parameters used on the system, can be used as

a guide of ablation quality (as demonstrated in the tables 4.2 and 4.3). This allows for a

wide range of combinations between power and scanning speed to be made for an

optimisation of the process and subsequent reduction to the HAZ. Tables 4.2 and 4.3

present optical microscope images of machined structures in Truemode™ and

polysiloxane polymers respectively at various parameter combinations arranged in

increasing order of SPD values. For polysiloxane-based photopolymer (table 4.3),

Clean ablation without apparent debris

200 µm(a) (b)

(c) (d)
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minimum debris deposition was achieved when samples were machined at low SPD

values of 12.5 mJ/mm up to about 17 mJ/mm.  However, at higher SPDs ≥ 20 mJ/mm, it 

could be observed that the debris deposition became more apparent.

It was also observed during the course of the investigation that, at a constant scanning

speed of 100 mm/s and 1 Watt, i.e. SPD of 10 mJ/mm, there was no evidence of ablation

or a structure being created in Truemode™ polymer. At SPD value of 12 mJ/mm (table

4.2), there is evidence of ablation although it appears to produce a shallow depth, but as

the SPD values increased the ablated structure improved without apparent debris

deposited at either side of the ablated tracks, however, at much higher SPDs ≥ 40 mJ/mm 

there appears to be some thermal effect on the sides of the machined structures.

Figure 4-10: Images showing the samples machined in
polysiloxane (OE4140 and OE 4141) at fixed scanning
speed of 150 mm/s but different input laser power : (a) 5
Watt (SPD = 33.3 mJ/mm), and (b) 4 Watt (SPD = 26.7
mJ/mm).

200 µm

(a) (b)
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Table 4-2: Table showing optical microscope images of
structures machined in Truemode™ polymer with
parameters used and corresponding SPD values.
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Table 4-3: Table showing optical microscope images of
structures machined in polysiloxane (OE4140 and OE
4141) with parameters used and corresponding SPD values.
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Undoubtedly, the surface quality of the ablated profile is essential for a good performance

of an optical waveguide; the desirable roughness or smoothness is still subject to further

research, nevertheless, this needs to be kept as fine as possible. Figure 4.11 shows the
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surface and wall of an ablated channel in a Truemode™ sample at SPD value of 45 mJ/mm

which indicates a fairly smooth surface, with no apparent thermal damage. Although no

quantitative value of the smoothness of these surfaces could be obtained due to the

dimensional constraints of the structures, this is of an improved quality, in terms of the

debris deposition at the ablation zone, to that reported in [16]. Qi, et al [16] concluded that

the surface of a CO2 laser micromachined polycarbonate was rough, but an Excimer laser

could be used to polish the surface; a similar observation was made by the authors of [9] for

the micromachining carried out on ceramics. Further work is needed to quantify the

roughness and its effect in respect to various applications.

Figure 4-11: Field Emission Gun Scanning Electron Microscope

(FEGSEM) images of a sample machined in Truemode™
optical polymer at input power of 9 Watt and scanning
speed of 200 mm/s (SPD = 45 mJ/mm) to visually examine
the quality of the surfaces (i.e. roughness of the ablation).

Side wall Track bottom

Track bottom

Side wall
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4.5 Discussion

As pointed out earlier in this chapter, although the CO2 laser is the most widely used gas

laser it is mainly employed where heat generation and photothermal mechanism are

desirable, if not essential, for processing such as in welding, drilling, soldering and cutting.

However, since its invention over four decades ago when its key usage was (and still is) in

the aforementioned areas, the CO2 laser system design has also witnessed significant

changes mainly in power, and beam delivery and quality, for this reason and many other

needs, research is underway to explore other possible applications especially in

microfabrication since the laser in question offers a very competitive processing speed.

The lack of literature reporting the use of the CO2 laser for optical polymer waveguide

fabrication posed some challenges to the study conducted and reported in this chapter. The

SYNRAD series-48 IR laser (section 4.3) used for this study was actually designed for

processes such as marking, engraving, etc. where the Gaussian and circular beam shape was

not an issue; however, this is of concern for the application under consideration. This is

evident in the SEM images of an ablated channel structure in Truemode™ optical polymer

where the depth of ablation was not the same across the track having a Gaussian profile

shape. The shape of the ablated structure was considered to be as a result of a combined-

effect of the Gaussian profile of the beam and its circular shape. Consequently, the depth of

any ablated channel varied from a minimum value at the edges to a maximum value at the

centre of the structure.

One possible way of overcoming this is by taking the depth at a point in the middle of the

ablated profile, i.e. neither at the edge nor at the centre, when estimating the expected depth

of ablation. This idea is akin to taking the beam waist of a Gaussian profile at a point where

the beam intensity has fallen to 1/e2 (~13.5 %) of the beam at the centre; that is to say, the

working depth should be taken as equal to 86.5 % of the centre depth value. This was quite

useful during waveguide fabrication since in every case ablation was guaranteed to reach

the lower cladding, thus ensuring a successful waveguide fabrication. On the other hand,

the choice of taking the maximum depth, i.e. the value at the centre of the structure, as the

working value could sometimes result in a situation whereby the centre part of a given

track, for a particular set of parameter values, reached the FR4 substrate or the centre was

not ablated into the lower cladding while other parts were not; neither was desirable. It was

therefore essential that process optimisation was employed if this challenge was to be
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overcome, and this was part of the objectives of this study.

The analysis of the ablated tracks showed that the resulting channels could have widths

different from the beam spot size of 300 µm; either narrower or wider (figures 4.3 and 4.5).

Figure 4.12 shows a schematic diagram of the 300 µm beam profile and the distribution of

the intensity which is a maximum along the centre. An arbitrary horizontal line is drawn

across the beam profile to indicate the ablation threshold; this means that only the power

density below the threshold line can cause effective ablation while the part of the beam

profile above this line is insufficient to result in etching in the sample. Therefore, the

channel would have a width shorter than the beam spot size as indicated by the red double

arrow line in figure 4.12. In other words, only a fraction of the beam, located at points in the

centre, carries sufficient power density or intensity which is above the ablation threshold for

the polymer.

Figure 4-12: Schematic diagram of the CO2 laser beam
profile showing how the power intensity and power
threshold affect the width of ablated channels.

The observation that the resulting track width was larger than the beam diameter can be

explained if the thermal effect of the mechanism is taken into consideration. In this case, it

can be said that, the combined effect of high power and low speed gave rise to a very high

power density at the ablation zone, this in effect caused a high thermal agitation and

temperature at the ablation site which was capable of melting and vaporizing the adjacent

Increase in Power
Intensity and Depth

Ablation
threshold line

Beam spot size = 300 µm

Ablated channel width
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region to the actual beam size thus producing a larger track width. Other factors might also

be responsible; for instance, Crafer and Oakley [15] argued that, in a moving optics design,

the spot size at the workpiece is governed by the diameter of the beam incident on the lens

which can vary as the optics moves. This, according to [15] can also have an effect on the

power density and beam quality produced at the workpiece. Having said this, since the

tracks were machined with varying parameters, it is difficult to make a direct correlation

between the parameters used and the resulting channel size. However, this may explain the

“rippled” effect observed in some of the machined structures.

Although the effect of HAZ was much pronounced when ablating PMMA polymer samples

(figure 4.8), this does not mean that other polymers – Truemode™ and polysiloxane – are

not prone to thermal effects. In fact, what could be an explanation for this difference in

behaviour might be because while PMMA is a thermoplastic polymer, both Truemode™

and polysiloxane are thermosetting and elastomeric materials respectively which could

affect the way the materials react to the thermal effect of the laser beam. It can be observed

from the SEM images of the ablated samples (figures 4.2, 4.3 and 4.11) that a line, in most

cases, runs along the ablated structure, it is thought to be due to (i.e. occurring at) the

interface between the core and the clad layer of the sample, though no evidence either in the

literature or during this study could be obtained to support this.

4.6 Summary and Conclusion

IR CW CO2 (at 10.6 µm wavelength) laser micromachining of optical polymer was

considered; the laser output beam was Gaussian with a fixed circular beam size of 300 µm,

which resulted in a cylindrical-like profile in the ablated structures. Due to the lack of

literature report on the use of this class of laser on optical polymer, a feasibility study was

thus conducted on both PMMA and Truemode™. Two system parameters, power and

scanning, were not fixed. While input power could be changed between 1 Watt and 10

Watt, scanning speeds between 1 mm/s and 3000 mm/s was possible. Initially, 90 percent

of the available power ranges (1 – 9 Watt) and speed ranging from 20 mm/s to 500 mm/s

was utilised; this was done in order to identify the relevant operating windows for this

polymer since such information was not readily available in the public domain.

Following the initial trial, subsequent investigation was centred on changing the power and

scanning speed in order to optimise the process; in those cases, Truemode™ and
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polysiloxane-based photopolymers were employed. It was observed that, for this process,

the effect of changes in one parameter at a fixed value of the other depended on the value of

the fixed parameter. In other words, increasing the scanning speed at a fixed input power

can either improve or mar the quality of ablation depending on the value of the power used.

This is because, the combination of the two factors – power and speed – determines the

effective power or power density at the ablation zone, and since the beam wavelength

would restrict the photon energy to a value < 0.1 eV – much lower than the bond-energies

typical polymers required for bond scission in a photochemical mechanism – the process

can therefore be viewed as purely athermal. Therefore, the author proposed that ‘Scanning

Power Density (SPD)’, obtained by dividing power with speed measured in Joule per

millimetre, be used as a basis of achieving a qualitative fabrication mechanism since 2 Watt

at scanning speed of 200 mm/s would provide the same effective power or power density as

1 Watt at 100 mm/s. It is believed that this derived parameter (i.e. SPD) would have the

same effect as fluence (energy per unit area) in pulsed lasers.

A plot of SPD against the depth of ablation was found to be relatively linear with an SPD

value of 50 mJ/mm resulting in 60 microns depth of ablation, which was adequate to ablate

through the core into the lower cladding of a typical multimode waveguide. Additionally,

the ablated tracks were found to have varying widths, which the author considered to be

another proof that the laser micromachining at this wavelength is a photothermally-

dominated, if not a pure photothermal, process. HAZ effect was equally studied; this was

found to be much pronounced in PMMA which was thought to be due to its low absorption

and its being a thermoplastic material. Debris deposition and thermal effect was observed to

be relatively significant at SPDs above 60 mJ/mm and 30 mJ/mm for Truemode™ and

polysiloxane respectively. As a result, SPD values below 20 mJ/mm were found to give

clean ablated structures with minimum or no debris deposition at the ablation site for

polysiloxane-based polymer; for Truemode™, values between 15 mJ/mm and 50 mJ/mm

were considered optimum.
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5 UV Nd:YAG LASER SYSTEM CHARACTERISATION

5.1 Introduction

In this chapter, results of the feasibility and laser system characterisation carried out using

a UV Nd:YAG laser hosted by Stevenage Circuits Limited – an industrial partner to the

OPCB consortium – are presented. The chapter starts by explaining the UV Nd:YAG

laser micromachining in general and its potential application in the fabrication of optical

polymer waveguides in particular. The results section is divided into two sets of

experiments: those carried out as part of the feasibility study undertaken to investigate the

potential of this class of laser for the proposed application and those aimed at

understanding the effects of various laser system parameters.

5.2 Nd:YAG Laser Micromachining

Laser drilling of microvias in printed circuit boards for high density interconnects has

been a dominant technology in PCB manufacturing [1 - 4]. The carbon dioxide laser,

described in the previous chapter, is the foremost candidate in laser drilling and offers a

tremendous improvement, in terms of speed and quality, over the traditional mechanical

hole drilling. However, the kerf – the width of the machined hole – obtained with CO2 is

only in the range of 100 – 200 µm, which is a major constraint in today’s need for small-

size high density multi-layer PCB circuits for opto-electronic and photonic devices [3, 5].

In addition, copper (a conducting layer in PCB assembly) naturally reflects light at about

10 µm [1] wavelength which also makes the CO2 laser less suitable for drilling of buried

or through holes in multi-layer PCBs. These challenges were overcome with the

introduction of the Neodymium-doped Yttrium Aluminium Garnet (Nd:YAG) laser that

offers, among other benefits, a smaller spot size and a wavelength (or wavelengths) [6, 7]

that are readily absorbed by copper. However, this is not to say that Nd:YAG lasers have

overhauled CO2 in the PCB industry, as for blind hole drilling, the CO2 laser is the most

suitable laser as it terminates at the dielectric material–copper layer interface without

causing damage to the copper pad [1].

Nd:YAG is a solid-state laser optically pumped by flash lamps, continuous gas discharge

lamps or near-infrared diode lasers with a fundamental wavelength of 1064 nm; they

operate in both pulsed and continuous mode. With recent improvements, it is now
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possible to operate this type of laser in the visible region, i.e. at 533 nm wavelength,

known as frequency-doubled (second harmonic) Nd:YAG and at various wavelengths in

the ultraviolet region of the electromagnetic spectrum, namely 355 nm, 266 nm and 213

nm, called frequency-tripled (third harmonic), frequency-quadrupled (fourth harmonic)

and frequency-quintupled (fifth harmonic) respectively, which are all collectively referred

to as UV Nd:YAG lasers. These solid-state lasers, when pumped with

semiconductor/diode lasers, are commonly referred to as Diode-Pumped Solid-State

lasers (DPSS) [6 - 8].

5.3 UV Nd:YAG Laser Ablation of Polymer Waveguides

Excimer laser ablation of polymers, typically at 193 nm (of ArF) and 248nm (of KrF), has

been repeatedly reported in the literature [9 - 13]. Excimer micromachining has also been

used for other applications, including via drilling in PCBs and still remains part of some

PCB laser drilling operations [1]. However, its speed and running cost are some of the

reasons for its comparatively low acceptance today in the PCB manufacturing industry [2,

4, 14, and 15]. In the aforementioned technology, high quality micromachining,

sometimes referred to as ‘cold ablation’, is thought to be due to the UV absorption

sensitivity (including an affinity of these polymers to these UV wavelengths) on the one

hand, and the short pulse time of the Excimer laser in the range of 15 – 30 ns on the other.

Going by these assumptions, the current UV Nd:YAG lasers which offer both features,

could therefore be adapted for the same technology. In spite of these potential advantages

offered by the UV Nd:YAG lasers, there has been less attention towards their use in

polymer waveguide fabrication except in [16] where a waveguide fabrication was

performed at 1 mm/s, for which both energy and frequency were observed to have an

impact on the smoothness of the waveguide side wall but required optimization although

the optimised values used were not stated. Steenberge, et.al [16] further wrote that both

photothermal and photochemical processes were present during the fabrication, due to the

high wavelength of UV Nd:YAG compared to KrF Excimer laser, and was also said to

have an impact on the smoothness of the waveguide side wall; although, waveguide

losses were yet to be performed and the values of wall roughness were not stated. For the

aforementioned points, the author considered its investigation not only as a necessity, but

also as a requirement and contribution to the ongoing drive in the deployment of OI.
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5.4 Experimental Set-up

The principal UV Nd:YAG laser used in this project was a diode-pumped frequency-

tripled UV Nd:YAG laser system manufactured by Electro Scientific Industries (ESI). It

is an ESI model 5200 UV μVia Drill, which operates at a wavelength of 355 nm (i.e. near 

ultraviolet) with 60 ns pulsewidth, power and PRF of up to 3 Watt and 20 kHz

respectively. For this system setup, it was impractical to measure the power at the

workpiece due to certain restrictions hence the average input powers were usually

referred to whenever power was mentioned unless otherwise stated. In addition, since the

laser used pulsed operation mode, the energy per pulse (mJ) can be obtained by dividing

the average power (Watt) by the PRF (kHz). The author of this thesis conducted a test on

the beam stability (figure 5.1); it shows the beam stability of 2.33 % over a period of 10

minutes. This is more or less in the order of the quoted long term stability of 2.5 % by the

manufacturer [17] – an indication of a satisfactory beam profile used for the experiments.

The beam intensity profile was Gaussian with a fixed beam diameter of 25 m, primarily

designed for drilling holes in PCB materials. Therefore, etching a track of dimensions

greater than 25 µm wide required the beam passes to be overlapped; for this, a value in

microns for beam overlapping, less than the size of the original spot size was inserted into

the system software which then calculated the optimum pattern by which the required

track width was to be filled. For the results of the experiments presented here, the value of

the beam overlap was maintained at a fixed value of 5 µm. The depth measurement was

carried out using the Flash™200 optical measuring device; for this, the samples were

diced, potted and polished such that the measurement could be obtained by looking at the

cross-section profiles of the ablated structures. In each case, measurement was taken at

three or more points along the track length to ascertain the deviation of the data obtained.

Figure 5-1: Power versus time curve for 5200 laser drill
system (courtesy of Stevenage Circuits Limited).

Laser drill system 5200.
Gaussian wave profile.

Repetition rate = 10 kHz
Time = 10 min
Power average = 0.098 W
Power min = 0.097 W
Power max = 0.099 W
Stability = 2.33%
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5.5 Feasibility Study – Initial Laser Machining

The initial trial was largely focused on the laser-matter interaction vis-a-vis laser beam

absorption and the possibility of using this class of laser for Truemode™ photopolymer

albeit the same laser has been reportedly used for other polymers [2, 4]. The first laser

micromachining trial was conducted on two different polymers, namely PMMA and

Truemode™ using the host fabrication settings for processing PCB materials at high

speed ≥ 100 mm/s and powers ≥ 1 Watt. The results showed a very poor absorption of the 

beam (which led to a non-clear line/track pattern marred with black spots and very dark

patches like re-solidified molten material) especially with regard to PMMA; an

unexpected result since the ablation of both polymers had been successfully demonstrated

in the literature using Excimer laser(s) and, to some extent, on UV Nd:YAG. Incorrect

parameters were thought to be the cause. In addition, the low absorption coefficient of

PMMA, < 10 cm-1 at 351 nm [18] may have led to such a pronounced effect. For this

reason, further trials were scheduled.

In the second trial, a range of parameter combinations (at much lower power and speed)

were considered to machine Truemode™ as follows: (i) translation stage velocity

between 5 mm/s and 100 mm/s, (ii) power between 0.1 Watt and 0.5 Watt, and (iii) pulse

repetition rate between 10 kHz and 20 kHz. In addition, for each experimental value, a

set of three tracks, 50 µm, 75 µm and 100 µm wide, were made; this was achieved by

beam overlap. Figure 5.2 shows cross-sections through machined samples from this trial

in which the laser beam was passed once or twice over the structures; in figure 5.2a the

three structures were machined at 5 mm/s, 20 kHz and 0.1 Watt and shows that the depth

varied proportionally to the width of the track from 50 µm to 100 µm looking from left to

right. The variation in the ablation depth when compared with the track width in this

process could be a result of the fact that the number of 25 µm fixed beam spots needed to

form any desired width increases as the width enhances, this stepped-up the beam

intensity delivered to a given area and thus the depth of ablation as shown later in section

5.6 where the effect of changing the track width with depth of ablation is presented. In

figure 5.2b however, the parameters were different: the speed and power were doubled to

10 mm/s and 0.2 Watt respectively, while the repetition rate was the same as that used for

the structures in figure 5.2a. The increase in speed and power led to a greater depth of

ablation.
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During this investigation an unusual effect was observed (figure 5.2c) when the structures

were ablated at the same setting as that of figure 5.2a with the exception that 0.2 Watt

input power was applied as opposed to the former. This led to a greater depth of ablation,

closer to, but not reaching the clad/FR4 interface. However, despite this, a “discontinuity”

was observed directly below the machined area at this interface. This was observed at

other parameters (figures 5.2b and 5.2d) indicated in the solid circular blue line. There

could be many possible interpretations for this ‘abnormality’. One could argue that it was

possibly due to the parameter change from 0.1 Watt to 0.2 Watt since this trend did not

occur in the former. However, it still occurred when the same parameters used in figure

5.2a were used for structures in figure 5.2d except for a change in the number of passes

from 1 to 2 which should only relate to the depth of ablation.

A close examination (of the figures) revealed that the effect occurred only when the

micromachining was close to the lower cladding-FR4 substrate interface, which might

suggest that the phenomenon may be largely due to the difference in the optical property

of the materials, most especially the absorption coefficient and etch rate. The etch rate

difference would then mean more pulses or higher beam intensity requirement at this

interface (since etch rate in FR4 is obviously expected to be lower than that of

Truemode™ polymer) and thus a possible thermal or similar damage at this region.

Chung, et al [19] observed, as discussed in chapter three, that putting a glass substrate

below a silicon material caused the latter to absorb the 10.6 µm wavelength of the CO2

laser; a similar situation could be attributed to this case. Although this might not be an

issue of concern for the waveguide fabrication technique since for this method (as

previously explained in chapter 3) ablation is not intended and in fact not recommended

to reach the FR4, nevertheless further research is needed to explore the possible cause(s)

not only in this case but also for that of silicon as admitted by the authors of [19].

It is also worthwhile to note that the ablated structures in figure 5.2d have different shapes

compared to corresponding images in figures 5.2a, 5.2b and 5.2c; this could be due to the

fact that all were, with the exception of the former (i.e. figure 5.2d) machined at one pass.

It could be argued that during the first laser beam pass, the profiles in figure 5.2d would

have produced similar shapes as the others, however, when the second beam pass was

carried out on this, it further etched the tip of the profile formed during the first pass and

thus broadened the profile of the ablated structures as evidently seen in figure 5.2d.
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Figure 5-2: (a)
(b) 10 mm/s,
mm/s, 20 kHz,
20 kHz , 0.1 W

Clad layers

(a)

(b)

(c)

(d)

50 µm 75 µm 100 µmBeam width

Core layer
5
20
0.2
att

100 µm
FR4 substrate
mm/s
kHz,
Wa

and 2
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, 20 kHz, 0.1 Watt and a single pass;
0.2 Watt and a single pass; (c) 5

tt and a single pass; and (d) 5 mm/s,
number of passes.
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The following points sum up the results of the feasibility study carried out: (i) that the

Truemode™ optical polymer used in this research absorbs at 355 nm UV Nd:YAG

wavelength provided that an appropriate laser parameter is used, (ii) that velocity, power,

PRF, number of passes and track width (and beam overlap) on the laser used are the

salient factors that affect the depth of ablation and thus require further investigation, and

(iii) that ablation at relatively high speed above 30 mm/s is not suitable and similarly

relatively high power above 0.3 Watt is too thermally-damaging for the material – the

basis of the choice of the ‘operating window’ used during the laser characterisation.

5.6 Laser System Characterisation

As with Excimer laser micromachining, UV Nd:YAG ablation is governed by certain

controllable experimental parameters – the basis of investigation in this section. Effects of

the laser power, PRF, translational stage velocity, number of passes, and effective

linewidth on the depth of ablation were studied. In each case, all factors were kept

constant with the exception of the one under investigation and the setting was used to

ablate 75 µm wide 50 mm long channels. The fact that there was no, as far as it is known

to the author at the time of writing this thesis, public information showing the relationship

between the aforementioned factors and the depth of ablation for Truemode™ polymer

coupled with the fact that experimental results in relation to other polymers using the

same 355 nm UV Nd:YAG laser cannot be easily used taking into consideration the

difference in absorption coefficients of the polymers, established the importance of this

investigation.

5.6.1 Power

In this set of four experiments, all factors were fixed while power was increased at an

interval of 0.05 Watt from 0.1 Watt to 0.25 Watt. Figures 5.3 and 5.4 show the cross-

section and plan views respectively of the four different channels machined at 0.1 Watt,

0.15 Watt, 0.2 Watt and 0.25 Watt input power; these correspond to input pulse energies of

0.01 mJ, 0.015 mJ, 0.02 mJ and 0.025 mJ respectively. It is obvious from the cross-

sectional view of the ablated structures shown in figure 5.3 that an increase in power

resulted in an increase in the amount of material removed with minimum and maximum

etch achieved at 0.1 Watt (figure 5.3 a) and 0.25 Watt (figure 5.3 d) respectively; the

ablated channels at these settings (with power varying) produced straight edges as shown in
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figure 5.4. Since the energy/power could not be obtained at the workpiece, it followed that

these values would be the basis of analysis in this case rather than the commonly used

fluence; however, both are directly related. That is to say, fluence is equal to the energy

divided by the beam or spot size.

(a)

(c)

(b)
- 128 -

Figure 5-3: Cross-section of struc
Truemode™ optical polymer at 10 kH
linewidth and six passes but varying
Watt, (b) 0.15 Watt, (c) 0.2 Watt, and (

FR4 substrate

FR4 substrate
(d)

FR4 substrate
d

tures machined in
z, 10 mm/s, 75 µm

input power (a) 0.1
) 0.25 Watt.

FR4 substrate
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Figure 5-4: Plan view of structures machined in
Truemode™ optical polymer at 10 kHz, 10 mm/s, 75 µm
linewidth and six passes but varying input power (a) 0.1
Watt, (b) 0.15 Watt, (c) 0.2 Watt, and (d) 0.25 Watt.

The graph shown in figure 5.5 is the plot of the relationship between the input power and

the depth of ablation which indicates a direct proportionality between the two factors as

expected; that it to say, increase in power caused a corresponding increase in the total depth

of ablation. It was obvious that laser power played a major role in the amount of material

removed.

The ablation (power) threshold at 10 kHz and 15 mm/s can be obtained by extrapolating the

graph in figure 5.5, which is about 0.08 Watt. The estimated threshold here suggests that

the ablation of Truemode™ using this system ought to be carried out at a value equal or

greater than 0.08 Watt or at ≥ 0.008 mJ/pulse. This is because, an average power of 0.1 

Watt at 10 kHz is the same as that of 0.2 Watt at 20 kHz as each produces a 0.01 mJ/pulse

of energy. In addition, the operating power should be maintained only a little above the

power threshold, say between 0.1Watt - 0.2Watt (i.e. 0.01 – 0.02 mJ/pulse) for this case, to

avoid the dominance of photothermal processes over photochemical as per the general

recommendation in laser ablation of polymers. This supports the observation made during

the initial trials where ablating at high power of 0.5Watt produced poor results which could

100 µm

(a)

(b)

(c)

(d)
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be as a result of the fact that the power used then was well above the ablation threshold.

As previously affirmed, the modelling of laser-matter interaction cannot be generally

taken/used, however, a curve fitting (represented by the green dotted line in figure 5.5)

provided a mathematical means of representing/interpreting the behaviour of the process as

shown in equation 5.1, where D is the depth of ablation in microns and p, the input power in

Watt. A similar graph showing the relationship between the power and the depth of ablation

is plotted in figure 5.6 with the horizontal axis (or x-axis) representing the ratio of the input

laser power and the estimated power threshold denoted as p and pt respectively. The

ablation power threshold, pt, used is that obtained by extrapolating the graph in figure 5.5 as

earlier mentioned which is 0.08 Watt. This graph (figure 5.6) is identical in shape to that of

figure 5.5 since the former is obtained from the latter with the introduction of ablation

threshold. Furthermore, the resulting equations (equations 5.1 and 5.2) are similar with each

having an R2 of 0.9982 and the coefficient of the logarithmic term in both equations is also

equal with a value of 488.54.

ܦ ൌ Ͷͅ ͺǤͷͶ�݈݊ ()� + 1214.8 (5.1)

ܦ ൌ Ͷͅ ͺǤͷͶ�݈݊ �൫

௧ൗ ൯െ �ͳͻǤͳͲʹ ����������������������������������������������������������ሺͷǤʹሻ

Figure 5-5: Graphical representation of the effect of power
on the depth of ablation at 15 mm/s translation speed 10
kHz and scanning at six times.
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Figure 5-6: Graphical representation of the effect of (input
power / estimated power threshold) on the depth of ablation
at 15 mm/s translation speed 10 kHz and scanning at six
times.

5.6.2 Pulse repetition frequency (PRF)

Reports have indicated different behaviours – depending on the laser wavelength and

material absorption – with regard to the effect of the pulse repetition rate/frequency

(PRF/PRR) on the depth of ablation. To investigate the relevance of PRF (or PRR), all

other experimental parameters, namely: laser power, translation stage speed and number of

scans (or passes), were kept constant at 0.1 Watt, 5 mm/s and 4 passes respectively with

the exception of PRF, which was increased at intervals of 5 kHz between 5 kHz and 20

kHz.

Figure 5.7 shows the cross-section of the four different channels ablated by changing the

frequency from 5 kHz to 20 kHz while figure 5.8 is the plan view of the same set of

channels. The plot of PRF against the depth of ablation is shown in figure 5.9; this indicates

a decrease in ablation depth from 5 kHz to 15 kHz, thereafter, an increase is noticed from

15 kHz to 20 kHz.

In the first three instances, i.e. from 5 kHz to 15 kHz, where there was a decrease in the

depth of ablation as the repetition rate increased, it could be argued that the depth decrease

was due to the fact that though more pulses per area were released per second at higher

frequencies, the energy per pulse was reduced. This is because, since the average power of

the laser remained constant at 0.1 Watt, the energy per pulse, which is equal to the average

y = 488.54ln(p/pt) - 19.102
R² = 0.9982
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power, divided by the PRF, decreased. In other words, both the PRF and energy per pulse

played their individual role at this instance. A sudden rise in the depth of ablation at 20

kHz, which has the least pulse energy, though unusual, can only be explained by

considering the ‘effectiveness’ of this high PRF. That is to say, at high PRF, though the

energy per pulse is low, the fact that more pulses were used per area could mean that some

of the pulses were not photochemically used to ablate the material. These unused pulses

effectively contributed to a photothermal process or part of the ablation mechanism and

thus enhanced (or increased) the absolute depth of ablation. Having said this, the matter is

more complex than this especially when it involves changes in PRF.

Figure 5-7: Cross-section of structures machined in
Truemode™ optical polymer at 0.1 Watt, 5 mm/s and four
passes but varying PRF: (a) 5 kHz, (b) 10 kHz, (c) 15 kHz,
and (d) 20 kHz.
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FR4 substrate
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Figure 5-8: Plan view of structures machined in
Truemode™ optical polymer at 0.1 W, 5 mm/s and four
passes but varying PRF (a) 5 kHz, (b) 10 kHz, (c) 15 kHz,
and (d) 20 kHz.

Figure 5-9: Graphical representation of the effect of PRF
on the depth of ablation at a constant power of 0.1Watt, and
a translational stage speed of 5mm/s showing the depth of
ablation against PRF.
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5.6.3 Velocity

The two main relevance of the scanning speed or velocity of the beam across the surface

during laser ablation, are first, its contribution to the power/energy density available at the

point of ablation and secondly, its influence on the smoothness of the ablation, especially

the edges. In this investigation, laser ablation was carried out keeping all experimental

factors – power, PRF and number of passes – fixed at 0.1 Watt, 5 kHz and two passes

respectively, with the exception of the velocity of the translation stage, which was increased

at an interval of 5 mm/s between 5 mm/s and 20 mm/s. It is obvious from figure 5.10,

which shows the ablation depth as a function of speed, that the depth of ablation was

inversely proportional to the speed of the translation stage, i.e. more material was removed

at low speed due to more pulses reaching the material at this instance. However, the slope

of the curve was steeper between 5 mm/s and ~ 10 mm/s than towards the 20 mm/s speed.

The plan views of the ablated channels shown in figure 5.11 imply that the lower the speed

the better is the edge ‘finish’ with ablation at 5mm/s speed giving the smoothest finish of

all. This effect/observation was expected (since the process was carried out with an

appropriate parameter combination for the given material) because, at low speed, the laser

pulses could overlap much better than at a high speed and it is also in line with the general

recommendation for laser ablation of polymers. Therefore, low speeds, ~ 5 mm/s, of

ablation were used during the optical waveguide fabrication.

Figure 5-10: Graphical representation of the effect of
velocity on the depth of ablation at 0.1 Watt, 5 kHz and 2
passes.
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Figure 5-11: Optical microscope images showing structures
machined in Truemode™ optical polymer at 0.1 Watt, 5
kHz, 75 µm linewidth and two passes but varying speed:
(a) 20 mm/s, (b) 15 mm/s, (c) 10 mm/s, and (d) 5 mm/s.

5.6.4 Number of passes

For this experiment, input laser power, PRF and velocity of the translation stage were held

constant at 0.2 Watt, 15 kHz and 15 mm/s respectively while the number of passes was

varied. Figure 5.12 is the plot of the number of times the polymer material was laser-

scanned against the depth of ablation; this showed an increase in the ablation depth as the

number of passes increased. The ablation depth did not exactly correspond to the increase in

the number of passes; that is to say, the ablation depth for four passes was not exactly twice

that of two passes. A possible explanation for this could be that, the ‘effective’ pulses

reaching the material at the ablation zone is reduced in subsequent scans as there will be

some debris deposition from the preceding scan that needs to be removed using a portion of

the incoming pulses of the current scan. Alternatively, the increasing depth of the hole

makes it harder for the ablated material to be ejected clearly, such that some remains. This

result is useful as it means that the incident energy was efficient in removing the material in

multiple passes such that the input power, for example, could be halved and 2-passes used

as an alternative. By and large, reducing the operating power and/or power density for

multiple passes could minimise the dominance of photothermal processes and HAZ.

100 µm
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(b)

(d)
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Figure 5-12: Graphical representation of the effect of
passes/scans on the depth of ablation at constant power of
0.2Watt, 15 kHz and 15 mm/s.

5.6.5 Line width

The UV Nd:YAG laser system described in section 5.4 has a beam size fixed at 25 m

which means that only 25 m wide features could be created in a single pass. To achieve

other feature sizes, for instance 70 m wide tracks, the beams are overlapped using a

computer program, which fills the desired feature size, hence making it easy to create any

desired beam size from 25 m upwards. The effect of change in the ‘effective beam size’

on the amount of material that could be removed was investigated at a constant power of

0.1 Watt, 5 kHz PRF, 5 mm/s and one pass with ‘effective beam size’ varied from 30 µm to

100 µm. The plot of ‘effective beam size’ against the depth of ablation (figure 5.13)

indicates a linear relationship between the two quantities up to a width value of 80 µm,

thereafter any increment in width did not have much effect on the quantity of material

removed.
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Figure 5-13: Graphical representation of the effect of
ablated line width on the depth of ablation at constant
power of 0.1Watt, 5 kHz, 5 mm/s and one repetition.

5.7 Discussion

The laser ablation of polymeric or other materials is, without doubt, a complex mechanism.

That is why in most cases, it is better that an explanation is made specific to a process under

investigation. It is however understood from the results of the laser system characterisation

carried out in this study (section 5.6) that the factors considered – velocity, power, number

of passes and effective beam size – each had an effect on the ablation of Truemode™

polymer for the settings used. These factors are related to the power or power density

available at the ablation zone; for example, two passes means doubling the power at the

workpiece compared to a single pass though the effectiveness and efficiency of the second

pass might be lower. Similarly, an increase in processing speed (i.e. stage speed) means that

the number of pulses reaching the material to be machined is reduced in the same

proportion, which in turn leads to a decrease in the ablation depth since less energy or

power is expended on the material.
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Steenberge et al. [16] observed that due to the high wavelength of UV Nd:YAG compared

to Excimer lasers, the photothermal process cannot be ignored for ablation (of

ORMOCER) at this wavelength. Winco, et al. also concluded in [4] that due to an apparent

melting effect during the ablation of polyimide at 355 nm, the mechanism has a

photothermal contribution. The regression line (equation 5.1) obtained from the graph of

the relationship between the power and depth of ablation has two terms/parts. The first part,

488.54 ln(p), can be regarded as a photochemical contribution to the ablation mechanism

since it is a function of fluence (or power) with a coefficient not equal to zero. The second

term of this equation is a constant term with a value of 1214.8 which can be viewed as a

photothermal effect of the process; however, since the value of this constant part cannot be

approximated to zero relative to the first part in this equation, it is therefore logical to

conclude that both photochemical and photothermal mechanisms were responsible for the

laser ablation of Truemode™ polymer at 355 nm wavelength using UV Nd:YAG laser.

This is similar in form with the Srinivasan-Smrtic-Babu (SSB)’s mathematical

representation of laser ablation process – with two terms each representing photothermal

and photochemical – which is favoured by the author of this thesis. The fact that the

coefficient of R2 is very close to 1, for this case 0.9982, implies that the equation is a close

representation of the behaviour. It is worthwhile mentioning at this point that an attempt

was made to fit the curve with other ‘models’ such as linear and exponential models but the

R2 values obtained were lower than that of a logarithmic function; for example, the R2 for

linear and exponential fittings were 0.9889 and 0.9641 respectively. Although, these values

also showed a high degree of correlation since they are very close to unity, nevertheless, the

logarithmic function still offer a better degree of confidence.

Having said this, the following should however be noted about equation 5.1 : (i) the ‘p’ in

this equation is the input power and not the fluence/fluence threshold (f/fth) as it is the case

in the two models discussed in chapter two, (ii) since natural logarithm of zero, i.e. ln (0), is

a mathematical error, it follows that the equation is not valid at an input power of zero, (iii)

the fact that the two commonly cited models are valid provided that fluence is greater than

the ablation threshold means that values below the threshold cannot be directly substituted

for the model, and (iv) since ln (p) for 0 < p < 1 is negative; then the depth of ablation (D)

would always be less than the constant part of this equation for the range of power input

considered. By and large, it appears that equation 5.2 conforms more to the SSB’s model

for laser ablation since the p/pt value was used in plotting the graph in figure 5.6 which
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produced the equation; however, unlike with the SSB’s model (and equation 5.1) the

‘photothermal’ or constant term in equation 5.2 carries a negative sign which can be viewed

as an ‘anti-photothermal’.

Since ablation rate or depth is largely dependent on the fluence or power density used,

provided the ablation threshold is reached, this explains the main reason why the graphs

obtained for velocity, power, linewidth and number of passes bore a direct relationship with

the depth of ablation. In other words, increase in one of these factors resulted in a

corresponding increase in the depth of ablation for Truemode™ polymer machined at 355

nm using UV Nd:YAG.

However, a careful assessment of the graph showing the relationship between the change in

Pulse Repetition Rate (PRR) and the depth of ablation showed that there are two distinctive

regions (figure 5.9), both of which require different interpretations. Further to what has

been said earlier, two possible explanations for this behaviour are given below.

i. In the first region, where the slope is negative, incident pulses which were in excess

of the absorption rate of the polymer (i.e. Truemode™) were directly converted to

heat energy, which increased the temperature of the ablated material but not quite

enough to result in photothermal ablation. The continuous increment in the number

of incident pulses eventually resulted in the photothermal threshold being reached

and ablation at this stage was not only photochemical but also photothermal, thus

speeding up the ablation rate [20].

ii. It could also be that frequency has no direct effect on the quantity of ablation at this

frequency range as some authors have reported [20] for Excimer laser ablation of

polymers with high absorption coefficients, namely: PC, PET, PI and PS. It could

also be that specific frequencies perform optimally at particular combinations with

other parameters. In other words, the effect of frequency is determined and

influenced by a combination of other factors. In addition, the fact that the pulse

energy released from this laser varies with frequency also compounded the trend

observed in this study.

5.8 Summary and Conclusion

355 nm diode-pumped third harmonic UV Nd:YAG laser was used to machine structures
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in Truemode™ polymer; the laser is a standard drilling machine - ESI model 5200 UV

μVia Drill – hosted by a PCB manufacturer and an industrial partner to the consortium 

within which this PhD research was conducted. This made it a worthwhile investigation

since it demonstrated the potential of using a single system for the definition of both

electrical and optical channels. The pulse mode, short wavelength and pulse duration (60

ns) are some the key attractions to this laser which the author believes can allow it to

complement and/or compete well with the Excimer laser for this application. The power

and pulse repetition frequency of up to 3 Watt and 20 kHz respectively were possible; the

beam was Gaussian with a fixed size of 25 microns but beam overlapping was possible to

create wider dimensions.

The initial trial was largely focused on the laser-matter interaction vis-a-vis laser beam

absorption and the possibility of using this class of laser for Truemode™ photopolymer

micromachining; this was carried out using the host fabrication settings for processing

PCB materials at high speed ≥ 100 mm/s and powers ≥ 1 Watt. The results showed a very 

poor absorption of the beam. The power used was reduced to 0.1 – 0.5 Watt in the

subsequent trial; similarly, the translation speed was kept below 100 mm/s to improve on

the quantity of the ablated tracks in the initial trial. For this case, the results were of much

better quality than when high power and speeds were used; this proved the suitability of

the laser and served as the basis of operating windows for the system characterisation.

Therefore the effect of power (0.1 Watt to 0.25 Watt), PRF (5 kHz and 20 kHz), velocity

(5 mm/s and 20 mm/s), number of passes (2 – 6) and line width (30 µm to 100 µm) on the

depth of ablation were studied. These chosen parameters were observed to have direct

link with the power or power density at the workpiece. In each case, all factors were kept

constant with the exception of the one under investigation and the setting was used to

ablate 75 µm wide 50 mm long channels. This represents an important investigation since

such study, in relation to Truemode™, has not been reported before. Regression analysis

was used in each case to explain the relationship between the variables studied and the

depth of ablation. The depth achieved were found to be within the range required for

ablating multimode core layer thickness (> 10 µm) through to the lower cladding in order

to form a waveguide; for example, at 10 mm/s, 10 kHz, 6 passes and 0.2 Watt, the ablated

depth was ~430 µm; this would give an average of ~70 µm/pass, which is enough for

fabricating a multimode waveguide. Reducing the velocity to 5 mm/s can result in
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doubling the depth of ablation. The author observed that velocity below 10 mm/s, power

at < 0.15 Watt, PRF at <15 kHz and single pass would provide minimum thermal effect

while still capable of etching through to the lower cladding.

The author observed that the relationship between the change in PRR and the depth of

ablation showed two distinctive regions which require for both photothermal and

photochemical interpretations of the mechanism. Having analysed the various behaviours,

the author concludes that both photochemical and photothermal mechanisms were

responsible for the laser ablation of Truemode™ polymer at 355 nm wavelength using

UV Nd:YAG laser.



Chapter 5: UV Nd:YAG Laser System Characterisation

- 142 -

References

1. Gower, M. C. Industrial applications of laser micromachining. Optics Express 7, 56-67

(2000).

2. Yung, K. C., Zeng, D. W. and Yue, T. M. XPS investigation of Upilex-S polyimide

ablated by 355 nm Nd:YAG laser irradiation. Appl. Surf. Sci. 173, 193-202 (2001).

3. Holden, H. T. The developing technologies of integrated optical waveguides in printed

circuits. Circuit World 29, 42-50+9 (2003).

4. Winco, K.C. Yung, J.S. Liu, H.C. Man. Experimental investigation of 355nm Nd:YAG

laser ablation of RCC in PCB . Circuit World 25, 13 -17 (1999).

5. Li, J. and Ananthasuresh, G. K. A quality study on the Excimer laser micromachining

of electro-thermal-compliant micro devices. Journal of micromechanics and micro

engineering: structures, devices, and systems. 11, 38-47 (2001).

6. Ion, J. C. in Laser processing of engineering materials: principles, procedure and

industrial application 556 (Elsevier Butterworth-Heinemann, Oxford, 2005).

7. Steen, W. M. in Laser material processing (Springer, London, 2003).

8. Bityurin, N. Studies on laser ablation of polymers, Annu. Rep. Prog. Chem., Sect. C:

Phys. Chem., 2005, 101, 216 – 247

9. Van Steenberge, G., Geerinck, P., Van Put, S. and Van Daele, P. Integration of

multimode waveguides and micromirror couplers in printed circuit boards using laser

ablation. Proceedings of the SPIE - The International Society for Optical Engineering

5454, 75-84 (2004).

10. Rumsby, P. T. and Gower, M. C. Excimer laser projector for microelectronics

applications. Proc SPIE Int Soc Opt Eng 1598, 36-45 (1991).

11. Van Steenberge, G. et al. Laser ablation of parallel optical interconnects waveguides.

IEEE Photonics Technology Letters 18, 1106-1108 (2006).

12. Thomas, D.W., Foulkes-Williams, C., Rumsby, P.T., and Gower, M.C. Surface

modification of polymers and ceramics induced Excimer laser radiation, in Laser

Ablation of Electronics Materials, Basic Mechanisms and Applications, 1992.

13. Harvey, E. C., Remnant, J. L., Rumsby, P. T. and Gower, M. C. Microstructuring by

Excimer laser. Proc SPIE Int Soc Opt Eng 2639, 266-277 (1995).

14. Guillong, M., Horn, I., and Günther, D. Capabilities of a homogenized 266nm

Nd:YAG laser ablation system for LA-ICP-MS. J. Anal. At. Spectrom., 2002, 17, 8 -

14,



Chapter 5: UV Nd:YAG Laser System Characterisation

- 143 -

15. Zeng, D. W., Yung, K. C. and Xie, C. S. UV Nd:YAG laser ablation of copper:

chemical states in both crater and halo studied by XPS. Appl. Surf. Sci. 217, 170-180

(2003).

16. Van Steenberge, G. et al. MT-compatible laser-ablated interconnections for optical

printed circuit boards. J. Lightwave Technol. 22, 2083-90 (2004).

17. ESI 5200 Laser µvia Drill data sheet:

http://www.stevenagecircuits.co.uk/downloads/5200.pdf

18. Liu, Y. S., Cole, H. S. and Guida, R. Laser ablation of polymers for high-density

interconnect. Microelectronic Engineering. Vol. 20 20, 15-29 (1993).

19. Chung, C. K., Wu, M. Y., Hsiao, E. J. and Sung, Y. C. Etching behaviour of silicon

using CO2 laser in Proceedings of the 2nd IEEE International Conference on

Nano/Micro Engineered and Molecular Systems, Thailand, 2007.

20. Illy, E. K., Piper, J. A., Brown, D. J. W. and Withford, M. J. Enhanced polymer ablation

rates using high-repetition-rate ultraviolet lasers. IEEE Journal on Selected Topics in

Quantum Electronics 5, 1543-1548 (1999).

http://www.stevenagecircuits.co.uk/downloads/5200.pdf


Chapter 6: Excimer Laser System Characterisation

- 144 -

6 EXCIMER LASER SYSTEM CHARACTERISATION

6.1 Introduction

As with the last two chapters, this chapter also focuses on laser system characterisation;

however, unlike other lasers, no feasibility study preceded the experimentation in the

current case as the Excimer laser beam is believed to be strongly absorbed by most

polymers and thus considered to be a viable technique for qualitative ablation.

6.2 Excimer Laser Ablation

Since its introduction into the market in 1977, with its first commercial available product

from Lamda Physik called EMG 500, the Excimer laser has turned out to be a multi-

purpose, multi-featured laser operating over a wide range of energy with increasing market

shares in industrial and medical applications [1]. Although other lasers such as YAG and

CO2 lasers are also extensively used in HDI technology, when it comes to ‘fine‘ finish

micro- and nano-fabrication, especially of sensitive electronics or biomedical materials, the

Excimer laser ablation is indispensable. This is largely due to its wavelength, pulse

duration, and of course, its pulse energy allowing for what is generally termed as a ‘cold

ablation’ process. The safety concern associated with the use of hazardous gases in the

Excimer laser has been technically and considerably addressed with the emergence of

technology such as HaloSafe making it comparatively cost effective and user-friendly [1].

The Excimer laser also excels the others in its ability to ‘mask-project’ patterns on to a

sample. A minimal HAZ is another merit of Excimer laser over others, i.e. those operating

in the visible and infrared regions of the electromagnetic spectrum; this minimal HAZ is

argued to be due to its short interaction between the laser beam and the material. In

addition, the short pulse duration of the Excimer is also a contributing factor; nevertheless,

today, picosecond and femtosecond lasers are now available, designed to further reduce the

HAZ and these class of lasers are also characterised with higher etch rate and lower ablation

thresholds.

These aforementioned features of the Excimer laser have attracted and favoured its use not

only for polymers [2, 3] but also other materials such as ceramics [4], glasses [5] and silicon

[6] which are hard to machine. Besides, Excimer lasers are now used for surface
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modification of various materials; Pleging, et al [7] has used Excimer at fluences below the

ablation threshold to fabricate single mode optical waveguides in PMMA similar to that

employed using CO2 laser in [8]. Thomas, et al [9] also used an Excimer laser to effect

changes to the chemical structures of materials (polymer and ceramic) with potential

application in enhanced material adhesion and surface wettability among others.

6.3 Experimental Set-up

The Excimer laser used for the experiments presented in this chapter and chapters 7 and 8 is

a 7000 Series Exitech Krypton Fluoride (KrF) laser operating at 248 nm wavelength with

20 ns pulse length schematically shown in figure 6.1. The system operates in both energy

and voltage modes with values ranging from 0 – 250 mJ/pulse and 17 - 24 kV respectively;

the operating energy was obtained with the aid of an energy meter placed at the workpiece.

The output energy can be manipulated by an attenuator controlled by Aerotech Unidex-500

(U500) software. The system has a Charged-Coupled Device (CCD) camera for viewing

samples placed on a XYZθ stage, with an aligner camera for focus setting. To define the 

size and shape of the beam spot at the workpiece the beam is passed through a mask which

is then focused at the sample through a changeable projection lens (currently 10 times

reduction, with 10.0 J/cm2 achievable at the workpiece). This enables various shapes

(square, circular, etc.) of beam spots to be used simply by changing the shape of the mask.

Some of the main components of the system setup are described:
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Figure 6-1: Schematic diagram of 7000 Series Exitech
Krypton Fluoride (KrF) laser system setup showing various
key components of the experimental setup.

1. Attenuator

The attenuator is the first optical component in the beam delivery system controlled using

U500 software commands; it is an essential component because it allows the fluence to be

controlled such that low fluence in the range required for the polymer(s) under investigation

can be obtained from the high energy of the exit beam. Its value varies from 0.01 to 0.95

though this does not translate to a linear increase in output fluence.

2. Lenses

The number of lenses used in the beam delivery depends on the application; here, two

different lenses are utilised in the beam delivery path to achieve different goals:

a. Field Lens: Situated between the attenuator and mask; it is employed to

redirect the beam onto the aperture or mask after having travelled a

relatively long distance along the beam path.

b. Projection Lens: This allows high-resolution images of the mask to be cast
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onto the substrate with options of either 4 or 10 times demagnification thus

permitting high fluences to be accomplished over a relatively small area on

the substrate.

3. Projection Masks

Mask projection is an essential and unique feature of Excimer laser micromachining as it

allows multiple and various patterns to be made on samples without needing to alter the

beam shape. The mask can be made from a number of different alloys and metals such as

thin chrome (on a quartz substrate), brass or stainless steel sheet. It is important that the

mask used cannot be damaged at the working energy/power densities, for example, in a

situation whereby fluences above 100 mJ/cm2 are to be used, a mask made of chrome

cannot be used because its damage threshold is at about this fluence [10].

Although, one can argue that energy is wasted using the mask projection technique because

a high proportion of the beam, depending on the ratio of the mask to the beam size, is

wasted, its advantages (e.g. multiple complex patterning, increase in fluence by

demagnifying factor of the projection lens, etc.) surpasses its demerits. For a simple and

less sensitive process, such as in microvia fabrication, a mask with a desired pattern can be

placed in contact or close to the polymer sample [11]. While other lasers – CO2 and

Nd:YAG – can be useful for mass production due to their high speeds, mask projection in

the Excimer laser makes it easy for the patterning of complex shapes at a relatively high

speed since the pattern can be made on the mask and replicated easily on the sample. In this

current setup, both stationary and dynamic mask patterning is possible with the aid of a

vertical – horizontal translation stage having a travel range of about 250 mm in each

direction [Table 6.1]. This is an added advantage for the replication of a large complex

pattern.

In this study, square masks made of brass were extensively used such as the one shown in

figure 6.2 this is of 5 mm square (approx.). In general, a disadvantage of mask projection,

especially in-house made, is the fact that the edge roughness of the mask could also be

introduced into the machined profile though at a demagnified size due to the projection lens

that is put in place. However, the combined effect of pulse overlap and the workpiece

dragging would greatly improve the edge finish.
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Figure 6-2: An example of in-house manufactured mask ~
5 mm2 etched in brass used for beam projection in Excimer
laser experiments.

4. Controller

The system was controlled using U500 software. This was used to send commands to

control, among other things, laser firing, the attenuator, x-y axis of the masks and XYZθ 

stage. The commands were programmed either in PSO, and/or RS-274 (‘G’ and ‘M’

Codes).

5. Axes

There were seven different axis terminals including attenuator that could be controlled

from the U500 software having different travel ranges and recommended velocities. Table

6.1 is the list of the seven different axes with their associated board and axis

identifier/label. Therefore, with such stages, there are four different approaches that can

be potentially used to ablate samples, based on the permutation of the two scenarios; they

are (i) static-mask moving-stage ablation, (ii) scanning-mask static-stage ablation, (iii)

static-mask moving-stage ablation, and (iv) synchronised (i.e. scanning-mask moving-

stage) ablation.
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Table 6-1: Specifications of various axes used in the
Excimer laser system setup for the fabrication of optical
waveguides.

Board Axis Usage Range

1 X Workpiece Left/Right 0 – 200 mm

1 Y Workpiece Forward/Back 0 – 200 mm

1 Z Mask Horizontal Direction 0 – 250 mm

1 U Mask Vertical Direction 0 – 250 mm

2 X Attenuator 0 – 0.95

2 Y Workpiece Rotation 0 – 360o

2 Z Workpiece Elevator 0 – 10 mm

6.4 System Parameter Test and Calculation

This section describes the calculation and various tests performed for optimising the

ablation process during this study.

6.4.1 Workpiece translation stage

Serial or workpiece dragging machining utilises a static mask projection containing an

aperture – square, rectangular or otherwise – to shape the Excimer beam which was used

to ablate tracks, waveguides and mirrors. In this case, the workpiece is moved in x- or y-

directions while the laser beam was turned on to serially write a channel on the

workpiece. The shape of the aperture will determine the shape of the channel cut in the

material. The velocity of the workpiece stage, both X and Y, is obtained by using

equation 6.1 below.

ܸ݈݁ ܿ �ൌݕݐ݅ ܮܴ�
ܰ�ൗ ����������������������������������������������������������������������(6.1)

Where L is the length of the beam, R is the pulse repetition rate and N is the required

laser pulses per area. This implies that the ‘dragging’ stage velocity is directly

proportional to both PRF and beam length (along the direction of stage motion) and

inversely proportional to the number of pulses per area required.
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6.4.2 Focus position

The position of the projection lens determines the exact demagnification and the focus

position of the machining system; it also affects the fluence and thus the ablation rate. To

find the correct focus position of the imaging lens, a U500 program was run to machine a

series of marks on a sample at different workpiece elevator (z-axis) positions. Figure 6.3

shows a series of holes machined in Truemode™ polymer using a ~ 5 x 5 mm2 mask

with a 10x demagnification lens by varying the relative position of the sample (at the

workpiece placed on the stage) and the projection lens. The plot of the resulting

dimensions at various positions is also shown in figure 6.4.

Analysis of the experimental results showed that, for the Truemode™ polymer used in this

test, ablation occurred over a range of focus position; even though the focus position

determines the demagnification of the beam hitting the sample at the workpiece, there was

no significant change in shape dimension (with shape preserved in most cases) within 200

µm (above or below) when working in the proximity of the theoretical (i.e. expected) focus

position. This is particularly useful for many reasons : (i) the spin coating is relatively non-

uniform coupled with the fact that the sample could not be made perfectly flat on the stage,

therefore a slight change in the sample height relative to the projection lens during ablation

of a channel means the beam dimension will remain constant, and (ii) the combined

thickness of both the lower cladding and the core layers is within 200 microns, so ablating

from the top, does not result in any dimensional change as ablation progresses down into

the material. If otherwise is the case, it might cause serious shape deformation in terms of

tapering either positive (v-shape like profile) or negative (Λ-shape like profile) tapers. 

For a 5.300 mm x 5.377 mm square mask (as per the measurement shown in figure 6.2)

using a 10 x demagnification lens, the structure at the workpiece should be 0.530 mm x

0.538 mm (to three decimal places) which is similar to that shown in figure 6.3 b.

Nevertheless, structures at ±0.100 mm2 (e.g. figure 6.3c) of the aforementioned estimated

dimension were also found to be of good quality. It should be noted however that, ablated

profiles at other focus positions, far from the ‘assumed’ focus were either of poor quality

and/or deformed structures.
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Figure 6-3: Effect of focus position on feature beam
dimension at workpiece for ~5 x 5 mm2 mask aperture (a)
structures machined at various position of Z-axis of the
stage, (b) structure showing about x10 demagnified replica
of the mask used, and (c) structure of good quality not
exactly 10 x demagnified machined at other position of Z-
axis.

Figure 6-4: A plot of z-axis position against the dimension
(area) of ablated structures in Truemode™ polymer using
Excimer laser.
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6.4.3 Mask feature position

Homogenisation is done by breaking the beam into multiple components, typically using a

number of lenses, which is then reconstructed at a predefined position generally at the

aperture or mask. By doing this, the spatial inhomogeneities in the laser beam intensity are

reduced; this technique helps the quality of the ablation such as in reducing the tapering as

previously mentioned in chapter 2. Since the laser system used in this study was not

equipped with either beam shaper or homogenizer, the beam intensity distribution was not

to be uniform guaranteed and this could have an effect on the depth profile. Furthermore,

given that the position of the mask used in relation to the beam profile could not be

measured, inappropriate positioning of the mask stage in relation to the output beam from

the field lens could result in sampling, for example, the worst region of inhomogeneity of

the beam intensity distribution.

To minimise the effect this could cause, a test of optimum position was carried out. The

assessment was made by first locating the mask central position manually; the mask

translation stage was then moved at a step of 0.5 mm in the U-direction (vertical) and 1 mm

in the Z-direction (horizontal) at a time. Figure 6.5 shows machined profiles obtained from

various channels ablated by simply moving the mask position in either direction. The

images were taken by using the Talysurf CLI measuring system to scan the ablated

channels perpendicular to the length of the structures. The majority of the profiles (figure

6.5) were either slanting left to right, however, there was a position where the obtained

profile was symmetric about the centre of the shape (figure 6.5f). Although the profile

obtained at this ‘optimum’ mask position was tapered, this can however be reduced by

proper selection of the machining parameters vis-à-vis the fluence and number of pulses as

demonstrated in figure 6.6 b.
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(a)

(b)

(c)
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Figure 6-5: Optimising the position of mask in order to
obtain an optimum position of symmetry done by moving
the mask stage by 0.5 mm in U- and Z-directions (a)
position of (u, z) = (182, 142), (b) position of (u, z) =
(183,142 ), (c) position of (u, z) = (184,142 ) (d) Position of
(u, z) = (185,142), (e) Position of (u, z) = (186,142 ), (f)
position of (u, z) = (184, 141), (g) position of (u, z) =
(184,141.5 ), (h) position of (u, z) = (184,142), and (i)
position of (u, z) = (184,142.5).

Figure 6-6: Optimising the effect of tapering by changing
the fluence at 10 Hz (a) Fluence = 30mJ/cm2 and 10 shots
per point, and (b) Fluence = 200 mJ/cm2 and 1 shot per
point.

(b

(i)
(a)
)



Chapter 6: Excimer Laser System Characterisation

- 156 -

6.5 Laser System Characterisation

Although there is information in the literature detailing the effect of certain experimental

parameters such as fluence, pulse repetition rate, pulse duration and wavelength, in relation

to the etch rate of different materials, most importantly polymers such as PMMA, PC, PI,

PET and PS among others, nonetheless, new materials require characterisation. For this

reason, experiments were conducted to determine the effect of various machining

parameters – fluence, number of shots per point, speed and number of passes - on

Truemode™ polymer.

In this study, a series of tracks, 30 or 40 mm long, were machined at different values –

either in an increasing or decreasing order of magnitude – to examine the effect of the

parameter under investigation. Figure 6.7 shows a schematic diagram of an experimental

design typically used showing the variation of the number of pulses used between 1 and 10

shots per point. This shows a ten-channel design grouped into two with a space of 3 mm

between the adjacent channels and 10 mm between the groups. This design served three

main purposes; first, it facilitated the analysis process especially when potting was required

since a group of five ablated tracks spaced at 3 mm could be easily mounted without much

difficulty, secondly the spacing used made it more straightforward such that data required

for a particular effect study could be accommodated on a typical sample of 60 x 60 mm2

commonly used in this research and finally, since the process was meant for a waveguide

fabrication, ablating tracks instead of holes was a suitable choice.

Figure 6-7: A schematic diagram showing an experimental
design used for Excimer laser system characterisation.



Chapter 6: Excimer Laser System Characterisation

- 157 -

6.5.1 Fluence

Fluence is the energy density obtainable from a laser or a laser system usually measured at

the workpiece; it is expressed in either energy per area (i.e. J/cm2) or power per area (i.e.

Watt/cm2) for pulsed and CW lasers respectively. It is an important parameter that has been

studied and reported widely in relation to the laser-matter interaction and most importantly

when determining the etch rate for materials. Furthermore, it is the fluence threshold that

matters the most for any ablation process; unfortunately, the value of this fluence threshold

(or ablation threshold as it is commonly referred to) varies from material to material and

from laser to laser which also necessitated this investigation.

To study the fluence, the attenuator was utilised to adjust the fluence between ~ 0.025 J/cm2

and 0.25 J/cm2 while keeping the input energy constant. The PRF, beam length and number

of pulses were also fixed at 10 Hz, 100 µm and 10 pulses per area respectively with stage

moving at 6 mm/min (as per equation 6.1). Figure 6.8 is a plot of the fluence against the

ablated depth. In this graph, the total ablation depths were divided by the number of pulses

received by a particular area, i.e. 10, to obtain the ablation depth per pulse or etch rate in

microns/pulse. The graph shows a relatively linear relationship between the fluence and

etch rate for the chosen fluences in the range of ~ 0.025 J/cm2 – 0.25 J/cm2. Up to about

0.15 J/cm2, the direct proportionality between the etch rate and the fluence was quite high

with little deviation from the regression line shown in dotted green. The etch rates at

fluences of 30 mJ/cm2; 86 mJ/cm2, 169 mJ/cm2 and 280 mJ/cm2 were 0.252 µm/pulse,

0.797 µm/pulse, 1.79 µm/pulse and 2.5 µm/pulse respectively.

The ablation threshold could be obtained by extrapolating the best fit line which was around

0.02 J/cm2; this agrees with the range cited for polymers [12]. To mathematically represent

the relationship between the fluence and etch rate, the regression line was utilised; this

produced equation 6.2 with R2 of 0.9958 showing a high degree of correlation.

ൌݕ ͳ͵ ǤͻͶͷݔെ �ͳͶǤͻͻʹ ଶݔ −  0.2186                                                      (6.2)

where y = etch rate in microns, and x = fluence in J/cm2
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Figure 6-8: Relationship between fluence and the etch rate
of ablation of Truemode™ polymer at 100 µm beam length
and 10 Hz.

6.5.2 Number of pulses or shots

Similar to fluence, the effect of the number of pulses or shots impinging on a particular

point needs to also be considered. This is because, knowing the etch rate, the number of

pulses released can be controlled to meet the depth of ablation required. In fact, this can be

done in a sequence such that when the desired depth is not reached more pulses can be sent

to etch more from the material. Figure 6.9 shows the plan view of tracks machined in

Truemode™ at a constant fluence of 86 mJ/cm2, beam length of 100 µm and frequency of

20 Hz; the number of pulses per area was however varied as shown (figure 6.10). Since the

velocity of the translation stage is inversely proportional to the number of pulses delivered

to a point, keeping other factors constant, an increase in the number of pulses from 1- 10

shots per point corresponds to a decrease in the stage velocity from 120 mm/min to 12

mm/min. This implies that this variation in pulse number does not only have an effect on

the depth of ablation but also on the pulse (or beam) overlap during the ablation process as

evident in the structures shown in figure 6.9 where the beam overlap improved as the shots

increased.

In figure 6.10, the relationship between the total depth of ablation and the number of shots

is plotted which indicates an increase in the ablation for any corresponding rise in the pulses
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as expected. Although the graph is not perfectly linear, nonetheless, an average etch rate

can still be obtained by taking the slope of the best fit line. The slope is thus calculated to be

0.801 µm/pulse using the two points shown on the graph. This value agrees with the etch

rate obtained in the earlier study on the effect of fluence which gives an etch rate of 0.797

µm/pulse at the same fluence of 86 mJ/cm2, but at half the PRF of 10 Hz.

Figure 6-9: Optical microscope images showing structures
machined in Truemode™ optical polymer at a constant
fluence of 86 mJ/cm2, a beam length of 100 µm and a pulse
frequency of 20 Hz but with a varying number of applied
pulses from 1 to 9 shots per point.

1 shot 2 shots 3 shots

4 shots
5 shots

6 shots

7 shots 8 shots
9 shots

300 µm
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Figure 6-10: Relationship between the number of
pulses/shots per point and the etch rate of ablation of
Truemode™ polymer at 86 mJ/cm2 and 20 Hz.

6.5.3 No of passes

The effect of the number of passes (of the laser across the surface) was also investigated at

a constant fluence of 86 mJ/cm2, beam length of 100 µm and a single shot per point. Figure

6.11 shows the surface view of the structures machined which also indicated an increase

in the effective energy reaching the sample at the ablated zone indicated by the increase in

the darkening of the profile; this was also observed with the naked eye, i.e. without the

aid of a microscope. It was observed that, as the number of passes increased, there was an

indication of a HAZ on the sides of the ablated channels. Equally important to note is the

fact that the stage translation velocity used was 120 mm/min to obtain one shot per

location and, this was responsible for the poor beam overlap. The graph of the relation

between the number of passes and the total depth of ablation is plotted in figure 6.12; this

indicates, as expected, an increase in the ablated depth for a corresponding increase in the

number of scans.
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Figure 6-11: Optical microscope images of structures
machined in Truemode™ polymer at a constant fluence of
86 mJ/cm2, a beam length of 100 µm, a single shot per point
but with varying number of passes.

Figure 6-12: Relationship between the number of passes
and the etch rate of ablation of Truemode™ polymer at
constant fluence of 86 mJ/cm2, 20 Hz ‘reprate’,100 microns
beam length, 120 mm/min and a single shot per location but
a varying no of passes.
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6.6 Discussion

Excimer laser ablation of polymeric materials continues to gain momentum due to the

quality of the process and the expanding applications of polymers both for engineering

and medicine. This is a cornerstone for the rapid increase in the study of its interaction

with matter; while some investigations focus on material modification (e.g. below

ablation thresholds) others centre on the system optimisation through parameter

optimisation. As for the latter, fluence and number of pulses used during laser ablation are

key factors of investigation. This is because, these two parameters are directly related to

the etch rate during micromachining. Nevertheless, factors such as PRF have also been

studied; however, reports have shown different effects of this quantity on the depth of

ablation. For example, Pfleging, et al [7] observed that while PI showed no apparent

ablation depth variation as a result of change in the PRF, an increase in the etch rate was

noticed for the ablation of PC at elevated pulse repetition rates of 10 Hz using 248 nm

KrF. They argued that for a photochemically-dominated process, not only is a short

pulsewidth required but a low pulse repetition rate is also essential. The authors of [13]

observed an increase in the depth of ablation of PC only for the range of reprate between

1 Hz – 5 Hz, further increase in pulse frequency caused no change in the etch rate of PC.

As tracks were machined in an ABS sample, a gradual increase in the ablation depth was

noticed for frequencies between 1 Hz – 20 Hz but any increase beyond this upper limit

caused a corresponding decrease in the ablation rate for the same polymer; this was said

to be due to a cumulative heat effect. The thermal conductivity of PC is 0.19 – 0.22

W/mK while that of ABS is 0.17 W/mK [13]; the quoted thermal conductivity of

Truemode™ is within the same range having a value of 0.21 W/mK [14]; this suggests

that Truemode™ polymer, like PC, might show no dependence on the frequency at values

above 5 Hz. The author supports the observation that PRF at above 5 Hz might not have

an effect on highly absorbing polymers because, for independent the two experiments

carried out at varying fluence and number of pulses (figure 6.8 and figure 6.10

respectively), the etch rate at 86 mJ/cm2 was ~0.8 µm/pulse. While the former (figure 6.8)

was conducted at PRF of 10 Hz, the latter (figure 6.10) was carried out at higher PRF of

20 Hz suggesting that, between this range of values, i.e. 10 – 20 Hz, etch rate is

independent on the operating PRF.

It also mentioned in [3] that for polymers with high absorption coefficient like PC, PET,
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PI and PS, reprate in the range of 20 – 150 Hz had no significant effect on the ablation,

while a polymer such as PMMA, with low absorption coefficient showed a change in the

ablation at the operating frequency due to thermal effects. Having said this, the fact that

the frequency in the case of the system used in this study related to the speed implies that

its effect can only be explained in the context of other associated factors; therefore,

system optimisation at low speed and frequency could be the best practice for a

photochemically-dominated mechanism.

The effects of fluence and number of pulses have always been subjects of study; an

increase in either fluence or number of pulses with corresponding increase in the depth of

ablation was usually observed. While some results showed linear relation others have

shown exponential correlation between the quantities. The plot of number of pulses

against fluence (figure 6.10) obtained here has a linear profile similar to that shown for

ABS in [13] at 0.54 J/cm2 and 40 Hz. Equally, a linear relation between fluence and

ablation depth was observed for PC at fluences between 74 mJ/cm2 – 1000 mJ/cm2 which

was said to obey Beer’s proposition [7]. The author also noticed a linear relationship up to

a fluence of about 0.15 J/cm2 for the ablation of Truemode™ polymer (figure 6.8). The

equation of the regression line drawn for the graph obtained for the range of fluence

considered is a second degree polynomial expression which is neither similar to the

Beer’s law nor to Srinivasan-Smrtic-Babu (SSB) model; however, this gives the highest

correlation (R2 value of 0.9958) between the two the quantities. By and large, the

relationship between these two parameters, i.e. fluence and etch rate, is complex and

rather specific to a chosen polymer.

6.7 Summary and Conclusion

Laser ablation of Truemode™ using 248 nm KrF Excimer laser was presented; the Excimer

laser used is a 7000 Series Exitech with 20 ns pulse length; energy up to 250 mJ/pulse are

possible but this could further be reduced using an attenuator placed along the beam

delivery path. The system was integrated with two stages each for moving the mask and

XYZθ workpiece stage; a fluence value of up to 10.0 J/cm2 was achievable at the workpiece

using a 10x demagnification.

The investigation carried out here was based on the effect of various salient system

parameters – fluence, number of pulses and number of passes – on the etch rate. For the
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system configuration, the velocity of translation stage was obtained using the relationship,

V = LR/N, where L, R and N are the beam length, PRF and number of pulses respectively;

this is why its effect was not considered in this study since it is directly related to the other

parameters investigated.

For fluence effect, fluence between ~ 0.025 J/cm2 and 0.25 J/cm2 was used while keeping

PRF, beam length and number of pulses fixed at 10 Hz, 100 microns and 10 pulses per area

respectively with workpiece stage moving at 6 mm/min. The etch rate was found to vary

with fluence; etch rates of 0.252 µm/pulse (minimum) and 2.5 µm/pulse (maximum) at

fluences of 30 mJ/cm2 and 280 mJ/cm2 respectively were achieved for this setting. The

ablation threshold for Truemode™ polymer was estimated to be ~ 20 mJ/cm2, this agrees

with the thresholds reported for polymers. Although beam homogeniser was not employed,

the tapering effect – an inherent problem of the process – of the ablated profile was

minimized by a careful selection of mask position and experimental parameters with a near-

vertical profile obtained at an operating fluence of 200 mJ/cm2 when a single pulse was

used; this is one of the key achievements of this study.

The effect of fluence on the etch rate was found to be suitably represented using a quadratic

expression rather than the logarithmic relationship used in Beer’s Law, though this does not

suggest that the process is not photochemically-dominated. Although, the etch rate

increased as the operating fluence was increased, it is usually believed that a moderate

fluence should be used for laser ablation of polymers to ensure the dominance of

photochemical mechanism and for an optimum quality; the author thus considered the use

of fluence at ~ 100 mJ/cm2 as a good practice for laser ablation of Truemode™ polymer

especially when high number of pulses, above 30 shots, was employed.

The relationship between the number of pulses and etch rate at 86 mJ/cm2 and 20 Hz is

relatively linear with etch rate of 0.801 µm/pulse obtained; this agrees with the value

obtained when fluence was varied – an indication of the reliability and consistency of the

results. Literature report has shown different behaviours of PRF in relation to ablation but

this could not be established in this study as the PRF on this system is a function of other

factors such as the speed of the translation. Conclusively, a moderately low fluence (< 120

mJ/cm2) and speed (< 6 mm/min) with an appropriate number of pulses and passes were

found to be a good practice during the laser ablation of Truemode™ polymer.
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7 FABRICATION OF WAVEGUIDES

7.1 Introduction

The last three chapters have focused on the laser investigations carried out to understand the

possibility of laser micromachining using three key lasers used in the PCB manufacturing

industry, i.e. CO2, UV Nd:YAG and Excimer lasers, and to further explore the effects of

various system parameters on the ablation depths. However, in this chapter, the result of the

polymer waveguide fabrication using the aforementioned lasers are presented and a

compare-contrast analysis given. The chapter also provides information on the wall

roughness assessment of the waveguides carried out in an attempt to improve the quality of

the resulting structures in terms of the achievable losses.

7.2 Waveguide fabrication and measurement

Laser ablation of polymer waveguides were carried out separately on the three laser systems

described in the previous chapters. For each of the lasers, a series of waveguides were made

by varying key parameters, i.e. fluence, power, PRF and speed. The method of fabrication

followed the process route described in section 3.4 with laser machining of the optical

polymer layers of clad and core on an FR4 substrate, which was thereafter covered with

another layer of cladding material.

Single-layer optical waveguides were considered in this research; thus the optical layer part

consisted of a lower clad layer, a core layer and the upper cladding layer. The upper

cladding layer was, as mentioned above, only deposited after the fabrication of the

waveguide. For a single waveguide, two grooves were made with the spacing between the

two equal to the width of the indented waveguide. For two or more adjacent waveguides,

the number of grooves required was equal to (n + 1), where n is the number of adjacent

waveguides. Once the fabrication exercise was accomplished, the samples were then

analysed using a Flash™200 optical device mainly to detect the presence of a ‘continuous’

waveguide; this was achieved by passing white light through one end of the guide for

possible detection at the other end. Thereafter, the samples were ready for loss

measurement which was carried out at UCL.

For the loss measurement of the waveguides carried out at UCL, a 850 nm multimode
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(MM) VCSEL was used as input or light source which was coupled to a 10 m 50/125 step

index multimode fibre for light launching. The power measured at the fibre output was

usually set at 0 ± 0.1 dBm. A 70 µm circular pin hole PD was used to monitor the output

power emerging from the waveguide channel. Both the PD and the MM VCSEL were

mounted on a 3-axis motorized translation stage. The position of the PD was usually fixed

at the maximum output considered to be a zero point and the VCSEL was scanned

horizontally to 280 microns on both sides (i.e. from -280 to 280 µm with a scan step size

of 0.5 microns). Alternatively, the position of the VCSEL was fixed at the maximum

output point while the PD was scanned horizontally. This method gives the total loss

(insertion loss), i.e. Total loss = Propagation loss*Waveguide length + Coupling loss.

Often for loss measurement, a “cut-back” method is employed which entails a cut-measure

– cut-measure exercise to be carried out on a waveguide sample. This cut-back approach is

useful for two main reasons, first, by recording the loss for several different waveguide

lengths, the average coupling loss can be estimated and the propagation loss determined.

Secondly, if there are defects along the waveguide path which could potentially cause high

loss, the cutting exercise reveals these anomalies by a sudden improvement in loss when the

defective section is removed. Unfortunately, the loss measurement results provided for the

samples here are the total waveguide loss; therefore propagation losses are calculated based

on the coupling loss obtained from other measurements carried out on the same system. The

coupling loss obtained by UCL from other waveguide measurements carried out during the

OPCB project was ~4.5 dB; this is used throughout this chapter.

7.3 CO2 Laser Ablation of Optical Polymer Waveguide

CO2 laser has been known for the drilling of vias, cutting and welding among other

applications; the literature survey shows, at the time of writing, no or little attention in

fabricating optical waveguides with this class of laser. Following the feasibility study and

subsequent laser machining as detailed in chapter four, it is evident that such a class of laser

can now be used to machine Truemode™ polymer and may therefore be capable of

fabricating waveguides.

A series of waveguides were made mainly to look at the effect of machining power and

speed on optical propagation loss. These were achieved by considering various speeds in

the range from 80 to 120 mm/s and powers between 3 and 5 Watt; these correspond to SPD
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values between 30 mJ/mm and 50 mJ/mm. For these range of SPD values, as detailed in

chapter 4, the expected depth of ablation was approximately between 30 µm and 60 µm

which guaranteed the waveguide fabrication at these settings to machine the core layer

(and, in other cases, into the lower cladding layer) of the samples used. However, the

maximum achievable width of the ablated channels at these parameters would be ~ 250 µm,

therefore the resulting waveguides would, at all times, be greater than the estimated width

that was input into the design, i.e. the spacing in microns between two consecutive ablated

channels.

Figure 7.1 shows an optical microscope image of three adjacent waveguides machined in

acrylate Truemode™ polymer processed at input power of 4 Watt and speed of 100 mm/s.

For this, a 300 µm circular beam with a Gaussian profile was utilised. As shown in chapter

4, it is evident from this picture that the shape of the resulting waveguides was trapezoidal

in nature due to the curved profile of the machined groove. This shape might be an issue for

signal propagation thus further study is required in this regard. In figure 7.2, optical

microscope images of samples with different numbers of waveguides with varying ‘OD’

are shown machined in Truemode™ polymer at power and speed of 4 Watt and 100 mm/s

respectively. There was no apparent damage observed, possibly due to thermal

accumulation resulting from the individual channels that made up the number of guides

shown in figure 7.2 even though the mechanism was photothermal in nature. As a result,

and for the purpose of quantifying the uncertainties in the waveguide measurement, the

insertion losses reported for this laser class were those obtained by measuring losses in five

identical adjacent waveguides.
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Figure 7-1: An optical microscope image of three adjacent
waveguides fabricated at input power of 4.0 Watt and speed
of 100 mm/s using the CO2 laser in Truemode™ acrylate
photopolymer.
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Optical microscope waveguide images showing
ree of OD machined at an input power of 4.0

speed of 100 mm/s using the CO2 laser in
acrylate photopolymer.

100 µm
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For the purpose of loss measurement, the effect of two factors, namely power and

translation speed, were investigated. In the first instance, the power was fixed at 3.5 Watt

with speed varying between 70 mm/s and 90 mm/s; while on the other hand, the speed was

kept constant at 100 mm/s whilst the power changed between 3 Watt and 5 Watt. In each

case the length of the fabricated waveguides was 50 mm with five adjacent waveguides

utilised and the mean values of their losses taken. Figure 7.3 is a plot of insertion loss

against the variable parameters. With varying power (figure 7.3a) the insertion loss showed

a minimum value at 4 Watt; on the other hand, with changing speed (figure 7.3b), the

insertion loss showed only a small variation with a maximum at 80 mm/s. In both cases

(figures 7.3a and 7.3b), the variation in insertion losses can be attributed to either changes

in power or speed which also corresponds to the changes in the SPD values. However, since

the SPD value also determines the ablated track width as presented in chapter 4, it thus

follows that this can also be a contributing factor to the loss variation but further research is

required in this area.

From these results and the fact that there is no linearity in relation between these quantities,

it appears that the optimum operating parameters would have to be deduced by either

choosing the setting which gives the minimum propagation loss and improve on this or by

extending the range of parameter combinations. In this case, the least insertion loss of 10.7

dB was achieved at 100 mm/s and 4 Watt; the estimated propagation loss was 1.3 dB/cm

for an assumed coupling loss of 4.5 dB.
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stability test made on the two lasers. By and large, the two models operated at the same

wavelength, their fundamental difference lies in the fact that the Flex 5330 model has an

additional feature such as a beam shaper and beam expander. While the beam shaper made

it possible to obtain both Gaussian and top-hat profiles at the workpiece; the beam expander

of the Flex 5330 was useful where tracks of different widths were to be made without the

need for beam overlapping as was the case with the fixed beam size of the 5200 model

laser.

Table 7-1: Table showing features of two different models
of UV Nd:YAG used for laser machining and optical
waveguide fabrication on Truemode™ polymer.

Parameter / Model ESI Model 5200 ESI Flex 5330

Wavelength (nm) 355 355

Beam profile Gaussian Gaussian and top-hat

Frequency (kHz) 20 (max.) 70 (max.)

Spot size (µm) 25 (fixed) 53 – 123 (changeable)

Power (Watt) Up to 2.5 (approx.) Up to 3.3 (approx.)

Pulse width (ns) 30 60

Stability 2.33 % 3.29 % (top-hat)
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Figure 7-4: Power versus Time curve for laser drill
systems: (a) 5200 model Gaussian profile, and (b) 5330 flex
model, top-hat profile (courtesy of Stevenage Circuit
Limited).

Figure 7.5a shows the image of a single multimode waveguide of 45 µm x 45 µm and 60

mm long; this was machined using the ESI 5200 model and the structure was made by

ablating ~200 µm wide grooves in Truemode™ polymer with a Gaussian beam profile.

However, in figure 7.5b, the Flex 5330 model was employed to fabricate a ~ 70 µm x 80

µm, 30 mm long multimode waveguide using the top-hat beam profile by machining 50

µm wide grooves. In both cases, the waveguides were detected using Flash™200 to

establish that there was no significant channel deformation with the potential to cause

discontinuity along the channels. Qualitatively, there was no apparent improvement

offered by the top-hat over the Gaussian beam profile, but this does not, in any way,

conclude that the propagation loss would be the same for both.

Laser drill system 5330 Flex.
Flat-top wave profile.

Repetition rate = 10 kHz
Time = 10 min
Power average = 0.101 W
Power min = 0.099 W
Power max = 0.102 W
Stability = 3.29%

Laser drill system 5200.
Gaussian wave profile.

Repetition rate = 10 kHz
Time = 10 min
Power average = 0.098 W
Power min = 0.097 W
Power max = 0.099 W
Stability = 2.33%
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Figure 7-5: (a) Waveguide of 45 µm x 45 µm made on
Truemode™ optical polymer using the 5200 model UV
Nd:YAG laser system at 5 mm/s, 5 kHz and 0.1 Watt, and
(b) Optical microscope image of a cross-section through a
Truemode™ polymer waveguide of ~70 µm x 80 µm
ablated using the Flex 5330 model laser system with top hat
beam at 2 mm/s, 10 kHz and 0.1 Watt.

FR4 Layer

FR4 Layer

(b)

(a)
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Having demonstrated the viability of polymer waveguide fabrication on both systems

especially on Flex5330 on which a detailed characterisation was not performed; subsequent

experiments were centred on studying the effects of the laser system variables on the optical

loss achievable. That is to say, to fabricate waveguides with one variable changing while

other factors were fixed in order to understand how this variable contributed to the

propagation loss. It would have been desirable, with the results of such a study, to quantify

the effect of the beam intensity profile, Gaussian from 5200 and ‘top-hat’ from Flex 5330,

in relation to loss. Unfortunately, such a design could not be accomplished with the Flex

5330 owing to some challenges faced during the exercise as follows.

1. Figure 7.6 highlights some anomalies (a form of discontinuity in the tracks)

encountered while ablating samples on the ‘top-hat’ profile of the Flex 5330 model

which appeared in different degrees and with different shape. This could to be due

to the absorption and/or beam stability as observed for 5200 model during the initial

laser micromachining as described in chapter 5. However, unlike with the 5200

model, the anomaly was in the core layer (or between core-clad layers rather than at

the clad-FR4 interface). The cause of this unusual phenomenon could not be

identified but it was observed that system maintenance/service was duly required

for this system. Following the maintenance, it appeared that the problem was only

partially solved as the phenomenon still occurred albeit in a random manner.

2. In contrast to the stable beam profile shown earlier in this chapter for the ‘top-hat’

profile, a beam profile stability measurement was carried out for the Gaussian beam

profile of the Flex 5330 as shown in figure 7.7. The result indicated poor beam

stability (25.58%) over the duration of the 10 minutes examined; this is about an

order of magnitude higher than that obtained for the ‘top-hat’ profile. Thus,

comparison in this situation, between the two profiles was not possible as this would

reveal not only the beam profile contribution but also the beam stability.

For the above mentioned factors, it was thus concluded that the problem seemed to be a

random system error and any subsequent fabrication could not be carried out on both

models for profile comparison but were carried out only on the 5200 model. Hence, loss

measurement reported here for UV Nd:YAG was those obtained from samples fabricated

using the 5200 model only.
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Figure 7-6: Figures showing some of the
challenges with waveguide fabrication using UV
laser possibly due to the absorption of the beam.

Figure 7-7: Power versus Time curve for th
beam profile of 5330 Flex laser drill system (c
Stevenage Circuit Limited).
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represent the waveguides; a single waveguide (i.e. with OD of one) was used in all cases.

The experimental/operating values were chosen following the laser system characterisation

result presented in chapter 5; for example, the PRF was kept within the range 5 kHz – 15

kHz, where its relationship with the depth of ablation was linearly proportional which also

corresponds to the pulse energy variation at a fixed operating power as detailed in section

5.6.2 . The input power and translation speed were maintained at minimum possible values,

i.e. below 0.15 Watt and 5 mm/s respectively, in line with the general recommendation for

qualitative laser ablation of polymer materials. The minimum input power helped in

reducing the thermal damage that could result from the photothermal contribution to the

process while the low scanning ensured optimum pulse overlap and smooth edged finish.

With power change, the PRF, translation stage speed and number of passes were kept fixed

at 5 kHz, 5 mm/s and 1 scan; with varying frequency, input power was maintained at 0.12

Watt and the number of passes and the speed of the translation were both fixed at 5 mm/s

and 1 scan. In all cases, the length of the fabricated waveguides was 40 mm. Figure 7.8a is

the plot of PRF against insertion loss and figure7.8b is the plot of power against the

insertion loss.

In the first set of the results of this study (figure 7.8a), for an increase in PRF from 8 kHz

to 12 kHz there appears to be a slight decrease in the insertion loss of the waveguide. There

is little explanation to be offered as to why it is the case, however, a possible interpretation

of the effect is that, perhaps, at high frequency, the stability and intensity distribution of the

laser beam was improved. As a result of this improvement in the beam quality, the ablated

profile became better; however this account cannot be substantiated at this stage. In

addition, since the energy per pulse at constant average laser power decreases as the PRF

increases, it thus follows that the decrease in the insertion loss in this case corresponds to

lowering the pulse energy used during the ablation process; this means that, for the range of

parameters considered, the minimum insertion loss was achieved at 0.1 Watt, corresponding

to 0.01 mJ/pulse obtained by dividing the input power with operating PRF,

i.e. 0.12 Watt 12 kHz⁄ .

For the change in power shown in figure 7.8b, an increase in laser input power caused a

corresponding increase in the loss for the range of values considered in this study. This

trend of relation between the power and loss could be due to the thermal damage that might



Chapter 7: Fabrication of Waveguides

- 178 -

have been caused by the excessive power. In addition, it could be argued that the excess

power input has caused some changes in the material characteristic such as RI which might

affect the containment of light in the core by TIR thus contributing to the optical loss along

the waveguide channel.

In this study, the minimum insertion loss was 10.2 dB obtained independently at (i) 5mm/s,

5 kHz and 0.11 Watt, and (ii) 5 mm/s, 12 kHz and 0.12 Watt. Assuming a coupling loss of

4.5 dB, the propagation loss at this minimum insertion loss is 1.4 dB/cm. In figure 7.8c, a

plot of energy per pulse against the insertion losses is presented; the pulse energies used in

this case were those calculated from figures 7.8a and 7.8b assuming the fact that

energy/pulse (mJ) is equal to input power (Watt) divided by the PRF (kHz) as previously

asserted. However, a close observation of the relationship between the two quantities shown

in figure 7.8c does not reveal a defined correlation between the calculated pulse energies

and the resulting insertion losses. There is a possibility that the pulse energy for this system

cannot be obtained, in some cases, by dividing the input power with the operating PRF.

More also, it is possible that the achievable losses are subject to the experimental settings.
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Figure 7-8: Optical loss measurement carried out on
samples from UV Nd:YAG showing relationship between
(a) input power and insertion loss, (b) frequency and
insertion loss, and (c) calculated pulse energy and insertion
loss.
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7.5 KrF Excimer Laser

The capability of Excimer coupled with its photochemical interaction with polymer

material in particular, as already explained, allows for different structures to be made.

Figure 7.9 shows a cross

Truemode™ polymer machined at

pass.

Figure
showing cross
waveguide in

Having successfully produced a waveguide on

experiments were conducted to investigate among others the effects of

propagation loss. For this, the

both the number of pulses and

per point and 22 Hz and 30 Hz respectively

aforementioned range since they are all related by an equation as described in chapter 6

and also to ensure that the etching was carried out beyond the core layer based on the fact

the total ablation depth is a function of

section 6.5.2. A fluence of ~ 100

fluence was the subject of investigation; it is equally important to mention that an

three (for the purpose of loss measurement exercise) was

where this factor was investiga

adjacent waveguides. In each case, the laser beam was passed over the sample once using

a 100 µm beam length.

Figure 7.10 shows images of waveguides, at various OD

figure 7.11 shows optical microscope images
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KrF Excimer Laser Ablation of Optical Polymer Waveguide

mer coupled with its photochemical interaction with polymer

material in particular, as already explained, allows for different structures to be made.

cross-section of a 50 µm x 35 µm multimode waveguide in

machined at 100 mJ/cm2, 35 shots per point, 25 Hz and a single

Figure 7-9: Excimer laser ablation of optical waveguide
showing cross-section of a 50 µm x 35 µm multimode
waveguide in Truemode™.

Having successfully produced a waveguide on Truemode™ optical

experiments were conducted to investigate among others the effects of

For this, the feedrate used was between 3.00 mm/min and 4.00 mm/min

both the number of pulses and PRF were maintained at the range between 40 and 50 shots

and 22 Hz and 30 Hz respectively in order to keep the

aforementioned range since they are all related by an equation as described in chapter 6

and also to ensure that the etching was carried out beyond the core layer based on the fact

the total ablation depth is a function of the number of shots per area as presented in

A fluence of ~ 100 mJ/cm2 was used in all cases except where the effect

the subject of investigation; it is equally important to mention that an

three (for the purpose of loss measurement exercise) was used with

where this factor was investigated, in that case, the OD varied from one up to eight

In each case, the laser beam was passed over the sample once using

ages of waveguides, at various OD taken using the

optical microscope images of similar structures. In figure
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mer coupled with its photochemical interaction with polymer

material in particular, as already explained, allows for different structures to be made.

section of a 50 µm x 35 µm multimode waveguide in

, 35 shots per point, 25 Hz and a single

Excimer laser ablation of optical waveguide
section of a 50 µm x 35 µm multimode

™ optical polymer, further

experiments were conducted to investigate among others the effects of OD on the

een 3.00 mm/min and 4.00 mm/min;

maintained at the range between 40 and 50 shots

the feedrate at the

aforementioned range since they are all related by an equation as described in chapter 6

and also to ensure that the etching was carried out beyond the core layer based on the fact

shots per area as presented in

was used in all cases except where the effect of

the subject of investigation; it is equally important to mention that an OD of

used with the exception of

varied from one up to eight

In each case, the laser beam was passed over the sample once using

using the FEGSEM while

of similar structures. In figure 7.12,
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FEGSEM images of four waveguides made at different fluence are shown; close visual

examination of the structures does not reveal any significant difference and/or definite

pattern of improvement in terms of quality, i.e. roughness, in the waveguides fabricated at

this varying fluence. This observation was further substantiated by the insertion losses

obtained at varying fluence.

Figure 7-10: FEGSEM images of optical waveguide
fabrication showing different number of adjacent
waveguides, i.e. different OD in Truemode™ polymer
machined at 100 mJ/cm2, 50 shots per point, 3.6 mm/min,
30 Hz and a single pass.



Chapter 7: Fabrication of Waveguides

- 182 -

Figure 7-11: Optical microscope images of optical
waveguide fabrication showing different numbers of
adjacent waveguides, i.e. different OD in Truemode™
polymer machined at 100 mJ/cm2, 45 shots per point, 3.3
mm/min, 25 Hz and a single pass.
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Figure 7-12: Samples machined at 30 Hz, 50 shots per
point and 3.6 mm/min with different fluences of (a) 80
mJ/cm2, (b) 90 mJ/cm2, (c) 100 mJ/cm2, and (d) 110
mJ/cm2.

Finally, a 90 degree cross-over waveguide was tried (figure 7.13). The sample was

structured by ablating four L-like shapes forming the four quadrants of figure 7.13a in

turn. Each L-shape or quadrant was carried out by moving either x- or y-axis of the

workpiece stage keeping the other stationary while the laser beam was turned on; on

reaching the junction of the L-shape the axis motion was reversed. That is to say, the

stationary axis became the moving axis and vice versa. It is possible to ‘cross’ the

waveguides at angles other than 90 degree for example 60 degree; however in this case,

the quadrants would not be L-like shapes rather V-like shapes and a square mask (beam

spot) would not be very suitable or difficult to machine this.

(a) (b)

(c) (d)
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7-13: Waveguides crossed over at 90 degree to each
achined at 100 mJ/cm2, 45 shots per point, 3.3

n, 25 Hz and a single pass showing (a) a schematic
, and (b) an SEM image of an initial trial.

asurement, the effects of four different parameters were
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he fluence, the speed/frequency, the waveguide width and the

(b)
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OD. The length of the waveguide in each case was 45 mm. The plots of the effects of the

changing parameters on optical loss (figure 7.14) show that there is no direct pattern or

deduction that can be drawn between the optical loss and each of the variables for the

settings applied in this study; in other words, these parameters have no direct relation to the

optical loss achievable.

The minimum insertion loss obtained was about 22 dB at 45 shots, 25 Hz pulse reprate, 3.3

mm/min and 100 mJ/cm2. Again, assuming a 4.5 dB coupling loss, the propagation loss at

this setting is 3.9 dB/cm. This is quite high, even higher than those from the other systems

considered where relatively high losses could be expected. Unfortunately, the literature

survey conducted showed no such investigation being reported. In fact, the vast majority of

reports available only show the optical propagation loss achieved without detailing the

parameters at which they were achieved. Therefore, it is likely that parameter optimisation

is the key to low-loss fabrication.

Figure 7-14: Optical loss measurement carried out on
samples from Excimer laser showing the relationship
between (a) feedrate and insertion loss for a sample
machined at constant 100 mJ/cm2 and 45 shots per point (b)
OD and insertion loss for a sample machined at constant
100 mJ/cm2, 45 shots per point and 30 Hz (c) fluence and
insertion for a sample machined at constant 45 shots per
point, 3.3 mm/min and 25 Hz, and (d) waveguide width and
insertion for a sample machined at constant 100 mJ/cm2, 45
shots per point, 3.3 mm/min and 25 Hz.
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7.6 Wall Roughness Assessment

The optical losses obtained for the waveguides under this study were relatively high.

Although, insertion loss from UV Nd:YAG and CO2 lasers are promising and thus tolerable

since they are still at an early stage in the development of the process, those obtained on

Excimer were, indeed, high and might satisfy the optical budget currently on the roadmap

unless if optical amplification is used. It is difficult, at this stage, to identify what was

responsible for these high losses because there are numerous potential factors which are

either due to the fabrication process or/and defects in the waveguides.

Defects in waveguides can be: (i) those due to impurities, i.e. particles; this can cause

absorption and Rayleigh scattering, (ii) bubbles in the guides, and (iii) quality of the

interface, i.e. wall surface roughness. Working in a clean room environment is a key way to

eliminate or minimise the effect of (i) and partly (ii) but this was not available during this

research. The wall roughness is another factor that can play a substantial role in losses but

measuring this proved to be difficult due to the geometry of the waveguides. This is

because, for the dimension of the current waveguides (less than 100 µm), it is impractical to

use the currently available optical measuring devices to obtain data from the wall of such

waveguides; attempts were made using facilities at Loughborough University and BAE

Systems (an industrial partner to the OPCB consortium) but such effort was futile as no data

was obtained (figure 7.15).
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Figure 7-15: Wall roughness measurement trial with
insufficient data/signal from the target surface.

However, to circumvent this difficulty of not obtaining data from the walls of a waveguide

using the available measuring systems, a new approach of waveguide fabrication was

considered. In this method, waveguides were made at the very edge of the sample such that

a waveguide sample could be mounted with its wall facing the (lens of the) measuring

devices (Zygo or Talysurf). Both the exercises – fabricating the sample at the edge and

measuring such waveguide – were not easy and time consuming. In both cases, alignment

was a major issue. Figure 7.16 shows images of some of the attempts made in patterning

waveguides at the edge of the samples for the purpose of a wall roughness assessment.

Figure 7.17 is the result of a measurement carried out at BAE Systems on a waveguide

placed at the edge of the sample following this new approach; the sample used was

fabricated at 45 shots, 25 Hz, 4 passes and 100 mJ/cm2. This gave a wall roughness, Ra of ~

650 nm. Similarly, a roughness measurement was trialled using Talysurf CLI measuring

device at Loughborough University on a similar waveguide machined with two passes; the

result (figure 7.18) gave a Ra of ~ 260 nm. For this purpose, the sample was usually turned

upside down with the wall of the ablated trench facing the incoming light from the optical
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device such that the light could be scanned along the length of the track, then moved a 5

microns step along a direction perpendicular to the length of the wall. This was done so that

reliable signal could be obtained from the surface of the wall as schematically shown in

figure 7.19.

Furthermore, the bottom surface roughness of the trench was also assessed and found to be

30 nm Ra using AFM (figure 7.20). Although this value does indicate a relatively smooth

ablation further work is still required in this area to know what the acceptable Ra for any

optical waveguide is and how it is linked to any loss. It is also crucial that the real

contribution to the loss is identified from among the three possibilities mentioned earlier

(section 7.6).

Figure 7-16: Optical microscope images of samples
machined at constant 100 mJ/cm2, 45 shots per point and 25
Hz showing surface view of some of the attempts made in
patterning waveguides at the edge of samples for the
purpose of wall roughness assessment.



Chapter 7: Fabrication of Waveguides

- 189 -

Figure 7-17: Wall roughness measurement of a waveguide
fabricated using Excimer at 100 mJ/cm2, 45 shots, four
passes and 25 Hz.
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Figure 7-18: Talysurf CLI wall roughness measurement of
a waveguide fabricated using Excimer at 100 mJ/cm2, 45
shots per point, two passes and 25 Hz.

Figure 7-19: Schematic diagram showing the scanning
process of the wall surface of ablated trenches machined in
Truemode™ optical polymer in order to assess its
roughness.
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Figure 7-20: AFM roughness measurement of the bottom
of a trench fabricated using Excimer at 100 mJ/cm2, 45
shots per point, two passes and 25 Hz.

To conclude on this study (i.e. wall roughness assessment), FEGSEM images of the bottom

and the wall of a waveguide machined at 100 mJ/cm2, 50 shots, 30 Hz and one pass were

examined as shown in figure 7.21. It is evident from these images that the roughness (wall

and bottom) of the waveguide is of good quality agreeing with previous measurements;

however, a quantitative analysis would be desirable so that the process can be optimised in

line with this.
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Figure 7-21: FEGSEM images of a sample machine
Hz, 50 shots and 3.6 mm/min and 100 mJ/cm2 to v
investigate the waveguide quality showing (a)
waveguide (b) wall and bottom surfaces (c) wall and
surfaces (d) wall surface (e) bottom surface, and (
and bottom surfaces .
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7.7 Discussion

Reports have shown different values for the waveguide propagation loss depending mainly

on the materials and the fabrication process used; Lim, et al [1] put the values in the range

of 0.05 – 0.6 dB/cm. The author of [2] compiled a table of optical waveguide polymers,

their manufacturers, fabrication techniques and optical losses at three wavelengths, namely

840 nm, 1,300 nm and 1, 550 nm. At a datacom wavelength of 840 nm, the loss is in the

range of 0.01 dB/cm – 0.8 dB/cm, however at telecom wavelengths the upper limit was

much higher, for instance at 1,550 nm, the loss varied between 0.07 dB/cm – 1.7 dB/cm.

Equally important is the compilation made by Eldada in [3], the author covered more

processes and polymer candidates than those available in [2]. The losses reported in the

former table varied between as low as < 0.01 dB/cm at 840 nm for a single mode

waveguide in a halogenated acrylate polymer to as high as 5.0 dB/cm at 1,300 nm telecom

wavelength. Propagation loss of 0.24 dB/cm was recorded for a single mode waveguide in

Polyetherimide at 830 nm using laser ablation; for the same laser ablation of a single mode

waveguide in an acrylate polymer though at 1550 nm, the propagation loss of 0.8 dB/cm

was quoted.

Furthermore, researchers at IMEC-TFCG of Ghent University, Belgium, have repeatedly

reported laser ablation of optical polymer waveguides in ORMOCER and Truemode™

polymers using an Excimer laser at 248 nm wavelength [4 -6]. In [4] for example, Excimer

laser ablation of multimode waveguide in Truemode™ polymer was demonstrated but no

information was given on the loss achieved. An average propagation loss of 0.13 dB/cm at

850 nm was given in [5] for a multimode waveguide patterned in an acrylate polymer using

248 nm Excimer laser, however, it is not clear if this was a Truemode™ acrylate polymer.

In the same article, 355 nm UV Nd:YAG was said to have been trialled but it was limited

by dimension such that waveguide structures of 50 x 50 µm2 could not be achieved,

however, it was argued in [5] that UV Nd:YAG laser offered an excellent surface quality

for small structured waveguide and thus has a potential for single mode waveguide

fabrication. In addition, no literature report is available for the CO2 laser ablation of optical

waveguide in Truemode™ polymer. Therefore, it can be understood that at the point of

writing this thesis, there are no available quoted values (of propagation loss) for laser

ablation of multimode waveguide in Truemode™ polymer using either 355 nm UV:YAG

or 10.6 µm CO2 lasers.
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The estimated propagation losses obtained in this study for multimode waveguides in

Truemode™ acrylate polymer are 1.3 dB/cm, 1.4 dB/cm and 3.9 dB/cm for CO2, UV

Nd:YAG and Excimer lasers respectively. For both CO2 and Nd:YAG lasers, this is quite

acceptable considering the range quoted in the literature coupled with the fact that there was

no precedent for the two lasers upon which a benchmark could be set. However, the loss

with the Excimer laser was much higher than expected despite the fact it is presumed to be

the one providing the highest quality of ablation among the three lasers used. Table 7.2

summarises waveguide fabrication using CO2, UV Nd:YAG and Excimer lasers. Since the

three systems operate at different wavelengths, different process, i.e. photochemical /

photothermal, and with many other differences, it is thus difficult to make a thorough

comparison between them in terms of their suitability for this technology. However, what is

paramount here is to demonstrate the possibility of employing these laser candidates for the

optical waveguide fabrication thus facilitating its deployment into the targeted industry and

markets. Having said this, there are three fundamental deductions or conclusions from the

fabrication point of view that can be made from the three systems, they are:

1. Excimer is considered to be the most capable of the three in patterning structures

especially in photopolymers with the finest ablation quality due to the dominance of

a photochemical behaviour. It is therefore logical to conclude that the highest loss

obtained using this class of laser compared to the two others does not in any way

negate the general assumption of the Excimer rather it points to the fact that the loss

measurement exercise and good fabrication practice, i.e. in a clean room, should be

the objectives of further research.

2. CO2 laser has the highest processing speed which can, in turn, mean that it is

relatively the cheapest of the three; this is followed by UV Nd:YAG while Excimer

is the slowest and most expensive of the three, both in maintenance and production-

wise.

3. Although, for Excimer and CO2 lasers, three to five adjacent waveguides were

fabricated at each parameter setting in order to average the losses obtained. This

approach is still not satisfactory in revealing any contaminant that can result in high

insertion loss; it is therefore recommended that the cut-method approach should be

the primary objective of any further measurement exercise if comparison is to be

precisely made among the laser candidates.
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Table 7-2: Key properties of the three systems used in the
fabrication of optical waveguides.

Property CO2 UV Nd:YAG Excimer

Wavelength 10.6 µm (IR) 355 nm (UV).
Other wavelengths
available

248 nm (UV).
Other wavelengths
available

Beam–polymer
interaction

Photothermal Photothermal-
photochemical

Photochemical

Processing speed Very high (e.g. ~100
mm/s)

Moderately high
(~10 mm/s)

Low (~3 mm/min)

Mask projection No No Yes

Power
measurement

Not possible /
difficult at the
workpiece for the
setup used

Not possible /
difficult at the
workpiece for the
setup used

Energy measured at
the workpiece and
fluence calculated.

PCB process Widely used Widely used Used for complex
and sensitive
applications

Mode of operation CW common but
pulsed also available

CW common in IR
wavelengths but
pulsed Q-switched
are common in UV
harmonics

Mostly in pulsed
mode

Roughness Not measured but
relatively smooth
(microscope/SME
images)

Not measured but
relatively smooth
(microscope/SME
images)

Very smooth: 260
nm Ra (Wall
surface) and 30 nm
Ra (Bottom surface)

Total insertion loss
(dB)

10.7 (for 50 mm
long waveguide)

10.2 (for 40 mm
long waveguide)

22 (for 45 mm long
waveguide)

Estimated
Propagation Loss
(dB/cm)

1.3 1.4 3.9

7.8 Summary and Conclusion

Laser ablation of optical polymer waveguides carried out using three different separate

lasers, namely, 248 nm Excimer, 355 nm UV Nd:YAG and 10.6 µm CO2, was presented

in this chapter. Laser ablation was chosen, among the potential candidate techniques,
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because of its current usage in the drilling of microvias on PCB and equally because of its

capability. The choice of 355 nm UV Nd:YAG and 10.6 µm CO2 lasers was primarily

based on their processing and relative cost effectiveness when compared to an Excimer

laser, thus facilitating the deployment of OI.

For each of the lasers, a series of single-layer waveguides were made by varying key

parameters, i.e. fluence, power, pulse repetition frequency and speed. Fabricated

waveguides were then examined for continuity using Flash™200 optical device; this was

achieved by passing white light through one end of the guide for possible detection at the

other end. The loss measurement of the waveguides was carried out at UCL using a 850

nm MM VCSEL which was coupled to a 10 m 50/125 step index multimode fibre for

light launching; a 70 µm circular pin hole PD was used for light detection at the exit of

the waveguide. Cut-method was not employed here; hence the total insertion loss was

presented and propagation estimated using a coupling loss ~4.5 dB obtained from other

waveguide measurements carried out during the OPCB project.

For CO2 laser, the effect of input power (3 and 5 Watt) and scanning speed (70 to 100

mm/s) – corresponding to SPD values between 30 mJ/mm and 50 mJ/mm – on optical

propagation loss were considered; in each case the length of the fabricated waveguides

was 50 mm with five adjacent waveguides. Plots of the varied quantities against the

insertion loss did not indicate a strong relationship between them; the least insertion loss

of 10.7 dB however was achieved at 100 mm/s and 4 Watt, which gave an estimated

propagation loss of 1.3 dB/cm. Similar study was undertaken on UV Nd:YAG at varying

power and frequency from 0.11 Watt to 0.13 Watt and 8 kHz to 12 kHz respectively at

fixed values of 5 mm/s and 1 scan. It was observed that, for an increase in PRF from 8

kHz to 12 kHz, and decrease in input power between 0.11 – 0.13 Watt, there appears to be

a slight decrease in the insertion loss for values considered in this study. A minimum

insertion loss of 10.2 dB, corresponding to a propagation loss of 1.4 dB/cm, was obtained

for 40 mm waveguide.

The effect of varying the speed/frequency, fluence, waveguide width and optical density

on the insertion loss was considered on Excimer laser for 45 mm long five adjacent

waveguides. No direct pattern or deduction could be drawn from the graphs of

relationship between these parameters and the measured insertion loss. The minimum

insertion loss obtained was about 22 dB at 45 shots, 25 Hz pulse reprate, 3.3 mm/min and
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100 mJ/cm2 corresponding to the propagation loss of 3.9 dB/cm at this setting. Due to this

unexpected high loss, waveguide quality assessment was carried out. The results of this

exercise indicate Ra values of 260 nm (wall roughness) and 30 nm (surface roughness)

for a waveguide sample machined at 100 mJ/cm2, 45 shots per point, two passes and 25

Hz. These Ra values are indication of the good quality of the fabricated waveguides. It

was however surprising, despite this quality, to note that the loss values from the Excimer

laser samples were higher than even those from both UV Nd:YAG and IR CO2 – a

condition that was unexpected based on the machining qualities of these instruments;

therefore, this suggests that there are more areas to investigate to fully understand the loss

characteristics and its causes.

Although the insertion losses obtained here are relatively high considering the optical

power budget, however, optical power amplification might be necessary for a realistic OI

on PCBs. Nevertheless, the ability to successfully demonstrate that such process can be

accomplished on both UV Nd:YAG and CO2 is a key to a low-cost production route since

both lasers are currently used for high volume PCB production while loss improvement

should be considered in the future.

Debris and contaminants are an area for greater control in the future. The solution to this

is by working, for example, in a clean environment. By and large, the investigations

conducted (presented in this chapter) have demonstrated the potential of many more laser

candidates that can be used for the fabrication of optical waveguides thus broadening the

tools available and strengthening its deployment. It follows from this research that, for

example, femtosecond Ti-Sapphire, which is expected to produce a cleaner ablation than

nanosecond Excimer due to its shorter pulse duration, is a potential candidate.
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8 INTEGRATED MIRROR FABRICATION

8.1 Introduction

Optical signals on PCBs need to be routed to different parts of a device, such as between

the boards of a backplane, if OI is to be fully utilised. Various proposals have been made on

how to direct signals out of the plane of the board in a 3D fashion; they include 45-degree

ended optical connection rods, microlens, 90o-bent fibre connectors, 450-ended blocks, 45o-

ended I-shape waveguides, optical coupler and microprism. These aforementioned concepts

of out-of-plane coupling use blade cutting, laser ablation, dicing or RIE with each having its

pros and cons. [1 – 6]. To improve the coupling efficiency, Lee, et al [7] proposed a curved

micro-mirror instead of the flat 45-degree commonly utilised.

Even though the 3D out-of-plane coupling scheme is gaining momentum, there is no doubt

that in-plane routing of optical signals is needed. A typical system architecture would

require routing of signals not only from one layer to the other, i.e. 3D coupling, but also

within a layer 2D coupling; the latter would be extremely important if optical interconnect

is extended to the board (and even chip) level as the various roadmaps have laid down this

possibility. This is the drive that is ‘fuelling’ the research into this technique.

This chapter is dedicated to the novel fabrication of in-plane mirrors that would allow the

redirection of optical signals within the plane of the board. The laser ablation approach was

chosen to fabricate the 2D mirror in line with a technique presented by Lim, et al [1] and

Misselbrook [3] for 3D out-of-plane coupling. In addition, since 2D in-plane coupling

would mostly be useful at the board level where OI deployment is expected to reach in the

next decade as argued by Savage in [8] for chip-to-chip communication, the introduction of

any additional micro-optical component at this level of integration could face serious

challenges including alignment problems.

8.2 2D Mirror Formation for in-plane Coupling

Figure 8.1 is a schematic diagram of the 2D in-plane mirror fabrication, as conceptualised

by the author of this thesis, which can be used to couple light between multiple numbers of

chips or other components in the same layer. With this design, an effective turning angle of

zero, 90-degree and multiples of 90-degrees are possible. For this fabrication, laser ablation
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was chosen because, in addition to what has been previously mentioned, it also allows for

both the waveguide and the mirrors to be fabricated using a single process on the same

system, i.e. Excimer laser.

Figure 8-1: Proposed 2D in-plane scheme showing (a) 45-
degree in-plane coupling mirror design with 180-degree
effective turning angle, and (b) 45-degree in-plane coupling
mirror design with zero-degree effective turning angle.

Since the ablated mirror was to be coated and this coating would be made by electro-

deposition as discussed in the next section, the samples used for this experiment consisted

of a copper pad or layer on the FR4 substrate obtained from Stevenage Circuits Limited.

This was followed by the deposition of the optical layer, i.e. lower cladding and core, as

per the procedure discussed in section 3.4.

Based on the laser system setup used for the fabrication of the waveguide and the mirrors

reported here, the process involved a number of stages carried out sequentially as depicted

in the schematic diagram of figure 8.2. For simplicity, the stages can be grouped into two

phases / steps.

450

Optical polymer layer
on FR4 substrate

Optical polymer layer
on FR4 substrate

Optical polymer layer
on FR4 substrate

450

(a) (b)
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Figure 8-2: Schematic diagram showing the stages
involved in the 2D in-plane coupling mirror fabrication:
(a)process flow diagram; and (b) plan view of the sample
showing the laser ablation path.

(a)

(b)
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1. Phase One

In the first phase, the waveguide structures were fabricated in such a way that the copper

layer was not exposed; in other words, the ablation was done through the core into the

lower cladding layer and not beyond. This phase is similar in every respect to the

waveguide fabrication discussed in chapter seven, however, unlike the case of the straight

waveguides previously discussed, the waveguides here consisted of multiple straight tracks

which were joined together to form a single structure. For example, for the zero turning

angle scheme (figure 8.1b), the waveguide consisted of three straight tracks or channels; the

first and the last tracks were parallel to each other while the second channel was

perpendicular to them. To ablate this structure, the workpiece stage was moved in such a

way that positioned the three channels sequentially; that is to say, the x-axis was moved

while the y-axis was stationary to create the first track at the desired length, then the x-axis

was maintained stationary while the y-axis was moved along the pattern to join the second

arm of the waveguide with the first; finally, the y-axis became stationary while the x-axis

was moved to complete the first part/structure of the waveguide. Once this was

accomplished, the second part of the waveguide was machined in the same way as for the

first part.

As with the straight waveguides, the second structure was created such that a space,

dimensionally equal to the required waveguide, was left between the two structures.

Moreover, since the waveguide was made up of vertical and horizontal lines joined

together, the ‘offset’ – space left between the two channels that sandwich a waveguide –

was required in both directions in this design. Figure 8.3 is an optical microscope image

indicating the accomplishment of the first phase of this process; in this image, a waveguide

with zero-effective turning angle was fabricated as shown. Integrated mirror fabrication was

carried out in the next stage of the manufacturing process.
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Figure 8-3: Image of the first stage of a 2D in-plane mirror
fabrication process showing the initial waveguide
formation.

2. Phase Two

The second phase involved ablating the mirror structures on the waveguide created in phase

one (figure 8.3). To ablate the mirror in this phase, the workpiece stage was rotated by 45-

degree either clock-wise or anticlockwise depending on the mirror required to be

micromachined. The corners where the mirrors are required were first located by moving

the sample under the imaging lens and viewing it using the CCD monitor incorporated with

the system. Once the mirror point was located, a straight line, tangential to this corner, was

ablated using appropriate parameters such that the copper layer would be exposed; this was

typically done by passing the laser beam over the track a number of times. The sample was

then viewed, using the CCD monitor, to examine the ablated structure and then the laser

was passed over the track again if required. This exercise required that the x-y position used

was recorded such that the ablation could be continuously done on the same line when

needed.

Alignment was problematic with this process due to the system setup, which required that

many trials were conducted in order to appropriately place the mirror at the corners of the

waveguides. Figure 8.4 is an example of an issue that occurred if the offset was wrongly
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calculated/estimated probably during the process of adding the coordinates; as could be

seen, this possible error marred all the work carried out in phase one. An easier procedure

would have been to make a mask with patterns containing both the waveguide and the

mirror such that it would be projected onto this sample but this would not be cost effective

and would be time consuming from the research point of view but certainly it is a suitable

method for large scale production. Alternatively, an aperture/mask with square or

rectangular features could be made so that some are parallel to the direction of beam travel

while others inclined at 45-degree angle – an approach considered by the author. The

former could be used for the waveguide while the latter is used for the mirror; this

eliminates the problem of having to turn the stage and the hurdles of calculating the

coordinates.

Figure 8-4: Images showing mirror overlapping the
fabricated waveguide due to error in offset estimation.

Since the mask design proposed could not be incorporated and the offset calculation

inevitable, thus, apart from the great care required during the offset determination and

calculation, a further step was taken by the author to avoid waveguide-mirror overlap. This

additional move was to ablate a first track a little far away from the estimated coordinate of

the mirror point at a very low fluence. The sample would then be brought under the CCD

monitor for viewing; if the point was as desired then the overlapped tracks were then
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ablated until the required coordinate was reached. Figure 8.5 shows such a concept where

the 45-degree in-plane mirror was made by overlapping three tracks. Having said this, great

care, though time consuming and inefficient, was the best practice taking into consideration

the limitation of the system setup.

Figure 8-5: Optical microscope images showing
waveguides and zero-degree effective turning angle scheme
of a 45-degree in-plane coupling mirror fabricated using
Excimer laser machined at 25 Hz, 45 shots per point and
~100 mJ/cm2.

Figure 8.6 shows a waveguide with embedded mirror where a single short track was

employed with the mirror structure having a dimension of ~ 0.2 mm x 1.5 mm. This meant

that the ablated feature required to be filled was much smaller compared to when

overlapped and longer tracks were used. The obvious advantage in this smaller dimension is

its relative cost effectiveness since less material (copper or nickel) would be required and

the deposition time would be greatly reduced. The waveguide was fabricated at ~ 100

mJ/cm2, 20 Hz, 40 shots per point, 3 mm/min and at a single pass; the mirror was however

carried out at the same parameter setting but the number of passes was ten instead of only

once used for the waveguide.
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Figure 8-6: Images showing waveguides and zero-degree
effective turning angle scheme of a 45-degree in-plane
coupling mirror fabricated using Excimer laser. The
waveguide was fabricated at ~ 100 mJ/cm2, 20 Hz, 40 shots
per point, 3 mm/min and at a single pass; the mirror was
however carried out at the same setting but the number of
passes was ten instead of a single pass as used for the
waveguide.

8.3 Metal deposition

For 3D out-of-plane mirrors, different methods of metallisation have been used as shown in

figure 8.7, which can also be applied to the 2D systems used here. Coupling light in and out

of the waveguides could be achieved by relying on the air/vacuum RI which is capable of

causing TIR (figure 8.7a) at this interface as used in [1], but this can be difficult in a real

application because (i) a vacuum is not guaranteed in a typical electronic assembly, (ii)

components are not immune from contamination, e.g. grease or moisture, which could alter

the RI, (iii) air content and temperature is a subject of the environmental condition, and (iv)

air RI is guaranteed to be constant. These aforementioned constrains, could have effect on

the coupling efficiency.
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Figure 8-7: 3D mirror fabrication schemes (a) TIR is used
to deflect incoming signal out of the waveguide at the
waveguide-air interface (b) light is coupled from a metal
deposited at the surface of the mirror trench which is then
filled with cladding material after metallisation, and (c) 3D
coupling of incoming signal achieved by filling the ablated
trench with a metal using electrodeposition.

For these reasons, end facets of mirrors are coated with metal to improve the reflectivity

and for a good surface finish (figures 8.7b and 8.78c). This type of deposition technique

depends largely on the sample to be coated and adhesion among other things, for example,

Glebov, A. L. et al [7] used sputtering to deposit a thin layer of gold (Au) on the surface of

the mirror before filling the trench with upper cladding; a similar process was used for a

laser ablated mirror [2]. Misselbrook, P.J. [3] backfilled the trench of a laser ablated mirror

(a)

(b)

(c)
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used to terminate a photolithographically-made waveguide using electrodeposition; in this

case a copper pad was considered.

In this research, two different types of metal depositions were considered both were similar

to figure 8.7c, with electrodeposition and electroless plating used. The filling of the ablated

trench was the objective rather than the surface coating of the mirror. Filling of the trench is

considered more suitable than surface coating because the processes involved in achieving

the latter such as sputtering and chemical vapour deposition (CVD) can also coat the

adjacent waveguides which have no upper cladding.

8.3.1 Electroplating

Electroplating is a well-known technique of coating conducting surfaces with metals. The

process setup utilises an anode and cathode submerged in an electrolytic solution

containing the ions of the metal to be deposited. The waveguide sample containing the

mirror which is to be plated was made into the cathode by exposing a small part of the

metal layer at the edge of the part which was then clipped to the negative terminal of a

DC electric power supply, while the anode was connected to the positive terminal. During

this process, the copper anions from the anode are dissolved into the electrolyte (an acidic

solution containing copper(II) sulphate (CuSO4)) solution to replenish the metal ions that

are attracted to the cathode - in this case the mirror – in order to coat its copper pad thus

building up the thickness of the trench. Current density and time of plating determines the

thickness of coating but other factors such as air bubbles in the trench and chemical

reaction can also affect the rate of deposition thus, an optimum parameter needs to be

determined for each process.

Figure 8.8 shows an optical microscope image of an electrodeposited copper feature in

the ablated mirror carried out during the trial which took about 2 hours. No delamination

occurred between the optical layer and the substrate (copper on FR4). Initially, the 45-

degree trench to be used for 2D mirror was made big about 0.3 mm x 3 mm to avoid air

bubble entrapment, it was thereafter decided that the mirror be made much smaller.
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Figure 8-8: An image of a 45-degree 2D in-plane mirror
filled with copper using electroplating.

8.3.2 Electroless plating

Electroless plating is a type of electrochemical but does not require an electric power

supply. The type of metal used in this process forms the basis of its naming; for example, in

electroless copper plating, copper is the metal to be deposited. Here, Nickel was chosen as

the metal because it was easy to monitor the formation of the Nickel deposit on the mirror

visually since a copper pad was used and Nickel has a different colour. One of the benefits

of this process, in addition to its cost effectiveness as argued by Shacham-Diamand, et al in

[9], is that the geometry of the sample to be plated is not an issue.

An initial trial was conducted to investigate the possibility of using this technique and to

determine the plating rate; this was carried out with three different samples:

i. a sample of FR4 with a layer of copper, and

ii. a similar sample to (i) above but spun coated with clad and core of

Truemode™ polymer, and

iii. a sample similar to (ii) but with a small hole made from the core to the
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copper layer to simulate a mirror. This was made to act like a typical mirror

so as to confirm the possibility of selectively coating the actual mirror part,

which is the only part exposed to the copper layer. In all cases neither

waveguide nor mirror was patterned in it.

With the first sample, after its immersion in the solution for 40 minutes, it was removed and

examined. It was noticed that the nickel evenly deposited only on the surface of the copper

with no deposit on the FR4 side suggesting that the process can selectively plate on the

exposed metal part. With the second sample, after about half an hour, no Nickel metal

appeared on the photopolymer (i.e. core layer of Truemode™) of the sample but traces of

nickel were also found on the FR4 side around an engraved mark. This trace of deposits on

the engraved part can only be explained by assuming that the engraved part exposed the

copper layer underneath.

The third sample was left immersed in the solution for about an hour; examination showed

an occurrence of plating only on the pierced hole on the side of the Truemode™ polymer

and nowhere else. This was easy to detect due to the silvery white or brownish-like colour

of the nickel deposit.

Figure 8.9 shows the result of this trial with copper pad being coated with Nickel; the

profile obtained across the deposit showed that the Nickel coat was not uniform across the

substrate but this was more likely due to the fact that the substrate used was not flat. From

this analysis, the maximum thickness of the coating was found to be around 18 microns.

This means that the rate of coating is approximately 25 microns/hour; this is within the

range quoted in the literature [10].
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Figure 8-9: Figure showing an initial trial to investigate the
possibility of coating an embedded in-plane mirror using
electroless nickel technique; the trial was made on a FR4-
copper layer: (a) plan view showing a region with plated
Nickel on copper, and (b) depth profile of the plated Nickel
region.

Having successfully tried electroless Nickel plating, samples with waveguide and mirrors

were made. The samples were prepared in such a way that a thin layer of upper cladding

was used. This scheme was utilised so that plating could be done assuming the minimum

estimated plating rate to ensure that (i) the mirror is fully filled, and (ii) any resulting over

filling due to using minimum plating would not ‘coat’ the waveguide. This method, in

addition, can minimise possible contamination on the part of the waveguide especially as

discussed in chapter two. Although the deposition was successfully achieved by this

technique, unfortunately, the adhesion between the optical layer and the copper especially

had been weakened and peeled off soon after the process. In the future, adhesion promoter

might be needed to circumvent this problem.

8.4 Summary and Conclusion

While attention has been dedicated to out-of-plane coupling of signals, in the chapter, a

novel 2D in-plane mirror fabrication was presented which is required for routing signals

between components on a plane. This is because such a scheme would be particularly

important if OI is extended to board-level. The laser ablation approach was chosen to

fabricate the 2D mirror as this has also been used for 3D out-of-plane coupling. In addition,

it allows for the definition of waveguides and the mirror to be done using a single process

thus benefiting from accuracy, minimum alignment problem and small size since the

introduction of new components, such as lens, would not be required. The 45-degree

Copper layer Plated Nickel region

(a) (b)
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coupling considered in this work allows an effective turning (or signal re-direction) angle of

zero to be achieved using two mirror at 45-degree to the waveguides but, a 90-degree and

multiples of 90-degrees are possible with as many mirrors as necessary.

The ablated mirror was coated, by backfilling the ablated mirror trench with a metal, using

both electroplating and electroless plating. For this reason, the samples used for this study

consisted of a copper pad or layer on the FR4 substrate which was followed by the

deposition of the optical layer, i.e. lower cladding and core. A complete structure of

waveguides and two 45-degree embedded mirrors was demonstrated with the mirrors

having a dimension of ~ 0.2 mm x 1.5 mm; the mirror was fabricated at ~ 100 mJ/cm2, 20

Hz, 40 shots per point, 3 mm/min and at ten number of passes while the waveguide was

carried out at the same parameter setting but at a single pass in lieu of the ten passes used

for the mirrors.

The loss due to the mirror was not assessed in this research due to the lossy nature of the

waveguides fabricated using Excimer laser, it is therefore recommended that such a

measurement be made a priority after the main cause of losses in the waveguides is or are

identified and corrected. With this approach, a separate waveguide can be made alongside

the waveguide containing the mirror; the former can then be used as a reference for which

losses due to the mirror can be obtained. Alternatively, this 2D coupling technique could be

applied to prepare mirrors in waveguides made by other methods such as photolithography.

Backfilling of the trench was considered to allow for efficient coupling and thus low loss

but there were certain challenges to this process which needs to be considered in any future

work. Some of these problems were to do with the sample preparation while others are

related to the plating technique, albeit there are some due to both. Apart from the fact that

the deposition rate is relatively slow, about 25 µm/hour for the initial trial, it is also

precisely defined depending on the wide range of changes in parameters such as the

activator used, concentration of activation, activation time and even temperature [10]. In

addition, the small size of the mirror can cause bubbles to be trapped in the structure and

thus affecting either the plating process to continue and/or the uniformity of the final plated

material. This can be overcome by sample preparation and process optimisation.
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9 CONCLUSION AND FUTURE WORKS

9.1 Summary and Conclusion

In this thesis, laser ablation of optical polymer to fabricate waveguides has been

successfully demonstrated; the ablation was carried out using three different lasers, namely,

Excimer, UV Nd:YAG and CO2 lasers, thus providing opportunities for rapid deployment

of OI to the PCB manufacture industry. In addition, a novel in-plane coupling mirror

fabrication using Excimer laser ablation was demonstrated which was considered to be vital

for communication between chips at board-level.

Although there are literature information detailing the effect of certain experimental

parameters such as fluence, pulse repetition rate, pulse duration and wavelength among

others, in relation to the etch rate of different materials as asserted in the chapters on laser

system characterisation, the machining of new materials requires new data to be obtained.

In fact various models are available to try to model the laser-matter interaction in a

mathematical way, but these cannot be taken universally as they fail to be applicable in

many scenarios. For this reason, experimental optimisation appears to be the logical way

forward at this stage of the research thus requiring material-system characterisation to be

conducted for each case and thus formed an integral achievement of this thesis.

Among the polymers investigated, PMMA seems to be the only candidate that has been

mostly considered for laser ablation. This research has therefore, provided information on

how another commonly used photopolymer i.e. Truemode™ behaves in relation to the

aforementioned factors. This study conducted during laser system characterisation revealed

that, while Beer’s and SSB’s models can be used as a reference in explaining some

behaviour, this is not universal thus requiring that a different model (i.e. a mathematical

representation based on a regressive analysis) be formed to interpret other relations where

these models cannot hold. This study was able to conclude that a photothermal-

photochemical phenomenon is more likely to be used to explain the effect of the laser on

the polymer during laser ablation, most particularly that of UV Nd:YAG.

The CW CO2 laser micromachining of the optical polymers was understood to be governed

by the SPD calculated using the input power and scanning speed. While polysiloxane-based

polymer ablation gave clean structures at SPD values between 12 mJ/mm and 20 mJ/mm,
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the laser ablation of Truemode™ polymer was found to better at the range between 15

mJ/mm and 50 mJ/mm. Laser ablation of Truemode™ polymer at 355 nm using Nd:YAG

laser was considered to be a photochemical-photothermal process thus favouring

Srinivasan-Smrtic-Babu (SSB) explanation; it was found that input power below 0.15 Watt

at 5 mm/s – 10 mm/s speed and a frequency of 5 kHz – 10 kHz is an effective operating

condition. The depth of ablation was also found to increase linearly proportional to an

increase in the number of laser scans; however, a single scan was considered optimum and

sufficient to obtain the required depth of ablation during optical waveguide. Ablation

threshold of ~ 0.02 J/cm2 was obtained for Excimer laser ablation of Truemode™ polymer

at 248 nm wavelength which agrees with the thresholds reported for polymers. The tapering

effect is a major issue in Excimer laser ablation but this was overcome by a careful

selection of mask position and experimental parameters with a near-vertical profile obtained

at an operating fluence of 200 mJ/cm2 when a single pulse was used. The etch rates was

found to vary with fluence; a value of 0.252 µm/pulse and 2.5 µm/pulse were achieved at

30 mJ/cm2 and 280 mJ/cm2 respectively; however, a moderately low fluence above the

threshold, typically ~100 mJ/cm2 mJ/cm, was chosen as optimum operating condition in

order to avoid thermal damage.

9.1.1 Optical waveguide fabrication

The fabrication of single-layer optical waveguides has been demonstrated; laser ablation

was chosen here first, from its cost effectiveness point of view and secondly, because the

equipment is currently being used in the PCB industry. The Excimer laser is costly to

maintain on the one hand and the safety concern associated with its use, which requires

some strict procedures of operation and handling is a major cause of reluctance to its use in

laser ablation of PCB materials in general and of photopolymer in particular. These barriers

would not allow the technique to be highly welcome at this stage even though the

technology, OI, is unavoidable with the current state of copper bottlenecks. Nevertheless,

the use of Excimer at a later stage in this deployment loop or circle would become

necessary, if not inevitable, as this would be more suitable for fabrication of more complex

structures such as mirrors and may be assisted by the future integration of sensitive and/or

biomedical devices into PCBs.

The research reported here has managed to answer the two potential primary concerns of

PCB manufacturers by showing the possibility of using the existing lasers, namely UV
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Nd:YAG and CO2 lasers. An estimated propagation loss of 1.3 dB/cm, 1.4 dB/cm and 3.9

dB/cm were obtained for CO2, Nd:YAG and Excimer laser ablated waveguides

respectively; while the loss for Excimer-based waveguides were considered too high for the

optical power budget, those for CO2 and Nd:YAG laser ablated waveguides were highly

encouraging considering the fact that they are new. It is hoped that, in the future, the

process can be optimised to reduce the losses to < 1 dB/cm.

9.1.2 In-plane mirror fabrication

As previously asserted the typical system architecture would require the routing of signal

not only from one layer to the other, i.e. 3D coupling, but also within a layer. Chip-to-chip

interconnection is currently under development and that requires in-plane routing of signals

for which the integrated mirrors such as the one demonstrated here, where no additional

component is required, are a suitable option. A novel 2D in-plane mirror using laser

ablation was successfully demonstrated in this research; this utilised a 45-degree fabrication

method with zero-degree effective turning angle for coupling the signals. An advantage of

the laser ablation technique is that both the waveguide and the mirror can be fabricated at

the same time which means less possibility for contamination.

The ablated mirror trenches created were backfilled with metals. Having considered the two

forms of electrodeposition, namely electroless and electrolytic plating to fill the mirror

trenches, it is fair to say that although the two are suitable for the process, electroless was

easier; with electroless plating, there was no need to make an electrical connection to a

copper pad thereby simplifying the sample preparation, experimental design and

processing. Having said that, this idea is still in its premature stage and more research

would dictate the way forward

9.2 Future Work

9.2.1 Loss improvement:

The findings in this research are fundamental inputs that could help in the rapid deployment

of the technology to the targeted industry at a relatively affordable cost. It provides, among

other things, a means of having a choice of tools in carrying out the tasks such that laser

choice can be made in line with complexity and the geometry of the waveguides required.

However, to meet the optical power budget, low-loss waveguides – a highly essential
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requirement – were not met in this research. Therefore, it is anticipated that further research

should be focused on improving the optical loss. The following are some of the areas where

efforts should be exerted:

1. Clean room: Working in a clean environment should be the first and foremost

benchmark to be set for improving the loss. This is because, as repeatedly

mentioned, the Rayleigh loss is mainly as a result of some particles in the path of

the signal. These particles could be a product of either the process, such as debris

from the ablation or contaminants from the environment or during the post ablation

handling of the samples. Loss due to debris formation can be mitigated using

optimum parameters or applying one of the approaches already proposed as detailed

in chapter two. However, the extrinsic contamination can only be minimised by

working in a clean environment. It is also recommended that post-ablation handling

and processes, i.e. measurement and analysis, should be set or carried out as quickly

as possible so that the potential volume of contamination can be greatly reduced.

2. Curved mirror: Although, loss measurement has not been carried out, it is opined

that the use of a curved mirror might increase the efficiency of the coupling. Unlike

in the case of 3D out-of-plane coupling mirrors where the coupling is between a

VCSEL and a waveguide and from waveguide to a PD, the coupling for in-plane

mirror is between a section of a waveguide to another, thus, there is no need for the

mirror to be angled out of the plane. However, there could still be multiple

reflections at this junction if the incident signal from an arm of the waveguide is not

properly coupled into the adjacent perpendicular waveguide arm; and this could be

reduced by the use of a curved mirror that has been shown to help with 3D coupling

efficiency.

9.2.2 System comparison (Excimer, UV Nd:YAG and CO2 lasers)

PCB manufacturers would be interested to know what the merits and demerits are of each

candidate proposed, unfortunately, this could only be subjectively made in the context of this

research primarily due to the difference in the system setup. For instance, it is obvious from this

research that CO2 laser processing of optical waveguides is the fastest among the three

candidates investigated, but the arising question is that (i) was this high speed achieved at the

expense of optical loss, and (ii) is there any relationship between optical loss and scanning

speed such that a processing speed on a particular laser, e.g. CO2, can be used to obtain an
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equivalent or same loss on a different laser. Therefore, a study would be essential to answer

some of these puzzles and to provide a means of a subjective compare-contrast mechanism.

In addition to the aforementioned recommendations, and in order to be able to make a logical

comparison, it is recommended that additional features and/or modification of the existing

systems should be made in the following manner:

1. Excimer: A beam homogeniser should be integrated into the system to allow for a more

uniform beam intensity at the workpiece; a mask pattern should be designed in such a

way that different shapes of mirror for example, can be made without needing to create

a complex program for moving the workpiece stage. On a practical level, for more

efficient machining and registration of features, a more sophisticated control system

would need to be established, with provision for alignment features. This is especially

important for mirror fabrication such that a waveguide made, for example, using

photolithography can be brought for mirror fabrication using laser ablation.

Furthermore, the system could be customised so that two, or even three, lasers can be

housed in a single assembly which would be ideal from a production point of view

where straight guides could be prepared rapidly with one type of laser, e.g. CO2, with

the mirrors then added by the more accurate Excimer.

2. UV Nd:YAG and CO2: A low energy YAG and CO2 laser should be tried since laser

ablation of polymers is better at low energy. The system setup to be used should allow

that energy /power at the workpiece can be measured using an energy meter; this would

make it easier to compare losses against fluence. Since the laser used in this research is

mainly designed for processing PCB materials as in the case of the UV Nd:YAG or

simple marking and cutting as with CO2, the beam stability might not be a primary issue

of concern in those applications, but this is not the case with optical waveguide

fabrication where fine micro features are demanded. Therefore, stability of the system is

vital and that should be taken into consideration in any future research. A system

configuration such as that of the Flex 5330, where both Gaussian and Top-hat beam

profiles are possible, should be used. Even though, waveguides were achieved using

both profiles, there are no reports on whether the profile affects the loss, so such system

would enable a good comparison.
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9.2.3 Roughness assessment

The roughness of the base of ablated channels of the waveguides were visually examined and

evaluated using a non-contact measuring technique; this gave a low Ra even below 30 nm,

however, the wall roughness of the channels is also required to be known in order to correlate

the effect of this on the loss. Obviously, a rougher surface would empirically mean a lossy

waveguide but this needs to be established experimentally. Attempts were made to assess the

wall roughness of the waveguides made, but this proved unsuccessful despite the consultations

made with experts at for instance, the National Physical Laboratory (NPL), UK. The major

barrier to this study, i.e. wall roughness measurement, was due to the geometry of the

waveguides obtained using this technique; this requires that waveguide samples are made very

close to the edge of the substrate so that light from an interferometer can be used – this exercise

was tedious and the measurement obtained in this manner was not highly reliable. Therefore,

extra effort is expected to be made or spent in this study, preferably by non-contact mechanism,

and to correlate the values to the losses in waveguides.

9.2.4 Mirror characterisation

Mirror characterisation is required to be able to ascertain the effectiveness of its coupling

capability; further to this, a comparison should be made between air and metal as reflectors.

Still more areas where further research should be undertaken are the study of the effects of a

curved mirror on achievable optical loss as suggested above. These, indeed, are some of the

areas of study that this thesis has created for researchers to investigate.
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